REMEDIAL INVESTIGATION REPORT

FORMER CLOVE AND MAPLE MANUFACTURED GAS PLANT SITE,

120 MAPLE AVENUE

HAVERSTRAW, NY

NYSDEC Site Number 3-44-049

Prepared for:

Orange & Rockland Utilities 390 West Route 59 Spring Valley, NY 10977-5300

Prepared by:

CMX 200 Highway Nine Manalapan, New Jersey 07726

MAY 2009

Working Together for a Better Tomorrow

Table of Contents

<u>Section</u>		Page
SECTION 1	INTRODUCTION	1-1
Backgrour	nd 1-2	
Remedial	Investigation Objectives	1-3
Report Org	ganizationganization	1-4
SECTION 2	BACKGROUND	2-1
Former MC	GP Site History	2-1
Former Po	nd Area	2-2
Current St	udy Area Description and Land Use	2-3
2.1.1	Former MGP Site	2-3
2.1.2	Apartment Complex Properties	2-3
2.1.3	West Street Properties	2-3
2.1.4	Head Start Property	
2.1.5	Alleyway	2-4
2.1.6	Other Areas in Proximity to the Former MGP Site	2-4
SECTION 3	PHYSICAL SETTING	3-1
Climate	3-1	
Land Use i	in the Study Area Vicinity	3-1
Local Zoni	ng	3-1
Local Grou	ındwater Use	3-1
Surface W	ater Hydrology	3-2
Local Surfa	ace Water	3-2
Regional G	Geology and Site Stratigraphy	3-2
Site Specif	fic Geology	3-3
3.1.1	Fill	3-3
3.1.2	Alluvium	3-3
3.1.3	Glacial Lacustrine Clay	3-4
3.1.4	Till	3-5
Regional H	lydrogeology	3-5
Site Specific Hydrogeology		3-5

SECTION 4 S	SUMMARY OF PREVIOUS INVESTIGATIONS	4-1
Initial Haza	rd Assessment - RETEC 1996	4-1
Preliminary	Site Assessment - RETEC 1997	4-2
4.1.1	Surface Soils	
4.1.2	Soil Gas	4-2
4.1.3	Former MGP Site Structures	4-3
4.1.4	Subsurface Soil Samples	4-4
4.1.5	Initial Groundwater Investigation	4-4
Surface Soi	I Investigation and Risk Assessment	4-5
4.1.6	Interim Remedial Measures	4-5
Remedial Ir	nvestigation Activities – GEI 1998 through 2006	4-5
4.1.7	Air, Soil Vapor, Indoor Air Sampling	
4.1.8	Background Surface Soil Samples	4-6
4.1.9	Former MGP Site – Supplemental Groundwater Investigation	4-7
4.1.10	Former Tar Well	4-8
4.1.11	Iron Oil Tank	4-8
4.1.12	Gas Holder Foundation	4-10
4.1.13	Former Garage	4-11
4.1.14	Former High Pressure Holder	4-11
4.1.15	Former MGP Site Groundwater	4-12
4.1.16	Head Start Property	4-13
4.1.17	Apartment Complex	4-14
4.1.18	Storm Water and Catch Basin Sediment Sampling	4-17
4.1.19	Hudson River Sediments	4-20
4.1.20	Finger Print Analysis	4-21
4.1.21	NAPL and Evidence of Product - Study Area	4-21
SECTION 5 2	2008 REMEDIAL INVESTIGATION	5-1
Pre Work Ad	ctivities	5-1
5.1.1	Permit Acquisition	5-1
5.1.2	Utility Clearance	5-1
5.1.3	Geophysical Survey	5-1
5.1.4	Manual Clearance	5-1
Air Monitori	ng	5-1
	Organic Vapor Monitoring	

5.1.6	Dust Particulate Monitoring	5-2
5.1.7	Additional Air Monitoring	5-2
TarGOST® F	ield Screening	5-2
Soil Boring	Investigation	5-3
5.1.8	Soil Boring Methodology	5-3
5.1.9	Former MGP Site	5-5
5.1.10	Apartment Complex	5-5
5.1.11	West Street Properties	5-5
5.1.12	Alleyway	5-5
Groundwate	er Investigation	5-6
Monitoring '	Well Gauging	5-6
Monitoring '	Well Sampling	5-7
	Well Point Sampling	
Soil Vapor I	nvestigation	5-9
5.1.13	Former MGP Site Property Line Adjacent to 146 Maple Avenue (Head Start)	.5-9
5.1.14	Soil Vapor - Rear Yards of West Street Properties	5-10
	2008 REMEDIAL INVESTIGATION RESULTS	
	ary Borings Compared to TarGOST®	
	P Site	
6.1.1 6.1.2	TarGOST® Findings	
	Analytical Results - VOCs	
6.1.3 6.1.4	Analytical Results - PAHs	
6.1.4	Analytical Results - Metals	
6.1.5	Analytical Results - Cyanide NAPL Observations	
•	Complex Properties	
6.1.7	TarGOST® Findings	
6.1.8	Analytical Results - VOCs	
6.1.9	Analytical Results - PAHs	
	NAPL Observations	
	Properties	
	TarGOST® Findings	
	Analytical Results - VOCs	
	Analytical Results - PAHs	
	NAPL Observations	

Alleyway		6-10
Groundwate	er Results	6-10
6.1.15	Presence of DNAPL	6-10
6.1.16	Apartment Complex Shallow Water Table Wells	6-10
6.1.17	Apartment Complex Deep Water Table Wells	6-11
6.1.18	Former MGP Site and Head Start Property Shallow Water Table Wells	6-12
6.1.19	Former MGP Site Deep Water Table Well	6-12
6.1.20	Volatile Organic Compounds Groundwater Summary	6-12
6.1.21	PAH Compounds Groundwater Summary	6-13
6.1.22	Inorganic Analytes Ground Water Summary	6-14
Ground Wa	ter Flow Direction – Shallow Water Table Wells	6-14
Soil Vapor I	Results	6-15
6.1.23	Former MGP Site Property Line adjacent to 146 Maple Avenue (Head St	tart)6-15
6.1.24	Soil Vapor - Rear Yards of West Street Properties	6-16
6.1.25	Other Impacts – Former MGP Site	6-18
SECTION 7	CONTAMINANT FATE AND TRANSPORT	7-1
Contamina	nts	7-1
7.1.1	DNAPL	7-1
7.1.2	PAHs, Cyanide and Metals	7-2
7.1.3	BTEX	7-3
7.1.4	Contaminant Summary	7-4
7.1.5	Surface Soil	7-4
7.1.6	Subsurface Soil	7-4
7.1.7	Groundwater	7-4
7.1.8	Storm Water	7-5
7.1.9	Hudson River Sediments	7-6
SECTION 8	CONCEPTUAL SITE MODEL	8-1
Sources of (Contamination	8-1
8.1.1	Nature and Extent of Contamination	8-1
8.1.2	Fate and Transport Characteristics of the Site	8-2
8.1.3	Potential Exposure Pathways	
8.1.4	Potentially Impacted Receptors	

SECTION 9 EXPOSURE ASSESSMENT		9-1
9.1.1	Contaminant Source	9-1
9.1.2	Contaminant Release and Transport Mechanisms	9-1
9.1.3	Points of Exposure	9-4
9.1.4	Route of Exposure	9-4
9.1.5	Receptor Population	9-4
Assessme	nt of Exposure Pathways	9-5
9.1.6	Former MGP Site	9-5
9.1.7	Apartment Complex	9-7
9.1.8	West Street Properties	9-8
9.1.9	Head Start Property	9-9
9.1.1	O Storm Water Sediments	9-9
9.1.1	1. Hudson River Embayment Sediments	9-9
SECTION 1	LO SUMMARY AND CONCLUSIONS	10-1
10.1.	1 Free and Residual Product	10-1
10.1.	2 VOCs and PAHs in Soil	10-1
10.1.	3 Metals and Cyanide in Soil	10-2
	4 Ground Water Sampling	
Soil Vapor	Investigation Results	10-3
10.1.	5 Former MGP Site Property Line Adjacent to 146 Maple Avenue	10-3
10.1	6 Soil Vapor - Rear Yards of West Street Properties	10-3
CONCLUS	IONS	10-3
	d Extent of MGP Residuals	
	roundwater Impacts Delineation	
	vestigation	
	Human Health and/or the Environment and Exposure Pathways	
	ntal Data Needs	
	fic Geology and Hydrogeology	

SECTION 11	RECOMMENDATIONS	11-1
SECTION 12	REFERENCES	12-1
SECTION 13	LIST OF ACRONYMS AND ABBREVIATIONS	13-1
TABLES		
Table 5-1	TarGOST® Summary	
Table 5-2	2008 RI Sampling Summary	
Table 5-3	2008 RI Soil Sampling Analytical Results	
Table 5-4	Monitoring Well Construction, 2008 GW Elevations	
Table 5-5	2008 RI Ground Water Analytical Results	
Table 5-6	Rationale for Temporary Well Point Sampling	
Table 7-1	Soil Analytical Results Delineation Summary	
Table 7-2	Clove and Maple MGP NAPL Summary	
FIGURES		
Figure 1	Site Location Map – USGS Topographic Map	
Figure 2	Site Location Map - Aerial Photograph	
Figure 3	Historical MGP Structures	
Figure 4	Composite Historical Streets and Waterways	
Figure 5	Former Clove and Maple MGP, Circa 1890	
PLATES		
Plate 1	Site Location Map - With Tax Lots	
Plate 2	Site Plan	
Plate 3	Cross Section Location Lines	
Plate 4A	Cross Sections, Part 1	
Plate 4B	Cross Sections, Part 2	
Plate 4C	Cross Sections, Part 3	
Plate 5A	Soil Analytical Results Summary, Part 1	
Plate 5B	Soil Analytical Results Summary, Part 2	
Plate 6A	Summary of NAPL	
Plate 6B	TarGOST® Response Map	
Plate 7A	Ground Water Analytical Results Summary, Part 1	
Plate 7B	Ground Water Analytical Results Summary, Part 2	
Plate 8	Shallow Ground Water Potentiometric Surface - June 2008	

Plate 9A Ground Water – PAH Isopleths
Plate 9B Ground Water – VOC Isopleths
Plate 10 Till Surface Contour Map

APPENDICES

- A 2008 RI Soil Boring Logs
- B TarGOST® Logs
- C Analytical Data CD Rom
- D Well Documentation
- E Disposal Documentation
- F Data Usability Reports

ATTACHMENTS (BOUND SEPARATELY)

- 1. Previous Environmental Investigations Documentation
 - Surface Soil Analytical Results Table 3 from GEI Consultants, Inc. (2006)
 - Sample Location Rationale Table 4 from GEI Consultants, Inc. (2006)
 - Subsurface Soil Analytical Results Table 5 from GEI Consultants, Inc. (2006)
 - Groundwater Analytical Results Table 6 from GEI Consultants, Inc. (2006)
 - Storm Water Analytical Results Table 7 from GEI Consultants, Inc. (2006)
 - Storm Water Sediments Analytical Results Table 8 from GEI Consultants, Inc. (2006)
 - Hudson River Sediments Analytical Results Table 9 from GEI Consultants, Inc. (2006)
- 2. 146 Maple Avenue Soil Gas Sampling Report From GEI Consultants, Inc. (2001)
- 3. 146 Maple Avenue Surface Soil Sampling From GEI Consultants, Inc. (2000)
- 4. Storm Water, Storm Sewer Sediments, Hudson River Sediment Sampling and Fingerprint Analysis Activities Descriptions From GEI Consultants, Inc. (2006)

n:\project\2007\0707485\02\5 - reports\rir-2008\clove rir - final version (2) 5-29-09.doc

EXECUTIVE SUMMARY

CMX, Inc. (CMX) has prepared this Remedial Investigation Report (RIR) on behalf of Orange and Rockland Utilities (0&R). The remedial investigation (RI) activities were performed in accordance with the Administrative Order on Consent (AOC), dated September 1998, Index #D3-0001-98-03, between 0&R and the New York State Department of Environmental Conservation (NYSDEC) and the NYSDEC approved Supplemental Remedial Investigation Work Plan (SRIWP). This RIR presents the results of the RI activities performed at the Former Clove and Maple Manufactured Gas Plant (MGP) Study Area between April 2008 and June 2008 as well as findings from previous environmental investigations.

The Clove and Maple Former MGP Site is identified by NYSDEC as site number 3-44-049 and is located at 120 Maple Avenue, Haverstraw, Rockland County, New York. The current and previous environmental investigations identified soil and groundwater contamination at the Former MGP Site and nearby properties that included benzene, toluene, ethylbenzene and xylenes (BTEX) and polycyclic aromatic hydrocarbon (PAH) compounds and non-aqueous phase liquids (NAPL).

The Former MGP Site is located on a 250' by 200' (approximately 1.15 acre) rectangular parcel referred to on the tax map as Block 1, Lot 9 (Plate 1). It is bordered to the north by Maple Avenue, to the east by the Head Start of Rockland pre-school facility, and to the south by Clove Avenue and to the west by two residential properties. The area of the site is zoned residential, residential townhouse, and planned industrial district. Single family residential, multifamily residential and light industrial land uses are found nearby.

The RI included subsurface soil, soil gas and groundwater sampling and analysis, and investigation using the Tar-specific Green Optical Screening Tool® (TarGOST®) screening technology. The RI Study Area included the Former MGP Site, the Apartment Complex (north of the Former MGP Site) on the opposite side of Maple Avenue from the Former MGP Site, the West Street Properties generally located to the north of the Apartment Complex, the Head Start Property located east side of the Former MGP Site and a portion of an Alleyway located between the Apartment Complex and Tor Avenue.

The RI also included a contaminant fate and transport evaluation and potential exposure assessment for the Study Area. The fate and transport evaluation incorporated information developed during previous environmental investigations in addition to information including

the groundwater hydrology, geology, history of the Study Area, the nature of the chemical compounds encountered during the sampling programs, and apparent trends in the distribution of these materials in the Study Area. The evaluation provided a discussion of the physical and chemical characteristics of the contaminants identified in the analytical data, the potential sources, migration pathways and receptors in the Study Area. The environmental media that may potentially serve as pathways for contaminant migration are surface soil, subsurface soil, groundwater, Hudson River sediments, and storm water runoff. An exposure assessment to evaluate the need for remedial actions was completed based on available data.

The following is a summary of the exposure assessment:

- There are no complete exposure pathways at the 146 Maple Avenue Head Start parcel except for a potential fugitive dust pathway from surface soil from the Former MGP Site.
- There are complete exposure pathways posed to utility workers, construction workers, and, potentially, residents at the Apartment Complex and West Street Properties. Exposure is only a concern if subsurface soils are excavated and impacted soils and groundwater are encountered.
- There are complete exposure pathways posed to O&R maintenance workers, utility
 workers, trespassers, adjacent community members and possibly to future
 construction workers at the Former MGP Site. These exposures are generally
 mitigated because O&R controls access to and activities on the Former MGP Site.
- If the Former MGP Site were to be redeveloped for future unrestricted uses, complete exposure pathways would exist for potential recreational users or residents.
- The sediments of an embayment to the Hudson River are an exposure pathway because of the presence of PAHs. However, many sources for these constituents exist around the embayment, so detected concentrations cannot be solely attributed to the site. The distribution of constituents in the embayment suggests that other sources play a predominant role.

The RI activities determined that, in general, horizontal and vertical delineation of contamination in the Study Area has been achieved. During this RI, sufficient data were obtained to develop and select remedial alternatives for the Study Area. As noted in the RIR, several minor data gaps remain that can be addressed as part of the Feasibility Study to support the final remedy.

SECTION 1 INTRODUCTION

This Remedial Investigation Report (RIR) presents the results of remedial investigation (RI) activities performed at the Former Clove and Maple Manufactured Gas Plant (MGP) Study Area between April 2008 and June 2008.

The Clove and Maple Former MGP Site is identified by the New York State Department of Environmental Conservation (NYSDEC) as site number 3-44-049 and is located at 120 Maple Avenue, Haverstraw, Rockland County, New York. This RIR also includes a summary of the findings of previous remedial investigation (RI) activities for this site along with the conceptual model that has been developed based upon all available data.

The following designations are used in this report to identify the various properties within the Study Area investigated as part of this project.

- Former MGP Site: The Former MGP Site property is owned by Orange and Rockland Utilities (0&R) and was operated as a gas regulator station until 2007 when the regulator station was retired. The Former MGP Site is located on a 250' by 200' (approximately 1.15 acre) rectangular parcel referred to as Block 1, Lot 9 on the tax map (Plate 1). The site is bounded by Maple Avenue to the north, the Head Start Facility (146 Maple Avenue) to the east, Clove Avenue to the south, and a drainage swale to the west beyond which is the property known as 104 Maple Avenue.
- Apartment Complex: Parcels located north of Maple Avenue and including the structures identified as 111 through 143 Maple Avenue (with surrounding landscaped and paved parking lot areas), 130 West Street (Block 2, Lot 17.1) and the Village of Haverstraw Property identified as Block 2, Lot 16. These properties are bordered by the single family residential properties that front on 96 through 116 West Street to the north, West Street to the east, Maple Avenue to the south and the single family residential property at 103 Maple Avenue on the west. 111 117 Maple Avenue are individually owned properties. With the exception of the Village of Haverstraw property, the remainder of the apartment buildings property is owned by a single third party owner.

- West Street Properties: The 6 single family residential parcels located at 96 through 116 West Street, bordered to the north by West Street, to the east by West Street, to the south by the asphalt paved parking lot on the northern portion of the Apartment Complex and to the west by the single family residence located at 90 West Street.
- Head Start Property: This is the property owned by Head Start of Rockland (the site of the former Doig Nail Corporation) at 146 Maple Avenue (Block 1, Lot 10). This property is bordered to the north by Maple Avenue beyond which are the Apartment Complex, to the east by Block 1, Lot 11, to the south by Clove Avenue beyond which are single family residences and to the west by the Former MGP Site. The property is used as a pre-school education facility that began operation in September 2000.
- Alleyway: This is the area bordered by the rear of the properties at 86, 88 and 90 West Street to the north, Apartment Complex asphalt paved parking area to the east and the rear of the property at 103 Maple Avenue to the south. The Alleyway connects Tor Avenue to the parking area on the apartment buildings property. For several of the residential properties located on West Street, the alleyway provides access to the driveways in rear of their respective properties. The Alleyway is approximately 20' wide and the RI included the eastern-most (approximately 70') section located adjacent to the Apartment Complex parking area.

The Study Area location is shown on Plate 1.

Background

CMX, Inc. (CMX) has prepared this RIR on behalf of O&R. The RI was performed in accordance with the Administrative Order on Consent (AOC) dated September 1998, Index #D3-0001-98-03, between O&R and the NYSDEC; and the RI work plan dated February 2008, which was approved by NYSDEC on March 14, 2008.

The Study Area is zoned residential, residential townhouse, and planned industrial district. Single family residential, multifamily residential and light industrial land uses are found nearby.

The Clove and Maple Avenues site is distinguished from another Haverstraw MGP site (referred to as the 93B Maple Avenue MGP site), located northwest of the Clove and Maple Avenues site on the opposite side of Maple Avenue which was the subject of a previously

completed NYSDEC-approved remedial action. Plate 1 presents a detailed site location plan which distinguishes the 93B Maple Avenue MGP site and associated properties from the properties addressed by the RI described herein.

Remedial Investigation Objectives

The overall objectives of the RI were to:

- Determine the nature and extent of MGP residuals that may be present at the site;
- Delineate the horizontal and vertical extent of Former MGP Site related soil and groundwater impacts;
- Determine whether constituents identified by the RI constitute a threat to human health or the environment;
- Obtain data to provide the basis for a feasibility study of remedial actions for the Study Area;
- Evaluate potential migration pathways including vapor intrusion on properties not previously investigated;
- Characterize geologic and hydrogeologic conditions in the Study Area.

These objectives are consistent with those of the NYSDEC's comprehensive remedial investigation (RI) process and those included in the SRI Work Plan (SRIWP) approved by NYSDEC on March 14, 2008.

Report Organization

Executive Summary

- **Section 1** presents the introduction to this report.
- **Section 2** presents the background and history of the Former MGP Site and a description of land use in the Study Area.
- Section 3 presents the physical setting for the site.
- **Section 4** presents a summary of previous investigations performed at the site.
- **Section 5** presents the scope of the 2008 RI.
- Section 6 presents the results 2008 RI.
- **Section 7** presents a summary of the fate and transport evaluation.
- **Section 8** presents a conceptual site summary.
- **Section 9** presents the exposure assessment.
- **Section 10** presents summary and conclusions.
- **Section 11** presents recommendations.
- **Section 12** presents the references used for this RIR.
- **Section 13** presents the acronyms and abbreviations used in this RIR.

SECTION 2 BACKGROUND

Former MGP Site History

The Clove and Maple Former MGP Site operated from approximately 1887 until 1935, when natural gas was introduced into the area and the MGP was closed. The general configuration of the MGP did not change substantially during the operating period. Figure 2 is a site location map superimposed on an aerial photograph and Figure 3 depicts the gas works at its known greatest extent based on review of Sanborn Fire Insurance (Sanborn) maps and facility maps provided by 0&R.

The following is a chronological history of the Clove and Maple Avenues Former MGP Site based on review of the Sanborn maps for 1890 through 1946, a historical photograph, plant drawings and reported gas company operating statistics from Brown's Directory of American Gas Companies (Brown's Directory).

- The earliest listing for the Former MGP Site (identified as the Haverstraw Gas Works)
 is in the 1887 edition of Brown's Directory citing gas production utilizing an oil gas
 method.
- An 1890 Sanborn map shows a gas plant at the site with a 50,000 cubic foot (cf) gas holder, a 30,000 gallon oil tank, and a coke house.
- A historical photograph dated 1890, shows the MGP and the surrounding area. The gas holder and the oil tank are visible in this photograph.
- In 1893, Brown's Directory lists the gas manufacturing process as Hanlon, and then in 1899, the process is listed as Boecklin. The Boecklin process existed at the site for at least 35 years.
- The 1909 Brown's Directory identifies the gas holder capacity as 60,000 cubic feet, which does not change through the early 1930s.
- A 1921 plant utility drawing (Peck, 1921) shows a horizontal high pressure gas storage vessel located near Clove Avenue. Review also indicates that the coke

storage house was removed that year and that a tar well was located between the 60,000-cf gas holder and the oil tank.

- A 1931 Sanborn map shows that a coal shed was added to the northeast end of the plant building.
- According to Brown's Directory, natural gas was distributed as of July 1, 1935 in place of manufactured gas.
- According to O&R's records, the gas plant structures were demolished in the 1960s.
- The existing regulator station was decommissioned in 2007 (historical information reviewed was unclear as to an installation date).

The approximate locations of the former MGP structures are presented on Plate 2 and Figure 3. CMX adjusted the location of some of these features to reflect a reexamination of a 1921 plant utility drawing (Peck). The most significant change to the historical structure locations on Plate 2 and Figure 3 is the iron oil tank, whose location was adjusted closer to the northeast corner of the site based on the 1921 drawing.

Former Pond Area

Figure 4 is a recent aerial photograph of the Study Area and vicinity with the locations of historical streets, the former pond and waterways superimposed. The historical locations are based on:

- 1876 Combination Atlas Map of Rockland County, New York by F.A. Davis & Company
- 1887 Sanborn Fire Insurance Map
- 1891 Beers Atlas Map
- 1890 and 1903 Sanborn Fire Insurance Maps

The historical mapping indicates that a stream previously flowed roughly parallel to the north side of Maple Avenue. The stream flowed from the northwest to the southeast discharging to the Hudson River Embayment.

The stream appeared to have been dammed near the intersection of West Street and Maple Avenue forming a pond that covered a portion of the Study Area bounded to the north by the properties fronting on West Street, to the east by West Street, to the south by Maple Avenue and to the west by the 103 Maple Avenue property. The portion of the stream downstream of the dam appears to have been channelized between 1876 and 1891.

The stream and pond are no longer present, however a large storm sewer (pipe/culvert) currently runs beneath the alleyway and discharges to the Hudson River embayment. The stream was channeled by this storm sewer at some undetermined point in the past. The former stream channel from 93 B Maple Avenue to 103 Maple Avenue was remediated in conjunction with the 93B Maple Avenue remediation.

A photograph of the area taken circa 1890 (Figure 5) shows the pond and the surrounding properties. The photograph illustrates which properties or portions of properties were occupied by the pond.

Current Study Area Description and Land Use

2.1.1 Former MGP Site

The Former MGP Site is currently owned by O&R and a retired gas regulator station exists on the property. The site is currently unoccupied and consists mainly of grassed areas with a hedgerow of trees located along Maple Avenue. The regulator station piping remains on site in a small fenced enclosure. There are also several retired gas valve boxes and numerous abandoned gas pipelines located below grade on the site. Additionally, the concrete and brick pad for the former gas holder is present in the northwest corner of the site. The Former MGP Site is fenced with two locked gates located on the Clove Avenue side. A landscape contractor maintains the grassed areas.

2.1.2 Apartment Complex Properties

The Apartment Complex Properties are located on the north side of Maple Avenue across the street from the Former MGP site and include the four (4) two-story and three-story attached single family structures (identified as 111 through 117 Maple Avenue) and five (5) two-story apartment buildings (identified as 119 to 143 Maple Avenue; 130 West Street) with surrounding landscaped and paved parking lot areas and the Village of Haverstraw Property identified as Block 2, Lot 16.

2.1.3 West Street Properties

The West Street Properties are six single family residential parcels located at 96 through 116 West Street. Each of these homes appears to have been built using slab on grade construction and they include bi-level, raised-ranch and two-story style homes. None of

these homes have basements. Several of the properties access driveways in the rear of their property from the Apartment Complex parking lot.

Historically, houses at 100, 102, and 106 West Street were present in the aforementioned 1890 photograph. The area of 96 West Street was vacant, characterized by a steep slope that led to part of the pond.

2.1.4 Head Start Property

This property, 146 Maple Avenue (Block 1, Lot 10), contains a one story building owned by Head Start of Rockland and is the location of the former Doig Nail Corporation. The property is used as a pre-school education facility that began operation in September 2000.

2.1.5 Alleyway

This is an unpaved single lane that connects Tor Avenue with the parking area behind the Apartment Complex. As noted above, several of the West Street property owners access their driveways via the alleyway. In addition, the storm drain that runs from Tor Avenue to the Hudson River, runs beneath the alleyway.

2.1.6 Other Areas in Proximity to the Former MGP Site

Two residential properties (Block 1, Lots 8 and 44) are located to the west of the Former MGP Site on the west side of the drainage swale. One of these two properties, 104 Maple, was remediated during the implementation of the 93B Maple Avenue site IRM in 2005. MGP impacts on this property were attributed to the Clove & Maple Avenue Former MGP Site but remediation was conducted in conjunction with the 93B Maple Avenue remediation to address the possible sale of this property by the owner. A geotextile barrier was installed at the edge of the remediation area to prevent recontamination of this property.

Clove Avenue borders the Former MGP Site to the south beyond which are located residential properties (Block 1, Lots 27 to 32). These properties are topographically up gradient relative to the Former MGP Site.

SECTION 3 PHYSICAL SETTING

This Section discusses the physical characteristics of the Study Area and is based upon information presented in earlier reports prepared for O&R by GEI and Remediation Technologies, Inc. (RETEC).

Climate

Data on climate for the Study Area was obtained by Northern Ecological Associates, Inc. (NEA) from West Point, New York, the nearest weather station. The data were presented in the Fish and Wildlife Impact Assessment (NEA, 2000).

The Study Area is located in the Triassic Lowlands Ecozone. The climate is temperate, with January mean temperatures between 25 degrees Fahrenheit (°F) and 30°F and July mean temperatures between 70°F and 75°F. The growing season typically ranges from 180 to 200 days in the Triassic Lowlands. The average annual snowfall ranges from 40 to 60 inches.

Land Use in the Study Area Vicinity

The current land use in the vicinity of the Study Area and surrounding the Former MGP Site is generally commercial and residential. The eastern edge of the Study Area is approximately 600 feet from the Hudson River, which is a tidal estuary in this area. Undeveloped forest land is located to the south of the Study Area and includes portions of High Tor State Park, located approximately 1,800 feet southwest of the site.

Local Zoning

Zoning in the area of the site is residential, residential townhouse, and planned industrial district. Single family residential, multifamily residential and light industrial land uses are found nearby.

Local Groundwater Use

Public water in the area is supplied by United Water of New York of West Nyack, New York (UWNY). The Rockland County Department of Health (RCDOH), Spring Valley, New York and UWNY were contacted to investigate the potential presence of private water supply wells in the vicinity.

RCDOH reported the approximate locations of seven potential wells, all either cross gradient or up gradient of the Study Area, within 1 mile. One of these wells belongs to UWNY. RCDOH was not confident about the actual presence or locations of the other wells. According to current

information on the UWNY website, UWNY does not use any water from wells in Haverstraw or the surrounding towns.

Surface Water Hydrology

Based upon topography, overland flow is from the south (highest elevation in the Study Area) to the north, flowing from southern portions of the Former MGP Site to a level area at the central portion of the Former MGP Site, near monitoring wells MW-02 and MW-03. There is some runoff from the slope of the northern portion of the Former MGP Site towards Maple Avenue. Generally, overland surface water flows toward Maple Avenue and/or the drainage swale located along the western property line of the Former MGP Site. Runoff ultimately is discharged via the storm drain system to the Hudson River.

At the Apartment Complex, surface water generally flows from west to east, following the topography towards the parking lot behind these buildings. There are series of storm drains located in the parking lot. Runoff to these storm drains flows east towards the embayment of the Hudson River.

At the West Street Properties, surface water generally flows north to south, following the topography towards the parking lot at the rear (northern portion) of the Apartment Complex, to the aforementioned storm drains.

Local Surface Water

There are no surface water bodies located on the Former MGP Site. A detailed discussion of the area surface water bodies, their intended uses, and their water quality designations is found in *Fish and Wildlife Impact Assessment – Former Manufactured Gas Plants Haverstraw, New York*, prepared by NEA and submitted to NYSDEC in February 2000 (NEA, 2000).

According to NEA, 2000, three water bodies are located within 0.5 mile of the site: the Hudson River (Class SB), which is 600 feet to the east; an unnamed tidal creek (not classified), which lies 2,300 feet to the southeast; and an unnamed settling pond (not classified), which lies 2,700 feet to the southeast.

Regional Geology and Site Stratigraphy

The Clove and Maple site is located at the base of South Mountain, a steep northeast facing ridge. Maple Avenue, located adjacent to the southern portion of the site, runs along the base of this ridge. The site is characterized by moderate relief (approximately 20 feet) with the ground surface sloping to the east/northeast.

Site Specific Geology

Site geology, as determined through direct logging of soil borings, is discussed in this subsection. Data collected during subsurface sampling were used to generate twelve geologic cross sections. The locations of the cross section lines are presented on Plate 3. The cross-sections are presented on Plate 4A, 4B, and 4C. Complete details are presented in the boring logs in Appendix A.

3.1.1 Fill

A layer of fill (Unit 1) material consisting of miscellaneous soil and demolition debris forms the uppermost stratigraphic unit at the Study Area. The fill at the Study Area is primarily made up of loamy soil with some cobbles, gravel, brick fragments, cinders, coal, and glass shards. Thickness of the fill unit ranges from approximately 15 feet near Clove Avenue (at SB/MW 10) to a range of 1 to 5 feet depending on the location along Maple Avenue (at SG-9 through SG 14 and SB/MW 04 through SB/MW 07) and along the north side of the Apartment Complex where thicknesses vary from 3 feet at SB-134 to 13 feet at SB-131.

3.1.2 Alluvium

Alluvium (Unit 2) underlies the fill at most boring locations across the Study Area. The alluvium is a heterogeneous mixture of unconsolidated sediments characterized by discontinuous layers of coarse-grained sands, gravel, fine-grained sands, silts, and clays. As previously described by GEI and confirmed by CMX, thickness and composition of the alluvial deposits vary widely throughout the Former MGP Site, but can be generalized into four subunits:

- The first subunit is a coarse grained sand and gravel with some fine grained material and cobbles. In general, it is poorly sorted, although coarser sediments predominate. At SB/MW-10 (located in the southeast portion of the Former MGP Site near the former meter room), this subunit is approximately 20 feet thick and is overlain by fill and underlain by till. At SB-16 (located in the center portion of the Former MGP Site), the subunit is approximately 7.5 feet thick and is overlain and underlain by fine sands and silts. This subunit either thins to the east or grades into fine grained sand, silt, and clay. The sand and gravel unit was also found in SB/MW-04 and SB/MW-05 (located in the northern portion of the Former MGP Site along Maple Avenue), where it is approximately 7 feet thick and underlain by till.
- The second subunit is composed of fine sand, found primarily at the former MGP property, at soil boring locations SB-16, SB-17 and SB-17A. The thickness of this unit

ranges from less than one foot to approximately 25 feet. A small pocket of fine sand is also present at the northeast end of cross-section B – B'.

- The third subunit is silt and fine to coarse-grained sand. This subunit is found primarily
 on the north side of the Apartment Complex. As such, based on its location and limits,
 its presence may be due to relatively ancient depositional processes in the Hudson
 River. The thickness of this unit does not exceed about 4 feet.
- The fourth subunit is a clay and fine sand/silt mixture. It is the only soil unit that is
 present throughout the Study Area, appearing on both sides of Maple Avenue. Its
 thickness ranges from less than 0.5 feet (at MW-28S) to approximately 15 feet (at MW11).

Another subunit which was found at most locations between the first and second units, at the Apartment Complex and the West Street Properties was a layer of organic clay/silt and peat. The material appeared to be friable to slightly cohesive, and appeared to be deposited at the former pond bottom.

3.1.3 Glacial Lacustrine Clay

The third unit (Unit 3) is comprised of gray and brown clay. The clay can be massive or can contain thin lenses of fine grained sand. The clay is thickest near Maple Avenue and thins to the southwest and west. The thickness varies from 2 feet at SB-16 (located in the center portion of the Former MGP Site) to approximately 18 feet in the vicinity of SB/MW-18 (located to the north of the former holder pad on the Former MGP Site). The clay is observed at the Apartment Complex at MW-21 (located in front of 127 Maple Avenue) and MW-28D (located in the parking lot behind 117 Maple Avenue) at thicknesses ranging from 16 to 12 feet respectively and at thickness of 6 to 2 feet at wells MW-20D (located in front of 119 Maple Avenue) and MW-29D (located in the parking lot behind 131 Maple Avenue) respectively. Clay is not present at any observed depth in the southern part of the Former MGP Site along Clove Avenue. Where present, the clay is typically underlain by coarse grained sand and gravel or interbedded with fine sand/silt and clay

Clay was encountered at a depth of 4 feet below ground surface at SB-134, located in the alleyway.

3.1.4 Till

Till (consisting of dense silty clay to dense sandy clay) is the fourth unit. The till behaves as a confining unit for dense non aqueous phase liquid (DNAPL). Refusal depths during advancement of the TarGOST® borings were used to establish the till depth at the Apartment Complex and the West Street Properties. The depth to the till below the ground surface (bgs) varies throughout the Study Area. Table 3-1 lists the depths to till and elevation of the till above mean sea level (msl) for each location measured during this RI.

Plate 10 presents a contour map of the till surface elevation.

Regional Hydrogeology

Groundwater flow in shallow unconfined/semiconfined aquifer flow systems in the region is largely controlled by the Hudson River. Groundwater is expected to discharge to surface water bodies such as ponds, streams, and rivers in the Hudson River watershed. All these regional watershed features eventually discharge to the Hudson River.

Site Specific Hydrogeology

The depth to groundwater varies throughout the Study Area. The first water-bearing zone in the study area is a shallow, semi-confined aquifer system, present within the alluvium. The shallow aquifer at the northern portion of the Study Area is effectively confined by clay resulting in artesian conditions being observed at several locations. The aquifer in the southern portion of the Former MGP Site, where clay was not identified, is unconfined. Groundwater elevation data are presented on Table 5-4. A shallow ground water potentiometric surface map is presented as Plate 8.

Ground water flow in the shallow aquifer in the Study Area appears to be controlled by topography and following the former pond. At the Former MGP Site, it appears that flow direction is in agreement with the topography, flowing from southwest to northeast.

At the Apartment Complex, CMX observed a "mounded" groundwater elevation at MW-21S which yielded an anomaly in the groundwater flow pattern with respect to the measured elevations at the other monitoring wells. However, the groundwater flow direction appears to follow the topography (since the Apartment Complex is at a higher elevation than the center of the former pond), and along the former pond from west to east towards the Hudson River embayment.

At the West Street Properties, groundwater appears to follow the topography, since the West Street Properties are at a higher elevation than the center of the former pond. Available data imply that the West Street Properties are side gradient to, and possibly upgradient of contaminants within the center of the former pond area.

Two rounds of low- and high-tide water level measurements were collected on March 26, 1999 and December 17-18, 2001 to determine if groundwater is influenced by tidal fluctuations that are apparent in the Hudson River. No significant changes in water levels were observed between the low tide and high tide measurement rounds.

In-situ hydraulic conductivity tests (slug tests) were performed in MW 01 and MW 03 during RETEC's 1997 Preliminary Site Assessment (PSA). The hydraulic conductivity (k) values were 1.2×10^{-2} centimeters per second (cm/sec) [34 feet/day (ft/d)] at MW 01 and 1.5×10^{-4} cm/sec (0.43 ft/d) at MW 03. Estimates of the average horizontal linear flow velocity of groundwater were calculated using the PSA slug test data and the newly derived gradient information from the RI. The equation V = ki/n was used, where k is the hydraulic conductivity of the formation, i is the hydraulic gradient, and n is the effective porosity of the deposits. Using an average gradient of 0.02 (northeastern flow direction), assuming a value of 0.25 for effective porosity, and the range of measured conductivities, the average horizontal groundwater flow velocity ranges from 12.6 feet/year (ft/yr) to 993 ft/yr in the northeastern direction.

SECTION 4 SUMMARY OF PREVIOUS INVESTIGATIONS

O&R has conducted extensive investigations within the Study Area since 1996 including the following:

- Initial Hazard Assessment (RETEC, 1996),
- Preliminary Site Assessment (RETEC, 1997),
- Surface Soil Investigation and Risk Assessment (RETEC, 1998), and
- Remedial Investigation (RI) activities performed by GEI Consultants, Inc. (GEI) from 1998 to 2006.

The following sections summarize these previously completed investigations. The analytical results from these investigations are presented in the various tables that are included in Attachment 1 of this RIR.

Initial Hazard Assessment – RETEC 1996

At the request of O&R, RETEC performed an assessment of the Clove and Maple Former MGP Site to determine whether existing conditions could be considered an immediate threat to human health, using the ASTM Risk Based Corrective Action (RBCA) classification scheme. RETEC performed the assessment and concluded the following.

- Explosive vapors are not an issue on the Former MGP Site because there are no buildings present; they are unlikely to travel to off site buildings due to the distance of those buildings from the Former MGP Site.
- Explosive vapors in subsurface utilities are unlikely because no odors were noted in adjacent sewers.
- Minor amounts of tar were noted at the ground surface, but no impact was observed in the storm sewer or drainage swale. Contact with surface contamination is possible.
 Because exposed tar is weathered, acute risks due to exposure are minimal. However, health risks posed by this tar would occur from chronic, long term direct contact.
- No water supply wells are within 1 mile of the Former MGP Site, so impacts to drinking water are not an issue. As indicated in Section 3.0 above, RCDOH reported the approximate locations of seven potential wells, all either cross gradient or up gradient of the Study Area and within 1 mile. One of these wells belongs to UWNY. According to

current information on the UWNY website, UWNY does not use any water from wells in Haverstraw or the surrounding towns.

Preliminary Site Assessment – RETEC 1997

The objectives of the PSA were to identify the nature and extent of constituents of interest, to determine if the constituents pose a significant threat to human health or the environment, and to determine whether IRMs were appropriate at the Former MGP Site. The PSA included:

- surface soil (nine samples) sampling and analysis (Attachment 1, Table 3),
- soil gas field screening,
- laboratory analysis of eight soil gas samples,
- eight direct push soil borings in and around historic MGP structures,
- field and laboratory testing of subsurface soil samples (Attachment 1, Table 5),
- monitoring well installation (three total),
- groundwater sampling (Attachment 1, Table 6),
- hydraulic conductivity testing (two wells), and
- a survey of the Former MGP Site.

4.1.1 Surface Soils

Surface soil samples were analyzed for benzene, toluene, ethylbenzene, and xylene (BTEX), polycyclic aromatic hydrocarbon (PAH) compounds, Target Analyte List (TAL) metals and total cyanide (Attachment 1, Table 3). The analytical results indicated that no BTEX compounds were detected in any surface soil samples. Concentrations of individual PAH compounds exceeding the NYSDEC Recommended Soil Cleanup Objectives (RSCOs) from the *Technical and Administrative Guidance Memorandum: Determination of Soil Cleanup Objectives and Cleanup Levels (TAGM 4046), January 4, 1994*, were identified at each of the nine PSA surface soil locations. Metals were detected at concentrations greater than the NYSDEC RSCOs in all but two samples. Total cyanide was detected in seven of nine surface soil samples with no concentrations exceeding NYSDEC RSCOs.

4.1.2 Soil Gas

A soil gas sample was obtained from each of nine soil boring locations (samples SG-1 through SG-9). The results of the field screening indicated that the greatest concentrations of soil gas were detected within the footprint of the former gas holder.

4.1.3 Former MGP Site Structures

Four (4) areas of the Former MGP Site were identified as containing buildings or subsurface structures associated with the former MGP.

- Remnants of the gas holder foundation are still present at the Former MGP Site (Plate 2). The holder foundation is a 60-foot diameter concrete slab on grade, with a brick perimeter that exists in the northern portion of the Former MGP Site. One boring (SG-2) advanced through the slab indicated the absence of a subsurface tank. Tar contamination was reported by RETEC to be present beneath the slab in thin sand lenses extending from 6' to 13' bgs. Water table elevations within the footprint of the holder were reported to be consistent with areas outside the holder, indicating continuity that the holder foundation was not affecting groundwater recharge.
- Three direct push soil borings (SG-3, SG-7 and SG-8) were advanced near the footprint
 of the former tar well. No below-grade structures were encountered and the area was
 reported to be underlain by 7 feet of fill. Some hydrocarbon staining was observed and
 tar-like nodules were detected, however, no significant source material was
 encountered.
- One soil boring (SG-4) was installed in the area of what was previously believed to be the location of the former 30,000-gallon oil tank. Please note that upon review of additional facility drawings made available to CMX, the location of this structure was revised during the 2008 RI. During the installation of monitoring well (MW-02) just south of this former tank location, strong hydrocarbon odors and visible hydrocarbon product were reported to have been identified in soil samples. No subsurface structures were found at either SG-4 or MW-02. According to boring logs, the field geologist characterized these two locations as having strong hydrocarbon odors, hydrocarbon product in sand lenses and sand "saturated" with hydrocarbon product. A 2-foot thick layer of dense nonaqueous phase liquid (DNAPL) was detected in MW-02 during initial sampling.
- During the installation of two direct push soil borings (SG-5 and SG-6) in the vicinity of the former generator and purifier buildings, RETEC reported accumulations of a tar-like material on the ground surface in a small area adjacent to the existing regulator station.
 The material was described as being black, highly viscous, and exhibited a strong hydrocarbon odor.

4.1.4 Subsurface Soil Samples

Three subsurface-soil samples were collected and analyzed from the monitoring well borings SB1/MW-01, SB2/MW-02 and SB3/MW-03 (Attachment 1, Table 5). BTEX compounds were detected at concentrations greater than the NYSDEC RSCOs (TAGM 4046) in samples collected at SB2 and SB3. PAH compounds were detected at all three sample locations. In samples collected from borings SB2 (12'-14') and SB3 (10'-12'), 14 of the 16 PAH compounds were detected in concentrations greater than the NYSDEC RSCOs (TAGM 4046). Only benzo(a)anthracene and benzo(a)pyrene were found to be above cleanup standards at up gradient sample location SB1 (20'-22'). Cyanide was not detected in any of the three subsurface soil samples.

4.1.5 Initial Groundwater Investigation

Three monitoring wells (MW-01, MW-02 and MW-03) were installed by RETEC. The south area of the site along Clove Avenue was characterized by SB/MW-01. Only one individual PAH compound exceeded the NYSDEC RSCO (TAGM 4046) at a depth of 21.0' bgs in SB/MW 01. No BTEX was detected in SB/MW-01. The soil boring log prepared by the RETEC field geologist for SB/MW-02, south of what was believed to be the location of the former iron oil tank, identified a "0.3 foot lens of sand, fine, brown saturated with hydrocarbon product" at 13.1' bgs and that the sample was collected from the 12' to 14' bgs depth interval. Field screening of the sample reported a PID reading of 487 ppm. The highest total PAH concentration (1,499.0 mg/kg) on the Former MGP Site was found in this soil sample. This sample also contained total BTEX at a concentration of 94.0 mg/kg.

Groundwater samples collected at MW-01 reported non detectable concentrations of volatile organic compounds (VOCs) and PAHs (Attachment 1, Table 6). Levels of aluminum, iron, mercury and sodium were detected in concentrations exceeding the NYSDEC Ambient Groundwater Limits (GA). Groundwater samples collected from monitoring wells MW-02 and MW-03 contained VOCs and PAHs at concentrations greater than the NYSDEC Ambient Groundwater Limits (GA). Levels of iron, magnesium, manganese, mercury and sodium were detected at concentrations exceeding the NYSDEC Ambient Groundwater Limits (GA). Total cyanide was detected in one down gradient well (MW-02) at a concentration above its NYSDEC Ambient Groundwater Limit (GA).

A non aqueous phase liquid (NAPL) collected near the location of the former oil tank (MW-02) was analyzed for physical properties and finger print to obtain information regarding its

potential mobility. The results confirmed field observations that the sample was a carbureted water gas tar.

Surface Soil Investigation and Risk Assessment

The PSA recommended the completion of supplemental surface soil sampling. In July 1997 sixty-two surface samples were collected and analyzed for PAHs and target analyte list (TAL) metals (Attachment 1, Table 3). In an attempt to characterize the site the supplemental surface soil sample locations were selected using a grid pattern covering the Former MGP Site. In response to the results of the sampling done during the PSA, BTEX compounds and cyanide were not included as analytical parameters for the supplemental sampling program.

In addition to the sixty-two on site sample locations, six surface-soil samples were collected from background locations and analyzed for TAL metals (Attachment 1, Table 3). Metals were detected at concentrations that exceed the NYSDEC RSCOs (TAGM 4046) for beryllium, chromium, copper, iron, mercury, nickel, and zinc in the background samples.

A risk assessment (RETEC, 1997) was performed using the surface soil results from the PSA and the results of the July 1997 supplemental sampling program. This risk assessment concluded that cancer risks for utility workers, groundskeepers, and local residents were at levels generally considered acceptable by the United States Environmental Protection Agency (EPA) (below 10-6). For recreational users, the cancer risks were within a range (10-6 to 10-4) that is often considered acceptable by the EPA.

4.1.6 Interim Remedial Measures

In response to the identification of tar-impacted surface soil near the former gas generator building and elevated lead concentrations at several areas, O&R implemented interim remedial measures (IRMs) at the Former MGP Site. These IRMs included placement of gravel over the tar-impacted areas and soil pathways on the Former MGP Site. Additionally, a fence was installed around the property to restrict access. No other IRMs were recommended.

Remedial Investigation Activities - GEI 1998 through 2006

RI activities were performed by GEI to determine the extent of impacts from the former MGP operations. The RI included surface soil, subsurface soil, sediment, groundwater, storm water and storm sewer sediment sampling and analysis (Attachment 1, Tables 3, 4, 5, 6, 7, 8). The RI activities targeted the potential source areas on the Former MGP Site (i.e., the tar well, the previously believed location of the iron oil tank, and the gas holder foundation) since visibly

impacted soil, groundwater, and/or DNAPL were observed in these areas during the PSA. Other locations on the Former MGP Site were also investigated (i.e., former garage, high pressure holder, the down gradient property line, and the southern property line). RI activities also included sample collection points on the Apartment Complex property, the Head Start property, in the storm sewer system beneath Maple Avenue and the parking lot at the Apartment Complex, and in sediments in the Hudson River Embayment (Attachment 1, Tables, 3, 4, 5, 6, 7, 8, 9). The RI field work of the Former MGP Site included background surface soil sampling (Attachment 1, Table 3). The RI field activities were conducted according to NYSDEC-approved work plans including:

- Remedial Investigation Work Plan, Clove and Maple Avenues Former MGP Site, Haverstraw, New York (1998).
- Addendum to Remedial Investigation Work Plan (1998).
- Supplemental Remedial Investigation Work Plan, 93B Maple Avenue Former MGP Site and Clove and Maple Avenues Former MGP Site, Haverstraw, New York (2001).

4.1.7 Air, Soil Vapor, Indoor Air Sampling

GEI collected soil vapor samples from the Head Start Property in 2001. Samples were collected at representative locations around the perimeter of the building footprint. The results of this investigation indicated that VOCs were not present at concentrations that could adversely affect indoor air quality and that migration of soil vapor toward the Head Start building from the Former MGP Site was not a concern (Attachment 2). GEI submitted a report of their results to NYSDEC and copied the New York State Department of Health (NYSDOH) on March 19, 2001. NYSDOH and NYSDEC concurred with GEI's conclusions that soil vapor migration toward the Head Start Building was not a concern in correspondence dated April 16, 2001 and May 1, 2001, respectively.

RETEC conducted two rounds (summer 2004 and February/March 2005) of outdoor (ambient) air, soil gas, and indoor air sampling at and within the apartment buildings on the Apartment Complex Properties. The samples were analyzed for VOCs by EPA Method TO-15, with additional compounds to aid in identifying potential MGP-related impacts. RETEC concluded that there was no evidence indicating intrusion of MGP-related vapors into the interiors of the apartment complex residences.

4.1.8 Background Surface Soil Samples

Six background surface-soil samples (HA BSS01-1 through HA-BSS01-6) were collected in December 2001 as part of the 2001 GEI Supplemental Remedial Investigation Work Plan (GEI

SRIWP). The samples were collected from locations within the Village of Haverstraw as far away as Bowline Point Park, 4,000 feet north of the Former MGP Site, and analyzed for BTEX, PAHs, and total cyanide (Attachment 1, Table 3).

No BTEX compounds were detected in the background samples. Several PAHs were detected in the background samples with concentrations ranging from 31.6 parts per million (ppm) total PAHs (HA-BSS01-5, 70 Hudson Avenue) to 10.9 ppm total PAHs (HA-BSS01-6, Bowline Point Park). Concentrations of benzo[a]anthracene, benzo[a]pyrene, benzo[b]fluoranthene, benzo[k]fluoranthene, chrysene, and dibenzo[a,h]anthracene were detected in all samples and exceeded the NYSDEC RSCOs at four sample locations. Total cyanide was not detected in any of the background samples.

4.1.9 Former MGP Site – Supplemental Groundwater Investigation

In response to the results of the initial groundwater investigation GEI coordinated the installation of a series of monitoring wells at locations along the north and east property boundaries to evaluate the potential for offsite migration of MGP related contaminants from the Former MGP Site (Plate 2). MW-04, MW-05, MW-06 and MW-07 were installed along the northern property boundary of the Former MGP Site adjacent to Maple Avenue. MW-08, MW-09 and MW-10 were installed adjacent to the eastern property boundary near the Former MGP Site/Head Start common property line. Intervals of impact were noted at all well locations with the exception of MW-08 and MW-10. Soil sampling conducted in conjunction with the well installations targeted depth intervals where indications of impact were noted (Attachment 1, Table 5). Limited PAH impact at concentrations above the NYSDEC RSCO's (TAGM 4046) was identified in shallow samples collected at MW-08 and MW-09. Benzene was identified at a concentration in excess of its NYSDEC RSCO's (TAGM 4046) in a shallow (5.25' bgs) sample collected at MW-06. Vertical delineation samples did not identify any parameters at concentrations in excess of their respective NYSDEC RSCO's (TAGM 4046). MW-08 and MW-09 were completed as water table monitoring wells. Review of the boring log for MW-08 indicated no NAPL, tar, visual impacts or odor in the 0' bgs to 22.0' bgs soil column above the till at MW-08 with the exception of moderate petroleum-like odor and a PID reading of 16.0 ppm in the 10.0' bgs to 12.0' bgs depth interval. No NAPL, tar, visual impacts or odor were detected at the till interface of 22.0' bgs or into the till layer to a completion depth of 28.5' bgs. MW-10 was screened below the water table to monitor water quality in the overburden above the till confining layer and was competed to a depth of 36.5' bgs. No NAPL, tar, visual impacts or odor were detected in the 0' bgs to 36.2' bgs soil column above the till or at the till interface of 36.2' bgs or into the till layer to a boring completion depth of 38.0' bgs in MW-10. BTEX and PAH concentrations were not detected in soil samples collected at SB/MW-10.

4.1.10 Former Tar Well

The area of the former tar well was found to be impacted with MGP residuals during the PSA. The following RI activities were conducted to further define the extent of the impacts:

- Test Pits: One test pit (TP-01) was excavated within the footprint of the former tar well to a depth of 8.0' bgs to further investigate the presence of subsurface structures and determine the extent of hydrocarbon product identified in subsurface soil. TP-01 was described as having naphthalene-like odors between the 6.5' bgs to 8.0' bgs depth interval and photo ionization detector (PID) readings of 137.0 ppm but no subsurface structures were identified.
- <u>Soil Borings</u>: Two direct push soil borings (SG-09 and SG-10) were advanced adjacent to Maple Avenue to determine the extent of MGP residuals, associated with the tar well, at the site property line. A light sheen and MGP-like odors were identified in the SG-09 boring log. A slight to moderate MGP-like odor and PID readings up to 115.0 ppm were reported in the SG-10 boring log.
- Deep Soil Boring: One deep soil boring (SB-16) was completed between the former tar well and the former gas holder foundation to determine the extent of MGP residuals at the till surface. Field observations ranged from slight/light tar-like odors to moderate tar-like odors with heavy sheens, tar streaks, blebs and globules present primarily in the 18.0' bgs to 24.0' bgs depth interval. PID readings of up to 842 ppm were reported in the impacted interval of this boring. No NAPL, tar, visual impacts or odor were detected and PID readings were 0.0 ppm at the till interface of 31.0' bgs.
- Monitoring Well Installation: One shallow (water table) monitoring well (MW-05) was installed to determine if impacted groundwater was present at the Maple Avenue property line downgradient of the former tar well location. A slight to moderate MGP-like odor, spots of sheen, trace to little coal tar product along with PID readings up to 17.2 ppm were reported in the MW-05 boring log. No NAPL, tar, visual impacts or odor were detected and PID readings were 0.0 ppm at the till interface of 21.0' bgs.

4.1.11 Iron Oil Tank

GEI conducted supplemental sampling in the area of what was believed to be the location of the former iron oil tank. During the 1997 PSA, this area was found to be impacted with DNAPL tar. Investigation activities included the following:

- Test Pits: Test pit TP-02 was excavated to a depth of 8.0' bgs near what was formerly believed to be the location of the former iron oil tank to further investigate the presence of subsurface structures and to determine the extent of DNAPL that was previously identified at this location. Test pit TP-03 was excavated to a depth of 5.0' bgs to further delineate DNAPL found at SB-2/MW-02 during the PSA. Clay pipes containing tar, water and silt were found in both TP-02 and TP-03 at depths ranging from 4.0' bgs to 6.0' bgs. The area where TP-02 was located was described as having strong naphthalene-like odors with PID readings of over 700 ppm. Black ash and coal materials were noted at TP-03 along with PID readings of 247 ppm.
- Soil Borings: Two direct push soil borings (SG-11 and SG-12) were completed down gradient of the former tank to determine if DNAPL was present at the Former MGP Site property boundary along Maple Avenue. No NAPL, tar, visual impacts or odor were detected and PID readings were not detected throughout the soil column (0' to 16.0' bgs) in the SG-11 boring log. Faint MGP- and naphthalene-like odors and a light sheen were noted from 4.5' bgs to 16.0' bgs at SG-12. PID readings as high as 120.0 ppm were also identified at this location.
- Deep Soil Borings: One deep soil boring (SB-02D) was completed adjacent to well MW-02 to determine if the DNAPL observed in MW-02 extended into the underlying till. The boring log for SB-02D indicated no NAPL, tar, visual impacts or odor were detected at the till interface of 22.5' bgs or into the till to a final boring depth of 28.0' bgs. Slight naphthalene-like odors and residual tar lenses were noted in SB-02D between 10' bgs and 20.0' bgs. One deep soil boring (SB-07/MW-07) was completed down gradient of the iron oil tank to assess whether downward migration of DNAPL occurred near the down gradient property line. No NAPL, tar, visual impacts or odor were detected and PID readings were 0.0 ppm at the till interface of 20.0' bgs and into the till to a depth of 45.5' bgs at SB-07/MW-07. Two deep soil borings (SB-17 and SB-17A) were completed up gradient of the test pits to assess the extent of MGP residuals at the till surface. The boring log for SB-17 indicated no NAPL, tar, visual impacts or odor were detected at the till interface of 29.5' bgs or into the till to a final boring depth of 30.0' bgs. MGP-like odors were noted in the 4.0' bgs to 8.0' bgs depth interval and again in the 10.0' bgs to 14.0' bgs depth interval. A slight sheen was noted in the 4.0' bgs to 6.0' bgs depth interval. Elevated PID readings were also obtained in these intervals. The boring log for SB-17A indicated no NAPL, tar, visual impacts or odor were detected at the till interface of 30.0' bgs or into the till to a final boring depth of 32.0' bgs. No NAPL, tar, visual

impacts or odor were identified in the 0' bgs to 30.0' bgs soil column above the till in the boring log for SB-17A. BTEX and PAH concentrations exceeded the NYSDEC RSCOs (TAGM 4046) in the soil samples collected at the northern corner of the gas regulator station at depths ranging from 4.0' to 12.0' bgs (SB-17). The samples were collected at depths where odors, sheen or elevated PID readings were noted. The highest BTEX concentration was detected at 204 mg/kg at a depth of 12.0' bgs. The highest PAH concentration was detected at 636.5 mg/kg at a depth of 4.0' bgs. BTEX and PAH concentrations were above the NYSDEC RSCOs (TAGM 4046) in the sample SB-17 at depths of 4.0' to 12.0' bgs. BTEX did not exceed the SCOs and only a few individual PAH compounds exceeded the NYSDEC RSCOs (TAGM 4046) at a depth of 14.0' bgs. BTEX and PAH concentrations were not detected in SB-17A, located northwest of the gas regulator station at a depth of 28.0' bgs.

• Monitoring Well Installations: One shallow (water table) monitoring well (MW-06) and a deep monitoring well (MW-07) within till are located topographically down gradient of well MW-02 along Maple Avenue. No NAPL, tar, visual impacts or odors were detected at the till interface of 20.0' bgs and no NAPL, tar, visual impacts or odor were identified in the 0' bgs to 20.0' bgs soil column above the till. As described above in the boring log for SB-07/MW-07, no NAPL, tar, visual impacts or odor were detected at the till interface of 20.0' bgs and into the till to a depth of 45.5' bgs and PID readings were 0.0 ppm.

4.1.12 Gas Holder Foundation

Additional sampling was performed beneath and down gradient of the gas holder foundation to further define the extent of impacts identified at this location. The testing included the following:

Soil Borings: Two direct push soil borings, SG-13 and SG-14 (Plate 5B) were completed topographically down gradient of the gas holder foundation to determine the condition of soil and groundwater at the northwestern property line. Observations noted in the SG-13 boring log indicated faint to moderate MGP-like odors were present from 5.6' bgs to the bottom of the boring at 10' bgs and PID readings of up to 278.0 ppm. The boring log for SG-14 identified strong MGP-like odors and trace coal tar product in the 6.0' bgs to 8.0' bgs depth interval with PID readings of up to 95.0 ppm. No NAPL, tar, visual impacts or odor were detected in the 8.0' bgs to 12.0' bgs depth interval which was the end of the boring.

- Deep Soil Borings: Two deep soil borings (SB-14 and SB-18) were completed through and adjacent to the gas holder foundation to evaluate a potential release from the holder on the northern side of the pad. SB-14 boring log observations (through the holder foundation) ranged from slight to strong tar-like odors with moderate sheens, tar streaks, trace blebs and tar coated sand lenses in the 4.0' bgs to 20.0' bgs depth interval. PID readings ranged up to 3,814 ppm. No NAPL, tar, visual impacts or odor were detected from 20.0' bgs to the till interface of 23.5' bgs. Boring log observations for SB-18 (at the northwest property line) ranged from slight MGP-like and tar-like odors to moderate tar-like odors with a tar stained sand seam and trace tar blebs present primarily in the 8.0' bgs to 14.0' bgs depth interval. PID readings of up to 1,223 ppm were reported in the impacted interval. No NAPL, tar, visual impacts or odor were detected and PID readings were 0.0 ppm from 14.0' bgs to the till interface of 30' bgs and into the till to a boring completion depth of 32.0' bgs.
- Monitoring Well Installation: The results of the soil borings were used to locate two shallow groundwater monitoring wells, MW-04 and MW-18, to determine if impacted groundwater is present at the Former MGP Site northern property line (MW-04) and at the northwest side of the gas holder foundation (MW-18). The boring log for MW-04 reported a light MGP-like odor, light sheen and trace coal tar product in the 5.0' bgs to 22.0' bgs depth interval with PID readings ranging to 15.9 ppm. No NAPL, tar, visual impacts, odor or elevated PID readings were detected at the till interface of 22.0' bgs or into the till to the MW-04 completion depth of 24.0' bgs. MW-18 was installed adjacent to SB-18 and the boring log observations for MW-18 ranged from slight MGP-like and tar-like odors to moderate tar-like odors with a tar stained sand seam and trace tar blebs present primarily in the 8.0' bgs to 14.0' bgs depth interval. MW-18 was completed to a depth of 16.0' bgs with no odors or visual impacts detected in the 14.0' bgs to 16.0' bgs depth interval.

4.1.13 Former Garage

One test pit, TP-04, was excavated to a depth of 7.0' bgs in the footprint of the former garage on the Former MGP Site to determine if any impacts to soil and groundwater were present. No physical evidence of MGP-related impacts and no elevated PID readings were identified in TP-04.

4.1.14 Former High Pressure Holder

One test pit, TP-05, was excavated to a depth of 6.0' bgs within the footprint of the high pressure holder (based on a concrete slab encountered during the excavation activity). Historical facility drawings indicate it was an aboveground holder. The test pit was excavated

to determine if releases from the holder have impacted soil or groundwater beneath the structure. No physical evidence of MGP-related impacts and no elevated PID readings were identified in TP-05.

4.1.15 Former MGP Site Groundwater

The highest concentration of total PAHs [15,996 micrograms per liter (µg/l)] detected was in the sample collected from MW-02 in 1999. This location is adjacent to what was previously believed to be the former iron oil tank. However, based on the high concentrations of heavier PAHs, it is likely that DNAPL was entrained in this sample and the concentrations are not truly reflective of dissolved-phase groundwater conditions. High concentrations of total PAHs were also detected in the samples from MW-03 and MW-04 adjacent to and down gradient of the holder pad. Naphthalene (generally more soluble and mobile than the other PAHs) was detected at concentrations in excess of the New York State Water Quality Standards (NYSWQS) in groundwater samples from seven wells, MW-02, MW-03, MW-04, MW-08, MW-09, MW-11 and MW-18. Other PAHs were also detected in excess of the NYSWQS in monitoring wells MW-02, MW-03, MW-04, MW-09 and MW-18 (Attachment 1, Table 6).

The highest concentration of total BTEX compounds ($20,720~\mu g/I$) detected was in the sample from MW-18 collected in 2001. This location is adjacent to the former holder pad. High concentrations of total BTEX compounds were also detected in the samples from MW-03 adjacent to the holder pad ($8,500~\mu g/I$ in a sample collected in 1997) and MW-04 near Maple Avenue down gradient of the holder pad ($1,005~\mu g/I$ in a sample collected in 1999). BTEX compound concentrations in monitoring wells MW-01 and MW-10, both of which are located in the southern portion of the Former MGP Site, have been non detect in all sampling events with the exception of MW-10 in 2001 which identified total BTEX compounds at $2.2~\mu g/I$ (Attachment 1, Table 6).

Numerous inorganic compounds, many of which are naturally present, were detected during both the PSA and the RI activities (i.e., iron, magnesium, manganese and sodium are naturally occurring elements commonly found in groundwater at elevated levels). The absence of dissolved phase exceedances where total inorganic exceedances were previously observed indicates that the exceedances were likely the result of suspended sediments in the water samples (Attachment 1, Table 6).

Cyanide was detected in wells MW-02 and MW-03 during the PSA, in wells MW-08, MW-09, and MW-11 during the 1999 RI sampling event and in wells MW-03, MW-08, MW-09, MW-09,

11, and MW-24 during the 2001 RI sampling event. Cyanide was detected during the 2004 event in wells MW-02, MW-03, MW-06, MW-08, MW-09 and MW-11. The highest concentration of cyanide detected during the PSA was in the sample from MW-2 (129 μ g/I). During the RI activities, the highest concentration was detected in MW-09 (169 μ g/I) in August 2004 (Attachment 1, Table 6).

4.1.16 Head Start Property

The Head Start Property was evaluated during the PSA and initial RI phase of the project to determine if MGP-related contaminants had migrated onto this property. The subsurface investigation of this parcel involved advancing six borings (SG-15/SB-12, SG-16/SB-13, SB-11/MW-11, SB-22, SB-23, and SB-24/MW-24) and the installation of two groundwater monitoring wells (MW-11 and MW-24). Surface soils were not considered a risk during the previous environmental investigations.

PAH compounds were detected above their NYSDEC RSCOs (TAGM 4046) in SG-16 at the 23.5' bgs to 24.0' bgs depth interval. There were no exceedances of the NYSDEC RSCOs (TAGM 4046) for PAH and BTEX compounds in the remaining samples. No NAPL, tar, visual impacts, odors or elevated PID readings were detected in the soil column at any of these locations.

Shallow hand-auger borings HA-1 through HA-5 (Plate 5B) were advanced behind the Head Start building in May 2000. Surface soil samples SS-1 through SS-5 were collected from these locations. These samples were collected prior to the construction of the play area behind the Head Start building and prior to occupation of the building. The findings of the investigation were transmitted to NYSDEC in a letter report from GEI dated August 2, 2000 (Attachment 3). Various PAHs and metals were detected at concentrations above their respective NYSDEC RSCOs (TAGM 4046) at each of the five sample locations. GEI's opinion was that the PAH concentrations detected were within ranges typically found in urban soil and did not present any other conclusions or recommendations.

In February 2001, soil gas samples were collected from around the Head Start building to assess whether unspecified odors and headaches reported by Head Start employees were related to the Former MGP Site. The findings from this investigation were reported to NYSDEC in a letter report from GEI on March 19, 2001 (Attachment 2). In a letter dated May 1, 2001, NYSDEC transmitted an April 16, 2001 letter from the NYSDOH to 0&R. The NYSDEC and NYSDOH letters pertained to their review of the March 19, 2001 letter report. The NYSDOH

and NYSDEC concurred that it is unlikely that the soil gas would present a concern for effects on indoor air quality at 146 Maple Avenue.

4.1.17 Apartment Complex

The Apartment Complex properties were evaluated for the subsurface presence of MGP related residuals. The subsurface investigation of this parcel included twenty-three soil borings (SB/MW-20/MW-20D, SB-21S, MW-21, SB/MW-28S, MW-28D, MW-29S/D, SB/MW-30S, SB/MW-31S/D, SB/MW-32S/I, SB-45, SB-46, SB-48, SB-49, SB/MW-55, SB-56, SB-57, SB-58, SB-59, and SB/MW-60), twelve of which were subsequently finished as groundwater monitoring wells. Two soil samples were collected from each boring and submitted for laboratory analysis. One sample was collected from the water table and the second sample was collected from the most apparent visibly impacted interval. If no impact was apparent, the second sample was collected at depth, or from the interval immediately above the till unit.

BTEX or PAHs exceeded at least one NYSDEC RSCOs (TAGM 4046) at all sample locations with the exception of MW-29D, SB-48, SB-56 and SB-57 (Attachment 1, Table 5). The highest BTEX concentrations at the Apartment Complex were identified at SB-46 at a depth of 10.5' bgs. This location is directly across Maple Avenue from the former iron oil tank location on the Former MGP Site. The highest PAH concentrations were reported at SB-49, at 7.5' bgs, located directly behind the Apartment Complex (127-129 Maple Street).

The following is a summary of the observations from the subsurface investigation boring logs:

- SB/MW-20/MW-20D Tar-like odors, tar-coated sand grains and trace of blebs in the 8.0' bgs to 10.0' bgs interval with faint MGP-like and fuel-like odors in the 10.0' bgs to 14.0' bgs interval. Elevated PID readings were recorded in these intervals. No NAPL, tar, visual impacts or odor were detected at the till interface or in the balance of the soil column above the till. Monitoring well MW-20D was originally identified as MW-20 when it was installed in 2001.
- <u>SB-21S</u> The boring was advanced to 12.0' bgs. No NAPL, tar, visual impacts or odor were detected in the soil column.
- MW-21 The monitoring well was completed to till at a depth of 24.0' bgs. Very slight MGP-like odors were identified in the 8.0' bgs to 10.0' bgs interval along with PID readings of 23.0 ppm. No NAPL, tar, visual impacts or odor were detected at the till interface or in the balance of the soil column above the till.

- <u>SB/MW-28S</u> Trace naphthalene-like odors, petroleum-like odors and sand grains coated with NAPL were identified in the 7.5' bgs to 12.0' bgs interval along with PID readings of 637.0 ppm. No NAPL, tar, visual impacts or odor were detected in the balance of the soil column in this boring which was advanced to 16.0' bgs. Monitoring well MW-28S was completed to a depth of 12.0' bgs.
- MW-28D The monitoring well was completed to till at a depth of 31.5' bgs. Very slight tar-like/MGP-like odors were identified in the 8.0' bgs to 12.0' bgs interval along with PID readings up to 33.0 ppm. No NAPL, tar, visual impacts or odor were detected at the till interface or in the balance of the soil column above the till. This monitoring well was originally identified as MW-28 when it was drilled in 2001.
- SB/MW-29S A sheen and strong tar-like odors were identified in the 4.0' bgs to 9.8' bgs interval along with PID readings of 102.0 ppm. Lightly tar-coated sand grains, blebs, a heavy sheen and strong tar-like odors were identified in the 9.8' bgs to 10.7' bgs interval along with PID readings of 186.0 ppm. No NAPL, tar, visual impacts or odor were detected in the balance of the soil column in this boring which was advanced to 20.0' bgs. Monitoring well MW-29S was completed to a depth of 14.0' bgs.
- <u>MW-29D</u> The monitoring well was completed to a depth of 30.0' bgs. Till was encountered at a depth of 29.0' bgs. No NAPL, tar, visual impacts, odor or elevated PID readings were detected at the till interface or in the soil column above the till. This monitoring well was originally identified as MW-29 when it was drilled in 2001.
- <u>SB/MW-30S</u> Trace naphthalene-like odors, weathered tar-like odors and sheens were identified in the 4.0' bgs to 15.9' bgs interval along with PID readings up to 43.2 ppm. This boring was advanced to 16.0' bgs. This boring was not finished into a groundwater monitoring well.
- <u>SB/MW-31S</u> Silt layers coated with NAPL and a moderate petroleum-like odor were identified in the 8.0' bgs to 8.8' bgs interval along with PID readings of 485.0 ppm. No NAPL, tar, visual impacts or odor were detected in the balance of the soil column in this boring which was advanced to 12.0' bgs. Monitoring well MW-31S was finished to a depth of 12.0' bgs.
- <u>SB/MW-31D</u> Silt layers coated with NAPL and a moderate petroleum-like odor were identified in the 8.0' bgs to 8.8' bgs interval along with PID readings of 485.0 ppm. No NAPL, tar, visual impacts or odor were detected in the balance of the soil column in this boring which was advanced to 35.0' bgs. Till was encountered at 34.0' bgs. Monitoring well MW-31D was completed to a depth of 32.0' bgs.
- <u>SB/MW-32S</u> Trace tar-like odors were identified in the 7.1' bgs to 8.0' bgs interval along with PID readings of 36.0 ppm. Lightly NAPL-coated sand grains and petroleum

odors were identified in the 8.0' bgs to 10.0' bgs interval. Heavily NAPL-coated sand grains and strong petroleum-like odors were identified in the 8.0' bgs to 12.0' bgs interval along with PID readings of 378.0 ppm. Monitoring well MW-32S was completed to a depth of 12.0' bgs.

- <u>SB/MW-32I</u> Trace tar-like odors were identified in the 7.1' bgs to 8.0' bgs interval along with PID readings of 36.0 ppm. Lightly NAPL-coated sand grains and petroleum odors were identified in the 8.0' bgs to 10.0' bgs interval. Heavily NAPL-coated sand grains and strong petroleum-like odors were identified in the 8.0' bgs to 12.0' bgs interval along with PID readings of 378.0 ppm. Heavy sheen, trace blebs and strong petroleum-like odors were identified in the 12.0' bgs to 16.0' bgs interval. No NAPL, tar, visual impacts or odor were detected in the balance of the soil column in this boring which was advanced to till at 36.0' bgs. Monitoring well MW-32I was completed to a depth of 22.0' bgs.
- SB-45 Trace tar-like odors were identified in the 8.8' bgs to 9.3' bgs interval. Tar veins to tar saturated soil and strong tar-like odors along with PID readings of 518.0 ppm were found in the 9.3' bgs to 10.7' bgs interval. No NAPL, tar, visual impacts or odor were detected in the balance of the soil column in this boring which was advanced to 28.0' bgs. Till was encountered at 24.8' bgs.
- <u>SB-46</u> Trace petroleum-like odors, strong tar-like odors and tar-coated soils were encountered at various intervals in the overall 4.0' bgs to 12.0' bgs depth range along with PID readings up to 12.3 ppm. No NAPL, tar, visual impacts or odor were detected in the balance of the soil column in this boring which was advanced to 16.0' bgs (clay layer from 12.0' bgs to 16.0' bgs).
- <u>SB-48</u> Trace petroleum-like odors, trace sheen and PID readings of 59.0 ppm were identified in the 8.0' bgs to 12.0' bgs depth interval. No NAPL, tar, visual impacts or odor were detected in the balance of the soil column in this boring which was advanced to 16.0' bgs (clay layer from 12.0' bgs to 16.0' bgs).
- SB-49 NAPL veins and petroleum-like odors along with PID readings of 155.0 ppm were found in the 6.8' bgs to 9.1' bgs interval. No NAPL, tar, visual impacts or odor were detected in the balance of the soil column in this boring which was advanced to 16.0' bgs (clay layer from 13.0' bgs to 16.0' bgs).
- <u>SB/MW-55</u> Trace sheen was identified in the 9.0' bgs to 9.1' bgs interval. No NAPL, tar, visual impacts or odor were detected in the balance of the soil column in this boring which was advanced to 16.0' bgs (clay layer from 12.0' bgs to 16.0' bgs). PID readings of 59.3 were obtained at 12.0' bgs. Monitoring well MW-55 was completed to a depth of 16.0' bgs.

- <u>SB-56</u> Tar-like odors, tar blebs and sheens were identified in the 10.0' bgs to 13.2' bgs interval. No NAPL, tar, visual impacts or odor were detected in the balance of the soil column in this boring which was advanced to 16.0' bgs (clay layer from 13.2' bgs to 16.0' bgs).
- <u>SB-57</u> No NAPL, tar, visual impacts or odor were detected in the soil column in this boring which was advanced to 12.0' bgs (clay layer from 10.3' bgs to 12.0' bgs).
- <u>SB-58</u> Tar-like odors, tar coated sand grains and patchy sheens were identified in the 8.0' bgs to 14.5' bgs interval along with PID readings of 757.0 ppm. No NAPL, tar, visual impacts or odor were detected in the balance of the soil column in this boring which was advanced to 20.0' bgs (clay layer from 16.7' bgs to 20.0' bgs).
- SB-59 Strong tar-like odors, tar coated (heavily) sand grains and tar veins were identified in the 5.8' bgs to 12.0' bgs interval along with PID readings of 239.0 ppm. Moderate MGP-like odors and NAPL coated sand grains were identified in the 13.1' bgs to 16.8' bgs interval. No NAPL, tar, visual impacts or odor were detected in the balance of the soil column in this boring which was advanced to 20.0' bgs (clay layer from 16.8' bgs to 20.0' bgs).
- <u>SB/MW-60</u> Trace NAPL in veins, blebs of NAPL and tar/MGP-like odors were identified in the 8.0' bgs to 10.0' bgs interval along with PID readings of 28.8 ppm. No NAPL, tar, visual impacts or odor were detected in the balance of the soil column in this boring which was advanced to 18.0' bgs (clay layers from 13.4' bgs to 13.7' bgs and 17.5' bgs to 18.0' bgs). Monitoring well MW-60 was completed to a depth of 14.0' bgs.

In summary, the soil boring/monitoring well logs show that physical indicators of MGP-related impacts are contained, and vertically migration is restricted by the clay layers and/or till layer.

4.1.18 Storm Water and Catch Basin Sediment Sampling

Sediment and storm water samples were collected in 1999 and 2002 from the storm water drainage system near the Former MGP Site to evaluate its potential impact on sediment and storm water. Storm water sample results were compared to the New York State Ambient Groundwater Quality Criteria for regulatory compliance, which are more inclusive than the New York State Groundwater Effluent Limitations. Both sampling events were performed immediately following a rain event. Previous attempts to collect samples 48 hours after a rain event were unsuccessful because of insufficient flow. Storm water and sediment samples were collected up gradient of the Former MGP Site and at several catch basins down gradient of the Former MGP Site (Attachment 1, Tables 7 and 8). The sample locations are depicted on Plate 2.

GEI conducted a regulatory search prior to collection of the storm water and storm sewer sediment samples in January 2002 to determine if there were any potential generators of cyanide that could contribute to cyanide previously detected in the storm sewer sediment samples (SED-01 and duplicate SED-02). No large or small quantity generators, or any industrial/commercial process known to use cyanide, were identified during GEI's regulatory review.

One sediment sample (SED-03) was collected from a gulley to the south of Clove Avenue, approximately 250' up gradient of the Former MGP Site. A total of six storm sewer sediment samples and one duplicate sample [SED-01, SED-02 (SED-01 was "split" to generate the blind duplicate sample SED-02), SD013102-2, SD013102-3, SD013102-4 and SD013102-6] were collected from the storm sewer catch basins located down slope or down gradient of the Former MGP Site. Sediment samples SED-01, SED-02 and SED-03 were collected in 1999. Sediment samples SD013102-2, SD013102-3, SD013102-4 and SD013102-6 were collected in 2002.

Down gradient samples (SED-01, SD013102-3 and SD013102-4) reported detectable concentrations of VOCs. Numerous PAHs were detected at all up gradient and down gradient sample (SED-01, SED-03, SD013102-2, SD013102-3, and SD013102-4) locations, at concentrations ranging from less than 6 ppm total PAHs in up gradient sample SED-03 to approximately 53 ppm total PAHs in sample SD013102-3, located adjacent to the corner of the Former MGP Site. Three samples (SED-01, SD013102-2, and SD013102-4) reported detectable levels of total cyanide.

Sample SD013102-6 was collected at the catch basin connecting the Maple Avenue drainage system to the culverted stream and storm drain at the rear of the Apartment Complex and the West Street Properties. This catch basin receives storm water drainage from off site and up gradient of the Former MGP Site, the Apartment Complex Properties and West Street Properties. Sample SD013102-6 contained 80 μ g/kg BTEX. This sample also contained 72 ppm total PAHs.

The sediments in the drainage system in the Study Area are impacted by VOCs, PAHs and cyanide (Attachment 1, Table 8); however, the impacts do not appear to be solely related to the site. The drainage system receives runoff from streets and other properties in the area. In addition, the drainage swale itself contains trash and other debris. Urban runoff may include petroleum products and residuals from automobile leaks and maintenance

activities. It is likely that organic compounds in runoff from Maple Avenue and the rear of the Apartment Complex have contributed to the concentrations detected in the storm sewer sediments.

In conjunction with the sediment sampling, storm water samples were collected from representative sample locations. One storm water sample (SW013102-1) was collected at a manhole located along Tor Avenue up gradient of the Former MGP Site. One storm water sample (SW-03) was collected from a gulley to the south of Clove Avenue, 250' up gradient of the Former MGP Site. Four storm water samples and two duplicates [SW-01, SW-02 (duplicate of SW-01), SW013102-5, SW013102-6 and SW013102-8 (duplicate of SW013102-06)] were collected from catch basins that potentially could be influenced by impacts at the Former MGP Site. A naphthalene-like odor was observed from the catch basin where SW013102-6 was collected. Additional storm water samples from the catch basins located on Maple Avenue were not obtained during two attempts due to the absence of flow. One storm water sample (SW0UT013002-1) was collected from the outfall of the local storm drainage system to the Hudson River embayment. A naphthalene-like odor was observed in the area of the outfall during sample collection.

Storm water samples SW-01, SW-02 and SW-03 were collected in 1999. Storm water samples SW013102-1 SW013102-5, SW013102-6, SW013102-8 and SW0UT013002-1 were collected in 2002. The analytical results from the various storm water sampling events are summarized in Attachment, Table 7).

No VOCs or PAHs were detected in up gradient storm water sample SW-03. Various VOCs and PAHs were detected in the up gradient storm water sample SW013102-1.

BTEX compounds were detected in down gradient samples SW013102-6 and SW013102-5. Benzene, ethylbenzene, and xylenes were detected in down gradient sample SW0UT013102-1 near the outfall to the Hudson River embayment. Only toluene was detected in the sample collected immediately downstream of the Former MGP Site (SW-01).

Various PAHs were detected in the down gradient samples.

Up gradient storm water sample SW013102-1 and down gradient storm water samples SW013102-1 and SW-01 contained detectable levels of total cyanide. Sample SW-01 also contained a detectable concentration of weak acid dissociable (WAD) cyanide.

Based on the shallow depth of the Maple Avenue storm sewer system, it is likely that groundwater impacted with BTEX compounds and PAHs originating from the Former MGP Site, flows under the Maple Avenue drainage system and intersects the storm water drainage system (culverted stream) to the rear of the Apartment Complex.

Although storm water is impacted with VOCs, PAHs, and cyanide, the impacts do not appear to be solely related to the Former MGP Site. The storm water sampled contains storm drainage that receives runoff from streets and other properties in the area. The drainage swale itself contains trash and other debris. Urban runoff may include petroleum products and residuals from automobile leaks and maintenance activities. Generally, organic compounds were detected in the water sample from the down gradient location at higher concentrations than at the up gradient location. However, the concentrations in all samples vary by only a few micrograms per liter (µg/l), and most detected VOCs are not solely associated with former MGP operations. Additionally, cyanide and carcinogenic PAHs were detected in an up gradient location. The hydrocarbon sheens in storm water entering the catch basin during sampling indicate that other sources contribute to the detected compounds.

4.1.19 Hudson River Sediments

GEI and their subcontractor, Ocean Surveys, Inc. conducted a sediment probing study and sample collection in the Hudson River, down gradient of the Former MGP Site. Twenty locations were probed using a steel rod mechanism that was inspected for physical evidence of impacts. Six sediment samples (VC-01, VC-02, VC-03, VC-04, VC-05 and VC-05A) were collected in the embayment of the Hudson River where the storm water drainage system discharges. The analytical results from the Hudson River sediment samples are summarized in Attachment 1, Table 9, and further described in Attachment 4.

VOCs were detected at one sample location (VC-04-3-5, 3.0'-5.0' bgs). Acetone, a common laboratory contaminant, was detected in this sample at a concentration of 170.0 μ g/l. Cyanides were not detected in any samples collected from the embayment.

PAHs were detected at each sample location. Total PAH concentrations ranged from 35.0 ppm (20 ppm non-carcinogenic and 15 ppm carcinogenic) in sample VC-05A (0'-2' bgs) to 189 ppm (105 ppm non-carcinogenic and 84 ppm carcinogenic) in sample VC-04 (0'-2' bgs). The majority of PAHs appear to be contained within the first few feet of sediments. One sample collected at sample location VC-04 from a depth of 3' to 5' bgs contained lower

concentrations of total PAHs than those detected in the sample collected from 0' to 2'bgs (48.7 ppm total PAHs versus 189 ppm total PAHs).

The sediments in the embayment of the Hudson River are impacted by PAHs; however, the impacts do not appear to be solely related to the site. Physical observations during the probing and sediment sampling activities showed no MGP-related impacts at any location except VC-01, immediately adjacent to the storm water outfall. The outfall from the local storm sewer drainage system is located at the head of the embayment. Surface water runoff from the surrounding area containing motor oils, asphalts, and other PAH source materials are discharged to the embayment both directly and through the storm sewer system. In addition, a boat marina is located within the embayment, a fuel terminal is located up river, and a former oil terminal operated on the southern side of the embayment. It is likely that numerous sources have contributed to the concentrations detected in the river sediments, as with the storm water and sewer sediment samples (section 4.1.18).

4.1.20 Fingerprint Analysis

One sample of DNAPL collected from MW-02 and one sediment sample (SED-17, 0-15 cm) collected proximate to the outfall location of the local drainage system were submitted to META Environmental, Inc. (META) for fingerprint analysis (Attachment 4). Sample SED-17 (0-15 cm) was selected for fingerprint analysis because, upon collection, it appeared to contain physical evidence of NAPL impacts to include trace brown NAPL nodules, a moderate sheen, and a very slight combined petroleum/MGP odor.

The report concluded that the DNAPL sample from MW-02 was relatively unweathered and that the ratio of PAHs contained in the DNAPL indicates that the sample represents tar from a carbureted water gas process. The sediment sample (SED-17, 0-15 centimeters) also displayed PAH ratios consistent with a carbureted water gas origin. The two samples show no significant differences that cannot be attributed to weathering; however, with only two data points the statistical differences between the two samples cannot be assessed.

4.1.21 NAPL and Evidence of Product – Study Area

MGP related NAPL contamination at the Former MGP Site was described as tar-like material, consisting of a low viscosity, black separate phase material or oil-like material, consisting of a black to brown more viscous fluid. In addition to tar-like and oil-like material, other impacts were observed at the Former MGP Site and at the Apartment Complex, including sheens, MGP-like odors, and petroleum odors (not otherwise described). All these impacts

were observed in and near former MGP structures, along the edge of the Former MGP Site at Maple Avenue and across Maple Avenue at the Apartment Complex Properties.

Observations of odors and soil staining alone are not considered to be evidence of the presence of NAPL tar, however, these observations were included in the RETEC and GEI boring logs.

Tar-like material was generally described by the field geologists as "tar-saturated" soil matrix, and was observed at the Former MGP Site (SG-3, SG-7, SB-14, SB-16, TP-01, TP-02 and TP-03) and in a limited area at the Apartment Complex (SB-58 and SB-59).

The greatest degree of tar-like material observed on the Former MGP Site is associated with the historic structures known to be areas of typical heavy tar handling – the tar well, the iron oil tank, and the gas holder. Significant, non-residual tar (flowable DNAPL or "tar-saturated" soil) was observed at four locations on the Former MGP Site, at SB/MW-02, SG-2, SG-3 and SB-14. During drilling of SB/MW-02, soils were observed containing hydrocarbon product (probable tar) from approximately 13.0' to 18.0' bgs. In March 1999, a 1.6-foot-thick layer of DNAPL was found in MW-02 during groundwater sampling. In December 2001, a 2.7-foot-thick layer of DNAPL was present in MW-02 during groundwater sampling. In 2005, 5.0 feet of tar was present in MW-02. Testing of the tar accumulated in MW-02 identified the tar as carbureted water gas tar. A sand lens encountered at 8.0' to 10.0' bgs in borings SG-2 and SB-14 contained tar. These borings were completed within the footprint of the former holder. The sand and gravel layer between 4.0' and 10.0' bgs in boring SG-3, which was completed in the former tar well location, was described by the field geologist as being "saturated with tar-like material, strong odor, low viscosity".

Clay pipes containing tar-like material, water, and silt were observed on the Former MGP Site in both test pits TP-02 and TP-03 at depths from 4.0' to 6.0' bgs.

Borings on the Former MGP Site that exhibited hydrocarbon-like, naphthalene-like or tar-like odors included: SG-1, SG-4, SG-5, SG-6, SG-8, SB/MW-09, SG-10, and SG-13.

A faint odor similar to purifier material (i.e., sulfur odor) was noted in soil from 7.0' to 12.3' bgs at MW-09 near the location of the former purifier room. This was the only indication of purifier material found at the Former MGP Site.

Petroleum odors, not otherwise described, were noted on the Former MGP Site in SB/MW-08 at 10.0' to 12.0' bgs and in SB/MW-09 at 20.0' to 21.0' bgs.

No visual or olfactory evidence of MGP impacts was observed at the Former MGP Site in the up gradient borings SB/MW-01 and SB/MW-10, or in test pits TP-04 and TP-05. Boring SB/MW-01 was completed in the sand and gravel layer at a depth of 28 feet bgs and SB/MW-10 was completed in the till at a depth of 38 feet bgs.

The greatest concentration of tar-like material at the Apartment Complex was reported beneath the asphalt parking lot on the north side of the buildings.

SECTION 5 2008 REMEDIAL INVESTIGATION

Pre Work Activities

5.1.1 Permit Acquisition

A drilling permit was obtained from RCDOH for all of the soil borings and the monitoring wells (RCDOH Permit #RE-0094). Work was inspected on April 22, 2008 and May 19, 2008 by RCDOH. At the conclusion of the drilling, monitoring well completion forms and boring logs for the monitoring wells were submitted to RCDOH in June 2008, by the driller, Advanced Drilling, Pittstown, New Jersey (RCDOH# RWC-0040; NYSDEC# NYRD 10842). Documentation of proper disposal of investigation derived waste was provided to RCDOH by CMX on July 25, 2008.

5.1.2 Utility Clearance

A utility mark out was called in by Advanced Drilling, and cleared for April 23, 2008. A supplemental utility markout was called in for borings within the alleyway between Tor Avenue and West Street, and cleared for May 12, 2008.

5.1.3 Geophysical Survey

A geophysical survey was performed by Envirophysics, Lawrenceville, New Jersey on April 21, 2008 at all proposed monitoring well and soil boring locations. A supplemental geophysical survey was performed by Envirophysics on May 12, 2008 within the Alleyway between Tor Avenue and West Street.

5.1.4 Manual Clearance

At several locations manual hand clearance using a post hole digger, was performed by the driller due to utility concerns.

Air Monitoring

Monitoring for organic vapors and dust in air was conducted during soil boring and monitoring well installation. Organic vapors and dust were monitored in accordance with the NYSDOH generic community air monitoring plan (CAMP). At the start of each work day, air-monitoring stations were established upwind of the work activities and at the downwind perimeter of the work zone. Wind direction was generally determined using a piece of survey flagging hung below the CAMP stations. The soil probe and TarGOST® work occurred at a rapid pace; as such, the CAMP systems were frequently relocated accordingly.

5.1.5 Organic Vapor Monitoring

The CAMP stations were setup to utilize MiniRAE 2000 (RAE Systems) PIDs. Each PID utilized a 10.6eV lamp and was set to record a 15-minute running average, as well as the maximum reading for the period. Monitoring at the upwind and downwind locations was performed continuously. The PIDs were set up to log data, which was downloaded daily. Organic vapors were measured in the work zone by the staff logging the soil borings and well installation work.

5.1.6 Dust Particulate Monitoring

The CAMP stations were setup to utilize a pDR-1000 personal data ram to measure particulate dust less than 10 micrometers in diameter (PM_{10}). Monitoring at the upwind and downwind location was performed continuously. The dust monitors were set to record a 15-minute running average, as well as the maximum reading for the period.

5.1.7 Additional Air Monitoring

A VRAE multigas meter (RAE Systems) was used to measure oxygen level, % Lower Explosive Level (%LEL), carbon monoxide (CO) level, and hydrogen sulfide (H₂S) in the work zone during intrusive activities.

TarGOST® Field Screening

A field screening investigation was performed using the TarGOST® technology. TarGOST®, developed and operated by Dakota Technologies, Inc. (Dakota) is a pneumatically-advanced sensor that is used to detect coal tars, creosotes, heavy crudes, and tank bottoms. The TarGOST® system sends excitation light through fiber optic cable strung within drill rods. The light exits through a window in the side of the probe. As the probe is advanced, the soil is exposed to the excitation light. If fluorescent compounds exist (tar based contaminants), light is emitted. The "signal" light is transmitted through a fiber, back up hole, to be analyzed. Responses are indicated in real-time on a graph of signal versus depth.

The TarGOST® probe was advanced using a 54DT track mounted Geoprobe™ direct push drill rig operated by Advanced Drilling (Pittstown, NJ). The actual TarGOST® system was operated and interpreted by staff from Dakota. The TarGOST® logs record the instrument's response (presented as %RE) to the PAHs in both oil-like material and tar-like material (Appendix B).

The SRIWP proposed advancing TarGOST® borings to a till layer that was anticipated to be encountered at depths ranging from 10 to 35 feet bgs. The work plan additionally noted that borings may be terminated if a confining layer is encountered within an overlying impacted

zone. At most locations, TarGOST® borings were advanced to boring refusal which was believed to correspond with top of the till layer.

The NYSDEC approved work plan proposed forty-seven (47) TarGOST® borings, with confirmatory borings drilled at 10% of these locations. Based on field observations, interpretation of the TarGOST® data, and conversations with NYSDEC representatives, ten (10) additional TarGOST® boring locations were added. Based on field conditions (i.e. shallow refusal), a total of nineteen (19) step outs were required. In all, seventy-six (76) TarGOST® borings were advanced as part of the investigation program. Confirmatory soil borings, continuously logged and field screened with a PID, were advanced at 40% of the TarGOST locations (22 locations). TarGOST® borings were advanced in the front and rear of the Apartment Complex, in the front and rear yards of the West Street Properties, and at two locations on the Former MGP Site. TarGOST® results are presented as depth specific logs (Appendix B). The TarGOST® results are discussed in sections 6.1.1, 6.1.7, and 6.1.11.

A TarGOST® summary is presented on Table 5-1. A TarGOST® response map, derived from the results of the screening provided by Dakota is presented as Plate 6B.

Soil Boring Investigation

5.1.8 Soil Boring Methodology

Soil borings to confirm TarGOST® screening results or investigating previous findings were advanced throughout in the Study Area. Soil samples were collected continuously using 2-inch diameter, 4-foot long macro-core samplers, lined with disposable acetate liners driven by a Geoprobe™ direct push rig, or using 2' long, 2-inch diameter split spoons, advanced by a hollow stem auger drill rig.

Upon opening the acetate liners or split spoons, the soil samples were screened with a PID. Organic vapor readings were recorded at 6-inch intervals across the recovered samples, at lithologic contacts and zones that exhibited visible evidence of contamination. The recovered soil was logged in accordance with the Unified Soil Classification System (USCS). Generally, borings were terminated at the gray clay layer (Unit 3) to prevent vertical migration of any observed contamination.

Soil samples were collected for laboratory analysis from the borings based on the following criteria:

- Unsaturated zone: one sample was collected from the zone reporting the highest PID
 readings or visual impacts. An additional sample was collected below the impacted
 zone to determine the vertical extent of impacts at that sample location. If no visual
 impacts or elevated PID readings were noted, one sample was collected from directly
 above the water table.
- Saturated zone: if contamination was observed in the saturated zone, one soil sample
 was collected from the most impacted interval and an additional sample was collected
 from a clean soil interval below the impacts. If no impacts were encountered in the
 saturated zone, one soil sample was collected from the bottom of the boring.
- Borings on the Former MGP Site were advanced to the till layer. Confirmatory borings in
 the balance of the Study Area were generally terminated at the gray clay layer to prevent
 potential introduction of contaminants to greater depths. The gray clay layer has been
 found to act as a confining layer to vertical contaminant migration based on a
 combination of field observations and analytical data.
- Pursuant to field discussions with O&R and NYSDEC personnel, additional samples
 were collected based on field observations, to ensure vertical delineation. Vertical
 delineation of NAPL (Oil-like and Tar-like Material) was based on the visual results from
 logged borings.
- Soil samples collected at the Former MGP Site were analyzed for VOC, PAH, and TAL Metals. Soil samples collected from the balance of the Study Area were analyzed for VOC and PAH. A sampling summary is provided on Table 5-2. Soil analytical results are provided in Table 5-3. All laboratory results are provided electronically at Appendix C.

Drilling cuttings were placed in DOT-approved 55-gallons drums and stored at the Former MGP Site prior to disposal. Direct push boreholes were sealed with neat cement and bentonite, and finished to ground surface using a hand pump or bucket. Hollow stem auger boreholes were sealed with neat cement and bentonite using a tremie grout pipe. Disposal documentation is provided in Appendix E.

Drilling equipment was decontaminated between each borehole. Samples for laboratory analysis were stored on ice until they were transported to the laboratory. TestAmerica Edison was the laboratory used for this project. Data validation was provided by Environmental Standards, Valley Forge, PA. Data usability reports are provided in Appendix F.

5.1.9 Former MGP Site

Drilling was performed at sixteen (16) locations on the Former MGP Site. Additionally, TarGOST® screening was performed at one (1) of these locations (SB-113) and at the location of a former boring, SB-2. A confirmatory sample was collected from SB-113 from the depth interval 13.0'-13.5' bgs which corresponded with the highest TarGOST® screening result. Soil sampling was performed at fifteen (15) locations using 2-inch diameter, 2-foot long split spoon samplers advanced by a hollow stem auger drill rig. In response to site constraints, soil sampling was performed at one (1) location using a truck mounted Geoprobe™ (SB-109).

5.1.10 Apartment Complex

Drilling was performed at fifty-four (54) locations on the Apartment Complex property with TarGOST® screening performed at each boring location. Confirmatory soil borings were advanced at eleven (11) of the fifty-four (54) locations using a Geoprobe™ direct push rig. Confirmatory soil borings at SB-61 and SB-85 were performed using 2-inch diameter, 2-foot long, split spoon samplers advanced by a hollow stem auger drill rig.

5.1.11 West Street Properties

Drilling was performed at twenty-six (26) locations at the West Street properties; TarGOST® screening was performed at twenty (20) of the twenty-six locations. Confirmatory soil borings were advanced at 16 of the twenty-six locations using a Geoprobe™ direct push rig.

Six (6) soil borings in this area, SB-124, SB-124A, SB-127, SB-127A, SB-127B, and SB-127C were terminated in response to equipment refusal, at depths less than 3 feet. No soil was recovered from these locations, and no TarGOST® data were collected.

5.1.12 Alleyway

Additional soil borings were advanced in the Alleyway in the vicinity of 103 Maple Avenue. This work was performed to investigate the potential for contamination beyond the sheet pile wall that had been installed during the remediation of that property in 2005. Seven (7) soil borings were advanced in this alleyway, SB-132, SB-133, SB-134, SB-135, SB-136, SB-137 and SB-138, using a Geoprobe™ direct push drill rig. Borings were advanced to the gray clay (Unit 3). TarGOST® screening was not conducted in the Alleyway.

Soil sampling was performed at four locations, SB-132, SB-133, SB-134 and SB-138. Three (3) of the borings, SB-135, SB-136, and SB-137, encountered shallow refusal at depths of less than 5 feet. No soil was recovered from these locations.

Groundwater Investigation

Five (5) shallow (water table) monitoring wells were installed in May 2008 by Advanced Drilling. The wells were installed using a hollow stem auger rig advancing 4.25" inner diameter hollow stem augers (8.25" outer diameter). Four of the wells were co-located with soil borings (MW-61, MW-63, MW-85 and MW-107); the fifth well, MW-83 was installed at a TarGOST® screening only location.

Each monitoring well was constructed with 2" diameter schedule-40 PVC riser and 0.020 slot well screen. #2 filter sand was emplaced into the hole to a height 1' above the top of the well screen. #00 filter sand was added, and the remaining annular space was filled with hydrated bentonite chips. All five wells were finished flush with a concrete pad, locking plug, and steel manhole. The concrete pad and manhole for monitoring well MW-85 was finished approximately 6" below ground surface, and covered with top soil at the request of the property owner.

Each monitoring well was developed by surging and pumping with a submersible pump until the purge water was less than 50 nephelometric turbidity units (NTUs) for three successive (5 minute) readings and until water quality indicators had stabilized. The criteria for stabilization were three successive readings within 10% for pH, temperature and specific conductivity. In each well, more than three well volumes were purged.

Development water and well installation soil cuttings were containerized in 55-gallon drums and stored on a drum storage pad on the Former MGP Site, prior to offsite transportation and disposal. Disposal documentation is provided in Appendix E. Appendix D contains the monitoring well construction forms and permit. Table 5-4 contains a summary of the construction information for the monitoring wells in the Study Area.

Monitoring Well Gauging

The monitoring wells were allowed to recover for at least seven days following development before they were gauged and sampled. Before initiating groundwater sampling, a complete round of synoptic water levels was obtained for the site. During the initial gauging activity on June 5, 2008, CMX determined that several wells (MW-4, MW-5, MW-6, MW-7, MW-20D, MW-21, MW-28, MW-29D, MW-31D, MW-32I) displayed artesian conditions with groundwater exiting the well casing. Groundwater flow at monitoring well locations MW-4, MW-5, MW-6, and MW-7 exceeded 1 gallon per minute.

To compensate for this condition a temporary casing extension was attached to the effected wells prior to the collection of water level measurements. Water levels and calculated elevations are presented on Table 5-4.

Monitoring Well Sampling

Groundwater samples were collected from site monitoring wells in accordance with the SRIWP.Four monitoring wells were sampled on April 24, 2008 (MW-8, MW-9, MW-11 and MW-24) as part of the Former MGP Site soil vapor investigation performed to evaluate potential soil vapor migration in the direction of the Head Start Property. The remainder of the wells were sampled between June 5 and June 14, 2008. Three wells (MW-02, MW-31S, and MW-32S) were not sampled due to the presence of measurable thicknesses of DNAPL during the gauging event. A single bleb of oil was observed on probe equipment in MW-04 when removed, however no actual product was measured. MW-61S exhibited naphthalene-like odors on groundwater during sampling.

As discussed in the previous section, ten wells exhibited artesian conditions (MW-04, MW-05, MW-06, MW-07, MW-20D, MW-21, MW-28D, MW-29D, MW-31D and MW-32I) during sampling. Wells were purged at 500 ml/min in an attempt to overcome the natural rate of flow from the wells. This was not possible at MW-31D, where water continually flowed from the well casing at a rate greater than 500 ml/min.

Groundwater samples were collected using a QED Sample Pro Bladder Pump with disposable polyethylene bladders, which were changed between monitoring wells. The bladder pump was powered using a 12 volt electric compressor. Groundwater quality parameters were monitored using a Horiba U-22 meter, equipped with a flow cell.

The sample pump was within the well's lower 1/3 of the screened section. Sampling depths are included on Table 5-5.

Minimum and maximum purge volumes were calculated using the formulas in the SRIWP. With the exception of MW-8, MW-9, MW-11, and MW-24, purging continued beyond the maximum purge volume stated in the SRIWP (1/4) of the well casing volume in attempt to achieve parameter stabilization, as specified in the 1996 USEPA document "Low Stress (Low Flow) Purging and Sampling Procedure for the Collection of Ground Water Samples From Monitoring Wells, Revision Number 2, U.S. EPA, July 30, 1996".

In most cases, parameter stabilization was achieved. Several wells did not reach turbidity stabilization, primarily because significant sediment had accumulated within the bottoms since the previous sampling event.

- MW-21S turbidity remained high throughout but stabilized with high turbidity.
- MW-20D initial sampling depth was proposed at 22' but field adjusted to 19.5 to attempt to reduce turbidity, and to reduce drawdown. Well appeared not be recharging due to clogged well screen.
- MW-85S 13' sample; sample appeared to have fine turbidity; adjusted sampling depth to 10.5' to clear it; during development, this water was a cloudy black color due to sediment. The water had a sheen on the surface.
- MW-29D Throughout the purging of this well the turbidity remained greater than 999 NTU and did not decrease.
- MW-29S fine black sediment during initial purge, cleared sulfur odors associated with the groundwater.
- MW-29D well full of sediment at the bottom. Attempted to clear flow cell several times without success.

After sampling each well, all non-dedicated sampling and measuring equipment was disassembled and decontaminated using Alconox non-phosphate cleaner and distilled water solution, then rinsed with copious amounts of distilled water.

All purge water was contained in 55-gallon drums stored on the Former MGP Site.

Samples for laboratory analysis were stored on ice until they were transported to the laboratory. TestAmerica Edison was the laboratory used for this project. Groundwater samples from the monitoring wells were analyzed for VOCs, SVOCs, cyanide (total) and cyanide (available).

Temporary Well Point Sampling

In addition to the monitoring well sampling program, groundwater samples were collected from a series of narrow diameter temporary well points (TWPs), installed using a Geoprobe[™] direct push rig, at the rear yards of the West Street Properties (96 West Street, 100 West Street, 104 West Street, 106 West Street, and 116 West Street). One-inch diameter PVC screens were installed with a Geoprobe[™] direct push miniature drive point that extended beyond the base of the boring. The screens were advanced to targeted depths corresponding with the highest PID readings measured during the soil boring program or a

minimum of three feet below groundwater. Groundwater samples collected from SB-123 (100 West Street) and SB-124B (96 West Street) were analyzed at different depths than this requirement, since the groundwater level targeted in these borings was based upon the TarGOST® findings. Teflon tubing was inserted into the screen section and sampled through a peristaltic pump. Table 5-6 lists the ground water sampling depths and the rationale for the given sample depth.

The PVC screens were removed after sample collection and the TWPs were sealed with neat cement and bentonite, and finished to grade with soil where needed. Samples for laboratory analysis were stored on ice until they were transported to the laboratory. TestAmerica Edison was the laboratory used for this project. Groundwater samples from the TWPs were analyzed for VOCs.

Soil Vapor Investigation

5.1.13 Former MGP Site Property Line Adjacent to 146 Maple Avenue (Head Start)

On April 24, 2008 a soil vapor investigation was performed along the east property line of the Former MGP Site and the Head Start property at 146 Maple Avenue. Four soil vapor samples (SV-01, SV-02, SV-02 and SV-04 on Plate 2) were collected using stainless steel screens implanted below the ground surface using a Geoprobe™ direct push rig . One ambient air sample, AMB-01-4.5, was also collected at the fence line at a height of 4.5' above ground surface.

CMX utilized stainless steel sampling implants provided by Geoprobe[™]. Each implant consisted of a six-inch stainless screen with an expendable drive point, which was driven by a Geoprobe[™] drill rig. A one foot sampling zone was created using #1 well sand. Soil vapor probes were sealed with a bentonite slurry from the sampling zone to ground surface. Each implant was fitted with Teflon tubing attached to a T-valve. Tubing connected to the other end of the T-valve was attached to a flow regulator on a 6-Liter Summa canister. The sampling zones were selected to be more than six inches above the observed water table.

After installation of the probes, and allowing the bentonite slurry to seal for 15 minutes, three implant volumes were purged using a MiniRAE 2000 PID through the T-Valve. The Summa canister was opened and allowed to fill over 60 minutes as specified by the work plan. The Summa canisters were analyzed by TestAmerica, Burlington, Vermont. Results of this investigation were submitted under separate cover to NYSDEC in July 2008 and are briefly summarized in section to 6.1.23.

5.1.14 Soil Vapor - Rear Yards of West Street Properties

CMX collected five soil vapor samples, SV-80, SV-92, SV-120, SV-123, and SV-124B (104, 116, 106, 100 and 96 West Street, respectively) from the backyards of properties that front on West Street to evaluate the potential subsurface vapor migration of VOCs and naphthalene. One ambient air sample, AMB-02-4.5 was also collected in this vicinity. The sampling was performed as described in Section 5.1.13 above. The Summa canisters were analyzed by TestAmerica, Burlington, Vermont.

Results of this investigation were submitted under separate cover to NYSDEC in July 2008 and are briefly summarized in section to 6.1.24.

SECTION 6 2008 REMEDIAL INVESTIGATION RESULTS

As outlined in Section 5, an RI was conducted by CMX to further evaluate MGP-related contamination at locations both on and off of the Former MGP Site that constitute the Study Area. The investigation included soil, groundwater and soil vapor sampling in conjunction with MGP-related NAPL screening using the TarGOST® field screening tool. The results of the investigation provided supplemental data which resolved the majority of the data gaps identified during previous investigations. Additionally, the investigation suggested that the TarGOST® system, while an effective screening tool, should not be utilized as a stand-alone determination of the presence or absence of MGP-related NAPL contamination. It was however effective when utilized in conjunction with visual observations and laboratory testing. This RIR has previously referenced TAGM RSCOs because they were the cleanup criteria that were in effect at the time the prior environmental investigations occurred. Pursuant to New York Environmental Conservation Law (ECL) 27-1415(6), NYSDEC developed the Chapter IV, Subchapter B, Part 375, Subpart 375-6: Remedial Program Soil Cleanup Objectives Table 375-6.8(a): Unrestricted Use Soil Cleanup Objectives and Table 375-6.8(b): Restricted Use Soil Cleanup Objectives, effective December 14, 2006. The analytical results generated during this RIR have been compared to Table 375-6.8(a): Unrestricted Use Soil Cleanup Objectives. Table 5-3 lists the SCOs from both 375-6.8(a) and 375-6.8(b) for reference purposes. The following is a summary for this sampling program.

Confirmatory Borings Compared to TarGOST®

Results from the TarGOST® screening were used to further delineate areas of known impact, to help focus the locations of soil borings and monitoring wells and to prepare a response map from TarGOST® logs. During the remedial investigation, the findings from the TarGOST® screening appeared to correspond well with the visual observations of MGP related NAPL.

According to documentation from Dakota, the TarGOST® device responds "almost exclusively to the NAPL found at former ... MGPs". The TarGOST® equipment must be normalized (calibrated) against a known fluorescence emitting reference (RE) material prior to each down-hole reading. The TarGOST® results are presented as a percent of the reference material (%RE). Other information by Dakota indicates it is important to note that oil-like material fluoresces more readily than tar-like material.

The fluorescence relationship was evident during the field screening in comparing the results from SB-67 (rear of 96 West Street property) and SB-94 (located in the Apartment Complex parking lot). The material within SB-94 consisted of what the field geologist characterized as a low viscosity "tar-saturated" matrix; the highest TarGOST® signal at this location was 630.6 %RE at a single point (average approximately 150 %RE). The material within SB-67 consisted of multiple thin layers of oil-like material; the highest TarGOST® signal was 1200 %RE at a single point (average approximately 300 %RE). Analytical samples from these locations reported a total PAH concentration in SB-67 (where the oil-like material was found) was 2,089 mg/kg, whereas the highest total PAH concentration in SB-94 was 28,350 mg/kg.

Therefore, the conclusions made based upon the use of this tool in the investigation were that the TarGOST® results should be considered along with the visual observations and analytical results, and should not be used alone to delineate impacts.

Former MGP Site

6.1.1 TarGOST® Findings

Two TarGOST® borings, SB-02 and SB-113, were advanced on the Former MGP Parcel. TarGOST® boring SB-02 was advanced at the location of former boring/current well MW-02 but refusal was encountered at approximately 6.34' bgs so the boring location was off-set and designated SB-02A. The TarGOST® log for SB-02A appears to show MGP-related NAPL from 8 to 12 feet bgs. This does not correspond well to the depths of product observed during the 1997 installation of MW-02 of 13' to 18'. This contrast is likely the result of operation error not noted at the time of the investigation.

TarGOST® boring SB-113 was advanced at the location of CMX boring SB-113. The TarGOST® log for SB-113 shows MGP-related NAPL from 8.0 to 8.5 feet, 9.5 to 10.0 feet, and 13 feet to 15 feet bgs. This corresponds with the visual observations of multiple thin layers of brown black tar like material from 6.5 to 14 feet bgs.

6.1.2 Analytical Results – VOCs

All soil samples collected on the Former MGP Site were analyzed for VOC's. Analytical results indicate that VOCs were not detected above NYSDEC Part 375 Soil Cleanup Objectives (SCOs) in samples collected from the south side in the vicinity of the former purifying room (SB-108 and SB-109), from the southeast side in the vicinity of the former coal house (SB-110 and SB-128), and from the center (SB-116 and SB-117) and west side (SB-118) of the Former MGP Site.

Analytical results indicate that VOCs, specifically BTEX compounds, were detected above NYSDEC Part 375 Soil Cleanup SCOs in samples collected from the southeast side in the vicinity of the former coal shed and former coke house (SB-111B and SB-112A/B), center (SB-113 and SB-114), west corner (SB-115), east edge of the holder (SB-119) and east corner near the former iron oil tank (SB-129) of the Former MGP Site. Vertical delineation of NAPL (Oil-like and Tar-like Material) is based on the visual results from logged borings. Vertical delineation was achieved at all of these locations with the exception of SB-112A/B; it is believed that the BTEX detected at this depth (32' bgs to 33.0' bgs) may be related to ground water contamination, as the soil boring log indicates no visual evidence of MGP-like contamination at this depth and the PAHs were below the NYSDEC Part 375 Soil SCOs.

Analytical soil results (for all compounds) for samples collected on the Former MGP Site are presented on Table 5-3, and on Plate 5A and 5B.

6.1.3 Analytical Results – PAHs

All soil samples collected on the Former MGP Site were analyzed for PAHs. PAHs were not detected above NYSDEC Part 375 SCOs across the majority of the Former MGP Site. No exceedances were noted in samples collected from in the vicinity of the former purifying room (SB-108 and SB-109), in the vicinity of the former coal house (SB-110), in the vicinity of the former coal shed (SB-112A/B), center (SB-113, SB-116 and SB-117), west corner (SB-115), and west side (SB-118) of the Former MGP Site.

Analytical results identified PAHs at concentrations above NYSDEC Part 375 SCOs in samples collected in the vicinity of the former coal shed and former coke house (SB-111B and SB-128), former tar well (SB-114), east edge of the holder (SB-119), and east corner near the former iron oil tank (SB-129) on the Former MGP Site. Vertical delineation was achieved at all of these locations based upon the analytical results for deeper samples.

6.1.4 Analytical Results – Metals

All soil samples collected on the Former MGP Site were analyzed for TAL Metals. Analytical results indicated that no metals were detected above NYSDEC Part 375 SCOs in any samples, with the exception of nickel, which was identified in samples collected from the east edge of the holder (SB-119) and east corner near the former iron oil tank (SB-129) on the Former MGP Site. Nickel is not an MGP-related contaminant and these exceedances may be related to fill placed on the Former MGP Site. Vertical delineation was achieved at both of these locations based upon the analytical results for deeper samples.

6.1.5 Analytical Results - Cyanide

All soil samples collected on the Former MGP Site were analyzed for total cyanide. Analytical results indicate that cyanide was not detected above NYSDEC Part 375 SCOs at any sample location.

6.1.6 NAPL Observations

NAPL was observed in borings advanced in the vicinity of the former coal shed and former coke house (SB-111B), former tar well (SB-113 and SB-114), east edge of the holder (SB-119), and east corner near the former iron oil tank (SB-129) of the Former MGP Site. The nature of these NAPL observations is summarized on Table 7-2 and on Plate 6A. In general, NAPL appeared as thin layers of brown and black oil-like material and tar-like material that was encountered at 10.0' bgs (SB-111), 6.5' bgs (SB-113), 8.5' bgs (SB-114), 10.5' bgs (SB-119) and 13.5' bgs (SB-129). The greatest thickness of material was observed in SB-113 (9.5' thick), SB-114 (10.6' thick), and SB-119 (11.5' thick).

NAPL was not observed in borings in the vicinity of the former purifying room (SB-108 and SB-109), in the vicinity of the former coal house (SB-110), at the southeast side in the vicinity of the former coal shed (SB-112A/B), west corner (SB-115), center (SB-116 and SB-117), west side (SB-118) or the southeast side in the vicinity of the former coal house (SB-128) on the Former MGP Site.

Apartment Complex Properties

6.1.7 TarGOST® Findings

A total of forty-one TarGOST® borings were advanced around the Apartment Complex properties. Twelve borings were advanced during the 2008 RI (SB-61, SB-62, SB-63, SB-64, SB-68, SB-75, SB-78, SB-85, SB-86, SB-94, SB-100 and SB-107) to compare visual observations of the presence or absence of NAPL with the TarGOST® findings. MGP NAPL identified by TarGOST agrees with observations at each of the boring locations.

6.1.8 Analytical Results - VOCs

Analytical soil results (for all compounds) for samples collected on the Apartment Complex properties are presented on Table 5-3, and on Plate 5A and 5B. All soil samples collected at the Apartment Complex were analyzed for VOCs. VOCs were not detected above NYSDEC Part 375 SCOs in samples collected from the front of 111 Maple Avenue (SB-61), the rear of 111 Maple Avenue (SB-62), the area in front of 113 and 115 Maple Avenue (SB-64), and the Village of Haverstraw property adjacent to 143 Maple Avenue (SB-107).

VOCs were identified at concentrations above NYSDEC Part 375 SCOs in samples collected from the front of 117 Maple Avenue (SB-45A), the paved parking area to the rear of 111 Maple Avenue (SB-63), the paved parking area to the rear of 100 West Street (SB-75), the paved parking area to the rear of 127 Maple Avenue (SB-78) and the area in front of 131 and 133 Maple Avenue (SB-85). These exceedances were limited to BTEX compounds.

Confining units identified at sample locations 119 Maple Avenue (SB-68), to the rear of 131 and 133 Maple Avenue (SB-86), to the rear of 137 Maple Avenue (SB-94) and to the rear of the two-story brick structure on West Street (SB-100) are believed to prevent the vertical migration of contaminants and deep samples were not collected at either location. Where the clay units were not encountered deeper samples which did not exceed NYSDEC Part 375 SCOs for BTEX compounds were collected from the western end of the paved parking area (SB-63), the paved parking area to the rear of 100 West Street (SB-75), the paved parking area to the rear of 127 Maple Avenue (SB-78) and the area in front of 131 and 133 Maple Avenue (SB-85) (Table 7-1).

6.1.9 Analytical Results - PAHs

All soil samples collected at the Apartment Complex Properties were analyzed for PAHs. Analytical results indicate that PAHs were not detected above NYSDEC Part 375 SCOs in samples collected from the front of 111 Maple Avenue (SB-61), the front of 119 Maple Avenue (SB-68) and the Village of Haverstraw property adjacent to 143 Maple Avenue (SB-107).

Analytical results indicate that PAHs were detected above NYSDEC Part 375 SCOs in samples collected from SB-45A (front of 117 Maple Avenue), SB-62 (rear of 111 Maple Avenue), SB-63 (parking lot behind 111 Maple Avenue), SB-64 (front of 115 Maple Avenue), SB-75 (north side of parking lot), SB-78 (parking lot behind 127 Maple Avenue), SB-85 (front of 131 Maple Avenue), SB-86 (rear of 131 Maple Avenue), SB-94 (rear of 137 Maple Avenue) and SB-100 (parking lot behind 139 Maple Avenue).

Confining units identified at these sample locations is believed to prevent the vertical migration of contaminants and deep soil samples were not collected.

Figures 5A and 5B present a summary of the subsurface soil analytical results.

6.1.10 NAPL Observations

NAPL was observed in borings SB-45A, SB-64, SB-68, SB-75, SB-78, SB-85, SB-86, SB-94, and SB-100. The following is a tabular summary of the NAPL observations for borings advanced at the Apartment Complex.

Boring Number	Surface Elevation (ft. msl)	Top of NAPL (ft bgs)	Bottom of NAPL (ft bgs)	Thickness of NAPL (ft)	Total Depth Logged (ft bgs)	NAPL Description
SB-45A	18.8	9.2	9.3	0.1	16.0	Brown, black oil material, thin layer at 9.2', and from 9.6' to 9.7'
SB-64	18.1	10.0	10.9	0.9	14.0	Faint naphthalene odors 8.9' to 9.2'; sheen and blebs of oil material from 10.0' to 10.8'; brown oil material from 10.8' to 10.9'
SB-68	17.3	8.8	9.0	0.2	20.0	Thin layer of oil material observed at 8.8'
SB-75	11.6	8.0	17.5	9.5	20.0	Gasoline like sheen, staining from 1.5' to 3.0'; oil material from 8.0' to 8.8'; oil material 16.5' to 17.5'
SB-78	12.2	8.0	12.7	4.7	16.0	oil material at 5.5'; pinpoints of brown oil material from 8' to 9'; oil material staining from 12' to 12.7'
SB-85	13.8	13.0	13.7	0.7	18.0	brown oil / tar material from 13.0' to 13.7'
SB-86	11.8	8.0	16.5	>8.5	16.5	Heavy tar material from 8' to 8.6'; 8.6' to 9.7' oil; 12.0 to 13.5' oil material; 16.0' to 16.5' staining
SB-94	11.3	4.5	12.0	>7.5	12.0	Heavy black tar from 4.5' to end of the boring at 12'
SB-100	12.8	8.2	9.3	1.1	16.0	8.2' to 8.7' Black brown NAPL, naphthalene odors; 8.7' to 9.0' sand coated with tar and oil; 9.0' to 9.3' thin layer of oil / tar

NAPL was not observed at boring locations SB-61, SB-62, SB-63 or SB-107.

West Street Properties

6.1.11 TarGOST® Findings

A total of thirteen TarGOST® borings were advanced around the West Street Properties, terminating at either till or a confining layer. Thirteen borings were advanced here during the 2008 RI (SB-67, SB-71, SB-80, SB-84, SB-88, SB-92, SB-120, SB-121, SB-122, SB-123, SB-124B, SB-125, and SB-126) to compare visual observations of the presence or absence of NAPL with the TarGOST® findings. Six additional borings were drilled to further delineate the extent of impact (SB-130, SB-131, SB-139, SB-140, SB-141, and SB-142).

In all cases but one, the MGP NAPL identified by TarGOST® agrees with the visual observations in the 13 confirmatory borings. The single exception was SB-124B.

In SB-124B, TarGOST® indicated possible presence of MGP NAPL at a depth of 7.5 to 8.5 feet. In the confirmatory boring, fill material, consisting of buried asphalt roofing shingles were observed at this depth. When these findings were discussed with Dakota, they indicated it was very likely that these shingles and not NAPL were the likely cause of this signal response.

6.1.12 Analytical Results - VOCs

All soil samples collected at the West Street Properties were analyzed for VOCs. Analytical results indicate that VOCs were not detected above NYSDEC Part 375 SCOs in samples collected from SB-80 (104 West Street), SB-84 (106 West Street), SB-88 (106 West Street), SB-92 (116 West Street), SB-120 (106 West Street), SB-123 (100 West Street), SB-124 (96 West Street), SB-131 (100 West Street), or SB-142 (106 West Street).

Analytical results indicate that VOCs, specifically BTEX compounds, were detected above NYSDEC Part 375 SCOs in soil boring SB-67 (96 West Street, 13.5'-14.0', 16.5'-17.0'), SB-71 (100 West Street, 12.0'-12.5', 13.5'-14.0'), SB-121 (106 West Street, 13.0'-13.5'), SB-130 (96 West Street, 12.0'-13.0'), SB-139 (100 West Street, 13.0'-13.5'), SB-140 (104 West Street, 9.5'-10.0'), and SB-141 (104 West Street, 12.5'-13.0'). Vertical delineation was achieved at all of these locations based upon the analytical results for deeper samples.

6.1.13 Analytical Results - PAHs

All soil samples collected at the West Street Properties were analyzed for PAHs. Analytical results indicate that PAHs were not detected above NYSDEC Part 375 SCOs in samples collected from SB-92 (116 West Street), SB-120 (106 West Street), SB-123 (100 West Street), SB-124 (96 West Street), or SB-131 (100 West Street).

Analytical results indicate that PAHs were detected above NYSDEC Part 375 SCOs in samples collected from SB-67 (96 West Street, 13.5'-14.0', 16.5'-17.0'), SB-71 (100 West Street, 12.0'-12.5', 13.5'-14.0'), SB-80 (104 West Street, 12.0'-12.5'), SB-84 (106 West Street, 12.0'-12.5'), SB-88 (106 West Street, 5.5'-6.0'), SB-121 (106 West Street, 13.0'-13.5'), SB-130 (96 West Street, 12.0'-13.0', 14.0'-14.5'), SB-139 (100 West Street, 13.0'-13.5', 16.0'-16.5'), SB-140 (104 West Street, 9.5'-10.0'), SB-141 (104 West Street, 12.5'-13.0') and SB-142 (106 West Street, 8.2'-8.7'). Vertical delineation was achieved at all of these locations based upon the analytical results for deeper samples with the exception of SB-88 which was visually delineated by the clay layer.

6.1.14 NAPL Observations

The following table summarizes the NAPL observations.

West Street NAPL Observations

Boring Number	Surface Elevation (ft. msl)	Top NAPL (ft bgs)	Bottom of NAPL (ft bgs)	Thickness of NAPL (ft)	Total Depth Logged (ft bgs)	NAPL Description
SB-67	13.7	9.8	16.1	6.3	20.0	Oil material from 9.8' to 10.5'; 13' to 13.5'; 13.5' to 13.7'; 13.7' to 14.1'; 16.0' to 16.1'
SB-71	16.6	12.2	16.7	4.5	20.0	Multiple Thin Layers of oil material between 12.2' and 14.5'; blebs of oil material from 16.0' to 16.7'
SB-84 / 84A	13.1	12.0	12.3	0.3	16.0	Trace blebs oil from 12.0' to 12.3'
SB-88	11.3	4.8	5.8	1.0	24.0	Oil material from 4.8 to 5.9'
SB-121	11.8	12.3	13.5	1.2	20.0	Oil material blebs from 12.3' to 13.5'
SB-130	15.9	10.8	13.5	2.7	20.0	Trace sheen and blebs of oil material from 10.8' to 11.0', 12.0' to 12.2', 13.0' to 13.1', 13.4' to 13.5'
SB-139	18.0	12.3	13.3	1.0	20.0	Blebs at 12.3', 12.6', 13.0', 13.3' within the organic clay / peat
SB-140	15.6	9.5	10.3	0.8	20.0	Trace blebs of oil from 9.5' to 10.3' in the organic clay peat layer
SB-141	15.9	9.8	13.1	3.3	16.0	Trace blebs of oil material in the organic clay peat 9.8' to 10.2'; 12.0' to 13.1'
SB-142	12.4	8.2	8.7	0.5	16.0	Trace oil material blebs from 8.2' to 8.6'

NAPL was not observed in borings SB-80 (96 West Street), SB-92 (96 West Street), SB-120 (96 West Street), SB-123 (96 West Street), SB-124 (96 West Street) or SB-131 (96 West Street).

Alleyway

Oil-like material was observed within SB-132, SB-133 and SB-138. Given the locations of these borings, this area was likely impacted by the former 93B MGP site. It is not known to what extent NAPL impact extends to the north toward the rear of properties at 86, 88 or 90 West Street although based on the configuration of the former pond and local groundwater flow gradients, NAPL impact is not expected to extend much further than the investigation limits. NAPL was not identified in SB-134.

Groundwater Results

Groundwater data are summarized in Table 5-5 and on Plates 7A and 7B.

6.1.15 Presence of DNAPL

DNAPL was detected in monitoring well MW-02 on the Former MGP Site. In accordance with the SRIWP, this well was not sampled during the recent sampling event.

DNAPL was detected in monitoring wells MW-31S and MW-32S on the Apartment Complex. These wells were also not sampled.

At the conclusion of sampling MW-04, a bleb of black/brown tar material was observed on the exterior of the sampling pump. No measurable product was detected within the well casing, and no other DNAPL was detected on any other equipment leaving the well.

6.1.16 Apartment Complex Shallow Water Table Wells

Analytical results for groundwater samples collected from the shallow monitoring wells on the Apartment Complex are summarized (from Table 5-5) in the following table relative to the NYSDEC Ambient Water Quality Standards and Guidance Values and/or Groundwater Effluent Limitations.

Apartment Complex Shallow Water Table Wells

MW	Sampling Date	Individual BTEX	Total BTEX	Individual PAH	Total PAH		
MW-20S	6/11/08	Exceeded	48.7 μg/l	Exceeded	214.6 µg/l		
MW-21	6/10/08	ND	ND	ND	ND		
MW-28S	6/9/08	Exceeded	393.4 µg/l	Exceeded	467.9 µg/l		
MW-29S	6/9/08	Exceeded	335.8 µg/l	Exceeded	400.2 μg/I		
MW-55	6/10/08	ND	ND	No Exceedances	1.3 µg/l		
MW-60	6/10/08	ND	ND	No Exceedances	17.8 µg/l		
MW-61S	6/11/08	Exceeded	898.0 µg/l	Exceeded	9,633.0 µg/l		
MW-63S	6/5/08	Exceeded	33.9 µg/l	Exceeded	103.3 µg/l		
MW-83S	6/9/08	ND	ND	ND	ND		
MW-85	6/10/08	ND	ND	Exceeded	33.1 µg/l		
MW-107	6/10/08	ND	ND	ND	ND		
MW-31S	Contained DNAPL, not sampled						
MW-32S	Contained DNAPL, not sampled						

µg/I = micrograms per liter

ND = non detect

6.1.17 Apartment Complex Deep Water Table Wells

Analytical results for groundwater samples collected from the deep monitoring wells on the Apartment Complex are summarized (from Table 5-5) in the following table relative to the NYSDEC Ambient Water Quality Standards and Guidance Values and/or Groundwater Effluent Limitations.

Apartment Complex Deep Water Table Wells

MW	Sampling Date	Individual BTEX	Total BTEX	Individual PAH	Total PAH
MW-20D	6/11/08	ND	ND	ND	ND
MW-28D	6/9/08	ND	ND	No Exceedances	15.7 μg/l
MW-28*	6/9/08	No Exceedances	0.7 µg/l	No Exceedances	17.0 μg/l
MW-29D	6/9/08	ND	ND	ND	ND
MW-31D	6/6/08	ND	ND	ND	ND
MW-32I	6/6/08	Benzene 2.4 µg/l	2.4 µg/l	No Exceedances	115.5 µg/l

ND = non detect

µg/I = micrograms per liter

* = Duplicate sample

6.1.18 Former MGP Site and Head Start Property Shallow Water Table Wells

Analytical results for groundwater samples collected from the shallow monitoring wells on the Former MGP Site and Head Start Property are summarized (from Table 5-5) in the following table relative to the NYSDEC Ambient Water Quality Standards and Guidance Values and/or Groundwater Effluent Limitations.

Former MGP Site and Head Start Property Shallow Water Table Wells

MW	Sampling Date	Individual BTEX	Total BTEX	Individual PAH	Total PAH			
MW-01	6/5/08	ND	ND	ND	ND			
MW-02	Contained DNAPL, not sampled							
MW-03	6/5/08	Exceeded	6,100.0 µg/l	Exceeded	2,301.0 µg/l			
MW-04	6/18/08	Exceeded	231.0 µg/l	Exceeded	2,537.3 µg/l			
MW-05	6/18/08	ND	ND	No Exceedances	14.8 µg/l			
MW-06	6/18/08	ND	ND	ND	ND			
MW-07	6/18/08	ND	ND	ND	ND			
MW-08	4/24/08	No Exceedances	0.5 μg/l	ND	ND			
MW-09	4/24/08	Exceeded	57.0 μg/l	Exceeded	379.3 µg/l			
MW-10	6/6/08	ND	ND	No Exceedances	0.5 μg/l			
MW-11*	4/24/08	ND	ND	ND	ND			
MW-18	6/5/08	No Exceedances	4.3 µg/l	No Exceedances	0.6 µg/l			
MW-24*	4/24/08	ND	ND	No Exceedances	0.5 µg/l			

ND = non detect

6.1.19 Former MGP Site Deep Water Table Well

MW-07 is the only deep water table well present on the Former MGP Site. Analytical results from MW-07 did not identify any compounds at concentrations in excess of their respective NYSDEC Ambient Water Quality Standards and Guidance Values or Groundwater Effluent Limitations.

6.1.20 Volatile Organic Compounds Groundwater Summary

As shown on Plate 9B, total VOC contamination within ground water is present at the highest concentrations in the eastern portion of the Former MGP Site and at the northern portion of the Apartment Complex.

µg/I = micrograms per liter

^{* =} Monitoring well located on Head Start Property

The highest concentration of total BTEX (20,720 μ g/l) was previously detected in the 2001 sample collected at MW-18, where NAPL was likely entrained in the sample because in the 2004 sample from this well, the BTEX concentration was reduced to 4.4 μ g/l. During the 2008 sampling event, BTEX concentrations of 6,100.0 μ g/l and 231.0 μ g/l were reported at MW-03 and MW-04, respectively. All three of these wells are located on the Former MGP Site.

During the 2008 sampling event, the highest total BTEX concentration at the Apartment Complex, 898.0 μ g/l, was detected in MW-61S located in the front yard at 111 Maple Avenue.

The horizontal extent of shallow VOC contamination in groundwater has been determined to the east at MW-83S, to the southeast at MW-60S, to the south by MW-85 and MW-06, and to the southwest by MW-01 and MW-10, based upon the non detectable levels of BTEX (Plate 9B). The horizontal extent of shallow VOC contamination in groundwater has not been determined to the north and northwest based upon the based upon the presence of individual BTEX compounds in excess of NYSDEC Ambient Water Quality Standards and Guidance Values and/or Groundwater Effluent Limitations in MW-28S, MW-63S and MW-61S (Plate 9B). However, based on the observed groundwater flow direction it is unlikely that impact extends beyond the project limits.

6.1.21 PAH Compounds Groundwater Summary

Total PAH contamination within the ground water is present at multiple locations as shown on Plates 7A and 7B, and Plate 9A. The discussion here is regarding total PAHs, in cases where only constituent PAH compounds exceeded individual PAH NYSDEC Ambient Water Quality Standards and Guidance Values or Groundwater Effluent Limitations.

- MGP Site Near the Former Holder Pad, Eastern Site During the 2008 sampling event, total PAHs were detected at a concentration of 2,304 μg/l in MW-03 and were detected at a concentration of 2,537 μg/l in MW-04. The concentration of total PAHs in MW-18 was 0.6 μg/l.
- MGP Site Near the Former Coke House and Former Iron Oil Tank MW-02 was not sampled during the 2008 sampling event, due to the presence of NAPL. During the

- 2004 sampling event, total PAHs were detected in MW-02 at a concentration of $11,593 \,\mu\text{g/l}$.
- MGP Site Near the Former Coal House During the 2008 sampling event, total PAHs were detected at a concentration of 379.3 µg/l in MW-09. During this sampling event, no PAHs were detected in MW-08, the monitoring well down gradient of MW-09.
- Apartment Complex Property During the 2008 sampling event, total PAHs were detected in seven monitoring wells (MW-20S, MW-28S, MW-29S, MW-31S, MW-61, MW-63S and MW-85) at the Apartment Complex, ranging in concentration from 21 μg/l (MW-31S) to 9,633 μg/l (MW-61). MW-61 is located at the southwest corner of the Apartment Complex Property, at 111 Maple Avenue. During this sampling event, there were no PAH exceedances in the corresponding deeper wells (MW-20D, MW-28D, MW-29D, MW-32D). There were no PAH exceedances in MW-21, MW-31D, MW-55, MW-60, MW-83, and MW-107.
- West Street Properties Five temporary well points were installed and sampled on these properties (TWP-80, TWP-84, TWP-92, TWP-120, TWP-123, TWP-124). No PAHs were detected in any of these five samples.

6.1.22 Inorganic Analytes Ground Water Summary

Cyanide was not detected in any of the wells sampled during the RI.

Ground Water Flow Direction - Shallow Water Table Wells

A shallow ground water potentiometric surface map (Plate 8) was prepared using data from the shallow water table wells (MW-01, MW-02, MW-03, MW-08, MW-09, MW-10, MW-11, MW-18, MW-24, MW-20S, MW-21, MW-28S, MW-29S, MW-31S, MW-32S MW-55, MW-60, MW-61S, MW-63S, MW-83S, MW-85S, and MW-107S). Surveyed groundwater elevation data are also presented in table 5-4.

Monitoring wells along Maple Avenue (MW-04, MW-05, MW-06, and MW-07) and on the Apartment Complex (MW-20D, MW-21, MW-28D, and MW-29D) are screened within the sands and gravels below the clay unit. Groundwater elevations from these monitoring wells were not used in the preparation of the shallow ground water potentiometric surface map. During the June 2008 ground water level gauging event, temporary casing extensions were used to measure ground water elevations in these wells. The water levels indicate the

presence of a semi-confined portion of the aquifer beneath the clay unit. Groundwater was not observed seeping from the slope that parallels Maple Avenue, which supplies additional evidence of the confining nature of the clay unit.

There appear to be two components of ground water flow present in the shallow aquifer. It appears that flow direction at the Former MGP Site is in general agreement with the topography, flowing from southwest to northeast. At the Apartment Complex, the groundwater flow direction appears to follow the former pond/stream structure, from west to east. CMX observed a "mounded" groundwater elevation at MW-21S which yielded an anomaly in the groundwater flow pattern with respect to the measured elevations at the other monitoring wells. Overall, groundwater in this portion of the Study Area appears to follow the topography, as the West Street Properties and the Apartment Complex Properties are at a higher elevation than the center of the former pond which corresponds to the parking lot on the north side of the Apartment Complex.

Soil Vapor Results

6.1.23 Former MGP Site Property Line adjacent to 146 Maple Avenue (Head Start)

On April 24, 2008 a soil vapor investigation was performed along the east property line of the Former MGP Site and the Head Start property at 146 Maple Avenue. Four soil vapor samples were collected using stainless steel screens implanted below the ground surface using a Geoprobe™ direct push rig (SV-01, SV-02, SV-02 and SV-04 on Plate 2). One ambient air sample, AMB-01-4.5, was also collected at the fence line at a height of 4.5' above ground surface. Findings from this investigation indicate that migration of soil vapor from the Former MGP Site onto the Head Start property is not a concern (see also section 5.1.13).

Fifteen total VOC chemicals of concern (COCs) were detected in the four soil vapor samples and one ambient air sample collected at the Former MGP Site along the property line with 146 Maple Avenue. Of these COCs, ethylbenzene was detected above the NYSDOH Soil Vapor Intrusion Guidance Table C1 (Study of Volatile Organic Chemicals in Air of Fuel Oil Heated Homes – Indoor Air) 75th percentile level and below the 90th percentile level in one sample. The various xylene isomers were detected above the Table C1 75th percentile and below the 90th percentile in two samples and above both 75th and 90th percentile in one sample. Naphthalene, a COC typically associated with former MGP operations, was not detected in any of the samples.

The absence of naphthalene and the fact that most of the other COCs are below the Table C-1 75th percentile indicate that migration of soil vapor toward the Head Start building is not a concern. This data is also supported by the absence of groundwater impacts in the monitoring wells on the Head Start property and at the Former MGP Site eastern property line. The full results from this investigation were submitted to NYSDEC via letter report dated July 2008.

GEI Consultants, Inc. conducted a soil vapor investigation at the 146 Maple Avenue property in 2001 (GEI Consultants, Inc. March 19, 2001 letter report to NYSDEC) in which similar compounds were detected at similar concentrations. NYSDOH and NYSDEC concurred with GEI's conclusions in letters dated April 16, 2001 and May 1, 2001, respectively. It should be noted that this study was conducted prior to the issuance of the NYSDOH Soil Vapor Intrusion Guidance document.

6.1.24 Soil Vapor – Rear Yards of West Street Properties

In May 2008, CMX collected soil vapor samples (SV-80, SV-92, SV-120, SV-123 and SV-124B, Plate 2) at the rear yards of five residences at West Street (104 West, 116 West, 106 West, 100 West and 96 West, respectively).

Twenty-four total VOC COCs plus naphthalene were detected in the five soil vapor samples. One ambient air sample, AMB-02-4.5 was also collected in this vicinity. Fourteen of these VOCs are COCs that may be associated with former MGP operations as well as other sources (i.e., gasoline service stations, dry cleaning operations, home heating oil discharges). Of these, benzene, 1,2,4-trimethylbenzene and 1,3,5-trimethylbenzene, were detected above the Table C1 75th percentile and below the 90th percentile in one sample, SV-92 (116 West Street). Ethylbenzene and the various xylene isomers were detected above both the Table C1 75th and 90th percentile levels in SV-92 (116 West Street). Sample SV-80 (104 West Street) identified n-hexane, cyclohexane, and n-heptane at concentrations above both the Table C1 75th and 90th percentile levels and n-octane above the Table C1 75th percentile but below the 90th percentile. Naphthalene was detected in three of the soil vapor samples at concentrations ranging from 2.6 micrograms per cubic meter (µg/m³) to 17.0 µg/m³. The NYSDOH Table C1 does not contain an entry for naphthalene. The compounds detected during this soil vapor investigation are summarized in the following table.

West Street Properties Samples Summary of Detections

Compound		Sampl	NYSDOH Indoor Air Guidance (µg/m³)					
		104 West Street	116 West Street	106 West Street	100 West Street	96 West Street	75 th Percentile	90 th Percentile
	AMB-02-4.5	SV-80	SV-92	SV-120	SV-123	SV-124B		
Dichlorodifluoromethane	3.0	U	3.2	2.8	2.9	3.0	4.1	15.0
Chloromethane	1.4	U	U	U	U	U	1.8	3.3
1,3-Butadiene	U	U	U	U	U	U	NA	NA
Trichlorofluoromethane	1.5	1.6	1.3	1.5	2.0	2.4	5.4	17.0
Acetone	U	31.0	55.0	55.0	31.0	36.0	52.0	110.0
Methyl Ethyl Ketone	U	4.1	7.4	7.1	3.5	3.2	7.3	16.0
Benzene	U	1.1	9.3	U	U	U	5.9	15.0
Toluene	1.0	1.1	4.5	U	0.94	U	25.0	58.0
Tetrachloroethene	U	1.9	7.5	U	16.0	5.9	1.1	2.9
Ethylbenzene	U	1.1	14.0	U	U	U	2.8	7.3
Xylene (m,p)	U	3.0	13.0	U	U	U	4.6	12.0
Xylene (o)	U	1.0	5.6	U	U	U	3.1	7.6
Xylene (total)	U	4.0	18.0	U	U	U	NA	NA
4-Ethyltoluene	U	1.5	8.8	U	1.1	U	NA	NA
1,2,4-Trimethylbenzene	U	2.3	5.9	U	1.2	U	4.3	9.5
1,3,5-Trimethylbenzene	U	U	2.9	U	U	U	1.7	3.6
n-Hexane	U	81.0	U	U	U	U	5.9	18.0
Cyclohexane	U	34.0	U	U	U	U	2.6	8.1
Carbon Tetrachloride	U	2.6	U	U	U	U	0.6	0.8
2,2,4-Trimethylpentane	U	7.0	U	U	U	1.5	NA	NA
n-Heptane	U	82.0	U	U	0.86	U	7.6	19
Carbon Disulfide	U	U	7.5	U	3.4	3.1	NA	NA
Chloroform	U	U	2.9	1.3	3.0	2.7	0.5	1.4
Methyl Butyl Ketone	U	U	U	U	2.3	5.9	NA	NA
Naphthalene	U	U	17.0	U	3.3	2.6	NA	NA
n-Pentane	U	11.0	U	2.9	19.0	6.8	NA	NA
n-Octane	U	3.1	U	U	U	U	2.3	4.2
n-Decane	U	U	1.0	U	U	U	6.6	16.0
n-Dodecane	U	U	U	U	2.1	U	3.9	11.0
Indane	U	U	2.1	U	U	U	NA	NA

μg/m³ = micrograms per cubic meter

NA = Not available

U = Not detected

Bold = Exceedance of NYSDOH Study of Volatile Organic Chemicals in Air of Fuel Oil Heated Homes – Indoor Air 75th Percentile

Bold and Shaded = Exceedance of NYSDOH Study of Volatile Organic Chemicals in Air of Fuel Oil Heated Homes – Indoor Air 75th and 90th percentiles

CMX reviewed information prepared by RETEC summarizing a soil vapor investigation (soil gas and indoor air) they conducted in February 2005 in all of the Apartment Complex buildings. RETEC's soil vapor VOC results indicated similar, and in some cases higher, concentrations when compared to the recent CMX soil vapor data. RETEC's samples also detected additional VOCs (i.e., 2,3-dimethylpentane, 2-methylpentane) compared to those identified by CMX. Elevated levels of these COCs were not detected in the indoor air samples that were collected. Naphthalene was not detected in the RETEC samples.

CMX believes that the shallow groundwater elevation at SV92 collected at 116 West Street likely resulted in increased concentrations of naphthalene and 1,2,4-trimethylbenzene.

VOC concentrations detected in the soil vapor during the 2005 RETEC investigation did not result in elevated concentrations of these compounds in the indoor air in nearby buildings. Based on the concentrations detected in the soil vapor during the latest investigation by CMX (which are lower, in some cases, than those detected by RETEC in its 2005 work), soil vapor migration resulting in indoor air impacts is unlikely. However, because of the elevated VOC concentrations in samples SV-80, SV-92, SV-120, SV-123 and SV-124B, the potential for vapor intrusion into nearby structures at 102, 104 and 116 West Street cannot be eliminated. Therefore, the NYSDEC and NYSDOH recommended in August 2008 that 0&R's consultants return to the residences during the upcoming heating season to complete the soil vapor intrusion investigation. In response to these findings, 0&R advised the potentially impacted property owners in August 2008 that supplemental investigation including the collection of sub slab soil vapor and indoor air samples will be required.

6.1.25 Other Impacts – Former MGP Site

A faint odor similar to purifier material (i.e., sulfur odor) was noted at SB-128, though sheens were observed at this location as well.

SECTION 7 CONTAMINANT FATE AND TRANSPORT

The following contaminant fate and transport analysis has been developed using data presented in previous sections of this report in conjunction with the physical characteristics and surroundings of the Study Area, the groundwater hydrology, geology, Former MGP Site history, nature of the chemical compounds encountered during the sampling and analysis programs, any apparent trends in the distribution of these materials, migration pathways and receptors in the Study Area.

Through an understanding of the contaminants, sources, migration pathways, and potential receptors, the need for remedial actions to protect human health and the environment can be evaluated.

Contaminants

The contaminants identified within the Study Area include NAPL, VOCs (primarily BTEX compounds), PAHs and metals at concentrations exceeding the applicable standards.

7.1.1 NAPL

For the purpose of this evaluation, NAPL is defined as visually tar-saturated material (non-residual) or soil containing tar blebs or tar lenses (residual NAPL). NAPL was observed in several borings and monitoring wells in the Study Area. Plate 6A depicts the locations where NAPL was encountered. Based on the collected data and field observations, NAPL appears to be restricted to relatively shallow, higher permeability overburden soils. Vertical migration of NAPL is likely restricted by clay layers and by the underlying till unit within the Study Area. The primary contaminants associated with NAPL are BTEX and PAHs.

Table 7-2 presents a tabular summary of NAPL observations utilized for the development of Figure 6A which presents a graphical depiction of NAPL distribution within the Study Area. It appears that releases of NAPL on the Former MGP Site generally migrated vertically through the permeable fill and alluvium units. Downward migration continued until the lower permeability till units or a more permeable sand lens was encountered. These permeability contrasts allowed for the accumulation of NAPL on the top of the till layer or lower permeability units prior to horizontal migration through higher permeability soils. The top of the till unit dips to the north (Figure 6) from the Former MGP Site toward the Apartment Complex. NAPL appears to have migrated from the Former MGP Site north toward Maple Avenue.

One area of concentrated NAPL accumulation was identified at the eastern end of the Apartment Complex. Tar characterized by low-viscosity NAPL was identified at this location. The residual impacts behind the apartment structures are likely the result of migration of tar-like materials in the former stream channel from the 93B Maple Avenue MGP site settling into the former pond. The 93B site and former stream leading to the former pond behind the apartments have been remediated.

No NAPL has been observed in the storm sewer culvert or exiting the storm sewer culvert throughout the various investigations therefore, NAPL tar does not appear to be entering the storm sewer system.

The till unit (and in some locations the clay layers) has restricted vertical migration of NAPL into deeper soil zones. No evidence of NAPL or odors was detected in the till at any of the locations in which the till was encountered. The till unit is present throughout the Former MGP Site, dipping to the north and northeast as depicted on Plate 10. Tar as NAPL, released in the vicinity of the tar well, iron oil tank, or the former holder, migrated downward to the till surface and appeared to have moved northerly along the confining till surface.

The occurrence of DNAPL at the Former MGP Site is limited in quantity with the exception of MW-02 at the former iron oil tank location, SG-2 and SB-14 at the former holder location, and SG3 at the former tar well location. A fingerprint analysis has identified the tar in well MW-02 as carbureted water gas tar.

NAPL in the subsurface will continue to be a source of groundwater contamination throughout the Study Area. As groundwater flows through subsurface material containing NAPL, BTEX and lighter-end PAHs sorbed to the subsurface materials will dissolve into groundwater. The heavier-end PAHs will generally remain sorbed to the soil and typically do not dissolve into groundwater.

7.1.2 PAHs, Cyanide and Metals

The surface of the Former MGP Site is primarily covered by grass and vegetation and some areas are gravel-covered. PAHs, cyanide, and metals were identified in surface soil at the Former MGP Site with the highest concentrations in the vicinity of some of the Former MGP Site structures.

These contaminants could potentially migrate via fugitive dust emissions, and/or dissolution of contaminants into surface water. PAHs and inorganics (cyanide and metals) do not readily volatilize, therefore volatilization is not a likely pathway for their migration.

Contaminants sorbed to soil particles could be transported as fugitive dust if exposed to wind erosion. PAHs exhibit varying degrees of binding affinity to organic matter and soil particles; this affinity is partly dependent upon their individual molecular structures. In general, the higher molecular weight PAHs are strongly sorbed and lighter molecular weight PAHs are less strongly sorbed. Therefore, the higher molecular weight PAHs are expected to remain sorbed to soils and could be transported as fugitive dust. Inorganics also generally exhibit an affinity to soil particles. The less vegetated areas of the site may be prone to transport of surface soils via fugitive dust emissions.

Contaminants sorbed to soil may dissolve in storm water which then infiltrates into the ground or runs off the site. PAHs have a varying degree of solubility. The lighter-end PAHs are more soluble, while the heavier-end PAHs are less soluble and typically do not dissolve into water. Cyanide typically present at MGP sites is in the form of ferric ferrocyanide ("Prussian Blue"). Ferric ferrocyanide is relatively insoluble in normal to low pH conditions. Metals may remain sorbed to the subsurface soils depending on subsurface oxidation-reduction conditions and the availability of anions with which the metals could bind. Metals that do not remain sorbed to subsurface soils could dissolve and be available for transport through the groundwater system. Given the nature of the inorganic compounds in the surface soil, dissolution of these compounds in surface water is likely not a major migration pathway.

Cyanide was detected in only one sample (SB-111B, 8.5' to 9' bgs depth interval) of soil at the Former MGP Site. The concentration found (0.73 mg/Kg) was below the NYSDEC Part 375 SCO of 27.0 mg/kg.

7.1.3 BTEX

BTEX compounds are highly volatile and therefore may be transported from subsurface soils and groundwater to soil gas in the vadose zone and then into ambient air. While volatilization may be a pathway for BTEX migration from the Former MGP Site, soil gas testing conducted at the Head Start Property, Apartment Complex and West Street Properties has indicated that MGP-related BTEX constituents are not present in soil gas at concentrations that could potentially affect indoor air quality.

In general, BTEX compounds have low sorption potential, coupled with high water solubility and high volatility, which make sorption a relatively minor environmental fate process for BTEX compared to other mechanisms.

In subsurface soil, dissolution of these compounds from soil to groundwater is expected to be a principal migration pathway. It is possible for groundwater containing dissolved BTEX to discharge to the storm sewers and be transferred to the Hudson River surface water at the outfall location in the embayment. If such discharges to the surface water system were to occur, volatilization, biodegradation processes, and dilution will rapidly result in the degradation of BTEX concentrations, and no impact to Hudson River surface water is anticipated.

7.1.4 Contaminant Summary

The presence of NAPL in the Study Area will likely result in the persistent presence of BTEX in groundwater at, and down gradient of, the NAPL identified locations. With few exceptions, the PAHs at the site will be relatively persistent in the soil matrix and associated NAPL. This is primarily due to their generally low water solubility and high sorption to soils. Metals in soil are also anticipated to be relatively persistent.

7.1.5 Surface Soil

Migration of contaminants from the surface soil is possible at the Former MGP Site, but primarily through the transport of particulates. The nature of the contaminants is such that they are relatively persistent in soils and would likely remain attached to soil particles.

7.1.6 Subsurface Soil

Migration of contaminants from the subsurface soil is possible in the Study Area, but primarily through dissolution of BTEX and lighter molecular weight PAH compounds from soil to groundwater.

7.1.7 Groundwater

BTEX, PAHs and cyanide have been identified in groundwater. Other inorganics were detected in groundwater however, many of these occur naturally at elevated concentrations that are representative of background conditions.

Groundwater impacts are present within the immediate areas where NAPL was observed. In addition, dissolved phase groundwater contaminants (BTEX and light-end PAHs) appear to be migrating from areas where residual NAPL is present.

NAPL likely migrated north from structures on the Former MGP Site along the till surface through sand lenses within clay (above the till surface). This migration appears to have resulted in discontinuous band of NAPL that may act as a continuing source of groundwater contamination. Groundwater generally flows to the northeast. As the groundwater flows through the area of residual NAPL, it will continue to desorb BTEX and light-end PAH compounds, creating a groundwater plume that extends northeasterly in the direction of groundwater flow. The absence of dissolved-phase BTEX compounds in the monitoring wells on the Head Start Property to the east is further indication that the dissolved-phase groundwater contaminants are migrating in a northeasterly direction.

The dissolved-phase groundwater contaminant concentrations within the area of NAPL impacts are likely in a steady-state condition, where the rate of dilution from inflowing clean water equals the rate of dissolution of contaminants from the NAPL. This is based upon historical monitoring well results and the likely age of the release (on the order of 70 years). The potential exists that the storm sewer system beneath the parking area in the north section of the Apartment Complex, which channels a former stream and pond, could intercept the low concentration groundwater contaminants since its invert is at a depth below the surface of the water table, providing a preferential pathway and discharge to the Hudson River, where the impacts are expected to be immediately diluted to non-detectable concentrations in the river.

Since the groundwater sample from MW-107 at the east end of the Apartment Complex had non detectable concentrations of BTEX, PAH and cyanide during the 2008 RI it does not appear that a dissolved phase plume has reached the Hudson River; however, if it did, volatilization and dilution would minimize or eliminate any impacts.

7.1.8 Storm Water

Storm water may be a transport mechanism at the Former MGP Site because runoff from the site could carry particulates into the storm drainage system or infiltrating precipitation could leach chemicals from the soils and transport them to the groundwater. In addition, the storm sewer system invert is at a depth below the surface of the water table, leading to the potential to intercept, at least partially, dissolved phase groundwater constituents.

Sediments in the storm drainage system in the Study Area were impacted by VOCs, PAHs and cyanide based upon samples collected from up gradient and down gradient locations during previous investigations. The drainage system receives urban runoff and detected

contaminants may not be solely site-related. City workers periodically clean out the sediment in the catch basins, so any accumulations of contaminants would be removed, thus minimizing both the potential for build-up and migration of contaminants clinging to particulates. The presence of both MGP- and non-MGP related contaminants below the storm water outfall and the dissolved phase contaminants present in the storm sewer suggest that the storm sewer system is a transport pathway for both MGP and other non-MGP urban contaminants.

7.1.9 Hudson River Sediments

Sediments from the embayment of the Hudson River may potentially be a source for contaminant transport because contaminants in the sediment could dissolve in water at the sediment interface or be transported as particulate by the river. Sediment samples were collected from the embayment of the Hudson River. The sediments in the embayment of the Hudson River are impacted by PAHs; however, the impacts do not appear to be solely related to the Former MGP Site. Physical observations during the probing and sediment sampling activities showed no MGP-related impacts at any location except VC-01, immediately adjacent to the storm water outfall. The outfall from the local storm sewer drainage system is located at the head of the embayment. Surface water runoff from the surrounding area containing motor oils, asphalts, and other PAH source materials are discharged to the embayment both directly and through the storm sewer system. In addition, a boat marina is located within the embayment, a fuel terminal is located up river, and a former oil terminal operated on the southern side of the embayment. It is likely that numerous sources have contributed to the concentrations detected in the river sediments. Both MGP and non MGP-related contaminants have been detected in the sediments.

SECTION 8 CONCEPTUAL SITE MODEL

Sources of Contamination

The Clove and Maple Former MGP Site operated from approximately 1887 until 1935, at which time natural gas was introduced into the area and the MGP operation was terminated. Process residuals and wastes from the gas manufacturing operations at this location are the primary sources of contamination that resulted in impacts to surface soil, subsurface soil and groundwater which are secondary sources of contamination in the Study Area. In addition, during the completion of the investigation, areas of impact were identified that are likely associated with the 0&R 93B site, a second former MGP facility, located near the Clove and Maple Former MGP Site, that was the location of an on site remedial action. Based on the distribution of contamination and geologic conditions it is likely that the contamination identified within the Study Area has resulted from both historic operations.

8.1.1 Nature and Extent of Contamination

Previous investigations identified the presence of NAPL, BTEX, PAHs, cyanide and TAL metals at the Former MGP Site. Soil contamination extended to the north beneath the drainage ditch adjacent to the Former MGP Site and to the northeast beyond Maple Avenue to the Apartment Complex property, following the top of a low permeability till surface that dips in a north/northeast direction from the Former MGP Site toward the Apartment Complex property. MGP-related soil contamination was not identified beyond the Former MGP Site boundaries to the southwest (Clove Avenue) or southeast (146 Maple Avenue property). Groundwater contamination was detected in a similar pattern however PAHs and cyanide were also detected in monitoring wells located on the property at 146 Maple Avenue. Storm water and sediments in the storm drainage system in the vicinity of the Former MGP Site have been impacted by VOCs, PAHs and cyanide. The drainage system receives urban runoff and the detected contaminants may not be solely related to the Former MGP Site. Sediment samples collected from the embayment of the Hudson River during previous investigations detected PAHs; however, the source of these contaminants is likely associated with the numerous operations and discharge locations within the embayment.

This RI confirmed the general soil and groundwater contamination patterns but determined that soil contamination extends horizontally to the north in the Alleyway behind 88 West Street and 90 West Street, to the northeast direction into the rear yards of the West Street properties (96 West Street, 100 West Street, 104 West Street, 106 West Street and 116

West Street) and to the east at the Apartment Complex at the front and rear of the building at 141 Maple Avenue. This RI also determined that the plume of dissolved phase VOC and PAH groundwater contamination extends horizontally to the northwest at least to the Apartment Complex property boundary (MW-61), to the north beneath the parking lot at the rear of the Apartment Complex property (MW-63, MW-28S) and to the east beneath the parking lot behind 139 Maple Avenue (MW-60).

8.1.2 Fate and Transport Characteristics of the Site

At the Former MGP Site, alluvial materials and fill materials overlie a dense till which is encountered at an elevation of about 0' msl (15.3' bgs at SB-81 to 60.58' bgs at SB-126). The till surface at the Former MGP Site generally dips to the north/northeast. The surficial topographic slope and predominant groundwater flow direction is to the east-northeast. The overburden aquifer at the Former MGP Site is semi-confined by a clay layer that extends along the northern portion of the Former MGP Site adjacent to and across Maple Avenue. This RI confirmed these conditions exist throughout the Study Area. The dissolved-phase groundwater contaminant concentrations within the area of NAPL impacts are likely in a steady-state condition, where the rate of dilution from inflowing clean water equals the rate of dissolution of contaminants from the MGP impacted materials. Changes in groundwater concentrations result from the chemical diffusion of contaminants sorbed to the soil into the dissolved groundwater phase in response to changes in equilibrium. This is based upon historical monitoring well results and the likely age of the release (on the order of 70 years).

In addition to groundwater flow conditions, the potential exists that the storm sewer system beneath the parking area in the north section of the Apartment Complex, which channels a former stream and pond, is intercepting the low concentration groundwater contaminants, providing a preferential pathway and discharge to downstream locations. However, MW-107 located at the east end of the Apartment Complex reported no concentrations of BTEX, PAH and cyanide during the 2008 RI.

8.1.3 Potential Exposure Pathways

Potential exposure pathways include incidental ingestion, dermal contact (soils/water), inhalation of volatilized compounds and fugitive dust, contact with storm water, contact with sediments in the storm drainage system and contact with shallow groundwater.

8.1.4 Potentially Impacted Receptors

Potentially impacted receptors at the Former MGP Site include O&R maintenance and utility workers, contractors, trespassers and nearby residents. Potentially impacted receptors in the balance of the Study Area include maintenance and utility workers, contractors, residents and nearby residents, visitors and persons traversing these properties. Other potential receptors would include persons in contact with the storm water and sediment in the drainage system in the Study Area.

SECTION 9 EXPOSURE ASSESSMENT

According to NYSDEC DER-10, an "exposure assessment involves specifying the population that might be exposed to the agent of concern, identifying the routes through which exposure can occur and estimating the magnitude, duration and timing of the exposure that people or biota might receive from the source". The assessment of potential exposure routes/pathways includes consideration of the following five elements:

- 1. Contaminant source
- 2. Contaminant release and transport mechanisms
- 3. Point of exposure
- 4. Route of exposure
- 5. Receptor population

An exposure pathway is complete when all five elements are documented. An exposure pathway may be eliminated from further evaluation when any one of the five elements comprising an exposure pathway has not existed in the past, does not exist in the present, and will never exist in the future. This exposure assessment assumes that contaminant conditions have not or will not be mitigated. In this sense, a "baseline" of potential exposures is presented. For the purposes of this assessment, it is assumed that future land uses within the Study Area may include residential or industrial/commercial development or a public park and recreation area.

9.1.1 Contaminant Source

Results of the RI and previous investigations indicate the presence of soil and groundwater contamination consisting of:

- Free and residual product;
- VOCs, PAHs and nickel in the soil at concentrations above NYSDEC Part 375 SCOs;
- BTEX and PAHs in the groundwater at concentrations above NYSDEC Ambient Water Quality Standards and Guidance Values and/or Groundwater Effluent Limitations; and,
- Detectable organic vapors.

9.1.2 Contaminant Release and Transport Mechanisms

The presence of NAPL in the Study Area will likely result in the persistent presence of BTEX in groundwater at, and down gradient of, the locations where NAPL has been shown to exist. BTEX constituents in subsurface soils not associated with NAPL are typically mobile and not

particularly persistent in the surrounding environment due to their high volatility, low adsorption to soils, and high water solubility. With few exceptions, the PAHs at the site will be relatively persistent in the soil matrix and associated NAPL. This is primarily due to their generally low water solubility and high sorption to soils. Metals in soil are also anticipated to be relatively persistent.

Migration of contaminants from the surface soil is possible at the Former MGP Site, but primarily through the transport of particulates. The nature of the contaminants is such that they are relatively persistent in soils and would likely remain attached to soil particles.

Migration of contaminants from the subsurface soil is possible in the Study Area, but primarily through dissolution of BTEX and lighter molecular weight PAH compounds from soil to groundwater.

Groundwater impacts are present within the immediate areas where NAPL was observed. In addition, dissolved phase groundwater contaminants (BTEX and light-end PAHs) appear to be migrating from areas where residual NAPL is present.

NAPL likely migrated north from structures on the Former MGP Site along the till surface through sand lenses within clay (above the till surface). This migration appears to have resulted in a discontinuous band of NAPL that may act as a continuing source of groundwater contamination. Groundwater generally flows to the northeast. As the groundwater flows through the area of residual NAPL, it will continue to desorb BTEX and light-end PAH compounds, creating a groundwater plume that extends northeasterly in the direction of groundwater flow. The lack of dissolved-phase BTEX compounds in monitoring wells on the Head Start Property to the east is further indication that the dissolved-phase groundwater contaminants are migrating in a northeasterly direction.

The dissolved-phase groundwater contaminant concentrations within the area of NAPL impacts are likely in a steady-state condition, where the rate of dilution from inflowing clean water equals the rate of dissolution of contaminants from the NAPL.

Storm water may be a transport mechanism at the Former MGP Site because runoff from the site could carry particulates into the storm drainage system or infiltrating precipitation could leach chemicals from the soils and transport them to the groundwater. In addition, the storm sewer system invert is at a depth below the water table leading to the potential to intercept, at least partially, dissolved phase groundwater constituents. Given the established vegetation and stone cap that has been placed at the site it is unlikely that this pathway would introduce significant concentrations of contamination.

Sediments in the storm drainage system in the Study Area were impacted by VOCs, PAHs and cyanide based upon samples collected from up gradient and down gradient locations during previous investigations. The drainage system receives urban runoff and detected contaminants may not be solely site-related. City workers periodically clean out the sediment in the catch basins, so any accumulations of contaminants would be removed, thus minimizing the potential for buildup and migration of contaminants clinging to particulates. The presence of both MGP- and non-MGP related contaminants below the storm water outfall and the dissolved phase contaminants present in the storm sewer suggest that the storm sewer system is a transport pathway for both MGP and other non-MGP urban contaminants.

Sediments from the embayment of the Hudson River may potentially be a transport mechanism at the site because contaminants in the sediment could dissolve in water at the sediment interface or be transported as particulate by the river. Sediment samples were collected from the embayment of the Hudson River. The sediments in the embayment of the Hudson River are impacted by PAHs; however, the impacts are likely related to a wide variety of runoff sources located within the Study Area. Physical observations during the probing and sediment sampling activities showed no MGP-related impacts at any location except VC-01, immediately adjacent to the storm water outfall. The outfall from the local storm sewer drainage system is located at the head of the embayment. Surface water runoff from the surrounding area containing motor oils, asphalts, and other PAH source materials are discharged to the embayment both directly and through the storm sewer system. addition, a boat marina is located within the embayment, a fuel terminal is located up river, and a former oil terminal operated on the southern side of the embayment. It is likely that numerous sources have contributed to the concentrations detected in the river sediments. Because there are many potential sources of impacts in the embayment, but only one location where MGP-related contaminants were found, dissolution of MGP-related contaminants and migration to other locations in the embayment does not seem to be occurring and therefore is not a transport mechanism of concern in the study area.

9.1.3 Points of Exposure

Potential exposure points exist when one or more contaminants exceed the specified regulatory criteria in a media at a subject property. For the purposes of this RIR, the Study Area is the subject property. The following potential exposure points exist in the Study Area:

- Surface Soil
- Subsurface Soil
- Groundwater
- Storm Water
- Storm Sewer Sediments
- Hudson River Embayment Sediments

9.1.4 Route of Exposure

Exposure could occur via incidental ingestion, dermal contact (soils/water), inhalation of volatilized compounds and fugitive dust, contact with storm water, contact with sediments in the storm drainage system or the Hudson River embayment and contact with shallow groundwater.

9.1.5 Receptor Population

The following potential receptors were identified for the Former MGP Site:

- 0&R maintenance workers, utility workers and contractors.
- Trespassers (the Former MGP Site is fenced and locked).
- Nearby residents and their visitors (potential fugitive dust exposure).
- Future site workers, users or residents in the event 0&R sells the property.

The following potential receptors, who could be exposed via incidental ingestion, dermal contact, inhalation of volatilized compounds/fugitive dust or contact with shallow groundwater, were identified for the Apartment Complex:

- Maintenance workers, utility workers and contractors.
- Residents and their visitors.
- Nearby residents and persons traversing the Apartment Complex.

The following potential receptors, who could be exposed via incidental ingestion, dermal contact, inhalation of volatilized compounds/fugitive dust or contact with shallow groundwater, were identified for the West Street Properties:

- Maintenance workers, utility workers and contractors.
- Residents and their visitors.
- Nearby residents and persons traversing the West Street.

The following potential receptors, who could be exposed via incidental ingestion, dermal contact, or inhalation of volatilized compounds/fugitive dust, were identified for the Head Start Property:

- Maintenance workers, utility workers and contractors.
- School employees, children and their visitors.
- Nearby residents and persons traversing the Head Start Property.

Other potential receptors would include persons in contact with the storm water and sediment in the drainage system in the Study Area and in contact with the sediments in the Hudson River embayment.

Assessment of Exposure Pathways

9.1.6 Former MGP Site

Surface Soil

BTEX compounds and cyanide were not detected above NYSDEC Part 375 SCOs, therefore, no complete exposure pathways exist for these compounds in surface soil. A number of PAHs were detected in surface soils at this parcel, therefore complete exposure pathways to PAHs in surface soils exist for O&R maintenance and utility workers, contractors, trespassers, nearby residents and their visitors, and potential future construction workers, users or residents in the event O&R sells the property. The majority of the parcel is grass covered and an IRM was undertaken to cover an area of surface soil impacted by tar near the former gas generator building with gravel to prevent contact with persons who may visit or work at the Former MGP Site. Additionally, soil pathways onto the Former MGP Site were covered with gravel in response to the detection of elevated lead concentrations in surface soil samples and a fence was installed around the property to restrict access. No other IRM was recommended. These conditions limit the potential for fugitive dust to be inhaled by the potential receptors, however, unless the site is covered by an engineered barrier and no excavations occur, this pathway is still potentially complete. The O&R employees have been informed of the nature of the Former MGP Site and that appropriate PPE (such as gloves, protective coveralls, and/or respiratory protection as warranted) is required if soils must be disturbed on the site. The use of such precautions will mitigate any potential exposure to the PAHs and lead.

Work zone monitoring and the need for PPE for future construction workers would also be required by O&R to ensure that these receptors are not exposed to PAH and/or lead-containing surface soils. A comprehensive air monitoring plan and the application of fugitive dust suppression techniques would also mitigate exposures for the adjacent community to PAH and/or lead-containing surface soils in the event that construction activities at the site would result in significant disturbance of surface soils.

Subsurface Soil

A complete exposure pathway to BTEX and PAH compounds in subsurface soils exists for those receptors involved in potential excavation activities at the site; the O&R utility workers/contractors, future construction workers and future residents. Potentially complete exposure pathways include inhalation of volatile and fugitive dusts, dermal contact, and incidental ingestion for these receptors. Because O&R currently controls the Former MGP Site and the O&R workers are aware of the subsurface conditions, any excavation activities undertaken by O&R would be done using the proper health and safety precautions, thereby eliminating the potential for exposure. Future users of the Former MGP Site would only be exposed if the contaminant conditions were unchanged and if the land were redeveloped for an unrestricted use.

Since exposure to subsurface soils is only possible if the subsurface soils are disturbed, no complete pathway currently exists for the O&R maintenance worker (lawn mowing activities), a trespasser, adjacent community member, or for a future recreational user. Activities involving significant disturbance of subsurface soils would require a comprehensive community air monitoring plan and the application of fugitive dust suppression techniques to mitigate potential exposures for these receptors.

Groundwater

A complete exposure pathway to BTEX and PAH compounds in groundwater exists for the O&R utility workers, future construction workers, and future residents. These receptors may have complete exposure pathways to groundwater through inhalation, dermal contact, and incidental ingestion in the event that an excavation occurs at or below the water table (approximately 8 feet bgs). Absent any excavation activities or site disturbance below the water table, a complete exposure pathway does not exist. Because O&R currently controls the Former MGP Site and the O&R workers are aware of the subsurface conditions, any excavation or drilling activities undertaken by O&R would be done using the proper health

and safety precautions, thereby eliminating the potential for exposure. There are currently no buildings on the Former MGP Site therefore the potential for BTEX vapors to accumulate and cause an inhalation exposure is not likely.

9.1.7 Apartment Complex

Surface Soil

Surface soil samples have not been collected on these properties, therefore a complete exposure pathway cannot be determined. Most of the site is covered with buildings, sidewalks and pavement. The expected transport pathway of contaminants from the Former MGP Site toward the Apartment Complex is through subsurface soils and groundwater. Additionally, the Apartment Complex is separated from the Former MGP Site by Maple Avenue, and surface soils at the Head Start Facility adjacent to the Former MGP Site, which have been sampled, have not identified COCs. Therefore, based on the currently available data, a complete pathway does not seem likely.

Subsurface Soil

A complete exposure pathway to BTEX and PAH compounds in subsurface soils exists for utility workers, construction workers and residents. The shallowest evidence of tar impacts observed on the Apartment Complex was approximately 8' bgs. Exposure through inhalation, dermal contact, and incidental ingestion for these receptors is only possible if subsurface soils are disturbed. A community air monitoring plan and the application of dust suppression techniques should be undertaken to mitigate exposures during any significant excavations at these properties.

<u>Groundwater</u>

Groundwater containing BTEX and PAHs is present beneath the Apartment Building Properties. Therefore, the potential for a complete exposure pathway to COCs in groundwater exists for those receptors (utility worker, construction worker, resident) involved in shallow and deep excavation activities. Tar impacts in the soil borings for some of these wells further demonstrate that shallow groundwater is a potential exposure pathway at these properties. Exposure pathways for these receptors include incidental ingestion, dermal contact, and inhalation of volatiles.

The potential for MGP-related contaminants accumulating in indoor air at the residences on the Apartment Complex was evaluated by RETEC on behalf of 0&R in two soil gas and indoor air sampling events (July 2004 and February 2005). These evaluations included both soil

gas and indoor air at nearby locations within seven buildings on these parcels. RETEC concluded that MGP-impacts do not appear to be affecting air quality.

9.1.8 West Street Properties

Surface Soil

Surface soil samples have not been collected on these properties, therefore a complete exposure pathway cannot be determined. However, the expected transport pathway of contaminants from the Former MGP Site toward the West Street Properties, if at all possible, is through subsurface soils and groundwater. Additionally, the West Street Properties are separated from the Former MGP Site by the Apartment Complex and Maple Avenue, and surface soils at the Head Start Facility adjacent to the Former MGP Site have been tested and are not considered an issue. Therefore, based on the currently available data, a complete pathway does not seem likely.

Subsurface Soil

A complete exposure pathway to BTEX and PAH compounds in subsurface soils exists for utility workers, construction workers and residents. Exposure through inhalation, dermal contact, and incidental ingestion for these receptors is only possible if subsurface soils are disturbed. A community air monitoring plan and the application of dust suppression techniques should be undertaken to mitigate exposures during any significant excavations at these properties.

<u>Groundwater</u>

Groundwater contamination has not been identified on these properties. Therefore, no complete exposure pathway exists. However, in August 2008 NYSDEC and NYSDOH recommended investigating the potential for MGP-related contaminants to be accumulating in indoor air at the residences at 102, 104 and 116 West Street based upon the elevated VOC concentrations detected in the samples collected during the May 2008 soil vapor investigation.

9.1.9 Head Start Property

Surface Soil

Surface soils at the Head Start Facility adjacent to the Former MGP Site are not considered an issue based upon previous environmental investigations. Therefore, based on the currently available data, a complete pathway does not seem likely.

Subsurface Soil

A complete exposure pathway to PAH compounds in deep (approximately 24' bgs at one location) subsurface soils exists for utility workers, construction workers and residents. Exposure through inhalation, dermal contact, and incidental ingestion for these receptors is only possible if subsurface soils are disturbed. A community air monitoring plan and the application of dust suppression techniques should be undertaken to mitigate exposures during any significant excavations at this property.

Groundwater

Groundwater sampling conducted during the RI found no elevated concentrations of constituents of concern. Therefore, no complete exposure pathway exists.

9.1.10 Storm Water and Sediments

Based on the PAH exceedances, complete exposure pathways exist for sewer maintenance workers and utility workers that access the storm sewer during excavation or maintenance activities. Complete exposure pathways are limited to incidental ingestion and dermal contact as no volatile compounds were detected in sediments.

9.1.11 Hudson River Embayment Sediments

Based on the PAH exceedances, complete exposure pathways exist for recreational users and construction workers coming into contact with sediments in the Hudson River embayment. Complete exposure pathways are limited to incidental ingestion and dermal contact as no volatile compounds were detected in sediments.

SECTION 10 SUMMARY AND CONCLUSIONS

Between April 2008 and June 2008 CMX conducted a RI of the Clove and Maple Former MGP Site in Haverstraw, New York. The RI included investigation and sampling of subsurface soil, groundwater and vapors in an attempt to evaluate the extent of impact associated with former MGP related operations on the subject site. The RI included the advancement of soil borings to further characterize subsurface geologic features and provide supplemental data regarding soil impact within the study area, utilization of field screening measures including TarGOST® to further evaluate the extent of NAPL impact within he study area, the installation of groundwater monitoring wells and collection of groundwater samples to evaluate the extent of NAPL and dissolved phase groundwater impact, and the collection of soil vapor samples to further evaluate the potential for vapor production and migration to onsite and offsite receptors.

Review of the results of the RI indicates that the horizontal and vertical extent of MGP related impacts have been largely defined. Sampling has largely confirmed the horizontal extent of soil, groundwater, and NAPL impact across the study area. The vertical extent of impact has been established through the identification of clean soils in comparison with NYSDEC criteria and the identification of clay layers and a compacted till layer across the subject site. The several borings that have been advanced into the compacted till layer have not identified MGP related impact and are believed to represent conditions that exist across the site. The following sections summarize the results of the aforementioned sampling program.

10.1.1 Free and Residual Product

NAPL was observed in borings on the Former MGP Site and at off site locations in the Study Area. In general, NAPL appeared as thin layers of brown and black oil-like material and tar-like material. In general the greatest concentration of NAPL was restricted to areas on the former MGP site adjacent to the former holder pad and tar well and in the eastern portion of the former stream/pond system located behind (northeast) the Maple Avenue Apartment Complex.

10.1.2 VOCs and PAHs in Soil

VOCs and PAHs were detected in samples throughout the Study Area at concentrations above the NYSDEC Part 375 SCOs.

The horizontal limits of VOC and PAH impacts on the Former MGP Site extend to the north to the property boundary along Maple Avenue and to the west property boundary at the drainage swale. VOC and PAH impact does not appear to extend beyond the MGP Site property boundary to east (Head Start) or south (Clove Avenue). The horizontal limits of soil impact extend across the Apartment Complex property to the north where impact has been identified extending onto the West Street Properties. Soil impact has been identified extending to the western boundary of the study area which includes the Alley area but is not expected to extend further west onto areas previously addressed during the 93B MGP Site remediation.

The vertical extent, as confirmed by the presence of clay and/or compacted till layer across the study area, of VOCs and PAHs was achieved at all locations on the Former MGP Site and Apartment Complex Properties. Laboratory confirmation (clean samples below impacted soils) of the extent of VOC and PAH impact was not achieved at several locations on the Apartment Complex property or in the rear of isolated West Street properties (SB-88 at the rear of 106 West Street), but as previously discussed discontinuous clay layers and a compacted till unit are present in the subsurface across the study area and are believed to act as confining layers.

10.1.3 Metals and Cyanide in Soil

Metals and cyanide analyses were only performed on soil samples collected on the former MGP Site. Testing results indicated that no metals with the exception of nickel at two sample locations were detected at concentrations above NYSDEC Part 375 SCOs. Nickel impact is not typically associated with MGP related operations and is most likely associated with fill material that was deposited onsite. Cyanide was reported at seven of nine sample locations on the MGP site, with concentrations significantly below NYSDEC Part 375 SCOs.

10.1.4 Groundwater Sampling

During the completion of groundwater sampling activities VOC and PAH impacted groundwater was identified at several locations across the study area. DNAPL was detected in monitoring well MW-02 on the former MGP Site and in off site monitoring wells MW-31S and MW-32S.

VOC and PAH impacted ground water appears to be most prevalent in the northeastern portion of the Former MGP Site and the central to western portions of the Apartment Complex property. Groundwater impact at these locations is likely the result of MGP related impacts from on the Clove and Maple property and the previously remediated 93B MGP site.

The highest concentrations of VOCs in the Study Area were detected in the shallow ground water at MW-04, MW-03, and MW-61S.

Based on the results of the sampling program, the majority of dissolved VOC and PAH impact appears to be located in western portions of the study area including the former MGP site and western portion of the Apartment Complex property. Low to non detect levels of VOC and PAH impact have been identified in the eastern portion of the Apartment Complex property. No dissolved VOC or PAH impact has been identified on the Head Start property.

Soil Vapor Investigation Results

10.1.5 Former MGP Site Property Line Adjacent to 146 Maple Avenue

A soil vapor investigation performed along the east property line of the Former MGP Site and the Head Start property at 146 Maple Avenue confirmed that no MGP related vapor impact has been identified extending onto the Head Start property. Naphthalene, a COC typically associated with former MGP operations, was not detected in any of the vapor samples. These data are also supported by the absence of groundwater impact in monitoring wells on the Head Start property and at the eastern MGP Site property line.

10.1.6 Soil Vapor – Rear Yards of West Street Properties

In conjunction with the 146 Maple Avenue soil vapor investigation, soil vapor samples were collected from locations in the rear yards of five residences located on West Street (104 West, 116 West, 106 West, 100 West and 96 West).

Elevated VOC concentrations were reported at five sample locations (SV-80, SV-92, SV-120, SV-123 and SV-124B), that have the potential to result in vapor intrusion into nearby structures at 102, 104 and 116 West Street. In response to these findings O&R advised the property owners in August 2008 that follow up sampling of sub slab soil vapor and indoor air sampling would be conducted during the winter heating season. Following the completion of this study, the results of this evaluation will be submitted to NYSDEC and NYDOH.

CONCLUSIONS

The overall objectives of the RI were to:

Determine the nature and extent of MGP residuals that may be present at the site;

- Delineate the horizontal and vertical extent of Former MGP Site related soil and groundwater impacts;
- Determine whether constituents identified by the SRI constitute a threat to human health or the environment;
- Obtain data to provide the basis for a feasibility study of remedial actions for the Study Area;
- Evaluate potential migration pathways including vapor intrusion on properties not previously investigated;
- Characterize geologic and hydrogeologic conditions in the Study Area.

These objectives are consistent with those of the NYSDEC's comprehensive remedial investigation (RI) process and those included in the SRI Work Plan (SRIWP) approved by NYSDEC on March 14, 2008 and have been met.

Nature and Extent of MGP Residuals

NAPL was observed in borings on the Former MGP Site, the Apartment Complex property and the West Street properties. In general, NAPL appeared as thin layers of brown and black oil-like material and tar-like material. The TarGOST® NAPL screening information confirmed with visual observations made at the majority of the locations.

Soil and Groundwater Impacts Delineation

Results of the investigation identified soil contaminants, including VOCs and PAHs on the Former MGP Site. Vertical migration of contaminants is restricted by clay layers and a compacted till layer located at a depth of approximately 25 feet beneath the Former MGP Site.

VOC and PAH impact was detected at concentrations above the NYSDEC Part 375 SCOs on the Apartment Complex and West Street Properties. Vertical migration of contaminants was restricted by a clay layer and compacted till layer located at depths ranging from 5 to 20 feet beneath the Apartment Complex and West Street properties.

The results of groundwater sampling activities identified BTEX and PAHs above the NYSDEC Ambient Water Quality Standards and Guidance Values and/or Groundwater Effluent Limitations indicating that the former MGP activities have impacted groundwater quality beneath the Former MGP Site and across a portion of the study area. Groundwater samples collected from off site monitoring wells reported higher concentrations of total PAHs than the samples collected from on site wells and the PAH isopleth map depicts an increasing

concentration gradient north of the Former MGP Site. Although groundwater contamination beneath the Former MGP Site is likely contributing to the contamination off site, impacts associated with the former 93B MGP site are also a likely source of groundwater contamination in the rear of the Apartment Complex and West Street Properties.

Soil Gas Investigation

A soil vapor investigation was performed along the east property line of the Former MGP Site and the Head Start property at 146 Maple Avenue. Findings from this investigation indicate that migration of soil vapor toward the Head Start building is not a concern.

In conjunction with the evaluation of the Head Start property, CMX collected soil vapor samples at the rear yards of the residences located along West Street. Based upon the elevated VOC concentrations detected at the West Street sample locations the potential for vapor intrusion into nearby structures on West Street can not be ruled out. In response to these findings, O&R has advised the potentially impacted property owners that supplemental investigation including the collection of sub slab soil vapor and indoor air samples will be conducted.

Threats to Human Health and/or the Environment and Exposure Pathways

Section 9 of this report presented an exposure assessment based on the conditions observed during the SRI and previous environmental investigations. The following is a summary of Section 9:

- There are no complete exposure pathways at the 146 Maple Avenue Head Start parcel with the exception of the limited potential for a potential fugitive dust pathway from surface soil from the Former MGP Site.
- There are complete exposure pathways for utility workers, construction workers, and, potentially, residents at the Apartment Complex and West Street Properties. Exposure is only a concern if subsurface soils are excavated and impacted soils and groundwater are encountered.
- There are complete exposure pathways for O&R maintenance workers, utility workers, trespassers, adjacent community members and possibly to future construction workers at the Former MGP Site. These exposures are generally mitigated because O&R controls access to and activities on the Former MGP Site.

- Prior to redevelopment of the Former MGP Site, remedial measures will be required to eliminate exposure pathways.
- The sediments of an embayment to the Hudson River are an exposure pathway because of the presence of MGP and non MGP related PAHs. However, since other sources for these constituents may exist around the embayment, there is uncertainty regarding the source of the detected concentrations.

Supplemental Data Needs

Results of this RI generally delineated the horizontal and vertical extent of soil and groundwater contamination, including NAPL throughout the study area. The limited area where horizontal delineation is not complete (Section 6) can be evaluated during the Feasibility Study and/or the remedial design phase for the Former MGP Site. In addition, further delineation of the MGP contamination at the storm water outfall location in the embayment will need to be performed.

Site-Specific Geology and Hydrogeology

The results of this RI and previous environmental investigations have characterized site-specific geology and hydrogeology. As outlined above, the primary geologic components at the site include unconsolidated overburden deposits overlying a compacted till unit which has been demonstrated to mitigate the potential for vertical migration of contaminants at the site. Groundwater flow at the site is generally to the northeast with localized flow in the shallow groundwater system on the Apartment Complex property controlled by previous geomorphic (stream and pond) features that have prevented the northward migration of MGP related contaminants beyond the West Street properties.

11 RECOMMENDATIONS

During this RI, sufficient data were obtained to develop and select remedial alternatives for the site. As noted in Section 10.1.7 several minor data gaps remain. These data gaps should be addressed as part of the Feasibility Study to support the final remedy.

Horizontal delineation of shallow VOC and PAH contamination has been completed over much of the study area. As shown on Plate 9A, VOC contamination of groundwater appears to exist over the majority of the subject area. While several of the monitoring wells located adjacent to the north-northeast perimeter of the site have reported concentrations in excess of NYSDEC Standards, based on the prevailing groundwater flow direction that is likely controlled by former geomorphic features (pond and stream) it is unlikely that migration of dissolved VOC's and PAH's extends much beyond the limits of the current investigation. As such, no further investigation or horizontal delineation is proposed.

As indicated in several sections of this report, the subject area is underlain by discontinuous clay layers and a massive till layer which we believe acts as a vertical barrier to contaminant migration. Sampling results for several monitoring wells located on the Former MGP Site (MW-02, MW-03, MW-04, and MW-09) and on the Apartment Parcel (MW-61S, MW-63S, and MW-85S) have identified elevated concentrations of VOC's and PAH's. Monitoring well screen intervals for most of these monitoring locations terminate at the till layer. Based on the presence of the till layer throughout the study area it is unlikely that dissolved VOC and PAH impact has migrated beyond the top of the till layer. As such, no further investigation is proposed.

A New Historical Atlas of Rockland County, 1876.

Brown's Directory of American Gas Companies, 1887-1957.

CMX, Inc., 2008. Supplemental Remedial Investigation Work Plan, Clove and Maple Former Manufactured Gas Plant Site, Haverstraw, New York. Prepared for Orange & Rockland Utilities, Inc., February 2008.

Dakota Technologies, Inc., 2007. TarGOST® User's Guide.

Electric Power Research Institute, 1991. Management of Manufactured Gas Plant Sites, Technology Transfer Seminar, April 2-3, Atlanta, Georgia.

Electric Power Research Institute, 1993. Chemical and Physical Characteristics of Tar Samples from Selected Manufactured Gas Plant (MGP) Sites, EPRI TR-102184, Palo Alto, California.

Environmental Protection Agency (EPA), 2005. Risk-Based Concentration Table by Jennifer Hubbard. Region III. October.

Gas Research Institute, 1988. Management of Manufactured Gas Plant Sites; Volume I: Chemicals of Interest, GRI-87-87/0260.1.

Gas Research Institute, 1996. Management of Manufactured Gas Plant Sites, Amherst Scientific Publishers, Amherst, Massachusetts.

GEI Consultants, Inc., Atlantic Environmental Division, 1998. Remedial Investigation Work Plan, Clove and Maple Avenues Former MGP Site, Haverstraw, New York. Prepared for Orange & Rockland Utilities, Inc., September 8, 1998.

GEI Consultants, Inc., 1998. Addendum to RI Work Plan. Prepared for Orange and Rockland Utilities, Inc., September 1998.

GEI Consultants, Inc., 2001. Supplemental Remedial Investigation Work Plan, 93B Maple Avenue Former MGP Site and Clove and Maple Avenues Former MGP Site, Haverstraw, New York. Prepared for Orange and Rockland Utilities, Inc., April 5, 2001.

National Oceanic and Atmospheric Administration, National Climatic Data Center, November 1998. Climatic Wind Data for the United States. Obtained from Web Site http://www.ncdc.noaa.gov on August 16, 2000.

New York State Codes, Rules and Regulations, Title 6, Part 703, 1967. Surface Water and Groundwater Water Quality Standards and Groundwater Effluent Limitations, Amended August 4, 1999. 6 NYCRR, Part 703. Albany, New York.

New York State Department of Environmental Conservation, 1994. Division Technical and Administrative Guidance Memorandum [TAGM 4046]: Determination of Soil Cleanup Objectives and Cleanup Levels. Division of Hazardous Waste Remediation. Albany, New York.

New York State Department of Environmental Conservation, 1994. Revised TAGM - Determination of Soil Cleanup Objectives and Cleanup Levels, memoranda from Michael J. O'Toole, HWR-94-4046, January.

New York State Department of Environmental Conservation, 2006. 6 NYCRR PART 375 Environmental Remediation Programs. Subparts 375-1 to 375-4 & 375-6. Effective December 14, 2006.

Northern Ecological Associates, Inc., 1999. Preliminary Final Fish and Wildlife Impact Assessment, Former Manufactured Gas Plants, Haverstraw, New York. Prepared for GEI Consultants, Inc., Atlantic Environmental Division, March 15, 1999.

Northern Ecological Associates, Inc., 2002. Fish and Wildlife Impact Analysis: Step IIA and Step IIB, Former Manufactured Gas Plant Clove and Maple and 93B Maple Sites, Haverstraw, New York. Prepared for GEI Consultants, Inc., March 28, 2002.

Pearlmutter, N.M., 1959. Geology and Ground-Water Resources of Rockland County, New York, Bulletin GW-42. Water Power and Control Commission, New York State Department of Environmental Conservation, Albany, New York.

Peck, 1921. Yard Piping Map, Gas Distribution Plant, West Shore Gas Company, December 8, 1921.

Remediation Technologies, Inc. (RETEC), 1996. Initial Hazard Investigation and Assessment: Suffern, Middletown-Fulton Street, and Haverstraw Former Manufactured Gas Plant Sites. Prepared for Orange and Rockland Utilities, Inc., November 4, 1996.

RETEC, 1997. Preliminary Site Assessment Report for Two Former Manufactured Gas Plant Sites, Haverstraw, New York. Prepared for Orange and Rockland Utilities, Inc., August 26, 1997.

RETEC, 1998. Surface Soil Investigation and Risk Assessment Report for Former Manufactured Gas Plant Site at Clove and Maple in Haverstraw, New York. Prepared for Orange and Rockland Utilities, Inc., August 13, 1997.

United States Environmental Protection Agency, 1979. Status Assessment of Toxic Chemicals. USEPA-600/2-89-210L.

United States Environmental Protection Agency, 1986. Superfund Public Health Evaluation Manual, Office of Emergency and Remedial Response, Washington, D.C. EPA540/1-186-060.

United States Environmental Protection Agency, 1988. Guidance for Conducting Remedial Investigations and Feasibility Studies Under CERCLA, Interim Final, October 1988.

United States Environmental Protection Agency, 1996. Soil Screening Guidance: Users Guide. Office of Solid Waste and Emergency Response. Washington, D.C. EPA/540/R-96/018.

United States Environmental Protection Agency, 1996(a). Soil Screening Guidance: Technical Background Document. Office of Solid Waste and Emergency Response. Washington, D.C. EPA/540/R-95/128.

United States Environmental Protection Agency, Region I, 1996. Low Stress (Low Flow) Purging and Sampling Procedure for the Collection of Ground Water Samples From Monitoring Wells, Revision Number 2, U.S. EPA, July 30, 1996.

13 LIST OF ACRONYMS AND ABBREVIATIONS

%LEL Lower Explosive Limit PSA **Preliminary Site Assessment** PVC AOC Administrative Order on Consent Polyvinyl chloride below the ground surface QAPP Quality Assurance Project Plan bgs BTEX Benzene, toluene, ethylbenzene and RCDOH Rockland County Department of xylenes Health %RE CAMP Community Air Monitoring Plan TarGOST® signal percent of reference CMX CMX, Inc. emitter CO Carbon Monoxide RΙ Remedial Investigation COC Compounds of Concern RIR Remedial Investigation Report DNAPL Dense non-aqueous phase liquid RCRA Resource Conservation and Recovery Department of Transportation Act SRIWP Supplemental Remedial Investigation **DUSR** Data Usability Summary Report **FSP** Work Plan Field Sampling Plan ft2 Square feet SRI Supplemental Remedial Investigation gpm Gallons per minute SVOC Semi volatile organic compound H₂S TAL Hydrogen Sulfide Target Analyte List HASP Health and Safety Plan TarGOST® Tar Specific Green Optical Screen HSA Hollow-stem auger Tool ID TCL Inside diameter Target Compound List IDW **TCLP Investigation Derived Waste** Toxicity Characteristic Leaching LNAPL Light non-aqueous phase liquid Procedure MGP Manufactured gas plant TPH Total Petroleum Hydrocarbons NAPL Non-aqueous phase liquid USCS Unified Soil Classification System NTU Nephelometric turbidity unit **USEPA United** States Environmental NYSDEC New York State Department of Protection Agency **Environmental Conservation** UST Underground storage tank NYSDOH New York State Department of VOC Volatile organic compound WAD Weak acid dissociable Health **O&R Orange and Rockland Utilities** PAH Polycyclic aromatic hydrocarbon PCBs Polychlorinated biphenyls PID Photo ionization detector PM10 Airborne respirable particulates less than 10 micrometers

ATTACHMENT 1

Previous Environmental Investigations Documentation

Table 3 Surface Soil Analytical Results Clove and Maple Avenue Former MGP Site - Remedial Investigation Haverstraw, New York

		Sample ID / Date Collected							
	NYSDEC Soil	Background Surface Soils							
	Cleanup	BSS1	BSS2	BSS3	BSS4	BSS5	BSS6	IIA DOGG 4	
Analyte	Objectives	07/15/97	07/15/97	07/15/97	07/15/97	07/15/97	07/15/97	HA-BSS01-1	
		BTEX by	NYSASP M	ethod 95-1 (ma/ka)	01/13/3/	07/13/97	12/03/01	
Benzene	0.06	NA	NA	NA	NA	NA	NA I	0.005 U	
Toluene	1.5	NA	NA	NA	NA NA	NA	NA NA	0.005 U	
Xylene, Total	1.2	NA	NA	NA	NA	NA	NA NA	0.005 U	
Total BTEX		NA	NA	NA	NA NA	NA NA	NA NA		
	C	ther VOCs		Method 95	-1 (ma/ka)	IVA	I IVA I	ND	
Acetone	0.2	NA	NA NA	NA	NΔ	NA	NA	ALA	
The state of the s	PAHs (N	on-carcino	genic) by N	YSASP Met	hod 95-2 (n	ia/kal	IVA	NA NA	
Acenaphthene	50.0	NA	NA	NA	NA	NA NA	NA I	A A77 I	
Acenaphthylene	41.0	NA	NA	NA	NA	NA	NA NA	0.077 J 0.19 J	
Anthracene	50.0	NA	NA	NA	NA	NA NA	NA NA		
Benzo[g,h,i]perylene	50.0	NA	NA	NA	NA	NA NA	NA NA	0.4 J	
Fluoranthene	50.0	NA	NA	NA	NA	NA NA	NA NA	1.6	
Fluorene	50.0	NA	NA	NA	NA NA	NA NA	NA NA	2.5	
Methylnaphthalene,2-	36.4	NA	NA	NA	NA NA	NA NA	NA NA	0.11 J	
Naphthalene	13.0	NA	NA	NA	NA	NA NA	NA NA	0.048 J 0.062 J	
Phenanthrene	50.0	NA	NA	NA	NA.	NA NA	NA		
Pyrene	50.0	NA	NA	NA	NA.	NA	NA I	1.4 2.6	
Total PAHs (Non-carc.)		NA	NA	NA	NA NA	NA NA	NA NA		
	PAHS	(Carcinoge		ASP Metho	d 95-2 (ma)	log	INA	9.0	
Benz[a]anthracene	0.224	NA	NA	NA	NA NA	NA I	NA I		
Benzo[a]pyrene	0.061	NA	NA	NA	NA NA	NA NA	NA NA	1.4	
Benzo[b]fluoranthene	1.1	NA	NA	NA	NA	NA NA	NA NA	1.3	
Benzo[k]fluoranthene	1.1	NA	NA	NA	NA NA	NA	NA NA	1.1	
Chrysene	0.4	NA	NA	NA	NA	NA NA	NA NA		
Dibenz[a,h]anthracene	0.014	NA	NA	NA	NA	NA NA	NA NA	1.6 0.44 J	
indeno[1,2,3-cd]pyrene	3.2	· NA	NA	NA.	NA	NA NA	NA NA	- 1.4	
otal PAHs (Carcinogenic)		NA	NA I	NA	NA	NA I	NA NA		
	Ot			Method 95	2 (maka)	11/4	NA	8	
Biphenyl,1,1-	NS	NA	NA	NA	NA	NA	NIA	. 70.11	
Bis(2-ethylhexyl)phthalate	50.0	NA	NA	NA	NA	NA NA	NA NA	0.72 U	
Butyl benzyl phthalate	50.0	NA	NA	NA	NA	NA I		0.72 U	
Carbazole	NS	NA	NA NA	NA	NA NA	NA NA	NA NA	0.72 U	
Dibenzofuran	6.2	NA	NA	NA	NA NA	NA 1	NA NA	0.11 J	
Di-n-butyl phthalate	8.1	NA	NA NA	NA I	NA NA	NA NA	NA NA	0.037 J	
Di-n-octyl phthalate	50.0	NA	NA	NA NA	NA NA	NA NA	NA NA	0.72 U	
		PCBs I		Method PC		INV	IVA	0.72 U	
PCBs	NS I	NA	NA	NA I	NA I	NA T	NA	NA NA	

Table 3 Surface Soil Analytical Results Clove and Maple Avenue Former MGP Site - Remedial Investigation Haverstraw, New York

		Sample ID / Date Collected							
	NYSDEC Soil	Background Surface Soils							
	Cleanup	BSS1	BSS2	BSS3	BSS4	BSS5	BSS6	HA-BSS01-1	
Analyte	Objectives	07/15/97	07/15/97	07/15/97	07/15/97	07/15/97	07/15/97	12/03/01	
			by NYSASI	P Method Pa	esticides	la es es es estados es estados			
DDT,4,4'-	NS	NA NA	NA	NA	NA	NA	NA	NA	
	Metals Ar	nalysis by N	IYSASP Me	thods 6010.	7471/7740 (mg/kg)			
Aluminum	NS	8430	7810	8060	7110	9950	7640	NA	
Antimony	NS	1.7 R	1.7 R	1.8 R	1.7 R	1.8 R	1.8 R	NA	
Arsenic	7.5	4	5.5	5.4	2.9	4.2	2.3	NA	
Barium	300	84.2	73.4	81.6	50	61.9	38.9 B	NA	
Beryllium	0.16	0.42 B	0.43 B	0.49 B	0.38 B	0.47 B	0.38 B	NA	
Cadmium	1	0.55 B	0.96 B	0.79 B	0.72 B	0.47 B	0.33 B	NA NA	
Calcium	NS	1490	10900	2800	2500	2990	14600	NA NA	
chromium	10	12	8.9	8.8	12.2	12.1	6.8	NA NA	
Cobalt	30	5.4 B	6.4 B	6 B	6.3 B	8 B	6.1 B	NA NA	
Copper	25	18.9	47.3	48	32.9	27.6	25.2	NA NA	
Iron	2000	15700	15900	16000	15900	18700	15700	NA NA	
Lead	500	145	163	187	219	38.2	11.8	NA NA	
Magnesium	NS	2410	6360	1970	2650	3400	9340	NA NA	
Manganese	NS	443	376	310	322	400	440	NA NA	
Mercury	0.1	0.11	0.16	0.14	0.19	0.07 B	0.05 U	NA NA	
Nickel	13	10.6	14	12.2	14	12.6	9.2	NA NA	
Potassium	NS	699 B	698 B	673 B	1210	758 B	708 B	NA NA	
Selenium	2	0.65 U	0.65 U	0.87 B	0.62 U	0.67 U	0.66 U	NA NA	
Silver	NS	0.43 U	0.44 U	0.46 U	0.41 U	0.45 U	0.44 U	NA NA	
Sodium	NS	109 U	110 U	725 B	336 B	401 B	116 B	NA NA	
Thallium	NS	1.3 U	1.3 U	1.4 U	1.2 U	1.3 U	1.3 U	NA NA	
Vanadium	150	18.6	26.2	24.2	22.8	20.2	13	NA NA	
Zinc	20	94.6 E	135 E	123 E	101 E	67.3 E	41 E	NA NA	
		Cyanide	es by CLP I			57. 0 L	7,6_	144	
Cyanide, Total	1600 (a)	NA	NA	NA	NA NA	NA	NA I	0.52 U	
	Geod	chemical Ar	nalyses by l		hods (ma/k	9)	101	V.UZ U	
Residue, Total	NS	NA	NA	NA	NA	NA	NA	NA	

				Samp	le ID / Date Co	llected		NA N				
	NYSDEC		Backg	round Surface	e Soils	· · · · · · · · · · · · · · · · · · ·	Clove and Ma	aple Avenue				
Analyte	Soil Cleanup Objectives	HA-BSS01-2 12/03/01	HA-BSS01-3 12/03/01	HA-BSS01-4 12/03/01	HA-BSS01-5 12/03/01	HA-BSS01-6 12/03/01	SS1 05/14/97	SS1A				
SECTION SECTIO		BIE	X by NYSASP	Method 95-1 (mg/kg)			01/1-1/01				
Benzene	0.06	0.005 U	0.005 U	0.005 U	0.006 U	0.006 U	0.012 U	NA				
Toluene	1,5	0.005 U	0.005 U	0.005 U	0.006 U	0.006 U	0.012 U					
Xylene, Total	1.2	0.005 U	0.005 U	0.005 U	0.006 U	0.006 U	0.012 U					
Total BTEX		ND	ND]	ND	ND	ND	ND					
AND SECTION OF THE SE		Other V	OCs by NYSA	SP Method 95	-1 (ma/ka)		NO	IVA				
Acetone	0.2	NA [NA	NA	NA	NA	NA I	NtΔ				
	,	AHs (Non-cai	cinogenic) by	NYSASP Met	hod 95-2 (ma/	ka)		IVA				
Acenaphthene	50.0	0.17 J	0.17 J	0.4 J	0.44 J	0.035 J	0.22 J	0391				
Acenaphthylene	41.0	0.19 J	0.07 J	0.075 J	0.11 J	0.17 J	1 J					
Anthracene	50.0	0.58 J	0.46 J	0.5 J	1	0.34 J	0.68 J					
Benzo[g,h,i]perylene	50.0	1.8	0.94	0.93	1.8	0.87	1.8 B					
Fluoranthene	50.0	3.7	3.7	4.2	4.6	1.8	5.8					
Fluorene	50.0	0.24 J	0.18 J	0.32 J	0.44 J	0.077 J	0.24 J					
Methylnaphthalene,2-	36.4	0.059 J	0.043 ป	0.32 J	0.11 J	0.089 J	0.210	0.000				
Naphthalene	13.0	0.07 J	0.058 J	0.38 J	0.13 J	0.038 J	1.1 J	1				
Phenanthrene	50.0	2.4	2.4	2.9	4.1	0.96	3.3					
Pyrene	50.0	3.6 J	3.6	4.2	5	1.5	5.8 B					
Total PAHs (Non-carc.)		12.8	11.6	14.2	18	5.9	20					
		PAHS (Carci	nogenic) by N	YSASP Metho	d 95-2 (ma/ka	1	20	23.00				
Benz[a]anthracene	0.224	2.2	1.9	2.2	2.6	0.82	3.8	<u> </u>				
Benzo(a)pyrene	0.061	1.8	1.7	1.8	2.1	0.86	2.8 B					
Benzo[b]fluoranthene	1.1	1.4	1.7	1.6	1.8	0.7	10					
Benzo[k]fluoranthene	1,1	1.7	1.6 J	2.2 J	2.1 J	0.72	3.1					
Chrysene	0.4	2.3	2.1	2.3	2.7	0.96	7.5					
Dibenz[a,h]anthracene	0.014	0.64 J	0.35 ป	0.4 J	0.57 J	0.28 J	1.4 J	~~~				
indeno[1,2,3-cd]pyrene	3.2	2	1.2	1.3	1.7	1	3.7 B					
otal PAHs (Carcinogenic)		12	10.6	11.8	13.6	5	32	26				
been some some some some		Other SV	OCs by NYSA	SP Method 95	-2 (ma/ka)		JE	20				
Biphenyl,1,1-	NS I	0.73 U	0.71 U	0.039 J	0.04 J	0.026 J	NA I	NA				
Bis(2-ethylhexyl)phthalate	50.0	0.73 U	0.71 U	1.1 U	0.71 U	0.59 U	NA NA	NA NA				
Butyl benzyl phthalate	50.0	0.73 U	0.71 U	0.1 J	0.71 U	0.052 J	NA NA	NA NA				
Carbazole	NS	0.23 J	0.23 J	0.28 J	0.54 J	0.032 J	NA NA	NA NA				
Dibenzofuran	6.2	0.073 J	0.088 J	0.1 J	0.31 J	0.022 J	NA NA	NA NA				
Di-n-butyl phthalate	8.1	0.73 U	0.018 J	0.018 J	0.02 J	0.02 J	NA NA	NA NA				
Di-n-octyl phthalate	50.0	0.73 U	0.71 U	0.71 U	0.71 U	0.02 J	NA NA	NA NA				
				SP Method PC		0.03 0	IVA	NA				
PCBs	NS I	NA	NA	NA	NA I	NA	NA I	NA				

			· · · · · · · · · · · · · · · · · · ·	Samp	le ID / Date Co	llected						
	NYSDEC		Clove and Ma	ple Avenue								
	Soil Cleanup	HA-BSS01-2	HA-BSS01-3	HA-BSS01-4	HA-BSS01-5	HA-BSS01-6		SS1A				
Analyte	Objectives	12/03/01	12/03/01	12/03/01	12/03/01	12/03/01	SS1 05/14/97	07/14/97				
		Pestic	cides by NYSA	SP Method P	esticides							
DDT,4,4'-	NS NS	NA	NA .	NA	NA	NA	NA	NA				
		letals Analysis	by NYSASP I	Methods 6010	7471/7740 (m	1/ka)						
Aluminum	NS NS	NA	NA	NA	NA	NA	6130	8340				
Antimony	NS	NA	NA	NA	NA	NA	4.8 B	1.7 R				
Arsenic	7.5	NA	NA	NA	NA	NA	21	4.7				
Barium	300	NA	NA	NA	NA	NA	72.6	55.1				
Beryllium	0.16	NA	NA	NA	NA	NA	0.25 B	0.49 B				
Cadmium	1	NA	NA	NA	NA	NA	0.16 U	0.49 B				
Calcium	NS	NA	NA	NA	NA	NA NA	826 B	5300 *				
chromium	10	NA	NA	NA	NA	NA	14 *	10.3				
Cobalt	30	NÃ	NA	NA	NA	NA NA	10.6 B	7 B				
Copper	25	NA	NA	NA	NA	NA NA	153	30.6				
Iron	2000	NA	NA	NA	NA	NA NA	72600 *	15300				
Lead	500	NA	NA	NA	NA	NA	281	53.2				
Magnesium	NS	NA	NA	NA	NA	NA NA	1780	3530				
Manganese	NS	NA	NA	NA	NA	NA NA	322 N*	356 N				
Mercury	0.1	NA	NA	NA	NA	NA NA	3.3 N*	0.17				
Nickel	13	NA	NA	NA	NA	NA NA	24.2	13.3				
Potassium	NS	NA ·	NA	NA	NA	NA NA	709 B	679 B				
Selenium	2	NA	NA	NA	NA	NA	4.5	0.65 U				
Silver	NS	NA	NA	NA	NA	NA	0.53 B	0.43 U				
Sodium	NS	NA	NA	NA	NA	NA NA	171 B	109 U				
Thallium	NS	NA	NA	NA	NA NA	NA NA	2.2 U	1.3 U				
Vanadium	150	NA	NA	NA	NA	NA NA	46.6	21.7				
Zinc	20	NA	NA	NA	NA	NA NA	66.4	77.3 E				
		C)	anides by CL	P Methods (m			00.4	11.3 E				
Cyanide, Total	1600 (a)	0.53 U	0.53 U	0.52 U	0.62 U	0.59 U	NA	NA				
		Geochemic	al Analyses b	y Various Met	hods (ma/ka)	0.00 0	IVA	11/4				
Residue, Total	NS	NA	NĀ	NA	NA	NA I	NA I	NA				

				Sample	e ID / Date C	ollected		
	NYSDEC Soil	ATTA - F. A.			and Maple /		· · · · · · · · · · · · · · · · · · ·	
	Cleanup	SS10	SS11	SS12	SS13	SS14	SS15	SS16
Analyte	Objectives	05/14/97	07/15/97	07/15/97	07/15/97	07/15/97	07/15/97	07/14/97
estatis Residential		BTEX by	NYSASP Me	thod 95-1 (m		0.7.10/07	01/19/31	01/14/31
Benzene	0.06	0.012 U	NA	NA	NA	NA NA	NA NA	NA NA
Toluene	1.5	0.001	NA	NA	NA	NA	NA	NA.
Xylene, Total	1.2	0.012 U	NA	NA	NA	NA	NA.	NA NA
Total BTEX		0.001	NA	NA	NA	NA	NA	NA NA
		other VOCs	by NYSASP	Method 95-1		101	1471	147
Acetone	0.2	NA	NA	NA	NA	NA	NA	NA NA
	PAHs (I	Von-carcino	genic) by NY	SASP Methi		ka)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	I INA
Acenaphthene	50.0	0.18 J	0.34 U	0.27 J	0.19 J	0.34 U	0.054 J	0.35 U
Acenaphthylene	41.0	0.88 J	0.34 U	0.065 J	0.054 J	0.34 U	0.045 J	0.35 U
Anthracene	50.0	0.6 J	0.09 J	0.53	0.45	0.34 U	0.13 J	0.075 J
Benzo[g,h,i]perylene	50.0	1.9 B	0.71	2.1	4.7	0.17 J	1.3	0.81
Fluoranthene	50.0	4.7	1.9	7.1 D	11 D	0.6	2	1.1
Fluorene	50.0	0.2 J	0.078 J	0.4	0.39	0.34 U	0.08 J	0.041 J
Methylnaphthalene,2-	36.4							0.011 0
Naphthalene	13.0	1 J	0.34 U	0.32 J	0.046 J	0.34 U	0.035 J	0.35 U
Phenanthrene	50.0	2.4	1.1	4.3	4.9	0.25 J	1.3	0.67
Pyrene	50.0	5.3 B	2.2	7.2 D	12 D	0.58	2.1	1.6
Total PAHs (Non-carc.)		17	6.1	22.3	33.7	1.6	7	4.3
	PAHS	(Carcinoge	nic) by NYS,	ASP Method	95-2 (ma/ka)		
Benz[a]anthracene	0.224	3.5	0.7	2.4	3.6	0.22 J	0.87	0.5
Benzo[a]pyrene	0.061	2.6 B	0.81	2.6	4.2	0.27 J	1	0.68
Benzo[b]fluoranthene	1.1	8.9	0.78	2.7	3.6	0.31 J	0.86	0.72
Benzo[k]fluoranthene	1.1	3.4	0.85	2.4	4.3	0.27 J	1,2	0.66
Chrysene	0.4	6.6	0.95	3.1	4.5	0.35	1.2	0.71
Dibenz[a,h]anthracene	0.014	1.2 J	0.16 J	0.77	1.4	0.34 U	0.38	0.24 J
Indeno[1,2,3-cd]pyrene	3.2	3.2 B	0.62	1.9	4	0.17 J	1,1	0.67
otal PAHs (Carcinogenic)		29.4	4.9	15.9	26	1.93	7	4.2
	0	ther SVOCs	by NYSASP	Method 95-2	? (mg/kg)			
Biphenyl,1,1-	NS	NA	NA	NA	NA	NA	NA	NA
Bis(2-ethylhexyl)phthalate	50.0	NA	NA	NA	NA	NA	NA	NA NA
Butyl benzyl phthalate	50.0	NA	NA	NA	NA	NA	NA	NA NA
Carbazole	NS	NA	NA:	NA	NA	NA	NA	NA NA
Dibenzofuran	6.2	NA	NA	NA	NA	NA	NA	NA NA
Di-n-butyl phthalate	8.1	NA	NA	NA	NA	NA	NA	NA
Di-n-octyl phthalate	50.0	NA	NA	NA	NA	NA	NA	NA NA
		PCBs	by NYSASP	Method PCB	S			
PCBs	NS	NA	NA	NA	NA	NA	NA I	NA

				Sample	e ID / Date Co	ollected	······	
	NYSDEC Soil				and Maple A			
	Cleanup	SS10	SS11	SS12	SS13	SS14	SS15	SS16
Analyte	Objectives	05/14/97	07/15/97	07/15/97	07/15/97	07/15/97	07/15/97	07/14/97
		Pesticides	by NYSASP	Method Pes	ticides			
DDT,4,4'-	NS	NA	NA	NA	NA	NA	NA NA	NA NA
	Metals A	nalysis by N	IYSASP Meti	nods 6010/7	471/7740 (mc	r/ka)		
Aluminum	NS	7370	8040	9690	8370	7720	9390	9570
Antimony	NS	4.5 B	1.7 R	1.7 R	1.8 R	1.7 R	1.7 B	1.7 B
Arsenic	7.5	19.2	3.3	6.6	7.1	6.5	4.5	3.3
Barium	300	71.9	58.6	67	62.5	60.5	69	67.6
Beryllium	0.16	0.28 B	0.41 B	0.5 B	0.43 B	0.42 B	0.63 B	0.55 B
Cadmium	1	0.16 U	0.35 B	0.63 B	0.54 B	0.55 B	0.39 B	0.42 B
Calcium	NS	911 B	1100	1730	2080	4410	1240 *	1910 *
chromium	10	14.1 *	10.3	14.6	9.9	9.7	9.9	11.3
Cobalt	30	10.3 B	6.3 B	6.7 B	6.1 B	5.8 B	5.6 B	6.7 B
Copper	25	138	15.4	24.7	26.3	26.3	18.2	17.2
Iron	2000	68400 *	13000	16300	16100	15000	15700	15300
Lead	500	246	26	185	88.9	89.6	50.7	47.8
Magnesium	NS	2350	1940	2340	2380	3550	2160	2370
Manganese	NS	345 *	391	444	392	378	394 N	391 N
Mercury	0.1	3.2 *	0.1 B	0.39	0.49	0.21	1.3	0.21
Nickel	13	24	11	13	11.8	10.8	11.4	13.3
Potassium	NS	1140 B	610 B	624 B	566 B	481 B	695 B	642 B
Selenium	2	4.5	0.64 U	0.63 U	1 B	0.64 U	0.65 U	0.64 U
Silver	NS	0.42 B	0.43 U	0.42 U	0.44 U	0.42 U	0.43 U	0.43 U
Sodium	NS	216 B	107 U	106 U	112 U	107 U	110 U	108 U
Thallium	NS	2.2 U	1.3 U	1.3 U	1.03 U	1.3 U	2.6 U	1.3 U
Vanadium	150	44.4	19	24.7	22.6	21.9	19.1	21.4
Zinc	20	143	36.6 E	68.5 E	77.7 E	75.7 E	62.7 E	61.3 E
		Cyanide	es by CLP M	ethods (mg/i	kg)			
Cyanide, Total	1600 (a)	NA	NA	NA	NA	NA	NA I	NA
	Geo	chemical Ar	alyses by V	arious Metho	ods (mg/ka)			
Residue, Total	NS	NA	NA	NA	NA	NA	NA	NA

				Sample	∋ ID / Date C	ollected		
STEP VIEW OF THE STEP STEP STEP STEP STEP STEP STEP STE	NYSDEC Soil		y	Clove	and Maple A	venue		
	Cleanup	SS17	SS18	SS19	SS2	SS2A	SS20	SS22
Analyte	Objectives	07/14/97	07/14/97	07/14/97	05/14/97	07/14/97	07/14/97	07/14/97
The second of the second of the second		BTEX by	NYSASP Me	thod 95-1 (m	g/kg)		4	30.00 000.00
Benzene	0.06	NA	NA	NA	0.001 J	NA NA	NA NA	NA
Toluene	1.5	NA	NA	NA	0.013 U	NA	NA	NA NA
Xylene, Total	1.2	NA	NA	NA	0.013 U	NA	NA	NA NA
Total BTEX		NA	NA	NA	0.001	NA	NA.	NA.
	``	Other VOCs	by NYSASP	Method 95-1				I NV
Acetone	0.2	NA	NA	NA	NA	NA NA	NA NA	NA
	PAHs (I	Von-carcino	genic) by N	SASP Metho	od 95-2 (ma/	ka)		L NA
Acenaphthene	50.0	0.047 J	0.16 J	0.36 U	0.054 J	0.073 J	0.97 J	0.34 U
Acenaphthylene	41.0	0.35 U	0.09 J	0.36 U	1.2	0.37 U	0.64 J	0.34 U
Anthracene	50.0	0.12 J	0.43 J	0.047 J	1.3	0.21 J	2.4 J	0.036 J
Benzo[g,h,i]perylene	50.0	2	5	0.57	9.3 DB	2.1	11	0.0000
Fluoranthene	50.0	2.8	7.6	0.98	10 D	3.1	10	0.59
Fluorene	50.0	0.078 J	0.25 J	0.036 J	0.19 J	0.18 J	2.4 J	0.34 U
Methylnaphthalene,2-	36.4		7,111					0.54 6
Naphthalene	13.0	0.35 U	0.72 U	0.36 U	0.47	0.047 J	150 D	0.34 U
Phenanthrene	50.0	1.5	3.7	0.54	1.2	2.2	15	0.3 J
Pyrene	50.0	4.8	7.9	1	17 DB	3.6	22	0.98
Total PAHs (Non-carc.)		11	25	3	40.7	11.5	214	2.3
		(Carcinoge	nic) by NYS,	ASP Method		į.	217	2.0
Benz[a]anthracene	0.224	1.2	3.5	0.4	6.9 D	1.4	8.4	0.27 J
Benzo[a]pyrene	0.061	1.9	4.3	0.46	6.4 DB	1.5	5.6	0.49
Benzo[b]fluoranthene	1.1	1.5	3.2	0.5	9.8 D	1.2	9.8	0.37
Benzo[k]fluoranthene	1.1	1.6	4.6	0.49	3	1.5	11	0.33 J
Chrysene	0.4	2	4.9	0.54	7.5 D	2	16	0.49
Dibenz[a,h]anthracene	0.014	0.53	1.7	0.18 J	1.6	0.7	2.9 J	0.095 J
Indeпо[1,2,3-cd]pyrene	3.2	1.6	4	0.41	7.7 DB	1,7	8.7	0.32 J
otal PAHs (Carcinogenic)		10	26	3.0	43	10	62	2.37
	Ö	ther SVOCs	by NYSASP	Method 95-2			O2	2.01
Biphenyl,1,1-	NS I	NA	NA	NA	NA	NA Ì	NA	NA
Bis(2-ethylhexyl)phthalate	50.0	NA	NA	NA	NA	NA	NA	NA NA
Butyl benzyl phthalate	50.0	NA	NA	NA	NA	NA	NA NA	NA NA
Carbazole	NS	NA	NA	NA	NA	NA NA	NA NA	NA NA
Dibenzofuran	6.2	NA	NA	NA	NA	NA NA	NA NA	NA NA
Di-n-butyl phthalate	8.1	NA	NA	NA	NA	NA	NA NA	NA NA
Di-n-octyl phthalate	50.0	NA	NA	NA	NA	NA	NA NA	NA NA
		PCBs	by NYSASP	Method PCB				14/1
PCBs	NS	NA	NA	NA	NA	NA I	NA	NA

				Sample	e ID / Date C	ollected								
	NYSDEC Soil				and Maple			NA 7750						
	Cleanup	SS17	SS18	SS19	SS2	SS2A	SS20	6655						
Analyte	Objectives	07/14/97	07/14/97	07/14/97	05/14/97	07/14/97	07/14/97	1						
		Pesticides	by NYSASP	Method Pes	ticides		07714707	01/14/31						
DDT,4,4'-	NS	NA	NA	NA	NA	NA NA	l NA	NΔ						
	Metals A	nalysis by N	IYSASP Meti	nods 6010/74	71/7740 (m	(/kg)		IVA						
Aluminum	NS	8630	8810	8950	6410	8390	5840	7750						
Antimony	NS	1.7 R	1.7 R	1.8 R	1.2 U	1.8 R	4.1 BN	77004001						
Arsenic	7.5	4.3	3.3	3.5	8.1	2.9	18	VPM						
Barium	300	41.8 B	54.3	54.8	46 B	40.8 B	46.2							
Beryllium	0.16	0.41 B	0.49 B	0.51 B	0.52 B	0.4 B	0.35 B							
Cadmium	1	0.38 B	0.4 B	0.39 B	0.16 U	0.71 B	1.4							
Calcium	NS	2440 *	2080 *	1200 *	2230	15500 *	1370 *							
chromium	10	8.3	10.1	11.9	7.3 *	8.4	14.5							
Cobalt	30	7.7 B	7.2 B	6.1 B	7 B	8.5 B	10.8 B							
Copper	25	50.4	27.1	17.7	34.6	74.7	140							
iron	2000	16800	15300	15000	8930 *	20700	95400	30100						
Lead	500	29.2	62	25.4	34.1	35.7	121	121						
Magnesium	NS	2630	2340	2180	1920	8870	2200	2630						
Manganese	NS	303 N	366 N	330 N	150 N*	291 N	333 N	288 N						
Mercury	0.1	0.41	0.08 B	0.12	0.1 N*	0.11	1.8	17.6						
Nickel	13	11.6	14.3	12.9	20	17.8	25.1	12.1						
Potassium	NS	657 B	551 B	660 B	771 B	713 B	850 B	1020 B						
Selenium	2	0.64 U	0.66 U	0.66 U	1.3 B	0.67 U	0.66 U	0.63 U						
Silver	NS	0.43 U	0.44 U	0.44 U	0.28 U	0.45 U	0.44 U	0.63 U 0.42 U						
Sodium	NS	120 B	110 U	112 U	61.5 B	474 B	111 U	107 U						
Thallium	NS	1.3 U	1.3 U	1.3 U	2.3 U	1.3 U	2.6 U	1.3 U						
Vanadium	150	20.8	22.7	20.6	19.2	30	42.5							
Zinc	20	54.3 E	56.1 E	40.7 E	34.9	70 E	51.7 E	21.9						
		Cyanide	s by CLP M	thods (mg/l	നി	10 L	31.7 E	94.3 E						
Cyanide, Total	1600 (a)	NA	NA	NA	NA	NA I	NA I	NA						
	Geol	chemical An	alyses by Va	rious Metho	ds (ma/ka)	Carrier Services	INU	INA.						
Residue, Total	NS	NA	NA	NA	NA NA	NA]	NA I	NA NA						

				Sample	D / Date C	ollected		
	NYSDEC Soil				and Maple A			
	Cleanup	SS23	SS24	SS25	SS26	SS27	SS28	SS29
Analyte	Objectives	07/15/97	07/15/97	07/15/97	07/15/97	07/15/97	07/15/97	07/15/97
	essentin on the contract of th	BTEX by		thod 95-1 (m		01/10/01	07/13/97	07/13/97
Benzene	I 0.06 I	NA ,	NA	NA	NA	NA	NA	NA
Toluene	1.5	NA	NA	NA	NA NA	NA NA	NA NA	NA NA
Xylene, Total	1.2	NA	NA	NA	NA NA	NA.	NA NA	NA NA
Total BTEX		NA	NA	NA	NA	NA NA	NA NA	NA:
				Method 95-1		I IVA	NA	NA
Acetone	0.2	NA	NA	NA	NA	NA	NA	NA
	PAHsil	Von-carcino		SASP Metho	nd 05.2 (ma)	kali .	I IVA	INA
Acenaphthene	50.0 T	0.34 U	0.34 U	0.35 U	0.069 J	0.089 J	0.26 J	0.35 U
Acenaphthylene	41.0	0.34 U	0.34 U	0.35 U	0.34 U	0.036 J	0.26 U	0.35 U
Anthracene	50.0	0.34 U	0.34 U	0.044 J	0.13 J	0.0303 0.24 J	0.50 0	0.064 J
Benzofg,h,ilperylene	50.0	0.27 J	0.36	0.42	0.89	2.1	0.99	0.064 3
Fluoranthene	50.0	0.71	1.2	1.5	2.8	4.2	3.2	1.5
Fluorene	50.0	0.34 U	0.34 U	0.35 U	0.096 J	0.19 J	0.32 J	0.062 J
Methylnaphthalene,2-	36.4			3.30		0.100	0.52 0	0.002 3
Naphthalene	13.0	0.34 U	0.34 U	0.069 J	0.083 J	0.036 J	0.36 U	0.039 J
Phenanthrene	50.0	0.36	0.44	0.6	1.4	2.6	2.8	0.039 0
Pyrene	50.0	0.62	1.1	1.4	2.9	4.6	3.5	1,5
Total PAHs (Non-carc.)		1.96	3.1	4.0	8,4	14.1	11.7	4.6
	PAHS	(Carcinoge	nic) by NYS	ASP Method	95-2 (ma/ka	17.1	[11.7	4.0
Benz[a]anthracene	0.224	0.28 J	0.38	0.51	1	1.6	1.6	0.5
Benzo[a]pyrene	0.061	0.33 J	0.51	0.59	1.2	2.1	1.6	0.62
Benzo[b]fluoranthene	1.1	0.36	0.54	0.66	1.2	2	1.4	0.68
Benzo[k]fluoranthene	1.1	0.32 J	0.6	0.7	1.3	1.8	1,4	0.45
Chrysene	0.4	0.38	0.62	0.84	1.4	2.1	1.6	0.7
Dibenz[a,h]anthracene	0.014	0.035 J	0.067 J	0.12 J	0.32 J	0.65	0.46	0.19 J
Indeno[1,2,3-cd]pyrene	3.2	0.2 J	0.32 J	0.42	0.78	1.7	0.94	0.46
otal PAHs (Carcinogenic)		1.9	3.0	3.8	7	12	9.0	3.6
	Ö	ther SVOCs	by NYSASP	Method 95-2	? (ma/ka)		3.0	0.0
Biphenyl,1,1-	NS	NA	NA	NA	NA	NA	NA	NA
Bis(2-ethylhexyl)phthalate	50.0	NA	NA	NA	NA	NA	NA	NA.
Butyi benzyl phthalate	50.0	NA	NA	NA	NA	NA.	NA NA	NA NA
Carbazole	NS	NA	NA	NA	NA	NA NA	NA NA	NA NA
Dibenzofuran	6.2	NA	NA	NA	NA	NA	NA NA	NA NA
Di-n-butyl phthalate	8.1	NA	NA	NA	NA	NA	NA NA	NA NA
Di-n-octyl phthalate	50.0	NA	NA	NA	NA	NA	NA NA	NA NA
		PCBs	by NYSASP	Method PCB				14/1
PCBs	NS	NA	NA	NA	NA	NA	NA	NA

				Sample	e ID / Date Co	ollected		
	NYSDEC Soil		·	Clove	and Maple A	venue		
	Cleanup	SS23	SS24	SS25	SS26	SS27	SS28	SS29
Analyte	Objectives	07/15/97	07/15/97	07/15/97	07/15/97	07/15/97	07/15/97	07/15/97
			by NYSASP	Method Pes	ticides		1	
DDT,4,4'-	NS I	NA	NA	NA	NA	NA	NA	l NA
	Metals A	nalysis by N	IYSASP Meti	rods 6010/7	171/7740 (mg	ı/ka) -		
Aluminum	NS	9050	5670	6450	7070	7490	4660	8010
Antimony	NS	1.7 R	1.6 R	1.7 R	1.6 R	1.8 R	1.7 B	1.7 R
Arsenic	7.5	10	2.5	3.7	4	3.5	3.7	2.3
Barium	300	70.3	29.2 B	54.4	51.3	60.6	43.9	61.9
Beryllium	0.16	0.46 B	0.3 B	0.36 B	0.39 B	0.36 B	0.24 B	0.44 B
Cadmium	1	0.53 B	0.31 B	0.54 B	0.4 B	0.83 B	0.58 B	0.22 B
Calcium	NS	2090	859 B	1160	1160	3170	11400	1100
chromium	10	11.2	6.3	9	9.1	10.4	8	9.5
Cobalt	30	6.8 B	4 B	4.8 B	5.3 B	5.6 B	5.6 B	6.4 B
Copper	25	34.9	11.1	19.5	16.1	29.5	37.8	15
Iron	2000	18300	11300	13600	13500	13000	13900	13400
Lead	500	56.1	25	85.4	83.4	85.6	69.6	40.6
Magnesium	NS	2970	2060	1970	2170	2230	7310	2000
Manganese	NS	409	234	354	397	297	295	408
Mercury	0.1	1	0.05 U	0.18	0.11	0.33	0.06 B	0.1 B
Nickel	13	12.3	7.7 B	9.5	10.6	11.9	10	10.8
Potassium	NS	890 B	591 B	541 B	546 B	648 B	516 B	450 B
Selenium	2	0.92 B	0.61 U	0.63 U	0.61 U	0.66 U	0.65 UN	0.63 UN
Silver	NS	0.42 U	0.41 U	0.42 U	0.41 U	0.44 U	0.44 U	0.42 U
Sodium	NS	106 U	103 U	106 U	104 U	129 B	110 U	107 U
Thallium	NS	1.3 U	1.2 U	1.3 U	1.2 U	1.3 U	1.3 U	1.3 U
Vanadium	150	18.4	12.6	15	16.6	17.5	12.3	18.4
Zinc	20	71 E	34.6 E	59.2 E	57.6 E	96.6 E	214 E	45 E
		Cyanide	s by CLP M				#17L	-3 L
Cyanide, Total	1600 (a)	NA	NA	NA	NA	NA	NA	NA
		chemical Ar	alyses by V	arious Metho			11/1	144
Residue, Total	NS	NA	NA	NA	NA	NA	NA	NA

			Sample ID / Date Collected Clove and Maple Avenue							
	NYSDEC Soil			Clove	and Maple A	lvenue				
	Cleanup	SS3	SS3A	SS30	SS31	SS32	SS33	SS35A		
Analyte	Objectives	05/14/97	07/14/97	07/15/97	07/15/97	07/15/97	07/14/97	07/14/97		
	55 55 ST SHEETS S	BTEX by	NYSASP Me	thod 95-1 (m	a/ka)					
Benzene	0.06	0.012 U	NA	NA	NA	NA	NA	NA		
Toluene	1.5	0.012 U	NA	NA	NA	NA	NA	NA		
Xylene, Total	1.2	0.012 U	NΑ	NA	NA	NA	NA	NA		
Total BTEX		ND	NA	NA	NA	NA	NA	NA		
		Other VOCs	by NYSASP					1 (4)		
Acetone	0.2	l NA	NA	NA	NA	NA NA	NA	NA NA		
	PAHs (I	Von-carcino	genic) by NY	SASP Metho			! <u>'</u>			
Acenaphthene	50.0	0.81 J	0.056 J	0.35 U	0.34 U	0.35 U	0.34 U	2.1 J		
Acenaphthylene	41.0	7.4	0.06 J	0.35 U	0.34 U	0.35 U	0.34 U	1.8 J		
Anthracene	50.0	15	0.17 J	0.036 J	0.036 J	0.35 U	0.042 J	10		
Benzo[g,h,i]perylene	50.0	24 B	3.2	0.45	0.48	0.43	0.59	22		
Fluoranthene	50.0	100 D	3.4	1.3	1.2	0.94	1.1	53		
Fluorene	50.0	4.7	0.086 J	0.35 U	0.035 J	0.35 U	0.34 U	3.1 J		
Methylnaphthalene,2-	36.4	***************************************				0.00	0.010	0.10		
Naphthalene	13.0	1.4 J	0.35 U	0.35 U	0.34 U	0.35 U	0.34 U	8.6 U		
Phenanthrene	50.0	69 D	1.5	0.61	0.66	0.46	0.52	28		
Pyrene	50.0	120 DB	3.8	1.3	1.3	1.1	1.6	58 J		
Total PAHs (Non-carc.)		342	12.3	3.7	3.7	3.3	3.9	178		
		(Carcinoge	nic) by NYS,		95-2 (ma/ka)	0.5	173		
Benz[a]anthracene	0.224	46 D	1.8	0.38	0.38	0.33 J	0.44	27		
Benzo[a]pyrene	0.061	43 DB	2.3	0.53	0.52	0.42	0.56	27		
Benzo[b]fluoranthene	1.1	55 D	1.9	0.49	0.54	0.46	0.62	21		
Benzo[k]fluoranthene	1.1	15	2.6	0.52	0.56	0.43	0.63	22		
Chrysene	0.4	48 D	2.7	0.58	0.58	0.53	0.85	29		
Dibenz[a,h]anthracene	0.014	7	0.94	0.13 J	0.12 J	0.1 J	0.16 J	4.8 J		
Indeno[1,2,3-cd]pyrene	3.2	31 B	2.5	0.37	0.39	0.34 J	0.5	16		
otal PAHs (Carcinogenic)		245	14.7	3.00	2.77	2.6	3.8	147		
Olidica and the second		ther SVOCs	by NYSASP			2.0	0.0	147		
Biphenyl,1,1-	NS	NA	NA	NA	NA NA	NA	NA	NA		
Bis(2-ethylhexyl)phthalate	50.0	NA	NA	NA	NA	NA	NA	NA NA		
Butyl benzyl phthalate	50.0	NA	NA	NA	NA NA	NA.	NA NA	NA NA		
Carbazole	NS	NA	NA	NA	NA NA	NA	NA NA	NA NA		
Dibenzofuran	6.2	NA	NA	NA	NA NA	NA NA	NA NA	NA		
Di-n-butyl phthalate	8.1	NA	NA	NA	NA NA	NA NA	NA NA	NA NA		
Di-n-octyl phthalate	50.0	NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA		
	Sin encycles agreement through		by NYSASP			14/\	I V/A	IVA Service		
PCBs	NS I	NA	NA	NA I	NA .	NA	NA	NA		

				Sample	e ID / Date C	allected		·
	NYSDEC Soil				and Maple		······································	
Analyte	Cleanup Objectives	SS3 05/14/97	SS3A 07/14/97	SS30 07/15/97	SS31 07/15/97	SS32 07/15/97	SS33 07/14/97	SS35A 07/14/97
		Pesticides	by NYSASP	Method Pes	ticides		Carlos Carlos Company	
DDT,4,4'-	NS NS	NA	NA	NA	NA	NA	NA	NA NA
	Metals A	nalysis by N	IYSASP Meti	hods 6010/7	471/7740 (mg	g/kg)		
Aluminum	NS	11300	7410	10200	8040	8230	7830	8070
Antimony	NS	3.5 B	1.7 R	1.7 R	1.7 R	1.7 B	1.7 B	1.7 R
Arsenic	7.5	18.8	3.9	2.8	4.1	15.4	31.2	19.6
Barium	300	105	35.6 B	70.2	51.3	108	89.3	91.8
Beryllium	0.16	0.41 B	0.45 B	0.58 B	0.44 B	0.5 B	0.47 B	0.5 B
Cadmium	1	0.16 U	0.41 B	0.25 B	0.3 B	0.53 B	0.67 B	1 B
Calcium	NS	1850	4920 *	790 B	2360	2960	1960 *	4420 *
chromium	10	23.4 *	8.8	9.3	9.1	11.7	9.9	15.9
Cobalt	30	8.1 B	6.6 B	5.9 B	5.3 B	9.6 B	5.6 B	6.9 B
Copper	25	62.8	26.9	12.8	15.7	43.1	33	67.6
Iron	2000	36500 *	15900	15000	14000	21100	23700	29100
Lead	500	267	39.6	33.9	53.1	73.8	108	193
Magnesium	NS	3040	3480	2120	2810	3220	2320	3850
Manganese	NS	363 *	351 N	640	392	789	298 N	319 N
Mercury	0.1	0.9 *	0.09 B	0.11	0.13	0.33	1.7	6.3
Nickel	13	29.7	13.7	11.9	13.3	14.3	12.4	25.6
Potassium	NS	1170 B	801 B	387 B	633 B	929 B	943 B	1040 B
Selenium	2	2.9	0.74 B	0.63 UN	0.64 UN	0.96 BN	2.1	1.8
Silver	NS	0.52 B	0.44 U	0.42 U	0.43 U	0.42 U	0.42 U	0.42 U
Sodium	NS NS	176 B	128 B	107 U	107 U	107 U	106 U	107 U
Thallium	NS	2.2 U	2.6 U	1.3 U	1.3 U	1.3 U	1.3 U	2.5 U
Vanadium	150	40.1	14.3	17.5	19.3	20	21.2	27.5
Zinc	20	180	57.1 E	47.3 E	61.3 E	87.5 E	95.2 E	206 E
		Cyanide	s by CLP M	ethods (mg/i	kg)			
Cyanide, Total	1600 (a)	NA	NA	NA	NA	NA	NA I	NA
	Geo	chemical An	alyses by V	arious Metho	ods (mg/ka)			
Residue, Total	NS	NA	NA	NA	NA	NA I	NA	NA

Table 3
Surface Soil Analytical Results
Clove and Maple Avenue Former MGP Site - Remedial Investigation
Haverstraw, New York

				Sample	D / Date C	ollected		
	NYSDEC Soil		***************************************		and Maple A		-v	***************************************
	Cleanup	SS35B	SS36	SS37	SS38	SS39	SS4	SS4A
Analyte	Objectives	07/14/97	07/14/97	07/14/97	07/14/97	07/14/97	05/13/97	07/14/97
10.00		BTEX by	VYSASP Me	thod 95-1 (m			00/10/01	01114/91
Benzene	0.06	NA	NA	NA	NA	NA	0.013 U	NA
Toluene	1.5	NA	NA	NA	NA	NA	0.013 U	NA NA
Xylene, Total	1.2	NA	NA	NA	NA	NA	0.013 U	NA NA
Total BTEX		NA	NA	NA	NA	NA	ND	NA NA
	(Other VOCs	by NYSASP	Method 95-1		• • • • • • • • • • • • • • • • • • • •	140	IVA
Acetone	0.2	NA	NA	NA	NA	NA	NA	NA
	PAHs (I	Von-carcino	genic) by N)	SASP Metho				
Acenaphthene	50.0	0.73 U	0.75 U	0.71 U	0.71 U	0.36 U	0.42 U	0.094 J
Acenaphthylene	41.0	0.73 U	0.12 J	0.26 J	0.32 J	0.1 J	0.25 J	0.11 J
Anthracene	50.0	0.3 J	0.24 J	0.29 J	0.41 J	0.12 J	0.12 J	0.42 J
Benzo[g,h,i]perylene	50.0	2.7 J	4.5	9.4	5.3	1.8	1 B	3.1
Fluoranthene	50.0	3.3	2.8	3.4	3.9	1.6	0.92	5
Fluorene	50.0	0.15 J	0.75 U	0.13 J	0.12 J	0.062 J	0.048 J	0.19 J
Methylnaphthalene,2-	36.4							01.100
Naphthalene	13.0	0.73 U	0.75 U	0.25 J	0.14 J	0.095 J	0.12 J	0.095 J
Phenanthrene	50.0	2.6	1.5	2.1	2	0.91	0.59	2.5
Pyrene	50.0	6J	6.1	8	7.5	2.7	1.3 B	5.7
Total PAHs (Non-carc.)		15.05	15.3	24	20	7.4	4	17
	PAHS	(Carcinoge	nic) by NYS.	ASP Method	95-2 (ma/ka	1		
Benz[a]anthracene	0.224	1.5 J	1.8	3	3	0.92	0.61	2.5
Benzo[a]pyrene	0.061	2 J	2.1	2.5	2.7	0.99	0.92 B	2.7
Benzo[b]fluoranthene	1.1	1.9 J	1.9	5.6	3	1.1	1.3	2.8
Benzo[k]fluoranthene	1.1	1.5 J	2.5	5.3	3.2	1.1	0.46	2.2
Chrysene	0.4	2.3 J	3.1	5.3	4.1	1.5	0.89	3
Dibenz[a,h]anthracene	0.014	0.76 J	1.1	2.4	1.4	0.49	0.24 J	1
Indeno[1,2,3-cd]pyrene	3.2	1.9 J	3.2	6.5	3.5	1.3	0.96 B	2.5
ptal PAHs (Carcinogenic)		12	15.7	31	21	7.4	5.4	17
	Ó	ther SVOCs	by NYSASP	Method 95-2	? (ma/ka)			
Biphenyi,1,1-	NS	NA	NA	NA	NA	NA I	NA	NA
Bis(2-ethylhexyl)phthalate	50.0	NA	NA	NA	NA	NA	NA	NA NA
Butyl benzyl phthalate	50.0	NA	NA	NA	NA	NA	NA	NA NA
Carbazole	NS	NA	NA	NA	NA	NA	NA	NA NA
Dibenzofuran	6.2	NA	NA	NA	NA	NA	NA	NA NA
Di-n-butyl phthalate	8.1	NA	NA	NA	NA	NA	NA	NA
Di-n-octyl phthalate	50.0	NA	NA	NA	NA	NA	NA	NA NA
		PCBs i	by NYSASP	Method PCB	s			(Z. (2. (5. (4.)
PCBs	NS	NA	NA	NA	NA	NA	NA I	NA

				Sample	e ID / Date Co	ollected		····
	NYSDEC Soil				and Maple A			6
	Cleanup	SS35B	SS36	SS37	SS38	SS39	SS4	SS4A
Analyte	Objectives	07/14/97	07/14/97	07/14/97	07/14/97	07/14/97	05/13/97	07/14/97
			by NYSASP	Method Pes	ticides			
DDT,4,4'-	NS	NA	NA	NA	NA	NA	NA	NA NA
	Metals A	nalysis by N	IYSASP Meti	hods 6010/74	171/7740 (mc	ı/kg)		
Aluminum	NS	7910	10800	6690	7690	8980	10500	6620
Antimony	NS	1.8 R	1.8 R	1.9 BN	1.7 R	1.7 R	2.1 B	1.7 R
Arsenic	7.5	13.6	9.2	20.3 N	24.2 N	11.5 N	13.4	2.3
Barium	300	67.5	88.5	130	97.2	73.3	92.5	46.9
Beryllium	0.16	0.44 B	0.6 B	0.41 B	0.44 B	0.49 B	0.53 B	0.44 B
Cadmium	1	1 B	0.86 B	1.1 B	1.1	0.84 B	0.16 U	0.29 B
Calcium	NS	5110 *	4240 *	2680 *	3600 *	2540 *	4070	3190 *
chromium	10	12.2	17.1	22.5	13.9	12.8	22.7 *	8.3
Cobalt	30	6.1 B	6.4 B	6.3 B	7.2 B	8 B	9.2 B	5.4 B
Copper	25	52.1	37.6	86.1	97.5	49.7	49.4	17.3
Iron	2000	23800	24500	35300	28800	25400	30600 *	13100
Lead	500	146	108	213	149	99.9	93.2	49.8
Magnesium	NS	4600	3630	2490 *	2820 *	2950 *	3910	2530
Manganese	NS	308 N	425 N	285 *	329 *	440 *	478 *	293 N
Mercury	0.1	1.2	2.3	1.3 *	5.3 *	2.2 *	0.9 *	0.2
Nickel	13	16.7	27.9	33.6	21.9	16.3	19.8	10.1
Potassium	NS	750 B	1080 B	934 B	859 B	956 B	1090 B	530 B
Selenium	2	0.67 U	0.68 U	1.6	0.65 U	0.65 U	1.9	0.64 U
Silver	NS	0.45 U	0.45 U	0.44 U	0.43 U	0.43 U	0.28 U	0.43 U
Sodium	NS NS	119 B	261 B	111 U	109 U	110 U	158 B	108 U
Thallium	NS	1.3 U	1.4 U	1.3 U	1.3 U	1.3 U	2.3 U	1.3 U
Vanadium	150	26.6	26.7	34.3	28.7	24.6	24.9	17.3
Zinc	20	268 E	126 E	150 E	181 E	116 E	216	48 E
		Cyanide	s by CLP M	ethods (mg/l				
Cyanide, Total	1600 (a)	NA	NA	NA	NA	NA	NA	NA
	Geo	chemical An	alyses by V.	arious Metho	ds (mg/ka)			
Residue, Total	NS NS	NA	NA	NA	NA	NA	NA	NA

				Sample	ID / Date Co	ollected		···
	NYSDEC Soil				and Maple A			
	Cleanup	SS41	SS42	SS43	SS44	SS46	SS49	SS5
Analyte	Objectives	07/15/97	07/15/97	07/15/97	07/15/97	07/15/97	07/15/97	05/13/97
en en en en én s		BTEX by	NYSASP Me	thod 95-1 (m		1	01/10/0/	03/13/31
Benzene	0.06	NA	NA	NA	NA	NA	NA	0.011 U
Toluene	1.5	NA	NA	NA	NA	NA	NA	0.011 U
Xylene, Total	1.2	NA	NA	NA	NA	NA	NA	0.011 U
Total BTEX		NA	NA	NA	NA	NA	NA	ND
		Other VOCs	by NYSASP	Method 95-1				1 110
Acetone	0.2	NA	NA NA	NA	NA	NA	NA	NA NA
	PAHs (i	Von-carcino	genic) by N)	SASP Metho	od 95-2 (ma)	ka)		10//
Acenaphthene	50.0	0.039 J	1.7 U	0.04 J	0.077 J	0.34 U	8.8 U	35 J
Acenaphthylene	41.0	0.45	1.1 J	0.18 J	0.09 J	0.34 U	16	77
Anthracene	50.0	0.14 J	0.45 J	0.15 J	0.18 J	0.064 J	3.6 J	520 D
Benzo[g,h,i]perylene	50.0	3.3	5.3	1.8	1.4	0.34	84	230 B
Fluoranthene	50.0	2.5	8	3	4	0.99	34	940 D
Fluorene	50.0	0.11 J	0.34 J	0.12 J	0.14 J	0.05 J	8.8 U	92
Methylnaphthalene,2-	36.4				***************************************			
Naphthalene	13.0	0.16 J	0.25 J	0.071 J	0.074 J	0.34 U	3.6 J	19 J
Phenanthrene	50.0	1.2	4.1	1.9	2	0.64	12	790 D
Pyrene	50.0	4.4	14	4.4	3.1	1.1	110	1200 DB
Total PAHs (Non-carc.)		12.3	34	12	11	2.9	281	3903
	PAHS	(Carcinoge	nic) by NYS.	ASP Method	95-2 (ma/ka)		0000
Benz[a]anthracene	0.224	1.4	4.8	1.5	1.5	0.5	44	520 D
Benzo[a]pyrene.	0.061	3.4	5.9	2	1.5	0.49	87	460 DB
Benzo[b]fluoranthene	1.1	2.7	5.2	2.1	1.4	0.45	58	450 D
Benzo[k]fluoranthene	1.1	2.9	5.1	1.8	1.5	0.51	74	120
Chrysene	0.4	2.3	6.7	2.4	2.1	0.58	63	530 D
Dibenz[a,h]anthracene	0.014	1	1.6 J	0.57	0.42	0.14 J	24	58
Indeno[1,2,3-cd]pyrene	3.2	2.6	4.2	1.5	1.2	0.3 J	60	240 B
otal PAHs (Carcinogenic)		16	33.5	12	9.6	3.0	410	2378
	Ó	ther SVOCs	by NYSASP	Method 95-2	? (mg/kg)			
Biphenyl,1,1-	NS	NA	NA	NA	NA	NA	NA	NA
Bis(2-ethylhexyl)phthalate	50.0	NA ·	NA	NA	NA	NA	NA	NA
Butyl benzyl phthalate	50.0	NA	NA	NA	NA	NA	NA	NA
Carbazole	NS	NA	NA	NΑ	NA	NA	NA	NA
Dibenzofuran	6.2	NA	NA	NA	NA	NA	NA	NA NA
Di-n-butyl phthalate	8.1	NA	NA	NA	NA	NA	NA	NA
Di-n-octyl phthalate	50.0	NA	NA	NA	NA	NA	NA	NA
		PCBs	by NYSASP	Method PCE	s			
PCBs	NS	NA	NA	NA	NA	NA	NA	NA

				Sample	Do ID / Date C	ollected		
	NYSDEC Soil		~	Clove	and Maple A	venue	110	
	Cleanup	SS41	SS42	SS43	SS44	SS46	SS49	SS5
Analyte	Objectives	07/15/97	07/15/97	07/15/97	07/15/97	07/15/97	07/15/97	05/13/97
		Pesticides	by NYSASP	Method Pes	ticides			
DDT,4,4'-	NS	NA	NA	NA	NA	NA	NA	NA
	Metals A	nalysis by N	IYSASP Meti	hods 6010/74	471/7740 (m <u>c</u>	j/kg)		1
Aluminum	NS	10400	5260	8380	7960	5640	7510	7270
Antimony	NS	1.8 R	1.7 R	1.7 R	1.6 R	1.6 R	1.7 R	3.6 B
Arsenic	7.5	5.5	6.3	4.8	5.7	2.7	21,9	37.8
Barium	300	90.7	92.9	68.9	99.5	45.3	114	134
Beryllium	0.16	0.63 B	0.36 B	0.47 B	0.53 B	0.97 B	0.46 B	0.36 B
Cadmium	1	0.67 B	0.58 B	0.4 B	0.53 B	0.49 B	0.77 B	0.42 B
Calcium	NS	2260	5450	1180	1380	5320	2090	3520
chromium	10	15.6	7.9	12.5	11.2	16.5	15.3	19,9 *
Cobalt	30	9 B	5.1 B	7 B	7.3 B	7.1 B	6.4 B	8.9 B
Copper	25	27.6	34.1	20.3	22.4	53.6	29.5	118
Iron	2000	24200	16500	18000	14600	21900	26500	44100 *
Lead	500	147	188	106	83.5	63.6	463	309
Magnesium	NS	3400	3740	2800	2090	4350	2570	3130
Manganese	NS	492	262	428	526	272	365	358 *
Mercury	0.1	0.24	2.5	0.35	0.19	0.06 B	0.29	3.1 *
Nickel	13	19.5	10.8	14.4	13.6	21.8	15,5	34.6
Potassium	NS	1050 B	590 B	700 B	457 B	647 B	809 B	1120 B
Selenium	2	0.67 UN	0.64 UN	0.65 UN	0.62 UN	0.62 UN	0.64 UN	4.7
Silver	NS	0.44 U	0.43 U	0.43 U	0.41 U	0.41 U	0.43 U	0.54 B
Sodium	NS	112 U	108 U	109 U	104 U	149 B	107 U	226 B
Thallium	NS	1.3 U	1.3 U	1.3 U	1.2 U	1.2 U	1.3 U	2 U
Vanadium	150	23.9	17.8	20.1	24.7	15	22.7	37.5
Zinc	20	150 E	139 E	88.8 E	130 E	325 E	154 E	337
		Cyanide	es by CLP M	ethods (mg/	kg)			
Cyanide, Total	1600 (a)	NA	NA	NA	NA	NA	NA	NA
	Geo	chemical Ar	nalyses by V	arious Metho	ods (mg/kq)			
Residue, Total	NS	NA	NA	NA	NA	NA	NA	NA

Table 3
Surface Soil Analytical Results
Clove and Maple Avenue Former MGP Site - Remedial Investigation
Haverstraw, New York

				Sample	ID / Date Co	ollected		
	NYSDEC Soil				and Maple A			VA
	Cleanup	SS5A	SS50	SS51	SS52	SS53	SS54	SS55
Analyte	Objectives	07/15/97	07/15/97	07/14/97	07/14/97	07/14/97	07/14/97	07/14/97
	,	BTEX by	VYSASP Me	thod 95-1 (m				1 0171 1707
Benzene	0.06	NA	NA	NA	NA	NA	NA NA	NA
Toluene	1:5	NA	NA	NA	NA	NA	NA	NA
Xylene, Total	1.2	NA	NA	NA	NA	NA	NA	NA
Total BTEX		NA	NA	NA	NA	NA	NA	NA.
		Other VOCs	by NYSASP	Method 95-1	(ma/ka)			
Acetone	0.2	NA	NA	NA	NA	NA	NA NA	NA
	PAHs (i	Von-carcino	genic) by N	SASP Metho	od 95-2 (mg/	ka)		
Acenaphthene	50.0	0.35 U	0.36 U	0.71 U	0.12 J	0.038 J	0.66 U	0.33 U
Acenaphthylene	41.0	0.35 U	0.05 ป	1.9	0.19 J	0.2 J	0.23 J	0.13 J
Anthracene	50.0	0.35 U	0.038 J	0.44 J	0.27 J	0.2 J	0.23 J	0.15 J
Benzo(g,h,i)perylene	50.0	0.2 J	0.7	7.9 D	3.1	4.8	7.3	1.3
Fluoranthene	50.0	0.45	1.1	3.1	5.1	2.3	3.6	1.4
Fluorene	50.0	0.35 U	0.36 U	0.31 J	0.12 J	0.11 J	0.14 J	0.065 J
Methylnaphthalene,2-	36.4							
Naphthalene	13.0	0.35 U	0.055 J	0.7 J	0.09 J	0.098 J	0.15 J	0.33 U
Phenanthrene	50.0	0.18 J	0.52	1.2	2	1.4	2.1	0.73
Pyrene	50.0	0.37	1.4	10	5.8	3.9	8.5	2.3
Total PAHs (Non-carc.)		1.2	3.9	26	17	13.0	22.3	6.1
	PAHS	(Carcinoge	nic) by NYS	ASP Method	95-2 (mg/kg)		
Benz[a]anthracene	0.224	0.14 J	0.41	3.8	2.3	1.9	2.9	0.84
Benzo[a]pyrene	0.061	0.17 J	0.63	9.9	3	1.6	2.3	0.91
Benzo[b]fluoranthene	1.1	0.21 J	0.62	7	2.8	1.6	4.2	0.66
Benzo[k]fluoranthene	1.1	0.18 J	0.67	7.5	3	2.8	4.6	0.99
Chrysene	0.4	0.22 J	0.63	5.3	3.3	3	5.1	1.1
Dibenz[a,h]anthracene	0.014	0.35 U	0.19 J	3.7	1.1	1.2	1.8	0.34
Indeno[1,2,3-cd]pyrene	3.2	0.13 J	0.56	10	2.7	3.2	4.8	1
otal PAHs (Carcinogenic)		1.40	3.71	47	18	15	25.7	6
		ther SVOCs	by NYSASP	Method 95-2	? (mg/kg)			
Biphenyl,1,1-	NS	NA	NA	NA	NA	NA	NA	NA
Bis(2-ethylhexyl)phthalate	50.0	NA	NA	NA	NA	NA	NA	NA
Butyl benzyl phthalate	50.0	NA	NA	NA	NA	NA	NA	NA
Carbazole	NS	NA	NA	NA	NA	NA	NA	NA
Dibenzofuran	6.2	NA	NA	NA	NA	NA	NA	NA
Di-n-butyl phthalate	8.1	NA .	NA	NA	NA	NA	NA	NA
Di-n-octyl phthalate	50.0	NA	NA	NA	NA	NA	NA	NA
		The state of the s	And the second s	Method PCB	S			
PCBs	NS	NA	NA	NA	NA	NA	NA	NA

					ID / Date Co		····	
	NYSDEC Soil			Clove	and Maple A	venue		
	Cleanup	SS5A	SS50	SS51	SS52	SS53	SS54	SS55
Analyte	Objectives	07/15/97	07/15/97	07/14/97	07/14/97	07/14/97	07/14/97	07/14/97
		Pesticides	by NYSASP	Method Pes	ticides			
DDT,4,4'-	NS I	NA	NA	NA	NA	NA	NA NA	NA
	Metals A	nalysis by N	IYSASP Met	hods 6010/7	171/7740 (mg	(/kg)	o established	
Aluminum	NS	7910	7740	8990	8430	7640	6480	8400
Antimony	NS	1.7 R	1.7 R	1.7 R	1.7 R	1.7 R	1.7 R	1.7 R
Arsenic	7.5	2.6	3.5	7:1	5 N	10.3 N	18.1 N	3.7 N
Barium	300	60.2	35.3 B	82.2	44.3	75.7	95.7	41.3 B
Beryllium	0.16	0.41 B	0.39 B	0.54 B	0.43 B	0.44 B	0.39 B	0.4 B
Cadmium	1	0.3 B	0.28 B	0.44 B	0.45 B	0.73 B	0.96 B	0.29 B
Calcium	NS	1070	1120	2610	1170 *	2630 *	2330 *	925 B*
chromium	10	9.9	10.7	10.7	10.8	13	17.2	12.6
Cobalt	30	6.2 B	7 B	6.7 B	7.2 B	5.8 B	7 B	6.6 B
Copper	25	14.2	17.9	24.3	25.2	37.3	77.8	17.2
Iron	2000	12800	18000	18300	18400	22300	31200	17000
Lead	500	15.9	31.3	119	50.3	85.6	171	23.4
Magnesium	NS	1980	2820	2920	2760 *	2990 *	2520 *	2590 *
Manganese	NS	382	417	467	471 *	800 *	292 *	394 *
Mercury	0.1	0.06 B	0.1 B	0.19	0.21 *	0.76 *	0.74 *	0.09 B*
Nickel	13	10.3	14.8	14.5	14.3	22.3	24.9	13.4
Potassium	NS	644 B	780 B	660 B	869 B	707 B	821 B	657 B
Selenium	2	0.63 U	0.65 UN	0.88 BN	0.62 U	0.63 U	0.85 B	0.62 U
Silver	NS	0.42 U	0.43 U	0.43 U	0.41 U	0.42 U	0.42 U	0.41 U
Sodium	NS	105 U	109 U	108 U	105 U	105 U	106 U	105 U
Thallium	NS	1.3 U	1.3 U	1.3 U	1.2 U	1.3 U	1.3 U	1.2 U
Vanadium	150	19	17	19.9	19.3	21.1	26.7	15.7
Zinc	20	30.9 E	53.2 E	81.8 E	66.6 E	98.1 E	160 E	50.2 E
		Cyanide		ethods (mg/l				40.£ L
Cyanide, Total	1600 (a)	NA	NA	NA	NA NA	NA I	NA	NA
	Geo	chemical Ar	alyses by V	arious Metho	ds (ma/ka)	7		
Residue, Total	NS I	NA	NA	NA	NA	NA	NA	NA

			Sample ID / Date Collected								
	NYSDEC Soil		WATER TO THE TOTAL THE TOTAL TO THE TOTAL TOTAL TO THE TO		and Maple A						
	Cleanup	SS56	SS57	SS58	SS59	ſ	0001				
Analyte	Objectives	07/14/97	07/14/97	07/14/97	07/15/97	SS6 05/14/97	SS6A	SS60			
	<u>II ODJEDRIVES J</u>			thod 95-1 (m	07/15/97 c/kg)	05/14/97	07/15/97	07/15/97			
Benzene	0.06	NA	NA	NA	g/ ng) NA	0.011 U	A 1 A	314			
Toluene	1.5	NA NA	NA NA	NA NA	NA NA	0.011 U	NA NA	NA NA			
Xylene, Total	1.2	NA NA	NA NA	NA NA	NA NA	0.011 U	NA NA	NA NA			
Total BTEX		NA NA	NA NA	NA NA	NA NA	1		NA NA			
10,010,12				Method 95-1		ND	NA	NA			
Acetone	0.2 Î	NA NA	NA	NA NA	<i>(mg/kg)</i> NA	NA	A.A	1 10			
				SASP Metho	nd OE O (mix)	NA Na	NA	NA NA			
Acenaphthene	50.0	0.34 U	0.057 J	0.34 U	0.35 U	√g) 0.58 J	0.01	0.07.1			
Acenaphthylene	41.0	0.34 U	0.037 J	0.097 J	0.099 J	5.7	0.6 J 0.44 J	0.27 J			
Anthracene	50.0	0.34 U	0.2 J	0.083 J	0.035 J 0.14 J	3.7 4	2.6	2.3			
Benzo[g,h,i]perylene	50.0	0.29 J	0.92	0.96	1.1	8.5 B	2.6 17	1.7 J			
Fluoranthene	50.0	1.2	2	1.1	1.7	46 D	33 D	9.8			
Fluorene	50.0	0.34 U	0.064 J	0.038 J	0.084 J	2.8	1.7	20			
Methylnaphthalene,2-	36.4		0.004 0	0.000 0	0.004 3	2.0	1./	1.6 J			
Naphthalene	13.0	0.34 U	0.35 U	0.34 U	0.089 J	0.51 J	0.22 J	0.29 ป			
Phenanthrene Phenanthrene	50.0	0.4	0.94	0.52	1.4	50 D	20	22			
Pyrene	50.0	1	2	1.3	3.4	67 DB	44 D	33 D			
Total PAHs (Non-carc.)		3	6	3.6	8.0	185	120	91			
		(Carcinoge	nic) by NYS.	ASP Method		100	120	91			
Benz[a]anthracene	0.224	0.34	0.96	0.56	1	23 D	14	12			
Benzo[a]pyrene	0.061	0.4	1,1	0.77	1.2	24 DB	16	14			
Benzo[b]fluoranthene	1.1	0.49	0.81	0.61	0.99	34 D	12	11			
Benzo[k]fluoranthene	1.1	0.35	1	0.81	1.3	6.9	16	15			
Chrysene	0.4	0.56	1.3	0.82	1.4	37 D	18	19			
Dibenz[a,h]anthracene	0.014	0.34 U	0.32 J	0.27 J	0.35	4.3	5.8	3.3			
Indeno[1,2,3-cd]pyrene	3.2	0.24 J	0.86	0.74	0.9	14 B	14	8.7			
otal PAHs (Carcinogenic)		2.7	6	4.58	7	143	96	83			
	Ö	ther SVOCs	by NYSASP	Method 95-2	(ma/ka)	.,0		- 03			
Biphenyl,1,1-	NS	NA	NA	NA	NA	NA	NA	NA			
Bis(2-ethylhexyl)phthalate	50.0	NA	NA	NA	NA	NA	NA NA	NA NA			
Butyl benzyl phthalate	50.0	NA	NA	NA	NA	NA	NA	NA NA			
Carbazole	NS	NA	NA	NA	NA	NA	NA NA	NA NA			
Dibenzofuran	6.2	NA	NA	NA	NA	NA	NA NA	NA NA			
Di-n-butyl phthalate	8.1	NA	NA	NA	NA	NA	NA NA	NA			
Di-n-octyl phthalate	50.0	NA	NA	NA	NA	NA	NA	NA NA			
		PCBs	by NYSASP	Method PCB	Š						
PCBs	NS	NA	NA	NA	NA I	NA	NA	NA			

					e ID / Date C			
	NYSDEC Soil				and Maple A		- IP	
	Cleanup	SS56	SS57	SS58	SS59	SS6	SS6A	SS60
Analyte	Objectives	07/14/97	07/14/97	07/14/97	07/15/97	05/14/97	07/15/97	07/15/97
		Pesticides	by NYSASP	Method Pes	ticides			
DDT,4,4'-	. NS	NA	NA	NA	NA	NA	NA	NA
	Metals A	nalysis by N	IYSASP Meti	hods 6010/7	471/7740 (mg	7/kg)		
Aluminum	NS	6970	6590	8280	7600	10800	6360	9530
Antimony	NS	1.7 R	1.7 R	1.7 R	1.7 R	1.3 B	1.7 R	1.8 R
Arsenic	7.5	3.3 N	2.5 N	2.9 N	3.8	6.6	7.3	10.3
Barium	300	33.3 B	39.5 B	51.7	48.4	73.9	37.5 B	242
Beryllium	0.16	0.38 B	0.37 B	0.43 B	0.41 B	0.47 B	0.27 B	0.54 B
Cadmium	†	0.31 B	2	0.51 B	0.33 B	0.15 U	0.56 B	0.56 B
Calcium	NS	1010 B*	2410 *	1120 *	1360	1060 B	18400	4180
chromium	10	10.7	8.2	9.9	10.6	17 *	7.3	36
Cobalt	30	6.3 B	5.6 B	5.9 B	6.4 B	7.9 B	8.4 B	6.5 B
Copper	25	15.5	18.6	16.1	18,2	21	55	21.8
Iron	2000	16200	14500	15900	17900	19400 *	18700	18700
Lead	500	23.8	53.4	32.3	51.1	174	94.5	582
Magnesium	NS	2430 *	3140 *	2200 *	2410	2940	11600	2640
Manganese	NS	469 *	364 *	416 *	466	548 *	195	561
Mercury	0.1	0.09 B*	0.1 *	0.11 B*	0.09 B	0.1 B	0.26	0.18
Nickel	13	12.5	10.9	12	13.4	14.9	11.6	14.4
Potassium	NS	564 B	584 B	552 B	629 B	790 B	755 B	819 B
Selenium	2	0.63 U	0.63 U	0.64 U	0.64 UN	1.3	0.62 U	0.66 UN
Silver	. NS	0.42 U	0.42 U	0.43 U	0.43 U	0.25 U	0.41 U	0.44 U
Sodium	NS	105 U	105 U	108 U	108 U	65.6 B	104 U	111 U
Thallium	NS	1.3 U	1.3 U	1.3 U	1.3 U	2 U	1.2 U	1.3 U
Vanadium	150	14.3	13.1	17.2	17.5	23.3	25.6	22.8
Zinc	20	48.4 E	47.8 E	49.3 E	56 E	70.8	79.2 E	129 E
		Cyanide	s by CLP M	ethods (mg/i	kg)			
Cyanide, Total	1600 (a)	NA	NA	NA	NA	NA	NA	NA
	Geo	chemical An	alyses by V	arious Metho	ods (mg/ka)			
Residue, Total	NS I	NA	NA	NA	NA	NA	NA	NA

Table 3
Surface Soil Analytical Results
Clove and Maple Avenue Former MGP Site - Remedial Investigation
Haverstraw, New York

				Sample	e ID / Date Co	allected		······································
	NYSDEC Soil	**************************************			and Maple A			
	Cleanup	SS64	SS65	SS66	SS67	SS68	567	0074
Analyte	Objectives	07/15/97	07/15/97	07/15/97	07/15/97	07/15/97	SS7 05/14/97	SS7A 07/15/97
			NYSASP Me			01/10/81	03/14/3/	01/10/91
Benzene	0.06	NA	NA	NA NA	NA	NA NA	0.013 U	NA
Toluene	1.5	NA	NA	NA	NA	NA NA	0.013 U	NA NA
Xylene, Total	1.2	NA	NA	NA	NA	NA	0.013 U	NA NA
Total BTEX		NA	NA	NA	NA	NA NA	ND	NA NA
		Other VOCs	by NYSASP			1 1 1 1	I ND	I IVA
Acetone	0.2	NA	NA	NA	NA NA	NA NA	NA NA	NA
n Carlos Constantina	PAHs (i	Von-carcino	genic) by NY		od 95-2 (ma/	ka)		11/4
Acenaphthene	50.0	0.33 U	0.29 J	0.15 J	0.092 J	0.13 J	0.13 J	0.31 J
Acenaphthylene	41.0	0.2 J	1.6	0.55	0.31 J	0.35 J	0.31 J	0.13 J
Anthracene	50.0	0.11 J	1.3	0.55	0.23 J	0.41	0.29 J	0.9
Benzo[g,h,i]perylene	50.0	2.4	7.6 D	6.5 D	3.4	4.3	1.4 B	6.6
Fluoranthene	50.0	2.8	16 D	9.7 D	4	4.9	2	16 D
Fluorene	50.0	0.11 J	0.99	0.43	0.29 J	0.22 J	0.19 J	0.57 J
Methylnaphthalene,2-	36.4							0.57 0
Naphthalene	13.0	0.051 J	0.29 J	0.26 J	0.075 J	0.17 J	0.088 J	0.69 U
Phenanthrene	50.0	1.5	14 D	5.9 D	3.5	3.1	1.6	7.2
Pyrene	50.0	4.9 D	36 D	10 D	5.9 D	6.7 D	2.4 B	18 D
Total PAHs (Non-carc.)		12.4	78.1	34	18	20.3	8	50
	PAHS	(Carcinoge	nic) by NYS.	ASP Method	95-2 (ma/ka	1	· · · · · ·	30
Benz[a]anthracene	0.224	2	10	4.4	2.4	3.3	1.2	5.7
Benzo[a]pyrene	0.061	2,4	11	5	2.6	3.9	1.4 B	6.4
Benzo[b]fluoranthene	1.1	2.3	11	5.2	2.5	3.7	1.9	4.7
Benzo[k]fluoranthene	1.1	2.1	10	5	3.2	3.5	0.75	7.2
Chrysene	0.4	2.9	15 D	6.8 D	4	4.4	1.4	6.9
Dibenz[a,h]anthracene	0.014	0.74	4.5	2.1	1	1.5	0.37 J	2.2
Indeno[1,2,3-cd]pyrene	3.2	1.7	11	5	2.6	3.5	1.3 B	5.6
otal PAHs (Carcinogenic)		14	58	34	18	23.8	8.3	38.7
	Ő	ther SVOCs	by NYSASP	Method 95-2	? (ma/ka)	20.0	0.0	00.7
Biphenyl,1,1-	NS	NA	NA	NA	NA I	NA	NA	NA
Bis(2-ethylhexyl)phthalate	50.0	NA	NA	NA	NA	NA	NA NA	NA NA
Butyl benzyl phthalate	50.0	NA	NA	NA	NA	NA	NA	NA NA
Carbazole	NS	NA	NA	NA	NA	NA	NA	NA NA
Dibenzofuran	6.2	NA	NA	NA	NA	NA	NA NA	NA NA
Di-n-butyl phthalate	8.1	NA	NA	NA	NA	NA	NA	NA NA
Di-n-octyl phthalate	50.0	NA	NA	NA	NA	NA	NA	NA NA
		PCBs .	by NYSASP	Method PCB	s			
PCBs	NS	NA	NA	NA	NA	NA I	NA	NA

				Sampl	e ID / Date C	ollected		
WESTER THE STATE OF THE STATE O	NYSDEC Soil				and Maple			
	Cleanup	SS64	SS65	SS66	SS67	SS68	SS7	SS7A
Analyte	Objectives	07/15/97	07/15/97	07/15/97	07/15/97	07/15/97	05/14/97	07/15/97
				Method Pes	ticides	(S. 65 15 46)	transport of the	
DDT,4,4'-	NS I	NA	NA	NA	NA	NA	NA	NA
	Metals A	nalysis by N	IYSASP Met	hods 6010/7	471/7740 (m	g/kg)		
Aluminum	NS	8390	9790	9350	8220	7960	12800	9910
Antimony	NS	1.7 R	1.8 R	1.7 R	1.6 R	1.8 R	1.6 B	1.7 R
Arsenic	7.5	4.9	7	4.7	5.8	5.2	10.8	4.5
Barium	300	68.8	89.9	92.9	94.9	70.1	192	57.9
Beryllium	0.16	0.51 B	0.5 B	0.48 B	0.28 B	0.44 B	1 B	0.44 B
Cadmium	1	0.28 B	0.58 B	0.52 B	0.34 B	1.3	0.38 B	0.5 B
Calcium	NS	1680	2820	1180	436 B	5270	3650	2710
chromium	10	9.5	21.4	18.7	23	10.3	16.9 *	10.6
Cobalt	30	7.4 B	6.9 B	7.1 B	4.1 B	7.3 B	10.5 B	7.7 B
Copper	25	19.9	28.9	22	15.3	36.5	59.6	29.7
Iron	2000	14600	21300	19500	22700	17400	16500 *	18000
Lead	500	106	413	214	372	164	726	81.8
Magnesium	NS	2580	2440	2590	2240	3550	3000	3320
Manganese	NS	330	484	510	166	495	382 N*	485
Mercury	0.1	0.17	0.2	0.15	0.13	0.26	0.15 N*	0.16
Nickel	13	10.9	17	15.9	9.6	15.1	22.5	13.8
Potassium	NS	655 B	564 B	726 B	701 B	804 B	1250 B	778 B
Selenium	2	0.62 UN	0.67 UN	0.63 UN	0.62 UN	0.71 BN	1.7	0.86 B
Silver	NS	0.41 U	0.44 U	0.42 U	0.41 U	0.44 U	0.33 B	0.43 U
Sodium	NS	123 B	112 U	107 U	104 U	111 U	464 B	132 B
Thallium	NS	1.2 U	1.3 U	1.3 U	1.2 U	1.3 U	2.4 U	1.3 U
Vanadium	150	14.8	32.4	25.4	29.2	24.4	42.4	23.9
Zinc	20	114 E	117 E	85.7 E	60.3 E	147 E	272	78.1 E
		Cyanide	es by CLP M	ethods (mg/	ka)			
Cyanide, Total	1600 (a)	NA	NA .	NA	NA	NA	NA I	NA
	Geo	chemical Ar	alyses by V	arious Metho	ods (ma/ka)			7 1/ 1
Residue, Total	NS	NA	NA	NA	NA	NA I	NA	NA

			······································	Sample ID / D	Date Collected		
4	NYSDEC Soil				laple Avenue		
	Cleanup	SS70	SS71	SS8	SS8A	SS9	SS9A
Analyte	Objectives	07/14/97	07/14/97	05/14/97	07/15/97	05/14/97	07/15/97
process of the second		BTEX by NY	SASP Method	95-1 (mg/kg)	e e e e e		4, 6, 6, 6, 8, 8, 8
Benzene	0.06	NA	NA	0.011 U	NA	0.011 U	NA
Toluene	.1.5	NA	NA	0.011 U	NA	0.011 U	NA
Xylene, Total	1.2	NA	NA	0.011 U	NA	0.011 U	NA
Total BTEX		NA	NA	ND	NA	ND	NA
	Oi	her VOCs by	NYSASP Meth	nod 95-1 (mg/l	(a)		
Acetone	0.2	NA	NA	NA	NA	NA	NA
5.65 (1.54.5)	PAHs (No	on-carcinoger	iic) by NYSAS	P Method 95-	2 (ma/ka)		
Acenaphthene	50.0	0.061 J	0.037 J	0.07 J	0.65 J	0.71 U	0.45 J
Acenaphthylene	41.0	0.065 J	0.2 J	0.12 J	0.33 J	1.3	0.16 J
Anthracene	50.0	0.2 J	0.21 J	0.23 J	1.8	0.35 J	1.8
Benzo[g,h,i]perylene	50.0	3.2	2.7	0.63 B	16	3.2 B	12
Fluoranthene	50.0	1.2	2.3	2.3	36 D	0.99	33 D
Fluorene	50.0	0.049 J	0.097 J	0.16 J	1.4 J	0.11 J	1.9
Methylnaphthalene,2-	36.4					5.1.1.1.7	
Naphthalene	13.0	0.08 J	0.087 J	0.066 J	1.8 U	0.2 J	0.21 J
Phenanthrene	50.0	0.82	1.4	1.5	20	0.31 J	22 D
Pyrene	50.0	1.9	4.2	2.7 B	39 D	2.2 B	34 D
Total PAHs (Non-carc.)		7.6	0.1	7.8	115	8.7	106
	PAHS	Carcinogenic) by NYSASP	Method 95-2 (100
Benz[a]anthracene	0.224	1.2	1.6	1.2	13	1.3	10
Benzo[a]pyrene	0.061	2.1	1.8	1.4 B	15	2 B	11
Benzo[b]fluoranthene	1.1	1.5	1.2	2.1	15	3.9	9.7
Benzo[k]fluoranthene	1.1	1.5	2	0.79	11	1.7	9.6
Chrysene	0.4	1.6	2.2	1.5	17	1.8	12
Dibenz[a,h]anthracene	0.014	1	0.68	0.33 J	4.9	0.87	3.5
Indeno[1,2,3-cd]pyrene	3.2	2.4	1.8	1.3 B	13	3.1 B	10
otal PAHs (Carcinogenic)		11	11	6.5	89	15	66
	Oth	ier SVOCs by	NYSASP Met	hod 95-2 (mg/l	(a)		
Biphenyl,1,1-	NS	NA	NA	NA	NA I	NA	ΝA
Bis(2-ethylhexyl)phthalate	50.0	NA	NA	NA	NA	NA	NA
Butyl benzyl phthalate	50.0	NA	NA	NA	NA	NA NA	NA
Carbazole	NS	NA	NA	NA	NA	NA	NA NA
Dibenzofuran	6.2	NA	NA	NA	NA	NA	NA
Di-n-butyl phthalate	8.1	NA	NA	NA	NA	NA NA	NA
Di-n-octyl phthalate	50.0	NA	NA	NA	NA NA	NA	NA
		PCBs by	NYSASP Meti				
PCBs	NS	NA	NA	NA	NA I	NA I	NA

· · · · · · · · · · · · · · · · · · ·		<u></u>			Date Collected		
	NYSDEC Soil		7~~~	Clove and M	iaple Avenue		
	Cleanup	SS70	SS71	SS8	SS8A	SS9	SS9A
Analyte	Objectives	07/14/97	07/14/97	05/14/97	07/15/97	05/14/97	07/15/97
		Pesticides by	NYSASP Meth	iod Pesticide:	Salis and a salis		
DDT,4,4'-	NS	NA NA	NA	NA	NA	NA	NA
		alysis by NYS	ASP Methods	6010/7471/77	40 (mg/kg)		
Aluminum	NS	5090	7420	9330	8600	9980	7140
Antimony	NS	1.7 R	1.7 R	1.2 B	1.7 R	1.1 B	1.8 R
Arsenic	7.5	13.7 N	4 N	4.1	4.3	4	2.6
Barium	300	65.3	63.1	78.1	60.2	39.1 B	54.5
Beryllium	0.16	0.55 B	0.5 B	0.35 B	0.45 B	0.36 B	0.38 B
Cadmium	1	0.51 B	0.49 B	0.3 B	0.62 B	0.14 U	0.63 B
Calcium	NS	2360 *	1600 *	1890	2480	859 B	3220
chromium	10	6.5	9.2	12.2 *	9.5	11.9 *	9.6
Cobalt	30	6.9 B	5.4 B	6.3 B	6.1 B	7.3 B	5.5 B
Copper	25	34.1	21.5	29.9	26.3	19.1	24.5
Iron	2000	11200	14300	15500 *	15800	19100 *	13100
Lead	500	171	73.7	75.8	109	23.5	92.4
Magnesium	NS	3960 *	1800 *	2950	3010	3120	2170
Manganese	NS	331 *	370 *	526 N*	268	443 N*	282
Mercury	0.1	0.17 *	0.15 *	0.2 N*	0.14	0.036 B	0.43
Nickel	13	23.6	13.3	14.3	13.3	15.6	12.7
Potassium	NS	469 B	435 B	1060 B	683 B	1110	779 B
Selenium	2	0.64 U	0.64 U	0.87 B	0.64 U	1 B	0.69 U
Silver	NS	0.42 U	0.43 U	0.25 U	0.43 U	0.24 U	0.46 U
Sodium	NS	107 U	108 U	103 B	146 B	80.4 B	116 U
Thallium	NS	1.3 U	1.3 U	2 U	1.3 U	1.9 U	1.4 U
Vanadium	150	15.2	18.1	19.5	18.7	17.9	17.7
Zinc	20	138 E	68.7 E	133	103 E	52.3	123 E
		Cyanides l	y CLP Metho	ds (mg/kg)			
Cyanide, Total	1600 (a)	NA	NA	NA	NA	NA NA	NA
	Geoci	nemical Analy	ses by Variou	s Methods (m			· · · · · · · · · · · · · · · · · · ·
Residue, Total	NS I	NA	NA	NA	NA	NA	NA

			Samı	ole ID / Date Coll	ected	
	NYSDEC Soil			46 Maple Avenu		
	Cleanup	CM146SS1	CM146SS2	CM146SS3	CM146SS4	CM146SS5
Analyte	Objectives	5/18/2000	5/18/2000	5/18/2000	5/18/2000	5/18/2000
		BTEX by NYSAS	P Method 95-1	mg/kg)		<i>5,10/2000</i>
Benzene	0.06	0.013 U	0.016 U	0.016 U	0.012 U	0.013 U
Toluene	1.5	0.013 U	0.016 U	0.016 U	0.012 U	0.013 U
Xylene, Total	1.2	0.013 U	0.016 U	0.016 U	0.012 U	0.013 U
Total BTEX		ND	ND	ND	ND	ND
	Oth	er VOCs by NYS	SASP Method 95	-1 (mg/kg)		
Acetone	0.2	0.004 J	0.006 J	0.008 J	0.003 J	0.012 J
721243 200	PAHs (Nor	n-carcinogenic)	by NYSASP Mei	hod 95-2 (mg/kg	1	
Acenaphthene	50.0	0.06 J	0.052 J	0.55 U	0.41 U	0.047 J
Acenaphthylene	41.0	0.44 U	0.52 U	0.55 U	0.41 U	0.44 U
Anthracene	50.0	0.14 J	0.11 J	0.12 J	0.067 J	0.09 J
Benzo[g,h,i]perylene	50.0	0.49	0.39 J	0.38 J	0.21 J	0.3 J
Fluoranthene	50.0	1.9	1.9	2.2	1.3	1.7
Fluorene	50.0	0.073 J	0.082 J	0.086 J	0.051 J	0.07 J
Methylnaphthalene,2-	36.4	0.44 U	0.074 J	0.55 U	0.41 U	0.44 U
Naphthalene	13.0	0.059 J	0.4 J	0.55 U	0.41 U	0.44 U
Phenanthrene	50.0	0.93	1.1	1.2	0.75	0.97
Pyrene	50.0	1.9	1.8	1.9	1.2	1.8
Total PAHs (Non-carc.)		5.6	5.9	5.9	3.6	5.0
	PAHS (C	arcinogenic) by	NYSASP Metho	od 95-2 (mg/kg)		
Benz(a)anthracene	0.224	0.94	0.71	0.73	0.44	0.62
Benzo[a]pyrene	0.061	1.10	0.87	0.90	0.54	0.72
Benzo[b]fluoranthene	1.1	1.30	1.20	1.30	0.72	1,20
Benzo[k]fluoranthene	1.1	0.50	0.37 J	0.4 J	0.32 J	0.39 J
Chrysene	0.4	1.00	0.86	0.88	0.53	0.75
Dibenz[a,h]anthracene	0.014	0.14 J	0.1 J	0.11 J	0.062 J	0.085 J
Indeno[1,2,3-cd]pyrene	3.2	0.44	0.4 J	0.4 J	0.23 J	0.31 J
otal PAHs (Carcinogenic)		5.42	4.5	4.7	2.84	4.08
	Othe	r SVOCs by NY.	SASP Method 9:	5-2 (mg/kg)		
Biphenyl,1,1-	NS	NA	NA	NA	NA	NA
Bis(2-ethylhexyl)phthalate	50.0	0.24 J	0.41 J	0.45 J	0.25 J	0.59
Butyl benzyl phthalate	50.0	0.44 U	0.52 U	0.55 U	0.41 U	0.066 J
Carbazole	NS	0.11 J	0.13 J	0.15 J	0.089 J	0.11 J
Dibenzofuran	6.2	0.44 U	0.52 U	0.55 U	0.41 U	0.44 U
Di-n-butyl phthalate	8.1	0.44 U	0.52 U	0.55 U	0.41 U	0.44 U
Di-n-octyl phthalate	50.0	0.44 U	0.52 U	0.55 U	0.41 U	0.44 U
		PCBs by NYS	SASP Method PC	Bs		
PCBs	NS	ND	ND	ND	ND	ND

	NYSDEC Soil			ple ID / Date Coll 146 Maple Avenu		
Analyte	Cleanup Objectives	CM146SS1 5/18/2000	CM146SS2 5/18/2000	CM146SS3 5/18/2000	CM146SS4 5/18/2000	CM146SS5 5/18/2000
	Pi	esticides by NY.	SASP Method P	esticides		
DDT,4,4'-	NS	0.004 J	0.0052 U	0.0055 U	0.0041 U	0.0044 U
k Skolik serve serve serve	Metals Anal	ysis by NYSASi	P Methods 6010	/7471/7740 (mg/k	a)	0.001,0
Aluminum	NS I	7980	4270	6400	7270	5910
Antimony	NS	0.91 UN	1.1 UN	1.1 UN	0.83 UN	0.9 UN
Arsenic	7.5	4	2.1 B	3.7	3.7	2.8
Barium	300	50 B	47.9 B	59.1 B	31.7 B	58.1
Beryllium	0.16	0.43 B	0.22 B	0.31 B	0.31 B	0.27 B
Cadmium	1	0.9 B	0.55 B	0.49 B	0.31 B	0.44 B
Calcium	NS	2830 *	3360 *	2960 *	775 B*	4010 *
chromium	10	10.7	6.8	10.3	9.9	10.9
Cobalt	30	7.5 B	4.9 B	6.5 B	4.7 B	5.3 B
Copper	25	25.9	22.5	24.4	15	21.8
Iron	2000	14600	8630	13200	11500	10000
Lead	500	54.6	62.8	65.6	47	61.5
Magnesium	NS	3200 *	1780 *	2460 *	2120 *	1990 *
Manganese	NS	459	463	489	246	469
Mercury	0.1	0.18	0.37	0.37	0.14	0.54
Nickel	13	18.9	16.1	19.7	10.8	17.7
Potassium	NS	1020 B	877 B	1190 B	539 B	591 B
Selenium	2	1 Ü	0.5 UW	0.53 UW	0.39 UW	0.42 UW
Silver	NS	1.2 BN	0.5 UN	0.71 BN	0.39 UN	0.42 UN
Sodium	NS	106 B	106 B	118 B	66 B	86.6 B
Thallium	NS	1.2 B	1.8 B	0.76 U	0.56 U	0.61 U
Vanadium	150	23.3	18.7	31.7	23.9	24.8
Zinc	20	104	68.4	74.4	38.9	74.2
		Cyanides by C	LP Methods (m			
Cyanide, Total	1600 (a)	1.3 U	1.6 U	1.6 U	1.2 U	1.3 U
	Geoch	emical Analyses	by Various Mei	hods (ma/ka)	.,	0
Residue, Total	NS I	74.9	63.8	60.8	82.2	75.9
Notes:			<u> </u>	11		70.0

- (a) EPA Region III RBC criteria for residential exposures
- U Analyte not detected
- B Analyte detected in associated blank
- * Duplicate analysis outside control limits
 W Post digest spike recovery furnace outside 85-115% control limit, while sample absorbance less than 50% of spike absorb
- E Exceeds calibration range
- J Estimated value
- D Dilution result
- NA Not available
- NS No standard
- ND Not Detected

Table 4 Sample Location Rationale Clove and Maple Former MGP Site Haverstraw, New York Sample Type and Sample Analysis Sample Depth Rationale Designation Former Tar Well Location Soil Borings SG9 Field 0 to 12 feet bgs To further delineate hydrocarbon product of Characterization former tar well location. SG10 Field 0 to 12 feet bgs To further delineate hydrocarbon product of Characterization former tar well location. SB5/MW5 MGP Indicators 18 to 20 feet bgs Shallow soil boring for monitoring well installation of former tar well. Test Pit TP1 Field 0 to 12 feet bgs To further delineate MGP residuals and to Characterization further investigate the location, if any, of subsurface structures. Monitoring Well MW5 MGP Indicators Water Table To test groundwater downgradient of former Groundwater tar well location. Sample Iron Oil Tank Soil Borings SG11 Field 0 to 12 feet bgs To further delineate MGP residuals found in Characterization soil and groundwater downgradient of Iron Oil tank location. SG12 Field 0 to 12 feet bgs To further delineate MGP residuals found in Characterization soil and groundwater downgradient of iron oil tank location. SB6/MW6 MGP Indicators Shallow soil boring to further delineate MGP 5 to 5.5 feet bgs 16.5 to 17 feet bgs residuals downgradient of iron oil tank location. SB7/MW7 Field Deep boring for monitoring well installation, Characterization to document groundwater quality within till. Test Pit TP2 MGP Indicators 12 to 13 feet bgs To evaluate potential impacts near the former oil tank. TP3 Field 0 to 12 feet bgs To evaluate potential impacts near the Characterization former oil tank. Monitoring Wells MW6 MGP Indicators Water Table To sample groundwater quality Groundwater downgradient of the iron oil tank location. Sample MW7 MGP Indicators Deep Aguifer To determine the depths of groundwater Groundwater impacts downgradient of the iron oil tank. Sample Former Gas Holder Location Soil Borings SG13 Field 0 to 12 feet bgs To investigate soil and groundwater quality Characterization downgradient of the gas holder foundation

Table 4 Sample Location Rationale Clove and Maple Former MGP Site Haverstraw, New York

		Haverstraw, New Y	ork
Sample Type and Designation	Sample Analysis	Sample Depth	Rationale
		·	requested by NYSDEC [NYSDEC Comments, 1997c, pg.4]
SG14	Field Characterization	0 to 12 feet bgs	To investigate soil and groundwater quality downgradient of the gas holder foundation requested by NYSDEC [NYSDEC Comments, 1997c, pg.4]
SB4/MW4	MGP Indicators	16 to 18 feet bgs	Soil boring for monitoring well installation to further investigate impacts downgradient of MW3.
SB14	MGP Indicators	8 to 10 feet bgs and 22 to 24 feet bgs	To evaluate potential release from holder. Comments on Supplemental Remedial Investigation Work Plan, April 5, 2001.
SB16	MGP Indicators	18 feet bgs and 30 feet bgs	To define extent of MGP residue between the holder and the tar well along the till surface. Comments on Supplemental Remedial Investigation Work Plan, April 5, 2001.
SB18	MGP Indicators	11.5 feet bgs and 31 feet bgs	To determine if MGP residue are present at the northern corner of the holder. Comments on Supplemental Remedial Investigation Work Plan, April 5, 2001.
Monitoring Well			
MW4	MGP Indicators - Groundwater	Water Table Groundwater Sample	To determine if MGP residuals have impacted downgradient groundwater in the vicinity of the former gas holder requested by NYSDEC [NYSDEC, 1997c, pg.3]
MW18	MGP Indicators	Water Table Groundwater Sample	To determine if MGP residuals have impacted groundwater at northern corner of the holder. Comments on Supplemental Remedial Investigation Work Plan, April 5, 2001.
		Regulator Station	
SB17	MGP Indicators	4 feet bgs, 12 feet bgs, and 14 feet bgs	To further delineate MGP residuals adjacent to the regulator station. Comments on Supplemental Remedial Investigation Work Plan, April 5, 2001.
SB17A	MGP Indicators	28 feet bgs	To further delineate MGP residuals adjacent to the regulator station. Comments on Supplemental Remedial Investigation Work Plan, April 5, 2001.
	Monito	ring Wells - South Prop	erty Boundary
SB8/MW8	MGP Indicators - Soil and Groundwater	Water Table Groundwater Sample; Soil	To determine if impacted groundwater is present at site property boundary. Scope of work added by O&R.

Table 4 Sample Location Rationale Clove and Maple Former MGP Site

		Haverstraw, New Y	ork
Sample Type and Designation	Sample Analysis	Sample Depth	Rationale
		Samples - 10 to 12 feet bgs and 14 to 16 feet bgs	
SB9/MW9	MGP Indicators - Soil and Groundwater	Water Table Groundwater Sample; Soil Samples - 8 to 10 feet bgs and 12 to 14 feet bgs	To determine if impacted groundwater is present at site property boundary. Scope of work added by O&R.
SB10/MW10	MGP Indicators - Soil and Groundwater	Water Table Groundwater Sample; Soil Samples 22 to 24 feet bgs and 36 to 36 feet bgs	To determine if impacted groundwater is present at site property boundary. Scope of work added by O&R.
	Boring and Monito	ring Wells - Adjacent Pr	operty (Head Start Parcel)
SB11/MW11	MGP Indicators - Soil and Groundwater	Water Table Groundwater Sample; Soil Samples - 12 to 14 feet bgs and 20 to 22 feet bgs	To determine if MGP residues are present in adjacent property requested by NYSDEC, 1998, p. 2. Comments on the Remedial Investigation Work Plan for Suffern, Middletown (Fulton and Canal Streets) and Haverstraw MGP Sites.
SB12	MGP Indicators - Soil	Water Table and Most Impacted Soil Sample	To determine if MGP residues are present in adjacent property requested by NYSDEC, 1998, p. 2. Comments on the Remedial Investigation Work Plan for Suffern, Middletown (Fulton and Canal Streets) and Haverstraw MGP Sites.
SB13	MGP Indicators - Soil	Water Table and Most Impacted Soil Sample	To determine if MGP residues are present in adjacent property requested by NYSDEC, 1998, p. 2. Comments on the Remedial Investigation Work Plan for Suffern, Middletown (Fulton and Canal Streets) and Haverstraw MGP Sites.
SB22	MGP Indicators	12 feet bgs and 20 feet bgs	To determine the extent of MGP residues across the southern property line. Comments on the Supplemental Remedial Investigation Work Plan, April 5, 2001.
SB23	MGP Indicators	22 feet bgs	To determine the extent of MGP residues across the southern property line. Comments on the Supplemental Remedial Investigation Work Plan, April 5, 2001.

Table 4 Sample Location Rationale Clove and Maple Former MGP Site Haverstraw New York

		Haverstraw, New Y	'ork
Sample Type and Designation	Sample Analysis	Sample Depth	Rationale
SB/MW24	MGP Indicators	18 feet bgs	Refine groundwater flow direction relative to Head Start Building, determine if MGP residuals exist atop hill. Comments on the Supplemental Remedial Investigation Work Plan, April 5, 2001.
NUMBER			perty (Apartments Parcel)
MW20	MGP Indicators	10 feet bgs and 25.5 feet bgs	Evaluate downgradient and down-till slope extent of MGP residuals across Maple Avenue. Comments on the Supplemental Remedial Investigation Work Plan, April 5, 2001.
MW21	MGP Indicators	8 to 10 feet bgs and 20 to 22 feet bgs	Évaluate downgradient and down-till slope extent of MGP residuals across Maple Avenue. Comments on the Supplemental Remedial Investigation Work Plan, April 5, 2001.
MW28	MGP Indicators	8 to 10 feet bgs and 30 feet bgs	Borings to evaluate potential historic MGP residuals to former pond, advance to till interface, aid in evaluation of groundwater flow direction, and groundwater quality downgradient. Comments on Supplemental Remedial Investigation Work Plan, April 5, 2001.
MW29	MGP Indicators	29 feet bgs	Borings to evaluate potential historic MGP residuals to former pond, advance to till interface, aid in evaluation of groundwater flow direction, and groundwater quality downgradient. Comments on Supplemental Remedial Investigation Work Plan, April 5, 2001.
SB-45	MGP Indicators	10 to 11 feet bgs 11 to 12 feet bgs 24 to 25 feet bgs 27 to 28 feet bgs	To delineate MGP-related impacts extending from the Clove and Maple site
SB-46	MGP Indicators e	10 to 11 feet bgs 14 to 15 feet bgs	To delineate MGP-related impacts extending from the Clove and Maple site
SB-48	MGP Indicators	14 to 15 feet bgs	To delineate MGP-related impacts extending from the Clove and Maple site
SB-49	MGP Indicators	7 to 8 feet bgs 13.5 to 14.5 feet bgs	To delineate MGP-related impacts extending from the Clove and Maple site
SB/MW-20S/D	MGP Indicators	11.5 to 12 feet bgs 13 to 15 feet bgs	To delineate MGP-related impacts extending from the Clove and Maple site
SB/MW-21 and	MGP Indicators	8 to 9 feet bgs	To delineate MGP-related impacts extending
		.1	<u> </u>

Table 4 Sample Location Rationale Clove and Maple Former MGP Site Haverstraw, New York

		Haverstraw, New \	/ork
Sample Type and Designation	Sample Analysis	Sample Depth	Rationale
21S			from the Clove and Maple site
SB/MW-28S/D	MGP Indicators	ND	To delineate MGP-related impacts extending from the Clove and Maple site
SB/MW-29S/D	MGP Indicators	10 to 11 feet bgs	To delineate MGP-related impacts extending from the Clove and Maple site
SB/MW-30S	MGP Indicators	6.5 to 7 feet bgs 15 to 16 feet bgs	To delineate MGP-related impacts extending from the Clove and Maple site
SB/MW-31S/D	MGP Indicators	8 to 10 feet bgs 33 to 34 feet bgs	To delineate MGP-related impacts extending from the Clove and Maple site
SB/MW-32S/I	MGP Indicators	10 to 11 feet bgs 34 to 36 feet bgs	To delineate MGP-related impacts extending from the Clove and Maple site
SB/MW-55	MGP Indicators	10 to 12 feet bgs	To further delineate MGP-related impacts at the apartment complex.
SB-56	MGP Indicators	14 to 16 feet bgs	To further delineate MGP-related impacts at the apartment complex.
SB-57	MGP Indicators	7 to 8 feet bgs	To further delineate MGP-related impacts at the apartment complex.
SB-58	MGP Indicators	8 to 9 feet bgs 16 to 18 feet bgs	To further delineate MGP-related impacts at the apartment complex.
SB-59	MGP Indicators	15.5 to 16 feet bgs 18 to 19 feet bgs	To further delineate MGP-related impacts at the apartment complex.
SB/MW-60	MGP Indicators	8 to 9 feet bgs 13 to 14 feet bgs	To further delineate MGP-related impacts at the apartment complex.
		Existing Monitoring 1	Wells
MW1 to MW3	MGP Indicators	Water Table Groundwater Samples	Resample existing monitoring wells for MGP indicators to confirm PSA results.
		Stormwater/Sediment S	Samples
SED-03/SW-03 SW013102-1	MGP Indicators	NA	Sediment and surface water samples collected upgradient of the site within storm sewer system - requested by NYSDEC [NYSDEC, 1997, pg. 3] and comments on Supplemental Remedial Investigation Work Plan, April 5, 2001.
SED-01/SW-01 SED-02/SW-02 SD013102-2 SD013102-3 SD013102-4 SW013102-5	MGP Indicators	NA	Sediment and stormwater samples and duplicates collected downgradient of the site within storm sewer system - requested by NYSDEC [NYSDEC, 1997, pg. 3] and comments on Supplemental Remedial Investigation Work Plan, April 5, 2001.

Table 4 Sample Location Rationale Clove and Maple Former MGP Site

		Haverstraw, New Y	ork
Sample Type			
and	Comple Analysis	Commis Double	5
Designation	Sample Analysis	Sample Depth	Rationale
SD013102-6			
SW013102-6			
SW0UT01300-			
1			
		Garage	
TP4	Field	0 to 12 feet bgs	Test pit excavation to investigate
	Characterization		environmental condition in vicinity of the
			former garage. Scope of work added by
			O&R.
MORE ASSOCIATION OF THE SECOND		High Pressure Holo	ler
TP5	Field	0 to 12 feet bgs	Test pit excavation to investigate
	Characterization		environmental condition in vicinity of the
			former aboveground high pressure holder.
			Scope of work added by O&R.

Notes:

MGP Indicators include: VOCs by 95-1, PAHs by 95-2, total cyanide by CLP-M, TAL metals by CLP-M and weak acid dissociable cyanide by $4500 \, \text{CNI}$.

Field Characterization includes: visual characterization- Unified Soil Classification System, visual and olfactory observations regarding the presence of MGP impacts and jar headspace screening with a photoionization detector.

BTEX-Benzene, Toluene, Ethylbenzene, and Xylene by NYSASP CLP Method 95-1.

PAHs-Polycyclic Aromatic Hydrocarbons by NYSASP CLP Method 95-2.

bgs-below grade surface

ND-no data

ç	1
	¢
	n
	ĭ
	ä
١	ž
	'n
ŀ	
i	ā
į	2
2	Ξ
ļ	÷
1	,
-	×
	3
í	٠,
ł	
5	ÿ
è	Ä
Š	
ć	:
ć	ż
¢	ď
į	۲
ï	-
r	١
1	:
ţ	2
ž	=
Ġ	5
3	۶
į	ä
i	ř
١	ř
i	ŀ
į	2

					Table 5						
e A Poursele e cons			Clove and 1	Subsurt	Subsurface Soil Analytical Results	Subsurface Soil Analytical Results Clove and Maple Avenue Former MGP Site - Remedial Investigation	estication				P#####################################
				1	Haverstraw, New York	(ork					
Sample Location:	••	MW01	MW02	MW03	MW04	MW05	MW06		MW08	MW08	WW09
Depth Interval in feet:		20 - 22	~~~			18 - 20	5 - 5.5	16.5 - 17	10 - 12	14 - 16	8 - 10
Sample ID:		SB1 (20-22)	()	SB3 (10-12)	S	CMSB05(18-20)	CMSB06A		CMSB08A	CMSB08B	CMSB09A
Date Collected:	HSCO	5/14/1997	5/15/1997	5/15/1997	12/15/1998	12/15/1998	3/2/1999	3/2/1999	12/11/1998	12/11/1998	12/10/1998
B / EX (mg/kg)											200 (000 (000 (000 (000 (000 (000 (000
Benzene	90'0	0.011 U			0.056			0.011 U			0.055 U
Toluene	1.5	0.011 U)		·		0.011 U			0.006 J
Ethylbenzene	5.5	0.011 U	26		3		5	0.011 U			0.21
Xylene, Total	1.2	0.011 U		0	0.58	54 U		0.011 U			7.28
Total BTEX	NS	DN	94,4				1.032	ND ND	NA AN	0.021	0.496
Other VOCs (mg/kg)										, g	
Acetone	0.2	NA	NA	NA	0.035 J	0.032 J	0.013 U	0.011 U	NA	0.013 U	0.055 U
Bromodichloromethane	SN	NA	NA			0.054 U	0.013 U	0.011 U			0.055 U
Bromoform	NS	INA				0.054 U		0.011 U	AN	0.013 U	0.055 U
Chlorobenzene	1.7	NA	NA								0.055 U
Chloroform	0.3	NA						0.011 U		0.013 U),055 U
Dichloroethane, 1, 2-	0.1	NA									0.055 ()
Methylene chloride	0.1	NA	NA		0.056 U		0.013 U	Π		İ	0.0551
Styrene	SN	A'A								l	0.055 U
oroethene	1.4	NA		NA		0.054 U	0.013 U		NA		0.055 U
	0.7	NA		***************************************	0.056 U			Γ			05511
124	UZ	NA					-	N N			0000
- 1	(10/00)	1 1/1					10 10 10 10 10 10 10 10 10 10 10 10 10 1				Į,
voncarcinogenic rans	(IIIg/kg)		最近のなるを表								
	20	0.35 U		***************************************			-				29 DB
lene	41	0.35 U					0.44 U		5 J		1.4
	50	0,35 U									16 D
erylene	50	0.35 U	8								26.0
iene	50	0.11 J					0.44 U				19 DB
	50	0.35 U	84	ا D درد	0.045 J	0.055 J		0.38 U	2.5	0.42 U	23 D
	NS	NA	NA								NA
nalene,2-	36.4	NA	NA			ر,	0.44 U				6 DB
ene	13	5 U) D	0	1 با					0.42 U	24 JBE
	SZ	NA			NA			AN	Z AZ		NA
ithrene	50		4.78	D		3.5					58 DB
Ругепе	50	0.13 J B	140 DB		0.067 J					0.42 U	9 DB
Carcinogenic PAHs (mg/kg)	kg)										
ene	0.224			45 table		0.045 J	0.44 U	Г	1.4		PG.
	0.061	8	B	B				0.38 U		0.42 U 5	5.5 DJ
thene	1,1	2 J	22		7 U	39 J	0.44 U				3 DJ
	NS			NA							YZ.
uoranthene	***************************************	0.048 J	9.3 J		0.37 U	0.37 U	0.44 U		J		1,1
Chrysene	0.4										6.9 DJ

'n
0
-5
<u>,ee</u>
-
8
=
č
-
á
-
≨
ñ.
Ó
57
Č
-2
O
0.
¢
8
22
0
\sim
60
*
١٠.
60
5
8
25
£V
37
0
Č
Ε.
9
4
4

					Table 5	-					
			Clove and N	Subsurt Iable Avenue	Subsurrace Soll Analytical Results Clove and Maple Avenue Former MGP Site - Bemedial Investigation	al Results te - Remedial Inv	estidation				
				Ĭ	Haverstraw, New York	ork	7)				***************************************
Sample Location:		MW01	MW02	1	MW04		MW06	MW06	MW08	MW08	60/MW
Depth Interval in feet:			12 - 14	10 - 12	16 - 18		5-5.5		10 - 12	14 - 16	8 - 10
Sample ID:	NYS	$\overline{}$	SB2 (12-14)	SB3 (10-12)	CMSB04(16-18)	≅,	CMSB06A	0	CMSB08A	CMSB08B	CMSB09A
ğ	HSCO	1997	5/15/1997	5/15/1997	12/15/1998	12/15/1998	3/2/1999	3/2/1899	12/11/1998	888 888	12/10/1998
Dibenzia,njaninfacene	0.014	0.35 0		0.8.0	0.57.0	0.37 0	0.44.0	0.30 0	2 4 5 5		7 0000
	3.2	0.066 J B	12 B	14 B	0.37 U	0.37 U	0.44 U	0.38 U	200000000000000000000000000000000000000	0,42 U	1.1
: (mg/kg)	A STATE OF STREET										
Total PAHs	NS	0.717	1499	1325.7	0.72	1.072	0.26	ND	73.57	2	263,63
Other SVOCs (mg/kg)											
Biphenyl,1,1-	NS	NA	¥2	NA	NA	NA	NA	NA	NA	NA	NA
Bis(2-ethylhexyl)phthalate 50	50	Ϋ́Z	ΨZ	Ą.		0.37 U	N A	NA	0,43 U		0.37 U
Carbazole	NS	AN			0,37 U	0.37 U	AN	NA			5.37 U
ran	6.2	AN		NA		0.37 U	NA NA	NA		0.42 U	1.8
[0]											
Aliminim	SZ	AZ	AN	NA	3620	4440	13100	0999	18100 EJ	13700 EJ	7580 EJ
	SN	AZ		AN	BN	0.5 UN	0.6 U	0.6 UB		-	0,4 U
	7.5	NA	NA	NA		2.1 UB			9.2	9	3.5
The state of the s	300	NA.	NA NA			59.9		69.4	园	_	34 EJ
W.	0.16	NA	NAN		1. 552 (Sp) (Sp) (Sp)	(4) (15) (15) (15)		200		0.7 B	0.4 B
		NA			0.2 B					0.7 B	0.6 B
	NS	NA				*				ĺ	1160 EJ
ш	10	NA		NA				13.3		19.1 EJ	9.6 EJ
Cobalt	30	NA							17 JBE		5.9 JBE
Copper	25	NA				9.4			١.,	25.3 EJ	15.8 EJ
	2000			NA		10100		00			15800 EJ
Lead	500		NA	NA	2.4	3.8	13.6 J		14.4		9.1
Magnesium	NS)	3320				_	2830 EJ
Manganese	NS	NA	NA			218	288	344		485 EJ	170 EJ
	0.1				0.11 UN	0.1 UN	0.1 U				0.1 U
Nickel	13	NA			6 B	7.8 B	, .	13,2	32.2 EJ	25.3 EJ	11.1 EJ
Potassium	NS	NA	A'A	AZ	847 JBE		2070	1150	3460		1710 *
	2					0.72 U		0.4 UJW	0.8 U	,	0.7 U
Silver	SN	NA	NA			25		0.7 UB	1.9 UB	1.4 UB	0.9 UB
Sodium	NS	NA	AZ			σ.	682 UB	606 UB	630 B	690 B	416 B
Thallium	NS	NA	NA							0.8 U).3 U
Vanadium	150		NA			9 B		12.9		E	14.1 EJ
Zinc	20	NA		NA	Park Springer Street	26,1	69.3 EJ	37.9 EJ	93.5 EJ	66.4 EJ	71.3 EJ
: (mg/Kg)					A STATE OF THE STA						
Cyanide, Total	1600 (a)	0.27 U	0.32 U	0.31 U	1.1 U	1.1 0	1.3 UJN	1.1 UJN	1.3 U	1.3 U	J U
And the second s			200000000000000000000000000000000000000								

CONTRACTOR OF THE PROPERTY OF		***************************************	THE RESERVE THE PROPERTY OF THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED				ANTERTRACTOR PARTICULAR CONTRACTOR CONTRACTO	essantes professional designations and the second statements and the second statements and the second secon	TOTAL STREET,
			Subst	Table 5 Subsurface Soil Analytical Results	ical Results				
		Clove	and Maple Aven	and Maple Avenue Former MGP Site - Remedial Investigation Haverstraw. New York	iite - Remedial In York	ivestigation			
Sample Location		60MW	MW10	MW10	MW11	MW11	SB14	SB14	SB14 (DUP)
Depth Interval in feet:		12 - 14				20 - 22	10 - 10	22 - 22	22 - 22
Sample ID	•••	CMSB09B		CMSB10(36-38)	CMSB11(12-14)	CMSB11(20-22)	HA-SB14-10	ŭ	HA-SB44-22
Date Collected	HSCO	12/10/1998	12/16/1998	12/17/1998	12/17/1998	12/18/1998	6/19/2001	6/19/2001	6/19/2001
BIEX (mg/kg)		A SELECTION OF SERVICE							
Benzene	0.06	0.011 U	0.011 U		0.013 U				0.016
Toluene	1.5	0.011 U	0.011 U	0.012 U	0.013 U				0.011 J
Ethylbenzene	5.5	0.011 U	0.011 U		0.013 U				0.002 J
Xylene, Total	1.2	0.011 U	0.011 U		0,013 U	0.011 U			0.011 J
Total BTEX	NS	Q	<u>N</u>	ND	Q.	ND	1		0.04
Other VOCs (mg/kg)									
Acetone	0.2	0.011 U	0.004 J		0.004 J			⊃	0.012 U
Bromodichloromethane	NS	 -	0.011 U	0.012 U	0.013 U	0.011 U		0.011 U	0.012 U
Bromoform	NS	L	0.011 U		0.013 U		2.3 U	n	0.012 U
Chlorobenzene	1.7	0.011 U	0.011 U	0.012 U	0.013 U				0.012 U
Chloroform	0.3	0.011 U	0.011 U						0.012 U
Dichloroethane, 1,2-	0.1	0.011 U	0.011 U					Ω	0,012 U
Methylene chloride	0.1	0.011 U	0.011 U	0.012 U				n	0.02 U
Styrene	NS	0.011 U	0.011 U					U	0,012 U
Tetrachloroethene	1.4	0.011 U	0.002 J		0.013 U	Ω		n	0.012 U
Trichloroethene	0.7	0.011 U	0.011 U	12 U	0.013 U	_		0.011 U	0.003 J
Trimethylbenzene, 1, 2, 4-	SN	NA	NA	NA	NA				NA
Noncarcinogenic PAHs (mg/kg)	(mg/kg)								
Acenaphthene	50	0.37 U	0.37 U		0.44 U			0.36 U	0.4 U
Acenaphthylene	41	0.071 J	0.37 U						0.008 J
Anthracene	50	0.094 J	0.37 U		0,44 U	0,38 U		0.028 J	0.025 J
Benzo[g,h,i]perylene	50	0.37 U	0.37 U	0.39 U					0.012 J
Fluoranthene	50	0.37 U	0,37 U		0.44 U			J	0.036 J
Fluorene	50	0.12 J	0.37 U	n e	0.44 U	3 U		l6 J	0.009 J
Metnylnaphthalene,1-	SSI	NA	NA 0.93		NA	***************************************	- VN		NA
Metnylnabninalene,z-	40.4) -	0.37 C		0.44 U				ر 10.0 10.0
Dentlene	0 2	0.57	0.037 J	0.53 O	0.054 U	0.041.0		0.042 J	0.022.0
Phananthrana	200	4.1.1	0.3711				28,000,000,000		1 020
Dyroco	202	0.271	0.57	11 05 0	0.001	11 88 0	-	-	0 2 6 0
Carcinopenic PAHS (ma/ka)	3/Ka)	0,5,0	0.27		,			,	0.000,0
Benzfalanthracene	0.224	L 690.0	0.37 U						0.019 J
Benzolalpyrene	0.061		0.37 U				68		0.015 J
Benzo[b]fluoranthene	1.1	0.039 J	0.37 U) Ų	4 U	3.0		0.01 J	0.008 J
Benzo[e]pyrene	NS	NA	NA						NA
Benzo[k]fluoranthene	1.1	0.37 ∪	0.37 U	0.39 U	0.44 U	0.38 U	6.5.0	0.013 J	0.011 J
Chrysene	0.4	0.06 ر	0.37 U		**************************************	of the second se			0,019 J

				Table 5					
		Clove	Subsurface Soil Analytical Results Clove and Maple Avenue Former MGP Site - Bemedial Investigation	Subsurface Soil Analytical Results Avenue Former MGP Site - Remed	ical Results lite - Remedial in	vestigation	.~		
				Haverstraw, New	York				
Sample Location:		60WM	MW10	MW10	MW11	MW11	SB14	SB14	SB14 (DUP)
Depth Interval in feet:		12 - 14	22 - 24	36 - 38	12 - 14	20 - 22	10 - 10		22 - 22
Sample ID:	SAN	CMSB09B	CMSB10(22-24	CMSB10(36-38)	CMSB11(12-14)	CMSB11(20-22)	HA-SB14-10	HA-SB14-22	HA-SB44-22
ĊĊ.	C	12/10/1996	12/10/1996	2881//1/2000	2881//1/21	12/10/1998	1002/6	1002/81/9	0.13/2001
	0.014	0.37 U	0.37 U	0.39 0	0.44 U	0.38 U	1.4.0	0.36 U	0.4.0
Indeno 1,2,3-cd pyrene	3.2	0.37 U	THE COLUMN TO CHARLES TO SHOW AND A		0.44 U	0.38 U		ر ۲۵.0	0.008
Total PAHS (mg/kg)									
Total PAHs	NS	0.511	0.037	ND	0.169	0.041	489.2	0,453	0.339
Other SVOCs (mg/kg)					The state of the s		0.000	(8) (8) (3) (3) (8)	88-78-150 GE 001-158
Biphenyl,1,1-	NS	NA	NA	NA	NA	NA	NA	NA	NA
Discount of the state of the st	C	11 70 0		1.000	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	- a c			=
Carbazolo	OC V		0.07.0	0.00.0	0.44.0	0.00.0		0.00.0	0.40
Caroacole	0 0				0.44.0	0.30.0	0.00		0.4.0
Dibelizoiulan	2.0	SALES SALES SALES	355000000000000000000000000000000000000		0 44.0	U.38 U	OWN OF STREET	SERVICE STATE OF THE SERVICE S	D 4.0
metals (mg/kg)									
Aluminum	NS	G		4390	16900	5810		4980	4680
γ	NS	<u></u>			0.9 UN	0.9 UBN		U)	0.99 UJ
	7.5	1	2.2 UB		8.9	1.3 UB	6.2	2.4	2.3
Barlum	300								86.4
Beryllium	0.16	0.3 B	0.2 B	0.3 B		0.4 B	26.0		0.11 U
Cadmlum	ļ							ſ	0.20 U
Calcium	SN							1690	2160
Chromium	10	7 EJ			23.5			7.4	9.7
Cobalt	30								4.9
Copper	25	11.8 EJ						0	13.2
Iron	2000	11200 EJ						0	12400
Lead	500			3.6					2.8
Magnesium	SN	J							2830
əse	SN	ا.							238.
Mercury	0.1		N	0.11 UN	0.12 UN	0.11 UN	0.0061	0.0029	0.0037
	13	13 EJ							11.1
	NS	1200				2430 EJ	3070		1110
	2		0.74 U	0.78 UJW	0.88 UJW	>			1.1 U
Silver	NS	0.8 UB					0.23 U	0.20 U	0.22 U
Sodium	NS	390 B	444 B		3		~~		4.4 ∪
Thallium	NS				0.8 U	0.3 U	2.1 UJ	1.8 U	2.0 U
Vanadium	150	3E							13.0
	20	71 EJ			81.3	27.4	74.1	32.7	27.5
Total Cyanide (mg/Kg) Cyanide, Total	1600 (a)	11.0	1.10	1.2 U	130	1.10	1 09	5611	64 ()
The second secon	-	***************************************				от принципримення принципримення принципримення принципримення принципримення принципримення принципримення при	observations of the same and th	AND	A CONTRACTOR OF THE PROPERTY O

***		A CONTRACTOR OF THE PARTY OF TH		Table 5		A THE RESIDENCE OF THE PROPERTY OF THE PROPERT		ACCOMPTERMINATION WORK WERE THE TRANSPORT OF THE TRANSPOR	DO CHANGE OF THE PARTY OF THE P
		Clove	Subsurfa	Subsurface Soil Analytical Results	Subsurface Soil Analytical Results				
			Ha	Haverstraw, New York	天				***************************************
Sample Location	=	SG15	SG15	SG16	SG16	SB16		SB16	SB17
Depth Interval in feet:		8 - 8,5	19 - 20	12 - 13	23,5 - 24	18 - 18	30 - 30	36 - 36	4 - 4
Sample ID	NYS ::	CMSG15(8-8.5)		CMSG16(12-13)		HA-SB16-18		HA-SB16-36	HA-SB17-4
BTEX/ma/kal		10/21/1890	10/21/1930	10/21/1996	(0/21/1996	9/40/4001	0/20/2001	0/20/2001	0/10/2001
Benzene	0.06	0.011 U	0,011 U	10.011 U	0.011 U		0.038 U	U 600.0	1,3,0
Toluene	5.	0,011 U	0.011 U	0.011 U		59		0.009 U	3
Ethylbenzene	5.5	0.011 U	0.011 U						29
Xylene, Total	1.2	0.011 U	0.011 U		0,011 U				35
Total BTEX	SS	ND	N						68.3
Other VOCs (mg/kg)									
Acetone	0.2	0.011 UJ	0.011 U			m			2.2 UJ
Bromodichloromethane	NS	0.011 U	0.011 U		0.011 U		0.038 U	0.009 U	0.087 J
Bromoform	SN	0.011 U	0.011 U						0.1 ل
Chlorobenzene	11.7	0.011 U	0.011 U						0.16 J
Chloroform	0.3		0.011 U	n					2.2 U
Dichloroethane, 1, 2-	0.1		0.011 U .						2.2 U
Methylene chloride	0,1	0.011 U	0.011 U	0.011 U			0.043 U	0.022.U	2.2 U
Styrene	NS	0,011 U	0.011 U						0.71 ل
Tetrachloroethene	1.4	n	0.011 U			ก๑			2.2 U
Trichloroethene	7.0	11 U	0.011 U	O			J	0.009 U	2.2 U
Trimethylbenzene, 1, 2, 4-	SN	NA	NA						NA
Noncarcinogenic PAHs (mg/kg)	(mg/kg)								
Acenaphthene	50	0.38 U			0.37 U	Ų.	ŗ	0.36 UJ	47
Acenaphthylene	41	0,38 U		0.38 U	0.055 J				16 J
Anthracene	50	0.38 U	0,37 U				2.9		24 J
Benzo[g,h,i]perylene	50	0.38 U							15 J
Fluoranthene	20	0.38 U		0.38 U	0,63			0.36 UJ	42
Fluorene	50	0.38 U							27 J
Methylnaphthalene,1-	NS	NA				NA			ダア
Methylnaphthalene,2-	36.4	0.043 J	D	0.38 U				0.36 UJ	110
Naphthalene	13	0.38 U	ם		n				210
Perylene	NS	NA			NA				۲A
Phenanthrene	50	0.06 J	\supset						3.1
Pyrene	50	0.043 J	O					0.36 UJ	54
Carcinogenic PAHs (mg/kg)	i/kg)								
Benz[a]anthracene	0.224	0.38 U	ח				2.4		21.0
Benzo a pyrene	0.061	0.38 U	0.37 U	0.38 U	J	12		0.36 UJ	23 J
Benzo b fluoranthene	1.7	0.38 U	n		0.29 J	_	J		7
Benzo e pyrene	SN	NA				S1100000000000000000000000000000000000	0.0000000000000000000000000000000000000		YZ.
Benzolk/fluoranthene Chrysene	1.1	0.38 U	0,37 U	0.38 U	0.084 J	8.6	1.3.0	0.36 UJ	183
Cilyaone	F	0.00						REPLEMENTANCE	

Substitute State Communication Script Substitute State Communication Script Scr					Table 5					o de la composição de l
Solid			i	Subsurfac	se Soil Analytical	Results	;			
Barrier Signate Control Signate Control Signate Signate Control Signate Control Signate Control Signate Sign			Clove an	id Maple Avenue F Hav	-ormer MGP Site rerstraw, New Yo	 Remedial Investig 	gation			
Description	Sample Location:			SG15	SG16	SG16	SB16	SB16		SB17
Sample Discriptions of	Depth Interval in feet:			19 - 20	12 - 13	23.5 - 24	18 - 18	30 - 30	36 - 36	4,4
Vivo Cost (mg/kg) NS 10.271.399 10.271.399 10.271.399 10.271.399 10.271.399 10.271.399 10.271.399 10.271.399 10.271.399 10.271.399 10.271.399 10.271.399 10.271.399 10.271.3 10.271.399 10.271.3	Sample ID:	NYS		CMSG15(19-20)	CMSG16(12-13)	CMSG16(23.5-24)	HA-SB16-18	HA-SB16-30	HA-SB16-36	HA-SB17-4
Harmonic State of the problem of the proble	ġ	2222	1/1888	8861/17	21/1998	10/21/1998	3/2001	2007	Т	6/18/2001
Albertage 3.2 0.38 U 0	1	40.00				0.07			Т	
Arise (mag/4g) INS 0.146 IND IND 4.859 22.56 59.19 IND Arise (mag/4g) INS INA		3.2			-	0.1 J	7.9 J	2		
VPOCE (mg/4)g) INS 0.146 IND										
NA NA NA NA NA NA NA NA		NS	0.146	-		4,599		9		746.5
Name	Other SVOCs (mg/kg)									
hylhesyljphthalate 50 NA NA NA NA NA O.36 UJ 0.11 J 0.36 UJ ble NS NA NA NA NA NA 0.11 J 0.36 UJ 0.36 UJ frig/Kg) NS 80d0 J 4930 J 5740 J 5470 J 3990 3720 4420 m NS Rd4 R R R R R 0.04 J 0.36 UJ m NS Rd40 J 4930 J 5740 J 5470 J 3990 3720 4420 m NS R R R R R D 0.04 J 0.36 UJ 0.36 UJ m NS RA R R R R R 0.05 UJ 0.04 UJ 0.04 UJ 0.04 UJ 0.04 UJ 0.05 UJ		NS			NA	NA	NA			NA
NS NA NA<	Bis(2-ethylhexyl)phthalate	50				Ψ.Z.	7.6 U	8 U		38 U
fitzan NA NA NA I J 04J 036 UJ fitzaran 62 NA NA NA NA I J 0309 3720 420 fitzar NS RA RA RA RA RA <	Carbazole	NS				NA				ე.63 J
(mg/kg) NS 8040 J 4930 J 5740 J 5470 J 3990 3720 4200 J y NS R		6.2				NA				3.7.3
m NS 8040 J 4930 J 5740 J 3990 3720 420 yy NS R<										
yy NS R		NS		7	J	5470 J				12200
75 4.9 16 UB 27 11 UB 13 J 0.98 J 0.90 J 70 56.9 EJ 88.6 EJ 67.9 EJ 11 UB 40.2 59.2 47.9 70 66.9 EJ 0.4 UB 0.4 UB 0.3 UB 0.3 UB 0.11 U 0.08 U 0.08 U 0.01 U 0.08 U		NS	Œ			æ	Λ		ſ	J.98 UJ
300 55.9 Eu 88.6 EJ 67.9 EJ 119 EJ 40.2 59.2 47.9 m 0.16 0.4 UB 0.3 UB 0.3 UB 0.011 U 0.088 U 0.084 U m 1 0.6 B 0.4 UB 0.5 B 0.3 B 0.20 U 0.18 U 0.084 U m 1 0.6 B 0.4 UB 0.5 B 130 E 0.20 U 0.18 U 0.084 U m 1.0 1.0.1 L 7.3 130 E 0.20 U 0.18 U		7.5				1.1 UB				7.6
nh 0.16 0.4 UB 0.3 UB 0.3 UB 0.11 U 0.098 U 0.084 U mm 1 0.6 B 0.4 B 0.5 B 0.3 B 0.11 U 0.088 U 0.18 U 0.18 U 0.018 U		300	_			119 EJ				33.2
mm 1 0.6 B 0.4 B 0.5 B 0.3 B 0.20 U 0.18 U		0.16				0.3 UB				J.70
Image:	Cadmium	ļ				0.3 B				ე.54 J
Imm 10 10.1 7.3 7.3 6.2 JBE 7.3 3.9		NS) EJ*			_			0	1380
30 6.1 JBE 6.2 JBE 4.5 JBE 4.5 JBE 3.3 3.9 3.9 25 17.6 6.9 13.1 5 B 7.3 9.1 4.7 200 15600 EJ 7210 EJ 12700 EJ 6800 EJ 9270 9620 9710 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 500 6.8 4.4 4.9 4.9 4.9 4.9 4.9 4.9 500 6.8 4.4 4.9 4		10								5.7
25 17.6 6.9 13.1 5 B 7.3 9.1 4.7 2000 15600EJ 7210EJ 12700EJ 6830EJ 9270 9620 9710 100 6.8 4.4 4.9 4 4.9 4 2.9 4.9 4.9 970		30								3,5
2000 15600 EJ 7210 EJ 12700 EJ 6830 EJ 9270 9620 9710 lum 6.8 4.4 4.9	oer Jer	25								21.2
Limm NS 3730 EJ 4.4 4.9 4.9 4.4 4.9 4.3		2000								23000
lum NS 3730 EJ 3650 EJ 2880 EJ 4380 EJ 2750 2410 3250 ese NS 256 EJ 352 EJ 358 EJ 292 EJ 232. 188. 339. ese NS 256 EJ 352 EJ 358 EJ 292 EJ 232. 188. 339. m 13 14,5 EJ 11,0 0.11 U 0.11 U 0.0039 0.0037 0.0034 U m NS 1210 1700 10.1 U 0.01 U 0.0039 0.0037 0.0034 U n NS 1210 1700 10.2 EJ 7.8 7.6 10.1 n NS 1210 1700 0.7 UB 0.7 UB 0.7 UB 0.2 U 0.20 U 0.17 U n NS 1.4 UB 1.3 UB 0.9 UB 0.6 UB 0.2 U 1.8 U 1.5 U n 150 14.1 14.1 14.1 14.1 14.1 14.1 14.1 14.1 14.1 14.1<		500								39.9
ese NS 256 EJ 352 EJ 358 EJ 292 EJ 232. 188. 339. ese 0.11 U 0.11 U 0.11 U 0.11 U 0.0039 0.0037 0.0034 U m 13 14.5 EJ 11.7 EJ 11 EJ 10.2 EJ 7.8 7.6 10.1 m NS 1210 1700 1730 B 0.74 UJW 0.75 UJW		NS								1000
in 0.11 U 0.11 U 0.11 U 0.011 U 0.0039 0.0037 0.0034 U in 13 14:5 EJ 11.7 EJ 11 EJ 10.2 EJ 7.8 7.6 10.1 in NS 1210 1700 1030 B 1780 854. 881. 1400 in NS 0.75 UJW 0.75 UJW 0.74 UJW 0.75 UJW 0.74 UJW 0.75 UJW <td>ese</td> <td>NS</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>257.</td>	ese	NS								257.
Image:	γ,	0,1							⊃).20
Image:		13				10.2 EJ				7.7
n 2 0.75 UJW 0.75 UJW 0.75 UJW 0.74 UJW 0.75 UJW 0.74 UJW 0.75 UJW 0.74 UJW 0.75 UJW 0.74 UJW 0.75 UJW 0.70 UJB 0.22 U 0.20 U 0.77 U NS 544 B 579 B 480 B 696 B 4.3 U 3.9 U 0.17 U NS 1.4 UJB 1.3 UJB 0.9 UJB 0.6 UJB 2.0 U 1.8 U 1.5 U m 150 14.1 11 B 10.2 B 7.9 8.4 10.6 varide (mg/kg) 20.3 24.7 41.1 1.1 U 1.1 U 1.1 U 1.1 U 1.5 U 25.0 1.5 U 25.0		SN								1630
NS 0.6 UB 0.7 UB 0.6 UB 0.22 U 0.20 U 0.17 U NS 544 B 579 B 480 B 696 B 4.3 U 3.9 U 3.3 U NS 1.4 UB 1.3 UB 0.9 UB 2.0 U 1.8 U 1.5 U M 150 14.1 11 B 10.2 B 7.9 8.4 10.6 Vanide (mg/Kg) 41.1 41.1 1.1 U 1.1 U 35.1 20.4 21.6 Yearl May (mg/Kg) 1.600 (a) 1.1 U 1.1 U 1.1 U 35.U 3.5 U		2		W		W			0.82 U	.1 U
NS 544 B 579 B 480 B 696 B 4.3 U 3.9 U 3.3 U I.3 UB II.3 UB III.3 UB II		NS							n).22 U
in NS 1.4 UB 1.3 UB 0.9 UB 2.0 U 1.8 U 1.5 U II U		NS								t,4 UJ
dlum 150 14.1 11.B 10.2 B 7.9 8.4 10.6 Cyanide (mg/Kg) 20 57 24,7 41.1 25,1 21,7 20,4 21,6 1 I Cyanide (mg/Kg) 1600 (a) [1.1 U [1		NS								2.0 UJ
		150								21.6
		20								40.
1600 (a) 1.1										
	-	1600 (a)	1.10). [1,1 U		.61 U	n		59 U

					Table 5				
		. `	7	Subsurface	Subsurface Soil Analytical Results	Results	1		
			Clove and Map	ole Avenue For Haver	e and Maple Avenue Former MPG Site - Remedial Investigation Haverstraw, New York	Remedial In: (/estigation		
Sample Location:		SB17	SB17	SB17A	SB18	SB18	SB/MW-20S	SB/MW-20S	MW-20D
Depth Interval in feet:		12 - 12		28 - 28	11.5 - 11.5	31 - 31	11.5 - 12		10 - 10
Sample ID:		HA-SB17-12	4	HA-SB17A-28	HA-SB18-11,5	HA-SB18-31	SB/MW-20S(11.5-12)	SB/M	MW-20-10
Date Collected:	RSCO	6/18/2001	6/18/2001	6/22/2001	6/19/2001	6/19/2001	7/2/2004	7/2/2004	11/28/2001
BIEA (IIIg/kg)	30.01		0.044.11	1 000 0		9000	0.44.11	1 2 5 0	14.13
Senzene	90.0	,		0.008		0.026	0.110	PC110	2 = = = = = = = = = = = = = = = = = = =
Toluene	1.5	24		0.009 U	44	0.019 B	U	U.012.0	D 4-
Ethylbenzene	5.5			0.009 U		0.002 J	0.53	0.025 J	22
Xylene, Total	1,2			0.009 U		0.022		0.045 J	15
Total BTEX	NS	204.2	0.003	ON	.3	0.069		0.232	37
Other VOCs (mg/kg)							變物 医原子性 医自己性		
Acetone	0.2	_		0.009 U		0.011 U	NA	NA	14 U
Bromodichloromethane	NS			0.009 U		0.011 U	AN	NA	14 U
Bromoform	NS			0.009 U		0.011 U	NA	NA	14 U
Chlorobenzene	1.7			0.009 U		0.011 U	NA	NA	14 U
Chloroform	0.3			0.009 U		0.011 U	NA	NA	14 U
Dichloroethane, 1,2-	0.1			O.009 U		0.011 U	NA	NA	14 U
Methylene chloride	0,1)		0.035 U		0.036 U	NA	NA	14 U
Styrene	NS			O.009 U		0.002 J	NA	NA	14 U
Tetrachloroethene	1.4		0,011 U	0.009	2 U	0,011 U	NA	NA	14 U
Trichloroethene	0.7	1		0.001 کا		0.011 U	NA	NA	14 U
Trimethylbenzene, 1, 2, 4-	NS		NA	NA		NA	NA	NA	A Z
Noncarcinogenic PAHs (mg/kg)	(mg/kg)								
Acenaphthene	50	9.9 J	0.28 J	0.39 U	1.7 J	0.38 U	57	0.42 J	40
Acenaphthylene	41	26 J		0.39 U	1.6 J	0.012 J	6.5 J		2.4 J
Anthracene	50	12 J		0.39 U		0.043 J			12 J
Benzo[g,h,i]perylene	50	2.6 J		0.39 UJ	1,9 J	0.049 J	6.4 J	0,52 UJ	20 U
Fluoranthene	50			0.39 U		0.1 J			9 J
Fluorene	50	16 J		0.39 U		0.031 J			23
Methylnaphthalene,1-	NS			NA		NA			NA
Methylnaphthalene,2-	36.4			0.39 U	29	0.057 J	53		84
Naphthalene	13		~	0.39 U		0.097 J		0.39 J	130
Perylene	NS	,	NA	NA		NA	. 7		NA
Phenanthrene	50		1,4	0.39 U		0.2 J	0	0.65 ქ	36
Pyrene	50	22 J		0.39 U		0.16 J	59	0.38 J	16 J
Carcinogenic PAHs (mg/kg)	/kg)								
ene.	0.224	6.9 J	0.26.J	0.39 U	5.1	0.059 J		0.11 J	6,2 √
Benzo[a]pyrene	0.061		_			0.067.J			3.4.1
Benzo[b]fluoranthene	-					0.038 J			1,8,1
Benzo[e]pyrene	NS					NA			NA
Benzo[k]fluoranthene	1.1	3.6 √	0.14 J	0.39 U	2.9 J	0.051 J	14 U	0.52 UJ	2.3 √
Chrysene	0.4					0.064 J			6.2 J

	Witcomposition			Table 5				
			Subsurface	Subsurface Soil Analytical Results	Results	:		
		Clove and Ma	Clove and Maple Avenue Former MPG Site - Remedial Investigation Haverstraw, New York	mer MPG Site - straw, New Yor	Remedial Inv k	estigation		
Sample Location:	SB17	SB17	SB17A	SB18		SB/MW-20S	SB/MW-20S	MW-20D
••		14 - 14	28 - 28 11.5 - 11.5	11.5 - 11.5	31 - 31	11.5 - 12	13 - 15	10 - 10
Date Collected: RS	NYS HA-SB17-1 RSCO 6/18/2001	2 HA-SB1/-14 6/18/2001	HA-SB17A-28 6/22/2001	HA-SB18-11.5 6/19/2001	HA-SB18-31 6/19/2001	SB/MW-20S(11.5-12) 7/2/2004	SB/MW-20S(13-15) 7/2/2004	MW-20-10 11/28/2001
Ó		0.035 J	0,39 UJ	0.44 J	0.38 UJ	14 U	0.52 UJ	20 0
	2.2 J	0.098 J	0.39 UJ	1.4 J	0.036 J	2.8 €	0.52 UJ	1 3
Total PAHs (mg/kg)								
Total PAHs NS	422.7	6.993	S S	174.84	1.064	511.7	3.368	373.3
Other SVOCs (mg/kg)								
Biphenyl,1,1-	NA	NA	NA	NA	NA	NA	NA	7.5 J
Bis(2-ethylhexyl)phthalate 50	38 (0.38 U	<u> </u>	0 6'9	0.57 U	14 U	0.52 UJ	20 U
Carbazole	38 U	0.012 J		0.2 J	0.38 U	14 U	0.52 UJ	20 U
Dibenzofuran 6.2	2.8 J	0.044 J	0.39 U	1)	0,38 U	3.2 J	0.52 UJ	20 U
9								
	6180	3720	4260	6490	3950	NA	NA	15800
Antimony	0.84 UJ	0.82 UJ	لال	0.90 UJ	0.86 UJ	NA	NA	0.98 UJ
Arsenic 7.5	1.2 J	1.2 J	ل 4,4 ا	3.4	1.7	NA	NA	3.0
	58,2	43.0		62.5	48.1	NA	NA	84.1
Beryllium 0.16		0,093 U			0.098 U	NA	NA	0.11 U
u	0.24 J	0.17 U	0.20 U	0.18 U	0.18 U	NA	NA	0.17 UJ
	1420	1270			3110	NA	NA	879.
um	11.2	6.1			5.8	NA	NA	15.2
Cobalt 30	4.3	3,2	3.6		4.3	NA	NA	6.6
Copper 25		7.1			9.0	NA	NA	11,2
		9510	11500		10600	NA	NA	23200
Lead 500	3.5	2.5			3.0	NA	NA	8.3 J
	2560	1860			2130	NA	NA	3960
986	380.	243.			152.	NA	NA	185. J
Mercury 0.1	0.0051	0.0025 U	0.0022 U	0.0039	0,0062	NA	NA	0.010
	9.2	7.2			7,7	NA	NA	16.4
	1280	661.	935.		798.	. AN	NA	1300 J
Selenium 2	0.93 U	0.91 U		1.0 U	0.96 U	NA	NA	1.0 U
Silver	0.19 U	0.18 U	J		0.20 U	NA	AZ	0.21 U
Sodium	3.8 U	3.7 U			3.9 U	NA	NA	150.
Thallium	1.7 U	11.7 U	2.0 U		1.8 U	NA	NA	2.1 UJ
adium	12.0	7.7		13.9	6.6	NA	NA	21.0
Zinc 20	30.9	20.6	24.6	38.2	21.8	NA	NA	50.0
Cyanide (mg/Kg)	(3) [81]	52	200	50111	<u> </u>	0 55 1	102.0	103
1	1	0 00,	0 00'		50 CC.	0.00	0.780	0 00.

					Table 5					
				Subsurfac	Subsurface Soil Analytical Results	cal Results	;			
······································			Clove and M	Clove and Maple Avenue Former MGP Site - Remedial Investigation Haverstraw, New York	ue Former MGP Site - I Haverstraw, New York	ite - Remedial York	Investigation			
Sample Location	nc:	MW-20D	MW-21	MW-21	SB-21S	SB22	SB22	SB23	MW-24	MW-28D
Depth Interval in feet:	et:	25.5 - 25.5	8 - 10	20 - 22	6, 8	12 - 12	20 - 20	22 - 22	18 - 18	8 - 10
Sample ID	D: NYS	MW-20-25.5	≥	MW-21-20-22	SB-21S(8-9)	Ť	HA-SB22-20	HA-SB23-22	HA-MW24-18	WW-28-8-10
Date Collected:		11/28/2001		11/28/2001	7/12/2004		6/18/2001	6/21/2001	6/22/2001	11/29/2001
BTEX (mg/kg)	100 (30)									
Benzene	90.0	0.001	0.005 J	0.011 U	0.013 U	0.034	0.011 U			4.3.5
Toluene	1.5	0.012 U	0.003	0.011 U			0.011 U			13.0
Ethylbenzene	5.5	0,012 U	0.065	0.011 U			0.011 U			94
Xylene, Total	1.2	0.004 J	0.046	0.011 U		0.002 J	0.011 U			160
Total BTEX	NS	0.005	0.119	ND	ON		NO CN	ND	ND	271.3
Other VOCs (mg/kg)										
Acetone		0.012 UJ	0.014 UJ	0.011 UJ	0.011 JB	0.045 J	0.039 J	0.011 U		44
Bromodichloromethane		0.012 U	0.014 U	0.011 U	0.013 U	ח	0.011 U			37 U
Bromoform	NS		0.014 U	0.011 U			0.011 U			37 U
Chlorobenzene	1.7		0.014 U	0.011 U		-	0,011 U			37 U
Chloroform	0.3	0.012 U	0.014 U	0.011 U		0.011 U	0.011 U			37 U
Dichloroethane, 1, 2-	0.1	0.012 U	0.014 U	0.011 U			0.011 U			37 U
Methylene chloride	0.1		0.014 UJ	0.011 UJ	0.004 JB	U	0.028 U		0.031 U	12.0
Styrene	SZ		0.014 U	0,011 U			0.011 U	Э		37 U
Tetrachloroethene	1.4	0.012 U	0.014 U	0.011 U		0,011 U	0.011 U	\supset		37 U
Trichloroethene		0.012 U	0.014 U	0.011 U			0.006 J	n		37 U
Trimethylbenzene,1,2,4.	- NS	NA	NA	NA			NA			NA
Noncarcinogenic PAHs (mg/kg)	s (mg/kg)			0.00						
Acenaphthene	50		0,052 J	0.37 U	0.25 J					390
Acenaphthylene	41		0.062 J	0.37 U	0.29 J		0.39 U	0.34 U		50 J
Anthracene	50		0.2 ט	0.37 U	0.26 J					340
Benzo[g,h,i]perylene	50		0.1 J	0,37 U	0.13 J		0.39 U	,		71.3
Fluoranthene	50		0.29 J	0.37 บ		J	0.39 U	n		370
Fluorene	50	9.0	0.095 J			_	0.39 U	0.34 U	0.39 U	360
Methylnaphthalene,1-	SN		NA	NA	NA	NA	NA			NA
Methylnaphthalene,2-	36.4		0.058 J		_				-	820 J
Naphthalene	13	41 J	0.94	0.013 J	0.083 J	0.006 J	0.39 U		0.023 J	1200 J
Perylene	NS		NA							AN
Phenanthrene	50		0.63	0,37 U	0.52	0.032 J		0.34 U	f	940 J
Pyrene	50	0.36 U	0.49	0.37 U						P 069
Carcinogenic PAHs (mg/kg)	ıg/kg)									
Benz[a]anthracene	0.224		0.24 J							250
Benzolajpyrene	0.061		0,097 ປ	0.37 U						180.1
Benzo[b]fluoranthene	~~				0.38 JM	0.008 J	0.39 U		n e	88 J
Benzole]pyrene	SN			***************************************						NA
Benzolk/fluoranthene	1.1	0.36 U	0.071 J	0.37 U	0.43 U	0.01	0.39 U	0.34 U	0.39 U	140 J
Cili ysaile	4.0									220

					Table 5					
Mwck-shoo				Subsurface	Subsurface Soil Analytical Results	al Results	:			
			Clove and Ma	Clove and Maple Avenue Former MGP Site - Hemedial Investigation Haverstraw, New York	ue Former MGP Site - F Haverstraw, New York	te - Kemedial York	Investigation			••••
Sample Location:		MW-20D	MW-21	MW-21	SB-21S	SB22	SB22	SB23	MW-24	MW-28D
Depth Interval in feet:		.25.5 - 25.5	8 - 10		σ, φ	4		22 - 22	18 - 18	8 - 10
Sample ID:		MW-20-25.5	MW-21-8-10	Ñ	SB-21S(8-9)	HA-SB22-12		HA-SB23-22	HA-MW24-18	MW-28-8-10
Date Collected:	RSCO	11/28/2001	11/28/2001	/2001	04	6/18/2001	2001	301	:001	11/29/2001
Dibenz[a,h]anthracene	0.014			0.37 U	0.43 U	0.37 U	0.39 U	0.34 UJ	0.39 UJ	34 J
ne	3.2	0.36 U	0.48 U			0.029 J				68 √
Total PAHs (mg/kg)				es de Su						
	NS	0.075	3.627	0.013	6.655	0.317	ND	QN	0.126	6111
Other SVOCs (mg/kg)										
	NS	0.36 U	0.035 J	0.37 U	NA	NA	NA	NA	NA	150 J
Bis(2-ethylhexyl)phthalate	50	0.36 U	0.48 U	0.37 U	0.43 UB	0.37 U	0.39 U	0.34 U	0.39 U	200 U
Carbazole	NS				0.43 U	0.37 U				44 J
ran	6.2		0.48 U		0,43 U	0.37 U	U 68.0	0.34 U	0.007 J	110.1
9										
	SZ	5850		8370		6060		4650		19900 J
Antimony	NS	UJ	LU 99.0	JJ		0.95 UJ	UJ	Ų	f)	1.3 UJ
Arsenic	7.5	2.3				2.3				6.6
Barlum	300	64.2								213. J
Beryllium	0.16		0.11 Ü		NA		0.10 U	0.11 U	0.11 U	0.14 U
	ļ			J		0.24 J				0.23 UJ
Calcium	SN	16100		0(4800
Chromium	10						8.2	7.2		24.0
Cobalt	30	4.7								9,7
Copper	25									30,1
	2000	0		0						28400
Lead	500									173. J
Magnesium	NS			6050		3630			4030	6400
ese	NS									416. J
ý	0.1	22 U				345	3	059	IJ	0.44 J
	13									23.4
Potassium	NS	1520 J	J.	2350 J	NA	1490	948.			2840 J
Selenium	2					1.1 U			1.1 U	2.0 J
Silver	NS	Π				0.22 U	0.20 U	-		0.29 U
Sodium	NS	122.	207.	133.	NA	4.3 U		4.2 U	n	169.
Thallium	NS			_		2.0 U	1.9 U			2.9 UJ
Vanadium	150		28.6						14.6	31.5
	20	29.1		48.3	NA	32.6	22.3	25.5		130,
(mg/Kg)										
Cyanide, Total	1600 (a)	.59 U	.64 U	55 U	0.63 U	.55 U	.59 U	.57 U	.61 U	77 U
		***************************************						medirication actions/squarescondens	######################################	South Cardinates and

Subpuringe Particle Particl					Tat	Table 5	700000000000000000000000000000000000000	- Constitution of the Cons	
Clove and Maple Accepted Have Former Accepted Have State H	Million Laboratoria			Subs	urface Soil	Analytical Results			
Particle Location: MAV-28D (DUP) MAV-28D (MAV-28D (MAV-28D (MAV-28D (MAV-28D (MAV-28D (MAV-28D) (MAV-28D (MAV-28D) (MAV-28D) (MAV-28D (MAV-28D) (MAV-			Clove and	d Maple Ave	nue Former	MGP Site - Remedial	Investigation		
Interpretation Fig. 2016	Sample Location	1.5	(0) (0) (000 (0) (0)	L	חמעליין		000 110 100		
Date Collected: RSCO	Control of the Control	- 4	WW-ZOD (DOP)		U82-44101		202-WIVI/92		SE/IVIVV-31
Date Collected: RSS (S-7) NAV.283-18-00 MAV.283-00			01-8		29 - 29		6.5 - 7		8 - 10
graph 10.06 3.4 U 0.00094 0.012 U 0.01	Sample II		MW-38-18-20		MW-29-29		SB/MW-30S(6.5-7)		SB/MW-31 8-10
1.5 67.4 0.00094 0.0012 0.0023 0.012 U 0.0023 0.012 U 0.012 U 0.012 U 0.0023 0	Date Collecter		11/29/2001		11/29/2001	7/1/2004	7/1/2004		7/1/2004
1.05	BIEX (mg/kg)								
15 6.74 0.012 U 0.035 J 0.002 J 0.002 J	Benzene	0.06	34 U	0.000 J	0.001 J	1.3.1	-	0.012 U	0,79.1
1.5 1.6 1.0	Toluene	1.5	6.7 J	0.012 U	0.012 U	0.35 J	-	0.012 U	2.3.J
Octal 112 100 0.012 U 0.003 0.0014 0.0014 0.0014 0.0015 U 0.002 U	Ethylbenzene	5.5	84	0.012 U	0.012 U	19		0.003	39
EX NS ITOT 0.0009 0.001 31.65 6.564 0.014 DDS (mg/kg) 1 1 0.012 U 0.012 U NA NA NA High compethane NS 34 U 0.012 U 0.012 U NA NA NA memer 1.7 34 U 0.012 U 0.012 U NA NA NA memer 0.7 34 U 0.012 U 0.012 U NA NA NA mane 0.3 34 U 0.012 U 0.012 U NA NA NA mane 0.3 34 U 0.012 U 0.012 U NA NA NA mane 0.1 34 U 0.012 U 0.012 U NA NA NA modicide 0.1 34 U 0.012 U 0.012 U NA NA NA modicide 0.1 34 U 0.012 U 0.012 U NA NA NA modicide 0.1 34 U	Xylene, Total	1.2	190	0.012 U	0.012 U	-		0.011 J	09
DOS (mg/kg) CO12 UD 0.012 UD 0.012 UD NA NA mhoromethane NS 34 U 0.012 UD 0.012 UD NA NA mente 1.7 34 U 0.012 UD 0.012 UD NA NA mm 1.7 34 U 0.012 UD 0.012 UD NA NA mm 1.7 34 U 0.012 UD 0.012 UD NA NA enhoride 0.1 34 U 0.012 UD 0.012 UD NA NA enhoride 0.1 34 U 0.012 UD 0.012 UD NA NA enhoride 0.1 34 U 0.012 UD 0.012 UD NA NA enhoride 0.7 34 U 0.012 UD 0.012 UD NA NA enhoride 0.7 34 U 0.012 UD 0.012 UD NA NA notationere 1.4 0.012 UD 0.012 UD 0.012 UD NA NA notationere 1.4 0.012 UD	Total BTEX	SN	170.7	6000	0.001	31.65	0.364	0.014	102 09
10	Other VOCs (ma/kg)			22222					22.
Machine Mach	Acetone	10.0	1178	0.019.11.1	0.01.011.1	NA	NA	NA	NA
National Figure National F	Bromodiothoromothono	NIC			20.00	V-2	V. V	VIV	V.V.
NS 24 U 0.012 U NA NA NA NA NA NA NA		2 9			0.0.0	().	()	C7-	
1.7 34 U 0.012 U NA	Bromotorm	SZ			0.012 U	NA	NA	NA NA	NA
mm 0.3 34 U 0.012 U 0.012 U NA NA NA e chloride 0.1 34 U 0.012 U 0.012 U NA NA NA e chloride 0.1 34 U 0.012 U 0.012 U NA NA NA noethere 0.5 34 U 0.012 U 0.012 U NA NA NA sthere 0.7 34 U 0.012 U 0.012 U NA NA NA sthere 0.7 34 U 0.012 U 0.012 U NA NA NA benzere, 1.2,4 - NS NA NA NA NA NA NA benzere, 1.2,4 - NS NA NA NA NA NA NA benzere, 1.2,4 - NS NA NA NA NA NA NA NA benzere, 1.2,4 - NS NA NA NA NA NA NA NA benzere, 1.2,4 - NS NA NA NA	Chlorobenzene	1.7			0.012 U	NA	NA	NA	NA
thane, 1,2- 0,1 34 U 0,012 U 0,012 U NA	Chloroform	0.3			0.012 U	NA	NA	NA	NA
e chloride 0.1 34 U 0.012 UU NA NA recthoride NS 34 U 0.012 U 0.012 U NA NA recthore 1.4 34 U 0.012 U 0.012 U NA NA NA athere 0.7 34 U 0.012 U 0.012 U 0.012 U NA NA NA benzene, 1,2,4 - NS NA NA NA NA NA NA hene 50 240 0.012 U 0.012 U 0.012 U NA NA NA hene 50 190 0.38 U 0.4 U 160 45 J 0.14 J hene 50 190 0.016 J 0.4 U 120 35 0.14 J 0.068 J sep (and) 37 J 0.38 U 0.4 U 120 35 0.03 U 0.02 J sep (and) 37 J 0.38 U 0.4 U 120 0.33 U 0.04 J 0.04 U 0.04 U 0.04 U 0.	Dichloroethane, 1,2-	0.1			0.012 U	NA	NA	NA	NA
NS 34 U 0.012 U 0.012 U NA NA Incethene 1.4 34 U 0.012 U 0.012 U NA NA NA benzene 1.2.4- NS 34 U 0.012 U 0.012 U NA NA NA benzene 1.2.4- NS NA NA NA NA NA finggenic PAHS (mg/kg) NA NA NA NA NA NA hene 50 240 0.04 U 160 3.3 0.04 U 1.0 hylene 50 240 0.04 U 160 3.5 0.04 U 0.04 U 1.0 0.04 U 0.04 U 0.04 U 0.05 U 0.04 U 0.04 U 0.05 U 0.04 U<	Methylene chloride	0.1			0.012 UJ	NA	NA	NA	NA
roethene 1.4 34 U 0.012 U 0.012 U NA NA NA benzene, 1,2,4- NS NA NA NA NA NA NA benzene, 1,2,4- NS NA NA NA NA NA NA benzene, 1,2,4- NS NA NA NA NA NA NA benzene, 1,2,4- NS NA NA NA NA NA NA hene 50 240 0.38 U 0.4 U 16 J 4.5 J 0.14 J hylene 50 190 0.016 J 0.4 U 16 J 0.21 J 0.14 J hylene 50 220 0.016 J 0.4 U 18 J 0.2 J 0.2 J nithalene, 1- NS NA NA NA NA NA NA nithalene, 1- NS NA NA NA NA NA NA nene 50 220 0.015 J	Styrene	NS			0.012 U	AN	NA	NA	NA
benzene, 1,2,4. NS NA	Tetrachloroethene	1.4			0.012 U	NA	NA	NA	NA
Machement 12.4- NS Independent 12.4- NS Independe	Trichloroethene	0.7			0.01211	NA	ΔIΔ	N ∆	ΔN
Machine In August (Mark) In August) (i)		0,014.0	0 4 0 0	VIV	VA:	V	() () () () () () () () () ()
hone 50 240 0.38 U 0.4 U 170 62 J 0.21 J hylene 50 30 J 0.38 U 0.4 U 16 J 4.5 J 0.14 J hylene 50 190 0.016 J 0.4 U 16 J 35 0.014 J 1.lperylene 50 37 J 0.38 U 0.04 J 23 J 0.13 U ene 50 220 0.034 J 0.4 U 120 63 0.13 ene 50 220 0.034 J 0.4 U 88 31 0.2 J boththalene, 1- NS NA NA NA NA NA boththalene, 2- 36 J 430 J 0.017 J 40 0.2 J 0.2 J boththalene, 2- 36 J 430 J 0.017 J 40 0.0 J 0.0 J sne 50 520 J 0.015 J 170 0.015 J 0.015 J 0.015 J strice PAHS (mg/kg) 100 0.015 J 0.014 J <td< td=""><td>111111ettt yluelizette, 1,2,4-</td><td>20</td><td></td><td>KY.</td><td>YY.</td><td>NA</td><td>NA</td><td>¥V.</td><td>¥2</td></td<>	111111ettt yluelizette, 1,2,4-	20		KY.	YY.	NA	NA	¥V.	¥2
hene 50 240 0.38 U 0.4 U 170 62 J 0.21 J hylene 41 30 J 0.38 U 0.4 U 16 J 4.5 J 0.14 J ne 50 190 0.016 J 0.4 U 100 35 0.058 J siperylene 50 220 0.034 J 0.4 U 120 53 0.138 U siperylene 50 220 0.034 J 0.4 U 120 53 0.138 U siperylene 50 220 0.034 J 0.4 U 120 53 0.13 siperylene 50 220 0.034 J 0.4 U 120 53 0.2 J shithalene, 1- NS NA NA NA NA NA NA shithalene, 2- 36.4 430 J 0.015 J 140 37 0.23 0.25 shithalene, 2- 36.4 430 J 0.015 J 170 100 0.25 0.015 J 0.015 J 0.015 J	Noncarcinogenic PAHS	(mg/kg)							
hylene 41 30 J 0.38 U 0.4 U 16 J 4.5 J 0.14 J ne 50 190 0.016 J 0.4 U 100 35 0.068 J ne 50 280 0.034 J 0.4 U 120 53 0.1 J ene 50 280 0.034 J 0.4 U 120 53 0.1 J ene 50 220 0.034 J 0.4 U 120 53 0.1 J onthalene, 1- NS NA NA NA NA NA NA pithalene, 2- 36.4 430 J 0.017 J 140 37 0.33 J sne 13 710 J 0.013 J 0.034 J 260 5 J 0.33 J sne 13 130 J 0.015 J 170 NA NA NA rene 50 520 J 0.014 J 170 47 J 25 0.013 J sinte 50 520 J 0.014 J <td< td=""><td>Acenaphthene</td><td>50</td><td>240</td><td>0.38 U</td><td>0.4 U</td><td>170</td><td>62 J</td><td>0.21 J</td><td>97</td></td<>	Acenaphthene	50	240	0.38 U	0.4 U	170	62 J	0.21 J	97
ne 50 190 0.016 J 0.016 J 100 35 0.068 J ene 50 37 J 0.38 U 0.04 J 23 J 6.38 U 0.38 U ene 50 280 0.034 J 0.4 U 88 31 0.2 J onthalene,1- NS NA NA NA NA NA onthalene,2- 36.4 430 J 0.017 J 140 NA NA onthalene,2- 36.4 430 J 0.017 J 140 NA NA onthalene,2- 36.4 430 J 0.017 J 140 NA NA onthalene,2- 36.4 430 J 0.034 J 170 NA NA onthalene,2- 36.4 430 J 0.045 J 170 0.048 J 0.048 J rene 50 520 J 0.052 J 0.015 J 170 0.048 J 0.038 U entice PAHS (mg/kg) 1.1 60 0.015 J 0.04 U 40 J 22	Acenaphthylene	41	30 J	0.38 U	0.4 U	16 J	ſ	0.14 J	14 J
i, Iperylene 50 37 J 0.38 U 0.04 J 23 J 82 J 0.38 U ene 50 280 0.034 J 0.4 U 120 53 0.1 J ohthalene, 1- NS NA NA NA NA NA NA ohthalene, 2- 36.4 430 J 0.017 J 140 37 0.23 J ohthalene, 2- 36.4 430 J 0.013 J 0.017 J 140 NA NA ohthalene, 2- 36.4 430 J 0.013 J 100 0.015 J 140 0.05 ohthalene, 2- 36.4 430 J 0.05 0.015 J 170 NA NA ohthalene, 2- 36.4 430 J 0.048 J 0.048 J 0.048 J 0.048 J ohthalene, 3- 50 310 J 0.018 J 0.014 J 47 J 22 0.048 J ohthalene 1.1 110 J 0.38 U 0.4 U 47 J 22 0.38 U ohthalene	Anthracene	50						0.068 J	78
ene 50 280 0.034 J 0.4 U 120 53 0.1 J ohthalene,1- NS NA NA NA NA NA ohthalene,1- NS NA NA NA NA NA ohthalene,2- 36.4 430 J 0.013 J 0.017 J 140 37 0.33 J one 13 710 J 0.013 J 0.034 J 260 5 J 0.33 J one 13 710 J 0.013 J 0.034 J 260 5 J 0.33 J one 50 520 J 0.015 J 170 82 J 0.31 J one 50 310 J 0.014 J 170 82 J 0.13 J one 50 310 J 0.014 J 170 82 J 0.038 U one 0.061 100 0.38 U 0.4 U 47 J 22 0.38 U one 11 110 J 0.38 U 0.4 U 75 U 0.056 J 0.05	Benzo[g,h,l]perylene	50						0.38 U	16 J
50 220 0.38 U 0.4 U 88 31 0.2 J ohthalene,1- NS NA NA NA NA NA ohthalene,1- NS NA NA NA NA NA ohthalene,2- 36.4 430 J 0.013 J 0.017 J 140 37 0.33 J ohe 13 710 J 0.013 J 0.034 J 260 5.0 0.65 ne NS NA NA NA NA NA NA rene 50 520 J 0.015 J 310 170 0.31 J enic PAHS (mg/kg) 50 310 J 0.014 J 170 82 J 0.13 J enic PAHS (mg/kg) 60 310 J 0.014 J 170 25 0.038 U enic PAHS (mg/kg) 100 0.015 J 0.015 J 0.04 U 47 J 22 0.038 U luoranthene 1.1 110 J 0.38 U 0.4 U 75 U 17 U <t< td=""><td>Fluoranthene</td><td>50</td><td></td><td></td><td></td><td></td><td></td><td>0,1 J</td><td>79</td></t<>	Fluoranthene	50						0,1 J	79
ohthalene, 1- NS NA	Fluorene	50						0.2 J	64
ohthalene,2- 36,4 436 J 0.034 J 6.073 J 140 37 0.033 J ane 13 710 J 0.013 J 0.034 J 260 5 J 0.65 ne NS NA NA NA NA NA NA NA rene 50 520 J 0.052 J 0.015 J 170 130 0.31 J enic PAHs (mg/kg) 310 J 0.04 J 170 47 J 26 0.048 J enic PAHs (mg/kg) 100 0.018 J 0.04 U 47 J 20 0.048 J enic PAHs (mg/kg) 100 0.018 J 0.4 U 47 J 20 0.038 U ithracene 0.061 100 0.38 U 0.4 U 47 J 20 0.38 U luoranthene 1.1 61 J 0.38 U 0.4 U 47 J 0.08 U 0.38 U venal 1.1 110 J 0.38 U 0.4 U 75 U 0.056 J 0.056 J venal 1.1	Methylnaphthalene,1-	NS						NA	NA
ane 13 710 J 0.013 J 0.034 J 260 5 J 0.65 Feb NS NA NA NA NA NA NA rene 50 520 J 0.052 J 0.015 J 310 130 0.31 J enic PAHs (mg/kg) 50 310 J 0.014 J 170 82 J 0.13 J enic PAHs (mg/kg) 0.224 160 0.018 J 0.4 U 47 J 26 0.048 J ithracene 0.061 100 0.38 U 0.4 U 47 J 20 0.38 U luoranthene 1.1 61 J 0.38 U 0.4 U 47 J 22 0.38 U uoranthene 1.1 110 J 0.38 U 0.4 U 75 U NA NA uoranthene 1.1 110 J 0.019 J 0.4 U 75 U 0.056 J	Methylnaphthalene,2-	36.4		0.38 U				0.33 J	220
rene NS NA N	Naphthalene	13	710 J	0.013 J				0,65	160
rene 50 520 J 0.052 J 0.015 J 310 6.01 J 170 82 J 0.13 J enic PAHs (mg/kg) 310 J 0.04 J 0.014 J 170 47 J 25 0.13 J with racene 0.224 160 0.018 J 0.4 U 47 J 26 0.048 J with racene 0.061 100 0.38 U 0.4 U 47 J 20 0.048 J wind line 1.1 61 J 0.38 U 0.4 U 47 J 22 0.38 U wind line NS NA NA NA NA NA NA uoranthene 1.1 110 J 0.38 U 0.4 U 75 U 17 U 0.056 J	Perylene	SN	NA					NA	NA
Entic PAHS (mg/kg) 50 310 J 0.04 J 170 82 J 0.13 J Intracene 0.224 160 0.018 J 0.4 U 47 J 25 0.048 J Intracene 0.061 100 0.38 U 0.4 U 47 J 20 0.048 J Intracene 0.061 100 0.38 U 0.4 U 47 J 20 0.38 U Intracene 1.1 61 J 0.38 U 0.4 U 47 J 22 0.38 U Intracent NS NA NA NA NA NA Intracent 1.1 110 J 0.38 U 0.38 U 0.38 U Intracent 1.1 110 J 0.019 J 0.4 U 75 U 17 U 0.056 J	Phenanthrene	50						0.31 J	230
enic PAHs (mg/kg) co.224 160 0.018 J 0.4 U 47 J 25 0.048 J yrene 0.061 100 0.38 U 0.4 U 47 J 20 0.38 U luoranthene 1.1 61 J 0.38 U 0.4 U 47 J 22 0.38 U yrene NS NA NA NA NA NA uoranthene 1.1 110 J 0.38 U 0.38 U 0.38 U uoranthene 1.1 140 J 0.019 J 0.4 U 55 J 25 0.056 J	Pyrene	50						0,13 J	160
ithracene 0.224 160 0.018 J 0.4 U 47 J 25 0.048 J yyrene 0.061 100 0.38 U 0.4 U 47 J 22 0.38 U Loranthene 1.1 61 J 0.38 U NA NA NA Nyrene NS NA NA NA NA uoranthene 1.1 110 J 0.38 U 0.4 U 75 U 17 U 0.38 U 0.4 0.4 0.4 0.4 25 0.056 J 0.056 J	Carcinogenic PAHS (mg	//kg)							
yyrene 0.061 100 0.38 U 0.4 U 40 J 20 0.38 U Lucranthene 1.1 61 J 0.38 U 0.4 U 47 J 22 0.38 U yyrene NS NA NA NA NA uoranthene 1.1 110 J 0.38 U 0.4 U 75 U 17 U 0.38 U 0.4 0.4 0.4 U 75 U 17 U 0.056 J	Benz[a]anthracene	0.224						0.048 J	52
Luoranthene 1.1 61 J 0.38 U 47 J 22 0.38 U Syrene NS NA NA NA NA NA uoranthene 1.1 110 J 0.38 U 75 U 17 U 0.38 U 0.4 0.4 0.4 0.4 0.55 J 0.056 J 0.056 J	Benzo[a]pyrene	0.061						0.38 U	37 J
yrene NS NA	Benzo[b]fluoranthene	1.1						0.38 U	30 U
uoranthene 1.1 110 J 0.38 U 75 U 17 U 0.38 U 0.4 140 0.019 J 0.4 U 55 J 25 0.056 J	Benzo[e]pyrene	NS						NA	NA
0.4 140 0.019 J 0.4 U 55 J 25 0.56 J	Benzo[k]fluoranthene	1.1						0.38 U	50 U
TAN THE PROPERTY OF THE PROPER	Chrysene	0.4						0.056 J	48.3

Subsurince Soil Analytean Results Subsurinces Soil Analytean Results Howestern Analyte Howestern Analyte Howestern Analyte Howestern Analyte H					Tat	Table 5			
Sample Location: Core and wappe Actains Former All Mary Size Parameter Mary Size			Č	SqnS	urface Soil	Analytical Results			
Pyth Interval in terms MW-22D (DUP) MW-22D (DUP) MW-22D (DUP) MW-22D (DUP) SBMW-30S (S-16)			Clove and	ı Maple Aver	nue Former Haverstraw	MGP Site - Remedial 7. New York	Investigation		
Part	Sample Location	-	MW-28D (DUP)	MW-28D	MW-29D	SB/MW-29S	L	SB/MW-30S	SB/MW-31
Date Collected: RNY-38-18-20 IMW-38-18-20 IMW-38-20 IMW-38-18-20 IMW-38-20 I	Depth Interval in feet	1+	8 - 10	30 - 30	29 - 29			15 - 16	8 - 10
Pale Collected I, RSCO (Linguistic) 11/29/2001 (11	Sample ID		MW-38-18-20	MW-28-30	MW-29-29			SB/MW-30S(15-16)	SB/MW-31 8-10
According to be a continue of the pool o	Date Collected		11/29/2001	2001	11/29/2001	I		. 1	7/1/2004
PARS	Dibenz[a,h]anthracene	0.014	14.0		0.4 U	75 U	17 U	0.38 U	50 U
PAHIS (mg/kg) INS 3594 10.192 10.192 1604 546.5 5242 SPACOS (mg/kg) INS 1684 10.192 0.10 170 0.280 0.242 Myl.1.1. INS 168.4 0.28 U 0.4U 75 U 17 U 0.38 U Myl.1.1. INS 1.1706 J 0.38 U 0.4U 75 U 17 U 0.38 U Collection INS 1.1706 J 0.38 U 0.4U 75 U 17 U 0.38 U Inm INS 1.1706 J 0.4U U 35 U NA NA NA Inm INS 1.1706 J 0.4U U 35 U NA NA NA Inm INS 1.1706 J 0.4U U 35 U NA NA NA Inm INS 1.100 J 0.8U U 0.10 U NA NA NA Inm INS 1.100 J 0.8U U 0.10 U NA NA NA Inm INS	Indeno[1,2,3-cd]pyrene	3.2	42 J		0.4 U	18.7	£.8.3	0.38 U	LOT
PAHSIS INS 5594 IO192 IO12 I604 546.5 2242 56 J. Occole (Ing/Rg) NS 68 J 0.38 U 0.4 U NA NA NA PALLICA (Ing/Rg) NS 68 J 0.38 U 0.4 U 75 U 17 U 0.38 U PRINIPLEAN (Ing/Rg) A6 J 0.38 U 0.4 U 75 U 17 U 0.38 U PRINIPLEAN (Ing/Rg) NS 11 TOO J 0.38 U 0.4 U 75 U 0.38 U NP 11 TOO J 0.38 U 0.4 U 75 U 0.38 U 0.38 U NP 11 TOO J 0.38 U 0.4 U 75 U 0.38 U 0.38 U NP 11 TOO J 0.54 U 0.54 U 0.54 U 0.54 U 0.38 U 0.38 U NP NP NP NP NP NP NP NP NP 10 U 0.08 U 0.4 U 0.4 U 0.4 U 0.08 U 0.08 U NP 10 U 0.08 U	Total PAHS (mg/kg)								
Second Complete) Second Comp	Total PAHs	NS	3594		0.12	1604	546.5	2,242	1280
eff of set of	Other SVOCs (mg/kg)								
EntyThewayl)phthalate 50 95 U 0.38 U 0.4 U 75 U 17 U 0.38 U Scolen NS 11700 J 0.38 U 0.4 U 75 U 17 U 0.38 U Act J 120 0.38 U 0.4 U 36 U 17 U 0.38 U Intm 11700 J 6400 3850 NA NA NA num NS 11700 J 6400 3850 NA NA NA num NS 11700 J 6400 3850 NA NA NA num NS 11700 J 6400 3850 NA NA NA num 0.16 0.12 U 0.92 U NA NA NA NA num 0.16 0.12 U 0.02 U 0.10 U NA NA NA num 0.16 U 0.12 U 0.10 U 0.10 U 0.10 U NA NA num NS 1.22 U 0.12 U 0.10 U 0.10 U <td>Biphenyl,1,1-</td> <td>NS</td> <td>68 J</td> <td></td> <td>0.4 U</td> <td>NA</td> <td>NA</td> <td>NA</td> <td>NA AN</td>	Biphenyl,1,1-	NS	68 J		0.4 U	NA	NA	NA	NA AN
scole NS 46J 0.38 U 0.40 75 U 17 U 0.38 U scole 11700J 0.38 U 0.40 96J 17 U 0.38 U scole 11700J 0.40 0.40 0.40 0.40 0.38 U num NS 11700J 0.40 0.38 U NA NA NA ory NS 11 UU 0.64 UU 0.92 UU NA NA NA NA ory 7.5 12.3 1.63 0.10 U NA NA NA NA num 0.16 0.12 U 0.092 U 0.10 U NA N	Bis(2-ethylhexyl)phthalate	50	95 U	0.38 U	0.4 U	75 U	17.0	0.38 U	50 U
scportmann 6.2 1720 6.40 386.Jh 2.5.J 0.38 U string/sg/j NS 11700 J 6.400 3850 J NA NA NA ony NS 1.1 UU 0.84 UU 0.92 UU NA NA NA ony NS 1.1 UU 0.84 UU 0.92 UU NA NA NA ony NS 1.2.3 1.6.3 NA NA NA NA ony 1.2.4 0.02 U 0.02 U 0.10 U NA NA NA imm 0.16 0.12 U 0.02 U 0.16 U NA NA NA imm NS 4280 0.16 U NA NA NA NA imm NS 4300 1.16 U NA NA NA NA imm NS 5.1 3.5 NA NA NA NA imm NS 1.5.0 3.8 U NA NA	Carbazole	NS	46 J			75 U	17 U	0.38 U	50 U
Seftrack (D) Introduce State of the control of the con	Dibenzofuran	6.2	120			19.6		0.38 U	50 U
num NS 11700 J 6400 3850 NA NA NA ony NS 1.1 UJ 0.84 UJ 0.92 UJ NA NA NA ic 5.2 1.9 1.6 UJ 0.92 UJ NA NA NA ic 1.2. J 5.0.7 27.3 NA NA NA ic 0.12 U 0.092 U 0.10 U NA NA NA im 0.16 U 0.15 U 0.10 U NA NA NA im NS 4280 15100 NA NA NA im NS 5.9 5.1 3.5 NA NA NA im NS 5.9 5.1 3.5 NA NA NA im NS 5.9 5.1 3.5 NA NA NA im NS 5.2 2.1 3.8 NA NA NA im NS 4.8 <td>Metals (mg/Kg)</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Metals (mg/Kg)								
ony NS 1.1 UJ 0.84 UJ 0.92 UJ NA NA ic 1.2 1.9 1.6 J NA NA NA im 0.16 0.12 U 0.092 U 0.10 U NA NA NA imm 0.16 UJ 0.092 U 0.10 U NA NA NA NA imm 1.1 0.18 UJ 0.16 UJ NA NA NA NA imm 1.1 0.18 UJ 0.16 UJ NA NA NA NA imm 1.0 0.18 UJ 0.16 UJ NA NA NA NA imm 1.0 1.15 UJ 0.16 UJ NA NA NA NA imm 1.0 1.20 UJ 1.16 UJ 0.16 UJ NA	Aluminum	NS	11700 J	6400		NA	NA		NA
(c) 7.5 5.2 1.9 1.6 July NA NA NA III 300 124.J 50.7 27.3 NA NA NA III 300 124.J 50.7 27.3 NA NA NA III 1.16 UJ 0.16 UJ 0.16 UJ 0.16 UJ NA NA NA III 1.16 UJ 0.15 UJ 1.600 NA NA NA NA III 1.01 UJ 1.500 1.600 NA NA NA NA III 1.200 1.200 1.200 1.200 NA NA NA III 1.200 1.200 1.200 NA NA NA NA III 1.200 1.200 1.200 1.200 NA NA NA III 1.200 1.200 1.200 NA NA NA NA III 1.200 1.200 1.200 1.200 <th< td=""><td>Antimony</td><td>SN</td><td>1.1 UJ</td><td>0.84 UJ</td><td>m</td><td>NA</td><td>NA</td><td></td><td>₹ Z</td></th<>	Antimony	SN	1.1 UJ	0.84 UJ	m	NA	NA		₹ Z
nm 300 124. J 50.7 27.3 NA NA NA nm 0.16 0.12 U 0.092 U 0.10 U NA NA NA nm 1.18 UJ 0.16 UJ 0.16 UJ NA NA NA nm 1.20 15100 18600 NA NA NA nium 1.0 1500 15100 18600 NA NA NA nium 1.0 1500 1500 14300 1600 NA NA NA st 2.2 2.1 2.8 1.3 NA NA NA st 2.00 1940 14300 10900 NA NA NA st 2.00 152.0 14300 10900 NA NA NA NA st 2.00 152.0 202.0 10A NA NA NA NA st 3.00 1.2.0 2.4 1.4 NA	Arsenic	7.5	5.2			NA	NA		A'N
umm 0.16 0.12 U 0.092 U 0.10 U NA NA lum 1 0.18 UJ 0.15 UJ 0.16 UJ 0.16 UJ 0.15 UJ 0.16 UJ NA NA lum NS 4280 1510 18600 NA NA NA vium 10 15.0 9.4 7.3 NA NA NA vium 10 15.0 1.10 1.20 1.3 NA NA NA vium 250 1.2 7.8 NA NA NA NA sium NS 1.5.3 1.80 1.0 NA NA NA viv 1.3 1.4.8 1.2.4 NA NA NA NA viv 1.3 1.4.8 1.2.4 NA NA NA NA viv 1.3 1.4.8 1.2.4 NA NA NA NA viv 1.7.4 0.92 U 0.032 U	Barium	300				NA	NA		NA
limm 1 0.18 UJ 0.15 UJ NA NA NA imm NS 4280 15100 18600 NA NA NA nium NS 4280 1510 18600 NA NA NA nium 10 150 5.9 7.8 7.8 NA NA NA rt 250 130 14300 10900 14300 10900 NA NA NA seium NS 4320 4870 4110 NA NA NA seium NS 4320 4870 4110 NA NA NA seium NS 130 200 200.0 1000.0 NA NA NA nm 13 14.8 12.6 14.4 NA NA NA nm NS 12.0 0.98 U NA NA NA NA nm NS 12.0 0.98 U	Beryllium	0.16				NA	NA		NA
III IS 4280 15100 18600 NA NA NA NA III 150 9.4 7.3 NA NA NA NA III 2.9 5.1 3.5 NA NA NA NA SI 2.1.2 7.8 7.8 NA NA NA NA SI 2.00 19400 14300 10900 NA NA NA NA SI 2.00 19400 14300 1090 NA NA NA NA SI 1.00 1940 1410 NA NA NA NA SIUM NS 278.J 202.J NA NA NA NA SIUM NS 174.B 12.6 0.0034 U NA NA NA NA SIUM NS 174.B 0.004 U 0.004 U NA NA NA NA MN NS 177.J <td>Cadmium</td> <td>-</td> <td></td> <td></td> <td></td> <td>NA</td> <td>NA</td> <td></td> <td>NA</td>	Cadmium	-				NA	NA		NA
timm 10 150 9.4 7.3 NA NA NA ttm 30 5.9 5.1 3.5 NA NA NA str 25 21.2 7.8 7.8 NA NA NA str 200 19400 14300 1090 NA NA NA stimm NS 278.J 5.8 J 3.8 J NA NA NA stimm NS 278.J 286.J 202.J NA NA NA ry 0.1 0.92 J 0.034 U NA NA NA ry 1.3 14.8 12.6 7.4 NA NA NA sium 2 1.7 J 0.90 U 0.98 U NA NA NA um 1.50 1.2.1 1.8 U NA NA NA NA nm NS 1.2.8 1.8 U NA NA NA NA <	Calcium	NS				NA	NA		NA
tt 1 30 5.9 5.1 3.5 NA	Chromlum	10				NA	NA		NA
ef 25 21.2 7.8 7.8 NA NA NA ef 19400 14300 14300 14300 NA NA NA NA esium 500 152.J 5.8 J 3.8 J NA NA NA NA NA anese NS 278.J 286.J 202.J NA NA NA NA ry 0.1 0.92.J 0.0034 U NA NA NA NA sium NS 14.8 12.6 7.4 NA NA NA um NS 17.7J 0.99 U 0.98 U NA NA NA um NS 1.28 115. NA NA NA NA nm NS 1.28. 116. NA NA NA NA nm NS 2.3 UJ 1.8 U NA NA NA NA Cyanide (mg/Kg) 20.4 1.5.2	Cobalt	30				NA	NA		NA
2000 19400 14300 NA NA NA seium 500 152. J 5.8 J 3.8 J NA NA NA seium NS 4320 4870 4110 NA NA NA ry NS 278. J 286. J 202. J NA NA NA ry 0.1 0.92 J 0.054 U NA NA NA ry 0.1 0.92 J 0.054 U NA NA NA sium NS 1740 J 2080 J 995. J NA NA NA um Z 1.77 J 0.90 U 0.98 U NA NA NA n NS 1.28 U 128 U 15.0 NA NA NA n NS 1.28 U 1.8 U 1.8 U NA NA NA n NS 2.3 U 1.8 U 1.8 U NA NA NA so S	Copper	25				NA	NA		NA
seium NS 45.2 J 5.8 J NA NA NA NA seium NS 4320 4870 4110 NA NA NA NA sinese NS 278. J 286. J 202. J NA NA NA NA ry 0.1 0.92 J 0.034 U NA NA NA NA NA sium NS 1740 J 2080 J 995. J NA	lron	2000				NA	NA		NA
seium NS 4320 4870 4110 NA NA NA anese NS 278.J 286.J 202.J NA NA NA NA ry 0.1 0.92.J 0.0034 U NA NA NA NA NA sium NS 1740 J 2080 J 995.J NA NA NA NA um Z 1.7 J 0.30 U 0.38 U NA NA NA NA m NS 1.28. 115. NA NA NA NA im NS 2.3 U 1.8 U 1.8 U NA NA NA ilum 150 20.4 15.2 14.5 NA NA NA Cyanice (mg/kg) 20.2 21.7 NA NA NA NA def. Total 1600 (a) 7.0 30.2 21.7 NA NA NA	Lead	500				NA	NA		NA
Ansee NS 278. J 286. J 202. J NA NA NA ry 0.1 0.92 J 0.034 U NA NA NA NA ry 13 14.8 12.6 7.4 NA NA NA sium NS 1740 J 2080 J 995. J NA NA NA m NS 1.7 J 0.30 U 0.38 U NA NA NA m NS 1.28. 128. 115. NA NA NA lium NS 2.3 U 1.8 U 1.8 U NA NA NA lium 150 20.4 1.5 U 1.8 U NA NA NA Cyanida (mg/kg) 20 89.8 30.2 21.7 NA NA NA Aparida (mg/kg) 1600 (a) 7 U .57 U .6 U 0.56 U 0.55 U	Magnesium	NS				NA	NA		NA
ry 0.92 J 0.0034 U NA NA NA sium 13 14.8 12.6 7.4 NA NA NA sium NS 1740 J 2080 J 995. J NA NA NA um 2 1.7 J 0.90 U 0.98 U NA NA NA m NS 1.28. 128. 115. NA NA NA lium NS 2.3 UJ 1.8 U 1.8 U NA NA NA lium 150 20.4 15.2 NA NA NA NA Cyanida (mg/kg) 20 89.8 30.2 21.7 NA NA NA Sp. Total 1600 (a) 7 U .57 U .6 U 0.56 U 0.56 U	Manganese	NS				NA	NA		NA
sium 13 14.8 12.6 7.4 NA NA NA NA um 2 1.740 J 2080 J 995. J NA NA NA NA m NS 1.7 J 0.90 U 0.98 U NA NA NA NA m NS 1.28. 128. 115. NA NA NA NA lium NS 2.3 UJ 1.8 U 1.8 U NA NA NA lium 150 20.4 15.2 NA NA NA Cyanida (mg/kg) 20 89.8 30.2 21.7 NA NA NA Se, Total 1600 (a) 7 U .57 U .6 U 0.56 U 0.56 U 0.56 U	Mercury	0.1			\supset	NA	NA		NA
sium NS 1740 J 2080 J 995. J NA NA NA um 2 1.7 J 0.90 U 0.98 U NA NA NA m NS 123 U 128. 115. NA NA NA im NS 2.3 UJ 1.8 U NA NA NA ilum 150 20.4 15.2 NA NA NA Cyanida (mg/kg) 20 89.8 30.2 21.7 NA NA NA de, Total 1600 (a) 7 U .57 U .6 U 0.56 U 0.56 U	Nickel	13				NA	NA		NA
um 2 1.7 J 0.98 U NA NA NA m NS 0.23 U 0.18 U 0.20 U NA NA NA m NS 128. 128. 115. NA NA NA lim NS 2.3 UJ 1.8 U NA NA NA lium 150 20.4 15.2 NA NA NA Cyanida (mg/kg) 20 89.8 30.2 21.7 NA NA NA Jose Total 1600 (a) 7 U .57 U .6 U 0.56 U 0.56 U	Potassium	NS				NA	NA	***************************************	NA
m NS 0.23 U 0.18 U 0.20 U NA NA NA m NS 128. 115. NA NA NA NA llum 150 20.4 15.2 12.2 NA NA NA Cyanide (mg/kg) 20 89.8 30.2 21.7 NA NA NA Se, Total 1500 (a) 7 U .57 U .6 U 0.56 U 0.56 U	Selenium	2				NA	NA		NA
NS 128. 115. NA NA NA NA NA NA NA N	Silver	SZ				NA	NA		NA
NS 2.3 UJ 1.8 U NA	Sodium	NS				NA	NA		NA
150 20.4 15.2 12.2 NA NA NA NA NA NA NA N	Thallium	NS				NA	NA		NA
20 89.8 21.7 NA NA NA NA NA NA NA N	Vanadium	150				NA	NA		NA
(<i>mg/Kg)</i> 1600 (a) 17 U 16 U 10.56 U 10.56 U	Zinc	20				NA	NA		NA
1600 (a) 7.7	Total Cyanide (mg/Kg)								
	Cyanide, Total	1600 (a)	.7 U			0.56 U	0.62 U	0.56 U	0.76 U

L	ľ
1	2
J	ç
L	7
	í
į	ì
j	Ġ
í	'
i	í
ì	۶
4	
Ę	ļ
١	•
:	K
ż	
•	7
i	ż
Š	Ė
3	۶
i	
į	ź
5	2
ì	
5	ξ
è	
ı	C
4	Ξ
ì	7
	ŧ
	Ġ
	٤
	ċ
:	
•	

			HIRONOMIca and the control of the co	Table 5			A CONTRACTOR OF THE PROPERTY O		
		Olo	Subsurface Soil Analytical Results Clove and Maple Avenue Former MGP Site - Remedial Investigation	Subsurface Soil Analytical Results Avenue Former MGP Site - Remed	al Results te - Remedial I	nvestigation			
			-	Haverstraw, New Y	ork	3			
Sample Location:		SB/MW-31	SB/MW-32	SB/MW-32	B-45	SB-45		SB-45	SB-45
Depth Interval in feet:		33 - 34	10 - 11		0.1	10 - 11		24 - 25	24 - 25
Sample ID:	NYS	SB/MW-31 33-34	SB/MW-32 10-11	SB/MW-32 34-36	5(10-11)	SB-XX(8-9)	SB-45(11-12)	SB-45(24-25)	SB-XX(18-20)
Date Collected:	DOCH	//1/2004	1/1/2004	11/2004		112/2004		1/13/2004	200
(g/kg)	000	10000		11010			1 600 0		0.01013
	90'0	0.012.0		0,012.0				0.014.0	0,010,0
	1,5	0.012 U		0.012 U		2002000			0.012.0
4	5,5			0.012 U					0.012 U
a	1.2	12 U		0.012 U	1.6 J		0.001 J	0.012 U	0,012 U
	NS		46,91	ND					ND
Other VOCs (mg/kg)								2 M 25 42 15	
	0.2	NA		NA	NA				NA
Bromodichloromethane	NS	NA		NA	NA				NA
Γ	NS	NA		NA	NA				NA
ene	1,7			NA	NA				NA
	0.3			NA	NA				NA
lane, 1,2-	0.1			NA	NA				¥Z.
	0.1			NA	NA				NA
	NS			NA	NA				AA
oroethene	1.4		NA	NA	NA	NA	NA	NA A	NA
T	0.7			AN	NA				NA
Trimethylbenzene 1.2.4-	NS	ΑN		NA	NA				NA
7	na/kal								
Acanaphthana	19/19/ 50	0 39 11	Utt		150.1	1. 99	1.98.0	0.16.1	0.17.0
	25								
919	- 1-				77	0.00			
	000	0.39 U			-				3
erylene	50								0.93
Fluoranthene	50								2.5
Fluorene	50	9 U					0.25 J		0,87
Methylnaphthalene,1-	NS								NA
Methylnaphthalene,2-	36.4								0.2 J
Naphthalene	13	0.073 J							0.75 U
	NS	, , , , , , , , , , , , , , , , , , , ,							NA
rene	50	0.6		-			***************************************		3.5
	50		210	В	L 001	47 J	0.55	4,8	4.2
Carcinogenic PAHs (mg/kg)	(6)								
Benzlalanthracene (0.224						0,12 J		1.6
	0.061							1,8	1,6
thene	-,-								1,7 J
	NS		NA	NA	NA	NA			NA
Benzo[k]fluoranthene							0.073 J		0.75 UJ
	0.4								1.6

				Table 5	: :				
		Clov	Subsurrace Soil Analytical Results Clove and Maple Avenue Former MGP Site · Remedial Investigation	Subsurface Soil Analytical Results Avenue Former MGP Site - Remed	al Results te - Remedial I	nvestigatio	_		
				Haverstraw, New York	York	ì			
Sample Location:		SB/MW-31	2	SB/MW-32	SB-45	SB-45	SB-45		SB-45
Depth Interval in feet:		33 - 34		34 - 36	10 - 11	10 - 11			24 - 25
Sample ID:	NYS	SB/MW-31 33-34	SB/I	SB/MW-32 34-36	SB-45(10-11)	SB-XX(8-9)	었	2	SB-XX(18-20)
Date Collected:	RSCO	7/1/2004	7/1/2004	7/1/2004	/2004	7/2/2004	7/2/2004	7/15/2004	7/15/2004
	0.014	0.39 U	61 U	<u>π</u>		16 U	0.48 U		0.21 J
ne	3.2	0.39 U	17.1	R	8.9 J	3.9 J	0.48 U	0.66 J	0.6 J
Total PAHs (mg/kg)									
	NS	0.073	1503	0.13	1280.8	531,8	3.834	25.37	23.78
Other SVOCs (mg/kg)									
	NS	NA	NA	NA	NA	NA	NA	NA	NA
Bis(2-ethylhexyl)phthalate 50	50	O 88.0	<u>وا</u> ر	Œ	38 U	16 U	0.83	0.75 U	0.75 U
Carbazole	NS	0.39 U	61 U	<u> </u>	38 U	16 U	0.48 U	0.75 U	0.75 U
	6.2	0,39 U	61 U		7.2.0	3.2 J	0.48 U		0.1 J
Metals (mg/Kg)									
	NS	NA	NA	NA	NA	NA	NA	NA	NA
Antimony	NS	NA	NA	NA	NA	AN	NA	NA	ĄZ
Arsenic	7.5	NA	NA	NA	NA	NA	NA	NA	NA
	300	NA	INA	NA	NA	A'N	NA		NA
Beryllium	0,16	NA	NA	NA	NA	NA	NA	NA	NA
Cadmium	-	NA	NA	NA	NA	VΑ	NA		NA
	NS	NA	NA	NA	NA	NA	NA		NA
Chromíum	10	NA	NA	NA	INA	NA	NA		NA
Cobalt	30	NA	NA	NA	NA	AN	AZ		NA
Copper	25	NA	NA	NA	NA	NA	NA		NA
Iron	2000	NA	NA	NA	NA	NA	NA		ΝΑ
Lead	500	NA	NA	NA	NA	NA	NA		NA
	NS	NA	NA	NA	NA	NA	NA		NA
ese	SS	NA	NA	NA	NA	NA	NA		NA
λ.	0.1	NA		NA	NA	NA	NA		NA
	13	NA		NA	NA	NA	NA		NA
T	NS	NA		NA	NA	NA	NA		ΑA
Selenium	2	NA		NA	NA	NA	NA		NA
	NS	NA	NA	NA	NA	NA	NA		NA
	NS	NA	NA	NA	NA	NA	NA		NA AN
Thallium	SN	NA	NA	NA	NA	NA	NA		NA
ıdium	150	NA	NA	NA	NA	NA	NA		NA
	20	NA	NA	NA	NA	NA	NA		NA
(mg/Kg)									
Cyanide, Total	1600 (a)	0.59 ∪	0.56 U	0.61 U	0.57 U	0.61 U	0.73 U	0.55 U	0.57 U
A STATE OF THE STA			A THE RESIDENCE OF THE PROPERTY OF THE PROPERT					The state of the s	

C	
Tables/Table	
+	
-	
0	
Ű,	
Š	
\sim	
Ü	
~	
Ċ	
ú	
ā	
~	
ř	
5	
17495	
7007	
7007	
7007	
7007	
7007	
7007	
7007	
7007	
7007	
7007	
7007	
7007	
7007	
7007	
7007	
7007	
7007	
7007	
7007	
7007	
70/70/70/70/70/7	
7007	
7007	
7007	
7007	
7007	
7007	
7007	
7007	
7007	
7007	
7007	

Comments of Contract	Water Color Street Street Street Street	PORTER DESCRIPTION OF THE PROPERTY OF THE PROP			and the second s					VARAMENT DATABASE WAS TO SEE THE SECOND SECO
			Sub	lar surface Soil	labie 5 Subsurface Soil Analytical Results	sults				
		Clove and		enue Former Haverstrav	Maple Avenue Former MGP Site - Remedial Investigation Haverstraw. New York	medial Inv	estigation			
Sample Location:		SB 45	87 80	97 GO	SD 46 SD 48	07 00	07 00	SD/AMA/ GG	22 02	SD 67
Depth Interval in feet:		27.28	10-11	14 - 15	14 - 15	2, 28	13.5-14.5	10 - 12	14 - 16	7.8
Sample ID:	NYS	SB-45(27-28)	SB-46 10-11	SB-46 14-15	SB-48 14-15		S	SB/MW-55(10-12)	SB-56(14-16)	SB-57(7-8)
Date Collected:	RSCO	7/15/2004	7/2/2004	7/2/2004	7/1/2004	7/1/2004	7/1/2004	7/12/2004	7/12/2004	7/12/2004
BTEX (mg/kg)										1000 1000 1000 1000 1000 1000 1000 100
	90.0	0.012 U	21	0.021 UJ	0.013 UJ	19	0.049 J	0.003 J	0.014 U	0.012 U
	1.5	0.012 U	100	æ	Œ	721.4 721.3	Œ	0.002 J	0.014 U	0.012 U
zene	5.5		250	<u>a</u>	R	47	R	0,001 J	0.014 U	0.012 U
-	1,2			8	R	41	R	0.00 J	0.014 U	0.012 U
	NS	N N		S	ND ND	9.	0.049	0.012	NO	QN
s (ma/ka)										
	0.2	NA	NA	NA	NA	NA	NA	NA	NA	NA
chloromethane	NS	NA	NA	NA	NA	NA	NA	NA	NA	ΑN
Π	NS	NA	NA	NA	NA	NA	NA	NA	NA	NA
ene	1.7	NA	NA	NA	NA		NA	NA	NA	NA
	0.3	NA	NA	NA	NA		NA	NA	AN	NA
lane,1,2-	0.1	AN	NA	NA	NA		NA	NA	NA	NA
	0.1	AN	NA	NA	NA		NA	NA	NA	NA
	NS	NA		NA	NA		NA	NA	NA	N.A.
Tetrachloroethene	1.4	NA		NA	NA	NA	NA	NA	NA	NA
	0.7	AN	NA	NA	NA		NA	NA	NA	NA A
Trimethylbenzene,1,2,4-	NS	NA		NA	NA		NA	NA	NA	NA
Noncarcinogenic PAHs (mg/kg)	mg/kg)									
Acenaphthene	50	0.37 U						1.1 J	0.45 U	0.39 U
lene	41	0.15 J		0.67 U	0.43 U		ر ا	1.2 J	0.45 UM	0.39 U
	50		1400				0.48	3.6	0.45 U	0.39 U
Benzo[g,h,i]perylene	50	-						2,5 J	0.45 U	0.39 U
lene	50					3000	0.76	17	0.45 U	0.066 J
	50	3 J		0.17 ل	3.0		0.36 J	1.9 J	0.45 UM	0.39 U
	NS				NA			NA	NA	Y A
ialene,2-	36.4	ا	810 J	J.	0.045 J		0.62	0.34 J	0.45 U	0.39 U
ene	5 J			2	0,054 J	5		U,54 JMI	0.40	0.046
	NS		NA		NA S		ZZ.	NA	NA Posto	NA Post
ımrene	20	0.67		0.68	0.22 J	nnca		5.6	0.058 J	0.048
Pyrene 50	50			_	0.17 J			20	0.05 J	0.11 J
8	, 55 ÷			- 1: (Ī	1		1 × 4 m i -	
ene	0.224	Control Control	1200					10	0,45 U	0.39 U
	0.061			D		_		8.1	0.45 U	0.39 U
thene	1.1	<u>-</u>			0.43 U	7	0.4 J	12 M	0.45 U	0.39 U
	NS				1	1000		NA	NA	¥Z
Benzolkifluoranthene	+.+	0.37 UJ	096 n	0.67 U	0.43 U	610 J	0.46 U	3.3 U	0.45 U	0.39 U
	0.4							9.9	0,45 U	0,068 J

The state of the s			SB-57	7 - 8		0.39 U	0.39 U	100	0.338		NA	0.39 U	0.39 U	0.39 U	(2) (2) (2) (2)	NA	NA	NA	NA	NA	NA	NA	A A	AN	NA AN	NA	NA	NA	NA	NA	NA	NA	AN	AZ	AN	NA	AN	NA	0.57 U
			SB-56	14-16 SD 56(14-16)	7/12/2004	0.45 U	0.45 U		0.180		ZA	0.45 UB	0.45 U	0.45 UM		NA	ΑN	NA	NA	NA	NA	A'A	A'A	NA	AN	NA	NA	NA	AN AN	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.65 U
oppose to sold the selection proper manages with the selection of the sele			SB/MW-55	10 - 12	7/12/2004		3,4 H		99.78		NA		3.3 U			NA				NA	amproversal de la company													NA					0.64 U
	estigation		SB-49	13.5 - 14.5			0.24 J		11,941		NA	0.24 J		0.46 U																							NA		0.66 U lo
***************************************	sults emedial Inve		SB-49	7 - 8	7/1/2004		300 J		44940		NA		2000 U			NA AZ				AN																	NA I		0.32 J
Table 5	Analytical Re- MGP Site - Re	Haverstraw, New York	SB-48	14 - 15	7/1/2004	0,43 U	0.43 U		0.801		NA	0.18 J	0.43 U	0.43 U		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	AN	NA	NA	NA	NA	0.64 U
Tat	Subsurface Soil Analytical Results d Maple Avenue Former MGP Site - Remedial Investigation	Haverstrav	SB-46	14 - 15	7/2/2004		0.67 U		2.702		NA			0.67 U		NA				NA																			o UJ
333444			SB-46	10 - 11		П	330 J		25850		NA			130.1																							NA		0.71 U
	Clove an		SB-45	27 - 28 SB 45/07 08)	7/15/2004				3,091		NA	0.37 U		0.37 U		NA	NA	NA	NA	NA	NA		NA		NA	NA				NA		NA							0.56 U
				OVIV		l I			SN		NS			6.2			SZ			0.16		SN	10			0			NS N	0.1		SN					0		1600 (a) 10
			Sample Location:	Leptin Interval in reet:	Date Collected:			Total PAHS (mg/kg)		Other SVOCs (mg/kg)		Bis(2-ethylhexyl)phthalate 50	Carbazole	Dibenzofuran	Metals (mg/Kg)		Antimony	Arsenic	Barlum	Berylllum	Cadmium	Calcium	Chromium	Cobalt	Copper	Iron	Lead	Magnesium	Manganese	Mercury	Nickel	Potassium	Selenium		Sodium	Thallum	ıdlum		Total Cyanide (mg/Kg) Cyanide, Total

			•	Table 5				
		מים מאסום	nsqnS	Subsurface Soil Analytical Results	lical Results	1		
		200	making walled	Haverstraw, New York	re • nemenam / York	iivesuganoii		en terminale en
Sample Location	_	SB-58	SB-58	SB-59	SB-59	SB/MW-60	SB/MW-60	TP05
Depth Interval in feet		6-8		15.5 - 16		8,9	13 - 14	
Sample ID	NYS	SB-58(8-9)	SB-58(16-18)	SB-59(15.5-16)	SB-59(18-19)	SB/MW-60(8-9)	SB/MW-60(13-14)	C&I
Dibenzía hlanthracene	c	400 11	C	12/2004	1/12/2004	7/13/2004 460 1	7/13/2004	10/18/1998 NA
Indeno[1,2,3-cd]ovrene	300	109	0.46 U	67.5		130.1	0.43 [1.]	AN
Total PAHS (morks)	2:2		2 2 2		186	2 22	90 01:0	10/4
Total PAHs	SN	11118	0.128	5930	0.329	8464	0.045	AN
Other SVOCs (malkal	2			2222	2=2:2		21	
Biphenyl,1,1-	NS	NA	NA	NA	NA	NA	NA	NA
Bis(2-ethylhexyl)ohthalate 50	50	400 11	0.15.1	NA	0.87.11	460 1 IB	0.43 [1]	4 2
Carbazole	NS	400 N	0.46 U	NA NA	0.43 []	460 U	0.43 [1.]	NA
Dibenzofilran	0 9	1 12	0.4611		0.40	460 13	0.45	VIV
Metals (ma/Kn)	10.6	2 12	0.40		0.430	0 00+	00 04:0	CN.
Aluminum	NS	NA	NA	NA	NA	NA	NA	16200
Antimony	SN	AA	NA	NA	NA		NA	Я
Arsenic	7.5	NA	NA	NA	NA		NA	P 6
Barlum	300		NA	NA	NA		NA	136
Beryllium	0.16	NA	NA	NA	NA	NA	NA	0.8 BJ
Cadmlum	-		WA		NA		NA	1,1 BJ
Calcium	NS		NA				NA	30900 J*
Chromium	10		NA		NA	NA	NA	25.3
Cobalt	30		NA				NA	15,3 BJ
Copper	25		NA				NA	31.1
Iron	2000 ·		NA				NA	31700 EJ
Lead	500		NA				NA	14.4 J
Magnesium	NS		NA				NA	7950
Manganese	NS		NA				NA	598 EJ
Mercury	0.1		NA				NA	U 60'0
Nickel	13		NA				NA	29.7
Potassium	NS		NA				NA	3290
Selenium	2		NA	NA		NA	NA	0.82 UJN
Silver	NS	NA	NA				NA	1.19 BJ
Sodium	NS		NA				NA	484 B
Thailium	NS		NA			NA	NA	0.7 U
Vanadium	150		NA			NA	NA	29.1
Zinc Total Cvanida /ma/Kn1	20	NA	NA	NA	NA	NA	NA	7.77
Cyanide, Total	1600 (a)	10.62 U	0.67 U	NA	0.66 U	0.073 B	0.63 U	120
The second secon			The state of the s	Language a series of the series		***************************************		over a second and a

NYS RSCO - New York State Recommended Soil Cleanup Objective from TAGM 4046; the standards against which soil data are compared

Bold value indicates a detected result

Gray shading indicates that the detected result exceeds the NYS RSCO

U - Analyte not detected at or above the reporting limit shown

UJ - Analyte not detected at or above the reporting limit shown; the reporting limit shown is estimated

B - Analyte detected in associated blank

* - Duplicate analysis outside control limits

W - Post digest spike recovery furnace outside 85-115% control limit, while sample absorbance less than 50% of spike absorbance

E - Exceeds calibration range

J - Estimated value

D - Dilution result

NA - Not analyzed

NS - No standard

ND - Not Detected; calculated sum of compounds is listed as ND because no individual compounds were detected in the group

Sample SB-59(15.5-16) is the only sample that was anlyzed by META Environmental using a modified method; therefore certain analytres were tested for in this sample that were not analyzed in any other samples.

"DUP" in the sample location or "XX" in the sample ID indicate that the sample is a field duplicate of the sample preceding it.

Nibroject/2007/0707485\01\5 - Reports\Final February 2008\Tables\Table 5.xls

	······································		Table	· 6				
, de		Grou		lytical Result	s			
	Clove an	d Maple Aven	ue Former M	GP Site - Ren	nedial Investi	gation		
			Haverstraw,			J		
								ļ
Site Location:	, ,,,	146 MAPLE	1	146 MAPLE	146 MAPLE		1	APTS
Sample Location:		MW11	MW11	MW11	MW-24	MW-24	MW-20D	MW-20D
Sample ID: Date Collected:	1	CMMW11-01	1	MW-11	MW-24	MW-24	MW-20	MW-20D
BTEX (ug/l)	Limits	2/2/1999	12/19/2001	8/2/2004	12/18/2001	8/2/2004	12/17/2001	8/4/2004
Benzene	1.0	10 U	110 U	110 U	10 U	10 U	lee .	4011
Ethylbenzene	5	10 U	10 U	10 U	10 U	10 U	15 11	10 U 10 U
Toluene	5	10 U	10 U	10 U	10 U	10 U	10	10 U
Xylene, Total	5	10 U	10 U	10 U	10 U	10 U	22	10 U
Total BTEX		ND	ND	ND	ND	ND		ND
Other VOCs (ug/l)							00	140
Acetone	NS	10 U	10 UB	NA	10 UB	NA	10 UJ	NA
Butanone,2- (MEK)	NS	10 U	10 UJ	NA	10 UJ	NA	10 U	NA
Chloroform	7	10 U		NA	10 U	NA	0.5 J	NA
Dichloropropene, trans-1,3	5	10 U	10 U	NA	10 U	NA	10 U	NA
Methyl-2-pentanone,4-	NS .	10 U		NA	10 UJ	NA	10 UJ	NA
Methylene chloride	5	10 U	10 U	NA	10 U	NA	10 U	NA
Styrene	5	10 U	10 U	NA	10 U	NA	3 J	NA
Tetrachloroethane,1,1,2,2-	5	10 U	10 U	NA	10 U	NA	10 U	NA
Trichloroethane,1,1,1-	5	10 U	10 U	NA	10 U	NA	10 U	NA
Trichloroethane,1,1,2-	1	10 U	10 U	NA	10 U	NA	10 U	NA
Noncarcinogenic PAHs (u							19 (5 (5) (5)	
Acenaphthene	20	10 U	10 U	11 U	10 U	10 U	18 J	10 U
Acenaphthylene	50	10 U	10 U	11 U	10 U	10 U	20 U	10 U
Anthracene	50 NS	10 U	10 U	11 U	10 U	10 U	20 U	10 U
Benzo[g,h,i]perylene Fluoranthene	50	10 U 10 U	10 U 10 U	11 U	10 U	10 U	20 U	10 U
Fluorene	50	10 U	10 U	11 U	10 U	10 U		10 U
Methylnaphthalene,2-	NS	1 J	10 U	11 U	10 U	10 U 10 U		10 U
Naphthalene		16	10 U	11 U	10 U		16 J 92	10 U
Phenanthrene	50	10 U	10 U	11 U	10 U		3 J	10 U 10 U
Pyrene	50	10 U	10 U	11 U	10 U	10 U		10 U
Carcinogenic PAHs (ug/f)						10 0	200	100
Benz[a]anthracene	0.002	10 U	10 U	11 U	10 U	10 U	20 U	10 U
Benzo[a]pyrene	0.002	10 U	10 U .	11 U	~~~~~			10 U
Benzo[b]fluoranthene	0.002	10 U	10 U	11 U				10 U
Benzo[k]fluoranthene	0.002	10 U	10 U	11 U				10 U
Chrysene	0.002	10 U	10 U	11 U				10 U
**************************************		10 U		11 U	10 U	10 U		10 U
Indeno[1,2,3-cd]pyrene	0.002	10 U	10 U	11 U	10 U			10 U
Total PAHs (ug/L)								
	NS	17	ND	ND	10	ND	213	10
Other SVOCs (ug/L)	<u></u>						a transfer of the	
		NA	10 U	NA				NA
Biphenyl,1,1-	1	NA 10.11	10 U	NA				NA
	5 NC	10 U	10 U	11 U				10 U
Dibenzofuran	NS NS	10 UJ 10 U	10 U		10 U			10 U
Diethyl phthalate		10 U	10 U 10 U					10 U
Dimethylphenol, 2,4-		10 U	10 UJ					10 U
Di-n-butyl phthalate	50	10 U	10 UJ					10 U
Methylphenol, 4-	1	10 U	10 UJ					10 U
N-Nitrosodiphenylamine	50	10 U	10 U					10 U
Phenol	1	10 U	10 U					10 U
						100	~UU [i U U

			Table	÷ 6				
		Grou		lytical Resul	ts			
	Clove an	d Maple Aven				gation		
			Haverstraw,			gunon		
Site Location: Sample Location: Sample ID: Date Collected:	Ambient GW	146 MAPLE MW11 CMMW11-01 2/2/1999		146 MAPLE MW11 MW-11 8/2/2004	146 MAPLE MW-24 MW-24 12/18/2001	146 MAPLE MW-24 MW-24 8/2/2004	APTS MW-20D MW-20 12/17/2001	APTS MW-20D MW-20D 8/4/2004
Dissolved Metals (ug/l)			, <u>L</u> . G <u>L</u> G G	0/2/2004	[12/16/2001	0/2/2004	12/11/2001	0/4/2.004
Aluminum	100	NA	Ina	Īna 💮	INA	NA	NA	INA .
Arsenic	25	NA	NA	NA	NA	NA	NA	NA
Barium	1000	NA	NA	NA	NA	NA	NA	NA
Beryllium		NA	NA	NA	NA	NA	NA	NA
Calcium	NS	NA	NA	NA	NA	NA	NA	NA
Chromium	50	NA	NA	NA	NA	NA	NA	NA
Cobalt	5	NA	NA	NA	NA	NA	NA	NA
Copper	200	NA	NA	NA	NA	NA	NA	NA
Iron	300	NA	NA	NA	NA	NA	NA	NA
Lead	25	NA	NA	NA	NA	NA	NA	NA
Magnesium	35000	NA	NA	NA	NA	NA	NA	NA
Manganese	300	NA	NA	NA	NA	NA	NA	NA
Mercury	0.7	NA	NA	NA	NA	NA	NA	NA
Nickel	100	NA	NA	NA	NA	NA	NA	NA
Potassium	NS	NA	NA	NA	NA	NA	NA	NA
Selenium	10	NA	NA	NA	NA	NA	NA	NA
Sodium	20000	NA	NA	NA		NA	NA	NA
Thallium	0.5	NA	NA	NA .		NA	NA	NA
Vanadium		NA	NA	NA	NA	NA	NA	NA
Zinc		NA	NA	NA	NA	NA	NA	NA
Total Metals (ug/l)							[147]	li du
Aluminum	100	110 BJ	NA	NA	NA	NA	NA	NA
Arsenic		1.2 U	NA	NA			NA	NA
Barium	1000	68 B	NA	NA		NA	NA	NA NA
Beryllium	3	0.1 U	NA	NA			NA	NA
Calcium	NS	116000	NA	NA		NA	NA	NA
Chromium	50	0.6 U	NA		NA	NA	NA	NA
Cobalt	5	1.4 B	NA	NA	NA	NA	NA	NA
Copper	200	2.7 UB	NA	NA	NA	NA	NA	NA
Iron	300	197	NA	NA	NA	NA	NA	NA
Lead	25	2.8 UBJ	NA	NA			NA	NA
Magnesium	35000	31400	NA	NA	NA		NA	NA
Manganese	300	566	NA	NA	NA		NA	NA
Mercury	0.7	0.2 U	NA	NA			NA	NA
Nickel		1.1 UB					NA	NA
Potassium		4120 JBE	NA				NA	NA
Selenium		1.6 U					NA	NA
Sodium	20000	22700 EJ					NA	NA
Thallium		1.1 U		NA			NA	NA
		1.2 U						NA
Zinc	2000	7.7 UBJ					NA	NA
Cyanides (ug/L)								
Cyanide, Total	200	NA	11.6	19.4	58.5	54.8	3 U	10 U
Cyanide, Weak							- ~	
Acid Dissociable	NS	NA	3.2 J	NA	5.5 J	NA	3 UJ	NA

			C	Table 6					
	Clove ar		Groundwate Avenue Forn		cal Results Site - Remed	lial Invest	igaiton		
	01010 41	то інаріс л		traw, New		nai myesi	igaitori		
]	
Site Location:	NY	APTS	APTS	APTS	APTS	APTS	APTS	APTS	APTS
Sample Location: Sample ID:		MW-20S MW-20S		MW-21 MW-21	MW-28D MW-28	t .	MW-28S MW-28S	MW-29D	MW-29D
Date Collected:		:	12/17/2001	ł	5			MW-29 12/18/2001	MW-29D 8/5/2004
BTEX (ug/l)		5 9 5 S	2 6 6 6 6	0.0200	12/10/2001	0/3/2.004	0/3/2004	132/10/2001	0/3/2004
Benzene	1.0	64	10 U	10 U	0.4 J	10 U	51	10 U	10 U
Ethylbenzene	5	140	10 U	10 U	0.5 J	10 U	65	10 U	10 U
Toluene	5	1 J	10 U	10 U	0.2 J	10 U	3 J	10 U	10 U
Xylene, Total	5	50	10 U	10 U	0.4 J	10 ป	94	10 U	10 U
Total BTEX	NS	255	ND	ND	1.5	ND	213	ND	ND
Other VOCs (ug/l) Acetone	NS	NA	10 U	NA	10 UJ	NA	NA	10 U	INIA
Butanone,2- (MEK)	NS	NA	10 U	NA	10 U	NA NA	NA	10 U	NA NA
Chloroform	7	NA	10 U	NA	10 U	NA NA	NA	0.3 J	NA
Dichloropropene, trans-1,3	5	NA	10 U	NA	10 U	NA	NA	10 U	NA NA
Methyl-2-pentanone,4-	NS	NA	10 UJ	NA	10 UJ	NA	NA	10 UJ	NA
Methylene chloride	5	NA	10 U	NA	10 U	NA	NA	10 U	NA
Styrene	5	NA	10 U	NA	10 U	NA	NA	10 U	NA
Tetrachloroethane,1,1,2,2-	5	NA	10 U	NA	10 U	NA	NA	10 U	NA
Trichloroethane,1,1,1-	5	NA	10 U	NA	10 U	NA	NA	10 U	NA
Trichloroethane,1,1,2-	i i	NA	10 U	NA	10 U	NA	NA	10 U	NA
Noncarcinogenic PAHs (ug Acenaphthene	20 20	330 J	10 U	10 U	8 J	2 J	65	14011	14411
Acenaphthylene	50	520 U	10 U	10 U	37	21	40 U	10 U 10 U	11 U 11 U
Anthracene	50	520 U	10 U	10 U	10 U	10 U	6 J	10 U	11 U
Benzo[g,h,i]perylene	NS	520 U	10 UJ	10 U	10 UJ	10 U	40 U	10 UJ	11 U
Fluoranthene	50	520 U	10 U	10 U	10 U	10 U	40 U	10 U	11 U
Fluorene	50	110 J	10 U	10 U	1 J	10 U	38 J	10 U	11 U
Methylnaphthalene,2-	NS	590	10 U	10 U	3 J	10 U	130	10 U	11 U
Naphthalene	10	2700	10 U	10 U	21	10 U	280	10 U	11 U
Phenanthrene	50	110 J	10 U	10 U	7 J	10 U	32 J	10 U	11 U
Pyrene Carcinogenic PAHs (ug/l)	50	520 U	10 U	10 U	10 U	10 U	40 U	10 U	11 U
	0.002	520 U	10 U	10 U	10 U	10 U	40 U	10 U	144.01
	0.002	520 U	10 U	10 U	10 U	10 U	40 U	10 U	11 U 11 U
Benzo[b]fluoranthene	0.002	520 U	10 U	10 U	10 U	10 U	40 U	10 U	11 U
Benzo(k)fluoranthene	0.002	520 U	10 U	10 U	10 U	10 U	40 U	10 U	11 U
Chrysene	0.002	520 U	10 UJ	10 U	10 UJ	10 U	40 U	10 UJ	11 U
	NS	520 U	10 U	10 U		10 U	40 U	10 U	11 U
	0.002	520 U	10 UJ	10 U	10 UJ	10 U	40 U	10 UJ	11 U
Total PAHs (ug/L)				i i i i i i i i i i i i i i i i i i i					
Total PAHs	NS	3840	10	ND	107	23	551	60	ND
Other SVOCs (ug/L) Benzaldehyde	NS	NA	HALL	INIA	11011	IN IA	NIA	40.11	11.0
Biphenyl,1,1-	NS	NA NA	10 U 10 U	NA NA		NA NA	NA NA		NA NA
	5	520 U	10 U	10 U	10 U	10 U	1NA 40 U	10 U	INA 11 U
	NS	520 U	10 U	10 U	1 J	10 U		10 U	11 U
	NS	520 U	10 U	10 U	2 J			10 U	11 U
Diethyl phthalate	50	520 U	10 U	10 U	10 U	10 U		10 U	11 U
Dimethylphenol, 2,4-	1	520 U	10 U	10 U	10 U	10 UJ	40 UJ	10 U	11 UJ
Di-n-butyl phthalate	50	520 U	10 U	10 U	10 U	10 U		10 U	11 U
Methylphenol, 4-	1	520 U	10 U	10 U	10 U	10 U		10 U	11 U
N-Nitrosodiphenylamine	50	520 U 520 U	10 U	10 U	10 U	10 U		10 U	11 U
Phenol	<u> </u>	020 U	10 U	10 U	10 U	10 U	40 U	10 U	11 U

				Table 6					
			Groundwate						
	Clove ar	nd Maple A			Site - Remed	dial Invest	igaiton		
			Havers	traw, New	York	y	· · · · · · · · · · · · · · · · · · ·		
Cita t a sati	.	ADTO	1070	. 5750					
Site Location:	NY AhiA	APTS	APTS	APTS	APTS	APTS	APTS	APTS	APTS
Sample Location: Sample ID:	Ambient GW	MW-20S	MW-21 MW-21	MW-21	MW-28D	MW-28D	MW-28S	MW-29D	MW-29D
Date Collected:		MW-20S		MW-21	MW-28		MW-28S	MW-29	MW-29D
Dissolved Metals (ug/l)	Limis	8/4/2004	12/17/2001	8/4/2004	12/18/2001	8/5/2004	8/5/2004	12/18/2001	8/5/2004
Aluminum	100	NA	NA	NA	NA	INA	NA	1.1.0	IN IN
Arsenic	25	NA	NA	NA	NA	NA	NA NA	NA NA	NA
Barium	1000	NA	NA	NA NA	NA	NA	NA NA	NA NA	NA NA
Beryllium	3	NA	NA	NA	NA:	NA	NA	NA	NA NA
Calcium	NS	NA	NA	NA	NA	NA	NA	NA NA	NA
Chromium	50	NA	NA	NA	NA	NA	NA ·	NA NA	NA NA
Cobalt	5	NA	NA	NA	NA	NA	NA	NA	NA
Copper	200	NA	NA	NA	NA	NA	NA	NA	NA
Iron	300	NA	NA	NA	NA	NA NA	NA	NA NA	NA NA
Lead	25	NA	NA	NA NA	NA	NA	NA	NA	NA
Magnesium	35000	NA	NA	NA	NA	NA	NA	NA	NA
Manganese	300	NA .	NA	NA	NA	NA	NA	NA	NA
Mercury	0.7	NA	NA	NA	NA	NA	NA	NA	NA
Nickel	100	NA	NA	NA	NA	NA	NA	NA	NA
Potassium	NS	NA	NA	NA	NA	NA	NA	NA	NA
Selenium	10	NA	NA	NA	NA	NA	NA	NA	NA
Sodium	20000	NA	NA	NA	NA	NA	NA	NA	NA
Thallium	0.5	NA	NA	NA	NA	NA	NA	NA	NA
Vanadium	14	NA	NA	NA	NA	NA	NA	NA	NA
Zinc	2000	NA	NA	NA	NA	NA	NA	NA	NA
Total Metals (ug/l)							30 50 50 50		
Aluminum	100	NA	NA	NA	NA	NA	NA	NA	NA
Arsenic	25	NA	NA	NA	NA	NA	NA	NA	NA
Barium	1000	NA	NA	NA	NA	NA	NA	NA	NA
Beryllium	3	NA	NA	NA	NA	NA	NA	NA	NA
Calcium	NS	NA	NA	NA	NA	NA	NA	NA	NA
Chromium	50	NA	NA	NA	NA	NA	NA	NA	NA
Cobalt	5	NA	NA	NA	NA	NA	NA	NA	NA
Copper	200	NA	NA	NA	NA	NA	NA	NA	NA
Iron	300	NA	NA	NA	NA	NA	NA	NA	NA
Lead	25	NA	NA	NA	NA	NA	NA	NA	NA
Magnesium	35000	NA	NA	NA	NA	NA	NA	NA	NA
Manganese	300	NA	NA	NA	NA	NA	NA	NA	NA
Mercury	0.7		NA	NA					NA
Nickel	100	NA	NA	NA	NA			NA	NA
Potassium	NS	NA	NA	NA	NA	NA		NA	NA
Selenium	10	NA	NA	NA	NA		NA	NA	NA
Sodium	20000	NA	NA	NA	NA	NA	NA	NA	NA
Thallium	0.5	NA	NA	NA	NA	NA	NA	NA	NA
Vanadium	14	NA	NA	NA	NA	NA		NA	NA
Zinc	2000	NA	NA	NA	NA	NA	NA	NA	NA
Cyanides (ug/L)	000	0.4.4	0.11					S. Company of the second	
Cyanide, Total	200	2.4 J	3 U	10 UJ	3 U	10 UJ	0.73 UJ	3 U	10 UJ
Cyanide, Weak Acid Dissociable	NS	NA	3 UJ	NA	3 UJ	NA	NA	3 UJ	NA

			Tat	ole 6	**************************************			
		Grour	ndwater A	nalytical Res	ults			
	Clove an	d Maple Avenu	e Former	MGP Site - F	lemedial Inve	estigation		
		<u> </u>	laverstrav	, New York				
Cito I anation		4070	1070					
Site Location: Sample Location:		APTS	APTS	APTS	APTS	APTS	APTS	APTS
Sample Location:		MW-29S MW-29S	MW-31D	MW-31D	MW-31S	MW-32I	MW-32S	MW-55
Date Collected:		8/5/2004	MW-31D 8/5/2004	MW-XX 8/5/2004	MW-31S	MW-32I	MW-32S	MW-55
BTEX (ug/l)	CATA CILLIES	8/3/2004	0/3/2004	0/3/2004	8/4/2004	8/4/2004	8/4/2004	8/4/2004
Benzene	1.0	240	10 U	10 U	0.9 J	43	20	110 U
Ethylbenzene	5	210	10 U	10 U	30	2 J	120	10 U
Toluene	5	4 J	10 U	10 U	4 J	10 U	6 J	10 U
Xylene, Total	5	160	10 U	10 U	47	4 J	110	10 U
Total BTEX	NS	614	ND	ND	81.9	10	256	ND
Other VOCs (ug/l)							6.46 (6.65)	
Acetone	NS	NA	NA	NA	NA	NA	NA	NA
Butanone,2- (MEK)	NS	NA	NA	NA	NA	NA	NA	NA
Chloroform	7	NA	NA	NA	NA	NA	NA	NA
Dichloropropene, trans-1,3	5	NA	NA	NA	NA	NA	NA	NA
Methyl-2-pentanone,4-	NS	NA	NA	NA	NA	NA	NA	NA
Methylene chloride	5	NA	NA	NA	NA	NA	NA	NA
Styrene	5	NA	NA	NA	NA	NA	NA .	NA
Tetrachloroethane,1,1,2,2-	5	NA	NA	NA	NA	NA	NA	NA
Trichloroethane,1,1,1-	5	NA	NA	NA	NA	NA	NA	NA
Trichloroethane, 1, 1, 2-	1	NA	NA	NA	NA	NA	NA	NA
Noncarcinogenic PAHs (u								
Acenaphthene		250	11 U	11 U	2 J	31	60	2 J
Acenaphthylene	50	220 U	11 U	11 U	11 UJ	100	3 J	10 U
Anthracene	50 NS	220 U	11 U	11 U	11 UJ	20 U	6 J	10 U
Benzo[g,h,i]perylene Fluoranthene	50	220 U 220 U	11 U 11 U	11 U	11 UJ	20 U	10 U	10 U
Fluorene		64 J	11 U	11 U 11 U	11 UJ	20 U	5 J	10 U
Methylnaphthalene,2-	NS	210 J	11 U	11 U	11 UJ 8 J	20 U	35	10 U
Naphthalene		1300	11 U	11 U	17 J	3 J 19 J	13 27	10 U
Phenanthrene		74 J	11 U	11 U	2 J	19 J	<i>∠≀</i> 35	10 U
Pyrene	50	220 U	11 U	11 U	11 UJ	20 U	9 J	1 J
Carcinogenic PAHs (ug/l)			7.0	110	11 03	200		1 J
	0.002	220 U	11 U	11 U	11 UJ	20 U	10 U	10 U
Benzo[a]pyrene		220 U	11 U	11 U	11 UJ	20 U	10 U	10 U
Benzo[b]fluoranthene				11 U	11 UJ	20 U	10 U	10 U
Benzo[k]fluoranthene	0.002		11 U	11 U	11 UJ	20 U	10 U	10 U
Chrysene	0.002			11 U	11 UJ	20 U	10 U	10 U
	NS -	220 U	11 U	11 U	11 UJ	20 U	10 U	10 U
	0.002			11 U	11 UJ	20 U	10 U	10 U
Total PAHs (ug/L)								
	NS	1898	ND	ND	29	172	193	4
Other SVOCs (ug/L)				S 55 00 00 00				
						NA	NA	NA
Biphenyl,1,1-					NA		NA	NA
					11 J	20 U	10 U	10 U
Carbazole					11 UJ	3 J	10 U	10 U
Dibenzofuran					11 UJ	4 J	4 J	10 U
Diethyl phthalate	50				11 UJ	20 U	10 U	10 U
Dimethylphenol, 2,4-				11 UJ	11 UJ	20 UJ	1 J	10 U
Di-n-butyl phthalate	50			11 U	11 UJ	20 U	10 U	10 U
Methylphenol, 4-					2J	20 U	10 U	10 U
N-Nitrosodiphenylamine Phenol	50 1	220 U 220 U			11 UJ	20 U	10 U	10 U
C FIGURE	'	دد٥٠٠	110	11 U	11 UJ	20 U	10 U	10 U

			Tak	ole 6	·			
		Grou		nalytical Res	sults			
	Clove an	d Maple Avenu	e Former	MGP Site - F	Remedial Inv	estigation		
				v, New York		our garron.		
				ľ	I	T	T	1
Site Location:	;	APTS	APTS	APTS	APTS	APTS	APTS	APTS
Sample Location:	NY	MW-29S	MW-31D	MW-31D	MW-31S	MW-32I	MW-32S	MW-55
Sample ID:	Ambient	MW-29S	MW-31D	MW-XX	MW-31S	MW-32I	MW-32S	MW-55
Date Collected:	GW Limits	8/5/2004	8/5/2004	8/5/2004	8/4/2004	8/4/2004	8/4/2004	8/4/2004
Dissolved Metals (ug/l)					Tables Carrier (a)			20084 (2004) - VII 2004 (2004) 20084 (2004) - VII 2004 (2004)
Aluminum		NA	NA	NA	NA	NA	NA	NA
Arsenic	25	NA	NA	NA	NA	NA	NA	NA
Barium	1000	NA	NA	NA	NA	NA	NA	NA
Beryllium	3	NA	NA	NA	NA	NA	NA	NA ·
Calcium	NS	NA	NA	NA	NA	NA	NA	NA
Chromium	50	NA	NA	NA	NA	NA	NA	NA
Cobalt	5	NA	NA	NA	NA:	NA	NA	NA
Copper	200	NA	NA	NA	NA	NA	NA	NA
Iron	300	NA	NA	NA	NA	NA	NA	NA
Lead	25	NA	NA	NA	NA	NA	NA	NA
Magnesium	35000	NA	NA	NA	NA	NA	NA	NA
Manganese	300	NA	NA	NA	NA	NA	NA	NA
Mercury	0.7	NA	NA	NA	NA	NA	NA	NA
Nickel	100	NA	NA	NA	NA	NA	NA	NA
Potassium	NS	NA	NA	NA	NA	NA	NA	NA
Selenium	10	NA	NA	NA	NA	NA	NA	NA
Sodium	20000	NA	NA	NA	NA	NA	NA	NA
Thallium	0.5	NA	NA	NA	NA	NA	NA	NA
Vanadium	14	NA	NA	NA	NA	NA	NA	NA
Zinc	2000	NA	NA	NA	NA	NA	NA	NA
Total Metals (ug/l)	Lina		 		_			
Aluminum Arsenic	100	NA	NA	NA	NA	NA	NA	NA
Barium	25		NA	NA	NA	NA	NA	NA
		NA	NA	NA	NA	NA	NA	NA
Beryllium Calcium	3 NS	NA	NA	NA	NA	NA	NA	NA
Chromium	50	NA NA	NA	NA	NA	NA	NA	NA
Cobalt		NA NA	NA NA	NA	NA	NA	NA	NA
Copper	ž	NA NA	4	NA	NA	NA	NA	NA
Iron	300	NA NA	NA NA	NA	NA	NA	NA	NA
Lead	25	NA NA	NA NA	NA NA	NA	NA	NA	NA
Magnesium	35000	NA	NA NA	NA NA	NA	NA	NA	NA
Manganese		NA NA			NA	NA	NA	NA
· · · · · · · · · · · · · · · · · · ·		····			NA	NA	NA	NA
Nickel					NA NA	NA	NA	NA
Potassium		NA .		NA NA		NA	NA	NA
Selenium		NA		INA INA	NA NA	NA	NA	NA
Sodium					NA NA	NA NA	NA	NA
Thallium		NA			NA NA	NA NA	NA	NA
Vanadium					NA	NA	NA	NA
Zinc		NA NA		NA	NA	NA	NA	NA
Cyanides (ug/L)		, , , ,	J. •/\	IVA	I AV	liva]NA	NA
Cyanide, Total	200	5.7 J	10 UJ	10 UJ	1.5 J	10 UJ	10 UJ	001
Cyanide, Weak				. 7 00		110 03	10 00	2.3 J
Acid Dissociable	NS	NA	NA	NA	NA	NA	NA	NA

		Table 6				
		Groundwater Analytic	al Results			
Clo	ove and Ma	ple Avenue Former MGP S	Site - Remedi	ial Investigat	ion	
		Haverstraw, New		www.oongur		
Site Location:	1	APTS	C&M	C&M	C&M	C&M
Sample Location:	l .	MW-60	MW01	MW01	MW01	MW01
Sample ID: Date Collected:		MW-60	MW1	MW1-F	CMMW01-01	MW-01-CM
BTEX (ug/l)	IGW LIIIIIS	8/4/2004	6/3/1997	6/3/1997	2/1/1999	12/19/2001
Benzene	1.0	10 U	110 U	Īna	Ī10 U	HOLL
Ethylbenzene	5	10 U	10 U	NA	10 U	10 U 10 U
Toluene	5	10 U	10 U	NA	10 U	10 U
Xylene, Total	5	10 U	10 U	NA	10 U	10 U
Total BTEX	NS	ND	ND	NA	ND	ND
Other VOCs (ug/l)				Section Street, 19	1	42 (1) 10 10 10
Acetone	NS	NA	10 U	NA	110 U	10 UB
Butanone,2- (MEK)	NS	NA	10 U	NA	10 U	10 UJ
Chloroform	7	NA	10 U	NA	10 U	10 U
Dichloropropene, trans-1,3	5	NA	10 U	NA	10 U	10 U
Methyl-2-pentanone,4-	NS	NA	10 U	NA	10 U	10 UJ
Methylene chloride	5	NA	10 U	NA	10 U	10 U
Styrene	5	NA	10 U	NA	10 U	10 U
	5	NA	10 U	NA	10 U	10 U
	5	NA	10 U	NA	10 U	10 U
Trichloroethane,1,1,2- Noncarcinogenic PAHs (up	1	NA	10 U	NA	10 U	10 U
Acenaphthene	20	10 J	In II	la i a		
Acenaphthylene	50	10 U	9 U	NA .	10 U	10 U
Anthracene	50	2 J	9 U	NA NA	10 U	10 U
Benzo[g,h,i]perylene	NS	10 U	9 U	NA	10 U	10 U 10 U
Fluoranthene	50	2 J	9 U	NA	10 U	10 U
Fluorene	50	5 J	90	NA	10 U	10 U
Methylnaphthalene,2-	NS	5 J	NA	NA	10 U	10 U
Naphthalene	10	6 J	9 U	NA	10 U	10 U
Phenanthrene	50	12	9 U	NA	10 U	10 U
Pyrene	50	3 J	9 U	NA	10 U	10 U
Carcinogenic PAHs (ug/l)	9888				000	6
Benz[a]anthracene	0.002	10 U	9 U	NA	10 U	10 U
Benzo[a]pyrene	0.002	10 U		NA		10 U
Benzo[b]fluoranthene	0.002	10 U	9 U	NA		10 U
Benzo[k]fluoranthene	0.002	10 U	9 U	NA	10 U	10 U
Chrysene	0.002	10 U		NA		10 U
	NS 0.002	10 U 10 U		NA		10 U
Total PAHs (ug/L)	0.002		9 U	NA	10 U	10 U
	NS	45	ND	NA	ND I	NO
Other SVOCs (ug/L)	59 75 225 20 2		IND	INA	ND	ND
	NS	NA	NA	NA	NA	10 U
		NA		NA		10 U
	5	10 U		NA		10 U
Carbazole	NS	10 U		NA		10 U
	NS	10 U		NA	***************************************	10 U
	50	10 U		NA		10 U
Dimethylphenol, 2,4-	1	10 U		NA		10 UJ
	50	10 U	NA	NA		10 U
Methylphenol, 4-	1	10 U		NA		10 UJ
	50	10 U		NA		10 U
Phenol	1	10 U	NA	NA	10 U	10 U

Cle	ove and Ma	Table 6 Groundwater Analytic ple Avenue Former MGP 9	Site - Remed	ial Investigat	ion	
	·	Haverstraw, New	York			
Site Location: Sample Location: Sample ID: Date Collected:	NY Ambient	APTS MW-60 MW-60 8/4/2004	C&M MW01 MW1 6/3/1997	C&M MW01 MW1-F 6/3/1997	C&M MW01 CMMW01-01 2/1/1999	C&M MW01 MW-01-CM 12/19/2001
Dissolved Metals (ug/l)				0.01.007	E #1000	12)13/2001
Aluminum	100	NA	ĪNA	20.1 U	NA	NA
Arsenic	25	NA	NA	5.1 U	NA	NA
Barium	1000	NA	NA	204	NA	NA
Beryllium	3	NA	NA	0.98 U	NA	NA
Calcium	NS	NA	NA	52600	NA NA	
Chromium	50	NA	NA NA	1.1 U	NA	NA
Cobalt	5	NA	NA			NA
Copper	200	NA .	NA NA	1.3 U	NA	NA
Iron	300	NA		1.8 U	NA	NA
Lead	25	NA NA	NA	25 U	NA	NA
Magnesium			NA	2.1 U	NA	NA
	35000	NA	NA	15400	NA	NA
Manganese	300	NA	NA	18.4	NA	NA
Mercury	0.7	NA	NA	0.09 B	NA	NA
Nickel	100	NA	NA	1.8 U	NA	NA .
Potassium	NS	NA	NA	3110 B	NA	NA
Selenium	10	NA	NA	3.7 U	NA	NA
Sodium	20000	NA	NA	82700	NA	NA
Thallium	0.5	NA	NA	5.2 U	NA	NA
Vanadium	14	NA	NA	0.7 U	NA	NA
Zinc	2000	NA	NA	4.2 B	NA	NA
Total Metals (ug/l)						
Aluminum	100	NA	1860	NA		NA
Arsenic		NA	5.1 U	NA		NA
Barium	1000	NA	231	NA		NA
Beryllium		NA	0.98 U	NA		NA
Calcium		NA	52400	NA		NA
Chromium		NA	2.3 B	NA		NA NA
Cobalt		NA	2 B	NA		
Copper		NA	4.3 B	NA NA		NA NA
Iron		NA	3080 N *	NA		NA
Lead		NA	3.2		·····	NA
Magnesium		NA		NA		NA
Manganese		NA NA	15900	NA		NA
Mercury						NA
Nickel		NA				NA
***		NA	3.6 B			NA
Potassium		NA	3610 B		2530 JBE	NA
Selenium		NA	3.7 U			NA
Sodium		NA				NA
Thallium		NA		NA	1.1 UJ	NA
Vanadium		NA				NA
Zinc	2000	NA	10.9 B	NA		NA
Cyanides (ug/L)						
	200	10 UJ	NA	NA I	NA	3 U
Cyanide, Weak				·	······································	
Acid Dissociable	NS	NA	NA	NA	NA	3UJ

			Table 6			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
		Gro	undwater Analytical F	Results			
	Clove and		nue Former MGP Site		nvestigation		
		•	Haverstraw, New Yo		3		
					ł		
Site Location:		C&M	C&M	C&M	C&M	C&M	C&M
Sample Location	•	MW01	MW02	MW02	MW02	MW02	MW03
Sample ID:	i .	MW-01	MW2	MW2-F	CMMW02-01	MW-02	MW3
Date Collected:	GW Limits	8/3/2004	6/3/1997	6/3/1997	2/1/1999	8/4/2004	6/3/1997
BTEX (ug/l)	T. a	Lau			produces and		a foundation in
Benzene	1.0	10 U	5700 D	NA	18	650	2200 D
Ethylbenzene Toluene	5	10 U	680	NA	34	140	700
Xylene, Total	5	10 U	490 1000	NA	18	120	2800 D
Total BTEX	NS NS	ND	Control of the Contro	NA	59	430	2800 D
Other VOCs (ug/l)	1149	IND	7870	NA	129	1340	8500
	NC	Inia	140011	Ta Co	Ta	r	
Acetone Butanone,2- (MEK)	NS NS	NA NA	100 U	NA	18	NA	200
Chloroform	7		100 U	NA	10 U	NA	22 J
Dichloropropene, trans-1,3	5	NA NA	100 U	NA	10 U	NA	40 U
Methyl-2-pentanone,4-	NS	NA NA	100 U	NA	10 U	NA	40 U
Methylene chloride	5	NA NA	100 U	NA	10 U	NA	84
Styrene	5	NA NA	100 U	NA	10 U	NA	40 U
Tetrachloroethane,1,1,2,2-	5	NA NA		NA	10 U	NA	1000 D
Trichloroethane,1,1,1-	5	NA	100 U 100 U	NA	10 U	NA	40 U
Trichloroethane,1,1,1-	1	NA	100 U	NA NA	10 U	NA	40 U
Noncarcinogenic PAHs (u	-311	IIVA	100.0	INA	10 U	NA	40 U
Acenaphthene	20	10 U	39	INA	200 0 1	la ann	Aroo II
Acenaphthylene	50	10 U	290 J D	INA NA	320 DJ 1200 D	1100	590 U
Anthracene	50	10 U	13	NA NA	920 D	420 J 540 J	320 J
Benzo[g,h,i]perylene	NS	10 U	12 U	NA	24	the training of the party of the property of the party of	590 U
Fluoranthene	50	10 U	7 J	NA NA	1100 D	63 J 570 J	590 U
Fluorene	50	10 U	52	NA	1100 D	890	590 U
Methylnaphthalene,2-	NS	10 U	NA S	NA	1600 D	Carle of National Association of the Control of the	65 J
Naphthalene	10	10 U	3400 D	NA	3300 D	2600 4400	NA
Phenanthrene	50	10 U	60	NA	3400 D	2000	10000 D
Pyrene	50	10 U	9 J	NA	1600 D	800	590 U
Carcinogenic PAHs (ug/l)			100	INA	1000 D	loun	loan n
Benz[a]anthracene	0.002	10 U	2J	NA	430 DJ	240 J	590 U
Benzo[a]pyrene	0.002	10 U	2.j	NA	320 DJ	240 J 170 J	590 U
Benzo[b]fluoranthene	0.002	10 U	1J	NA	240 DJ	190 J	590 U
Benzo[k]fluoranthene	0.002	10 U	12 U	NA	240 03	580 U	590 U
Chrysene		10 U	2 J	NA	TO A COMPANY OF THE PROPERTY O	210 J	590 U
	NS	10 U	12 U	NA	9 J	580 U	590 U
Indeno[1,2,3-cd]pyrene	0.002	10 U	12 U	NA	29	580 U	590 U
Total PAHs (ug/L)				1.00	14	300 G	loan O
Total PAHs	NS	ND	3877	NA	15996	14193	10456
Other SVOCs (ug/L)		110	10071	INA	13990	14133	10436
	NS	NA	NA .	NA	NA	NA	NA
	NS	NA	NA .	NA ·	1	NA	NA
Bis(2-ethylhexyl)phthalate	5	10 U	NA .	NA	28	580 U	NA NA
Carbazole	NS NS	10 U	NA	NA		580 U	NA NA
Dibenzofuran	NS	10 U	NA NA	NA		120 J	NA NA
	50	10 U	NA	NA		580 U	NA
Dimethylphenol, 2,4-	1	10 U	NA	NA		580 UJ	NA
	50	10 U	NA	NA		580 U	NA NA
Methylphenol, 4-	1	10 U	NA	NA		580 U	NA NA
	50	10 U	NA	NA	<u> </u>	580 U	NA
Phenol		10 U	NA .	NA NA		120 J	NA

		*******************************	Table 6	······································			
		Gro	undwater Analytical F	Results			
	Clove and		nue Former MGP Site		vestigation		
		•	Haverstraw, New Yo		3		
Site Location: Sample Location: Sample ID:	NY Ambient	C&M MW01 MW-01	C&M MW02 MW2	C&M MW02 MW2-F	C&M MW02 CMMW02-01	C&M MW02 MW-02	C&M MW03 MW3
Date Collected:	GW Limits	8/3/2004	6/3/1997	6/3/1997	2/1/1999	8/4/2004	6/3/1997
Dissolved Metals (ug/l)			200				
Aluminum	100	NA	NA	869	NA	NA	NA
	25	NA	NA	5.1 U	NA	NA	NA
Barium	1000	NA	NA	197 B	NA	NA	NA
Beryllium	3	NA	NA	0.98 U	NA	NA	NA
Calcium	NS	NA	NA	135000	NA	NA	NA
Chromium	50	NA	NA	1.1 U	NA	NA	NA
Cobalt	5	NA	NA	2.7 B	NA	NA	NA
Copper	200	NA	NA	1.9 B	NA	NA	NA
iron .	300	NA	NA	1250 N *	NA	NA	NA
Lead	25	NA	NA .	2.1 U	NA	NA	NA
Magnesium	35000	NA	NA	42500	NA	NA	NA
Manganese	300	NA	NA	2940	NA	NA	NA
Mercury	0.7	NA	NA	0.065 B	NA	NA	NA
Nickel	100	NA	NA	3.9 B	NA	NA	NA
Potassium	NS	NA	NA	2570 B	NA	NA	NA
Selenium	10	NA	NA	3.7 U	NA	NA	NA
Sodium	20000	NA	NA	13200	NA	NA	NA
	0.5	NA	NA	5.2 U	NA	NA	NA
Vanadium	14	NA	NA	2.3 B	NA	NA	NA
Zinc	2000	NA	NA	7.7 B	NA	NA	NA
Total Metals (ug/l)		,					
Aluminum	100	NA	3150	NA	23600	NA	1180
Arsenic	25	NA	5.1 U	NA	15 U	NA	5.1 U
Barium	1000	NA	216	NA	213	NA	91.1 B
Beryllium	3	NA	0.98 U	NA	1 UB	NA	0.98 U
Calcium	NS	NA	133000	NA	22700 J	NA	40100
Chromium	50	NA	4 B	NA	30.4	NA	1.9 B
Cobalt	5	NA	4.6 B	NA	15.6 B	NA	3.6 B
Copper	200	NA	5.9 B	NA	59.7 U	NA	4.4 B
Iron	300	NA	4680 N *	NA	30800	NA	2290 N *
·	25	NA	3.9	NA	64.6	NA	2.1 U
Magnesium	35000	NA	42600	NA	12400	NA	10000
Manganese	300	NA	2900	NA	731	NA	4310
		NA	0.081 B	NA	0.2 U	NA	0.09 B
Nickel	100	NA	7.6 B	NA	37 B	NA	3.4 B
	NS	NA	3170 B	NA	4950 JBE	NA	2150 B
Selenium	10	NA	3.7 U	NA	8 UW	NA	3.7 U
Sodium		NA	12800	NA	14300 J	NA	17100
	0.5	NA	5.2 U	NA		NA	5.2 U
Vanadium	14	NA	5.9 B	NA	38.5 B	NA	2.2 B
	2000	NA	14.8 B	NA	259	NA	7.7 B
Cyanides (ug/L)						- 33 025 40 355 0	
	200	10 U	NA	NA	NA	40.8 J	NA
Cyanide, Weak Acid Dissociable	NS	NIA	NIΛ	h! A	N I A	N I A	
AUG DISSUCIABLE	CVI	NA	NA	NA	NA	NA	NA

	Clove and	Gro I Maple Aver	Table 6 undwater Analytical R nue Former MGP Site Haverstraw, New Yor	- Remedial In	vestigation		
Site Location: Sample Location: Sample ID: Date Collected:	NY Ambient	C&M MW03 MW3-F 6/3/1997	C&M MW03 CMMW03-01 2/2/1999	C&M MW03 MW-03-CM 12/19/2001	C&M MW03 MW-03 8/3/2004	C&M MW04 CMMW04-01 2/3/1999	C&M MW04 MW-04 12/19/2001
BTEX (ug/l)	and the same control			5. 500 (0.00)	5 5 5 5 5		
Benzene	1.0	NA	1300 D	1800	1300	320 D	120
Ethylbenzene	5	NA	360 D	780 J	540	65	37
Toluene	5	NA	930 D	1600	1300	190	76
Xylene, Total	5	NA	1500 D	2200 J	1500	430	300
Total BTEX.	NS	NA	4090	6380	4640	1005	533
Other VOCs (ug/l)							
Acetone	NS	NA ·	9 J	100 U	NA	10 U	10 UB
Butanone,2- (MEK)	NS	NA	10 U	100 U	NA	10 U	10 UJ
Chloroform	7	NA	10 U	100 U	NA	10 U	10 U
Dichloropropene, trans-1,3	5	NA	10 U	31 J	NA	10 U	10 U
Methyl-2-pentanone,4-	NS	NA	10 U	100 U	NA	10 U	10 UJ
Methylene chloride	5	NA	2 J	100 U	NA	10 U	10 U
Styrene	5	NA	520 D	730 J	NA	160	65
Tetrachloroethane, 1, 1, 2, 2-	5	NA	10 U	100 U	NA	10 U	10 U
Trichloroethane,1,1,1-	5	NA	10 U	100 U	NA	10 U	10 U
Trichloroethane,1,1,2-	1	NA	10 U	38 J	NA	10 U	10 U
Noncarcinogenic PAHs (u	g/I)						
Acenaphthene	20	NA	8 J	2000 U	1000 U	21	400 U
Acenaphthylene	50	NA	71	270 J	150 J	290 DJ	400 U
Anthracene	50	NA	4 J	2000 U	1000 U	16	400 U
Benzo[g,h,i]perylene	NS	NA	10 U	2000 U	1000 U	10 U	400 U
Fluoranthene	50	NA	1 J	2000 U	1000 U	6 J	400 U
Fluorene	50	NA	19	2000 U	1000 U	69	400 U
Methylnaphthalene,2-	NS	NA	210 DJ	930 J	590 J	360 DJ	62 J
Naphthalene	10	NA	2500 D		5100	3100 D	2200 J
Phenanthrene	50	NA	22	2000 U	1000 U	85 DJ	400 U
Pyrene	50	NA	1 J	2000 U	1000 U	7 J	400 U
Carcinogenic PAHs (ug/l)							
Benz[a]anthracene	0.002	NA	10 U	2000 U	1000 U	10 U	400 U
Benzo[a]pyrene	0.002	NA	10 U	2000 U	1000 U	10 U	400 U
Benzo[b]fluoranthene	0.002	NA	10 U	2000 U	1000 U	10 U	400 U
Benzo[k]fluoranthene	0.002	NA	10 U	2000 U	1000 U	10 U	400 U
Chrysene	0.002	NA	10 U	2000 U	1000 U	10 U	400 U
Dibenz[a,h]anthracene	NS	NA		2000 U		10.15	400 U
Indeno[1,2,3-cd]pyrene	0.002	NA		2000 U	1000 U	10 U	400 U
Total PAHs (ug/L)		46664					
Total PAHs	NS	NA	2836	12300	5840	3954	2262
Other SVOCs (ug/L)		(a) (a) (b) (b)					
Benzaldehyde	NS	NA	NA	2000 U	NA	NA	400 U
Biphenyl,1,1-	NS	NA	NA		NA	NA	400 U
Bis(2-ethylhexyl)phthalate	5	NA	10 U			6.J	400 U
Carbazole	NS	NA			1000 U	28 J	400 U
Dibenzofuran	NS	NA			1000 U	11	400 U
Diethyl phthalate	50	NA			1000 U	10 U	400 U
Dimethylphenol, 2,4-	1	NA	10 U		1000 UJ	10 U	400 UJ
Di-n-butyl phthalate	50	NA	10 U		1000 U	1 J	400 U
Methylphenol, 4-	1	NA	10 U		1000 U	10 U	
N-Nitrosodiphenylamine	50	NA	10 U				400 UJ
Phenol	1	NA NA			1000 U 1000 U	10 U 10 U	400 U
. 1010:		1.1.1	1.5 0	2000 0	1000 0	10 0	110 J

	Clove and		Table 6 undwater Analytical R nue Former MGP Site		vectination		
	Olove unit	a mapic Avoi	Haverstraw, New Yor		vestigation		
Site Location: Sample Location: Sample ID: Date Collected:	NY Ambient	C&M MW03 MW3-F 6/3/1997	C&M MW03 CMMW03-01 2/2/1999	C&M MW03 MW-03-CM 12/19/2001	C&M MW03 MW-03 8/3/2004	C&M MW04 CMMW04-01 2/3/1999	C&M MW04 MW-04 12/19/2001
Dissolved Metals (ug/l)						and the second second	
Aluminum	100	20.1 U	NA	NA	NA	NA	NA
Arsenic	25	5.1 U	NA	NA	NA	NA	NA
Barium	1000	81 B	NA	NA	NA	NA	NA
Beryllium	3	0.98 U	NA	NA	NA	NA	NA
Calcium	NS	39700	NA	NA	NA	NA	NA
Chromium	50	1.1 U	NA	NA	NA	NA	NA
Cobalt	5	3.1 B	NA	NA	NA	NA	NA
Copper	200	1.8 U	NA	NA	NA	NA	NA
Iron	300	513 N *	NA	NA	NA	NA	NA
Lead	25	2.4 B	NA	NA	NA	NA	NA
Magnesium	35000	9640	NA	NA	NA	NA	NA
Manganese	300	4450	NA	NA	NA	NA	NA
Mercury	0.7	0.069 B	NA	NA	NA	NA	NA
Nickel	100	1.9 B	NA	NA	NA	NA	NA
Potassium	NS	1840 B	NA	NA	NA	NA	NA
Selenium	10	3.7 U	NA	NA	NA	NA	NA
Sodium	20000	17200	NA	NA	NA	NA	NA
Thallium	0.5	5.2 U	NA	NA	NA	NA	NA
Vanadium Zinc	14	0.7 U	NA	NA	NA	NA	NA
Total Metals (ug/l)	2000	5.5 B	INA	NA	NA	NA	NA
Aluminum	100	N.A.	407	la La		·	
Arsenic	25	NA NA	497 5 UB		NA	11.8 UB	NA
Barium	1000	NA NA	97.2 B	NA	NA	1.8 UB	NA
Beryllium	3	NA NA	0.42 UB	NA	NA	104 B	NA
Calcium	NS	NA	46400	NA	NA	0.1 U	NA
Chromium	50	NA	0.6 U	NA	NA	41900	NA
Cobalt	5	NA	2.6 B	NA NA	NA	0.6 U	NA
Copper	200	NA	4.6 B	NA	NA NA	0.88 B 2.7 UB	NA
Iron	300	NA	872	NA	NA NA	2.7 UB 384	NA
Lead	25	NA	3.1 UJ	NA	NA NA		NA .
Magnesium	35000	NA	18400	NA NA	NA NA	1.1 UJ 8290	NA
Manganese	300	NA	1340	NA	NA NA		NA NA
Mercury	0.7	NA	0.2 U		NA NA	1390 0.2 UN	NA NA
Nickel	100	NA NA	3 UB		NA	1.1 UB	NA NA
		NA	6050 EJ		NA	1500 B	NA NA
Selenium	10	NA	1.6 U		NA NA	2.4 BJW	NA
Sodium	20000	NA	23500 EJ	NA	NA	46700	NA NA
	0.5	NA	1.1 U	NA	NA	1.1 U	NA NA
Vanadium	14	NA	1.2 U		NA	1.2 U	NA NA
Zinc	2000	NA	13.9 UBJ		NA	17 UB	NA
Cyanides (ug/L)			1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	1,		111 00	II AU
Cyanide, Total	200	NA	NA	5 J	5.7 J	NA	3 U
Cyanide, Weak							<u> </u>
Acid Dissociable	NS	NA	NA	3 UJ	NA	NA	3 UJ

			Table 6			·····	
		Ground	гаріе в water Analyt	ical Paculta			
c	love and M	unav∆ alns	Former MCC	icai nesulis Sito - Domod	ial Investigation		
	iove and m	apic Avende Ha	verstraw, Ne	· oke - nemeg w York	ai investigation		
	T	I	1	I	I	<u> </u>	i
Site Location:	1	C&M	C&M	C&M	C&M	C&M	C&M
Sample Location:		MW04	MW04	MW05	MW05	MW05	MW05
Sample ID:	1	MW-44	MW-04	CMMW05-01	CMMW05-01F	MW-05	MW-05
Date Collected:	GW Limits	12/19/2001	8/2/2004	2/3/1999	2/3/1999	12/19/2001	8/2/2004
BTEX (ug/l)	T						
Benzene	1.0	120	30	1 J	NA	10 U	10 U
Ethylbenzene Toluene	5	35	19	10 U	NA	10 U	10 U
Xylene, Total	5	73 H	26	10 U	NA	10 U	10 U
Total BTEX	NS	310 538	110	10 U	NA	10 U	10 U
Other VOCs (ug/l)	INO	336	185	1	NA	ND	ND
Acetone	NS	I O LID	laia -	140.11	TA LA		
Butanone,2- (MEK)	NS	10 UB 10 UJ	NA NA	10 U	NA NA	10 UB	NA
Chloroform	7	10 UJ	NA	10 U	NA	10 UJ	NA
Bown -	5	10 U	NA NA	10 U	NA NA	0.2 J	NA
Methyl-2-pentanone,4-	NS	10 UJ	NA	10 U	NA NA	10 U	NA
Methylene chloride	5	10 U	NA	10 U	NA NA	10 UJ	NA
Styrene	5	68	NA	10 U	NA NA	10 U	NA
Tetrachloroethane,1,1,2,2-	5	10 U	NA	10 U	NA	10 U	NA
Trichloroethane,1,1,1-	5	10 U	NA	10 U	NA	10 U	NA
Trichloroethane.1,1,2-	1	10 U	NA	10 U	NA NA	10 U	NA NA
Noncarcinogenic PAHs (ud		1,00	(10)	100	INA	100	IVA
Acenaphthene	20	500 U	500 U	3 J	NA	10 U	10 U
Acenaphthylene	50	310 J	310 J	20	NA	6 J	31
	50	500 U	500 U	10 U	NA NA	10 U	10 U
	NS	500 U	500 U		NA	10 U	10 U
	50	500 U	500 U		NA	10 U	10 U
Fluorene	50		500 U		NA	10 U	10 U
Methylnaphthalene,2-	NS	290 J	310	***************************************	NA	10 U	10 U
Naphthalene	10	3100 J	3000		NA	10 U	10 UJ
Phenanthrene	50	110J	110 J		NA	10 U	1 J
	50	500 U	500 U		NA	10 U	10 U
Carcinogenic PAHs (ug/l)		proposition and	180				.0.3
	0.002		500 U	10 U	NA	10 U	10 U
			500 U				10 U
Benzo[b]fluoranthene		500 U	500 U				10 U
Benzo[k]fluoranthene			500 U	10 U			10 U
			500 U				10 U
			500 U		NA		10 U
	0.002	500 U	500 U	10 U	NA		10 U
Total PAHs (ug/L)							
	NS	4863	3730	32	NA	36	52
Other SVOCs (ug/L)						General State of the Control	
			NA			10 U	NA
							NA
			500 U				3 J
			500 U				10 U
Dibenzofuran			500 U				10 U
			500 U				10 U
······· 1			500 UJ				10 UJ
							10 U
Methylphenol, 4-			500 U				10 U
			500 U				10 U
Phenol	1	500 U	500 U	10 U	NA	10 U	10 U

Table 6 **Groundwater Analytical Results** Clove and Maple Avenue Former MGP Site - Remedial Investigation Haverstraw, New York Site Location: C&M C&M C&M C&M C&M C&M Sample Location: NY MW04 MW04 MW05 MW05 MW05 MW05 Sample ID: Ambient MW-44 MW-04 CMMW05-01 CMMW05-01F MW-05 MW-05 Date Collected: GW Limits 12/19/2001 8/2/2004 2/3/1999 2/3/1999 12/19/2001 8/2/2004 Dissolved Metals (ug/l) Aluminum 100 NΑ NΑ NA 25.7 UB NA NA NA Arsenic 25 NA NA 1.2 U NA NA 1000 NΑ NA NΑ Barium 140 B ΝA NΑ Beryllium 3 NA NΑ ÑΑ 0.1 U NΑ NΑ Calcium NS NΑ NA NΑ 85000 NΑ NΑ Chromium 50 NA NA NA 0.6 U NA NA NΑ Cobalt NΑ 5 NA 0.6 U NA NA Copper 200 NΑ NA NA 3.2 UB NA NΑ Iron 300 NΑ NΑ NΑ 22.3 B NΑ NA Lead 25 NΑ NA NA 1.9 UBJ NA NΑ Magnesium 35000 ΝÃ ΝÃ NΑ 17100 NΑ NA Manganese 300 NA NA NA 521 NΑ NΑ Mercury 0.7 NA NA NA 0.2 UN NA NA 100 Nickel NA NΑ NA 0.6 U NA NΑ Potassium NS NΑ NΑ NΑ 1880 B NA NΑ NΑ 10 ΝĀ Selenium NΑ 1.6 UJW NΑ NA Sodium 20000 ÑΑ NΑ NΑ 44200 NΑ NA Thallium 0.5 NA NΑ NA 1.1 U NΑ NΑ Vanadium 14 NA NA NΑ 1.2 U NΑ NA Zinc 2000 NA NΑ NA 30.1 U NΑ NΑ Total Metals (ug/l) 100 NA NA Aluminum 54.3 UB NA NA NA NΑ Arsenic 25 NΑ 1.2 U NA NA NA Barium 1000 NΑ NA 142 B NA NΑ NΑ Beryllium NA NA 0.1 U NΑ NA NΑ 3 Calcium NS NA NA 84000 NA NA NA Chromium 50 $\overline{\mathsf{NA}}$ NΑ 0.6 U ΝA NΑ NA Cobalt NA NA 0.6 U NΑ NΑ NΑ 200 ÑΑ Copper NA 3 UB NΑ NΑ NA 300 NΑ fron NΑ 42.6 B NΑ NΑ NA 25 NA NΑ 2.8 UBJ NΑ NΑ Lead NA Magnesium 35000 NA ΝÀ 17000 NA NΑ NA 522 Manganese 300 NA NA NA NΑ NA Mercury 0.7 NA NΑ 0.2 UN NΑ NA NA Nickel 100 NA NΑ 0.6 U NΑ NA NΑ Potassium NS NA NΑ 1970 B NΑ NA NΑ Selenium 10 NA NΑ 1.6 UJW NΑ NA NΑ Sodium 20000 NΑ NΑ 44000 NA NΑ NΑ Thallium 0.5 NA ΝĀ NA 1.1 U NΑ NA Vanadium 14 NΑ NΑ 1.2 U NΑ NΑ NA Zinc 2000 NA NA 14.8 UB NA NΑ NA Cyanides (ug/L) Cyanide, Total 200 3 U 0.52 U NA NΑ 3 U 0.75 U Cyanide, Weak Acid Dissociable NS 3 UJ NA NA NΑ 3 UJ NΑ

			Table 6				
		Groundwa	ter Analytical Re	sults			
	Clove an	d Maple Avenue Fo			estigation		
			rstraw, New York		g		
Site Location:		C&M	C&M	C&M	C&M	C&M	C&M
Sample Location:	E .	MW06	MW06	MW06	MW07	MW07	MW07
Sample ID:		CMMW06-01	MW-06	MW-06	CMMW07-01	MW-07	MW-07
Date Collected: BTEX (ug/l)	GVV LIMITS	3/26/1999	12/19/2001	8/2/2004	3/26/1999	12/19/2001	8/2/2004
Benzene	1.0	10 U	110 U	T10 U	10 U	10 U	140.14
Ethylbenzene	5	10 U	10 U	10 U	10 U	10 U	10 U
Toluene	5	10 U	10 U	10 U	10 U	10 U	10 U
Xylene, Total	5	10 U	10 U	10 U ·	10 U	10 U	10 U
Total BTEX	NS	ND	ND	ND	ND	ND	ND
Other VOCs (ug/l)				trans no c			r sansa zatrula na
Acetone	NS	10 U	10 UB	NA	10 U	10 UB	INA
Butanone,2- (MEK)	NS	10 U	10 UJ	NA	10 U	10 UJ	NA
Chloroform	7	10 U	10 U	NA	10 U	10 U	NA
Dichloropropene, trans-1,3	5	10 U	10 U	NA	10 U	10 U	NA
Methyl-2-pentanone,4-	NS	10 U	10 UJ	NA	10 U	10 UJ	NA
Methylene chloride	5	10 U	10 U	NA	10 U	10 U	NA
Styrene Tetrachloroethane,1,1,2,2-	5 .	10 U	10 U	NA	10 U	10 U	NA
Trichloroethane,1,1,1,-	5 5	10 U 10 U	10 U	NA	10 U	10 U	NA
Trichloroethane, 1, 1, 2-	1	10 U	10 U	NA NA	10 U	10 U	NA
Noncarcinogenic PAHs (u	1	IIOO	110.0	Ina	10.0	10 U	NA
Acenaphthene	20	10 UJ	110 U	11 U	10 UJ	10 U	10 U
Acenaphthylene	50	10 U	10 U	11 U	10 U	10 U	10 U
Anthracene	50	10 U	10 U	11 U	10 U	10 U	10 U
Benzo[g,h,i]perylene	NS	10 U	10 U	11 U	10 U	10 U	10 U
Fluoranthene	50	2 J	10 U	11 U	10 U	10 U	10 U
Fluorene	50	10 U	10 U	11 U	10 U	10 U	10 U
Methylnaphthalene,2-	NS	10 U	10 U	11 U	10 U	10 U	10 U
Naphthalene	10	10 U	10 U	11 U	10 U	10 U	10 U
Phenanthrene	50	10 U	10 U	11 U	10 U	10 U	10 U
Pyrene	50	6 J	10 U	11 U	10 U	10 U	10 U
Carcinogenic PAHs (ug/l)	In and		<u> </u>		aginas sa carcara		AND STREET
Benz[a]anthracene	0.002	10 U	10 U	11 U	10 U	10 U	10 U
Benzo[a]pyrene	0.002	10 U	10 U	11 U	10 U	10 U	10 U
Benzo[b]fluoranthene Benzo[k]fluoranthene	0.002 0.002	10 U 10 U	10 U 10 U	11 U	10 U	10 U	10 U
Chrysene	0.002	10 U	10 U	11 U 11 U	10 U 10 U	10 U 10 U	10 U 10 U
Dibenz[a,h]anthracene	NS	10 U	10 U	11 U		10 U	10 U
indeno[1,2,3-cd]pyrene	0.002	10 U	10 U	11 U	10 U	10 U	10 U
Total PAHs (ug/L)			1	1		100	100
	NS	8	ND	ND	ND	ND	ND
Other SVOCs (ug/L)							1
Benzaldehyde		NA	10 U	NA	NA	10 U	NA
Biphenyl,1,1-	NS	NA	10 U	NA	NA		NA
Bis(2-ethylhexyl)phthalate	5	3500 DB	10 U	11 U	10 U	10 U	10 U
Carbazole	NS	10 U	10 U	11 U		10 U	10 U
Dibenzofuran	NS	10 U	10 U	11 U		10 U	10 U
Diethyl phthalate	50	4 J	10 U	11 U		10 U	10 U
Dimethylphenol, 2,4-	1	10 U	10 UJ	11 UJ		10 UJ	10 UJ
Di-n-butyl phthalate	50 1	81	10 U	11 U	3 J	10 U	10 U
Methylphenol, 4- N-Nitrosodiphenylamine	50	10 U 5 J	10 UJ 10 U	11 U 11 U	10 U	10 UJ	10 U
Phenol	1	10 U	10 U	11 U	10 U 10 U	10 U	10 U 10 U
I FIGURE		100	100	110	יטיו	WU	100

		Craunden	Table 6	a culta			
PAP - SAME ADDRESS AND ADDRESS	Clove ar	id Maple Avenue Fo	ater Analytical Re ormer MGP Site - erstraw, New York	Remedial Inv	estigation		
Site Location: Sample Location: Sample ID: Date Collected:	NY Ambient	C&M MW06 CMMW06-01 3/26/1999	C&M MW06 MW-06 12/19/2001	C&M MW06 MW-06	C&M MW07 CMMW07-01	1	C&M MW07 MW-07
Dissolved Metals (ug/l)	GVV LITING	3/20/1999	12/39/2001	8/2/2004	3/26/1999	12/19/2001	8/2/2004
Aluminum	100	NA	Īna	ĪNA	ĪNA	ĪNA	INA .
Arsenic	25	NA	NA	TNA	NA NA	NA NA	NA .
Barium	1000	NA	NA	NA	NA NA	NA	NA
Beryllium	3	NA	NA ·	NA	NA	NA NA	NA
Calcium	NS	NA	NA	NA	NA	NA	NA
Chromium	50	NA	NA	NA	NA	NA	NA
Cobalt	5	NA	NA	NA	NA	NA	NA
Copper	200	NA	NA	NA	NA	NA	NA
Iron	300	NA	NA	NA NA	TNA .	NA	NA
Lead	25	NA	NA	NA	NA	NA	NA
Magnesium	35000	NA	NA	NA	NA	NA	NA
Manganese	300	NA	NA	NA	NA	NA	NA
Mercury	0.7	NA	NA	NA	NA	NA	NA
Nickel	100	NA	NA	NA	NA	NA	NA
Potassium	NS	NA	NA	NA	NA	NA	NA
Selenium	10	NA	NA	NA	NA	NA	NA
Sodium	20000	NA	NA	NA	NA	NA	NA
Thallium	0.5	NA	NA	NA	NA	NA	NA
Vanadium	14	NA	NA	NA	NA	NA	NA
Zinc	2000	NA	NA	NA	NA	NA	NA
Total Metals (ug/l)							145g - 52 (de 152 (d
Aluminum	100	3500	NA	NA	578	NA	NA
Arsenic	25	1.6 BJ	NA	NA	3.8 BJ	NA	NA
Barium	1000	143	NA	NA	82.6 B	NA	NA
Beryllium		0.16 B	NA	NA	0.47 B	NA	NA
	NS	91800	NA	NA	58400	NA	NA
Chromium		2.9 B	NA	NA	0.6 U	NA	NA
Cobalt		3.0 B	NA	NA	0.6 U	NA	NA
 		7.3 B	NA	NA	3.1 B	NA	NA
Iron		5450	NA	NA	395	NA	NA
Lead		5.5 U	NA	NA	2.9 UB	NA	NA
Magnesium		24400	NA	NA	23900	NA	NA
Manganese	300	388	NA	NA	11.3 B	NA	NA
			NA	NA			NA
			NA	NA			NA
			NA	NA			NA
		8.0 UJW	NA	NA			NA
		36300	NA	NA			NA
			NA	NA NA			NA
			NA NA	NA	Comment of the commen		NA
Cyanides (ug/L)	2000	22.2 U	NA	NA	6.4 U	NA	NA
	200	NA	911	lee i	A LA		
Cyanide, Yotal Cyanide, Weak	200	IAW	3 U	5.5 J	NA	3 U	10 U
,	NS	NA	3 UJ	NA	NA	3 UJ	NA

			Lia C	· · · · · · · · · · · · · · · · · · ·		
			ble 6 Analytical Results			
	love and M		manyucar nesuus • MGP Site - Remediai	Unvectiontic		
Ĭ	iove and ivi		w, New York	rnivestigatic)) (
]	T	
Site Location:	l I	C&M	C&M	C&M	C&M	C&M
Sample Location:	1	MW07	80WM	MW08	80WM	MW09
Sample ID:		MW-XX	CMMW08-01	MW-08	MW-08	CMMW09-01
Date Collected:	GW Limits	8/2/2004	2/1/1999	12/19/2001	8/3/2004	2/1/1999
BTEX (ug/l)	14.0	4011	loo s		- Alle (19 m. 20 m.)	
Benzene Ethylbenzene	1.0 5	10 U 10 U	29 J 10 U	1 J 10 U	180 14	1 J 33
Toluene	5	10 U	10 U	10 U	3 J	33 2 J
Xylene, Total	5	10 U	3 J	10 U	14	31
Total BTEX	NS	ND	32	1	211	67
Other VOCs (ug/l)				l. <u>.</u>	12-11	ju:
Acetone	NS	NA	15	10 UB	NA	8 J
Butanone,2- (MEK)	NS	NA	10 U	10 UJ	NA	7 J
Chloroform	7	NA	10 U	10 U	NA	10 U
Dichloropropene, trans-1,3	5	NA	10 U	10 U	NA	10 U
Methyl-2-pentanone,4-	NS	NA	10 U	10 UJ	NA	10 U
Methylene chloride	5	NA	10 U	10 U	NA	10 U
Styrene	5	NA	10 U	10 U	NA	10 U
	5	NA	10 U	10 U	NA	10 U
Trichloroethane,1,1,1-	5	NA	10 U	10 U	NA	10 U
Trichloroethane,1,1,2-	1	NA	10 U	10 U	NA	10 U
Noncarcinogenic PAHs (ug Acenaphthene	<i>2</i> 0	11 U	111	140 11	144 U	lan
Acenaphthylene	50	11 U	3 J	10 U	11 U	70 5 J
Anthracene	50	11 U	10 U	10 U	11 U	9 J
Benzo[g,h,i]perylene	NS	11 U	10 U	10 U	11 U	10 U
Fluoranthene	50	11 U	10 U	10 U	11 U	6 J
Fluorene	50	11 U	10 U	10 U	11 U	31
Methylnaphthalene,2-	NS	11 U	1 J	10 U	11 U	16
Naphthalene	10	11 U	17.	10 U	11 U	60
Phenanthrene	50	11 U	2 J	10 U	11 U	16
Pyrene	50	11 U	10 U	10 U	11 U	7 J
Carcinogenic PAHs (ug/l)						(1) (1) (8) (8) (8)
Benz[a]anthracene	0.002	11 U	10 U	10 U	11 U	10 U
Benzo[a]pyrene	0.002	110	10 U	10 U	11 U	10 U
Benzo[b]fluoranthene Benzo[k]fluoranthene	0.002 0.002	11 U 11 U	10 U	10 U	11 U	10 U
	0.002	11 U	10 U	10 U	11 U 11 U	10 U 10 U
	NS	11 U	10 U	10 U	11 U	10 U
Indeno[1,2,3-cd]pyrene	0.002	11 U	10 U	10 U	11 U	10 U
Total PAHs (ug/L)			1100	100	[15 0	1100
	NS	ND	34	ND	ND	220
Other SVOCs (ug/L)			I	15.5	J. 4.5]
Benzaldehyde	NS	NA	NA	10 U	ĪNA	ĪNA
Biphenyl,1,1-	NS	NA	NA	10 U	NA	NA
Bis(2-ethylhexyl)phthalate	5	11 U	1 J	10 U	11 U	10 U
Carbazole	NS	11 U	2 J	10 U	11 U	4 J
Dibenzofuran	NS	11 U	10 U	10 U	11 U	5 J
Diethyl phthalate	50	11 U	10 U	10 U	11 U	10 U
Dimethylphenol, 2,4-	1	11 W	10 U	10 UJ	11 UJ	2 J
Di-n-butyl phthalate	50	11 U	10 U	10 U	11 U	1 J
Methylphenol, 4-	1	110	10 U	10 UJ	11 U	10 U
N-Nitrosodiphenylamine Phenol	50 1	11 U 11 U	10 U 1 J	10 U 10 U	11 U 11 U	10 U
i HCHOL	*	110	10	100	110	2 J

		7	able 6			
			Analytical Results			
· c	love and M	aple Avenue Forme	r MGP Site - Remedia	d Investigatio	on.	
			aw, New York			
Site Location:		C&M	C&M	C&M	C&M	C&M
Sample Location:	NY	MW07	MW08	MW08	MW08	MW09
Sample ID:	1	MW-XX	CMMW08-01	MW-08	MW-08	CMMW09-01
Date Collected:	GW Limits	8/2/2004	2/1/1999	12/19/2001	8/3/2004	2/1/1999
Dissolved Metals (ug/l)						
Aluminum	100	NA	INA	NA	NA	NA
Arsenic	25	NA	NA	NA	NA	NA
Barium	1000	NA	NA	NA	NA	NA
Beryllium	3	NA	NA	NA	NA	NA
Calcium	NS	NA	INA	NA	NA	NA
Chromium	50	NA	NA	NA	NA	NA
Cobalt	5	NA	NA	NA	NA	NA
Copper	200	NA	NA	NA ·	NA	NA
Iron	300	NA	NA	NA	NA	NA
Lead	25	NA	NA	NA	NA	NA
Magnesium	35000	NA	NA	NA	NA	NA
Manganese	300	NA	NA	NA	NA	NA
Mercury	0.7	NA	NA	NA	NA	NA
Nickel	100	NA	NA	NA	NA	NA
Potassium	NS	NA	NA	NA	NA	NA
Selenium	10	NA	NA	NA	NA	NA
Sodium	20000	NA	NA	NA	NA	NA
Thallium	0.5	NA	NA	NA	NA	NA
Vanadium	14	NA	NA	NA	NA	NA
Zinc	2000	NA	NA	NA	NA	NA
Total Metals (ug/l)	-					
Aluminum	100	NA	2400	NA	NA	842
Arsenic	25	NA	4.3 UB	NA	NA	1.2 U
Barium	1000	NA	219	NA	NA	141
Beryllium	3	NA	0.1 U	NA	NA .	0.1 U
Calcium	NS	NA	80700	NA	NA	83900
Chromium	50	NA	1.5 B	NA	NA	0.6 U
Cobalt	5	NA	2.3 UB	NA	NA	5.2 B
Copper	200	NA	7.8 UB	NA	NA	3.6 UB
Iron	300	NA	3670	NA	NA	5750
Lead	25	NA	4.8 J	NA	NA	2.1 JB
Magnesium	35000	NA	26400	NA	NA	44100
Manganese	300	NA	665	4	NA	7850
Mercury		NA	0.2 U	NA	NA	0.2 U
Nickel	100	NA	43.8	NA	NA	8.4 B
Potassium	NS	NA	4150 JBE	NA	NA	3520 JBE
Selenium	10	NA	8 U	NA	NA	8 UW
Sodium	20000	NA	23300	NA	NA	16800
Thallium	0.5	NA	1.1 UJ	NA	NA	8.1 JB
Vanadium 7ino	14	NA	4.5 B	NA	NA	1.5 B
Zinc	2000	NA	134	NA	NA	28 U
Cyanides (ug/L)	200	10.11	Tala .	To a :	r=	
Cyanide, Total Cyanide, Weak	200	10 U	NA	3.8 J	5.8 J	NA
Acid Dissociable	NS	NA	NA	2111		N.A.
TOTA PISSUSIANIE	140	IVA	IIV.	3 UJ	NA	NA

			Tat	ole 6		W-M-5W1V-W-M-M-M-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1		
		G		ne o nalytical Resu	ilts			
	Clove a			MGP Site - Re		tigation		
		<i>-</i>		v, New York				
Site Location:	NY	C014	COM	0014	0214	2014		~ ~ 1 .
Site Location: Sample Location:	Ambient	C&M MW09	C&M MW09	C&M MW10	C&M	C&M	C&M	C&M
Sample Location: Sample ID:	GW	MW-09	MW-09	MW 10 CMMW 10-01	MW10 MW-10	MW10	MW-18	MW-18
Date Collected:	Limits	12/19/2001	8/3/2004	2/1/1999	12/19/2001	MW-10 8/3/2004	MW-18 12/20/2001	MW-18 8/3/2004
BTEX (ug/l)	Limit	I &/ TO/ LUU I	UISIZUUT	2/1/1000	12/18/2001	0/3/2004	12/20/2001	0/3/2004
Benzene	1.0	2 J	4 J	10 U	0.7 J	10 U	16000	10 U
Ethylbenzene	5	19	41	10 U	10 U	10 U	370 J	0.4 J
Toluene	5	1 J	1 J	10 U	0.9 J	10 U	950 J	10 U
Xylene, Total	5	19	27	10 U	0.6 J	10 U	3400	4 J
Total BTEX	NS	41	73	ND	2.2	ND	20720	4.4
Other VOCs (ug/l)			resistant e	1		1		1 ''
Acetone	NS	10 U	NA	10 U	10 U	NA	20 U	NA
Butanone,2- (MEK)	NS	10 U	NA	10 U	10 U	NA	20 U	NA
Chloroform	7	10 U	NA	2 J	10 U	NA	20 U	NA
Dichloropropene, trans-1,3	5	10 U	NA	10 U	10 U	NA:	20 U	NA
Methyl-2-pentanone,4-	NS	10 U	NA	10 U	10 U	NA	20 U	NA
Methylene chloride	5	10 U	NA	10 U	10 U	NA	20 U	NA
Styrene	5	10 U	NA	10 U	10 U	NA	20 U	NA
Tetrachloroethane, 1, 1, 2, 2-	5	10 U	NA	10 U	10 U	NA	0.3 J	NA
Trichloroethane,1,1,1-	5	10 U	NA	10 U	10 U	NA	0.5 J	NA
Trichloroethane,1,1,2-	1	10 U	NA	10 U	10 U	NA	20 U	NA
Noncarcinogenic PAHs (ug	7/1)				e Stand end		and the second	6.6
Acenaphthene	20	180	250	10 U	10 U	10 U	270 U	10 U
Acenaphthylene	50	40 U	44 U	10 U	10 U	10 U	270 U	10 U
Anthracene	50	14 J	18 J	10 U	10 U	10 U	270 U	10 U
Benzo[g,h,i]perylene	NS	40 U	44 U	10 U	10 UJ	10 U	270 U	10 U
Fluoranthene	50	40 U	5 J	10 U	10 U	10 U	270 U	10 U
Fluorene	50	59	87	10 U	10 U	10 U	270 U	10 U
Methylnaphthalene,2-	NS 10	40 U	44 U	10 U	10 U	10 U	68 J	10 U
Naphthalene	10	12 J	44 U	10 U	10 U	10 U	2200	10 U
Phenanthrene	50	65	73	10 U	10 U	10 U	270 U	10 U
Pyrene	50	7 J	6 J	10 U	10 U	10 U	270 U	10 U
Carcinogenic PAHs (ug/l) Benz[a]anthracene	0.000	40.11	[441]		14611	Lean	Taga ii	
Benzo[a]pyrene	0.002 0.002	40 U 40 U	44 U 44 U	10 U	10 U	10 U	270 U	10 U
Benzolajpyrene Benzolb)fluoranthene	0.002	40 U	44 U 44 U	10 U 10 U	10 U	10 U	270 U	10 U
Benzo[k]fluoranthene	0.002	40 U	44 U	10 U	10 U	10 U	270 U	10 U
Chrysene	0.002	40 U	44 U	10 U	10 UJ	10 U	270 U 270 U	10 U 10 U
	NS	40 U	44 U	10 U	10 U	10 U	270 U	10 U
Indeno[1,2,3-cd]pyrene	0.002	40 U	44 U	10 U	10 UJ	10 U	270 U	10 U
Total PAHs (ug/L)	0.002	140 0	7-7-0	1100	10 00		12700	100
	NS	377	483	ND	ND	ND	2268	ND
Other SVOCs (ug/L)	<u></u>		1.22	pro	IMD	II C	12200	IND
Benzaldehvde	NS	9 J	NA	NA	10 U	NA	1270 U	NA
Biphenyl,1,1-	NS	41	NA	NA	10 U	NA	270 U	NA
	5	40 U	44 U	10 U	10 U	12	270 U	10 U
Carbazole	NS	40 U	44 U	10 U	10 U	10 U	270 U	10 U
Dibenzofuran	NS	12 J	14 J	10 U	10 U	10 U	270 U	10 U
Diethyl phthalate	50	40 U	44 U	10 U	10 U	10 U	270 U	10 U
Dimethylphenol, 2,4-	1	40 U	44 U	10 U	10 U	10 U	270 U	10 UJ
Di-n-butyl phthalate	50	40 U	44 U	10 U	10 U	10 U	270 U	10 U
Methylphenol, 4-	1	40 U	44 U	10 U	10 U	10 U	270 U	10 U
N-Nitrosodiphenylamine	50	40 U	44 U	10 U	10 U	10 U	270 U	10 U
Phenol	1	40 U	44 U	10 U	10 U	10 U	120 J	10 U
			1	L			1	

			Т	· I o C	***************************************		····	W. S. M. J.
		G		ole 6 polytical Book	. la 🔩			
	Clove a	υ νΔ alnekli her	FOUIIUWALEL A	nalytical Resu MGP Site - Re	llts 	4:		54.
	Olove t	iio mapic Av		v, New York	mediai mves	ugation		
				1	1	1		1
Site Location:	NY	C&M	C&M	C&M	C&M	C&M	C&M	C&M
Sample Location:	Ambient	MW09	MW09	MW10	MW10	MW10	MW-18	MW-18
Sample ID:	GW	MW-09	MW-09	CMMW 10-01	į .	MW-10	MW-18	MW-18
Date Collected:	Limits	12/19/2001	8/3/2004	2/1/1999	12/19/2001	8/3/2004	12/20/2001	8/3/2004
Dissolved Metals (ug/l)								. 0.0.200
Aluminum	100	NA	NA	NA	NA	NA	NA	INA
Arsenic	25	NA	NA	NA	NA	NA	NA	NA
Barium	1000	NA	NA	NA	NA	NA	NA	NA
Beryllium	3	NA	NA	NA	NA	NA	NA	NA
···········	NS	NA	NA	NA	NA	NA	NA	NA
Chromium	50	NA	NA	NA	NA	NA	NA	NA
Cobalt	5	NA	NA	NA	NA	NA	NA	NA
	200	NA	NA	NA	NA	NA	NA	NA
Iron	300	NA	NA	NA	NA	NA	NA	NA
Lead	25	NA	NA	NA	NA	NA	NA	NA
Magnesium	35000	NA	NA	NA	NA	NA	NA	NA
Manganese	300	NA	NA	NA	NA	NA	NA	NA
	0.7	NA	NA	NA	NA	NA	NA	NA
Nickel	100	NA	NA	NA	NA	NA	NA	NA
Potassium	NS	NA	NA	NA	NA	NA	NA	NA
	10	NA	NA	NA	NA	NA	NA	NA
	20000	NA	NA	NA	NA	NA	NA	NA
	0.5	NA	NA	NA	NA	NA	NA	NA
Vanadium	14	NA	NA	NA	NA	NA	NA -	NA
Zinc	2000	NA	NA	NA	NA	NA	NA	NA
Total Metals (ug/l)	400						Control of the Control	ted or
	100	NA	NA	1440	NA	NA	NA	NA
	25	NA	NA	2.1 UB	NA	NA	NA	NA
	1000	NA NA	NA	134 B	NA	NA	NA	NA
Beryllium Calcium	NS	NA	NA	0.1 U	NA	NA	NA	NA
Chromium		NA	NA	71200	NA	NA	NA	NA
	50 5	NA NA	NA	0.7 B	NA	NA	NA	NA
	200	NA	NA NA	1.2 UB	NA	NA	NA	NA
	300	NA NA		4.1 UB	NA	NA	NA	NA
	25	NA NA	NA NA	2160	NA	NA	NA	NA
Magnesium	25 35000	NA	NA	1.1 UJ		NA	NA	NA
			NA			NA	NA	NA
			NA					NA
	100	NA	NA	0.2 U			NA	NA
	NS I	NA	NA	2 UB 3070 JBE			NA	NA
	10	NA NA					NA	NA
	20000	NA NA	NA NA					NA
		NA	NA NA				NA	NA
···		NA NA	NA NA					NA
		NA	NA				www	NA
Cyanides (ug/L)	2000	INA	INA	22.9 U	NA	NA	NA	NA
The state of the s	200	102	169	NA I	9 I I	10.11	0.11	40.11
Cyanide, Rotal Cyanide, Weak	200	102	103	INA	3 U	10 U	3 U	10 U
•	NS	3	NA	NA	3 U	NA	3 U	Λ1 <i>Λ</i>
		-		1 4/ 3	V U	1474	υU	NA

Notes:

- NS no standard established
- NA not analyzed
- ND None detected in group for which a total was calculated
- J estimated value
- U indicates not detected at or above the reporting limit shown
- UJ not detected at or above the reporting limit shown, and the reporting limit shown is estimated
- B (organics) compound was detected in laboratory blank sample
- B (inorganics) analyte was detected between the method detection limit and the reporting limit
- N matrix spike recovery outside control limits
- * laboratory duplicate outside of control limits
- D result is from a reanalysis at a different dilution factor

Bold indicates constituent is a detected value

Shade and bold indicates that detected result value exceeds established New York Ambient Groundwater Limits ug/L - micrograms per liter or parts per billion (ppb)

- BTEX benzene, toluene, ethylbenzene, and xylene (a subset of VOCs)
- VOCs Volatile Organic Compounds
- PAHS polycyclic aromatic hydrocarbons (A subset of SVOCs)
- SVOCs Semivolatile Organic Compounds

Source: GEI Consultants, Inc. 2006

Table 7 Stormwater Analytical Results Clove and Maple Former MGP Site - Remedial Investigation Haverstraw, New York

	1	Sample ID / Date Collected / Sample					Туре		
	NYSDEC	6 TOR	Clove ar	Clove and Maple		Apartments		Hudson	
	Ambient	SW013102-1	CMSW-01	CMSW03	SW013102-5		SW013102-8	SWOUT013002-1	
	Groundwater	1/31/2002	3/4/1999	3/4/1999	1/31/2002	1/31/2002	1/31/2002	1/30/2002	
Analyte	Limits (GA)	Primary	Primary	Primary	Primary	Primary	Duplicate		
	in the state of the	BTEX by	NYSASP Me	thod 95-1 (
Benzene	1.0	10 U	10 U	NA	0.5 J	5 J	5 J	1 4J	
Toluene	5	2 J	4 J	NA	10 U	10 UJ	10 UJ	10 UJ	
Ethylbenzene	5	10 U	10 U	NA	1 J	3 J	3 J	2J	
Xylene, Total	5	10 U	10 U	NA	0.7 J	2 J	2 J	1J	
Total BTEX	đ	2	4	ND	2	10	10	7	
	* : : : : : : : : : : : : : : : : : : :	Other VOCs	by NYSASP	Method 95	STATE I				
Butanone,2- (MEK)	NS	9 J	10 U	NA	10 U	10 UJ	10 UJ	T 10 UJ	
Chloroform	7	0.5 J	10 U	NA	10 U	10 UJ	10 UJ	10 UJ	
Dichloroethene,1,2- (Total)	5	0.5 J	10 U	NA	10 U	10 UJ	10 UJ	10 UJ	
Methyl-2-pentanone,4-	NS	6 J	10 U	NA NA	1 J	10 UJ	10 UJ	10 UJ	
Methylene chloride	5	10 U	1 1 1	NA NA	10 U	10 UJ	10 UJ	10 UJ	
Tetrachioroethene	5	0.6 J	10 U	NA.	10 U	10 UJ	10 UJ	10 UJ	
		is (Non-carcine					10 00	10 00	
Acenaphthene	20	10 U	10 U	10 U	4 J	11 J	^ l		
Anthracene	50	10 U	10 U	10 U	10 U		9 J	9,1	
Fluoranthene	50	2 J	1 J	10 U	Accessor	1 J	11 U	10 U	
Fluorene	50	10 U	10 U	10 U	10 U	2 J	1 J	10 U	
Methylnaphthalene,2-	NS NS	10 U	10 U	10 U	1 J	4 J	3 J	3 J	
Naphthalene	10	10 U	10 U			12 U	11 U	2 J	
Phenanthrene	50			10 U	4 J	12 U	11 U	5 J	
Pyrene Pyrene	50	1 J	10 U	10 U	1 J	6 J	4 J	2 J	
		2 J	2 J	10 U	10 U	2 J	2 J	10 U	
Total PAHs (Non-carc.)) <u> </u>	5	3	ND	11	26	19	21	
PART Demokrate Agents		ÄHs (Carcinoge						·	
Chrysene	0.002	1 3	10 U	10 U	10 U	12 U	11 U	10 U	
Dibenz[a,h]anthracene	NS	10 U	10 U	10 U	10 U	12 U	11 U	10 U	
Indeno[1,2,3-cd]pyrene	0.002	1 J	10 U	10 U	10 U	12 U	11 U	10 U	
Total PAHs (Carc.))	2	ND	ND	ND	ND	ND	ND	
	nggi ng jè bahagi di di	Other SVOCs	s by NYSASF	Method 95	-2 (ug/L)				
Benzaldehyde	NS	1 J	10 U	10 U	10 UJ	12 UJ	11 UJ	10 UJ	
Butyl benzyl phthalate	50	2 J	10 U	10 U	10 U	12 U	11 U	10 U	
Diethyl phthalate	50	1 J	25 U	25 U	10 U	12 U	11 U	10 U	
Dinitrotoluene,2,6-	5	10 U	10 U	10 U	10 U	12 U	11 U	10	
Methylphenol,2-	1	13	25 U	25 U	10 UJ	12 UJ	11 UJ	10 UJ	
Nitrophenol,4-	1	3 J	10 U	10 U	25 U	29 U	28 U	25 U	
Phenol	1	4 J	25 Ų	25 U	10 U	12 U	11 U	10 U	
Trichlorophenol, 2, 4, 6-	1	10 U			10 U	12 U	11 U	10 U	
		N	fetals by 200	.7 (ug/L)					
Aluminum	100	NA	1510 EJ	953 EJ	NA	NA	NA	NA	
Antimony	3	NA	8.0 UB	2.3 U	NA	NA	NA	NA	
Arsenic	25	NA	6.9 UB	1.2 U	NA	NA	NA	NA	
Barium	1000	NA	57.8 B	23.4 B	NA	NA	NA	NA	
Beryllium	3	NA	0.6 B	0.10 U	NA	NA	NA NA	NA	
Cadmium	5	NA	0.2 UJ	0.2 UJ	NA	NA	NA NA	NA	
Calcium	NS	NA NA	79500	15400	NA	NA NA	NA	NA NA	
chromium	50	NA	16.2	1.1 UB	NA NA	NA	NA	NA	
Cobalt	5	NA NA	2.6 B	0.6 U	NA	NA NA	NA	NA NA	
Copper	200	NA	31.8 EJ	14.2 JBE	NA NA	NA	NA NA	NA NA	
iron	300	NA	2530	1050	NA	NA	NA NA	NA NA	
Lead	25	NA	37.9	9	NA	NA NA	NA NA	NA NA	
Magnesium	35000	NA NA	21100	3840 B	NA	NA NA	NA NA	NA NA	
Manganese	300	NA NA	54,5	33.4	NA NA	NA NA	NA NA	NA NA	
Mercury	0.7	NA NA	0,2 U	0.2 U	NA NA	NA NA	NA NA	NA NA	
Nickel	100	NA NA	6.7 B	3.3 UB	NA NA	NA	NA	NA NA	
Potassium	NS	NA	7270 EJ	3130 JBE	NA NA	NA	NA NA	NA NA	
Selenium	10	NA NA	8.0 U	1.6 U	NA NA	NA NA	NA NA	NA NA	
Silver	50	NA NA	1.2 U	1.2 U	NA	NA NA	NA NA	NA NA	
Sodium	20000	NA NA	15000	81900	NA NA	NA NA	NA NA	NA NA	
Thallium	0.5	NA NA	1.1 UJ	1,1 UJ	NA NA	NA .	NA NA	NA NA	
Vanadium	14	NA NA	6.4 B	2.0 B	NA NA	NA NA	NA NA	NA NA	
Zinc	2000	NA NA	78.1 EJ	43.3 EJ	NA NA	NA NA	NA NA	NA NA	
		nides by CLP I	Aethoris (45)	IOCN(and II	MOZ OL God!	11/7	110	INA	
Cyanide, Weak Acid Dissociable	NS I	3 U	135 J	10.0 U	4.7 U	3 U	3 U	3 U	
Cyanide, Total	200	29.4	23.8 J*	10.0 U*	3 U	3 U	3 U	3 U	
	a		d Analyses b					ya na maya wasa sawa sa	
1.4	12								
pH	NS 1	1 7.31 F	NA I	NA I	7.47	7.37	7.41	7 38 1	
pri Hardness	NS NS	7.31 206	NA NA	NA NA	7.47 332	7.37 346	7.41 336	7.38 J 346	

- U Analyte not detected
 B Analyte detected in associated blank
 * Duplicate analysis outside control limits
 W Post digest spike recovery furnace outside 85-115% control limit, while sample absorbance less than 50% of spike absorbance
- E Exceeds calibration range

E - Exceeds calibration range J - Estimated value D - Dilution result NA - Not available NS - No standard ND - Not Detected

Table 8

Storm Sewer Sediments Analytical Results Clove and Maple Avenue Former MGP Site - Remedial Investigation Haverstraw, New York

	RSCO or	ļ	Claus and N	cted	Apartmonte		
Analyte	Risk-Based Criteria	CMSED01 3/4/1999	CMSED03 3/4/1999	SD013102-2 1/31/2002	SD013102-3 1/31/2002	146 Maple Avenue SD013102-4 1/31/2002	Apartments SD013102-6 1/31/2002
DTTV / 10/04004 / 10/4/							
BTEX by NYSASP Method 95-1 (0.04411	0.040.11	0.040	0.04011		
Benzene oluene	12 (a) 6300 (a)	0.014 U	0.013 U	0.012 U	0.013 U	0.011 U	0.008 J
Ethylbenzene	7800 (a)	0.014 U	0.013 U 0.013 U	0.012 U	0.0009 J	0.0006 J	0.001 J
(vlene, Total	16000 (a)	0.014 U 0.014 U	0.013 U	0.012 U 0.012 U	0.013 U	0.011 U	0.043
Total BTEX	10000 (a)	0.014 0 ND	0,013 U	0.012.0	0.013 U	0.011 U	0.027
IOIAIDIEA	1	ואט	שט	ן אט [0.0009	0.0006	80.0
Other VOCs by NYSASP Method	95-1 and 91-1 (mg/l	(g)					
Sutanone,2- (MEK)	47000 (a)	0.006 J	0.013 U	0.012 U	0.013 U	0.011 U	0.014 U
Methyl-2-pentanone,4-	NA	0.008 J	0.013 U	0.012 U	0.013 U	0.011 U	0.014 U
Tetrachloroethene	1,2 (a)	0.014 U	0.013 U	0.012 U	0.013 U	0.011 J	0.014 U
PAHs (Non-carcinogenic) by NY:	CASD Mathada 01.3	and 05.2 /ma/ka					
cenaphthene	50 (b)	0.079 J	0.42 U	0.072 J	1.6 U	0.37 U	4.4
cenaphthylene	41 (b)	0.47 U	0.048 J	0.072 J	1.0 U		14
Inthracene	50 (b)	0.47 U	0.046 J	0.19 J 0.24 J	1.1 J	0.18 J 0.32 J	4.4 U 3.6 J
lenzo[g,h,i]perylene	50 (b)	0.47 U	0.18 J	0.49	6.5	0.32 3	0.46 J
Juoranthene	50 (b)	1.1	1	1.6	7.1	1.7	3,9 J
luorene	50 (b)	0.47 U	0.057 J	0.058 J	0.28 J	0.37 U	5.7
Methylnaphthalene,2-	50 (b)	0.47 U	0.42 U	0.039 J	1.6 U	0.37 U	6.4
laphthalene	50 (b)	0.47 U	0.42 Ú	0.38 U	1.6 U	0.37 U	6,9
Phenanthrene	50 (b)	0.44 J	0.6	0.79	3.9	0.65	24
Pyrene	50 (b)	1.1	0.92	1,5	7.8	1,2	6.7
otal PAHs (Non-carcinogenic)	500	3.0	3	5.0	27.9	4.63	72
	2	(5500-400000 teen (50000					
PAHs (Carcinogenic) by NYSASF							
Senz[a]anthracene	0.224 (b)	0.5	0.42 J	1.3	3.4	0.85	0.51 J
Benzo[a]pyrene	0.061 (b)	0.56	0.44	1.2	4		4.4 U
enzo[b]fluoranthene	0.87 (b)	0.86	0.69	1.1	2.8	0.86	4.4 U
enzo[k]fluoranthene	8.7 (b)	0.3 J	0.18 J	1	3.7	0.8	4.4 U
hrysene	50 (b)	0.63	0.48	1.4	4.5	1	0.5 J
Dibenz[a,h]anthracene	0.014 (b)	0.069 J	0.058 J	0.21 J	1.4 J	0.18 J	4.4 U
ndeno[1,2,3-cd]pyrene	0.87 (a)	0.25 J	0.22 J	0.56	4.7	0.61	4.4 U
otal PAHs (Carcinogenic)	500	3.2	2.49	7	25	5.3	1.0
Other SVOCs by NYSASP Methor	de 01.2 and 05.2 /m	alka)					
3iphenyl,1,1-	3900 (a)	y/kg/ NA	NA	0,38 U	1.6 ∪	0.37 ∪	4 E 1
Bis(2-ethylhexyl)phthalate	50 (b)	0.37 U	0.37 U	0.8	1.6 U	1.1	1.5 J 4.4 U
Butyl benzyl phthalate	50 (b)	0.37 U	0.37 U	0.046 J	1.6 U	0.31 J	4.4 U
Carbazole	NA NA	0.37 ∪	0,37 U	0.040 J	0.37 J	0.37 U	4.4 U
Dibenzofuran	6.2 (b)	0.37 U	0.37 U	0.38 U	1.6 U	0.37 U	0.69 J
						0.01	
	(ma/ka)						
AL Metals by CLP Method 6010	Land Street Street						
luminum	NA	6200	5750	NA	NA	NA	NA
luminum rsenic	NA 0,43 (a)	3.6 J	4.5	NA	NA NA	NA NA	NA NA
luminum rsenic arium	NA 0,43 (a) 16000 (a)	3.6 J 39,5 B	4.5 38.8 B	NA NA	NA NA		
luminum rsenic arium	NA 0,43 (a)	3.6 J	4.5	NA	NA	NA	NA
luminum rsenic arium eryllium thromium	NA 0.43 (a) 16000 (a) 160 (a) 230 (a)	3.6 J 39.5 B 0.3 B 30.2 *	4.5 38.8 B 0.2 B 7.1 *	NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA
luminum rsenic arium eryllium ihromium obalt	NA 0.43 (a) 16000 (a) 160 (a) 230 (a) NA	3.6 J 39.5 B 0.3 B 30.2 * 8.2 B	38.8 B 0.2 B 7.1 * 6.6 B	NA NA NA NA	NA NA NA NA	NA NA NA NA NA	NA NA NA NA NA
luminum rsenic arium eryllium hromium obalt opper	NA 0.43 (a) 16000 (a) 160 (a) 230 (a) NA 3100 (a)	3.6 J 39.5 B 0.3 B 30.2 * 8.2 B 88	38.8 B 0.2 B 7.1 * 6.6 B 42.9	NA NA NA NA NA NA	NA NA NA NA NA	NA NA NA NA NA NA	NA NA NA NA NA NA
luminum rsenic arium eryflium hromium obalt opper on	NA 0.43 (a) 16000 (a) 160 (a) 230 (a) NA 3100 (a) 23000 (a)	3.6 J 39.5 B 0.3 B 30.2 * 8.2 B 88 37100 J*	38.8 B 0.2 B 7.1 * 8.6 B 42.9 14100 J*	NA NA NA NA NA NA NA	NA NA NA NA NA NA	NA NA NA NA NA NA NA	NA NA NA NA NA NA
luminum rsenic arium eryllium hromium obalt opper on	NA 0.43 (a) 16000 (a) 160 (a) 230 (a) NA 3100 (a) 23000 (a) NA	3.6 J 39.5 B 0.3 B 30.2 * 8.2 B 88 37100 J* 195 J	38.8 B 0.2 B 7.1 * 8.6 B 42.9 14100 J* 52.6 J	NA NA NA NA NA NA NA	NA NA NA NA NA NA NA	NA	NA NA NA NA NA NA NA
luminum rsenic arium eryfilium hromium obalt opper on ead langanese	NA 0.43 (a) 16000 (a) 160 (a) 230 (a) NA 3100 (a) 23000 (a) NA 1600 (a)	3.6 J 39.5 B 0.3 B 30.2 * 8.2 B 8.8 37100.J* 195 J 137	4.5 38.8 B 0.2 B 7.1 * 6.6 B 42.9 14100 J* 52.6 J 382	NA	NA NA NA NA NA NA NA NA	NA N	NA NA NA NA NA NA NA NA
luminum rsenic arium eryilium chromium cobalt opper on ead langanese ickel	NA 0.43 (a) 16000 (a) 160 (a) 230 (a) NA 3100 (a) 23000 (a) NA 1600 (a)	3.6 J 39.5 B 0.3 B 30.2 * 8.2 B 88 37100 J* 195 J 137 16 EJ	4.5 38.8 B 0.2 B 7.1 * 6.6 B 42.9 14100 J* 52.6 J 362 11.5 EJ	NA	NA N	NA N	NA N
luminum rsenic arium eryllium chromium obalt opper on ead langanese ickel anadium	NA 0.43 (a) 16000 (a) 160 (a) 230 (a) NA 3100 (a) 23000 (a) NA 1600 (a) 1600 (a) 78 (a)	3.6 J 39.5 B 0.3 B 30.2 * 8.2 B 88 37100 J* 195 J 137 16 EJ 28.7	4.5 38.8 B 0.2 B 7.1 * 6.6 B 42.9 14100 J* 52.6 J 382 11.5 EJ 15.4	NA N	NA N	NA N	NA N
luminum rsenic arium eryllium hromium obalt opper on ead langanese ickel anadium	NA 0.43 (a) 16000 (a) 160 (a) 230 (a) NA 3100 (a) 23000 (a) NA 1600 (a) 1600 (a) 78 (a) 23000 (a)	3.6 J 39.5 B 0.3 B 30.2 * 8.2 B 88 37100 J* 195 J 137 16 EJ	4.5 38.8 B 0.2 B 7.1 * 6.6 B 42.9 14100 J* 52.6 J 362 11.5 EJ	NA	NA N	NA N	NA N
luminum rsenic arium eryfilum ihromium obalt opper on ead langanese lickel anadium inc DLP Methods (ILM04.0 and 4500	NA 0.43 (a) 16000 (a) 160 (a) 230 (a) NA 3100 (a) 23000 (a) NA 1600 (a) 1600 (a) 78 (a) 23000 (a) CM) (mg/kg)	3.6 J 39.5 B 0.3 B 30.2 * 8.2 B 88 37100 J* 195 J 137 16 EJ 28.7 406	4.5 38.8 B 0.2 B 7.1 * 8.6 B 42.9 14100 J* 52.6 J 382 11.5 EJ 15.4 208	NA N	NA N	NA N	NA N
luminum rsenic arium eryllium chromium cobalt copper on ead langanese lickel anadium inc CLP Methods (ILM04:0 and 4500 cyanide, Total	NA 0.43 (a) 16000 (a) 160 (a) 230 (a) NA 3100 (a) 23000 (a) NA 1600 (a) 1600 (a) 78 (a) 23000 (a) CNI) (mg/kg) 1600 (a)	3.6 J 39.5 B 0.3 B 30.2 * 8.2 B 88 37100 J* 195 J 137 16 EJ 28.7 406	4.5 38.8 B 0.2 B 7.1 * 6.6 B 42.9 14100 J* 52.6 J 382 11.5 EJ 15.4 208	NA NA NA NA NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA NA NA NA	NA N	NA N
luminum rsenic arium eryllium chromium cobalt copper on ead langanese lickel anadium inc CLP Methods (ILM04:0 and 4500 yanide, Total yanide, Weak Acid Dissociable	NA 0.43 (a) 16000 (a) 160 (a) 230 (a) NA 3100 (a) 23000 (a) NA 1600 (a) 1600 (a) 78 (a) 23000 (a) GNI) (mg/kg) 1600 (a) 1600 (a)	3.6 J 39.5 B 0.3 B 30.2 * 8.2 B 88 37100 J* 195 J 137 16 EJ 28.7 406	4.5 38.8 B 0.2 B 7.1 * 8.6 B 42.9 14100 J* 52.6 J 382 11.5 EJ 15.4 208	NA N	NA N	NA N	NA N
luminum rsenic arium eryfilum chromium cobalt copper on ead langanese lickel anadium inc CLP Methods (ILM04.0 and 4500 yanide, Total yanide, Weak Acid Dissociable torganic Analyses by CLP Metho	NA 0.43 (a) 16000 (a) 160 (a) 230 (a) NA 3100 (a) 23000 (a) NA 1600 (a) 1600 (a) 78 (a) 23000 (a) GNI) (mg/kg) 1600 (a) 1600 (a)	3.6 J 39.5 B 0.3 B 30.2 * 8.2 B 88 37100 J* 195 J 137 16 EJ 28.7 406	4.5 38.8 B 0.2 B 7.1 * 6.6 B 42.9 14100 J* 52.6 J 382 11.5 EJ 15.4 208 1.3 UJ 1.3 U	NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA O.555 U	NA N	NA NA NA NA NA NA NA NA NA NA NA NA O.19 U
"AL Metals by CLP Method 6010 Iluminum risenic Iarium Iteryilium Chromium Cobalt Copper On ead Manganese Ilickel anadium inc CLP Methods (ILM04:0 and 4500 ryanide, Total ryanide, Weak Acid Dissociable norganic Analyses by CLP Metholardness (mg/kg) H (pH units)	NA 0.43 (a) 16000 (a) 160 (a) 230 (a) NA 3100 (a) 23000 (a) NA 1600 (a) 1600 (a) 78 (a) 23000 (a) GNI) (mg/kg) 1600 (a) 1600 (a)	3.6 J 39.5 B 0.3 B 30.2 * 8.2 B 88 37100 J* 195 J 137 16 EJ 28.7 406	4.5 38.8 B 0.2 B 7.1 * 6.6 B 42.9 14100 J* 52.6 J 382 11.5 EJ 15.4 208	NA NA NA NA NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA NA NA NA	NA N	NA N

- (a) EPA Region III Risk-Based Concentration Table
- (b) NYSDEC TAGM 4046 RSCO, limit of 50 mg/kg for individual semi-VOC used for RCSO that is not risk-based (e.g, naphthalene, 2-methylnaphthalene, chrysene)
- U Analyte Not detected
 J Estimated value
- NS No standard
- ND Not Detected
- NA Not Analyzed

Table 9

Hudson River Sediment Analytical Results Clove and Maple Avenue Former MGP Site - Remedial Investigation Haverstraw, New York

	····	1	***************************************	Sample ID/	Date Collected	d/ Deoth to Sa	mole (ft has)		
	RSCO or	VC-01	VC-21 (Dup)	VC-02	VC-03	VC-04	VC-04	VC-05	VC-05A
-	Risk-Based	7/24/2001	7/24/2001	7/24/2001	7/24/2001	7/24/2001	7/24/2001	7/24/2001	7/24/2001
Analyte	Criteria	(0-2)	(0-2)	(0-2)	(0-2)	(0-2)	(3-5)	(0-2)	(0-2)
Section 1 and 1 an		BTEX	by NYSASP N						
Total BTEX		ND	ND	ND	ND	ND	ND	ND	ND
		Other VO	Cs by NYSASI	P Method 95	-1 (mg/kg)				
Acetone	70000 (a)	0.014 U	0.015 U	0.021 U	0.021 U	0.16 B	0.17 J	0.029 U	0.068 UJ
	PA	Hs (Non-carc	inogenic) by f	VYSASP Meth	nod 95-2 (mg/k	(a)			
Acenaphthene	50 (b)	0.42 J	0.7 J	1.4 J	0.83	1 J	0.68 J	0.27 J	0.27 J
Acenaphthylene	41 (b)	0.35 J	0.52 J	0.43 J	0.25 J	1.3 J	1.1 J	0.48 J	0.33 J
Anthracene	50 (b)	0.88	2.6 J	1.7	0.93	3.2 J	1.4	2 J	0.76 J
Benzo[g,h,i]perylene	50 (b)	2.6 J	5.5 J	5.5 J	2.2 J	13 J	3.7 J	1.2 J	2 J
Fluoranthene	50 (b)	5.8 J	19 J	12	5.6	36 J	6.1	5.8 J	5.4 J
Fluorene	50 (b)	0.5 J	1.8 J	1.2 J	0.38 J	1.8 J	0.49 J	0.38 J	0.21 J
Methylnaphthalene,2-	50 (b)	0.78 U	3.6 U	1.5 U	0.15 J	6 UJ	0.26 J	0,11 J	0.048 J
Naphthalene	50 (b)	0.083 J	3.6 UJ	0.19 J	0.079 J	6 UJ	0.3 J	0.1 J	0.059 J
Phenanthrene	50 (b)	4 J	15 J	8.7	3.5	17 J	3,4	3.1 J	2.4 J
Pyrene	50 (b)	5.5 J	18 J	12	5.4 J	32 J	8.3	6.1 J	5.6 J
Total PAHs (Non-carc.)	500	20	63	43	19.3	105	25.7	20	17
				SASP Method	d 95-2 (mg/kg)		<u> </u>		
Benzlalanthracene	0.224 (b)	2.6 J	83	5.5	2.9	14 J	4.1	3.5 J	3 J
Benzo[a]pyrene	0.061 (b)	2.3 J	7.1 J	5	2,3	13 J	4	2.8 J	3.1 J
Benzo[b]fluoranthene	0.87 (b)	2 J	6 J	3.6	2	13 J	2.7	2.2 J	2.8 J
Benzo[k]fluoranthene	8.7 (b)	1.6 J	5.9 J	3.6	1.5	11 J	2.5	2.3 J	2.1 J
Chrysene	50 (b)	2.9 J	8 J	5.8	3.1	16 J	5.2	3.8 J	3.4 J
Dibenz[a,h]anthracene	0.014 (b)	0.84 J	1.8 J	1.5	0.88	3,8 J	1.2 J	0.77 J	0.74 J
Indeno[1,2,3-cd]pyrene	0.87 (a)	2.7 J	5.6 J	4.9	2.5	13 J	3.6	2.2 J	2.5 J
Total PAHs (Carcinogenic)	500	15	42	30	15	84	23	17.6	18
			Cs by NYSAS	P Method 95	-2 (mn/kn)				
Acetophenone	7800 (a)	0.78 U	3.6 U	1.5 U	0.77 U	6 UJ	1.3 U	0.079 J	0.058 J
Biphenyl,1,1-	3900 (a)	0.78 Ų	3.6 U	1.5 U	0.77 U	6 UJ	1.3 U	0.057 J	0.034 J
Bis(2-ethylhexyl)phthalate	50 (b)	0.78 U	3.6 U	1.5 U	1.1 U	6.8 UJ	1.3 U	2.6 UJ	2,2 J
Butyl benzyl phthalate	50 (b)	0.78 U	0.74 J	1.5 U	0.52 J	6 UJ	1.3 U	0.33 J	0.31 J
Carbazole	NA	0.34 J	0.95 J	0.64 J	0.26 J	1.7 J	0.18 J	0.49 J	0.24 J
Dibenzofuran	6.2 (b)	0.17 J	0.65 J	0.39 J	0.11 J	6 UJ	0.16 J	0.14 J	0.067 J
Di-n-butyl phthalate	7800 (a)	0.78 U	3.6 U	1.5 U	0.079 J	6 UJ	1.3 U	0.061 J	0.04 J
		TAL Meta	ils by CLP Mei	thod ILMO 42	(mg/kg)				
Aluminum	NA	6680	7910	8290	7760	19100 J	17400	13300	19500 J
Arsenic	0.43 (a)	2.9	3.8	2.3	3	9.6 J	12.7	9.3	7.7 J
Barium	16000 (a)	27.8	45.8	35.5	33.6	94.2 J	93.9	90.6	77.6 J
Beryllium	160 (a)	0.21	0.24	0.26	0.24	0.87 J	0.75	0.49	0.72 J
Cadmium	78 (a)	0.44 J	0.48 J	0.40 J	0.32 J	2.3 J	1.6 J	3.9 J	1.7 J
Chromium	230 (a)	9.9 J	11.6 J	10.7 J	10.0 J	81.4 J	71.4 J	51.0 J	66.5 J
Cobalt	NA	5.7 J	7.3 J	6.6	6,2	14.6 J	13	11	14.5 J
Copper	3100 (a)	71.4	83.4	54.6	55.1	128 J	104	85.3	103 J
Iron	23000 (a)	20400	28100	22000	21100	38300 J	44000	30500	37300 J
Lead	NA	132 J	108 J	96.5 J	242 J	278 J	197 J	150 J	133 J
Manganese	1600 (a)	204	228	197	185	542 J	483	335	564 J
Mercury	7.8 (a)	0.058 J	0.081 J	0.034 J	0.056 J	0.91 J	1.0 J	0.42 J	0.91 J
Nickel	1600 (a)	16	15.9	15.7	15.3	38.2 ↓	31.6	28.7	36.3 J
Selenium	390 (a)	0.93 U	1.1 J	1.0 U	0.87 U	1.6 J	1.8 U	1.7 J	2.2 UJ
Silver	390 (a)	0.19 U	0.18 U	0.21 U	0.18 U	1.8 J	1.2	0.86	1.4 J
Vanadium	78 (a)	28.5	28.2	24.9	28.2	46.1 J	35.4	30.5	38.2 J
Zinc	23000 (a)	158	141	135	131	281 J	283	219	299 J
		Cyai	nides by CLP .	Methods (mg					
Cyanide, Total	1600 (a)	ND	ND	ND	ND	ND	ND	ND	ND
		Anni San Anni San Anni	ianic Analyses	by CLP Meth	nods				
Hardness (mg/kg)		79000	69600	52200	52000	104000 J	51800	37700	54600 J
pH (Standard Units)		7.19	7.73	8.83	8.22	7.4 J	7.24	7.56	7.71 J
Total Organic Carbon (mg/kg)		28500 J	5140 J	14500 J	13600	37800 J	36000	34000	35000 J
Notes:						· · · · · · · · · · · · · · · · · · ·			

⁽a) EPA Region III Risk-Based Concentration Table for residential exposures

⁽b) NYSDEC TAGM 4046 RSCO, limit of 50 mg/kg for individual semi-VOC used for RCSO that is not risk-based (e.g. naphthalene, 2-methylnaphthalene, chrysene)

U - Not Detected

J - Estimated Value

B - Analyte Detected in Association with Method Blank

D - Dilution Result

E - Exceeds Calibration Range

Table 5-1. TarGOST Data Summary Supplemental Remedial Investigation - 2008 Former Clove and Maple MGP Haverstraw, NY

File	Data/Times	Final Danth	May Cianal	May Cinnal Donth
<u>File</u> SB-93R	<u>Date/Time</u> 04/22/08 03:21 PM	Final Depth 2.177	Max Signal 137.5363	Max Signal Depth 0.025
SB-68	04/22/08 09:16 AM	26.264		
SB-72	04/22/08 09.16 AM	18.252		
SB-81	04/22/08 11:07 AM 04/22/08 12:34 PM	15.311	57.95388	
SB-85	04/22/08 12:34 PM 04/22/08 01:16 PM	19.683		14.797
SB-89	04/22/08 01:10 PM	22.076		
SB-93	04/22/08 03:13 PM	2.662		
30-93	TOTAL DEPTH =	106.425		U
<u>File</u>	Date/Time		Max Signal	Max Signal Depth
<u>r lie</u> SB-96	04/23/08 03:38 PM	25.938		5.536
SB-62	04/23/08 07:31 AM	25.854		
SB-65	04/23/08 07:31 AM			
	04/23/08 08:34 AM	20.738		
SB-69		22.732		
SB-73	04/23/08 09:11 AM	21.752		
SB-78	04/23/08 09:48 AM 04/23/08 10:15 AM	19.34		
SB-82		6.739		
SB-82R	04/23/08 10:45 AM 04/23/08 12:32 PM	17.965		
SB-86		25.88		
SB-107	04/23/08 01:05 PM	25.91	28.28872	
SB-106	04/23/08 02:10 PM	15.785		
SB-104	04/23/08 02:33 PM	25.836		
SB-100	04/23/08 03:08 PM	25.887		8.517
E0.	TOTAL DEPTH =	280.356		Mass Olava al Daveth
<u>File</u>	Date/Time	•	Max Signal	Max Signal Depth
SB-91	04/24/08 02:51 PM	19.811	13.42773	
SB-63	04/24/08 10:18 AM	17.923		
SB-66	04/24/08 10:38 AM	5.634		
SB-66R	04/24/08 10:51 AM	20.132		9.766
SB-70	04/24/08 12:24 PM	17.913		
SB-75	04/24/08 12:51 PM	24.002		10.839
SB-74	04/24/08 01:24 PM	17.822		
SB-79	04/24/08 01:50 PM	21.951	95.57571	10.328
SB-83	04/24/08 02:28 PM	21.431	55.41552	0.139
	TOTAL DEPTH =	166.619		
File	Date/Time	Final Depth	Max Signal	Max Signal Depth
SB-103B / SB-103C	04/25/08 01:12 PM	27.576	612.6185	
SB-88	04/25/08 07:29 AM	25.244		
SB-88	04/25/08 08:23 AM	0.023		
SB-92	04/25/08 08:52 AM	21.986		
SB-84	04/25/08 09:18 AM	9.757		
SB-120	04/25/08 09:40 AM	25.903		
SB-121	04/25/08 10:10 AM	25.893		
SB-122	04/25/08 10:40 AM	33.811	66.31263	
SB-87	04/25/08 12:00 PM	10.647		
SB-90	04/25/08 12:28 PM	22.228		
SB-103	04/25/08 01:04 PM	5.429		
SB-103B	04/25/08 01:12 PM	9.88		0.548
SB-103C	04/25/08 01:28 PM	17.678		1.016
	TOTAL DEPTH =	236.055		

Table 5-1. TarGOST Data Summary Supplemental Remedial Investigation - 2008 Former Clove and Maple MGP Haverstraw, NY

<u>File</u>	Date/Time	Final Depth	Max Signal	Max Signal Depth
SB-98A	04/28/08 02:51 PM	19.052	175.0334	0.003
SB-105	04/28/08 08:05 AM	33.806	19.85658	0.258
SB-101	04/28/08 08:56 AM	12.257	11.44434	0.402
SB-101A	04/28/08 09:11 AM	12.147	40.88489	0
SB-97	04/28/08 10:02 AM	45.412	10.53673	4.18
SB-95	04/28/08 10:54 AM	33.969	40.71144	9.709
SB-94	04/28/08 12:34 PM	27.644	634.8876	9.537
SB-99	04/28/08 01:05 PM	28.591	273.4525	8.965
SB-102	04/28/08 01:47 PM	3.815	104.3344	0
SB-102A	04/28/08 01:57 PM	2.929	68.95105	0
SB_102B	04/28/08 02:09 PM	1.67	72.36816	0.505
SB_102C	04/28/08 02:17 PM	16.628	14.5765	0.126
SB-98	04/28/08 02:40 PM	2.182		0.033
	TOTAL DEPTH =	240.102		
<u>File</u>	<u>Date/Time</u>	Final Depth	Max Signal	Max Signal Depth
SB-61	04/29/08 08:32 AM	5.181	23.53274	3.381
SB-125	04/29/08 03:39 PM	45.788	13.74107	3.052
SB-80	04/29/08 02:48 PM	41.483	88.47456	12.479
SB_124B	04/29/08 02:05 PM	33.977	80.17213	7.706
SB-124A	04/29/08 01:54 PM	3.541	25.89514	0.048
SB-124	04/29/08 01:47 PM	4.165	8.202727	1.18
SB-67	04/29/08 01:15 PM	27.107	1243.02	11.882
SB-123	04/29/08 12:43 PM	29.947	39.47816	2.815
SB-71	04/29/08 11:58 AM	38.51	893.1307	13.797
SB-77	04/29/08 10:32 AM	25.373	133.0304	8.054
SB-93C	04/29/08 09:54 AM	18.524	270.2016	11.774
SB-64	04/29/08 08:57 AM	23.519	122.3842	10.897
SB-61A	04/29/08 08:46 AM	3.067	14.05328	1.007
	TOTAL DEPTH =	300.182		
<u>File</u>	Date/Time	Final Depth	Max Signal	Max Signal Depth
SB-126	04/30/08 07:21 AM	60.514	10.78659	3.262
SB_02A	04/30/08 10:26 AM	20.603	234.282	7.957
SB_02	04/30/08 10:15 AM	6.338	11.52407	4.999
SB_113	04/30/08 09:34 AM	25.107	555.1105	14.76
SB-127C	04/30/08 08:40 AM	3.16	7.676667	1.506
SB-127B	04/30/08 08:37 AM	1.913	11.98527	
SB-127A	04/30/08 08:26 AM	1.754		
SB-127	04/30/08 08:19 AM	2.234	7.23723	2.103
	TOTAL DEPTH =	121.623		

Total Footage for entire TarGOST project=

1451.362

Table 5-2. Supplemental Remedial Investigation 2008 - Summary of Sampling Program
Former Clove and Maple MGP
Haverstraw, NY

Location	Sample Depth (feet bgs)	Ref. Elev.	Sample Elevation	Field Sample Identification	Laboratory Identification	SDG	Lab	Sample Date	Property	Matrix	Sample Type	Parameters Analyzed
Soil Invest	tigation											
SB-68	8.5 - 9.5	17.29	7.8 to 8.8	SB-68(8.5-9.5)	914985	T581	TA	4/22/08	Apartments	Soil	Soil Grab	VOC, PAH
SB-85	13.0 - 13.5	13.82	0.3 to 0.8	SB-85(13.0-13.5)	914986	T581	TA	4/22/08	Apartments	Soil	Soil Grab	VOC, PAH
SB-88	5.5 - 6.0	11.30	5.3 to 5.8		917109	T953	TA	4/25/08	West Street	Soil	Soil Grab	VOC, PAH
SB-88	4.5 - 5.0	11.30	6.3 to 6.8	SB-88(4.5-5)	917110	T953	TA	4/25/08	West Street	Soil	Soil Grab	VOC, PAH
SB-94	9.0 - 9.5	11.30	1.8 to 2.3	SB-94(9-9.5)	917111	T953	TA	4/30/08	Apartments	Soil	Soil Grab	VOC, PAH
SB-107	5.5 - 6.0	12.39	6.4 to 6.9	SB-107(5.5-6)	917112	T953	TA	4/30/08	Apartments	Soil	Soil Grab	VOC, PAH
SB-120	4.5 - 5.0	15.54	10.5 to 11.	O SB-120(4.5-5)	917113	T953	TA	5/1/08	West Street	Soil	Soil Grab	VOC, PAH
SB-92	5.0 - 5.5	11.08	5.6 to 6.1	SB-92(5-5.5)	917114	T953	TA	5/1/08	West Street	Soil	Soil Grab	VOC, PAH
SB-84	4.5 - 5.0	13.12	8.1 to 8.6	SB-84(4.5-5)	917115	T953	TA	5/1/08	Apartments	Soil	Soil Grab	VOC, PAH
SB-100	8.25 - 8.75	12.84	4.1 to 4.6	SB-100(8.25-8.75)	917116	T953	TA	4/30/08	Apartments	Soil	Soil Grab	VOC, PAH
SB-67	13.5 - 14.0	13.75	-0.3 to 0.2		917117	T953	TA	5/1/08	West Street	Soil	Soil Grab	VOC, PAH
SB-75	19.0 - 19.5	11.59		4 SB-75(19-19.5)	917118	T953	TA	5/2/08	Apartments	Soil	Soil Grab	VOC, PAH
SB-75	16.5 - 17.0	11.59	-5.4 to -4.	9 SB-75(16.5-17)	917119	T953	TA	5/2/08	Apartments	Soil	Soil Grab	VOC, PAH
SB-75	2.5 - 3.0	11.59	8.6 to 9.1	SB-75(2.5-3)	917120	T953	TA	5/2/08	Apartments	Soil	Soil Grab	VOC, PAH
SB-75	8.0 - 8.5	11.59	3.1 to 3.6	` ,	917121	T953	TA	5/2/08	Apartments	Soil	Soil Grab	VOC, PAH
SB-124	5.0 - 5.5	16.47	11.0 to 11.	5 SB-124(5-5.5)	917122	T953	TA	5/1/08	West Street	Soil	Soil Grab	VOC, PAH
SB-80	12.0 - 12.5	16.78	4.3 to 4.8	SB-80(12-12.5)	917123	T953	TA	5/2/08	West Street	Soil	Soil Grab	VOC, PAH
SB-80	17.0 - 17.5	16.78		2 SB-80(17-17.5)	917124	T953	TA	5/2/08	West Street	Soil	Soil Grab	VOC, PAH
SB-62	9.0 - 9.5	12.77	3.3 to 3.8		917125	T953	TA	5/2/08	Apartments	Soil	Soil Grab	VOC, PAH
SB-123	8.5 - 9.0	18.99		5 SB-123(8.5-9)	917126	T953	TA	5/1/08	West Street	Soil	Soil Grab	VOC, PAH
SB-86	13.0 - 13.5	11.78		2 SB-86(13-13.5)	917134	T953	TA	5/2/08	Apartments	Soil	Soil Grab	VOC, PAH
SB-78	12.0 - 12.5	12.19	-0.3 to 0.2	SB-78(12-12.5)	917136	T953	TA	5/2/08	Apartments	Soil	Soil Grab	VOC, PAH
SB-78	15.0 - 15.5	12.19		SB-78(15-15.5)	917137	T953	TA	5/2/08	Apartments	Soil	Soil Grab	VOC, PAH
SB-118	14.2 - 14.7	28.95		7 SB-118(14.2-14.7)	918381	U162	TA	5/6/08	Main Site	Soil	Soil Grab	VOC, PAH, Metals, CN
SB-118	18.0 - 18.5	28.95		9 SB-118(18-18.5)	918382	U162	TA	5/6/08	Main Site	Soil	Soil Grab	VOC, PAH, Metals, CN
SB-118	28.0 - 28.5	28.95	0.4 to 0.9	,	918383	U162	TA	5/6/08	Main Site	Soil	Soil Grab	VOC, PAH, Metals, CN
SB-117	14.2 - 14.7	28.93		7 SB-117(14.2-14.7)	918384	U162	TA	5/6/08	Main Site	Soil	Soil Grab	VOC, PAH, Metals, CN
SB-117	28.5 - 29.0	28.93		SB-117(28.5-29)	918385	U162	TA	5/6/08	Main Site	Soil	Soil Grab	VOC, PAH, Metals, CN
SB-113	13.0 - 13.5	28.68		7 SB-113(13-13.5)	918386	U162	TA	5/7/08	Main Site	Soil	Soil Grab	VOC, PAH, Metals, CN
SB-113	22.0 - 22.5	28.68		SB-113(22-22.5)	918387	U162	TA	5/7/08	Main Site	Soil	Soil Grab	VOC, PAH, Metals, CN
SB-113	31.5 - 32.0	28.68		3 SB-113(31.5-32)	918388	U162	TA	5/7/08	Main Site	Soil	Soil Grab	VOC, PAH, Metals, CN
SB-114	6.5 - 7.0	28.18		7 SB-114(6.5-7)	918391	U162	TA	5/7/08	Main Site	Soil	Soil Grab	VOC, PAH, Metals, CN
SB-114	16.5 - 17.5	28.18		7 SB-114(16.5-17.5)	918392	U162	TA	5/7/08	Main Site	Soil	Soil Grab	VOC, PAH, Metals, CN
SB-114	16.5 - 17.5	28.18		7 SB-114(16.5-17.5)Dup	918393	U162	TA	5/7/08	Main Site	Soil	Soil Grab	VOC, PAH, Metals, CN
SB-114	19.0 - 19.5	28.18		SB-114(19-19.5)	918840	U237	TA	5/7/09	Main Site	Soil	Soil Grab	VOC, PAH, Metals, CN
SB-114	29.5 - 30.0	28.18		3 SB-114(29.5-30)	918841	U237	TA	5/7/08	Main Site	Soil	Soil Grab	VOC, PAH, Metals, CN
SB-116	8.0 - 9.0	30.10		1 SB-116(8-9)	918842	U237	TA	5/8/08	Main Site	Soil	Soil Grab	VOC, PAH, Metals, CN
SB-116	30.0 - 30.5	30.10	-0.4 to 0.1	` ,	918843	U237	TA	5/8/08	Main Site	Soil	Soil Grab	VOC, PAH, Metals, CN
SB-115	17.0 - 18.0	39.51		5 SB-115(17-18)	918844	U237	TA	5/8/08	Main Site	Soil	Soil Grab	VOC, PAH, Metals, CN
SB-115	26.0 - 26.5	39.51		5 SB-115(26-26.5)	918845	U237	TA	5/9/08	Main Site	Soil	Soil Grab	VOC, PAH, Metals, CN
SB-112A	18.0 - 19.0	28.06	9.1 to 10.	1 SB-112A(18-19)	918848	U237	TA	5/9/08	Main Site	Soil	Soil Grab	VOC, PAH, Metals, CN

Table 5-2. Supplemental Remedial Investigation 2008 - Summary of Sampling Program
Former Clove and Maple MGP
Haverstraw, NY

SB-1128 Z2 0 Z3 0	Location	Sample Depth (feet bgs)	Ref. Elev.	Sample Elevation	Field Sample Identification	Laboratory Identification	SDG	Lab	Sample Date	Property	Matrix	Sample Type	Parameters Analyzed
Septing Sept	SB-112B	22.0 - 23.0	28.06	5.1 to 6.	1 SB-112B(22-23)	920230	U470	TA	5/12/08	Main Site	Soil	Soil Grab	VOC, PAH, Metals, CN
SB-1118 22.2 - 22.7 28.91 62. to 6.7 SB-1118 22.2-22.7) 920233 U470 TA 5/13008 Main Site Soil Soil Grab VOC, PAH, Metals, CN SB-1110 10.5 - 11.0 31.34 20.3 to 20.8 SB-1110(10.5-11) 920235 U470 TA 5/13008 Main Site Soil Soil Grab VOC, PAH, Metals, CN SB-110 10.5 - 11.0 31.34 20.3 to 20.8 SB-110(10.5-11) 920235 U470 TA 5/13008 Main Site Soil Soil Grab VOC, PAH, Metals, CN SB-110 12.0 77.26 14.3 to 15.3 SB-110(12.5-15) 920265 U570 TA 5/13008 Main Site Soil Soil Grab VOC, PAH, Metals, CN SB-119 12.0 77.26 14.3 to 15.3 SB-119(12.13) 920665 U581 TA 5/14008 Main Site Soil Soil Grab VOC, PAH, Metals, CN SB-119 21.2 21.7 27.26 6.8 to 9.3 SB-119(12.2-12.17) 920667 U581 TA 5/14008 Main Site Soil Soil Grab VOC, PAH, Metals, CN SB-119 21.2 21.7 27.26 6.8 to 9.3 SB-119(12.3-24) 920668 U581 TA 5/14008 Main Site Soil Soil Grab VOC, PAH, Metals, CN SB-119 27.2 27.72 27.26 10.4 to 9.9 SB-119(72.2-7.77) 920669 U581 TA 5/14008 Main Site Soil Soil Grab VOC, PAH, Metals, CN SB-128 10.5 11.0 30.79 19.8 to 20.3 SB-128(10.5-11) 920670 U581 TA 5/14008 Main Site Soil Soil Grab VOC, PAH, Metals, CN SB-128 10.4 11.4 SB-120(14.5-11) 920670 U581 TA 5/14008 Main Site Soil Soil Grab VOC, PAH, Metals, CN SB-128 10.4 11.4 SB-120(14.5-11) 920670 U581 TA 5/14008 Main Site Soil Soil Grab VOC, PAH, Metals, CN SB-128 10.4 11.4 SB-120(14.5-11) 920670 U581 TA 5/14008 Main Site Soil Soil Grab VOC, PAH, Metals, CN SB-128 10.5 11.4 SB-120(14.5-15) 920670 U581 TA 5/15008 Main Site Soil Soil Grab VOC, PAH, Metals, CN SB-128 10.5 11.1 SB-120(14.5-15) 920670 U581 TA 5/15008 Main Site Soil Soil Grab VOC, PAH, Metals, CN SB-129 10.5 SB-128 10.5 11.1 SB-120(14.5-15) 920670 U581 TA	SB-112B	32.0 - 33.0	28.06	-4.9 to -3	9 SB-112B(32-33)	920231	U470	TA	5/12/08	Main Site	Soil	Soil Grab	VOC, PAH, Metals, CN
SB-110 25. 3.30 28.91 4.1 10 3.6 SB-11116(212.5-33) 92.0236 14.70 TA 5/13/08 Main Site Soil Soil Grab VOC, PAH, Metals, CN SB-110 28.0 28.5 31.34 2.8 10 3.3 SB-110(28-28.5) 92.0236 14.70 TA 5/13/08 Main Site Soil Soil Grab VOC, PAH, Metals, CN SB-119 21.0 1.30 27.25 14.3 10 15.3 SB-119(12-13) 92.0666 US61 TA 5/13/08 Main Site Soil Soil Grab VOC, PAH, Metals, CN SB-119 18.0 19.0 27.26 8.3 10 8.3 SB-119(18-19) 92.0666 US61 TA 5/13/08 Main Site Soil Soil Grab VOC, PAH, Metals, CN SB-119 21.2 2.17 27.26 5.6 10 6.1 SB-119(21-22.17) 92.0667 US61 TA 5/13/08 Main Site Soil Soil Grab VOC, PAH, Metals, CN SB-119 21.2 2.17 27.26 3.3 10 4.3 SB-119(23-24) 92.0668 US61 TA 5/13/08 Main Site Soil Soil Grab VOC, PAH, Metals, CN SB-119 37.2 37.7 27.26 3.0 4.3 SB-119(37-37.7) 92.0669 US61 TA 5/13/08 Main Site Soil Soil Grab VOC, PAH, Metals, CN SB-119 37.2 37.7 27.26 1.0 10 4.0 4.9 SB-119(37-37.7) 92.0669 US61 TA 5/13/08 Main Site Soil Soil Grab VOC, PAH, Metals, CN SB-128 1.0 1.1 1.0 30.79 1.6 1.0 30.5 SB-128(10-14-14) 92.0671 US61 TA 5/13/08 Main Site Soil Soil Grab VOC, PAH, Metals, CN MTBE, TBA SB-128 1.0	SB-111B	8.5 - 9.0	28.91	19.9 to 20	4 SB-111B(8.5-9)	920232	U470	TA	5/12/08	Main Site	Soil	Soil Grab	VOC, PAH, Metals, CN
SB-110 10.5 11.0 31.34 20.3 10 20.8 SB-110(10.5-11) 920236 U470 TA 5/13/08 Main Site Soil Soil Grab VOC, PAH, Metals, CN SB-119 12.0 13.0 27.26 14.3 10 15.3 SB-1119(12.13) 920665 U561 TA 5/14/08 Main Site Soil Soil Grab VOC, PAH, Metals, CN SB-119 12.0 13.0 27.26 5.6 10 6.1 SB-119(12.13) 920665 U561 TA 5/14/08 Main Site Soil Soil Grab VOC, PAH, Metals, CN SB-119 12.2 21.7 27.6 5.6 10 6.1 SB-119(12.2-17) 920665 U561 TA 5/14/08 Main Site Soil Soil Grab VOC, PAH, Metals, CN VOC, PAH, Metals, CN SB-119 21.2 21.7 27.6 5.3 10 43.3 SB-119(23.2-17) 920666 U561 TA 5/14/08 Main Site Soil Soil Grab VOC, PAH, Metals, CN SB-119 23.0 24.0 27.26 3.3 to 4.3 SB-119(23.2-17) 920666 U561 TA 5/14/08 Main Site Soil Soil Grab VOC, PAH, Metals, CN SB-119 23.7 37.7 27.6 10.4 to 19 SB-119(37.2-377) 920666 U561 TA 5/14/08 Main Site Soil Soil Grab VOC, PAH, Metals, CN SB-128 10.5 11.0 30.79 19.8 to 16.8 SB-128(10.5-11) 920670 U561 TA 5/14/08 Main Site Soil Soil Grab VOC, PAH, Metals, CN SB-128 10.5 11.0 30.79 19.8 to 16.8 SB-128(14.1-5) 920671 U561 TA 5/14/08 Main Site Soil Soil Grab VOC, PAH, Metals, CN MTBE, TBA SB-128 13.0 14.0 34.8 20.8 to 21.8 SB-128(13.1-4) 920673 U561 TA 5/16/08 Main Site Soil Soil Grab VOC, PAH, Metals, CN MTBE, TBA SB-128 TA 5/16/08 Main Site Soil Soil Grab VOC, PAH, Metals, CN SB-129 TA 5/16/08 Main Site Soil Soil Grab VOC, PAH, Metals, CN SB-129 TA 5/16/08 Main Site Soil Soil Grab VOC, PAH, Metals, CN SB-129 TA 5/16/08 Main Site Soil Soil Grab VOC, PAH, Metals, CN SB-129 TA 5/16/08 Main Site Soil Soil Grab VOC, PAH, Metals, CN SB-129 TA 5/16/08 Main Site Soil Soil Grab VOC, PAH, Metals, CN SB-129 TA 5/16/08 Main	SB-111B	22.2 - 22.7	28.91	6.2 to 6.	7 SB-111B(22.2-22.7)	920233	U470	TA	5/13/08	Main Site	Soil	Soil Grab	VOC, PAH, Metals, CN
SB-110 28.0 - 28.5 31.34 28 to 3.3 SB-110[28-28.5] 920265 U470 TA 5/13/08 Main Site Soil Soil Grab VOC, PAH, Metals, CN SB-119 18.0 - 19.0 27.26 8.3 to 9.3 SB-119[18-19] 920666 U561 TA 5/14/08 Main Site Soil Soil Grab VOC, PAH, Metals, CN SB-119 21.2 - 21.7 72.6 5.6 to 6.1 SB-119[21.2-21.7] 920666 U561 TA 5/14/08 Main Site Soil Soil Grab VOC, PAH, Metals, CN SB-119 21.2 - 21.7 72.6 5.6 to 6.1 SB-119[21.2-21.7] 920667 U561 TA 5/14/08 Main Site Soil Soil Grab VOC, PAH, Metals, CN SB-119 37.2 - 37.7 72.6 3.3 to 4.3 SB-119[23-24] 920667 U561 TA 5/14/08 Main Site Soil Soil Grab VOC, PAH, Metals, CN SB-119 37.2 - 37.7 72.6 1.04 to 9.9 SB-119[37.2-37.7] 920669 U561 TA 5/14/08 Main Site Soil Soil Grab VOC, PAH, Metals, CN SB-128 14.0 14.5 30.79 18.1 to 20.3 SB-128[10.5-11] 920670 U561 TA 5/14/08 Main Site Soil Soil Grab VOC, PAH, Metals, CN SB-128 14.0 14.5 30.79 15.3 to 16.8 SB-128[14-14.5] 920671 U561 TA 5/15/08 Main Site Soil Soil Grab VOC, PAH, Metals, CN MTBE, TBA SB-128 14.0 14.5 30.79 12.3 to 16.8 SB-128[14-14.5] 920672 U561 TA 5/15/08 Main Site Soil Soil Grab VOC, PAH, Metals, CN MTBE, TBA SB-128 14.0 14.5 30.79 12.5 SB-128[13-128.6] 920672 U561 TA 5/15/08 Main Site Soil Soil Grab VOC, PAH, Metals, CN MTBE, TBA SB-128 14.0 14.1 SB-128[10.81-13.3] 920672 U561 TA 5/15/08 Main Site Soil Soil Grab VOC, PAH, Metals, CN SB-129 13.3 13.8 24.94 13.6 to 14.1 SB-128[10.81-13.3] 920672 U561 TA 5/15/08 Main Site Soil Soil Grab VOC, PAH, Metals, CN SB-129 13.3 13.8 24.94 13.6 to 14.1 SB-128[10.81-13.3] 921940 U775 TA 5/16/08 Main Site Soil Soil Grab VOC, PAH, Metals, CN SB-129 13.5 14.5 14.5 14.5 14.5 14.5	SB-111B	32.5 - 33.0	28.91	-4.1 to -3	6 SB-111B(32.5-33)	920234	U470	TA	5/13/08	Main Site	Soil	Soil Grab	VOC, PAH, Metals, CN
SB-119 12.0 - 13.0 27.26 13.1 15.3 SB-119(12-13) 92.0866 U561 TA 5/14/08 Main Site Soil Soil Grab VOC, PAH, Metals, CN SB-119 21.2 21.7 27.26 5.6 to 6.1 SB-119(12-2-1.7) 92.0867 U561 TA 5/14/08 Main Site Soil Soil Grab VOC, PAH, Metals, CN SB-119 23.0 24.0 27.26 3.3 to 4.3 SB-119(23-24) 92.0868 U561 TA 5/14/08 Main Site Soil Soil Grab VOC, PAH, Metals, CN SB-119 23.0 24.0 27.26 10.1 to 9.9 SB-119(37-23-7.7) 92.0869 U561 TA 5/14/08 Main Site Soil Soil Grab VOC, PAH, Metals, CN SB-129 37.2 2.7 27.26 10.1 to 9.9 SB-119(37-23-7.7) 92.0869 U561 TA 5/14/08 Main Site Soil Soil Grab VOC, PAH, Metals, CN SB-128 10.5 11.0 30.79 19.8 to 20.3 SB-128(10.5-11) 92.0870 U561 TA 5/14/08 Main Site Soil Soil Grab VOC, PAH, Metals, CN MTBE, TBA SB-128 14.0 14.5 30.79 12.1 to 16.8 SB-128(14-14.5) 92.0870 U561 TA 5/14/08 Main Site Soil Soil Grab VOC, PAH, Metals, CN MTBE, TBA SB-128 28.1 28.6 30.79 2.2 to 2.7 SB-128(15-14) 92.0870 U561 TA 5/15/08 Main Site Soil Soil Grab VOC, PAH, Metals, CN MTBE, TBA SB-128 13.0 14.0 34.81 0.8 to 1.8 SB-108(13-34) 92.0873 U561 TA 5/15/08 Main Site Soil Soil Grab VOC, PAH, Metals, CN SB-129 13.3 13.8 24.94 1.1 to 1.7 SB-129(15-15-15) 92.1940 U775 TA 5/16/08 Main Site Soil Soil Grab VOC, PAH, Metals, CN SB-129 15.0 15.5 24.94 3.6 to 1.7 SB-129(15-15-15) 92.1940 U775 TA 5/16/08 Main Site Soil Soil Grab VOC, PAH, Metals, CN SB-129 15.0 36.6 20.7 to 1.2 SB-129(15-15-15) 92.1940 U775 TA 5/16/08 Main Site Soil Soil Grab VOC, PAH, Metals, CN SB-129 15.0 36.6 20.7 to 1.2 SB-129(15-15-15) 92.1940 U775 TA 5/16/08 Main Site Soil Soil Grab VOC, PAH, Metals, CN SB-129 15.0 36.6 20.7 to 1.2 SB-129(15-15-15) 92.1940	SB-110	10.5 - 11.0	31.34	20.3 to 20	8 SB-110(10.5-11)	920235	U470	TA	5/13/08	Main Site	Soil	Soil Grab	VOC, PAH, Metals, CN
SB-119 18.0 - 19.0 27.26 8.3 10 9.3 SB-119(18-19) 92.0666 US61 TA 5/14/08 Main Site Soil Soil Grab VOC, PAH, Metals, CN SB-119 23.0 - 24.0 27.26 3.3 to 4.3 SB-119(23-24) 92.0667 US61 TA 5/14/08 Main Site Soil Soil Grab VOC, PAH, Metals, CN SB-119 37.2 - 37.7 27.26 1.04 to -9.9 SB-119(37.2-37.7) 92.0668 US61 TA 5/14/08 Main Site Soil Soil Grab VOC, PAH, Metals, CN SB-119 37.2 - 37.7 27.26 1.04 to -9.9 SB-119(37.2-37.7) 92.0669 US61 TA 5/14/08 Main Site Soil Soil Grab VOC, PAH, Metals, CN SB-128 14.0 - 14.5 90.79 12.6 20.3 SB-128(10-5-11) 92.0670 US61 TA 5/14/08 Main Site Soil Soil Grab VOC, PAH, Metals, CN MTBE, TBA SB-128 14.0 - 14.5 90.79 2.1 2.8 50.79 2.2 2.8 58.128(14-14.5) 92.0671 US61 TA 5/15/08 Main Site Soil Soil Grab VOC, PAH, Metals, CN, MTBE, TBA SB-128 14.0 - 14.0 34.81 20.8 to 2.7 SB-128(82.1-28.6) 92.0672 US61 TA 5/15/08 Main Site Soil Soil Grab VOC, PAH, Metals, CN, MTBE, TBA SB-108 13.0 - 14.0 34.81 2.8 to 18.8 SB-108(13-14) 92.0673 US61 TA 5/15/08 Main Site Soil Soil Grab VOC, PAH, Metals, CN SB-129 10.8 - 11.3 24.94 13.6 to 14.5 SB-128(10.2-11.3) 92.1939 U775 TA 5/16/08 Main Site Soil Soil Grab VOC, PAH, Metals, CN SB-129 13.3 - 13.8 24.94 11.2 to 11.7 SB-129(13.2-51.3-75) 92.1940 U775 TA 5/16/08 Main Site Soil Soil Grab VOC, PAH, Metals, CN SB-129 26.1 - 26.6 24.94 1.7 to 1.2 SB-129(16.1-26.6) 92.1942 U775 TA 5/16/08 Main Site Soil Soil Grab VOC, PAH, Metals, CN SB-129 26.1 - 26.6 24.94 1.7 to 1.2 SB-129(16.1-26.6) 92.1942 U775 TA 5/16/08 Main Site Soil Soil Grab VOC, PAH, Metals, CN SB-139 25.0	SB-110	28.0 - 28.5	31.34	2.8 to 3.	3 SB-110(28-28.5)	920236	U470	TA	5/13/08	Main Site	Soil	Soil Grab	VOC, PAH, Metals, CN
SB-119 21.2 - 21.7 27.26 5.6 to 6.1 SB-119(21.2-21.7) 920667 U661 TA 5/14/08 Main Site Soil Soil Grab VOC, PAH, Metals, CN SB-119 23.0 - 24.0 27.26 3.3 to 4.3 SB-119(27.2-37.7) 920668 U561 TA 5/14/08 Main Site Soil Soil Grab VOC, PAH, Metals, CN SB-128 10.5 - 11.0 30.79 16.3 to 20.3 SB-128(10.5-11) 920670 U561 TA 5/14/08 Main Site Soil Soil Grab VOC, PAH, Metals, CN SB-128 10.5 - 11.0 30.79 16.3 to 16.8 SB-128(10.5-11) 920670 U561 TA 5/14/08 Main Site Soil Soil Grab VOC, PAH, Metals, CN MTBE, TBA SB-128 28.1 - 28.6 30.79 2.2 to 2.7 SB-128(28.1-28.6) 920672 U561 TA 5/15/08 Main Site Soil Soil Grab VOC, PAH, Metals, CN, MTBE, TBA SB-128 28.1 - 28.6 30.79 2.2 to 2.7 SB-128(28.1-28.6) 920672 U561 TA 5/15/08 Main Site Soil Soil Grab VOC, PAH, Metals, CN, MTBE, TBA SB-108 30.0 - 14.0 34.81 20.8 to 21.8 SB-108(13.4) 920673 U561 TA 5/15/08 Main Site Soil Soil Grab VOC, PAH, Metals, CN SB-129 10.0 - 14.0 34.81 20.8 to 21.8 SB-108(13.3-4) 920676 U561 TA 5/15/08 Main Site Soil Soil Grab VOC, PAH, Metals, CN SB-129 10.3 - 14.0 34.81 20.8 to 21.8 SB-108(13.3-4) 920676 U561 TA 5/15/08 Main Site Soil Soil Grab VOC, PAH, Metals, CN SB-129 10.3 - 15.5 24.94 11.2 to 11.7 SB-129(10.8-11.3) 921939 U775 TA 5/16/08 Main Site Soil Soil Grab VOC, PAH, Metals, CN SB-129 15.0 - 15.5 24.94 12.1 to 11.7 SB-129(10.8-11.3) 921940 U775 TA 5/16/08 Main Site Soil Soil Grab VOC, PAH, Metals, CN SB-129 15.0 - 15.5 24.94 17.1 to 11.7 SB-129(10.8-11.3) 921941 U775 TA 5/16/08 Main Site Soil Soil Grab VOC, PAH, Metals, CN SB-129 15.0 - 15.5 24.94 17.1 to 11.7 SB-129(10.8-11.3) 921941 U775 TA 5/19/08 Main Site Soil Soil Grab VOC, PAH, Metals, CN SB-129 15.0 - 15.5 24.94 17.1 to 11.			27.26		3 SB-119(12-13)	920665	U561	TA	5/14/08	Main Site	Soil	Soil Grab	VOC, PAH, Metals, CN
SB-119 23.0 - 24.0 27.26 3.3 to 4.3 SB-119(32-24) 920668 U561 TA 5/14/08 Main Site Soil Soil Grab VOC, PAH, Metals, CN SB-128 10.5 - 11.0 30.79 19.8 to 20.3 SB-128(10.5-11) 920670 U561 TA 5/14/08 Main Site Soil Soil Grab VOC, PAH, Metals, CN SB-128 14.0 - 14.5 30.79 16.3 to 16.8 SB-128(14-14.5) 920671 U561 TA 5/15/08 Main Site Soil Soil Grab VOC, PAH, Metals, CN, MTBE, TBA SB-128 14.0 - 14.5 30.79 16.3 to 16.8 SB-128(14-14.5) 920671 U561 TA 5/15/08 Main Site Soil Soil Grab VOC, PAH, Metals, CN, MTBE, TBA SB-128 14.0 - 14.0 34.81 20.8 to 27.8 SB-128(14-14.5) 920673 U561 TA 5/15/08 Main Site Soil Soil Grab VOC, PAH, Metals, CN, MTBE, TBA SB-108 13.0 - 14.0 34.81 0.8 to 18.8 SB-108(13-14) 920673 U561 TA 5/15/08 Main Site Soil Soil Grab VOC, PAH, Metals, CN, MTBE, TBA SB-108 13.0 - 14.0 34.81 0.8 to 18.8 SB-108(13-14) 920673 U561 TA 5/15/08 Main Site Soil Soil Grab VOC, PAH, Metals, CN, MTBE, TBA SB-129 U775 TA S/16/08 Main Site Soil Soil Grab VOC, PAH, Metals, CN, MTBE, TBA SB-129 U775 TA S/16/08 Main Site Soil Soil Grab VOC, PAH, Metals, CN, MTBE, TBA SB-129 U775	SB-119	18.0 - 19.0	27.26	8.3 to 9.	3 SB-119(18-19)	920666	U561	TA	5/14/08	Main Site	Soil	Soil Grab	VOC, PAH, Metals, CN
SB-119 37.2 - 37.7 27.26 - 10.4 to -9.9 SB-119(37.2-37.7) 920669 U561 TA 5/14/08 Main Site Soil Soil Grab VOC, PAH, Metals, CN SB-128 10.5 - 11.0 30.79 19.8 to 20.3 SB-128(10.5-11) 920670 U561 TA 5/14/08 Main Site Soil Soil Grab VOC, PAH, Metals, CN, MTBE, TBA SB-128 28.1 - 28.6 30.79 12.2 to 2.7 SB-128(28.1-28.6) 920672 U561 TA 5/15/08 Main Site Soil Soil Grab VOC, PAH, Metals, CN, MTBE, TBA SB-128 28.1 - 28.6 30.79 2.2 to 2.7 SB-128(28.1-28.6) 920672 U561 TA 5/15/08 Main Site Soil Soil Grab VOC, PAH, Metals, CN, MTBE, TBA SB-108 3.0 - 14.0 34.81 20.8 to 21.8 SB-108(13.14) 920673 U561 TA 5/15/08 Main Site Soil Soil Grab VOC, PAH, Metals, CN, MTBE, TBA SB-108 33.0 - 34.0 34.81 20.8 to 21.8 SB-108(13.3-4) 920676 U561 TA 5/16/08 Main Site Soil Soil Grab VOC, PAH, Metals, CN SB-129 10.8 - 11.3 24.94 13.6 to 14.1 SB-129(10.8-11.3) 921939 U775 TA 5/16/08 Main Site Soil Soil Grab VOC, PAH, Metals, CN SB-129 15.3 - 13.8 24.94 11.2 to 11.7 SB-129(13.26-13.75) 921940 U775 TA 5/16/08 Main Site Soil Soil Grab VOC, PAH, Metals, CN SB-129 15.0 - 15.5 24.94 4.7 to - 1.2 SB-129(26.1-26.6) 921942 U775 TA 5/19/08 Main Site Soil Soil Grab VOC, PAH, Metals, CN SB-109 14.5 - 15.0 35.66 20.7 to - 1.2 SB-129(26.1-26.6) 921942 U775 TA 5/20/08 Main Site Soil Soil Grab VOC, PAH, Metals, CN SB-109 29.5 - 30.0 35.66 5.7 to 6.2 SB-109(14.5-15) 921944 U775 TA 5/20/08 Main Site Soil Soil Grab VOC, PAH, Metals, CN SB-63 10.5 - 11.0 12.41 - 1.4 to - 1.9 SB-63(10.5-11) 921945 U775 TA 5/20/08 Main Site Soil Soil Grab VOC, PAH Metals, CN SB-63 10.5 - 11.0 12.41 - 1.6 to - 1.5 SB-63(19.5-1) 921945 U775 TA 5/20/08 Main Site Soil Soil Grab VOC, PAH SB-63 1	SB-119	21.2 - 21.7	27.26		1 SB-119(21.2-21.7)	920667	U561		5/14/08	Main Site	Soil	Soil Grab	VOC, PAH, Metals, CN
SB-128 10.5 11.0 30.79 19.8 to 20.3 SB-128(10.5-11) 920670 U561 TA 5/14/08 Main Site Soil Soil Grab VOC, PAH, Metals, CN, MTBE, TBA SB-128 14.0 - 14.5 30.79 16.3 to 16.8 SB-128(14-14.5) 920671 U561 TA 5/15/08 Main Site Soil Soil Grab VOC, PAH, Metals, CN, MTBE, TBA SB-128 28.1 - 28.6 30.79 2.2 to 2.7 SB-128(28.1-28.6) 920672 U561 TA 5/15/08 Main Site Soil Soil Grab VOC, PAH, Metals, CN, MTBE, TBA SB-108 13.0 - 14.0 34.81 20.8 to 21.8 SB-108(12.1-14) 920673 U561 TA 5/15/08 Main Site Soil Soil Grab VOC, PAH, Metals, CN MTBE, TBA SB-108 13.0 - 14.0 34.81 20.8 to 18 SB-108(13-14) 920676 U561 TA 5/15/08 Main Site Soil Soil Grab VOC, PAH, Metals, CN SB-109 10.8 - 11.3 24.94 13.6 to 14.1 SB-129(10.8-11.3) 921939 U775 TA 5/16/08 Main Site Soil Soil Grab VOC, PAH, Metals, CN SB-129 10.8 - 11.3 24.94 11.2 to 11.7 SB-129(13.25-13.75) 921940 U775 TA 5/16/08 Main Site Soil Soil Grab VOC, PAH, Metals, CN SB-129 15.0 - 15.5 24.94 4.4 to 9.9 SB-129(15.15-5) 921941 U775 TA 5/16/08 Main Site Soil Soil Grab VOC, PAH, Metals, CN SB-129 26.1 26.6 24.94 1.7 to 1.2 SB-129(26.1-26.6) 921942 U775 TA 5/19/08 Main Site Soil Soil Grab VOC, PAH, Metals, CN SB-109 29.5 - 30.0 35.66 20.7 to 21.2 SB-109(25.5-30) 921945 U775 TA 5/20/08 Main Site Soil Soil Grab VOC, PAH, Metals, CN SB-63 9.0 9.5 12.41 2.9 to 3.4 SB-63(9-5.5) 921946 U775 TA 5/20/08 Main Site Soil Soil Grab VOC, PAH, Metals, CN SB-63 9.0 9.5 12.41 1.4 1.9 SB-63(10.5-11) 921947 U775 TA 5/20/08 Main Site Soil Soil Grab VOC, PAH, Metals, CN SB-63 9.0 9.5 12.41 1.4 1.9 SB-63(10.5-11) 921945 U775 TA 5/20/08 Main Site Soil Soil Grab VOC, PAH SB-63 9.0 9.5 12.41 1.6 to 1.1 SB-63(13.5-14)	SB-119	23.0 - 24.0	27.26	3.3 to 4.	3 SB-119(23-24)	920668	U561	TA	5/14/08	Main Site	Soil	Soil Grab	VOC, PAH, Metals, CN
SB-128 14.0 14.5 30.79 16.3 10 16.8 SB-128(14-14.5) 920672 U561 TA 5/15/08 Main Site Soil Soil Grab VOC, PAH, Metals, CN, MTBE, TBA SB-128 28.1 28.6 30.79 2.2 to 2.7 SB-128(28.1-28.6) 920672 U561 TA 5/15/08 Main Site Soil Soil Grab VOC, PAH, Metals, CN, MTBE, TBA SB-108 13.0 14.0 34.81 20.8 to 21.8 SB-108(13-14) 920673 U561 TA 5/15/08 Main Site Soil Soil Grab VOC, PAH, Metals, CN SB-108 33.0 34.0 34.81 0.8 to 14.1 SB-129(10.8-11.3) 921939 U775 TA 5/16/08 Main Site Soil Soil Grab VOC, PAH, Metals, CN SB-129 10.8 11.3 24.94 13.6 to 14.1 SB-129(10.8-11.3) 921939 U775 TA 5/16/08 Main Site Soil Soil Grab VOC, PAH, Metals, CN SB-129 15.0 15.5 24.94 17.0 to 17.5 SB-129(13.25-13.75) 921940 U775 TA 5/16/08 Main Site Soil Soil Grab VOC, PAH, Metals, CN SB-129 15.0 15.5 24.94 17.0 to 25.92(26.12.66) 921942 U775 TA 5/19/08 Main Site Soil Soil Grab VOC, PAH, Metals, CN SB-109 14.5 15.0 35.66 20.7 to 21.2 SB-109(14.5-15) 921941 U775 TA 5/19/08 Main Site Soil Soil Grab VOC, PAH, Metals, CN SB-109 29.5 30.0 35.66 5.7 to 6.2 SB-109(29.5-30) 921945 U775 TA 5/20/08 Main Site Soil Soil Grab VOC, PAH, Metals, CN SB-63 10.5 11.0 12.41 1.4 to 1.9 SB-63(10.5-11) 921947 U775 TA 5/20/08 Main Site Soil Soil Grab VOC, PAH, Metals, CN SB-63 13.5 14.0 24.1 1.4 to 1.9 SB-63(10.5-11) 921947 U775 TA 5/20/08 Main Site Soil Soil Grab VOC, PAH, Metals, CN SB-63 13.5 14.0 24.1 1.4 to 1.9 SB-63(10.5-11) 921947 U775 TA 5/20/08 Apartments Soil Soil Grab VOC, PAH SB-63 13.5 14.0 24.1 1.4 to 1.9 SB-63(10.5-11) 921947 U775 TA 5/20/08 Apartments Soil Soil Grab VOC, PAH SB-133 14.0 14.5 12.85 1.6 to 1.1 SB-133(14.14.5) 921959 U77	SB-119	37.2 - 37.7	27.26	-10.4 to -9	9 SB-119(37.2-37.7)	920669	U561	TA	5/14/08	Main Site	Soil	Soil Grab	VOC, PAH, Metals, CN
SB-128 28.1 28.6 30.79 2.2 10 2.7 SB-128(28.1-28.6) 920672 U561 TA 5/15/08 Main Site Soil Soil Grab VOC, PAH, Metals, CN SB-108 33.0 - 34.0 34.81 0.8 to 1.8 SB-108(33-34) 920676 U561 TA 5/15/08 Main Site Soil Soil Grab VOC, PAH, Metals, CN SB-129 10.8 11.3 24.94 11.2 to 11.7 SB-129(13.25-13.75) 921940 U775 TA 5/16/08 Main Site Soil Soil Grab VOC, PAH, Metals, CN SB-129 13.3 13.8 24.94 11.2 to 11.7 SB-129(13.25-13.75) 921940 U775 TA 5/16/08 Main Site Soil Soil Grab VOC, PAH, Metals, CN SB-129 15.0 15.5 24.94 9.4 to 9.9 SB-129(15-15.5) 921941 U775 TA 5/16/08 Main Site Soil Soil Grab VOC, PAH, Metals, CN SB-129 26.1 26.6 24.94 1.7 to -1.2 SB-129(26.1-26.6) 921942 U775 TA 5/19/08 Main Site Soil Soil Grab VOC, PAH, Metals, CN SB-109 29.5 30.0 35.66 20.7 to 21.2 SB-109(14.5-15) 921944 U775 TA 5/19/08 Main Site Soil Soil Grab VOC, PAH, Metals, CN SB-109 29.5 30.0 35.66 20.7 to 21.2 SB-109(14.5-15) 921944 U775 TA 5/20/08 Main Site Soil Soil Grab VOC, PAH, Metals, CN SB-63 30.0 5.66 20.7 to 21.2 SB-109(14.5-15) 921944 U775 TA 5/20/08 Main Site Soil Soil Grab VOC, PAH, Metals, CN SB-63 30.0 5.66 20.7 to 21.2 SB-109(14.5-15) 921945 U775 TA 5/20/08 Apartments Soil Soil Grab VOC, PAH SB-63 10.5 11.0 12.41 1.4 to 1.9 SB-63(10.5-11) 921947 U775 TA 5/20/08 Apartments Soil Soil Grab VOC, PAH SB-63 13.5 14.0 12.41 1.6 to 1.1 SB-63(13.5-14) 921947 U775 TA 5/20/08 Apartments Soil Soil Grab VOC, PAH SB-63 13.5 14.0 12.41 1.6 to 1.1 SB-63(13.5-14) 921947 U775 TA 5/20/08 Apartments Soil Soil Grab VOC, PAH SB-133 14.0 12.2 12.74 0.7 to 12.8 SB-133(14.14.5) 921950 U775 TA 5/20/08 Apartments Soil Soil G	SB-128	10.5 - 11.0	30.79	19.8 to 20	3 SB-128(10.5-11)	920670	U561	TA	5/14/08	Main Site	Soil	Soil Grab	VOC, PAH, Metals, CN, MTBE, TBA
SB-108 13.0 - 14.0 34.81 20.8 to 21.8 SB-108(13-14) 920673 U561 TA 5/15/08 Main Site Soil Soil Grab VOC, PAH, Metals, CN SB-108 33.0 - 34.0 34.81 0.8 to 14.1 SB-129(10.8-11.3) 921939 U775 TA 5/16/08 Main Site Soil Soil Grab VOC, PAH, Metals, CN SB-129 10.8 - 11.3 24.94 13.6 to 14.1 SB-129(10.8-11.3) 921939 U775 TA 5/16/08 Main Site Soil Soil Grab VOC, PAH, Metals, CN SB-129 13.3 13.8 24.94 11.2 to 11.7 SB-129(13.25-13.75) 921940 U775 TA 5/16/08 Main Site Soil Soil Grab VOC, PAH, Metals, CN SB-129 15.5 24.94 9.4 to 9.9 SB-129(15-15.5) 921941 U775 TA 5/16/08 Main Site Soil Soil Grab VOC, PAH, Metals, CN SB-129 26.1 26.6 24.94 1.7 to 1.2 SB-129(26.1-26.6) 921942 U775 TA 5/19/08 Main Site Soil Soil Grab VOC, PAH, Metals, CN SB-109 24.5 15.0 35.66 20.7 to 21.2 SB-109(14.5-15) 921944 U775 TA 5/19/08 Main Site Soil Soil Grab VOC, PAH, Metals, CN SB-109 29.5 30.0 35.66 5.7 to 6.2 SB-109(29.5-30) 921945 U775 TA 5/20/08 Main Site Soil Soil Grab VOC, PAH, Metals, CN SB-63 10.5 11.0 12.41 1.4 to 1.9 SB-63(10.5-11) 921947 U775 TA 5/20/08 Apartments Soil Soil Grab VOC, PAH, Metals, CN SB-63 13.5 14.0 12.41 1.4 to 1.9 SB-63(10.5-11) 921947 U775 TA 5/20/08 Apartments Soil Soil Grab VOC, PAH SB-63 13.5 14.0 12.41 1.4 to 1.1 SB-63(13.5-14) 921948 U775 TA 5/20/08 Apartments Soil Soil Grab VOC, PAH SB-61 11.0 12.0 18.12 6.1 to 7.1 SB-61(11-12) 921945 U775 TA 5/20/08 Apartments Soil Soil Grab VOC, PAH SB-61 11.0 12.0 18.12 6.1 to 7.1 SB-61(11-12) 921948 U775 TA 5/20/08 Apartments Soil Soil Grab VOC, PAH SB-133 8.4 8.9 12.85 4.0 to 4.5 SB-133(8.4-8.9) 921955 U775 TA 5/20/08 Apartments Soil Soil Gr	SB-128	14.0 - 14.5	30.79	16.3 to 16	8 SB-128(14-14.5)	920671	U561	TA	5/15/08	Main Site	Soil	Soil Grab	VOC, PAH, Metals, CN, MTBE, TBA
SB-108 33.0 34.0 34.8 0.8 to 1.8 SB-108(33-34) 92.0676 U561 TA 5/16/08 Main Site Soil Soil Grab VOC, PAH, Metals, CN SB-129 10.8 11.3 24.94 13.6 to 14.1 SB-129(10.8-11.3) 921939 U775 TA 5/16/08 Main Site Soil Soil Grab VOC, PAH, Metals, CN SB-129 13.3 13.8 24.94 11.2 to 11.7 SB-129(13.25-13.75) 921940 U775 TA 5/16/08 Main Site Soil Soil Grab VOC, PAH, Metals, CN SB-129 15.0 15.5 24.94 9.4 to 9.9 SB-129(15-15.5) 921941 U775 TA 5/19/08 Main Site Soil Soil Grab VOC, PAH, Metals, CN SB-129 26.1 26.6 24.94 1.7 to 1.2 SB-129(12.6-1-26.6) 921942 U775 TA 5/19/08 Main Site Soil Soil Grab VOC, PAH, Metals, CN SB-109 29.5 30.0 35.66 5.7 to 6.2 SB-109(24.5-15.5) 921944 U775 TA 5/20/08 Main Site Soil Soil Grab VOC, PAH, Metals, CN SB-109 29.5 30.0 35.66 5.7 to 6.2 SB-109(29.5-30) 921945 U775 TA 5/20/08 Main Site Soil Soil Grab VOC, PAH, Metals, CN SB-63 9.0 9.5 12.41 2.9 to 3.4 SB-63(9-9.5) 921946 U775 TA 5/20/08 Apartments Soil Soil Grab VOC, PAH SB-63 13.5 14.0 12.41 1.4 to 1.9 SB-63(10.5-11) 921947 U775 TA 5/20/08 Apartments Soil Soil Grab VOC, PAH SB-63 13.5 14.0 12.41 1.6 to 1.1 SB-63(13.5-14) 921948 U775 TA 5/20/08 Apartments Soil Soil Grab VOC, PAH SB-61 9.0 9.5 18.12 8.6 to 9.1 SB-61(9-9.5) 921940 U775 TA 5/20/08 Apartments Soil Soil Grab VOC, PAH SB-13 11.0 12.0 12.14 1.6 to 1.1 SB-63(13.5-14) 921948 U775 TA 5/20/08 Apartments Soil Soil Grab VOC, PAH SB-132 11.5 12.0 12.74 0.7 to 1.2 SB-132(11.5-12) 921940 U775 TA 5/20/08 Apartments Soil Soil Grab VOC, PAH SB-133 14.0 1.5 12.0 12.74 0.7 to 1.2 SB-133(14-14.5) 921955 U775 TA 5/20/08 Apartments Soil Soil Grab VOC, PAH	SB-128	28.1 - 28.6	30.79	2.2 to 2.	7 SB-128(28.1-28.6)	920672	U561	TA	5/15/08	Main Site	Soil	Soil Grab	VOC, PAH, Metals, CN, MTBE, TBA
SB-129 10.8 - 11.3 24.94 13.6 to 14.1 SB-129(10.8-11.3) 921939 U775 TA 5/16/08 Main Site Soil Soil Grab VOC, PAH, Metals, CN SB-129 13.3 - 13.8 24.94 11.2 to 11.7 SB-129(13.25-13.75) 921940 U775 TA 5/16/08 Main Site Soil Soil Grab VOC, PAH, Metals, CN SB-129 15.0 - 15.5 24.94 94.1 to 9.9 SB-129(15-15.5) 921941 U775 TA 5/19/08 Main Site Soil Soil Grab VOC, PAH, Metals, CN SB-129 26.1 - 26.6 24.94 -1.7 to -1.2 SB-129(26.1-26.6) 921942 U775 TA 5/19/08 Main Site Soil Soil Grab VOC, PAH, Metals, CN SB-109 14.5 - 15.0 35.66 20.7 to 21.2 SB-109(14.5-15) 921944 U775 TA 5/20/08 Main Site Soil Soil Grab VOC, PAH, Metals, CN SB-109 29.5 - 30.0 35.66 20.7 to 21.2 SB-109(29.5-30) 921945 U775 TA 5/20/08 Main Site Soil Soil Grab VOC, PAH, Metals, CN SB-63 9.0 - 9.5 12.41 2.9 to 3.4 SB-63(9.9.5) 921946 U775 TA 5/20/08 Apartments Soil Soil Grab VOC, PAH SB-63 10.5 - 11.0 12.41 1.4 to 1.9 SB-63(10.5-11) 921947 U775 TA 5/20/08 Apartments Soil Soil Grab VOC, PAH SB-63 13.5 - 14.0 12.41 1.6 to -1.1 SB-63(13.5-14) 921948 U775 TA 5/20/08 Apartments Soil Soil Grab VOC, PAH SB-61 11.0 -1.2 SB-132 11.5 SB-132 SB-133 SB-133 SB-133 SB-134 SB-	SB-108	13.0 - 14.0	34.81	20.8 to 21	8 SB-108(13-14)	920673	U561	TA	5/15/08	Main Site	Soil	Soil Grab	VOC, PAH, Metals, CN
SB-129 13.3 13.8 24.94 11.2 to 11.7 SB-129(13.25-13.75) 921940 U775 TA 5/16/08 Main Site Soil Soil Grab VOC, PAH, Metals, CN SB-129 15.0 15.5 24.94 9.4 to 9.9 SB-129(15-15.5) 921941 U775 TA 5/19/08 Main Site Soil Soil Grab VOC, PAH, Metals, CN SB-129 26.1 2.66 24.94 1.7 to 1.2 SB-129(6-12.66) 921942 U775 TA 5/19/08 Main Site Soil Soil Grab VOC, PAH, Metals, CN SB-109 14.5 15.0 35.66 20.7 to 21.2 SB-109(14.5-15) 921944 U775 TA 5/20/08 Main Site Soil Soil Grab VOC, PAH, Metals, CN SB-109 29.5 30.0 35.66 5.7 to 6.2 SB-109(29.5-30) 921945 U775 TA 5/20/08 Main Site Soil Soil Grab VOC, PAH, Metals, CN SB-63 9.0 9.5 12.41 2.9 to 3.4 SB-63(9.9.5) 921946 U775 TA 5/20/08 Apartments Soil Soil Grab VOC, PAH Metals, CN SB-63 10.5 11.0 12.41 1.4 to 1.9 SB-63(10.5-11) 921947 U775 TA 5/20/08 Apartments Soil Soil Grab VOC, PAH SB-63 13.5 14.0 12.41 1.6 to 1.1 SB-63(13.5-14) 921948 U775 TA 5/20/08 Apartments Soil Soil Grab VOC, PAH SB-61 11.0 12.0 18.12 6.1 to 7.1 SB-61(19.9.5) 921949 U775 TA 5/20/08 Apartments Soil Soil Grab VOC, PAH SB-61 11.0 12.0 18.12 6.1 to 7.1 SB-61(11.12) 921950 U775 TA 5/20/08 Apartments Soil Soil Grab VOC, PAH SB-132 9.0 9.5 12.74 3.2 to 3.7 SB-132(9.9.5) 921951 U775 TA 5/20/08 Apartments Soil Soil Grab VOC, PAH SB-133 8.4 8.9 12.85 4.0 to 4.5 SB-133(8.4-8.9) 921952 U775 TA 5/20/08 Alleyway Soil Soil Grab VOC, PAH SB-133 10.5 11.0 12.85 1.9 to 2.4 SB-133(1.5-11) 921954 U775 TA 5/20/08 Alleyway Soil Soil Grab VOC, PAH SB-133 10.5 11.0 12.85 1.9 to 2.4 SB-133(1-1.12) 921955 U775 TA 5/20/08 Alleyway Soil Soil Grab VOC, PAH SB-133 10.5 11.0 12.85 1.9 to	SB-108	33.0 - 34.0	34.81	0.8 to 1.	8 SB-108(33-34)	920676	U561	TA	5/16/08	Main Site	Soil	Soil Grab	VOC, PAH, Metals, CN
SB-129 15.0 - 15.5 24.94 9.4 10 9.9 SB-129(15-15.5) 921941 U775 TA 5/19/08 Main Site Soil Soil Grab VOC, PAH, Metals, CN SB-129 26.1 - 26.6 24.94 -1.7 10 -1.2 SB-129(26.1-26.6) 921942 U775 TA 5/19/08 Main Site Soil Soil Grab VOC, PAH, Metals, CN SB-109 29.5 - 30.0 35.66 20.7 to 21.2 SB-109(14.5-15) 921944 U775 TA 5/20/08 Main Site Soil Soil Grab VOC, PAH, Metals, CN SB-109 29.5 - 30.0 35.66 5.7 to 6.2 SB-109(29.5-30) 921945 U775 TA 5/20/08 Main Site Soil Soil Grab VOC, PAH, Metals, CN SB-63 9.0 - 9.5 12.41 2.9 to 3.4 SB-63(9-9.5) 921946 U775 TA 5/20/08 Apartments Soil Soil Grab VOC, PAH Metals, CN SB-63 10.5 - 11.0 12.41 1.4 to 1.9 SB-63(10.5-11) 921947 U775 TA 5/20/08 Apartments Soil Soil Grab VOC, PAH SB-63 13.5 - 14.0 12.41 1.6 to 1.1 SB-63(13.5-14) 921948 U775 TA 5/20/08 Apartments Soil Soil Grab VOC, PAH SB-61 9.0 - 9.5 18.12 8.6 to 9.1 SB-61(9-9.5) 921949 U775 TA 5/20/08 Apartments Soil Soil Grab VOC, PAH SB-61 11.0 - 12.0 18.12 6.1 to 7.1 SB-61(11-12) 921950 U775 TA 5/20/08 Apartments Soil Soil Grab VOC, PAH SB-132 11.5 - 12.0 12.74 0.7 to 1.2 SB-132(11.5-12) 921952 U775 TA 5/20/08 Alleyway Soil Soil Grab VOC, PAH SB-133 10.5 - 11.0 12.85 1.9 to 2.4 SB-133(10.5-11) 921954 U775 TA 5/20/08 Alleyway Soil Soil Grab VOC, PAH SB-133 10.5 - 11.0 12.85 1.9 to 2.4 SB-133(10.5-11) 921955 U775 TA 5/20/08 Alleyway Soil Soil Grab VOC, PAH SB-133 10.5 - 11.0 12.85 1.9 to 2.4 SB-133(10.5-11) 921955 U775 TA 5/20/08 Alleyway Soil Soil Grab VOC, PAH SB-134 12.0 - 12.5 16.10 1.3 SB-134(8-9) 921956 U775 TA 5/20/08 Alleyway Soil Soil Grab VOC, PAH SB-134 1	SB-129	10.8 - 11.3	24.94	13.6 to 14	1 SB-129(10.8-11.3)	921939	U775	TA	5/16/08	Main Site	Soil	Soil Grab	VOC, PAH, Metals, CN
SB-129 26.1 26.6 24.94 -1.7 to -1.2 SB-129(26.1-26.6) 921942 U775 TA 5/19/08 Main Site Soil Soil Grab VOC, PAH, Metals, CN SB-109 14.5 -15.0 35.66 20.7 to 21.2 SB-109(14.5-15) 921944 U775 TA 5/20/08 Main Site Soil Soil Grab VOC, PAH, Metals, CN SB-109 29.5 30.0 35.66 5.7 to 6.2 SB-109(29.5-30) 921946 U775 TA 5/20/08 Main Site Soil Soil Grab VOC, PAH, Metals, CN SB-63 9.0 -9.5 12.41 2.9 to 3.4 SB-63(9.9.5) 921946 U775 TA 5/20/08 Apartments Soil Soil Grab VOC, PAH Metals, CN SB-63 10.5 11.0 12.41 1.4 to 1.9 SB-63(10.5-11) 921947 U775 TA 5/20/08 Apartments Soil Soil Grab VOC, PAH SB-63 13.5 14.0 12.41 1.6 to -1.1 SB-63(13.5-14) 921948 U775 TA 5/20/08 Apartments Soil Soil Grab VOC, PAH SB-61 9.0 9.5 18.12 8.6 to 9.1 SB-61(19.9.5) 921949 U775 TA 5/20/08 Apartments Soil Soil Grab VOC, PAH SB-61 11.0 12.0 18.12 8.6 to 9.1 SB-61(11-12) 921950 U775 TA 5/20/08 Apartments Soil Soil Grab VOC, PAH SB-132 9.0 9.5 12.74 3.2 to 3.7 SB-132(9.9.5) 921941 U775 TA 5/20/08 Apartments Soil Soil Grab VOC, PAH SB-133 8.4 8.9 12.85 4.0 to 4.5 SB-133(11.5-12) 921952 U775 TA 5/20/08 Alleyway Soil Soil Grab VOC, PAH SB-133 10.5 11.0 12.85 1.9 to 2.4 SB-133(10.5-11) 921954 U775 TA 5/20/08 Alleyway Soil Soil Grab VOC, PAH SB-133 10.5 11.0 12.85 1.9 to 2.4 SB-133(10.5-11) 921955 U775 TA 5/20/08 Alleyway Soil Soil Grab VOC, PAH SB-133 10.5 11.0 12.85 1.9 to 2.4 SB-133(10.5-11) 921955 U775 TA 5/20/08 Alleyway Soil Soil Grab VOC, PAH SB-134 12.0 12.5 16.0 1.3 SB-134(14.14.5) 921955 U775 TA 5/20/08 Alleyway Soil Soil Grab VOC, PAH SB-134 12.0 12.5 16.0 1.3 SB-134(14.14.5) 921955 U775 TA 5/20/08 Alleyway Soil	SB-129	13.3 - 13.8	24.94	11.2 to 11	7 SB-129(13.25-13.75)	921940	U775	TA	5/16/08	Main Site	Soil	Soil Grab	VOC, PAH, Metals, CN
SB-109 14.5 - 15.0 35.66 20.7 to 21.2 SB-109(14.5-15) 921944 U775 TA 5/20/08 Main Site Soil Soil Grab VOC, PAH, Metals, CN SB-109 29.5 - 30.0 35.66 5.7 to 6.2 SB-109(29.5-30) 921945 U775 TA 5/20/08 Main Site Soil Soil Grab VOC, PAH, Metals, CN SB-63 9.0 - 9.5 12.41 2.9 to 3.4 SB-63(9.9-5) 921946 U775 TA 5/20/08 Apartments Soil Soil Grab VOC, PAH SB-63 10.5 - 11.0 12.41 1.4 to 1.9 SB-63(10.5-11) 921947 U775 TA 5/20/08 Apartments Soil Soil Grab VOC, PAH SB-63 13.5 - 14.0 12.41 -1.6 to -1.1 SB-63(13.5-14) 921948 U775 TA 5/20/08 Apartments Soil Soil Grab VOC, PAH SB-61 9.0 - 9.5 18.12 8.6 to 9.1 SB-61(9.9.5) 921949 U775 TA 5/20/08 Apartments Soil Soil Grab VOC, PAH SB-61 11.0 - 12.0 18.12 6.1 to 7.1 SB-61(11.12) 921950 U775 TA 5/20/08 Apartments Soil Soil Grab VOC, PAH SB-132 9.0 - 9.5 12.74 3.2 to 3.7 SB-132(9.9.5) 921951 U775 TA 5/20/08 Alleyway Soil Soil Grab VOC, PAH SB-132 11.5 - 12.0 12.74 0.7 to 1.2 SB-132(11.5-12) 921952 U775 TA 5/20/08 Alleyway Soil Soil Grab VOC, PAH SB-133 14.0 - 14.5 12.85 1.9 to 2.4 SB-133(10.5-11) 921954 U775 TA 5/20/08 Alleyway Soil Soil Grab VOC, PAH SB-133 14.0 - 14.5 12.85 -1.6 to -1.1 SB-133(14.14.5) 921955 U775 TA 5/20/08 Alleyway Soil Soil Grab VOC, PAH SB-134 12.0 - 12.5 16.01 3.5 to 4.0 SB-138(14-14.5) 921955 U775 TA 5/20/08 Alleyway Soil Soil Grab VOC, PAH SB-134 12.0 - 12.5 16.01 3.5 to 4.0 SB-138(14-14.5) 921956 U775 TA 5/20/08 Alleyway Soil Soil Grab VOC, PAH SB-134 12.0 - 12.5 16.01 3.5 to 4.0 SB-138(14-14.5) 921957 U775 TA 5/20/08 Alleyway Soil Soil Grab VOC, PAH SB-134 12.0 - 12.5 16.01 3.5 to 4.0 SB-138(14-14.5)	SB-129	15.0 - 15.5	24.94	9.4 to 9.	9 SB-129(15-15.5)	921941	U775	TA	5/19/08	Main Site	Soil	Soil Grab	VOC, PAH, Metals, CN
SB-109 29.5 - 30.0 35.66 5.7 to 6.2 SB-109(29.5-30) 921945 U775 TA 5/20/08 Main Site Soil Soil Grab VOC, PAH, Metals, CN SB-63 9.0 - 9.5 12.41 2.9 to 3.4 SB-63(10.5-11.) 921947 U775 TA 5/20/08 Apartments Soil Soil Grab VOC, PAH SB-63 13.5 - 14.0 12.41 1.4 to 1.9 SB-63(10.5-11) 921948 U775 TA 5/20/08 Apartments Soil Grab VOC, PAH SB-61 9.0 - 9.5 18.12 8.6 to 9.1 SB-61(9-9.5) 921949 U775 TA 5/20/08 Apartments Soil Grab VOC, PAH SB-61 11.0 - 12.0 18.12 6.1 to 7.1 SB-61(9-9.5) 921950 U775 TA 5/20/08 Apartments Soil Grab VOC, PAH SB-132 10.2 12.2 13.2 <t< td=""><td>SB-129</td><td>26.1 - 26.6</td><td>24.94</td><td>-1.7 to -1</td><td>2 SB-129(26.1-26.6)</td><td>921942</td><td>U775</td><td>TA</td><td>5/19/08</td><td>Main Site</td><td>Soil</td><td>Soil Grab</td><td>VOC, PAH, Metals, CN</td></t<>	SB-129	26.1 - 26.6	24.94	-1.7 to -1	2 SB-129(26.1-26.6)	921942	U775	TA	5/19/08	Main Site	Soil	Soil Grab	VOC, PAH, Metals, CN
SB-63 9.0 - 9.5 12.41 2.9 to 3.4 SB-63(9.9.5) 921946 U775 TA 5/20/08 Apartments Soil Soil Grab VOC, PAH SB-63 10.5 - 11.0 12.41 -1.4 to 1.9 SB-63(10.5-11) 921947 U775 TA 5/20/08 Apartments Soil Soil Grab VOC, PAH SB-63 13.5 - 14.0 12.41 - 1.6 to 1.1 SB-61(9.9.5) 921948 U775 TA 5/20/08 Apartments Soil Grab VOC, PAH SB-61 11.0 - 12.0 18.12 6.1 to 7.1 SB-61(11-12) 921950 U775 TA 5/20/08 Apartments Soil Grab VOC, PAH SB-132 9.0 - 9.5 12.74 3.2 to 3.7 SB-132(11.5-12) 921951 U775 TA 5/20/08 Apartments Soil Grab VOC, PAH SB-132 11.0 12.2 12.74	SB-109	14.5 - 15.0	35.66	20.7 to 21	2 SB-109(14.5-15)	921944	U775	TA	5/20/08	Main Site	Soil	Soil Grab	VOC, PAH, Metals, CN
SB-63 10.5 - 11.0 12.41 1.4 to 1.9 SB-63(10.5-11) 921947 U775 TA 5/20/08 Apartments Soil Soil Grab VOC, PAH	SB-109	29.5 - 30.0	35.66	5.7 to 6.	2 SB-109(29.5-30)	921945	U775	TA	5/20/08	Main Site	Soil	Soil Grab	VOC, PAH, Metals, CN
SB-63 13.5 - 14.0 12.41 -1.6 to -1.1 SB-63(13.5-14) 921948 U775 TA 5/20/08 Apartments Soil Soil Grab VOC, PAH SB-61 9.0 - 9.5 18.12 8.6 to 9.1 SB-61(19-9.5) 921949 U775 TA 5/20/08 Apartments Soil Soil Grab VOC, PAH SB-132 9.0 - 9.5 12.74 3.2 to 3.7 SB-132(9-9.5) 921951 U775 TA 5/20/08 Apartments Soil Grab VOC, PAH SB-132 11.5 12.0 12.74 0.7 to 1.2 SB-132(11.5-12) 921952 U775 TA 5/20/08 Alleyway Soil Grab VOC, PAH SB-133 11.5 12.0 12.74 0.7 to 1.2 SB-133(8.4-8.9) 921953 U775 TA 5/20/08 Alleyway Soil Grab VOC, PAH SB-133 10.5 11.0 12.85 1.6	SB-63	9.0 - 9.5	12.41	2.9 to 3.	4 SB-63(9-9.5)	921946	U775	TA	5/20/08	Apartments	Soil	Soil Grab	VOC, PAH
SB-61 9.0 - 9.5 18.12 8.6 to 9.1 SB-61(9-9.5) 921949 U775 TA 5/20/08 Apartments Soil Soil Grab VOC, PAH SB-61 11.0 - 12.0 18.12 6.1 to 7.1 SB-61(11-12) 921950 U775 TA 5/20/08 Apartments Soil Soil Grab VOC, PAH SB-132 9.0 - 9.5 12.74 3.2 to 3.7 SB-132(9-9.5) 921951 U775 TA 5/20/08 Alleyway Soil Soil Grab VOC, PAH SB-132 11.5 - 12.0 12.74 0.7 to 1.2 SB-132(11.5-12) 921952 U775 TA 5/20/08 Alleyway Soil Soil Grab VOC, PAH SB-133 10.5 11.0 12.85 4.0 to 4.5 SB-133(8.4-8.9) 921953 U775 TA 5/20/08 Alleyway Soil Soil Grab VOC, PAH	SB-63	10.5 - 11.0	12.41	1.4 to 1.	9 SB-63(10.5-11)	921947	U775	TA	5/20/08	Apartments	Soil	Soil Grab	VOC, PAH
SB-61 11.0 - 12.0 18.12 6.1 to 7.1 SB-61(11-12) 921950 U775 TA 5/20/08 Apartments Soil Soil Grab VOC, PAH SB-132 9.0 - 9.5 12.74 3.2 to 3.7 SB-132(9-9.5) 921951 U775 TA 5/20/08 Alleyway Soil Soil Grab VOC, PAH SB-132 11.5 - 12.0 12.74 0.7 to 1.2 SB-132(11.5-12) 921952 U775 TA 5/20/08 Alleyway Soil Soil Grab VOC, PAH SB-133 8.4 - 8.9 12.85 4.0 to 4.5 SB-133(8.4-8.9) 921953 U775 TA 5/20/08 Alleyway Soil Soil Grab VOC, PAH SB-133 10.5 - 11.0 12.85 1.9 to 2.4 SB-133(10.5-11) 921955 U775 TA 5/20/08 Alleyway Soil Soil Grab VOC, PAH SB-133 14.0	SB-63	13.5 - 14.0	12.41	-1.6 to -1	1 SB-63(13.5-14)	921948	U775	TA	5/20/08	Apartments	Soil	Soil Grab	VOC, PAH
SB-132 9.0 - 9.5 12.74 3.2 to 3.7 SB-132(9-9.5) 921951 U775 TA 5/20/08 Alleyway Soil Grab VOC, PAH SB-132 11.5 - 12.0 12.74 0.7 to 1.2 SB-132(11.5-12) 921952 U775 TA 5/20/08 Alleyway Soil Grab VOC, PAH SB-133 8.4 - 8.9 12.85 4.0 to 4.5 SB-133(8.4-8.9) 921953 U775 TA 5/20/08 Alleyway Soil Grab VOC, PAH SB-133 10.5 - 11.0 12.85 1.9 to 2.4 SB-133(10.5-11) 921954 U775 TA 5/20/08 Alleyway Soil Grab VOC, PAH SB-133 14.0 - 14.5 12.85 -1.6 to -1.1 SB-133(14.14.5) 921955 U775 TA 5/20/08 Alleyway Soil Grab VOC, PAH SB-134 12.0 - 12.5 16.01 3.5 to 4.0 SB-134(12-12.5) 921957 U775 TA			18.12		1 SB-61(9-9.5)	921949		TA	5/20/08	Apartments	Soil		VOC, PAH
SB-132 11.5 - 12.0 12.74 0.7 to 1.2 SB-132(11.5-12) 921952 U775 TA 5/20/08 Alleyway Soil Soil Grab VOC, PAH SB-133 8.4 - 8.9 12.85 4.0 to 4.5 SB-133(8.4-8.9) 921953 U775 TA 5/20/08 Alleyway Soil Soil Grab VOC, PAH SB-133 10.5 - 11.0 12.85 1.9 to 2.4 SB-133(10.5-11) 921954 U775 TA 5/20/08 Alleyway Soil Soil Grab VOC, PAH SB-133 14.0 - 14.5 12.85 -1.6 to -1.1 SB-133(14-14.5) 921955 U775 TA 5/20/08 Alleyway Soil Soil Grab VOC, PAH SB-134 8.5 - 9.0 16.01 7.0 to 7.5 SB-134(8.5-9) 921956 U775 TA 5/20/08 Alleyway Soil Soil Grab VOC, PAH SB-134 12.0 - 12.5 16.01 3.5 to 4.0 SB-134(12-12.5) 921957 U775 TA 5/20/08 Alleyway Soil Soil Grab VOC, PAH SB-138 9.0 - 9.5 13.45 3.9 to 4.4 SB-138(9-9.5) 921958 U775 TA 5/20/08 Alleyway Soil Soil Grab VOC, PAH SB-138 14.0 - 14.5 13.45 -1.1 to -0.6 SB-138(14-14.5) 921959 U775 TA 5/20/08 Alleyway Soil Soil Grab VOC, PAH SB-85 13.0 - 13.5 13.82 0.3 to 0.8 SB-85(13-13.5) 921960 U775 TA 5/20/08 Apartments Soil Soil Grab VOC, PAH SB-140 9.5 - 10.0 15.64 5.6 to 6.1 SB-140(9.5-10) 923388 V026 TA 5/28/08 West Street Soil Soil Grab VOC, PAH SB-140 12.0 - 12.5 15.64 3.1 to 3.6 SB-140(12-12.5) 923389 V026 TA 5/28/08 West Street Soil Soil Grab VOC, PAH	SB-61	11.0 - 12.0	18.12	6.1 to 7.	1 SB-61(11-12)	921950	U775	TA	5/20/08	Apartments	Soil	Soil Grab	VOC, PAH
SB-133 8.4 - 8.9 12.85 4.0 to 4.5 SB-133(8.4-8.9) 921953 U775 TA 5/20/08 Alleyway Soil Soil Grab VOC, PAH SB-133 10.5 - 11.0 12.85 1.9 to 2.4 SB-133(10.5-11) 921954 U775 TA 5/20/08 Alleyway Soil Soil Grab VOC, PAH SB-133 14.0 - 14.5 12.85 -1.6 to -1.1 SB-133(14-14.5) 921955 U775 TA 5/20/08 Alleyway Soil Soil Grab VOC, PAH SB-134 8.5 - 9.0 16.01 7.0 to 7.5 SB-134(8.5-9) 921956 U775 TA 5/20/08 Alleyway Soil Soil Grab VOC, PAH SB-134 12.0 - 12.5 16.01 3.5 to 4.0 SB-138(12-12.5) 921957 U775 TA 5/20/08 Alleyway Soil Soil Grab	SB-132	9.0 - 9.5	12.74	3.2 to 3.	7 SB-132(9-9.5)	921951	U775	TA	5/20/08	Alleyway	Soil	Soil Grab	VOC, PAH
SB-133 10.5 - 11.0 12.85 1.9 to 2.4 SB-133(10.5-11) 921954 U775 TA 5/20/08 Alleyway Soil Soil Grab VOC, PAH SB-133 14.0 - 14.5 12.85 -1.6 to -1.1 SB-133(14-14.5) 921955 U775 TA 5/20/08 Alleyway Soil Soil Grab VOC, PAH SB-134 8.5 - 9.0 16.01 7.0 to 7.5 SB-134(8.5-9) 921956 U775 TA 5/20/08 Alleyway Soil Soil Grab VOC, PAH SB-134 12.0 - 12.5 16.01 3.5 to 4.0 SB-134(12-12.5) 921957 U775 TA 5/20/08 Alleyway Soil Soil Grab VOC, PAH SB-138 9.0 - 9.5 13.45 3.9 to 4.4 SB-138(9-9.5) 921958 U775 TA 5/20/08 Alleyway Soil Soil Grab VOC, PAH SB-138 14.0 - 14.5 13.45 -1.1 to -0.6 SB-138(14-14.5) 921959 U775 TA 5/20/08 Alleyway Soil Soil Grab VOC, PAH SB-85 13.0 - 13.5 13.82 0.3 to 0.8 SB-85(13-13.5) 921960 U775 TA 5/20/08 Apartments Soil Soil Grab VOC, PAH, Treatability SB-85 16.0 - 16.5 13.82 -2.7 to -2.2 SB-85(16-16.5) 921961 U775 TA 5/20/08 Apartments Soil Soil Grab VOC, PAH SB-140 9.5 - 10.0 15.64 5.6 to 6.1 SB-140(9.5-10) 923388 V026 TA 5/28/08 West Street Soil Soil Grab VOC, PAH SB-140 12.0 - 12.5 15.64 3.1 to 3.6 SB-140(12-12.5) 923389 V026 TA 5/28/08 West Street Soil Soil Grab VOC, PAH	SB-132	11.5 - 12.0	12.74	0.7 to 1.	2 SB-132(11.5-12)	921952	U775	TA	5/20/08	Alleyway	Soil	Soil Grab	VOC, PAH
SB-133 14.0 - 14.5 12.85 -1.6 to -1.1 SB-133(14-14.5) 921955 U775 TA 5/20/08 Alleyway Soil Soil Grab VOC, PAH SB-134 8.5 - 9.0 16.01 7.0 to 7.5 SB-134(8.5-9) 921956 U775 TA 5/20/08 Alleyway Soil Soil Grab VOC, PAH SB-134 12.0 - 12.5 16.01 3.5 to 4.0 SB-134(12-12.5) 921957 U775 TA 5/20/08 Alleyway Soil Soil Grab VOC, PAH SB-138 9.0 - 9.5 13.45 3.9 to 4.4 SB-138(9-9.5) 921958 U775 TA 5/20/08 Alleyway Soil Soil Grab VOC, PAH SB-138 14.0 - 14.5 13.45 -1.1 to -0.6 SB-138(14-14.5) 921959 U775 TA 5/20/08 Alleyway Soil Soil Grab VOC, PAH SB-85 13.0 - 13.5 13.82 0.3 to 0.8 SB-85(13-13.5) 921960 U775 TA 5/20/08 Apartments Soil Soil Grab VOC, PAH, Treatability SB-85 16.0 - 16.5 13.82 -2.7 to -2.2 SB-85(16-16.5) 921961 U775 TA 5/20/08 Apartments Soil Soil Grab VOC, PAH SB-140 9.5 - 10.0 15.64 5.6 to 6.1 SB-140(9.5-10) 923388 V026 TA 5/28/08 West Street Soil Soil Grab VOC, PAH SB-140 12.0 - 12.5 15.64 3.1 to 3.6 SB-140(12-12.5) 923389 V026 TA 5/28/08 West Street Soil Soil Grab VOC, PAH	SB-133	8.4 - 8.9	12.85	4.0 to 4.	5 SB-133(8.4-8.9)	921953	U775	TA	5/20/08	Alleyway	Soil	Soil Grab	VOC, PAH
SB-134 8.5 - 9.0 16.01 7.0 to 7.5 SB-134(8.5-9) 921956 U775 TA 5/20/08 Alleyway Soil Soil Grab VOC, PAH SB-134 12.0 - 12.5 16.01 3.5 to 4.0 SB-134(12-12.5) 921957 U775 TA 5/20/08 Alleyway Soil Soil Grab VOC, PAH SB-138 9.0 - 9.5 13.45 3.9 to 4.4 SB-138(9-9.5) 921958 U775 TA 5/20/08 Alleyway Soil Soil Grab VOC, PAH SB-138 14.0 - 14.5 13.45 -1.1 to -0.6 SB-138(14-14.5) 921959 U775 TA 5/20/08 Alleyway Soil Soil Grab VOC, PAH SB-85 13.0 - 13.5 13.82 0.3 to 0.8 SB-85(13-13.5) 921960 U775 TA 5/20/08 Apartments Soil Soil Grab	SB-133	10.5 - 11.0	12.85	1.9 to 2.	4 SB-133(10.5-11)	921954	U775	TA	5/20/08	Alleyway	Soil	Soil Grab	VOC, PAH
SB-134 12.0 - 12.5 16.01 3.5 to 4.0 SB-134(12-12.5) 921957 U775 TA 5/20/08 Alleyway Soil Soil Grab VOC, PAH SB-138 9.0 - 9.5 13.45 3.9 to 4.4 SB-138(9-9.5) 921958 U775 TA 5/20/08 Alleyway Soil Soil Grab VOC, PAH SB-138 14.0 - 14.5 13.45 -1.1 to -0.6 SB-138(14-14.5) 921959 U775 TA 5/20/08 Alleyway Soil Soil Grab VOC, PAH SB-85 13.0 - 13.5 13.82 0.3 to 0.8 SB-85(13-13.5) 921960 U775 TA 5/20/08 Apartments Soil Soil Grab VOC, PAH, Treatability SB-85 16.0 - 16.5 13.82 -2.7 to -2.2 SB-85(16-16.5) 921961 U775 TA 5/20/08 Apartments Soil Soil Grab VOC, PAH SB-140 9.5 - 10.0 15.64 5.6 to 6.1 SB-140(9.5-10) 923388 V026 TA 5/28/08 West Street Soil Soil Grab VOC, PAH SB-140 12.0 - 12.5 15.64 3.1 to 3.6 SB-140(12-12.5) 923389 V026 TA 5/28/08 West Street Soil Soil Grab VOC, PAH	SB-133	14.0 - 14.5	12.85	-1.6 to -1	1 SB-133(14-14.5)	921955	U775	TA	5/20/08	Alleyway	Soil	Soil Grab	VOC, PAH
SB-138 9.0 - 9.5 13.45 3.9 to 4.4 SB-138(9-9.5) 921958 U775 TA 5/20/08 Alleyway Soil Soil Grab VOC, PAH SB-138 14.0 - 14.5 13.45 -1.1 to -0.6 SB-138(14-14.5) 921959 U775 TA 5/20/08 Alleyway Soil Soil Grab VOC, PAH SB-85 13.0 - 13.5 13.82 0.3 to 0.8 SB-85(13-13.5) 921960 U775 TA 5/20/08 Apartments Soil Soil Grab VOC, PAH, Treatability SB-85 16.0 - 16.5 13.82 -2.7 to -2.2 SB-85(16-16.5) 921961 U775 TA 5/20/08 Apartments Soil Soil Grab VOC, PAH SB-140 9.5 - 10.0 15.64 5.6 to 6.1 SB-140(9.5-10) 923388 V026 TA 5/28/08 West Street Soil Soil Grab VOC, PAH SB-140 12.0 - 12.5 15.64 3.1 to 3.6 SB-140(12-12.5) 923389 V026 TA 5/28/08 West Street Soil Soil Grab VOC, PAH	SB-134	8.5 - 9.0	16.01	7.0 to 7.	5 SB-134(8.5-9)	921956	U775	TA	5/20/08	Alleyway	Soil	Soil Grab	VOC, PAH
SB-138 14.0 - 14.5 13.45 -1.1 to -0.6 SB-138(14-14.5) 921959 U775 TA 5/20/08 Alleyway Soil Soil Grab VOC, PAH SB-85 13.0 - 13.5 13.82 0.3 to 0.8 SB-85(13-13.5) 921960 U775 TA 5/20/08 Apartments Soil Soil Grab VOC, PAH, Treatability SB-85 16.0 - 16.5 13.82 -2.7 to -2.2 SB-85(16-16.5) 921961 U775 TA 5/20/08 Apartments Soil Soil Grab VOC, PAH SB-140 9.5 - 10.0 15.64 5.6 to 6.1 SB-140(9.5-10) 923388 V026 TA 5/28/08 West Street Soil Soil Grab VOC, PAH SB-140 12.0 - 12.5 15.64 3.1 to 3.6 SB-140(12-12.5) 923389 V026 TA 5/28/08 West Street Soil Soil Grab VOC, PAH	SB-134	12.0 - 12.5	16.01	3.5 to 4.	O SB-134(12-12.5)	921957	U775	TA	5/20/08	Alleyway	Soil	Soil Grab	VOC, PAH
SB-85 13.0 - 13.5 13.82 0.3 to 0.8 SB-85(13-13.5) 921960 U775 TA 5/20/08 Apartments Soil Soil Grab VOC, PAH, Treatability SB-85 16.0 - 16.5 13.82 -2.7 to -2.2 SB-85(16-16.5) 921961 U775 TA 5/20/08 Apartments Soil Soil Grab VOC, PAH SB-140 9.5 - 10.0 15.64 5.6 to 6.1 SB-140(9.5-10) 923388 V026 TA 5/28/08 West Street Soil Soil Grab VOC, PAH SB-140 12.0 - 12.5 15.64 3.1 to 3.6 SB-140(12-12.5) 923389 V026 TA 5/28/08 West Street Soil Soil Grab VOC, PAH	SB-138	9.0 - 9.5	13.45	3.9 to 4.	4 SB-138(9-9.5)	921958	U775	TA	5/20/08	Alleyway	Soil	Soil Grab	VOC, PAH
SB-85 16.0 - 16.5 13.82 -2.7 to -2.2 SB-85(16-16.5) 921961 U775 TA 5/20/08 Apartments Soil Soil Grab VOC, PAH SB-140 9.5 - 10.0 15.64 5.6 to 6.1 SB-140(9.5-10) 923388 V026 TA 5/28/08 West Street Soil Soil Grab VOC, PAH SB-140 12.0 - 12.5 15.64 3.1 to 3.6 SB-140(12-12.5) 923389 V026 TA 5/28/08 West Street Soil Soil Grab VOC, PAH	SB-138	14.0 - 14.5	13.45	-1.1 to -0	6 SB-138(14-14.5)	921959	U775	TA	5/20/08	Alleyway	Soil	Soil Grab	VOC, PAH
SB-140 9.5 - 10.0 15.64 5.6 to 6.1 SB-140(9.5-10) 923388 V026 TA 5/28/08 West Street Soil Soil Grab VOC, PAH SB-140 12.0 - 12.5 15.64 3.1 to 3.6 SB-140(12-12.5) 923389 V026 TA 5/28/08 West Street Soil Soil Grab VOC, PAH	SB-85	13.0 - 13.5	13.82	0.3 to 0.	8 SB-85(13-13.5)	921960	U775	TA	5/20/08	Apartments	Soil	Soil Grab	VOC, PAH, Treatability
SB-140 12.0 - 12.5 15.64 3.1 to 3.6 SB-140(12-12.5) 923389 V026 TA 5/28/08 West Street Soil Soil Grab VOC, PAH	SB-85	16.0 - 16.5	13.82	-2.7 to -2	2 SB-85(16-16.5)	921961	U775	TA	5/20/08	Apartments	Soil	Soil Grab	VOC, PAH
	SB-140	9.5 - 10.0	15.64	5.6 to 6.	1 SB-140(9.5-10)	923388	V026	TA	5/28/08	West Street	Soil	Soil Grab	VOC, PAH
SB-140 17.0 - 17.5 15.64 -1.9 to -1.4 SB-140(17-17.5) 923390 V026 TA 5/28/08 West Street Soil Soil Grab VOC, PAH	SB-140		15.64	3.1 to 3.	6 SB-140(12-12.5)	923389	V026	TA	5/28/08	West Street	Soil	Soil Grab	VOC, PAH
	SB-140	17.0 - 17.5	15.64	-1.9 to -1	4 SB-140(17-17.5)	923390	V026	TA	5/28/08	West Street	Soil	Soil Grab	VOC, PAH

Table 5-2. Supplemental Remedial Investigation 2008 - Summary of Sampling Program
Former Clove and Maple MGP
Haverstraw, NY

Location	Sample Depth (feet bgs)	Ref. Elev.		ampl evati		Field Sample Identification	Laboratory Identification	SDG	Lab	Sample Date	Property	Matrix	Sample Type	Parameters Analyzed
SB-141	12.5 - 13.0	15.91	2.9	to	3.4	SB-141(12.5-13)	923391	V026	TA	5/28/08	West Street	Soil	Soil Grab	VOC, PAH
SB-141	14.8 - 15.3	15.91	0.6	to	1.1	SB-141(14.8-15.3)	923392	V026	TA	5/28/08	West Street	Soil	Soil Grab	VOC, PAH
SB-121	13.0 - 13.5	11.75	-1.7	to	-1.2	SB-121(13-13.5)	923393	V026	TA	5/29/08	West Street	Soil	Soil Grab	VOC, PAH
SB-121	17.0 - 17.5	11.75	-5.7	to	-5.2	SB-121(17-17.5)	923394	V026	TA	5/29/08	West Street	Soil	Soil Grab	VOC, PAH
SB-142	8.2 - 8.7	12.36	3.7	to	4.2	SB-142(8.2-8.7)	923395	V026	TA	5/29/08	West Street	Soil	Soil Grab	VOC, PAH
SB-142	12.5 - 13.0	12.36	-0.6	to	-0.1	SB-142(12.5-13)	923396	V026	TA	5/29/08	West Street	Soil	Soil Grab	VOC, PAH
SB-84A	12.0 - 12.5	13.12	0.6	to	1.1	SB-84A(12-12.5)	923397	V026	TA	5/29/08	West Street	Soil	Soil Grab	VOC, PAH
SB-84A	13.5 - 14.5	13.12	-1.4	to	-0.4	SB-84A(13.5-14.5)	923398	V026	TA	5/29/08	West Street	Soil	Soil Grab	VOC, PAH
SB-84A	13.5 - 14.5	13.12	-1.4	to	-0.4	SB-84A(13.5-14.5)Dup	923399	V026	TA	5/29/08	West Street	Soil	Soil Grab	VOC, PAH
SB-45A	9.2 - 9.7	18.80	9.1	to	9.6	SB-45A(9.2-9.7)	923400	V026	TA	5/29/08	Apartments	Soil	Soil Grab	VOC, PAH
SB-45A	15.0 - 15.5	18.80	3.3	to	3.8	SB-45A(15-15.5)	923401	V026	TA	5/29/08	Apartments	Soil	Soil Grab	VOC, PAH
SB-64	10.4 - 10.9	18.11	7.2	to	7.7	SB-64(10.4-10.9)	923402	V026	TA	5/29/08	Apartments	Soil	Soil Grab	VOC, PAH
SB-64	13.5 - 14.0	18.11	4.1	to	4.6	SB-64(13.5-14)	923409	V026	TA	5/29/08	Apartments	Soil	Soil Grab	VOC, PAH
SB-130	12.0 - 13.0	15.87	2.9	to	3.9	SB-130(12-13)	923403	V026	TA	5/28/08	West Street	Soil	Soil Grab	VOC, PAH, Treatability
SB-130	14.0 - 14.5	15.87	1.4	to	1.9	SB-130(14-14.5)	923404	V026	TA	5/28/08	West Street	Soil	Soil Grab	VOC, PAH, Partial Treatability
SB-130	16.5 - 17.0	15.87	-1.1	to	-0.6	SB-130(16.5-17)	923405	V026	TA	5/28/08	West Street	Soil	Soil Grab	VOC, PAH
SB-131	13.5 - 14.0	17.44	3.4	to	3.9	SB-131(13.5-14)	923406	V026	TA	5/28/08	West Street	Soil	Soil Grab	VOC, PAH
SB-67	16.5 - 17.0	13.75	-3.3	to	-2.8	SB-67(16.5-17)	923407	V026	TA	5/28/08	West Street	Soil	Soil Grab	VOC, PAH
SB-67	17.5 - 18.0	13.75	-4.3	to	-3.8	SB-67(17.5-18)	923408	V026	TA	5/28/08	West Street	Soil	Soil Grab	VOC, PAH
SB-139	13.0 - 13.5	18.00	4.5	to	5.0	SB-139(13-13.5)	923410	V026	TA	5/28/08	West Street	Soil	Soil Grab	VOC, PAH
SB-139	16.0 - 16.5	18.00	1.5	to	2.0	SB-139(16-16.5)	923411	V026	TA	5/28/08	West Street	Soil	Soil Grab	VOC, PAH
SB-139	17.0 - 17.5	18.00	0.5	to	1.0	SB-139(17-17.5)	923412	V026	TA	5/28/08	West Street	Soil	Soil Grab	VOC, PAH
SB-94	9.0 - 10.0	11.30	1.3	to	2.3	SB-94(9-10)	923413	V026	TA	5/28/08	West Street	Soil	Soil Grab	VOC, PAH, Treatability
SB-71	12.0 - 12.5	16.58	4.1	to	4.6	SB-71(12-12.5)	923414	V026	TA	5/28/08	Apartments	Soil	Soil Grab	VOC, PAH
SB-71	13.5 - 14.0	16.58	2.6	to	3.1	SB-71(13.5-14)	923415	V026	TA	5/28/08	Apartments	Soil	Soil Grab	VOC, PAH
SB-71	18.0 - 18.5	16.58	-1.9	to	-1.4	SB-71(18-18.5)	923416	V026	TA	5/28/08	Apartments	Soil	Soil Grab	VOC, PAH

Table 5-2. Supplemental Remedial Investigation 2008 - Summary of Sampling Program
Former Clove and Maple MGP
Haverstraw, NY

Location	Sample Depth (feet bgs)	Ref. Elev.	Sample Elevation	Laboratory Identification	SDG	Lab	Sample Date	Property	Matrix	Sample Type	Parameters Analyzed
Groundwater II	nvestigation										
MW-24	19.0	27.45	8.5	915171	T601	TA	4/24/08	Head Start	Aq	Groundwater Grab	VOC, SVOC, CN, CN-A
MW-11	20.0	28.43	8.4	915172	T601	TA	4/24/08	Head Start	Aq	Groundwater Grab	VOC, SVOC, CN, CN-A
MW-8	18.0	26.90	8.9	915173	T601	TA	4/24/08	Main Site	Aq	Groundwater Grab	VOC, SVOC, CN, CN-A
MW-9	19.0	30.31	11.3	915174	T601	TA	4/24/08	Main Site	Aq	Groundwater Grab	VOC, SVOC, CN, CN-A
TWP-80	5.0	16.78	11.8	917129	T953	TA	5/1/08	West Street	Aq	Groundwater Grab	VOC
TWP-84	3.0	13.12	10.1	917132	T953	TA	5/1/08	West Street	Aq	Groundwater Grab	VOC
TWP-92	2.0	11.08	9.1	917130	T953	TA	5/1/08	West Street	Aq	Groundwater Grab	VOC
TWP-120	5.0	15.54	10.5	917128	T953	TA	5/1/08	West Street	Aq	Groundwater Grab	VOC
TWP-123	8.0	18.99	11.0	917133	T953	TA	5/1/08	West Street	Aq	Groundwater Grab	VOC
TWP-124B	5.0	16.47	11.5	917127	T953	TA	5/1/08	West Street	Aq	Groundwater Grab	VOC
MW-63S	9.5	12.4	2.9	925566	V423	TA	6/5/08	Apartments	Aq	Groundwater Grab	VOC, SVOC, CN, CN-A
MW-1	27.0	42.29	15.3	925567	V423	TA	6/5/08	Main Site	Aq	Groundwater Grab	VOC, SVOC, CN, CN-A
MW-18	12.0	28.26	16.3	925568	V423	TA	6/5/08	Main Site	Aq	Groundwater Grab	VOC, SVOC, CN, CN-A
MW-3	13.0	28.47	15.5	925569	V423	TA	6/5/08	Main Site	Aq	Groundwater Grab	VOC, SVOC, CN, CN-A
MW-31D	29.0	12.52	-16.5	925570	V423	TA	6/6/08	Apartments	Aq	Groundwater Grab	VOC, SVOC, CN, CN-A
MW-32I	19.0	13.44	-5.6	925571	V423	TA	6/6/08	Apartments	Aq	Groundwater Grab	VOC, SVOC, CN, CN-A
MW-10	33.5	39.85	6.4	925572	V423	TA	6/6/08	Main Site	Aq	Groundwater Grab	VOC, SVOC, CN, CN-A
MW-83S	10.0	11.40	1.4	926561	V612	TA	6/9/08	Apartments	Aq	Groundwater Grab	VOC, SVOC, CN, CN-A
MW-29S	11.5	12.82	1.3	926562	V612	TA	6/9/08	Apartments	Aq	Groundwater Grab	VOC, SVOC, CN, CN-A
MW-29D	25.5	12.63	-12.9	926563	V612	TA	6/9/08	Apartments	Aq	Groundwater Grab	VOC, SVOC, CN, CN-A
MW-28S	9.0	13.50	4.5	926564	V612	TA	6/9/08	Apartments	Aq	Groundwater Grab	VOC, SVOC, CN, CN-A
MW-28D	28.0	13.62	-14.4	926565	V612	TA	6/9/08	Apartments	Aq	Groundwater Grab	VOC, SVOC, CN, CN-A
MW-28D-Dup	28.0	13.62	-14.4	926566	V612	TA	6/9/08	Apartments	Aq	Groundwater Grab	VOC, SVOC, CN, CN-A
MW-60	11.0	13.63	2.6	926567	V612	TA	6/10/08	Apartments	Aq	Groundwater Grab	VOC, SVOC, CN, CN-A
MW-107S	10.5	12.60	2.1	926568	V612	TA	6/10/08	Apartments	Aq	Groundwater Grab	VOC, SVOC, CN, CN-A
MW-55	13.0	14.22	1.2	926569	V612	TA	6/10/08	Apartments	Aq	Groundwater Grab	VOC, SVOC, CN, CN-A
MW-21	19.0	16.27	-2.7	926570	V612	TA	6/10/08	Apartments	Aq	Groundwater Grab	VOC, SVOC, CN, CN-A
MW-85S	10.5	13.90	3.4	926571	V612	TA	6/10/08	Apartments	Aq	Groundwater Grab	VOC, SVOC, CN, CN-A
MW-20S	13.0	18.42	5.4	926572	V612	TA	6/11/08	Apartments	Aq	Groundwater Grab	VOC, SVOC, CN, CN-A
MW-20D	19.5	18.27	-1.2	926573	V612	TA	6/11/08	Apartments	Aq	Groundwater Grab	VOC, SVOC, CN, CN-A
MW-61S	10.0	18.10	8.1	926574	V612	TA	6/11/08	Apartments	Aq	Groundwater Grab	VOC, SVOC, CN, CN-A
MW-04	18.0	18.78	0.8	928328	V908	TA	6/18/08	Main Site	Aq	Groundwater Grab	VOC, SVOC, CN, CN-A
MW-05	18.0	18.33	0.3	928329	V908	TA	6/18/08	Main Site	Aq	Groundwater Grab	VOC, SVOC, CN, CN-A
MW-06	16.0	17.22	1.2	928330	V908	TA	6/18/08	Main Site	Aq	Groundwater Grab	VOC, SVOC, CN, CN-A
MW-07	41.0	17.92	-23.1	928331	V908	TA	6/18/08	Main Site	Aq	Groundwater Grab	VOC, SVOC, CN, CN-A

Table 5-2. Sampling Summary Supplemental Remedial Investigation - 2008 Former Clove and Maple MGP Haverstraw, NY

Field Sample	Laboratory			Sample			
Identification	Identification	SDG	Lab	Date	Matrix	Sample Type	Parameters Analyzed
TB	914987	T581	TA	4/18/08	Aq	QC-Trip Blank	VOC
FB	914988	T581	TA	4/22/08	Aq	QC-Field Blank	VOC, PAH
Trip Blank	915169	T601	TA		Aq	QC-Trip Blank	VOC
Field Blank	915170	T601	TA	4/24/08	Aq	QC-Field Blank	VOC, SVOC, CN-TA
TB	917131	T953	TA	4/28/08	Aq	QC-Trip Blank	VOC
FB-050208	917135	T953	TA	5/2/08	Aq	QC-Field Blank	VOC, PAH
Trip Blank	918389	U162	TA	5/2/08	Aq	QC-Trip Blank	VOC
FB-050708	918390	U162	TA	5/7/08	Aq	QC-Field Blank	VOC, PAH, Metals, CN
TB	918846	U237	TA	5/7/08	Aq	QC-Trip Blank	VOC
FB-05-09-08	918847	U237	TA	5/9/08	Aq	QC-Field Blank	VOC, PAH, Metals, CN
TB-5-14-08	920674	U561	TA	5/14/08	Aq	QC-Trip Blank	VOC
FB-5-16-08	920675	U561	TA	5/16/08	Aq	QC-Field Blank	VOC, PAH, Metals, CN
TB	921938	U775	TA	5/16/08	Aq	QC-Trip Blank	VOC
FB-05-19-08	921943	U775	TA	5/19/08	Aq	QC-Field Blank	VOC, PAH, Metals, CN
TB	923384	V026	TA	5/27/08	Aq	QC-Trip Blank	VOC
FB052908	923387	V026	TA	5/29/08	Aq	QC-Field Blank	VOC, PAH
Trip Blank	925573	V423	TA	6/4/08	Aq	QC-Trip Blank	VOC
FB-06-06-08	925574	V423	TA	6/6/08	Aq	QC-Field Blank	VOC, SVOC, CN-TA
FB-06-11-08	FB-06-11-08	V612	TA	6/11/08	Aq	QC-Field Blank	VOC, SVOC, CN-TA
TB	ТВ	V612	TA	-	Aq	QC-Trip Blank	VOC
FB-06-18-08	928332	V908	TA	6/11/08	Aq	QC-Field Blank	VOC, SVOC, CN-TA
ТВ	928333	V908	TA		Aq	QC-Trip Blank	VOC

Table 5-2. Supplemental Remedial Investigation 2008 - Summary of Sampling Program
Former Clove and Maple MGP
Haverstraw, NY

Notes

bgs below ground surface Ref. Elev. In feet mean sea level

SDG Laboratory sample delivery group

Lab Laboratory
TA Test America

VOC Volatile Organic Compounds SVOC Semivolatile Organic Compounds PAH Polycyclic Aromatic Hydrocarbons

Mtl Metals CN Cyanide

Sample ID		ND/C				7.F. D.		P 4		SB-45A_9	2-9.7	SB-45A_	_15.	.0-15.5	SB-61(9.0-9.5)	SB-61(1	1.0-12.0)	SB-62 (9.	0-9.5)	SB-63(9.0	-9.5)
Lab Sample Number	CASRN							ediatio ojectiv		92340	0	923	340	1	921	949	921	950	91712		92194	6
Sampling Depth (feet bgs)	CASRN			ı 3011 les 37					es	9.2 to 9	.7	15.0 1	to 1	5.5	9.0 t	o 9.5	11.0 to	o 12.0	9.0 to 9	9.5	9.0 to 9	.5
Sampling Date		'	abi	63 01	J-0	.0(a)	and	J (D)		05/29/0)8	05/2	29/0	08	05/2	0/08	05/2	0/08	05/02/	08	05/20/0)8
VOLATILE COMPOUNDS (mg/kg)		UUSCO	О	RSCO		RRSCC)	CSCC)	Result Q	MDL	Result		MDL	Result		Result		Result C		Result Q	
Chloromethane	74-87-3	NS		NS		NS		NS		U	5.7		U	0.0068		U 0.0061		U 0.0064		0.0062	U	0.50
Bromomethane	74-83-9	NS		NS		NS		NS		U	5.7		U	0.0068		U 0.0061		U 0.0064	U	0.0062	U	0.50
VinylChloride	75-01-4	0.02		0.21		0.9		13		U	5.7		U	0.0068		U 0.0061		U 0.0064	U	0.0062	U	0.50
Chloroethane	75-00-3	NS		NS		NS		NS		U	5.7		U	0.0068		U 0.0061		U 0.0064	U	0.0062	U	0.50
MethyleneChloride	75-09-2	0.05		51		100	а	500	k	U	3.4	0.0065		0.0041	0.053	0.0036	0.016	0.0039	0.0049	0.0037	U	0.30
Acetone	67-64-1	0.05		100	а	100	k	500	k	U	5.7	0.064	В	0.0068	0.13	0.0061	0.059	0.0064	0.06	0.0062	U	0.50
CarbonDisulfide	75-15-0	NS		NS		NS		NS		U	5.7	0.0009	J	0.0068	0.0005	J 0.0061		U 0.0064	0.0043 J	0.0062	U	0.50
1,1-Dichloroethene	75-35-4	0.33		100	а	100	а	500	k	U	2.3		U	0.0027		U 0.0024		U 0.0026	0.009	0.0025	U	0.20
1,1-Dichloroethane	75-34-3	0.27		19		26		240	1 1	Ü	5.7		U	0.0068		U 0.0061		U 0.0064	U	0.0062	U	0.50
trans-1,2-Dichloroethene	156-60-5	0.19	Ħ	100	а	100	а	500	k	Ü	5.7		U	0.0068		U 0.0061		U 0.0064	U		Ū	0.50
cis-1.2-Dichloroethene	156-59-2	0.25		59		100	а	500	k	Ü	5.7		Ū	0.0068		U 0.0061		U 0.0064	Ü		U	0.50
Chloroform	67-66-3	0.37		10		49		350		Ü	5.7		Ū	0.0068		U 0.0061		U 0.0064	Ü	0.0062	U	0.50
1,2-Dichloroethane	107-06-2	0.02	С	2.3		3.1		30		Ū	2.3		Ū	0.0027		U 0.0024		U 0.0026		0.0025	Ü	0.20
2-Butanone	78-93-3	0.12		100		100	а	500	k	Ü	5.7		Ū	0.0068	0.0066	0.0061		U 0.0064	0.0088	0.0062	Ü	0.50
1,1,1-Trichloroethane	71-55-6	0.68		100		100	а	500	k	U	5.7		IJ	0.0068		U 0.0061		U 0.0064		0.0062	0.04 J	0.50
CarbonTetrachloride	56-23-5	0.76		1.4		2.4		22	 ``	Ü	2.3		IJ	0.0027		U 0.0024		U 0.0026		0.0025	IJ	0.20
Bromodichloromethane	75-27-4	NS		NS		NS		NS	1 1	U	1.1		IJ	0.0014		U 0.0012		U 0.0013		0.0012	U	0.10
1,2-Dichloropropane	78-87-5	NS		NS		NS		NS	1 1	U	1.1		IJ	0.0014		U 0.0012		U 0.0013		0.0012	U	0.10
cis-1,3-Dichloropropene	10061-01-5	NS		NS	+	NS	H	NS		Ü	5.7		IJ	0.0068		U 0.0061		U 0.0064		0.0062	Ü	0.50
Trichloroethene	79-01-6	0.47	\vdash	10	+	21		200		Ü	1.1		IJ	0.0014		U 0.0012		U 0.0013		0.0012	U	0.10
Dibromochloromethane	124-48-1	NS	\vdash	NS	+	NS		NS		U	5.7		П	0.0068		U 0.0061		U 0.0064		0.0062	II	0.50
1,1,2-Trichloroethane	79-00-5	NS		NS	+	NS		NS		Ü	3.4		ij	0.0041		U 0.0036		U 0.0039		0.0037	II	0.30
Benzene	71-43-2	0.06		2.9	-	4.8		44		U	1.1	0.094		0.0014	0.011	0.0012	0.0025	0.0013	0.024	0.0012	0.06 J	0.10
trans-1,3-Dichloropropene	10061-02-6	NS		NS		NS		NS		U	5.7	0.054	U	0.0068		U 0.0061		U 0.0064		0.0062	0.00	0.50
Bromoform	75-25-2	NS		NS		NS		NS		U	4.6		U	0.0054		U 0.0049		U 0.0052		0.0049	U	0.40
4-Methyl-2-Pentanone	108-10-1	NS		NS		NS		NS		Ü	5.7		Ū	0.0068		U 0.0061		U 0.0064		0.0062	U	0.50
2-Hexanone	591-78-6	NS	Ħ	NS	-	NS	H	NS	1 1	Ü	5.7		Ū	0.0068		U 0.0061		U 0.0064		0.0062	lu lu	0.50
Tetrachloroethene	127-18-4	1.3	H	5.5	-	19		150	1 1	Ü	1.1		Ū	0.0014		U 0.0012		U 0.0013	U	0.0012	0.084 J	0.10
1.1.2.2-Tetrachloroethane	79-34-5	NS	\vdash	NS		NS		NS		Ü	1.1		U	0.0014		U 0.0012		U 0.0013	11	0.0012	11	0.10
Toluene	108-88-3	0.7	H	100	а	100	а	500	k	Ü	5.7	0.01	Ħ	0.0068	0.0004	J 0.0061		U 0.0064	0.026	0.0062	0.14 J	0.50
Chlorobenzene	108-90-7	1.1		100		100	а	500	k	Ü	5.7	0.01	U	0.0068	0.0007	U 0.0061		U 0.0064		0.0062	11	0.50
Ethylbenzene	100-41-4	1	\vdash	30		41		390	Ħ	0.73 J	4.6	0.0043	J	0.0054	0.052	0.0049	0.0044		0.15	0.0049	7	0.40
Styrene	100-42-5	NS	\vdash	NS	+	NS		NS		U	5.7	0.0007		0.0068		U 0.0061		U 0.0064	0.002 J	0.0062		0.50
Xylene(Total)	1330-20-7	0.26		100		100	а	500	k	0.68 J	5.7	0.0068	H	0.0068	0.038	0.0061		U 0.0064	0.002 0	0.0062	8.3	0.50
MTBE	1634-04-4	0.20	H	62	_	100	a	500	k		5.7		H		5.000				5.02	3.0002	<u> </u>	3.50
TBA	130-10-1-1	NS	H	NS	_	NS	-	NS	``				H									
Total VOC		.,,0	\vdash	.,,0	+	. 10	H	140	+	1.41		0.1872	H		0.2915		0.0819		0.609		15.624	
Total BTEX			\vdash		+				+	1.41		0.1072	H		0.2913	-	0.0019		0.494		15.36	
Total Confident Conc. VOAs			+		+		H		+	0		0.1031	H		0.101		0.0009	+	0.494	+ +	15.36	
Total Estimated Conc. VOAS			+				H		+	756		0.1	H				0.1		7.3		446	—
Total Estimated Conc. VOA TICS			Ш							756		0			1.9		0.1		1.3		446	<u> </u>

Sample ID										SB-45A_9.	.2-9.7	SB-45A_15	.0-15.5	SB-61(9.0	-9.5)	SB-61(11.0	-12.0)	SB-62 (9.0	0-9.5)	SB-63(9.0	0-9.5)
Lab Sample Number	CASRN		_	-		375 R				92340		92340		92194	9	92195		91712		92194	
Sampling Depth (feet bgs)						leanup -6.8(a)			62	9.2 to 9).7	15.0 to 1	15.5	9.0 to 9	.5	11.0 to 1	2.0	9.0 to 9	9.5	9.0 to 9	9.5
Sampling Date			ıuı	,,,,,,	,, 0	0.0(u)	uii	a (D)	ĺ	05/29/0	08	05/29/	08	05/20/0	8(05/20/0	08	05/02/0	08	05/20/	08
PAH (mg/kg)		UUSC	Ю	RSC	С	RRSC)	CSCC)	Result Q	MDL	Result Q	MDL	Result Q	MDL	Result Q	MDL	Result Q	MDL	Result Q	MDL
Naphthalene	91-20-3	12		100	а	100	а	500	k	51	4	0.54	0.46	0.78	0.41	3.6	0.44	14	4.3	5	1.9
Acenaphthylene	208-96-8	100	а	100	а	100	а	500	k	1.9 J	4	0.049 J	0.46	0.11 J	0.41	U	0.44	2.1 J	4.3	1.4 J	1.9
Acenaphthene	83-32-9	20		100	а	100	а	500	k	19	4	0.034 J	0.46	1.4	0.41	0.012 J	0.44	18	4.3	12	1.9
Fluorene	86-73-7	30		100	а	100	а	500	k	9.9	4	0.02 J	0.46	0.19 J	0.41	U	0.44	18	4.3	7.3	1.9
Phenanthrene	85-01-8	100		100	а	100	а	500	k	26	4	0.064 J	0.46	0.19 J	0.41	U	0.44	51	4.3	30	1.9
Anthracene	120-12-7	100	а	100	а	100	а	500	k	7.8	4	0.016 J	0.46	0.11 J	0.41	U	0.44	17	4.3	9.5	1.9
Fluoranthene	206-44-0	100	а	100	а	100	а	500	k	9.2	4	0.027 J	0.46	0.44	0.41	U	0.44	29	4.3	12	1.9
Pyrene	129-00-0	100		100	а	100	а	500	k	12	4	0.034 J	0.46	0.63	0.41	U	0.44	31	4.3	21	1.9
Benzo(a)anthracene	56-55-3	1	С	1	0	1	0	5.6		3.9	0.4	0.011 J	0.046	0.22	0.041	U	0.044	12	0.43	7.5	0.19
Chrysene	218-01-9	1	С	1	0	3.9		56		3.8 J	4	0.012 J	0.46	0.22 J	0.41	U	0.44	11	4.3	6.8	1.9
Benzo(b)fluoranthene	205-99-2	1	С	1	0	1	0	5.6		1.7	0.4	C	0.046	0.098	0.041	U	0.044	5.6	0.43	2.7	0.19
Benzo(k)fluoranthene	207-08-9	0.8	С	1		3.9		56		2.4	0.4	U	0.046	0.14	0.041	U	0.044	11	0.43	4.7	0.19
Benzo(a)pyrene	50-32-8	1	С	1	0	1	0	1	0	3.6	0.4	U	0.046	0.23	0.041	U	0.044	9.7	0.43	6.9	0.19
Indeno(1,2,3-cd)pyrene	193-39-5	0.5	С	0.5	0	0.5	0	5.6		1.2	0.4	U	0.046	0.099	0.041	U	0.044	3	0.43	2.3	0.19
Dibenz(a,h)anthracene	53-70-3	0.33	b	0.33	n	0.33	n	0.56		0.3 J	0.4	U	0.046	0.042	0.041	U	0.044	1.9	0.43	1.1	0.19
Benzo(g,h,i)perylene	191-24-2	100		100	а	100	а	500	k	1.5 J	4	U	0.46	0.14 J	0.41	U	0.44	2.8 J	4.3	3	1.9
Total PAHs										155.2		0.807		5.039		3.612		237.1		133.2	
Total Confident Conc. PAHs										147		0.5		4		3.6	İ	232		131	
Total Estimated Conc. BNA TIC										NA		NA		NA		NA		NA		NA	
TarGOST Signal at Depth										no dat	а	no dat	ta	no dat	а	no data	а	63 (J)	12	

Sample ID									SB-45A 9.	2-9.7	SB-45A 15.0	0-15.5	SB-61(9.0	-9.5)	SB-61(11	1.0-12.0)	SB-62 (9.0	-9.5)	SB-63(9.0-9.5)
Lab Sample Number					375 R				92340		923401		92194		921		91712		921946
Sampling Depth (feet bgs)	CASRN				Cleanup 5-6.8(a)			es	9.2 to 9).7	15.0 to 15	5.5	9.0 to 9).5	11.0 to	o 12.0	9.0 to 9	.5	9.0 to 9.5
Sampling Date		13	able	8 3/5	o-6.6(a)	and) (D)		05/29/0		05/29/08		05/20/0		05/2		05/02/0		05/20/08
METALS (mg/kg)		UUSCO		RSCO	RRSCO	, T	CSCO		Result Q	MDL	Result Q	MDL	Result Q		Result		Result Q		Result Q MDL
Aluminum	7429-90-5	NS	_	IS	NS	í t	NS		NR	IVIDL	NR NR	MDL	NR	IVIDE	NR	Q IVIDE	NR	IVIDL	NR NR
Antimony	7440-36-0	NS		IS	NS		NS		NR		NR		NR		NR		NR		NR
Arsenic	7440-38-2			6 o	16	0	16	0	NR		NR		NR		NR		NR		NR NR
Barium	7440-39-3		c 3		400	U	400	U	NR		NR		NR		NR		NR		NR NR
Bervllium	7440-39-3	7.2		4	72		590		NR		NR		NR		NR		NR		NR NR
Cadmium	7440-41-7		c 2		4.3		9.3		NR		NR		NR		NR		NR		NR NR
Calcium	7440-43-9	NS		IS	NS		NS		NR		NR		NR		NR		NR		NR NR
Chromium	7440-47-3			16	180		1500		NR		NR		NR		NR		NR		NR NR
Cobalt	7440-48-4	NS		IS	NS		NS		NR		NR		NR		NR		NR		NR
Copper	7440-50-8	50	2		270		270		NR		NR		NR		NR		NR		NR
Iron	7439-89-6	NS		IS	NS		NS		NR		NR		NR		NR		NR		NR
Lead	7439-92-1	63	c 4	_	400		1000		NR		NR		NR		NR		NR		NR
Magnesium	7439-95-4	NS	N	IS	NS		NS		NR		NR		NR		NR		NR		NR
Manganese	7439-96-5	1600	c 20	000 o	2000	0	10000	m	NR		NR		NR		NR		NR		NR
Mercury	7439-97-6	0.18	c 0.	81 q	0.81	q	2.8	q	NR		NR		NR		NR		NR		NR
Nickel	7440-02-0	30	1.	40	310		310		NR		NR		NR		NR		NR		NR
Potassium	7440-09-7	NS	Ν	IS	NS		NS		NR		NR		NR		NR		NR		NR
Selenium	7782-49-2	3.9	c 3	86	180		1500		NR		NR		NR		NR		NR		NR
Silver	7440-22-4	2	3	86	180		1500		NR		NR		NR		NR		NR		NR
Sodium	7440-23-5	NS	N	IS	NS		NS		NR		NR		NR		NR		NR		NR
Thallium	7440-28-0	NS		IS	NS		NS		NR		NR		NR		NR		NR		NR
Vanadium	7440-62-2	NS		IS	NS		NS		NR		NR		NR		NR		NR		NR
Zinc	7440-66-6	109	_	200	10000		10000	m	NR		NR		NR		NR		NR		NR
WET CHEMISTRY		UUSCO	_	RSCO	RRSCO		CSCO		Result Q	MDL	Result Q	MDL	Result Q	MDL	Result	Q MDL	Result Q	MDL	Result Q MDL
TotalCyanide - mg/kg	57-12-5	27	2	7	27		27		NR		NR		NR		NR		NR		NR

Sample Number Sample Numbe	Sample ID							SB-63(10.5-11.0)	SB-63(13.	5-14.0)	SB-64 10.4-	10.9	SB-64 (13.	5-14.0)	SB-67 (13.5	5-14.0)	SB-67 16.5	5-17.0
Sampling Depth (rele togs)	Lab Sample Number	0.400.1						921947	9219	48	923402		92340	09	,		92340	7
Sampling Date	Sampling Depth (feet bgs)	CASRN						10.5 to 11.0	13.5 to	14.0	10.4 to 10).9	13.5 to	14.0	13.5 to	14	16.5 to 1	7,0
VOLATILE COMPOUNDS (mg/kg) VOLATILE COMPO			Tai	0165 37 5	-0.0(a)	ט) טווג	'				05/29/08	3						
Chicromethane			UUSCO	RSCO	RRSCO	С	SCO											
Vimp(Chloride 75-01-4 0.02 0.21 0.9 13 0.0055 0.0067 0.0067 0.11 0.0064 0.0064 0.0078 0.0067	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	74-87-3	NS	NS	NS	N:	3	U 0.0055							U			0.78
Chieroethane 75-00-3 NS NS NS NS NS NS NS NS NS NS NS NS NS	Bromomethane	74-83-9	NS	NS	NS	N:	3	U 0.0055	i u	0.0067	U	11	U	0.0064	U	3.6	U	0.78
MethyleneChloride	VinylChloride	75-01-4	0.02	0.21	0.9	13	,	U 0.0055	i u	0.0067	U	11	U	0.0064	U	3.6	U	0.78
Acetone	Chloroethane	75-00-3	NS	NS	NS	N:	3	U 0.0055	i u	0.0067	U	11	U	0.0064	U	3.6	U	0.78
CarbonDisulfide	MethyleneChloride	75-09-2	0.05	51	100	a 50) k	0.036 0.0033	0.0027 J	0.0040	U	6.8	0.0073	0.0039	U	2.2	U	0.47
1.1-Dichloroethane	Acetone	67-64-1	0.05	100 a	100	k 50) k	0.17 0.0055	0.035	0.0067	U	11	0.11 B	0.0064	U	3.6	U	0.78
1.1-Dichloroethane	CarbonDisulfide	75-15-0	NS	NS	NS	N:	3	0.0009 J 0.0055	i u	0.0067	U	11	0.0015 J	0.0064	U	3.6	U	0.78
1.1-Dichloroethane											Ū				U		U	
Tariss-1,2-Dichloroethene	1.1-Dichloroethane		0.27	19	26	24)	U 0.0055	i lu	0.0067	Ü		Ü	0.0064	Ū	3.6	U	0.78
cis-12-Dichloroethene 156-59-2 0.25 59 100 a 500 k U 0.0067 U 11 U 0.0064 U 3.6 U 0.78 Chloroform 67-68-3 0.37 10 49 350 U 0.0055 U 0.0067 U 11 U 0.0064 U 3.6 U 0.027 1,2-Dichloroethane 107-08-2 0.02 c 2.3 3.1 3.0 U 0.0025 U 0.0027 U 4.5 U 0.0026 U 1.4 U 0.31 1,1,1-Trichloroethane 71-55-6 0.68 10 a 500 k U 0.0055 U 0.0067 U 11 U 0.0064 U 3.6 U 0.007 1,1,1-Trichloroethane 75-274 NS	trans-1.2-Dichloroethene		0.19		100	a 50) k				Ū	11	Ü		U	3.6	U	0.78
Chloroform	,					a 50) k				Ü		Ü		l U		U	
1.2-Dichloroethane						35)						Ü		Ü		U	
2-Butanone 78-93-3 0.12 100 a 100 a 500 k 0.0024 J 0.0055 U 0.0067 U 111 U 0.0064 U 3.6 U 0.78 (1.1,1-Trichlorothane 77-55-5 0.68 100 a 100 a 500 k U 0.0025 U 0.0067 U 111 U 0.0064 U 3.6 U 0.78 (2.10-11-11-11-11-11-11-11-11-11-11-11-11-1											Ü		Ü		Ü		U	
1.1.1-frichloroethane	· · · · · · · · · · · · · · · · · · ·										Ü		Ü		Ü		Ü	
CarbonTetrachloride															Ü			
Bromodichloromethane											-				Ü			
1,2-Dichloropropane 78-87-5 NS NS NS NS NS NS NS N													Ü		Ü			
cis-1,2-Dichloropropene 10061-01-5 NS NS NS U 0.0055 U 0.0067 U 11 U 0.0064 U 3.6 U 0.78 Trichiorothene 79-01-6 0.47 1 2.21 200 U 0.0011 U 0.0013 U 0.0013 U 0.0013 U 0.0064 U 0.003 U 0.0064 U 0.0064 U 0.003 U 0.0064 U 0.003 U 0.003 U 0.003 U 0.004 U 0.0064 U 0.047 0.0064 U 0.047 0.0064 U 0.047 0.0064 U 0.047 0.00					_										l U			
Trichloroethene 79-01-6 0.47 10 21 200 U 0.0011 U 0.0013 U 2.3 U 0.0013 U 0.0013 U 0.73 U 0.16 Dibromochloromethane 124-48-1 NS NS NS NS NS U 0.0055 U 0.0067 U 111 U 0.0064 U 3.6 U 0.57 U 0.47 Benzene 79-05-5 NS NS NS NS NS U 0.0033 U 0.0040 U 6.8 U 0.0033 U 0.0040 U 6.8 U 0.0039 U 2.2 U 0.47 Benzene 71-43-2 0.06 2.9 4.8 44 U 0.0011 U 0.0011 U 0.0013 U 2.3 0.011 0.0013 3.5 0.73 0.46 0.16 trans-1,3-Dichloropropene 10061-02-6 NS NS NS NS NS U 0.0055 U 0.0067 U 111 U 0.0064 U 3.6 U 0.58 Bromoform 75-25-2 NS NS NS NS NS U 0.0055 U 0.0067 U 111 U 0.0064 U 3.6 U 0.68 U 0.68 U 0.0051 U 0.0064 U 3.6 U 0.078 U 0.0064 U 3.6 U 0.078 U 0.0064 U 0													Ü		U			
Dibromochloromethane	· ' ' '		_								Ü		Ü		Ü		U	
1,1,2-Trichloroethane											Ü		Ü		Ü		Ü	
Benzene													U		U		U	
trans-1,3-Dichloropropene 10061-02-6 NS NS NS NS U 0.0055 U 0.0067 U 11 U 0.0064 U 3.6 U 0.78 Bromoform 75-25-2 NS NS NS NS U 0.0044 U 0.0054 U 9.1 U 0.0051 U 2.9 U 0.62 4-Methyl-2-Pentanone 108-10-1 NS NS NS NS U 0.0065 U 0.0067 U 11 U 0.0064 U 3.6 U 0.62 4-Hethyl-2-Pentanone 591-78-6 NS	, ,		-		4.8	44		-			Ü		0.011		3.5	0.73	0.46	
Bromoform 75-25-2															U			
4-Methyl-2-Pentanone 108-10-1 NS NS NS NS U 0.0055 U 0.0067 U 11 U 0.0064 U 3.6 U 0.78 2-Hexanone 591-78-6 NS NS NS NS NS U 0.0055 U 0.0067 U 11 U 0.0064 U 3.6 U 0.78 Tetrachloroethene 127-18-4 1.3 5.5 19 150 U 0.0011 U 0.013 U 2.3 U 0.0013 U 0.73 U 0.16 1,1,2,2-Tetrachloroethane 79-34-5 NS U 0.0011 U 0.0013 U 2.3 U 0.0013 U 0.73 U 0.16 10lue 108-88-3 0.7 100 a 100 a 500 k U 0.0067 U <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Ü</td> <td></td> <td>Ü</td> <td></td> <td>Ü</td> <td></td>													Ü		Ü		Ü	
2-Hexanone			_												Ü			
Tetrachloroethene 127-18-4 1.3 5.5 19 150 U 0.0011 U 0.0013 U 2.3 U 0.0013 U 0.73 U 0.16 1,1,2,2-Tetrachloroethane 79-34-5 NS NS NS NS NS NS NS NS U 0.0011 U 0.0013 U 2.3 U 0.0013 U 0.73 U 0.16 1,1,2,2-Tetrachloroethane 108-88-3 0.7 100 a 100 a 500 k U 0.0055 U 0.0067 U 11 0.0047 U 0.0044 U 0.0064 G.1 3.6 0.073 U 0.78 Chlorobenzene 108-90-7 1.1 100 a 100 a 500 k U 0.0055 U 0.0067 U 11 U 0.0064 U 3.6 U 0.78 Ethylbenzene 100-41-4 1 30 41 390 U 0.0044 U 0.0055 U 0.0067 U 11 U 0.0064 U 3.6 U 0.78 Styrene 100-42-5 NS NS NS NS NS NS U 0.0055 U 0.0067 U 11 U 0.0064 U 3.6 U 0.78 Xylene(Total) 1330-20-7 0.26 100 a 100 a 500 k U 0.0055 U 0.0055 U 0.0067 U 11 U 0.0064 U 3.6 U 0.78 MTBE 1634-04-4 0.93 62 100 a 500 k U 0.0055 U 0.0055 U 0.0067 U 11 0.0064 U 3.6 U 0.78 TBA NS NS NS NS NS NS NS NS NS NS NS NS NS	·														Ü			
1,1,2,2-Tetrachloroethane 79-34-5 NS			-										Ü		l U		- U	
Toluene 108-88-3 0.7 100 a 100 a 500 k U 0.0055 U 0.0067 U 11 0.0047 J 0.0064 6.1 3.6 0.073 J 0.78 Chlorobenzene 108-90-7 1.1 100 a 100 a 500 k U 0.0055 U 0.0067 U 11 0.0047 U 0.0064 U 3.6 U 0.78 Ethylbenzene 100-41-4 1 30 41 390 U 0.0044 U 0.0055 U 0.0067 U 11 U 0.0051 130 2.9 3.4 0.62 Styrene 100-42-5 NS NS NS NS NS NS NS NS NS NS NS NS NS													11		li li			
Chlorobenzene 108-90-7 1.1 100 a 500 k U 0.0055 U 0.0067 U 11 U 0.0064 U 3.6 U 0.78 Ethylbenzene 100-41-4 1 30 41 390 U 0.0044 U 0.0054 U 9.1 0.011 0.0051 130 2.9 3.4 0.62 Styrene 100-42-5 NS													0.0047 .1		6.1			
Ethylbenzene 100-41-4 1 30 41 390 U 0.0044 U 0.0054 U 9.1 0.011 0.0051 130 2.9 3.4 0.62 Styrene 100-42-5 NS NS NS NS U 0.0055 U 0.0067 U 11 U 0.0064 U 3.6 U 0.78 Xylene(Total) 1330-20-7 0.26 100 a 100 a 500 k U 0.0055 U 0.0067 U 11 0.0044 U 3.6 U 0.78 MTBE 1634-04-4 0.93 62 100 a 500 k															U.			
Styrene 100-42-5 NS NS NS NS NS NS U 0.0055 U 0.0067 U 11 U 0.0064 U 3.6 U 0.78 Xylene(Total) 1330-20-7 0.26 100 a 500 k U 0.0067 U 11 0.0064 140 3.6 3.4 0.78 MTBE 1634-04-4 0.93 62 100 a 500 k <													Ū		130		ŭ	
Xylene(Total) 1330-20-7 0.26 100 a 500 k U 0.0067 U 11 0.0046 J 0.0064 140 3.6 3.4 0.78 MTBE 1634-04-4 0.93 62 100 a 500 k <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td>0.011</td><td></td><td>11</td><td></td><td></td><td></td></td<>							-						0.011		11			
MTBE 1634-04-4 0.93 62 100 a 500 k			-		_						- III		0.0046 1		140			
TBA NS NS NS NS NS NS	, ,							- 0.0000	<u> </u>							<u> </u>		5.70
Total VOC 0.2093 0.0377 0 0.1501 279.6 7.333 Total BTEX 0 0 0 0 0.0266 273.5 7.26 Total Confident Conc. VOAs 0 0.2 0.0 0 0 0 279 7.2		100-7-07-4												<u> </u>				
Total BTEX 0 0 0 0.0266 273.5 7.26 Total Confident Conc. VOAs 0.2 0.0 0 0 279 7.2			140	1,10	110	1 1 1 1	-	0.2093	0.0377		0		0.1501		279.6	 	7 333	
Total Confident Conc. VOAs 0.0 0.0 0 279 7.2						-				+ -				1		 		
						-		_		1 1				 		+ +		
	Total Estimated Conc. VOA TICs					-		0.1	0.0	1 1	230		0	 	1372	+ +	29	

Sample ID										SB-63(10.5	-11 (1)	SB-63(13.5	S-14 (1)	SB-64_10.	4-10.9	SB-64 (13.5	5-14 (1)	SB-67 (13.5	5-14 (1)	SB-67_16.5	5-17.0
'	•	NYS	SDI	EC P	art	375 R	eme	ediatio	n	1		,				,		,			
Lab Sample Number	CASRN	Proc	rar	n So	il C	leanur	Ok	ojective	es -	921947	/	92194	8	92340	2	92340	9	91711	1	92340	/
Sampling Depth (feet bgs)						6.8(a)			L	10.5 to 1	1.0	13.5 to 1	4.0	10.4 to 1	0.9	13.5 to 1	14.0	13.5 to	14	16.5 to 1	7,0
Sampling Date						()		- (-)		05/20/0	8	05/20/	08	05/29/0	08	05/28/0	08	05/01/0	8	05/28/0)8
PAH (mg/kg)		UUSC	0	RSC	0	RRSC	0	CSCC)	Result Q	MDL	Result Q	MDL	Result Q	MDL	Result Q	MDL	Result Q	MDL	Result Q	MDL
Naphthalene	91-20-3	12		100	а	100	а	500	k	0.029 J	0.39	U	0.45	57	3.8	16	0.86	560	25	17	1.0
Acenaphthylene	208-96-8	100	а	100	а	100	а	500	k	0.035 J	0.39	U	0.45	4.6	3.8	U	0.86	22 J	25	0.13 J	1.0
Acenaphthene	83-32-9	20		100	а	100	а	500	k	0.085 J	0.39	U	0.45	39	3.8	0.066 J	0.86	140	25	2.2	1.0
Fluorene	86-73-7	30		100	а	100	а	500	k	0.026 J	0.39	U	0.45		3.8	0.029 J	0.86	88	25	1.6	1.0
Phenanthrene	85-01-8	100		100	а	100	а	500	k	0.07 J	0.39	U	0.45	58	3.8	0.079 J	0.86	440	25	2.3	1.0
Anthracene	120-12-7	100	а	100	а	100	а	500	k	0.036 J	0.39	U	0.45	16	3.8	0.018 J	0.86	120	25	0.73 J	1.0
Fluoranthene	206-44-0	100	а	100	а	100	а	500	k	0.081 J	0.39	U	0.45	22	3.8	0.027 J	0.86	110	25	2.1	1.0
Pyrene	129-00-0	100		100	а	100	а	500	k	0.12 J	0.39	U	0.45	29	3.8	0.041 J	0.86	280	25	1.8	1.0
Benzo(a)anthracene	56-55-3	1	С	1	0	1	0	5.6		0.079	0.039	U	0.045	9	0.38	U	0.086	81	2.5	1.3	0.10
Chrysene	218-01-9	1	С	1	0	3.9		56		0.074 J	0.39	U	0.45	8.9	3.8	U	0.86	76	25	1.3	1.0
Benzo(b)fluoranthene	205-99-2	1	С	1	0	1	0	5.6		0.021 J	0.039	U	0.045	4	0.38	U	0.086	26	2.5	0.96	0.10
Benzo(k)fluoranthene	207-08-9	0.8	С	1		3.9		56		0.034 J	0.039	U	0.045	6.1	0.38	U	0.086	38	2.5	1.2	0.10
Benzo(a)pyrene	50-32-8	1	С	1	0	1	0	1	0	0.035 J	0.039	U	0.045	9.4	0.38	U	0.086	70	2.5	1.3	0.10
Indeno(1,2,3-cd)pyrene	193-39-5	0.5	С	0.5	0	0.5	0	5.6		0.014 J	0.039	U	0.045	3.3	0.38	U	0.086	14	2.5	0.54	0.10
Dibenz(a,h)anthracene	53-70-3	0.33	b	0.33	n	0.33	n	0.56		U	0.039	U	0.045	0.93	0.38	U	0.086	U	2.5	0.27	0.10
Benzo(g,h,i)perylene	191-24-2	100		100	а	100	а	500	k	0.016 J	0.39	U	0.45	3.9	3.8	U	0.86	24 J	25	0.47 J	1.0
Total PAHs										0.755		0		292.13		16.26		2089		35.2	
Total Confident Conc. PAHs										0.1		0		292		16		2043		33	
Total Estimated Conc. BNA TIC										NA		NA		NA		NA		NA		NA	
TarGOST Signal at Depth										backgrou	ınd	backgro	und	122.4		backgro	und	428.7		backgrou	und

Sample ID								SB-63(10.5-	-11.0)	SB-63(13.5	5-14.0)	SB-64 10.4-	10.9	SB-64 (13.5	5-14.0)	SB-67 (13.5	-14.0)	SB-67_16.5	5-17.0
Lab Sample Number	CASRN				375 Re leanup			92	1947	7	92194	-8	923402		92340	9	91711	7	923407	
Sampling Depth (feet bgs)	CASINI	Ta	ani 30 ables 3	11 C 375.	.6.8(a) a	and ())	10.5	to 1	1.0	13.5 to 1	14.0	10.4 to 10	.9	13.5 to 1	4.0	13.5 to	14	16.5 to 17	7,0
Sampling Date					0.0(4)	(-,	05/	20/0	8	05/20/	08	05/29/08	3	05/28/0	08	05/01/0	8	05/28/0	18
METALS (mg/kg)		UUSCO	RSC	0	RRSCO		CSCO	Resul	t Q	MDL	Result Q	MDL	Result Q	MDL	Result Q	MDL	Result Q	MDL	Result Q	MDL
Aluminum	7429-90-5	NS	NS		NS	1	NS	NR	2		NR		NR		NR		NR		NR	
Antimony	7440-36-0	NS	NS		NS	1	NS	NR	2		NR		NR		NR		NR		NR	
Arsenic	7440-38-2	13 (16	0	16	0	16) NR	2		NR		NR		NR		NR		NR	
Barium	7440-39-3	350	350	0	400	4	00	NR	2		NR		NR		NR		NR		NR	
Beryllium	7440-41-7	7.2	14		72	5	90	NR	2		NR		NR		NR		NR		NR	
Cadmium	7440-43-9	2.5	2.5	0	4.3	9	.3	NR	2		NR		NR		NR		NR		NR	
Calcium	7440-70-2	NS	NS		NS	1	IS	NR	2		NR		NR		NR		NR		NR	
Chromium	7440-47-3	30	36		180	1:	500	NR	2		NR		NR		NR		NR		NR	
Cobalt	7440-48-4	NS	NS		NS	1	IS	NR	2		NR		NR		NR		NR		NR	
Copper	7440-50-8	50	270		270	2	70	NR	2		NR		NR		NR		NR		NR	
Iron	7439-89-6	NS	NS		NS	1	IS	NR			NR		NR		NR		NR		NR	
Lead	7439-92-1	63	400		400	10	000	NR	2		NR		NR		NR		NR		NR	
Magnesium	7439-95-4	NS	NS		NS	1	IS	NR	2		NR		NR		NR		NR		NR	
Manganese	7439-96-5	1600	2000	0	2000	o 10	000 r	n NR			NR		NR		NR		NR		NR	
Mercury	7439-97-6	0.18	0.81	q	0.81	q 2	2.8	NR	2		NR		NR		NR		NR		NR	
Nickel	7440-02-0	30	140		310	3	10	NR	2		NR		NR		NR		NR		NR	
Potassium	7440-09-7	NS	NS		NS	1	IS	NR	2		NR		NR		NR		NR		NR	
Selenium	7782-49-2	3.9	36		180	1	500	NR			NR		NR		NR		NR		NR	
Silver	7440-22-4	2	36		180	1	500	NR	-		NR		NR		NR		NR		NR	
Sodium	7440-23-5	NS	NS		NS	1	IS	NR	2		NR		NR		NR		NR		NR	
Thallium	7440-28-0	NS	NS		NS	1	IS	NR	2		NR		NR		NR		NR		NR	
Vanadium	7440-62-2	NS	NS		NS	1	IS	NR	-		NR		NR		NR		NR		NR	
Zinc	7440-66-6	109	2200		10000	m 10	000 r		-		NR		NR		NR		NR		NR	
WET CHEMISTRY		UUSCO	RSC	0	RRSCO		csco	Resul		MDL	Result Q	MDL	Result Q	MDL	Result Q	MDL	Result Q	MDL	Result Q	MDL
TotalCyanide - mg/kg	57-12-5	27	27		27	2	27	NR	2		NR		NR		NR		NR		NR	

Sampling Depth (feet bag) Sampling Depth (feet bag) Program Sol - Result Q Tables 375-6.8(a) and (b) Tables 375-6.8(a) Tables 375-6.8(a) and (b) Tables 375-	Sample ID		NYSI	DEC P	art	375 R	eme	ediation	n	SB-67_17.		SB-68 (8.5		SB-71_12.		SB-71_13.5		SB-71_1		5	SB-75 (2	
Sampling Date	Lab Sample Number	CASRN	Progra	am So	il C	leanup	Ob	ojective	es											_		
Colar Cola	Sampling Depth (feet bgs)		Ta	bles 3	75-	6.8(a)	an	d (b)	ļ	17.5 to 1	18.0	8.5 to 9	.5	12.0 to	12.5	13.5 to 1	4.0	18.0 to	18.5		2.5 to	3.0
Chicromethane						. ,		` ,		05/28/	08			05/28/	08	05/28/0	08	05/28	3/08			
Brommethane	VOLATILE COMPOUNDS (mg/kg)))			Result Q		Result Q		Result Q		Result Q		Result	Q M	DL	Result	Q MDL
VinyChoride	Chloromethane																	l			l	J 0.0053
Chicroethane	Bromomethane	74-83-9	NS	NS				NS		U		U	0.66	U				ι			l	J 0.0053
MethyleneChloride	VinylChloride									U								l				J 0.0053
Acetone	Chloroethane		_							U			0.66)				ι				J 0.0053
Carbon T5-15-0 NS NS NS NS NS NS NS N	MethyleneChloride			_			а		k													0.0032
1,1-Dichloroethane					а		k		k													0.0053
1.1-Dichloroethane																		0.0012				J 0.0053
Tans-1,2-Dichloroethene	, , , , , , , , , , , , , , , , , , , ,				а		а		k									l				J 0.0021
Cist Cist	1,1-Dichloroethane		_							U				ŭ				ι			l	J 0.0053
Chloroform	,				а				k									l			l	J 0.0053
12-Dichloroethane	· · · · · · · · · · · · · · · · · · ·						а		k									ι				J 0.0053
2-Butanone 78-93-3 0.12 100 a 100 a 500 k U 0.0067 U 0.66 U 3.4 U 13 U 0.0070 0.0063 0.0 (1,1-Trichloroethane 77-55-6 0.68 100 a 100 a 500 k U 0.0067 U 0.66 U 3.4 U 13 U 0.0070 0.0063 0.0 (1,1-Trichloroethane 77-55-6 0.68 100 a 100 a 500 k U 0.0067 U 0.66 U 3.4 U 13 U 0.0070 U 0.0081 U 0.0070 U 0.00																		l				J 0.0053
1,1-Trichloroethane	1,2-Dichloroethane																	l		_		J 0.0021
CarbonTetrachloride	2-Butanone		0.12		а		а		k	U		U	0.66	U	3.4			ι			0.0063	0.0053
Bromodichloromethane	1,1,1-Trichloroethane	71-55-6	0.68	100	а	100	а	500	k	U	0.0067	U	0.66	U	3.4			ι	0.00	70	ι	J 0.0053
1,2-Dichloropropene	CarbonTetrachloride	56-23-5	0.76	1.4		2.4		22		U	0.0027	U	0.26	U	1.4	U		l	0.00)28	ι	J 0.0021
Cis-1,3-Dichloropropene 10061-01-5 NS NS NS NS U 0.0067 U 0.66 U 3.4 U 13 U 0.070 U 0.6 Trichloroethene 79-01-6 0.47 10 21 200 U 0.0013 U 0.66 U 3.4 U 13 U 0.0070 U 0.6 U 3.4 U 13 U 0.0070 U 0.6 U 3.4 U 13 U 0.0070 U 0.6 U 3.4 U 1.0070 U 0.66 U 3.4 U 1.0070 U 0.66 U 3.4 U 1.0070 U 0.66 U 3.4 U 1.0042 U 0.0 </td <td></td> <td>75-27-4</td> <td>NS</td> <td>NS</td> <td></td> <td>NS</td> <td></td> <td>NS</td> <td></td> <td>U</td> <td>0.0013</td> <td>U</td> <td></td> <td></td> <td>0.68</td> <td>U</td> <td>2.6</td> <td>l</td> <td>0.00</td> <td>)14</td> <td>ι</td> <td>J 0.0011</td>		75-27-4	NS	NS		NS		NS		U	0.0013	U			0.68	U	2.6	l	0.00)14	ι	J 0.0011
Cis-1,3-Dichloropropene 10061-01-5 NS NS NS NS NS NS NS U 0.0067 U 0.66 U 3.4 U 13 U 0.0070 U 0.070 U 0.	1,2-Dichloropropane	78-87-5	NS	NS		NS		NS		U	0.0013	U	0.13	U	0.68	U	2.6	l	0.00)14	l	J 0.0011
Dibromochloromethane 124-48-1 NS NS NS NS NS NS NS N		10061-01-5	NS	NS		NS		NS		U	0.0067	U	0.66	U	3.4	U	13	ι	0.00)70	l	J 0.0053
1,1,2-Trichloroethane	Trichloroethene	79-01-6	0.47	10		21		200		U	0.0013	U	0.13	U	0.68	U		ι	0.00)14	l	J 0.0011
Benzene 71-43-2 0.06 2.9 4.8 44 0.008 0.0013 0.5 0.13 0.58 J 0.68 1.7 J 2.6 U 0.0014 0.0007 J 0.0014	Dibromochloromethane	124-48-1	NS	NS		NS		NS		U	0.0067	U	0.66	U	3.4	U	13	l	0.00)70	l	J 0.0053
trans-1,3-Dichloropropene 10061-02-6 NS NS NS NS U 0.0067 U 0.66 U 3.4 U 13 U 0.0070 U 0.6 Bromoform 75-25-2 NS NS NS NS U 0.0053 U 2.7 U 10 U 0.0056 U 0.6 4-Methyl-2-Pentanone 108-10-1 NS NS NS NS U 0.0067 U 0.66 U 3.4 U 13 U 0.0070 U 0.6 2-Hexanone 591-78-6 NS NS NS NS NS U 0.0067 U 0.66 U 3.4 U 13 U 0.0070 U 0.66 U 3.4 U 13 U 0.0070 U 0.66 U 3.4 U 13 U 0.0070 U 0.00 U 0.00 0.00 U 0.00 U	1,1,2-Trichloroethane	79-00-5	NS	NS		NS		NS		U	0.0040	U	0.40	U	2.0	U	7.8	l	0.00)42	l	J 0.0032
Bromoform 75-25-2 NS NS NS NS NS NS NS N	Benzene	71-43-2	0.06	2.9		4.8		44		0.008	0.0013	0.5	0.13	0.58 J	0.68	1.7 J	2.6	ι	0.00)14	0.0007 .	J 0.0011
4-Methyl-2-Pentanone 108-10-1 NS NS NS NS U 0.0067 U 0.66 U 3.4 U 13 U 0.0070 U 0.66 2-Hexanone 591-78-6 NS NS NS NS U 0.0067 U 0.66 U 3.4 U 13 U 0.0070 U 0.6 Tetrachloroethene 127-18-4 1.3 5.5 19 150 U 0.0013 U 0.68 U 2.6 U 0.0014 U 0.0 1,1,2,2-Tetrachloroethane 79-34-5 NS NS NS NS NS NS NS U 0.0013 U 0.68 U 2.6 U 0.0014 U 0.0 Toluene 108-88-3 0.7 100 a 100 a 500 k 0.0025 J 0.0067 U 0.66 0.88 J 3.4 5.3 J 13 U 0.0	trans-1,3-Dichloropropene	10061-02-6	NS	NS		NS		NS		U	0.0067	U	0.66	U	3.4	U	13	ι	0.00)70	l	J 0.0053
2-Hexanone	Bromoform	75-25-2	NS	NS		NS		NS		U	0.0053	U	0.53	U	2.7	U	10	l	0.00)56	l	J 0.0042
Tetrachloroethene 127-18-4 1.3 5.5 19 150 U 0.0013 U 0.13 U 0.68 U 2.6 U 0.0014 U 0.01 1,1,2,2-Tetrachloroethane 79-34-5 NS NS NS NS NS NS NS U 0.0013 U 0.13 U 0.68 U 2.6 U 0.0014 U 0.01 1,1,2,2-Tetrachloroethane 108-88-3 0.7 100 a 100 a 500 k 0.0025 J 0.0067 U 0.66 0.88 J 3.4 5.3 J 13 U 0.0070 U 0.00 1 U 0.	4-Methyl-2-Pentanone	108-10-1	NS	NS		NS		NS		U	0.0067	U	0.66	U	3.4	U	13	l	0.00)70	l	J 0.0053
1,1,2,2-Tetrachloroethane 79-34-5 NS NS NS NS NS NS U 0.0013 U 0.13 U 0.68 U 2.6 U 0.0014 U 0.04 Toluene 108-88-3 0.7 100 a 100 a 500 k 0.0025 J 0.0067 U 0.66 0.88 J 3.4 5.3 J 13 U 0.0070 U 0.6 Chlorobenzene 108-90-7 1.1 100 a 100 a 500 k U 0.066 U 3.4 U 13 U 0.0070 U 0.6 Ethylbenzene 100-41-4 1 30 41 390 0.022 0.0053 0.78 0.53 8.9 2.7 84 10 U 0.066 U 3.4 U 13 U 0.0070 U 0.6 U 3.4 U 13 U 0.0070 U 0.	2-Hexanone	591-78-6	NS	NS		NS		NS		U	0.0067	U	0.66	U	3.4	U	13	ι	0.00)70	l	J 0.0053
Toluene 108-88-3 0.7 100 a 100 a 500 k 0.0025 J 0.0067 U 0.66 0.88 J 3.4 5.3 J 13 U 0.0070 U 0.0 Chlorobenzene 108-90-7 1.1 100 a 100 a 500 k U 0.0067 U 0.66 U 3.4 U 13 U 0.0070 U 0.0 Ethylbenzene 100-41-4 1 30 41 390 0.022 0.0053 0.78 0.53 8.9 2.7 84 10 U 0.0056 U 0.0 Styrene 100-42-5 NS NS NS NS NS NS U 0.0067 U 0.66 U 3.4 U 13 U 0.0070 U 0.0 Xylene(Total) 1330-20-7 0.26 100 a 100 a 500 k 0.03 0.0067 0.54 J 0.66 8.4 3.4 100 13 U 0.0070 U 0.0 MTBE 1634-04-4 0.93 62 100 a 500 k	Tetrachloroethene	127-18-4	1.3	5.5		19		150		U	0.0013	U	0.13	U	0.68	U	2.6	ι	0.00)14	l	J 0.0011
Chlorobenzene 108-90-7 1.1 100 a 100 a 500 k U 0.0067 U 0.66 U 3.4 U 13 U 0.0070 U 0.6 Ethylbenzene 100-41-4 1 30 41 390 0.022 0.0053 0.78 0.53 8.9 2.7 84 10 U 0.0056 U 0.6 Styrene 100-42-5 NS NS NS NS NS NS U 0.0067 U 0.66 U 3.4 U 13 U 0.0070 U 0.6 Xylene(Total) 1330-20-7 0.26 100 a 100 a 500 k 0.03 0.0067 0.54 J 0.66 8.4 3.4 100 13 U 0.0070 U 0.6 MTBE 1634-04-4 0.93 62 100 a 500 k	1,1,2,2-Tetrachloroethane	79-34-5	NS	NS		NS		NS		U	0.0013	U	0.13	U	0.68	U	2.6	ι	0.00)14	l	J 0.0011
Chlorobenzene 108-90-7 1.1 100 a 100 a 500 k U 0.0067 U 0.66 U 3.4 U 13 U 0.0070 U 0.6 Ethylbenzene 100-41-4 1 30 41 390 0.022 0.0053 0.78 0.53 8.9 2.7 84 10 U 0.0056 U 0.6 Styrene 100-42-5 NS NS NS NS NS NS U 0.0067 U 0.66 U 3.4 U 13 U 0.0070 U 0.6 Xylene(Total) 1330-20-7 0.26 100 a 100 a 500 k 0.03 0.0067 0.54 J 0.66 8.4 3.4 100 13 U 0.0070 U 0.6 MTBE 1634-04-4 0.93 62 100 a 500 k	Toluene	108-88-3	0.7	100	а	100	а	500	k	0.0025 J	0.0067	U	0.66	0.88 J	3.4	5.3 J	13	U	J 0.00)70	ı	J 0.0053
Ethylbenzene 100-41-4 1 30 41 390 0.022 0.0053 0.78 0.53 8.9 2.7 84 10 U 0.0056 U 0.0 5 5 tyrene 100-42-5 NS NS NS NS NS NS U 0.0067 U 0.66 U 3.4 U 13 U 0.0070 U 0.0 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Chlorobenzene		1.1		а	100	а	500	k	U		U	0.66	U	3.4	U		U	J 0.00)70		J 0.0053
Xýlene(Total) 1330-20-7 0.26 100 a 500 k 0.03 0.0067 0.54 J 0.66 8.4 3.4 100 13 U 0.0070 U 0.0 MTBE 1634-04-4 0.93 62 100 a 500 k <t< td=""><td>Ethylbenzene</td><td>100-41-4</td><td>1</td><td>30</td><td></td><td>41</td><td></td><td>390</td><td></td><td>0.022</td><td></td><td>0.78</td><td>0.53</td><td>8.9</td><td>2.7</td><td>84</td><td>10</td><td>Į.</td><td>0.00</td><td>)56</td><td>ı</td><td>J 0.0042</td></t<>	Ethylbenzene	100-41-4	1	30		41		390		0.022		0.78	0.53	8.9	2.7	84	10	Į.	0.00)56	ı	J 0.0042
Xylene(Total) 1330-20-7 0.26 100 a 500 k 0.03 0.0067 0.54 J 0.66 8.4 3.4 100 13 U 0.0070 U 0.0 MTBE 1634-04-4 0.93 62 100 a 500 k <t< td=""><td>Styrene</td><td>100-42-5</td><td>NS</td><td>NS</td><td></td><td>NS</td><td></td><td>NS</td><td></td><td>U</td><td>0.0067</td><td>U</td><td>0.66</td><td>U</td><td>3.4</td><td>U</td><td>13</td><td>Į.</td><td>0.00</td><td>)70</td><td>ı</td><td>J 0.0053</td></t<>	Styrene	100-42-5	NS	NS		NS		NS		U	0.0067	U	0.66	U	3.4	U	13	Į.	0.00)70	ı	J 0.0053
MTBE 1634-04-4 0.93 62 100 a 500 k					а		а		k	0.03		0.54 J		8.4		100		Ü				J 0.0053
TBA NS NS NS NS		1634-04-4	0.93	62			а		k													
			NS	NS		NS		NS														
Total VOC 1.82 1.876 191 0.0734 0.1038	Total VOC				H		Ħ			0.2025		1.82		18.76		191		0.0734			0.1038	
Total BTEX 0.06 1.82 17.88 185.7 0 0.0007	Total BTEX				H		Ħ			0.06		1.82		17.88		185.7		0			0.0007	
Total Confident Conc. VOAs 0.1 1.2 17 184 0 0.1					Ħ		Ħ											0	1			
Total Estimated Conc. VOA TICs 0.1 11 210 894 0 0.9					Ħ		Ħ												1			

Sample ID		N 10 44		-0.5						SB-67_17.5	5-18.0	SB-68 (8.5	-9.5)	SB-71_	12.0-12.5	SB-71_13.	.5-14.0	SB-71_18.	0-18.5	SB-75 (2	.5-3.0)
Lab Sample Number	CASRN							ediatio		92340	8	91498	5	923	3414	92341	15	92341	6	9171	20
Sampling Depth (feet bgs)						6.8(a)		ojective d (h)	35	17.5 to 1	8.0	8.5 to 9	.5	12.0 1	to 12.5	13.5 to	14.0	18.0 to 1	8.5	2.5 to	3.0
Sampling Date			ıub	100 0	,, ,	0.0(u)	uii	u (b)		05/28/0	8	04/22/0	8	05/2	28/08	05/28/	80'	05/28/0	08	05/02	/08
PAH (mg/kg)		UUSC	0	RSC	0	RRSC	С	CSCC		Result Q	MDL	Result Q	MDL	Result	Q MDL	Result Q	MDL	Result Q	MDL	Result C	Q MDL
Naphthalene	91-20-3	12		100	а	100	а	500	k	4.1	0.46	1.8	0.45	74	4.7	750	45	0.076 J	0.47	U	J 0.37
Acenaphthylene	208-96-8	100	а	100	а	100	а	500	k	0.026 J	0.46	0.44 J	0.45	5.6	4.7	42 J	45	U	0.47	0.021 J	0.37
Acenaphthene	83-32-9	20		100	а	100	а	500	k	0.19 J	0.46	0.5	0.45	42	4.7	250	45	0.018 J	0.47	0.048 J	0.37
Fluorene	86-73-7	30		100	а	100	а	500	k	0.064 J	0.46	0.13 J	0.45	24	4.7	140	45	U	0.47	0.054 J	0.37
Phenanthrene	85-01-8	100		100	а	100	а	500	k	0.092 J	0.46	0.52	0.45	100	4.7	620	45	0.056 J	0.47	U	J 0.37
Anthracene	120-12-7	100	а	100	а	100	а	500	k	0.039 J	0.46	0.19 J	0.45	36	4.7	210	45	0.018 J	0.47	U	J 0.37
Fluoranthene	206-44-0	100	а	100	а	100	а	500	k	0.047 J	0.46	0.59	0.45	34	4.7	170	45	0.017 J	0.47	0.076 J	0.37
Pyrene	129-00-0	100		100	а	100	а	500	k	0.04 J	0.46	1.1	0.45	78	4.7	410	45	0.037 J	0.47	0.58	0.37
Benzo(a)anthracene	56-55-3	1	С	1	0	1	0	5.6		0.026 J	0.046	0.32	0.045	32	0.47	160	4.5	0.012 J	0.047	U	J 0.037
Chrysene	218-01-9	1	С	1	0	3.9		56		0.026 J	0.46	0.45 J	0.45	30	4.7	150	45	0.011 J	0.47	0.28 J	0.37
Benzo(b)fluoranthene	205-99-2	1	С	1	0	1	0	5.6		0.011 J	0.046	0.59	0.045	12	0.47	46	4.5	U	0.047	U	J 0.037
Benzo(k)fluoranthene	207-08-9	8.0	С	1		3.9		56		0.017 J	0.046	0.33	0.045	17	0.47	83	4.5	U	0.047	U	J 0.037
Benzo(a)pyrene	50-32-8	1	С	1	0	1	0	1	0	0.015 J	0.046	0.42	0.045	27	0.47	130	4.5	U	0.047	U	J 0.037
Indeno(1,2,3-cd)pyrene	193-39-5	0.5	С	0.5	0	0.5	0	5.6		U	0.046	0.21	0.045	5.9	0.47	33	4.5	U	0.047	U	J 0.037
Dibenz(a,h)anthracene	53-70-3	0.33	b	0.33	n	0.33	n	0.56		U	0.046	0.058	0.045	2.3	0.47	12	4.5	U	0.047	U	J 0.037
Benzo(g,h,i)perylene	191-24-2	100		100	а	100	а	500	k	U	0.46	0.27 J	0.45	7.5	4.7	46	45	U	0.47	U	J 0.37
Total PAHs										4.693		7.918		527.3		3252		0.245		1.059	
Total Confident Conc. PAHs	•									4.1		6.4		527		3210		0		0.6	
Total Estimated Conc. BNA TIC										NA		NA		NA		NA		NA		NA	
TarGOST Signal at Depth										backgrou	und	54.2		100) (J)	389.8	8	backgro	und	10 (J)

Sample ID		N 10 (4								SB-67_17.5	-18.0	SB-68 (8.5	-9.5)	SB-71_	12.0-12	.5	SB-71_13.5	5-14.0	SB-71_18.0	0-18.5	SB-75 (2.5-3.0)
Lab Sample Number	CASRN							ediatio: ojective	-	923408	3	91498	5	923	3414		92341	5	92341		917	120
Sampling Depth (feet bgs)	CASKIN					3.8(a)			;5	17.5 to 18	3.0	8.5 to 9	.5	12.0	to 12.5		13.5 to 1	4.0	18.0 to 1	8.5	2.5 to	o 3.0
Sampling Date						,,o(a)	٠	u (v)		05/28/0	8	04/22/0	8	05/2	28/08		05/28/0	8	05/28/0	08	05/0	2/08
METALS (mg/kg)		UUSC	0	RSCC)	RRSC	0	CSCO		Result Q	MDL	Result Q	MDL	Result	Q I	ИDL	Result Q	MDL	Result Q	MDL	Result	Q MDL
Aluminum	7429-90-5	NS		NS		NS		NS		NR		NR		NR			NR		NR		NR	
Antimony	7440-36-0	NS		NS		NS		NS		NR		NR		NR			NR		NR		NR	
Arsenic	7440-38-2	13	С	16	0	16	0	16	0	NR		NR		NR			NR		NR		NR	
Barium	7440-39-3	350	С	350	0	400		400		NR		NR		NR			NR		NR		NR	
Beryllium	7440-41-7	7.2		14		72		590		NR		NR		NR			NR		NR		NR	
Cadmium	7440-43-9	2.5	С	2.5	0	4.3		9.3		NR		NR		NR			NR		NR		NR	
Calcium	7440-70-2	NS		NS		NS		NS		NR		NR		NR			NR		NR		NR	
Chromium	7440-47-3	30	С	36		180		1500		NR		NR		NR			NR		NR		NR	
Cobalt	7440-48-4	NS		NS		NS		NS		NR		NR		NR			NR		NR		NR	
Copper	7440-50-8	50		270		270		270		NR		NR		NR			NR		NR		NR	
Iron	7439-89-6	NS		NS		NS		NS		NR		NR		NR			NR		NR		NR	
Lead	7439-92-1	63	С	400		400		1000		NR		NR		NR			NR		NR		NR	
Magnesium	7439-95-4	NS		NS		NS		NS		NR		NR		NR			NR		NR		NR	
Manganese	7439-96-5	1600	c 2	2000	0	2000	0	10000	m	NR		NR		NR			NR		NR		NR	
Mercury	7439-97-6	0.18	С	0.81	q	0.81	q	2.8	q	NR		NR		NR			NR		NR		NR	
Nickel	7440-02-0	30		140		310		310		NR		NR		NR			NR		NR		NR	
Potassium	7440-09-7	NS		NS		NS		NS		NR		NR		NR			NR		NR		NR	
Selenium	7782-49-2	3.9	С	36		180		1500		NR		NR		NR			NR		NR		NR	
Silver	7440-22-4	2		36		180		1500		NR		NR		NR			NR		NR		NR	
Sodium	7440-23-5	NS		NS		NS		NS		NR		NR		NR			NR		NR		NR	
Thallium	7440-28-0	NS		NS		NS		NS		NR		NR		NR			NR		NR		NR	
Vanadium	7440-62-2	NS		NS		NS		NS		NR		NR		NR			NR		NR		NR	
Zinc	7440-66-6	109	c 2	2200	1	0000	m	10000	m	NR		NR		NR			NR	,	NR		NR	
WET CHEMISTRY		UUSC	0	RSCC)	RRSC	0	CSCO		Result Q	MDL	Result Q	MDL	Result	Q I	ИDL	Result Q	MDL	Result Q	MDL	Result	Q MDL
TotalCyanide - mg/kg	57-12-5	27		27		27		27		NR	, and the second	NR		NR			NR	·	NR		NR	

Sample ID									SB-75 (8	8.0	0-8.5)	SB-75 (16.5	5-17.0)	SB-75 (1	9.0-	-19.5)	SB-78 (12.0-12.5	5) SB-	78 (1	5.0-15.5)	SB-80 (1	2.0-12.5)
Lab Sample Number					375 R				917		,	91711		917			917136	,	917		917	
Sampling Depth (feet bgs)	CASRN				Cleanup 5-6.8(a)			es	8.0 to	s c	3.5	16.5 to 1	7.0	19.0 to	o 19	9.5	12.0 to 12.5		5.0 to	15.5	12.0 to	o 12.5
Sampling Date		Ta	ibles s	5/5	-6.6(a)	an	u (b)	Ì	05/0:			05/02/0		05/0			05/02/08		05/0		05/0	
VOLATILE COMPOUNDS (mg/kg)		UUSCO	RSC	:0	RRSCC)	CSCO	,	Result			Result Q		Result		MDL	Result Q MI	OI R	esult		Result	
Chloromethane	74-87-3	NS	NS	Т	NS		NS			Ū	0.0066	U	0.60			0.0071	U 0.00			U 0.0063		U 0.0071
Bromomethane	74-83-9	NS	NS	T	NS		NS			Ū	0.0066	U	0.60			0.0071	U 0.00			U 0.0063		U 0.0071
VinylChloride	75-01-4	0.02	0.21		0.9		13			U	0.0066	U	0.60		U (0.0071	U 0.00	75		U 0.0063		U 0.0071
Chloroethane	75-00-3	NS	NS		NS		NS			U	0.0066	U	0.60		U (0.0071	U 0.00	75		U 0.0063		U 0.0071
MethyleneChloride	75-09-2	0.05	51		100	а	500	k	0.0091		0.0039	U	0.36	0.024	(0.0043	0.0031 J 0.00	45		U 0.0038	0.019	0.0043
Acetone	67-64-1	0.05	100	а	100	k	500	k	0.053		0.0066	U	0.60	0.16	(0.0071	0.21 0.00	75 (.018	0.0063	0.082	0.0071
CarbonDisulfide	75-15-0	NS	NS		NS		NS			U	0.0066	U	0.60		U	0.0071	U 0.00	75		U 0.0063	0.0072	0.0071
1,1-Dichloroethene	75-35-4	0.33	100	а	100	а	500	k	0.011		0.0026	U	0.24		U	0.0028	0.011 0.00	30 (.019	0.0025	0.01	0.0028
1,1-Dichloroethane	75-34-3	0.27	19		26		240			U	0.0066	U	0.60			0.0071	U 0.00			U 0.0063		U 0.0071
trans-1,2-Dichloroethene	156-60-5	0.19	100	а	100	а	500	k		U	0.0066	U	0.60		U	0.0071	U 0.00	75		U 0.0063		U 0.0071
cis-1,2-Dichloroethene	156-59-2	0.25	59		100	а	500	k		U	0.0066	U	0.60			0.0071	U 0.00	75		U 0.0063		U 0.0071
Chloroform	67-66-3	0.37	10		49		350			U	0.0066	U	0.60			0.0071	U 0.00	_		U 0.0063		U 0.0071
1,2-Dichloroethane	107-06-2	0.02 c	2.3		3.1		30			U	0.0026	U	0.24		_	0.0028	U 0.00			U 0.0025		U 0.0028
2-Butanone	78-93-3	0.12	100	а	100	а	500	k			0.0066	U	0.60	0.014		0.0071	0.032 0.00	_		U 0.0063		U 0.0071
1,1,1-Trichloroethane	71-55-6	0.68	100	а	100	а	500	k		U	0.0066	U	0.60		_	0.0071	U 0.00	_		U 0.0063		U 0.0071
CarbonTetrachloride	56-23-5	0.76	1.4		2.4		22			U	0.0026	U	0.24			0.0028	U 0.00			U 0.0025		U 0.0028
Bromodichloromethane	75-27-4	NS	NS		NS		NS			U	0.0013	U	0.12			0.0014	U 0.00			U 0.0013		U 0.0014
1,2-Dichloropropane	78-87-5	NS	NS		NS		NS			U	0.0013	U	0.12			0.0014	U 0.00			U 0.0013		U 0.0014
cis-1,3-Dichloropropene	10061-01-5	NS	NS		NS		NS			U	0.0066	U	0.60		U	0.0071	U 0.00	75		U 0.0063		U 0.0071
Trichloroethene	79-01-6	0.47	10		21		200			U	0.0013	U	0.12			0.0014	U 0.00			U 0.0013		U 0.0014
Dibromochloromethane	124-48-1	NS	NS		NS		NS			U	0.0066	U	0.60		U	0.0071	U 0.00			U 0.0063		U 0.0071
1,1,2-Trichloroethane	79-00-5	NS	NS		NS		NS			U	0.0039	U	0.36		U	0.0043	U 0.00	45		U 0.0038		U 0.0043
Benzene	71-43-2	0.06	2.9		4.8		44		0.0029		0.0013	U	0.12			0.0014	0.00			U 0.0013		U 0.0014
trans-1,3-Dichloropropene	10061-02-6	NS	NS		NS		NS			U	0.0066	U	0.60			0.0071	U 0.00			U 0.0063		U 0.0071
Bromoform	75-25-2	NS	NS		NS		NS			U	0.0052	U	0.48			0.0057	U 0.00			U 0.0051		U 0.0057
4-Methyl-2-Pentanone	108-10-1	NS	NS		NS		NS			U	0.0066	U	0.60		_	0.0071	U 0.00	_		U 0.0063		U 0.0071
2-Hexanone	591-78-6	NS	NS		NS		NS			U	0.0066	U	0.60		U	0.0071	U 0.00	_		U 0.0063		U 0.0071
Tetrachloroethene	127-18-4	1.3	5.5		19		150			U	0.0013	U	0.12		U	0.0014	U 0.00	15		U 0.0013		U 0.0014
1,1,2,2-Tetrachloroethane	79-34-5	NS	NS		NS		NS			U	0.0013	U	0.12		U	0.0014	U 0.00	15		U 0.0013		U 0.0014
Toluene	108-88-3	0.7	100	а	100	а	500	k	0.0016	-	0.0066	0.097 J	0.60		_	0.0071	0.018 0.00	_		U 0.0063		U 0.0071
Chlorobenzene	108-90-7	1.1	100	а	100	а	500	k		U	0.0066	U	0.60		U	0.0071	U 0.00	75		U 0.0063		U 0.0071
Ethylbenzene	100-41-4	1	30		41		390		0.043		0.0052	3.9	0.48		U	0.0057	0.17 0.00	60		U 0.0051		U 0.0057
Styrene	100-42-5	NS	NS		NS		NS			Ū	0.0066	U	0.60			0.0071	U 0.00	_		U 0.0063		U 0.0071
Xylene(Total)	1330-20-7	0.26	100	а	100	а	500	k	0.062		0.0066	4.2	0.60		U	0.0071	0.32 0.00	75		U 0.0063		U 0.0071
MTBE	1634-04-4	0.93	62		100	а	500	k														
TBA		NS	NS		NS		NS		-													
Total VOC									0.1826			8.197		0.198			0.8021	(.037		0.1182	
Total BTEX									0.1079			8.1		0			0.528		0		0	
Total Confident Conc. VOAs									0.2			8.1		0.2			0.8		0		0.1	
Total Estimated Conc. VOA TICs									1.1			78		0.035			3.9		0		0.4	

Sample ID			0.0			.== .			Ì	SB-75 (8.	0-8.5)	SB-75 (16.5	5-17.0)	SB-75 (19	.0-19.	SB-78 (12.0	-12.5)	SB-78 (15	0-15.5)	SB-80 (12.0	0-12.5)
Lab Sample Number	CASRN					375 Re				91712	21	91711	9	9171	18	917136		9171	37	91712	23
Sampling Depth (feet bgs)	CASKN					leanup -6.8(a)			35	8.0 to	3.5	16.5 to 1	7.0	19.0 to	19.5	12.0 to 1	2.5	15.0 to	15.5	12.0 to 1	12.5
Sampling Date			ıaı	163 0	7.5	-0.0(a)	an	u (b)		05/02/	08	05/02/0	8	05/02	/08	05/02/0	18	05/02	′08	05/02/0	08
PAH (mg/kg)		UUSC	O	RSC)	RRSCC)	CSCO		Result C	MDL	Result Q	MDL	Result (Q M	DL Result Q	MDL	Result C	MDL	Result Q	MDL
Naphthalene	91-20-3	12		100	а	100	а	500	k	3	0.45	32	4.1	0.16 J	0.	49 6.9	0.52	U	0.44	U	0.48
Acenaphthylene	208-96-8	100	а	100	а	100	а	500	k	0.16 J	0.45	2.8 J	4.1	L	J 0.	49 0.15 J	0.52	U	0.44	0.39 J	0.48
Acenaphthene	83-32-9	20		100	а	100	а	500	k	1	0.45	19	4.1	0.11 J	0	19 2.9	0.52	U	0.44	0.16 J	0.48
Fluorene	86-73-7	30		100	а	100	а	500	k	0.6	0.45	9.6	4.1	0.078 J	0.	19 2.8	0.52	U	0.44	0.17 J	0.48
Phenanthrene	85-01-8	100		100	а	100	а	500	k	2.4	0.45	41	4.1	0.26 J	0.	4.7	0.52	U	0.44	0.59	0.48
Anthracene	120-12-7	100	а	100	а	100	а	500	k	0.61	0.45	12	4.1	0.08 J	0.	1.3	0.52	U	0.44	0.34 J	0.48
Fluoranthene	206-44-0	100	а	100	а	100	а	500	k	1.2	0.45	10	4.1	0.076 J	0.	1.5	0.52	U	0.44	2.4	0.48
Pyrene	129-00-0	100		100	а	100	а	500	k	1.9	0.45	22	4.1	0.18 J	0.	1.9	0.52	U	0.44	8.2	0.48
Benzo(a)anthracene	56-55-3	1	С	1	0	1	0	5.6		0.52	0.045	7.4	0.41	0.066	0.0	19 0.85	0.052	U	0.044	2.2	0.048
Chrysene	218-01-9	1	С	1	0	3.9		56		0.69	0.45	6.7	4.1	0.066 J	0.	19 0.84	0.52	U	0.44	3.1	0.48
Benzo(b)fluoranthene	205-99-2	1	С	1	0	1	0	5.6		0.35	0.045	2.6	0.41	L	0.0	19 0.56	0.052	U	0.044	1.5	0.048
Benzo(k)fluoranthene	207-08-9	0.8	С	1		3.9		56		0.47	0.045	3.9	0.41	L	0.0	49 1.1	0.052	U	0.044	2.3	0.048
Benzo(a)pyrene	50-32-8	1	С	1	0	1	0	1	0	0.53	0.045	6.4	0.41	L	0.0	19 0.89	0.052	U	0.044	2.1	0.048
Indeno(1,2,3-cd)pyrene	193-39-5	0.5	С	0.5	0	0.5	0	5.6		0.12	0.045	U	0.41	L	0.0	49 U	0.052	U	0.044	U	0.048
Dibenz(a,h)anthracene	53-70-3	0.33	b	0.33	n	0.33	n	0.56		U	0.045	U	0.41	L	0.0	49 U	0.052	U	0.044	U	0.048
Benzo(g,h,i)perylene	191-24-2	100		100	а	100	а	500	k	0.14 J	0.45	U	4.1	L	J 0.	49 U	0.52	U	0.44	U	0.48
Total PAHs										13.69		175.4		1.076		26.39		0		23.45	
Total Confident Conc. PAHs										13		172		0.1		26		0		22	
Total Estimated Conc. BNA TIC										NA		NA		NA		NA		NA		NA	
TarGOST Signal at Depth										10 (J)	backgrou	und	backgro	ound	15 (J)		backgro	ound	25 (J)

Sample ID		NIVO	DE (- D-	-4 07	- D		ا د الد الد		SB-75 (8.0)-8.5)	SB-75 (16.5	-17.0)	SB-75 (19.	0-19.5)	SB-78 (12.0-12.5)	SB-78 (15.0)-15.5)	SB-80 (12.0-12.5)
Lab Sample Number	CASRN							diation		91712	1	917119	9	91711	8	917136	91713	7	917123
Sampling Depth (feet bgs)	CASKIN	Progr			75-6.				;5	8.0 to 8	.5	16.5 to 1	7.0	19.0 to 1	19.5	12.0 to 12.5	15.0 to 1	5.5	12.0 to 12.5
Sampling Date		10	abic	53 31	J-0.	J(a)	anu	(D)	Ī	05/02/0)8	05/02/0	8	05/02/	08	05/02/08	05/02/0)8	05/02/08
METALS (mg/kg)		UUSCO		RSCO	F	RRSCO)	CSCO		Result Q		Result Q	MDL	Result Q		Result Q MDL	Result Q		Result Q MDL
Aluminum	7429-90-5	NS	1	NS	1	IS		NS		NR		NR		NR		NR	NR		NR
Antimony	7440-36-0	NS	1	NS	١	IS		NS		NR		NR		NR		NR	NR		NR
Arsenic	7440-38-2	13 (c ·	16	0 '	6	0	16	0	NR		NR		NR		NR	NR		NR
Barium	7440-39-3	350	с 3	350	o 4	00		400		NR		NR		NR		NR	NR		NR
Beryllium	7440-41-7	7.2		14	-	' 2		590		NR		NR		NR		NR	NR		NR
Cadmium	7440-43-9	2.5	c 2	2.5	0 4	.3		9.3		NR		NR		NR		NR	NR		NR
Calcium	7440-70-2	NS	1	NS	1	IS		NS		NR		NR		NR		NR	NR		NR
Chromium	7440-47-3	30 (c :	36	1	80		1500		NR		NR		NR		NR	NR		NR
Cobalt	7440-48-4	NS	1	NS	1	IS		NS		NR		NR		NR		NR	NR		NR
Copper	7440-50-8	50	2	270	2	70		270		NR		NR		NR		NR	NR		NR
Iron	7439-89-6	NS	1	NS	1	IS		NS		NR		NR		NR		NR	NR		NR
Lead	7439-92-1	63 (c 4	100	4	00		1000		NR		NR		NR		NR	NR		NR
Magnesium	7439-95-4	NS	1	NS	1	IS		NS		NR		NR		NR		NR	NR		NR
Manganese	7439-96-5	1600	c 20	000	o 20	000	0	10000	m	NR		NR		NR		NR	NR		NR
Mercury	7439-97-6	0.18	c 0	.81	q 0	81	q	2.8	q	NR		NR		NR		NR	NR		NR
Nickel	7440-02-0	30	1	40	3	10		310		NR		NR		NR		NR	NR		NR
Potassium	7440-09-7	NS	1	NS	1	IS		NS		NR		NR		NR		NR	NR		NR
Selenium	7782-49-2	3.9	c :	36	1	80		1500		NR		NR		NR		NR	NR		NR
Silver	7440-22-4	2	,	36	1	80		1500		NR		NR		NR		NR	NR		NR
Sodium	7440-23-5	NS	1	NS	1	IS		NS		NR		NR		NR		NR	NR		NR
Thallium	7440-28-0	NS	1	NS	1	S		NS		NR		NR		NR		NR	NR		NR
Vanadium	7440-62-2	NS	1	NS	1	IS		NS		NR		NR		NR		NR	NR		NR
Zinc	7440-66-6	109	c 22	200	10	000	m	10000	m	NR		NR		NR		NR	NR		NR
WET CHEMISTRY		UUSCO		RSCO	F	RRSCO)	CSCO		Result Q	MDL	Result Q	MDL	Result Q	MDL	Result Q MDL	Result Q	MDL	Result Q MDL
TotalCyanide - mg/kg	57-12-5	27	2	27	2	27		27		NR		NR		NR		NR	NR		NR

Sample Number Color Sample Number Color Sampling peth (leat bgs)	Sample ID								T	SB-80 (17.0	-17 5)	SB-84 (4.	5-	5 (1)	SB-84A 12	0-12.5	SB-84A 13	3 5-14 5	B-84A(13.5-	14 5)DUI	SB-85 (13	3 0-1	3.5)
Sampling Depth (feet bgs) Sampling Dete	'											,							,	,			5.0)
Sampling Date		CASRN							s														_
VOLATILE COMPOUNDS (mg/kg)	1 0 1 \ 0 7		ıa	bles 3	/5-	6.8(a) a	anc	i (b)	F														_
Chloromethane			LIUSCO	RSCC	,	RRSCO		CSCO			-												MDI
Stromerhane 74-83-9 NS NS NS NS NS NS NS N		7/1-87-3			Ť		$^+$		+			IXESUIT C											
VirtyChioride					++		$^+$		+			11	_									_	
Chinorethene					H		=		-			- U	_		II							_	
MethyleneChloride				_			-					i i			ii		II					_	
Accinon					++		а		k			0.013	_		0.008		0.004 J						
Carbon Disulfide	,			_	а		k		••														
1,1-Dichloroethane					u		1		1														
1.1-Dichloroethane					2		2		k				_									_	
Taris-12-Dichloroethene	,				а		а		IX.			11			- U							_	
cis-12-Dichforcethene 156-59-2 225 59 100 a 500 k U 0.0089 U 0.011 U 0.0087 U 0.0073 U 0.0089 U 0.055 U 0.0059 U 0.0073 U 0.0089 U 0.055 U 0.0073 U 0.0089 U 0.0073 U 0.0089				2		2		k						11		11				`			
Chloroform	, , , , , , , , , , , , , , , , , , , ,				а				•••			- 10	_		J		- 0		_			_	
1.2-Dichloroethane	, , , , , , , , , , , , , , , , , , , ,				1		а		N			- 0			- 0		U		- -			_	
2-Butanone 78-93-3 0.12 100 a 100 a 500 k U 0.0069 U 0.011 U 0.0087 U 0.0073 U 0.0069 U 0.85 Carbon fetrachloride 56-23-5 0.76 1.4 2.4 22 U 0.0028 U 0.0045 U 0.0035 U 0.0028 U 0.0028 U 0.035 U 0.0028 U 0.0028 U 0.0046 U 0.0045 U 0.0028 U 0.0028 U 0.0046 U 0.0045 U 0.0045 U 0.0028 U 0.0045 U 0.0044 U 0.0046 U 0.0047 U 0.0045 U 0.0044 U 0.004					1				-			- 0			- 0		Ŭ						
1.1.1-frichloroethane	· · · · · · · · · · · · · · · · · · ·						_		l/														
CachonTetrachloride 56-23-5 0.76 1.4 2.4 2.2					a		-		•••				_		U								
Bromodichloromethane					а		а		K			U			U		U		- -		`		
1,2-Dichloropropane 78-87-5 NS					1		_						_		ŭ		U						
cis-1,3-Dichloropropene 10061-01-5 NS NS NS U 0.0069 U 0.011 U 0.0073 U 0.0069 U 0.85 Trichloroethene 79-01-6 0.47 10 21 200 U 0.0014 U 0.0017 U 0.0073 U 0.0069 U 0.011 U 0.0077 U 0.0073 U 0.0069 U 0.011 U 0.0077 U 0.0073 U 0.0069 U 0.011 U 0.0087 U 0.0073 U 0.0084 U 0.0011 U 0.0069 U 0.0011 U 0.0052 U 0.0044 U 0.0041 U 0.052 1,1,2-Trichloroethene 10061-02-6 NS NS NS NS NS NS					₽₽		_						_		ŭ		ŭ					_	
Trichloroethene					1		_		4														
Dibromochloromethane							_						_										
1,1,2-Trichloroethane				_			_						_		ŭ							_	
Benzene 71-43-2 0.06 2.9 4.8 44 0 0.0014 0.0018 0.0022 0.0007 0.0017 0.0015 0 0.0014 0.7 0.17					1		_		_				_		U		U						
trans-1,3-Dichloropropene 10061-02-6 NS NS NS NS U 0.0069 U 0.011 U 0.0087 U 0.0073 U 0.0069 U 0.055 Bromoform 75-25-2 NS NS NS NS U 0.0055 U 0.0069 U 0.0089 U 0.0069 U 0.0055 U 0.0055 U 0.0069 U 0.0059 U 0.0055 U 0.068 4-Methyl-2-Pentanone 108-10-1 NS					Ш								_		U		U					_	
Bromoform 75-25-2												0.0018 J	_		0.0007 J						0.11		
4-Methyl-2-Pentanone 108-10-1 NS	• •											U	_		U		ŭ				ι	_	
2-Hexanone						_						U	_		U				_		l	_	
Tetrachloroethene												U			U							_	
1,1,2,2-Tetrachloroethane 79-34-5 NS NS NS NS U 0.0014 U 0.0022 U 0.0017 U 0.0015 U 0.0014 U 0.017 Toluene 108-88-3 0.7 100 a 100 a 500 k U 0.0011 0.0022 U 0.0017 U 0.0073 U 0.0069 0.091 J 0.085 Chlorobenzene 108-90-7 1.1 100 a 100 a 500 k U 0.0011 U 0.0087 U 0.0073 U 0.0069 U 0.011 U 0.0087 U 0.0073 U 0.0069 U 0.011 U 0.0087 U 0.0073 U 0.0069 U 0.011 U 0.0087 U 0.0073 U 0.0055 14 0.085 Styrene 100-42-5 NS NS NS NS NS NS NS	2-Hexanone	591-78-6	NS							U	0.0069	U	J	0.011	U		U	0.007	3 U	0.0069	l	J	0.85
Toluene 108-88-3 0.7 100 a 100 a 500 k U 0.0069 U 0.011 0.0026 J 0.0087 U 0.0073 U 0.0069 0.091 J 0.85 Chlorobenzene 108-90-7 1.1 100 a 100 a 500 k U 0.0069 U 0.0069 U 0.011 U 0.0087 U 0.0073 U 0.0069 U 0.0069 U 0.0055 Ethylbenzene 100-41-4 1 30 41 390 V 0.0055 U 0.0055 U 0.0089 0.014 0.0069 U 0.0059 U 0.0059 U 0.0055 14 0.68 Styrene 100-42-5 NS NS NS NS NS NS NS NS NS NS NS NS NS	Tetrachloroethene	127-18-4								U	0.0014	U	J O	.0022	U	0.0017	U	0.001	5 U	0.0014	ι	J	0.17
Chlorobenzene 108-90-7 1.1 100 a 100 a 500 k U 0.0069 U 0.011 U 0.0087 U 0.0069 U 0.0087 U 0.0073 U 0.0069 U 0.055 Ethylbenzene 100-41-4 1 30 41 390 U 0.0055 U 0.0069 U 0.0069 U 0.0059 U 0.0089 0.014 0.0069 U 0.0059 U 0.0089 0.014 0.0069 U 0.0059 U 0.0087 U 0.0059 U 0.0087 U 0.0073 U 0.0069 U 0.0087 U 0.0073 U 0.0069 U 0.011 U 0.0087 U 0.0073 U 0.0069 U 0.058 MTBE 1634-04-4 0.93 62 100 a 500 k	1,1,2,2-Tetrachloroethane		NS			NS						U	J O	.0022	U		U		- -	0.0014	ι	•	
Ethylbenzene 100-41-4 1 30 41 390 U 0.0055 U 0.0089 0.014 0.0069 U 0.0059 U 0.0055 14 0.68 Styrene 100-42-5 NS NS NS NS NS NS NS NS U 0.0069 U 0.0069 U 0.0087 U 0.0073 U 0.0069 U 0.055 Xylene(Total) 1330-20-7 0.26 100 a 100 a 500 k U 0.0069 U 0.011 0.056 0.0087 U 0.0073 U 0.0069 U 0.055 MTBE 1634-04-4 0.93 62 100 a 500 k <td< td=""><td>Toluene</td><td>108-88-3</td><td>0.7</td><td>100</td><td>а</td><td>100</td><td>а</td><td></td><td>k</td><td>U</td><td>0.0069</td><td>U</td><td>J</td><td>0.011</td><td>0.0026 J</td><td>0.0087</td><td>U</td><td>0.007</td><td>3 U</td><td>0.0069</td><td>0.091</td><td>ī</td><td>0.85</td></td<>	Toluene	108-88-3	0.7	100	а	100	а		k	U	0.0069	U	J	0.011	0.0026 J	0.0087	U	0.007	3 U	0.0069	0.091	ī	0.85
Styrene 100-42-5 NS	Chlorobenzene	108-90-7	1.1	100	а	100	а	500	k	U	0.0069	U	J	0.011	U	0.0087	U	0.007	3 U	0.0069	l	J	0.85
Xýlene(Total) 1330-20-7 0.26 100 a 500 k U 0.0069 U 0.011 0.056 0.0087 U 0.0073 U 0.069 2.4 0.85 MTBE 1634-04-4 0.93 62 100 a 500 k	Ethylbenzene	100-41-4	1	30		41		390		U	0.0055	U	J O	.0089	0.014	0.0069	U	0.005	9 U	0.0055	14		0.68
MTBE 1634-04-4 0.93 62 100 a 500 k	Styrene	100-42-5	NS	NS		NS		NS		U	0.0069	U	J	0.011	U	0.0087	U	0.007	3 U	0.0069	ι	J	0.85
MTBE 1634-04-4 0.93 62 100 a 500 k <td>Xylene(Total)</td> <td>1330-20-7</td> <td>0.26</td> <td>100</td> <td>а</td> <td>100</td> <td>а</td> <td>500</td> <td>k</td> <td>U</td> <td>0.0069</td> <td>U</td> <td>J</td> <td>0.011</td> <td>0.056</td> <td>0.0087</td> <td>U</td> <td>0.007</td> <td>3 U</td> <td>0.0069</td> <td>2.4</td> <td></td> <td>0.85</td>	Xylene(Total)	1330-20-7	0.26	100	а	100	а	500	k	U	0.0069	U	J	0.011	0.056	0.0087	U	0.007	3 U	0.0069	2.4		0.85
TBA NS	MTBE	1634-04-4	0.93	62		100	а	500	k				T										
Total VOC 0 0.0648 0.1619 0.032 0.058 17.391 Total BTEX 0 0.0018 0.0707 0 0 17.1 Total Confident Conc. VOAs 0 0 0.1 0.1 0 0 17.1					H	NS	T	NS					T										
Total BTEX 0 0.0018 0.0707 0 0 17.1 Total Confident Conc. VOAs 0 0 0.1 0.1 0 0 17					Ħ		T		1	0		0.0648	T	t	0.1619		0.032		0.058		17.391	+	$\neg \neg$
Total Confident Conc. VOAs 0 0.1 0.1 0 17					Ħ		7		7	0			\top	1								+	\dashv
					H		=		- t				\dagger	- t								+	$\neg \neg$
TVIGIENNINGEN VONCE, VAN 100 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Total Estimated Conc. VOA TICs				H		\dashv		\dashv	0		0.1	\dagger		1.6		0		0		150	+	\dashv

Sample ID		ND/	201			075 D				SB-80 (17.0)-17.5)	SB-84 ((4.5	-5.0)	SB-84A_12.	0-12.5	SB-84A_13	.5-14.5	B-84A(13.5-	14.5)DUI	SB-85 (13	.0-13.5)
Lab Sample Number	CASRN							ediatio jective		91712	4	917	1115	5	923397	7	92339	8	92339	9	9149	86
Sampling Depth (feet bgs)	CASKIN					6.8(a)			;5	17.0 to 1	7.5	4.5 t	0 5	.0	12.0 to 1	2.5	13.5 to 1	14.5	13.5 to 1	4.5	13.0 to	13.5
Sampling Date			ıu	,,,,,,	,, ,	0.0(u)	un	<i>a</i> (<i>b</i>)	Ī	05/02/0	8	05/0	1/0	8	05/29/0	18	05/29/0	08	05/29/0	08	04/22	/08
PAH (mg/kg)		UUSC	0	RSC	C	RRSCO)	CSCO		Result Q	MDL	Result	Q	MDL	Result Q	MDL	Result Q	MDL	Result Q	MDL	Result (Q MDL
Naphthalene	91-20-3	12		100	а	100	а	500	k	U	0.48		U	0.78	6	1.2	0.18 J	0.49	0.082 J	0.46	360	58
Acenaphthylene	208-96-8	100	а	100	а	100	а	500	k	U	0.48	0.19	J	0.78	0.67 J	1.2	0.092 J	0.49	0.031 J	0.46	36 J	58
Acenaphthene	83-32-9	20		100	а	100	а	500	k	U	0.48		U	0.78	2.9	1.2	0.021 J	0.49	0.084 J	0.46	520	58
Fluorene	86-73-7	30		100	а	100	а	500	k	U	0.48		U	0.78	2.7	1.2	0.032 J	0.49	0.16 J	0.46	230	58
Phenanthrene	85-01-8	100		100	а	100	а	500	k	U	0.48	0.14	J	0.78	14	1.2	0.026 J	0.49	0.43 J	0.46	820	58
Anthracene	120-12-7	100	а	100	а	100	а	500	k	U	0.48	0.05	J	0.78	4.9	1.2	U	0.49	0.2 J	0.46	180	58
Fluoranthene	206-44-0	100	а	100	а	100	а	500	k	U	0.48	0.66	J	0.78	12	1.2	0.01 J	0.49	0.25 J	0.46	270	58
Pyrene	129-00-0	100		100	а	100	а	500	k	U	0.48	0.87		0.78	15	1.2	0.021 J	0.49	0.19 J	0.46	430	58
Benzo(a)anthracene	56-55-3	1	С	1	0	1	0	5.6		U	0.048	0.49		0.078	6.2	0.12	U	0.049	0.13	0.046	100	5.8
Chrysene	218-01-9	1	С	1	0	3.9		56		U	0.48	0.65	J	0.78	6.6	1.2	U	0.49	0.12 J	0.46	100	58
Benzo(b)fluoranthene	205-99-2	1	С	1	0	1	0	5.6		U	0.048	0.41		0.078	4	0.12	U	0.049	0.043 J	0.046	71	5.8
Benzo(k)fluoranthene	207-08-9	0.8	С	1		3.9		56		U	0.048	0.76		0.078	4.6	0.12	U	0.049	0.084	0.046	55	5.8
Benzo(a)pyrene	50-32-8	1	С	1	0	1	0	1	0	U	0.048	0.53		0.078	5.6	0.12	U	0.049	0.074	0.046	89	5.8
Indeno(1,2,3-cd)pyrene	193-39-5	0.5	С	0.5	0	0.5	0	5.6		U	0.048		U	0.078	1.9	0.12	U	0.049	0.028 J	0.046	33	5.8
Dibenz(a,h)anthracene	53-70-3	0.33	b	0.33	n	0.33	n	0.56		U	0.048		U	0.078	0.83	0.12	U	0.049	0.017 J	0.046	10	5.8
Benzo(g,h,i)perylene	191-24-2	100		100	а	100	а	500	k	U	0.48		U	0.78	1.8	1.2	U	0.49	0.024 J	0.46	44 J	58
Total PAHs										0		4.75			89.7		0.382		1.947		3348	
Total Confident Conc. PAHs	•									0		3		_	89		0		0.3		3268	
Total Estimated Conc. BNA TIC										NA		NA			NA		NA		NA		NA	
TarGOST Signal at Depth										backgrou	und	15	(J)		no data	a	no dat	a	no dat	а	200	(J)

01- 10									OD 00 (47.0	. 47.5\	OD 04 /4 5	0)	OD 044 40.0	40.5	OD 044 40	- 44 F	D 044/40 5 4	(4.5\D)	OD 05 (4)	0.40.5
Sample ID		NYS	DEC F	Part	375 Re	emed	diation	, ⊢	SB-80 (17.0)-17.5)	SB-84 (4.5	-5.0)	SB-84A_12.0-	-12.5	SB-84A_13.	5-14.5	B-84A(13.5-1	14.5)DUI	SB-85 (13	3.0-13.5)
Lab Sample Number	CASRN				leanup				91712	4	91711	5	923397		92339	8	92339	9	9149	986
Sampling Depth (feet bgs)					-6.8(a)			Ľ	17.0 to 1	7.5	4.5 to 5	.0	12.0 to 12.	.5	13.5 to 1	4.5	13.5 to 1	4.5	13.0 to	13.5
Sampling Date					()		()		05/02/0	08	05/01/0	08	05/29/08		05/29/0	8	05/29/0	08	04/22	2/08
METALS (mg/kg)		UUSCO	RSC	O	RRSCO		CSCO		Result Q	MDL	Result Q	MDL	Result Q	MDL	Result Q	MDL	Result Q	MDL	Result	Q MDL
Aluminum	7429-90-5	NS	NS		NS		NS		NR		NR		NR		NR		NR		NR	
Antimony	7440-36-0	NS	NS		NS		NS		NR		NR		NR		NR		NR		NR	
Arsenic	7440-38-2	13	c 16	0	16	0	16	0	NR		NR		NR		NR		NR		NR	
Barium	7440-39-3	350	c 350	0	400		400		NR		NR		NR		NR		NR		NR	
Beryllium	7440-41-7	7.2	14		72		590		NR		NR		NR		NR		NR		NR	
Cadmium	7440-43-9	2.5	c 2.5	0	4.3		9.3		NR		NR		NR		NR		NR		NR	
Calcium	7440-70-2	NS	NS		NS		NS		NR		NR		NR		NR		NR		NR	
Chromium	7440-47-3	30	c 36		180		1500		NR		NR		NR		NR		NR		NR	
Cobalt	7440-48-4	NS	NS		NS		NS		NR		NR		NR		NR		NR		NR	
Copper	7440-50-8	50	270		270		270		NR		NR		NR		NR		NR		NR	
Iron	7439-89-6	NS	NS		NS		NS		NR		NR		NR		NR		NR		NR	
Lead	7439-92-1	63	c 400		400		1000		NR		NR		NR		NR		NR		NR	
Magnesium	7439-95-4	NS	NS		NS		NS		NR		NR		NR		NR		NR		NR	
Manganese	7439-96-5	1600	c 2000	0	2000	0 1	10000	m	NR		NR		NR		NR		NR		NR	
Mercury	7439-97-6	0.18	0.81	q	0.81	q	2.8	q	NR		NR		NR		NR		NR		NR	
Nickel	7440-02-0	30	140		310		310		NR		NR		NR		NR		NR		NR	
Potassium	7440-09-7	NS	NS		NS		NS		NR		NR		NR		NR		NR		NR	
Selenium	7782-49-2	3.9	c 36		180		1500		NR		NR		NR		NR		NR		NR	
Silver	7440-22-4	2	36		180		1500		NR		NR		NR		NR		NR		NR	
Sodium	7440-23-5	NS	NS		NS		NS		NR		NR		NR		NR		NR		NR	
Thallium	7440-28-0	NS	NS		NS		NS		NR		NR		NR		NR		NR		NR	
Vanadium	7440-62-2	NS	NS		NS		NS		NR		NR		NR		NR		NR		NR	
Zinc	7440-66-6	109	2200)	10000	m 1	10000	m	NR		NR		NR		NR		NR		NR	
WET CHEMISTRY		UUSCO	RSC	O	RRSCO		csco		Result Q	MDL	Result Q	MDL	Result Q	MDL	Result Q	MDL	Result Q	MDL	Result	Q MDL
TotalCyanide - mg/kg	57-12-5	27	27		27		27		NR		NR		NR		NR		NR		NR	

Sample Deth (let big) Samp	Sample ID		NYSI	DEC P	art 3	375 Re	eme	ediation	n	SB-85(13.0		SB-85 (16.0)-17.0)	SB-86 (13	3.0-1	13.5)	SB-88 (5.5-6.0)	SB-88	(4.5-5.0)	SB-92 (5.0-5.5)
Sampling Depth (relet bugs)	Lab Sample Number	CASRN								92196	0	92196	1	917	134		917109	917	'110	917114
Sampling Date Secretary	Sampling Depth (feet bgs)								,0	13.0 to	13.5	16.0 to 1	7.0	13.0 to	13.	.5	5.5 to 6.0	4.5 t	o 5.0	5.0 to 5.5
Chioromethane	Sampling Date					- ()		- (-)		05/20/	80	05/20/	08	05/02	2/08		04/25/08	04/2	25/08	05/01/08
Bromestane	VOLATILE COMPOUNDS (mg/kg)		UUSCO	RSCC)	RRSCC)	CSCO		Result Q	MDL	Result Q	MDL	Result	Q	MDL	Result Q MDL	Result	Q MDL	Result Q MDL
Virry(Chloride	Chloromethane	74-87-3	NS	NS				NS		U	0.80	U	0.0054	l	J	6.5	U 0.011		U 0.0082	U 0.0084
Description Control	Bromomethane	74-83-9	NS	NS		NS		NS		U	0.80	U	0.0054	l	J	6.5	U 0.011		U 0.0082	U 0.0084
MethyleneChloride	VinylChloride	75-01-4	0.02	0.21						U	0.80	U	0.0054	l	J		U 0.011			U 0.0084
Acetone	Chloroethane	75-00-3	NS							U	0.80	U	0.0054		J		U 0.011		U 0.0082	U 0.0084
CarbonDisuffide	MethyleneChloride						а		k	U	0.48	U		l	J					U 0.0050
1.1-Dichloroethane	Acetone				а		k		k	U	0.80			l	J		0.18 0.011	0.048		0.073 0.0084
1.1-Dichloroethane										U	0.80			l	J		U 0.011		U 0.0082	U 0.0084
Table 1.56-60-6 0.19 1.00 a 1.00 a 500 k U 0.80 U 0.0054 U 6.5 U 0.011 U 0.0082 U 0.0084 U 0.0054 U 0.55 U 0.011 U 0.0082 U 0.0084 U 0.0054 U 0.0055 U 0					а		а		k	U					_			0.013		
District District										U		U			_					
Chloroform					а				k	U		U			_					
1.2-Dichloroethane							а		k	U				l	J					
2-Butanone 78-93-3 0.12 100 a 100 a 500 k U 0.80 U 0.0054 U 6.5 0.024 0.011 U 0.0082 U 0.0084 1.1,1-Trichlorothane 71-55-6 0.88 100 a 100 a 500 k U 0.80 U 0.0054 U 6.5 U 0.011 U 0.0082 U 0.0084 1.1,1-Trichlorothane 56-23-5 0.76 1.4 2.4 22 U 0.32 U 0.032 U 0.0022 U 2.6 U 0.0044 U 0.00033 U 0.0033 Bromodichloromethane 75-27-4 NS NS NS NS NS NS NS NS NS U 0.66 U 0.0011 U 1.3 U 0.0022 U 0.0034 U 0.0033 U 0.0033 Bromodichloromethane 75-87-5 NS NS NS NS NS NS NS NS NS U 0.66 U 0.0011 U 1.3 U 0.0022 U 0.0016 U 0.0017 cis-1,3-Dichloropropane 10061-01-5 NS NS NS NS NS NS NS NS NS NS NS U 0.66 U 0.0011 U 1.3 U 0.0022 U 0.0016 U 0.0017 cis-1,3-Dichloropropane 10061-01-5 NS NS NS NS NS NS NS NS NS NS NS NS NS		67-66-3				49		350		U				l	J					U 0.0084
1.1.1-frichloroethane	1,2-Dichloroethane		0.02			-				U	0.32			l	J					
CarbonTetrachloride S6-23-5 0.76 1.4 2.4 2.2 0 0.032 0 0.0022 0 0.0044 0 0.0033	2-Butanone	78-93-3	0.12		а		а		k	U	0.80			l	J		0.024 0.011		U 0.0082	U 0.0084
Bromodichloromethane	1,1,1-Trichloroethane	71-55-6	0.68	100	а	100	а	500	k	U	0.80	U	0.0054	l	J	6.5	U 0.011		U 0.0082	U 0.0084
1,2-Dichloropropane 78-87-5 NS NS NS NS NS NS NS U 0.16 U 0.0011 U 1.3 U 0.0022 U 0.0016 U 0.0017		56-23-5	0.76	1.4		2.4		22		U	0.32	U	0.0022		J		U 0.0044		U 0.0033	U 0.0033
cis-1_3-Dichloropropene 10061-01-5 NS NS NS U 0.80 U 0.0054 U 6.5 U 0.011 U 0.0082 U 0.0084 Trichloroethene 79-01-6 0.47 1 2 1 200 U 0.16 U 0.0011 U 0.0022 U 0.0016 U 0.0044 1,1,2-Trichloroethane 79-00-5 NS NS NS NS NS U 0.48 U 0.0032 U 3.9 U 0.0066 U 0.0049 U 0.050 Benzene 71-43-2 0.06 2.9 4.8 44 0.17 0.16 U 0.0011 27 1.3 U 0.0066 U 0.0016 U 0.0016 U 0.0016 U 0.0016 U 0.0017 Trans-1_3-0ichloropropene 100-10-1 NS		75-27-4	NS	NS		NS		NS		U	0.16	U	0.0011		J	1.3	U 0.0022		U 0.0016	U 0.0017
Trichloroethene	1,2-Dichloropropane	78-87-5	NS	NS		NS		NS		U	0.16	U	0.0011		J	1.3	U 0.0022		U 0.0016	U 0.0017
Dibromochloromethane 124-48-1 NS NS NS NS NS NS NS N	cis-1,3-Dichloropropene	10061-01-5	NS	NS		NS		NS		U	0.80	U	0.0054	l	J	6.5	U 0.011		U 0.0082	U 0.0084
1,1,2-Trichloroethane	Trichloroethene	79-01-6	0.47			21				U	0.16	U	0.0011	l	J		U 0.0022		U 0.0016	U 0.0017
Benzene T1-43-2 0.06 2.9 4.8 44 0.17 0.16 U 0.0011 27 1.3 U 0.0022 U 0.0016 U 0.0017 trans-1,3-Dichlorpropene 10061-02-6 NS NS NS NS NS NS NS N	Dibromochloromethane	124-48-1	NS	NS		NS		NS		U	0.80	U	0.0054		J	6.5	U 0.011		U 0.0082	U 0.0084
trans-1,3-Dichloropropene 10061-02-6 NS NS NS NS NS NS NS U 0.080 U 0.0054 U 0.65 U 0.011 U 0.0082 U 0.0084 Bromoform 75-25-2 NS NS NS NS NS NS NS NS U 0.044 U 0.0043 U 5.2 U 0.0089 U 0.0066 U 0.0067 4-Methyl-2-Pentanone 108-10-1 NS	1,1,2-Trichloroethane	79-00-5	NS	NS		NS		NS		U	0.48	U	0.0032		J	3.9	U 0.0066		U 0.0049	U 0.0050
Bromoform	Benzene	71-43-2	0.06	2.9		4.8		44		0.17	0.16	U	0.0011	27		1.3	U 0.0022		U 0.0016	U 0.0017
4-Methyl-2-Pentanone 108-10-1 NS NS NS NS U 0.080 U 0.0054 U 0.011 U 0.0082 U 0.0084 2-Hexanone 591-78-6 NS NS NS NS NS U 0.80 U 0.0054 U 0.65 U 0.011 U 0.0082 U 0.0084 Tetrachloroethene 127-18-4 1.3 5.5 19 150 U 0.06 U 0.0011 U 0.011 U 0.0082 U 0.0084 1,1,2,2-Tetrachloroethane 79-34-5 NS NS <t< td=""><td>trans-1,3-Dichloropropene</td><td>10061-02-6</td><td>NS</td><td>NS</td><td></td><td>NS</td><td></td><td>NS</td><td></td><td>U</td><td>0.80</td><td>U</td><td>0.0054</td><td>l</td><td>J</td><td>6.5</td><td>U 0.011</td><td></td><td>U 0.0082</td><td>U 0.0084</td></t<>	trans-1,3-Dichloropropene	10061-02-6	NS	NS		NS		NS		U	0.80	U	0.0054	l	J	6.5	U 0.011		U 0.0082	U 0.0084
2-Hexanone	Bromoform	75-25-2	NS	NS		NS		NS		U	0.64	U	0.0043	l	J	5.2	U 0.0089		U 0.0066	U 0.0067
Tetrachloroethene 127-18-4 1.3 5.5 19 150 U 0.016 U 0.0011 U 1.3 U 0.0022 U 0.0016 U 0.0017 1,1,2,2-Tetrachloroethane 79-34-5 NS NS NS NS NS NS NS NS	4-Methyl-2-Pentanone	108-10-1	NS	NS		NS		NS		U	0.80	U	0.0054	l	J	6.5	U 0.011		U 0.0082	U 0.0084
1,1,2,2-Tetrachloroethane 79-34-5 NS U 0.016 U 0.0011 U 1.3 U 0.0022 U 0.0016 U 0.0017 Toluene 108-88-3 0.7 100 a 100 a 500 k 0.12 J 0.80 U 0.0054 1.7 J 6.5 U 0.011 U 0.0082 U 0.0084 Chlorobenzene 108-90-7 1.1 100 a 100 a 500 k U 0.80 U 0.0054 U 0.011 U 0.0082 U 0.0084 Ethylbenzene 100-41-4 1 30 41 390 2.5 0.64 U 0.0043 120 5.2 U 0.0089 U 0.0066 U 0.0067 Styrene 100-42-5 NS </td <td>2-Hexanone</td> <td>591-78-6</td> <td>NS</td> <td>NS</td> <td></td> <td>NS</td> <td></td> <td>NS</td> <td></td> <td>U</td> <td>0.80</td> <td>U</td> <td>0.0054</td> <td>l</td> <td>J</td> <td>6.5</td> <td>U 0.011</td> <td></td> <td>U 0.0082</td> <td>U 0.0084</td>	2-Hexanone	591-78-6	NS	NS		NS		NS		U	0.80	U	0.0054	l	J	6.5	U 0.011		U 0.0082	U 0.0084
Toluene 108-88-3 0.7 100 a 100 a 500 k 0.12 J 0.80 U 0.0054 1.7 J 6.5 U 0.011 U 0.0082 U 0.0084 Chlorobenzene 108-90-7 1.1 100 a 100 a 500 k U 0.80 U 0.80 U 0.0054 U 0.0054 U 0.011 U 0.0082 U 0.0082 U 0.0084 U	Tetrachloroethene	127-18-4	1.3	5.5		19		150		U	0.16	U	0.0011	l	J	1.3	U 0.0022		U 0.0016	U 0.0017
Toluene 108-88-3 0.7 100 a 100 a 500 k 0.12 J 0.80 U 0.0054 1.7 J 6.5 U 0.011 U 0.0082 U 0.0084 Chlorobenzene 108-90-7 1.1 100 a 100 a 500 k U 0.80 U 0.80 U 0.0054 U 0.0054 U 0.011 U 0.0082 U 0.0082 U 0.0084 U	1,1,2,2-Tetrachloroethane	79-34-5	NS	NS		NS		NS		U	0.16	U	0.0011	l	J	1.3	U 0.0022		U 0.0016	U 0.0017
Ethylbenzene 100-41-4 1 30 41 390 2.5 0.64 U 0.0043 120 5.2 U 0.0089 U 0.0066 U 0.0066 U 0.0067 Styrene 100-42-5 NS NS NS NS NS NS NS NS U 0.0084 U 0.0054 U 0.0054 U 0.011 U 0.0082 U 0.0082 U 0.0084 Xylene(Total) 1330-20-7 0.26 100 a 100 a 500 k 0.58 J 0.80 U 0.0054 96 6.5 0.0093 J 0.011 U 0.0082 U 0.0084 MTBE 1634-04-4 0.93 62 100 a 500 k 0.58 0.0093 U 0.0054 96 6.5 0.0093 J 0.011 U 0.0082 U 0.0084 MTBE 1634-04-4 0.93 62 100 a 500 k 0.58 0.00 0.0054 96 6.5 0.0093 J 0.011 U 0.0082 U 0.0084 TBA NS NS NS NS NS NS<		108-88-3	0.7	100	а	100	а	500	k	0.12 J	0.80	U	0.0054	1.7	J	6.5	U 0.011		U 0.0082	U 0.0084
Styrene 100-42-5 NS	Chlorobenzene	108-90-7	1.1	100	а	100	а	500	k	U	0.80	U	0.0054	l	J	6.5	U 0.011		U 0.0082	U 0.0084
Xýlene(Total) 1330-20-7 0.26 100 a 100 a 500 k 0.58 J 0.80 U 0.0054 96 6.5 0.0093 J 0.011 U 0.0082 U 0.0084 MTBE 1634-04-4 0.93 62 100 a 500 k	Ethylbenzene	100-41-4	1	30		41		390		2.5	0.64	U	0.0043	120		5.2	U 0.0089		U 0.0066	U 0.0067
MTBE 1634-04-4 0.93 62 100 a 500 k	Styrene	100-42-5	NS	NS		NS		NS		U	0.80	U	0.0054	l	J	6.5	U 0.011		U 0.0082	U 0.0084
TBA NS	Xylene(Total)	1330-20-7	0.26	100	а	100	а	500	k	0.58 J	0.80	U	0.0054	96		6.5	0.0093 J 0.011		U 0.0082	U 0.0084
TBA NS	MTBE	1634-04-4	0.93	62		100	а	500	k											
Total VOC 3.37 0 244.7 0.2133 0.061 0.073 Total BTEX 3.25 0 243 0.0093 0 0 Total Confident Conc. VOAs 2.6 0 243 0.2 0.1 0.1	TBA					NS		NS												
Total BTEX 0 3.25 0 243 0.0093 0 0 Total Confident Conc. VOAs 0 2.6 0 243 0.2 0.1 0.1 0.1	Total VOC									3.37		0		244.7			0.2133	0.061		0.073
	Total BTEX											0		243			0.0093	0		0
	Total Confident Conc. VOAs									2.6		0		243			0.2	0.1		0.1

Sample ID		NIX	٥٥			075 D		1		SB-85(13.0	-13.5)	SB-85 (16.0)-17.0)	SB-86 (13.0	0-13.5)	SB-88 (5.5-	6.0)	SB-88 (4.	5-5.0)	SB-92 (5.0-5.5)
Lab Sample Number	CASRN		_	-		375 R				92196	0	92196	1	91713	14	917109		9171	10	917114
Sampling Depth (feet bgs)	CASKIN					leanup -6.8(a)			55	13.0 to 1	3.5	16.0 to 1	7.0	13.0 to 1	13.5	5.5 to 6.	0	4.5 to	5.0	5.0 to 5.5
Sampling Date			ıuı	103 0	,, ,	0.0(a)	an	u (b)	Ī	05/20/0)8	05/20/0)8	05/02/0	08	04/25/08	3	04/25/	08	05/01/08
PAH (mg/kg)		UUSC	00	RSC)	RRSCO)	CSCO		Result Q	MDL	Result Q	MDL	Result Q	MDL	Result Q	MDL	Result C	MDL	Result Q MDL
Naphthalene	91-20-3	12		100	а	100	а	500	k	9 J	14	0.31 J	0.37	970	44	2.3 J	7.6	U	1.1	U 0.57
Acenaphthylene	208-96-8	100	а	100	а	100	а	500	k	7.4 J	14	0.043 J	0.37	30 J	44	4.6 J	7.6	U	1.1	0.22 J 0.57
Acenaphthene	83-32-9	20		100	а	100	а	500	k	82	14	0.49	0.37	390	44	3.8 J	7.6	0.05 J	1.1	0.025 J 0.57
Fluorene	86-73-7	30		100	а	100	а	500	k	47	14	0.24 J	0.37	200	44	5 J	7.6	U	1.1	U 0.57
Phenanthrene	85-01-8	100		100	а	100	а	500	k	190	14	1	0.37	800	44	29	7.6	0.52 J	1.1	0.15 J 0.57
Anthracene	120-12-7	100	а	100	а	100	а	500	k	45	14	0.22 J	0.37	430	44	8.8	7.6	0.18 J	1.1	0.077 J 0.57
Fluoranthene	206-44-0	100	а	100	а	100	а	500	k	57	14	0.26 J	0.37	230	44	33	7.6	0.73 J	1.1	0.37 J 0.57
Pyrene	129-00-0	100		100	а	100	а	500	k	84	14	0.42	0.37	300	44	56	7.6	0.9 J	1.1	0.45 J 0.57
Benzo(a)anthracene	56-55-3	1	С	1	0	1	0	5.6		24	1.4	0.13	0.037	86	4.4	14	0.76	0.53	0.11	0.21 0.057
Chrysene	218-01-9	1	С	1	0	3.9		56		22	14	0.12 J	0.37	120	44	24	7.6	0.78 J	1.1	0.38 J 0.57
Benzo(b)fluoranthene	205-99-2	1	С	1	0	1	0	5.6		11	1.4	0.049	0.037	25	4.4	9.5	0.76	0.3	0.11	0.52 0.057
Benzo(k)fluoranthene	207-08-9	0.8	С	1		3.9		56		13	1.4	0.07	0.037	55	4.4	15	0.76	0.42	0.11	0.56 0.057
Benzo(a)pyrene	50-32-8	1	С	1	0	1	0	1	0	26	1.4	0.098	0.037	75	4.4	16	0.76	0.41	0.11	0.51 0.057
Indeno(1,2,3-cd)pyrene	193-39-5	0.5	С	0.5	0	0.5	0	5.6		9.7	1.4	0.023 J	0.037	26	4.4	3.7	0.76	0.18	0.11	U 0.057
Dibenz(a,h)anthracene	53-70-3	0.33	b	0.33	n	0.33	n	0.56		2.8	1.4	U	0.037	U	4.4	U	0.76	U	0.11	U 0.057
Benzo(g,h,i)perylene	191-24-2	100		100	а	100	а	500	k	14	14	0.03 J	0.37	35 J	44	U	7.6	U	1.1	U 0.57
Total PAHs										643.9		3.503		3772		224.7		5		3.472
Total Confident Conc. PAHs										627		2.2		3707		209		1.8		1.8
Total Estimated Conc. BNA TIC										NA		NA		NA		NA		NA		NA
TarGOST Signal at Depth										200 (J)	backgro	und	500 (J)	20 (J)		backgro	und	background

Sample ID				_					SB-85(13.0	-13.5)	SB-85 (16.0	-17.0)	SB-86 (13.0	0-13.5)	SB-88 (5.5-6.0)	SB-88 (4.5	5-5.0)	SB-92 (5.0-5.5)
Lab Sample Number	CASRN						ediation		92196	0	921961	1	91713	4	917109	91711	0	917114
Sampling Depth (feet bgs)	CASRN				Cieanu _l 5-6.8(a)		bjective	S	13.0 to 1	3.5	16.0 to 1	7.0	13.0 to 1	13.5	5.5 to 6.0	4.5 to 5	5.0	5.0 to 5.5
Sampling Date		10	abic	3 01	0-0.0(a)	an	u (b)	Ī	05/20/0)8	05/20/0	8	05/02/0	08	04/25/08	04/25/0)8	05/01/08
METALS (mg/kg)		UUSCO		RSCO	RRSC	0	CSCO		Result Q		Result Q	MDL	Result Q		Result Q MDL	Result Q		Result Q MDL
Aluminum	7429-90-5	NS	N	IS	NS		NS		NR		NR		NR		NR	NR		NR
Antimony	7440-36-0	NS	N	IS	NS		NS		NR		NR		NR		NR	NR		NR
Arsenic	7440-38-2	13	c 1	6 (16	0	16	0	NR		NR		NR		NR	NR		NR
Barium	7440-39-3	350	c 3	50 d	400		400		NR		NR		NR		NR	NR		NR
Beryllium	7440-41-7	7.2	1	4	72		590		NR		NR		NR		NR	NR		NR
Cadmium	7440-43-9	2.5	c 2	.5	4.3		9.3		NR		NR		NR		NR	NR		NR
Calcium	7440-70-2	NS	١	IS	NS		NS		NR		NR		NR		NR	NR		NR
Chromium	7440-47-3	30	с 3	36	180		1500		NR		NR		NR		NR	NR		NR
Cobalt	7440-48-4	NS	١	IS	NS		NS		NR		NR		NR		NR	NR		NR
Copper	7440-50-8	50	2	70	270		270		NR		NR		NR		NR	NR		NR
Iron	7439-89-6	NS	١	IS	NS		NS		NR		NR		NR		NR	NR		NR
Lead	7439-92-1	63	c 4	00	400		1000		NR		NR		NR		NR	NR		NR
Magnesium	7439-95-4	NS	١	IS	NS		NS		NR		NR		NR		NR	NR		NR
Manganese	7439-96-5	1600	c 20	000	2000	0	10000	m	NR		NR		NR		NR	NR		NR
Mercury	7439-97-6	0.18	c 0.	81 (0.81	q	2.8	q	NR		NR		NR		NR	NR		NR
Nickel	7440-02-0	30	1	40	310		310		NR		NR		NR		NR	NR		NR
Potassium	7440-09-7	NS	١	IS	NS		NS		NR		NR		NR		NR	NR		NR
Selenium	7782-49-2	3.9	с 3	36	180		1500		NR		NR		NR		NR	NR		NR
Silver	7440-22-4	2	3	36	180		1500		NR		NR		NR		NR	NR		NR
Sodium	7440-23-5	NS	١	IS	NS		NS		NR		NR		NR		NR	NR		NR
Thallium	7440-28-0	NS	١	IS	NS		NS		NR		NR		NR		NR	NR		NR
Vanadium	7440-62-2	NS	N	IS	NS		NS		NR		NR		NR		NR	NR		NR
Zinc	7440-66-6	109	c 22	200	10000	m	10000	m	NR		NR		NR		NR	NR		NR
WET CHEMISTRY	·	UUSCO	1	RSCO	RRSC	0	CSCO		Result Q	MDL	Result Q	MDL	Result Q	MDL	Result Q MDL	Result Q	MDL	Result Q MDL
TotalCyanide - mg/kg	57-12-5	27	2	27	27		27		NR		NR		NR		NR	NR		NR

Sample ID									SB-94 (9.0)-9.5)	SB-94 9	.0-10.0	SB-100 (8.25	5-8.75)	SB-107 (5.5-6.0)	SB-108 (13.	.0-14.0)	SB-108 (33.0	0-34.0)
Lab Sample Number	CASRN		SDEC F						917	111	1	9234	13	91	7116	3	9171		92067		920676	
Sampling Depth (feet bgs)	CASRN		ram So ables 3					es	9.0 t	o 9.	.5	9.0 to	10.0	8.25	to 8	3.7	5.5 to	6.0	13.0 to 1	14.0	33.0 to 3	4.0
Sampling Date			abics	<i>31</i> 0	υ.υ(α)	an	u (b)		04/3	0/0	8	05/28	/08	04/3	30/0	8	04/30)/08	05/15/	08	05/16/0)8
VOLATILE COMPOUNDS (mg/kg)		UUSCO) RSC	0	RRSCO)	CSCC)	Result	Q	MDL	Result C	MDL	Result	Q	MDL	Result	Q MDL	Result Q	MDL	Result Q	MDL
Chloromethane	74-87-3	NS	NS		NS		NS			U	16	U	38		U	0.96	l	J 0.0055	U	0.0047		0.0054
Bromomethane	74-83-9	NS	NS		NS		NS			U	16	U	38		U	0.96	l	J 0.0055	U	0.0047	U	0.0054
VinylChloride	75-01-4	0.02	0.21		0.9		13			U	16	U	38		U	0.96	l	J 0.0055	U	0.0047	U	0.0054
Chloroethane	75-00-3	NS	NS		NS		NS			U	16	U	38		U	0.96	l	J 0.0055	U	0.0047	U	0.0054
MethyleneChloride	75-09-2	0.05	51		100	а	500	k		U	9.5	U	23		U	0.57	0.015	0.0033	U	0.0028	U	0.0032
Acetone	67-64-1	0.05	100	а	100	k	500	k		U	16	U	38		U	0.96	l	J 0.0055	U	0.0047	U	0.0054
CarbonDisulfide	75-15-0	NS	NS		NS		NS			U	16	U	38		U	0.96	l	J 0.0055	U	0.0047	U	0.0054
1,1-Dichloroethene	75-35-4	0.33	100	а	100	а	500	k		U	6.4	U			U	0.38	l	J 0.0022	U	0.0019	U	0.0022
1,1-Dichloroethane	75-34-3	0.27	19		26		240			U	16	U	38		U	0.96	l	J 0.0055	U	0.0047	U	0.0054
trans-1,2-Dichloroethene	156-60-5	0.19	100	а	100	а	500	k		U	16	U	38		U	0.96	l	J 0.0055	U	0.0047	U	0.0054
cis-1,2-Dichloroethene	156-59-2	0.25	59		100	а	500	k		U	16	U	38		U	0.96	l	J 0.0055	U	0.0047	U	0.0054
Chloroform	67-66-3	0.37	10		49		350			U	16	U			U	0.96	l	J 0.0055	U	0.0047	U	0.0054
1,2-Dichloroethane	107-06-2	0.02	c 2.3		3.1		30			U	6.4	U			U	0.38	l	J 0.0022	U	0.0019	U	0.0022
2-Butanone	78-93-3	0.12	100	а	100	а	500	k		U	16	U			U	0.96	l	J 0.0055	U	0.0047	U	0.0054
1,1,1-Trichloroethane	71-55-6	0.68	100	а	100	а	500	k		Ū	16	Ū			Ū	0.96	i	J 0.0055	Ū	0.0047	Ū	0.0054
CarbonTetrachloride	56-23-5	0.76	1.4		2.4		22			Ū	6.4	Ū	15		Ū	0.38	i	J 0.0022	Ū	0.0019	Ü	0.0022
Bromodichloromethane	75-27-4	NS	NS		NS		NS			Ū	3.2	Ū			Ū	0.19	i	J 0.0011	Ū	0.0009	Ü	0.0011
1,2-Dichloropropane	78-87-5	NS	NS		NS		NS			U	3.2	U	7.6		U	0.19	l	J 0.0011	U	0.0009	U	0.0011
cis-1,3-Dichloropropene	10061-01-5	NS	NS		NS		NS			Ū	16	Ū			Ū	0.96		J 0.0055	Ū	0.0047	Ü	0.0054
Trichloroethene	79-01-6	0.47	10		21		200			Ū	3.2	Ū			Ū	0.19		J 0.0011		0.0009		0.0011
Dibromochloromethane	124-48-1	NS	NS		NS		NS			Ū	16	Ū	38		Ū	0.96		J 0.0055	Ü	0.0047	Ü	0.0054
1,1,2-Trichloroethane	79-00-5	NS	NS		NS		NS			Ū	9.5	Ü			U	0.57		J 0.0033	Ü	0.0028		0.0032
Benzene	71-43-2	0.06	2.9		4.8		44		170	Ť	3.2	110	7.6		Ū	0.19		J 0.0011	Ü	0.0009		0.0011
trans-1,3-Dichloropropene	10061-02-6	NS	NS		NS		NS			U	16	U			Ū	0.96	i	J 0.0055	Ū	0.0047	Ü	0.0054
Bromoform	75-25-2	NS	NS		NS		NS			Ū	13	Ü			Ū	0.77		J 0.0044	Ü	0.0037		0.0043
4-Methyl-2-Pentanone	108-10-1	NS	NS		NS		NS			Ū	16	Ü			U	0.96		J 0.0055	Ü			0.0054
2-Hexanone	591-78-6	NS	NS		NS		NS			Ū	16	Ü			Ū	0.96		J 0.0055	Ü	0.0047		0.0054
Tetrachloroethene	127-18-4	1.3	5.5	\top	19		150			Ū	3.2	Ū			Ū	0.19		J 0.0011	Ü	0.0009		0.0011
1.1.2.2-Tetrachloroethane	79-34-5	NS	NS	\top	NS		NS			Ü	3.2	U			Ú	0.19		J 0.0011	l U	0.0009		0.0011
Toluene	108-88-3	0.7	100	а	100	а	500	k	29	-	16	3 J	38		Ū	0.96		J 0.0055	U	0.0047		0.0054
Chlorobenzene	108-90-7	1.1	100	a	100	а	500	k		U	16	U			Ū	0.96		J 0.0055	U	0.0047	_	0.0054
Ethylbenzene	100-41-4	1	30	Ť	41	-	390	1	520	Ť	13	200	30			0.77		J 0.0044	Ü	0.0037		0.0043
Styrene	100-42-5	NS	NS	\top	NS	H	NS			U	16	U	_		U	0.96		J 0.0055	IJ	0.0047		0.0054
Xylene(Total)	1330-20-7	0.26	100	а	100	а	500	k	410	-	16	170	38		_	0.96		J 0.0055	l li	0.0047		0.0054
MTBE	1634-04-4	0.93	62	Ť	100	а	500	k											_			
TBA		NS	NS		NS		NS	Ħ					<u> </u>		\Box			+				
Total VOC			1.0	+				+	1129			483	1	2.6	\vdash		0.015	1	0		0	
Total BTEX				+					1100			480		2.6			0.010	1	0		0	
Total Confident Conc. VOAs				+					1129			480		2.6			0	1	0		0	
Total Estimated Conc. VOA TICs				+				+	1763			1889	1	69	_	<u> </u>	0	+	0	1	0	\vdash
Total Estillated Colle. VOA 1105	l l			_	l	ш		ш	1700			1003	1	03	ш		U		ı v	1	U	ь

Sample ID										SB-94 (9.	0-9.5)	SB-94 9.0	0-10.0	SB-100 (8	25-8.75)	SB-107 (5.5-6.0)	SB-108 (13.0-14.0)	SB-108 (33.0-34.0)
Lab Sample Number						375 R				91711		92341		917	,	917112	920673	920676
Sampling Depth (feet bgs)	CASRN					leanup			es	9.0 to 9	-	9.0 to 1		8.25 t		5.5 to 6.0	13.0 to 14.0	33.0 to 34.0
			lab	oles 3	75	-6.8(a)	an	d (b)										
Sampling Date										04/30/		05/28/		04/30		04/30/08	05/15/08	05/16/08
PAH (mg/kg)		UUSC	00	RSC)	RRSCO)	CSC	_	Result Q		Result Q		Result		Result Q MDL	Result Q MDL	Result Q MDL
Naphthalene	91-20-3	12		100	а	100	а	500	k	7000	540	5000	320		33	U 0.39		
Acenaphthylene	208-96-8	100	а	100	а	100	а	500	k	280 J	540	190 J	320	12	J 33	U 0.39	U 0.36	U 0.37
Acenaphthene	83-32-9	20		100	а	100	а	500	k	3200	540	2100	320	82	33	U 0.39	U 0.36	U 0.37
Fluorene	86-73-7	30		100	а	100	а	500	k	1300	540	910	320	64	33	U 0.39	U 0.36	U 0.37
Phenanthrene	85-01-8	100		100	а	100	а	500	k	5600	540	3500	320	380	33	U 0.39	0.009 J 0.36	U 0.37
Anthracene	120-12-7	100	а	100	а	100	а	500	k	3000	540	2000	320	99	33	U 0.39	U 0.36	U 0.37
Fluoranthene	206-44-0	100	а	100	а	100	а	500	k	1900	540	1200	320	160	33	U 0.39	0.014 J 0.36	U 0.37
Pyrene	129-00-0	100		100	а	100	а	500	k	2500	540	1800	320	270	33	U 0.39	0.033 J 0.36	U 0.37
Benzo(a)anthracene	56-55-3	1	С	1	0	1	0	5.6		760	54	560	32	89	3.3	U 0.039	0.016 J 0.036	U 0.037
Chrysene	218-01-9	1	С	1	0	3.9		56		930	540	630	320	110	33	U 0.39	0.02 J 0.36	U 0.37
Benzo(b)fluoranthene	205-99-2	1	С	1	0	1	0	5.6		220	54	190	32	30	3.3	U 0.039	U 0.036	U 0.037
Benzo(k)fluoranthene	207-08-9	0.8	С	1		3.9		56		540	54	340	32	56	3.3	U 0.039	U 0.036	U 0.037
Benzo(a)pyrene	50-32-8	1	С	1	0	1	0	1	0	660	54	460	32	81	3.3	U 0.039	U 0.036	U 0.037
Indeno(1,2,3-cd)pyrene	193-39-5	0.5	С	0.5	0	0.5	0	5.6		190	54	130	32	25	3.3	U 0.039	U 0.036	U 0.037
Dibenz(a,h)anthracene	53-70-3	0.33	b	0.33	n	0.33	n	0.56		U	54	45	32		J 3.3	U 0.039	U 0.036	U 0.037
Benzo(g,h,i)perylene	191-24-2	100		100	а	100	а	500	k	270 J	540	150 J	320	34	33	U 0.39	U 0.36	U 0.37
Total PAHs										28350		19205		1602		0	0.092	0
Total Confident Conc. PAHs										27800		18865		1590		0	0	0
Total Estimated Conc. BNA TIC										NA		NA		NA		NA	NA	NA
TarGOST Signal at Depth										630.6	3	630.	6	53	.5	background	no data	no data

Sample ID										SB-94 (9.	0-0.5)	\ T	SB-94 9.0)_10 0	SB-100 (8.2	05_Q 75)	SB-107 (5.5-6.0) SB-108 (13	0-14 0)	SB-108 (33.0-34	0)
		NYS	SDE	C Pa	rt 37	5 Re	emedi	ation	_	1		,			,		,	'		,	.0)
Lab Sample Number	CASRN	Proc	ram	n Soil	Clea	aun	Obje	ctives	;	9171	11		92341	3	91711	6	917112	92067	73	920676	
Sampling Depth (feet bgs)							and (I			9.0 to	9.5		9.0 to 10	0.0	8.25 to	8.7	5.5 to 6.0	13.0 to	14.0	33.0 to 34.0	
Sampling Date						()		- /		04/30/	/08		05/28/0	08	04/30/	80	04/30/08	05/15/	08	05/16/08	
METALS (mg/kg)		UUSC	:0	RSCO	R	RSCC)	CSCO		Result C) MI	DL	Result Q	MDL	Result C	MDL	Result Q MI	DL Result C	MDL	Result Q M	DL
Aluminum	7429-90-5	NS		NS	N	S	١	IS		NR			NR		NR		NR	9350	13.4	8090 12	2.8
Antimony	7440-36-0	NS		NS	Ν	S	N	IS		NR			NR		NR		NR	U	1.2	U ,	1.2
Arsenic	7440-38-2	13	С	16	o 1	6	0 1	6 ()	NR			NR		NR		NR	0.84 B	0.68	U 0.	.65
Barium	7440-39-3	350	С	350	o 40	00	4	00		NR			NR		NR		NR	58.3	0.36	98.2 0.	.35
Beryllium	7440-41-7	7.2		14	7	2	5	90		NR			NR		NR		NR	0.47	0.064	0.46 0.0)61
Cadmium	7440-43-9	2.5	С	2.5	o 4	.3	9	.3		NR			NR		NR		NR	U	0.086	U 0.0)82
Calcium	7440-70-2	NS		NS	N	S	١	IS		NR			NR		NR		NR	1710	9.1	20300	8.7
Chromium	7440-47-3	30	С	36	18	30	15	500		NR			NR		NR		NR	15.2	0.34	11.7 0.	.33
Cobalt	7440-48-4	NS		NS	N	S	١	IS		NR			NR		NR		NR	6.3 B	0.36	5.7 B 0.	.35
Copper	7440-50-8	50		270	2	70	2	70		NR			NR		NR		NR	13.7	0.79	6.7 0.	.76
Iron	7439-89-6	NS		NS	N	S	١	IS		NR			NR		NR		NR	19600	8.4		8.0
Lead	7439-92-1	63	С	400	40	00	10	000		NR			NR		NR		NR	4.1	0.58	6.6 0.	.55
Magnesium	7439-95-4	NS		NS	Ν	S	١	IS		NR			NR		NR		NR	4040	8.9		8.5
Manganese	7439-96-5	1600	c 2	2000	o 20	00	o 10	000 r	n	NR			NR		NR		NR	288	0.26	354 0.	.24
Mercury	7439-97-6	0.18	С	0.81	q 0.	81	q 2	.8	7	NR			NR		NR		NR	U	0.018	U 0.0)19
Nickel	7440-02-0	30		140	3	0	3	10		NR			NR		NR		NR	13.3	0.51	12.6 0.	.49
Potassium	7440-09-7	NS		NS	Ν	S	١	IS		NR			NR		NR		NR	1840	67.5	2020 64	4.4
Selenium	7782-49-2	3.9	С	36	18	30	15	500		NR			NR		NR		NR	U	0.90		.86
Silver	7440-22-4	2		36	18	30	15	500		NR			NR		NR		NR	U	0.30	U 0.	.29
Sodium	7440-23-5	NS		NS	Ν	S	N	IS		NR			NR		NR		NR	100 B	84.6	U 80	0.7
Thallium	7440-28-0	NS		NS	Ν	S	١	IS		NR			NR		NR		NR	U	1.0	U 0.	.96
Vanadium	7440-62-2	NS		NS	Ν	S	١	IS		NR			NR		NR		NR	19.3	1.0	17.2 0.	.96
Zinc	7440-66-6	109	c 2	2200	100	000	m 10	000 r	n	NR			NR		NR		NR	42.9	1.2		1.2
WET CHEMISTRY		UUSC	:0	RSCO		RSCC)	csco		Result C) MI	DL	Result Q	MDL	Result C	MDL	Result Q MI	DL Result C	MDL		IDL
TotalCyanide - mg/kg	57-12-5	27		27	2	7	2	27		NR			NR		NR		NR	U	0.5	U (0.5

Sample ID									SB-109(14	1.5-1	15.0)	SB-109(29.5	5-30.0)	SB-110 (1	0.5	5-11.0)	SB-110 (28.0	-28.5)	SB-111B	(8.	5-9.0)	SB-111B (2	22.2-22.7)
Lab Sample Number	CASRN	NYSE Progra			375 Re				9219			92194		9202			920236	- /	920	_	- 1	9202	233
Sampling Depth (feet bgs)	CASRN				ieanup -6.8(a)			S	14.5 to	15.	.0	29.5 to 3	0.0	10.5 to	o 1'	1.0	28.0 to 28	3.5	8.5 to	9.0	00	22.2 to	22.7
Sampling Date		Ia	DICS 3	,,,,	-0.0(a)	anc	J (D)	Ī	05/20)/08		05/20/0	08	05/13	3/0	8	05/13/08	8	05/1	2/0	8	05/13	3/08
VOLATILE COMPOUNDS (mg/kg)		UUSCO	RSC	0	RRSCO	1	CSCO		Result (Q	MDL	Result Q	MDL	Result	Q	MDL	Result Q	MDL	Result	Q	MDL	Result	Q MDL
Chloromethane	74-87-3	NS	NS		NS		NS		l	J 0.	.0052		0.0062		U	0.0050	U	0.0055		U	2.4	ι	J 0.0060
Bromomethane	74-83-9	NS	NS		NS		NS		L	J 0.	.0052	U	0.0062		U	0.0050	U	0.0055		U	2.4	U	J 0.0060
VinylChloride	75-01-4	0.02	0.21		0.9		13		L	J 0.	.0052	U	0.0062		U	0.0050	U	0.0055		U	2.4	ι	J 0.0060
Chloroethane	75-00-3	NS	NS		NS		NS		L	J 0.	.0052	U	0.0062		U	0.0050	U	0.0055		U	2.4	U	J 0.0060
MethyleneChloride	75-09-2	0.05	51		100	а	500	k	0.003 J	0.	.0031	0.0094	0.0038	0.004	(0.0030	0.0029 J	0.0033		U	1.4	0.0084	0.0036
Acetone	67-64-1	0.05	100	а	100	k	500	k	0.036	0.	.0052	0.06	0.0062	0.029	(0.0050	0.027	0.0055		U	2.4	0.044	0.0060
CarbonDisulfide	75-15-0	NS	NS		NS		NS		L	J 0.	.0052	U	0.0062		U	0.0050	U	0.0055		J	2.4	U	J 0.0060
1,1-Dichloroethene	75-35-4	0.33	100	а	100	а	500	k	L	J 0.	.0021	U	0.0025		U	0.0020	U	0.0022		U	0.94	U	J 0.0024
1,1-Dichloroethane	75-34-3	0.27	19		26		240		L	J 0.	.0052	U	0.0062		U	0.0050	U	0.0055		U	2.4	U	J 0.0060
trans-1,2-Dichloroethene	156-60-5	0.19	100	а	100	а	500	k	L	J 0.	.0052	U	0.0062		U	0.0050	U	0.0055		U	2.4	U	J 0.0060
cis-1,2-Dichloroethene	156-59-2	0.25	59		100	а	500	k	L	J 0.	.0052	U	0.0062		U	0.0050	U	0.0055		U	2.4	U	J 0.0060
Chloroform	67-66-3	0.37	10		49		350		L	J 0.	.0052	U	0.0062	0.0023	J (0.0050	U	0.0055		U	2.4	Ų	J 0.0060
1,2-Dichloroethane	107-06-2	0.02 c	2.3		3.1		30		L	J 0.	.0021	U	0.0025		U	0.0020	U	0.0022		U	0.94	U	J 0.0024
2-Butanone	78-93-3	0.12	100	а	100	а	500	k	l	J 0.	.0052	U	0.0062		U	0.0050	U	0.0055		U	2.4	Ų	J 0.0060
1,1,1-Trichloroethane	71-55-6	0.68	100	а	100	а	500	k	L	J 0.	.0052	U	0.0062		U	0.0050	U	0.0055		U	2.4	Ų	J 0.0060
CarbonTetrachloride	56-23-5	0.76	1.4		2.4		22		L	J 0.	.0021	U	0.0025		U	0.0020	U	0.0022		U	0.94	U	J 0.0024
Bromodichloromethane	75-27-4	NS	NS		NS		NS		L	J 0.	.0010	U	0.0012		U (0.0010	U	0.0011		U	0.47	Ų	J 0.0012
1,2-Dichloropropane	78-87-5	NS	NS		NS		NS		l	J 0.	.0010	U	0.0012		U	0.0010	U	0.0011		U	0.47	Ų	J 0.0012
	10061-01-5	NS	NS		NS		NS		L	J 0.	.0052	U	0.0062		U	0.0050	U	0.0055		U	2.4	U	J 0.0060
Trichloroethene	79-01-6	0.47	10		21		200		L	J 0.	.0010	U	0.0012		U	0.0010	U	0.0011		U	0.47	U	J 0.0012
Dibromochloromethane	124-48-1	NS	NS		NS		NS		l	J 0.	.0052	U	0.0062		U	0.0050	U	0.0055		U	2.4	ι	J 0.0060
1,1,2-Trichloroethane	79-00-5	NS	NS		NS		NS		l	J 0.	.0031	U	0.0038		U	0.0030	U	0.0033		U	1.4	ι	J 0.0036
Benzene	71-43-2	0.06	2.9		4.8		44		L	J 0.	.0010	U	0.0012		U	0.0010	U	0.0011	0.43	J	0.47	U	J 0.0012
trans-1,3-Dichloropropene 1	10061-02-6	NS	NS		NS		NS		L	J 0.	.0052	U	0.0062		U	0.0050	U	0.0055		U	2.4	U	J 0.0060
Bromoform	75-25-2	NS	NS		NS		NS		l	J 0.	.0041	U	0.0050		U	0.0040	U	0.0044		U	1.9	Ų	J 0.0048
4-Methyl-2-Pentanone	108-10-1	NS	NS		NS		NS		l	J 0.	.0052	U	0.0062		U	0.0050	U	0.0055		U	2.4	Ų	J 0.0060
2-Hexanone	591-78-6	NS	NS		NS		NS		L	J 0.	.0052	U	0.0062		U	0.0050	U	0.0055		U	2.4	U	J 0.0060
Tetrachloroethene	127-18-4	1.3	5.5		19		150		l	J 0.	.0010	U	0.0012		U	0.0010	U	0.0011		U	0.47	ι	J 0.0012
1,1,2,2-Tetrachloroethane	79-34-5	NS	NS		NS		NS		l	J 0.	.0010	U	0.0012		U	0.0010	U	0.0011		U	0.47	ι	J 0.0012
Toluene	108-88-3	0.7	100	а	100	а	500	k	L	J 0.	.0052	U	0.0062		U	0.0050	U	0.0055	0.52	J	2.4	U	J 0.0060
Chlorobenzene	108-90-7	1.1	100	а	100	а	500	k	L	J 0.	.0052	U	0.0062		U	0.0050	U	0.0055		U	2.4	U	J 0.0060
Ethylbenzene	100-41-4	1	30		41		390		l	J 0.	.0041	U	0.0050		U	0.0040	U	0.0044	9.3		1.9	U	J 0.0048
Styrene	100-42-5	NS	NS	Ħ	NS	1	NS		l	J 0.	.0052	Ū	0.0062		U (0.0050	U d	0.0055		U	2.4	Ü	J 0.0060
		0.26	100	а	100	а	500	k	l		.0052		0.0062			0.0050	U C	0.0055	21		2.4	Ü	J 0.0060
, , ,	1634-04-4	0.93	62	Ħ	100	а	500	k		T					T								
TBA		NS	NS	Ħ	NS		NS			T					T								
Total VOC			1	T	-	7		H	0.039	+		0.0694		0.0353	T		0.0299	1	31.25			0.0524	
Total BTEX			1	T		7		H	0	+		0		0	T		0	1	30.73			0	
Total Confident Conc. VOAs				Ħ					0	T		0.1		0	T		0		30			0.1	
Total Estimated Conc. VOA TICs				Ħ					0	T		0		0	T		0		265			0.1	

Sample ID										SB-109(14.	5-15.0)	SB-109(29.5	5-30.0)	SB-110 (10).5-11.0	SB-110 (28.0-28.5)	SB-111B (8.	5-9.0)	SB-111B (22.2-22.7)
Lab Sample Number	CASRN		_	_		375 R				92194		92194	,	9202		920236	920232	2	920233
Sampling Depth (feet bgs)	CASRN					leanup -6.8(a)			28	14.5 to 1	15.0	29.5 to 3	0.0	10.5 to	11.0	28.0 to 28.5	8.5 to 9.	00	22.2 to 22.7
Sampling Date			ıaı	JIGS C	,,,	-0.0(a)	an	u (b)	Ī	05/20/	08	05/20/0)8	05/13	/08	05/13/08	05/12/0	18	05/13/08
PAH (mg/kg)		UUS	СО	RSC	0	RRSCO)	CSCO		Result Q	MDL	Result Q	MDL	Result	Q MD	Result Q MDL	Result Q	MDL	Result Q MDL
Naphthalene	91-20-3	12		100	а	100	а	500	k	U	0.36	U	0.43	l	J 0.3	U 0.39	520	40	0.028 J 0.41
Acenaphthylene	208-96-8	100	а	100	а	100	а	500	k	U	0.36	U	0.43	l	J 0.3	U 0.39	31 J	40	U 0.41
Acenaphthene	83-32-9	20		100	а	100	а	500	k	U	0.36	U	0.43	l	0.3	U 0.39		40	U 0.41
Fluorene	86-73-7	30		100	а	100	а	500	k	U	0.36	U	0.43	L	0.3	U 0.39	140	40	U 0.41
Phenanthrene	85-01-8	100		100	а	100	а	500	k	U	0.36	U	0.43	U	0.3	U 0.39	440	40	0.025 J 0.41
Anthracene	120-12-7	100	а	100	а	100	а	500	k	U	0.36	U	0.43	U	0.3	U 0.39	93	40	U 0.41
Fluoranthene	206-44-0	100	а	100	а	100	а	500	k	U	0.36	U	0.43	J	0.3	U 0.39	120	40	0.0086 J 0.41
Pyrene	129-00-0	100		100	а	100	а	500	k	U	0.36	U	0.43	U	0.3	U 0.39	170	40	0.013 J 0.41
Benzo(a)anthracene	56-55-3	1	С	1	0	1	0	5.6		U	0.036	U	0.043	U	0.03	U 0.039	45	4	U 0.041
Chrysene	218-01-9	1	С	1	0	3.9		56		U	0.36	U	0.43	l	J 0.3	U 0.39	42	40	U 0.41
Benzo(b)fluoranthene	205-99-2	1	С	1	0	1	0	5.6		U	0.036	U	0.043	l	0.03	U 0.039	14	4	U 0.041
Benzo(k)fluoranthene	207-08-9	0.8	С	1		3.9		56		U	0.036	U	0.043	U	0.03	U 0.039	23	4	U 0.041
Benzo(a)pyrene	50-32-8	1	С	1	0	1	0	1	0	U	0.036	U	0.043	U	0.03	U 0.039	30	4	U 0.041
Indeno(1,2,3-cd)pyrene	193-39-5	0.5	С	0.5	0	0.5	0	5.6		U	0.036	U	0.043	J	0.03	U 0.039	10	4	U 0.041
Dibenz(a,h)anthracene	53-70-3	0.33	b	0.33	n	0.33	n	0.56		U	0.036	U	0.043	U	0.03	U 0.039	3.1 J	4	U 0.041
Benzo(g,h,i)perylene	191-24-2	100		100	а	100	а	500	k	U	0.36	U	0.43	U	0.3	U 0.39	14 J	40	U 0.41
Total PAHs										0		0		0		0	1794.1		0.0746
Total Confident Conc. PAHs										0		0		0		0	1746		0
Total Estimated Conc. BNA TIC										NA		NA							
TarGOST Signal at Depth	_					-				no da	ta	no dat	а	no da	ata	no data	no data	а	no data

Sample ID		NIV (C		-0.0		075 D				SB-109(14.	5-15.0)	SB-109(29.5	5-30.0)	SB-110 (10	0.5-11.0	SB-110 (28.0	-28.5)	SB-111B (8	8.5-9.0)	SB-111B (22.2	.2-22.7)
Lab Sample Number	CASRN							ediation		92194	14	92194	5	9202	:35	920236	;	9202	32	920233	3
Sampling Depth (feet bgs)	CASKN					леапир -6.8(a)		bjective	5	14.5 to	15.0	29.5 to 3	0.0	10.5 to	11.0	28.0 to 28	3.5	8.5 to 9	9.00	22.2 to 22	2.7
Sampling Date			ab	163 0	7.5	-0.0(a)	an	u (b)	Ī	05/20/	08	05/20/0)8	05/13	3/08	05/13/08	8	05/12/	08	05/13/08	8
METALS (mg/kg)		UUSCC)	RSCC)	RRSCC)	CSCO		Result Q	MDL	Result Q	MDL	Result	QI MD	Result Q	MDL	Result C	MDL	Result Q	MDL
Aluminum	7429-90-5	NS		NS		NS		NS		7450	16.6	5360	20.0	8220	14.	2 8110	14.7	19000	15.0	7460	15.3
Antimony	7440-36-0	NS		NS		NS		NS		U	1.0	U	1.3	l	J 1.	3 U	1.4	U	1.4	U	1.4
Arsenic	7440-38-2	13	С	16	0	16	0	16	0	2.2	0.96	1.4	1.2	1.5	0.7	3 0.77 B	0.75	3	0.77	1.2	0.78
Barium	7440-39-3	350	С	350	0	400		400		39.1 B	0.28	63.1	0.34	70.5	0.3	9 69.4	0.40	158	0.41	72.6	0.42
Beryllium	7440-41-7	7.2		14		72		590		0.3 B	0.021	0.27 B	0.026	0.42 E	0.06	0.48	0.070	0.94	0.072	0.33 B	0.073
Cadmium	7440-43-9	2.5	С	2.5	0	4.3		9.3		U	0.11	U	0.13	U	J 0.09	1 U	0.094	U	0.096	U	0.098
Calcium	7440-70-2	NS		NS		NS		NS		1010 B	15.9	9800	19.3	1830	9.	7 23400	10.0	2420	10.2	16400	10.4
Chromium	7440-47-3	30	С	36		180		1500		8.4	0.60	6.3	0.72	10.8	0.3	3 11.4	0.38	25.7	0.38	12.2	0.39
Cobalt	7440-48-4	NS		NS		NS		NS		5.2 B	0.75	4.4 B	0.91	6.1 E	3 0.3	9 5.9 B	0.40	9.6 B	0.41	5.9 B	0.42
Copper	7440-50-8	50		270		270		270		15.5	0.66	8.5	0.80	13.1	0.8	4 6.7	0.87	24.6	0.89	12.3	0.90
Iron	7439-89-6	NS		NS		NS		NS		16500	8.5	12800	10.3	17900	8.	9 14400	9.2	29200	9.4	16500	9.6
Lead	7439-92-1	63	С	400		400		1000		6.4	0.47	4.3	0.57	4.6	0.6	1 6.1	0.63	9.4	0.65	4.4	0.66
Magnesium	7439-95-4	NS		NS		NS		NS		3280	15.0	3170	18.1	3010	9.	5 6210	9.8	5450	10.0	5000	10.2
Manganese	7439-96-5	1600	С	2000	0	2000	0	10000	m	349	0.62	282	0.75	565	0.2	7 361	0.28	465	0.29	298	0.29
Mercury	7439-97-6	0.18	С	0.81	q	0.81	q	2.8	q	U	0.018	U	0.022	U	J 0.01	5 U	0.020	U	0.020	U	0.017
Nickel	7440-02-0	30		140		310		310		11.1	0.83	7.9 B	1.0	10.5	0.5	5 12.5	0.56	26.3	0.58	12.1	0.59
Potassium	7440-09-7	NS		NS		NS		NS		1160	27.8	1010 B	33.6	1720	71.	3 2340	74.0	2870	75.7	1380	77.1
Selenium	7782-49-2	3.9	С	36		180		1500		U	1.0	U	1.2	l	J 0.9	5 U	0.98	U	1.0	U	1.0
Silver	7440-22-4	2		36		180		1500		U	0.26	U	0.31	l	J 0.3	2 U	0.33	U	0.34	U	0.34
Sodium	7440-23-5	NS		NS		NS		NS		92.2 B	77.2	147 B	93.4	U	J 90.) U	92.7	U	95.0	U	96.7
Thallium	7440-28-0	NS		NS		NS		NS		U	1.0	U	1.2	l	J 1.	1 U	1.1	U	1.1	U	1.1
Vanadium	7440-62-2	NS		NS		NS		NS		14.2	0.32	13.3	0.39	16.6	1.	1 17.9	1.1	31.9	1.1	16.3	1.1
Zinc	7440-66-6	109	С	2200		10000	m	10000	m	29.5	1.2	22	1.5	33.9	1.	3 29.3	1.4	64.1	1.4	31.3	1.4
WET CHEMISTRY		UUSCC)	RSCC)	RRSCC)	CSCO		Result Q	MDL	Result Q	MDL	Result	Q MD	Result Q	MDL	Result C	MDL	Result Q	MDL
TotalCyanide - mg/kg	57-12-5	27		27		27		27		U	0.5	U	0.5	l	J 0.	5 U	0.5	0.73	0.5	U	0.5

Lab Sampling Depth (feet beg) Sampling pate Sampling pat	Sample ID									SB-111B (3	32.	5-33.0)	SB-112A (18	.0-19.0)	SB-112B (22.	.0-23.0)	SB-112B (32.	0-33.0)	SB-113 (1	13.0	-13.5)	SB-113 (22	2.0-22.5)
Sampling Depth (rele togs) Sampling Depth	Lab Sample Number	CACDN							n	,		-	,		,		1	,	1	,				
Sampling Date VIVILATILE COMPOUNDS (mg/s)	Sampling Depth (feet bgs)	CASKIN							55	32.5 to	3	3.0	18.0 to 1	9.0	22.0 to	0 2	3.0	32.0 to 33	3.0	13.0 to	o 13	3.5	22.0 to	22.5
Chloromethane	Sampling Date		10	ibios c	,, ,	0.0(a)	an	J (D)		05/13	3/0	8	05/09/0)8	05/1	2/0)8	05/12/0	8	05/0	7/08	3	05/07	7/08
Bromenthane	VOLATILE COMPOUNDS (mg/kg)		UUSCO	RSC	0	RRSCC)	CSCO		Result	Q	MDL	Result Q	MDL	Result	Q	MDL	Result Q	MDL	Result	Q	MDL	Result (Q MDL
VirtyChloride	Chloromethane	74-87-3	NS	NS		NS		NS		l	U	0.0053	U	0.58		U	0.0067	U	6.0		U	0.56	L	J 0.0059
Chronosthane	Bromomethane	74-83-9						NS		l	U	0.0053	U	0.58		U	0.0067	U	6.0		U	0.56	L	J 0.0059
MethyleneChloride	VinylChloride	75-01-4	0.02	0.21		0.9		13		l	U	0.0053	U	0.58		U	0.0067	U	6.0		U	0.56	l	J 0.0059
Acetane	Chloroethane	75-00-3	NS	NS		NS		NS		l	U	0.0053	U	0.58		U	0.0067	U			U	0.56	L	J 0.0059
Carban Disulfide	MethyleneChloride	75-09-2	0.05	51		100	а	500	k	0.0018	J	0.0032	U	0.35	0.017		0.0040	U	3.6		U	0.33	L	0.0036
1.1-Dichloroethane	Acetone	67-64-1	0.05	100	а	100	k	500	k	0.022		0.0053	U	0.58	0.015		0.0067	U	6.0		U	0.56	L	J 0.0059
1.1-Dichloroethane	CarbonDisulfide	75-15-0	NS	NS		NS		NS		l	U	0.0053	U	0.58		U	0.0067	U	6.0		U	0.56	L	J 0.0059
Trans-12-Dichloroethene	1,1-Dichloroethene	75-35-4	0.33	100	а	100	а	500	k	l	U	0.0021	U	0.23		U	0.0027	U	2.4		U	0.22	L	J 0.0024
Cist 2-Dichforcethene 156-59-2 0.25 59 100 a 500 k U 0.0083 U 0.085 U 0.0067 U 6.0 U 0.56 U 0.0057 U 6.0 U 0.56 U 0.0053 U 0.0085 U 0.0085 U 0.0085 U 0.0085 U 0.0087 U 6.0 U 0.56 U 0.0053 U 0.0085 U 0.0087 U 0.24 U 0.22 U 0.0024 U 0.25 U 0.0085 U 0.0085 U 0.0085 U 0.0087 U 0.0087 U 0.0085 U 0.0085 U 0.0085 U 0.0085 U 0.0087 U 0.0085 U 0.00	1,1-Dichloroethane	75-34-3	0.27	19		26		240		Į	U	0.0053	U	0.58		U	0.0067	U	6.0		U	0.56	L	J 0.0059
Chicrotorm 67-66-3 0.37 10 49 350 U 0.0053 U 0.58 U 0.0067 U 6.0 U 0.56 U 0.0053 U 0.0053 U 0.0057 U 0.0057 U 6.0 U 0.22 U 0.0054 U 0.0054 U 0.0055 U 0.0067 U 6.0 U 0.25 U 0.0057 U 6.0 U 0.25 U 0.0057 U 0.0057 U 0.0058 U 0.0067 U 0.0058 U 0.0058 U 0.0058 U 0.0058 U 0.0067 U 0.0058 U 0.0059 U 0.0058 U 0.0059 U 0.0058 U 0.0058 U 0.0059 U 0.0058 U 0.0058 U 0.0059 U 0.0058 U 0.0059 U 0.0058 U 0.0059 U 0.0058 U 0.0059 U 0.0059 U 0.0058 U 0.0059 U 0.005	trans-1,2-Dichloroethene	156-60-5	0.19		а	100	а	500	k	l	U	0.0053	U	0.58		U	0.0067	U	6.0		U	0.56	L	J 0.0059
1.2-Dichloroethane	cis-1,2-Dichloroethene	156-59-2	0.25	59		100	а	500	k	l	U	0.0053	U	0.58		U	0.0067	U	6.0		U	0.56	L	J 0.0059
2-Bustanone	Chloroform	67-66-3	0.37	10		49		350		l	U	0.0053	U	0.58		U	0.0067	U	6.0		U	0.56	l	J 0.0059
1,1,1-Trichloroethane	1,2-Dichloroethane	107-06-2	0.02 c	2.3		3.1		30		l	U	0.0021	U	0.23		U	0.0027	U	2.4		U	0.22	l	J 0.0024
CarbonTetrachloride	2-Butanone	78-93-3	0.12	100	а	100	а	500	k	l	U	0.0053	U	0.58		U	0.0067	U	6.0		U	0.56	l	J 0.0059
Bromodichloromethane	1,1,1-Trichloroethane	71-55-6	0.68	100	а	100	а	500	k	l	U	0.0053	U	0.58		U	0.0067	U	6.0		U	0.56	l	J 0.0059
1,2-Dichloropropane 78-87-5 NS NS NS NS NS NS NS N	CarbonTetrachloride	56-23-5	0.76	1.4		2.4		22		l	U	0.0021	U	0.23		U	0.0027	U	2.4		U	0.22	l	J 0.0024
cis-13-Dichloropropene 10061-01-5 NS NS NS NS U 0.0053 U 0.58 U 0.0067 U 6.0 U 0.56 U 0.0059 Trichloroethene 79-01-6 0.47 10 21 200 U 0.0010 U 0.0013 U 1.2 U 0.011 U 0.0013 U 1.2 U 0.011 U 0.0013 U 1.2 U 0.011 U 0.0013 U 1.2 U 0.0011 U 0.0067 U 6.0 U 0.00 U 0.00 0.0067 U 6.0 U 0.00 0.00 0.0043 U 0.0067 U 0.0 0.0033 U 0.038 U 0.035 U 0.035 U 0.035 U 0.035 U 0.036 U 0.0067 U 0.0 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0	Bromodichloromethane	75-27-4	NS	NS		NS		NS		l	U	0.0010	U	0.12		U	0.0013	U	1.2		U	0.11	l	J 0.0012
cis-13-Dichloropropene 10061-01-5 NS NS NS NS U 0.0053 U 0.58 U 0.0067 U 6.0 U 0.56 U 0.0059 Trichloroethene 79-01-6 0.47 10 21 200 U 0.0010 U 0.0013 U 1.2 U 0.011 U 0.0013 U 1.2 U 0.011 U 0.0013 U 1.2 U 0.011 U 0.0013 U 1.2 U 0.0011 U 0.0067 U 6.0 U 0.00 U 0.00 0.0067 U 6.0 U 0.00 0.00 0.0043 U 0.0067 U 0.0 0.0033 U 0.038 U 0.035 U 0.035 U 0.035 U 0.035 U 0.036 U 0.0067 U 0.0 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0	1,2-Dichloropropane	78-87-5	NS	NS		NS		NS		l	U	0.0010	U	0.12		U	0.0013	U	1.2		U	0.11	l	J 0.0012
Trichloroethene	cis-1,3-Dichloropropene	10061-01-5	NS					NS		l	U	0.0053	U	0.58		U	0.0067	U			U	0.56	l	J 0.0059
1,1,2-Trichloroethane		79-01-6	0.47	10		21		200		l	U	0.0010	U			U	0.0013	U			U	0.11	l	J 0.0012
1,1,2-Trichloroethane	Dibromochloromethane	124-48-1	NS	NS		NS		NS		l	U	0.0053	U	0.58		U	0.0067	U	6.0		U	0.56	L	J 0.0059
Trans-1,3-Dichloropropene 10061-02-6 NS NS NS NS NS NS NS N	1,1,2-Trichloroethane	79-00-5	NS	NS		NS		NS		l	U	0.0032	U	0.35		U	0.0040	U	3.6		U	0.33	l	J 0.0036
Bromoform 75-25-2 NS NS NS NS NS NS U 0.0042 U 0.47 U 0.0054 U 4.8 U 0.45 U 0.045	Benzene	71-43-2	0.06	2.9		4.8		44		l	U	0.0010	U	0.12	0.0063		0.0013	0.56 J	1.2	1.6		0.11	0.0006 J	0.0012
Bromoform	trans-1,3-Dichloropropene	10061-02-6	NS	NS		NS		NS		l	U	0.0053	U	0.58		U	0.0067	U	6.0		U	0.56	l	J 0.0059
4-Methyl-2-Pentanone 108-10-1 NS NS NS U 0.0053 U 0.058 U 0.0067 U 6.0 U 0.56 U 0.0059 2-Hexanone 591-78-6 NS NS NS NS U 0.0053 U 0.58 U 0.0067 U 6.0 U 0.56 U 0.0059 Tetrachloroethene 127-18-4 1.3 5.5 19 150 U 0.0010 U 0.021 U 0.0013 U 1.2 U 0.11 U 0.0012 1,1,2,2-Tetrachloroethane 79-34-5 NS NS NS NS NS U 0.0010 U 0.12 U 0.0013 U 1.2 U 0.11 U 0.0012 10uene 108-88-3 0.7 100 a 100 a 500 k U 0.0053 U 0.0067 U 6.0 0.039 0.056 U	Bromoform	75-25-2	NS	NS		NS		NS		l	U	0.0042	U	0.47				U	4.8		U	0.45	l	0.0048
2-Hexanone 591-78-6 NS NS NS NS U 0.0053 U 0.58 U 0.0067 U 6.0 U 0.56 U 0.0059 Tetrachloroethene 127-18-4 1.3 5.5 19 150 U 0.0010 U 0.12 U 0.0013 U 1.2 U 0.11 U 0.0012 1,1,2,2-Tetrachloroethane 79-34-5 NS NS NS NS U 0.0010 U 0.12 U 0.0013 U 1.2 U 0.11 U 0.0012 Toluene 108-88-3 0.7 100 a 100 a 500 k U 0.0053 U 0.58 U 0.0067 0.76 J 6.0 0.39 J 0.56 U 0.0059 Chlorobenzene 108-90-7 1.1 100 a 500 k U 0.0053 U 0.058 U 0.0067	4-Methyl-2-Pentanone	108-10-1	NS	NS		NS		NS		l	U	0.0053	U	0.58		U	0.0067	U	6.0		U	0.56		
1,1,2,2-Tetrachloroethane 79-34-5 NS NS NS NS U 0.0010 U 0.12 U 0.0013 U 1.2 U 0.11 U 0.0012 Toluene 108-88-3 0.7 100 a 100 a 500 k U 0.0053 U 0.58 U 0.0067 0.76 J 6.0 0.39 J 0.56 U 0.0059 Chlorobenzene 108-90-7 1.1 100 a 500 k U 0.0053 U 0.58 U 0.0067 U 6.0 0.39 J 0.56 U 0.0059 Ethylbenzene 100-41-4 1 30 41 390 0.0008 J 0.042 0.49 0.47 0.0023 J 0.056 U 0.0059 Styrene 100-42-5 NS NS NS NS NS NS NS NS 0.0059 U 0.0067 <		591-78-6	NS	NS		NS		NS		l	U	0.0053	U			U	0.0067	U	6.0		U	0.56	l	J 0.0059
Toluene 108-88-3 0.7 100 a 100 a 500 k U 0.0053 U 0.58 U 0.0067 0.76 J 6.0 0.39 J 0.56 U 0.0059 Chlorobenzene 108-90-7 1.1 100 a 100 a 500 k U 0.0053 U 0.58 U 0.0067 U 6.0 U 0.56 U 0.0059 Ethylbenzene 100-41-4 1 30 41 390 0.0008 J 0.0042 0.49 0.47 0.0023 J 0.0054 11 4.8 1.1 0.45 U 0.0058 Styrene 100-42-5 NS NS NS NS NS NS NS NS NS NS NS NS NS	Tetrachloroethene	127-18-4	1.3	5.5		19		150		l	U	0.0010	U	0.12		U	0.0013	U	1.2		U	0.11	L	J 0.0012
Chlorobenzene 108-90-7 1.1 100 a 100 a 500 k U 0.0053 U 0.088 U 0.0067 U 6.0 U 0.56 U 0.0059 Ethylbenzene 100-41-4 1 30 41 390 0.0008 J 0.0042 0.49 0.47 0.0023 J 0.0054 11 4.8 1.1 0.45 U 0.0048 Styrene 100-42-5 NS <	1,1,2,2-Tetrachloroethane	79-34-5	NS	NS		NS		NS		l	U	0.0010	Ū	0.12		U	0.0013	U	1.2		Ū	0.11	l	J 0.0012
Ethylbenzene 100-41-4 1 30 41 390 0.0008 J 0.0042 0.49 0.47 0.0023 J 0.0054 11 4.8 1.1 0.45 U 0.0048 Styrene 100-42-5 NS NS NS NS NS NS U 0.0053 U 0.067 U 6.0 U 0.056 U 0.0059 Xylene(Total) 1330-20-7 0.26 100 a 500 k 0.0063 0.04 J 0.58 0.0014 J 0.0067 U 6.0 U 0.056 U 0.0059 MTBE 1634-04-4 0.93 62 100 a 500 k	Toluene	108-88-3	0.7	100	а	100	а	500	k	l	U	0.0053	U	0.58		U	0.0067	0.76 J	6.0	0.39	J	0.56	Ū	J 0.0059
Ethylbenzene 100-41-4 1 30 41 390 0.0008 J 0.0042 0.49 0.47 0.0023 J 0.0054 11 4.8 1.1 0.45 U 0.0048 Styrene 100-42-5 NS NS NS NS NS NS U 0.0053 U 0.067 U 6.0 U 0.056 U 0.0059 Xylene(Total) 1330-20-7 0.26 100 a 500 k 0.0063 0.04 J 0.58 0.0014 J 0.0067 U 6.0 U 0.056 U 0.0059 MTBE 1634-04-4 0.93 62 100 a 500 k					а		_		k	li	U		Ū			_		U			U		_	
Styrene 100-42-5 NS NS NS NS U 0.0053 U 0.58 U 0.0067 U 6.0 U 0.56 U 0.0059 Xylene(Total) 1330-20-7 0.26 100 a 500 k 0.0006 J 0.0053 0.4 J 0.58 0.0014 J 0.0067 25 6.0 2.2 0.56 U 0.0059 MTBE 1634-04-4 0.93 62 100 a 500 k			1			41				0.0008	_		0.49	0.47		_		11	4.8	1.1				
Xylene(Total) 1330-20-7 0.26 100 a 100 a 500 k 0.0006 J 0.0053 0.4 J 0.58 0.0014 J 0.0067 25 6.0 2.2 0.56 U 0.0059 MTBE 1634-04-4 0.93 62 100 a 500 k -	, , , , , , , , , , , , , , , , , , , ,		NS		T					1	-		U			-			_		U			
MTBE 1634-04-4 0.93 62 100 a 500 k	,				а		а		k	0.0006			0.4 J					-		2.2	Ť		_	
TBA NS NS NS NS	, , ,				f																\dashv			
Total VOC 0.0252 0.89 0.042 37.32 5.29 0.0006 Total BTEX 0.0014 0.89 0.01 36.56 4.9 0.0006 Total Confident Conc. VOAs 0 0.5 0 36 4.9 0		. 30 . 0 . 1			Ħ				Ħ		7										\dashv			—
Total BTEX 0.0014 0.89 0.01 36.56 4.9 0.0006 Total Confident Conc. VOAs 0 0.5 0 36 4.9 0				1	$\dagger \dagger$				H	0.0252			0.89		0.042	_		37.32		5.29	\dashv	+	0.0006	+
Total Confident Conc. VOAs 0 0.5 0 36 4.9 0					\dagger		H				7										\dashv			+
				1	+		H		H		1										\dashv			+
	Total Estimated Conc. VOA TICs			1	+		H		H	0.1	1		11		0			261		36	\dashv		0.045	+

Sample ID			<i>-</i>						ļ	SB-111B (32.	5-33.0)	SB-112A (18.	.0-19.0)	SB-112B (2	2.0-23	.0)SB-112B (32.0-33.0) SB-113 (13	.0-13.5)	SB-113 (22.	.0-22.5)
Lab Sample Number	CASRN		_	_		375 R			n F	920		-	918848	- 1	92023		920231	91838		91838	37
Sampling Depth (feet bgs)	CASKN					leanup -6.8(a)			35	32.5 to	3	3.0	18.0 to 1	9.0	22.0 to	23.0	32.0 to 33.0	13.0 to	13.5	22.0 to 2	22.5
Sampling Date			ıaı	000	,, ,	-0.0(a)	and	J (D)	-	05/13	3/0	8	05/09/0)8	05/12/	08	05/12/08	05/07/	′08	05/07/0	08
PAH (mg/kg)		UUS	СО	RSC	0	RRSCC)	CSCO		Result	Q	MDL	Result Q	MDL	Result C	M	DL Result Q MD	L Result C	MDL	Result Q	MDL
Naphthalene	91-20-3	12		100	а	100	а	500	k	0.05	J	0.37	4.3	0.41	0.076 J	0.	16 0.0097 J 0.4	2 9.6	0.78	1.5	0.40
Acenaphthylene	208-96-8	100	а	100	а	100	а	500	k		U	0.37	0.94	0.41	0.01 J	0.	16 U 0.4	2 1.8	0.78	0.6	0.40
Acenaphthene	83-32-9	20		100	а	100	а	500	k	0.0096	J	0.37	0.49	0.41	U	0.	16 U 0.4	2 0.4 J	0.78	0.15 J	0.40
Fluorene	86-73-7	30		100	а	100	а	500	k		U	0.37	0.71	0.41	U	0.	16 U 0.4	2 1.5	0.78	0.33 J	0.40
Phenanthrene	85-01-8	100	1	100	а	100	а	500	k	0.043	J	0.37	3.8	0.41	0.042 J	0.	16 0.018 J 0.4	2 4.3	0.78	1	0.40
Anthracene	120-12-7	100	а	100	а	100	а	500	k	0.01	J	0.37	0.92	0.41	0.011 J	0.	16 U 0.4	2 0.93	0.78	0.3 J	0.40
Fluoranthene	206-44-0	100	а	100	а	100	а	500	k	0.014	J	0.37	1.1	0.41	0.017 J	0.	16 0.0097 J 0.4	2 1.1	0.78	0.49	0.40
Pyrene	129-00-0	100	_	100	а	100	а	500	k	0.026	J	0.37	1.8	0.41	0.02 J	0.	16 0.013 J 0.4	2 1.7	0.78	0.79	0.40
Benzo(a)anthracene	56-55-3	1	С	1	0	1	0	5.6		0.0079	J	0.037	0.52	0.041	U	0.0	16 U 0.04	2 0.5	0.078	0.3	0.040
Chrysene	218-01-9	1	С	1	0	3.9		56		0.0079	J	0.37	0.52	0.41	U	0.	16 U 0.4	2 0.48 J	0.78	0.35 J	0.400
Benzo(b)fluoranthene	205-99-2	1	С	1	0	1	0	5.6			U	0.037	0.24	0.041	U	0.0	16 U 0.04	2 0.13	0.078	0.24	0.040
Benzo(k)fluoranthene	207-08-9	0.8	С	1		3.9		56			U	0.037	0.39	0.041	U	0.0	16 U 0.04	2 0.24	0.078	0.46	0.040
Benzo(a)pyrene	50-32-8	1	С	1	0	1	0	1	0		U	0.037	0.42	0.041	U	0.0	16 U 0.04	2 0.35	0.078	0.34	0.040
Indeno(1,2,3-cd)pyrene	193-39-5	0.5	С	0.5	0	0.5	0	5.6			U	0.037	0.16	0.041	U	0.0	16 U 0.04	2 0.12	0.078	U	0.040
Dibenz(a,h)anthracene	53-70-3	0.33	3 b	0.33	n	0.33	n	0.56			U	0.037	0.06	0.041	U	0.0	16 U 0.04	2 0.059 J	0.078	0.046	0.040
Benzo(g,h,i)perylene	191-24-2	100		100	а	100	а	500	k		U	0.37	0.17 J	0.41	U	0.	16 U 0.4	2 0.15 J	0.78	0.34 J	0.400
Total PAHs										0.1684			16.54		0.176		0.0504	23.359		7.236	
Total Confident Conc. PAHs										0			16		0		0	22		5.7	
Total Estimated Conc. BNA TIC												ĺ						NA		NA	
TarGOST Signal at Depth										no d	lata	a	no data	а	no da	ta	no data	backgrou	nd (J)	backgro	und

Sample ID										SB-111B (3:	2.5-33.0)	SB-112A (18	.0-19.0)	SB-112B (2	2.0-23.0	SB-112B (32.0	0-33.0)	SB-113 (13	3.0-13.5)	SB-113 (22.0-	-22.5)
Lab Sample Number	CASRN	_		-				ediatio		9202	34	91884	8	9202	30	920231		9183	86	918387	
Sampling Depth (feet bgs)	CASRN					еапир 6.8(a)		ojective d (b)	38	32.5 to	33.0	18.0 to 1	9.0	22.0 to	23.0	32.0 to 33	3.0	13.0 to	13.5	22.0 to 22	2.5
Sampling Date			abic	,5 01		0.0(a)	an	u (b)	ĺ	05/13	/08	05/09/0)8	05/12	/08	05/12/08	3	05/07	/08	05/07/08	8
METALS (mg/kg)		UUSCO		RSCO		RRSCC)	CSCO)	Result C	MDL	Result Q	MDL	Result C	Q MD	Result Q	MDL	Result (Q MDL	Result Q	MDL
Aluminum	7429-90-5	NS		NS		NS		NS		11200	13.9	5880	15.3	6030	17.		15.6	13000	14.6	5750	14.9
Antimony	7440-36-0	NS		NS		NS		NS		U	1.3	U	1.4	U	1.	S U	1.4	L	1.3	U	1.4
Arsenic	7440-38-2	13	С	16	0	16	0	16	0	0.8 B	0.71	1.5	0.78	U	0.8	3 U	0.80	3.6	0.74	U	0.76
Barium	7440-39-3	350	c 3	350	0	400		400		100	0.38	60.8	0.42	51.9 B	0.4	7 153	0.42	104	0.40	57.3	0.41
Beryllium	7440-41-7	7.2		14		72		590		0.72	0.067	0.37 B	0.073	0.24 B	0.08	0.65	0.075	0.65	0.070	0.32 B	0.072
Cadmium	7440-43-9	2.5	c :	2.5	0	4.3		9.3		U	0.089	U	0.098	U	0.1	U U	0.100	L	0.093	U	0.095
Calcium	7440-70-2	NS		NS		NS		NS		12800	9.4	11600	10.4	12100	11.	19600	10.6	6950	9.9	6280	10.1
Chromium	7440-47-3	30	С	36		180		1500		16.1	0.36	8.8	0.39	9.8	0.4	18.6	0.40	16.7	0.37	8.7	0.38
Cobalt	7440-48-4	NS		NS		NS		NS		7.6 B	0.38	4.7 B	0.42	4.4 B	0.4	7 11.2 B	0.42	8.7 B	0.40	4.5 B	0.41
Copper	7440-50-8	50	1	270		270		270		7.1	0.82	9.4	0.91	8.4	1.	6.9	0.92	21.4	0.86	8.9	0.88
Iron	7439-89-6	NS		NS		NS		NS		19900	8.7	12600	9.6	12300	10.	3 20300	9.8	24200	9.1	12400	9.4
Lead	7439-92-1	63	C 4	100		400		1000		9.1	0.60	6.1	0.66	3.6	0.7	9.7	0.67	9.8	0.63	3.3	0.64
Magnesium	7439-95-4	NS		NS		NS		NS		5480	9.2	3730	10.2	3860	11.	5670	10.4	5850	9.7	3080	9.9
Manganese	7439-96-5	1600	c 2	000	0	2000	0	10000	m	290	0.27	247	0.29	257	0.3	3 461	0.30	362	0.28	267	0.29
Mercury	7439-97-6	0.18	c C).81	q	0.81	q	2.8	q	U	0.019	U	0.020	U	0.02	U	0.021	L	0.019	U	0.020
Nickel	7440-02-0	30	•	140		310		310		19	0.53	9.8	0.59	10.2 B	0.6	20.8	0.60	18.5	0.56	8.9 B	0.57
Potassium	7440-09-7	NS		NS		NS		NS		3260	70.1	1200	77.2	1220 B	87.	3330	78.8	2790	73.3	1200	75.3
Selenium	7782-49-2	3.9	С	36		180		1500		U	0.93	U	1.0	U	1.:	2 U	1.0	L	0.98	U	1.0
Silver	7440-22-4	2		36		180		1500		U	0.31	U	0.34	U	0.3	U	0.35	L	0.33	U	0.33
Sodium	7440-23-5	NS		NS		NS		NS		U	87.9	110 B	96.8	U	10	U	98.8	145 B	92.0	115 B	94.4
Thallium	7440-28-0	NS		NS		NS		NS		U	1.0	U	1.2	U	1.3	3 U	1.2	L	1.1	U	1.1
Vanadium	7440-62-2	NS		NS		NS		NS		18.7	1.0	12.2	1.2	11.7 B			1.2	27.2	1.1	12.5	1.1
Zinc	7440-66-6	109	c 2	200		10000	m	10000	m	40	1.3	30.1	1.4	25.6	1.	6 41.2	1.4	52.6	1.3	27.9	1.4
WET CHEMISTRY		UUSCO		RSCO		RRSCC)	CSCO)	Result C	MDL	Result Q	MDL	Result C	MD	Result Q	MDL	Result (Q MDL	Result Q	MDL
TotalCyanide - mg/kg	57-12-5	27		27		27		27		U	0.5	U	0.5	U	0.	U U	0.5	L	0.5	U	0.5

Sample ID									SB-113 (31	.5-32.0)	SB-114 (6.	5-7.0)	SB-114 (16.	.5-17.5)	B-114 (16.5-1	7.5)DU	SB-114 (*	19.	0-19.5)	SB-114 (29.5-30.0)
Lab Sample Number	CASRN				375 Re				91838		91839	,	91839		918393		918		,	918841
Sampling Depth (feet bgs)	CASRN				leanup -6.8(a)			es	31.5 to 3	32.0	6.5 to 7	'.O	16.5 to 1	17.5	16.5 to 17	7.5	19.0 t	o 1	9.5	29.5 to 30.0
Sampling Date		10	ibics c	,,,	-0.0(a)	an	u (b)	İ	05/07/	08	05/07/0)8	05/07/	08	05/07/08	8	05/0)7/0	8	05/07/08
VOLATILE COMPOUNDS (mg/kg)		UUSCO	RSC	0	RRSCC)	CSCO	,	Result Q		Result Q		Result Q	-	Result Q	MDL	Result		MDL	Result Q MDL
Chloromethane	74-87-3	NS	NS		NS		NS		U	0.0052	U	1.2	U	5.8	U	1.1		U	0.64	U 0.0054
Bromomethane	74-83-9	NS	NS		NS		NS		U	0.0052	U	1.2	U	5.8	U	1.1		U	0.64	U 0.0054
VinylChloride	75-01-4	0.02	0.21		0.9		13		U	0.0052	U	1.2	U	5.8	U	1.1		U	0.64	U 0.0054
Chloroethane	75-00-3	NS	NS		NS		NS		U	0.0052	U	1.2	U	5.8	U	1.1		U	0.64	U 0.0054
MethyleneChloride	75-09-2	0.05	51		100	а	500	k	U	0.0031	U	0.71	U	3.5	U	0.64		U	0.38	U 0.0032
Acetone	67-64-1	0.05	100	а	100	k	500	k	U	0.0052	U	1.2	U	5.8	U	1.1		U	0.64	U 0.0054
CarbonDisulfide	75-15-0	NS	NS		NS		NS		U	0.0052	U	1.2	U	5.8	U	1.1		U	0.64	U 0.0054
1,1-Dichloroethene	75-35-4	0.33	100	а	100	а	500	k	U	0.0021	U	0.47	U	2.3	U	0.42		U	0.26	U 0.0021
1,1-Dichloroethane	75-34-3	0.27	19		26		240		U	0.0052	U	1.2	U	5.8	U	1.1		U	0.64	U 0.0054
trans-1,2-Dichloroethene	156-60-5	0.19	100	а	100	а	500	k	U	0.0052	U	1.2	U	5.8	U	1.1		U	0.64	U 0.0054
cis-1,2-Dichloroethene	156-59-2	0.25	59		100	а	500	k	U	0.0052	U	1.2	U	5.8	U	1.1		U	0.64	U 0.0054
Chloroform	67-66-3	0.37	10		49		350		U	0.0052	U	1.2	U	5.8	U	1.1		U	0.64	U 0.0054
1,2-Dichloroethane	107-06-2	0.02 c	2.3		3.1		30		U	0.0021	U	0.47	U	2.3	U	0.42		U	0.26	U 0.0021
2-Butanone	78-93-3	0.12	100	а	100	а	500	k	U	0.0052	U	1.2	U	5.8	U	1.1		U	0.64	U 0.0054
1,1,1-Trichloroethane	71-55-6	0.68	100	а	100	а	500	k	U	0.0052	U	1.2	U	5.8	U	1.1		U	0.64	U 0.0054
CarbonTetrachloride	56-23-5	0.76	1.4		2.4		22		U	0.0021	U	0.47	U	2.3	U	0.42		U	0.26	U 0.0021
Bromodichloromethane	75-27-4	NS	NS		NS		NS		U	0.0010	U	0.24	U	1.2	U	0.21		U	0.13	U 0.0011
1,2-Dichloropropane	78-87-5	NS	NS		NS		NS		U	0.0010	U	0.24	U	1.2	U	0.21		U	0.13	U 0.0011
cis-1,3-Dichloropropene	10061-01-5	NS	NS		NS		NS		U	0.0052	U	1.2	U	5.8	U	1.1		U	0.64	U 0.0054
Trichloroethene	79-01-6	0.47	10		21		200		U	0.0010	U	0.24	U	1.2	U	0.21		U	0.13	U 0.0011
Dibromochloromethane	124-48-1	NS	NS		NS		NS		U	0.0052	U	1.2	U	5.8	U	1.1		U	0.64	U 0.0054
1,1,2-Trichloroethane	79-00-5	NS	NS		NS		NS		U	0.0031	U	0.71	U	3.5	U	0.64		U	0.38	U 0.0032
Benzene	71-43-2	0.06	2.9		4.8		44		U	0.0010	12	0.24	5.3	1.2	U	0.21	0.24		0.13	U 0.0011
trans-1,3-Dichloropropene	10061-02-6	NS	NS		NS		NS		U	0.0052	U	1.2	U	5.8	U	1.1		U	0.64	U 0.0054
Bromoform	75-25-2	NS	NS		NS		NS		U	0.0042	U	0.95	U	4.7	U	0.85		U	0.51	U 0.0043
4-Methyl-2-Pentanone	108-10-1	NS	NS		NS		NS		U	0.0052	U	1.2	U	5.8	U	1.1		U	0.64	U 0.0054
2-Hexanone	591-78-6	NS	NS		NS		NS		U	0.0052	U	1.2	U	5.8	U	1.1		U	0.64	U 0.0054
Tetrachloroethene	127-18-4	1.3	5.5		19		150		U	0.0010	U	0.24	U	1.2	U	0.21		U	0.13	U 0.0011
1,1,2,2-Tetrachloroethane	79-34-5	NS	NS		NS		NS		U	0.0010	U	0.24	U	1.2	U	0.21		U	0.13	U 0.0011
Toluene	108-88-3	0.7	100	а	100	а	500	k	U	0.0052	35	1.2	30	5.8	U	1.1	0.04	J	0.64	U 0.0054
Chlorobenzene	108-90-7	1.1	100	а	100	а	500	k	U	0.0052	U	1.2	U	5.8	U	1.1		U	0.64	U 0.0054
Ethylbenzene	100-41-4	1	30		41		390		U	0.0042	7.1	0.95	7.7	4.7	1	0.85		U	0.51	U 0.0043
Styrene	100-42-5	NS	NS		NS		NS		U	0.0052	10	1.2	10	5.8	U	1.1		U	0.64	U 0.0054
Xylene(Total)	1330-20-7	0.26	100	а	100	а	500	k	U	0.0052	43	1.2	45	5.8	2	1.1		U	0.64	U 0.0054
MTBE	1634-04-4	0.93	62		100	а	500	k												
TBA		NS	NS		NS		NS													
Total VOC									0		107.1		98		3		0.28			0
Total BTEX									0		62.1		58		3		0.24			0
Total Confident Conc. VOAs									0		107		98		3		0.2			0
Total Estimated Conc. VOA TICs									0		507		619		100		0			0

Sample ID		NIX	00			075 D				SB-113 (31	5-32.0)	SB-114 (6.5	5-7.0)	SB-114 (16.	.5-17.5)	B-114 (16.5-1	7.5)DU	SB-114 (19	.0-19.5)	SB-114 (29.5-	-30.0)
Lab Sample Number	CASRN		_	-		375 R				91838	88	91839	1	91839)2	918393	3	91884	10	918841	
Sampling Depth (feet bgs)	CASKN					leanup -6.8(a)			35	31.5 to	32.0	6.5 to 7	.0	16.5 to 1	17.5	16.5 to 17	7.5	19.0 to	19.5	29.5 to 30.	0.0
Sampling Date			ıaı	163 0	,, 5	-0.0(a)	an	u (b)		05/07/	08	05/07/0	18	05/07/	08	05/07/08	8	05/07/	08	05/07/08	3
PAH (mg/kg)		UUSC	00	RSC	С	RRSCO)	CSCO		Result C	MDL	Result Q	MDL	Result Q	MDL	Result Q	MDL	Result C	MDL	Result Q	MDL
Naphthalene	91-20-3	12		100	а	100	а	500	k	U	0.37	270	20	49	4.1	350	19	2	0.43	0.0087 J	0.37
Acenaphthylene	208-96-8	100	а	100	а	100	а	500	k	U	0.37	12 J	20	3 J	4.1	30	19	0.2 J	0.43	0.022 J	0.37
Acenaphthene	83-32-9	20		100	а	100	а	500	k	U	0.37	5.8 J	20	0.59 J	4.1	100	19	0.12 J	0.43	U	0.37
Fluorene	86-73-7	30		100	а	100	а	500	k	U	0.37	34	20	2.3 J	4.1	49	19	0.46	0.43	U	0.37
Phenanthrene	85-01-8	100		100	а	100	а	500	k	U	0.37	110	20	6.5	4.1	140	19	2.4	0.43	0.023 J	0.37
Anthracene	120-12-7	100	а	100	а	100	а	500	k	U	0.37	22	20	1.5 J	4.1	41	19	0.48	0.43	U	0.37
Fluoranthene	206-44-0	100	а	100	а	100	а	500	k	U	0.37	33	20	2.3 J	4.1	50	19	0.72	0.43	0.016 J	0.37
Pyrene	129-00-0	100		100	а	100	а	500	k	U	0.37	49	20	3.4 J	4.1	74	19	1	0.43	0.039 J	0.37
Benzo(a)anthracene	56-55-3	1	С	1	0	1	0	5.6		U	0.037	15	2.0	1.1	0.41	25	1.9	0.3	0.043	0.0089 J	0.037
Chrysene	218-01-9	1	С	1	0	3.9		56		U	0.37	14 J	20	1 J	4.1	24	19	0.3 J	0.43	0.012 J	0.37
Benzo(b)fluoranthene	205-99-2	1	С	1	0	1	0	5.6		U	0.037	4.3	2.0	0.34 J	0.41	7.5	1.9	0.12	0.043	U	0.037
Benzo(k)fluoranthene	207-08-9	0.8	С	1		3.9		56		U	0.037	8.6	2.0	0.59	0.41	15	1.9	0.14	0.043	0.01 J	0.037
Benzo(a)pyrene	50-32-8	1	С	1	0	1	0	1	0	U	0.037	12	2.0	0.85	0.41	21	1.9	0.22	0.043	0.012 J	0.037
Indeno(1,2,3-cd)pyrene	193-39-5	0.5	С	0.5	0	0.5	0	5.6		U	0.037	4.2	2.0	0.29 J	0.41	7.9	1.9	0.06	0.043	U	0.037
Dibenz(a,h)anthracene	53-70-3	0.33	b	0.33	n	0.33	n	0.56		U	0.037	U	2.0	U	0.41	2	1.9	0.021 J	0.043	U	0.037
Benzo(g,h,i)perylene	191-24-2	100		100	а	100	а	500	k	U	0.37	5.4 J	20	0.37 J	4.1	10 J	19	0.075 J	0.43	U	0.37
Total PAHs										0		599.3		73.13		946.4		8.616		0.1516	
Total Confident Conc. PAHs										0		562		58		936		7.9		0	
Total Estimated Conc. BNA TIC										NA		NA		NA		NA					
TarGOST Signal at Depth										no da	ta	no data	a	no da	ta	no data	ì	no da	ta	no data	

Sample ID		NIXO		· O D		075 D		1: -4:		SB-113 (31	.5-32.0)	SB-114 (6.	5-7.0)	SB-114 (16	6.5-17.	5) B-114 (16.5-1	7.5)DU	SB-114 (19	.0-19.5)	SB-114 (29.5	5-30.0)
Lab Sample Number	CASRN							ediatior bjective		91838	38	91839	1	9183	92	918393	3	9188	40	918841	1
Sampling Depth (feet bgs)	CASKIN					.6.8(а)			;5	31.5 to 3	32.0	6.5 to 7	'.O	16.5 to	17.5	16.5 to 1	7.5	19.0 to	19.5	29.5 to 30	0.0
Sampling Date		•	uDi	000	, 0	0.0(u)	un	u (b)	Ī	05/07/	08	05/07/0	08	05/07	/08	05/07/0	8	05/07	/08	05/07/0)8
METALS (mg/kg)		UUSCO)	RSCC)	RRSCC)	CSCO		Result C	MDL	Result Q	MDL	Result () MI	L Result Q	MDL	Result C	MDL	Result Q	MDL
Aluminum	7429-90-5	NS		NS		NS		NS		7440	13.8	17100	15.4	15100	15	.4 13400	14.1	14300	16.2	6970	14.1
Antimony	7440-36-0	NS		NS		NS		NS		U	1.3	U	1.4	L	J 1	.4 U	1.3	U	1.5	U	1.3
Arsenic	7440-38-2	13	С	16	0	16	0	16	0	1.2	0.70	2.9	0.79	4.7	0.	79 3.1	0.72	4.0	0.83	1.1	0.72
Barium	7440-39-3	350	С	350	0	400		400		99	0.37	136	0.42	115	0.	12 77.1	0.38	136	0.44	69.6	0.38
Beryllium	7440-41-7	7.2		14		72		590		0.43 B	0.066	0.88	0.074	0.77	0.0	74 0.55	0.068	0.78	0.078	0.44	0.067
Cadmium	7440-43-9	2.5	С	2.5	0	4.3		9.3		U	0.088	U	0.098	L	0.0	98 U	0.090	U	0.10	U	0.090
Calcium	7440-70-2	NS		NS		NS		NS		16100	9.4	15400	10.4	23900	10	.4 1530	9.6	17600	11.0	20700	9.6
Chromium	7440-47-3	30	С	36		180		1500		9.8	0.35	23.1	0.39	20.6	0.	39 16.5	0.36	19.6	0.42	11.3	0.36
Cobalt	7440-48-4	NS		NS		NS		NS		5.4 B	0.37	12.3	0.42	10.4 E	0.	12 8.7 B	0.38	10.8 B	0.44	6.0 B	0.38
Copper	7440-50-8	50		270		270		270		8.1	0.81	26.5	0.91	21.8	0.	20.3	0.83	22.4	0.96	9.2	0.83
Iron	7439-89-6	NS		NS		NS		NS		14800	8.6	29000	9.6	26100	ç	.6 22400	8.8	26200	10.2	14400	8.8
Lead	7439-92-1	63	С	400		400		1000		5.3	0.59	11.7	0.66	9.9	0.	66 7.8	0.61	11.3	0.70	5.4	0.61
Magnesium	7439-95-4	NS		NS		NS		NS		4360	9.2	9250	10.2	11800	10	.2 4330	9.4	7370	10.8	6740	9.3
Manganese	7439-96-5	1600	C 2	2000	0	2000	0	10000	m	298	0.26	557	0.29	537	0.	29 260	0.27	725	0.31	325	0.27
Mercury	7439-97-6	0.18	С	0.81	q	0.81	q	2.8	q	U	0.018	U	0.020	L	0.0	20 U	0.019	U	0.019	U	0.019
Nickel	7440-02-0	30		140		310		310		11.7	0.53	26.2	0.59	22.5	0.	59 18.1	0.54	23.3	0.62	14.8	0.54
Potassium	7440-09-7	NS		NS		NS		NS		1850	69.5	3540	77.5	3190	77	.4 2140	71.0	2700	81.8	1640	70.9
Selenium	7782-49-2	3.9	С	36		180		1500		U	0.93	U	1.0	L	J 1	.0 U	0.95	U	1.1	U	0.94
Silver	7440-22-4	2		36		180		1500		U	0.31	U	0.34	L	J 0.	34 U	0.32	U	0.36	U	0.31
Sodium	7440-23-5	NS		NS		NS		NS		131 B	87.1	178 B	97.2	176 E	97	.1 129 B	89.1	149 B	103	182 B	88.9
Thallium	7440-28-0	NS		NS		NS		NS		U	1.0	U	1.2	L	J 1	.2 U	1.1	U	1.2	U	1.1
Vanadium	7440-62-2	NS		NS		NS		NS		16.3	1.0	29.1	1.2	25.6	1	.2 24.2	1.1	24.9	1.2	15.6	1.1
Zinc	7440-66-6	109	C 2	2200		10000	m	10000	m	29.3	1.3	62.4	1.4	57.5	1	.4 46.9	1.3	55.4	1.5	37.5	1.3
WET CHEMISTRY	·	UUSCO)	RSCC)	RRSCC)	CSCO		Result C	MDL	Result Q	MDL	Result (Q MI	L Result Q	MDL	Result C	MDL	Result Q	MDL
TotalCyanide - mg/kg	57-12-5	27		27		27		27		U	0.5	U	0.5	l	J	.5 U	0.5	U	0.5	U	0.5

Sample ID								SB-115 (1	7 0 10 0) SB 114	5 (26	0.26.5)	SB-116 (8	2 0 0 0)	SB-116 (3	0 0 20 5)	SB-117 (14	2 14 7)	SB-117 (28.5-29.0)
Lab Sample Number					375 R			9188) 1884		9188		9188		91838		918385
	CASRN						ectives			_									
Sampling Depth (feet bgs)		T	ables	375	-6.8(a)	and	(b)	17.0 to			0 to 2		8.0 to		30.0 to		14.2 to		28.5 to 29.0
Sampling Date			1					05/08			5/09/0		05/08		05/08		05/06/		05/06/08
VOLATILE COMPOUNDS (mg/kg)		UUSCO			RRSCO)	CSCO	Result			ult Q		Result						Result Q MDL
Chloromethane	74-87-3	NS	NS		NS		NS		J 0.005			0.0058	l	0.0053		J 0.0056		0.0055	U 0.0054
Bromomethane	74-83-9	NS	NS		NS		NS		J 0.005			0.0058	L	0.0053		J 0.0056		0.0055	U 0.0054
VinylChloride	75-01-4	0.02	0.21		0.9		13		J 0.005		U	0.0058	U	0.0053		J 0.0056		0.0055	U 0.0054
Chloroethane	75-00-3	NS	NS		NS		NS		J 0.005		U	0.0058	U	0.0053		J 0.0056		0.0055	U 0.0054
MethyleneChloride	75-09-2	0.05	51		100		500 k		J 0.003		U	0.0035	U	J 0.0032				0.0033	U 0.0032
Acetone	67-64-1	0.05	100		100	k	500 k		J 0.005		U	0.0058	l	J 0.0053		J 0.0056		0.0055	U 0.0054
CarbonDisulfide	75-15-0	NS	NS		NS		NS		J 0.005		U	0.0058	L	0.0053		J 0.0056	U	0.0055	U 0.0054
1,1-Dichloroethene	75-35-4	0.33	100	а	100		500 k		J 0.002	_	U	0.0023	l	J 0.0021		J 0.0022	U	0.0022	U 0.0022
1,1-Dichloroethane	75-34-3	0.27	19		26		240		J 0.005			0.0058	U	0.0053		J 0.0056		0.0055	U 0.0054
trans-1,2-Dichloroethene	156-60-5	0.19	100	а	100		500 k	l	J 0.005	8	U	0.0058	ι	0.0053	3 (J 0.0056	U	0.0055	U 0.0054
cis-1,2-Dichloroethene	156-59-2	0.25	59		100		500 k	l	J 0.005	-	U	0.0058	U	0.0053		J 0.0056		0.0055	U 0.0054
Chloroform	67-66-3	0.37	10		49		350	l	J 0.005			0.0058	U	0.0053		J 0.0056	U	0.0055	U 0.0054
1,2-Dichloroethane	107-06-2	0.02	c 2.3		3.1		30	U	J 0.002	23	U	0.0023	U	J 0.0021	U	J 0.0022	U	0.0022	U 0.0022
2-Butanone	78-93-3	0.12	100	а	100	а	500 k	l	J 0.005	58	U	0.0058	l	0.0053	3 1	J 0.0056	U	0.0055	U 0.0054
1,1,1-Trichloroethane	71-55-6	0.68	100	а	100	а	500 k	l	J 0.005	58	U	0.0058	l	0.0053	3 1	J 0.0056	U	0.0055	U 0.0054
CarbonTetrachloride	56-23-5	0.76	1.4		2.4		22	l	J 0.002	23	U	0.0023	ı	J 0.0021	l	J 0.0022	U	0.0022	U 0.0022
Bromodichloromethane	75-27-4	NS	NS		NS		NS	l	J 0.001	2	U	0.0012	ı	J 0.0011	l	J 0.0011	U	0.0011	U 0.0011
1,2-Dichloropropane	78-87-5	NS	NS		NS		NS	l	J 0.001	2	U	0.0012	ι	J 0.0011	l	J 0.0011	U	0.0011	U 0.0011
cis-1,3-Dichloropropene	10061-01-5	NS	NS		NS		NS	l	J 0.005	58	U	0.0058	U	J 0.0053	s l	J 0.0056	U	0.0055	U 0.0054
Trichloroethene	79-01-6	0.47	10		21		200	l lu	J 0.001	2	U	0.0012	U	J 0.0011	l	J 0.0011	U	0.0011	U 0.0011
Dibromochloromethane	124-48-1	NS	NS		NS		NS	l lu	J 0.005	8	U	0.0058	l	0.0053	s l	J 0.0056	U	0.0055	U 0.0054
1,1,2-Trichloroethane	79-00-5	NS	NS		NS		NS	l li	J 0.003		_	0.0035	Ü	J 0.0032		J 0.0034	Ū	0.0033	U 0.0032
Benzene	71-43-2	0.06	2.9		4.8		44		J 0.001		U	0.0012	l	J 0.0011		J 0.0011	U	0.0011	U 0.0011
trans-1,3-Dichloropropene	10061-02-6	NS	NS		NS		NS	l lu	J 0.005	58	U	0.0058	U	0.0053	s lu	J 0.0056	U	0.0055	U 0.0054
Bromoform	75-25-2	NS	NS		NS		NS	l lu				0.0046	l	J 0.0042		J 0.0045		0.0044	U 0.0043
4-Methyl-2-Pentanone	108-10-1	NS	NS		NS		NS	l li	J 0.005	58	U	0.0058	Ü	J 0.0053	s l	J 0.0056	Ū	0.0055	U 0.0054
2-Hexanone	591-78-6	NS	NS		NS		NS		J 0.005		Ū	0.0058	i	0.0053		J 0.0056		0.0055	U 0.0054
Tetrachloroethene	127-18-4	1.3	5.5		19		150	i li	J 0.001	-	U	0.0012	i	J 0.0011		J 0.0011	Ü	0.0011	U 0.0011
1.1.2.2-Tetrachloroethane	79-34-5	NS	NS		NS		NS	i li			IJ	0.0012	i			J 0.0011	Ü	0.0011	U 0.0011
Toluene	108-88-3	0.7	100		100	а	500 k		J 0.005		Ü	0.0058	ì	0.0053		J 0.0056	Ü	0.0055	U 0.0054
Chlorobenzene	108-90-7	1.1	100		100		500 k		J 0.005			0.0058	l	J 0.0053		J 0.0056		0.0055	U 0.0054
Ethylbenzene	100-41-4	1	30	Ť	41		390	l			11	0.0046		J 0.0042		J 0.0045		0.0044	U 0.0043
Styrene	100-41-4	NS	NS	+	NS		NS		J 0.005	_	11	0.0058	1	J 0.0053		J 0.0056		0.0055	U 0.0054
Xylene(Total)	1330-20-7	0.26	100		100	а	500 k		J 0.005		11	0.0058		J 0.0053		J 0.0056		0.0055	U 0.0054
MTBE	1634-04-4	0.93	62	- 4	100		500 k		0.000					- 0.0000				5.0000	
TBA	1004-04-4	NS	NS	+	NS	<u> </u>	NS R		+		_			+	<u> </u>				
Total VOC		140	143	+	140	\vdash	.40	0	1	+	0		0	+ -	0.002	+	0		0
Total BTEX				+		++		0	1	+	0		0	+	0.002	+	0		0
Total Confident Conc. VOAs		+	-	+		\vdash		0	+	+	0		0	+	0	+	0		0
		+		+		\vdash		0	+	+	0		0	+	0	+	0.1		0
Total Estimated Conc. VOA TICs								U	_1		U		U		0		U. I		U

Sample ID										SB-115 (17	7.0-	18.0)	SB-115 (26	6.0	-26.5)	SB-116 (8.0	-9.0)	SB-116 (3)	0.0)-30.5)	SB-117 (14.	2-14.7)	SB-117 (28.	.5-29.0)
Lab Sample Number			_	-		375 R				9188		, ,	9188			9188		,	9188		,	91838	,	91838	
	CASRN					leanup			es			_		_											
Sampling Depth (feet bgs)		-	Tab	oles 3	75	-6.8(a)	and	(d) b		17.0 to	18.	.0	26.0 to	26	5.5	8.0 to	9.	0	30.0 to	30	0.5	14.2 to 1	4.7	28.5 to 2	29.0
Sampling Date										05/08	80\8		05/09	/08	3	05/08	3/0	8	05/08	3/0	8	05/06/0	08	05/06/	80'
PAH (mg/kg)		UUSC	0	RSCO	C	RRSCO)	CSCC)	Result (Q	MDL	Result (Q	MDL	Result	Q	MDL	Result	Q	MDL	Result Q	MDL	Result Q	MDL
Naphthalene	91-20-3	12		100	а	100	а	500	k	L	J	0.40	L	J	0.40	l	J	0.37	ι	U	0.38	0.036 J	0.38	U	0.37
Acenaphthylene	208-96-8	100	а	100	а	100	а	500	k	L	J	0.40	L	J	0.40	l	J	0.37	ι	J	0.38	0.28 J	0.38	U	0.37
Acenaphthene	83-32-9	20		100	а	100	а	500	k	l	J	0.40	l	J	0.40	l	J	0.37	l	U	0.38	0.016 J	0.38	U	0.37
Fluorene	86-73-7	30		100	а	100	а	500	k	L	J	0.40	L	J	0.40	l	J	0.37	ι	U	0.38	0.013 J	0.38	U	0.37
Phenanthrene	85-01-8	100		100	а	100	а	500	k	L	J	0.40	L	J	0.40	0.016	J	0.37	l	U	0.38	0.37 J	0.38	U	0.37
Anthracene	120-12-7	100	а	100	а	100	а	500	k	L	J	0.40	L	J	0.40	l	J	0.37	l	U	0.38	0.09 J	0.38	U	0.37
Fluoranthene	206-44-0	100	а	100	а	100	а	500	k	L	J	0.40	L	J	0.40	0.011	J	0.37	l	U	0.38	0.84	0.38	U	0.37
Pyrene	129-00-0	100		100	а	100	а	500	k	L	J	0.40	L	J	0.40	0.016	J	0.37	l	J	0.38	0.97	0.38	U	0.37
Benzo(a)anthracene	56-55-3	1	С	1	0	1	0	5.6		L	J (0.040	L	J	0.040	l	J	0.037	l	U	0.038	0.37	0.038	U	0.037
Chrysene	218-01-9	1	С	1	0	3.9		56		L	J	0.40	l	J	0.40	l	J	0.37	l	J	0.38	0.5	0.38	U	0.37
Benzo(b)fluoranthene	205-99-2	1	С	1	0	1	0	5.6		L	J (0.040	L	J	0.040	l	J	0.037	l	J	0.038	0.41	0.038	U	0.037
Benzo(k)fluoranthene	207-08-9	0.8	С	1		3.9		56		L	J (0.040	L	J	0.040	l	J	0.037	l	U	0.038	0.58	0.038	U	0.037
Benzo(a)pyrene	50-32-8	1	С	1	0	1	0	1	0	L	J (0.040	L	J	0.040	l	J	0.037	l	U	0.038	0.55	0.038	U	0.037
Indeno(1,2,3-cd)pyrene	193-39-5	0.5	С	0.5	0	0.5	0	5.6		L	J (0.040	l	J	0.040	l	J	0.037	l	J	0.038	0.26	0.038	U	0.037
Dibenz(a,h)anthracene	53-70-3	0.33	b	0.33	n	0.33	n	0.56		L	J (0.040	L	J	0.040	l	J	0.037	l	J	0.038	0.085	0.038	U	0.037
Benzo(g,h,i)perylene	191-24-2	100		100	а	100	а	500	k	L	J	0.40	L	J	0.40	l	J	0.37	l	U	0.38	0.28 J	0.38	U	0.37
Total PAHs										0			0			0.043			0			5.65		0	
Total Confident Conc. PAHs										0			0			0			0			4.5	·	0	
Total Estimated Conc. BNA TIC														T								NA		NA	
TarGOST Signal at Depth										no da	ata		no da	ata	l	no d	ata	l	no d	ata	à	no dat	а	no da	ta

Sample ID		.								SB-115 (1	7.0-	18.0)	SB-115 (2	6.0	-26.5)	SB-116 (8.	0-9.0)	SB-116 (30	.0-30.5)	SB-117 (14.	2-14.7)	SB-117 (28.	.5-29.0)
Lab Sample Number	CASRN							diation		9188	344		9188	345	,	91884	2	91884	13	91838	4	91838	35
Sampling Depth (feet bgs)	CASKIN			les 37				jectives I (h)	5	17.0 to	18.	.0	26.0 to	26	6.5	8.0 to 9	9.0	30.0 to 3	30.5	14.2 to 1	4.7	28.5 to 2	29.0
Sampling Date			ub	100 07).O(u)	unc	. (D)		05/08	3/08		05/09	9/08	3	05/08/0	08	05/08/	08	05/06/0	08	05/06/	08
METALS (mg/kg)		UUSCO	0	RSCO		RRSCO)	CSCO		Result	Q	MDL	Result	Q	MDL	Result Q	MDL	Result Q	MDL	Result Q	MDL	Result Q	MDL
Aluminum	7429-90-5	NS		NS		NS		NS		7110		15.0	5300		15.2	8380	14.0	6070	12.9		13.0	7610	14.0
Antimony	7440-36-0	NS		NS		NS		NS		ι	J	1.4	l	J	1.4	U	1.3	U	1.2	U	1.2	U	1.3
Arsenic	7440-38-2	13	С	16	0	16	0	16	0	1.7		0.77	0.84 E	В	0.78	1.2	0.72	U	0.66	9.2	0.67	U	0.72
Barium	7440-39-3	350	С	350	0	400		400		50.2		0.41	60.4		0.41	65.4	0.38	78.2	0.35	171	0.35	102	0.38
Beryllium	7440-41-7	7.2		14		72		590		0.42 E	3 (0.072	0.35 E	В	0.073	0.39 B	0.067	0.50	0.062	0.47	0.062	0.46	0.067
Cadmium	7440-43-9	2.5	С	2.5	0	4.3		9.3		Į	J (0.096	l	J	0.097	U	0.089	U	0.082	U	0.083	U	0.090
Calcium	7440-70-2	NS		NS		NS		NS		1400		10.2	10900		10.3	1830	9.5	16800	8.7	2530	8.8	16700	9.5
Chromium	7440-47-3	30	С	36		180		1500		10.6		0.38	18.8		0.39	11.5	0.36	9.0	0.33	14.1	0.33	10.2	0.36
Cobalt	7440-48-4	NS		NS		NS		NS		5.8 E	3	0.41	4.0 E	В	0.41	6.6 B	0.38	4.7 B	0.35	7.3 B	0.35	5.8 B	0.38
Copper	7440-50-8	50		270		270		270		12.6		0.89	5.3 E	В	0.9	22.7	0.83	5.5	0.76	19.8	0.77	7.6	0.83
Iron	7439-89-6	NS		NS		NS		NS		16500		9.4	12900		9.5	18500	8.8	12300	8.1	23100	8.2	13600	8.8
Lead	7439-92-1	63	С	400		400		1000		4.1		0.65	4.2		0.66	4.7	0.6	5.8	0.55	29.3	0.56	5.8	0.60
Magnesium	7439-95-4	NS		NS		NS		NS		2890		10.0	2840		10.1	3720	9.3	3880	8.5	3390	8.7	4130	9.3
Manganese	7439-96-5	1600	С	2000	0 2	2000	0	10000	m	255		0.29	290		0.29	281	0.27	303	0.25	335	0.25	298	0.27
Mercury	7439-97-6	0.18	С	0.81	q	0.81	q	2.8	q	l	J (0.020	l	J	0.017	0.02 B	0.019	U	0.019	U	0.019	U	0.019
Nickel	7440-02-0	30		140		310		310		10.9		0.58	9.5		0.58	11.6	0.54	10.8	0.49	14.9	0.50	11.3	0.54
Potassium	7440-09-7	NS		NS		NS		NS		1030 E	3	75.6	1270		76.6	1720	70.5	1500	64.8	1450	65.6	1950	70.6
Selenium	7782-49-2	3.9	С	36		180		1500		l	J	1.0	l	5	1.0	U	0.94	U	0.86	U	0.87	U	0.94
Silver	7440-22-4	2		36		180		1500		l	J	0.34	l	5	0.34	U	0.31	U	0.29	U	0.29	U	0.31
Sodium	7440-23-5	NS		NS		NS		NS		158 E	3	94.8	111 E	В	96.0	165 B	88.4	128 B	81.3	136 B	82.3	149 B	
Thallium	7440-28-0	NS		NS		NS		NS		ι	J	1.1	l	J	1.1	U	1.1	U	0.97	U	0.98	U	1.1
Vanadium	7440-62-2	NS		NS		NS		NS		18.3		1.1	12.1		1.1	20.3	1.1		0.97	32.6	0.98	19.5	1.1
Zinc	7440-66-6	109	С	2200	1	10000	m	10000	m	28.5		1.4	22.6		1.4	32.7	1.3	25.9	1.2	66.7	1.2	28.8	1.3
WET CHEMISTRY		UUSCO	0	RSCO		RRSCO)	CSCO		Result	Q	MDL	Result	Q	MDL	Result Q	MDL	Result Q			MDL	Result Q	
TotalCyanide - mg/kg	57-12-5	27		27		27		27		l	J	0.5	l	J	0.5	U	0.5	U	0.5	U	0.5	U	0.5

Sample ID		NVQI		ort	375 Re	am.	odiatio	_	SB-118 (14.	2-14.7)	SB-118 (18.	0-18.5)	SB-118 (28	3.0-2	8.5)	SB-119 (12.0	-13.0)	SB-119 (1	18.0	-19.0)	SB-119 (21.	2-21.7)
Lab Sample Number									91838	1	91838	2	9183	83		920665	,	920	666		92066	7
Sampling Depth (feet bgs)	CASRN				leanup			es	14.2 to 1	4.7	18.0 to 1	8.5	28.0 to	28.5		12.0 to 13	3.0	18.0 to	o 19	9.0	21.2 to2	1.7
Sampling Date		Ta	ables 3	375	-6.8(a)	and	d (b)		05/06/0		05/06/0		05/06			05/14/08		05/1			05/14/0	
VOLATILE COMPOUNDS (GC/MS)		UUSCO	RSC	0	RRSCC)	CSCO		Result Q		Result Q		Result		ИDL	Result Q	MDL	Result		MDL	Result Q	
Chloromethane	74-87-3	NS	NS		NS		NS			0.0057		0.0054		J 0.0		U	6.4		U	0.66	U	29
Bromomethane	74-83-9	NS	NS		NS		NS		U	0.0057	U	0.0054	U	J 0.0	055	U	6.4		U	0.66	U	29
VinylChloride	75-01-4	0.02	0.21		0.9		13		U	0.0057	U	0.0054	l	J 0.0	055	U	6.4		U	0.66	U	
Chloroethane	75-00-3	NS	NS		NS		NS		U	0.0057	U	0.0054	l	J 0.0	055	U	6.4		U	0.66	U	29
MethyleneChloride	75-09-2	0.05	51		100	а	500	k	U	0.0034	U	0.0032	ι	J 0.0	033	U	3.9		U	0.39	U	17
Acetone	67-64-1	0.05	100	а	100	k	500	k	U	0.0057	U	0.0054	U	J 0.0	055	U	6.4		U	0.66	U	29
CarbonDisulfide	75-15-0	NS	NS		NS		NS		U	0.0057	U	0.0054	U	J 0.0	055	U	6.4		U	0.66	U	29
1,1-Dichloroethene	75-35-4	0.33	100	а	100	а	500	k	U	0.0023	U	0.0022	U	J 0.0	022	U	2.6		U	0.26	U	12
1,1-Dichloroethane	75-34-3	0.27	19		26		240		U	0.0057	U	0.0054	l	J 0.0	055	U	6.4		U	0.66	U	29
trans-1,2-Dichloroethene	156-60-5	0.19	100	а	100	а	500	k	U	0.0057	U	0.0054	l	J 0.0	055	U	6.4		U	0.66	U	29 29
cis-1,2-Dichloroethene	156-59-2	0.25	59		100	а	500	k	U	0.0057	U	0.0054	U	J 0.0	055	U	6.4		U	0.66	U	29
Chloroform	67-66-3	0.37	10		49		350		U	0.0057	U	0.0054	l	J 0.0	055	U	6.4		U	0.66	U	
1,2-Dichloroethane	107-06-2	0.02	2.3		3.1		30		U	0.0023	U	0.0022	l	J 0.0	022	U	2.6		U	0.26	U	
2-Butanone	78-93-3	0.12	100	а	100	а	500	k	U	0.0057	U	0.0054	U	J 0.0	055	U	6.4		U	0.66	U	
1,1,1-Trichloroethane	71-55-6	0.68	100	а	100	а	500	k	U	0.0057	U	0.0054	l	J 0.0	055	U	6.4		U	0.66	U	29
CarbonTetrachloride	56-23-5	0.76	1.4		2.4		22		U	0.0023	U	0.0022	l	J 0.0	022	U	2.6		U	0.26	U	12
Bromodichloromethane	75-27-4	NS	NS		NS		NS		U	0.0011	U	0.0011	U	J 0.0	011	U	1.3		U	0.13	U	
1,2-Dichloropropane	78-87-5	NS	NS		NS		NS		U	0.0011	U	0.0011	U	J 0.0	011	U	1.3		J	0.13	U	5.8
cis-1,3-Dichloropropene	10061-01-5	NS	NS		NS		NS		U	0.0057	U	0.0054	l	J 0.0	055	U	6.4		U	0.66	U	
Trichloroethene	79-01-6	0.47	10		21		200		U	0.0011	U	0.0011	l	J 0.0	011	U	1.3		U	0.13	U	
Dibromochloromethane	124-48-1	NS	NS		NS		NS		U	0.0057	U	0.0054	,		055	U	6.4		U	0.66	U	29
1,1,2-Trichloroethane	79-00-5	NS	NS		NS		NS		U	0.0034	U	0.0032	l	J 0.0	033	U	3.9		U	0.39	U	17
Benzene	71-43-2	0.06	2.9		4.8		44		U	0.0011	U	0.0011		0.0	_	7.4	1.3	0.4		0.13	U	
trans-1,3-Dichloropropene	10061-02-6	NS	NS		NS		NS		U	0.0057	U	0.0054		J 0.0		U	6.4		U	0.66	U	
Bromoform	75-25-2	NS	NS		NS		NS		U	0.0046	U	0.0010		J 0.0		U	5.2		U	0.53	U	
4-Methyl-2-Pentanone	108-10-1	NS	NS		NS		NS		U	0.0057		0.0054		J 0.0		U	6.4		U	0.66	U	29
2-Hexanone	591-78-6	NS	NS		NS		NS			0.0057		0.0054		J 0.0		U	6.4		U	0.66	U	
Tetrachloroethene	127-18-4	1.3	5.5		19		150		U	0.0011		0.0011		J 0.0		U	1.3		U	0.13	U	
1,1,2,2-Tetrachloroethane	79-34-5	NS	NS		NS		NS		U	0.0011		0.0011		J 0.0	-	U	1.3		U	0.13	U	5.8
Toluene	108-88-3	0.7	100	а	100	а	500	k		0.0057		0.0054		J 0.0		8.2	6.4	0.11	J	0.66	31	29
Chlorobenzene	108-90-7	1.1	100	а	100	а	500	k		0.0057		0.0054		J 0.0		U	6.4		U	0.66	U	29 23
Ethylbenzene	100-41-4	1	30		41		390		U	0.0046		0.0043		J 0.0	-	4.4 J	5.2	0.19		0.53	37	23
Styrene	100-42-5	NS	NS		NS		NS		U	0.0057		0.0054			055	5.1 J	6.4	0.066	_	0.66	12 J	29
Xylene(Total)	1330-20-7	0.26	100	а	100	а	500	k	U	0.0057	U	0.0054	l	J 0.0	055	29	6.4	0.4	J	0.66	92	29
MTBE	1634-04-4	0.93	62	$\downarrow \downarrow$	100	а	500	k														
TBA		NS	NS	$\perp \downarrow$	NS	Ш	NS															
Total VOC									0		0		0			54.1		1.166			172	
Total BTEX									0		0		0			40.8		0.99			129	
Total Confident Conc. VOAs				$\perp \downarrow$		Ш			0		0		0			44		0.4			160	
Total Estimated Conc. VOA TICs				Ш		Ш		Ш	0.7		0.1	<u> </u>	0			209		1.7			548	$oxed{oxed}$

Sample ID		NIV	6D		ort	375 R	om	adiatio	_	SB-118 (14	.2-14.7)	SB-118 (18.	0-18.5)	SB-118 (2	3.0-28.5	SB-119 (12.0	0-13.0)	SB-119 (18	.0-19.0)	SB-119 (21.	2-21.7)
Lab Sample Number	CASRN		_	-		-				91838	31	91838	2	9183	83	92066	5	92060	66	92066	7
Sampling Depth (feet bgs)	CASRN	PIO	grai	11 50	11 C	leanup) U	ojective	35	14.2 to	14.7	18.0 to 1	8.5	28.0 to	28.5	12.0 to 1	3.0	18.0 to	19.0	21.2 to2	1.7
Sampling Date			ıar	oies 3	1/5	-6.8(a)	an	a (b)	ĺ	05/06/	08	05/06/0	08	05/06	5/08	05/14/0	8	05/14/	08	05/14/0	08
PAH (mg/kg)		UUSC	0	RSC	С	RRSCO)	CSCO		Result C	MDL	Result Q	MDL	Result	Q MDI	Result Q	MDL	Result C	MDL	Result Q	MDL
Naphthalene	91-20-3	12		100	а	100	а	500	k	0.025 J	0.40	U	0.37	l	J 0.38	670	44	0.46	0.45	170	9.8
Acenaphthylene	208-96-8	100	а	100	а	100	а	500	k	0.91	0.40	0.2 J	0.37	l	0.38	39 J	44	0.096 J	0.45	33	9.8
Acenaphthene	83-32-9	20		100	а	100	а	500	k	0.27 J	0.40	0.025 J	0.37	l	J 0.38	16 J	44	0.014 J	0.45	4.4 J	9.8
Fluorene	86-73-7	30		100	а	100	а	500	k	0.44	0.40	0.05 J	0.37	l	J 0.38	6 <mark>8</mark>	44	0.088 J	0.45	25	9.8
Phenanthrene	85-01-8	100		100	а	100	а	500	k	1.5	0.40	0.28 J	0.37	l	J 0.38	230	44	0.39 J	0.45	58	9.8
Anthracene	120-12-7	100	а	100	а	100	а	500	k	1	0.40	0.14 J	0.37	l	J 0.38		44	0.073 J	0.45	17	9.8
Fluoranthene	206-44-0	100	а	100	а	100	а	500	k	2.4	0.40	0.61	0.37	l	J 0.38	7 0	44	0.14 J	0.45	19	9.8
Pyrene	129-00-0	100		100	а	100	а	500	k	3.8	0.40	1	0.37	l	J 0.38	8 <mark>86</mark>	44	0.18 J	0.45	24	9.8
Benzo(a)anthracene	56-55-3	1	С	1	0	1	0	5.6		1.5	0.040	0.42	0.037	l	J 0.038		4.4	0.067	0.045	8.2	0.98
Chrysene	218-01-9	1	С	1	0	3.9		56		1.6	0.40	0.38	0.37	l	J 0.38		44	0.077 J	0.45	8.1 J	9.8
Benzo(b)fluoranthene	205-99-2	1	С	1	0	1	0	5.6		0.81	0.040	0.2	0.037	l	J 0.038	9.7	4.4	0.03 J	0.045	2.8	0.98
Benzo(k)fluoranthene	207-08-9	8.0	С	1		3.9		56		1.3	0.040	0.34	0.037	l	J 0.038	1 <mark>8</mark>	4.4	0.043 J	0.045	4.9	0.98
Benzo(a)pyrene	50-32-8	1	С	1	0	1	0	1	0	2.1	0.040	0.49	0.037	l	0.038	2 8	4.4	0.063	0.045	7.5	0.98
Indeno(1,2,3-cd)pyrene	193-39-5	0.5	С	0.5	0	0.5	0	5.6		0.58	0.040	0.2	0.037	l	0.038	1 <mark>2</mark>	4.4	0.022 J	0.045	2	0.98
Dibenz(a,h)anthracene	53-70-3	0.33	b	0.33	n	0.33	n	0.56		0.15	0.040	0.054	0.037	l	0.038	2.8 J	4.4	U	0.045	0.63 J	0.98
Benzo(g,h,i)perylene	191-24-2	100		100	а	100	а	500	k	0.65	0.40	0.25 J	0.37	Į	0.38	18 J	44	0.03 J	0.45	2.6 J	9.8
Total PAHs								•		19.035		4.639		0		1380.5		1.773		387.13	
Total Confident Conc. PAHs										18		3.6		0		1275		0.6		371	
Total Estimated Conc. BNA TICs								•		NA		NA		NA		NA		NA		NA	
TarGOST Signal at Depth				, and the second				•		no da	ta	no dat	а	no d	ata	no data	a	no da	ta	no dat	a

Sample ID		NIV	פחו		art	375 D	om	ediation		SB-118 (14.	2-14.7)	SB-118 (18.	0-18.5)	SB-118 (28	3.0-28.5	SB-119 (12.0	0-13.0)	SB-119 (1	3.0-19.0)	SB-119 (21	.2-21.7)
Lab Sample Number	CASRN									91838	1	91838	2	9183	83	920665	5	9206	666	92066	67
Sampling Depth (feet bgs)	CASRN							bjective	S	14.2 to 1	14.7	18.0 to 1	8.5	28.0 to	28.5	12.0 to 1	3.0	18.0 to	19.0	21.2 to2	21.7
Sampling Date			ab	ies 3	3/5	-6.8(a)	an	a (b)	Ī	05/06/	08	05/06/0)8	05/06	/08	05/14/0	18	05/14	/08	05/14/	08
METALS (mg/kg)		UUSC	0	RSC	0	RRSCO)	CSCO		Result Q	MDL	Result Q	MDL	Result C	MDI	Result Q	MDL	Result	Q MDL	Result Q	MDL
Aluminum	7429-90-5	NS		NS		NS		NS		8820	14.9	7830	13.8	7130	14.4	18900	15.1	19300	16.8	6690	14.7
Antimony	7440-36-0	NS		NS		NS		NS		U	1.4	U	1.3	L	1.3	3 U	1.4	l	J 1.6	U	1.4
Arsenic	7440-38-2	13	С	16	0	16	0	16	0	2.6	0.76	1.7	0.70	L	0.74	7.1	0.77	4.2	0.86	U	0.75
Barium	7440-39-3	350	С	350	0	400		400		98.8	0.40	73.2	0.37	81.5	0.39	138	0.41	161	0.46	67.3	0.40
Beryllium	7440-41-7	7.2		14		72		590		0.42 B	0.071	0.4 B	0.066	0.43 B	0.069	0.91	0.072	0.98	0.081	0.37 B	0.071
Cadmium	7440-43-9	2.5	С	2.5	0	4.3		9.3		U	0.095	U	0.088	L	0.092	2 U	0.096	l	J 0.11	U	0.094
Calcium	7440-70-2	NS		NS		NS		NS		4840	10.1	18800	9.4	14500	9.8	13800	10.2	17700	11.4	1780	10.0
Chromium	7440-47-3	30	С	36		180		1500		16.1	0.38	11	0.35	9.7	0.3	26.9	0.38	27	0.43	10.5	0.38
Cobalt	7440-48-4	NS		NS		NS		NS		6.7 B	0.40	5.5 B	0.37	4.9 B	0.39	14.3	0.41	14.1	0.46	5.1 B	
Copper	7440-50-8	50		270		270		270		16.2	0.88	11.9	0.81	6.4	0.8	27	0.89	28.3	0.99	12.5	0.87
Iron	7439-89-6	NS		NS		NS		NS		19700	9.3	16400	8.6	12200	9.0	32800	9.4	32900	10.5	15500	9.2
Lead	7439-92-1	63	С	400		400		1000		5.7	0.64	5.8	0.59	4.9	0.62	2 13	0.65	12.9	0.72	3.4	0.64
Magnesium	7439-95-4	NS		NS		NS		NS		3770	9.9	6320	9.2	3540	9.0	8940	10.0	9840	11.2	3060	9.8
Manganese	7439-96-5	1600	С	2000	0	2000	0	10000	m	353	0.29	344	0.26	273	0.28	715	0.29	648	0.32	179	0.28
Mercury	7439-97-6	0.18	С	0.81	q	0.81	q	2.8	q	U	0.020	U	0.018	L	0.019		0.022	l	J 0.019	U	0.020
Nickel	7440-02-0	30		140		310		310		13.7	0.57	12.9	0.53	10.8	0.5	29.6	0.58	30.1	0.64	11	0.57
Potassium	7440-09-7	NS		NS		NS		NS		1750	75.0	1690	69.4	1910	72.0	4060	75.9	4030	84.7	1250	74.3
Selenium	7782-49-2	3.9	С	36		180		1500		U	1.00	U	0.92	L	0.9	'U	1.0	l	J 1.1	U	0.00
Silver	7440-22-4	2		36		180		1500		U	0.33	U	0.31	L	0.3		0.34	l	J 0.38		0.33
Sodium	7440-23-5	NS		NS		NS		NS		195 B	94.1	159 B	87.0	148 B	91.0	109 B	95.1	l	J 106	U	
Thallium	7440-28-0	NS		NS		NS		NS		U	1.1	U	1.0	L	1.	U	1.1	l	J 1.3	U	1.1
Vanadium	7440-62-2	NS		NS		NS		NS		24.7	1.1	14.6	1.0	14.3	1.1		1.1	33.8	1.3	13.7	1.1
Zinc	7440-66-6	109	С	2200		10000	m	10000	m	35.7	1.4	34.7	1.3	24.6	1.3	73.5	1.4	73.4	1.6	31.2	1.4
WET CHEMISTRY		UUSC	0	RSC	0	RRSCO)	CSCO		Result Q	MDL	Result Q	MDL	Result C	Q MDI	Result Q	MDL	Result	Q MDL	Result Q	
TotalCyanide - mg/kg	57-12-5	27		27		27		27		U	0.5	U	0.5	L	0.9	u U	0.5	l	J 0.5	U	0.5

Sample ID		NVC	SDEC	Da	rt 3	75 D	am.	ediatio	n	SB-119 (23.0-24.0)	SB-119 (37	(.2-37.7)	SB-120	(4.5-	-5.0)	SB-121_13	.0-13.5	SB-121_17.0-17	7.5	SB-123 (8.	.5-9.0)
Lab Sample Number	CASRN									920668	9206	69	917	113		92339	93	923394		91712	26
Sampling Depth (feet bgs)	CASRN							ojectiv	38	23.0 to 24.0	37.2 to	37.7	4.5 to	o 5.0)	13.0 to 1	13.5	17.0 to 17.5		8.5 to 9	9.0
Sampling Date		I	able	3/	6-6	8.8(a)	an	a (p)	ľ	05/14/08	05/14/	/08	05/0	1/08	3	05/29/	08	05/29/08		05/01/0	08
VOLATILE COMPOUNDS (GC/MS)		UUSCO) F	SCO		RRSCO)	CSCC)	Result Q MDL	Result C	MDL	Result	Q	MDL	Result Q	MDL	Result Q M	DL	Result Q	MDL
Chloromethane	74-87-3	NS	N	S		NS		NS		U 0.0065	U	0.0054		U C	0.0094	U	0.83	U 0.00)68	U	0.0068
Bromomethane	74-83-9	NS	N	S		NS		NS		U 0.0065	U	0.0054	l	U	0.0094	U	0.83	U 0.00)68	U	0.0068
VinylChloride	75-01-4	0.02	0.:	21		0.9		13		U 0.0065	U	0.0054		U C	0.0094	U	0.83	U 0.00)68	U	0.0068
Chloroethane	75-00-3	NS	N	S		NS		NS		U 0.0065	U	0.0054	l	U	0.0094	U	0.83	U 0.00)68	U	0.0068
MethyleneChloride	75-09-2	0.05	5	1		100	а	500	k	U 0.0039	0.0019 J	0.0032	0.0096	(0.0056	U	0.50	0.0036 J 0.00		0.0062	0.0041
Acetone	67-64-1	0.05	10	00	а	100	k	500	k	U 0.0065	0.012	0.0054	0.043	(0.0094	U	0.83	0.032 B 0.00)68	U	0.0068
CarbonDisulfide	75-15-0	NS	N	S		NS		NS		U 0.0065	U	0.0054		U	0.0094	U	0.83	0.0007 J 0.00	068	U	0.0068
1,1-Dichloroethene	75-35-4	0.33	1(00	а	100	а	500	k	U 0.0026	U	0.0022		U	0.0038	U	0.33	U 0.00)27	0.017	0.0027
1,1-Dichloroethane	75-34-3	0.27	1			26		240		U 0.0065		0.0054			0.0094	U	0.83	U 0.00			0.0068
trans-1,2-Dichloroethene	156-60-5	0.19	1(-		100	а	500	k	U 0.0065		0.0054			0.0094	U	0.83	U 0.00			0.0068
cis-1,2-Dichloroethene	156-59-2	0.25	5			100	а	500	k	U 0.0065	U	0.0054		U	0.0094	U	0.83	U 0.00	068		0.0068
Chloroform	67-66-3	0.37	1	-		49		350		U 0.0065		0.0054		U	0.0094	U	0.83	U 0.00			0.0068
1,2-Dichloroethane	107-06-2	0.02	c 2			3.1		30		U 0.0026		0.0022			0.0038	U	0.33	U 0.00			0.0027
2-Butanone	78-93-3	0.12	10	00	а	100	а	500	k	U 0.0065		0.0054			0.0094	U	0.83	U 0.00			0.0068
1,1,1-Trichloroethane	71-55-6	0.68	10	00	а	100	а	500	k	U 0.0065		0.0054		U	0.0094	U	0.83	U 0.00			0.0068
CarbonTetrachloride	56-23-5	0.76	1			2.4		22		U 0.0026		0.0022			0.0038	U	0.33	U 0.00			0.0027
Bromodichloromethane	75-27-4	NS	N	_		NS		NS		U 0.0013		0.0011		U	0.0019	U	0.16	U 0.00			0.0014
1,2-Dichloropropane	78-87-5	NS	Ν	S		NS		NS		U 0.0013	U	0.0011		U	0.0019	U	0.16	U 0.00)14	U	0.0014
cis-1,3-Dichloropropene	10061-01-5	NS	Ν	S		NS		NS		U 0.0065	U	0.0054		U	0.0094	U	0.83	U 0.00	068		0.0068
Trichloroethene	79-01-6	0.47	1	-		21		200		U 0.0013	U	0.0011		U	0.0019	U	0.16	U 0.00)14	U	0.0014
Dibromochloromethane	124-48-1	NS	Ν	_		NS		NS		U 0.0065		0.0054		U	0.0094	U	0.83	U 0.00	068	U	0.0068
1,1,2-Trichloroethane	79-00-5	NS	N	S		NS		NS		U 0.0039		0.0032	l	U	0.0056	U	0.50	U 0.00			0.0041
Benzene	71-43-2	0.06	2	-		4.8		44		U 0.0013		0.0011		U	0.0019	U	0.16	U 0.00			0.0014
trans-1,3-Dichloropropene	10061-02-6	NS	Ν			NS		NS		U 0.0065		0.0054		U	0.0094	U	0.83	U 0.00			0.0068
Bromoform	75-25-2	NS	N	_		NS		NS		U 0.0052		0.0043	Į.		0.0075	U	0.66	U 0.00			0.0054
4-Methyl-2-Pentanone	108-10-1	NS	N			NS		NS		U 0.0065		0.0054		U	0.0094	U	0.83	U 0.00			0.0068
2-Hexanone	591-78-6	NS	N	_		NS		NS		U 0.0065		0.0054	Į.		0.0094	U	0.83	U 0.00			0.0068
Tetrachloroethene	127-18-4	1.3	5			19		150		U 0.0013	U	0.0011	Į.	U	0.0019	U	0.16	U 0.00			0.0014
1,1,2,2-Tetrachloroethane	79-34-5	NS	N			NS		NS		U 0.0013		0.0011	Į.	U	0.0019	U	0.16	U 0.00			0.0014
Toluene	108-88-3	0.7	10			100	а	500	k	U 0.0065					0.0094	0.3 J	0.83	U 0.00			0.0068
Chlorobenzene	108-90-7	1.1	10		а	100	а	500	k	U 0.0065		0.0054			0.0094	U	0.83	U 0.00			0.0068
Ethylbenzene	100-41-4	1	3			41		390		U 0.0052		0.0043		U	0.0075	0.59 J	0.66	U 0.00			0.0054
Styrene	100-42-5	NS	N			NS		NS		U 0.0065		0.0054	l		0.0094	U	0.83	U 0.00			0.0068
Xylene(Total)	1330-20-7	0.26	10		а	100	а	500	k	U 0.0065	0.013	0.0054		U	0.0094	1.8	0.83	U 0.00	968	U	0.0068
MTBE	1634-04-4	0.93	6			100	а	500	k												
TBA		NS	N	S		NS		NS													
Total VOC										0	0.0385		0.0526			2.69		0.0363		0.0232	
Total BTEX										0	0.0184		0			2.39		0		0	
Total Confident Conc. VOAs									Ш	0	0.02		0.1			1.8		0		0	
Total Estimated Conc. VOA TICs							Ш		Ш	0.6	0.8		0			144	<u> </u>	0		0.016	oxdot

Sample ID		NIV	SD.		art	375 R	oma	diatio	n	SB-119 (23.	0-24.0)	SB-119 (37.	2-37.7)	SB-120 (4.	5-5.0)	SB-121_13.	0-13.5	SB-121_17.	0-17.5	SB-123 (8	3.5-9.0)
Lab Sample Number	CASRN		_	-		-				92066	8	92066	9	91711	3	92339	3	92339	4	9171	26
Sampling Depth (feet bgs)	CASRN					leanup			35	23.0 to 2	4.0	37.2 to 3	37.7	4.5 to 5	5.0	13.0 to 1	3.5	17.0 to 1	7.5	8.5 to	9.0
Sampling Date			ıar	oies a	3/5	-6.8(a)	and	a (b)		05/14/0)8	05/14/0	08	05/01/	08	05/29/0)8	05/29/0)8	05/01	/08
PAH (mg/kg)		UUSC	00	RSC	0	RRSC	Э	CSCC)	Result Q	MDL	Result Q	MDL	Result Q	MDL	Result Q	MDL	Result Q	MDL	Result C	Q MDL
Naphthalene	91-20-3	12		100	а	100	а	500	k	0.086 J	0.44	0.1 J	0.38	U	0.63	10	5.6	U	0.48	U	0.46
Acenaphthylene	208-96-8	100	а	100	а	100	а	500	k	0.2 J	0.44	0.27 J	0.38	U	0.63	2.4 J	5.6	U	0.48	U	0.46
Acenaphthene	83-32-9	20		100	а	100	а	500	k	0.036 J	0.44	0.034 J	0.38	U	0.63	10	5.6	U	0.48	U	0.46
Fluorene	86-73-7	30		100	а	100	а	500	k	0.096 J	0.44	0.24 J	0.38	U	0.63	12	5.6	U	0.48	U	0.46
Phenanthrene	85-01-8	100		100	а	100	а	500	k	0.88	0.44	0.79	0.38	U	0.63	75	5.6	U	0.48	U	0.46
Anthracene	120-12-7	100	а	100	а	100	а	500	k	0.2 J	0.44	0.21 J	0.38	U	0.63	22	5.6	U	0.48	U	0.46
Fluoranthene	206-44-0	100	а	100	а	100	а	500	k	0.45	0.44	0.36 J	0.38	U	0.63	34	5.6	U	0.48	0.04 J	0.46
Pyrene	129-00-0	100		100	а	100	а	500	k	0.55	0.44	0.45	0.38	U	0.63	62	5.6	U	0.48	0.051 J	0.46
Benzo(a)anthracene	56-55-3	1	С	1	0	1	0	5.6		0.19	0.044	0.16	0.038	U	0.063	20	0.56	U	0.048	U	0.046
Chrysene	218-01-9	1	С	1	0	3.9		56		0.2 J	0.44	0.15 J	0.38	U	0.63	24	5.6	U	0.48	U	0.46
Benzo(b)fluoranthene	205-99-2	1	С	1	0	1	0	5.6		0.063	0.044	0.068	0.038	U	0.063	8.8	0.56	U	0.048	U	0.046
Benzo(k)fluoranthene	207-08-9	8.0	С	1		3.9		56		0.12	0.044	0.11	0.038	U	0.063	9.6	0.56	U	0.048	U	0.046
Benzo(a)pyrene	50-32-8	1	С	1	0	1	0	1	0	0.17	0.044	0.16	0.038	U	0.063	17	0.56	U	0.048	U	0.046
Indeno(1,2,3-cd)pyrene	193-39-5	0.5	С	0.5	0	0.5	0	5.6		0.048	0.044	0.053	0.038	U	0.063	5.4	0.56	U	0.048	U	0.046
Dibenz(a,h)anthracene	53-70-3	0.33	b	0.33	n	0.33	n	0.56		0.014 J	0.044	0.016 J	0.038	U	0.063	2.6	0.56	U	0.048	U	0.046
Benzo(g,h,i)perylene	191-24-2	100		100	а	100	а	500	k	0.063 J	0.44	0.067 J	0.38	U	0.63	6.9	5.6	U	0.48	U	0.46
Total PAHs										3.366		3.238		0		321.7		0		0.091	
Total Confident Conc. PAHs	·							•		2.4		1.7		0		319	·	0		0	
Total Estimated Conc. BNA TICs	·							•		NA		NA		NA		NA	·	NA		NA	
TarGOST Signal at Depth										no dat	a	no dat	a	backgro	und	30 (J)		backgrou	und	10 (.	J)

Sample ID		NIV	201	=C D	ort.	275 D	nm.	ediation	,	SB-119 (23.	0-24.0)	SB-119 (37.	2-37.7)	SB-120	(4.5	5-5.0)	SB-121_13	3.0-13.5	SB-121_17	.0-17.5	SB-123 (8	.5-9.0)
Lab Sample Number										92066	8	92066	9	917	7113	3	9233	93	92339	4	91712	26
Sampling Depth (feet bgs)	CASRN							bjective	es	23.0 to 2	4.0	37.2 to 3	7.7	4.5 1	to 5	.0	13.0 to	13.5	17.0 to 1	7.5	8.5 to 9	9.0
Sampling Date			lab	les 3	/5-	·6.8(a)	an	id (b)	İ	05/14/0)8	05/14/0)8	05/0	01/0	18	05/29	/08	05/29/0	08	05/01/	08
METALS (mg/kg)		UUSC	0	RSCC)	RRSCC)	CSCO		Result Q	MDL	Result Q	MDL	Result	Q	MDL	Result C	MDL	. Result Q	MDL	Result Q	MDL
Aluminum	7429-90-5	NS		NS		NS		NS		6070	13.8	6670	12.9					-				
Antimony	7440-36-0	NS		NS		NS		NS		U	1.3	U	1.2									
Arsenic	7440-38-2	13	С	16	0	16	0	16	0	U	0.71	U	0.66									
Barium	7440-39-3	350	С	350	0	400		400		66.3	0.38	62.5	0.35					-				
Beryllium	7440-41-7	7.2		14		72		590		0.34 B	0.066	0.44	0.062									
Cadmium	7440-43-9	2.5	С	2.5	0	4.3		9.3		U	0.088	U	0.082									
Calcium	7440-70-2	NS		NS		NS		NS		1560	9.4	26000	8.7									
Chromium	7440-47-3	30	С	36		180		1500		9.2	0.35	9.2	0.33									
Cobalt	7440-48-4	NS		NS		NS		NS		4.4 B	0.38	4.4 B	0.35									
Copper	7440-50-8	50		270		270		270		9.7	0.82	4.3 B	0.76									
Iron	7439-89-6	NS		NS		NS		NS		14500	8.7	11600	8.1					-				
Lead	7439-92-1	63	С	400		400		1000		3.6	0.60	5.1	0.55									
Magnesium	7439-95-4	NS		NS		NS		NS		2770	9.2	5750	8.5									
Manganese	7439-96-5	1600	С	2000	0	2000	0	10000	m	232	0.27	274	0.25									
Mercury	7439-97-6	0.18	С	0.81	q	0.81	q	2.8	q	U	0.022	U	0.016									
Nickel	7440-02-0	30		140		310		310		9.2	0.53	9.6	0.49									
Potassium	7440-09-7	NS		NS		NS		NS		1110	69.7	1880	64.8									
Selenium	7782-49-2	3.9	С	36		180		1500		U	0.93	U	0.86									
Silver	7440-22-4	2		36		180		1500		U	0.31	J	0.29									
Sodium	7440-23-5	NS		NS		NS		NS		U	87.4	U	81.3									
Thallium	7440-28-0	NS		NS		NS		NS		U	1.0	U	0.97									
Vanadium	7440-62-2	NS		NS		NS		NS		13.4	1.0	14.9	0.97									
Zinc	7440-66-6	109	С	2200		10000	m	10000	m	29.7	1.3	22.4	1.2									
WET CHEMISTRY		UUSC	0	RSCC)	RRSCC)	CSCO		Result Q	MDL	Result Q	MDL	Result	Q	MDL	Result C	MDL	. Result Q	MDL	Result Q	MDL
TotalCyanide - mg/kg	57-12-5	27		27		27		27		U	0.5	U	0.5									

Sample ID		NVCI	DEC D	Ort	375 Re		diatio	_	SB-124 (5	5.0-5	5.5)	SB-128 (10.5	5-11.0)	SB-128 (14	0-14	.5)	SB-128 (28.1-28.6)	SB-129	(10.8	3-11.3)	SB-129(13.25-13.	75)
Lab Sample Number									91712	22		920670)	92067	'1		920672	92	193	9	921940	一
Sampling Depth (feet bgs)	CASRN				leanup			es	5.0 to	5.5		10.5 to 1	1.0	14.0 to	14.5		28.1 to 28.6	10.8	to 1	1.3	13.25 to 13.75	
Sampling Date		Ta	ables 3	375	-6.8(a)	and	d (b)		05/01/			05/14/0		05/14/			05/15/08		/16/0		05/16/08	
VOLATILE COMPOUNDS (GC/MS)		UUSCO	RSC	0	RRSCC)	CSCO		Result C		MDL	Result Q	MDL	Result C		DL	Result Q MDL	Resul			Result Q MI	DL
Chloromethane	74-87-3	NS	NS		NS		NS		U	-	0078	U	0.60		0.00		U 0.0055		U	0.82		72
Bromomethane	74-83-9	NS	NS		NS		NS		U	J 0.0	0078	U	0.60	U	0.00	67	U 0.0055		U	0.82	U 0.	72
VinylChloride	75-01-4	0.02	0.21		0.9		13		U	J 0.0	0078	U	0.60	U	0.00	67	U 0.0055		U	0.82		72
Chloroethane	75-00-3	NS	NS		NS		NS		U	J 0.0	0078	U	0.60	U	0.00	67	U 0.0055		U	0.82	U 0.	72
MethyleneChloride	75-09-2	0.05	51		100	а	500	k	U	J 0.0	0047	U	0.36	U	0.00	40	0.004 0.0033		U	0.49	U 0.4	43
Acetone	67-64-1	0.05	100	а	100	k	500	k	0.055	0.0	0078	U	0.60	U	0.00	67	0.01 0.0055		U	0.82		72
CarbonDisulfide	75-15-0	NS	NS		NS		NS		U	J 0.0	0078	U	0.60	U	0.00	67	U 0.0055		U	0.82	U 0.	72
1,1-Dichloroethene	75-35-4	0.33	100	а	100	а	500	k	U	J 0.0	0031	U	0.24	U	0.00	27	U 0.0022		U	0.33	U 0.:	29
1,1-Dichloroethane	75-34-3	0.27	19		26		240		U	J 0.0	0078	U	0.60	U	0.00	67	U 0.0055		U	0.82	U 0.	72
trans-1,2-Dichloroethene	156-60-5	0.19	100	а	100	а	500	k	U	J 0.0	0078	U	0.60	U	0.00	67	U 0.0055		U	0.82	U 0.	
cis-1,2-Dichloroethene	156-59-2	0.25	59		100	а	500	k	U	J 0.0	0078	U	0.60	U	0.00	67	U 0.0055		U	0.82	U 0.	72
Chloroform	67-66-3	0.37	10		49		350		U	J 0.0	0078	U	0.60	U	0.00	67	U 0.0055		U	0.82	U 0.	72
1,2-Dichloroethane	107-06-2	0.02	2.3		3.1		30		U	J 0.0	0031	U	0.24	U	0.00	27	U 0.0022		U	0.33		29
2-Butanone	78-93-3	0.12	100	а	100	а	500	k	U	J 0.0	0078	U	0.60	U	0.00	67	U 0.0055		U	0.82	U 0.	72
1,1,1-Trichloroethane	71-55-6	0.68	100	а	100	а	500	k	U	J 0.0	0078	U	0.60	U	0.00	67	U 0.0055		U	0.82	U 0.	72
CarbonTetrachloride	56-23-5	0.76	1.4		2.4		22		U	J 0.0	0031	U	0.24	U	0.00	27	U 0.0022		U	0.33	U 0.:	29
Bromodichloromethane	75-27-4	NS	NS		NS		NS		U	J 0.0	0016	U	0.12	U	0.00	113	U 0.0011		U	0.16	U 0.	14
1,2-Dichloropropane	78-87-5	NS	NS		NS		NS		U	0.0	0016	U	0.12	U	0.00	113	U 0.0011		U	0.16		14
cis-1,3-Dichloropropene	10061-01-5	NS	NS		NS		NS		U	0.0	0078	U	0.60	U	0.00	67	U 0.0055		U	0.82	U 0.	72
Trichloroethene	79-01-6	0.47	10		21		200		U	0.0	0016	U	0.12	U	0.00	113	U 0.0011		U	0.16	1 -	14
Dibromochloromethane	124-48-1	NS	NS		NS		NS		U	0.0	0078	U	0.60	U	0.00	67	U 0.0055		U	0.82		72
1,1,2-Trichloroethane	79-00-5	NS	NS		NS		NS		U		0047	U	0.36		0.00		U 0.0033		U	0.49		43
Benzene	71-43-2	0.06	2.9		4.8		44		U		0016	U	0.12		0.00		U 0.0011		U	0.16	1 0.	14
trans-1,3-Dichloropropene	10061-02-6	NS	NS		NS		NS		U		0078	U	0.60		0.00		U 0.0055		U	0.82		72
Bromoform	75-25-2	NS	NS		NS		NS		U		0062	U	0.48		0.00		U 0.0044		U	0.66		58
4-Methyl-2-Pentanone	108-10-1	NS	NS		NS		NS		U		0078	U	0.60		0.00		U 0.0055		U	0.82		72
2-Hexanone	591-78-6	NS	NS		NS		NS		U		0078	U	0.60		0.00		U 0.0055		U	0.82	U 0.	
Tetrachloroethene	127-18-4	1.3	5.5		19		150		U		0016	U	0.12		0.00		U 0.0011		U	0.16		14
1,1,2,2-Tetrachloroethane	79-34-5	NS	NS		NS		NS		U	_	0016	U	0.12		0.00		U 0.0011		U	0.16	U 0.	_
Toluene	108-88-3	0.7	100	а	100	а	500	k	U		0078	U	0.60		0.00		U 0.0055		U	0.82		72
Chlorobenzene	108-90-7	1.1	100	а	100	а	500	k	U		0078	U	0.60		0.00		U 0.0055		U	0.82	U 0.	
Ethylbenzene	100-41-4	1	30		41		390		U		0062	U	0.48		0.00		U 0.0044	3.4	4	0.66		58
Styrene	100-42-5	NS	NS		NS		NS		U	_	0078	U	0.60	U	0.00		U 0.0055		U	0.82	U 0.	
Xylene(Total)	1330-20-7	0.26	100	а	100	а	500	k	U	J 0.0	0078	U	0.60		0.00		U 0.0055	2.8	8	0.82	12 0.	72
MTBE	1634-04-4	0.93	62		100	а	500	k				U	12	U	_	.13	U 0.11					
TBA		NS	NS	$\perp \downarrow$	NS		NS			_		U	0.60		0.00	67	U 0.0055					
Total VOC									0.055			0		0			0.014	6.2			26.06	
Total BTEX									0			0		0	<u> </u>		0	6.2			26	
Total Confident Conc. VOAs				$\perp \downarrow$					0.1	_		0		0	<u> </u>		0	6.2			26	_
Total Estimated Conc. VOA TICs				Ш		Ш		Ш	0		ļ	30		0	<u> </u>		0	12	7		304	

Sample ID		NIV	פחו	=C D	ort	375 R	-m	odiatio		SB-124 (5	.0-5.5)	SB-128 (10	.5-11.0)	SB-128 (14	1.0-14.5	SB-128 (28.1-28.6)	SB-129(10.	8-11.3)	SB-129(13.25	5-13.75)
Lab Sample Number	CASRN			-		-				9171:	22	92067	70	9206	71	920672	92193	39	921940	0
Sampling Depth (feet bgs)	CASKN					leanup			35	5.0 to	5.5	10.5 to	11.0	14.0 to	14.5	28.1 to 28.6	10.8 to 1	11.3	13.25 to 1	3.75
Sampling Date			ab	ies 3	75	-6.8(a)	an	a (a)	Ī	05/01/	/08	05/14/	08	05/14	/08	05/15/08	05/16/	08	05/16/0	8
PAH (mg/kg)		UUSC	Э	RSCC)	RRSCO)	CSCO		Result C	MDL	. Result C	MDL	Result	Q MD	Result Q MDI	Result Q	MDL	Result Q	MDL
Naphthalene	91-20-3	12		100	а	100	а	500	k	U	0.54	0.04 J	0.84	l	J 0.4	U 0.38	3 15	1.1	89	4.8
Acenaphthylene	208-96-8	100	а	100	а	100	а	500	k	U	0.54	2.2	0.84	U	J 0.4	U 0.38	3 2	1.1	3.3 J	4.8
Acenaphthene	83-32-9	20		100	а	100	а	500	k	U	0.54	6.4	0.84	U	J 0.4	U 0.38	3 2.2	1.1	7.5	4.8
Fluorene	86-73-7	30		100	а	100	а	500	k	U	0.54	3.9	0.84	l	J 0.4	U 0.38	3.3	1.1	8.9	4.8
Phenanthrene	85-01-8	100		100	а	100	а	500	k	U	0.54	19	0.84	0.017 J	0.4	0.012 J 0.38		1.1	30	4.8
Anthracene	120-12-7	100	а	100	а	100	а	500	k	U	0.54	5.9	0.84	U	J 0.4	U 0.38	3 2.7	1.1	7.8	4.8
Fluoranthene	206-44-0	100	а	100	а	100	а	500	k	U	0.54	6.3	0.84	U	J 0.4	U 0.38	3.6	1.1	8.9	4.8
Pyrene	129-00-0	100		100	а	100	а	500	k	U	0.54	8.7	0.84	0.018	0.4	U 0.38	5.7	1.1	13	4.8
Benzo(a)anthracene	56-55-3	1	С	1	0	1	0	5.6		U	0.054	2.7	0.084	l	0.04	U 0.038	1.7	0.11	3.7	0.48
Chrysene	218-01-9	1	С	1	0	3.9		56		U	0.54	2.6	0.84	l	J 0.4	U 0.38	1.7	1.1	3.7 J	4.8
Benzo(b)fluoranthene	205-99-2	1	С	1	0	1	0	5.6		U	0.054	0.8	0.084	U	0.04	U 0.038	0.46	0.11	1.1	0.48
Benzo(k)fluoranthene	207-08-9	8.0	С	1		3.9		56		U	0.054	1.4	0.084	l	J 0.04	U 0.038	0.98	0.11	2	0.48
Benzo(a)pyrene	50-32-8	1	С	1	0	1	0	1	0	U	0.054	2.1	0.084	l	J 0.04	U 0.038	1.4	0.11	3	0.48
Indeno(1,2,3-cd)pyrene	193-39-5	0.5	С	0.5	0	0.5	0	5.6		U	0.054	0.54	0.084	l	J 0.04	U 0.038	0.54	0.11	1.1	0.48
Dibenz(a,h)anthracene	53-70-3	0.33	b	0.33	n	0.33	n	0.56		U	0.054	0.19	0.084	l	J 0.04	U 0.038	0.15	0.11	0.33 J	0.48
Benzo(g,h,i)perylene	191-24-2	100		100	а	100	а	500	k	U	0.54	0.64 J	0.84	l	J 0.4	U 0.38	0.6 J	1.1	1.2 J	4.8
Total PAHs										0		63.41		0.035		0.012	54.03		184.53	
Total Confident Conc. PAHs	•									0		62		0		0	53		176	
Total Estimated Conc. BNA TICs										NA		NA		NA		NA	NA		NA	
TarGOST Signal at Depth										15 (J)	no da	ta	no da	ata	no data	no da	ta	no data	a

Sample ID		NV	חפ	EC D) art	375 D	am	ediation		SB-124 (5.	0-5.5)	SB-128 (10.	5-11.0)	SB-128 (14	1.0-14.	SB-128 (28.	1-28.6)	SB-129(10).8-11.3)	SB-129(13.2	5-13.75)
Lab Sample Number	CASRN		_	_						91712	22	92067	0	9206	71	92067	2	9219	39	92194	0
Sampling Depth (feet bgs)	CASRN							bjective	S	5.0 to 5	5.5	10.5 to 1	1.0	14.0 to	14.5	28.1 to 2	28.6	10.8 to	11.3	13.25 to 1	13.75
Sampling Date			ıar	oies a	3/5	-6.8(a)	an	a (b)	Ī	05/01/	08	05/14/0)8	05/14	/08	05/15/0	08	05/16	5/08	05/16/0	08
METALS (mg/kg)		UUSC	0	RSC	0	RRSCO)	CSCO		Result Q	MDL	Result Q	MDL	Result	Q ME	L Result Q	MDL	Result	Q MDL	Result Q	MDL
Aluminum	7429-90-5	NS		NS		NS		NS				9170	14.3	8490	16	9 7870	14.1	26400	25.7	30100	22.4
Antimony	7440-36-0	NS		NS		NS		NS				U	1.3	l	J 1	6 U	1.3	l	J 1.6	U	1.4
Arsenic	7440-38-2	13	С	16	0	16	0	16	0			1.8	0.73	U	J 0.8	6 U	0.72	11.8	1.5	7.7	1.3
Barium	7440-39-3	350	С	350	0	400		400				70.4	0.39	70.6	0.4	6 68.6	0.38	192	0.43	289	0.38
Beryllium	7440-41-7	7.2		14		72		590				0.48	0.069	0.49 E	0.08	1 0.47	0.068	1.2	0.033	1.4	0.029
Cadmium	7440-43-9	2.5	С	2.5	0	4.3		9.3				U	0.092	l	J 0.1	1 U	0.090	l	J 0.17	0.16 B	0.14
Calcium	7440-70-2	NS		NS		NS		NS				1410	9.7	2190	11	5 20100	9.6	4200	24.7	36300	21.6
Chromium	7440-47-3	30	С	36		180		1500				12.6	0.37	11.5	0.4	3 11.5	0.36	34.5	0.93	37.0	0.81
Cobalt	7440-48-4	NS		NS		NS		NS				6.3 B	0.39	6.7 E	0.4	6 5.4 B	0.38	18.2	1.2	16.8	1.0
Copper	7440-50-8	50		270		270		270				15.7	0.85	13.8	1.0	0 5.9	0.84	41.5	1.0	33.7	0.90
Iron	7439-89-6	NS		NS		NS		NS				17900	9.0	18600	10	6 14000	8.8	44600	13.2	40700	11.5
Lead	7439-92-1	63	С	400		400		1000				3.7	0.62	4.7	0.7	3 6.3	0.61	21.7	0.73	19.5	0.64
Magnesium	7439-95-4	NS		NS		NS		NS				3210	9.5	3410	11	2 4460	9.4	10200	23.2	9680	20.3
Manganese	7439-96-5	1600	С	2000	0	2000	0	10000	m			125	0.27	457	0.3	2 321	0.27	565	0.96	4600	1.7
Mercury	7439-97-6	0.18	С	0.81	q	0.81	q	2.8	q			U	0.021	U	J 0.01	9 U	0.019	U	J 0.028	U	0.024
Nickel	7440-02-0	30		140		310		310				12.0	0.55	11.3	0.6	5 12.4	0.54	40.3	1.3	38.2	1.1
Potassium	7440-09-7	NS		NS		NS		NS				1890	72.2	1850	85	1 2210	71.2	4860	43.1	7420	75.1
Selenium	7782-49-2	3.9	С	36		180		1500				U	0.96	U	J 1	1 U	0.95	U	J 1.6	U	1.4
Silver	7440-22-4	2		36		180		1500				U	0.32	l	J 0.3	8 U	0.32	l	J 0.40	U	0.35
Sodium	7440-23-5	NS		NS		NS		NS				U	90.6	l	J 10	7 90.0 B	89.3	187 E	120	153 B	
Thallium	7440-28-0	NS		NS		NS		NS				U	1.1	U	J 1	3 U	1.1	U	J 1.6	U	1.4
Vanadium	7440-62-2	NS		NS		NS		NS				17.9	1.1	18.4	1	3 16.5	1.1	44.6	0.50	45.4	0.43
Zinc	7440-66-6	109	С	2200		10000	m	10000	m			35.3	1.3	37.0	1	6 29.5	1.3	93.4	1.9	88.7	1.7
WET CHEMISTRY		UUSC	0	RSC	0	RRSCC)	CSCO		Result Q	MDL	Result Q	MDL	Result				Result	Q MDL	Result Q	
TotalCyanide - mg/kg	57-12-5	27		27		27		27				U	0.5	l	J 0	5 U	0.5	l	J 0.5	U	0.5

Sample ID		NVCL	NEC D	ort	275 D	om/	ediatio	,	SB-129(15-15.5)	SB-129(26.	1-26.6)	SB-130_12.	0-13.0	SB-130_	14.0-14.5	SB-130_16.	5-17.0	SB-131_13	3.5-14.0
Lab Sample Number	CASRN								921941	92194	2	92340	3	923	404	92340	5	9234	06
Sampling Depth (feet bgs)	CASRN	Progra						es	15.0 to 15.5	26.1 to 2	26.6	12.0 to 1	3.0	14.0 to	o 14.5	16.5 to 1	7.0	13.5 to	14.0
Sampling Date		Ta	ibles 3	3/5-	6.8(a)	an	d (b)	Ī	05/19/08	05/19/0)8	05/29/0		05/2		05/28/0)8	05/28/	/08
VOLATILE COMPOUNDS (GC/MS)		UUSCO	RSC	0	RRSC)	CSCO		Result Q MDL	Result Q	MDL	Result Q	MDL	Result	Q MD	Result Q	MDL	Result Q	MDL
Chloromethane	74-87-3	NS	NS		NS		NS		U 0.0068		0.0057	U	8.0		J 0.69	e U	0.69	U	0.0066
Bromomethane	74-83-9	NS	NS		NS		NS		U 0.0068	U	0.0057	U	8.0	l	J 0.6) U	0.69	U	0.0066
VinylChloride	75-01-4	0.02	0.21		0.9		13		U 0.0068	U	0.0057	U	8.0	l	J 0.6	U	0.69	U	0.0066
Chloroethane	75-00-3	NS	NS		NS		NS		U 0.0068	U	0.0057	U	8.0	l	J 0.6) U	0.69	U	0.0066
MethyleneChloride	75-09-2	0.05	51		100	а	500	k	U 0.0041	0.0014 J	0.0034	U	4.8	l	J 0.4	ı U	0.41	0.003 J	0.0040
Acetone	67-64-1	0.05	100	а	100	k	500	k	U 0.0068	0.014	0.0057	U	8.0	l	J 0.69	U	0.69	0.064 B	0.0066
CarbonDisulfide	75-15-0	NS	NS		NS		NS		U 0.0068	U	0.0057	U	8.0	l	J 0.69) U	0.69	0.0012 J	0.0066
1,1-Dichloroethene	75-35-4	0.33	100	а	100	а	500	k	U 0.0027	U	0.0023	U	3.2	l	J 0.2	7 U	0.28	U	0.0026
1,1-Dichloroethane	75-34-3	0.27	19		26		240		U 0.0068	U	0.0057	U	8.0	l	J 0.69	U	0.69	U	0.0066
trans-1,2-Dichloroethene	156-60-5	0.19	100	а	100	а	500	k	U 0.0068	U	0.0057	U	8.0	l	J 0.69) U	0.69	U	0.0066
cis-1,2-Dichloroethene	156-59-2	0.25	59		100	а	500	k	U 0.0068	U	0.0057	U	8.0	Į	J 0.69) U	0.69	U	0.0066
Chloroform	67-66-3	0.37	10		49		350		U 0.0068	U	0.0057	U	8.0	l	J 0.69) U	0.69	U	0.0066
1,2-Dichloroethane	107-06-2	0.02 c	2.3		3.1		30		U 0.0027	U	0.0023	U	3.2	Į	J 0.2	7 U	0.28	U	0.0026
2-Butanone	78-93-3	0.12	100	а	100	а	500	k	U 0.0068	U	0.0057	U	8.0	Į	J 0.6) U	0.69	U	0.0066
1,1,1-Trichloroethane	71-55-6	0.68	100	а	100	а	500	k	U 0.0068	U	0.0057	U	8.0	l	J 0.69) U	0.69	U	0.0066
CarbonTetrachloride	56-23-5	0.76	1.4		2.4		22		U 0.0027	U	0.0023	U	3.2	l	J 0.2	7 U	0.28	U	0.0026
Bromodichloromethane	75-27-4	NS	NS		NS		NS		U 0.0014	U	0.0011	U	1.6	Į	J 0.1	1 U	0.14	U	0.0013
1,2-Dichloropropane	78-87-5	NS	NS		NS		NS		U 0.0014	U	0.0011	U	1.6	l	J 0.14	1 U	0.14	U	0.0013
cis-1,3-Dichloropropene	10061-01-5	NS	NS		NS		NS		U 0.0068	U	0.0057	U	8.0	l	J 0.69) U	0.69	U	0.0066
Trichloroethene	79-01-6	0.47	10		21		200		U 0.0014	U	0.0011	U	1.6	J	J 0.14		0.14	U	0.0013
Dibromochloromethane	124-48-1	NS	NS		NS		NS		U 0.0068	U	0.0057	U	8.0	l	J 0.6	U	0.69	U	0.0066
1,1,2-Trichloroethane	79-00-5	NS	NS		NS		NS		U 0.0041	U	0.0034	U	4.8	l	J 0.4	U	0.41	U	0.0040
Benzene	71-43-2	0.06	2.9		4.8		44		0.22 0.0014	U	0.0011	U	1.6	J	J 0.14	1 U	0.14	U	0.0013
trans-1,3-Dichloropropene	10061-02-6	NS	NS		NS		NS		U 0.0068		0.0057	U	8.0	U	J 0.6		0.69	U	0.0066
Bromoform	75-25-2	NS	NS		NS		NS		U 0.0054		0.0046	U	6.4	l	J 0.5		0.55	U	0.0053
4-Methyl-2-Pentanone	108-10-1	NS	NS		NS		NS		U 0.0068		0.0057	U	8.0	l	J 0.69		0.69	U	0.0066
2-Hexanone	591-78-6	NS	NS		NS		NS		U 0.0068	U	0.0057	U	8.0	l	J 0.69	e U	0.69	U	0.0066
Tetrachloroethene	127-18-4	1.3	5.5		19		150		U 0.0014	U	0.0011	U	1.6	U	J 0.1	1 U	0.14	U	0.0013
1,1,2,2-Tetrachloroethane	79-34-5	NS	NS		NS		NS		U 0.0014	U	0.0011	U	1.6	l	J 0.1		0.14	U	0.0013
Toluene	108-88-3	0.7	100	а	100	а	500	k	0.0006 J 0.0068		0.0057	0.93 J	8.0	0.036	J 0.69		0.69	U	0.0066
Chlorobenzene	108-90-7	1.1	100	а	100	а	500	k	U 0.0068	U	0.0057	U	8.0	l	J 0.6	U	0.69	U	0.0066
Ethylbenzene	100-41-4	1	30		41		390		0.0094 0.0054	U	0.0046	18	6.4	0.067	J 0.5	5 U	0.55	U	0.0053
Styrene	100-42-5	NS	NS		NS		NS		U 0.0068	U	0.0057	U	8.0	l	J 0.69	e U	0.69	U	0.0066
Xylene(Total)	1330-20-7	0.26	100	а	100	а	500	k	0.015 0.0068	U	0.0057	24	8.0	0.19	J 0.6	e U	0.69	U	0.0066
MTBE	1634-04-4	0.93	62		100	а	500	k							-				
TBA		NS	NS		NS		NS								-				
Total VOC						$\coprod I$			0.245	0.0154		42.93		0.293		0		0.0682	
Total BTEX									0.2444	0		42		0.257		0		0	
Total Confident Conc. VOAs									0.2	0		42		0		0		0	
Total Estimated Conc. VOA TICs						Ш			0.5	0		641		50		16		0	

Sample ID		NV	201		ort	275 D	om	ediatio	n	SB-129(15	-15.5)	SB-129(26.	1-26.6)	SB-130_1	2.0-13.0	SB-130_1	4.0-14.5	SB-130_16	.5-17.0	SB-131_13	.5-14.0
Lab Sample Number	CASRN		_	_		-				92194	1	92194	2	9234	03	9234	404	92340	15	92340	06
Sampling Depth (feet bgs)	CASKIN							ojective	55	15.0 to 1	5.5	26.1 to 2	26.6	12.0 to	13.0	14.0 to	14.5	16.5 to 1	17.0	13.5 to	14.0
Sampling Date			ıac	nes 3	75-	6.8(a)	an	a (b)		05/19/0	08	05/19/0	08	05/29	/08	05/28	8/08	05/28/0	08	05/28/	80
PAH (mg/kg)		UUSC	:0	RSCC)	RRSC	О	CSCC)	Result Q	MDL	Result Q	MDL	Result C	MDL	Result	Q MDL	Result Q	MDL	Result Q	MDL
Naphthalene	91-20-3	12		100	а	100	а	500	k	0.17 J	0.47	0.019 J	0.40	190	11	3.8	2.3	U	0.47	0.028 J	0.46
Acenaphthylene	208-96-8	100	а	100	а	100	а	500	k	0.024 J	0.47	U	0.40	7.9 J	11	1.9 J	2.3	U	0.47	U	0.46
Acenaphthene	83-32-9	20		100	а	100	а	500	k	0.038 J	0.47	U	0.40	80	11	9.1	2.3	U	0.47	U	0.46
Fluorene	86-73-7	30		100	а	100	а	500	k	0.055 J	0.47	U	0.40	50	11	15	2.3	U	0.47	U	0.46
Phenanthrene	85-01-8	100		100	а	100	а	500	k	0.35 J	0.47	0.021 J	0.40	220	11	40	2.3	0.013 J	0.47	U	0.46
Anthracene	120-12-7	100	а	100	а	100	а	500	k	0.052 J	0.47	U	0.40	73	11	18	2.3	U	0.47	U	0.46
Fluoranthene	206-44-0	100	а	100	а	100	а	500	k	0.1 J	0.47	0.014 J	0.40	73	11	22	2.3	U	0.47	U	0.46
Pyrene	129-00-0	100		100	а	100	а	500	k	0.13 J	0.47	0.019 J	0.40	150	11	17	2.3	U	0.47	U	0.46
Benzo(a)anthracene	56-55-3	1	С	1	0	1	0	5.6		0.02 J	0.047	0.0082 J	0.040	51	1.1	12	0.23	U	0.047	U	0.046
Chrysene	218-01-9	1	С	1	0	3.9		56		0.026 J	0.47	0.0079 J	0.40	52	11	10	2.3	U	0.47	U	0.46
Benzo(b)fluoranthene	205-99-2	1	С	1	0	1	0	5.6		J	0.047	U	0.040	22	1.1	5	0.23	U	0.047	U	0.046
Benzo(k)fluoranthene	207-08-9	0.8	С	1		3.9		56		0.011 J	0.047	U	0.040	29	1.1	7.8	0.23	U	0.047	U	0.046
Benzo(a)pyrene	50-32-8	1	С	1	0	1	0	1	0	0.013 J	0.047	U	0.040	52	1.1	7.6	0.23	U	0.047	U	0.046
Indeno(1,2,3-cd)pyrene	193-39-5	0.5	С	0.5	0	0.5	0	5.6		U	0.047	U	0.040	13	1.1	2	0.23	U	0.047	U	0.046
Dibenz(a,h)anthracene	53-70-3	0.33	b	0.33	n	0.33	n	0.56		U	0.047	U	0.040	9.2	1.1	0.95	0.23	U	0.047	U	0.046
Benzo(g,h,i)perylene	191-24-2	100		100	а	100	а	500	k	0.0092 J	0.47	U	0.40	17	11	1.5	2.3	U	0.47	U	0.46
Total PAHs										0.9982		0.0891		1089.1		173.65		0.013		0.028	
Total Confident Conc. PAHs										0		0		1081		170		0		0	
Total Estimated Conc. BNA TICs										NA		NA		NA		NA		NA		NA	
TarGOST Signal at Depth										no dat	a	no dat	a	no da	ata	no d	lata	no dat	ta	no da	ta

Sample ID		NIV	201	EC D	art	375 D	om	ediatio	n	SB-129(15	15.5)	SB-129(26.	1-26.6)	SB-130_12	.0-13.0	SB-130_14	1.0-14.5	SB-130_	_16.5-1	7.0	SB-131_13.	5-14.0
Lab Sample Number	0.0001								• •	92194	1	92194	12	92340)3	9234	04	923	3405		92340	6
Sampling Depth (feet bgs)	CASRN							bjective	es	15.0 to 1	5.5	26.1 to 2	26.6	12.0 to	13.0	14.0 to	14.5	16.5	to 17.0	1	13.5 to 1	4.0
Sampling Date			ıab	oles 3	75-	·6.8(a)	an	id (b)	İ	05/19/0	18	05/19/	80	05/29/	80	05/28	/08	05/2	28/08		05/28/0	08
METALS (mg/kg)		UUSC	:0	RSCC)	RRSC	0	CSCO)	Result Q	MDL	Result Q	MDL	Result Q	MDL	Result Q	MDL	Result	Q I	MDL	Result Q	MDL
Aluminum	7429-90-5	NS		NS		NS		NS		19400	21.9	11200	18.4									
Antimony	7440-36-0	NS		NS		NS		NS		U	1.4	U	1.2									
Arsenic	7440-38-2	13	С	16	0	16	0	16	0	6.9	1.3	1.6	1.1									
Barium	7440-39-3	350	С	350	0	400		400		136	0.37	92.2	0.31									
Beryllium	7440-41-7	7.2		14		72		590		0.86	0.028	0.63	0.024									
Cadmium	7440-43-9	2.5	С	2.5	0	4.3		9.3		U	0.14	U	0.12									
Calcium	7440-70-2	NS		NS		NS		NS		19800	21.1	24800	17.7									
Chromium	7440-47-3	30	С	36		180		1500		26.1	0.79	15.0	0.67									
Cobalt	7440-48-4	NS		NS		NS		NS		13.7 B	0.99	6.3 B	0.83									
Copper	7440-50-8	50		270		270		270		31.9	0.88	6.0	0.74									
Iron	7439-89-6	NS		NS		NS		NS		33900	11.2	16200	9.4									
Lead	7439-92-1	63	С	400		400		1000		17.7	0.62	10.1	0.52									
Magnesium	7439-95-4	NS		NS		NS		NS		10100	19.8	6020	16.6									
Manganese	7439-96-5	1600	С	2000	0	2000	0	10000	m	722	0.82	427	0.69									
Mercury	7439-97-6	0.18	С	0.81	q	0.81	q	2.8	q	U	0.024	U	0.020									
Nickel	7440-02-0	30		140		310		310		28.6	1.1	14.5	0.93									
Potassium	7440-09-7	NS		NS		NS		NS		4090	36.8	3440	30.8									
Selenium	7782-49-2	3.9	С	36		180		1500		U	1.4	U	1.1									
Silver	7440-22-4	2		36		180		1500		U	0.34	U	0.29									
Sodium	7440-23-5	NS		NS		NS		NS		165 B	102	178 B	85.7									
Thallium	7440-28-0	NS		NS		NS		NS		U	1.4	U	1.1									
Vanadium	7440-62-2	NS		NS		NS		NS		34.1	0.42	23.7	0.36									
Zinc	7440-66-6	109	С	2200		10000	m	10000	m	74.8	1.6	32.8	1.4									
WET CHEMISTRY		UUSC	:0	RSCC)	RRSC	0	CSCO)	Result Q	MDL	Result Q	MDL	Result Q	MDL	Result Q	MDL	Result	Q I	MDL	Result Q	MDL
TotalCyanide - mg/kg	57-12-5	27		27		27		27		U	0.5	U	0.5									

Sample ID		NVCI		ort	375 Re		diatio	_	SB-132(9.	0-9.5)	SB-132(11.	5-12.0)	SB-133(8	.4-8.9)	SB-133(10.5-11.0)	SB-133(14.0-	-14.5)	SB-134(8.5-9.0)
Lab Sample Number									92195	1	92195	2	9219	53	921954	921955		921956
Sampling Depth (feet bgs)	CASRN				leanup			es	9.0 to 9).5	11.5 to 1	2.0	8.4 to	8.9	10.5 to 11.0	14.0 to 14	.5	8.5 to 9.0
Sampling Date		Ta	ables 3	375	-6.8(a)	and	d (b)		05/20/0		05/20/		05/20/		05/20/08	05/20/08		05/20/08
VOLATILE COMPOUNDS (GC/MS)		UUSCO	RSC	0	RRSCC)	CSCO		Result Q		Result Q		Result C		Result Q MDL	Result Q	MDL	Result Q MDL
Chloromethane	74-87-3	NS	NS	T	NS		NS		U	0.58		0.0067	U	0.72	U 0.0055		0.0064	U 0.0070
Bromomethane	74-83-9	NS	NS		NS		NS		Ü	0.58		0.0067	Ü	_	U 0.0055	1 - 1	0.0064	U 0.0070
VinylChloride	75-01-4	0.02	0.21		0.9		13		Ü	0.58		0.0067	Ū	0.72	U 0.0055		0.0064	U 0.0070
Chloroethane	75-00-3	NS	NS		NS		NS		U	0.58		0.0067	U	0.72	U 0.0055		0.0064	U 0.0070
MethyleneChloride	75-09-2	0.05	51		100	а	500	k	U	0.35	0.048	0.0040	Ü	0.43	0.029 0.0033	0.018 0	0.0038	0.028 0.0042
Acetone	67-64-1	0.05	100	а	100	k	500	k	U	0.58	0.14	0.0067	U	0.72	0.032 0.0055		0.0064	0.016 0.0070
CarbonDisulfide	75-15-0	NS	NS		NS		NS		U	0.58	0.0014 J	0.0067	U	0.72	U 0.0055	U O	0.0064	U 0.0070
1,1-Dichloroethene	75-35-4	0.33	100	а	100	а	500	k	U	0.23	U	0.0027	U	0.29	U 0.0022	υo	0.0026	U 0.0028
1,1-Dichloroethane	75-34-3	0.27	19		26		240		U	0.58	U	0.0067	U	0.72		U 0	0.0064	U 0.0070
trans-1,2-Dichloroethene	156-60-5	0.19	100	а	100	а	500	k	U	0.58	U	0.0067	U	0.72	U 0.0055	U 0	0.0064	U 0.0070
cis-1,2-Dichloroethene	156-59-2	0.25	59		100	а	500	k	U	0.58	U	0.0067	U	0.72	U 0.0055	U 0	0.0064	U 0.0070
Chloroform	67-66-3	0.37	10		49		350		U	0.58		0.0067	U	0.72	U 0.0055	U 0	0.0064	U 0.0070
1,2-Dichloroethane	107-06-2	0.02	2.3		3.1		30		U	0.23	U	0.0027	U	0.29	U 0.0022	U 0	0.0026	U 0.0028
2-Butanone	78-93-3	0.12	100	а	100	а	500	k	U	0.58	0.0028 J	0.0067	U	0.72	U 0.0055	U 0	0.0064	U 0.0070
1,1,1-Trichloroethane	71-55-6	0.68	100	а	100	а	500	k	U	0.58	U	0.0067	U	0.72	U 0.0055	U 0	0.0064	U 0.0070
CarbonTetrachloride	56-23-5	0.76	1.4		2.4		22		U	0.23	U	0.0027	U	0.29			0.0026	U 0.0028
Bromodichloromethane	75-27-4	NS	NS		NS		NS		U	0.12	U	0.0013	U	0.14	U 0.0011	U 0	0.0013	U 0.0014
1,2-Dichloropropane	78-87-5	NS	NS		NS		NS		U	0.12	U	0.0013	U	0.14	U 0.0011	U 0	0.0013	U 0.0014
cis-1,3-Dichloropropene	10061-01-5	NS	NS		NS		NS		U	0.58	U	0.0067	U	0.72	U 0.0055	U 0	0.0064	U 0.0070
Trichloroethene	79-01-6	0.47	10		21		200		U	0.12	U	0.0013	U	0.14	U 0.0011	U 0	0.0013	U 0.0014
Dibromochloromethane	124-48-1	NS	NS		NS		NS		U	0.58	U	0.0067	U	0.72	U 0.0055	U 0	0.0064	U 0.0070
1,1,2-Trichloroethane	79-00-5	NS	NS		NS		NS		U	0.35	U	0.0040	U	0.43	U 0.0033	U 0	0.0038	U 0.0042
Benzene	71-43-2	0.06	2.9		4.8		44		U	0.12	U	0.0013	U	0.14	U 0.0011	U 0	0.0013	U 0.0014
trans-1,3-Dichloropropene	10061-02-6	NS	NS		NS		NS		U	0.58	U	0.0067	U	U =	U 0.0055	U 0	0.0064	U 0.0070
Bromoform	75-25-2	NS	NS		NS		NS		U	0.46	U	0.0054	U	0.58	U 0.0044	U 0	0.0051	U 0.0056
4-Methyl-2-Pentanone	108-10-1	NS	NS		NS		NS		U	0.58	U	0.0067	U	0.72	U 0.0055	U 0	0.0064	U 0.0070
2-Hexanone	591-78-6	NS	NS		NS		NS		U	0.58		0.0067	U	0.72			0.0064	U 0.0070
Tetrachloroethene	127-18-4	1.3	5.5		19		150		U	0.12	U	0.0013	U	0.14	U 0.0011	U 0	0.0013	U 0.0014
1,1,2,2-Tetrachloroethane	79-34-5	NS	NS		NS		NS		U	0.12		0.0013	U	0.14	U 0.0011		0.0013	U 0.0014
Toluene	108-88-3	0.7	100	а	100	а	500	k	U	0.58		0.0067	0.24 J	0.72	U 0.0055		0.0064	U 0.0070
Chlorobenzene	108-90-7	1.1	100	а	100	а	500	k	U	0.58		0.0067	U	· · · -	U 0.0055		0.0064	U 0.0070
Ethylbenzene	100-41-4	1	30		41		390		U	0.46		0.0054	9.4	0.58		U 0	0.0051	U 0.0056
Styrene	100-42-5	NS	NS		NS		NS		U	0.58		0.0067	U	0.72	U 0.0055		0.0064	U 0.0070
Xylene(Total)	1330-20-7	0.26	100	а	100	а	500	k	U	0.58	U	0.0067	13	0.72	U 0.0055	U 0	0.0064	U 0.0070
MTBE	1634-04-4	0.93	62		100	а	500	k										
TBA		NS	NS	ot	NS		NS	$oxed{oxed}$										
Total VOC									0		0.1922		22.64		0.061	0.048		0.044
Total BTEX									0		0		22.4		0	0		0
Total Confident Conc. VOAs				ot				$oxed{oxed}$	0		0.2		22		0.1	0		0
Total Estimated Conc. VOA TICs				Ш				Ш	14		0		557		0	0		0

Sample ID		NV	2D	EC D	art	375 R	am/	adiatio	n	SB-132(9.	0-9.5)	SB-132(11.	5-12.0)	SB-133(8.	4-8.9)	SB-133(10.5	5-11.0)	SB-133(14	1.0-14.5)	SB-134(8.5-9.0)
Lab Sample Number	CASRN		_	-		-				92195	1	92195	2	92195	3	921954	4	9219	55	921956
Sampling Depth (feet bgs)	CASRN	PIO	grai	11 50	11 C	leanup) U	ojective	35	9.0 to 9	9.5	11.5 to 1	2.0	8.4 to 8	3.9	10.5 to 1	1.0	14.0 to	14.5	8.5 to 9.0
Sampling Date			ıar	oies 3	6/5	-6.8(a)	an	a (b)	Ī	05/20/0	08	05/20/0	08	05/20/	08	05/20/0	18	05/20	/08	05/20/08
PAH (mg/kg)		UUSC	0	RSC	С	RRSCO)	CSCO		Result Q	MDL	Result Q	MDL	Result Q	MDL	Result Q	MDL	Result	Q MDL	Result Q MDL
Naphthalene	91-20-3	12		100	а	100	а	500	k	11	3.9	0.22 J	0.47	3.6 J	5.0	0.061 J	0.38	l	J 0.45	U 0.47
Acenaphthylene	208-96-8	100	а	100	а	100	а	500	k	1.8 J	3.9	0.3 J	0.47	2.8 J	5.0	0.074 J	0.38	l	J 0.45	U 0.47
Acenaphthene	83-32-9	20		100	а	100	а	500	k	14	3.9	0.48	0.47	16	5.0	0.046 J	0.38	U	J 0.45	U 0.47
Fluorene	86-73-7	30		100	а	100	а	500	k	8.8	3.9	0.66	0.47	14	5.0	0.05 J	0.38	ι	J 0.45	U 0.47
Phenanthrene	85-01-8	100		100	а	100	а	500	k	50	3.9	0.78	0.47	47	5.0	0.19 J	0.38	0.0096	0.45	U 0.47
Anthracene	120-12-7	100	а	100	а	100	а	500	k	15	3.9		0.47	15	5.0	0.24 J	0.38	l	J 0.45	U 0.47
Fluoranthene	206-44-0	100	а	100	а	100	а	500	k	16	3.9		0.47	39	5.0	1.7	0.38	l	J 0.45	U 0.47
Pyrene	129-00-0	100		100	а	100	а	500	k	39	3.9		0.47	82	5.0	1.3	0.38	ι	J 0.45	U 0.47
Benzo(a)anthracene	56-55-3	1	С	1	0	1	0	5.6		13	0.39	2.9	0.047	23	0.50	0.72	0.038	l	J 0.045	U 0.047
Chrysene	218-01-9	1	С	1	0	3.9		56		12	3.9		0.47	27	5.0	0.58	0.38	l	J 0.45	U 0.47
Benzo(b)fluoranthene	205-99-2	1	С	1	0	1	0	5.6		4.6	0.39	0.88	0.047	8.1	0.50	0.27	0.038	l	J 0.045	U 0.047
Benzo(k)fluoranthene	207-08-9	8.0	С	1		3.9		56		6	0.39	1.8	0.047	11	0.50	0.37	0.038	ι	J 0.045	U 0.047
Benzo(a)pyrene	50-32-8	1	С	1	0	1	0	1	0	11	0.39	1.6	0.047	20	0.50	0.39	0.038	U	J 0.045	U 0.047
Indeno(1,2,3-cd)pyrene	193-39-5	0.5	С	0.5	0	0.5	0	5.6		4.2	0.39	0.36	0.047	7.1	0.50	0.15	0.038	U	J 0.045	U 0.047
Dibenz(a,h)anthracene	53-70-3	0.33	b	0.33	n	0.33	n	0.56		1.7	0.39	0.22	0.047	3.9	0.50	0.074	0.038	U	J 0.045	U 0.047
Benzo(g,h,i)perylene	191-24-2	100		100	а	100	а	500	k	6.5	3.9	0.3 J	0.47	10	5.0	0.14 J	0.38	U	J 0.45	U 0.47
Total PAHs								•		214.6		23.4		329.5		6.355		0.0096		0
Total Confident Conc. PAHs										212		22		323		5.5		0		0
Total Estimated Conc. BNA TICs								•		NA		NA		NA		NA		NA		NA
TarGOST Signal at Depth										no dat	a	no dat	а	no da	ta	no data	a	no d	ata	no data

Sample ID		NVC	:DE	C D	art	375 D	75 Remediation S				0-9.5)	SB-132(11.5	5-12.0)	SB-133(8	.4-8.9)	SB-133(10.	5-11.0)	SB-133(14	.0-14.5)	SB-134(8.	.5-9.0)
Lab Sample Number	CASRN			-		-				92195	1	92195	2	9219	53	92195	54	9219	55	92195	56
Sampling Depth (feet bgs)	CASRN							bjective	5	9.0 to 9	9.5	11.5 to 1	2.0	8.4 to	8.9	10.5 to 1	11.0	14.0 to	14.5	8.5 to 9	9.0
Sampling Date		ı	ab	ies 3	75	·6.8(a)	an	a (b)	Ī	05/20/0	08	05/20/0	8	05/20/	/08	05/20/	08	05/20	/08	05/20/	/08
METALS (mg/kg)		UUSCO)	RSCC	Э	RRSCO)	CSCO		Result Q	MDL	Result Q	MDL	Result C	MDL	Result Q	MDL	Result (Q MDL	Result Q	MDL
Aluminum	7429-90-5	NS		NS		NS		NS									-				
Antimony	7440-36-0	NS		NS		NS		NS													
Arsenic	7440-38-2	13	С	16	0	16	0	16	0								-				
Barium	7440-39-3	350	С	350	0	400		400													
Beryllium	7440-41-7	7.2		14		72		590									-				
Cadmium	7440-43-9	2.5	С	2.5	0	4.3		9.3													
Calcium	7440-70-2	NS		NS		NS		NS													
Chromium	7440-47-3	30	С	36		180		1500													
Cobalt	7440-48-4	NS		NS		NS		NS													
Copper	7440-50-8	50		270		270		270													
Iron	7439-89-6	NS		NS		NS		NS													
Lead	7439-92-1	63	С	400		400		1000													
Magnesium	7439-95-4	NS		NS		NS		NS													
Manganese	7439-96-5	1600	С	2000	0	2000	0	10000	m												
Mercury	7439-97-6	0.18	С	0.81	q	0.81	q	2.8	q												
Nickel	7440-02-0	30		140		310		310													
Potassium	7440-09-7	NS		NS		NS		NS													
Selenium	7782-49-2	3.9	С	36		180		1500													
Silver	7440-22-4	2		36		180		1500													
Sodium	7440-23-5	NS		NS		NS		NS													
Thallium	7440-28-0	NS		NS		NS		NS													
Vanadium	7440-62-2	NS		NS		NS		NS													
Zinc	7440-66-6	109	С	2200		10000	m	10000	m												
WET CHEMISTRY		UUSCO)	RSCC	o	RRSCO)	CSCO		Result Q	MDL	Result Q	MDL	Result C	MDL	Result Q	MDL	Result (Q MDL	Result Q	MDL
TotalCyanide - mg/kg	57-12-5	27		27		27		27													

Sample ID		NYSD	NEC D	ort '	275 D	- m	diatio	_	SB-134(12.0)-12.5)	SB-138	(9.0	-9.5)	SB-138(14-14.5)	SB-139_	13.	0-13.5	SB-139_1	6.0-16.	SB-139_	17.0-17.5
Lab Sample Number	CASRN								92195	7	921	958	. 1	921959	923			923	111	923	
Sampling Depth (feet bgs)	CASRN	Progra						es -	12.0 to 1	2.5	9.0 t	o 9.	5	14.0 to 14.5	13.0 t	o 1	3.5	16.0 to	16.5	17.0 t	o 17.5
Sampling Date	•	Ia	bles 3	75-	6.8(a)	and	(d) b	-	05/20/0		05/2			05/20/08	05/2			05/2		05/2	
VOLATILE COMPOUNDS (GC/MS)		UUSCO	RSCC)	RRSCO		CSCO		Result Q	MDL	Result	Q	MDL	Result Q MDL	Result	Q	MDL	Result	JM C	DL Result	Q MDL
Chloromethane	74-87-3	NS	NS		NS		NS			0.0070		U	0.54	U 0.0064		U	3.3		J 0.00		J 0.0069
Bromomethane	74-83-9	NS	NS		NS		NS			0.0070		U	0.54	U 0.0064		Ū	3.3	i	J 0.00	71	J 0.0069
VinylChloride	75-01-4	0.02	0.21		0.9		13		U	0.0070		U	0.54	U 0.0064		U	3.3	l	J 0.00	71	J 0.0069
Chloroethane	75-00-3	NS	NS		NS		NS		U	0.0070		U	0.54	U 0.0064		U	3.3	l	J 0.00	71	J 0.0069
MethyleneChloride	75-09-2	0.05	51		100	а	500	k	U	0.0042		U	0.33	0.018 0.0038		U	2.0	0.014	0.00	13 0.02	0.0042
Acetone	67-64-1	0.05	100	а	100	k	500	k	0.018	0.0070		U	0.54	0.032 0.0064		U	3.3	l	J 0.00	71	J 0.0069
CarbonDisulfide	75-15-0	NS	NS		NS		NS		U	0.0070		U	0.54	U 0.0064		U	3.3	0.0013	0.00	71 0.0017	J 0.0069
1,1-Dichloroethene	75-35-4	0.33	100	а	100	а	500	k	U	0.0028		U	0.22	U 0.0026		U	1.3	Į	J 0.00	28	J 0.0028
1,1-Dichloroethane	75-34-3	0.27	19		26		240		U	0.0070		U	0.54	U 0.0064		U	3.3	l	J 0.00	71	J 0.0069
trans-1,2-Dichloroethene	156-60-5	0.19	100	а	100	а	500	k	U	0.0070		U	0.54	U 0.0064		U	3.3	l	J 0.00	71	J 0.0069
cis-1,2-Dichloroethene	156-59-2	0.25	59		100	а	500	k	U	0.0070		U	0.54	U 0.0064		U	3.3	l	J 0.00	71	J 0.0069
Chloroform	67-66-3	0.37	10		49		350			0.0070		U	0.54	U 0.0064		U	3.3	l	J 0.00	71	J 0.0069
1,2-Dichloroethane	107-06-2	0.02 c	2.3		3.1		30			0.0028		U	0.22	U 0.0026		U	1.3	l	0.00	28	J 0.0028
2-Butanone	78-93-3	0.12	100	а	100	а	500	k		0.0070		U	0.54	U 0.0064		U	3.3	l	0.00	71	J 0.0069
1,1,1-Trichloroethane	71-55-6	0.68	100	а	100	а	500	k	U	0.0070		U	0.54	U 0.0064		U	3.3	l	J 0.00	71	J 0.0069
CarbonTetrachloride	56-23-5	0.76	1.4		2.4		22		U	0.0028		U	0.22	U 0.0026		U	1.3	l	0.00	28	J 0.0028
Bromodichloromethane	75-27-4	NS	NS		NS		NS			0.0014		U	0.11	U 0.0013		U	0.66	l	J 0.00	14	J 0.0014
1,2-Dichloropropane	78-87-5	NS	NS		NS		NS		U	0.0014		U	0.11	U 0.0013		U	0.66	l	0.00	14	J 0.0014
cis-1,3-Dichloropropene	10061-01-5	NS	NS		NS		NS			0.0070		U	0.54	U 0.0064		U	3.3	l	0.00		J 0.0069
Trichloroethene	79-01-6	0.47	10		21		200			0.0014		U	0.11	U 0.0013		U	0.66	ι	0.00		J 0.0014
Dibromochloromethane	124-48-1	NS	NS		NS		NS		U	0.0070		U	0.54	U 0.0064		U	3.3	l	0.00	71	J 0.0069
1,1,2-Trichloroethane	79-00-5	NS	NS		NS		NS			0.0042		U	0.33	U 0.0038		U	2.0	l	J 0.00		J 0.0042
Benzene	71-43-2	0.06	2.9		4.8		44			0.0014		U	0.11	0.0044 0.0013		U	0.66	l	0.00		
trans-1,3-Dichloropropene	10061-02-6	NS	NS		NS		NS			0.0070		U	0.54	U 0.0064		U	3.3	l	0.00		J 0.0069
Bromoform	75-25-2	NS	NS		NS		NS			0.0056		U	0.44	U 0.0051		U	2.6	l	J 0.00		J 0.0055
4-Methyl-2-Pentanone	108-10-1	NS	NS		NS		NS			0.0070		U	0.54	U 0.0064		U	3.3		0.00		J 0.0069
2-Hexanone	591-78-6	NS	NS		NS		NS			0.0070		U	0.54	U 0.0064		U	3.3	l	J 0.00		J 0.0069
Tetrachloroethene	127-18-4	1.3	5.5		19		150			0.0014		U	0.11	U 0.0013		U	0.66	l	J 0.00		J 0.0014
1,1,2,2-Tetrachloroethane	79-34-5	NS	NS		NS		NS			0.0014		U	0.11	U 0.0013		U	0.66		J 0.00		J 0.0014
Toluene	108-88-3	0.7	100	а	100	а	500	k		0.0070		U	0.54	U 0.0064	0.28	J	3.3	,	J 0.00		J 0.0069
Chlorobenzene	108-90-7	1.1	100	а	100	а	500	k		0.0070		U	0.54	U 0.0064		U	3.3	l	J 0.00		J 0.0069
Ethylbenzene	100-41-4	1	30		41		390			0.0056		U	0.44	U 0.0051	1.5	J	2.6	ι	J 0.00		J 0.0055
Styrene	100-42-5	NS	NS		NS		NS			0.0070		U	0.54	U 0.0064		U	3.3	ι	J 0.00		J 0.0069
Xylene(Total)	1330-20-7	0.26	100	а	100	а	500	k	U	0.0070	0.075	J	0.54	0.0017 J 0.0064	3.1	J	3.3	l	J 0.00	71	J 0.0069
MTBE	1634-04-4	0.93	62		100	а	500	k													
TBA		NS	NS		NS		NS														
Total VOC				Щ					0.018		0.075			0.0561	4.88			0.0153		0.0217	
Total BTEX				Ш				Ш	0		0.075	_		0.0061	4.6			0		0	
Total Confident Conc. VOAs				Ц					0		0			0.1	0	_		0		0	
Total Estimated Conc. VOA TICs				Ш				Ш	0		2.3	Ш	ļ	0	244	_		0		0	

Sample ID		NVC	יחב	C D	art '	375 D	ome	ediatio	'n	SB-134(12.0)-12.5)	SB-138(9.	0-9.5)	SB-138(14-14.5)	SB-139_13	3.0-13.5	SB-139_16	.0-16.5	SB-139_17.	.0-17.5
Lab Sample Number	CASRN	_		-						92195	7	92195	8	921959	9234	10	92341	1	92341	2
Sampling Depth (feet bgs)	CASKN	Flog	lan	1001	7 (CI	COCO	J ()	ojectiv	es	12.0 to 1	2.5	9.0 to 9	9.5	14.0 to 14.5	13.0 to	13.5	16.0 to 1	16.5	17.0 to 1	7.5
Sampling Date	•	I	ab	ies 3	/5-	6.8(a)	an	a (b)		05/20/0)8	05/20/	08	05/20/08	05/28	/08	05/28/	08	05/28/0	08
PAH (mg/kg)		UUSCC)	RSCC)	RRSC	0	CSC	Э	Result Q	MDL	Result Q	MDL	Result Q MDL	Result C	MDL	Result Q	MDL	Result Q	MDL
Naphthalene	91-20-3	12		100	а	100	а	500	k	U	0.48	10	1.9	U 0.44	59	27	0.076 J	0.48	U	0.47
Acenaphthylene	208-96-8	100	а	100	а	100	а	500	k	U	0.48	1.3 J	1.9	U 0.44	15 J	27	0.012 J	0.48	U	0.47
Acenaphthene	83-32-9	20		100	а	100	а	500	k	U	0.48	7.3	1.9	U 0.44	63	27	0.047 J	0.48	U	0.47
Fluorene	86-73-7	30		100	а	100	а	500	k	U	0.48	6.8	1.9	U 0.44	52	27	0.037 J	0.48	U	0.47
Phenanthrene	85-01-8	100		100	а	100	а	500	k	U	0.48	28	1.9	U 0.44	300	27	0.1 J	0.48	U	0.47
Anthracene	120-12-7	100	а	100	а	100	а	500	k	U	0.48	8	1.9	U 0.44	70	27	0.041 J	0.48	U	0.47
Fluoranthene	206-44-0	100	а	100	а	100	а	500	k	U	0.48	12	1.9	U 0.44		27	0.12 J	0.48	U	0.47
Pyrene	129-00-0	100		100	а	100	а	500	k	U	0.48	26	1.9	U 0.44	250	27	0.2 J	0.48	U	0.47
Benzo(a)anthracene	56-55-3	1	С	1	0	1	0	5.6		U	0.048	8.4	0.19	U 0.044	89	2.7	0.083	0.048	U	0.047
Chrysene	218-01-9	1	С	1	0	3.9		56		U	0.48	8.6	1.9	U 0.44	97	27	0.095 J	0.48	U	0.47
Benzo(b)fluoranthene	205-99-2	1	С	1	0	1	0	5.6		U	0.048	2.9	0.19	U 0.044	48	2.7	0.043 J	0.048	U	0.047
Benzo(k)fluoranthene	207-08-9	0.8	С	1		3.9		56		U	0.048	4.3	0.19	U 0.044	50	2.7	0.051	0.048	U	0.047
Benzo(a)pyrene	50-32-8	1	С	1	0	1	0	1	0	U	0.048	7	0.19	U 0.044	92	2.7	0.084	0.048	U	0.047
Indeno(1,2,3-cd)pyrene	193-39-5	0.5	С	0.5	0	0.5	0	5.6		U	0.048	2.5	0.19	U 0.044	26	2.7	0.028 J	0.048	U	0.047
Dibenz(a,h)anthracene	53-70-3	0.33	b	0.33	n	0.33	n	0.56		U	0.048	1.6	0.19	U 0.044	20	2.7	0.016 J	0.048	U	0.047
Benzo(g,h,i)perylene	191-24-2	100		100	а	100	а	500	k	U	0.48	3.3	1.9	U 0.44	37	27	0.037 J	0.48	U	0.47
Total PAHs						•				0		138		0	1378		1.07		0	
Total Confident Conc. PAHs										0		136		0	1363		0.2		0	
Total Estimated Conc. BNA TICs						•				NA		NA		NA	NA		NA		NA	
TarGOST Signal at Depth				•		•		·		no dat	а	no dat	ta	no data	no da	ata	no da	ta	no dat	a

Sample ID		NIVO	DE	C Da	rt 3	275 Da	m	ediation	,	SB-134(1	2.0)-12.5)	SB-138(9	.0-9.5)	SB-138(14-14.	5)	SB-139_13	3.0-13.5	SB-139_1	6.0-16.5	SB-139_17	.0-17.5
Lab Sample Number	CASRN								- 1	921	957	7	9219	58	921	959		9234	10	9234	111	92341	2
Sampling Depth (feet bgs)	CASRN							ojective	s	12.0 to	o 12	2.5	9.0 to	9.5	14.0 t	o 14.5		13.0 to	13.5	16.0 to	16.5	17.0 to 1	17.5
Sampling Date		ı	able	es 3 <i>i</i>	/5-6	6.8(a)	an	a (b)	Ī	05/2	0/0	8	05/20/	08	05/2	0/08		05/28	/08	05/28	3/08	05/28/0	08
METALS (mg/kg)		UUSCC)	RSCO		RRSCO)	CSCO		Result	Q	MDL	Result C	MDI	Result	Q M	DL	Result C	MDL	Result 0	MDL	Result Q	MDL
Aluminum	7429-90-5	NS		NS		NS		NS						-									
Antimony	7440-36-0	NS		NS		NS		NS						-									
Arsenic	7440-38-2	13	С	16	0	16	0	16	0					-									
Barium	7440-39-3	350	с 3	350	0	400		400						-									
Beryllium	7440-41-7	7.2		14		72		590						-									
Cadmium	7440-43-9	2.5	С	2.5	0	4.3		9.3						-									
Calcium	7440-70-2	NS		NS		NS		NS						-									
Chromium	7440-47-3	30	С	36		180		1500						-									
Cobalt	7440-48-4	NS		NS		NS		NS						-									
Copper	7440-50-8	50		270		270		270						-									
Iron	7439-89-6	NS		NS		NS		NS						-									
Lead	7439-92-1	63		400		400		1000						-									
Magnesium	7439-95-4	NS		NS		NS		NS						-									
Manganese	7439-96-5	1600	c 2	2000	0	2000	0		m					-									
Mercury	7439-97-6	0.18	c C	0.81	q	0.81	q	2.8	q					-									
Nickel	7440-02-0	30		140		310		310						-									
Potassium	7440-09-7	NS		NS		NS		NS						-									
Selenium	7782-49-2	3.9		36		180		1500						-									
Silver	7440-22-4	2		36		180		1500						-									
Sodium	7440-23-5	NS		NS		NS		NS						-									
Thallium	7440-28-0	NS		NS		NS		NS						-									
Vanadium	7440-62-2	NS		NS		NS		NS						-									
Zinc	7440-66-6	109		200			m	10000						-									
WET CHEMISTRY		UUSCC		RSCO		RRSCO)	CSCO		Result	Q	MDL	Result C	MDI	Result	Q M	DL	Result C	MDL	Result (Q MDL	Result Q	MDL
TotalCyanide - mg/kg	57-12-5	27		27		27		27															

Sample ID		NIVC	יחבי	` Do	rt 2	75 D	0 m/	ediatio	_	SB-140_	9.5-	10.0	SB-140_	12	.0-12.5	SB-140_17.	0-17.5	SB-141_	12.5	5-13.0	SB-141_	14.	.8-15.3	SB-142_8	3.2-8.7
Lab Sample Number										923	388		923	338	39	92339	0	923	391		923	339	2	92339	95
Sampling Depth (feet bgs)	CASRN							jective	es	9.5 to	10.	0	12.0	to 1	12.5	17.0 to 1	7.5	12.5 t	o 13	3.0	14.8	to 1	5.3	8.2 to 8	8.7
Sampling Date		Т	able	es 37	' 5-6	8.8(a)	an	d (b)	-	05/2			05/2			05/28/0		05/2			05/2			05/29/	
VOLATILE COMPOUNDS (GC/MS)		UUSCO)	RSCO		RRSCO	Э (CSCO		Result		MDL	Result			Result Q	MDL	Result		MDL	Result			Result Q	
Chloromethane	74-87-3	NS		NS		NS		NS		l	U	0.74		U	0.0057		0.0065		U	0.79		U	0.0065		0.0081
Bromomethane	74-83-9	NS	_	NS		NS	l l	NS		l	Ū	0.74		Ū	0.0057		0.0065		Ū	0.79		Ū	0.0065	Ü	0.0081
VinylChloride	75-01-4	0.02	0	.21		0.9		13		l	U	0.74		U	0.0057	U	0.0065		U	0.79		U	0.0065	U	0.0081
Chloroethane	75-00-3	NS		NS		NS		NS		l	U	0.74		U	0.0057		0.0065		U	0.79		U	0.0065	U	0.0081
MethyleneChloride	75-09-2	0.05		51		100	а	500	k	l	U	0.45	0.0037		0.0034	0.012	0.0039		U	0.47	0.028		0.0039	0.016	0.0049
Acetone	67-64-1	0.05	1	00	а	100	k	500	k	l	U	0.74		U	0.0057	U	0.0065		U	0.79	0.08	В	0.0065	0.02 B	0.0081
CarbonDisulfide	75-15-0	NS		NS		NS		NS		l	U	0.74		U	0.0057	U	0.0065		U	0.79	0.0008	J	0.0065	0.0014 J	0.0081
1,1-Dichloroethene	75-35-4	0.33	1	00	а	100	а	500	k	l	U	0.30		U	0.0023	U	0.0026		U	0.32		U	0.0026	U	0.0032
1,1-Dichloroethane	75-34-3	0.27		19		26		240		l	U	0.74		U	0.0057	U	0.0065		U	0.79		U	0.0065	U	0.0081
trans-1,2-Dichloroethene	156-60-5	0.19	1	00	а	100	а	500	k	l	U	0.74		U	0.0057	U	0.0065		U	0.79		U	0.0065	U	0.0081
cis-1,2-Dichloroethene	156-59-2	0.25		59		100	а	500	k	l	U	0.74		U	0.0057	U	0.0065		U	0.79		U	0.0065	U	0.0081
Chloroform	67-66-3	0.37		10		49		350		l	U	0.74		U	0.0057	U	0.0065		U	0.79		U	0.0065	U	0.0081
1,2-Dichloroethane	107-06-2	0.02	С 2	2.3		3.1		30		l	U	0.30		U	0.0023	U	0.0026		U	0.32		U	0.0026	U	0.0032
2-Butanone	78-93-3	0.12	1	00	а	100	а	500	k	l	U	0.74		U	0.0057	U	0.0065		U	0.79		U	0.0065	U	0.0081
1,1,1-Trichloroethane	71-55-6	0.68	1	00	а	100	а	500	k	l	U	0.74		U	0.0057	U	0.0065		U	0.79		U	0.0065	U	0.0081
CarbonTetrachloride	56-23-5	0.76		1.4		2.4		22		l	U	0.30		U	0.0023	U	0.0026		U	0.32		U	0.0026	U	0.0032
Bromodichloromethane	75-27-4	NS		NS		NS		NS		l	U	0.15		U	0.0011	U	0.0013		U	0.16		U	0.0013	U	0.0016
1,2-Dichloropropane	78-87-5	NS		NS		NS		NS		l	U	0.15		U	0.0011	U	0.0013		U	0.16		U	0.0013	U	0.0016
cis-1,3-Dichloropropene	10061-01-5	NS		NS		NS		NS		l	U	0.74		C	0.0057	U	0.0065		U	0.79		U	0.0065	U	
Trichloroethene	79-01-6	0.47		10		21		200		l	U	0.15		C	0.0011	U	0.0013		U	0.16		U	0.0013	U	0.0016
Dibromochloromethane	124-48-1	NS		NS		NS		NS		l	U	0.74		U	0.0057	U	0.0065		U	0.79		U	0.0065	U	0.0081
1,1,2-Trichloroethane	79-00-5	NS		NS		NS		NS		l	U	0.45		U	0.0034		0.0039		U	0.47		U	0.0039	U	
Benzene	71-43-2	0.06	1	2.9		4.8		44		0.1	J	0.15		U	0.0011		0.0013		U	0.16		U	0.0013	U	0.0016
trans-1,3-Dichloropropene	10061-02-6	NS		NS		NS		NS		l	U	0.74		U	0.000.		0.0065		U	0.79		U	0.0065	U	0.000.
Bromoform	75-25-2	NS		NS		NS		NS		l	U	0.59		U	0.0045		0.0052		U	0.63		U	0.0052		0.0065
4-Methyl-2-Pentanone	108-10-1	NS	_	NS		NS		NS		l	U	0.74		U	0.0057		0.0065		U	0.79		U	0.0065	U	0.0081
2-Hexanone	591-78-6	NS		NS		NS		NS		l	U	0.74		U	0.0057		0.0065		U	0.79		U	0.0065	U	0.0081
Tetrachloroethene	127-18-4	1.3		5.5		19		150		l	U	0.15		U	0.0011	U	0.0013		U	0.16		U	0.0013	U	0.0016
1,1,2,2-Tetrachloroethane	79-34-5	NS		NS		NS		NS		l	U	0.15		U	0.0011	U	0.0013		U	0.16		U	0.0013	U	
Toluene	108-88-3	0.7		00		100	а	500	k	1.3		0.74		U	0.0057		0.0065	0.1	_	0.79		U	0.0065	U	
Chlorobenzene	108-90-7	1.1		00	а	100	а	500	k	l	U	0.74		_	0.000.		0.0065		U	0.79		U	0.0065	U	0.0081
Ethylbenzene	100-41-4	1		30		41		390		2.4		0.59		U	0.0045		0.0052	1.5		0.63		U	0.0052	0.0008 J	0.0065
Styrene	100-42-5	NS		NS	_	NS		NS		l	U	0.74		U	0.0057		0.0065		U	0.79		U	0.0065	U	0.0081
Xylene(Total)	1330-20-7	0.26		00		100	а	500	k	5		0.74		U	0.0057	U	0.0065	3.4		0.79		U	0.0065	0.0026 J	0.0081
MTBE	1634-04-4	0.93		62		100	а	500	k																
TBA		NS		NS		NS		NS																	
Total VOC							Щ		Ш	8.8			0.0037			0.012		5			0.1088			0.0408	
Total BTEX							Ш		Ш	7.5			0			0		4.9			0	-		0.0034	
Total Confident Conc. VOAs							Ш		Ш	8.7			0			0		4.9			0			0	
Total Estimated Conc. VOA TICs			\perp				Ш		Ш	133			0	Ш		0		130			0			8.0	

Sample ID		NV	20	FC P	art	375 R	Δm	ediatio	n	SB-140_9.5	5-10.0	SB-140_	12.	0-12.5	SB-140_	17.0)-17.5	SB-141_12	.5-13.0	SB-141_	14.	8-15.3	SB-142	_8.2-8.7
Lab Sample Number	CASRN									92338	8	923	338	9	923	390)	92339)1	923	339	2	923	395
Sampling Depth (feet bgs)								bjective	25	9.5 to 10	0.0	12.0 t	o 1	2.5	17.0 to	o 17	7.5	12.5 to 1	13.0	14.81	to 1	5.3	8.2 t	o 8.7
Sampling Date			ıar	oies 3	75-	·6.8(a)	an	ia (b)	Ī	05/28/0)8	05/2	28/0)8	05/2	8/08	8	05/28/0	08	05/2	28/0)8	05/2	9/08
PAH (mg/kg)		UUSC	0:	RSC)	RRSC	0	CSCC)	Result Q	MDL	Result	Q	MDL	Result	Q	MDL	Result Q	MDL	Result	Q	MDL	Result	Q MDL
Naphthalene	91-20-3	12		100	а	100	а	500	k	130	100	0.036	J	0.38	l	J	0.44	43	11		U	0.44	2.1	1.1
Acenaphthylene	208-96-8	100	а	100	а	100	а	500	k	52 J	100		U	0.38	ı	J	0.44	4 J	11		U	0.44	0.73	J 1.1
Acenaphthene	83-32-9	20		100	а	100	а	500	k	300	100	0.1	J	0.38	l	J	0.44	32	11		כ	0.44	2.1	1.1
Fluorene	86-73-7	30		100	а	100	а	500	k	240	100	0.091	J	0.38	U	J	0.44	24	11		J	0.44	2.9	1.1
Phenanthrene	85-01-8	100		100	а	100	а	500	k	1300	100	0.091	J	0.38	0.012	J	0.44	110	11		U	0.44	12	1.1
Anthracene	120-12-7	100	а	100	а	100	а	500	k	340	100	0.021	J	0.38	U	J	0.44	42	11		J	0.44	4.4	1.1
Fluoranthene	206-44-0	100	а	100	а	100	а	500	k	570	100	0.046	J	0.38	l	J	0.44	50	11		U	0.44	12	1.1
Pyrene	129-00-0	100		100	а	100	а	500	k	840	100	0.057	J	0.38	U	J	0.44	100	11		U	0.44	20	1.1
Benzo(a)anthracene	56-55-3	1	С	1	О	1	0	5.6		270	10	0.024	J	0.038	U	J	0.044	36	1.1		U	0.044	7.8	0.11
Chrysene	218-01-9	1	С	1	0	3.9		56		310	100	0.03	J	0.38	U	J	0.44	37	11		כ	0.44	9.1	1.1
Benzo(b)fluoranthene	205-99-2	1	С	1	0	1	0	5.6		100	10	0.01	J	0.038	U	J	0.044	13	1.1		כ	0.044	5.7	0.11
Benzo(k)fluoranthene	207-08-9	0.8	С	1		3.9		56		170	10	0.017	J	0.038	U	J	0.044	17	1.1		כ	0.044	7	0.11
Benzo(a)pyrene	50-32-8	1	С	1	0	1	0	1	0	220	10	0.018	J	0.038	U	J	0.044	32	1.1		כ	0.044	7.9	0.11
Indeno(1,2,3-cd)pyrene	193-39-5	0.5	С	0.5	0	0.5	0	5.6		84	10		U	0.038	U	J	0.044	10	1.1		כ	0.044	2.2	0.11
Dibenz(a,h)anthracene	53-70-3	0.33	b	0.33	n	0.33	n	0.56		28	10		U	0.038	U	J	0.044	4.5	1.1		כ	0.044	1.1	0.11
Benzo(g,h,i)perylene	191-24-2	100		100	а	100	а	500	k	100 J	100		U	0.38	U	J	0.44	14	11		כ	0.44	2.2	1.1
Total PAHs										5054		0.541			0.012			568.5		0			99.23	
Total Confident Conc. PAHs										4902		0			0			564		0			98	
Total Estimated Conc. BNA TICs										NA		NA			NA			NA		NA			NA	
TarGOST Signal at Depth										no data	а	no o	data	а	no c	lata	1	no dat	ta	no	dat	а	no o	data

Sample ID		NV	פחפ	FC P	art	375 R	Δm	ediatio	n	SB-140_9	9.5-10.0	0	SB-140_	12.	0-12.5	SB-140_17	.0-17.5	SB-141_	12.5	5-13.0	SB-141_14	.8-15.3	SB-142_8.	.2-8.7
Lab Sample Number	CASRN		_	_		-				9233	388		923	389	9	92339	0	923	3391		92339	92	92339	5
Sampling Depth (feet bgs)	CASKIN							bjective	38	9.5 to	10.0		12.0 to	o 1	2.5	17.0 to 1	17.5	12.5 t	to 13	3.0	14.8 to	15.3	8.2 to 8	3.7
Sampling Date	1		ıab	oles 3	3/5-	·6.8(a)	an	a (b)		05/28	8/08		05/2	8/0	18	05/28/	08	05/2	28/0	8	05/28/	08	05/29/0	08
METALS (mg/kg)		UUSC	:0	RSC	0	RRSC	C	CSCO)	Result (Q MI	DL	Result	Q	MDL	Result Q	MDL	Result	Q	MDL	Result Q	MDL	Result Q	MDL
Aluminum	7429-90-5	NS		NS		NS		NS																
Antimony	7440-36-0	NS		NS		NS		NS																
Arsenic	7440-38-2	13	С	16	0	16	0	16	0															
Barium	7440-39-3	350	С	350	0	400		400																
Beryllium	7440-41-7	7.2		14		72		590																
Cadmium	7440-43-9	2.5	С	2.5	0	4.3		9.3																
Calcium	7440-70-2	NS		NS		NS		NS									-							
Chromium	7440-47-3	30	С	36		180		1500																
Cobalt	7440-48-4	NS		NS		NS		NS																
Copper	7440-50-8	50		270		270		270									-							
Iron	7439-89-6	NS		NS		NS		NS									-							
Lead	7439-92-1	63	С	400		400		1000									-							
Magnesium	7439-95-4	NS		NS		NS		NS																<u></u>
Manganese	7439-96-5	1600	С	2000	0	2000	0	10000	m															
Mercury	7439-97-6	0.18	С	0.81	q	0.81	q	2.8	q															<u></u>
Nickel	7440-02-0	30		140		310		310																
Potassium	7440-09-7	NS		NS		NS		NS																
Selenium	7782-49-2	3.9	С	36		180		1500																
Silver	7440-22-4	2		36		180		1500																
Sodium	7440-23-5	NS		NS		NS		NS																
Thallium	7440-28-0	NS		NS		NS		NS																
Vanadium	7440-62-2	NS	Ш	NS	Ш	NS		NS																
Zinc	7440-66-6	109	С	2200		10000	_	10000	_															
WET CHEMISTRY		UUSC	:0	RSC	0	RRSC	0	CSCC)	Result (Q MI	DL	Result	Q	MDL	Result Q	MDL	Result	Q	MDL	Result Q	MDL	Result Q	MDL
TotalCyanide - mg/kg	57-12-5	27		27		27		27																

Sample ID		NV	2 0	EC D	art	375 D	am.	ediatio	<u> </u>	SB-142_	12	.5-13.0
Lab Sample Number	0.000.1		_	_						923	339	16
Sampling Depth (feet bgs)	CASRN	_						bjective	es	12.5	to 1	13.0
Sampling Date			al	oles 3	75	-6.8(a)	an	d (b)		05/2		
VOLATILE COMPOUNDS (GC/MS)		UUSC	0	RSCC)	RRSCO)	CSCO		Result	Q	MDL
Chloromethane	74-87-3	NS		NS		NS		NS			U	0.0067
Bromomethane	74-83-9	NS		NS		NS		NS			J	0.0067
VinylChloride	75-01-4	0.02		0.21		0.9		13			U	0.0067
Chloroethane	75-00-3	NS		NS		NS		NS			U	0.0067
MethyleneChloride	75-09-2	0.05		51		100	а	500	k		U	0.0040
Acetone	67-64-1	0.05		100	а	100	k	500	k	0.018	В	0.0067
CarbonDisulfide	75-15-0	NS		NS		NS		NS			U	0.0067
1,1-Dichloroethene	75-35-4	0.33		100	а	100	а	500	k		U	0.0027
1,1-Dichloroethane	75-34-3	0.27		19		26		240			C	0.0067
trans-1,2-Dichloroethene	156-60-5	0.19		100	а	100	а	500	k		U	0.0067
cis-1,2-Dichloroethene	156-59-2	0.25		59		100	а	500	k		U	0.0067
Chloroform	67-66-3	0.37		10		49		350			U	0.0067
1,2-Dichloroethane	107-06-2	0.02	С	2.3		3.1		30			U	0.0027
2-Butanone	78-93-3	0.12		100	а	100	а	500	k		U	0.0067
1,1,1-Trichloroethane	71-55-6	0.68		100	а	100	а	500	k		U	0.0067
CarbonTetrachloride	56-23-5	0.76		1.4		2.4		22			U	0.0027
Bromodichloromethane	75-27-4	NS		NS		NS		NS			U	0.0013
1,2-Dichloropropane	78-87-5	NS		NS		NS		NS			U	0.0013
cis-1,3-Dichloropropene	10061-01-5	NS		NS		NS		NS			U	0.0067
Trichloroethene	79-01-6	0.47		10		21		200			U	0.0013
Dibromochloromethane	124-48-1	NS		NS		NS		NS			U	0.0067
1,1,2-Trichloroethane	79-00-5	NS		NS		NS		NS			U	0.0040
Benzene	71-43-2	0.06		2.9		4.8		44			U	0.0013
trans-1,3-Dichloropropene	10061-02-6	NS		NS		NS		NS			U	0.0067
Bromoform	75-25-2	NS		NS		NS		NS			U	0.0054
4-Methyl-2-Pentanone	108-10-1	NS		NS		NS		NS			U	0.0067
2-Hexanone	591-78-6	NS		NS		NS		NS			U	0.0067
Tetrachloroethene	127-18-4	1.3		5.5		19		150			U	0.0013
1,1,2,2-Tetrachloroethane	79-34-5	NS		NS		NS		NS			U	0.0013
Toluene	108-88-3	0.7		100	а	100	а	500	k		U	0.0067
Chlorobenzene	108-90-7	1.1		100	а	100	а	500	k		U	0.0067
Ethylbenzene	100-41-4	1		30		41		390			U	0.0054
Styrene	100-42-5	NS		NS		NS		NS			U	0.0067
Xylene(Total)	1330-20-7	0.26		100	а	100	а	500	k		U	0.0067
MTBE	1634-04-4	0.93		62		100	а	500	k			
TBA		NS		NS		NS		NS				
Total VOC										0.018		
Total BTEX										0		
Total Confident Conc. VOAs										0		
Total Estimated Conc. VOA TICs										0		

Sample ID		NIV	ח	EC D	ort.	375 D	am.	ediatio	<u> </u>	SB-142_	_12.	.5-13.0
Lab Sample Number	CASRN									923	339	6
Sampling Depth (feet bgs)	CASRN							bjective	es	12.5	to 1	3.0
Sampling Date			a	oles 3	15	-6.8(a)	an	d (b)		05/2	29/0	08
PAH (mg/kg)		UUSC	0	RSCC)	RRSCO)	CSCO	1	Result	Q	MDL
Naphthalene	91-20-3	12		100	а	100	а	500	k	0.01	J	0.47
Acenaphthylene	208-96-8	100	а	100	а	100	а	500	k		U	0.47
Acenaphthene	83-32-9	20		100	а	100	а	500	k		U	0.47
Fluorene	86-73-7	30		100	а	100	а	500	k		U	0.47
Phenanthrene	85-01-8	100		100	а	100	а	500	k	0.037	J	0.47
Anthracene	120-12-7	100	а	100	а	100	а	500	k		U	0.47
Fluoranthene	206-44-0	100	а	100	а	100	а	500	k	0.018	J	0.47
Pyrene	129-00-0	100		100	а	100	а	500	k	0.038	J	0.47
Benzo(a)anthracene	56-55-3	1	С	1	0	1	0	5.6			U	0.047
Chrysene	218-01-9	1	С	1	0	3.9		56		0.013	J	0.47
Benzo(b)fluoranthene	205-99-2	1	С	1	0	1	0	5.6			U	0.047
Benzo(k)fluoranthene	207-08-9	8.0	С	1		3.9		56			U	0.047
Benzo(a)pyrene	50-32-8	1	С	1	0	1	0	1	0		U	0.047
Indeno(1,2,3-cd)pyrene	193-39-5	0.5	С	0.5	0	0.5	0	5.6			U	0.047
Dibenz(a,h)anthracene	53-70-3	0.33	b	0.33	n	0.33	n	0.56			U	0.047
Benzo(g,h,i)perylene	191-24-2	100		100	а	100	а	500	k		U	0.47
Total PAHs										0.116		
Total Confident Conc. PAHs										0		
Total Estimated Conc. BNA TICs										NA		
TarGOST Signal at Depth										no	dat	а

Sample ID										SB-142	12	5 12 N
		NYS	SD	EC Pa	art	375 Re	em	ediatio	า		_	
Lab Sample Number	CASRN	Prog	ıra	m Soi	I C	leanup	O	bjective	s	923		
Sampling Depth (feet bgs)						-6.8(a)				12.5 t	_	
Sampling Date										05/2		
METALS (mg/kg)		UUSC	0	RSCC)	RRSCC)	CSCO		Result	Q	MDL
Aluminum	7429-90-5	NS		NS		NS		NS				
Antimony	7440-36-0	NS		NS		NS		NS				
Arsenic	7440-38-2	13	С	16	0	16	0	16	0			
Barium	7440-39-3	350	С	350	0	400		400				
Beryllium	7440-41-7	7.2		14		72		590				
Cadmium	7440-43-9	2.5	С	2.5	0	4.3		9.3				
Calcium	7440-70-2	NS		NS		NS		NS				
Chromium	7440-47-3	30	С	36		180		1500				
Cobalt	7440-48-4	NS		NS		NS		NS				
Copper	7440-50-8	50		270		270		270				
Iron	7439-89-6	NS		NS		NS		NS				
Lead	7439-92-1	63	С	400		400		1000				
Magnesium	7439-95-4	NS		NS		NS		NS				
Manganese	7439-96-5	1600	С	2000	0	2000	0	10000	m			
Mercury	7439-97-6	0.18	С	0.81	q	0.81	q	2.8	q			
Nickel	7440-02-0	30		140		310		310				
Potassium	7440-09-7	NS		NS		NS		NS				
Selenium	7782-49-2	3.9	С	36		180		1500				
Silver	7440-22-4	2		36		180		1500				
Sodium	7440-23-5	NS		NS		NS		NS				
Thallium	7440-28-0	NS		NS		NS		NS				
Vanadium	7440-62-2	NS		NS		NS		NS				
Zinc	7440-66-6	109	С	2200		10000	m	10000	m			
WET CHEMISTRY		UUSC	0	RSCC)	RRSCC)	CSCO		Result	Q	MDL
TotalCyanide - mg/kg	57-12-5	27		27		27		27				

Notes:

All values are presented in milligrams per kilogram, dry weight basis

Bold face	e, shaded values exceed Part 375 Unrestricted Use SCOs
NS:	No cleanup objective for this compound
NR:	No result; sample not analyzed for this compound
MDL:	Method detection limit
Q:	Data qualifier
U:	Not detected
J:	Estimated concentration below method detection limit
Part 375:	6 NYCRR Part 375 Remediation Program cleanup objectives
UUSCO:	Unrestricted Use Soil Cleanup Objectives Table 375-6.8(a)
RSCO:	Protection of Public Health Residential Restricted Use Soil Cleanup Objectives Table 375-6.8(b)
RRSCO:	Protection of Public Health Restricted Residential Restricted Use Soil Cleanup Objectives Table 375-6.8(b)
CSCO:	Protection of Public Health Commercial Restricted Use Soil Cleanup Objectives Table 375-6.8(b)
a:	The SCOs for unrestricted use, residential, restricted-residential and ecological resources use were capped at a maximum value of 100 ppm. See TSD section 9.3.
b:	For constituents where the calculated SCO was lower than the contract required quantitation limit (CRQL), the CRQL is used as the Track 1 SCO value.
c:	For constituents where the calculated SCO was lower than the rural soil background concentration, as determined by the Department and Department of Health rural soil survey, the rural soil background concentration is used as the Track 1 SCO value for this use of the site.
d:	SCO is the sum of endosulfan I, endosulfan II and endosulfan sulfate.
e:	The SCO for this specific compound (or family of compounds) is considered to be met if the analysis for the total species of this contaminant is below the specific SCO.
f:	Protection of ecological resources SCOs were not developed for contaminants identified in Table 375-6.8(b) with "NS". Where such contaminants appear in Table 375-6.8(a), the applicant may be required by the Department to calculate a protection of ecological resources SCO according to the TSD.
k:	The SCOs for commercial use were capped at a maximum value of 500 ppm. See TSD section 9.3.
m:	The SCOs for metals were capped at a maximum value of 10,000 ppm. See TSD section 9.3.
n:	For constituents where the calculated SCO was lower than the contract required quantitation limit (CRQL), the CRQL is used as the SCO value.
0:	For constituents where the calculated SCO was lower than the rural soil background concentration as determined by the Department and Department of Health rural soil survey, the rural soil background concentration is used as the Track 2 SCO value for this use of the site.
p:	This SCO is derived from data on mixed isomers of BHC.
q:	This SCO is the lower of the values for mercury (elemental) or mercury (inorganic salts). See TSD Table 5.6-1.

Table 5-4. Monitoring Well Construction Details and Groundwater Elevations Former Clove and Maple MGP Haverstraw, NY

	Total Depth	Inside Diameter	Surveyed (Coordinates	Surve Eleva	,	Screer	n Interv		Reference	Height of Add'l Casing ³			Elevation /18/2008
Monitoring Well	(feet)	(inches)	Northing	Easting	Ground	TIC	Depth (from T	IC)	Elevation 1,2	3	DTW	PID	Elev.
MW-01	30	2	859799.38	639972.397	42.29	42.29	20	3	80	IC	-	21.00	0.0	21.29
MW-02	18	2	859862.69	640127.533	28.13	28.13	8	1	8	IC	-	7.43	89.0	20.70
MW-03	16	2	859937.23	640041.874	28.47	28.47	6	1	6	IC	-	7.20	16.3	21.27
MW-04	21	2	859975.46	640064.10	18.78	18.39	11	2	21	0	5.00	2.44	3.7	20.95
MW-05	21	2	859941.29	640096.36	18.33	17.83	11	2	21	0	5.00	1.84	2.3	20.99
MW-06	19	2	859889.73	640147.22	17.22	17.22	9	1	9	0	5.00	2.29	0.0	19.93
MW-07	44	2	859885.01	640151.88	17.92	17.92	34	4	4	0	5.00	0.46	0.0	22.46
MW-08	19	2	859830.58	640132.80	26.90	26.51	9	1	9	IC	-	6.46	0.0	20.05
MW-09	20	2	859790.04	640091.94	30.31	30.10	10	2	20	IC	-	8.87	6.0	21.23
MW-10	36.5	2	859774.68	640034.54	39.85	39.85	26.5	36	6.5	IC	-	18.36	0.0	21.49
MW-11	20	2	859785.67	640198.65	28.43	27.78	10	2	20	IC	-	5.89	n/a	21.89
MW-18	15	2	859987.56	640012.974	28.26	30.88	5	1	5	IC	-	11.70	0.0	19.18
MW-24	20	2	859755.59	640121.182	27.45	27.21	10	2	20	IC	-	6.04	n/a	21.17
MW-20S	16	2	859979.75	640148.272	18.42	17.68	6	1	6	IC	-	5.51	23.8	12.17
MW-20D	26	2	859972.52	640139.934	18.27	17.54	16	2	26	0	3.66	3.33	0.0	17.87
MW-21	22	2	859889.38	640216.106	16.27	15.61	12	2	2	0	3.66	2.78	0.0	16.49
MW-28S	12	2	860056.64	640211.757	13.50	13.04	2	1	2	IC	-	1.71	0.0	11.33
MW-28D	31	2	860062.09	640211.757	13.62	13.35	21	3	31	0	3.66	1.26	0.0	15.75
MW-29S	14	2	859919.17	640327.104	12.82	12.29	4	1	4	IC	-	4.44	12.3	7.85
MW-29D	30	2	859922.09	640330.480	12.63	12.40	20	3	80	0	3.66	2.76	0.0	13.30
MW-31S	12	2	860035.62	640293.269	12.56	12.15	2	1	2	IC	-	1.02	5.6	11.13
MW-31D	32	2	860038.70	640290.588	12.52	12.11	22	3	32	0	3.66	1.41	n/a	14.36

Table 5-4. Monitoring Well Construction Details and Groundwater Elevations Former Clove and Maple MGP Haverstraw, NY

	Total Depth	Inside Diameter	Surveyed C	Coordinates	Surve Eleva	•	Screer	n Interv	al ⁴	Reference	Height of Add'l Casing ³			Elevation 18/2008
Monitoring Well	•	(inches)	Northing	Easting	Ground	TIC	Depth ((from T	IC)	Elevation 1,2	3	DTW	PID	Elev.
MW-32S	12	2	860086.61	640245.925	13.55	13.21	2	1	2	IC	ı	1.70	25.4	11.51
MW-32I	22	2	860083.03	640249.786	13.44	12.67	12	2	2	0	3.66	1.99	9.9	14.34
MW-55	16	2	859685.47	640426.483	14.22	13.80	6	1	6	IC	ı	6.22	0.0	7.58
MW-60	14	2	859836.45	640478.410	13.63	13.00	4	1	4	IC	-	5.77	0.0	7.23
MW-61S	12	2	860033.56	640092.43	18.10	17.51	2	1	2	IC	ı	6.75	43.2	10.76
MW-63S	12	2	860127.06	640179.31	12.40	11.84	2	1	2	IC	ı	1.86	1.2	9.98
MW-83S	13	2	859973.66	640345.21	11.40	11.15	3	1	3	IC	ı	1.00	0.0	10.15
MW-85S	15	2	859819.93	640284.50	13.90	13.29	5	1	5	IC	-	5.80	3.9	7.49
MW-107S	13	2	859702.35	640520.30	12.60	11.58	3	1	3	IC	-	6.60	0.0	4.98

Notes:

All measurements in feet

Screen interval measured in feet below ground surface

^{1:} Reference is top of inner casing (IC) or other (O), refering to supplemental casing used for those well exhibiting artesian conc

²: Relative to Mean Sea Level, National Geodetic Vertical Datum 1929

³: For certain wells, the water in the casing was artesian; a supplemental casing was used to allow equalization; length shown is in feet.

Table 5-5 Groundwater Sample Results Supplemental Remedial Investigation - 2008 Former Clove and Maple MGP Haverstraw, NY

Sample ID	NYSDEC Ambient Water	MW-1		MW-3		MW-04	l	MW-05	,	MW-06	3	MW-07	7
Lab Sample Number		925567		925569		928328	3	928329)	928330)	928331	l
Sampling Date	Quality Standards and	06/05/08	3	06/05/08	3	06/18/0	8	06/18/08	8	06/18/0	8	06/18/0	8
Matrix	Guidance Values and	WATER	2	WATER		WATER	₹	WATER	₹	WATER	3	WATER	₹
Screen Interval (feet bgs)	Groundwater Effluent	20' to 30)'	6' to 16'		11' to 2'	1'	11' to 21	l'	9' to19	,	34' to 44	4'
Sampling Depth (feet bgs)	Limitations	27'		13'		18'		18'		16'		41'	
VOLATILE COMPOUNDS (ug/L)		Result Q	MDL	Result Q	MDL	Result Q	MDL	Result Q	MDL	Result Q	MDL	Result Q	MDL
Chloromethane	NS	U	5.0	U	50	U	100	U	5.0	U	5.0	U	5.0
Bromomethane	5 (s)	U	5.0	U	50	U	100	U	5.0	U	5.0	U	5.0
VinylChloride	2 (s)	U	5.0	U	50	U	100	U	5.0	U	5.0	U	5.0
Chloroethane	5 (s)	U	5.0	U	50	U	100	U	5.0	U	5.0	U	5.0
MethyleneChloride	5 (s)	U	3.0	U	30	U	60	U	3.0	U	3.0	U	3.0
Acetone	50 (gv)	81	5.0	U	50	U	100	U	5.0	U	5.0	U	5.0
CarbonDisulfide	NS	U	5.0	U	50	U	100	U	5.0	U	5.0	U	5.0
1,1-Dichloroethene	0.7 (gv)	U	2.0	U	20	U	40	U	2.0	U	2.0	U	2.0
1,1-Dichloroethane	5 (s)	U	5.0	U	50	U	100	U	5.0	U	5.0	U	5.0
trans-1,2-Dichloroethene	5 (s)	U	5.0	U	50	U	100	U	5.0	U	5.0	U	5.0
cis-1,2-Dichloroethene	5 (s)	U	5.0	U	50	U	100	U	5.0	U	5.0	U	5.0
Chloroform	7 (s)	0.5 J	5.0	U	50	U	100	U	5.0	U	5.0	U	5.0
1,2-Dichloroethane	0.6 (s)	U	2.0	U	20	U	40	U	2.0	U	2.0	U	2.0
2-Butanone	NS	U	5.0	U	50	U	100	U	5.0	U	5.0	U	5.0
1,1,1-Trichloroethane	5 (s)	U	5.0	U	50	U	100	U	5.0	U	5.0	U	5.0
CarbonTetrachloride	NS	U	2.0	U	20	U	40	U	2.0	U	2.0	U	2.0
Bromodichloromethane	50 (gv)	U	1.0	U	10	U	20	U	1.0	U	1.0	U	1.0
1,2-Dichloropropane	1 (s)	U	1.0	U	10	U	20	U	1.0	U	1.0	U	1.0
cis-1,3-Dichloropropene	0.4 (s*)	U	5.0	U	50	U	100	U	5.0	U	5.0	U	5.0
Trichloroethene	5 (s)	U	1.0	U	10	U	20	U	1.0	U	1.0	U	1.0
Dibromochloromethane	50 (gv)	U	5.0	U	50	U	100	U	5.0	U	5.0	U	5.0
1,1,2-Trichloroethane	1 (s)	U	3.0	U	30	U	60	U	3.0	U	3.0	U	3.0
Benzene	1 (s)	U	1.0	1100	10	34	20	U	1.0	U	1.0	U	1.0
trans-1,3-Dichloropropene	0.4 (s*)	U	5.0	U	50	U	100	U	5.0	U	5.0	U	5.0
Bromoform	50 (gv)	U	4.0	U	40	U	80	U	4.0	U	4.0	U	4.0
4-Methyl-2-Pentanone	NS	U	5.0	U	50	U	100	U	5.0	U	5.0	U	5.0
2-Hexanone	50 (gv)	U	5.0	U	50	U	100	U	5.0	U	5.0	U	5.0
Tetrachloroethene	0.7 (gv)	U	1.0	U	10	U	20	U	1.0	U	1.0	U	1.0
1,1,2,2-Tetrachloroethane	0.2 (gv)	U	1.0	U	10	U	20	U	1.0	U	1.0	U	1.0
Toluene	5 (s)	U	5.0	1400	50	37 J	100	U	5.0	U	5.0	U	5.0
Chlorobenzene	5 (s)	U	5.0	U	50	U	100	U	5.0	U	5.0	U	5.0
Ethylbenzene	5 (s)	U	4.0	1300	40	30 J	80	U	4.0	U	4.0	U	4.0
Styrene	5 (gv)	U	5.0	65	50	21 J	100	U	5.0	U	5.0	U	5.0
Xylene(Total)	5 (s)	U	5.0	2300	50	130	100	U	5.0	U	5.0	U	5.0
Total BTEX		0	İ	6100		231		0	i	0		0	j
Total Confident Conc. VOCs		81		6165		164		0	ĺ	0		0	
Total Estimated Conc. VOC TICs (s)		10		5652		2050		0		0		0	

Table 5-5 Groundwater Sample Results Supplemental Remedial Investigation - 2008 Former Clove and Maple MGP Haverstraw, NY

Sample ID	NYSDEC Ambient Water	MW-1		MW-3		MW-04		MW-05		MW-06		MW-07	
Lab Sample Number	Quality Standards and	925567	7	925569		928328	3	928329	9	928330)	928331	1
Sampling Date	Guidance Values and	06/05/0	8	06/05/08	3	06/18/0	8	06/18/08	8	06/18/0	8	06/18/0	8
Matrix	Groundwater Effluent	WATER	₹	WATER		WATER	₹	WATER	₹	WATER	₹ .	WATER	₹
Screen Interval (feet bgs)		20' to 30	0'	6' to 16'		11' to 2'	1'	11' to 21	1'	9' to19	1	34' to 44	4'
Sampling Depth (feet bgs)	Limitations	27'		13'		18'		18'		16'		41'	
SEMIVOLATILE COMPOUNDS (ug/l)		Result Q	MDL	Result Q	MDL	Result Q	MDL	Result Q	MDL	Result Q	MDL	Result Q	MDL
Phenol	1 (s)	U	12	U	130	U	100	U	11	U	10	U	10
2-Chlorophenol	NS	U	12	U	130	U	100	U	11	U	10	U	10
2-Methylphenol	NS	Ü	12	Ū	130	Ū	100	Ū	11	Ū	10	Ū	10
4-Methylphenol	NS	Ü	12	Ü	130	Ü	100	Ü	11	Ū	10	Ū	10
2-Nitrophenol	NS	Ü	12	Ū	130	Ü	100	Ū	11	Ü	10	Ü	10
2,4-Dimethylphenol	50 (gv)	Ü	12	Ü	130	Ü	100	Ü	11	Ü	10	Ü	10
2,4-Dichlorophenol	5 (gv)	IJ	12	Ü	130	Ü	100	Ü	11	Ü	10	Ü	10
4-Chloro-3-methylphenol	NS NS	Ü	12	Ü	130	Ü	100	Ü	11	Ü	10	Ü	10
2,4,6-Trichlorophenol	NS	Ü	12	Ü	130	Ü	100	Ü	11	Ü	10	Ü	10
2,4,5-Trichlorophenol	NS	IJ	12	Ü	130	U	100	Ü	11	Ü	10	Ü	10
2,4-Dinitrophenol	10 (gv)	U	38	Ü	390	U	300	Ü	33	Ü	32	U	32
4-Nitrophenol	NS	U	38	Ü	390	U	300	Ü	33	Ü	32	Ü	32
4,6-Dinitro-2-methylphenol	NS NS	Ü	38	Ü	390	U	300	Ü	33	Ü	32	U	32
Pentachlorophenol	1 (s)	U	38	U	390	U	300	Ü	33	U	32	U	32
bis(2-Chloroethyl)ether	1 (S) 1 (S)	U	1.2	U	13	U	10	U	1.1	U	1.0	U	1.0
1.3-Dichlorobenzene	3 (s)	U	1.2	U	130	U	100	U	11	U	1.0	U	1.0
1,4-Dichlorobenzene	3 (s) 3 (s)	U	12	U	130	U	100	U	11	U	10	U	10
1,2-Dichlorobenzene		U	12	U	130	U	100	U	11	U	10	U	10
1	3 (s) NS	U	12	U	130	U	100	U	11	U	10	U	10
bis(2-chloroisopropyl)ether N-Nitroso-di-n-propylamine	NS NS	U	1.2	U	130	U	100	U	1.1	U	1.0	U	1.0
		U	1.2	U	13	U	10	U	1.1	U		U	1.0
Hexachloroethane	5 (s)	U		U	13	U		U		_	1.0	U	
Nitrobenzene	0.4 (s)	U	1.2	U		_	10	U	1.1	U	1.0	_	1.0
Isophorone	50 (gv)	_	12	-	130	U	100	_	11	U	10	U	10
bis(2-Chloroethoxy)methane	5	U	12	U	130	U	100	U	11	U	10	U	10
1,2,4-Trichlorobenzene	5 (gv)	U	1.2	U	13	U	10	U	1.1	U	1.0	U	1.0
Naphthalene	10 (gv)	U	12	2200	130	2200	100	U	11	U	10	U	10
4-Chloroaniline	5 (s)	U	12	U	130	U	100	U	11	U	10	U	10
Hexachlorobutadiene	0.5 (s)	U	2.5	U	26	U	20	U	2.2	U	2.1	U	2.1
2-Methylnaphthalene	NS	U	12	260	130	200	100	U	11	U	10	U	10
Hexachlorocyclopentadiene	5 (**)	U	12	U	130	U	100	U	11	U	10	U	10
2-Chloronaphthalene	10 (s)	U	12	U	130	U	100	U	11	U	10	U	10
2-Nitroaniline	5 (s)	U	25	U	260	U	200	U	22	U	21	U	21
Dimethylphthalate	50 (gv)	U	12	U	130	U	100	U	11	U	10	U	10
Acenaphthylene	NS	U	12	42 J	130	200	100	13	11	U	10	U	10
2,6-Dinitrotoluene	5 (gv)	U	2.5	U	26	U	20	U	2.2	U	2.1	U	2.1
3-Nitroaniline	5 (gv)	U	25	U	260	U	200	U	22	U	21	U	21
Acenaphthene	20 (gv)	U	12	20 J	130	19 J	100	1.2 J	11	U	10	U	10
Dibenzofuran	NS	U	12	2.8 J	130	7.4 J	100	U	11	U	10	U	10
2,4-Dinitrotoluene	5 (gv)	U	2.5	U	26	U	20	U	2.2	U	2.1	U	2.1
Diethylphthalate	50 (gv)	U	12	U	130	U	100	U	11	U	10	U	10

Table 5-5 Groundwater Sample Results Supplemental Remedial Investigation - 2008 Former Clove and Maple MGP Haverstraw, NY

Sample ID	NYSDEC Ambient Water	MW-1		MW-3		MW-04	1	MW-05	;	MW-06	6	MW-07	7
Lab Sample Number	Quality Standards and	925567	7	925569)	928328	3	928329)	928330)	928331	1
Sampling Date	Guidance Values and	06/05/0	8	06/05/0	8	06/18/0	8	06/18/0	8	06/18/0	8	06/18/0	8
Matrix	Groundwater Effluent	WATER	₹	WATER	₹	WATER	₹	WATER	₹	WATER	₹	WATER	3
Screen Interval (feet bgs)		20' to 30	0'	6' to 16	3'	11' to 2	1'	11' to 21	l'	9' to19	1	34' to 4	4'
Sampling Depth (feet bgs)	Limitations	27'		13'		18'		18'		16'		41'	
SEMIVOLATILE COMPOUNDS (ug/l)		Result Q	MDL	Result Q	MDL	Result Q	MDL	Result Q	MDL	Result Q	MDL	Result Q	MDL
4-Chlorophenyl-phenylether	NS	U	12	U	130	U	100	U	11	U	10	U	10
Fluorene	50 (s)	U	12	20 J	130	31 J	100	U	11	U	10	U	10
4-Nitroaniline	5 (s)	U	25	U	260	U	200	U	22	U	21	U	21
N-Nitrosodiphenylamine	50 (gv)	U	12	U	130	U	100	U	11	U	10	U	10
4-Bromophenyl-phenylether	NS	U	12	U	130	U	100	U	11	U	10	U	10
Hexachlorobenzene	0.04 (s)	U	1.2	U	13	U	10	U	1.1	U	1.0	U	1.0
Phenanthrene	50 (gv)	U	12	19 J	130	67 J	100	0.6 J	11	U	10	U	10
Anthracene	50 (gv)	U	12	U	130	11 J	100	U	11	U	10	U	10
Carbazole	NS	U	12	U	130	4.7 J	100	U	11	U	10	U	10
Di-n-butylphthalate	NS	U	12	U	130	U	100	U	11	U	10	U	10
Fluoranthene	50 (s)	U	12	U	130	5 J	100	U	11	U	10	U	10
Pyrene	50 (gv)	U	12	U	130	4.3 J	100	U	11	U	10	U	10
Butylbenzylphthalate	50	U	12	U	130	U	100	U	11	U	10	U	10
3,3'-Dichlorobenzidine	5 (s)	U	25	U	260	U	200	U	22	U	21	U	21
Benzo(a)anthracene	0.002 (gv)	U	1.2	U	13	U	10	U	1.1	U	1.0	U	1.0
Chrysene	0.002 (gv)	U	12	U	130	U	100	U	11	U	10	U	10
bis(2-Ethylhexyl)phthalate	5	U	12	U	130	U	100	U	11	U	10	U	10
Di-n-octylphthalate	NC	U	12	U	130	U	100	U	11	U	10	U	10
Benzo(b)fluoranthene	0.002 (gv)	U	1.2	U	13	U	10	U	1.1	U	1.0	U	1.0
Benzo(k)fluoranthene	0.002 (gv)	U	1.2	U	13	U	10	U	1.1	U	1.0	U	1.0
Benzo(a)pyrene	ND (no detection)***	U	1.2	U	13	U	10	U	1.1	U	1.0	U	1.0
Indeno(1,2,3-cd)pyrene	0.002 (gv)	U	1.2	U	13	U	10	U	1.1	U	1.0	U	1.0
Dibenz(a,h)anthracene	0.002 (gv)	U	1.2	U	13	U	10	U	1.1	U	1.0	U	1.0
Benzo(g,h,i)perylene	NS	U	12	U	130	U	100	U	11	U	10	U	10
Total PAHs		0		2301		2537.3		14.8		0		0	
Total Confident Conc. SVOCs		0		2460		2600		13		0		0	
Total Estimated Conc. SVOC TICs		0		7340		1335		0		0		0	
WET CHEMISTRY		Result Q	MDL	Result Q	MDL	Result Q	MDL	Result Q	MDL	Result Q	MDL	Result Q	MDL
Cyanide-Amenable - ug/l		U	10	U	10	U	10	U	10	U	10	U	10
TotalCyanide - ug/l	200	U	10	U	10	U	10	U	10	U	10	U	10

Sample ID	NYSDEC Ambient Water	MW-8		MW-9		MW-10)	MW-11		MW-18		MW-209	S
Lab Sample Number		915173	3	915174		925572	2	915172	2	925568		926572	2
Sampling Date	Quality Standards and	04/24/08	8	04/24/0	3	06/06/0	8	04/24/0	8	06/05/08	3	06/11/0	8
Matrix	Guidance Values and	WATER	₹	WATER	2	WATER	₹	WATER	₹	WATER	2	WATER	₹
Screen Interval (feet bgs)	Groundwater Effluent	9' to 19	•	10' to 20)'	26.5' to 36	6.5'	10' to 20)'	5' to 15		6' to 16	;'
Sampling Depth (feet bgs)	Limitations	18'		19'		33.5'		19'		12'		13'	
VOLATILE COMPOUNDS (ug/L)		Result Q	MDL	Result Q	MDL	Result Q	MDL	Result Q	MDL	Result Q	MDL	Result Q	MDL
Chloromethane	NS	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0
Bromomethane	5 (s)	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0
VinylChloride	2 (s)	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0
Chloroethane	5 (s)	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0
MethyleneChloride	5 (s)	U	3.0	U	3.0	U	3.0	U	3.0	U	3.0	U	3.0
Acetone	50 (gv)	7.2	5.0	U	5.0	40	5.0	U	5.0	17	5.0	U	5.0
CarbonDisulfide	NS	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0
1,1-Dichloroethene	0.7 (gv)	U	2.0	U	2.0	U	2.0	U	2.0	U	2.0	U	2.0
1,1-Dichloroethane	5 (s)	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0
trans-1,2-Dichloroethene	5 (s)	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0
cis-1,2-Dichloroethene	5 (s)	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0
Chloroform	7 (s)	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0
1,2-Dichloroethane	0.6 (s)	U	2.0	U	2.0	U	2.0	U	2.0	U	2.0	U	2.0
2-Butanone	NS	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0
1,1,1-Trichloroethane	5 (s)	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0
CarbonTetrachloride	NS	U	2.0	U	2.0	U	2.0	U	2.0	U	2.0	U	2.0
Bromodichloromethane	50 (gv)	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0
1,2-Dichloropropane	1 (s)	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0
cis-1,3-Dichloropropene	0.4 (s*)	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0
Trichloroethene	5 (s)	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0
Dibromochloromethane	50 (gv)	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0
1,1,2-Trichloroethane	1 (s)	U	3.0	U	3.0	U	3.0	U	3.0	U	3.0	U	3.0
Benzene	1 (s)	0.5 J	1.0	3	1.0	U	1.0	U	1.0	0.7 J	1.0	12	1.0
trans-1,3-Dichloropropene	0.4 (s*)	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0
Bromoform	50 (gv)	U	4.0	U	4.0	U	4.0	U	4.0	U	4.0	U	4.0
4-Methyl-2-Pentanone	NS /	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0
2-Hexanone	50 (gv)	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0
Tetrachloroethene	0.7 (gv)	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0
1,1,2,2-Tetrachloroethane	0.2 (gv)	Ū	1.0	Ü	1.0	Ü	1.0	Ü	1.0	Ü	1.0	Ü	1.0
Toluene	5 (s)	Ū	5.0	1 J	5.0	Ū	5.0	Ū	5.0	Ū	5.0	0.7 J	5.0
Chlorobenzene	5 (s)	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0
Ethylbenzene	5 (s)	Ū	4.0	32	4.0	Ū	4.0	Ū	4.0	0.4 J	4.0	25	4.0
Styrene	5 (gv)	Ū	5.0	U	5.0	Ū	5.0	Ū	5.0	U	5.0	0.2 J	5.0
Xylene(Total)	5 (s)	U	5.0	21	5.0	U	5.0	U	5.0	3.2 J	5.0	11	5.0
Total BTEX	` ,	0.5		57		0				4.3		48.7	
Total Confident Conc. VOCs		7.2		56		40		0		17		48	
Total Estimated Conc. VOC TICs (s)		0		445		5.4		0		11		569	j

Sample ID	NIVODEO Archiert Weter	MW-8		MW-9		MW-10)	MW-11		MW-18	3	MW-209	S
Lab Sample Number	NYSDEC Ambient Water	915173	3	915174	Ļ	925572	2	915172	!	925568	3	926572	<u>.</u>
Sampling Date	Quality Standards and	04/24/0	8	04/24/0	8	06/06/0	8	04/24/08	3	06/05/0	8	06/11/08	8
Matrix	Guidance Values and	WATER	3	WATER	₹	WATER	₹	WATER	₹	WATER	₹	WATER	₹
Screen Interval (feet bgs)	Groundwater Effluent	9' to 19)'	10' to 20)'	26.5' to 36	6.5'	10' to 20)'	5' to 15		6' to 16	
Sampling Depth (feet bgs)	Limitations	18'		19'		33.5'		19'		12'		13'	
SEMIVOLATILE COMPOUNDS (ug/l)		Result Q	MDL	Result Q	MDL	Result Q	MDL	Result Q	MDL	Result Q	MDL	Result Q	MDL
Phenol	1 (s)	U	14	U	13	U	10	U	13	U	12	U	10
2-Chlorophenol	NS	Ü	14	Ü	13	Ü	10	Ü	13	Ü	12	Ü	10
2-Methylphenol	NS	Ü	14	2.2 J	13	U	10	Ü	13	Ü	12	Ü	10
4-Methylphenol	NS NS	U	14	2.2 J	13	U	10	Ü	13	U	12	U	10
2-Nitrophenol	NS NS	Ü	14	2.2 J U	13	U	10	Ü	13	U	12	U	10
•	_	U	14	0.8 J	13	U	10	U	13	U		U	10
2,4-Dimethylphenol	50 (gv)	U		0.8 J U		U	-	IJ		U	12 12	U	
2,4-Dichlorophenol	5 (gv)	_	14	_	13	_	10	•	13	_		_	10
4-Chloro-3-methylphenol	NS	U	14	U	13	U	10	U	13	U	12	U	10
2,4,6-Trichlorophenol	NS	U	14	U	13	U	10	U	13	U	12	U	10
2,4,5-Trichlorophenol	NS	U	14	U	13	U	10	U	13	U	12	U	10
2,4-Dinitrophenol	10 (gv)	U	43	U	40	U	31	U	40	U	35	U	31
4-Nitrophenol	NS	U	43	U	40	U	31	U	40	U	35	U	31
4,6-Dinitro-2-methylphenol	NS	U	43	U	40	U	31	U	40	U	35	U	31
Pentachlorophenol	1 (s)	U	43	U	40	U	31	U	40	U	35	U	31
bis(2-Chloroethyl)ether	1 (s)	U	1.4	U	1.3	U	1.0	U	1.3	U	1.2	U	1.0
1,3-Dichlorobenzene	3 (s)	U	14	U	13	U	10	U	13	U	12	U	10
1,4-Dichlorobenzene	3 (s)	U	14	U	13	U	10	U	13	U	12	U	10
1,2-Dichlorobenzene	3 (s)	U	14	U	13	U	10	U	13	U	12	U	10
bis(2-chloroisopropyl)ether	NS [*]	U	14	U	13	U	10	U	13	U	12	U	10
N-Nitroso-di-n-propylamine	NS	Ū	1.4	Ū	1.3	Ū	1.0	Ū	1.3	Ū	1.2	Ū	1.0
Hexachloroethane	5 (s)	Ū	1.4	Ū	1.3	Ū	1.0	Ū	1.3	Ū	1.2	Ū	1.0
Nitrobenzene	0.4 (s)	Ü	1.4	Ü	1.3	Ü	1.0	Ü	1.3	Ü	1.2	Ü	1.0
Isophorone	50 (gv)	Ü	14	Ü	13	Ü	10	Ü	13	Ü	12	Ü	10
bis(2-Chloroethoxy)methane	5	Ü	14	Ü	13	Ü	10	Ü	13	Ü	12	Ü	10
1,2,4-Trichlorobenzene	5 (gv)	Ü	1.4	Ü	1.3	U	1.0	Ü	1.3	U	1.2	Ü	1.0
Naphthalene	10 (gv)	U	1.4	16	13	0.5 J	1.0	Ü	13	0.3 J	12	120	10
4-Chloroaniline	5 (s)	U	14	U	13	0.5 J	10	U	13	0.5 J	12	U	10
Hexachlorobutadiene		U	2.8	U	2.7	U	2.1	U	2.7	U	2.4	U	2.0
	0.5 (s) NS	U	2.0 14	U	13	U	10	U	13	U	12	17	10
2-Methylnaphthalene		U	14	U		_	-	U		U			
Hexachlorocyclopentadiene	5 (**)	_		_	13	U	10	_	13	_	12	U	10
2-Chloronaphthalene	10 (s)	U	14	U	13	U	10	U	13	U	12	U	10
2-Nitroaniline	5 (s)	U	28	U	27	U	21	U	27	U	24	U	20
Dimethylphthalate	50 (gv)	U	14	U	13	U	10	U	13	U	12	U	10
Acenaphthylene	NS	U	14	7.5 J	13	U	10	U	13	0.3 J	12	2.8 J	10
2,6-Dinitrotoluene	5 (gv)	U	2.8	U	2.7	U	2.1	U	2.7	U	2.4	U	2.0
3-Nitroaniline	5 (gv)	U	28	U	27	U	21	U	27	U	24	U	20
Acenaphthene	20 (gv)	U	14	200	13	U	10	U	13	U	12	44	10
Dibenzofuran	NS	U	14	13 J	13	U	10	U	13	U	12	1.6 J	10
2,4-Dinitrotoluene	5 (gv)	U	2.8	U	2.7	U	2.1	U	2.7	U	2.4	U	2.0
Diethylphthalate	50 (gv)	U	14	U	13	U	10	U	13	U	12	U	10

Sample ID	NYSDEC Ambient Water	MW-8		MW-9		MW-10)	MW-11		MW-18	3	MW-20	S
Lab Sample Number	Quality Standards and	915173	3	915174		925572	2	915172		925568	3	926572	2
Sampling Date	,	04/24/0	8	04/24/0	3	06/06/0	8	04/24/08	3	06/05/0	8	06/11/0	8
Matrix	Guidance Values and Groundwater Effluent	WATER	R	WATER	2	WATER	3	WATER	2	WATER	₹	WATER	₹
Screen Interval (feet bgs)	Limitations	9' to 19	9'	10' to 20)'	26.5' to 30	3.5'	10' to 20)'	5' to 15		6' to 16	8'
Sampling Depth (feet bgs)	Limitations	18'		19'		33.5'		19'		12'		13'	
SEMIVOLATILE COMPOUNDS (ug/l)		Result Q	MDL	Result Q	MDL	Result Q	MDL	Result Q	MDL	Result Q	MDL	Result Q	MDL
4-Chlorophenyl-phenylether	NS	U	14	U	13	U	10	U	13	U	12	U	10
Fluorene	50 (s)	U	14	65	13	U	10	U	13	U	12	13	10
4-Nitroaniline	5 (s)	U	28	U	27	U	21	U	27	U	24	U	20
N-Nitrosodiphenylamine	50 (gv)	U	14	U	13	U	10	U	13	U	12	U	10
4-Bromophenyl-phenylether	NS	U	14	U	13	U	10	U	13	U	12	U	10
Hexachlorobenzene	0.04 (s)	U	1.4	U	1.3	U	1.0	U	1.3	U	1.2	U	1.0
Phenanthrene	50 (gv)	U	14	62	13	U	10	U	13	U	12	24	10
Anthracene	50 (gv)	U	14	16	13	U	10	U	13	U	12	4.6 J	10
Carbazole	NS	U	14	3 J	13	U	10	U	13	U	12	0.9 J	10
Di-n-butylphthalate	NS	U	14	U	13	U	10	U	13	U	12	U	10
Fluoranthene	50 (s)	U	14	5.4 J	13	U	10	U	13	U	12	3.1 J	10
Pyrene	50 (gv)	U	14	6 J	13	U	10	U	13	U	12	3.1 J	10
Butylbenzylphthalate	50	U	14	U	13	U	10	U	13	U	12	U	10
3,3'-Dichlorobenzidine	5 (s)	U	28	U	27	U	21	U	27	U	24	U	20
Benzo(a)anthracene	0.002 (gv)	U	1.4	0.6 J	1.3	U	1.0	U	1.3	U	1.2	U	1.0
Chrysene	0.002 (gv)	U	14	0.5 J	13	U	10	U	13	U	12	U	10
bis(2-Ethylhexyl)phthalate	5	U	14	U	13	U	10	U	13	U	12	U	10
Di-n-octylphthalate	NC	U	14	U	13	U	10	U	13	U	12	U	10
Benzo(b)fluoranthene	0.002 (gv)	U	1.4	U	1.3	U	1.0	U	1.3	U	1.2	U	1.0
Benzo(k)fluoranthene	0.002 (gv)	U	1.4	U	1.3	U	1.0	U	1.3	U	1.2	U	1.0
Benzo(a)pyrene	ND (no detection)***	U	1.4	0.3 J	1.3	U	1.0	U	1.3	U	1.2	U	1.0
Indeno(1,2,3-cd)pyrene	0.002 (gv)	U	1.4	U	1.3	U	1.0	U	1.3	U	1.2	U	1.0
Dibenz(a,h)anthracene	0.002 (gv)	U	1.4	U	1.3	U	1.0	U	1.3	U	1.2	U	1.0
Benzo(g,h,i)perylene	NS	U	14	U	13	U	10	U	13	U	12	U	10
Total PAHs		0		379.3		0.5		0		0.6		214.6	
Total Confident Conc. SVOCs		0		359		0		0		0		218	
Total Estimated Conc. SVOC TICs		0		1458		0		0		0		221	
WET CHEMISTRY		Result Q	MDL	Result Q	MDL	Result Q	MDL	Result Q	MDL	Result Q	MDL	Result Q	MDL
Cyanide-Amenable - ug/l		U	10	39	10	U	10	U	10	U	10	U	10
TotalCyanide - ug/l	200	25	10	72	10	U	10	11	10	U	10	U	10

Sample ID	NIVODEO Archicat Weter	MW-20[)	MW-21		MW-24		MW-28	S	MW-28I)	MW-28D-E	DUP
Lab Sample Number	NYSDEC Ambient Water	926573	,	926570	1	915171		926564	1	926565	5	926566	3
Sampling Date	Quality Standards and	06/11/0	3	06/10/08	3	04/24/0	8	06/09/0	8	06/09/0	8	06/09/0	8
Matrix	Guidance Values and	WATER	2	WATER	2	WATER	₹	WATER	3	WATER	3	WATER	3
Screen Interval (feet bgs)	Groundwater Effluent	16' to 26	8'	12' to 22	2'	10' to 20)'	2' to 12	<u>)</u> '	21' to 3'	1'	21' to 31	1'
Sampling Depth (feet bgs)	Limitations	19.5'		19'		19'		9'		28'		28'	
VOLATILE COMPOUNDS (ug/L)		Result Q	MDL	Result Q	MDL	Result Q	MDL	Result Q	MDL	Result Q	MDL	Result Q	MDL
Chloromethane	NS	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0
Bromomethane	5 (s)	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0
VinylChloride	2 (s)	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0
Chloroethane	5 (s)	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0
MethyleneChloride	5 (s)	U	3.0	U	3.0	U	3.0	U	3.0	U	3.0	U	3.0
Acetone	50 (gv)	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0
CarbonDisulfide	NS	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0
1,1-Dichloroethene	0.7 (gv)	U	2.0	U	2.0	U	2.0	U	2.0	U	2.0	U	2.0
1,1-Dichloroethane	5 (s)	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0
trans-1,2-Dichloroethene	5 (s)	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0
cis-1,2-Dichloroethene	5 (s)	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0
Chloroform	7 (s)	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0
1,2-Dichloroethane	0.6 (s)	U	2.0	U	2.0	U	2.0	U	2.0	U	2.0	U	2.0
2-Butanone	NS	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0
1,1,1-Trichloroethane	5 (s)	U	5.0	0.5 J	5.0	U	5.0	U	5.0	U	5.0	U	5.0
CarbonTetrachloride	NS	U	2.0	U	2.0	U	2.0	U	2.0	U	2.0	U	2.0
Bromodichloromethane	50 (gv)	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0
1,2-Dichloropropane	1 (s)	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0
cis-1,3-Dichloropropene	0.4 (s*)	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0
Trichloroethene	5 (s)	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0
Dibromochloromethane	50 (gv)	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0
1,1,2-Trichloroethane	1 (s)	U	3.0	U	3.0	U	3.0	U	3.0	U	3.0	U	3.0
Benzene	1 (s)	U	1.0	U	1.0	U	1.0	110	1.0	U	1.0	0.2 J	1.0
trans-1,3-Dichloropropene	0.4 (s*)	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0
Bromoform	50 (gv)	U	4.0	U	4.0	U	4.0	U	4.0	U	4.0	U	4.0
4-Methyl-2-Pentanone	NS	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0
2-Hexanone	50 (gv)	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0
Tetrachloroethene	0.7 (gv)	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0
1,1,2,2-Tetrachloroethane	0.2 (gv)	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0
Toluene	5 (s)	U	5.0	U	5.0	U	5.0	3.4 J	5.0	U	5.0	U	5.0
Chlorobenzene	5 (s)	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0
Ethylbenzene	5 (s)	U	4.0	U	4.0	U	4.0	120	4.0	U	4.0	0.5 J	4.0
Styrene	5 (gv)	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0
Xylene(Total)	5 (s)	U	5.0	U	5.0	U	5.0	160	5.0	U	5.0	U	5.0
Total BTEX		0		0		0		393.4		0		0.7	
Total Confident Conc. VOCs		0		0		0		390		0		0	
Total Estimated Conc. VOC TICs (s)		0		0		0		1469		0		0	

Sample ID	NYSDEC Ambient Water	MW-20	D	MW-21		MW-24	1	MW-28		MW-28I		MW-28D-	_
Lab Sample Number	Quality Standards and	926573	3	926570)	91517	1	926564		926565	5	926566	
Sampling Date	Guidance Values and	06/11/0	8	06/10/08	8	04/24/0	8	06/09/08	8	06/09/0	8	06/09/0	8
Matrix	Groundwater Effluent	WATE	₹	WATER	₹	WATER	₹	WATER	₹	WATER	₹	WATER	₹
Screen Interval (feet bgs)	Limitations	16' to 2	6'	12' to 22	2'	10' to 2	0'	2' to 12	'	21' to 3'	1'	21' to 3'	1'
Sampling Depth (feet bgs)	Limitations	19.5'		19'		19'		9'		28'		28'	
SEMIVOLATILE COMPOUNDS (ug/l)		Result Q	MDL	Result Q	MDL	Result Q	MDL	Result Q	MDL	Result Q	MDL	Result Q	MDL
Phenol	1 (s)	U	10	U	10	U	14	U	21	U	10	U	10
2-Chlorophenol	NS	υ	10	U	10	U	14	U	21	U	10	U	10
2-Methylphenol	NS	υ	10	U	10	U	14	U	21	U	10	U	10
4-Methylphenol	NS	Ū	10	Ü	10	Ū	14	Ū	21	Ü	10	Ü	10
2-Nitrophenol	NS	Ū	10	Ü	10	Ū	14	Ū	21	Ü	10	Ü	10
2,4-Dimethylphenol	50 (gv)	Ū	10	Ü	10	Ü	14	8.9 J	21	Ü	10	Ü	10
2,4-Dichlorophenol	5 (gv)	Ŭ	10	Ü	10	Ü	14	U.S U	21	Ü	10	Ü	10
4-Chloro-3-methylphenol	NS NS	Ŭ	10	Ü	10	Ü	14	Ü	21	Ü	10	Ü	10
2,4,6-Trichlorophenol	NS	Ŭ	10	Ü	10	Ü	14	Ü	21	Ü	10	Ü	10
2,4,5-Trichlorophenol	NS NS	Ü	10	U	10	U	14	IJ	21	Ü	10	Ü	10
2,4-Dinitrophenol	10 (gv)	U	31	U	31	U	43	U	63	U	32	U	32
4-Nitrophenol	NS	U	31	U	31	U	43	U	63	U	32	U	32
· ·	NS NS	U	31	U	31	U	43	U	63	U	32	U	32
4,6-Dinitro-2-methylphenol	_	_		_		_		_		_		_	
Pentachlorophenol	1 (s)	U	31	U	31	U	43	U	63	U	32	U	32
bis(2-Chloroethyl)ether	1 (s)	U	1.0	U	1.0	U	1.4	U	2.1	U	1.0	U	1.0
1,3-Dichlorobenzene	3 (s)	U	10	U	10	U	14	U	21	U	10	U	10
1,4-Dichlorobenzene	3 (s)	U	10	U	10	U	14	U	21	U	10	U	10
1,2-Dichlorobenzene	3 (s)	U	10	U	10	U	14	U	21	U	10	U	10
bis(2-chloroisopropyl)ether	NS	U	10	U	10	U	14	U	21	U	10	U	10
N-Nitroso-di-n-propylamine	NS	U	1.0	U	1.0	U	1.4	U	2.1	U	1.0	U	1.0
Hexachloroethane	5 (s)	U	1.0	U	1.0	U	1.4	U	2.1	U	1.0	U	1.0
Nitrobenzene	0.4 (s)	U	1.0	U	1.0	U	1.4	U	2.1	U	1.0	U	1.0
Isophorone	50 (gv)	U	10	U	10	U	14	U	21	U	10	U	10
bis(2-Chloroethoxy)methane	5	U	10	U	10	U	14	U	21	U	10	U	10
1,2,4-Trichlorobenzene	5 (gv)	U	1.0	U	1.0	U	1.4	U	2.1	U	1.0	U	1.0
Naphthalene	10 (gv)	U	10	U	10	U	14	330	21	U	10	U	10
4-Chloroaniline	5 (s)	U	10	U	10	U	14	U	21	U	10	U	10
Hexachlorobutadiene	0.5 (s)	U	2.0	U	2.0	U	2.8	U	4.2	U	2.1	U	2.1
2-Methylnaphthalene	NS	U	10	U	10	U	14	160	21	U	10	U	10
Hexachlorocyclopentadiene	5 (**)	υ	10	U	10	U	14	U	21	U	10	U	10
2-Chloronaphthalene	10 (s)	υ	10	U	10	U	14	U	21	U	10	U	10
2-Nitroaniline	5 (s)	Ū	20	Ū	20	Ū	28	Ū	42	Ū	21	Ū	21
Dimethylphthalate	50 (gv)	Ü	10	Ü	10	Ū	14	Ū	21	Ü	10	Ü	10
Acenaphthylene	NS	Ū	10	Ü	10	Ü	14	2.7 J	21	15	10	16	10
2,6-Dinitrotoluene	5 (gv)	Ü	2.0	Ü	2.0	Ü	2.8	J U	4.2	U	2.1	U	2.1
3-Nitroaniline	5 (gv)	Ü	20	U	20	U	28	Ü	42	Ü	21	Ü	21
Acenaphthene	20 (gv)	Ü	10	U	10	U	14	77	21	0.7 J	10	0.7 J	10
Dibenzofuran	NS	U	10	U	10	U	14	19 J	21	0.7 J	10	0.7 J	10
2,4-Dinitrotoluene	5 (gv)	U	2.0	U	2.0	U	2.8	U	4.2	0.8 J U	2.1	0.8 J U	2.1
· ·		IJ	2.0 10	U	10	U	2.8 14	U	4.2 21	U	10	U	10
Diethylphthalate	50 (gv)	l U	10	U	10	U	14	U	۷۱	U	10	U	10

Sample ID	NYSDEC Ambient Water	MW-20	D	MW-21		MW-24	l I	MW-28	S	MW-28I)	MW-28D-I	DUP
Lab Sample Number	Quality Standards and	926573	3	926570)	915171		926564	4	926565	5	926566	ô
Sampling Date	Guidance Values and	06/11/0	8	06/10/0	8	04/24/0	8	06/09/0	8	06/09/0	8	06/09/0	8
Matrix	Groundwater Effluent	WATER	₹	WATER	₹	WATER	₹	WATER	₹	WATER	₹	WATE	R
Screen Interval (feet bgs)	Limitations	16' to 20	6'	12' to 22	2'	10' to 20	0'	2' to 12	2'	21' to 3'	1'	21' to 3	1'
Sampling Depth (feet bgs)	Limitations	19.5'		19'		19'		9'		28'		28'	
SEMIVOLATILE COMPOUNDS (ug/l)		Result Q	MDL	Result Q	MDL	Result Q	MDL	Result Q	MDL	Result Q	MDL	Result Q	MDL
4-Chlorophenyl-phenylether	NS	U	10	U	10	U	14	U	21	U	10	U	10
Fluorene	50 (s)	U	10	U	10	U	14	25	21	U	10	U	10
4-Nitroaniline	5 (s)	U	20	U	20	U	28	U	42	U	21	U	21
N-Nitrosodiphenylamine	50 (gv)	U	10	U	10	U	14	U	21	U	10	U	10
4-Bromophenyl-phenylether	NS	U	10	U	10	U	14	U	21	U	10	U	10
Hexachlorobenzene	0.04 (s)	U	1.0	U	1.0	U	1.4	U	2.1	U	1.0	U	1.0
Phenanthrene	50 (gv)	U	10	U	10	U	14	26	21	U	10	0.3 J	10
Anthracene	50 (gv)	U	10	U	10	U	14	4.7 J	21	U	10	U	10
Carbazole	NS	U	10	U	10	U	14	26	21	U	10	U	10
Di-n-butylphthalate	NS	U	10	U	10	U	14	U	21	U	10	U	10
Fluoranthene	50 (s)	U	10	U	10	U	14	1.7 J	21	U	10	U	10
Pyrene	50 (gv)	U	10	U	10	U	14	0.8 J	21	U	10	U	10
Butylbenzylphthalate	50	U	10	U	10	U	14	U	21	U	10	U	10
3,3'-Dichlorobenzidine	5 (s)	U	20	U	20	U	28	U	42	U	21	U	21
Benzo(a)anthracene	0.002 (gv)	U	1.0	U	1.0	U	1.4	U	2.1	U	1.0	U	1.0
Chrysene	0.002 (gv)	U	10	U	10	0.5 J	14	U	21	U	10	U	10
bis(2-Ethylhexyl)phthalate	5	U	10	U	10	U	14	U	21	U	10	U	10
Di-n-octylphthalate	NC	U	10	U	10	U	14	U	21	U	10	U	10
Benzo(b)fluoranthene	0.002 (gv)	U	1.0	U	1.0	U	1.4	U	2.1	U	1.0	U	1.0
Benzo(k)fluoranthene	0.002 (gv)	U	1.0	U	1.0	U	1.4	U	2.1	U	1.0	U	1.0
Benzo(a)pyrene	ND (no detection)***	U	1.0	U	1.0	U	1.4	U	2.1	U	1.0	U	1.0
Indeno(1,2,3-cd)pyrene	0.002 (gv)	U	1.0	U	1.0	U	1.4	U	2.1	U	1.0	U	1.0
Dibenz(a,h)anthracene	0.002 (gv)	U	1.0	U	1.0	U	1.4	U	2.1	U	1.0	U	1.0
Benzo(g,h,i)perylene	NS	U	10	U	10	U	14	U	21	U	10	U	10
Total PAHs		0		0		0.5		467.9		15.7		17	
Total Confident Conc. SVOCs		0		0		0		644		15		16	
Total Estimated Conc. SVOC TICs		0		37		0		1204		0		0	
WET CHEMISTRY		Result Q	MDL	Result Q	MDL	Result Q	MDL	Result Q	MDL	Result Q	MDL	Result Q	MDL
Cyanide-Amenable - ug/l		U	10	U	10	62	10	U	10	U	10	U	10
TotalCyanide - ug/l	200	U	10	U	10	120	10	U	10	U	10	U	10

Sample ID	ANYODEO A LI LIMITA	MW-295	3	MW-29)	MW-31[)	MW-32I		MW-55		MW-60)
Lab Sample Number	NYSDEC Ambient Water	926562		926563		925570)	925571		926569		926567	,
Sampling Date	Quality Standards and	06/09/08	3	06/09/08	3	06/06/08	3	06/06/08	3	06/10/08	3	06/10/08	8
Matrix	Guidance Values and	WATER	2	WATER		WATER	2	WATER		WATER	2	WATER	₹
Screen Interval (feet bgs)	Groundwater Effluent	4' to 14		20' to 30	,	22' to 32	2'	12' to 22	2'	6' to 16		4' to 14	,
Sampling Depth (feet bgs)	Limitations	11.5'		25.5'		29'		19'		13'		11'	
VOLATILE COMPOUNDS (ug/L)		Result Q	MDL	Result Q	MDL	Result Q	MDL	Result Q	MDL	Result Q	MDL	Result Q	MDL
Chloromethane	NS	U	10	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0
Bromomethane	5 (s)	U	10	Ū	5.0	Ū	5.0	Ū	5.0	Ū	5.0	Ū	5.0
VinylChloride	2 (s)	Ū	10	Ū	5.0	Ū	5.0	Ū	5.0	7	5.0	Ū	5.0
Chloroethane	5 (s)	Ū	10	Ū	5.0	Ū	5.0	Ū	5.0	U	5.0	Ū	5.0
MethyleneChloride	5 (s)	U	6.0	Ū	3.0	Ū	3.0	Ū	3.0	Ū	3.0	Ū	3.0
Acetone	50 (gv)	U	10	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0
CarbonDisulfide	NS /	Ū	10	Ū	5.0	Ū	5.0	Ū	5.0	Ū	5.0	Ū	5.0
1,1-Dichloroethene	0.7 (gv)	Ū	4.0	Ū	2.0	Ū	2.0	Ū	2.0	Ū	2.0	Ū	2.0
1.1-Dichloroethane	5 (s)	Ū	10	Ū	5.0	Ū	5.0	Ū	5.0	Ū	5.0	Ū	5.0
trans-1,2-Dichloroethene	5 (s)	Ū	10	Ū	5.0	Ū	5.0	Ū	5.0	Ū	5.0	Ū	5.0
cis-1,2-Dichloroethene	5 (s)	Ü	10	Ū	5.0	Ū	5.0	Ü	5.0	2.2 J	5.0	Ū	5.0
Chloroform	7 (s)	Ü	10	Ū	5.0	Ū	5.0	Ü	5.0	U	5.0	Ū	5.0
1,2-Dichloroethane	0.6 (s)	U	4.0	Ū	2.0	Ū	2.0	Ū	2.0	Ū	2.0	Ū	2.0
2-Butanone	NS	Ü	10	Ū	5.0	Ū	5.0	Ü	5.0	Ū	5.0	Ū	5.0
1,1,1-Trichloroethane	5 (s)	Ü	10	0.4 J	5.0	0.5 J	5.0	Ü	5.0	Ü	5.0	Ū	5.0
CarbonTetrachloride	NS	Ü	4.0	U	2.0	U	2.0	Ū	2.0	Ü	2.0	Ü	2.0
Bromodichloromethane	50 (gv)	Ü	2.0	Ū	1.0	Ū	1.0	Ü	1.0	Ū	1.0	Ū	1.0
1,2-Dichloropropane	1 (s)	Ü	2.0	Ū	1.0	Ū	1.0	Ü	1.0	Ü	1.0	Ū	1.0
cis-1,3-Dichloropropene	0.4 (s*)	Ū	10	Ū	5.0	Ū	5.0	Ū	5.0	Ū	5.0	Ū	5.0
Trichloroethene	5 (s)	U	2.0	Ū	1.0	Ū	1.0	Ū	1.0	Ū	1.0	Ū	1.0
Dibromochloromethane	50 (gv)	U	10	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0
1,1,2-Trichloroethane	1 (s)	U	6.0	U	3.0	U	3.0	U	3.0	U	3.0	U	3.0
Benzene	1 (s)	160	2.0	U	1.0	U	1.0	2.4	1.0	U	1.0	U	1.0
trans-1,3-Dichloropropene	0.4 (s*)	U	10	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0
Bromoform	50 (gv)	U	8.0	U	4.0	U	4.0	U	4.0	U	4.0	U	4.0
4-Methyl-2-Pentanone	NS ,	U	10	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0
2-Hexanone	50 (gv)	U	10	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0
Tetrachloroethene	0.7 (gv)	U	2.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0
1,1,2,2-Tetrachloroethane	0.2 (gv)	U	2.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0
Toluene	5 (s)	1.8 J	10	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0
Chlorobenzene	5 (s)	U	10	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0
Ethylbenzene	5 (s)	140	8.0	U	4.0	U	4.0	U	4.0	U	4.0	U	4.0
Styrene	5 (gv)	U	10	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0
Xylene(Total)	5 (s)	34	10	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0
Total BTEX		335.8		0	İ	0		2.4	Ì	0		0	
Total Confident Conc. VOCs		334		0		0		2.4		7		0	
Total Estimated Conc. VOC TICs (s)		796		0		0		19		0		5.3	

Sample ID	NYSDEC Ambient Water	MW-29	_	MW-29[MW-31		MW-32		MW-55		MW-60	_
Lab Sample Number	Quality Standards and	926562		926563		925570		925571		926569		926567	
Sampling Date	Guidance Values and	06/09/0	8	06/09/08	8	06/06/0	8	06/06/0	8	06/10/0	8	06/10/0	8
Matrix	Groundwater Effluent	WATE	R	WATER	₹	WATER	₹	WATER	₹	WATER	₹	WATER	₹ .
Screen Interval (feet bgs)	Limitations	4' to 14	1'	20' to 30)'	22' to 3	2'	12' to 22	2'	6' to 16	5'	4' to 14	4'
Sampling Depth (feet bgs)	Limitations	11.5'		25.5'		29'		19'		13'		11'	
SEMIVOLATILE COMPOUNDS (ug/l)		Result Q	MDL	Result Q	MDL	Result Q	MDL	Result Q	MDL	Result Q	MDL	Result Q	MDL
Phenol	1 (s)	1.7 J	10	U	10	U	12	U	11	U	10	U	10
2-Chlorophenol	NS	U	10	U	10	U	12	U	11	U	10	U	10
2-Methylphenol	NS	U	10	U	10	U	12	U	11	U	10	U	10
4-Methylphenol	NS	Ū	10	Ü	10	Ü	12	Ü	11	Ü	10	Ū	10
2-Nitrophenol	NS	Ū	10	Ü	10	Ü	12	Ü	11	Ü	10	Ū	10
2,4-Dimethylphenol	50 (gv)	Ū	10	Ü	10	Ü	12	Ü	11	Ü	10	Ü	10
2,4-Dichlorophenol	5 (gv)	l ü	10	Ü	10	Ü	12	Ü	11	Ü	10	Ü	10
4-Chloro-3-methylphenol	NS NS	l ü	10	Ü	10	Ü	12	Ü	11	Ü	10	Ü	10
2,4,6-Trichlorophenol	NS NS	U	10	U	10	U	12	U	11	U	10	U	10
•	NS NS	U	10	U	10	U	12	U	11	U	10	U	10
2,4,5-Trichlorophenol	_	•		_	-	_		_		U	-	_	
2,4-Dinitrophenol	10 (gv)	U	32	U	32	U	38	U	33	_	31	U	32
4-Nitrophenol	NS	U	32	U	32	U	38	U	33	U	31	U	32
4,6-Dinitro-2-methylphenol	NS	U	32	U	32	U	38	U	33	U	31	U	32
Pentachlorophenol	1 (s)	U	32	U	32	U	38	U	33	U	31	U	32
bis(2-Chloroethyl)ether	1 (s)	U	1.0	U	1.0	U	1.2	U	1.1	U	1.0	U	1.0
1,3-Dichlorobenzene	3 (s)	U	10	U	10	U	12	U	11	U	10	U	10
1,4-Dichlorobenzene	3 (s)	U	10	U	10	U	12	U	11	U	10	U	10
1,2-Dichlorobenzene	3 (s)	U	10	U	10	U	12	U	11	U	10	U	10
bis(2-chloroisopropyl)ether	NS	U	10	U	10	U	12	U	11	U	10	U	10
N-Nitroso-di-n-propylamine	NS	U	1.0	U	1.0	U	1.2	U	1.1	U	1.0	U	1.0
Hexachloroethane	5 (s)	U	1.0	U	1.0	U	1.2	U	1.1	U	1.0	U	1.0
Nitrobenzene	0.4 (s)	U	1.0	U	1.0	U	1.2	U	1.1	U	1.0	U	1.0
Isophorone	50 (gv)	U	10	U	10	U	12	U	11	U	10	U	10
bis(2-Chloroethoxy)methane	5	U	10	U	10	U	12	U	11	U	10	U	10
1.2.4-Trichlorobenzene	5 (gv)	U	1.0	U	1.0	U	1.2	U	1.1	U	1.0	U	1.0
Naphthalene	10 (gv)	200	10	Ū	10	Ū	12	0.8 J	11	Ū	10	Ū	10
4-Chloroaniline	5 (s)	U	10	Ū	10	Ū	12	U	11	Ū	10	Ū	10
Hexachlorobutadiene	0.5 (s)	Ū	2.1	Ü	2.1	Ü	2.5	Ü	2.2	Ü	2.0	Ū	2.1
2-Methylnaphthalene	NS	38	10	Ü	10	Ü	12	Ü	11	Ü	10	1.1 J	10
Hexachlorocyclopentadiene	5 (**)	U	10	Ü	10	Ü	12	Ü	11	Ü	10	U	10
2-Chloronaphthalene	10 (s)	l ü	10	Ü	10	U	12	Ü	11	U	10	U	10
2-Nitroaniline	5 (s)	U	21	U	21	U	25	IJ	22	U	20	U	21
Dimethylphthalate	50 (gv)	U	10	U	10	U	12	U	11	U	10	U	10
Acenaphthylene	NS	1.2 J	10	U	10	U	12	88	11	U	10	U	10
				_	-	_				_	-	_	
2,6-Dinitrotoluene	5 (gv)	U	2.1	U	2.1	U	2.5	U	2.2	U	2.0	U	2.1
3-Nitroaniline	5 (gv)	U	21	U	21	U	25	U	22	U	20	U	21
Acenaphthene	20 (gv)	150	10	U	10	U	12	18	11	1 J	10	4.8 J	10
Dibenzofuran	NS	3.3 J	10	U	10	U	12	2.6 J	11	U	10	U	10
2,4-Dinitrotoluene	5 (gv)	U	2.1	U	2.1	U	2.5	U	2.2	U	2.0	U	2.1
Diethylphthalate	50 (gv)	U	10	U	10	U	12	U	11	U	10	U	10

Sample ID	NYSDEC Ambient Water	MW-29	S	MW-29[)	MW-31	D	MW-32	I	MW-55	5	MW-60)
Lab Sample Number	Quality Standards and	926562	2	926563	;	925570)	925571		926569)	926567	7
Sampling Date	,	06/09/0	8	06/09/08	8	06/06/0	8	06/06/08	8	06/10/0	8	06/10/0	8
Matrix	Guidance Values and Groundwater Effluent	WATER	R	WATER	}	WATER	₹	WATER	₹	WATER	3	WATER	₹
Screen Interval (feet bgs)	Limitations	4' to 14	1'	20' to 30)'	22' to 32	2'	12' to 22	2'	6' to 16	!	4' to 14	! '
Sampling Depth (feet bgs)	Limitations	11.5'		25.5'		29'		19'		13'		11'	
SEMIVOLATILE COMPOUNDS (ug/l)		Result Q	MDL	Result Q	MDL	Result Q	MDL	Result Q	MDL	Result Q	MDL	Result Q	MDL
4-Chlorophenyl-phenylether	NS	U	10	U	10	U	12	U	11	U	10	U	10
Fluorene	50 (s)	25	10	U	10	U	12	0.7 J	11	U	10	2.2 J	10
4-Nitroaniline	5 (s)	U	21	U	21	U	25	U	22	U	20	U	21
N-Nitrosodiphenylamine	50 (gv)	U	10	U	10	U	12	U	11	U	10	U	10
4-Bromophenyl-phenylether	NS	U	10	U	10	U	12	U	11	U	10	U	10
Hexachlorobenzene	0.04 (s)	U	1.0	U	1.0	U	1.2	U	1.1	U	1.0	U	1.0
Phenanthrene	50 (gv)	16	10	U	10	U	12	7.4 J	11	0.3 J	10	7.1 J	10
Anthracene	50 (gv)	4.1 J	10	U	10	U	12	0.6 J	11	U	10	1 J	10
Carbazole	NS	8.5 J	10	U	10	U	12	2.3 J	11	U	10	U	10
Di-n-butylphthalate	NS	U	10	U	10	U	12	U	11	U	10	U	10
Fluoranthene	50 (s)	2 J	10	U	10	U	12	U	11	U	10	1.3 J	10
Pyrene	50 (gv)	1.9 J	10	U	10	U	12	U	11	U	10	1.4 J	10
Butylbenzylphthalate	50	U	10	U	10	U	12	U	11	U	10	U	10
3,3'-Dichlorobenzidine	5 (s)	U	21	U	21	U	25	U	22	U	20	U	21
Benzo(a)anthracene	0.002 (gv)	U	1.0	U	1.0	U	1.2	U	1.1	U	1.0	U	1.0
Chrysene	0.002 (gv)	U	10	U	10	U	12	U	11	U	10	U	10
bis(2-Ethylhexyl)phthalate	5	U	10	U	10	U	12	U	11	U	10	U	10
Di-n-octylphthalate	NC	U	10	U	10	U	12	U	11	U	10	U	10
Benzo(b)fluoranthene	0.002 (gv)	U	1.0	U	1.0	U	1.2	U	1.1	U	1.0	U	1.0
Benzo(k)fluoranthene	0.002 (gv)	U	1.0	U	1.0	U	1.2	U	1.1	U	1.0	U	1.0
Benzo(a)pyrene	ND (no detection)***	U	1.0	U	1.0	U	1.2	U	1.1	U	1.0	U	1.0
Indeno(1,2,3-cd)pyrene	0.002 (gv)	U	1.0	U	1.0	U	1.2	U	1.1	U	1.0	U	1.0
Dibenz(a,h)anthracene	0.002 (gv)	U	1.0	U	1.0	U	1.2	U	1.1	U	1.0	U	1.0
Benzo(g,h,i)perylene	NS	U	10	U	10	U	12	U	11	U	10	U	10
Total PAHs		400.2		0		0		115.5		1.3		17.8	
Total Confident Conc. SVOCs		429		0		0		106		0		0	
Total Estimated Conc. SVOC TICs		680		0		0		119		0		0	
WET CHEMISTRY		Result Q	MDL	Result Q	MDL	Result Q	MDL	Result Q	MDL	Result Q	MDL	Result Q	MDL
Cyanide-Amenable - ug/l		U	10	U	10	U	10	U	10	U	10	U	10
TotalCyanide - ug/l	200	U	10	U	10	U	10	U	10	U	10	U	10

Sample ID	NYSDEC Ambient Water	MW-615	3	MW-635	3	MW-83	S	MW-85	S	MW-107	S	TWP-80	0
Lab Sample Number		926574		925566		926561		926571		926568	3	917129	9
Sampling Date	Quality Standards and	06/11/08	3	06/05/08	3	06/09/0	8	06/10/08	8	06/10/0	8	05/01/08	8
Matrix	Guidance Values and	WATER	₹	WATER		WATER	₹	WATER	₹	WATER	₹	WATER	₹
Screen Interval (feet bgs)	Groundwater Effluent	2' to 12	•	2' to 12'		3' to 13	.'	5' to 15	•	3' to 13		5	
Sampling Depth (feet bgs)	Limitations	10'		9.5'		10'		10.5'		10.5'		5	
VOLATILE COMPOUNDS (ug/L)		Result Q	MDL	Result Q	MDL	Result Q	MDL	Result Q	MDL	Result Q	MDL	Result Q	MDL
Chloromethane	NS	U	120	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0
Bromomethane	5 (s)	U	120	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0
VinylChloride	2 (s)	U	120	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0
Chloroethane	5 (s)	U	120	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0
MethyleneChloride	5 (s)	U	75	U	3.0	U	3.0	U	3.0	U	3.0	U	3.0
Acetone	50 (gv)	U	120	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0
CarbonDisulfide	NS	U	120	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0
1,1-Dichloroethene	0.7 (gv)	U	50	U	2.0	U	2.0	U	2.0	U	2.0	U	2.0
1,1-Dichloroethane	5 (s)	U	120	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0
trans-1,2-Dichloroethene	5 (s)	U	120	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0
cis-1,2-Dichloroethene	5 (s)	U	120	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0
Chloroform	7 (s)	U	120	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0
1,2-Dichloroethane	0.6 (s)	U	50	U	2.0	U	2.0	U	2.0	U	2.0	U	2.0
2-Butanone	NS	U	120	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0
1,1,1-Trichloroethane	5 (s)	U	120	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0
CarbonTetrachloride	NS	U	50	U	2.0	U	2.0	U	2.0	U	2.0	U	2.0
Bromodichloromethane	50 (gv)	U	25	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0
1,2-Dichloropropane	1 (s)	U	25	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0
cis-1,3-Dichloropropene	0.4 (s*)	U	120	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0
Trichloroethene	5 (s)	U	25	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0
Dibromochloromethane	50 (gv)	U	120	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0
1,1,2-Trichloroethane	1 (s)	U	75	U	3.0	U	3.0	U	3.0	U	3.0	U	3.0
Benzene	1 (s)	320	25	11	1.0	U	1.0	U	1.0	U	1.0	0.4 J	1.0
trans-1,3-Dichloropropene	0.4 (s*)	U	120	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0
Bromoform	50 (gv)	U	100	U	4.0	U	4.0	U	4.0	U	4.0	U	4.0
4-Methyl-2-Pentanone	NS /	U	120	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0
2-Hexanone	50 (gv)	U	120	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0
Tetrachloroethene	0.7 (gv)	U	25	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0
1,1,2,2-Tetrachloroethane	0.2 (gv)	Ū	25	Ū	1.0	Ū	1.0	Ū	1.0	Ū	1.0	Ū	1.0
Toluene	5 (s)	18 J	120	0.5 J	5.0	Ū	5.0	Ū	5.0	Ū	5.0	0.5 J	5.0
Chlorobenzene	5 (s)	U	120	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0
Ethylbenzene	5 (s)	350	100	9.4	4.0	Ū	4.0	Ū	4.0	Ū	4.0	0.7 J	4.0
Styrene	5 (gv)	U	120	U	5.0	Ū	5.0	Ū	5.0	Ū	5.0	Ü	5.0
Xylene(Total)	5 (s)	210	120	13	5.0	U	5.0	U	5.0	U	5.0	2.4 J	5.0
Total BTEX	` ,	898		33.9		0		0		0		4	İ
Total Confident Conc. VOCs		880	ĺ	33		0		0	ĺ	0		0	
Total Estimated Conc. VOC TICs (s)		8340		138		0		0		0		0	

Sample ID	NYSDEC Ambient Water	MW-61	-	MW-638		MW-83		MW-858		MW-107		TWP-80	-
Lab Sample Number	Quality Standards and	926574	4	925566	i	926561	1	926571		926568	3	917129)
Sampling Date	Guidance Values and	06/11/0	8	06/05/08	3	06/09/0	8	06/10/08	8	06/10/0	8	05/01/0	8
Matrix	Groundwater Effluent	WATE	₹	WATER	2	WATER	₹	WATER	₹	WATER	₹	WATER	₹
Screen Interval (feet bgs)		2' to 12	2'	2' to 12	'	3' to 13	3'	5' to 15	'	3' to 13	:	5	
Sampling Depth (feet bgs)	Limitations	10'		9.5'		10'		10.5'		10.5'		5	
SEMIVOLATILE COMPOUNDS (ug/l)		Result Q	MDL	Result Q	MDL	Result Q	MDL	Result Q	MDL	Result Q	MDL	Result Q	MDL
Phenol	1 (s)	U	510	U	10	U	10	U	10	U	10	U	10
2-Chlorophenol	NS	Ū	510	Ū	10	Ū	10	Ū	10	Ü	10	Ū	10
2-Methylphenol	NS	Ü	510	Ü	10	Ü	10	Ū	10	Ü	10	Ü	10
4-Methylphenol	NS	Ü	510	Ü	10	Ü	10	Ü	10	Ü	10	Ü	10
2-Nitrophenol	NS	Ü	510	Ü	10	Ü	10	Ü	10	Ü	10	Ü	10
2,4-Dimethylphenol	50 (gv)	Ü	510	Ü	10	Ü	10	Ü	10	Ü	10	Ü	10
2,4-Dirhettyphenol	50 (gv) 5 (gv)	U	510	Ü	10	Ü	10	U	10	Ü	10	Ü	10
4-Chloro-3-methylphenol	NS NS	Ü	510	U	10	U	10	Ü	10	U	10	Ü	10
2,4,6-Trichlorophenol	NS NS	U	510	U	10	U	10	U	10	U	10	U	10
2,4,5-Trichlorophenol	NS NS	U	510	U	10	U	10	IJ	10	U	10	U	10
•	_	U	1500	U	30	U	32	U	31	U	31	U	31
2,4-Dinitrophenol	10 (gv)	U		U	30	U	32	U	-	U		U	31
4-Nitrophenol	NS NO	_	1500	_		_		_	31	_	31	_	
4,6-Dinitro-2-methylphenol	NS	U	1500	U	30	U	32	U	31	U	31	U	31
Pentachlorophenol	1 (s)	U	1500	U	30	U	32	U	31	U	31	U	31
bis(2-Chloroethyl)ether	1 (s)	U	51	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0
1,3-Dichlorobenzene	3 (s)	U	510	U	10	U	10	U	10	U	10	U	10
1,4-Dichlorobenzene	3 (s)	U	510	U	10	U	10	U	10	U	10	U	10
1,2-Dichlorobenzene	3 (s)	U	510	U	10	U	10	U	10	U	10	U	10
bis(2-chloroisopropyl)ether	NS	U	510	U	10	U	10	U	10	U	10	U	10
N-Nitroso-di-n-propylamine	NS	U	51	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0
Hexachloroethane	5 (s)	U	51	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0
Nitrobenzene	0.4 (s)	U	51	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0
Isophorone	50 (gv)	U	510	U	10	U	10	U	10	U	10	U	10
bis(2-Chloroethoxy)methane	5	U	510	U	10	U	10	U	10	U	10	U	10
1,2,4-Trichlorobenzene	5 (gv)	U	51	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0
Naphthalene	10 (gv)	9200	510	5.2 J	10	U	10	U	10	U	10	U	10
4-Chloroaniline	5 (s)	U	510	U	10	U	10	U	10	U	10	U	10
Hexachlorobutadiene	0.5 (s)	U	100	U	2.0	U	2.1	U	2.0	U	2.0	U	2.0
2-Methylnaphthalene	NS	680	510	1.2 J	10	U	10	U	10	U	10	U	10
Hexachlorocyclopentadiene	5 (**)	U	510	U	10	U	10	U	10	U	10	U	10
2-Chloronaphthalene	10 (s)	Ü	510	Ū	10	Ū	10	Ū	10	Ū	10	Ū	10
2-Nitroaniline	5 (s)	Ü	1000	Ü	20	Ü	21	Ü	20	Ü	20	Ü	20
Dimethylphthalate	50 (gv)	Ü	510	Ü	10	Ü	10	Ü	10	Ü	10	Ü	10
Acenaphthylene	NS NS	Ü	510	7.6 J	10	Ü	10	1.3 J	10	Ü	10	Ü	10
2.6-Dinitrotoluene	5 (gv)	Ü	100	V.S U	2.0	Ü	2.1	U	2.0	Ü	2.0	Ü	2.0
3-Nitroaniline	5 (gv)	Ü	1000	Ü	20	U	21	Ü	20	U	20	U	20
Acenaphthene	20 (gv)	310 J	510	76	10	U	10	7.3 J	10	U	10	U	10
Dibenzofuran	NS	310 J	510	2.7 J	10	U	10	7.3 J U	10	U	10	U	10
		U			2.0	U		U		U	_	U	
2,4-Dinitrotoluene	5 (gv)	U	100	U		U	2.1	IJ	2.0	U	2.0	IJ	2.0
Diethylphthalate	50 (gv)	U	510	U	10	U	10	U	10	U	10	U	10

Sample ID	NYSDEC Ambient Water	MW-61	S	MW-63	S	MW-83	S	MW-85	S	MW-107	S	TWP-8	0
Lab Sample Number	Quality Standards and	926574	1	925566	6	926561	1	926571		926568	3	917129	}
Sampling Date	Guidance Values and	06/11/0	8	06/05/0	8	06/09/0	8	06/10/08	8	06/10/0	8	05/01/0	8
Matrix	Guidance values and Groundwater Effluent	WATER	₹	WATER	₹	WATER	₹	WATER	₹	WATER	₹	WATER	₹
Screen Interval (feet bgs)	Limitations	2' to 12	2'	2' to 12	!	3' to 13	3'	5' to 15		3' to 13		5	
Sampling Depth (feet bgs)	Limitations	10'		9.5'		10'		10.5'		10.5'		5	
SEMIVOLATILE COMPOUNDS (ug/l)		Result Q	MDL	Result Q	MDL	Result Q	MDL	Result Q	MDL	Result Q	MDL	Result Q	MDL
4-Chlorophenyl-phenylether	NS	U	510	U	10	U	10	U	10	U	10	U	10
Fluorene	50 (s)	59 J	510	9.8 J	10	U	10	U	10	U	10	U	10
4-Nitroaniline	5 (s)	U	1000	U	20	U	21	U	20	U	20	U	20
N-Nitrosodiphenylamine	50 (gv)	U	510	U	10	U	10	U	10	U	10	U	10
4-Bromophenyl-phenylether	NS	U	510	U	10	U	10	U	10	U	10	U	10
Hexachlorobenzene	0.04 (s)	U	51	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0
Phenanthrene	50 (gv)	64 J	510	0.7 J	10	U	10	0.9 J	10	U	10	U	10
Anthracene	50 (gv)	U	510	1.6 J	10	U	10	0.8 J	10	U	10	U	10
Carbazole	NS	U	510	2.8 J	10	U	10	U	10	U	10	U	10
Di-n-butylphthalate	NS	U	510	U	10	U	10	U	10	U	10	U	10
Fluoranthene	50 (s)	U	510	1.5 J	10	U	10	3.2 J	10	U	10	U	10
Pyrene	50 (gv)	U	510	0.9 J	10	U	10	9.2 J	10	U	10	U	10
Butylbenzylphthalate	50	U	510	U	10	U	10	U	10	U	10	U	10
3,3'-Dichlorobenzidine	5 (s)	U	1000	U	20	U	21	U	20	U	20	U	20
Benzo(a)anthracene	0.002 (gv)	U	51	U	1.0	U	1.0	1.8	1.0	U	1.0	U	1.0
Chrysene	0.002 (gv)	U	510	U	10	U	10	2.1 J	10	U	10	U	10
bis(2-Ethylhexyl)phthalate	5	U	510	U	10	U	10	U	10	U	10	U	10
Di-n-octylphthalate	NC	U	510	U	10	U	10	U	10	U	10	U	10
Benzo(b)fluoranthene	0.002 (gv)	U	51	U	1.0	U	1.0	0.8 J	1.0	U	1.0	U	1.0
Benzo(k)fluoranthene	0.002 (gv)	U	51	U	1.0	U	1.0	1.5	1.0	U	1.0	U	1.0
Benzo(a)pyrene	ND (no detection)***	U	51	U	1.0	U	1.0	2.1	1.0	U	1.0	U	1.0
Indeno(1,2,3-cd)pyrene	0.002 (gv)	U	51	U	1.0	U	1.0	0.8 J	1.0	U	1.0	U	1.0
Dibenz(a,h)anthracene	0.002 (gv)	U	51	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0
Benzo(g,h,i)perylene	NS	U	510	U	10	U	10	1.3 J	10	U	10	U	10
Total PAHs		9633		103.3		0		33.1		0		0	
Total Confident Conc. SVOCs		9880		76		0		5.4		0		0	
Total Estimated Conc. SVOC TICs		4810		240		0		17		0		0	
WET CHEMISTRY		Result Q	MDL	Result Q	MDL	Result Q	MDL	Result Q	MDL	Result Q	MDL	Result Q	MDL
Cyanide-Amenable - ug/l		17	10	U	10	U	10	U	10	U	10	U	10
TotalCyanide - ug/l	200	17	10	U	10	U	10	U	10	U	10	U	10

Sample ID	NIVODEO Ambiant Water	TWP-84	ļ.	TWP-9	2	TWP-120		TWP-123		TWP-124	
Lab Sample Number	NYSDEC Ambient Water	917132		917130)	917128		917133	3	917127	
Sampling Date	Quality Standards and	05/01/08	3	05/01/0	8	05/01/08	3	05/01/0	8	05/01/0	8
Matrix	Guidance Values and	WATER		WATER	₹	WATER		WATER	₹ .	WATER	3
Screen Interval (feet bgs)	Groundwater Effluent	3		2		5		8		5	
Sampling Depth (feet bgs)	Limitations	3		2		5		8		5	
VOLATILE COMPOUNDS (ug/L)		Result Q	MDL	Result Q	MDL	Result Q	MDL	Result Q	MDL	Result Q	MDL
Chloromethane	NS	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0
Bromomethane	5 (s)	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0
VinylChloride	2 (s)	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0
Chloroethane	5 (s)	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0
MethyleneChloride	5 (s)	U	3.0	U	3.0	U	3.0	U	3.0	U	3.0
Acetone	50 (gv)	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0
CarbonDisulfide	NS '	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0
1,1-Dichloroethene	0.7 (gv)	U	2.0	U	2.0	U	2.0	U	2.0	U	2.0
1,1-Dichloroethane	5 (s)	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0
trans-1,2-Dichloroethene	5 (s)	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0
cis-1,2-Dichloroethene	5 (s)	Ü	5.0	Ū	5.0	Ū	5.0	Ū	5.0	Ū	5.0
Chloroform	7 (s)	Ü	5.0	Ū	5.0	Ū	5.0	Ū	5.0	Ū	5.0
1,2-Dichloroethane	0.6 (s)	Ū	2.0	Ū	2.0	Ū	2.0	Ū	2.0	Ū	2.0
2-Butanone	NS	U	5.0	Ū	5.0	Ū	5.0	Ū	5.0	Ū	5.0
1,1,1-Trichloroethane	5 (s)	Ü	5.0	Ū	5.0	Ū	5.0	Ū	5.0	Ū	5.0
CarbonTetrachloride	NS	Ū	2.0	Ū	2.0	Ū	2.0	Ū	2.0	Ū	2.0
Bromodichloromethane	50 (gv)	U	1.0	Ū	1.0	Ū	1.0	Ū	1.0	Ū	1.0
1,2-Dichloropropane	1 (s)	Ü	1.0	Ü	1.0	Ü	1.0	Ü	1.0	Ü	1.0
cis-1,3-Dichloropropene	0.4 (s*)	Ü	5.0	Ü	5.0	Ü	5.0	Ü	5.0	Ü	5.0
Trichloroethene	5 (s)	Ü	1.0	Ü	1.0	Ü	1.0	Ü	1.0	Ü	1.0
Dibromochloromethane	50 (gv)	Ü	5.0	Ü	5.0	Ü	5.0	Ü	5.0	Ü	5.0
1,1,2-Trichloroethane	1 (s)	Ü	3.0	Ü	3.0	Ü	3.0	Ü	3.0	Ü	3.0
Benzene	1 (s)	Ü	1.0	Ü	1.0	Ü	1.0	Ü	1.0	Ü	1.0
trans-1,3-Dichloropropene	0.4 (s*)	Ü	5.0	Ü	5.0	Ü	5.0	Ü	5.0	Ü	5.0
Bromoform	50 (gv)	Ü	4.0	Ü	4.0	Ü	4.0	Ü	4.0	Ü	4.0
4-Methyl-2-Pentanone	NS	Ü	5.0	Ü	5.0	Ü	5.0	Ü	5.0	Ü	5.0
2-Hexanone	50 (gv)	Ü	5.0	Ü	5.0	Ü	5.0	Ü	5.0	Ü	5.0
Tetrachloroethene	0.7 (gv)	Ü	1.0	Ü	1.0	Ü	1.0	Ü	1.0	Ü	1.0
1,1,2,2-Tetrachloroethane	0.2 (gv)	Ü	1.0	Ü	1.0	Ü	1.0	Ü	1.0	Ü	1.0
Toluene	5 (s)	Ü	5.0	Ü	5.0	Ü	5.0	0.4 J	5.0	Ü	5.0
Chlorobenzene	5 (s)	Ü	5.0	Ü	5.0	Ü	5.0	U	5.0	Ü	5.0
Ethylbenzene	5 (s)	Ü	4.0	Ü	4.0	Ü	4.0	Ü	4.0	Ü	4.0
Styrene	5 (gv)	Ü	5.0	Ü	5.0	Ü	5.0	Ü	5.0	Ü	5.0
Xylene(Total)	5 (s)	Ü	5.0	0.2 J	5.0	Ü	5.0	Ü	5.0	Ü	5.0
Total BTEX	÷ (ö)	0	5.5	0.2	3.0	0	5.0	0.4	3.0	0	5.5
Total Confident Conc. VOCs		0		0.2		0		0.4		0	
Total Estimated Conc. VOC TICs (s)		0		0		0		0		0	

Sample ID	NVCDEC Ambient Water	TWP-8	4	TWP-92	2	TWP-12	0	TWP-12	23	TWP-12	24
Lab Sample Number	NYSDEC Ambient Water	917132	2	917130)	917128		917133		917127	
Sampling Date	Quality Standards and	05/01/0	8	05/01/0	8	05/01/08	8	05/01/0	8	05/01/08	
Matrix	Guidance Values and	WATER	₹	WATER	₹	WATER	₹	WATER	3	WATER	
Screen Interval (feet bgs)	Groundwater Effluent	3		2		5		8		5	
Sampling Depth (feet bgs)	Limitations	3		2		5		8		5	
SEMIVOLATILE COMPOUNDS (ug/l)		Result Q	MDL	Result Q	MDL	Result Q	MDL	Result Q	MDL	Result Q	MDL
Phenol	1 (s)	U	10	U	10	U	10	U	10	U	10
2-Chlorophenol	NS	Ü	10	Ü	10	Ü	10	Ü	10	Ü	10
2-Methylphenol	NS	Ü	10	Ü	10	Ü	10	Ü	10	Ü	10
4-Methylphenol	NS NS	U	10	U	10	U	10	U	10	Ü	10
2-Nitrophenol	NS NS	Ü	10	U	10	Ü	10	Ü	10	U	10
2,4-Dimethylphenol	50 (gv)	U	10	U	10	U	10	U	10	U	10
2,4-Dimethylphenol		U	10	U	10	U	10	U	10	U	10
· ·	5 (gv)	U	-	U	-	U	-	U	10	U	10
4-Chloro-3-methylphenol	NS NS	U	10	U	10	U	10	U		U	
2,4,6-Trichlorophenol	_		10	_	10	_	10	_	10	_	10
2,4,5-Trichlorophenol	NS 12 ()	U	10	U	10	U	10	U	10	U	10
2,4-Dinitrophenol	10 (gv)	U	31	U	31	U	31	U	31	U	31
4-Nitrophenol	NS	U	31	U	31	U	31	U	31	U	31
4,6-Dinitro-2-methylphenol	NS	U	31	U	31	U	31	U	31	U	31
Pentachlorophenol	1 (s)	U	31	U	31	U	31	U	31	U	31
bis(2-Chloroethyl)ether	1 (s)	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0
1,3-Dichlorobenzene	3 (s)	U	10	U	10	U	10	U	10	U	10
1,4-Dichlorobenzene	3 (s)	U	10	U	10	U	10	U	10	U	10
1,2-Dichlorobenzene	3 (s)	U	10	U	10	U	10	U	10	U	10
bis(2-chloroisopropyl)ether	NS	U	10	U	10	U	10	U	10	U	10
N-Nitroso-di-n-propylamine	NS	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0
Hexachloroethane	5 (s)	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0
Nitrobenzene	0.4 (s)	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0
Isophorone	50 (gv)	U	10	U	10	U	10	U	10	U	10
bis(2-Chloroethoxy)methane	5	U	10	U	10	U	10	U	10	U	10
1,2,4-Trichlorobenzene	5 (gv)	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0
Naphthalene	10 (gv)	U	10	U	10	U	10	U	10	U	10
4-Chloroaniline	5 (s)	U	10	U	10	U	10	U	10	U	10
Hexachlorobutadiene	0.5 (s)	U	2.0	U	2.0	U	2.0	U	2.0	U	2.0
2-Methylnaphthalene	NS	U	10	U	10	U	10	U	10	U	10
Hexachlorocyclopentadiene	5 (**)	U	10	U	10	U	10	U	10	U	10
2-Chloronaphthalene	10 (s)	Ū	10	Ū	10	Ū	10	Ü	10	Ū	10
2-Nitroaniline	5 (s)	Ü	20	Ü	20	Ü	20	Ü	20	Ü	20
Dimethylphthalate	50 (gv)	Ü	10	Ü	10	Ü	10	Ü	10	Ü	10
Acenaphthylene	NS NS	Ü	10	Ü	10	Ü	10	Ü	10	Ü	10
2.6-Dinitrotoluene	5 (gv)	Ü	2.0	Ü	2.0	Ü	2.0	Ü	2.0	Ü	2.0
3-Nitroaniline	5 (gv)	Ü	20	Ü	20	Ü	20	Ü	20	Ü	20
Acenaphthene	20 (gv)	Ü	10	U	10	Ü	10	Ü	10	U	10
Dibenzofuran	NS	U	10	U	10	U	10	U	10	U	10
2.4-Dinitrotoluene	5 (gv)	U	2.0	U	2.0	U	2.0	U	2.0	U	2.0
Diethylphthalate	5 (gv) 50 (gv)	U	10	U	10	U	10	U	10	U	10
Dietriyipritrialate	ου (gv)	U	IU	U	IU	U	10	U	10	U	10

Sample ID	NYSDEC Ambient Water	TWP-84	1	TWP-9	2	TWP-12	0	TWP-12	3	TWP-12	24
Lab Sample Number		917132	2	917130)	917128	3	917133	3	917127	7
Sampling Date	Quality Standards and	05/01/08	8	05/01/0	8	05/01/0	8	05/01/0	8	05/01/0	8
Matrix	Guidance Values and	WATER	₹	WATER	₹	WATER	₹	WATER	₹	WATER	₹
Screen Interval (feet bgs)	Groundwater Effluent	3		2		5		8		5	
Sampling Depth (feet bgs)	Limitations	3		2			5			5	
SEMIVOLATILE COMPOUNDS (ug/l)		Result Q	MDL	Result Q	MDL	Result Q	MDL	Result Q	MDL	Result Q	MDL
4-Chlorophenyl-phenylether	NS	U	10	U	10	U	10	U	10	U	10
Fluorene	50 (s)	U	10	U	10	U	10	U	10	U	10
4-Nitroaniline	5 (s)	U	20	U	20	U	20	U	20	U	20
N-Nitrosodiphenylamine	50 (gv)	U	10	U	10	U	10	U	10	U	10
4-Bromophenyl-phenylether	NS	U	10	U	10	U	10	U	10	U	10
Hexachlorobenzene	0.04 (s)	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0
Phenanthrene	50 (gv)	U	10	U	10	U	10	U	10	U	10
Anthracene	50 (gv)	U	10	U	10	U	10	U	10	U	10
Carbazole	NS	U	10	U	10	U	10	U	10	U	10
Di-n-butylphthalate	NS	U	10	U	10	U	10	U	10	U	10
Fluoranthene	50 (s)	U	10	U	10	U	10	U	10	U	10
Pyrene	50 (gv)	U	10	U	10	U	10	U	10	U	10
Butylbenzylphthalate	50	U	10	U	10	U	10	U	10	U	10
3,3'-Dichlorobenzidine	5 (s)	U	20	U	20	U	20	U	20	U	20
Benzo(a)anthracene	0.002 (gv)	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0
Chrysene	0.002 (gv)	U	10	U	10	U	10	U	10	U	10
bis(2-Ethylhexyl)phthalate	5	U	10	U	10	U	10	U	10	U	10
Di-n-octylphthalate	NC	U	10	U	10	U	10	U	10	U	10
Benzo(b)fluoranthene	0.002 (gv)	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0
Benzo(k)fluoranthene	0.002 (gv)	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0
Benzo(a)pyrene	ND (no detection)***	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0
Indeno(1,2,3-cd)pyrene	0.002 (gv)	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0
Dibenz(a,h)anthracene	0.002 (gv)	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0
Benzo(g,h,i)perylene	NS	U	10	U	10	U	10	U	10	U	10
Total PAHs		0		0		0		0		0	
Total Confident Conc. SVOCs		0		0		0		0		0	
Total Estimated Conc. SVOC TICs		0		0		0		0		0	
WET CHEMISTRY		Result Q	MDL	Result Q	MDL	Result Q	MDL	Result Q	MDL	Result Q	MDL
Cyanide-Amenable - ug/l		U	10	U	10	U	10	U	10	U	10
TotalCyanide - ug/l	200	U	10	U	10	U	10	U	10	U	10

Sample ID	NYSDEC Ambient Water	TripBlank	FieldBlank		TB		FB-050208		TRIPBLANK	
Lab Sample Number	Quality Standards and	915169	915170		917131		917135		925573	
Sampling Date	Guidance Values and	04/24/08	04/24/08		04/28/08		05/02/08	3	06/04/0	8
Matrix	Groundwater Effluent	WATER	WATER		WATER		WATER	2	WATER	3
VOLATILE COMPOUNDS (ug/l)		Result Q MDL	Result Q N	MDL	Result Q	MDL	Result Q	MDL	Result Q	MDL
Chloromethane	NS	U 5.0	U	5.0	U	5.0	U	5.0	U	5.0
Bromomethane	5 (s)	U 5.0	_	5.0	U	5.0	U	5.0	U	5.0
VinylChloride	2 (s)	U 5.0	_	5.0	U	5.0	U	5.0	U	5.0
Chloroethane	5 (s)	U 5.0	U	5.0	U	5.0	U	5.0	U	5.0
MethyleneChloride	5 (s)	U 3.0	U	3.0	U	3.0	U	3.0	U	3.0
Acetone	50 (gv)	U 5.0	U	5.0	U	5.0	U	5.0	U	5.0
CarbonDisulfide	NS	U 5.0	U	5.0	U	5.0	U	5.0	U	5.0
1,1-Dichloroethene	0.7 (gv)	U 2.0	U	2.0	U	2.0	U	2.0	U	2.0
1,1-Dichloroethane	5 (s)	U 5.0	U	5.0	U	5.0	U	5.0	U	5.0
trans-1,2-Dichloroethene	5 (s)	U 5.0	U	5.0	U	5.0	U	5.0	U	5.0
cis-1,2-Dichloroethene	5 (s)	U 5.0	U	5.0	U	5.0	U	5.0	U	5.0
Chloroform	7 (s)	U 5.0	U	5.0	U	5.0	U	5.0	U	5.0
1,2-Dichloroethane	0.6 (s)	U 2.0	U	2.0	U	2.0	U	2.0	U	2.0
2-Butanone	NS	U 5.0	U	5.0	U	5.0	U	5.0	U	5.0
1,1,1-Trichloroethane	5 (s)	U 5.0	U	5.0	U	5.0	U	5.0	U	5.0
CarbonTetrachloride	NS	U 2.0	U	2.0	U	2.0	U	2.0	U	2.0
Bromodichloromethane	50 (gv)	U 1.0	U	1.0	U	1.0	U	1.0	U	1.0
1,2-Dichloropropane	1 (s)	U 1.0	U	1.0	U	1.0	U	1.0	U	1.0
cis-1,3-Dichloropropene	0.4 (s*)	U 5.0	U	5.0	U	5.0	U	5.0	U	5.0
Trichloroethene	5 (s)	U 1.0	U	1.0	U	1.0	U	1.0	U	1.0
Dibromochloromethane	50 (gv)	U 5.0	U	5.0	U	5.0	U	5.0	U	5.0
1,1,2-Trichloroethane	1 (s)	U 3.0	U	3.0	U	3.0	U	3.0	U	3.0
Benzene	1 (s)	U 1.0	U	1.0	U	1.0	U	1.0	U	1.0
trans-1,3-Dichloropropene	0.4 (s*)	U 5.0	U	5.0	U	5.0	U	5.0	U	5.0
Bromoform	50 (gv)	U 4.0	U	4.0	U	4.0	U	4.0	U	4.0
4-Methyl-2-Pentanone	NS	U 5.0	U	5.0	U	5.0	U	5.0	U	5.0
2-Hexanone	50 (gv)	U 5.0	U	5.0	U	5.0	U	5.0	U	5.0
Tetrachloroethene	0.7 (gv)	U 1.0	U	1.0	U	1.0	U	1.0	U	1.0
1,1,2,2-Tetrachloroethane	0.2 (gv)	U 1.0	U	1.0	U	1.0	U	1.0	U	1.0
Toluene	5 (s)	U 5.0	U	5.0	U	5.0	U	5.0	U	5.0
Chlorobenzene	5 (s)	U 5.0	U	5.0	U	5.0	U	5.0	U	5.0
Ethylbenzene	5 (s)	U 4.0	U	4.0	U	4.0	U	4.0	U	4.0
Styrene	5 (gv)	U 5.0	U	5.0	U	5.0	U	5.0	U	5.0
Xylene(Total)	5 (s)	U 5.0	U	5.0	U	5.0	U	5.0	U	5.0
Total Confident Conc. VOAs (s)	` ` `	0	0		0		0		0	
Total Estimated Conc. VOA TICs (s)		0	0		0		0		0	

Sample ID	NYSDEC Ambient Water	TripBlank	FieldBlank	TB	FB-050208	TRIPBLANK
Lab Sample Number	Quality Standards and	915169	915170	917131	917135	925573
Sampling Date	Guidance Values and	04/24/08	04/24/08	04/28/08	05/02/08	06/04/08
Matrix	Groundwater Effluent	WATER	WATER	WATER	WATER	WATER
SEMIVOLATILE COMPOUNDS (ug/l)		Result Q MDL	Result Q MDL	Result Q MDL	Result Q MDL	Result Q MDL
Phenol	1 (s)	NR	U 10	NR	NR	NR
2-Chlorophenol	NS	NR	U 10	NR	NR	NR
2-Methylphenol	NS	NR	U 10	NR	NR	NR
4-Methylphenol	NS	NR	U 10	NR	NR	NR
2-Nitrophenol	NS	NR	U 10	NR	NR	NR
2,4-Dimethylphenol	50 (gv)	NR	U 10	NR	NR	NR
2,4-Dichlorophenol	5 (gv)	NR	U 10	NR	NR	NR
4-Chloro-3-methylphenol	NS	NR	U 10	NR	NR	NR
2,4,6-Trichlorophenol	NS	NR	U 10	NR	NR	NR
2,4,5-Trichlorophenol	NS	NR	U 10	NR	NR	NR
2,4-Dinitrophenol	10 (gv)	NR	U 31	NR	NR	NR
4-Nitrophenol	NS	NR	U 31	NR	NR	NR
4,6-Dinitro-2-methylphenol	NS	NR	U 31	NR	NR	NR
Pentachlorophenol	1 (s)	NR	U 31	NR	NR	NR
bis(2-Chloroethyl)ether	1 (s)	NR	U 1.0	NR	NR	NR
1,3-Dichlorobenzene	3 (s)	NR	U 10	NR	NR	NR
1,4-Dichlorobenzene	3 (s)	NR	U 10	NR	NR	NR
1,2-Dichlorobenzene	3 (s)	NR	U 10	NR	NR	NR
bis(2-chloroisopropyl)ether	NS	NR	U 10	NR	NR	NR
N-Nitroso-di-n-propylamine	NS	NR	U 1.0	NR	NR	NR
Hexachloroethane	5 (s)	NR	U 1.0	NR	NR	NR
Nitrobenzene	0.4 (s)	NR	U 1.0	NR	NR	NR
Isophorone	50 (gv)	NR	U 10	NR	NR	NR
bis(2-Chloroethoxy)methane	5	NR	U 10	NR	NR	NR
1,2,4-Trichlorobenzene	5 (gv)	NR	U 1.0	NR	NR	NR
Naphthalene	10 (gv)	NR	U 10	NR	U 0.2	NR
4-Chloroaniline	5 (s)	NR	U 10	NR	NR	NR
Hexachlorobutadiene	0.5 (s)	NR	U 2.0	NR	NR	NR
2-Methylnaphthalene	NS	NR	U 10	NR	NR	NR
Hexachlorocyclopentadiene	5 (**)	NR	U 10	NR	NR	NR
2-Chloronaphthalene	10 (s)	NR	U 10	NR	NR	NR
2-Nitroaniline	5 (s)	NR	U 20	NR	NR	NR
Dimethylphthalate	50 (gv)	NR	U 10	NR	NR	NR
Acenaphthylene	NS ,	NR	U 10	NR	U 0.1	NR
2,6-Dinitrotoluene	5 (gv)	NR	U 2.0	NR	NR	NR
3-Nitroaniline	5 (gv)	NR	U 20	NR	NR	NR
Acenaphthene	20 (gv)	NR	U 10	NR	U 0.1	NR
Dibenzofuran	NS NS	NR	U 10	NR	NR	NR
2,4-Dinitrotoluene	5 (gv)	NR	U 2.0	NR	NR	NR
Diethylphthalate	50 (gv)	NR	U 10	NR	NR	NR

Sample ID	NYSDEC Ambient Water	TripBlank	FieldBlank	TB	FB-050208	TRIPBLANK
Lab Sample Number	Quality Standards and	915169	915170	917131	917135	925573
Sampling Date	Guidance Values and	04/24/08	04/24/08	04/28/08	05/02/08	06/04/08
Matrix	Groundwater Effluent	WATER	WATER	WATER	WATER	WATER
SEMIVOLATILE COMPOUNDS (ug/l)		Result Q MDL	Result Q MDL	Result Q MDL	Result Q MDL	Result Q MDL
4-Chlorophenyl-phenylether	NS	NR	U 10	NR	NR	NR
Fluorene	50 (s)	NR	U 10	NR	U 0.2	NR
4-Nitroaniline	5 (s)	NR	U 20	NR	NR	NR
N-Nitrosodiphenylamine	50 (gv)	NR	U 10	NR	NR	NR
4-Bromophenyl-phenylether	NS	NR	U 10	NR	NR	NR
Hexachlorobenzene	0.04 (s)	NR	U 1.0	NR	NR	NR
Phenanthrene	50 (gv)	NR	U 10	NR	U 0.081	NR
Anthracene	50 (gv)	NR	U 10	NR	U 0.1	NR
Carbazole	NS	NR	U 10	NR	NR	NR
Di-n-butylphthalate	NS	NR	U 10	NR	NR	NR
Fluoranthene	50 (s)	NR	U 10	NR	U 0.1	NR
Pyrene	50 (gv)	NR	U 10	NR	U 0.1	NR
Butylbenzylphthalate	50	NR	U 10	NR	NR	NR
3,3'-Dichlorobenzidine	5 (s)	NR	U 20	NR	NR	NR
Benzo(a)anthracene	0.002 (gv)	NR	U 1.0	NR	U 0.05	NR
Chrysene	0.002 (gv)	NR	U 10	NR	U 0.2	NR
bis(2-Ethylhexyl)phthalate	5	NR	U 10	NR	NR	NR
Di-n-octylphthalate	NC	NR	U 10	NR	U 0.1	NR
Benzo(b)fluoranthene	0.002 (qv)	NR	U 1.0	NR	NR	NR
Benzo(k)fluoranthene	0.002 (gv)	NR	U 1.0	NR	U 0.091	NR
Benzo(a)pyrene	ND (no detection)***	NR	U 1.0	NR	U 0.061	NR
Indeno(1,2,3-cd)pyrene	0.002 (gv)	NR	U 1.0	NR	U 0.081	NR
Dibenz(a,h)anthracene	0.002 (qv)	NR	U 1.0	NR	U 0.1	NR
Benzo(g,h,i)perylene	NS	NR	U 10	NR	U 0.091	NR
Total Confident Conc. SVOCs			0		0	
Total Estimated Conc. SVOC TICs (s)			0		NA	
WET CHEMISTRY		Result Q MDL	Result Q MDL	Result Q MDL	Result Q MDL	Result Q MDL
Cyanide-Amenable - ug/l		NR	U 0.01	NR	NR	NR
TotalCyanide - ug/l	200	NR	U 0.01	NR	NR	NR

Sample ID	NYSDEC Ambient Water	FB-06-06-08	FB-06-11-0	08	TB		FB-06-18-08		TB	
Lab Sample Number	Quality Standards and	925574	926575		926576		928332		928333	3
Sampling Date	Guidance Values and	06/06/08	06/11/08	;	06/11/08	3	06/18/08	3	06/18/0	8
Matrix	Groundwater Effluent	WATER	WATER		WATER		WATER	1	WATER	₹
VOLATILE COMPOUNDS (ug/l)		Result Q MDL	Result Q	MDL	Result Q	MDL	Result Q	MDL	Result Q	MDL
Chloromethane	NS	U 5.0	U	5.0	U	5.0	U	5.0	U	5.0
Bromomethane	5 (s)	U 5.0	_	5.0	U	5.0	U	5.0	U	5.0
VinylChloride	2 (s)	U 5.0	_	5.0	U	5.0	U	5.0	U	5.0
Chloroethane	5 (s)	U 5.0	U	5.0	U	5.0	U	5.0	U	5.0
MethyleneChloride	5 (s)	U 3.0	U	3.0	U	3.0	U	3.0	U	3.0
Acetone	50 (gv)	U 5.0	U	5.0	U	5.0	U	5.0	U	5.0
CarbonDisulfide	NS	U 5.0	U	5.0	U	5.0	U	5.0	U	5.0
1,1-Dichloroethene	0.7 (gv)	U 2.0	U	2.0	U	2.0	U	2.0	U	2.0
1,1-Dichloroethane	5 (s)	U 5.0	U	5.0	U	5.0	U	5.0	U	5.0
trans-1,2-Dichloroethene	5 (s)	U 5.0	U	5.0	U	5.0	U	5.0	U	5.0
cis-1,2-Dichloroethene	5 (s)	U 5.0	U	5.0	U	5.0	U	5.0	U	5.0
Chloroform	7 (s)	U 5.0	U	5.0	U	5.0	U	5.0	U	5.0
1,2-Dichloroethane	0.6 (s)	U 2.0	U	2.0	U	2.0	U	2.0	U	2.0
2-Butanone	NS	U 5.0	U	5.0	U	5.0	U	5.0	U	5.0
1,1,1-Trichloroethane	5 (s)	U 5.0	U	5.0	U	5.0	U	5.0	U	5.0
CarbonTetrachloride	NS	U 2.0	U	2.0	U	2.0	U	2.0	U	2.0
Bromodichloromethane	50 (gv)	U 1.0	U	1.0	U	1.0	U	1.0	U	1.0
1,2-Dichloropropane	1 (s)	U 1.0	U	1.0	U	1.0	U	1.0	U	1.0
cis-1,3-Dichloropropene	0.4 (s*)	U 5.0	U	5.0	U	5.0	U	5.0	U	5.0
Trichloroethene	5 (s)	U 1.0	U	1.0	U	1.0	U	1.0	U	1.0
Dibromochloromethane	50 (gv)	U 5.0	U	5.0	U	5.0	U	5.0	U	5.0
1,1,2-Trichloroethane	1 (s)	U 3.0	U	3.0	U	3.0	U	3.0	U	3.0
Benzene	1 (s)	U 1.0	U	1.0	U	1.0	U	1.0	U	1.0
trans-1,3-Dichloropropene	0.4 (s*)	U 5.0	U	5.0	U	5.0	U	5.0	U	5.0
Bromoform	50 (gv)	U 4.0	U	4.0	U	4.0	U	4.0	U	4.0
4-Methyl-2-Pentanone	NS	U 5.0	U	5.0	U	5.0	U	5.0	U	5.0
2-Hexanone	50 (gv)	U 5.0	U	5.0	U	5.0	U	5.0	U	5.0
Tetrachloroethene	0.7 (gv)	U 1.0	U	1.0	U	1.0	U	1.0	U	1.0
1,1,2,2-Tetrachloroethane	0.2 (gv)	U 1.0	U	1.0	U	1.0	U	1.0	U	1.0
Toluene	5 (s)	U 5.0	U	5.0	U	5.0	U	5.0	U	5.0
Chlorobenzene	5 (s)	U 5.0	U	5.0	U	5.0	U	5.0	U	5.0
Ethylbenzene	5 (s)	U 4.0	U	4.0	U	4.0	U	4.0	U	4.0
Styrene	5 (gv)	U 5.0	U	5.0	U	5.0	U	5.0	U	5.0
Xylene(Total)	5 (s)	U 5.0	U	5.0	U	5.0	U	5.0	U	5.0
Total Confident Conc. VOAs (s)	, ,	0	0		0		0		0	
Total Estimated Conc. VOA TICs (s)		0	0		0		0		0	

Sample ID	NYSDEC Ambient Water	FB-06-06-	80	FB-06-11	-08	TB		FB-06-18-08		TB	
Lab Sample Number	Quality Standards and	925574		926575	5	926576	;	928332	2	928333	3
Sampling Date	Guidance Values and	06/06/08	3	06/11/0	8	06/11/08	3	06/18/0	8	06/18/0	8
Matrix	Groundwater Effluent	WATER		WATER	₹	WATER	₹	WATER	₹	WATER	₹
SEMIVOLATILE COMPOUNDS (ug/l)		Result Q	MDL	Result Q	MDL	Result Q	MDL	Result Q	MDL	Result Q	MDL
Phenol	1 (s)	U	10	U	10	NR		U	10	NR	
2-Chlorophenol	NS	U	10	U	10	NR		U	10	NR	
2-Methylphenol	NS	U	10	U	10	NR		U	10	NR	
4-Methylphenol	NS	U	10	U	10	NR		U	10	NR	
2-Nitrophenol	NS	U	10	U	10	NR		U	10	NR	
2,4-Dimethylphenol	50 (gv)	U	10	U	10	NR		U	10	NR	
2,4-Dichlorophenol	5 (gv)	U	10	U	10	NR		U	10	NR	
4-Chloro-3-methylphenol	NS	U	10	U	10	NR		U	10	NR	
2,4,6-Trichlorophenol	NS	U	10	U	10	NR		U	10	NR	
2,4,5-Trichlorophenol	NS	U	10	U	10	NR		U	10	NR	
2,4-Dinitrophenol	10 (gv)	U	31	U	31	NR		U	30	NR	
4-Nitrophenol	NS	U	31	U	31	NR		U	30	NR	
4,6-Dinitro-2-methylphenol	NS	U	31	U	31	NR		U	30	NR	
Pentachlorophenol	1 (s)	U	31	U	31	NR		U	30	NR	
bis(2-Chloroethyl)ether	1 (s)	U	1.0	U	1.0	NR		U	1.0	NR	
1,3-Dichlorobenzene	3 (s)	U	10	U	10	NR		U	10	NR	
1,4-Dichlorobenzene	3 (s)	U	10	U	10	NR		U	10	NR	
1,2-Dichlorobenzene	3 (s)	U	10	U	10	NR		U	10	NR	
bis(2-chloroisopropyl)ether	NS	U	10	U	10	NR		U	10	NR	
N-Nitroso-di-n-propylamine	NS	U	1.0	U	1.0	NR		U	1.0	NR	
Hexachloroethane	5 (s)	U	1.0	U	1.0	NR		U	1.0	NR	
Nitrobenzene	0.4 (s)	U	1.0	U	1.0	NR		U	1.0	NR	
Isophorone	50 (gv)	U	10	U	10	NR		U	10	NR	
bis(2-Chloroethoxy)methane	5	U	10	U	10	NR		U	10	NR	
1,2,4-Trichlorobenzene	5 (gv)	U	1.0	U	1.0	NR		U	1.0	NR	
Naphthalene	10 (gv)	U	10	0.7 J	10	NR		U	10	NR	
4-Chloroaniline	5 (s)	U	10	U	10	NR		U	10	NR	
Hexachlorobutadiene	0.5 (s)	U	2.0	U	2.0	NR		U	2.0	NR	
2-Methylnaphthalene	NS	U	10	U	10	NR		U	10	NR	
Hexachlorocyclopentadiene	5 (**)	U	10	U	10	NR		U	10	NR	
2-Chloronaphthalene	10 (s)	U	10	U	10	NR		U	10	NR	
2-Nitroaniline	5 (s)	U	20	U	20	NR		U	20	NR	
Dimethylphthalate	50 (gv)	U	10	U	10	NR		U	10	NR	
Acenaphthylene	NS	U	10	U	10	NR		U	10	NR	
2,6-Dinitrotoluene	5 (gv)	U	2.0	U	2.0	NR		U	2.0	NR	
3-Nitroaniline	5 (gv)	U	20	U	20	NR		U	20	NR	
Acenaphthene	20 (gv)	U	10	U	10	NR		U	10	NR	
Dibenzofuran	NS	Ū	10	Ū	10	NR		U	10	NR	
2,4-Dinitrotoluene	5 (gv)	U	2.0	U	2.0	NR		U	2.0	NR	
Diethylphthalate	50 (gv)	U	10	U	10	NR		U	10	NR	

Sample ID	NYSDEC Ambient Water	FB-06-06-	08	FB-06-11-	-08	TB		FB-06-18-	-08	ТВ	
Lab Sample Number	Quality Standards and	925574		926575	5	926576	i	928332	2	928333	3
Sampling Date	Guidance Values and	06/06/08	3	06/11/0	8	06/11/08	3	06/18/0	8	06/18/0	8
Matrix	Groundwater Effluent	WATER	1	WATER	₹	WATER	₹	WATER	₹	WATER	3
SEMIVOLATILE COMPOUNDS (ug/l)		Result Q	MDL	Result Q	MDL	Result Q	MDL	Result Q	MDL	Result Q	MDL
4-Chlorophenyl-phenylether	NS	U	10	U	10	NR		U	10	NR	
Fluorene	50 (s)	U	10	U	10	NR		U	10	NR	
4-Nitroaniline	5 (s)	U	20	U	20	NR		U	20	NR	
N-Nitrosodiphenylamine	50 (gv)	U	10	U	10	NR		U	10	NR	
4-Bromophenyl-phenylether	NS	U	10	U	10	NR		U	10	NR	
Hexachlorobenzene	0.04 (s)	U	1.0	U	1.0	NR		U	1.0	NR	
Phenanthrene	50 (gv)	U	10	U	10	NR		U	10	NR	
Anthracene	50 (gv)	U	10	U	10	NR		U	10	NR	
Carbazole	NS	U	10	U	10	NR		U	10	NR	
Di-n-butylphthalate	NS	U	10	U	10	NR		U	10	NR	
Fluoranthene	50 (s)	U	10	U	10	NR		U	10	NR	
Pyrene	50 (gv)	U	10	U	10	NR		U	10	NR	
Butylbenzylphthalate	50	U	10	U	10	NR		U	10	NR	
3,3'-Dichlorobenzidine	5 (s)	U	20	U	20	NR		U	20	NR	
Benzo(a)anthracene	0.002 (gv)	U	1.0	U	1.0	NR		U	1.0	NR	
Chrysene	0.002 (gv)	U	10	U	10	NR		U	10	NR	
bis(2-Ethylhexyl)phthalate	5	U	10	U	10	NR		U	10	NR	
Di-n-octylphthalate	NC	U	10	U	10	NR		U	10	NR	
Benzo(b)fluoranthene	0.002 (qv)	U	1.0	U	1.0	NR		U	1.0	NR	
Benzo(k)fluoranthene	0.002 (gv)	U	1.0	U	1.0	NR		U	1.0	NR	
Benzo(a)pyrene	ND (no detection)***	U	1.0	U	1.0	NR		U	1.0	NR	
Indeno(1,2,3-cd)pyrene	0.002 (gv)	U	1.0	U	1.0	NR		U	1.0	NR	
Dibenz(a,h)anthracene	0.002 (gv)	U	1.0	U	1.0	NR		U	1.0	NR	
Benzo(g,h,i)perylene	NS ,	U	10	U	10	NR		U	10	NR	
Total Confident Conc. SVOCs		0		0				0			
Total Estimated Conc. SVOC TICs (s)		0		0				0			
WET CHEMISTRY		Result Q	MDL	Result Q	MDL	Result Q	MDL	Result Q	MDL	Result Q	MDL
Cyanide-Amenable - ug/l		U	0.01	U	0.01	NR		U	0.01	NR	
TotalCyanide - ug/l	200	U	0.01	U	0.01	NR		U	0.01	NR	

Notes

All results in micrograms per liter

Concentrations in bold and shaded exceed Division of Groundwater TOGS 1.1.1 ambient groundwater quality standards or NYSDEC Class GA Guidance Value.

*	The standard present is for the sum of the isomers of this compound
**	The principal organic standard for groundwater of 5 ug/L applies to this compound
***	The standard for this analyte is no detection
(gv)	NYSDEC Class GA Standards from Division of Water Technical and Operational
	Guidance Series (1.1.1) June 1998 with amendment to Table 1 dated April 2000
(s)	NYSDEC Ambient Groundwater Quality Standard
BTEX	Benzene, toluene, ethylbenzene and xylenes
MDL	Method Detection Limit
NS	No standard or guidance value
NR	No result; sample not analyzed for this compound
PAH	Polynuclear aromatic hydrocarbons
Q	Data Qualifier
SVOC	Semivolatile organic compounds

Data Qualifiers

TICs

VOC

J Not detected above the method detection limit
Estimated concentration below method detection limit

Tenatively Identified Compounds

Volatile organic compounds

Table 5-6. Rationale for Temporary Well Point Sampling Supplemental Remedial Investigation - 2008

Address	Boring	Total Depth Drilled with TarGOST	TarGOST Ended At	Maximum TarGOST Signal	Depth of Max TarGOST Signal	TarGOST Notes	GW	Observations in Confirmatory Boring	PID Readings	Groundwater Sampling Depth
116 West Street	SB-92	21.99	Refusal Depth	56.88	0.13	TarGOST indicated possible impact at 6.3 feet	2' bgs	no odors or visual evidence of MGP related contamination	No PID readings above background in this boring	5.5 to 6.5 feet
106 West Street	SB-84	9.76	10' - clay suspected, did not go through clay; step out planned	84.67	4.789	TarGOST indicated possible impact from 4.5 to 5.0	3' bgs	Fill consisting of brick, ash, coal fragments was observed to the top of clay at 12'; no odors or visual evidence of MGP related contamination	No PID readings above background in this boring	6.0 to 7.0 feet (workplan indicates sample to be collected 3 feet deeper than observed water table)
106 West Street	SB-120	25.90	26' - clay suspected	62.49	0.732	TarGOST results indicated no impact	5' bgs	no odors or visual evidence of MGP related contamination	No PID readings above background in this boring	8.0 to 9.0 feet (workplan indicates sample to be collected 3 feet deeper than observed water table)
104 West Street	SB-80	41.483	Refusal Depth	88.47	12.479	TarGOST results indicated a possible impact at 12 to 13 feet	5' feet bgs	Sheen observed on groundwater at the 12 to 13' interval; no odors noted; upon removing the hydropunch materials, oil material staining was observed on the hydropunch	2.8 ppm (1.7 background) at 12.0 feet	12 to 13 feet (sheen noted on groundwater sample)
100 West Street	SB-123	29.947	Refusal Depth	39.48	2.815	TarGOST results indicated no impact	8' feet bgs	no odors or visual evidence of MGP related contamination	No PID readings above background in this boring	8 to 9 feet (workplan indicates sample to be collected 3 feet deeper than observed - in this location, clay was present at 8.5, thus sample was collected 8 to 9)
96 West Street	SB-124B	33.977	Refusal Depth	80.17	7.706	TarGOST results indicated possible impact from 7.5 to 8.5	5' feet bgs	buried roofing shingles observed in the 4 to 5 foot interval; fill to a depth of 9.5 consisting of ash, glass, gravel, shell fragments; no odors or visual evidence of MGP contamination in this boring	No PID readings above background in this boring	8 to 9 feet (did not go the minimum 3 feet below wt, as we wanted to screen at the depth of TarGOST suggested impact)

Boring Number	Surface Elevation	Site Portion Location	Total Depth Logged (ft bgs)	Sample Depths at which BTEX Compounds Exceeded SCOs (ft bgs)	Sample Depth at which BTEX Compounds Did Not Exceed SCOs (ft bgs)	Sample Depths at which PAH Compounds exceeded SCOs (ft bgs)	Sample Depth at which PAH Compounds Did Not Exceed SCOs (ft bgs)	Sample Depths were Total PAH Greater than 25 ppm (ft bgs)	Sample Depth at which Total PAH Did Not Exceed 25 ppm (ft bgs)	Sample Depth at which Total PAH were greater than 500 ppm (ft bgs)	Sample Depth at which Total PAH did not exceed 500 ppm (ft bgs)	Sample Depth at which Ni exceeded SCOs (ft bgs)	Sample Depth at which Ni did not exceed SCOs (ft bgs)
SB-45A	18.8	Apartments	16.0	9.2-9.7; 15.0- 15.5	NA	9.2-9.7	15.0-15.5	9.2-9.7	15.0-15.5	NE	NE	NR	NR
SB-61	18.1	Apartments	13.0	NE	NE	NE	NE	NE	NE	NE	NE	NR	NR
SB-62	12.8	Apartments	16.0	NE	NE	9.0-9.5	NA	9.0-9.5	NA	NE	NE	NR	NR
SB-63	12.4	Apartments	16.0	9.0-9.5	10.5-11.0	9.0-9.5	10.5-11.0	9.0-9.5	10.5-11.0	NE	NE	NR	NR
SB-64	18.1	Apartments	14.0	NE	NE	10.4-10.9	13.5-14.0	10.4-10.9	13.5-14.0	NE	NE	NR	NR
SB-67	13.7	West St.	20.0	13.5-14.0; 16.5- 17.0	17.5-18.0	13.5-14.0; 16.5- 17.0	17.5-18.0	13.5-14.0; 16.5- 17.0	17.5-18.0	13.5-14.0	16.5-17.0	NR	NR
SB-68	17.3	Apartments	20.0	8.5-9.5	NA	NE	NE	NE	NE	NE	NE	NR	NR
SB-71	16.6	West St.	20.0	12.0-12.5; 13.5- 14.0	18.0-18.5	12.0-12.5; 13.5- 14.0	18.0-18.5	12.0-12.5; 13.5- 14.0	18.0-18.5	12.0-12.5; 13.5- 14.0	18.0-18.5	NR	NR
SB-75	11.6	Apartments	20.0	16.5-17.0	19.0-19.5	16.5-17.0	19.0-19.5	16.5-17.0	19.0-19.5	NE	NE	NR	NR
SB-78	12.2	Apartments	16.0	12.0-12.5	15.0-15.5	12.0-12.5	15.0-15.5	12.0-12.5	NA	NE	NE	NR	NR
SB-80	16.8	West St.	20.0	NE	NE	12.0-12.5	17.0-17.5	NE	NE	NE	NE	NR	NR
SB-84 / 84A	13.1	West St.	16.0	NE	NE	12.0-12.5	13.5-14.4	12.0-12.5	13.5-14.5	NE	NE	NR	NR
SB-85	13.8	Apartments	18.0	13.0-13.5	17.0	13.0-13.5	17.0	13.0-13.5	16.0-17.0	13.0-13.5	17.0	NR	NR
SB-86	11.8	Apartments	16.5	13.0-13.5	NA	13.0-13.5	NA	NE	NE	13.0-13.5	NA	NR	NR

Boring Number	Surface Elevation	Site Portion Location	Total Depth Logged (ft bgs)	Sample Depths at which BTEX Compounds Exceeded SCOs (ft bgs)	Sample Depth at which BTEX Compounds Did Not Exceed SCOs (ft bgs)	Sample Depths at which PAH Compounds exceeded SCOs (ft bgs)	Sample Depth at which PAH Compounds Did Not Exceed SCOs (ft bgs)	Sample Depths were Total PAH Greater than 25 ppm (ft bgs)	Sample Depth at which Total PAH Did Not Exceed 25 ppm (ft bgs)	Sample Depth at which Total PAH were greater than 500 ppm (ft bgs)	Sample Depth at which Total PAH did not exceed 500 ppm (ft bgs)	Sample Depth at which Ni exceeded SCOs (ft bgs)	Sample Depth at which Ni did not exceed SCOs (ft bgs)
SB-88	11.3	West St.	24.0	NE	NE	5.5-6.0	NA	5.5-6.0	NA	NE	NE	NR	NR
SB-92	11.1	West St.	12.0	NE	NE	NE	NE	NE	NE	NE	NE	NR	NR
SB-94	11.3	Apartments	12.0	9.0-9.5	NA	9.0-9.5	NA	9.0-10.0	NA	9.0-9.5	NA	NR	NR
SB-100	12.8	Apartments	16.0	8.25-8.75	NA	8.25-8.75	NA	NE	NE	8.25-8.75	NA	NR	NR
SB-109	35.7	Onsite	32.5	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
SB-107	12.4	Apartments	16.0	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
SB-108	34.8	Onsite	34.0	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
SB-110	31.3	Onsite	30.0	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
SB-111B	28.9	Onsite	34.0	8.5-9.0	22.2-22.7	8.5-9.0	22.2-22.7	8.5-9.0	22.2-22.7	8.5-9.0	22.2-22.7	NE	NE
SB-112A/B	28.1	Onsite	34.0	32.0-33.0	NA	NE	NE	NE	NE	NE	NE	NE	NE
SB-113	28.7	Onsite	32.0	13.0-13.5	22.0-22.5	NE	NE	NE	NE	NE	NE	NE	NE
SB-114	28.2	Onsite	31.0	6.5-7.0; 16.5- 17.0	19.0-19.5	6.5-7.0; 16.5- 17.0	19.0-19.5	6.5-7.0; 16.5- 17.5	19.0-19.5	6.5-7.0; 16.5- 17.0	19.0-19.5	NE	NE
SB-115	39.5	Onsite	28.0	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
SB-116	30.1	Onsite	32.0	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE

Boring Number	Surface Elevation	Site Portion Location	Total Depth Logged (ft bgs)	Sample Depths at which BTEX Compounds Exceeded SCOs (ft bgs)	Sample Depth at which BTEX Compounds Did Not Exceed SCOs (ft bgs)	Sample Depths at which PAH Compounds exceeded SCOs (ft bgs)	Sample Depth at which PAH Compounds Did Not Exceed SCOs (ft bgs)	Sample Depths were Total PAH Greater than 25 ppm (ft bgs)	Sample Depth at which Total PAH Did Not Exceed 25 ppm (ft bgs)	Sample Depth at which Total PAH were greater than 500 ppm (ft bgs)	Sample Depth at which Total PAH did not exceed 500 ppm (ft bgs)	Sample Depth at which Ni exceeded SCOs (ft bgs)	Sample Depth at which Ni did not exceed SCOs (ft bgs)
SB-117	28.9	Onsite	30.0	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
SB-118	28.9	Onsite	32.0	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
SB-119	27.3	Onsite	38.0	12.0-13.0; 21.2- 21.7	23.0-24.0	12.0-13.0; 21.2- 21.7	23.0-24.0	12.0-13.0, 21.2- 21.7	23.0-24.0	12.0-13.0	18.0-19.0	18.0-19.0	21.2-21.7
SB-120	15.5	West St.	12.0	NE	NE	NE	NE	NE	NE	NE	NE	NR	NR
SB-121	11.8	West St.	20.0	13.0-13.5	17.0-17.5	13.0-13.5	17.0-17.5	13.0-13.5	17.0-17.5.	NE	NE	NR	NR
SB-123	19.0	West St.	12.0	NE	NE	NE	NE	NE	NE	NE	NE	NR	NR
SB-124	16.5	West St.	16.0	NE	NE	NE	NE	NE	NE	NE	NE	NR	NR
SB-128	30.8	Onsite	30.0	NE	NE	10.5-11.0	14.0-14.5	10.5-11.0	14.0-14.5	10.5-11.0	14.0-14.5	NE	NE
SB-129		Onsite	28.0	10.8-11.3; 13.25-13.75	15.0-15.5	10.8-11.3; 13.25-13.75	15.0-15.5	10.8-11.3; 13.25-13.75	15.0-15.5	NE	NE	10.8-11.3; 13.25-13.75	15.0-15.5
SB-130	15.9	West St.	20.0	12.0-13.0	14.0-14.5	12.0-13.0; 14.0- 14.5	16.5-17.0	12.0-13.0; 14.0- 14.5	16.5-17.0	12.0-13.0	14.0-14.5	NR	NR
SB-131	17.4	West St.	16.0	NE	NE	NE	NE	NE	NE	NE	NE	NR	NR
SB-132	12.7	Alley	16.0	NE	NE	9.0-9.5; 11.5- 12.0	NA	9.0-9.5	11.5-12.0	NE	NE	NR	NR
SB-133	12.9	Alley	16.0	8.4-8.9	10.5-11.0	8.4-8.9	10.5-11.0	8.4-8.9	10.5-11.0	NE	NE	NR	NR
SB-134	16.0	Alley	NE	NE	NE	NE	NE	8.5-9.0; 12.0- 12.5	NA	NE	NE	NR	NR

Boring Number	Surface Elevation	Site Portion Location	Total Depth Logged (ft bgs)	Sample Depths at which BTEX Compounds Exceeded SCOs (ft bgs)	Sample Depth at which BTEX Compounds Did Not Exceed SCOs (ft bgs)	Sample Depths at which PAH Compounds exceeded SCOs (ft bgs)	Sample Depth at which PAH Compounds Did Not Exceed SCOs (ft bgs)	Sample Depths were Total PAH Greater than 25 ppm (ft bgs)	Sample Depth at which Total PAH Did Not Exceed 25 ppm (ft bgs)	Sample Depth at which Total PAH were greater than 500 ppm (ft bgs)	Sample Depth at which Total PAH did not exceed 500 ppm (ft bgs)	Sample Depth at which Ni exceeded SCOs (ft bgs)	Sample Depth at which Ni did not exceed SCOs (ft bgs)
SB-138	13.4	Alley	16.0	NE	NE	9.0-9.5	14.0-14.5	9.0-9.5	14.0-14.5	NE	NE	NR	NR
SB-139	18.0	West St.	20.0	13.0-13.5	16.0-16.5	13.0-13.5	16.0-16.5	13.0-13.5	16.0-16.5	13.0-13.5	16.0-16.5	NR	NR
SB-140	15.6	West St.	20.0	9.5-10.0	12.0-12.5	9.5-10.0	12.0-12.5	9.5-10.0	12.0-12.5	9.5-10.0	12.0-12.5	NR	NR
SB-141	15.9	West St.	16.0	12.5-13.0	14.8-15.3	12.5-13.0	14.8-15.3	12.5-13.0	14.8-15.3	12.5-13.0	14.8-15.3	NR	NR
SB-142	12.4	West St.	16.0	NE	NE	8.2-8.7	12.5-13.0	8.2-8.7	12.5-13.0	NE	NE	NR	NR

Notes:

Apartments:	Sample was collected offsite, in the vicinity of the Apartment Buildings
BTEX:	Total of benzene, toluene, ethylbenzene, and xylene
ft bgs:	Feet below ground surface
NA:	There was no vertical sample collected which satisfies the condition; in most cases, borings were terminated as not to penetrate confining layers
NE:	No exceedance
Ni:	Nickel
NR:	No result, sample was not analyzed for the listed compound
Onsite:	Sample was collected on the MGP Property
PAH:	Polycyclic Aromatic Hydrocarbons
ppm:	Parts per million
SCOs:	NYSDEC Part 375 Remediation Program Soil Cleanup Objectives Tables 375-6.8(a) and (b)
West St:	Sample was collected offsite, in the vicinity of the houses on West Street

Boring Number	Surface Elevation (ft. msl)	Site Portion Location	Depth to top of OM/TM Zone (ft bgs)	Bottom of OM/TM Zone (ft bgs)	Thickness of OM/TM Zone (ft) (a)	Total Depth Logged (ft bgs)	Product Description
SB / MW-1	42.3	Onsite	NE	NE	NE	30.0	
SB / MW-2	28.1	Onsite	13.1	18.0	>4.9	18.0	Hydrocarbon product from 13.1' to 13.4'; Hydrocarbon product from 15' to 18'
SB-02D	28.5	Onsite	14.0	22.5	8.5		Residual tar in lenses from 14' to 17.1'; Minor sheen and slight odor from 19.1' to 22.5'
SB / MW-3	28.5	Onsite	NE	NE	NE	16.0	black hydrocarbon staining from 10.0' to 10.5'; strong hydrocarbon odor and staining from 12' to 13'
MW04	18.8	Onsite	14.7	22.0	7.3	24.0	Light MGP odor through 5.0' to 14.7'; Light sheen and trace coal tar product throughout 14.7' to 22.0'
MW05	18.3	Onsite	16.0	21.0	5.0		Light sheen on clay surfaces proximal to sand lenses from 4.5' to 8.0'; trace to little coal tar product adhering to clay clasts, spots of sheen 16.0' to 21.0'
MW06	17.2	Onsite	NE	NE	NE	20.0	
MW07	17.9	Onsite	Unknown	Unknown	Unknown	44.0	Boring not logged from 0' to 20'
SB / MW08	26.9	Onsite	NE	NE	NE	28.5	Moderate petroleum odor from 10.0' to 12.0'
MW09	30.3	Onsite	NE	NE	NE	22.0	Faint MGP odors 7' to 12.3' and 16' to 17'; faint petroleum odor at 20' to 21'
MW10	39.9	Onsite	NE	NE	NE	38.0	

Boring Number	Surface Elevation (ft. msl)	Site Portion Location	Depth to top of OM/TM Zone (ft bgs)	Bottom of OM/TM Zone (ft bgs)	Thickness of OM/TM Zone (ft) (a)	Total Depth Logged (ft bgs)	Product Description
MW11	28.4	Onsite	NE	NE	NE	24.0	
SB-14	28.7	Onsite	6.0	12.0	6.0	24.0	Tar streaks coating aperatures of fractured areas (6-8); "Tar in fine sand lenses" (8-9.7); "trace tar blebs 9.7-10; Tar coating in sand lenses" (10-12); tar-like odors 12.0 to 20.0'
SB-16	29.3	Onsite	11.0	21.3	10.3	40.0	Fine sand lense with black-stained sand 11' to 12'; Trace tar/NAPL on tip of spoon 13.9' to 14'; black stained pieces 14' to 14.5'; Tar streaks, blebs, and globules present throughout (18-20); "heavy sheen and few tar blebs to 21.3'; Heavy sheen throughout (22-24); "Moderate sheen" (24-25); Trace sheens (28-30); "Light sheen" (30-31)
SB-17	31.0	Onsite	10.5	13.0	2.5	30.0	Slight sheen (4' to 6'); NAPL microblebs, brown (trace, scattered) (10.5-12); "As above with NAPL streaks throughout at residual level" (12-13)
SB-17A	32.3	Onsite	NE	NE	NE	32.0	
SB / MW-18	28.2	Onsite	10.5	11.5	1.0	32.0	Slight MGP type Odors from 9.3' to 9.5; Trace sheens; seam with tar-stained fine to coarse sand and trace tar blebs from 11.4' to 11.5'; 12.0' to 14.0' MGP-Type Odor
MW-20S	18.4	Apartments	11.9	12.0	0.1	16.0	Tar Coated grains 11.9' to 12.0'; trace tar-like odor from 12.0' to 12.1'
MW-20D	18.4	Apartments	8.0	10.0	2.0	26.0	Moderate MGP-like and fuel-like odors, trace light brown NAPL blebs 8.0' to 10.0'; slight MGP-like and fuel-like odors, trace sheens 14.0' to 14.5'
SB / MW-21S	16.3	Apartments	NE	NE	NE	12.0	Very slight MGP odor from 8.2' to 10.0'
SB-22	27.5	Head Start	NE	NE	NE	22.0	
SB-23	28.7	Head Start	NE	NE	NE	26.0	

Boring Number	Surface Elevation (ft. msl)	Site Portion Location	Depth to top of OM/TM Zone (ft bgs)	Bottom of OM/TM Zone (ft bgs)	Thickness of OM/TM Zone (ft) (a)	Total Depth Logged (ft bgs)	Product Description
MW-24	27.5	Head Start	NE	NE	NE	20.0	
SB / MW-28	13.5	Apartments	9.3	12.0	2.7	16.0	Trace naphthalene odor 7.6' to 8.0'; Thin layers of fine sand coated with NAPL (yellow staining) from 9.3' to 12.3'
MW-28D	13.5	Apartments	8.0	10.0	2.0	31.5	Gray and brown clay with peat - Trace brown NAPL streaks in clay seams from 8' to 10', very slight tar-like odor
SB/MW-29S	12.8	Apartments	9.8	10.7	0.9	16.0	Trace tar-like odor 5.0' to 9.8'; Trace tar (lightly coated/blebs) and a heavy sheen 9.8' to 10.7'
MW-29D	12.8	Apartments	NE	NE	NE	30.0	
SB-30S	13.0	Apartments	NE	NE	NE	30.0	Trace petroleum odor 2.7' to 4.0'; trace sheen from 4.6' to 13.7'; moderate tar like odor 8.0' to 15.2'
MW-31S	12.6	Apartments	No Log	Not Logged	Not Logged	Not Logged	Not Logged
MW-31D	12.5	Apartments	8.0	8.8	0.8	35.0	Trace layers coated with NAPL (yellowish staining possibly LNAPL) 8.0' to 8.8'
MW-32S	13.6	Apartments	No Log	Not Logged	Not Logged	Not Logged	Not Logged
MW-32I	13.4	Apartments	8.0	20.0	12.0	36.0	8.0' to 10.5' NAPL coated grains; 10.5' to 11.0' heavily coated grains; 11.0' to 12.0' veins coated with NAPL; 12.0' to 20.0' heavy sheen, trace blebs, strong petroleum odor
SB-45A	18.8	Apartments	9.2	9.3	0.1	16.0	Brown, black oil material, thin layer at 9.2', and from 9.6' to 9.7'

Boring Number	Surface Elevation (ft. msl)	Site Portion Location	Depth to top of OM/TM Zone (ft bgs)	Bottom of OM/TM Zone (ft bgs)	Thickness of OM/TM Zone (ft) (a)	Total Depth Logged (ft bgs)	Product Description
SB-45	18.8	Apartments	10.5	10.7	0.2	16.0	tar saturatedtrace veins of tar throughout (runny, low viscosity) from 10.5' to 10.7'
SB-46	17.9	Apartments	9.7	10.5	0.8	16.0	tar coated 9.7' to 10.5'
SB-48	16.0	Apartments	NE	NE	NE	16.0	trace petroleum odor, trace sheen from 8' to 12'
SB-49	14.5	Apartments	7.4	8.0	0.6	12.0	thin veins of NAPL (stick tar-lik and yellowish staining) 7.4' to 8.0' with petroleum odor; petroleum odor and black staining 8.7' to 9.1'
MW-55	14.2	Apartments	NE	NE	NE	16.0	Trace sheen from 9.0' to 9.1
SB-56	14.2	Apartments	12.0	12.4	0.4	16.0	Tar blebs and sheen 11.0' to 12.0'; Tar in sandy layers, 12.0' to 12.4'; trace tar-like odor from 12.4' to 13.2'
SB-57	12.5	Apartments	NE	NE	NE	12.0	
SB-58	12.6	Apartments	10.5	11.3	0.8	20.0	Tar in seams from 10.5' to 11.3'; patchy sheen throughout, moderate tar like odor
SB-59	13.1	Apartments	10.4	11.6	1.2	20.0	Tar veins thoughout, heavy black staining and heavy tar coating from 10.4' to 11.6'; NAPL coated grains (yellow staining) from 15.1' to 16.0'
MW-60	13.6	Apartments	8.0	10.0	2.0	18.0	8.0' to 8.7' Trace NAPL in veins, tar / MGP-like odor; 8.7' to 9.0' blebs of NAPL (likely tar), tar / MGP-like odor; 9.0' to 10.0' trace tar like odor
SB-61	18.1	Apartments	NE	NE	NE	13.0	Black staining from 2.0' to 2.5'; faint NAPL odor 9.0' to 10.4'

Boring Number	Surface Elevation (ft. msl)	Site Portion Location	Depth to top of OM/TM Zone (ft bgs)	Bottom of OM/TM Zone (ft bgs)	Thickness of OM/TM Zone (ft) (a)	Total Depth Logged (ft bgs)	Product Description
SB-62	12.8	Apartments	NE	NE	NE	16.0	Staining at 5.3'; Sheen and naphthalene odors from 9.0' to 9.5'
SB-63	12.4	Apartments	NE	NE	NE	16.0	Naphthalene odors, black sheen from 8.5' to 8.9'
SB-64	18.1	Apartments	10.0	10.9	0.9	14.0	Faint naphthalene odors 8.9' to 9.2'; sheen and blebs of oil material from 10.0' to 10.8'; brown oil material from 10.8' to 10.9'
SB-67	13.7	West St.	9.8	16.1	6.3	20.0	Oil material from 9.8' to 10.5'; 13' to 13.5'; 13.5' to 13.7'; 13.7' to 14.1'; 16.0' to 16.1'
SB-68	17.3	Apartments	8.8	8.9	0.1	20.0	Thin layer of brown oil material from 8.8' to 8.9'
SB-71	16.6	West St.	12.2	16.7	4.5	20.0	Multiple Thin Layers of oil material between 12.2' and 14.5'; blebs of oil material from 16.0' to 16.7'
SB-75	11.6	Apartments	8.0	17.5	9.5	20.0	Gasoline like sheen, staining from 1.5' to 3.0'; oil material from 8.0' to 8.8'; oil material 16.5' to 17.5'
SB-78	12.2	Apartments	8.0	12.7	4.7	16.0	oil material at 5.5'; pinpoints of brown oil material from 8' to 9'; oil material staining from 12' to 12.7'
SB-80	16.8	West St.	NE	NE	NE	20.0	sheen from 12.0' to 13.0'
SB-84 / 84A	13.1	West St.	12.0	12.3	0.3	16.0	Trace blebs oil from 12.0' to 12.3'
SB-85	13.8	Apartments	13.0	13.7	0.7	18.0	brown oil / tar material from 13.0' to 13.7'
SB-86	11.8	Apartments	8.0	16.5	>8.5	16.5	Heavy tar material from 8' to 8.6'; 8.6' to 9.7' oil; 12.0 to 13.5' oil material; 16.0' to 16.5' staining

Boring Number	Surface Elevation (ft. msl)	Site Portion Location	Depth to top of OM/TM Zone (ft bgs)	Bottom of OM/TM Zone (ft bgs)	Thickness of OM/TM Zone (ft) (a)	Total Depth Logged (ft bgs)	Product Description
SB-88	11.3	West St.	4.8	5.8	1.0	24.0	Oil material from 4.8 to 5.9'
SB-92	11.1	West St.	NE	NE	NE	12.0	None
SB-94	11.3	Apartments	4.5	12.0	>7.5	12.0	Heavy black tar from 4.5' to end of the boring at 12'
SB-100	12.8	Apartments	8.2	9.3	1.1	16.0	8.2' to 8.7' Black brown NAPL, naphthalene odors; 8.7' to 9.0' sand coated with tar and oil; 9.0' to 9.3' thin layer of oil / tar
SB-109	35.7	Onsite	NE	NE	NE	32.5	None
SB-107	12.4	Apartments	NE	NE	NE	16.0	None
SB-108	34.8	Onsite	NE	NE	NE	34.0	Possible staining from 2 to 2.3
SB-110	31.3	Onsite	NE	NE	NE	30.0	None
SB-111B	28.9	Onsite	8.3	10.2	1.9	34.0	Thin lenses of oil material at 8.3', 8.8' to 8.9'; 10' to 10.2'; sheen 12.0' to 12.6'
SB-112A/B	28.1	Onsite	NE	NE	NE	34.0	Oil sheen 18.0' to 19.0'; oil Sheen, Staining from 21.5 to 21.75'
SB-113	28.7	Onsite	6.5	16.0	9.5	32.0	fine blebs of tar material from 6.5' to 8.0'; tar material from 12.5' to 14.0; 15.5' to 16.0'

Boring Number	Surface Elevation (ft. msl)	Site Portion Location	Depth to top of OM/TM Zone (ft bgs)	Bottom of OM/TM Zone (ft bgs)	Thickness of OM/TM Zone (ft) (a)	Total Depth Logged (ft bgs)	Product Description
SB-114	28.2	Onsite	6.6	17.2	10.6	31.0	Oil material from 6.6' to 6.8'; tar material from 7.2' to 7.3'; oil material bleb at 8.5', 9.0'; lens of oil material at 10.1', 10.9', 11.0', 11.1', 11.4', 11.5', 11.6', 11.8'; tar and oil material 16', 16.5', 17.2'
SB-115	39.5	Onsite	NE	NE	NE	28.0	None
SB-116	30.1	Onsite	NE	NE	NE	32.0	None
SB-117	28.9	Onsite	NE	NE	NE	30.0	None
SB-118	28.9	Onsite	NE	NE	NE	32.0	None
SB-119	27.3	Onsite	10.5	22.0	11.5	38.0	staining from 10.5' to 10.7'; oil material in fine sand lenses at 12.0', 13.5', 13.8'; oil material from 21.2 to 22.0'
SB-120	15.5	West St.	NE	NE	NE	12.0	None
SB-121	11.8	West St.	12.3	13.5	1.2	20.0	oil material blebs from 12.3' to 13.5'
SB-123	19.0	West St.	NE	NE	NE	12.0	None
SB-124	16.5	West St.	NE	NE	NE	16.0	None
SB-128	30.8	Onsite	10.5	12.2	1.7	30.0	staining, purifier odors fro 10.5' to 11.4'

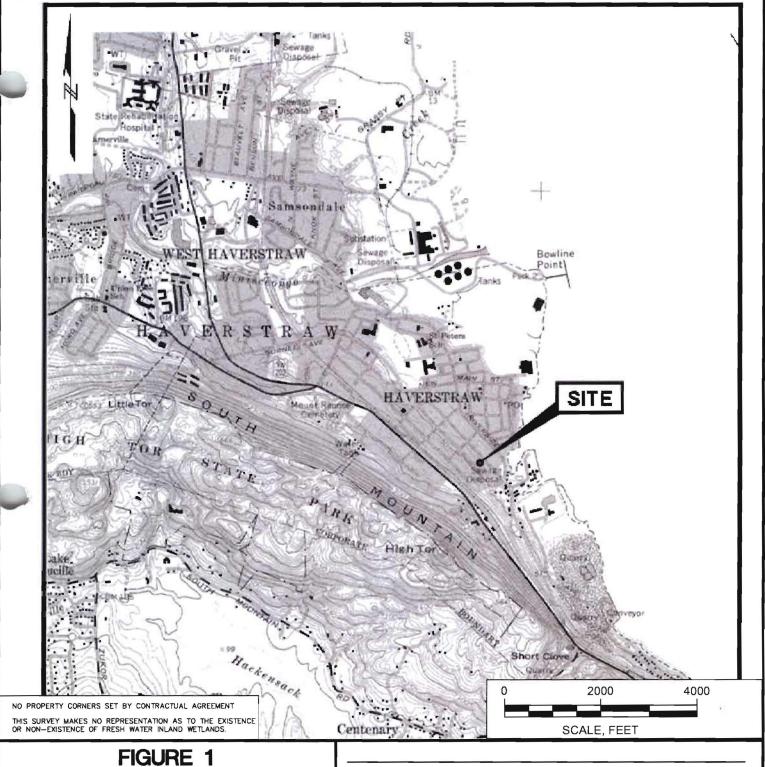

Boring Number	Surface Elevation (ft. msl)	Site Portion Location	Depth to top of OM/TM Zone (ft bgs)	Bottom of OM/TM Zone (ft bgs)	Thickness of OM/TM Zone (ft) (a)	Total Depth Logged (ft bgs)	Product Description
SB-129		Onsite	13.5	13.6	0.1	28.0	single bleb of oil material at 13.5'
SB-130	15.9	West St.	10.8	13.5	2.7	20.0	Trace sheen and blebs of oil material from 10.8' to 11.0', 12.0' to 12.2', 13.0' to 13.1', 13.4' to 13.5'
SB-131	17.4	West St.	NE	NE	NE	16.0	None
SB-132	12.7	Alley	8.9	9.5	0.6	16.0	sheen 5.5' to 5.7'; staining from 8.9' to 9.4'; Brown, black oil material blebs, from 9.4' to 9.5'
SB-133	12.9	Alley	8.4	8.8	0.4	16.0	Black brown oil material from 8.4' to 8.8' within the organic clay and peat
SB-134	16.0	Alley	NE	NE	NE	NE	None
SB-138	13.4	Alley	9.1	9.5	0.4	16.0	oil material from 9.1' to 9.5'
SB-139	18.0	West St.	12.3	13.3	1.0	20.0	Blebs at 12.3', 12.6', 13.0', 13.3' within the organic clay / peat
SB-140	15.6	West St.	9.5	10.3	0.8	20.0	Trace blebs of oil from 9.5' to 10.3' in the organic clay peat layer
SB-141	15.9	West St.	9.8	13.1	3.3	16.0	Trace blebs of oil material in the organic clay peat 9.8' to 10.2'; 12.0' to 13.1'
SB-142	12.4	West St.	8.2	8.7	0.5	16.0	Trace oil material blebs from 8.2' to 8.6'

Table 7-2. Summary of NAPL Delineation Supplemental Remedial Investigation - 2008 Former Clove and Maple MGP Haverstraw, NY

Boring Number	Surface Elevation (ft. msl)	Site Portion Location	Depth to top of OM/TM Zone (ft bgs)	Bottom of OM/TM Zone (ft bgs)	Thickness of OM/TM Zone (ft) (a)	Total Depth Logged (ft bgs)	Product Description	
SG-1	29.0	Onsite	8.0	9.6	1.6	12.0	Light brown, dark brown staining in mottled pattern	
SG-2	-	Onsite	6.0	13.0	7.0	15.0	Multiple Thin Layers between 6' and 13'	
SG-3	-	Onsite	4.0	7.0	3.0	12.0	Gravel saturated with tar-like material, strong odor, low viscosity	
SG-4	-	Onsite	NE	NE	NE	12.0	Hydrocarbon Odors from 8' to 10'	
SG-5	-	Onsite	NE	NE	NE	16.0	Hydrocarbon Odors from 0' and 4'	
SG6	-	Onsite	10.0	12.0	>2	12.0	Tar material shallow (0' to 0.4'); Visible hydrocarbon staining from 10' and 12'	
SG7	-	Onsite	9.0	12.0	>3	12.0	Trace tar-like material in nodules	
SG8	-	Onsite	1.0	2.0	1.0	12.0	Two thin layers of staining (1' to 2' Trace dark brown staining in nodules); (9' to 10' Trace hydrocarbon staining)	
SG-09	17.9	Onsite	5.5	8.0	2.5	12.0	Light sheen and MGP odor	
SG-10	18.0	Onsite	NE	NE	NE	12.0	MGP Odors 10' and 12'	
SG-11	17.0	Onsite	NE	NE	NE	16.0		

Table 7-2. Summary of NAPL Delineation Supplemental Remedial Investigation - 2008 Former Clove and Maple MGP Haverstraw, NY

Boring Number	Surface Elevation (ft. msl)	Site Portion Location	Depth to top of OM/TM Zone (ft bgs)	Bottom of OM/TM Zone (ft bgs)	Thickness of OM/TM Zone (ft) (a)	Total Depth Logged (ft bgs)	Product Description		
SG-12	17.2	Onsite	6.0	16.0	>10	16.0	Light sheen and smear of coal tar product at 6'; Light sheen and MGP odor present on sand 15' to 16'		
SG-13	18.4	Onsite	NE	NE	NE	10.0	MGP Odors from 5.6' to 10'		
SG-14	19.6	Onsite	6.0	8.0	2.0	12.0	Strong MGP odor and trace coal tar product found in sand		
SG15	26.3	Onsite	NE	NE	NE	20.0			
SG-16	28.9	Head Start	NE	NE	NE	24.0			
TP-01	29.0	Onsite	1.5	3.0	1.5	8.0	Black stain ash		
TP-02	30.0	Onsite	See Description			13.0	(at 5') "4" clay pipe: tar, water silt within"		
TP-03	30.0	Onsite	See Description			5.0	(at 5') "4" clay pipe: tar, water silt within"		
TP-04	32.0	Onsite	1.0	1.5	0.5	7.0	Black stain		
TP-05	40.0	Onsite	NE	NE	NE	6.0			

REMEDIAL INVESTIGATION

HAVERSTRAW FORMER MGP SITES STRAW, ROCKLAND COUNTY, NEW YORK HAVERSTRAW,

-NOTICE-

THIS DRAWING AND ALL INFORMATION CONTAINED HEREIN IS AUTHORIZED FOR USE ONLY BY THE PARTY FOR WHOM THE WORK WAS CONTRACTED OR TO WHOM IT IS CERTIFIED.

THIS DRAWING MAY NOT BE COPIED, REUSED, DISCLOSED, RIBUTED OR RELIED UPON FOR ANY OTHER PURPOSE WITHOUT WRITTEN CONSENT OF CMX.

COPYRIGHT 2007 CMX. ALL RIGHTS RESERVED

SITE LOCATION MAP

Cert. Of Authorization 24GA27926200 200 STATE HIGHWAY NINE P.O. BOX 900 MANALAPAN, NJ 07726

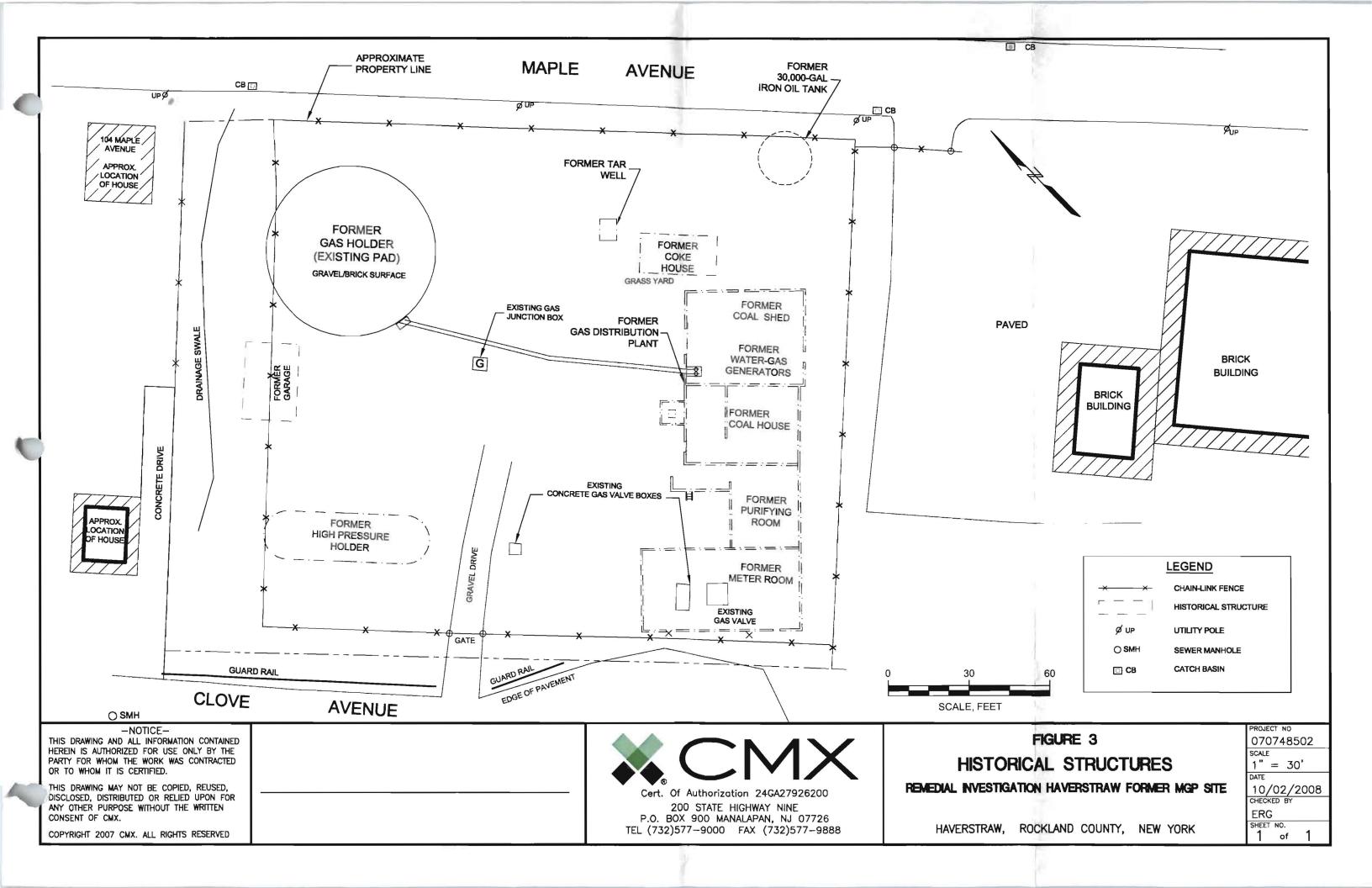
				TEL (732)577-9000 FAX (732)577-9888								
			SCALE	DATE	DRAWN BY	DES. BY	FILE NO.	CHECKED BY				
			1" = 2000'	10/02/2008	MVS	ERG	070748502	ERG				
DATE	REVISIONS	ORDER NO.		,,								

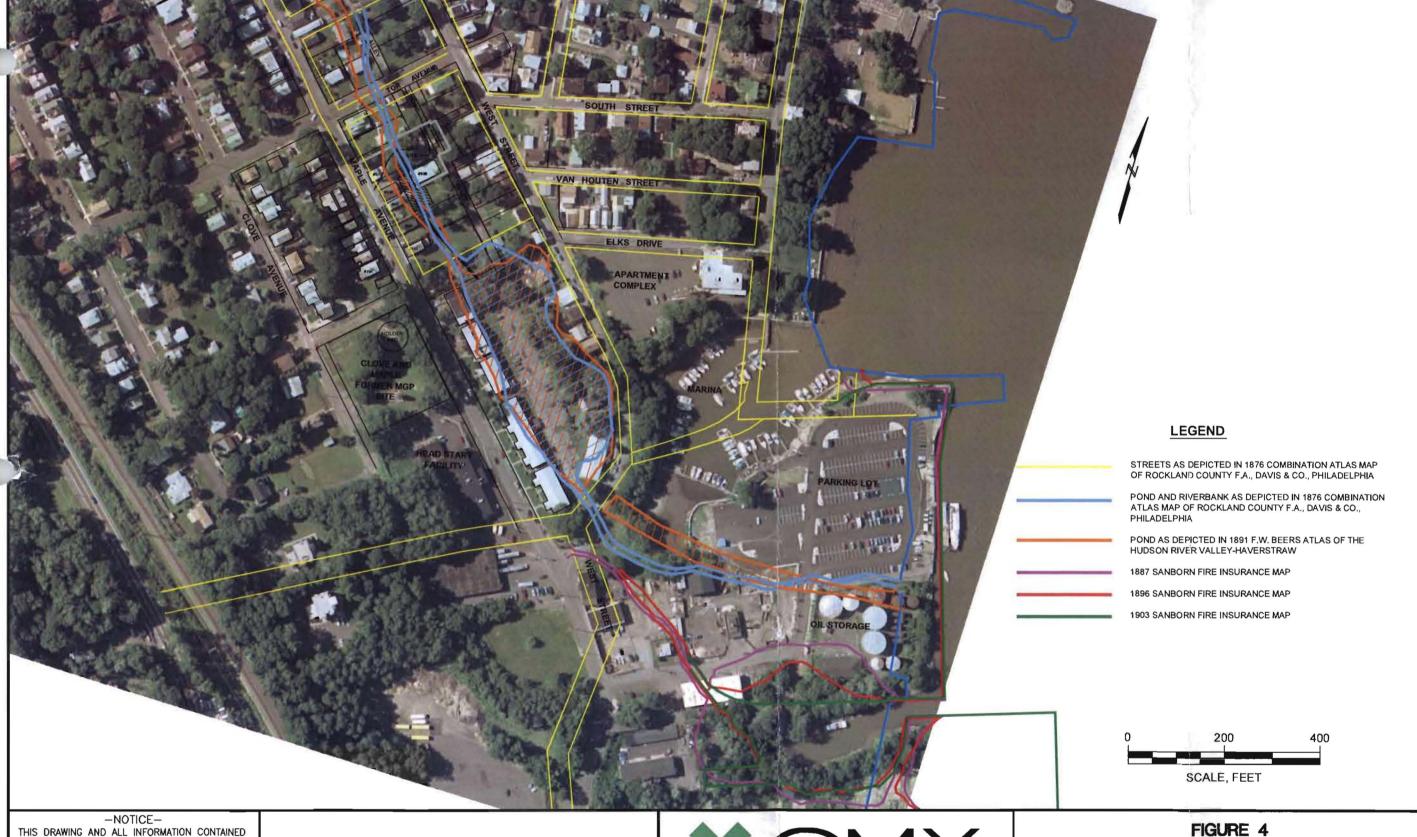
PARTY FOR WHOM THE WORK WAS CONTRACTED OR TO WHOM IT IS CERTIFIED.

THIS DRAWING MAY NOT BE COPIED, REUSED, DISCLOSED, DISTRIBUTED OR RELIED UPON FOR ANY OTHER PURPOSE WITHOUT THE WRITTEN CONSENT OF CMX.

COPYRIGHT 2008 CMX. ALL RIGHTS RESERVED

Cert. Of Authorization 24GA27926200 200 STATE HIGHWAY NINE
P.O. BOX 900 MANALAPAN, NJ 07726
TEL (732)577-9000 FAX (732)577-9888


SITE LOCATION MAP CLOVE AND MAPLE FORMER MGP SITE


HAVERSTRAW

DATE 1/12/2009 CHECKED BY ERG SHEET NO. 1 of

ROCKLAND COUNTY

NEW YORK

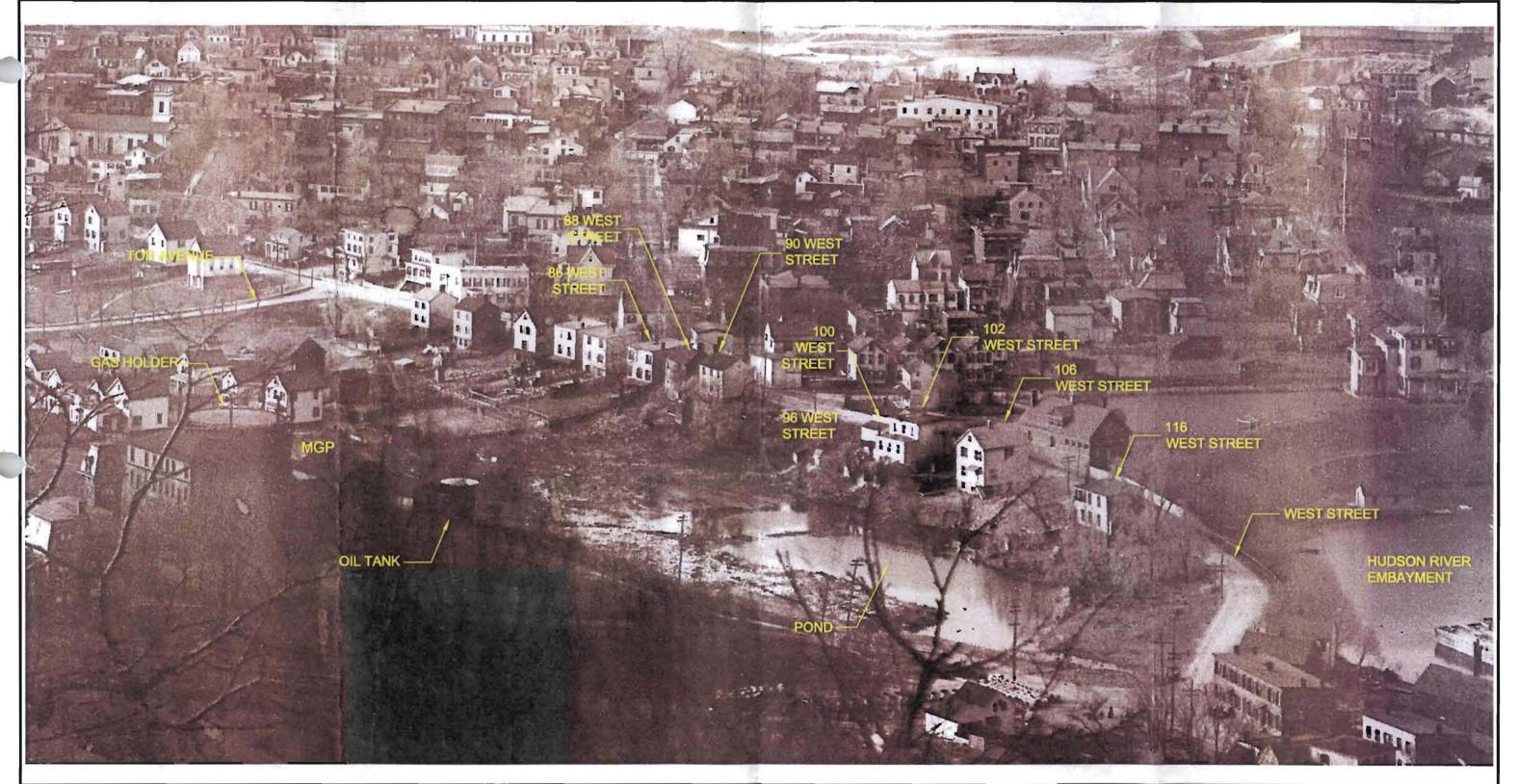
-NOTICETHIS DRAWING AND ALL INFORMATION CONTAINED
HEREIN IS AUTHORIZED FOR USE ONLY BY THE
PARTY FOR WHOM THE WORK WAS CONTRACTED
OR TO WHOM IT IS CERTIFIED.

THIS DRAWING MAY NOT BE COPIED, REUSED, DISCLOSED, DISTRIBUTED OR RELIED UPON FOR ANY OTHER PURPOSE WITHOUT THE WRITTEN CONSENT OF CMX.

COPYRIGHT 2007 CMX. ALL RIGHTS RESERVED

Cert. Of Authorization 24GA27926200 200 STATE HIGHWAY NINE P.O. BOX 900 MANALAPAN, NJ 07726 TEL (732)577-9000 FAX (732)577-9888

FIGURE 4 HISTORICAL COMPOSITE STREETS AND WATERWAYS


REMEDIAL INVESTIGATION HAVERSTRAW FORMER MGP SITE

HAVERSTRAW, ROCKLAND COUNTY, NEW YORK

PROJECT NO
070748502

SCALE
1" = 200'

DATE
10/02/2008
CHECKED BY
ERG
SHEET NO.
1 of 1

-NOTICETHIS DRAWING AND ALL INFORMATION CONTAINED
HEREIN IS AUTHORIZED FOR USE ONLY BY THE
PARTY FOR WHOM THE WORK WAS CONTRACTED
OR TO WHOM IT IS CERTIFIED.

THIS DRAWING MAY NOT BE COPIED, REUSED, DISCLOSED, DISTRIBUTED OR RELIED UPON FOR ANY OTHER PURPOSE WITHOUT THE WRITTEN CONSENT OF CMX.

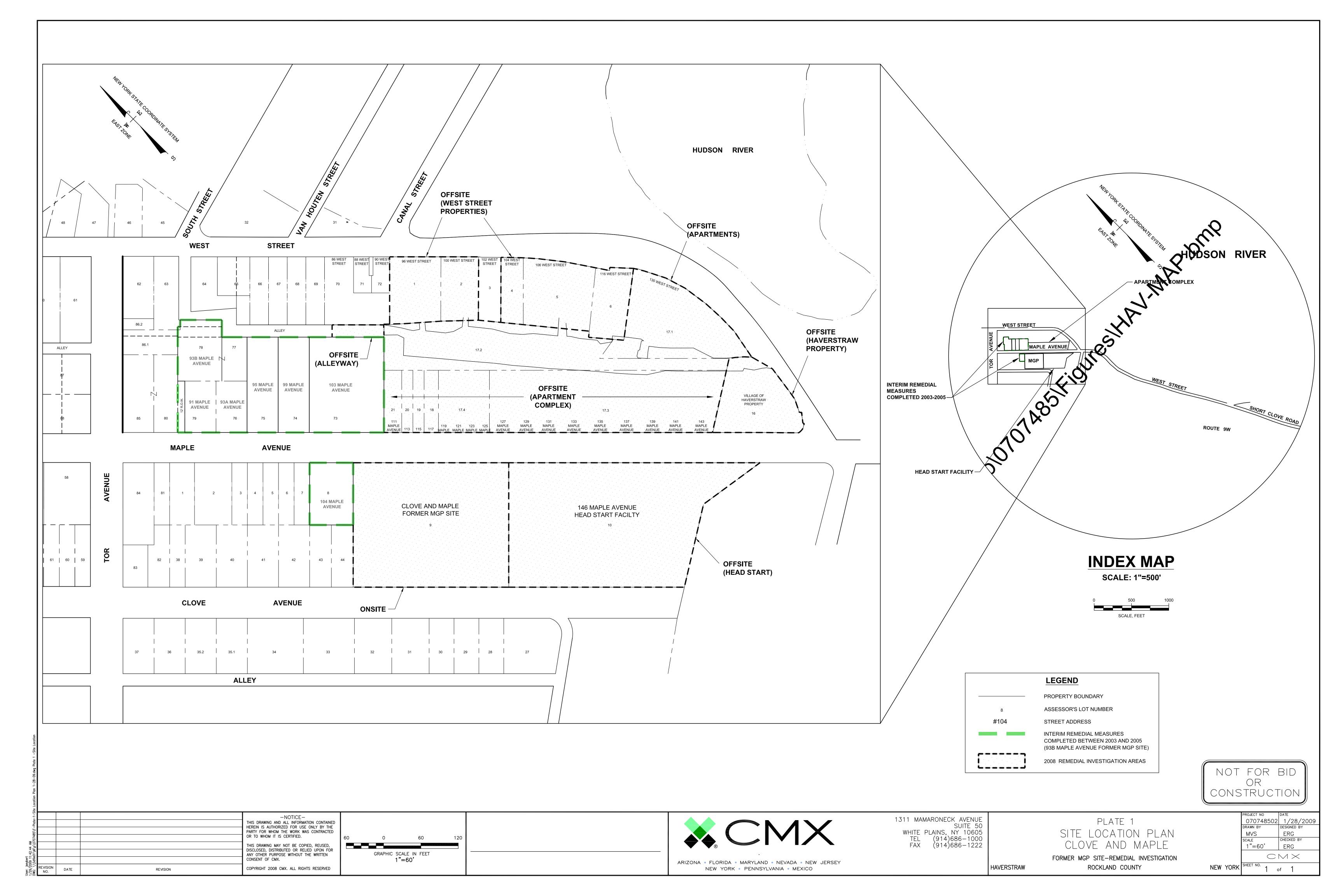
COPYRIGHT 2007 CMX. ALL RIGHTS RESERVED

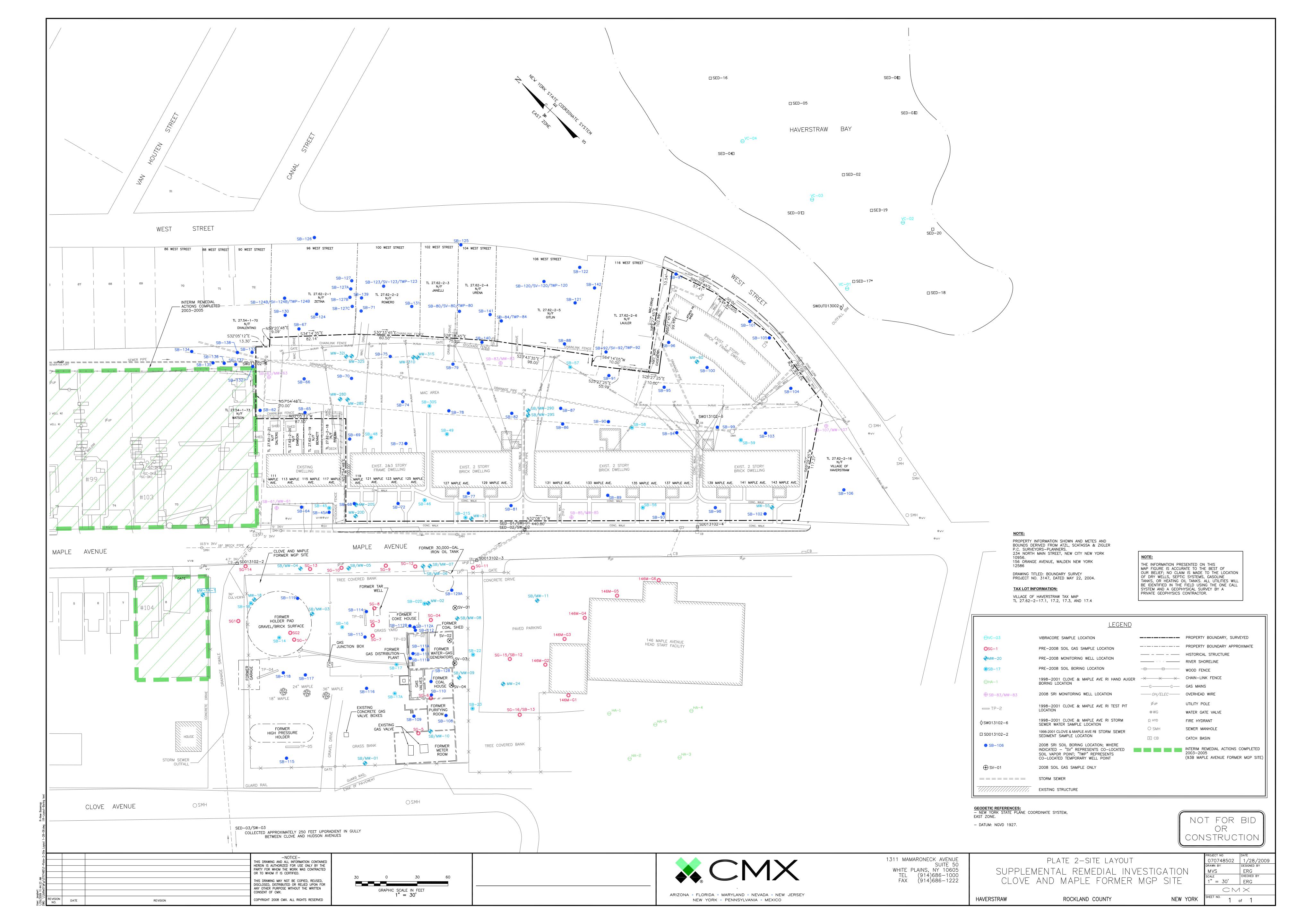
Cert. Of Authorization 24GA27926200 200 STATE HIGHWAY NINE
P.O. BOX 900 MANALAPAN, NJ 07726
TEL (732)577-9000 FAX (732)577-9888

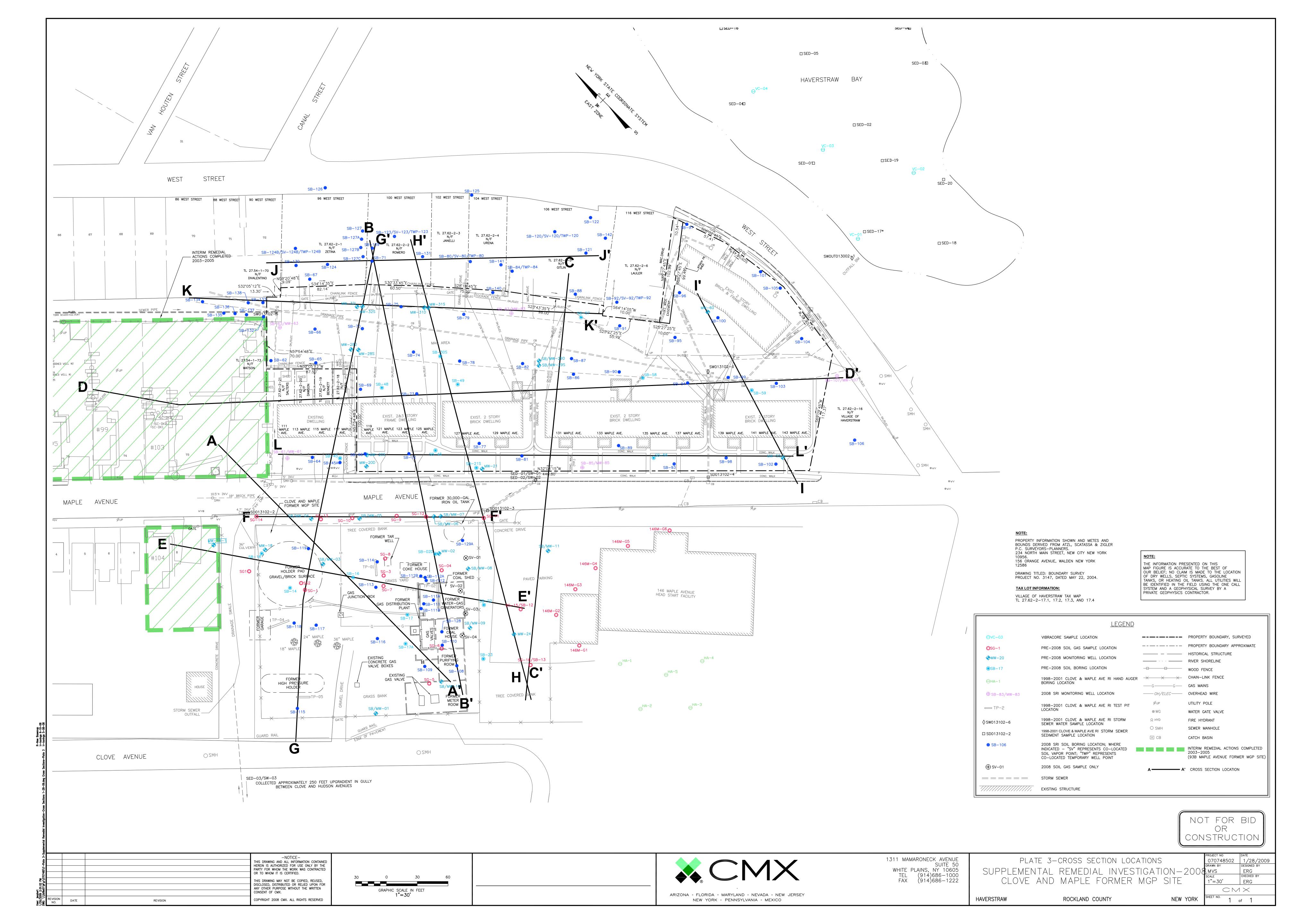
FIGURE 5

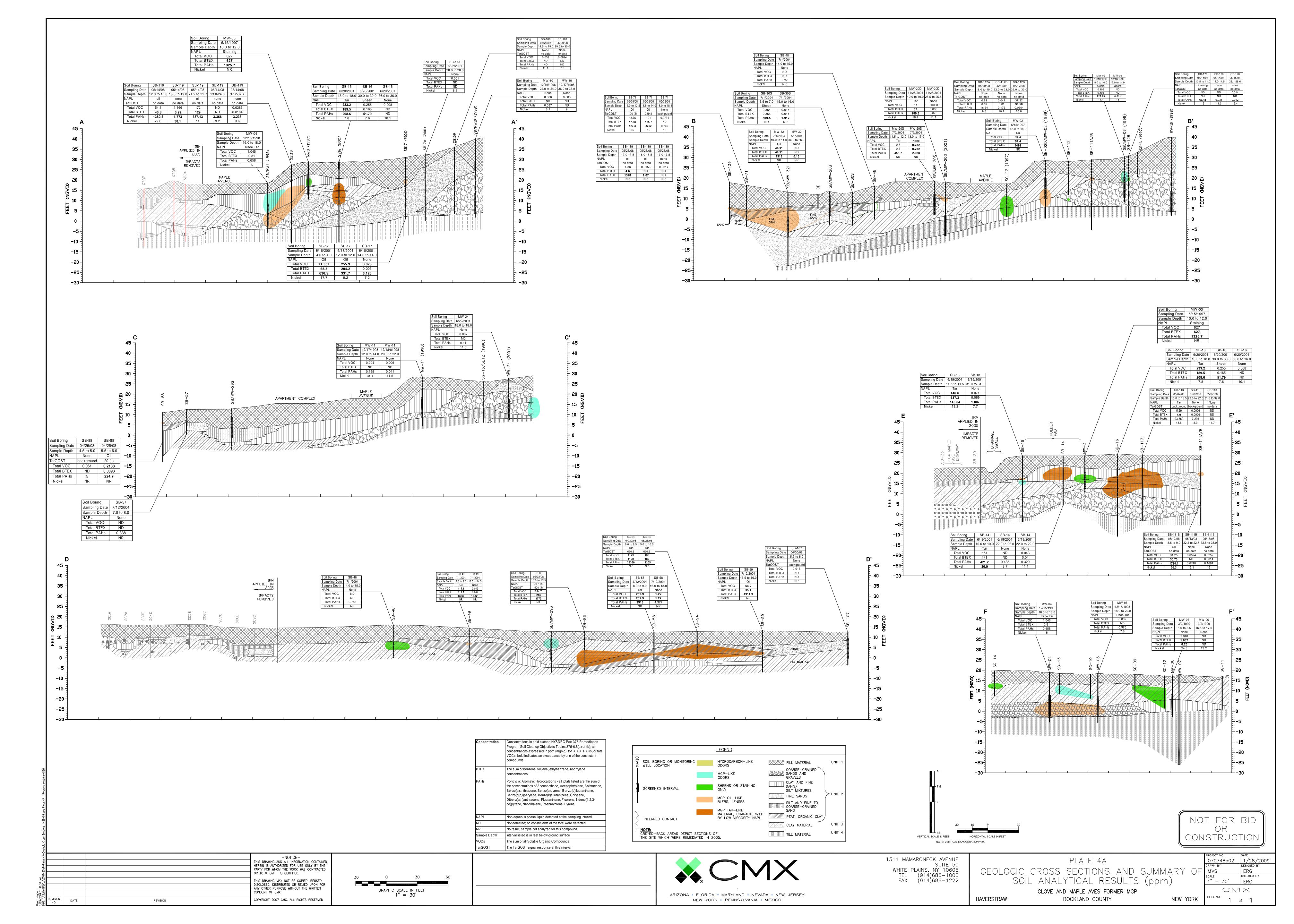
FORMER CLOVE AND MAPLE MGP AND SURROUNDING AREA, CIRCA 1890

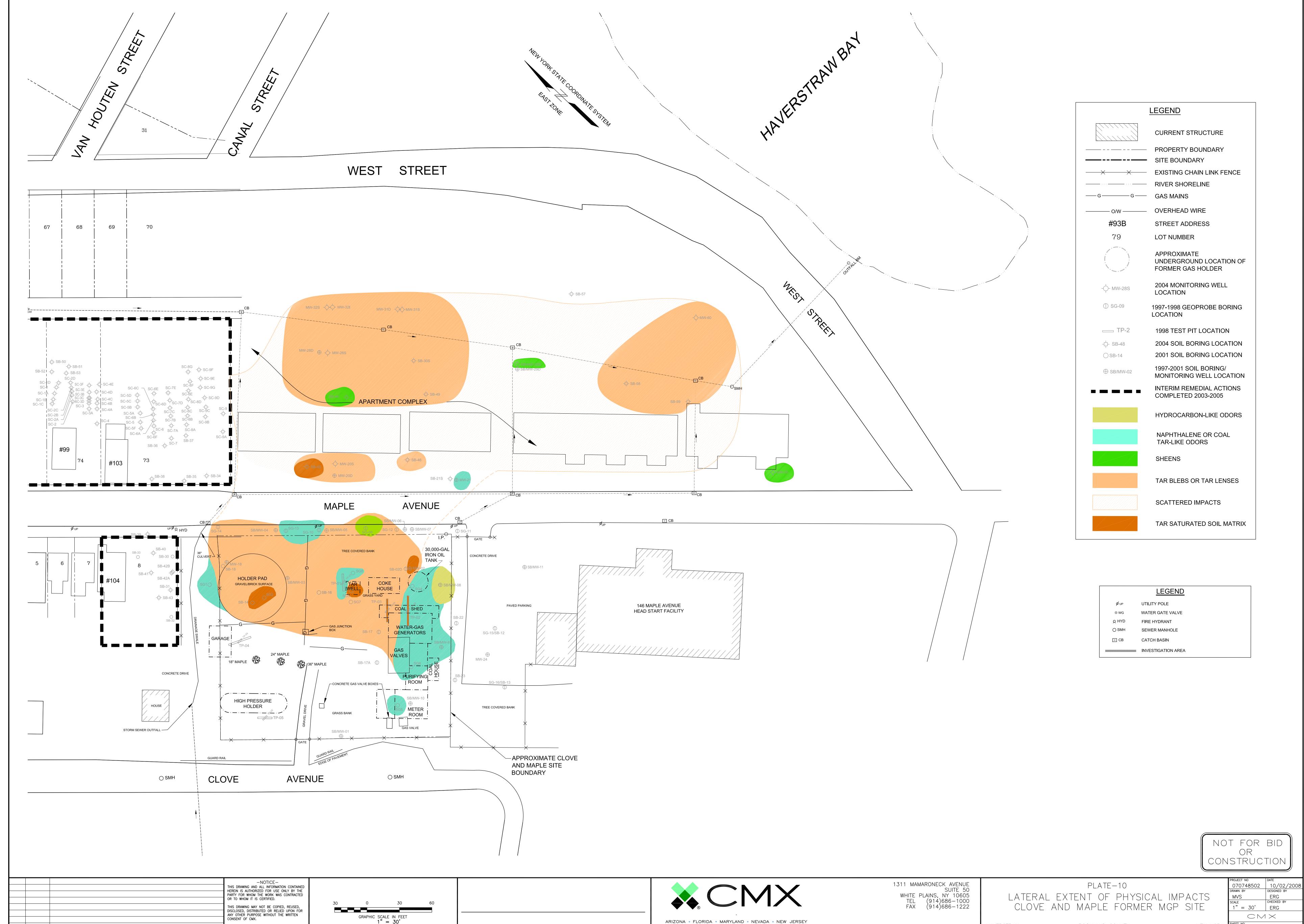
REMEDIAL INVESTIGATION HAVERSTRAW FORMER MGP SITE


HAVERSTRAW, ROCKLAND COUNTY, NEW YORK

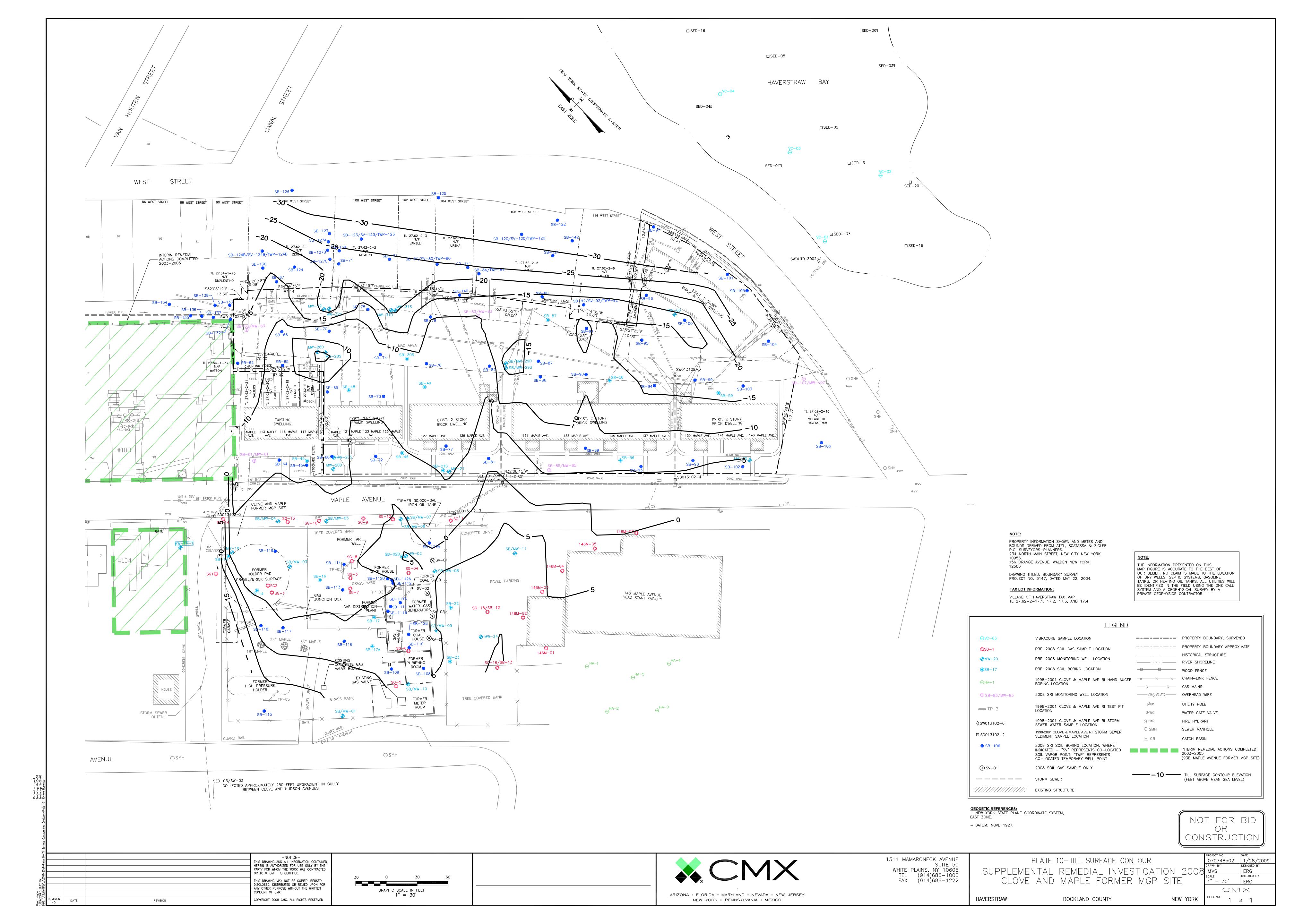

PROJECT NO 070748502 SCALE N.T.S.

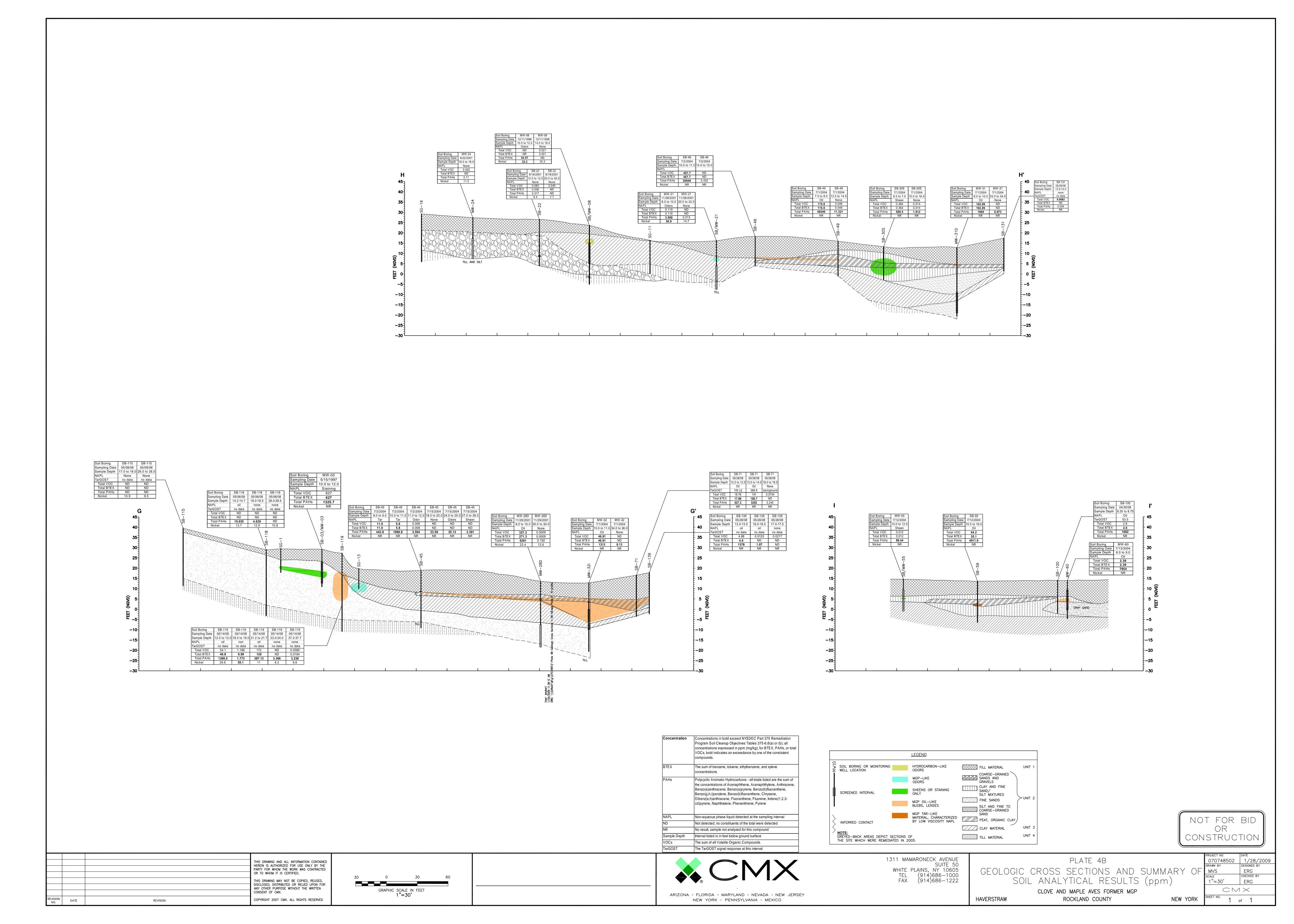

1/12/09 CHECKED BY

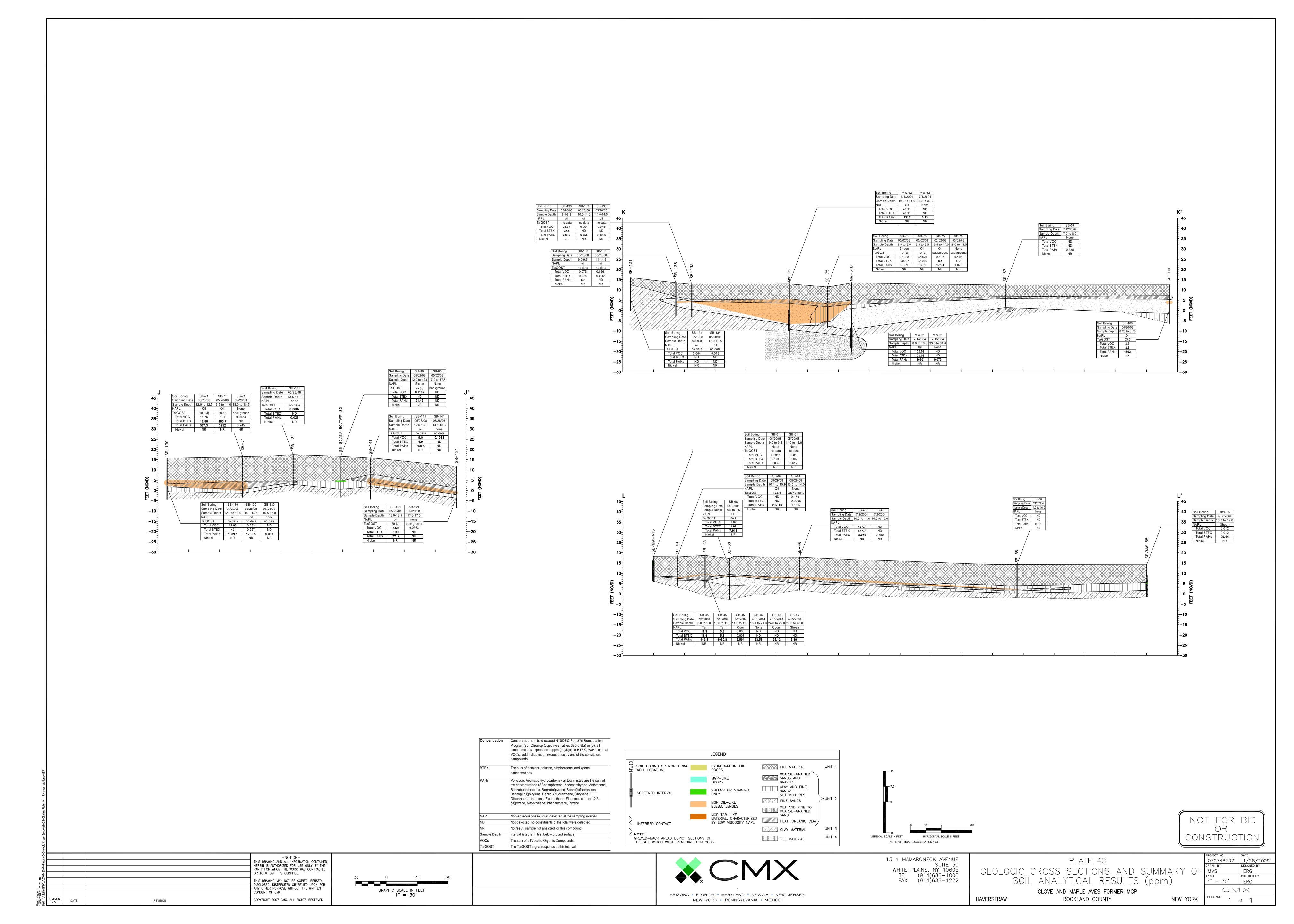

ERG
SHEET NO.

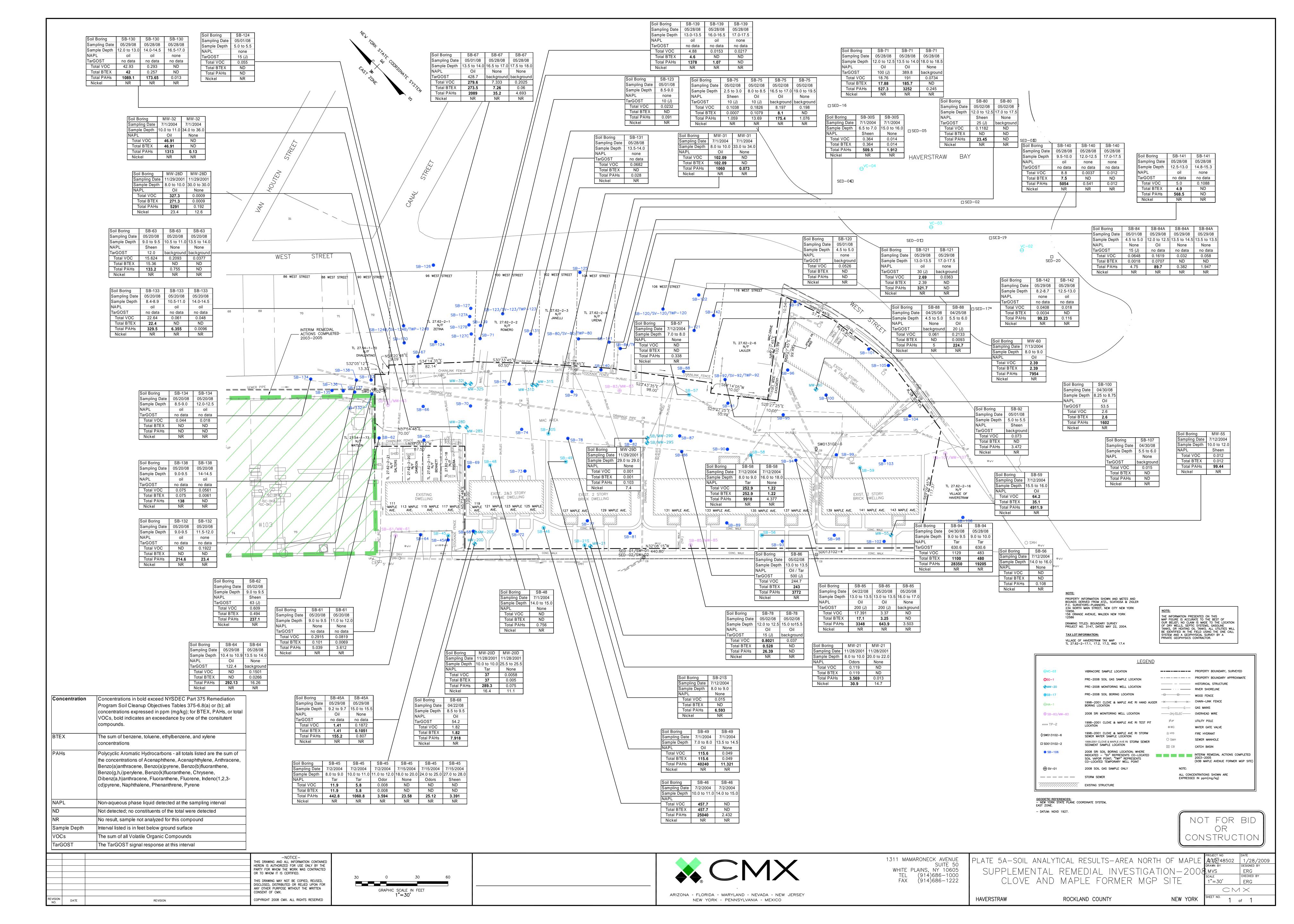

1 of

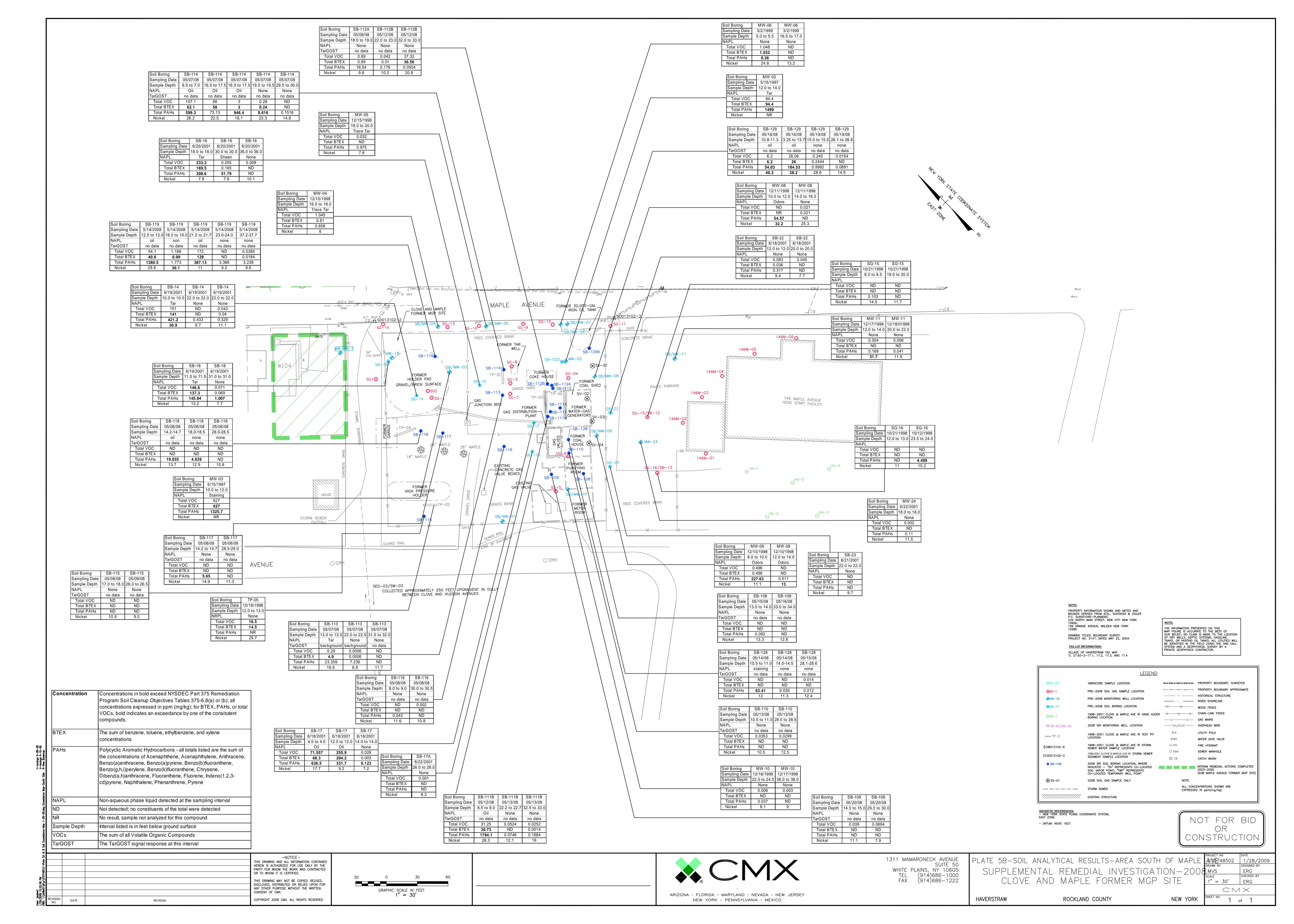
NEW YORK • PENNSYLVANIA • MEXICO


COPYRIGHT 2008 CMX. ALL RIGHTS RESERVED


REVISION


NEW YORK


HAVERSTRAW ROCKLAND COUNTY


SHEET NO. 1 of 1

