

Mr. William Bennett- Project Manager Senior Engineering Geologist Remedial Bureau C Division of Environmental Remediation 625 Broadway, Albany, New York 12233-7014

Subject:

Supplemental Remedial Investigation Report Operable Unit 3 Ramapo Paint Sludge Site, Rockland County, New York Site #3-44-064

Dear Mr. Bennett:

ARCADIS U.S., Inc (ARCADIS), on behalf of the Ford Motor Company (Ford), has prepared this Supplemental Remedial Investigation Report (RIR) to provide additional information regarding the extent of paint sludge and impacted soil within the pond and associated coffer dam located at Operable Unit 3 (OU-3) at the Ramapo Paint Sludge Site located in Pomona, Rockland County, New York (the Site). A site map illustrating the site location is presented as **Figure 1**. This report is provided as outlined in the OU-3 Supplemental Remedial Investigation Work Plan (RIWP) submitted on August 17, 2011 to the New York State Department of Environmental Conservation (NYSDEC) and approved by NYSDEC in a letter dated August 18, 2011.

The objectives of this supplemental RIR are to:

- Delineate the horizontal and vertical extent of paint sludge deposits at OU-3; and
- Calculate estimated volumes of paint sludge located at OU-3.

The delineation of the paint sludge deposits will be used to calculate the quantity of paint sludge and enable the evaluation of the implementability, technical feasibility and costs of paint sludge remediation at OU-3.

ARCADIS U.S., Inc. 17-17 Route 208 North Fair Lawn New Jersey 07410 Tel 201 797 7400 Fax 201 797 4399 www.arcadis-us.com

ENVIRONMENTAL

Date: March 21, 2012

Contact: Jon Rocklin

Phone: 201.684.1410

Email: Jon. Rocklin@arcadisus.com

Our ref: NJ000602.0003

W. Bennett March 21, 2012

Site Location and History

The area identified as OU-3 is located within a residential development, and is bounded to the north by a small creek and commercial property, to the east by Mt. Ivy County Park, and to the south and west by residential properties.

The OU-3 area encompasses approximately one acre of land located adjacent to a small man-made pond measuring approximately 200-foot wide by 400-foot long. The pond is confined by a man-made berm on its east side. The pond is elevated above the land to the east, while the residential homes west of the pond are elevated above the pond.

The pond appears to be fed from a culvert that connects it to a small stream running just north of the pond. Runoff draining from the residential development also discharges to the pond. The pond drains through an outlet structure to a lower lying wet area to the east.

The Rockland County Department of Health was contacted during late 2005 or early 2006 by a local newspaper reporter, who indicated he had been contacted by a New Jersey contractor regarding the potential presence of paint sludge in Pomona, New York. The contractor indicated that some time during 1972-1973, paint sludge was found during the excavation of a pond for a camp at this location. A former property owner indicated that a prior owner disposed of various wastes on the property during the 1960's. No information prior to 1960 has been obtained for the OU-3 area; however, the area is presumed to have been agricultural or undeveloped before 1960.

On March 10, 2006, the NYSDEC, together with the Rockland County Department of Health, toured the location to the east of a small pond near Camp Hill Road in Pomona and confirmed the presence of paint sludge.

The area where paint sludge was identified contains a variety of waste material, including construction debris, uprooted trees, and general refuse. Survey nodes depicting locations of visible paint sludge is illustrated on **Figure 2**. Based on visible observations, paint sludge was generally limited to small, brick-sized pieces or smaller on the ground surface, and these were removed by ARCADIS during an Interim Remedial Action performed in May 2006.

W. Bennett March 21, 2012

Previous Investigations and Remedial Actions

Remedial investigations (RI) were performed at OU-3 from May 2006 through October 2008. The RI consisted of a field reconnaissance survey, surface water and sediment characterization, groundwater monitoring well installation and sampling, test pit investigation, pond investigation, and the performance of an interim remedial action.

During the field reconnaissance survey, visible paint sludge was collected by hand, placed in poly-lined, 5-gallon buckets, and transferred to two 55-gallon drums as part of the interim remedial action. A sample of the paint sludge was collected and analyzed for volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs), polychlorinated biphenyls (PCBs), metals and toxicity characteristic leaching procedure (TCLP) metals. The paint sludge was characterized as hazardous for lead leachability, and transported off-site for disposal at EQ Michigan's facility located in Belleville, Michigan.

The results of the RI identified paint sludge at OU-3 as limited to one-contiguous area on the east side of the pond. The test pits confirmed the presence of a continuous deposit of sludge at least partially covered by fill material comprising the berm. Some of the paint sludge material has eroded into the shallow eastern bank of the pond.

Due to the pond being full of water at the time of the test pitting investigation, it was determined that digging further west into the berm for delineation purposes was not safe with the concerns of possibly compromising the integrity of the berm and pond.

Scope of Work

During the October 2008 investigation, ARCADIS identified a continuous flow of paint sludge at the eastern side of the coffer dam on the eastern side of the pond (Test Pit TP-05 and TP-06 on **Figure 2**). The paint sludge flow observed appeared to go under the coffer dam toward the pond.

During a site visit with the NYSDEC in March 2011, ARCADIS observed that the water level in the pond was drastically lower than it has historically been. It was determined that the drainage outflow stand-up pipe within the pond had broken off and allowed water to drain from the pond. This drainage exposed approximately 15

W. Bennett March 21, 2012

to 20 feet of dry shoreline. At the request of the NYSDEC, Ford conducted a geoprobe[®] investigation to determine the limits of the paint sludge.

The proposed scope of work consisted of advancing 29 borings in a 40- by 20-foot grid pattern across the focused investigation area identified in the May 2006 through October 2008 investigations.

The field activities were performed on January 18th and 19th, 2012 and February 2, 2012. Prior to the start of field activities, access to the work area was obtained from the owner of the property located at 9 Lea Court. In addition, due to the site topography and equipment accessibility concerns, it was determined that equipment access to the work area could be more feasible through the property located adjacent to the northwest corner of OU-3 (165 Ramapo Road), and therefore, access was obtained from the owner of this adjoining property, which was used to mobilize equipment to the Site.

A total of 35 borings (SB-1 through SB-35) were advanced by Summit Drilling Inc., which included 6 additional borings to delineate the western side of the focused investigation area as illustrated on **Figure 2**.

The soil boring layout was performed by ARCADIS staff using a measuring tape and pin flags. Field adjustments were made to the proposed grid based on field observation and conditions. Adjustments were made to improve the investigation efforts to complete delineation of the paint sludge deposit. Final boring locations were surveyed by a licensed surveyor in the state of New York.

Boring advancement began on top of the coffer dam directly west of the known paint sludge deposit, as identified on **Figure 2**, and continued to be advanced in a step-out approach as identified in **Figure 2** until the limits of paint sludge were delineated.

Soil cores were collected in 5-foot long by 2-inch diameter acetate liners that were fitted inside a stainless steel macro-core sampler. Each soil core was logged and field screened using a Photo-ionization Detector (PID) and visually inspected for the presence of paint sludge. Soil boring logs are included as **Attachment 1**.

All paint sludge material and associated soil was consolidated in a 55-gal drum onsite and sampled for waste characterization and off-site disposal. All soil borings were backfilled with bentonite pellets and hydrated.

W. Bennett March 21, 2012

Supplemental to the proposed scope of work and at the request of the NYSDEC, a total of 6 soil samples were collected from the soil borings for laboratory analysis. Surface samples were collected from 0 to 0.5 feet below ground surface (bgs) and subsurface samples were collected from approximately 1 foot beneath continuous flow of paint sludge (approximately 14 to15 feet bgs). Samples were collected and analyzed for VOCs and metals with two of the six samples being analyzed for VOCs, SVOCs, Pesticides, PCBs and metals.

Findings and Recommendations

A total of 35 soil borings (SB-1 through SB-35) were advanced within OU-3 as part of this supplemental RI. Soil boring locations are shown on **Figure 2**.

Paint sludge was observed in Soil Borings SB-06 and SB-16. Paint sludge observed ranged in size from small pieces to cobble-sized chunks. The paint sludge was intermixed with the soil and was not a continuous flow. This suggests that the paint sludge/soil was reworked or moved since the time of original deposition.

Soil borings SB-01 through SB-04, SB-08 through SB-13, SB-17, and SB-22 through SB-24, were advanced within a continuous flow of paint sludge. The soil borings were located along the top of the coffer dam and along its eastern and western slopes within the focused investigation area. The paint sludge flow emerges on the eastern and western extents. The maximum depth of continuous flow was identified at 14 feet bgs in soil borings SB-09 and SB-22 located on the plateau corresponding to the top of the berm. The continuous flow ranges from approximately 1-foot thick along the western slope of the coffer dam (Soil Boring SB-24) to a thickness of 8 feet along the top of the berm (Soil Boring SB-22). This suggests that the horizontal extents have been delineated and paint sludge was deposited at this location prior to the construction of the coffer dam.

Paint sludge was not observed to depth in soil borings SB-05, SB-07, SB-14, SB-15, SB-18 through SB-21, and SB-25 through SB-35. Soil Borings, SB-05, SB-07, and SB-28 through SB-30 were advanced along the southern boundary of the focused investigation area, just south of where previous survey nodes had identified paint sludge in May 2006. Soil Borings SB-14, SB-15 and SB-25, were advanced along the Northern Boundary in the vicinity of Test Pit TP-01. Soil Borings SB-18 through SB-21, SB-26 and SB-27 make up the western boundary of the focused investigation area and lie on the western slope of the coffer dam. During previous investigations, these soil borings would have been under water due to the pond elevation. The

current pond elevation is illustrated on **Figure 2.** Soil Borings SB-31 through SB-35 were advanced along the eastern boundary of focused investigation area along the lower lying wet area.

The vertical and horizontal extents of paint sludge have been delineated. **Figures 2**, **3 and 4** illustrate the vertical and horizontal extents through a plan view and cross-sections.

At the request of the NYSDEC, a total of 6 soil samples were collected from the focused investigation area during the supplemental RI. Sample locations are shown on **Figure 3.** Samples were analyzed for VOCs and metals with two of the six samples being analyzed for VOCs, SVOCs, Pesticides, PCBs and metals. The analytical results are summarized in **Table 1** and **Attachment 2**.

The surface soil results are provided in **Table 1**. Surface samples were collected from 0 to 0.5 feet bgs at Soil Borings SB-09, SB-16 and SB-17. Soil Boring SB-09 exceeded the NYSDEC Soil Cleanup Criteria (SCC) for Residential Use of 350 milligrams/kilogram (mg/kg) for Barium at a concentration of 519 mg/kg. Soil Boring, SB-16 exceeded the NYSDEC SCC for Residential Use of 16 mg/kg for Arsenic, 350 mg/kg for Barium and 400 mg/kg for Lead at a concentration of 19.4 mg/kg, 3,730 mg/kg, and 2,540 mg/kg, respectively. With the exception of arsenic, barium and lead, VOCs and metals were not detected at concentrations greater than the NYSDEC SCC for Residential Use.

Sub-surface soil results are provided in **Table 1**. Subsurface samples were collected from a depth of approximately 1 foot beneath continuous flow of paint sludge (14 to 15 feet bgs) at Soil Borings SB-09, SB-10 and SB-13. No VOCs or metals were detected at concentrations greater than the NYSDEC SCC for Residential Use.

All sludge material and associated soil was placed in poly-lined, 5-gallon buckets prior to consolidation in a 55-gal drum on-site as part of the supplemental RI. A sample of paint sludge and associated soil was collected and analyzed for VOCs, SVOCs, PCBs, metals and TCLP metals. The analytical results of the paint sludge and associated soil indicate that the 55 gallon drum of paint sludge and soil was non hazardous. The paint sludge and associated soil results are presented in **Table 2**.

W. Bennett March 21, 2012

Summary and Conclusions

An estimated 0.50 acres (approximately 150- by 150-foot area) of the OU-3 area was found to contain paint sludge. One continuous flow was observed, at least partially covered by fill material comprising the berm, and some pieces of sludge were observed in fill material within the berm.

There is approximately 0 to 8 feet of fill soil over a 2 to 8 foot thick layer of paint sludge. Cross sections of the paint sludge are presented on Figures 3 and 4.

An estimated 7,800 cubic yards of paint sludge and impacted material has been identified within the focused investigation area.

References

ARCADIS. Remedial Investigation Report, Ramapo Paint Sludge Site OU-3. September 1, 2010.

ARCADIS. Supplemental Remedial Investigation Workplan, Site #3-44-064, Ramapo Paint Sludge Site. August 17, 2011.

NYSDEC. Re: OU-3 Supplemental Remedial Investigation Work Plan Ramapo Pain Sludge Site, Site No. 3-44-064. August 18, 2011.

6 NYCRR Part 375. DER-10- Technical Guidance for Site Investigation and Remediation.

Sincerely,

ARCADIS U.S., Inc.

Jon Rocklin Associate Project Manager

Copies: B. Bussa (Ford) M. Zakkar (Ford) D. Simmons A. Perretta (NYSDOH)

Tables:

Table 1	Summary of Soil Analytical Results
Table 2	Summary of Waste Characterization Analytical Results

Figures:

Figure 1	Site Location Map
Figure 2	Remedial Investigation Sample Locations for OU-3
Figure 3	Cross Section A-A'
Figure 4	Cross Section B-B'

Attachments:

- Attachment 1 Soil Boring Logs
- Attachment 2 Laboratory Analytical Report/Data Usability Summary Report

Table 1. Summary of Soil Analytical Results

Supplemental Remedial Investigation Report Operable Unit 3, Ramapo Paint Sludge Site, Operable Unit 3, Rockland County, New York

		dards		Surface Samples	,		Sub-Surface Samples		
Sample ID	375-6.8(b)	375-6.8(b)	OU3-SB-09(0-0.5)		OU3-SB-17(0-0 5)	OU3-SB-09(14 5-15)	OU3-SB-10(14-14.5)	0113-SB-13(14 5-15)	FB-01192012
Sample Date	Residential	Restricted	1/19/2012	1/19/2012	1/19/2012	1/19/2012	1/19/2012	1/19/2012	1/19/2012
Depth Interval	Residential	Residential	0 - 0.5	0 - 0.5	0 - 0.5	14.5 - 15	14 - 14.5	14.5 - 15	1/13/2012
Validation Status		Reoldonnar	Final	Final	Final	Final	Final	Final	Final
VOC			i mai		. mai		1 1101		
1,1,1-Trichloroethane	100	100	< 0.00026	< 0.00031	< 0.0004	< 0.013	< 0.0006	< 0.00022	< 0.24
1,1,2,2-Tetrachloroethane	NS	NS	< 0.00019	< 0.00023	< 0.0003	< 0.0094	< 0.00045	< 0.00017	< 0.2
1,1,2-Trichloroethane	NS	NS	< 0.00047	< 0.00056	< 0.00072	< 0.023	< 0.0011	< 0.0004	< 0.23
1,1-Dichloroethane	19	26	< 0.00024	< 0.00028	< 0.00036	< 0.011	< 0.00054	< 0.0002	< 0.19
1,1-Dichloroethene	100	100	< 0.00067	< 0.0008	< 0.001	< 0.032	< 0.0015	< 0.00057	< 0.28
1,2,4-Trichlorobenzene	NS	NS	< 0.00037	< 0.00044	< 0.00057	< 0.018	< 0.00085	< 0.00031	< 0.15
1,2-Dibromo-3-chloropropane	NS	NS	< 0.0016	< 0.002	< 0.0025	< 0.079	< 0.0038	< 0.0014	< 1.3
1,2-Dibromoethane	NS	NS	< 0.00026	< 0.00031	< 0.0004	< 0.013	< 0.00059	< 0.00022	< 0.21
1,2-Dichlorobenzene	100	100	< 0.0003	< 0.00036	< 0.00046	< 0.015	< 0.00069	< 0.00026	< 0.18
1,2-Dichloroethane	2.3	3.1	< 0.0002	< 0.00024	< 0.0003	< 0.0096	< 0.00045	< 0.00017	< 0.18
1,2-Dichloropropane	NS	NS	< 0.00029	< 0.00035	< 0.00044	< 0.014	< 0.00066	< 0.00025	< 0.22
1,3-Dichlorobenzene	17	49	< 0.00021	< 0.00025	< 0.00032	< 0.01	< 0.00048	< 0.00018	< 0.29
1,4-Dichlorobenzene	9.8	13	< 0.00019	< 0.00022	< 0.00028	< 0.0089	< 0.00042	< 0.00016	< 0.26
2-Butanone (MEK)	100	100	< 0.0047	< 0.0056	< 0.0072	< 0.23	0.0287	< 0.004	< 2.9
2-Hexanone	NS	NS	< 0.0027	< 0.0032	< 0.0041	< 0.13	< 0.0062	< 0.0023	< 3
4-Methyl-2-pentanone(MIBK)	NS	NS	< 0.0029	< 0.0034	< 0.0044	< 0.14	< 0.0066	< 0.0024	< 1.2
Acetone	100	100	< 0.0072	< 0.0086	< 0.011	< 0.35	0.086 J	< 0.0061	< 7.6
Benzene	2.9	4.8	< 0.00014	< 0.00017	< 0.00022	0.0151 J	0.203	0.0016	< 0.22
Bromodichloromethane	NS	NS	< 0.00024	< 0.00029	< 0.00037	< 0.012	< 0.00056	< 0.00021	< 0.23
Bromoform	NS	NS	< 0.00082	< 0.00098	< 0.0013	< 0.04	< 0.0019	< 0.0007	< 0.24
Bromomethane	NS	NS	< 0.00043	< 0.00051	< 0.00066	< 0.021	< 0.00098	< 0.00036	< 0.31
Carbon disulfide	NS	NS	< 0.00021	< 0.00025	< 0.00033	< 0.01	< 0.00049	< 0.00018	< 0.18
Carbon tetrachloride	1.4	2.4	< 0.00038	< 0.00045	< 0.00058	< 0.018	< 0.00086	< 0.00032	< 0.19
Chlorobenzene	100	100	< 0.00035	< 0.00042	< 0.00054	< 0.017	< 0.0008	< 0.0003	< 0.22
Chloroethane	NS	NS	< 0.00044	< 0.00053	< 0.00068	< 0.021	< 0.001	< 0.00038	< 0.37
Chloroform	10	49	< 0.00053	< 0.00063	< 0.00081	< 0.025	< 0.0012	< 0.00045	< 0.21
Chloromethane	NS	NS	< 0.00068	< 0.00081	< 0.001	< 0.033	< 0.0016	< 0.00058	< 0.22
cis-1,2-Dichloroethene	59	100	< 0.00035	< 0.00042	< 0.00054	< 0.017	0.0029 J	< 0.0003	< 0.22
cis-1,3-Dichloropropene	NS	NS	< 0.00017	< 0.0002	< 0.00025	< 0.008	< 0.00038	< 0.00014	< 0.22
Cyclohexane	NS	NS	< 0.00041	< 0.00049	< 0.00063	< 0.02	0.0294	< 0.00035	< 0.29
Dibromochloromethane	NS	NS	< 0.00018	< 0.00022	< 0.00028	< 0.0088	< 0.00042	< 0.00016	< 0.2
Dichlorodifluoromethane	NS	NS	< 0.00035	< 0.00042	< 0.00054	< 0.017	< 0.0008	< 0.0003	< 0.31
Ethylbenzene	30	41	0.00025 J	< 0.00019	< 0.00025	1.29	0.0371	0.0043 J	< 0.21
Freon 113	NS	NS	< 0.00078	< 0.00093	< 0.0012	< 0.038	< 0.0018	< 0.00066	< 0.49
Isopropylbenzene	NS	NS	< 0.00015	< 0.00018	< 0.00023	0.19 J	0.0327	0.0045 J	< 0.19
Methyl Acetate	NS	NS	< 0.0024	< 0.0029	< 0.0037	< 0.12	< 0.0055	< 0.002	< 2.9
Methyl Tert Butyl Ether	62	100	< 0.00019	< 0.00023	< 0.0003	< 0.0094	< 0.00045	< 0.00017	< 0.18
Methylcyclohexane	NS	NS	< 0.00027	< 0.00032	< 0.00041	0.0503 J	0.0211	0.0012 J	< 0.18
Methylene chloride	51	100	< 0.00025	< 0.0003	< 0.00038	< 0.012	< 0.00057	< 0.00021	< 0.2
Styrene	NS	NS	< 0.0002	< 0.00024	< 0.00031	< 0.0097	< 0.00046	< 0.00017	< 0.23
Tetrachloroethene	5.5	19	< 0.00021	< 0.00025	< 0.00032	< 0.01	< 0.00048	< 0.00018	< 0.32
Toluene	100	100	< 0.00041	< 0.00049	< 0.00063	0.884	< 0.00094	0.00041 J	< 0.15
trans-1,2-Dichloroethene	100	100	< 0.00046	< 0.00055	< 0.00071	< 0.022	< 0.0011	< 0.00039	< 0.31
trans-1,3-Dichloropropene	NS	NS	< 0.00037	< 0.00044	< 0.00056	< 0.018	< 0.00084	< 0.00031	< 0.19
Trichloroethene	10	21	< 0.00027	< 0.00032	< 0.00041	< 0.013	< 0.00062	< 0.00023	< 0.21
Trichlorofluoromethane	NS	NS	< 0.00053	< 0.00063	< 0.0008	< 0.025	< 0.0012	< 0.00044	< 0.35
Vinyl chloride	0.21	0.9	< 0.0005	< 0.0006	< 0.00077	< 0.024	< 0.0011	< 0.00043	< 0.27
Xylene (total)	100	100	0.0019	0.00097 J	< 0.00031	9.86	0.788	0.299 J	< 0.17
Total TIC, Volatile	NS	NS	0	0	0	25.4 JN	0.276 JN	0.114 JN	0

2	TB-01192012 1/19/2012
	Final
	Final< 0.24 < 0.2 < 0.23 < 0.19 < 0.28 < 0.15 < 1.3 < 0.21 < 0.18 < 0.22 < 0.29 < 0.26 < 2.9 < 3 < 1.2 < 7.6 < 0.22 < 0.23 < 0.24 < 0.18 < 0.22 < 0.23 < 0.21 < 0.22 < 0.22 < 0.21 < 0.22 < 0.22 < 0.21 < 0.22 < 0.22 < 0.21 < 0.21 < 0.21 < 0.32 < 0.18 < 0.18 < 0.19 < 0.23 < 0.32 < 0.31 < 0.19 < 0.23 < 0.32 < 0.31 < 0.73 < 0.73 < 0.75 < 0.77 < 0.77 < 0.77
	-

Table 1. Summary of Soil Analytical Results

Supplemental Remedial Investigation Report Operable Unit 3, Ramapo Paint Sludge Site, Operable Unit 3, Rockland County, New York

Supplemental Remedial Investiga		dards	Ĭ	Surface Samples		Sub-Surface Samples				
Commis ID							-		ED 04402042	TD 04402042
Sample ID	375-6.8(b)	375-6.8(b)				OU3-SB-09(14.5-15)				
Sample Date	Residential	Restricted	1/19/2012	1/19/2012	1/19/2012	1/19/2012	1/19/2012	1/19/2012	1/19/2012	1/19/2012
Depth Interval		Residential	0 - 0.5	0 - 0.5	0 - 0.5	14.5 - 15	14 - 14.5	14.5 - 15		
Validation Status			Final	Final	Final	Final	Final	Final	Final	Final
SVOC										
1,1'-Biphenyl	NS	NS	NA	< 0.004	NA	NA	NA	< 0.0038	NA	NA
2,4,5-Trichlorophenol	NS	NS	NA	< 0.04	NA	NA	NA	< 0.038	NA	NA
2,4,6-Trichlorophenol	NS	NS	NA	< 0.032	NA	NA	NA	< 0.031	NA	NA
2,4-Dichlorophenol	NS	NS	NA	< 0.055	NA	NA	NA	< 0.053	NA	NA
2,4-Dimethylphenol	NS	NS	NA	< 0.057	NA	NA	NA	< 0.056	NA	NA
2,4-Dinitrophenol	NS	NS	NA	< 0.042 J	NA	NA	NA	< 0.04 J	NA	NA
2,4-Dinitrotoluene	NS	NS	NA	< 0.015	NA	NA	NA	< 0.014 J	NA	NA
2,6-Dinitrotoluene	NS	NS	NA	< 0.013	NA	NA	NA	< 0.013	NA	NA
2-Chloronaphthalene	NS	NS	NA	< 0.011	NA	NA	NA	< 0.01	NA	NA
2-Chlorophenol	NS	NS	NA	< 0.035	NA	NA	NA	< 0.033	NA	NA
2-Methylnaphthalene	NS	NS	NA	< 0.019	NA	NA	NA	0.0428 J	NA	NA
2-Methylphenol	100	100	NA	< 0.039	NA	NA	NA	< 0.038	NA	NA
2-Nitroaniline	NS	NS	NA	< 0.015	NA	NA	NA	< 0.038	NA	NA
	NS	NS			NA	NA				NA
2-Nitrophenol	NS NS	NS	NA NA	< 0.036	NA	NA	NA NA	< 0.035 < 0.042	NA NA	NA
3&4-Methylphenol				< 0.043						
3,3'-Dichlorobenzidine	NS	NS	NA	< 0.0087	NA	NA	NA	< 0.0084	NA	NA
3-Nitroaniline	NS	NS	NA	< 0.014	NA	NA	NA	< 0.013	NA	NA
4,6-Dinitro-o-cresol	NS	NS	NA	< 0.042	NA	NA	NA	< 0.04	NA	NA
4-Bromophenyl phenyl ether	NS	NS	NA	< 0.012	NA	NA	NA	< 0.012	NA	NA
4-Chloro-3-methyl phenol	NS	NS	NA	< 0.034	NA	NA	NA	< 0.033	NA	NA
4-Chloroaniline	NS	NS	NA	< 0.011	NA	NA	NA	< 0.011	NA	NA
4-Chlorophenyl phenyl ether	NS	NS	NA	< 0.01	NA	NA	NA	< 0.01	NA	NA
4-Nitroaniline	NS	NS	NA	< 0.013	NA	NA	NA	< 0.013	NA	NA
4-Nitrophenol	NS	NS	NA	< 0.058 J	NA	NA	NA	< 0.056 J	NA	NA
Acenaphthene	100	100	NA	< 0.0099	NA	NA	NA	< 0.0096	NA	NA
Acenaphthylene	100	100	NA	0.0421	NA	NA	NA	< 0.011	NA	NA
Acetophenone	NS	NS	NA	< 0.006	NA	NA	NA	< 0.0058	NA	NA
Anthracene	100	100	NA	0.0286 J	NA	NA	NA	< 0.012	NA	NA
Atrazine	NS	NS	NA	< 0.0067	NA	NA	NA	< 0.0065	NA	NA
Benzaldehyde	NS	NS	NA	< 0.0079	NA	NA	NA	< 0.0076	NA	NA
Benzo(a)anthracene	1	1	NA	0.0651	NA	NA	NA	< 0.011	NA	NA
Benzo(a)pyrene	1	1	NA	0.0869 J	NA	NA	NA	< 0.01 J	NA	NA
	1	1	NA		NA	NA		< 0.01 J		NA
Benzo(b)fluoranthene	-			0.0887 J			NA		NA	
Benzo(g,h,i)perylene	100	100	NA	0.073	NA	NA	NA	< 0.012	NA	NA
Benzo(k)fluoranthene	1	3.9	NA	0.0204 J	NA	NA	NA	< 0.012	NA	NA
bis(2-Chloroethoxy)methane	NS	NS	NA	< 0.014	NA	NA	NA	< 0.013	NA	NA
bis(2-Chloroethyl)ether	NS	NS	NA	< 0.01	NA	NA	NA	< 0.01	NA	NA
bis(2-Chloroisopropyl)ether	NS	NS	NA	< 0.01	NA	NA	NA	< 0.0098	NA	NA
bis(2-Ethylhexyl)phthalate	NS	NS	NA	< 0.03	NA	NA	NA	< 0.029	NA	NA
Butyl benzyl phthalate	NS	NS	NA	< 0.02	NA	NA	NA	< 0.019	NA	NA
Caprolactam	NS	NS	NA	< 0.011	NA	NA	NA	< 0.01	NA	NA
Carbazole	NS	NS	NA	< 0.016	NA	NA	NA	< 0.015	NA	NA
Chrysene	1	3.9	NA	0.0823	NA	NA	NA	< 0.011	NA	NA
Dibenzo(a,h)anthracene	0.33	0.33	NA	0.0211 J	NA	NA	NA	< 0.011	NA	NA
Dibenzofuran	14	59	NA	< 0.01	NA	NA	NA	< 0.0098	NA	NA
Diethyl phthalate	NS	NS	NA	< 0.012	NA	NA	NA	< 0.000	NA	NA
Dimethyl phthalate	NS	NS	NA	< 0.012	NA	NA	NA	0.0597 J	NA	NA
		NS		< 0.0076		NA	NA	< 0.0074		
Di-n-butyl phthalate	NS		NA		NA				NA	NA
Di-n-octyl phthalate	NS	NS	NA	< 0.017	NA	NA	NA	< 0.016	NA	NA

Table 1. Summary of Soil Analytical Results

Supplemental Remedial Investigation	Report Operable Unit 3	, Ramapo Paint Sludge Site,	Operable Unit 3, Rockland	County, New York
July a second		,		

		dards		Surface Samples	·		Sub-Surface Samples	3		
Sample ID	375-6.8(b)	375-6.8(b)	OU3-SB-09(0-0.5)		OU3-SB-17(0-0.5)		OU3-SB-10(14-14.5)		FB-01192012	TB-01192012
Sample Date	Residential	Restricted	1/19/2012	1/19/2012	1/19/2012	1/19/2012	1/19/2012	1/19/2012	1/19/2012	1/19/2012
Depth Interval		Residential	0 - 0.5	0 - 0.5	0 - 0.5	14.5 - 15	14 - 14.5	14.5 - 15		
Validation Status			Final	Final	Final	Final	Final	Final	Final	Final
Fluoranthene	100	100	NA	0.0714 J	NA	NA	NA	< 0.015 J	NA	NA
Fluorene	100	100	NA	< 0.011	NA	NA	NA	< 0.011	NA	NA
Hexachlorobenzene	0.33	1.2	NA	< 0.011	NA	NA	NA	< 0.011	NA	NA
Hexachlorobutadiene	NS	NS	NA	< 0.0095	NA	NA	NA	< 0.0092	NA	NA
Hexachlorocyclopentadiene	NS	NS	NA	< 0.035	NA	NA	NA	< 0.034	NA	NA
Hexachloroethane	NS	NS	NA	< 0.0095	NA	NA	NA	< 0.0092	NA	NA
Indeno(1,2,3-cd)pyrene	0.5	0.5	NA	0.0537	NA	NA	NA	< 0.011	NA	NA
Isophorone	NS	NS	NA	< 0.0092	NA	NA	NA	< 0.0089	NA	NA
Naphthalene	100	100	NA	0.0394 J	NA	NA	NA	0.441	NA	NA
Nitrobenzene	NS	NS	NA	< 0.0099	NA	NA	NA	< 0.0096	NA	NA
N-Nitroso-di-n-propylamine	NS	NS	NA	< 0.0083	NA	NA	NA	< 0.0081	NA	NA
N-Nitrosodiphenylamine	NS	NS	NA	< 0.02	NA	NA	NA	< 0.02	NA	NA
Pentachlorophenol	2.4	6.7	NA	< 0.058	NA	NA	NA	< 0.057	NA	NA
Phenanthrene	100	100	NA	0.0403 J	NA	NA	NA	< 0.015 J	NA	NA
Phenol	100	100	NA	< 0.036	NA	NA	NA	< 0.035	NA	NA
Pyrene	100	100	NA	< 0.030 0.122 J	NA	NA	NA	< 0.035 < 0.013 J	NA	NA
Total TIC, Semi Volatile	NS	NS	NA	NA	NA	NA	NA	19.75 J	NA	NA
Pesticides	NO	NO	INA.	INA		INA.	INA.	19.755		
4,4'-DDD	2.6	13	NA	0.0035	NA	NA	NA	< 0.00034	NA	NA
4,4'-DDE	1.8	8.9	NA	0.0024	NA	NA	NA	< 0.0004	NA	NA
4,4'-DDT	1.7	7.9	NA	0.0094	NA	NA	NA	< 0.00049	NA	NA
Aldrin	0.019	0.097	NA	< 0.00035	NA	NA	NA	< 0.00034	NA	NA
alpha-BHC	0.097	0.48	NA	< 0.00053	NA	NA	NA	< 0.0005	NA	NA
alpha-Chlordane	0.91	4.2	NA	< 0.00046	NA	NA	NA	< 0.00044	NA	NA
Beta-BHC	0.072	0.36	NA	< 0.00040	NA	NA	NA	< 0.00044	NA	NA
Camphechlor	NS	NS	NA	< 0.0089	NA	NA	NA	< 0.0085	NA	NA
Delta-BHC	100	100	NA	< 0.00041	NA	NA	NA	< 0.00039	NA	NA
Dieldrin	0.039	0.2	NA	< 0.00055	NA	NA	NA	< 0.00052	NA	NA
Endosulfan I	4.8	24	NA	< 0.00033	NA	NA	NA	< 0.00032	NA	NA
Endosulfan II	4.8	24	NA	< 0.00034	NA	NA	NA	< 0.00033	NA	NA
Endosulfan Sulfate	4.8	24	NA	< 0.00040	NA	NA	NA	< 0.00044	NA	NA
Endrin	4.0	11	NA	< 0.00084	NA	NA	NA	< 0.00034	NA	NA
Endrin Aldehyde	NS	NS	NA	< 0.00067	NA	NA	NA	< 0.00054	NA	NA
	NS				NA	NA				
Endrin Ketone gamma-BHC (Lindane)		NS 1.2	NA	< 0.00046 < 0.00032			NA	< 0.00044 < 0.00031	NA	NA
Gamma-Chlordane	0.28	1.3	NA		NA NA	NA NA	NA		NA	NA
	NS 0.42	NS 2.1	NA	< 0.00036			NA	< 0.00034	NA	NA
Heptachlor	0.42	2.1	NA	< 0.00043	NA	NA	NA	< 0.00041	NA	NA
Heptachlor Epoxide Methoxychlor	NS	NS NS	NA	< 0.00035	NA	NA	NA	< 0.00033	NA	NA
,	NS	115	NA	< 0.0005	NA	NA	NA	< 0.00047	NA	NA
PCBs Aroclor 1016	1	1	NA	< 0.0092	NA	NA	NA	< 0.0087	NA	NA
	1	1								
Aroclor 1221	1	1	NA	< 0.021	NA	NA	NA	< 0.02	NA	NA
Aroclor 1232		1	NA	< 0.018	NA	NA	NA	< 0.017	NA	NA
Aroclor 1242		1	NA	< 0.011	NA	NA	NA	< 0.011	NA	NA
Aroclor 1248	1	1	NA	< 0.011	NA	NA	NA	< 0.01	NA	NA
Aroclor 1254	1	1	NA	< 0.016	NA	NA	NA	< 0.016	NA	NA
Aroclor 1260	1	1	NA	< 0.012	NA	NA	NA	< 0.011	NA	NA

Table 1. Summary of Soil Analytical Results

Supplemental Remedial Investigation	Report Operable Unit 3 ,	Ramapo Paint Sludge Site,	Operable Unit 3, Rockland	County, New York
		· · · · · · · · · · · · · · · · · · ·		

	Stan	Standards		Surface Samples						
Sample ID	375-6.8(b)	375-6.8(b)	OU3-SB-09(0-0.5)	OU3-SB-16(0-0.5)	OU3-SB-17(0-0.5)	OU3-SB-09(14.5-15)	OU3-SB-10(14-14.5)	OU3-SB-13(14.5-15)	FB-01192012	TB-01192012
Sample Date	Residential	Restricted	1/19/2012	1/19/2012	1/19/2012	1/19/2012	1/19/2012	1/19/2012	1/19/2012	1/19/2012
Depth Interval		Residential	0 - 0.5	0 - 0.5	0 - 0.5	14.5 - 15	14 - 14.5	14.5 - 15		
Validation Status			Final	Final	Final	Final	Final	Final	Final	Final
Metals	•	•	•							
Aluminum	NS	NS	7470	8290	10500	4690	10700	7880	< 200	NA
Antimony	NS	NS	< 2.1	49.4	< 2.8	< 2	< 3.4	< 2.3	< 6	NA
Arsenic	16	16	3.9	19.4	2.9	2	< 3.4	< 2.3	< 3	NA
Barium	350	400	519	3730	74.9	79.5	44.5	58.2	< 200	NA
Beryllium	14	72	< 0.21	< 0.23	< 0.28	< 0.2	0.37	< 0.23	< 1	NA
Cadmium	2.5	4.3	< 0.53	2.3	< 0.69	< 0.51	< 0.84	< 0.58	< 3	NA
Calcium	NS	NS	1560	2040	6150	1550	3440	2480	< 5000	NA
Chromium	NS	NS	11.1	64.1	8.6	9.9	24.9	13.4	< 10	NA
Cobalt	NS	NS	< 5.3	< 5.8	9.8	< 5.1	< 8.4	< 5.8	< 50	NA
Copper	270	270	11.1	49.1	27.4	6	< 4.2	4.3	< 10	NA
Iron	NS	NS	13600	18300	21700	12500	6480	7310	< 100	NA
Lead	400	400	114	2540	74.2	33.3	5.6	6.8	< 3	NA
Magnesium	NS	NS	1910	2150	5360	1900	1360	1490	< 5000	NA
Manganese	2000	2000	253	364	369	221	63.3	79.8	< 15	NA
Mercury	0.81	0.81	< 0.036	0.072	0.054	< 0.034	< 0.052	< 0.038	< 0.2	NA
Nickel	140	310	9.6	25.9	11.7	8.3	6.8	6.4	< 10	NA
Potassium	NS	NS	< 1100	< 1200	< 1400	1150	< 1700	< 1200	< 10000	NA
Selenium	36	180	< 2.1	< 2.3	< 2.8	< 2	< 3.4	< 2.3	< 10	NA
Silver	36	180	< 0.53	1.3	< 0.69	< 0.51	< 0.84	< 0.58	< 10	NA
Sodium	NS	NS	< 1100	< 1200	< 1400	< 1000	< 1700	< 1200	< 10000	NA
Thallium	NS	NS	< 1.1	< 1.2	< 1.4	< 1	< 1.7	< 1.2	< 2	NA
Vanadium	NS	NS	15.1	19.4	49.6	14	16.5	14.6	< 50	NA
Zinc	2200	10000	47.4	531	72.4	29.8	19.6	20.4	< 20	NA
Other	•									
Cyanide	27	27	NA	< 0.29	NA	NA	NA	< 0.26	NA	NA
Solids, Percent	NS	NS	90	82	71.4	92.3	60.8	86	NA	NA

Results reported in milligrams per kilogram (mg/kg).

Field Blank and Trip Blank reported in micrograms per liter (ug/l).

- NS No standard
- NA Not analyzed
- J Estimated result
- JN Estimated result

Bold Result exceeds 375-6.8(b) NYSDEC Soil Cleanup Objective- Residential Use.

Shade Result exceeds 375-6.8(b) NYSDEC Soil Cleanup Objective- Restricted Residential Use.

Table 2. Summary of Waste Characterization Analytical Results

Supplemental Remedial Investigation Report Operable Unit 3, Ramapo Paint Sludge Site,

Operable Unit 3, Rockland County, New York

Sample ID		375-6.8(b)	375-6.8(b)	OU3-WC-01
Sample Date		Residential	Restricted	1/19/2012
Validation Status	Units		Residential	Final
VOC	<u> </u>			
1,1,1-Trichloroethane	mg/kg	100	100	< 0.00028
1,1,2,2-Tetrachloroethane	mg/kg	NS	NS	< 0.00021
1,1,2-Trichloroethane	mg/kg	NS	NS	< 0.0005
1,1-Dichloroethane	mg/kg	19	26	< 0.00025
1,1-Dichloroethene	mg/kg	100	100	< 0.00071
1,2,4-Trichlorobenzene	mg/kg	NS	NS	< 0.00039
1,2-Dibromo-3-chloropropane	mg/kg	NS	NS	< 0.0017
1,2-Dibromoethane	mg/kg	NS	NS	< 0.00027
1,2-Dichlorobenzene	mg/kg	100	100	< 0.00032
1,2-Dichloroethane	mg/kg	2.3	3.1	< 0.00021
1,2-Dichloropropane	mg/kg	NS	NS	< 0.00031
1,3-Dichlorobenzene	mg/kg	17	49	< 0.00022
1,4-Dichlorobenzene	mg/kg	9.8	13	< 0.0002
2-Butanone (MEK)	mg/kg	100	100	< 0.005
2-Hexanone	mg/kg	NS	NS	< 0.0029
4-Methyl-2-pentanone(MIBK)	mg/kg	NS	NS	< 0.003
Acetone	mg/kg	100	100	< 0.0076
Benzene	mg/kg	2.9	4.8	< 0.00015
Bromodichloromethane	mg/kg	NS	NS	< 0.00026
Bromoform	mg/kg	NS	NS	< 0.00087
Bromomethane	mg/kg	NS	NS	< 0.00045
Carbon disulfide	mg/kg	NS	NS	< 0.00023
Carbon tetrachloride	mg/kg	1.4	2.4	< 0.0004
Chlorobenzene	mg/kg	100	100	< 0.00037
Chloroethane	mg/kg	NS	NS	< 0.00047
Chloroform	mg/kg	10	49	< 0.00056
Chloromethane	mg/kg	NS	NS	< 0.00072
cis-1,2-Dichloroethene	mg/kg	59	100	< 0.00037
cis-1,3-Dichloropropene	mg/kg	NS	NS	< 0.00018
Cyclohexane	mg/kg	NS	NS	< 0.00044
Dibromochloromethane	mg/kg	NS	NS	< 0.00019
Dichlorodifluoromethane	mg/kg	NS	NS	< 0.00037
Ethylbenzene	mg/kg	30	41	< 0.00017
Freon 113	mg/kg	NS	NS	< 0.00083
Isopropylbenzene	mg/kg	NS	NS	< 0.00016
Methyl Acetate	mg/kg	NS	NS	< 0.0026
Methyl Tert Butyl Ether	mg/kg	62	100	< 0.00021
Methylcyclohexane	mg/kg	NS	NS	< 0.00028
Methylene chloride	mg/kg	51	100	< 0.00027
Styrene	mg/kg	NS	NS	< 0.00021
Tetrachloroethene	mg/kg	5.5	19	< 0.00022
Toluene	mg/kg	100	100	< 0.00044
trans-1,2-Dichloroethene	mg/kg	100	100	< 0.00049
trans-1,3-Dichloropropene	mg/kg	NS	NS	< 0.00039
Trichloroethene	mg/kg	10	21	< 0.00029
Trichlorofluoromethane	mg/kg	NS	NS	< 0.00056
Vinyl chloride	mg/kg	0.21	0.9	< 0.00053
Xylene (total)	mg/kg	100	100	< 0.00021
Total TIC, Volatile	mg/kg	NS	NS	0

Table 2. Summary of Waste Characterization Analytical Results

Supplemental Remedial Investigation Report Operable Unit 3, Ramapo Paint Sludge Site,

Operable Unit 3, Rockland County, New York

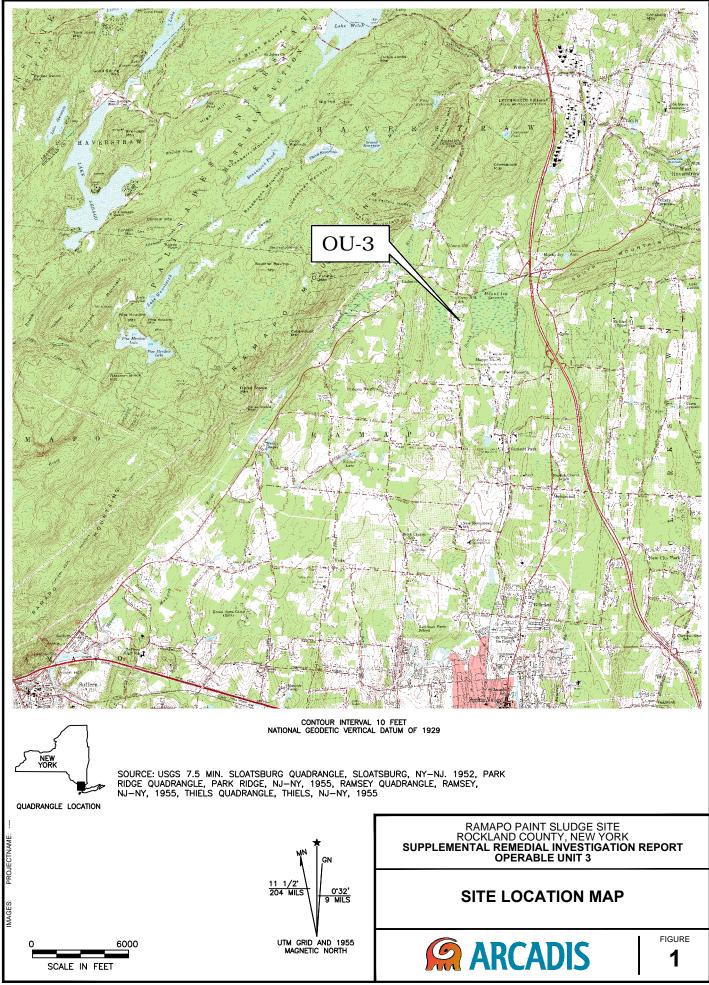
Sample ID		375-6.8(b)	375-6.8(b)	OU3-WC-01
Sample Date		Residential	Restricted	1/19/2012
Validation Status	Units	Residential	Residential	Final
VOC - TCLP	Onits		Residential	i inai
1,1-Dichloroethene	mg/l	100	100	< 0.0014
1,2-Dichloroethane	mg/l	2.3	3.1	< 0.0009
1,4-Dichlorobenzene	mg/l	9.8	13	< 0.0003
2-Butanone (MEK)	mg/l	9.0 100	100	< 0.015
Benzene	mg/l	2.9	4.8	< 0.0011
Carbon tetrachloride	mg/l	1.4	2.4	< 0.00097
Chlorobenzene	mg/l	1.4	100	< 0.00097
Chloroform	mg/l	100	49	< 0.001
Tetrachloroethene	-	5.5	19	< 0.0016
	mg/l	5.5 10	21	
	mg/l			< 0.0011
Vinyl chloride SVOC - TCLP	mg/l	0.21	0.9	< 0.0013
	ma/l	9.8	13	< 0.0036
1,4-Dichlorobenzene 2,4,5-Trichlorophenol	mg/l	9.8 NS	NS	
2,4,5-1 richlorophenol	mg/l	NS NS	NS NS	< 0.016
	mg/l			< 0.013
2,4-Dinitrotoluene	mg/l	NS	NS	< 0.0043 J
2-Methylphenol	mg/l	100 NG	100 NG	< 0.01
3&4-Methylphenol	mg/l	NS	NS	< 0.0093
Hexachlorobenzene	mg/l	0.33	1.2	< 0.0034
Hexachlorobutadiene	mg/l	NS	NS	< 0.0051
Hexachloroethane	mg/l	NS	NS	< 0.0055
Nitrobenzene	mg/l	NS	NS	< 0.0042
Pentachlorophenol	mg/l	2.4	6.7	< 0.014
Pyridine	mg/l	NS	NS	< 0.0032
Pesticide/Herbicide - TCLP		50	400	0.0004.0
2,4,5-TP (Silvex)	mg/l	58	100	< 0.00018
2,4-D	mg/l	NS	NS	< 0.0013
Camphechlor	mg/l	NS	NS	< 0.0015
Chlordane	mg/l	NS	NS	< 0.0024
Endrin	mg/l	2.2	11	< 0.000064
gamma-BHC (Lindane)	mg/l	0.28	1.3	< 0.000041
Heptachlor	mg/l	0.42	2.1	< 0.000084
Heptachlor Epoxide	mg/l	NS	NS	< 0.000038
Methoxychlor	mg/l	NS	NS	< 0.000082
Metals - TCLP		40	40	0.5
Arsenic	mg/l	16	16	< 0.5
Barium	mg/l	350	400	< 1
Cadmium	mg/l	2.5	4.3	< 0.005
Chromium	mg/l	NS	NS	< 0.01
Lead	mg/l	400	400	< 0.5
Mercury	mg/l	0.81	0.81	< 0.0002
Selenium	mg/l	36	180	< 0.5
Silver	mg/l	36	180	< 0.01
Other		NO	NO	774
Corrosivity as pH	SU	NS	NS	7.74 J
Cyanide Reactivity	mg/kg	NS	NS	< 12
Ignitability (Flashpoint)	Deg. F	NS	NS	> 200
Sulfide Reactivity	mg/kg	NS	NS	< 120 J
Solids, Percent	%	NS	NS	86.6

Table 2. Summary of Waste Characterization Analytical Results

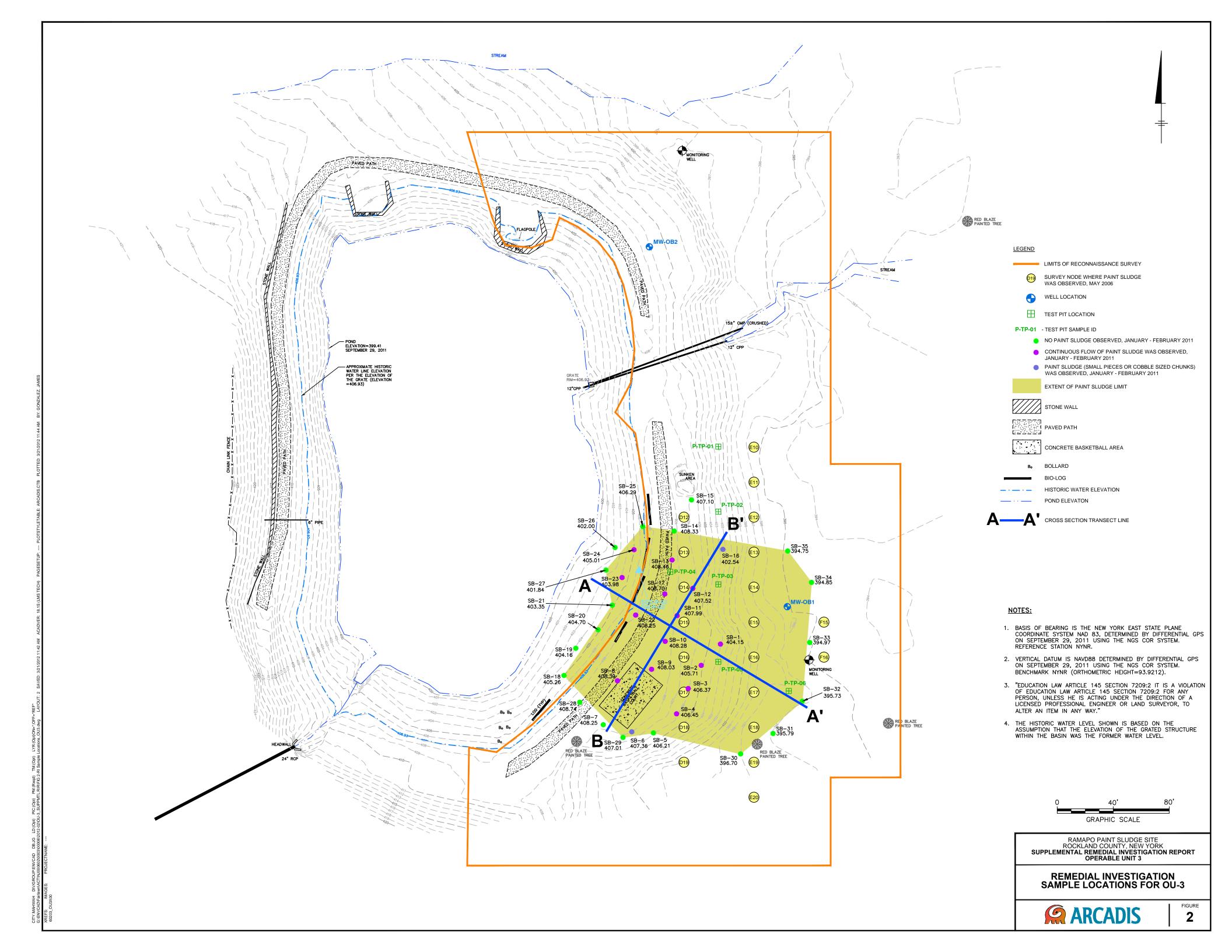
Supplemental Remedial Investigation Report Operable Unit 3, Ramapo Paint Sludge Site,

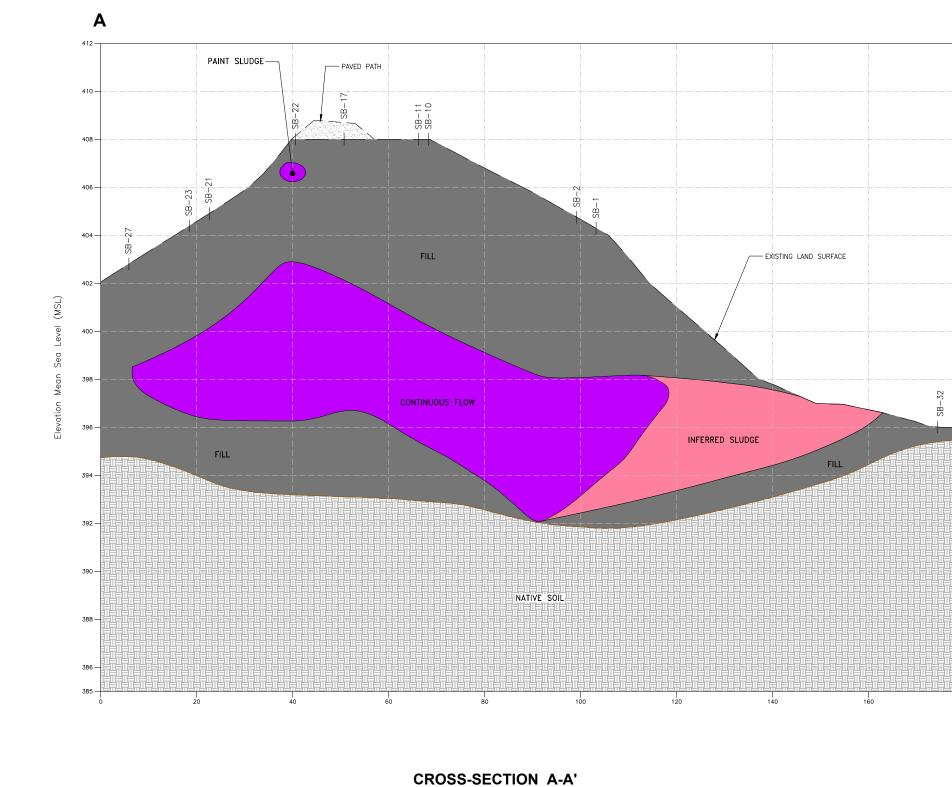
Operable Unit 3, Rockland County, New York

Sample ID		375-6.8(b)	375-6.8(b)	OU3-WC-01
Sample Date		Residential	Restricted	1/19/2012
Validation Status	Units		Residential	Final


Results reported in milligrams per kilogram (mg/kg) unless otherwise noted in table above.

NS No standard

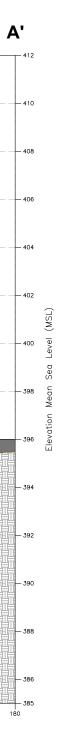

J Estimated result


Bold Result exceeds 375-6.8(b) NYSDEC Soil Cleanup Objective- Residential Use.

Shade Result exceeds 375-6.8(b) NYSDEC Soil Cleanup Objective- RestrictedResidential Use.

JAMES BY: GONZALEZ, 3/21/2012 11:45 AM PLOTTED: ARCADIS.CTB PLOTSTYLETABLE: PAGESETUP: ACADVER: 18.1S (LMS TECH) SAVED: 3/21/2012 11:41 AM PM:(Redd) TM:(Opt) LYR:(Opt)ON=*;OFF=*REF* 'L RIR/FIG 1-Site Location_OU3.dwg LAYOUT: 1 PIC:(Opt) PI LD:(Opt) 2012-02\OU-: DIV/GROUP:ENVCAD DB:JG awn/ACT/NJ000602/0003/00006/2 CITY:MAHWAH **ENVCAD**

0 10' 20' HORIZONTAL GRAPHIC SCALE


0 2'

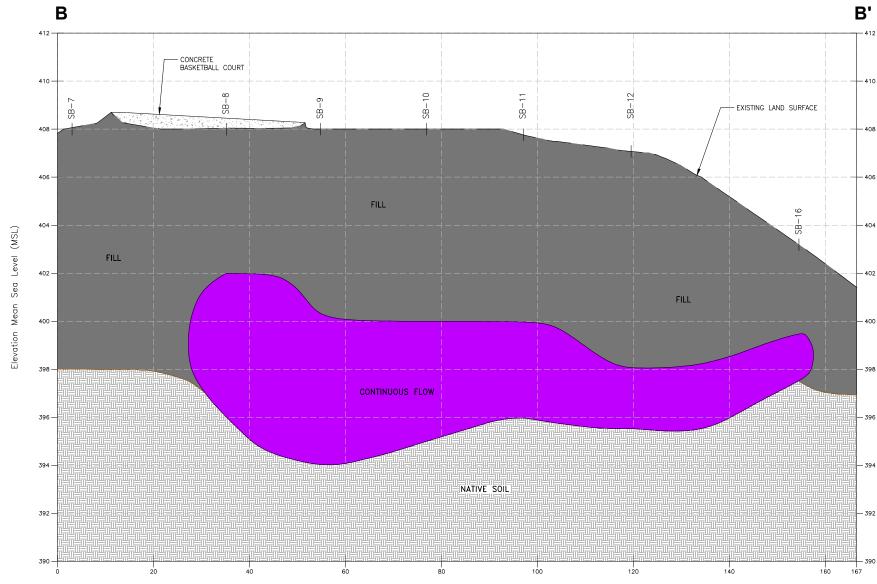
FS: IMAGES: 03_OU3X09ig46865FSRI Cross-Sections_OU3_Page_1;jpg Figure 4&5-SRI Cross-Sections_OU3_Page_2;jpg

CROSS SECTION A-A'

RAMAPO PAINT SLUDGE SITE ROCKLAND COUNTY, NEW YORK SUPPLEMENTAL REMEDIAL INVESTIGATION REPORT OPERABLE UNIT 3

- --- EXISTING LAND SURFACE

PAVED PATH


NATIVE SOIL

INFERRED PAINT SLUDGE/ CONTINUOUS FLOW

PAINT SLUDGE/ CONTINUOUS FLOW

FILL

LEGEND

CROSS-SECTION B-B'

HORIZONTAL GRAPHIC SCALE VERTICAL GRAPHIC SCALE

DB.JG S.BELL LD:(Opt) PIC:(Opt) PM;(Reqd) TM:(Opt) LYR:(Opt)ON=*OFF=*REF* 00006/2012-02/OU-3_SUPPMTLR!RFIG 3-4-Cross Sections.dwg LAYOUT: 4 SAVED: DAD M

。 電話・SRI Cross-Sections_OU3_Page_1.jpg 4&5-SRI Cross-Sections_OU3_Page_2.jpg

CROSS SECTION B-B'

RAMAPO PAINT SLUDGE SITE ROCKLAND COUNTY, NEW YORK SUPPLEMENTAL REMEDIAL INVESTIGATION REPORT OPERABLE UNIT 3

- --- EXISTING LAND SURFACE

- 390

- 398

400

- 404 (MSL)

406

408

410

412

CONCRETE BASKETBALL AREA

NATIVE SOIL

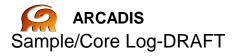
PAINT SLUDGE/ CONTINUOUS FLOW

FILL

LEGEND

Boring/Well	SB-	-01	Project/No.	Ford Ramapo OU		Page	1 of	1				
Site Location	Pomona, N	Y				Drilling Started	1/18/ 10		Drilling Completed		1/18/2012 1045	2
Total Depth	Drilled	15	Feet	Hole Diameter	2	inches			f Sample/ Device	Acetate	e Liner/Macr	ocore
Length and			1000		2			Coning	Device	71001010		00010
of Coring De		5 Feet x 2	? inches						Sampling In	terval	NA	feet
Land-Surfac	e Elev.		feet	x Surveyed		Estimated	ł	Datum				
Drilling Fluid	Used	NA							Drilling Meth	nod	Geoprobe	
Drilling Contractor	Summit							Driller	James	Helper	Roger	
Prepared By	Krista Mast	rocola						Hamm Weight		Hamm Drop	er NA	ins.
Sample Depth (feet below lar From		Core	PID Reading with depth interval (ppm)	Sample/Core De	escripti	on		-		_ `		
0.0	5.0	2.0	0.0	0-0.5 Organics								
0.0	0.0	2.0	0.0	0.5-5.0 Silty-sa	nd, br	own, dry to	moist					
5.0	10.0	4.0	3.4	5.0-6.0 Silty-sa				oist				
			35.4	6.0-8.0 Reddish	n-blue	paint sludg	е					
			29.7	8.0-10.0 Silty-cl	ay, gi	ray, moist						
10.0	15.0	4.0	50.0	10.0-11.0 Silty-	clay, g	gray, moist						
			25.0	11.0-12.0 Redd	lish-bl	ue paint slu	dge					
				12.0-15.0 Silty-	clay, g	gray, moist						
				End boring at 1	5' bel	ow ground s	urface)				

Boring/Well	SB	-02	Project/No.	Ford Ramapo OU-	-3/ NJ00)0602.0003				Page	1 of	1
Site Location	Pomona, N	IY				Drilling Started	1/18/2 104		Drilling Completed		1/18/2012 1100	2
Total Depth	Drilled	15	Feet	Hole Diameter	2	inches			f Sample/ Device	Acetate	e Liner/Macr	rocore
Length and of Coring De		5 Feet x 2				-			Sampling In	terval	NA	feet
Land-Surfac		0100172	feet	x Surveyed		Estimated	1	Datum			10/	_
Drilling Fluid	l Used	NA							Drilling Meth	nod	Geoprobe	
Drilling Contractor	Summit							Driller	James	Helper	Roger	
Prepared By	Krista Mast	trocola						Hamm Weight		Hamm Drop	er NA	ins.
Sample Depth (feet below lar	nd surface)	Core Recovery	PID Reading with depth interval									
From	To	(feet)	(ppm)	Sample/Core Des	scription							
0.0	5.0	2.0	0.0	0-0.5 Organics	d little			iet te v	wat			
	<u> </u>		0.3	0.5-4.0 Silty-sand					vei			
			0.0	4.0-0.0 Onty-San	u, iitie	ciay, gray	, 11015					
5.0	10.0	2.5	0.8	5.0-6.0 Silty-san	d. little	clav. grav	. mois	t to we	et e			
			41.7	6.0-10.0 Reddish)		
			25.4									
			21.7									
			22.8									
10.0	15.0	2.0	4.7	10.0-12.0 Silty-sa	and, so	ome cobble	es, bro	own-gr	ay, wet			
			2.4	12.0-15.0 Silty-cl	lay, gra	ay, moist						
			2.2									
			1.8	End boring at 15	;' below	v ground s	urface					
		<u> </u>										
		<u> </u>										
			ļ									
	ļ		ļ									
	ļ		ļ									
	ļ		ļ									
	<u> </u>	<u> </u>	 	_								


Boring/Well	SB	-03	Project/No.	Ford Ramapo OU-3	3/ NJOC	0602.0003				Page	1 of	1
Site Location	Pomona, N	١Y				Drilling Started	1/18/: 11		Drilling Completed		1/18/20 1130	
Total Depth	Drilled	15	Feet	Hole Diameter	2	inches			f Sample/ Device	Acetat	e Liner/Ma	acrocore
Length and	Diameter					_						
of Coring De		5 Feet x 2	inches						Sampling In	terval	NA	feet
Land-Surfac	e Elev.		feet	x Surveyed		Estimated		Datum				
Drilling Fluid	Used	NA							Drilling Meth	nod	Geoprob	е
Drilling Contractor	Summit							Driller	James	Helper	Roger	
Prepared By	Krista Mas	trocola						Hamm Weight		Hamm Drop	er NA	ins.
Sample Depth (feet below lar	nd surface)		PID Reading with depth interval									
From	To	(feet)	(ppm)	Sample/Core Des								
0.0	5.0	3.5	2.7	0.0-0.5 Organics			little	orgoni	a brown n	agiat		
			2.7	0.5-5.0 Silty-sand	i, som	ie cobbies,	, iittie (organi	cs, brown, n	noist		
			1.4	+								
			1.7	+								
E O	10.0	5.0	1.0	E 0 7 0 Silty 2005	- I:++ -	alov brow	(n m n	iot				
5.0	10.0	5.0	0.0	5.0-7.0 Silty-sand				ist				
			0.2	7.0-10.0 Reddish	eula-i	paint sludg	je					
			4.0 132.0	<u> </u>								
			49.7									
			72.1	-								
			91.2	-								
			26.7	-								
			31.2									
			2.7	+								
10.0	15.0	4.0	28.2	10.0-13.0 Red pa	aint slu	Idae						
10.0	10.0	1.0	55.0	13.0-15.0 Silty-cla			moist					
			10.0		ay, gr	ay, wor to i	Tiolot					
			5.0	End boring at 15'	below	v around s	urface					
			4.2		below	v ground S	unacc					
			7.0	<u> </u>								
			6.0									
			1.4	1								

Boring/Well	SB	-04	Project/No.	Ford Ramapo OU-3/	/ NJ00	0602.0003				Page	1 of	1
Site Location	Pomona, N	IY				Drilling Started	1/18/2 113		Drilling Completed		1/18/20 ² 1200	12
Total Depth	Drilled	15	Feet	Hole Diameter 2	2	inches			f Sample/ Device	Acetate	e Liner/Ma	crocore
Length and	Diameter		•			-						
of Coring De		5 Feet x 2	? inches						Sampling In	terval	NA	feet
Land-Surfac	e Elev.		feet	x Surveyed		Estimated		Datum				
Drilling Fluid	Used	NA							Drilling Meth	nod	Geoprob	e
Drilling Contractor	Summit							Driller	James	Helper	Roger	
Prepared By	Krista Mast	trocola						Hamm Weight		Hamm Drop	er NA	ins.
Sample Depth (feet below lar		Core Recovery	PID Reading with depth interval									
From	То	(feet)	(ppm)	Sample/Core Desc	cription							
0.0	5.0	0.5		0.0-0.5 Organics								
				0.5-5.0 Silty-sand	l, some	e cobbles,	brow	n, moi	st			
				No Recovery due	to obs	struction ir	n shoe	e (i.e. F	Rock)			
5.0	10.0	3.5	5.8	5.0-6.0 Silty-sand	l, little	clay, brow	/n, mo	ist				
		<u> </u>	6.2	6.0-10.0 Bluish-re	ed pair	nt sludge						
	1		27.2	_								
			43.7									
	1		81.5	_								
		<u> </u>	130.0	_								
		ļ	50.7									
10.0	15.0	4.5	2.8	10.0-13.0 Red pai	int slu	dge with d	lebris	(i.e. co	opper wire)			
			14.7	13.0-15.0 Silty-cla	ay, gra	iy, wet to r	noist					
			32.7									
			120.7	End boring at 15	below	ground su	urface					
			28.4									
			9.0									
			7.0									
			7.0									
			5.7									

Boring/Well	SB-	-05	Project/No.	Ford Ramapo OU-3/ I	NJ000602	.0003			Page	1 of	1
Site Location	Pomona, N	Y			Drilli Star	-	/18/2012 1200	Drilling Completed		1/18/201 1245	2
Total Depth	Drilled	15	Feet	Hole Diameter 2	inch	es	Type o Coring	f Sample/ Device	Acetat	e Liner/Mac	crocore
Length and	Diameter										
of Coring De	vice	5 Feet x 2	! inches					Sampling In	terval	NA	feet
Land-Surfac	e Elev.		feet	x Surveyed	Estir	mated	Datum				
Drilling Fluid	Used	NA						Drilling Meth	nod	Geoprobe	1
Drilling Contractor	Summit						Driller	James	Helper	Roger	
Prepared By	Krista Mast	irocola					Hammo Weight		Hamm Drop	er NA	ins.
Sample Depth (feet below lar		Core Recovery	PID Reading with depth interval								
From	То	(feet)	(ppm)	Sample/Core Descrip	ption						
0.0	5.0	1.5	4.7	0.0-0.5 Organics							
		<u> </u>	3.2	0.5-5.0 Silty-sand,	little clay,	, brown,	, moist				
			0.0								
5.0	10.0	1.0	3.2	5.0-10.0 Silty-sand	, some cl	ay, brov	wn to gray	moist			
			6.7								
10.0	15.0	4.0	3.9	10.0-13.0 Silty-clay	/, gray mo	oist					
			3.9	13.0-15.0 Silty-sand	d, brown,	, wet to	moist				
			2.2								
			2.0	End boring at 15' b	elow grou	und surf	face				
			2.9								
			2.0	Π							
			1.0								
			0.2								
				1							
				1							

Boring/Well	SB	-06	Project/No.	Ford Ramapo OU-3/ NJ	000602.0003	}			Page	1 0	of	1
Site Location	Pomona, N	IY			Drilling Started	1/18/ 13		Drilling Completed		1/18/2 141		
Total Depth	Drilled	15	Feet	Hole Diameter 2	inches		Type of Coring	f Sample/ Device	Acetate	e Liner/N	Macro	ocore
Length and	Diameter											
of Coring De		5 Feet x 2	2 inches					Sampling In	terval	NA		feet
Land-Surfac	e Elev.		feet	x Surveyed	Estimated	k	Datum					
Drilling Fluid	Used	NA						Drilling Meth	nod	Geopro	obe	
Drilling Contractor	Summit						Driller	James	Helper	Roger		
Prepared By	Krista Mast	trocola					Hamme Weight		Hamme Drop	er N/	۹	ins.
Sample Depth (feet below lar	nd surface)	-	PID Reading with depth interval									
From	To	(feet)	(ppm)	Sample/Core Descriptio	n							
0.0	5.0	3.0	0.0	0.0-0.5 Organics			• .					
			0.2	0.5-4.5 Silty-sand, so		own, m	noist					
			0.1	4.5-5.0 Red-paint slue	dge							
			0.0									
			0.0									
			0.0									
5.0	10.0	3.0	0.0	5.0-10.0 Silty-sand, s	ome cobble	es, little	e clay, l	prown to gra	ay, mois	st		
			0.1	-								
			0.5									
			0.6	+								
			0.1									
			0.1									
10.0	15.0	4.0	0.0	10.0-12.0 Silty-clay, g								
			2.3	12.0-15.0 Silty-sand,	brown, mois	st						
			1.7	+								
			2.3	End boring at 15' belo	ow ground s	surface	•					
			0.2	+								
			2.4									
			1.7									
			0.0									
			ļ									

Boring/Well	SB	-07	Project/No.	Ford Ramapo OU	J-3/ NJ00	0602.0003				Page	1 of	1
Site Location	Pomona, N	IY				Drilling Started	1/18/2 141		Drilling Completed		1/18/2012 1440	
Total Depth	Drilled	15	Feet	Hole Diameter	2	inches			f Sample/ Device	Acetate	e Liner/Macr	ocore
Length and of Coring De		5 Feet x 2	2 inches	_		_			Sampling In	terval	NA	feet
Land-Surfac			feet	x Surveyed		Estimated	1	Datum				
Drilling Fluid	Used	NA							Drilling Meth	nod	Geoprobe	
Drilling Contractor	Summit							Driller	James	Helper	Roger	
Prepared By	Krista Mast	trocola						Hamm Weight		Hamm Drop	er NA	ins.
Sample Depth (feet below lar	nd surface)		PID Reading with depth interval									
From	То	(feet)	(ppm)	Sample/Core De								
0.0	5.0	3.0	0.0	0.0-0.5 Organic								
			0.6	0.5-5.0 Silty-sar	nd, som	ie clay and	d cobbl	es, br	own to gray	, moist		
			0.4									
			0.0									
			0.1									
5.0	10.0	2.0	1.0			debrie (i.e.		l abiaa				
5.0	10.0	2.0	0.0	5.0-10.0 Silty-cl	ay with	debris (i.e	e. wood	a chips	s), gray, moi	St to we	et	
			1.3									
			0.3									
10.0	15.0	0.0	0.0	No Recovery								
10.0	10.0	0.0										
				End boring at 1	5' belov	v around s	urface					
				Ŭ		0						

Boring/Well	SB	-08	Project/No.	Ford Ramapo OU-3/	NJ000602.00	03			Page	1 of	1
Site Location	Pomona, N	IY			Drilling Started		/2012 140	Drilling Completed		1/18/20 ² 1500	12
Total Depth	Drilled	15	Feet	Hole Diameter 2	inches			of Sample/ Device	Acetat	e Liner/Ma	crocore
Length and	Diameter		•								
of Coring De		5 Feet x 2	2 inches				_	Sampling In	iterval	NA	feet
Land-Surfac	e Elev.		feet	x Surveyed	Estimat	ed	Datum				
Drilling Fluid	I Used	NA					_	Drilling Meth	nod	Geoprob	е
Drilling Contractor	Summit						Driller	James	Helper	Roger	
Prepared By	Krista Mast	trocola					Hamm Weight		Hamm Drop	er NA	ins.
Sample Depth (feet below lar	nd surface)		PID Reading with depth interval	Sample/Care Deseri	stics						
From	To	(feet)	(ppm)	Sample/Core Descri	puon						
0.0	5.0	3.5	0.0	0.0-0.5 Organics 0.5-4.0 Silty-sand,	some cobble	es brow	vn moi	st			
			0.2	4.0-5.0 Silty-clay w					t		
		+	0.4			0	01120/	<u>, gray,</u>			
	<u> </u>	1	1.6	1							
			2.0								
			1.4								
5.0	10.0	2.0	12.2	5.0-6.0 Silty-clay, g	gray, <u>moist</u>						
			15.6	6.0-10.0 Red-paint		organic	s				
			24.9								
			7.7								
10.0	15.0	2.0	1.0	10.0-12.0 Red-pair	nt sludge wit	h debris	s (i.e. m	netal chips)			
			3.2	12.0-15.0 Silty-clay	/, gray to brc	wn, we	t to mo	ist			
			0.2								
			0.0	End boring at 15' b	elow ground	l surface	e				
	ļ										
	 										

Boring/Well	SB	-09	Project/No.	Ford Ramapo OU-3/ NJ	000602.0003			Page	1 of	1
Site Location	Pomona, N	IY				8/2012 1500	Drilling Completed		1/18/2012 1520	2
Total Depth	Drilled	15	Feet	Hole Diameter 2	inches	Type of Coring	f Sample/ Device	Acetate	e Liner/Mac	rocore
Length and	Diameter									
of Coring De	evice	5 Feet x 2	inches			_	Sampling In	terval	NA	feet
Land-Surfac	e Elev.		feet	x Surveyed	Estimated	Datum				
Drilling Fluid	Used	NA					Drilling Meth	nod	Geoprobe	
Drilling Contractor	Summit					Driller	James	Helper	Roger	
Prepared By	Krista Mast	trocola				Hamme Weight		Hamm Drop	er NA	ins.
Sample Depth (feet below lar	nd surface)		PID Reading with depth interval	Querra la /Querra Desa statistica						
From	To	(feet)	(ppm)	Sample/Core Descriptio	211					
0.0	5.0	3.0	0.2	0.0-0.5 Organics			- :- 1			
			1.4	0.5-5.0 Silty-sand, littl	ie clay, brown to	o gray, m	OIST			
			0.6							
			1.9							
			0.2							
5.0	40.0	4.0	2.1							
5.0	10.0	4.0	0.3	5.0-8.0 Silty-sand, littl		DIST				
			0.9	8.0-10.0 Reddish-blue	e paint sludge					
			0.9							
			2.5							
			2.2							
			30.5							
			26.6							
10.0	45.0	5.0	28.0							
10.0	15.0	5.0	101.0	10.0-14.0 Reddish-blu			4			
			223.0	14.0-15.0 Silty-sand,	some clay, gray	, moist to	o wet			
			152.0	Find having at 45 hale						
			380.0	End boring at 15' belo						
			85.5	Sample collected at C				neist	ludes	
			65.4	Sample collected at C	JU3-SB-09 (14.5	5-15.0) a	t U.5 Delow	paint s	iuage	
			8.8							
			3.8							
	1		7.4							

Boring/Well	SB-	-10	Project/No.	Ford Ramapo OL	J-3/ NJ00	0602.0003				Page	1 of	1
Site Location	Pomona, N	Y				Drilling Started	1/18/2 152		Drilling Completed		1/18/2012 1540	
Total Depth	Drilled	15	Feet	Hole Diameter	2	inches			f Sample/ Device	Acetate	e Liner/Macr	ocore
Length and of Coring De		5 Feet x 2	inches	_		_			Sampling In	terval	NA	feet
Land-Surfac	e Elev.		feet	x Surveyed		Estimated	ł	Datum				
Drilling Fluid	Used	NA							Drilling Meth	nod	Geoprobe	
Drilling Contractor	Summit							Driller	James	Helper	Roger	
Prepared By	Krista Mast	rocola						Hamm Weight		Hamm Drop	er NA	ins.
Sample Depth (feet below lar		Core Recovery	PID Reading with depth interval									
From	То	(feet)	(ppm)	Sample/Core De								
0.0	5.0	4.0		0.0-0.5 Organic								
				0.5-5.0 Silty-sa					/, moist			
5.0	10.0	3.0		5.0-8.0 Silty-sa				ist				
				8.0-10.0 Reddis								
10.0	15.0	4.0		10.0-13.0 Redd								
				13.0-15.0 Silty-	sand, so	ome clay,	gray to	brow	n, moist			
				End boring at 1	5' below	v ground s	urface					
				Sample collecte	ed at OL	J3-SB-10	(14.0-1	4.5) a	t 1' below p	aint slu	dge	

Boring/Well	SB	-11	Project/No.	Ford Ramapo OU-	-3/ NJ0	00602.0003	3			Page	1 of	1
Site Location	Pomona, N	1Y				Drilling Started		2012 40	Drilling Completed		1/18/201 1600	2
Total Depth	Drilled	15	Feet	Hole Diameter	2	inches			f Sample/ Device	Acetate	e Liner/Ma	crocore
Length and								comig	201100	riootati		
of Coring De		5 Feet x 2	2 inches						Sampling In	iterval	NA	feet
Land-Surfac	e Elev.		feet	x Surveyed		Estimated	d	Datum				
Drilling Fluid	J Used	NA							Drilling Meth	nod	Geoprobe	Э
Drilling Contractor	Summit							Driller	James	Helper	Roger	
Prepared By	Krista Mas	trocola						Hamme Weight		Hammo Drop	er NA	ins.
Sample Depth (feet below lar From		Core Recovery (feet)	PID Reading with depth interval	Sample/Core Des	ecription	`						
0.0	5.0	3.0	(ppm) 0.4	0.0-0.5 Organics		<u> </u>						
0.0	0.0	3.0	0.4	0.5-5.0 Silty-san		- cobbles	brown	moist				
	<u> </u>	1	0.5		u, nuc	, 0000100,	010001	, 110101				
	<u> </u>	1	0.9									
	<u> </u>		0.3	1								
	1	1	0.5									
5.0	10.0	3.5	0.2	5.0-8.0 Silty-san	id, son	ne clay, br	own, m	noist				
			2.3	8.0-10.0 Reddish								
			8.7			·	<u> </u>					
			27.2									
			288.0									
			48.7									
			32.2									
10.0	15.0	3.5	0.5	10.0-12.0 Red pa	aint sl	udge						_
			0.5	12.0-15.0 Silty-c	lay, br	rown to gra	ay, moi	st				
			280.0									
			68.1	End boring at 15	j' belov	w ground s	surface)				
			57.2									
			7.2									
			5.6									
	Γ											

Boring/Well	SB	-12	Project/No.	Ford Ramapo OU-	-3/ NJ00	00602.0003	3			Page	1 of	1
Site Location	Pomona, N	IY				Drilling Started	1/18/2 160		Drilling Completed		1/18/201: 1615	2
Total Depth	Drilled	12	Feet	Hole Diameter	2	inches			f Sample/ Device	Acetate	e Liner/Mac	crocore
Length and						-		_				
of Coring De		5 Feet x 2	inches						Sampling In	terval	NA	feet
Land-Surfac	e Elev.		feet	x Surveyed		Estimated	l b	Datum				
Drilling Fluid	Used	NA							Drilling Meth	nod	Geoprobe	
Drilling Contractor	Summit						I	Driller	James	Helper	Roger	
Prepared By	Krista Mast	trocola						Hamm Weight		Hamm Drop	er NA	ins.
Sample Depth (feet below lar From		Core Recovery (feet)	PID Reading with depth interval (ppm)	Sample/Core De	scription					-		_
0.0	5.0	2.0	0.7	0.0-0.5 Organics								
0.0	0.0	2.0	2.1	0.5-5.0 Silty-san		ne clav. br	own. m	oist				
			2.5		-,		- ,					
			2.4									
5.0	10.0	2.5	0.5	5.0-8.0 Silty-san	nd, som	ne clay, br	own, m	oist to	wet			
			1.6	8.0-9.5 Silty-clay	y, gray,	, wet						
			4.4	9.5-10.0 Red-pa	aint sluc	dge						
			7.6									
10.0	12.0	15.0	2.7	10.0-11.0 Silty-c	clay, gra	ay, wet						
			2.9	11.0-12.0 Red-p	aint slu	udge						
			2.5									
				Refusal at 12' be	elow gr	round surf	ace					
		1		1								

Boring/Well	SB	3-13	Project/No.	Ford Ramapo OU-3	3/ NJ00	00602.0003					1 of		1
Site Location	Pomona, N	1Y				Drilling Started	1/19/2 09				1/19/20 0940		
Total Depth	Drilled	15	Feet	Hole Diameter	2	inches			f Sample/ Device	Acotat	e Liner/Ma	acrocore	0
		15	- reet		2			Conng	Device	Acelal			÷
Length and of Coring De		5 Feet x 2	5 Feet x 2 inches Sampling In						Sampling In	terval	NA	feet	t
Land-Surfac	e Elev.		feet	x Surveyed	Γ	Estimated	ł	Datum					
Drilling Fluid	Used	NA Drilling					Drilling Meth	nod	Geoprob	e			
Drilling Contractor	Summit							Driller	James	Helper	Roger		
Prepared By	Krista Mas	trocola						Hamm Weight		Hamm Drop	er NA	ins.	
Sample Depth (feet below lar From		Core Recovery (feet)	PID Reading with depth interval	Sample/Core Des	variation								
			(ppm)										
0.0	5.0	2.5	2.0 2.3	0.0-0.5 Organics 0.5-5.0 Silty-sand				clav h	rown moist				
	<u> </u>		2.5	0.0-0.0 Onty-sand	, 30m		, inde (olay, o	iown, moist				
	<u> </u>		2.6										
			2.7										
5.0	10.0	4.0	3.0	5.0-9.0 Silty-sand	d <u>, som</u>	ne cobbles	s, little (clay, b	ro <u>wn, moist</u>				
			3.9	9.0-10.0 Silty-cla	y, little	e cobbles,	gray, r	noist t	o wet				
			4.2										
			3.5										
			3.3										
			3.4										
			3.6										
			3.5										
10.0	15.0	3.0	6.9	10.0-12.0 Silty-cl	ay, litt	le cobbles	s, gray,	moist	to wet				
			3.2	12.0-14.0 Reddis	sh-blue	e paint slu	dge						
			29.6	14.0-15.0 Silty-cl	ay, gra	ay, moist							
			263.0										
			79.0	End boring at 15	' belov	v ground s	surface						
			9.6	Sample collected	l at Ol	J3-SB-13	(14.5-1	15.0) a	t 0.75' belov	w paint	sludge		

Boring/Well	SB-	-14	Project/No.	Ford Ramapo Ol	J-3/ NJ0	000602.0003					1 of	1
Site Location	Pomona, N	Y				Drilling Started	1/19/2 094		Drilling Completed		1/19/201 1000	2
Total Depth	Drilled	15	Feet	Hole Diameter	2	inches			f Sample/ Device	Acetate	Liner/Mac	crocore
Length and	Diameter											
of Coring De	evice	5 Feet x 2	inches						Sampling In	terval	NA	feet
Land-Surfac	e Elev.		feet	x Surveyed		Estimated	b	Datum				
Drilling Fluic	Used	NA							Drilling Meth	nod	Geoprobe	1
Drilling Contractor	Summit							Driller	James	Helper	Roger	
Prepared By	Krista Mast	rocola						Hamm Weight		Hamme Drop	er NA	ins.
Sample Depth (feet below lar From		Core Recovery (feet)	PID Reading with depth interval (ppm)	Sample/Core D	escription							
0.0	5.0	2.5	5.6	0.0-0.5 Organic								
0.0	0.0	2.0	3.9	0.5-4.5 Silty-sa		ne cobbles	brow	n moi	st			
			6.2	4.5-5.0 Silty-sa								
			4.5			<i>o</i> o, g,	,,					
			5.6									
5.0	10.0	3.0	4.1	5.0-10.0 Silty-s	and, lit	tle clay, gra	ay, moi	st				
			4.0	,	,	<u>,,,</u>						
			4.3									
			5.1									
			4.6									
			4.8									
10.0	15.0	4.0	3.5	10.0-15.0 Silty-	sand, l	ittle clay, g	ray, we	et to m	oist			
			3.5									
			3.7	End boring at 1	5' belo	w ground s	surface					
			1.5									
			2.7									
			3.5									
			2.7									
			2.7									

Boring/Well	SB	-15	Project/No.	Ford Ramapo OU-	-3/ NJ00	0602.0003			Page	1 of	1	
Site Location	Pomona, N	١Y				Drilling Started	1/19/2 100		Drilling Completed		1/19/2012 1010	2
Total Depth	Drilled	15	Feet	Hole Diameter	2	inches			f Sample/ Device	Acetate	e Liner/Macr	ocore
Length and of Coring De		5 Feet x 2	2 inches			-			Sampling In	terval	NA	feet
Land-Surfac			feet	x Surveyed		Estimated	I	Datum				
Drilling Fluid		NA	-			-			Drilling Meth	nod	Geoprobe	
Drilling Contractor	Summit							Driller	James	Helper		
Prepared By	Krista Mas	trocola						Hamm Weight	er	Hamm Drop		ins.
Sample Depth (feet below lar From		Core Recovery (feet)	PID Reading with depth interval	Sample/Core De:	oprintion							
0.0	5.0	4.0	(ppm) 1.8									
0.0	5.0	4.0	3.3	0.0-0.5 Organics 0.5-5.0 Silty-san		e cobbles	brow	n. moi:	st			
			2.9		.,		,	.,				
			3.8									
			4.1									
			5.0									
			4.1									
			3.6									
5.0	10.0	3.0	1.9	5.0-10.0 Silty-sa	nd, littl	e to some	clay, t	orown	to gray, moi	st to we	et	
			3.1									
			3.6									
			2.6									
			3.2									
			3.0									
10.0	15.0	4.5	2.7	10.0-15.0 Silty-c	lay, gra	ay to brow	n, wet	to moi	st			
			3.5									
			4.0	End boring at 15	5' belov	v ground s	urface					
			4.1									
			4.2									
			4.3									
			4.0									
			3.6									
			4.1									

Boring/Well	SB-	-16	Project/No.	Ford Ramapo OU-3/ N	J000602.000	000602.0003 F				1 of	1
Site Location	Pomona, N	ΙY			Drilling Started		2012 10	Drilling Completed		1/19/201 1050	2
Total Depth	Drilled	15	Feet	Hole Diameter 2	inches		Type of Coring	f Sample/ Device	Acetate Liner/Macrocore		
Length and	Diameter		•								
of Coring De		5 Feet x 2	2 inches					Sampling In	terval	NA	feet
Land-Surfac	e Elev.		feet	x Surveyed	Estimate	d	Datum				
Drilling Fluid	Used	NA						Drilling Meth	thod Geoprobe		
Drilling Contractor	Summit						Driller	James	Helper	Roger	
Prepared By	Krista Mast	rocola					Hamme Weight		Hamme Drop	er NA	ins.
Sample Depth (feet below lar		Core Recovery	PID Reading with depth interval								
From	То	(feet)	(ppm)	Sample/Core Descript	ion						
0.0	5.0	2.5	2.8	0.0-0.5 Organics							
		 	2.8	0.5-3.0 Silty-sand, se	ome cobbles	s, brow	n, mois	st			
			29.2	3.0-4.0 Red paint slu	udge with de	ebris (i.	e foam	cushion)			
		<u> </u>	2.1	4.0-5.0 Silty-clay, gra	ay, moist to	wet					
			2.0	<u> </u>							
5.0	10.0	1.0	3.9	5.0-10.0 Silty-clay, g	ıray, wet to r	moist					
			4.8								
10.0	15.0	4.0	5.0	10.0-13.0 Silty-clay,	gray, moist						
			2.2	13.0-15.0 Silty-sand	, some clay,	brown	, moist				
			2.3								
			3.3	End boring at 15' be	low ground	surface					
			1.9	Sample collected at	OU3-SB-16	(0.0-0.	.5)				
		[3.6	<u> </u>							
			3.0								
			4.0								

Boring/Well	SB	-17	Project/No.	Ford Ramapo OU-	3/ NJ00	000602.0003					1 of	1
Site Location	Pomona, N	IY				Drilling Started	1/19/2 105		Drilling Completed		1/19/201 1105	2
Total Depth	Drilled	12	Feet	Hole Diameter	2	inches			f Sample/ Device	Acetate	e Liner/Ma	crocore
Length and						-						
of Coring De		5 Feet x 2	? inches						Sampling In	terval	NA	feet
Land-Surfac	e Elev.		feet	x Surveyed		Estimated	b	Datum				
Drilling Fluid	Used	NA							Drilling Meth	nod	Geoprobe	e
Drilling Contractor	Summit							Driller	James	Helper	Roger	
Prepared By	Krista Mast	trocola						Hamm Weight		Hamm Drop	er NA	ins.
Sample Depth (feet below lar From		Core Recovery (feet)	PID Reading with depth interval (ppm)	Sample/Core Des	scription							
0.0	5.0	4.0	2.0	0.0-0.5 Organics								
			1.8	0.5-5.0 Silty-sand		ne clav. litt	le cobb	oles. b	rown to grav	/. moist		
			1.9		,			,				
			3.1									
			2.5									
			4.0									
			3.9									
			3.2									
5.0	10.0	3.0	3.9	5.0-9.0 Silty-sand	d, som	ne clay, litt	le cobb	oles, g	ray, moist			
			4.1	9.0-10.0 Silty-cla								
			4.2									
			4.1									
			4.2									
			24.3									
10.0	15.0	2.0	45.9	10.0-11.0 Silty-cl	lay, gra	ay, wet to	moist					
			144.0	11.0-12.0 Red pa	aint slu	udge						
			45.2									
			50.0	Refusal at 12' be	elow gr	ound surf	ace.					
				Sample collected	d at OL	J3-SB-17	(0.0-0.	5)				

Boring/Well	SB	-18	Project/No. Ford Ramapo OU-3/ NJ000602.0003							Page	1 of	1
Site Location	Pomona, N	Y				Drilling Started	1/19/2 134		Drilling Completed		1/19/201 1400	2
Total Depth	Drilled	15	Feet	Hole Diameter	2	inches			f Sample/ Device	Acetate	e Liner/Ma	crocore
Length and												
of Coring De	evice	5 Feet x 2	2 inches			_			Sampling In	terval	NA	feet
Land-Surfac	e Elev.		feet	x Surveyed		Estimated	b	Datum				
Drilling Fluic	Used	NA							Drilling Meth	nod	Geoprobe	9
Drilling Contractor	Summit							Driller	James	Helper	Roger	
Prepared By	Krista Mast	rocola						Hamme Weight		Hammo Drop	er NA	ins.
Sample Depth (feet below lar From		Core Recovery (feet)	PID Reading with depth interval (ppm)	Sample/Core De	escriptior	1				-		
0.0	5.0	3.0	1.7	0.0-0.5 Organic								
0.0	0.0	0.0	2.7	0.5-3.0 Silty-sar		wn, wet						
			2.9	3.0-5.0 Silty-sa	nd. sor	ne clav. br	own. m	oist				
			2.9			,						
			3.4									
			3.2									
5.0	10.0	0.0		5.0-10.0 No Re	covery	; Silty-clay	, brown	i to gra	iy, wet			
10.0	15.0	5.0	4.1	10.0-15.0 Silty-								
			4.7									
			4.7	End boring at 1	5' belo	w ground s	surface					
			4.7									
			5.0									
			4.5									
			3.8									
			4.1									
			4.6									
				1								

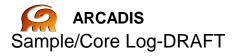
Boring/Well	SB	SB-19 Project/No. Ford Ramapo OU-3/ NJ000602.0003							Page	<u>1</u> c	of	1
Site Location	Pomona, N	Y			Drilling Started	/2012 00	Drilling Completed		1/19/2 144			
Total Depth	Drilled	4	Feet	Hole Diameter 2	inches		Type o Coring	f Sample/ Device	Acetate	e Liner/N	/lacro	core
Length and of Coring De		5 Feet x 2	, 2 inches					Sampling In	terval	NA		feet
Land-Surfac		0100172	feet	x Surveyed	Estimated	ł	Datum	Camping in	lorvar			1001
Drilling Fluid		NA		<u></u>		~	Datam	Drilling Meth	nod	Geopro	obe	
Drilling Contractor	Summit						Driller	James	Helper			
Prepared By	Krista Mast	rocola					Hamme Weight	er	Hamme Drop		Ą	ins.
Sample Depth (feet below lar			PID Reading with depth interval				-					
From	То	(feet)	(ppm)	Sample/Core Descriptio	on							
0.0	4.0	3.0	0.2	0.0-0.5 Organics								
			1.4	0.5-2.0 Silty-sand, bro								
			1.3	2.0-4.0 Silty-sand,sor	ne clay, gra	ay, moi	ist					
			2.2		nound ourfo							
			1.7	Refusal at 4' below g	round surra	ce						
			1.8									

Boring/Well	ell SB-20 Project/No. Ford Ramapo OU-3/ NJ000602.0003									Page	1 of	1
Site Location	Pomona, N	nona, NY Drilling 1/19/2012 Started 1445							Drilling Completed		1/19/2012 1515	
Total Depth	Drilled	15	Feet	Hole Diameter	2	inches			f Sample/ Device	Acetate	Liner/Macr	ocore
Length and			•			_		-				
of Coring De		5 Feet x 2	2 inches						Sampling In	terval	NA	feet
Land-Surfac	e Elev.		feet	x Surveyed	[Estimated	ł	Datum				
Drilling Fluid	Used	NA							Drilling Meth	nod	Geoprobe	
Drilling Contractor	Summit							Driller	James	Helper	Roger	
Prepared By	Krista Mast	trocola						Hamm Weight		Hamme Drop	er NA	ins.
Sample Depth (feet below lar From		Core Recovery (feet)	PID Reading with depth interval (ppm)	Sample/Core Do	occription							
0.0	5.0	2.0	2.0	0.0-0.5 Organic								
0.0	5.0	2.0	2.0	0.5-5.0 Silty-sa		ne cobbles	, little d	clay, b	rown to gray	/, moist		
			2.4		· ·				- · ·			
			2.4									
5.0	10.0	3.0	2.3	5.0-7.0 Silty-sa	nd, sor	ne cobbles	s, little o	clay, g	ray, moist			
			2.7	7.0-10. Silty-cla	iy, brov	vn, wet						
			2.7									
			2.3									
			2.2									
			1.6									
10.0	15.0	5.0	1.4	10.0-15.0 Sitly-	clay, bı	rown, wet t	o mois	t				
			1.7									
			1.2	End boring at 1	5.0' be	low ground	d surfac	ce				
			1.5									
			1.0									
			1.3									
			1.5									
			1.5									
			1.2									
			1.0									

Boring/Well	/Well SB-21 Project/No. Ford Ramapo OU-3/ NJ000602.0003								Page	1 of	1	
Site Location	Pomona, N	IY				Drilling Started	1/19/2 151		Drilling Completed		1/19/2012 1530	2
Total Depth	Drilled	10	Feet	Hole Diameter	2	inches			f Sample/ Device	Acetate	e Liner/Mac	rocore
Length and												
of Coring De	evice	5 Feet x 2	? inches						Sampling In	terval	NA	feet
Land-Surfac	e Elev.		feet	x Surveyed		Estimated	d	Datum				
Drilling Fluid	Used	NA							Drilling Meth	nod	Geoprobe	
Drilling Contractor	Summit							Driller	James	Helper	Roger	
Prepared By	Krista Mast	trocola						Hamm Weight		Hamm Drop	er NA	ins.
Sample Depth (feet below lar From		Core Recovery (feet)	PID Reading with depth interval	Sample/Core De	scription							
			(ppm)									
0.0	5.0	2.0	3.9 1.3	0.0-0.5 Organic 0.5-5.0 Silty-sar		clay, broy	wh to a	rav m	oist to wet t	o moist		
			2.1	0.5-5.0 Silly-Sal		Ciay, DIO	wir to g	iay, ili				
			2.1									
5.0	10.0	4.0	2.3	5 0 8 0 Silty cor	nd little	clay gray	, mois	+				
5.0	10.0	4.0	2.4	5.0-8.0 Silty-sar								
			2.0	8.0-10.0 Silty-cl	ay, yra		1, 110151					
				End boring at 10	0' belov	v around s	surface					
						- gi e airia e						

Boring/Well	SB	-22	Project/No.	Ford Ramapo OU-3/ NJ	000602.0003		Page	1	of	1		
Site Location	Pomona, N	IY			Drilling Started	1/19/ 15	2012 30	Drilling Completed			9/2012 545	
Total Depth	Drilled	12	Feet	Hole Diameter 2	inches		Type of Coring	f Sample/ Device	Acetate	e Linei	r/Macro	ocore
Length and of Coring De		5 Feet x 2	inches					Sampling In	terval	NA		feet
Land-Surfac			feet	x Surveyed	Estimated	d	Datum	eanipinig in				_
Drilling Fluid	l Used	NA						Drilling Meth		Geop	orobe	
Drilling Contractor	Summit						Driller	James	Helper	Roge	er	
Prepared By	Krista Mast	trocola					Hamme Weight		Hamme Drop		NA	ins.
Sample Depth (feet below lar		Core Recovery	PID Reading with depth interval									
From	То	(feet)	(ppm)	Sample/Core Descriptio	on							
0.0	5.0	3.0	0.6	0.0-0.5 Organics	• .							
			4.8	0.5-1.0 Silty-sand, bro								
	<u> </u>	<u> </u>	2.7	1.0-1.5 Reddish-blue			:01					
		<u> </u>	2.4 2.5	1.5-5.0 Silty-sand, so								
			2.5									
5.0	10.0	3.0	45.0	5.0-10.0 Reddish-blue	e paint slud	ae						
0.0	1010	0.0	219.0			90						
			230.0									
			380.0									
			113.0									
			90.7									
10.0	12.0	3.0		10.0-12.0 Reddish-blu	ue paint slu	dge						
	<u> </u>	<u></u>										
				Refusal at 12' below g	ground surf	ace						
	<u> </u>											
	1											
				+								
	1	<u> </u>										
	1											
				1								

Boring/Well	SB	B-23 Project/No. Ford Ramapo OU-3/ NJ000602.0003								Page	1 of	1
Site Location	Pomona, N	Y				Drilling Started	2/2/2 094		Drilling Completed		2/2/2012 1000	2
Total Depth	Drilled	15	Feet	Hole Diameter	2	inches			f Sample/ Device	Acetate	Liner/Mac	crocore
Length and	Diameter			_		_						
of Coring De	evice	5 Feet x 2	inches						Sampling In	terval	NA	feet
Land-Surfac	e Elev.		feet	x Surveyed		Estimated	1	Datum				
Drilling Fluic	Used	NA							Drilling Meth	nod	Geoprobe	
Drilling Contractor	Summit						I	Driller	Ronnie	Helper	Roger	
Prepared							I	Hamme	er	Hamme	er	
Ву	Krista Mast	rocola						Weight	NA	Drop	NA	ins.
Sample Depth (feet below lar From		Core Recovery (feet)	PID Reading with depth interval	Sample/Core D								
0.0		2.5	(ppm) 0.2			1						
0.0	5.0	2.5	1.4	0.0-0.5 Organic 0.5-3.0 Sitly-sa		e cobbles, l	brown,	moist				
			2.7	3.0-5.0 Reddisl								
			2.5			paint ordag	0					
			61.2									
5.0	10.0	3.5	4.6	5.0-7.0 Silty-sa	nd, sor	ne clay, gra	ay, moi	st to w	vet			
			9.1	7.0-10.0 Silty-c								
			2.2									
			2.9									
			2.3									
			1.3									
10.0	15.0	4.0	1.3	10.0-15.0 Silty-	clay, g	ray to brow	n, mois	st to w	et to moist			
			0.6									
			2.7	End boring at 1	5' belo	w ground s	urface					
			4.2									
			3.7									
			1.6									
			2.8									
			1.2									


Boring/Well	SB	-24	Project/No.	Ford Ramapo OU	J-3/ NJ0	00602.0003				Page	1 of	1
Site Location	Pomona, N	IY				Drilling Started	2/2/20 100		Drilling Completed		2/2/2012 1015	2
Total Depth	Drilled	15	Feet	Hole Diameter	2	inches			f Sample/ Device	Acetate	e Liner/Mac	rocore
Length and	Diameter											
of Coring De	evice	5 Feet x 2	inches						Sampling In	terval	NA	feet
Land-Surfac	e Elev.		feet	x Surveyed		Estimated	3 [Datum				
Drilling Fluic	Used	NA							Drilling Meth	nod	Geoprobe	
Drilling Contractor	Summit						[Driller	Ronnie	Helper	Roger	
Prepared By	Krista Mas	trocola						-lamme Neight		Hamm Drop	er NA	ins.
Sample Depth (feet below lar From		Core Recovery (feet)	PID Reading with depth interval	Sample/Core De	accription							
			(ppm)			1						
0.0	5.0	2.0	1.7 1.7	0.0-0.5 Organic 0.5-5.0 Silty-sar		a clay, brow	vn moi	et				
			1.5	0.0-0.0 Onty-3di	ild, ittle	e clay, biov	vii, iii0i	51				
			1.2									
5.0	10.0	3.0	1.7	5.0-7.0 Silty-sar	nd, little	e clay, brov	vn, moi	st				
			6.3	7.0-8.0 Reddish					(i.e. concre	te)		
			16.9	8.0-10.0 Silty-sa					Υ.	,		
			58.3		-							
			1.4									
			1.2									
10.0	15.0	4.0	1.2	10.0-11.0 Silty-s	sand, li	ttle clay, bi	rown, m	noist				
			1.6	11.0-15.0 Silty-0	clay, gr	ay to brow	n, wet t	to moi	st			
			2.7									
			1.8	End boring at 1	5' belov	w ground s	urface					
			1.3									
			3.6									
			1.2									
			1.8									
				ļ								
				ļ								

Boring/Well	SB	-25	Project/No.	Ford Ramapo OU-	-3/ NJ00	0602.0003			Page	1 of	1	
Site Location	Pomona, N	IY				Drilling Started	2/2/201 1015		Drilling Completed		2/2/201 1040	2
Total Depth	Drilled	15	Feet	Hole Diameter	2	inches			f Sample/ Device	Acetate	e Liner/Ma	crocore
Length and	Diameter					_						
of Coring De	evice	5 Feet x 2	? inches						Sampling In	terval	NA	feet
Land-Surfac	e Elev.		feet	x Surveyed		Estimated	Da	atum				
Drilling Fluid	Used	NA							Drilling Meth	nod	Geoprob	е
Drilling Contractor	Summit						Dr	riller	Ronnie	Helper	Roger	
Prepared By	Krista Mast	trocola						amme 'eight		Hamm Drop	er NA	ins.
Sample Depth (feet below lar From		Core Recovery (feet)	PID Reading with depth interval (ppm)	Sample/Core De	scription							
0.0	5.0	4.0	1.7	0.0-0.5 Organics								
0.0	0.0	1.0	1.3	0.5-5.0 Silty-san		e cobbles.	, brown,	mois	st to wet			
			1.7		-,	,	, ,					
			2.4									
			2.3									
			2.7									
			2.4									
			2.3									
5.0	10.0	1.5	1.2	5.0-10.0 Silty-sa	and, so	me clay, br	rown to g	gray,	wet			
			1.8									
			2.4									
10.0	15.0	2.5	2.8	10.0-12.0 Silty-s	sand, s	ome clay, g	gray to b	orowr	n, wet to mo	oist		
			2.9	12.0-15.0 Silty-s	and, b	rown, mois	st					
			2.5									
			2.6	End boring at 15	5' belov	v ground si	urface					
			2.6									
		ļ										
		ļ										

ARCADIS Sample/Core Log-DRAFT

Boring/Well	SB	-26	Project/No.	Ford Ramapo OU-3/ N		Page	1	of		1			
Site Location	Pomona, N	Y			Drilling Started	2/2/201 1040		Drilling Completed			/2012 050		
Total Depth	Drilled	10	Feet	Hole Diameter 2	inches			Sample/ Device	Acetate	Line	r/Macro	ocore	
Length and of Coring De		5 Feet x 2	2 inches					Sampling In	terval	NA		feet	
Land-Surfac	e Elev.		feet	x Surveyed	Estimated	Da	atum						
Drilling Fluid	Used	NA	-					Drilling Meth	nod	Geoj	orobe		
Drilling Contractor	Summit					Dr	riller	Ronnie	Helper	Roge	er		
Prepared By	Krista Mast	rocola					amme 'eight		Hamm Drop		NA	ins.	
Sample Depth (feet below la	nd surface)		PID Reading with depth interval										
From	To	(feet)	(ppm)	Sample/Core Descrip	ition								
0.0	5.0	4.0	1.5	0.0-0.5 Organics									
			1.9	0.5-5.0 Silty-sand, se	ome clay, little	e organi	cs, bi	rown to gra	y, moisi	to w	et to n	noist	
			1.9										
			2.0										
			1.9										
			1.9										
			2.2										
5.0	10.0	4.0	1.2	5.0-10.0 Silty-sand,	some clav, litt	tle organ		brown to ar	av to br		moiet	to we	+
5.0	10.0	4.0	1.2	3.0-10.0 Sitty-saild,	some clay, in	lie organ	1105, 1	brown to gr	ay 10 DI	Own,	110151		
			1.8	End boring at 10' be	low around si	urface							
			2.1										
			2.1										
			2.2										
			2.1										

Boring/Well	SB	-27	Project/No.	Ford Ramapo OU-3/ NJ	000602.0003			Page	1	of	1	
Site Location	Pomona, N	Υ			Drilling Started	2/2/20 105		Drilling Completed			/2012 110	
Total Depth	Drilled	10	Feet	Hole Diameter 2	inches			Sample/ Device	Acetate	e Liner	/Macro	ocore
Length and of Coring De		5 Feet x 2	Pinches					Sampling In	terval	NA		feet
Land-Surfac			feet	x Surveyed	Estimated	 1 r	Datum					
			leet	x Sulveyed	Estimated	J L	Jalum			0		
Drilling Fluid Drilling	Used	NA						Drilling Meth	100	Geop	orobe	
Contractor	Summit					[Driller	Ronnie	Helper	Roge	er	
Prepared By	Krista Mast	rocola					Hamme Neight		Hammo Drop		NA	ins.
Sample Depth (feet below lar	nd surface)	-	PID Reading with depth interval									
From	To	(feet)	(ppm)	Sample/Core Description	on							
0.0	5.0	4.0	1.5	0.0-0.5 Organics								
			2.6	0.5-2.0 Silty-sand, br								
			2.6	2.0-3.0 Debris (i.e co				• .				
			2.6	3.0-5.0 Silty-sand, litt	le clay, brov	vn to gr	ay, m	oist				
			1.6									
			2.3									
			2.6 2.7									
5.0	10.0	4.0	2.6	5.0-7.0 Silty-sand, litt	le clav, grav	, moist	to we	t				
0.0	10.0	4.0	2.7	7.0-10.0 Silty-sand, s								
			2.6			0, 0101	iii, wo					
			2.6	End boring at 10' belo	ow around s	urface						
			2.6		<u></u>							
			2.3									
			2.5									
			2.6									

Boring/Well	SB	SB-28 Project/No. Ford Ramapo OU-3/ NJ000602.0003							Page	1 of	1
Site Location	Pomona, N	IY	Drilling _{2/2/2012} Dril Started 1130 Cor							2/2/2012 1150	
Total Depth	Drilled	15	Feet	Hole Diameter 2	2i	nches		of Sample/ Device	Acetate	e Liner/Macr	ocore
Length and	Diameter		-								
of Coring De	evice	5 Feet x 2	2 inches					Sampling In	terval	NA	feet
Land-Surfac	e Elev.		feet	x Surveyed		Estimated	Datum				
Drilling Fluid	Used	NA						Drilling Meth	nod	Geoprobe	
Drilling Contractor	Summit						Driller	Ronnie	Helper	Roger	
Prepared	Kriste Meer						Hamm		Hamm		
Ву	Krista Mas	trocola					Weigh	t <u>NA</u>	Drop	NA	_ins.
Sample Depth (feet below lar	nd surface)		PID Reading with depth interval								
From	To	(feet)	(ppm)	Sample/Core Desc							
0.0	5.0	4.0	0.2	0.0-0.5 Organics							
			0.3	0.5-5.0 Silty-sand	d, some	cobbles,	brown to gi	ay, moist			
			0.5								
			0.7								
			0.4								
			0.5								
			0.3								
5.0	10.0	3.0	2.6	5.0-10. Silty-sand	d some	cobbles	arav moist	to wet			
0.0	10.0	0.0	2.0	0.0-10. Only-sand	u, some	cobbles,	gray, moist				
			2.0								
			2.1								
			2.0								
			1.6								
10.0	15.0	3.0	1.3	10.0-15.0 Silty-sa	and, bro	wn, wet					
			1.9								
			2.0	End boring at 15'	below	ground su	rface				
			2.0								
			1.9								
			1.6								

Boring/Well	SB	-29	Project/No.	Ford Ramapo OU-	-3/ NJ00	0602.0003		Page	1 of	1		
Site Location	Pomona, N	Y				Drilling Started	2/2/20 ⁻ 1150		Drilling Completed		2/2/2012 1215	
Total Depth	Drilled	15	Feet	Hole Diameter	2	inches			⁻ Sample/ Device	Acetate	e Liner/Macr	ocore
Length and of Coring De		5 Feet x 2	2 inches			-			Sampling In	terval	NA	feet
Land-Surfac			feet	x Surveyed		Estimated	D	atum				_
Drilling Fluid	Used	NA							Drilling Meth	nod	Geoprobe	
Drilling Contractor	Summit						D	riller	Ronnie	Helper	Roger	
Prepared By	Krista Mast	rocola						amme /eight		Hamm Drop	er NA	ins.
Sample Depth (feet below lar From		Core Recovery (feet)	PID Reading with depth interval (ppm)	Sample/Core De	scription							
0.0	5.0	2.5	0.0	0.0-0.5 Organics								
0.0	5.0	2.5	0.6	0.5-5.0 Silty-san		e to little co	obbles.	brow	n to grav, n	noist		
			0.8		.,				<u> </u>			
			0.8									
			0.9									
5.0	10.0	3.0	0.0	5-5.5 Debris (i.e	. tree r	oot)						
			0.8	5.5-9.5 Silty-clay	y, gray,	moist to w	et to m	oist				
			0.9	9.5-10.0 Silty-sa	and, bro	own, moist						
			0.9									
			1.1									
			1.1									
			1.0									
10.0	15.0	2.0	0.0	10.0-15.0 Silty-s	and, b	rown, moist	t					
			0.6									
			1.0	End boring at 15	5' belov	v ground su	urface					
			0.1									

Boring/Well	SB	-30	Project/No.	Ford Ramapo OL	J-3/ NJ00	00602.0003				Page	1 of	1
Site Location	Pomona, N	IY				Drilling Started	2/2/20 1230		Drilling Completed		2/2/2012 1250	
Total Depth	Drilled	15	Feet	Hole Diameter	2	inches			f Sample/ Device	Acetate	e Liner/Macı	rocore
Length and of Coring De		5 Feet x 2	2 inches	_		_			Sampling In	terval	NA	feet
Land-Surfac			feet	x Surveyed	Г	Estimated	D	Datum	1 0			_
Drilling Fluic	Used	NA		_		_			Drilling Meth		Geoprobe	
Drilling Contractor	Summit						D	Driller	Ronnie	Helper	Roger	
Prepared By	Krista Mast	trocola						lamme Veight		Hammo Drop	er NA	ins.
Sample Depth (feet below lar From	nd surface)		PID Reading with depth interval	Sample/Core Do	coorintion							
	To	(feet) 2.5	(ppm)									
0.0	5.0	2.5	0.6	0.0-0.5 Organic 0.5-5.0 Silty-sat		/ to brown	moist					
			0.9		, g,	,,						
			0.6									
			0.4									
5.0	10.0	3.0	1.6	5.0-10.0 Silty-sa	and, bro	own, moist	to wet					
			1.9									
			1.9									
			1.6									
			1.8									
			1.6									
10.0	15.0	2.0	1.7	10.0-15.0 Silty-	sand, b	rown, wet t	o moist	t				
			1.8									
			1.1	End boring at 1	5' belov	w ground su	urface					
			0.9									

Boring/Well	SB	-31	Project/No.	Ford Ramapo OL	J-3/ NJ00	00602.0003				Page	1 of	1
Site Location	Pomona, N	Y				Drilling Started	2/2/201 1255	·	Drilling Completed		2/2/2012 1310	
Total Depth	Drilled	10	Feet	Hole Diameter	2	inches			Sample/ Device	Acetate	e Liner/Macr	ocore
Length and of Coring De		5 Feet x 2	inches	_		_			Sampling In	terval	NA	feet
Land-Surfac			feet	x Surveyed	Γ	Estimated	Da					_
Drilling Fluic	Used	NA		_		_			Drilling Meth		Geoprobe	
Drilling Contractor	Summit						Dr	riller	Ronnie	Helper	Roger	
Prepared By	Krista Mast	rocola						amme 'eight		Hamm Drop	er NA	ins.
Sample Depth (feet below lar From		Core Recovery (feet)	PID Reading with depth interval (ppm)	Sample/Core D	escription							
0.0	5.0	2.5	1.4	0.0-0.5 Organic								
0.0	5.0	2.5	1.4	0.5-5.0 Silty-sa		clav. brow	n. mois	t				
			1.8		,	,	,					
			1.9									
			2.0									
5.0	10.0	3.0	1.5	5.0-10.0 Silty-sa	and, littl	le clay, brov	wn, moi	st to	wet			
			1.6									
			1.8	End boring at 1	0' belov	v ground su	urface					
			1.8									
			2.0									
			1.5									

Boring/Well	SB	-32	Project/No.	Ford Ramapo OL	J-3/ NJ00	00602.0003				Page	1 of	1
Site Location	Pomona, N	IY				Drilling Started	2/2/20 1310		Drilling Completed		2/2/2012 1325	
Total Depth	Drilled	10	Feet	Hole Diameter	2	inches			[:] Sample/ Device	Acetate	e Liner/Macr	ocore
Length and of Coring De		5 Feet x 2	2 inches	_		_			Sampling In	terval	NA	feet
Land-Surfac			feet	x Surveyed	Γ	Estimated	D	atum	1 0			
Drilling Fluid	Used	NA							Drilling Meth		Geoprobe	
Drilling Contractor	Summit						D	riller	Ronnie	Helper	Roger	
Prepared By	Krista Mast	trocola						lamme Veight		Hamm Drop	er NA	ins.
Sample Depth (feet below lar From	nd surface)		PID Reading with depth interval	Comple/Core D								
	To	(feet)	(ppm)	Sample/Core De								
0.0	5.0	3.0	0.5	0.0-0.5 Organic 0.5-5.0 Silty-sa		cobbles, a	irav to b	browr	n. moist			
			1.2						,			
			1.4									
			1.5									
5.0	10.0	4.0	0.5	5.0-10.0 Silty-s	and, bro	own, wet to	moist					
			1.1									
			0.7	End boring at 1	0' belov	v ground su	urface					
			0.9									
			1.4									
			1.5									
			1.6									
			1.3									

Boring/Well	SB	-33	Project/No.	Ford Ramapo OU	J-3/ NJ0	00602.0003				Page	1 of	1
Site Location	Pomona, N	IY				Drilling Started	2/2/20 132		Drilling Completed		2/2/2012 1340	
Total Depth	Drilled	10	Feet	Hole Diameter	2	inches			f Sample/ Device	Acetate	e Liner/Macr	ocore
Length and of Coring De		5 Feet x 2	inches	_					Sampling In	terval	NA	feet
Land-Surfac			feet	x Surveyed		Estimated	D	Datum				_
Drilling Fluid	Used	NA							Drilling Meth	nod	Geoprobe	
Drilling Contractor	Summit						D	Driller	Ronnie	Helper	Roger	
Prepared By	Krista Mast	trocola						lamme Veight		Hamm Drop	er NA	ins.
Sample Depth (feet below lar From			PID Reading with depth interval	Sample/Caro Dr	againtig							
0.0	5.0	(feet) 2.5	(ppm) 1.1	Sample/Core De		1						
0.0	5.0	2.5	1.1	0.5-5.0 Silty-sar		ne clav, grav	v. mois	st				
			1.5		,	<u></u> , <u>g</u>	j ,					
			1.5									
			1.4									
5.0	10.0	3.0	1.2	5.0-7.0 Silty-sar	nd, son	ne clay, gra	y, mois	st				
			1.3	7.0-10.0 Silty-sa	and, br	own, moist t	to wet					
			1.7									
			1.7	End boring at 1	0' belov	w ground su	urface					
			1.7									
			1.3									

Boring/Well	SB	-34	Project/No.	Ford Ramapo OU	-3/ NJ0	00602.0003				Page	1 of	1
Site Location	Pomona, N	IY				Drilling Started	2/2/2 134		Drilling Completed		2/2/2012 1355	
Total Depth	Drilled	10	Feet	Hole Diameter	2	inches			f Sample/ Device	Acetate	e Liner/Mac	rocore
Length and	Diameter											
of Coring De	evice	5 Feet x 2	inches						Sampling In	terval	NA	feet
Land-Surfac	e Elev.		feet	x Surveyed	E	Estimated	1	Datum				
Drilling Fluid	Used	NA							Drilling Meth	nod	Geoprobe	
Drilling Contractor	Summit							Driller	Ronnie	Helper	Roger	
Prepared By	Krista Mast	trocola						Hamm Weight		Hammo Drop	er NA	ins.
Sample Depth (feet below lar From		Core Recovery (feet)	PID Reading with depth interval	Sample/Core De	accription							
	5.0		(ppm)									
0.0	5.0	2.0	0.0 4.5	0.0-0.5 Organic			arov	moiet				
			1.1	0.5-2.0 Silty-sar 2.0-4.5 Silty-sar								
			1.0	4.5-5 Silty-sand								
5.0	10.0	3.5	0.4	5.0-8.0 Silty-sar					ist			
0.0	10.0	0.0	0.6	8.0-10.0 Silty-sa								
			0.6			,						
			1.3	End boring at 10	0' belov	w ground s	urface					
			1.1	Ŭ		0						
			1.4									
			1.0									

Boring/Well	SB	-35	Project/No.	Ford Ramapo OL	J-3/ NJ00	00602.0003				Page	1 of	1
Site Location	Pomona, N	IY				Drilling Started	2/2/20 ⁷ 1405		Drilling Completed		2/2/2012 1415	
Total Depth	Drilled	10	Feet	Hole Diameter	2	inches			⁻ Sample/ Device	Acetate	e Liner/Macr	ocore
Length and of Coring De		5 Feet x 2	2 inches						Sampling In	terval	NA	feet
Land-Surfac			feet	x Surveyed		Estimated	Da					_
Drilling Fluid	Used	NA							Drilling Meth	nod	Geoprobe	
Drilling Contractor	Summit						Di	riller	Ronnie	Helper	Roger	
Prepared By	Krista Mast	trocola						amme 'eight		Hamm Drop	er NA	ins.
Sample Depth (feet below lar From		Core Recovery (feet)	PID Reading with depth interval	Sample/Core D	occription							
0.0	5.0	2.5	(ppm) 0.1	0.0-0.5 Organic								
0.0	5.0	2.0	1.3	0.5-5.0 Silty-sa		ne cobbles.	arav to	brov	vn. moist			
			0.6		,		9		,			
			0.7									
			0.3									
5.0	10.0	4.0	1.4	5.0-10.0 Silty-sa	and, so	me clay, br	own, we	et to i	moist			
			1.4									
			0.8	End boring at 1	0' belov	v ground su	urface					
			0.8									
			1.2									
			1.3									
			1.0									
			1.0									

Imagine the result

Ford Ramapo

Data Usability Summary Report

RAMAPO, NEW YORK

Volatile, Semi-volatiles, Herbicides, Pesticides, PCB, Metals, General Chemistry and TCLP (VOCs, SVOCs, Pesticide, Herbicide and Metals) Analyses

SDG #JA97463

Analyses Performed By: Accutest Laboratories Dayton, New Jersey

Report #15608R Review Level: Tier III Project: NJ000602.0003.00006

SUMMARY

This data quality assessment summarizes the review of Sample Delivery Group (SDG) #JA97463 for samples collected in association with the Ford Ramapo Site. The review was conducted as a Tier III evaluation and included review of data package completeness. Only analytical data associated with constituents of concern were reviewed for this validation. Field documentation was not included in this review. Included with this assessment are the validation annotated sample result sheets, and chain of custody. Analyses were performed on the following samples:

			Sample	Parent	Analysis						
Sample ID	Lab ID	Matrix	Collection Date	Collection		svoc	Pest	Herb	РСВ	MET	MISC
TB-011920212	JA97463-1	WATER	1/19/12		Х						
FB-01192012	JA97463-2	WATER	1/19/12		Х					Х	
OU3-WC-01	JA97463-3	SOIL	1/19/12		Х	Х	Х	Х		Х	Х
OU3-SB-09(0- 0.5)	JA97463-4	SOIL	1/19/12		Х					Х	
OU3-SB- 09(14.5-15)	JA97463-5	SOIL	1/19/12		Х					х	
OU3-SB-10(14- 14.5)	JA97463-6	SOIL	1/19/12		Х					Х	
OU3-SB-17(0- 0.5)	JA97463-7	SOIL	1/19/12		Х					х	
OU3-SB-16(0- 0.5)	JA97463-8	SOIL	1/19/12		Х	х		Х	Х	Х	Х
OU3-SB- 13(14.5-15	JA97463-9	SOIL	1/19/12		Х	Х		Х	х	Х	Х

MISC - Miscellaneous parameters: Corrosivity, Cyanide, Ignitability, and/or Sulfide.

ANALYTICAL DATA PACKAGE DOCUMENTATION

The table below is the evaluation of the data package completeness.

		Repo	orted		mance ptable	Not
	Items Reviewed	No	Yes	No	Yes	Required
1.	Sample receipt condition		Х		Х	
2.	Requested analyses and sample results		Х		Х	
3.	Master tracking list		Х		Х	
4.	Methods of analysis		Х		Х	
5.	Reporting limits		Х		Х	
6.	Sample collection date		Х		Х	
7.	Laboratory sample received date		Х		Х	
8.	Sample preservation verification (as applicable)		х		х	
9.	Sample preparation/extraction/analysis dates		Х		Х	
10.	Fully executed Chain-of-Custody (COC) form		Х		Х	
11.	Narrative summary of QA or sample problems provided		х		х	
12.	Data Package Completeness and Compliance		Х		Х	

QA - Quality Assurance

ORGANIC ANALYSIS INTRODUCTION

Analyses were performed according to United States Environmental Protection Agency (USEPA) SW-846 Methods 8260B, Method 1311 (Toxic Characteristic Leachate Procedure-TCLP)/8260B, 8270D, 1311/8270D, 1311/8151, 8081B, 1311/8081B and 8082A. Data were reviewed in accordance with USEPA National Functional Guidelines of October 1999.

The data review process is an evaluation of data on a technical basis rather than a determination of contract compliance. As such, the standards against which the data are being weighed may differ from those specified in the analytical method. It is assumed that the data package represents the best efforts of the laboratory and had already been subjected to adequate and sufficient quality review prior to submission.

During the review process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Results are qualified with the following codes in accordance with USEPA National Functional Guidelines:

- Concentration (C) Qualifiers
 - U The compound was analyzed for but not detected. The associated value is the compound quantitation limit.
 - B The compound has been found in the sample as well as its associated blank, its presence in the sample may be suspect.
- Quantitation (Q) Qualifiers
 - E The compound was quantitated above the calibration range.
 - D Concentration is based on a diluted sample analysis.
- Validation Qualifiers
 - J The compound was positively identified; however, the associated numerical value is an estimated concentration only.
 - UJ The compound was not detected above the reported sample quantitation limit. However, the reported limit is approximate and may or may not represent the actual limit of quantitation.
 - JN The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification. The associated numerical value is an estimated concentration only.
 - UB Compound considered non-detect at the listed value due to associated blank contamination.
 - N The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification.
 - R The sample results are rejected.

Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant quality control (QC) problems, the analysis is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is that no compound concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error.

VOLATILE ORGANIC COMPOUND (VOC)

1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation
SW-846 8260B	Soil	14 days from extraction to analysis	Cool to 4°C <u>+</u> 2°C.
SW-846 1311/8260B	Soil/Leachate	14 days from collection to leachate and 14 days from leachate to analysis	Cooled @ 4 °C; preserved to a pH of less than 2 s.u.

s.u. Standard units

The sample was analyzed within the specified holding time criteria.

2. Blank Contamination

Quality assurance (QA) blanks (i.e., method and rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Rinse blanks measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank (common laboratory contaminant compounds are calculated at ten times) is calculated for QA blanks containing concentrations greater than the method detection limit (MDL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

Compounds were not detected above the MDL in the associated blanks; therefore detected sample results were not associated with blank contamination.

3. Mass Spectrometer Tuning

Mass spectrometer performance was acceptable and all analyses were performed within a 12-hour tune clock.

System performance and column resolution were acceptable.

4. Calibration

Satisfactory instrument calibration is established to insure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

4.1 Initial Calibration

The method specifies percent relative standard deviation (%RSD) and relative response factor (RRF) limits for select compounds only. A technical review of the data applies limits to all compounds with no exceptions.

All target compounds associated with the initial calibration standards must exhibit a %RSD less than the control limit (15%) or a correlation coefficient greater than 0.99 and an RRF value greater than control limit (0.05).

4.2 Continuing Calibration

All target compounds associated with the continuing calibration standard must exhibit a percent difference (%D) less than the control limit (20%) and RRF value greater than control limit (0.05).

All compounds associated with the calibrations were within the specified control limits, with the exception of the compounds presented in the following table.

Sample Locations	Initial/Continuing	Compound	Criteria
TB-01192012	B-01192012		+20.3%
B-01192012		Freon 113	+21.6%
OU3-WC-01 (TCLP)			+35.3%
OU3-WC-01			+34.5%
OU3-SB-09(0-0.5)		Acetone	-20.7%
OU3-SB-10(14-14.5)	CCV %D Carbon tetrachloride		+22.4%
OU3-SB-16(0-0.5)		4-Methyl-2-pentanone	+37.8%
OU3-SB-13(14.5-15)		2-Hexanone	+21.3%
		Dichlorodifluoromethane	+23.9%
		Carbon tetrachloride	+23.6%
OU3-SB-17(0-0.5)	4-Methyl-2-pentanone		+67.8%
		2-Hexanone	+55.3%

The criteria used to evaluate the initial and continuing calibration are presented in the following table. In the case of a calibration deviation, the sample results are qualified.

Initial/Continuing	Criteria	Sample Result	Qualification
	RRF <0.05	Non-detect	R
	RRF <0.05	Detect	J
Initial and Continuing	RRF <0.01 ¹	Non-detect	R
Calibration	KKF <0.01	Detect	J
	RRF >0.05 or RRF >0.01 ¹	Non-detect	No Action
	RRF 20.05 01 RRF 20.01	Detect	NO ACION
Initial Calibration	%RSD > 15% or a correlation	Non-detect	UJ
	coefficient <0.99	Detect	J
	9/D > 20% (increase in consitivity)	Non-detect	No Action
Continuing Colibration	%D >20% (increase in sensitivity)	Detect	J
Continuing Calibration	9/ D > 209/ (depressed in consitivity)	Non-detect	UJ
	%D >20% (decrease in sensitivity)	Detect	J

RRF of 0.01 only applies to compounds which are typically poor responding compounds (i.e., ketones, 1,4-dioxane, etc.)

5. Surrogates/System Monitoring Compounds

All samples to be analyzed for organic compounds are spiked with surrogate compounds prior to sample preparation to evaluate overall laboratory performance and efficiency of the analytical technique. VOC analysis requires that all surrogates associated with the analysis exhibit recoveries within the laboratory-established acceptance limits.

All surrogate recoveries were within control limits.

6. Internal Standard Performance

Internal standard performance criteria insure that the GC/MS sensitivity and response are stable during every sample analysis. The criteria requires the internal standard compounds associated with the VOC exhibit area counts that are not greater than two times (+100%) or less than one-half (-50%) of the area counts of the associated continuing calibration standard.

All internal standard responses were within control limits.

7. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Analysis

MS/MSD data are used to assess the precision and accuracy of the analytical method. The compounds used to perform the MS/MSD analysis must exhibit a percent recovery within the laboratory-established acceptance limits. The relative percent difference (RPD) between the MS/MSD recoveries must exhibit an RPD within the laboratory-established acceptance limits.

Note: The MS/MSD recovery control limits do not apply for MS/MSD performed on sample locations where the compound concentration detected in the parent sample exceeds the MS/MSD concentration by a factor of four or greater.

The MS exhibited acceptable recoveries and RPD between the MS/MSD recoveries.

8. Laboratory Duplicate Analysis

A laboratory duplicate was performed in replace of a MSD. The laboratory duplicate relative percent difference (RPD) criterion is applied when parent and duplicate sample concentrations are greater than or equal to 5 times the CRDL. A control limit of 20% for water matrices and 35% for soil matrices is applied when the criteria above is true. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the CRDL, a control limit of one times the CRDL is applied for water matrices and two times the CRDL for soil matrices.

Sample locations associated with MS/MSD recoveries exhibiting an RPD greater than of the control limit presented in the following table.

Sample Locations	Analyte
OU2 SP 12(14 5 15)	Ethylbenzene
OU3-SB-13(14.5-15)	Xylene (total)

The criteria used to evaluate laboratory duplicate RPD are presented in the following table. In the case of a laboratory duplicate RPD deviation, the sample results are qualified. The qualifications are applied to the all sample results associated with this SDG.

Sample Concentration	Control Limit	Sample Result	Qualification
Parent sample and laboratory sample concentration >5 times	Water 20% or	Non-detect	UJ
CRDL	Soil 35%	Detect	J
Parent sample and/or laboratory duplicate sample result ≤ five	Water one times RL	Non-detect	UJ
times the RL and difference between samples >RL	Soil two times RL	Detect	J

9. Laboratory Control Sample (LCS)/Blank Spike Analysis

The LCS analysis is used to assess the precision and accuracy of the analytical method independent of matrix interferences. The compounds associated with the LCS analysis must exhibit a percent recovery within the laboratory-established acceptance limits.

All compounds associated with the LCS analysis exhibited recoveries within the control limits.

10. Field Duplicate Analysis

Field duplicate analysis is used to assess the precision and accuracy of the field sampling procedures and analytical method. A control limit of 100% for soil matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of three times the RL is applied for soil matrices.

A field duplicate was not collected with the sample location associated with this SDG.

11. Compound Identification

Compounds are identified on the GC/MS by using the analytes relative retention time and ion spectra.

All identified compounds met the specified criteria.

12. System Performance and Overall Assessment

Tentatively identified compounds (TICs) were identified in the sample locations OU3-SB-09(14.5-15), OU3-SB-10(14-14.5) and OU3-SB-13(14.5-15. VOC analysis requires that TICs be qualified as estimated (JN).

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

DATA VALIDATION CHECKLIST FOR VOCs & TCLP VOCs

VOCs: SW-846 8260B and 1311/8260B	Reported		Performance Acceptable		Not
	No	Yes	No	Yes	Required
GAS CHROMATOGRAPHY/MASS SPECTROMET	RY (GC/	NS)			
Tier II Validation					
Holding times		Х		Х	
Reporting limits (units)		Х		Х	
Blanks					
A. Method blanks		Х		Х	
B. Equipment blanks		Х		Х	
C. Trip blanks		Х		Х	
Laboratory Control Sample (LCS)		Х		Х	
Laboratory Control Sample Duplicate(LCSD)					Х
LCS/LCSD Precision (RPD)					Х
Matrix Spike (MS)		Х		Х	Х
Matrix Spike Duplicate(MSD)					
MS/MSD Precision (RPD)					
Field/Lab Duplicate (RPD)		Х	Х		
Surrogate Spike Recoveries		Х		Х	
Dilution Factor					Х
Moisture Content					Х
Tier III Validation					•
System performance and column resolution		Х		Х	
Initial calibration %RSDs		Х		Х	
Continuing calibration RRFs		Х		Х	
Continuing calibration %Ds		Х	Х		
Instrument tune and performance check		Х		Х	
Ion abundance criteria for each instrument used		Х		Х	
Internal standard		Х		Х	
Compound identification and quantitation		•	•	•	•
A. Reconstructed ion chromatograms		Х		Х	
B. Quantitation Reports		Х		Х	
C.RT of sample compounds within the established RT windows		х		Х	
D.Transcription/calculation errors present		Х		Х	
E.Reporting limits adjusted to reflect sample dilutions %RSD Relative standard deviation		Х		Х	

%RSDRelative standard deviation%RPercent recoveryRPDRelative percent difference%DPercent difference

SEMIVOLATILE ORGANIC COMPOUND (SVOC)

1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation
SW-846 8270D	Soil	14 days from collection to extraction and 40 days from extraction to analysis	Cooled @ 4°C ± 2°C.
SW-846 1311/8270D	Soil/Leachate	14 days from collection to leachate, 7 days from leachate to extraction and 40 days from extraction to analysis	Cooled @ 4 °C

The sample was analyzed within the specified holding time criteria.

2. Blank Contamination

Quality assurance (QA) blanks (i.e., method and rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Rinse blanks measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank (common laboratory contaminant compounds are calculated at ten times) is calculated for QA blanks containing concentrations greater than the method detection limit (MDL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

Compounds were not detected above the MDL in the associated blanks; therefore detected sample results were not associated with blank contamination.

3. Mass Spectrometer Tuning

Mass spectrometer performance was acceptable and all analyses were performed within a 12-hour tune clock.

System performance and column resolution were acceptable.

4. Calibration

Satisfactory instrument calibration is established to insure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

4.3 Initial Calibration

The method specifies percent relative standard deviation (%RSD) and relative response factor (RRF) limits for select compounds only. A technical review of the data applies limits to all compounds with no exceptions.

All target compounds associated with the initial calibration standards must exhibit a %RSD less than the control limit (15%) or a correlation coefficient greater than 0.99 and an RRF value greater than control limit (0.05).

4.4 Continuing Calibration

All target compounds associated with the continuing calibration standard must exhibit a percent difference (%D) less than the control limit (20%) and RRF value greater than control limit (0.05).

All compounds associated with the calibrations were within the specified control limits, with the exception of the compounds presented in the following table.

Sample Locations	Initial/Continuing	Compound	Criteria
		Naphthalene	15.43%
		2,4-Dinitrophenol	18.20%
		4-Nitrophenol	15.61%
OU3-SB-16(0-0.5) OU3-SB-13(14.5-15	ICV %RSD	Phenanthrene	16.47%
		Fluoranthene	16.22%
		Pyrene	18.77%
		Benzo[b]fluoranthene	15.80%
		Benzo[a]pyrene	15.29%
OU3-WC-01		2,4-Dinitrotoluene	17.53%
	CCV %D	2,4-Dinitrophenol	-22.2%
OU3-SB-16(0-0.5)		Di-n-octylphthalate	+20.4%

The criteria used to evaluate the initial and continuing calibration are presented in the following table. In the case of a calibration deviation, the sample results are qualified.

Initial/Continuing	Criteria	Sample Result	Qualification	
	RRF <0.05	Non-detect	R	
	KKF <0.05	Detect	J	
Initial and Continuing	RRF <0.01 ¹	Non-detect	R	
Calibration	KKF <0.01	Detect	J	
	RRF >0.05 or RRF >0.01 ¹	Non-detect	No Action	
	RRF 20.05 01 RRF 20.01	Detect		
Initial Calibration	%RSD > 15% or a correlation	Non-detect	UJ	
	coefficient <0.99	Detect	J	
	%D >20% (increase in sensitivity)	Non-detect	No Action	
Continuing Calibration	%D >20% (increase in sensitivity)	Detect	J	
	9/D > 209/ (decreases in consitivity)	Non-detect	UJ	
	%D >20% (decrease in sensitivity)	Detect	J	

RRF of 0.01 only applies to compounds which are typically poor responding compounds (i.e., ketones, 1,4-dioxane, etc.)

5. Surrogates/System Monitoring Compounds

All samples to be analyzed for organic compounds are spiked with surrogate compounds prior to sample preparation to evaluate overall laboratory performance and efficiency of the analytical technique. SVOC analysis requires that two of the three SVOC surrogate compounds within each fraction exhibit recoveries within the laboratory-established acceptance limits.

All surrogate recoveries were within control limits.

6. Internal Standard Performance

Internal standard performance criteria insure that the GC/MS sensitivity and response are stable during every sample analysis. The criteria requires the internal standard compounds associated with the SVOC exhibit area counts that are not greater than two times (+100%) or less than one-half (-50%) of the area counts of the associated continuing calibration standard.

All internal standard responses were within control limits.

7. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Analysis

MS/MSD data are used to assess the precision and accuracy of the analytical method. The compounds used to perform the MS/MSD analysis must exhibit a percent recovery within the laboratory-established acceptance limits. The relative percent difference (RPD) between the MS/MSD recoveries must exhibit an RPD within the laboratory-established acceptance limits.

Note: The MS/MSD recovery control limits do not apply for MS/MSD performed on sample locations where the compound concentration detected in the parent sample exceeds the MS/MSD concentration by a factor of four or greater.

A MS/MSD was not performed on the sample location associated with this SDG.

8. Laboratory Control Sample (LCS)/Blank Spike

The LCS analysis is used to assess the precision and accuracy of the analytical method independent of matrix interferences. The compounds associated with the LCS analysis must exhibit a percent recovery within the laboratory-established acceptance limits.

Sample locations associated with LCS/LCSD analysis exhibiting recoveries outside of the control limits presented in the following table.

Sample Locations	Compound	LCS Recovery	LCSD Recovery	
OU3-SB-16(0-0.5) OU3-SB-13(14.5-15	Benzaldehyde	>UL		
OU3-WC-01	1,4-Dichlorobenzene	>UL		
003-000-01	Hexachlorobutadiene	<i>></i> 0L		

The criteria used to evaluate the LCS recoveries are presented in the following table. In the case of an LCS deviation, the sample results are qualified as documented in the table below.

Control Limit	Sample Result	Qualification
> the upper control limit (UL)	Non-detect	No Action
	Detect	J
< the lower control limit (LL) but > 10%	Non-detect	UJ
	Detect	J
< 10%	Non-detect	R
< 10%	Detect	J

Note: Sample results were not qualified as rejected (R) due to the deviations listed above.

9. Field Duplicate Analysis

Field duplicate analysis is used to assess the precision and accuracy of the field sampling procedures and analytical method. A control limit of 100% for soil matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of three times the RL is applied for soil matrices.

A field duplicate was not collected with the sample location associated with this SDG.

10. Compound Identification

Compounds are identified on the GC/MS by using the analytes relative retention time and ion spectra.

All identified compounds met the specified criteria. Tentatively identified compounds (TICs) were identified in the sample location OU3-SB-13(14.5-15). VOC analysis requires that TICs be qualified as estimated (JN).

11. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

DATA VALIDATION CHECKLIST FOR SVOCs and TCLP SVOCs

SVOCs: SW-846 8270D and 1311/8270D	Report	Reported		mance otable	Not
	No	Yes	No	Yes	Required
GAS CHROMATOGRAPHY/MASS SPECTROMET	FRY (GC/MS	5)			
Tier II Validation					
Holding times		Х		Х	
Reporting limits (units)		Х		Х	
Blanks					
A. Method blanks		Х		Х	
B. Equipment blanks					Х
Laboratory Control Sample (LCS) %R		Х	Х		
Laboratory Control Sample Duplicate(LCSD) %R					Х
LCS/LCSD Precision (RPD)					Х
Matrix Spike (MS) %R					Х
Matrix Spike Duplicate(MSD) %R					Х
MS/MSD Precision (RPD)					Х
Field/Lab Duplicate (RPD)					Х
Surrogate Spike Recoveries		Х		Х	
Dilution Factor		Х		Х	
Moisture Content		Х		Х	
Tier III Validation					
System performance and column resolution		Х		Х	
Initial calibration %RSDs		Х	Х		
Continuing calibration RRFs		Х		Х	
Continuing calibration %Ds		Х	Х		
Instrument tune and performance check		Х		Х	
Ion abundance criteria for each instrument used		Х		Х	
Internal standard		Х		Х	
Compound identification and quantitation					
A. Reconstructed ion chromatograms		Х		Х	
B. Quantitation Reports		Х		Х	
C. RT of sample compounds within the established RT windows		Х		х	
D. Transcription/calculation errors present		Х		Х	
E. Reporting limits adjusted to reflect sample dilutions		Х		х	

%RSD Relative standard deviation

%RPercent recoveryRPDRelative percent difference%DPercent difference

TCLP HERBICIDES ANALYSIS

1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation
SW-846 1311/8151	Soil/Leachate	14 days from collection to leachate, 7 days from leachate to extraction and 40 days from extraction to analysis	Cooled @ 4 °C

All samples were analyzed within the specified holding time criteria.

2. Blank Contamination

Quality assurance (QA) blanks (i.e., method and rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Rinse blanks measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank (common laboratory contaminant compounds are calculated at ten times) is calculated for QA blanks containing concentrations greater than the method detection limit (MDL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

Compounds were not detected above the MDL in the associated blanks; therefore detected sample results were not associated with blank contamination.

3. Mass Spectrometer Tuning

System performance and column resolution were acceptable.

4. Calibration

Satisfactory instrument calibration is established to insure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

4.1 Initial Calibration

A maximum RSD of 20% is allowed or a correlation coefficient greater than 0.99 is allowed.

4.2 Continuing Calibration

All target compounds associated with the continuing calibration standard must exhibit a percent difference (%D) less than the control limit (15%).

All calibration criteria were within the control limits.

5. Surrogates/System Monitoring Compounds

All samples to be analyzed for organic compounds are spiked with surrogate compounds prior to sample preparation to evaluate overall laboratory performance and efficiency of the analytical technique. herbicide

15608R_JA97463.doc

analysis requires that one of the two herbicide surrogate compounds exhibit recoveries within the laboratoryestablished acceptance limits.

All surrogate recoveries reported from the primary column were within control limits.

6. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Analysis

MS/MSD data are used to assess the precision and accuracy of the analytical method. The compounds used to perform the MS/MSD analysis must exhibit a percent recovery within the laboratory-established acceptance limits. The relative percent difference (RPD) between the MS/MSD recoveries must exhibit an RPD within the laboratory-established acceptance limits.

Note: The MS/MSD recovery control limits do not apply for MS/MSD performed on sample locations where the compound concentration detected in the parent sample exceeds the MS/MSD concentration by a factor of four or greater.

A MS/MSD was not performed on a sample location associated with this SDG.

7. Laboratory Control Sample/Laboratory Control Sample Duplicate (LCS/LCSD) Analysis

The LCS analysis is used to assess the precision and accuracy of the analytical method independent of matrix interferences. The compounds associated with the LCS analysis must exhibit a percent recovery within the laboratory-established acceptance limits.

All compounds associated with the LCS analysis exhibited recoveries within the control limits.

8. Field Duplicate Analysis

Field duplicate analysis is used to assess the precision and accuracy of the field sampling procedures and analytical method. A control limit of 50% for leachate matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of two times the RL is applied for leachate matrices.

A field duplicate was not collected with a sample location associated with this SDG.

9. Compound Identification

The retention times of all quantitated peaks must fall within the calculated retention time windows for both the primary and confirmation columns. When dual column analysis is performed the percent difference (%D) of detected sample results must be less than 40%.

Compounds were not detected in the sample location.

10. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

DATA VALIDATION CHECKLIST FOR TCLP HERBICIDES

Herbicides; SW-846 1311/8151	Reported		Performance Acceptable		Not
	No	Yes	No	Yes	Required
GAS CHROMATOGRAPHY (GC/ECD)					
Tier II Validation					
Holding times		Х		Х	
Reporting limits (units)		Х		Х	
Blanks					
A. Method blanks		Х		Х	
B. Equipment blanks					Х
Laboratory Control Sample (LCS)		Х		Х	
Laboratory Control Sample Duplicate(LCSD)					Х
LCS/LCSD Precision (RPD)					Х
Matrix Spike (MS)					Х
Matrix Spike Duplicate(MSD)					Х
MS/MSD Precision (RPD)					Х
Field/Lab Duplicate (RPD)					Х
Surrogate Spike Recoveries		Х		Х	
Column %D \leq 40% (If dual column is performed for reporting-not confirmation)					Х
Dilution Factor		Х		Х	
Moisture Content		Х		Х	
Tier III Validation					
Initial calibration %RSDs		Х		Х	
Continuing calibration %Ds		Х		Х	
System performance and column resolution		Х		Х	
Compound identification and quantitation		•	•	•	
A. Quantitation Reports		Х		Х	
B. RT of sample compounds within the established RT windows		Х		x	
C. Identification/confirmation		Х		Х	
D. Transcription/calculation errors present		Х		Х	
E. Reporting limits adjusted to reflect sample dilutions		Х		х	

%RSD – relative standard deviation, %R - percent recovery, RPD - relative percent difference, %D – difference.

PESTICIDES

1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation
SW-846 8081A	Soil	14 days from collection to extraction and 40 days from extraction to analysis	Cool to 4°C <u>+</u> 2°C
SW-846 1311/8081A	Soil/Leachate	14 days from collection to leachate, 7 days from leachate to extraction and 40 days from extraction to analysis	Cooled @ 4 °C

All samples were analyzed within the specified holding time criteria.

2. Blank Contamination

Quality assurance (QA) blanks (i.e., method and rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Rinse blanks measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank (common laboratory contaminant compounds are calculated at ten times) is calculated for QA blanks containing concentrations greater than the method detection limit (MDL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

Compounds were not detected above the MDL in the associated blanks; therefore detected sample results were not associated with blank contamination.

3. Mass Spectrometer Tuning

System performance and column resolution were acceptable.

4. Calibration

Satisfactory instrument calibration is established to insure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

4.1 Initial Calibration

A maximum RSD of 20% is allowed or a correlation coefficient greater than 0.99 is allowed.

4.2 Continuing Calibration

All target compounds associated with the continuing calibration standard must exhibit a percent difference (%D) less than the control limit (15%).

All Aroclors associated with calibrations were within the specified control limits, with the exception of the compounds presented in the following table.

Sample Locations	Initial/Continuing	Compound	Criteria
OU3-WC-01	CCV %D	Methoxychlor	+27.8%

The criteria used to evaluate the initial and continuing calibration are presented in the following table. In the case of a calibration deviation, the sample results are qualified.

Initial/Continuing	Criteria	Sample Result	Qualification
Initial Calibration	%RSD > 20%or a correlation coefficient <0.99	Non-detect	UJ
		Detect	J
	%D >15% (increase in sensitivity)	Non-detect	No Action
Continuing	%D > 15% (Increase in sensitivity)	Detect	J
Calibration	9/D > 159/(decrease in consistivity)	Non-detect	UJ
	%D >15% (decrease in sensitivity)	Detect	J

5. Surrogates/System Monitoring Compounds

All samples to be analyzed for organic compounds are spiked with surrogate compounds prior to sample preparation to evaluate overall laboratory performance and efficiency of the analytical technique. pesticide analysis requires that one of the two pesticide surrogate compounds exhibit recoveries within the laboratory-established acceptance limits.

All surrogate recoveries reported from the primary column were within control limits.

6. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Analysis

MS/MSD data are used to assess the precision and accuracy of the analytical method. The compounds used to perform the MS/MSD analysis must exhibit a percent recovery within the laboratory-established acceptance limits. The relative percent difference (RPD) between the MS/MSD recoveries must exhibit an RPD within the laboratory-established acceptance limits.

Note: The MS/MSD recovery control limits do not apply for MS/MSD performed on sample locations where the compound concentration detected in the parent sample exceeds the MS/MSD concentration by a factor of four or greater.

A MS/MSD was not performed on a sample location associated with this SDG.

7. Laboratory Control Sample/Laboratory Control Sample Duplicate (LCS/LCSD) Analysis

The LCS analysis is used to assess the precision and accuracy of the analytical method independent of matrix interferences. The compounds associated with the LCS analysis must exhibit a percent recovery within the laboratory-established acceptance limits.

All compounds associated with the LCS analysis exhibited recoveries within the control limits.

8. Field Duplicate Analysis

Field duplicate analysis is used to assess the precision and accuracy of the field sampling procedures and analytical method. A control limit of 50% for water/leachate matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of two times the RL is applied for water/Leachate matrices.

A field duplicate was not collected with a sample location associated with this SDG.

9. Compound Identification

The retention times of all quantitated peaks must fall within the calculated retention time windows for both the primary and confirmation columns. When dual column analysis is performed the percent difference (%D) of detected sample results must be less than 40%.

10. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

DATA VALIDATION CHECKLIST FOR PESTICIDES AND TCLP PESTICIDES

Pesticides; SW-846 8081B and 1311/8081B	Rep	orted		mance ptable	Not Required
	No	Yes	No	Yes	
GAS CHROMATOGRAPHY (GC/ECD)					
Tier II Validation					
Holding times		Х		х	
Reporting limits (units)		Х		Х	
Blanks					
A. Method blanks		Х		Х	
B. Equipment blanks					Х
Laboratory Control Sample (LCS)		Х		Х	
Laboratory Control Sample Duplicate(LCSD)					Х
LCS/LCSD Precision (RPD)					Х
Matrix Spike (MS)					Х
Matrix Spike Duplicate(MSD)					Х
MS/MSD Precision (RPD)					Х
Field/Lab Duplicate (RPD)					Х
Surrogate Spike Recoveries		Х		Х	
Column %D \leq 40% (If dual column is performed for reporting-not confirmation)		Х		х	
Dilution Factor		Х		Х	
Moisture Content		Х		х	
Tier III Validation					
Initial calibration %RSDs		Х		Х	
Continuing calibration %Ds		Х	Х		
System performance and column resolution		Х		Х	
Compound identification and quantitation		-	•	•	
A. Quantitation Reports		Х		Х	
B. RT of sample compounds within the established RT windows		Х		X	
C. Identification/confirmation		Х		Х	
D. Transcription/calculation errors present		Х		Х	
E. Reporting limits adjusted to reflect sample dilutions		Х		х	

%RSD – relative standard deviation, %R - percent recovery, RPD - relative percent difference, %D – difference.

POLYCHLORINATED BIPHENYLS (PCBs) ANALYSES

1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation
SW-846 8082A	Soil	14 days from collection to extraction and 40 days from extraction to analysis	Cool to 4°C <u>+</u> 2°C

All samples were analyzed within the specified holding time criteria.

2. Blank Contamination

Quality assurance (QA) blanks (i.e., method and rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Rinse blanks measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank (common laboratory contaminant compounds are calculated at ten times) is calculated for QA blanks containing concentrations greater than the method detection limit (MDL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

Compounds were not detected above the MDL in the associated blanks; therefore detected sample results were not associated with blank contamination.

3. System Performance

System performance and column resolution were acceptable.

4. Calibration

Satisfactory instrument calibration is established to insure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

4.1 Initial Calibration

A maximum RSD of 20% is allowed or a correlation coefficient greater than 0.99. Multiple-point calibrations were performed for Aroclor 1016 and 1260 only. Single-point calibrations were performed for the remaining Aroclors.

4.2 Continuing Calibration

All target compounds associated with the continuing calibration standard must exhibit a percent difference (%D) less than the control limit (15%).

All calibration criteria were within the control limits.

5. Surrogates/System Monitoring Compounds

All samples to be analyzed for organic compounds are spiked with surrogate compounds prior to sample preparation to evaluate overall laboratory performance and efficiency of the analytical technique. PCB analysis requires that one of the two PCB surrogate compounds exhibit recoveries within the laboratory-established acceptance limits.

Surrogate recoveries were acceptable.

6. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Analysis

MS/MSD data are used to assess the precision and accuracy of the analytical method. The compounds used to perform the MS/MSD analysis must exhibit a percent recovery within the laboratory-established acceptance limits. The relative percent difference (RPD) between the MS/MSD recoveries must exhibit an RPD within the laboratory-established acceptance limits.

Note: The MS/MSD recovery control limits do not apply for MS/MSD performed on sample locations where the compound concentration detected in the parent sample exceeds the MS/MSD concentration by a factor of four or greater.

A MS/MSD was not performed on the sample location associated with this SDG.

7. Laboratory Control Sample (LCS)/Blank Spike

The LCS analysis is used to assess the precision and accuracy of the analytical method independent of matrix interferences. The compounds associated with the LCS analysis must exhibit a percent recovery within the laboratory-established acceptance limits.

All compounds associated with the LCS analysis exhibited recoveries within the control limits.

8. Field Duplicate Analysis

Field duplicate analysis is used to assess the precision and accuracy of the field sampling procedures and analytical method. A control limit of 100% for soil matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of three times the RL is applied for soil matrices.

A field duplicate was not collected with the sample location associated with this SDG.

9. Compound Identification

The retention times of all quantitated peaks must fall within the calculated retention time windows for both the primary and confirmation columns. When dual column analysis is performed the relative percent difference (%RPD) of detected sample results must be less than 40%.

Compounds were not detected in the sample locations.

10. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

PCBs; SW-846 8082A	Repo	orted		rmance ptable	Not Required	
	No	Yes	No	Yes	Required	
GAS CHROMATOGRAPHY (GC/ECD)						
Tier II Validation						
Holding times		Х		Х		
Reporting limits (units)		Х		Х		
Blanks						
A. Method blanks		Х		Х		
B. Equipment blanks					Х	
Laboratory Control Sample (LCS) %R		Х		Х		
Laboratory Control Sample Duplicate(LCSD) %R					Х	
LCS/LCSD Precision (RPD)					Х	
Matrix Spike (MS) %R					Х	
Matrix Spike Duplicate(MSD) %R					Х	
MS/MSD Precision (RPD)					Х	
Field/Lab Duplicate (RPD)					Х	
Surrogate Spike Recoveries		Х		Х		
Column (RPD) (If dual column is performed-not confirmation purposes only)					Х	
Dilution Factor		Х		Х		
Moisture Content		Х		Х		
Tier III Validation						
Initial calibration %RSDs		Х		Х		
Continuing calibration %Ds		Х		Х		
System performance and column resolution		Х		Х		
Compound identification and quantitation						
A. Quantitation Reports		Х		Х		
B. RT of sample compounds within the established RT windows		Х		Х		
C. Pattern identification		Х		Х		
D. Transcription/calculation errors present		Х		Х		
E. Reporting limits adjusted to reflect sample dilutions		Х		Х		

%RSD – relative standard deviation, %R - percent recovery, RPD - relative percent difference, %D – difference

INORGANIC ANALYSIS INTRODUCTION

Analyses were performed according to United States Environmental Protection Agency (USEPA) SW-846 Methods 6010, 1311/6010, 7471, 1311/7471, Chapter 7 (Corrosivity), 9012B (Cyanide), ASTM D93 (Ignitability) and 9034 (Sulfide). Data were reviewed in accordance with USEPA National Functional Guidelines of July 2002.

The data review process is an evaluation of data on a technical basis rather than a determination of contract compliance. As such, the standards against which the data are being weighed may differ from those specified in the analytical method. It is assumed that the data package represents the best efforts of the laboratory and that it was already subjected to adequate and sufficient quality review prior to submission.

During the review process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Results are qualified with the following codes in accordance with the USEPA National Functional Guidelines:

- Concentration (C) Qualifiers
 - U The analyte was analyzed for but not detected. The associated value is the analyte instrument detection limit.
 - B The reported value was obtained from a reading less than the contract-required detection limit (CRDL), but greater than or equal to the instrument detection limit (IDL).
- Quantitation (Q) Qualifiers
 - E The reported value is estimated due to the presence of interference.
 - N Spiked sample recovery is not within control limits.
 - * Duplicate analysis is not within control limits.
- Validation Qualifiers
 - J The analyte was positively identified; however, the associated numerical value is an estimated concentration only.
 - UJ The analyte was not detected above the reported sample detection limit. However, the reported limit is approximate and may or may not represent the actual limit of detection.
 - UB Analyte considered non-detect at the listed value due to associated blank contamination.
 - R The sample results are rejected.

Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant quality control (QC) problems, the analysis is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is that no compound concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error.

METALS ANALYSES

1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation
SW-846 6010B	Soil	180 days from collection to analysis	Cool to 4°C <u>+</u> 2°C.
SW-846 7471	Soil	28 days from collection to analysis	Cool to 4°C <u>+</u> 2°C.
SW-846 1311/6010B	Soil/Leachate	180 days from collection to leachate and 180 days from leachate to analysis	Cool to 4°C <u>+</u> 2°C; preserved to a pH of less than 2.
SW-846 1311/7471	Soil/Leachate	28 days from collection to leachate and 28 days from collection to analysis	Cool to 4°C <u>+</u> 2°C.

All samples were analyzed within the specified holding times.

2. Blank Contamination

Quality assurance (QA) blanks (i.e., method and rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Rinse blanks measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank (common laboratory contaminant compounds are calculated at ten times) is calculated for QA blanks containing concentrations greater than the method detection limit (MDL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

Analytes were detected in the associated QA blanks; however, the associated sample results were greater than the BAL and/or were non-detect. No other qualification of the sample results was required.

3. Calibration

Satisfactory instrument calibration is established to provide that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument's continuing performance is satisfactory.

3.1 Initial Calibration and Continuing Calibration

The correct number and type of standards were analyzed. The correlation coefficient of the initial calibration was greater than 0.995 for all non-ICP analytes and all initial calibration verification standard recoveries were within control limits.

All continuing calibration verification standard recoveries were within the control limit.

3.2 CRDL Check Standard

The CRDL check standard serves to verify the linearity of calibration of the analysis at the CRDL. The CRDL standard is not required for the analysis of aluminum (Al), barium (Ba), calcium (Ca), iron (Fe), magnesium (Mg), sodium (Na), and potassium (K). The criteria used to evaluate the CRDL standard analysis are presented below in the CRDL standards evaluation table.

All CRDL standard recoveries were within control limits.

3.3 ICP Interference Control Sample (ICS)

The ICS verifies the laboratories interelement and background correction factors.

All ICS exhibited recoveries within the control limits.

4. Matrix Spike (MS)/Laboratory Duplicate Analysis

MS and laboratory duplicate data are used to assess the precision and accuracy of the analytical method.

4.1 MS Analysis

All metal analytes must exhibit a percent recovery within the established acceptance limits of 75% to 125%. The MS recovery control limits do not apply for MS performed on sample locations where the analyte's concentration detected in the parent sample exceeds the MS concentration by a factor of four or greater. In instance where this is true, the data will not be qualified even if the percent recovery does not meet the control limits and the laboratory qualifier "N" will be removed.

A MS analysis was not performed on the sample location associated with this SDG.

4.2 Laboratory Duplicate Analysis

The laboratory duplicate relative percent difference (RPD) criterion is applied when parent and duplicate sample concentrations are greater than or equal to 5 times the CRDL. A control limit of 20% for water matrices and 35% for soil matrices is applied when the criteria above is true. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the CRDL, a control limit of one times the CRDL is applied for water matrices and two times the CRDL for soil matrices.

A laboratory duplicate was not performed on the sample location associated with this SDG.

5. Field Duplicate Analysis

Field duplicate analysis is used to assess the precision and accuracy of the field sampling procedures and analytical method. A control limit of 50% for water matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of two times the RL is applied for water matrices.

Field duplicate analysis was not performed on a sample location within this SDG.

6. Laboratory Control Sample (LCS) Analysis

The LCS analysis is used to assess the precision and accuracy of the analytical method independent of matrix interferences. The analytes associated with the LCS analysis must exhibit a percent recovery between the control limits of 80% and 120%.

The LCS analysis exhibited recoveries within the control limits.

7. Serial Dilution

The serial dilution analysis is used to assess if a significant physical or chemical interference exists due to sample matrix. Analytes exhibiting concentrations greater than 50 times the MDL in the undiluted sample are evaluated to determine if matrix interference exists. These analytes are required to have less than a 10% difference (%D) between sample results from the undiluted (parent) sample and results associated with the same sample analyzed with a five-fold dilution.

A serial dilution was not performed on the sample location associated with this SDG.

8. Furnace Analysis QC

No furnace analyses were performed on the samples.

9. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

DATA VALIDATION CHECKLIST FOR METALS

METALS; SW-846 6010B, 7470A, 1311/6010	Rep	orted		rmance ptable	Not
and 1311/7471	No	Yes	No	Yes	Required
Inductively Coupled Plasma-Atomic Emission Spe Atomic Absorption – Manual Cold Vapor (CV)	ectrometry	(ICP)			
Tier II Validation					
Holding Times		Х		Х	
Reporting limits (units)		Х		Х	
Blanks					
A. Instrument Blanks		Х	Х		
B. Method Blanks		Х	Х		
C. Equipment/Field Blanks		Х		Х	
Laboratory Control Sample (LCS)		Х		Х	
Matrix Spike (MS) %R					Х
Matrix Spike Duplicate (MSD) %R					Х
MS/MSD Precision (RPD)					Х
Field/Lab Duplicate (RPD)					Х
ICP Serial Dilution					Х
Reporting Limit Verification		Х		Х	
Raw Data		Х		Х	
Tier III Validation					
Initial Calibration Verification		Х		Х	
Continuing Calibration Verification		Х		Х	
CRDL Standard		Х		Х	
ICP Interference Check		Х		Х	
Transcription/calculation errors present		Х		Х	
Reporting limits adjusted to reflect sample dilutions		Х		х	

%R Percent recovery RPD Relative percent difference

GENERAL CHEMISTRY ANALYSES

1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation
Cyanide by SW-846 9012B	Soil	14 days from collection to analysis	Cool to 4°C <u>+</u> 2°C.
Ignitability by Chapter7/ASTM Chap 7 D93	Soil	30 days from collection to analysis	Cool to 4°C <u>+</u> 2°C
Reactive Sulfide by 9034	Soil	7 days from collection to analysis	Cool to 4°C <u>+</u> 2°C.
Corrosivity as pH by Chapter 7	Soil	< 7 days	Cool to 4°C <u>+</u> 2°C

The analyses that exceeded the holding time are presented in the following table.

Sample Locations	Holding Time	Criteria
OU3-WC-01 (Sulfide)	11 days	< 7 Days
OU3-WC-01 (Corrosivity as pH)	11 days	< 7 Days

Sample results associated with sample locations analyzed by analytical methods 9034 (Sulfide) and Chapter 7) Corrosivity were qualified, as specified in the table below. All other holding times were met.

	Qualification			
Criteria	Detected Analytes	Non-detect Analytes		
Analysis completed less than two times holding time	J	UJ		

2. Blank Contamination

Quality assurance (QA) blanks (i.e., method and rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Rinse blanks measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank (common laboratory contaminant compounds are calculated at ten times) is calculated for QA blanks containing concentrations greater than the reporting limit (RL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

Analytes were not detected above the RL in the associated blanks; therefore detected sample results were not associated with blank contamination.

3. Calibration

Satisfactory instrument calibration is established to insure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

The correct number and type of standards were analyzed. The correlation coefficient of the initial calibration was greater than 0.995 and all initial calibration verification standard recoveries were within control limits.

All calibration standard recoveries were within the control limit.

4. Matrix Spike (MS)/Laboratory Duplicate Analysis

MS and laboratory duplicate data are used to assess the precision and accuracy of the analytical method.

4.1 MS Analysis

All analytes must exhibit a percent recovery within the established acceptance limits of 75% to 125%. The MS recovery control limits do not apply for MS performed on sample locations where the analyte's concentration detected in the parent sample exceeds the MS concentration by a factor of four or greater. In instance where this is true, the data will not be qualified even if the percent recovery does not meet the control limits and the laboratory qualifier "N" will be removed.

A MS analysis was not performed on the sample location associated with this SDG.

4.2 Laboratory Duplicate Analysis

The laboratory duplicate relative percent difference (RPD) criterion is applied when parent and duplicate sample concentrations are greater than or equal to 5 times the CRDL. A control limit of 20% for water matrices and 35% for soil matrices is applied when the criteria above is true. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the CRDL, a control limit of one times the CRDL is applied for water matrices and two times the CRDL for soil matrices.

A laboratory duplicate sample was not performed on the sample location associated with this SDG.

5. Field Duplicate Analysis

Field duplicate analysis is used to assess the precision and accuracy of the field sampling procedures and analytical method. A control limit of 100% for soil matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of three times the RL is applied for soil matrices.

Field duplicate analysis was not performed on a sample location within this SDG.

6. Laboratory Control Sample (LCS) Analysis

The LCS analysis is used to assess the precision and accuracy of the analytical method independent of matrix interferences. The analytes associated with the LCS analysis must exhibit a percent recovery between the control limits of 80% and 120%.

The LCS analysis exhibited recoveries within the control limits.

7. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

DATA VALIDATION CHECKLIST FOR GENERAL CHEMISTRY

General Chemistry: EPA Chap 7, 9012B, ASTM D93 and 9034	Reported			mance ptable	Not	
	No	Yes	No	Yes	Required	
Miscellaneous Instrumentation						
Tier II Validation						
Holding times		Х	Х			
Reporting limits (units)		Х		Х		
Blanks						
A. Method blanks		Х		Х		
B. Equipment blanks					Х	
Laboratory Control Sample (LCS) %R		Х		Х		
Laboratory Control Sample Duplicate(LCSD) %R					Х	
LCS/LCSD Precision (RPD)					Х	
Matrix Spike (MS) %R					Х	
Matrix Spike Duplicate(MSD) %R					Х	
MS/MSD Precision (RPD)					Х	
Field/Lab Duplicate (RPD)					Х	
Dilution Factor		Х		Х		
Moisture Content					Х	
Tier III Validation						
Initial calibration %RSD or correlation coefficient		Х		Х		
Continuing calibration %R		Х		Х		
Raw Data		Х		Х		
Transcription/calculation errors present		Х		Х		
Reporting limits adjusted to reflect sample dilutions		Х		Х		

%RSD – relative standard deviation, %R - percent recovery, RPD - relative percent difference, %D – difference

SAMPLE COMPLIANCE REPORT

SAMPLE COMPLIANCE REPORT

Sample						(Compliancy ¹			Noncompliance
Delivery Group (SDG)	Samplin g Date	Protocol	Sample ID	Matrix	voc	svoc	PCB/PEST /HERB	MET	MISC	Noncompliance
		SW-846	TB-011920212	Water	Yes					
		SW-846	FB-01192012	Water	Yes			Yes		
		SW-846 and SM	OU3-WC-01	Soil	Yes	No	Yes	Yes	No	SVOC: ICV %RSD Gen Chem: HT
		SW-846	OU3-SB-09(0-0.5)	Soil	Yes			Yes		
JA97463	1/1912	SW-846	OU3-SB-09(14.5-15)	Soil	No			Yes		VOC: TICs
		SW-846	OU3-SB-10(14-14.5)	Soil	No			Yes		VOC: CCV %D, TICs
		SW-846	OU3-SB-17(0-0.5)	Soil	Yes			Yes		
		SW-846	OU3-SB-16(0-0.5)	Soil	Yes	No	Yes	Yes	Yes	SVOC: ICV %RSD
		SW-846	OU3-SB-13(14.5-15	Soil	Yes	Yes	Yes	Yes	Yes	VOC: Lab Dup RPD, TICs SVOC: ICV %RSD, TICs

1 Samples which are compliant with no added validation qualifiers are listed as "yes". Samples which are non-compliant or which have added qualifiers are listed as "no". A "no" designation does not necessarily indicate that the data have been rejected or are otherwise unusable.

VALIDATION PERFORMED BY: Lisa Horton

SIGNATURE:

Lion Hoston

DATE: February 17, 2012

PEER REVIEW: Todd Church

DATE: February 17, 2012

CHAIN OF CUSTODY/ CORRECTED SAMPLE ANALYSIS DATA SHEETS

\arcadis-us\officedata\Syracuse-NY\Project_Data\AIT_PVU\2012\2012 - 15314-15700\15608\15608R_JA97463.doc

	578 FB 514		CHAI 2235 Ro 732-329-	oute 13	30, Day	ton, N	0 08	810				1	ivrj	: Ly 168	5330		Boate	PA			0	F _j]
					acute							Accura	(Crucke #	,	,,,,.		Accus	HQ JOO B		J	149	7403	1
Ctiont / Reporting Information			Project	Informa	ation			71)) -	<u></u>	:	÷,	<u> </u>	Req	ueste	Analys	s (600	TEST	CODE	shoet)			Matrix Codes]
Concerve Harris ARCADIS Street ADDESS 17-17 Bouth 208 North Cay Steam 20	9 Lea	Bomat Ct	00 (State		3 Informatic										PFULL, RCEACLAS			*****				DW - Drinking Water GW - Groving Water WW - Water SW - Surface Water SG - Sol SL - Sludge	
Project Contect E-mar	Protect		NY	5500; A	1-900 007:051	VTA"	5	05	<u> </u>	<u>c</u> _		1			CEAC							SEO-Sediment Ot - Ot LIQ - Other Liquid AIR - Air	
Jon Pocketing jon rockling arcaduus	Cleri Purchase (4. 3. (g Xcor \$		City			5	late		Zφ	•	-			1,80							SOL - Other Solid WP - Wate FB Field Blank	States .
(914) 260-7373 - Sanoersi Namesi Keista Mastrocula (600)755-70	Project Manager		 \neun	Attension	1						-		2	-1-	たいし							E8-Equipment Blank RB- Rinse Blank TB-Trip Blank	
Assume Field ID / Point of Collection	MECHEDI V.a. #		Collector	Sampled	idaşık	I el boties	Į į	Number	CI Present	Net See	ENCORE	VoCs	Metal	TCL +	TOLP							LAB USE ONLY	
1 TB-01192012 .		1/19/12	~	King	TB	2	2					¥									Ź	ANET 33	
2 FB-01192012			1200	<u></u> λην	FB	3	2	11				X	X					ļ				475	-
3 003-wc-01		<u> </u>	1115	1	50	7			4		3	X			X			ļ		-/		EX91.	
Y 003-38-09 (0-0.5)			9511			4	┝╍┥╸	+	1		3	X	×					 		/		1416	
5 W3-3B-09 (14.5-15)			1140	┼-╂		4		+	/		3	X	×							/	_	19K6	
6 003-38-10 (14-14.5)	3-	-	1155	$\left \right $	\square	4		+	1		3 3	X	X					-			-	4049	
7 003-5B-17 (+15+5) m	56-1710-0	<u>.52 </u>	1105			<u>4</u>	+				3 3	X	×	$\overline{\mathbf{v}}$	_	_		+				266	
1 013-5B-16 (0-0,5) 9 013-5B-12/(45-15)			1050	H		4	\vdash	++			2	×	H	X		-	-{						1
		e••	1020	+-	\square	-7_		╉			3		-	×	-+	-		+					
-ti- Ouz KN		_		++				++	\rightarrow									+		$\rightarrow \downarrow$			
				4	₩-			╉								-	+	-					
Tumaround Time (Businets days)	ar tana sida	885.553 (F. ¹ . 20	-11,892 (13)	9 (e	L	Data	Delive	erable i	nforma'	un lini		<u>ل</u> مبينا	ليبيسا			Co	1 mments	i / Speci	al instru	clions			
Std. 15 Business Days Std. 10 Business Days (by Contract only) 10 Day RUSH 6 Day RUSH 1 D Jay EMERGENCY	Approved By (Accus	est P84); 7 Dete:			Commerc Commerc FULLT1 (NJ Reduc Commerc	lel *8* (L Level 3+4 ed	evel 2				P Cates Forms Format	iory B	_					Â	teater				
2 Day EMERGENCY 1 Day EMERGENCY Emergency & Rush T/A data evaluative V/A Lablink						Commerce Commerce NJ Reduc	iel*B* ed ≂ R	e Results (ta + QC • QC Su	mmany	+ Partiz	í Raw da	ita -	*	Fill	enice 1	<u> </u>	<u> </u>	1500	- Ca		inpiz	
Reliepsished by Sempler: Date Time: 7	San	nnie Custody m	ury docun	tentod b	olow eac	h time sa	n priori	a chan	00 pot	Farsio	p, Incl	uding c	ourier	deilver	у.		1	red 8 gim			1		1
1 Kangarana by Sampar: 1 Kangarana 1/19/11 Reingarana by Remotor: Date Terre:	. 1400 (1 Jak	yor	5				L.	K K	nH	5		-4	19	Caste Time:	20	2		T ali	4	U/IS	use	
Reinquiched by: Date Time:		3 V Received By:					4		". "62.	، ۲۹	र्यन	licerce Not inter			<u> </u>	licable	4		Calce D	,	Coeler	Tomo. 3, 0° CP	
۱ <u>۵ میں ایک می</u>		<u>v</u>					L		T	ns.	1/19	1/12			<u> 19</u> 9/					 .			r N

JA97463: Chain of Custody Page 1 of 2

		керс	nt of Ai	141951	10		Page 1 of 1
Client Sam Lab Sampl Matrix: Method: Project:		3 SW846 1311			Dat	te Sampled: te Received: cent Solids:	
Run #1	File ID DF L245546.D 5	Analyzed 01/25/12	By TLR	Prep 01/23	Date 3/12	Prep Bat GP62578	-
Run #2							
Run #1 Run #2	Purge Volume 5.0 ml						
VOA TCL	P Leachate				Т	CLP Leach:	ate method SW846 1311
CAS No.	Compound	Result	HW#	MCL	RL	MDL	Units Q
71-43-2	Benzene	ND	D018	0.50	0.0050	0.0011	mg/l
78-93-3	2-Butanone (MEK)	ND	D035	200	0.10	0.015	mg/l
56-23-5	Carbon tetrachloride	ND	D019		0.0050	0.00097	mg/l
108-90-7	Chlorobenzene	ND	D021	100	0.0050	0.0011	mg/l
67-66-3	Chloroform	ND	D022	6.0	0.0050	0.0010	mg/l
106-46-7	1,4-Dichlorobenzene	ND	D027	7.5	0.0050	0.0013	mg/l
107-06-2	1,2-Dichloroethane	ND	D028	0.50	0.0050	0.00090	mg/l
75-35-4	1,1-Dichloroethene	ND	D029	0.70	0.0050	0.0014	mg/l
127-18-4	Tetrachloroethene	ND	D039	0.70	0.0050	0.0016	mg/l
79-01-6 75-01-4	Trichloroethene	ND	D040	0.50	0.0050	0.0011	mg/1
13-01-4	Vinyl chloride	ND	D043	0.20	0.025	0.0013	mg/l
CAS No.	Surrogate Recoverie	s Run#1	Run# 2	e Li	imits		
1868-53-7	Dibromofluorometha	ne 84%		76	6-120%		
17060-07-0	1,2-Dichloroethane-E	85%			-135%		
2037-26-5	Toluene-D8	91%			6-117%		
460-00-4	4-Bromofluorobenzer	ie 108%			2-122%		

Report of Analysis

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Client Sample ID: TB-01192012 Lab Sample ID: JA97463-1 Date Sampled: 01/19/12 AQ - Trip Blank Soil Date Received: 01/19/12 Matrix: SW846 8260B Percent Solids: n/a Method: Project: Ramapo, NY Prep Date Prep Batch Analytical Batch File ID DF Analyzed By V3D2987 3D69467.D 01/23/12 NT n/a n/a Run #1 1 Run #2 Purge Volume 5.0 ml Run #1 Run #2 VOA TCL List (OLM4.2) RL MDL Units Q Result CAS No. Compound ND 10 7.6 67-64-1 ug/l Acetone 1.0 0.22 ND ug/l 71-43-2 Benzene 1.0 0.23 ug/l 75-27-4 Bromodichloromethane ND ND 4.00.24 ug/l 75-25-2 Bromoform ND 2.00.31 ug/l 74-83-9 Bromomethane 10 2.9ND ug/l 78-93-3 2-Butanone (MEK) Carbon disulfide ND 2.00.18 ug/l 75-15-0 Carbon tetrachloride ND 1.00.19ug/l 56-23-5 Chlorobenzene ND 1.00.22 ug/l 108-90-7 75-00-3 Chloroethane ND 1.0 0.37 ug/l 67-66-3 Chloroform ND 1.00.21 ug/l ND 1.0 0.22 ug/l 74-87-3 Chloromethane 5.0 0.29 ND ug/l 110-82-7 Cyclohexane 1,2-Dibromo-3-chloropropane ND 10 1.3 ug/l 96-12-8 0.20 Dibromochloromethane ND 1.0 ug/l 124-48-1 ug/l 2.0 0.21 106-93-4 1,2-Dibromoethane ND 95-50-1 1.2-Dichlorobenzene ND 1.0 0.18 ug/l 0.29 541-73-1 1.3-Dichlorobenzene ND 1.0ug/l 1.0 0.26 ug/l 1,4-Dichlorobenzene ND 106-46-7 75-71-8 Dichlorodifluoromethane ND 5.00.31 ug/l 75-34-3 1.1-Dichloroethane ND 1.00.19 ug/l 107-06-2 1,2-Dichloroethane ND 1.0 0.18 ug/l 75-35-4 1.1-Dichloroethene ND 1.0 0.28 ug/l 156-59-2 cis-1.2-Dichloroethene ND 1.0 0.22 ug/l 156-60-5 trans-1,2-Dichloroethene ND 1.00.31 ug/l 0.22 1,2-Dichloropropane NÐ 1.0 ug/l 78-87-5 10061-01-5 cis-1,3-Dichloropropene ND 1.0 0.22 ug/l 10061-02-6 trans-1,3-Dichloropropene ND 1.0 0.19 ug/l Ethylbenzene ND 1.0 0.21 ug/l 100-41-4 Freon 113 5.00.49 ug/l 76-13-1 ND ND 5.0 3.0 ug/l 591-78-6 2-Hexanone 98-82-8 ND 2.0 0.19 ug/l Isopropylbenzene

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 1 of 2

ACCUTEST

JA97463

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

Client Sample ID: TB-01192012

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

J = Indicates an estimated value

Lab Sample Matrix: Method: Project:					Da	te Sam te Rece rcent S	eived:	01/19/12 01/19/12 n/a
VOA TCL	List (OLM4.2)							
CAS No.	Compound	Result	RL	MDL	Units	Q		
79-20-9	Methyl Acetate	ND	5.0	2.9	ug/l			
108-87-2	Methylcyclohexane	ND	5.0	0.18	ug/l			
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.18	ug/l			
108-10-1	4-Methyl-2-pentanone(MIBK)		5.0	1.2	ug/l			
75-09-2	Methylene chloride	ND	2.0	0.20	ug/l			
100-42-5	Styrene	ND	5.0	0.23	ug/l			
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.20	ug/l			
127-18-4	Tetrachloroethene	ND	1.0	0.32	ug/l			
108-88-3	Toluene	ND	1.0	0.15	ug/l			
120-82-1	1,2,4-Trichlorobenzene	ND	5.0	0.15	ug/l			
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.24	ug/l			
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.23	ug/l			
79-01-6	Trichloroethene	ND	1.0	0.21	ug/l			
75-69-4	Trichlorofluoromethane	ND	5.0	0.35	ug/l			
75-01-4	Vinyl chloride	ND	1.0	0.27	ug/l			
1330-20-7	Xylene (total)	ND	1.0	0.17	ug/l			
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its			
1868-53-7	Dibromofluoromethane	99%		77-1	20%			
17060-07-0	1,2-Dichloroethane-D4	90%		70-1	27%			
2037-26-5	Toluene-D8	101%		79-1	20%			
460-00-4	4-Bromofluorobenzene	90%		76-1	18%			
CAS No.	Tentatively Identified Comp	ounds	R.T.	Est.	Conc.	Units	Q	
	Total TIC, Volatile			0		ug/l		

MDL - Method Detection Limit

Report of Analysis

Page 2 of 2

.

Accutest Laboratories

		Repo	ort of A	nalysis			Page 1 of 2
Client Sam Lab Samp Matrix: Method: Project:	•	[Date		/19/12 /19/12 a
Run #1 Run #2		Analyzed 01/23/12	By NT	Prep D n/a	ate	Prep Batch n/a	Analytical Batch V3D2987
Run #1 Run #2	Purge Volume 5.0 ml						
VOA TCL	List (OLM4.2)						
CAS No.	Compound	Result	RL	MDL	Units	Q	
67-64-1 71-43-2	Acetone Benzene	ND ND	10 1.0	7.6 0.22	ug/l ug/l		
75-27-4 75-25-2	Bromodichloromethane Bromoform	ND ND	1.0 4.0	0.23 0.24	ug/l ug/l		
74-83-9 78-93-3	Bromomethane 2-Butanone (MEK)	ND ND	2.0 10	0.31 2.9	ug/l ug/l		
75-15-0 56-23-5	Carbon disulfide Carbon tetrachloride	ND ND	$\begin{array}{c} 2.0\\ 1.0\end{array}$	$\begin{array}{c} 0.18 \\ 0.19 \end{array}$	ug/l ug/l		
108-90-7 75-00-3	Chlorobenzene Chloroethane	ND ND	$\begin{array}{c} 1.0\\ 1.0\end{array}$	0.22 0.37	ug/l ug/l		
67-66-3 74-87-3	Chloroform Chloromethane	ND ND	$\begin{array}{c} 1.0\\ 1.0\end{array}$	0.21 0.22	ug/l ug/l		
110-82-7 96-12-8	Cyclohexane 1,2-Dibromo-3-chloropropan		5.0 10	$\begin{array}{c} 0.29 \\ 1.3 \end{array}$	ug/l ug/l		
124-48-1 106-93-4	Dibromochloromethane 1,2-Dibromoethane	ND ND	$\begin{array}{c} 1.0\\ 2.0\end{array}$	0.20 0.21	ug/l ug/l		
95-50-1 541-73-1	1,2-Dichlorobenzene 1,3-Dichlorobenzene	ND ND	$\begin{array}{c} 1.0 \\ 1.0 \end{array}$	$\begin{array}{c} 0.18 \\ 0.29 \end{array}$	ug/l ug/l		
106-46-7 75-71-8	1,4-Dichlorobenzene Dichlorodifluoromethane	ND ND	$\begin{array}{c} 1.0 \\ 5.0 \end{array}$	0.26 0.31	ug/l ug/l		
75-34-3 107-06-2	1,1-Dichloroethane 1,2-Dichloroethane	ND ND	1.0 1.0	0.19 0.18	ug/l ug/l		
75-35-4 156-59-2	1,1-Dichloroethene cis-1,2-Dichloroethene	ND ND	1.0 1.0	0.28 0.22	ug/l ug/l		
156-60-5 78-87-5	trans-1,2-Dichloroethene 1,2-Dichloropropane	ND ND	$\begin{array}{c} 1.0 \\ 1.0 \end{array}$	0.31 0.22	ug/l ug/l		
10061-01-5 10061-02-6	cis-1,3-Dichloropropene	ND ND	$\begin{array}{c} 1.0\\ 1.0\end{array}$	0.22 0.19	ug/l ug/l		
100-41-4 76-13-1	Ethylbenzene Freon 113	ND ND	1.0 5.0	0.21 0.49	ug/l ug/l		
591-78-6 98-82-8	2-Hexanone Isopropylbenzene	ND ND	5.0 2.0	3.0 0.19	ug/l ug/l		

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Client Samp Lab Sample Matrix: Method: Project:		1			Dat	te Sam te Rece cent S	ved:	01/19/12 01/19/12 n/a
VOA TCL	List (OLM4.2)							
CAS No.	Compound	Result	RL	MDL	Units	Q		
79-20-9	Methyl Acetate	ND	5.0	2.9	ug/l			
108-87-2	Methylcyclohexane	ND	5.0	0.18	ug/l			
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.18	ug/l			
108-10-1	4-Methyl-2-pentanone(MIBK) ND	5.0	1.2	ug/l			
75-09-2	Methylene chloride	ND	2.0	0.20	ug/l			
100-42-5	Styrene	ND	5.0	0.23	ug/l			
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.20	ug/l			
127-18-4	Tetrachloroethene	ND	1.0	0.32	ug/I			
108-88-3	Toluene	ND	1.0	0.15	ug/l			
120-82-1	1,2,4-Trichlorobenzene	ND	5.0	0.15	ug/l			
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.24	ug/l			
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.23	ug/l			
79-01-6	Trichloroethene	ND	1.0	0.21	ug/l			
75-69-4	Trichlorofluoromethane	ND	5.0	0.35	ug/l			
75-01-4	Vinyl chloride	ND	1.0	0.27	ug/l			
1330-20-7	Xylene (total)	ND	1.0	0.17	ug/l			
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its			
1868-53-7	Dibromofluoromethane	99 %		77-1	20%			
17060-07-0	1,2-Dichloroethane-D4	88%		70-1	27%			
2037-26-5	Toluene-D8	101%		79-1	20%			
460-00-4	4-Bromofluorobenzene	91%		76-1	18%			
CAS No.	Tentatively Identified Comp	pounds	R.T.	Est.	Conc.	Units	Q	
	Total TIC, Volatile			0		ug/l		

ND = Not detected MDL - Method Detection Limit RL = Reporting Limit J = Indicates an estimated value

B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range

		Repo	rt of A	nalysis			Page 1 of
Client Sam Lab Sample Matrix: Method: Project:	e ID: JA97463-3 SO - Soil	46 5035			Date	Received: 01	1/19/12 1/19/12 5.6
Run #1 Run #2		Analyzed)1/26/12	By RS	Prep D 01/19/1	ate 2 16:00	Prep Batch n/a	Analytical Batch VY5123
Run #1 Run #2	Initial Weight 5.0 g						
VOA TCL	List (OLM4.2)						
CAS No.	Compound	Result	RL	MDL	Units	Q	
67-64-1	Acetone	ND	12	7.6	ug/kg		
71-43-2	Benzene	ND	1.2	0.15	ug/kg		
75-27-4	Bromodichloromethane	ND	5.8	0.26	ug/kg		
75-25-2	Bromoform	ND	5.8	0.87	ug/kg		
74-83-9	Bromomethane	ND	5.8	0.45	ug/kg		
78-93-3	2-Butanone (MEK)	ND	12	5.0	ug/kg		
75-15-0	Carbon disulfide	ND	5.8	0.23	ug/kg		
56-23-5	Carbon tetrachloride	ND	5.8	0.40	ug/kg		
108-90-7	Chlorobenzene	ND	5.8	0.37	ug/kg		
75-00-3	Chloroethane	ND	5.8	0.47	ug/kg		
67-66-3	Chloroform	ND	5.8	0.56	ug/kg		
74-87-3	Chloromethane	ND	5.8	0.72	ug/kg		
110-82-7	Cyclohexane	ND	5.8	0.44	ug/kg		
96-12-8	1,2-Dibromo-3-chloropropan	e ND	12	1.7	ug/kg		
124-48-1	Dibromochloromethane	ND	5.8	0.19	ug/kg		
106-93-4	1,2-Dibromoethane	ND	1.2	0.27	ug/kg		
95-50-1	1,2-Dichlorobenzene	ND	5.8	0.32	ug/kg		
541-73-1	1,3-Dichlorobenzene	ND	5.8	0.22	ug/kg		
106-46-7	1,4-Dichlorobenzene	ND	5.8	0.20	ug/kg		
75-71-8	Dichlorodifluoromethane	ND	5.8	0.37	ug/kg		
75-34-3	1,1-Dichloroethane	ND	5.8	0.25	ug/kg		
107-06-2	1,2-Dichloroethane	ND	1.2	0.21	ug/kg		
75-35-4	1,1-Dichloroethene	ND	5.8	0.71	ug/kg		
156-59-2	cis-1,2-Dichloroethene	ND	5.8	0.37	ug/kg		
156-60-5	trans-1,2-Dichloroethene	ND	5.8	0.49	ug/kg		
78-87-5	1,2-Dichloropropane	ND	5.8	0.31	ug/kg		
10061-01-5		ND	5.8	0.18	ug/kg		
10061-02-6		ND	5.8	0.39	ug/kg		
100-41-4	Ethylbenzene	ND	1.2	0.17	ug/kg		
76-13-1	Freon 113	ND	5.8	0.83	ug/kg		
591-78-6	2-Hexanone	ND ND	5.8	2.9	ug/kg		
98-82-8	Isopropylbenzene	ND	5.8	0.16	ug/kg		

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

		Repo	rt of A	nalysis			Page 2 of 2
Client Sample I Lab Sample ID Matrix: Method: Project:		SW846 5035			Date	Sampled: Received: ent Solids:	
VOA TCL List	(OLM4.2)						
CAS No. Co	ompound	Result	RL	MDL	Units	Q	
79-20-9 M	ethyl Acetate	ND	5.8	2.6	no/ka		

0.10 1.00						×	
79-20-9	Methyl Acetate	ND	5.8	2.6	ug/kg	[
108-87-2	Methylcyclohexane	ND	5.8	0.28	ug/kg		
1634-04-4	Methyl Tert Butyl Ether	ND	1.2	0.21	ug/kg		
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.8	3.0	ug/kg		
75-09-2	Methylene chloride	ND	5.8	0.27	ug/kg		
100-42-5	Styrene	ND	5.8	0.21	ug/kg		
79-34-5	1,1,2,2-Tetrachloroethane	ND	5.8	0.21	ug/kg		
127-18-4	Tetrachloroethene	ND	5.8	0.22	ug/kg		
108-88-3	Toluene	ND	1.2	0.44	ug/kg		
120-82-1	1,2,4-Trichlorobenzene	ND	5.8	0.39	ug/kg		
71-55-6	1,1,1-Trichloroethane	ND	5.8	0.28	ug/kg		
79-00-5	1,1,2-Trichloroethane	ND	5.8	0.50	ug/kg	[
79-01-6	Trichloroethene	ND	5.8	0.29	ug/kg	ſ	
75-69-4	Trichlorofluoromethane	ND	5.8	0.56	ug/kg	[
75-01-4	Vinyl chloride	ND	5.8	0.53	ug/kg	{	
1330-20-7	Xylene (total)	ND	1.2	0.21	ug/kg	[
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts		
1868-53-7	Dibromofluoromethane	87%		67-13	81%		
17060-07-0	1,2-Dichloroethane-D4	84%		66-13			
2037-26-5	Toluene-D8	93%		76-12			
460-00-4	4-Bromofluorobenzene	89%		53-14			
CAS No.	Tentatively Identified Compo	ounds	R.T.	Est.	Conc.	Units	Q
	Total TIC, Volatile			0		ug/kg	

ND = Not detected MDL - Method Detection Limit RL = Reporting Limit

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range

Report of Analysis

Client Sam Lab Sampl Matrix: Method: Project:		6 5035			Date	Received: 01	1/19/12 1/19/12).0
Run #1 Run #2		n alyzed 1/26/12	By RS	Prep D 01/19/1	ate 2 16:00	Prep Batch n/a	Analytical Batch VY5123
Run #1 Run #2	Initial Weight 5.1 g						
VOA TCL	List (OLM4.2)						
CAS No.	Compound	Result	RL	MDL	Units	Q	
67-64-1	Acetone	ND	11	7.2	ug/kg		
71-43-2	Benzene	ND	1.1	0.14	ug/kg		
75-27-4	Bromodichloromethane	ND	5.4	0.24	ug/kg		
75-25-2	Bromoform	ND	5.4	0.82	ug/kg		
74-83-9	Bromomethane	ND	5.4	0.43	ug/kg		
78-93-3	2-Butanone (MEK)	ND	11	4.7	ug/kg		
75-15-0	Carbon disulfide	ND	5.4	0.21	ug/kg		
56-23-5	Carbon tetrachloride	ND	5.4	0.38	ug/kg		
108-90-7	Chlorobenzene	ND	5.4	0.35	ug/kg		
75-00-3	Chloroethane	ND	5.4	0.44	ug/kg		
67-66-3	Chloroform	ND	5.4	0.53	ug/kg		
74-87-3	Chloromethane	ND	5.4	0.68	ug/kg		
110-82-7	Cyclohexane	ND	5.4	0.41	ug/kg		
96-12-8	1,2-Dibromo-3-chloropropane	ND	11	1.6	ug/kg		
124-48-1	Dibromochloromethane	ND	5.4	0.18	ug/kg		
106-93-4	1,2-Dibromoethane	ND	1.1	0.26	ug/kg		
95-50-1	1,2-Dichlorobenzene	ND	5.4	0.30	ug/kg		
541-73-1	1,3-Dichlorobenzene	ND	5.4	0.21	ug/kg		
106-46-7	1,4-Dichlorobenzene	ND	5.4	0.19	ug/kg		
75-71-8	Dichlorodifluoromethane	ND	5.4	0.35	ug/kg		
75-34-3	1,1-Dichloroethane	ND	5.4	0.24	ug/kg		
107-06-2	1,2-Dichloroethane	ND	1.1	0.20	ug/kg		
75-35-4	1,1-Dichloroethene	ND	5.4	0.67	ug/kg		
156-59-2	cis-1,2-Dichloroethene	ND	5.4	0.35	ug/kg		
156-60-5	trans-1,2-Dichloroethene	ND	5.4	0.46	ug/kg		
78-87-5	1,2-Dichloropropane	ND	5.4	0.29	ug/kg		
10061-01-5	* *	ND	5.4	0.17	ug/kg		
10061-02-6	· · · ·	ND	5.4	0.37	ug/kg	-	
100-41-4	Ethylbenzene	0.25	1.1	0.16	ug/kg	J	
76-13-1	Freon 113	ND	5.4	0.78	ug/kg		
591-78-6	2-Hexanone	ND	5.4	2.7	ug/kg		
98-82-8	Isopropylbenzene	ND	5.4	0.15	ug/kg		

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 2

	mapo, NY	5		rerce	ent Solids:	90.0
VOA TCL List (OLM4 CAS No. Compound			,	 		

CAS No.	Compound	Result	RL	MDL	Units	Q	
79-20-9	Methyl Acetate	ND	5.4	2.4	ug/kg	ŗ	
108-87-2	Methylcyclohexane	ND	5.4	0.27	ug/kg	5	
1634-04-4	Methyl Tert Butyl Ether	ND	1.1	0.19	ug/kg	S	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.4	2.9	ug/kg	, ,	
75-09-2	Methylene chloride	ND	5.4	0.25	ug/kg	ŗ	
100-42-5	Styrene	ND	5.4	0.20	ug/kg	5	
79-34-5	1,1,2,2-Tetrachloroethane	ND	5.4	0.19	ug/kg	5	
127-18-4	Tetrachloroethene	ND	5.4	0.21	ug/kg	(
108-88-3	Toluene	ND	1.1	0.41	ug/kg	í,	
120-82-1	1,2,4-Trichlorobenzene	ND	5.4	0.37	ug/kg	5	
71-55-6	1,1,1-Trichloroethane	ND	5.4	0.26	ug/kg	5	
79-00-5	1,1,2-Trichloroethane	ND	5.4	0.47	ug/kg	5	
79-01-6	Trichloroethene	ND	5.4	0.27	ug/kg	5	
75-69-4	Trichlorofluoromethane	ND	5.4	0.53	ug/kg	;	
75-01-4	Vinyl chloride	ND	5.4	0.50	ug/kg	.	
1330-20-7	Xylene (total)	1.9	1.1	0.20	ug/kg	5	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its		
1868-53-7	Dibromofluoromethane	87%		67-1	31%		
17060-07-0	1,2-Dichloroethane-D4	85 %		66-1	30%		
2037-26-5	Toluene-D8	93%		76-1	25%		
460-00-4	4-Bromofluorobenzene	90%		53-1	42%		
CAS No.	Tentatively Identified Compo	ounds	R.T.	Est.	Conc.	Units	Q
	Total TIC, Volatile			0		ug/kg	

ND = Not detected MDL - Method Detection Limit

- RL = Reporting Limit
- E = Indicates value exceeds calibration range
- J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Client Sam Lab Sampl Matrix: Method: Project:		6 5035			Date	Received: 01	1/19/12 1/19/12 2.3
Run #1 ^a Run #2		nalyzed 1/31/12	By ET	Prep D 01/19/1	ate 12 16:00	Prep Batch n/a	Analytical Batch VD7823
Run #1 Run #2	Initial WeightFinal Volume5.6 g5.0 ml	e Meth 100 u	anol Aliqu l	ot			
VOA TCL	List (OLM4.2)						
CAS No.	Compound	Result	RL	MDL	Units	Q	
67-64-1	Acetone	ND	530	350	ug/kg		
71-43-2	Benzene	15.1	53	7.0	ug/kg	J	
75-27-4	Bromodichloromethane	ND	260	12	ug/kg	0	
75-25-2	Bromoform	ND	260	40	ug/kg		
74-83-9	Bromomethane	ND	260	21	ug/kg		
78-93-3	2-Butanone (MEK)	ND	530	230	ug/kg		
75-15-0	Carbon disulfide	ND	260	10	ug/kg		
56-23-5	Carbon tetrachloride	ND	260	18	ug/kg		
108-90-7	Chlorobenzene	ND	260	17	ug/kg		
75-00-3	Chloroethane	ND	260	21	ug/kg		
67-66-3	Chloroform	ND	260	25	ug/kg		
74-87-3	Chloromethane	ND	260	33	ug/kg		
110-82-7	Cyclohexane	ND	260	20	ug/kg		
96-12-8	1,2-Dibromo-3-chloropropane		530	79	ug/kg		
124-48-1	Dibromochloromethane	ND	260	8.8	ug/kg		
106-93-4	1,2-Dibromoethane	ND	53	13	ug/kg		
95-50-1	1,2-Dichlorobenzene	ND	260	15	ug/kg		
541-73-1	1,3-Dichlorobenzene	ND	260	10	ug/kg		
106-46-7	1,4-Dichlorobenzene	ND	260	8.9	ug/kg		
75-71-8	Dichlorodifluoromethane	ND	260	17	ug/kg		
75-34-3	1,1-Dichloroethane	ND	260	11	ug/kg		
107-06-2	1,2-Dichloroethane	ND	53	9.6	ug/kg		
75-35-4	1,1-Dichloroethene	ND	260	32	ug/kg		
156-59-2	cis-1,2-Dichloroethene	ND	260	17	ug/kg		
156-60-5	trans-1,2-Dichloroethene	ND	260	22	ug/kg		
78-87-5	1,2-Dichloropropane	ND	260	14	ug/kg		
10061-01-5	cis-1,3-Dichloropropene	ND	260	8.0	ug/kg		
10061-02-6	trans-1,3-Dichloropropene	ND	260	18	ug/kg		
100-41-4	Ethylbenzene	1290	53	7.8	ug/kg		
76-13-1	Freon 113	ND	260	38	ug/kg		
591-78-6	2-Hexanone	ND	260	130	ug/kg		
98-82-8	Isopropylbenzene	190	260	7.2	ug/kg	J	

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: OU3-SB-09(14.5-15)

Report of Analysis

Lab Sampl Matrix: Method: Project:	e ID: JA97463-5 SO - Soil	6 5035			Dat	te Sam te Rece cent S	eived:	01/19/12 01/19/12 92.3
VOA TCL	List (OLM4.2)							
CAS No.	Compound	Result	RL	MDL	Units	Q		
79-20-9	Methyl Acetate	ND	260	120	ug/kg	ſ		
108-87-2	Methylcyclohexane	50.3	260	13	ug/kg			
1634-04-4	Methyl Tert Butyl Ether	ND	53	9.4	ug/kg			
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	260	140	ug/kg			
75-09-2	Methylene chloride	ND	260	12	ug/kg			
100-42-5	Styrene	ND	260	9.7	ug/kg			
79-34-5	1,1,2,2-Tetrachloroethane	ND	260	9.4	ug/kg			
127-18-4	Tetrachloroethene	ND	260	10	ug/kg			
108-88-3	Toluene	884	53	20	ug/kg			
120-82-1	1,2,4-Trichlorobenzene	ND	260	18	ug/kg			
71-55-6	1,1,1-Trichloroethane	ND	260	13	ug/kg			
79-00-5	1,1,2-Trichloroethane	ND	260	23	ug/kg			
79-01-6	Trichloroethene	ND	260	13	ug/kg			
75-69-4	Trichlorofluoromethane	ND	260	25	ug/kg			
75-01-4	Vinyl chloride	ND	260	24	ug/kg			
1330-20-7	Xylene (total)	9860	53	9.7	ug/kg			
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its			
1868-53-7	Dibromofluoromethane	90%		67-1	31%			
17060-07-0	1,2-Dichloroethane-D4	88%			30%			
2037-26-5	Toluene-D8	102%		76-1				
460-00-4	4-Bromofluorobenzene	88%		53-1				
CAS No.	Tentatively Identified Compo	ounds	R.T.	Est.	Conc.	Units	Q	
103-65-1	Benzene, propyl-		15.54	900		ug/kg	IN	
	C3 alkyl benzene		15.61	2700	•	ug/kg		
	C3 alkyl benzene		15.65	1300		ug/kg		
	C3 alkyl benzene		15.70	1500		ug/kg		
	C3 alkyl benzene		15.96	1400		ug/kg		
95-63-6	Benzene, 1,2,4-trimethyl-		16.14	5100		ug/kg	IN	
	C3 alkyl benzene		16.63	1400		ug/kg		
	C4 alkyl benzene		16.83	1100		ug/kg		
	C4 alkyl benzene		16.89	2000		ug/kg		
	C4 alkyl benzene		17.31	1600		ug/kg		
	1H-indene-dihydro-methyl		17.50	870		ug/kg		
	C4 alkyl benzene		17.75	1400		ug/kg		
	C4 alkyl benzene		17.82	2000		ug/kg		
	C4 alkyl benzene		18.30	1200		ug/kg		

ND = Not detected MDL - Method Detection Limit

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

 $N \,=\, Indicates \ presumptive \ evidence \ of \ a \ compound$

Page 2 of 3

RL = Reporting Limit

E = Indicates value exceeds calibration range

	Report of Analysis						
Client Sample Lab Sample I Matrix: Method: Project:	DI: OU3-SB-09(14.5-15) D: JA97463-5 SO - Soil SW846 8260B SW846 5035 Ramapo, NY		Date Sampled: 01/19/1 Date Received: 01/19/1 Percent Solids: 92.3				
VOA TCL Li	st (OLM4.2)						
CAS No.	fentatively Identified Compounds	R.T.	Est. Conc. Units Q				
	H-indene-dihydro-methyl Fotal TIC, Volatile	18.34	950 ug/kg J № 25420 ug/kg J №				

(a) Diluted due to high concentration of target compound.

ND = Not detectedMDL - Method Detection Limit RL = Reporting Limit E = Indicates value exceeds calibration range

- J = Indicates an estimated value
 - B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Report of Analysis							Page 1 of 2
Client Sam Lab Sample Matrix: Method: Project:	e ID: JA97463-6 SO - Soil	16 5035			Date	Received:	01/19/12 01/19/12 60.8
Run #1 Run #2		analyzed 1/26/12	By RS	Prep D 01/19/1	Date 12 16:00	Prep Batch n/a	Analytical Batch VY5123
Run #1 Run #2	Initial Weight 3.3 g						
VOA TCL	List (OLM4.2)						
CAS No.	Compound	Result	RL	MDL	Units	Q	
67-64-1 71-43-2	Acetone Benzene	86.0 203	$\frac{25}{2.5}$	16 0.33	ug/kg ug/kg	J	
75-27-4 75-25-2	Bromodichloromethane Bromoform	ND ND	12 12	0.56	ug/kg		
74-83-9	Bromomethane	ND	12	0.98	ug/kg ug/kg		
78-93-3 75-15-0	2-Butanone (MEK) Carbon disulfide	28.7 ND	25 12	11 0.49	ug/kg ug/kg		
56-23-5	Carbon tetrachloride	ND	12	0.86	ug/kg		
108-90-7	Chlorobenzene	ND	12	0.80	ug/kg		
75-00-3	Chloroethane	ND	12	1.0	ug/kg		
67-66-3	Chloroform	ND	12	1.2	ug/kg		
74-87-3	Chloromethane	ND	12	1.6	ug/kg		
110-82-7	Cyclohexane	29.4	12	0.94	ug/kg		
96-12-8	1,2-Dibromo-3-chloropropane Dibromochloromethane		25	3.8	ug/kg		
124-48-1 106-93-4	1,2-Dibromoethane	ND	12	0.42	ug/kg		
95-50-1	1,2-Dichlorobenzene	ND ND	2.5 12	0.59	ug/kg		
541-73-1	1,3-Dichlorobenzene	ND	12	$\begin{array}{c} 0.69 \\ 0.48 \end{array}$	ug/kg		
106-46-7	1,4-Dichlorobenzene	ND	12	0.48	ug/kg		
75-71-8	Dichlorodifluoromethane	ND	12	0.42	ug/kg ug/kg		
75-34-3	1,1-Dichloroethane	ND	12	0.54	ug/kg		
107-06-2	1,2-Dichloroethane	ND	2.5	0.45	ug/kg		
75-35-4	1,1-Dichloroethene	ND	12	1.5	ug/kg		
156-59-2	cis-1,2-Dichloroethene	2.9	12	0.80	ug/kg	J	
156-60-5	trans-1,2-Dichloroethene	ND	12	1.1	ug/kg	J	
78-87-5	1,2-Dichloropropane	ND	12	0.66	ug/kg		
10061-01-5	cis-1,3-Dichloropropene	ND	12	0.38	ug/kg		
10061-02-6	trans-1,3-Dichloropropene	ND	12	0.84	ug/kg		
100-41-4	Ethylbenzene	37.1	2.5	0.37	ug/kg		
76-13-1	Freon 113	ND	12	1.8	ug/kg		
591-78-6	2-Hexanone	ND	12	6.2	ug/kg		
98-82-8	Isopropylbenzene	32.7	12	0.34	ug/kg		

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

 $J\,=\,Indicates \;an\;estimated\;value$

 $B \ = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

N = Indicates presumptive evidence of a compound

w

Г

Page 2 of 2

Client Sample Lab Sample Matrix: Method: Project:	e ID: JA97463-6 SO - Soil	6 5035			Da	te Sam te Rece cent S	eived:	01/19/12 01/19/12 60.8	
VOA TCL	List (OLM4.2)								
CAS No.	Compound	Result	RL	MDL	Units	Q			
79-20-9	Methyl Acetate	ND	12	5.5	ug/kg	ř.			
108-87-2	Methylcyclohexane	21.1	12	0.61	ug/kg				
1634-04-4	Methyl Tert Butyl Ether	ND	2.5	0.45	ug/kg				
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	12	6.6	ug/kg				
75-09-2	Methylene chloride	ND	12	0.57	ug/kg				
100-42-5	Styrene	ND	12	0.46	ug/kg				
79-34-5	1,1,2,2-Tetrachloroethane	ND	12	0.45	ug/kg				
127-18-4	Tetrachloroethene	ND	12	0.48	ug/kg				
108-88-3	Toluene	ND	2.5	0.94	ug/kg				
120-82-1	1,2,4-Trichlorobenzene	ND	12	0.85	ug/kg				
71-55-6	1,1,1-Trichloroethane	ND	12	0.60	ug/kg				
79-00-5	1,1,2-Trichloroethane	ND	12	1.1	ug/kg				
79-01-6	Trichloroethene	ND	12	0.62	ug/kg				
75-69-4	Trichlorofluoromethane	ND	12	1.2	ug/kg				
75-01-4	Vinyl chloride	ND	12	1.1	ug/kg				
1330-20-7	Xylene (total)	788	2.5	0.46	ug/kg				
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts				
1868-53-7	Dibromofluoromethane	90%		67-13	31%				
17060-07-0	1,2-Dichloroethane-D4	91%		66-13					
2037-26-5	Toluene-D8	94%		76-12					
460-00-4	4-Bromofluorobenzene	91%		53~14					
CAS No.	Tentatively Identified Compo	ounds	R.T.	Est.	Conc.	Units	Q		
	alkane		7.60	19		ug/kg	ιN		
	alkane		7.96	16		ug/kg			
110-54-3	Hexane		8.29	23		ug/kg			
96-37-7	Cyclopentane, methyl-		9.17	32		ug/kg			
142-82-5	Heptane		10.50	13		ug/kg			
	C3 alkyl benzene		15.24	42		ug/kg			
108-67-8	Benzene, 1,3,5-trimethyl-		15.31	18		ug/kg			
200 07 0	C3 alkyl benzene		15.55	22		ug/kg			
95-63-6	Benzene, 1,2,4-trimethyl-		15.70	67		ug/kg			
496-11-7	Indane		16.39	24		ug/kg	JIN IN		
100 11-1	Total TIC, Volatile		10.00	276		ug/kg			
				210		ug/ng	J/ ~		

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis							Page 1 of 2
Client Sam Lab Sampl Matrix: Method: Project:	e ID: JA97463-7 SO - Soil	6 5035			Date	-	/19/12 /19/12 .4
Run #1 Run #2		nalyzed 1/27/12	By RS	Prep D 01/19/1	ate 12 16:00	Prep Batch n/a	Analytical Batch VY5125
Run #1 Run #2	Initial Weight 4.2 g						
VOA TCL	List (OLM4.2)						
CAS No.	Compound	Result	RL	MDL	Units	Q	
67-64-1 71-43-2	Acetone Benzene	ND ND	17 1.7	11 0.22	ug/kg ug/kg		
75-27-4 75-25-2	Bromodichloromethane Bromoform	ND ND	8.3 8.3	0.37 1.3	ug/kg ug/kg		
74-83-9 78-93-3 75-15-0	Bromomethane 2-Butanone (MEK) Carbon disulfide	ND ND ND	8.3 17 8.3	0.66 7.2 0.33	ug/kg ug/kg ug/kg		
56-23-5 108-90-7	Carbon tetrachloride Chlorobenzene	ND ND	8.3 8.3	$0.58 \\ 0.54$	ug/kg ug/kg		
75-00-3 67-66-3 74-87-3	Chloroethane Chloroform Chloromethane	ND ND ND	8.3 8.3 8.3	0.68 0.81 1.0	ug/kg ug/kg		
110-82-7 96-12-8	Cyclohexane 1,2-Dibromo-3-chloropropane	ND	8.3 17	0.63 2.5	ug/kg ug/kg ug/kg		
124-48-1 106-93-4	Dibromochloromethane 1,2-Dibromoethane	ND ND	8.3 1.7	0.28 0.40	ug/kg ug/kg		
95-50-1 541-73-1 106-46-7	1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene	ND ND ND	8.3 8.3 8.3	0.46 0.32 0.28	ug/kg ug/kg ug/kg		
75-71-8 75-34-3	Dichlorodifluoromethane 1,1-Dichloroethane	ND ND	8.3 8.3	0.54 0.36	ug/kg ug/kg		
107-06-2 75-35-4	1,2-Dichloroethane 1,1-Dichloroethene	ND ND	1.7 8.3	0.30 1.0	ug/kg ug/kg		
156-59-2 156-60-5 78-87-5	cis-1,2-Dichloroethene trans-1,2-Dichloroethene 1,2-Dichloropropane	ND ND ND	8.3 8.3 8.3	0.54 0.71 0.44	ug/kg ug/kg ug/kg		
10061-01-5 10061-02-6	cis-1,3-Dichloropropene trans-1,3-Dichloropropene	ND ND	8.3 8.3	0.25 0.56	ug/kg ug/kg		
100-41-4 76-13-1 591-78-6	Ethylbenzene Freon 113 2-Hexanone	ND ND ND	1.7 8.3 8.3	0.25 1.2 4.1	ug/kg ug/kg ug/kg		
98-82-8	Isopropylbenzene	ND	8.3 8.3	4.1 0.23	ug/kg ug/kg		

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

. .

23

Page 2 of 2

D - Soil W846 8260B SW846 5035	Date Received:	01/19/12
amapo, NY		
A D N	97463-7 - Soil /846 8260B SW846 5035	97463-7 Date Sampled: - Soil Date Received: /846 8260B SW846 5035 Percent Solids:

VOA TCL List (OLM4.2)

CAS No.	Compound	Result	RL	MDL	Units	Q	
79-20-9	Methyl Acetate	ND	8.3	3.7	ug/kg	(
108-87-2	Methylcyclohexane	ND	8.3	0.41	ug/kg		
1634-04-4	Methyl Tert Butyl Ether	ND	1.7	0.30	ug/kg		
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	8.3	4.4	ug/kg	, ,	
75-09-2	Methylene chloride	ND	8.3	0.38	ug/kg		
100-42-5	Styrene	ND	8.3	0.31	ug/kg	{	
79-34-5	1,1,2,2-Tetrachloroethane	ND	8.3	0.30	ug/kg	{	
127-18-4	Tetrachloroethene	ND	8.3	0.32	ug/kg	, ,	
108-88-3	Toluene	ND	1.7	0.63	ug/kg		
120-82-1	1,2,4-Trichlorobenzene	ND	8.3	0.57	ug/kg	- f	
71-55-6	1,1,1-Trichloroethane	ND	8.3	0.40	ug/kg	ř S	
79-00-5	1,1,2-Trichloroethane	ND	8.3	0.72	ug/kg	f b	
79-01-6	Trichloroethene	ND	8.3	0.41	ug/kg	í h	
75-69-4	Trichlorofluoromethane	ND	8.3	0.80	ug/kg		
75-01-4	Vinyl chloride	ND	8.3	0.77	ug/kg	{	
1330-20-7	Xylene (total)	ND	1.7	0.31	ug/kg	Ş	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its		
1868-53-7	Dibromofluoromethane	92%		67-1	31%		
17060-07-0	1,2-Dichloroethane-D4	97%		66-1	30%		
2037-26-5	Toluene-D8	94%		76-1	25%		
460-00-4	4-Bromofluorobenzene	94%		53-1	42%		
CAS No.	Tentatively Identified Compo	ounds	R.T.	Est.	Conc.	Units	Q
	Total TIC, Volatile			0		ug/kg	

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range

		Repo	ort of A	nalysis			Page 1 of 2
Client Sam Lab Sampl Matrix: Method: Project:	e ID: JA97463-8 SO - Soil	46 5035			Date	Received: 01	/19/12 /19/12 2.0
Run #1 Run #2		Analyzed 01/26/12	By RS	Prep D 01/19/1	ate 2 16:00	Prep Batch n/a	Analytical Batch VY5123
Run #1 Run #2	Initial Weight 4.7 g						
VOA TCL	List (OLM4.2)						
CAS No.	Compound	Result	RL	MDL	Units	Q	
67-64-1 71-43-2	Acetone Benzene	ND ND	13 1.3	8.6 0.17	ug/kg ug/kg		
75-27-4 75-25-2	Bromodichloromethane Bromoform	ND ND	6.5 6.5	0.29 0.98	ug/kg ug/kg		
74-83-9 78-93-3	Bromomethane 2-Butanone (MEK)	ND ND	6.5 13	0.51 5.6	ug/kg ug/kg		
75-15-0 56-23-5	Carbon disulfide Carbon tetrachloride	ND ND	6.5 6.5	0.25 0.45	ug/kg		
108-90-7 75-00-3	Chlorobenzene Chloroethane	ND ND	6.5 6.5	0.42	ug/kg ug/kg		
67-66-3 74-87-3	Chloroform Chloromethane	ND ND ND	6.5 6.5	0.53	ug/kg ug/kg		
110-82-7 96-12-8	Cyclohexane 1,2-Dibromo-3-chloropropan	ND	6.5	0.81 0.49	ug/kg ug/kg		
124-48-1	Dibromochloromethane	ND	13 6.5	2.0 0.22	ug/kg ug/kg		
106-93-4 95-50-1	1,2-Dibromoethane 1,2-Dichlorobenzene	ND ND	1.3 6.5	0.31 0.36	ug/kg ug/kg		
541-73-1 106-46-7	1,3-Dichlorobenzene 1,4-Dichlorobenzene	ND ND	$\begin{array}{c} 6.5 \\ 6.5 \end{array}$	0.25 0.22	ug/kg ug/kg		
75-71-8 75-34-3	Dichlorodifluoromethane 1,1-Dichloroethane	ND ND	$\begin{array}{c} 6.5 \\ 6.5 \end{array}$	0.42 0.28	ug/kg ug/kg		
107-06-2 75-35-4	1,2-Dichloroethane 1,1-Dichloroethene	ND ND	1.3 6.5	0.24 0.80	ug/kg ug/kg		
156-59-2 156-60-5	cis-1,2-Dichloroethene trans-1,2-Dichloroethene	ND ND	6.5 6.5	0.42 0.55	ug/kg ug/kg		
78-87-5 10061-01-5	1,2-Dichloropropane cis-1,3-Dichloropropene	ND ND	$6.5 \\ 6.5$	0.35 0.20	ug/kg ug/kg		
10061-02-6 100-41-4	trans-1,3-Dichloropropene Ethylbenzene	ND ND	$\begin{array}{c} 6.5 \\ 1.3 \end{array}$	0.44 0.19	ug/kg ug/kg		
76-13-1 591-78-6	Freon 113 2-Hexanone	ND ND	$\begin{array}{c} 6.5 \\ 6.5 \end{array}$	0.93 3.2	ug/kg ug/kg		
98-82-8	Isopropylbenzene	ND	6.5	0.18	ug/kg		

ND = Not detectedMDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 2	နှာ လ
	23552265
1	- 5005000

Client Sample ID:	OU3-SB-16(0-0.5)		
Lab Sample ID:	JA97463-8	Date Sampled:	01/19/12
Matrix:	SO - Soil	Date Received:	01/19/12
Method:	SW846 8260B SW846 5035	Percent Solids:	82.0
Project:	Ramapo, NY		
L			

VOA TCL List (OLM4.2)

CAS No.	Compound	Result	RL	MDL	Units	Q	
79-20-9	Methyl Acetate	ND	6.5	2.9	ug/kg	f	
108-87-2	Methylcyclohexane	ND	6.5	0.32	ug/kg		
1634-04-4	Methyl Tert Butyl Ether	ND	1.3	0.23	ug/kg		
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	6.5	3.4	ug/kg		
75-09-2	Methylene chloride	ND	6.5	0.30	ug/kg		
100-42-5	Styrene	ND	6.5	0.24	ug/kg		
79-34-5	1,1,2,2-Tetrachloroethane	ND	6.5	0.23	ug/kg		
127-18-4	Tetrachloroethene	ND	6.5	0.25	ug/kg		
108-88-3	Toluene	ND	1.3	0.49	ug/kg		
120-82-1	1,2,4-Trichlorobenzene	ND	6.5	0.44	ug/kg		
71-55-6	1,1,1-Trichloroethane	ND	6.5	0.31	ug/kg		
79-00-5	1,1,2-Trichloroethane	ND	6.5	0.56	ug/kg		
79-01-6	Trichloroethene	ND	6.5	0.32	ug/kg		
75-69-4	Trichlorofluoromethane	ND	6.5	0.63	ug/kg		
75-01-4	Vinyl chloride	ND	6.5	0.60	ug/kg		
1330-20-7	Xylene (total)	0.97	1.3	0.24	ug/kg		
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts		
1868-53-7	Dibromofluoromethane	87%		67-13	31%		
17060-07-0	1,2-Dichloroethane-D4	85%		66-13	30%		
2037-26-5	Toluene-D8	94%		76-12	25%		
460-00-4	4-Bromofluorobenzene	90%		53-14	12%		
CAS No.	Tentatively Identified Compo	ounds	R.T.	Est.	Conc.	Units	Q
	Total TIC, Volatile			0		ug/kg	

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

.

E = Indicates value exceeds calibration range

		Repo	ort of Ai	nalysis			Page 1 of 2
Client Sam Lab Sampl Matrix: Method: Project:	e ID: JA97463-9 SO - Soil	6 5035			Date		/19/12 /19/12 .0
Run #1 Run #2		nalyzed 1/26/12	By RS	Prep D 01/19/1	ate 2 16:00	Prep Batch n/a	Analytical Batch VY5123
Run #1 Run #2	Initial Weight 6.3 g						
VOA TCL	List (OLM4.2)						
CAS No.	Compound	Result	RL	MDL	Units	Q	
67-64-1 71-43-2	Acetone Benzene	ND 1.6	9.2 0.92	6.1 0.12	ug/kg ug/kg		
75-27-4 75-25-2	Bromodichloromethane Bromoform	ND ND	4.6 4.6	0.21 0.70	ug/kg ug/kg		
74-83-9 78-93-3 75-15-0	Bromomethane 2-Butanone (MEK) Carbon disulfide	ND ND ND	4.6 9.2 4.6	0.36 4.0 0.18	ug/kg ug/kg ug/kg		
56-23-5 108-90-7	Carbon tetrachloride Chlorobenzene	ND ND	4.6 4.6	0.32 0.30	ug/kg ug/kg		
75-00-3 67-66-3 74-87-3	Chloroethane Chloroform Chloromethane	ND ND ND	$4.6 \\ 4.6 \\ 4.6$	0.38 0.45 0.58	ug/kg ug/kg ug/kg		
110-82-7 96-12-8	Cyclohexane 1,2-Dibromo-3-chloropropane	ND ND	4.6 9.2	0.35 1.4	ug/kg ug/kg		
124-48-1 106-93-4 95-50-1	Dibromochloromethane 1,2-Dibromoethane 1,2-Dichlorobenzene	ND ND ND	4.6 0.92 4.6	0.16 0.22 0.26	ug/kg ug/kg ug/kg		
541-73-1 106-46-7	1,3-Dichlorobenzene 1,4-Dichlorobenzene	ND ND	$\begin{array}{c} 4.6\\ 4.6\end{array}$	$\begin{array}{c} 0.18\\ 0.16\end{array}$	ug/kg ug/kg		
75-71-8 75-34-3 107-06-2	Dichlorodifluoromethane 1,1-Dichloroethane 1,2-Dichloroethane	ND ND ND	4.6 4.6 0.92	0.30 0.20 0.17	ug/kg ug/kg		
75-35-4 156-59-2	1,1-Dichloroethene cis-1,2-Dichloroethene	ND ND	4.6 4.6	0.17 0.57 0.30	ug/kg ug/kg ug/kg		
156-60-5 78-87-5	trans-1,2-Dichloroethene 1,2-Dichloropropane	ND ND	4.6 4.6	0.39 0.25	ug/kg ug/kg		
10061-01-5 10061-02-6 100-41-4	cis-1,3-Dichloropropene trans-1,3-Dichloropropene Ethylbenzene	ND ND 4.3	4.6 4.6 0.92	0.14 0.31 0.14	ug/kg ug/kg ug/kg	J	
76-13-1 591-78-6	Freon 113 2-Hexanone	ND ND	4.6 4.6	0.66 2.3	ug/kg ug/kg		
98-82-8	Isopropylbenzene	4.5	4.6	0.13	ug/kg	J	

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

\mathbb{N}^{2}	177	62	ès.
- 決守	2.5		83
15			33
- 55	87		14
- 53	. X	кт 1	е,
10	÷	1	

Client Sample ID:	OU3-SB-13(14.5-15)		
Lab Sample ID:	JA97463-9	Date Sampled:	01/19/12
Matrix:	SO - Soil	Date Received:	01/19/12
Method:	SW846 8260B SW846 5035	Percent Solids:	86.0
Project:	Ramapo, NY		

CAS No.	Compound	Result	RL	MDL	Units	Q	
79-20-9	Methyl Acetate	ND	4.6	2.0	ug/kg	[
108-87-2	Methylcyclohexane	1.2	4.6	0.23	ug/kg		
1634-04-4	Methyl Tert Butyl Ether	ND	0.92	0.17	ug/kg	[
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	4.6	2.4	ug/kg	[
75-09-2	Methylene chloride	ND	4.6	0.21	ug/kg	[
100-42-5	Styrene	ND	4.6	0.17	ug/kg		
79-34-5	1,1,2,2-Tetrachloroethane	ND	4.6	0.17	ug/kg		
127-18-4	Tetrachloroethene	ND	4.6	0.18	ug/kg		
108-88-3	Toluene	0.41	0.92	0.35	ug/kg		
120-82-1	1,2,4-Trichlorobenzene	ND	4.6	0.31	ug/kg		
71-55-6	1,1,1-Trichloroethane	ND	4.6	0.22	ug/kg		
79-00-5	1,1,2-Trichloroethane	ND	4.6	0.40	ug/kg		
79-01-6	Trichloroethene	ND	4.6	0.23	ug/kg		
75-69-4	Trichlorofluoromethane	ND	4.6	0.44	ug/kg		
75-01-4	Vinyl chloride	ND	4.6	0.43	ug/kg		
1330-20-7	Xylene (total)	299	0.92	0.17	ug/kg		
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts		
1868-53-7	Dibromofluoromethane	89%		67-13	31%		
17060-07-0	1,2-Dichloroethane-D4	88%		66-13	30%		
2037-26-5	Toluene-D8	93%		76-12	25%		
460-00-4	4-Bromofluorobenzene	87%		53-1-	42%		
CAS No.	Tentatively Identified Compo	ounds	R.T.	Est.	Conc.	Units	Q
103-65-1	Benzene, propyl-		15.17	5.5		ug/kg	JN.
	C3 alkyl benzene		15.24	29		ug/kg	JJ
108-67-8	Benzene, 1,3,5-trimethyl-		15.31	9.1			JN
	C3 alkyl benzene		15.55	13		ug/kg	JJ
95-63-6	Benzene, 1,2,4-trimethyl-		15.70	40		ug/kg	JN
496-11-7	Indane		16.39	17		ug/kg	JN /
	Total TIC, Volatile			113.	6	ug/kg	$\mathbf{J}^{\mathcal{N}}$

ND = Not detected MDL - Method Detection Limit

- RL = Reporting Limit
- E = Indicates value exceeds calibration range
- J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 2 of 2

Report of Analysis Client Sample ID: OU3-WC-01 Lab Sample ID: JA97463-3 Date Sampled: 01/19/12 Matrix: SO - Soil Date Received: 01/19/12 SW846 8270D SW846 3510C Method: Percent Solids: 86.6 Project: Ramapo, NY File ID DF Analyzed By Prep Date Analytical Batch Prep Batch P62028.D Run #1 NAP 1 01/25/12 01/24/12 OP54405 EP2671 Run #2 Initial Volume Final Volume 100 ml Run #1 1.0 ml Run #2 ABN TCLP Leachate TCLP Leachate method SW846 1311 CAS No. Compound Result HW# MCL RL MDL Units Q 95-48-7 2-Methylphenol ND D023 200 0.020 0.010 mg/l 3&4-Methylphenol ND D024 200 0.020 0.0093 mg/l 87-86-5 Pentachlorophenol ND D037 100 0.014 0.10 mg/l 95-95-4 2,4,5-Trichlorophenol ND D041 400 0.050 0.016 mg/l 88-06-2 2,4,6-Trichlorophenol ND D042 2.0 0.050 0.013 mg/l)36 mg/l 43 mg/l 1

	D, I, O I I COMOLOPHONOI	1110		0.000	0.010
106-46-7	1,4-Dichlorobenzene	ND	D027 7.5	0.020	0.0036
121-14-2	2,4-Dinitrotoluene	ND	D030 0.13	0.020	0.0043
118-74-1	Hexachlorobenzene	ND	D032 0.13	0.020	0.0034
87-68-3	Hexachlorobutadiene	ND	D033 0.50	0.010	0.0051
67-72-1	Hexachloroethane	ND	D034 3.0	0.050	0.0055
98-95-3	Nitrobenzene	ND	D036 2.0	0.020	0.0042
110-86-1	Pyridine	ND	D038 5.0	0.020	0.0032
CAS No.	Surrogate Recoveries	Run# 1	Run# 2 I	Limits	
CAS No. 367-12-4	Surrogate Recoveries 2-Fluorophenol	Run# 1 40%		Limits 13-68%	
	C]		
367-12-4	2-Fluorophenol	40%]	13-68%	
367-12-4 4165-62-2	2-Fluorophenol Phenol-d5	40% 30%	1	13-68% 10-49%	
367-12-4 4165-62-2 118-79-6	2-Fluorophenol Phenol-d5 2,4,6-Tribromophenol	40% 30% 115%	1	13-68% 10-49% 37-130%	
367-12-4 4165-62-2 118-79-6 4165-60-0	2-Fluorophenol Phenol-d5 2,4,6-Tribromophenol Nitrobenzene-d5	40% 30% 115% 95%	1	13-68% 10-49% 37-130% 25-112%	

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

mg/l

mg/l

mg/l

mg/l

mg/l

			Repo	rt of A	nalysis		Page 1 of 3
Client Sa Lab Sam Matrix: Method: Project:	ple ID: JA So S ¹	U3-SB-16(0-0 A97463-8 O - Soil W846 8270D amapo, NY	0.5) SW846 3550C		Da	ate Sampled: 0 ate Received: 0 ercent Solids: 8	
Run #1 Run #2	File ID M84533.E	DF) 1	Analyzed 01/27/12	By OYA	Prep Date 01/23/12	Prep Batch OP54377	Analytical Batch EM3373
	Initial We	+	Volume				

Run #1 35.7 g

Run #2

1.0 ml

ABN TCL List (CLP4.2 list)

CAS No.	Compound	Result	RL	MDL	Units	Q
95-57-8	2-Chlorophenol	ND	170	35	ug/kg	
59-50-7	4-Chloro-3-methyl phenol	ND	170	34	ug/kg	
120-83-2	2,4-Dichlorophenol	ND	170	55	ug/kg	
105-67-9	2,4-Dimethylphenol	ND	170	57	ug/kg	
51-28-5	2,4-Dinitrophenol	ND	680	42	ug/kg	J
534-52-1	4,6-Dinitro-o-cresol	ND	680	42	ug/kg	
95-48-7	2-Methylphenol	ND	68	39	ug/kg	
	3&4-Methylphenol	ND	68	43	ug/kg	
88-75-5	2-Nitrophenol	ND	170	36	ug/kg	
100-02-7	4-Nitrophenol	ND	340	58	ug/kg	J
87-86-5	Pentachlorophenol	ND	340	58	ug/kg	
108-95-2	Phenol	ND	68	36	ug/kg	
95-95-4	2,4,5-Trichlorophenol	ND	170	40	ug/kg	
88-06-2	2,4,6-Trichlorophenol	ND	170	32	ug/kg	
83-32-9	Acenaphthene	ND	34	9.9	ug/kg	
208-96-8	Acenaphthylene	42.1	34	11	ug/kg	
98-86-2	Acetophenone	ND	170	6.0	ug/kg	
120-12-7	Anthracene	28.6	34	12	ug/kg	J
1912-24-9	Atrazine	ND	170	6.7	ug/kg	
56-55-3	Benzo(a)anthracene	65.1	34	11	ug/kg	
50-32-8	Benzo(a)pyrene	86.9	34	10	ug/kg	T
205-99-2	Benzo(b)fluoranthene	88.7	34	11	ug/kg	T
191-24-2	Benzo(g,h,i)perylene	73.0	34	13	ug/kg	
207-08-9	Benzo(k)fluoranthene	20.4	34	13	ug/kg	J
101-55-3	4-Bromophenyl phenyl ether	ND	68	12	ug/kg	
85-68-7	Butyl benzyl phthalate	ND	68	20	ug/kg	
92-52-4	1,1'-Biphenyl	ND	68	4.0	ug/kg	
100-52-7	Benzaldehyde	ND	170	7.9	ug/kg	
91-58-7	2-Chloronaphthalene	ND	68	11	ug/kg	
106-47-8	4-Chloroaniline	NÐ	170	11	ug/kg	
86-74-8	Carbazole	ND	68	16	ug/kg	
105-60-2	Caprolactam	ND	68	11	ug/kg	

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Lab Sample ID:

Client Sample ID: OU3-SB-16(0-0.5)

JA97463-8

Page 2 of 3

Date Sampled: 01/19/12

Lao Sampi Matrix:	SO - Soil					e Sampled: e Received:	01/19/12 01/19/12
Method:		46 3550C				cent Solids:	82.0
Project:	Ramapo, NY	10 00000			101	Joint Bollus.	02.0
ABN TCL	List (CLP4.2 list)		· · ·				
CAS No.	Compound	Result	RL	MDL	Units	Q	
218-01-9	Chrysene	82.3	34	12	ug/kg		
111-91-1	bis(2-Chloroethoxy)methane	ND	68	14	ug/kg		
111-44-4	bis(2-Chloroethyl)ether	ND	68	10	ug/kg		
108-60-1	bis(2-Chloroisopropyl)ether	ND	68	10	ug/kg		
7005-72-3	4-Chlorophenyl phenyl ether	ND	68	10	ug/kg		
121-14-2	2,4-Dinitrotoluene	ND	68	15	ug/kg		
606-20-2	2,6-Dinitrotoluene	ND	68	13	ug/kg		
91-94-1	3,3'-Dichlorobenzidine	ND	170	8.7	ug/kg		
53-70-3	Dibenzo(a,h)anthracene	21.1	34	12	ug/kg	J	
132-64-9	Dibenzofuran	ND	68	10	ug/kg	v	
84-74-2	Di-n-butyl phthalate	ND	68	7.6	ug/kg		
117-84-0	Di-n-octyl phthalate	ND	68	17	ug/kg		
84-66-2	Diethyl phthalate	ND	68	12	ug/kg		
131-11-3	Dimethyl phthalate	ND	68	12	ug/kg		
117-81-7	bis(2-Ethylhexyl)phthalate	ND	68	30	ug/kg		
206-44-0	Fluoranthene	71.4	34	15	ug/kg	·	
86-73-7	Fluorene	ND	34	11	ug/kg	~~	
118-74-1	Hexachlorobenzene	ND	68	11	ug/kg		
87-68-3	Hexachlorobutadiene	ND	34	9.5	ug/kg		
77-47-4	Hexachlorocyclopentadiene	ND	680	35	ug/kg		
67-72-1	Hexachloroethane	ND	170	9.5	ug/kg		
193-39-5	Indeno(1,2,3-cd)pyrene	53.7	34	12	ug/kg		
78-59-1	Isophorone	ND	68	9.2	ug/kg		
91-57-6	2-Methylnaphthalene	ND	68	19	ug/kg		
88-74-4	2-Nitroaniline	ND	170	15	ug/kg		
99-09-2	3-Nitroaniline	ND	170	14	ug/kg		
100-01-6	4-Nitroaniline	ND	170	13			
91-20-3	Naphthalene	39.4	34	9.3	ug/kg ug/kg	T	
98-95-3	Nitrobenzene	ND	68	9.9			
521-64-7	N-Nitroso-di-n-propylamine	ND	68	9.9 8.3	ug/kg		
86-30-6	N-Nitrosodiphenylamine	ND	170	o .s 20	ug/kg		
85-01-8	Phenanthrene	40.3	34		ug/kg		
129-00-0		40.3 122		16 13	ug/kg	اير موجع	
129-00-0	Pyrene	144	34	13	ug/kg	7	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its		
367-12-4	2-Fluorophenol	61%		21-1	16%		
4165-62-2	Phenol-d5	61%		19-1	17%		
118-79-6	2,4,6-Tribromophenol	85%		24-1	36%		
A105 00 0	N TI - 10	000/					

ND = Not detected MDL - Method Detection Limit

80%

RL = Reporting Limit

4165-60-0

E = Indicates value exceeds calibration range

Nitrobenzene-d5

J = Indicates an estimated value

21-122%

B = Indicates analyte found in associated method blank

1718-51-0

Terphenyl-d14

		Repor	t of Ana	lysis		Page 3 of 3
Client Sample Lab Sample II Matrix: Method: Project:	D: JA97463-8 SO - Soil	5) SW846 3550C		Date Sampled: Date Received: Percent Solids:	01/19/12 01/19/12 82.0	
ABN TCL Lis	t (CLP4.2 list)					
CAS No. S	urrogate Recoveries	Run# 1	Run# 2	Limits		
321-60-8 2	-Fluorobiphenyl	76%		30-117%		

31-129%

76%

ND = Not detected MDL - Method Detection Limit RL = Reporting Limit E = Indicates value exceeds calibration range

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

Report of Analysis

			Repo	rt of A	nalysis		Page 1 of 3	
Client Sa Lab Sam Matrix: Method: Project:	ple ID: JA97 SO - SW8	SB-13(14. 463-9 Soil 46 8270D 190, NY	5-15) SW846 3550C		1	Date Sampled: Date Received: Percent Solids:	01/19/12 01/19/12 86.0	40000000000000000000000000000000000000
Run #1 Run #2	File ID M84508.D	DF 1	Analyzed 01/26/12	By OYA	Prep Date 01/23/12	Prep Batcl OP54377	n Analytical Batch EM3372	
Run #1	Initial Weigh 35.1 g	t Final 1.0 m	Volume l					

Run #2

ABN TCL List (CLP4.2 list)

CAS No.	Compound	Result	RL	MDL	Units Q
95-57-8	2-Chlorophenol	ND	170	33	ug/kg
59-50-7	4-Chloro-3-methyl phenol	ND	170	33	ug/kg
120-83-2	2,4-Dichlorophenol	ND	170	53	ug/kg
105-67-9	2,4-Dimethylphenol	ND	170	56	ug/kg
51-28-5	2,4-Dinitrophenol	ND	660	40	ug/kg T
534-52-1	4,6-Dinitro-o-cresol	ND	660	40	ug/kg
95-48-7	2-Methylphenol	ND	66	38	ug/kg
	3&4-Methylphenol	ND	66	42	ug/kg
88-75-5	2-Nitrophenol	ND	170	35	ug/kg
100-02-7	4-Nitrophenol	ND	330	56	ug/kg I
87-86-5	Pentachlorophenol	ND	330	57	ug/kg
108-95-2	Phenol	ND	66	35	ug/kg
95-95-4	2,4,5-Trichlorophenol	ND	170	38	ug/kg
88-06-2	2,4,6-Trichlorophenol	ND	170	31	ug/kg
83-32-9	Acenaphthene	ND	33	9.6	ug/kg
208-96-8	Acenaphthylene	ND	33	11	ug/kg
98-86-2	Acetophenone	ND	170	5.8	ug/kg
120-12-7	Anthracene	ND	33	12	ug/kg
1912-24-9	Atrazine	ND	170	6.5	ug/kg
56-55-3	Benzo(a)anthracene	ND	33	11	ug/kg
50-32-8	Benzo(a)pyrene	ND	33	10	ug/kg 🖵
205-99-2	Benzo(b)fluoranthene	ND	33	11	ug/kg T
191-24-2	Benzo(g,h,i)perylene	ND	33	12	ug/kg
207-08-9	Benzo(k)fluoranthene	ND	33	12	ug/kg
101-55-3	4-Bromophenyl phenyl ether	ND	66	12	ug/kg
85-68-7	Butyl benzyl phthalate	ND	66	19	ug/kg
92-52-4	1,1'-Biphenyl	ND	66	3.8	ug/kg
100-52-7	Benzaldehyde	ND	170	7.6	ug/kg
91-58-7	2-Chloronaphthalene	ND	66	10	ug/kg
106-47-8	4-Chloroaniline	ND	170	11	ug/kg
86-74-8	Carbazole	ND	66	15	ug/kg
105-60-2	Caprolactam	ND	66	10	ug/kg

ND = Not detectedMDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

49 of 2472

1.680861

ACCUTEST

JA97463

Client Sample ID:	OU3-SB-13(14.5-15)		
Lab Sample ID:	JA97463-9	Date Sampled:	01/19/12
Matrix:	SO - Soil	Date Received:	01/19/12
Method:	SW846 8270D SW846 3550C	Percent Solids:	86.0
Project:	Ramapo, NY		

ABN TCL List (CLP4.2 list)

CAS No.	Compound	Result	RL	MDL	Units	Q
218-01-9	Chrysene	ND	33	11	ug/kg	
111-91-1	bis(2-Chloroethoxy)methane	ND	66	13	ug/kg	
111-44-4	bis(2-Chloroethyl)ether	ND	66	10	ug/kg	
108-60-1	bis(2-Chloroisopropyl)ether	ND	66	9.8	ug/kg	
7005-72-3	4-Chlorophenyl phenyl ether	ND	66	10	ug/kg	
121-14-2	2,4-Dinitrotoluene	ND	66	14	ug/kg	I
606-20-2	2,6-Dinitrotoluene	ND	66	13	ug/kg	
91-94-1	3,3'-Dichlorobenzidine	ND	170	8.4	ug/kg	
53-70-3	Dibenzo(a,h)anthracene	ND	33	11	ug/kg	
132-64-9	Dibenzofuran	ND	66	9.8	ug/kg	
84-74-2	Di-n-butyl phthalate	ND	66	7.4	ug/kg	
117-84-0	Di-n-octyl phthalate	ND	66	16	ug/kg	
84-66-2	Diethyl phthalate	ND	66	11	ug/kg	
131-11-3	Dimethyl phthalate	59.7	66	12	ug/kg	J
117-81-7	bis(2-Ethylhexyl)phthalate	ND	66	29	ug/kg	5
206-44-0	Fluoranthene	ND	33	15	ug/kg	
86-73-7	Fluorene	ND	33	11	ug/kg	
118-74-1	Hexachlorobenzene	ND	66	11	ug/kg	
87-68-3	Hexachlorobutadiene	ND	33	9.2	ug/kg	
77-47-4	Hexachlorocyclopentadiene	ND	660	34	ug/kg	
67-72-1	Hexachloroethane	ND	170	9.2	ug/kg	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	33	11	ug/kg	
78-59-1	Isophorone	ND	66	8.9	ug/kg	
91-57-6	2-Methylnaphthalene	42.8	66	18	ug/kg	J
88-74-4	2-Nitroaniline	ND	170	15	ug/kg	
99-09-2	3-Nitroaniline	ND	170	13	ug/kg	
100-01-6	4-Nitroaniline	ND	170	13	ug/kg	
91-20-3	Naphthalene	441	33	9.0	ug/kg	
98-95-3	Nitrobenzene	ND	66	9.6	ug/kg	
621-64-7	N-Nitroso-di-n-propylamine	ND	66	8.1	ug/kg	
86-30-6	N-Nitrosodiphenylamine	ND	170	20	ug/kg	
85-01-8	Phenanthrene	ND	33	15	ug/kg ′	T
129-00-0	Pyrene	ND	33	13	ug/kg	3
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
367-12-4	2-Fluorophenol	27%		21-1	16%	
4165-62-2	Phenol-d5	30%		19-1		
118-79-6	2,4,6-Tribromophenol	73%		24-1	36%	
4165-60-0	Nitrobenzene-d5	33%		21-1	22%	

ND = Not detectedMDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

လ ဖြ

Client Sam Lab Sample Matrix: Method: Project:	e ID: JA97463-9 SO - Soil	5-15) SW846 3550C		Da	te Sampled: te Received: rcent Solids:	01/19/12 01/19/12 86.0
ABN TCL	List (CLP4.2 list)					
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits		
321-60-8	2-Fluorobiphenyl	37%		30-117%		
1718-51-0	Terphenyl-d14	68%		31-129%		
CAS No.	Tentatively Identified	Compounds	R.T.	Est. Conc.	Units Q	
	system artifact/aldol-cor	densation	3.21	390	ug/kg J N	
	C3 alkyl benzene		4.52	390	ug/kg J	
	C3 alkyl benzene		4.61	1600	ug/kg J	
	C3 alkyl benzene		4.70	680	ug/kg J	
	C3 alkyl benzene		4.85	670	ug/kg J	
	C3 alkyl benzene		5.02	2800	ug/kg J	
	C3 alkyl benzene		5.40	940	ug/kg JN	
496-11-7	Indane		5.58	770	ug/kg JN	
	C4 alkyl benzene		5.83	430	ug/kg JN	
	C4 alkyl benzene		6.09	410	ug/kg JN	
85-44-9	Phthalic anhydride		9.01	770	ug/kg JN	
	unknown		12.65	1000	ug/kg JN	
	unknown		13.14	460	ug/kg JN	
57-10-3	Hexadecanoic acid		15.06	480	ug/kg JN	
	unknown		16.26	580	ug/kg J 🖊	
	unknown		16.59	370	ug/kg J	
	unknown		17.85	1100	ug/kg J	
	unknown		18.08	580	ug/kg J	
	unknown		18.89	420	ug/kg J	
	alkane		19.62	550	ug/kg J	
	unknown		21.87	500	ug/kg J	
	unknown		21.94	760	ug/kg J	
	unknown		22.11	520	ug/kg J	
	unknown		22.22	420	ug/kg J	
	unknown		22.33	950	ug/kg J	
	unknown		22.50	1600	ug/kg J レ	
	Total TIC, Semi-Volatil	e		19750	ug/kg J N	

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range

Raw Data: OA80925.D

Accutest Laboratories

			Repo	t of An	alysi	S			Page 1 of 1
Client Sam Lab Sample Matrix: Method: Project:		3-3 il 8151 S	W846 3510C			Dat	e Sampled: e Received: cent Solids:	01/19 01/19 86.6	1
Run #1 Run #2	File ID OA80925.D	DF 1	Analyzed 01/28/12	By VDT	Prep 01/20	Date 5/12	Prep Bate OP54383		nalytical Batch OA2754
Run #1 Run #2	Initial Volume 100 ml	Final V 10.0 m							
Herbicide 7	CLP Leachate					Т	CLP Leach:	ate metl	hod SW846 1311
CAS No.	Compound		Result	HW#	MCL	RL	MDL	Units	Q
94-75-7 93-72-1	2,4-D 2,4,5-TP (Silve	ex)	ND ND	D016 D017	10 1.0	0.0050 0.0015	0.0013 0.00018	mg/l mg/l	
CAS No.	Surrogate Rec	overies	Run# 1	Run# 2	L	imits			
19719-28-9 19719-28-9	2,4-DCAA 2,4-DCAA		61% 51%		-)-142%)-142%			

J = Indicates an estimated value

N = Indicates presumptive evidence of a compound

B = Indicates analyte found in associated method blank

Raw Data: 3G61475.D

58-89-9

72-20-8

76-44-8

72-43-5

1024-57-3

8001-35-2

CAS No.

877~09~8

877-09-8

2051-24-3

2051-24-3

12789-03-6

gamma-BHC (Lindane)

Heptachlor epoxide

Surrogate Recoveries

Tetrachloro-m-xylene

Tetrachloro-m-xylene

Decachlorobiphenyl

Decachlorobiphenyl

Chlordane

Heptachlor

Toxaphene

Methoxychlor

Endrin

Accutest Laboratories

			Коро	n or m	1419515		rage 1 01 1
Client San Lab Samp Matrix: Method: Project:	le ID: JA974 SO - S SW84		SW846 3510C			Date Received: 01	1/19/12 1/19/12 3.6
Run #1 Run #2	File ID 3G61475.D	DF 1	Analyzed 01/25/12	By VDT	Prep Date 01/24/12	Prep Batch OP54389	Analytical Batch G3G2220
Run #1 Run #2	Initial Volume 100 ml	e Final 10.0	Volume ml				
Pesticide 1	TCLP Leachate					TCLP Leachate	method SW846 1311
CAS No.	Compound		Result	HW#	MCL RL	MDL U	nits Q

D013 0.40 0.00010

D020 0.030 0.0050

D012 0.020 0.00010

D031 0.0080 0.00010

D031 0.0080 0.00010

D015 0.50 0.0025

Limits

30-137%

30-137%

10-137%

10-137%

0.00020

D014 10

Run#2

ND

ND

ND

ND

ND

ND

ND

Run#1

96%

98%

94%

105%

Report of Analysis

ND = Not detectedMDL - Method Detection LimitMCL = Maximum Contamination Level (40 CFR 261 6/96)E = Indicates value exceeds calibration range

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank

0.000041

0.000064

0.000084

0.000038

0.000082

0.0015

0.0024

mg/l

mg/l

mg/l

mg/l

mg/l

mg/l

mg/l

Client Sample ID: OU3-SB-16(0-0.5) Lab Sample ID: JA97463-8 Date Sampled: 01/19/12 Matrix: SO - Soil Date Received: 01/19/12 Method: SW846 8081B SW846 3545A Percent Solids: 82.0 Project: Ramapo, NY File ID By DF Analyzed Prep Date Prep Batch Analytical Batch 3G61598.D VDT OP54360 Run #1 1 01/31/12 01/21/12 G3G2224 Run #2 Initial Weight Final Volume Run #1 10.0 ml 17.3 g Run #2 Pesticide TCL List CAS No. Compound Result RL MDL Units Q 309-00-2 Aldrin ND 0.700.35 ug/kg 319-84-6 alpha-BHC 0.70 0.53 ND ug/kg 319-85-7 beta-BHC ND 0.70 0.49 ug/kg 319-86-8 delta-BHC ND 0.70 0.41 ug/kg 58-89-9 gamma-BHC (Lindane) ND 0.70 0.32 ug/kg 5103-71-9 alpha-Chlordane ND 0.70 0.46 ug/kg 5103-74-2 gamma-Chlordane ND 0.70 0.36 ug/kg 60-57-1 Dieldrin ND 0.70 0.55 ug/kg 72-54-8 4,4'-DDD 3.5 0.70 0.36 ug/kg 72-55-9 2.4 0.42 4,4'-DDE 0.70 ug/kg 50-29-3 4.4'-DDT 9.4 0.700.52ug/kg 72-20-8 Endrin ND 0.700.36 ug/kg 1031-07-8 Endosulfan sulfate ND 0.70 0.64 ug/kg Endrin aldehyde ND 0.70 0.67 ug/kg 7421-93-4 Endosulfan-I 959-98-8 ND 0.70 0.34 ug/kg Endosulfan-II 0.70 ug/kg 33213-65-9 ND 0.46 0.70 76-44-8 Heptachlor ND 0.43 ug/kg 1024-57-3 Heptachlor epoxide 0.70 0.35 ND ug/kg ug/kg 72-43-5 Methoxychlor ND 0.50 1.4 53494-70-5 Endrin ketone ND 0.70 0.46 ug/kg 8001-35-2 Toxaphene 8.9 ND 18 ug/kg Run# 2 CAS No. Surrogate Recoveries Run#1 Limits 877-09-8 Tetrachloro-m-xylene 40% 23-137% 877-09-8 Tetrachloro-m-xylene 48% 23-137% 2051-24-3 Decachlorobiphenyl 53% 22-160% 2051-24-3 Decachlorobiphenyl 68% 22-160%

Report of Analysis

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

00

		Repo	rt of An	alysis			Page 1 of
Client Samp Lab Sample Matrix: Method: Project:	e ID: JA97463-9 SO - Soil	15) W846 3545A			Date	.	/19/12 /19/12 5.0
Run #1 Run #2	File ID DF 3G61599.D 1	Analyzed 01/31/12	By VDT	Prep D 01/21/1		Prep Batch OP54360	Analytical Batch G3G2224
Run #1 Run #2	Initial Weight Final V 17.3 g 10.0 ml	olume					
Pesticide T(CL List						
CAS No.	Compound	Result	RL	MDL	Units	Q	
309-00-2	Aldrin	ND	0.67	0.34	ug/kg		
319-84-6	alpha-BHC	ND	0.67	0.50	ug/kg		
319-85-7	beta-BHC	ND	0.67	0.47	ug/kg		
319-86-8	delta-BHC	ND	0.67	0.39	ug/kg		
58-89-9	gamma-BHC (Lindane)	ND	0.67	0.31	ug/kg		
5103-71-9	alpha-Chlordane	ND	0.67	0.44	ug/kg		
5103-74-2	gamma-Chlordane	ND	0.67	0.34	ug/kg		
60-57-1	Dieldrin	ND	0.67	0.52	ug/kg		
72-54-8	4,4'-DDD	ND	0.67	0.34	ug/kg		
72-55-9	4,4'-DDE	ND	0.67	0.40	ug/kg		
50-29-3	4,4'-DDT	ND	0.67	0.49	ug/kg		
72-20-8	Endrin	ND	0.67	0.34	ug/kg		
1031-07-8	Endosulfan sulfate	ND	0.67	0.61	ug/kg		
7421-93-4	Endrin aldehyde	ND	0.67	0.64	ug/kg		
959-98-8	Endosulfan-I	ND	0.67	0.33	ug/kg		
33213-65-9	Endosulfan-II	ND	0.67	0.44	ug/kg		
76-44-8	Heptachlor	ND	0.67	0.41	ug/kg		
1024-57-3	Heptachlor epoxide	ND	0.67	0.33	ug/kg		
72-43-5	Methoxychlor	ND	1.3	0.47	ug/kg		
53494-70-5	Endrin ketone	ND	0.67	0.44	ug/kg		
8001-35-2	Toxaphene	ND	17	8.5	ug/kg		
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its		
877-09-8	Tetrachloro-m-xylene	88 %		23-1	37%		
877-09-8	Tetrachloro-m-xylene	103%		23-1	37%		
2051-24-3	Decachlorobiphenyl	129%			60%		
2051-24-3	Decachlorobiphenyl	141%		22-1	60%		

ND = Not detected MDL - Method Detection Limit

- RL = Reporting Limit
- E = Indicates value exceeds calibration range
- J = Indicates an estimated value

B = Indicates analyte found in associated method blank

			Repo	rt of An	alysis			Page 1 of 1
Client Sam Lab Sample Matrix: Method: Project:	e ID: JA974 SO - S SW84		.5) SW846 3545A			Date	Received: 01	/19/12 /19/12 2.0
Run #1 Run #2	File ID 2G62829.D	DF 1	Analyzed 01/23/12	By AZ	Prep D 01/21/1		Prep Batch OP54359	Analytical Batch G2G2270
Run #1 Run #2	Initial Weight 17.3 g	Final 10.0 n	Volume 1l					
PCB List								
CAS No.	Compound		Result	RL	MDL	Units	Q	
12674-11-2	Aroclor 1016		ND	35	9.2	ug/kg		
11104-28-2	Aroclor 1221		ND	35	21	ug/kg		
11141-16-5	Aroclor 1232		ND	35	18	ug/kg		
53469-21-9	Aroclor 1242		ND	35	11	ug/kg		
12672-29-6	Aroclor 1248		ND	35	11	ug/kg		
11097-69-1	Aroclor 1254		ND	35	16	ug/kg		
11096-82-5	Aroclor 1260		ND	35	12	ug/kg		
CAS No.	Surrogate Ro	coveries	Run# 1	Run# 2	Lim	its		
877-09-8	Tetrachloro-n	n-xylene	40%		22-1	41%		
877-09-8	Tetrachloro-n		38%		22-1	41%		
2051-24-3	Decachlorobi	phenyl	28%		18-1	63%		
2051-24-3	Decachlorobi	phenyl	48%		18-1	63%		

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

E = Indicates value exceeds calibration range

			Repo	rt of An	alysis			Page 1 of 1
Client Sam Lab Sampl Matrix: Method: Project:	e ID: JA974 SO - S SW84		5-15) SW846 3545A			Date	-	/19/12 /19/12 5.0
Run #1 Run #2	File ID 2G62830.D	DF 1	Analyzed 01/23/12	By AZ	Prep D 01/21/1		Prep Batch OP54359	Analytical Batch G2G2270
Run #1 Run #2	Initial Weight 17.4 g	Final 10.0 n	Volume nl					
PCB List								
CAS No.	Compound		Result	RL	MDL	Units	Q	
12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5	Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248		ND ND ND ND ND ND	33 33 33 33 33 33 33 33	8.7 20 17 11 10 16 11	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg		
CAS No.	Surrogate Re	coveries	Run# 1	Run# 2	Lim	its		
877-09-8 877-09-8 2051-24-3 2051-24-3	Tetrachloro-n Tetrachloro-n Decachlorobi Decachlorobi	i-xylene ohenyl	89% 98% 67% 116%		22-1 18-1	41% 41% 63% 63%		

ND = Not detected MDL - Method Detection Limit RL = Reporting Limit

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

E = Indicates value exceeds calibration range

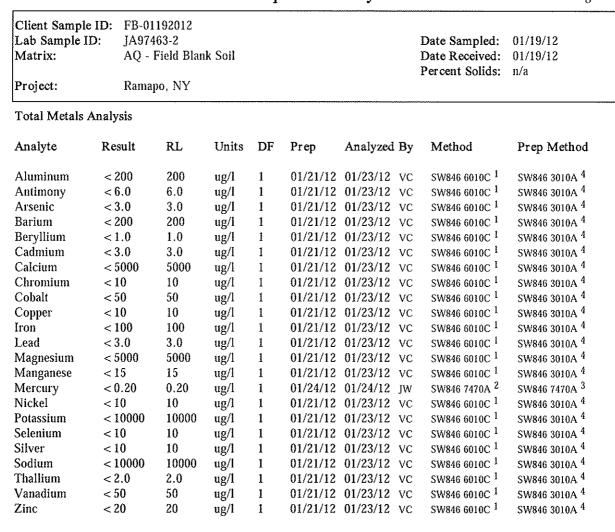
	· · · · · · · · · · · · · · · · · · ·			
Project:	Ramapo, NY	Percent Solids:	86.6	
Matrix:	SO - Soil	Date Received:		
Client Sample ID Lab Sample ID:	: 003-WC-01 JA97463-3	Date Sampled:	01/19/12	

Metals Analysis, TCLP Leachate SW846 1311

Analyte	Result	HW#	MCL	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Arsenic	< 0.50	D004	5.0	0.50	mg/l	1	01/24/12	01/27/12 VC	SW846 6010C ²	SW846 3010A ³
Barium	< 1.0	D005	100	1.0	mg/l	1	01/24/12	01/27/12 vc	SW846 6010C 2	SW846 3010A ³
Cadmium	< 0.0050	D006	1.0	0.0050	mg/l	1	01/24/12	01/27/12 VC	SW846 6010C 2	SW846 3010A ³
Chromium	< 0.010	D007	5.0	0.010	mg/l	1	01/24/12	01/27/12 VC	SW846 6010C 2	SW846 3010A ³
Lead	< 0.50	D008	5.0	0.50	mg/l	1	01/24/12	01/27/12 vc	SW846 6010C 2	SW846 3010A ³
Mercury	< 0.00020	D009	0.20	0.00020) mg/l	1	01/25/12	01/25/12 jw	SW846 7470A ¹	SW846 7470A ⁴
Selenium	< 0.50	D010	1.0	0.50	mg/l	1	01/24/12	01/27/12 VC	SW846 6010C 2	SW846 3010A ³
Silver	< 0.010	D011	5.0	0.010	mg/l	1	01/24/12	01/27/12 VC	SW846 6010C ²	SW846 3010A ³

(1) Instrument QC Batch: MA27835

(2) Instrument QC Batch: MA27847


(3) Prep QC Batch: MP62330

(4) Prep QC Batch: MP62351

ω ω

Page	1	of	1	

(1) Instrument QC Batch: MA27821

(2) Instrument QC Batch: MA27828

(3) Prep QC Batch: MP62220

(4) Prep QC Batch: MP62380

Client Sample Lab Sample I Matrix:		-SB-09(0-0 7463-4 Soil	.5)					Date Sampled: Date Received: Percent Solids:	01/19/12 01/19/12 90.0
Project:	Ram	apo, NY							
Metals Analy	sis								
Analyte	Result	RL	Units	DF	Prep	Analyzed	By	Method	Prep Method
Aluminum	7470	53		1	01/23/12	01/26/12	vc	SW846 6010C 2	SW846 3050B ³
Antimony	< 2.1	2.1	mg/kg	1	01/23/12			SW846 6010C ²	SW846 3050B ³
Arsenic	3.9	2.1	mg/kg	1		01/26/12		SW846 6010C ²	SW846 3050B ³
Barium	519	21	mg/kg	1		01/26/12	VC	SW846 6010C ²	SW846 3050B ³
Beryllium	< 0.21	0.21	mg/kg	1	01/23/12		VC	SW846 6010C ²	SW846 3050B ³
Cadmium	< 0.53	0.53	mg/kg	1	01/23/12	01/26/12	VC	SW846 6010C ²	SW846 3050B ³
Calcium	1560	530	mg/kg	I	01/23/12	01/26/12	VC	SW846 6010C ²	SW846 3050B ³
Chromium	11.1	1.1	mg/kg	1	01/23/12	01/26/12	VC	SW846 6010C ²	SW846 3050B ³
Cobalt	< 5.3	5.3	mg/kg	1	01/23/12	01/26/12	VC	SW846 6010C ²	SW846 3050B ³
Copper	11.1	2.7	mg/kg	1	01/23/12	01/26/12	VC	SW846 6010C ²	SW846 3050B ³
Iron	13600	53	mg/kg	1	01/23/12	01/26/12	VC	SW846 6010C ²	SW846 3050B ³
Lead	114	2.1	mg/kg	1	01/23/12	01/26/12	VC	SW846 6010C ²	SW846 3050B ³
Magnesium	1910	530	mg/kg	1	01/23/12	01/26/12	VC	SW846 6010C ²	SW846 3050B ³
Manganese	253	1.6	mg/kg	1	01/23/12	01/26/12	VC	SW846 6010C ²	SW846 3050B ³
Mercury	< 0.036	0.036	mg/kg	1	01/25/12	01/25/12	MP	SW846 7471B ¹	SW846 7471B ⁴
Nickel	9.6	4.3	mg/kg	1	01/23/12	01/26/12	VC	SW846 6010C ²	SW846 3050B ³
Potassium	< 1100	1100	mg/kg	1	01/23/12	01/26/12	VC	SW846 6010C ²	SW846 3050B ³
Selenium	< 2.1	2.1	mg/kg	1	01/23/12	01/26/12	VC	SW846 6010C ²	SW846 3050B ³
Silver	< 0.53	0.53	mg/kg	1	01/23/12	01/26/12	vc	SW846 6010C ²	SW846 3050B ³
Sodium	< 1100	1100	mg/kg	1	01/23/12	01/26/12	VC	SW846 6010C ²	SW846 3050B ³
Thallium	< 1.1	1.1	mg/kg	1	01/23/12	01/26/12	vc	SW846 6010C ²	SW846 3050B ³
Vanadium	15.1	5.3	mg/kg	1	01/23/12	01/26/12	VC	SW846 6010C ²	SW846 3050B ³
Zinc	47.4	2.1	mg/kg	1	01/23/12	01/26/12	VC	SW846 6010C ²	SW846 3050B ³

Instrument QC Batch: MA27834
 Instrument QC Batch: MA27838
 Prep QC Batch: MP62387
 Prep QC Batch: MP62420

دی چ

Client Sample ID: OU3-SB-09(Lab Sample ID: JA97463-5 Matrix: SO - Soil		7463-5	5-15)				Date Sampled: Date Received: Percent Solids:	01/19/12 01/19/12 92.3	
Project:	Ran	apo, NY							
Metals Analy	Metals Analysis								
Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method	
Aluminum	4690	51	mg/kg	1	01/23/12	01/26/12 vo	SW846 6010C ²	SW846 3050B ³	
Antimony	< 2.0	2.0	mg/kg	1	01/23/12	01/26/12 VC		SW846 3050B ³	
Arsenic	2.0	2.0	mg/kg	1	01/23/12	01/26/12 VC	SW846 6010C ²	SW846 3050B ³	
Barium	79.5	20	mg/kg	1	01/23/12	01/26/12 vo	SW846 6010C ²	SW846 3050B ³	
Beryllium	< 0.20	0.20	mg/kg	1	01/23/12	01/26/12 VC	SW846 6010C ²	SW846 3050B ³	
Cadmium	< 0.51	0.51	mg/kg	1	01/23/12	01/26/12 VC	SW846 6010C ²	SW846 3050B ³	
Calcium	1550	510	mg/kg	1	01/23/12	01/26/12 VC		SW846 3050B ³	
Chromium	9.9	1.0	mg/kg	1	01/23/12	01/26/12 VC	SW846 6010C ²	SW846 3050B ³	
Cobalt	< 5.1	5.1	mg/kg	1	01/23/12	01/26/12 VC		SW846 3050B ³	
Copper	6.0	2.6	mg/kg	1	01/23/12	01/26/12 vc	SW846 6010C ²	SW846 3050B ³	
Iron	12500	51	mg/kg	1	01/23/12	01/26/12 VC	SW846 6010C ²	SW846 3050B ³	
Lead	33.3	2.0	mg/kg	1	01/23/12	01/26/12 VC	SW846 6010C ²	SW846 3050B ³	
Magnesium	1900	510	mg/kg	1	01/23/12	01/26/12 vo	SW846 6010C ²	SW846 3050B ³	
Manganese	221	1.5	mg/kg	1	01/23/12	01/26/12 VC	SW846 6010C ²	SW846 3050B ³	
Mercury	< 0.034	0.034	mg/kg	1	01/25/12	01/25/12 мі	SW846 7471B ¹	SW846 7471B ⁴	
Nickel	8.3	4.1	mg/kg	1	01/23/12	01/26/12 VC	SW846 6010C ²	SW846 3050B ³	
Potassium	1150	1000	mg/kg	1	01/23/12	01/26/12 vc	SW846 6010C ²	SW846 3050B ³	
Selenium	< 2.0	2.0	mg/kg	1	01/23/12	01/26/12 VC	SW846 6010C ²	SW846 3050B ³	
Silver	< 0.51	0.51	mg/kg	1	01/23/12	01/26/12 vc	SW846 6010C ²	SW846 3050B ³	
Sodium	< 1000	1000	mg/kg	1	01/23/12	01/26/12 VC	SW846 6010C ²	SW846 3050B ³	
Thallium	< 1.0	1.0	mg/kg	1	01/23/12	01/26/12 vc	SW846 6010C ²	SW846 3050B ³	
Vanadium	14.0	5.1	mg/kg	1	01/23/12	01/26/12 vo	SW846 6010C ²	SW846 3050B ³	
Zinc	29.8	2.0	mg/kg	1	01/23/12	01/26/12 VC	SW846 6010C ²	SW846 3050B ³	

Instrument QC Batch: MA27834
 Instrument QC Batch: MA27838
 Prep QC Batch: MP62387
 Prep QC Batch: MP62420

Report	of Analysis
--------	-------------

Client Sample Lab Sample I Matrix:	D: JA9	3-SB-10(14- 7463-6 - Soil	14.5)				Date Sampled: Date Received: Percent Solids:	01/19/12 01/19/12 60.8
Project:	Ran	napo, NY						
Metals Analysis								
Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Aluminum	10700	84	mg/kg	1	01/23/12	01/26/12 vo	SW846 6010C ²	SW846 3050B ³
Antimony	< 3.4	3.4	mg/kg	1	01/23/12	01/26/12 VC		SW846 3050B ³
Arsenic	< 3.4	3.4	mg/kg	1	01/23/12			SW846 3050B ³
Barium	44.5	34	mg/kg	1	01/23/12			SW846 3050B ³
Beryllium	0.37	0.34	mg/kg	1		01/26/12 VC		SW846 3050B ³
Cadmium	< 0.84	0.84	mg/kg	1	01/23/12	01/26/12 vo	C SW846 6010C ²	SW846 3050B ³
Calcium	3440	840	mg/kg	1	01/23/12	01/26/12 vo		SW846 3050B ³
Chromium	24.9	1.7	mg/kg	1	01/23/12	01/26/12 vo		SW846 3050B ³
Cobalt	< 8.4	8.4	mg/kg	1	01/23/12	01/26/12 vo		SW846 3050B ³
Copper	< 4.2	4.2	mg/kg	1	01/23/12	01/26/12 VC		SW846 3050B ³
Iron	6480	84	mg/kg	1	01/23/12	01/26/12 VC		SW846 3050B ³
Lead	5.6	3.4	mg/kg	1	01/23/12	01/26/12 VC		SW846 3050B ³
Magnesium	1360	840	mg/kg	1	01/23/12	01/26/12 VC	SW846 6010C ²	SW846 3050B ³
Manganese	63.3	2.5	mg/kg	1	01/23/12	01/26/12 vo	SW846 6010C ²	SW846 3050B ³
Mercury	< 0.052	0.052	mg/kg	1	01/25/12	01/25/12 мі	P SW846 7471B ¹	SW846 7471B ⁴
Nickel	6.8	6.8	mg/kg	1	01/23/12	01/26/12 vc	SW846 6010C ²	SW846 3050B ³
Potassium	< 1700	1700	mg/kg	1	01/23/12	01/26/12 VC	SW846 6010C ²	SW846 3050B ³
Selenium	< 3.4	3.4	mg/kg	1	01/23/12	01/26/12 VC	SW846 6010C ²	SW846 3050B ³
Silver	< 0.84	0.84	mg/kg	1	01/23/12	01/26/12 vo	SW846 6010C ²	SW846 3050B ³
Sodium	< 1700	1700	mg/kg	1	01/23/12	01/26/12 VC	SW846 6010C ²	SW846 3050B ³
Thallium	< 1.7	1.7	mg/kg	1	01/23/12	01/26/12 vo	SW846 6010C ²	SW846 3050B ³
Vanadium	16.5	8.4	mg/kg	1	01/23/12	01/26/12 vo	SW846 6010C ²	SW846 3050B ³
Zinc	19.6	3.4	mg/kg	1	01/23/12	01/26/12 vo		SW846 3050B ³

Instrument QC Batch: MA27834
 Instrument QC Batch: MA27838
 Prep QC Batch: MP62387
 Prep QC Batch: MP62420

ŗ

Client Sample Lab Sample I Matrix:	D: JA97 SO -		.5)					Date Sampled: Date Received: Percent Solids:	01/19/12 01/19/12 71.4
Project:	Kana	apo, NY							
Metals Analy	sis								
Analyte	Result	RL	Units	DF	Prep	Analyzed	Ву	Method	Prep Method
Aluminum	10500	69	mg/kg	1	01/23/12	01/26/12	VC	SW846 6010C ²	SW846 3050B ³
Antimony	< 2.8	2.8	mg/kg	1	01/23/12	01/26/12	VC	SW846 6010C ²	SW846 3050B ³
Arsenic	2.9	2.8	mg/kg	1	01/23/12	01/26/12	VC	SW846 6010C ²	SW846 3050B ³
Barium	74.9	28	mg/kg	1	01/23/12	01/26/12	VC	SW846 6010C ²	SW846 3050B ³
Beryllium	< 0.28	0.28	mg/kg	1	01/23/12	01/26/12	VC	SW846 6010C ²	SW846 3050B ³
Cadmium	< 0.69	0.69	mg/kg	1	01/23/12	01/26/12	VC	SW846 6010C ²	SW846 3050B ³
Calcium	6150	690	mg/kg	1	01/23/12	01/26/12	VC	SW846 6010C ²	SW846 3050B ³
Chromium	8.6	1.4	mg/kg	1	01/23/12	01/26/12	VC	SW846 6010C ²	SW846 3050B ³
Cobalt	9.8	6.9	mg/kg	1	01/23/12	01/26/12	VC	SW846 6010C ²	SW846 3050B ³
Copper	27.4	3.5	mg/kg	1	01/23/12	01/26/12	VC	SW846 6010C ²	SW846 3050B ³
Iron	21700	69	mg/kg	1	01/23/12	01/26/12	VC	SW846 6010C ²	SW846 3050B ³
Lead	74.2	2.8	mg/kg	1	01/23/12	01/26/12	VC	SW846 6010C ²	SW846 3050B ³
Magnesium	5360	690	mg/kg	1	01/23/12	01/26/12	VC	SW846 6010C ²	SW846 3050B ³
Manganese	369	2.1	mg/kg	1	01/23/12	01/26/12	VC	SW846 6010C ²	SW846 3050B ³
Mercury	0.054	0.047	mg/kg	1	01/25/12	01/25/12	MP	SW846 7471B ¹	SW846 7471B ⁴
Nickel	11.7	5.5	mg/kg	1	01/23/12	01/26/12	VC	SW846 6010C ²	SW846 3050B ³
Potassium	<1400	1400	mg/kg	1	01/23/12	01/26/12	VC	SW846 6010C ²	SW846 3050B ³
Selenium	< 2.8	2.8	mg/kg	1	01/23/12	01/26/12	vc	SW846 6010C ²	SW846 3050B ³
Silver	< 0.69	0.69	mg/kg	1	01/23/12	01/26/12	vc	SW846 6010C ²	SW846 3050B ³
Sodium	<1400	1400	mg/kg	1	01/23/12	01/26/12	VC	SW846 6010C ²	SW846 3050B ³
Thallium	< 1.4	1.4	mg/kg	1	01/23/12	01/26/12	vc	SW846 6010C ²	SW846 3050B ³
Vanadium	49.6	6.9	mg/kg	1	01/23/12	01/26/12	vc	SW846 6010C ²	SW846 3050B ³
Zinc	72.4	2.8	mg/kg	1	01/23/12	01/26/12	VC	SW846 6010C ²	SW846 3050B ³

Instrument QC Batch: MA27834
 Instrument QC Batch: MA27838
 Prep QC Batch: MP62387
 Prep QC Batch: MP62420

 \sim

ſ

Client Sample ID: OU3-SB-16(0-0.5) Lab Sample ID: JA97463-8 Matrix: SO - Soil							Date Sampled: Date Received: Percent Solids:	01/19/12 01/19/12 82.0	
Project:]	Ramapo, NY							
Metals Analy	sis								
Analyte	Resu	lt RL	Units	DF	Prep	Analyzed By	Method	Prep Method	
Aluminum	8290		mg/kg	1		01/26/12 vc		SW846 3050B 5	
Antimony	49.4	2.3	mg/kg	1	01/23/12	01/26/12 VC	SW846 6010C ²	SW846 3050B ⁵	
Arsenic	19.4	2.3	mg/kg	1	01/23/12	01/26/12 VC	SW846 6010C ²	SW846 3050B ⁵	
Barium	3730		mg/kg	1		01/31/12 BL	SW846 6010C 4	SW846 3050B ⁵	
Beryllium	< 0.2		mg/kg	1		01/26/12 VC	SW846 6010C ²	SW846 3050B ⁵	
Cadmium	2.3	0.58	mg/kg	1	01/23/12	01/26/12 VC	SW846 6010C ²	SW846 3050B ⁵	
Calcium	2040		mg/kg	1	01/23/12	01/26/12 VC	SW846 6010C ²	SW846 3050B ⁵	
Chromium	64.1	1.2	mg/kg	1	01/23/12	01/26/12 VC	SW846 6010C ²	SW846 3050B ⁵	
Cobalt	< 5.8	8 5.8	mg/kg	1	01/23/12	01/26/12 VC	SW846 6010C ²	SW846 3050B ⁵	
Copper	49.1	2.9	mg/kg	1	01/23/12	01/26/12 VC	SW846 6010C ²	SW846 3050B ⁵	
Iron	1830	0 58	mg/kg	1	01/23/12	01/26/12 VC	SW846 6010C ²	SW846 3050B ⁵	
Lead	2540	2.3	mg/kg	I	01/23/12	01/26/12 VC	SW846 6010C ²	SW846 3050B ⁵	
Magnesium	2150	580	mg/kg	1	01/23/12	01/26/12 VC	SW846 6010C ³	SW846 3050B ⁵	
Manganese	364	1.7	mg/kg	1	01/23/12	01/26/12 VC	SW846 6010C ²	SW846 3050B ⁵	
Mercury	0.072	2 0.039	mg/kg	1	01/25/12	01/25/12 мр	SW846 7471B ¹	SW846 7471B ⁶	
Nickel	25.9	4.6	mg/kg	1	01/23/12	01/26/12 VC	SW846 6010C ²	SW846 3050B ⁵	
Potassium	< 12	00 1200	mg/kg	1	01/23/12	01/26/12 VC	SW846 6010C ²	SW846 3050B ⁵	
Selenium	< 2.3	3 2.3	mg/kg	1	01/23/12	01/26/12 VC	SW846 6010C ²	SW846 3050B ⁵	
Silver	1.3	0.58	mg/kg	1	01/23/12	01/31/12 BL	SW846 6010C ⁴	SW846 3050B ⁵	
Sodium	< 12	00 1200	mg/kg	1	01/23/12	01/26/12 VC	SW846 6010C ²	SW846 3050B ⁵	
Thallium	< 1.2	2 1.2	mg/kg	1	01/23/12	01/26/12 vc	SW846 6010C ²	SW846 3050B ⁵	
Vanadium	19.4	5.8	mg/kg	1	01/23/12	01/26/12 VC	SW846 6010C ²	SW846 3050B ⁵	
Zinc	531	2.3	mg/kg	1	01/23/12	01/26/12 VC	SW846 6010C ²	SW846 3050B ⁵	

(1) Instrument QC Batch: MA27834

(2) Instrument QC Batch: MA27838

(2) Instrument QC Batch: MA27838
(3) Instrument QC Batch: MA27847
(4) Instrument QC Batch: MA27862
(5) Prep QC Batch: MP62387
(6) Prep QC Batch: MP62420

Page 1 of 1

Client Sample ID:OU3-SB-13(14.5-15)Lab Sample ID:JA97463-9Matrix:SO - Soil								Date Sampled: Date Received: Percent Solids:	01/19/12 01/19/12 86.0	
Project: Ramapo, NY										
Metals Analysis										
Analyte	Result	RL	Units	DF	Prep	Analyzed	By	Method	Prep Method	
Aluminum	7880	58	mg/kg	1	01/23/12			SW846 6010C ²	SW846 3050B 4	
Antimony	< 2.3	2.3	mg/kg	1	01/23/12		VC	SW846 6010C ²	SW846 3050B 4	
Arsenic	< 2.3	2.3	mg/kg	1		01/26/12		SW846 6010C ²	SW846 3050B 4	
Barium	58.2	23	mg/kg	1	01/23/12		VC	SW846 6010C ²	SW846 3050B 4	
Beryllium	< 0.23	0.23	mg/kg	1		01/26/12		SW846 6010C ²	SW846 3050B 4	
Cadmium	< 0.58	0.58	mg/kg	1	01/23/12		VC	SW846 6010C ²	SW846 3050B 4	
Calcium	2480	580	mg/kg	1		01/26/12		SW846 6010C ²	SW846 3050B 4	
Chromium	13.4	1.2	mg/kg	1			VC	SW846 6010C ²	SW846 3050B 4	
Cobalt	< 5.8	5.8	mg/kg	1		4 = 1 = = 1 = =	VC	SW846 6010C ²	SW846 3050B ⁴	
Copper	4.3	2.9	mg/kg	1	01/23/12		VC	SW846 6010C ²	SW846 3050B 4	
Iron	7310	58	mg/kg	1	01/23/12	01/26/12		SW846 6010C ²	SW846 3050B 4	
Lead	6.8	2.3	mg/kg	1		01/26/12		SW846 6010C ²	SW846 3050B 4	
Magnesium	1490	580	mg/kg	1	01/23/12			SW846 6010C 3	SW846 3050B 4	
Manganese	79.8	1.7	mg/kg	1		01/26/12		SW846 6010C ²	SW846 3050B 4	
Mercury	< 0.038	0.038	mg/kg	1	01/25/12			SW846 7471B 1	SW846 7471B ⁵	
Nickel	6.4	4.7	mg/kg	1		01/26/12		SW846 6010C ²	SW846 3050B ⁴	
Potassium	< 1200	1200	mg/kg	1		01/26/12		SW846 6010C ²	SW846 3050B 4	
Selenium	< 2.3	2.3	mg/kg	1		01/26/12		SW846 6010C ²	SW846 3050B 4	
Silver	< 0.58	0.58	mg/kg	1	01/23/12		vc	SW846 6010C ²	SW846 3050B 4	
Sodium	< 1200	1200	mg/kg	1	01/23/12	01/26/12		SW846 6010C ²	SW846 3050B 4	
Thallium	< 1.2	1.2	mg/kg	1	01/23/12			SW846 6010C ²	SW846 3050B 4	
Vanadium	14.6	5.8	mg/kg	1	01/23/12			SW846 6010C ²	SW846 3050B 4	
Zinc	20.4	2.3	mg/kg	1	01/23/12	01/26/12	vc	SW846 6010C ²	SW846 3050B ⁴	

(1) Instrument QC Batch: MA27834

(2) Instrument QC Batch: MA27838

(a) Instrument QC Batch: MA27847
(4) Prep QC Batch: MP62387
(5) Prep QC Batch: MP62420

		Repo	ort of An	alysis			Page 1 of 1
Client Sample ID: Lab Sample ID: Matrix:	OU3-WC-01 JA97463-3 SO - Soil				Date Sampled Date Received Percent Solids	/19/12 /19/12 5.6	
Project:	Ramapo, NY						
General Chemistry							
Analyte	Result	RL	Units	DF	Analyzed	By	Method
Corrosivity as pH	7.74 NC 🗇		su	1	01/30/12	SA	SW846 CHAP7
Cyanide Reactivity	< 12	12	mg/kg	1	01/29/12 15:22	VA	SW846 CHAP7/9012 B
Ignitability (Flashpo	int) > 200		Deg. F	1	01/30/12	SA	SW846 CHAP7/ASTM D93
Solids, Percent	86.6		%	1	01/24/12	BM	SM18 2540G
Sulfide Reactivity	<120 丁	120	mg/kg	1	01/30/12	SS	SW846 CHAP7/9034

		Repo	rt of An	alysis			Page 1 of 1
Client Sample ID: Lab Sample ID: Matrix:	OU3-SB-16(0-0.5) JA97463-8 SO - Soil				Date Sampled Date Received Percent Solids	l: 01	
Project:	Ramapo, NY					. o.	
General Chemistry	7						
Analyte	Result	RL	Units	DF	Analyzed	By	Method
Cyanide Solids, Percent	< 0.29 82	0.29	mg/kg %	1 1	01/20/12 14:36 01/27/12	JA BM	SW846 9012 M/LACHAT SM18 2540G

		Repo	rt of An	alysis			Page 1 of 1
Client Sample ID: Lab Sample ID: Matrix:	OU3-SB-13(14.5-15) JA97463-9 SO - Soil				Date Sampled Date Received Percent Solids	l: 01	./19/12 ./19/12 5.0
Project:	Ramapo, NY						
General Chemistry	7						
Analyte	Result	RL	Units	DF	Analyzed	Ву	Method
Cyanide Solids, Percent	< 0.26 86	0.26	mg/kg %	1 1	01/26/12 16:17 01/27/12	JJY BM	SW846 9012 M/LACHAT SM18 2540G

