

13 British American Boulevard Latham, NY 12110-1405 518.783.1996 Fax 518.783.8397

SITE CHARACTERIZATION REPORT

19 Holt Drive Stony Point, Rockland County, New York Site Number 344048 Contract Work Authorization Number: D006132-11

Shaw Project No.: 134685.1104

May 2011

Prepared for:

Mr. John Miller New York State Department of Environmental Conservation Division of Environmental Remediation Bureau of Program Management, Room 1224 625 Broadway, Albany, NY 12233-7012

Submitted by:

Shaw Environmental & Infrastructure Engineering of New York, P.C. 13 British American Boulevard Latham, New York, 12110

Table of Contents_

1.0	Introduction	1
	1.1 Facility Description and Location	
2.0	Scope of Work	
	2.1 Field Sampling Activities	2
	2.2 Soil Sampling	
	2.2.1 Surficial Soil Sampling	2
	2.2.2 Soil Boring Sampling	
	2.3 Monitoring Well Installation	
	2.4 Groundwater Sampling	
	2.5 Data Quality Control/Quality Assurance and Management	
	2.6 Site Survey	5
3.0	Analytical Results	6
	3.1 Soil Sampling (Surficial and Soil Boring)	6
	3.2 Groundwater Sampling	6
	3.2.1 Groundwater Samples – Monitoring Wells	<i>6</i>
	3.3 Quality Assurance/Quality Control (QA/QC)	6
	3.4 Data Usability Summary Report (DUSR)	6
4.0	Investigation Findings	8
List	of Tables	
Table	r 5	
Table		
Table	Summary of Groundwater Analytical Results – February, 2011	
1 ! - 4	of Flavores	
LIST	of Figures	
Figure	1 Site Location Map	
Figure	•	
Figure	1	
Figure		
Figure	1 6	
riguie	5 Orbanawater Sampling Results	

List of Appendices_

- A.
- Photolog Field Notes B.
- C. Drill Logs
- Well Development Logs and Field Sampling Data Sheets D.
- Drum Disposal Manifests E.
- Analytical Data Packages Soil and Groundwater (Provided on CD) F.
- Data Usability Summary Reports (DUSR) G.

1.0 Introduction

Shaw Environmental & Infrastructure Engineering of New York, P.C. (Shaw) has prepared this Site Characterization (SC) Report summarizing the collection of soil and groundwater samples at the Holt Drive Property (Site Number 344048) located at 19 Kay Fries Drive (also known as Holt Drive), Stony Point, Rockland County, New York (Site) (**Figure 1**). The primary purpose of the SC was to determine the presence, nature and extent of chlorinated solvents in soil and groundwater and whether the Site or soil and groundwater quality conditions at the Site represents a significant threat to human health and/or the environment.

1.1 Facility Description and Location

Operational/Disposal History

The Site was historically operated by Chromatic Paints (Chromatic). Chromatic manufactured specialty coatings for the sign industry. Gotham Ink and Color Company purchased the property in 1991 and is the current occupant. Current operations are reported to use non-halogenated solvents in the production of ink and to clean equipment. All solvents are reported to be stored in aboveground tanks inside the facility and wastes are reportedly disposed of off-site based upon information provided to Shaw.

This Site was identified as being of potential concern during an off-site Preliminary Site Assessment (PSA) for the nearby Kay Fries Drive Site (Site No. 344023). In June 1998 a PSA was prepared for the Kay Fries Site as well as the adjacent property to the west, Stony Point Electronics, located at 15 Holt Drive. The PSA included the installation of seven monitoring wells (3 deep /4 shallow) two of which are on the adjacent property. Groundwater data generated during the PSA showed exceedances of pertinent New York State groundwater standards in shallow groundwater monitoring wells for 1,1,1-Trichloroethane (1,1,1-TCA) and 1,1-Dichloroethene at maximum levels of 680 and 62 μ g/L, respectively. The PSA did not identify a clear source of contamination which warranted further investigation.

As discussed above, the intent of this investigation was to determine if conditions at the Site presents a significant threat to human health and/or the environment. The scope of work is detailed in **Section 2.0** of this report.

2.0 Scope of Work

2.1 Field Sampling Activities

The scope of work included the collection of six surficial soil samples; five of the six surficial soil locations were completed as soil borings. Three of the soil borings were completed as monitoring wells. **Figure 2** is included as a Site Map and presents the locations of each of these sampling points.

One visit was made to the Site and surrounding properties prior to the initiation of site assessment activities. On October 22, 2010 Shaw personnel met with New York State Department of Environmental Conservation (NYSDEC) to conduct a site walk and discuss the proposed scope of work. The procedures and results of the Site investigative activities are detailed below. A photographic log is included as **Appendix A.**

2.2 Soil Sampling

2.2.1 Surficial Soil Sampling

Six surficial soil samples (SS-1 through SS-6) were collected on January 4, 2011 at the locations indicated on **Figure 2**. The surfical samples were collected from 0-2 inches below ground surface (bgs) in all locations except for SS-2 and SS-6 which were collected from 0-6 inches bgs due to their locations on asphalt. All samples were collected using a clean, stainless steel scoop and placed directly into the sample jars. All sampling tools and field instruments were decontaminated with an alconox rinse between locations following the procedures outlined in the Quality Assurance Program Plan (QAPP). The surficial soil samples were logged by a Shaw geologist using the Unified Soil Classification System (ASTM D 2487-85) and field screened for VOCs using a MiniRaeTM PID. The surficial soils consist mostly of Brown fine to medium Sand. Field notes are included as **Appendix B**.

All samples were sent to Katahdin Analytical Services (Kathadin) in Scarborough, Maine for full Target Compound List (TCL) analytes (including volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs), total and dissolved metals, mercury, cyanide, pesticides and poly-clorinated biphenyls (PCBs)) as requested by the approved Work Authorization (WA).

2.2.2 Soil Boring Sampling

Five of the six surficial soil sample locations were advanced as soil borings by the drilling subcontractor, Parratt-Wolff, Inc between January 4 and January 6, 2011. The soil borings were advanced through the unconsolidated deposits to a maximum depth of 28 feet below ground surface (bgs). The soil borings were logged by a Shaw geologist using the Unified Soil Classification System (ASTM D 2487-85) and field screened for VOCs using a MiniRaeTM PID calibrated to 100 parts per million (ppm) of isobutylene. Field notes are included as **Appendix B**.

Soil samples were collected continuously from the ground surface to the top of the groundwater table using rig mounted 4 ½" augers with a 2-foot split spoon sampler. The "split spoons" were logged to provide vertical characterization of any impacts as well as stratigraphic information for the Site. The borings were advanced to a maximum depth of 28 feet bgs for the collection of soil samples at locations which exhibited the highest PID reading and/or were secured at or near the water table interface.

All samples were sent to Katahdin for full TCL list of analytes including VOCs, SVOCs, total metal and dissolved metals, mercury, cyanide, pesticides and PCBs. The following samples were secured for laboratory analysis:

- SB-2 (17'-19');
- SB-3 (24'-26');
- SB-4 (20'-22');
- SB-5 (18'-21.5'); and
- SB-6 (16'-20').

Decontamination procedures between each sample and sampling location followed the procedures outlined in the QAPP. Boring logs (Drill Logs) are included in **Appendix C**. Soil cuttings were containerized and staged onsite for disposal by an approved sub contractor.

2.3 Monitoring Well Installation

The monitoring wells were installed as directed by the NYSDEC at three of the five soil boring locations. The soil boring and monitoring well correlation is as follows:

- SB-2 converted to MW-3A;
- SB-5 converted to MW-2A; and
- SB-6 converted to MW-1A.

The monitoring wells were constructed using schedule 40 PVC 10-slot screen and riser and finished with protective roadbox covers; the construction specifics are included in the drill logs in **Appendix C**. The monitoring wells were allowed to "cure" and were developed on January 7, 2011. The wells were developed using a submersible pump with clean polyethylene tubing. As detailed in the Site field sheets, 10 well volumes were removed from the wells during development of MW-1A, MW-2A and MW-3A. Development water was containerized and staged onsite for disposal by an approved sub contractor.

2.4 Groundwater Sampling

On February 7, 8 and 10, 2011 groundwater samples were collected from the newly installed monitoring wells (MW-1A, MW-2A, MW-3A) as well as from existing shallow monitoring wells installed during the June 1998 PSA (MW-4 and MW-8). The monitoring wells were gauged for depth to water and depth to bottom prior to being sampled. A groundwater contour map is included as **Figure 3**.

Groundwater samples were collected using the low-flow methodology with a battery powered peristaltic GeoPump® with clean dedicated polyethylene tubing in accordance with Shaw's Field Activities Plan (FAP). Groundwater field parameters (pH, temperature, specific conductivity, dissolved oxygen and oxidation reduction potential) were allowed to stabilize prior to sampling. A copy of the well development and field sampling data sheets is included in **Appendix D**. Table 1 summarizes monitoring well gauging and parameter readings. The groundwater samples were sent to Katahdin for full TCL list analtyes (VOCs, SVOCs, total and dissolved metals, mercury, cyanide, pesticides and PCBs.) A matrix spike and matrix spike duplicate were collected at MW-8 and a blind field duplicate was collected from MW-3A. All purged groundwater was collected and transferred into the well development drums staged onsite.

On April 14, 2011 a total of 13 drums of drill cuttings and purge water were disposed of by Innovative Recycling Technologies of Lindenhurst, NY and transported by Freehold Cartage, Inc. for disposal at EPA registered facility Vexor Technology, Inc in Medina, OH. A copy of the drum disposal manifests are included as **Appendix E**.

2.5 Data Quality Control/Quality Assurance and Management

All analytical data (**Appendix F** – provided on CD) generated throughout the course of this investigation was sent for third party validation. Environmental Data Validation, Inc. reviewed all the generated data and prepared a Data Usability Summary Report (DUSR) for each package (**Appendix G**).

2.6 Site Survey

On February 18, 2010, CT Male and Associates of Latham, NY (CT Male) completed a survey of the Site, surrounding properties and newly installed groundwater monitoring wells. CT Male provided Shaw with coordinates in NYS Plane NAD 1983 and groundwater monitoring well elevations in NAVD 1988. Using the information provided by CT Male, Shaw determined the groundwater elevation of each of the monitoring wells and created a site groundwater contour map.

The ground surface of the general area surrounding the site slopes gently to the northeast of Kay Fries or Holt Drive. Groundwater contour maps were prepared using the groundwater elevation data obtained during the February sampling event and are presented as **Figure 3**. The groundwater elevation difference between MW-3A and MW-1A was 11.72. The horizontal hydraulic gradient for the February event is relatively flat-0.0404 (MW-3 to MW-1). Groundwater appears to be flowing in a northern direction toward Kay Fries Drive.

3.1 Soil Sampling (Surficial and Soil Boring)

The analytical results are summarized and compared to NYSDEC Recommended Soil Cleanup Objectives (RSCOs) for unrestricted use as defined by 6 NYCRR part 375 (December 2006) on **Table 1**. The complete analytical data package is included as **Appendix F**. None of the compounds detected in any of the soil boring samples exceeded NYSDEC RSCO standards. Compounds detected above pertinent laboratory or method detection limits are presented on **Figure 4**.

3.2 Groundwater Sampling

3.2.1 Groundwater Samples – Monitoring Wells

The analytical results from the February 2011 sampling event are summarized and compared to New York State Groundwater Quality Standards (NYSGWQS) as defined in the Technical and Operational Guidance Series (TOGS) 1.1.1 for ambient water quality on **Table 2** and **Figure 5**. The complete analytical data package is included as **Appendix F**. The field data and groundwater parameters collected during the February sampling event are summarized in **Table 3**. The February 2011 groundwater sampling events detected at least one analyte at concentrations at or above the NYSGWQS in the samples collected from MW-1A, MW-2A, MW-3A, MW-4 and MW-8.

3.3 Quality Assurance/Quality Control (QA/QC)

QA/QC samples were collected and analyzed to evaluate field and laboratory quality control. Results are included in the laboratory packages (**Appendices F**). The relative percent difference for duplicate samples were acceptable. The matrix spike samples were also acceptable.

3.4 Data Usability Summary Report (DUSR)

All DUSRs produced for this project by Environmental Data Validation, Inc. are included as **Appendix G**. In general all data is good and considered usable.

As noted in the DUSR for SE0092 (soil and groundwater), most sample results are usable as reported, or usable with minor qualification due to sample matrix or to processing outliers. One result of 3-3-Dichlorobenzidine for SS-5 (0-2") is not usable due to an apparent matrix effect.

Two SVOCs (Hexachlorocyclopentadiene and 2,4-Dinitrophenol) in the equipment blank soils (EB-1 and EB-2) are not usable due to laboratory processing. The holding times, surrogates, matrix spikes, field quality control and compound quantitation were all acceptable with the exception of that for iron in the total fraction of groundwater sample MW-3A. The result for Iron in the parent sample and its duplicate has been qualified as an estimated value. The result for 1,1,1- TCA in MW-2A was qualified as being tentative in identification and an estimated value which should be used with caution as potential false positive and/or elevated quantitative value.

4.0 Investigation Findings

Soil and groundwater data generated during the course of Site investigative activities indicate the following findings:

- 1. There were no analytes detected above the RSCOs for unrestricted use in any of the surficial soil samples or soil boring samples.
- 2. Based upon groundwater measurements collected and topography, groundwater is flowing northerly, across the Site. Hydraulic gradients for the February event are relatively flat -0.0404 feet/foot (MW-3A to MW-1A).
- 3. Analytes equal or exceeding the NYSGWQS were found in 5 of the 5 groundwater samples collected from the existing (MW-4 and MW-8) and newly installed (MW-1A, MW-2A, MW-3A) shallow monitoring wells. Results exceeding the NYSDGWQS are as follows:
 - 1,1,1-TCA [5 μ g/l] 5 J NJ μ g/l (MW-2A); 6 μ g/l (MW-8); 10 μ g/l (MW-1A);
 - Iron $[300 \,\mu\text{g/l}] 1,580 \,\mu\text{g/l} \,(\text{MW-1A})$ and $2,410 \,\mu\text{g/l} \,(\text{MW-4})$;
 - Sodium $[20,000 \,\mu\text{g/l}] 27,500 \,\mu\text{g/l} \,(MW-2A); 97,500 \,\mu\text{g/l} \,(MW-3A); 36,800 \,\mu\text{g/l} \,(MW-4); 36,300 \,\mu\text{g/l} \,(MW-8); 49,800 \,\mu\text{g/l} \,(MW-1A).$

Analyte				SS-1 (0-2")	SS-2 (0-6")	SB-2 (17'-19')	SS-3 (0-2")	SB-3 (24'-26')	SS-4 (0-2")	SB-4 (20-22')	SS-5 (0-2")	SB-5 (18-21.5')	SS-6 (0-6")	SB-6 (16-20')	SS-DUP	SB-DUP	EB-1 WATER	EB-2 WATER
	NYSDEC Soil Cleanup Objectives (Unrestricted)	NYSDEC Soil Cleanup Objectives (Commericial)	NYSDEC Soil Cleanup Objectives (Industrial)															
Sample Date	objectives (omesaicted)	objectives (commercial)	objectives (massinii)	1/4/2011	1/4/2011	1/4/2011	1/4/2011	1/4/2011	1/4/2011	1/5/2011	1/5/2011	1/5/2011	1/6/2011	1/6/2011			1/6/2011	1/6/2011
Î	•				<u> </u>	L.		L.	VOCs		L.					•	· ·	
Chloromethane	-	-	-	< 0.012	< 0.013	< 0.012	< 0.013	< 0.012	< 0.012	< 0.012	< 0.012	< 0.010	< 0.011	< 0.012	< 0.011	< 0.012	< 0.002	< 0.002
Bromomethane	=	=	-	< 0.012	< 0.013	< 0.012	< 0.013	< 0.012	< 0.012	< 0.012	< 0.012	< 0.010	< 0.011	< 0.012	< 0.011	< 0.012	< 0.002	< 0.002
Vinyl Chloride	0.02	13	27	< 0.012	< 0.013	< 0.012	< 0.013	< 0.012	< 0.012	< 0.012	< 0.012	< 0.010	< 0.011	< 0.012	< 0.011	< 0.012	< 0.002	< 0.002
Chloroethane	-	-	-	< 0.012	< 0.013	< 0.012	< 0.013	< 0.012	< 0.012	< 0.012	< 0.012	< 0.010	< 0.011	< 0.012	< 0.011	< 0.012	< 0.002	< 0.002
Methylene Chloride	0.05	500 ^b	1,000°	< 0.029	< 0.032	< 0.031	< 0.032	< 0.029	< 0.030	< 0.030	< 0.030	< 0.026	< 0.028	< 0.030	< 0.027	< 0.029	< 0.005	< 0.005
Acetone	0.05	500 ^b	1,000°	< 0.029	0.017J	0.023J	0.022J	< 0.029	0.009J	0.009J	0.010J	0.008J	0.009J	0.010J	0.006J	< 0.029	< 0.005	< 0.005
Carbon Disulfide	-	-	-	< 0.006	< 0.006	< 0.006	< 0.006	< 0.006	< 0.006	< 0.006	< 0.006	< 0.005	< 0.006	< 0.006	< 0.005	< 0.006	< 0.001	< 0.001
1,1-Dichloroethene	0.33	500 ^b	1,000°	< 0.006	< 0.006	< 0.006	< 0.006	< 0.006	< 0.006	< 0.006	< 0.006	< 0.005	< 0.006	< 0.006	< 0.005	< 0.006	< 0.001	< 0.001
1,1-Dichloroethane	0.27	240	480	< 0.006	< 0.006	< 0.006	< 0.006	< 0.006	< 0.006	< 0.006	< 0.006	< 0.005	< 0.006	< 0.006	< 0.005	< 0.006	< 0.001	< 0.001
cis-1,2-Dichloroethene	0.25	500 ^b	1,000°	< 0.006	< 0.006	< 0.006	< 0.006	< 0.006	< 0.006	< 0.006	< 0.006	< 0.005	< 0.006	< 0.006	< 0.005	< 0.006	< 0.001	< 0.001
trans-1,2-Dichloroethene	0.19	500 ^b	1.000°	< 0.006	< 0.006	< 0.006	< 0.006	< 0.006	< 0.006	< 0.006	< 0.006	< 0.005	< 0.006	< 0.006	< 0.005	< 0.006	< 0.001	< 0.001
Chloroform	0.37	350	700	< 0.006	< 0.006	< 0.006	< 0.006	< 0.006	< 0.006	< 0.006	< 0.006	< 0.005	< 0.006	<0.006	< 0.005	< 0.006	< 0.001	< 0.001
1,2-Dichloroethane	-	-	-	< 0.006	< 0.006	< 0.006	< 0.006	< 0.006	< 0.006	< 0.006	< 0.006	< 0.005	< 0.006	< 0.006	< 0.005	< 0.006	< 0.001	< 0.001
1,3-Dichlorobenzene	2.4	280	560	< 0.006	< 0.006	< 0.006	< 0.006	< 0.006	< 0.006	< 0.006	< 0.006	< 0.005	< 0.006	< 0.006	< 0.005	< 0.006	< 0.001	< 0.001
2-Butanone	-	-	-	< 0.029	< 0.032	< 0.031	< 0.032	< 0.029	< 0.030	< 0.030	<0.030 UJ	< 0.026	< 0.028	< 0.030	< 0.027	< 0.029	< 0.005	< 0.005
1,1,1-Trichloroethane	0.68	500 ^b	1,000°	< 0.006	< 0.006	< 0.006	< 0.006	< 0.006	< 0.006	< 0.006	< 0.006	< 0.005	< 0.006	< 0.006	< 0.005	< 0.006	< 0.001	< 0.001
Carbon Tetrachloride	0.76	22	44	< 0.006	< 0.006	< 0.006	< 0.006	< 0.006	< 0.006	< 0.006	< 0.006	< 0.005	< 0.006	< 0.006	< 0.005	< 0.006	< 0.001	< 0.001
Bromodichloromethane	-	=	-	< 0.006	< 0.006	< 0.006	< 0.006	< 0.006	< 0.006	< 0.006	< 0.006	< 0.005	< 0.006	< 0.006	< 0.005	< 0.006	< 0.001	< 0.001
1,2-Dichloropropane	-	-	=	< 0.006	< 0.006	< 0.006	< 0.006	< 0.006	< 0.006	< 0.006	< 0.006	< 0.005	< 0.006	< 0.006	< 0.005	< 0.006	< 0.001	< 0.001
cis-1,3-Dichloropropene	-	-	-	< 0.006	< 0.006	< 0.006	< 0.006	< 0.006	< 0.006	< 0.006	<0.006 UJ	< 0.005	< 0.006	< 0.006	< 0.005	< 0.006	< 0.001	< 0.001
Trichloroethene	0.47	200	400	0.003J	< 0.006	< 0.006	0.002J	< 0.006	0.003J	< 0.006	< 0.006	0.0009J J ¹	< 0.006	0.0009J	< 0.005	0.0007J	< 0.001	< 0.001
Dibromochloromethane	-	-	-	<0.006 UJ	< 0.006	< 0.006	< 0.006	< 0.006	< 0.006	< 0.006	< 0.006	< 0.005	< 0.006	< 0.006	< 0.005	< 0.006	< 0.001	< 0.001
1,1,2-Trichloroethane	-	-	-	< 0.006	< 0.006	< 0.006	< 0.006	< 0.006	< 0.006	< 0.006	< 0.006	< 0.005	< 0.006	< 0.006	< 0.005	< 0.006	< 0.001	< 0.001
Benzene	0.06	44	89	< 0.006	< 0.006	< 0.006	< 0.006	< 0.006	< 0.006	< 0.006	< 0.006	< 0.005	< 0.006	<0.006	< 0.005	<0.006	< 0.001	< 0.001
t-1,3-Dichloropropene	-	-	-	< 0.006	< 0.006	< 0.006	< 0.006	< 0.006	< 0.006	< 0.006	< 0.006	< 0.005	<0.006	<0.006	< 0.005	<0.006	< 0.001	< 0.001
Bromoform	<u> </u>	-	-	<0.006 UJ	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.005	<0.006	<0.006	< 0.005	<0.006	<0.001	< 0.001
4-Methyl-2-Pentanone 2-Hexanone	-	-	-	<0.029 < 0.029 UJ	<0.032	<0.031 <0.031	<0.032 <0.032	<0.029 <0.029	<0.030 <0.030	<0.030 <0.030	<0.030 UJ <0.030 UJ	<0.026 <0.026	<0.028 <0.028	<0.030 <0.030	<0.027 <0.027	<0.029 <0.029	<0.005 <0.005	<0.005
Tetrachloroethene	1.3	150	300	0.005J	<0.006	< 0.001	0.004J	< 0.029	0.005.I	< 0.006	0.003J	< 0.026	<0.028	<0.006	<0.027	<0.029	<0.003	<0.003
1.1.2.2-Tetrachloroethane	-	-	300	<0.0053	<0.006	<0.006	< 0.006	<0.006	<0.006	<0.006	<0.0053	<0.005	<0.006	<0.006	< 0.005	<0.006	< 0.001	< 0.001
Toluene	0.7	500 ^b	1.000°	<0.006	<0.006	< 0.006	<0.006 UJ	< 0.006	<0.006 U.I	< 0.006	<0.006	< 0.005	< 0.006	<0.006	< 0.005	<0.006	0.002	0.001
	1.1	500 ^b	1,000 1,000 ^c		<0.006	<0.006	<0.006	<0.006	<0.000 CJ	<0.006	<0.006	< 0.005	<0.006		< 0.005	<0.006		< 0.002
Chlorobenzene Ethyl Panzana		390	780	<0.006 UJ <0.006 UJ	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.005 <0.005	<0.006	<0.006 <0.006	<0.005 <0.005	<0.006	<0.001	<0.001
Ethyl Benzene Styrene	1 -	390	780	<0.006 UJ	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006 < 0.006 UJ	<0.005	<0.006	<0.006	<0.005	<0.006	<0.001	<0.001
	0.26	500 ^b	1.000°	0.006J J ¹	< 0.000	<0.012	0.004J	<0.000	0.004J	<0.012	0.002J	<0.003	<0.000	<0.012	<0.003	<0.000	<0.001	<0.001
m/p-Xylenes		500 ^b	,															
o-Xylene 1.2- Dichloroethylene (total)	0.26		1,000°	0.004J J ¹ <0.012	<0.006 <0.013	<0.006 <0.012	0.003J <0.013	<0.006 <0.012	0.004J <0.012	<0.006 <0.012	0.002 J <0.012	<0.005 <0.010	<0.006 <0.011	<0.006 <0.012	<0.005 <0.011	<0.006 <0.012	<0.001 <0.002	<0.001
-,, ()		- soob	- 1 000°				101010					101010	101011					
Xylenes (total)	0.26	500 ^b	1,000°	0.010J J ¹	< 0.019	< 0.019	0.007J	< 0.018	0.008J	< 0.018	0.004J	< 0.016	< 0.017	< 0.018	< 0.016	< 0.017	< 0.003	< 0.003

Notes:
Analytical results presented in mg/kg (ppm).

NYSDEC Soil Cleanup Objectives obtained from 6 NYCRR Part 375, Table A - Unrestricted use; Table B - Restricted commercial use; Table C- Restricted industrial use

= The SCOs for commercial use were capped at a maximum value of 500 ppm.

= For constituents where the calculated SCO was lower than the rural soil background concentration, the rural soil background is used.

= For constituents where the calculated SCO was lower than the rural soil background concentration, the rural

**I **SCO's for industrial use and the protection of groundwater were capped at a maximum value of 1000ppm

**Bold = Analyte detected above laboratory method detection limits

**SB-DUP collected from SB-6 (16-20')

**SB-DUP collected from SB-6 (0-6'')

**< = Analyte not detected above laboratory method detection limits

**J = Indicates an estimated value

— indicates air estimated value

if a The analyte was positively identified; the associated numerical value is an approximate [] of the analyte in the sample.

JJ = The analyte was not detected. The associated reported quantitation limit is an estimate and may be innacurate or imprecise.

= No Soil cleanup objective listed for analyte

X:\MG\NYSDEC 2008 Contracts\11 - Holt Drive Industrial Site\Reports\Site Characterization\Table 1.xlsx Page 1 of 4

Analyte		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	SS-1 (0-2")	SS-2 (0-6")	SB-2 (17'-19')	SS-3 (0-2")	SB-3 (24'-26')	SS-4 (0-2")	SB-4 (20-22')	SS-5 (0-2")	SB-5 (18-21.5')	SS-6 (0-6")	SB-6 (16-20')	SS-DUP	SB-DUP	EB-1 WATER	EB-2 WATE
	NYSDEC Soil Cleanup Objectives (Unrestricted)	NYSDEC Soil Cleanup Objectives (Commericial)	NYSDEC Soil Cleanup Objectives (Industrial)															
Sample Date	Objectives (Cinestricted)	Objectives (Commercial)	Objectives (industrial)	1/4/2011	1/4/2011	1/4/2011	1/4/2011	1/4/2011	1/4/2011	1/5/2011	1/5/2011	1/5/2011	1/6/2011	1/6/2011			1/6/2011	1/6/2011
*	J.		U.		<u> </u>				SVOCs						U.	I		
Phenol	0.33 ^b	500 ^b	1,000 ^c	< 0.380	< 0.420	< 0.400	<.380	< 0.410	< 0.420	< 0.390	< 0.400	< 0.380	< 0.360	< 0.400	< 0.380	< 0.390	< 0.009	< 0.009
Bis (2-Chloroethyl) Ether	-	-	-	<0.380 <0.380	<0.420 <0.420	<0.400 <0.400	<.380 <.380	<0.410 <0.410	<0.420 <0.420	<0.390 <0.390	<0.400 <0.400	<0.380 <0.380	<0.360 <0.360	<0.400 <0.400	<0.380 <0.380	<0.390	<0.009 <0.009	<0.009 <0.009
2-Chlorophenol 1.3-Dichlorobenzene	-	-	-	<0.380	<0.420	<0.400	<.380	< 0.410	<0.420	<0.390	<0.400	<0.380	<0.360	<0.400	<0.380	<0.390	<0.009	<0.009
1,4-Dichlorobenzene	-	-	-	< 0.380	< 0.420	< 0.400	<.380	< 0.410	< 0.420	< 0.390	< 0.400	< 0.380	< 0.360	< 0.400	< 0.380	< 0.390	< 0.009	< 0.009
1,2-Dichlorobenzene	-	-	-	<0.380	<0.420	<0.400	<.380	<0.410	<0.420	<0.390 <0.390	<0.400	<0.380	<0.360	<0.400 <0.400	< 0.380	<0.390 <0.390	<0.009	<0.009
2-Methylphenol 2,2'-Oxybis (1-Chloropropane)	-	-	-	<0.380 <0.380	<0.420 <0.420	<0.400 <0.400	<.380 <.380	<0.410 <0.410	<0.420 <0.420	<0.390	<0.400 <0.400	<0.380 <0.380	<0.360 <0.360	<0.400	<0.380 <0.380	<0.390	<0.009 <0.009	<0.009
N-Nitroso-di-n-propylamine	-	-	-	< 0.380	<0.420	< 0.400	<.380	< 0.410	<0.420	<0.390	<0.400	<0.380	< 0.360	<0.400	< 0.380	<0.390	< 0.009	< 0.009
3&4-Methylphenol	-	-	-	<0.380 <0.380	<0.420	< 0.400	<.380	<0.410	<0.420	<0.390	< 0.400	<0.380 <0.380	<0.360 <0.360	<0.400	<0.380	<0.390	<0.009	<0.009
Hexachloroethane Nitrobenzene	-	-	-	<0.380	<0.420 <0.420	<0.400 <0.400	<.380 <.380	<0.410 <0.410	<0.420 <0.420	<0.390	<0.400 <0.400	<0.380	<0.360 <0.360	<0.400	<0.380	<0.390 <0.390	<0.009	<0.009
Isophorone	-	-	-	< 0.380	< 0.420	< 0.400	<.380	< 0.410	< 0.420	< 0.390	< 0.400	< 0.380	< 0.360	<0.400	< 0.380	< 0.390	<0.009	< 0.009
2-Nitrophenol	-	-	-	< 0.380	< 0.420	< 0.400	<.380	< 0.410	< 0.420	< 0.390	< 0.400	< 0.380	< 0.360	<0.400	< 0.380	< 0.390	< 0.009	< 0.009
2,4-Dimethylphenol Bis (2-Chloroethoxy) methane	-	-	-	<0.380	<0.420 <0.420	<0.400 <0.400	<.380 <.380	<0.410 <0.410	<0.420 <0.420	<0.390 <0.390	<0.400 <0.400	<0.380 <0.380	<0.360 <0.360	<0.400 <0.400	<0.380 <0.380	<0.390	<0.009 <0.009	<0.009
2,4-Dichlorophenol	-	-	-	<0.380	<0.420	<0.400	<.380	<0.410	<0.420	<0.390	<0.400	<0.380	<0.360	<0.400	< 0.380	<0.390	<0.009	< 0.009
1,2,4-Trichlorobenzene	-	-	-	< 0.380	< 0.420	< 0.400	<.380	< 0.410	< 0.420	< 0.390	< 0.400	< 0.380	< 0.360	< 0.400	< 0.380	< 0.390	< 0.009	< 0.009
Naphthalene	12	500 ^b	1,000°	<0.380	< 0.420	<0.400	<.380	<0.410	< 0.420	<0.390	< 0.400	<0.380	<0.360	<0.400	<0.380	<0.390	<0.009	< 0.009
4-Chloroaniline Hexachlorobutadiene	+ :	-	-	<0.380	<0.420 <0.420	<0.400 <0.400	<.380 <.380	<0.410 <0.410	<0.420 <0.420	<0.390 <0.390	<0.400 <0.400	<0.380 <0.380	<0.360 <0.360	<0.400 <0.400	<0.380 <0.380	<0.390	<0.009	<0.009 <0.009
4-Chloro-3-Methylphenol	-	-	-	< 0.380	<0.420	<0.400	<.380	< 0.410	<0.420	<0.390	<0.400	< 0.380	< 0.360	<0.400	< 0.380	<0.390	<0.009	< 0.009
2-Methylnaphthalene	-	-	-	< 0.380	< 0.420	< 0.400	<.380	< 0.410	< 0.420	< 0.390	< 0.400	< 0.380	< 0.360	<0.400	< 0.380	< 0.390	< 0.009	< 0.009
1-Methylnaphthalene Hexachlorocyclopentadiene	-	-	-	<0.380 <0.380	<0.420 <0.420	<0.400 <0.400	<.380	<0.410 <0.410	<0.420 <0.420	<0.390	<0.400 <0.400	<0.380	<0.360 <0.360	<0.400 <0.400	<0.380 <0.380	<0.390	<0.009 < 0.009 R	<0.009 <0.009 R
2,4,6-Trichlorophenol	-	-	-	< 0.380	< 0.420	< 0.400	< 0.380	< 0.410	< 0.420	< 0.390	< 0.400	< 0.380	< 0.360	<0.400	< 0.380	< 0.390	<0.009	<0.009
2,4,5-Trichlorophenol	-	-	-	< 0.380	<1	<1	< 0.95	<1	<1	< 0.970	< 0.990	< 0.940	< 0.890	<1	< 0.950	< 0.960	<0.024	< 0.024
2-Chloronaphthalene 2-Nitroaniline	-	-	-	<0.380 <0.940	<0.420	<0.400	<0.380 <0.95	<0.410	<0.420	<0.390 <0.970	<0.400 <0.990	<0.380 <0.940	<0.360 0.890	<0.400	<0.380 <0.950	<0.390 <0.960	<0.009 <0.024	<0.009 <0.024
Dimethyl Phthalate	-	-	-	< 0.380	<0.420	<0.400	< 0.380	< 0.410	<0.420	<0.390	<0.400	< 0.380	< 0.360	<0.400	< 0.380	< 0.390	< 0.009	< 0.009
2,6-Dinitrotoluene	-	-	-	< 0.380	< 0.420	< 0.400	< 0.380	< 0.410	< 0.420	< 0.390	< 0.400	< 0.380	< 0.360	< 0.400	< 0.380	< 0.390	< 0.009	< 0.009
Acenaphthylene 3-Nitroaniline	-	-	-	<0.380 <0.940	<0.420	<0.400	<0.380 <0.95	<0.410	<0.420	<0.390 <0.970	<0.400 <0.990	<0.380 <0.940	<0.360 0.890	<0.400	<0.380 <0.950	<0.390 <0.960	<0.009 <0.024	<0.009 <0.024
Acenaphthene	-	-	-	<0.380	<0.420	<0.400	<0.380	<0.410	<0.420	<0.390	<0.400	<0.380	<0.360	<0.400	<0.380	<0.390	<0.024	<0.009
2,4-Dinitrophenol	-	-	-	< 0.940	<1	<1	< 0.95	<1	<1	< 0.970	< 0.990	< 0.940	0.890	<1	< 0.950	< 0.960	<0.024 R	<0.024 R
Dibenzofuran 4-Nitrophenol	-	-	-	<0.380 <0.940	<0.420	<0.400	<0.380 <0.95	<0.410 <1	<0.420	<0.390 <0.970	<0.400 <0.990	<0.380 <0.940	<0.360 0.890	<0.400	<0.380 <0.950	<0.390 <0.960	<0.009 <0.024	<0.009 <.024
2,4-Dinitrotoluene	-	-	-	<0.380	<0.420	<0.400	<0.380	<0.410	<0.420	<0.390	<0.400	<0.380	<0.360	<0.400	<0.380	<0.390	<0.024	<0.009
Diethylphthalate	-	-	-	< 0.380	< 0.420	< 0.400	< 0.380	< 0.410	< 0.420	< 0.390	< 0.400	< 0.380	< 0.360	< 0.400	< 0.380	< 0.390	< 0.009	< 0.009
Fluorene	-	-	-	<0.380	<0.420	<0.400	<0.380	<0.410	<0.420	<0.390 <0.390	<0.400	<0.380 <0.380	<0.360	<0.400	< 0.380	<0.390	<0.009	<0.009
4-Chlorophenyl-phenylether 4-Nitroaniline	-	-	-	<0.380 <0.940	<0.420 <1	<0.400	<0.380 <0.95	<0.410 <1	<0.420 <1	<0.970	<0.400 <0.990	<0.380	<0.360 0.890	<0.400 <1	<0.380 <0.950	<0.390 <0.960	<0.009 <0.024	<0.009 <0.024
4,6-Dinitro-2-Methylphenol	-	-	-	< 0.940	<1	<1	< 0.95	<1	<1	< 0.970	< 0.990	< 0.940	0.890	<1	< 0.950	< 0.960	<0.024 UJ	<0.024 UJ
N-Nitrosodiphenylamine	-	-	-	<0.380	<0.420	<0.400	<0.380	< 0.410	<0.420	<0.390	<0.400	< 0.380	<0.360	<0.400	<0.380	<0.390	<.009	<0.009
4-Bromophenyl-phenylether Hexachlorobenzene	-	-	-	<0.380 <0.380	<0.420 <0.420	<0.400 <0.400	<0.380	<0.410 <.410	<0.420 <0.420	<0.390 <0.390	<0.400 <0.400	<0.380 <0.380	<0.360 <0.360	<0.400 <0.400	<0.380 <0.380	<0.390 <0.390	<.009 <.009	<0.009
Pentachlorophenol	0.8 ^b	6.7	55	< 0.940	<1	<1	< 0.95	<1	<1	< 0.970	< 0.990	< 0.940	0.890	<1	< 0.950	< 0.960	<0.024	< 0.024
Phenanthrene	100	500 ^b	1,000°	< 0.380	< 0.420	< 0.400	0.56	< 0.410	0.390J	< 0.390	0.370J	< 0.380	< 0.360	< 0.400	< 0.380	< 0.390	< 0.009	< 0.009
Anthracene	-	-	-	< 0.380	< 0.420	< 0.400	.110J	< 0.410	< 0.420	< 0.390	< 0.400	< 0.380	< 0.360	<0.400	< 0.380	< 0.390	< 0.009	< 0.009
Carbazole Di-n-butylphthalate	-	-	-	<0.380 <0.380	<0.420 <0.420	<0.400 <0.400	<0.380 <0.380	<0.410 <0.410	<0.420 <0.420	<0.390 <0.390	<0.400 <0.400	<0.380 <0.380	<0.360 <0.360	<0.400 <0.400	<0.380 <0.380	<0.390 <0.390	<0.009 <0.009	<0.009
Fluoranthene	<u> </u>	-	-	<0.380	<0.420	< 0.400	1.9	<0.410	0.88	< 0.390	0.76	< 0.380	<0.360	<0.400	<0.380	< 0.390	<0.009	< 0.009
Pyrene	100	500 ^b	1,000 ^c	< 0.380	< 0.420	< 0.400	1.5	< 0.410	0.72	< 0.390	0.66	< 0.380	< 0.360	< 0.400	< 0.380	< 0.390	< 0.009	< 0.009
Butylbenzylphthalate	-	-	-	< 0.380	<0.420	<0.400	< 0.380	<0.410	<0.420	<0.390	<0.400	< 0.380	<0.360	<0.400	< 0.380	<0.390	<0.009	< 0.009
Benzo(a)anthracene 3.3'-Dichlorobenzidine	+ :	-	-	<0.380 <0.380	<0.420 <0.420	<0.400 <0.400	0.76 < 380	<0.410 <0.410	0.330J <0.420	<0.390 <0.390	0.280J <0.400 R	<0.380 <0.380	<0.360 <0.360	<0.400 <0.400	<0.380 <0.380	<0.390 <0.390	<0.009 <0.009	<0.009 <0.009
Chrysene	<u> </u>	-		< 0.380	<0.420	< 0.400	0.88	<0.410	0.46	<0.390	<0.400 K <0.400	<0.380	< 0.360	<0.400	< 0.380	<0.390	<0.009	< 0.009
bis(2-Ethylhexyl)phthalate	12	500 ^b	1,000 ^c	< 0.380	< 0.420	< 0.400	< 0.380	< 0.410	< 0.420	0.230J	< 0.400	< 0.380	< 0.360	< 0.400	< 0.380	< 0.390	< 0.009	0.033
Di-n-octylphthalate	-	-	-	<0.380 UJ	<0.420	<0.400	< 0.380	<0.410	<0.420	<0.390	<0.400	< 0.380	<0.360	<0.400	< 0.380	<0.390	<0.009	< 0.009
Benzo(b)fluoranthene Benzo(k)fluoranthene	+ -	-	-	<0.380 UJ <0.380 UJ	<0.420 <0.420	<0.400 <0.400	<0.380 0.46	<0.410 <0.410	0.51 0.250J	<0.390 <0.390	0.43 0.220J	<0.380 <0.380	<0.360 <0.360	<0.400 <0.400	<0.380 <0.380	<0.390 <0.390	<0.009 <0.009	<0.009 <0.009
Benzo(a)pyrene		-		<0.380 UJ	< 0.420	< 0.400	0.72	< 0.410	0.390J	< 0.390	0.310J	< 0.380	< 0.360	< 0.400	< 0.380	< 0.390	< 0.009	< 0.009
Indeno(1,2,3-cd)pyrene	-	-	-	<0.380 UJ	<0.420	<0.400	0.43	<0.410	0.240J	<0.390	0.210J	< 0.380	<0.360	<0.400	<0.380	<0.390	<0.009	< 0.009
Dibenzo(a,h)anthracene	 	-	1,000°	<0.380 UJ	<0.420	<0.400	<0.380	<0.410	<0.420	<0.390	<0.400	<0.380	<0.360	<0.400	<0.380	<0.390	<0.009	<0.009
Benzo(g,h,i)perylene	-	-	1,000	<0.380 UJ	< 0.420	< 0.400	0.340J	< 0.410	0.220J	< 0.390	0.180J	< 0.380	< 0.360	< 0.400	< 0.380	< 0.390	< 0.009	<0.009

Notes:

NYSDEC Soil Cleanup Objectives obtained from 6 NYCRR Part 375, Table A - Unrestricted use; Table B - Restricted commercial use; Table C- Restricted industrial use

Bold = Analyte detected above laboratory method detection limits

Shaded = Analyte detected above NYSDEC Soil Cleanup Objectives

SB-DUP collected from SB-6 (16-20')

SS-DUP collected from SS-6 (0-6")

= Indicates an estimated value

UJ = The analyte was not detected. The associated reported quantitation limit is an estimate and may be innacurate or imprecise.

R = The data are unusable. The analyte may or may not be present.
< = Analyte not detected above laboratory method detection limits
- = No Soil cleanup objective listed for analyt

X:\MG\NYSDEC 2008 Contracts\11 - Holt Drive Industrial Site\Reports\Site Characterization\Table 1.xlsx Page 2 of 4

Analyte	AWGDDG G II GI	, wanta a u a	AMADDA A MA	SS-1 (0-2")	SS-2 (0-6")	SB-2 (17'-19')	SS-3 (0-2")	SB-3 (24'-26')	SS-4 (0-2")	SB-4 (20-22')	SS-5 (0-2")	SB-5 (18-21.5')	SS-6 (0-6")	SB-6 (16-20')	SS-DUP	SB-DUP	EB-1 WATER	EB-2 WATER
Sample Date	NYSDEC Soil Cleanup Objectives (Unrestricted)	NYSDEC Soil Cleanup Objectives (Commericial)	NYSDEC Soil Cleanup Objectives (Industrial)	1/4/2011	1/4/2011	1/4/2011	1/4/2011	1/4/2011	1/4/2011	1/5/2011	1/5/2011	1/5/2011	1/6/2011	1/6/2011			1/6/2011	1/6/2011
								P	esticides									
alpha-BHC	0.02	3.4	6.8	<.0018	<.0021	<.0019	<.002	<.002	<.0021	.0008J	0.002	0.0056	.0015J	0.0063	0.003	0.0063	<.00047	<.00047
gamma-BHC	-	-	-	<.0018	<.0021	<.0019	<.002	<.002	<.0021	<.0019	<.002	<.0018	<.0019	<.002	<.0019	<.0019	<.00047	<.00047
Heptachlor	0.042	9.2	29	<.0018	<.0021	<.0019	<.002	<.002	<.0021	<.0019	<.002	<.0018	<.0019	<.002	<.0019	<.0019	<.000047	<.00047
Aldrin	0.005 ^c	0.68	1.4	<.0018	<.0021	<.0019	<.002	<.002	<.0021	<.0019	<.002	<.0018	<.0019	<.002	<.0019	<.0019	<.00047	<.00047
beta-BHC	0.036	3	14	<.0018	<.0021	<.0019	<.002	<.002	<.0021	<.0019	<.002	<.0018	<.0019	<.002	<.0019	<.0019	<.000047	<.00047
delta-BHC	0.04	500 ^b	1,000c	<.0018	<.0021	<.0019	<.002	<.002	<.0021	<.0019	<.002	<.0018	<.0019	<.002	<.0019	<.0019	<.00047	<.00047
Heptachlor Epoxide	-	=	-	<.0018	<.0021	<.0019	<.002	<.002	<.0021	<.0019	<.002	<.0018	<.0019	<.002	<.0019	<.0019	<.000047	<.00047
Endosulfan I	2.4	200 ⁱ	920 ⁱ	.00047J	<.0021	<.0019	<.002	<.002	<.0021	<.0019	<.002	<.0018	<.0019	<.002	<.0019	<.0019	<.00047	<.00047
gamma-Chlordane	-	-	-	<.0018	<.0021	<.0019	<.002	<.002	<.0021	<.0019	<.002	<.0018	<.0019	<.002	<.0019	<.0019	<.000047	<.000047
alpha-Chlordane	0.094	24	47	<.0018	<.0021	<.0019	<.002	<.002	<.0021	<.0019	<.002	<.0018	<.0019	<.002	<.0019	<.0019	<.000047	<.000047
4,4'-DDE	0.0033 ^b	62	120	.00087J	<.0042	<.0038	0.001J	<.0039	.0033J	<.0037	.0015J	.00075J	.00062J	<.0038	.00065J	<.0037	<.000094	<.000094
Dieldrin	0.005°	1.4	2.8	<.0036	<.0042	<.0038	<.0039	<.0039	<.0041	<.0037	<.0038	<.0036	<.0036	<.0038	<.0037	<.0037	<.000094	<.000094
Endrin	0.014	89	410	<.0036	<.0042	<.0038	<.0039	<.0039	<.0041	<.0037	<.0038	<.0036	<.0036	<.0038	<.0037	<.0037	<.000094	<.000094
4,4'-DDD	0.0033 ^b	92	180	<.0036	<.0042	<.0038	<.0039	<.0039	<.0041	<.0037	<.0038	<.0036	<.0036	<.0038	<.0037	<.0037	<.000094	<.000094
Endosulfan II	2.4	200 ⁱ	920 ⁱ	<.0036	<.0042	<.0038	.00075J J ¹	<.0039	<.0041	<.0037	<.0038	<.0036	<.0036	<.0038	<.0037	<.0037	<.000094	<.00094
4,4'-DDT	0.0033 ^b	47	94	<.0036	<.0042	<.0038	.0012J	<.0039	.0032J	<.0037	.0023J	<.0036	<.0036	<.0038	<.0037	<.0037	<.000094	<.000094
Endrin Aldehyde	-	-	-	<.0036	<.0042	<.0038	<.0039	<.0039	<.0041	<.0037	<.0038	<.0036	<.0036	<.0038	<.0037	<.0037	<.000094	<.000094
Endosulfan sulfate	2.4	200 ⁱ	920 ⁱ	<.0036	<.0042	<.0038	<.0039	<.0039	<.0041	<.0037	<.0038	<.0036	<.0036	<.0038	<.0037	<.0037	<.000094	<.00094
Methoxychlor	-	-	-	< 0.018	< 0.021	< 0.019	< 0.020	< 0.020	< 0.021	< 0.019	< 0.020	< 0.018	< 0.019	< 0.020	< 0.019	< 0.019	<.00047	<.00047
Endrin Ketone	-	-	-	.0016J	<.0042	<.0038	<.0039	<.0039	<.0041	<.0037	<.0038	<.0036	<.0036	<.0038	<.0037	<.0037	<.000094	<.00094
Toxaphene	-	-	-	< 0.036	< 0.042	< 0.038	< 0.039	< 0.039	< 0.041	< 0.037	< 0.038	< 0.036	< 0.036	< 0.038	< 0.037	< 0.037	<.00094	<.00094

Notes:
Analytical results presented in mg/kg (ppm).

NYSDEC Soil Cleanup Objectives obtained from 6 NYCRR Part 375, Table A - Unrestricted use; Table B - Restricted commercial use; Table C- Restricted industrial use

= For constituents where the calculated SCO was lower than the rural soil background concentration, the rural soil background is used.

= This SCO is for the sum of Endosulfan I, Endosulfan II, and Endosulfan Sulfate SB-DUP collected from SB-6 (16-20') SS-DUP collected from SS-6 (0-6")

- Used for Pestiicde analyte when there is a greater than 40% difference for detected concentrations between the two GC columns

J¹ = The analyte was positively identified; the associated numerical value is an approximate [] of the analyte in the sample.
<= Analyte not detected above laboratory method detection limits
-= No Soil cleanup objective listed for analyte

- 110 Boll cleanup objective listed it																		
						PCBs												
Aroclor-1016	0.1	1	25	< 0.018	< 0.021	< 0.019	< 0.020	< 0.020	< 0.021	< 0.019	< 0.020	< 0.018	< 0.019	< 0.020	< 0.019	< 0.019	<.00047	<.00047
Aroclor-1221	0.1	1	25	< 0.018	< 0.021	< 0.019	< 0.020	< 0.020	< 0.021	< 0.019	< 0.020	< 0.018	< 0.019	< 0.020	< 0.019	< 0.019	<.00047	<.00047
Aroclor-1232	0.1	1	25	< 0.018	< 0.021	< 0.019	< 0.020	< 0.020	< 0.021	< 0.019	< 0.020	< 0.018	< 0.019	< 0.020	< 0.019	< 0.019	<.00047	<.00047
Aroclor-1242	0.1	1	25	< 0.018	< 0.021	< 0.019	< 0.020	< 0.020	< 0.021	< 0.019	< 0.020	< 0.018	< 0.019	< 0.020	< 0.019	< 0.019	<.00047	<.00047
Aroclor-1248	0.1	1	25	< 0.018	< 0.021	< 0.019	< 0.020	< 0.020	< 0.021	< 0.019	< 0.020	< 0.018	< 0.019	< 0.020	< 0.019	< 0.019	<.00047	<.00047
Aroclor-1254	0.1	1	25	< 0.018	< 0.021	< 0.019	< 0.020	< 0.020	< 0.021	< 0.019	< 0.020	< 0.018	< 0.019	< 0.020	< 0.019	< 0.019	<.00047	<.00047
Aroclor-1260	0.1	1	25	< 0.018	< 0.021	< 0.019	< 0.020	< 0.020	< 0.021	< 0.019	< 0.020	< 0.018	< 0.019	< 0.020	< 0.019	< 0.019	<.00047	<.00047

Analytical results presented in mg/kg (ppm).

NYSDEC Soil Cleanup Objectives obtained from 6 NYCRR Part 375, Table A - Unrestricted use; Table B - Restricted commercial use; Table C- Restricted industrial use
SB-DUP collected from SB-6 (16-20')
SS-DUP collected from SS-6 (0-6")

< = Analyte not detected above laboratory method detection limi

X:\MG\NYSDEC 2008 Contracts\11 - Holt Drive Industrial Site\Reports\Site Characterization\Table 1.xlsx Page 3 of 4

Analyte	NYSDEC Soil Cleanup	NYSDEC Soil Cleanup	NYSDEC Soil Cleanup	SS-1 (0-2")	SS-2 (0-6")	SB-2 (17'-19')	SS-3 (0-2")	SB-3 (24'-26')	SS-4 (0-2")	SB-4 (20-22')	SS-5 (0-2")	SB-5 (18-21.5')	SS-6 (0-6")	SB-6 (16-20')	SS-DUP	SB-DUP	EB-1 WATER	EB-2 WATER
	Objectives (Unrestricted)	Objectives (Commericial)	Objectives (Industrial)															
Sample Date			l .	1/4/2011	1/4/2011	1/4/2011	1/4/2011	1/4/2011	1/4/2011	1/5/2011	1/5/2011	1/5/2011	1/6/2011	1/6/2011		ļ	1/6/2011	1/6/2011
			_						Cyanide (mg/kg									
Aluminum	-	-	-	17200	13400	9280	15000	5820	17400	6100	13200	7480	15000	5490	14800	6790	<15.2	<15.3
Antimony	-	-	-	<0.1 UJ	<0.2 UJ	<0.11 UJ	<0.11 UJ	<0.1 UJ	<0.12 UJ	<0.1 UJ	<0.1 UJ	<0.1 UJ	<0.09 UJ	<0.1 UJ	<0.12 UJ	<0.10 UJ	<1.5	<1.5
Arsenic	13°	16 ^t	16 ^t	4.2	8.5	3.4	3.8	2.1	5.4	2.2	4.2	2.3	3.8	2.2	4.1	2.4	<1.86	<1.86
Barium	350°	400	10,000 ^d	83.1	63	55.9	49.3	35.2	76	36	54.6	36.4	51.6	26.6	51.6	26.4	< 0.44	< 0.44
Beryllium	7.2	590	2,700	0.64	0.62	0.47J	0.55	0.34J	0.73	0.37J	0.56	0.41J	0.65	0.38J	0.63	0.38J	< 0.04	< 0.04
Cadmium	2.5°	9.3	60	0.42J	0.35J	0.24J	0.30J	0.14J	0.34J	0.17J	0.26J	0.19J	0.37J	0.18J	0.28J	0.20J	< 0.04	< 0.04
Calcium	-	-	-	3600	1350	12900	4580	10500	1940	1900	1710	1690	1500	2010	1220	1810	< 5.79	110
Chromium		-	-	13.2	17.4	15.2	13.8	11	16.9	13	13.7	14	15.2	10.5	15.7	14.5	< 0.32	< 0.32
Cobalt	-	-	-	9	10.9	7	7.9	4.8	7.1	5	6.4	5.6	9	4.8	7	5.2	< 0.28	< 0.28
Copper	50	270	10,000 ^d	54.9	25.6	16.8	15.5	10.5	18.7	12.2	16.9	12.7	22.7	11.2	20	12	8.1J	8.5J
Iron	-	=	-	21400 J^1	23200 J ¹	16800 J ¹	17800 J^1	12300 J^1	19600 J ¹	13700 J ¹	17500 J ¹	14300 J^1	20500 J^1	13000 J ¹	20800 J ¹	13600 J ¹	7.6J	95.1J
Lead	63°	1,000	3,900	10.4	10.2	$6 J^1$	13.4	3.4	29.4	3.5 J ¹	20.5	$4.8 J^1$	7.3	3.1	7.3	3.5	< 0.73	< 0.73
Magnesium	-	-	-	4360	4700	6000	3680	3660	3680	2630	3370	2920	4640	2510	3710	3220	<4.83	16.3J
Manganese	1600°	10,000 ^d	10,000 ^d	456	678	278	343	200	440	254	373	270	413	180	334	210	1.0J	2.5J
Mercury	0.18 ^c	2.8 ^j	5.7 ^j	0.02J	0.02J	0.01J	0.16	0.005J	0.08	0.003J	0.04	0.002J	0.02J	0.002Ј	0.02J	0.005J	< 0.04	< 0.04
Nickel	30	310	10,000 ^d	14.5	20.9	14.4	15.1	9.4	14.6	10.2	13.6	11.3	16.7	9.3	13.8	11.4	0.36J	0.55J
Potassium	-	-		1280 J ¹	1910 J ¹	2000 J ¹	1350 J^1	1340 J^1	1470 J ¹	1320 J ¹	1270 J ¹	1450 J^1	1720 J ¹	1100 J^1	1660 J^1	1400 J ¹	<105	11.7J
Selenium	3.9c	1,500	6,800	< 0.35	< 0.35	< 0.38	< 0.37	< 0.37	< 0.41	< 0.34	< 0.34	< 0.35	< 0.33	< 0.34	< 0.42	< 0.37	<3.67	<3.68
Silver	2	1,500	6,800	0.23J	0.56J	0.24J	0.21J	0.18J	0.30J	0.27J	0.26J	0.25J	0.19J	0.21J	0.37J	0.25J	< 0.48	< 0.49
Sodium	-	-	=-	450	481	161	82.3J	123	110	176	106	160	388	110	339	128	43.4J	143J
Thallium	-	-	-	< 0.15	< 0.3	< 0.16	< 0.16	< 0.15	< 0.17	< 0.14	< 0.14	< 0.15	< 0.14	< 0.14	< 0.18	< 0.15	< 0.67	< 0.67
Vanadium	-	-	-	44.2	21.9	20,2	26.3	14.3	29.2	17.6	22.8	18.9	28.4	15.5	25.8	16.7	< 0.39	< 0.39
Zinc	109 ^c	10,000 ^d	10,000 ^d	52.2	52.9	37.3	43.2	22.9	57.5	26.4	48.5	28.6	42.2	22.9	39.1	25.8	12.3J	10.7J
Cyanide				<.55	<.6	<.6	<.6	<.6	<.6	<.55	<.6	<.55	<.55	<.55	<.55	<.55	<10	<10

Page 4 of 4

Notes:

Metals data are presented in mg/kg (ppm).

NYSDEC Soil Cleanup Objectives obtained from 6 NYCRR Part 375, Table A - Unrestricted use; Table B - Restricted commercial use; Table C- Restricted industrial use

= For constituents where the calculated SCO was lower than the rural soil background concentration, the rural soil background is used.

F = For constituents where the calculated SCO was lower than the rural soil background concentration, the rural soil background is used.

| The SCOs for metals were capped at a maximum value of 10,000 ppm
| F = For constituents where the calculated SCO was lower than the rural soil background concentration as determined by the DEC/DOH rural soil survey, the rural soil background concentration is used as the Track 2 SCO value for this use of the site.
| F = This SCO is the lower of the values for mercury (elemental) or mercury (inorganic salts)
| Bold = Analyte detected above laboratory method detection limits
| SB-DUP collected from SB-6 (16-20)
| SS-DUP collected from SS-6 (0-6")
| = Analyte not detected above laboratory method detection limits
| J = This flag indicates an estimated value | This flag ind

J = This riag influences an estimated value?

J = The analyte was positively identified; the associated numerical value is an approximate [] of the analyte in the sample.

UJ = The analyte was not detected. The associated reported quantitation limit is an estimate and may be innacurate or imprecise.

X:\MG\NYSDEC 2008 Contracts\11 - Holt Drive Industrial Site\Reports\Site Characterization\Table 1.xlsx

Sample I.D.		MW-2A	MW-3A	MW-8	ERB-1	ERB-2	DUP	MW-1A	MW-4
	NYSDEC Guidance								
Sample Date		2/7/2011	2/7/2011	2/7/2011	2/7/2011	2/7/2011	2/7/2011	2/8/2011	2/10/2011
<u> </u>	"			VOCs					
Chloromethane	5*	<2	<2	<2	<2	<2	<2	<2	<2
Bromomethane	5*	<2	<2	<2	<2	<2	<2	<2	<2
Vinyl Chloride	2	<2	<2	<2	<2	<2	<2	<2	<2
Chloroethane	5*	<2	<2	<2	<2	<2	<2	<2	<2
Methylene Chloride	5*	<5	<5	<5	<5	<5	<5	<5	<5
Acetone	50	<5	<5	<5	<5	<5	<5	<5	<5
Carbon Disulfide	60	<1	<1	<1	<1	<1	<1	<1	<1
1,1-Dichloroethene	5*	< 1	<1	2	<1	<1	<1	4	4 J
1,1-Dichloroethane	5*	<1	<1	<1	<1	<1	<1	<1	<1
cis-1,2-Dichloroethene	5*	<1	<1	<1	<1	<1	<1	<1	<1
trans-1,2-Dichloroethene	5*	<1	<1	<1	<1	<1	<1	<1	<1
Chloroform	7	<1	<1	<1	<1	<1	<1	<1	<1
1,2-Dichloroethane	0.6	<1	<1	<1	<1	<1	<1	<1	<1
2-Butanone	50	<5	<5	<5	<5	<5	<5	<5	<5
1,1,1-Trichloroethane	5*	5 J NJ	<1	6	<1	<1	<1	10	<1
Carbon Tetrachloride	5	<1	<1	<1	<1	<1	<1	<1	<1
Bromodichloromethane	50	<1	<1	<1	<1	<1	<1	<1	<1
1,2-Dichloropropane	1	<1	<1	<1	<1	<1	<1	<1	<1
cis-1,3-Dichloropropene	0.4**	<1	<1	<1	<1	<1	<1	<1	<1
Trichloroethene	5*	<1	<1	<1	<1	<1	<1	<1	<1
Dichlorodifluoromethane	NGV	<1	<1	<1	<1	<1	<1	<1	<1
1,1,2-Trichloroethane	1	<1	<1	<1	<1	<1	<1	<1	<1
Benzene	1	<1	<1	<1	<1	<1	<1	<1	<1
t-1,3-Dichloropropene	0.4**	<1	<1	<1	<1	<1	<1	<1	<1
Bromoform	50	<1	<1	<1	<1	<1	<1	<1	<1
4-Methyl-2-Pentanone	NGV	<5	<5	<5	<5	<5	<5	<5	<5
2-Hexanone	50	<5	<5	<5	<5	<5	<5	<5	<5
Tetrachloroethene	5*	<1	<1	<1	<1	<1	<1	<1	<1
1,1,2,2-Tetrachloroethane	5*	<1	<1	<1	<1	<1	<1	<1	<1
Toluene	5*	<1	<1	<1	6 J	5 J	<1	<1	<1
Chlorobenzene	5*	<1	<1	<1	<1	<1	<1	<1	<1
Ethyl Benzene	5*	<1	<1	<1	<1	<1	<1	<1	<1
Styrene	5*	<1	<1	<1	<1	<1	<1	<1	<1
m/p-Xylenes	5*	<2	<2	<2	<2	<2	<2	<2	<2
o-Xylene	5*	<1	<1	<1	<1	<1	<1	<1	<1
1,2- Dichloroethylene (total)	NGV	<2	<2	<2	<2	<2	<2	<2	<2
Xylenes (total)	NGV	<3	<3	<3	<3	<3	<3	<3	<3

NGV = No Guidance Value listed.

NJ- The detection is tentative in identification and estimated in value. Although there is presumptive evidence of the anlayte, the result should be used with caution as a potential false positive and/or elevated quantitative value.

* = The principal organic contaminant standard for groundwater of 5 µg/l applies to this substance;

* = Applies to the sum of cis- and trans-1,3-dichloropropene or 1,2,4-Trichlorobenzene and 1,2,3-Trichlorobenzen

Sample I.D.		MW-2A	MW-3A	MW-8	ERB-1	ERB-2	DUP	MW-1A	MW-4
,	NYSDEC Guidance								
Sample Date		2/7/2011	2/7/2011	2/7/2011	2/7/2011	2/7/2011	2/7/2011	2/8/2011	2/10/2011
Sample Date		2///2011	2/1/2011	SVOCs	2/1/2011	2/1/2011	2/1/2011	2/6/2011	2/10/2011
Phenol	1***	<9	<9	<9	<10	<9	<9	<9	<9
Bis (2-Chloroethyl) Ether	1	<9	<9	<9	<10	<9	<9	<9	<9
2-Chlorophenol	1***	<9	<9	<9	<10	<9	<9	<9	<9
1,3-Dichlorobenzene	3*	<9	<9	<9	<10	<9	<9	<9	<9
1,4-Dichlorobenzene	3*	<9	<9	<9	<10	<9	<9	<9	<9
1,2-Dichlorobenzene 2-Methylphenol	5° 1***	<9 <9	<9 <9	<9 <9	<10 <10	<9 <9	<9 <9	<9 <9	<9
2,2'-Oxybis (1-Chloropropane)	NGV	<9	<9	<9	<10	<9	<9	<9	<9
N-Nitroso-di-n-propylamine	NGV	<9	<9	<9	<10	<9	<9	<9	<9
3&4-Methylphenol	NGV	<9	<9	<9	<10	<9	<9	<9	<9
Hexachloroethane	5*	<9	<9	<9	<10	<9	<9	<9	<9
Nitrobenzene	0.4	<9	<9	<9	<10	<9	<9	<9	<9
Isophorone	50 1***	<9	<9	<9	<10	<9	<9	<9	<9
2-Nitrophenol	10	<9 <9	<9 <9	<9 <9	<10 <10	<9 <9	<9 <9	<9	<9 <9
2,4-Dimethylphenol Bis (2-Chloroethoxy) methane	5*	<9	<9	<9	<10	<9	<9	<9	<9
2,4-Dichlorophenol	5*	<9	<9	<9	<10	<9	<9	<9	<9
1,2,4-Trichlorobenzene	5*	<9	<9	<9	<10	<9	<9	<9	<9
Naphthalene	10	<9	<9	<9	<10	<9	<9	<9	<9
4-Chloroaniline	5*	<9	<9	<9	<10	<9	<9	<9	<9
Hexachlorobutadiene	0.5	<9 UJ	<9 UJ	<9 UJ	<9 UJ	<9 UJ	<9 UJ	<9	<9
4-Chloro-3-Methylphenol 2-Methylnaphthalene	NGV NGV	<9 <9	<9 <9	<9 <9	<10 <10	<9 <9	<9 <9	<9	<9 <9
1-Methylnaphthalene	NGV	<9	<9	<9	<10	<9	<9	<9	<9
Hexachlorocyclopentadiene	5*	<9	<9	<9	<10	<9	<9	<9	<9
2,4,6-Trichlorophenol	1***	<9	<9	<9	<10	<9	<9	<9	<9
2,4,5-Trichlorophenol	1***	<24	<24	<24	<24	<24	<24	<24	<24
2-Chloronaphthalene	10	<9	<9	<9	<10	<9	<9	<9	<9
2-Nitroaniline	5*	<24	<24	<24	<24	<24	<24	<24	<24
Dimethyl Phthalate 2,6-Dinitrotoluene	50 5*	<9 <9	<9 <9	<9 <9	<10 <10	<9 <9	<9 <9	<9 <9	<9
Acenaphthylene	NGV	<9	<9	<9	<10	<9	<9	<9	<9
3-Nitroaniline	5*	<24	<24	<24	<24	<24	<24	<24	<24
Acenaphthene	20	<9	<9	<9	<10	<9	<9	<9	<9
2,4-Dinitrophenol	5*	< 24	< 24	< 24	<24	< 24	< 24	< 24	< 24
Dibenzofuran	NGV	<9	<9	<9	<10	<9	<9	<9	<9
4-Nitrophenol	1***	< 24	< 24	< 24	<24	< 24	< 24	< 24	< 24
2,4-Dinitrotoluene	5*	<9 <9	<9 <9	<9 <9	<10 <10	<9 <9	<9 <9	<9 <9	<9
Diethylphthalate Fluorene	50 50	<9 <9	<9	<9	<10 <10	<9	<9	<9	<9
4-Chlorophenyl-phenylether	NGV	<9	<9	<9	<10	<9	<9	<9	<9
4-Nitroaniline	5*	<24	<24	<24	<24	<24	<24	<24	<24
4,6-Dinitro-2-Methylphenol	1***	<24	<24	<24	<24	<24	<24	<24	<24
N-Nitrosodiphenylamine	50	<9	<9	<9	<10	<9	<9	<9	<9
4-Bromophenyl-phenylether	NGVV	<9	<9	<9	<10	<9	<9	<9	<9
Hexachlorobenzene Pentachlorophenol	0.04 1***	<9 <24	<9 <24	<9 <24	<10 <24	<9 <24	<9 <24	<9 <24	<9 <24
Phenanthrene	50	<24 <9	<24 <9	<24 <9	<24 <10	<24 <9	<24 <9	<24 <9	<24 <9
Anthracene	50	<9	<9	<9	<10	<9	<9	<9	<9
Carbazole	NGV	<9	<9	<9	<10	<9	<9	<9	<9
Di-n-butylphthalate	50	<9	<9	<9	<10	<9	<9	<9	<9
Fluoranthene	50	<9	<9	<9	<10	<9	<9	<9	<9
Pyrene	50	<9	<9	<9	<10	<9	<9	<9	<9
Butylbenzylphthalate	50 0.002	<9 <9	<9 <9	<9 <9	<10 <10	<9 <9	<9 <9	<9	<9 <9
Benzo(a)anthracene 3,3'-Dichlorobenzidine	5*	<9	<9	<9	<10	<9	<9	<9	<9
Chrysene	0.002	<9	<9	<9	<10	<9	<9	<9	<9
bis(2-Ethylhexyl)phthalate	5	₹9	<9	<9	<10	3 J	<9	<9	2 J
Di-n-octylphthalate	50	<9	<9	<9	<10	<9	<9	<9	<9
Benzo(b)fluoranthene	0.002	<9	<9	<9	<10	<9	<9	<9	<9
Benzo(k)fluoranthene	0.002	<9	<9	<9	<10	<9	<9	<9	<9
Benzo(a)pyrene	0.002	<9	<9	<9	<10	<9	<9	<9	<9
Indeno(1,2,3-cd)pyrene Dibenzo(a,h)anthracene	0.002 NGV	<9 <9	<9 <9	<9 <9	<10 <10	<9 <9	<9 <9	<9	<9
Benzo(g,h,i)perylenc	NGV	<9	<9	<9	<10	<9	<9	<9	<9
Notes:					-10	~	· ~	~	

Notes:
All data are presented in µg/l or parts per billion;
Standards taken from NYSDEC Memorandum 1.1.1, Ambient Water Quailiy Standards and Guidance Values,
and Groundwater Effluent Limitations, June 1998.
DUP from MW-03A
A standards but the detected above laboratory method detection limits;
Bold = Analyte detected above laboratory method detection limit
J = Indicates an estimated value.
JB = Indicates an estimated value as well as being detected in the laboratory method blank analyzed concurrently with the sample.
NGV = No Guidance Value listed.
UJ = The analyte was not detected. The associated reported quantitation limit is an estimate and may be inaccurate or imprecise.
* = The principal organic contaminant standard for groundwater of 5 µg/l applies to this substance.
*** = Applies to the sum of phenolic compound

Table 2 **Groundwater Analytical Data** Holt Drive

Stony Point, Rockland County, New York

Sample I.D.		MW-2A	MW-3A	MW-8	ERB-1	ERB-2	DUP	MW-1A	MW-4
•	NYSDEC Guidance								
Sample Date		2/7/2011	2/7/2011	2/7/2011	2/7/2011	2/7/2011	2/7/2011	2/8/2011	2/10/2011
				Pesticides					
alpha-BHC	NGV	< 0.047	< 0.047	< 0.047	< 0.047	< 0.047	< 0.047	< 0.047	< 0.047
gamma-BHC	NGV	< 0.047	< 0.047	< 0.047	< 0.047	< 0.047	< 0.047	< 0.047	< 0.047
Heptachlor	0.04	< 0.047	< 0.047	< 0.047	< 0.047	< 0.047	< 0.047	< 0.047	< 0.047
Aldrin	NGV	< 0.047	< 0.047	< 0.047	< 0.047	< 0.047	< 0.047	< 0.047	< 0.047
beta-BHC	NGV	< 0.047	< 0.047	< 0.047	< 0.047	< 0.047	< 0.047	< 0.047	< 0.047
delta-BHC	NGV	< 0.047	< 0.047	< 0.047	< 0.047	< 0.047	< 0.047	< 0.047	< 0.047
Heptachlor Epoxide	0.03	< 0.047	< 0.047	< 0.047	< 0.047	< 0.047	< 0.047	< 0.047	< 0.047
Endosulfan I	NGV	< 0.047	< 0.047	< 0.047	< 0.047	< 0.047	< 0.047	< 0.047	< 0.047
gamma-Chlordane	0.05	< 0.047	< 0.047	< 0.047	< 0.047	< 0.047	< 0.047	< 0.047	< 0.047
alpha-Chlordane	0.05	< 0.047	< 0.047	< 0.047	< 0.047	< 0.047	< 0.047	< 0.047	< 0.047
4,4'-DDE	0.2	< 0.094	< 0.094	< 0.094	< 0.094	< 0.094	< 0.094	< 0.094	< 0.094
Dieldrin	0.004	< 0.094	< 0.094	< 0.094	< 0.094	< 0.094	< 0.094	< 0.094	< 0.094
Endrin	ND	< 0.094	< 0.094	< 0.094	< 0.094	< 0.094	< 0.094	< 0.094	< 0.094
4,4'-DDD	0.3	<0.094 UJ	<0.094 UJ	<0.094 UJ	<0.094 UJ	<0.094 UJ	<0.094 UJ	<0.094 UJ	< 0.094
Endosulfan II	NGV	< 0.094	< 0.094	< 0.094	< 0.094	< 0.094	< 0.094	< 0.094	< 0.094
4,4'-DDT	0.2	<0.094 UJ	<0.094 UJ	<0.094 UJ	<0.094 UJ	<0.094 UJ	<0.094 UJ	< 0.094	< 0.094
Endrin Aldehyde	5*	< 0.094	< 0.094	< 0.094	< 0.094	< 0.094	< 0.094	< 0.094	< 0.094
Endosulfan sulfate	NGV	< 0.094	< 0.094	< 0.094	< 0.094	< 0.094	< 0.094	< 0.094	< 0.094
Methoxychlor	35	<0.047 UJ	<0.047 UJ	<0.047 UJ	<0.047 UJ	<0.047 UJ	<0.047 UJ	< 0.047	< 0.047
Endrin Ketone	5*	< 0.094	< 0.094	< 0.094	< 0.094	< 0.094	< 0.094	< 0.094	< 0.094
Toxaphene	0.06	< 0.094	< 0.094	< 0.094	< 0.094	< 0.094	< 0.094	< 0.094	< 0.094

Toxaphene 0.06 <0.094 <0.094 <0.094 <0.094 <0.094 <

Notes:

All data are presented in µg/l or parts per billion;

Standards taken from NYSDEC Memorandum 1.1.1, Ambient Water Quailiy Standards and Guidance Values, and Groundwater Effluent Limitations, June 1998.

DUP from MW-3A

<= Analyte not detected above laboratory method detection limits;

UJ = The analyte was not detected. The associated reported quantitation limit is an estimate and may be inaccurate or imprecise.

NGV = No Guidance Value listed

*= Applies to the sum of these substance:

				PCBs					
Aroclor-1016	0.09*	< 0.047	< 0.047	< 0.047	< 0.047	< 0.047	<0.047 UJ	< 0.047	< 0.047
Aroclor-1221	0.09*	< 0.047	< 0.047	< 0.047	< 0.047	< 0.047	<0.047 UJ	< 0.047	< 0.047
Aroclor-1232	0.09*	< 0.047	< 0.047	< 0.047	< 0.047	< 0.047	<0.047 UJ	< 0.047	< 0.047
Aroclor-1242	0.09*	< 0.047	< 0.047	< 0.047	< 0.047	< 0.047	<0.047 UJ	< 0.047	< 0.047
Aroclor-1248	0.09*	< 0.047	< 0.047	< 0.047	< 0.047	< 0.047	<0.047 UJ	< 0.047	< 0.047
Aroclor-1254	0.09*	< 0.047	< 0.047	< 0.047	< 0.047	< 0.047	<0.047 UJ	< 0.047	< 0.047
Aroclor-1260	0.09*	< 0.047	< 0.047	< 0.047	< 0.047	< 0.047	<0.047 UJ	< 0.047	< 0.047

Aroclor-1260 0.09* <0.047 <0.047 <0.047 <0.047 Notes:

All data are presented inµg/l Standards taken from NYSDEC Memorandum 1.1.1, Ambient Water Quailiy Standards and Guidance Values, and Groundwater Effluent Limitations, June 1998.

DUP from MW-3A <= Analyte not detected above laboratory method detection limits

UJ = The analyte was not detected. The associated reported quantitation limit is an estimate and may be inaccurate or imprecise. NGV = No Guidance Value listed
*= Applies to the sum of these substance:

Sample I.D.		MW-2A	MW-3A	MW-8	ERB-1	ERB-2	DUP	MW-1A	MW-4
	NYSDEC Guidance								
Sample Date		2/7/2011	2/7/2011	2/7/2011	2/7/2011	2/7/2011	2/7/2011	2/8/2011	2/10/2011
				Metals + Cyanide					
Aluminum	NGV	94.6 J	160 J	109 J	<14.80	<14.80	19.8 J	834	1,460
Antimony	3	<1.28	<1.28	<1.28	<1.28	<1.28	<1.28	<1.28	<1.28
Arsenic	25	<1.43	<1.43	2.4 J	<1.43	<1.43	<1.43	<1.43	<1.43
Barium	1,000	21.4	70	38.7	37.4	< 0.23	67.5	30.2	20.3
Beryllium	3	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Cadmium	5	0.15 J	0.08 J	0.28 J	< 0.05	< 0.05	< 0.05	<0.05 J	0.51 J
Calcium	NGV	42,100	75,000	45,000	54,800	14,100	75,700	29,600	11,400
Chromium	50	1.1 J	1.1 J	2.3 J	< 0.36	< 0.36	1.1 J	2.5 J	7.1 J
Cobalt	NGV	< 0.24	< 0.24	< 0.24	< 0.24	< 0.24	< 0.24	0.86 J	1.2 J
Copper	200	1.4 J	1.8 J	1.8 J	1.9 J	1.3 J	2.2 J	19.2 J	3.8 J
Iron	300	184	292 J ¹	235	29.1 J	36.5 J	37.5 J J^{1}	1,580	2,410
Lead	25	1.2 J	<1.07	<1.07	<1.07	<1.07	<1.07	4.7 J	2.0 J
Magnesium	35,000	13,100	20,700	11,200	3,720	3,170	20,100	6,870	3,460
Manganese	300	18.2	10.2	2.8 J	<1.06	<1.06	4.3 J	107	76.4
Mercury	0.7	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04
Nickel	100	0.88 J	1.5 J	0.77 J	< 0.28	< 0.28	< 0.28	1.5 J	4.0 J
Potassium	NGV	1,460	< 0.04	1550	5,660	<41.00	1,550	1,540	1,240
Selenium	10	<2.36	< 2.36	<2.36	<2.36	<2.36	<2.36	<2.36	<2.36
Silver	50	< 0.27	< 0.27	< 0.27	< 0.27	< 0.27	< 0.27	< 0.27	< 0.27
Sodium	20,000	27,500	97,500	36,300	25,600	8,100	94,440	49,800	36,800
Thallium	0.5	<1.07	< 1.07	<1.07	<1.07	<1.07	<1.07	<1.07	<1.07
Vanadium	NGV	0.40 J	0.73 J	0.31 J	< 0.23	< 0.23	< 0.23	2.5 J	3.6 J
Zinc	2,000	11.0 J	12.9 J	13.9 J	13.2 J	3.7 J	10.2 J	17.3 J	18.8 J
Cyanide		<10	<10	<10	<10	<10	<10	<10	<10

J = Indicates an estimated value. NGV = No Guidance Value listed

Table 3 Summary of Groundwater Sampling Field Data Preliminary Site Assessment: Holt Drive Stony Pony, New York February 7, 8 and 10, 2011

Depth to Water and Final Parameter Readings

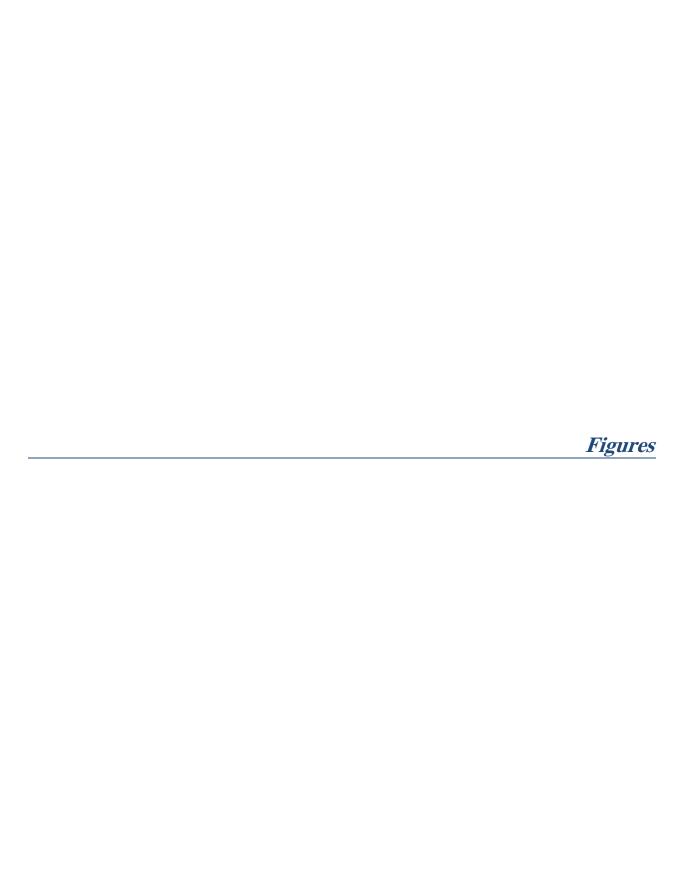
Well ID	Date Sampled	Top of PVC Casing (feet) MSL	Depth to Water (feet)	Depth to Bottom (feet)	Groundwater Elevation (feet) MSL	Dissolved Oxygen mg/L	pH (SU)	Specific Conductivity (mS/cm)	ORP mv	Temperature (C)
MW-1A	02/08/11	66.84	21.30	24.67	45.54	11.26	7.77	0.288	0.2	9.86
MW-2A	02/07/11	68.64	22.11	26.55	46.53	9.40	6.25	0.327	5.6	11.73
MW-3A	02/07/11	66.95	9.69	17.50	57.26	9.06	6.34	0.813	9.2	11.04
MW-4	02/10/11	70.55	23.46	29.45	47.09	8.02	7.38	0.299	162.0	12.43
MW-8	2/7 & 2/8/2011	70.60	23.60	30.43	47.00	10.95	7.36	0.284	-8.0	10.81

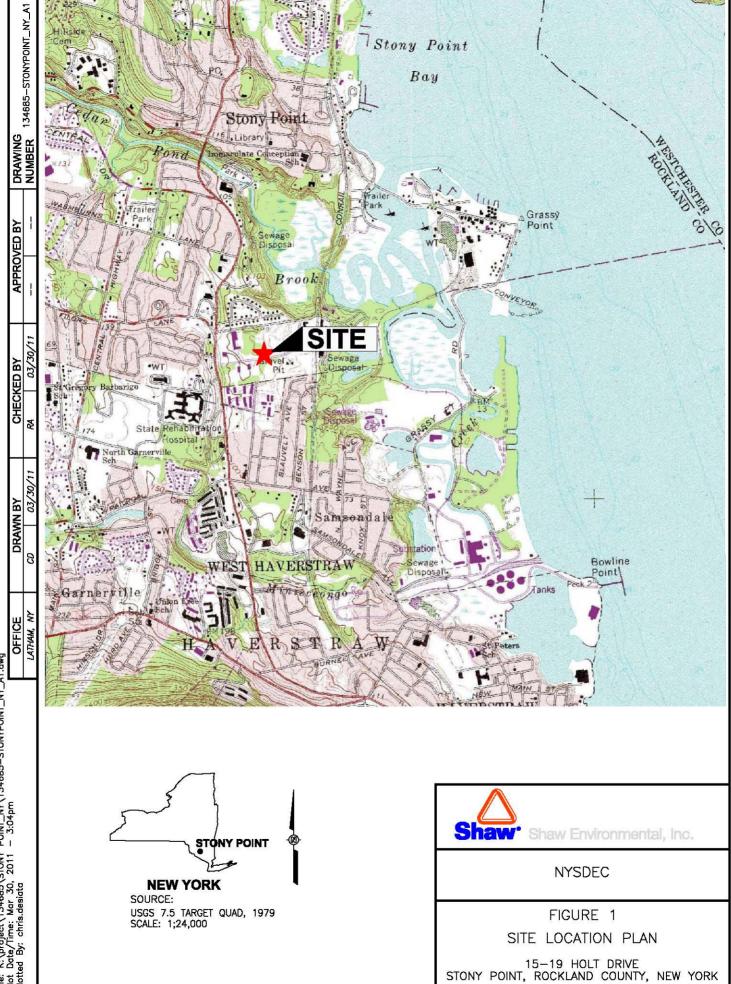
Notes:

All measurements recorded in feet;

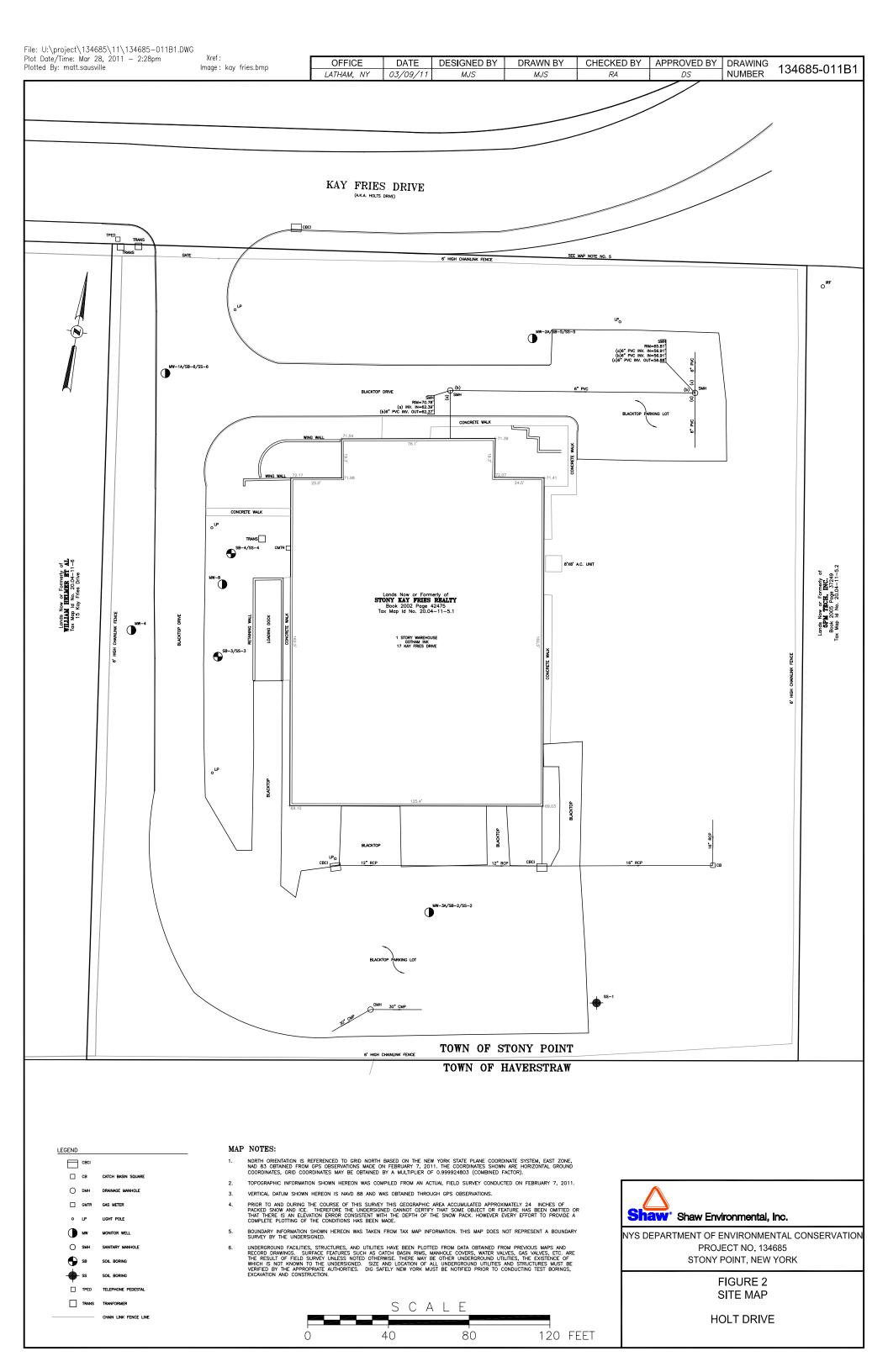
MSL - Mean Sea Level;

mg/L - Milligrams per Liter;


SU - Standard Units;


mS/cm - micro siemens per centimeter

C - Degrees Celsius;


mV - Millivolts;

Dissolved Oxygen recorded in % converted to mg/L

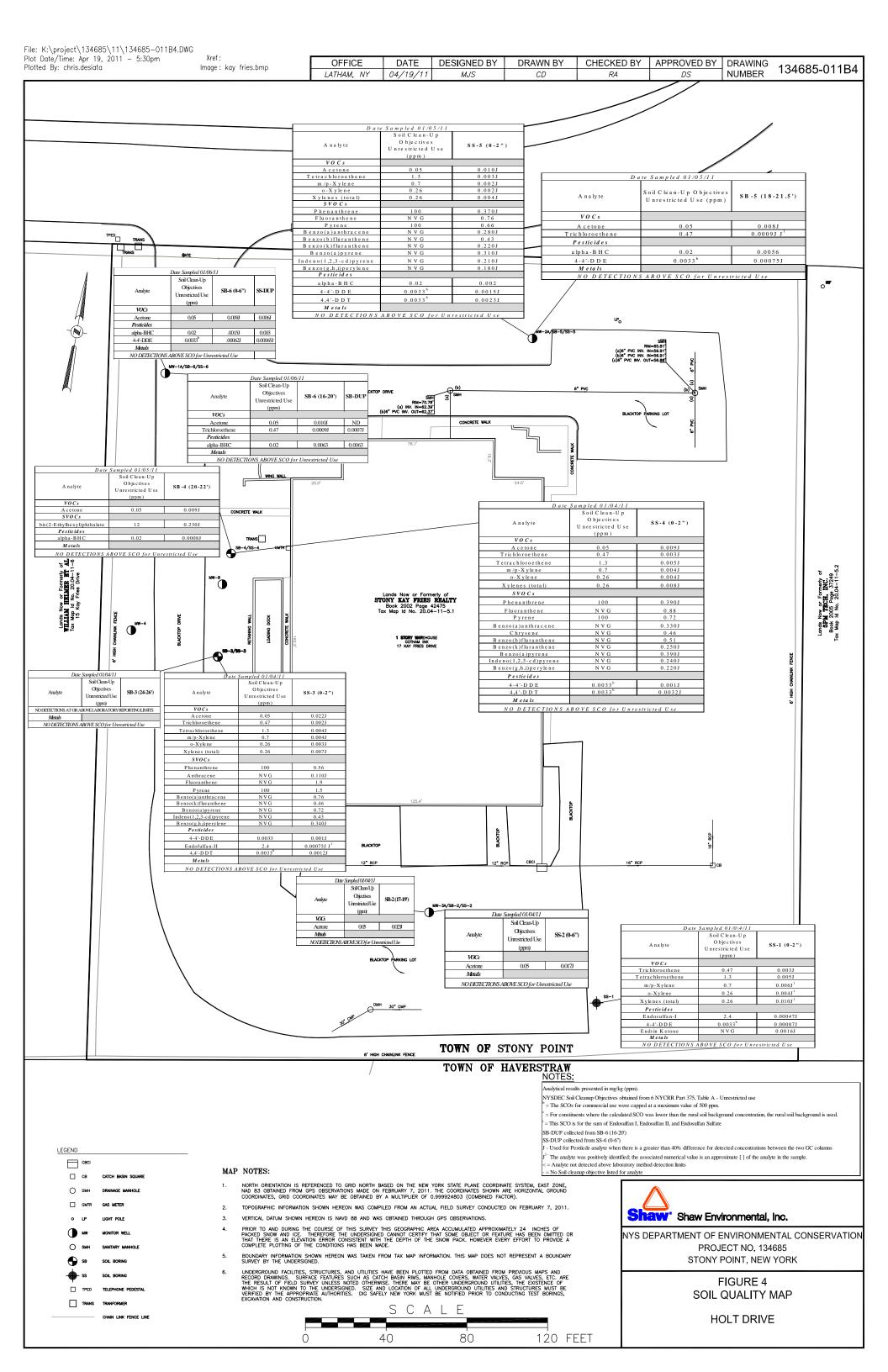
i IMAGE Files: STONY POINT, NY_TOPO.jpg oject\134685\STONY POINT_NY\134685—STONYPOINT_NY_A1.dwg Time: Mar 30, 2011 — 3:04pm

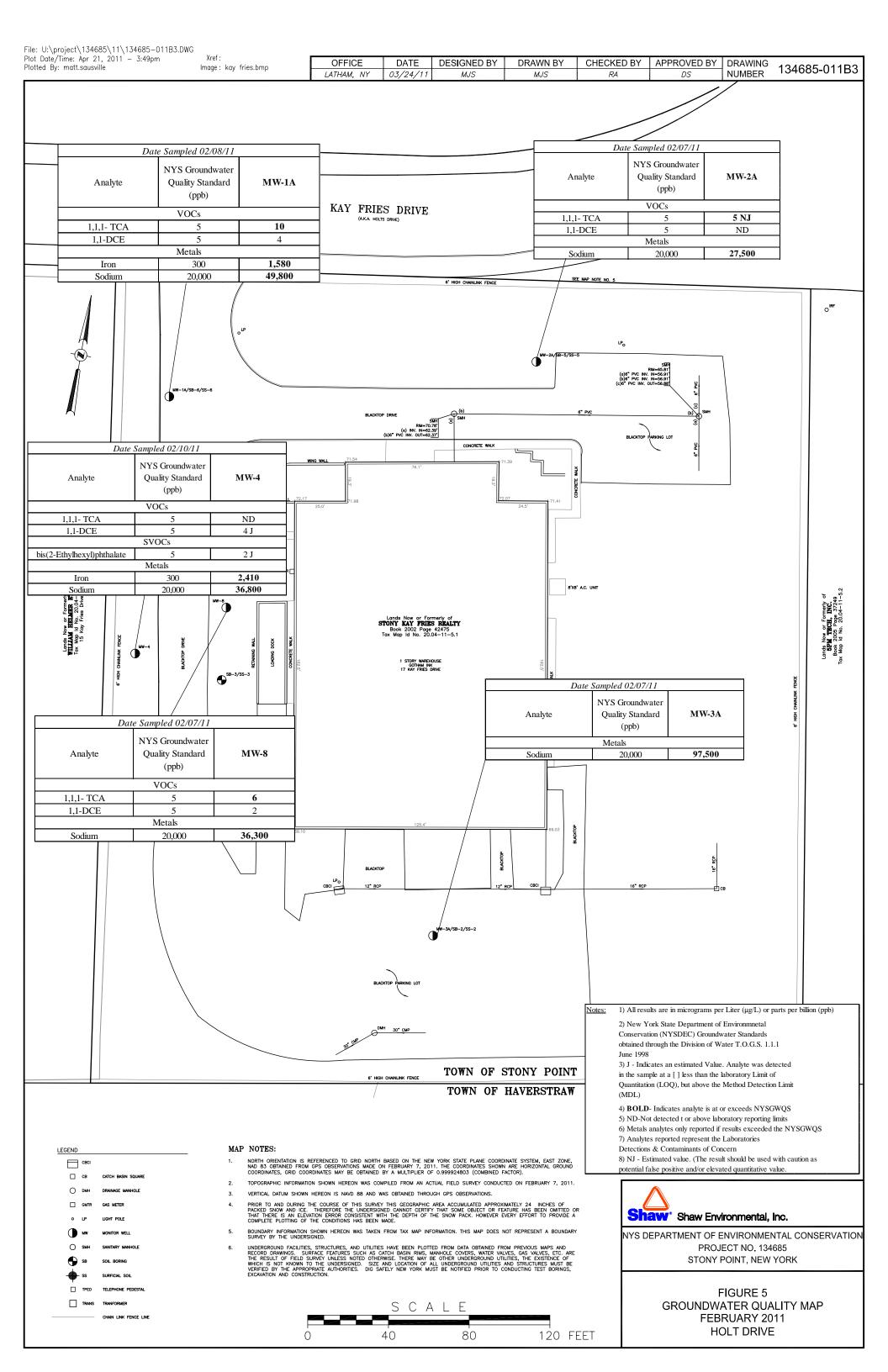
SCALE

08

120 FEET

40


0


GROUNDWATER CONTOUR MAP

FEBRUARY 7, 8 & 10, 2011 **HOLT DRIVE**

Xref:

TRANS TRANFORMER

Appendix A

Photolog

Shaw Environmental, Inc. Photographic Record

Customer: NYSDEC Project Number: 134685

Site Name: Holt Drive Site Location: Stony Point, NY

Photographer:

R. Adams

Date: 10/22/10

Direction: North

Comments:

Approx. location of MW-2A/ SB-5 / SS-5

Photographer:

R. Adams

Date: 10/22/10

Direction:North

Comments:

Approx. location of MW-1A/ SB-6 / SS-6

Shaw Environmental, Inc. Photographic Record

Customer: NYSDEC Project Number: 134685

Site Name: Holt Drive Site Location: Stony Point, NY

Photographer:

R. Adams

Date: 10/22/10

Direction:Northeast

Comments:

Approx. location of MW-3A/ SB-2 / SS-2

Photographer: R. Adams

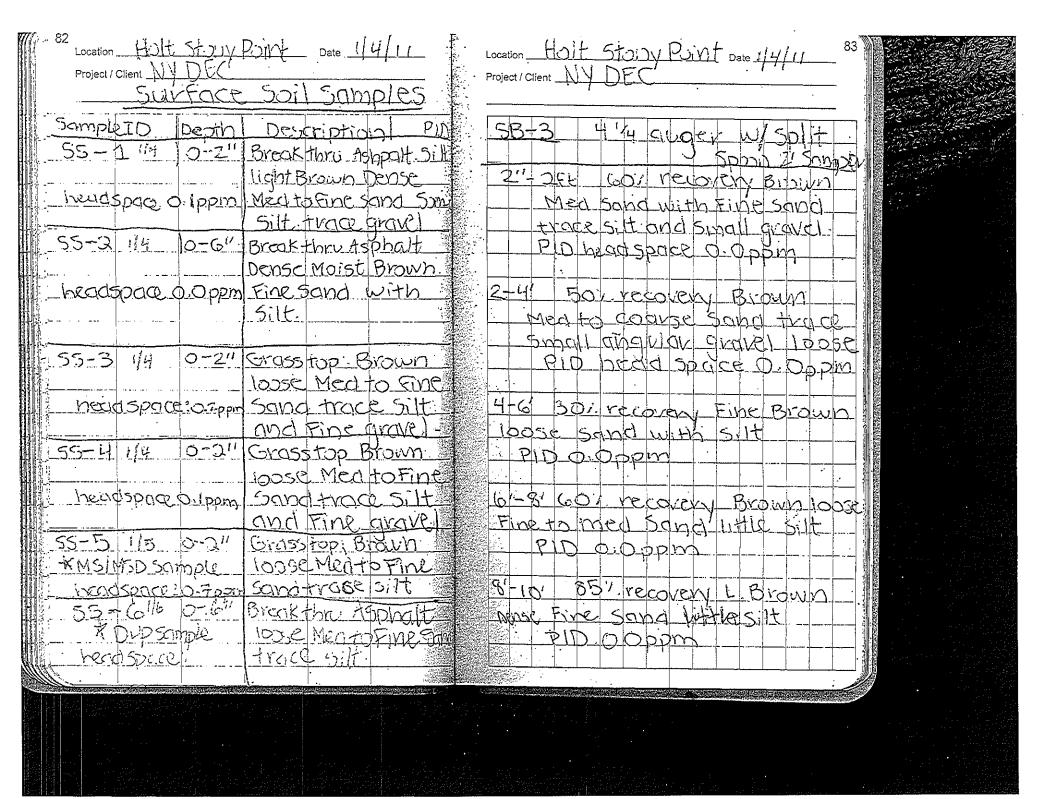
rt. /taariio

Date: 10/22/10

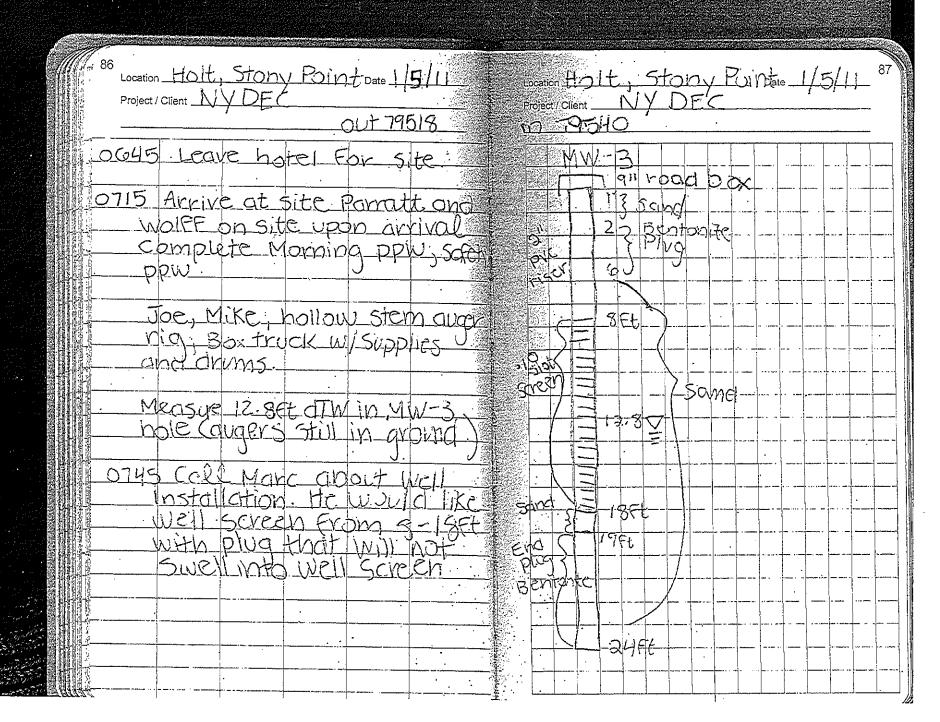
Direction:

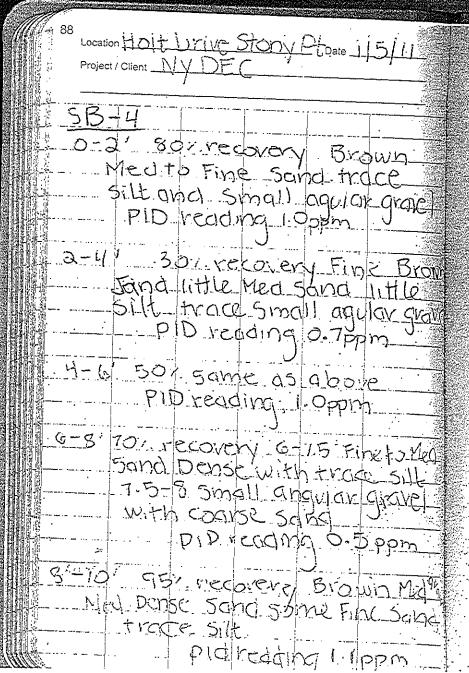
West

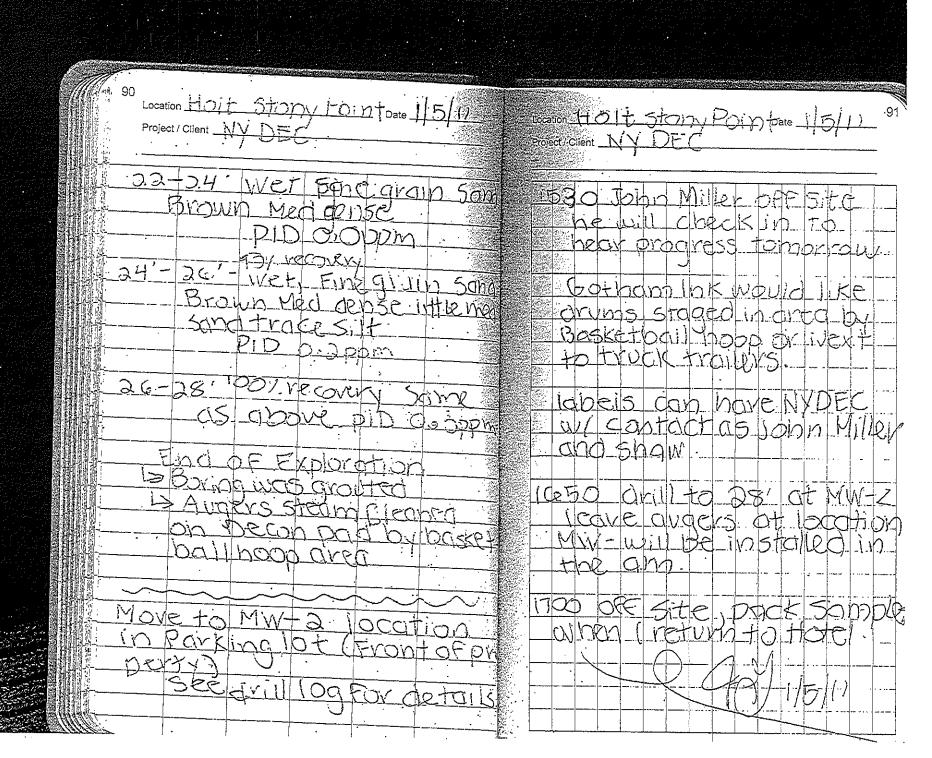
Comments:

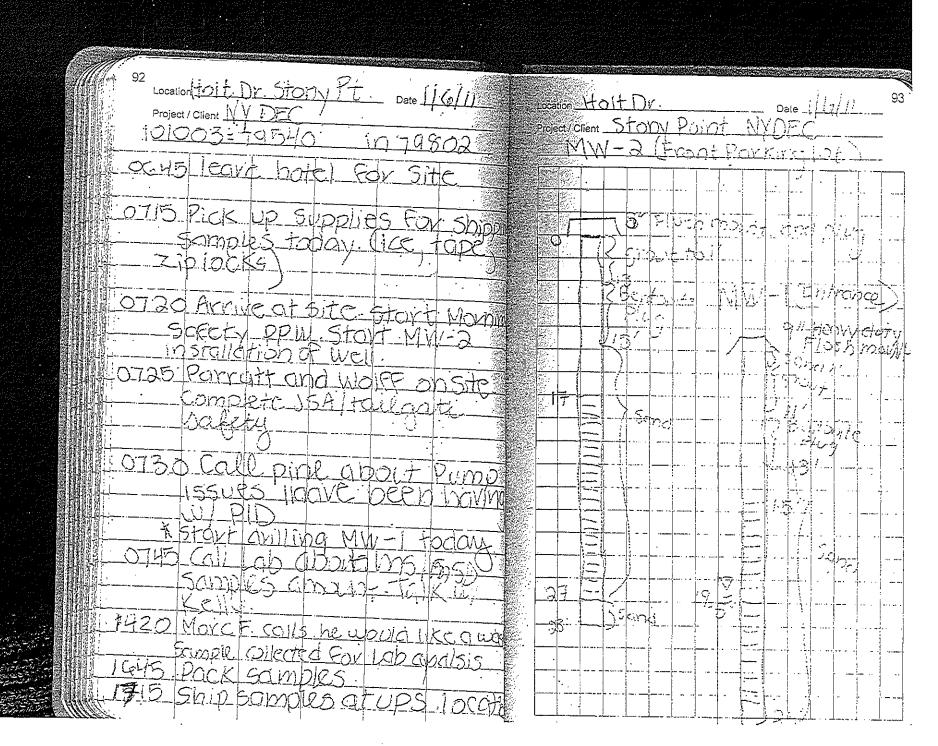

Area where SB-5/SS-3, SB-4/SS-4 were completed; MW-8 in background






Appendix B Field Notes





Location HOLLDr Stony Pc; pg 1/5/11

15-12/1302/12cbvRV/Film24/17/19 Med donst sond BILLY Air with little Mtd Jana ploreading O. Appn 12'-14' 70) recovery 50me aslabove PID rading 1022 14-16' coinecovery first Med Brown sond Mil Dense and D. Dredbirt, O. For 16-15/65) recovery Fine Brown sand little Med Sand Little Sit PID reading 0-3ppm 12-30 5 ame as above PID reading 1.3ppm. 30-22' recovery 80% same! Twater a factor of Appm

Location Holt Dr Stony Point Date 117/11 Location Holt Stony Point Date Project / Client 0635 Icave Hotel For Site 2/30 Arrive vock of price coll pine for pick-lypo equipment 10700 Parratt & WOFF on Site on putte morning safety Po VANOOSU CONFIR 2710 Paratt & works start avillings SB-3 again to properly 0730 Istort developing all wells see development undes for details 1145 Label all arums Plastic From Gecon development water decon water Spillabilicultings total-arums-stalgaed measive of will an SB. 1230 Parraits work and show

Appendix C Drill Logs

Monitoring Well

MW-1A Page: 1 of 2

Project NYSDEC Holt Dr.		. 0	woer NYSDEC	COMMENTS			
Location Stony Point, NY			Proj. No	MW-1A. Also Location of SB-6 and SS-6			
Surface Floy 67.5 ft.	Total Hole Depth 26	.0 ft.	North 868554.5 ft. East 634761.5 ft.				
Top of Casing 66.84 ft.	Molar Laval Initial	19.5	fl. Static ¥ 21.3 ft. Dlameter 4.25 in.				
Screen: Dia _2" in.							
Casing: Dia _2"In.			**				
Fill Material	nile	Ð	g/Core Hollow Stem Auger/2' Split Spoon				
Drill Co. Parral-Wolffe							
			Date Permit #				
Checked By			Date 1 onnice				
Officered by	I Licons	16 NO.					
8	다른 불 .	g g	Description				
Depth (ft.) Well Completion PID PID (ppm)	Sample ID % Recovery Blow Count Recovery Graphic Log	USCS Class.	(Color, Texture, Structu	(A)			
	EX SE S	l Š	Geologic descriptions are based on ASTM Standard				
		-	Georgio descriptivas are based off form orandare	D Little de Unit (10 0000)			

	0000 N⊞₩		Grass / Topsoll, Brown, Well-graded medi	um-fine SAND, trace			
0.0	<u> SS-0 (0-</u>		Silt, dry	one Oll Day			
- 2 -	50%		Brown, Well-graded medium-fine SAND, to	ace Siit, Diy			
	l Missis						
0.0	60%						
- 4 -	H						
0,2		.					
	85%	SW					
- 6 -							
0.7	80% W						
- 8 -							
0.5							
	70%						
- 10 -			Brown, Poorly-graded fine SAND and SILT	T, Dry			
0.0	l‱ A ∴	SP SM					
- 12 -			5 IALII II	···· Offic Day			
		sw	Brown, Well-graded medium-fine SAND, to	race Sill, Dry			
0.2	30%	SM					
1- 14 - III III III III III III III III III			Medium Brown, Well-graded medium-coal	se SAND, trace Silt,			
0.0	40%	SW	Dry				
		Oili					
			Medium Brown, Poorly-graded medium SA	ND, lille fine Sand,			
		SP	trace Silt, Dry				
- 18 - III	SB-6 (16-		Brown, Well-graded fine-medium SAND, r	nolst			
\$ ○ 0.3			Brotting from graded time mediant of the pr	110101			
	50% M						
20	90%	SW					
0.0	90%						
- 22 -			Brown, Poorly-graded medium SAND, son	ne charse Sand Wet			
			Promit Loony-Alaga medicin ovido! 2011	to obdies oblig 4460			
	80%	SP					
- 24 - 0.0 0.0							
} * × □ * *	180% 🖊 🖂	$\ -\ $	Continued Next Page				

Monitoring Well

MW-1A

Page: 2 of 2

Project NYSDEC Holt Dr. Owner NYSDEC

Location Slony Point, NY Proj. No. 134685.11

Location .	Stony Poin	1, 111	Proj. No. 154003.11							
Depth (ft.)	Well Completion	PTD (mpq)	Sample 10 % Recovery	Blow Count Recovery	Graphic Log	USCS Class.	Description (Color, Texture, Structure) Geologic descriptions are based on ASTM Standard D 2487-93 and the USCS.			
26 -				X			Conlinued			
- 28 -										
- 30 - - 32 -										
- 34 - - 34 -										
- 36 - - 38 -										
- 40 -				e de l'element montre de descripción de l'element montre de l'elem						
- 42 -										
- 44 - 46 -					:					
3 - 48 -										
- 50 - - 52 -										
56 - 54 - 54					ļ					
- 48										
3 ~										

Monitoring Well W

WW-2APage: 1 of 2

Project NYSDEC Holt	Dr.			Λ	wner NYSDEC	COMMENTS				
Location Stony Point, I				_	Proj. No. 134685.11	MW-2A. Also Location of SB-5 and SS-5				
Surface Flav. 68.6 ft.		Total Hole De	nib 28.	Oft.	North 868603.1 ft. East 634937.6 ft.					
Top of Carina 68.64 ft.		Motor Loval I		21.5	ft. Static <u>22.1 ft.</u> Diameter <u>4.25 ln.</u>					
Cocoon Dia 2º in		Lanath 10'	11111011 <u> </u>		Type/Size Sch. 10 PVC/0.10 Slot In.					
Casioni Dia 2º in		Longin	ii		Type Sch. 40 PVC					
			Rig/Core Hollow Steni/2' Split Spoon Method Direct Push							
					DatePermit #					
Спескей ву		·	Licens	e No.						
g		이 등 별 :	, ,	¥	Description					
Depth (ft.)	0 (E	Sample ID % Recovery Blow Count	Graphic Log	USCS Class	·					
a s i	- த	S 2 2 2	8-	ပ္ထိ	(Color, Texture, Structu Geologic descriptions are based on ASTM Standard					
)	Geologic descriptions are based oil A51m Standard	U 2401-93 RIIG (118 U3U3.				
- 0 - 		٦ ـ ا			Grass					
<u> </u>	0.7	SS-5 (0-		sw	Brown, Well-graded fine-medium SAND, to	ace Slit, Dry				
	``	<u>6'')</u> 40%		317						
- 2 -		l			Brown, Poorly-graded fine SAND, little Sift	, Dry				
 - 	1.4	95%		SP						
-4-					burn Mall and to Life a GAMB and Oil T	D				
1 111		l ∧			Brown, Well-graded fine SAND and SILT,	Dry				
	0.5	90% /		SM						
├ 6 - 		 			Brown, Well-graded fine-medium SAND, D)rv				
	0.2	80%			•	•				
- 8 -		0078	1	sw						
	1	\		377						
	0.4	40%								
- 10 -					Brown, Well-graded fine-medium SAND, to	ace Silf-frace annular				
	1.0)			Gravel, Dry	aco om, naco angular				
		60%			•					
├ 12 -		l 1								
	0.0	50%		sw						
- 14 -		_								
)								
	0.0	50%								
3- 16 - 3		k		_	Brown, Well-graded medium-fine SAND, li	ttle Silt. Drv				
	0.0	l X			Brown, Hon grades modern mis since, m	,				
	11	60%								
18		l								
	0.1	<u> </u>		SW						
- 20 - 1 目 1	I	SB-5 (18- 21.5')								
	ا پ	70%								
	0.3	l 6		sw	Drawn Wall graded madium fine CAMIN ii	IIIa Gilt Mat				
22		70%		011	Brown, Well-graded medium-fine SAND, ii Brown, Poorly-graded fine SAND, little Silt	, trace medium Sand.				
4	0.0	80% /	₩		Wet	· · · · · · · · · · · · · · · · · · ·				
		0070		SP						
- 24 -	0.0	85%	1							
}		A.10	2.28 3.28.		Continued Next Page					

Monitoring Well

NW-2APage: 2 of 2

Project NYSDEC Holt Dr. Owner NYSDEC

Location Stony Point, NY Proj. No. 134685.11

Location .	Stony Poln	l, NY					Proj. No. <u>134685.11</u>					
Depth (ft.)	Welf Completion	Old (mdd)	Sample 1D % Recovery	Blow Count Recovery	Graphic Log	USCS Class.	Description (Color, Texture, Structure) Geologic descriptions are based on ASTM Standard D 2487-93 and the USCS.					
- 26 -		0.9	85% 100%	X		SP	Conlinued					
- 28 -				L	********							
- 30 -												
- 32 -												
- 34 - 												
- 36 <i>-</i>												
- 38 -												
40 -												
42 -						manus de la companya						
44 -												
46												
8 - 48 -												
8 = 50 -												
52 -												
54 - 8692				:								
48 – 26 –												
TT COMMISSION. Rev. 128599 NYSDEC-KOLT.GPJ IT CORP.GDT 34471												

Monitoring Well

NW-3A Page: 1 of 2

Project NYSDEC Holl Dr.			_ 0	wner NYSDEC	COMMENTS MW-3A. Also Location of SS-2			
Location . Stony Point, NY	****			Proj. No. <u>134685.11</u> and S8-2				
Surface Elev. 67.3 ft.	Total Hole De	oth <u>25</u> .	.0 ft.	North 868314.1 ft. East 634936.5 ft.				
				ft. Stalio 9.7 ft. Diameter 4.25 in.				
Screen: Dia _2*/n.	_ Length <u>_10'ft</u>			Type/Size Sch. 40 PVC/0.10 Slot In.				
				Турв <u>Sch. 40 PVC</u>				
				Ig/Core Hollow Stem/2' Split Spoon				
Drill Co. Parral-Wolffe								
Driller Mike W.	- ,							
Checked By		Licens	e No.					
uog u	Sample ID % Recovery Blow Count Recovery	ic	lass.	Description				
Depth (ft) Weil Completion PID (ppm)		Graphic Log	USCS Class.	(Color, Texture, Structu	re)			
8	00 % 8 g	8	Sn	Geologic descriptions are based on ASTM Standard	• •			
	1							
L 0 45		* Marie Weby *		A custo alt				
	SS-2 (0- X		SP	Asphalt Brown, Poorly-graded fine SAND with Silt	. Drv			
	6 <u>°)</u> 40%			Brown, SILT, little Sand, Dry	, ,			
- 2 -								
0.0	190% X		ML					
L 4 -								
0.1					:			
	75%			Gray/Brown, SILT, trace fine Sand, Molst				
6	1 7		Mi.					
0.1	95%			Gray/Brown, SILT, little fine Sand, trace co	oarse Sand, Molst			
- 8			ML.	•				
- J (70%			Danis Oli T Rills for madius cance Car	ad Adoloi			
L 10 ¥1 ■	1/0% []		ML	Brown, SILT, little fine-medium-coarse Sai	ia, moist			
	И М		Str.					
	90%	}		Brown, Well-graded fine-medium-coarse S	SAND, trace Slit, Moist			
- 12 <u>Σ</u>			sw					
. 102	100%		\vdash	Gray/Brown, Well-graded medium-coarse	SAND Molet			
14 - 1	····/		sw	·	OUTHER HIVING			
	I M	$ \ \ \ \ $	ML	Gray/Brown, SiLT, Moist				
	90%			Gray/Brown, SILT, little fine Sand, Wet				
} 16 - €								
	80%							
- 18 - 3 0.0	SB-2 (17-							
0.0	19) M							
	80%							
- 20 -			ML					
0.0	45%							
- 22 -	$\parallel \parallel$							
0.0	I X							
	60%							
- 24 - 0.0	M							
	120%		H	Conlinued Next Page				

Monitoring Well

WW-3A Page: 2 of 2

Project NYSDEC Holt Dr. Owner NYSDEC

Location Stony Point, NY Proj. No. 134685.11

LOCATION .	Stony Polit	.,					P[0], No. 13400871
Depth (ft.)	Well	PIO (mpq)	Sample 1D % Recovery	Blow Count Recovery	Graphic Log	USCS Class.	Description (Color, Texture, Structure) Geologic descriptions are based on ASTM Standard D 2487-93 and the USCS.
- - 26 -				×			Conlinued
- 28 - - 30							
- 32 -	e managan da anti-anti-anti-anti-anti-anti-anti-anti-						
- 34 - - 36 -							
- 38 - - 40 -							
- 42 - - 42 - 44 -							
- 46 - - 46 -							
105-800 L 105-800 L 105-80							
52 – 52 – 54 – 54 – 54 – 54 – 54 – 54 –							
T. COMMERCIAL Rev. 12698 NYSDEC-HOLTGPU II CORP.GOT S. G.					:		
- 58 -							

Soil Boring

SB-3 Page: 1 of 2

Project _	VYSDE	C Holl Dr.				OWNET NYSDEC COMMENTS						
Location .						Proj. No134685.11 SB-3 Also Location of SS-3						
Surface E	ev. 71	.0 ft.	Tol	al Hole [Oepth	28.0 ft. North 868420.7 ft. East 634811.4 ft.						
Top of Car	sina N	Α	Wa	ter Leve	l initia	1 \(\frac{\sqrt{23.5 ft.}}{2.3.5 ft.}\) Static \(\frac{NA}{2.25 in.}\) Diameter \(\frac{4.25 in.}{2.25 in.}\)						
						Type/Size _NA/NA in.						
Casing: Di												
Fill Materia						Rig/Core Hollow Stem/2' Split Spoon						
Drill Co.						Direct Push						
Driller _M						· · · · · · · · · · · · · · · · · · ·						
				-								
Checked	3y	```		,		Icense No.						
		15 C	Ħ,		ផ	Description						
age £deg€	Cld (mad)	Sample ID % Recovery	Blow Count Recovery	Graphic Log	USCS Class	· ·						
8°	முத	E S	888	ខ្លួ	g	(Color, Texture, Structure) Cooked descriptions are based on ASTA Standard D 2487-93 and the USCS						
		***			5	Geologic descriptions are based on ASTM Standard D 2487-93 and the USCS.						
			l									
- o -												
		SS-3 (0-	M	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Н	Grass Brown, Well-graded fine-medium SAND, smal Gravel, trace Silt, Dry						
	0.2	2 <u>1</u> 60%	Н	• • • •	SW	Diomit, Meil-Bladed litte-thediditi Ovino, billidi Ottavol, tidoo oiti, biy						
├ 2 -			Н		 	Brown, Well-graded medium-coarse SAND, trace angular Gravel, Dry						
	0.0		X		sw	DIOMA TYON-GIAGOU HICAMAIN-COURSE OF WAS I WAS CINGUIAN CHARACTER STOP						
	9.0	50%		\cdots	"							
- 4 -			Ø		\Box	Brown, Poorly-graded fine SAND, little Silt, Dry						
	0.0	30%	П									
		3074										
6			М		_							
+ +	0,0	80%	Δ		SP SM							
B			ᆸ									
			M									
	0.0	85%	W									
 10 −		İ	H			Brown, Well-graded fine-medium SAND, little Silt, Dry						
	0.0		IXI			promit trot graves mis meaning or meaning and any						
	0.0	75%	H									
- 12 -			М	****	SW							
<u>,</u>	0.0	60%	Μ									
14					Ш							
			M			Brown, Poorly-graded fine SAND, litle Silt, Dry						
	0.0	60%	H									
ន <u>៉ី</u> 16 –			H									
비	0.0		X	****								
8	0.0	70%	H									
하 18 -			И		\$P							
اَيَ ا	0.6	60%	Ň									
ğ		3073										
울 - 20 -			М									
<u>8</u> -	0.0	90%	IXI									
۲ – 22 –			H		$oxed{oxed}$	Durana Mall wooded fine CAND and wood very discount with course Court						
& B			Н		,,,	Brown, Well-graded fine SAND and wood remains with coarse Sand Interbeds, Moist						
乳 立	0.0	30%		:::::	SW	many stay mater						
띨 24 -		SB-3 (24- 26')	H		-	Brown, Poorly-graded fine SAND, wet						
COMMERCIAL Rev. 126639 MYSDEC HOLT.GPJ II CORP.GDT 19 1 1 1 1 1 1 1 1	0.0	<u>25')</u>			\$P							
E						Continued Next Page						

Soll Boring

SB-3 Page: 2 of 2

Project NYSDEC Holl Dr.

Owner NYSDEC

Location Stony Point, NY

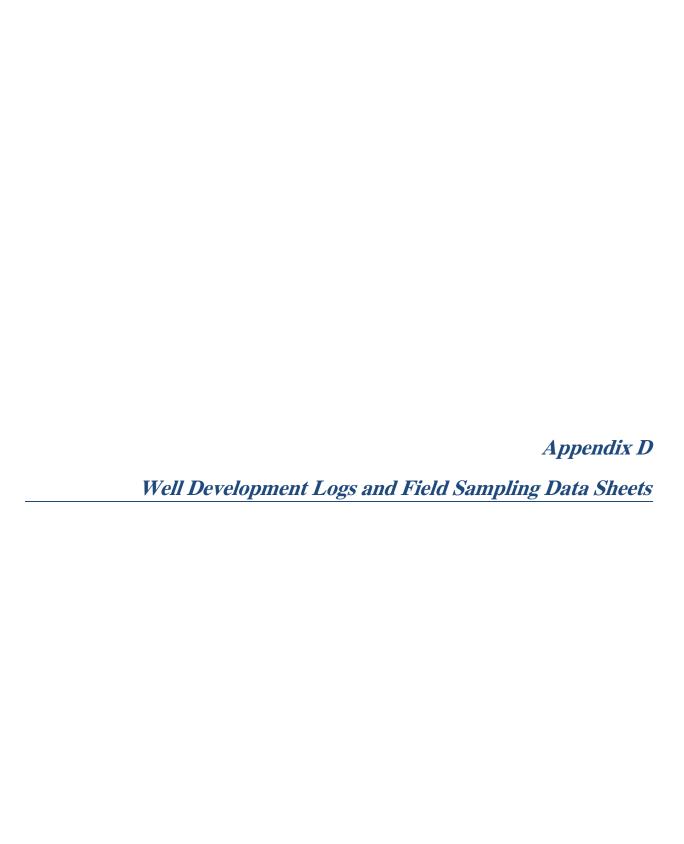
Proj. No. 134685.11

Location .	Olony i	Onti, IV I				Proj. No <u>134685.11</u>
Depth (ft.)	Old (mdd)	Sample ID % Recovery	Blow Count Recovery	Graphic Log	USCS Class.	Description (Color, Texture, Structure) Geologic descriptions are based on ASTM Standard D 2487-93 and the USCS.
- 26 -	0.0	60% 60%			SP	Continued
- 28 - 30 -						
- 32 -						
- 34 - - 36 -						
- 38 -						
- 40 -						
- 42 - - - 44 -						
- 46				APPRILATE TO THE PRILATE TO THE PRIL		
- 50 - 52 - 52 -						
488 - 50 - 50 - 50 - 50 - 50 - 50 - 50 -						
5RGAL Rev. 12						
- 68 -						

Soil Boring SB-

SB-4 Page: 1 of 2

Project _	NYSDE	C Holt Dr.		Owner NYSDEC COMMENTS										
Location	Slony	Poini, NY		Proj. No. 134685.11 SB-4 Also Location of SS-4										
Surface E	lev7	1.1 ft.	_ To	tal Hole D	Depth	28.0 ft. North 868472.2 ft. East 634809 ft.								
Top of Ca			_ Wa	ater Leve	I Initia	al <u>V 22.0 ft.</u> Stalic <u>NA</u> Diameter <u>4.25 in.</u>								
Screen: D			_ Le	ngth . M	4 11.	Type/Size NAVNA In.								
Casing: D														
Fill Materi						Rig/Core Hollow Stern/2' Split Spoon								
Drill Co				M	ethod	hod Direct Push								
Driller .M	like W.		_ Los	g Ву <u>J.</u>										
Checked I	Ву					Icense No.								
	r	I .												
₅ _	25	Sample ID % Recovery	Blow Count Recovery	5.0	USCS Class.	Description								
Dept.	PID (ppm)	B &	O 6 ≩ 8	Graphic Log	g	(Color, Texture, Structure)								
		W.	ᄶ	`	ğ	Geologic descriptions are based on ASTM Standard D 2487-93 and the USCS.								
					-									
L 0 -														
		SS-4.(0:	M	****		Grass Brown, Well-graded fine-medium SAND, little Silt, tr	age angular Gravel Day							
1 1	1.0	<u>21</u> 80%	Δ			Plokit' Adeli-Aragea litte-thealant Ovido! iidiie Oiit' ii	ace angular Clavel, Dry							
├ 2 ├			V											
	0.7		ľ											
L , l		30%												
- 4 -			X											
† †	1.0	50%	H		sw									
F 6 -			Н											
	0.5		- IX											
	0.0	70%	H											
8			17											
	1.1	95%	IX											
- 10 -			H			Brown Boody graded fine SAND little medium Son	d Dni							
	0.9		Ŋ			Brown, Poorly-graded fine SAND, little medium San	u, Diy							
	0.0	80%	Щ											
├ 12 -			M		SP									
<u>.</u>	1.0	70%	M											
- 14 -						Daving Mark maded the model of the CAND D								
<u> </u>			X			Brown, Well-graded fine-medium SAND, Dry								
	0.9	60%	H											
- 16 -			A											
}	0.3	85%	Ň											
- 18 -					sw									
'			М											
1	1.3	65%	H											
- 20 -		0.0 4 455	Н											
}	0.9	SB-4 (20- 22) 80%	X											
– ₂₂ ∑		80%	H											
22."			M			Brown, Poorly-graded fine SAND, Wet								
<u> </u>	0.0	80%	M		SP									
- 24 -			\square		⁻ '									
	0.2	95%	M											
						Continued Next Page								



Soil Boring

SB-4Page: 2 of 2

Project NYSDEC Holl Dr.	Owner NYSDEC
Location Stony Point, NY	Proj. No Proj. No
	•

Location .	Storiy F	ORR, IVI				Proj. No. , 134685.11
Depth (ft.)	PID (ppm)	Sample ID % Recovery	Blow Count Recovery	Graphic Log	USCS Class.	Description (Color, Texture, Structure) Geologic descriptions are based on ASTM Standard D 2487-93 and the USCS.
- 26 - 28		95% 100%			SP	Continued
- 30 - - 32 -						
- 34 -						
- 36 - - 38 -						
- 40 -						
- 42 - 44 -						
- 46 - 						
- 50 -						
62 - 52 - 54 - 54 -						
1 48 1 50 2 4 1 5 8 8 1 5 8 8 1 5 8 8 1 5 8 8 1 5 8 8 1 5 8 8 1 5						
58 -						

Shaw Environmental, Inc. Monitoring Well Development Field Data Sheet

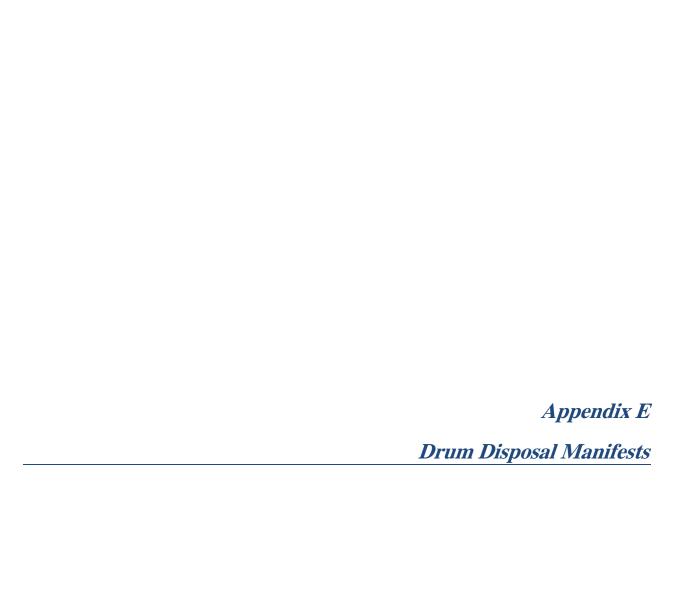
Project Name: Ho	It Dr.			Project Nu	ımber: (3	4685		
Water Level Data	ston.	Poir	ot_NY				_	
Date: 17/11			Well ID:	MW-8)	•		
Initial Total Casing Le	ength2	(e.48	_ (feet) ·	*Volume F		•		
Depth to Water (from	top of casin	g) <u>20</u>	(feet)	4-inch wel	ell = 0.163 gal/ft ell = 0.653 gal/ft ell = 1.468 gal/ft			
a) Height of Water Co	olumn	5.174	(feet)	O-HIGH WO	1 – 1.400 ga	wit		
Well Volume ([a] x vol	lume factor	*) = <u>5.74</u>	. (feet) x <u>O</u> .	<u>l </u>	ns/foot = <u>O</u> -	935gallor	ns XIOWV	, (
Development Data							,	
Date: 1 7 / 1 /	Time: 10°	15%	(atart) 15) 3 バ //	ilalah)		1	•
Method: <u>SUDM</u> (Waterra, baller, subm	とどうけり rersible pum	<u>ν. (λ)γ</u> ıp, etc.)	XXL	pomp	2:	,		
Time	1020	1025	1030	1035	unit 5			1
Specific Conductivity	0.963	1.000	1051	1448				1
рН	(5.59	6.54	(P-50	6.50]
Turbidity	1344.0	136.2	74.8	53,4]
Temperature	11.03	11.90	11.03	11.0				
ORP	วุรอ.อ	213.4	2364	2382	'			ļ
DO	6.36	(8.)	6.32	(0.184)			•	
Time	·							ī
Time								١.
Specific Conductivity pH	-							
Turbidity	7.							
Temperature								
ORP							-	l
DO				-				ĺ
	L							ı
Time					1			1
Specific Conductivity								
рН								
Turbidity								
Temperature								
ORP .								ł
DO							ı	ĺ
Did well dry out? (If yes	, how many	times)		Actual Volu	me Remove	((gallons)	
Personnel: JRY	<u>Cai</u>	ley_						
COMMENTS:		• ()						
* WOTE	V VE	10 1 501	7+<7	FO 54	avt.			
DIAM	TOP A	TANT	TIAI	O KPN	(1) (1)	POVPO	t chom	
	1.	_/ } 	11.71/	VIII.	110	<u> </u>	L LIXIIK	
\ \t/	an	10 W	7 11/1	llime	5.			
7 7 7 7	/	1 (2)		-1-6-1-7				

Shaw Environmental, Inc. Monitoring Well Development Field Data Sheet

Project Name: Holt Dr.				Project Number: 134685					
Water Level Data									
Date: 1('7///		o: <u>073(</u>		Well ID:	MW-	3	•		
Initial Total Casing L	ength	7,61		_ (feet)	*Volume F			•	
Depth to Water (from	top of casir	ng) ලි.	7′	(feet)	4-Inch wei	2-inch well = 0.163 gal/ft 4-lnch well = 0.653 gal/ft			
a) Height of Water Co	olumn <u>Q . C</u>	7Ft_		(feet)	6-inch well = 1.468 gal/ft				
Well Volume ([a] x volume factor *) = 3.9 / (feet) x0.16.3 gallons/toot = 1					ns/foot = [150 Jallon	s × 10 W	v.=14.6	
Development Data									
Date: 1/7/// Method: 5//DY (Waterra, baller, subm	ners	730 16/C 1p, etc.)			inish)			. •	
Time	0735	0740	0750	0755	0800	units		7	
Specific Conductivity pH	6.80	6.65	6.54	1,317		m5/cm4		4	
Turbidity	1325.6	13654	9.27.5	ありる	6.53	NTO		- .	
Temperature	9.83	13.2	9.80	9.83	9.83	00		┥	
ORP	2061	212.1	212.7	215.2	3/5	OŘP		7	
DO	(1.77.	(p.(p)	6.45	630	6.44	mall		7	
•						0			
Time								7	
Specific Conductivity								1 .	
рН						-		7	
Turbidity							· · · · · · · · · · · · · · · · · · ·	7	
Temperature									
ORP								1	
DO					,			7	
								-	
Time							-	7	
Specific Conductivity				•					
pН]	
Turbidity				,				3	
Temperature]	
ORP DO								_ '	
Did well dry out? (If yes	s, how many	•		Actual Volu	me Remove	ed ^F 20	(gallons)		
COMMENTS:	_	O							
¥W	ater	VOVY	SIF	y to	STOY	<i>t</i> ·		-	
			· · · · · · · · · · · · · · · · · · ·	/	· · · · · · · · · · · · · · · · · · ·			- -	
Pur	ped	until	I WC	III	appe	aved	TO	-	
	7100	,	5 G1252	1 (1 1 1	1 1	,,,,,	- CA 1	4 N	
<u> </u>	LICIN	() 50)	<u>m///((</u>	IWa	I ÇV Id	<u> 4 451</u>	$> (m) \vee$	W.	
	<u>/</u>					, 1	. 1		

Shaw Environmental, Inc. Monitoring Well Development Field Data Sheet

Project Name: HOIT DY					umber: 13	4685	•	•
Water Level Data Stony Point NY								
Date:	,	•	,	Well ID:	MW-	1		
Initial Total Casing Le	ength_ <i>31</i>	4.81'		_ (feet)	*Volume Fa			:
Depth to Water (from	top of casin	g) 19.	81	(feet)	4-inch well	= 0.163 gal/ = 0.653 gal/	/ft	
a) Helght of Water Co	lumn_5	.01'		(feet)	6-inch well	= 1.468 gal/	/IE	
Well Volume ([a] x vol	ume factor	*)= <u>501</u>	(feet) x 🔾	<u>/ 6</u> 3gallor	ns/foot = Q	816 gallon	s x10(w	ell volu
Development Data					to a second	(8.10	o gallo	no)
Date: 1/7/11	Tlme: O	840	(start) <u>O</u>	905 (1	inish)		The state of the s	-
Method: 5054 (Waterra, baller, subm			wha	le p	ump	 		٠
Time	0845	0855	0900	0905	unit5			I
Specific Conductivity	0.704	0.473	0.474	0.474	ms/cm	C]
pH Tubble	7.60	7.27	7.26	7.26				
Turbidity Temperature	13341	82.7	(68.9)	74.2	NTO C			
ORP	7.60	213.5	9.80 2/3.5	213.5	ORP			İ
DO	7.59	7.12	7.13	7.13	mall.			
•	1.01	, , , , , &	7.70	- 1 - 1 - 1 - 1		· · · · · · · · · · · · · · · · · · ·		i
Time								
Specific Conductivity								
рН								
Turbidity			,	•	· .		,	
Temperature							•	
ORP								
DO								ĺ
Time	<u> </u>					i		1
Specific Conductivity								
рН								•
 Turbidity 				•			·	
Temperature								
- PRO		·						
DO ·		· · · · · · · · · · · · · · · · · · ·					·	
Did well dry out? (If yes	, how many	times)		Actual Volu	me Remove	90 ((gallons)	
Personnel: TCD	<u>Gai</u>	ley	·					
COMMENTS:		<u> </u>			·	· · · · · · · · · · · · · · · · · · ·		. `
* WO	ter i	/CYY	SILLY	jturi	ned r	oumî) 7K-C	
to to	Re In	end i	707	· V:11	00	1/1/00 0	10 77	· \
	12 C V		140) 1111	XIL	HAXILI	1x Al	<i>'</i> .
pum	prd i	105	IXIC	Her	CIDDE	TVec	A cloc	W
> tem	1	I vol u	lme5		4 7	1		••• •


Project Name:	NYSDEC I	lolt Drive		Project Nu	mber: 1346	85.11		
Water Level Data			*				_	
Date: 3)7/11				Well ID:			_	
Initial Total Casing Le	ngth	26.55	(f	eet)	1-inch well	= 0.041 ga		
Depth to Water (from top of casing) $\frac{\partial \lambda_{-}}{\partial \lambda_{-}}$ (feet) 1.5-inch well = 0.092 gal/ft 2-inch well = 0.163 gal/ft 3-inch well = 0.367 gal/ft								
a) Height of Water Col Well Volume ([a] x volu	lumn	444	(fe	et)	4-inch well	= 0.367 ga = 0.653 ga	1/ft 1/ft	
Well Volume ([a] x volu	ume factor	*) = <u>4.44</u>	(feet) x 163	gallons/f	oot = <u>'17</u>	= 1.468 ga gallons	<i>I/1</i> (
Purge Data						· · · · · · · · · · · · · · · · · · ·	4	
Date: 3/7/11	Time: \	345	(start) 141	(finis	sh)			
Method: (Waterra, bailer, subm Purge Volume (3 to 5 v				mpling				
Time	1345	13.50	1353	1356	1359	1403	1408	14/2
Volume L/mm	31							-5.70.6
Specific Conductivity	.379	,35)	,343	·330	.328	<i>328</i>	,328	1329
pH	7.98	6.67	6.44	6.33	6.23	6.25	1,25	10,7
Turbidity	15.9	30.1	95'7	10.3	11.2	12.2	70.7	
Temperature	10/3/1	11.84	12.11	12.06	1204	11.89	11.83	11,77
	<u> </u>	-13.)	~7.\	-2.7	0.1	2.2	3.6	4.0
DO	.,	84.0%	83.3%	82.5%	82.5%	82.3%	82.0%	81.70%
Did well dry out? (If yes	s, how man	y times)		Actual Volu	ume Remov	red 9,0	_ (gallens) <i>L</i> _	
Sample Date: Appearance (visual) Sampling Method:	2/7/11 Clear		Sa Color	mple Time:	<i>1420</i> Odor	-	-	
Constituents Sampled		Container I	Discription		Perservative	a		
Total VOAs (8260)		<u>oomanici</u>	40mL Voa		HCI	=	-	
Total SVOCs			1 Liter Glass	Amber	<=6°		-	
TCL Pest/PCB			1 Liter Glass		<=6°		-	
Cyanide								
TAL Metals + Hg (total)								
TAL Metals + Hg (disso	olved)		500 mL Plasti	C	<=6°	1 1 1 1100	•	
Personnel: R. Adams / COMMENTS:	m. Dupuy		FR: 13/	4/min			-	

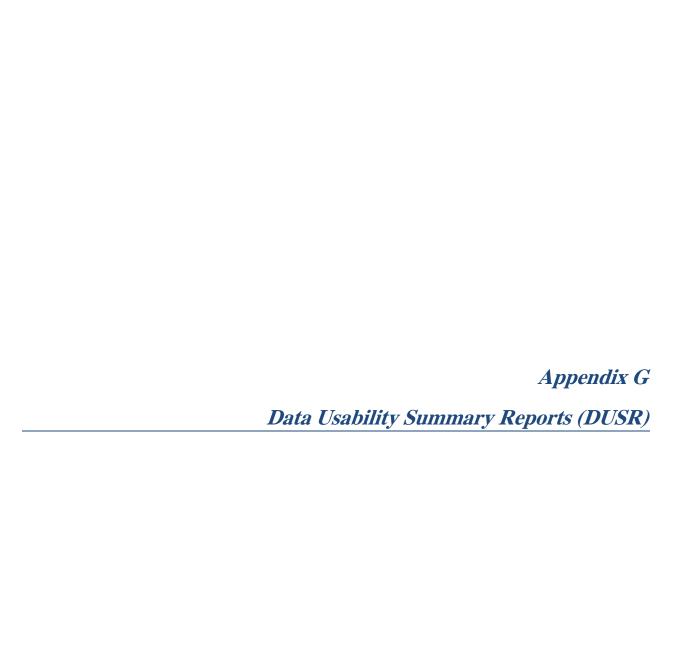
Project Name:	NYSDEC	Holt Drive		Project Nu	mber: 1346	85.11		
Water Level Data								
7 1		: <u>1436</u>		Well ID:	ກພ-3/ *Volume F		Dupi	
Initial Total Casing Le				eet)	1-inch well	= 0.041 gal		
Depth to Water (from				et) .	②inch well	ell = 0.092 g 0.163 ga 0.367 ga	l/ft	
a) Height of Water Co	lumn	1.8	(fe	•	4-inch well	= 0.653 gal	/ft	
Well Volume ([a] x vol	ume factor	*) = 7.81	(feet) x	gallons/f	oot =	= 1.468 gal gallons	l/ft	
Purge Data								
Date: 74582/111	Time:)	4)58	(start) 15	30 (finis	sh)			
Method: (Waterra, bailer, subm Purge Volume (3 to 5	·		Low Flow Sar	mpling				
Time	1500	1503	1507	1512.	1516	1520	1925	1530
Volume						44		
Specific Conductivity	,427	1782	• 791	.795	.805	. જાલ	√8 IST .	1813
pΗ	6.64	6.57	6.40	6.35	6,33	6.34	6.33	6,34
Turbidity	346	28.7	28.4	21.5	15.0	5.8	5.4	5.0
Temperature ORP	11.98	11.47	11.48	10,60	10.13	10.77	10.98	1100
DO	-16.1 96.4	892	81.2%	78.0%	1.6	77.470	7.0	7846
ъо	101.1	01.7	1011218	70.076	76,49,	1 117 10	18 11 /0	10-
Did well dry out? (If ye	s, how mar	ny times)		Actual Volu	ime Remov	red 4.6	_ (gallons) 	
Sampling Data	AND STREET						1	
Sample Date: Appearance (visual) Sampling Method:	2/7/1	lear	Sa Color	mple Time:	1535 Odor	nonl_		
. •								
Constituents Sampled	= .	<u>Container</u>			Perservative	<u>e</u>	•	
Total VOAs (8260) Total SVOCs			40mL Voa 1 Liter Glass	Δmher	HCl <=6°			
TCL Pest/PCB			1 Liter Glass		<=6°			
Cyanide			250 mL Plasti		NaOH		•	
TAL Metals + Hg (total)		500 mL Plasti	c	HNO ₃		•	
TAL Metals + Hg (diss	•		500 mL Plasti	С	<=6°		•	
							•	
Personnel: R. Adams COMMENTS:		FR:	- 32 L/1	nin	*	Dup) <u>,</u>	ı
					5 . See escende ,			:

Project Name:	NYSDEC	Holt Drive		Project Nu	ımber: 1346	85.11		
Water Level Data			:				_ \	PAG
Date: 2 7 11	Start Time	. 1615		Well ID:	MW-8	Cexistin	- Well	1 170 25 a]
1 ·				TTON IDT	*Volume F	actors:	(1) LO	· .
Initial Total Casing Le	ength	30.43	(f	eet)		l = 0.041 ga		
Danib to Major /fram	lan af acciu)Z /~	7 /5-	-1\		ell = 0.092 (
Depth to Water (from	top or casir	19) <u>0 7</u> 12 07		·		l = 0.163 ga l = 0.367 ga		
a) Height of Water Co				et)		l = 0.653 ga l = 1.468 ga		
Well Volume ([a] x vo	lume factor	*) = 6.03	(feet) x 165	gallons/i	toot = 11	gallons		
Purge Data				See May 10 at 2			/'	
Date: 1620	ე/7 Time: <u>/ს</u> 23	718 1430	৯1 7 (start) <u>[৮</u> 40	્ર \/ ઇ _ 14 4 0_(fini:	sh)		- (, - / an	sup. Publicat
B # - 41T-				1	/ i	V 2/0	ms/mso los	lost
Method: (Waterra, bailer, subn	nersible nur	nn etc.)			Re	SUMITS +	•	
(Waterra, Daller, Subir	iersibie pui	пр, есс.)			/ to	Collect		
Purge Volume (3 to 5	well volume	es);	Low Flow Sai	mpling		7		
Time	1625	1628	1631	1635	1640	1430	1435	1490
Volume								
Specific Conductivity	.314	:311	.309	,312	313	, ଅଷ୍ପର	7,28,7	1986
рН	7.54	7.55	7.57	7.57	7,5%	7.27	7,31	7.36
Turbidity	120.7	97.8	81.4	31.1	11.7	86.7	43.6	38,49
Temperature	10.21	10.90	11,26	12.24	12.53	10:48	10,59	10,81
ORP	~23.3	-14.1	-11.6	-9.5	-9,6	-14.7	-10,7	-8.0
DO	107.87	94.0%	97.990	134	968	94.8%		94.7%
Did well dry out? (If ye	s), how mar	y times)		Actual Vol	o ume Remov	red 4.6 2 "	_ (gallons)	
Sampling Data	One	ح				×.	<u>_</u>	
	18/6, 1/12				2/7/0 /	2/8/11	ı	
Sample Date:	417") WJ0[1	Ч	Sa	mple Time:		1440		
Appearance (visual)	(Leur	-	Color	Chear		hone		
Sampling Method:		-	,		•		-	
Constituents Sampled	,	Container I			Perservativ	<u>e</u>		
Total VOAs (8260)			40mL Voa		HCI		•	
Total SVOCs			1 Liter Glass		<=6°			
TCL Pest/PCB Cyanide		Secure of the se	1 Liter Glass		<=6°			
TAL Metals + Hg (tota	1)		250 mL Plasti 500 mL Plasti		NaOH HNO ₃		•	
TAL Metals + Hg (diss			500 mL Plasti		<=6°		•	
TAL MCIAIS - Fig (diss	olvea)		JOU TIL Flasti	<u> </u>	<u> </u>		•	
							•	
							•	
Personnel: R. Adams	Mal.	20.14	ا الدر	1. 44.	T/	, 0, 10	1R, Q ++1/1	SVOAS. CDry
COMMENTS:	<u> 2/1/n</u>		901	mples (XI	10 1C	c iezh La	ing F VCL	Woas.
FR= ,31 L/min		<u> </u>	- [Maimhile	7 HOU !	אמיון בי			•
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							· · · · · · · · · · · · · · · · · · ·	

Project Name:	NYSDEC	Holt Drive		Project Nu	mber: 1346	85.11		
Water Level Data							1	
Date: 2811	Start Time	1555		Well ID:	MW-1A	actors:	vell Lid plaval needs litt Repl	0(4
Initial Total Casing Le	ngth	24.6	(f	eet)		= 0.041 ga =ll = 0.092 g		gement
Depth to Water (from				et)	②inch well		1/ft	
a) Height of Water Co	lumn	3,37	(fe	et)	4-inch well	= 0.653 ga	l/ft	
Well Volume ([a] x vol	ume factor	*) = 7.37	(feet) x _ / 163	gallons/f	oot = <u>4 5 L</u>	gallons	<i>1</i> /10	
Purge Data	and which they have	to the structure of the structure.						
Date: 👌 🕅	Time: /	olo	(start) 16	<u>X)</u> (finis	sh)			
Method: (Waterra, bailer, subm Purge Volume (3 to 5	-	•	Low Flow Sar	mpling				
Time	1612	1615	1618	1671	1624	1630	Ι\	
Volume	•							
Specific Conductivity	,⊃85	りもつ	288	1788	1389	, રાહિ		
рН	8,17	8.21	7.84	4.8	7.79	777		
Turbidity	Dollo	1.60.1	116.1	56,7	47.3	45,0		
Temperature	8.37	1.16	9.65	9,71	9.73	9.8Q	3	
ORP	-41.7	-32.3	-18.2	-11.4	-9.6	のふ		
DO	67.196	74.3	97.1%	96.7%	94,8	97.4%		
Did well dry out? (If ye	s, how mar	ny times)		Actual Volu	ume Remov	ed 62	_ (gallons)	
	2/BI			·	The Car.	16 50	•	
Sample Date: Appearance (visual) Sampling Method:	Clea	<u>r</u>		mple Time:	Odor	NA	-	
Constituents Sampled		Container	<u>Discription</u>	ļ	Perservativ	<u>e</u>	_	
Total VOAs (8260)			40mL Voa		HCI		-	
Total SVOCs			1 Liter Glass		<=6°		_	
TCL Pest/PCB			1 Liter Glass		<=6°			
Cyanide			250 mL Plast		NaOH		•	
TAL Metals + Hg (total	<u> </u>		500 mL Plast		HNO₃			
TAL Metals + Hg (diss	olved)		500 mL Plast	ic	<=6°		•	
Personnel: R. Adams COMMENTS:	₹Q. 3	1 UmiN						

Project Name:	NYSDEC I	Holt Drive		Project N	umber: 134	685.11	
Water Level Data					•		
Date: 2/10/11				Well ID:	MW-L *Volume !	Factors:	no need Bailes
Initial Total Casing Le	ength	27.45	(feet)	1-inch we	ii = 0.041 ga	al/ft
Depth to Water (from					2 Inch we	vell = 0.092 II = 0.163 ga II = 0.367 ga	al/ft
a) Height of Water Co	lumn	<u> ७.५९</u>	(fe	eet)	4-inch we	ll = 0.653 ga	al/ft
Well Volume ([a] x vol	ume factor	*) = 5.901	(feet) x 16	<u> </u>	6-inch we foot = <u>, 9</u>	il = 1.468 ga]gallons	al/ft
Purge Data							
Date: 3/16/11	Time: 15	30	(start) <u> 55</u>	<u> </u>	ish)		
Method: (Waterra, bailer, subm	nersible pum	np, etc.)					
Purge Volume (3 to 5	well volume	s):	Low Flow Sa	mpling			
Time	1532	1535	1538	1542	1546	1550	
Volume			:				
Specific Conductivity	, ३७५	1348	1297	178C:	. 297	,299	
pН	7.91	7.73	7.59	7,39	7.33	7.38	
Turbidity	821.7	80,5	46.0	78.7	66.8	88.8	ļ
Temperature	13.38	13.48	13.61	12.69	12.45	12.43	
ORP DO	124	134	146	156e	159	162	
DO	7.0)	6.67	6.69	8.13	7,44	8.02	
Did well dry out? (If yes	s, how man	y times)		Actual Vo	lume Remo	ved <u></u> 8, 6	_ (gallens)
		4,4			1,		
Sample Date:	11/01/15		Sa	ample Time	: 1600		
Appearance (visual) Sampling Method:	Sh clou	ndy	Colo		Odoi		-
Constituents Sampled		Container I	Discription		Perservativ	·	
Total VOAs (8260)		<u>Oomainer</u>	40mL Voa		HCI	<u> </u>	=
Total SVOCs			1 Liter Glass	Amber	<=6°		-
TCL Pest/PCB	•		1 Liter Glass		<=6°		-
Cyanide			250 mL Plast	ic	NaOH		-
TAL Metals + Hg (total)		500 mL Plast	ic	HNO₃		_
TAL Metals + Hg (disso	olved)		500 mL Plast	ic	<=6°		
							· -
Personnel: R. Adams	FR	,31 L/n	าไห				

NON-HAZARDOUS WASTE MANIFEST


Piea	se print or type (Form designed for use on elite (12 pitch) typewriter)						
	NON-HAZARDOUS WASTE MANIFEST 1. Generator's US EPA I	DNO. N / A		Manifest Document No	28032	2. Page 1 of	1
	3. Generalors Name and Mailing Address NYSDEC-DIV. Of Enviro. Remediation Sec C Remedial Bureau B-625 Broadway, 12th Fl.						
	Albany, NY 12233 4. Generator's Phone (631) 225-3046		Stony Point, NY 10980				
		S. US EPA ID Number		A. State Trans	sporter's ID		
	Freehold Cartage, Inc.	NJD054126	1.64	B. Transporte	r1Phone (732	1462-1	.001
	7. Transporter 2 Company Name	 US EPA ID Number 		C. State Trans	sporter's ID		
				D. Transporte	r 2 Phone		
	Designated Facility Name and Site Address	0. US EPA ID Number		E. State Facili	ty's ID		
	Vezor Technology, Inc.						
	955 West Smith Road			F. Facility's Pi	none		
	Madina, OH 44256	OHD077772	8 9 5		(330)721-9	773	
Service.	11. WASTE DESCRIPTION		12. Co		13. Total Quantity		14. Jnit t./Vol.
			No.	Type	Quantity	w w	t./Vol.
	a Non Hazardous						
	Non-DOT Regulated Material		13	DW	715	G)
G	b.						
GEZ							
E							
R	c.						
A							
O R							
R	d.						
			L				
	G. Additional Descriptions for Materials Listed Above			H. Handling C	odes for Wastes Listed Abo	ve	
	15. Special Handling Instructions and Additional Information						
	11a) VEX 20514						
	**Certificate of Disposal Required*						
						//2/	
	16. GENERATOR'S CERTIFICATION: I hereby certify that the contents of this in proper condition for transport. The materials described on this manifest a	shipment are fully and accurately described re-	and are in	all respects			
	(and part the materials opposited on the manifest a		,		·		
	S					Date	
	Printed/Typed Name / 1001 0 1000	Signature	01	A. 11	of MADEC WO	nth Day	Year
	<u>Nicholas Nicholas of Thawle numering)</u>	ia planta la sun	A.J.L.	11991 Y	OLD THE CO	114	1
IT R	17. Transporter 1 Acknowledgement of Receipt of Materials					Date	
A	Printed/Typed Name	Signature	and the state of t	manganak sinji ji Fra	Mo	nth Day	Year
S	Carris 1/060/k	-0:58*****	A Di discission		(5)	<u>417</u>	1//
ģ	18. Transporter 2 Acknowledgement of Receipt of Materials					Date	
TRANSPORTER	Printed/Typed Name	Signature			Мо	nth Day	Year
\Box	19. Discrepancy Indication Space						L
F	· · · · · · · · · · · · · · · · · · ·						
A							
ĭ	20. Facility Owner or Operator, Certification of receipt of the waste materials co	vered by this manifest, except as noted in ite	m 19.		1=1		
Ļ	,	2				Date	
[T	Printed/Typed Name	Signature			Мо		Year
Ÿ	•				1110		

Appendix F

Analytical Data Packages – Soil and Groundwater

(Provided on CD)

Data Validation Services

120 Cobble Creek Road P.O. Box 208 North Creek, NY 12853

> Phone 518-251-4429 Facsimile 518-251-4428

March 28, 2011

Heather Fariello Shaw Environmental 13 British American Blvd Latham, NY 12110

RE: NYSDEC Holt Site

Data Usability Summary Report (DUSR)
Katahdin Package Numbers SE0092 and HOLT01
Login Nos. SE0092, SE0564, SE0589, and SE0647

Dear Ms. Fariello:

Review has been completed for the data packages generated by Katahdin that pertain to samples collected between 01/04/11 and 02/10/11 at the NYSDEC Holt site. Eleven soil samples, five aqueous samples, two soil field duplicates, and one aqueous field duplicate were processed for TCL volatiles, TCL semivolatiles, TCL PCBs, TCL pesticides, and TAL metals/CN. The aqueous samples and field duplicates were also processed for filtered/dissolved metals. The waste characterization sample reported in SDG SE0092 did not undergo validation review. Analytical methodologies utilized are those of the USEPA SW846 6000/7000/8000.

The data packages submitted contained full deliverables for validation, but this usability report is primarily generated from review of the summary form information, with full review of sample raw data, and limited review of associated QC raw data. Full validation has not been performed. However, the reported summary forms have been reviewed for application of validation qualifiers, per the USEPA Region 2 validation SOPs and the USEPA National Functional Guidelines for Data Review, with consideration of the requirements of the project QAPP and the specific methodologies. The following items were reviewed:

- * Laboratory Narrative Discussion
- Case Narratives
- * Custody Documentation
- * Holding Times
- * Surrogate and Internal Standard Recoveries
- * Matrix Spike Recoveries/Duplicate Correlations
- * Field Duplicate Correlations
- * Preparation/Calibration Blanks
- * Matrix Spiked Blanks/Laboratory Control Samples
- * Instrumental Tunes
- * Calibration/Low Level Standards
- * ICP Interference Check Standards
- * ICP Serial Dilution Correlations

VALIDATION DATA QUALIFIER DEFINITIONS

- U The analyte was analyzed for, but was not detected above the level of the associated reported quantitation limit.
- J The analyte was positively identified; the associated numerical value is an approximate concentration of the analyte in the sample.
- UJ The analyte was not detected. The associated reported quantitation limit is an estimate and may be inaccurate or imprecise.
- NJ The detection is tentative in identification and estimated in value. Although there is presumptive evidence of the analyte, the result should be used with caution as a potential false positive and/or elevated quantitative value.
- **R** The data are unusable. The analyte may or may not be present.
- EMPC The results do not meet all criteria for a confirmed identification.

 The quantitative value represents the Estimated Maximum Possible

 Concentration of the analyte in the sample.

- * Method Compliance
- * Sample Result Verification

Those items listed above which show deficiencies are discussed within the text of this narrative. All of the other items were determined to be acceptable for this level of review.

In summary, most results for the samples are usable as reported, or usable with minor qualification due to sample matrix or to processing outliers. The result for one semivolatile compound in one soil sample is not usable due to an apparent matrix effect. The result for one semivolatile compound in the equipment blanks is not usable due to laboratory processing.

Copies of the laboratory sample identification and case narratives are attached. Also included with this report are validation qualifier definitions and red-ink qualified hardcopy client results tables or laboratory report forms.

The following text discusses quality issues of concern.

Chain-of-Custody/Sample Receipt

There are no release entries on the chain-of-custody for sample MW-4.

One of the trip blanks associated with the soil samples was not entered onto the chain-of-custody.

Field Duplicates

Blind field duplicate evaluations on SS-06(0-6"), SB-06(16-20", and MW-3A show results within guidelines, with the exception of that for iron in the total fraction of MW-3A. The result for that element in the parent sample and its duplicate have been qualified as estimated in value.

TCL Volatiles by EPA 8260B

Samples SS-1(0-2") and SS-3(0-2") produced low responses for surrogate and/or internal standards in replicate analyses. In both cases, the best case is the reanalysis. Those analyses are to be used, with results for 1,1,2,2-tetrachloroethane qualified as estimated in the latter, and the results for nine target analyses qualified as estimated in the former, both cases due to outlying associated internal standard responses.

Samples SS-4(0-2") and SS-5(0-2") show low responses for one internal standard, but were not reanalyzed. Results for associated analyte 1,1,2,2-tetrachloroethane in those two samples have been qualified as estimated in value.

The detection of acetone in SS-1(0-2") is considered external contamination, due to presence in the associated equipment blank. That detection has been edited to reflect non-detection.

Due to poor mass spectral quality, the result for 1,1,1-trichloroethane in MW-2A is qualified as tentative in identification and estimated in value.

The matrix spikes of MW-8, SB-5(0-2"), and SB-5(18-21.5") show acceptable recoveries and duplicate correlations, with the following exceptions, results for which are qualified as estimated in the indicated parent sample:

- o trichloroethene (117% and 117%) in SB-5(18-21.5")
- o 2-butanone, 2-hexanone, styrene, cis-1,3-dichloropropene, and 4-methyl-2-pentanone (11% to 68%) in SB-5(0-2")

Sample holding times were met, and instrument tunes meet protocol requirements.

The calibration standard responses are acceptable, with the exception of those for chloromethane (22%D and 23%D) in the standards associated with SS-2(0-6") and Trip Blank 2. Results for that compound in those two samples are qualified as estimated in value.

Semivolatile Analyses by EPA8270C

The detections of bis(2-ethylhexyl)phthalate in MW-4 and the soil samples are considered external contamination due to the presence in the associated method blanks. Those detected results have been edited to reflect non-detection.

Similarly, the detections of benzo(b)fluoranthene and benzo(a)pyrene in MW-1A and MW-8 have been edited to reflect non-detection due to presence of those compound in the associated method blank.

Hexachlorocyclopentadiene failed to recover, and 2,4-dintrophenol produced one recovery below 10%, in the LCSs associated with the equipment blanks. Therefore, results for those compounds in the equipment blanks are rejected. The result for 4,6-dinitro-2-methylphenol is qualified as estimated in the equipment blanks due to a low recovery of 11% in one of the LCSs. There is no effect on the results of the project field samples.

The results for hexachlorocyclopentadiene in the soil samples collected 02/07/11 are qualified as estimated due to low recovery (13%) of compound in one of the associated LCSs.

Sample SS-1(0-2") shows low responses for one internal standard, but was not reanalyzed. Results for the seven associated analytes in that sample have been qualified as estimated in value.

The matrix spikes of MW-8, SS-5(0-2"), and SB-5(18-21.5") show acceptable recoveries and duplicate correlations, with the exception of those for 3,3'-dichlorobenzidine (10% and 8%) in SS-5(0-2"). Due to recovery below 10%, the result for that compound in the parent sample is rejected, and not usable.

Calibrations standard responses were within laboratory and validation guidelines. Sample holding times were met, and surrogate recoveries are within required limits.

TCL Pesticides and PCBs Analyses by EPA8081A and EPA 8082

Aroclor results in the aqueous field duplicate DUP are qualified as estimated, as indicated by low recoveries (35% and 42%) of surrogate standard DCB. Results for the parent sample did not require qualification.

The result for endosulfan II is qualified as estimated in SS-3(0-2") due to an elevated dual column correlation (47%D).

Matrix spikes of pesticides and Aroclors 1016 and 1260 in MW-8, SS-5(0-2"), and SB-5(18-21.5") show acceptable accuracy and precision.

Results for 4,4'-DDD in MW-1A and MW-8, and for 4,4'-DDD, 4,4'-DDT, and methoxychlor in MW-2A, MW-3A, DUP, and the equipment blanks, are qualified as estimated due to outlying responses (16%D to 29%D) in the associated calibration standards.

TAL Metals/CN by 6010B, 7470, 7471, and 9012

The samples submitted for the dissolved metals fraction were not filtered and preserved until after laboratory receipt. Therefore, all results for metals in the filtered fractions of the samples have been qualified as estimated due to the delayed preservation.

Calibration and low-level standard responses are acceptable, with the exception of low recovery for sodium (88%) in the continuing calibration verification standard associated with the equipment blanks. Results for that element in those blanks have been qualified as estimated in value.

The matrix spike/laboratory duplicate accuracy and precision determinations were performed on MW-8 (both total and "dissolved" fractions), SS-5(0-2"), and SB-5(18-21.5"). Results are within validation guidelines, with the exceptions of those for antimony (20% to 23%) and potassium (163% to 89%) in both parent soil samples. The results for those two elements in the soil sample have been qualified as estimated in value.

The ICP serial dilution evaluations were performed on MW-8 (both total and "dissolved" fractions), SS-5(0-2"), and SB-5(18-21.5"), with the following outliers. Detections for those elements in the indicated samples are qualified as estimated:

Parent Sample	Element	Correlation, %D	Affected Samples
SS-5(0-2")	iron	13	Those with the "SS" prefix
SB-5(18-21.5")	iron	13	Those with the "SB" prefix
	lead	13	н

Please do not hesitate to contact me if you have comments or questions regarding this report.

Very truly yours,

Judy Harry

CLIENT and LABORATORY SAMPLE IDS and CASE NARRATIVES

SDG NARRATIVE KATAHDIN ANALYTICAL SERVICES SHAW ENVIRONMENTAL, & INFRASTRUCTURE GROUP CASE NYSDEC 134685/1102 SE0092

Sample Receipt

The following samples were received on January 7, 2011 and were logged in under Katahdin Analytical Services work order number SE0092 for a hardcopy due date of January 26, 2011.

KATAHDIN	SHAW
Sample No.	Sample Identification
SE0092-1	SS-1 (0-2")
SE0092-2	SS-2 (0-6")
SE0092-3	SB-2 (17-19')
SE0092-4	SS-3 (0-2")
SE0092-5	SB-3 (24-26')
SE0092-6	SS-4 (0-2")
SE0092-7	SB-4 (20-22')
SE0092-8	SS-5 (0-2")
SE0092-9	SB-5 (18-21.5')
SE0092-10	SS-6 (0-6")
SE0092-11	SS-DUP
SE0092-12	SB-6 (16-20')
SE0092-13	SB-DUP
SE0092-14	TRIP BLANK
SE0092-15	EB-1
SE0092-16	EB-2
SE0092-17	WASTEC-1
SE0092-18	TRIP BLANK 2

The samples were logged in for the analyses specified on the chain of custody form. All problems encountered and resolved during sample receipt have been documented on the applicable chain of custody forms.

We certify that the test results provided in this report meet all the requirements of the NELAC standards unless otherwise noted in this narrative or in the Report of Analysis.

Sample analyses have been performed by the methods as noted herein.

Should you have any questions or comments concerning this Report of Analysis, please do not hesitate to contact your Katahdin Analytical Services Project Manager, Ms. Kelly Perkins. This narrative is an integral part of the Report of Analysis.

Organics Analysis

The samples of Work Order SE0092 were analyzed in accordance with "Test Methods for Evaluating Solid Wastes: Physical/Chemical Methods." SW-846, 2nd edition, 1982 (revised 1984), 3rd edition, 1986, and Updates I, II, IIA, III, IIIA, and IIIB 1996, 1998 & 2004, Office of Solid Waste and Emergency Response, U.S. EPA., and/or for the specific methods listed below or on the Report of Analysis.

All samples that have client ID's identified with "SB-" are labeled with the symbol " to indicate the distance in inches. Due to software limitations, this symbol could not be used in order to generate the MS/MSD forms and the (ROA) Report of Analysis forms. Therefore, the symbol " was removed from the affected client IDs for all Forms or the MS/MSD and ROA forms.

8260B TCLP Analysis

The target analyte trichloroethene was detected in the TCLP blank WG87287-3 above the MDL but below the PQL. Since the analyte was not detected above the MDL in the associated sample, no further action was taken.

The reported percent recovery acceptance limits for the Laboratory Control Samples (LCSs) are statistically derived limits for the full list of spiked compounds. The recoveries of the spiked analytes in the LCS, Matrix Spike (MS) and Matrix Spike Duplicate (MSD) are compared to these acceptance limits. Katahdin standard operating procedure is to take corrective action only if the number of spiked analytes in the LCS that are outside of the QC limits is greater than the DoD QSM allowable number of exceedances. The LCS report consists of the full list of spiked analytes, but only the client's list of target analytes are evaluated. If the associated MS/MSD has greater than the allowable number of exceedances, no corrective action is taken, as long as the LCS is acceptable.

8260B Analysis

Samples SE0092-8 and 9 were used for the matrix spike (MS) and matrix spike duplicate (MSD), as per client request.

Samples SE0092-4RA, 6, 6RA, 8, 9, 10 and 12 were manually integrated for the target analyte acetone. The specific reasons for the manual integrations are indicated on the raw data by the manual integration codes (M1-M11). These codes are further explained in the attachment following this narrative.

Sample SE0092-1 had a low recovery for one surrogate which was outside of the laboratory established acceptance limits, as well as a low response for one internal standard that resulted in a %D which was outside the laboratory acceptance limit of -50% to +100% of the response of the internal standard of the daily calibration verification standard. The sample was reanalyzed and had acceptable surrogate recoveries, but had low responses for two internal standards. This is likely attributable to a matrix effect. The results from both analyses are reported.

Sample SE0092-4 had low recoveries for two surrogates which were outside of the laboratory established acceptance limits. The sample was reanalyzed and had acceptable surrogate recoveries, but had a low response for one internal standard that resulted in a %D which was outside the laboratory acceptance limit of -50% to +100% of the response of the internal standard of the daily calibration verification standard. This is likely attributable to a matrix effect. The results from both analyses are reported.

Sample SE0092-6 had a low response for one internal standard that resulted in a %D which was outside the laboratory acceptance limit of -50% to +100% of the response of the internal standard of the daily calibration verification standard. The sample was reanalyzed with similar results indicating a possible matrix effect. The results from both analyses are reported.

Sample SE0092-8 had a low response for one internal standard that resulted in a %D which was outside the laboratory acceptance limit of -50% to +100% of the response of the internal standard of the daily calibration verification standard. This sample was used as an MS/MSD and the MS/MSD had acceptable internal standard responses. Therefore, the sample was not reanalyzed.

The initial calibration analyzed on the C instrument on 01/14/11 had the mean response factor (RF) for the (SPCC) System Performance Check Compound bromoform less than 0.1. The calibration verification standards (CV's) associated with this initial calibration (files C2134 and C2157) had RF's for the SPCC bromoform less than 0.1.

The initial calibration analyzed on the D instrument on 12/28/10 had a %RSD value for acetone that exceeded the method acceptance limit of 15%. The analyte met the acceptance criteria for the linear and quadratic calibration models. Although the %RSD is greater than 15%, acetone was calibrated with the average model since this calibration model is more accurate for this analyte at concentrations near the PQL than either the linear or quadratic calibration models.

The Form 7's have a column for %D's that are set to 20% for all of the target analytes as required according to DoD QSM version 4.1. The CV's (files C2134 and D9335) had low responses for the analyte chloroform and/or high responses for dibromochloromethane that resulted in a %D that was greater than 20%. This analyte was not a calibration check compound (CCC). These analytes were not calibration check compounds (CCC). Since the CV's CCC's according to method 8260B were acceptable, the associated samples were not reanalyzed.

The reported percent recovery acceptance limits for the Laboratory Control Samples (LCSs) are statistically derived limits for the full list of spiked compounds. The recoveries of the spiked analytes in the LCS, Matrix Spike (MS) and Matrix Spike Duplicate (MSD) are compared to these acceptance limits. Katalhdin standard operating procedure is to take corrective action only if the number of spiked analytes in the LCS that are outside of the QC limits is greater than the DoD QSM allowable number of exceedances. The LCS report consists of the full list of spiked analytes, but only the client's list of target analytes are evaluated. If the associated MS/MSD has greater than the allowable number of exceedances, no corrective action is taken, as long as the LCS is acceptable.

8151 TCLP Analysis

The opening CV's (files 8EA00159 and 8EA00171) had high responses for the target analytes 2,4-D and silvex on both channels which resulted in %D's that were outside of the method acceptance limits of 15%. Since a high response would indicate a high bias and these analytes were not detected above the MDL in the associated sample, the samples were not reanalyzed. The associated LCS/LCSD may be biased high.

The closing CV (file 8EA00169) had high responses for silvex on both channels and high responses for 2,4-D and the surrogate 2,4-dichlorophenylacetic acid on channel A. These responses resulted in %D's that were outside of the method acceptance limits of 15%. Since a high response would indicate a high

bias and these analytes were not detected above the MDL in the associated sample, the sample was not reanalyzed.

8270C TCLP Analysis

The reported percent recovery acceptance limits for the Laboratory Control Samples (LCSs) are statistically derived for the full list of spiked compounds. The recoveries of the spiked analytes in the LCS, Matrix Spike (MS) and Matrix Spike Duplicate (MSD) are compared to these acceptance limits. Katahdin standard operating procedure is to take corrective action only if the number of spiked analytes in the LCS that are outside of the QC limits is greater than the DoD QSM allowable number of exceedances. If the associated MS/MSD has greater than the allowable number of exceedances, no corrective action is taken, as long as the LCS is acceptable.

8270C Analysis

Samples SE0092-8 and 9 were used for the matrix spike (MS) and matrix spike duplicate (MSD), as per client request.

All soil samples and associated QC were subjected to the GPC sample clean-up process.

Surrogate recoveries for all samples and QC were evaluated using laboratory established acceptance limits.

The reported percent recovery acceptance limits for the aqueous Laboratory Control Samples (LCSs) are statistically derived for the full list of spiked compounds. The limits for the soil LCS's are nominal acceptable limits. The recoveries of the spiked analytes in the LCS, Matrix Spike (MS) and Matrix Spike Duplicate (MSD) are compared to these acceptance limits. Katahdin standard operating procedure is to take corrective action only if the number of spiked analytes in the LCS that are outside of the QC limits is greater than the DoD QSM allowable number of exceedances. If the associated MS/MSD has greater than the allowable number of exceedances, no corrective action is taken, as long as the LCS is acceptable. Nominal limits are used for the LCS/LCSD until enough data is collected to generate statistically based acceptance limits.

Sample SE0092-1 had a low response for the internal standard perylene-d12 that resulted in a %D which was outside the laboratory acceptance limit of -50% to +100% of the response of the internal standard of the daily calibration verification standard. Since this internal response was within the DoD QSM 4.1 acceptance limit of -50% to +100% of the response of the internal standard of the midpoint standard of the initial calibration, the sample was not reanalyzed.

8081 TCLP Analysis

The closing CV (file 1EA00115) had low responses for methoxychlor on both channels which resulted in %D's that were outside of the method acceptance limits of 15%. Since the associated LCS and LCSD had acceptable recoveries, the associated samples were not reanalyzed.

8081 Analysis

Samples SE0092-8 and 9 were used for the matrix spike (MS) and matrix spike duplicate (MSD), as per client request.

All soil samples and associated QC were subjected to the GPC sample clean-up process.

Sample SE0092-6 was manually integrated for the target analyte 4,4'-DDT. The specific reasons for the manual integrations are indicated on the raw data by the manual integration codes (M1-M11). These codes are further explained in the attachment following this narrative.

The reported percent recovery acceptance limits for the Laboratory Control Samples (LCSs) are statistically derived limits for the full list of spiked compounds. The recoveries of the spiked analytes in the LCS, Matrix Spike (MS) and Matrix Spike Duplicate (MSD) are compared to these acceptance limits. Katahdin standard operating procedure is to take corrective action only if the number of spiked analytes in the LCS that are outside of the QC limits is greater than the DoD QSM allowable number of exceedances. The LCS report consists of the full list of spiked analytes, but only the client's list of target analytes are evaluated. If the associated MS/MSD has greater than the allowable number of exceedances, no corrective action is taken, as long as the LCS is acceptable.

The LCSD WG87131-3 had two spiked target analytes with recoveries that were high and outside of the laboratory established acceptance limits. The DoD QSM allowable number of exceedances for 20 target analytes is one analyte. Since the LCS had acceptable spike recoveries, the associated samples were not reextracted.

The opening CV (file 1EA00102) had a low response for endosulfan sulfate on channel B, which resulted in a %D that was outside of the method acceptance limits of 15%. Since the responses were acceptable on channel A, the associated samples were not reanalyzed.

The closing CV (file 1EA00115) had low responses for methoxychlor on both channels and low responses for 4,4'-DDD and 4,4'-DDT on channel A. These responses resulted in %D's that were outside of the method acceptance limits of 15%. Since the associated LCS and LCSD had acceptable recoveries, the associated samples were not reanalyzed.

The opening/closing CV (file 1EA00153) had low responses for 4,4'-DDT and methoxychlor on channel A, which resulted in %D's that were outside of the method acceptance limits of 15%. Since the responses were acceptable on channel B, the associated samples were not reanalyzed.

The closing CV (file 1EA00165) had a low response for 4,4'-DDT on channel A, which resulted in a %D that was outside of the method acceptance limits of 15%. Since the responses were acceptable on channel B, the associated samples were not reanalyzed.

8082 Analysis

Samples SE0092-8 and 9 were used for the matrix spike (MS) and matrix spike duplicate (MSD), as per client request.

All soil samples and associated QC were subjected to the GPC sample clean-up process.

The method blank WG87104-1, the LCS/LCSD WG87104-2 and 3, the MS/MSD WG87104-5 and 6 and samples SE0092-4RA, 5, 7, and 12 had low recoveries for the surrogate TCX on channel A, which were outside the laboratory established acceptance limits. Since the recoveries of TCX on channel B and the surrogate DCE on both channels were acceptable, the samples were not reextracted.

Samples SE0092-1 and 11 had low recoveries for DCB on channel A, which were outside the laboratory established acceptance limits. Since the recoveries of DCB on channel B and the surrogate TCX on both channels were acceptable, the samples were not reextracted.

Samples SE0092-2 and 3 had low recoveries for TCX and DCB on channel A, which were outside the laboratory established acceptance limits. Since the recoveries were acceptable on the confirmation channel, the samples were not reextracted.

The opening CV (file 7EA051) had a low response for Aroclor 1016 on channel A, as well as a low response for TCX on channel B. These responses resulted in %D's that were outside of the method acceptance limits of 15%. Since the responses were acceptable on the confirmation channels, the associated samples were not reanalyzed.

The closing CV (file 7EA066) had a low response for TCX and a high response for DCB on channel B, which resulted in %D's that were outside of the method acceptance limits of 15%. Since the responses were acceptable on channel A, the associated samples were not reanalyzed.

The opening CV (file 7EA086) had low responses for TCX on both channels, as well as low responses for Aroclor 1016 and Aroclor 1260 on channel A. These responses resulted in %D's that were outside of the method acceptance limits of 15%. Since the Aroclor responses were acceptable on channel B, the associated samples were not reanalyzed.

The opening/closing CV (file 7EA100) had low responses for TCX on both channels, as well as a low response for Aroclor 1260 on channel A. These responses resulted in %D's that were outside of the method acceptance limits of 15%. Since the Aroclor responses were acceptable on channel B, the associated samples were not reanalyzed.

The closing CV (file 7EA115) had low responses for DCB on both channels, as well as low responses for TCX, Aroclor 1016 and Aroclor 1260 on channel A. These responses resulted in %D's that were outside of the method acceptance limits of 15%. Since the Aroclor responses were acceptable on channel B, the associated samples were not reanalyzed.

The opening CV (file 7EA120) had a low response for Aroclor 1016 on channel A, which resulted in a %D that was outside of the method acceptance limits of 15%. Since the responses were acceptable on channel B, the associated samples were not reanalyzed.

There were no other protocol deviations or observations noted by the organics laboratory stuff.

Metals Analysis

The samples of Katahdin Work Order SE0092 were prepared and analyzed for metals in accordance with the "Test Methods for Evaluating Solid Wastes: Physical/Chemical Methods." SW-846. 2nd edition,

1982 (revised 1984), 3rd edition, 1986, and Updates I, II, IIA, III, IIIA and IIIB 1996, 1998 & 2004, Office of Solid Waste and Emergency Response, U.S. EPA.

TCLP Extraction (EPA Method 1311)

Katahdin Sample Number SE0092-17 was subjected to TCLP extraction on 01/10/11 in accordance with USEPA Method 1311. The resulting TCLP extract is identified throughout the raw data by the suffix "T" appended to the Katahdin Sample Number, e.g. "SE0092-017T". The TCLP fluid blank identified as PBT996A is associated with this TCLP extract. The measured concentrations of contaminants in this TCLP fluid blank are listed on the Extraction Fluid Blank Report appended after Form 3P in the accompanying data package. The measured lead concentration (0.040 mg/L) in the TCLP fluid blank PBT996A is above the laboratory's reporting limit (0.025 mg/L). Since the result for lead in the extraction fluid blank is well below the TCLP regulatory limit of 5 mg/L, the associated sample was not re-extracted.

Inductively-Coupled Plasma Atomic Emission Spectroscopic Analysis (ICP)

Solid-matrix K.atahdin Sample Numbers SE0092-(1-13) were digested for ICP analysis on 01/10/11 (QC Batch BA10ICS0) in accordance with USEPA Method 3050B. Katahdin Sample Numbers SE0092-(8 and 9) were prepared with duplicate matrix-spiked aliquots.

Aqueous-matrix Katahdin Sample Numbers SE0092-(15, 16, and 17T) were digested for ICP analysis on 01/11/11 (QC Batch BA11ICW0) in accordance with USEPA Method 3010A.

ICP analyses of the Katahdin Work Order SE0092 sample digestates were performed using a Thermo iCAP 6500 ICP spectrometer in accordance with USEPA Method 6010. All samples were analyzed within holding times and all analytical run QC criteria were met.

Katahdin Sample Number SE0092-17T was diluted during preparation for ICP analysis due to possible matrix interference.

Analysis of Mercury by Cold Vapor Atomic Absorption (CVAA)

Solid-matrix Katahdin Sample Numbers SE0092-(1-13) were digested for mercury analysis on 01/10/11 (QC Batch BA10HGS0) in accordance with USEPA Method 7471. Katahdin Sample Numbers SE0092-(8 and 9) were prepared with duplicate matrix-spiked aliquots.

Aqueous-matrix Katahdin Sample Numbers SE0092-(15, 16, and 17T) were digested for mercury analysis on 01/11/11 (QC Batch BA11HGW0) in accordance with USEPA Method 7470.

Mercury analyses of the Katahdin Work Order SE0092 sample digestate was performed using a Cetac M6100 automated mercury analyzer. All analytical run QC criteria were met and all samples were analyzed within holding times.

Matrix QC Summary

The measured recoveries of antimony and potassium in the matrix-spiked aliquots of Katahdin Sample Numbers SE0092-(8 and 9) are outside the laboratory's acceptance criteria (75% - 125% recovery of the

added element, if the native concentration is less than four times the amount added). The measured recoveries of these analytes in post-digestion spikes of these samples are within acceptance criteria.

The matrix-spike duplicate analyses of Katalidin Sample Numbers SE0092-(8 and 9) are within the laboratory's acceptance limit (<20% relative difference between duplicate matrix-spiked aliquots) for all analytes.

The serial dilution analysis of Katahdin Sample Number SE0092-8 is outside the laboratory's acceptance limit (<10% relative percent difference, if the concentration in the original sample is greater than 50 times the MDL) for cobalt and iron.

The serial dilution analysis of Katahdin Sample Number SE0092-9 is outside the laboratory's acceptance limit (<10% relative percent difference, if the concentration in the original sample is greater than 50 times the MDL) for iron and lead.

Reporting of Metals Results

Analytical results for client samples and batch QC samples (preparation blanks and laboratory control samples) have been reported down to the laboratory's method detection limits (MDLs) throughout the accompanying data package. Results that fall between the MDL and the PQL are flagged with "J" in the C-qualifier column, and the measured concentration appears in the concentration column. Analytical results that are below the MDLs are flagged with "U" in the C-qualifier column, and the MDL is listed in the concentration column. These PQLs and MDLs have been adjusted for each sample based on the sample amounts used in preparation and analysis.

Analytical results for instrument run QC samples (ICVs, ICBs, etc.) have been reported down to the laboratory's instrument detection limits (IDLs).

IDLs, MDLs, and PQLs are listed on Form 10 of the accompanying data package.

Wet Chemistry Analysis

The samples of Work Order SE0092 were analyzed in accordance with the specific methods listed on the Report of Analysis.

Analyses for reactive cyanide, ignitability, reactive sulfide, total cyanide, and pH (soil) were performed according to "Test Methods for Evaluating Solid Wastes: Physical/Chemical Methods." SW-846. 2nd edition, 1982 (revised 1984), 3rd edition, 1986, and Updates I, II, IIA, III, IIIA and IIIB 1996, 1998 & 2004, Office of Solid Waste and Emergency Response, U.S. EPA.

Analyses for total solids were performed according to "Standard Methods for the Examination of Water and Wastewater", 15th, 16th, 17th, 18th, 19th, and 20th editions, 1980, 1985, 1989, 1992, 1995, 1999. APHA-AWWA-WPCF.

All Wet Chemistry results were evaluated to Katahdin Analytical Services' Method Detection Limits (MDL). Measured concentrations that fall between the MDL and Katahdin's Practical Quantitation Limit

(PQL) are flagged "J". Measured concentrations that are below the MDL are flagged "U" and reported as "U PQL", where "PQL" is the numerical value of the Practical Quantitation Limit.

All analyses were performed within analytical holding times, and all quality control criteria were met.

i certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package has been authorized by the Operations Manager or Quality Assurance Officer, as verified by the following signature.

Leslie Dimond

Quality Assurance Officer

SDG NARRATIVE KATAHDIN ANALYTICAL SERVICES SHAW ENVIRONMENTAL & INFRASTRUCTURE GROUP NYSDEC HOLT DRIVE SDG: HOLT01 SE0564, SE0589, SE0647

Sample Receipt

The following samples were received on February 9, 10 and 12, 2011 and were logged in under Katahdin Analytical Services work order numbers SE0564, SE0589 and SE0647 for a hardcopy due date of March 2, 2011.

KATAHDIN	SHAW
Sample No.	Sample Identification
SE0564-1	MW-2A
SE0564-2	MW-2A
SE0564-3	MW-3A
SE0564-4	MW-3A
SE0564-5	MW-8
SE0564-6	MW-8
SE0564-7	ERB-1
SE0564-8	ERB-1
SE0564-9	ERB-2
SE0564-10	ERB-2
SE0564-11	DUP
SE0564-12	DUP
SE0564-13	TRIP BLANK (1)
SE0564-14	TRIP BLANK (2)
SE0564-15	TRIP BLANK (3)
SE0589-1	MW-8
SE0589-2	MW-1A
SE0589-3	MW-1A
SE0647-1	MW-4
SE0647-2	MW-4

The samples were logged in for the analyses specified on the chain of custody form. All problems encountered and resolved during sample receipt have been documented on the applicable chain of custody forms.

We certify that the test results provided in this report meet all the requirements of the NELAC standards unless otherwise noted in this narrative or in the Report of Analysis.

Sample analyses have been performed by the methods as noted herein.

Should you have any questions or comments concerning this Report of Analysis, please do not hesitate to contact your Katahdin Analytical Services Project Manager, Ms. Kelly Perkins. This narrative is an integral part of the Report of Analysis.

Organics Analysis

The samples of SDG HOLT01 were analyzed in accordance with "Test Methods for Evaluating Solid Wastes: Physical/Chemical Methods." SW-846, 2nd edition, 1982 (revised 1984), 3rd edition, 1986, and Updates I, II, IIA, III, IIIA, and IIIB 1996, 1998 & 2004, Office of Solid Waste and Emergency Response, U.S. EPA., and/or for the specific methods listed below or on the Report of Analysis.

8260B Analysis

Sample SE0564-5 was used for the matrix spike (MS) and matrix spike duplicate (MSD), as per client request.

The reported percent recovery acceptance limits for the Laboratory Control Samples (LCSs) are statistically derived for the full list of spiked compounds. The recoveries of the spiked analytes in the LCS, Matrix Spike (MS) and Matrix Spike Duplicate (MSD) are compared to these acceptance limits. Katahdin standard operating procedure is to take corrective action only if the number of spiked analytes in the LCS that are outside of the QC limits is greater than the DoD QSM allowable number of exceedances. The LCS report consists of the full list of spiked analytes, but only the client's list of target analytes are evaluated. If the associated MS/MSD has greater than the allowable number of exceedances, no corrective action is taken, as long as the LCS is acceptable.

8270C Analysis

Sample SE0589-1 was used for the matrix spike (MS) and matrix spike duplicate (MSD), as per client request.

Surrogate recoveries for all samples and QC were evaluated using laboratory established acceptance limits.

The laboratory method blank WG87948-1 had high recoveries for three surrogates, which were outside the laboratory established acceptance limits. Since a high recovery would indicate a high bias and there were no target analytes detected above the PQL, the associated samples were not reextracted.

The LCSD WG87948-3 had high recoveries for three surrogates, which were outside the laboratory established acceptance limits. The LCSD also had seven spiked target analytes with recoveries that were high and outside of the laboratory established acceptance limits. The DoD QSM allowable number of exceedances for 65 target analytes is three analytes. Since the associated LCS was acceptable with the number of DoD QSM exceedances, the associated samples were not reextracted.

Samples SE0564-7, 9 and SE0647-1 had high recoveries for the surrogate 2-fluorobiphenol, which were outside the laboratory established acceptance limits. Since a high recovery would indicate a high bias and there were no target analytes detected above the PQL in the samples, the samples were not reextracted.

The target analytes benzo(b)fluoranthene and benzo(a)pyrene were detected in the method blank WG87971-1 above the MDL but below the PQL. The laboratory policy is not to take corrective action unless the concentration of the target analyte is above the PQL. The analytes were also detected in the associated samples above the MDL, but below the PQL, and were flagged with a "B" qualifier indicating that the analytes were detected in the method blank analyzed and extracted concurrently with the samples.

The reported percent recovery acceptance limits for the Laboratory Control Samples (LCSs) are statistically derived for the full list of spiked compounds. The recoveries of the spiked analytes in the LCS, Matrix Spike (MS) and Matrix Spike Duplicate (MSD) are compared to these acceptance limits. Katahdin standard operating procedure is to take corrective action only if the number of spiked analytes in the LCS that are outside of the QC limits is greater than the DoD QSM allowable number of exceedances. If the associated MS/MSD has greater than the allowable number of exceedances, no corrective action is taken, as long as the LCS is acceptable.

The initial calibration analyzed on 02/11/11 had %RSD values for several analytes that exceeded the method acceptance limit of 15%. For these analytes, either a linear or quadratic model was used for quantitation instead of an average response factor. The target analytes 4-chloroaniline and anthracene failed for both the linear and quadratic models in the initial calibration curve due to the correlation coefficient and the coefficient of determination being less than the method acceptance criteria of 0.995 and 0.990, respectively. These compounds were calibrated using the average model. The corresponding independent check standard (file U4536) had a high response for the target analyte pentachlorophenol, which resulted in a %D that was greater than 20%. The Independent Check Report consists of the full list of spiked analytes, but only the client's list of target analytes are evaluated.

The calibration verification standard (CV) (file U4558) had a high response for the calibration check compound (CCC) di-n-octyl-phthalate, which resulted in a %D that was outside the method acceptance limit of 20%. Since a high response would indicate a high bias and this target analyte was not detected above the PQL in the associated samples, the samples were not reanalyzed.

8082 Analysis

Sample SE0589-1 was used for the matrix spike (MS) and matrix spike duplicate (MSD), as per client request.

The method blank WG87947-1 and sample SE0564-9 had low recoveries for the surrogate DCB on channel A, which were outside the laboratory established acceptance limits. Since the recoveries were acceptable on the confirmation channel, the associated samples were not reextracted.

Sample SE0564-11 had low recoveries for the surrogate DCB on both channels, which were outside the laboratory established acceptance limits. Since the recoveries for TCX were acceptable and the client ID is labeled as "DUP", the sample was not reextracted.

The reported percent recovery acceptance limits for the Laboratory Control Samples (LCSs) are statistically derived for the full list of spiked compounds. The recoveries of the spiked analytes in the LCS, Matrix Spike (MS) and Matrix Spike Duplicate (MSD) are compared to these acceptance limits. Katahdin standard operating procedure is to take corrective action only if the number of spiked analytes in the LCS that are outside of the QC limits is greater than the DoD QSM allowable number of exceedances.

If the associated MS/MSD has greater than the allowable number of exceedances, no corrective action is taken, as long as the LCS is acceptable.

The opening/closing calibration verification standards (CV's) (files 7EB423 and 7EB437) had high responses for the surrogate TCX and Aroclor 1016 on channel A, which resulted in %D's that were outside of the method acceptance limits of 15%. Since the responses were acceptable on channel B, the associated samples were not reanalyzed.

The closing CV (file 7EB450) had a high response for TCX and a low response for DCB on channel A, which resulted in %D's that were outside of the method acceptance limits of 15%. Since the responses were acceptable on channel B, the associated samples were not reanalyzed.

8081 Analysis

Sample SE0589-1 was used for the matrix spike (MS) and matrix spike duplicate (MSD), as per client request.

The LCS's/LCSD's WG87946-2 and 3, WG87973-2 and WG88161-2 and 3 and the MS/MSD WG87973-4 and 5 had high recoveries for the spiked analytes heptachlor, endosulfan I, endosulfan II and/or 4,4'-DDT, which were outside the laboratory established acceptance limits. Since high recoveries would indicate a high bias and no target analytes were detected in the associated samples above the PQL, the MS/MSD and the associated samples were not reextracted.

The LCSD WG87973-3 had low recoveries for the spiked analytes 4,4'-DDE and 4,4'-DDD, which were outside the laboratory established acceptance limits. Since the recoveries for these analytes were acceptable in the associated LCS, the associated samples were not reextracted.

The opening CV (file 1EB00194) had high responses for 4,4'-DDT and methoxychlor on both channels, as well as high responses for heptachlor and 4,4'-DDD on channel B. These responses resulted in %D's that were outside of the method acceptance limits of 15%. Since a high response would indicate a high bias and no target analytes were detected in the associated samples above the PQL, the associated samples were not reanalyzed.

The closing CV (file 1EB00203) had high responses for heptachlor on both channels, as well as high responses for 4,4'-DDT and methoxychlor and low responses for delta-BHC and 4,4'-DDD on channel A. These responses resulted in %D's that were outside of the method acceptance limits of 15%. Since a high response would indicate a high bias and no target analytes were detected in the associated samples above the PQL, and the responses for delta-BHC and 4,4'-DDD were acceptable on channel B, the associated samples were not reanalyzed.

The opening CV (file 1EB00224) had high responses for heptachlor, 4,4'-DDT and methoxychlor on channel A, which resulted in %D's that were outside of the method acceptance limits of 15%. Since the responses were acceptable on channel B, the associated samples were not reanalyzed.

The closing CV (file 1EB00235) had low responses for 4,4'-DDD on both channels, as well as a low response for 4,4'-DDE on channel A. These responses resulted in %D's that were outside of the method acceptance limits of 15%.

The closing CV (file 1EB00392) had low responses for 4,4'-DDD, 4,4'-DDT and methoxychlor on both channels, which resulted in %D's that were outside of the method acceptance limits of 15%. Since the recoveries for these analytes were acceptable in the associated LCS/LCSD, the associated sample was not reanalyzed.

There were no other protocol deviations or observations noted by the organics laboratory staff.

Metals Analysis

The samples of SDG HOLT01 were prepared and analyzed for metals in accordance with the "Test Methods for Evaluating Solid Wastes: Physical/Chemical Methods." SW-846. 2nd edition, 1982 (revised 1984), 3rd edition, 1986, and Updates I, II, IIA, III, IIIA and IIIB 1996, 1998 & 2004, Office of Solid Waste and Emergency Response, U.S. EPA.

Inductively-Coupled Plasma Atomic Emission Spectroscopic Analysis (ICP)

Aqueous-matrix Katahdin Sample Numbers SE0564-(1-12) were digested for ICP analysis on 02/10/2011 (QC Batch BB10ICW0) in accordance with USEPA Method 3010A. Katahdin Sample Numbers SE0564-5 and SE0564-6 were prepared with duplicate matrix-spiked aliquots.

Aqueous-matrix Katahdin Sample Numbers SE0589-(2,3) were digested for ICP analysis on 02/14/2011 (QC Batch BB14ICW0) in accordance with USEPA Method 3010A.

Aqueous-matrix Katahdin Sample Numbers SE0647-(1,2) were digested for ICP analysis on 02/15/2011 (QC Batch BB15ICW0) in accordance with USEPA Method 3010A.

ICP analyses of the SDG HOLT01 sample digestates were performed using a Thermo iCAP 6500 ICP spectrometer in accordance with USEPA Method 6010. All samples were analyzed within holding times and all analytical run QC criteria were met.

Analysis of Mercury by Cold Vapor Atomic Absorption (CVAA)

Aqueous-matrix Katahdin Sample Numbers SE0564-(1-12) and SE0589-(2,3) were digested for mercury analysis on 02/11/2011 (QC Batch BB11HGW0) in accordance with USEPA Method 7470. Katahdin Sample Numbers SE0564-5 and SE0564-6 were prepared with duplicate matrix-spiked aliquots.

Aqueous-matrix Katahdin Sample Numbers SE0647-(1,2) were digested for mercury analysis on 02/18/2011 (QC Batch BB18HGW1) in accordance with USEPA Method 7470.

Mercury analyses of the SDG HOLT01 sample digestate was performed using a Cetac M6100 automated mercury analyzer. All analytical run QC criteria were met and all samples were analyzed within holding times.

Matrix QC Summary

The measured recoveries of all analytes in the matrix-spiked aliquots of Katahdin Sample Numbers SE0564-(5 and 6) were inside the laboratory's acceptance criteria (75% - 125% recovery of the added element, if the native concentration is less than four times the amount added).

The matrix-spike duplicate analyses of Katahdin Sample Numbers SE0564-(5 and 6) are within the laboratory's acceptance limit (<20% relative difference between duplicate matrix-spiked aliquots) for all analytes.

The serial dilution analyses of Katahdin Sample Numbers SE0564-(5 and 6) are within the laboratory's acceptance limit (<10% relative percent difference, if the concentration in the original sample is greater than 50 times the MDL) for all analytes.

Reporting of Metals Results

Analytical results for client samples and batch QC samples (preparation blanks and laboratory control samples) have been reported down to the laboratory's method detection limits (MDLs) throughout the accompanying data package. Results that fall between the MDL and the PQL are flagged with "J" in the C-qualifier column, and the measured concentration appears in the concentration column. Analytical results that are below the MDLs are flagged with "U" in the C-qualifier column, and the MDL is listed in the concentration column. These PQLs and MDLs have been adjusted for each sample based on the sample amounts used in preparation and analysis.

Analytical results for instrument run QC samples (ICVs, ICBs, etc.) have been reported down to the laboratory's instrument detection limits (IDLs).

IDLs, MDLs, and PQLs are listed on Form 10 of the accompanying data package.

Wet Chemistry Analysis

The samples of SDG HOLT01 were analyzed in accordance with the specific methods listed on the Report of Analysis.

Analyses for cyanide were performed according to "Test Methods for Evaluating Solid Wastes: Physical/Chemical Methods." SW-846. 2nd edition, 1982 (revised 1984), 3rd edition, 1986, and Updates I, II, IIA, III, IIIA and IIIB 1996, 1998 & 2004, Office of Solid Waste and Emergency Response, U.S. EPA.

All Wet Chemistry results were evaluated to Katahdin Analytical Services' Method Detection Limits (MDL). Measured concentrations that fall between the MDL and Katahdin's Practical Quantitation Limit (PQL) are flagged "J". Measured concentrations that are below the MDL are flagged "U" and reported as "U PQL", where "PQL" is the numerical value of the Practical Quantitation Limit.

All analyses were performed within analytical holding times, and all quality control criteria were met.

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package has been authorized by the Operations Manager or Quality Assurance Officer, as verified by the following signature.

Leslie Dimond

Quality Assurance Officer

Liseis Dimond

QUALIFIED CLIENT RESULTS TABLES and Laboratory Results Forms

I

INORGANIC ANALYSIS DATA SHEET

Lab Name: Katahdin Analytical Services

Client Field ID: MW-2A

Matrix: WATER

SDG Name: HOLT01

Percent Solids: 0.00

Lab Sample ID: SE0564-002

Concentration Units : ug/L

CAS No.	Analyte	Concentration	C	Q	M	DF	Adjusted CRDL	Adjusted MDL
7429-90-5	ALUMINUM, DISSOLVED	14.80	U	45	P	1	300	14.80
7440-36-0	ANTIMONY, DISSOLVED	1.28	U		P	1	8.0	1.28
7440-38-2	ARSENIC, DISSOLVED	1.43	U	À	P	1	8.0	1.43
7440-39-3	BARIUM, DISSOLVED	20.3		5_	P	1	5.0	0.23
7440-41-7	BERYLLIUM, DISSOLVED	0.10	U	کیں	₽	1	5.0	0.10
7440-43-9	CADMIUM, DISSOLVED	0.08	J	5	P	1	10	0.05
7440-70-2	CALCIUM, DISSOLVED	41400			P	1	100	11.20
7440-47-3	CHROMIUM, DISSOLVED	1.0	J	1	P	I	15	0.36
7440-48-4	COBALT, DISSOLVED	0.24	U	uゴ	P	1	30	0.24
7440-50-8	COPPER, DISSOLVED	4.2	J	5	P	1	25	0.63
7439-89-6	IRON, DISSOLVED	43.5	J	2	P	1	100	5.42
7439-92-1	LEAD, DISSOLVED	1.07	U	UJ	P	1	5.0	1.07
7439-95-4	MAGNESIUM, DISSOLVED	13200		ヹ	P	1	100	7.80
7439-96-5	MANGANESE, DISSOLVED	13.8		5	P	i	5.0	1.06
7439-97-6	MERCURY, DISSOLVED	0.04	U		CV	l	0.20	0.04
7440-02-0	NICKEL, DISSOLVED	0.70	Ţ	J	P	1	40	0.28
7440-09-7	POTASSIUM, DISSOLVED	1400		7_	Р	1	1000	41.00
7782-49-2	SELENIUM, DISSOLVED	2.36	U		P	1	10	2.36
7440-22-4	SILVER, DISSOLVED	0.27	U	كتيما	P	1	15	0.27
7440-23-5	SODIUM, DISSOLVED	26000		5	P	1	1000	23.72
7440-28-0	THALLIUM, DISSOLVED	1.07	Ų	いば	P	1	15	1.07
7440-62-2	VANADIUM, DISSOLVED	0.27	J	ゴ	P	1	25	0.23
7440-66-6	ZINC, DISSOLVED	12.6	J	Í	P	1	25	0.72

Bottle ID: A

1

INORGANIC ANALYSIS DATA SHEET

Lab Name: Katahdin Analytical Services

Client Field ID: MW-3A

Matrix: WATER

SDG Name:

HOLT01

Percent Solids: 0.00

Lab Sample ID: SE0564-004

Concentration Units: ug/L

CAS No.	Analyte	Concentration	С	Q	M	DF	Adjusted CRDL	Adjusted MDL
7429-90-5	ALUMINUM, DISSOLVED	14.80	U	UJ	P	1	300	14.80
7440-36-0	ANTIMONY, DISSOLVED	1.28	U	1	P	1	8.0	1.28
7440-38-2	ARSENIC, DISSOLVED	1.43	U	\checkmark	P	1	8.0	1.43
7440-39-3	BARIUM, DISSOLVED	70.0		Ī	P	1	5.0	0.23
7440-41-7	BERYLLTUM, DISSOLVED	0.10	U	UJ	P	1	5.0	0.10
7440-43-9	CADMIUM, DISSOLVED	0.05	U	uJ	þ	1	10	0.05
7440-70-2	CALCIUM, DISSOLVED	76700		3	P	1	100	11.20
7440-47-3	CHROMIUM, DISSOLVED	0.92	J	J	P	1	15	0.36
7440-48-4	COBALT, DISSOLVED	0.24	U	UJ	P	1	30	0.24
7440-50-8	COPPER, DISSOLVED	3.0	j	T	P	1	25	0.63
7439-89-6	IRON, DISSOLVED	31.6	Ţ	1	P	1	100	5.42
7439-92-1	LEAD, DISSOLVED	1.07	U	US	P	1	5.0	1.07
7439-95-4	MAGNESIUM, DISSOLVED	20600		J	P	l	100	7.80
7439-96-5	MANGANESE, DISSOLVED	4.7	j	J	P	1	5.0	1.06
7439-97-6	MERCURY, DISSOLVED	0.04	U	WI	CV	1	0.20	0.04
7440-02-0	NICKEL, DISSOLVED	0.97	j	Í	P	1	40	0.28
7440-09-7	POTASSIUM, DISSOLVED	1560		J	P	1	1000	41.00
7782-49-2	SELENIUM, DISSOLVED	2.36	U		P	1	10	2.36
7440-22-4	SILVER, DISSOLVED	0.27	U	us	P	1	15	0.27
7440-23-5	SODIUM, DISSOLVED	99900		J	P	1	1000	23.72
7440-28-0	THALLIUM, DISSOLVED	1.07	U	WT	P	1	15	1.07
7440-62-2	VANADIUM, DISSOLVED	0.23	U	W	P	1	25	0.23
7440-66-6	ZINC, DISSOLVED	9.5	J	J	P	1	25	0.72

Bottle ID: A

1

INORGANIC ANALYSIS DATA SHEET

Lab Name: Katahdin Analytical Services

Client Field ID: MW-8

Matrix: WATER

SDG Name: HOLT01

Percent Solids: 0.00

Lab Sample ID: SE0564-006

Concentration Units: ug/L

CAS No.	Analyte	Concentration	C Q	М	DF	Adjusted CRDL	Adjusted MDL
7429-90-5	ALUMINUM, DISSOLVED	14.80	U LEI	P	1	300	14.80
7440-36-0	ANTIMONY, DISSOLVED	1.28	uut	P	1	8.0	1.28
7440-38-2	ARSENIC, DISSOLVED	1.7	J	P	1	0.8	1.43
7440-39-3	BARIUM, DISSOLVED	37.4	J	P	1	5.0	0.23
7440-41-7	BERYLLIUM, DISSOLVED	0.10	บนป	P	1	5.0	0.10
7440-43-9	CADMIUM, DISSOLVED	0.05	u uj	P	1	10	0.05
7440-70-2	CALCIUM, DISSOLVED	45600	J.	P	1	100	11.20
7440-47-3	CHROMIUM, DISSOLVED	1.9	1 J	P	1	15	0.36
7440-48-4	COBALT, DISSOLVED	0,24	บนวิ	P	1	30	0.24
7440-50-8	COPPER, DISSOLVED	2.0	1 I	P	1	25	0.63
7439-89-6	IRON, DISSOLVED	29.1	1 5	P	1	100	5.42
7439-92-1	LEAD, DISSOLVED	1.07	n M	P	1	5.0	1.07
7439-95-4	MAGNESIUM, DISSOLVED	11200	J	P	1	100	7.80
7439-96-5	MANGANESE, DISSOLVED	1.06	UUJ	P	ı	5.0	1.06
7439-97-6	MERCURY, DISSOLVED	0.04	บ (CV	1	0.20	0.04
7440-02-0	NICKEL, DISSOLVED	0.28	υV	P	1	40	0,28
7440-09-7	POTASSIUM, DISSOLVED	1540	J	P	l	1000	41.00
7782-49-2	SELENIUM, DISSOLVED	2,36	บนปั	P	1	10	2.36
7440-22-4	SILVER, DISSOLVED	0.27	ひひろ	P	1	15	0.27
7440-23-5	SODIUM, DISSOLVED	35200	Ţ	P	1	1000	23.72
7440-28-0	THALLIUM, DISSOLVED	1.3	1	P	1	15	1.07
7440-62-2	VANADIUM, DISSOLVED	0.24	1 (P	1	25	0.23
7440-66-6	ZINC, DISSOLVED	8.5	J V	P	1	25	0.72

Bottle ID: A

INORGANIC ANALYSIS DATA SHEET

Lab Name: Katahdin Analytical Services

Client Field ID: ERB-1

Matrix: WATER

SDG Name:

HOLT01

Percent Solids: 0.00

Lab Sample ID: SE0564-008

Concentration Units: ug/L

CAS No.	Analyte	Concentration		Q	M	DF	Adjusted CRDL	Adjusted MDL
				· · ·			300	14.80
7429-90-5	ALUMINUM, DISSOLVED	14.80		WJ	P	1	•	
7440-36-0	ANTIMONY, DISSOLVED	1.28	U	UJ	P	i	8.0	1.28
7440-38-2	ARSENIC, DISSOLVED	1.6	J	J	P	1	0.8	1,43
7440-39-3	BARIUM, DISSOLVED	37.5		J	P	1	5.0	0.23
7440-41-7	BERYLLIUM, DISSOLVED	0.10	U	WI	P	1	5.0	0.10
7440-43 - 9	CADMIUM, DISSOLVED	0.05	U	wit	P	1	10	0.05
7440-70-2	CALCIUM, DISSOLVED	54900		Í	P	1	100	11.20
7440-47-3	CHROMIUM, DISSOLVED	0.46	J	J	P	1	15	0.36
7440-48-4	COBALT, DISSOLVED	0.24	U	UJ	P	1	30	0.24
7440-50-8	COPPER, DISSOLVED	4.6	J	7	P	1	25	0.63
7439-89-6	IRON, DISSOLVED	25.4	Ţ	J	P	1	100	5.42
7439-92-1	LEAD, DISSOLVED	1.07	U	MJ	P	1	5.0	1.07
7439-95-4	MAGNESIUM, DISSOLVED	3770		Í	P	1	100	7.80
7439-96-5	MANGANESE, DISSOLVED	1.06	U	WJ	P	1	5.0	1.06
7439-97-6	MERCURY, DISSOLVED	0.04	U	ムゴ	CV	1	0.20	0.04
7440-02-0	NICKEL, DISSOLVED	0.31	J	J	P	1	40	0.28
7440-09-7	POTASSIUM, DISSOLVED	5690		Ĭ	P	1	1000	41.00
7782-49-2	SELENIUM, DISSOLVED	2.36	U	UJ	P	1	10	2.36
7440-22-4	SILVER, DISSOLVED	0.27	U	WJ	P	1	15	0.27
7440-23-5	SODIUM, DISSOLVED	26200		J	P	1	1000	23.72
7440-28-0	THALLIUM, DISSOLVED	1.07	U	W	P	1	15	1.07
7440-62-2	VANADIUM, DISSOLVED	0.23	U	IJĬ	P	1	25	0.23
7440-66-6	ZINC, DISSOLVED	12.3	J	Ĵ	P	1	25	0.72

Bottle ID: A

INORGANIC ANALYSIS DATA SHEET

Lab Name: Katalidin Analytical Services

Client Field ID: ERB-2

Matrix: WATER

SDG Name: HOLT01

Percent Solids: 0.00

Lab Sample ID: SE0564-010

Concentration Units: ug/L

CAS No.	Analyte	Concentration	С	Q	M	DF	Adjusted CRDL	Adjusted MDL
7429-90-5	ALUMINUM, DISSOLVED	14.80	U	WJ	P	1	300	14.80
7440-36-0	ANTIMONY, DISSOLVED	1.28	U		P	1	0.8	1.28
7440-38-2	ARSENIC, DISSOLVED	1,43	U	$\sqrt{}$	P	1	8.0	1.43
7440-39-3	BARIUM, DISSOLVED	0.44	J	J	P	1	5.0	0.23
7440-41-7	BERYLLIUM, DISSOLVED	0.10	U	WJ	P	1	5.0	0.10
7440-43-9	CADMIUM, DISSOLVED	0.16	J	T	P	1	10	0.05
7440-70-2	CALCIUM, DISSOLVED	13700		1.	P	1	100	11.20
7440-47-3	CHROMIUM, DISSOLVED	0.1	J	\bigvee	P	1	15	0.36
7440-48-4	COBALT, DISSOLVED	0.24	U	UJ	P	1	30	0.24
7440-50-8	COPPER, DISSOLVED	4.6	Ţ	Ţ	P	1	25	0.63
7439-89-6	IRON, DISSOLVED	91.2	J	1	P	1	100	5.42
7439-92-1	LEAD, DISSOLVED	1.07	U	NI	P	1	5.0	1.07
7439-95-4	MAGNESIUM, DISSOLVED	3110		J	P	1	100	7.80
7439-96-5	MANGANESE, DISSOLVED	1.2	J	1	P	1	5.0	1.06
7439-97-6	MERCURY, DISSOLVED	0.04	U	wa	CV	I	0.20	0.04
7440-02-0	NICKEL, DISSOLVED	0.28	U	1	P	1	40	0.28
7440-09-7	POTASSIUM, DISSOLVED	41.00	U	1	P	1	1000	41.00
7782-49-2	SELENIUM, DISSOLVED	2.36	U	1,	P	1	01	2.36
7440-22-4	SILVER, DISSOLVED	0.27	Ų	1	P	1	15	0.27
7440-23-5	SODIUM, DISSOLVED	8100		J	P	1	1000	23.72
7440-28-0	THALLIUM, DISSOLVED	1.07	U	UJ	P	I	15	1.07
7440-62-2	VANADIUM, DISSOLVED	0.23	U	UJ	P	1	25	0.23
7440-66-6	ZINC, DISSOLVED	13.8	J	1	P	1	25	0.72

Bottle ID: A

l inorganic analysis data sheet

Lab Name: Katahdin Analytical Services

Client Field ID: DUP

Matrix: WATER

SDG Name:

HOLT01

Percent Solids: 0.00

Lab Sample ID: SE0564-012

Concentration Units: ug/L

CAS No.	Analyte	Concentration	C		Q	M	DF	Adjusted CRDL	Adjusted MDL
7429-90-5	ALUMINUM, DISSOLVED	14.80	U	U	45	P	1	300	14.80
7440-36-0	ANTIMONY, DISSOLVED	1.28	U			P	1	8.0	1.28
7440-38-2	ARSENIC, DISSOLVED	1,43	U	•	1	P	1	8.0	1.43
7440-39-3	BARIUM, DISSOLVED	65.8			J_	P	1	5,0	0.23
7440-41-7	BERYLLIUM, DISSOLVED	0.10	U	V	ک	P	1	5.0	0.10
7440-43-9	CADMIUM, DISSOLVED	0.07	J	,	Ţ	P	1	10	0.05
7440-70-2	CALCIUM, DISSOLVED	74000				P	1	100	11.20
7440-47-3	CHROMIUM, DISSOLVED	1.7	J	,	V	p	1	15	0.36
7440-48-4	COBALT, DISSOLVED	0.24	U	Ļ	Ĺλ	P	1	30	0.24
7440-50-8	COPPER, DISSOLVED	5.1	j		Ţ	P	1	25	0.63
7439-89-6	IRON, DISSOLVED	91.7	J			P	1	100	5.42
7439-92-1	LEAD. DISSOLVED	1.07	U		آر	P	1	5,0	1.07
7439-95-4	MAGNESIUM, DISSOLVED	19500			J	P	1	100	7.80
7439-96-5	MANGANESE, DISSOLVED	5.1		`	\mathcal{I}_{\perp}	P	1	5.0	1.06
7439-97-6	MERCURY, DISSOLVED	0.04	IJ	U	U	CV	1	0.20	0.04
7440-02-0	NICKEL, DISSOLVED	0.76	J		J	P	1	40	0.28
7440-09-7	POTASSIUM, DISSOLVED	1510			T	P	1	1000	41.00
7782-49-2	SELENIUM, DISSOLVED	2.36	U	U	LT_	P	1	10	2.36
7440-22-4	SILVER, DISSOLVED	0.27	Ų		كيا	P	1	15	0.27
7440-23-5	SODIUM, DISSOLVED	92300		-	J	P	1	1000	23.72
7440-28-0	THALLIUM, DISSOLVED	1.07	U	U	J	P	1	15	1.07
7440-62-2	VANADIUM, DISSOLVED	0.23	U	(N	P	1	25	0.23
7440-66-6	ZINC, DISSOLVED	11.3	J)	P	1	25	0.72

Bottle ID: A

1

INORGANIC ANALYSIS DATA SHEET

Lab Name: Katahdin Analytical Services

Client Field ID: MW-1A

Matrix: WATER

SDG Name: HOLT01

Percent Solids: 0.00

Lab Sample ID: SE0589-003

Concentration Units: ug/L

CAS No.	Analyte	Concentration	С	Q	M	DF	Adjusted CRDL	Adjusted MDL
7429-90-5	ALUMINUM, DISSOLVED	21.7	J	1	P	1	300	14.80
7440-36-0	ANTIMONY, DISSOLVED	1.28	U	UJ	p	1	8.0	1.28
7440-38-2	ARSENIC, DISSOLVED	1.43	U	us	P	1	8.0	1.43
7440-39-3	BARIUM, DISSOLVED	24.7		ナ	P	1	5.0	G.23
7440-41-7	BERYLLIUM, DISSOLVED	0.10	U	W	p	1	5.0	0.10
7440-43-9	CADMIUM, DISSOLVED	0.05	U	UJ	P	1	10	C.05
7440-70-2	CALCIUM, DISSOLVED	27600		5	P	1	100	11.20
7440-47-3	CHROMIUM, DISSOLVED	1.3	J	ゴ	P	1	15	0.36
7440-48-4	COBALT, DISSOLVED	0.24	U	US	P	1	30	0.24
7440-50-8	COPPER, DISSOLVED	6.2	j	I	P	1	25	0.63
7439-89-6	IRON, DISSOLVED	15.4	J	J _	P	i	100	5.42
7439-92-1	LEAD, DISSOLVED	1.07	U	W	P	1	5.0	1.07
7439-95-4	MAGNESIUM, DISSOLVED	6430		1	P	1	100	7.80
7439-96-5	MANGANESE, DISSOLVED	59.2		J_	P	1	5.0	1.06
7439-97-6	MERCURY, DISSOLVED	0.04	U	UI	CV	1	0.20	0.04
7440-02-0	NICKEL, DISSOLVED	0.28	Ų	tu	P	1	40	0.28
7440-09-7	POTASSIUM, DISSOLVED	1260		J	P	i	1000	41.00
7782-49-2	SELENIUM, DISSOLVED	2.36	U	W	P	1	10	2.36
7440-22-4	SILVER, DISSOLVED	0.27	U	NJ	P	1	15	0,27
7440-23-5	SODIUM, DISSOLVED	47300		J_	P	1	1000	23.72
7440-28-0	THALLIUM, DISSOLVED	1.07	U	NJ	P	1	15	1.07
7440-62-2	VANADIUM, DISSOLVED	0.47	j	J/	P	1	25	0.23
7440-66-6	ZINC, DISSOLVED	10.6	J	J	P	I	25	0.72

Bottle ID: A

INORGANIC ANALYSIS DATA SHEET

Lab Name: Katahdin Analytical Services

Client Field ID: MW-4

Matrix: WATER

SDG Name:

Percent Solids: 0.00

Lab Sample ID: SE0647-002

HOLT01

Concentration Units: ug/L

CAS No.	Analyte	Concentration	C	Q	M	DF	Adjusted CRDL	Adjusted MDL
7429-90-5	ALUMINUM, DISSOLVED	138	J	J	P	1	300	14,80
7440-36-0	ANTIMONY, DISSOLVED	1,28	U	us	P	1	8.0	1.28
7440-38-2	ARSENIC, DISSOLVED	1.43	U	ЦJ	P	1	8.0	1.43
7440-39-3	BARIUM, DISSOLVED	10.1		ケ	P	1	5.0	0.23
7440-41-7	BERYLLIUM, DISSOLVED	0.10	Ų	ИĴ	P	1	5.0	0.10
7440-43-9	CADMIUM, DISSOLVED	0.09	J	5	P	1	10	0.05
7440-70-2	CALCIUM, DISSOLVED	10200		5	P	1	100	11.20
7440-47-3	CHROMIUM, DISSOLVED	1.8	J	J	P	I	15	0.36
7440-48-4	COBALT, DISSOLVED	0.24	U	uГ	P	1	30	0.24
7440-50-8	COPPER, DISSOLVED	1,3	J	J	P	I	25	0.63
7439-89-6	IRON, DISSOLVED	208		J	P	1	100	5.42
7439-92-I	LEAD, DISSOLVED	1.07	U	WI	P	1	5.0	1.07
7439-95-4	MAGNESIUM, DISSOLVED	2670		J	P	1	100	7.80
7439-96-5	MANGANESE, DISSOLVED	3.5	J	5	P	1	5.0	1.06
7439-97-6	MERCURY, DISSOLVED	0.04	U	·W	CV	1	0,20	0.04
7440-02-0	NICKEL, DISSOLVED	0.28	U	W	P	1	40	0.28
7440-09-7	POTASSIUM, DISSOLVED	859	J	J	P	1	1000	41.00
7782-49-2	SELENIUM, DISSOLVED	2.36	U	иJ	P	1	10	2.36
7440-22-4	SILVER, DISSOLVED	0.27	U	UJ	P	1	15	0.27
7440-23-5	SODIUM, DISSOLVED	39600		J	P	i	1000	23.72
7440-28-0	THALLIUM, DISSOLVED	1.07	U	W	P	i	15	1.07
7440-62-2	VANADIUM, DISSOLVED	0.70	J	Ĵ	P	1	25	0.23
7440-66-6	ZINC, DISSOLVED	13.5	J	J	P	l	25	0.72

Bottle ID: A

Analyte	NYSDEC Soil Cleanup	NYSDEC Soil Cleanup	NYSDEC Soil Cleanup	SS-1 (0-2)	SS-2 (0-6)	SB-2 (17-19)	SS-3 (0-2)	SB-3 (24-26)	35-4 (0-2")	SB-4 (20-22')
1	Objectives (Unrestricted)	Objectives (Commericial)	Objectives (industrial)							
I Sample Date				1/4/2011	1/4/2011	1/4/2011	1/4/2011	1/4/2011	1/4/2011	1/5/2011
				1 -7 -7 1		3, 0,23.2	1 9-022 ;		OCs	1 2727222
Chloromethane	-		<u>-</u>	<0.012	-0.013	-0.012	<0.013	< 0.012	~ '0.012	<0.012
Bromomethane		-		40.012	<0.013	40012	-:0.013	<0.012	<0.012	< 0.012
Vinyl Chleride	0.02	13	27	~0.012	- 0.013	< 0.012	-0.013	<0.012	<0.012	₹0.012
Chloroethane		-	<u> </u>	<0.012	<0.013	~0.012	~0.013	<0.012	~ 0.012	<0.012
Methylene Chloride	0.05	500 ⁶	1,000"	<0.029	-0.032	0.031	0.032	< 0.029	<0.030	-0 030
Acetone	0.05	S00 ^h	1,000	<0.029	0.017J	0 023J	0 022)	<0.029	0.009J	0.009J
Carbon Disulfide	-		-	<0.006	<0.006	<0.006	-10 006	<0.006	<0.006	<0.006
1.1-Dichloroethene	0.33	500 ^h	1,000	<0.006 c	<0.006	- 0 006	-:0.006	<0,006	40,006	≺0.006
1,1-Dichloroethane	0 27	340	480	<0.006	<0.006	0.006	-0 006	<0.006	<0.006	<0.006
cis-1,2-Dichloroethene	0.25	500 ^h	1.000°	<0.006	<0.006	50,006	<0.006	<0.006	<0.006	< 0.006
trans-1,2-Dichloroethene	0.19	500°	1,000	<0.006	~0.006	-:0.006	~0.006	• 0 006	~0.006	<-0.006
Chloroform	0.37	350	700	<0.00e	<0.000	< 0.006	- 0.006	<0.006	<0.006	<0.006
1,2-Dichloropropane		-	-	-10,006	-10 006	-0.006	<0.006	<0,006	<0.006	<0.006
1.3-Dichlorobenzene	2.4	280	560	-0.006	<:0.006	<0.006	• 0.006	<0.006	<0.006	<0.006
2-Butanone	-	-	_	<0.029	~0.032	- 0.031	-0.032	-0.029	<0.030	~0.030
1.1.1-Trichloroethane	0.68	500 ^h	1.000°	<0.006	<0.006	0 006	··0 006	<0.006	<0.000	<.0.006
Carbon Tetrachloride	0.76	22	44	<0.006	~U.U06	~0.006	<0.006	<0.006	<0.006	<0.006
Bromodichloromethane			-	<0.006	<0.006	\0.006	<0.006	~0 006	<0.006	<0.006
1,2 Dichloropropanc		-	_	<0.006	~0.006	- 0.006	< 0.006	~0.006	-0.006	<0.006
cis-1.3-Dichloropropene		-		<0.006	~0.006	-0 006	~0.006	< 0.006	<0.006	<0.006
Lrichloroethene	U 47	200	400	0.0031	<0.006	< 0.006	0.0023	<0.006	0.0031	<0.006
Diehlorodifluorometlame	-	•	-	<0.006 115	<0.006	- 0.006	^ 0.006	<0.006	-:0.006	<0.006
1,1,2-Trichloroethane			-	<0.006	<0.006	·<0.006	0.006	<0.006	<0.006	<0.006
Benzene	0.06	. 44	86	<0.006	<0.006	<.0.006	0.006	⊴0 006	<0.006	<0.006
1-1,3-Dichloropropene	<u></u>		-	<0.006	<-0.006	+-0.006	-0.006	<0.006	<0.006	<0.006
Bromoform		<u>-</u>	-	<0.006 U J	<u><0.006</u>	~0.006	~0 006	<0.006	<0.006	<0.006
4-Methyl-2-Pentanone	····	•	•	<0.029	<u>~0.032</u>	< 0.031	- 0.032	<0.029	<0.030	<0.030
2-Hexanone				<0.029 11-3	<.0.032	50.031	0.032	<0.029	*20.030	<0.030
Tetrachloroethene	13	150	300	0.0053	<0.006	-0.006	0.004J	-0.006	0 005J	~0.006 <u>. </u>
1,1,2,2-Tetrachloroethane		-	-	<0.006 UT	<0.006	<0.006	<0.006 113	-:0.006	<0.006 LLZ	-0.006
Toluene	0.7	500 ^h	1,000' <0,0		- 0 006	-0.006	- 0.006	<0,006	<0.006	<0.006
Chlorobenzene		500 ^h	1,000°	<0.00647	<0.006	~0.006	< 0.006	<0.006	<0.006	<0.006
Ethyl Benzene	1	390	780	<0.006	<0.006	-0 006	-0.006	<0.006	<0.006	<0.006
Styrene	-			<0.006 🗸	<0.006	~0.006	-0.006	≪0.006	÷0.006	< 0.006
m/p-Xylenes	0.26	500 ^h	1,000	0.0061 -3	×0.013	<-0.012	0.0043	• 0.012	0,0043	<0.012
o-Xylene	0.26	500h	1,000,1	0.0043 3	<0.006	r0 006	0.0033	<0.006	0.0043	r.0.006
1,2- Dichloroethylene (total)	-	<u> </u>	-	<0.012	- 0.013	< 0.012	- 0.013	~0.012	<0.012	* 10.012
Xylenes (total)	0.26	500 ^h	2000,1	0.0100	~0.019	-0.019	0.0073	£10.018	0.0083	*0.01R

ibromo. ihioro--> methane

Notes.

Analytical results presented in mg/kg (ppm).

NYSDEC Soil Cleanup Objectives obtained from 6 NYCRR Part 375, Table A - Unrestricted use: Table B - Restricted commercial use: Table C- Restricted industrial use

- * The SCOs for commercial use were capped at a maximum value of 500 ppm
- For constituents where the calculated SCO was lower than the rural soil background concentration, the rural soil background is used
- SCO's for industrial use and the protection of groundwater were capped at a maximum value of 1000ppm

Bold - Analyte detected above laboratory method detection limits

Shaded - Analyte detected above NYSDEC Soil Cleanup Objectives

SB-DUP collected from SB-6 (16-20')

SS-DUP collected from SS 6 (0-6")

- · Analyte not detected above laboratory method detection limits
- J = Indicates an estimated value
- R Non-detect results for these compounds in the affected samples are rejected
- No Soil cleanup objective listed for analyte

سنان براويمها يتميانيه ياس

Analyte	NYSDEC Soil Cleanup	NYSDEC Soil Cleanup	NYSDEC Soil Cleanup	SS-1 (0-2)	\$3-2 (0-6)	SB-2 (17-19)	SS-3 (0-2)	SB-3 (24-26)	55-4 (0-2")	SB-4 (20-22')
Sample Date	Objectives (Unrestricted)	Objectives (Commericial)	Objectives (Industrial)] 1/4/2011	1/4/2011	1/4/2011	1/4/7011	1/4/7011	2/4/2014	
innight van				1/4/2011	17472011	1/4/2011	1/4/7011	1/4/2011	1/4/2011 VOCs	1/5/2011
	0.33"	SOUP	t none	1	1		<u> </u>			, , , , , , , , , , , , , , , , , , ,
Phenol			1,000,	-0.380	<0.470	<.400	< 380	< 410	<0.420	<.390
Bis (2-Chloroethyl) Ether	•	•	*	<0.380	<0.420	<.400	<.380	<.410	<0.420	<.390
2-Chlorophenol 1,3-Dichlorobenzene	<u> </u>			<0.380 <0.380	<0.420 <0.420	<.400	<.380	<.4 0	<0.420	<.390
1,4-Dichlorobenzene	· · · · · · · · · · · · · · · · · · ·		<u> </u>	+0.380	<0.420	<.400	<.380 <.380	<.410	<0.420	<.390
1,2-Dichlorobenzene		<u> </u>	<u> </u>	< 0.380	<0.420	<.400		<.410	<0.420	< 390
2-Methylphenol				0.380	<0.420	<.400	< 380	<.410	<0.420	<.390
2.2'-Oxybis (1-Chioropropane)			<u> </u>	<0.380	<0.420	<.400	<.380 <.380	<.410 <.410	<0.420	<.390
N-Nitroso-di-n-propylamine			<u> </u>	<0.380	<0.420	<.400	<.380	<.410	<0.420 <0.420	<.390 <.390
3&4-Mothylphenol		-		<0.380	<0.420	<.400	<.380	<.410	<0.420	<.390
Hexachioroethane				-0.380	<0.420	<.400	<.380	<.410	<0.420	<.390 <.390
Nitrobenzene				<0.380	<0.420	<.400	<.380	<.410	<0.420	<.390
Isophorone				<0.380	<0.420	< 400	<.380	<410	<0.420	< 390
2-Nitrophenol	•		-	<0.380	<0.420	<.400	<.380	<.410	<0.420	<.390
2,4-Dimethylphenol			***************************************	-0.380	<0.420	<,400	<.380	<.410	<0.420	<.390
Bis (2-Chloroethoxy) methano			-	-0 380	<0.420	<.400	<.360	<.410	<0.420	<.390
2,4-Dichlorophenol			•	• 0 380	<0.420	<.400	<.380	<.410	<0.420	<.390
1,2,4-Trichlorobenzene	-	-		<0.380	<0.420	<.400	< 380	<.410	<0.420	<.390
Naphthalene	. 12	500"	1,000°	-0.380	<0.420	<.400	<.380	<.410	<0.420	<.390
4-Chloroaniline			•	- 0.380	<0.420	<.400	<.380	<.410	<0.420	<.390
Hexachiorobutadione	•			40,380	<0,420	V.400	4.380	×.410	<0.420	~,390 ~,390
4-Chloro-3-Methylphenol		· · · · · · · · · · · · · · · · · · ·		<0.380	<0.420	<.400	<.380	<.410	<0.420	<.390
2-Methylnaphthalene			-	-0.380	<0.420	<.400	<.380	<.410	<0.420	< 390
1-Mothylnaphthalene	+		•	< 0.380	<0.420	<.400	<.380	<.410	<0.420	<.390
Hexachlorocyclopentadieno	-	-	*	~0.380	≺0.420	<,400	<.380	<.410	<0.420	<.390
2,4,6-Trichlorophenol	*		-	0.380	<0.420	<.400	<.380	<.410	<0.420	<.390
2,4,5-Trichlorophenol	•	-		-0.380	<1	<1	<.95	<1	<1	<.970
2-Chloronaphthalene	4	-	-	<0.380	<0.420	<.400	<.380	<.410	< 0.420	<,390
2-Nitroaniline	-			<0.940	<1	<1	< 95	<1	<1	<.970
Dimethyl Phthalate	· · · · · · · · · · · · · · · · · · ·]	•	<0.380	<0.420	<.400	<.380	<.410	<0.420	<.390
2,6-Dinitrotoluene	-	-	•	<0.380	<0.420	<.400	<.380	<.410	<0.420	<.390
Aconaphthylene		-	-	<0.380	<0.420	<.400	<.380	<.410	<0.420	<.390
3-Nitroaniline		<u> </u>	-	< 0.940	<1	<1	<.95	<1	<1	<.870
Acenaphthene			-	< 0.380	< 0.420	<.400	<.380	<.410	< 0.420	<.390
2.4-Dinitrophenol			-	<0.940	<1	<1	<.95	<1	<1	<.970
Dibenzofuran	-	-		-0.380	<0.420	<,400	4.380	<.410	-0.420	<.390
4-Nitrophenol	-		<u> </u>	+0.940	<1	_<1	<.95	<1	<1	<970
2,4-Dinitrotoluene				<0,380	<0.420	<,400	<.380	<.410	<0.420	<.390
Diethylphthalate			ļ	<0.380	<0.420	<.400	<.380	<.410	<0.420	<.390
Eluorene	•			<0.380	<0.420	< 400	< 380	< 410	<0.420	< 390
4-Chlorophenyl-phenylether	<u> </u>	·		-0.380	<0.420	<,400	<.380	<.410	<0.420	<.390
4-Nitroaniline				-0 940	<1	<1	<.95	<1	<1	<.970
4,6-Dinitro-2-Methylphanol	*			10 940 0 200	<1	e;	< 95	11	£1	<.970
N-Nitrosodiphenylamine			•	-0.380	<0.420	<.400	<.380	<.410	<0.420	<.390
4-Bromophenyl-phenylether	-			<0.380	<0.420	<,400	<.380	<.410	<0.420	<.390
Hexachlorobenzene	-h	<u> </u>		-0.380	<0.420	<.400	<.380	<.410	<0.420	<.390
Pentachlorophenol	Ø, 8"	6.7	55	-0.940	<1	ব	<.95	<1	<1	<.970
Phenanthrena	100	500 ^b	1,000,	• 0 380	<0.420	<.400	0.56	<.410	.390J	<.390
Anthracene				-0.380	<0.420	<.400	.110J	<.410	<0.420	<.390
Carbazole	-	-	-	<0.480	<0.420	<.400	<,380	<.410	<0.420	<.390
Di-n-butylphthalate				< 0.380	<0.420	<.400	<.380	<.410	<0.420	<.390
Fluoranthene				<0.380	<0.420	<.400	1.9	<.410	0.88	<.390
Pyrana	100	500 ^h	1,000	-0.380	<0.420	4,400	1,5	<.410	5.72	<.390
Butylbenzylphthalato				Page 7 (P 1381)	<0.420	<.400	<.380	1,410	<0.420	<.390

Analyte	NYSDEC Soil Cleanup	NYSDEC Soil Cleanup	NYSDEC Soil Cleanup	33-1 (0-2)	\$5-2 (0-6)	SB-2 (17-19)	\$\$-3 (0-2)	SB-3 (24-26)	\$8-4 (0-2")	SB-4 (20-22)
	Objectives (Unrestricted)	Objectives (Commericial)	Objectives (Industrial)							
Sample Date				1/4/2011	1/4/2011	1/4/2011	1/4/2011	1/4/2011	1/4/2011	1/5/2011
Benzo(a)anthracene			-	0.380	<0.420	< 400	0.76	<.410	.330J	< 390
3,3'-Dichlorobenzidine	-	- .	-	-0.380	<0.420	<.400	<.380	<.410	<0.420	<.390
Chrysene		•	<u> </u>	< 0.380	<0.420	<.400	0.88	<.410	0.46	<.390
bis(2-Ethylhexyl)phthalate	ta.	SUU ^h	1,000°	< 0.380 1 U	∠ 2000 D. 10	<.400	<.380	<.410	<0.420	.230
Di-n-octylphthalate	_	-		<0.380 LL1	<0.420	<.400	380	<.410	<0.420	<.390
Benzo(b)fluoranthene		-	-	-0.380	<0.420	<.400	0.38	<.410	0.51	<.390
Benzo(k)fluoranthene	-	-	-	-0.380	<0.420	<.400	0.46	<.410	.250J	<.390
Benzo(a)pyrene	-	-	*	<0.380	<0.420	<.400	0.72	<,410	.390J	<.390
Indeno(1.2,3-cd)pyrene	-	-	-	ro 380	∹0.420	1.400	0.43	< 410	240J	<.390
Dibenzo(a,h)anthracene	-	-	•	• 0.380	<0.420	<,400	<.380	<.410	<0.420	<.390
Benzo(g,h,t)perylene	-	-	1,000,	<0,380	<0.420	<.400	.340J	<.410	.220.1	<.390

Notes:

Analytical results presented in mg/kg (ppm).

NYSDEC Soil Cleanup Objectives obtained from 6 NYCRR Part 375. Table A - Unrestructed use: Table B - Restricted commercial use; Table C- Restricted industrial use

The SCOs for commercial use were capped at a maximum value of 500 ppm.

Bold - Analyte detected above laboratory method detection limits

Shaded - Analyte detected above NYSDEC Soil Cleanup Objectives

SB-DUP collected from SB-6 (16-20)

SS-DUP collected from SS-6 (0-6")

· · · Analyte not detected above laboratory method detection limits

I - Indicates an estimated value

No Soil cleanup objective listed for analyte

Analyte	SINCOUCE C. 3 Classics	NACOLO C. COL.	NAME OF THE PARTY	SS-1 (0-2)	\$3-2 (0-6)	SB-2 (17-19)	\$9-3 (0-2)	SB-3 (24-26)	\$\$-4 (0-2")	SB-4 (20-22°)
	NYSDEC Soil Cleanup Objectives (Unrestricted)	NYSDEC Soil Cleanup Objectives (Commericial)	NYSOEC Soil Cleanup Objectives (Industrial)							
Sample Date	į.			1/4/2011	1/4/2011	1/4/2011	1/4/2011	1/4/2011	1/4/2011	1/5/2011
								Per	ticides	
alpha-8HC	0.02	3.4	6.8	<.0018	<.0021	0019	<.002	<.002	<.0021	L8000,
gamma-BHC		-	•	<.0018	<.0021	<.0019	<.002	<.002	<.0021	<.0019
Heptachlor	0.042	V2	24	<.0018	<.0021	<.0019	<.002	<.002	<.0021	<.0019
Aldrin	0.005	0.68	1.4	<.0018	<.0021	<.0019	<.002	<.002	<.0021	<.0019
beta-BHC	0.036	3	14	<.0018	<.0021	<.0019	<.002	<.002	<.0071	<.0019
dolta-BHC	0,04	\$00 ⁴ *	1,000e	<.0018	<.0021	<.0019	<.002	<,002	<.0021	<.0019
Heptachlor Epoxide	-	-	-	<.0018	<.0021	<.0019	<.002	<,002	<.0021	<.0019
Endosulfan 1	2.4	200'	920'	.00047J	<,0021	<.0019	<.002	<.002	<.0021	<.0019
gamma-Chlordane		-	-	<.0018	<.0021	<.0019	<.002	<.007	<.0021	<,0019
alpha-Chiordane	0.094	24	47	<.0018	<.0021	<.0019	<,002	<.002	<.0021	<,0019
4,4'-DDE	0.0033 ^b	62	120	.00087J	<.0042	<.0038	.001J	<.0039	.0033J	<.0037
Dieldrin	0.005"	14	2.8	<.0036	<.0047	<.0038	< 0039	<.0039	<.0041	<.0037
Endrin	0.014	89	410	<.0036	<.0042	<.0038	<.0039	<.0039	<.0041	<.0037
4.4'-DDD	0.0033 ^b	92	180	<.0036	<.0042	<.0038	<.0039	<,0039	<.0041	<.0037
Endosulfan II	2,4	200'	920'	<.0036	<,0042	<.0038	.00075J	<.0039	<.0041	<.0037
4,4'-DDT	0.0033"	47	9.4	<.0036	<.0042	<.0038	.0012J	<.0039	.0032J	<.0037
Endrin Aldohyde	-	-		<.0036	<.0042	<.0038	<.0039	<.0039	<.0041	<.0037
Endosulfan sulfate	2.4	200'	920'	<.0036	<.0042	< 0038	<.0039	<.0039	<.0041	<.0037
Methoxychlor		-	-	<.018	<.021	<.019	<.020	<,020	<.021	<.019
Endrin Ketone		-	-	L6100.	<.0042	<.0038	<.0039	<.0049	< 0041	<.0037
Toxaphene	-	-	•	<,036	<.042	<,038	<.039	<.039	<.041	<.037

Notes

Analytical results presented in mg/kg (ppm).

NYSDEC Soil Cleanup Objectives obtained from 6 NYC'RR Part 375, Table A - Unrestricted use; Table B - Restricted commercial use; Table C- Restricted industrial use

- = The SCOs for commercial use were capped at a maximum value of 500 ppm
- . For constituents where the calculated SCO was lower than the rural soil background concentration, the rural soil background is used
- * This SCO is for the sum of Endosulfan I, Endosulfan II, and Endosulfan Sulfate

SB-Dt/P collected from SB-6 (16-20')

SS-DUP collected from SS-6 (0-6")

- 1 Used for Pestifiede analyte when there is a greater than 40% difference for detected concentrations between the two GC columns
- Analyte not detected above laboratory method detection limits
- = No Soil cleanup objective listed for analyte

								P	CBs	·
Arocior-1016	0.1	1	25	<.018	<.021	<.019	<.020	<.020	<.021	<.019
Aroclor-1221	0.1	1	25	<.018	<.021	<.019	≺.020	<.020	<.021	<.019
Araclor-1232	0.1	1	25	<,018	<.021	<,019	<.020	<.020	<.021	<.019
Vroctor-1242	0.1	1	25	<.018	<.021	<.019	<.020	<.020	< 021	<.019
Vrocler-1248	0.1	1	25	<.019	r.021	<.010	<.020	<.020	<.021	4,010
troclor-1254	0.1	1	25	<.018	<.021	<.019	<.020	<.020	<.021	<.019
Arociot-1260	0.1	1	25	<.018	<,021	<.019	<.020	<.020	<.021	<.019

Notes

Analytical results presented in ing/kg (ppm).

NYSDEC Soil Cleanup Objectives obtained from 6 NYCRR Part 375. Table A - Unrestricted use; Table B - Restricted commercial use; Table C - Restricted industrial use

SB-DUP collected from SB-6 (16-20)

SS-DUP collected from SS-6 (0-6")

Analyte not detected above laboratory method detection limits

C \Lines \Dark of \Page 4 of 10

Analyte	NYSDEC Soil Cleanup	NYSDEC Soil Cleanup	NYSDEC Soil Cleanup	33-1 (0-2)	SS-2 (0-6)	58-2 (17-19)	88-3 (0-2)	SB-3 (24-26)	88-4 (0-2")	SB-4 (20-22')
Sample Date	Objectives (Unrestricted)	Objectives (Commericial)	Objectives (Industrial)	1/4/2011	1/4/2011	1/4/2011	1/4/2011	1/4/2011	1/4/2011	1/5/2011
				·		****		Metals + Cv	anide (mg/kg)	
Aluminum	-	-	-	17200	13400	9280	15000	5820	17400	6100
Antimony		-	•	<0.1 ULJ	<0.2 /	<0.17/LJ	<0.11 UT	<0.1 UJ	<0.12 UT	<0.1 (4.
Arsenic	13,	161	16'	4.2	8.5	3.4	3.8	2.1	5.4	2,2
Barium	350°	400	10,000%	83.1	63	55.9	49.3	35.2	76	36
Beryllium	7.2	590	2,700	0.64	0.62	0.47J	0.55	0.34J	0.73	0.37J
Cadmium	2,5°	9.3	60	0,42J	0.35J	0,243	0.30J	D.14J	0.34J	0.17J
Calcium			-	3600	1350	12900	4580	10500	1940	1900
Chromium			-	13.2	17,4	15.2	13.8	11	16.9	13
Cobalt	-	-	- -	9	10.9	7	7.9	4.5	7.1	6
Copper	50	270	10,000	54.9	25.6	16,8	15,5	10.5	18,7	12.2
Iron		-	•	21400	23200	16800	17800	12300	19600	13700
Lead	63°	1,000	3,900	10.4	10.2	6 .	13.4	3.4	29,4	3.5
Magnesium		-	•	4360	4700	6000	3680	3660	3680	2630
Manganese	1600	10,000%	10,000 st	456	678	278	343	200	440	264
Mercury	0.18	2 8,	5.7'	0.02J	0.02J	0.01J	0.16	0.005J	0.08	0.003J
Nickel	30	310	10,0004	14.5	20.9	14,4	15.1	9.4	14.6	10.2
Potassium		-	_	1280	1910	2000 7	1350	1340 "1	1470	1320 3
Selenium	3.9e	1,500	6,800	<0.35	<0.35	<0.38	<0.37	<0.37	<0.41	<0.34
Silver	2	t_500	6,800	0.23J	0.56J	0,24J	0.21J	0,18J	0.30J	0,27J
Sodium		-		450	481	161	82.3J	123	110	176
Thallium		<u> </u>	4	<0.15	<0.3	<0.16	<0.16	<0.15	<0.17	<0.14
Vanadium	-			44.2	21.9	20,2	26.3	14.3	29.2	17.6
Zinc	100c	10,000	10,000,01	52.2	52.9	37.3	43,2	22.9	57,5	26.4
Cyanide				<,55	<,6	<,6	<.6	<.6	<,8	<.55

Notes.

Metals data are presented in mg/kg (ppm)

NYSDEC Soil Cleamap Objectives obtained from 6 NYCRR Part 375, Table A - Unrestricted use: Table B - Restricted commercial use, Table C - Restricted industrial use

- For constituents where the calculated SCO was lower than the cural soil background concentration, the rural soil background is used.
- The SCOs for metals were capped at a maximum value of 10,000 ppm
- For consuments where the calculated SCO was lower than the tural soil background concentration as determined by the DEC/DOH tural soil survey, the tural soil background concentration is used as the Track 2 SCO value for this use of the sate
- j This SCO is the lower of the values for mercury (elemental) or mercury (inorganic salts)

Bold - Analyte detected above laboratory method detection limits

Shaded / Analyte detected above NYSDEC Soil Cleanup Objectives

SB-DUP collected from SB-6 (16-20)

SS-DUP collected from SS-6 (0-6")

- Analyte not detected above laboratory method detection limits
- J This flag indicates an estimated value

C Numeral Length Designment of School

Analyte	5.5-5 (0-2")	SB-6 (18-21.5°)	SS-6 (0-6")	SB-6 (16-20")	SS-OUP	SS-DUP	EB-1 WATER	EB-2 WATER
				!			j	
Sample Date	1/5/2011	1/5/2011	1/6/2011	1/6/2011]		1/6/2011	1/6/2011
Chloromethane	-0.012	+ 0.010	• 0.011	+ 0.012	- 0 011	~0.012	÷0 002	<0.002
Bromomethane	-0.012	-0010	• 0 011	+-0.012	<0.011	4:0.012	U 002	<0.002
Vinyl Chloride	0.012	1.0.010	0.011	0.012	-0.011	-0.012	-0.002	~0.002
Chloroethane	<0.012	=0.010	~0.01 I	<0.012	<0.011	-0.012	~0.002	<0.002
Methylene Chloride	<0.030	+ 0,026	- 0.028	< 0.030	-0.027	<0.029	-0.005	-10.005
Acetone	0.0101	0.0083	0.0093	0,010,0	0.0061	<0.029	-0.005	-0.005
Carbon Disulfide	<0.006	-0.005	-0.006	- 0.006	<0.005	<0.006	-0.001	<:0.001
1.1-Dichloroethene	<0.006	- 0 005	· 0.006	0.006	-0,005	-0.006	<0.001	<0.001
1,1-Dichloroethane	-0.006	- 0 005	-0.00o	<0.00b	<0.005	<0.006	<0.001	<0.001
cis-1,2-Dichloroethene	-0.006	-:0 005	·:0.006	< 0.006	<0.005	<0.006	<0.001	<0.001
trans-1,2-Dichloroethene	-0.006	<0.005	-:0.006	* 0.006	<0,005	<0.006 <0.006	<0.001	<0.001
Chloroform	40.006	-0 005	<0.006	<0.006	<0.005	<0.006	-0.001	<0.001
1,2-Dichloropropane	< 0.006	0 005	. 0 006	<0.006	<0.005	-70,006	*.0.001	<0.001
1,3-Dichlorobenzene	-0.006	- 0 005	+:0.006	<0.006	<0.005	-0.006	<0.001	100.0~
2-Butanone	0.030	<0.026	<0.028	<0.030	<0.027	< 0.029	0.005	<0.005
1.1.1-Trichloroethane	**D,006	-10.005	×10 006	-:0 006	<0.005	< 0.006	100.00	<0.001
Carbon Tetrachloride	•10.006	<0.005	<0.006	<0.006	-:0,005	<0.006	100.001	* 0.001
Bromodichloromethane	<0.006	-12 005	• 0.006	<0.006	<0.005	₹0 006	-0.001	+10.001
1,2-Dichloropropane	:0.006	-0.005	·*0.006	300,00	-<0.005	<0.006	100.001	<0.001
cis-1,3-Dichloropropene	-in nos +/	- 0.005	• it title	- 0,00a	<0.005	<0.006	-0.001	-0.901
Trichloroethene	0 006	0.00091	0.006	0,00093	<0.005	0.00073	-0.001	<0.001
Dichlorodifluoromethane	40 00c	<0.005	- 0.006	- 0 006	0.005	< 0.006	<0.001	<0.001
1,1,2-Trichloroethane	<0.006	< 0.005	≪0.006	<0.006	<0.005	<0.006	<-0.001	<0.001
Benzene	-0 006	- 0.005	<u>>0.006</u>	*-0.006	₹0.005	<0.006	-0.001	<0.001
t-1,3-Dichloropropene	<0.006	× 0.005	- 0.006	<0.006	0,005	<0.006	₹0.001	< 0.001
Bromoform	<0.006	< 0.005	- 0.006	<.0 006	<0.005	<0.006	-:0 001	<0.001
4-Methyl-2-Pentanone	<0.030 123	<0.026	-0.028	< 0.030	<0.027	<0.029	<0.005	<0.005
2-Hexanone	-0.030 LT	< 0.026	-0.028	50.030	<0.027	<0.029	40.005	~ 0.005
Tetrachloroethene	0.003J	. 0.005	- 0.006	~0 006	+-0.005	-0.006	-0.001	<.0.001
1,1.2,2-Tetrachloroethane	-0 006	50 005	-10,006	<0.006	<0,005	₹0.006	<0.001	~0.001
Toluene	0.006	<0.005	-^0.006	r 0.006	*10.005	<0.006	0.002	0,002
Chlorobenzene	<0.006	<0.005	-0.006	<0.006	<0,005	-:0 006	<.0.001	<0.001
Ethyl Benzene	0.006	<0 005	~'0,006	-0.006	₹0,005	<0.006	+0.001	0.001
Styrene	-0.006(1.3)	- 0 005	10 006	<0.006	<0.005	<0.006	-0.001	100 00
m/p-Xvlenes	0.0021	-0.010	<0.011	<0.012	<0.011	<0.012	<0,002	<0.000
o-Xylene	0,002	0.005	0.006	- 0.006	-10.005	-0.006	-:0.001	100.01
1,2- Dichtoroethylene (total)	210 00	-0.010	-0011	40 012	<0.011	<0.012	·10 002	-70,002
Xylenes (total)	0.0041	CO 016	-0017	<0.018	<0.016	-:0.017	<0.003	<0.003

see 1 edits to consolute various

Analytical results presented in mg/kg (pp. NYSDEC Soil Cleanip Objectives obtain

[.] The SCOs for commercial use were $\bar{\zeta}$

For constituents where the calculated

SCO's for industrial use and the prote

Bold "Analyte detected above laborator

Shaded - Analyte detected above NYSDI

SB-DUP collected from SB-6 (16-20)

SS-DUP collected from SS-n (0-67) - Analyte not detected above laborator

J Indicates an estimated value

R . Non-detect results for these compour

⁻ No Soil cleanup objective listed for ai

Table 1 Soli Analytical Data Holt Drive Stony Point, Rockland County, New York

Analyte	55-6 (0-2")	SB-6 (18-21.5')	33-6 (0-6°°)	SB-6 (16-20')	SS-DUP	SB-DUP	EB-1 WATER	EB-2 WATER
Sample Date	1/5/2011	1/5/2011	1/6/2011	1/6/2011			1/6/2011	1/6/2011
		· · · · · · · · ·						·
Phenol	<.400	<.380	<.300	<.400	- 38	- 30	<,009	<.009
Bis (2-Chloroethyl) Ether	<.400	<.380	< 360	<.400	< 38	• 39	<.009	<.009
2-Chlorophenol	<.400] <.380	<.380	<.400	· 38	· 39	<.009	<.009
1,3-Dichlorobenzene	<.400	< 380	<.380	r.400	- 38	- 30	<.009	<.009
1,4-Dichlarobenzena	<,400	<.380	<.380	<.400	- 38	5 J9	<.009	<.009
1,2-Dichlorobenzeno	<.400	<.380	<.380	< 400	< 38	• 30	<.009	<.009
2-Methylphenol	<.400	<.380	<.360	<.400	<.38	>.39	<.009	<.009
2,2'-Oxybis (1-Chloropropane)	<.400	<.380	<.380	<.400	- 38	• 39	<.009	<:009
N-Nitroso-dl-n-propylamine	<.400	<.380	<.380	<,400	< 38	• 39	<.009	<.009
3&4-Methylphenol	<.400	<.380	<.360	<.400	< .38	+. 30	<.009	<.009
Hexachioroethane	<.400	<.380	<.380	<.400	>.38	- 39	<.009	<.009
Nitrobenzene	< 400	<.380	<.380	<.400	< 38	- 39	<.009	<.009
Isophorone	<.400	<.380	<.300	<.400	38	< 39	<.009	<.009
2-Nitrophenol	<.400	<.380	<.380	<.400	* 38	- 39	<.009	<.009
2.4-Dimethylphenol	<.400	<.380	<.380	<.400	- 38	- 39	<.009	<.009
Bis (2-Chloroethoxy) methane	<.400	<.380	<.380	<.400	< 38	- 30	<.009	<.009
2,4-Dichlorophenol	<.400	<.380	<.360	<.400	- 38	4.39	<.009	<.009
1.2.4-Trichlorobenzene	<.400	<.380	< 360	< 400	* 38	- 19	<.000	< 0.09
Naphthalene	<.400	<.380	<.360	<.400	- 38	+: 39	<.009	<.009
4-Chloroanlline	<,400	<.380	<.360	<.400	4.38	+ 39	<.009	<.009
Hexachioroputaciene	< 400	< 380	< 350	< 400	< 38	+ 30	<.009	<.009
4-Chloro-3-Methylphenol	<.400	<.380	<.360	<.400	- 38	- 39	<.009	
2-Methylnaphthalene	<.400	<.380	<.380	<.400	< 38	- 30	<.009	<,009
1-Methylnaphthalene	<,400	<.380	<.380	<.400	- 38	- 39		<.009
Hexachlorocyclopentadiene	<.400	<.380	<.380	<,400	< 38	* 39	<.009	<.009
2,4,6-Trichlorophenol	<,400	<.380	≺.360	<.400 <.400	- 38	* 39	₩009 1	وكالمصيح
2,4,5-Trichlorophenol	<.990	<.940	<.890		- 38		<.009	<.009
2-Chloronaphthalene	<.400	<.380	<.360	<1 <.400		96 39	<.024	<.024
2-Nitroaniline	<.990	<.940	<.890	<1	<.38 <.95		<.009	<.009
Dimethyl Phthalate	<.400	<.380	<.360	<,400	* 38	< 96	<.024	<.024
2,6-Dinitrotoluene						+ 39	<.009	<.009
Acenaphthylene	<.400 <.400	<.380 <.380	<.360	<.400	×.38	- 39	<.009	<.009
3-Nitroaniline	<.990	<.940	<.360	<.400	- 38	- 39	<.009	<.009
Acenaphthene	<.400	<.380	<.890	<1	<.95 - 38	. 96	<.024	<.024
2,4-Dinitrophenot		< 940	<.360	<,400	- 38 - 95	· 39	<.009	<.009
	< 990		< 890	<1		, 96	ے سیرون	عم محمد
Dibenzoturen 4-Nitrophenol	<.400 <.990	<.380	<.360	<.400	<.38	- 39	<.009	<.009
		<.940	<.890	্ব	·.95	- 96	<.024	<.024
2,4-Dinitrotaluene	<.400	<.380	<.360	<.400	38	39	<.009	<,009
Diethylphthalate	<.400	<.380	<.360	<.400	4,38	•. 39	<.009	<.009
Fluorene	4.400	< 220	<.200	<.400	.38	1,30	<.000	<.003
4-Chlorophenyl-phenylether	<.400	<.380	<.360	<.400	- 38	- 39	<.009	<.009
4-Nitroaniline	< 990	<.940	< 890	<1	- 95	₹ 96	<.024	<.024
4.6-Dinitro-2-Methylphenol	<.990	<.940	<.890	<u> </u>	- 95	• 96	<u>(کرآ 244) ۔ </u>	<.024 [9
N-Nitrosodiphenylamine	<.400	<.380	<.360	<.400	- 38	- 39	<.009	<.009
4-Bromophenyl-phenylether	<,400	<.380	<.360	<.400	< 38	- 30	<.009	<.009
Hexachlorobenzene	<,400	<.380	<.360	<.400	- 38	· 30	<.009	<.009
Pentachlorophenol	<.990	<.940	<.890	<1	4.95	96	<.024	<.024
Phenanthrene	.3701	<.380	<.380	<.400	. 38	- 39	<.009	<.009
Anthracene	<.400	<.380	<.380	<.400	• 38	• 39	<,009	<,009
Carbazole	<.400	< 380	< 380	<.400	.38	. 39	<.009	<.009
Di-n-butytphthalate	<.400	< 380	<.360	<.400	- 38	+ 19	<.009	<,009
Fluoranthene	0.76	<.380	<.380	<.400	38	- 39	<.009	
***************************************		 						<.009
Pyrene	0,66	<.380	< 350	<,400	• 38	• .89	<.009	<.009
Butylbenzyiphthaiate	<.400	< 380 j	<.360	< 499ge 7 ot 10	* .+8	• 39	<.009	<.009

Analyte	\$3-5 (0-2")	SB-5 (18-21.5')	35-6 (0-6")	SB-6 (16-20")	SS-DUP	SB-DUP	EB-1 WATER	EB-2 WATER
Sample Date	1/5/2011	1/5/2011	1/6/2011	1/6/2011		1	1/6/2011	1/6/2011
Benzo(a)anthracene	.280J	< 380	<.380	<.400	1.38	- 39	<.009	<.009
3,3'-Dichlorobenzidine	+.400 R	< 380	<.360	<.400	< 38	- 39	<.009	<.009
Chrysene	<.400	<.380	<.360	<.400	• .38	• 39	<.009	<.009
bis(2-Ethylhexyl)phthalate	<.400 <	390 and U	<.360 3800 U	4,440 Jest 12	40.38 20 U	20.39 N U	<.009	
Di-n-octylphthalate	<.400	<.380	<.360	*.400	38	- 39	<.009	0,033
Benze(b)fluoranthene	0,43	<.380	< 360	<.400	38	- 39	 	<.009
Benzo(k)fluoranthene	.220J	<.380	<.360	<,400	38	< 39	<.009	<.000
Benzo(a)pyrene	310J	<.380	<.380	<,400	5.38	< 39		<.009
Indano(1,2,3-cd)pyrene	.210J	<,380	<.360	<.400	<.38	< 39	<.009	<.009
Olbenzo(a,h)anthracone	< 400	<,380	<.360	<,400	- 38	<39	<.009	<.009
Benzo(g,h,i)perylene	.180J	<.380	<.360	<.400	< 38	· .39	<.009 <.009	<.009

Analytical results presented in mg/kg (pp

NYSDEC Soil Cleanup Objectives obtain

* The SCOs for commercial use were c

Bold - Analyte detected above laborators

Shaded - Analyte detected above NYSDI

SB-DUP collected from SB-6 (16-20')

SS-DUP collected from SS-6 (0-6°)

- Analyte not detected above labor.
- Indicates an estimated value No Soil cleanup objective listed for

E. Schrissonfestandomministrande Fabilità una

Analyte	33-5 (0-2")	SB-5 (18-21.5°)	SS-6 (0-6")	SB-6 (16-20')	3S-DUP	SB-DUP	EB-1 WATER	EB-2 WATER
							ļ	
Sample Date	1/5/2011	1/5/2011	1/6/2011	1/6/2011			1/6/2011	1/6/2011
•								
aipha-BHC	0.002	0.0056	.00153	0.0063	0.003	0.0063	<.000047	<.000047
gamma-BHC	<.002	<.0018	<.0019	<,002	<.0019	<.0019	<.000047	<.000047
Heptachior	<.002	<.0018	<.0019	<.002	<.0019	<.0019	<.000047	<.000047
Aldrin	<.002	<.0018	<.0019	<.002	<.0019	<.0019	<.000047	<.000047
bota-BHC	<.002	<.0018	<.0019	<.002	<.0019	<.0019	<.000047	<.000047
delta-BHC	<.002	<.0018	<.0019	<.002	<,0019	<.0019	<.000047	<.000047
Heptachlor Epoxide	<,002	<.0018	<.0019	<.002	<.0019	<.0019	<.000047	<,000047
Endosulfan I	<.007	<.0018	<.0019	<.002	<.0019	<.0019	<.00004/	<.000047
gamma-Chlordane	<,002	<.0018	<.0019	<.002	<.0019	<.0019	<,000047	<.000047
alpha-Chlordane	<.002	<.0018	<.0019	<.002	<.0019	<.0019	<.000047	<.000047
4,4'-DDE	.0015J	.00075J	.00062J	<.0038	.000653	<.0037	<.000094	<.000094
Dietdrin	<.0038	<.0036	<.0036	<.0038	<.0037	<.0037	<.000094	<.000094
Endrin	<,0038	<.0036	<.0036	<,0038	<.0037	<.0037	<.000094	<.000094
4,4'-DDD	< 0.038	< 0036	<.0036	<.0038	<.0037	<.0037	<.000094	<.000094
Endosulfan II	<.0038	<.0036	<.0036	<.0038	<.0037	<.0037	<.00094	<.000094
4.4'-DDT	.0023J	<.0036	<.0036	<.0038	<,0037	<.0037	<.000094	<.000094
Endrin Aldehyde	<.0038	<.0036	<.0036	<.0038	<.003/	<,003/	<.000094	<,000094
Endosulfan sulfate	<.0035	<.0036	<.0036	<.0038	<.0037	<.0037	<.000094	<.000094
Methoxychlor	< 020	<.018	<.019	<.020	<.019	<.019	<.00047	<.00047
Endrin Katone	<.0038	<.0036	<.0036	<.0038	<.0037	<.003/	<.000044	<.000094
Toxaphene	<.038	<.036	<.036	<.038	<.037	<.037	<.00094	<.00094

Notes:

Analytical results presented in mg/kg (pp NYSDEC Soil Cleanup Objectives obtain

- The SCOs for commercial use were c
- e For constituents where the calculated
- '- This SCO is for the sum of Endosulfo SB-DUP collected from SB-6 (16-20')

SS-DUP coffeeted from SS-6 (0-6")

- J Used for Pestucde analyte when there
- " Analyte not detected above labor
- No Soil cleanup objective listed for

Aroclor-1016	<.020	<.018	<.019	< .020	~,019	<.019	<.00047	<.00047
Aroclor-1221	< 020	<.018	<.019	<.020	1.019	• ,019	<,00047	<.00047
Arocier-1232	<.020	<.018	<.019	<.020	<.019	< 019	<.00047	<.00047
Aroclor-1242	<.020	<.018	<.019	<.020	019	~ 019	<.00047	< .00047
Annin-1248	020	<.816	<.016	₹.020	< 019	<.019	<.00047	<.00047
Aroclor-1254	<,020	<.018	<.019	<.020	< 019	4,019	<.00047	<.00047
Arecter-1260	<.020	<.018	<.019	< 020	5 BIO	- 019	<.00047	<,00047

Note

Analytical results presented in mg/kg (pp NYSDEC Soil Cleanup Objectives obtain SB-DUP collected from SB-6 (16-20') SS-DUP collected from SS-6 (0-6")

Analyte not detected above labor.

C-Nuvers(unity)Personneuts(unity)(in)) Table 1 value

Table 1 Soil Analytical Data Holt Orive Stony Point, Rockland County, New York

Analyte	SS-5 (0-2")	SB-5 (18-21.5°)	38-6 (0-6")	SB-6 (16-20')	SS-DUP	SB-DUP	E8-1 WATER	E8-2 WATER
Sample Date	1/5/2011	1/5/2011	1/6/2011	1/6/2011			1/6/2011	1/6/2011
Aluminum	13200	7480	15000	5490	14800	6790 _	<15.2	<15.3
Antimony	<0.1/17	<0.11/1	<0.09 [<0.1 //	<0.12 (1 J	<0.10 [6]	<1.5	<1.5
Arsenic	4.2	2.3	3.8	2,2	4.1	2.4	<1.86	<1.86
Barium	54.6	36.4	51.6	26.6	51.6	26,4	<0.44	<0.44
Beryllium	0.56	0.41J	0.65	0.38J	0.63	0.383	<0.04	<0.04
Cadmium	0,26J	0.19J	0.37J	0.18J	0.281	0.203	<0.04	<0.04
Calcium	1710	1690	1500	2010	1220	1810	<5.79	110
Chromium	13.7	14	15.2	10.5	15.7	14.6	<0.32	<0.32
Cobalt	8.4	5.6	9	4.8	7	6.2	<0.28	<0.28
Соррег	16.9	12.7	22.7	11,2	20	12	8.1J	8.5J
Iron	17500	14300 🗍	20500	13000 🕽	20800	13600	7.8J	95.1J
Lead	20.5	4.8 5	7.3	3.1	7.3	3,5	< 0.73	<0.73
Magnesium	3370	2920	4840	2510	3710	3220	<4.83	18.3J
Manganese	373	270	413	180	334	210	1.0J	2,5J
Mercury	0.04	0.002J	0.02J	0.002.J	0,02,	0.005J	<0.04	<0.04
Nickel	13,6	11.3	16,7	9.3	13,8	11.4	0.36J	0.55J
Potassium	1270	1450	1720	1700	1660 7	1400 J	<105	11.70
Selenium	<0.34	<0.35	<0.33	<0.34	<0.42	<0.37	<3.67	<3.68
Silver	0.26J	0.25J	0.19J	0.21J	0.37J	0.253	<0.48	<0.49
Sodium	108	160	388	110	339	128	43.41	1430 🕽
Thallium	<0.14	<0.15	<0.14	<0.14	<0.18	<0.15	<0.67	<0.67
Vanadium	22,8	18.9	28.4	18.5	25.5	16.7	<0.30	<0.39
Zinc	48.5	28.6	42.2	22.9	39.1	25.8	12,3J	10.7J
Cvanide	<.6	<.55	<,55	<.55	<,\$\$	<.55	<10	<10

Notes.

Metals data are presented in mu/kg (r NYSDEC Soil Cleanup Objectives obtain

- For constituents where the calculated
- a. The SCOs for metals were capped
- f's For consituents where the calculated !
- J This SCO is the lower of the values for
- Hold Analyte detected above laboratory
- Shaded Analyte detected above NYSD! SB-DUP collected from SB-6 (16-20°)
- SS-DUP collected from SS-6 (0-6")
- Analyte not detected above labor.
 This flag indicates an estimated vi

Page 10 of 10 c. (cures) lum/decuments/shaw/mon Tables soil

Sample LD.	NYSDEC Guidance	MW-2A	MW-3A	MW-8	ERB-1	ERB-2	DUP	MW-1A	MW⊸4
	N 1 STACK Villigance						!		1
Sample Date	1	2/7/2011	2/7/2011	2/7/2011	2/7/2011	2/7/2011	2/7/2014	2/8/2011	2/10/2011
				VOCs		·			
'hloromethane	5*	- 2	· 2	- 2	×2	<2	<2	~ 2	-42
Bromomethane	5*	- 2	r 2	≪2	<2	<:2	<2	·2	<2
Vinyl Chloride	2	4.2	· 2	-2	.2	~2	<2	<2	-2
`hloroethane	5*	4.2	· 2	~2	,; <u>2</u>	- 2	·.2	4. <u>2</u>	·2
Methylene Chloride	5*	45	· 5	-:5	5	<5	<5	< 5	- 5
Vectone	50	<5	-5	~5	<5	<5	<5	<5	<5
arbon Disulfide	60	-1		· · · · · ·	<1	<1	<1	<1	<1
,1-Dichloroethene	5*	41	*1	2	<1	<1		4	4.1
,t-Dichloroethane	5*	r!	r.1	-1	1	-:1	< }	~1	<1
is-1,2-Dichloroethene	5*	<1	<1	1	1	<1	-i	<1	<1
rans-1,2-Dichloroethene	5*	<1	~1	~1	<1	<1	</td <td></td> <td><1</td>		<1
"hloraform	7	<]	• 1	<1	7:	::1	v1	4.1	1 3
,2-Dichloroethane	0.6	• 1	· I	√1	<1	1	<1	4']	*1
-Butanone	50	<5 ,	- 5	~5	-5	5	-5	-:5	<5
t,1-Trichloroethane	5*	5J NO	•]	6	<1	<1	<1	10	1
arbon Tetrachleride	5	< I	- [e	-1	<i< td=""><td> 1</td><td><.l</td><td>- 41</td></i<>	1	<.l	- 41
romodichloromethane	50	. Ni	1.5	~1	<1	<u> </u>	<1	<1	<1
.2-Dichloropropane	1	\$I	- 1	~1	<1	~ <u> </u>	+1	-1	
is-1.3-Dichloropropene	0.4**	<1	~!	~1	1 3	<u> </u>	<1	e ¹]	*1
richloroethene	5+	< 1	< !	*1	7	1		NI NI	
Dichlorodifluoromethane	NGV	<.1	~1	41	<1	≪]	<1	<i< td=""><td><1</td></i<>	<1
,1,2-Trichloroethane	1	1. ×	~1	<	<u> </u>	<1	<1	«I	<1
Senzene	1	* [~1	κ.	<1	<1	<1	<1	<u><1</u>
1.3-Dichloropropene	0,4**	- 1	1	Κ.	×1	<1	≤1	<	<1
dramoform	50	<1	N1	\	4.1	<u>\$1</u>	<1	1	<1
-Methyl-2-Pentanone	NGV	<5	< 5	<5	₹.5	<5	-45	<5	*5
-Hexanone	50	₹5	- 5	45	<5	<5	<5	<.5	<5
'etrachloroethene	5*	×.1	< 1	5	<1	<1	\$1	<· [-1
.1,2,2-Tetrachloroethane	5*	4.1	≈1	K.	<1	<1	v1	<1	<1
oluene	5*	<1	~1	8.1	6J	53	<1	<	<1
hlorobenzene	5*	~1	- 1	4	<1	<1	<	<1 ·	<1
thyl Benzene	5*	- 1	* t	-1	4.1	<1	si si	ST.	<1
tyrene	5*	r.1	- 1	<i>e</i> 1	<1	<u> </u>	8.1	<u> </u>	<1
/p-Xylenes	5*	<:2	- 2	√2	<2	-:2	√2	<2	~2
-Xylene	5*	<.1	-1	×1	<1	<.1	<1	<u>ح</u>	</td
2- Dichloroethylene (total)	NGV	-2	· <u>2</u>	-2		~2	- - 2		
(ylones (total)	NGV	-57	- 2	+.3	3	×3	<3	<.3	<3

All data are presented in µg/l or parts per billion (ppb)

Standards taken from NYSDEC Memorandum 1.1.1, Ambient Water Quality Standards and Guidance Values,

and Groundwater Effluent Limitations, June 1998.

DUP from MW-3A

Bold - Analyte detected above laboratory method detection limits

Shaded = Analyte detected above NYSDEC Groundwater Guidance Values

- Analyte not detected above laboratory method detection limits
- Indicates an estimated value
- NGV No Guidance Value listed
- The principal organic comaminant standard for groundwater of 5 µg/l applies to this substance
 Applies to the sum of cis- and trans-1.3-dichloropropene or 1.2.4-Trichlorobenzene and 1.2.3 Trichlorobenzene

Sample I.D.		MW-2A	MW-3A	MW-8	ERB-1	ERB-2	DUP	MW-1A	MW⊣
	NYSDEC Guidance								
Sample Date		2/7/2011	2/7/2011	2/7/2011	2/7/2011	2/7/2011	2/7/2011	2/8/2011	2/10/2011
				SVOCs					
Phenol	***	9	. 0	+.9	~10	-:9	- -9	<9	9
Bis (2-Chloroethyl) Ether		9	e*9	< 0	<10	<9	<9	<9	- 9
-C'hlorophenol	1944	-0	-:9	<.0	10	- 9	49	<9	19
,3-Dichlorobenzene	3*	- 9	- 9	< 9	* 10	.9	<9	<0	49
4-Dichlorobenzene	3*	- 9	- 9	×9	-10	-:9	-9	<9	-0
,2-Dichlorobenzene	3*	.9	9	*.9	<10	.9	«·()	<9	· · · ·
-Methylphenol	[***	-<9	<9	₹9	e10	<9	<9	<9	<9
2'-Oxybis (1-Chloropropane)	NGV		•:0	<9	*-10	- 9	<9	<9	- 9
	NGV	59	4.9	<9	<10	.9	<.9	<9	.9
N-Nitroso-di-n-propylamine		9	<9	<9	<10		<9	<9	<9
&4-Methylphenol	NGV	<9					<9		<9
lexachloroethane	5*		-9	<.9 (5)	-10	<9 <9		<.9	
litrobenzene	0.4	<9			<10		<9	<9	-:0
sophorone	50	9	<·9	< 9	<-10	- 9	<9	~'9	- 9
-Nitrophenol	7***	.?	٠٠٠)	40	<10	-49	-:9	-:9	-19
.4-Dimethylphenol	10	-9	• 9	<0	<10	< 9	<9	< 9	< 9
3is (2-Chloroethoxy) methane	5*	-:0	-59	-49	4.10	<9	<9	<9	<9
.4-Dichlorophenol	5*	<.9	-:9	<9	<10	<u><9</u>	<9	<9	~9
.2,4-Trichlorobenzene	5*	<:9	-9	~9	<10	- 0	<.9	÷.0	-,9
laphthalene	10	- G	-0	₹ 9	₹10	- 0	<9	*0	< 0
-Chloroaniline	5*	-39	- 9	<9	<10	<9	~9	<9	.9
lexachlorobutadiene	0.5	-:9	<9	<9	<10	<9	<9	<9	<:9
-Chloro-3-Methylphenol	NGV	<9	e.Q	~ 9	~10	<9	<9	<9	<9
2-Methylnaphthalene	NGV	<9	-9	~9	≪10	~9	<9	<9	<9
-Methylnaphthalene	NGV	<9 /	4°9	<9	<10	63	<9	<9	<:9
lexachlorocyclopentadiene	5*	-9 UJ	~9 U J	<9 UT	10 (LT	الما 9.	<9 LJ	<9	٠,9
2,4,6-Trichlorophenol	[***	49	• 9	<9	<10	√ 9	<9	٠.9	49
2.4,5-Trichlorophenol	[***	×24	<24	~24	<24	<24	-24	<24	<24
2-Chloronaphthalene	10	···C)	- 9	« 9	<10	<'0	<0	<9	<:0
-Nitroaniline	5*	- 24	- 24	<:24	~24	<24	<24	<24	-<24
Dimethyl Phthalate	50	-9	<:9	<9	<10	e9	<9	<9	<9
2,6-Dinitrotoluene	5+	e9	.09	<9	<.10	<:9	<9	<9	<9
\cenaphthylene	NGV	< 9	< 0	< 0	S 10	<9	~4)	<<)	<9
3-Nitroaniline	57	<24	<24	<24	<.24	~24	<24	<24	*.24
Agenaphthene	20	. 9	49	. 9	<10	3 9	<9	<9	×:9
2.4-Dinitrophenol	5*	× 24	* 24	< 24	<24	×. 24	< 24	< 24	≺. 24
Dibenzofuran	NGV	1 39	<u></u>	- 9	~10	9	- 27	<9	.9
	1***	< 24	< 24	< 24	<24	< 24	< 24	< 24	< 24
-Nitrophenol	5*	4.9		<9	<10	<9	<9	<9	<9
	50 50	9	- 39	49	<10	<.9	<9	< 9	49
Diethylphthalate	50	- 0	<9	. 9	-10	+9	·:9	<.9	- 9
luorene									
-Chlorophenyl-phenylether	NGV	4,9	· 9	~ 9	<-10	<9	<9	4 9	< 9
-Nitroaniline	5*	-24	<24	<24	-:24	<24	<24	<u> </u>	<24
.6-Dinitro-2-Methylphenol	[+++	-24	- 24	<.24	<24	e.24	· 24	<24	<:24
N-Nitrosodiphenylamine	50	4.9	<9	× Q	<10	<9	<9	<u>د۹</u>	+.9
-Bromophenyl-phenylether	NGVV	<.9	e 9	<.9	<10	٠.9	< 9	< 9	<9
lexachlorobenzene	0.04	-39	, t)	<9	• 10	+,9	<9	. 9	• '9
	;***	× 24	- 24	<24	<24	~24	- 24	- 24	24
Pentachlorophenol Phenanthrene	50	-9	. 9	.9	-10	-:9	<9	< 9	. 9

Sample 1 D		MW-2A	MW-3A	MW-8	ER8-1	ERB-2	DUP	MW-1A	MW-4
	NYSDEC Guidance								
Sample Date		2/7/2011	2/7/2011	2/7/2011	2/7/2011	2/7/2011	2/7/2011	2/8/20 1	2/10/2011
Di-n-butylphthalate	50	√9	- 9	- 9	- 10	9	<,0	-9	9
Fluoranthene	50	-19	9	- 9	- 10	-:9	9	-:9	-:9
Pyrene	50	<9	- 9	<9	<10	<.9	< 9	< 9	₹:9
Butylbenzylphthalate	50	-: 9	<9	9	<10	<9	<9	<.9	<9
Benzo(a)anthracene	0.002	<9	< 9	< 9	<10	v Q	~0	< 9	~9
3.3'-Dichlorobenzidine	5*	·:9	9	- 9	∹10	₹9	- '9	49	₹9
Chrysene Chrysene	0.002	-9	4.9	-09	<10	~:9	<.9	<9	-:9
ois(2-Ethylhexyl)phthalate	5	<9	~:Q	<9	<10	3 J	<9	<9	2 J
Di-n-octylphthalate	50	<9	-:9	r.9	<10	<9	-<9	-9	<9
Benzo(b)fluoranthene	0.002	<:9	9	112-<9	<10	9	<9	1JB <9	49
Benzo(k)fluoranthene	0,002	<9	₹9	<9	<10	<9	<9	<9	<9
Benzo(a)pyrene	0.002	<9	- 9	1,450<9	<10	<9	<9	LH3 < 9	-9
ndeno(1,2,3-cd)pyrene	0.002	9	. 9	- 9	<10	-:9	-:9	. 9	-:9
Dibenzo(a.h)anthracene	NGV	4.9	49	.9	<10	<9	4.9	·.9	0
Senzo(g.h.i)perylene	NGV	-:9	. 9	-9	<10	· </td <td>~:9</td> <td>~?</td> <td><9</td>	~:9	~?	<9

Notes:

All data are presented in µg/l

Standards taken from NYSDEC Memorandum 1.1.1. Ambient Water Quality Standards and Guidance Values,

and Groundwater Effluent Limitations, June 1998,

DUP from MW-03A

- Analyte not detected above laboratory method detection limits
- J Indicates an estimated value
- JB indicates an estimated value as well as being detected in the laboratory method blank analyzed concurrently with the sample

NA - Not Analyzed

NGV = No Guidance Value listed

- The principal organic contaminant standard for groundwater of 5 μg/l applies to this substance
- *** Applies to the sum of phenolic compounds

Sample I.D.		MW-2A	MW-3A	MW-8	ERB-1	ERB-2	DUP	MW-1A	MW-4
	NYSDEC Guidance								
Sample Date		2///2011	2/7/2011	277/2011	2///2011	2///2011	2///2011	2/8/2011	2/10/2011
				Pesticides					
dpha-BHC	ND	-0,047	<0.047	<0.047	< 0.047	r.0,047	-0.047	-0.047	-0.047
iamma-BHC	NGV	< 0.047	-:0,047	<0.047	< 0.047	<0.047	+.0.047	< 0.047	< 0.047
leptachlor	0.04	~0 047	<0.047	<0.047	<0.047	< 0.047	r.0.047	< 0.047	<0.047
Vidrin	ND	- 0.047	-0.047	< 0.047	-0.047	<0.047	<0.047	~0.047	∹0,047
em-BHC	NGV	< 0.047	<0.047	<0.047	< 0.047	<0.047	<0.047	-0.047	<:0.047
lelta-BHC	NGV	< 0.047	<0.047	< 0.047	< 0.047	<0.047	<0.047	<0.047	< 0.047
leptachlor Epoxide	0.03	< 0.047	<0.047	<0.047	<0.047	<0.047	<0.047	<0.047	<:0,047
indosulfan I	NGV	<0.047	~0.047	<0,047	<0.047	<0,047	<0.047	<-0.047	<0.047
amma-Chlordane	0,05	~0.047	< 0.047	~0.047	<0.047	<0.047	<0.047	<0.047	< 0.047
lpha-Chlordane	0,05	~0.047	~0.047	< 0.047	<:0,047	<0.047	<0.047	~:0.047	< 0.047
,4'-DDE	0.2	- 0,094	<0.094	<:0,094	<0.094	<:0.094	<0.094	<0.094	<0,094
Dieldrin	0,004	<0.094	<0.094	< 0.094	- 0,094	<0,094	<0.094	<0,094	<0,094
indrin	ND ND	- 0,094	<0.094	< 0.094	<0.094	⊴0,094	<0.094	<0.094	<0.094
.4'-DDD	0,3	~0.094	-0.094 ピガ	-:0.094 U.J	-:0.094 JJ	<0.09411	0.09447	-0.094 LJ S	<0.094
indosulfan II	NGV	< 0.094	- 0.094	-0.094	< 0.094	<-0.094	< 0.094	< 0.094	<0,094
.4'-DDT	0.2	<0.094 US	-0.094 V-J	<.0.094 V-J	~0.094UT	< 0.094 VJ	< 0.094 [57]	-0.094	< 0.094
indrin Aldehyde	5*	~0.094	<0.094	<0.094	<0.094	<0.094	<0.094	< 0.094	< 0.094
ndosulfan sulfate	NGV	<0.094	-10.094	<0.094	40,094	<0.094	:0,094	⊴0.094	<0,094
4ethoxychlor	35	-0.047	- 0.047 23	C0.047 MJ	-0.047 u.S	-0.047 tal	-0.047 um	-0.047	-0.047
ndrin Ketone	35	- 0,094	-:0,094	<0.094	< 0.094	- 0,094	··0.094	< 0.094	< 0.094
'oxaphene	0.06	<0.094	<0.094	<0.094	< 0.094	< 0.094	«·0.094	<0.094	< 0.094

Notes:

All data are presented in µg/l

Standards taken from NYSDEC Memorandum 1.1.1. Ambient Water Quailiy Standards and Guidance Values,

and Groundwater Effluent Limitations, June 1998.

DUP from MW-3A

Analyte not detected above laboratory method detection limits

NA Not Analyzed

ND Non-Detect

NGV = No Guidance Value listed

* Applies to the sum of these substances

PC'Bs									
Aroclor-1016	0,09*	<0,047	<0.047	< 0.047	< 0.047	<0.047	<0.047 UJ	<0,047	<0.047
Aroclor-1221	0.09*	-0.047	-0.047	<:0.047	-:0.017	< 0.047	<0.047	< 0.047	< 0.017
Aroclor-1232	0.09*	<0.047	<0.047	<0.047	<0.047	< 0.047	<0.047	<0.047	<0.047
Aroclor-1242	0,09*	+ 0,047	<-0.047	<0.047	<0.047	<0.047	+-0.047	< 0.047	<0.047
Aroclor-1248	0.09*	< 0.047	< 0.047	< 0.047	< 0.047	<0.047	< 0.047	-0.047	- 0.047
Araclar-1254	0.09*	-0,047		<0.047	<0.047	< 0.047	<0.047	<0.047	<0.047
Aroclor-1260	0,09*	·10.047	-10.047	€0.047	- 0.047	• 0.017	C0.047 V	+0.047	< 0.047

Notes:

All data are presented in μg/l

Standards taken from NYSDEC Memorandum 1.1.1, Ambient Water Quailiy Standards and Guidance Values,

and Groundwater Effluent Limitations, June 1998.

DUP from MW-3A

Analyte not detected above laboratory method detection limits.

NA Not Analyzed

ND Non-Detect

NGV : No Guidance Value listed

Applies to the sum of these substances

Sample LD.		MW-ZA	MW-3A	MW-8	ERB-1	ERB-2	DLIP	MW-1A	MW-4
	NYSDEC Guidance								
Sample Date		2/7/2011	2/7/2011	2/7/2011	2/7/2011	2/7/2011	2/7/2011	2/8/2011	2/10/2011
			M	etals + Cyanide					
Aluminum	NGV	94.6 J	160 J	109 J	14.80	<14.80	19.8 J	834	1,460
Antimony	3	1,28	r1.28	< 1.28	<1.28	<1.28	1.28	<1.28	<1.28
Arsenie	25	<1.43	-1.43	2.4 J	<1.43	< 1,43	4.1,43	<1.43	<1.43
Barium	1,000	21.4	70	38.7	37,4	< 0.23	67.5	30,2	20,3
Beryllium	3	0.10	÷ 0.10	~0.10	~0.10	<0,10	<0.10	<0.10	<0.10
Cadmium	5	0.15 J	0.08 J	0.28 J	<0.05	<0.05	<0.05	<0.05 J	0,51 J
Calcium	NGV	42,100	75,000	45,000	54,800	14,100	75,700	29,600	11,400
Chromium	50	I,J J	1.1 J	2,3 J	< 0.36	<0.36	1,1 J	2.5 J	7.1 J
Cobalt	NGV	<0.24	<0.24	40.24	<0.24	<0.24	<0.24	0.86 J	1.2 J
Copper	200	1,4 J	1.8 J	1.8 J	1.9 J	1,3 J	2.2 J	19.2 J	3.8 J
iron	300	184	292	235	29.1 J	36,5 ↓	37,5 J	1,580	2,410
Lend	25	1.2 J	<1.07	~1.07	<1.07	<1.07	<1.07	4.7 J	2.0 J
Magnesium	35,000	13,100	20,700	11,200	3,720	3,170	20,100	6,870	3,460
Manganese	300	18.2	10.2	2.8 .;	≈1.06	<1.06	4.3.3	107	76,4
Mercury	0.7	~.0.04	0.04	~ 0.04	<0.04	-:0.04	<0.04	<0.04	< 0.04
Nickel	100	0.88 J	1.5 J	0.77 J	<0.28	<0.28	<0.28	1,5 J	4.0 J
Potassium	NGV	1,460	<0.04	1550	5,660	<41.00	1.550	1,540	1,240
Selenium	10	+2.36	< 2.36	<2.36	12.36	<2.36	<2.36	<2.36	<2.36
Silver	50	<0.27	+ 0.27	< 0.27	-0.27	~0.27	0.27	-0.27	-0.27
Sedium	20,000	27,500	97,500	36,300	25,600	8,100	94,440	49,800	36,800
Thallium	0.5	<1,07	4. 1.07	<1.07	<1.07	<1.07	<1.07	<1.07	<1.07
Vanadium	NGV	0.40 J	0.73 J	0.31 J	<0.23	<0.23	<0.23	2,5 J	3.6 J
Zinc	2,000	11.0 J	12.9 J	13.9 J	13.2 J	3,7 J	10.2 J	17,3 J	18.8 J
Cyanide		<10	<10	<10	<10	<10	<10	<10	×10

Notes:

Metals reported as Target Analyte List (TAL); Dissolved Metals results are included in the Laboratory Data Package

All data are presented in µg/l

Standards taken from NYSDEC Memorandum 1,1,1, Ambient Water Quailiy Standards and Guidance Values,

and Groundwater Effluent Limitations, June 1998,

DUP from MW-3A

Bold in Analyte detected above laboratory method detection limits

Shaded = Analyte detected above NYSDEC Groundwater Guidance Values

Analyte not detected above laboratory method detection limits

NA Not Analyzed

NGV · No Guidance Value listed