From: King, Justin < JKing@trccompanies.com>

Sent: Tuesday, July 14, 2020 9:11 AM

To: Spellman, John (DEC)

Cc: LaRock, Jeffrey; 'Workman, Greg'

Subject: Former Chromalloy Facility (NYSDEC Site No. 344039) - 2020 SVI Assessment Report 2020 SVI Assessment Report, Former Chromalloy Facility, West Nyack, NY (344039).pdf

ATTENTION: This email came from an external source. Do not open attachments or click on links from unknown senders or unexpected emails.

John,

Good morning. For your use, please find the attached 2020 Soil Vapor Intrusion Assessment Report, which summarizes TRC's activities performed during this past 2019-2020 heating season, for the Former Chromalloy Facility (NYSDEC Site No. 344039). Please don't hesitate to contact me on my cell phone number below if you have any comments, questions, or concerns. Hope all is well.

Thanks,

Justin King

Project Manager

10 Maxwell Drive, Suite 200, Clifton Park, NY 12065 **T** 518.348.1192 | **F** 518.348.1194 | **C** 518.860.7656 LinkedIn | Twitter | Blog | TRCcompanies.com

July 14, 2020

John Spellman, P.E.
Project Manager
New York State Department of Environmental Conservation
Division of Environmental Remediation
625 Broadway, 11th Floor
Albany, New York 12233

Re: Soil Vapor Intrusion Assessment Letter Report – 2019-2020 Heating Season Former Chromalloy Facility (NYSDEC Site No. 344039)
169 Western Highway
West Nyack, New York 10994

Dear Mr. Spellman:

TRC Engineers, Inc. (TRC), on behalf of Sequa Corporation (Sequa), has prepared this letter report to discuss recent soil vapor intrusion (SVI) sampling activities completed in association with the former Chromalloy facility located at 169 Western Highway, West Nyack, New York (the Site). All activities were completed in accordance with the NYSDEC approved *January 2020 Permanent Sub-Slab Vapor Point Installation Workplan* (*Workplan*).

Pursuant to the NYSDEC approved *July 2018 SVI Assessment Report*, biennial SVI assessments within the former Chromalloy building were incorporated into the Site's routine monitoring program. For the most recent heating season, TRC completed these SVI assessment activities on February 10 and 11, 2020. A summary of the completed field activities, air sample analytical results, and recommendations are detailed below. A photographic log of TRC's field activities is provided in **Attachment 1**.

2020 Soil Vapor Intrusion Field Activities

Permanent Sub-Slab Vapor Point Installation

On February 10, 2020, TRC installed six permanent sub-slab vapor points (SS-13 through SS-18) within the former Chromalloy facility building. All six permanent sub-slab vapor points were installed adjacent to their 2016 and 2018 temporary counterparts. Five of the sub slab vapor points (SS-14 through SS-18) were installed throughout the main warehouse area and one (SS-13) was installed in the northern kitchen closet space (**Figure 1**).

Each permanent sub-slab vapor point was installed through the building's concrete slab via a 5/8-inch hole, drilled utilizing a hammer drill. The slab thickness was measured and a Vapor Pin® device was installed to the concrete slab's lower depth. Volatile organic compound (VOC)-free silicone sleeves, installed on the barbed ends of the Vapor Pin® device, were used to seal each sub-slab point in place. Following installation, each permanent sub-slab point was completed at the surface with a tamper resistant flush mount cover.

Building Inspection and Chemical Inventory

The main Site building is currently utilized by Paragon Honda Acura of West Nyack, New York to store and prepare new vehicles for sale. Vehicle cleaning and detailing operations are completed on the southern portion of the building. Vehicle maintenance is performed on hydraulic lifts located in the central and western portions of the building. The main office space is in the northern portion of the building. Other than the aforementioned areas, the main building is largely an open warehouse utilized for vehicle storage. Overhead entry doors, located throughout the warehouse, are either continually open or periodically opened/closed throughout the work day to allow entry/exit of vehicles.

Prior to SVI sampling and in accordance with NYSDEC/New York State Department of Health (NYSDOH) guidance, all air sampling locations and their adjacent vicinities were inspected/screened for the presence of volatile organic vapor with a photo-ionization detector (PID), capable of reading in the parts per billion (ppb) range. The NYSDEC form entitled *Structure Sampling Questionnaire and Building Inventory* was completed before and during vapor sampling (further discussed below) and is provided in **Attachment 2**.

Soil Vapor Intrusion Sample Collection

On February 11, 2020 all six sub-slab vapor points were helium leak tested in accordance with NYSDOH methods to ensure that each location was capturing sub-slab vapors, rather than short circuiting ambient indoor air from the surface. In addition to the six sub-slab vapor samples, six co-located indoor air samples (IA-13 through IA-18) and one outdoor ambient air sample (AA-03) was collected for analysis. For quality control/quality assurance (QA/QC) purposes, a single duplicate sample (IA-DUP) was collected in tandem with the IA-13 utilizing a laboratory supplied splitter. A map showing the approximate air sampling locations is provided on **Figure 1**. Record of Vapor Sampling forms, detailing the helium leak tests results, vapor sample PID readings, and sample times, can be found in **Attachment 3**.

All 14 air samples were collected utilizing batch certified 6-liter Summa® canisters equipped with 8-hour flow controllers, and submitted to Alpha Analytical of Mansfield, Massachusetts (Alpha) for analysis of VOCs by United States Protection Agency (USEPA) Method TO-15. Laboratory deliverables are in accordance with NYSDEC Analytical Services Protocol (ASP) Category B and were subjected to data validation by SGD Environmental Services of Cazenovia, New York (SGD).

2020 Soil Vapor Intrusion Results

Building Inspection and Chemical Inventory

During the building inspection, elevated PID readings were noted in the indoor air space and were primarily due to the presence of stored/used petroleum products and vehicle detailing chemicals, in addition to on-going facility operations. PID readings recorded during the pre-sampling building inspection ranged from 14.56 ppb to 20,520 ppb. Interfering conditions at the time of SVI sampling were noted at all six locations and included vehicle exhaust and the active use of petroleum, solvent, and vehicle detailing/cleaning products. Additionally, it should be noted that active use of the overhead garage bay doors occurred throughout the time of SVI sampling.

The integrity of the floor slab was assessed in the vicinity of each SVI sample location and throughout the building. This was completed by inspecting the slab for cracks, penetrations, and other preferential pathways, by way of building utilities, for potential SVI. Cracks/gaps in the slab were observed throughout the building mainly in along the floor joints and surrounding the building support pillars.

Soil Vapor Intrusion Analytical Results

SVI analytical results within the main building indicated the presence of the Site contaminants of concern (COCs) tetrachloroethene (PCE), trichloroethene (TCE), and/or cis-1,2-dichloroethene (c12-DCE) in the sub-slab vapor points. The concentration ranges for these chlorinated VOCs (cVOCs) in the sub-slab points were detected at the following ranges:

- PCE 13.5 micrograms per cubic meter (μg/m³) (SS-17) to 441 μg/m³ (SS-15)
- TCE 13.1 μg/m³ (SS-13) to 21,800 μg/m³ (SS-15).
- c12-DCE 5.0 μg/m³ (SS-17) to 1,110 μg/m³ (SS-15). c12-DCE was not detected above the laboratory reporting limit (RL) in samples collected from SS-13, SS-14, SS-16, and SS-18.

The concentration ranges for each of the above compounds for the co-located indoor air samples included the following:

- PCE 0.19 μ g/m³ (IA-13 and IA-16) to 0.251 μ g/m³ (IA-15).
- TCE $-0.425 \mu g/m^3$ (IA-13) to 0.967 $\mu g/m^3$ (IA-15).
- c12-DCE Not detected above laboratory RLs in any indoor air sample submitted for analysis.

A comparison of the sub-slab PCE detections to their respective co-located indoor air sample analytical results and Matrix A of the *October 2006 NYSDOH SVI Guidance* (amended May 2017) indicate that all locations require "no further action". A comparison of the sub-slab TCE detections to their respective co-located indoor air sample analytical results and Matrix A of the *October 2006 NYSDOH SVI Guidance* indicate that all locations either require "monitoring" (SS-13 and SS-14) or "mitigation" (SS-15, SS-16, SS-17, and SS-18). Only the detected concentration of c12-DCE in SS-15 requires "mitigation", per Matrix A of the *October 2006 NYSDOH SVI Guidance*.

A summary of the SVI analytical results can be found in **Table 1**. The summary laboratory analytical report and associated data usability summary report (DUSR) can be found in **Attachments 4** and **5**, respectively.

Conclusions and Recommendations

Analytical results from all six sub-slab vapor points within the former Chromalloy building show elevated concentrations of TCE, a primary Site COC, warranting either "monitoring" or "mitigation" per the NYSDOH Guidance. When compared to the historical 2016 and 2018 SVI analytical results, TCE concentrations at all locations have either remained stable or decreased over time. Additionally, the detected c12-DCE concentration in SS-15 requiring "mitigation" has shown a consistent decrease over time since 2016. A summary of the historical and current sub-slab analytical results, with respect to the NYSDOH Matrix analytes only, is provided in **Table 2**.

As noted above, the building is currently used to store, clean, and perform minor maintenance on new vehicles for sale. During typical operations, the overhead bay doors are either left open or open/closed while the building is occupied to allow movement of vehicles in and out of the facility, thereby providing an air flow exchange throughout the warehouse. Based on TRC's review, there are limited regular occupancies in any of the northern office areas. Given the current building usage and low cVOC concentrations in indoor air, it does not appear that sub-slab soil impacts are significantly impacting interior air quality of the main building.

Sequa will continue to complete SVI building inspection and sampling activities on a biennial basis. The next event is scheduled during the 2021-2022 heating season. Additionally, the building use and occupancy will be evaluated on an annual basis. Should the building use and occupancy change during future evaluations, the NYSDEC will be notified of the change within 30 days of the inspection. If the annual building use and occupancy remains the same or similar to prior years, the inspection results will be summarized in that year's *Operational Unit 1 (OU-1) Annual Monitoring Report*.

If you have any comments, questions, or concerns regarding this letter, please do not hesitate to contact me at (518) 688-3109.

Sincerely,

Justin King

Project Manager

Jeffrey LaRock

Office Practice Leader

CC: Greg Workman - Sequa Corporation

Attachments

Table 1 Summary of Analytical results for SVI Air Samples – February 2020
 Table 2 Summary of Historical NYSDOH SVI Matrix Criteria Analytical Results

Figure 1 SVI Sampling Locations – 2019-2020 Heating Season

Attachment 1 Photographic Log

Attachment 2 NYSDEC Structure Sampling Questionnaire and Building Inventory Form

Attachment 3 Record of Vapor Sampling Forms
Attachment 4 Summary Laboratory Analytical Report

Attachment 5 DUSR

TABLES

Table 1 Summary of Analytical Results for Soil Vapor Intrusion Air Samples - February 2020 Former Chromalloy Site West Nyack, New York

			Co-Located		Co-Lo	cated	Co-Lo	cated
	Sample Location:	SS-13	IA-13	IA-13 (DUP)	SS-14	IA-14	SS-15	IA-15
	Sample Type:	Sub-Slab	Indoor Air	Indoor Air	Sub-Slab	Indoor Air	Sub-Slab	Indoor Air
	Sample Date:	02/12/2020	02/12/2020	02/12/2020	02/12/2020	02/12/2020	02/12/2020	02/12/2020
	PID Reading (ppb):	916	569	569	1,125	1,096	9,555	1,400
NYSDOH							•	
Matrix	TO-15 Analysis - VOCs			R	Results (μg/m	³)		
	Dichlorodifluoromethane (Freon 12)	1.91	1.9	1.78	3.69	1.78	61.8 U	1.7
	Chloromethane	0.413 U	1.05	0.989	0.413 U	0.913	25.8 U	0.865
	Freon 114	1.4 U	87.4 U	1.4 U				
С	Vinyl chloride	0.511 U	0.051 U	0.051 U	0.511 U	0.051 U	32 U	0.051 U
	1,3-Butadiene	0.442 U	0.442 U	0.442 U	0.442 U	0.465	27.7 U	0.442 U
	Bromomethane	0.777 U	48.5 U	0.777 U				
	Chloroethane	0.528 U	33 U	0.528 U				
	Ethanol	49.7	102	106	108	69.2	588 U	77.3
	Vinyl bromide	0.874 U	54.7 U	0.874 U				
	Acetone	17.4	40.1	38.7	105	28	148 U	30.2
	Trichlorofluoromethane (Freon 11)	1.12 U	70.2 U	1.12 U				
Α.	Isopropanol	5.85	9.98	9.73	9.32	5.65	76.7 U	6.64
A B	1,1-Dichloroethene	0.793 U	0.079 U 1.74 U	0.079 U 1.74 U	0.793 U 1.74 U	0.079 U 1.74 U	49.6 U	0.079 U
B	Methylene chloride	1.74 U 0.626 U	108 U 39.1 U	1.74 U 0.626 U				
	3-Chloropropene Carbon disulfide							
	Freon 113	0.623 U 1.53 U	38.9 U 95.8 U	0.623 U 1.53 U				
	trans-1,2-Dichloroethene	0.793 U	110	0.793 U				
	1.1-Dichloroethane	0.793 U	0.809 U	0.793 U	0.793 U	0.793 U	50.6 U	0.809 U
	Methyl tert-Butyl Ether (MTBE)	0.721 U	45.1 U	0.721 U				
	2-Butanone (MEK)	8.32	6.37	6.78	11.4	1.9	92 U	2.1
Α	cis-1.2-Dichloroethene	0.793 U	0.079 U	0.079 U	0.793 U	0.079 U	1,110	0.079 U
,,	Ethyl acetate	1.8 U	112 U	1.8 U				
	Chloroform	0.977 U	2.46	2.46	0.977 U	0.977 U	338	0.977 U
	Tetrahydrofuran	13.6	8.91	9.17	7.61	1.47 U	92 U	1.47 U
	1,2-Dichloroethane	0.809 U	50.6 U	0.809 U				
	n-Hexane	0.705 U	28	27.9	0.705 U	44.1	44.1 U	55.3
В	1,1,1-Trichloroethane	1.09 U	0.109 U	0.109 U	1.3	0.109 U	68.2 U	0.109 U
	Benzene	0.639 U	5.08	5.05	7.8	8.59	39.9 U	9.71
Α	Carbon tetrachloride	1.26 U	0.66	0.66	1.26 U	0.352	78.6 U	0.365
	Cyclohexane	0.688 U	17.7	17.8	0.688 U	30.6	43 U	38.6
	1,2-Dichloropropane	0.924 U	57.8 U	0.924 U				
	Bromodichloromethane	1.34 U	83.7 U	1.34 U				
	1,4-Dioxane	0.721 U	45 U	0.721 U				
Α	Trichloroethene	13.1	0.425	0.398	59.1	0.462	21,800	0.967
	2,2,4-Trimethylpentane	0.934 U	2.97	2.93	0.934 U	3.83	58.4 U	4.81
	Heptane	0.82 U	7.13	7.05	0.852	9.55	51.2 U	12.3
	cis-1,3-Dichloropropene	0.908 U	56.7 U	0.908 U				
	4-Methyl-2-pentanone (MIBK)	2.05 U	3.61	3.49	2.05 U	3.58	128 U	4.07
	trans-1,3-Dichloropropene	0.908 U	56.7 U	0.908 U				
	1,1,2-Trichloroethane	1.09 U	68.2 U	1.09 U				
	Toluene 2-Hexanone (MBK)	1.24 0.82 U	38.4 0.82 U	37.6 0.82 U	18.1 0.82 U	42.6 0.82 U	47.1 U 51.2 U	49.7 0.82 U
	Dibromochloromethane	1.7 U	106 U	1.7 U				
	1,2-Dibromoethane (Ethylene dibromide)	1.54 U	96.1 U	1.54 U				
В	Tetrachloroethene	15.7	0.19	0.197	30.6	0.203	411	0.251
ט	Chlorobenzene	0.921 U	0.19 0.921 U	0.197 0.921 U	0.921 U	0.203 0.921 U	57.6 U	0.231 0.921 U
	Ethylbenzene	0.869 U	34.4	34.4	40.2	66	54.3 U	92.1
	m,p-Xylene	2.2	123	124	29.4	232	108 U	318
	Bromoform	2.07 U	129 U	2.07 U				
	Styrene	0.852 U	53.2 U	0.852 U				
	1,1,2,2-Tetrachloroethane	1.37 U	85.8 U	1.37 U				
	o-Xylene	0.869 U	30.2	30.4	12.4	59.9	54.3 U	83.4
	p-Ethyltoluene	0.983 U	0.983 U	0.983 U	6.83	1.1	61.5 U	1.74
	1,3,5-Trimethylbenzene	0.983 U	1.01	1.04	9.54	1.72	61.5 U	2.09
	, . ,	0.983 U	3.02	3.16	15.3	5.51	61.5 U	6.59

NYSDEC Site No. 334039 TRC Project No. 109273.2015.0000

Table 1 Summary of Analytical Results for Soil Vapor Intrusion Air Samples - February 2020

Former Chromalloy Site West Nyack, New York

			Co-Located		Co-Lo	cated	Co-Lo	cated	
	Sample Location:	SS-13	IA-13	IA-13 (DUP)	SS-14	IA-14	SS-15	IA-15	
	Sample Type:	Sub-Slab	Indoor Air	Indoor Air	Sub-Slab	Indoor Air	Sub-Slab	Indoor Air	
	Sample Date:	02/12/2020	02/12/2020	02/12/2020	02/12/2020	02/12/2020	02/12/2020	02/12/2020	
	PID Reading (ppb):	916	569	569	1,125	1,096	9,555	1,400	
NYSDOH									
Matrix	TO-15 Analysis - VOCs			R	Results (μg/m	³)			
	Benzyl Chloride	1.04 U	1.04 U	1.04 U	1.04 U	1.04 U	64.7 U	1.04 U	
	1,3-Dichlorobenzene	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U	75.2 U	1.2 U	
	1,4-Dichlorobenzene	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U	75.2 U	1.27	
	1,2-Dichlorobenzene	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U	75.2 U	1.2 U	
	1,2,4-Trichlorobenzene	1.48 U	1.48 U	1.48 U	1.48 U	1.48 U	92.8 U	1.48 U	
	Hexachlorobutadiene	2.13 U	2.13 U	2.13 U	2.13 U	2.13 U	133 U	2.13 U	
	tert-Butyl alcohol	1.52 U	1.52 U	1.52 U	2.15	1.52 U	94.6 U	1.52 U	

Notes:

 $\mu g/m3$: micrograms per cubic meter

U : Analyte was not detected at specified quantitation limit

TO : Toxic organics

PID : Photo-ionization detector

ppb : parts per billion

VOCs : Volatile organic compounds

NYSDOH Matrix

: New York State Departmet of Health Soil Vapor/Indoor Air Decision Matrices, May 2017

Bold

: Indicates the result is within the applicable "Monitor" or "Mitigate" NYSDOH Matrix criteria

Green Shading

Orange Shading

: Indicates the result requires "No Further Action" per the applicable NYSDEC Matrix

Indicates the results require "Monitoring" per the applicable NYSDEC Matrix

Red Shading

: Indicates the result requires "Mitigation" per the applicable NYSDEC Matrix

NYSDEC Site No. 334039 TRC Project No. 109273.2015.0000

Table 1 Summary of Analytical Results for Soil Vapor Intrusion Air Samples - February 2020 Former Chromalloy Site West Nyack, New York

		Co-Lo	cated	Co-Lo	cated	Co-Lo	ocated	
	Sample Location:	SS-16	IA-16	SS-17	IA-17	SS-18	IA-18	AA-3
	Sample Type:	Sub-Slab	Indoor Air	Sub-Slab	Indoor Air	Sub-Slab	Indoor Air	Ambient Air
	Sample Date:	02/12/2020	02/12/2020	02/12/2020	02/12/2020	02/12/2020	02/12/2020	02/12/2020
	PID Reading (ppb):	1,060	652	1,902	1,001	6,027	3,161	191
NYSDOH				_	Results (μg/m	3,		
Matrix	TO-15 Analysis - VOCs							
	Dichlorodifluoromethane (Freon 12)	1.93	1.62	2.75 U	1.64	1.99	1.67	1.96
	Chloromethane	0.413 U	0.857	1.15 U	0.865	0.413 U	0.876	0.962
	Freon 114	1.4 U	1.4 U	3.89 U	1.4 U	1.4 U	1.4 U	1.4 U
С	Vinyl chloride	0.511 U	0.051 U	1.42 U	0.051 U	0.511 U	0.051 U	0.051 U
	1,3-Butadiene	0.442 U	0.442 U	1.23 U	0.442 U	0.442 U 0.777 U	0.442 U 0.777 U	0.442 U 0.777 U
	Bromomethane	0.777 U 0.528 U	0.777 U 0.528 U	2.16 U 1.47 U	0.777 U 0.528 U	0.777 U 0.528 U	0.777 U 0.528 U	0.777 U 0.528 U
	Chloroethane Ethanol	0.528 U 26	79.3	56.7	0.528 U 66.9	57.8	79.5	9.42 U
	Vinyl bromide	0.874 U	0.874 U	2.43 U	0.874 U	0.874 U	0.874 U	0.874 U
	Acetone	7.06	32.1	83.4	30.4	6.03	38.5	2.87
	Trichlorofluoromethane (Freon 11)	1.12 U	1.12 U	3.12 U	1.12 U	1.12 U	1.12 U	1.12 U
	Isopropanol	3.15	6.34	10.1	5.51	4.08	9.05	1.12 U
Α	1,1-Dichloroethene	0.793 U	0.079 U	2.2 U	0.079 U	0.793 U	0.079 U	0.079 U
	Methylene chloride	1.74 U	1.74 U	4.83 U	1.74 U	1.74 U	1.74 U	1.74 U
	3-Chloropropene	0.626 U	0.626 U	1.74 U	0.626 U	0.626 U	0.626 U	0.626 U
	Carbon disulfide	0.623 U	0.623 U	1.73 U	0.623 U	0.623 U	0.623 U	0.623 U
	Freon 113	1.53 U	1.53 U	4.26 U	1.53 U	1.53 U	1.53 U	1.53 U
	trans-1,2-Dichloroethene	0.793 U	0.793 U	2.2 U	0.793 U	0.793 U	0.793 U	0.793 U
	1,1-Dichloroethane	0.809 U	0.809 U	2.25 U	0.809 U	0.809 U	0.809 U	0.809 U
	Methyl tert-Butyl Ether (MTBE)	0.721 U	0.721 U	2 U	0.721 U	0.721 U	0.721 U	0.721 U
	2-Butanone (MEK)	4.19	2.74	18	2.03	3.54	2.42	1.47 U
Α	cis-1,2-Dichloroethene	0.793 U	0.079 U	5.0	0.079 U	0.793 U	0.079 U	0.079 U
	Ethyl acetate	1.8 U	1.8 U	5.01 U	1.8 U	1.8 U	1.97	1.8 U
	Chloroform	1.12	0.977 U	16.1	0.977 U	1.42	0.977 U	0.977 U
	Tetrahydrofuran	6.67	1.47 U	15.9	1.47 U	4.9	1.47 U	1.47 U
	1,2-Dichloroethane	0.809 U	0.809 U	2.25 U	0.809 U	0.809 U	0.809 U	0.809 U
-	n-Hexane	0.705 U	43.7	1.96 U	52.2	1.09	342	0.705 U
В	1,1,1-Trichloroethane	1.09 U	0.109 U	3.03 U	0.109 U	1.32	0.109 U	0.109 U 0.639 U
۸	Benzene Carbon tetrachloride	0.639 U 1.26 U	7.6 0.365	4.34 3.5 U	8.88 0.365	0.639 U 1.26 U	13.7 0.34	0.639 U 0.403
Α	Cyclohexane	1.20	31.3	2.24	36.8	2.12	225	0.403 0.688 U
	1,2-Dichloropropane	0.924 U	0.924 U	2.24 2.57 U	0.924 U	0.924 U	0.924 U	0.924 U
	Bromodichloromethane	1.34 U	1.34 U	3.72 U	1.34 U	1.34 U	1.34 U	1.34 U
	1,4-Dioxane	0.721 U	0.721 U	2 U	0.721 U	0.721 U	0.721 U	0.721 U
Α	Trichloroethene	87.6	0.494	1,010	0.446	427	0.919	0.107 U
	2,2,4-Trimethylpentane	0.934 U	3.87	10.7	4.26	0.934 U	5.84	0.934 U
	Heptane	0.82 U	10	2.28 U	10.9	0.82 U	33.5	0.82 U
	cis-1,3-Dichloropropene	0.908 U	0.908 U	2.52 U	0.908 U	0.908 U	0.908 U	0.908 U
	4-Methyl-2-pentanone (MIBK)	2.05 U	4	5.7 U	4.18	2.05 U	5.12	2.05 U
	trans-1,3-Dichloropropene	0.908 U	0.908 U	2.52 U	0.908 U	0.908 U	0.908 U	0.908 U
	1,1,2-Trichloroethane	1.09 U	1.09 U	3.03 U	1.09 U	1.09 U	1.09 U	1.09 U
	Toluene	0.754 U	47.1	19	47.5	1.23	72.7	2.14
	2-Hexanone (MBK)	0.82 U	0.82 U	2.28 U	0.82 U	0.82 U	0.82 U	0.82 U
	Dibromochloromethane	1.7 U	1.7 U	4.74 U	1.7 U	1.7 U	1.7 U	1.7 U
	1,2-Dibromoethane (Ethylene dibromide)	1.54 U	1.54 U	4.27 U	1.54 U	1.54 U	1.54 U	1.54 U
В	Tetrachloroethene	51.5	0.19	13.5	0.224	143	0.224	0.176
	Chlorobenzene	0.921 U	0.921 U	2.56 U	0.921 U	0.921 U	0.921 U	0.921 U
	Ethylbenzene	0.869 U	63	9.95	70.4	0.869 U	155	0.869 U
	m,p-Xylene	1.95	224	19.8	248	2.41	504	1.74 U 2.07 U
	Bromoform Styrene	2.07 U 0.852 U	2.07 U 0.852 U	5.75 U 2.37 U	2.07 U 0.852 U	2.07 U 0.852 U	2.07 U 0.852 U	2.07 U 0.852 U
	1,1,2,2-Tetrachloroethane	1.37 U	1.37 U	3.82 U	1.37 U	1.37 U	1.37 U	1.37 U
	o-Xylene	0.869 U	57.3	5.6	63.9	0.869 U	1.37 0	0.869 U
	p-Ethyltoluene	0.869 U	1.37	2.73 U	1.48	0.869 U	1.76	0.869 U
	1,3,5-Trimethylbenzene	0.983 U	1.68	2.73 U	1.46	0.983 U	2.32	0.983 U
		0.000	1.00	2.10	1.00	0.000	2.02	0.000 0

NYSDEC Site No. 334039 TRC Project No. 109273.2015.0000

Table 1 Summary of Analytical Results for Soil Vapor Intrusion Air Samples - February 2020

Former Chromalloy Site West Nyack, New York

		Co-Lo	cated	Co-Lo	ocated	Co-Lo	cated						
	Sample Location:	SS-16	IA-16	SS-17	IA-17	SS-18	IA-18	AA-3					
	Sample Type:	Sub-Slab	Indoor Air	Sub-Slab	Indoor Air	Sub-Slab	Indoor Air	Ambient Air					
	Sample Date:	02/12/2020 02/12/2020		02/12/2020	02/12/2020	02/12/2020	02/12/2020	02/12/2020					
	PID Reading (ppb):	1,060	1,060 652 1,902 1,001 6,027 3,161										
NYSDOH			Results (μg/m³)										
Matrix	TO-15 Analysis - VOCs				tosuits (μg/iii	,							
	Benzyl Chloride	1.04 U	1.04 U	2.88 U	1.04 U	1.04 U	1.04 U	1.04 U					
	1,3-Dichlorobenzene	1.2 U	1.2 U	3.34 U	1.2 U	1.2 U	1.2 U	1.2 U					
	1,4-Dichlorobenzene	1.2 U	1.2 U	3.34 U	1.2 U	1.2 U	1.2 U	1.2 U					
	1,2-Dichlorobenzene	1.2 U	1.2 U	3.34 U	1.2 U	1.2 U	1.2 U	1.2 U					
	1,2,4-Trichlorobenzene	1.48 U	1.48 U	4.13 U	1.48 U	1.48 U	1.48 U	1.48 U					
	Hexachlorobutadiene	2.13 U	2.13 U	5.93 U	2.13 U	2.13 U	2.13 U	2.13 U					
	tert-Butyl alcohol	1.52 U	1.52 U	5.88	1.52 U	1.52 U	1.52 U	1.52 U					

Notes:

µg/m3 : micrograms per cubic meter

: Analyte was not detected at specified quantitation limit U

ТО : Toxic organics

PID : Photo-ionization detector

ppb : parts per billion

VOCs : Volatile organic compounds

NYSDOH Matrix : New York State Departmet of Health Soil Vapor/Indoor Air Decision Matrices, May 2017 : Indicates the result is within the applicable "Monitor" or "Mitigate" NYSDOH Matrix criteria Bold Green Shading : Indicates the result requires "No Further Action" per the applicable NYSDEC Matrix : Indicates the results require "Monitoring" per the applicable NYSDEC Matrix Orange Shading Red Shading : Indicates the result requires "Mitigation" per the applicable NYSDEC Matrix

Page 4 of 4

NYSDEC Site No. 334039

TRC Project No. 109273.2015.0000

Table 2 Summary of Historical NYSDOH SVI Matrix Criteria Analytical Results

Former Chromalloy Site West Nyack, New York

			Co-Located			Co-Located		! 	Co-Located	
	Sample Location:	SS-01	SS-07	SS-13	SS-02	SS-08	SS-14	SS-06	SS-11	SS-15
	Sample Date:	12/20/2016	3/30/2018	02/12/2020	12/20/2016	3/30/2018	02/12/2020	12/20/2016	3/30/2018	02/12/2020
	PID Reading (ppb):	460	3,432	916	1,267	3,062	1,125	13,510	15,400	9,555
NYSDOH										
Matrix	TO-15 Analysis - VOCs				F	Results (µg/m	³)			
Α	Carbon tetrachloride	1.3 U	2 U	1.26 U	5 U	0.25	1.26 U	120 U	130 U	78.6 U
Α	Trichloroethene	7.5	7.1	13.1	7.4	44	59.1	54,000 E	31,000	21,800
Α	1,1-Dichloroethene	0.79 U	1.3 U	0.793 U	3.2 U	0.14 U	0.793 U	73 U	81 U	49.6 U
Α	cis-1,2-Dichloroethene	0.79 U	1.3 U	0.793 U	3.2 U	0.14 U	0.793 U	4,100	1,800	1,110
В	Methylene chloride	1.7 U	2.9 J	1.74 U	6.9 U	3.1	1.74 U	160 U	1,000 U	108 U
В	1,1,1-Trichloroethane	1.1 U	9.9 U	1.09 U	4.4 U	1.1	1.3	100 U	630 U	68.2 U
В	Tetrachloroethene	9.6	6.6 J	15.7	29	39	30.6	170	550 J	411
С	Vinyl chloride	0.51 U	0.81 U	0.511 U	2 U	0.089 U	0.511 U	47 U	52 U	32 U

Notes:

μg/m3 : micrograms per cubic meter

U : Analyte was not detected at specified quantitation limit

TO : Toxic organics

PID : Photo-ionization detector

ppb : parts per billion
J : Estimated Value

D : Sample results are obtained from a dilution; the surrogate or matrix spike recoveries reported are calculated from diluted

samples

E : Result exceeded calibration range

NYSDOH Matrix : New York State Departmet of Health Soil Vapor/Indoor Air Decision Matrices, May 2017

Bold : Indicates the result is within the applicable "Monitor" or "Mitigate" NYSDOH Matrix criteria when compared to it's

respective indoor air sample

Green Shading: Indicates the detected result requires "No Further Action" per the applicable NYSDEC Matrix, when compared with it's

co-located indoor air sample (not shown)

Orange Shading: Indicates the detected result requires "Monitoring" per the applicable NYSDEC Matrix, when compared with it's co-located

indoor air sample (not shown)

Red Shading : Indicates the detected result requires "Mitigation" per the applicable NYSDEC Matrix, when compared with it's co-located

indoor sample (not shown)

Table 2 Summary of Historical NYSDOH SVI Matrix Criteria Analytical Results

Former Chromalloy Site West Nyack, New York

		Single									
		Location		Co-Located			Co-Located	Co-Located			
	Sample Location:	SS-03	SS-04	SS-09	SS-16	SS-05	SS-10	SS-17	SS-12	SS-18	
	Sample Date:	12/20/2016	12/20/2016	3/30/2018	02/12/2020	12/20/2016	3/30/2018	02/12/2020	3/30/2018	02/12/2020	
	PID Reading (ppb):	2,510	720	3,818	6,027						
NYSDOH											
Matrix	TO-15 Analysis - VOCs				R	Results (µg/m	3)				
Α	Carbon tetrachloride	1.3 U	1.3 U	0.24	1.26 U	1.3 U	4 U	3.5 U	0.88 U	1.26 U	
Α	Trichloroethene	50	71	92	87.6	1,400 D	1,800	1,010	480	427	
Α	1,1-Dichloroethene	0.79 U	0.79 U	0.14 U	0.793 U	0.79 U	2.5 U	2.2 U	0.56 U	0.793 U	
Α	cis-1,2-Dichloroethene	2.6	0.79 U	0.14 U	0.793 U	27 D	9.1	5.0	1.2	0.793 U	
В	Methylene chloride	1.7 U	1.7 U	0.56 J	1.74 U	1.7 U	31 U	4.83 U	6.9 U	1.74 U	
В	1,1,1-Trichloroethane	1.1 U	5	2.9	1.09 U	1.1 U	20 U	3.03 U	2.9 J	1.32	
В	Tetrachloroethene	2.5	200	130	51.5	2.5	29	13.5	190	143	
С	Vinyl chloride	0.51 U	0.51 U	0.089 U	0.511 U	12 U	1.6 U	1.42 U	0.36 U	0.511 U	

Notes:

μg/m3 : micrograms per cubic meter

U : Analyte was not detected at specified quantitation limit

TO : Toxic organics

PID : Photo-ionization detector

ppb : parts per billion
J : Estimated Value

D : Sample results are obtained from a dilution; the surrogate or matrix spike recoveries reported are calculated from diluted

samples

E : Result exceeded calibration range

NYSDOH Matrix : New York State Departmet of Health Soil Vapor/Indoor Air Decision Matrices, May 2017

Bold : Indicates the result is within the applicable "Monitor" or "Mitigate" NYSDOH Matrix criteria when compared to it's

respective indoor air results

Green Shading: Indicates the detected result requires "No Further Action" per the applicable NYSDEC Matrix, when compared with it's

co-located indoor air sample (not shown)

Orange Shading: Indicates the detected result requires "Monitoring" per the applicable NYSDEC Matrix, when compared with it's co-located

indoor air sample (not shown)

Red Shading : Indicates the detected result requires "Mitigation" per the applicable NYSDEC Matrix, when compared with it's co-located

indoor sample (not shown)

FIGURES

ATTACHMENT 1

PHOTOGRAPHIC LOG

Photo 1

Date: 2/12/2020

Direction: S

Photographer: JK

Description:

View of current operations in the main

building.

Photo 2

Date: 2/12/2020

Direction: W

Photographer: JK

Description:

Apparent cracks in the concrete slab and gaps between slab panels. Photo taken adjacent to vehicle detailing area (left hand side).

Photo 3

Date: 2/11/2020

Direction: N

Photographer: JK

Description:

View of petroleum and car detailing chemical storage area.

Photo 4

Date: 2/11/2020

Direction: S

Photographer: JK

Description:

View of wash bay.

Photo 5

Date: 2/11/2020

Direction: NA

Photographer: JK

Description:

TRC drilling through building slab to install the Vapor Pin® device. Location is SS-15.

Photo 6

Date: 2/11/2020

Direction: NA

Photographer: JK

Description:

Photo of Vapor Pin® device prior to installation at SS-14 within the building slab (hole on right). Slab thickness at SS-14 measured to be 8 inches.

Photo 7

Date: 2/12/2020

Direction: NA

Photographer: JK

Description:

View of helium leak test setup over SS-13.

Photo 8

Date: 2/12/2020

Direction: SW

Photographer: JK

Description:

View of co-located sub-slab (SS-18) and indoor air samples (IA-18).

ATTACHMENT 2

NYSDEC FORM

STRUCTURE SAMPLING QUESTIONNAIRE AND BUILDING INVENTORY

Site Name: Former Chromalloy Facilit	ty	Site Code: 3440	Operable Unit: 1
Building Code: Commercial	Building Name:	Paragon Honda	Acura
Address: 169 Western Highway		Apt	/Suite No:
City: West Nyack	State: NY	_ Zip:10994 Cou	nty:Rockland
Contact Information			
Preparer's Name: Justin King		Pho	ne No: (518) 348-1192
Preparer's Affiliation: TRC Engineers		Com	pany Code:TRC
Purpose of Investigation: Biennial soil v	apor intrusion ass	sessment Date	e of Inspection: Feb 12, 2020
Contact Name: Ken Zimmons		Aff	iliation: TENANT
Phone No: (845) 420-4044 Alt	. Phone No:	Em	ail: paragonthesuperstore
Number of Occupants (total): 10-20 Nu	ımber of Children:		
○ Occupant Interviewed?	Owner Occup	oied?	Owner Interviewed?
Owner Name (if different): Kerry Kartsoni	S	Own	er Phone: (212) 692–7937
Owner Mailing Address: 245 Park Ave., 1	New York, NY 10167		
Building Details			
Bldg Type (Res/Com/Ind/Mixed): COMMERCI	AL/MIXED	Bldg	g Size (S/M/L): LARGE
If Commercial or Industrial Facility, Select Operation AUTO SALES/REPAIR	ons:	Residential Select St	ructure Type:
Number of Floors: 1 Approx. Year Con	nstruction: 1960	Building Ins	ulated? Attached Garage?
Describe Overall Building 'Tightness' and Airflows	(e.g., results of smoke tests	5):	
Warehouse contains multiple gara vehicles in and out. Outside air			
Foundation Description			
Foundation Type: NO BASEMENT/SLAB	Fo	oundation Depth (bgs	i):1 Unit: FEET
Foundation Floor Material: POURED CONCE	RETE	oundation Floor Thick	ness: 12 Unit: INCHES
Foundation Wall Material: CONCRETE BLC	OCK FO	oundation Wall Thickr	ness: 12
Floor penetrations? Describe Floor Penetra	tions: Floor drains	in car wash a	rea. Roof drain pipes 🕒
	ions: Various util	ities and fire	suppression system
Basement is: Baseme			
Describe Foundation Condition (cracks, seepage,	etc.): Various crac	ks, seams betwe	een select slab panels ar
Radon Mitigation System Installed?	☐ VOC Mitigation	on System Installed?	☐ Mitigation System On?
Heating/Cooling/Ventilation Systems	<u> </u>		
Heating System: RADIANT HEATING	Heat Fuel Type:	GAS	
Vented Appliances			
Water Heater Fuel Type: GAS	Clo	othes Dryer Fuel Type	ELECTRIC
Water Htr Vent Location: OUTSIDE	Dr	yer Vent Location:	OUTSIDE

		PI	RODUCT INV	ENTORY		
Building Nam	e: Paragon Honda Acura	ı	Bldg C	Code: Commercial Date: E	Feb 12, 2	2020
Bldg Address:	169 Western Highway			Apt/Suite N	o:	
Bldg City/Stat	e/Zip: West Nyack NY, 1	0994				
Make and Mo	del of PID: Honeywell ppb	RAE 300	00 PID 10.6	Date of Calibration:	Feb 6, 2	020
Location	Product Name/Description	Size (oz)	Condition *	Chemical Ingredients	PID Reading	COC Y/N?
W Car Lift Area	Synthetic Oil	200 G	U	Petroleum	600 ppb	
W Car Lift Area	Wet Look - Dressing Cleaner	250 G	U		600 ppb	
W Car Lift Area	Waste Oil	500 G	U	Waste Oil	850 ppb	
W Car Lift Area	#2/#1 Motor Oil	1000 G	U	Petroleum	900 ppb	
Wash Bay	Wash and Shine - Car wash soa	110 G	U		950 ppb	
Wash Bay	Car Brite M50 - Cleaner/degrea	25 G	U	Sodium metasilicate, trisodium phosphate	1200 ppb	
Laundry Area	Phase 1 - Liquid clothing soap	10 G	U		900 ppb	
NE Wall	Crystal Pinnacle NF - Windshiel	200 G	U		200 ppb	
W Car Lift Area	Various vehicle oils and fluids	8 G	UO		700 ppb	
NE Corner	Gasoline	15 G	U	BTEX, MTBE, TAME, ethanol, n-hexane, n-butane, ethyl benzene, 1,2,4-Trimethylbenzene	20520 ppb	
Wash Bay	Body Prep Solvent	5 G	U		14.56 ppb	×
Wash Bay	Blue Marvel - Car truck wash	1 G	U		14.56 ppb	
Wash Bay	Premium Thinner - Paint thinnલ •	1 G	U		1967 ppb	X
Laundry Area	Adhesive Remover - Surface so	5 G	U		1885 ppb	

Product Inventory Complete? Yes Were there any elevated PID readings taken on site? Yes 💢 Products
--

^{*} Describe the condition of the product containers as **Unopened (UO)**, **Used (U)**, or **Deteriorated (D)**

^{**} Photographs of the **front and back** of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

Site Name: Former Chromalloy Facility Site	e Code: 3440	39 Operal	ble Unit: 1
Building Code: Commercial Building Name: Pa	aragon Honda	a Acura	
Address: 169 Western Highway		_ Apt/Suite No:	
City: West Nyack State: NY	Zip: 10994	County:	Rockland
Factors Affecting Indoor Air Quailty			
Frequency Basement/Lowest Level is Occupied?: FULL TIME	Floor Material:	CEMENT	
☐ Inhabited? ☐ HVAC System On? ☐ Bathroom	m Exhaust Fan?	☐ Kit	chen Exhaust Fan?
Alternate Heat Source:		s there smoking in	the building?
Air Fresheners? Description/Location of Air Freshener:			
□ Cleaning Products Used Recently?: Description of Cleaning Products:	Car cleaning	g products	
Cosmetic Products Used Recently?: Description of Cosmetic Products:			
New Carpet or Furniture? Location of New Carpet/Furniture:			
Recent Dry Cleaning? Location of Recently Dry Cleaned Fabrics:			
Recent Painting/Staining? Location of New Painting:			
Solvent or Chemical Odors? Describe Odors (if any): Car cleaning	products, c	ar exhaust	
∑ Do Any Occupants Use Solvents At Work? If So, List Solvents Used: Book ☐	dy prep solv	rent, thinner	s, adhesive +
Recent Pesticide/Rodenticide? Description of Last Use:			
Describe Any Household Activities (chemical use,/storage, unvented appliances Active use of vehicles moving throughout warehouse as Other factors affecting indoor air quality include the storage and use of oil/waste oil, and active use of o	rea, indoor ne storage a	exhaust emis and use of ga	sions result.
 ☐ Any Prior Testing For Radon? ☐ If So, When?: ☐ Mar 30, 2018 			
Sampling Conditions			
	or Temperature:	40	°F
Current Building Use: AUTO SALES/REPAIR Barome	etric Pressure:	30.20	in(hg)
Product Inventory Complete? Yes	npleted?		

New York State Department of Environmental Conservation

Building Code: Commercial Address: 169 Western Highway West Nyack, NY 10994 **Sampling Information** Sampler Name(s): Sampler Company Code: TRC Justin King Sample Collection Date: Feb 12, 2020 Date Samples Sent To Lab: Feb 12, 2020 Sample Chain of Custody Number: See Sample Logs Outdoor Air Sample Location ID: AA-03 **SUMMA Canister Information** Sample ID: IA-13 IA-DUP SS-13 IA-14 SS-14 Location Code: IA-13 IA-13 SS-13 IA-14 SS-14 Location Type: FIRST FLOOR FIRST FLOOR SUBSLAB FIRST FLOOR SUBSLAB Canister ID: 3371 1798 2921 1583 2785 Regulator ID: 973 1813 401 1797 1562 Matrix: Subslab Soil Indoor Air Indoor Air Subslab Soil Indoor Air Sampling Method: SUMMA AIR SAMPLII SUMMA AIR SA SUMMA AIR SA SUMMA AIR SA SUMMA AIR SA Sampling Area Info Slab Thickness (inches): Sub-Slab Material: DIRT DIRT Sub-Slab Moisture: DRY DRY Seal Type: MECHANICAL MECHANICAL Seal Adequate?: $|\times|$ |X|**Sample Times and Vacuum Readings** Sample Start Date/Time: 02/12/2020 7:56 02/12/2020 02/12/2020 02/12/2020 02/20/2020 Vacuum Gauge Start: -30.75-30.39-30.07-30.26-30.3 Sample End Date/Time: | 02/12/2020 15: **★** 02/12/2020 02/12/2020 02/12/2020 02/12/2020 Vacuum Gauge End: -6.39 -6.32 -6.90 -7.25 -8.57 Sample Duration (hrs): 7.5 7.5 7.5 8 8 Vacuum Gauge Unit: in(hg) in(hg) in(hg) in(hg) in(hg) Sample QA/QC Readings Vapor Port Purge: |X| \times Purge PID Reading: 1,125 916 Purge PID Unit: ppb ppb **Tracer Test Pass:** |X||X|

Sample start and end times should be entered using the following format: MM/DD/YYYY HH:MM

New York State Department of Environmental Conservation

Building Code: Com	mercial A	ddress: 169 West	ern Highway Wes	st Nyack, NY 109	994
Sampling Informa	tion				
Sampler Name(s):	Justin King		Sampler Com	pany Code: TRC	
Sample Collection Dat	re: Feb 12, 2020		Date Samples	Sent To Lab: Feb	12, 2020
Sample Chain of Custo	ody Number: See Sa	ample Logs for i	info Outdoor Air S	ample Location ID: A	<u>A-03</u>
SUMMA Canister I	nformation				
Sample ID:	IA-15	SS-15	IA-16	SS-16	IA-17
Location Code:	IA-15	SS-15	IA-16	SS-16	IA-17
Location Type:	FIRST FLOOR	SUBSLAB	FIRST FLOOR	SUBSLAB	FIRST FLOOR
Canister ID:	1826	2984	1897	897	3376
Regulator ID:	1622	876	1491	1484	1616
Matrix:	Indoor Air	Subslab Soil	Indoor Air	Subslab Soil	Indoor Air
Sampling Method:	SUMMA AIR SAMPLIN	SUMMA AIR SAM	SUMMA AIR SAM	SUMMA AIR SAM	SUMMA AIR SAM
Sampling Area Int	fo				
Slab Thickness (inches):		6		7	
Sub-Slab Material:		DIRT		DIRT	
Sub-Slab Moisture:		DRY		DRY	
Seal Type:		MECHANICAL		MECHANICAL	
Seal Adequate?:		\times			
Sample Times and	l Vacuum Readings				
Sample Start Date/Time	:02/12/2020 07:21	02/12/2020 07	02/12/2020 07	02/12/2020 07	02/22/2020 07
Vacuum Gauge Start:	-30.26	-30.52	-30.37	-30.57	-29.75
Sample End Date/Time:	02/12/2020 15:22	02/12/2020 15	02/12/2020 07	02/12/2020 07	02/12/2020 15
Vacuum Gauge End:	-6.98	-6.10	-1.94	-7.64	-6.14
Sample Duration (hrs):	8	8	6	8	8
Vacuum Gauge Unit:	in(hg)	in(hg)	in(hg)	in(hg)	in(hg)
Sample QA/QC Re	eadings				
Vapor Port Purge:				\boxtimes	
Purge PID Reading:		9,555		1,090	
Purge PID Unit:		ppb		ppb	
Tracer Test Pass:		\boxtimes		\boxtimes	
Sample start	t and end times should	d be entered using	the following for	mat: MM/DD/YYY	Y HH:MM

New York State Department of Environmental Conservation

Building Code: Commercial Address: 169 Western Highway West Nyack, NY 10994 **Sampling Information** Sampler Name(s): Sampler Company Code: TRC Justin King Sample Collection Date: Feb 12, 2020 Date Samples Sent To Lab: Feb 12, 2020 Sample Chain of Custody Number: Outdoor Air Sample Location ID: AA-03 See Sample Logs for info **SUMMA Canister Information** SS-17 IA-18 SS-18 AA-03 Sample ID: Location Code: SS-17 IA-18 SS-18 AA-03 SUBSLAB FIRST FLOOR SUBSLAB OUTDOOR Location Type: 1611 2977 2959 2654 Canister ID: 1576 971 1420 1384 Regulator ID: Subslab Soil Vapo Indoor Air Subslab Soil Ambient Outdo Matrix: SUMMA AIR SAMPLIN SUMMA AIR SAM SUMMA AIR SAM SUMMA AIR SAM Sampling Method: Sampling Area Info 12.5 Slab Thickness (inches): 5 Sub-Slab Material: DIRT DIRT Sub-Slab Moisture: DRY DRY Seal Type: MECHANICAL MECHANICAL Seal Adequate?: X $|\times|$ **Sample Times and Vacuum Readings** Sample Start Date/Time: 02/12/2020 07:35 02/12/2020 07 02/12/2020 07 02/12/2020 Vacuum Gauge Start: |-30.27 -30.38 -30.43 -30.39 Sample End Date/Time: |02/12/2020 15:30 02/12/2020 02/12/2020 02/12/2020 -6.40 -2.31 Vacuum Gauge End: -4.27-6.64 Sample Duration (hrs): |8 8 7.5 Vacuum Gauge Unit: |in(hg) in(hq) in(hq) in(hq) Sample QA/QC Readings Vapor Port Purge: |X||X|1,902 6,027 Purge PID Reading: Purge PID Unit: ppb ppb **Tracer Test Pass:** |X||X|Sample start and end times should be entered using the following format: MM/DD/YYYY HH:MM

LOWEST BUILDING LEVEL LAYOUT SKETCH

															1.			
	click the										h of	the l	owes	t buil	ding	level .	Cl	lear Imag
THE SK	etch shou	iid be	ii a Stai	luaro	ı ııııaç	je io	IIIIa	ı (.jpg	, .png	, .uii <i>)</i>								
							Desig	jn Sk	etch									
			Desigr	n Sket	tch G	ıide	lines	and	Recon	nmen	ded S	Symb	olog	Jy				
■ Identify a	nd label th	e locatio	ons of al	l sub-s	slab, in	door	air, a	and ou	tdoor a	air san	nples	on the	e layo	ut ske	tch.			
■ Measure	the distan	ce of al	sample	locati	ons fro	m id	entifia	able fe	eatures	. and i	nclud	e on t	the lav	out s	ketch.			
■ Identify ro													,	,				
-	•											:4		بماميا				
■ Identify th				g reatt	ires or	ı tne	-			_		•	-					
B or F	Boiler o				0	/vv			r or wa								ronrioto\	
HW FP	Hot Wat		er		XXXXX				roken-				outsia	e oute	r wans	s as appr	opriate)	
ws	Wood S				• ss				& label				les					
W/D	Washer				• IA				& label									+++
S	Sumps	•			• O/	\-1			& label									
@	Floor Di	rains			• PFE	T-1			and lab						oles.			
_																		

New York State Department of Environmental Conservation

FIRST FLOOR BUILDING LAYOUT SKETCH

New York State Department of Environmental Conservation

OUTDOOR PLOT LAYOUT SKETCH

Please click the box with the blue border below to upload a sketch of the outdoor plot of the building as well as the surrounding area. The sketch should be in a standard image format (.jpg, .png, .tiff)

Clear Image

Design Sketch

Design Sketch Guidelines and Recommended Symbology

- Identify and label the locations of all sub-slab, indoor air, and outdoor air samples on the layout sketch.
- Measure the distance of all sample locations from identifiable features, and include on the layout sketch.
- Identify room use (bedroom, living room, den, kitchen, etc.) on the layout sketchen
- Identify the locations of the following features on the layout sketch, using the appropriate symbols:

B or F	Boiler or Furnace	0	Other floor or wall penetrations (label appropriately)
HW	Hot Water Heater	XXXXXX	Perimeter Drains (draw inside or outside outer walls as appropriate)
FP	Fireplaces	######	Areas of broken-up concrete
ws	Wood Stoves	• SS-1	Location & label of sub-slab samples
W/D	Washer / Dryer	● IA-1	Location & label of indoor air samples
S	Sumps	● OA-1	Location & label of outdoor air samples
@	Floor Drains	● PFET-1	Location and label of any pressure field test holes.

ATTACHMENT 3

RECORD OF VAPOR SAMPLING FORMS

 Date:
 2/12/2020
 TRC Project Number 190270.2015.0000

 Project Name:
 Former Chromalloy Facility
 Field Personnel:
 Justin King, Andrew Fishman

 Weather:
 ~40 F Clear; Barometric pressure: 30.20" Hg

HELIUM TRACER TEST (shroud)

Test	Time	Helium Concentration	Units (% or ppm _v)	Notes
Shroud Atmosphere	7:55	12.4	%	
Sampling Train	7:58	0	ppm	PASS

Helium concentration within sampling train should be less than 5% of shroud atmosphere concentration. If seal or probe needs to be reset then record 2^n d attempt below.

Retest (if applicable)	Time	Helium Concentration	Units (% or ppm _v)	Notes
Shroud Atmosphere	NA	NA	NA	NA
Sampling Train	NA	NA	NA	NA

VAPOR PURGING

ONE PURGE VOLUME (ML) = VT + VP

VT = TUBING LENGTH (FT) * 5.4 ML/FT

VP = (3.14 * R2 * H) * 16.387 ML/IN3

VT – Total tubing volume in mL (1/4-inch OD, 3/16-inch ID tubing)

VP – Volume of air in entire length of vapor point in mL

 ${\sf R}-{\sf Radius}$ of inner diameter of vapor point (inches)

Purge Rate (mL/min):	Purged via break flu	id bleeder hand pump	One Purge Volume (mL):	NA	
Purge Time (min):	1		Total Volume Purged (mL):	NA	
Purging two to five purge vo	olumes while collectin	ng inert gas readings pri	or to sample collection is ideal		
		SUB-SLAB VAPOR	SAMPLING		
Canister I.D.:	2921	Flow Controller I.D.	.:	401	_
Start Time:	7:55	Initial Vacuum Pres	sure in Sample Canister:	-30.07	in Hg
Stop Time:	15:45	Final Vacuum Press	ure in Sample Canister:	-6.9	in Hg
Sample I.D.:	SS-13	Laboratory:		Alpha Analytical	_
PID Reading (Sample Train)	: 916 ppb	Slab Thickness:			inches
Canister I.D.:			:		-
	7:56		sure in Sample Canister:		•
Stop Time: Sample I.D.:	15:46 IA-13	Laboratory:	ure in Sample Canister:		-
PID Reading (Sample Train)		•	h <u>t:</u>		inches
		DUPLICATE AIR S	AMPLING		
Canister I.D.:	1798	Flow Controller I.D.	i <u> </u>	1813	_
Start Time:	7:57	Initial Vacuum Pres	sure in Sample Canister:	-30.39	in Hg
	15:47	Final Vacuum Press	ure in Sample Canister:	-6.32	in Hg
Sample I.D.: IA-	-DUP (IA-13)	Laboratory:	-	Alpha Analytical	_
PID Reading (Sample Train):				46	

Date:	2/12/2020	TRC Project Number	190270.2015.0000
Project Name:	Former Chromalloy Facility	Field Personnel:	Justin King, Andrew Fishman
Weather:	~40 F Clear ; Barometric pressure: 3	0.20" Hg	

HELIUM TRACER TEST (shroud)

Test	Time	Helium Concentration	Units (% or ppm _v)	Notes
Shroud Atmosphere	7:25	12.6	%	
Sampling Train	7:28	50	ppm	PASS

Helium concentration within sampling train should be less than 5% of shroud atmosphere concentration. If seal or probe needs to be reset then record 2^n d attempt below.

Retest (if applicable)	Time	Helium Concentration	Units (% or ppm _v)	Notes
Shroud Atmosphere	NA	NA	NA	NA
Sampling Train	NA	NA	NA	NA

VAPOR PURGING

ONE PURGE VOLUME (ML) = VT + VP

VT = TUBING LENGTH (FT) * 5.4 ML/FT

VP = (3.14 * R2 * H) * 16.387 ML/IN3

VT – Total tubing volume in mL (1/4–inch OD, 3/16-inch ID tubing)

VP – Volume of air in entire length of vapor point in mL

R – Radius of inner diameter of vapor point (inches)

Purge Rate (mL/min):	Purged via break flui	id bleeder hand pump	One Purge Volume (mL):	NA	
Purge Time (min):	1	<u></u>	Total Volume Purged (mL):	NA	
Purging two to five purge vo	lumes while collectin	g inert gas readings pri	or to sample collection is ideal.		
		SUB-SLAB VAPOR	SAMPLING		
Canister I.D.:	2785	Flow Controller I.D.	:	1562	5
Start Time:	7:30	Initial Vacuum Pres	sure in Sample Canister:	-30.26	in Hg
Stop Time:	15:24	Final Vacuum Press	ure in Sample Canister:	-8.57	in Hg
Sample I.D.:	SS-14	Laboratory:	-	Alpha Analytical	-
PID Reading (Sample Train):	1,125 ppb	Slab Thickness:		_	inches
		INDOOR AMBIENT AI	IR SAMPLING		
Canister I.D.:	1583	Flow Controller I.D.	.:	1797	
Start Time:	7:31	Initial Vacuum Pres	sure in Sample Canister:	-30.30	in Hg
Stop Time:	15:25	Final Vacuum Press	ure in Sample Canister:	-7.25	in Hg
Sample I.D.:	IA-14	Laboratory:		Alpha Analytical	_
PID Reading (Sample Train):	1,096 ppb	Sample Intake Heig	h <u>t:</u>	40	inches
		AMBIENT AIR SA	MPLING		
Canister I.D.:	2654	Flow Controller I.D.	:	971	_
Start Time:	8:00		sure in Sample Canister:		in Hg
Stop Time:	15:40	Final Vacuum Press	ure in Sample Canister:	-2.31	in Hg
Sample I.D.:	AA-3	Laboratory:		Alpha Analytical	_
PID Reading (Sample Train):	191 ppb	Sample Intake Heig	ht:	53	inches

Date:	2/12/2020	TRC Project Number	190270.2015.0000
Project Name:	Former Chromalloy Facility	Field Personnel:	Justin King, Andrew Fishman
Weather:	~40 F Clear ; Barometric pressure: 3	0.20" Hg	

HELIUM TRACER TEST (shroud)

Test	Time	Helium Concentration	Units (% or ppm _v)	Notes
Shroud Atmosphere	7:15	10.1	%	
Sampling Train	7:18	0	ppm	PASS

Helium concentration within sampling train should be less than 5% of shroud atmosphere concentration. If seal or probe needs to be reset then record 2^n d attempt below.

Retest (if applicable)	Time	Helium Concentration	Units (% or ppm _v)	Notes
Shroud Atmosphere	NA	NA	NA	NA
Sampling Train	NA	NA	NA	NA

VAPOR PURGING

ONE PURGE VOLUME (ML) = VT + VP

VT = TUBING LENGTH (FT) * 5.4 ML/FT

VP = (3.14 * R2 * H) * 16.387 ML/IN3

VT – Total tubing volume in mL (1/4-inch OD, 3/16-inch ID tubing)

VP – Volume of air in entire length of vapor point in mL

R – Radius of inner diameter of vapor point (inches)

Purge Rate (mL/min):	Purged via break flui	d bleeder hand pump	One Purge Volume (mL):	NA	
Purge Time (min):	1	<u></u>	Total Volume Purged (mL):	NA	
Purging two to five purge vo	lumes while collectin	g inert gas readings pri	or to sample collection is ideal		
		SUB-SLAB VAPOR	SAMPLING		
Canister I.D.:	2984	Flow Controller I.D.	:	876	5
Start Time:	7:20	Initial Vacuum Pres	sure in Sample Canister:	-30.26	in Hg
Stop Time:	15:21	Final Vacuum Press	ure in Sample Canister:	-6.10	in Hg
Sample I.D.:	SS-15	Laboratory:		Alpha Analytical	_
PID Reading (Sample Train):	: 9,555 ppb	Slab Thickness:		6	inches
Canister I.D.:	1826		:		-
Start Time: Stop Time:	7:21 15:22		sure in Sample Canister: ure in Sample Canister:		
Sample I.D.:	IA-15	Laboratory:			
PID Reading (Sample Train):	: 1,400 ppb	Sample Intake Heig	ht:		inches
		AMBIENT AIR SA	MPLING		
Canister I.D.:	2654	Flow Controller I.D.	.i	971	_
Start Time:	8:00	Initial Vacuum Pres	sure in Sample Canister:	-30.39	in Hg
Stop Time:	15:40	Final Vacuum Press	ure in Sample Canister:	-2.31	in Hg
Sample I.D.:	AA-3	Laboratory:		Alpha Analytical	
·	7013			rupita rutat yeteat	-

Date:	2/12/2020	TRC Project Number	190270.2015.0000
Project Name:	Former Chromalloy Facility	Field Personnel:	Justin King, Andrew Fishman
Weather:	~40 F Clear ; Barometric pressure: 3	0.20" Hg	

HELIUM TRACER TEST (shroud)

Test	Time	Helium Concentration	Units (% or ppm _v)	Notes
Shroud Atmosphere	7:15	11.7	%	
Sampling Train	7:18	475	ppm	PASS

Helium concentration within sampling train should be less than 5% of shroud atmosphere concentration. If seal or probe needs to be reset then record 2^n d attempt below.

Retest (if applicable)	Time	Helium Concentration	Units (% or ppm _v)	Notes
Shroud Atmosphere	NA	NA	NA	NA
Sampling Train	NA	NA	NA	NA

VAPOR PURGING

ONE PURGE VOLUME (ML) = VT + VP

VT = TUBING LENGTH (FT) * 5.4 ML/FT

VP = (3.14 * R2 * H) * 16.387 ML/IN3

VT – Total tubing volume in mL (1/4–inch OD, 3/16-inch ID tubing)

VP – Volume of air in entire length of vapor point in mL

R – Radius of inner diameter of vapor point (inches)

Purge Rate (mL/min):	Purged via break fluid	bleeder hand pump	One Purge Volume (mL):	NA	
Purge Time (min):	1	_	Total Volume Purged (mL):	NA	
Purging two to five purge vo	lumes while collecting	inert gas readings pri	or to sample collection is ideal.		
		SUB-SLAB VAPOR	SAMPLING		
Canister I.D.:	897	Flow Controller I.D.	.:	1484	_
Start Time:	7:45	Initial Vacuum Pres	sure in Sample Canister:	-30.57	in Hg
Stop Time:	15:35	Final Vacuum Press	ure in Sample Canister:	-7.64	in Hg
Sample I.D.:	SS-16	Laboratory:		Alpha Analytical	-
PID Reading (Sample Train):	1,090 ppb	Slab Thickness:		_	inches
Canister I.D.:			i		<u>-</u>
Start Time:	7:46	Initial Vacuum Pres	sure in Sample Canister:	-30.37	in Hg
Stop Time:	13:30	Final Vacuum Press	sure in Sample Canister:	-1.94	in Hg
Sample I.D.:	IA-16	Laboratory:		Alpha Analytical	-
PID Reading (Sample Train):	652 ppb	Sample Intake Heig	h <u>t:</u>	40	inches
		AMBIENT AIR SA	MPLING		
Canister I.D.:	2654	Flow Controller I.D.	.:	971	
Start Time:	8:00		sure in Sample Canister:		in Hg
Stop Time:	15:40	Final Vacuum Press	ure in Sample Canister:	-2.31	in Hg
Sample I.D.:	AA-3	Laboratory:		Alpha Analytical	_
PID Reading (Sample Train):		Sample Intake Heig			inches

2/12/2020	TRC Project Number	190270.2015.0000
Former Chromalloy Facility	Field Personnel:	Justin King, Andrew Fishman
~40 F Clear ; Barometric pressure: 3	0.20" Hg	
	Former Chromalloy Facility	•

HELIUM TRACER TEST (shroud)

Test	Time	Helium Concentration	Units (% or ppm _v)	Notes
Shroud Atmosphere	7:30	11.7	%	
Sampling Train	7:33	0	ppm	PASS

Helium concentration within sampling train should be less than 5% of shroud atmosphere concentration. If seal or probe needs to be reset then record 2^n d attempt below.

Retest (if applicable)	Time	Helium Concentration	Units (% or ppm _v)	Notes
Shroud Atmosphere	NA	NA	NA	NA
Sampling Train	NA	NA	NA	NA

VAPOR PURGING

ONE PURGE VOLUME (ML) = VT + VP

VT = TUBING LENGTH (FT) * 5.4 ML/FT

VP = (3.14 * R2 * H) * 16.387 ML/IN3

VT – Total tubing volume in mL (1/4–inch OD, 3/16-inch ID tubing)

VP – Volume of air in entire length of vapor point in mL

R – Radius of inner diameter of vapor point (inches)

Purge Rate (mL/min):	Purged via break flu	id bleeder hand pump	One Purge Volume (mL):	NA	
Purge Time (min):	1		Total Volume Purged (mL):	NA	
Purging two to five purge vo	olumes while collectin	ig inert gas readings pri	or to sample collection is ideal.		
		SUB-SLAB VAPOR S	SAMPLING		
Canister I.D.:	1611	Flow Controller I.D.	.:	1420	_
Start Time:	7:35	Initial Vacuum Pres	sure in Sample Canister:	-30.27	in Hg
Stop Time:	15:30	Final Vacuum Press	ure in Sample Canister:	-4.27	in Hg
Sample I.D.:	SS-17	Laboratory:		Alpha Analytical	_
PID Reading (Sample Train):	: 1,902 ppb	Slab Thickness:		_	inches
Canister I.D.:			:		<u>-</u>
Start Time:	7:36		sure in Sample Canister:		in Hg
Stop Time:	15:31	Final Vacuum Press	ure in Sample Canister:	-6.14	in Hg
Sample I.D.:	IA-17	Laboratory:		Alpha Analytical	_
PID Reading (Sample Train):	:1,001_ppb	Sample Intake Heig	h <u>t:</u>		inches
		AMBIENT AIR SA	MPLING		
Canister I.D.:	2654	Flow Controller I.D.	: <u></u>	971	_
Start Time:	8:00	Initial Vacuum Pres	sure in Sample Canister:	-30.39	in Hg
Stop Time:	15:40	Final Vacuum Press	ure in Sample Canister:	-2.31	in Hg
Sample I.D.:	AA-3	Laboratory:		Alpha Analytical	
PID Reading (Sample Train):		Laboratory.	ht:		inches

Date:	2/12/2020	TRC Project Number	190270.2015.0000
Project Name:	Former Chromalloy Facility	Field Personnel:	Justin King, Andrew Fishman
Weather:	~40 F Clear ; Barometric pressure: 3	0.20" Hg	

HELIUM TRACER TEST (shroud)

Test	Time	Helium Concentration	Units (% or ppm _v)	Notes
Shroud Atmosphere	7:15	12	%	
Sampling Train	7:18	0	ppm	PASS

Helium concentration within sampling train should be less than 5% of shroud atmosphere concentration. If seal or probe needs to be reset then record 2^n d attempt below.

Retest (if applicable)	Time	Helium Concentration	Units (% or ppm _v)	Notes
Shroud Atmosphere	NA	NA	NA	NA
Sampling Train	NA	NA	NA	NA

VAPOR PURGING

ONE PURGE VOLUME (ML) = VT + VP

VT = TUBING LENGTH (FT) * 5.4 ML/FT

VP = (3.14 * R2 * H) * 16.387 ML/IN3

VT – Total tubing volume in mL (1/4–inch OD, 3/16-inch ID tubing)

VP – Volume of air in entire length of vapor point in mL

R – Radius of inner diameter of vapor point (inches)

Purge Rate (mL/min):	Purged via break flui	d bleeder hand pump	One Purge Volume (mL):	NA	
Purge Time (min):	1	<u></u>	Total Volume Purged (mL):	NA	
Purging two to five purge vo	olumes while collectin	g inert gas readings pri	or to sample collection is ideal.		
		SUB-SLAB VAPOR	SAMPLING		
Canister I.D.:	2959	Flow Controller I.D.	.:	1384	<u>.</u>
Start Time:	7:00	Initial Vacuum Pres	sure in Sample Canister:	-30.43	in Hg
Stop Time:	15:00	Final Vacuum Press	ure in Sample Canister:	-6.64	in Hg
Sample I.D.:	SS-18	Laboratory:		Alpha Analytical	
PID Reading (Sample Train)	: 6,027 ppb	Slab Thickness:			inches
Canister I.D.: Start Time:	2977 7:01		: : sure in Sample Canister:		
Start Time: Stop Time:			sure in Sample Canister: ure in Sample Canister:		
Sample I.D.:	IA-18	Laboratory:			
PID Reading (Sample Train)	: 3,161 ppb	-	h <u>t:</u>		inches
		AMBIENT AIR SA	MPLING		
Canister I.D.:	2654	Flow Controller I.D.	i <u> </u>	971	<u>.</u>
Start Time:	8:00	Initial Vacuum Pres	sure in Sample Canister:	-30.39	in Hg
Stop Time:	15:40	Final Vacuum Press	ure in Sample Canister:	-2.31	in Hg
Sample I.D.:	AA-3	Laboratory:	-	Alpha Analytical	
PID Reading (Sample Train)	: 191 ppb	Sample Intake Heig	h <u>t:</u>	53	inches

ATTACHMENT 4

SUMMARY LABORATORY ANALYTICAL REPORT

ANALYTICAL REPORT

Lab Number: L2006467

Client: TRC Solutions

10 Maxwell Drive

Suite 200

Clifton Park, NY 12065

ATTN: Jeffrey LaRock Phone: (518) 688-3109

Project Name: FORMER CHROMALLOY

Project Number: 190270.2015.0000

Report Date: 02/20/20

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA030), NH NELAP (2062), CT (PH-0141), DoD (L2474), FL (E87814), IL (200081), LA (85084), ME (MA00030), MD (350), NJ (MA015), NY (11627), NC (685), OH (CL106), PA (68-02089), RI (LAO00299), TX (T104704419), VT (VT-0015), VA (460194), WA (C954), US Army Corps of Engineers, USDA (Permit #P330-17-00150), USFWS (Permit #206964).

320 Forbes Boulevard, Mansfield, MA 02048-1806 508-822-9300 (Fax) 508-822-3288 800-624-9220 - www.alphalab.com

Project Number: 190270.2015.0000

 Lab Number:
 L2006467

 Report Date:
 02/20/20

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2006467-01	SS-13	SOIL_VAPOR	WEST NYACK, NY	02/12/20 15:45	02/12/20
L2006467-02	IA-13	AIR	WEST NYACK, NY	02/12/20 15:46	02/12/20
L2006467-03	IA-DUP	AIR	WEST NYACK, NY	02/12/20 15:47	02/12/20
L2006467-04	SS-14	SOIL_VAPOR	WEST NYACK, NY	02/12/20 15:24	02/12/20
L2006467-05	IA-14	AIR	WEST NYACK, NY	02/12/20 15:25	02/12/20
L2006467-06	SS-15	SOIL_VAPOR	WEST NYACK, NY	02/12/20 15:21	02/12/20
L2006467-07	IA-15	AIR	WEST NYACK, NY	02/12/20 15:22	02/12/20
L2006467-08	SS-16	SOIL_VAPOR	WEST NYACK, NY	02/12/20 15:35	02/12/20
L2006467-09	IA-16	AIR	WEST NYACK, NY	02/12/20 13:30	02/12/20
L2006467-10	AA-3	AIR	WEST NYACK, NY	02/12/20 15:40	02/12/20
L2006467-11	SS-17	SOIL_VAPOR	WEST NYACK, NY	02/12/20 15:30	02/12/20
L2006467-12	IA-17	AIR	WEST NYACK, NY	02/12/20 15:31	02/12/20
L2006467-13	SS-18	SOIL_VAPOR	WEST NYACK, NY	02/12/20 15:00	02/12/20
L2006467-14	IA-18	AIR	WEST NYACK, NY	02/12/20 15:01	02/12/20
L2006467-15	UNUSED CAN #2711	AIR	WEST NYACK, NY		02/12/20

Project Name: FORMER CHROMALLOY Lab Number: L2006467

Project Number: 190270.2015.0000 Report Date: 02/20/20

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Serial_No:02202013:08

Project Name: FORMER CHROMALLOY Lab Number: L2006467
Project Number: 190270.2015.0000 Report Date: 02/20/20

Case Narrative (continued)

Volatile Organics in Air

Canisters were released from the laboratory on February 4, 2020. The canister certification results are provided as an addendum.

L2006467-06, 11: The samples have elevated detection limits due to the dilution required by the elevated concentrations of target compounds in the sample.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 02/20/20

Christopher J. Anderson

AIR

Project Number: 190270.2015.0000

Lab Number: L2006467

Report Date: 02/20/20

SAMPLE RESULTS

Lab ID: L2006467-01

Client ID: SS-13

Sample Location: WEST NYACK, NY

Date Collected: 02/12/20 15:45
Date Received: 02/12/20
Field Prep: Not Specified

Sample Depth:

Matrix: Soil_Vapor Anaytical Method: 48,TO-15 Analytical Date: 02/20/20 03:15

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mar	nsfield Lab							
Dichlorodifluoromethane	0.387	0.200		1.91	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.200		ND	1.40			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	26.4	5.00		49.7	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	7.32	1.00		17.4	2.38			1
Trichlorofluoromethane	ND	0.200		ND	1.12			1
sopropanol	2.38	0.500		5.85	1.23			1
1,1-Dichloroethene	ND	0.200		ND	0.793			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	2.82	0.500		8.32	1.47			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1
Ethyl Acetate	ND	0.500		ND	1.80			1

Project Number: 190270.2015.0000

Lab Number:

L2006467

Report Date:

02/20/20

SAMPLE RESULTS

Lab ID: L2006467-01

Client ID: SS-13

Sample Location: WEST NYACK, NY

Date Collected: 02/12/20 15:45

Date Received: 02/12/20

Field Prep: Not Specified

	ppbV			ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mans	sfield Lab							
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	4.62	0.500		13.6	1.47			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
Benzene	ND	0.200		ND	0.639			1
Carbon tetrachloride	ND	0.200		ND	1.26			1
Cyclohexane	ND	0.200		ND	0.688			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
Trichloroethene	2.43	0.200		13.1	1.07			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
rans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	0.329	0.200		1.24	0.754			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Tetrachloroethene	2.32	0.200		15.7	1.36			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
o/m-Xylene	0.507	0.400		2.20	1.74			1

Project Number: 190270.2015.0000

Lab Number:

L2006467

Report Date:

02/20/20

SAMPLE RESULTS

Lab ID: L2006467-01

Client ID: SS-13

Sample Location: WEST NYACK, NY

Date Collected: 02/12/20 15:45

Date Received: 02/12/20

Field Prep: Not Specified

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Man	sfield Lab							
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	ND	0.200		ND	0.869			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	94		60-140
Bromochloromethane	93		60-140
chlorobenzene-d5	91		60-140

Project Number: 190270.2015.0000

Lab Number:

L2006467

Report Date:

02/20/20

SAMPLE RESULTS

Lab ID: L2006467-01

Client ID: SS-13

Sample Location: WEST NYACK, NY

Date Collected:

02/12/20 15:45

Date Received: Field Prep:

02/12/20 Not Specified

Sample Depth:

Matrix: Anaytical Method: Soil_Vapor 48,TO-15-SIM 02/20/20 03:15

Analytical Date: Analyst:

TS

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM - Mansfield Lab								
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	94		60-140
bromochloromethane	94		60-140
chlorobenzene-d5	91		60-140

Project Number: 190270.2015.0000

Lab Number:

L2006467

Report Date: 02/20/20

SAMPLE RESULTS

Lab ID: L2006467-02

Client ID: IA-13

Sample Location: WEST NYACK, NY

Date Collected: 02/12/20 15:46 Date Received: 02/12/20

Field Prep: Not Specified

Sample Depth:

Matrix: Air

Analytical Method: 48,TO-15 Analytical Date: 02/19/20 18:02

		Vdqq			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mar	nsfield Lab							
Dichlorodifluoromethane	0.385	0.200		1.90	0.989			1
Chloromethane	0.509	0.200		1.05	0.413			1
Freon-114	ND	0.200		ND	1.40			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	54.0	5.00		102	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	16.9	1.00		40.1	2.38			1
Trichlorofluoromethane	ND	0.200		ND	1.12			1
Isopropanol	4.06	0.500		9.98	1.23			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	2.16	0.500		6.37	1.47			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	0.503	0.200		2.46	0.977			1
Tetrahydrofuran	3.02	0.500		8.91	1.47			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1

Project Number: 190270.2015.0000

Lab Number:

L2006467

Report Date:

02/20/20

SAMPLE RESULTS

Lab ID: L2006467-02

Client ID: IA-13

Sample Location: WEST NYACK, NY

Date Collected: 02/12/20 15:46

Date Received: 02/12/20 Field Prep: Not Specified

Campie Dopaii	ppbV			ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfiel	d Lab							
n-Hexane	7.95	0.200		28.0	0.705			1
Benzene	1.59	0.200		5.08	0.639			1
Cyclohexane	5.13	0.200		17.7	0.688			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
2,2,4-Trimethylpentane	0.636	0.200		2.97	0.934			1
Heptane	1.74	0.200		7.13	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	0.881	0.500		3.61	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	10.2	0.200		38.4	0.754			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	7.93	0.200		34.4	0.869			1
p/m-Xylene	28.4	0.400		123	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	6.96	0.200		30.2	0.869			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	0.206	0.200		1.01	0.983			1
1,2,4-Trimethylbenzene	0.615	0.200		3.02	0.983			1

Project Number: 190270.2015.0000 Lab Number:

L2006467

Report Date:

02/20/20

SAMPLE RESULTS

Lab ID: L2006467-02

Client ID: IA-13

Sample Location: WEST NYACK, NY Date Collected:

02/12/20 15:46

Date Received:

02/12/20

Field Prep:

Not Specified

	ppbV			ug/m3				Dilution
Parameter	Results	RL	L MDL Results RL MDL C	Qualifier	Factor			
Volatile Organics in Air - Mansfie	ld Lab							
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	96		60-140
Bromochloromethane	94		60-140
chlorobenzene-d5	94		60-140

Project Number: 190270.2015.0000

Lab Number:

Field Prep:

L2006467

Report Date: (

02/20/20

Not Specified

SAMPLE RESULTS

Lab ID: L2006467-02

Client ID: IA-13

Sample Location: WEST NYACK, NY

Date Collected: 02/12/20 15:46 Date Received: 02/12/20

Sample Depth:

Matrix: Air

Analytical Method: 48,TO-15-SIM Analytical Date: 02/19/20 18:02

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM - Ma	nsfield Lab							
Vinyl chloride	ND	0.020		ND	0.051			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Carbon tetrachloride	0.105	0.020		0.660	0.126			1
Trichloroethene	0.079	0.020		0.425	0.107			1
Tetrachloroethene	0.028	0.020		0.190	0.136			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	96		60-140
bromochloromethane	96		60-140
chlorobenzene-d5	95		60-140

Project Number: 190270.2015.0000

Lab Number: L2006467

Report Date: 02/20/20

SAMPLE RESULTS

Lab ID: L2006467-03

Client ID: IA-DUP

Sample Location: WEST NYACK, NY

Date Collected: 02/12/20 15:47
Date Received: 02/12/20
Field Prep: Not Specified

Sample Depth:

Matrix: Air

Analytical Method: 48,TO-15 Analytical Date: 02/19/20 19:21

	Vdqq			ug/m3			Dilution
Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
ld Lab							
0.359	0.200		1.78	0.989			1
0.479	0.200		0.989	0.413			1
ND	0.200		ND	1.40			1
ND	0.200		ND	0.442			1
ND	0.200		ND	0.777			1
ND	0.200		ND	0.528			1
56.3	5.00		106	9.42			1
ND	0.200		ND	0.874			1
16.3	1.00		38.7	2.38			1
ND	0.200		ND	1.12			1
3.96	0.500		9.73	1.23			1
ND	0.500		ND	1.74			1
ND	0.200		ND	0.626			1
ND	0.200		ND	0.623			1
ND	0.200		ND	1.53			1
ND	0.200		ND	0.793			1
ND	0.200		ND	0.809			1
ND	0.200		ND	0.721			1
2.30	0.500		6.78	1.47			1
ND	0.500		ND	1.80			1
0.504	0.200		2.46	0.977			1
3.11	0.500		9.17	1.47			1
ND	0.200		ND	0.809			1
	0.359 0.479 ND ND ND ND 56.3 ND 16.3 ND	Results RL Id Lab 0.359 0.200 0.479 0.200 ND 0.200 ND 0.200 ND 0.200 ND 0.200 56.3 5.00 ND 0.200 16.3 1.00 ND 0.200 ND 0.500 ND 0.500 ND 0.200 ND 0.500 ND 0.500 ND 0.500 ND 0.500 ND 0.500 0.504 0.200	Results RL MDL Id Lab 0.359 0.200 0.479 0.200 ND 0.200 ND 0.200 ND 0.200 ND 0.200 16.3 1.00 ND 0.200 ND 0.500 ND 0.500 ND 0.200 ND 0.500 ND 0.500 ND 0.500 ND 0.500 ND 0.500 ND 0.500 ND 0	Results RL MDL Results Id Lab 0.359 0.200 1.78 0.479 0.200 0.989 ND 0.200 ND ND 0.200 ND ND 0.200 ND ND 0.200 ND 56.3 5.00 ND 16.3 1.00 ND 16.3 1.00 ND 3.96 0.500 ND ND 0.500 ND ND 0.200 ND ND 0.500	Results RL MDL Results RL Id Lab 0.359 0.200 1.78 0.989 0.479 0.200 0.989 0.413 ND 0.200 ND 1.40 ND 0.200 ND 0.442 ND 0.200 ND 0.777 ND 0.200 ND 0.528 56.3 5.00 ND 0.874 16.3 1.00 ND 0.874 16.3 1.00 ND 0.874 16.3 1.00 38.7 2.38 ND 0.200 ND 1.12 3.96 0.500 ND 1.74 ND 0.500 ND 0.626 ND 0.200 ND 0.623 ND 0.200 ND 0.793	Results RL MDL Results RL MDL Id Lab 0.359 0.200 1.78 0.989 0.479 0.200 0.989 0.413 ND 0.200 ND 1.40 ND 0.200 ND 0.442 ND 0.200 ND 0.777 ND 0.200 ND 0.528 ND 0.200 ND 0.528 ND 0.200 ND 0.874 ND 0.200 ND 0.874 ND 0.200 ND 0.874 ND 0.200 ND 1.12 ND 0.500 ND 1.74 ND 0.500 ND 0.623	Results RL MDL Results RL MDL Qualifier Id Lab 0.359 0.200 1.78 0.989

Project Number: 190270.2015.0000

Lab Number:

L2006467

Report Date:

02/20/20

SAMPLE RESULTS

Lab ID: L2006467-03

Client ID: IA-DUP

WEST NYACK, NY

Date Collected: 02

02/12/20 15:47

Date Received: Field Prep:

02/12/20 Not Specified

Sample Depth:

Sample Location:

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfiel	ld Lab							
n-Hexane	7.92	0.200		27.9	0.705			1
Benzene	1.58	0.200		5.05	0.639			1
Cyclohexane	5.16	0.200		17.8	0.688			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
2,2,4-Trimethylpentane	0.628	0.200		2.93	0.934			1
Heptane	1.72	0.200		7.05	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1-Methyl-2-pentanone	0.851	0.500		3.49	2.05			1
rans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Foluene	9.97	0.200		37.6	0.754			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	7.91	0.200		34.4	0.869			1
o/m-Xylene	28.6	0.400		124	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	7.00	0.200		30.4	0.869			1
1-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	0.212	0.200		1.04	0.983			1
1,2,4-Trimethylbenzene	0.643	0.200		3.16	0.983			1

Project Number: 190270.2015.0000 Lab Number:

L2006467

Report Date:

02/20/20

SAMPLE RESULTS

Lab ID: L2006467-03 Client ID:

IA-DUP

Sample Location: WEST NYACK, NY Date Collected:

02/12/20 15:47

Date Received: Field Prep:

02/12/20 Not Specified

Sample Depth:

ppbV ug/m3 Dilution **Factor** RL Qualifier Results MDL **Parameter** RL Results MDL Volatile Organics in Air - Mansfield Lab Benzyl chloride ND 0.200 ND1 1.04 1,3-Dichlorobenzene ND 0.200 --ND 1.20 --1 1,4-Dichlorobenzene ND 0.200 ND 1.20 1 1,2-Dichlorobenzene ND 0.200 ND 1.20 1 ----1,2,4-Trichlorobenzene 1 ND 0.200 ND 1.48 --Hexachlorobutadiene ND 0.200 ND 1 2.13 ----

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	96		60-140
Bromochloromethane	95		60-140
chlorobenzene-d5	96		60-140

Project Number: 190270.2015.0000

Lab Number:

L2006467 02/20/20

Report Date:

SAMPLE RESULTS

Lab ID: L2006467-03

Client ID: IA-DUP

Sample Location: WEST NYACK, NY

Date Collected:

02/12/20 15:47

Date Received:

02/12/20

Field Prep:

Not Specified

Sample Depth:

Matrix: Air

Analytical Method: 48,TO-15-SIM Analytical Date: 02/19/20 19:21

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM - Ma	ansfield Lab							
Vinyl chloride	ND	0.020		ND	0.051			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Carbon tetrachloride	0.105	0.020		0.660	0.126			1
Trichloroethene	0.074	0.020		0.398	0.107			1
Tetrachloroethene	0.029	0.020		0.197	0.136			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	97		60-140
bromochloromethane	96		60-140
chlorobenzene-d5	97		60-140

Project Number: 190270.2015.0000

Lab Number: L2006467

Report Date: 02/20/20

SAMPLE RESULTS

Lab ID: L2006467-04

Client ID: SS-14

Sample Location: WEST NYACK, NY

Field

02/12/20 15:24 02/12/20

Date Received: Field Prep:

Date Collected:

Not Specified

Sample Depth:

Matrix: Anaytical Method: Analytical Date: Soil_Vapor 48,TO-15 02/20/20 03:54

Analyst:

TS

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Man	sfield Lab							
Dichlorodifluoromethane	0.746	0.200		3.69	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.200		ND	1.40			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	57.4	5.00		108	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	44.4	1.00		105	2.38			1
Trichlorofluoromethane	ND	0.200		ND	1.12			1
Isopropanol	3.79	0.500		9.32	1.23			1
1,1-Dichloroethene	ND	0.200		ND	0.793			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	3.86	0.500		11.4	1.47			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1
Ethyl Acetate	ND	0.500		ND	1.80			1

Project Number: 190270.2015.0000

Lab Number:

L2006467

Report Date:

02/20/20

SAMPLE RESULTS

Lab ID: L2006467-04

Client ID: SS-14

Sample Location: WEST NYACK, NY

Date Collected: 02/12/20 15:24

Date Received: 02/12/20

Field Prep: Not Specified

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfie	eld Lab							
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	2.58	0.500		7.61	1.47			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
1,1,1-Trichloroethane	0.239	0.200		1.30	1.09			1
Benzene	2.44	0.200		7.80	0.639			1
Carbon tetrachloride	ND	0.200		ND	1.26			1
Cyclohexane	ND	0.200		ND	0.688			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
,4-Dioxane	ND	0.200		ND	0.721			1
Frichloroethene	11.0	0.200		59.1	1.07			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Heptane	0.208	0.200		0.852	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1-Methyl-2-pentanone	ND	0.500		ND	2.05			1
rans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	4.81	0.200		18.1	0.754			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Tetrachloroethene	4.51	0.200		30.6	1.36			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	9.25	0.200		40.2	0.869			1
o/m-Xylene	6.77	0.400		29.4	1.74			1

Project Number: 190270.2015.0000 Lab Number:

L2006467

Report Date:

02/20/20

SAMPLE RESULTS

Lab ID: L2006467-04

Client ID: SS-14

Sample Location: WEST NYACK, NY Date Collected:

02/12/20 15:24

Date Received: Field Prep:

02/12/20 Not Specified

Jampie Deptii.		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mans	field Lab							
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	2.86	0.200		12.4	0.869			1
4-Ethyltoluene	1.39	0.200		6.83	0.983			1
1,3,5-Trimethylbenzene	1.94	0.200		9.54	0.983			1
1,2,4-Trimethylbenzene	3.12	0.200		15.3	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	95		60-140
Bromochloromethane	94		60-140
chlorobenzene-d5	93		60-140

Project Number: 190270.2015.0000 Lab Number:

L2006467

Report Date:

02/20/20

SAMPLE RESULTS

Lab ID: L2006467-04

Client ID: SS-14

Sample Location: WEST NYACK, NY Date Collected:

02/12/20 15:24

Date Received:

02/12/20

Field Prep:

Not Specified

Sample Depth:

Matrix: Anaytical Method: Soil_Vapor 48,TO-15-SIM 02/20/20 03:54

Analytical Date: Analyst:

TS

		Vdqq			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM - N	Mansfield Lab							
Tertiary butyl Alcohol	0.709	0.500		2.15	1.52			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	95		60-140
bromochloromethane	95		60-140
chlorobenzene-d5	93		60-140

02/12/20 15:25

Project Name: FORMER CHROMALLOY

Project Number: 190270.2015.0000

Lab Number: L2006467

Report Date: 02/20/20

SAMPLE RESULTS

Lab ID: L2006467-05

Client ID: IA-14

Sample Location: WEST NYACK, NY

Date Received: 02/12/20 Field Prep: Not Specified

Date Collected:

Sample Depth:

Matrix: Air

Analytical Method: 48,TO-15 Analytical Date: 02/19/20 20:01

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mar	nsfield Lab							
Dichlorodifluoromethane	0.359	0.200		1.78	0.989			1
Chloromethane	0.442	0.200		0.913	0.413			1
Freon-114	ND	0.200		ND	1.40			1
1,3-Butadiene	0.210	0.200		0.465	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	36.7	5.00		69.2	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	11.8	1.00		28.0	2.38			1
Trichlorofluoromethane	ND	0.200		ND	1.12			1
Isopropanol	2.30	0.500		5.65	1.23			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	0.643	0.500		1.90	1.47			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1

Project Number: 190270.2015.0000

Lab Number:

L2006467

Report Date:

02/20/20

SAMPLE RESULTS

Lab ID: L2006467-05

Client ID: IA-14

Sample Location: WEST NYACK, NY

Date Collected: 02/12/20 15:25

Date Received: 02/12/20 Field Prep: Not Specified

	ppbV ug/m3				Dilution			
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfiel	ld Lab							
n-Hexane	12.5	0.200		44.1	0.705			1
Benzene	2.69	0.200		8.59	0.639			1
Cyclohexane	8.90	0.200		30.6	0.688			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
2,2,4-Trimethylpentane	0.821	0.200		3.83	0.934			1
Heptane	2.33	0.200		9.55	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	0.874	0.500		3.58	2.05			1
rans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	11.3	0.200		42.6	0.754			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	15.2	0.200		66.0	0.869			1
o/m-Xylene	53.5	0.400		232	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	13.8	0.200		59.9	0.869			1
4-Ethyltoluene	0.223	0.200		1.10	0.983			1
1,3,5-Trimethylbenzene	0.349	0.200		1.72	0.983			1
1,2,4-Trimethylbenzene	1.12	0.200		5.51	0.983			1

Project Number: 190270.2015.0000 Lab Number:

L2006467

Report Date:

02/20/20

SAMPLE RESULTS

Lab ID: L2006467-05

IA-14

Client ID: Sample Location:

WEST NYACK, NY

Date Collected: 02/12/20 15:25

Date Received: 02/12/20

Field Prep: Not Specified

Campio Dopuii		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfiel	d Lab							
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	95		60-140
Bromochloromethane	94		60-140
chlorobenzene-d5	97		60-140

Project Number: 190270.2015.0000

Lab Number: L2006467

Report Date: 02/20/20

SAMPLE RESULTS

Lab ID: L2006467-05

Client ID: IA-14

Sample Location: WEST NYACK, NY

Date Collected: 02/12/20 15:25
Date Received: 02/12/20
Field Prep: Not Specified

Sample Depth:

Matrix: Air

Analytical Method: 48,TO-15-SIM O2/19/20 20:01

	<u></u>	ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM -	Mansfield Lab							
Vinyl chloride	ND	0.020		ND	0.051			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Carbon tetrachloride	0.056	0.020		0.352	0.126			1
Trichloroethene	0.086	0.020		0.462	0.107			1
Tetrachloroethene	0.030	0.020		0.203	0.136			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	96		60-140
bromochloromethane	96		60-140
chlorobenzene-d5	98		60-140

02/12/20 15:21

Not Specified

02/12/20

Project Name: FORMER CHROMALLOY

Project Number: 190270.2015.0000

Lab Number: L2006467

Report Date: 02/20/20

Date Collected:

Date Received:

Field Prep:

SAMPLE RESULTS

Lab ID: L2006467-06 D

Client ID: SS-15

Sample Location: WEST NYACK, NY

Sample Depth:

Matrix: Soil_Vapor Anaytical Method: 48,TO-15 Analytical Date: 02/20/20 04:31

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	r Factor
Volatile Organics in Air - Mar	nsfield Lab							
Dichlorodifluoromethane	ND	12.5		ND	61.8			62.34
Chloromethane	ND	12.5		ND	25.8			62.34
Freon-114	ND	12.5		ND	87.4			62.34
Vinyl chloride	ND	12.5		ND	32.0			62.34
1,3-Butadiene	ND	12.5		ND	27.7			62.34
Bromomethane	ND	12.5		ND	48.5			62.34
Chloroethane	ND	12.5		ND	33.0			62.34
Ethanol	ND	312		ND	588			62.34
Vinyl bromide	ND	12.5		ND	54.7			62.34
Acetone	ND	62.3		ND	148			62.34
Trichlorofluoromethane	ND	12.5		ND	70.2			62.34
Isopropanol	ND	31.2		ND	76.7			62.34
1,1-Dichloroethene	ND	12.5		ND	49.6			62.34
Methylene chloride	ND	31.2		ND	108			62.34
3-Chloropropene	ND	12.5		ND	39.1			62.34
Carbon disulfide	ND	12.5		ND	38.9			62.34
Freon-113	ND	12.5		ND	95.8			62.34
trans-1,2-Dichloroethene	27.7	12.5		110	49.6			62.34
1,1-Dichloroethane	ND	12.5		ND	50.6			62.34
Methyl tert butyl ether	ND	12.5		ND	45.1			62.34
2-Butanone	ND	31.2		ND	92.0			62.34
cis-1,2-Dichloroethene	280	12.5		1110	49.6			62.34
Ethyl Acetate	ND	31.2		ND	112			62.34

Project Number: 190270.2015.0000 Lab Number:

L2006467

Report Date:

02/20/20

SAMPLE RESULTS

ppbV

Lab ID: L2006467-06 D

Client ID: **SS-15**

Sample Location: WEST NYACK, NY Date Collected:

02/12/20 15:21

Date Received: Field Prep:

ug/m3

02/12/20 Not Specified

Sample Depth:

Dilution **Factor** RL Qualifier Results Results MDL **Parameter** RL MDL Volatile Organics in Air - Mansfield Lab Chloroform 69.2 338 62.34 12.5 61.0 Tetrahydrofuran ND 31.2 --ND 92.0 --62.34 1,2-Dichloroethane ND 12.5 ND 50.6 62.34 n-Hexane ND 12.5 ND 44.1 62.34 ----1,1,1-Trichloroethane ND 12.5 ND 62.34 --68.2 Benzene ND 62.34 12.5 ND 39.9 ----Carbon tetrachloride ND 12.5 ND 78.6 62.34 ----Cyclohexane ND 12.5 ND 43.0 62.34 1,2-Dichloropropane ND 12.5 --ND 57.8 62.34 --Bromodichloromethane ND 12.5 ND 62.34 --83.7 --1,4-Dioxane ND 12.5 ND 45.0 62.34 --Trichloroethene 62.34 4060 12.5 --21800 67.2 --2,2,4-Trimethylpentane ND 12.5 ND 58.4 62.34 Heptane ND 12.5 ND 51.2 62.34 cis-1,3-Dichloropropene ND 12.5 --ND 56.7 --62.34 4-Methyl-2-pentanone ND 31.2 ND 128 62.34 trans-1,3-Dichloropropene 62.34 ND 12.5 --ND 56.7 --1,1,2-Trichloroethane ND 12.5 ND 68.2 62.34 Toluene ND 12.5 --ND 47.1 --62.34 2-Hexanone ND 12.5 ND 51.2 62.34 ----Dibromochloromethane ND 12.5 ND 106 62.34

ND

60.6

ND

ND

ND

12.5

12.5

12.5

12.5

24.9

--

--

--

ND

411

ND

ND

ND

96.1

84.8

57.6

54.3

108

--

__

--

62.34

62.34

62.34

62.34

62.34

1,2-Dibromoethane

Tetrachloroethene

Chlorobenzene

Ethylbenzene

p/m-Xylene

Project Number: 190270.2015.0000

Lab Number:

L2006467

Report Date:

02/20/20

SAMPLE RESULTS

Lab ID:

L2006467-06 D

Client ID:

SS-15

Sample Location:

WEST NYACK, NY

Date Collected:

02/12/20 15:21

Date Received: Field Prep:

02/12/20 Not Specified

Campio Dopuii.		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Man	sfield Lab							
Bromoform	ND	12.5		ND	129			62.34
Styrene	ND	12.5		ND	53.2			62.34
1,1,2,2-Tetrachloroethane	ND	12.5		ND	85.8			62.34
o-Xylene	ND	12.5		ND	54.3			62.34
4-Ethyltoluene	ND	12.5		ND	61.5			62.34
1,3,5-Trimethylbenzene	ND	12.5		ND	61.5			62.34
1,2,4-Trimethylbenzene	ND	12.5		ND	61.5			62.34
Benzyl chloride	ND	12.5		ND	64.7			62.34
1,3-Dichlorobenzene	ND	12.5		ND	75.2			62.34
1,4-Dichlorobenzene	ND	12.5		ND	75.2			62.34
1,2-Dichlorobenzene	ND	12.5		ND	75.2			62.34
1,2,4-Trichlorobenzene	ND	12.5		ND	92.8			62.34
Hexachlorobutadiene	ND	12.5		ND	133			62.34

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	95		60-140
Bromochloromethane	92		60-140
chlorobenzene-d5	90		60-140

Project Number: 190270.2015.0000

Lab Number:

L2006467

Report Date:

02/20/20

SAMPLE RESULTS

Lab ID:

L2006467-06 D

Date Collected:

02/12/20 15:21

Client ID:

SS-15

Date Received:

02/12/20

Sample Location:

WEST NYACK, NY

Field Prep:

Not Specified

Sample Depth:

Matrix:

Soil_Vapor

Anaytical Method: Analytical Date: 48,TO-15-SIM 02/20/20 04:31

Analyst:

TS

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM - M	lansfield Lab							
Tertiary butyl Alcohol	ND	31.2		ND	94.6			62.34

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	96		60-140
bromochloromethane	94		60-140
chlorobenzene-d5	91		60-140

Project Number: 190270.2015.0000

Lab Number:

L2006467

Report Date: 02/20/20

SAMPLE RESULTS

Lab ID: L2006467-07

Client ID: IA-15

Sample Location: WEST NYACK, NY

Date Collected: 02/12/20 15:22 Date Received: 02/12/20

Field Prep: Not Specified

Sample Depth:

Matrix: Air

Analytical Method: 48,TO-15 Analytical Date: 02/19/20 20:40

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Man	sfield Lab							
Dichlorodifluoromethane	0.344	0.200		1.70	0.989			1
Chloromethane	0.419	0.200		0.865	0.413			1
Freon-114	ND	0.200		ND	1.40			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	41.0	5.00		77.3	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	12.7	1.00		30.2	2.38			1
Trichlorofluoromethane	ND	0.200		ND	1.12			1
Isopropanol	2.70	0.500		6.64	1.23			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	0.712	0.500		2.10	1.47			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1

Project Number: 190270.2015.0000 Lab Number:

L2006467

Report Date:

02/20/20

SAMPLE RESULTS

Lab ID: L2006467-07

Client ID: IA-15

Sample Location: WEST NYACK, NY Date Collected:

02/12/20 15:22

Date Received: Field Prep:

02/12/20 Not Specified

Sample Depth:

ppbV ug/m3 **Dilution Factor** RL MDL Qualifier Results Results **Parameter** RL MDL Volatile Organics in Air - Mansfield Lab n-Hexane 15.7 0.200 55.3 0.705 1 Benzene 1 3.04 0.200 --9.71 0.639 --Cyclohexane 11.2 0.200 38.6 0.688 1 1,2-Dichloropropane ND 0.200 ND 0.924 1 ----Bromodichloromethane ND 0.200 ND 1 1.34 1,4-Dioxane ND 0.200 ND 1 0.721 ----2,2,4-Trimethylpentane 1.03 0.200 0.934 --4.81 --1 Heptane 3.01 0.200 0.820 1 12.3 cis-1,3-Dichloropropene 1 ND 0.200 ND 0.908 ----4-Methyl-2-pentanone 0.993 0.500 4.07 2.05 1 ---trans-1,3-Dichloropropene ND 0.200 ND 0.908 1 --1,1,2-Trichloroethane ND 0.200 --ND 1.09 --1 Toluene 13.2 0.200 49.7 0.754 1 2-Hexanone ND 0.200 ND 0.820 1 Dibromochloromethane ND 0.200 --ND 1.70 --1 1,2-Dibromoethane ND 0.200 ND 1.54 1 Chlorobenzene 0.200 ND --ND 0.921 --1 Ethylbenzene 21.2 0.200 92.1 0.869 1 p/m-Xylene 73.2 1 0.400 --318 1.74 --**Bromoform** ND 0.200 ND 2.07 1 ----Styrene ND 0.200 ND 0.852 1 1,1,2,2-Tetrachloroethane ND 0.200 --ND 1.37 --1 o-Xylene 19.2 0.200 --83.4 0.869 --1 4-Ethyltoluene 0.354 0.200 1.74 0.983 1 1,3,5-Trimethylbenzene 0.425 0.200 2.09 0.983 1 ----

1.34

0.200

6.59

0.983

1

1,2,4-Trimethylbenzene

Project Number: 190270.2015.0000

Lab Number:

L2006467

Report Date:

02/20/20

SAMPLE RESULTS

Lab ID: L2006467-07

Client ID: IA-15

Sample Location: WEST NYACK, NY

Date Collected: 02

02/12/20 15:22

Date Received: Field Prep:

02/12/20 Not Specified

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfi	eld Lab							
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	0.211	0.200		1.27	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	94		60-140
Bromochloromethane	94		60-140
chlorobenzene-d5	98		60-140

Project Number: 190270.2015.0000

Lab Number:

L2006467

Report Date:

02/20/20

SAMPLE RESULTS

Lab ID: L2006467-07

Client ID: IA-15

Sample Location: WEST NYACK, NY

Date Collected: 02/12/20 15:22 Date Received: 02/12/20

Field Prep: Not Specified

Sample Depth:

Matrix: Air

Analytical Method: 48,TO-15-SIM Analytical Date: 02/19/20 20:40

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM	1 - Mansfield Lab							
Vinyl chloride	ND	0.020		ND	0.051			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Carbon tetrachloride	0.058	0.020		0.365	0.126			1
Trichloroethene	0.180	0.020		0.967	0.107			1
Tetrachloroethene	0.037	0.020		0.251	0.136			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	95		60-140
bromochloromethane	95		60-140
chlorobenzene-d5	99		60-140

Project Number: 190270.2015.0000

Lab Number: L2006467

Date Collected:

Report Date: 02/20/20

SAMPLE RESULTS

Lab ID: L2006467-08

Client ID: SS-16

Sample Location: WEST NYACK, NY

Date Received: 02/12/20
Field Prep: Not Specified

02/12/20 15:35

Sample Depth:

Matrix: Soil_Vapor Anaytical Method: 48,TO-15 Analytical Date: 02/20/20 05:44

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Ma	nsfield Lab							
Dichlorodifluoromethane	0.390	0.200		1.93	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.200		ND	1.40			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	13.8	5.00		26.0	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	2.97	1.00		7.06	2.38			1
Trichlorofluoromethane	ND	0.200		ND	1.12			1
Isopropanol	1.28	0.500		3.15	1.23			1
1,1-Dichloroethene	ND	0.200		ND	0.793			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	1.42	0.500		4.19	1.47			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1
Ethyl Acetate	ND	0.500		ND	1.80			1

Project Number: 190270.2015.0000

Lab Number:

L2006467

Report Date:

02/20/20

SAMPLE RESULTS

Lab ID: L2006467-08

Client ID: SS-16

Sample Location: WEST NYACK, NY

Date Collected: 02

02/12/20 15:35

Date Received: Field Prep:

02/12/20 Not Specified

Sample Depth:

ppbV ug/m3 Dilution

								Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mans	field Lab							
Chloroform	0.229	0.200		1.12	0.977			1
Tetrahydrofuran	2.26	0.500		6.67	1.47			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
Benzene	ND	0.200		ND	0.639			1
Carbon tetrachloride	ND	0.200		ND	1.26			1
Cyclohexane	0.350	0.200		1.20	0.688			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
Trichloroethene	16.3	0.200		87.6	1.07			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	ND	0.200		ND	0.754			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Tetrachloroethene	7.60	0.200		51.5	1.36			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
p/m-Xylene	0.448	0.400		1.95	1.74			1

Project Number: 190270.2015.0000

Lab Number:

L2006467

Report Date:

02/20/20

SAMPLE RESULTS

Lab ID: L2006467-08

Date Collected:

02/12/20 15:35

Client ID:

SS-16

Date Received: Field Prep:

02/12/20 Not Specified

Sample Location: WES

WEST NYACK, NY

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mans	sfield Lab							
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	ND	0.200		ND	0.869			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	98		60-140
Bromochloromethane	95		60-140
chlorobenzene-d5	94		60-140

Project Number: 190270.2015.0000

Lab Number:

L2006467

Report Date:

02/20/20

SAMPLE RESULTS

Lab ID: L2006467-08

Client ID: SS-16

Sample Location: WEST NYACK, NY

Date Collected:

02/12/20 15:35

Date Received:

02/12/20

Field Prep:

Not Specified

Sample Depth:

Matrix: Anaytical Method:

Analytical Date:

Soil_Vapor 48,TO-15-SIM 02/20/20 05:44

Analyst:

TS

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM - Man	sfield Lab							
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	98		60-140
bromochloromethane	97		60-140
chlorobenzene-d5	95		60-140

Project Number: 190270.2015.0000

Lab Number: L2

L2006467

Report Date: 02/20/20

SAMPLE RESULTS

Lab ID: L2006467-09

Client ID: IA-16

Sample Location: WEST NYACK, NY

Date Collected: 02/12/20 13:30 Date Received: 02/12/20

Field Prep: Not Specified

Sample Depth:

Matrix: Air

Analytical Method: 48,TO-15 Analytical Date: 02/19/20 21:20

ppbV		ug/m3				Dilution	
Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
d Lab							
0.327	0.200		1.62	0.989			1
0.415	0.200		0.857	0.413			1
ND	0.200		ND	1.40			1
ND	0.200		ND	0.442			1
ND	0.200		ND	0.777			1
ND	0.200		ND	0.528			1
42.1	5.00		79.3	9.42			1
ND	0.200		ND	0.874			1
13.5	1.00		32.1	2.38			1
ND	0.200		ND	1.12			1
2.58	0.500		6.34	1.23			1
ND	0.500		ND	1.74			1
ND	0.200		ND	0.626			1
ND	0.200		ND	0.623			1
ND	0.200		ND	1.53			1
ND	0.200		ND	0.793			1
ND	0.200		ND	0.809			1
ND	0.200		ND	0.721			1
0.928	0.500		2.74	1.47			1
ND	0.500		ND	1.80			1
ND	0.200		ND	0.977			1
ND	0.500		ND	1.47			1
ND	0.200		ND	0.809			1
	0.327 0.415 ND ND ND ND 42.1 ND 13.5 ND 2.58 ND	Results RL	Results RL MDL d Lab 0.327 0.200 0.415 0.200 ND 0.500 ND 0.500 ND 0.200 ND 0.500 ND 0.500 ND 0.500 ND 0.500 ND 0.500 ND 0.500	Results RL MDL Results 3 Lab 0.327 0.200 1.62 0.415 0.200 0.857 ND 0.200 ND ND 0.200 ND ND 0.200 ND ND 0.200 ND 42.1 5.00 ND 13.5 1.00 ND 13.5 1.00 ND 13.5 1.00 ND 2.58 0.500 ND ND 0.500 ND ND 0.200 ND ND 0.200	Results RL MDL Results RL d Lab 0.327 0.200 1.62 0.989 0.415 0.200 0.857 0.413 ND 0.200 ND 1.40 ND 0.200 ND 0.442 ND 0.200 ND 0.777 ND 0.200 ND 0.528 42.1 5.00 ND 0.874 13.5 1.00 ND 0.874 13.5 1.00 ND 1.12 2.58 0.500 ND 1.74 ND 0.500 ND 1.74 ND 0.500 ND 0.626 ND 0.200 ND 0.623 ND 0.200 ND 0.793 ND 0.200 ND 0.809	Results RL MDL Results RL MDL B Lab 0.327 0.200 1.62 0.989 0.415 0.200 0.857 0.413 ND 0.200 ND 1.40 ND 0.200 ND 0.442 ND 0.200 ND 0.777 ND 0.200 ND 0.528 42.1 5.00 ND 0.528 ND 0.200 ND 0.874 ND 0.200 ND 0.874 13.5 1.00 32.1 2.38 ND 0.200 ND 1.12 2.58 0.500 6.34 1.23 ND 0.500 ND	Results RL MDL Results RL MDL Qualifier d Lab 0.327 0.200 1.62 0.989 0.415 0.200 0.857 0.413 ND 0.200 ND 0.442 ND 0.200 ND 0.777 ND 0.200 ND 0.528 ND 0.200 ND 0.528 ND 0.200 ND 0.874 ND 0.200 ND 0.874 ND 0.200 ND 1.12 ND 0.200 ND 1.12 <

Project Number: 190270.2015.0000

Lab Number:

L2006467

Report Date:

02/20/20

SAMPLE RESULTS

Lab ID: L2006467-09

Client ID: IA-16

Sample Location: WEST NYACK, NY

Date Collected: 0

02/12/20 13:30

Date Received: Field Prep:

02/12/20 Not Specified

Sample Depth:		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mans	sfield Lab							
n-Hexane	12.4	0.200		43.7	0.705			1
Benzene	2.38	0.200		7.60	0.639			1
Cyclohexane	9.08	0.200		31.3	0.688			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
,4-Dioxane	ND	0.200		ND	0.721			1
2,2,4-Trimethylpentane	0.829	0.200		3.87	0.934			1
Heptane	2.44	0.200		10.0	0.820			1
sis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
I-Methyl-2-pentanone	0.976	0.500		4.00	2.05			1
rans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
,1,2-Trichloroethane	ND	0.200		ND	1.09			1
oluene	12.5	0.200		47.1	0.754			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
,2-Dibromoethane	ND	0.200		ND	1.54			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	14.5	0.200		63.0	0.869			1
o/m-Xylene	51.5	0.400		224	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
-Xylene	13.2	0.200		57.3	0.869			1
-Ethyltoluene	0.279	0.200		1.37	0.983			1
,3,5-Trimethylbenzene	0.342	0.200		1.68	0.983			1
1,2,4-Trimethylbenzene	1.07	0.200		5.26	0.983			1

Project Number: 190270.2015.0000

Lab Number:

L2006467

Report Date:

02/20/20

SAMPLE RESULTS

Lab ID: L2006467-09

Client ID: IA-16

Sample Location: WEST NYACK, NY

Date Collected: 02

02/12/20 13:30 02/12/20

Date Received: Field Prep:

Not Specified

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfie	ld Lab							
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	96		60-140
Bromochloromethane	94		60-140
chlorobenzene-d5	97		60-140

Project Number: 190270.2015.0000

Lab Number:

L2006467

Report Date: 02/20/20

SAMPLE RESULTS

Lab ID: L2006467-09

Client ID: IA-16

Sample Location: WEST NYACK, NY

Date Collected: 02/12/20 13:30 Date Received: 02/12/20

Field Prep:

Not Specified

Sample Depth:

Matrix: Air

Analytical Method: 48,TO-15-SIM Analytical Date: 02/19/20 21:20

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM - Ma	ansfield Lab							
Vinyl chloride	ND	0.020		ND	0.051			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Carbon tetrachloride	0.058	0.020		0.365	0.126			1
Trichloroethene	0.092	0.020		0.494	0.107			1
Tetrachloroethene	0.028	0.020		0.190	0.136			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	96		60-140
bromochloromethane	96		60-140
chlorobenzene-d5	98		60-140

Project Number: 190270.2015.0000

Lab Number:

Report Date: 02/20/20

L2006467

SAMPLE RESULTS

Lab ID: L2006467-10

Client ID: AA-3

Sample Location: WEST NYACK, NY

Date Collected: 02/12/20 15:40
Date Received: 02/12/20
Field Prep: Not Specified

Sample Depth:

Matrix: Air

Analytical Method: 48,TO-15 Analytical Date: 02/19/20 17:22

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfiel	d Lab							
Dichlorodifluoromethane	0.397	0.200		1.96	0.989			1
Chloromethane	0.466	0.200		0.962	0.413			1
Freon-114	ND	0.200		ND	1.40			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	ND	5.00		ND	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	1.21	1.00		2.87	2.38			1
Trichlorofluoromethane	ND	0.200		ND	1.12			1
Isopropanol	ND	0.500		ND	1.23			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1

Project Number: 190270.2015.0000

Lab Number:

L2006467

Report Date:

02/20/20

SAMPLE RESULTS

Lab ID: L2006467-10

Client ID: AA-3

Sample Location: WEST NYACK, NY

Date Collected: 02/12/20 15:40

Date Received: 02/12/20

Field Prep: Not Specified

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield	l Lab							
n-Hexane	ND	0.200		ND	0.705			1
Benzene	ND	0.200		ND	0.639			1
Cyclohexane	ND	0.200		ND	0.688			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1-Methyl-2-pentanone	ND	0.500		ND	2.05			1
rans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Foluene	0.567	0.200		2.14	0.754			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
o/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	ND	0.200		ND	0.869			1
1-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1
,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1

Project Number: 190270.2015.0000

Lab Number:

L2006467

Report Date:

02/20/20

SAMPLE RESULTS

Lab ID: L2006467-10

Client ID: AA-3

Sample Location: WEST NYACK, NY

Date Collected: 02/12/20 15:40

Date Received: 02/12/20

Field Prep: Not Specified

Campic Dopuii.		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mans	field Lab							
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	94		60-140
Bromochloromethane	94		60-140
chlorobenzene-d5	91		60-140

Project Number: 190270.2015.0000

Lab Number:

L2006467

Report Date:

02/20/20

SAMPLE RESULTS

Lab ID: L2006467-10

Client ID: AA-3

Sample Location: WEST NYACK, NY

Date Collected: 02/12/20 15:40

Date Received: 02/12/20 Field Prep: Not Specified

Sample Depth:

Matrix: Air

Analytical Method: 48,TO-15-SIM Analytical Date: 02/19/20 17:22

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM	1 - Mansfield Lab							
Vinyl chloride	ND	0.020		ND	0.051			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Carbon tetrachloride	0.064	0.020		0.403	0.126			1
Trichloroethene	ND	0.020		ND	0.107			1
Tetrachloroethene	0.026	0.020		0.176	0.136			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	95		60-140
bromochloromethane	95		60-140
chlorobenzene-d5	92		60-140

02/12/20 15:30

Not Specified

02/12/20

Project Name: FORMER CHROMALLOY

Project Number: 190270.2015.0000

Lab Number: L2006467

Report Date: 02/20/20

Date Collected:

Date Received:

Field Prep:

SAMPLE RESULTS

Lab ID: L2006467-11 D

Client ID: SS-17

Sample Location: WEST NYACK, NY

Sample Depth:

Matrix: Soil_Vapor Anaytical Method: 48,TO-15 Analytical Date: 02/20/20 06:21

		Vdqq			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mai	nsfield Lab							
Dichlorodifluoromethane	ND	0.556		ND	2.75			2.778
Chloromethane	ND	0.556		ND	1.15			2.778
Freon-114	ND	0.556		ND	3.89			2.778
Vinyl chloride	ND	0.556		ND	1.42			2.778
1,3-Butadiene	ND	0.556		ND	1.23			2.778
Bromomethane	ND	0.556		ND	2.16			2.778
Chloroethane	ND	0.556		ND	1.47			2.778
Ethanol	30.1	13.9		56.7	26.2			2.778
Vinyl bromide	ND	0.556		ND	2.43			2.778
Acetone	35.1	2.78		83.4	6.60			2.778
Trichlorofluoromethane	ND	0.556		ND	3.12			2.778
Isopropanol	4.11	1.39		10.1	3.42			2.778
1,1-Dichloroethene	ND	0.556		ND	2.20			2.778
Methylene chloride	ND	1.39		ND	4.83			2.778
3-Chloropropene	ND	0.556		ND	1.74			2.778
Carbon disulfide	ND	0.556		ND	1.73			2.778
Freon-113	ND	0.556		ND	4.26			2.778
trans-1,2-Dichloroethene	ND	0.556		ND	2.20			2.778
1,1-Dichloroethane	ND	0.556		ND	2.25			2.778
Methyl tert butyl ether	ND	0.556		ND	2.00			2.778
2-Butanone	6.10	1.39		18.0	4.10			2.778
cis-1,2-Dichloroethene	1.26	0.556		5.00	2.20			2.778
Ethyl Acetate	ND	1.39		ND	5.01			2.778

Project Number: 190270.2015.0000

Lab Number:

L2006467

Report Date:

02/20/20

SAMPLE RESULTS

Lab ID: L2006467-11 D

Client ID: SS-17

Sample Location: WEST NYACK, NY

Date Collected: 02/1

02/12/20 15:30

Date Received: 02/12/20 Field Prep: Not Specified

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mans	sfield Lab							
Chloroform	3.29	0.556		16.1	2.72			2.778
Tetrahydrofuran	5.40	1.39		15.9	4.10			2.778
1,2-Dichloroethane	ND	0.556		ND	2.25			2.778
n-Hexane	ND	0.556		ND	1.96			2.778
1,1,1-Trichloroethane	ND	0.556		ND	3.03			2.778
Benzene	1.36	0.556		4.34	1.78			2.778
Carbon tetrachloride	ND	0.556		ND	3.50			2.778
Cyclohexane	0.650	0.556		2.24	1.91			2.778
1,2-Dichloropropane	ND	0.556		ND	2.57			2.778
Bromodichloromethane	ND	0.556		ND	3.72			2.778
1,4-Dioxane	ND	0.556		ND	2.00			2.778
Trichloroethene	188	0.556		1010	2.99			2.778
2,2,4-Trimethylpentane	2.29	0.556		10.7	2.60			2.778
Heptane	ND	0.556		ND	2.28			2.778
cis-1,3-Dichloropropene	ND	0.556		ND	2.52			2.778
4-Methyl-2-pentanone	ND	1.39		ND	5.70			2.778
trans-1,3-Dichloropropene	ND	0.556		ND	2.52			2.778
1,1,2-Trichloroethane	ND	0.556		ND	3.03			2.778
Toluene	5.05	0.556		19.0	2.10			2.778
2-Hexanone	ND	0.556		ND	2.28			2.778
Dibromochloromethane	ND	0.556		ND	4.74			2.778
1,2-Dibromoethane	ND	0.556		ND	4.27			2.778
Tetrachloroethene	1.99	0.556		13.5	3.77			2.778
Chlorobenzene	ND	0.556		ND	2.56			2.778
Ethylbenzene	2.29	0.556		9.95	2.42			2.778
o/m-Xylene	4.56	1.11		19.8	4.82			2.778

Project Number: 190270.2015.0000

Lab Number:

L2006467

Report Date:

02/20/20

SAMPLE RESULTS

Lab ID: L2006467-11 D

Client ID: SS-17

Sample Location: WEST NYACK, NY

Date Collected: 02

02/12/20 15:30

Date Received: Field Prep:

02/12/20 Not Specified

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansf	ield Lab							
Bromoform	ND	0.556		ND	5.75			2.778
Styrene	ND	0.556		ND	2.37			2.778
1,1,2,2-Tetrachloroethane	ND	0.556		ND	3.82			2.778
o-Xylene	1.29	0.556		5.60	2.42			2.778
4-Ethyltoluene	ND	0.556		ND	2.73			2.778
1,3,5-Trimethylbenzene	ND	0.556		ND	2.73			2.778
1,2,4-Trimethylbenzene	ND	0.556		ND	2.73			2.778
Benzyl chloride	ND	0.556		ND	2.88			2.778
1,3-Dichlorobenzene	ND	0.556		ND	3.34			2.778
1,4-Dichlorobenzene	ND	0.556		ND	3.34			2.778
1,2-Dichlorobenzene	ND	0.556		ND	3.34			2.778
1,2,4-Trichlorobenzene	ND	0.556		ND	4.13			2.778
Hexachlorobutadiene	ND	0.556		ND	5.93			2.778

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	98		60-140
Bromochloromethane	96		60-140
chlorobenzene-d5	94		60-140

Project Number: 190270.2015.0000

Lab Number:

L2006467

Report Date:

02/20/20

SAMPLE RESULTS

Lab ID:

L2006467-11 D

Date Collected:

02/12/20 15:30

Client ID:

SS-17

Date Received:

02/12/20

Sample Location:

WEST NYACK, NY

Field Prep:

Not Specified

Sample Depth:

Matrix:

Soil_Vapor

Anaytical Method: Analytical Date: 48,TO-15-SIM 02/20/20 06:21

Analyst:

TS

	ppbV			ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM - M	lansfield Lab							
Tertiary butyl Alcohol	1.94	1.39		5.88	4.21			2.778

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	99		60-140
bromochloromethane	97		60-140
chlorobenzene-d5	96		60-140

Project Number: 190270.2015.0000

Lab Number:

L2006467

Report Date: 02/20/20

SAMPLE RESULTS

Lab ID: L2006467-12

Client ID: IA-17

Sample Location: WEST NYACK, NY

Date Collected: 02/12/20 15:31 Date Received: 02/12/20

Field Prep:

Not Specified

Sample Depth:

Matrix: Air

Analytical Method: 48,TO-15 Analytical Date: 02/19/20 22:00

	ppbV			ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mans	sfield Lab							
Dichlorodifluoromethane	0.332	0.200		1.64	0.989			1
Chloromethane	0.419	0.200		0.865	0.413			1
Freon-114	ND	0.200		ND	1.40			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	35.5	5.00		66.9	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	12.8	1.00		30.4	2.38			1
Trichlorofluoromethane	ND	0.200		ND	1.12			1
Isopropanol	2.24	0.500		5.51	1.23			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	0.688	0.500		2.03	1.47			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1

Project Number: 190270.2015.0000

Lab Number:

L2006467

Report Date:

02/20/20

SAMPLE RESULTS

Lab ID: L2006467-12

Client ID: IA-17

Sample Location: WEST NYACK, NY

Date Collected: 02

02/12/20 15:31

Date Received: Field Prep:

02/12/20 Not Specified

Sample Depth:		ppbV			ug/m3			Dilution Factor
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	
Volatile Organics in Air - Mans	sfield Lab							
n-Hexane	14.8	0.200		52.2	0.705			1
Benzene	2.78	0.200		8.88	0.639			1
Cyclohexane	10.7	0.200		36.8	0.688			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
2,2,4-Trimethylpentane	0.911	0.200		4.26	0.934			1
Heptane	2.67	0.200		10.9	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	1.02	0.500		4.18	2.05			1
rans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	12.6	0.200		47.5	0.754			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
,2-Dibromoethane	ND	0.200		ND	1.54			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	16.2	0.200		70.4	0.869			1
o/m-Xylene	57.0	0.400		248	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	14.7	0.200		63.9	0.869			1
I-Ethyltoluene	0.301	0.200		1.48	0.983			1
,3,5-Trimethylbenzene	0.376	0.200		1.85	0.983			1
,2,4-Trimethylbenzene	1.18	0.200		5.80	0.983			1

Project Number: 190270.2015.0000 Lab Number:

L2006467

Report Date:

02/20/20

SAMPLE RESULTS

Lab ID: L2006467-12

Client ID: IA-17

Sample Location: WEST NYACK, NY Date Collected: Date Received: 02/12/20

02/12/20 15:31

Field Prep:

Not Specified

Sample Depth:

ppbV ug/m3 Dilution **Factor** RL Qualifier Results MDL **Parameter** RL Results MDL Volatile Organics in Air - Mansfield Lab Benzyl chloride ND 0.200 ND1 1.04 1,3-Dichlorobenzene ND 0.200 --ND 1.20 --1 1,4-Dichlorobenzene ND 0.200 ND 1.20 1 1,2-Dichlorobenzene ND 0.200 ND 1.20 1 ----1,2,4-Trichlorobenzene 1 ND 0.200 ND 1.48 ----Hexachlorobutadiene ND 0.200 ND 1 2.13 ----

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	93		60-140
Bromochloromethane	93		60-140
chlorobenzene-d5	95		60-140

L2006467

Project Name: FORMER CHROMALLOY

Project Number: 190270.2015.0000

Lab Number:

Report Date: 02/20/20

SAMPLE RESULTS

Lab ID: L2006467-12

Client ID: IA-17

Sample Location: WEST NYACK, NY

Date Collected: 02/12/20 15:31
Date Received: 02/12/20
Field Prep: Not Specified

YACK, NY Field Prep:

Sample Depth:

Matrix: Air

Analytical Method: 48,TO-15-SIM Analytical Date: 02/19/20 22:00

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM -	Mansfield Lab							
Vinyl chloride	ND	0.020		ND	0.051			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Carbon tetrachloride	0.058	0.020		0.365	0.126			1
Trichloroethene	0.083	0.020		0.446	0.107			1
Tetrachloroethene	0.033	0.020		0.224	0.136			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	94		60-140
bromochloromethane	94		60-140
chlorobenzene-d5	96		60-140

Project Number: 190270.2015.0000 Lab Number: L2006467

Report Date: 02/20/20

SAMPLE RESULTS

Lab ID: L2006467-13

Client ID: SS-18

Sample Location: WEST NYACK, NY Date Collected: 02/12/20 15:00

Date Received: 02/12/20 Field Prep: Not Specified

Sample Depth:

Matrix: Soil_Vapor Anaytical Method: 48,TO-15 Analytical Date: 02/20/20 07:00

Parameter Results RL MDL Results RL MDL Qualification Volatile Organics in Air - Mansfield Lab Dichlorodifluoromethane 0.402 0.200 1.99 0.989 1.00 ND 0.989 ND 0.989 ND 0.989 ND 0.989 ND 0.989 ND 0.4413 ND 0.413 ND 0.413 ND 0.413 ND 0.511 ND 0.511 ND 0.511 1.33 ND 0.442 ND 0.528 <th>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</th>	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Dichlorodifluoromethane 0.402 0.200 1.99 0.989 Chloromethane ND 0.200 ND 0.413 Freon-114 ND 0.200 ND 1.40 Vinyl chloride ND 0.200 ND 0.511 1,3-Butadiene ND 0.200 ND 0.442 Bromomethane ND 0.200 ND 0.777 Chloroethane ND 0.200 ND 0.528 Ethanol 30.7 5.00 57.8 9.42 Vinyl bromide ND 0.200 ND 0.874 Acetone 2.54 1.00 6.03 2.38 Trichlorofluoromethane ND 0.200 ND 1.12 1,1-Dichloroethene ND 0.200 <td< th=""><th>1 1 1 1</th></td<>	1 1 1 1
Chloromethane ND 0.200 ND 0.413 Freon-114 ND 0.200 ND 1.40 Vinyl chloride ND 0.200 ND 0.511 1,3-Butadiene ND 0.200 ND 0.442 Bromomethane ND 0.200 ND 0.777 Chloroethane ND 0.200 ND 0.528 Ethanol 30.7 5.00 57.8 9.42 Vinyl bromide ND 0.200 ND 0.874 Acetone 2.54 1.00 6.03 2.38 Trichlorofluoromethane ND 0.200 ND 1.12 Isopropanol 1.66 0.500 ND 0.793 Methylene chloride ND 0.500	1 1 1 1
Freon-114 ND 0.200 ND 1.40 Vinyl chloride ND 0.200 ND 0.511 1,3-Butadiene ND 0.200 ND 0.442 Bromomethane ND 0.200 ND 0.777 Chloroethane ND 0.200 ND 0.528 Ethanol 30.7 5.00 57.8 9.42 Vinyl bromide ND 0.200 ND 0.874 Acetone 2.54 1.00 6.03 2.38 Trichlorofluoromethane ND 0.200 ND 1.12 Isopropanol 1.66 0.500 ND 0.793 Methylene chloride ND 0.500 ND 1.74	1 1 1
Vinyl chloride ND 0.200 ND 0.511 1,3-Butadiene ND 0.200 ND 0.442 Bromomethane ND 0.200 ND 0.777 Chloroethane ND 0.200 ND 0.528 Ethanol 30.7 5.00 57.8 9.42 Vinyl bromide ND 0.200 ND 0.874 Acetone 2.54 1.00 6.03 2.38 Trichlorofluoromethane ND 0.200 ND 1.12 Isopropanol 1.66 0.500 ND 0.793 Methylene chloride ND 0.500 ND 1.74	1 1 1
1,3-Butadiene ND 0.200 ND 0.442 Bromomethane ND 0.200 ND 0.777 Chloroethane ND 0.200 ND 0.528 Ethanol 30.7 5.00 57.8 9.42 Vinyl bromide ND 0.200 ND 0.874 Acetone 2.54 1.00 6.03 2.38 Trichlorofluoromethane ND 0.200 ND 1.12 Isopropanol 1.66 0.500 4.08 1.23 1,1-Dichloroethene ND 0.200 ND 0.793 Methylene chloride ND 0.500 ND 1.74	1
Bromomethane ND 0.200 ND 0.777 Chloroethane ND 0.200 ND 0.528 Ethanol 30.7 5.00 57.8 9.42 Vinyl bromide ND 0.200 ND 0.874 Acetone 2.54 1.00 6.03 2.38 Trichlorofluoromethane ND 0.200 ND 1.12 Isopropanol 1.66 0.500 4.08 1.23 1,1-Dichloroethene ND 0.200 ND 0.793 Methylene chloride ND 0.500 ND 1.74	1
Chloroethane ND 0.200 ND 0.528 Ethanol 30.7 5.00 57.8 9.42 Vinyl bromide ND 0.200 ND 0.874 Acetone 2.54 1.00 6.03 2.38 Trichlorofluoromethane ND 0.200 ND 1.12 Isopropanol 1.66 0.500 4.08 1.23 1,1-Dichloroethene ND 0.200 ND 0.793 Methylene chloride ND 0.500 ND 1.74	
Ethanol 30.7 5.00 57.8 9.42 Vinyl bromide ND 0.200 ND 0.874 Acetone 2.54 1.00 6.03 2.38 Trichlorofluoromethane ND 0.200 ND 1.12 Isopropanol 1.66 0.500 4.08 1.23 1,1-Dichloroethene ND 0.200 ND 0.793 Methylene chloride ND 0.500 ND 1.74	1
Vinyl bromide ND 0.200 ND 0.874 Acetone 2.54 1.00 6.03 2.38 Trichlorofluoromethane ND 0.200 ND 1.12 Isopropanol 1.66 0.500 4.08 1.23 1,1-Dichloroethene ND 0.200 ND 0.793 Methylene chloride ND 0.500 ND 1.74	
Acetone 2.54 1.00 6.03 2.38 Trichlorofluoromethane ND 0.200 ND 1.12 Isopropanol 1.66 0.500 4.08 1.23 1,1-Dichloroethene ND 0.200 ND 0.793 Methylene chloride ND 0.500 ND 1.74	1
Trichlorofluoromethane ND 0.200 ND 1.12 Isopropanol 1.66 0.500 4.08 1.23 1,1-Dichloroethene ND 0.200 ND 0.793 Methylene chloride ND 0.500 ND 1.74	1
Sopropanol 1.66 0.500 4.08 1.23 1,1-Dichloroethene ND 0.200 ND 0.793 Methylene chloride ND 0.500 ND 1.74	1
1,1-Dichloroethene ND 0.200 ND 0.793 Methylene chloride ND 0.500 ND 1.74	1
Methylene chloride ND 0.500 ND 1.74	1
	1
	1
3-Chloropropene ND 0.200 ND 0.626	1
Carbon disulfide ND 0.200 ND 0.623	1
Freon-113 ND 0.200 ND 1.53	1
trans-1,2-Dichloroethene ND 0.200 ND 0.793	1
1,1-Dichloroethane ND 0.200 ND 0.809	1
Methyl tert butyl ether ND 0.200 ND 0.721	1
2-Butanone 1.20 0.500 3.54 1.47	1
cis-1,2-Dichloroethene ND 0.200 ND 0.793	1
Ethyl Acetate ND 0.500 ND 1.80	1

Project Number: 190270.2015.0000

Lab Number:

L2006467

Report Date:

02/20/20

SAMPLE RESULTS

Lab ID: L2006467-13

Client ID: SS-18

Sample Location: WEST NYACK, NY

Date Collected:

02/12/20 15:00

Date Received: Field Prep:

02/12/20 Not Specified

Results							Dilution
	RL	MDL	Results	RL	MDL	Qualifier	Factor
eld Lab							
0.290	0.200		1.42	0.977			1
1.66	0.500		4.90	1.47			1
ND	0.200		ND	0.809			1
0.309	0.200		1.09	0.705			1
0.242	0.200		1.32	1.09			1
ND	0.200		ND	0.639			1
ND	0.200		ND	1.26			1
0.615	0.200		2.12	0.688			1
ND	0.200		ND	0.924			1
ND	0.200		ND	1.34			1
ND	0.200		ND	0.721			1
79.4	0.200		427	1.07			1
ND	0.200		ND	0.934			1
ND	0.200		ND	0.820			1
ND	0.200		ND	0.908			1
ND	0.500		ND	2.05			1
ND	0.200		ND	0.908			1
ND	0.200		ND	1.09			1
0.327	0.200		1.23	0.754			1
ND	0.200		ND	0.820			1
ND	0.200		ND	1.70			1
ND	0.200		ND	1.54			1
21.1	0.200		143	1.36			1
ND	0.200		ND	0.921			1
ND	0.200		ND	0.869			1
0.555	0.400		2.41	1.74			1
	0.290 1.66 ND 0.309 0.242 ND	0.290 0.200 1.66 0.500 ND 0.200 0.309 0.200 0.242 0.200 ND 0.200	0.290 0.200 1.66 0.500 ND 0.200 0.309 0.200 0.242 0.200 ND 0.500 ND 0.200 ND 0.200	0.290 0.200 1.42 1.66 0.500 4.90 ND 0.200 ND 0.309 0.200 1.09 0.242 0.200 1.32 ND 0.200 ND ND 0.20	0.290 0.200 1.42 0.977 1.66 0.500 4.90 1.47 ND 0.200 ND 0.809 0.309 0.200 1.09 0.705 0.242 0.200 1.32 1.09 ND 0.200 ND 0.639 ND 0.200 ND 0.639 ND 0.200 ND 1.26 0.615 0.200 ND 1.26 0.615 0.200 ND 0.924 ND 0.200 ND 0.924 ND 0.200 ND 0.721 79.4 0.200 ND 0.721 79.4 0.200 ND 0.934 ND 0.200 ND 0.934 ND 0.200 ND 0.908 ND 0.500 ND 0.908 ND 0.500	0.290 0.200 1.42 0.977 1.66 0.500 4.90 1.47 ND 0.200 ND 0.809 0.309 0.200 1.09 0.705 0.242 0.200 1.32 1.09 ND 0.200 ND 0.639 ND 0.200 ND 1.26 ND 0.200 ND 1.26 ND 0.200 ND 0.688 ND 0.200 ND 0.924 ND 0.200 ND 0.721 ND 0.200 ND 0.721 ND 0.200 ND 0.934 ND 0.200 ND 0.820 ND 0.200 ND 0.820 ND <td>0.290 0.200 1.42 0.977 1.66 0.500 4.90 1.47 ND 0.200 ND 0.809 0.309 0.200 1.09 0.705 0.242 0.200 1.32 1.09 ND 0.200 ND 0.639 ND 0.200 ND 1.26 0.615 0.200 ND 1.26 ND 0.200 ND 0.924 ND 0.200 ND 0.924 ND 0.200 ND 0.924 ND 0.200 ND 0.721 ND 0.200 ND 0.721 ND 0.200 ND 0.934 ND 0.200 ND 0.820 ND</td>	0.290 0.200 1.42 0.977 1.66 0.500 4.90 1.47 ND 0.200 ND 0.809 0.309 0.200 1.09 0.705 0.242 0.200 1.32 1.09 ND 0.200 ND 0.639 ND 0.200 ND 1.26 0.615 0.200 ND 1.26 ND 0.200 ND 0.924 ND 0.200 ND 0.924 ND 0.200 ND 0.924 ND 0.200 ND 0.721 ND 0.200 ND 0.721 ND 0.200 ND 0.934 ND 0.200 ND 0.820 ND

Project Number: 190270.2015.0000

Lab Number:

L2006467

Report Date:

02/20/20

SAMPLE RESULTS

Lab ID: L2006467-13

Client ID: SS-18

Sample Location: WEST NYACK, NY

Date Collected: 02

02/12/20 15:00

Date Received: Field Prep:

02/12/20 Not Specified

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mans	sfield Lab							
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	ND	0.200		ND	0.869			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	97		60-140
Bromochloromethane	94		60-140
chlorobenzene-d5	93		60-140

Project Number: 190270.2015.0000 Lab Number:

L2006467

Report Date:

02/20/20

SAMPLE RESULTS

Lab ID: L2006467-13

SS-18

Client ID: Sample Location:

WEST NYACK, NY

Date Collected:

02/12/20 15:00

Date Received:

02/12/20

Field Prep:

Not Specified

Sample Depth:

Matrix: Anaytical Method: Soil_Vapor 48,TO-15-SIM

Analytical Date:

02/20/20 07:00

	ppbV		ug/m3				Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM - Man	sfield Lab							
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	97		60-140
bromochloromethane	96		60-140
chlorobenzene-d5	95		60-140

02/12/20 15:01

Project Name: FORMER CHROMALLOY

Project Number: 190270.2015.0000

Lab Number: L2006467

Report Date: 02/20/20

SAMPLE RESULTS

Lab ID: L2006467-14

Client ID: IA-18

Sample Location: WEST NYACK, NY

Date Received: 02/12/20 Field Prep: Not Specified

Date Collected:

Sample Depth:

Matrix: Air

Analytical Method: 48,TO-15 Analytical Date: 02/19/20 22:39

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mar	nsfield Lab							
Dichlorodifluoromethane	0.338	0.200		1.67	0.989			1
Chloromethane	0.424	0.200		0.876	0.413			1
Freon-114	ND	0.200		ND	1.40			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	42.2	5.00		79.5	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	16.2	1.00		38.5	2.38			1
Trichlorofluoromethane	ND	0.200		ND	1.12			1
Isopropanol	3.68	0.500		9.05	1.23			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	0.822	0.500		2.42	1.47			1
Ethyl Acetate	0.547	0.500		1.97	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1

Project Number: 190270.2015.0000

Lab Number:

L2006467

Report Date: 02/20/20

SAMPLE RESULTS

Lab ID: L2006467-14

Client ID: IA-18

Sample Location: WEST NYACK, NY

Date Collected: 02/12/20 15:01

Date Received: 02/12/20 Field Prep: Not Specified

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfi	eld Lab							
n-Hexane	97.1	0.200		342	0.705			1
Benzene	4.29	0.200		13.7	0.639			1
Cyclohexane	65.4	0.200		225	0.688			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
2,2,4-Trimethylpentane	1.25	0.200		5.84	0.934			1
Heptane	8.17	0.200		33.5	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	1.25	0.500		5.12	2.05			1
rans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Foluene	19.3	0.200		72.7	0.754			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	35.7	0.200		155	0.869			1
o/m-Xylene	116	0.400		504	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	32.4	0.200		141	0.869			1
4-Ethyltoluene	0.358	0.200		1.76	0.983			1
1,3,5-Trimethylbenzene	0.471	0.200		2.32	0.983			1
1,2,4-Trimethylbenzene	1.51	0.200		7.42	0.983			1

Project Number: 190270.2015.0000

Lab Number:

L2006467

Report Date:

02/20/20

SAMPLE RESULTS

Lab ID: L2006467-14

Client ID: IA-18

Sample Location: WEST NYACK, NY

Date Collected: 02

02/12/20 15:01

Date Received: Field Prep:

02/12/20 Not Specified

Sample Depth:

ppbV ug/m3 Dilution **Factor** RL Qualifier Results MDL **Parameter** RL Results MDL Volatile Organics in Air - Mansfield Lab Benzyl chloride ND 0.200 ND1 1.04 1,3-Dichlorobenzene ND 0.200 --ND 1.20 --1 1,4-Dichlorobenzene ND 0.200 ND 1.20 1 1,2-Dichlorobenzene ND 0.200 ND 1.20 1 ----1,2,4-Trichlorobenzene 1 ND 0.200 ND 1.48 --Hexachlorobutadiene ND 0.200 ND 1 2.13 ----

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	94		60-140
Bromochloromethane	94		60-140
chlorobenzene-d5	97		60-140

Project Number: 190270.2015.0000

Lab Number:

L2006467

Report Date:

02/20/20

SAMPLE RESULTS

Lab ID: L2006467-14

IA-18

Client ID: I Sample Location:

WEST NYACK, NY

Date Collected:

02/12/20 15:01

Date Received: Field Prep:

02/12/20 Not Specified

Sample Depth:

Matrix:

Air

Anaytical Method: Analytical Date: 48,TO-15-SIM 02/19/20 22:39

Analyst:

TS

		ppbV			ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM - N	Mansfield Lab							
Vinyl chloride	ND	0.020		ND	0.051			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Carbon tetrachloride	0.054	0.020		0.340	0.126			1
Trichloroethene	0.171	0.020		0.919	0.107			1
Tetrachloroethene	0.033	0.020		0.224	0.136			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	94		60-140
bromochloromethane	95		60-140
chlorobenzene-d5	99		60-140

Project Name: FORMER CHROMALLOY Lab Number: L2006467

Project Number: 190270.2015.0000 **Report Date:** 02/20/20

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 02/19/20 15:03

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfi	ield Lab for samp	ole(s): 01-	-14 Batch	: WG13423	325-4			
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.200		ND	1.40			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	ND	5.00		ND	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	ND	1.00		ND	2.38			1
Trichlorofluoromethane	ND	0.200		ND	1.12			1
Isopropanol	ND	0.500		ND	1.23			1
1,1-Dichloroethene	ND	0.200		ND	0.793			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1

Project Name: FORMER CHROMALLOY Lab Number: L2006467

Project Number: 190270.2015.0000 **Report Date:** 02/20/20

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 02/19/20 15:03

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansf	field Lab for samp	ole(s): 01-	·14 Batch	: WG13423	25-4			
Tetrahydrofuran	ND	0.500		ND	1.47			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
Benzene	ND	0.200		ND	0.639			1
Carbon tetrachloride	ND	0.200		ND	1.26			1
Cyclohexane	ND	0.200		ND	0.688			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
Trichloroethene	ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	ND	0.200		ND	0.754			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Tetrachloroethene	ND	0.200		ND	1.36			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
p/m-Xylene	ND	0.400		ND	1.74			1

Project Name: FORMER CHROMALLOY Lab Number: L2006467

Project Number: 190270.2015.0000 **Report Date:** 02/20/20

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 02/19/20 15:03

		ppbV			ug/m3	<u>.</u>	Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfi	eld Lab for samp	ole(s): 01-	-14 Batch	n: WG13423	325-4			
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	ND	0.200		ND	0.869			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Project Name: FORMER CHROMALLOY Lab Number: L2006467

Project Number: 190270.2015.0000 **Report Date:** 02/20/20

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15-SIM Analytical Date: 02/19/20 15:42

		ppbV			ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM - Ma	ansfield Lab f	or sample	(s): 01-1	4 Batch: W	G134232	7-4		
Vinyl chloride	ND	0.020		ND	0.051			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Carbon tetrachloride	ND	0.020		ND	0.126			1
Trichloroethene	ND	0.020		ND	0.107			1
Tetrachloroethene	ND	0.020		ND	0.136			1

Project Name: FORMER CHROMALLOY

Project Number: 190270.2015.0000

Lab Number: L2006467

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics in Air - Mansfield Lab	Associated sample(s):	01-14	Batch: WG134232	25-3				
Dichlorodifluoromethane	78		-		70-130	-		
Chloromethane	87		-		70-130	-		
Freon-114	84		-		70-130	-		
Vinyl chloride	77		-		70-130	-		
1,3-Butadiene	84		-		70-130	-		
Bromomethane	80		-		70-130	-		
Chloroethane	72		-		70-130	-		
Ethanol	76		-		40-160	-		
Vinyl bromide	78		-		70-130	-		
Acetone	70		-		40-160	-		
Trichlorofluoromethane	72		-		70-130	-		
Isopropanol	76		-		40-160	-		
1,1-Dichloroethene	76		-		70-130	-		
Tertiary butyl Alcohol	67	Q	-		70-130	-		
Methylene chloride	93		-		70-130	-		
3-Chloropropene	89		-		70-130	-		
Carbon disulfide	84		-		70-130	-		
Freon-113	87		-		70-130	-		
trans-1,2-Dichloroethene	86		-		70-130	-		
1,1-Dichloroethane	90		-		70-130	-		
Methyl tert butyl ether	89		-		70-130	-		
2-Butanone	105		-		70-130	-		
cis-1,2-Dichloroethene	89		-		70-130	-		

Project Name: FORMER CHROMALLOY

Project Number: 190270.2015.0000

Lab Number: L2006467

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics in Air - Mansfield Lab	Associated sample(s):	01-14	Batch: WG134232	25-3				
Ethyl Acetate	89		-		70-130	-		
Chloroform	93		-		70-130	-		
Tetrahydrofuran	100		-		70-130	-		
1,2-Dichloroethane	84		-		70-130	-		
n-Hexane	86		-		70-130	-		
1,1,1-Trichloroethane	94		-		70-130	-		
Benzene	95		-		70-130	-		
Carbon tetrachloride	102		-		70-130	-		
Cyclohexane	87		-		70-130	-		
1,2-Dichloropropane	95		-		70-130	-		
Bromodichloromethane	97		-		70-130	-		
1,4-Dioxane	95		-		70-130	-		
Trichloroethene	98		-		70-130	-		
2,2,4-Trimethylpentane	90		-		70-130	-		
Heptane	107		-		70-130	-		
cis-1,3-Dichloropropene	104		-		70-130	-		
4-Methyl-2-pentanone	112		-		70-130	-		
trans-1,3-Dichloropropene	88		-		70-130	-		
1,1,2-Trichloroethane	101		-		70-130	-		
Toluene	111		-		70-130	-		
2-Hexanone	129		-		70-130	-		
Dibromochloromethane	126		-		70-130	-		
1,2-Dibromoethane	123		-		70-130	-		

Project Name: FORMER CHROMALLOY

Project Number: 190270.2015.0000

Lab Number: L2006467

Parameter	LCS %Recovery	Qual		LCSD Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics in Air - Mansfield Lab	Associated sample(s):	01-14	Batch:	WG13423	25-3				
Tetrachloroethene	117			-		70-130	-		
Chlorobenzene	123			-		70-130	-		
Ethylbenzene	118			-		70-130	-		
p/m-Xylene	116			-		70-130	-		
Bromoform	124			-		70-130	-		
Styrene	124			-		70-130	-		
1,1,2,2-Tetrachloroethane	125			-		70-130	-		
o-Xylene	121			-		70-130	-		
4-Ethyltoluene	125			-		70-130	-		
1,3,5-Trimethylbenzene	126			-		70-130	-		
1,2,4-Trimethylbenzene	128			-		70-130	-		
Benzyl chloride	110			-		70-130	-		
1,3-Dichlorobenzene	116			-		70-130	-		
1,4-Dichlorobenzene	111			-		70-130	-		
1,2-Dichlorobenzene	124			-		70-130	-		
1,2,4-Trichlorobenzene	81			-		70-130	-		
Hexachlorobutadiene	124			-		70-130	-		

Project Name: FORMER CHROMALLOY

Project Number: 190270.2015.0000

Lab Number: L2006467

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics in Air by SIM - Mansfield La	b Associated s	ample(s):	01-14 Batch: WG	31342327-3	3				
Vinyl chloride	79		-		70-130	-		25	
1,1-Dichloroethene	77		-		70-130	-		25	
Tertiary butyl Alcohol ¹	70		-		70-130	-		25	
cis-1,2-Dichloroethene	92		-		70-130	-		25	
1,1,1-Trichloroethane	94		-		70-130	-		25	
Carbon tetrachloride	99		-		70-130	-		25	
Trichloroethene	96		-		70-130	-		25	
Tetrachloroethene	113		-		70-130	-		25	

Lab Duplicate Analysis Batch Quality Control

Project Name: FORMER CHROMALLOY

Project Number: 190270.2015.0000

Lab Number:

L2006467 02/20/20

Report Date:

Parameter	Native Sample	Duplicate Sample	Units	RPD	RPD Qual Limits	
Volatile Organics in Air - Mansfield Lab	•	QC Batch ID: WG1342325-5			-02 Client ID: IA-13	
Dichlorodifluoromethane	0.385	0.359	ppbV	7	25	
Chloromethane	0.509	0.493	ppbV	3	25	
Freon-114	ND	ND	ppbV	NC	25	
1,3-Butadiene	ND	ND	ppbV	NC	25	
Bromomethane	ND	ND	ppbV	NC	25	
Chloroethane	ND	ND	ppbV	NC	25	
Ethanol	54.0	62.2	ppbV	14	25	
Vinyl bromide	ND	ND	ppbV	NC	25	
Acetone	16.9	16.3	ppbV	4	25	
Trichlorofluoromethane	ND	ND	ppbV	NC	25	
Isopropanol	4.06	4.08	ppbV	0	25	
Methylene chloride	ND	ND	ppbV	NC	25	
3-Chloropropene	ND	ND	ppbV	NC	25	
Carbon disulfide	ND	ND	ppbV	NC	25	
Freon-113	ND	ND	ppbV	NC	25	
trans-1,2-Dichloroethene	ND	ND	ppbV	NC	25	
1,1-Dichloroethane	ND	ND	ppbV	NC	25	
Methyl tert butyl ether	ND	ND	ppbV	NC	25	
2-Butanone	2.16	2.16	ppbV	0	25	
Ethyl Acetate	ND	ND	ppbV	NC	25	
Chloroform	0.503	0.521	ppbV	4	25	

Lab Duplicate Analysis Batch Quality Control

Project Name: FORMER CHROMALLOY

Project Number: 190270.2015.0000

Lab Number: L2006467

Report Date: 02/20/20

RPD Native Sample Duplicate Sample Units RPD Limits Qual **Parameter** Volatile Organics in Air - Mansfield Lab Associated sample(s): 01-14 QC Batch ID: WG1342325-5 QC Sample: L2006467-02 Client ID: IA-13 Tetrahydrofuran 3.02 2.99 ppbV 25 ND NC 25 1,2-Dichloroethane ND ppbV 7.95 8.03 25 n-Hexane ppbV 1 25 Benzene 1.59 1.59 ppbV 0 Cyclohexane 5.13 5.22 2 25 Vdqq 1,2-Dichloropropane ND ND ppbV NC 25 Bromodichloromethane NC 25 ND ND ppbV 1,4-Dioxane ND ND NC 25 ppbV 2,2,4-Trimethylpentane 25 0.636 0.640 ppbV 1 25 Heptane 1.74 1.74 ppbV 0 cis-1,3-Dichloropropene ND ND Vdqq NC 25 4-Methyl-2-pentanone 2 25 0.881 0.867 ppbV trans-1,3-Dichloropropene ND ND ppbV NC 25 1.1.2-Trichloroethane ND NC 25 ND ppbV 1 25 Toluene 10.2 10.1 ppbV 2-Hexanone ND ND ppbV NC 25 Dibromochloromethane ND NC 25 ND ppbV NC 25 1.2-Dibromoethane ND ND Vdqq Chlorobenzene ND NC 25 ND ppbV Ethylbenzene 0 25 7.93 7.91 ppbV p/m-Xylene 28.4 28.3 ppbV 0 25

Lab Duplicate Analysis Batch Quality Control

FORMER CHROMALLOY

190270.2015.0000

Project Name:

Project Number:

Lab Number:

L2006467

Report Date:

02/20/20

arameter	Native Sample	Duplicate Sample	Units	RPD		RPD Limits
olatile Organics in Air - Mansfield Lab Associa	ated sample(s): 01-14 (QC Batch ID: WG1342325-	5 QC Sam	ple: L2006467-0	02 Client ID:	IA-13
Bromoform	ND	ND	ppbV	NC		25
Styrene	ND	ND	ppbV	NC		25
1,1,2,2-Tetrachloroethane	ND	ND	ppbV	NC		25
o-Xylene	6.96	6.98	ppbV	0		25
4-Ethyltoluene	ND	ND	ppbV	NC		25
1,3,5-Trimethylbenzene	0.206	0.210	ppbV	2		25
1,2,4-Trimethylbenzene	0.615	0.619	ppbV	1		25
Benzyl chloride	ND	ND	ppbV	NC		25
1,3-Dichlorobenzene	ND	ND	ppbV	NC		25
1,4-Dichlorobenzene	ND	ND	ppbV	NC		25
1,2-Dichlorobenzene	ND	ND	ppbV	NC		25
1,2,4-Trichlorobenzene	ND	ND	ppbV	NC		25
Hexachlorobutadiene	ND	ND	ppbV	NC		25
platile Organics in Air by SIM - Mansfield Lab	Associated sample(s): 0	1-14 QC Batch ID: WG13	342327-5 (QC Sample: L20	06467-02 Cli	ent ID: IA-13
Vinyl chloride	ND	ND	ppbV	NC		25
1,1-Dichloroethene	ND	ND	ppbV	NC		25
Tertiary butyl Alcohol ¹	ND	ND	ppbV	NC		25
cis-1,2-Dichloroethene	ND	ND	ppbV	NC		25
1,1,1-Trichloroethane	ND	ND	ppbV	NC		25
Carbon tetrachloride	0.105	0.115	ppbV	9		25
Trichloroethene	0.079	0.080	ppbV	1		25
Tetrachloroethene	0.028	0.027	ppbV	4		25

FORMER CHROMALLOY Lab Number: L2006467

Project Number: 190270.2015.0000 **Report Date:** 02/20/20

Canister and Flow Controller Information

								Initial	D	Flow			
Samplenum	Client ID	Media ID	Media Type	Date Prepared	Bottle Order	Cleaning Batch ID	Can Leak Check		Pressure on Receipt (in. Hg)		Flow Out mL/min	Flow In mL/min	% RPD
L2006467-01	SS-13	0401	Flow 3	02/04/20	313158		-	-	-	Pass	10.0	10.2	2
L2006467-01	SS-13	2921	6.0L Can	02/04/20	313158	L2004009-01	Pass	-29.3	-6.3	-	-	-	-
L2006467-02	IA-13	0973	Flow 4	02/04/20	313158		-	-	-	Pass	10.0	8.5	16
L2006467-02	IA-13	3371	6.0L Can	02/04/20	313158	L2004009-07	Pass	-29.3	-5.5	-	-	-	-
L2006467-03	IA-DUP	01813	Flow 4	02/04/20	313158		-	-	-	Pass	10.0	8.6	15
L2006467-03	IA-DUP	1798	6.0L Can	02/04/20	313158	L2004009-07	Pass	-29.3	-5.5	-	-	-	-
L2006467-04	SS-14	01562	Flow 3	02/04/20	313158		-	-	-	Pass	10.0	10.8	8
L2006467-04	SS-14	2785	6.0L Can	02/04/20	313158	L2004009-01	Pass	-29.3	-7.7	-	-	-	-
L2006467-05	IA-14	01797	Flow 3	02/04/20	313158		-	-	-	Pass	10.0	10.4	4
L2006467-05	IA-14	1583	6.0L Can	02/04/20	313158	L2004009-07	Pass	-29.3	-6.0	-	-	-	-
L2006467-06	SS-15	0876	Flow 4	02/04/20	313158		-	-	-	Pass	10.0	10.6	6
L2006467-06	SS-15	2984	6.0L Can	02/04/20	313158	L2004009-01	Pass	-29.4	-5.0	-	-	-	-
L2006467-07	IA-15	01622	Flow 4	02/04/20	313158		-	-	-	Pass	10.0	8.7	14
L2006467-07	IA-15	1826	6.0L Can	02/04/20	313158	L2004009-07	Pass	-29.3	-5.5	-	-	-	-
L2006467-08	SS-16	01484	Flow 3	02/04/20	313158		-	-	-	Pass	10.0	10.8	8

Project Name:

FORMER CHROMALLOY Lab Number: L2006467

Canister and Flow Controller Information

								Initial	Pressure	Flow			
Samplenum	Client ID	Media ID	Media Type	Date Prepared	Bottle Order	Cleaning Batch ID	Can Leak Check				Flow Out mL/min	Flow In mL/min	% RPD
L2006467-08	SS-16	897	6.0L Can	02/04/20	313158	L2004009-01	Pass	-29.3	-6.5	-	-	-	-
L2006467-09	IA-16	01491	Flow 3	02/04/20	313158		-	-	-	Pass	10.0	17.4	54
L2006467-09	IA-16	1897	6.0L Can	02/04/20	313158	L2004009-07	Pass	-29.3	0.0	-	-	-	-
L2006467-10	AA-3	0971	Flow 3	02/04/20	313158		-	-	-	Pass	10.0	13.1	27
L2006467-10	AA-3	2654	6.0L Can	02/04/20	313158	L2004009-07	Pass	-29.3	0.0	-	-	-	-
L2006467-11	SS-17	01420	Flow 3	02/04/20	313158		-	-	-	Pass	10.0	12.3	21
L2006467-11	SS-17	1611	6.0L Can	02/04/20	313158	L2004009-07	Pass	-29.3	-3.5	-	-	-	-
L2006467-12	IA-17	01616	Flow 4	02/04/20	313158		-	-	-	Pass	10.0	8.8	13
L2006467-12	IA-17	3376	6.0L Can	02/04/20	313158	L2004009-07	Pass	-29.3	-5.1	-	-	-	-
L2006467-13	SS-18	01384	Flow 3	02/04/20	313158		-	-	-	Pass	10.0	10.8	8
L2006467-13	SS-18	2959	6.0L Can	02/04/20	313158	L2004009-01	Pass	-29.3	-5.9	-	-	-	-
L2006467-14	IA-18	01576	Flow 4	02/04/20	313158		-	-	-	Pass	10.0	9.0	11
L2006467-14	IA-18	2977	6.0L Can	02/04/20	313158	L2004009-07	Pass	-29.3	-5.2	-	-	-	-
L2006467-15	UNUSED CAN #2711	0038	Flow 4	02/04/20	313158		-	-	-	Pass	10.0	7.7	26
L2006467-15	UNUSED CAN #2711	2711	6.0L Can	02/04/20	313158	L2004009-01	Pass	-29.3	-29.0	-	-	-	-

Project Name:

L2004009

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT Report Date: 02/20/20

Air Canister Certification Results

Lab ID: L2004009-01

Date Collected: 01/28/20 16:00 Client ID: CAN 3370 SHELF 42 Date Received: 01/29/20

Sample Location:

Field Prep: Not Specified

Sample Depth:

Matrix: Air Anaytical Method: 48,TO-15 Analytical Date: 01/29/20 17:30

Analyst: TS

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfiel	d Lab							
Chlorodifluoromethane	ND	0.200		ND	0.707			1
Propylene	ND	0.500		ND	0.861			1
Propane	ND	0.500		ND	0.902			1
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.200		ND	1.40			1
Methanol	ND	5.00		ND	6.55			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Butane	ND	0.200		ND	0.475			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	ND	5.00		ND	9.42			1
Dichlorofluoromethane	ND	0.200		ND	0.842			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acrolein	ND	0.500		ND	1.15			1
Acetone	ND	1.00		ND	2.38			1
Acetonitrile	ND	0.200		ND	0.336			1
Trichlorofluoromethane	ND	0.200		ND	1.12			1
Isopropanol	ND	0.500		ND	1.23			1
Acrylonitrile	ND	0.500		ND	1.09			1
Pentane	ND	0.200		ND	0.590			1
Ethyl ether	ND	0.200		ND	0.606			1
1,1-Dichloroethene	ND	0.200		ND	0.793			1

L2004009

Not Specified

Lab Number:

Field Prep:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT **Report Date:** 02/20/20

Air Canister Certification Results

Lab ID: L2004009-01

Date Collected: 01/28/20 16:00 Client ID: CAN 3370 SHELF 42 Date Received: 01/29/20

Sample Location:

Sample Depth:		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfi	eld Lab							
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
rans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
/inyl acetate	ND	1.00		ND	3.52			1
Kylenes, total	ND	0.600		ND	0.869			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1
2,2-Dichloropropane	ND	0.200		ND	0.924			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
Diisopropyl ether	ND	0.200		ND	0.836			1
ert-Butyl Ethyl Ether	ND	0.200		ND	0.836			1
1,2-Dichloroethene (total)	ND	1.00		ND	1.00			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
1,1-Dichloropropene	ND	0.200		ND	0.908			1
Benzene	ND	0.200		ND	0.639			1
Carbon tetrachloride	ND	0.200		ND	1.26			1
Cyclohexane	ND	0.200		ND	0.688			1
ert-Amyl Methyl Ether	ND	0.200		ND	0.836			1

L2004009

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT **Report Date:** 02/20/20

Air Canister Certification Results

Lab ID: L2004009-01

Date Collected: 01/28/20 16:00 Client ID: CAN 3370 SHELF 42 Date Received: 01/29/20

Sample Location: Field Prep: Not Specified

Запіріе Беріп.		ppbV			ug/m3			D
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Dilution Factor
Volatile Organics in Air - Mansfield Lab								
Dibromomethane	ND	0.200		ND	1.42			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
Trichloroethene	ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Methyl Methacrylate	ND	0.500		ND	2.05			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	ND	0.200		ND	0.754			1
1,3-Dichloropropane	ND	0.200		ND	0.924			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Butyl acetate	ND	0.500		ND	2.38			1
Octane	ND	0.200		ND	0.934			1
Tetrachloroethene	ND	0.200		ND	1.36			1
1,1,1,2-Tetrachloroethane	ND	0.200		ND	1.37			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
p/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1

L2004009

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT **Report Date:** 02/20/20

Air Canister Certification Results

Lab ID: L2004009-01

Date Collected: 01/28/20 16:00 Client ID: CAN 3370 SHELF 42 Date Received: 01/29/20

Sample Location: Field Prep: Not Specified

		ppbV			ug/m3	ug/m3		
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield	Lab							
o-Xylene	ND	0.200		ND	0.869			1
1,2,3-Trichloropropane	ND	0.200		ND	1.21			1
Nonane	ND	0.200		ND	1.05			1
sopropylbenzene	ND	0.200		ND	0.983			1
Bromobenzene	ND	0.200		ND	0.793			1
2-Chlorotoluene	ND	0.200		ND	1.04			1
n-Propylbenzene	ND	0.200		ND	0.983			1
1-Chlorotoluene	ND	0.200		ND	1.04			1
1-Ethyltoluene	ND	0.200		ND	0.983			1
,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1
ert-Butylbenzene	ND	0.200		ND	1.10			1
,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Decane	ND	0.200		ND	1.16			1
Benzyl chloride	ND	0.200		ND	1.04			1
,3-Dichlorobenzene	ND	0.200		ND	1.20			1
,4-Dichlorobenzene	ND	0.200		ND	1.20			1
sec-Butylbenzene	ND	0.200		ND	1.10			1
o-Isopropyltoluene	ND	0.200		ND	1.10			1
,2-Dichlorobenzene	ND	0.200		ND	1.20			1
n-Butylbenzene	ND	0.200		ND	1.10			1
1,2-Dibromo-3-chloropropane	ND	0.200		ND	1.93			1
Jndecane	ND	0.200		ND	1.28			1
Dodecane	ND	0.200		ND	1.39			1
,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
laphthalene	ND	0.200		ND	1.05			1
1,2,3-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Project Name: BATCH CANISTER CERTIFICATION

Lab Number: L2004009

Project Number: CANISTER QC BAT **Report Date:** 02/20/20

Air Canister Certification Results

Lab ID: L2004009-01

Client ID: CAN 3370 SHELF 42

Sample Location:

Date Collected: Date Received: 01/28/20 16:00

01/29/20

Field Prep:

Not Specified

Sample Depth:

ppbV ug/m3 Dilution Factor RLResults RL MDL Qualifier **Parameter** Results MDL

Volatile Organics in Air - Mansfield Lab

Dilution Factor Results Qualifier Units RDL

Tentatively Identified Compounds

No Tentatively Identified Compounds

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	97		60-140
Bromochloromethane	98		60-140
chlorobenzene-d5	95		60-140

L2004009

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT **Report Date:** 02/20/20

Air Canister Certification Results

Lab ID: L2004009-01

Date Collected: 01/28/20 16:00 Client ID: CAN 3370 SHELF 42 Date Received: 01/29/20

Sample Location:

Field Prep: Not Specified

Sample Depth:

Matrix: Air

Anaytical Method: 48,TO-15-SIM Analytical Date: 01/29/20 17:30

Analyst: TS

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM	l - Mansfield Lab							
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.050		ND	0.349			1
Vinyl chloride	ND	0.020		ND	0.051			1
1,3-Butadiene	ND	0.020		ND	0.044			1
Bromomethane	ND	0.020		ND	0.078			1
Chloroethane	ND	0.100		ND	0.264			1
Acetone	ND	1.00		ND	2.38			1
Trichlorofluoromethane	ND	0.050		ND	0.281			1
Acrylonitrile	ND	0.500		ND	1.09			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
Methylene chloride	ND	0.500		ND	1.74			1
Freon-113	ND	0.050		ND	0.383			1
trans-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1-Dichloroethane	ND	0.020		ND	0.081			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
Chloroform	ND	0.020		ND	0.098			1
1,2-Dichloroethane	ND	0.020		ND	0.081			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Benzene	ND	0.100		ND	0.319			1
Carbon tetrachloride	ND	0.020		ND	0.126			1
1,2-Dichloropropane	ND	0.020		ND	0.092			1

L2004009

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT **Report Date:** 02/20/20

Air Canister Certification Results

Lab ID: L2004009-01

Date Collected: 01/28/20 16:00 Client ID: CAN 3370 SHELF 42 Date Received: 01/29/20

Sample Location:

Field Prep: Not Specified

Sample Depth:		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM -	Mansfield Lab							
Bromodichloromethane	ND	0.020		ND	0.134			1
1,4-Dioxane	ND	0.100		ND	0.360			1
Trichloroethene	ND	0.020		ND	0.107			1
cis-1,3-Dichloropropene	ND	0.020		ND	0.091			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.020		ND	0.091			1
1,1,2-Trichloroethane	ND	0.020		ND	0.109			1
Toluene	ND	0.050		ND	0.188			1
Dibromochloromethane	ND	0.020		ND	0.170			1
1,2-Dibromoethane	ND	0.020		ND	0.154			1
Tetrachloroethene	ND	0.020		ND	0.136			1
1,1,1,2-Tetrachloroethane	ND	0.020		ND	0.137			1
Chlorobenzene	ND	0.100		ND	0.461			1
Ethylbenzene	ND	0.020		ND	0.087			1
o/m-Xylene	ND	0.040		ND	0.174			1
Bromoform	ND	0.020		ND	0.207			1
Styrene	ND	0.020		ND	0.085			1
1,1,2,2-Tetrachloroethane	ND	0.020		ND	0.137			1
o-Xylene	ND	0.020		ND	0.087			1
Isopropylbenzene	ND	0.200		ND	0.983			1
4-Ethyltoluene	ND	0.020		ND	0.098			1
1,3,5-Trimethybenzene	ND	0.020		ND	0.098			1
1,2,4-Trimethylbenzene	ND	0.020		ND	0.098			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.020		ND	0.120			1
1,4-Dichlorobenzene	ND	0.020		ND	0.120			1
sec-Butylbenzene	ND	0.200		ND	1.10			1

Project Name: Lab Number: **BATCH CANISTER CERTIFICATION** L2004009

Project Number: CANISTER QC BAT **Report Date:** 02/20/20

Air Canister Certification Results

Lab ID: L2004009-01

Date Collected: 01/28/20 16:00 Client ID: CAN 3370 SHELF 42 Date Received: 01/29/20

Sample Location: Field Prep: Not Specified

Sample Beptil.		ppbV			ug/m3			Dilution Factor
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	
Volatile Organics in Air by SIM - Ma	nsfield Lab							
p-Isopropyltoluene	ND	0.200		ND	1.10			1
1,2-Dichlorobenzene	ND	0.020		ND	0.120			1
n-Butylbenzene	ND	0.200		ND	1.10			1
1,2,4-Trichlorobenzene	ND	0.050		ND	0.371			1
Naphthalene	ND	0.050		ND	0.262			1
1,2,3-Trichlorobenzene	ND	0.050		ND	0.371			1
Hexachlorobutadiene	ND	0.050		ND	0.533			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	97		60-140
bromochloromethane	99		60-140
chlorobenzene-d5	94		60-140

L2004009

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT Report Date: 02/20/20

Air Canister Certification Results

Lab ID: L2004009-07

Date Collected: 01/29/20 09:00 Client ID: CAN 2121 SHELF 50 Date Received: 01/29/20

Sample Location:

Field Prep: Not Specified

Sample Depth:

Matrix: Air Anaytical Method: 48,TO-15 Analytical Date: 01/29/20 21:30

Analyst: TS

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield Lab	1							
Chlorodifluoromethane	ND	0.200		ND	0.707			1
Propylene	ND	0.500		ND	0.861			1
Propane	ND	0.500		ND	0.902			1
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.200		ND	1.40			1
Methanol	ND	5.00		ND	6.55			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Butane	ND	0.200		ND	0.475			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	ND	5.00		ND	9.42			1
Dichlorofluoromethane	ND	0.200		ND	0.842			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acrolein	ND	0.500		ND	1.15			1
Acetone	ND	1.00		ND	2.38			1
Acetonitrile	ND	0.200		ND	0.336			1
Trichlorofluoromethane	ND	0.200		ND	1.12			1
Isopropanol	ND	0.500		ND	1.23			1
Acrylonitrile	ND	0.500		ND	1.09			1
Pentane	ND	0.200		ND	0.590			1
Ethyl ether	ND	0.200		ND	0.606			1
1,1-Dichloroethene	ND	0.200		ND	0.793			1

L2004009

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT **Report Date:** 02/20/20

Air Canister Certification Results

Lab ID: L2004009-07

Date Collected: 01/29/20 09:00 Client ID: CAN 2121 SHELF 50 Date Received: 01/29/20

Sample Location:

Field Prep: Not Specified

Запріє Беріп.		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield Lab)							
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
Vinyl acetate	ND	1.00		ND	3.52			1
2-Butanone	ND	0.500		ND	1.47			1
Xylenes, total	ND	0.600		ND	0.869			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1
2,2-Dichloropropane	ND	0.200		ND	0.924			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
Diisopropyl ether	ND	0.200		ND	0.836			1
tert-Butyl Ethyl Ether	ND	0.200		ND	0.836			1
1,2-Dichloroethene (total)	ND	1.00		ND	1.00			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
1,1-Dichloropropene	ND	0.200		ND	0.908			1
Benzene	ND	0.200		ND	0.639			1
Carbon tetrachloride	ND	0.200		ND	1.26			1
Cyclohexane	ND	0.200		ND	0.688			1
tert-Amyl Methyl Ether	ND	0.200		ND	0.836			1

L2004009

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT **Report Date:** 02/20/20

Air Canister Certification Results

Lab ID: L2004009-07

Date Collected: 01/29/20 09:00 Client ID: CAN 2121 SHELF 50 Date Received: 01/29/20

Sample Location: Field Prep: Not Specified

Запіріе Беріп.		ppbV			ug/m3		D	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Dilution Factor
Volatile Organics in Air - Mansfield Lab								
Dibromomethane	ND	0.200		ND	1.42			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
Trichloroethene	ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Methyl Methacrylate	ND	0.500		ND	2.05			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	ND	0.200		ND	0.754			1
1,3-Dichloropropane	ND	0.200		ND	0.924			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Butyl acetate	ND	0.500		ND	2.38			1
Octane	ND	0.200		ND	0.934			1
Tetrachloroethene	ND	0.200		ND	1.36			1
1,1,1,2-Tetrachloroethane	ND	0.200		ND	1.37			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
p/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1

L2004009

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT **Report Date:** 02/20/20

Air Canister Certification Results

Lab ID: L2004009-07

Date Collected: 01/29/20 09:00 Client ID: CAN 2121 SHELF 50 Date Received: 01/29/20

Sample Location:

Field Prep: Not Specified

Sample Depth.		ppbV			ug/m3			
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Dilution Factor
Volatile Organics in Air - Mansfield Lab								
o-Xylene	ND	0.200		ND	0.869			1
1,2,3-Trichloropropane	ND	0.200		ND	1.21			1
Nonane	ND	0.200		ND	1.05			1
Isopropylbenzene	ND	0.200		ND	0.983			1
Bromobenzene	ND	0.200		ND	0.793			1
2-Chlorotoluene	ND	0.200		ND	1.04			1
n-Propylbenzene	ND	0.200		ND	0.983			1
4-Chlorotoluene	ND	0.200		ND	1.04			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1
tert-Butylbenzene	ND	0.200		ND	1.10			1
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Decane	ND	0.200		ND	1.16			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
sec-Butylbenzene	ND	0.200		ND	1.10			1
p-Isopropyltoluene	ND	0.200		ND	1.10			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
n-Butylbenzene	ND	0.200		ND	1.10			1
1,2-Dibromo-3-chloropropane	ND	0.200		ND	1.93			1
Undecane	ND	0.200		ND	1.28			1
Dodecane	ND	0.200		ND	1.39			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Naphthalene	ND	0.200		ND	1.05			1
1,2,3-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Project Name: BATCH CANISTER CERTIFICATION

Lab Number: Lab

L2004009

01/29/20 09:00

Project Number: CANISTER QC BAT

Report Date: 02

02/20/20

Air Canister Certification Results

Lab ID: L2004009-07

Date Collected:

Client ID: CAN 2121 SHELF 50 Sample Location:

Date Received: 01/29/20 Field Prep: Not Specified

Sample Depth:

Parameter Results RL MDL Results RL MDL Qualifier Factor

Volatile Organics in Air - Mansfield Lab

Dilution
Results Qualifier Units RDL Factor

Tentatively Identified Compounds

No Tentatively Identified Compounds

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	97		60-140
Bromochloromethane	97		60-140
chlorobenzene-d5	95		60-140

L2004009

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT Report Date: 02/20/20

Air Canister Certification Results

Lab ID: L2004009-07

Date Collected: 01/29/20 09:00 Client ID: CAN 2121 SHELF 50 Date Received: 01/29/20

Sample Location:

Field Prep: Not Specified

Sample Depth:

Matrix: Air

Anaytical Method: 48,TO-15-SIM Analytical Date: 01/29/20 21:30

Analyst: TS

ppbV				ug/m3		Dilution	
Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
sfield Lab							
ND	0.200		ND	0.989			1
ND	0.200		ND	0.413			1
ND	0.050		ND	0.349			1
ND	0.020		ND	0.051			1
ND	0.020		ND	0.044			1
ND	0.020		ND	0.078			1
ND	0.100		ND	0.264			1
ND	1.00		ND	2.38			1
ND	0.050		ND	0.281			1
ND	0.500		ND	1.09			1
ND	0.020		ND	0.079			1
ND	0.500		ND	1.74			1
ND	0.050		ND	0.383			1
ND	0.020		ND	0.079			1
ND	0.020		ND	0.081			1
ND	0.200		ND	0.721			1
ND	0.500		ND	1.47			1
ND	0.020		ND	0.079			1
ND	0.020		ND	0.098			1
ND	0.020		ND	0.081			1
ND	0.020		ND	0.109			1
ND	0.100		ND	0.319			1
ND	0.020		ND	0.126			1
ND	0.020		ND	0.092			1
	Sfield Lab ND ND ND ND ND ND ND ND ND N	ND 0.200 ND 0.200 ND 0.050 ND 0.020 ND 0.020 ND 0.020 ND 0.100 ND 1.00 ND 0.500 ND 0.500 ND 0.500 ND 0.050 ND 0.050 ND 0.020 ND 0.020	Results RL MDL sfield Lab ND 0.200 ND 0.200 ND 0.050 ND 0.020 ND 0.020 ND 0.020 ND 0.020 ND 0.100 ND 0.050 ND 0.050 ND 0.020 ND 0.0500 ND 0.020 ND 0.020 ND 0.02	Results RL MDL Results sfield Lab ND 0.200 ND ND 0.200 ND ND 0.050 ND ND 0.020 ND ND 0.020 ND ND 0.020 ND ND 0.100 ND ND 0.050 ND ND 0.020 ND ND 0.020 ND ND 0.020 ND ND 0.020 ND ND 0.020 <td>Results RL MDL Results RL Sfield Lab ND 0.989 ND 0.989 ND 0.200 ND 0.413 ND 0.050 ND 0.349 ND 0.020 ND 0.051 ND 0.020 ND 0.044 ND 0.020 ND 0.078 ND 0.100 ND 0.264 ND 1.00 ND 0.264 ND 1.00 ND 0.281 ND 0.050 ND 0.281 ND 0.500 ND 1.09 ND 0.500 ND 0.079 ND 0.050 ND 0.383 ND 0.020 ND 0.079 ND 0.020 ND 0.072 ND</td> <td>Results RL MDL Results RL MDL Sfield Lab ND 0.200 ND 0.989 ND 0.200 ND 0.413 ND 0.050 ND 0.349 ND 0.050 ND 0.051 ND 0.020 ND 0.051 ND 0.020 ND 0.044 ND 0.020 ND 0.044 ND 0.020 ND 0.078 ND 0.100 ND 0.264 ND 0.100 ND 0.281 ND 0.050 ND 0.079 ND 0.500 ND 0.079 ND 0.050 ND 0.079 <t< td=""><td>Results RL MDL Results RL MDL Qualifier Sfield Lab ND 0.200 ND 0.989 </td></t<></td>	Results RL MDL Results RL Sfield Lab ND 0.989 ND 0.989 ND 0.200 ND 0.413 ND 0.050 ND 0.349 ND 0.020 ND 0.051 ND 0.020 ND 0.044 ND 0.020 ND 0.078 ND 0.100 ND 0.264 ND 1.00 ND 0.264 ND 1.00 ND 0.281 ND 0.050 ND 0.281 ND 0.500 ND 1.09 ND 0.500 ND 0.079 ND 0.050 ND 0.383 ND 0.020 ND 0.079 ND 0.020 ND 0.072 ND	Results RL MDL Results RL MDL Sfield Lab ND 0.200 ND 0.989 ND 0.200 ND 0.413 ND 0.050 ND 0.349 ND 0.050 ND 0.051 ND 0.020 ND 0.051 ND 0.020 ND 0.044 ND 0.020 ND 0.044 ND 0.020 ND 0.078 ND 0.100 ND 0.264 ND 0.100 ND 0.281 ND 0.050 ND 0.079 ND 0.500 ND 0.079 ND 0.050 ND 0.079 <t< td=""><td>Results RL MDL Results RL MDL Qualifier Sfield Lab ND 0.200 ND 0.989 </td></t<>	Results RL MDL Results RL MDL Qualifier Sfield Lab ND 0.200 ND 0.989

L2004009

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT **Report Date:** 02/20/20

Air Canister Certification Results

Lab ID: L2004009-07

Date Collected: 01/29/20 09:00 Client ID: CAN 2121 SHELF 50 Date Received: 01/29/20

Sample Location: Field Prep: Not Specified

	<u> </u>	ppbV			ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM -	- Mansfield Lab							
Bromodichloromethane	ND	0.020		ND	0.134			1
1,4-Dioxane	ND	0.100		ND	0.360			1
Trichloroethene	ND	0.020		ND	0.107			1
cis-1,3-Dichloropropene	ND	0.020		ND	0.091			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.020		ND	0.091			1
1,1,2-Trichloroethane	ND	0.020		ND	0.109			1
Toluene	ND	0.050		ND	0.188			1
Dibromochloromethane	ND	0.020		ND	0.170			1
1,2-Dibromoethane	ND	0.020		ND	0.154			1
Tetrachloroethene	ND	0.020		ND	0.136			1
1,1,1,2-Tetrachloroethane	ND	0.020		ND	0.137			1
Chlorobenzene	ND	0.100		ND	0.461			1
Ethylbenzene	ND	0.020		ND	0.087			1
o/m-Xylene	ND	0.040		ND	0.174			1
Bromoform	ND	0.020		ND	0.207			1
Styrene	ND	0.020		ND	0.085			1
1,1,2,2-Tetrachloroethane	ND	0.020		ND	0.137			1
o-Xylene	ND	0.020		ND	0.087			1
Isopropylbenzene	ND	0.200		ND	0.983			1
4-Ethyltoluene	ND	0.020		ND	0.098			1
1,3,5-Trimethybenzene	ND	0.020		ND	0.098			1
1,2,4-Trimethylbenzene	ND	0.020		ND	0.098			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.020		ND	0.120			1
1,4-Dichlorobenzene	ND	0.020		ND	0.120			1
sec-Butylbenzene	ND	0.200		ND	1.10			1

L2004009

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT **Report Date:** 02/20/20

Air Canister Certification Results

Lab ID: L2004009-07

Date Collected: 01/29/20 09:00 Client ID: CAN 2121 SHELF 50 Date Received: 01/29/20

Sample Location: Field Prep: Not Specified

Campic Dopin.		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM - Ma	nsfield Lab							
p-Isopropyltoluene	ND	0.200		ND	1.10			1
1,2-Dichlorobenzene	ND	0.020		ND	0.120			1
n-Butylbenzene	ND	0.200		ND	1.10			1
1,2,4-Trichlorobenzene	ND	0.050		ND	0.371			1
Naphthalene	ND	0.050		ND	0.262			1
1,2,3-Trichlorobenzene	ND	0.050		ND	0.371			1
Hexachlorobutadiene	ND	0.050		ND	0.533			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	97		60-140
bromochloromethane	98		60-140
chlorobenzene-d5	93		60-140

FORMER CHROMALLOY Lab Number: L2006467 **Project Number:** 190270.2015.0000

Report Date: 02/20/20

Sample Receipt and Container Information

YES Were project specific reporting limits specified?

Cooler Information

Project Name:

Custody Seal Cooler

NA Absent

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	pН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2006467-01A	Canister - 6 Liter	NA	NA			Υ	Absent		TO15-SIM(30),TO15-LL(30)
L2006467-02A	Canister - 6 Liter	NA	NA			Υ	Absent		TO15-SIM(30),TO15-LL(30)
L2006467-03A	Canister - 6 Liter	NA	NA			Υ	Absent		TO15-LL(30),TO15-SIM(30)
L2006467-04A	Canister - 6 Liter	NA	NA			Υ	Absent		TO15-LL(30),TO15-SIM(30)
L2006467-05A	Canister - 6 Liter	NA	NA			Υ	Absent		TO15-LL(30),TO15-SIM(30)
L2006467-06A	Canister - 6 Liter	NA	NA			Υ	Absent		TO15-SIM(30),TO15-LL(30)
L2006467-07A	Canister - 6 Liter	NA	NA			Υ	Absent		TO15-LL(30),TO15-SIM(30)
L2006467-08A	Canister - 6 Liter	NA	NA			Υ	Absent		TO15-SIM(30),TO15-LL(30)
L2006467-09A	Canister - 6 Liter	NA	NA			Υ	Absent		TO15-SIM(30),TO15-LL(30)
L2006467-10A	Canister - 6 Liter	NA	NA			Υ	Absent		TO15-LL(30),TO15-SIM(30)
L2006467-11A	Canister - 6 Liter	NA	NA			Υ	Absent		TO15-SIM(30),TO15-LL(30)
L2006467-12A	Canister - 6 Liter	NA	NA			Υ	Absent		TO15-SIM(30),TO15-LL(30)
L2006467-13A	Canister - 6 Liter	NA	NA			Υ	Absent		TO15-SIM(30),TO15-LL(30)
L2006467-14A	Canister - 6 Liter	NA	NA			Υ	Absent		TO15-LL(30),TO15-SIM(30)
L2006467-15A	Canister - 6 Liter	NA	NA			Υ	Absent		CLEAN-FEE()

Project Name: FORMER CHROMALLOY Lab Number: L2006467

Project Number: 190270.2015.0000 Report Date: 02/20/20

GLOSSARY

Acronyms

EDL

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

To in challenge of the Living This are the content of the Living and the content of the content

- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration.

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content,

where applicable. (DoD report formats only.)

LOQ - Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

only.)

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

only.)

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated

using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the

precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

Report Format: Data Usability Report

Project Name:FORMER CHROMALLOYLab Number:L2006467Project Number:190270.2015.0000Report Date:02/20/20

 The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

1

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benza(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. If a 'Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA, this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte was detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations
 of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- **ND** Not detected at the reporting limit (RL) for the sample.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- ${f P}$ The RPD between the results for the two columns exceeds the method-specified criteria.
- Q -The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less

Report Format: Data Usability Report

Project Name:FORMER CHROMALLOYLab Number:L2006467Project Number:190270.2015.0000Report Date:02/20/20

Data Qualifiers

than 5x the RL. (Metals only.)

 \boldsymbol{R} — Analytical results are from sample re-analysis.

RE - Analytical results are from sample re-extraction.

S - Analytical results are from modified screening analysis.

Report Format: Data Usability Report

Project Name:FORMER CHROMALLOYLab Number:L2006467Project Number:190270.2015.0000Report Date:02/20/20

REFERENCES

Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air. Second Edition. EPA/625/R-96/010b, January 1999.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873 Revision 16

Published Date: 2/17/2020 10:46:05 AM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: lodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-

Ethyltoluene

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

EPA TO-12 Non-methane organics

EPA 3C Fixed gases

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate.

EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form

Pre-Qualtrax Document ID: 08-113

ALPHA		RANALYSIS	PAGE	of 2 Da	ite Rec'd in La	b: 2) 13/2) ₆	ALPHA Jo	b#: L2606467
320 Forbes Blvd,	Mansfield, MA 02048	Project Informa			eport Inform	ation - Data Del	verables	Billing Info	ormation
TEL: 508-822-93	00 FAX: 508-822-3288	Project Name:	rmer Chro	mallar =	FAX				lient info PO#: 145911
Client Informat	ion	Project Location:	lest Nyack,	A)V	KADEX				17 8711
Client-TRC &	Engineers Inc.	Project #: 1902	70.2015.00		Criteria Che (Default base	ecker: nd on Regulatory Criteria	Indicated)		
Address: 10 M	taxwell Stive,	SEZ Project Manager:	CL Pork			ats: NYSDEC E		Regulator	Paguianna
	urk, NY 12065	ALPHA Quote #:	err capacit	Ŕ	Additional Deli	iverables:		State/Fed	/ Requirements/Report Limit
	348-1190,	Turn-Around Ti	me	Real Re		Shan Project Manager)			
Fax:		A CONTRACTOR OF THE PARTY OF TH		进谷。产生。	Jarocki	Otrecompa	nies.com	4	
Email: JKing@4	recompanies. Com	Standard	RUSH (say confirmed it pre-	approved)	Think GA	recompanie	s.cem	ANA	Vele
☐ These samples h	ave been previously applying by	Alpha Date Due:	Time:					ANAL	1313
Other Project	Specific Requirements/	Comments: Do Ma-	+ analyze S	EMAINA E OO	n# 271	1 100.40		/ / 2	\$ 20
Project-Specific	c Target Compound Lis	al -	used, order	el as h	MARIN	1./Keg#a	258		1/4/
	COMMISSION OF STREET	THE PERSON NAMED IN COLUMN 2 IS NOT THE OWNER.					/	Per News	7//
ALPHA Lab ID	Control of the Contro	All Column	LECTION		-		2/2/2	Cas AM	//
(Lab Use Only)	Sample ID	End Date Start Time	End Time Vacuum	Final Sam Vacuum Matr	ALTERNATION TO THE PROPERTY OF THE PARTY OF		Flow 200	APH Fixed Sumder	Sample Comments (i.e. PID
X0467-01	55-13	2/12/202 0755	1545 30.07	6.90 51	JK	64 2921 04	61 X		
-02	1A-13	2/12/220 0756			CAA/	66 337109			
-03	IA-DUP	2/12/2020 0757	1547 -30.39			66 1798 013			
-04	55-14	2/12/2020 C73C	1524 -30.20			6L 2785 CI			
-05	1A-14	2/12/200 0731	1525 -30.30						
-06	55-15	2/12/2020 0720			P	66 1583 01			
-cA	1A-15	- 147 CONT - 177 CONT				66 2884 08			
-08	55-16	2/12/2020 0721	1522 -30.52			OC 1826 C16			
200	10-10	2/12/2020 0745		1010	e I town	il 897 010			
-07	11-16	2/12/2020746	1330 -30,37	-1.94 AA/		66 1897014	91X		
-10	HH-D	2/17/2020 0800	1540 -3:39	-2.31 AA/	3 JK (OL 2654 09.	11 4		
*SAMPLI	E MATRIX CODES	AA = Ambient Air (Indoor SV = Soil Vapor/Landfill C Other = Please Specify	Outdoor) as/SVE		Cor	ntainer Type			Please print clearly, legibly and completely. Samples can not be
	1	Relinquished By:	Date	e/Time	Receive	ed By:	Date	e/Time:	logged in and turnaround time clock will not start until any ambi-
	4	DISAL:	2/14/2	love 1825 PM	w/ Thes	DAAL	2-112-	20 18:25	guities are resolved. All samples submitted are subject to Alpha's
age 97 of 98 (25-	Sep-15)	findly House	2/13/2	o ruin	March 1	Dilo	2/15/	20 02.90	Terms and Conditions. See reverse side.

*SAMPLE	MATRIX CODES	AA = Ambient Air (Indoor SV = Soil Vapor/Landfill C Other = Please Specify Relinquished By:	Outdoor) as/SVE	Date/Time	0.1		ontainer	Туре		Da	ite/Time	e:	Please print clearly, let completely. Samples a logged in and turnarou clock will not start until guities are resolved. A	can not be und time I any ambi-
	2										-			
		7.1	13-1 3	-55-6.40	ruy [J.K.	62	247)	01576	X				
14	1A-18	10/00000700	1500 3	175-6.64	A4/.	TL	1		01384					
-13	55-18	2/12/2020 0736			-		66			Total Control				
-12	55-17 1 A-17	2/12/2020 0735				JK	5-81		C1420					
LPHA Lab ID ab Use Only)	Sample ID	End Date Start Time	LECTION In End Time Vac	itial Final cuum Vacuum	Sample Matrix*	Sampler's		ID	I D - Flow Controller	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	40H	Sumder & Mercens	Sample Commen	nts (i.e. l
oject-Specific	Target Compound List:	All Column	sedjorde	red as	back	LP.		_	-58		27	SOS	A allower	
ther Project S	tive been previously analyzed by Alp Specific Requirements/Co		t analyze		can	H 2711	100	0#	035		//	0	20,18	
nail: jkingo-	trecompanies com		RUSH (anly continu			Kinge	Treco	mpa	nies.	zem	A	ANA	LYSIS	
none: 5/8-3		Turn-Around Ti			4	nt to: oranus	etreco	ampa	nies.	com				
Clirton	Park, Ny 12065	ALPHA Quote #:)X(Ad	ASP	eliverable - B	es:				te/Fed	y Requirements/Re	Res / Con
dress: 10 Ma	Engineers xuell Dr., Site 2	Project #: / 902	0.2015.0	000	Ve	(Default bas Other For MAIL (stans	mats: N	YSHEC	EQL (EDI		milata		
lient Informati		Project Location:	lest Nuc	K. NY	Ø.AI	Criteria Ch							1 17	5711
EL: 508-822-930	00 FAX: 508-822-3288	Project Name: For	mer Chr	emallar	O FA	λX	ilation	- Data	Deliver	ables			Client info PO#: 14	8911
20 Enchas Blue 8	Mansfield, MA 02048	Project Informa	tion		Rep	ort Inform	nation .	- Data I	Daliver	ahlae	D	Illing Inf	Armadian	

ATTACHMENT 5

DATA USABILITY SUMMARY REPORT

SGD ENVIRONMENTAL SERVICES

Certified New York State WBE 2063 STANLEY ROAD CAZENOVIA, NEW YORK 13035

Tel/Fax: (315) 655-2733 www.sgdenvironmental.com

March 25, 2020 Electronic deliverable only

Mr. Justin King, Project Manager TRC Companies, Inc. 10 Maxwell Drive, Suite 200 Clifton Park, New York 12065

Re: Former Chromalloy

File: 2200.001

Dear Mr. King:

SGD Environmental Services (SGD Environmental) has completed the review of volatile organic compound (VOC) data generated by Alpha Analytical, Inc. (Mansfield, Massachusetts) for the purpose of preparing this Data Usability Summary Report (DUSR) for the TRC Companies, Inc. (TRC) (Clifton Park, New York). The air samples were collected by TRC representatives at the Former Chromalloy Site located in West Nyack, New York on February 12, 2020. The following table summarizes the samples collected by TRC for VOC analyses using Method TO-15.

TRC Sample ID	Laboratory ID	Comments
SS-13	L2006467-01	
AI-13	L2006467-02	Parent sample to AI-Dup
AI-DUP	L2006467-03	Field duplicate
SS-14	L2006467-04	
AI-14	L2006467-05	
SS-15	L2006467-06	
AI-15	L2006467-07	
SS-16	L2006467-08	
IA-16	L2006467-09	
AA-3	L2006467-10	
SS-17	L2006467-11	
AI-17	L2006467-12	
SS-18	L2006467-13	
IA-18	L2006467-14	
Unused Can #2711	L2006467-15	Canister not used.

This DUSR has been prepared consistent with New York State Department of Environmental Conservation (NYSDEC) *DER-10/Technical Guidance for Site Investigation and Remediation* (May 2010), with consideration given for established criteria:

- USEPA Hazardous Waste Support Section SOP No. HW-31, Revision 6. Analysis of Volatile Organic Compounds in Air Contained in Canisters by Method TO-15. June 2014.
- Compendium Method TO-15 Determination of Volatile Organic Compounds (VOCs) in Air Collected in Specially-Prepared Canisters and Analyzed by Gas Chromatography/Mass Spectrometry (GC/MS). January 1999.

The sample delivery group (SDG) as prepared by the laboratory and identified in the above table, is incorporated herein by reference. The data were reviewed for completeness, chain-of-custody, holding times, preservation, quantitation of sample results, preparation blanks, initial and continuing calibrations, and detection limits (as applicable). In addition, sample precision and accuracy were evaluated using laboratory control blanks. The summary of this review is presented in the following sections.

Data usability summary:

- Based on the validation efforts as described herein, the data associated with the SDG #L2006467 were complete and deemed useable and no data were rejected.

General review findings:

- The chain-of-custody requested sample analysis using Method TO-15. In an effort to obtain lower report limits, the laboratory analyzed several VOCs using Method TO-15 SIM (Selective Ion Monitoring) (see table below). This data was validated consistent with the above validation standard operating methods.

TO-15 SIM Compound	Associated samples
- Tertiary butyl-Alcohol	L2006467-01, -04, -06, -08, -11, and -13
 1,1,1-Trichloroethene 1,1-Dichloroethene Carbon tetrachloride Tertiary butyl-Alcohol Trichloroethene Vinyl chloride cis-1,2-Dichloroethene 	L2006467-02, -03, -05, -07, -09, -10, -12, and -14

VOCs by Method TO-15/TO-15 SIM

- <u>Holding times</u>. The TO-15 samples were analyzed by the laboratory within the required holding times (within 30 days from sample collection) and, therefore, no qualification of the data was required.
- <u>Leak test evaluation</u>. Collective review of the chain-of-custody and the *Canister and Flow Controller Information* forms prepared by the laboratory indicated acceptable pressure test variations and, therefore no qualification of the data was required.

VOCs by Method TO-15/TO-15 SIM (continued):

- <u>Canister blank certification</u>. Review of the Air Canister Certification Results form associated with the clean canisters used for this project did not indicate reportable concentrations of target compounds in the cleaned canisters. As such, no qualification of the data was required.
- <u>Laboratory duplicate</u>. The laboratory duplicate sample appears to have been analyzed and reported consistent with method requirements. No transcription and/or calculation errors were identified in the sample data reviewed. The individual duplicate compound data met the relative percent difference (RPD) precision criteria of 25%. As such, no qualification of the data was required.

- <u>Laboratory control sample (LCS)</u>.

The LCSs appear to have been analyzed and reported consistent with method requirements. No transcription and/or calculation errors were identified in the sample data reviewed. The individual LCS compound data met percent recovery (%R) criteria (70-130%¹). As such, no qualification of the data relative to the LCS was required.

- <u>Method blank</u>. Blank raw data reviews (e.g., chromatograms and quantification reports) were acceptable relative to chromatographic performance. No method blank contamination was identified in the method blanks associated with the sampling group. As such, no qualification of the data relative to the method blanks was required.
- <u>Instrument performance check</u>. The instrument performance check standards (Bromofluorobenzene) appear to have been analyzed and reported consistent with method requirements. No transcription and/or calculation errors between the raw data and the reported data were identified in the instrument checks reviewed and the spectra of the mass calibration compounds were acceptable. Therefore, qualification of the data with respect to instrument performance checks was not required.
- <u>Instrument calibration and system performance</u>. Reporting forms, quantitation reports, chromatograms, and mass spectra for the initial calibrations (ICs) and continuing calibration verifications (CCVs) appear to have been prepared and analyzed consistent with method requirements. The percent relative standard deviation (%RSD) for IC analytes met established criteria. In addition, the percent difference (%D) between the ICs and corresponding continuing calibrations (CCVs) met the established 30% criteria. As such, qualification of the data relative to ICs and CCVs was not required.
- <u>Internal standards</u>. Based on review of the *Form 8a Internal Standard Area and RT Summary Air Volatiles* report in comparison to established method criteria, qualification of the data relative to internal standards was not required.

¹ The %R criteria for Ethanol, Acetone, and Isopropyl alcohol is 40-160%.

VOCs by Method TO-15/TO-15 SIM (continued):

- <u>Chromatogram performance</u>. Sample and QA/QC chromatogram baselines were identified by the validator as stable with acceptable resolution and peak shape; no negative peaks were identified. As such, qualification of the data relative to chromatogram quality was not required.
- <u>Compound quantitation and reported detection limits (target analytes)</u>. Report forms for sample and quality assurance and quality control (QA/QC) data, data system reports (quantitation reports), chromatograms, and mass spectra for identified analytes appear to have been prepared and analyzed consistent with method requirements. Transcription and/or calculation errors were not identified between the raw data and QA/QC data (including initial calibrations and CCVs) for the samples reviewed.

Collective review of relative retention times (RRTs), standard and sample mass spectra, as well as the relative intensities of the characteristic ions for both the sample and reference spectra, appears to support the majority of the laboratory reported analytes. Where the relative intensity of the characteristic ions exceeded the 20% relative intensity of the reference spectra, and/or the ions present in the reference spectra at greater than 10% relative intensity were missing in the spectrum, it is the validator's opinion that the laboratory correctly reported the detected analytes. As such, qualification of the data is not required.

- <u>Field duplicates</u>. The parent sample associated with the blind field duplicate was provided by TRC: L2006467-03 (field duplicate) and L2006467-02 (parent sample). Given the differences between the reported parent sample and field duplicate concentrations were not significant (RPD <50%), qualification of the data was not required.

We appreciate the opportunity to assist TRC on this project. Should you have any questions regarding the information as presented herein, please do not hesitate to contact me.

Respectfully submitted,

SGD ENVIRONMENTAL SERVICES

Linda M. Yates President