2019 ANNUAL RESTORATION MONITORING REPORT

for the:

Ford Motor Company Site: Operable Unit 2 Remediation Project Ramapo, Rockland County, New York, Site No. 3-44-065

PREPARED ON:

February 7, 2022

PREPARED FOR:

ARCADIS US Inc. 17-17 Route 208 North Fair Lawn, NJ 07410

PREPARED BY:

Davey Tree Expert Company 4 Walter E. Foran Blvd., Suite 209 Flemington, NJ 08822

AGE Project # 3437b

TABLE OF CONTENTS

1.0 INTRODUCTION	
1.1 Site Description and History	
1.2 Project Description	4
1.3 Site Restoration Summary	4
1.3.1 Upland Meadow	4
1.3.2 Upland Forest Areas	
1.3.3 Streambank Stabilization Area	5
2.0 MONITORING PROGRAM	5
3.0 VEGETATION	6
3.1 Results of Vegetation Monitoring	7
3.2 Conclusions of Vegetation Monitoring	10
4.0 WILDLIFE UTILIZATION	
4.1 Wildlife Habitat Enhancement Features	
5.0 MAINTENANCE AND MONITORING SUMMARY	
6.0 OVERALL CONCLUSIONS & RECOMMENDATIONS	12
7.0 LITERATURE CITED	12

APPENDICES

APPENDIX A – Coordination & Correspondence

APPENDIX B – Restoration Monitoring Plan

APPENDIX C – Soils Information

APPENDIX D – Color Photographs

APPENDIX E – Field Data Sheets

FIGURES

FIGURE 1 – Site Location Map

FIGURE 2 – USGS Topographic Map

FIGURE 3 – Average Woody Stem Density for All Species Recorded within Monitoring Plots

FIGURE 4 – Woody Stem Height Class Distribution for Planted and Naturally Regenerating Species

TABLES

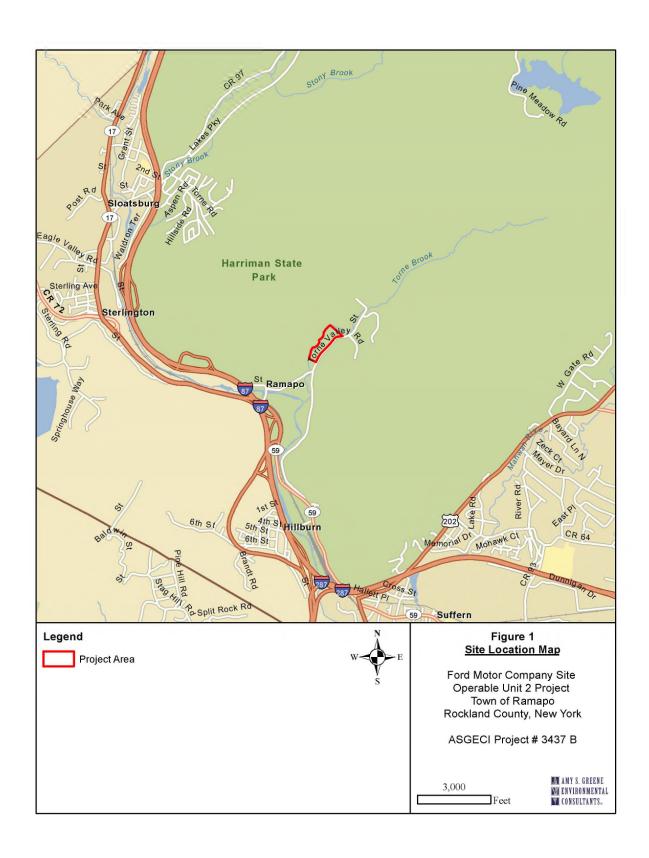
TABLE 1 – Average Density and Average Height for Planted and Naturally Regenerating Woody Plants following the 2019 Growing Season

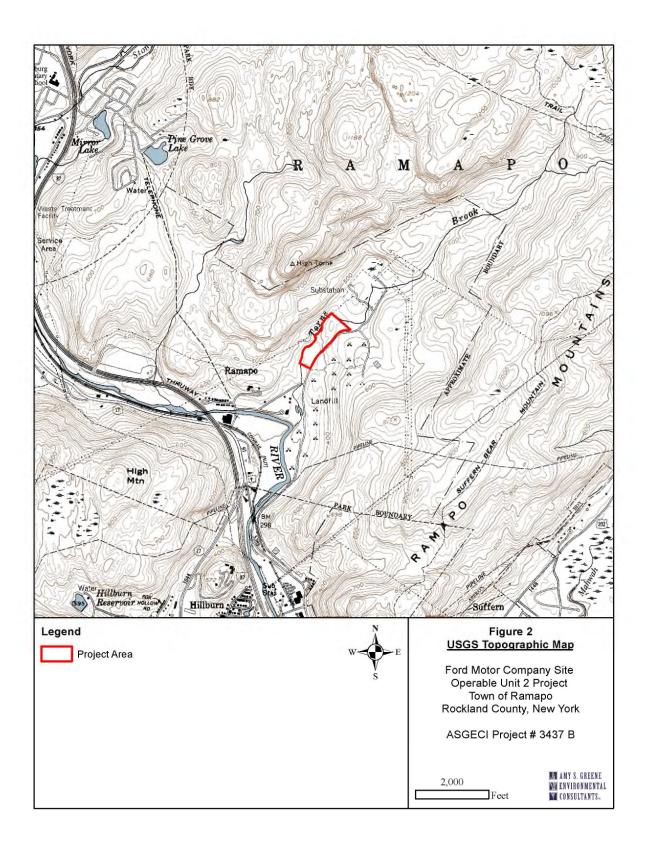
TABLE 2 – 2019 Estimated Herbaceous Coverage

1.0 INTRODUCTION

On behalf of Ford Motor Company (Ford) and ARCADIS U.S., Inc. (ARCADIS), Davey Tree Expert Company (Davey) has prepared this fourth (4) Annual Restoration Monitoring Report for Torne Valley Road Area designated as Operable Unit 2 (OU-2) of the Ramapo Paint Sludge Site, located in the Town of Ramapo, Rockland County, New York (the Site).

Annual restoration monitoring was implemented at OU-2 in accordance with the New York State Department of Environmental Conservation (NYSDEC) approved Site Restoration Plan (SRP) dated February 11, 2016 (Appendix A). A remedial action consisting of targeted removal and disposal of paint sludge with embankment excavation was performed at the Site during 2015-2016 in accordance with the Record of Decision (ROD) issued by the New York State Department of Environmental Conservation (NYSDEC), dated March 2014. This Annual Restoration Monitoring Report is the fourth (4) of five (5) annual monitoring reports planned for the OU-2 Project. The purpose of this report is to:


- Quantify and document woody and herbaceous plant species composition within the restoration area; and,
- Discuss routine maintenance & monitoring activities that have been conducted at the Site prior to December 2019.


1.1 Site Description and History

The Site includes valley side and river flat areas and extends along the bottom of Torne Valley in a north/south direction. OU-2 is generally bound to the west by the Ramapo River and Torne Brook; to the north by Harriman State Park and a Consolidated-Edison Substation; to the east by Harriman State Park and Torne Valley Road; and to the south by Sloatsburg Road/State Route 59.

The majority of OU-2 (approximately 15.4 acres) is located west of Torne Valley Road (OU-2 North) with an additional area (approximately 0.7 acres) located east of Torne Valley Road (OU-2 South), approximately 3,765 feet south of OU-2 North.

OU-2 is comprised of natural lands and includes upland forests, maintained accessways, and riparian corridors along Torne Brook. Torne Brook flows to the Ramapo River, which flows to the Pompton River, part of the Passaic River Drainage System. The project area is also adjacent to the nearby Harriman State Park, which is owned and operated by the NYSDEC.

1.2 Project Description

The Remedial Action consisted of excavation, removal, transportation and disposal of paint sludge and impacted soil as outlined in the Final Remedial Design approved by the NYSDEC in July 2015. The total area disturbed during the execution of the Remedial Design is approximately 12.67 acres. Of this, only 0.31 acres is located within OU-2 South. All areas of disturbance can be viewed in the As-Built Monitoring Plan (Appendix B).

A total of 56,537 tons of impacted soil and paint sludge were excavated, removed, and disposed of at the approved off-site disposal facilities. A total of 19,990 tons of general clean fill was imported to backfill the excavation areas. The general backfill was sourced from the Braen Van Orden Pit located in Ringwood, New Jersey. The analytical and geotechnical parameters for the approved fill material are provided in Appendix C.

The Site topography was generally restored to pre-existing elevations and graded to drain towards Torne Brook. Site stabilization also occurred as particular areas were remediated, concurrent with final grading. A total of 32,200 cubic yards of topsoil was imported from RER Supply located in Wantage, New Jersey for use in restoring the Site to original grade. The analytical parameters for the approved topsoil are provided in Appendix C. Following placement of topsoil, the disturbed area was hydroseeded with annual rye grass and straw.

1.3 Site Restoration Summary

Remediation of the project area resulted in the temporary disturbance of 11.63 acres of upland forest, approximately 550 linear feet of streambank as well as 0.94 acres of upland meadow. The project area was planted to restore vegetative communities within six months after the disturbances occurred. The area was restored with the following communities:

- 10.12 acres of upland forest
- 0.10 acres streambank areas
- 2.13 acres upland meadow
- 0.32 acres gravel access areas

The project area was planted entirely with native species, similar to those that were removed as a result of the remediation process. Plants were installed in a random pattern, with groups of similar species clustered together. All of the selected species were native plants that require no maintenance once established. The plant diversity should, as the Site matures, improve the value of the Site to a variety of wildlife.

Seeding of the Site with the herbaceous seed mix was performed following the remediation. Planting, seeding, fertilization, and stabilization were performed according to the specifications prepared specifically for this project.

1.3.1 Upland Meadow

A total of 2.13 acres of upland meadows were restored in areas along Torne Valley Road. All upland meadow areas were permanently stabilized by seeding with a warm season grass mixture, including little bluestem (*Schizachyrium scoparium*), big bluestem (*Andropogon gerardii*), Indian grass (*Sorghastrum nutans*), switchgrass (*Panicum virgatum*), oats (*Avena sativa*), Virginia wild rye (*Elymus virginicus*), annual ryegrass (*Lolium multiflorum*), smooth aster (*Aster laevis*), black-eyed Susan (*Rudbeckia hirta*), purple coneflower (*Echinacea purpurea*), wild bergamot (*Monarda fistulosa*), and lance-leaved coreopsis (*Coreopsis lanceolata*). All permanent seeding and stabilization was completed in accordance with the SRP dated March 2016.

1.3.2 Upland Forest Areas

A total of 10.12 acres of upland forest habitat was restored in accordance with the SRP. All disturbed upland forests were planted with a combination of containerized plant materials. Trees and shrubs were planted at approximately 20-foot on-center. Tree and shrub species including northern red oak (*Quercus rubra*), sugar maple (*Acer saccharum*), white ash (*Fraxinus americana*), river birch (*Betula lenta*), American sycamore (*Platanus occidentalis*), tulip poplar (*Liriodendron tulipifera*), black chokeberry (*Aronia melanocarpa*), eastern red cedar (*Juniperus virginica*), Virginia rose (*Rosa virginiana*), witch hazel (*Hamamelis virginiana*), and southern arrowwood (*Viburnum dentatum*) were installed within the upland areas. All upland areas were stabilized by seeding with a warm season grass mixture including little bluestem, big bluestem, Indian grass, switchgrass, oats, Virginia wild rye, annual ryegrass, smooth aster, black-eyed Susan, purple coneflower, wild bergamot, and lance-leaved coreopsis.

Within the upland forest restoration area, steep slopes were identified and received additional seeding and stabilization measures. All slopes 25-pecent (4:1 slope) or steeper were stabilized with the temporary stabilization seed mixture in addition to the upland forest seed mix. The steep slope areas were also stabilized with high performance biodegradable erosion control matting. All permanent seeding, stabilization, and plantings were completed in accordance with the SRP.

1.3.3 Streambank Stabilization Area

The streambank stabilization area can be described as all areas within 3 feet horizontally from the mean high-water mark of Torne Brook; therefore, the width of the streambank stabilization varied depending on proposed disturbance and slopes. Streambank stabilization areas restored included 0.03 acres located along approximately 550 linear feet of the southern bank of Torne Brook. As needed, streambank areas were stabilized by adding natural stone at the toe-of-slope within Torne Brook. All areas above the toe-of-slope and normal water levels were restored utilizing only soil, vegetation, and other bioengineering devices. All disturbed riverbank areas were planted with a combination of live stakes and containerized plant materials. Live stakes were planted in a staggered fashion along the riverbank at approximately 1-foot on-center to provide instant protection from scour and erosion. Containerized shrubs were planted at 4-foot on-center in streambank areas that are more than 2 feet above bank full. Additionally, containerized trees were planted at 10-foot on-center. Tree and shrub species such as black willow (*Salix nigra*), silky dogwood (*Cornus amomum*), elderberry (*Sambucus canadensis*), and witch hazel were installed within the streambank stabilization areas.

All stream bank stabilization areas were stabilized by seeding a native grass mixture including little bluestem, Indian grass, switchgrass, Virginia wild rye, annual ryegrass, fox sedge (*Carex vulpinoides*), soft rush (*Juncus effusus*), path rush (*Juncus tenuis*), swamp sunflower (*Helianthus angustifolius*), joepye-weed (*Eupatorium fistulosum*), boneset (*Eupatorium perfoliatum*), narrow-leaved goldenrod (*Euthamia graminifolia*), Canada goldenrod (*Solidago canadensis*), and wild bergamot. The streambank areas also received the temporary stabilization mixtures to insure stabilization. All permanent seeding, stabilization, and plantings were completed in accordance with the SRP.

2.0 MONITORING PROGRAM

In accordance with the NYSDEC approved Site Remediation Plan (SRP), the Site was monitored for five (5) growing seasons following the completion of the planting/seeding within the restored project area. Monitoring was used to determine if the requirements of the approved SRP were met and if additional maintenance and monitoring was necessary to meet the goals of the project. Monitoring commenced in the fall of 2016 and continued until 2020.

During the monitoring period, planted species and any additional "volunteer" species were identified. The average percent coverage of vegetation is estimated and noted for the annual and final reports.

Permanent sampling station locations and photograph locations were established onsite in order to illustrate the relative success of the project and annual changes in vegetative cover. The monitoring protocol utilized is adapted from Peet et al. (1998) and is briefly discussed under Section 3 below.

Invasive weed species were evaluated and monitored. The overall health and vigor of the plantings were evaluated. Herbivory was evaluated, to determine if it is resulting in plant mortality. In addition, maintenance activities (such as hand weeding, application of a pesticide or other approved method for the removal of invasive/noxious species in the restoration Site) were identified and implemented.

This annual monitoring report has been prepared in accordance with the approved SRP. A comprehensive, final report that summarizes the results and success of the restoration project is provided under a separate cover.

3.0 VEGETATION

Vegetation monitoring following the 2019 growing season was conducted on September 10, 2019. Vegetative success criteria was evaluated by systematic sampling within the riparian restoration area. Permanent vegetation plots were established within the restoration area in 2016 (quantity 6). Plot locations are indicated on the "Restoration Monitoring Plan" included in Appendix B.

Representative photographs of the plot locations are presented in Appendix D. Photographs are useful in documenting the change and establishment of a restoration project throughout the monitoring period.

The corners of the vegetation sampling plots were also staked in the field. The sampling methodology for inventory plots is discussed in detail by Peet et al. (1998). Generally, each plot consists of a 2 by 3 array of modules, each module being 10 meters long by 10 meters wide. A 2 x 5 module array is the recommended size for description of forest communities; however, smaller arrays may be used in areas with homogeneous overstory vegetation or dense understory. The smaller 2 by 3 module array is suitable for sampling this project area, due to its size and relatively homogeneous cover. The standard observation unit used was a 20 by 30 meter plot. Within each array, woody stem presence, cover, diameter, and height was recorded. Depending on coverage of herbs and bryophytes (i.e., mosses), these strata were sampled using a subset of modules or nested quadrats within modules. Plot and Site data was recorded for each array including soil morphology, aspect, slope, elevation, topographic position, and total estimated cover of the vegetative strata (trees, saplings, shrubs, herbs, vines, and bryophytes).

Estimates of woody stem density, woody stem height, and herbaceous cover were obtained for each planted and naturally regenerating species. In addition, a complete count of all planted trees was performed to determine tree planting success. Field data sheets can be viewed in Appendix E.

3.1 Results of Vegetation Monitoring

Woody Species

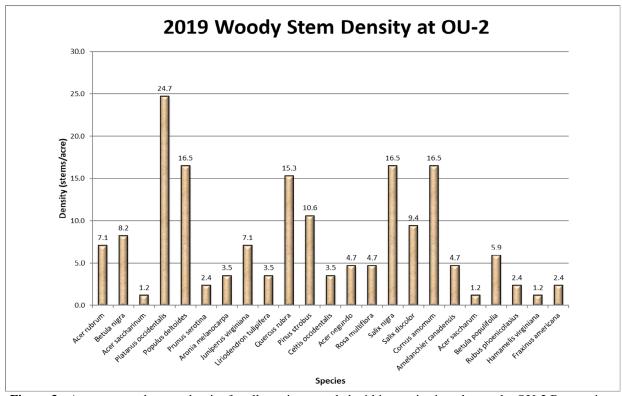
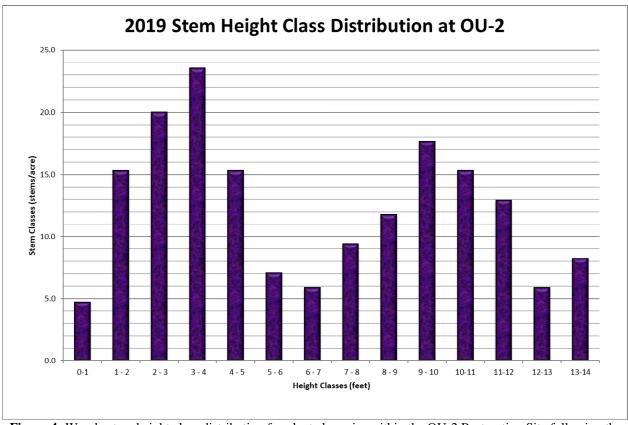

Average density of planted species is estimated to be 166 trees and shrubs per acre (see Table 1 below). Some naturally-regenerating species were identified within the sample plots, including sycamore (*Platanus occidentalis*), red maple (*Acer rubrum*), black willow (*Salix nigra*), pussy willow (*Salix discolor*), and invasive species such as multiflora rose.

Table 1: Average De	ensity and Average Height Plants Following the	for Planted and Natura 2019 Growing Season	lly Regenerating Woody	
Common Name	Scientific Name	Average Density (stems/acre)	Average Height (feet)	
Red Maple	Acer rubrum	7.1	8.0	
River Birch	Betula nigra	8.2	9.4	
Silver Maple	Acer saccharinum	1.2	6.5	
American Sycamore	Platanus occidentalis	24.7	7.5	
Eastern Cottonwood	Populus deltoides	16.5	9.1	
Black Cherry	Prunus serotina	2.4	3.0	
Black Chokeberry	Aronia melanocarpa	3.5	3.5	
Eastern Red Cedar	Juniperus virginiana	7.1	4.0	
Tulip Poplar	Liriodendron tulipifera	3.5	6.2	
Red Oak	Quercus rubra	15.3	9.7	
White Pine	Pinus strobus	10.6	8.4	
Hackberry	Celtis occidentalis	3.5	9.8	
Box Elder Acer negundo		4.7	8.0	
Multiflora Rose	Rosa multiflora	4.7	2.0	
Black Willow	Salix nigra	16.5	3.3	
Pussy Willow	Salix discolor	9.4	2.8	
Silky Dogwood	Cornus amomum	16.5	3.0	
Serviceberry Amelanchier canadensis		4.7	7.0	
Sugar Maple Acer saccharum		1.2	8.5	
Gray Birch Betula populifolia		5.9	9.1	
Wineberry	Wineberry Rubus phoenicolasius		2.5	
Witchhazel	Witchhazel Hamamelis virginiana		7.5	
White Ash Fraxinus americana		2.4	13.5	
Su	mmary	Average Density (stems/acre)	Average Height (feet)	
Total .	All Species	172.9	6.6	
Total Pla	anted Species	165.9	7.0	
Total Naturally	Regenerating Species	7.1	2.3	


Overall woody species diversity is excellent. Twenty-one species of native trees and shrubs are present within the Site. Distribution of these species is fairly equal, with only a few species extending more than 10 stems per acre. Sycamore has established as the most prevalent tree species, while cottonwood (*Populus deltoides*), black willow (*Salix nigra*), and red oak (*Quercus rubra*) also were readily found. Planted tree and shrub density for individual species ranged from approximately 1 to 25 stems per acre

(see Figure 3 below). Shrub establishment and growth remained minimal, except for the stream embankment area where black willow (*Salix nigra*), pussy willow (*Salix discolor*) and silky dogwood (*Cornus amomum*) were present from the establishment of live stakes. However, naturally regenerating black willow and pussy willow were also observed. Shrub establishment was likely hindered by the presence of deers.

Average height class of species sampled within the monitoring plots during 2019 was estimated at 7.0 feet, increasing slightly from the previous monitoring year (see Table 1). Individual species ranged from 1-foot saplings to trees over 14 feet tall. The most abundant stem class was in the 3 to 4-foot range due to the presence of live stakes (see Figure 4 below). Not including live stakes, the highest number of stems fell within the 9 to 10-foot height class. A majority of the planted species have average heights greater than 6 feet. Comparing the 2019 monitoring data to previous growing seasons shows that planted trees and shrubs are successfully establishing and growing throughout the Site.

Figure 3 - Average woody stem density for all species recorded within monitoring plots at the OU-2 Restoration Site following the 2019 growing season.

Figure 4: Woody stem height class distribution for planted species within the OU-2 Restoration Site following the 2019 growing season.

Herbaceous Species

Herbaceous cover within the 2019 growing season continued to excel. Native grass mixtures take approximately 2 to 3 years to establish; therefore, the design mixture has likely become fully established and mature. The original designed native herbaceous seed mixture was applied to the Site in 2016 as specified on the Restoration Notes and Detailed Plan (Appendix B). Overall coverage, including native plantings and volunteer species, was estimated at 99% (see Table 2 below). Switchgrass (*Panicum virgatum*) was the dominant species found throughout the Site, along with indiangrass (*Sorghastrum nutans*). Species dominance was determined quantitatively using the methodology discussed in Peet et al., 1998, and can be seen visually throughout the Site. Wildflowers such as black-eyed Susan (*Rudbeckia hirta*), and wild bergamot (*Monarda fistulosa*) were also prevalent throughout the herbaceous layer. Lanceleaf coreopsis (Coreopsis lanceolate) also provides wildflower color and pollinator habitat throughout the Site.

Volunteer species were identified within the sample plots and observed throughout the Site. Species including fireweed (*Erechtites hieraciifolius*), barnyard grass (*Echinochloa crus-galli*), fall panicum (*Panicum dichotomiflorum*), and calico aster (*Symphyotrichum lateriflorum*) all were identified within many of the sampling plots. Invasive species including Japanese hops (*Humulus japonicus*), and mugwort (*Artemisia vulgaris*) were identified within the Site, mainly along areas sloping toward the stream. These species were targeted during the Fall 2019 herbicide treatment. Further information regarding invasive species control can be viewed in Section 5 of this report.

Tabl	e 2: 2019 Estimated Herbaceous Co	over
Common Name	Scientific Name	Average Cover (%)
Switchgrass	Panicum virgatum	26.00
Indiangrass	Sorghastrum nutans	15.33
Black-Eyed Susan	Rudbeckia hirta	10.00
Wild Bergamot	Monarda fistulosa	9.00
Virginia Wild Rye	Elymus virginicus	4.67
Fall Panicum	Panicum dichotomiflorum	4.67
Barnyard Grass	Echinochloa crus-galli	4.50
Calico Aster	Symphyotrichum lateriflorum	4.50
Mugwort	Artemesia vulgaris	4.33
Lanceleaf Tickseed	Coreopsis lanceolata	2.83
Fireweed	Erechtites hieraciifolius	2.83
Japanese Hops	Humulus japonicus	2.33
Yellow Foxtail	Setaria pumila	1.67
Little Bluestem	Schizachryium scoparium	1.17
Tickseed Sunflower	Bidens sp.	1.00
Evening Primrose	Oenthothera biennis	0.83
Meadow Grass	Poa sp.	0.83
New England Aster	Symphyotrichum novae-angliae	0.67
Swamp Sunflower	Helianthus angustifolius	0.50
Pennsylvania Smartweed	Polygonum pennsylvanica	0.33
Common Cockleburr	Xanthium stumarium	0.33
Giant Dandelion	Tragopogon dubius	0.33
Narrow-Leaved Goldenrod	Euthamia graminifolia	0.33
Common Mullein	Verbascum thapsus	0.33
2	2019 Totals	99.33

3.2 Conclusions of Vegetation Monitoring

The 2019 monitoring effort documented the successful establishment of the OU-2 restoration area. Woody stem density was over 165 stems per acre, which equates to a survival rate of approximately 70%. In previous years, shrubs were documented to have poor survival, mainly due to deers browse. This condition has remained the same. Trees have also been documented to be affected by deers, both by browse and from rubbing activities, despite being protected with bark guards. Despite difficult conditions, trees continue to establish and grow. Most planted tree species were an average height of 6 feet or greater. Overall average woody stem height is 7.0 feet. Sycamore and cottonwood were the most prevalent tree species; cottonwood, river birch (*Betula lenta*), red oak, hackberry (*Celtis occidentalis*), grey birch (*Betula populifolia*), and white ash (*Fraxinus americana*) were the tallest tree species. Volunteer species actually lower the overall average height because of the presence of shrubs such as multiflora rose (*Rosa multiflora*).

Herbaceous coverage continues to exceed expectations, covering over 99% of the Site. Dominant species are warm season grasses including switchgrass and Indiangrass, which established after the 2nd growing season and remain the dominant species. Forbs such as black-eyed Susan and wild bergamot were readily identified, especially during the summer months when in bloom. Invasive species including mugwort and Japanese hops were documented within the restoration area. These species were treated with herbicide since the commencement of the monitoring effort.

The project is on a positive trajectory to meeting all goals and requirements set forth in the Site Restoration Plan and approvals.

4.0 WILDLIFE UTILIZATION

Wildlife utilization remains an important factor of the OU-2 Site restoration. The OU-2 restoration project provides a diverse habitat for a wide variety of wildlife species. Trees remain protected using tree guards due to the large population of white-tailed deers that are known to utilize the project area. Tree guards have been noted to be displaced by deers rubbing resulting in tree damage. Other herbivory or wildlife damage has not been noted.

Species of concern such as Indiana bat (*Myotis sodalis*) little brown bat (*Myotis lucifugus*), timber rattlesnake (*Crotalus horridus*) and northern copperhead (*Agkistrodon contortrix contortrix*) were all identified to utilize the Site prior to construction. Surveys for these were conducted prior to construction; however, none of these species have been documented onsite to date. Similar species identified include garter snake (*Thamnophis sirtalis*), black rat snake (*Pantherophis obsoletus*), and box turtle (*Terrapene carolina carolina*). These species were documented each monitoring season.

Overall a diverse assemblage of insects and birds were observed within the Site. Monarch butterflies (*Danaus plexippus*), spicebush swallowtails (*Papilio troilus*), and tiger swallowtails (*Papilio glaucus*) were observed foraging among wildflowers throughout the Site. Dragonflies and damselflies were also noted, with large numbers occurring in the grassland habitat at the northeast end of the Site. Such species included eastern pondhawk (*Erythemis simplicicollis*), twelve-spotted skimmer (*Libellula pulchella*), and common whitetail (*Plathemis lydia*).

Numerous bird species were observed utilizing the meadow, grassland, and forested areas on the Site, or were observed flying overhead. These bird species included species such as song sparrow (*Melospiza melodia*), American kestrel (*Falco sparverius*), red-tailed hawk (*Buteo jamaicensis*), American goldfinch (*Spinus tristis*), red-winged blackbird (*Agelaius phoenoiceus*), and common yellowthroat (*Geothlypis trichas*).

Overall, the entire project area has established to be excellent habitat for various bird species.

4.1 Wildlife Habitat Enhancement Features

Wildlife habitat enhancement features such as boulder piles, brushpiles, and coarse woody debris were incorporated into the Site Restoration Plan. Wildlife habitat enhancement features are intended to add suitable habitat features for a wide variety of species expected to utilize the Site.

Bird boxes and bat boxes were added throughout the restoration area in order to provide nesting and roosting habitat. Bird boxes were placed in suitable locations either on existing trees or posts approximately 5 feet off the ground. Bat boxes were mounted on the south side of suitable existing trees at a minimum of 10 feet off the ground. No records of activity within the wildlife habitat enhancement structures have been documented to date.

5.0 MAINTENANCE AND MONITORING SUMMARY

The presence of invasive species and use of the Site by wildlife was noted during preparation of the NYSDEC approved SRP; therefore, the establishment and extent of invasive species and wildlife impacts on planted species was monitored for the duration of the monitoring period.

As a preventative maintenance tool, most trees and shrubs, depending on height and stature, were protected from deers browse and rubbing by the installation of tree guards. New plants installed onsite in April of 2017 were also fitted with tree guards. In addition, many trees were staked and guyed to keep upright until fully established. Davey has conducted routine monitoring and maintenance to these deers guards, stakes, and guying during the monitoring period. Maintenance includes the reinstallation of stakes and guards, pruning of trees to better fit guards, removal of guards from dead trees, and the replacement of dysfunctional material.

Furthermore, Davey implemented an herbicide treatment program to control the establishment of unwanted and invasive species. Davey contracted with Weeds, Inc., a NYSDEC Licensed Pesticide Applicator to treat invasive species including common reed (*Phragmites australis*), mugwort (*Artemesia vulgaris*), multiflora rose (*Rosa multiflora*), autumn olive (*Elaeagnus angustifolia*) and others. Weeds Inc. conducted a Site wide spot treatment of all invasive species in Spring and Fall 2019 in order to control mugwort and Japanese hops.

6.0 OVERALL CONCLUSIONS & RECOMMENDATIONS

In general, woody and herbaceous plant species diversity is high. Tree species have established and are growing at a steady rate. The average stem height of planted species was 7.0 feet in 2019. The woody stem density was approximately 165 stems per acre in 2019. Herbaceous coverage was dominated by warm season grasses and other species consistent with the design seed mixture in 2019. The Site provides high quality wildlife habitat, primarily for bird species that prefer early successional vegetation.

Based on field observations, the restoration area continues to provide beneficial wildlife habitat values and has met the initial goals of the restoration plan.

7.0 LITERATURE CITED

Peet, R. K., T. R. Wentworth, and P. S. White. 1998. A Flexible Multipurpose Method for Recording

Vegetation Composition and Structure. Castanea 63(3):262-274.

APPENDIX A

Coordination and Correspondence

- NYSDEC Site Restoration Plan Approval

Craig Metzgar

From:

Bennett, William B (DEC) < william.bennett@dec.ny.gov>

Sent:

Wednesday, February 03, 2016 12:26 PM

To:

Rocklin, Jon; Crosby, David (DEC)

Cc:

Mastrocola, Krista; Bracken, Paul; dzurinkot@ramapo-ny.gov; mzakkar@ford.com; Chuck

Stead; Bennett, William B (DEC); Dawson, Jennifer R (DEC); Stercho, Jonathan J (DEC);

Masi, Lisa M (DEC)

Subject:

Re: Ford Ramapo OU-2: Area G Restoration.

Attachments:

Ramapo_RestorationPlan_Rev.pdf

Jon,

Per your request, the Department has completed a conceptual review of proposed changes to the restoration plan as part of the ongoing remedial action for Ramapo Paint Sludge site OU-2 (Site No. 3-44-064). The Department has the following comments:

- A meadow may be established in a portion of Area A as part of the restoration plan for the current remedial action. A revised drawing showing the proposed footprint of the meadow and a corresponding planting list and planting plan for the meadow must be submitted to the Department for review.
- The proposals to construct a barn in Area A and a parking area in Area G are considered development proposals that cannot be amended to the restoration plan for this remedial action. This development must be reviewed as a Permit Jurisdiction Determination specifically Article 11. The applicant/project sponsor should submit a request for this determination (letter form) to Region 3 Permits that includes a project narrative, site plans (may be a sketch plan but must show all disturbances and proposed work in detail), and a project location map (which also shows exactly where on the site the proposed work is located). Also, any rattlesnake avoidance or mitigation measures proposed should be included in the narrative and/or on the plans for review. Additional information about avoiding impact to rattlesnakes can also be provided to the applicant during the permit determination process.
- The proposed snake basking structures may be removed from the restoration plan.

Please provide the supplemental information requested above regarding the meadow in Area A. For more information regarding the permitting process for development projects at the site, please contact Jonathan Stercho in the Department's Region 3 office.

William B. Bennett III, P.E.
Environmental Engineer 2
Remedial Bureau C
Division of Environmental Remediation
New York State Department of Environmental Conservation
625 Broadway
Albany, NY 12233-7014
Phone: (518) 402-9662

From: Rocklin, Jon <Jon.Rocklin@arcadis.com>
Sent: Wednesday, January 13, 2016 2:45 PM
To: Bennett, William B (DEC); Crosby, David (DEC)

Cc: Mastrocola, Krista; Bracken, Paul; dzurinkot@ramapo-ny.gov; mzakkar@ford.com

Subject: RE: Ford Ramapo OU-2: Area G Restoration.

Bill – Attached is a figure that presents the planned restoration changes associated with the below email.

Thank you, Jon

From: Rocklin, Jon

Sent: Monday, January 11, 2016 3:22 PM

To: 'william.bennett@dec.ny.gov' <william.bennett@dec.ny.gov>; 'david.crosby@dec.ny.gov'

<david.crosby@dec.ny.gov>

Cc: Mastrocola, Krista < Krista. Mastrocola@arcadis.com >; Bracken, Paul < Paul. Bracken@arcadis.com >

Subject: Ford Ramapo OU-2: Area G Restoration.

Bill,

Arcadis, on behalf of Ford, is proposing an alternative restoration plan for Area G associated with the Ramapo Paint Sludge Site, Operable Unit 2 located in Ramapo, New York.

ARCADIS would like to restore Area G with screenings to a depth of 2 feet below grade followed by placement of 2 feet of DGA in lieu of the topsoil and upland meadow vegetation.

The reason for this alteration is associated with the Town of Ramapo's (property owner's) request to leave the current support zone (trailer and personnel parking) in place, following completion of the remediation. This area would become overflow parking for the existing site structure (Salt Box). Furthermore, the proposed plan to backfill Area G would be similar to backfill in Area A that already established the primary parking lot for the Salt Box.

Based on the NYSDEC response on the above approach, Viasant will need to plan the remainder of the remediation accordingly.

Thank you, Jon

Jon Rocklin| Certified Project Manager | jon.rocklin@arcadis.com Arcadis | Arcadis U.S., Inc. 17-17 Route 208 North 2nd Floor Fair Lawn NJ | 07410 | USA T. 201-398-4364 | M. 914-260-7373

Connect with us! www.arcadis.com | LinkedIn | Twitter | Facebook

From: Ted Dzurinko [mailto:DzurinkoT@ramapo-ny.gov]

Sent: Monday, January 11, 2016 1:30 PM **To:** Rocklin, Jon < <u>Jon.Rocklin@arcadis.com</u>>

Cc: Thomas F. Sullivan < sullivant@ramapo-ny.gov >; Mastrocola, Krista < Krista.Mastrocola@arcadis.com >; Bracken, Paul

<<u>Paul.Bracken@arcadis.com</u>>

Subject: RE: Ford Ramapo OU-2 (Area G)

Hi Jon,

We thought we had previously spoken about leaving Area G for overflow parking. That works for us.

Also, w.r.t. to working contiguous to area E in the turnaround area across from the scale house: I spoke with Dennis O'Donnell last week.

RCSWMA may bbe willing to accommodate.

During the brief 2 week <u>+</u> period that you need to work in the turnaround area RCSWMA may be able to make adjustments the way vehicles enter the scales & avoid the need to turn around.

You should reach out to Dennis:845-753-2200 (office).

Ted

From: Rocklin, Jon [mailto:Jon.Rocklin@arcadis.com]

Sent: Monday, January 11, 2016 12:28 PM

To: Ted Dzurinko < <u>DzurinkoT@ramapo-ny.gohv</u>>; Thomas F. Sullivan < <u>sullivant@ramapo-ny.gov</u>>
Cc: Mastrocola, Krista < <u>Krista.Mastrocola@arcadis.com</u>>; Bracken, Paul < <u>Paul.Bracken@arcadis.com</u>>

Subject: [POSSIBLE SPAM] RE: Ford Ramapo OU-2 (Area G)

Importance: Low

Ted and Tom – Any feedback/thoughts on this?

Thank you, Jon

From: Rocklin, Jon

Sent: Thursday, January 7, 2016 2:20 PM

To: 'dzurinkot@ramapo-ny.gov' <dzurinkot@ramapo-ny.gov>; 'SullivanT@ramapo.org' <<u>SullivanT@ramapo.org</u>>

Cc: Mastrocola, Krista < Krista. Mastrocola@arcadis.com >; Bracken, Paul < Paul. Bracken@arcadis.com >

Subject: Ford Ramapo OU-2 (Area G)

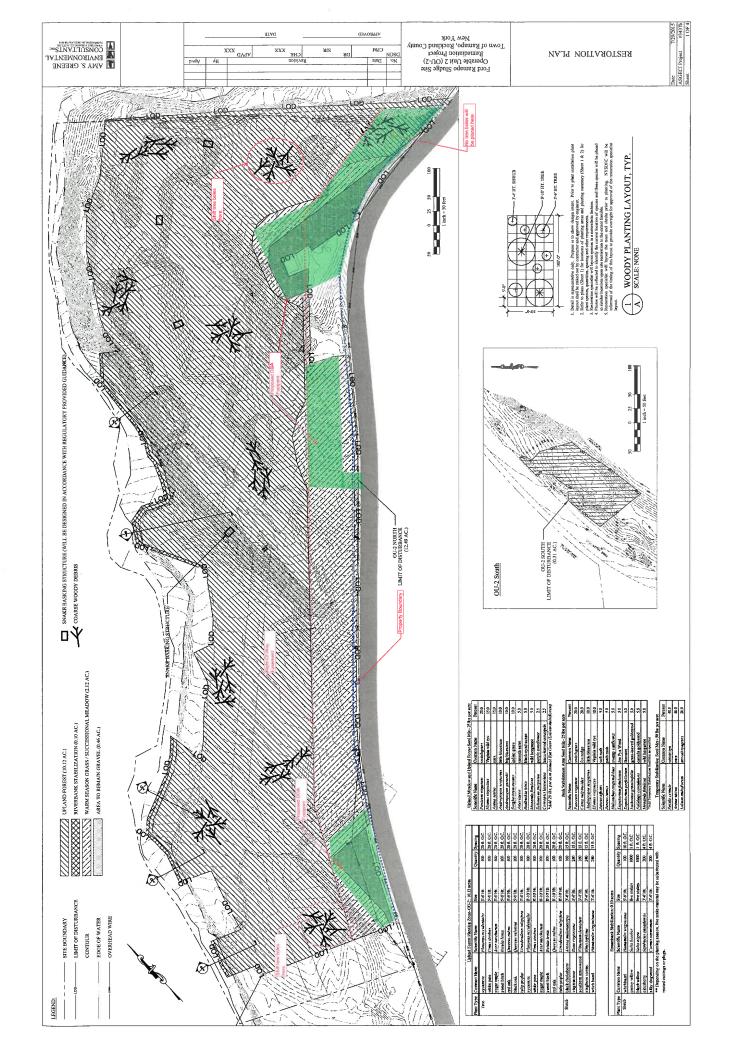
Ted and Tom – Something else I want to bring up to start the discussions was the restoration of Area G, which is where our Site trailers/parking are located.

There was mention the Town might want to use this area as overflow parking.

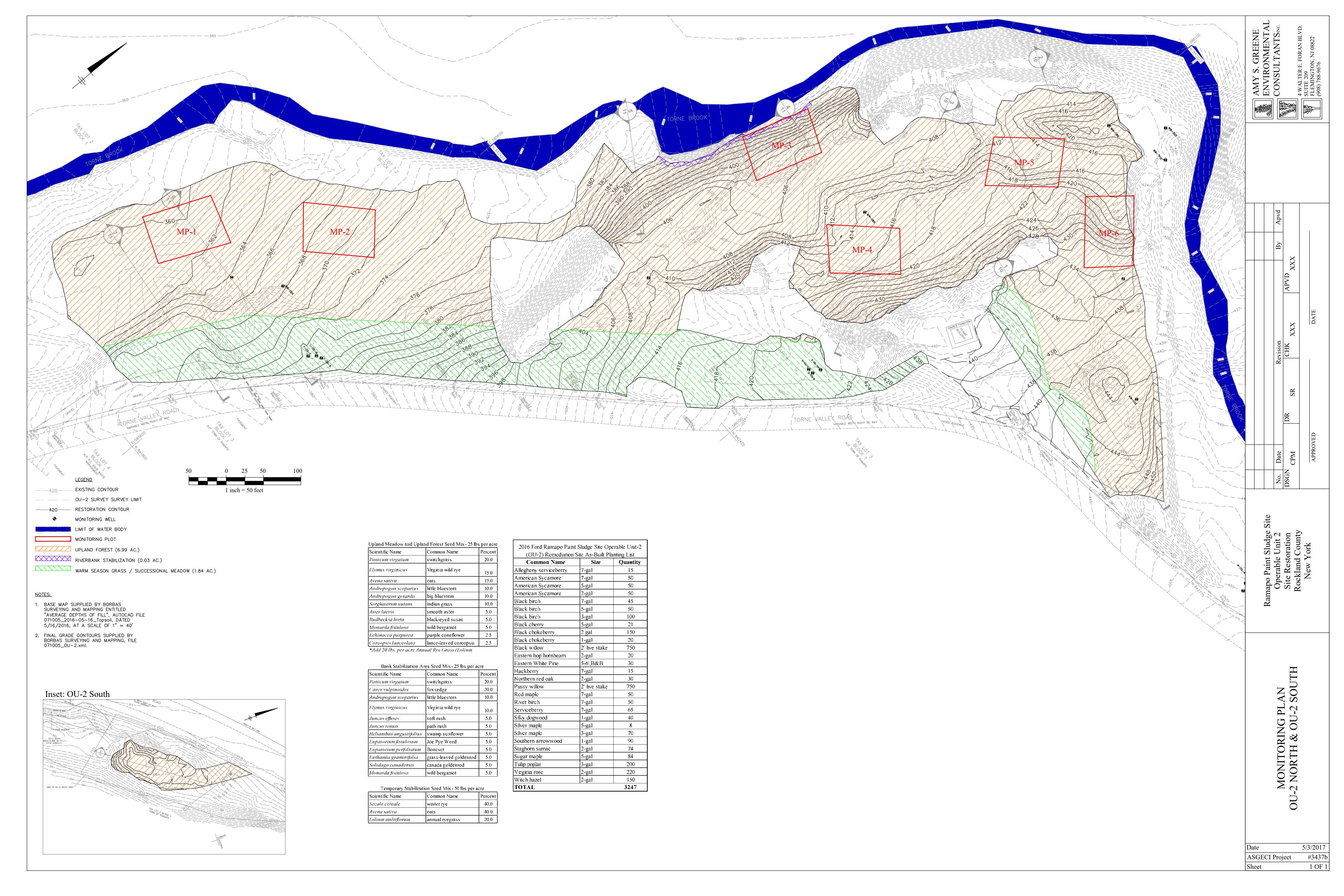
Viasant plans to commence excavation of this area in the near future. For planning purposes, it would be helpful to know what the Town is thinking restoration wise.

- 1. We backfill with clean fill and top soil.
- 2. We backfill with clean fill with the top 2 feet being DGA. We would essentially leave the trailer/parking area as it is for future parking use.

Thank you, Jon


Jon Rocklin| Certified Project Manager | jon.rocklin@arcadis.com Arcadis | Arcadis U.S., Inc. 17-17 Route 208 North 2nd Floor Fair Lawn NJ | 07410 | USA T. 201-398-4364 | M. 914-260-7373

Connect with us! www.arcadis.com | LinkedIn | Twitter | Facebook


This e-mail and any files transmitted with it are the property of Arcadis. All rights, including without limitation copyright, are reserved. This e-mail contains information which may be confidential and may also be privileged. It is for the exclusive use of the intended recipient(s). If you are not the intended recipient(s) please note that any form of distribution, copying or use of this communication or the information in it is strictly prohibited and may be unlawful. If you have received this communication in error please return it to the sender and then delete the e-mail and destroy any copies of it. Whilst reasonable precautions have been taken to ensure no software viruses are present in our emails we cannot guarantee that this e-mail or any attachment is virus-free or has not been intercepted or changed. Any opinions or other information in this e-mail that do not relate to the official business of Arcadis are neither given nor endorsed by it.

This e-mail and any files transmitted with it are the property of Arcadis. All rights, including without limitation copyright, are reserved. This e-mail contains information which may be confidential and may also be privileged. It is for the exclusive use of the intended recipient(s). If you are not the intended recipient(s) please note that any form of distribution, copying or use of this communication or the information in it is strictly prohibited and may be unlawful. If you have received this communication in error please return it to the sender and then delete the e-mail and destroy any copies of it. Whilst reasonable precautions have been taken to ensure no software viruses are present in our emails we cannot guarantee that this e-mail or any attachment is virus-free or has not been intercepted or changed. Any opinions or other information in this e-mail that do not relate to the official business of Arcadis are neither given nor endorsed by it.

APPENDIX B

Restoration Monitoring Plan

APPENDIX C

Soil Information

- Topsoil Approval

VIASANT, LLC. 606 East Baltimore Pike, Fl3 Media, PA 19063 (484) 443-4250

Top Soil Materials Ramapo Paint Sludge Site Operable Unit 2 (OU-2) Ramapo, NY

VIASANT Subm	ittal(s) Number	•	S-0	37	
VIASANT Project	ct Number:		VPI	R-15112	
Submittal Title	•		VIA	SANT – Top So	oil Materials
Submittal Date	e:		8/2	0/15	
Date(s) of Prev	vious Submissio	ns/Cross-Re	ference:		
То:			Jon	Rocklin, ARCA	ADIS
			Pau	ıl Bracken, ARO	CADIS
Cc:			Kris	sta Mastrocola	, arcadis
			Mil	ke Furlong, VIA	SANT
From:			Joh	n Geary	
Reference Spe	cification Section	on and/or Dr	awing: 31-	23-23 1.5	
Contractor's Sub We are sending: Shop Drawing X Certificate X	g X Product Da		ple Schedu	le X Record	☐ Plan
# of Copies	As Requested	For Review	For Approval	For Your File	Deviations from Specification
Electronic	X xequested		X		•
Electronic	۸	Х	Λ	Х	N/A

COMMENTS:

Please find the attached information for the proposed Top Soil Materials for the Ramapo OU-2 site.

This submittal has been reviewed and approved for submission by:

606 East Baltimore Pike, Fl3 Media, PA 19063 (484) 443-4250 _John Geary August 20, 2015 Contractor's Signature and Date viasant **Engineer's Review & Comments Section:** This Submittal has been: ☐ Approved ☐ Approved as Noted ☐ Revise and Resubmit ☐ Rejected

Engineer's Signature, Date and Stamp (Stamp if applicable)

VIASANT, LLC.

February 26, 2013

Mr. John Geary, Project Manager EQ – The Environmental Quality Company EQ Northeast, Inc. 185 Industrial Road Wrentham, MA 02093

Re: Topsoil for EQ Ramapo Site

Dear Mr. Geary:

This Letter is to certify that RER Supply's topsoil is blended and screened at our facility located at Block 3, Lot 2.01, Wantage NJ. Our topsoil is a blend of 60% leaf compost and 40% sandy loam. We compost the leaves on-site, and blend it with virgin sand.

Very truly yours, RER SUPPLY, LLC

Andrew Flockhart, president

Technologies to manage risk for infrastructure

Boston Atlanta Chicago Los Angeles New York www.geotesting.com

Transm	nittal			
го:				
John Geary			DATE: 7/31/2015	GTX NO: 303485
Viasant			RE: Ramapo OU-2 Site	
175 Capital E	Blvd.			
Rocky Hill, C	Г 06067			
COPIES	DATE		DESCRIPTION	
	7/31/2015	July 2015 Laboratory Test Rep	port	
REMARKS:				
			7	/
		SIGNED:	The 4	
CC:			Joe Tomei, Laboratory Manag	er
		APPROVED BY:	Jas DA	eld
			Nancy Hubbard Project Mana	ger

Technologies to manage risk for infrastructure Boston Atlanta Chicago Los Angeles New York www.geotesting.com

July 31, 2015

John Geary Viasant 175 Capital Blvd. Rocky Hill, CT 06067

RE: Ramapo OU-2 Site, Ramapo, NY (GTX-303485)

Dear John:

Enclosed are the test results you requested for the above referenced project. GeoTesting Express, Inc. (GTX) received 11 samples from you on 7/17/2014. These samples were labeled as follows:

RER-TOP1

RER-TOP2

RER-TOP3

RER-TOP4

Tilcon-#4-1

Tilcon-#4-2

Tilcon-DGA1

Tilcon-Screen1

Tilcon-Screen2

Tilcon-Type 2-2

Tilcon-Type2-1

GTX performed the following tests on these samples:

6 ASTM D2216 - Moisture Contents

6 ASTM D2974 - Moisture, Ash and Organic Matter

6 ASTM D422 - Grain Size Analyses - Sieve Only

5 ASTM C136 - Sieve Analyses

6 ASTM D4318 - Atterberg Limits

A copy of your test request is attached.

The results presented in this report apply only to the items tested. This report shall not be reproduced except in full, without written approval from GeoTesting Express. The remainder of these samples will be retained for a period of sixty (60) days and will then be discarded unless otherwise notified by you. Please call me if you have any questions or require additional information. Thank you for allowing GeoTesting Express the opportunity of providing you with testing services. We look forward to working with you again in the future.

Respectfully yours,

Joe Tomei

Laboratory Manager

GeoTesting Express, Inc. | 125 Nagog Park | Acton, MA 01720 | Toll Free 800 434 1062 | Fax 978 635 0266

Boston Atlanta Chicago Los Angeles New York www.geotesting.com

Geotechnical Test Report

7/31/2015

GTX-303485 Ramapo OU-2 Site

Ramapo, NY

Client Project No.: 15112

Prepared for:

Viasant

Project: Ramapo OU-2 Site

 Location:
 Ramapo, NY
 Project No:

 Boring ID:
 -- Sample Type: -- Tested By:

Tested By: jbr

GTX-303485

Sample ID: --- Test Date: 07/29/15 Checked By: emm
Depth: --- Test Id: 339455

Moisture Content of Soil and Rock - ASTM D2216

Boring ID	Sample ID	Depth	Description	Moisture Content,%
777	RER- TOP1	***	Moist, very dark brown silty sand with organics	32.9
(***)	RER- TOP2		Moist, very dark brown silty sand with organics	31.4
	RER- TOP3		Moist, very dark brown silty sand with organics	33.5
Las	RER- TOP4	242	Moist, very dark brown silty sand with organics	30.4
100	Tilcon- Screen1		Moist, gray silty sand	11.6
	Tilcon- Screen2		Moist, dark gray silty sand	6.8

Notes: Temperature of Drying: 110° Celsius

Project: Ramapo OU-2 Site Location: Ramapo, NY

 Location:
 Ramapo, NY
 Project No:

 Boring ID:
 -- Sample Type: -- Tested By: ca

Sample ID: --- Test Date: 07/29/15 Checked By: emm

GTX-303485

Depth: --- Test Id: 339443

Moisture, Ash, and Organic Matter - ASTM D2974

Boring ID	Sample ID	Depth	Description	Moisture Content,%	Ash Content,%	Organic Matter,%
7-17	RER-TOP1	17	Moist, very dark brown silty sand with organics	31	90.8	9.2
***	RER-TOP2	***	Moist, very dark brown silty sand with organics	34	88.9	11.1
***	RER-TOP3		Moist, very dark brown silty sand with organics	32	91.2	8.8
***	RER-TOP4		Moist, very dark brown silty sand with organics	30	90.4	9.6
112	Tilcon-Screen1		Moist, gray silty sand	6	99.7	.3
	Tilcon-Screen2		Moist, dark gray silty sand	7	99.7	.3

Notes: Moisture content determined by Method A and reported as a percentage of oven-dried mass; dried to a constant mass at temperature of 105° C
Ash content and organic matter determined by Method C; dried to constant mass at temperature 440° C

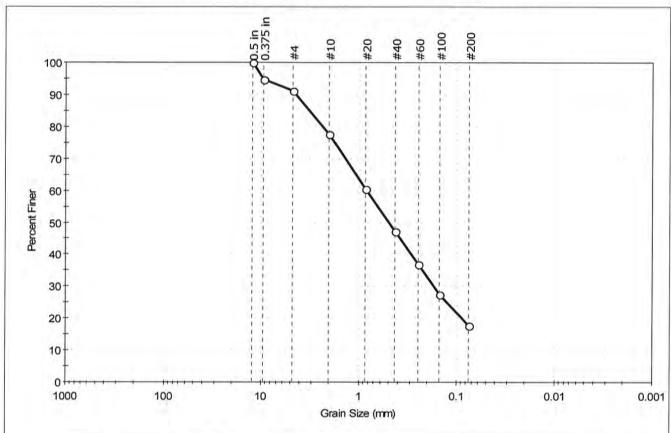
Project: Ramapo OU-2 Site

Location: Ramapo, NY

Boring ID: --- Sample Type: bag Tested By: jbr
Sample ID: RER-TOP1 Test Date: 07/29/15 Checked By: emm

Project No:

GTX-303485


Depth: --- Test Id: 339444

Test Comment: -

Visual Description: Moist, very dark brown silty sand with organics

Sample Comment: ---

Particle Size Analysis - ASTM D422

% Cobble	% Gravel	% Sand	% Silt & Clay Size
_	8.9	73.3	17.8

0.5 in 12.50 100 0.375 in 9.50 95 #4 4.75 91 #10 2.00 78 #20 0.85 60 #40 0.42 47 #60 0.25 37 #100 0.15 27 #200 0.075 18	Sieve Name	Sieve Size, mm	Percent Finer	Spec. Percent	Complies
#4 4.75 91 #10 2.00 78 #20 0.85 60 #40 0.42 47 #60 0.25 37 #100 0.15 27	0.5 in	12.50	100		
#10 2.00 78 #20 0.85 60 #40 0.42 47 #60 0.25 37 #100 0.15 27	0.375 in	9,50	95		
#20 0.85 60 #40 0.42 47 #60 0.25 37 #100 0.15 27	#4	4.75	91		
#40 0.42 47 #60 0.25 37 #100 0.15 27	#10	2.00	78		
#60 0.25 37 #100 0.15 27	#20	0.85	60		
#100 0.15 27	#40	0.42	47		
	#60	0.25	37		
#200 0.075 18	#100	0.15	27		
	#200	0.075	18		

Coe	efficients
D ₈₅ = 3.2007 mm	$D_{30} = 0.1722 \text{ mm}$
D ₆₀ = 0.8311 mm	$D_{15} = N/A$
D ₅₀ = 0.4943 mm	$D_{10} = N/A$
Cu =N/A	C _c =N/A

Classification

ASTM Silty sand (SM)

AASHTO Stone Fragments, Gravel and Sand (A-1-b (0))

<u>Sample/Test Description</u> Sand/Gravel Particle Shape: ANGULAR

Sand/Gravel Hardness: SOFT

Project: Ramapo OU-2 Site

Location: Ramapo, NY Project No: GTX-303485

Boring ID: --- Sample Type: bag Tested By: cam
Sample ID: RER-TOP1 Test Date: 07/30/15 Checked By: emm

Depth: --- Test Id: 339432

Test Comment: --

Visual Description: Moist, very dark brown silty sand with organics

Sample Comment: ---

Atterberg Limits - ASTM D4318

Sample Determined to be non-plastic

Symbol	Sample ID	Boring	Depth	Natural Moisture Content,%	Liquid Limit	Plastic Limit	Plasticity Index	Liquidity Index	Soil Classification
•	RER-TOP1			33	n/a	n/a	n/a	n/a	Silty sand (SM)

53% Retained on #40 Sieve

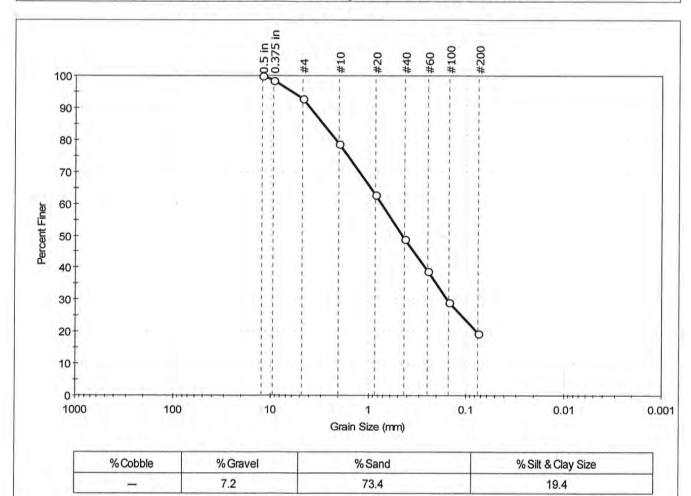
Dry Strength: LOW Dilatancy: RAPID Toughness: n/a

The sample was determined to be Non-Plastic

Project: Ramapo OU-2 Site

Ramapo, NY Location:

Project No: GTX-303485 Boring ID: ---Sample Type: bag Tested By: Sample ID: RER-TOP2 Test Date: 07/29/15 Checked By: emm


Depth: Test Id: 339445

Test Comment:

Visual Description: Moist, very dark brown silty sand with organics

Sample Comment:

Particle Size Analysis - ASTM D422

Sieve Name	Sieve Size, mm	Percent Finer	Spec. Percent	Complies
0.5 in	12.50	100		
0.375 in	9.50	98		
#4	4.75	93		
#10	2.00	79		
#20	0.85	63		
#40	0.42	49		
#60	0.25	39		
#100	0.15	29		
#200	0.075	19		

Coe	efficients
D ₈₅ =2.9341 mm	D ₃₀ =0.1556 mm
D ₆₀ = 0.7396 mm	D ₁₅ = N/A
D ₅₀ = 0.4454 mm	D ₁₀ = N/A
Cu =N/A	C _c =N/A

<u>Classification</u> Silty sand (SM) **ASTM** AASHTO Stone Fragments, Gravel and Sand (A-1-b (0))

<u>Sample/Test Description</u> Sand/Gravel Particle Shape: ANGULAR

Sand/Gravel Hardness: SOFT

Project: Ramapo OU-2 Site

Location: Ramapo, NY Project No:
Boring ID: --- Sample Type: bag Tested By:

Sample ID: RER-TOP2 Sample Type: bag Tested By: cam

Test Date: 07/29/15 Checked By: emm

GTX-303485

Depth: --- Test Id: 339433

Test Comment: ---

Visual Description: Moist, very dark brown silty sand with organics

Sample Comment: ---

Atterberg Limits - ASTM D4318

Sample Determined to be non-plastic

Symbol	Sample ID	Boring	Depth	Natural Moisture Content,%	Liquid Limit	Plastic Limit	Plasticity Index	Liquidity Index	Soil Classification
•	RER-TOP2			31	n/a	n/a	n/a	n/a	Silty sand (SM)

51% Retained on #40 Sieve

Dry Strength: LOW Dilatancy: RAPID Toughness: n/a

The sample was determined to be Non-Plastic

Project: Ramapo OU-2 Site

Location: Ramapo, NY

Boring ID: ---

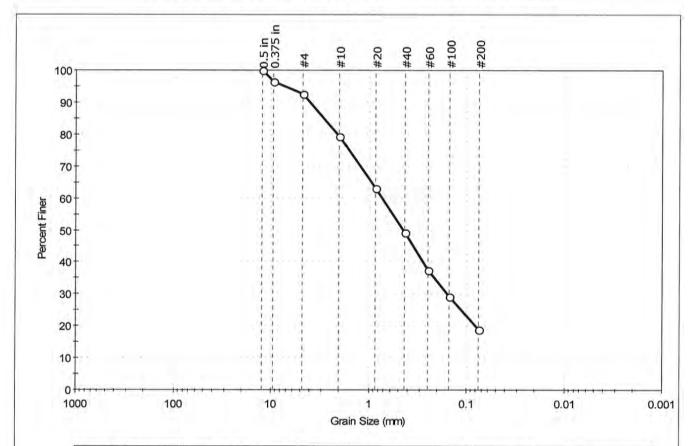
339446

Tested By: jbr

Project No:

GTX-303485

Sample Type: bag Sample ID: RER-TOP3 Test Date: 07/29/15 Checked By: emm


Depth: Test Id:

Test Comment:

Visual Description: Moist, very dark brown silty sand with organics

Sample Comment:

Particle Size Analysis - ASTM D422

% Cobble	% Gravel	% Sand	% Silt & Clay Size
72	7.4	73.8	18.8

0.5 in 0.375 in #4	12.50 9.50	100	-
	9.50		
#4		96	
	4.75	93	
#10	2.00	79	
#20	0.85	63	
#40	0.42	49	
#60	0.25	37	
#100	0.15	29	
#200	0.075	19	

Coe	efficients	
D ₈₅ = 2.8973 mm	$D_{30} = 0.1579 \text{ mm}$	
D ₆₀ = 0.7319 mm	$D_{15} = N/A$	
D ₅₀ = 0.4434 mm	$D_{10} = N/A$	
$C_u = N/A$	C _c =N/A	

Classification Silty sand (SM) **ASTM** Stone Fragments, Gravel and Sand **AASHTO** (A-1-b(0))

Sample/Test Description Sand/Gravel Particle Shape: ANGULAR

Sand/Gravel Hardness: SOFT

Client: Viasant

Project: Ramapo OU-2 Site

Location: Ramapo, NY Project No: GTX-303485
Boring ID: --- Sample Type: bag Tested By: cam

Boring ID: --- Sample Type: bag Tested By: cam Sample ID: RER-TOP3 Test Date: 07/29/15 Checked By: emm

Depth: --- Test Id: 339434

Test Comment: ---

Visual Description: Moist, very dark brown silty sand with organics

Sample Comment: ---

Atterberg Limits - ASTM D4318

Sample Determined to be non-plastic

Symbol	Sample ID	Boring	Depth	Natural Moisture Content,%	Liquid Limit	Plastic Limit	Plasticity Index	Liquidity Index	Soil Classification
•	RER-TOP3			33	n/a	n/a	n/a	n/a	Silty sand (SM)

51% Retained on #40 Sieve

Dry Strength: LOW Dilatancy: RAPID Toughness: n/a

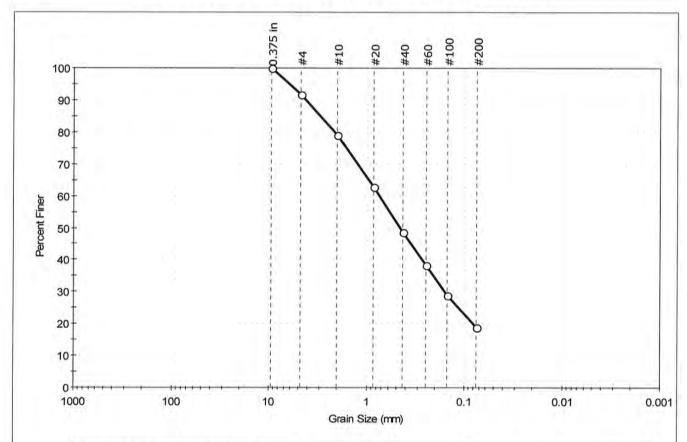
The sample was determined to be Non-Plastic

Client: Viasant

Project: Ramapo OU-2 Site

Location: Ramapo, NY Project No: GTX-303485

Boring ID: ---Sample Type: bag Tested By: jbr Sample ID: RER-TOP4 Test Date: 07/29/15 Checked By: emm


Depth: Test Id: 339447

Test Comment:

Visual Description: Moist, very brown silty sand with organics

Sample Comment:

Particle Size Analysis - ASTM D422

% Cobble	% Gravel	% Sand	% Silt & Clay Size
=	8.3	72.7	19.0

0.375 in 9.50 100 #4 4.75 92 #10 2.00 79 #20 0.85 63 #40 0.42 49 #60 0.25 38 #100 0.15 29 #200 0.075 19	Sieve Name	Sieve Size, mm	Percent Finer	Spec. Percent	Complies
#10 2.00 79 #20 0.85 63 #40 0.42 49 #60 0.25 38 #100 0.15 29	0.375 in	9.50	100		
#20 0.85 63 #40 0.42 49 #60 0.25 38 #100 0.15 29	#4	4.75	92		
#40 0.42 49 #60 0.25 38 #100 0.15 29	#10	2.00	79		
#60 0.25 38 #100 0.15 29	#20	0.85	63		
#100 0.15 29	#40	0.42	49		
1000	#60	0.25	38		
#200 0.075 19	#100	0.15	29		
	#200	0.075	19		

Coe	efficients
D ₈₅ = 2.9941 mm	$D_{30} = 0.1589 \text{ mm}$
D ₆₀ = 0.7399 mm	$D_{15} = N/A$
D ₅₀ = 0.4543 mm	$D_{10} = N/A$
Cu =N/A	C _c =N/A

Classification Silty sand (SM) AASHTO Stone Fragments, Gravel and Sand

(A-1-b (0))

<u>Sample/Test Description</u> Sand/Gravel Particle Shape: ANGULAR

Sand/Gravel Hardness: SOFT

ASTM

Client: Viasant

Project: Ramapo OU-2 Site

Location: Ramapo, NY

GTX-303485 Project No: Boring ID: ---Sample Type: bag Tested By: Sample ID: RER-TOP4 Test Date: 07/29/15 Checked By: emm

Depth: Test Id: 339435

Test Comment:

Visual Description: Moist, very brown silty sand with organics

Sample Comment:

Atterberg Limits - ASTM D4318

Sample Determined to be non-plastic

Symbol	Sample ID	Boring	Depth	Natural Moisture Content,%	Liquid Limit	Plastic Limit	Plasticity Index	Liquidity Index	Soil Classification
•	RER-TOP4		-	30	n/a	n/a	n/a	n/a	Silty sand (SM)

51% Retained on #40 Sieve

Dry Strength: LOW Dilatancy: RAPID Toughness: n/a

The sample was determined to be Non-Plastic

Requested Turnaround: Standard Purchase Order#: vPR15112-002 Phone: 508-789-0919 SOIL CHAIN OF CUSTODY & TEST REQUEST INVOICE (complete if different from Client) Phone: Se E-mail: jgeary@viasant.com GTX Sales Order #: 303052 Client Project #: 15112 Address: City, State, Zip: Company; same Contact: E-mail: PROJECT Phone: 508-789-0190 Cell: 508-789-0190 Project Location: Torne Valley Rd Hillburn, NY CLIENT City, State, Zip: Rocky Hill, Ct 05067 On-site Contact: John Geary Address: 175 Capitol Bivd Suits 412 Project Name: Ramapo 0U-2 E-mail; geary@vlasant.com Company: Viasant, LLC Contact: John Geary EXPRESS

2358 Perimeter Park Drive, Suite 320 Atlanta, GA 30341 770 645 6575 Tel 770 645 6570 Fax

www.geofesfing.com

GeoTesting Express, Inc. 125 Nagog Park

Acton, MA 01720 800 434 1062 Toll Free 978 635 0266 Fax

DATE: TIME: DATE: TIME:

Received By: 9

Received By:

DATE: TIME: DATE: TIME:

V. K. S.

Relinquished BW

Ç,

Relinquished By:

Sh copy

Geolesting EXPRESS

AGGREGATE CHAIN OF CUSTODY & TEST REQUEST

Geolesting Express, Inc.	Actor MA 01720	800 434 1042 Toll Free	078 435 024 100 078 435 024 Eav	VD 1 0070 0000 0 //		2358 Perimeter Park Drive, Suite 320	Alfanta, GA 30341	770 645 6575 Tel	770 645 6570 Fax	www.geotesting.com
	INVOICE (complete if different from Client)				Phone:	Cell:		Purchase Order#: VPR15112-002	Requested Turnaround: Standard	Phone: 508-789-0919
	INVOICE (comple	Company:	Address:	City, State, Zip:	Contact:	E-mail:	PROJECT	Client Project #: 15112	GTX Sales Order #:	E-mail: jgeary@viasant.com
	LN				Phone: 508-789-0919	Cell: 508-789-0919			lbum, NY	
	CLIEN	Company: Viasant, LLC.	Address; 175 Capital Bivd Floor 4 Suits 412	City, State, Zip: Rocky Hill, CT 06067	Contact: John Geary	E-mail: jgeary@viasant.com		Project Name: Ramapo Ou-2	Project Location: Tome Valley Rd Hillburn, I	On-site Contact: John Geary

2	Tilcon-DGA1 X2 BagS Tilcon-BGA2 — Dud hat Receive Tilcon-Type2-1 Tilcon-Type2-2 Tilcon-Type2-2 St Conditions (Undisturbed or Remolded, Density and moisture, Test Normal Loads, Test Confining Stresses, etc.)			Sample ID	Depth	Calcium Carbonate Confe of Aggregate (ASTM D 3042)	Flat and Elongated Particles" (reyn D 4791)	besia lism2) noiaendA AJ (a)agangga (a)a TYPE O MT2A) (a) TYPE O MT2A) (a) moileg avit S abivonq (a) moileg avit S abivond	LA Abrasion (Large sized aggregate) (ASTM C 535) "Please provide 2 five gallon buckets	Lightweight Pieces in Aggregate (ETTTEST O MT2A)	enifi ni selihuqmi elnegrO Aggregate (FS T\0+ 5 MT8A)	Percent Passing #200 Slev (ASTM C 11711 11) Sleve Analysis for Coarse	(TSTIBER O MTZA)	Soundness of Aggregate* (ASTM C 88/T 104) Specific Gravity and	Absorption of Coarse Aggregate (ASTM C 127/T 265)	Appropriate of Arts and Appropriate (ASTM C 128/T 84)	elegenggA to snuteioM lstoT (22s Tlaaa O MT2A)	ni abloV bns trigieW inU AstgeregeA (erTies o MTSA)	Fractured Faces (FS8a Cl MT2A)		finaleviup3 bns2 (aTr T(erAS G MT2A)	Sand Equivalent (ASTH D SA191 TYE) Void Content VerSTM C 1262)
- Old hat Receive	Tilcon-DGA2 — Ovd Not Receive	Shick hook (Rackeride) (A) (A) (A) (A) (B) (B) (Completed) (Co		Tilcon-DGA1	Bag	\0						1	>				ľ					
- Old not Receive	Tilcon-DGA2 — Ove トゥ (名と Ce v v を	Shalt have Receive)																	
	Tilcon-#4-1 Tilcon-Type2-1 Tilcon-Type2-2 Tilcon-Type2-2 Tilcon-Type2-2 Tilcon-Type2-2 Tilcon-Type2-2 Tilcon-Type2-3 Tilcon-Type2-4 Tilcon-Type2-6 Tilcon-Type2-7 Tilcon-Type2-7	Remolded, Density and moisture, Test Normal Loads, Test Confining Stresses, etc.): PRINT NAME:		Tilcon-DGA2	- Old hat	Reck	2106	1					>									
	Tilcon#4-2	temolded, Density and moisture, Test Normal Loads, Test Confining Stresses, etc.): PRINT NAME: DATE:		Tilcon-#4-1									/									
Tilcon-Type2-1 V Y Tilcon-Type2-2 V Y	Tilcon-Type2-1	temolded, Density and moisture, Test Normal Loads, Test Confining Stresses, etc.): PRINT NAME: DATE:		Tilcon#4-2						V = 1	Ī		1	-			77					
Tilcon-Type2-2	Tilcon-Type2-2	temolded, Density and moisture, Test Normal Loads, Test Confining Stresses, etc.): PRINT NAME: DATE:		Tilcon-Type2-1									>		7							
	*Specify Test Conditions (Undisturbed or Remolded, Density and moisture, Test Normal Loads, Test Confining Stresses, etc.):	(emolded, Density and moisture, Test Normal Loads, Test Confining Stresses, etc.): PRINT NAME: DATE:		Tilcon-Type2-2									>							i	_	
	*Specify Test Conditions (Undisturbed or Remolded, Density and moisture, Test Normal Loads, Test Confining Stresses, etc.):	temolded, Density and moisture, Test Normal Loads, Test Confining Stresses, etc.): PRINT NAME: DATE:													7							
	*Specify Test Conditions (Undisturbed or Remolded, Density and moisture, Test Normal Loads, Test Confining Stresses, etc.): 1ea 5gal pail of each sample	kemolded, Density and moisture, Test Normal Loads, Test Confining Stresses, etc.): PRINT NAME: DATE:																				
			SIGNATURE			_	RINT N	AME:				1	DATE			1		Adve	rse condi	itions:	3 1	100
PRINT NAME: DATE: DATE: DATE: DATE: DATE: DATE: Adverse condition of the property of the prope	PRINT NAME: DATE: 4 Inject Received By: 9 Depten July		Relinquished By:	ed By:			DATE:	ij		Recei	Received By:	2		>	١				DATE:	ü		

WARRANTY and LIABILITY

GeoTesting Express (GTX) warrants that all tests it performs are run in general accordance with the specified test procedures and accepted industry practice. GTX will correct or repeat any test that does not comply with this warranty. GTX has no specific knowledge as to conditioning, origin, sampling procedure or intended use of the material.

GTX may report engineering parameters that require us to interpret the test data. Such parameters are determined using accepted engineering procedures. However, GTX does not warrant that these parameters accurately reflect the true engineering properties of the *in situ* material. Responsibility for interpretation and use of the test data and these parameters for engineering and/or construction purposes rests solely with the user and not with GTX or any of its employees.

GTX's liability will be limited to correcting or repeating a test which fails our warranty. GTX's liability for damages to the Purchaser of testing services for any cause whatsoever shall be limited to the amount GTX received for the testing services. GTX will not be liable for any damages, or for any lost benefits or other consequential damages resulting from the use of these test results, even if GTX has been advised of the possibility of such damages. GTX will not be responsible for any liability of the Purchaser to any third party.

Commonly Used Symbols

A	pore pressure parameter for $\Delta\sigma_1 - \Delta\sigma_3$	T	temperature
В	pore pressure parameter for $\Delta \sigma_3$	t	time
CIU	isotropically consolidated undrained triaxial shear test	U, UC	unconfined compression test
CR	compression ratio for one dimensional consolidation	UU, Q	unconsolidated undrained triaxial test
C_c	coefficient of curvature, $(D_{30})^2 / (D_{10} \times D_{60})$	$\mathbf{u}_{\mathbf{a}}$	pore gas pressure
C_{u}	coefficient of uniformity, D ₆₀ /D ₁₀	ue	excess pore water pressure
Co	compression index for one dimensional consolidation	u, u _w	pore water pressure
C_a	coefficient of secondary compression	V	total volume
Cv	coefficient of consolidation	Vg	volume of gas
C	cohesion intercept for total stresses	V _s	volume of solids
c'	cohesion intercept for effective stresses	Vv	volume of voids
D	diameter of specimen	Vw	volume of water
D10	diameter at which 10% of soil is finer	Vo	initial volume
D ₁₅	diameter at which 15% of soil is finer	v	velocity
D ₃₀	diameter at which 30% of soil is finer	W	total weight
D ₅₀	diameter at which 50% of soil is finer	W	weight of solids
D_{60}	diameter at which 60% of soil is finer	W.	weight of water
D ₈₅	diameter at which 85% of soil is finer	W	water content
d ₅₀	displacement for 50% consolidation	We	water content at consolidation
d ₉₀	displacement for 90% consolidation	Wr	final water content
d100	displacement for 100% consolidation	Wi	liquid limit
E	Young's modulus		natural water content
e	void ratio	Wn	plastic limit
ec	void ratio after consolidation	Wp	shrinkage limit
c _o	initial void ratio	W ₅	initial water content
G	shear modulus	Was Wi	
G,	specific gravity of soil particles	α,	slope of q _f versus p _f
H	height of specimen		slope of q _f versus p _f '
PI	plasticity index	γι	total unit weight
i	gradient	γa	dry unit weight
Ko	lateral stress ratio for one dimensional strain	Υs	unit weight of solids
k	permeability	γw	unit weight of water
L1	Liquidity Index	ε	strain
	coefficient of volume change	Evol	volume strain
m _y	porosity	$\varepsilon_{\rm h},\varepsilon_{\rm v}$	horizontal strain, vertical strain
pl n	plasticity index	μ	Poisson's ratio, also viscosity
Po	preconsolidation pressure	σ	normal stress
		σ	effective normal stress
p	$(\sigma_1 + \sigma_3)/2$, $(\sigma_2 + \sigma_0)/2$	σ_c , σ_c	consolidation stress in isotropic stress system
p'	$(\sigma'_1 + \sigma'_3)/2$, $(\sigma'_v + \sigma'_h)/2$	σ_h, σ_h	horizontal normal stress
p'e	p' at consolidation	σ_{v}, σ_{v}	vertical normal stress
Q	quantity of flow	α_1	major principal stress
q	$(\sigma_1, \sigma_3)/2$	σ_2	intermediate principal stress
qr	q at failure	σ_3	minor principal stress
qos qi	initial q	τ	shear stress
qc	q at consolidation	φ	friction angle based on total stresses
S	degree of saturation	φ*	friction angle based on effective stresses
SL	shrinkage limit	φ'_r	residual friction angle
Su	undrained shear strength	Pult	φ for ultimate strength
T	time factor for consolidation		

		_																									
Accutest Labs of New	8/5/2015 7:58																										
England, Inc.																											
Job Number: Account:	MC40110 Viasant, LLC	Client Sample ID:	IM TOD D 4	IM TOD D 2	IM-TOP-R-3	IM TOD D 4	IM-TOP-R-5	IM-TOP-R-6	IM-TOP-R-7	IM-TOP-R-8	IM-TOP-R-9	IM-TOP-R-10	IM-TOP-R-11	IM-TOP-R-12	IM-TOP-R-13	IM TOD D 44	IM-TOP-R-15	IM-TOP-R-16	IM TOD D 47	IM-TOP-R-18	M TOD D 4	IIII TOD D 20	IM TOD D 24	IM TOD D 22	IM TOD D 22	IM TOD D 24	IM TOD D OF
Project:	Ramapo-OU-2,	Lab Sample ID:	MC40110-30	MC40110-31	MC40110-32	MC40110-33	MC40110-34	MC40110-35	MC40110-36	MC40110-37	MC40110-38	MC40110-39	MC40110-40	MC40110-41	MC40110-42	MC40110-43	MC40110-44	MC40110-45	MC40110-46	MC40110-47	MC40110-48	MC40110-49	MC40110-50		MC40110-52		MC40110-54
Project Number:	Ramapo, NY RAMAPO-OU-2	Date Sampled:	7/17/2015	7/17/2015	7/17/2015	7/17/2015	7/17/2015	7/17/2015	7/17/2015	7/17/2015	7/17/2015	7/17/2015	7/17/2015	7/17/2015	7/17/2015	7/17/2015	7/17/2015	7/17/2015	7/17/2015	7/17/2015	7/17/2015	7/17/2015	7/17/2015		7/17/2015	7/17/2015	
		Matrix:	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
Contaminant	CAS Number	Unrestricted Use Limit	Results	Results	Results	Results	Results	Results	Results	Results	Results	Results	Results	Results	Results	Results	Results	Results	Results	Results	Results	Results	Results	Results	Results	Results	Results
	als (PPM)																			1		1					
Arsenic Barium	7440-38-2 7440-39-3	13 350	3.7 66.6	3.2 68.8	3.7 68.2	3.3 68.7	3.7 69.5	3.1 60.8	3 72.3	3 65.7	2.8 66.4	2.6 70.3	3.2 65.4	- :	-	-	-	-	-	-	-	-	-	-	-	-	-
Beryllium	7440-41-7	7.2	0.34	0.35	0.34	0.36	0.38	0.35	0.35	0.34	0.32	0.31	0.34					-			-		-	-		-	-
Cadmium Chromium, hexavalent	7440-43-9 18540-29-9	2.5	0.17 0.88	0.18 0.69	0.2 <0.53	0.14 <0.53	0.19	0.17 0.51	0.14 <0.51	0.16 <0.52	0.14 <0.52	0.15 <0.51	0.16 0.96	- :	- :	- :	-		- :	-	-	-	- :		- :		-
Chromium, trivalent	16065-83-1	30	19.7	20.4	20	19.6	19.7	21	19.8	17.2	18.6	23.5	20.8				-	-			-	-	-	-		-	-
Copper Total Cyanide	7440-50-8	50 27	91.4 <0.16	56.8 <0.16	45.8 <0.16	43.7 0.16	53.4 <0.16	44.7 <0.15	40.8 0.15	36.5 <0.15	43.5 <0.15	42.5 <0.15	108 <0.15	-	-	-	-	-	-	-	-	-	-	-		-	-
Lead	7439-92-1	63	22.7	17.1	18.8	16.3	17.8	17.7	16.9	15.7	15.5	15.5	16.6		-		-	-	-	-	-			-	-	-	-
Manganese Total Mercury	7439-96-5	1600 0.18	309 0.032	331 0.028	316 0.031	317 0.039	345 0.028	341 0.03	330 0.027	308 0.027	292 0.028	277 0.079	302 0.027				-				-		-	-		-	-
Nickel	7440-02-0	30	12.4	12.1	11.7	11.1	13.3	11.7	13.3	11.2	10.8	12.3	12		-	-		-	-	-	-	-	-	-	-	-	-
Selenium	7782-49-2	3.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND										-	-			-
Silver	7440-22-4 7440-66-6	109	ND 55.2	ND 57.4	ND 59.5	ND 52.1	ND 54.9	ND 54.7	ND 54.1	ND 49.6	ND 49.6	ND 48.4	ND 50.5	-	-	-		-	-		-	1	-	-	-	-	-
	sticides (PPM)		-5.2						-						1							<u> </u>					
2,4,5-TP Acid (Silvex) 4.4'-DDF	93-72-1 72-55-9	3.8 0.0033	ND 0.0087	ND 0.0094	ND 0.0078	ND 0.0091	ND 0.0103	ND 0.0085	ND 0.006	ND 0.0057	ND 0.0054	ND 0.0038	ND 0.0033	-	-	-		-	-	-	-		-	-	-		
4,4'-DDT	72-55-9 50-29-3	0.0033	0.0087 ND	0.0094 ND	0.0078 ND	0.0091 ND	0.0103 ND	0.0085 ND	ND	0.0057 ND	0.0054 ND	0.0038 ND	0.0033 ND	-	-	-		-	-		-	1	-		-	-	
4,4'-DDD Aldrin	72-54-8 309-00-2	0.0033	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND	ND ND	ND ND		-		-	-	-	-	-	-	-	-	-	-	-
Aldrin alpha-BHC	309-00-2 319-84-6	0.005	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	-	-	-	-	-	-		H	+ :-	-	-	-	-	-
beta-BHC	319-85-7	0.036	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND										-	-			-
Chlordane (alpha) delta-BHC	5103-71-9 319-86-8	0.094	0.0075 ND	0.0088 ND	0.0077 ND	0.0084 ND	0.0101 ND	0.0108 ND	0.0065 ND	0.0097 ND	0.0094 ND	0.0069 ND	0.0086 ND	- :	-:-	-	-	-	-	-	-	-	-	-	-	-	-
Dibenzofuran	132-64-9	7	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		-		-	-	-	-	-	-	-	-	-	-	-
Dieldrin Endosulfan I	60-57-1 959-98-8	0.005 2.4	ND ND	0.0021 ND	0.0024 ND	0.0025 ND	0.003 ND	0.0022 ND	0.0019 ND	0.0021 ND	0.0021 ND	0.0019 ND	0.002 ND	-	-	-	-	-	-	-	-	-	-	-		-	-
Endosulfan II	33213-65-9	2.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND										-	-			-
Endosulfan sulfate Endrin	1031-07-8 72-20-8	2.4 0.014	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND		-		-		-		-		-	-	-		-
Heptachlor	76-44-8	0.014	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	- :	-:	-	-	-	-	-	-	-	-	-	-	-	-
Lindane	58-89-9 1336-36-3	0.1 0.1	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND				-		-		-	-	-	-	-		-
Polychlorinated biphenyls Semivolatile orga			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND				-	-	-	-	-	<u> </u>		-	-	-	-
Acenaphthene	83-32-9	20	0.0191	ND	ND	ND	ND	ND	ND	0.0172	ND	ND	ND		-						-						-
Acenapthylene Anthracene	208-96-8 120-12-7	100 100	0.0142 0.0273	ND 0.0273	ND 0.0229	ND 0.0235	ND 0.0259	ND 0.0193	ND 0.0196	ND 0.268	ND 0.243	ND 0.0226	0.013 0.0225			-	-	-	-	-	-	-	-	-	-	-	-
Benz(a)anthracene	56-55-3	1	0.118	0.133	0.111	0.136	0.102	0.106	0.120	0.173	0.106	0.108	0.133		-	-	-	-	-	-	-	-	-	-	-	-	-
Benzo(a)pyrene Benzo(b)fluoranthene	50-32-8 205-99-2	1	0.111	0.135 0.197	0.1 0.168	0.127 0.191	0.0895	0.100	0.13	0.162 0.244	0.0915 0.149	0.0976	0.141	-	-	-	-	-			-	-	-	-		-	-
Benzo(g,h,i)perylene	191-24-2	100	0.107	0.124	0.102	0.111	0.0889	0.0943	0.134	0.143	0.0921	0.0985	0.117				-	-			-	-	-	-		-	-
Benzo(k)fluoranthene Chrysene	207-08-9 218-01-9	0.8	0.128 0.195	0.147 0.222	0.109 0.182	0.117 0.203	0.0881 0.174	0.113 0.171	0.121 0.198	0.166 0.258	0.104 0.178	0.095 0.177	0.141 0.206		-		-		-		-	-	-	-	-		-
Dibenz(a,h)anthracene	53-70-3	0.33	0.0449	0.0552	0.0402	0.203	0.0385	0.0423	0.046	0.0668	0.0376	0.0383	0.206	- :	-:-	-		-	- :	-	-		-	-	-	-	-
Fluoranthene	206-44-0	100	0.303	0.331	0.28	0.273	0.273	0.234	0.283	0.407	0.284	0.267	0.275				-		-		-	-		-	-	-	-
Fluorene Indeno(1,2,3-cd)pyrene	86-73-7 193-39-5	30 0.5	0.0282 0.0985	0.025 0.116	0.0224	0.0184 0.103	0.0199 0.0771	ND 0.0836	0.0216 0.106	0.0224 0.132	0.0224 0.0805	0.0184 0.0859	0.0196 0.111	-	-	-	-	-	-	-	H	+ :-	-	-	-	-	-
m-Cresol	108-39-4	0.33	0.0434	ND	0.0336	ND	0.0322	ND	0.03639	0.0404	0.0375	0.0318	ND		-		-	-	-	-	-	-	-	-	-	-	-
Naphthalene o-Cresol	91-20-3 95-48-7	12 0.33	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	-	-	-		-	-	-	-	-	-	-	-	-	-
p-Cresol	106-44-5	0.33	0.0434	ND	0.0336	ND	0.0322	ND	0.03639	0.0404	0.0375	0.0318	ND		-	-		-	-	-	-	-	-	-	-	-	-
Pentachlorophenol Phenanthrene	87-86-5 85-01-8	0.8	ND 0.152	ND 0.158	ND 0.134	ND 0.123	ND 0.125	ND 0.106	ND 0.123	ND 0.156	ND 0.135	ND 0.129	ND 0.133	- :	- :	-	-	-	-	<u> </u>	 	<u> </u>	- :		-		
Phenol	108-95-2	0.33	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-		-		-	-						-	-	-
Pyrene Volatile organic	129-00-0	100	0.231	0.244	0.214	0.198	0.205	0.171	0.206	0.317	0.202	0.2	0.237	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,1,1-Trichloroethane	71-55-6	0.68	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	75-34-3	0.27	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethene 1,2-Dichlorobenzene	75-35-4 95-50-1	0.33	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
1,2-Dichloroethane	107-06-2	0.02	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis -1,2-Dichloroethene trans-1,2-Dichloroethene	156-59-2 156-60-5	0.25 0.19	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
1,3-Dichlorobenzene	541-73-1	2.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene 1,4-Dioxane	106-46-7 123-91-1	1.8	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
1,4-Dioxane Acetone	123-91-1 67-64-1	0.1	0.137	0.114	0.137	0.128	0.121	ND 0.0971	ND 0.13	ND 0.141	ND 0.155	0.13	ND 0.131	ND 0.114	ND 0.155	ND 0.117	ND 0.128	ND 0.136	ND 0.122	ND 0.121	0.122	ND 0.141	0.13	ND 0.124	0.15	0.15	0.136
Benzene	71-43-2	0.06	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
n-Butylbenzene Carbon tetrachloride	104-51-8 56-23-5	12 0.76	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Chlorobenzene	108-90-7	1.1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroform Ethylhenzene	67-66-3 100-41-4	0.37	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Hexachlorobenzene	118-74-1	0.33	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND

Viasant - Ramapo OU-2 Initial Top Soil Results

Methyl ethyl ketone	78-93-3	0.12	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methyl tert-butyl ether	1634-04-4	0.93	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methylene chloride	75-09-2	0.05	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
n - Propylbenzene	103-65-1	3.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
sec-Butylbenzene	135-98-8	11	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
tert-Butylbenzene	98-06-6	5.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethene	127-18-4	1.3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	108-88-3	0.7	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene	79-01-6	0.47	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene	95-63-6	3.6	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene	108-67-8	8.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl chloride	75-01-4	0.02	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Xylene (mixed)	1330-20-7	0.26	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Mis	scellaneous																										
Solids (%)	-	-	74.6		74.6	73.9	74.9	77.5	77.6	77.3	76.3	76.6	77.2	78.8	74.7	78.4	77.6	70.9	76.5	78.9	77.7	75.5	74.8	79.6	75.7	75.1	78
pH (su)	-	-	7.7		7.7	7.8	7.8	7.8	7.8	7.8	7.7	7.8	7.8			-			-	-	-	-	-	-			-

APPENDIX D

Site Photographs

Photo 1: View of restoration, showing dense warm season grass coverage with large trees, in the southern portion of OU-2 (September 2019).

Photo 2: View, north of the southern portion of OU-2, showing dense cover within monitoring plot 2 (MP-2).

Photo 3: View, south of the northern portion of OU-2, overlooking the Site from near Plot MP-6.

Photo 4: View, north of the northern portion of OU2, showing dense warm season grass coverage near Plot MP-4.

Photo 5: View, from near MP-3, showing the rip rap spillway that flows to Torne Brook and the establishment of black willow, pussy willow, and American sycamore live stakes.

Photo 6: View along the Torne River embankment of the invasive species Japanese hops and common mugwort.

APPENDIX E

Field Data Sheets

Team: <u>CPM</u> Plot: <u>1</u> Date: <u>9/10/2019</u> Page <u>1</u> of <u>2</u>

0-1ft 1-2ft 2-3ft 3-4ft 4-5ft 5-6ft 6-1 1	Species	Code			Seed	Seedling / Sapling Height	eight		
Code			0-1 ft	1-2 ft	2 -3 ft	3-4 ft	15	1	6-7 ft
Code 7-8ft 8-9ft 9-10ft 10-11ft 11-12ft 12-13ft 13-	Juni perus urginiama					_	-		
Code Seeding / Sapling Height 11-12 ft 12-13 ft 13-13 ft	Quevaus word								
Code	Platanus americana				=				
Code 7-8ft 8-9ft 9-10ft 10-11ft 11-12ft 12-13ft 13-									
Code 7-8ft 8-9ft 9-10ft 10-11ft 11-12ft 12-13ft 13-									
Code 7-8ft 8-9ft 9-10ft 10-11ft 11-12ft 12-13ft 13-									
Code Seedling / Sapling Height 12-13 ft 13- 7-8 ft 8-9 ft 9-10 ft 10-11 ft 11-12 ft 12-13 ft 13- 1									
Code									
Code Seedling / Sapling Height 13-13 ft 13-13 ft 13-14 ft 14-15 ft 12-13 ft 13-15 ft									
7-8ft 8-9ft 9-10ft 10-11ft 11-12ft 12-13ft 13-	Species	Code			Seed	ling / Sapling H	leight		
Between nigra Are nibrum Populus deltrides Pinus strobus Plat anus americana Quercus nibra Are regunde Between publifolia Hannamelis urginiana 1	# N N N N N N N N N N N N N N N N N N N	100	7-8 ft	8-9 ft	9 – 10 ft	10 – 11 ft	11 -12 ft	12-13 ft	13 - 14 ft
Act nown Appulus delthides Pinus strobus Plat anus americana Quercus nora Act regunds Betus populifolia Hamamelis urginisama 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Between nigra			1					
Populus deltrides Prinus strobus Plat anno sumeriana Quelcus nora Alex regundo Betus populifolia Haunamelis virginiana 1	Acr Norm				-	-	I		
Pinus strobus Plat anno strobus Plat anno strobus Plat anno strobus I I I I I I I I I I I I I I I I I I I	Apollus delto des						-	-	
Plat anno americana Quercus nora Alex regunds Behva populitatia Haunamelis urginiana	Pinus strateus					_			
Acer regunds Behula populifolia Haumannelis virginianne	Plat annu americana						-	=	_
Acer regunds Betwee socialis Hownsmelis virginiams 1	Quelcus alors		_		-		-		
Haumannelis urginianne	ACEY regundes				1			?	
Haumannells urginisma	Behula power tolia					-			
	Harmamolis virginion								

Team: CPM Plot:

Date: <u>9/10/2019</u> Page <u>2</u> of <u>2</u>

v.		Panicum	Echinochl	Sor a hash	Rudbekia hirta	Monarda	(oreopsis	fanicum c									
Species		Panicum virgatum	Echinochiba crus-galli	Sor a hashum nutains	hirta	Munarda fistulasa	Coreopsis lamueulada	Panicum di che tomifol.									
	+																
	1-5		4				X										
Cover	6-10	-	D		8	8		8									
Cover Classes	11- 15																
1	2																
odule:	6- 21- 0 25																
	26- 50			8													
	51- 75									Ī							
	76- 90															ľ	
	90- 100																
	+																
	1-5				8		X										
Cover	6-10					6		X									
Cover Classes	11-		g														
	00																
Module:	21- 25																
	26- 50	Q		ď													
3	51- 75																
	76- 90																
	100																

Team: <u>CPM</u> Plot: <u>2</u> Date: <u>9/10/2019</u> Page <u>2</u> of <u>2</u>

Species		p. cirquirm	s. notans	P hirta	-	c. 1 amiles anda	ロレンドからい									
	+															
	1-5					K										
Cover	6-10				8		X							0.11		
Cover Classes	11- 15			8												
	2 -															
lodule:	6- 21- 0 25		8							1	ì					
	26- 50															
D	51- 75															
	76- 90									1						Ī
	100															
	+															Ī
	1-5					8										
Cove	6-10				X		X									
Cover Classes	11-			X												
es N	20															
Module:	21- 25		D	T								F				
28	26- 50									1						
~	51- 75	8	Ť													
	76- 90															
12	100															

Team: CPM Plot:

Date: 9/10/2019 Page 1 of 2

Species		prunus demana	Quercus mora	Unioderan thipitea	Aursacchannum	improvia mulamocarpous			Species		Pinus strobus	Quercus whore	Betwa nisra	celts occidentalis	populus deltrides	Between population	uccha			
Code									Code											
	0-1 ft									7-8 ft				_						
	1-2 ft									8-9 ft		_	-				1			
Seec	2-3 ft	_							Seed	9 – 10 ft	-	_	_	-						
Seedling / Sapling Height	3-4 ft	1			11				Seedling / Sapling Height	10 – 11 ft					-					
	4-5 ft								leight	11 -12 ft						1				
	5-6 ft									12-13 ft										
1	6-7ft			-	-					13 – 14 ft										

Team: <u>CPM</u> Plot: <u>3</u> Date: <u>9/10/2019</u> Page <u>2</u> of <u>2</u>

Elymnis virginitous (25	Species			Cover	Classe		Module:		D.					Cove	Cover Classes		Module:		5		
		+		6-10	11-	6	21- 25			76- 90	90-	+	1-5	6-10	11-	16- 20	21- 25	26- 50	51- 75	76- 90	90-
1	Elymus virginicus			X											8						
1	M. Astalosa			X										8							
5	Erecutives hieraciful.				X										8						
10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	e hirta		X										8								
10.161.1 X X X X X X X X X X X X X X X X X X	Prication					8										×					
10.161, X	Helianthus angustif		8										8								
1000	Elhamia graminifola	8											6								
1000	c lanuolata		8				Ī						4								
100 100 100 100 100 100 100 100 100 100	revouseum trapsus		8									d									
Note in the second of the seco	F. CMS-Galli		8										8								
bude. X lade rife X X X X X X X X X X X X X	Bidens Sp.		8											8							
\(\frac{\pi}{\pi}\)	Denothera biennis		X										8								
8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	Symphiatrichum noval-		X									6									
8	Symphic hickum lateris			8										8							
Japanicus	Artemisia ulgans			8											8					F	
	rumulus jappanicus						8							8			T	1			
										T											
								П										\Box	\Box		
							T	T	Ī	T						T		T	T	T	+
																	1	T	1		

Team: <u>CPM</u> Plot: 3 Date: <u>9/10/2019</u> Page 1 of 2

Species	Code			Seed	Seedling / Sapling Height	eight		
1		0-1 ft	1-2 ft	2 -3 ft	3-4 ft	4-5 ft	5-6 ft	6-7ft
Amelanchi er canadensi s								-
Actamus occidentalis					1	_		
unoderdum Tulipitera							-	
and the delto dec			111	1				
CONTROL ON ONLY			111	1111		111		
		-	7	=	7	=	11	
0.1		-	-	11	N			
Species	Code			Seed	Seedling / Sapling Height	leight		
Species		7-8 ft	8-9 ft	9 – 10 ft	10 – 11 ft	11 –12 ft	12-13 ft	13-14 ft
5			-	-				
000000000000000000000000000000000000000				_				

Team: CPM Plot: 4

Date: <u>9/10/2019</u> Page <u>1</u> of <u>2</u>

Species	Code			Seed	Seedling / Sapling Height	eight		
		0-1 ft	1-2 ft	2 -3 ft	3 – 4 ft	4-5 ft	5 – 6 ft	6-7 ft
Liviaderalian tuliaitera								
front a melaumo camous								
Betwha populitalia						1		
Jun pend virginiana								
Act Parendo								
Species	Code			Seed	Seedling / Sapling H	ng Height		
		7-8 ft	8-9 ft	9 – 10 ft	10 – 11 ft	11 -12 ft	12-13 ft	13 – 14 ft
Fraxinus pensulvamica								
					T.	_		
Platamus occidentalis						_		
Andanchier canadensis		-	-					
Quercus nora					1			
anus stolows			Ţ					
Behild poul folia				-				
Acer ragions de					_			
(

Team: CPM Plot:

Date: 9/10/2019 Page 2 of 2

Species		P. dichotomi Klown	M. Astulosa	P. viraculum	nut ams	e hirds		1	· poval-amalias	A. Wigans	Tragopogun dubius	ctavia pimila	s. lateriflorm							
	+								6		7									
	1-5						x	8		8										
Cove	6-10											8	8							
Cover Classes	11- 15	8	8			8								T						
	26				8															
Module:	21- 25			8														ħ		
	26- 50																			
AA	51- 75																			
	76- 90																			
	100																			
	+																			
	1-5						8	X	X		X									
Cove	6-10					8				X		X	X							
Cover Classes	11-	ľ	8																	
	16- 20	8			8															
Module:	21- 25																			
	26- 50			8																
8	51- 75																			
	76- 90																			
	100														1					

Team: CPM Plot: 5 D

Date: 9/10/2019 Page 1 of 2

Species	Code			Seed	Seedling / Sapling Height	eight		
L		0-1 ft	1-2 ft	2-3 ft	3-4ft	4-5 ft	5-6 ft	6-7 ft
Uni pe mus virginiauna						_	_	
Platanus occidentalis		_		111				
Amel anchier canadersis							1	
Posa multiflora			1					
- 4								
Species	Code			Seed	Seedling / Sapling Height	eight		
i i		7-8 ft	8-9ft	9-10 ft	10 - 11 ft	11 -12 ft	12-13 ft	13 - 14 ft
ther regunde								
PE 2523								
moulus de Mides								
billerous micros					11			
A rue stolous						_		
raximus amencana							-	
platamus occidentely						_		

Team: <u>CPM</u> Plot: <u>5</u> Date: <u>9/10/2019</u> Page <u>2</u> of <u>2</u>

Species		0	Cover Classes	lasses		Module:	S	D					Cove	Cover Classes		Module:		S		
	+	1-5	6-10	15 1-	20	21- 25	26- 50	51- 75	76-	100	+	1-5	6-10	11-	0	21- 25	26- 50	51- 75	76- 90	90-
E. LIEGINI CUS			8											8	T					
P. hirta				8									8							
M. fistula				X										8						
D. virgation						X										8				
Schizannium scop.		8										8								
J. Owila		8											8							
		8											8							
				8										8						
			8										8							
A vulgaris		8										8								
F. CMS-goldi		8										8								
5. later floren			X									17	8							
		X										8								
X anthing strong	,	6										8								
D. biennis		8										8								
Poa sp.			8										8				-		F	
		-														1				+
																3				
		1								T		Ī			T	t		+	+	1
	-							F			T	f	T	T		f	+	H	-	H

Team: CPM Plot: 6 Date: <u>9/10/2019</u> Page <u>1</u> of <u>2</u>

Species	Code			Seed	Seedling / Sapling Height	leight		
		0-1 ft	1-2 ft	2-3 ft	3-4ft	4-5 ft	5-6 ft	6-7 ft
Querus wora								
Anus stooms						_	_	
per vonn		-						
STORALS VIVALINI OVA				1				
Losa multiflora			11					
patamus occidentalis						_		
Species	Code			Seed	Seedling / Sapling Height	eight		
		7-8 ft	8 – 9 ft	9 – 10 ft	10 – 11 ft	11 -12 ft	12-13 ft	13 – 14 ft
platamus occidentabis					II	1		
Apollo del Mides								=
Anus overous		-						
Duercus word			-		L			
Behula nighra						1		
l								

Team: <u>CPM</u> Plot: <u>(a)</u> Date: <u>9/10/2019</u> Page <u>2</u> of <u>2</u>

Species		M. Astrosa		R. hida	E LIVEINICUS	pursatum	5. rutions	A. vulgaris	S. lateriflorm	C. I conceptate	S. Scopanium							
	+																	
1.20	1-5				8					6	8							
Cover Classes	6-10	6	8					6	8									
Classe	15			8														
	16- 20					5												
Module:	21- 25					ď	8											
6 A	26- 50																	
I D	51- 75																	
	76- 90																	
	100																	
	+																	
	15				1					D	X							
Cover	6-10		K		8			8	8									
Class	11- 15	6		X														
es M	16- 20																	
Cover Classes Module:	21- 25					8	8											
68	26- 50					X												
	51- 75																	
	76- 90																	
	100																	