

## Periodic Review Report

### Review Period July 2020 – November 2022

Swivelier Company

33 Route 304, Nanuet, Rockland County, New York 10954

NYSDEC Site Nos. 3-44-036 & V00520

#### Submitted to:

S.F. Properties, LLC 627 South Main Street New City, New York 10956

#### Submitted by:

EWMA 100 Misty Lane Parsippany, NJ 07054 (973) 560-1400

November 2022

Project 202530 Volume 1 of 1

Jawl Attain

Prepared by Jacob M. Strauss, PE Senior Project Engineer

## **Table of Contents**

| Cer | tificatio | n                                                                       | iv  |
|-----|-----------|-------------------------------------------------------------------------|-----|
| 1.  | Exec      | utive Summary                                                           | v   |
|     | 1.1       | Containment Conditions and Remedial History                             | V   |
|     | 1.2       | Effectiveness of the Remedial Program                                   | vi  |
|     | 1.3       | Compliance Status                                                       | vii |
|     | 1.4       | Conclusions and Recommendations                                         | vii |
| 2.  | Site      | Overview                                                                | 2   |
|     | 2.1       | Description                                                             | 2   |
|     | 2.2       | Chronology, Remedy Components, Remediation Goals, and Remedy<br>Changes | 2   |
|     | 2.3       | Remedy Performance, Effectiveness and Protectiveness                    | 6   |
| 3.  | IC/EC     | C Plan Compliance Report                                                | 7   |
|     | 3.1       | IC/EC Requirements and Compliance                                       | 7   |
|     |           | 3.1.1 Cover System                                                      | 7   |
|     |           | 3.1.2 Sub-Slab Depressurization System (SSDS)                           | 7   |
|     |           | 3.1.3 Institutional and Engineering Controls                            | 8   |
|     | 3.2       | IC/EC Certification                                                     | 8   |
| 4.  | Moni      | toring Plan Compliance Report                                           | 9   |
|     | 4.1       | Components of the Monitoring Plan                                       | 9   |
|     |           | 4.1.1 Cover System Monitoring                                           | 9   |
|     |           | 4.1.2 Vapor Intrusion Control System Monitoring                         | 9   |
|     |           | 4.1.3 Groundwater Monitoring                                            | 9   |
|     | 4.2       | Summary of Monitoring Completed During the Reporting Period             | 10  |
|     | 4.3       | Comparison with Remedial Objectives                                     | 10  |
|     | 4.4       | Monitoring Deficiencies                                                 | 10  |
|     | 4.5       | Conclusions                                                             | 10  |
| 5.  | -         | ation and Maintenance Plan (O&M) Compliance Report                      | 11  |
|     | 5.1       | Components of the O&M Plan                                              | 11  |
|     |           | 5.1.1 Summary of O&M Activities and Data Collected During the           |     |
|     |           | Reporting Period                                                        | 11  |
|     |           | 5.1.2 O&M Deficiencies                                                  | 11  |
|     | 5.2       | Conclusions and Recommendations for Improvements                        | 11  |
| 6.  |           | all PRR Conclusions and Recommendations                                 | 12  |
|     | 6.1       | Compliance with SMP                                                     | 12  |
|     | 6.2       | Performance and Effectiveness of the Remedy                             | 12  |



### 6.3 Future PRR Submittals

### Tables

- 1. June 2022 Groundwater Results Summary
- 2. Historical Groundwater Results Summary

### **Figures**

- 1. Site Location Map
- 2. Well Location Map
- 3. Sub-Slab Depressurization System & Vacuum Readings September 2022

### Appendices

- 1. IC/EC Certifications
- 2. Annual Inspection of Cover System and Vapor Intrusion Control System
- 3. Laboratory Analytical Packages
- 4. Purge Guides



## Certification

I, Jacob M. Strauss, certify that I am currently a New York State Registered Professional Engineer. In accordance with the DER Technical Guidance for Site Remediation (DER-10) Section 1.5 Certification Requirement 1.5(b)5, for each institutional or engineering control identified for the Site, I certify that all of the following statements are true:

(a) the institutional control and/or engineering control employed at this Site is unchanged from the date the control was put in place, or last approved by NYSDEC;

(b) nothing has occurred that would impair the ability of such control to protect public health and the environment;

(c) nothing has occurred that would constitute a violation or failure to comply with any Site Management Plan for this control;

(d) access to the Site will continue to be provided to NYSDEC to evaluate the remedy, including access to evaluate the continued maintenance of this control.

By: EWMA Engineering Services LLC

NYS Certificate of Authorization No. 0016891

Jaw M. 11/14/2022

Jacob M. Strauss, NYSPE No. 097765

EWMA Project No. 202530



Note: It is a violation of Article 145 of New York State Education Law for any person, unless he is acting under the direction of a licensed professional engineer, to alter an item of this Periodic Review Report in any way. If an item is altered, the altering engineer shall affix to the item his seal and the notation "altered by" followed by his signature and the date of such alteration, and a specific description of the alteration.



Periodic Review Report – Review Period July 2020 to November 2022 Swivelier Company 33 Route 304, Nanuet, Rockland County, New York 10954 NYSDEC Site Nos. Nos. 3-44-036 & V00520

## 1. Executive Summary

### **1.1 Containment Conditions and Remedial History**

The Property, which housed the former Swivelier Company, is listed as a Class 2 site on the New York State Registry of Inactive Disposal Waste Sites. The Property is located at 33 Route 304 in an industrial/commercial area of Nanuet, Rockland County, New York. A 132,000 square-foot building is located on a six-acre parcel surrounded by paved parking lots. The Site is zoned commercial and industrial and is currently utilized for commercial and industrial uses.

The Swivelier Company operated in a portion of the building for the assembly, manufacture, warehousing and distribution of lighting fixtures from 1956 to 1997. Noncontact process water and cooling water, as well as wastewater from the building floor drain system, was discharged to a drainage ditch on the western portion of the property. In 1979, the Rockland County Department of Health received a complaint citing discolored water flowing in the ditch. Samples collected by the Spring Valley Water Company in 1980 from the outfall pipe and in the surface waters indicated total volatile organic compounds (VOC) of 14,425 parts per billion (ppb)and 8,962 ppb, respectively. In 1980, Swivelier eliminated the use of the VOC compounds TCE and methylene chloride (MCl) in their processes and directed the site process, process waters, and waste waters to the municipal sewer system rather than to the on-site drainage ditch.

In 1991, the Rockland County Department of Health (RCDH) collected groundwater samples from several businesses and residential wells in this area. TCE was detected at 5,400 ppb in a sample from the L.A. Woman nightclub, located 0.4 miles to the south of the Property. Several other wells in the vicinity of L.A. Woman also contained TCE, but at lower concentrations. The RCDH identified numerous potential sources, including Swivelier, for the TCE contamination in the L.A. Woman well. The New York State Department of Environmental Conservation (NYSDEC) listed the Property on the New York State Registry of Inactive Waste Sites in July 1991 as a Class 2 site.

The NYSDEC retained Camp Dresser & McKee (CDM) to perform a Remedial Investigation/Feasibility Study (RI/FS) at the Property. The RI/FS was completed in two separate phases in 1994 and 1995. The results of the RI/FS identified VOC contaminated soils in the drainage ditch (discharge area) and VOC contamination in the underlying bedrock aquifer.

A hot spot excavation and soil removal was performed at the source area (on-site drainage ditch) in June 1999 by CDM. Soils were excavated within and adjacent to the ditch



to the zone of saturation, approximately 8-feet below ground surface (bgs). All soils were transported off-site and disposed of at a licensed waste handling facility.

Post excavation sample results of 1,100 parts per million (ppm) indicated that a small area of impacted soils approximately 10 by 10-feet by the former discharge pipe location remained in the subsurface soils below the water table. No further remediation activities were carried out at this location by CDM. S.F. Properties, LLC (S.F. Properties) entered into a Voluntary Cleanup Agreement (VCA) in April 2002 with the NYSDEC to remediate the site.

In-Situ Oxidation Technologies, Inc. (ISOTEC) in-situ chemox treatment processes were conducted in November 2002 for the field pilot study, and again in May 2005 for the full-scale treatment program, to remediate subsurface contamination via injection of peroxide and proprietary catalysts, thereby oxidizing contamination using Fenton's Reaction.

In accordance with the November 2004 RAWP, an SSDS was installed in March 2008 to address concerns regarding a potential source of vapor intrusion beneath the building. The results of the diagnostic field pilot test, conducted by EWMA on August 23, 2004, provided a basis to determine the locations and number of extraction points necessary to achieve adequate depressurization underneath the entire building. Upon instructions from the property representative, all SSDS installation activities were conducted within the empty warehouse portion of the building.

Long-term monitored natural attenuation (MNA) of groundwater within the overburden aquifers is currently being utilized, relying on natural attenuation processes to achieve applicable groundwater remediation standards.

This Periodic Review Report (PRR) is issued for the July 2020 through November 2022 review period.

## **1.2 Effectiveness of the Remedial Program**

The impacted media are now either beneath the existing buildings or have been excavated to the groundwater table, a depth of approximately 8-feet bgs in the former drainage ditch (CDM Supplemental Investigation Report, July 2000). The remaining area of the drainage ditch and exposed soils onsite have been covered with either an asphalt parking lot, landscaping, or buildings. The storm water that flowed from the site through an open ditch has been diverted through underground storm sewers to the off-site surface water body. The exposure pathways have been eliminated on-site by engineering controls, which



removed the point of exposure from surficial contact. However, impacted subsurface soil remains on site and constitutes a potential point of exposure through vapor intrusion.

Impacted groundwater at the site can be found within the overlying unconsolidated sediments and within the underlying bedrock. The groundwater is found at depths of 8-feet or greater at the site. No wells, either potable or industrial exist at the site. No groundwater discharge points on the site. Groundwater, and dissolved contaminants associated with the groundwater, flows in the subsurface toward the south-southwest. The contamination appears to be within the unconsolidated sediments, which are not considered a major aquifer in the area, and within the deep underlying bedrock aquifer, which is utilized as a potable water source off-site. Therefore, there are no points of exposure related to the on-site groundwater, except through potential vapor intrusion.

The approved ROD included No Action, i.e. natural attenuation for treatment of the groundwater contamination in the on-site overburden aquifers. Continued natural attenuation of the groundwater within the overburden aquifers is proposed based upon the current contamination concentrations.

## **1.3 Compliance Status**

The Site is being managed in compliance with the NYSDEC approved SMP. EWMA conducted site inspections on June 2 and 9, 2022 and found that the SSDS was damaged and not operational. Repairs were completed in September 2022. EWMA returned to conduct the annual site inspection on September 22, 2022 and confirmed that the SSDS had been repaired and was now fully operational. Additionally, eight new permanent sub-slab monitoring points were installed on September 22 and 23, 2022, **Figure 3**.

## **1.4 Conclusions and Recommendations**

During the review period from July 2020 through November 2022, the SMP has been implemented and the remedy, along with the institutional and engineering controls, continues to be protective of human health and the environment.

**Other SMP Elements** – Operation and monitoring information as specified in the SMP for this PRR period is detailed in this document.

**Periodic Review Report Schedule** – The next PRR will be prepared to cover the November 2022 through November 2023 reporting period.

Site Management Plan Implementation – Based on the continued need for institutional controls and engineering controls, it is recommended that the SMP remain in effect.



## 2. Site Overview

## 2.1 Description

The approximately six-acre Site contains a 132,000 square-foot building surrounded by paved parking lots. The Site is zoned commercial and industrial and is currently utilized for commercial and industrial uses. The Site is bordered by Demarest Mill Road to the north; Route 304 to the east; West Nyack Road to the south; and Teplitz Inc., an auto salvage facility to the west, **Figure 1**. Commercial enterprises, including a gas station and an automobile dealership, are located along the eastern side of Route 304. A bakery, delicatessen, and commercial buildings are located to the North across Demarest Road. An abandoned house is located on the southeast corner of Route 304 and Nyack Road, and an auto repair shop is located along Nyack Road directly adjacent to the Property. Apartment buildings are located to the south across Nyack Road. Directly adjacent to the Property on the west is Teplitz Salvage Yard. Further west of Teplitz along Nyack Road are additional automobile salvage/repair shops and trucking/shipping companies.

The Swivelier Company operated in a portion of the building for the assembly, manufacture, warehousing, and distribution of lighting fixtures from 1956 to 1997. Non-contact process water and cooling water, as well as wastewater from the building floor drain system, was discharged to a drainage ditch on the western portion of the property.

# 2.2 Chronology, Remedy Components, Remediation Goals, and Remedy Changes

A chronology of significant site compliance milestones is provided as follows:

In 1979, the Rockland County Department of Health received a complaint citing discolored water flowing in the ditch. Samples collected by the Spring Valley Water Company in 1980 from the outfall pipe and in the surface waters indicated total volatile organic compounds (VOC) of 14,425 parts per billion (ppb)and 8,962 ppb, respectively. In 1980, Swivelier eliminated the use of the VOC compounds TCE and methylene chloride (MCl) in their processes and directed the site process, process waters, and waste waters to the municipal sewer system rather than to the on-site drainage ditch.

In 1991, the Rockland County Department of Health (RCDH) collected groundwater samples from several businesses and residential wells in this area. TCE was detected at 5,400 ppb in a sample from the L.A. Woman nightclub, located 0.4 miles to the south of the Property. Several other wells in the vicinity of L.A. Woman also contained TCE, but at lower concentrations. The RCDH identified numerous potential sources, including Swivelier, for the



TCE contamination in the L.A. Woman well. The New York State Department of Environmental Conservation (NYSDEC) listed the Property on the New York State Registry of Inactive Waste Sites in July 1991 as a Class 2 site.

The NYSDEC retained Camp Dresser & McKee (CDM) to perform a Remedial Investigation/Feasibility Study (RI/FS) at the Property. The RI/FS was completed in two separate phases in 1994 and 1995. The results of the RI/FS identified VOC contaminated soils in the drainage ditch (discharge area) and VOC contamination in the underlying bedrock aquifer.

In 1995 two concrete lined pits located in a retail store on the Property were identified as containing TCE and 1,2-DCE and the contents were subsequently removed. A soil gas survey was performed at the concrete lined pits and based on this survey the NYSDEC required no further action at this area. Soils in the drainage ditch located on the western portion of the Property were identified as a source area for the VOC contamination to the underlying bedrock aquifer. In addition, sediments carried to the drainage ditch located across Nyack Road were identified as being above the NYSDEC action levels. The on-site drainage ditch and the off-site drainage ditch were identified as environmental areas of concern. Groundwater within the shallow unconsolidated zone and the deeper bedrock aquifer were identified as areas of environmental concern. Groundwater in the shallow unconsolidated zone was identified as moving slowly south-southeast. Petroleum impacts to the shallow groundwater were attributed to the Teplitz auto salvage facility on the adjacent property to the southwest. A plume of contaminated groundwater was identified in the deeper bedrock aquifer and was noted to be moving in a south-southwest direction. NYSDEC concluded that this plume was not the cause of the VOC contamination discovered in the L.A. Woman well. No receptors of the groundwater contamination from the subject were identified in the vicinity.

In March 1996, the NYSDEC presented a selected remedial action for the Property in a ROD. The approved ROD included No Action, i.e. natural attenuation for treatment of the groundwater contamination in the on-site overburden aquifers. The drainage ditch is shallow pathway designed to transport with no known recreational uses. CDM completed a remediation of the sediments by excavating impacted sediments and constructing a temporary streambed in June 1999. Post excavation analysis indicated that the remaining sediments were below NY SCC.

A hot spot excavation and soil removal was performed at the source area (on-site drainage ditch) in June 1999 by CDM. Soils were excavated within and adjacent to the ditch to the zone of saturation, approximately 8-feet below ground surface (bgs). All soils were transported off-site and disposed of at a licensed waste handling facility. Post excavation sample results of 1,100 parts per million (ppm) indicated that a small area of impacted soils approximately 10 by 10-feet by the former discharge pipe location remained in the subsurface soils below the water table. No further remediation activities were carried out at this location by CDM.



Groundwater samples were collected in November 1999 by CDM. TCE was identified in MW-3S, 3I, 6I, 6R, 8DI, 9ID, and 9D at concentrations of 22, 18, 130, 200, 160, 68, and 13,300 ppb, respectively. Based upon the results of the November 1999 post-excavation well sampling, CDM performed a Supplemental Groundwater Investigation from April 19, 2000 to May 25, 2000. The supplemental investigation consisted of the installation of MW-10D and collection of groundwater samples from MW-6I, 6R, 8I, 9I, 9D and 10D. TCE was identified in all samples with concentrations of 56, 25, 200, 33, 5,300 and 3,100 ppb, respectively.

In-Situ Oxidation Technologies, Inc. (ISOTEC) in-situ chemox treatment processes were conducted in November 2002 for the field pilot study, and again in May 2005 for the full-scale treatment program, to remediate subsurface contamination via injection of peroxide and proprietary catalysts, thereby oxidizing contamination using Fenton's Reaction.

In accordance with the November 2004 RAWP, an SSDS was installed in March 2008 to address concerns regarding a potential source of vapor intrusion beneath the building. The results of the diagnostic field pilot test, conducted by EWMA on August 23, 2004, provided a basis to determine the locations and number of extraction points necessary to achieve adequate depressurization underneath the entire building. Upon instructions from the property representative, all SSDS installation activities were conducted within the empty warehouse portion of the building.

The impacted media are now either beneath the existing buildings or have been excavated to the groundwater table, a depth of approximately 8-feet bgs in the former drainage ditch (CDM Supplemental Investigation Report, July 2000). The remaining area of the drainage ditch and exposed soils onsite have been covered with either an asphalt parking lot, landscaping, or buildings. The storm water that flowed from the site through an open ditch has been diverted through underground storm sewers to the off-site surface water body. However, impacted subsurface soil remains on site and constitutes a potential point of exposure through vapor intrusion, as discussed later.

Impacted groundwater at the site can be found within the overlying unconsolidated sediments and within the underlying bedrock. The groundwater is found at depths of 8-feet or greater at the site. No wells, either potable or industrial exist at the site. No groundwater discharge points on the site. Groundwater, and dissolved contaminants associated with the groundwater, flows in the subsurface toward the south-southwest. The contamination appears to be within the unconsolidated sediments, which are not considered a major aquifer in the area, and within the deep underlying bedrock aquifer, which is utilized as a potable water source offsite. Therefore, there are no points of exposure related to the on-site groundwater, except through potential vapor intrusion, as discussed later.



Long-term monitored natural attenuation (MNA) of groundwater within the overburden aquifers is currently being utilized, relying on natural attenuation processes to achieve applicable groundwater remediation standards.

Site activities have been documented in the following reports; Final Remediation Report prepared by CDM dated February 2000; a Supplemental Investigation Report prepared by CDM dated July 2000; five Voluntary Cleanup Program Remedial Action Workplan-Groundwater prepared by EWMA dated June 18, 2002, February 2003, July 2003, November 2004 and December 2004; an Environmental Status Update prepared by EWMA dated June 7, 2013; a Voluntary Cleanup Program Remedial Action Workplan prepared by EWMA dated August 2013, a Voluntary Cleanup Program RAW Addendum prepared by EWMA dated November 25, 2013; two Voluntary Cleanup Program Revised RI Progress Report prepared by EWMA dated May 4, 2015 and August 16, 2015; a Voluntary Cleanup Program revised Supplemental RI Progress Report prepared by EWMA dated June 2018; Field Sampling Plan prepared by EWMA dated November 2018; Annual Inspection Report prepared by EWMA dated January 24, 2019.

The key components of the remedy were excavation with end-point soil sampling, backfilling with certified clean fill, groundwater sampling and annual engineering inspections, engineering controls that include a cover system, a sub-slab depressurization system, and compliance with the SMP.

The goals of the remedy were:

- 1. Reducing, controlling, or eliminating the contamination present within the on-site soils and sediments;
- 2. Eliminating the threat to surface waters by remediating any contaminated sediments and soils on-site;
- 3. Eliminating the potential for direct human or animal contact with contaminated soils, sediments and groundwater on-site; and
- 4. Mitigating continuing impacts to contaminated groundwater.

In summary, during the July 2020 through November 2022 PRR period, the following deliverables were submitted and the following activities occurred:

- A site-wide inspection was conducted in September 2022 and the findings confirmed that IC/ECs, including the sub-slab vapor intrusion (VIC) system, are performing properly and remain effective;
- Sampling of monitoring wells MW-10D, 11D and 13D in June 2022, (Section 4.1.3); and
- This PRR was prepared for the July 2020 November 2022 period.

Refer to Figure 2 for the current monitoring well locations as of the date of this PRR.



The sub-slab vapor mitigation control system (installed beneath the building) was subjected to quality assurance testing and remains effective. The annual inspection results are provided in **Appendix 2**.

## 2.3 Remedy Performance, Effectiveness and Protectiveness

As of the date of this PRR submittal, the remedy has been performed as required and has been effective and protective in achieving the remedy goals as follows:

- 1. Reducing, controlling, or eliminating the contamination present within the on-site soils and sediments;
- 2. Eliminating the threat to surface waters by remediating any contaminated sediments and soils on-site;
- 3. Eliminating the potential for direct human or animal contact with contaminated soils, sediments and groundwater on-site; and
- 4. Mitigating continuing impacts to contaminated groundwater.

Supportive data is provided in the figures and appendices to this PRR for the purpose of demonstrating the remedy performance, effectiveness and protectiveness.



Periodic Review Report – Review Period July 2020 to July 2022 Swivelier Company 33 Route 304, Nanuet, Rockland County, New York 10954 NYSDEC Site Nos. Nos. 3-44-036 & V00520

## 3. IC/EC Plan Compliance Report

## 3.1 IC/EC Requirements and Compliance

To address residual contaminated soil, groundwater and soil vapor beneath the Site, the SMP provided for several ECs and ICs to protect human health and the environment. ECs include a cover system and a Sub-Slab Depressurization System (SSDS). ICs include implementation, maintenance and monitoring of all ECs, compliance with the SMP, permitted uses of the property, limited disturbance of the remaining impacts in the subsurface, inspections, media monitoring, and reporting of data.

### 3.1.1 Cover System

Exposure to remaining contamination in groundwater at the site is prevented by asphalt pavement, concrete-covered sidewalks, and concrete building slabs. The cover system is a permanent EC designed to prevent exposure to soil contamination.

The cover system is inspected annually by a licensed professional engineer, including a Site walk, visual examination of cover integrity, and interviews with personnel familiar with Site operations. A summary of the annual inspection results is provided in **Appendix 2**. See Section 4.1.1 below, for a discussion of the recent inspection of the composite cover system.

## 3.1.2 Sub-Slab Depressurization System (SSDS)

In accordance with the November 2004 RAWP, an SSDS was installed in March 2008 to address concerns regarding a potential source of vapor intrusion beneath the building.

The results of the diagnostic field pilot test, conducted by EWMA on August 23, 2004, provided a basis to determine the locations and number of extraction points necessary to achieve adequate depressurization underneath the entire building. Upon instructions from the property representative, all SSDS installation activities were conducted within the empty warehouse portion of the building.

The following provides a summary of the SSDS design:

• Two (2) separate SSDSs are installed along the western and eastern portions of the building and connected to vacuum blower #1 and #2, respectively, which are located on the roof of the building;



• Each SSDS consists of a 4-inch PVC main header pipe installed along the ceiling in order to connect all extraction points to the header pipe, and extending to the outside of the building into the vacuum blower;

• A total of nine (9) extraction points were connected to the western SSDS and eight (8) extraction points were connected to the eastern SSDS, each via 2-inch PVC connecting pipes extending upwards from the extraction points along the walls and corner and along the ceiling to the 4-inch PVC main header pipe;

• Extraction point connecter pipes and main header inlets to the vacuum blowers were equipped with ball valves and sampling ports in order to optimize the vacuum and flow through all points, and collect flow readings and air samples, as necessary;

• The vacuum blowers are 7.5 HP Regenerative Blowers capable of providing a total flow rate of 250 to 300 CFM.

Vapor intrusion controls beneath the subject building slab and above-slab mechanical portion of the system (piping, suction blowers, and valves) have been installed, and the SSDS is currently operational. See **Appendix 2** for a discussion of the recent inspection of the SSDS. Vapor intrusion controls will be integrated with all future building construction at the Site.

## 3.1.3 Institutional and Engineering Controls

- Cover System
- Sub-Slab Depressurization System

These ICs/ECs remain in place and are being implemented at the Site and annual testing was completed during this PRR period. Currently, the building is occupied and the VIC system is operating in accordance with the SMP.

## 3.2 IC/EC Certification

The required IC/EC Certifications are provided in Appendix 1 of this PRR.



## 4. Monitoring Plan Compliance Report

## 4.1 Components of the Monitoring Plan

The components of the monitoring plan are set forth below. A summary of the monitoring efforts specific to each monitoring plan component is provided below, along with the location of the associated monitoring data within this PRR:

- *Cover System* The cover was monitored visually for integrity during an annual inspection in May 2021 (see **Appendix 2** for annual inspection results);
- Sub-Slab Depressurization System The Sub-Slab Depressurization System (SSDS) is currently operating. Monitoring is ongoing and inspections are conducted on an annual basis to ensure proper functionality (see Appendix 2 for annual inspection results);
- Sampling of Monitoring Wells Groundwater monitoring wells associated with natural attenuation (MW-10D, 11D and 13D) were sampled in June 2022.

## 4.1.1 Cover System Monitoring

The quality and integrity of the cover system was inspected (monitored) annually and deemed intact and protective by the EWMA Certifying Engineer of Record.

## 4.1.2 Vapor Intrusion Control System Monitoring

The construction and effectiveness of the vapor intrusion control system installed beneath the building was inspected by qualified EWMA field technicians to ensure proper functionality. The system components and monitoring points have been inspected in September 2022, vacuum and air flow measurements confirm that the system is operating in conformance with the design requirements (see **Appendix 2 and Figure 3**), and the system has been certified.

## 4.1.3 Groundwater Monitoring

On June 1 and 9, 2022, EWMA collected ground water samples from on-site monitoring wells MW-10D, MW-11D, and MW-13D for TCL VO+15 laboratory analysis. Figure 2 depicts the wells at the Site and Table 1 illustrates the sample results. The ground water sampling activities were conducted in accordance with the ground water monitoring program approved by the NYSDEC.

The monitoring wells were purged utilizing a Grundfos Redi-Flow 2-inch diameter submersible pump equipped with a variable speed control box via three-volume purge rate to purge the monitoring wells. The Redi-Flow pump and electrical line was field decontaminated between



each well in accordance with pump decontamination procedures. No sheen or free phase product was observed and no odors were detected during the June 2022 ground water sampling event. The field sampling observations are summarized on the Purge Guide provided in **Appendix 4**.

As illustrated on **Table 1**, analytical results for MW-11D were all reported as non-detect or below the New York State Ambient Water Quality Standards and Guidance Values. MW-10D reported cis-1,2-dichloroethene (cis-1,2-DCE) and trichloroethene (TCE) was detected above the New York State Ambient Water Quality Standard (AWQS) of 5 ug/l. MW-13D reported concentrations of cis-1,2-DCE, TCE, vinyl chloride and tetrachloroethene (PCE) above the New York State Ambient Water Quality Standards and Guidance Values. The laboratory analytical packages are provided in **Appendix 3**.

As illustrated on the Historic Ground Water Results Table (**Table 2**), historically, MW-10D, MW-11D, and MW-13D have had fluctuating chlorinated solvent concentrations which is consistent with the June 2022 sampling event.

## 4.2 Summary of Monitoring Completed During the Reporting Period

The monitoring during the reporting period was completed as set forth above. The monitoring data is presented in the figures and appendices of this PRR.

## 4.3 Comparison with Remedial Objectives

Based on the monitoring data collected during the reporting period and presented in the figures and appendices of this PRR, the remedial objectives are being met. The cover system is effectively preventing exposure to residual contamination; and the VIC system is maintaining sub-slab de-pressurization and operating in conformance with the design and as required by NYSDOH and NYSDEC.

## 4.4 Monitoring Deficiencies

There are currently no known monitoring deficiencies. During this PRR reporting period, it was found that the SSDS was damaged and not operational. Repairs were completed in September 2022 and it is confirmed that the SSDS had been repaired and was now fully operational. Additionally, eight new permanent sub-slab monitoring points were installed on September 22 and 23, 2022.

## 4.5 Conclusions

All monitoring was performed in accordance with the NYSDEC approved SMP and pursuant to subsequent work plans and monitoring enhancements that have been approved by the NYSDEC.



## 5. Operation and Maintenance Plan (O&M) Compliance Report

## 5.1 Components of the O&M Plan

The components of the O&M Plan include inspections and completion of inspection forms.

## 5.1.1 Summary of O&M Activities and Data Collected During the Reporting Period

The inspection forms and records that were generated for the Site during the reporting period include the following:

• Annual Inspection of Cover System and VIC System (Appendix 2).

## 5.1.2 O&M Deficiencies

EWMA conducted initial site inspections on June 2 and 9, 2022 and found that the SSDS was damaged and not operational. Repairs were completed in September 2022. EWMA returned to conduct the annual site inspection on September 22, 2022 and confirmed that the SSDS had been repaired and was now fully operational. Additionally, eight new permanent sub-slab monitoring points were installed on September 22 and 23, 2022.

## 5.2 Conclusions and Recommendations for Improvements

**Project Review Report Schedule** – The next PRR will be prepared to cover the November 2022 through November 2023 reporting period.

**Site Management Plan Implementation** – Based on the continued need for institutional controls and engineering controls, it is recommended that the SMP remain in effect.



## 6. Overall PRR Conclusions and Recommendations

## 6.1 Compliance with SMP

As of the date of this PRR, the remedy has been performed as required under the SMP and has been effective and protective in achieving the remedy goals as follows:

- 1. Reducing, controlling, or eliminating the contamination present within the on-site soils and sediments;
- 2. Eliminating the threat to surface waters by remediating any contaminated sediments and soils on-site;
- 3. Eliminating the potential for direct human or animal contact with contaminated soils, sediments and groundwater on-site; and
- 4. Mitigating continuing impacts to contaminated groundwater.

Supportive data is provided in the tables, figures and appendices to this PRR for the purpose of demonstrating the remedy performance, effectiveness and protectiveness.

## 6.2 Performance and Effectiveness of the Remedy

The performance and effectiveness of the remedy are in conformance with the project objectives.

## 6.3 Future PRR Submittals

The next PRR to be prepared and submitted will cover the period from November 2022 through November 2023.



Property Known As:

### Swivelier Company 33 Route 304 Nanuet, Rockland County, New York 10954 NYSDEC Site Nos. 3-44-036 & V00520 EWMA Project No. 202530

Table 1 – June 2022 Groundwater Results Summary



#### Table 1 Groundwater Results Summary June 1 and 9, 2022 Swivelier Company 33 Route 304, Nanuet, Rockland County, NY EWMA Project No. 202530

| Sample #:                                              |                       | TOGs - Table 1                                                      | M            | W10D              |              |            | MW11D                   |          | MV          | V-13D-06              | 0122     | T        | FB-060122               |                | -        | FIELD BLAN              | к           |          | TB-060122               |          | 1        | RIP BLANK               |             |
|--------------------------------------------------------|-----------------------|---------------------------------------------------------------------|--------------|-------------------|--------------|------------|-------------------------|----------|-------------|-----------------------|----------|----------|-------------------------|----------------|----------|-------------------------|-------------|----------|-------------------------|----------|----------|-------------------------|-------------|
| Field ID:<br>Lab ID:<br>Date Sampled:<br>Depth(ft):    |                       | Ambient Water Quality<br>Standards And<br>Guidance Values<br>(ug/L) |              | 03-002<br>)9/2022 |              |            | 03403-001<br>06/09/2022 |          |             | 03213-00<br>06/01/202 |          |          | 03213-002<br>06/01/2022 |                |          | 03403-003<br>06/09/2022 |             |          | 03213-003<br>06/01/2022 |          |          | 03403-004<br>06/09/2022 |             |
| Dopui(ii).                                             | CAS                   | (09,2)                                                              |              |                   |              |            |                         |          |             |                       |          | I 1      |                         | _ I            |          |                         |             |          |                         |          |          |                         |             |
| Volatiles (ug/L)                                       |                       |                                                                     | Conc Q       | RL                | MDL          | Conc       | Q RL                    | MDL      | Conc        | Q RL                  | . MDI    | Cond     | CQ RL                   | MDL            | Conc     | Q RL                    | MDL         | Conc     | Q RL                    | MDL      | Conc     | Q RL                    | MDL         |
| Dichlorodifluoromethane                                | 75-71-8               | 5                                                                   | ND           | 50.0              | 27.6         | ND         | 1.00                    | 0.552    | ND          | 10                    | 0 55.2   | ND       | 1.00 0                  | 0.552          | ND       | 1.00                    | 0.552       | ND       | 1.00                    | 0.552    | ND       | 1.00 (                  | 0.552       |
| Chloromethane                                          | 74-87-3               | 5                                                                   | ND           | 25.0              | 15.5         | ND         | 0.500                   | 0.309    | ND          | 50.                   | 0 30.9   | ND       | 0.500 0                 | 0.309          | ND       | 0.500                   | 0.309       | ND       | 0.500                   | 0.309    | ND       | 0.500 (                 | 0.309       |
| Vinyl chloride                                         | 75-01-4               | 2                                                                   | ND           | 50.0              | 17.6         | ND         | 1.00                    | 0.352    | 43.3        | DJ 10                 | 0 35.2   | ND       | 1.00 0                  | 0.352          | ND       | 1.00                    | 0.352       | ND       | 1.00                    | 0.352    | ND       | 1.00 (                  | 0.352       |
| Bromomethane                                           | 74-83-9               | 5                                                                   | ND           | 50.0              | 19.3         | ND         | 1.00                    | 0.386    | ND          | 10                    | D 38.6   | ND       | 1.00 (                  | 0.386          | ND       | 1.00                    | 0.386       | ND       | 1.00                    | 0.386    | ND       | 1.00 (                  | 0.386       |
| Chloroethane                                           | 75-00-3               | 5                                                                   | ND           | 25.0              | 16.2         | ND         | 0.500                   | 0.324    | ND          | 50.                   | 0 32.4   | ND ND    | 0.500 0                 | 0.324          | ND       | 0.500                   | 0.324       | ND       | 0.500                   | 0.324    | ND       | 0.500 0                 | 0.324       |
| Trichlorofluoromethane                                 | 75-69-4               | 5                                                                   | ND           | 50.0              | 25.2         | ND         | 1.00                    | 0.503    | ND          | 10                    |          | ND ND    |                         | 0.503          | ND       | 1.00                    | 0.503       | ND       | 1.00                    | 0.503    | ND       |                         | 0.503       |
| 1,1-Dichloroethene                                     | 75-35-4               | 0.07                                                                | ND           | 25.0              | 18.2         | ND         | 0.500                   | 0.363    | ND          | 50.                   |          | ND ND    |                         | 0.363          | ND       | 0.500                   | 0.363       | ND       | 0.500                   | 0.363    | ND       |                         | 0.363       |
| Acetone                                                | 67-64-1               | NS                                                                  | ND           | 100               | 42.4         | ND         | 2.00                    | 0.847    | ND          | 20                    |          | ND       |                         | 0.847          | ND       | 2.00                    | 0.847       | ND       | 2.00                    | 0.847    | ND       |                         | 0.847       |
| Carbon disulfide                                       | 75-15-0               | NS                                                                  | ND           | 50.0              | 20.2         | ND         | 1.00                    | 0.403    | ND          | 10                    |          | ND       |                         | 0.403          | ND       | 1.00                    | 0.403       | ND       | 1.00                    | 0.403    | ND       |                         | 0.403       |
| Methylene chloride                                     | 75-09-2               | 5                                                                   | ND           | 50.0              | 25.0         | ND         | 1.00                    | 0.500    | ND          | 10                    |          | ND       |                         | 0.500          | ND       | 1.00                    | 0.500       | ND       | 1.00                    | 0.500    | ND       |                         | 0.500       |
| trans-1,2-Dichloroethene                               | 156-60-5              | 5                                                                   | ND           | 25.0              | 18.6         | ND         | 0.500                   | 0.372    | ND          | 50.                   |          | ND       |                         | 0.372          | ND       | 0.500                   | 0.372       | ND       | 0.500                   | 0.372    | ND       |                         | 0.372       |
| Methyl tert-butyl ether (MTBE)                         | 1634-04-4             | NS                                                                  | ND           | 25.0              | 12.3         | 0.330      | J 0.500                 | 0.245    | ND          | 50.                   |          | ND       |                         | 0.245          | ND       | 0.500                   | 0.245       | ND       | 0.500                   | 0.245    | ND       |                         | 0.245       |
| 1,1-Dichloroethane                                     | 75-34-3               | 5                                                                   | ND           | 25.0              | 14.3         | ND         | 0.500                   | 0.285    | ND          | 50.                   |          | ND       |                         | 0.285          | ND       | 0.500                   | 0.285       | ND       | 0.500                   | 0.285    | ND       |                         | 0.285       |
| cis-1,2-Dichloroethene                                 | 156-59-2              | 5                                                                   | 2990 D       | 25.0              | 13.9         | 1.16       | 0.500                   | 0.277    | 4550        | D 50.                 |          | ND       |                         | 0.277          | ND       | 0.500                   | 0.277       | ND       | 0.500                   | 0.277    | ND       |                         | 0.277       |
| 2-Butanone (MEK)                                       | 78-93-3               | NS                                                                  | ND           | 100               | 40.1         | ND         | 2.00                    | 0.802    | ND          | 20                    |          | ND       |                         | 0.802          | ND       | 2.00                    | 0.802       | ND       | 2.00                    | 0.802    | ND       |                         | 0.802       |
| Bromochloromethane                                     | 74-97-5               | NS                                                                  | ND           | 50.0              | 19.0         | ND         | 1.00                    | 0.379    | ND          | 10                    |          | ND       |                         | 0.379          | ND       | 1.00                    | 0.379       | ND       | 1.00                    | 0.379    | ND       |                         | 0.379       |
| Chloroform                                             | 67-66-3               | 7                                                                   | ND           | 25.0              | 14.3         | ND         | 0.500                   | 0.285    | ND          | 50.                   |          | ND       |                         | 0.285          | ND       | 0.500                   | 0.285       | ND       | 0.500                   | 0.285    | ND       |                         | 0.285       |
| 1,1,1-Trichloroethane                                  | 71-55-6<br>56-23-5    | 5<br>0.4                                                            | ND<br>ND     | 25.0<br>25.0      | 19.1<br>17.5 | ND<br>ND   | 0.500                   | 0.381    | ND<br>ND    | 50.                   |          | ND<br>ND |                         | 0.381          | ND<br>ND | 0.500                   | 0.381       | ND<br>ND | 0.500                   | 0.381    | ND<br>ND |                         | 0.381       |
| Carbon tetrachloride                                   |                       |                                                                     |              |                   |              |            |                         | 0.349    |             | 50.                   |          |          |                         |                |          | 0.500                   |             |          | 0.500                   |          |          |                         |             |
| 1,2-Dichloroethane (EDC)<br>Benzene                    | 107-06-2<br>71-43-2   | 0.6<br>NS                                                           | ND<br>ND     | 25.0<br>25.0      | 13.7<br>13.5 | ND<br>ND   | 0.500                   | 0.273    | ND<br>ND    | <b>50.</b><br>50.     |          | ND ND    |                         | 0.273<br>0.270 | ND<br>ND | 0.500                   | 0.273 0.270 | ND<br>ND | 0.500                   | 0.273    | ND<br>ND |                         | 0.273 0.270 |
|                                                        |                       |                                                                     |              |                   |              |            |                         |          |             |                       |          |          |                         |                |          |                         |             |          |                         |          | ND       |                         |             |
| Trichloroethene                                        | 79-01-6               | 5                                                                   | 6260 D       | 25.0              | 17.4         | 1.47       | 0.500                   | 0.347    | 9980        |                       |          | ND       |                         | 0.347          | ND       | 0.500                   | 0.347       | ND       | 0.500                   | 0.347    |          |                         | 0.347       |
| 1,2-Dichloropropane                                    | 78-87-5               | 1                                                                   | ND           | 25.0              | 13.6         | ND         | 0.500                   | 0.272    | ND          | 50.                   |          | ND       | 0.000 0                 | 0.272          | ND       | 0.500                   | 0.272       | ND       | 0.500                   | 0.272    | ND       |                         | 0.272       |
| 1,4-Dioxane                                            | 123-91-1              | NS<br>50                                                            | ND           | 5000              | 2560         | ND<br>ND   | 100                     | 51.1     | ND<br>ND    | 100                   |          |          |                         | 51.1           | ND<br>ND | 100                     | 51.1        | ND<br>ND | 100                     | 51.1     | ND       |                         | 51.1        |
| Bromodichloromethane                                   | 75-27-4<br>10061-01-5 | 50<br>NS                                                            | ND<br>ND     | 25.0<br>50.0      | 12.9<br>13.2 | ND<br>ND   | 0.500                   | 0.258    | ND<br>ND    | 50.                   |          | ND ND    |                         | 0.258          | ND       | 0.500                   | 0.258       | ND       | 0.500                   | 0.258    | ND<br>ND |                         | 0.258       |
| cis-1,3-Dichloropropene<br>4-Methyl-2-pentanone (MIBK) | 108-10-1              | NS                                                                  | ND           | 50.0              | 30.6         | ND         | 1.00<br>1.00            | 0.204    | ND          | 10<br>10              |          | ND       |                         | 0.204<br>0.611 | ND       | 1.00<br>1.00            | 0.204       | ND       | 1.00                    | 0.204    | ND       |                         | 0.264       |
| Toluene                                                | 108-88-3              | NS                                                                  | ND           | 25.0              | 15.1         | ND         | 0.500                   | 0.302    | ND          | 50.                   |          | ND       |                         | 0.302          | ND       | 0.500                   | 0.302       | ND       | 0.500                   | 0.302    | ND       |                         | 0.302       |
| trans-1,3-Dichloropropene                              | 10061-02-6            | NS                                                                  | ND           | 50.0              | 16.5         | ND         | 1.00                    | 0.330    | ND          | 10                    |          | ND       |                         | 0.330          | ND       | 1.00                    | 0.330       | ND       | 1.00                    | 0.330    | ND       |                         | 0.330       |
| 1.1.2-Trichloroethane                                  | 79-00-5               | 1                                                                   | ND           | 25.0              | 15.7         | ND         | 0.500                   | 0.313    | ND          | 50.                   |          | ND       |                         | 0.313          | ND       | 0.500                   | 0.313       | ND       | 0.500                   | 0.313    | ND       |                         | 0.313       |
| Tetrachloroethene                                      | 127-18-4              | 0.7                                                                 | 27.8 D       | 25.0              | 18.3         | ND         | 0.500                   | 0.365    | 42.5        | DJ 50.                |          | ND       |                         | 0.365          | ND       | 0.500                   | 0.365       | ND       | 0.500                   | 0.365    | ND       |                         | 0.365       |
| 2-Hexanone                                             | 591-78-6              | NS                                                                  | ND           | 50.0              | 40.9         | ND         | 1.00                    | 0.818    | ND          | 10                    |          | ND       |                         | 0.818          | ND       | 1.00                    | 0.818       | ND       | 1.00                    | 0.818    | ND       |                         | 0.818       |
| Dibromochloromethane                                   | 124-48-1              | 50                                                                  | ND           | 25.0              | 13.2         | ND         | 0.500                   | 0.263    | ND          | 50.                   |          | ND       |                         | 0.263          | ND       | 0.500                   | 0.263       | ND       | 0.500                   | 0.263    | ND       |                         | 0.263       |
| 1.2-Dibromoethane (EDB)                                | 106-93-4              | NS                                                                  | ND           | 25.0              | 14.5         | ND         | 0.500                   | 0.203    | ND          | 50.                   |          | ND       |                         | 0.289          | ND       | 0.500                   | 0.289       | ND       | 0.500                   | 0.289    | ND       |                         | 0.289       |
| Chlorobenzene                                          | 108-90-7              | 5                                                                   | ND           | 25.0              | 15.2         | ND         | 0.500                   | 0.304    | ND          | 50.                   |          | ND       |                         | 0.304          | ND       | 0.500                   | 0.304       | ND       | 0.500                   | 0.304    | ND       |                         | 0.304       |
| Ethylbenzene                                           | 100-41-4              | NS                                                                  | ND           | 25.0              | 15.7         | ND         | 0.500                   | 0.313    | ND          | 50.                   |          | ND       |                         | 0.313          | ND       | 0.500                   | 0.313       | ND       | 0.500                   | 0.313    | ND       |                         | 0.313       |
| Total Xylenes                                          | 1330-20-7             | NS                                                                  | ND           | 50.0              | 17.3         | ND         | 1.00                    | 0.345    | ND          | 10                    | 0 34.5   | ND       | 1.00 0                  | 0.345          | ND       | 1.00                    | 0.345       | ND       | 1.00                    | 0.345    | ND       | 1.00 0                  | 0.345       |
| Styrene                                                | 100-42-5              | NS                                                                  | ND           | 50.0              | 15.9         | ND         | 1.00                    | 0.317    | ND          | 50.                   | 0 31.7   | ND       | 0.500 0                 | 0.317          | ND       | 1.00                    | 0.317       | ND       | 0.500                   | 0.317    | ND       | 1.00 (                  | 0.317       |
| Bromoform                                              | 75-25-2               | 50                                                                  | ND           | 25.0              | 16.4         | ND         | 0.500                   | 0.328    | ND          | 50.                   | 0 32.8   | ND       | 0.500 (                 | 0.328          | ND       | 0.500                   | 0.328       | ND       | 0.500                   | 0.328    | ND       | 0.500 0                 | 0.328       |
| Isopropylbenzene                                       | 98-82-8               | NS                                                                  | ND           | 50.0              | 16.6         | ND         | 1.00                    | 0.332    | ND          | 50.                   | 0 33.2   | ND       | 0.500 0                 | 0.332          | ND       | 1.00                    | 0.332       | ND       | 0.500                   | 0.332    | ND       | 1.00 (                  | 0.332       |
| 1,1,2,2-Tetrachloroethane                              | 79-34-5               | 0.2                                                                 | ND           | 50.0              | 14.2         | ND         | 1.00                    | 0.284    | ND          | 10                    |          | ND ND    |                         | 0.284          | ND       | 1.00                    | 0.284       | ND       | 1.00                    | 0.284    | ND       |                         | 0.284       |
| 1,3-Dichlorobenzene                                    | 541-73-1              | 3                                                                   | ND           | 25.0              | 19.3         | ND         | 0.500                   | 0.386    | ND          | 50.                   |          | ND       |                         | 0.386          | ND       | 0.500                   | 0.386       | ND       | 0.500                   | 0.386    | ND       |                         | 0.386       |
| 1,4-Dichlorobenzene                                    | 106-46-7              | 3                                                                   | ND           | 25.0              | 19.9         | ND         | 0.500                   | 0.397    | ND          | 50.                   | 0 39.7   | ND       | 0.500 0                 | 0.397          | ND       | 0.500                   | 0.397       | ND       | 0.500                   | 0.397    | ND       |                         | 0.397       |
| 1,2-Dichlorobenzene                                    | 95-50-1               | 3                                                                   | ND           | 25.0              | 17.7         | ND         | 0.500                   | 0.354    | 101         | D 50.                 | 0 35.4   | ND ND    | 0.500 0                 | 0.354          | ND       | 0.500                   | 0.354       | ND       | 0.500                   | 0.354    | ND       | 0.500 0                 | 0.354       |
| 1,2-Dibromo-3-chloropropane                            | 96-12-8               | NS                                                                  | ND           | 50.0              | 20.5         | ND         | 1.00                    | 0.410    | ND          | 10                    | 0 41.0   | ND       | 1.00 0                  | 0.410          | ND       | 1.00                    | 0.410       | ND       | 1.00                    | 0.410    | ND       | 1.00 (                  | 0.410       |
| 1,2,4-Trichlorobenzene                                 | 120-82-1              | NS                                                                  | ND           | 50.0              | 17.9         | ND         | 1.00                    | 0.358    | ND          | 10                    |          | ND ND    |                         | 0.358          | ND       | 1.00                    | 0.358       | ND       | 1.00                    | 0.358    | ND       |                         | 0.358       |
| 1,2,3-Trichlorobenzene                                 | 87-61-6               | NS                                                                  | ND           | 50.0              | 20.3         | ND         | 1.00                    | 0.406    | ND          | 10                    |          | i ND     |                         | 0.406          | ND       | 1.00                    | 0.406       | ND       | 1.00                    | 0.406    | ND       |                         | 0.406       |
| 1,1,2-Trichloro-1,2,2-trifluoroethane                  | 76-13-1               | NS                                                                  | ND           | 50.0              | 26.9         | ND         | 1.00                    | 0.538    | ND          | 10                    |          | ND       |                         | 0.538          | ND       | 1.00                    | 0.538       | ND       | 1.00                    | 0.538    | ND       |                         | 0.538       |
| Methyl acetate                                         | 79-20-9               | NS                                                                  | ND           | 25.0              | 17.3         | ND         | 0.500                   | 0.345    | ND          | 50.                   |          | ND       |                         | 0.345          | ND       | 0.500                   | 0.345       | ND       | 0.500                   | 0.345    | ND       |                         | 0.345       |
| Cyclohexane                                            | 110-82-7              | NS                                                                  | ND           | 50.0              | 23.5         | ND         | 1.00                    | 0.469    | ND          | 10                    |          | ND       |                         | 0.469          | ND       | 1.00                    | 0.469       | ND       | 1.00                    | 0.469    | ND       |                         | 0.469       |
| Methylcyclohexane                                      | 108-87-2              | NS                                                                  | ND           | 50.0              | 21.1         | ND         | 1.00                    | 0.421    | ND          | 10                    |          | ND       |                         | 0.421          | ND       | 1.00                    | 0.421       | ND       | 1.00                    | 0.421    | ND       |                         | 0.421       |
| 1,3-Dichloropropene (cis- and trans-)                  | 542-75-6              | NS                                                                  | ND           | 50.0              | 13.2         | ND         | 1.00                    | 0.264    | ND          | 10                    |          | ND       | 1.00 (                  | 0.264          | ND       | 1.00                    | 0.264       | ND       | 1.00                    | 0.264    | ND       | 1.00 (                  | 0.264       |
| TOTAL VO's:<br>TOTAL TIC's:                            |                       | NS<br>NS                                                            | 9280 D<br>ND |                   | NA<br>NA     | 2.96<br>ND | J                       | NA<br>NA | 14700<br>ND | DJ                    | NA<br>NA | ND<br>ND |                         | NA<br>NA       | ND       | JN                      | NA          | ND       |                         | NA<br>NA | ND<br>ND |                         | NA          |
| TOTAL TIC'S:<br>TOTAL VO'S & TIC'S:                    |                       | NS                                                                  | ND<br>9280 D |                   | NA           | ND<br>2.96 |                         | NA       | ND<br>14700 | D.                    | NA       | ND<br>ND |                         | NA             | 7.70     | JIN                     | NA<br>NA    | ND<br>ND |                         | NA       | ND       |                         | NA<br>NA    |
| TUTAL VUS & HUS.                                       |                       | Gin                                                                 | 920U D       |                   | NA           | 2.90       | J                       | NA       | 14/00       | DJ                    | NA       | IND      |                         | INA            | 1.70     |                         | NA          | UND      |                         | NA       | UND      |                         | INA         |

#### New York State Division of Water Technical and Operational Guidance Series (TOGS), Issued October 22, 1993, Reissued June 1998

BOLD Conc Indicates a concentration that exceeds the applicable

riteria.

BOLD RL Indicates RL that exceeds applicable criteria. Indicates MDL that exceeds applicable criteria. 
 BOLD RL
 Indicates RL that exceeds applicable criteria.

 BOLD MDL
 Indicates MDL that exceeds applicable criteria.

 NS = No Standard Available
 Indicates MDL that exceeds applicable criteria.

 ND = Analyzed for but Not Detected at the MDL
 Jendicates MDL that exceeds applicable criteria.

 VD = Indicates a estimated value either when the concentration in the sample is greater than MDL and less than RL, or for qualification of TICs.
 D = The compound was reported from the Diluted analysis

 All qualifiers on individual Volatiles & Semivicatiles are carried down through summation.
 N = Presumptive evidence of a compound from the use of GC/MS library search.

Property Known As:

### Swivelier Company 33 Route 304 Nanuet, Rockland County, New York 10954 NYSDEC Site Nos. 3-44-036 & V00520 EWMA Project No. 202530

Table 2 – Historical Groundwater Results Summary



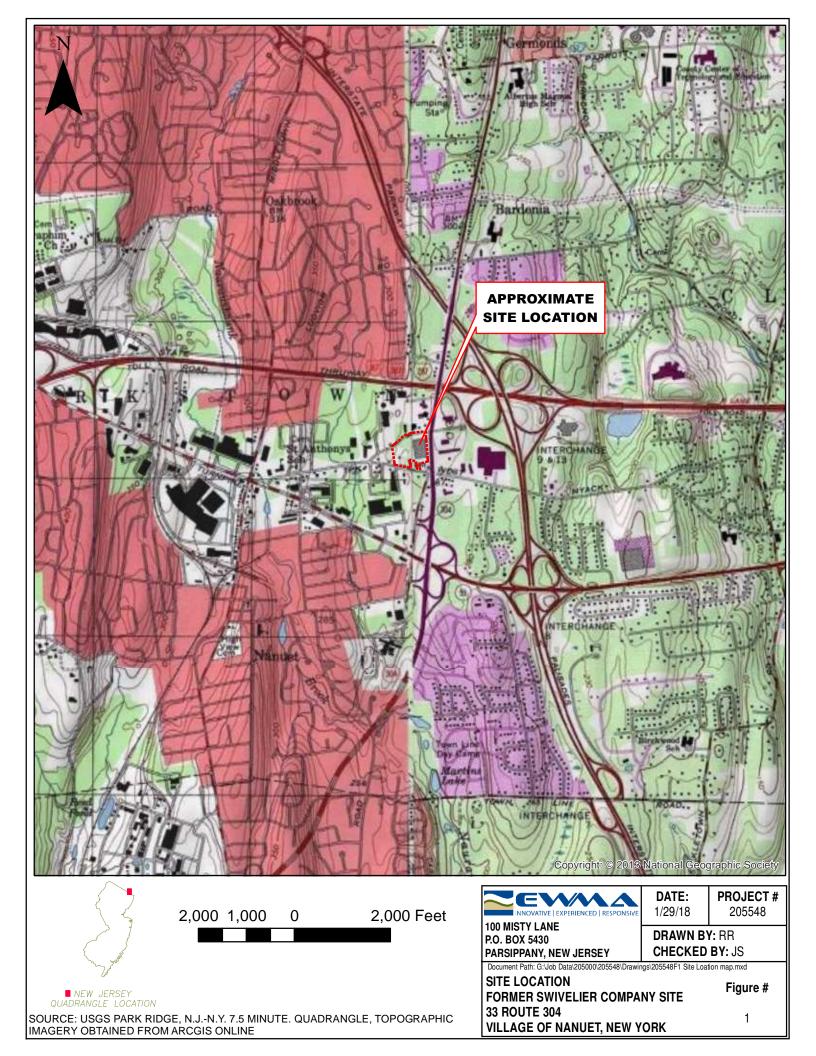
#### Table 2 - Historic Groundwater Results Former Swivelier Site Route 304, Nanuet NY EWMA Project No. 205548

| Well Information (ft.)              | Sampling Date           | Acetone | Vinyl Chloride | Chloroethane | Chloroform | cis-1,2-Dichloroethene | trans-1,2-Dichloroethene | 2-Butanone | Methyl tert-butyl ether (MTBE) | Benzene | Trichloroethene | Bromodichloromethane | Tetrachloroethene | 1,4-Dichlorobenzene | 1,2-Dichlorobenzene | Toluene | 1,1-Dichloroethene | TOTAL VO's: | TOTAL TIC's: | TOTAL VO's<br>& TIC's: |
|-------------------------------------|-------------------------|---------|----------------|--------------|------------|------------------------|--------------------------|------------|--------------------------------|---------|-----------------|----------------------|-------------------|---------------------|---------------------|---------|--------------------|-------------|--------------|------------------------|
| TOGS 1.1.1 GW STANDARDS GA<br>CLASS |                         | 50*     | 2              | 5            | 7          | 5                      | 5                        | 50*        | NS                             | 1       | 5               | 50*                  | 5                 | 3                   | 3                   | 5       | 5                  | NS          | NS           | NS                     |
| MW-10D                              | 9/2/2005                | ND      | ND             | ND           | ND         | NA                     | ND                       | ND         | NA                             | ND      | 249             | ND                   | ND                | ND                  | 2.03                | ND      | ND                 | 262         | 97           | 359                    |
|                                     | 12/21/2005              | ND      | ND             | ND           | ND         | 4390                   | ND                       | ND         | ND                             | ND      | 14500           | ND                   | ND                | ND                  | ND                  | ND      | ND                 | 18,900      | ND           | 18,900                 |
| 1 1                                 | 8/9/2006                | ND      | ND             | ND           | ND         | ND                     | ND                       | ND         | ND                             | ND      | 131             | ND                   | ND                | ND                  | 1.13                | ND      | ND                 | 132         | 44.0         | 176                    |
|                                     | 3/14/2007               | 23.4    | ND             | ND           | ND         | ND                     | 73                       | ND         | ND                             | ND      | 10900           | ND                   | 32.6              | 12.9                | 95.7                | ND      | ND                 | 11,100      | NA           | NA                     |
|                                     | 10/16/2007              | ND      | ND             | ND           | ND         | ND                     | ND                       | ND         | ND                             | ND      | 861             | ND                   | ND                | ND                  | ND                  | ND      | ND                 | 861         | 232          | 861                    |
|                                     | 5/5/2008                | ND      | ND             | ND           | ND         | ND                     | ND                       | ND         | ND                             | ND      | 330             | ND                   | ND                | ND                  | ND                  | ND      | ND                 | 330         | 58.0         | 388                    |
|                                     | 10/29/2008              | ND      | ND             | ND           | ND         | ND                     | ND                       | ND         | ND                             | ND      | 2920            | ND                   | ND                | ND                  | ND                  | ND      | ND                 | 2,920       | 875          | 3,800                  |
|                                     | 5/14/2009               | ND      | ND             | ND           | ND         | ND                     | ND                       | ND         | ND                             | ND      | 4260            | ND                   | ND                | ND                  | ND                  | ND      | ND                 | 4,260       | 1,800        | 6,060                  |
|                                     | 5/14/2009<br>11/10/2009 | ND      |                |              | ND<br>ND   |                        |                          |            |                                | ND      |                 |                      |                   |                     |                     |         | ND                 | · /         | 1,800<br>ND  | ,                      |
|                                     |                         |         | ND             | ND           |            | 2010                   | ND                       | ND         | ND                             |         | 5000            | ND                   | ND                | ND                  | ND                  | ND      |                    | 7,010       |              | 7,010                  |
|                                     | 4/29/2014               | ND      | ND             | ND           | ND         | 1720                   | 9.6                      | ND         | ND                             | ND      | 3700            | ND                   | ND                | ND                  | ND                  | ND      | ND                 | 5,430       | NA           | NA                     |
|                                     | 10/16/2015              | ND      | ND             | ND           | ND         | 1960                   | ND                       | ND         | ND                             | ND      | 4420            | ND                   | ND                | ND                  | ND                  | ND      | ND                 | 6,380       | NA           | NA                     |
|                                     | 5/18/2017               | ND      | ND             | ND           | ND         | 3760                   | 29.8                     | ND         | ND                             | ND      | 7480            | ND                   | 24.6              | ND                  | ND                  | ND      | ND                 | 11,300      | NA           | NA                     |
|                                     | 11/21/2017              | ND      | ND             | ND           | ND         | 3620                   | ND                       | ND         | ND                             | ND      | 7210            | ND                   | ND                | ND                  | ND                  | ND      | ND                 | 10,800      | ND           | 10,800                 |
|                                     | 11/27/2018              | NA      | ND             | ND           | ND         | 2960                   | ND                       | NA         | NA                             | NA      | 4950            | ND                   | ND                | ND                  | ND                  | NA      | ND                 | 7910        | NA           | NA                     |
|                                     | 6/9/2022                | ND      | ND             | ND           | ND         | 2990                   | ND                       | ND         | ND                             | ND      | 6260            | ND                   | 27.8              | ND                  | ND                  | ND      | ND                 | 9280        | ND           | 9280                   |
| MW-11D                              | 11/19/2002              | ND      | ND             | ND           | ND         | 91                     | ND                       | ND         | ND                             | ND      | 617             | ND                   | 4.24              | 2.12                | 9.4                 | 2.66    | ND                 | 635         | 91           | 726                    |
| [                   [               | 9/2/2005                | ND      | ND             | ND           | ND         | NA                     | ND                       | ND         | NA                             | ND      | 6.86            | ND                   | ND                | ND                  | ND                  | ND      | ND                 | 6.86        | 27.8         | 34.7                   |
| í í                                 | 12/21/2005              | ND      | ND             | ND           | ND         | 13.6                   | ND                       | ND         | ND                             | ND      | 10.9            | ND                   | ND                | ND                  | ND                  | ND      | ND                 | 24.5        | 6.8          | 31.3                   |
| í í                                 | 8/9/2006                | ND      | ND             | ND           | ND         | ND                     | ND                       | ND         | ND                             | ND      | 2.82            | ND                   | ND                | ND                  | ND                  | ND      | ND                 | 2.82        | 201          | 204                    |
| í í                                 | 3/14/2007               | 11.3    | ND             | ND           | ND         | ND                     | ND                       | 13.0       | ND                             | ND      | 8.72            | ND                   | ND                | ND                  | ND                  | ND      | ND                 | 33.0        | NA           | NA                     |
| 1 1                                 | 10/16/2007              | ND      | ND             | ND           | ND         | ND                     | ND                       | ND         | ND                             | ND      | 25.0            | ND                   | ND                | ND                  | ND                  | ND      | ND                 | 25.0        | 99.4         | 124                    |
| 1 1                                 | 5/5/2008                | ND      | ND             | ND           | ND         | ND                     | ND                       | ND         | ND                             | ND      | 5.29            | ND                   | ND                | ND                  | ND                  | ND      | ND                 | 5.29        | ND           | 5.29                   |
| 1 1                                 | 10/29/2008              | ND      | ND             | ND           | ND         | ND                     | ND                       | ND         | ND                             | ND      | 7.62            | ND                   | ND                | ND                  | ND                  | ND      | ND                 | 7.62        | ND           | 7.62                   |
| 1 1                                 | 5/14/2009               | ND      | ND             | ND           | ND         | ND                     | ND                       | ND         | ND                             | ND      | 6.00            | ND                   | ND                | ND                  | ND                  | ND      | ND                 | 6.00        | ND           | 6.00                   |
| 1 1                                 | 11/10/2009              | ND      | ND             | ND           | ND         | 2.07                   | ND                       | ND         | ND                             | ND      | 17.0            | ND                   | ND                | ND                  | ND                  | ND      | ND                 | 19.1        | ND           | 19.1                   |
| 1 1                                 | 4/29/2014               | ND      | ND             | ND           | ND         | ND                     | ND                       | ND         | ND                             | ND      | 3.37            | ND                   | ND                | ND                  | ND                  | ND      | ND                 | 3.37        | NA           | NA                     |
| 1 1                                 | 10/16/2015              | ND      | ND             | ND           | ND         | 2.69                   | ND                       | ND         | ND                             | ND      | 3.08            | ND                   | ND                | ND                  | ND                  | ND      | ND                 | 5.77        | NA           | NA                     |
| 1 1                                 | 5/18/2017               | ND      | ND             | ND           | ND         | 1.95                   | ND                       | ND         | ND                             | ND      | 4.64            | ND                   | ND                | ND                  | ND                  | ND      | ND                 | 6.59        | NA           | NA                     |
| 1 1                                 | 11/21/2017              | ND      | ND             | ND           | ND         | 1.72                   | ND                       | ND         | 0.575                          | ND      | 1.84            | ND                   | ND                | ND                  | ND                  | ND      | ND                 | 4.14        | ND           | 4.14                   |
| 1 1                                 | 11/28/2018              | NA      | ND             | ND           | ND         | 1.58                   | ND                       | NA         | NA                             | NA      | 7.79            | ND                   | ND                | ND                  | ND                  | NA      | ND                 | 9.37        | NA           | NA                     |
| 1 1                                 | 6/9/2022                | ND      | ND             | ND           | ND         | 1.16                   | ND                       | ND         | 0.33                           | ND      | 1.47            | ND                   | ND                | ND                  | ND                  | ND      | ND                 | 2.96        | ND           | 2.96                   |
| MW-12D                              | 11/19/2002              | ND      | ND             | ND           | ND         | 9.7                    | ND                       | ND         | 222                            | ND      | 9.45            | ND                   | ND                | ND                  | 0.35                | ND      | ND                 | 9.8         | 232          | 242                    |
| 1 1                                 | 9/2/2005                | ND      | ND             | ND           | ND         | NA                     | ND                       | ND         | NA                             | ND      | ND              | ND                   | ND                | ND                  | ND                  | ND      | ND                 | ND          | 23.1         | 23.1                   |
| 1 1                                 | 12/21/2005              | ND      | ND             | ND           | ND         | 1.59                   | ND                       | ND         | ND                             | ND      | 2.09            | ND                   | ND                | ND                  | ND                  | ND      | ND                 | 3.68        | 82.2         | 85.9                   |
| 1 1                                 | 8/9/2006                | ND      | ND             | ND           | ND         | ND                     | ND                       | ND         | ND                             | ND      | ND              | ND                   | ND                | ND                  | ND                  | ND      | ND                 | ND          | 21.1         | 21.1                   |
| 1 1                                 | 3/13/2007               | 8.05    | ND             | ND           | ND         | ND                     | ND                       | ND         | ND                             | ND      | 1.14            | ND                   | ND                | ND                  | ND                  | ND      | ND                 | 9.19        | NA           | NA                     |
| 1 1                                 | 10/16/2007              | ND      | ND             | ND           | ND         | ND                     | ND                       | ND         | ND                             | ND      | ND              | ND                   | ND                | ND                  | ND                  | ND      | ND                 | ND          | ND           | ND                     |
| 1 1                                 | 5/2/2008                | ND      | ND             | ND           | ND         | ND                     | ND                       | ND         | ND                             | ND      | ND              | ND                   | ND                | ND                  | ND                  | ND      | ND                 | ND          | ND           | ND                     |
| 1 1                                 | 10/29/2008              | ND      | ND             | ND           | ND         | ND                     | ND                       | ND         | ND                             | ND      | ND              | ND                   | ND                | ND                  | ND                  | ND      | ND                 | ND          | ND           | ND                     |
| 1 1                                 | 5/14/2009               | ND      | ND             | ND           | ND         | ND                     | ND                       | ND         | ND                             | ND      | 0.587           | ND                   | ND                | ND                  | ND                  | ND      | ND                 | 0.587       | 5.50         | 6.09                   |
| 1 1                                 | 11/21/2017              | ND      | ND             | ND           | ND         | 3.33                   | ND                       | ND         | 0.733                          | ND      | 3.90            | ND                   | ND                | ND                  | ND                  | ND      | ND                 | 7.69        | ND           | 7.69                   |
|                                     |                         |         |                |              |            |                        |                          |            |                                |         |                 |                      |                   |                     |                     |         |                    |             |              |                        |

#### Table 2 - Historic Groundwater Results Former Swivelier Site Route 304, Nanuet NY EWMA Project No. 205548

| Well Information (ft.)              | Sampling Date            | Acetone    | Vinyl Chloride | Chloroethane | Chloroform | cis-1,2-Dichloroethene | trans-1,2-Dichloroethene | 2-Butanone | Methyl tert-butyl ether (MTBE) | Benzene  | Trichloroethene | Bromodichloromethane | Tetrachloroethene | 1,4-Dichlorobenzene | 1,2-Dichlorobenzene | Toluene  | 1,1-Dichloroethene | TOTAL VO's:    | TOTAL TIC's: | TOTAL VO's<br>& TIC's: |
|-------------------------------------|--------------------------|------------|----------------|--------------|------------|------------------------|--------------------------|------------|--------------------------------|----------|-----------------|----------------------|-------------------|---------------------|---------------------|----------|--------------------|----------------|--------------|------------------------|
| TOGS 1.1.1 GW STANDARDS GA<br>CLASS |                          | 50*        | 2              | 5            | 7          | 5                      | 5                        | 50*        | NS                             | 1        | 5               | 50*                  | 5                 | 3                   | 3                   | 5        | 5                  | NS             | NS           | NS                     |
| MW-13D                              | 11/19/2002               | ND         | ND             | ND           | ND         | 58.5                   | ND                       | ND         | ND                             | ND       | 255             | ND                   | ND                | ND                  | 2.14                | ND       | ND                 | 257            | 58.5         | 316                    |
|                                     | 9/2/2005                 | ND         | ND             | ND           | ND         | NA                     | ND                       | ND         | NA                             | ND       | 39.4            | ND                   | ND                | ND                  | ND                  | ND       | ND                 | 39             | 5.8          | 45.2                   |
|                                     | 12/21/2005               | ND         | ND             | ND           | ND         | 1.95                   | ND                       | ND         | ND                             | ND       | 9.00            | ND                   | ND                | ND                  | ND                  | ND       | ND                 | 11.0           | ND           | 11.0                   |
|                                     | 8/9/2006                 | ND         | ND             | ND           | ND         | ND                     | ND                       | ND         | ND                             | ND       | 32.6            | ND                   | ND                | ND                  | ND                  | ND       | ND                 | 32.6           | 9.00         | 41.6                   |
|                                     | 3/13/2007<br>10/16/2007  | 2.12<br>ND | ND<br>0.637    | ND<br>ND     | ND<br>ND   | ND<br>ND               | 1.75<br>ND               | ND<br>ND   | ND<br>ND                       | ND<br>ND | 208<br>130      | ND<br>ND             | 0.722             | ND<br>ND            | 1.57<br>1.99        | ND<br>ND | ND<br>ND           | 214<br>133     | NA<br>86.2   | NA<br>219              |
|                                     | 5/2/2008                 | ND         | 0.037<br>ND    | ND           | ND         | ND                     | ND                       | ND         | ND                             | ND       | 22.0            | ND                   | 0.827<br>ND       | ND                  | ND                  | ND       | ND                 | 22.0           | 10.6         | 32.6                   |
|                                     | 10/29/2008               | ND         | ND             | ND           | ND         | ND                     | ND                       | ND         | ND                             | ND       | 4120            | ND                   | ND                | ND                  | ND                  | ND       | ND                 | 4120           | 1130         | 5250                   |
|                                     | 5/14/2009                | ND         | ND             | ND           | ND         | ND                     | ND                       | ND         | ND                             | ND       | 337             | ND                   | 2                 | ND                  | ND                  | ND       | ND                 | 339            | 309          | 648                    |
|                                     | 11/10/2009               | ND         | ND             | ND           | ND         | 24.4                   | ND                       | ND         | ND                             | ND       | 1.72            | ND                   | ND                | ND                  | ND                  | ND       | ND                 | 26.1           | ND           | 26.1                   |
|                                     | 4/29/2014                | ND         | ND             | ND           | ND         | 15.20                  | ND                       | ND         | ND                             | ND       | 36.1            | ND                   | ND                | ND                  | ND                  | ND       | ND                 | 51.3           | NA           | NA                     |
|                                     | 10/16/2015               | ND         | ND             | ND           | ND         | 1750                   | ND                       | ND         | ND                             | ND       | 4300            | ND                   | ND                | ND                  | ND                  | ND       | ND                 | 6050           | NA           | NA                     |
|                                     | 5/18/2017                | ND         | ND             | ND           | ND         | 1830                   | ND                       | ND         | ND                             | ND       | 3910            | ND                   | 16.2              | ND                  | ND                  | ND       | ND                 | 5790           | NA           | NA                     |
|                                     | 11/20/2017               | ND         | ND             | ND           | ND         | 517                    | ND                       | ND         | ND                             | ND       | 1350            | ND                   | ND                | ND                  | ND                  | ND       | ND                 | 1870           | ND           | 1870                   |
|                                     | 11/29/2018<br>6/1/2022   | NA<br>ND   | ND<br>43.3     | ND<br>ND     | ND<br>ND   | 5920<br>4550           | ND<br>ND                 | NA<br>ND   | NA<br>ND                       | NA<br>ND | 13000<br>9980   | ND<br>ND             | 61<br>42.5        | ND<br>ND            | 143<br>101          | NA<br>ND | ND<br>ND           | 19100<br>14700 | NA<br>ND     | NA<br>14700            |
| MW-1R                               | 9/2/2005                 | ND         | 43.3<br>ND     | ND           | ND         | 4350<br>NA             | ND                       | ND         | NA                             | ND       | ND              | ND                   | 42.5<br>ND        | ND                  | ND                  | ND       | ND                 | ND             | ND           | ND                     |
|                                     | 12/21/2005               | ND         | ND             | ND           | ND         | ND                     | ND                       | ND         | ND                             | ND       | ND              | ND                   | ND                | ND                  | ND                  | ND       | ND                 | ND             | ND           | ND                     |
|                                     | 8/9/2006                 | ND         | ND             | ND           | ND         | ND                     | ND                       | ND         | ND                             | ND       | ND              | ND                   | ND                | ND                  | ND                  | ND       | ND                 | ND             | 27.2         | 27.2                   |
|                                     | 3/13/2007                | 2.76       | ND             | ND           | ND         | ND                     | ND                       | ND         | ND                             | ND       | 0.770           | ND                   | ND                | ND                  | ND                  | ND       | ND                 | 3.53           | NA           | NA                     |
|                                     | 11/22/2017               | ND         | ND             | ND           | ND         | ND                     | ND                       | ND         | 3.26                           | ND       | 0.531           | ND                   | ND                | ND                  | ND                  | ND       | ND                 | 3.79           | ND           | 3.79                   |
|                                     | 0/0/0007                 |            |                |              |            |                        |                          |            |                                |          |                 |                      |                   |                     |                     |          |                    |                |              |                        |
| MW-6I                               | 9/2/2005                 | ND         | ND             | ND           | ND         | NA                     | ND                       | ND         | NA                             | ND       | 54.7            | ND                   | ND                | ND                  | ND                  | ND       | ND                 | 54.7           | ND           | 54.7                   |
|                                     | 12/21/2005<br>8/9/2006   | ND<br>ND   | 60.6<br>15.1   | ND<br>0.911  | ND<br>ND   | 153<br>ND              | ND<br>ND                 | ND<br>ND   | ND<br>ND                       | ND<br>ND | 24.5<br>33.1    | ND<br>ND             | ND<br>ND          | ND<br>ND            | ND<br>ND            | ND<br>ND | ND<br>ND           | 238<br>49.1    | ND<br>65.4   | 238<br>115             |
|                                     | 3/14/2007                | 4.50       | 4.04           | ND           | ND         | ND                     | ND                       | ND         | ND                             | ND       | 1.95            | ND                   | ND                | ND                  | ND                  | ND       | ND                 | 10.5           | NA           | NA                     |
|                                     | 11/21/2017               | ND         | 121            | ND           | ND         | 170                    | ND                       | ND         | 0.940                          | ND       | 17.2            | ND                   | ND                | ND                  | ND                  | ND       | 0.546              | 310            | ND           | 310                    |
|                                     |                          |            |                |              |            |                        |                          |            |                                |          |                 |                      |                   |                     |                     |          |                    |                |              |                        |
| MW-6R                               | 9/2/2005                 | ND         | ND             | ND           | ND         | NA                     | ND                       | ND         | NA                             | ND       | ND              | ND                   | ND                | ND                  | ND                  | ND       | ND                 | ND             | ND           | ND                     |
|                                     | 12/21/2005               | ND         | ND             | ND           | ND         | 22.8                   | ND                       | ND         | ND                             | ND       | 83.6            | ND                   | ND                | ND                  | ND                  | ND       | ND                 | 106            | 58.5         | 165                    |
|                                     | 8/9/2006                 | ND         | ND             | ND           | 0.929      | ND                     | ND                       | ND         | ND                             | ND       | 8.14            | 0.33                 | ND                | ND                  | ND                  | ND       | ND                 | 9.40           | 55.1         | 64.5                   |
|                                     | 3/13/2007                | <b>186</b> | ND             | ND           | 0.776      | ND                     | ND                       | 6.88       | ND                             | 2.12     | 6.54            | ND                   | ND                | ND                  | ND                  | ND       | ND                 | 202            | NA           | NA                     |
|                                     | 11/21/2017               | ND         | ND             | ND           | ND         | 7.39                   | ND                       | ND         | 8.29                           | 0.544    | 10.2            | ND                   | ND                | ND                  | ND                  | 1.09     | ND                 | 27.5           | ND           | 27.5                   |
| MW-1N                               | 11/22/2017               | ND         | ND             | ND           | ND         | 5.12                   | ND                       | ND         | 1.37                           | ND       | ND              | ND                   | ND                | ND                  | ND                  | ND       | ND                 | 6.49           | ND           | 6.49                   |
|                                     | 11/27/2018               | NA         | ND             | ND           | ND         | 3.45                   | ND                       | NA         | NA                             | NA       | ND              | ND                   | ND                | ND                  | ND                  | NA       | ND                 | 3.45           | NA           | NA                     |
|                                     |                          |            |                |              |            |                        |                          |            |                                |          |                 |                      |                   |                     |                     |          |                    |                |              |                        |
| MW-1S                               | 11/22/2017               | ND         | ND             | ND           | ND         | ND                     | ND                       | ND         | ND                             | ND       | ND              | ND                   | ND                | ND                  | ND                  | ND       | ND                 | ND             | ND           | ND                     |
| MW-1SE                              | 11/22/2017               | ND         | ND             | ND           | ND         | ND                     | ND                       | ND         | ND                             | ND       | 0.719           | ND                   | ND                | ND                  | ND                  | ND       | ND                 | 0.719          | ND           | 0.719                  |
| MW-2I                               | 11/22/2017               | ND         | ND             | ND           | ND         | ND                     | ND                       | ND         | 6.43                           | ND       | ND              | ND                   | ND                | ND                  | ND                  | ND       | ND                 | 6.43           | ND           | 6.43                   |
| MM/ ON                              | 11/00/0047               |            |                |              |            |                        |                          |            | 0.504                          |          |                 |                      |                   |                     |                     |          |                    | 0.504          | 20.4         | 20.0                   |
| MW-2N                               | 11/22/2017<br>11/27/2018 | ND<br>NA   | ND<br>ND       | ND<br>ND     | ND<br>ND   | ND<br>ND               | ND<br>ND                 | ND<br>NA   | 0.504<br>NA                    | ND<br>NA | ND<br>ND        | ND<br>ND             | ND<br>ND          | ND<br>ND            | ND<br>ND            | ND<br>NA | ND<br>ND           | 0.504<br>ND    | 39.4<br>NA   | 39.9<br>NA             |
|                                     | 11/27/2018               | INA        |                | UND          | UN         | שא                     |                          | INA        |                                | AN       |                 |                      |                   |                     |                     | A/I      |                    |                | N/A          | INA                    |
|                                     | 11/22/2017               | ND         | ND             | ND           | ND         | ND                     | ND                       | ND         | ND                             | ND       | ND              | ND                   | ND                | ND                  | ND                  | ND       | ND                 | ND             | ND           | ND                     |
|                                     |                          |            |                |              |            |                        |                          |            |                                |          |                 |                      |                   |                     |                     |          | 1                  | ·              |              |                        |

#### Table 2 - Historic Groundwater Results Former Swivelier Site Route 304, Nanuet NY EWMA Project No. 205548

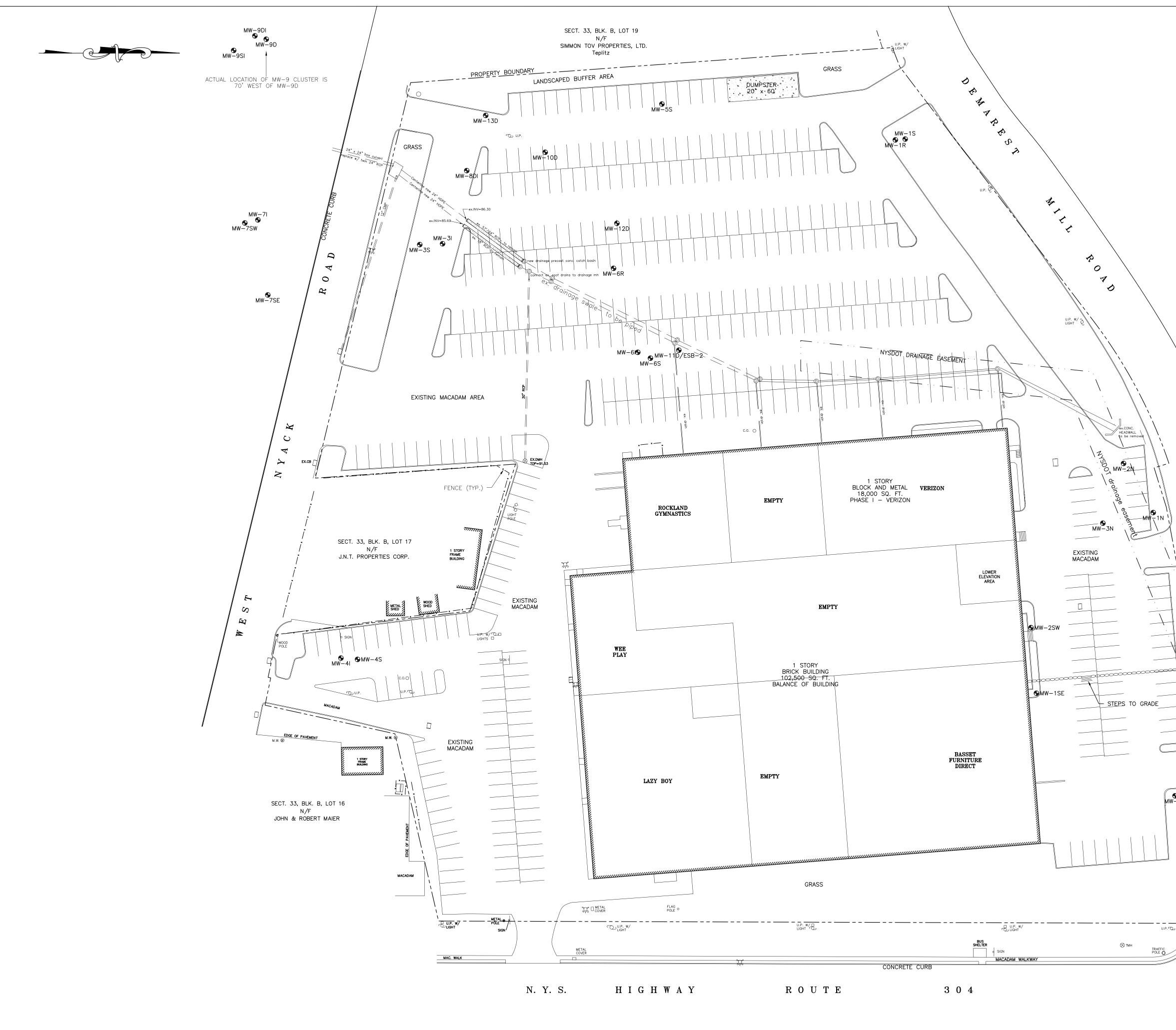

| Well Information (ft.)              | Sampling Date            | Acetone    | Vinyl Chloride | Chloroethane | Chloroform | cis-1,2-Dichloroethene | trans-1,2-Dichloroethene | 2-Butanone | Methyl tert-butyl ether (MTBE) | Benzene  | Trichloroethene | Bromodichloromethane | Tetrachloroethene | 1,4-Dichlorobenzene | 1,2-Dichlorobenzene | Toluene  | 1,1-Dichloroethene | TOTAL VO's:   | TOTAL TIC's: | TOTAL VO's<br>& TIC's: |
|-------------------------------------|--------------------------|------------|----------------|--------------|------------|------------------------|--------------------------|------------|--------------------------------|----------|-----------------|----------------------|-------------------|---------------------|---------------------|----------|--------------------|---------------|--------------|------------------------|
| TOGS 1.1.1 GW STANDARDS GA<br>CLASS |                          | 50*        | 2              | 5            | 7          | 5                      | 5                        | 50*        | NS                             | 1        | 5               | 50*                  | 5                 | 3                   | 3                   | 5        | 5                  | NS            | NS           | NS                     |
| MW-3N                               | 11/22/2017<br>11/28/2018 | ND<br>NA   | 2.08<br>ND     | ND<br>ND     | ND<br>ND   | 9.93<br>7.89           | ND<br>ND                 | ND<br>NA   | 2.47<br>NA                     | ND<br>NA | ND<br>0.32J     | ND<br>ND             | ND<br>ND          | ND<br>ND            | ND<br>ND            | ND<br>NA | 1.39<br>ND         | 15.9<br>9.4 J | 131<br>NA    | 147<br>NA              |
| MW-4I                               | 11/22/2017               | ND         | ND             | ND           | ND         | ND                     | ND                       | ND         | 66.6                           | ND       | ND              | ND                   | ND                | ND                  | ND                  | ND       | ND                 | 66.6          | 14.7         | 81.3                   |
| MW-4S                               | 11/21/2017               | ND         | ND             | ND           | ND         | ND                     | ND                       | ND         | 13.7                           | ND       | ND              | ND                   | ND                | ND                  | ND                  | ND       | ND                 | 13.7          | ND           | 13.7                   |
| MW-7I                               | 11/21/2017               | ND         | ND             | ND           | ND         | ND                     | ND                       | ND         | ND                             | ND       | 1.31            | ND                   | ND                | ND                  | ND                  | ND       | ND                 | 1.31          | ND           | 1.31                   |
| MW-7SE                              | 11/21/2017               | ND         | 1.20           | ND           | ND         | 4.50                   | ND                       | ND         | 7.32                           | ND       | ND              | ND                   | ND                | ND                  | ND                  | ND       | ND                 | 13.0          | ND           | 13.0                   |
| MW-7SW                              | 11/21/2017<br>11/28/2018 | ND<br>NA   | ND<br>ND       | ND<br>ND     | ND<br>ND   | ND<br>ND               | ND<br>ND                 | ND<br>NA   | 46.2<br>NA                     | ND<br>NA | ND<br>ND        | ND<br>ND             | ND<br>ND          | ND<br>ND            | ND<br>ND            | ND<br>NA | ND<br>ND           | 46.2<br>ND    | ND<br>NA     | 46.2<br>NA             |
| MW-8DI                              | 11/21/2017<br>11/28/2018 | ND<br>NA   | 17.9<br>ND     | ND<br>ND     | ND<br>ND   | 1660<br>68.1           | ND<br>0.514              | ND<br>NA   | 90.8<br>NA                     | ND<br>NA | 3780<br>143     | ND<br>ND             | ND<br>ND          | ND<br>ND            | ND<br>ND            | ND<br>NA | ND<br>0.554        | 5550<br>212   | ND<br>NA     | 5550<br>NA             |
| MW-9D                               | 11/21/2017<br>11/28/2018 | 15.7<br>NA | ND<br>ND       | ND<br>ND     | ND<br>ND   | 6.79<br>212            | ND<br>ND                 | ND<br>NA   | ND<br>NA                       | ND<br>NA | 84.2<br>1080    | ND<br>ND             | ND<br>ND          | ND<br>ND            | ND<br>ND            | ND<br>NA | ND<br>ND           | 107<br>1290   | ND<br>NA     | 107<br>NA              |
| MW-9DI                              | 11/21/2017               | ND         | ND             | ND           | ND         | 1.37                   | ND                       | ND         | 58.4                           | ND       | 82.9            | ND                   | ND                | ND                  | ND                  | ND       | ND                 | 143           | ND           | 143                    |
| MW-9SI                              | 11/21/2017               | ND         | ND             | ND           | ND         | ND                     | ND                       | ND         | 3.53                           | ND       | ND              | ND                   | ND                | ND                  | ND                  | ND       | ND                 | 3.53          | ND           | 3.53                   |
| TW-1                                | 4/29/2014                | ND         | ND             | ND           | ND         | ND                     | ND                       | ND         | ND                             | ND       | ND              | ND                   | ND                | ND                  | ND                  | ND       | ND                 | ND            | ND           | ND                     |
| TW-2                                | 4/29/2014                | ND         | ND             | ND           | ND         | 1.14                   | ND                       | ND         | ND                             | ND       | 4.95            | ND                   | ND                | ND                  | ND                  | ND       | ND                 | 6.09          | ND           | ND                     |
| TW-3                                | 4/29/2014                | ND         | ND             | ND           | ND         | 4.33                   | ND                       | ND         | ND                             | ND       | 3.48            | ND                   | ND                | ND                  | ND                  | ND       | ND                 | 7.81          | ND           | ND                     |
| TW-4                                | 4/29/2014                | ND         | ND             | ND           | ND         | 1.5                    | ND                       | ND         | ND                             | ND       | 0.993           | ND                   | ND                | ND                  | ND                  | ND       | ND                 | 2.49          | ND           | ND                     |
| TW-5                                | 4/29/2014                | ND         | ND             | ND           | ND         | 5.21                   | ND                       | ND         | ND                             | ND       | 15              | ND                   | ND                | ND                  | ND                  | ND       | ND                 | 20.2          | ND           | ND                     |
| TW-6                                | 4/29/2014                | ND         | ND             | ND           | ND         | ND                     | ND                       | ND         | ND                             | ND       | ND              | ND                   | ND                | ND                  | ND                  | ND       | ND                 | ND            | ND           | ND                     |
| TW-7                                | 4/29/2014                | ND         | ND             | ND           | ND         | ND                     | ND                       | ND         | ND                             | ND       | ND              | ND                   | ND                | ND                  | ND                  | ND       | ND                 | ND            | ND           | ND                     |
| TW-8                                | 4/29/2014                | ND         | ND             | ND           | ND         | 3.61                   | ND                       | ND         | ND                             | ND       | 0.48            | ND                   | ND                | ND                  | ND                  | ND       | ND                 | 4.09          | ND           | ND                     |

Property Known As:

### Swivelier Company 33 Route 304 Nanuet, Rockland County, New York 10954 NYSDEC Site Nos. 3-44-036 & V00520 EWMA Project No. 202530

Figure 1 – Site Location Map





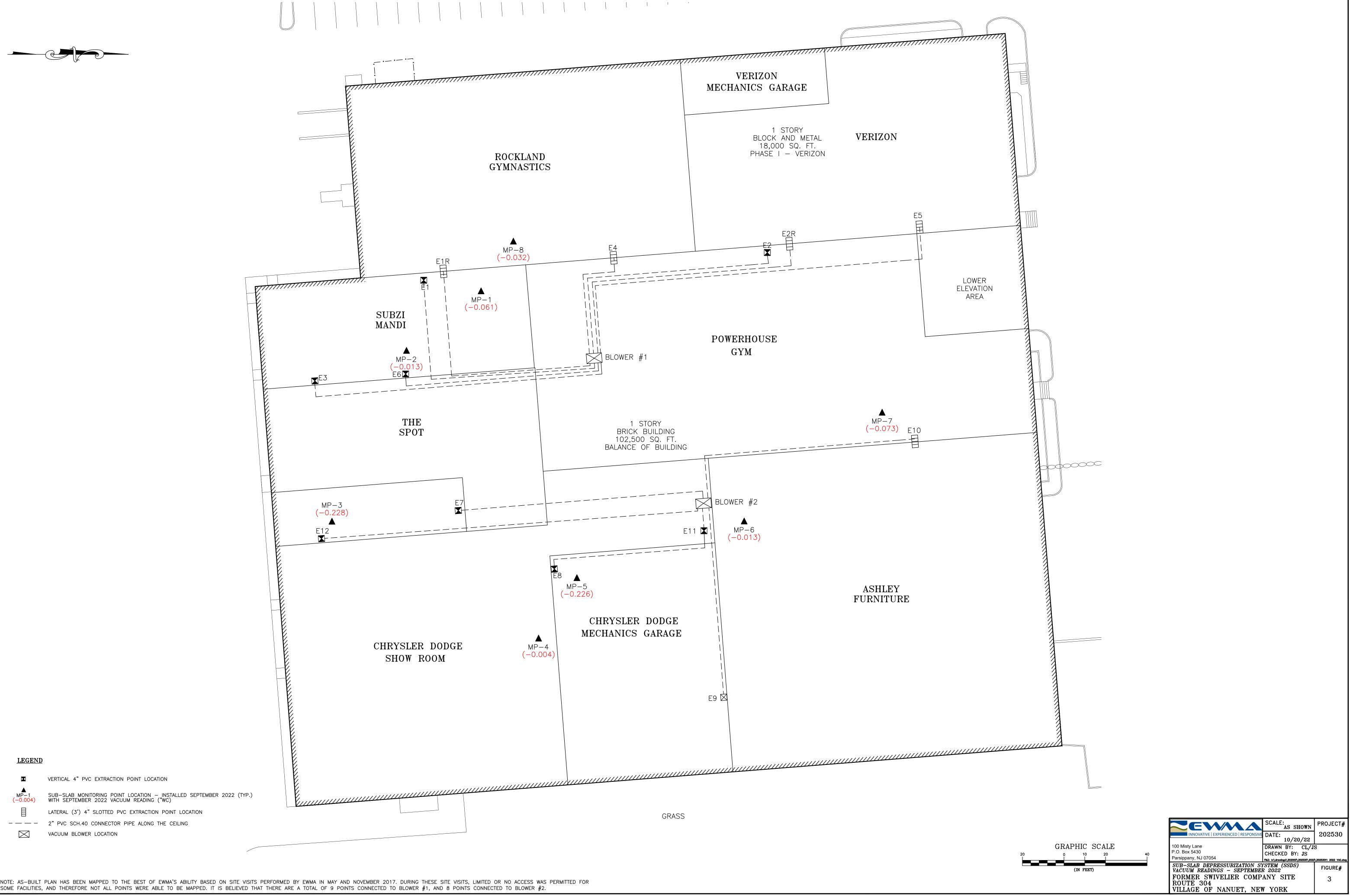

Property Known As:

### Swivelier Company 33 Route 304 Nanuet, Rockland County, New York 10954 NYSDEC Site Nos. 3-44-036 & V00520 EWMA Project No. 202530

Figure 2 – Well Location Map






| Environmental Waste<br>Management<br>Associates, LLCSCALE:<br>AS SHOWNPROJECT#<br>202530 |
|------------------------------------------------------------------------------------------|
| P.O. Box 5430<br>Parsippany, NJ 07054<br>Tel: (973) 560-1400                             |
|                                                                                          |

Property Known As:

### Swivelier Company 33 Route 304 Nanuet, Rockland County, New York 10954 NYSDEC Site Nos. 3-44-036 & V00520 EWMA Project No. 202530

Figure 3 – Sub-Slab Depressurization System & Vacuum Readings September 2022





NOTE: AS-BUILT PLAN HAS BEEN MAPPED TO THE BEST OF EWMA'S ABILITY BASED ON SITE VISITS PERFORMED BY EWMA IN MAY AND NOVEMBER 2017. DURING THESE SITE VISITS, LIMITED OR NO ACCESS WAS PERMITTED FOR SOME FACILITIES, AND THEREFORE NOT ALL POINTS WERE ABLE TO BE MAPPED. IT IS BELIEVED THAT THERE ARE A TOTAL OF 9 POINTS CONNECTED TO BLOWER #1, AND 8 POINTS CONNECTED TO BLOWER #2.

Property Known As:

### Swivelier Company 33 Route 304 Nanuet, Rockland County, New York 10954 NYSDEC Site Nos. 3-44-036 & V00520 EWMA Project No. 202530

Appendix 1 – IC/EC Certifications





### Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form



| Site       | e No.                                                    | V00520                                      | Site             | e Details                               |                                                 | Box 1        |              |
|------------|----------------------------------------------------------|---------------------------------------------|------------------|-----------------------------------------|-------------------------------------------------|--------------|--------------|
| Site       | e Name Sw                                                | vivelier Compan                             | У                |                                         |                                                 |              |              |
| City<br>Co | e Address: 3<br>//Town: Na<br>unty: Rockla<br>e Acreage: |                                             | Zip Code: 109    | 54                                      |                                                 |              |              |
| Re         | porting Perio                                            | od: <del>July 13, 2011</del><br>July 13, 20 |                  | <del>13, 2019 -</del><br>ember 13, 2023 | L                                               |              |              |
|            |                                                          | ·                                           |                  |                                         |                                                 | YES          | NO           |
| 1.         | Is the inform                                            | mation above co                             | rrect?           |                                         |                                                 |              | $\checkmark$ |
|            | If NO, inclu                                             | ide handwritten a                           | bove or on a s   | eparate sheet.                          |                                                 |              |              |
| 2.         |                                                          | or all of the site p<br>nendment during     |                  |                                         | rged, or undergone a                            |              | $\checkmark$ |
| 3.         |                                                          | been any change<br>RR 375-1.11(d))          |                  | ite during this Repo                    | rting Period                                    |              | 1            |
| 4.         |                                                          | ederal, state, and<br>e property during     |                  |                                         | scharge) been issued                            | D            | 1            |
|            |                                                          |                                             |                  |                                         | entation or evidence<br>nis certification form. |              |              |
| 5.         | Is the site of                                           | currently undergo                           | ing developme    | nt?                                     |                                                 |              | 1            |
|            |                                                          |                                             |                  |                                         |                                                 |              |              |
|            |                                                          |                                             |                  |                                         |                                                 | Box 2        |              |
|            |                                                          |                                             |                  |                                         |                                                 | YES          | NO           |
| 6.         | ls the curre<br>Industrial                               | ent site use consi                          | stent with the u | se(s) listed below?                     |                                                 | J.           |              |
| 7.         | Are all ICs/                                             | ECs in place and                            | I functioning as | designed?                               |                                                 | $\checkmark$ |              |
|            | IF TH                                                    |                                             |                  |                                         | sign and date below a<br>Otherwise continue.    | nd           |              |
| A C        | orrective M                                              | easures Work P                              | an must be sul   | omitted along with                      | this form to address th                         | nese issu    | les.         |
| Sigi       | nature of Ow                                             | ner, Remedial Pa                            | rty or Designate | d Representative                        | Date                                            |              |              |

| SITE NO. V00520                         |                                                         | Box 3                                                                                                                                                                                                        |
|-----------------------------------------|---------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Description of Institut                 | ional Controls                                          |                                                                                                                                                                                                              |
| Parcel                                  | <u>Owner</u><br>S.F Properties LLC                      | Institutional Control<br>Ground Water Use Restriction<br>Soil Management Plan<br>Landuse Restriction<br>Building Use Restriction<br>Surface Water Use Restriction<br>Monitoring Plan<br>Site Management Plan |
| Commercial development, La              | and and GW restrictions Soil Management I               | O&M Plan<br>IC/EC Plan<br>Plan under SMP<br>Box 4                                                                                                                                                            |
|                                         |                                                         | 602.4                                                                                                                                                                                                        |
| Description of Engine                   | ering Controls                                          |                                                                                                                                                                                                              |
| Parcel                                  | Engineering Control<br>Vapor Mitigation<br>Cover System |                                                                                                                                                                                                              |
|                                         | Fencing/Access Control<br>Monitoring Wells              |                                                                                                                                                                                                              |
| Controlled access, SSDS ope<br>pavement | erational in building, Monitoring well sampli           | ng, Cover system with asphalt                                                                                                                                                                                |

|    | Box 5                                                                                                                                                                                                                                           |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | Periodic Review Report (PRR) Certification Statements                                                                                                                                                                                           |
| 1  | I certify by checking "YES" below that:                                                                                                                                                                                                         |
|    | a) the Periodic Review report and all attachments were prepared under the direction of, and reviewed by, the party making the certification;                                                                                                    |
|    | b) to the best of my knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the site remedial program, and generally accepted                                                |
|    | engineering practices; and the information presented is accurate and compete.<br>YES NO                                                                                                                                                         |
|    | $\checkmark$                                                                                                                                                                                                                                    |
| 2. | If this site has an IC/EC Plan (or equivalent as required in the Decision Document), for each Institutional or Engineering control listed in Boxes 3 and/or 4, I certify by checking "YES" below that all of the following statements are true: |
|    | (a) the Institutional Control and/or Engineering Control(s) employed at this site is unchanged since the date that the Control was put in-place, or was last approved by the Department;                                                        |
|    | (b) nothing has occurred that would impair the ability of such Control, to protect public health and the environment;                                                                                                                           |
|    | (c) access to the site will continue to be provided to the Department, to evaluate the remedy, including access to evaluate the continued maintenance of this Control;                                                                          |
|    | (d) nothing has occurred that would constitute a violation or failure to comply with the Site Management Plan for this Control; and                                                                                                             |
|    | (e) if a financial assurance mechanism is required by the oversight document for the site, the mechanism remains valid and sufficient for its intended purpose established in the document.                                                     |
|    | YES NO                                                                                                                                                                                                                                          |
|    |                                                                                                                                                                                                                                                 |
|    | IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.                                                                                                                           |
| 1  | A Corrective Measures Work Plan must be submitted along with this form to address these issues.                                                                                                                                                 |
|    | Signature of Owner, Remedial Party or Designated Representative Date                                                                                                                                                                            |

| IC CERTIFICATIONS<br>SITE NO. V00520                                                                                                                                                                                                                                                                              |           |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| Bo                                                                                                                                                                                                                                                                                                                | ox 6      |
| SITE OWNER OR DESIGNATED REPRESENTATIVE SIGNATURE<br>I certify that all information and statements in Boxes 1,2, and 3 are true. I understand that a fals<br>statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of<br>Penal Law.<br>EWMA<br>100 Misty Lane, P.0. Box 5430 |           |
| I Jacob M. Strauss at Parsip pany, NJ 07054<br>print name print business address                                                                                                                                                                                                                                  | '         |
| am certifying as <u>Designated Representative of</u> Owner or Remedi                                                                                                                                                                                                                                              | al Party) |
| for the Site named in the Site Details Section of this form.                                                                                                                                                                                                                                                      |           |
| Signature of Owner, Remedial Party, or Designated Representative Date                                                                                                                                                                                                                                             |           |

| IC/EC CERTIFICATIONS                                                                                                                                                                                                                                                                                       |       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Signature                                                                                                                                                                                                                                                                                                  | Box 7 |
| I certify that all information in Boxes 4 and 5 are true. I understand that a false statement m<br>punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.<br>EWMA, LLL and EWMA Engineering S<br>IOO Misty Lanc Por Box 5430<br>I Jacob M. Strauss<br>at Parsippany, NJ 07054 |       |
| print name print business address<br>Professional Engineer<br>am certifying as a for the<br>(Owner or Remedial Party                                                                                                                                                                                       |       |
| <u>Jaw M. Manuse</u><br>Signature of , for the Owner or Remedial Party,<br>Rendering Certification                                                                                                                                                                                                         | 2022  |

# Periodic Review Report – Review Period July 2021 to November 2022

Property Known As:

## Swivelier Company 33 Route 304 Nanuet, Rockland County, New York 10954 NYSDEC Site Nos. 3-44-036 & V00520 EWMA Project No. 202530

Appendix 2 – Annual Inspection of Cover System and Vapor Intrusion Control System

November 2022



## **APPENDIX 2**

## FORMER SWIVELIER COMPANY

## ANNUAL SITE INSPECTION REPORT/CHECKLIST

Date:September 22, 2022Inspector:Jacob Strauss, EWMA, Sr. Project EngineerReason for Inspection:2022 Annual Site Inspection Checklist

- 1. Is the Site compliant with all Institutional Controls, including Site usage (yes/no)? Yes. If no, describe:
- 2. Provide a general evaluation of Site conditions: The site was secure and in good condition. The subject building is approximately 32,000 square feet, consisting of multiple commercial and light industrial office tenants, and is surrounded by paved asphalt parking areas.
- 3. *Provide a general evaluation of the condition and effectiveness of composite cover systems:* The cover system for the Property consists of asphalt pavement, concrete sidewalks, and concrete building slabs, and was found to be intact and functional during our annual inspection.
- Provide a general evaluation of the condition and effectiveness of Vapor Intrusion Controls: Eight (8) new permanent sub-slab monitoring points were installed on September 22 and 23, 2022. The VMS is performing in compliance with SMP requirements, NYSDOH guidelines, and good vapor intrusion control practices. See attached Annual Inspection Report for subslab vacuum measurements.
- 5. *Provide a general evaluation of the condition of monitoring wells:* All monitoring wells located onsite are in good condition.
- 6. Are Site management activities being conducted according to Site Management Plan (yes/no)? Yes. If no, describe:
- 7. *Is Site documentation as required by the Site Management Plan up to date (yes/no)?* Yes. *If no, describe:*
- 8. *Are any changes to the monitoring program recommended (yes/no)?* No. *If yes, describe:*



www.ewma.com

Provided as Appendix 2 to the July 2020 – November 2022 Periodic Review Report

November 4, 2022

Mr. Salvatore F. Priore, P.E. Project Manager NYSDEC Division of Environmental Remediation Remedial Bureau C 625 Broadway, 11<sup>th</sup> Floor Albany, NY 12233-7014

Re: Annual Inspection Report for Vapor Mitigation System & Cover System Swivelier Company 33 Route 304, Nanuet, Rockland County, New York 11101 NYSDEC Site Nos. 3-44-036 & V00520 EWMA Project No. 202530

Dear Mr. Priore:

EWMA is submitting this Annual Inspection Report, prepared in accordance with NYSDEC and Site Management Plan (SMP) requirements, for the vapor mitigation system (VMS) and cover system at the Former Swivelier Company site (Property).

The VMS for the subject building includes sub-slab de-pressurization, and is fully operational on continuous duty. EWMA conducted initial site inspections on June 2 and 9, 2022 and found that the SSDS was damaged and not operational. Repairs were completed in September 2022. EWMA returned to conduct the annual site inspection on September 22, 2022 and confirmed that the SSDS had been repaired and was now fully operational. Additionally, eight new permanent sub-slab monitoring points were installed on September 22 and 23, 2022.

The VMS is performing in compliance with SMP requirements, NYSDOH guidelines, and good vapor intrusion control practices. During the September 22 and 23, 2022 inspection, vacuum measurements in inches of water column (inch wc) were obtained at permanent sub-slab monitoring points as follows:

| Vapor Mitigation System<br>Sub-Slab Vacuum Measurements |                                    |                     |  |  |  |  |
|---------------------------------------------------------|------------------------------------|---------------------|--|--|--|--|
| Monitoring<br>Point ID                                  | Location                           | Vacuum<br>(inch wc) |  |  |  |  |
| MP-1                                                    | Subzi Mandi                        | -0.061              |  |  |  |  |
| MP-2                                                    | Subzi Mandi                        | -0.013              |  |  |  |  |
| MP-3                                                    | Construction Hallway               | -0.228              |  |  |  |  |
| MP-4                                                    | Chrysler Dodge Showroom            | -0.004              |  |  |  |  |
| MP-5                                                    | Chrysler Dodge Maintenance Garage  | -0.226              |  |  |  |  |
| MP-6                                                    | Ashley Furniture Electrical Closet | -0.013              |  |  |  |  |
| MP-7                                                    | Powerhouse Gym Break Room          | -0.073              |  |  |  |  |

## Appendix 2 – Periodic Review Report – July 2020 to November 2022 Annual Inspection Report for Vapor Mitigation System & Cover System Swivelier Company 33 Route 304, Nanuet, Rockland County, New York 11101 NYSDEC Site Nos. 3-44-036 & V00520

Gymnastics Academy Utility Closet MP-8 -0.032

The cover system for the Property consists of asphalt pavement, concrete sidewalks, and concrete building slabs, and was found to be intact and functional during our annual inspection.

If you have any questions or require any additional information please feel free to contact the undersigned at our Parsippany, New Jersey office, (973) 560-1400, ext. 195.

Sincerely, **EWMA** 

and.

Jacob Strauss Senior Project Engineer

Att: Site Inspection Checklist

Cc: NYSDEC NYSDOH Client Cathy Bryant, Director, EWMA

J:\Jobs\202000s\202530\REPORTS\Periodic Review Report\Appendices\Appendix 2 - Annual Inspection Report\App 2 - Swivelier Annual Inspection Letter 2022.docx



# Periodic Review Report – Review Period July 2021 to November 2022

Property Known As:

## Swivelier Company 33 Route 304 Nanuet, Rockland County, New York 10954 NYSDEC Site Nos. 3-44-036 & V00520 EWMA Project No. 202530

Appendix 3 – Laboratory Analytical Packages & Electronic Data Deliverable Submittals

November 2022





# ANALYTICAL DATA REPORT

Environmental Waste Management Associates, LLC. Lanidex Center 100 Misty Lane Parsippany, NJ 07054

> Project Name: SWIVELIER - 202530 IAL Case Number: E22-03213

> > These data have been reviewed and accepted by:

nich

Michael H. Left, Ph.D. Laboratory Director

This report shall not be reproduced, except in its entirety, without the written consent of Integrated Analytical Laboratories, LLC. The test results included in this report relate only to the samples analyzed. The results reported herein conform to the most current TNI standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

273 Franklin Road Randolph, NJ 07869 Phone: 973 361 4252

# Integrated Analytical Laboratories - Table of Contents

| Sample Summary               | 1  |
|------------------------------|----|
| Qualifiers Reference         | 2  |
| Case Narrative               | 3  |
| Results Summary Report       | 6  |
| Analytical Results           | 8  |
| Volatiles                    | 18 |
| Volatile Organic QC Summary  | 19 |
| Volatile Organic Sample Data | 41 |
| Sample Tracking              | 66 |
| LAST PAGE OF DOCUMENT        | 71 |

|              | Sample Summary              |
|--------------|-----------------------------|
| IAL Case No. | Client EWMA - HQ            |
| E22-03213    | Project SWIVELIER - 202530  |
|              | Received On 6/ 1/2022@17:55 |

| Lab ID    | Client Sample ID | Depth Top/Bottom | Sampling Time   | <i>Matrix</i> | Container |
|-----------|------------------|------------------|-----------------|---------------|-----------|
| 03213-001 | MW-13D-060122    | n/a              | 6/ 1/2022@13:15 | Aqueous       | 3         |
| 03213-002 | FB-060122        | n/a              | 6/ 1/2022@09:45 | Aqueous       | 2         |
| 03213-003 | TB-060122        | n/a              | 6/ 1/2022       | Aqueous       | 2         |

Page 1 of 1

Jun 10, 2022 @ 03:27

Integrated Analytical Labs ~ 273 Franklin Road, Randolph, NJ 07869 ~ (973) 361-4252

#### DATA QUALIFIERS AND FLAGS

- B Indicates the analyte found in the associated method blank and in the sample due to potential lab contamination.
- C Indicates analyte is a common laboratory contaminant.
- D Indicates analyte was reported from diluted analysis.
- E Identifies a compound concentration that exceeds the upper level of the calibration range of the instrument
- J Indicates an estimated value either when the concentration in the sample is less than the RL or for qualification of TICs
- J1 Indicates an estimated value when ICC or CCV did not meet the criteria.
- M Indicates matrix interference
- N Presumptive evidence of a compound from the use of GC/MS library search.
- T Sample analyzed outside of holding time
- X Indicates samples analyzed for total and dissolved metals differ at <20% RPD.
- Y Indicates DO depletion in the BOD blank is >0.20ppm
- Z Indicates internal standard failure. Sample results are either biased high or biased low.
- \$ Value outside NJDEP DKQP Limits
- \* Result outside of QC limits

#### **PROJECT NOTES**

- All results for soils, solids, and sludges are reported on a dry-weight basis except where noted
- All test results and QC are compliant with TNI or other applicable state agency requirements/guidance unless otherwise notated in the case narrative and/or project information page.
- The case narrative for this SDG should be consulted to determine any non-conformances.
- Any samples with 15-minute or "analyze immediately" holding times (e.g. pH, Dissolved Oxygen, Sulfite, etc.) which are analyzed in the laboratory are considered out of holding time.
- IAL is a NELAP/TNI certified laboratory (TNI ID# TNI01284). IAL retains certification in Connecticut (PH-0699), New Jersey (14751), New York (11402), and Pennsylvania (68-00773).
- Certification is not required to perform analyses in the following states: AL, CO, DE, GA, HI, ID, IN, KY, MD, MI, MS, MO, MT, NE, NM, SD and TN. IAL can perform all analyses, except Drinking Water, within its scope of capabilities in these states.

| CFU   | Colony Forming Unit                               | ND    | Indicates analyte was analyzed for but not detected |  |  |
|-------|---------------------------------------------------|-------|-----------------------------------------------------|--|--|
| CCB   | Continuing Calibration Blank                      |       | at MDL or RL (only if MDL is not used)              |  |  |
| CCV   | Continuing Calibration Verification               | NTU   | Nephelometric Turbidity Units                       |  |  |
| DF    | Dilution Factor                                   | ppb   | Parts per billion. Reported as µg/L or µg/kg        |  |  |
| DL    | Attached as a suffix to a diluted sample          | ppm   | Parts per million. Reported as mg/L, µg/mL or mg/kg |  |  |
| DUP   | Duplicate                                         | QC    | Quality Control                                     |  |  |
| ICB   | Initial Calibration Blank                         | % Rec | Percent Recovery                                    |  |  |
| ICC   | Initial Calibration Curve                         |       | Reporting Limit. The RL is typically determined by  |  |  |
| ICV   | Initial Calibration Verification                  | RL    | the concentration of the lowest standard in the     |  |  |
| kg    | kilogram                                          |       | calibration curve                                   |  |  |
| L     | Liter                                             | RPD   | Relative Percent Difference                         |  |  |
| LCS   | Laboratory Control Sample                         | RSD   | Relative Standard Deviation                         |  |  |
| LCSD  | Laboratory Control Sample Duplicate               | RT    | Retention Time                                      |  |  |
| MDL   | Method Detection Limit as determined according to | SU    | Standard Units                                      |  |  |
|       | 40 CFR Part 136 Appendix B                        | TIC   | Tentatively Identified Compound AKA Library Search  |  |  |
| MF    | Membrane Filter                                   |       | Compounds                                           |  |  |
| mg    | milligram (1000mg = 1g)                           |       | The NELAC (National Environmental Laboratory        |  |  |
| μg    | microgram (1000µg = 1mg)                          |       | Accreditation Council) Institute                    |  |  |
| ml    | milliliter (1000ml = 1L)                          | TNTC  | Too numerous to count                               |  |  |
| μΙ    | microliter (1000µl = 1ml)                         | *     | When attached to a compound name, indicates this    |  |  |
| µmhos | Conductivity units - resistance expressed in ohms |       | analyte was analyzed by Method SW-846 8270 SIM      |  |  |
| MPN   | Most Probable Number                              |       | When attached to a compound name, indicates this    |  |  |
| MS    | Matrix Spike                                      | ^     | analyte was analyzed by Method SW-846 8011 or       |  |  |
| MSD   | Matrix Spike Duplicate                            |       | EPA 504.1                                           |  |  |
| NA    | Not applicable                                    | < <   | Less than; In conjunction with a numerical value,   |  |  |
| NC    | Not calculated                                    |       | indicates a concentration less than the RL or MDL   |  |  |

#### ACRONYMS AND ABBREVIATIONS

## SAMPLE DELIVERY GROUP CASE NARRATIVE (Conformance / Non-Conformance Summary)

## SAMPLE DELIVERY GROUP CASE NARRATIVE

#### SDG#: E22-03213

Integrated Analytical Laboratories, LLC. received three (3) samples\*\* from EWMA - HQ (IAL SDG# **E22-03213**, Project: SWIVELIER - 202530) on June 1, 2022 for the analysis of :

(3) TCL VO + 15

\*\*Number of samples listed above may be greater than what is listed on the chain of custody. Any samples that require in-house filtration or splitting will be counted as separate samples.

Samples were received in good condition with documentation in order. Cooler temperature was acceptable at  $4 \pm 2$  degree C.

| Volatiles By SW 8260D |                                                                                                                                                                                                                                                                                                |                                                                                                       | Batch: 220606-01                                | Matrix: Aqueous |
|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-------------------------------------------------|-----------------|
| QC<br>E22-03213       | <ul> <li>Calibration curve met</li> <li>Internal standards rece</li> <li>Surrogate percent rece</li> <li>Method blank met QC</li> <li>LCS percent recovery</li> <li>MS/MSD RPD met QC</li> <li>MS/MSD percent reco</li> <li>All samples were rece</li> <li>All samples were anality</li> </ul> | overy met Q<br>overy met Q<br>criteria.<br>met QC crit<br>C criteria.<br>very met QC<br>ived within h | eria.<br>eria.<br>C criteria.<br>nolding time.  | 21              |
|                       | Dilution Summary:<br>Sample ID<br>E22-03213-001<br>E22-03213-002<br>E22-03213-003                                                                                                                                                                                                              | DF(s)<br>100<br>1<br>1                                                                                | Dilution For<br>Target compound(s).<br>NA<br>NA |                 |

A review of the QA/QC measures for the analysis of the sample(s) contained in this report has been performed by:

IM Mulumu Reviewed by

6/16/2022 Date

## DATA OF KNOWN QUALITY CONFORMANCE/NON-CONFORMANCE SUMMARY QUESTIONNAIRE

Laboratory Name: Integrated Analytical Laboratories Client: Environmental Waste Management Associates, LLC. Project Location: SWIVELIER - 202530 IAL Project #: E22-03213 IAL Sample ID(s): E22-03213-001 ~ -003 Sampling Date(s): 6/1/2022

List of DKQP Method Used:

TCL VO by 8260D

**Notes:** For all questions to which the response was "No" (with the exception of question #7), additional information is provided in the case narrative. If the answer to question #1, #1A, or #1B is "No", the data package does not meet the requirements for "Data of Known Quality."

|    |                                                                                                                                                                                                                                                                 | YES | NO | <u>N/A</u> |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----|------------|
| 1  | For each analytical method referenced in this laboratory report<br>package, were all specified QA/QC performance criteria followed,<br>including the requirement to explain any criteria falling outside of<br>acceptable guidelines, as specified in the NJDEP | x   |    |            |
| 1A | Were the method specified handling, preservation, and holding time requirements met?                                                                                                                                                                            | x   |    |            |
| 1B | EPH Method: Was the EPH method conducted without significant<br>modifications?<br>(see Section 11.3 of respective DKQ methods)                                                                                                                                  |     |    | x          |
| 2  | Were all samples received by the laboratory in a condition consistent with that described on the associated chain-of-custody document(s)?                                                                                                                       | x   |    |            |
| 3  | Were samples received at an appropriate temperature (4±2° C)?                                                                                                                                                                                                   | X   |    |            |
| 4  | Were all QA/QC performance criteria specified in the NJDEP DKQP standards achieved?                                                                                                                                                                             | x   |    |            |
| 5A | Were reporting limits specified or referenced on the chain-of-custody or communicated to the laboratory prior to sample receipt?                                                                                                                                | x   |    |            |
| 5B | Were these reporting limits met?                                                                                                                                                                                                                                |     | X  | · ·        |
| 6  | For each analytical method referenced in this laboratory report<br>package, were results reported for all constituents identified in the<br>method-specific analyte lists presented in the DKQP documents and/or<br>site-specific QAPP?                         | x   |    |            |
| 7  | Are project-specific matrix spikes and/or laboratory duplicates included in this data set?                                                                                                                                                                      |     | x  |            |

## RESULTS SUMMARY REPORT

| Project: SWIVELIER - 202530<br>Lab Case No.: E22-03213                                                  |                                     |                                          |                                      |                                          |                                           |                            |                                                    |
|---------------------------------------------------------------------------------------------------------|-------------------------------------|------------------------------------------|--------------------------------------|------------------------------------------|-------------------------------------------|----------------------------|----------------------------------------------------|
| Lab ID:<br>Client ID:<br>Matrix:<br>Sampled Date<br>PARAMETER(Units)                                    | (<br>MW                             | 03213-00<br>7-13D-06<br>Aqueou<br>6/1/22 | )1<br>50122                          | 03213<br>FB-06<br>Aque<br>6/1/<br>Conc Q | 50122<br>eous<br>722                      | T                          | 3213-003<br>B-060122<br>Aqueous<br>6/1/22<br>O MDL |
| Volatiles (Units)                                                                                       |                                     | (ug/L)                                   |                                      | (ug                                      |                                           |                            | (ug/L)                                             |
| Vinyl chloride<br>cis-1,2-Dichloroethene<br>Trichloroethene<br>Tetrachloroethene<br>1,2-Dichlorobenzene | 43.3<br>4550<br>9980<br>42.5<br>101 | DJ<br>D<br>DJ<br>DJ                      | 35.2<br>27.7<br>34.7<br>36.5<br>35.4 | ND<br>ND<br>ND<br>ND<br>ND               | 0.352<br>0.277<br>0.347<br>0.365<br>0.354 | ND<br>ND<br>ND<br>ND<br>ND | 0.352<br>0.277<br>0.347<br>0.365<br>0.354          |
| TOTAL VO's:<br>TOTAL TIC's:<br>TOTAL VO's & TIC's:                                                      | 14700<br>ND<br>14700                | DJ<br>DJ                                 |                                      | ND<br>ND<br>ND                           |                                           | ND<br>ND<br>ND             |                                                    |

## SUMMARY REPORT Client: Environmental Waste Management Associates, LLC. Project: SWIVELIER - 202530

ND = Analyzed for but Not Detected at the MDL

J = Indicates an estimated value either when the concentration in the sample is greater than MDL and less than RL, or for qualification of TICs

D = The compound was reported from the Diluted analysis

All qualifiers on individual Volatiles & Semivolatiles are carried down through summation.

## ANALYTICAL RESULTS

### **VOLATILE ORGANICS**

Lab ID: E22-03213-001 Client ID: MW-13D-06012 Date Received: 06/01/2022 Date Analyzed: 06/07/2022 Data file: K6345.D 06/07/2022 00:10 GC/MS Column: DB-624 Sample wt/vol: 0.05mL Matrix-Units: Aqueous-µg/L % Moisture: 100 Dilution Factor: 100

| Compound                       | Concentration | Q  | RL    | MDL  |
|--------------------------------|---------------|----|-------|------|
| Dichlorodifluoromethane        | ND            |    | 100   | 55.2 |
| Chloromethane                  | ND            |    | 50.0  | 30.9 |
| Vinyl chloride                 | 43.3          | DJ | 100   | 35.2 |
| Bromomethane                   | ND            |    | 100   | 38.6 |
| Chloroethane                   | ND            |    | 50.0  | 32.4 |
| Trichlorofluoromethane         | ND            |    | 100   | 50.3 |
| 1,1-Dichloroethene             | ND            |    | 50.0  | 36.3 |
| Acetone                        | ND            |    | 200   | 84.7 |
| Carbon disulfide               | ND            |    | 100   | 40.3 |
| Methylene chloride             | ND            |    | 100   | 50.0 |
| trans-1,2-Dichloroethene       | ND            |    | 50.0  | 37.2 |
| Methyl tert-butyl ether (MTBE) | ND            |    | 50.0  | 24.5 |
| 1,1-Dichloroethane             | ND            |    | 50.0  | 28.5 |
| cis-1,2-Dichloroethene         | 4550          | D  | 50.0  | 27.7 |
| 2-Butanone (MEK)               | ND            |    | 200   | 80.2 |
| Bromochloromethane             | ND            |    | 100   | 37.9 |
| Chloroform                     | ND            |    | 50.0  | 28.5 |
| 1,1,1-Trichloroethane          | ND            |    | 50.0  | 38.1 |
| Carbon tetrachloride           | ND            |    | 50.0  | 34.9 |
| 1,2-Dichloroethane (EDC)       | ND            |    | 50.0  | 27.3 |
| Benzene                        | ND            |    | 50.0  | 27.0 |
| Trichloroethene                | 9980          | D  | 50.0  | 34.7 |
| 1,2-Dichloropropane            | ND            |    | 50.0  | 27.2 |
| 1,4-Dioxane                    | ND            |    | 10000 | 5110 |
| Bromodichloromethane           | ND            |    | 50.0  | 25.8 |
| cis-1,3-Dichloropropene        | ND            |    | 100   | 26.4 |
| 4-Methyl-2-pentanone (MIBK)    | ND            |    | 100   | 61.1 |

#### **VOLATILE ORGANICS**

Lab ID: E22-03213-001 Client ID: MW-13D-06012 Date Received: 06/01/2022 Date Analyzed: 06/07/2022 Data file: K6345.D 06/07/2022 00:10 GC/MS Column: DB-624 Sample wt/vol: 0.05mL Matrix-Units: Aqueous-µg/L % Moisture: 100 Dilution Factor: 100

| Compound                              | Concentration | Q  | RL   | MDL  |
|---------------------------------------|---------------|----|------|------|
| Toluene                               | ND            |    | 50.0 | 30.2 |
| trans-1,3-Dichloropropene             | ND            |    | 100  | 33.0 |
| 1,1,2-Trichloroethane                 | ND            |    | 50.0 | 31.3 |
| Tetrachloroethene                     | 42.5          | DJ | 50.0 | 36.5 |
| 2-Hexanone                            | ND            |    | 100  | 81.8 |
| Dibromochloromethane                  | ND            |    | 50.0 | 26.3 |
| 1,2-Dibromoethane (EDB)               | ND            |    | 50.0 | 28.9 |
| Chlorobenzene                         | ND            |    | 50.0 | 30.4 |
| Ethylbenzene                          | ND            |    | 50.0 | 31.3 |
| Total Xylenes                         | ND            |    | 100  | 34.5 |
| Styrene                               | ND            |    | 50.0 | 31.7 |
| Bromoform                             | ND            |    | 50.0 | 32.8 |
| Isopropylbenzene                      | ND            |    | 50.0 | 33.2 |
| 1,1,2,2-Tetrachloroethane             | ND            |    | 100  | 28.4 |
| 1,3-Dichlorobenzene                   | ND            |    | 50.0 | 38.6 |
| 1,4-Dichlorobenzene                   | ND            |    | 50.0 | 39.7 |
| 1,2-Dichlorobenzene                   | 101           | D  | 50.0 | 35.4 |
| 1,2-Dibromo-3-chloropropane           | ND            |    | 100  | 41.0 |
| 1,2,4-Trichlorobenzene                | ND            |    | 100  | 35.8 |
| 1,2,3-Trichlorobenzene                | ND            |    | 100  | 40.6 |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | ND            |    | 100  | 53.8 |
| Methyl acetate                        | ND            |    | 50.0 | 34.5 |
| Cyclohexane                           | ND            |    | 100  | 46.9 |
| Methylcyclohexane                     | ND            |    | 100  | 42.1 |
| 1,3-Dichloropropene (cis- and trans-) | ND            |    | 100  | 26.4 |
| Total Target Compounds (52):          | 14700         | DJ |      |      |

Page 2 of 2

D --- Dilution Performed

B --- Compound detected in Blank

J --- Value Less than RL & greater than MDL

C --- Common laboratory contamination

E --- Exceeds upper level of Calibration curve

## **VOLATILE ORGANICS Tentatively Identified Compounds**

| CAS # Compound            | Estimated Retention<br>Concentration O Time |
|---------------------------|---------------------------------------------|
| Lab ID: E22-03213-001     | GC/MS Column: DB-624                        |
| Client ID: MW-13D-06012   | Sample wt/vol: 0.05mL                       |
| Date Received: 06/01/2022 | Matrix-Units: Aqueous-µg/L                  |
| Date Analyzed: 06/07/2022 | Dilution Factor: 100                        |
| Date File: K6345.D        | % Moisture: 100                             |

No peaks detected

Total TICs = 0

D --- Dilution Performed

J ---- Estimated concentration for TICs

N ---- Presumptive evidence of a compound from the use of GC/MS NIST library search

### **VOLATILE ORGANICS**

Lab ID: E22-03213-002 Client ID: FB-060122 Date Received: 06/01/2022 Date Analyzed: 06/07/2022 Data file: K6346.D 06/07/2022 00:39 GC/MS Column: DB-624 Sample wt/vol: 5mL Matrix-Units: Aqueous-µg/L % Moisture: 100 Dilution Factor: 1

| Compound                       | Concentration | Q | RL    | MDL   |
|--------------------------------|---------------|---|-------|-------|
| Dichlorodifluoromethane        | ND            |   | 1.00  | 0.552 |
| Chloromethane                  | ND            |   | 0.500 | 0.309 |
| Vinyl chloride                 | ND            |   | 1.00  | 0.352 |
| Bromomethane                   | ND            |   | 1.00  | 0.386 |
| Chloroethane                   | ND            |   | 0.500 | 0.324 |
| Trichlorofluoromethane         | ND            |   | 1.00  | 0.503 |
| 1,1-Dichloroethene             | ND            |   | 0.500 | 0.363 |
| Acetone                        | ND            |   | 2.00  | 0.847 |
| Carbon disulfide               | ND            |   | 1.00  | 0.403 |
| Methylene chloride             | ND            |   | 1.00  | 0.500 |
| trans-1,2-Dichloroethene       | ND            |   | 0.500 | 0.372 |
| Methyl tert-butyl ether (MTBE) | ND            |   | 0.500 | 0.245 |
| 1,1-Dichloroethane             | ND            |   | 0.500 | 0.285 |
| cis-1,2-Dichloroethene         | ND            |   | 0.500 | 0.277 |
| 2-Butanone (MEK)               | ND            |   | 2.00  | 0.802 |
| Bromochloromethane             | ND            |   | 1.00  | 0.379 |
| Chloroform                     | ND            |   | 0.500 | 0.285 |
| 1,1,1-Trichloroethane          | ND            |   | 0.500 | 0.381 |
| Carbon tetrachloride           | ND            |   | 0.500 | 0.349 |
| 1,2-Dichloroethane (EDC)       | ND            |   | 0.500 | 0.273 |
| Benzene                        | ND            |   | 0.500 | 0.270 |
| Trichloroethene                | ND            |   | 0.500 | 0.347 |
| 1,2-Dichloropropane            | ND            |   | 0.500 | 0.272 |
| 1,4-Dioxane                    | ND            |   | 100   | 51.1  |
| Bromodichloromethane           | ND            |   | 0.500 | 0.258 |
| cis-1,3-Dichloropropene        | ND            |   | 1.00  | 0.264 |
| 4-Methyl-2-pentanone (MIBK)    | ND            |   | 1.00  | 0.611 |

## **VOLATILE ORGANICS**

Lab ID: E22-03213-002 Client ID: FB-060122 Date Received: 06/01/2022 Date Analyzed: 06/07/2022 Data file: K6346.D 06/07/2022 00:39 GC/MS Column: DB-624 Sample wt/vol: 5mL Matrix-Units: Aqueous-µg/L % Moisture: 100 Dilution Factor: 1

| Compound                              | Concentration | Q | RL    | MDL   |
|---------------------------------------|---------------|---|-------|-------|
| Toluene                               | ND            |   | 0.500 | 0.302 |
| trans-1,3-Dichloropropene             | ND            |   | 1.00  | 0.330 |
| 1,1,2-Trichloroethane                 | ND            |   | 0.500 | 0.313 |
| Tetrachloroethene                     | ND            |   | 0.500 | 0.365 |
| 2-Hexanone                            | ND            |   | 1.00  | 0.818 |
| Dibromochloromethane                  | ND            |   | 0.500 | 0.263 |
| 1,2-Dibromoethane (EDB)               | ND            |   | 0.500 | 0.289 |
| Chlorobenzene                         | ND            |   | 0.500 | 0.304 |
| Ethylbenzene                          | ND            |   | 0.500 | 0.313 |
| Total Xylenes                         | ND            |   | 1.00  | 0.345 |
| Styrene                               | ND            |   | 0.500 | 0.317 |
| Bromoform                             | ND            |   | 0.500 | 0.328 |
| Isopropylbenzene                      | ND            |   | 0.500 | 0.332 |
| 1,1,2,2-Tetrachloroethane             | ND            |   | 1.00  | 0.284 |
| 1,3-Dichlorobenzene                   | ND            |   | 0.500 | 0.386 |
| 1,4-Dichlorobenzene                   | ND            |   | 0.500 | 0.397 |
| 1,2-Dichlorobenzene                   | ND            |   | 0.500 | 0.354 |
| 1,2-Dibromo-3-chloropropane           | ND            |   | 1.00  | 0.410 |
| 1,2,4-Trichlorobenzene                | ND            |   | 1.00  | 0.358 |
| 1,2,3-Trichlorobenzene                | ND            |   | 1.00  | 0.406 |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | ND            |   | 1.00  | 0.538 |
| Methyl acetate                        | ND            |   | 0.500 | 0.345 |
| Cyclohexane                           | ND            |   | 1.00  | 0.469 |
| Methylcyclohexane                     | ND            |   | 1.00  | 0.421 |
| 1,3-Dichloropropene (cis- and trans-) | ND            |   | 1.00  | 0.264 |
|                                       |               |   |       |       |

Total Target Compounds (52):

0

D --- Dilution Performed

J --- Value Less than RL & greater than MDL E --- Exceeds upper level of Calibration curve B --- Compound detected in Blank

C --- Common laboratory contamination

## VOLATILE ORGANICS Tentatively Identified Compounds

| Lab ID: E2   | 2-03213-002        | GC/MS Column: DB-624       |  |  |  |
|--------------|--------------------|----------------------------|--|--|--|
| Client ID: 1 | FB-060122          | Sample wt/vol: 5mL         |  |  |  |
| Date Receiv  | red: 06/01/2022    | Matrix-Units: Aqueous-µg/L |  |  |  |
| Date Analyz  | zed: 06/07/2022    | Dilution Factor: 1         |  |  |  |
| Date File: I | K6346.D            | % Moisture: 100            |  |  |  |
|              |                    |                            |  |  |  |
|              |                    | Estimated Retention        |  |  |  |
| CAS #        | Compound           | Concentration Q Time       |  |  |  |
|              |                    |                            |  |  |  |
|              | Column/Septa bleed | 0 J 5.35                   |  |  |  |

Total TICs =

D --- Dilution Performed

J --- Estimated concentration for TICs

0

N --- Presumptive evidence of a compound from the use of GC/MS NIST library search

#### **VOLATILE ORGANICS**

Lab ID: E22-03213-003 Client ID: TB-060122 Date Received: 06/01/2022 Date Analyzed: 06/07/2022 Data file: K6347.D 06/07/2022 01:08 GC/MS Column: DB-624 Sample wt/vol: 5mL Matrix-Units: Aqueous-µg/L % Moisture: 100 Dilution Factor: 1

| Compound                       | Concentration | Q | RL    | MDL   |
|--------------------------------|---------------|---|-------|-------|
| Dichlorodifluoromethane        | ND            |   | 1.00  | 0.552 |
| Chloromethane                  | ND            |   | 0.500 | 0.309 |
| Vinyl chloride                 | ND            |   | 1.00  | 0.352 |
| Bromomethane                   | ND            |   | 1.00  | 0.386 |
| Chloroethane                   | ND            |   | 0.500 | 0.324 |
| Trichlorofluoromethane         | ND            |   | 1.00  | 0.503 |
| 1,1-Dichloroethene             | ND            |   | 0.500 | 0.363 |
| Acetone                        | ND            |   | 2.00  | 0.847 |
| Carbon disulfide               | ND            |   | 1.00  | 0.403 |
| Methylene chloride             | ND            |   | 1.00  | 0.500 |
| trans-1,2-Dichloroethene       | ND            |   | 0.500 | 0.372 |
| Methyl tert-butyl ether (MTBE) | ND            |   | 0.500 | 0.245 |
| 1,1-Dichloroethane             | ND            |   | 0.500 | 0.285 |
| cis-1,2-Dichloroethene         | ND            |   | 0.500 | 0.277 |
| 2-Butanone (MEK)               | ND            |   | 2.00  | 0.802 |
| Bromochloromethane             | ND            |   | 1.00  | 0.379 |
| Chloroform                     | ND            |   | 0.500 | 0.285 |
| 1,1,1-Trichloroethane          | ND            |   | 0.500 | 0.381 |
| Carbon tetrachloride           | ND            |   | 0.500 | 0.349 |
| 1,2-Dichloroethane (EDC)       | ND            |   | 0.500 | 0.273 |
| Benzene                        | ND            |   | 0.500 | 0.270 |
| Trichloroethene                | ND            |   | 0.500 | 0.347 |
| 1,2-Dichloropropane            | ND            |   | 0.500 | 0.272 |
| 1,4-Dioxane                    | ND            |   | 100   | 51.1  |
| Bromodichloromethane           | ND            |   | 0.500 | 0.258 |
| cis-1,3-Dichloropropene        | ND            |   | 1.00  | 0.264 |
| 4-Methyl-2-pentanone (MIBK)    | ND            |   | 1.00  | 0.611 |

#### **VOLATILE ORGANICS**

Lab ID: E22-03213-003 Client ID: TB-060122 Date Received: 06/01/2022 Date Analyzed: 06/07/2022 Data file: K6347.D 06/07/2022 01:08 GC/MS Column: DB-624 Sample wt/vol: 5mL Matrix-Units: Aqueous-µg/L % Moisture: 100 Dilution Factor: 1

|    | Q                                                                               | RL                                                                              | MDL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|----|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ND |                                                                                 | 0.500                                                                           | 0.302                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ND |                                                                                 | 1.00                                                                            | 0.330                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ND |                                                                                 | 0.500                                                                           | 0.313                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ND |                                                                                 | 0.500                                                                           | 0.365                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ND |                                                                                 | 1.00                                                                            | 0.818                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ND |                                                                                 | 0.500                                                                           | 0.263                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ND |                                                                                 | 0.500                                                                           | 0.289                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ND |                                                                                 | 0.500                                                                           | 0.304                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ND |                                                                                 | 0.500                                                                           | 0.313                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ND |                                                                                 | 1.00                                                                            | 0.345                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ND |                                                                                 | 0.500                                                                           | 0.317                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ND |                                                                                 | 0.500                                                                           | 0.328                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ND |                                                                                 | 0.500                                                                           | 0.332                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ND |                                                                                 | 1.00                                                                            | 0.284                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ND |                                                                                 | 0.500                                                                           | 0.386                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ND |                                                                                 | 0.500                                                                           | 0.397                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ND |                                                                                 | 0.500                                                                           | 0.354                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ND |                                                                                 | 1.00                                                                            | 0.410                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ND |                                                                                 | 1.00                                                                            | 0.358                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ND |                                                                                 | 1.00                                                                            | 0.406                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ND |                                                                                 | 1.00                                                                            | 0.538                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|    |                                                                                 | 0.500                                                                           | 0.345                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ND |                                                                                 | 1.00                                                                            | 0.469                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|    |                                                                                 | 1.00                                                                            | 0.421                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ND |                                                                                 | 1.00                                                                            | 0.264                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|    | ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>N | ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>N | ND         1.00           ND         0.500           ND         0.500           ND         1.00           ND         0.500           ND         1.00           ND         0.500           ND         1.00           ND         1.00 |

Total Target Compounds (52):

0

D --- Dilution Performed

J --- Value Less than RL & greater than MDL E --- Exceeds upper level of Calibration curve B --- Compound detected in Blank C --- Common laboratory contamination

## VOLATILE ORGANICS Tentatively Identified Compounds

| CAS #        | Compound        | Concentration Q Time       |
|--------------|-----------------|----------------------------|
|              |                 | Estimated Retention        |
| Date File: 1 | K6347.D         | % Moisture: 100            |
| Date Analyz  | zed: 06/07/2022 | Dilution Factor: 1         |
| Date Receiv  | red: 06/01/2022 | Matrix-Units: Aqueous-µg/L |
| Client ID: 7 | ГВ-060122       | Sample wt/vol: 5mL         |
| Lab ID: E2   | 2-03213-003     | GC/MS Column: DB-624       |

No peaks detected

Total TICs =

D --- Dilution Performed

J --- Estimated concentration for TICs

0

N ---- Presumptive evidence of a compound from the use of GC/MS NIST library search

## VOLATILE ORGANICS

## VOLATILE ORGANICS QC SUMMARY

#### VOLATILE SURROGATE PERCENT RECOVERY SUMMARY

**Date Analyzed:** 06/06/2022

| Lab Sample ID    | Matrix  | File ID | SMC1 # | SMC2 | # SMC3 # |
|------------------|---------|---------|--------|------|----------|
| BLKA220606-01    | AQUEOUS | K6336.D | 99     | 95   | 96       |
| LCSA220606-01    | AQUEOUS | K6337.D | 96     | 101  | 101      |
| E22-03122-001MS  | AQUEOUS | K6338.D | 94     | 104  | 102      |
| E22-03195-001    | AQUEOUS | K6340.D | 99     | 94   | 96       |
| E22-03195-002    | AQUEOUS | K6341.D | 97     | 99   | 95       |
| E22-03122-001    | AQUEOUS | K6342.D | 100    | 96   | 95       |
| E22-03122-002    | AQUEOUS | K6343.D | 98     | 99   | 94       |
| E22-03122-003    | AQUEOUS | K6344.D | 98     | 101  | 94       |
| E22-03213-001    | AQUEOUS | K6345.D | 96     | 100  | 95       |
| E22-03213-002    | AQUEOUS | K6346.D | 99     | 101  | 96       |
| E22-03213-003    | AQUEOUS | K6347.D | 100    | 102  | 96       |
| E22-03226-001    | AQUEOUS | K6348.D | 102    | 100  | -96      |
| E22-03226-002    | AQUEOUS | K6349.D | 98     | 101  | 101      |
| E22-03226-002DUP | AQUEOUS | K6350.D | 98     | 102  | 102      |
| E22-03226-003    | AQUEOUS | K6351.D | 97     | 98   | 95       |
| E22-03226-004    | AQUEOUS | K6352.D | 98     | 101  | 95       |
| E22-03269-001    | AQUEOUS | K6353.D | 99     | 102  | 96       |
| E22-03269-002    | AQUEOUS | K6354.D | 99     | 99   | 94       |
| E22-03269-003    | AQUEOUS | K6355.D | 102    | 101  | 97       |
| E22-03269-004    | AQUEOUS | K6356.D | 99     | 97   | 97       |

|                              | Concentration | DKQPs A | n Soil |        |
|------------------------------|---------------|---------|--------|--------|
| SMC1 = 1,2-Dichloroethane-d4 | 50 ppb        | 70-130  | 61-147 | 33-166 |
| SMC2 = Toluene-d8            | 50 ppb        | 70-130  | 58-143 | 48-142 |
| SMC3 = Bromofluorobenzene    | 50 ppb        | 70-130  | 64-144 | 42-149 |

# Column used to flag recovery values that did not meet criteria

- \* Values outside of QC limits
- \$ Values outside of NJ DKQP limits
- D Surrogate diluted out

M Matrix interference

FORM 2

8260

#### LCS ACCURACY REPORT

Lab ID: LCSA220606-01 Date Received: NA Date Analyzed: 06/06/2022 LCS Data file: K6337.D GC/MS Column: DB-624 Sample wt/vol: 5mL Matrix-Units: Aqueous-µg/L % Moisture: 100 Dilution Factor: 1

|                                |           | Conc. | %Rec. |   |        |
|--------------------------------|-----------|-------|-------|---|--------|
| Compound                       | Conc. Add | LCS   | LCS   | # | Limits |
| Dichlorodifluoromethane        | 50.0      | 52.1  | 104   |   | 37-146 |
| Chloromethane                  | 50.0      | 47.5  | 95    |   | 34-141 |
| Vinyl chloride                 | 50.0      | 49.1  | 98    |   | 60-130 |
| Bromomethane                   | 50.0      | 47.9  | 96    |   | 58-143 |
| Chloroethane                   | 50.0      | 47.4  | 95    |   | 57-154 |
| Trichlorofluoromethane         | 50.0      | 53.4  | 107   |   | 41-139 |
| 1,1-Dichloroethene             | 50.0      | 49.6  | 99    |   | 51-151 |
| Acetone                        | 100       | 83.8  | 84    |   | 61-144 |
| Carbon disulfide               | 50.0      | 49.2  | 98    |   | 52-156 |
| Vinyl acetate                  | 50.0      | 51.2  | 102   |   | 43-148 |
| Methylene chloride             | 50.0      | 50.7  | 101   |   | 50-145 |
| Acrylonitrile                  | 150.0     | 155.9 | 104   |   | 52-158 |
| tert-Butyl alcohol (TBA)       | 100.0     | 101.4 | 101   |   | 60-140 |
| trans-1,2-Dichloroethene       | 50.0      | 48.9  | 98    |   | 50-149 |
| Methyl tert-butyl ether (MTBE) | 50.0      | 52.6  | 105   |   | 62-132 |
| 1,1-Dichloroethane             | 50.0      | 49.0  | 98    |   | 62-132 |
| Diisopropyl ether (DIPE)       | 50.0      | 50.8  | 102   |   | 38-148 |
| cis-1,2-Dichloroethene         | 50.0      | 49.5  | 99    |   | 64-133 |
| 2,2-Dichloropropane            | 50.0      | 53.2  | 106   |   | 37-153 |
| 2-Butanone (MEK)               | 100       | 87.0  | 87    |   | 55-135 |
| Bromochloromethane             | 50.0      | 49.2  | 98    |   | 56-138 |
| Chloroform                     | 50.0      | 49.0  | 98    |   | 57-133 |
| 1,1,1-Trichloroethane          | 50.0      | 54.6  | 109   |   | 42-142 |
| Carbon tetrachloride           | 50.0      | 55.4  | 111   |   | 40-144 |
| 1,1-Dichloropropene            | 50.0      | 48.7  | 97    |   | 57-133 |
| 1,2-Dichloroethane (EDC)       | 50.0      | 49.1  | 98    |   | 43-143 |
| Benzene                        | 50.0      | 50.3  | 101   |   | 53-140 |
| Trichloroethene                | 50.0      | 53.1  | 106   |   | 42-139 |
| 1,2-Dichloropropane            | 50.0      | 47.9  | 96    |   | 62-137 |
| Dibromomethane                 | 50.0      | 51.4  | 103   |   | 50-140 |
| 1,4-Dioxane                    | 1500      | 1134  | 76    |   | 62-131 |
| Bromodichloromethane           | 50.0      | 53.3  | 107   |   | 50-139 |
| 2-Chloroethyl vinyl ether      | 100       | 95.7  | 96    |   | 32-150 |
| cis-1,3-Dichloropropene        | 50.0      | 51.9  | 104   |   | 41-152 |
| 4-Methyl-2-pentanone (MIBK)    | 100       | 107.4 | 107   |   | 41-146 |
| Toluene                        | 50.0      | 50.5  | 101   |   | 42-150 |
| trans-1,3-Dichloropropene      | 50.0      | 50.5  | 101   |   | 40-149 |
| 1,1,2-Trichloroethane          | 50.0      | 50.0  | 100   |   | 59-137 |
| Tetrachloroethene              | 50.0      | 54.4  | 109   |   | 51-131 |
| 1,3-Dichloropropane            | 50.0      | 48.7  | 97    |   | 50-147 |

Page 1 of 3

#### LCS ACCURACY REPORT

Lab ID: LCSA220606-01 Date Received: NA Date Analyzed: 06/06/2022 LCS Data file: K6337.D GC/MS Column: DB-624 Sample wt/vol: 5mL Matrix-Units: Aqueous-µg/L % Moisture: 100 Dilution Factor: 1

| Compound                              | Conc.<br>Add | Conc.<br>LCS | %Rec.<br>LCS | # | Limits  |
|---------------------------------------|--------------|--------------|--------------|---|---------|
| 2-Hexanone                            | 100          | 88.3         | 88           |   | 57-139  |
| Dibromochloromethane                  | 50.0         | 56.7         | 113          |   | 36-150  |
| 1,2-Dibromoethane (EDB)               | 50.0         | 52.5         | 105          |   | 46-149  |
| Chlorobenzene                         | 50.0         | 49.5         | 99           |   | 46-148  |
| 1,1,1,2-Tetrachloroethane             | 50.0         | 53.6         | 107          |   | 62-138  |
| Ethylbenzene                          | 50.0         | 50.0         | 100          |   | 46-156  |
| m,p-Xylene                            | 100.0        | 101.2        | 101          |   | 55-142  |
| o-Xylene                              | 50.0         | 50.9         | 102          |   | 43-166  |
| Styrene                               | 50.0         | 52.4         | 105          |   | 50-161  |
| Bromoform                             | 50.0         | 53.2         | 106          |   | 31-149  |
| Isopropylbenzene                      | 50.0         | 54.4         | 109          |   | 70-130  |
| 1,1,2,2-Tetrachloroethane             | 50.0         | 46.5         | 93           |   | 51-131  |
| Bromobenzene                          | 50.0         | 50.8         | 102          |   | 65-132  |
| 1,2,3-Trichloropropane                | 50.0         | 50.5         | 101          |   | -57-144 |
| n-Propylbenzene                       | 50.0         | 51.3         | 103          |   | 63-132  |
| 2-Chlorotoluene                       | 50.0         | 49.4         | 99           |   | 38-161  |
| 1,3,5-Trimethylbenzene                | 50.0         | 52.2         | 104          |   | 59-147  |
| 4-Chlorotoluene                       | 50.0         | 49.4         | 99           |   | 52-141  |
| tert-Butylbenzene                     | 50.0         | 53.8         | 108          |   | 49-143  |
| 1,2,4-Trimethylbenzene                | 50.0         | 51.8         | 104          |   | 56-147  |
| sec-Butylbenzene                      | 50.0         | 53.5         | 107          |   | 51-143  |
| 1,3-Dichlorobenzene                   | 50.0         | 48.4         | 97           |   | 59-131  |
| 4-Isopropyltoluene                    | 50.0         | 54.1         | 108          |   | 51-143  |
| 1,4-Dichlorobenzene                   | 50.0         | 49.7         | 99           |   | 65-131  |
| n-Butylbenzene                        | 50.0         | 52.8         | 106          |   | 55-142  |
| 1,2-Dichlorobenzene                   | 50.0         | 48.6         | 97           |   | 64-132  |
| 1,2-Dibromo-3-chloropropane           | 50.0         | 44.2         | 88           |   | 33-161  |
| 1,2,4-Trichlorobenzene                | 50.0         | 43.1         | 86           |   | 32-148  |
| Hexachlorobutadiene                   | 50.0         | 48.7         | 97           |   | 19-151  |
| Naphthalene                           | 50.0         | 39.9         | 80           |   | 67-141  |
| 1,2,3-Trichlorobenzene                | 50.0         | 39.2         | 78           |   | 34-156  |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | 50.0         | 52.3         | 105          |   | 56-154  |
| Methyl acetate                        | 50.0         | 49.8         | 100          |   | 41-147  |
| Cyclohexane                           | 50.0         | 55.9         | 112          |   | 38-150  |
| Methylcyclohexane                     | 50.0         | 58.1         | 116          |   | 48-138  |

# Column used to flag recovery and RPD values that did not meet criteria

\* Values outside of QC limits

\$ Values outside of NJ DKQP limits

#### LCS ACCURACY REPORT

| Lab ID: LCSA220606-01<br>Date Received: NA<br>Date Analyzed: 06/06/2022<br>LCS Data file: K6337.D |           |     | GC/MS Colu<br>Sample wt/v<br>Matrix-Units<br>% Moisture:<br>Dilution Fact | ol: 5mL<br>:: Aqueous-µ<br>100 |   |
|---------------------------------------------------------------------------------------------------|-----------|-----|---------------------------------------------------------------------------|--------------------------------|---|
| Compound                                                                                          | Conc. Add | LCS | MS Conc.                                                                  | %Rec                           | # |

As per SW-846 8260C, up to 10% of the compounds may be out , but must be within 40-160% As per NJDEP DKQPs, only the following compounds may be in the 40-160% range: Acetone; Bromomethane; 2-Butanone (MEK); Carbon disulfide; Chloroethane; Chloromethane 1,2-Dibromo-3-chloropropane; Dichlorodifluoromethane; 1,4-Dioxane; 2-Hexanone Naphthalene; 4-Methyl-2-pentanone (MIBK); Trichlorofluoromethane

| Leachate     |               |
|--------------|---------------|
| Aqueous/Meoh | Soil/Sediment |
| 70-130       | 70-130        |

LCS ACCURACY (%REC)

# Column used to flag recovery values that did not meet criteria

- \* Values outside of QC limits
- \$ Values outside of NJ DKQP limits NC Not calculable

8260

#### SAMPLE MS RESULTS SUMMARY

| Lab ID: E22-03122-001         |        |        | GC/MS C    | Column                     | DB- | 624         |  |  |
|-------------------------------|--------|--------|------------|----------------------------|-----|-------------|--|--|
| Client ID: MW-1               |        |        |            | vt/vol:                    | 5mL |             |  |  |
| Date Received: NA             |        |        |            | Matrix-Units: Aqueous-µg/L |     |             |  |  |
| Date Analyzed: 06/06/2022     |        |        | % Moistu   | % Moisture: 100            |     |             |  |  |
| Sample Data file: K6342.D     |        |        | Dilution 1 | Factor:                    | 1   |             |  |  |
| Sample MS Data file: K6338    | .D     |        | Dilution l | Factor:                    | 1   |             |  |  |
|                               | Conc.  |        | Conc.      | %Rec.                      |     |             |  |  |
| Compound                      | Add    | Sample | MS         | MS                         | #   | Rec. Limits |  |  |
| Dichlorodifluoromethane       | 50.0   | 0.00   | 56.80      | 114                        |     | 46-125      |  |  |
| Chloromethane                 | 50.0   | 0.00   | 47.90      | 96                         |     | 42-131      |  |  |
| Vinyl chloride                | 50.0   | 0.00   | 51.80      | 104                        |     | 49-146      |  |  |
| Bromomethane                  | 50.0   | 0.00   | 48.80      | 98                         |     | 44-159      |  |  |
| Chloroethane                  | 50.0   | 0.00   | 48.20      | 96                         |     | 43-160      |  |  |
| Trichlorofluoromethane        | 50.0   | 0.00   | 55.30      | 111                        |     | 47-153      |  |  |
| Acrolein                      | 150.0  | 0.00   | 145.50     | 97                         |     | 9-162       |  |  |
| 1,1-Dichloroethene            | 50.0   | 0.00   | 49.60      | 99                         |     | 49-155      |  |  |
| Acetone                       | 100.0  | 0.00   | 83.50      | 84                         |     | 29-181      |  |  |
| Carbon disulfide              | 50.0   | 0.00   | 49.50      | 99                         |     | 48-152      |  |  |
| Vinyl acetate                 | 50.0   | 0.00   | 49.90      | 100                        |     | 22-176      |  |  |
| Methylene chloride            | 50.0   | 0.00   | 49.90      | 100                        |     | 38-160      |  |  |
| Acrylonitrile                 | 150.0  | 0.00   | 157.00     | 105                        |     | 45-177      |  |  |
| tert-Butyl alcohol (TBA)      | 100.0  | 0.00   | 111.70     | 112                        |     | 33-164      |  |  |
| trans-1,2-Dichloroethene      | 50.0   | 0.00   | 48.50      | 97                         |     | 45-154      |  |  |
| Methyl tert-butyl ether (MTBE | 50.0   | 0.00   | 53.00      | 106                        |     | 49-153      |  |  |
| 1,1-Dichloroethane            | 50.0   | 0.00   | 48.50      | 97                         |     | 43-147      |  |  |
| Diisopropyl ether (DIPE)      | 50.0   | 0.00   | 50.90      | 102                        |     | 52-138      |  |  |
| cis-1,2-Dichloroethene        | 50.0   | 0.00   | 48.30      | 97                         |     | 49-143      |  |  |
| 2,2-Dichloropropane           | 50.0   | 0.00   | 52.10      | 104                        |     | 42-140      |  |  |
| 2-Butanone (MEK)              | 100.0  | 0.00   | 87.50      | 88                         |     | 42-141      |  |  |
| Bromochloromethane            | 50.0   | 0.00   | 49.60      | 99                         |     | 45-153      |  |  |
| Chloroform                    | 50.0   | 0.00   | 48.60      | 97                         |     | 40-152      |  |  |
| 1,1,1-Trichloroethane         | 50.0   | 0.00   | 53.10      | 106                        |     | 41-151      |  |  |
| Carbon tetrachloride          | 50.0   | 0.00   | 56.00      | 112                        |     | 39-153      |  |  |
| 1,1-Dichloropropene           | 50.0   | 0.00   | 48.60      | 97                         |     | 44-140      |  |  |
| 1,2-Dichloroethane (EDC)      | 50.0   | 0.00   | 49.00      | 98                         |     | 49-140      |  |  |
| Benzene                       | 50.0   | 0.00   | 49.70      | 99                         |     | 47-145      |  |  |
| Trichloroethene               | 50.0   | 0.00   | 53.50      | 107                        |     | 40-158      |  |  |
| 1,2-Dichloropropane           | 50.0   | 0.00   | 48.10      | 96                         |     | 44-149      |  |  |
| Dibromomethane                | 50.0   | 0.00   | 50.90      | 102                        |     | 48-147      |  |  |
| 1,4-Dioxane                   | 1500.0 | 0.00   | 1252.00    | 83                         |     | 36-155      |  |  |
| Bromodichloromethane          | 50.0   | 0.00   | 53.20      | 106                        |     | 40-159      |  |  |
| 2-Chloroethyl vinyl ether     | 100.0  | 0.00   | 96.20      | 96                         |     | 0-176       |  |  |
| cis-1,3-Dichloropropene       | 50.0   | 0.00   | 52.40      | 105                        |     | 46-145      |  |  |
| 4-Methyl-2-pentanone (MIBK    | 100.0  | 0.00   | 111.00     | 111                        |     | 49-148      |  |  |
| Toluene                       | 50.0   | 0.00   | 51.80      | 104                        |     | 47-148      |  |  |
| trans-1,3-Dichloropropene     | 50.0   | 0.00   | 52.10      | 104                        |     | 43-147      |  |  |
| 1,1,2-Trichloroethane         | 50.0   | 0.00   | 52.20      | 104                        |     | 47-147      |  |  |
| Tetrachloroethene             | 50.0   | 0.00   | 56.40      | 113                        |     | 35-150      |  |  |
| 1,3-Dichloropropane           | 50.0   | 0.00   | 50.50      | 101                        |     | 46-151      |  |  |
|                               |        |        |            |                            |     |             |  |  |

Page 1 of 3

#### SAMPLE MS RESULTS SUMMARY

| Lab ID: E22-03122-001<br>Client ID: MW-1<br>Date Received: NA<br>Date Analyzed: 06/06/2022<br>Sample Data file: K6342.D<br>Sample MS Data file: K6338.D |       |        | GC/MS Column: DB-624<br>Sample wt/vol: 5mL<br>Matrix-Units: Aqueous-µg/L<br>% Moisture: 100<br>Dilution Factor: 1<br>Dilution Factor: 1 |       |               |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------|-----------------------------------------------------------------------------------------------------------------------------------------|-------|---------------|--|
|                                                                                                                                                         | Conc. |        | Conc.                                                                                                                                   | %Rec. |               |  |
| Compound                                                                                                                                                | Add   | Sample | MS                                                                                                                                      |       | # Rec. Limits |  |
| 2-Hexanone                                                                                                                                              | 100   | 0.00   | 93.70                                                                                                                                   | 94    | 49-154        |  |
| Dibromochloromethane                                                                                                                                    | 50    | 0.00   | 58.60                                                                                                                                   | 117   | 39-164        |  |
| 1,2-Dibromoethane (EDB)                                                                                                                                 | 50    | 0.00   | 54.80                                                                                                                                   | 110   | 41-157        |  |
| Chlorobenzene                                                                                                                                           | 50    | 0.00   | 48.90                                                                                                                                   | 98    | 40-150        |  |
| 1,1,1,2-Tetrachloroethane                                                                                                                               | 50    | 0.00   | 51.80                                                                                                                                   | 104   | 38-162        |  |
| Ethylbenzene                                                                                                                                            | 50    | 0.00   | 50.30                                                                                                                                   | 101   | 39-151        |  |
| m,p-Xylene                                                                                                                                              | 100   | 0.00   | 102.30                                                                                                                                  | 102   | 45-148        |  |
| o-Xylene                                                                                                                                                | 50    | 0.00   | 50.70                                                                                                                                   | 101   | 50-145        |  |
| Styrene                                                                                                                                                 | 50    | 0.00   | 53.50                                                                                                                                   | 107   | 44-157        |  |
| Bromoform                                                                                                                                               | 50    | 0.00   | 53.90                                                                                                                                   | 108   | 44-149        |  |
| Isopropylbenzene                                                                                                                                        | 50    | 0.00   | 53.40                                                                                                                                   | 107   | 37-149        |  |
| 1,1,2,2-Tetrachloroethane                                                                                                                               | 50    | 0.00   | 44.80                                                                                                                                   | 90    | 39-135        |  |
| Bromobenzene                                                                                                                                            | 50    | 0.00   | 51.30                                                                                                                                   | 103   | 47-146        |  |
| 1,2,3-Trichloropropane                                                                                                                                  | 50    | 0.00   | 50.00                                                                                                                                   | 100   | 38-147        |  |
| n-Propylbenzene                                                                                                                                         | 50    | 0.00   | 51.30                                                                                                                                   | 103   | 46-136        |  |
| 2-Chlorotoluene                                                                                                                                         | 50    | 0.00   | 49.20                                                                                                                                   | 98    | 41-143        |  |
| 1,3,5-Trimethylbenzene                                                                                                                                  | 50    | 0.00   | 51.10                                                                                                                                   | 102   | 43-145        |  |
| 4-Chlorotoluene                                                                                                                                         | 50    | 0.00   | 49.80                                                                                                                                   | 100   | 43-140        |  |
| tert-Butylbenzene                                                                                                                                       | 50    | 0.00   | 52.20                                                                                                                                   | 104   | 45-142        |  |
| 1,2,4-Trimethylbenzene                                                                                                                                  | 50    | 0.00   | 50.70                                                                                                                                   | 101   | 43-144        |  |
| sec-Butylbenzene                                                                                                                                        | 50    | 0.00   | 52.90                                                                                                                                   | 106   | 42-137        |  |
| 1,3-Dichlorobenzene                                                                                                                                     | 50    | 0.00   | 48.40                                                                                                                                   | 97    | 50-127        |  |
| 4-Isopropyltoluene                                                                                                                                      | 50    | 0.00   | 52.80                                                                                                                                   | 106   | 50-135        |  |
| 1,4-Dichlorobenzene                                                                                                                                     | 50    | 0.00   | 49.80                                                                                                                                   | 100   | 47-131        |  |
| n-Butylbenzene                                                                                                                                          | 50    | 0.00   | 51.90                                                                                                                                   | 104   | 50-128        |  |
| 1,2-Dichlorobenzene                                                                                                                                     | 50    | 0.00   | 47.30                                                                                                                                   | 95    | 49-134        |  |
| 1,2-Dibromo-3-chloropropane                                                                                                                             | 50    | 0.00   | 42.10                                                                                                                                   | 84    | 44-134        |  |
| 1,2,4-Trichlorobenzene                                                                                                                                  | 50    | 0.00   | 41.90                                                                                                                                   | 84    | 33-144        |  |
| Hexachlorobutadiene                                                                                                                                     | 50    | 0.00   | 46.80                                                                                                                                   | 94    | 21-166        |  |
| Naphthalene                                                                                                                                             | 50    | 0.00   | 37.50                                                                                                                                   | 75    | 45-134        |  |
| 1,2,3-Trichlorobenzene                                                                                                                                  | 50    | 0.00   | 37.70                                                                                                                                   | 75    | 39-148        |  |
| 1,1,2-Trichloro-1,2,2-trifluoro                                                                                                                         | 50    | 0.00   | 49.50                                                                                                                                   | 99    | 43-156        |  |
| Methyl acetate                                                                                                                                          | 50    | 0.00   | 48.00                                                                                                                                   | 96    | 36-157        |  |
| Cyclohexane                                                                                                                                             | 50    | 0.00   | 52.60                                                                                                                                   | 105   | 47-132        |  |
| Methylcyclohexane                                                                                                                                       | 50    | 0.00   | 55.40                                                                                                                                   | 111   | 48-131        |  |

#### Leachate

Aqueous/Meoh Soil/Sediment

70-130 70-130

MS Recovery Limits (DKQP) # Column used to flag recovery and RPD values that did not meet criteria

\* Values outside of QC limits

\$ Values outside of NJ DKQP limits

NC Not calculable

#### SAMPLE MS RESULTS SUMMARY

| Lab ID: E22-03122-001        | GC/MS Column: DB-624       |
|------------------------------|----------------------------|
| Client ID: MW-1              | Sample wt/vol: 5mL         |
| Date Received: NA            | Matrix-Units: Aqueous-µg/L |
| Date Analyzed: 06/06/2022    | % Moisture: 100            |
| Sample Data file: K6342.D    | Dilution Factor: 1         |
| Sample MS Data file: K6338.D | Dilution Factor: 1         |
| Con                          | c. Conc. %Rec.             |
| Compound Ada                 | Sample MS MS # Rec. Limits |

2-Chloroethyl vinyl ether has zero spike recovery in the MS. This is due to the HCL acid preservation used on the samples. It is a known phenomenon, that this compound decomposes in the presence of acid.

As per SW-846 8260C, up to 10% of the compounds may be out, but may be within 40-160% As per NJDEP DKQPs, only the following compounds may be in the 40-160% range: Acetone; Bromomethane; 2-Butanone (MEK); Carbon disulfide; Chloroethane; Chloromethane 1,2-Dibromo-3-chloropropane; Dichlorodifluoromethane; 1,4-Dioxane; 2-Hexanone Naphthalene; 4-Methyl-2-pentanone (MIBK); Trichlorofluoromethane

|                                     | Leachate          |                      |  |
|-------------------------------------|-------------------|----------------------|--|
|                                     | Aqueous/Meoh      | Soil/Sediment        |  |
| MS Recovery Limits (DKQP)           | 70-130            | 70-130               |  |
| # Column used to flag recovery and  | RPD values that d | id not meet criteria |  |
| * Values outside of QC limits       |                   |                      |  |
| \$ Values outside of NJ DKQP limits |                   |                      |  |
| NC Not calculable                   |                   |                      |  |

Page 3 of 3

### SAMPLE DUPLICATE RESULTS SUMMARY

Lab ID: E22-03226-002 Client ID: MW-4 Date Received: 06/02/2022 Date Analyzed: 06/07/2022 Sample Data file: K6349.D Sample Dup Data file: K6350.D GC/MS Column: DB-624 Sample wt/vol: 0.25mL Matrix-Units: Aqueous-µg/L % Moisture: 100 Dilution Factor: 20 Dilution Factor: 20

| Compound                       | Sample Conc. | Sample Dup Conc. | % RPD | # |
|--------------------------------|--------------|------------------|-------|---|
| Dichlorodifluoromethane        | 0.00         | 0.00             | NC    |   |
| Chloromethane                  | 0.00         | 0.00             | NC    |   |
| Vinyl chloride                 | 0.00         | 0.00             | NC    |   |
| Bromomethane                   | 0.00         | 0.00             | NC    |   |
| Chloroethane                   | 0.00         | 0.00             | NC    |   |
| Trichlorofluoromethane         | 0.00         | 0.00             | NC    |   |
| Acrolein                       | 0.00         | 0.00             | NC    |   |
| 1,1-Dichloroethene             | 0.00         | 0.00             | NC    |   |
| Acetone                        | 0.00         | 0.00             | NC    |   |
| Carbon disulfide               | 0.00         | 0.00             | NC    |   |
| Vinyl acetate                  | 0.00         | 0.00             | NC    |   |
| Methylene chloride             | 0.00         | 0.00             | NC    |   |
| Acrylonitrile                  | 0.00         | 0.00             | NC    |   |
| tert-Butyl alcohol (TBA)       | 0.00         | 0.00             | NC    |   |
| trans-1,2-Dichloroethene       | 0.00         | 0.00             | NC    |   |
| Methyl tert-butyl ether (MTBE) | 0.00         | 0.00             | NC    |   |
| 1,1-Dichloroethane             | 0.00         | 0.00             | NC    |   |
| Diisopropyl ether (DIPE)       | 0.00         | 0.00             | NC    |   |
| cis-1,2-Dichloroethene         | 0.00         | 0.00             | NC    |   |
| 2,2-Dichloropropane            | 0.00         | 0.00             | NC    |   |
| 2-Butanone (MEK)               | 0.00         | 0.00             | NC    |   |
| Bromochloromethane             | 0.00         | 0.00             | NC    |   |
| Chloroform                     | 0.00         | 0.00             | NC    |   |
| 1,1,1-Trichloroethane          | 0.00         | 0.00             | NC    |   |
| Carbon tetrachloride           | 0.00         | 0.00             | NC    |   |
| 1,1-Dichloropropene            | 0.00         | 0.00             | NC    |   |
| 1,2-Dichloroethane (EDC)       | 0.00         | 0.00             | NC    |   |
| Benzene                        | 2.20         | 2.20             | 0     |   |
| Trichloroethene                | 0.00         | 0.00             | NC    |   |
| 1,2-Dichloropropane            | 0.00         | 0.00             | NC    |   |
| Dibromomethane                 | 0.00         | 0.00             | NC    |   |
| 1,4-Dioxane                    | 0.00         | 0.00             | NC    |   |
| Bromodichloromethane           | 0.00         | 0.00             | NC    |   |
|                                |              |                  |       |   |
| 2-Chloroethyl vinyl ether      | 0.00         | 0.00             | NC    |   |
| cis-1,3-Dichloropropene        | 0.00         | 0.00             | NC    |   |
| 4-Methyl-2-pentanone (MIBK)    | 0.00         | 0.00             | NC    |   |
| Toluene                        | 1.00         | 1.10             | 10    |   |
| trans-1,3-Dichloropropene      | 0.00         | 0.00             | NC    |   |
| 1,1,2-Trichloroethane          | 0.00         | 0.00             | NC    |   |
| Tetrachloroethene              | 0.00         | 0.00             | NC    |   |
| 1,3-Dichloropropane            | 0.00         | 0.00             | NC    |   |

Page 1 of 2

#### SAMPLE DUPLICATE RESULTS SUMMARY

| Lab ID: E22-03226-002         | GC/MS Column: DB-624       |
|-------------------------------|----------------------------|
| Client ID: MW-4               | Sample wt/vol: 0.25mL      |
| Date Received: 06/02/2022     | Matrix-Units: Aqueous-µg/L |
| Date Analyzed: 06/07/2022     | % Moisture: 100            |
| Sample Data file: K6349.D     | Dilution Factor: 20        |
| Sample Dup Data file: K6350.D | Dilution Factor: 20        |

| Compound                             | Sample Conc. | Sample Dup Conc. | % RPD # |  |
|--------------------------------------|--------------|------------------|---------|--|
| 2-Hexanone                           | 0.00         | 0.00             | NC      |  |
| Dibromochloromethane                 | 0.00         | 0.00             | NC      |  |
| 1,2-Dibromoethane (EDB)              | 0.00         | 0.00             | NC      |  |
| Chlorobenzene                        | 0.00         | 0.00             | NC      |  |
| 1,1,1,2-Tetrachloroethane            | 0.00         | 0.00             | NC      |  |
| Ethylbenzene                         | 84.10        | 84.70            | 1       |  |
| m,p-Xylene                           | 285.60       | 291.10           | 2       |  |
| o-Xylene                             | 20.50        | 20.90            | 2       |  |
| Styrene                              | 0.00         | 0.00             | NC      |  |
| Bromoform                            | 0.00         | 0.00             | NC      |  |
| Isopropylbenzene                     | 6.30         | 6.60             | 5       |  |
| 1,1,2,2-Tetrachloroethane            | 0.00         | 0.00             | NC      |  |
| Bromobenzene                         | 0.00         | 0.00             | NC      |  |
| 1,2,3-Trichloropropane               | 0.00         | 0.00             | NC      |  |
| n-Propylbenzene                      | 0.00         | 0.00             | NC      |  |
| 2-Chlorotoluene                      | 0.00         | 0.00             | NC      |  |
| 1,3,5-Trimethylbenzene               | 0.00         | 0.00             | NC      |  |
| 4-Chlorotoluene                      | 0.00         | 0.00             | NC      |  |
| tert-Butylbenzene                    | 0.00         | 0.00             | NC      |  |
| 1,2,4-Trimethylbenzene               | 146.70       | 149.80           | 2       |  |
| sec-Butylbenzene                     | 0.00         | 0.00             | NC      |  |
| 1,3-Dichlorobenzene                  | 0.00         | 0.00             | NC      |  |
| 4-Isopropyltoluene                   | 0.00         | 0.00             | NC      |  |
| 1,4-Dichlorobenzene                  | 0.00         | 0.00             | NC      |  |
| n-Butylbenzene                       | 0.00         | 0.00             | NC      |  |
| 1,2-Dichlorobenzene                  | 0.00         | 0.00             | NC      |  |
| 1,2-Dibromo-3-chloropropane          | 0.00         | 0.00             | NC      |  |
| 1,2,4-Trichlorobenzene               | 0.00         | 0.00             | NC      |  |
| Hexachlorobutadiene                  | 0.00         | 0.00             | NC      |  |
| Naphthalene                          | 25.50        | 25.30            | 1       |  |
| 1,2,3-Trichlorobenzene               | 0.00         | 0.00             | NC      |  |
| 1,1,2-Trichloro-1,2,2-trifluoroethan | e 0.00       | 0.00             | NC      |  |
| Methyl acetate                       | 0.00         | 0.00             | NC      |  |
| Cyclohexane                          | 3.00         | 3.80             | 24      |  |
| Methylcyclohexane                    | 2.90         | 3.20             | 10      |  |

Sample/Sample Dup RPD Limits

30

# Column used to flag recovery and RPD values that did not meet criteria

\* Values outside of QC limits

NC Not calculable

## VOLATILE METHOD BLANK SUMMARY

Lab File ID: <u>K6336.D</u>

Instrument ID: <u>MSD\_K</u>

Date Analyzed: <u>06/06/2022</u>

Time Analyzed: <u>19:49</u>

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS & MSD:

| Client ID       | Lab Sample ID    | Date<br>Analyzed | Time<br>Analyzed |
|-----------------|------------------|------------------|------------------|
| LCSA220606-01   | LCSA220606-01    | 06/06/2022       | 20:18            |
| E22-03122-001MS | E22-03122-001MS  | 06/06/2022       | 20:47            |
| AR-KO1          | E22-03195-001    | 06/06/2022       | 21:45            |
| AR-KO2          | E22-03195-002    | 06/06/2022       | 22:14            |
| MW-1            | E22-03122-001    | 06/06/2022       | 22:43            |
| MW-2            | E22-03122-002    | 06/06/2022       | 23:12            |
| MW-3            | E22-03122-003    | 06/06/2022       | 23:41            |
| MW-13D-06012    | E22-03213-001    | 06/07/2022       | 0:10             |
| FB-060122       | E22-03213-002    | 06/07/2022       | 0:39             |
| TB-060122       | E22-03213-003    | 06/07/2022       | 1:08             |
| MW-3            | E22-03226-001    | 06/07/2022       | 1:37             |
| MW-4            | E22-03226-002    | 06/07/2022       | 2:06             |
| MW-4            | E22-03226-002DUP | 06/07/2022       | 2:35             |
| MW-7            | E22-03226-003    | 06/07/2022       | 3:04             |
| TB              | E22-03226-004    | 06/07/2022       | 3:33             |
| TB              | E22-03269-001    | 06/07/2022       | 4:02             |
| FB              | E22-03269-002    | 06/07/2022       | 4:31             |
| MW-3/13.60      | E22-03269-003    | 06/07/2022       | 5:00             |
| DUPLICATE       | E22-03269-004    | 06/07/2022       | 5:29             |

FORM 4

# VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK

| Lab File ID:              | <u>K6062.D</u>             | BFB Injection Date:    | )5/24/2022 |
|---------------------------|----------------------------|------------------------|------------|
| Inst ID:                  | <u>MSD_K</u>               | BFB Injection Time:    | 12:24      |
| m/z ion Abudance Criteria |                            | %Relative<br>Abundance |            |
|                           |                            |                        |            |
| 95                        | 50 - 200% of mass 174      | 100                    |            |
| 96                        | 5.0 - 9.0% of mass 95      | 6.4                    |            |
| 173                       | Less than 2.0% of mass 174 | 0.8 (                  | 0.7 )1     |
| 174                       | 50 - 200% of mass 95       | 85.3                   |            |
| 175                       | 5.0 - 9.0% of mass 174     | 6.4 (                  | 7.5 )1     |
| 176                       | 95.0 - 105.0% of mass 174  | 82.1 (                 | 96.3 )1    |
| 177                       | 5.0 - 10.0% of mass 176    | 5.4 (                  | 6.6 )2     |
|                           | 1-Value is % mass 174      | 2-Value is % mass 176  |            |

This check applies to the following SAMPLES, MS, MSD, BLANKS and STANDARDS:

|           |               |         | Date       | Time     |  |
|-----------|---------------|---------|------------|----------|--|
| Client ID | Lab Sample ID | File ID | Analyzed   | Analyzed |  |
| ICC100    | ICC220524     | K6067.D | 05/24/2022 | 14:48    |  |
| ICC00.5   | ICC220524     | K6063.D | 05/24/2022 | 12:53    |  |
| ICC001    | ICC220524     | K6064.D | 05/24/2022 | 13:22    |  |
| ICC005    | ICC220524     | K6065.D | 05/24/2022 | 13:51    |  |
| ICC020    | ICC220524     | K6066.D | 05/24/2022 | 14:19    |  |
| ICC150    | ICC220524     | K6068.D | 05/24/2022 | 15:17    |  |
| ICC200    | ICC220524     | K6069.D | 05/24/2022 | 15:47    |  |
| ICV100    | ICV220524     | K6070.D | 05/24/2022 | 16:16    |  |
|           |               |         |            |          |  |

# VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK

| Lab File ID:              | <u>K6332.D</u>             | BFB Injection Date: 06/06/2022   |
|---------------------------|----------------------------|----------------------------------|
| Inst ID:                  | MSD_K                      | BFB Injection Time: <u>17:54</u> |
| m/z Ion Abudance Criteria |                            | %Relative<br>Abundance           |
|                           |                            |                                  |
| 95                        | 50 - 200% of mass 174      | 100                              |
| 96                        | 5.0 - 9.0% of mass 95      | 6.7                              |
| 173                       | Less than 2.0% of mass 174 | 1.2 ( 1.1 )1                     |
| 174                       | 50 - 200% of mass 95       | 88.7                             |
| 175                       | 5.0 - 9.0% of mass 174     | 7.0 (7.9)1                       |
| 176                       | 95.0 - 105.0% of mass 174  | 89.5 (100.9)1                    |
| 177                       | 5.0 - 10.0% of mass 176    | 5.5 ( 6.2 )2                     |
|                           | 1-Value is % mass 174      | 2-Value is % mass 176            |

This check applies to the following SAMPLES, MS, MSD, BLANKS and STANDARDS:

|                 |                 |         | Date       | Time     |
|-----------------|-----------------|---------|------------|----------|
| Client ID       | Lab Sample ID   | File ID | Analyzed   | Analyzed |
| CCV100          | CCV220606-01    | K6333.D | 06/06/2022 | 18:23    |
| BLKA220606-01   | BLKA220606-01   | K6336.D | 06/06/2022 | 19:49    |
| LCSA220606-01   | LCSA220606-01   | K6337.D | 06/06/2022 | 20:18    |
| E22-03122-001MS | E22-03122-001MS | K6338.D | 06/06/2022 | 20:47    |
| AR-KO1          | E22-03195-001   | K6340.D | 06/06/2022 | 21:45    |
| AR-KO2          | E22-03195-002   | K6341.D | 06/06/2022 | 22:14    |
| MW-1            | E22-03122-001   | K6342.D | 06/06/2022 | 22:43    |
| MW-2            | E22-03122-002   | K6343.D | 06/06/2022 | 23:12    |
| MW-3            | E22-03122-003   | K6344.D | 06/06/2022 | 23:41    |
| MW-13D-06012    | E22-03213-001   | K6345.D | 06/07/2022 | 0:10     |
| FB-060122       | E22-03213-002   | K6346.D | 06/07/2022 | 0:39     |
| TB-060122       | E22-03213-003   | K6347.D | 06/07/2022 | 1:08     |
| MW-3            | E22-03226-001   | K6348.D | 06/07/2022 | 1:37     |
| MW-4            | E22-03226-002   | K6349.D | 06/07/2022 | 2:06     |
| MW-4            | E22-03226-002DI | K6350.D | 06/07/2022 | 2:35     |
| MW-7            | E22-03226-003   | K6351.D | 06/07/2022 | 3:04     |
| TB              | E22-03226-004   | K6352.D | 06/07/2022 | 3:33     |
| TB              | E22-03269-001   | K6353.D | 06/07/2022 | 4:02     |
| FB              | E22-03269-002   | K6354.D | 06/07/2022 | 4:31     |
| MW-3/13.60      | E22-03269-003   | K6355.D | 06/07/2022 | 5:00     |

Page 1 of 2

FORM 5

# VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK

| Lab File ID: | <u>K6332.D</u>             | BFB Injection Date : 06/06/202   |
|--------------|----------------------------|----------------------------------|
| Inst ID:     | <u>MSD_K</u>               | BFB Injection Time: <u>17:54</u> |
| m/z          | Ion Abudance Criteria      | %Relative<br>Abundance           |
| 50           |                            | 24.6                             |
| 75           |                            | 52.0                             |
| 95           | 50 - 200% of mass 174      | 100.0                            |
| 96           | 5.0 - 9.0% of mass 95      | 6.7                              |
| 173          | Less than 2.0% of mass 174 | 1.2 ( 1.1 )1                     |
| 174          | 50 - 200% of mass 95       | 88.7                             |
| 175          | 5.0 - 9.0% of mass 174     | 7.0 ( 7.9 )1                     |
| 176          | 95.0 - 105.0% of mass 174  | 89.5 ( 100.9 )1                  |
| 177          | 5.0 - 10.0% of mass 176    | 5.5 ( 6.2 )2                     |
|              | 1-Value is % mass 174      | 2-Value is % mass 176            |

This check applies to the following SAMPLES, MS, MSD, BLANKS and STANDARDS:

|           |               |         | Date       | Time     |  |
|-----------|---------------|---------|------------|----------|--|
| Client ID | Lab Sample ID | File ID | Analyzed   | Analyzed |  |
| DUPLICATE | E22-03269-004 | K6356.D | 06/07/2022 | 5:29     |  |

Response Factor Report K MSD

| Me<br>Ti<br>La | Method Path : C:\MSDCHEM\1\METHODS\<br>Method File : K8220524.M<br>Title : VOLATILE ORGANICS BY EPA METHOD 8260D<br>Last Update : Wed May 25 09:52:43 2022<br>Response Via : Initial Calibration |                                               |       |       |       |       |       |        |        |                |                |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|-------|-------|-------|-------|-------|--------|--------|----------------|----------------|
| Ο.             | 5 = K                                                                                                                                                                                            | ation Files<br>6063.D 1.0 =K<br>6066.D 100 =K |       |       |       |       |       | 200 =K | 6069.D |                |                |
|                |                                                                                                                                                                                                  | Compound 0.5                                  |       |       |       |       |       |        |        | -              |                |
| ~ ~            |                                                                                                                                                                                                  |                                               |       |       | ***** |       |       |        |        |                |                |
|                | I                                                                                                                                                                                                | Pentafluorobenzen                             |       |       |       |       |       |        |        |                |                |
|                | Т                                                                                                                                                                                                | Dichlorodifluorom                             |       |       |       |       |       |        |        |                |                |
|                | P<br>C                                                                                                                                                                                           | Chloromethane                                 | 1.104 | 1.144 | 1.101 | 1.233 | 1.156 | 1.114  | 1.067  | 1.131<br>0.876 | 4.72           |
|                | Т                                                                                                                                                                                                | Vinyl chloride<br>Bromomethane                |       |       |       |       |       |        |        | 0.876          | 5.67<br>10.87  |
|                | T                                                                                                                                                                                                | Chloroethane                                  | 0=637 |       |       |       |       |        |        |                | 10.87          |
|                | т                                                                                                                                                                                                | Trichlorofluorome                             |       |       |       |       | 1.288 |        |        |                | 16.18          |
| 8)             | Т                                                                                                                                                                                                | Acrolein                                      |       |       |       |       |       |        |        |                | 13.98          |
| 9)             | MC                                                                                                                                                                                               | 1,1-Dichloroethen                             | 0.719 | 0.593 | 0.555 | 0.646 | 0.697 | 0.700  | 0.727  | 0.662          | 10.05          |
| 10)            |                                                                                                                                                                                                  | Acetone                                       |       | 1.752 | 1.660 | 1.688 | 1.877 | 1.770  | 1.681  | 1.738          | 4.63           |
| 11)            |                                                                                                                                                                                                  | Carbon disulfide<br>Vinyl acetate             |       | 1.854 | 2.009 | 2.243 | 2.404 | 2.446  | 2.510  | 2.244          | 11.70          |
| 12)            |                                                                                                                                                                                                  | Vinyl acetate                                 |       | 0.511 | 0.514 | 0.582 | 0.592 | 0.571  | 0.576  | 0.558          | 6.37           |
| 13)<br>14)     |                                                                                                                                                                                                  | Methylene chlorid                             |       |       |       |       |       |        |        |                | 14.10          |
| 14)            |                                                                                                                                                                                                  | Acrylonitrile<br>tert-Butyl alcoho            |       |       |       |       |       |        |        |                | 5.11           |
| 16)            |                                                                                                                                                                                                  | trans-1,2-Dichlor                             |       |       |       |       |       |        |        |                | 10.53<br>5.24  |
| 17)            |                                                                                                                                                                                                  | Methyl tert-butyl                             |       |       |       |       |       |        |        |                | 10.46          |
| 18)            |                                                                                                                                                                                                  | 1,1-Dichloroethan                             |       |       |       |       |       |        |        |                | 6.64           |
| 19)            |                                                                                                                                                                                                  | Diisopropyl ether                             |       |       |       |       |       |        |        |                | 9.00           |
| 20)            | Т                                                                                                                                                                                                | cis-1,2-Dichloroe                             | 0.690 | 0.660 | 0.666 | 0.750 | 0.736 | 0.725  | 0.722  | 0.707          | 4.96           |
| 21)            | Т                                                                                                                                                                                                | 2,2-Dichloropropa<br>2-Butanone (MEK)         |       | 0.550 | 0.509 | 0.588 | 0.560 | 0.547  | 0.484  | 0.540          | 6.93           |
| 22)            |                                                                                                                                                                                                  |                                               |       |       |       |       |       |        |        |                | 5.26           |
| 23)            |                                                                                                                                                                                                  | Bromochloromethan                             |       |       |       |       |       |        |        |                | 5.28           |
| 25)            |                                                                                                                                                                                                  | Chloroform                                    |       |       |       |       |       |        |        |                | 4.52           |
| 26)<br>27)     |                                                                                                                                                                                                  | 1,1,1-Trichloroet                             |       |       |       |       |       |        |        |                | 11.93          |
| 27)<br>28)     |                                                                                                                                                                                                  | Carbon tetrachlor<br>1,1-Dichloroprope        |       |       |       |       |       |        |        |                | 13.00<br>6.37  |
| 29)            |                                                                                                                                                                                                  | 1,2-Dichloroethan                             |       |       |       |       |       |        |        |                |                |
| 30)            |                                                                                                                                                                                                  | 1,2-Dichloroethan                             |       |       |       |       |       |        |        |                | 4.46           |
|                |                                                                                                                                                                                                  |                                               |       |       |       |       |       |        |        |                |                |
|                |                                                                                                                                                                                                  | 1,4-Difluorobenzer                            |       |       |       |       |       |        |        |                |                |
| 32)            |                                                                                                                                                                                                  | Benzene                                       |       |       |       |       | 1.687 |        |        |                | 8.35           |
| 33)            |                                                                                                                                                                                                  |                                               | 0.454 |       |       |       |       |        |        |                | 5.77           |
| 34)            |                                                                                                                                                                                                  | 1,2-Dichloropropa                             |       |       |       |       |       |        |        |                | 5.22           |
| 35)<br>36)     |                                                                                                                                                                                                  | Dibromomethane<br>1,4-Dioxane                 |       |       |       |       |       |        |        |                | 6.88           |
| 37)            |                                                                                                                                                                                                  | Bromodichlorometh                             |       |       |       |       |       |        |        |                | 8.00<br>12.03  |
| 38)            |                                                                                                                                                                                                  | 2-Chloroethyl vin                             |       |       |       |       |       |        |        |                | 5.22           |
| 39)            |                                                                                                                                                                                                  | cis-1,3-Dichlorop                             |       |       |       |       |       |        |        |                | 15.71          |
| 40)            | Т                                                                                                                                                                                                | 4-Methyl-2-pentan                             |       |       |       |       |       |        |        |                | 17.44          |
| 41)            | S                                                                                                                                                                                                | Toluene-d8                                    |       |       |       |       |       |        |        |                | 1.45           |
| 42)            | MC                                                                                                                                                                                               |                                               | 0.906 |       |       |       |       |        |        |                | 7.02           |
|                | Т                                                                                                                                                                                                | trans-1,3-Dichlor                             |       |       |       |       | 0.736 |        |        |                | 13.71          |
| 44)            |                                                                                                                                                                                                  | 1,1,2-Trichloroet                             |       |       |       |       |       |        |        |                | 8.65           |
| 45)            |                                                                                                                                                                                                  | Tetrachloroethene                             |       |       |       |       |       |        |        |                | 8.85           |
| 46)<br>47)     |                                                                                                                                                                                                  | 1,3-Dichloropropa<br>2-Hexanone               |       |       |       |       |       |        |        |                | 8.03           |
| 47)<br>48)     |                                                                                                                                                                                                  | Dibromochlorometh                             |       |       |       |       |       |        |        |                | 12.83<br>18.82 |
| 49)            |                                                                                                                                                                                                  | 1,2-Dibromoethane                             |       |       |       |       |       |        |        |                | 18.82          |
|                |                                                                                                                                                                                                  |                                               |       |       |       |       |       |        |        |                |                |
| 50)            |                                                                                                                                                                                                  | Chlorobenzene-d5                              |       |       |       |       |       |        |        |                |                |
| 51)            |                                                                                                                                                                                                  |                                               | 1.051 |       |       |       |       |        |        |                | 5.87           |
| 52)            | T                                                                                                                                                                                                | 1,1,1,2-Tetrachlo                             | U.363 | 0.372 | 0:3/4 | 0.430 | 0.449 | U.446  | 0.448  | 0.412          | 9.69           |

| 53)   | -    | Ethylbenzene      |        |        |        |        | 2.009 |       |       |       | 7.80  |
|-------|------|-------------------|--------|--------|--------|--------|-------|-------|-------|-------|-------|
| 54)   | -    | m,p-Xylene        |        |        |        |        | 0.786 |       |       |       | 10.16 |
| 55)   |      | o-Xylene          |        |        |        |        | 0.781 |       |       |       | 10.80 |
| 56)   |      | Styrene           |        |        |        |        | 1.387 |       |       |       | 19.14 |
| 57)   |      | Bromoform         |        |        |        |        | 0.390 |       |       |       | 6.82  |
| 58)   |      |                   | 1.536  |        |        |        |       |       |       |       | 13.65 |
| 59)   |      | Bromofluorobenzen | 0.483  |        |        |        |       |       |       |       | 2.00  |
| 60)   |      | 1,1,2,2-Tetrachlo |        | 0.624  | 0.659  | 0.733  | 0.776 | 0.765 | 0.754 | 0.718 | 8.70  |
| 61)   | Т    | Bromobenzene      | 0.468  | 0.428  | 0.471  | 0.503  | 0.515 | 0.513 | 0.513 | 0.487 | 6.77  |
| 62)   | Т    | 1,2,3-Trichloropr | 0.524  | 0.546  | 0.640  | 0.666  | 0.672 | 0.657 | 0.645 | 0.621 | 9.73  |
| 63)   | Т    | n-Propylbenzene   | 2.257  | 1.685  | 1.990  | 2.205  | 2.275 | 2.269 | 2.294 | 2.139 | 10.55 |
| 64)   | Т    | 2-Chlorotoluene   | 1.367  | 1.161  | 1.276  | 1.374  | 1.364 | 1.355 | 1.366 | 1.323 | 5.98  |
| 65)   | Т    | 1,3,5-Trimethylbe | 1.436  | 1.157  | 1.456  | 1.605  | 1.624 | 1.694 | 1.727 | 1.528 | 12.91 |
| 66)   | Т    | 4-Chlorotoluene   | 1.649  | 1.365  | 1.578  | 1.612  | 1.669 | 1.697 | 1.714 | 1.612 | 7.35  |
| 67)   | Т    | tert-Butylbenzene |        |        |        |        |       |       |       |       | 11.51 |
| 68)   | Т    | 1,2,4-Trimethylbe | 1.495  | 1.210  | 1.482  | 1.660  | 1.641 | 1.663 | 1.678 | 1.547 | 10.96 |
| 69)   | Т    | sec-Butylbenzene  |        |        |        |        | 1.934 |       |       |       | 13.25 |
| 70)   | Т    | 1,3-Dichlorobenze | 1.224  | 0.834  | 0.949  | 1.013  | 1.009 | 1.016 | 1.021 | 1.009 | 11.49 |
| 71)   | Т    | 4-Isopropyltoluen |        |        |        |        |       |       |       |       | 11.72 |
| 72)   | Т    | 1,4-Dichlorobenze |        |        |        |        |       |       |       |       | 9.98  |
| 73)   | Т    | n-Butylbenzene    |        |        |        |        | 1.515 |       |       |       | 15.68 |
| 74)   | Т    | 1,2-Dichlorobenze |        |        |        |        |       |       |       |       | 7.80  |
| 75)   | Т    | 1,2-Dibromo-3-chl |        |        |        |        | 0.178 |       |       |       | 13.29 |
| 76)   | Т    | 1,2,4-Trichlorobe |        |        |        |        | 0.612 |       |       |       | 7.88  |
| 77)   | Т    | Hexachlorobutadie |        |        |        |        | 0.201 |       |       |       | 5.93  |
| 78)   | Т    | Naphthalene       |        | 1.437  |        |        | 2.003 |       |       |       | 14.41 |
| 79)   | Т    | 1,2,3-Trichlorobe |        |        |        |        | 0.533 |       |       |       | 5.16  |
| 80)   | Т    | 1,1,2-Trichloro-1 |        |        |        |        | 0.503 |       |       |       | 13.04 |
| 81)   | Т    | Methyl acetate    | 0.821  |        |        |        | 0.973 |       |       |       | 7.09  |
| 82)   | Т    | Cyclohexane       |        |        |        |        | 0.832 |       |       |       | 13.97 |
| 83)   | Т    | Methylcyclohexane |        |        |        |        | 0.638 |       |       |       | 15.29 |
| 12023 |      |                   |        |        |        |        |       |       |       |       |       |
| (#)   | - 01 | it of Pargo ###   | Jumbor | of gol | ibrati | on lor |       |       |       |       |       |

(#) = Out of Range ### Number of calibration levels exceeded format ###

K8220524.M Wed May 25 15:33:41 2022

Evaluate Continuing Calibration Report

| Data Path | ÷  | C:\MSDCHEM\1\DATA\22-05-24\    |
|-----------|----|--------------------------------|
| Data File |    |                                |
| Acq On    | \$ | 24 May 2022 16:16              |
| Operator  |    | BARBARA                        |
| Sample    | \$ | ICV100, ICV220524, A, 5mL, 100 |
|           |    | NA, NA, NA, 1                  |
| ALS Vial  | 3  | 9 Sample Multiplier: 1         |
|           |    |                                |

Quant Time: May 25 09:53:07 2022 Quant Method : C:\MSDCHEM\1\METHODS\K8220524.M Quant Title : VOLATILE ORGANICS BY EPA METHOD 8260D QLast Update : Wed May 25 09:52:43 2022 Response via : Initial Calibration

Min, RRF : 0.000 Min, Rel. Area : 50% Max. R.T. Dev 0.50min Max, RRF Dev : 20% Max. Rel. Area : 200%

| -  |    | Compound                                    | AvgRF          | CCRF           | %Dev . | Area% | Dev(min) |
|----|----|---------------------------------------------|----------------|----------------|--------|-------|----------|
| 1  | I  | Pentafluorobenzene                          | 1.000          | 1 000          |        |       |          |
|    | T  | Dichlorodifluoromethane                     | 0.582          | 1.000<br>0.653 | 0.0    | 123   | 0.00     |
| 3  | P  | Chloromethane                               | 1.131          |                | -12.2  | 126   | 0.00     |
| 4  | С  | Vinyl chloride                              | 0.876          | 1.130<br>0.942 | 0.1    |       | 0.00     |
| 5  | Т  | Bromomethane                                | 0.640          | 0.685          | -7.5   | 128   | 0.00     |
| 6  | Т  | Chloroethane                                | 0.592          | 0.628          | -7.0   | 119   | 0.00     |
| 7  | Т  | Trichlorofluoromethane                      | 1.097          | 1.283          | -6.1   | 120   | 0.00     |
| 8  | Т  | Acrolein                                    | 0.033          | 0.030          | -17.0  | 122   | 0.00     |
| 9  | MC | 1,1-Dichloroethene                          | 0.662          | 0.707          | 9.1    | 110   | 0.00     |
| 10 | Т  | Acetone                                     | 1.738          | 1.583          | -6.8   | 125   | 0.01     |
| 11 | Т  | Carbon disulfide                            | 2.244          | 2.417          | 8.9    | 104   | 0.00     |
| 12 | Т  | Vinyl acetate                               | 0.558          | 0.551          | -7.7   | 123   | 0.00     |
|    | Т  | Methylene chloride                          | 0.558          | 0.551          | 1.3    | 114   | 0.00     |
| 14 |    | Acrylonitrile                               | 0.315          | 0.302          | 8.1    | 104   | 0.00     |
| 15 | Т  | tert-Butyl alcohol (TBA)                    | 0.315          | 0.409          | 4.1    | 109   | 0.00     |
| 16 |    | trans-1,2-Dichloroethene                    | 0.599          |                | -2.5   | 116   | 0.00     |
| 17 |    | Methyl tert-butyl ether (MT                 | 0.824<br>1.970 | 0.627          | -0.5   | 121   | 0.00     |
| 18 |    | 1,1-Dichloroethane                          |                | 2.069          | -5.0   | 118   | 0.00     |
| 19 |    | Diisopropyl ether (DIPE)                    | 1.192          | 1.204          | -1.0   | 117   | 0.00     |
| 20 |    | cis-1,2-Dichloroethene                      | 2.805          | 2.831          | -0.9   | 113   | 0.00     |
| 21 |    | 2,2-Dichloropropane                         | 0.707          | 0.713          | -0.8   | 119   | 0.00     |
| 22 |    | 2-Butanone (MEK)                            | 0.540          | 0.518          | 4.1    | 114   | 0.00     |
|    | r  | Bromochloromethane                          | 1.446          | 1.351          | 6.6    | 105   | 0.00     |
| 25 |    | Chloroform                                  | 0.353          | 0.343          | 2.8    | 115   | 0.00     |
|    | Т  | 1,1,1-Trichloroethane                       | 1.176          | 1.134          | 3.6    | 114   | 0.00     |
| 27 |    |                                             | 0.880          | 0.937          | -6.5   | 119   | 0.00     |
| 28 |    | Carbon tetrachloride<br>1,1-Dichloropropene | 0.792          | 0.866          | -9.3   | 121   | 0.00     |
| 29 |    |                                             | 0.832          | 0.823          | 1.1    | 120   | 0.00     |
| 30 |    | 1,2-Dichloroethane (EDC)                    | 1.086          | 1.057          | 2.7    | 113   | 0.00     |
| 00 | 5  | 1,2-Dichloroethane-d4                       | 0.755          | 0.691          | 8.5    | 115   | 0.00     |
|    | I  | 1,4-Difluorobenzene                         | 1.000          | 1.000          | 0.0    | 119   | 0.00     |
|    | M  | Benzene                                     | 1.615          | 1.682          | -4.1   | 119   | 0.00     |
| 33 |    | Trichloroethene                             | 0.436          | 0.446          | -2.3   | 118   | 0.00     |
| 34 |    | 1,2-Dichloropropane                         | 0.482          | 0.480          | 0.4    | 114   | 0.00     |
| 35 |    | Dibromomethane                              | 0.296          | 0.308          | -4.1   | 116   | 0.00     |
|    | Т  | 1,4-Dioxane                                 | 0.011          | 0.011          | 0.0    | 110   | 0.00     |
| 37 |    | Bromodichloromethane                        | 0.566          | 0.617          | -9.0   | 116   | 0.00     |
|    | Т  | 2-Chloroethyl vinyl ether                   | 0.241          | 0.240          | 0.4    | 114   | 0.00     |
| 39 |    | cis-1,3-Dichloropropene                     | 0.657          | 0.715          | -8.8   | 113   | 0.00     |
| 40 |    | 4-Methyl-2-pentanone (MIBK)                 | 0.989          | 1.068          | -8.0   | 108   | 0.00     |
| 41 |    | Toluene-d8                                  | 1.277          | 1.271          | 0.5    | 117   | 0.00     |
| 42 |    | Toluene                                     | 1.001          | 1.055          | -5.4   | 118   | 0.00     |
| 43 |    | trans-1,3-Dichloropropene                   | 0.660          | 0.703          | -6.5   | 111   | 0.00     |
|    | T  | 1,1,2-Trichlorocthane                       | 0.355          | 0.370          | 4.2    | 上14   | 0.00     |
|    | T  | Tetrachloroethene                           | 0.427          | 0.476          | -11.5  | 125   | 0.00     |
| 46 | Ţ  | 1,3-Dichloropropane                         | 0.713          | 0.745          | -4.5   | 114   | 0.00     |

| 47 T       2-Hexanone       1.000       1.028       -2.8       104       0.00         48 T       Dibromochloromethane       0.421       0.490       -16.4       116       0.00         49 T       1.2-Dibromoethane (EDB)       0.456       0.501       -9.9       115       0.00         50 I       Chlorobenzene       1.136       1.181       -4.0       118       0.00         51 MP       Chlorobenzene       1.887       1.990       -5.5       118       0.00         52 T       1.1.2.Z-Tetrachloroethane       0.412       0.441       -7.0       117       0.00         53 C       Ethylbenzene       0.735       0.783       -6.5       118       0.00         54 T       m.p-Xylene       0.725       0.762       -5.1       116       0.00         56 T       Styrene       1.350       0.381       -8.9       116       0.00         57 P       Bromoform       0.350       0.782       -2.6       117       0.00         58 T       Isopropylbenzene       1.755       1.936       -10.3       119       0.00         61 T       Bromoberzene       0.495       0.482       2.6       117       0.00                                                                                                                                     | 4 7 |      |                             |       |       |       |     |      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------|-----------------------------|-------|-------|-------|-----|------|
| 49 T       1,2-Dibromoethane (EDB)       0.421       0.490       -16.4       116       0.00         50 I       Chlorobenzene -dS       1.000       1.000       0.0       119       0.00         52 T       1,1,1,2-Tetrachloroethane       0.412       0.441       -7.0       117       0.00         53 C       Ethylbenzene       1.887       1.990       -5.5       118       0.00         54 T       m,p-Xylene       0.725       0.783       -6.5       119       0.00         55 T       0-Xylene       0.725       0.762       -5.1       116       0.00         56 T       Styrene       1.951       1.340       -12.1       115       0.00         57 P       Bromoform       0.350       0.381       -8.9       116       0.00         58 T       Isopropylbenzene       0.487       0.506       -3.9       117       0.00         61 T       Bromobenzene       0.487       0.664       -3.9       117       0.00         62 T       1,2,3-Trichloropropane       0.621       0.641       -3.2       114       0.00         63 T       n-Propylbenzene       1.528       1.600       -4.7       117       0.00<                                                                                                                               |     |      | 2-Hexanone                  |       | 1.028 | -2.8  | 104 | 0.00 |
| 49 1       1.2-Dibromoethane (EDB)       0.456       0.501       -9.9       115       0.00         50 I       Chlorobenzene -dS       1.000       1.000       0.0       119       0.00         51 MP       Chlorobenzene       1.136       1.181       -4.0       118       0.00         52 T       1,1,1,2-Tetrachloroethane       0.412       0.4411       -7.0       117       0.00         53 C       Ethylbenzene       1.887       1.990       -5.5       118       0.00         54 T       m,p-Xylene       0.735       0.762       -5.1       116       0.00         55 T       o-Xylene       0.350       0.381       -8.9       116       0.00         57 P       Bromoform       0.350       0.381       -8.9       116       0.00         58 T       Isopropylbenzene       1.755       1.936       -10.3       119       0.00         60 P       1,1,2,2-Tetrachloroethane       0.487       0.506       -3.9       117       0.00         62 T       1,2,3-Trichloropropane       0.621       0.641       -3.2       114       0.00         63 T       n-Propylbenzene       1.528       1.600       -4.7       117<                                                                                                                      |     |      |                             | 0.421 | 0.490 | -16.4 | 116 |      |
| 51 MP       Chlorobenzene       1.000       1.000       1.000       1.00       0.0       119       0.00         52 T       1,1,1,2.Tetrachloroethane       0.412       0.441       -7.0       117       0.00         53 C       Ethylbenzene       1.887       1.990       -5.5       118       0.00         54 T       m,p-Xylene       0.735       0.783       -6.5       119       0.00         55 T       o-Xylene       0.725       0.762       -5.1       116       0.00         56 T       Styrene       1.195       1.340       -12.1       115       0.00         58 T       Isopropylbenzene       1.755       1.936       -10.3       119       0.00         60 P       1,1,2,2-Tetrachloroethane       0.447       0.506       -3.9       117       0.00         61 T       Bromobenzene       0.487       0.506       -3.9       117       0.00         62 T       1,2,3-Trichloropropane       0.621       0.641       -3.2       114       0.00         63 T       n-Propylbenzene       1.528       1.600       -4.7       117       0.00         64 T       2-Chlorotoluene       1.323       1.326 <t< td=""><td>49</td><td>1</td><td>1,2-Dibromoethane (EDB)</td><td>0.456</td><td>0.501</td><td>-9.9</td><td>115</td><td></td></t<> | 49  | 1    | 1,2-Dibromoethane (EDB)     | 0.456 | 0.501 | -9.9  | 115 |      |
| 51       MP       Chlorobenzene       1.136       1.181       -4.0       118       0.00         52       T       1,1,1,2-Tetrachloroethane       0.412       0.441       -7.0       117       0.00         53       C       Ethylbenzene       1.887       1.990       -5.5       118       0.00         54       T       m,p-Xylene       0.725       0.762       -5.1       116       0.00         55       T       Styrene       1.195       1.340       -12.1       115       0.00         57       P       Bromoform       0.350       0.381       -8.9       116       0.00         58       T       Isopropylbenzene       1.755       1.936       -10.3       119       0.00         60       P       1,1,2,2-Tetrachloroethane       0.487       0.506       -3.9       117       0.00         61       T       Bromobenzene       0.487       0.506       -3.9       117       0.00         62       T       1,2,3-Trichloropropane       0.621       0.641       -3.2       114       0.00         63       T       n-Propylbenzene       1.528       1.600       -4.7       117       0.00                                                                                                                                                  |     |      |                             | 1.000 | 1.000 | 0 0   | 110 | 0 00 |
| 52 T       1,1,1,2-Tetrachloroethane       0.412       0.441       -7.0       117       0.00         53 C       Ethylbenzene       1.887       1.990       -5.5       118       0.00         54 T       m,p-Xylene       0.735       0.783       -6.5       119       0.00         55 T       o-Xylene       0.725       0.762       -5.1       116       0.00         56 T       Styrene       1.195       1.340       -12.1       115       0.00         58 T       Isopropylbenzene       1.355       1.936       -10.3       119       0.00         59 S       Bromoflucrobenzene       0.495       0.482       2.6       117       0.00         60 P       1,1,2,2-Tetrachloroethane       0.718       0.738       -2.8       113       0.00         61 T       Bromobenzene       0.487       0.641       -3.2       114       0.00         62 T       1,2,3-Trichloropropane       0.621       0.641       -3.2       114       0.00         63 T       n-Propylbenzene       1.528       1.600       -4.7       117       0.00         64 T       2-Chlorotoluene       1.323       1.326       -0.2       116                                                                                                                                  |     |      | Chlorobenzene               |       |       |       |     |      |
| 53 C       Ethylbenzene       1.887       1.990       -5.5       118       0.00         54 T       m,p-Xylene       0.735       0.783       -6.5       119       0.00         55 T       0-Xylene       0.725       0.762       -5.1       116       0.00         56 T       Styrene       1.195       1.340       -12.1       115       0.00         58 T       Isopropylbenzene       1.755       1.936       -10.3       119       0.00         59 S       Bromofluorobenzene       0.495       0.482       2.6       117       0.00         60 P       1,1,2,2-Tetrachloroethane       0.718       0.738       -2.8       113       0.00         61 T       Bromobenzene       0.487       0.506       -3.9       117       0.00         62 T       1,2,3-Trichloropropane       0.621       0.641       -3.2       114       0.00         64 T       2-Chlorotoluene       1.323       1.326       -0.2       116       0.00         64 T       2-Chlorotoluene       1.612       1.621       -0.6       116       0.00         65 T       1,3-5-Trimethylbenzene       1.547       1.598       -3.3       116 <td< td=""><td></td><td></td><td>1,1,1,2-Tetrachloroethane</td><td></td><td></td><td></td><td></td><td></td></td<>                  |     |      | 1,1,1,2-Tetrachloroethane   |       |       |       |     |      |
| 54 T       m,p-Xylene       0.735       0.783       -6.5       119       0.00         55 T       o-Xylene       0.725       0.762       -5.1       116       0.00         56 T       Styrene       1.195       1.340       -12.1       115       0.00         57 P       Bromoform       0.350       0.381       -8.9       116       0.00         58 T       Isopropylbenzene       1.755       1.936       -10.3       119       0.00         60 P       1,1,2,2-Tetrachloroethane       0.495       0.482       2.6       117       0.00         61 T       Bromobenzene       0.497       0.506       -3.9       117       0.00         62 T       1,2,3-Trichloropropane       0.621       0.641       -3.2       114       0.00         63 T       n-Propylbenzene       1.323       1.326       -0.2       116       0.00         64 T       2-Chlorotoluene       1.612       1.621       -0.6       116       0.00         65 T       1,3,5-Trimethylbenzene       1.547       1.598       -3.3       116       0.00         65 T       1,2,4-Trimethylbenzene       1.632       1.725       -5.7       118 <t< td=""><td></td><td></td><td></td><td>1.887</td><td></td><td></td><td></td><td></td></t<>                                       |     |      |                             | 1.887 |       |       |     |      |
| 55 T       o-Xylene       0.725       0.762       -5.1       11.6       0.00         56 T       Styrene       1.195       1.340       -12.1       115       0.00         57 P       Bromoform       0.350       0.381       -8.9       11.6       0.00         58 T       Isopropylbenzene       1.755       1.936       -10.3       119       0.00         59 S       Bromofluorobenzene       0.495       0.482       2.6       117       0.00         60 P       1,1,2,2-Tetrachloroethane       0.718       0.738       -2.8       113       0.00         61 T       Bromobenzene       0.621       0.641       -3.9       117       0.00         62 T       1,2,3-Trichloropropane       0.622       0.641       -3.2       114       0.00         63 T       n-Propylbenzene       1.323       1.326       -0.2       116       0.00         64 T       2-chlorotoluene       1.612       1.621       -0.6       116       0.00         65 T       1,2,4-Trimethylbenzene       1.632       1.725       -5.7       118       0.00         66 T       4-chlorobenzene       1.632       1.725       -5.7       118                                                                                                                                 |     |      | m,p-Xylene                  |       |       |       |     |      |
| 56 T       Styrene       1.195       1.340       -12.1       115       0.00         57 P       Bromoform       0.350       0.381       -8.9       116       0.00         58 T       Isopropylbenzene       1.755       1.936       -10.3       119       0.00         59 S       Bromofluorobenzene       0.495       0.482       2.6       117       0.00         60 P       1,1,2,2-Tetrachloroethane       0.718       0.738       -2.8       113       0.00         61 T       Bromobenzene       0.487       0.506       -3.9       117       0.00         62 T       1,2,3-Trichloropropane       0.621       0.641       -3.2       114       0.00         63 T       n-Propylbenzene       1.323       1.326       -0.2       116       0.00         64 T       2-Chlorotoluene       1.528       1.600       -4.7       117       0.00         65 T       1,3,5-Trimethylbenzene       1.612       1.621       -0.6       116       0.00         67 T       tert-Butylbenzene       1.612       1.621       -0.6       116       0.00         67 T       tert-Butylbenzene       1.632       1.725       5.7       118 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                         |     |      |                             |       |       |       |     |      |
| 57 P       Bromoform       0.350       0.381       -8.9       116       0.000         58 T       Isopropylbenzene       1.755       1.936       -10.3       119       0.000         60 P       1,1,2,2-Tetrachloroethane       0.495       0.482       2.6       117       0.000         61 T       Bromobenzene       0.495       0.487       0.506       -3.9       117       0.00         62 T       1,2,3-Trichloropropane       0.621       0.641       -3.2       114       0.00         63 T       n-Propylbenzene       2.139       2.243       -4.9       117       0.00         64 T       2-chlorotoluene       1.323       1.600       -4.7       117       0.00         65 T       1,3,5-Trimethylbenzene       1.612       1.621       -0.6       116       0.00         66 T       4-chlorotoluene       1.612       1.621       -0.6       116       0.00         67 T       tert-Butylbenzene       1.528       1.600       -4.7       117       0.00         68 T       1,2,4-Trimethylbenzene       1.524       1.632       -5.3       117       0.00         69 T       sec-Butylbenzene       1.810       1.924                                                                                                                    |     |      | Styrene                     |       |       |       |     |      |
| 58 T       Isopropylbenzene       1.755       1.936       -10.3       119       0.00         59 S       Bromofluorobenzene       0.495       0.482       2.6       117       0.00         60 P       1,1,2,2-Tetrachloroethane       0.718       0.738       -2.8       113       0.00         61 T       Bromobenzene       0.487       0.506       -3.9       117       0.00         62 T       1,2,3-Trichloropropane       0.621       0.641       -3.2       114       0.00         63 T       n-Propylbenzene       2.139       2.243       -4.9       117       0.00         64 T       2-Chlorotoluene       1.323       1.326       -0.2       116       0.00         65 T       1,3,5-Trimethylbenzene       1.612       1.621       -0.6       116       0.00         66 T       4-Chlorotoluene       1.612       1.621       -0.6       116       0.00         67 T       tert-Butylbenzene       1.294       1.363       -5.3       117       0.00         68 T       1,2,4-Trimethylbenzene       1.009       0.993       1.6       117       0.00         71 T       4-Isopropyltoluene       1.632       1.725       -5.7<                                                                                                             |     |      |                             |       |       |       |     |      |
| 59 S       Bromofluorobenzene       0.495       0.482       2.6       117       0.00         60 P       1,1,2,2-Tetrachloroethane       0.718       0.738       -2.8       113       0.00         61 T       Bromobenzene       0.487       0.506       -3.9       117       0.00         62 T       1,2,3-Trichloropropane       0.621       0.641       -3.2       114       0.00         63 T       n-Propylbenzene       2.139       2.243       -4.9       117       0.00         64 T       2-Chlorotoluene       1.323       1.326       -0.2       116       0.00         65 T       1,3,5-Trimethylbenzene       1.612       1.621       -0.6       116       0.00         66 T       4-Chlorotoluene       1.612       1.621       -0.6       116       0.00         67 T       tert-Butylbenzene       1.294       1.363       -5.3       117       0.00         68 T       1,2,4-Trimethylbenzene       1.622       1.725       -5.7       118       0.00         70 T       1,3-Dichlorobenzene       1.007       1.006       0.1       116       0.00         71 T       4-Isopropyltoluene       1.632       1.725       -5.                                                                                                             |     |      | Isopropylbenzene            |       |       |       |     |      |
| 60       P       1,1,2,2-Tetrachloroethane       0.718       0.738       -2.8       111       0.00         61       T       Bromobenzene       0.487       0.506       -3.9       117       0.00         62       T       1,2,3-Trichloropropane       0.621       0.641       -3.2       114       0.00         63       T       n-Proylbenzene       2.139       2.243       -4.9       117       0.00         64       T       2-Chlorotoluene       1.323       1.326       -0.2       116       0.00         65       T       1,3,5-Trimethylbenzene       1.528       1.600       -4.7       117       0.00         66       T       4-Chlorotoluene       1.612       1.621       -0.6       116       0.00         67       T       tert-Butylbenzene       1.294       1.363       -5.3       117       0.00         68       T       1,3-Dichlorobenzene       1.009       0.993       1.6       117       0.00         70       T       1,3-Dichlorobenzene       1.007       1.006       0.1       116       0.00         71       T       4-Isopropyltoluene       1.384       1.500       -8.4                                                                                                                                            |     |      |                             | 0.495 |       |       |     |      |
| 61 T       Bromobenzene       0.487       0.506       -3.9       117       0.00         62 T       1,2,3-Trichloropropane       0.621       0.641       -3.2       114       0.00         63 T       n-Propylbenzene       2.139       2.243       -4.9       117       0.00         64 T       2-Chlorotoluene       1.323       1.326       -0.2       116       0.00         65 T       1,3,5-Trimethylbenzene       1.528       1.600       -4.7       117       0.00         66 T       4-Chlorotoluene       1.612       1.621       -0.6       116       0.00         67 T       tert-Butylbenzene       1.294       1.363       -5.3       117       0.00         68 T       1,2,4-Trimethylbenzene       1.547       1.598       -3.3       116       0.00         69 T       sec-Butylbenzene       1.632       1.725       -5.7       118       0.00         71 T       4-Isopropyltoluene       1.632       1.725       -5.7       118       0.00         73 T       n-Butylbenzene       1.384       1.500       -8.4       118       0.00         74 T       1,2-Dichlorobenzene       0.986       0.957       2.9                                                                                                                        |     |      | 1,1,2,2-Tetrachloroethane   |       |       |       |     |      |
| 62 T       1,2,3-Trichloropropane       0.621       0.641       -3.2       114       0.00         63 T       n-Propylbenzene       2.139       2.243       -4.9       117       0.00         64 T       2-Chlorotoluene       1.323       1.326       -0.2       116       0.00         65 T       1,3,5-Trimethylbenzene       1.612       1.621       -0.6       116       0.00         66 T       4-Chlorotoluene       1.612       1.621       -0.6       116       0.00         67 T       tert-Butylbenzene       1.294       1.363       -5.3       117       0.00         68 T       1,2,4-Trimethylbenzene       1.547       1.598       -3.3       116       0.00         69 T       sec-Butylbenzene       1.609       0.993       1.6       117       0.00         71 T       4-Isopopyltoluene       1.632       1.725       -5.7       118       0.00         73 T       n-Butylbenzene       1.384       1.500       -8.4       118       0.00         74 T       1,2-Dichlorobenzene       0.986       0.957       2.9       115       0.00         75 T       1,2.4-Trichlorobenzene       0.610       0.611       -0.2 <td></td> <td></td> <td>Bromobenzene</td> <td></td> <td></td> <td></td> <td></td> <td></td>                    |     |      | Bromobenzene                |       |       |       |     |      |
| 63 T       n-Propylbenzene       2.139       2.243       -4.9       117       0.00         64 T       2-Chlorotoluene       1.323       1.326       -0.2       116       0.00         65 T       1,3,5-Trimethylbenzene       1.528       1.600       -4.7       117       0.00         66 T       4-Chlorotoluene       1.612       1.621       -0.6       116       0.00         67 T       tert-Butylbenzene       1.294       1.363       -5.3       117       0.00         68 T       1,2,4-Trimethylbenzene       1.547       1.598       -3.3       116       0.00         70 T       1,3-Dichlorobenzene       1.009       0.993       1.6       117       0.00         71 T       4-Isopropyltoluene       1.632       1.725       -5.7       118       0.00         71 T       4-Isopropyltoluene       1.632       1.725       -5.7       118       0.00         73 T       n-Butylbenzene       1.384       1.500       -8.4       118       0.00         75 T       1,2-Dibromo-3-chloropropane       0.161       0.166       -3.1       111       0.00         76 T       1,2,4-Trichlorobenzene       0.610       0.611 <t< td=""><td></td><td></td><td>1,2,3-Trichloropropane</td><td></td><td></td><td></td><td></td><td></td></t<>    |     |      | 1,2,3-Trichloropropane      |       |       |       |     |      |
| 64 T2-Chlorotoluene1.3231.326-0.21160.0065 T1,3,5-Trimethylbenzene1.5281.600-4.71170.0066 T4-Chlorotoluene1.6121.621-0.61160.0067 Ttert-Butylbenzene1.2941.363-5.31170.0068 T1,2,4-Trimethylbenzene1.5471.598-3.31160.0069 Tsec-Butylbenzene1.8101.924-6.31180.0070 T1,3-Dichlorobenzene1.0090.9931.61170.0071 T4-Isopropyltoluene1.6321.725-5.71180.0072 T1,4-Dichlorobenzene1.0071.0060.11160.0073 Tn-Butylbenzene1.3841.500-8.41180.0074 T1,2-Dichlorobenzene0.9660.9572.91150.0075 T1,2,4-Trichlorobenzene0.6100.611-0.21190.0076 T1,2,4-Trichlorobenzene0.6100.611-0.21190.0077 THexachlorobutadiene0.2060.207-0.51230.0078 TNaphthalene1.9541.957-0.21160.0079 T1,2,3-Trichlorobenzene0.5620.526-13.11250.0081 TMethyl acetate0.9240.8923.51090.0082 TCyclohexane0.7780.847-8.9121<                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |      | n-Propylbenzene             |       |       |       |     |      |
| 65 T1,3,5-Trimethylbenzene1.5281.600-4.71170.0066 T4-Chlorotoluene1.6121.621-0.61160.0067 Ttert-Butylbenzene1.2941.363-5.31170.0068 T1,2,4-Trimethylbenzene1.5471.598-3.31160.0069 Tsec-Butylbenzene1.8101.924-6.31180.0070 T1,3-Dichlorobenzene1.0090.9931.61170.0071 T4-Isopropyltoluene1.6321.725-5.71180.0072 T1,4-Dichlorobenzene1.0071.0060.11160.0073 Tn-Butylbenzene1.3841.500-8.41180.0074 T1,2-Dichlorobenzene0.9860.9572.91150.0075 T1,2-Dibromo-3-chloropropane0.1610.166-3.11110.0076 T1,2,4-Trichlorobenzene0.2060.207-0.51230.0077 THexachlorobutadiene0.2060.207-0.51230.0078 TNaphthalene1.9541.957-0.21160.0079 T1,2,3-Trichlorobenzene0.5620.526+13.11250.0081 TMethyl acetate0.9240.8923.51090.0082 TCyclohexane0.7780.847-8.91210.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     | -    |                             |       |       |       |     |      |
| 66 T4-Chlorotoluene1.6121.621-0.61160.0067 Ttert-Butylbenzene1.2941.363-5.31170.0068 T1,2,4-Trimethylbenzene1.5471.598-3.31160.0069 Tsec-Butylbenzene1.8101.924-6.31180.0070 T1,3-Dichlorobenzene1.0090.9931.61170.0071 T4-Isopropyltoluene1.6321.725-5.71180.0072 T1,4-Dichlorobenzene1.0071.0060.11160.0073 Tn-Butylbenzene1.3841.500-8.41180.0074 T1,2-Dichlorobenzene0.9860.9572.91150.0075 T1,2,4-Trichlorobenzene0.6100.611-0.21190.0076 T1,2,4-Trichlorobenzene0.2060.207-0.51230.0077 THexachlorobutadiene0.5620.5256.61170.0079 T1,2,3-Trichlorobenzene0.5620.526+13.11250.0080 T1,1,2-Trichloro-1,2,2-trifl0.4650.526+13.11250.0081 TMethyl acetate0.9240.8923.51090.0083 TMethylcyclohexane0.5890.665=12.91240.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |      | 1,3,5-Trimethylbenzene      |       |       |       |     |      |
| 67 Ttert-Butylbenzene1.2941.363-5.31170.0068 T1,2,4-Trimethylbenzene1.5471.598-3.31160.0069 Tsec-Butylbenzene1.8101.924-6.31180.0070 T1,3-Dichlorobenzene1.0090.9931.61170.0071 T4-Isopropyltoluene1.6321.725-5.71180.0072 T1,4-Dichlorobenzene1.0071.0060.11160.0073 Tn-Butylbenzene1.3841.500-8.41180.0074 T1,2-Dichlorobenzene0.9860.9572.91150.0075 T1,2,4-Trichlorobenzene0.6100.611-0.21190.0076 T1,2,4-Trichlorobenzene0.2060.207-0.51230.0077 THexachlorobutadiene0.5620.5256.61170.0079 T1,2,3-Trichlorobenzene0.5620.526+13.11250.0081 TMethyl acetate0.9240.8923.51090.0082 TCyclohexane0.7780.847-8.91210.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | -    |                             | 1.612 |       |       |     |      |
| 68 T       1,2,4-Trimethylbenzene       1.547       1.598       -3.3       116       0.00         69 T       sec-Butylbenzene       1.810       1.924       -6.3       118       0.00         70 T       1,3-Dichlorobenzene       1.009       0.993       1.6       117       0.00         71 T       4-Isopropyltoluene       1.632       1.725       -5.7       118       0.00         72 T       1,4-Dichlorobenzene       1.007       1.006       0.1       116       0.00         73 T       n-Butylbenzene       1.384       1.500       -8.4       118       0.00         74 T       1,2-Dichlorobenzene       0.986       0.957       2.9       115       0.00         75 T       1,2,4-Trichlorobenzene       0.610       0.611       -0.2       119       0.00         76 T       1,2,4-Trichlorobenzene       0.610       0.611       -0.2       119       0.00         77 T       Hexachlorobutadiene       0.206       0.207       -0.5       123       0.00         78 T       Naphthalene       1.954       1.957       -0.2       116       0.00         79 T       1,2,3-Trichloro-1,2,2-trifl       0.465       0.526                                                                                                                |     |      |                             | 1.294 |       |       |     |      |
| 69 Tsec-Butylbenzene1.8101.924-6.31180.0070 T1,3-Dichlorobenzene1.0090.9931.61170.0071 T4-Isopropyltoluene1.6321.725-5.71180.0072 T1,4-Dichlorobenzene1.0071.0060.11160.0073 Tn-Butylbenzene1.3841.500-8.41180.0074 T1,2-Dichlorobenzene0.9860.9572.91150.0075 T1,2,4-Trichlorobenzene0.6100.611-0.21190.0076 T1,2,4-Trichlorobenzene0.2060.207-0.51230.0077 THexachlorobutadiene0.5620.5256.61170.0079 T1,2,3-Trichlorobenzene0.5620.526-13.11250.0080 T1,1,2-Trichloro-1,2,2-trifl0.4650.526-13.11250.0081 TMethyl acetate0.9240.8923.51090.0083 TMethylcyclohexane0.5890.665=12.91240.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |      | 1,2,4-Trimethylbenzene      | 1.547 |       |       |     |      |
| 70 T1,3-Dichlorobenzene1.0090.9931.61170.0071 T4-Isopropyltoluene1.6321.725-5.71180.0072 T1,4-Dichlorobenzene1.0071.0060.11160.0073 Tn-Butylbenzene1.3841.500-8.41180.0074 T1,2-Dichlorobenzene0.9860.9572.91150.0075 T1,2,4-Trichlorobenzene0.6100.611-0.21190.0076 T1,2,4-Trichlorobenzene0.2060.207-0.51230.0077 THexachlorobutadiene0.5620.5256.61170.0079 T1,2,3-Trichlorobenzene0.5620.526-13.11250.0080 T1,1,2-Trichloro-1,2,2-trifl0.4650.526-13.11250.0081 TMethyl acetate0.9240.8923.51090.0082 TCyclohexane0.7780.847-8.91210.0083 TMethylcyclohexane0.5890.665=12.91240.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |      |                             | 1.810 |       |       |     |      |
| 71 T4-Isopropyltoluene1.6321.725-5.71180.0072 T1,4-Dichlorobenzene1.0071.0060.11160.0073 Tn-Butylbenzene1.3841.500-8.41180.0074 T1,2-Dichlorobenzene0.9860.9572.91150.0075 T1,2,4-Trichlorobenzene0.6100.611-0.21190.0076 T1,2,4-Trichlorobenzene0.6100.611-0.21190.0077 THexachlorobutadiene0.2060.207-0.51230.0078 TNaphthalene1.9541.957-0.21160.0079 T1,2,3-Trichlorobenzene0.5620.5256.61170.0080 T1,1,2-Trichloro-1,2,2-trifl0.4650.526-13.11250.0081 TMethyl acetate0.9240.8923.51090.0083 TMethylcyclohexane0.5890.665=12.91240.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |      |                             | 1.009 |       |       |     |      |
| 72 T1,4-Dichlorobenzene1.0071.0060.11160.0073 Tn-Butylbenzene1.3841.500-8.41180.0074 T1,2-Dichlorobenzene0.9860.9572.91150.0075 T1,2-Dibromo-3-chloropropane0.1610.166-3.11110.0076 T1,2,4-Trichlorobenzene0.6100.611-0.21190.0077 THexachlorobutadiene0.2060.207-0.51230.0078 TNaphthalene1.9541.957-0.21160.0079 T1,2,3-Trichlorobenzene0.5620.5256.61170.0080 T1,1,2-Trichloro-1,2,2-trifl0.4650.526-13.11250.0081 TMethyl acetate0.9240.8923.51090.0083 TMethylcyclohexane0.5890.665=12.91240.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |      |                             | 1.632 |       |       |     |      |
| 73 Tn-Butylbenzene1.3841.500-8.41180.0074 T1,2-Dichlorobenzene0.9860.9572.91150.0075 T1,2-Dibromo-3-chloropropane0.1610.166-3.11110.0076 T1,2,4-Trichlorobenzene0.6100.611-0.21190.0077 THexachlorobutadiene0.2060.207-0.51230.0078 TNaphthalene1.9541.957-0.21160.0079 T1,2,3-Trichlorobenzene0.5620.5256.61170.0080 T1,1,2-Trichloro-1,2,2-trifl0.4650.526-13.11250.0081 TMethyl acetate0.9240.8923.51090.0082 TCyclohexane0.7780.847-8.91210.0083 TMethylcyclohexane0.5890.665=12.91240.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |      |                             | 1.007 |       |       |     |      |
| 74 T1,2-Dichlorobenzene0.9860.9572.91100.0075 T1,2-Dibromo-3-chloropropane0.1610.166-3.11110.0076 T1,2,4-Trichlorobenzene0.6100.611-0.21190.0077 THexachlorobutadiene0.2060.207-0.51230.0078 TNaphthalene1.9541.957-0.21160.0079 T1,2,3-Trichlorobenzene0.5620.5256.61170.0080 T1,1,2-Trichloro-1,2,2-trifl0.4650.526-13.11250.0081 TMethyl acetate0.9240.8923.51090.0082 TCyclohexane0.7780.847-8.91210.0083 TMethylcyclohexane0.5890.665=12.91240.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |      |                             | 1.384 |       |       |     |      |
| 75 T       1,2-Dibromo-3-chloropropane       0.161       0.166       -3.1       111       0.00         76 T       1,2,4-Trichlorobenzene       0.610       0.611       -0.2       119       0.00         77 T       Hexachlorobutadiene       0.206       0.207       -0.5       123       0.00         78 T       Naphthalene       1.954       1.957       -0.2       116       0.00         79 T       1,2,3-Trichlorobenzene       0.562       0.525       6.6       117       0.00         80 T       1,1,2-Trichloro-1,2,2-trifl       0.465       0.526       -13.1       125       0.00         81 T       Methyl acetate       0.924       0.892       3.5       109       0.00         82 T       Cyclohexane       0.778       0.847       -8.9       121       0.00         83 T       Methylcyclohexane       0.589       0.665       =12.9       124       0.00                                                                                                                                                                                                                                                                                                                                                                           |     |      | 1,2-Dichlorobenzene         | 0.986 |       |       |     |      |
| 76 I1,2,4-Trichlorobenzene0.6100.611-0.21190.0077 THexachlorobutadiene0.2060.207-0.51230.0078 TNaphthalene1.9541.957-0.21160.0079 T1,2,3-Trichlorobenzene0.5620.5256.61170.0080 T1,1,2-Trichloro-1,2,2-trifl0.4650.526-13.11250.0081 TMethyl acetate0.9240.8923.51090.0082 TCyclohexane0.7780.847-8.91210.0083 TMethylcyclohexane0.5890.665=12.91240.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |      | 1,2-Dibromo-3-chloropropane | 0.161 |       |       |     |      |
| 77 THexachlorobutadiene0.2060.207-0.51230.0078 TNaphthalene1.9541.957-0.21160.0079 T1,2,3-Trichlorobenzene0.5620.5256.61170.0080 T1,1,2-Trichloro-1,2,2-trifl0.4650.526-13.11250.0081 TMethyl acetate0.9240.8923.51090.0082 TCyclohexane0.7780.847-8.91210.0083 TMethylcyclohexane0.5890.665=12.91240.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |      | 1,2,4-Trichlorobenzene      | 0.610 | 0.611 |       |     |      |
| 78 T       Naphthalene       1.954       1.957       -0.2       116       0.00         79 T       1,2,3-Trichlorobenzene       0.562       0.525       6.6       117       0.00         80 T       1,1,2-Trichloro-1,2,2-trifl       0.465       0.526       -13.1       125       0.00         81 T       Methyl acetate       0.924       0.892       3.5       109       0.00         82 T       Cyclohexane       0.778       0.847       -8.9       121       0.00         83 T       Methylcyclohexane       0.589       0.665       =12.9       124       0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |      |                             | 0.206 |       |       |     |      |
| 79 T       1,2,3-Trichlorobenzene       0.562       0.525       6.6       117       0.00         80 T       1,1,2-Trichloro-1,2,2-trifl       0.465       0.526       -13.1       125       0.00         81 T       Methyl acetate       0.924       0.892       3.5       109       0.00         82 T       Cyclohexane       0.778       0.847       -8.9       121       0.00         83 T       Methylcyclohexane       0.589       0.665       =12.9       124       0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |      |                             | 1.954 | 1.957 | _     |     |      |
| 80 T       1,1,2-Trichloro-1,2,2-trifl       0.465       0.526       -13.1       125       0.00         81 T       Methyl acetate       0.924       0.892       3.5       109       0.00         82 T       Cyclohexane       0.778       0.847       -8.9       121       0.00         83 T       Methylcyclohexane       0.589       0.665       -12.9       124       0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |      | 1,2,3-Trichlorobenzene      | 0.562 |       |       |     |      |
| 81 T       Methyl acetate       0.924       0.892       3.5       109       0.00         82 T       Cyclohexane       0.778       0.847       -8.9       121       0.00         83 T       Methylcyclohexane       0.589       0.665       -12.9       124       0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |      | 1,1,2-Trichloro-1,2,2-trifl | 0.465 |       |       |     |      |
| 82 T         Cyclohexane         0.778         0.847         -8.9         121         0.00           83 T         Methylcyclohexane         0.589         0.665         -12.9         124         0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |      |                             | 0.924 |       |       |     |      |
| 83 T         Methylcyclohexane         0.589         0.665         -12.9         124         0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     | -    |                             | 0.778 |       | _     |     |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 83  | Т    | Methylcyclohexane           | 0.589 |       |       |     |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     | 5555 |                             |       |       |       |     |      |

(#) = Out of Range

SPCC's out = 0 CCC's out = 0

K8220524 M Wed May 25 15:34:10 2022

Evaluate Continuing Calibration Report

Data Path : C:\MSDChem\1\DATA\22-06-06\ Data File : K6333.D Acq On : 6 Jun 2022 18:23 Operator : BARBARA Sample : CCV100,CCV220606-01,A,5mL,100 Misc : NA,NA,NA,1 ALS Vial : 2 Sample Multiplier: 1

Quant Time: Jun 08 11:35:27 2022 Quant Method : C:\MSDCHEM\1\METHODS\K8220524.M Quant Title : VOLATILE ORGANICS BY EPA METHOD 8260D QLast Update : Fri May 27 11:42:49 2022 Response via : Initial Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min Max. RRF Dev : 20% Max. Rel. Area : 200%

| 120 |    | Compound                    | AvgRF | CCRF  | %Dev A | rea% | Dev(min) |
|-----|----|-----------------------------|-------|-------|--------|------|----------|
|     | I  | Pentafluorobenzene          | 1.000 | 1.000 | 0.0    | 104  | 0.00     |
|     | T  | Dichlorodifluoromethane     | 0.582 | 0.600 | -3.1   | 99   | 0.00     |
|     | P  | Chloromethane               | 1.131 | 1.084 | 4.2    | 98   | 0.00     |
|     | C  | Vinyl chloride              | 0.876 | 0.876 | 0.0    | 101  | 0.00     |
|     | Т  | Bromomethane                | 0.640 | 0.686 | -7.2   | 101  | 0.00     |
|     | Ť  | Chloroethane                | 0.592 | 0.623 | -5.2   | 101  | 0.00     |
| -   | T  | Trichlorofluoromethane      | 1.097 | 1.247 | -13.7  | 101  | 0.00     |
| 8   | T  | Acrolein                    | 0.033 | 0.027 | 18.2   | 83   | 0.00     |
|     | MC | 1,1-Dichloroethene          | 0.662 | 0.692 | -4.5   | 103  | 0.00     |
| 10  |    | Acetone                     | 1.738 | 1.559 | 10.3   | 87   | 0.00     |
| 11  |    | Carbon disulfide            | 2.244 | 2.395 | -6.7   | 104  | 0.00     |
| 12  |    | Vinyl acetate               | 0.558 | 0.581 | -4.1   | 102  | 0.00     |
| 13  |    | Methylene chloride          | 0.617 | 0.496 | 19.6   | 78   | 0.00     |
| 14  |    | Acrylonitrile               | 0.315 | 0.373 | -18.4  | 115  | 0.00     |
| 15  |    | tert-Butyl alcohol (TBA)    | 0.200 | 0.208 | -4.0   | 100  | 0.00     |
| 16  |    | trans-1,2-Dichloroethene    | 0.624 | 0.639 | -2.4   | 104  | 0.00     |
| 17  |    | Methyl tert-butyl ether (MT | 1.970 | 2.165 | -9.9   | 104  | 0.00     |
| 18  |    | 1,1-Dichloroethane          | 1.192 | 1.218 | -2.2   | 101  | 0.00     |
| 19  |    | Diisopropyl ether (DIPE)    | 2.805 | 3.008 | -7.2   | 102  | 0.00     |
| 20  |    | cis-1,2-Dichloroethene      | 0.707 | 0.723 | -2.3   | 102  | 0.00     |
| 21  |    | 2,2-Dichloropropane         | 0.540 | 0.607 | -12.4  | 113  | 0.00     |
| 22  |    | 2-Butanone (MEK)            | 1.446 | 1.346 | 6.9    | 89   | 0.00     |
| 23  |    | Bromochloromethane          | 0.353 | 0.363 | -2.8   | 103  | 0.00     |
| 25  |    | Chloroform                  | 1.176 | 1.199 | -2.0   | 102  | 0.00     |
| 26  |    | 1,1,1-Trichloroethane       | 0.880 | 0.994 | -13.0  | 107  | 0.00     |
| 27  |    | Carbon tetrachloride        | 0,792 | 0.904 | -14.1  | 107  | 0.00     |
| 28  |    | 1,1-Dichloropropene         | 0.832 | 0.839 | -0.8   | 104  | 0.00     |
| 29  |    | 1,2-Dichloroethane (EDC)    | 1.086 | 1.114 | -2.6   | 101  | 0.00     |
| 30  |    | 1,2-Dichloroethane-d4       | 0.755 | 0.713 | 5.6    | 101  | 0.00     |
|     | _  |                             |       |       |        |      |          |
| 31  |    | 1,4-Difluorobenzene         | 1.000 | 1.000 | 0.0    | 103  | 0.00     |
| 32  |    | Benzene                     | 1.615 | 1.680 | -4.0   | 102  | 0.00     |
| 33  |    | Trichloroethene             | 0.436 | 0.463 | -6.2   | 105  | 0.00     |
| 34  |    | 1,2-Dichloropropane         | 0.482 | 0.483 | -0.2   | 98   | 0.00     |
| 35  |    | Dibromomethane              | 0.296 | 0.314 | -6.1   | 102  | 0.00     |
| 36  |    | 1,4-Dioxane                 | 0.011 | 0.011 | 0.0    | 96   | 0.00     |
| 37  |    | Bromodichloromethane        | 0.566 | 0.637 | -12.5  | 103  | 0.00     |
| 38  |    | 2-Chloroethyl vinyl ether   | 0.241 | 0.242 | -0.4   | 98   | 0.00     |
| 39  |    | cis-1,3-Dichloropropene     | 0.657 | 0.733 | -11.6  | 100  | 0.00     |
| 40  |    | 4-Methyl-2-pentanone (MIBK) | 0.989 | 1.146 | -15.9  | 100  | 0.00     |
| 41  |    | Toluene-d8                  | 1.277 | 1.315 | -3.0   | 104  | 0.00     |
|     | MC | Toluene                     | 1.001 | 1.096 | -9.5   | 106  | 0.00     |
|     | Т  | trans-1,3-Dichloropropene   | 0.660 | 0.739 | -12.0  | 103  | 0.00     |
| 44  | Т  | 1,1,2-Trichloroethane       | 0.355 | 0.377 | -6.2   | 100  | 0.00     |
|     | Т  | Tetrachloroethene           | 0.427 | 0.494 | -15.7  | 112  | 0.00     |
| 46  | Т  | 1,3-Dichloropropane         | 0.713 | 0.757 | -6.2   | 100  | 0.00     |

| 47   | -  | 2-Hexanone                  | 1.000 | 0.994 | 0.6   | 87  | 0.00 |
|------|----|-----------------------------|-------|-------|-------|-----|------|
| 48   |    | Dibromochloromethane        | 0.421 | 0.503 | -19.5 | 103 | 0.00 |
| 49   | Т  | 1,2-Dibromoethane (EDB)     | 0.456 | 0.512 | -12.3 | 101 | 0.00 |
|      |    |                             |       |       |       |     |      |
| 50   | I  | Chlorobenzene-d5            | 1.000 | 1.000 | 0.0   | 107 | 0.00 |
| 51   | MP | Chlorobenzene               | 1.136 | 1.155 | -1.7  | 104 | 0.00 |
| 52   | Т  | 1,1,1,2-Tetrachloroethane   | 0.412 | 0.440 | -6.8  | 105 | 0.00 |
| 53   |    | Ethylbenzene                | 1.887 | 1.944 | -3.0  | 104 | 0.00 |
| 54   | Т  | m,p-Xylene                  | 0.735 | 0.789 | -7.3  | 108 | 0.00 |
| 55   | Т  | o-Xylene                    | 0.725 | 0.779 | -7.4  | 107 | 0.00 |
| 56   | Т  | Styrene                     | 1.195 | 1.377 | -15.2 | 107 | 0.00 |
| 57   | Ρ  | Bromoform                   | 0.350 | 0.397 | -13.4 | 109 | 0.00 |
| 58   | т  | Isopropylbenzene            | 1.755 | 1.969 | -12.2 | 109 | 0.00 |
| 59   | S  | Bromofluorobenzene          | 0.495 | 0.499 | -0.8  | 109 | 0.00 |
| 60   | Р  | 1,1,2,2-Tetrachloroethane   | 0.718 | 0.713 | 0.7   | 99  | 0.00 |
| 61   | Т  | Bromobenzene                | 0.487 | 0.514 | -5.5  | 107 | 0.00 |
| 62   | т  | 1,2,3-Trichloropropane      | 0.621 | 0.625 | -0.6  | 100 | 0.00 |
| 63   | Т  | n-Propylbenzene             | 2.139 | 2.274 | -6.3  | 107 | 0.00 |
| 64   | т  | 2-Chlorotoluene             | 1.323 | 1.341 | -1.4  | 106 | 0.00 |
| 65   | т  | 1,3,5-Trimethylbenzene      | 1.528 | 1.673 | -9.5  | 111 | 0.00 |
| 66   | Т  | 4-Chlorotoluene             | 1.612 | 1.683 | -4.4  | 108 | 0.00 |
| 67   | Т  | tert-Butylbenzene           | 1.294 | 1.451 | -12.1 | 113 | 0.00 |
| 68   | Т  | 1,2,4-Trimethylbenzene      | 1.547 | 1.696 | -9.6  | 111 | 0.00 |
| 69   | Т  | sec-Butylbenzene            | 1.810 | 2.060 | -13.8 | 114 | 0.00 |
| 70   | Т  | 1,3-Dichlorobenzene         | 1.009 | 1.029 | -2.0  | 110 | 0.00 |
| 71   | Т  | 4-Isopropyltoluene          | 1.632 | 1.874 | -14.8 | 115 | 0.00 |
| 72   | т  | 1,4-Dichlorobenzene         | 1.007 | 1.046 | -3.9  | 109 | 0.00 |
| 73   | Т  | n-Butylbenzene              | 1.384 | 1.617 | -16.8 | 115 | 0.00 |
| 74   | Т  | 1,2-Dichlorobenzene         | 0.986 | 1.015 | -2.9  | 110 | 0.00 |
| 75   | т  | 1,2-Dibromo-3-chloropropane | 0.161 | 0.159 | 1.2   | 96  | 0.00 |
| 76   | Т  | 1,2,4-Trichlorobenzene      | 0.610 | 0.613 | -0.5  | 108 | 0.00 |
| 77   | Т  | Hexachlorobutadiene         | 0.206 | 0.236 | -14.6 | 126 | 0.00 |
| 78   | Т  | Naphthalene                 | 1.954 | 1.779 | 9.0   | 95  | 0.00 |
| 79   | т  | 1,2,3-Trichlorobenzene      | 0.562 | 0.510 | 9.3   | 103 | 0.00 |
| 80   | Т  | 1,1,2-Trichloro-1,2,2-trifl | 0.465 | 0.485 | -4:3  | 103 | 0.00 |
| 81   | Т  | Methyl acetate              | 0.924 | 0.877 | 5.1   | 97  | 0.00 |
| 82   | т  | Cyclohexane                 | 0.778 | 0.799 | -2.7  | 103 | 0.00 |
| 83   | т  | Methylcyclohexane           | 0.589 | 0.647 | -9.8  | 109 | 0.00 |
| 1000 |    |                             |       |       |       |     |      |
|      |    |                             |       |       |       |     |      |

(#) = Out of Range

SPCC's out = 0 CCC's out = 0

K8220524.M Wed Jun 08 11:35:46 2022

# VOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab File ID (Standard):

): <u>K6067.D</u>

Date Analyzed: 05/24/2022

Instrument ID:

MSD\_K

Time Analyzed: 14:48

|          | 50UG/L      | IS1      | 1    | IS2      | T    | IS3    |       |
|----------|-------------|----------|------|----------|------|--------|-------|
|          |             | AREA #   | RT # | AREA #   | RT # | AREA # | RT #  |
|          | 12 HOUR STD | 292137   | 6.00 | 454887   | 6.83 | 460078 | 10.18 |
|          | UPPER LIMIT | 584274   | 6.50 | 909774   | 7.33 | 920156 | 10.68 |
|          | LOWER LIMIT | 146068.5 | 5.50 | 227443.5 | 6.33 | 230039 | 9.68  |
|          | LAB SAMPLE  |          |      |          |      |        | 0.00  |
|          | ID          |          |      |          |      |        |       |
| 124-64   | ICC220524   | 251002   | 6.01 | 396989   | 6.83 | 382763 | 10.17 |
|          | ICC220524   | 252759   | 6.00 | 403414   | 6.83 | 406131 | 10.17 |
| a name   | ICC220524   | 263676   | 6.01 | 409916   | 6.83 | 414135 | 10.17 |
| 10-14    | ICC220524   | 260371   | 6.01 | 417887   | 6.83 | 393432 | 10.17 |
|          | ICC220524   | 319059   | 6.00 | 485803   | 6.83 | 494161 | 10.18 |
|          | ICC220524   | 350748   | 6.00 | 534511   | 6.83 | 538142 | 10.18 |
|          | ICV220524   | 358487   | 6.00 | 542336   | 6.83 | 547749 | 10.17 |
| 80       |             |          |      |          |      |        |       |
| 09       |             |          |      |          |      |        |       |
| 10       |             |          |      |          |      |        |       |
| 11       |             |          |      |          |      |        |       |
| 12<br>13 |             |          |      |          |      |        |       |
| 14       |             |          |      |          |      |        |       |
| 15       |             |          |      |          |      |        |       |
| 16       |             |          |      |          |      |        |       |
| 17       |             |          |      |          |      |        |       |
| 18       |             |          |      |          |      |        |       |
| 19       |             |          |      |          |      |        |       |
| 20       |             |          | L    |          |      |        |       |
| 21       |             |          |      |          |      |        |       |
| 22       |             |          |      |          |      |        |       |
| [        |             | k.       |      |          |      |        |       |

IS1 = PENTAFLUOROBENZENE

IS2 = 1,4-DIFLUOROBENZENE

IS3 = CHLOROBENZENE-D5

AREA UPPER LIMIT = +200% of internal standard area AREA LOWER LIMIT = -50% of internal standard area RT UPPER LIMIT = +0.50 minutes of internal standard RT

RT LOWER LIMIT = -0.50 minutes of internal standard RT

# Column used to flag values outside QC limits with an asterisk

\* Values outside of QC limits.

FORM 8

# VOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab File ID (Standard)

Instrument ID:

MSD\_K

K6333.D

Date Analyzed: 06/06/2022

Time Analyzed: 18:23

| 50UG/L           | IS1<br>AREA # | RT # | IS2    |      | IS3      |       |  |
|------------------|---------------|------|--------|------|----------|-------|--|
| 12 HOUR STD      | 304314        |      | AREA # | RT # | AREA #   | RT #  |  |
| UPPER LIMIT      |               | 6.00 | 466506 | 6.83 | 493927   | 10.17 |  |
| LOWER LIMIT      | 608628        | 6.50 | 933012 | 7.33 | 987854   | 10.67 |  |
| LAB SAMPLE       | 152157        | 5.50 | 233253 | 6.33 | 246963.5 | 9.67  |  |
| ID               |               |      |        |      |          |       |  |
| BLKA220606-01    | 264100        | 6.00 | 407025 | 6.83 | 390099   | 10.17 |  |
| 2 LCSA220606-01  | 288285        | 6.00 | 437357 | 6.83 | 439778   |       |  |
| E22-03122-001MS  | 304104        | 6.00 | 463485 | 6.83 | 487622   | 10.17 |  |
| E22-03195-001    | 268841        | 6.01 | 415425 | 6.83 | 393480   |       |  |
| E22-03195-002    | 270924        | 6.01 | 417468 | 6.83 | 426655   | 10.18 |  |
| E22-03122-001    | 254990        | 6.00 | 397573 | 6.83 | 387127   | 10.17 |  |
| E22-03122-002    | 260590        | 6.00 | 409086 | 6.83 | 419181   | 10.17 |  |
| E22-03122-003    | 255695        | 6.01 | 396785 | 6.83 | 402433   |       |  |
| E22-03213-001    | 257686        | 6.01 | 396489 | 6.83 | 407696   | 10.18 |  |
| E22-03213-002    | 246373        | 6.00 | 383225 | 6.83 | 393920   | 10.18 |  |
| E22-03213-003    | 245009        | 6.01 | 384392 | 6.83 | 393848   | 10.17 |  |
| E22-03226-001    | 240339        | 6.00 | 377643 | 6.83 | 378492   | 10.17 |  |
| E22-03226-002    | 248632        | 6.00 | 385034 | 6.83 | 396155   | 10.17 |  |
| E22-03226-002DUP | 262215        | 6.00 | 399646 | 6.83 | 417071   | 10.18 |  |
| E22-03226-003    | 269528        | 6.00 | 411945 | 6.83 | 416267   | 10.18 |  |
| E22-03226-004    | 256202        | 6.00 | 393021 | 6.83 | 402455   | 10.18 |  |
| E22-03269-001    | 252433        | 6.00 | 389928 | 6.83 | 400216   | 10.18 |  |
| E22-03269-002    | 243369        | 6.01 | 377658 | 6.83 | 387682   |       |  |
| E22-03269-003    | 239715        | 6.01 | 377913 | 6.83 | 387033   | 10.18 |  |
| E22-03269-004    | 255356        | 6.00 | 389931 | 6.83 | 384015   | 10.17 |  |
|                  |               |      |        | 0.00 | 04015    | 10.18 |  |
|                  |               | -    |        |      |          |       |  |

IS1 = PENTAFLUOROBENZENE

IS2 = 1,4-DIFLUOROBENZENE

IS3 = CHLOROBENZENE-D5

AREA UPPER LIMIT = +200% of internal standard area AREA LOWER LIMIT = -50% of internal standard area RT UPPER LIMIT = +0.50 minutes of internal standard RT RT LOWER LIMIT = -0.50 minutes of internal standard RT

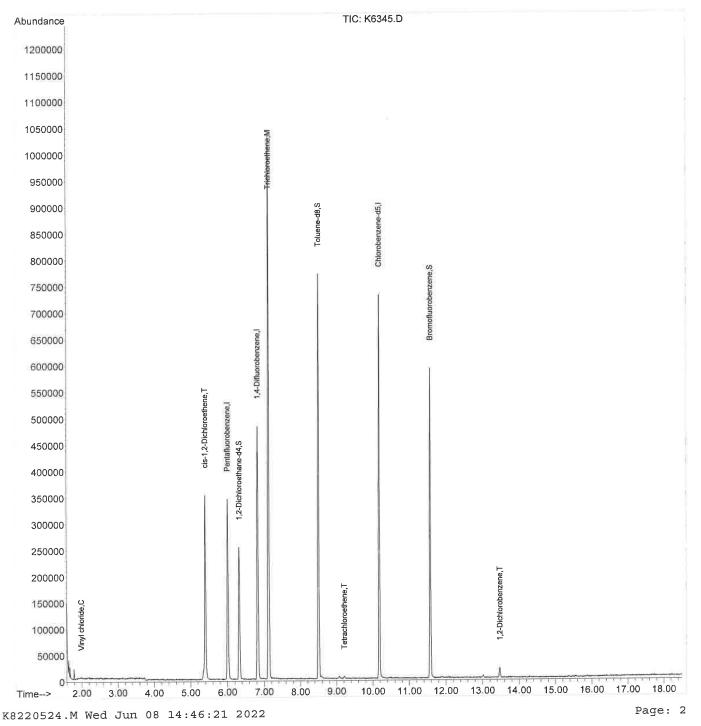
# Column used to flag values outside QC limits with an asterisk

\* Values outside of QC limits.

FORM 8

# VOLATILE ORGANICS SAMPLE DATA

Quantitation Report (QT Reviewed)


| Data Path : C:\MSDChem\1\DATA<br>Data File : K6345.D<br>Acq On : 7 Jun 2022 00:10<br>Operator : BARBARA<br>Sample : MW-13D-06012,E22-0<br>Misc : EWMA/SWIVELIER2<br>ALS Vial : 14 Sample Multip                            | )<br>)3213-001,#<br>2,06/01/22, | ≤,0.05π<br>06/01/ | nL,100<br>/22,100          |                         |                |                                |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-------------------|----------------------------|-------------------------|----------------|--------------------------------|--|--|--|--|
| Quant Time: Jun 08 14:46:15 2022<br>Quant Method : C:\MSDCHEM\1\METHODS\K8220524.M<br>Quant Title : VOLATILE ORGANICS BY EPA METHOD 8260D<br>QLast Update : Fri May 27 11:42:49 2022<br>Response via : Initial Calibration |                                 |                   |                            |                         |                |                                |  |  |  |  |
|                                                                                                                                                                                                                            | R.T.                            | QIon              | Response                   | Conc Ur                 | its I          | Dev(Min)                       |  |  |  |  |
| <ol> <li>Pentafluorobenzene</li> <li>1, 4-Difluorobenzene</li> <li>Chlorobenzene-d5</li> </ol>                                                                                                                             | 6.01<br>6.83<br>10.18           | 168<br>114<br>117 | 257686<br>396489<br>407696 | 50.00<br>50.00<br>50.00 | UG<br>UG<br>UG | 0.00<br>0.00<br>0.00           |  |  |  |  |
| System Monitoring Compounds<br>30) 1,2-Dichloroethane-d4<br>Spiked Amount 50.000                                                                                                                                           | 6.32<br>Range 80                | 65<br>- 120       | 187622<br>Recove           | 48.25<br>ery =          | UG<br>96.!     | 0.00<br>50%<br>0.00            |  |  |  |  |
| 30) 1,2-Dichloroethane-d4<br>Spiked Amount 50.000<br>41) Toluene-d8<br>Spiked Amount 50.000<br>59) Bromofluorobenzene<br>Spiked Amount 50.000                                                                              | 8.51<br>Range 80<br>11.58       | 98<br>- 120<br>95 | S05855<br>Recove<br>192601 | 49.96<br>ery = 47.69    | 99.9<br>UG     | 92%<br>0.00                    |  |  |  |  |
| Target Compounds<br>4) Vinyl chloride<br>20) cis-1,2-Dichloroethene<br>33) Trichloroethene<br>45) Tetrachloroethene                                                                                                        | 1.98<br>5.40                    | 62<br>96          | 1957<br>165856<br>245336   | 0.43<br>45.52<br>99 79  | UG<br>UG<br>UG | Qvalue<br># 97<br># 99<br># 98 |  |  |  |  |
| <pre>33) Trichloroethene 45) Tetrachloroethene 74) 1,2-Dichlorobenzene</pre>                                                                                                                                               | 9.22<br>13.47                   | 166<br>146        | 1439<br>8137               | 0.42                    | UG<br>UG       | 100<br>100                     |  |  |  |  |

(#) = qualifier out of range (m) = manual integration (+) = signals summed

Quantitation Report (QT Reviewed)

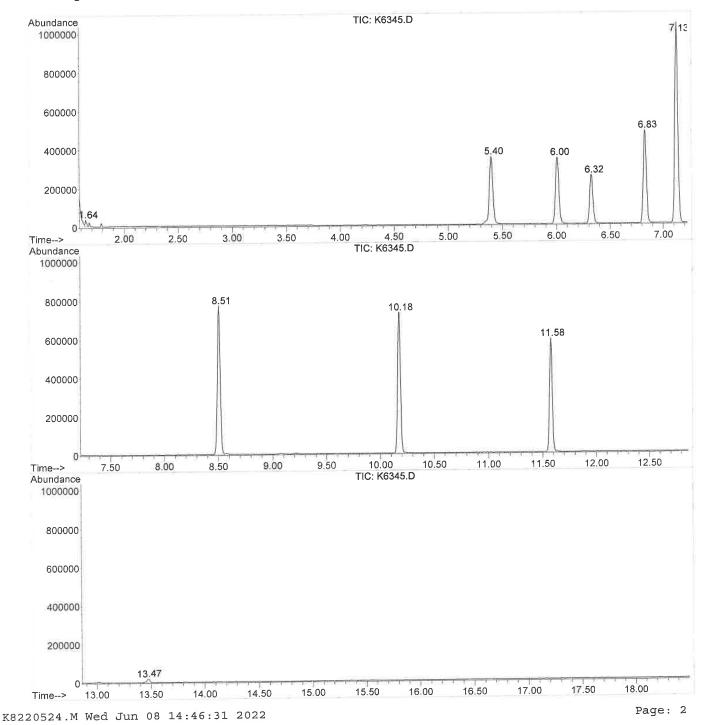
| Data Path  | 2  | C: MSDChem 1 DATA 22-06-06              |
|------------|----|-----------------------------------------|
| Data File  |    | K6345.D                                 |
| Acq On     |    | 7 Jun 2022 00:10                        |
| Operator   | :  | BARBARA                                 |
| Sample     |    | MW-13D-06012,E22-03213-001,A,0.05mL,100 |
| Misc       | :  | EWMA/SWIVELIER2,06/01/22,06/01/22,100   |
| ALS Vial   | :  | 14 Sample Multiplier: 1                 |
|            |    |                                         |
| Quant Time | :: | Jun 08 14:46:15 2022                    |

Quant Method : C:\MSDCHEM\1\METHODS\K8220524.M Quant Title : VOLATILE ORGANICS BY EPA METHOD 8260D QLast Update : Fri May 27 11:42:49 2022 Response via : Initial Calibration



LSC Area Percent Report

| Dat<br>Acc<br>Ope<br>San<br>Mis | Data Path : C:\MSDChem\1\DATA\22-06-06\<br>Data File : K6345.D<br>Acq On : 7 Jun 2022 00:10<br>Operator : BARBARA<br>Sample : MW-13D-06012,E22-03213-001,A,0.05mL,100<br>Misc : EWMA/SWIVELIER2,06/01/22,06/01/22,100<br>ALS Vial : 14 Sample Multiplier: 1 |                                |                 |                 |        |                        |                    |                   |           |          |
|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-----------------|-----------------|--------|------------------------|--------------------|-------------------|-----------|----------|
| Int<br>Smc<br>San<br>Sta        | tegration<br>tegrator<br>oothing<br>mpling<br>art Thre<br>op Thre                                                                                                                                                                                           | : RTE<br>: ON<br>: 1<br>s: 0.0 |                 | s: LS           | SCINT  |                        | Min A              | eaks: 100         |           | est Peak |
|                                 | leading<br>ak separ                                                                                                                                                                                                                                         |                                |                 | ng edg          | je < 3 | 100 prefe              | r < Basel:         | ine drop          | else tang | jent >   |
|                                 | chod<br>le                                                                                                                                                                                                                                                  | : C:\N<br>: VOL2               | MSDCHI<br>ATILE | em\1\N<br>Organ | NETHOI | OS\K82205<br>BY EPA ME | 24.M<br>THOD 82601 | D                 |           |          |
| Sig                             | gnal                                                                                                                                                                                                                                                        | : TIC                          | 2               |                 |        |                        |                    |                   |           |          |
| pea}<br>#                       |                                                                                                                                                                                                                                                             | scan                           | scan            | last<br>scan    | TY     | height                 | corr.<br>area      | <pre>% max.</pre> | total     |          |
| aca<br>1                        |                                                                                                                                                                                                                                                             |                                | 12              |                 | rVB    | 31330                  | 27392              |                   | 0.303%    |          |
| 2                               |                                                                                                                                                                                                                                                             | 710                            |                 |                 |        |                        |                    | 39.83%            | 8.997%    |          |
|                                 | 6.004                                                                                                                                                                                                                                                       |                                |                 |                 |        | 342888                 | 756508             |                   | 8.375%    |          |
| 4                               |                                                                                                                                                                                                                                                             | 895                            | 905             |                 | rVB    | 251549                 |                    |                   |           |          |
| 5                               | 6.828                                                                                                                                                                                                                                                       | 990                            | 1001            | 1024            | rBV    | 480585                 | 974956             | 47.79%            | 10./948   |          |
| 6                               | 7.126                                                                                                                                                                                                                                                       | 1047                           | 1058            | 1071            | rBV    | 1033363                |                    | 100.00%           |           |          |
| 7                               | 8.505                                                                                                                                                                                                                                                       | 1307                           |                 | 1331            |        |                        | 1431250            |                   |           |          |
| 8                               | 10.178                                                                                                                                                                                                                                                      | 1628                           | 1640            | 1670            | rBV    | 729229                 | 1362748            |                   |           |          |
| 9                               |                                                                                                                                                                                                                                                             |                                |                 |                 |        | 589686<br>19514        | 1040231            |                   | 0.495%    |          |
| 10                              | 13.471                                                                                                                                                                                                                                                      | 2258                           | 2268            | 2281            | тлрэ   | 19514                  | ±±750              | 2.120             | 0.1000    |          |


Sum of corrected areas: 9032730

K8220524.M Wed Jun 08 14:46:30 2022

LSC Report - Integrated Chromatogram

Data Path : C:\MSDChem\1\DATA\22-06-06\ Data File : K6345.D : 7 Jun 2022 00:10 Acq On : BARBARA Operator MW-13D-06012, E22-03213-001, A, 0.05mL, 100 Sample : EWMA/SWIVELIER\_-\_2,06/01/22,06/01/22,100 Misc Sample Multiplier: 1 ALS Vial : 14 Quant Method : C:\MSDCHEM\1\METHODS\K8220524.M : VOLATILE ORGANICS BY EPA METHOD 8260D Quant Title

```
TIC Library : C:\DATABASE\NISTO5A.L
TIC Integration Parameters: LSCINT.P
```



Library Search Compound Report

Data Path : C:\MSDChem\l\DATA\22-06-06\ Data File : K6345.D Acq On : 7 Jun 2022 00:10 Operator : BARBARA Sample : MW-13D-06012,E22-03213-001,A,0.05mL,100 Misc : EWMA/SWIVELIER - 2,06/01/22,06/01/22,100 ALS Vial : 14 Sample Multiplier: 1 Quant Method : C:\MSDCHEM\l\METHODS\K8220524.M Quant Title : VOLATILE ORGANICS BY EPA METHOD 8260D TIC Library : C:\DATABASE\NIST05A.L TIC Integration Parameters: LSCINT.P No Library Search Compounds Detected

K8220524.M Wed Jun 08 14:46:31 2022

Quantitation Report (QT Reviewed)

Data Path : C:\MSDChem\1\DATA\22-06-06\ Data File : K6346.D Acq On : 7 Jun 2022 00:39 Operator : BARBARA Sample : FB-060122,E22-03213-002,A,5mL,100 Misc : EWMA/SWIVELIER - 2,06/01/22,06/01/22,1 ALS Vial : 15 Sample Multiplier: 1 Quant Time: Jun 08 14:47:17 2022 Ouant Method : C:\MSDCHEM\1\METHODS\K8220524.M Quant Title : VOLATILE ORGANICS BY EPA METHOD 8260D QLast Update : Fri May 27 11:42:49 2022 Response via : Initial Calibration R.T. QIon Response Conc Units Dev(Min) Internal Standards \_\_\_\_\_ 1) Pentafluorobenzene6.0016824637350.00UG0.0031) 1,4-Difluorobenzene6.8311438322550.00UG0.0050) Chlorobenzene-d510.1711739392050.00UG0.00 System Monitoring Compounds 30) 1,2-Dichloroethane-d46.326518397949.49UGSpiked Amount50.000Range80 - 120Recovery = 98.98%41) Toluene-d88.519849377650.45UG 0.00 8.51 98 493776 50.45 UG 0.00 

 41) Toluene-d8
 8.51
 98
 493776
 50.45
 50

 Spiked Amount
 50.000
 Range
 80
 120
 Recovery
 =
 100.90%

 59) Bromofluorobenzene
 11.58
 95
 186845
 47.88
 UG

 Spiked Amount
 50.000
 Range
 80
 =
 120
 Recovery
 =
 95.76%

 0.00 Qvalue Target Compounds \_\_\_\_\_

(#) = qualifier out of range (m) = manual integration (+) = signals summed

Quantitation Report (QT Reviewed)

Data Path : C:\MSDChem\1\DATA\22-06-06\ Data File : K6346.D Acq On : 7 Jun 2022 00:39 Operator : BARBARA Sample : FB-060122,E22-03213-002,A,5mL,100 Misc : EWMA/SWIVELIER\_-2,06/01/22,06/01/22,1 ALS Vial : 15 Sample Multiplier: 1 Quant Time: Jun 08 14:47:17 2022 Quant Method : C:\MSDCHEM\1\METHODS\K8220524.M Quant Title : VOLATILE ORGANICS BY EPA METHOD 8260D QLast Update : Fri May 27 11:42:49 2022 Response via : Initial Calibration

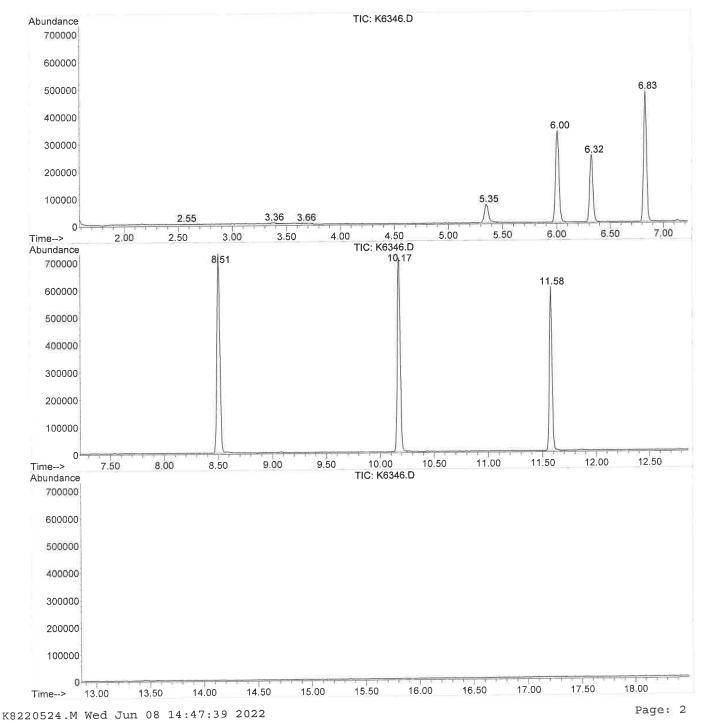
TIC: K6346.D Abundance 850000 800000 750000 Shiorobenzene-d5, Bromofluorobenzene,S 700000 650000 1,4-Difluorobenzene,1 600000 550000 500000 Pentafluorobenzene, 450000 400000 1,2-Dichloroethane-d4,S 350000 300000 250000 200000 150000 100000 50000 0 10.00 11.00 12.00 13.00 14.00 15.00 16.00 17.00 18.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 2.00 Time--> Page: 2 K8220524.M Wed Jun 08 14:47:23 2022

LSC Area Percent Report

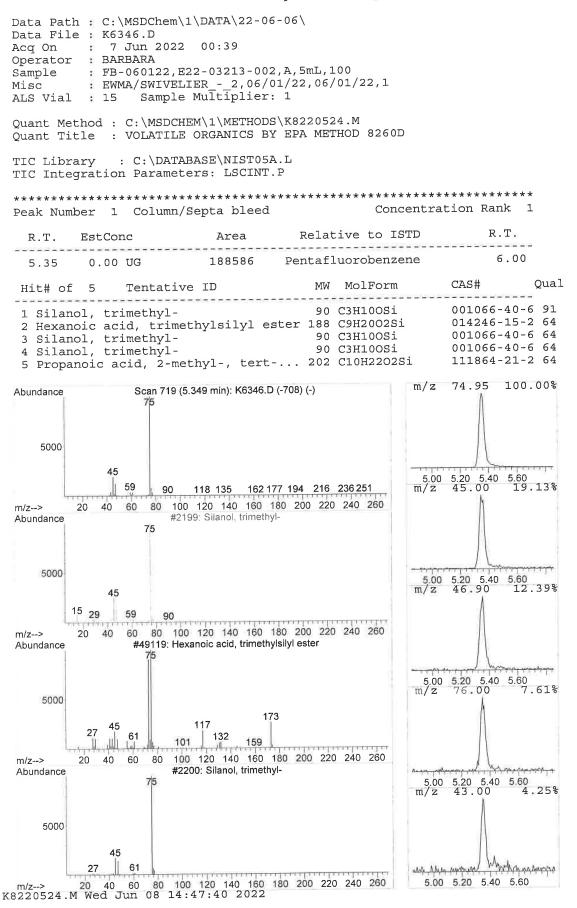
Data Path : C:\MSDChem\1\DATA\22-06-06\ Data File 🗄 K6346.D Acq On : 7 Jun 2022 00:39 Operator : BARBARA Sample : FB-060122,E22-03213-002,A,5mL,100 Misc : EWMA/SWIVELIER\_-2,06/01/22,06/01/22,1 ALS Vial : 15 Sample Multiplier: 1 Integration Parameters: LSCINT.P Integrator: RTE Filtering: 5 Smoothing : ON Min Area: 1 % of largest Peak Sampling : 1 Max Peaks: 100 Start Thrs: 0.07 Peak Location: TOP Stop Thrs : 0.2 If leading or trailing edge < 100 prefer < Baseline drop else tangent > Peak separation: 10 C:\MSDCHEM\1\METHODS\K8220524.M Method : VOLATILE ORGANICS BY EPA METHOD 8260D Title Signal : TIC # min scan scan scan TY height area % max. peak R.T. first max last PK peak % of total area % max. ----14839 1.07% 24169 1.75% 2.555 181 186 220 rVB 3.362 337 340 366 rVB5 3.661 392 397 417 rVB5 0.240% 2327 1 0.390% 5562 2 5183 27907 2.01% 0.450% 3.661 3 5.349 708 719 739 rBV2 67545 188586 13.62% 3.044% 4 6.004 830 844 860 rBV2 335799 740332 53.45% 11.950% 5 534235 38.57% 6.324 890 905 920 rBV 6.828 991 1001 1018 rBV 8.6238 246128 6 476557 941863 68.01% 15.203% 7 728614 1384986 100.00% 22.355% 8.505 1311 1321 1332 rBV 8 708649131131394.68%21.166%600327102715074.16%16.579% 9 10.173 1629 1639 1655 rBV

> 6195380 Sum of corrected areas:

K8220524.M Wed Jun 08 14:47:39 2022


10 11.578 1895 1907 1935 rBV

Page: 1


LSC Report - Integrated Chromatogram

Data Path : C:\MSDChem\1\DATA\22-06-06\ Data File : K6346.D Acq On : 7 Jun 2022 00:39 Operator : BARBARA Sample : FB-060122,E22-03213-002,A,5mL,100 Misc : EWMA/SWIVELIER - 2,06/01/22,06/01/22,1 ALS Vial : 15 Sample Multiplier: 1 Quant Method : C:\MSDCHEM\1\METHODS\K8220524.M Quant Title : VOLATILE ORGANICS BY EPA METHOD 8260D

```
TIC Library : C:\DATABASE\NIST05A.L
TIC Integration Parameters: LSCINT.P
```



Library Search Compound Report

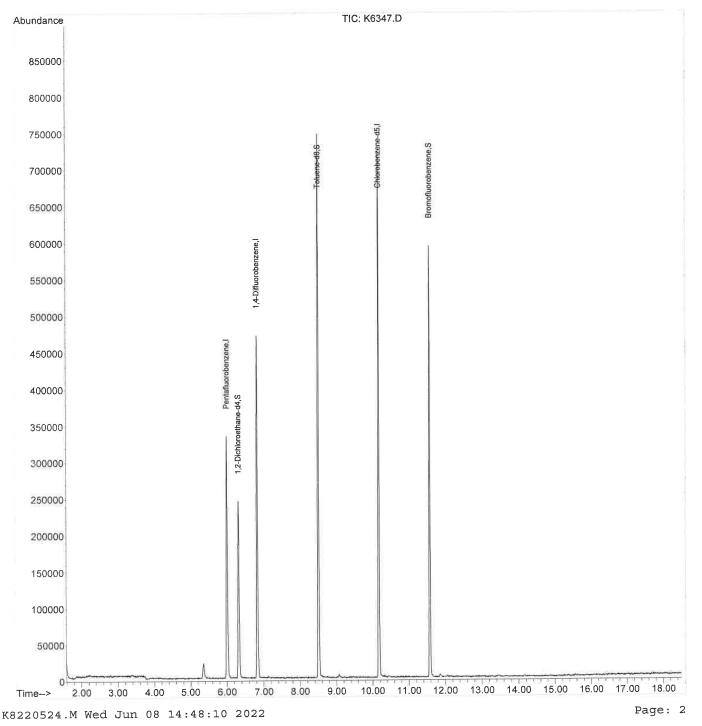


Page: 3

Tentatively Identified Compound (LSC) summary

Data Path : C:\MSDChem\l\DATA\22-06-06\ Data File : K6346.D Acq On : 7 Jun 2022 00:39 Operator : BARBARA Sample : FB-060122,E22-03213-002,A,5mL,100 Misc : EWMA/SWIVELIER\_- 2,06/01/22,06/01/22,1 ALS Vial : 15 Sample Multiplier: 1 Quant Method : C:\MSDCHEM\l\METHODS\K8220524.M Quant Title : VOLATILE ORGANICS BY EPA METHOD 8260D TIC Library : C:\DATABASE\NIST05A.L TIC Integration Parameters: LSCINT.P TIC Top Hit name RT EstConc Units Response | # RT Resp Conc| Column/Septa bleed 5.35 0.0

K8220524.M Wed Jun 08 14:47:40 2022


Quantitation Report (QT Reviewed)

Data Path : C:\MSDChem\1\DATA\22-06-06\ Data File : K6347.D Acq On : 7 Jun 2022 1:08 Operator : BARBARA Sample : TB-060122,E22-03213-003,A,5mL,100 Misc : EWMA/SWIVELIER\_-2,06/01/22,06/01/22,1 ALS Vial : 16 Sample Multiplier: 1 Quant Time: Jun 08 14:48:05 2022 Quant Method : C:\MSDCHEM\1\METHODS\K8220524.M Quant Title : VOLATILE ORGANICS BY EPA METHOD 8260D QLast Update : Fri May 27 11:42:49 2022 Response via : Initial Calibration R.T. QIon Response Conc Units Dev(Min) Internal Standards 1) Pentafluorobenzene6.0116824500950.00UG0.0031) 1,4-Difluorobenzene6.8311438439250.00UG0.0050) Chlorobenzene-d510.1711739384850.00UG0.00 System Monitoring Compounds System Monitoring compounds30) 1,2-Dichloroethane-d46.326518397149.76 UG0.00Spiked Amount50.000Range 80 - 120Recovery = 99.52%41) Toluene-d88.519849843150.78 UG0.00Spiked Amount50.000Range 80 - 120Recovery = 101.56%59) Bromofluorobenzene11.589518726647.99 UG0.00Spiked Amount50.000Range 80 - 120Recovery = 95.98% Ovalue Target Compounds \_\_\_\_\_ (#) = qualifier out of range (m) = manual integration (+) = signals summed

Quantitation Report (QT Reviewed)

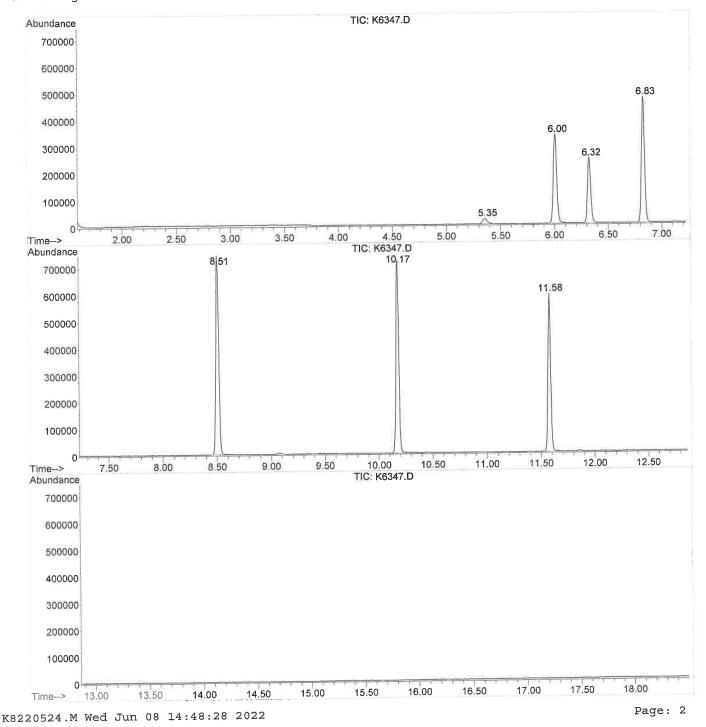
Data Path : C:\MSDChem\1\DATA\22-06-06\ Data File : K6347.D Acq On : 7 Jun 2022 1:08 Operator : BARBARA Sample : TB-060122,E22-03213-003,A,5mL,100 Misc : EWMA/SWIVELIER\_-2,06/01/22,06/01/22,1 ALS Vial : 16 Sample Multiplier: 1 Quant Time: Jun 08 14:48:05 2022

Quant Method : C:\MSDCHEM\1\METHODS\K8220524.M Quant Title : VOLATILE ORGANICS BY EPA METHOD 8260D QLast Update : Fri May 27 11:42:49 2022 Response via : Initial Calibration



LSC Area Percent Report

Data Path : C:\MSDChem\1\DATA\22-06-06\ Data File : K6347.D Acq On : 7 Jun 2022 1:08 Operator : BARBARA Sample : TB-060122,E22-03213-003,A,5mL,100 Misc : EWMA/SWIVELIER - 2,06/01/22,06/01/22,1 ALS Vial : 16 Sample Multiplier: 1 Integration Parameters: LSCINT.P Integrator: RTE Filtering: 5 Smoothing : ON Min Area: 1 % of largest Peak Max Peaks: 100 Sampling : 1 Start Thrs: 0.07 Peak Location: TOP Stop Thrs : 0.2 If leading or trailing edge < 100 prefer < Baseline drop else tangent > Peak separation: 10 C:\MSDCHEM\1\METHODS\K8220524.M : C:\MSDCHEM\1\METHODS\NG2200 : VOLATILE ORGANICS BY EPA METHOD 8260D Method Title Signal : TIC eak R.T. first max last PK peak corr. corr. % of # min scan scan scan TY height area % max. total peak R.T. first max last PK peak ----- ---- ---- ---- ----5.354 708 720 736 rBV 6.004 832 844 867 rBV 6.319 895 904 921 rBV 21143639274.56%1.059%33250273783552.58%12.223%24306953514938.14%8.866% 1 2 3 468546 942098 67.14% 15.607% 987 1001 1029 rBV 4 6.828 744455 1403213 100.00% 23.247% 8.505 1309 1321 1339 rBV 5 6 10.173 1627 1639 1657 rBV 7 11.578 1896 1907 1931 rBV 722012 1324560 94.39% 21.944%


> Sum of corrected areas: 6036209

591505 1029427 73.36% 17.054%

LSC Report - Integrated Chromatogram

Data Path : C:\MSDChem\1\DATA\22-06-06\ Data File : K6347.D Acq On : 7 Jun 2022 1:08 Operator : BARBARA Sample : TB-060122,E22-03213-003,A,5mL,100 Misc : EWMA/SWIVELIER\_-\_2,06/01/22,06/01/22,1 ALS Vial : 16 Sample Multiplier: 1 Quant Method : C:\MSDCHEM\1\METHODS\K8220524.M Quant Title : VOLATILE ORGANICS BY EPA METHOD 8260D

TIC Library : C:\DATABASE\NIST05A.L TIC Integration Parameters: LSCINT.P



Tentatively Identified Compound (LSC) summary

Data Path : C:\MSDChem\l\DATA\22-06-06\\ Data Filē : K6347.D Acq On : 7 Jun 2022 1:088 Operator : BARBARAA Samplē : TB-060122,E22-03213-003,A,5mL,1000 Misc : EWMA/SWIVELIER - 2,06/01/22,06/01/22,11 ALS Vial : 16 Samplē Multiplier: 11 Quant Method : C:\MSDCHEM\l\METHODS\K8220524.MM Quant Titlē : VOLATILE ORGANICS BY EPA METHOD 8260DD TIC Library : C:\DATABASE\NIST05A.LL TIC Integration Parameters: LSCINT.PP TIC Top Hit name RT EstConc Units Response | --Internal Standard---# RT Resp Conc|

## **VOLATILE ORGANICS**

Lab ID: BLKA220606-01 Client ID: BLKA220606-01 Date Received: NA Date Analyzed: 06/06/2022 Data file: K6336.D 06/06/2022 19:49 GC/MS Column: DB-624 Sample wt/vol: 5mL Matrix-Units: Aqueous-µg/L % Moisture: 100 Dilution Factor: 1

| Compound                       | Concentration | Q | RL    | MDL   |
|--------------------------------|---------------|---|-------|-------|
| Dichlorodifluoromethane        | ND            |   | 1.00  | 0.552 |
| Chloromethane                  | ND            |   | 0.500 | 0.309 |
| Vinyl chloride                 | ND            |   | 1.00  | 0.352 |
| Bromomethane                   | ND            |   | 1.00  | 0.386 |
| Chloroethane                   | ND            |   | 0.500 | 0.324 |
| Trichlorofluoromethane         | ND            |   | 1.00  | 0.503 |
| 1,1-Dichloroethene             | ND            |   | 0.500 | 0.363 |
| Acetone                        | ND            |   | 2.00  | 0.847 |
| Carbon disulfide               | ND            |   | 1.00  | 0.403 |
| Methylene chloride             | ND            |   | 1.00  | 0.500 |
| trans-1,2-Dichloroethene       | ND            |   | 0.500 | 0.372 |
| Methyl tert-butyl ether (MTBE) | ND            |   | 0.500 | 0.245 |
| 1,1-Dichloroethane             | ND            |   | 0.500 | 0.285 |
| cis-1,2-Dichloroethene         | ND            |   | 0.500 | 0.277 |
| 2-Butanone (MEK)               | ND            |   | 2.00  | 0.802 |
| Bromochloromethane             | ND            |   | 1.00  | 0.379 |
| Chloroform                     | ND            |   | 0.500 | 0.285 |
| 1,1,1-Trichloroethane          | ND            |   | 0.500 | 0.381 |
| Carbon tetrachloride           | ND            |   | 0.500 | 0.349 |
| 1,2-Dichloroethane (EDC)       | ND            |   | 0.500 | 0.273 |
| Benzene                        | ND            |   | 0.500 | 0.270 |
| Trichloroethene                | ND            |   | 0.500 | 0.347 |
| 1,2-Dichloropropane            | ND            |   | 0.500 | 0.272 |
| 1,4-Dioxane                    | ND            |   | 100   | 51.1  |
| Bromodichloromethane           | ND            |   | 0.500 | 0.258 |
| cis-1,3-Dichloropropene        | ND            |   | 1.00  | 0.264 |
| 4-Methyl-2-pentanone (MIBK)    | ND            |   | 1.00  | 0.611 |

## **VOLATILE ORGANICS**

Lab ID: BLKA220606-01 Client ID: BLKA220606-01 Date Received: NA Date Analyzed: 06/06/2022 Data file: K6336.D 06/06/2022 19:49 GC/MS Column: DB-624 Sample wt/vol: 5mL Matrix-Units: Aqueous-µg/L % Moisture: 100 Dilution Factor: 1

| Compound                              | Concentration | Q | RL    | MDL   |
|---------------------------------------|---------------|---|-------|-------|
| Toluene                               | ND            |   | 0.500 | 0.302 |
| trans-1,3-Dichloropropene             | ND            |   | 1.00  | 0.330 |
| 1,1,2-Trichloroethane                 | ND            |   | 0.500 | 0.313 |
| Tetrachloroethene                     | ND            |   | 0.500 | 0.365 |
| 2-Hexanone                            | ND            |   | 1.00  | 0.818 |
| Dibromochloromethane                  | ND            |   | 0.500 | 0.263 |
| 1,2-Dibromoethane (EDB)               | ND            |   | 0.500 | 0.289 |
| Chlorobenzene                         | ND            |   | 0.500 | 0.304 |
| Ethylbenzene                          | ND            |   | 0.500 | 0.313 |
| Total Xylenes                         | ND            |   | 1.00  | 0.345 |
| Styrene                               | ND            |   | 0.500 | 0.317 |
| Bromoform                             | ND            |   | 0.500 | 0.328 |
| Isopropylbenzene                      | ND            |   | 0.500 | 0.332 |
| 1,1,2,2-Tetrachloroethane             | ND            |   | 1.00  | 0.284 |
| 1,3-Dichlorobenzene                   | ND            |   | 0.500 | 0.386 |
| 1,4-Dichlorobenzene                   | ND            |   | 0.500 | 0.397 |
| 1,2-Dichlorobenzene                   | ND            |   | 0.500 | 0.354 |
| 1,2-Dibromo-3-chloropropane           | ND            |   | 1.00  | 0.410 |
| 1,2,4-Trichlorobenzene                | ND            |   | 1.00  | 0.358 |
| 1,2,3-Trichlorobenzene                | ND            |   | 1.00  | 0.406 |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | ND            |   | 1.00  | 0.538 |
| Methyl acetate                        | ND            |   | 0.500 | 0.345 |
| Cyclohexane                           | ND            |   | 1.00  | 0.469 |
| Methylcyclohexane                     | ND            |   | 1.00  | 0.421 |
| 1,3-Dichloropropene (cis- and trans-) | ND            |   | 1.00  | 0.264 |
|                                       |               |   |       |       |

Total Target Compounds (52):

0

B --- Compound detected in Blank

C --- Common laboratory contamination

D --- Dilution Performed J --- Value Less than RL & greater than MDL

E --- Exceeds upper level of Calibration curve

# VOLATILE ORGANICS Tentatively Identified Compounds

GC/MS Column: DB-624 Lab ID: BLKA220606-01 Sample wt/vol: 5mL Client ID: BLKA220606-01 Matrix-Units: Aqueous-µg/L Date Received: NA Dilution Factor: 1 Date Analyzed: 06/06/2022 % Moisture: 100 Date File: K6336.D Estimated Retention Concentration CAS # Compound Q Time

No peaks detected

Total TICs =

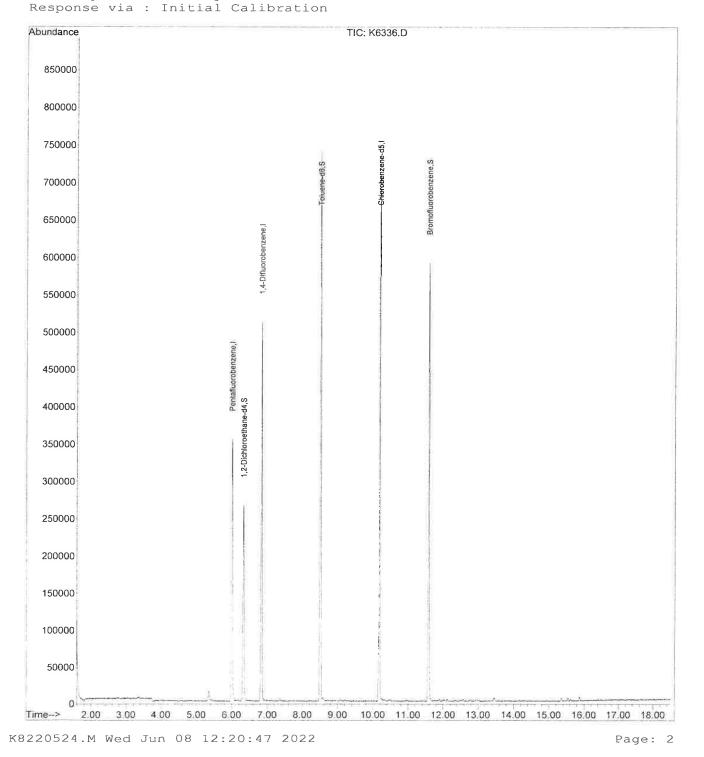
D --- Dilution Performed

J --- Estimated concentration for TICs

0

N ---- Presumptive evidence of a compound from the use of GC/MS NIST library search

| Quantitat                                                                                                                                                                                                                     | ion Report                            | ( Q                        | T Reviewed)       |                              |                              |       |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|----------------------------|-------------------|------------------------------|------------------------------|-------|--|--|--|
| Data Path : C:\MSDChem\1\DATA\22-06-06\<br>Data File : K6336.D<br>Acq On : 6 Jun 2022 19:49<br>Operator : BARBARA<br>Sample : BLKA220606-01,BLKA220606-01,A,5mL,100<br>Misc : NA,NA,NA,1<br>ALS Vial : 5 Sample Multiplier: 1 |                                       |                            |                   |                              |                              |       |  |  |  |
| Quant Time: Jun 08 11:36:33 2022<br>Quant Method : C:\MSDCHEM\1\METHODS\K8220524.M<br>Quant Title : VOLATILE ORGANICS BY EPA METHOD 8260D<br>QLast Update : Fri May 27 11:42:49 2022<br>Response via : Initial Calibration    |                                       |                            |                   |                              |                              |       |  |  |  |
| Internal Standards                                                                                                                                                                                                            | R.T.                                  | QIon                       | Response          | Conc Un                      | nits Dev                     | (Min) |  |  |  |
| <ol> <li>Pentafluorobenzene</li> <li>1,4-Difluorobenzene</li> <li>Chlorobenzene-d5</li> </ol>                                                                                                                                 | 6.00                                  | 168                        | 264100            | 50.00                        | UG                           | 0.00  |  |  |  |
| System Monitoring Compounds<br>30) 1,2-Dichloroethane-d4<br>Spiked Amount 50.000<br>41) Toluene-d8<br>Spiked Amount 50.000<br>59) Bromofluorobenzene<br>Spiked Amount 50.000                                                  | Range 80<br>8+51<br>Range 80<br>11+58 | - 120<br>98<br>- 120<br>95 | Recover<br>494105 | y =<br>47.54<br>y =<br>48.11 | 98.88%<br>UG<br>95.08%<br>UG | 0.00  |  |  |  |
| Target Compounds                                                                                                                                                                                                              |                                       |                            |                   |                              | Qv                           | alue  |  |  |  |


(#) = qualifier out of range (m) = manual integration (+) = signals summed

K8220524.M Wed Jun 08 12:20:47 2022

(QT Reviewed)

Quantitation Report

| Data Path<br>Data File | C:\MSDChem\1\DATA\22-06-06\<br>K6336.D                                  |
|------------------------|-------------------------------------------------------------------------|
| Acq On                 | 6 Jun 2022 19:49                                                        |
| Operator               | BARBARA                                                                 |
|                        | BLKA220606-01,BLKA220606-01,A,5mL,100                                   |
| Misc                   | NA, NA, NA, 1                                                           |
| ALS Vial               | 5 Sample Multiplier: 1                                                  |
|                        | Jun 08 11:36:33 2022<br>1 : C:\MSDCHEM\1\METHODS\K8220524.M             |
|                        | : VOLATILE ORGANICS BY EPA METHOD 8260D<br>2 : Fri May 27 11:42:49 2022 |

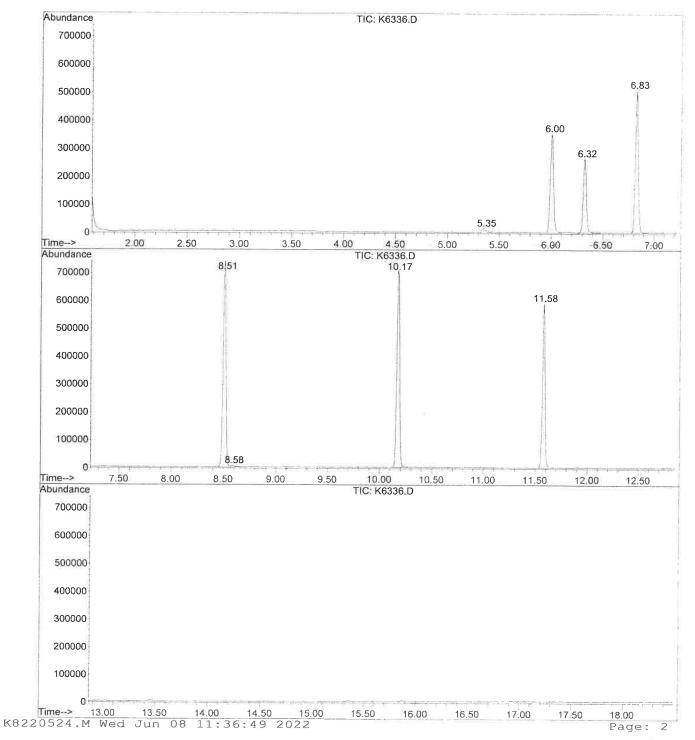


LSC Area Percent Report

| Data Path : C<br>Data File : K(<br>Acq On : 6<br>Operator : BA<br>Sample : BI<br>Misc : NA<br>ALS Vial : 5 | 6336.D<br>6 Jun 2022<br>ARBARA<br>LKA220606-01<br>4,NA,NA,1 | 19:49<br>,BLKA220606-03               | •                                                                            |                                                    |  |
|------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|---------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------|--|
| Integration Pa<br>Integrator: RT<br>Smoothing : ON<br>Sampling : 1<br>Start Thrs: 0.<br>Stop Thrs : 0.     | ГЕ<br>\<br>.07                                              | SCINT.P                               | Filtering:<br>Min Area:<br>Max Peaks:<br>Peak Location: '                    | l % of largest Peak<br>100                         |  |
| If leading or<br>Peak separatio                                                                            | trailing edo<br>on: 10                                      | ge < 100 prefe                        | er < Baseline dro                                                            | op else tangent >                                  |  |
| Method : C:<br>Title : VC                                                                                  | NSDCHEM\1\N<br>LATILE ORGAN                                 | AETHODS\K82205<br>NICS BY EPA ME      | 524.M<br>Sthod 8260d                                                         |                                                    |  |
| Signal : T                                                                                                 | TIC                                                         |                                       |                                                                              |                                                    |  |
| # min sca                                                                                                  | st max last<br>an scan scan                                 | TY height                             | 5-78-70 C                                                                    | . total                                            |  |
| 1 5.354 71<br>2 6.004 83<br>3 6.319 89<br>4 6.827 98                                                       | .272073333844863919049339910011021                          | rBV3 14522<br>rBV2 353476             | 42633 3.07<br>786033 56.53<br>575061 41.36<br>990531 71.24<br>1390509 100.00 | 78 0.6978<br>38 12.8448<br>58 9.3978<br>48 16.1868 |  |
| 7 10.173 163                                                                                               |                                                             | rVB7 5276<br>rBV 708095<br>rVB 589612 |                                                                              | 38 21.3438                                         |  |

Sum of corrected areas: 6119833

K8220524.M Wed Jun 08 11:36:48 2022


Page: 1

LSC Report - Integrated Chromatogram

Data Path : C:\MSDChem\1\DATA\22-06-06\ Data File : K6336.D Acq On : 6 Jun 2022 19:49 Operator : BARBARA Sample : BLKA220606-01,BLKA220606-01,A,5mL,100 Misc : NA,NA,NA,1 ALS Vial : 5 Sample Multiplier: 1

Quant Method : C:\MSDCHEM\1\METHODS\K8220524.M Quant Title : VOLATILE ORGANICS BY EPA METHOD 8260D

TIC Library : C:\DATABASE\NISTO5A.L TIC Integration Parameters: LSCINT.P



Library Search Compound Report

Data Path : C:\MSDChem\1\DATA\22-06-06\ Data File : K6336.D Acq On : 6 Jun 2022 19:49 Operator : BARBARA Sample : BLKA220606-01,BLKA220606-01,A,5mL,100 Misc : NA,NA,1 ALS Vial : 5 Sample Multiplier: 1 Quant Method : C:\MSDCHEM\1\METHODS\K8220524.M Quant Title : VOLATILE ORGANICS BY EPA METHOD 8260D TIC Library : C:\DATABASE\NIST05A.L TIC Integration Parameters: LSCINT.P No Library Search Compounds Detected

K8220524.M Wed Jun 08 11:36:49 2022

Page: 3

## SAMPLE TRACKING

| ated Analytical Laboratories LLC Kandol                                                                       | Kandolpn, NJ U/869   |                                                    |                                                                            |                                                    |          |                                |                                    |                                                   |              |                                     | Web: www.ialonline.com                                 | ne.co        |
|---------------------------------------------------------------------------------------------------------------|----------------------|----------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------|----------|--------------------------------|------------------------------------|---------------------------------------------------|--------------|-------------------------------------|--------------------------------------------------------|--------------|
| Customer Information                                                                                          | uc                   | Report                                             | irting Information                                                         | ation                                              |          | <sup></sup> Rush TAT<br>Charge | Deliv<br>Surchage may              | Deliverables<br>Surchage may apply for regulatory |              | EDDs                                | Concentrations Expected:                               | ected:       |
| company: EWMA                                                                                                 |                      | Check h                                            | K Check here if same as "Customer Information"                             | ustomer Informa                                    | tion"    | 24 hr - 100%                   | NJ, CT, PA                         | NV                                                |              | NJ SRP                              | Low Med                                                | High         |
| Address: 100 MISty LC                                                                                         | ane                  | REPORT TO:                                         |                                                                            |                                                    |          | 48 hr - 75%<br>72 hr - 50%     | Cevel I)                           | ASP Category                                      |              | NYSDEC EQUIS                        | Known Hazard:                                          |              |
| Parsipphini, n                                                                                                | 5                    | Address:                                           |                                                                            |                                                    |          | 96 hr - 35%                    | Reduced (Level II/III)             |                                                   |              | lab approved custom EDD             |                                                        | Ŷ            |
| Telephone #:                                                                                                  |                      | MK                                                 | M                                                                          |                                                    |          | 6-9 day - 10%                  | Regulatory/ Fult*                  | ASP Category<br>B*                                |              | NO EDD REQ'D                        | Describe:                                              |              |
| Project Manager: COLYNW BANO                                                                                  | nount                | Attn:                                              |                                                                            |                                                    |          |                                | Turn-Around Time (TAT)             | ime (TAT)                                         |              | o Regula                            | Regulatory Requirement                                 |              |
| Email Address(es):                                                                                            |                      | INVOICE TO:                                        |                                                                            |                                                    |          | Standard (10 bu:               | Standard (10 business days) Verbal | al                                                |              | New Jersey                          | New York                                               |              |
| halmu Bruntoeumo                                                                                              | DA,LEMA              | Address:                                           |                                                                            |                                                    |          | Rush/date needed               | 4)*                                |                                                   |              | GWQS                                | AWQS (TOGS Table 1)                                    | <del>;</del> |
| Project Name: Swine Ne                                                                                        |                      | 10                                                 | 0 m                                                                        |                                                    |          | Hard Copy: St                  | Hard Copy: Standard 3 week         | Other - call for price                            | r price      |                                     | GWEL (TOGS Table 5)                                    | 5)           |
| Project Location (State): NOWN                                                                                | T, NV                | Attn:                                              |                                                                            |                                                    |          | Petroleum I                    | Hydrocarbons -                     | Petroleum Hydrocarbons - Selection is KEQUIRED    | IRED         | SRS                                 | Part 375-6.8(a) - Unrestricted                         | stricted     |
| Bottle Order#: 202530                                                                                         |                      | # O4                                               |                                                                            |                                                    |          |                                | NJ EPH-DRO - Category 1            | TAT for PHC, If                                   |              | Ecological                          | Part 375-6.8(b) - Restricted                           | icted        |
| Report to"/"Invoice To" same as above                                                                         | s above              | Quote #                                            |                                                                            |                                                    |          | ON EPHC40                      | NJ EPH-C40 - Category 2            | СТЕТРН                                            |              |                                     | CP-51 Table 2 or 3 (selection                          | ection       |
| Sampled by: W. T. V. T. V. Sampled by:                                                                        | 1                    |                                                    | Sample Matrix                                                              |                                                    |          |                                | NJ EPH-Fractionated - Cat 2        | DR0-8015                                          |              | C SPLP                              | Other States / Criteria                                | aria         |
| COMPIETED RV IAI .                                                                                            | H                    | DW - Drinking Water<br>WW - Waste Water            | OI-Oil<br>S-Soil                                                           |                                                    |          | AN                             | ALYTICAL PARAN                     | ANALYTICAL PARAMETERS (please note if contingent) | e if contir  | igent)                              | Pennsylvania Act 2                                     |              |
|                                                                                                               | Equipment Rental     | GW - Groundwater<br>SW - Surface Water             | SED - Sediment<br>SOL - Solid (specify)                                    | ment<br>(specify)                                  |          | 5                              |                                    |                                                   |              |                                     | CT RCSA 22a-133k1-k3                                   | -k3          |
| INFO                                                                                                          |                      | LIQ - Liquid (specify)<br>M - Multiphasic          | SL - Sludge<br>W - Wine                                                    | 0                                                  |          | 51-1                           |                                    |                                                   |              |                                     | TSCA PCBs                                              |              |
| Client ID                                                                                                     | Danth (ft only)      | Sampling                                           | Matrix                                                                     | *                                                  |          | -93                            |                                    |                                                   |              |                                     | OTHER Regulatory Requirements -<br>specify In comments | tements      |
|                                                                                                               |                      | Date Time                                          |                                                                            | containers                                         | _        | 1                              |                                    |                                                   |              |                                     | Sample Specific Notes:                                 | tes:         |
| MW-13D-00012                                                                                                  |                      | 2181 GC 1197                                       | S GW                                                                       | 3                                                  | -        | 2                              |                                    |                                                   |              |                                     |                                                        |              |
| FB-060130                                                                                                     |                      | 6/1/20 0045                                        | S                                                                          | ß                                                  | 3        | 7                              |                                    |                                                   |              |                                     |                                                        |              |
| 71B-060122                                                                                                    |                      | (ali 133)                                          |                                                                            | Ø                                                  | sec      | 7                              |                                    |                                                   |              |                                     |                                                        |              |
|                                                                                                               |                      |                                                    |                                                                            |                                                    |          |                                |                                    |                                                   |              |                                     |                                                        |              |
|                                                                                                               |                      |                                                    |                                                                            |                                                    |          |                                |                                    |                                                   |              |                                     |                                                        |              |
|                                                                                                               |                      |                                                    |                                                                            |                                                    |          |                                |                                    |                                                   |              |                                     |                                                        |              |
| Islyaı                                                                                                        | Preservative Code:   | Container<br>Code:                                 | PP 0                                                                       | Preservative (use code)                            | (epode)  |                                |                                    |                                                   |              |                                     | FOR LAB USE ONLY                                       |              |
| Please print legibly and fill out                                                                             | = None               | Lin'                                               | Container Type (use code) Special Instructions/QC Requirements & Comments: | Container Type (use code)<br>tions/QC Requirements | ments &  | Comments:                      |                                    |                                                   |              |                                     | SDG #: 2213                                            |              |
| е                                                                                                             |                      | B = Plastic<br>C = Vial<br>D ≃ Glass<br>E = EnCore |                                                                            |                                                    |          |                                |                                    |                                                   |              |                                     | Temp:                                                  | \$<br>#      |
| ti i                                                                                                          | theck or<br>AL Court | T = Terracore                                      | Relinquished by                                                            | elinquished by (Signature and Company)             | d Compan | 1) Dat<br>CO/1/C               | 2) MSS                             | Aruh H                                            | Intennis) ya | Received by (Signature and Company) | 6 1 22 L                                               | 17:SS        |
| THE CLIENT HAS READ AND<br>AGREES TO BE BOUND BY<br>IAL'S TERMS & CONDITIONS<br>(found on rear of pink copy). | Client Courier       | urier<br>SS***                                     |                                                                            |                                                    |          |                                |                                    |                                                   |              |                                     |                                                        |              |
|                                                                                                               |                      |                                                    |                                                                            |                                                    |          |                                |                                    |                                                   |              |                                     |                                                        |              |

Jun 03, 2022 @ 08:34



## PROJECT INFORMATION E22-03213: SWIVELIER - 202530

To: Cathy Bryant EWMA - HQ Fax: EMail: Cathy.Bryant@ewma.com

#### Report To

EWMA - HQ Lanidex Center 100 Misty Lane Parsippany, NJ 07054 Attn: Cathy Bryant

#### <u>Bill To</u>

EWMA - HQ Lanidex Center 100 Misty Lane Parsippany, NJ 07054 Attn: Cathy Bryant

| Report For                                    | rmat P.O. #                                                 | Received<br>At Lab             | PHC<br>Due                                                    | Verbal<br>Due                                  | Hardcor<br>Due                        | ру          |
|-----------------------------------------------|-------------------------------------------------------------|--------------------------------|---------------------------------------------------------------|------------------------------------------------|---------------------------------------|-------------|
| Reduced                                       | d                                                           | Jun 01, 2022 @                 | 17:55 NA                                                      | Jun 16, 2022                                   | Jun 23, 20                            | )22 *       |
| <u>Diskette R</u><br>Criteria R               |                                                             | EDD                            | ay final hardcopy report :                                    | sent date.                                     |                                       |             |
| Lab ID<br>03213-001<br>03213-002<br>03213-003 | Client Sample ID<br>MW-13D-060122<br>FB-060122<br>TB-060122 | <u>Depth</u><br>NA<br>NA<br>NA | Sampling Time<br>06/01/22@13:15<br>06/01/22@09:45<br>06/01/22 | <u>Matrix</u><br>Aqueous<br>Aqueous<br>Aqueous | UnitFidug/L (ppb)ug/L (ppb)ug/L (ppb) | eld pH/Temp |

|                 |                            |                          | * No Cert                  | = IAL does not hold c   | ertification for this test/method |
|-----------------|----------------------------|--------------------------|----------------------------|-------------------------|-----------------------------------|
| Sample #<br>001 | <u>Test</u><br>TCL VO + 15 | <u>Status</u><br>Analyze | Analytical Method<br>8260D | <u>TAT</u><br>STD/2 WKS | Holding Time Expires<br>6/15/2022 |
| 002             | TCL VO + 15                | Analyze                  | 8260D                      | STD/2 WKS               | 6/15/2022                         |
| 003             | TCL VO + 15                | Analyze                  | 8260D                      | STD/2 WKS               | 6/15/2022                         |



Page 1 of 1

IAL is a NELAP accredited lab (TNI01284) and maintains certification in Connecticut (PH-0699), New Jersey (14751), New York (11402), and Pennsylvania (68-00773).

SAMPLE RECEIPT VERIFICATION

| CASE NO: E 22 03213                                                                                                                                                                                                                                                                                                                                                               | CLIENT: EWMA                                                                                                                                          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| CASE NO: E 22 U3213                                                                                                                                                                                                                                                                                                                                                               | <pre>✓ (See Chain of Custody) Comments</pre>                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                   | VOA received: Encore IGW - Methanol<br>(check one) Terra Core No Preservative                                                                         |
| <ul> <li>✓ Bottles Intact</li> <li>✓ no-Missing Bottles</li> <li>✓ no-Extra Bottles</li> </ul>                                                                                                                                                                                                                                                                                    |                                                                                                                                                       |
| <ul> <li>✓ Sufficient Sample Volume</li> <li>✓ no-headspace/bubbles in VOs</li> <li>✓ Labels intact/correct</li> <li>✓ pH Check<sup>1</sup> (refer to Receipt pH Log)</li> <li>✓ Correct bottles/preservative</li> <li>✓ Sufficient Holding/Prep Time<sup>1</sup></li> <li>Multiphasic Sample</li> <li>Sample to be Subcontracted</li> <li>✓ Chain of Custody is Clear</li> </ul> |                                                                                                                                                       |
| <sup>1</sup> All samples with "Analyze Immediately" holding times will the following tests: pH, Temperature, Free Residual Chlori ADDITIONAL COMMENTS:                                                                                                                                                                                                                            | be analyzed by this laboratory past the holding time. This includes but is not limited to<br>ine, Total Residual Chlorine, Dissolved Oxygen, Sulfite. |
| SAMPLE(S) VERIFIED BY: INITIAL                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                       |
| If COC is <b>NOT</b> clear, <u>STOP</u> until you ge                                                                                                                                                                                                                                                                                                                              | et client to authorize/clarify work.                                                                                                                  |
| CLIENT NOTIFIED: YES<br>PROJECT CONTACT:<br>SUBCONTRACTED LAB:<br>DATE SHIPPED:                                                                                                                                                                                                                                                                                                   | Date/ Time: NO                                                                                                                                        |
| ADDITIONAL COMMENTS:                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                       |
| VERIFIED/TAKEN BY: INITIAL                                                                                                                                                                                                                                                                                                                                                        | DATE 6(2/22<br>Rev 2 2/11/2021                                                                                                                        |

| La                               | boratory  | y Custo    | dy Chron          | nicle         |               |         |
|----------------------------------|-----------|------------|-------------------|---------------|---------------|---------|
| <i>IAL Case No.</i><br>E22-03213 |           | Clien      | t <u>EWMA-I</u>   | HQ            |               |         |
| E22-03213                        |           | Projec     | t <u>SWIVELI</u>  | ER - 202530   |               |         |
|                                  | R         | eceived Or | <u>6/ 1/2022(</u> | <u>@17:55</u> |               |         |
| Department: Volatiles            |           |            | Prep. Date        | Analyst       | Analysis Date | Analyst |
| TCL VO + 15                      | 03213-001 | Aqueous    | n/a               | n/a           | 6/ 7/22       | Barbara |
| u.                               | -002      | 11         | n/a               | n/a           | 6/ 7/22       | Barbara |
|                                  | -003      | <b>H</b>   | n/a               | n/a           | 6/ 7/22       | Barbara |

Page 1 of 1

Jun 10, 2022 @, 03:27

NOTE: All soil, sediment, sludge, and solid samples are reported on a dry-weight basis.

Integrated Analytical Labs ~ 273 Franklin Road, Randolph, NJ 07869 ~ (973) 361-4252

LAST PAGE OF DOCUMENT



## ANALYTICAL DATA REPORT

Environmental Waste Management Associates, LLC. Lanidex Center 100 Misty Lane Parsippany, NJ 07054

> Project Name: SWIVELIER - 202530 IAL Case Number: E22-03403

> > These data have been reviewed and accepted by:

Michan

Michael H. Lefun, Ph.D. Laboratory Director

This report shall not be reproduced, except in its entirety, without the written consent of Integrated Analytical Laboratories, LLC. The test results included in this report relate only to the samples analyzed. The results reported herein conform to the most current TNI standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

# Integrated Analytical Laboratories - Table of Contents

| Sample Summary               | 1  |
|------------------------------|----|
| Qualifiers Reference         | 2  |
| Case Narrative               | 3  |
| Results Summary Report       | 6  |
| Analytical Results           | 8  |
| Volatiles                    | 20 |
| Volatile Organic QC Summary  | 21 |
| Volatile Organic Sample Data | 41 |
| Sample Tracking              | 68 |
| LAST PAGE OF DOCUMENT        | 73 |

|              | Sample Summary                    |
|--------------|-----------------------------------|
| IAL Case No. | Client EWMA - HQ                  |
| E22-03403    | Project SWIVELIER - 202530        |
|              | <b>Received On</b> 6/9/2022@16:35 |

| Lab ID    | Client Sample ID | Depth Top/Bottom | Sampling Time   | Matrix  | <u># of</u><br><u>Container</u> |
|-----------|------------------|------------------|-----------------|---------|---------------------------------|
| 03403-001 | MW11D            | n/a              | 6/ 9/2022@13:50 | Aqueous | 4                               |
| 03403-002 | MW10D            | n/a              | 6/9/2022@15:25  | Aqueous | 4                               |
| 03403-003 | FIELD BLANK      | n/a              | 6/9/2022@14:01  | Aqueous | 2                               |
| 03403-004 | TRIP BLANK       | n/a              | 6/ 9/2022       | Aqueous | 2                               |

Page 1 of 1

Jun 22, 2022 @ 12:54

Integrated Analytical Labs ~ 273 Franklin Road, Randolph, NJ 07869 ~ (973) 361-4252

#### DATA QUALIFIERS AND FLAGS

- B Indicates the analyte found in the associated method blank and in the sample due to potential lab contamination.
- C Indicates analyte is a common laboratory contaminant.
- D Indicates analyte was reported from diluted analysis.
- E Identifies a compound concentration that exceeds the upper level of the calibration range of the instrument
- J Indicates an estimated value either when the concentration in the sample is less than the RL or for qualification of TICs
- J1 Indicates an estimated value when ICC or CCV did not meet the criteria.
- M Indicates matrix interference
- N Presumptive evidence of a compound from the use of GC/MS library search.
- T Sample analyzed outside of holding time
- X Indicates samples analyzed for total and dissolved metals differ at ≤20% RPD.
- Y Indicates DO depletion in the BOD blank is >0.20ppm
- Z Indicates internal standard failure. Sample results are either biased high or biased low.
- \$ Value outside NJDEP DKQP Limits
- \* Result outside of QC limits

#### **PROJECT NOTES**

- All results for soils, solids, and sludges are reported on a dry-weight basis except where noted
- All test results and QC are compliant with TNI or other applicable state agency requirements/guidance unless otherwise notated in the case narrative and/or project information page.
- The case narrative for this SDG should be consulted to determine any non-conformances.
- Any samples with 15-minute or "analyze immediately" holding times (e.g. pH, Dissolved Oxygen, Sulfite, etc.) which are analyzed in the laboratory are considered out of holding time.
- IAL is a NELAP/TNI certified laboratory (TNI ID# TNI01284). IAL retains certification in Connecticut (PH-0699), New Jersey (14751), New York (11402), and Pennsylvania (68-00773).
- Certification is not required to perform analyses in the following states: AL, CO, DE, GA, HI, ID, IN, KY, MD, MI, MS, MO, MT, NE, NM, SD and TN. IAL can perform all analyses, except Drinking Water, within its scope of capabilities in these states.

| CFU   | Colony Forming Unit                               | ND       | Indicates analyte was analyzed for but not detected |
|-------|---------------------------------------------------|----------|-----------------------------------------------------|
| CCB   | Continuing Calibration Blank                      |          | at MDL or RL (only if MDL is not used)              |
| CCV   | Continuing Calibration Verification               | NTU      | Nephelometric Turbidity Units                       |
| DF    | Dilution Factor                                   | ppb      | Parts per billion. Reported as µg/L or µg/kg        |
| DL    | Attached as a suffix to a diluted sample          | ppm      | Parts per million. Reported as mg/L, µg/mL or mg/kg |
| DUP   | Duplicate                                         | QC       | Quality Control                                     |
| ICB   | Initial Calibration Blank                         | % Rec    | Percent Recovery                                    |
| ICC   | Initial Calibration Curve                         |          | Reporting Limit. The RL is typically determined by  |
| ICV   | Initial Calibration Verification                  | RL       | the concentration of the lowest standard in the     |
| kg    | kilogram                                          | 1        | calibration curve                                   |
| L     | Liter                                             | RPD      | Relative Percent Difference                         |
| LCS   | Laboratory Control Sample                         | RSD      | Relative Standard Deviation                         |
| LCSD  | Laboratory Control Sample Duplicate               | RT       | Retention Time                                      |
| MDL   | Method Detection Limit as determined according to | SU       | Standard Units                                      |
|       | 40 CFR Part 136 Appendix B                        | тіс      | Tentatively Identified Compound AKA Library Search  |
| MF    | Membrane Filter                                   |          | Compounds                                           |
| mg    | milligram (1000mg = 1g)                           | TNI      | The NELAC (National Environmental Laboratory        |
| μg    | microgram (1000µg = 1mg)                          |          | Accreditation Council) Institute                    |
| ml    | milliliter (1000ml = 1L)                          | TNTC     | Too numerous to count                               |
| μ     | microliter (1000µl = 1ml)                         | *        | When attached to a compound name, indicates this    |
| µmhos | Conductivity units - resistance expressed in ohms |          | analyte was analyzed by Method SW-846 8270 SIM      |
| MPN   | Most Probable Number                              |          | When attached to a compound name, indicates this    |
| MS    | Matrix Spike                                      | <b>^</b> | analyte was analyzed by Method SW-846 8011 or       |
| MSD   | Matrix Spike Duplicate                            |          | EPA 504.1                                           |
| NA    | Not applicable                                    | <        | Less than; In conjunction with a numerical value,   |
| NC    | Not calculated                                    |          | indicates a concentration less than the RL or MDL   |
|       |                                                   |          |                                                     |

#### ACRONYMS AND ABBREVIATIONS

SAMPLE DELIVERY GROUP CASE NARRATIVE (Conformance / Non-Conformance Summary)

## SAMPLE DELIVERY GROUP CASE NARRATIVE

#### SDG#: E22-03403

Integrated Analytical Laboratories, LLC. received four (4) samples\*\* from EWMA - HQ (IAL SDG# **E22-03403**, Project: SWIVELIER - 202530) on June 9, 2022 for the analysis of :

#### (1) TCL VO (3) TCL VO + 15

\*\*Number of samples listed above may be greater than what is listed on the chain of custody. Any samples that require in-house filtration or splitting will be counted as separate samples.

Samples were received in good condition with documentation in order. Cooler temperature was acceptable at  $4 \pm 2$  degree C.

| Volatiles By | SW 8260D                                         |              | Batch: 220616-02    | Matrix: Aqueous |  |  |  |
|--------------|--------------------------------------------------|--------------|---------------------|-----------------|--|--|--|
| QC           | - Calibration curve met                          | QC criteria. |                     |                 |  |  |  |
|              | Internal standards rec                           | overy met Q  | C criteria.         |                 |  |  |  |
|              | - Surrogate percent rec                          | •            |                     |                 |  |  |  |
|              | - Method blank met QC                            | criteria.    |                     |                 |  |  |  |
|              | LCS percent recovery                             | met QC crit  | eria.               |                 |  |  |  |
|              | - MS/MSD RPD met QC                              | C criteria.  |                     |                 |  |  |  |
|              | - MS/MSD percent reco                            | very met Q   | C criteria.         |                 |  |  |  |
| E22-03403    | - All samples were received within holding time. |              |                     |                 |  |  |  |
|              | - All samples were analyzed within holding time. |              |                     |                 |  |  |  |
|              | Dilution Summary:                                |              |                     |                 |  |  |  |
|              | Sample ID                                        | DF(s)        | Dilution For        |                 |  |  |  |
|              | E22-03403-001                                    | 1            | NA                  |                 |  |  |  |
|              | E22-03403-002                                    | 50           | Target compound(s). |                 |  |  |  |
|              | E22-03403-003                                    | 1            | NA                  |                 |  |  |  |
|              | E22-03403-004                                    | 1            | NA                  |                 |  |  |  |

A review of the QA/QC measures for the analysis of the sample(s) contained in this report has been performed by:

rum Reviewed by

6/23/2022 Date

## DATA OF KNOWN QUALITY CONFORMANCE/NON-CONFORMANCE SUMMARY QUESTIONNAIRE

Laboratory Name: Integrated Analytical Laboratories

 Client: Environmental Waste Management Associates, LLC.

 Project Location: SWIVELIER - 202530

 IAL Project #: E22-03403
 IAL Sample ID(s): E22-03403-001 ~ -004
 Sampling Date(s): 6/9/2022

List of DKQP Method Used:

TCL VO by 8260D

**Notes:** For all questions to which the response was "No" (with the exception of question #7), additional information is provided in the case narrative. If the answer to question #1, #1A, or #1B is "No", the data package does not meet the requirements for "Data of Known Quality."

|    |                                                                                                                                                                                                                                                                 | YES | NO | <u>N/A</u> |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----|------------|
| 1  | For each analytical method referenced in this laboratory report<br>package, were all specified QA/QC performance criteria followed,<br>including the requirement to explain any criteria falling outside of<br>acceptable guidelines, as specified in the NJDEP | x   |    |            |
| 1A | Were the method specified handling, preservation, and holding time requirements met?                                                                                                                                                                            | x   |    |            |
| 1B | EPH Method: Was the EPH method conducted without significant<br>modifications?<br>(see Section 11.3 of respective DKQ methods)                                                                                                                                  |     |    | x          |
| 2  | Were all samples received by the laboratory in a condition consistent with that described on the associated chain-of-custody document(s)?                                                                                                                       | x   |    |            |
| 3  | Were samples received at an appropriate temperature (4±2° C)?                                                                                                                                                                                                   | х   |    |            |
| 4  | Were all QA/QC performance criteria specified in the NJDEP DKQP standards achieved?                                                                                                                                                                             | х   |    |            |
| 5A | Were reporting limits specified or referenced on the chain-of-custody<br>or communicated to the laboratory prior to sample receipt?                                                                                                                             | x   |    |            |
| 5B | Were these reporting limits met?                                                                                                                                                                                                                                |     | X  |            |
| 6  | For each analytical method referenced in this laboratory report<br>package, were results reported for all constituents identified in the<br>method-specific analyte lists presented in the DKQP documents and/or<br>site-specific QAPP?                         | x   |    |            |
| 7  | Are project-specific matrix spikes and/or laboratory duplicates included in this data set?                                                                                                                                                                      |     | x  |            |
|    |                                                                                                                                                                                                                                                                 |     |    |            |

## RESULTS SUMMARY REPORT

|                                | •     |      | WIVEI   |        |                 | 530  |      |         |     |      |        |
|--------------------------------|-------|------|---------|--------|-----------------|------|------|---------|-----|------|--------|
|                                | Lab   | Ca   | se No.: | E22-03 | 403             |      |      |         |     | 1    |        |
| Lab ID:                        | 034   | 03-  | 001     | 034    | 103-0           | 002  | 034  | 403-003 | 3   | 034  | 03-004 |
| Client ID:                     | M     | W1   | 1D      | Μ      | W1(             | DD   | FIEL | D BLA   | NK  | TRIP | BLANK  |
| Matrix:                        | Aq    | ue   | ous     | Ac     | queo            | us   | A    | queous  |     | Aq   | ueous  |
| Sampled Date                   | 6     | /9/2 | 2       | 6      | 5 <b>/9/2</b> 3 | 2    | 6    | 5/9/22  |     | 6.   | /9/22  |
| PARAMETER(Units)               | Conc  | Q    | MDL     | Conc   | Q               | MDL  | Conc | QM      | IDL | Conc | Q MDL  |
| Volatiles (Units)              | (1    | ıg/L | )       | (      | ug/L            | )    | (    | ug/L)   |     | (1   | ıg/L)  |
| Methyl tert-butyl ether (MTBE) | 0.330 | J    | 0.245   | ND     |                 | 12.3 | ND   | 0.      | 245 | ND   | 0.245  |
| cis-1,2-Dichloroethene         | 1.16  |      | 0.277   | 2990   | D               | 13.9 | ND   | 0.      | 277 | ND   | 0.277  |
| Trichloroethene                | 1.47  |      | 0.347   | 6260   | D               | 17.4 | ND   | 0.      | 347 | ND   | 0.347  |
| Tetrachloroethene              | ND    |      | 0.365   | 27.8   | D               | 18.3 | ND   | 0.      | 365 | ND   | 0.365  |
|                                |       |      |         |        |                 |      |      |         |     |      |        |
| TOTAL VO's:                    | 2.96  | J    |         | 9280   | D               |      | ND   |         |     | ND   |        |
| TOTAL TIC's:                   | ND    |      |         | ND     |                 |      | 7.70 | JN      |     | ND   |        |
| TOTAL VO's & TIC's:            | 2.96  | J    |         | 9280   | D               |      | 7.70 |         |     | ND   |        |

## SUMMARY REPORT Client: Environmental Waste Management Associates, LLC. Project: SWIVELIER - 202530

ND = Analyzed for but Not Detected at the MDL

J = Indicates an estimated value either when the concentration in the sample is greater than MDL and less than RL, or for qualification of TICs

D = The compound was reported from the Diluted analysis

All qualifiers on individual Volatiles & Semivolatiles are carried down through summation.

N = Presumptive evidence of a compound from the use of GC/MS library search.

## ANALYTICAL RESULTS

Lab ID: E22-03403-001 Client ID: MW11D Date Received: 06/09/2022 Date Analyzed: 06/17/2022 Data file: K6632.D 06/17/2022 10:00 GC/MS Column: DB-624 Sample wt/vol: 5mL Matrix-Units: Aqueous-µg/L % Moisture: 100 Dilution Factor: 1

| Compound                       | Concentration | Q | RL    | MDL   |
|--------------------------------|---------------|---|-------|-------|
| Dichlorodifluoromethane        | ND            |   | 1.00  | 0.552 |
| Chloromethane                  | ND            |   | 0.500 | 0.309 |
| Vinyl chloride                 | ND            |   | 1.00  | 0.352 |
| Bromomethane                   | ND            |   | 1.00  | 0.386 |
| Chloroethane                   | ND            |   | 0.500 | 0.324 |
| Trichlorofluoromethane         | ND            |   | 1.00  | 0.503 |
| 1,1-Dichloroethene             | ND            |   | 0.500 | 0.363 |
| Acetone                        | ND            |   | 2.00  | 0.847 |
| Carbon disulfide               | ND            |   | 1.00  | 0.403 |
| Methylene chloride             | ND            |   | 1.00  | 0.500 |
| trans-1,2-Dichloroethene       | ND            |   | 0.500 | 0.372 |
| Methyl tert-butyl ether (MTBE) | 0.330         | J | 0.500 | 0.245 |
| 1,1-Dichloroethane             | ND            |   | 0.500 | 0.285 |
| cis-1,2-Dichloroethene         | 1.16          |   | 0.500 | 0.277 |
| 2-Butanone (MEK)               | ND            |   | 2.00  | 0.802 |
| Bromochloromethane             | ND            |   | 1.00  | 0.379 |
| Chloroform                     | ND            |   | 0.500 | 0.285 |
| 1,1,1-Trichloroethane          | ND            |   | 0.500 | 0.381 |
| Carbon tetrachloride           | ND            |   | 0.500 | 0.349 |
| 1,2-Dichloroethane (EDC)       | ND            |   | 0.500 | 0.273 |
| Benzene                        | ND            |   | 0.500 | 0.270 |
| Trichloroethene                | 1.47          |   | 0.500 | 0.347 |
| 1,2-Dichloropropane            | ND            |   | 0.500 | 0.272 |
| 1,4-Dioxane                    | ND            |   | 100   | 51.1  |
| Bromodichloromethane           | ND            |   | 0.500 | 0.258 |
| cis-1,3-Dichloropropene        | ND            |   | 1.00  | 0.264 |
| 4-Methyl-2-pentanone (MIBK)    | ND            |   | 1.00  | 0.611 |

Lab ID: E22-03403-001 Client ID: MW11D Date Received: 06/09/2022 Date Analyzed: 06/17/2022 Data file: K6632.D 06/17/2022 10:00

GC/MS Column: DB-624 Sample wt/vol: 5mL Matrix-Units: Aqueous-µg/L % Moisture: 100 Dilution Factor: 1

| Compound                              | Concentration | Q | RL    | MDL   |
|---------------------------------------|---------------|---|-------|-------|
| Toluene                               | ND            |   | 0.500 | 0.302 |
| trans-1,3-Dichloropropene             | ND            |   | 1.00  | 0.330 |
| 1,1,2-Trichloroethane                 | ND            |   | 0.500 | 0.313 |
| Tetrachloroethene                     | ND            |   | 0.500 | 0.365 |
| 2-Hexanone                            | ND            |   | 1.00  | 0.818 |
| Dibromochloromethane                  | ND            |   | 0.500 | 0.263 |
| 1,2-Dibromoethane (EDB)               | ND            |   | 0.500 | 0.289 |
| Chlorobenzene                         | ND            |   | 0.500 | 0.304 |
| Ethylbenzene                          | ND            |   | 0.500 | 0.313 |
| Total Xylenes                         | ND            |   | 1.00  | 0.345 |
| Styrene                               | ND            |   | 1.00  | 0.317 |
| Bromoform                             | ND            |   | 0.500 | 0.328 |
| Isopropylbenzene                      | ND            |   | 1.00  | 0.332 |
| 1,1,2,2-Tetrachloroethane             | ND            |   | 1.00  | 0.284 |
| 1,3-Dichlorobenzene                   | ND            |   | 0.500 | 0.386 |
| 1,4-Dichlorobenzene                   | ND            |   | 0.500 | 0.397 |
| 1,2-Dichlorobenzene                   | ND            |   | 0.500 | 0.354 |
| 1,2-Dibromo-3-chloropropane           | ND            |   | 1.00  | 0.410 |
| 1,2,4-Trichlorobenzene                | ND            |   | 1.00  | 0.358 |
| 1,2,3-Trichlorobenzene                | ND            |   | 1.00  | 0.406 |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | ND            |   | 1.00  | 0.538 |
| Methyl acetate                        | ND            |   | 0.500 | 0.345 |
| Cyclohexane                           | ND            |   | 1.00  | 0.469 |
| Methylcyclohexane                     | ND            |   | 1.00  | 0.421 |
| 1,3-Dichloropropene (cis- and trans-) | ND            |   | 1.00  | 0.264 |
| Total Target Compounds (52):          | 2.96          | J |       |       |

Total Target Compounds (52):

B ---- Compound detected in Blank

J --- Value Less than RL & greater than MDL

E --- Exceeds upper level of Calibration curve

D --- Dilution Performed

C --- Common laboratory contamination

## VOLATILE ORGANICS Tentatively Identified Compounds

| CAS #        | Compound        | Concentration Q       | Time                 |  |  |  |  |
|--------------|-----------------|-----------------------|----------------------|--|--|--|--|
|              |                 | Estimated             | Retention            |  |  |  |  |
| Date File: 1 | K6632.D         | 632.D % Moisture: 100 |                      |  |  |  |  |
| Date Analy   | zed: 06/17/2022 | Dilution Factor: 1    |                      |  |  |  |  |
| Date Receiv  | ved: 06/09/2022 | Matrix-Units: Aque    | ous-µg/L             |  |  |  |  |
| Client ID:   | MW11D           | Sample wt/vol: 5ml    | -<br>                |  |  |  |  |
| Lab ID: E2   | 2-03403-001     | GC/MS Column: D       | GC/MS Column: DB-624 |  |  |  |  |

No peaks detected

Total TICs =

D --- Dilution Performed

J ---- Estimated concentration for TICs

0

N --- Presumptive evidence of a compound from the use of GC/MS NIST library search

Lab ID: E22-03403-002 Client ID: MW10D Date Received: 06/09/2022 Date Analyzed: 06/17/2022 Data file: K6633.D 06/17/2022 10:29 GC/MS Column: DB-624 Sample wt/vol: 0.1mL Matrix-Units: Aqueous-µg/L % Moisture: 100 Dilution Factor: 50

| Compound                       | Concentration | Q | RL   | MDL  |
|--------------------------------|---------------|---|------|------|
| Dichlorodifluoromethane        | ND            |   | 50.0 | 27.6 |
| Chloromethane                  | ND            |   | 25.0 | 15.5 |
| Vinyl chloride                 | ND            |   | 50.0 | 17.6 |
| Bromomethane                   | ND            |   | 50.0 | 19.3 |
| Chloroethane                   | ND            |   | 25.0 | 16.2 |
| Trichlorofluoromethane         | ND            |   | 50.0 | 25.2 |
| 1,1-Dichloroethene             | ND            |   | 25.0 | 18.2 |
| Acetone                        | ND            |   | 100  | 42.4 |
| Carbon disulfide               | ND            |   | 50.0 | 20.2 |
| Methylene chloride             | ND            |   | 50.0 | 25.0 |
| trans-1,2-Dichloroethene       | ND            |   | 25.0 | 18.6 |
| Methyl tert-butyl ether (MTBE) | ND            |   | 25.0 | 12.3 |
| 1,1-Dichloroethane             | ND            |   | 25.0 | 14.3 |
| cis-1,2-Dichloroethene         | 2990          | D | 25.0 | 13.9 |
| 2-Butanone (MEK)               | ND            |   | 100  | 40.1 |
| Bromochloromethane             | ND            |   | 50.0 | 19.0 |
| Chloroform                     | ND            |   | 25.0 | 14.3 |
| 1,1,1-Trichloroethane          | ND            |   | 25.0 | 19.1 |
| Carbon tetrachloride           | ND            |   | 25.0 | 17.5 |
| 1,2-Dichloroethane (EDC)       | ND            |   | 25.0 | 13.7 |
| Benzene                        | ND            |   | 25.0 | 13.5 |
| Trichloroethene                | 6260          | D | 25.0 | 17.4 |
| 1,2-Dichloropropane            | ND            |   | 25.0 | 13.6 |
| 1,4-Dioxane                    | ND            |   | 5000 | 2560 |
| Bromodichloromethane           | ND            |   | 25.0 | 12.9 |
| cis-1,3-Dichloropropene        | ND            |   | 50.0 | 13.2 |
| 4-Methyl-2-pentanone (MIBK)    | ND            |   | 50.0 | 30.6 |

Lab ID: E22-03403-002 Client ID: MW10D Date Received: 06/09/2022 Date Analyzed: 06/17/2022 Data file: K6633.D 06/17/2022 10:29 GC/MS Column: DB-624 Sample wt/vol: 0.1mL Matrix-Units: Aqueous-µg/L % Moisture: 100 Dilution Factor: 50

| Compound                              | Concentration | Q | RL   | MDL  |
|---------------------------------------|---------------|---|------|------|
| Toluene                               | ND            |   | 25.0 | 15.1 |
| trans-1,3-Dichloropropene             | ND            |   | 50.0 | 16.5 |
| 1,1,2-Trichloroethane                 | ND            |   | 25.0 | 15.7 |
| Tetrachloroethene                     | 27.8          | D | 25.0 | 18.3 |
| 2-Hexanone                            | ND            |   | 50.0 | 40.9 |
| Dibromochloromethane                  | ND            |   | 25.0 | 13.2 |
| 1,2-Dibromoethane (EDB)               | ND            |   | 25.0 | 14.5 |
| Chlorobenzene                         | ND            |   | 25.0 | 15.2 |
| Ethylbenzene                          | ND            |   | 25.0 | 15.7 |
| Total Xylenes                         | ND            |   | 50.0 | 17.3 |
| Styrene                               | ND            |   | 50.0 | 15.9 |
| Bromoform                             | ND            |   | 25.0 | 16.4 |
| Isopropylbenzene                      | ND            |   | 50.0 | 16.6 |
| 1,1,2,2-Tetrachloroethane             | ND            |   | 50.0 | 14.2 |
| 1,3-Dichlorobenzene                   | ND            |   | 25.0 | 19.3 |
| 1,4-Dichlorobenzene                   | ND            |   | 25.0 | 19.9 |
| 1,2-Dichlorobenzene                   | ND            |   | 25.0 | 17.7 |
| 1,2-Dibromo-3-chloropropane           | ND            |   | 50.0 | 20.5 |
| 1,2,4-Trichlorobenzene                | ND            |   | 50.0 | 17.9 |
| 1,2,3-Trichlorobenzene                | ND            |   | 50.0 | 20.3 |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | ND            |   | 50.0 | 26.9 |
| Methyl acetate                        | ND            |   | 25.0 | 17.3 |
| Cyclohexane                           | ND            |   | 50.0 | 23.5 |
| Methylcyclohexane                     | ND            |   | 50.0 | 21.1 |
| 1,3-Dichloropropene (cis- and trans-) | ND            |   | 50.0 | 13.2 |
| Total Target Compounds (52):          | 9280          | D |      |      |

D --- Dilution Performed

B --- Compound detected in Blank

J --- Value Less than RL & greater than MDL E --- Exceeds upper level of Calibration curve C --- Common laboratory contamination

Page 2 of 2

## VOLATILE ORGANICS Tentatively Identified Compounds

| CAS #        | Compound        | Concentration Q    | 2 Time               |  |  |  |
|--------------|-----------------|--------------------|----------------------|--|--|--|
|              |                 | Estimated          | Retention            |  |  |  |
| Date File: 1 | K6633.D         | % Moisture: 100    |                      |  |  |  |
| Date Analy   | zed: 06/17/2022 | Dilution Factor: 5 | 0                    |  |  |  |
| Date Receiv  | ved: 06/09/2022 | Matrix-Units: Aqu  | ieous-µg/L           |  |  |  |
| Client ID: 1 | MW10D           | Sample wt/vol: 0.  | lmL                  |  |  |  |
| Lab ID: E2   | 2-03403-002     | GC/MS Column:      | GC/MS Column: DB-624 |  |  |  |

No peaks detected

Total TICs =

D --- Dilution Performed

J ---- Estimated concentration for TICs

0

N ---- Presumptive evidence of a compound from the use of GC/MS NIST library search

Lab ID: E22-03403-003 Client ID: FIELD\_BLANK Date Received: 06/09/2022 Date Analyzed: 06/17/2022 Data file: K6631.D 06/17/2022 09:32 GC/MS Column: DB-624 Sample wt/vol: 5mL Matrix-Units: Aqueous-µg/L % Moisture: 100 Dilution Factor: 1

| Compound                       | Concentration | Q | RL    | MDL   |
|--------------------------------|---------------|---|-------|-------|
| Dichlorodifluoromethane        | ND            |   | 1.00  | 0.552 |
| Chloromethane                  | ND            |   | 0.500 | 0.309 |
| Vinyl chloride                 | ND            |   | 1.00  | 0.352 |
| Bromomethane                   | ND            |   | 1.00  | 0.386 |
| Chloroethane                   | ND            |   | 0.500 | 0.324 |
| Trichlorofluoromethane         | ND            |   | 1.00  | 0.503 |
| 1,1-Dichloroethene             | ND            |   | 0.500 | 0.363 |
| Acetone                        | ND            |   | 2.00  | 0.847 |
| Carbon disulfide               | ND            |   | 1.00  | 0.403 |
| Methylene chloride             | ND            |   | 1.00  | 0.500 |
| trans-1,2-Dichloroethene       | ND            |   | 0.500 | 0.372 |
| Methyl tert-butyl ether (MTBE) | ND            |   | 0.500 | 0.245 |
| 1,1-Dichloroethane             | ND            |   | 0.500 | 0.285 |
| cis-1,2-Dichloroethene         | ND            |   | 0.500 | 0.277 |
| 2-Butanone (MEK)               | ND            |   | 2.00  | 0.802 |
| Bromochloromethane             | ND            |   | 1.00  | 0.379 |
| Chloroform                     | ND            |   | 0.500 | 0.285 |
| 1,1,1-Trichloroethane          | ND            |   | 0.500 | 0.381 |
| Carbon tetrachloride           | ND            |   | 0.500 | 0.349 |
| 1,2-Dichloroethane (EDC)       | ND            |   | 0.500 | 0.273 |
| Benzene                        | ND            |   | 0.500 | 0.270 |
| Trichloroethene                | ND            |   | 0.500 | 0.347 |
| 1,2-Dichloropropane            | ND            |   | 0.500 | 0.272 |
| 1,4-Dioxane                    | ND            |   | 100   | 51.1  |
| Bromodichloromethane           | ND            |   | 0.500 | 0.258 |
| cis-1,3-Dichloropropene        | ND            |   | 1.00  | 0.264 |
| 4-Methyl-2-pentanone (MIBK)    | ND            |   | 1.00  | 0.611 |

Lab ID: E22-03403-003 Client ID: FIELD\_BLANK Date Received: 06/09/2022 Date Analyzed: 06/17/2022 Data file: K6631.D 06/17/2022 09:32 GC/MS Column: DB-624 Sample wt/vol: 5mL Matrix-Units: Aqueous-µg/L % Moisture: 100 Dilution Factor: 1

| Compound                              | Concentration | Q | RL    | MDL   |
|---------------------------------------|---------------|---|-------|-------|
| Toluene                               | ND            |   | 0.500 | 0.302 |
| trans-1,3-Dichloropropene             | ND            |   | 1.00  | 0.330 |
| 1,1,2-Trichloroethane                 | ND            |   | 0.500 | 0.313 |
| Tetrachloroethene                     | ND            |   | 0.500 | 0.365 |
| 2-Hexanone                            | ND            |   | 1.00  | 0.818 |
| Dibromochloromethane                  | ND            |   | 0.500 | 0.263 |
| 1,2-Dibromoethane (EDB)               | ND            |   | 0.500 | 0.289 |
| Chlorobenzene                         | ND            |   | 0.500 | 0.304 |
| Ethylbenzene                          | ND            |   | 0.500 | 0.313 |
| Total Xylenes                         | ND            |   | 1.00  | 0.345 |
| Styrene                               | ND            |   | 1.00  | 0.317 |
| Bromoform                             | ND            |   | 0.500 | 0.328 |
| Isopropylbenzene                      | ND            |   | 1.00  | 0.332 |
| 1,1,2,2-Tetrachloroethane             | ND            |   | 1.00  | 0.284 |
| 1,3-Dichlorobenzene                   | ND            |   | 0.500 | 0.386 |
| 1,4-Dichlorobenzene                   | ND            |   | 0.500 | 0.397 |
| 1,2-Dichlorobenzene                   | ND            |   | 0.500 | 0.354 |
| 1,2-Dibromo-3-chloropropane           | ND            |   | 1.00  | 0.410 |
| 1,2,4-Trichlorobenzene                | ND            |   | 1.00  | 0.358 |
| 1,2,3-Trichlorobenzene                | ND            |   | 1.00  | 0.406 |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | ND            |   | 1.00  | 0.538 |
| Methyl acetate                        | ND            |   | 0.500 | 0.345 |
| Cyclohexane                           | ND            |   | 1.00  | 0.469 |
| Methylcyclohexane                     | ND            |   | 1.00  | 0.421 |
| 1,3-Dichloropropene (cis- and trans-) | ND            |   | 1.00  | 0.264 |
|                                       |               |   |       |       |

Total Target Compounds (52):

0

D ---- Dilution Performed

J ---- Value Less than RL & greater than MDL

B --- Compound detected in Blank

E --- Exceeds upper level of Calibration curve

C --- Common laboratory contamination

## VOLATILE ORGANICS Tentatively Identified Compounds

| Lab ID: E22                                  |                |  | GC/MS Column: DB-624       |   |           |  |
|----------------------------------------------|----------------|--|----------------------------|---|-----------|--|
| Client ID: F                                 | IELD_BLANK     |  | Sample wt/vol: 5mL         |   |           |  |
| Date Receive                                 | ed: 06/09/2022 |  | Matrix-Units: Aqueous-µg/L |   |           |  |
| Date Analyzed: 06/17/2022 Dilution Factor: 1 |                |  |                            |   |           |  |
| Date File: K                                 |                |  |                            |   |           |  |
|                                              |                |  | Estimated                  |   | Retention |  |
| CAS #                                        | Compound       |  | Concentration              | Q | Time      |  |
| n                                            |                |  |                            |   |           |  |

001066-40-6 Silanol, trimethyl-

Total TICs = 7.70 JN

D ---- Dilution Performed

J --- Estimated concentration for TICs

7.70 JN

5.35

N --- Presumptive evidence of a compound from the use of GC/MS NIST library search

Lab ID: E22-03403-004 Client ID: TRIP\_BLANK Date Received: 06/09/2022 Date Analyzed: 06/17/2022 Data file: K6630.D 06/17/2022 09:03 GC/MS Column: DB-624 Sample wt/vol: 5mL Matrix-Units: Aqueous-µg/L % Moisture: 100 Dilution Factor: 1

| Compound                       | Concentration | Q | RL    | MDL   |
|--------------------------------|---------------|---|-------|-------|
| Dichlorodifluoromethane        | ND            |   | 1.00  | 0.552 |
| Chloromethane                  | ND            |   | 0.500 | 0.309 |
| Vinyl chloride                 | ND            |   | 1.00  | 0.352 |
| Bromomethane                   | ND            |   | 1.00  | 0.386 |
| Chloroethane                   | ND            |   | 0.500 | 0.324 |
| Trichlorofluoromethane         | ND            |   | 1.00  | 0.503 |
| 1,1-Dichloroethene             | ND            |   | 0.500 | 0.363 |
| Acetone                        | ND            |   | 2.00  | 0.847 |
| Carbon disulfide               | ND            |   | 1.00  | 0.403 |
| Methylene chloride             | ND            |   | 1.00  | 0.500 |
| trans-1,2-Dichloroethene       | ND            |   | 0.500 | 0.372 |
| Methyl tert-butyl ether (MTBE) | ND            |   | 0.500 | 0.245 |
| 1,1-Dichloroethane             | ND            |   | 0.500 | 0.285 |
| cis-1,2-Dichloroethene         | ND            |   | 0.500 | 0.277 |
| 2-Butanone (MEK)               | ND            |   | 2.00  | 0.802 |
| Bromochloromethane             | ND            |   | 1.00  | 0.379 |
| Chloroform                     | ND            |   | 0.500 | 0.285 |
| 1,1,1-Trichloroethane          | ND            |   | 0.500 | 0.381 |
| Carbon tetrachloride           | ND            |   | 0.500 | 0.349 |
| 1,2-Dichloroethane (EDC)       | ND            |   | 0.500 | 0.273 |
| Benzene                        | ND            |   | 0.500 | 0.270 |
| Trichloroethene                | ND            |   | 0.500 | 0.347 |
| 1,2-Dichloropropane            | ND            |   | 0.500 | 0.272 |
| 1,4-Dioxane                    | ND            |   | 100   | 51.1  |
| Bromodichloromethane           | ND            |   | 0.500 | 0.258 |
| cis-1,3-Dichloropropene        | ND            |   | 1.00  | 0.264 |
| 4-Methyl-2-pentanone (MIBK)    | ND            |   | 1.00  | 0.611 |

Lab ID: E22-03403-004 Client ID: TRIP\_BLANK Date Received: 06/09/2022 Date Analyzed: 06/17/2022 Data file: K6630.D 06/17/2022 09:03 GC/MS Column: DB-624 Sample wt/vol: 5mL Matrix-Units: Aqueous-µg/L % Moisture: 100 Dilution Factor: 1

| Compound                              | Concentration | Q | RL    | MDL   |
|---------------------------------------|---------------|---|-------|-------|
| Toluene                               | ND            |   | 0.500 | 0.302 |
| trans-1,3-Dichloropropene             | ND            |   | 1.00  | 0.330 |
| 1,1,2-Trichloroethane                 | ND            |   | 0.500 | 0.313 |
| Tetrachloroethene                     | ND            |   | 0.500 | 0.365 |
| 2-Hexanone                            | ND            |   | 1.00  | 0.818 |
| Dibromochloromethane                  | ND            |   | 0.500 | 0.263 |
| 1,2-Dibromoethane (EDB)               | ND            |   | 0.500 | 0.289 |
| Chlorobenzene                         | ND            |   | 0.500 | 0.304 |
| Ethylbenzene                          | ND            |   | 0.500 | 0.313 |
| Total Xylenes                         | ND            |   | 1.00  | 0.345 |
| Styrene                               | ND            |   | 1.00  | 0.317 |
| Bromoform                             | ND            |   | 0.500 | 0.328 |
| Isopropylbenzene                      | ND            |   | 1.00  | 0.332 |
| 1,1,2,2-Tetrachloroethane             | ND            |   | 1.00  | 0.284 |
| 1,3-Dichlorobenzene                   | ND            |   | 0.500 | 0.386 |
| 1,4-Dichlorobenzene                   | ND            |   | 0.500 | 0.397 |
| 1,2-Dichlorobenzene                   | ND            |   | 0.500 | 0.354 |
| 1,2-Dibromo-3-chloropropane           | ND            |   | 1.00  | 0.410 |
| 1,2,4-Trichlorobenzene                | ND            |   | 1.00  | 0.358 |
| 1,2,3-Trichlorobenzene                | ND            |   | 1.00  | 0.406 |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | ND            |   | 1.00  | 0.538 |
| Methyl acetate                        | ND            |   | 0.500 | 0.345 |
| Cyclohexane                           | ND            |   | 1.00  | 0.469 |
| Methylcyclohexane                     | ND            |   | 1.00  | 0.421 |
| 1,3-Dichloropropene (cis- and trans-) | ND            |   | 1.00  | 0.264 |
|                                       |               |   |       |       |

Total Target Compounds (52):

0

D --- Dilution Performed

 $\mathsf{J}$  --- Value Less than RL & greater than MDL

E --- Exceeds upper level of Calibration curve

B --- Compound detected in Blank

C --- Common laboratory contamination

## VOLATILE ORGANICS QC SUMMARY

#### VOLATILE SURROGATE PERCENT RECOVERY SUMMARY

**Date Analyzed:** 06/17/2022

| Lab Sample ID    | Matrix  | File ID | SMC1 # | SMC2 | # SMC3 # |
|------------------|---------|---------|--------|------|----------|
| BLK220616-02     | AQUEOUS | K6617.D | 92     | 96   | 95       |
| E22-03482-010    | AQUEOUS | K6618.D | 90     | 96   | 96       |
| LCSA220616-02    | AQUEOUS | K6619.D | 91     | 98   | 102      |
| E22-03482-009MS  | AQUEOUS | K6620.D | 89     | 98   | 101      |
| E22-03482-005    | AQUEOUS | K6622.D | 91     | 95   | 94       |
| E22-03482-009    | AQUEOUS | K6623.D | 93     | 96   | 95       |
| E22-03482-012    | AQUEOUS | K6624.D | 96     | 96   | 96       |
| E22-03482-014    | AQUEOUS | K6625.D | 99     | 96   | 95       |
| E22-03482-013    | AQUEOUS | K6626.D | 100    | 95   | 100      |
| E22-03482-015    | AQUEOUS | K6627.D | 98     | 96   | 100      |
| E22-03449-001    | AQUEOUS | K6628.D | 95     | 97   | 96       |
| E22-03449-002    | AQUEOUS | K6629.D | 97     | 97   | 96       |
| E22-03403-004    | AQUEOUS | K6630.D | 99     | 97   | 96       |
| E22-03403-003    | AQUEOUS | K6631.D | 100    | 96   | 95       |
| E22-03403-001    | AQUEOUS | K6632.D | 100    | 96   | 97       |
| E22-03403-002    | AQUEOUS | K6633.D | 100    | 95   | 92       |
| E22-03449-002DUP | AQUEOUS | K6634.D | 101    | 96   | 93       |
| E22-03482-011    | AQUEOUS | K6635.D | 100    | 98   | 101      |
| E22-03482-008DL  | AQUEOUS | K6636.D | 97     | 100  | 101      |

|                                                                                                                                                                                            | Concentration              | DKQPs                      | Leachate<br>Aqueous        | Soil                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|----------------------------|----------------------------|----------------------------|
| SMC1 = 1,2-Dichloroethane-d4<br>SMC2 = Toluene-d8<br>SMC3 = Bromofluorobenzene                                                                                                             | 50 ppb<br>50 ppb<br>50 ppb | 70-130<br>70-130<br>70-130 | 80-122<br>70-127<br>79-123 | 33-166<br>48-142<br>42-149 |
| <ul> <li># Column used to flag recovery values that did no</li> <li>* Values outside of QC limits</li> <li>\$ Values outside of NJ DKQP limits</li> <li>D Surrogate diluted out</li> </ul> | t meet criteria            |                            |                            | ~                          |
| M Matrix interference                                                                                                                                                                      |                            |                            | FORM                       | 2                          |

8260

#### LCS ACCURACY REPORT

Lab ID: LCSA220616-02 Date Received: NA Date Analyzed: 06/17/2022 LCS Data file: K6619.D

GC/MS Column: DB-624 Sample wt/vol: 5mL Matrix-Units: Aqueous-µg/L % Moisture: 100 Dilution Factor: 1

|                                |           | Conc. | %Rec. |   |         |
|--------------------------------|-----------|-------|-------|---|---------|
| Compound                       | Conc. Add | LCS   | LCS   | # | Limits  |
| Dichlorodifluoromethane        | 50.0      | 50.7  | 101   |   | 37-146  |
| Chloromethane                  | 50.0      | 49.7  | 99    |   | 34-141  |
| Vinyl chloride                 | 50.0      | 54.4  | 109   |   | 60-130  |
| Bromomethane                   | 50.0      | 46.4  | 93    |   | 58-143  |
| Chloroethane                   | 50.0      | 49.3  | 99    |   | 57-154  |
| Trichlorofluoromethane         | 50.0      | 51.6  | 103   |   | 41-139  |
| Acrolein                       | 150       | 141.3 | 94    |   | 35-156  |
| l,1-Dichloroethene             | 50.0      | 50.1  | 100   |   | 51-151  |
| Acetone                        | 100       | 76.1  | 76    |   | 61-144  |
| Carbon disulfide               | 50.0      | 49.4  | 99    |   | 52-156  |
| Vinyl acetate                  | 50.0      | 46.0  | 92    |   | -13-148 |
| Methylene chloride             | 50.0      | 48.2  | 96    |   | 50-145  |
| Acrylonitrile                  | 150.0     | 126.3 | 84    |   | 52-158  |
| ert-Butyl alcohol (TBA)        | 100.0     | 90.7  | 91    |   | 60-140  |
| rans-1,2-Dichloroethene        | 50.0      | 48.1  | 96    |   | 50-149  |
| Methyl tert-butyl ether (MTBE) | 50.0      | 49.4  | 99    |   | 62-132  |
| 1,1-Dichloroethane             | 50.0      | 48.8  | 98    |   | 62-132  |
| Diisopropyl ether (DIPE)       | 50.0      | 48.7  | 97    |   | 38-148  |
| cis-1,2-Dichloroethene         | 50.0      | 50.6  | 101   |   | 64-133  |
| 2,2-Dichloropropane            | 50.0      | 48.9  | 98    |   | 37-153  |
| 2-Butanone (MEK)               | 100       | 81.2  | 81    |   | 55-135  |
| Bromochloromethane             | 50.0      | 49.5  | 99    |   | 56-138  |
| Chloroform                     | 50.0      | 48.2  | 96    |   | 57-133  |
| 1,1,1-Trichloroethane          | 50.0      | 51.1  | 102   |   | 42-142  |
| Carbon tetrachloride           | 50.0      | 51.4  | 103   |   | 40-144  |
| ,1-Dichloropropene             | 50.0      | 51.6  | 103   |   | 57-133  |
| ,2-Dichloroethane (EDC)        | 50.0      | 46.0  | 92    |   | 43-143  |
| Benzene                        | 50.0      | 51.0  | 102   |   | 53-140  |
| Frichloroethene                | 50.0      | 54.4  | 109   |   | 42-139  |
| ,2-Dichloropropane             | 50.0      | 47.7  | 95    |   | 62-137  |
| Dibromomethane                 | 50.0      | 47.4  | 95    |   | 50-140  |
| ,4-Dioxane                     | 1500      | 1337  | 89    |   | 62-131  |
| Bromodichloromethane           | 50.0      | 49.5  | 99    |   | 50-139  |
| 2-Chloroethyl vinyl ether      | 100       | 95.4  | 95    |   | 32-150  |
| sis-1,3-Dichloropropene        | 50.0      | 47.1  | 94    |   | 41-152  |
| -Methyl-2-pentanone (MIBK)     | 100       | 97.6  | 98    |   | 41-146  |
| Toluene                        | 50.0      | 52.3  | 105   |   | 42-150  |
| rans-1,3-Dichloropropene       | 50.0      | 47.0  | 94    |   | 40-149  |
| ,1,2-Trichloroethane           | 50.0      | 48.6  | 97    |   | 59-137  |
| Tetrachloroethene              | 50.0      | 55.6  | 111   |   | 51-131  |
| ,3-Dichloropropane             | 50.0      | 50.0  | 100   |   | 50-147  |

#### LCS ACCURACY REPORT

Lab ID: LCSA220616-02 Date Received: NA Date Analyzed: 06/17/2022 LCS Data file: K6619,D GC/MS Column: DB 624 Sample wt/vol: 5mL Matrix-Units: Aqueous-µg/L % Moisture: 100 Dilution Factor: 1

| CompoundAddLC8LC8 $\mu$ 2-Hexanone10095.596Dibromochloromethane50.052.71051,2-Dibromoethane (EDB)50.051.3103Chlorobenzene50.050.41011,1,1,2-Tetrachloroethane50.051.1102Ethylbenzene50.054.0108m,p-Xylene100.0109.2109o-Xylene50.054.1108Bromoform50.053.2106Isopropylbenzene50.055.71111,1,2,2-Tetrachloroethane50.055.71111,1,2,2-Tetrachloroethane50.055.71111,1,2,2-Tetrachloroethane50.053.51071,2,3-Trichloroptopane50.053.51071,2,3-Trichloroptopane50.055.41112-Chlorotoluene50.053.21064-Chlorotoluene50.053.71071,3,5-Trimethylbenzene50.053.71071,2,4-Trimethylbenzene50.053.71071,2,4-Trimethylbenzene50.053.71071,2,4-Trimethylbenzene50.052.2104sec-Butylbenzene50.052.2104sec-Butylbenzene50.052.61051,3-Dichlorobenzene50.053.81081,3-Dichlorobenzene50.053.81081,3-Dichlorobenzene50.053.81081,3-Dichlorobenzene <td< th=""><th>Limits<br/>57-139<br/>36-150<br/>46-149<br/>46-148<br/>62-138<br/>46-156<br/>55-142<br/>43-166<br/>50-161<br/>31-149<br/>70-130<br/>51-131<br/>65-132<br/>57-144<br/>63-132<br/>38-161<br/>59-147</th></td<> | Limits<br>57-139<br>36-150<br>46-149<br>46-148<br>62-138<br>46-156<br>55-142<br>43-166<br>50-161<br>31-149<br>70-130<br>51-131<br>65-132<br>57-144<br>63-132<br>38-161<br>59-147 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Dibromochloromethane $50.0$ $52.7$ $105$ $1,2$ -Dibromoethane (EDB) $50.0$ $51.3$ $103$ Chlorobenzene $50.0$ $50.4$ $101$ $1,1,1,2$ -Tetrachloroethane $50.0$ $51.1$ $102$ Ethylbenzene $50.0$ $54.0$ $108$ m,p-Xylene $100.0$ $109.2$ $109$ o-Xylene $50.0$ $54.8$ $110$ Styrene $50.0$ $54.1$ $108$ Bromoform $50.0$ $54.1$ $108$ Isopropylbenzene $50.0$ $54.1$ $108$ Bromoform $50.0$ $55.7$ $111$ $1,1,2,2$ -Tetrachloroethane $50.0$ $55.7$ $111$ $1,1,2,2$ -Tetrachloroethane $50.0$ $53.5$ $107$ $1,2,3$ -Trichloropropane $50.0$ $55.4$ $111$ $2$ -Chlorotoluene $50.0$ $53.7$ $107$ $1,3,5$ -Trimethylbenzene $50.0$ $53.7$ $107$ $1,3,4$ -Trimethylbenzene $50.0$ $53.7$ $107$ $1,2,4$ -Trimethylbenzene $50.0$ $53.7$ $107$ $1,2,4$ -Trimethylbenzene $50.0$ $53.7$ $107$ $1,3,5$ -Trimethylbenzene $50.0$ $53.7$ $107$ $1,2,4$ -Trimethylbenzene $50.0$ $52.2$ $104$ sec-Butylbenzene $50.0$ $52.6$ $105$ $1,3$ -Dichlorobenzene $50.0$ $52.6$ $105$ $4$ -Isopropyltoluene $50.0$ $53.8$ $108$                                                   | 36-150<br>46-149<br>46-148<br>62-138<br>46-156<br>55-142<br>43-166<br>50-161<br>31-149<br>70-130<br>51-131<br>65-132<br>57-144<br>63-132<br>38-161                               |
| 1,2-Dibromoethane (EDB)50.051.3103Chlorobenzene50.050.41011,1,1,2-Tetrachloroethane50.051.1102Ethylbenzene50.054.0108m,p-Xylene100.0109.2109o-Xylene50.054.8110Styrene50.054.1108Bromoform50.053.2106Isopropylbenzene50.055.71111,1,2,2-Tetrachloroethane50.053.591Bromobenzene50.053.51071,2,3-Trichloropropane50.055.41112-Chlorotoluene50.053.21064-Chlorotoluene50.053.71071,3,5-Trimethylbenzene50.053.21064-Chlorotoluene50.053.71071,2,4-Trimethylbenzene50.053.61111,2,4-Trimethylbenzene50.053.61111,2,4-Trimethylbenzene50.052.2104sec-Butylbenzene50.052.61054-Isopropyltoluene50.053.8108                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 46-149<br>46-148<br>62-138<br>46-156<br>55-142<br>43-166<br>50-161<br>31-149<br>70-130<br>51-131<br>65-132<br>57-144<br>63-132<br>38-161                                         |
| Chlorobenzene50.050.41011,1,1,2-Tetrachloroethane50.051.1102Ethylbenzene50.054.0108m,p-Xylene100.0109.2109o-Xylene50.054.8110Styrene50.054.1108Bromoform50.053.2106Isopropylbenzene50.055.71111,1,2,2-Tetrachloroethane50.053.51071,2,3-Trichloropropane50.053.51071,2,3-Trichloropropane50.054.61091,3,5-Trimethylbenzene50.053.71064-Chlorotoluene50.053.71071,2,4-Trimethylbenzene50.053.21064-Chlorotoluene50.053.71071,2,4-Trimethylbenzene50.053.21064-Chlorotoluene50.053.61111,2,4-Trimethylbenzene50.052.2104sec-Butylbenzene50.052.61051,3-Dichlorobenzene50.053.8108                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 46-148<br>62-138<br>46-156<br>55-142<br>43-166<br>50-161<br>31-149<br>70-130<br>51-131<br>65-132<br>57-144<br>63-132<br>38-161                                                   |
| 1,1,1,2-Tetrachloroethane $50.0$ $51.1$ $102$ Ethylbenzene $50.0$ $54.0$ $108$ m,p-Xylene $100.0$ $109.2$ $109$ o-Xylene $50.0$ $54.8$ $110$ Styrene $50.0$ $54.8$ $110$ Bromoform $50.0$ $54.1$ $108$ Bromoform $50.0$ $53.2$ $106$ Isopropylbenzene $50.0$ $55.7$ $111$ $1,1,2,2$ -Tetrachloroethane $50.0$ $53.5$ $107$ $1,2,3$ -Trichloropropane $50.0$ $49.8$ $100$ n-Propylbenzene $50.0$ $54.6$ $109$ $1,3,5$ -Trimethylbenzene $50.0$ $53.7$ $107$ $1,3,5$ -Trimethylbenzene $50.0$ $53.7$ $107$ tert-Butylbenzene $50.0$ $53.7$ $107$ $1,2,4$ -Trimethylbenzene $50.0$ $52.2$ $104$ sec-Butylbenzene $50.0$ $52.2$ $104$ sec-Butylbenzene $50.0$ $52.6$ $105$ $1,3$ -Dichlorobenzene $50.0$ $52.6$ $105$ $4$ -Isopropyltoluene $50.0$ $53.8$ $108$                                                                                                                                                                                                                                                                                                   | 62-138<br>46-156<br>55-142<br>43-166<br>50-161<br>31-149<br>70-130<br>51-131<br>65-132<br>57-144<br>63-132<br>38-161                                                             |
| Ethylbenzene50.054.0108m,p-Xylene100.0109.2109o-Xylene50.054.8110Styrene50.054.1108Bromoform50.053.2106Isopropylbenzene50.055.71111,1,2,2-Tetrachloroethane50.053.591Bromobenzene50.053.51071,2,3-Trichloropropane50.049.8100n-Propylbenzene50.054.61091,3,5-Trimethylbenzene50.053.7107tert-Butylbenzene50.053.7107tert-Butylbenzene50.052.2104sec-Butylbenzene50.052.21081,3-Dichlorobenzene50.053.8108                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 46-156<br>55-142<br>43-166<br>50-161<br>31-149<br>70-130<br>51-131<br>65-132<br>57-144<br>63-132<br>38-161                                                                       |
| m,p-Xylene100.0109.2109o-Xylene50.054.8110Styrene50.054.1108Bromoform50.053.2106Isopropylbenzene50.055.71111,1,2,2-Tetrachloroethane50.045.591Bromobenzene50.053.51071,2,3-Trichloropropane50.049.8100n-Propylbenzene50.055.41112-Chlorotoluene50.053.21064-Chlorotoluene50.053.71071,2,4-Trimethylbenzene50.053.71071,2,4-Trimethylbenzene50.052.2104sec-Butylbenzene50.054.21081,3-Dichlorobenzene50.053.8108                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 55-142<br>43-166<br>50-161<br>31-149<br>70-130<br>51-131<br>65-132<br>57-144<br>63-132<br>38-161                                                                                 |
| o-Xylene50.054.8110Styrene50.054.1108Bromoform50.053.2106Isopropylbenzene50.055.71111,1,2,2-Tetrachloroethane50.045.591Bromobenzene50.053.51071,2,3-Trichloropropane50.049.8100n-Propylbenzene50.055.41112-Chlorotoluene50.053.21064-Chlorotoluene50.053.21064-Chlorotoluene50.053.7107tert-Butylbenzene50.053.7107tert-Butylbenzene50.052.2104sec-Butylbenzene50.054.21081,3-Dichlorobenzene50.052.61054-Isopropyltoluene50.053.8108                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 43-166<br>50-161<br>31-149<br>70-130<br>51-131<br>65-132<br>57-144<br>63-132<br>38-161                                                                                           |
| Styrene50.054.1108Bromoform50.053.2106Isopropylbenzene50.055.71111,1,2,2-Tetrachloroethane50.045.591Bromobenzene50.053.51071,2,3-Trichloropropane50.049.8100n-Propylbenzene50.055.41112-Chlorotoluene50.054.61091,3,5-Trimethylbenzene50.053.7107tert-Butylbenzene50.053.7107tert-Butylbenzene50.055.61111,2,4-Trimethylbenzene50.052.2104sec-Butylbenzene50.054.21081,3-Dichlorobenzene50.052.61054-Isopropyltoluene50.053.8108                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 50-161<br>31-149<br>70-130<br>51-131<br>65-132<br>57-144<br>63-132<br>38-161                                                                                                     |
| Bromoform50.053.2106Isopropylbenzene50.055.71111,1,2,2-Tetrachloroethane50.045.591Bromobenzene50.053.51071,2,3-Trichloropropane50.049.8100n-Propylbenzene50.055.41112-Chlorotoluene50.054.61091,3,5-Trimethylbenzene50.053.7107tert-Butylbenzene50.053.7107tert-Butylbenzene50.055.61111,2,4-Trimethylbenzene50.052.2104sec-Butylbenzene50.054.21081,3-Dichlorobenzene50.052.61054-Isopropyltoluene50.053.8108                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 31-149<br>70-130<br>51-131<br>65-132<br>57-144<br>63-132<br>38-161                                                                                                               |
| Isopropylbenzene50.055.71111,1,2,2-Tetrachloroethane50.045.591Bromobenzene50.053.51071,2,3-Trichloropropane50.049.8100n-Propylbenzene50.055.41112-Chlorotoluene50.054.61091,3,5-Trimethylbenzene50.053.21064-Chlorotoluene50.053.7107tert-Butylbenzene50.055.61111,2,4-Trimethylbenzene50.052.2104sec-Butylbenzene50.052.61051,3-Dichlorobenzene50.053.8108                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 70-130<br>51-131<br>65-132<br>57-144<br>63-132<br>38-161                                                                                                                         |
| 1,1,2,2-Tetrachloroethane50.045.591Bromobenzene50.053.51071,2,3-Trichloropropane50.049.8100n-Propylbenzene50.055.41112-Chlorotoluene50.054.61091,3,5-Trimethylbenzene50.053.21064-Chlorotoluene50.053.7107tert-Butylbenzene50.055.61111,2,4-Trimethylbenzene50.052.2104sec-Butylbenzene50.052.61051,3-Dichlorobenzene50.053.8108                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 51-131<br>65-132<br>57-144<br>63-132<br>38-161                                                                                                                                   |
| Bromobenzene50.053.51071,2,3-Trichloropropane50.049.8100n-Propylbenzene50.055.41112-Chlorotoluene50.054.61091,3,5-Trimethylbenzene50.053.21064-Chlorotoluene50.053.7107tert-Butylbenzene50.055.61111,2,4-Trimethylbenzene50.052.2104sec-Butylbenzene50.054.21081,3-Dichlorobenzene50.053.8108                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 65-132<br>57-144<br>63-132<br>38-161                                                                                                                                             |
| 1,2,3-Trichloropropane50.049.8100n-Propylbenzene50.055.41112-Chlorotoluene50.054.61091,3,5-Trimethylbenzene50.053.21064-Chlorotoluene50.053.7107tert-Butylbenzene50.055.61111,2,4-Trimethylbenzene50.052.2104sec-Butylbenzene50.054.21081,3-Dichlorobenzene50.052.61054-Isopropyltoluene50.053.8108                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 57-144<br>63-132<br>38-161                                                                                                                                                       |
| n-Propylbenzene50.055.41112-Chlorotoluene50.054.61091,3,5-Trimethylbenzene50.053.21064-Chlorotoluene50.053.7107tert-Butylbenzene50.055.61111,2,4-Trimethylbenzene50.052.2104sec-Butylbenzene50.054.21081,3-Dichlorobenzene50.052.61054-Isopropyltoluene50.053.8108                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 63-132<br>38-161                                                                                                                                                                 |
| 2-Chlorotoluene50.054.61091,3,5-Trimethylbenzene50.053.21064-Chlorotoluene50.053.7107tert-Butylbenzene50.055.61111,2,4-Trimethylbenzene50.052.2104sec-Butylbenzene50.054.21081,3-Dichlorobenzene50.052.61054-Isopropyltoluene50.053.8108                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 38-161                                                                                                                                                                           |
| 1,3,5-Trimethylbenzene50.053.21064-Chlorotoluene50.053.7107tert-Butylbenzene50.055.61111,2,4-Trimethylbenzene50.052.2104sec-Butylbenzene50.054.21081,3-Dichlorobenzene50.052.61054-Isopropyltoluene50.053.8108                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                  |
| 4-Chlorotoluene50.053.7107tert-Butylbenzene50.055.61111,2,4-Trimethylbenzene50.052.2104sec-Butylbenzene50.054.21081,3-Dichlorobenzene50.052.61054-Isopropyltoluene50.053.8108                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 59-147                                                                                                                                                                           |
| tert-Butylbenzene50.055.61111,2,4-Trimethylbenzene50.052.2104sec-Butylbenzene50.054.21081,3-Dichlorobenzene50.052.61054-Isopropyltoluene50.053.8108                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | J / + I + /                                                                                                                                                                      |
| 1,2,4-Trimethylbenzene50.052.2104sec-Butylbenzene50.054.21081,3-Dichlorobenzene50.052.61054-Isopropyltoluene50.053.8108                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 52-141                                                                                                                                                                           |
| sec-Butylbenzene50.054.21081,3-Dichlorobenzene50.052.61054-Isopropyltoluene50.053.8108                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 49-143                                                                                                                                                                           |
| 1,3-Dichlorobenzene50.052.61054-Isopropyltoluene50.053.8108                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 56-147                                                                                                                                                                           |
| 4-Isopropyltoluene 50.0 53.8 108                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 51-143                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 59-131                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 51-143                                                                                                                                                                           |
| 1,4-Dichlorobenzene 50.0 53.3 107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 65-131                                                                                                                                                                           |
| n-Butylbenzene 50.0 49.1 98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 55-142                                                                                                                                                                           |
| 1,2-Dichlorobenzene 50.0 52.1 104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 64-132                                                                                                                                                                           |
| 1,2-Dibromo-3-chloropropane 50.0 39.7 79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 33-161                                                                                                                                                                           |
| 1,2,4-Trichlorobenzene 50.0 41.7 83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 32-148                                                                                                                                                                           |
| Hexachlorobutadiene 50.0 43.2 86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 19-151                                                                                                                                                                           |
| Naphthalene 50.0 39.8 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 67-141                                                                                                                                                                           |
| 1,2,3-Trichlorobenzene 50.0 37.1 74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 34-156                                                                                                                                                                           |
| 1,1,2-Trichloro-1,2,2-trifluoroethane 50.0 55.1 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 56-154                                                                                                                                                                           |
| Methyl acetate 50.0 44.7 89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 41-147                                                                                                                                                                           |
| Cyclohexane 50.0 56.4 113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 38-150                                                                                                                                                                           |
| Methylcyclohexane 50.0 58.2 116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20 120                                                                                                                                                                           |

# Column used to flag recovery and RPD values that did not meet criteria

\* Values outside of QC limits

\$ Values outside of NJ DKQP limits

#### LCS ACCURACY REPORT

| Lab ID: LCSA220616-02     |           |     | GC/MS Colu<br>Sample wt/vo | ol: 5mL     |     |
|---------------------------|-----------|-----|----------------------------|-------------|-----|
| Date Received: NA         |           |     | Matrix-Units               | : Aqueous-µ | g/L |
| Date Analyzed: 06/17/2022 |           |     | % Moisture:                | 100         |     |
| LCS Data file: K6619.D    |           |     | Dilution Fact              | tor: 1      |     |
|                           |           |     |                            |             |     |
|                           |           |     |                            |             |     |
| Compound                  | Conc. Add | LCS | MS Conc.                   | %Rec        | #   |

As per SW-846 8260C, up to 10% of the compounds may be out, but must be within 40-160% As per NJDEP DKQPs, only the following compounds may be in the 40-160% range: Acetone; Bromomethane; 2-Butanone (MEK); Carbon disulfide; Chloroethane; Chloromethane 1,2-Dibromo-3-chloropropane; Dichlorodifluoromethane; 1,4-Dioxane; 2-Hexanone Naphthalene; 4-Methyl-2-pentanone (MIBK); Trichlorofluoromethane

> Leachate Aqueous/Meoh Soil/Sediment 70-130 70-130

LCS ACCURACY (%REC)

# Column used to flag recovery values that did not meet criteria

\* Values outside of QC limits

\$ Values outside of NJ DKQP limits

NC Not calculable

8260

#### SAMPLE MS RESULTS SUMMARY

| Lab ID: E22-03482-009         |        |        | GC/MS (  |           |   | 624              |
|-------------------------------|--------|--------|----------|-----------|---|------------------|
| Client ID: MW-5d/36.00        |        |        | Sample v |           |   |                  |
| Date Received: NA             |        |        | Matrix-U |           |   | s-μg/L           |
| Date Analyzed: 06/17/2022     |        |        | % Moisti |           |   |                  |
| Sample Data file: K6623.D     |        |        | Dilution |           |   |                  |
| Sample MS Data file: K6620    |        |        | Dilution |           |   |                  |
| -                             | Conc.  |        | Conc.    | %Rec      |   |                  |
| Compound                      | Add    | Sample | MS       | MS        | # | Rec. Limits      |
| Dichlorodifluoromethane       | 50.0   | 0.00   | 47.90    | 96        |   | 46-125           |
| Chloromethane                 | 50.0   | 0.00   | 48.40    | 97        |   | 42-131           |
| Vinyl chloride                | 50.0   | 0.00   | 53.60    | 107       |   | 49-146           |
| Bromomethane                  | 50.0   | 0.00   | 45.20    | 90        |   | 44-159           |
| Chloroethane                  | 50.0   | 0.00   | 48.40    | 97        |   | 43-160           |
| Trichlorofluoromethane        | 50.0   | 0.00   | 49.50    | 99        |   | 47-153           |
| Acrolein                      | 150.0  | 0.00   | 141.00   | 94        |   | 9-162            |
| 1,1-Dichloroethene            | 50.0   | 0.00   | 48.30    | 97        |   | 49-155           |
| Acetone                       | 100.0  | 0.00   | 75.30    | 75        |   | 29-181           |
| Carbon disulfide              | 50.0   | 0.00   | 48.10    | 96        |   | 48-152           |
| Vinyl acetate                 | 50.0   | 0.00   | 44.60    | 89        |   | 22-176           |
| Methylene chloride            | 50.0   | 0.00   | 46.70    | 93        |   | 38-160           |
| Acrylonitrile                 | 150.0  | 0.00   | 121.00   | 81        |   | 45-177           |
| tert-Butyl alcohol (TBA)      | 100.0  | 2.50   | 88.90    | 86        |   | 33-164           |
| trans-1,2-Dichloroethene      | 50.0   | 0.00   | 46.10    | 92        |   | 45-154           |
| Methyl tert-butyl ether (MTBF | 50.0   | 3.00   | 47.50    | 89        |   | 49-153           |
| 1,1-Dichloroethane            | 50.0   | 0.00   | 45.90    | 92        |   | 43-147           |
| Diisopropyl ether (DIPE)      | 50.0   | 0.00   | 46.50    | 93        |   | 52-138           |
| cis-1,2-Dichloroethene        | 50.0   | 0.60   | 47.60    | 94        |   | 49-143           |
| 2,2-Dichloropropane           | 50.0   | 0.00   | 48.90    | 98        |   | 42-140           |
| 2-Butanone (MEK)              | 100.0  | 0.00   | 78.10    | 78        |   | 42-141           |
| Bromochloromethane            | 50.0   | 0.00   | 48.00    | 96        |   | 45-153           |
| Chloroform                    | 50.0   | 0.00   | 46.50    | 93        |   | 40-152           |
| 1,1,1-Trichloroethane         | 50.0   | 0.00   | 49.20    | 98        |   | 41-151           |
| Carbon tetrachloride          | 50.0   | 0.00   | 48.40    | 97        |   | 39-153           |
| 1,1-Dichloropropene           | 50.0   | 0.00   | 48.60    | 97        |   | 44-140           |
| 1,2-Dichloroethane (EDC)      | 50.0   | 0.00   | 44.30    | 89        |   | 49-140           |
| Benzene                       | 50.0   | 0.90   | 50.00    | 98        |   | 47-145           |
| Trichloroethene               | 50.0   | 0.00   | 52.80    | 106       |   | 40-158           |
| 1,2-Dichloropropane           | 50.0   | 0.00   | 47.30    | 95        |   | 44-149           |
| Dibromomethane                | 50.0   | 0.00   | 46.90    | 94        |   | 48-147           |
| 1,4-Dioxane                   | 1500.0 | 0.00   | 1395.00  | 93        |   | 36-155           |
| Bromodichloromethane          | 50.0   | 0.00   | 48.40    | 97        |   | 40-159           |
| 2-Chloroethyl vinyl ether     | 100.0  | 0.00   | 94.60    | 95        |   | 0-176            |
| cis-1,3-Dichloropropene       | 50.0   | 0.00   | 46.10    | 92        |   | 46-145           |
| 4-Methyl-2-pentanone (MIBK    | 100.0  | 0.00   | 94.80    | 92<br>95  |   | 49-148           |
| Toluene                       | 50.0   | 0.00   | 51.50    | 103       |   |                  |
| trans-1,3-Dichloropropene     | 50.0   | 0.00   | 46.50    | 93        |   | 47-148<br>43-147 |
| 1,1,2-Trichloroethane         | 50.0   | 0.00   | 40.30    | 95<br>95  |   |                  |
| Tetrachloroethene             | 50.0   | 0.00   | 55.30    | 95<br>111 |   | 47-147           |
| 1,3-Dichloropropane           | 50.0   | 0.00   | 49.80    | 100       |   | 35-150           |
| r,5-Diemotopiopane            | 50.0   | 0.00   | 47.00    | 100       |   | 46-151           |

Page 1 of 3

#### SAMPLE MS RESULTS SUMMARY

| Lab ID: E22-03482-009<br>Client ID: MW-5d/36.00<br>Date Received: NA<br>Date Analyzed: 06/17/2022<br>Sample Data file: K6623.D<br>Sample MS Data file: K6620.1 | D     |          | GC/MS C<br>Sample v<br>Matrix-U<br>% Moistu<br>Dilution 2<br>Dilution 2 | vt/vol: .<br>nits: A<br>ure: 100<br>Factor: | 5mL<br>queous<br>)<br>1 |             |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------|-------------------------------------------------------------------------|---------------------------------------------|-------------------------|-------------|
|                                                                                                                                                                | Conc. | <u> </u> | Conc.                                                                   | %Rec.                                       |                         |             |
| Compound                                                                                                                                                       | Add   | Sample   | MS                                                                      | MS                                          | #                       | Rec. Limits |
| 2-Hexanone                                                                                                                                                     | 100   | 0.00     | 94.40                                                                   | 94                                          |                         | 49-154      |
| Dibromochloromethane                                                                                                                                           | 50    | 0.00     | 52.00                                                                   | 104                                         |                         | 39-164      |
| 1,2-Dibromoethane (EDB)                                                                                                                                        | 50    | 0.00     | 51.20                                                                   | 102                                         |                         | 41-157      |
| Chlorobenzene                                                                                                                                                  | 50    | 0.00     | 49.00                                                                   | 98                                          |                         | 40-150      |
| 1,1,1,2-Tetrachloroethane                                                                                                                                      | 50    | 0.00     | 49.60                                                                   | 99                                          |                         | 38-162      |
| Ethylbenzene                                                                                                                                                   | 50    | 0.00     | 52.60                                                                   | 105                                         |                         | 39-151      |
| m,p-Xylene                                                                                                                                                     | 100   | 0.00     | 108.20                                                                  | 108                                         |                         | 45-148      |
| o-Xylene                                                                                                                                                       | 50    | 0.00     | 53.90                                                                   | 108                                         |                         | 50-145      |
| Styrene                                                                                                                                                        | 50    | 0.00     | 52.80                                                                   | 106                                         |                         | 44-157      |
| Bromoform                                                                                                                                                      | 50    | 0.00     | 53.30                                                                   | 107                                         |                         | 44-149      |
| Isopropylbenzene                                                                                                                                               | 50    | 0.00     | 55.20                                                                   | 110                                         |                         | 37-149      |
| 1,1,2,2-Tetrachlorocthane                                                                                                                                      | 50    | 0.00     | 44.60                                                                   | 89                                          |                         | 39-135      |
| Bromobenzene                                                                                                                                                   | 50    | 0.00     | 53.00                                                                   | 106                                         |                         | 47-146      |
| 1,2,3-Trichloropropane                                                                                                                                         | 50    | 0.00     | 49.10                                                                   | 98                                          |                         | 38-147      |
| n-Propylbenzene                                                                                                                                                | 50    | 0.00     | 54.50                                                                   | 109                                         |                         | 46-136      |
| 2-Chlorotoluene                                                                                                                                                | 50    | 0.00     | 53.60                                                                   | 107                                         |                         | 41-143      |
| 1,3,5-Trimethylbenzene                                                                                                                                         | 50    | 0.00     | 52.20                                                                   | 104                                         |                         | 43-145      |
| 4-Chlorotoluene                                                                                                                                                | 50    | 0.00     | 53.40                                                                   | 107                                         |                         | 43-140      |
| tert-Butylbenzene                                                                                                                                              | 50    | 0.00     | 54.10                                                                   | 108                                         |                         | 45-142      |
| 1,2,4-Trimethylbenzene                                                                                                                                         | 50    | 0.00     | 51.30                                                                   | 103                                         |                         | 43-144      |
| sec-Butylbenzene                                                                                                                                               | 50    | 0.00     | 53.30                                                                   | 107                                         |                         | 42-137      |
| 1,3-Dichlorobenzene                                                                                                                                            | 50    | 0.00     | 51.90                                                                   | 104                                         |                         | 50-127      |
| 4-Isopropyltoluene                                                                                                                                             | 50    | 0.00     | 52.90                                                                   | 106                                         |                         | 50-135      |
| 1,4-Dichlorobenzene                                                                                                                                            | 50    | 0.00     | 53.30                                                                   | 107                                         |                         | 47-131      |
| n-Butylbenzene                                                                                                                                                 | 50    | 0.00     | 48.30                                                                   | 97                                          |                         | 50-128      |
| 1,2-Dichlorobenzene                                                                                                                                            | 50    | 0.00     | 51.80                                                                   | 104                                         |                         | 49-134      |
| 1,2-Dibromo-3-chloropropane                                                                                                                                    | 50    | 0.00     | 39.70                                                                   | 79                                          |                         | 44-134      |
| 1,2,4-Trichlorobenzene                                                                                                                                         | 50    | 0.00     | 42.40                                                                   | 85                                          |                         | 33-144      |
| Hexachlorobutadiene                                                                                                                                            | 50    | 0.00     | 42.60                                                                   | 85                                          |                         | 21-166      |
| Naphthalene                                                                                                                                                    | 50    | 0.00     | 40.20                                                                   | 80                                          |                         | 45-134      |
| 1,2,3-Trichlorobenzene                                                                                                                                         | 50    | 0.00     | 38.20                                                                   | 76                                          |                         | 39-148      |
| 1,1,2-Trichloro-1,2,2-trifluoro                                                                                                                                | 50    | 0.00     | 38.00                                                                   | 76                                          |                         | 43-156      |
| Methyl acetate                                                                                                                                                 | 50    | 0.00     | 42.70                                                                   | 85                                          |                         | 36-157      |
| Cyclohexane                                                                                                                                                    | 50    | 0.00     | 53.00                                                                   | 106                                         |                         | 47-132      |
| Methylcyclohexane                                                                                                                                              | 50    | 0.00     | 53.80                                                                   | 108                                         |                         | 48-131      |

#### Leachate

70-130

#### Aqueous/Meoh Soil/Sediment

MS Recovery Limits (DKQP)

70-130

# Column used to flag recovery and RPD values that did not meet criteria

\* Values outside of QC limits

\$ Values outside of NJ DKQP limits

NC Not calculable

#### SAMPLE MS RESULTS SUMMARY

| Lab ID: E22-03482-009        | GC/MS Column: DB-624       |
|------------------------------|----------------------------|
| Client ID: MW-5d/36.00       | Sample wt/vol: 5mL         |
| Date Received: NA            | Matrix-Units: Aqueous-µg/L |
| Date Analyzed: 06/17/2022    | % Moisture: 100            |
| Sample Data file: K6623.D    | Dilution Factor: 1         |
| Sample MS Data file: K6620.D | Dilution Factor: 1         |
| Conc                         | . Conc. %Rec.              |
| Compound Add                 | Sample MS MS # Rec. Limits |

2-Chloroethyl vinyl ether has zero spike recovery in the MS. This is due to the HCL acid preservation used on the samples. It is a known phenomenon, that this compound decomposes in the presence of acid.

As per SW-846 8260C, up to 10% of the compounds may be out, but may be within 40-160% As per NJDEP DKQPs, only the following compounds may be in the 40-160% range: Acetone; Bromomethane; 2-Butanone (MEK); Carbon disulfide; Chloroethane; Chloromethane 1,2-Dibromo-3-chloropropane; Dichlorodifluoromethane; 1,4-Dioxane; 2-Hexanone Naphthalene; 4-Methyl-2-pentanone (MIBK); Trichlorofluoromethane

Leachate Aqueous/Meoh Soil/Sediment MS Recovery Limits (DKQP) 70-130 70-130 # Column used to flag recovery and RPD values that did not meet criteria \* Values outside of QC limits \$ Values outside of NJ DKQP limits NC Not calculable

Page 3 of 3

#### SAMPLE DUPLICATE RESULTS SUMMARY

| Lab ID: E22-03449-002         | GC/MS Column: DB-624       |
|-------------------------------|----------------------------|
| Client ID: RW-2-2             | Sample wt/vol: 0.025mL     |
| Date Received: 06/13/2022     | Matrix-Units: Aqueous-µg/L |
| Date Analyzed: 06/17/2022     | % Moisture: 100            |
| Sample Data file: K6629.D     | Dilution Factor: 200       |
| Sample Dup Data file: K6634.D | Dilution Factor: 200       |

| Compound                              | Sample Conc. | Sample Dup Conc. | % RPD # |  |
|---------------------------------------|--------------|------------------|---------|--|
| 2-Hexanone                            | 0.00         | 0.00             | NC      |  |
| Dibromochloromethane                  | 0.00         | 0.00             | NC      |  |
| 1,2-Dibromoethane (EDB)               | 0.00         | 0.00             | NC      |  |
| Chlorobenzene                         | 1.00         | 0.90             | 11      |  |
| 1,1,1,2-Tetrachloroethane             | 0.00         | 0.00             | NC      |  |
| Ethylbenzene                          | 0.00         | 0.00             | NC      |  |
| m,p-Xylene                            | 0.00         | 0.00             | NC      |  |
| o-Xylene                              | 0.00         | 0.00             | NC      |  |
| Styrene                               | 0.00         | 0.00             | NC      |  |
| Bromoform                             | 0.00         | 0.00             | NC      |  |
| Isopropylbenzene                      | 0.00         | 0.00             | NC      |  |
| 1,1,2,2-Tetrachloroethane             | 0.00         | 0.00             | NC      |  |
| Bromobenzene                          | 0.00         | 0.00             | NC      |  |
| 1,2,3-Trichloropropane                | 0.00         | 0.00             | NC      |  |
| n-Propylbenzene                       | 0.00         | 0.00             | NC      |  |
| 2-Chlorotoluene                       | 0.00         | 0.00             | NC      |  |
| 1,3,5-Trimethylbenzene                | 0.00         | 0.00             | NC      |  |
| 4-Chlorotoluene                       | 0.00         | 0.00             | NC      |  |
| tert-Butylbenzene                     | 0.00         | 0.00             | NC      |  |
| 1,2,4-Trimethylbenzene                | 0.00         | 0.00             | NC      |  |
| sec-Butylbenzene                      | 0.00         | 0.00             | NC      |  |
| 1,3-Dichlorobenzene                   | 1.80         | 1.60             | 12      |  |
| 4-Isopropyltoluene                    | 0.00         | 0.00             | NC      |  |
| 1,4-Dichlorobenzene                   | 5.50         | 4.70             | 16      |  |
| n-Butylbenzene                        | 0.00         | 0.00             | NC      |  |
| 1,2-Dichlorobenzene                   | 4.60         | 3.90             | 16      |  |
| 1,2-Dibromo-3-chloropropane           | 0.00         | 0.00             | NC      |  |
| 1,2,4-Trichlorobenzene                | 1.20         | 1.10             | 9       |  |
| Hexachlorobutadiene                   | 0.00         | 0.00             | NC      |  |
| Naphthalene                           | 0.00         | 0.00             | NC      |  |
| 1,2,3-Trichlorobenzene                | 0.80         | 0.70             | 13      |  |
| 1,1,2-Trichloro-1,2,2-trifluoroethand | e 0.00       | 0.00             | NC      |  |
| Methyl acetate                        | 0.00         | 0.00             | NC      |  |
| Cyclohexane                           | 0.00         | 0.00             | NC      |  |
| Methylcyclohexane                     | 0.00         | 0.00             | NC      |  |

Sample/Sample Dup RPD Limits

30

# Column used to flag recovery and RPD values that did not meet criteria

\* Values outside of QC limits

NC Not calculable

#### VOLATILE METHOD BLANK SUMMARY

| Lab File ID:   | Lab File ID: <u>K6617.D</u> |                | <u>MSD_K</u> |  |
|----------------|-----------------------------|----------------|--------------|--|
|                | đi                          |                |              |  |
| Date Analyzed: | 06/17/2022                  | Time Analyzed: | 02:47        |  |

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS & MSD:

|                 |                  | Date       | Time     |
|-----------------|------------------|------------|----------|
| Client ID       | Lab Sample ID    | Analyzed   | Analyzed |
| MW-7dR/14.42    | E22-03482-010    | 06/17/2022 | 3:16     |
| LCSA220616-02   | LCSA220616-02    | 06/17/2022 | 3:45     |
| E22-03482-009MS | E22-03482-009MS  | 06/17/2022 | 4:14     |
| FB-2            | E22-03482-005    | 06/17/2022 | 5:11     |
| MW-5d/36.00     | E22-03482-009    | 06/17/2022 | 5:41     |
| MW-10d/36.00    | E22-03482-012    | 06/17/2022 | 6:09     |
| MW-13d1/67.0    | E22-03482-014    | 06/17/2022 | 6:38     |
| MW-12S/12.65    | E22-03482-013    | 06/17/2022 | 7:07     |
| DUPLICATE       | E22-03482-015    | 06/17/2022 | 7:36     |
| RW-2-1          | E22-03449-001    | 06/17/2022 | 8:05     |
| RW-2-2          | E22-03449-002    | 06/17/2022 | 8:34     |
| TRIP_BLANK      | E22-03403-004    | 06/17/2022 | 9:03     |
| FIELD_BLANK     | E22-03403-003    | 06/17/2022 | 9:32     |
| MW11D           | E22-03403-001    | 06/17/2022 | 10:00    |
| MW10D           | E22-03403-002    | 06/17/2022 | 10:29    |
| RW-2-2          | E22-03449-002DUP | 06/17/2022 | 10:57    |
| MW-7S/10.93     | E22-03482-011    | 06/17/2022 | 11:26    |
| MW-3S/11.24     | E22-03482-008DL  | 06/17/2022 | 11:55    |

FORM 4

#### VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK

| Lab File ID: | <u>K6587.D</u>             | BFB Injection Date:    | 06/16/20 | )22 |
|--------------|----------------------------|------------------------|----------|-----|
| Inst ID:     | MSD_K                      | BFB Injection Time:    | 12:07    |     |
| m/z          | Ion Abudance Criteria      | %Relative<br>Abundance |          |     |
|              |                            |                        |          |     |
| 95           | 50 - 200% of mass 174      | 100                    |          |     |
| 96           | 5.0 - 9.0% of mass 95      | 7.0                    |          |     |
| 173          | Less than 2.0% of mass 174 | 0.8 (                  | 0.7      | )1  |
| 174          | 50 - 200% of mass 95       | 88.5                   |          |     |
| 175          | 5.0 - 9.0% of mass 174     | 6.8 (                  | 7.7      | )1  |
| 176          | 95.0 - 105.0% of mass 174  | 89.4 (                 | 101.0    | )1  |
| 177          | 5.0 - 10.0% of mass 176    | 5.8 (                  | 6.5      | )2  |
|              | I-Value is % mass 174      | 2-Value is % mass 176  |          |     |

This check applies to the following SAMPLES, MS, MSD, BLANKS and STANDARDS:

|           | 2.            |         | Date       | Time     |  |
|-----------|---------------|---------|------------|----------|--|
| Client ID | Lab Sample ID | File ID | Analyzed   | Analyzed |  |
| ICC100    | ICC220616     | K6592.D | 06/16/2022 | 14:40    |  |
| ICC00.5   | ICC220616     | K6588.D | 06/16/2022 | 12:43    |  |
| ICC001    | ICC220616     | K6589.D | 06/16/2022 | 13:12    |  |
| ICC005    | ICC220616     | K6590.D | 06/16/2022 | 13:41    |  |
| ICC020    | ICC220616     | K6591.D | 06/16/2022 | 14:10    |  |
| ICC150    | ICC220616     | K6593.D | 06/16/2022 | 15:13    |  |
| ICC200    | ICC220616     | K6594.D | 06/16/2022 | 15:42    |  |
| ICV100    | ICV220616     | K6596.D | 06/16/2022 | 16:40    |  |
|           |               |         |            |          |  |

#### VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK

| Lab File ID: | <u>K6612.D</u>             | BFB Injection Date:   | 06/17/2 | 022 |
|--------------|----------------------------|-----------------------|---------|-----|
| Inst ID:     | MSD_K                      | BFB Injection Time:   | 0:23    |     |
| m/z          | Ion Abudance Criteria      | %Relative<br>Abundanc |         |     |
|              |                            |                       |         |     |
| 95           | 50 - 200% of mass 174      | 100                   |         |     |
| 96           | 5.0 - 9.0% of mass 95      | 6.5                   |         |     |
| 173          | Less than 2.0% of mass 174 | 0.7 (                 | 0.6     | )1  |
| 174          | 50 - 200% of mass 95       | 86.1                  |         |     |
| 175          | 5.0 - 9.0% of mass 174     | 7.3 (                 | 8.5     | )1  |
| 176          | 95.0 - 105.0% of mass 174  | 83.9 (                | 97.5    | )1  |
| 177          | 5.0 - 10.0% of mass 176    | 6.0 (                 | 7.2     | )2  |
|              | 1-Value is % mass 174      | 2-Value is % mass 17  | 6       |     |

This check applies to the following SAMPLES, MS, MSD, BLANKS and STANDARDS:

|                 |                 |         | Date       | Time     |
|-----------------|-----------------|---------|------------|----------|
| Client ID       | Lab Sample ID   | File ID | Analyzed   | Analyzed |
| CCV100          | CCV220616-02    | K6613.D | 06/17/2022 | 0:52     |
| BLK220616-02    | BLK220616-02    | K6617.D | 06/17/2022 | 2:47     |
| MW-7dR/14.42    | E22-03482-010   | K6618.D | 06/17/2022 | 3:16     |
| LCSA220616-02   | LCSA220616-02   | K6619.D | 06/17/2022 | 3:45     |
| E22-03482-009MS | E22-03482-009MS | K6620.D | 06/17/2022 | 4:14     |
| FB-2            | E22-03482-005   | K6622.D | 06/17/2022 | 5:11     |
| MW-5d/36.00     | E22-03482-009   | K6623.D | 06/17/2022 | 5:41     |
| MW-10d/36.00    | E22-03482-012   | K6624.D | 06/17/2022 | 6:09     |
| MW-13d1/67.0    | E22-03482-014   | K6625.D | 06/17/2022 | 6:38     |
| MW-12S/12.65    | E22-03482-013   | K6626.D | 06/17/2022 | 7:07     |
| DUPLICATE       | E22-03482-015   | K6627.D | 06/17/2022 | 7:36     |
| RW-2-1          | E22-03449-001   | K6628.D | 06/17/2022 | 8:05     |
| RW-2-2          | E22-03449-002   | K6629.D | 06/17/2022 | 8:34     |
| TRIP_BLANK      | E22-03403-004   | K6630.D | 06/17/2022 | 9:03     |
| FIELD_BLANK     | E22-03403-003   | K6631.D | 06/17/2022 | 9:32     |
| MW11D           | E22-03403-001   | K6632.D | 06/17/2022 | 10:00    |
| MW10D           | E22-03403-002   | K6633.D | 06/17/2022 | 10:29    |
| RW-2-2          | E22-03449-002DI | K6634.D | 06/17/2022 | 10:57    |
| MW-7S/10.93     | E22-03482-011   | K6635.D | 06/17/2022 | 11:26    |
| MW-3S/11.24     | E22-03482-008DI | K6636.D | 06/17/2022 | 11:55    |

FORM 5

Response Factor Report K\_MSD

| Me<br>Ti<br>La | tle<br>st ( | d Path : C:\MSDCHEM<br>d File : K8220616.M<br>: VOLATILE ORC<br>Jpdate : Fri Jun 1<br>nse Via : Initial C | 1<br>ANICS<br>7 09:1 | BY EPA<br>6:54 2 |                    | D 8260 | D     |         |        |       |       |
|----------------|-------------|-----------------------------------------------------------------------------------------------------------|----------------------|------------------|--------------------|--------|-------|---------|--------|-------|-------|
| Ο.             | 5 = K       | ration Files<br>(6588.D 1.0 =K<br>(6591.D 100 =K                                                          | 6589.D               |                  | 5.0 = K<br>150 = K | 6590.E | )     | 200 = K | 6594.D | )     |       |
|                |             | Compound 0.5                                                                                              |                      |                  |                    |        |       |         |        | vq    |       |
| (*)*           |             |                                                                                                           |                      |                  |                    |        |       |         |        |       | 1975  |
|                | I           | Pentafluorobenzen                                                                                         |                      |                  |                    |        |       |         |        |       |       |
|                | Т           | Dichlorodifluorom                                                                                         |                      |                  |                    |        |       |         |        |       |       |
|                | P           | Chloromethane                                                                                             | 1.097                |                  |                    |        |       |         |        |       | 3.82  |
|                | С           | Vinyl chloride<br>Bromomethane                                                                            |                      |                  |                    |        |       |         |        | 0.787 | 7.86  |
|                | Т           |                                                                                                           |                      |                  |                    |        |       |         |        | 0.591 | 8.12  |
|                | Т           | Chloroethane                                                                                              |                      |                  |                    |        |       |         |        |       | 12.38 |
|                | Т           | Trichlorofluorome                                                                                         |                      |                  |                    |        |       |         |        |       | 19.52 |
|                | Т           | Acrolein                                                                                                  |                      |                  |                    |        |       |         |        |       | 6.54  |
|                | MC          | 1,1-Dichloroethen                                                                                         |                      |                  |                    |        |       |         |        |       | 14.30 |
| 10)            |             | Acetone                                                                                                   |                      | 1.180            | 1.184              | 1.091  | 1.245 | 1.299   | 1.201  | 1.200 | 5.81  |
| 11)            |             | Carbon disulfide                                                                                          |                      | 2.511            | 1.917              | 1.980  | 2.356 | 2.374   | 2.366  | 2.251 | 10.73 |
| 12)            | Т           | Vinyl acetate                                                                                             |                      | 0.471            | 0.471              | 0.476  | 0.523 | 0.510   | 0.503  | 0.492 | 4.61  |
| 13)            |             | Methylene chlorid                                                                                         |                      |                  |                    |        |       |         |        |       | 7.45  |
| 14)            |             | Acrylonitrile                                                                                             |                      |                  |                    |        |       |         |        |       | 4.87  |
| 15)            |             | tert-Butyl alcoho                                                                                         |                      |                  |                    |        |       |         |        | 0.198 | 4.07  |
| 16)            |             | trans-1,2-Dichlor                                                                                         |                      |                  |                    |        |       |         |        |       | 7.58  |
| 17)            |             | Methyl tert-butyl                                                                                         |                      |                  |                    |        |       |         |        |       | 9.34  |
| 18)            | Ρ           | 1,1-Dichloroethan                                                                                         |                      |                  |                    |        |       |         |        |       | 6.26  |
| 19)            |             | Diisopropyl ether                                                                                         |                      |                  |                    |        |       |         |        |       | 16.26 |
| 20)            | Т           | cis-1,2-Dichloroe                                                                                         |                      |                  |                    |        |       |         |        |       | 10.52 |
| 21)            |             | 2,2-Dichloropropa                                                                                         |                      |                  |                    |        |       |         |        |       | 5.49  |
| 22)            | Т           | 2-Butanone (MEK)                                                                                          |                      |                  |                    |        |       |         |        |       | 6.24  |
| 23)            |             | Bromochloromethan                                                                                         |                      |                  |                    |        |       |         |        |       | 2.67  |
| 25)            |             | Chloroform                                                                                                |                      |                  |                    |        |       |         |        |       | 4.90  |
| 26)            |             | 1,1,1-Trichloroet                                                                                         |                      |                  |                    |        |       |         |        |       | 12.62 |
| 27)            |             | Carbon tetrachlor                                                                                         |                      |                  |                    |        |       |         |        |       | 13.37 |
| 28)            |             | 1,1-Dichloroprope                                                                                         |                      |                  |                    |        |       |         |        |       | 10.50 |
| 29)            |             | 1,2-Dichloroethan                                                                                         |                      |                  |                    |        |       |         |        |       |       |
| 30)            | S           | 1,2-Dichloroethan                                                                                         | 0.678                | 0.716            | 0.702              | 0.694  | 0.666 | 0.645   | 0.623  | 0.675 | 4.84  |
|                |             | 1,4-Difluorobenze                                                                                         |                      |                  |                    |        |       |         |        |       |       |
| 32)            |             |                                                                                                           | 1.349                |                  |                    |        |       |         |        |       | 8.23  |
| 33)            |             |                                                                                                           | 0.358                |                  |                    |        |       |         |        |       | 8.04  |
| 34)            |             | 1,2-Dichloropropa                                                                                         |                      |                  |                    |        |       |         |        |       | 5.25  |
| 35)            |             | Dibromomethane                                                                                            |                      |                  |                    |        |       |         |        |       | 3.09  |
| 36)            |             | -                                                                                                         | 0.009                |                  |                    |        |       |         |        |       | 5.54  |
| 37)            |             | Bromodichlorometh                                                                                         |                      |                  |                    |        |       |         |        |       | 6.10  |
| 38)            |             | 2-Chloroethyl vin                                                                                         |                      |                  |                    |        |       |         |        |       | 5.25  |
| 39)            |             | cis-1,3-Dichlorop                                                                                         |                      |                  |                    |        | 0.749 |         |        |       | 12.68 |
| 40)            |             | 4-Methyl-2-pentan                                                                                         |                      |                  |                    |        |       |         |        |       | 16.74 |
| 41)            |             | Toluene-d8                                                                                                |                      |                  |                    |        |       |         |        |       | 2.17  |
| 42)            |             | Toluene                                                                                                   |                      |                  |                    |        |       |         |        |       | 13.14 |
| 43)            |             | trans-1,3-Dichlor                                                                                         |                      |                  |                    |        |       |         |        |       | 16.38 |
| 44)            |             | 1,1,2-Trichloroet                                                                                         |                      |                  |                    |        |       |         |        |       | 5.09  |
| 45)            |             | Tetrachloroethene                                                                                         |                      |                  |                    |        |       |         |        |       | 12.91 |
| 46)            |             | 1,3-Dichloropropa                                                                                         | 0.550                | 0.634            | 0.654              | 0.697  | 0.784 | 0.758   | 0.753  | 0.690 | 12.05 |
| 47)            |             | 2-Hexanone                                                                                                |                      |                  |                    |        |       |         |        |       | 15.97 |
| 48)            |             | Dibromochlorometh                                                                                         | 0 379                | 0.408            | 0.440              | 0.464  | 0.549 | 0.536   | U.525  | 0.472 | 14.11 |
| 49)            | Т           | 1,2-Dibromoethane                                                                                         | 0.411                | 0.443            | 0.427              | 0.457  | 0.517 | 0.507   | U.496  | U.465 | 8.92  |
| 50)            | I           | Chlorobenzene-d5                                                                                          | <u> </u>             |                  |                    | ISTI   | )     |         |        |       |       |
| 51)            |             |                                                                                                           | 1.014                | 1.233            | 1.046              | 1.054  | 1.179 | 1.159   | 1.161  | 1.121 | 7.34  |
| 52)            |             | 1,1,1,2-Tetrachlo                                                                                         |                      |                  |                    |        |       |         |        |       | 4.48  |
|                |             |                                                                                                           |                      |                  |                    |        |       |         |        |       |       |

| 53) |      | Ethylbenzene      | 1.340 | 1.655  | 1.510  | 1.692  | 1.924  | 1.883  | 1.885 | 1.698   | 12.86 |
|-----|------|-------------------|-------|--------|--------|--------|--------|--------|-------|---------|-------|
| 54) | T    | m,p-Xylene        |       |        |        |        |        |        |       | 0.692   | 17.51 |
| 55) | Т    | o-Xylene          |       |        |        |        |        |        |       | 0.686   | 18.44 |
| 56) | Т    | Styrene           |       |        |        |        |        |        |       | 1.180   | 19.19 |
| 57) | Ρ    | Bromoform         | 0.333 |        |        |        |        |        |       | 0.360   | 13.98 |
| 58) | Т    | Isopropylbenzene  |       |        |        |        |        |        |       | 1.714   | 17.91 |
| 59) | S    | Bromofluorobenzen | 0.444 | 0.456  | 0.462  | 0.481  | 0.484  | 0.470  | 0.473 | 0.467   | 3.01  |
| 60) | Ρ    | 1,1,2,2-Tetrachlo |       | 0.667  | 0.640  | 0.671  | 0.708  | 0.711  | 0.708 | 0.684   | 4.29  |
| 61) | Т    | Bromobenzene      | 0.438 |        |        |        | 0.525  |        |       |         | 6.70  |
| 52) | Т    | 1,2,3-Trichloropr | 0.470 | 0.586  | 0.599  | 0.602  | 0.629  | 0.620  | 0.606 | 0.587   | 9.12  |
| 63) | Т    | n-Propylbenzene   |       |        |        |        | 2.239  |        |       |         | 16.23 |
| 64) | Т    | 2 Chlorotoluene   |       |        |        |        | 1.331  |        |       |         | 14.81 |
| 65) | Т    | 1,3,5-Trimethylbe |       |        |        |        | 1.703  |        |       |         | 16.74 |
| 66) | Т    | 4-Chlorotoluene   | 1.049 |        |        |        | 1.650  |        |       |         | 16.09 |
| 67) | Т    | tert-Butylbenzene |       |        |        |        | 1.373  |        |       |         | 19.42 |
| 68) | Т    | 1,2,4-Trimethylbe |       |        |        |        | 1.699  |        |       |         | 13.52 |
| 69) | Т    | sec-Butylbenzene  |       |        |        |        | 2.051  |        |       |         | 18.01 |
| 70) | Т    | 1,3-Dichlorobenze | 0.788 | 0.948  | 0.888  | 0.933  | 1.006  | 1.008  | 1.013 | 0.940   | 8.70  |
| 71} | Т    | 4-Isopropyltoluen |       |        |        |        | 1.806  |        |       |         | 17.89 |
| 72) | Т    | 1,4-Dichlorobenze | 0.696 | 0.912  | 0.928  | 0.976  | 1.035  | 1.026  | 1.038 | 0 945   | 12.80 |
| 73) | Т    | n-Butylbenzene    |       |        |        |        | 1.539  |        |       |         | 18.86 |
| 74) | Т    | 1,2-Dichlorobenze | 0.726 | 0.861  | 0.903  | 0.952  | 1.000  | 1.017  | 1.032 | 0.927   | 11.68 |
| 75) | Т    | 1,2-Dibromo-3-chl |       |        |        |        | 0.154  |        |       |         | 9.22  |
| 76) | Т    | 1,2,4-Trichlorobe |       |        |        |        | 0.599  |        |       |         | 11.44 |
| 77) | Т    | Hexachlorobutadie |       |        |        |        | 0.225  |        |       |         | 12.23 |
| 78) | Т    | Naphthalene       |       | 1.309  |        |        | 1.799  |        |       |         | 17.17 |
| 79) | Т    | 1,2,3-Trichlorobe |       |        |        |        | 0.508  |        |       |         | 6.87  |
| 80) | Т    | 1,1,2-Trichloro-1 |       |        |        |        | 0.424  |        |       |         | 18.63 |
| 81) | T    | Methyl acetate    | 0.805 |        |        |        | 0.765  |        |       |         | 7.40  |
| 82) | Т    | Cyclohexane       |       |        |        |        | 0.720  |        |       |         | 15.56 |
| 83) | Т    | Methylcyclohexane |       |        |        |        | 0.573  |        |       |         | 19.41 |
| -   | 100  |                   |       |        |        |        |        |        |       |         |       |
| (#) | = Ol | it of Range ### N | umber | of cal | ibrati | on lev | els ex | ceeded | forma | + +++++ |       |

(#) = Out of Range ### Number of calibration levels exceeded format ###

K8220616.M Fri Jun 17 09:32:46 2022

Evaluate Continuing Calibration Report

Data Path : C:\MSDCHEM\1\DATA\22-06-16\ Data File : K6596.D Acq On : 16 Jun 2022 16:40 Operator : BARBARA Sample : ICV100,ICV220616,A,5mL,100 Misc : NA,NA,NA,1 ALS Vial : 10 Sample Multiplier: 1 Quant Time: Jun 17 09:17:04 2022 Quant Method : C:\MSDCHEM\1\METHODS\K8220616.M Quant Title : VOLATILE ORGANICS BY EPA METHOD 8260D QLast Update : Fri Jun 17 09:16:54 2022 Response via : Initial Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min Max. RRF Dev : 20% Max. Rel. Area : 200%

|      |    | Compound                    | AvgRF | CCRF  |         | Area% | Dev(min) |
|------|----|-----------------------------|-------|-------|---------|-------|----------|
| 1    | I  | Pentafluorobenzene          | 1.000 | 1.000 | 0.0     | 130   | 0.00     |
| 2    | Т  | Dichlorodifluoromethane     | 0.427 | 0.394 | 7.7     |       | -0.02    |
| 3    | Р  | Chloromethane               | 1.025 | 0.958 | 6.5     |       | 0.02     |
| 4    | С  | Vinyl chloride              | 0.787 | 0.791 | -0.5    | 122   | -0.01    |
| 5    | Т  | Bromomethane                | 0.591 | 0.580 | 1.9     | 121   | 0.01     |
| 6    | Т  | Chloroethane                | 0.552 | 0.567 | -2.7    | 118   | 0.00     |
| 7    | Т  | Trichlorofluoromethane      | 1.132 | 1.102 | 2.7     | 109   | -0.01    |
| 8    | Т  | Acrolein                    | 0.199 | 0.163 | 18.1    | 102   | 0.01     |
| 9    | MC | 1,1-Dichloroethene          | 0.667 | 0.629 | 5.7     | 117   | 0.00     |
| 10   | Т  | Acetone                     | 1,200 | 1.083 | 9.8     | 113   | 0.01     |
| 11   | Т  | Carbon disulfide            | 2.251 | 2.159 | 4.1     | 119   | 0.00     |
| 12   | Т  | Vinyl acetate               | 0.492 | 0.471 | 4.3     | 117   | 0.00     |
| 13   | Т  | Methylene chloride          | 0.622 | 0.591 | 5.0     | 119   | 0.00     |
| 14   | Т  | Acrylonitrile               | 0.451 | 0.399 | 11.5    | 108   | 0.00     |
| 15   | Т  | tert-Butyl alcohol (TBA)    | 0.198 | 0.206 | -4.0    | 140   | 0.02     |
| 16   | Т  | trans-1,2-Dichloroethene    | 0.639 | 0.618 | 3.3     | 120   | 0.02     |
| 17   | Т  | Methyl tert-butyl ether (MT | 1.965 | 1.989 | -1.2    | 120   | 0.00     |
| 18   | Р  | 1,1-Dichloroethane          | 1.211 | 1.187 | 2.0     | 117   | 0.00     |
| 19   | Т  | Diisopropyl ether (DIPE)    | 2.527 | 2.641 | -4.5    | 116   | 0.00     |
| 20   | Т  | cis-1,2-Dichloroethene      | 0.693 | 0.696 | -0.4    | 122   | 0.00     |
| 21   | Т  | 2,2-Dichloropropane         | 0.590 | 0.590 | 0.0     | 133   | 0.00     |
| 22   | Т  | 2-Butanone (MEK)            | 1.018 | 0.951 | 6.6     | 114   | 0.00     |
| 2.3  | Т  | Bromochloromethane          | 0.377 | 0.367 | 2.7     | 121   | 0.00     |
| 25 ( | С  | Chloroform                  | 1.124 | 1.082 | 3.7     | 118   | 0.00     |
| 26 ' | Т  | 1,1,1-Trichloroethane       | 0.875 | 0.908 | -3.8    | 118   | 0.00     |
| 27 1 | Т  | Carbon tetrachloride        | 0.832 | 0.846 | -1.7    | 116   | 0.00     |
| 28   | Т  | 1,1-Dichloropropene         | 0.796 | 0.795 | 0.1     | 116   | 0.00     |
| 29 1 | Т  | 1,2-Dichloroethane (EDC)    | 1.069 | 0.997 | 6.7     | 116   | 0.00     |
| 30 8 | S  | 1,2-Dichloroethane-d4       | 0.675 | 0.626 | 7.3     | 122   | 0.00     |
| 31   | I  | 1,4-Difluorobenzene         | 1.000 | 1.000 | 0.0     | 126   | 0.00     |
| 32 M | M  | Benzene                     | 1.585 | 1.621 | - 2 - 3 | 118   | 0.00     |
| 33 N | Ŋ  | Trichloroethene             | 0.396 | 0.401 | -1.3    | 117   | 0.00     |
| 34 ( | 2  | 1,2-Dichloropropane         | 0.472 | 0.469 | 0.6     | 117   | 0.00     |
| 35 1 | Г  | Dibromomethane              | 0.308 | 0.293 | 4.9     | 116   | 0.00     |
| 36 1 | Г  | l,4-Dioxane                 | 0.010 | 0.009 | 10.0    | 124   | 0.00     |
| 37 I | Г  | Bromodichloromethane        | 0.562 | 0.565 | -0.5    | 117   | 0.00     |
| 38 I | Γ  | 2-Chloroethyl vinyl ether   | 0.236 | 0.235 | 0.4     | 117   | 0.00     |
| 39 I | C  | cis-1,3-Dichloropropene     | 0.668 | 0.706 | -5.7    | 119   | 0.00     |
| 40 T | Г  | 4-Methyl-2-pentanone (MIBK) | 0.926 | 0.975 | - 5 . 3 | 114   | 0.00     |
| 41 S | 3  | Toluene-d8                  | 1.307 | 1.288 | 1.5     | 121   | 0.00     |
| 42 M | 1C | Toluene                     | 0.988 | 1.038 | -5.1    | 117   | 0.00     |
| 43 T | -  | trans-1,3-Dichloropropene   | 0.654 | 0.698 | -6.7    | 118   | 0.00     |
| 44 T | -  | 1,1,2-Trichloroethane       | 0.358 | 0.351 | 2 . 0   | 115   | 0.00     |
| 45 T |    | Tetrachloroethene           | 0.433 | 0.455 | -5.1    | 119   | 0.00     |
| 46 T |    | 1,3-Dichloropropane         | 0.690 | 0.707 | -2,5    | 114   | 0.00     |
|      |    |                             |       |       |         |       |          |

| -17     | Т   | 2-Hexanone                  | 0.766 | 0.813 | -6.1    | 117 | 0.00  |
|---------|-----|-----------------------------|-------|-------|---------|-----|-------|
| -18     |     | Dibromochloromethane        | 0.472 | 0.506 | - 7 . 2 | 116 | 0.00  |
| 49      | Т   | 1,2-Dibromoethane (EDB)     | 0.465 | 0.481 | - 3 - 4 | 118 | 0.00  |
|         |     |                             |       |       |         |     |       |
| 50      | _   | Chlorobenzene-d5            | 1.000 | 1.000 | 0.0     | 122 | 0.00  |
|         | MP. | Chlorobenzene               | 1.121 | 1.130 | -0.8    | 117 | 0.00  |
|         | Т   | 1,1,1,2-Tetrachloroethane   | 0.428 | 0.430 | -0.5    | 117 | 0.00  |
|         | С   | Ethylbenzene                | 1.698 | 1.808 | -6.5    | 115 | 0.00  |
| 54      |     | m,p-Xylene                  | 0.692 | 0.759 | -9.7    | 115 | 0.00  |
| 55      |     | o-Xylene                    | 0.686 | 0.764 | -11.4   | 116 | 0.00  |
|         | Т   | Styrene                     | 1.180 | 1.287 | -9.1    | 115 | 0.00  |
| 57      | -   | Bromoform                   | 0.360 | 0.393 | -9.2    | 118 | 0.00  |
| 58      |     | Isopropylbenzene            | 1.714 | 1.859 | -8.5    | 114 | 0.00  |
| 59      | S   | Bromofluorobenzene          | 0.467 | 0.471 | -0.9    | 119 | 0.00  |
| 60      | P   | 1,1,2,2-Tetrachloroethane   | 0.684 | 0.665 | 2.8     | 114 | 0.00  |
| 61      | Т   | Bromobenzene                | 0.495 | 0.511 | -3.2    | 119 | 0.00  |
| 62      | Т   | 1,2,3-Trichloropropane      | 0.587 | 0.589 | -0.3    | 114 | 0.00  |
| 63      | Т   | n-Propylbenzene             | 1.946 | 2.090 | -7.4    | 114 | 0.00  |
| 64      | Т   | 2-Chlorotoluene             | 1.181 | 1.256 | -6.4    | 115 | 0.00  |
| 65      | т   | 1,3,5-Trimethylbenzene      | 1.519 | 1.579 | -3.9    | 113 | 0.00  |
| 66      | Т   | 4-Chlorotoluene             | 1.458 | 1.548 | -6.2    | 114 | 0.00  |
| 67      | Т   | tert-Butylbenzene           | 1.204 | 1.301 | -8.1    | 115 | 0.00  |
| 68      | Т   | 1,2,4-Trimethylbenzene      | 1.540 | 1.615 | -4.9    | 116 | 0.00  |
| 69      | Т   | sec-Butylbenzene            | 1.802 | 1.918 | -6.4    | 114 | 0.00  |
| 70      | Т   | 1,3-Dichlorobenzene         | 0.940 | 0.963 | -2.4    | 117 | 0.00  |
| 71      | Т   | 4-Isopropyltoluene          | 1.587 | 1.693 | -6.7    | 114 | 0.00  |
| 72      | Т   | 1,4-Dichlorobenzene         | 0.945 | 0.989 | -4.7    | 116 | 0.00  |
| 73      | Т   | n-Butylbenzene              | 1.404 | 1.446 | -3.0    | 115 | 0.00  |
| 74      | Т   | l,2-Dichlorobenzene         | 0.927 | 0.956 | -3.1    | 117 | 0.00  |
| 75      | Т   | 1,2-Dibromo-3-chloropropane | 0.153 | 0.144 | 5.9     | 114 | 0.00  |
| 76      | Т   | 1,2,4-Trichlorobenzene      | 0.588 | 0.594 | -1.0    | 121 | 0.00  |
| 77      | т   | Hexachlorobutadiene         | 0.217 | 0.220 | -1.4    | 119 | 0.00  |
| 78      | Т   | Naphthalene                 | 1.656 | 1.664 | -0.5    | 113 | 0.00  |
| 79      | Т   | 1,2,3-Trichlorobenzene      | 0.534 | 0.495 | 7.3     | 119 | 0.00  |
| 80      | Т   | 1,1,2-Trichloro-1,2,2-trifl | 0.379 | 0.385 | -1.6    | 111 | 0.00  |
| 81      | Т   | Methyl acetate              | 0.762 | 0.718 | 5.8     | 114 | 0.00  |
| 82      | Т   | Cyclohexane                 | 0.626 | 0.671 | -7.2    | 113 | -0.01 |
| 83      | Т   | Methylcyclohexane           | 0.495 | 0.544 | -9.9    | 116 | 0.00  |
| H 46 40 | -   |                             |       |       |         |     |       |
|         |     |                             |       |       |         |     |       |

(#) = Out of Range SPCC's out = 0 CCC's out = 0

K8220616.M Fri Jun 17 09:33:18 2022

Evaluate Continuing Calibration Report

Data Path : C:\MSDChem\1\DATA\22-06-16\ Data File : K6613.D Acq On : 17 Jun 2022 00:52 Operator : BARBARA Sample : CCV100,CCV220616-02,A,5mL,100 Misc : NA,NA,NA,1 ALS Vial : 27 Sample Multiplier: 1

Quant Time: Jun 17 09:25:06 2022 Quant Method : C:\MSDCHEM\1\METHODS\K8220616.M Quant Title : VOLATILE ORGANICS BY EPA METHOD 8260D QLast Update : Fri Jun 17 09:16:54 2022 Response via : Initial Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min Max. RRF Dev : 20% Max. Rel. Area : 200%

|            |    | Compound                    | AvgRF | CCRF  | %Dev A     | area% | Dev(min) |
|------------|----|-----------------------------|-------|-------|------------|-------|----------|
| 1          | I  | Pentafluorobenzene          | 1.000 | 1.000 | 0.0        | 137   | 0.00     |
| _          | T  | Dichlorodifluoromethane     | 0.427 | 0.400 | 6.3        | 122   | =0.01    |
|            | P  | Chloromethane               | 1.025 | 0.400 | 12.9       | 121   | 0.00     |
|            | Ċ  | Vinyl chloride              | 0.787 | 0.808 | -2.7       | 136   | 0.00     |
|            | Т  | Bromomethane                | 0.591 | 0.589 | 0.3        | 130   | 0.00     |
| _          | T  | Chloroethane                | 0.552 | 0.584 | -5.8       | 128   | 0.00     |
| 7          | T  | Trichlorofluoromethane      | 1.132 | 1.180 | -4.2       | 120   | =0.01    |
|            | MC | 1,1-Dichloroethene          | 0.667 | 0.676 | -4.2       | 133   | 0.01     |
|            | T  | Acetone                     | 1.200 | 1.044 | 13.0       | 115   | 0.00     |
| 11         |    | Carbon disulfide            | 2.251 | 2.256 | -0.2       | 132   | 0.00     |
| 12         | -  | Vinyl acetate               | 0.492 | 0.444 | -0.2       | 117   | 0.00     |
| 13         | _  | Methylene chloride          | 0.492 | 0.444 | 7.6        | 122   | 0.00     |
| $14^{13}$  |    | Acrylonitrile               | 0.451 | 0.366 | 18.8       | 105   | 0.00     |
| $14 \\ 15$ |    | tert-Butyl alcohol (TBA)    | 0.451 | 0.186 | 6.1        | 134   | 0.00     |
| 16         |    | trans-1,2-Dichloroethene    | 0.639 | 0.601 | 5.9        | 124   | 0.02     |
| 17         |    | Methyl tert-butyl ether (MT | 1.965 | 1.884 | 5.9<br>4.1 | 124   | 0.00     |
| 18         |    | 1 1                         | 1.211 |       |            | 117   |          |
|            |    | 1,1-Dichloroethane          |       | 1.113 | 8.1        |       | 0.00     |
| 19         |    | Diisopropyl ether (DIPE)    | 2.527 | 2.372 | 6.1        | 110   | 0.00     |
| 20         |    | cis-1,2-Dichloroethene      | 0.693 | 0.675 | 2.6        | 125   | 0.00     |
| 22         | _  | 2-Butanone (MEK)            | 1.018 | 0.850 | 16.5       | 108   | 0.00     |
| 23         |    | Bromochloromethane          | 0.377 | 0.365 | 3.2        | 128   | 0.00     |
| 25         | -  | Chloroform                  | 1.124 | 1.028 | 8.5        | 118   | 0.00     |
|            | Т  | 1,1,1-Trichloroethane       | 0.875 | 0.870 | 0.6        | 120   | 0.00     |
| 27         |    | Carbon tetrachloride        | 0.832 | 0.828 | 0.5        | 120   | 0.00     |
|            | т  | 1,1-Dichloropropene         | 0.796 | 0.770 | 3.3        | 119   | 0.00     |
| 29         |    | 1,2-Dichloroethane (EDC)    | 1.069 | 0.932 | 12.8       | 115   | 0.00     |
| 30         | S  | 1,2-Dichloroethane-d4       | 0.675 | 0.579 | 14.2       | 119   | 0.00     |
| 31         | I  | 1,4-Difluorobenzene         | 1.000 | 1.000 | 0.0        | 129   | 0.00     |
| 32         | М  | Benzene                     | 1.585 | 1.592 | -0.4       | 119   | 0.00     |
| 33         | М  | Trichloroethene             | 0.396 | 0.419 | -5.8       | 125   | 0.00     |
| 34         | С  | 1,2-Dichloropropane         | 0.472 | 0.442 | 6.4        | 112   | 0.00     |
| 35         | Т  | Dibromomethane              | 0.308 | 0.293 | 4.9        | 119   | 0.00     |
| 36         | Т  | 1,4-Dioxane                 | 0.010 | 0.009 | 10.0       | 122   | 0.00     |
| 37         | Т  | Bromodichloromethane        | 0.562 | 0.559 | 0.5        | 118   | 0.00     |
| 38         | т  | 2-Chloroethyl vinyl ether   | 0.236 | 0.221 | 6.4        | 112   | 0.00     |
| 39         | Т  | cis-1,3-Dichloropropene     | 0.668 | 0.649 | 2.8        | 112   | 0.00     |
| 40         | Т  | 4-Methyl-2-pentanone (MIBK) | 0.926 | 0.880 | 5.0        | 105   | 0.00     |
| 41         | S  | Toluene-d8                  | 1.307 | 1.285 | 1.7        | 123   | 0.00     |
| 42         | MC | Toluene                     | 0.988 | 1.067 | -8.0       | 122   | 0.00     |
| 43         | Т  | trans-1,3-Dichloropropene   | 0.654 | 0.642 | 1.8        | 111   | 0.00     |
| 44         | T  | 1,1,2-Trichloroethane       | 0.358 | 0.347 | 3.1        | 116   | 0.00     |
|            | Т  | Tetrachloroethene           | 0.433 | 0.493 | -13.9      | 131   | 0.00     |
|            | Т  | 1,3-Dichloropropane         | 0.690 | 0.692 | -0.3       | 114   | 0.00     |
| 47         | Т  | 2-Hexanone                  | 0.766 | 0.720 | 6.0        | 106   | 0.00     |
| 48         | Т  | Dibromochloromethane        | 0.472 | 0.508 | -7.6       | 119   | 0.00     |
|            |    |                             |       |       |            |       |          |

| 49   | Т  | 1,2-Dibromoethane (EDB)     | 0.465 | 0.489 | -5.2  | 122 | 0.00  |
|------|----|-----------------------------|-------|-------|-------|-----|-------|
| 50   | I  | Chlorobenzene-d5            | 1.000 | 1.000 | 0.0   | 127 | 0.00  |
| 51   | MP | Chlorobenzene               | 1.121 | 1.134 | -1.2  | 122 | 0.00  |
| 52   | Т  | 1,1,1,2-Tetrachloroethane   | 0.428 | 0.431 | -0.7  | 122 | 0.00  |
| 53   | С  | Ethylbenzene                | 1.698 | 1.791 | -5.5  | 118 | 0.00  |
| 54   | Т  | m,p-Xylene                  | 0.692 | 0.777 | -12.3 | 123 | 0.00  |
| 55   | Т  | o-Xylene                    | 0.686 | 0.780 | -13.7 | 124 | 0.00  |
| 56   | Т  | Styrene                     | 1.180 | 1.329 | -12.6 | 124 | 0.00  |
| 57   | Р  | Bromoform                   | 0.360 | 0.398 | -10.6 | 125 | 0.00  |
| 5.8  | Т  | Isopropylbenzene            | 1.714 | 1.942 | -13.3 | 124 | 0.00  |
| 59   | S  | Bromofluorobenzene          | 0.467 | 0.468 | -0.2  | 123 | 0.00  |
| 60   | Р  | 1,1,2,2-Tetrachloroethane   | 0.684 | 0.630 | 7.9   | 113 | 0.00  |
| 61   | Т  | Bromobenzene                | 0.495 | 0.530 | -7.1  | 128 | 0.00  |
| 62   | Т  | 1,2,3-Trichloropropane      | 0.587 | 0.568 | 3.2   | 115 | 0.00  |
| 63   | Т  | n-Propylbenzene             | 1.946 | 2.135 | -9.7  | 121 | 0.00  |
| 64   | Т  | 2-Chlorotoluene             | 1.181 | 1.276 | -8.0  | 122 | 0.00  |
| 65   | Т  | 1,3,5-Trimethylbenzene      | 1.519 | 1.641 | -8.0  | 123 | 0.00  |
| 66   | Т  | 4-Chlorotoluene             | 1.458 | 1.597 | -9.5  | 123 | 0.00  |
| 67   | Т  | tert-Butylbenzene           | 1.204 | 1.368 | -13.6 | 127 | 0.00  |
| 68   | Т  | 1,2,4-Trimethylbenzene      | 1.540 | 1.664 | -8.1  | 125 | 0.00  |
| 69   | Т  | sec-Butylbenzene            | 1.802 | 2.013 | -11.7 | 125 | 0.00  |
| 70   | Т  | 1,3-Dichlorobenzene         | 0.940 | 1.008 | -7.2  | 127 | 0.00  |
| 71   | Т  | 4-Isopropyltoluene          | 1.587 | 1.780 | -12.2 | 125 | 0.00  |
| 72   | Т  | 1,4-Dichlorobenzene         | 0.945 | 1.035 | -9.5  | 127 | 0.00  |
| 73   | Т  | n-Butylbenzene              | 1.404 | 1.474 | -5.0  | 122 | 0.00  |
| 74   | Т  | 1,2-Dichlorobenzene         | 0.927 | 1.011 | -9.1  | 129 | 0.00  |
| 75   | Т  | 1,2-Dibromo-3-chloropropane | 0.153 | 0.137 | 10.5  | 113 | 0.00  |
| 76   | Т  | 1,2,4-Trichlorobenzene      | 0.588 | 0.617 | -4.9  | 131 | 0.00  |
| 77   | Т  | Hexachlorobutadiene         | 0.217 | 0.234 | -7.8  | 132 | 0.00  |
| 78   | Т  | Naphthalene                 | 1.656 | 1.708 | -3.1  | 121 | 0.00  |
| 79   | Т  | 1,2,3-Trichlorobenzene      | 0.534 | 0.522 | 2.2   | 131 | 0.00  |
| 80   | Т  | 1,1,2-Trichloro-1,2,2-trifl | 0.379 | 0.411 | -8.4  | 123 | 0.01  |
| 81   | Т  | Methyl acetate              | 0.762 | 0.662 | 13.1  | 110 | 0.00  |
| 82   | Т  | Cyclohexane                 | 0.626 | 0.656 | -4.8  | 116 | -0.01 |
| 83   | Т  | Methylcyclohexane           | 0.495 | 0.549 | -10.9 | 122 | 0.00  |
| 7300 |    |                             |       |       |       |     |       |

(#) = Out of Range SPCC's out = 0 CCC's out = 0

K8220616.M Fri Jun 17 12:43:21 2022

#### VOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab File ID (Standard)

) K6592.D

Date Analyzed: 06/16/2022

Instrument ID:

MSD\_K

Time Analyzed: 14:40

|          | 50UG/L      | IS1    |      | IS2      |      | 1S3      |       |
|----------|-------------|--------|------|----------|------|----------|-------|
|          | 0000,2      | AREA # | RT # | AREA #   | RT # | AREA #   | RT #  |
|          | 12 HOUR STD | 316572 | 6.00 | 503165   | 6.83 | 556283   | 10.17 |
|          | UPPER LIMIT | 633144 | 6.50 | 1006330  | 7.33 | 1112566  | 10.67 |
|          | LOWER LIMIT | 158286 | 5.50 | 251582.5 | 6.33 | 278141.5 | 9.67  |
|          | LAB SAMPLE  |        |      |          |      |          |       |
|          | ID          |        |      |          |      |          |       |
| 01       | ICC220616   | 256625 | 6.01 | 410826   | 6.83 | 427696   | 10.17 |
| 02       | ICC220616   | 253514 | 6.01 | 413477   | 6.83 | 440030   | 10.18 |
| 0400203  | ICC220616   | 263417 | 6.01 | 428109   | 6.83 | 459060   | 10.18 |
|          | ICC220616   | 283535 | 6.00 | 456587   | 6.83 | 493545   | 10.18 |
|          | ICC220616   | 366596 | 6.00 | 576537   | 6.83 | 626029   | 10.18 |
|          | ICC220616   | 408300 | 6.00 | 636604   | 6.83 | 678915   | 10.18 |
| 22.2     | ICV220616   | 410519 | 6.00 | 635229   | 6.83 | 678059   | 10.18 |
| 08       |             |        |      |          |      |          |       |
| 09       |             |        |      |          |      |          |       |
| 10       |             |        |      | 1.1      |      |          |       |
| 11       |             |        |      |          |      |          |       |
| 12       |             |        |      |          |      |          |       |
| 13       |             |        |      |          |      |          |       |
| 14<br>15 |             |        |      |          |      |          |       |
| 16       |             |        |      |          |      |          |       |
| 17       |             |        |      |          |      |          |       |
| 18       |             |        |      |          |      |          |       |
| 19       |             |        |      |          |      |          |       |
| 20       |             |        |      |          |      |          |       |
| 21       |             |        |      |          |      |          |       |
| 22       |             |        |      |          |      |          |       |
| [L       |             |        |      |          |      |          |       |

IS1 = PENTAFLUOROBENZENE

IS2 = 1,4-DIFLUOROBENZENE

IS3 = CHLOROBENZENE-D5

AREA UPPER LIMIT = +200% of internal standard area AREA LOWER LIMIT = -50% of internal standard area RT UPPER LIMIT = +0.50 minutes of internal standard RT RT LOWER LIMIT = -0.50 minutes of internal standard RT

# Column used to flag values outside QC limits with an asterisk

\* Values outside of QC limits.

FORM 8

#### VOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab File ID (Standard):

K6613.D

Date Analyzed: 06/17/2022

Instrument ID:

MSD\_K

Time Analyzed: 0:52

|    | 50UG/L           | IS1      |      | IS2     |      | IS3      | 1     |
|----|------------------|----------|------|---------|------|----------|-------|
|    |                  | AREA #   | RT # | AREA #  | RT # | AREA #   | RT #  |
|    | 12 HOUR STD      | 435035   | 6.00 | 648554  | 6.83 | 707405   | 10.18 |
|    | UPPER LIMIT      | 870070   | 6.50 | 1297108 | 7.33 | 1414810  | 10.68 |
|    | LOWER LIMIT      | 217517.5 | 5.50 | 324277  | 6.33 | 353702.5 | 9.68  |
|    | LAB SAMPLE       |          |      |         |      |          |       |
|    | ID               |          |      |         |      |          |       |
| 01 | BLK220616-02     | 363204   | 6.01 | 551741  | 6.83 | 593443   | 10.18 |
| 02 | E22-03482-010    | 393620   | 6.01 | 598105  | 6.83 | 627988   | 10.18 |
| 03 | LCSA220616-02    | 413706   | 6.00 | 639496  | 6.83 | 683174   | 10.18 |
| 04 | E22-03482-009MS  | 428683   | 6.00 | 646319  | 6.83 | 699248   | 10.17 |
| 05 | E22-03482-005    | 372188   | 6.00 | 572189  | 6.83 | 608331   | 10.18 |
| 06 | E22-03482-009    | 357448   | 6.01 | 551041  | 6.83 | 587900   | 10.18 |
| 07 | E22-03482-012    | 345793   | 6.01 | 545371  | 6.83 | 564865   | 10.18 |
| 08 | E22-03482-014    | 324924   | 6.01 | 514673  | 6.83 | 552044   | 10.18 |
| 09 | E22-03482-013    | 316397   | 6.01 | 511109  | 6.83 | 544837   | 10.18 |
| 10 | E22-03482-015    | 336687   | 6.01 | 548192  | 6.83 | 583408   | 10.18 |
| 11 | E22-03449-001    | 354705   | 6.01 | 546785  | 6.83 | 595046   | 10.18 |
| 12 | E22-03449-002    | 328932   | 6.00 | 511848  | 6.83 | 557328   | 10.17 |
| 13 | E22-03403-004    | 330274   | 6.00 | 520135  | 6.83 | 558767   | 10.18 |
| 14 | E22-03403-003    | 316723   | 6.01 | 505396  | 6.83 | 538388   | 10.18 |
| 15 | E22-03403-001    | 308108   | 6.01 | 492525  | 6.83 | 518596   | 10.18 |
| 16 | E22-03403-002    | 306698   | 6.01 | 487500  | 6.83 | 499265   | 10.18 |
| 17 | E22-03449-002DUP | 293814   | 6.01 | 466845  | 6.83 | 492097   | 10.18 |
| 18 | E22-03482-011    | 310340   | 6.01 | 491483  | 6.83 | 521946   | 10.18 |
|    | E22-03482-008DL  | 347417   | 6.01 | 560101  | 6.83 | 599945   | 10.18 |
| 20 |                  |          |      |         |      |          |       |
| 21 |                  |          |      |         |      |          |       |
| 22 |                  |          |      |         |      |          |       |

IS1 = PENTAFLUOROBENZENE

IS2 = 1,4-DIFLUOROBENZENE

IS3 = CHLOROBENZENE-D5

AREA UPPER LIMIT = +200% of internal standard area AREA LOWER LIMIT = -50% of internal standard area RT UPPER LIMIT = +0.50 minutes of internal standard RT RT LOWER LIMIT = -0.50 minutes of internal standard RT

# Column used to flag values outside QC limits with an asterisk

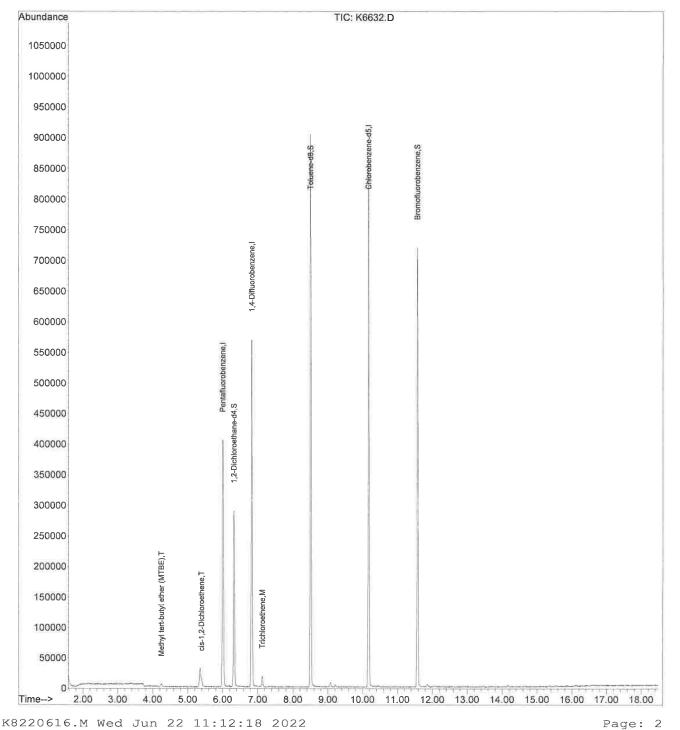
\* Values outside of QC limits.

FORM 8

#### VOLATILE ORGANICS SAMPLE DATA

Quantitation Report (QT Reviewed)

| Data Path : C:\MSDChem\l\DATA<br>Data File : K6632.D<br>Acq On : 17 Jun 2022 10:00<br>Operator : BARBARA<br>Sample : MW11D,E22-03403-00<br>Misc : EWMA/SWIVELIER - 2<br>ALS Vial : 45 Sample Multip | )<br>)1,A,5mL,10<br>2,06/09/22,         | 00<br>,06/09,              | /22,1                      |                                |                           |                               |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|----------------------------|----------------------------|--------------------------------|---------------------------|-------------------------------|
| Quant Time: Jun 17 12:31:07 20<br>Quant Method : C:\MSDCHEM\1\MB<br>Quant Title : VOLATILE ORGANI<br>QLast Update : Fri Jun 17 09:1<br>Response via : Initial Calibra                               | ETHODS\K822<br>ICS BY EPA<br>16:54 2022 |                            |                            |                                |                           |                               |
| Internal Standards                                                                                                                                                                                  | R.T.                                    | QIon                       | Response                   | Conc Un                        | its [                     | Dev(Min)                      |
| <ol> <li>Pentafluorobenzene</li> <li>31) 1,4-Difluorobenzene</li> <li>50) Chlorobenzene-d5</li> </ol>                                                                                               | 6.83                                    | 114                        | 308108<br>492525<br>518596 | 50.00                          | UG                        | 0.00                          |
| System Monitoring Compounds<br>30) 1,2-Dichloroethane-d4<br>Spiked Amount 50.000<br>41) Toluene-d8<br>Spiked Amount 50.000<br>59) Bromofluorobenzene<br>Spiked Amount 50.000                        | Range 80<br>8.51<br>Range 80<br>11.58   | - 120<br>98<br>- 120<br>95 | Recove<br>616807           | ry =<br>47.90<br>ry =<br>48.26 | 100.2<br>UG<br>95.8<br>UG | 28%<br>0.00<br>30%<br>0.00    |
| Target Compounds<br>17) Methyl tert-butyl ether<br>20) cis-1,2-Dichloroethene<br>33) Trichloroethene                                                                                                | (M 4.25<br>5.40<br>7.13                 | 96                         | 4939                       | 1.16                           | UG                        | Qvalue<br>100<br># 99<br># 49 |


(#)  $\equiv$  qualifier out of range (m)  $\equiv$  manual integration (+)  $\equiv$  signals summed

K8220616.M Wed Jun 22 11:12:18 2022

Quantitation Report (QT Reviewed)

| Data Path  | 3  | C:\MSDChem\1\DATA\22-06-16\         |
|------------|----|-------------------------------------|
| Data File  | •  | K6632.D                             |
| Acq On     | :  | 17 Jun 2022 10:00                   |
| Operator   |    | BARBARA                             |
| Sample     |    | MW11D,E22-03403-001,A,5mL,100       |
| Misc       | •  | EWMA/SWIVELIER2,06/09/22,06/09/22,1 |
| ALS Vial   | 2  | 45 Sample Multiplier: 1             |
|            |    |                                     |
| Quant Time | :: | Jun 17 12:31:07 2022                |

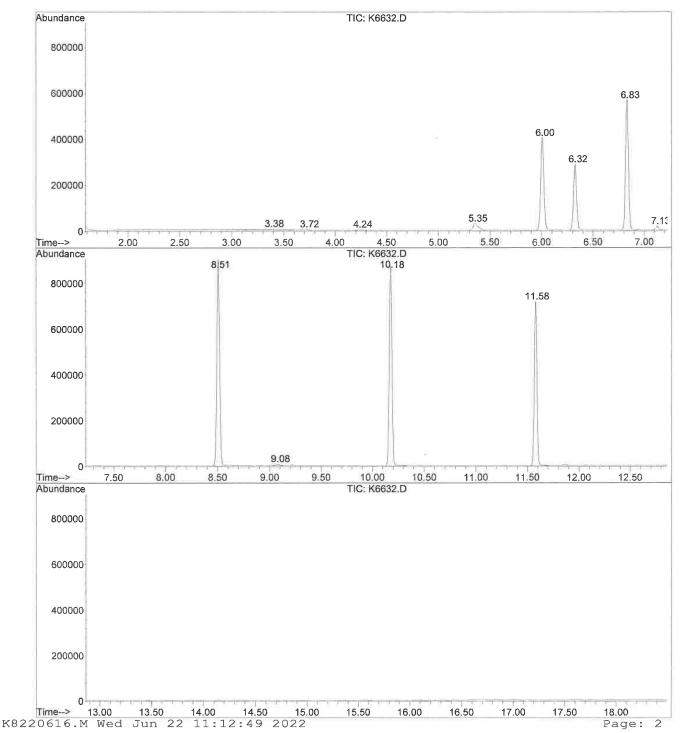
| Quant  | TTWG. 0 | uı | 1 1/ 12.01.0/ 2022                    |
|--------|---------|----|---------------------------------------|
| Quant  | Method  | :  | C:\MSDCHEM\1\METHODS\K8220616.M       |
| Quant  | Title   | :  | VOLATILE ORGANICS BY EPA METHOD 8260D |
| QLast  | Update  | :  | Fri Jun 17 09:16:54 2022              |
| Respon | se via  | :  | Initial Calibration                   |



LSC Area Percent Report

| Data File<br>Acq On<br>Operator<br>Sample                                 | : K663<br>: 17<br>: BARI<br>: MW13<br>: EWM2 | 32.D<br>Jun 20<br>BARA<br>1D,E22<br>A/SWIN | 022 :<br>2-0340<br>VELIEN | 10:00<br>03-00<br>R2 | 22-06-16\<br>1,A,5mL,10<br>,06/09/22,<br>lier: 1 |                         | , 1                        |                            |   |
|---------------------------------------------------------------------------|----------------------------------------------|--------------------------------------------|---------------------------|----------------------|--------------------------------------------------|-------------------------|----------------------------|----------------------------|---|
| Integrati<br>Integrato<br>Smoothing<br>Sampling<br>Start Thr<br>Stop Thrs | r: RTE<br>: ON<br>: 1<br>s: 0.0              |                                            | rs: LS                    | SCINT                |                                                  | Min A                   | eaks: 100                  |                            | k |
| If leadin<br>Peak sepa                                                    |                                              |                                            | ng eda                    | ge <                 | 100 prefe                                        | r < Baseli              | ine drop                   | else tangent >             |   |
| Method<br>Title                                                           |                                              |                                            |                           |                      | DS\K822061<br>By Epa Met                         |                         | D                          |                            |   |
| Signal                                                                    | : TIC                                        | C I                                        |                           |                      |                                                  |                         |                            |                            |   |
| peak R.T.<br># min                                                        |                                              | scan                                       | scan                      | ΤY                   | peak<br>height                                   | area                    | % max.                     | % of<br>total              |   |
| 1 3.383                                                                   | 282<br>377<br>497<br>708                     | 344<br>409<br>508                          | 377<br>420<br>521         | rVV<br>rVB<br>rBV7   | 3889<br>5522<br>5337<br>30465<br>404195          | 71020<br>52377<br>19565 | 4.27%<br>3.15%<br>1.18%    | 0.952%<br>0.702%<br>0.262% |   |
| 7 6.833                                                                   | 1310                                         | 1002                                       | 1019<br>1070<br>1334      | rBV<br>rVB3<br>rBV   | 567878<br>17855<br>903609                        | 39331                   | 68.70%<br>2.36%<br>100.00% | 15.327%                    |   |
| 11 10.178                                                                 |                                              |                                            |                           |                      |                                                  |                         |                            |                            |   |

Sum of corrected areas: 7458812


K8220616.M Wed Jun 22 11:12:49 2022

LSC Report - Integrated Chromatogram

Data Path : C:\MSDChem\1\DATA\22-06-16\
Data File : K6632.D
Acq On : 17 Jun 2022 10:00
Operator : BARBARA
Sample : MW11D,E22-03403-001,A,5mL,100
Misc : EWMA/SWIVELIER\_-\_2,06/09/22,06/09/22,1
ALS Vial : 45 Sample Multiplier: 1
Quant Method : C:\MSDCHEM\1\METHODS\K8220616.M

Quant Title : VOLATILE ORGANICS BY EPA METHOD 8260D

```
TIC Library : C:\DATABASE\NISTO5A.L
TIC Integration Parameters: LSCINT.P
```

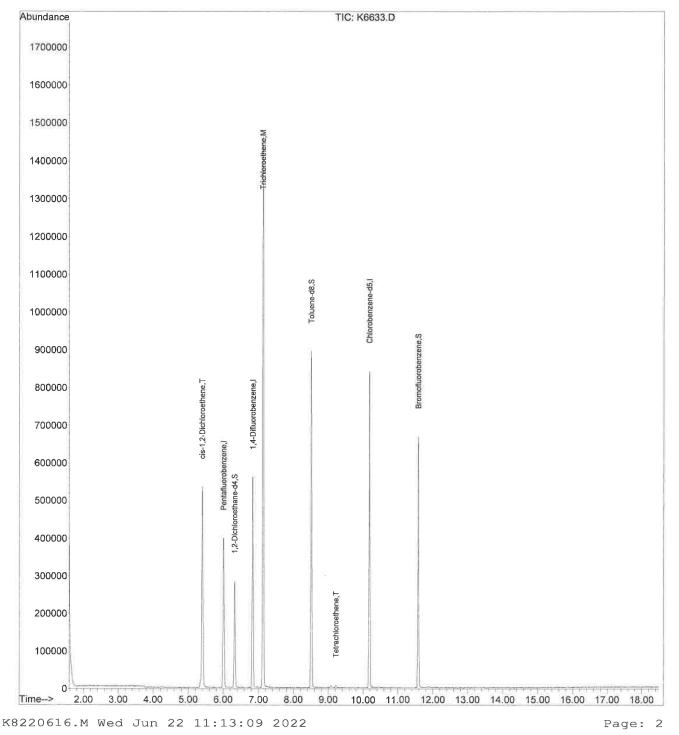


Library Search Compound Report

Data Path : C:\MSDChem\1\DATA\22-06-16\
Data File : K6632.D
Acq On : 17 Jun 2022 10:00
Operator : BARBARA
Sample : MW11D,E22-03403-001,A,5mL,100
Misc : EWMA/SWIVELIER\_-\_2,06/09/22,06/09/22,1
ALS Vial : 45 Sample Multiplier: 1
Quant Method : C:\MSDCHEM\1\METHODS\K8220616.M
Quant Title : VOLATILE ORGANICS BY EPA METHOD 8260D
TIC Library : C:\DATABASE\NIST05A.L
TIC Integration Parameters: LSCINT.P
No Library Search Compounds Detected

K8220616.M Wed Jun 22 11:12:49 2022

| Quantitat                                                                                                                                                                                     | ion Report                              | (Q.                        | [ Reviewed)                  |                                |                           |                              |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|----------------------------|------------------------------|--------------------------------|---------------------------|------------------------------|
| Data Path : C:\MSDChem\1\DATA<br>Data File : K6633.D<br>Acq On : 17 Jun 2022 10:2<br>Operator : BARBARA<br>Sample : MW10D,E22-03403-0<br>Misc : EWMA/SWIVELIER<br>ALS Vial : 46 Sample Multip | 9<br>02,A,O.1mL,<br>2,06/09/22,         | 100<br>06/09,              | /22,50                       |                                |                           |                              |
| Quant Time: Jun 17 12:31:52 2<br>Quant Method : C:\MSDCHEM\1\M<br>Quant Title : VOLATILE ORGAN<br>QLast Update : Fri Jun 17 09:<br>Response via : Initial Calibra                             | ETHODS\K822<br>ICS BY EPA<br>16:54 2022 |                            |                              |                                |                           |                              |
| Internal Standards                                                                                                                                                                            | R.T.                                    | QIon                       | Response                     | Conc Ur                        | nits I                    | Dev(Min)                     |
| <ol> <li>Pentafluorobenzene</li> <li>1,4-Difluorobenzene</li> <li>Chlorobenzene-d5</li> </ol>                                                                                                 | 6.01<br>6.83<br>10.18                   | 114                        | 487500                       | 50.00                          | UG                        | 0.00                         |
| System Monitoring Compounds<br>30) 1,2-Dichloroethane-d4<br>Spiked Amount 50.000<br>41) Toluene-d8<br>Spiked Amount 50.000<br>59) Bromofluorobenzene<br>Spiked Amount 50.000                  | Range 80<br>8.51<br>Range 80<br>11.58   | - 120<br>98<br>- 120<br>95 | Recover<br>607331<br>Recover | xy =<br>47.65<br>xy =<br>46.07 | 100.3<br>UG<br>95.3<br>UG | 30%<br>0.00<br>30%<br>0.00   |
| Target Compounds<br>20) cis-1,2-Dichloroethene<br>33) Trichloroethene<br>45) Tetrachloroethene                                                                                                |                                         | 95                         | 254155<br>483714<br>2345     | 125.20                         | UG                        | Qvalue<br># 99<br># 97<br>99 |


(#)  $\equiv$  qualifier out of range (m)  $\equiv$  manual integration (+)  $\equiv$  signals summed

Page: 1

Quantitation Report (QT Reviewed)

Data Path : C:\MSDChem\1\DATA\22-06-16\
Data File : K6633.D
Acq On : 17 Jun 2022 10:29
Operator : BARBARA
Sample : MW10D,E22-03403-002,A,0.1mL,100
Misc : EWMA/SWIVELIER\_-2,06/09/22,06/09/22,50
ALS Vial : 46 Sample Multiplier: 1

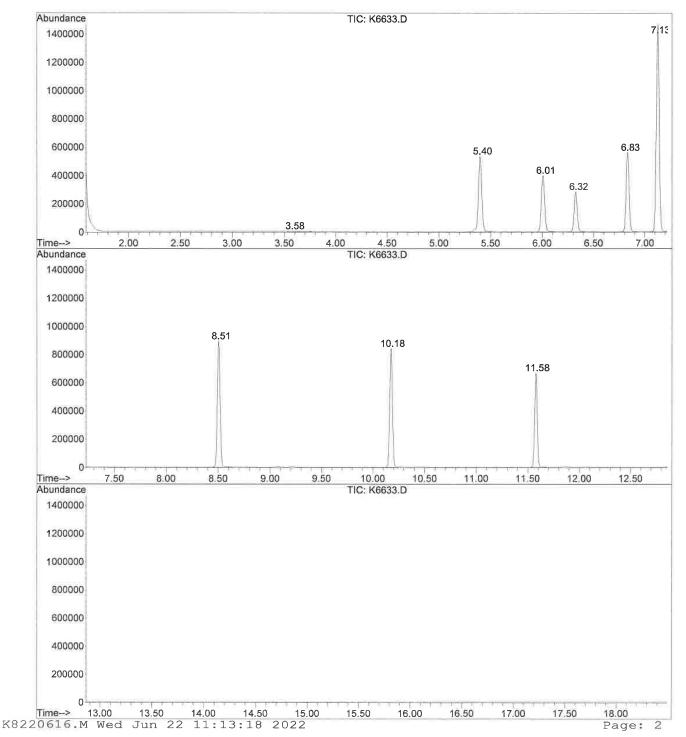
Quant Time: Jun 17 12:31:52 2022 Quant Method : C:\MSDCHEM\1\METHODS\K8220616.M Quant Title : VOLATILE ORGANICS BY EPA METHOD 8260D QLast Update : Fri Jun 17 09:16:54 2022 Response via : Initial Calibration



LSC Area Percent Report

| Data Path<br>Data File<br>Acq On<br>Operator<br>Sample<br>Misc<br>ALS Vial   | : K6633.D<br>: 17 Jun 2<br>: BARBARA<br>: MW10D,E2<br>: EWMA/SWI | 022 10:29<br>2-03403-09<br>VELIER2       | 9<br>02,A,O.1mL,<br>2,06/09/22,              | 100<br>06/09/22,                     | 50                                    |                                       |
|------------------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------|----------------------------------------------|--------------------------------------|---------------------------------------|---------------------------------------|
| Integratio<br>Integrator<br>Smoothing<br>Sampling<br>Start Thrs<br>Stop Thrs | : RTE<br>: ON<br>: 1<br>: 0.07                                   | rs: LSCIN                                |                                              | Min A                                | eaks: 100                             |                                       |
| If leading<br>Peak separ                                                     |                                                                  | ng edge <                                | 100 prefe                                    | r < Baseli                           | ne drop                               | else tangent >                        |
| Method<br>Title                                                              | 64 ·                                                             |                                          | DDS\K822061<br>BY EPA MET                    |                                      | )                                     |                                       |
| Signal                                                                       | : TIC                                                            |                                          |                                              |                                      |                                       |                                       |
|                                                                              | scan scan                                                        | scan TY                                  | height                                       | corr.<br>area                        | corr.<br>% max.                       | % of<br>total                         |
| 1 3.577<br>2 5.396<br>3 6.010<br>4 6.324                                     | 706 728<br>832 845<br>892 905                                    | 419 rVB<br>748 rBV<br>866 rBV<br>922 rBV | 4982<br>534125<br>397271<br>283198<br>559813 | 50912<br>1211153<br>873760<br>604304 | 1.76%<br>41.84%<br>30.19%             | 0.457%<br>10.883%<br>7.851%<br>5.430% |
| 7 8.505<br>8 10.178                                                          | 1630 1640                                                        | 1347 rBV<br>1653 rBV                     | 1468450<br>893927<br>840909<br>666707        | 1650849<br>1540323                   | 100.00%<br>57.03%<br>53.21%<br>40.61% | 14.834%<br>13.841%                    |

Sum of corrected areas: 11128931


K8220616.M Wed Jun 22 11:13:18 2022

Page: 1

LSC Report - Integrated Chromatogram

Data Path : C:\MSDChem\1\DATA\22-06-16\ Data File : K6633.D Acq On : 17 Jun 2022 10:29 Operator : BARBARA Sample : MW10D,E22-03403-002,A,0.1mL,100 Misc : EWMA/SWIVELIER\_-\_2,06/09/22,06/09/22,50 ALS Vial : 46 Sample Multiplier: 1 Quant Method : C:\MSDCHEM\1\METHODS\K8220616.M Quant Title : VOLATILE ORGANICS BY EPA METHOD 8260D

TIC Library : C:\DATABASE\NISTO5A.L TIC Integration Parameters: LSCINT.P



Library Search Compound Report

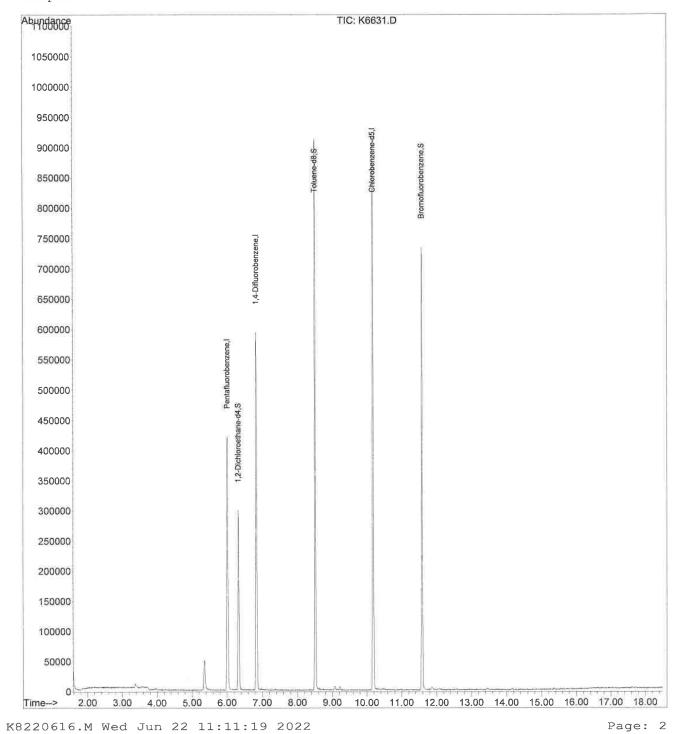
Data Path : C:\MSDChem\1\DATA\22-06-16\ Data File : K6633.D Acq On : 17 Jun 2022 10:29 Operator : BARBARA Sample : MW10D,E22-03403-002,A,0.1mL,100 Misc : EWMA/SWIVELIER - 2,06/09/22,06/09/22,50 ALS Vial : 46 Sample Multiplier: 1 Quant Method : C:\MSDCHEM\1\METHODS\K8220616.M Quant Title : VOLATILE ORGANICS BY EPA METHOD 8260D TIC Library : C:\DATABASE\NIST05A.L TIC Integration Parameters: LSCINT.P No Library Search Compounds Detected

K8220616.M Wed Jun 22 11:13:18 2022

Page: 3

Quantitation Report (QT Reviewed)

| Data Path : C:\MSDChem\1\DATA\22-06-16\<br>Data File : K6631.D<br>Acq On : 17 Jun 2022 9:32<br>Operator : BARBARA<br>Sample : FIELD_BLANK,E22-03403-003,A,5mL,100<br>Misc : EWMA/SWIVELIER2,06/09/22,06/09/22,1<br>ALS Vial : 44 Sample Multiplier: 1                                                 |                                                  |                 |                |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-----------------|----------------|--|--|
| Quant Time: Jun 17 12:30:08 2<br>Quant Method : C:\MSDCHEM\1\M<br>Quant Title : VOLATILE ORGAN<br>QLast Update : Fri Jun 17 09:<br>Response via : Initial Calibra                                                                                                                                     | ETHODS\K8220616<br>ICS BY EPA METH<br>16:54 2022 |                 |                |  |  |
| Internal Standards                                                                                                                                                                                                                                                                                    | R.T. QION                                        | Response Conc l | Jnits Dev(Min) |  |  |
|                                                                                                                                                                                                                                                                                                       | 316723 50.00<br>505396 50.00<br>538388 50.00     |                 |                |  |  |
| System Monitoring Compounds30) 1,2-Dichloroethane-d46.326521424350.12UG0.00Spiked Amount50.000Range80120Recovery=100.24%41) Toluene-d88.519863253447.87UG0.00Spiked Amount50.000Range80=120Recovery=95.74%59) Bromofluorobenzene11.589523968347.64UG0.00Spiked Amount50.000Range80=120Recovery=95.28% |                                                  |                 |                |  |  |
| Target Compounds                                                                                                                                                                                                                                                                                      |                                                  |                 | Qvalue         |  |  |


(#) =qualifier out of range (m) = manual integration (+) = signals summed

Quantitation Report (QT Reviewed)

| Data Path  | 3   | C:\MSDChem\1\DATA\22-06-16\             |
|------------|-----|-----------------------------------------|
| Data File  | 3   | K6631.D                                 |
|            |     | 17 Jun 2022 9:32                        |
| Operator   | :   | BARBARA                                 |
|            |     | FIELD_BLANK, E22-03403-003, A, 5mL, 100 |
|            |     | EWMA/SWIVELIER2,06/09/22,06/09/22,1     |
| ALS Vial   |     | 44 Sample Multiplier: 1                 |
|            |     |                                         |
|            |     | Jun 17 12:30:08 2022                    |
| Quant Meth | 100 | d : C:\MSDCHEM\1\METHODS\K8220616.M     |

Quant Title : VOLATILE ORGANICS BY EPA METHOD 8260D QLast Update : Fri Jun 17 09:16:54 2022

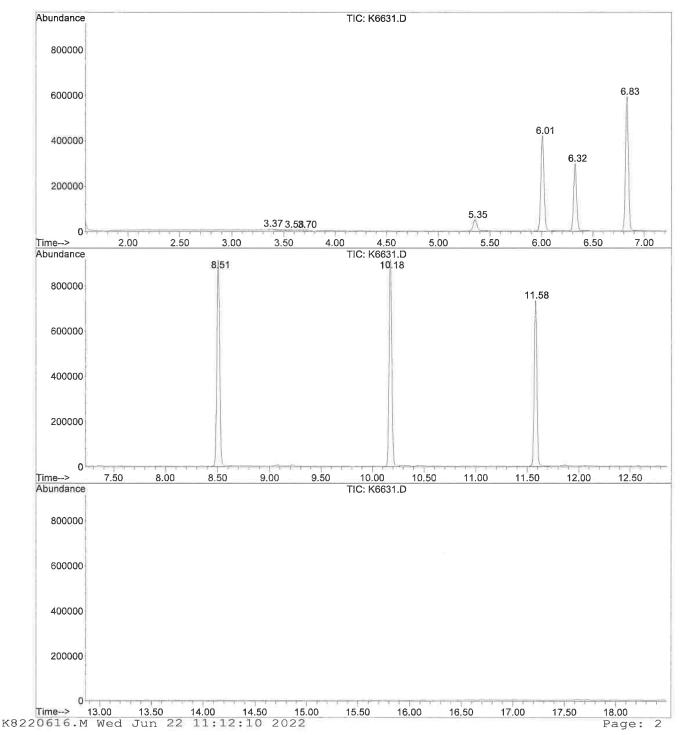
Response via : Initial Calibration



LSC Area Percent Report

| Data E<br>Acq Or<br>Operat                              | File :<br>tor :         | K663<br>17 J<br>BARE<br>FIEL<br>EWMA | 1.D<br>Jun 20<br>BARA<br>D_BLA<br>/SWIN | )22<br>ANK,E2<br>VELIEF             | 9:32<br>22-03<br>2-03 | 22-06-16\<br>403-003,A,<br>,06/09/22,<br>lier: 1 | 5mL,100<br>06/09/22,    | 1        |                                      |   |
|---------------------------------------------------------|-------------------------|--------------------------------------|-----------------------------------------|-------------------------------------|-----------------------|--------------------------------------------------|-------------------------|----------|--------------------------------------|---|
| Integr<br>Integr<br>Smooth<br>Sampli<br>Start<br>Stop I | ator:<br>ing :<br>Thrs: | RTE<br>ON<br>1<br>0.07               |                                         | s: LS                               | SCINT                 |                                                  | Min A                   | aks: 100 |                                      | k |
| If lea<br>Peak s                                        |                         |                                      |                                         | ng edg                              | ge < 3                | 100 prefer                                       | r < Baseli              | ne drop  | else tangent >                       |   |
| Method<br>Title                                         |                         |                                      |                                         |                                     |                       | DS\K822061<br>By epa mei                         |                         | )        |                                      |   |
| Signal                                                  | . 4                     | : TIC                                |                                         |                                     |                       |                                                  |                         |          |                                      |   |
|                                                         | nin s                   | scan                                 | scan                                    | last<br>scan                        | ΤY                    | peak<br>height                                   | area                    | % max.   | % of<br>total                        |   |
| 1 3.<br>2 3.<br>3 3.<br>4 5.                            | 577<br>703              |                                      | 342<br>381<br>405<br>720<br>845         | 371<br>403<br>420<br>744            | rVV8<br>rVB8          | 6940<br>5604<br>6213<br>49244                    | 23594<br>39052<br>19600 | 8.09%    | 0.309%<br>0.512%<br>0.257%<br>1.832% |   |
| 7 6.<br>8 8.<br>9 10.                                   | 833<br>505<br>178       | 1308<br>1629                         | 1321<br>1640                            | 932<br>1019<br>1345<br>1657<br>1934 | rBV<br>rBV            | 297507<br>592309<br>911531<br>914009<br>733177   | 1726947<br>1657460      |          | 21.722%                              |   |

Sum of corrected areas: 7630161


K8220616.M Wed Jun 22 11:12:10 2022

LSC Report - Integrated Chromatogram

Data Path : C:\MSDChem\1\DATA\22-06-16\
Data File : K6631.D
Acq On : 17 Jun 2022 9:32
Operator : BARBARA
Sample : FIELD\_BLANK,E22-03403-003,A,5mL,100
Misc : EWMA/SWIVELIER\_-2,06/09/22,06/09/22,1
ALS Vial : 44 Sample Multiplier: 1

Quant Method : C:\MSDCHEM\1\METHODS\K8220616.M Quant Title : VOLATILE ORGANICS BY EPA METHOD 8260D

```
TIC Library : C:\DATABASE\NIST05A.L
TIC Integration Parameters: LSCINT.P
```



Library Search Compound Report

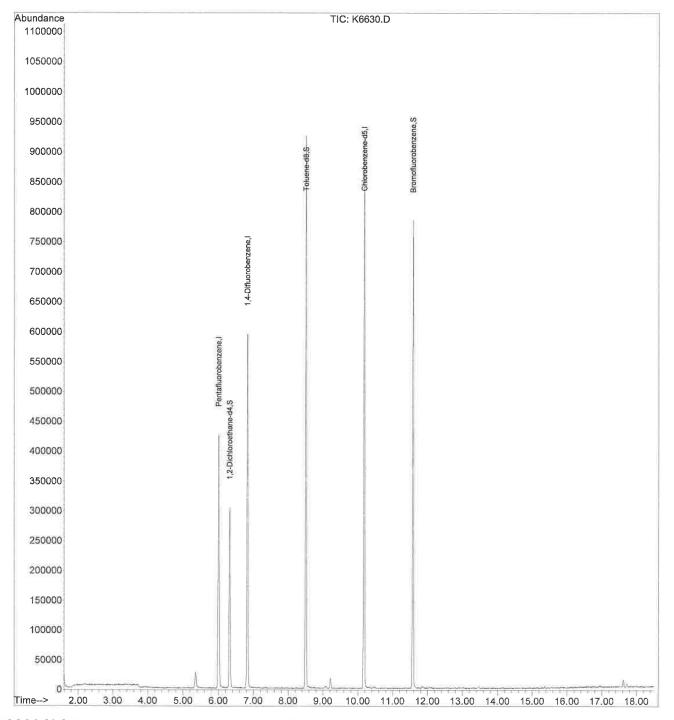
| Data Path : C:\MSDChem\l\DATA\22-06-16\<br>Data File : K6631.D<br>Acq On : 17 Jun 2022 9:32<br>Operator : BARBARA<br>Sample : FIELD_BLANK,E22-03403-003,A,5mL,100<br>Misc : EWMA/SWIVELIER2,06/09/22,06/09/22,1<br>ALS Vial : 44 Sample Multiplier: 1<br>Quant Method : C:\MSDCHEM\l\METHODS\K8220616.M |                                                              |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|
| Quant Title : VOLATILE ORGANICS BY EPA METHOD 8260                                                                                                                                                                                                                                                      | D                                                            |
| TIC Library : C:\DATABASE\NIST05A.L<br>TIC Integration Parameters: LSCINT.P                                                                                                                                                                                                                             |                                                              |
| **************************************                                                                                                                                                                                                                                                                  | **************************************                       |
| R.T. EstConc Area Relative to I                                                                                                                                                                                                                                                                         | STD R.T.                                                     |
| 5.35 7.66 UG 139773 Pentafluorobenz                                                                                                                                                                                                                                                                     | ene 6.01                                                     |
| Hit# of 5 Tentative ID MW MolForm                                                                                                                                                                                                                                                                       | CAS# Qual                                                    |
| 1 Silanol, trimethyl-90 C3H100Si2 Silanol, trimethyl-90 C3H100Si3 Propanoic acid, 2-methyl-, tert202 C10H22024 Acetic acid, trimethylsilyl ester132 C5H1202S5 Silanol, dimethyl(1,1,2-trimethy160 C8H200Si                                                                                              | 001066-40-678Si111864-21-278i018147-36-978                   |
| Abundance       Scan 719 (5.349 min): K6631.D (-706) (-)         5000       75         5000       45         45       61         90 102113       131 144 158         182       198         20       40         60       80         100       120         45       42199: Silanol, trimethyl-            | m/z 75.00 100.00%<br>5.00 5.20 5.40 5.60<br>m/z 45.00 18.98% |
| 5000<br>45<br>15 28 59 90<br>m/z-> 20 40 60 80 100 120 140 160 180 200 220 240<br>Abundance #2200: Silanol, trimethyl-<br>75                                                                                                                                                                            | 5.00 5.20 5.40 5.60<br>m/z 47.00 11.73%                      |
|                                                                                                                                                                                                                                                                                                         | 5.00 5.20 5.40 5.60                                          |
| 5000                                                                                                                                                                                                                                                                                                    | m/z 76.00 7.87%                                              |
| 45       27     61       m/z>     20     40     60     80     100     120     140     160     180     200     220     240       Abundance     #58145: Propanoic acid, 2-methyl-, tert-butyldimethylsilyl     75     145       5000     41     145                                                       | 5.00 5.20 5.40 5.60<br>m/z 77.00 4.00%                       |
| m/z> 20 40 60 80 100 120 140 160 180 200 220 240                                                                                                                                                                                                                                                        | 5.00 5.20 5.40 5.60                                          |

K8220616.M Wed Jun 22 11:12:11 2022

Tentatively Identified Compound (LSC) summary

Data Path : C:\MSDChem\1\DATA\22-06-16\ Data File : K6631.D Acq On : 17 Jun 2022 9:32 Operator : BARBARA Sample : FIELD\_BLANK, E22-03403-003, A, 5mL, 100 Misc : EWMA/SWIVELIER - 2,06/09/22,06/09/22,1 ALS Vial : 44 Sample Multiplier: 1 Quant Method : C:\MSDCHEM\1\METHODS\K8220616.M Quant Title : VOLATILE ORGANICS BY EPA METHOD 8260D TIC Library : C:\DATABASE\NIST05A.L TIC Integration Parameters: LSCINT.P |--Internal Standard---| RT EstConc Units Response |# RT Resp Conc| TIC Top Hit name \_\_\_\_ 5.35 7.7 001066-40-6 Silanol, trimethyl-139773 1 6.01 912919 50.0

K8220616.M Wed Jun 22 11:12:11 2022


| Quantitat                                                                                                                                                                                      | ion Report                                 | (QI                    | Reviewed)                              |                              |                              |       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|------------------------|----------------------------------------|------------------------------|------------------------------|-------|
| Data Path : C:\MSDChem\l\DATA<br>Data File : K6630.D<br>Acq On : 17 Jun 2022 9:03<br>Operator : BARBARA<br>Sample : TRIP_BLANK,E22-03<br>Misc : EWMA/SWIVELIER2<br>ALS Vial : 43 Sample Multip | 3<br>403-004,A,5n<br>2,06/09/22,0          | nL,100<br>06/09/       | )<br>/22,1                             |                              |                              |       |
| Quant Time: Jun 17 12:51:52 20<br>Quant Method : C:\MSDCHEM\1\MM<br>Quant Title : VOLATILE ORGAN<br>QLast Update : Fri Jun 17 09:<br>Response via : Initial Calibra                            | ETHODS\K8220<br>ICS BY EPA N<br>16:54 2022 |                        |                                        |                              |                              |       |
| Internal Standards                                                                                                                                                                             | R.T. Ç                                     | lon                    | Response                               | Conc Ur                      | nits Dev                     | (Min) |
| <ol> <li>Pentafluorobenzene</li> <li>1,4-Difluorobenzene</li> <li>Chlorobenzene-d5</li> </ol>                                                                                                  |                                            | 114                    | 520135                                 | 50.00                        |                              | 0.00  |
| System Monitoring Compounds<br>30) 1,2-Dichloroethane-d4<br>Spiked Amount 50.000<br>41) Toluene-d8<br>Spiked Amount 50.000<br>59) Bromofluorobenzene<br>Spiked Amount 50.000                   | Range 80 -<br>8.51<br>Range 80 -<br>11.58  | 120<br>98<br>120<br>95 | Recover<br>658677<br>Recover<br>251243 | y =<br>48.44<br>y =<br>48.12 | 99.28%<br>UG<br>96.88%<br>UG | 0.00  |
| Target Compounds                                                                                                                                                                               |                                            |                        |                                        |                              | Qv                           | alue  |

(#) = qualifier out of range (m) = manual integration (+) = signals summed

Quantitation Report (QT Reviewed)

| Data Path : | C:\MSDChem\1\DATA\22-06-16\             |
|-------------|-----------------------------------------|
| Data File : | K6630.D                                 |
| Acq On :    | 17 Jun 2022 9:03                        |
| Operator :  | BARBARA                                 |
|             | TRIP_BLANK, E22-03403-004, A, 5mL, 100  |
| Misc :      | EWMA/SWIVELIER - 2,06/09/22,06/09/22,1  |
| ALS Vial :  | 43 Sample Multiplier: 1                 |
|             |                                         |
| Quant Time: | Jun 17 12:51:52 2022                    |
| Quant Metho | d : C:\MSDCHEM\1\METHODS\K8220616.M     |
| Quant Title | : VOLATILE ORGANICS BY EPA METHOD 8260D |
| QLast Updat | e : Fri Jun 17 09:16:54 2022            |

Response via : Initial Calibration



K8220616.M Wed Jun 22 11:10:56 2022

#### **VOLATILE ORGANICS**

Lab ID: BLK220616-02 Client ID: BLK220616-02 Date Received: NA Date Analyzed: 06/17/2022 Data file: K6617.D 06/17/2022 02:47 GC/MS Column: DB-624 Sample wt/vol: 5mL Matrix-Units: Aqueous-µg/L % Moisture: 100 Dilution Factor: 1

| Compound                       | Concentration | Q | RL    | MDL   |
|--------------------------------|---------------|---|-------|-------|
| Dichlorodifluoromethane        | ND            |   | 1.00  | 0.552 |
| Chloromethane                  | ND            |   | 0.500 | 0.309 |
| Vinyl chloride                 | ND            |   | 1.00  | 0.352 |
| Bromomethane                   | ND            |   | 1.00  | 0.386 |
| Chloroethane                   | ND            |   | 0.500 | 0.324 |
| Trichlorofluoromethane         | ND            |   | 1.00  | 0.503 |
| 1,1-Dichloroethene             | ND            |   | 0.500 | 0.363 |
| Acetone                        | ND            |   | 2.00  | 0.847 |
| Carbon disulfide               | ND            |   | 1.00  | 0.403 |
| Methylene chloride             | ND            |   | 1.00  | 0.500 |
| trans-1,2-Dichloroethene       | ND            |   | 0.500 | 0.372 |
| Methyl tert-butyl ether (MTBE) | ND            |   | 0.500 | 0.245 |
| 1,1-Dichloroethane             | ND            |   | 0.500 | 0.285 |
| cis-1,2-Dichloroethene         | ND            |   | 0.500 | 0.277 |
| 2-Butanone (MEK)               | ND            |   | 2.00  | 0.802 |
| Bromochloromethane             | ND            |   | 1.00  | 0.379 |
| Chloroform                     | ND            |   | 0.500 | 0.285 |
| 1,1,1-Trichloroethane          | ND            |   | 0.500 | 0.381 |
| Carbon tetrachloride           | ND            |   | 0.500 | 0.349 |
| 1,2-Dichloroethane (EDC)       | ND            |   | 0.500 | 0.273 |
| Benzene                        | ND            |   | 0.500 | 0.270 |
| Trichloroethene                | ND            |   | 0.500 | 0.347 |
| 1,2-Dichloropropane            | ND            |   | 0.500 | 0.272 |
| 1,4-Dioxane                    | ND            |   | 100   | 51.1  |
| Bromodichloromethane           | ND            |   | 0.500 | 0.258 |
| cis-1,3-Dichloropropene        | ND            |   | 1.00  | 0.264 |
| 4-Methyl-2-pentanone (MIBK)    | ND            |   | 1.00  | 0.611 |

#### **VOLATILE ORGANICS**

Lab ID: BLK220616-02 Client ID: BLK220616-02 Date Received: NA Date Analyzed: 06/17/2022 Data file: K6617.D 06/17/2022 02:47 GC/MS Column: DB-624 Sample wt/vol: 5mL Matrix-Units: Aqueous-µg/L % Moisture: 100 Dilution Factor: 1

| Compound                              | Concentration | Q | RL    | MDL   |
|---------------------------------------|---------------|---|-------|-------|
| Toluene                               | ND            |   | 0.500 | 0.302 |
| trans-1,3-Dichloropropene             | ND            |   | 1.00  | 0.330 |
| 1,1,2-Trichloroethane                 | ND            |   | 0.500 | 0.313 |
| Tetrachloroethene                     | ND            |   | 0.500 | 0.365 |
| 2-Hexanone                            | ND            |   | 1.00  | 0.818 |
| Dibromochloromethane                  | ND            |   | 0.500 | 0.263 |
| 1,2-Dibromoethane (EDB)               | ND            |   | 0.500 | 0.289 |
| Chlorobenzene                         | ND            |   | 0.500 | 0.304 |
| Ethylbenzene                          | ND            |   | 0.500 | 0.313 |
| Total Xylenes                         | ND            |   | 1.00  | 0.345 |
| Styrene                               | ND            |   | 1.00  | 0.317 |
| Bromoform                             | ND            |   | 0.500 | 0.328 |
| Isopropylbenzene                      | ND            |   | 1.00  | 0.332 |
| 1,1,2,2-Tetrachloroethane             | ND            |   | 1.00  | 0.284 |
| 1,3-Dichlorobenzene                   | ND            |   | 0.500 | 0.386 |
| 1,4-Dichlorobenzene                   | ND            |   | 0.500 | 0.397 |
| 1,2-Dichlorobenzene                   | ND            |   | 0.500 | 0.354 |
| 1,2-Dibromo-3-chloropropane           | ND            |   | 1.00  | 0.410 |
| 1,2,4-Trichlorobenzene                | ND            |   | 1.00  | 0.358 |
| 1,2,3-Trichlorobenzene                | ND            |   | 1.00  | 0.406 |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | ND            |   | 1.00  | 0.538 |
| Methyl acetate                        | ND            |   | 0.500 | 0.345 |
| Cyclohexane                           | ND            |   | 1.00  | 0.469 |
| Methylcyclohexane                     | ND            |   | 1.00  | 0.421 |
| 1,3-Dichloropropene (cis- and trans-) | ND            |   | 1.00  | 0.264 |
|                                       |               |   |       |       |

Total Target Compounds (52):

0

D --- Dilution Performed

 $\mathsf{J}$  --- Value Less than RL & greater than  $\mathsf{MDL}$ 

E --- Exceeds upper level of Calibration curve

B --- Compound detected in Blank

C --- Common laboratory contamination

#### VOLATILE ORGANICS Tentatively Identified Compounds

|              | K220616-02     | GC/MS Column: D    |           |
|--------------|----------------|--------------------|-----------|
| Client ID: E | BLK220616-02   | Sample wt/vol: 5mI |           |
| Date Receive | ed: NA         | Matrix-Units: Aque | ous-µg/L  |
| Date Analyz  | ed: 06/17/2022 | Dilution Factor: 1 |           |
| Date File: K | C6617.D        | % Moisture: 100    |           |
|              |                | Estimated          | Retention |
| CAS #        | Compound       | Concentration Q    | Time      |
|              |                |                    |           |

No peaks detected

Total TICs =

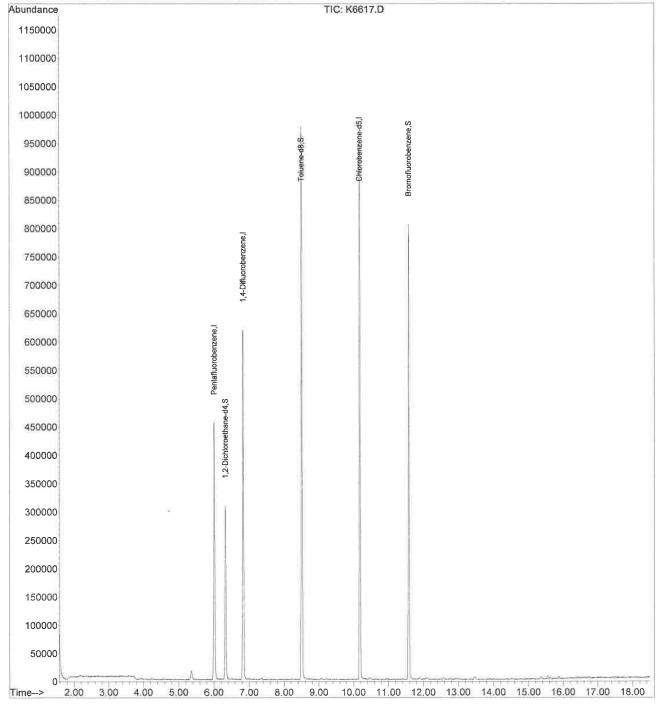
D --- Dilution Performed

J --- Estimated concentration for TICs

0

N ---- Presumptive evidence of a compound from the use of GC/MS NIST library search

| Quantitat:                                                                                                                                                                                 | ion Report (                                          | QT Reviewed)                                 |                                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|----------------------------------------------|----------------------------------------|
| Data Path : C:\MSDChem\l\DATA<br>Data File : K6617.D<br>Acq On : 17 Jun 2022 2:47<br>Operator : BARBARA<br>Sample : BLK220616-02,BLK22<br>Misc : NA,NA,NA,1<br>ALS Vial : 30 Sample Multip | 7<br>20616-02,A,5mL,                                  | 100                                          |                                        |
| Quant Time: Jun 17 09:25:41 20<br>Quant Method : C:\MSDCHEM\1\M<br>Quant Title : VOLATILE ORGAN<br>QLast Update : Fri Jun 17 09:3<br>Response via : Initial Calibra                        | ETHODS\K8220616<br>ICS BY EPA METH<br>16:54 2022      |                                              |                                        |
| Internal Standards                                                                                                                                                                         | R.T. QIon                                             | Response Conc U                              | nits Dev(Min)                          |
| <ol> <li>Pentafluorobenzene</li> <li>31) 1,4-Difluorobenzene</li> <li>50) Chlorobenzene-d5</li> </ol>                                                                                      | 6.83 114                                              | 363204 50.00<br>551741 50.00<br>593443 50.00 |                                        |
| System Monitoring Compounds<br>30) 1,2-Dichloroethane-d4<br>Spiked Amount 50.000<br>41) Toluene-d8<br>Spiked Amount 50.000<br>59) Bromofluorobenzene<br>Spiked Amount 50.000               | Range 80 - 12<br>8.51 98<br>Range 80 - 12<br>11.58 95 |                                              | 92.22%<br>UG 0.00<br>96.00%<br>UG 0.00 |
| Target Compounds                                                                                                                                                                           |                                                       |                                              | Qvalue                                 |


(#) = qualifier out of range (m) = manual integration (+) = signals summed

K8220616.M Wed Jun 22 11:14:19 2022

Quantitation Report (QT Reviewed)

| Data Path  | 1 | C: $MSDChem_1DATA_22-06-16$         |
|------------|---|-------------------------------------|
| Data File  | : | K6617.D                             |
| Acq On     | • | 17 Jun 2022 2:47                    |
| Operator   | : | BARBARA                             |
| Sample     | 3 | BLK220616-02,BLK220616-02,A,5mL,100 |
| Misc       | : | NA, NA, NA, 1                       |
| ALS Vial   |   | 30 Sample Multiplier: 1             |
| Quant Time |   | Jun 17 09:25:41 2022                |
|            |   | d : C:\MSDCHEM\1\METHODS\K8220616.M |

Quant Title : VOLATILE ORGANICS BY EPA METHOD 8260D QLast Update : Fri Jun 17 09:16:54 2022 Response via : Initial Calibration



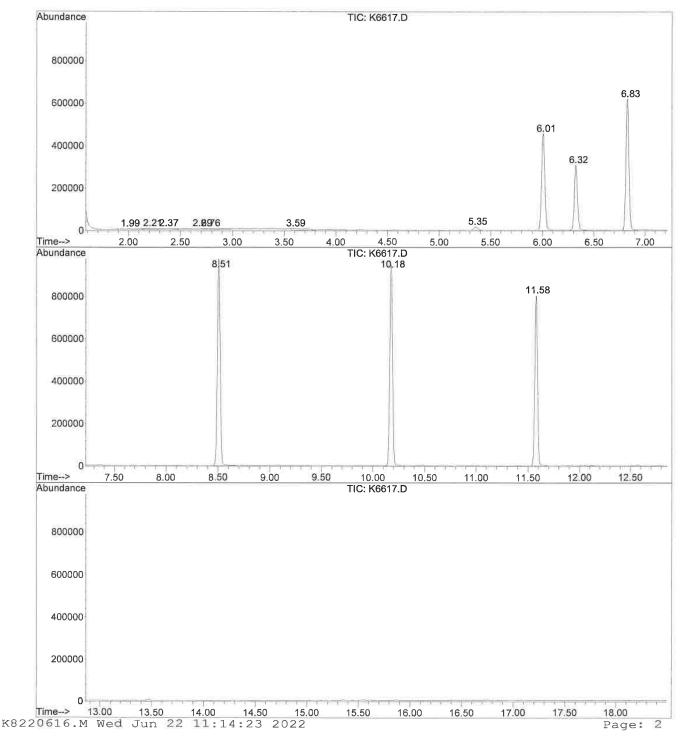
K8220616.M Wed Jun 22 11:14:19 2022

LSC Area Percent Report

| Data<br>Acq<br>Oper<br>Samp<br>Misc | File<br>On<br>ator<br>Dle                                  | : K661<br>: 17 3<br>: BARE<br>: BLK2<br>: NA, N | 17.D<br>Jun 20<br>3ARA<br>220616<br>NA,NA, | )22<br>5-02,E            | 2:47<br>3LK220           | 22-06-16\<br>0616-02,A<br>lier: 1    |                                               |                                           |                                                |
|-------------------------------------|------------------------------------------------------------|-------------------------------------------------|--------------------------------------------|--------------------------|--------------------------|--------------------------------------|-----------------------------------------------|-------------------------------------------|------------------------------------------------|
| Inte<br>Smoc<br>Samp<br>Star        | egratio<br>egrator<br>othing<br>oling<br>ot Thrs<br>o Thrs | : RTE<br>: ON<br>: 1<br>: 0.0                   |                                            | rs: LS                   | SCINT                    |                                      | Min A                                         | aks: 100                                  |                                                |
|                                     | .eading<br>separ                                           |                                                 |                                            | ng edg                   | ge < 1                   | 100 prefe                            | r < Baseli                                    | ne drop                                   | else tangent >                                 |
|                                     |                                                            |                                                 |                                            |                          |                          | DS\K82206<br>BY EPA ME               | 16.M<br>THOD 82601                            | )                                         |                                                |
| Sign                                | nal                                                        | : TIC                                           | C                                          |                          |                          |                                      |                                               |                                           |                                                |
| - #                                 | min                                                        | scan                                            | scan                                       | scan                     | ΤY                       | height                               | corr.<br>area                                 | % max.                                    | total                                          |
| 1<br>2<br>3<br>4<br>5               | 1.993<br>2.208<br>2.366<br>2.686<br>2.764                  | 60<br>106<br>134<br>171                         | 79<br>120<br>150<br>211<br>226             | 106<br>134<br>171<br>224 | rVV<br>rVV<br>rVV<br>rVV | 5734<br>6174<br>5082<br>4425<br>3359 | 62215<br>42362<br>43902<br>47835              | 3.36%<br>2.29%<br>2.37%<br>2.58%<br>1.36% | 0.7498<br>0.5108<br>0.5288<br>0.5768<br>0.3048 |
| 7<br>8<br>9                         | 3.587<br>5.349<br>6.010<br>6.324<br>6.833                  | 711<br>833<br>893                               | 383<br>719<br>845<br>905<br>1002           | 861<br>926               | rBV<br>rBV               | 455022<br>307011                     | 70690<br>42382<br>998922<br>649501<br>1252866 | 53.93%                                    | 12.021%<br>7.816%                              |
| 12 1                                | 8.505<br>0.178<br>1.578                                    | 1627                                            | 1640                                       | 1657                     | rBV                      | 976941<br>947044<br>804028           | 1782802                                       | 96.24%                                    |                                                |

Sum of corrected areas: 8310021

K8220616.M Wed Jun 22 11:14:23 2022


Page: 1

LSC Report - Integrated Chromatogram

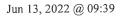
```
Data Path : C:\MSDChem\1\DATA\22-06-16\
Data File : K6617.D
Acq On : 17 Jun 2022 2:47
Operator : BARBARA
Sample : BLK220616-02,BLK220616-02,A,5mL,100
Misc : NA,NA,NA,1
ALS Vial : 30 Sample Multiplier: 1
Quant Method : C:\MSDCHEM\1\METHODS\K8220616.M
```

Quant Title : VOLATILE ORGANICS BY EPA METHOD 8260D

```
TIC Library : C:\DATABASE\NIST05A.L
TIC Integration Parameters: LSCINT.P
```



Library Search Compound Report


Data Path : C:\MSDChem\1\DATA\22-06-16\ Data File : K6617.D Acq On : 17 Jun 2022 2:47 Operator : BARBARA Sample : BLK220616-02,BLK220616-02,A,5mL,100 Misc : NA,NA,NA,1 ALS Vial : 30 Sample Multiplier: 1 Quant Method : C:\MSDCHEM\1\METHODS\K8220616.M Quant Title : VOLATILE ORGANICS BY EPA METHOD 8260D TIC Library : C:\DATABASE\NIST05A.L TIC Integration Parameters: LSCINT.P No Library Search Compounds Detected

K8220616.M Wed Jun 22 11:14:23 2022

Page: 3

#### SAMPLE TRACKING

| Customer Information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                      |                                                                                 |                                                  |                           |           |                                              |                                                  |                                 |                                                   |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Web: www.ialonline.com          | Web: www.ialonline.com        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------------------------------|--------------------------------------------------|---------------------------|-----------|----------------------------------------------|--------------------------------------------------|---------------------------------|---------------------------------------------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-------------------------------|
| Demoart E I I MAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                      | Reporti                                                                         | ting Information                                 | tion                      |           | **Rush TAT<br>Charge                         | D Surchage                                       | Deliverables<br>e may apply for | Deliverables<br>Surchage may apply for monitatory |              | EDDs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Concentrations Expected:        | is Expecte                    |
| HING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                      | Check her                                                                       | Check here if same as "Customer Information"     | stomer Informa            | tion"     | 24 hr - 100%.                                |                                                  | 4                               | NY                                                |              | NJ SRP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Low Med                         | high                          |
| Address:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | RE                                                   | REPORT TO:                                                                      |                                                  |                           |           | 48 hr - 75%<br>72 hr - 50%                   | Results Only                                     | □<br><u>^</u>                   | ASP Category<br>A                                 |              | NYSDEC EQUIS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Known Hazard:                   |                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PA                                                   | Address:                                                                        |                                                  |                           |           | 96 hr - 35%                                  | K                                                |                                 | :                                                 | A ab a       | Manager Stress S |                                 |                               |
| Telephone #:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                      | 5A                                                                              | RU                                               |                           |           | 6-9 day - 10%                                |                                                  | 1                               | ASP Category<br>B*                                |              | NO EDD REQ'D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Descri                          |                               |
| 447 Br                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4nf Attn:                                            | Ë                                                                               |                                                  |                           |           |                                              | Turn-Around Time (TAT)                           | d Time (                        | (TAT)                                             |              | Regu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Regulatory Requirement          | ient                          |
| Email Address(es):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                      | INVOICE TO:                                                                     |                                                  |                           |           | Standard (10                                 | Standard (10 business days) Verbal               | erbal                           |                                                   |              | New Jersey                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | New York                        | fork                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ad                                                   | Address: $\leq \Lambda$                                                         | LIN                                              |                           |           | Rush/date needed<br>(only if pre-approved)** | pa "(pava,                                       | P                               |                                                   |              | GWQS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | AWQS (TOGS Table 1)             | S Table 1)                    |
| Project Name: Swive/ /er                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                      | PC .                                                                            | JWL                                              |                           |           | Hard Copy:                                   | Hard Copy: Standard 3 week                       | ۲.<br>۲.                        | Other - call for price                            | . price      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 | S Table 5)                    |
| Project Location (State):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Attn:                                                | Ë                                                                               |                                                  |                           |           | Petroleui                                    | Petroleum Hydrocarbons - Selection is REQUIRED   | - Select                        | ion is REQUI                                      | RED          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 | - Unrestricted                |
| Bottle Order #: <b>8</b> 0 1376                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | # 04                                                 | #                                                                               |                                                  |                           |           | -H-EPH-C                                     | NJ EPH-DRO - Category 1                          | TAT for PHC,                    | łC, II                                            |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Part 375-6.8(b) - Restricted    | - Restricted                  |
| "Report to"/"Invoice To" same as above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                      | Quota# Solo #                                                                   | 202530                                           | 30                        |           | UN EPH-C                                     | NJ EPH-C40 - Category 2                          |                                 | CT ETPH                                           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 | CP-51 Table 2 or 3 (selection |
| Sampled by: Matte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                      |                                                                                 | Sample Matrix                                    |                           |           | UN EPH-F                                     | NJ EPH-Fractionated - Cat 2                      |                                 | DRO-8015                                          |              | C SPLP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Other States / Criteria         | s / Criteria                  |
| COMPLETED BY IAL:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 22                                                   | DW - Drinking Water<br>WW - Waste Water                                         | OI - Oil<br>S - Soil                             |                           |           | æ                                            | ANALYTICAL PARAMETERS (please note if contingent | AMETER                          | S (please note                                    | e if contin  | gent)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Pennsylvania Act 2              | a Act 2                       |
| Field Sampling Equipment Rental                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      | GW - Groundwater<br>SW - Surface Water                                          | SED - Sediment<br>SOL - Solid (specify)          | ent<br>specify)           |           | ()+Q                                         |                                                  |                                 |                                                   |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CT RCSA 22a-133k1-k3            | a-133k1-k3                    |
| SAMPLE INFORMATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                      | LIQ - Liquid (specify)<br>M - Multinhasic                                       | SL - Sludge<br>W - Wine                          |                           |           |                                              | (                                                |                                 |                                                   |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | T TSCA PCBs                     |                               |
| Cliant ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Douth (# onlin)                                      | Sampling                                                                        |                                                  | #                         |           | er<br>7-                                     |                                                  |                                 |                                                   |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | OTHER Regulatory Requirements - | Requirement                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      | Date Time                                                                       | Maurx                                            | containers                | IAL #     | 21                                           |                                                  |                                 |                                                   |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sample Snecific Notes           | ific Notes                    |
| MUID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9                                                    | 1922 13:50                                                                      | 316                                              | t                         | -         | ×                                            |                                                  | -                               |                                                   |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                               |
| NWOD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                      | 16:25                                                                           | 5 62                                             | 4                         | N         | ×                                            |                                                  |                                 |                                                   |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                               |
| Field Blank                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                      | 10:41                                                                           |                                                  | 6                         | m         | X                                            |                                                  |                                 |                                                   |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                               |
| Ing Blank                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                      | 8:30                                                                            | 0110                                             | Ч                         | ح         | ×                                            |                                                  |                                 |                                                   |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      |                                                                                 |                                                  |                           |           |                                              |                                                  |                                 |                                                   |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                               |
| Samples previously analyzed by IAL?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Bresentasition Codo:                                 | Container                                                                       | Pres                                             | Preservative (use code)   | (code)    | 6                                            |                                                  |                                 |                                                   |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | FOR LAB USE C                   |                               |
| YES / NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                      | Code:                                                                           | Contain                                          | Container Type (use code) | code)     | 2                                            |                                                  |                                 |                                                   |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 | 0                             |
| Please print legibly and fill out 2=<br>completely. Samples cannot be 3=<br>processed and the turnaround time 4=<br>(TAT) will not start until any                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 = None                                             | A = Amber Glass Special I<br>B = Plastic<br>C = Vial<br>D = Glass<br>F = EnCore | Special Instructions/QC Requirements & Comments. | IC Requirer               | nents & ( | comments:                                    |                                                  | -                               | -                                                 |              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SDG #: 3                        | 405                           |
| ti .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4<br>Check ou                                        | 6                                                                               | Relinquished by (Signature and Company)          | Signature and             | Company   |                                              | Time Time                                        | $\mathbf{h}$                    | Received by                                       | y (Signature | Received by (Signature and Company)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 10 A                          | 11.4                          |
| I BATTORE CONTRACT OF A CONTRA | IAL Courier       Client Courier       FedEx/UPS**** |                                                                                 |                                                  |                           | E S       | 0.0                                          | 132/63                                           |                                 | 5\                                                |              | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Claps.                          | 1002                          |
| :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Tracking #.                                          |                                                                                 |                                                  |                           |           |                                              |                                                  |                                 |                                                   |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                               |



Ì



## PROJECT INFORMATION E22-03403: SWIVELIER - 202530

To: Cathy Bryant EWMA - HQ Fax: EMail: Cathy.Bryant@ewma.com

| Report To            | Bill To              |
|----------------------|----------------------|
| EWMA - HQ            | EWMA - HQ            |
| Lanidex Center       | Lanidex Center       |
| 100 Misty Lane       | 100 Misty Lane       |
| Parsippany, NJ 07054 | Parsippany, NJ 07054 |
| Attn: Cathy Bryant   | Attn: Cathy Bryant   |
| Thin Outly Dryan     |                      |
|                      |                      |

|               |                 | Received                                | PHC              | Verbal       | Hardcopy       |  |
|---------------|-----------------|-----------------------------------------|------------------|--------------|----------------|--|
| Report Format | P.O. #          | At Lab                                  | Due              | Due          | Due            |  |
| Reduced       |                 | Jun 09, 2022 @ 16:35                    | NA               | Jun 23, 2022 | Jun 30, 2022 * |  |
|               | * Any Condition | al or Hold status will delay final hard | dcopy report sen | it date.     |                |  |

Diskette Req.

004 TCL VO

Criteria Requirement: NJ GWQS

SRP TXT, EQ EDD

| Lab ID                            | Client Sample ID | Depth         | Sampling Time           | <u>Matrix</u> | <u>Unit</u>          | Field pH/Temp                                          |
|-----------------------------------|------------------|---------------|-------------------------|---------------|----------------------|--------------------------------------------------------|
| 03403-001                         | MW11D            | NA            | 06/09/22@13:50          | Aqueous       | ug/L (ppb)           |                                                        |
| 03403-002                         | MW10D            | NA            | 06/09/22@15:25          | Aqueous       | ug/L (ppb)           |                                                        |
| 03403-003                         | FIELD BLANK      | NA            | 06/09/22@14:01          | Aqueous       | ug/L (ppb)           |                                                        |
| 03403-004                         | TRIP BLANK       | NA            | 00/00/00                | A             | un/I (mmh)           |                                                        |
| 03403-004                         | INIT DLAINK      | NA            | 06/09/22                | Aqueous       | ug/L (ppb)           | CHARGE AND A CHARGE                                    |
| 03403-004                         | INF DLAINK       | NA            | 06/09/22                |               |                      |                                                        |
|                                   |                  | <u>Status</u> | Analytical M            | * No Cert = 1 |                      | tification for this test/metho<br>Holding Time Expires |
| Sample # ]                        |                  |               | Analytical N            | * No Cert = 1 | AL does not hold cer | tification for this test/metho                         |
| <u>Sample #</u> <u>1</u><br>001 1 | <u>`est</u>      | Status        | Analytical M<br>e 8260D | * No Cert = 1 | AL does not hold cer | tification for this test/metho<br>Holding Time Expires |

8260D

Analyze



IAL is a NELAP accredited lab (TNI01284) and maintains certification in Connecticut (PH-0699), New Jersey (14751), New York (11402), and Pennsylvania (68-00773).

STD/2 WKS

6/23/2022

Page 1 of 1

| CASE NO: E 22 03403                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CLIENT: EWMA                                                                                                                                          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| COOLER TEMPERATURE: 2° - 6°C:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ✓ (See Chain of Custody)<br>Comments                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | VOA received: Encore IGW - Methanol<br>(check one) Terra Core No Preservative                                                                         |
| <ul> <li>✓ Bottles Intact</li> <li>✓ no-Missing Bottles</li> <li>✓ no-Extra Bottles</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                       |
| <ul> <li>✓ Sufficient Sample Volume</li> <li>✓ no-headspace/bubbles in VOs</li> <li>✓ Labels intact/correct</li> <li>✓ pH Check<sup>1</sup> (refer to Receipt pH Log)</li> <li>✓ Correct bottles/preservative</li> <li>✓ Sufficient Holding/Prep Time<sup>1</sup></li> <li>Multiphasic Sample</li> <li>Sample to be Subcontracted</li> <li>✓ Chain of Custody is Clear</li> <li><sup>1</sup> All samples with "Analyze Immediately" holding times will the following tests: pH, Temperature, Free Residual Chlorit</li> <li>ADDITIONAL COMMENTS:</li> </ul> | be analyzed by this laboratory past the holding time. This includes but is not limited to<br>ine, Total Residual Chlorine, Dissolved Oxygen, Sulfite. |
| SAMPLE(S) VERIFIED BY: INITIAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                       |
| If COC is <b>NOT</b> clear, <u>STOP</u> until you ge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | et client to authorize/clarify work.                                                                                                                  |
| CLIENT NOTIFIED: YES<br>PROJECT CONTACT:<br>SUBCONTRACTED LAB:<br>DATE SHIPPED:                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Date/ Time: NO                                                                                                                                        |
| ADDITIONAL COMMENTS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                       |
| VERIFIED/TAKEN BY: INITIAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | DATE 6-10-22<br>Rev 2 2/11/2021                                                                                                                       |

|                       | Laboratory                 | , Custo    | dy Chron          | nicle   |               |         |
|-----------------------|----------------------------|------------|-------------------|---------|---------------|---------|
| IAL Case No.          |                            | Clier      | t <u>EWMA - H</u> | HQ      |               |         |
| E22-03403             | Project SWIVELIER - 202530 |            |                   |         |               |         |
|                       | R                          | eceived Oi | <u>6/9/2022(</u>  | 216:35  |               |         |
| Department: Volatiles |                            |            | Prep. Date        | Analyst | Analysis Date | Analyst |
| TCL VO                | 03403-004                  | Aqueous    | n/a               | n/a     | 6/17/22       | Barbara |
| TCL VO + 15           | -001                       | Aqueous    | n/a               | n/a     | 6/17/22       | Barbara |
|                       | -002                       |            | n/a               | n/a     | 6/17/22       | Barbara |
|                       | -003                       | er.        | n/a               | n/a     | 6/17/22       | Barbara |

Page 1 of 1

Jun 22, 2022 @ 12:54

NOTE: All soil, sediment, sludge, and solid samples are reported on a dry-weight basis.

Integrated Analytical Labs ~ 273 Franklin Road, Randolph, NJ 07869 ~ (973) 361-4252

LAST PAGE OF DOCUMENT

# Periodic Review Report – Review Period July 2021 to November 2022

Property Known As:

### Swivelier Company 33 Route 304 Nanuet, Rockland County, New York 10954 NYSDEC Site Nos. 3-44-036 & V00520 EWMA Project No. 202530

Appendix 4 – Purge Guides

November 2022





100 Misty Lane Parsippany, NJ (973) 560-1400 Job Name: Former Swivelier Site Job Number: 202530 Personnel: MaryBeth J & Matt G.

Weather: Sunny 70's Date: 6/1/2022 & 6/9/2022

| WELL INFORMATION                  | MW-10D                      | MW-11D          | MW-13D  |
|-----------------------------------|-----------------------------|-----------------|---------|
| PID (ppm):                        | 0.0                         | 0.0             | 0.0     |
| Depth to Product (feet):          | NA                          | NA              | NA      |
| Depth of Well (feet):             | 77.45                       | 123.09          | 110.00  |
| Depth to Top of Screen (feet):    |                             |                 |         |
| Depth to Water (feet)             | 10.80                       | 10.65           | 10.12   |
| Well Diameter (inches):           | 4                           | 6               | 6       |
| Volume in Well (gal):             | 43.52                       | 165.17          | 146.72  |
| PRE - PURGE DATA                  |                             |                 |         |
| Purge Start:                      | 14:15                       | 11:15           | 9:50    |
| Temperature (deg. C):             | 15.43                       | 15.62           | 15.71   |
| pH:                               | 7.61                        | 9.72            | 7.13    |
| ORP (mV)                          | 161.0                       | -85.0           | -53     |
| Specific Conductivity:            | 1.070                       | 0.444           | 1.94    |
| Turbidity (NTU)                   | 20.7                        | 189.0           | 95.6    |
| Dissolved Oxygen (mg/l):          | 6.23                        | 5.18            | 4.28    |
| Purge End:                        | 15:21                       | 13:46           | 15:10   |
| Elapsed Time:                     | 1:06                        | 2:31            | 5:20    |
| POST-PURGE DATA                   |                             |                 |         |
| Depth to Water (feet):            | 68.00                       | 59.37           | 15.15   |
| Temperature (deg. C):             | 16.98                       | 15.37           | 17.67   |
| pH:                               | 7.35                        | 8.25            | 7.25    |
| ORP (mV)                          | 164.0                       | -157.0          | -36     |
| Specific Conductivity:            | 1.130                       | 0.445           | 1.640   |
| Turbidity (NTU)                   | 9.7                         | 136.0           | 82.6    |
| Dissolved Oxygen (mg/l):          | 5.68                        | 0.40            | 9.72    |
| Minimum Purge Vol. Req. (gal):    | 130.6                       | 495.5           | 440.2   |
| Rate of Purge: (gal/min)          | 2.00                        | 3.00            | 1.50    |
| Actual Total Volume Purged (gal): | 132.00                      | 453.00          | 480.00  |
| Purge Method:                     | Redi-Flow                   | Redi-Flow       | Geo-Sub |
| SAMPLE DATA                       |                             |                 |         |
| Sample Time:                      | 15:25                       | 13:50           | 15:15   |
| Sample Method:                    | pump                        | pump            | pump    |
| Depth to Water (feet):            | 68.12                       | 59.47           | 15.13   |
| Temperature (deg. C):             | 17.01                       | 15.38           | 15.17   |
| pH:                               | 7.34                        | 8.31            | 7.11    |
| ORP (mV)                          | 163                         | -154            | -30     |
| Specific Conductivity:            | 1.13                        | 0.442           | 1.63    |
| Turbidity (NTU)                   | 9.6                         | 147             | 71.9    |
| Dissolved Oxygen (mg/l):          | 5.35                        | 0.00            | 10.18   |
| Odor:                             | none                        | none            | none    |
| Turbidity:                        | clear                       | Slightly Turbid | cloudy  |
| Drawdown: (ft)<br>NOTES:          | 57.20<br>ND = Non-Detection | 48.72           | 5.03    |

NOTES:

ND = Non-Detect

Dry - No water/Not enough water to purge NA - No data collected