Site Characterization and Remedial Investigation Report

Tor Valley, Inc. 265 S Little Tor Road New City, New York 10956

NYSDEC POTENTIAL SITE NUMBER: 334084 ECMS PROJECT NUMBER: 23.528 DATE: FEBRUARY 16, 2024

Prepared for:
Tor Valley, Inc.
3 Belaire Terrace
New City, New York 10956

Prepared by:
Environmental Consulting and
Management Services, Inc.
10 Filmont Drive
New City, New York 10956

Table of Contents

1.0 IN	TRODUCTION	2
2.0 SI	TE BACKGROUND	2
	TE CHARACTERIZATION	
3.1	Site Description	
3.2	Geology and Hydrogeology	
3.3	Interim Remedial Measures (IRM)	
	ATURE AND EXTENT OF CONTAMINATION	
5.0 S	OIL VAPOR AND INDOOR AIR SAMPLING AND RESULTS	
5.1	Soil Vapor Intrusion Sampling Event	6
5.2	Soil Vapor Sampling Procedures	
5.3	Indoor and Outdoor Air Sampling Procedures	8
5.4	Soil Vapor Intrusion Sampling Event Results	8
5.5	Soil Vapor Intrusion Findings Summary	9
	ROUNDWATER SAMPLING AND RESULTS	
6.1	Temporary Monitoring Well Installation and Survey	
6.2	Well Decommissioning	
_	<u> </u>	
6.3	Groundwater Monitoring Event	
6.4	Groundwater Gauging and Sampling	
6.5	Groundwater Monitoring Summary	
6.6	Groundwater Sampling Results	
6.7	Groundwater Findings Summary	13
7.0 C	ONCLUSIONS	14
8.0 R	ECOMMENDATIONS	15
9.0 LI	MITATIONS	16
	REFERENCES	
		1
FIGURES		
Figure 1	Site Location Map	
Figure 2 Figure 3	P-Site 344084 Remedial Boundary	
Figure 3	Soil Vapor & Indoor Air Results Map SSDS Schematic	
Figure 5	Groundwater Elevation/Groundwater Results Map	
TABLES	, i i i i i i i i i i i i i i i i i i i	
Table 1	Historical Analytical Groundwater Results	
Table 2	Historical Soil Vapor, Indoor Air, and Outdoor Air Results	
Table 3	Soil Vapor, Indoor Air, & Outdoor Air Analytical Results	
Table 4 Table 5	Groundwater Analytical Results Groundwater Elevation Gauging Data	
Table 6	Indoor Air & Outdoor Air Analytical Results — Bombay Grill.	
GRAPHS	.,, .	
Graph 1	PCE Concentrations Over Time	
Graph 2	TCE Concentrations Over Time	
Graph 3	cis-1,2-DCE Concentrations Over Time	
Graph 4 Graph 5	Mann-Kendall Trend Analysis of PCE Mann-Kendall Trend Analysis of TCE	
Graph 6	Mann-Kendall Trend Analysis of rec	
APPENDIC		
Appendix		
Appendix		
Appendix		
Appendix Appendix		
, PPCHUIX	L Crara Monitoring Data and Orapis	

i

Certification:

I Harry Sudwischer, certify that I am currently a Qualified Environmental Professional as defined in 6 NYCRR Part 375 and that this Report was prepared in accordance with all applicable statutes and regulations and in substantial conformance with the DER Technical Guidance for Site Investigation and Remediation (DER-10) and that all activities were performed in full accordance with the DER-approved work plan and any DER approved modifications.

• I had primary responsibility for implementation of the Site Characterization Remedial Investigation Report for activities completed at 265 S Little Tor Road, New City, New York. The NYSDEC has identified the Site as a "P" or potential site with a Site Number of 334084. The site was formerly designated as NYSDEC VCP Site Number V00310.

QEP Name: Harry Sudwischer

QEP Signature: Date: February 16, 2024October 25, 2024

Site Characterization and Remedial Investigation Report

1.0 INTRODUCTION

This report presents the results of the site characterization investigation, which included a vapor intrusion investigation and a groundwater sampling event conducted at 265 S Little Tor Road, New City, New York ("Site") by Environmental Consulting and Management Services, Inc. (ECMS) to satisfy the requirements of the New York State Department of Environmental Conservation (NYSDEC) in accordance with the Order on Consent, dated March 17, 2022 (Consent Order). The purpose of the site characterization was to assess if there is a potential risk of vapor intrusion into the onsite building due to a historical release of tetrachloroethylene (PCE) at the site. The primary contaminants of concern (COC) were PCE and its associated breakdown products. As part of the Investigation ECMS installed temporary monitoring wells to sample groundwater to assess if the water quality meets state standards. The NYSDEC has identified the Site as a "P" or potential site with a Site Number of 334084.1 Therefore, it is not currently listed in the NYS Registry of Inactive Hazardous Waste Disposal Sites.

The site activities and this report were prepared in general accordance with NYSDEC Division of Environmental Remediation (DER) Program Policy: DER-10/Technical Guidance for Site Investigation and Remediation issued May 3, 2010 (NYSDEC DER-10).

This report includes data collected during investigative and interim remedial activities conducted from November 2005 through June 2022. The investigative and remedial activities conducted at the Site were performed in accordance with work plans approved by the NYSDEC and New York State Department of Health (NYSDOH).

2.0 SITE BACKGROUND

The previous owner, Tor Valley Inc., constructed the commercial building in 1964 on previously undeveloped land. The building was constructed with an onsite sanitary disposal system in 1964. The system consisted of a septic tank and cesspools. The sanitary system was abandoned in January 1979 during connection of the building with the public sewer.

3.0 SITE CHARACTERIZATION

3.1 Site Description

The site is situated at the corner of Little Tor Road and New Valley Road in New City, Town of Clarkstown, Rockland County, New York. The site is approximately 1.5 acres and improved with one two-story commercial building and one two-story restaurant building. The commercial building is currently occupied by tenants. A dry cleaner service was formerly a tenant in the commercial building. See **Figure 1**, **Site Location Map** and **Figure 2**, **P-Site 344084 Remedial Boundary**.

3.2 Geology and Hydrogeology

The following description was drafted by Impact Environmental Consulting as part of the Phase II Remedial Investigation Report: 2nd Mobilization, dated January 20, 2010. Based on ECMS' review of the site it is an accurate depiction of the site's geology and hydrogeology.

 $^{^{\}rm 1}$ The site was formerly designated as NYSDEC VCP Site Number V00310.

"The property is quite close to the northwest-southeast trending boundary between the Palisades diabase sill to the northeast that intruded into the Triassic Brunswick Formation consisting of arkose sandstone, mudstone, conglomerate, and siltstone characterized by the red color of the iron oxide.

Driven by the Geoprobe from April 14 to 16, 1999, nine soil borings penetrated an average of 15 feet of Pleistocene glacial till immediately west and north of the strip mall building. The till has the characteristic red color of the Brunswick Formation from which it is derived and deposited on till plains. Frequently gravel size rock fragments of dark gray crystalline diabase remnants of the Palisades Sill encountered randomly in the overburden indicative of the proximity of the igneous intrusive rock beneath.

Quite different subsurface conditions were encountered in ten additional Geoprobe borings and four micro-monitoring wells driven and installed on May 17 and 18, 1999. Six borings reached refusal at a depth of 4 to 6 feet below the ground surface in the area to the northwest believed to be the direction of groundwater flow based on the interpretation of the data from the first field mobilization. Four micro-monitoring wells were installed, including two that were dry after heavy rainfall.

All the borings reached refusal, often ending in dark gray to black fine crystalline rock fragments indicative of the diabase bedrock of the Palisades Sill directly beneath the red till. A contour map of the elevation of refusal in the twenty soil borings portrays a buried bedrock valley and bedrock ridge, given that refusal is evidence of the overburden-bedrock interface. After erosion of the bedrock, glacial till was deposited in the valley. The axis of the valley trends down gradient from the southeast to northwest.

The site hydrogeology is interpreted from twenty soil borings driven by Geoprobe and thirteen micro-monitoring wells installed in selected borings during two Geoprobe field mobilizations (April and May 1999). The New York Geologic Map (NYSGS, 1970) and the Soil Survey of Rockland County (USDA, 1990) were referenced for background information.

This hydrogeologic interpretation is based on two sets of water levels measurements, first with ten micro-monitoring wells (April 27, 1999) and second with fourteen wells (May 25, 1999). The surface elevations of the monitoring wells and the water levels are relative to an arbitrary elevation of one hundred feet on the ground surface at the corner at the northwest corner of the two-story Tor Valley shopping plaza.

During the drilling, the water table was encountered deeper in the till than the equilibrium water levels recorded on April 27, 1999, in the micro-monitoring wells. The first potentiometric surface indicated that the horizontal groundwater flow direction was generally west down the valley wall and north along the valley axis at the foot of the parking lot.

The additional Geoprobe borings and micro-monitoring wells enhanced the hydrogeologic interpretation and modified the interpreted groundwater flow direction in the area of MW-3, MW-8, and MW-9. Discovery of the east-west trending bedrock ridge requires a change in the direction of groundwater from northward to the northwestward flow farther down the hill and then to the north (parallel to the stream farther west) to skirt the west end of the bedrock ridge. Also, the potentiometric surface on May 25, 1999, shows a high-water table at MW-9, evidently due to rainfall recharging shallow groundwater after washing downhill on the macadam parking lot. Heavy rainfall events occurred on the two days prior to sampling and taking water level measurements on May 25.

Site Characterization and Remedial Investigation Report Tor Valley, Inc. 265 S Little Tor Road, New City, NY 10956

NYSDEC Potential Site Number: 334084

The tills were observed to frequently have more than one water bearing zone within the screened interval in the same boring. The saturated zones are predominantly loose sand and gravel. In most borings, the zones of saturation were often separated by till that was dry, damp, or moist in contrast to saturation. These intervening aquitards are generally fine grain and compact silt and clay material. Often the base of the till was observed as a dry compact red silt directly above rock fragments presumably from the Palisades Sill beneath. Correlation of the zones of saturation lead to this hydro stratigraphic interpretation. The two zones of saturation lead to were found to merge and thin down-gradient of the shopping plaza.

The equilibrium water levels are mapped as the potentiometric surface because of the difference in water table and equilibrium elevations. This differential may reflect either confinement of the lower zone of saturation and/or an upward vertical component of groundwater flow, both within the 15 feet of glacial till. At MW-9, groundwater mounding from heavy rainfall suggests that semi-confined or unconfined conditions exist there.

The lack of groundwater in MW-13 indicates that the bedrock ridge presents a barrier to subsurface flow. The base of the screened interval in MW-13 is at a relative elevation of 81.6 feet which is below the projection of the potentiometric surface.

The dominant groundwater flow direction in the overburden fill and natural sediments is controlled by sediment porosity and bedrock surface configuration. In the area of interest behind the shopping plaza, groundwater flow to the northwest is limited by scant recharge. Upgradient areas to the south, southeast, and east are paved providing very little vertical infiltration of precipitation into the subsurface overburden."²

3.3 Interim Remedial Measures (IRM)

According to reports from William L. Going & Associates, an IRM was conducted in May 2002 that included the removal and off-site disposal of 18,427 gallons of perched water contained within the former cesspools. This effort was conducted to reduce contaminant concentrations in groundwater at the site. The concentrations of PCE within the perched water of the former cesspools in July 2002 subsequent to the pumping ranged from 1.1 to 470 ppb. These results suggest that residual concentrations of chlorinated solvents were still present with the groundwater beneath the former cesspools at levels warranting further action. The IRM activities are summarized by the IRM Completion Letter Report by William L. Going & Associates, Inc., dated August 21, 2002³, as well as the Vapor Intrusion Investigation Report⁴ and Phase II Remedial Investigation Report: 2nd Mobilization⁵ by Impact Environmental Consulting (Impact) respectively dated March 3, 2008, and January 10, 2010.⁴

According to various reports previously referenced from Impact Environmental, In June 2005 and again in 2010, feasibility testing was conducted by Impact to determine the appropriateness and effectiveness of utilizing HRC for accelerated anaerobic natural attention for the site. Testing

^{2,5}Impact Environmental, Phase II Remedial Investigation: 2nd Mobilization, dated January 20, 2010, provided by respondent and NYSDEC.

³ William L. Going & Associates, Inc., "IRM Completion Letter Report," dated August 21, 2002.

⁴ Impact Environmental, Vapor Intrusion Investigation Report, dated March 3, 2008

parameters included current volatile organic contaminant concentrations, nitrate and sulfate concentrations, and iron and manganese concentrations.

According to reports from Impact Environmental, on May 31, 2006, a Hydrogen Release Compound (HRC) injection was completed as an IRM by Impact Environmental. Based on the data generated from previous remedial investigations, a grid pattern of injection points was established to encompass the affected area. The grid injection points (number and spacing of points) and HRC injection volumes was determined based on the extent of groundwater contamination, concentrations of contaminants, calculations accomplished utilizing application software and physical access to the proposed location. Groundwater sampling conducted following the injection activities indicated that after initial decreasing contaminant concentrations, contaminant concentrations rebounded in MW-5, suggesting a source area remained. Therefore, it was determined that additional HRC injections were required. The first round of HRC injection results was summarized in the *Hydrogen Release Compound Injection Work Plan* by Impact Environmental, dated November 12, 2009.6

The second HRC injection was completed on the Site by Impact Environmental in July 2010 under the supervision of the NYSDEC. A total of 18,500 pounds of HRC and 630 pounds of accelerant primer were injected throughout the area of the plume at 22 injection points completed in accordance with the NYSDEC approved work plan. The HRC was applied along the entire interface down to and permeating groundwater levels.⁶

On April 25, 2013, ECMS was contracted to continue remedial work and perform a sub-slab vapor investigation, which indicated the need for vapor intrusion mitigation within the onsite building. A mitigation system was installed in the area of the former dry cleaner tenant space on December 16, 2013. Radon Mitigation Corporation of America, Inc. (RMCA) installed a Fantech HP-190 Suction Fan to mitigate sub-slab vapors which exceeded NYS standards. The vapors were vented to discharge above the roof.

Based on the analytical data collected by ECMS in 2014, a concentration of up to $200~\mu g/m^3$ of PCE was detected in the indoor air. This data was reported in an ECMS "Technical Report" provided to the NYSDEC in December 2014.7 Additional indoor air samples collected on April 21 and September 18, 2015, showed elevated concentrations of PCE. Based on these indoor air sampling results, the mitigation system was upgraded. As a result, two (2) inline Fantech HP-220 Mitigation Fans were installed. Following the fan upgrade, communication testing was performed by an RMCA licensed Radon Mitigator (10G017) on November 11, 2015. Strong communication was observed with readings 30 to 40 feet away from the system. Indoor air sampling conducted following the fan upgrade indicated the upgraded mitigation system was operating appropriately. The sub slab depressurization vapor mitigation system continuously operates and was last checked on August 3, 2022.

4.0 NATURE AND EXTENT OF CONTAMINATION

Previous investigations conducted at the site identified the presence of PCE and breakdown products in groundwater resulting from the historic operation of an onsite dry cleaner. Compounds detected include tetrachloroethene (PCE), trichloroethene (TCE), cis-1,2-dichloroethene (DCE) and vinyl chloride (VC). PCE is the main source of the compounds of concern from the former dry-cleaning

⁶ Impact Environmental, "Hydrogen Release Compound Injection Work Plan", dated November 12, 2009

⁷ Environmental Consulting & Management Services, Inc., "Technical Report", Dated December 2014

Site Characterization and Remedial Investigation Report Tor Valley, Inc. 265 S Little Tor Road, New City, NY 10956

NYSDEC Potential Site Number: 334084

operations and the additional compounds identified are breakdown products of the de-chlorination process. Based on a review of the historic data collected from groundwater samples secured from onsite, the PCE related groundwater contaminant plume emanating from the area of the former dry cleaner tenant space and or former cesspools migrated in a northwest direction with the flow of groundwater. **Table 1**, **Historical Analytical Groundwater Results**, contains all available laboratory data. The groundwater sampling was performed to evaluate the extent of the contamination in response to IRM and determine if it exceeds the NYSDEC TOGS 1.1.1 Class GA groundwater standards (TOGS).

In the past, TCE, PCE, DCE, and VC concentrations in groundwater have shown decreasing trends following the Interim Remedial Measures (IRMs) completed at the site (See Section 3.3 for a review of IRMs). During the recent groundwater sampling event conducted on June 13 & June 15, 2022, the groundwater COCs were mostly non detected. However, monitoring wells MW-4A, MW-5A, MW-8A, MW-12A, MW-13A contained PCE, TCE, and DCE in excess of TOGS.

As part of this investigation in March 2022, soil vapor and indoor air sampling events were performed to ascertain if soil vapor is intruding into the building. The results were compared to the NYSDOH Soil Vapor Intrusion Decision Matrices. The soil vapor/indoor air samples were used to assess if the SSDS addresses any potential indoor air concerns. The available soil vapor, indoor air, and outdoor air sampling analytical results are enclosed as part of this report. ECMS enclosed all available air data as **Table 2**, **Historical Soil Vapor**, **Indoor Air**, **and Outdoor Air Results**. The current indoor air and soil vapor results are discussed in the following section.

5.0 SOIL VAPOR AND INDOOR AIR SAMPLING AND RESULTS

ECMS conducted soil vapor/indoor air sampling according to the NYSDEC- and NYSDOH-approved ECMS site investigation work plan because the Departments required a recent assessment to ensure that the SSDS remains effective at mitigating soil vapor intrusion in the entire building space. Of note, ECMS conducted the sampling during the 2021-2022 heating season. The samples were collected concurrently to allow for comparison. The SSDS fan is currently operational and was running while sampling was in progress as per the NYSDEC and NYSDOH's request. A layout of the modified SSDS is enclosed as **Figure 4**, **SSDS Schematic** including with the Fantech fan specification.

5.1 Soil Vapor Intrusion Sampling Event

On March 30, 2022, ECMS conducted soil vapor and indoor air sampling in the basement spaces of the commercial building onsite. Eight air samples were taken in total: one outdoor air sample, four indoor air samples, one soil gas sample, and two sub-slab samples. The samples were collected within the heating season and ran for approximately eight hours to simulate an 8-hour workday. The sampling locations are illustrated in **Figure 3**, **Soil Vapor & Indoor Air Results Map**. The sampling locations correspond to the proposed sampling locations. Historical permanent sub-slab vapor points were not found during this investigation. As such, temporary sub-slab and soil gas samples were installed as per Guidance for Evaluating Soil Vapor Intrusion in the State of New York.

The soil vapor, indoor air, and outdoor air samples were collected on the site using evacuated 6-liter stainless steel canisters (otherwise known as a "Summa" canisters) fitted with laboratory-calibrated flow regulators. Immediately after opening the summa canister, the initial vacuum (inches of mercury) was noted. After 8 hours, the summa canister was closed, and the final vacuum noted (the flow rate during sampling did not exceed 0.2 liters/minute). Air samples were delivered to Phoenix Environmental Laboratories (Phoenix) of Manchester, Connecticut for analysis. Phoenix is a NYSDOH ELAP-accredited laboratory certification number 11301.

Site Characterization and Remedial Investigation Report Tor Valley, Inc. 265 S Little Tor Road, New City, NY 10956

NYSDEC Potential Site Number: 334084

This sampling event also evaluated potential pathways of vapor intrusion into the buildings (i.e., sumps, cracks in foundations, floor drains, etc.) and identify conditions that may affect or interfere with the vapor intrusion investigation.

On March 30, 2022, the onsite building was inspected by ECMS to identify any exposure pathways that may contribute to vapor intrusion and determine the appropriate placement of sub-slab soil gas and indoor air sample locations. The inspection included identification of possible interior air flow patterns influenced by vents, heating and air conditioning units, windows, fans and identify building features that may function as pathways (i.e., sumps, cracks in foundations, floor drains, etc.). The inspections also included a preliminary screening using a photoionization detector (PID) to measure any indoor air vapor concentrations. No discernible VOCs or odors were present. Generally, the spaces were vacant. Chemicals were not stored in the basement spaces that would affect indoor air quality or concentrations. The NYSDOH Indoor Air Quality Questionnaire and Building Inventory.

The following provides a summary of the observations identified at each sampling location:

5.11 Basement of the Former Dry Cleaner

The inspection of the basement of the former Dry Cleaner was performed on March 30, 2022. The basement was used for storage and utility space. No holes were noted in the wall to the exterior. No PID readings were detected in the basement above background. No chemical storage was observed. No other significant air patterns were observed.

5.12 Basement of Bombay Grill

The inspection of the basement of Bombay Grill was performed on March 30, 2022. The basement is used for food preparation, storage, and office. No PID readings were detected above background. No drains were observed on the concrete floor. An additional product inventory was conducted in this space due to the methylene chloride resampling. It is enclosed at the end of **Appendix A**.

5.13 Former Spa

The inspection of the Former Spa was performed on March 30, 2022. The Spa was being renovated as water damage from leaky pipes above the space occurred recently. No PID readings were detected above background. No ventilation was observed in the space. However, drains were present in the southeast corner of the space in the showers.

5.2 Soil Vapor Sampling Procedures

Three sub-slab samples (SG-1, SG-2, and SG-3) were installed by ECMS according to the Final Guidance for Evaluating Soil Vapor Intrusion in the NYSDOH, Center for Environmental Health (CEH), and Bureau of Environmental Exposure Investigation (BEEI). One soil gas point w installed outdoors, SG-3, and two of the points, SG-1, and SG-2, were installed indoors in the basement spaces. The indoor points were advanced 2-3 inches beneath the concrete foundation slab and the outdoor point was advanced twenty-four inches below the competent asphalt pavement. The points were installed using inert tubing and the tips were covered with porous inert backfill material, and the implants were sealed to the surface with a bentonite grout.

One to three volumes of the sample point and tube were purged at a rate not exceeding 0.2 liters per minute prior to collection of the two sub-slab samples. Helium tracer gas was used as a quality

assurance/quality control measure to verify that no outside air had diluted the soil vapor samples. The three sub-slab soil vapor samples were analyzed for VOCs via US EPA method TO-15 plus Helium. This method is a comprehensive method for detecting volatile organic compounds.

5.3 Indoor and Outdoor Air Sampling Procedures

Four indoor ambient air samples (IA-1, IA-2, IA-3, and IA-4) were collected in the basement spaces. The air sampling locations were 3-5 feet above the ground within the "breathing zone" during sample collection. ECMS utilized summa canisters under negative pressure fitted with eight-hour regulators. The air sample collection time spanned approximately 8 hours. The samples were analyzed for VOCs via US EPA method TO-15.

An outdoor ambient air sample (OA-1) was collected in the front of the building. The air sample was collected 3-5 feet above the ground within the "breathing zone" during sampling collection. This sample serves as a background sample for comparison and was analyzed for VOCs via US EPA method TO-15.

5.4 Soil Vapor Intrusion Sampling Event Results

The soil vapor, and indoor and outdoor air samples were analyzed for VOCs via EPA Method TO-15 plus helium. The current soil vapor and indoor air results were compared to the applicable NYSDOH Soil Vapor Intrusion Decision Matrices. Where applicable, indoor air compounds were compared to NYSDOH Indoor Air Guideline Values for PCE, TCE, and methylene chloride. The NYSDOH Matrices and Indoor Air Guidance Values indicated no further action or did not exceed the guidance values. The soil vapor, indoor air, and outdoor air results from the samples collected during this reporting period are summarized in Table 3, Soil Vapor, Indoor Air, & Outdoor Air Analytical Results. The laboratory analytical report for this air sampling event is enclosed as Appendix D, Phoenix Environmental Laboratory Analytical Reports. The comparison of soil vapor and indoor air matrices are summarized in the following table based on the current air sampling data:

	C 1 -		Matrix	A			Matrix C		
Sample ID	Sample Date	1,1- DCA	Carbon tetrachloride	cis-1,2- DCE	TCE	1,1,1-TCA	Methylene chloride	PCE	Vinyl chloride
IA-1/ SG-2		Α1	A2	A1	A1	B1	B1	B1	C1
IA-2/ SG-1	3/20/22	Α1	A2	A1	A1	B1	B1	B1	C1
IA-3/ SG-1	3/20/22	Α1	A2	A1	A1	B1	B1	B1	C1
IA-4/ SG-1		A1	A2	A1	A1	B1	В3	B1	C1
IA-1	2/21/23	NS	NS	NS	NS	NS	В1	NS	NS

A1, A2 – NYSDOH Soil Vapor Intrusion Matrix A Decision: No Further Action

On February 21, 2023, ECMS returned to establish an inventory as well as collect indoor and outdoor air samples – IA-1- and OA-1- – for the Bombay Grill location to evaluate potential indoor air sources for methylene chloride. Based on ECMS' inventory, it was found that the previous indoor

B1, B2 – NYSDOH Soil Vapor Intrusion Matrix B Decision: No Further Action

B3 – NYSDOH Soil Vapor Intrusion Matrix B Decision: Identify sources and resample and/or mitigate

C1 – NYSDOH Soil Vapor Intrusion Matrix C Decision: No Further Action

Sample ID colors correspond to colors in Figure 3 and Table 3.

NS - Compounds were not tested.

air sample at this location, IA-4, was collected immediately adjacent to the storage area for stainless steel cleaning spray, which the spray contains compounds associated with methylene chloride. The new indoor air sample, IA-1-, was collected away from any stored chemicals in the space. In the February 21, 2023, re-sampling methylene chloride was not detected in the indoor air or outdoor air either sample. The new air sampling results are included as **Table 6**, **Indoor Air & Outdoor Air Analytical Results – Bombay Grill**.

5.5 Soil Vapor Intrusion Findings Summary

The purpose of this air quality investigation was to determine if the soil vapor below the slab is affecting the indoor air quality in comparison to the NYS Department of Health Soil Vapor Intrusion Decision Matrices and to determine if there is a public health exposure to PCE and its breakdown products.

Based on the soil vapor and indoor air analytical results and comparisons to the NYSDOH Soil Vapor Intrusion Decision Matrices, no further action is needed for all but one sample, IA-4. As such ECMS collected a follow up sample to determine if a concentration of methylene chloride (dichloromethane) of $11.8~\mu g/m^3$ from IA-4 indicates sources and resample. Based on the resampling on February 21, 2023, methylene chloride is not still a concern. The concentration of methylene chloride was <3.0 $\mu g/m^3$ from IA-4 from the resent resampling.

For reference, when the sample was collected, ECMS had limited access to the tenant space. In addition, employees from Bombay Grill regularly entered and exited the space through the back door while the space was being sampled. It is relevant to note that the space was fully occupied, and many boxes of stored materials were present in the space. The stored materials all were cooking, and restaurant related. No chemicals were stored based on ECMS' evaluation/inspection of the space.

Of note, the indoor air sample IA-4 is compared to soil vapor sample SG-1 due to their proximity (the closest soil vapor point). These concentrations of methylene chloride (dichloromethane) and the other PCE breakdown chemical concentrations do not show evidence of soil vapor intrusion in the building. No vapor intrusion pathway has been identified. Methylene chloride is not a compound of concern related to the former PCE spill. It is not a breakdown product of PCE. ECMS does not additional evaluations because indoor air concentrations are significantly below the NYSDOH Guidance value of 60 $\mu g/m^3$ and with a concentration of <3.0 $\mu g/m^3$.

6.0 GROUNDWATER SAMPLING AND RESULTS

On June 10, 2022, ECMS oversaw the installation of nine temporary 1-inch monitoring wells across the site. The temporary wells were installed and named to correspond to former monitoring wells so historical data could be compared to present concentrations. The temporary wells included an "A" in the sample id, except MW-UG. The MW-UG "A" temporary well nomenclature was overlooked by field personnel. On June 15, 2022, ECMS oversaw the top of casing professional survey of the wells to establish the groundwater flow direction across the site. Due to poor groundwater recharge on the June 10, 2022, ECMS collected groundwater samples on June 13 (MW-UG, MW-4A, MW-8A) and collected the remaining groundwater samples on June 15 (MW-2A, MW-5A, MW-7A, MW-12A, MW-8A). The NYSDEC required ECMS to collect recent groundwater samples to evaluate if historical contamination remains.

6.1 Temporary Monitoring Well Installation and Survey

On June 10, 2022, ECMS oversaw the installation of nine 1-inch temporary monitoring wells across the site by Clean Globe Environmental using a Geoprobe® 6610DT. The monitoring wells were set

to 10-15 ft below ground via direct push and constructed of 1-inch diameter, flush-thread, schedule 40 PVC consisting of 5-10 feet of 0.020-slot well screen and 5-10 feet of riser casing. The temporary monitoring well locations are displayed in **Figure 4**, **Groundwater Elevation/Groundwater Results Map** and well log details are enclosed in **Appendix B**, **Temporary Well Logs**. The NYSDEC and NYSDOH were onsite during well installation activities.

After well installation, each monitoring well was developed to assure proper hydraulic connection between the well and the surrounding formation using dedicated, disposable polyethylene tubing and a peristaltic pump. Well development was accomplished by purging the wells until clear, sediment-free formation water was produced. The monitoring wells were sealed with a J-plug cap. Once the groundwater within each monitoring well recharged to at least 90 percent of its static water level, groundwater samples were collected. Due to the tight lithology at the site most of the wells showed poor groundwater recharge. Of the nine wells only three recharged to 90% of their static water level after well installation.

On June 15, 2022, ECMS oversaw the survey of the top of well casing (TOC) elevations in the nine monitoring wells by Anthony R. Celentano, PLS (Professional Surveyor License Number 50633). The TOC elevations were surveyed to determine accurate groundwater elevations and groundwater flow directions. Due to the slow recharge rate of the soil formation, the most recent groundwater gauging event is likely to be the most accurate. The groundwater elevation measurements from June 15, 2022, were used in the calculations for groundwater contours. June 15, 2022, groundwater elevation values for each well and groundwater flow direction are displayed on **Figure 4**.

During the temporary well installation, as per the NYSDEC and NYSDOH's request, two community air monitoring program (CAMP) stations were placed across the site to monitor dust and VOC production during soil-disturbing activities. The maximum dust reading was 19.5 μ g/m³ and the maximum VOC reading was 0.8 ppm. ECMS has enclosed the summarized CAMP station data as **Appendix E, CAMP Monitoring Data and Graphs**.

6.2 Well Decommissioning

On June 10, 2015, ECMS located and inspected four permanent wells, MW-4, MW-5, MW-7, and MW-8, which were installed for prior investigations. Based on the current well integrity, they were not suitable to be used as part of the investigation. Considering those findings and as per ECMS' request, the NYSDEC/NYSDOH personnel onsite gave ECMS authorization to abandon the permanent wells. During temporary well installation activities, the remaining permanent wells were decommissioned. The four permanent monitoring wells were removed according to the NYSDEC Commissioner's Policy CP-43: Groundwater Monitoring Well Decommissioning Policy. Monitoring wells MW-4 and MW-5 were over-drilled down to five feet, the risers were perforated, and the top 5 ft of well casing were removed. The complete well screen and well casings for MW-7 and MW-8 were pulled. All four permanent well holes were filled with virgin filter sand and the top foot, or more, was grouted with cement in place.

On August 3, 2022, as per the RIWP, the temporary wells were also removed. All wells except MW-8A were able to be completely removed; for MW-8A, the top 5 ft of the well casing was removed. These well locations were filled with virgin filter sand and grouted in place as well. The descriptions of each decommissioned well are illustrated in **Appendix C**, **Well Decommissioning Logs**.

Site Characterization and Remedial Investigation Report Tor Valley, Inc. 265 S Little Tor Road, New City, NY 10956

NYSDEC Potential Site Number: 334084

6.3 Groundwater Monitoring Event

On June 13 and 15, 2022, the nine temporary monitoring wells were sampled for groundwater to be analyzed for USEPA Method 8260 Full List compounds. Dissolved volatile organic compounds (VOCs) were detected at concentrations exceeding TOGS in monitoring wells MW-UG, MW-4A, MW-5A, MW-8A, MW-12A, and MW-13A. Of note, the upgradient well, MW-UG, had a detection of benzene in exceedance of TOGS. Based on the inferred groundwater flow direction ECMS expects MW-UG was influenced by the closed gas station spills at 279 South Little Tor Road, New City. Currently, there are no active spill numbers. The well was installed approximately 325 feet downgradient of the station gas pumps.

The following table shows all previous closed gas station spills near the site:

Spill Number	Program Facility Name	Street 1	Locality	Spill Date	Received Date	Contributing Factor	Close Date	Material Name	Material Family	Quantity	Units	Recovered
9508378	279 SOUTH LITTLE TOR RD	279 SOUTH LITTLE TOR RD	NEW CITY	10/8/1995	10/9/1995	Equipment Failure	10/29/2002	gasoline	Petroleum	1	Gallons	0
1204655	CUMBERLAND FARM 70285	279 LITTLE TOR RD S AND NEW VALLEY	NEW CITY	8/9/2012	8/9/2012	Housekeeping	8/9/2012	other - liquid in fill	Other	0		0
0812430	CUMBERLAND FARMS 70285	279 LITTLE TOR ROAD	NEW CITY	2/13/2009	2/13/2009	Housekeeping	4/28/2009	wastewater	Other	0		0
0907328	CUMBERLAND FARMS CS70285	279 LITTLE TOR RD	NEW CITY	9/29/2009	9/29/2009	Equipment Failure	9/29/2009	gasoline	Petroleum	0.2	Gallons	0
9907138	EXXON	279 SOUTH LITTLE TOR RD	NEW CITY	9/15/1999	9/15/1999	Unknown	6/25/2001	gasoline	Petroleum	0	Gallons	0
0206976	EXXON GAS STATION	279 SOUTH LITTLE TOR RD	NEW CITY	10/5/2002	10/5/2002	Tank Test Failure	3/19/2005	gasoline	Petroleum	0	Gallons	0
0108598	EXXON SERVICE STATION	279 SOUTH LITTLE TOR RD	NEW CITY	11/26/2001	11/27/2001	Traffic Accident	11/27/2001	gasoline	Petroleum	10	Gallons	0
0310762	EXXON SERVICE STATION #70285	279 SOUTH LITTLE TOR RD	NEW CITY	12/18/2003	12/18/2003	Tank Test Failure	3/19/2005	gasoline	Petroleum	0	Pounds	0
9516472	EXXON SERVICE STATION	279 SOUTH LITTLE TOR RD	NEW CITY	3/22/1996	3/22/1996	Human Error	5/13/2020	gasoline	Petroleum	15	Gallons	0
8900340	LITTLE TOR EXXON S/S	279 SOUTH LITTLE TOR RD	NEW CITY	4/11/1989	4/12/1989	Deliberate	5/22/1989	unknown petroleum	Petroleum	0	Gallons	0

6.4 Groundwater Gauging and Sampling

During the groundwater monitoring event, the monitoring wells were gauged for depth to groundwater. The depth to groundwater was gauged using an oil/water interface probe capable of measuring to the nearest 0.01 foot. The groundwater depth measurements were converted to groundwater elevations using the new TOC elevations. The TOC elevations were referenced to the current vertical datum, NAVD 1988.

Prior to collecting groundwater samples, the volume of water contained within each monitoring well was calculated using the well diameter and water column height. Whenever possible, a volume of groundwater equivalent to at least three well volumes are purged from each monitoring well using a dedicated disposable polyethylene bailer and/or a mechanical pump with dedicated polyethylene tubing. The new monitoring wells were developed prior to the sampling event on June 13, 2022, by purging of at least five well volumes or until clear sediment free groundwater was produced. They were developed to assure proper hydraulic connection between the well and the surrounding formation.

The wells were purged on June 13, 2022, but only three wells were sufficiently recharged for sample collection – MW-UG, MW-4A, and MW-8A. The remainder of the wells did not recharge in a timely manner due to the tight nature of the native soils. By the top of casing survey event on June 15, 2022, the wells had recharged with groundwater and the remaining six samples were collected. At the time of sampling, the groundwater was poured from bailers and/or tubing directly into laboratory-supplied glassware. The glassware was placed into a cooler and maintained at a temperature of less than 4°C during transport to Phoenix for analysis.

6.5 Groundwater Monitoring Summary

	,
Date Wells Gauged:	June 10, June 13, & June 15, 2022
Number of Wells Gauged:	Nine (9)
Gauged Well Identifications:	MW-UG, MW-2A, MW-4A, MW-5A, MW-6A, MW-
_	7A, MW-8A, MW-12A, MW-13A
Wells Not Gauged and Reason:	None
Date Wells Sampled:	June 13 & 15, 2022 and March 6, 2023
Number of Wells Sampled:	June 13 & 15, 2022 - Nine (9)
-	March 6, 2023 — One (1)

Site Characterization and Remedial Investigation Report Tor Valley, Inc.

265 S Little Tor Road, New City, NY 10956 NYSDEC Potential Site Number: 334084

Sampled Well Identifications:	June 13, 2022: MW-UG, MW-4A, MW-8A
	June 15, 2022: MW 2A, MW-5A, MW-6A, MW-7A,
	MW-12A, MW-13A
	March 6, 2023: Resample MW-5A (just PCE)
Well Not Sampled and Reason:	None
Groundwater Elevation Range:	June 15, 2022: 272.51 – 281.25 ft
Total Detected VOC Range:	Non-Detect (ND) - MW-2A, MW-6A, & MW-7A to
	maximum 550 micrograms per liter PCE (μ g/L) – MW-
	5A
	March 6, 2023: Resample MW-5A Result was <5.0
	µg/L
Groundwater Flow Direction:	June 15, 2022: Northwest
Wells Not Used in Contouring	None; groundwater contours were generated with
and Reason:	June 15, 2022, groundwater elevation data.
Laboratory Analytical Parameters	June 2022 - MW-UG, MW-2A, MW-4A, MW-5A,
and Analytical Method:	MW-6A, MW-7A, MW-8A, MW-12A, and MW-13A
	analyzed for NYSDEC's VOC Full List via USEPA
	Method 8260.
	March 6, 2023, MW-5A Resample PCE via USEPA
	Method 8260.
New York-Certified Laboratory:	Phoenix Environmental Laboratories, Manchester,
	Connecticut; NYSDOH ELAP certification number 11301

Groundwater Sampling Results 6.6

The following table lists the monitoring well designation and the reported VOC concentrations compared to the NYSDEC TOGS:

Well ID	Date (ug/l) (ug/l) be		Ethyl benzene (µg/L)	PCE (µg/L)	TCE (µg/L)	
MW-UG		2.4	< 1.0	< 1.0	< 1.0	< 1.0
MW-4A	6/13/22	< 0.70	23	< 1.0	110	8.6
MW-8A		< 0.70	21	< 1.0	4.5	3.3
MW-2A		< 1.0	< 5.0	< 5.0	< 5.0	< 5.0
MW-5A		< 0.70	< 1.0	< 1.0	550	1.3
MW-6A	4 /1 5 /22	< 0.70	< 1.0	< 1.0	< 1.0	< 1.0
MW-7A	6/15/22	< 0.70	< 1.0	2.0	3.5	< 1.0
MW-12A		< 0.70	5.3	< 1.0	3.3	< 1.0
MW-13A		< 0.70	45	< 1.0	39	12
MW-5A	3/6/23	NS	NS	NS	<5.0	NS
NYSDEC Groundwater Standards		1	5	5	5	5

 \leq {value} - Parameter Below Laboratory Method Detection Limit **{Bold Value}** – Concentration exceeds NYSDEC groundwater standards NS – Not sampled

The groundwater analytical results from the samples collected during this reporting period are illustrated in **Table 4**, **Groundwater Analytical Results**. Data collected during well gauging activities is summarized in **Table 5**, **Groundwater Elevation Gauging Data**. The groundwater analytical results and elevation contours are summarized on **Figure 4**, **Groundwater Elevation/Groundwater Results Map**. The laboratory analytical report for the recent groundwater sampling event is attached in **Appendix D**, **Phoenix Environmental Laboratory Analytical Reports**. The concentrations over time of TCE, PCE, and DCE are summarized in **Graph 1**, **Graph 2**, and **Graph 3**, respectively. The Mann-Kendall Statistical Trend Analyses of PCE, TCE, and cis-1,2-DCE these chemicals over time are illustrated in **Graph 4**, **Graph 5**, and **Graph 6**, respectively.

On February 21, 2023, ECMS re-installed the well at MW-5A to 6 ft to re-evaluate the PCE concentrations at that location. The measured depth to bottom was 6'1, and a proper depth to water measurement could not be obtained due to the slow recharge rate of the well.

On March 6, 2023, ECMS returned to collect a sample from MW-5A. By this date, enough water had recharged such that a sample could be collected, and a depth to water measurement of 3.52 ft could be recorded. No PCE was detected in the most recent sample. The analytical results for this sample are illustrated in **Table 6**, **Groundwater Analytical Results – MW-5A**.

6.7 Groundwater Findings Summary

The purpose of this groundwater quality assessment was to determine if the concentrations of PCE and its breakdown products are in exceedance of the NYSDEC TOGS 1.1.1 Class GA groundwater standards. ECMS used the data to additionally assess if the COCs are present across the site. The site remediation boundaries are displayed in **Figure 2**. The formerly sampled monitoring wells MW-14 and the Cropsey Well were not sampled as part of this investigation. The monitoring well MW-14 could not be found onsite; it was destroyed or removed previously. The Cropsey well location was not identified in any former reports. ECMS conducted a brief search of the NYSDEC Water Well Database. In that search, ECMS was able to obtain a location of NYSDEC Well ID RO1172. ECMS presumes the "Cropsey Well" is located at Latitude 41°07'57.4"N by Longitude 74°00'02.2"W based on the NYSDEC Water well database. ECMS cannot confirm that is the location of the well that was identified as "Cropsey Well."

The groundwater analytical results from the June 2022 sampling event identified limited groundwater VOC impacts exceeding TOGS. The monitoring wells MW-2A, MW-6A, and MW-7A had no exceedances of any COCs.

The following temporary wells exceeded TOGS groundwater standards for PCE: MW-4A, MW-5A, and MW-13A. Monitoring wells MW-4A and MW-13A contained exceedances of TCE and wells MW-4A, MW-8A, MW-12A, and MW-13A contained exceedances of DCE. Based upon the recent groundwater analytical data, the VOC impacts were in monitoring wells MW-4A, MW-5A, and MW-13A. The historical groundwater data shows that MW-4 and MW-5 had the greatest exceedances. In the recent investigation, the compound in greatest exceedance was PCE at 550 μ g/L in MW-5A, at 110 μ g/L in MW-4A, and 39 μ g/L in MW-13A. Because PCE in MW-5A was even higher than concentrations from before the 2009 injection event the NYSDEC asked that ECMS resample to confirm if it is a statistical outlier. Many things can affect the concentrations of groundwater. Temporary wells are especially susceptible to high turbidity. As such ECMS reinstalled a temporary well at location MW-5A. After adequately purging the well it was resampled just for PCE. The resampling revealed that it had a concentration of <5.0 μ g/L. As such, the previous concentrations were likely due to another factor other than the dissolved groundwater

concentrations. Based on Comments from the NYSDEC ECMS will provide a plan to install permanent wells near former temporary wells MW4A, MW-5A and MW-13A. Of note, and not related to the former PCE spill at the site, benzene was found exceeding the TOGS in one well, MW-UG, but this is due to it being hydraulically closest well to the gas station at 279 S. Little Tor Road across New Valley Road, which has a history of spills since 1989.

Based on the groundwater flow direction calculated from June 15, 2022, gauging event, groundwater flows to the northwest. Since the groundwater table is shallow and the wells did not adequately recharge during well development, the groundwater contamination is trapped in tight soils onsite. The TCE concentrations detected in MW-13A are in exceedance of TOGS, and due to the tight soils, it likely took many years to move to the northwest.

If site conditions remain the same (i.e., tight soils and shallow groundwater), the contaminants will stay onsite and continue to degrade naturally. Based on ECMS' Mann-Kendall statistical trend analysis all contaminants of concern (COC) have been consistently decreasing. ECMS believes that even though the groundwater concentrations are in excess of TOGS at this time, the concentrations will continue to decrease with time and continue to degrade naturally as no remedial measures have been performed since 2010. It has been more than a decade.

7.0 CONCLUSIONS

On March 30, 2022, eight total soil vapor, indoor air, and outdoor air samples were taken to determine if vapors are infiltrating the slab into the basement spaces of the commercial building based on the NYSDOH Soil Vapor Intrusion Decision Matrices. None of the contaminants of concern required further action. Of note, methylene chloride was detected in the indoor air of the Bombay Grill basement. THE NYSDEC requested ECMS resample to confirm a source. Methylene chloride was resampled to determine if a source existed in the space. Based on the resampling it was not detected. And because it is not a compound of concern related to the former dry cleaner operations for this site, and that a potential vapor intrusion pathway was not identified during the event related to the COCs it is ECMS' opinion that the SSDS is working as designed and is preventing soil vapor intrusion. In any event, the initial indoor air methylene chloride concentration is low (11.8 μ g/m³) and is likely from indoor aerosol use for stainless steel cleaning and polishing. At the detected concentration it is less than $1/5^{th}$ the NYSDOH indoor Air Guidance Concentration (60 μ g/m³).

On June 10, 2022, nine temporary monitoring wells were installed across the site to evaluate the current groundwater conditions across the site. ECMS decommissioned the four remaining permanent wells with the Department's verbal approval. The temporary wells were sampled for NYSDEC Full List VOCs via USEPA Method 8260 to assess if there are exceedances of PCE and its breakdown products. The analytical results show that there are concentrations above TOGS left in the areas of MW-4A (PCE 110 μ g/L), MW-5A (PCE 550 μ g/L), and MW-13A (PCE 39 μ g/L). The NYSDEC requested that ECMS resample MW-5A to confirm if the detected PCE result was an anomaly. The resampling on March 6, 2023, confirmed that dissolved concentrations were <5.0 μ g/L.

Based on ECMS' Mann-Kendall Concentration trend analyses, the COC concentrations continue to trend downward. Since 2008, the MW-5A concentrations have decreased significantly. On June 15, 2022, the temporary monitoring wells were surveyed by a professional surveyor for top of casing elevations to accurately determine the groundwater flow direction. With the survey elevations ECMS confirmed the groundwater flows toward the Northwest. Based on a review of the groundwater data it is evident that the tight soil formation restricts groundwater flow and has prevented impacts from migrating, thus essentially trapping the groundwater contaminants onsite.

8.0 RECOMMENDATIONS

Soil Vapor Recommendations

The 2022 soil vapor and indoor air analytical results indicate that supplemental mitigation for soil vapor intrusion is not needed for the contaminants of concern. The vapors are in an approximate 2-foot vadose zone between the water table and the bottom of the building basement slab. Due to the groundwater conditions and current vapors and current building conditions there is no effective way to remediate the source of vapors onsite. It is important to note that the source of sub-slab vapors is related to the shallow groundwater table and vadose zone soils under and around the northwest corner of the commercial building.

Methylene chloride was initially detected in the indoor air of the Bombay Grill. However, it was not detected in the resampling event. Based on the product inventory it could be related to propellant in the oil based stainless steel cleaner/polisher. The vapors are likely caused by indoor air sources rather than being sub-slab vapors.

Vapor mitigation with the current SSDS should continue, ECMS recommends developing a Site Management Plan (SMP) to manage the institutional/engineering controls (IC/EC) and manage the on-going operation of the SSDS to mitigate vapors. As part of the SMP ECMS will check if adequate depressurization is occurring a during groundwater sampling event during the IC/EC inspections. At this time, the current SSDS is functioning as needed; thus, ECMS is not recommending any additional indoor air or soil vapor testing unless deficiencies in the SSDS arise in the future. The SSDS is currently protective of human health for the building occupants. As part of the SMP, a SSDS air sampling deficiency plan will be established. The deficiency plan will outline when/if air samples should be collected if the SSDS is inadvertently shut down or remains out of service due to future unforeseen issues.

Groundwater Recommendations

Based on the recent groundwater analytical results, the contaminants of concern concentrations exceed NYSDEC TOGS. The findings in this report also establish that groundwater currently flows to the northwest. The groundwater impacts do not pose a risk to sensitive receptors, as the contaminants of concern are trapped in soils due to the soil conditions beneath the site. Water is municipally supplied by Suez and there are no drinking water wells at the site. The groundwater contaminants of concern are trapped in the tight soil formation and do not pose a risk to building/ site occupants. Based on the established trends, the concentrations will continue to naturally decrease over time.

Since the inception of groundwater sampling, groundwater concentrations have decreased with time. This most recent confirmation groundwater sampling established an intermittent source of PCE around MW-5A. ECMS believes a source of soil and groundwater contamination exists onsite and is trapped in the tight soil formation near to and under the northwest corner of the building. The high concentration of PCE from June was directly related to increased turbidity due to the tight soil formation. Due to the current site use and layout and the shallow groundwater, an active remediation strategy (e.g., SVE/pump and treat/excavations/injections) will not be effective at reducing the source of contamination at the site. ECMS recommends that three permanent wells be installed by MW-4/MW4A, MW-5/MW-5A and MW13/ MW13A) and sampling and monitoring them annually to monitor a trends. ECMS and the NYSDEC recommend collecting a groundwater sample every year for the first three years or at another agreeable frequency based on the results to ensure the concentrations continue to decrease over time. Those results will be used to evaluate if

other remedial measures should be required. ECMS recommends monitoring the natural attenuation (MNA) of groundwater contaminants.

Proposed Next Actions

If the Department approves of ECMS' conclusions and recommendations, ECMS recommends the drafting of a Site Management Plan (for applicable IC/EC) for NYSDEC approval. The SMP will ensure the SSDS and site groundwater, soil, site conditions, site building and site cover remain protective of human health. If deficiencies arise, or site changes are planned, the environmental easement will ensure the IC/EC are maintained until the source of impacts has decreased below applicable standards. As part of the IC/EC inspections ECMS will monitor the sub-slab depressurization from the SSDS annually. As part of next actions, ECMS recommends the respondent attempt to obtain an environmental easement with the current property owners. ECMS recommends the IC/EC be certified/sampled on an annual basis for the first three years before reducing the frequency based on an established baseline or on extended agreeable terms with the Department to ensure site conditions remain protective of occupants. After an SMP is approved, ECMS recommends installing three permanent monitoring wells nearest the affected wells on the site (MW-4/MW4A, MW-5/MW-5A and MW13/ MW13A) and sampling and monitoring them annually. If the groundwater concentrations deviate from the trend, at that time, interim remedial actions will be reviewed and considered in consultation with the NYSDEC and NYSDOH. Work plans will be drafted under a separate cover.

Upon receipt of a Site Characterization and Remedial Investigation Report approval/ comment letter from the NYSDEC, ECMS will draft the Site Management Plan. Based on the Order of Consent if the department agrees with the conclusions in this report a "Satisfactory Completion Letter/No Further Action Letter" as described in the Consent Order should be issued at your earliest convenience by the NYSDEC.

If you have any questions regarding this report, please contact the undersigned, Harry Sudwischer, via email: harrys@ecmsny.com or phone at (203) 241-1030.

Harry Sudwischer

Director of Remediation and Spills

9.0 LIMITATIONS

The recommendations contained in this report represent ECMS's professional opinions based upon currently available information and are arrived at in accordance with currently acceptable professional standards. This report is based upon a specific scope of work requested by the client. The contract between ECMS and its client outlines the scope of work and only those tasks specifically authorized by that contract or outlined in this report were performed. This report is intended only for the use of ECMS's client and anyone else specifically listed in this report. ECMS will not and cannot be liable for unauthorized reliance by any other party. Other than as contained in this paragraph, ECMS makes no express or implied warranty as to the contents of this report.

10.0 REFERENCES

Caldwell, Donald H., et al., Surficial Geologic Map of New York., Lower Hudson Sheet, No. 40. 1:250,000. 1989.

Fisher, et al, Geologic Map of New York. Lower Hudson Sheet, No. 15, 1:250,000, Capital Heights, Maryland: William & Heintz Map Corporation. 1970.

Impact Environmental, Phase II Remedial Investigation: 2nd Mobilization, dated January 20, 2010

Impact Environmental, "Hydrogen Release Compound Injection Work Plan," dated November 12, 2009

Impact Environmental, Vapor Intrusion Investigation Report, dated March 3, 2008

New York State Department of Environmental Conservation, Division of Environmental Remediation, 6 NYCRR Part 375-6, Remedial Program Soil Cleanup Objectives. December 14, 2006.

New York State Department of Environmental Conservation, Division of Environmental Remediation, Commissioner's Policy CP-43: Groundwater Monitoring Well Decommissioning Policy, dated November 3, 2009.

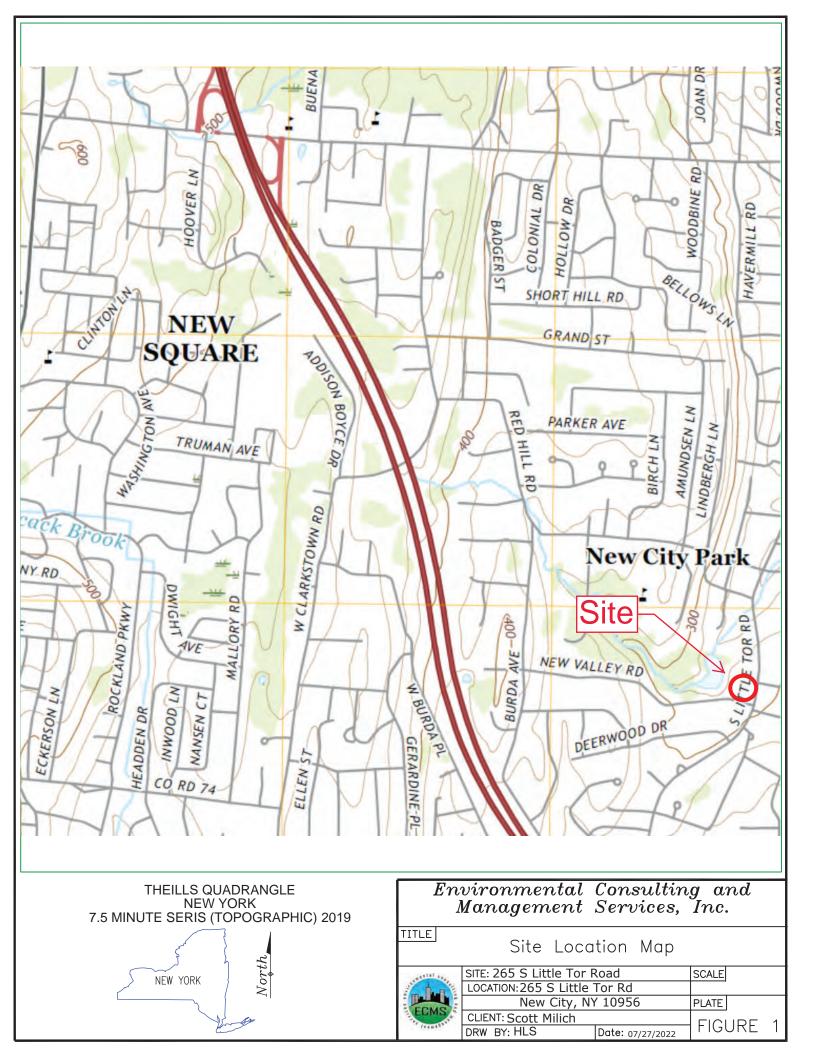
New York State Department of Environmental Conservation, Division of Environmental Remediation, DER-10 Technical Guidance for Site Investigation and Remediation, dated May 3, 2010.

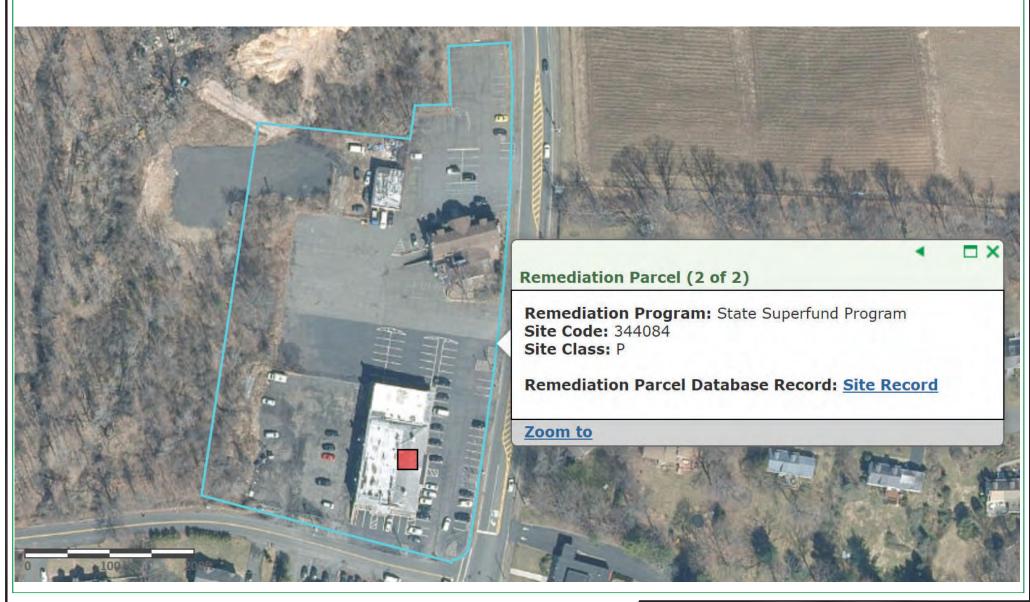
New York State Department of Environmental Conservation, Division of Environmental Remediation, Final Commissioner's Policy CP-51: Soil Cleanup Guidance, dated October 21, 2010.

New York State Department of Environmental Conservation, Division of Water Technical and Operational Guidance Series (1.1.1): Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations, dated June 1998.

New York State Department of Health. 2005. "Indoor Air Sampling and Analysis Guidance." February 1, 2005. Available on the NYSDOH's web site at https://www.health.ny.gov/environmental/indoors/vapor intrusion/update.htm. Revised May 2017

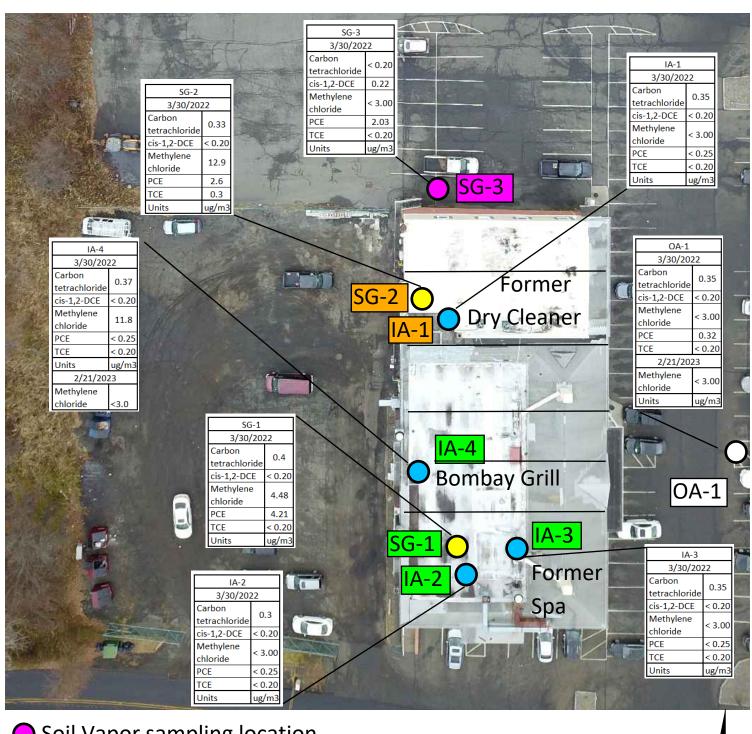
United States Geologic Survey. *Thiells, New York Quadrangle*. 7.5-Minute Series. Reston, Virginia: U.S. Department of the Interior. 2019


William L. Going & Associates, Inc., "IRM Completion Letter Report," dated August 21, 2002.


ATTACHMENTS

FIGURES

Remedial Boundary



Environmental Consulting and Management Services, Inc.

P-Site 344084 Remedial Boundary

SITE: 265 S Little Tor F	₹d	SCALE	DTS
LOCATION: 265 S Little	Tor Road		סוס
New City, N	PLATE		
CLIENT: Tor Valley, Inc			IDE 3
DRW BY: SAS	Date: 07/25/2022	ן דוטנ	JRE 2

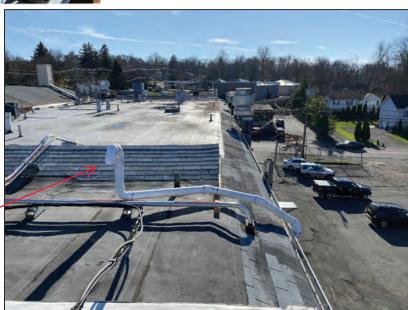
- Soil Vapor sampling location
- Indoor Air sampling location
- Sub-slab sampling location
- Outdoor Air sampling location

Sample name box colors correspond to sample name colors on Table 3

Environmental Consulting & Management Services, Inc.

Soil Vapor and Indoor Air Sampling Locations

Santal Contraction	Site: 265 S Little Tor Road	SCALE	DTS	
	LOCATION: 265 S Little Tor R	D13		
	New City, N			
FIIMS] FIG	SURF 3
163 # 5 # 5 # 5 #	DRW BY: SS	DATE: 5/8/23]	


Vent Stack

Two(2) in-line Fantech HP220 Radon fans

Riser in former furnace room

Suction pit filled with gravel. Pit is below concrete slab.

SSDS rooftop exhaust

Environmental Consulting & Management Services, Inc.

TITLE

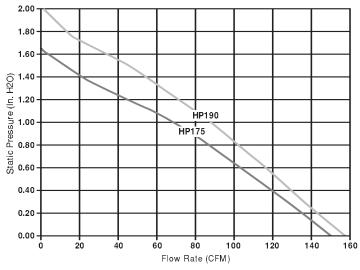
SSDS Schematic

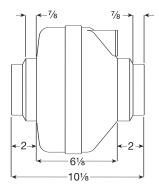
- 1994 e	Site: Tor Valley, Inc.		SCALE DI	
1	LOCATION:	וט	3	
	265 S. Little	e Tor Road	PLATE	
ECMS	New City, N		FIGU	RE 4
diam's	DRW BY: HS	DATE: 08/2022	1	

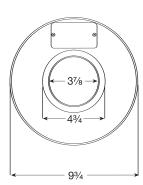
Fantech HP Series Fans Provide the Solutions to meet the challenges of Radon applications:

HOUSING

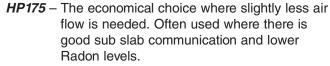
- UV resistant, UL listed durable plastic
- UL Listed for use in commercial applications
- · Factory sealed to prevent leakage
- Watertight electrical terminal box
- Approved for mounting in wet locations i.e. Outdoors


MOTOR

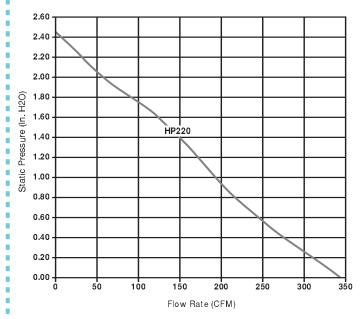

- Totally enclosed for protection
- · High efficiency EBM motorized impeller
- · Automatic reset thermal overload protection
- Average life expectancy of 7-10 years under continuous load conditions


RELIABILITY

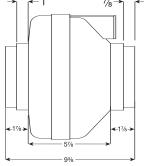
- Five Year Full Factory Warranty
- Over 1,000,000 successful radon installations worldwide

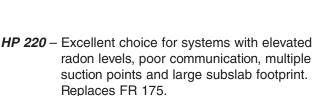

HP175 and HP190 Radon Mitigation Fans

Tested with 4" ID duct and standard couplings.

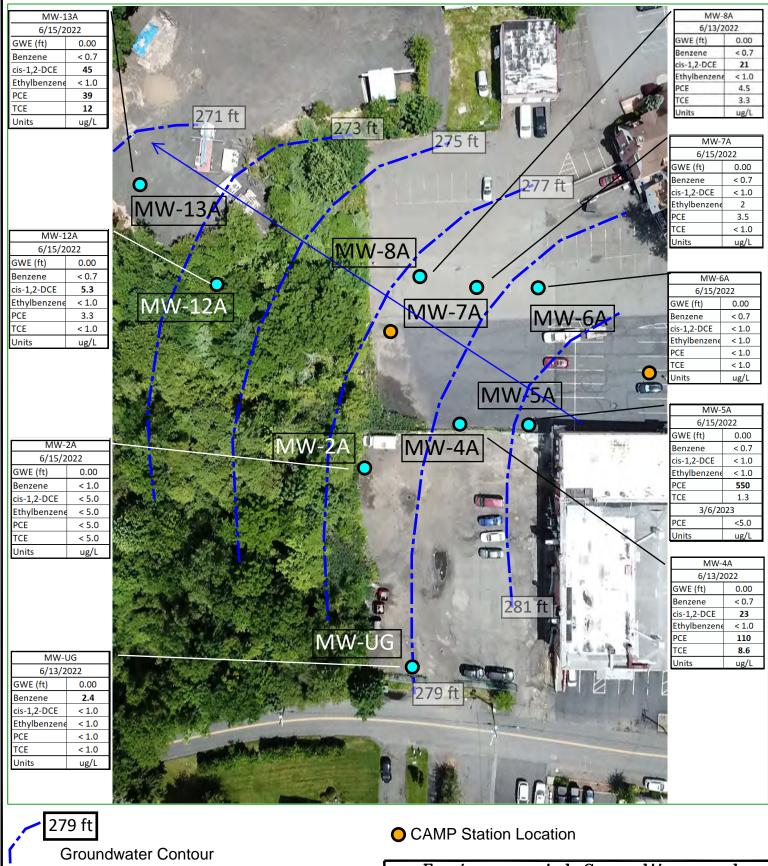

HP190 – The standard for Radon Mitigation. Ideally tailored performance curve for a vast majority of your mitigations.

Fans are attached to PVC pipe using flexible couplings.
For 4" PVC pipe use Indiana Seals #151-44, Pipeconx PCX 51-44
or equivalent


For 3" PVC pipe use Indiana Seals #156-43, Pipeconx PCX 56-43 or equivalent.



HP220 Radon Mitigation Fan


Tested with 6" ID duct and standard couplings.

Fans are attached to PVC pipe using flexible couplings. For 4" PVC pipe use Indiana Seals #156-64, Pipeconx PCX 56-64 or equivalent.

For 3" PVC pipe use Indiana Seals #156-63, Pipeconx PCX 56-63 or equivalent.

Monitoring Well Location

Bold - Value exceeds NYS standard

K

Inferred Groundwater Flow Direction

Environmental Consulting and Management Services, Inc.

Groundwater Elevation/
Groundwater Results Map

.0	estal roop	
n		
1	CMS	
	PRINCE LEVE	

		<u> </u>				
SITE: 265 S Little Tor	Rd	SCALE	DTS			
LOCATION: 265 S Little	Tor Road		פוע			
New City, N	New City, NY 10956					
CLIENT: Tor Valley, Inc	С.	FIC	HDE e			
DRW BY: SAS	Date: 05/08/23	יטו ז ך	URE 5			

Sample ID Impact IA-1				Impact	t SG-1			Impac	t IA-2			Impac	t SG-2				
Sample Date		11/22/2005	9/13/2006	12/28/2006	1/3/2008	11/22/2005	9/13/2006	12/28/2006	1/3/2008	11/22/2005	9/13/2006	12/28/2006	1/3/2008	11/22/2005	9/13/2006	12/28/2006	1/3/2008
Compound	Units	Result	Result	Result	Result												
1,1-dichloroethene	ug/m3	NS	NS	NS	NS												
1,2,4-trimethylbenzene	ug/m3	NS	NS	NS	NS												
1,4-dioxane	ug/m3	NS	NS	NS	NS												
2-butanone	ug/m3	NS	NS	NS	NS												
4-ethyltoluene	ug/m3	NS	NS	NS	NS												
4-methyl-2-pentanone	ug/m3	NS	NS	NS	NS												
Acetone	ug/m3	NS	NS	NS	NS												
Benzene	ug/m3	NS	NS	NS	NS												
Bromoethane	ug/m3	NS	NS	NS	NS												
Carbon tetrachloride	ug/m3	NS	NS	NS	NS												
Chloromethane	ug/m3	NS	NS	NS	NS												
Dichlorofluoromethane	ug/m3	NS	NS	NS	NS												
Ethanol	ug/m3	NS	NS	NS	NS												
Ethyl acetate	ug/m3	NS	NS	NS	NS												
Ethylbenzene	ug/m3	NS	NS	NS	NS												
Isopropanol	ug/m3	NS	NS	NS	NS												
Methylene chloride	ug/m3	NS	NS	NS	NS												
n-hexane	ug/m3	NS	NS	NS	NS												
Styrene	ug/m3	NS	NS	NS	NS												
Tetrachloroethene	ug/m3	3.3	ND	3.8	4.8	13	109	14	6.2	43	NA	32	82.1	3.1	23	ND	ND
Tetrachlorofuran	ug/m3	NS	NS	NS	NS												
Toluene	ug/m3	NS	NS	NS	NS												
Trichloroethene	ug/m3	ND	NA	ND	ND	ND	5.1	10	ND	1.1	NA	0.81	1.6	ND	ND	ND	ND
Trichlorofluoromethane	ug/m3	NS	NS	NS	NS												
Vinyl chloride	ug/m3	ND	NA	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND
Total Xylenes	ug/m3	NS	NS	NS	NS												

Notes:
Non-detect ND
Not sampled NS
Result detected

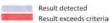
Sample ID			Impac	t IA-3			Impac	t SG-3			Impact	OA-1		IA-1				
Sample Date		11/22/2005	9/13/2006	12/28/2006	1/3/2008	11/22/2005	9/13/2006	12/28/2006	1/3/2008	11/22/2005	9/13/2006	12/28/2006	1/3/2008	3/29/2010	12/19/2014	4/21/2015	1/30/2016	
Compound	Units	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	
1,1-dichloroethene	ug/m3	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND	NS	NS	NS	
1,2,4-trimethylbenzene	ug/m3	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND	NS	NS	NS	
1,4-dioxane	ug/m3	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND	NS	NS	NS	
2-butanone	ug/m3	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND	NS	NS	NS	
4-ethyltoluene	ug/m3	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND	NS	NS	NS	
4-methyl-2-pentanone	ug/m3	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND	NS	NS	NS	
Acetone	ug/m3	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	5.9	NS	NS	NS	
Benzene	ug/m3	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	1.3	0.58	1.3	
Bromoethane	ug/m3	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND	NS	NS	NS	
Carbon tetrachloride	ug/m3	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	0.41	ND	0.44	
Chloromethane	ug/m3	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	1.2	NS	NS	NS	
Dichlorofluoromethane	ug/m3	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	2	ND	2.2	
Ethanol	ug/m3	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	26	NS	NS	NS	
Ethyl acetate	ug/m3	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	0.3	ND	ND	
Ethylbenzene	ug/m3	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND	NS	NS	NS	
Isopropanol	ug/m3	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	6.6	1.6	ND	
Methylene chloride	ug/m3	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	3.3	NS	NS	NS	
n-hexane	ug/m3	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND	NS	NS	NS	
Styrene	ug/m3	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND	NS	NS	NS	
Tetrachloroethene	ug/m3	21	NA	8.1	39	1	6.1	ND	11	ND	NA	1.2	ND	8.8	NS	NS	NS	
Tetrachlorofuran	ug/m3	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND	ND	ND	
Toluene	ug/m3	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	4.5	2.4	NS	NS	
Trichloroethene	ug/m3	0.42	NA	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND	NS	NS	NS	
Trichlorofluoromethane	ug/m3	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	1.5	1.1	1.5	
Vinyl chloride	ug/m3	ND	NA	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND	NS	NS	NS	
Total Xylenes	ug/m3	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND	NS	NS	NS	

Notes: Non-detect ND Not sampled NS Result detected

Sample ID		IA-2	SG-1	SG-2	SG-4		OA	·-1		OA-2	SGG-1	SGG-2	SGG-3	SGG-4
Sample Date		3/29/2010	3/29/2010	3/29/2010	3/29/2010	3/29/2010	12/19/2014	4/21/2015	1/30/2016	3/29/2010	3/29/2010	3/29/2010	3/29/2010	3/29/2010
Compound	Units	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result
1,1-dichloroethene	ug/m3	ND	8.3	5.8	ND	ND	NS	NS	NS	ND	ND	ND	ND	ND
1,2,4-trimethylbenzene	ug/m3	ND	ND	ND	ND	ND	NS	NS	NS	ND	ND	ND	ND	3
1,4-dioxane	ug/m3	ND	2.3	ND	ND	ND	NS	NS	NS	ND	ND	ND	ND	ND
2-butanone	ug/m3	9.1	ND	8.3	1.5	ND	NS	NS	NS	ND	ND	ND	ND	ND
4-ethyltoluene	ug/m3	ND	ND	ND	ND	ND	NS	NS	NS	ND	ND	7.4	ND	6.4
4-methyl-2-pentanone	ug/m3	ND	ND	ND	3.3	ND	NS	NS	NS	ND	ND	ND	ND	ND
Acetone	ug/m3	31	8.3	31	9.5	ND	NS	NS	NS	ND	ND	3.6	5	2.4
Benzene	ug/m3	NS	NS	NS	NS	NS	ND	ND	1.3	NS	NS	NS	NS	NS
Bromoethane	ug/m3	ND	23	ND	ND	ND	NS	NS	NS	ND	ND	ND	ND	ND
Carbon tetrachloride	ug/m3	NS	NS	NS	NS	NS	ND	ND	0.44	NS	NS	NS	NS	NS
Chloromethane	ug/m3	1.3	1.2	1.3	1.1	ND	NS	NS	NS	ND	ND	1.1	1.1	ND
Dichlorofluoromethane	ug/m3	NS	NS	NS	NS	NS	1.4	1.9	2.2	NS	NS	NS	NS	NS
Ethanol	ug/m3	180	ND	140	19	ND	NS	NS	NS	ND	ND	5.7	9	7.7
Ethyl acetate	ug/m3	NS	NS	NS	NS	NS	ND	ND	ND	NS	NS	NS	NS	NS
Ethylbenzene	ug/m3	ND	ND	ND	ND	ND	NS	NS	NS	ND	ND	4.8	ND	9.1
Isopropanol	ug/m3	NS	NS	NS	NS	NS	0.55	ND	ND	NS	NS	NS	NS	NS
Methylene chloride	ug/m3	6.6	3.8	3.4	3.4	ND	NS	NS	NS	ND	ND	ND	ND	ND
n-hexane	ug/m3	2.1	ND	2.3	ND	ND	NS	NS	NS	ND	ND	ND	ND	ND
Styrene	ug/m3	ND	ND	ND	ND	ND	NS	NS	NS	ND	ND	47	ND	4.3
Tetrachloroethene	ug/m3	18	14	16	9.5	ND	NS	NS	NS	ND	ND	4.5	ND	26
Tetrachlorofuran	ug/m3	NS	NS	NS	NS	NS	0.15	ND	ND	NS	NS	NS	NS	NS
Toluene	ug/m3	5.7	4.9	6	4.1	ND	NS	NS	NS	ND	ND	20	ND	37
Trichloroethene	ug/m3	ND	ND	ND	ND	ND	NS	NS	NS	ND	ND	ND	ND	2.9
Trichlorofluoromethane	ug/m3	NS	NS	NS	NS	NS	0.98	1.1	ND	NS	NS	NS	NS	NS
Vinyl chloride	ug/m3	ND	ND	ND	2.5	ND	NS	NS	NS	ND	ND	ND	ND	ND
Total Xylenes	ug/m3	ND	ND	ND	ND	ND	NS	NS	NS	ND	ND	25.1	ND	36

Notes: Non-detect ND Not sampled NS Result detected

Sample ID		IA-1 2022	IA-2 2022	IA-3 2022	IA-4 2022	IA-4 2023	SG-1 2022	SG-2 2022	SG-3 2022	OA-1 2022	OA-1 2022
Sample Date		3/30/2022	3/30/2022	3/30/2022	3/30/2022	2/9/2023	3/30/2022	3/30/2022	3/30/2022	3/30/2022	2/9/2023
Compound	Units	Result									
1,1-dichloroethene	ug/m3	ND	ND	ND	ND	NS	ND	ND	ND	ND	NS
1,2,4-trimethylbenzene	ug/m3	ND	ND	ND	ND	NS	5.8	1.88	1.73	ND	NS
1,4-dioxane	ug/m3	ND	ND	ND	ND	NS	ND	1.68	ND	ND	NS
2-butanone	ug/m3	NS									
4-ethyltoluene	ug/m3	ND	ND	ND	ND	NS	ND	1.93	1.13	ND	NS
4-methyl-2-pentanone	ug/m3	ND	ND	ND	ND	NS	ND	ND	15.6	ND	NS
Acetone	ug/m3	2.85	2.87	2.92	9.83	NS	103	75.3	719	4.51	NS
Benzene	ug/m3	ND	ND	ND	ND	NS	1.15	1.23	2.93	ND	NS
Bromoethane	ug/m3	NS									
Carbon tetrachloride	ug/m3	0.35	0.3	0.35	0.37	NS	0.4	0.33	ND	0.35	NS
Chloromethane	ug/m3	1.06	ND	1.03	1.15	NS	8.38	ND	ND	1.01	NS
Dichlorofluoromethane	ug/m3	NS									
Ethanol	ug/m3	83.6	4.69	6.89	63/6	NS	125	47.8	27.3	6.18	NS
Ethyl acetate	ug/m3	ND	ND	ND	ND	NS	1.57	2.75	1,400	ND	NS
Ethylbenzene	ug/m3	ND	ND	ND	ND	NS	7.07	2.96	2.43	ND	NS
Isopropanol	ug/m3	1.21	ND	ND	1.28	NS	5.63	7	6.29	ND	NS
Methylene chloride	ug/m3	ND	4.48	ND	11.8	ND	ND	12.9	ND	ND	ND
n-hexane	ug/m3	NS									
Styrene	ug/m3	ND	ND	ND	ND	NS	ND	ND	ND	ND	NS
Tetrachloroethene	ug/m3	ND	ND	ND	ND	NS	4.21	2.6	2.03	0.32	NS
Tetrachlorofuran	ug/m3	NS									
Toluene	ug/m3	1.12	ND	ND	1.88	NS	23.7	17.3	6.93	ND	NS
Trichloroethene	ug/m3	ND	ND	ND	ND	NS	ND	0.3	ND	ND	NS
Trichlorofluoromethane	ug/m3	1.06	ND	1.07	1.41	NS	1.54	ND	1.36	1.06	NS
Vinyl chloride	ug/m3	ND	ND	ND	ND	NS	ND	ND	ND	ND	NS
Total Xylenes	ug/m3	ND	ND	ND	ND	NS	ND	ND	8.95	ND	NS

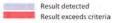

Notes:
Non-detect ND
Not sampled NS
Result detected

"2022" samples do not denote the same location as previous samples of the same name.

Company Comp		TO 00																					
Company Comp		TOGS-		4/26/1999	4/6/2005	9/13/2006*	12/27/2006*	3/15/2007	6/6/2007	9/5/2007	1/3/2008	3/27/2008	8/12/2009		10/21/2010**	5/16/2011	12/13/2011	5/11/2012	4/25/2013	1/14/2014	12/19/2014	4/25/2015	6/13/2022
April Apri	Compound		Units	4,20,2333	4/0/2003	O/ TO/2000	12/2//2000	5/15/2007	0/0/2007	3/3/2007	1/3/2000	3/2//2000	0/12/2003	4/3/2010	10/21/2010	3/10/2011	12/13/2011	OFFICE	102002010	171112011	12/10/2014	WEG/EGIG	0/13/2022
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1				Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result
1.00 1.00				ND	ND.	ND	N.D.	ND.	ND.	ND	ND	N/D	ND.	ND	ND	NB	110	ND	NB	110	ND	ND	NB
1.3.2 Establishment																							
Section																							
Section Sect																							
1.5000000000000000000000000000000000000																							
Section Sect																							
3.5 Telephone		1	ū																				
3.3 Foreign																							
2.5. Control processor 1.5. Control 1.5. Cont		-																					
2.52 Contemplatement Contemplate Con		5																					
2.500mmer 15	, ,	_	-																				
2-200-contender Q-1 ASS MS MS MS MS MS MS M		5	-																				
2.50-interpressore																							
2.556freegenees		4.7	-																				
13.5000000000000000000000000000000000000	,																						
1.5. From Printenger 1.6.	-/	0.0																					
3	/																						
3.000000000000000000000000000000000000	7-7-	С																					
		,																					
2.50-Chartepropose		,																					
Salasmore 50 Will No. 100 NO.		J																					
Controllance Gold Gold Controllance Gold G		50																					
2-Perspected 59 wgh NO 100 NO NO NO NO NO NO NO		JU																					
Secretary Secr		50																					
Scherrotelmene		JU																					
Abstractive			. 01																				
Accordance Sq. Agric NO NO NO NO NO NO NO N		50																					
Acceptantifie Vagil NS NS NS NS NS NS NS N																							
Bettere 0.7 ug/L NS		JU																					
Semonterenterentere		0.7	_																				
Immorphishment wg/L NS NS NS NS NS NS NS N		0.7																					
Bronnedfortomentame																							
Brancher Mg/L NS																							
Semontembrane		—																					
Carbon Designation So ug/L NS NS NS NS NS NS NS N			_																				
Carbon tetrachoride 5 ug/L 80 NS 8		50																					
Characterease																							
Chloredhane		,																					
Chlordorform		-																					
Chloromethane		7																					
Girl 2-Dichlororethene 5																							
Gish-12-bichidrogropene Use Us		5			150	590	920	85		790	280			57		48	6.3		40	48	52		
Distromorbitane 50 ug/L NS NS NS NS NS NS NS N					NS	NS	NS	NS		NS	NS			NS		NS	NS		NS	NS	NS		
Discrimentation		50																					
Discription of those Discription of the legal NS NS NS NS NS NS NS N																							
Ethylbenzene 5 ug/L NS																							
Hexachforbutadidine		5																					
Supproprightename																							
m8p-ys/ene m8p/s/ene mg/L NS NS <td></td>																							
Methylethylketone																							
Methylcherchioride		50	-													NS	NS	NS	NS	NS	NS	NS	
Methylene chloride																							
Naphthalene 12																							
n-Butylbenzene ug/L NS NS NS NS NS NS NS N																							
n-Propylbenzene	n-Butylbenzene		ug/L		NS						NS					NS	NS	NS	NS	NS	NS	NS	
0-Xylene																							
p-isopropytoluene ug/L NS NS NS NS NS NS NS N		5				NS	NS		NS	NS	NS		NS	NS		NS	NS	NS	NS	NS	NS	NS	ND
Sec_Butylbenzene					NS	NS	NS		NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	
Styrene ug/L NS					NS	NS					NS					NS	NS	NS	NS	NS	NS	NS	
tert-Butylbenzene ug/L NS NS <td></td> <td></td> <td></td> <td></td> <td></td> <td>NS</td> <td></td> <td>NS</td> <td></td> <td>NS</td> <td>NS</td> <td></td> <td></td> <td>NS</td> <td></td> <td>NS</td> <td></td> <td>NS</td> <td>NS</td> <td>NS</td> <td>NS</td> <td>NS</td> <td>ND</td>						NS		NS		NS	NS			NS		NS		NS	NS	NS	NS	NS	ND
Tetrahydrofurar (THF)																							
Tetrahydrofuran (THF)		5		450	1400	170	180	28	400	620	180	280	82	71									
Tolune				NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS									
Total Xylenes 5 ug/L NS		5																					
trans-1,2-Dichloroethene 5 ug/L ND 1 ND 2.3 ND ND 4.1 1 ND	Total Xylenes		-													NS	NS	NS	NS	NS	NS		
trans-1,2-Dichloroethylene 5 ug/L ND NS NS <t< td=""><td></td><td>5</td><td></td><td></td><td>1</td><td></td><td>2.3</td><td></td><td></td><td></td><td>1</td><td></td><td></td><td>ND</td><td></td><td>ND</td><td></td><td></td><td></td><td>ND</td><td></td><td></td><td></td></t<>		5			1		2.3				1			ND		ND				ND			
trans-1,3-Dichloropropene ug/L NS NS <t< td=""><td> ,</td><td>5</td><td></td><td></td><td>ND</td><td></td><td></td><td></td><td></td><td></td><td>ND</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	,	5			ND						ND												
trans-1,4-dichloro-2-butene ug/L NS				NS		NS	NS		NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND
Trichloroethene 5 ug/L 210 54 49 29 14 64 130 40 44 11 8.8 23 1.9 3.1 ND ND 3 3.1 0.25 8.6 Trichlorofluoromethane ug/L NS				NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND
Trichlorofluoromethane ug/L NS N		5		210		49	29		64	130	40	44	11	8.8	23	1.9	3.1	ND	ND	3	3.1	0.25	8.6
Trichlorotrifluoroethane 5 ug/L NS			_			NS	NS			NS	NS			NS	NS					NS			
		5																					
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Vinyl chloride	2	ug/L	12	4.8	150	39	7	30	44	26	73	2.2	5.7	16	10	1.4	ND	9.4	21	14	ND	ND

NS - Not sampled for given constituent NA - Well not sampled

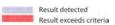
Result exceeds criteria Result detected



Notes:
* - sampling following May 31, 2006 injection
** - sampling following July 2010 injection
ND - Not detected

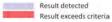
	New City, NY 10956 TOGS- WO/GA 4/26/1999 7/17/2002 4/6/2005 9/13/2006* 12/27/2006* 3/15/2007 6/6/2007 9/5/2007 1/3/2008 3/27/2008 8/12/2009 4/5/2010 10/21/2010** 5/16/2011 12/13/2011 5/11/2012 4/25/2013 1/14/2014 12/19/2014 4/25/2015 6/15/2022 3/6/2022																							
			4/26/1999	7/17/2002	4/6/2005	0/13/2006*	12/27/2006*	3/15/2007	6/6/2007	9/5/2007	1/3/2008	3/27/2008	8/12/2009	4/5/2010	10/21/2010**	5/16/2011	12/12/2011	5/11/2012	4/25/2012	1/14/2014	12/10/2014	1/25/2015	6/15/2022	3/6/2023
Compound	WQ/GA	Units	4/20/1555	7/17/2002	4/0/2003	5/15/2000	12/2//2000	3/13/2007	0/0/2007	5/3/2007	1/3/2006	3/2//2008	0/12/2005	4/3/2010	10/21/2010	3/10/2011	12/13/2011	3/11/2012	4/23/2013	1/14/2014	12/15/2014	4/23/2013	0/13/2022	3/0/2023
·	WQS		Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result
	(ug/L)																							
1,1,1,2-Tetrachloroethane	5	ug/L	ND	ND	ND	ND	ND	ND	ND	1.2	2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS
1,1,1-Trichloroethane	5	ug/L	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND	NS
1,1,2,2-Tetrachloroethane	5	ug/L	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND	NS
1,1,2-Trichloroethane	5	ug/L	ND	ND	ND	ND	3.1	ND	ND	ND	ND	ND	ND	ND	ND	ND	1	ND	ND	ND	ND	ND	ND	NS
1,1-Dichloroethane	5	ug/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS
1,1-Dichloroethene	1	ug/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS
1,1-Dichloropropene		ug/L	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND	NS
1,2,3-Trichlorobenzene		ug/L	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND	NS
1,2,3-Trichloropropane	5	ug/L	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND	NS
1,2,4-Trichlorobenzene		ug/L	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND	NS
1,2,4-Trimethylbenzene	5	ug/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS
1,2-Dibromo-3-chloropropane		ug/L	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND	NS
1,2-Dibromoethane		ug/L	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND	NS
1,2-Dichlorobenzene	4.7	ug/L	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND	NS
1,2-Dichloroethane	0.6	-	ND ND	ND	ND ND	ND ND	ND ND	ND	ND ND	2.0	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND	NS
	0.6	ug/L								2.0														
1,2-Dichloropropane		ug/L	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND	NS
1,3,5-Trimethylbenzene		ug/L	NS NC	NS	NS	NS	NS NC	NS	NS	NS	NS NC	NS NC	NS	NS	NS NC	NS	NS NC	NS	NS	NS	NS	NS NC	ND	NS
1,3-Dichlorobenzene	5	ug/L	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS NS	NS	NS	NS	NS	NS	NS	NS	ND	NS
1,3-Dichloropropane	5	ug/L	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND	NS
1,4-Dichlorobenzene	5	ug/L	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND	NS
2,2-Dichloropropane		ug/L	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND	NS
2-Butanone	50	ug/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.3	ND	NS	NS
2-Chlorotoluene		ug/L	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND	NS
2-Hexanone	50	ug/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS
2-Isopropyltoluene		ug/L	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND	NS
4-Chlorotoluene		ug/L	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND	NS
4-Methyl-2-pentanone	50	ug/L	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND	NS
Acetone	50	ug/L	ND	ND	ND	ND	ND	ND	ND	ND	24	ND	8	ND	2.5	ND	ND	ND	ND	ND	31	2	ND	NS
Acrylonitrile		ug/L	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND	NS
Benzene	0.7	ug/L	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND	NS
Bromobenzene		ug/L	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND	NS
Bromochloromethane		ug/L	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND	NS
Bromodichloromethane		ug/L	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND	NS
Bromoform		ug/L	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND	NS
Bromomethane		ug/L	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND	NS
Carbon Disulfide	50	ug/L ug/L	NS	NS	NS	NS NS	NS NS	NS	NS NS	NS NS	NS NS	NS	NS NS	NS NS	NS NS	NS NS	NS	NS	NS	NS	NS	NS	ND	NS
Carbon tetrachloride	5	-	NS	NS	NS	NS NS	NS	NS NS	NS NS	NS	NS NS	NS NS	NS NS	NS NS	NS	NS	NS	NS	NS	NS	NS	NS	ND	NS
Chlorobenzene	5	ug/L	NS	NS NS	NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS	NS NS	ND ND	NS NS
Chloroethane	5	ug/L ug/L	ND ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND	ND ND	ND	NS
	7	- 0	ND ND			ND ND				ND ND	0.66	ND ND			1.5		ND ND		ND ND		0.65			
Chloroform		ug/L		ND	ND		ND	ND	ND				ND	1.2		1.2		ND		ND		ND NO	ND	NS
Chloromethane		ug/L	NS	NS	NS 0.4	NS	NS 4.5	NS	NS	NS	NS	NS	NS 0.5	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND	NS
cis-1,2-Dichloroethene	5	ug/L	24	35	2.4	7.5	4.5	5.2	4.4	6.5	5.2	25	3.5	ND	ND	ND	/8	250	44	ND	ND	ND	ND	NS
cis-1,3-Dichloropropene		ug/L	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND	NS
Dibromochloromethane	50	ug/L	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND	NS
Dibromomethane		ug/L	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND	NS
Dichlorodifluoromethane		ug/L	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND	NS
Ethylbenzene	5	ug/L	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND	NS
Hexachlorobutadiene	ļ	ug/L	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND	NS
Isopropylbenzene		ug/L	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND	NS
m&p-Xylene		ug/L	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND	NS
Methyl ethyl ketone	50	ug/L	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND	NS
Methyl t-butyl ether (MTBE)	10	ug/L	ND	ND	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS
Methylene chloride	5	ug/L	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND	NS
Naphthalene	12	ug/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.79	ND	ND	ND	ND	ND	ND	NS
n-Butylbenzene		ug/L	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND	NS
n-Propylbenzene		ug/L	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND	NS
o-Xylene	5	ug/L	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND	NS
p-Isopropyltoluene		ug/L	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND	NS
sec-Butylbenzene		ug/L	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND	NS
Styrene		ug/L	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND	NS
tert-Butylbenzene		ug/L	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND	NS
Tetrachloroethene	5	ug/L	320	78	36	180	200	120	69	2300	2000	1300	3.5	ND	ND	ND	14	2.9	ND	ND	ND	ND	550	ND
Tetrahydrofuran (THF)	l -	ug/L	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS NS	NS	NS	NS	NS	ND	NS
Toluene	5	ug/L	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND	NS
Total Xvlenes	5	ug/L	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND	NS
trans-1.2-Dichloroethene	5	ug/L ug/L	ND.	ND	ND	ND ND	ND ND	ND.	ND ND	ND.	ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	NS
trans-1,2-Dichloroethylene	5	ug/L ug/L	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NS NS	NS NS
	- 5	ug/L ug/L	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	ND ND	NS NS
trans-1,3-Dichloropropene	 	-																						
trans-1,4-dichloro-2-butene		ug/L	NS 5.0	NS	NS 4.5	NS	NS 5.0	NS 4.7	NS 2.4	NS 40	NS	NS	NS 0.5	NS 0.74	NS ND	NS	NS	NS 2.5	NS ND	NS	NS ND	NS ND	ND 4.2	NS
Trichloroethene	5	ug/L	5.3	8	1.5	ND	5.8	4.7	3.1	10	11	35	3.5	0.74	ND NO	ND	5.8	3.5	ND NO	ND	ND	ND	1.3	NS
Trichlorofluoromethane		ug/L	NS NC	NS	NS	NS	NS	NS	NS	NS	NS	NS NC	NS	NS	NS NC	NS	NS NC	NS	NS	NS	NS	NS NC	ND	NS
Trichlorotrifluoroethane	5	ug/L	NS	NS	NS	NS 	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND	NS
Vinyl chloride	2	ug/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.64	ND	ND	ND	42	120	10	ND	ND	ND	ND	NS

NS - Not sampled for given constituent NA - Well not sampled


Result exceeds criteria Result detected

Notes:
* - sampling following May 31, 2006 injection
** - sampling following July 2010 injection
ND - Not detected

							Nev	v City, NY 1	0956		1W-7							
	TOGS-		4/26/1999	4/6/2005	9/13/2006*	12/27/2006*	3/15/2007	6/6/2007	9/5/2007	1/3/2008	1W-7 3/27/2008	8/12/2009	4/5/2010	10/21/2010**	5/16/2011	12/13/2011	5/11/2012	6/15/2022
Compound	WQ/GA WQS	Units	4/20/1333	4/0/2003	3/13/2000	12/2//2000	3/13/2007	0/0/2007	3/3/2007	173/2000	3/2//2000	0/12/2003	4/3/2010	10/21/2010	3/10/2011	12/13/2011	3/11/2012	0/13/2022
	(ug/L)		Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result
1,1,1,2-Tetrachloroethane	(ug/L) 5	ug/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	5	ug/L	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND
1.1.2.2-Tetrachloroethane	5	ug/L	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND
1,1,2-Trichloroethane	5	ug/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	5	ug/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethene	1	ug/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloropropene		ug/L	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND
1,2,3-Trichlorobenzene		ug/L	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND
1,2,3-Trichloropropane	5	ug/L	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND
1,2,4-Trichlorobenzene		ug/L	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND
1,2,4-Trimethylbenzene	5	ug/L	ND	ND	ND	ND	ND	ND	ND	ND	2	ND	ND	ND	ND	ND	ND	ND
1,2-Dibromo-3-chloropropane		ug/L	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND
1,2-Dibromoethane		ug/L	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND
1,2-Dichlorobenzene	4.7	ug/L	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND
1,2-Dichloroethane	0.6	ug/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloropropane		ug/L	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND
1,3,5-Trimethylbenzene	_	ug/L	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND
1,3-Dichlorobenzene	5	ug/L	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND
1,3-Dichloropropane	5 5	ug/L	NS	NS NC	NS	NS NC	NS	NS	NS NC	NS NC	NS	NS NC	NS NC	NS NC	NS	NS NC	NS NC	ND ND
1,4-Dichlorobenzene	5	ug/L ug/L	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	ND ND
2,2-Dichloropropane 2-Butanone	50	ug/L ug/L	NS ND	NS ND	NS ND	74	NS 53	NS 57	NS 12	NS ND	NS 15	NS ND	NS ND	NS ND	NS ND	NS ND	NS ND	ND NS
2-Butanone 2-Chlorotoluene	50	ug/L ug/L	NS NS	NS NS	NS NS	NS	NS NS	NS	NS NS	ND NS	NS NS	NS NS	ND NS	NS NS	NS NS	NS NS	NS NS	ND ND
2-Hexanone	50	ug/L ug/L	ND ND	ND ND	ND ND	ND ND	ND	6.5	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
2-Isopropyltoluene	JU	ug/L ug/L	NS	NS NS	NS	NS	NS	NS NS	NS NS	NS	NS.	NS	NS	NS NS	NS NS	NS NS	NS NS	ND ND
4-Chlorotoluene		ug/L	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS NS	NS	NS NS	NS	ND
4-Methyl-2-pentanone	50	ug/L	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND
Acetone	50	ug/L	ND	ND	ND	ND	240	290	68	16	20	ND	10	ND	ND	ND	ND	ND
Acrylonitrile		ug/L	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND
Benzene	0.7	ug/L	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND
Bromobenzene		ug/L	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND
Bromochloromethane		ug/L	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND
Bromodichloromethane		ug/L	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND
Bromoform		ug/L	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND
Bromomethane		ug/L	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND
Carbon Disulfide	50	ug/L	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND
Carbon tetrachloride	5	ug/L	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND
Chlorobenzene	5	ug/L	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND
Chloroethane	5	ug/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroform	7	ug/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloromethane	_	ug/L	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND
cis-1,2-Dichloroethene	5	ug/L	ND	ND NS	ND	2.5	ND	1.4 NS	3.1	2.2	2 NS	2.2	1.2	NS NS	41 NS	6.4 NS	4.8	ND ND
cis-1,3-Dichloropropene	50	ug/L	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	ND ND
Dibromochloromethane	50	ug/L ug/L	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	ND ND
Dibromomethane Dichlorodifluoromethane		-	NS	NS NS	NS NS	NS NS	NS	NS	NS NS	NS	NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	ND ND
Ethylbenzene	5	ug/L ug/L	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	2
Hexachlorobutadiene		ug/L	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND
Isopropylbenzene		ug/L	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND
m&p-Xylene		ug/L	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND
Methyl ethyl ketone	50	ug/L	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND
Methyl t-butyl ether (MTBE)	10	ug/L	1.5	22	ND	11	6.5	4.8	6	2.9	4.3	3.2	1.5	0.71	ND	0.88	ND	ND
Methylene chloride	5	ug/L	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND
Naphthalene	12	ug/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
n-Butylbenzene		ug/L	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND
n-Propylbenzene		ug/L	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND
o-Xylene	5	ug/L	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND
p-Isopropyltoluene		ug/L	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND
sec-Butylbenzene		ug/L	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND
Styrene		ug/L	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND
tert-Butylbenzene		ug/L	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND
Tetrachloroethene	5	ug/L	29 NC	9.2 NC	ND	1.6	1.8	1	1	5.6	2.4	2.2	ND NC	3.5	4.1	2.1	1.2	3.5
Tetrahydrofuran (THF)	_	ug/L	NS NC	NS NC	NS	NS	NS	NS NC	NS	NS NC	NS	NS NC	NS NC	NS NC	NS	NS	NS	ND ND
Toluene Total Vilenas	5	ug/L	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NC	NS NS	NS NS	NS NS	NS NS	ND ND
Total Xylenes	5	ug/L	NS ND	NS ND	NS ND	NS ND	NS ND	NS ND	NS ND	NS ND	NS ND	NS ND	NS ND	NS ND	NS ND	NS ND	NS ND	ND ND
trans-1,2-Dichloroethene trans-1,2-Dichloroethylene	5	ug/L ug/L	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND NS
				ND NS	ND NS	ND NS	NS NS	ND NS	ND NS	ND NS	ND NS	ND NS	ND NS	ND NS	ND NS	ND NS	ND NS	NS ND
		1107/1					GNI	CNI	149	INO	GNI	INO	INO	INO	INO	149	• INO	שמו
trans-1,3-Dichloropropene	Ĵ	ug/L	NS					NIC	NC	NC	NIC	NIC	NC	NC	NIC	NIC		ND
trans-1,3-Dichloropropene trans-1,4-dichloro-2-butene	5	ug/L	NS	NS	NS	NS	NS	NS ND	NS ND	NS ND	NS ND	NS 2.3	NS 0.92	NS 4.1	NS 8.6	NS 3	NS	ND ND
trans-1,3-Dichloropropene trans-1,4-dichloro-2-butene Trichloroethene	5	ug/L ug/L	NS ND	NS ND	NS ND	NS ND	NS ND	ND	ND	ND	ND	2.3	0.92	4.1	8.6	3	NS 2.1	ND
trans-1,3-Dichloropropene trans-1,4-dichloro-2-butene Trichloroethene Trichlorofluoromethane		ug/L ug/L ug/L	NS ND NS	NS ND NS	NS ND NS	NS ND NS	NS ND NS	ND NS	ND NS	ND NS	ND NS	2.3 NS	0.92 NS	4.1 NS	8.6 NS	3 NS	NS 2.1 NS	ND ND
trans-1,3-Dichloropropene trans-1,4-dichloro-2-butene Trichloroethene	5 5 2	ug/L ug/L	NS ND	NS ND	NS ND	NS ND	NS ND	ND	ND	ND	ND	2.3	0.92	4.1	8.6	3	NS 2.1	ND


NS - Not sampled for given constituent NA - Well not sampled Result exceeds criteria Result detected

	E0.00										MW-8	New City, N	1 10330									1414/14			C	
	TOGS- WQ/GA		4/26/1999	7/17/2002	4/6/2005	9/13/2006*	12/27/2006*	3/15/2007	6/6/2007	9/5/2007	1/3/2008	3/27/2008	8/12/2009	4/5/2010	10/21/2010**	5/16/2011	12/13/2011	5/11/2012	6/13/2022	8/12/2009	4/5/2010	MW-14 5/16/2011	5/11/2012	6/13/2022	Cropse 10/21/2010	6/13/2022
Compound	WQS	Units																								
	(ug/L)		Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result
1,1,1,2-Tetrachloroethane	5	ug/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	NA
1,1,1-Trichloroethane	5	ug/L	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND	ND	ND	ND	ND	NA	ND	NA
1,1,2,2-Tetrachloroethane	5	ug/L	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND	ND	ND	ND	ND	NA	ND	NA
1,1,2-Trichloroethane	5	ug/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	NA
1,1-Dichloroethane	5 1	ug/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	NA
1,1-Dichloroethene 1,1-Dichloropropene	1	ug/L ug/L	ND NS	ND NS	ND NS	ND NS	ND NS	ND NS	ND NS	ND NS	ND NS	ND NS	ND NS	ND NS	ND NS	ND NS	ND NS	ND NS	ND ND	ND ND	ND ND	ND ND	ND ND	NA NA	ND ND	NA NA
1.2.3-Trichlorobenzene		ug/L	NS	NS	NS NS	NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS	NS	NS NS	NS NS	NS NS	NS NS	NS NS	ND	ND	ND ND	ND	ND	NA NA	ND ND	NA NA
1,2,3-Trichloropropane	5	ug/L	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND	ND	ND	ND	ND	NA.	ND	NA
1,2,4-Trichlorobenzene		ug/L	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND	ND	ND	ND	ND	NA	ND	NA
1,2,4-Trimethylbenzene	5	ug/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	NA
1,2-Dibromo-3-chloropropane		ug/L	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND	ND	ND	ND	ND	NA	ND	NA
1,2-Dibromoethane		ug/L	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND	ND	ND	ND	ND	NA	ND	NA
1,2-Dichlorobenzene	4.7	ug/L	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND	ND	ND	ND	ND	NA	ND	NA
1,2-Dichloroethane 1,2-Dichloropropane	0.6	ug/L	ND NS	ND NS	ND NS	ND NS	ND NS	ND NS	ND NS	ND NS	ND NS	ND NS	ND NS	ND NS	ND NS	ND NS	ND NS	ND NS	ND ND	ND ND	ND ND	ND ND	ND ND	NA NA	ND ND	NA NA
1,3,5-Trimethylbenzene		ug/L ug/L	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	ND ND	ND ND	ND ND	ND ND	ND ND	NA NA	ND ND	NA NA
1.3-Dichlorobenzene	5	ug/L ug/L	NS	NS	NS NS	NS NS	NS NS	NS	NS NS	NS	NS NS	NS NS	NS NS	NS NS	NS	NS	NS	NS	ND	ND	ND	ND	ND	NA NA	ND ND	NA NA
1,3-Dichloropropane	5	ug/L	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND	ND	ND	ND	ND	NA NA	ND	NA.
1,4-Dichlorobenzene	5	ug/L	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND	ND	ND	ND	ND	NA	ND	NA
2,2-Dichloropropane		ug/L	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND	ND	ND	ND	ND	NA	ND	NA
2-Butanone	50	ug/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS	NS	ND	ND	ND	NA	ND	NA
2-Chlorotoluene	<u> </u>	ug/L	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND	ND	ND	ND	ND	NA	ND	NA
2-Hexanone	50	ug/L	ND NC	ND	ND NC	ND NC	ND NC	ND NC	ND	ND NC	ND NC	ND NC	ND NC	ND NC	ND NC	ND NC	ND NC	ND NC	ND ND	ND ND	ND ND	ND ND	ND ND	NA NA	ND ND	NA NA
2-Isopropyltoluene 4-Chlorotoluene	1	ug/L ug/L	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	ND ND	ND ND	ND ND	ND ND	ND ND	NA NA	ND ND	NA NA
4-Methyl-2-pentanone	50	ug/L ug/L	NS	NS.	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS.	NS NS	NS NS	NS NS	NS NS	NS NS	ND ND	ND ND	ND ND	ND.	ND ND	NA NA	ND ND	NA NA
Acetone	50	ug/L	ND	ND	ND ND	ND ND	ND ND	ND ND	21	18	ND ND	ND ND	6.1	7.4	ND ND	ND ND	ND ND	ND	ND	3.2	ND	ND	ND	NA NA	ND ND	NA NA
Acrylonitrile		ug/L	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND	ND	ND	ND	ND	NA	ND	NA
Benzene	0.7	ug/L	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND	ND	ND	ND	ND	NA	ND	NA
Bromobenzene		ug/L	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND	ND	ND	ND	ND	NA	ND	NA
Bromochloromethane		ug/L	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND	ND	ND	ND	ND	NA	ND	NA
Bromodichloromethane		ug/L	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS	ND ND	ND ND	ND ND	ND ND	ND ND	NA NA	ND	NA NA
Bromoform Bromomethane		ug/L	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	ND ND	ND ND	ND ND	ND ND	ND ND	NA NA	ND ND	NA NA
Carbon Disulfide	50	ug/L ug/L	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	ND ND	ND ND	ND ND	ND ND	ND ND	NA NA	ND ND	NA NA
Carbon tetrachloride	5	ug/L	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND	ND	ND	ND	ND	NA.	ND	NA.
Chlorobenzene	5	ug/L	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND	ND	ND	ND	ND	NA	ND	NA
Chloroethane	5	ug/L	ND	ND	ND	ND	ND	ND	ND	ND	2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	NA
Chloroform	7	ug/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	NA
Chloromethane		ug/L	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND	ND	ND	ND	ND	NA	ND	NA
cis-1,2-Dichloroethene	5	ug/L	24 NS	12 NS	2.7 NS	25 NS	14 NS	6.4 NS	27 NS	18 NS	120 NS	110 NS	0.82 NS	2.3 NS	NS NS	41 NS	6.6 NS	1.8 NS	21 ND	ND ND	ND ND	ND ND	ND ND	NA NA	ND ND	NA NA
Dibromochloromethane	50	ug/L ug/L	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	ND ND	ND ND	ND ND	ND ND	ND ND	NA NA	ND ND	NA NA
Dibromomethane	30	ug/L	NS	NS	NS NS	NS	NS NS	NS NS	NS	NS	NS NS	NS	NS NS	NS NS	NS	NS	NS	NS NS	ND	ND	ND	ND	ND	NA NA	ND ND	NA NA
Dichlorodifluoromethane		ug/L	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND	ND	ND	ND	ND	NA	ND	NA
Ethylbenzene	5	ug/L	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND	ND	ND	ND	ND	NA	ND	NA
Hexachlorobutadiene		ug/L	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND	ND	ND	ND	ND	NA	ND	NA
Isopropylbenzene		ug/L	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND	ND	ND	ND	ND	NA	ND	NA
m&p-Xylene		ug/L	NS	NS	NS	NS	NS NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND	NS	ND	ND	ND	NA	ND	NA
Methyl ethyl ketone Methyl t-butyl ether (MTBE)	50 10	ug/L	NS 6.6	NS 0.93	NS 24	NS 5.5	NS 2.9	NS 1.7	NS 4.1	NS 3.2	NS 1.6	NS 2.5	NS ND	NS 0.61	NS 0.71	NS ND	NS 0.74	NS ND	ND ND	ND ND	ND ND	ND ND	ND ND	NA NA	ND ND	NA NA
Methylene chloride	5	ug/L ug/L	NS NS	0.93 NS	NS NS	NS NS	2.9 NS	1.7 NS	NS NS	NS NS	1.b NS	NS NS	ND NS	0.61 NS	0.71 NS	ND NS	0.74 NS	NS NS	ND ND	ND ND	ND ND	ND ND	ND ND	NA NA	ND ND	NA NA
Naphthalene	12	ug/L	ND	ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND	ND ND	ND	ND	NA NA	ND ND	NA NA
n-Butylbenzene		ug/L	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND	ND	ND	ND	ND	NA	ND	NA
n-Propylbenzene		ug/L	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND	ND	ND	ND	ND	NA	ND	NA
o-Xylene	5	ug/L	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND	ND	ND	ND	ND	NA	ND	NA
p-Isopropyltoluene		ug/L	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND	ND	ND	ND	ND	NA	ND	NA
sec-Butylbenzene	 	ug/L	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND	ND	ND	ND	ND	NA	ND	NA
Styrene	1	ug/L	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	ND ND	ND ND	ND ND	ND ND	ND ND	NA NA	ND ND	NA NA
tert-Butylbenzene Tetrachloroethene	5	ug/L	210	170	51	27	41	26	9.6	7.5	13	120	ND ND	NS 3.5	NS 4.1	NS 3.9	2.3	1.1	4.5	ND ND	1.9	3.3	15	NA NA	ND ND	NA NA
Tetrahydrofuran (THF)		ug/L ug/L	NS NS	NS	NS	NS NS	NS NS	NS NS	NS NS	NS	NS NS	NS NS	NS	NS NS	NS NS	NS NS	NS NS	NS NS	ND	ND ND	ND	ND	ND ND	NA NA	ND ND	NA NA
Toluene	5	ug/L	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND	ND	ND	ND	ND	NA NA	ND	NA NA
Total Xylenes	5	ug/L	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND	ND	ND	ND	ND	NA	ND	NA
trans-1,2-Dichloroethene	5	ug/L	ND	ND	ND	ND	ND	ND	ND	ND	0.54	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	NA
trans-1,2-Dichloroethylene	5	ug/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS	ND	ND	ND	ND	NA	ND	NA
trans-1,3-Dichloropropene	l	ug/L	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND	ND	ND	ND	ND	NA	ND	NA
trans-1,4-dichloro-2-butene		ug/L	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS 4.0	NS 0.5	NS	NS	ND	ND	ND	ND	ND	NA	ND	NA
Trichloroethene Trichlorofluoromethane	5	ug/L	8 NS	5.8 NS	1.1 NS	ND NS	1.4 NS	1.7 NS	2 NS	4.2 NS	5.4 NS	38 NS	ND NS	2.3 NS	4.3 NS	8.5 NS	3.2 NS	1.8 NS	3.7 ND	ND	1.3 ND	ND ND	ND ND	NA NA	ND ND	NA NA
Trichlorotrifluoroethane	5	ug/L ug/L	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	ND ND	ND ND	ND ND	ND ND	ND ND	NA NA	ND ND	NA NA
Vinyl chloride	2	ug/L ug/L	1.4	ND ND	ND ND	ND ND	1.2	2.6	ND	5.4	21	13	ND ND	ND ND	3.2	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NA NA	ND ND	NA NA
,		ω ₆ / L	1.7	.40	, ND		1.2	2.0	.,,,,	Ų.T		.0	.40		V.2	, VD		.,,,	.,,,	.10	.40	.40	.,,,,,	.4/		. 1/1

Result exceeds criteria Result detected

NS - Not sampled for given constituent NA - Well not sampled

Notes:
* - sampling following May 31, 2006 injection
** - sampling following July 2010 injection
ND - Not detected

Table 3 Soil Vapor and Indoor Air Analytical Results 265 S Little Tor Road New City, NY 10956

ECMS, Inc	Collection	Date		3/30/2022	3/30/2022		3/30/2022		3/30/2022		3/30/2022		2/9/2023	3/30/2022	3/30/2022	3/30/2022	2/9/2023
10 Filmont Drive	Sample	ID		IA-1	SG-2		IA-2		IA-3		IA-4		IA-4	SG-1	SG-3	0A-1	OA-1
New City, NY	Matrix			Indoor Air	Sub-Slab Vapor		Indoor Air		Indoor Air		Indoor Air		Indoor Air	Sub-Slab Vapor	Soil Gas Vapor	Ambient Outdoor Air	Ambient Outdoor Air
,,,				NYSDOH Soil Vapor			NYSDOH Soil		NYSDOH Soil		NYSDOH Soil		NYSDOH Soil				
Project Id : 22.066 LITTLE TOR	CAS	Units	Result	Intrusion Decision Matrix	Result	Result	Vapor Intrusion Decision Matrix	Result	Vapor Intrusion Decision Matrix	Result	Vapor Intrusion Decision Matrix	Result	Vapor Intrusion Decision Matrix	Result	Result	Result	Result
Volatiles (TO15) By TO15																	
1,1,1,2-Tetrachloroethane	630-20-6	ug/m3	< 1.00	ı	< 1.00	< 1.00	1	< 1.00		< 1.00		NS		< 1.00	< 1.00	< 1.00	< 1.00
1,1,1-Trichloroethane	71-55-6	ug/m3		B1	< 1.00	< 1.00	B1	< 1.00	B1	< 1.00	B1	NS		< 1.00	< 1.00	< 1.00	< 1.00
1,1,2,2-Tetrachloroethane	79-34-5	ug/m3			< 1.00	< 1.00		< 1.00		< 1.00		NS		< 1.00	< 1.00	< 1.00	< 1.00
1,1,2-Trichloroethane	79-00-5	ug/m3	< 1.00		< 1.00	< 1.00		< 1.00		< 1.00		NS		< 1.00	< 1.00	< 1.00	< 1.00
1,1-Dichloroethane	75-34-3	ug/m3	< 1.00	A1	< 1.00	< 1.00	A1	< 1.00	A1	< 1.00	A1	NS		< 1.00	< 1.00	< 1.00	< 1.00
1,1-Dichloroethene	75-35-4	ug/m3	< 0.20		< 0.20	< 0.20		< 0.20		< 0.20		NS		< 0.20	< 0.20	< 0.20	< 0.20
1,2,4-Trichlorobenzene	120-82-1	ug/m3	< 1.00		< 1.00	< 1.00		< 1.00		< 1.00		NS		< 1.00	< 1.00	< 1.00	< 1.00
1,2,4-Trimethylbenzene	95-63-6	ug/m3	< 1.00		1.88	< 1.00		< 1.00		< 1.00		NS		5.8	1.73	< 1.00	< 1.00
1,2-Dibromoethane(EDB)	106-93-4	ug/m3	< 1.00		< 1.00	< 1.00		< 1.00		< 1.00		NS		< 1.00	< 1.00	< 1.00	< 1.00
1,2-Dichlorobenzene 1,2-Dichloroethane	95-50-1 107-06-2	ug/m3 ug/m3	< 1.00 < 1.00		< 1.00 < 1.00	< 1.00		< 1.00		< 1.00 < 1.00		NS NS		< 1.00 < 1.00	< 1.00 < 1.00	< 1.00 < 1.00	< 1.00 < 1.00
1,2-dichloropropane	78-87-5	ug/m3	< 1.00		< 1.00	< 1.00		< 1.00		< 1.00		NS NS		< 1.00	< 1.00	< 1.00	< 1.00
1,2-Dichlorotetrafluoroethane	76-14-2	ug/m3	< 1.00		< 1.00	< 1.00		< 1.00		< 1.00		NS		<1.00	< 1.00	< 1.00	< 1.00
1,3,5-Trimethylbenzene	108-67-8	ug/m3	< 1.00	†	< 1.00	< 1.00	i e	< 1.00		< 1.00		NS		1.76	< 1.00	< 1.00	< 1.00
1,3-Butadiene	106-99-0	ug/m3	< 1.00	i	< 1.00	< 1.00	1	< 1.00		< 1.00		NS		< 1.00	7.83	< 1.00	< 1.00
1,3-Dichlorobenzene	541-73-1	ug/m3	< 1.00		< 1.00	< 1.00		< 1.00		< 1.00		NS		< 1.00	< 1.00	< 1.00	< 1.00
1,4-Dichlorobenzene	106-46-7	ug/m3	< 1.00		< 1.00	< 1.00		< 1.00		< 1.00		NS		< 1.00	< 1.00	< 1.00	< 1.00
1,4-Dioxane	123-91-1	ug/m3	< 1.00		1.65	< 1.00		< 1.00		< 1.00		NS		< 1.00	< 1.00	< 1.00	< 1.00
2-Hexanone(MBK)	591-78-6	ug/m3	< 1.00		< 1.00	< 1.00		< 1.00		< 1.00		NS		< 1.00	4.09	< 1.00	< 1.00
4-Ethyltoluene	622-96-8	ug/m3	< 1.00		1.93	< 1.00		< 1.00		< 1.00		NS		5.65	1.13	< 1.00	< 1.00
4-Isopropyltoluene	99-87-6	ug/m3	< 1.00		< 1.00	< 1.00		< 1.00		< 1.00		NS		< 1.00	< 1.00	< 1.00	< 1.00
4-Methyl-2-pentanone(MIBK)	108-10-1	ug/m3	< 1.00		< 1.00	< 1.00		< 1.00		< 1.00		NS		< 1.00	15.6	< 1.00	NS
Acetone	67-64-1	ug/m3	2.85		75.3	2.87		2.92		9.83		NS		103	719	4.51	NS
Acrylonitrile Benzene	107-13-1 71-43-2	ug/m3 ug/m3	< 1.00 < 1.00		< 1.00 1.23	< 1.00		< 1.00		< 1.00 < 1.00		NS NS		< 1.00 1.15	< 1.00 2.93	< 1.00 < 1.00	NS NS
Benzyl chloride	100-44-7	ug/m3 ug/m3	< 1.00		< 1.00	< 1.00	-	< 1.00		< 1.00		NS NS		< 1.00	< 1.00	< 1.00 < 1.00	NS NS
Bromodichloromethane	75-27-4	ug/m3	< 1.00		< 1.00	< 1.00		< 1.00		< 1.00		NS		< 1.00	< 1.00	< 1.00	NS NS
Bromoform	75-25-2	ug/m3	< 1.00		< 1.00	< 1.00		< 1.00		< 1.00		NS		< 1.00	< 1.00	< 1.00	NS NS
Bromomethane	74-83-9	ug/m3			< 1.00	< 1.00		< 1.00		< 1.00		NS		< 1.00	< 1.00	< 1.00	NS
Carbon Disulfide	75-15-0	ug/m3			< 1.00	< 1.00		< 1.00		< 1.00		NS		< 1.00	1.24	< 1.00	NS
Carbon Tetrachloride	56-23-5	ug/m3	0.35	A2	0.33	0.3	A2	0.35	A2	0.37	A2	NS	NS	0.4	< 0.20	0.35	NS
Chlorobenzene	108-90-7	ug/m3	< 1.00		< 1.00	< 1.00		< 1.00		< 1.00		NS		< 1.00	< 1.00	< 1.00	NS
Chloroethane	75-00-3	ug/m3	< 1.00		< 1.00	< 1.00		< 1.00		< 1.00		NS		< 1.00	< 1.00	< 1.00	NS
Chloroform	67-66-3	ug/m3	< 1.00		< 1.00	< 1.00		< 1.00		2.14		NS		< 1.00	< 1.00	< 1.00	NS
Chloromethane	74-87-3	ug/m3	1.06		< 1.00	< 1.00		1.03		1.15		NS		8.38	< 1.00	1.01	NS
Cis-1,2-Dichloroethene	156-59-2	ug/m3	< 0.20	A1	< 0.20	< 0.20	A1	< 0.20	A1	< 0.20	A1	NS	NS	< 0.20	0.22	< 0.20	NS
Cis-1,3-Dichloropropene	10061-01-5	ug/m3	< 1.00		< 1.00	< 1.00		< 1.00		< 1.00		NS		< 1.00	< 1.00	< 1.00	NS NS
Cyclohexane Dibromochloromethane	110-82-7 124-48-1	ug/m3 ug/m3	< 1.00 < 1.00		< 1.00 < 1.00	< 1.00		< 1.00		< 1.00 < 1.00		NS NS		< 1.00 < 1.00	< 1.00 < 1.00	< 1.00 < 1.00	NS NS
Dichlorodifluoromethane	75-71-8	ug/m3	1.29		1.28	< 1.00		1.2		2.24		NS NS		2.89	2.2	< 1.00	NS NS
Ethanol	64-17-5	ug/m3	83.6		47.8	4.69		6.89		63.6		NS		125	27.3	6.18	NS
Ethyl acetate	141-78-6	ug/m3	< 1.00		2.75	< 1.00		< 1.00		< 1.00		NS		1.57	1,400	< 1.00	NS NS
Ethylbenzene	100-41-4	ug/m3	< 1.00		2.96	< 1.00		< 1.00		< 1.00		NS		7.07	2.43	< 1.00	NS
Heptane	142-82-5	ug/m3	< 1.00		1.63	< 1.00		< 1.00		< 1.00		NS		2.03	1.89	< 1.00	NS
Hexachlorobutadiene	87-68-3	ug/m3	< 1.00		< 1.00	< 1.00		< 1.00		< 1.00		NS		< 1.00	< 1.00	< 1.00	NS
Hexane	110-54-3	ug/m3	< 1.00		1.79	< 1.00		< 1.00		3.05		NS		2.04	4.3	1.07	NS
Isopropylalcohol	67-63-0	ug/m3	1.21		7	< 1.00		< 1.00		1.28		NS		5.63	6.29	< 1.00	NS
Isopropylbenzene	98-82-8	ug/m3	< 1.00		< 1.00	< 1.00		< 1.00		< 1.00		NS		< 1.00	< 1.00	< 1.00	NS
m,p-Xylene	179601-23-1	ug/m3	< 1.00		10.9	< 1.00	1	< 1.00		< 1.00		NS		26.1	6.9	< 1.00	NS NS
Methyl Ethyl Ketone Methyl tert-butyl ether(MTBE)	78-93-3 1634-04-4	ug/m3 ug/m3	< 1.00 < 1.00	 	3.95 < 1.00	< 1.00	 	< 1.00		2.05 < 1.00		NS NS		5.54 < 1.00	1,000 < 1.00	< 1.00 < 1.00	NS NS
Methyl tert-butyl ether(MTBE) Methylene Chloride	75-09-2	ug/m3 ug/m3	< 3.00	B1	< 1.00 12.9	< 3.00	B1	< 3.00	B1	< 1.00	B3	<3.00	B1	< 1.00 4.48	< 1.00 < 3.00	< 1.00 < 3.00	NS <3.00
n-Butylbenzene	104-51-8	ug/m3	< 1.00	91	12.9 < 1.00	< 1.00	01	< 1.00	DI	< 1.00	63	<3.00 NS	DI	4.48 < 1.00	< 1.00	< 3.00	<3.00 NS
o-Xylene	95-47-6	ug/m3	< 1.00	 	3.5	< 1.00	t	< 1.00		< 1.00		NS NS		8.16	2.05	< 1.00	NS NS
Propylene	115-07-1	ug/m3			< 1.00	< 1.00		< 1.00		< 1.00		NS		< 1.00	9.61	< 1.00	NS NS
sec-Butylbenzene	135-98-8	ug/m3	< 1.00		< 1.00	< 1.00		< 1.00		< 1.00		NS		< 1.00	< 1.00	< 1.00	NS
Styrene	100-42-5	ug/m3			< 1.00	< 1.00	1	< 1.00		< 1.00		NS		< 1.00	< 1.00	< 1.00	NS
Tetrachloroethene	127-18-4	ug/m3		B1	2.6	< 0.25	B1	< 0.25	B1	< 0.25	B1	NS	NS	4.21	2.03	0.32	NS
Tetrahydrofuran	109-99-9	ug/m3			< 1.00	< 1.00		< 1.00		1.29		NS		< 1.00	< 1.00	< 1.00	NS
Toluene	108-88-3	ug/m3	1.12		17.3	< 1.00		< 1.00		1.88		NS		23.7	6.93	< 1.00	NS
Trans-1,2-Dichloroethene	156-60-5	ug/m3	< 1.00		< 1.00	< 1.00		< 1.00		< 1.00		NS		< 1.00	< 1.00	< 1.00	NS
			< 1.00		< 1.00	< 1.00	1	< 1.00		< 1.00		NS		< 1.00	< 1.00	< 1.00	NS
trans-1,3-Dichloropropene	10061-02-6	ug/m3															
trans-1,3-Dichloropropene Trichloroethene	79-01-6	ug/m3	< 0.20	A1	0.3	< 0.20	A1	< 0.20	A1	< 0.20	A1	NS	NS	< 0.20	< 0.20	< 0.20	NS
trans-1,3-Dichloropropene Trichloroethene Trichlorofluoromethane	79-01-6 75-69-4	ug/m3 ug/m3	< 0.20 1.06	A1	0.3 1.32	< 1.00	A1	1.07	A1	1.41	A1	NS	NS	1.54	1.36	1.06	NS
trans-1,3-Dichloropropene Trichloroethene	79-01-6	ug/m3	< 0.20 1.06 < 1.00		0.3				A1 C1		A1 C1		NS NS				

Result Detected

- A1, A2 NYSDOH Soil Vapor Intrusion Matrix A Decision: No Further Action
 B1, B2 NYSDOH Soil Vapor Intrusion Matrix B Decision: No Further Action
 B3 NYSDOH Soil Vapor Intrusion Matrix B Decision: Identify sources and resample and/or mitigate
 - C1 NYSDOH Soil Vapor Intrusion Matrix B Decision: No Further Action
 NS Not sampled

Table 4 Groundwater Analytical Results 265 S Little Tor Road New City, 10956

ECMS, Inc	Collec	tion Date	6/13/2022	6/15/2022	6/13/2022	6/15/2022	3/6/2023	6/15/2022	6/15/2022	6/13/2022	6/15/2022	6/15/2022
10 Filmont Drive		ent Id	MW-UG	MW-2A	MW-4A	MW-5A	MW-5A	MW-6A	MW-7A	MW-8A	MW-12A	MW-13A
New City, NY		1atrix	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water		Ground Water		Ground Water	Ground Water
Project ID: 265 S LITTLE TOR RD	CAS	Units TOGS-GW	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result
Volatiles By SW8260C												
1,1,1,2-Tetrachloroethane	630-20-6	ug/L	< 1.0	< 5.0	< 1.0	< 1.0	NS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1,1-Trichloroethane	71-55-6	ug/L 5	< 1.0	< 5.0	< 1.0	< 1.0	NS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1,2,2-Tetrachloroethane	79-34-5	ug/L 5	< 0.50	< 5.0	< 0.50	< 0.50	NS	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
1,1,2-Trichloroethane	79-00-5	ug/L	< 1.0	< 1.0	< 1.0	< 1.0	NS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1-Dichloroethane	75-34-3	ug/L 5	< 1.0	< 5.0	< 1.0	< 1.0	NS	< 1.0	< 1.0	< 1.0	< 1.0	
1,1-Dichloroethene	75-35-4	ug/L 5	< 1.0	< 5.0	< 1.0	< 1.0	NS NS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1-Dichloropropene 1,2,3-Trichlorobenzene	563-58-6 87-61-6	ug/L	< 1.0 < 1.0	< 5.0 < 10	< 1.0 < 1.0	< 1.0 < 1.0	NS NS	< 1.0 < 1.0				
1,2,3-Trichloropropane	96-18-4	ug/L ug/L 5	< 0.25	< 1.0	< 0.25	< 0.25	NS NS	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25
1,2,4-Trichlorobenzene	120-82-1	ug/L	< 1.0	< 10	< 1.0	< 1.0	NS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2,4-Trimethylbenzene	95-63-6	ug/L	< 1.0	< 5.0	< 1.0	< 1.0	NS	< 1.0	< 1.0	< 1.0	< 1.0	
1,2-Dibromo-3-chloropropane	96-12-8	ug/L	< 0.50	< 1.0	< 0.50	< 0.50	NS	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
1,2-Dibromoethane	106-93-4	ug/L	< 0.25	< 1.0	< 0.25	< 0.25	NS	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25
1,2-Dichlorobenzene	95-50-1	ug/L 4.7	< 1.0	< 4.7	< 1.0	< 1.0	NS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2-Dichloroethane	107-06-2	ug/L 5	< 0.60	< 1.0	< 0.60	< 0.60	NS	< 0.60	< 0.60	< 0.60	< 0.60	< 0.60
1,2-Dichloropropane	78-87-5	ug/L	< 1.0	< 1.0	< 1.0	< 1.0	NS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,3,5-Trimethylbenzene	108-67-8	ug/L	< 1.0	< 5.0	< 1.0	< 1.0	NS NC	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,3-Dichloropenzane	541-73-1 142-28-9	ug/L 5	< 1.0 < 1.0	< 3.0 < 5.0	< 1.0 < 1.0	< 1.0 < 1.0	NS NS	< 1.0 < 1.0				
1,3-Dichloropropane 1,4-Dichlorobenzene	106-46-7	ug/L 5 ug/L 5	< 1.0	< 5.0	< 1.0	< 1.0	NS NS		< 1.0	< 1.0	< 1.0	
2,2-Dichloropropane	594-20-7	ug/L	< 1.0	< 5.0	< 1.0	< 1.0	NS NS	< 1.0	< 1.0	< 1.0	< 1.0	
2-Chlorotoluene	95-49-8	ug/L	< 1.0	< 5.0	< 1.0	< 1.0	NS NS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
2-Hexanone	591-78-6	ug/L	< 5.0	< 50	< 5.0	< 5.0	NS	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
2-Isopropyltoluene	527-84-4	ug/L	< 1.0	< 5.0	< 1.0	< 1.0	NS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
4-Chlorotoluene	106-43-4	ug/L	< 1.0	< 5.0	< 1.0	< 1.0	NS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
4-Methyl-2-pentanone	108-10-1	ug/L 50	< 5.0	< 50	< 5.0	< 5.0	NS	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Acetone	67-64-1	ug/L 50	< 25	< 50	< 25	< 25	NS	< 25	< 25	< 25	< 25	< 25
Acrylonitrile	107-13-1	ug/L	< 1.0	< 5.0	< 1.0	< 1.0	NS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Benzene	71-43-2	ug/L 1	2.4	< 1.0	< 0.70	< 0.70	NS NS	< 0.70	< 0.70	< 0.70	< 0.70	< 0.70
Bromobenzene Bromochloromethane	108-86-1 74-97-5	ug/L ug/L	< 1.0 < 1.0	< 5.0 < 5.0	< 1.0 < 1.0	< 1.0 < 1.0	NS NS	< 1.0 < 1.0				
Bromodichloromethane	75-27-4	ug/L	< 0.50	< 5.0	< 0.50	< 0.50	NS NS	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Bromoform	75-25-2	ug/L	< 1.0	< 10	< 1.0	< 1.0	NS NS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Bromomethane	74-83-9	ug/L	< 1.0	< 5.0	< 1.0	< 1.0	NS NS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Carbon Disulfide	75-15-0	ug/L 50	< 5.0	< 50	< 5.0	< 5.0	NS	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Carbon tetrachloride	56-23-5	ug/L 5	< 1.0	< 5.0	< 1.0	< 1.0	NS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Chlorobenzene	108-90-7	ug/L 5	< 1.0	< 5.0	< 1.0	< 1.0	NS	< 1.0	< 1.0	< 1.0	< 1.0	
Chloroethane	75-00-3	ug/L 50	< 1.0	< 5.0	< 1.0	< 1.0	NS		< 1.0	< 1.0	< 1.0	
Chloroform	67-66-3	ug/L 7	< 1.0	< 7.0	< 1.0	< 1.0	NS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Chloromethane	74-87-3	ug/L	< 1.0	< 5.0	< 1.0	< 1.0	NS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
cis-1,2-Dichloroethene	156-59-2 10061-01-5	ug/L	< 1.0 < 0.40	< 5.0 < 1.0	< 0.40	< 1.0 < 0.40	NS NS	< 1.0 < 0.40	< 1.0 < 0.40	< 0.40	< 0.40	45 < 0.40
cis-1,3-Dichloropropene Dibromochloromethane	124-48-1	ug/L 50	< 0.40	< 5.0	< 0.40	< 0.40	NS NS	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40
Dibromomethane	74-95-3	ug/L 30	< 1.0	< 5.0	< 1.0	< 1.0	NS NS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Dichlorodifluoromethane	75-71-8	ug/L	< 1.0	< 5.0	< 1.0	< 1.0	NS NS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	100-41-4	ug/L 5	< 1.0	< 5.0	< 1.0	< 1.0	NS	< 1.0	2	< 1.0	< 1.0	< 1.0
Hexachlorobutadiene	87-68-3	ug/L	< 0.40	< 1.0	< 0.40	< 0.40	NS	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40
Isopropylbenzene	98-82-8	ug/L	< 1.0	< 5.0	< 1.0	< 1.0	NS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
m&p-Xylene	179601-23-1	ug/L	< 1.0	< 10	< 1.0	< 1.0	NS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Methyl ethyl ketone	78-93-3	ug/L 50	< 5.0	< 50	< 5.0	< 5.0	NS	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Methyl t-butyl ether (MTBE)	1634-04-4	ug/L	< 1.0	< 10	< 1.0	< 1.0	NS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Methylene chloride	75-09-2	ug/L 5	< 1.0	< 5.0	< 1.0	< 1.0	NS	< 1.0	< 1.0	< 1.0	< 1.0	
Naphthalene	91-20-3	ug/L 5	< 1.0	< 5.0	< 1.0	< 1.0 < 1.0	NS NS		< 1.0 < 1.0	< 1.0 < 1.0	< 1.0	< 1.0 < 1.0
n-Butylbenzene	104-51-8 103-65-1	ug/L ug/L	< 1.0 < 1.0	< 5.0 < 5.0	< 1.0 < 1.0	< 1.0	NS NS	< 1.0 < 1.0				
n-Propylbenzene o-Xylene	95-47-6	ug/L 5	< 1.0	< 5.0	< 1.0	< 1.0	NS NS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
p-Isopropyltoluene	99-87-6	ug/L	< 1.0	< 5.0	< 1.0	< 1.0	NS NS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
sec-Butylbenzene	135-98-8	ug/L	< 1.0	< 5.0	< 1.0	< 1.0	NS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Styrene	100-42-5	ug/L	< 1.0	< 5.0	< 1.0	< 1.0	NS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
tert-Butylbenzene	98-06-6	ug/L	< 1.0	< 5.0	< 1.0	< 1.0	NS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Tetrachloroethene	127-18-4	ug/L 5	< 1.0	< 5.0	110	550	<5.0	< 1.0	3.5	4.5	3.3	39
Tetrahydrofuran (THF)	109-99-9	ug/L	< 2.5	< 25	< 2.5	< 2.5	NS	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5
Toluene	108-88-3	ug/L 5	< 1.0	< 5.0	< 1.0	< 1.0	NS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Total Xylenes	1330-20-7	ug/L 5	< 1.0	< 5.0	< 1.0	< 1.0	NS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
trans-1,2-Dichloroethene	156-60-5	ug/L 5	< 1.0	< 5.0	< 1.0 < 0.40	< 1.0 < 0.40	NS NS	< 1.0 < 0.40	< 1.0 < 0.40	< 1.0	< 1.0 < 0.40	< 1.0 < 0.40
trans-1,3-Dichloropropene trans-1,4-dichloro-2-butene	10061-02-6 110-57-6	ug/L ug/L	< 0.40 < 5.0	< 1.0 < 5.0	< 0.40 < 5.0	< 0.40 < 5.0	NS NS	< 0.40 < 5.0				
trans-1,4-dichloro-2-butene Trichloroethene	79-01-6	ug/L 5	< 1.0	< 5.0 < 5.0	< 5.0	< 5.0 1.3	NS NS	< 5.0 < 1.0	< 1.0	< 5.0	< 5.0 < 1.0	< 5.0
	\A-01-p				8.6							12
	75-69-4	110/1										
Trichlorofluoromethane Trichlorotrifluoroethane	75-69-4 76-13-1	ug/L ug/L 5	< 1.0 < 1.0	< 5.0 < 5.0	< 1.0 < 1.0	< 1.0 < 1.0	NS NS	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	

Notes: Result Detected Result Exceeds Criteria

Table 5 Groundwater Elevation Gauging Data 265 S Little Tor Road New City, New York 10956

Well	Depth to Bottom	Depth to Water 6/10/22	Depth to Water 6/13/22	*Depth to Water 6/15/22	Top of Casing Elevation	*Groundwater Elevation 6/15/22
MW-UG	10.10	NA	2.89	3.31	282.32	279.01
MW-2A	9.85	7.65	0.17	2.40	280.71	278.31
MW-4A	10.55	3.80	2.32	2.55	281.85	279.30
MW-5A	10.20	4.40	2.97	3.20	284.45	281.25
MW-6A	14.90	12.68	10.19	10.43	289.84	279.41
MW-7A	10.11	6.68	5.97	6.18	284.00	277.82
MW-8A	10.00	5.21	5.14	5.35	282.59	277.24
MW-12A	10.20	NA	5.04	5.25	279.73	274.48
MW-13A	15.04	13.50	13.00	13.06	285.57	272.51

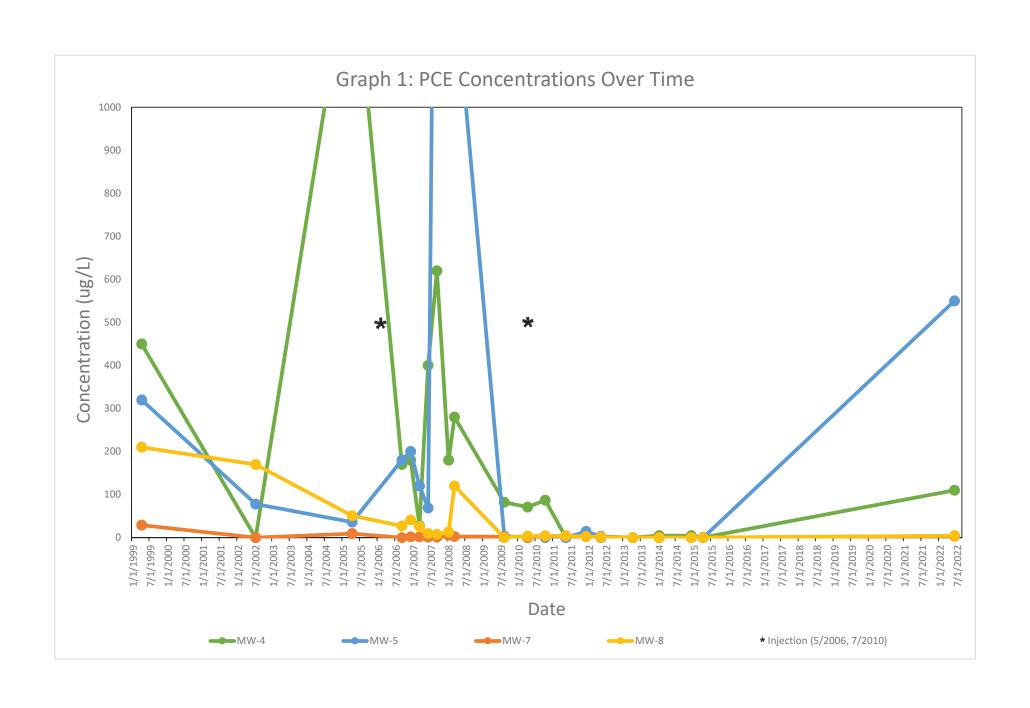
Notes:

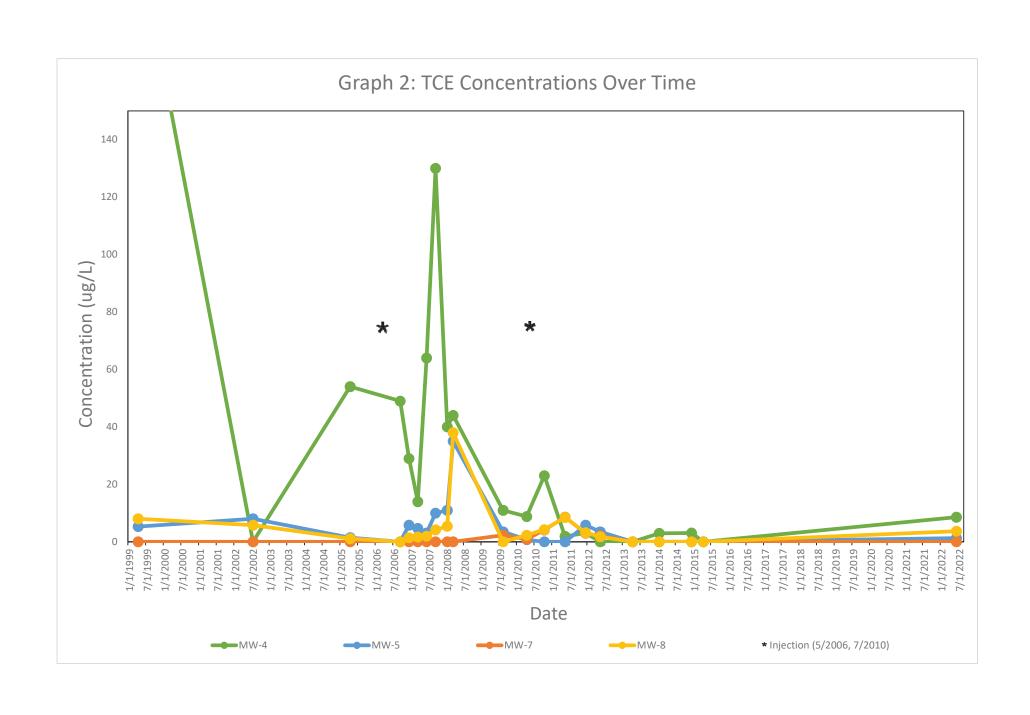
Units - ft

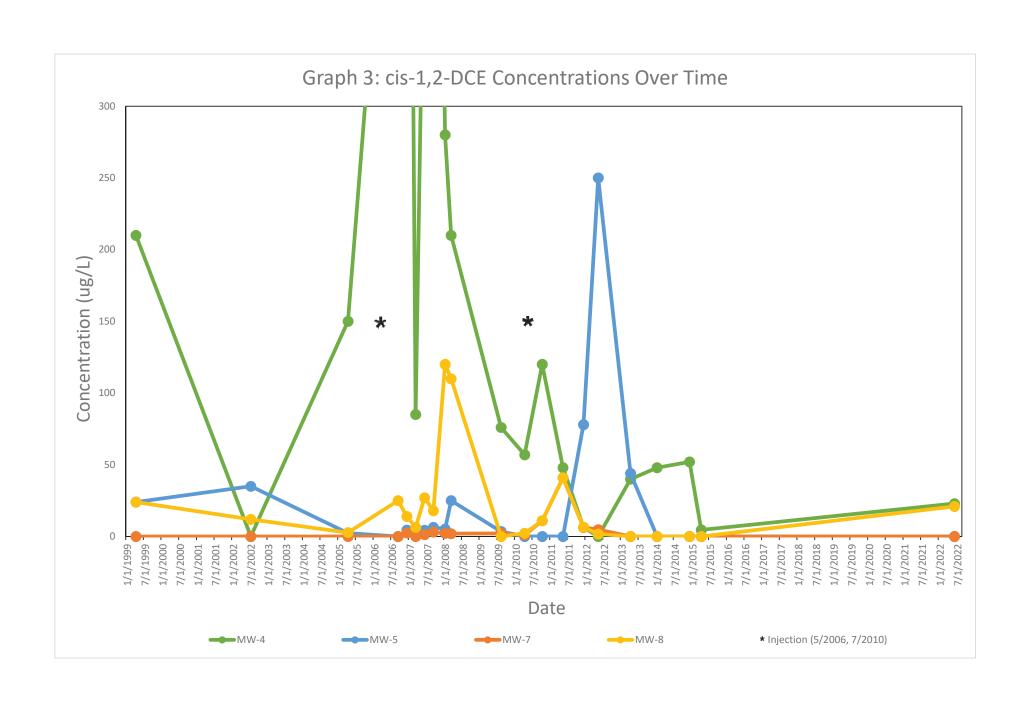
"NA" - Depth to water not measured

"*" - Measurements used for groundwater contour calculation

Table 6 Indoor Air & Outdoor Air Analytical Results – Bombay Grill


ECMS, Inc	Collection Da	ate	2/21/2023	2/21/2023	NYSDOH Soil		
10 Filmont Drive	Client ID		OA-1	IA-1	- Vapor/Indoor Air - Matrix		
New City, NY	Matrix		Air	Air			
Project ID: LITTLE TOR	CAS	Units	Result	Result	IVICETIX		
Volatiles (TO15) By TO15							
Methylene Chloride	75-09-2	ug/m3	< 3.00	< 3.00	A1		


Notes:


A1 NYSDOH Soil Vapor/Indoor Air Matrix A Decision: No Further Action

GRAPHS

GSI MANN-KENDALL TOOLKIT for Constituent Trend Analysis Evaluation Date: Jul-22 Job ID: Facility Name: ECMS Constituent: PCE Concentration Units: ug/L Conducted By: SS Sampling Point ID: MW-7 MW-8 MW-14 Cropsey PCE CONCENTRATION (ug/L) 4/26/1999 450 320 210 29 7/17/2002 170 78 3 4/6/2005 1400 36 9.2 51 9/13/2006 4 170 180 0 27 12/27/2006 180 200 1.6 41 6 3/15/2007 28 120 1.8 26 6/6/2007 400 69 9.6 8 9/5/2007 620 2300 1 7.5 9 1/3/2008 2000 5.6 180 13 10 3/27/2008 1300 2.4 280 120 8/12/2009 11 82 3.5 2.2 0 12 4/5/2010 71 0 0 3.5 1.9 13 10/21/2010 87 0 3.5 4.1 14 5/16/2011 1.6 0 3.9 3.3 4.1 2.1 2.3 15 12/13/2011 2.4 14 5/11/2012 16 0 2.9 1.2 1.1 15 17 4/25/2013 0 0 18 1/14/2014 4.9 0 19 12/19/2014 4.6 0 20 4/25/2015 0.33 0 21 6/15/2022 550 3.5 4.5 110 22 23 24 Coefficient of Variation: Mann-Kendall Statistic (S): -102 Confidence Factor: 53.6% **>99 9**% 599 9º Concentration Trend: Decreasing Decreasing No Trend Decreasing 10000 MW-4 MW-5 Concentration (ug/L) 1000 MW-7 MW-8 100 MW-14 10 04/01 10/06 04/12 09/17 03/23 09/28 10/95 **Sampling Date**

Notes

- 1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- 2. Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing; ≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable.
- Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.

DISCLAIMER: The GSI Mann-Kendall Toolkit is available "as is". Considerable care has been exercised in preparing this software product; however, no party, including without limitation GSI Environmental Inc., makes any representation or warranty regarding the accuracy, correctness, or completeness of the information contained herein, and no such party shall be liable for any direct, indirect, consequential, incidental or other damages resulting from the use of this product or the information contained herein. Information in this publication is subject to change without notice. GSI Environmental Inc., disclaims any responsibility or obligation to update the information contained herein.

GSI Environmental Inc., www.gsi-net.com

GSI MANN-KENDALL TOOLKIT for Constituent Trend Analysis Evaluation Date: Jun-22 Job ID: Facility Name: ECMS Constituent: TCE Concentration Units: ug/L Conducted By: SS Sampling Point ID: MW-7 MW-8 Cropsey TCE CONCENTRATION (ug/L) 4/26/1999 210 5.3 0 7/17/2002 5.8 3 4/6/2005 54 1.5 0 1.1 9/13/2006 4 49 0 0 0 12/27/2006 29 5.8 0 14 6 3/15/2007 14 4.7 0 1.7 6/6/2007 64 8 9/5/2007 130 10 0 4.2 9 1/3/2008 11 5.4 40 0 10 3/27/2008 44 35 0 38 8/12/2009 11 11 3.5 23 0 12 12 4/5/2010 8.8 0.74 0.92 2.3 1.3 13 10/21/2010 0 4.1 4.3 0 23 14 5/16/2011 1.9 0 8.6 8.5 0 15 12/13/2011 5.8 3.1 3.2 3 5/11/2012 16 0 3.5 21 1.8 0 17 4/25/2013 0 0 18 1/14/2014 3 0 19 12/19/2014 0 20 4/25/2015 0.25 0 21 6/15/2022 0 3.7 8.6 1.3 22 23 24 Coefficient of Variation: 1.63 Mann-Kendall Statistic (S): -120 Confidence Factor: 74.29 **>99 9**% 98.0% S99 9º Concentration Trend: Decreasing Decreasing Increasing No Trend No Trend 1000 MW-4 MW-5 Concentration (ug/L) 100 MW-8 MW-14 10 07/98 04/01 01/04 10/06 07/09 04/12 12/14 09/17 03/23 10/95 06/20 **Sampling Date**

Notes

- 1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- 2. Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing; ≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable.
- Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.

DISCLAIMER: The GSI Mann-Kendall Toolkit is available "as is". Considerable care has been exercised in preparing this software product; however, no party, including without limitation GSI Environmental Inc., makes any representation or warranty regarding the accuracy, correctness, or completeness of the information contained herein, and no such party shall be liable for any direct, indirect, consequential, incidental or other damages resulting from the use of this product or the information contained herein. Information in this publication is subject to change without notice. GSI Environmental Inc., disclaims any responsibility or obligation to update the information contained herein.

GSI Environmental Inc., www.gsi-net.com

GSI MANN-KENDALL TOOLKIT for Constituent Trend Analysis Evaluation Date: Jun-22 Facility Name: ECMS Constituent: cis-1,2-DCE Concentration Units: ug/L Conducted By: SS Sampling Point ID: MW-8 Cropsey CIS-1,2-DCE CONCENTRATION (ug/L) 4/26/1999 210 24 0 24 7/17/2002 35 12 3 4/6/2005 150 2.4 0 2.7 9/13/2006 4 590 7.5J 0 25 12/27/2006 920 4.5 25 14 6 3/15/2007 85 5.2 0 6.4 6/6/2007 470 1.4 27 8 9/5/2007 790 6.5 3.1 18 9 1/3/2008 2.2 280 5.2 120 10 3/27/2008 210 25 2 110 22 11 8/12/2009 76 3.5 0.82 0 12 4/5/2010 57 0 1.2 0 13 10/21/2010 120 0 11 11 14 5/16/2011 48 0 41 41 0 15 12/13/2011 6.3 78 6.4 6.6 5/11/2012 16 Ω 250 4.8 18 0 17 4/25/2013 40 44 18 1/14/2014 48 0 19 12/19/2014 52 0 20 4/25/2015 4.6 0 21 6/15/2022 0 21 23 0 22 23 24 Coefficient of Variation: #DIV/0! Mann-Kendall Statistic (S): -118 Confidence Factor: 64 2% 37.5% **>99 9**% 69.8% 599 9º Concentration Trend: #DIV/0! Decreasing No Trend Increasing No Trend 1000 MW-4 MW-5 Concentration (ug/L) 100 MW-8 MW-14 10 07/98 04/01 01/04 10/06 07/09 04/12 12/14 09/17 03/23 10/95 06/20 **Sampling Date**

Notes

- 1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- 2. Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing; ≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable.
- Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.

DISCLAIMER: The GSI Mann-Kendall Toolkit is available "as is". Considerable care has been exercised in preparing this software product; however, no party, including without limitation GSI Environmental Inc., makes any representation or warranty regarding the accuracy, correctness, or completeness of the information contained herein, and no such party shall be liable for any direct, indirect, consequential, incidental or other damages resulting from the use of this product or the information contained herein. Information in this publication is subject to change without notice. GSI Environmental Inc., disclaims any responsibility or obligation to update the information contained herein.

GSI Environmental Inc., www.gsi-net.com

APPENDICES

APPENDIX A

NYSDOH Indoor Air Quality Questionnaire and Building Inventory Form

NEW YORK STATE DEPARTMENT OF HEALTH INDOOR AIR QUALITY QUESTIONNAIRE AND BUILDING INVENTORY CENTER FOR ENVIRONMENTAL HEALTH

This form must be completed for each residence involved in indoor air testing.

Preparer's Name Harry Sudwischer	Date/Time Prepared 3/20/2022
Preparer's Affiliation ECMS/Environmental consultant	Phone No. (203) 241-1030
Purpose of Investigation	
1. OCCUPANT:	
Interviewed: Y/N	
Last Name: First Name:	
Address:	
County:	
Home Phone: Office Phone:	
Number of Occupants/persons at this location A	age of Occupants
2. OWNER OR LANDLORD: (Check if same as occupate	nt)
Interviewed: Y/N	
Last Name: Milich First Name: S	cott
Address: 3 Belaire Terrace, New City, NY 10956	
County: Rockland	
Home Phone: Office Phone:	
3. BUILDING CHARACTERISTICS	
Type of Building: (Circle appropriate response)	
Residential School Commerci	ial/Multi-use

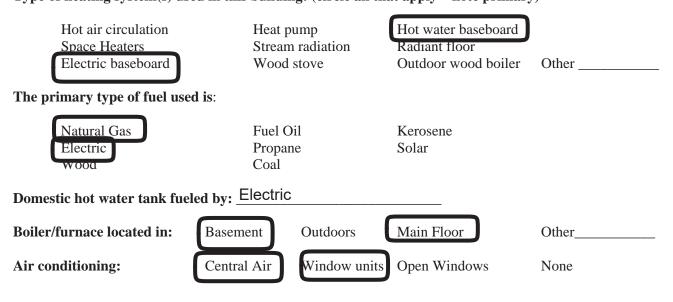
If the property is resident	ial, type? (Circle appropri	ate response)
Ranch Raised Ranch Cape Cod Duplex Modular	2-Family Split Level Contemporary Apartment House Log Home	3-Family Colonial Mobile Home Townhouses/Condos Other:
If multiple units, how man	ny?	
If the property is commer	cial, type?	
Business Type(s) Res	staurants, barber shop	, liquor store, smoke shop, offices
Does it include residen	aces (i.e., multi-use)? Y	If yes, how many?
Other characteristics:		
Number of floors 3	Build	ding age
Is the building insulate	d? Y N How	air tight? Tight Average Not Tight
4. AIRFLOW		
Use air current tubes or t	racer smoke to evaluate a	airflow patterns and qualitatively describe:
Airflow between floors Limited airflow between	n floors	
Airflow near source Limited airflow, some	vents near SG-2	
Outdoor air infiltration IA-4 located within 15	ft of an entryway that v	was used frequently during sampling
Infiltration into air ducts		

No air ducts present

5. BASEMENT AND CONSTRUCTION CHARACTERISTICS (Circle all that apply)

a. Above grade construction:	wood frame	concrete	stone	brick
b. Basement type:	full	crawlspace	slab	other
c. Basement floor:	concrete	dirt	stone	other
d. Basement floor:	uncovered	covered	covered with	
e. Concrete floor:	unsealed	sealed	sealed with _	
f. Foundation walls:	poured	block	stone	other
g. Foundation walls:	unsealed	sealed	sealed with _	
h. The basement is:	wet	damp	dry	moldy
i. The basement is:	finished	unfinished	partially finish	hed
j. Sump present?	YN			
k. Water in sump?	N/ not applicable			
Basement/Lowest level depth below	v grade: 8	_(feet)		

Identify potential soil vapor entry points and approximate size (e.g., cracks, utility ports, drains)


No cracks or drains present in former dry cleaner. There were appliances and storage

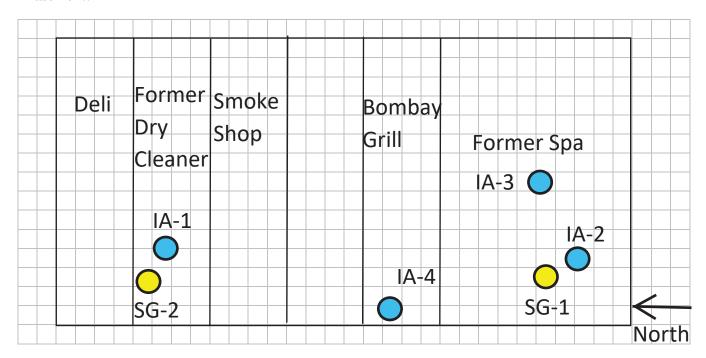
containers Bombay Grill kitchen space, so no entry points could be discerned. The former spa

contained shower drains and plumbing penetrations in the floor.

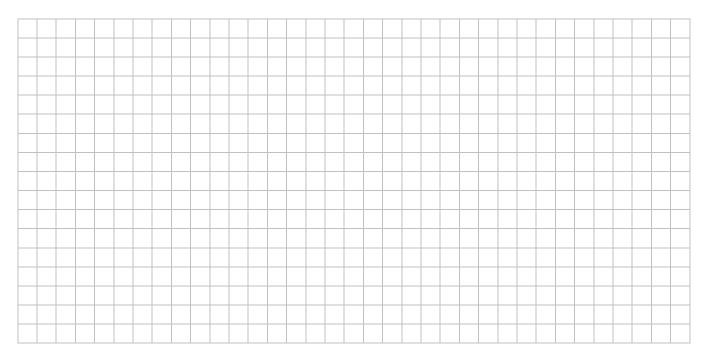
6. HEATING, VENTING and AIR CONDITIONING (Circle all that apply)

Type of heating system(s) used in this building: (circle all that apply – note primary)

Are there air distribution ducts pres

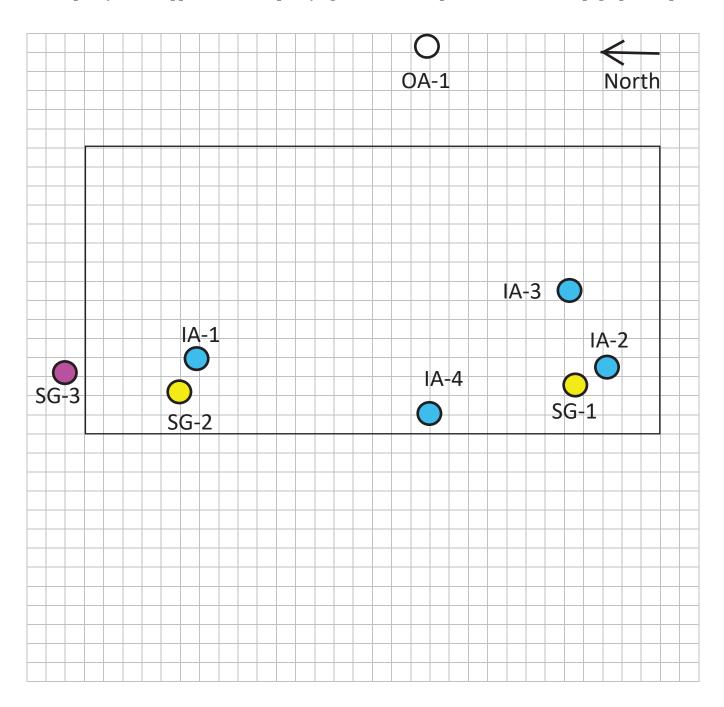

	supply and cold air return ductwork, and its d air return and the tightness of duct joints.	
7. OCCUPA	ANCY	
Is basement/	lowest level occupied? Full-time Occ	asionally Seldom Almost Never
Level	General Use of Each Floor (e.g., familyro	oom, bedroom, laundry, workshop, storage)
Basement	Storage, kitchen space, former spa	
1 st Floor	Restaurants, barber shop, liquor store	e, smoke shop
2 nd Floor	Office spaces	
3 rd Floor		
4 th Floor		
8. FACTOR	S THAT MAY INFLUENCE INDOOR AIR	QUALITY
a. Is there	an attached garage?	YN
b. Does the	e garage have a separate heating unit?	Y/N/NA
_	roleum-powered machines or vehicles in the garage (e.g., lawnmower, atv, car)	Y/N/NA Please specify Weedwacker
d. Has the	building ever had a fire?	Y N When?
e. Is a kero	osene or unvented gas space heater present?	Y N Where?
f. Is there	a workshop or hobby/craft area?	Y/N Where & Type?
g. Is there	smoking in the building?	Y N How frequently?
h. Have clo	eaning products been used recently?	YN When & Type?
i. Have cos	smetic products been used recently?	YN When & Type?

j. Has painting/staining been done in the last 6 months?	Y N Where & When?
k. Is there new carpet, drapes or other textiles?	YN Where & When?
1. Have air fresheners been used recently?	YN When & Type?
m. Is there a kitchen exhaust fan?	Y N If yes, where vented? Roof
n. Is there a bathroom exhaust fan?	Y N If yes, where vented?
o. Is there a clothes dryer?	Y/N If yes, is it vented outside? Y / N
p. Has there been a pesticide application?	Y N When & Type?
Are there odors in the building? If yes, please describe: Mold odor in former spa due to	Y N o leaky pipes
Do any of the building occupants use solvents at work? (e.g., chemical manufacturing or laboratory, auto mechanic or boiler mechanic, pesticide application, cosmetologist	Y N auto body shop, painting, fuel oil delivery,
If yes, what types of solvents are used?	
If yes, are their clothes washed at work?	Y/N
Do any of the building occupants regularly use or work at a response)	a dry-cleaning service? (Circle appropriate
Yes, use dry-cleaning regularly (weekly) Yes, use dry-cleaning infrequently (monthly or less) Yes, work at a dry-cleaning service	No Unknown
Is there a radon mitigation system for the building/structure. Is the system active or passive? Active/Passive	re: YN Date of Installation: December 16, 2013
9. WATER AND SEWAGE	
Water Supply: Public Water Drilled Well Drive	n Well Dug Well Other:
Sewage Disposal: Public Sewer Septic Tank Leach	n Field Dry Well Other:
10. RELOCATION INFORMATION (for oil spill residenti	
a. Provide reasons why relocation is recommended:	
b. Residents choose to: remain in home relocate to fr	iends/family relocate to hotel/motel
c. Responsibility for costs associated with reimburseme	nt explained? Y / N
d. Relocation package provided and explained to reside	nts? Y / N


11. FLOOR PLANS

Draw a plan view sketch of the basement and first floor of the building. Indicate air sampling locations, possible indoor air pollution sources and PID meter readings. If the building does not have a basement, please note.

Basement:


First Floor:

12. OUTDOOR PLOT

Draw a sketch of the area surrounding the building being sampled. If applicable, provide information on spill locations, potential air contamination sources (industries, gas stations, repair shops, landfills, etc.), outdoor air sampling location(s) and PID meter readings.

Also indicate compass direction, wind direction and speed during sampling, the locations of the well and septic system, if applicable, and a qualifying statement to help locate the site on a topographic map.

13. PRODUCT INVENTORY FORM

Make & Model of field instrument used	: No inventory taken
---------------------------------------	----------------------

List specific products found in the residence that have the potential to affect indoor air quality.

Location	Product Description	Size (units)	Condition*	Chemical Ingredients	Field Instrument Reading (units)	Photo ** Y/N

^{*} Describe the condition of the product containers as **Unopened (UO), Used (U),** or **Deteriorated (D)**** Photographs of the **front and back** of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

NEW YORK STATE DEPARTMENT OF HEALTH INDOOR AIR QUALITY QUESTIONNAIRE AND BUILDING INVENTORY CENTER FOR ENVIRONMENTAL HEALTH

This form must be completed for each residence involved in indoor air testing.

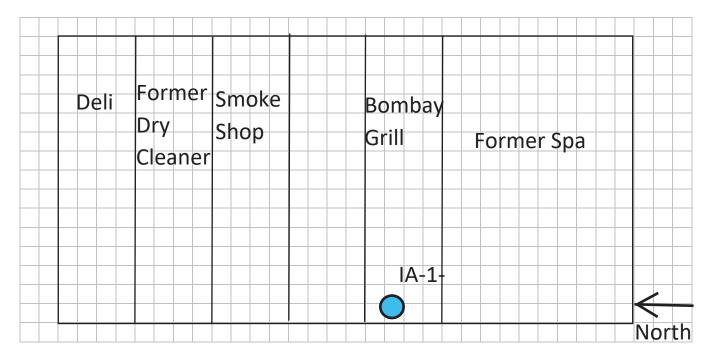
Preparer's Name Harry S	Sudwischer	Date/Time Prepared 2/21/2023
Preparer's Affiliation EC	MS/Environmental consultant	Phone No. (203) 241-1030
Purpose of Investigation_		
1. OCCUPANT:		
Interviewed: Y/N		
Last Name:	First Name:	
Address:		
County:		
Home Phone:	Office Phone:	
Number of Occupants/per	sons at this location Ag	ge of Occupants
2 OWNED OD I ANDI	ORD: (Check if same as occupant	
Interviewed: Y/N	ORD. (Check if same as occupant	1)
Last Name: Milich	First Name: Sc	ott
Address: 3 Belaire Terr	race, New City, NY 10956	
County: Rockland		
Home Phone:	Office Phone:	
3. BUILDING CHARAC	CTERISTICS	
Type of Building: (Circle	e appropriate response)	
Residential	School Commercia	ll/Multi-use

If the property is residential, type? (Circle appropriate response) 2-Family Ranch 3-Family Raised Ranch Split Level Colonial Contemporary Mobile Home Cape Cod Duplex Apartment House Townhouses/Condos Modular Log Home Other: If multiple units, how many? _____ If the property is commercial, type? Business Type(s) Restaurant Does it include residences (i.e., multi-use)? Y N If yes, how many? Other characteristics: Number of floors Building age How air tight? Tight Average Is the building insulated Y / Not Tight 4. AIRFLOW Use air current tubes or tracer smoke to evaluate airflow patterns and qualitatively describe: Airflow between floors Airflow near source Outdoor air infiltration Door to parking area was opened intermittently during sampling period; door was kept open for 30-45 minutes while septic system was being pumped out, so those fumes may have incluenced the samples. Infiltration into air ducts

5.	BASEMENT AND	CONSTRUCTION	CHARACTERISTICS	(Circle all	that apply)
----	--------------	--------------	-----------------	-------------	-------------

a. Above grade construction:	wood frame	concrete	stone	brick
b. Basement type:	full	crawlspace	slab	other
c. Basement floor:	concrete	dirt	stone	other
d. Basement floor:	uncovered	covered	covered with _	
e. Concrete floor:	unsealed	sealed	sealed with	
f. Foundation walls:	poured	block	stone	other
g. Foundation walls:	unsealed	sealed	sealed with	
h. The basement is:	wet	damp	dry	moldy
i. The basement is:	finished	unfinished	partially finish	ed
j. Sump present?	Y/N			
k. Water in sump? Y / N	not applicable			
Basement/Lowest level depth below	grade: 8	_(feet)		
Identify potential soil vapor entry p	oints and appro	ximate size (e.g.	, cracks, utility	ports, drains)
There were appliances and storag	e containers in	the kitchen sto	rage space, so	no soil vapor entry
points could be discerned.				
6. HEATING, VENTING and AIR Type of heating system(s) used in th Hot air circulation Space Heaters Electric baseboard The primary type of fuel used is:		Hot w	11 0	(y) Other
Natural Gas Electric wood	Fuel Oil Propane Coal	Keros Solar	ene	
Domestic hot water tank fueled by:			—	
Boiler/furnace located in: Baser	ment Outdo	oors Main	Floor	Other
Air conditioning: Centr	ral Air Wind	ow units Open	Windows	None

Are there air distribution ducts pre	resent?
--------------------------------------	---------

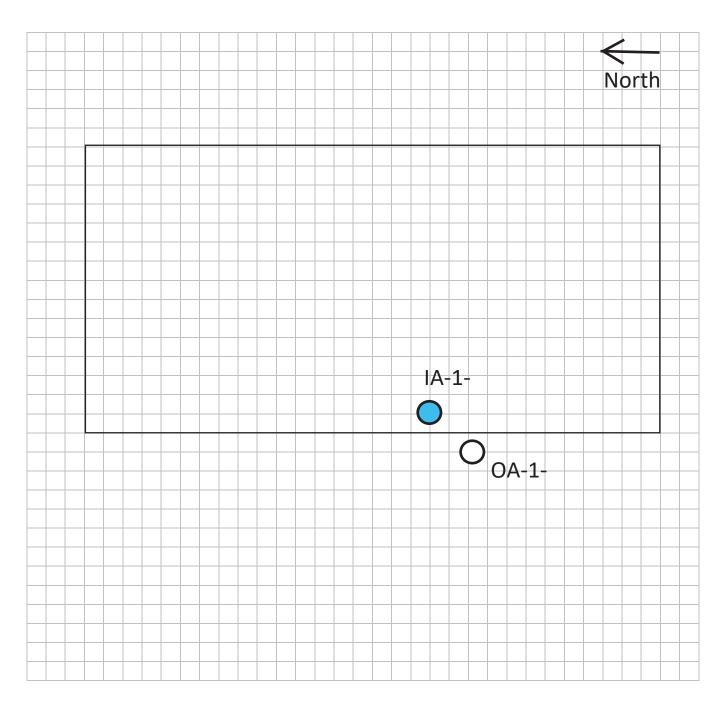

	e supply and cold air return ductwork, and its ld air return and the tightness of duct joints. I		
7. OCCUP	PANCY		
Is basement	/lowest level occupied: Full-time Occa	asionally Seldom	Almost Never
<u>Level</u>	General Use of Each Floor (e.g., familyroo	om, bedroom, laundry,	workshop, storage)
Basement	Storage/kitchen space		
1 st Floor	Restaurant		
2 nd Floor			
3 rd Floor			
4 th Floor			
	RS THAT MAY INFLUENCE INDOOR AIR (QUALITY Y/N	
b. Does th	e garage have a separate heating unit?	Y/N/NA)
_	roleum-powered machines or vehicles in the garage (e.g., lawnmower, atv, car)	Y N / NA Please speci	fy_gasoline containers, seed spreade
d. Has the	e building ever had a fire?	Y/N Who	en?
e. Is a ker	osene or unvented gas space heater present?	YNWho	ere?
f. Is there	a workshop or hobby/craft area?	YN Where & Ty	/pe?
g. Is there	smoking in the building?	Y/N How frequen	ntly?
h. Have cl	leaning products been used recently?	Y/N When & Ty	pe?
i. Have co	smetic products been used recently?	Y/N When & Ty	pe?

j. Has painting/staining been done in the last 6 months? Y/N Where & When?				
k. Is there new carpet, drapes or other textiles?	Where & When?			
l. Have air fresheners been used recently?	\(\sum_{N} \) When & Type?			
m. Is there a kitchen exhaust fan?	Y/N If yes, where vented? Roof			
n. Is there a bathroom exhaust fan?	Y/N If yes, where vented?			
o. Is there a clothes dryer?	Y/N If yes, is it vented outside? Y / N			
p. Has there been a pesticide application?	Y/N When & Type?			
Are there odors in the building? If yes, please describe:	YN			
Do any of the building occupants use solvents at work? (e.g., chemical manufacturing or laboratory, auto mechanic or a boiler mechanic, pesticide application, cosmetologist	Y/N uto body shop, painting, fuel oil delivery,			
If yes, what types of solvents are used?				
If yes, are their clothes washed at work?	1/N			
Do any of the building occupants regularly use or work at a response)	dry-cleaning service? (Circle appropriate			
Yes, use dry-cleaning regularly (weekly) Yes, use dry-cleaning infrequently (monthly or less) Yes, work at a dry-cleaning service	Ne Unknown			
Is there a radon mitigation system for the building/structur Is the system active or passive? Active/Fassive	? Y N Date of Installation: December 16, 2013			
9. WATER AND SEWAGE				
Water Supply: Public Water Drilled Well Driver	Well Dug Well Other:			
Sewage Disposal: Public Sewer Septic Tank Leach	Field Dry Well Other:			
10. RELOCATION INFORMATION (for oil spill residentia	al emergency)			
a. Provide reasons why relocation is recommended:				
b. Residents choose to: remain in home relocate to frie	ends/family relocate to hotel/motel			
c. Responsibility for costs associated with reimbursemen	at explained? Y/N			
d. Relocation package provided and explained to resider	ats? Y/N			

11. FLOOR PLANS

Draw a plan view sketch of the basement and first floor of the building. Indicate air sampling locations, possible indoor air pollution sources and PID meter readings. If the building does not have a basement, please note.

Basement:


First Floor:

12. OUTDOOR PLOT

Draw a sketch of the area surrounding the building being sampled. If applicable, provide information on spill locations, potential air contamination sources (industries, gas stations, repair shops, landfills, etc.), outdoor air sampling location(s) and PID meter readings.

Also indicate compass direction, wind direction and speed during sampling, the locations of the well and septic system, if applicable, and a qualifying statement to help locate the site on a topographic map.

13. PRODUCT INVENTORY FORM

Make & Model of field instrument used: Mini-Rae 3000	
Maka & Madal of field instrument used, MINI-RAE JUUU	

List specific products found in the residence that have the potential to affect indoor air quality.

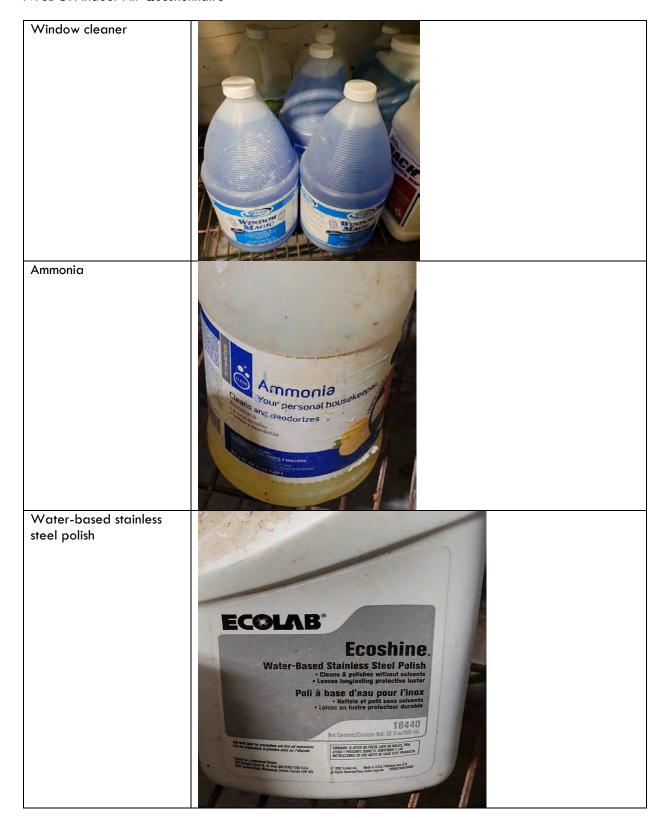
Location	Product Description	Size (units)	Condition*	Chemical Ingredients	Field Instrument Reading (units)	Photo ** Y/N
	Tide laundry detergent	31 floz	UO		No readings	Υ
	Bissell laundry detergent	128 floz	UO		above 0.0	Υ
	Bleach	1 gal	U		detected	Υ
	propane tanks	15 lbs	UO			Υ
	insect killer sprays	17.5 oz	z U			Υ
	expanding foam can	12 oz	U			Υ
	multisurface cleaners	13.8 oz	, U			Υ
	Lysol toilet cleaner	1 qt	U			Υ
	Lysol disinfectant	32 floz	U			Υ
	hand soap	1 gal	U			Υ
Αι	to-Chlor dishwashing liquid	1 gal	UO			Υ
	evaporator coil cleaner	1 gal	U			Υ
	window cleaner	1 gal	UO			Υ
	ammonia	1 gal	UO			Υ
water	based stainless steel polish	32 floz	U			Υ
	Skyline dishwashing fluid	5 gal	U			Υ
s	tainless steel & granite cleaner	32 floz	U			Υ
	all-purpose primer	1 qt	U			Υ
oil	based stainless steel polish	15 oz		***Contains chemicals associated with methylene chloride		Υ

^{*} Describe the condition of the product containers as **Unopened (UO)**, **Used (U)**, or **Deteriorated (D)**** Photographs of the **front and back** of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

Tide and Bissell laundry detergents MULTI-PURPOSE Bleach BLEACH. Propane tanks

Insect killer sprays

265 S Little Tor Rd, New City, NY NYSDOH Indoor Air Questionnaire


Lysol disinfectant	CLEAN 8 Fresh Refresh Cleaner
Hand soap	SATIN OF THE PROPERTY OF THE P

Auto-Chlor dishwashing liquid

Evaporator coil cleaner

Skyline dishwashing fluid

Stainless steel & granite cleaner

Stainless Steel

All-purpose primer

Oil-based stainless steel polish

Contains chemicals associated with methylene chloride

APPENDIX B
Temporary Well Logs

BORING NAME MW-UG

CLIENT: Tor Valley, Inc. PROJECT: 265 S Little Tor Rd		DAT!	DATE STARTED/COMPLETED: 6/10 - 6/15/22 LOGGED BY: H. Sudwischer		
LOCATION: 265 S Little Tor Rd, New	v City, NY	DRIL RIG:	LER: Coastal		
Depth Sample P.I.D. Blow Below Interval Reading Counts/	Well			BORE HOLE DATA	
Grade & Name (ppm) Recovery	Completion	Field Description	of Soil	Drilling Direct Push Method:	
		Soil not characterize PID head space read was 0.7 ppm.		Hole Dia.: 2-inch Depth: 10.1 ft	
		PP		WELL DATA	
				Riser SC 40 PVC	
				Riser Dia.: 1 inch Riser Length: 5 ft Interval: 0-5 ft	
5				Screen SC 40 PVC	
				Screen Dia.: 1 inch	
7	· ·			Screen Length: 5 ft	
	•			slot: 0.1 slotted screen	
8	• •			Interval: 5-10.1 ft	
9				FILTER PACK	
<u> </u>				Source: silica filter sand	
	n,			Composition:	
H I H H	9			Volume Used: 25 lbs	
				Interval: 6 inch -10.1 ft	
				GROUT / SEAL	
	95			Type: Bentonite	
	11			Volume Used: 1 L	
				Interval: 0-6 inch	
	10			WELL HEAD COMPLETION	
				Manhole: YES NO Size: temporary well	
				Concrete Pad: YES NO	
Notes: ppm=parts per million, nd=	not detected			Size.	
C:\HYDRO8\PRESSLY\ACAD_DWG\BLANK.DWG Groundw	ater	LEGEND	i e	WELL DEVELOPMENT	
Bentonite level		ne sand=0.6-0.13mm	pebble=2-4mm	Performed: YES NO	
Sand trace=1-	fine gen	nd=0.13-0.25mm	gravel=4-64mm	Method: low-flow	
Not filled some=20	medium	sand=0.25-0.50mm	cobble=64-256mm		
and=30-5	1000000	sand=0.5-1mm urse sand=1-2mm	boulder=256mm groundwater table	2	

BORING NAME MW-2A

	T:Tor \ CT: _265	Valley, Ir S Little ⁻			\rightarrow	DATE STARTED/COMPLETED: 6/10 - 6/15/2022 LOGGED BY: H. Sudwischer		
			or Rd, New	/ City, NY		DRILLER: Coastal RIG: Geoprobe 6610		
- 1				1		10.0.		
Depth Below	Sample Interval	P.I.D. Reading	Blow Counts/	Well			5	BORE HOLE DATA
Grade	& Name	(ppm)	Recovery (feet)	Completion	Field Descr	ription	of Soil	Drilling Direct Push Method:
T 0					Soil not chara			Hole Dia.: 2-inch
<u> </u>				/ /			ng after install	Depth: 9.9 ft
					was strippin			WELL DATA
3								Riser SC 40 PVC
3				/				Riser Dia.: 1 inch
								Riser Length: 5 ft
4								Interval: 0-5 ft
5	11/4			\cdot $ \cdot $				Screen SC 40 PVC
								Screen Dia.: 1 inch
— 7				• • •				Screen Length: 5 ft
-				• •				slot: 0.1 slotted screen
8				•				Interval: 5-9.9 ft
			1 - 150	• - •				
				• •				FILTER PACK
-10				ш				Source: silica filter sand
L								Composition:
2								Volume Used: 25 lbs
-								Interval: 6 inch - 9.9 ft
								GROUT / SEAL
-								Type: Bentonite
+								Volume Used: 1 L
								Interval: 0-6 inch
	l e							WELL HEAD COMPLETION
								Manhole: YES VO
	100 4							Size: temporary well
-	100 14							Concrete Pad: YES NO
Notes:	DDM=20=	s per mi	llion nd-	not detected				Size:
	ppm=part 8\pressly\ac			not detected	LEGEND			WELL DEVELOPMENT
Ben			7 Groundwa	iter	TRAFIID	Î		
			level trace=1-1	10% very fi	ne sand=0.6-0.1	13mm	pebble=2-4mm	Performed: YES V NO
Sar	nd		little=10-	20% fine sa	nd=0.13-0.25mn		gravel=4-64mm	Method: low-flow
/// No	t filled		some=20-	mediun	n sand=0.25-0.5 sand=0.5-1mm		cobble=64-256mm boulder=256mm	Amt. Purged: 0.5 gals
			and=30-5	00000	ourse sand=1-2		groundwater table	2

BORING NAME MW-4A

CLIENT: Tor					DATE STARTED/COMPLETED: 6/10 - 6/15/2022		
PROJECT: 265					LOGGED BY: H. Sudw DRILLER: Coastal	rischer	
LOCATION: _265	S Little To	or Rd, New	City, NY		RIG: Geoprobe 661	0	
Depth Sample Below Interval		Blow Counts/ Recovery	Well Completion			BORE HOLE DATA	
Grade & Name	(ppm)	(feet)	Completion	Field Descr	iption of Soil	Drilling Direct Push Method:	
				Soil not chara	cterized.	Hole Dia.: 2-inch	
1			/		e reading after install	Depth: <u>10.5 ft</u>	
_ 2						WELL DATA	
						Riser SC 40 PVC Type:	
<u> </u>						Riser Dia.: 1 inch	
4			/			Riser Length: 5 ft	
†						Interval: 0-5 ft	
5						Screen SC 40 PVC	
			. .			Screen Dia.: 1 inch	
7			'. - <u>'</u>			Screen Length: 5 ft	
			- •			slot: 0.1 slotted screen	
			. •			Interval:5-10.5 ft	
9						FILTER PACK	
<u> </u>						Source: silica filter sand	
- "						Composition:	
←						Volume Used: 25 lbs	
+						Interval: 6 inch -10.5 ft	
						GROUT / SEAL	
H-		h = 0				Type: Bentonite	
+						Volume Used: 1 L	
						Interval: 0-6 inch	
- 11						WELL HEAD COMPLETION	
			15 H			Manhole: YES NO	
+						Size: temporary well	
			V -			Concrete Pad: YES NO	
Notes: ppm=par							
C:\HYDR08\PRESSLY\A		7 Groundwat	er	LEGEND		WELL DEVELOPMENT	
Bentonite		level	0% very fin	ne sand=0.6-0.1	3mm pebble=2-4mm	Performed: YES V NO	
Sand		little=10-2	fine sar	nd=0.13-0.25mm	gravel=4-64mm	Method: low-flow	
//// Not filled		some=20-	medium	sand=0.25-0.5 sand=0.5-1mm	0mm cobble=64-256mm boulder=256mm	Amt. Purged: 0.5 gals	
		and=30-50	Course	urse sand=1-2:		Date: 6/13/22	

BORING NAME MW-5A

CLIENT: Tor	Valley, Ir	nc.		DA	DATE STARTED/COMPLETED: 6/10 - 6/15/2022 LOGGED BY: H. Sudwischer			
PROJECT: 265	S Little	Tor Rd			GGED BY:H. Sudw HLLER: _ Coastal	vischer		
LOCATION: 265	S Little To	or Rd, New City	, NY		G: Geoprobe 66	10		
Depth Sample Below Interval	P.I.D. Reading		/ell			BORE HOLE DATA		
Grade & Name	(ppm)	Recovery Cor	npletion	Field Description	on of Soil	Drilling Direct Push Method:		
0				Soil not character	ized	Hole Dia.: 2-inch		
1		1		PID head space rea was 1.0 ppm.		Depth: <u>10.2 ft</u>		
_ 2						WELL DATA		
_3		1	$\sqrt{ }$			Riser SC 40 PVC Type:		
- :			<u> </u>			Riser Dia.: 1 inch		
4			/ ,			Riser Length: 5 ft		
						Interval: <u>0-5 ft</u>		
			_ •			Screen SC 40 PVC Type:		
			•			Screen Dia.: 1 inch		
- 7		1.	$\vdash \cdot $			Screen Length: 5 ft		
		73 63	- <u>"</u>			Slot: 0.1 slotted screen		
						Interval: 5-10.2 ft		
9			$\lfloor .]$			FILTER PACK		
<u> </u>			Ш∥			Source: silica filter sand		
_ 10						Composition:		
-						Volume Used: 25 lbs		
-						Interval: 6 inch -10.2 ft		
						GROUT / SEAL		
- 1						Type: Bentonite		
						Volume Used: 1 L		
F						Interval: 0-6 inch		
						WELL HEAD COMPLETION		
						Manhole: YES NO Size: temporary well		
-						Concrete Pad: ☐YES ✓ NO		
Notes: ppm=par	ts per mi	llion, nd=not	detected			Size:		
C:\HYDRO8\PRESSLY\A	CAD_DWG\BLAN			LEGEND	7	WELL DEVELOPMENT		
Bentonite		level	Very fi-	ne sand=0.6-0.13mr	n pebble=2-4mm	Performed: YES NO		
Sand		trace=1-10% little=10-20%	fine sar	nd=0.13-0.25mm	gravel=4-64mm	Method: low-flow		
Mot filled		some=20-30%	medium	sand=0.25-0.50mr sand=0.5-1mm	n cobble=64-256mm boulder=256mm	Amt. Purged: 0.5 gals		
		and=30-50%		urse sand=1-2mm	groundwater table	Date: 6/15/22		

LOG

BORING NAME Reinstalled MW-5A

8 1 U E	New City, NY									
CLIEN	т:	alley, Ind				DATE	STARTED/COMPLET	ED: 2/21/23		
PROJE	ст: <u>265</u>	S Little	Tor Road			LOGGED BY: H. Sudwischer DRILLER: Costal				
LOCAT	10N: 26	5 S Little	Tor Road	d, New City	, NY 10956		Geoprobe 6620 I	DT		
	,									
Depth Below	Sample Interval	P.I.D. Reading	Blow Counts/ Recovery	Well Completion				BORE HOLE DATA		
Grade	& Name	(ppm)	(feet)	Completion	Field Descr	iption	of Soil	Drilling Hand Auger/ Method: shop vac		
					Soil not char	racter	ized. Well	Hole Dia.: 2-inch		
					reinstalled w			Depth:		
<u>,</u> □				o	and shopvad	c to a	pprox 6.1 ft bgs.			
<u>2</u>			- 0:					WELL DATA		
_3				ື ⊚ ▽ ◎				Riser Type:		
				∘ ├ °				Riser Dia.:		
⊢ 4				°				Riser Length:		
L -				。∐ຶ。				Interval:		
 5				。 。						
<u>_</u> 6								Screen Type:Sch. 40 PVC		
				0 0				Screen Dia.: 1-inch		
								Screen Length: 6-feet		
L								Slot: 0.1 ft		
<u> </u>										
-		-						Interval: <u>0'-6.1'</u>		
_								FILTER PACK		
F								Source: US silica sand		
-			o d a					Composition:		
-								Volume Used: 25 lbs		
-								Interval: 0.5' to 6.1'		
								GROUT / SEAL		
-								Type: Bentonite		
-								Volume Used: 6-inches		
-								Interval: 0' - 0.5'		
-										
_								WELL HEAD COMPLETION		
L			03					Manhole: YES X NO		
-								Size:		
-		-	La La					Concrete Pad: YES X NO		
Note:		l ta === == "	lion - 3	الاحادمادات المما				Size:		
				ot detected						
_	<u> </u>	CAD_DWG\BLAN	IN.DWG	f	LEGEND			WELL DEVELOPMENT		
	Sand		trace=1-1	0% very fir	ne sand=0.6-0.1		pebble=2-4mm	Performed: X YES NO		
Ве	entonite		little=10-	20%	nd=0.13-0.25mm		gravel=4-64mm	Method: peristaltic pump		
			some=20-	medium	n sand=0.25-0.5 sand=0.5-1mm	- 1	cobble=64-256mm boulder=256mm	Amt. Purged: 5 gallons		
			and=30-5		ourse sand=1-2r	- 1		Date: 2/21, 2/27, 3/5/23		

BORING NAME MW-6A

CLIENT:	Tor \	∕alley, Ir	ic.			DATE STARTED/COMPLETED: 6/10 - 6/15/2022			
PROJECT: 265 S Little Tor Rd						LOGGED BY: H. Sudwischer			
			or Rd, New	City, NY		DRILLER: Coastal RIG: Geoprobe 6610			
Depth	Sample Interval	P.I.D. Reading	Blow Counts/	Well			BORE HOLE DATA		
Grade	& Name	(ppm)	Recovery (feet)	Completion	Field Descr	iption of Soil	Drilling Direct Push Method:		
					Soil not chara	cterized	Hole Dia.: 2-inch		
_ 1				/ /		e reading after install	Depth: 15 ft		
_ 2							WELL DATA		
_3							Riser SC 40 PVC Type:		
-							Riser Dia.: 1 inch		
4				/ /			Riser Length: 10 ft		
				16			Interval: 0-10 ft		
5				/ /			Screen SC 40 PVC Type:		
							Screen Dia.: 1 inch		
 7							Screen Length: 5 ft		
-							slot: 0.1 slotted screen		
							Interval: 10-15 ft		
_ 9							FILTER PACK		
<u> </u>							Source: silica filter sand		
-	10.0			$\cdot \mid \forall \mid \cdot \mid$	1		Composition:		
- 11							Volume Used: 25 lbs		
-				. •			Interval: 6 inch -15 ft		
— 12 —				-			GROUT / SEAL		
13				•			Type: Bentonite		
							Volume Used: 1 L		
14				• - •			Interval: 0-6 inch		
— 15	63			ш			WELL HEAD COMPLETION		
-							Manhole: YES NO		
							Size: temporary well		
<u></u>							Concrete Pad: YES NO		
L L		a non mil	lien nd-r	ant detected			Size:		
		AD_DWG\BLAN	IK.DWG	not detected	LEGEND		WELL DEVELOPMENT		
Bento	onite [Z Groundwa level				Performed: YES NO		
Sand			trace=1-1 little=10-	20% fine sa	ne sand=0.6-0.1 ind=0.13-0.25mm	n gravel=4-64mm	Method: low-flow		
Not	filled		some=20-	-30% mediur course	n sand=0.25-0.5 sand=0.5-1mm	boulder=256mm	Amt. Purged: 1.25 gals		
	1,1	1 1 1	and-20 5	OF VETY CO	nurse sand= $1-2$	mm groundwater table	Dete: 6/15/22		

BORING NAME MW-7A

CLIENT: Tor	Valley, Ir	nc.			DATE STARTED/COMPLETED: 6/10 - 6/15/2022		
PROJECT: 265 S Little Tor Rd LOGGED BY: H. Sudv						vischer	
LOCATION: 265	S Little To	or Rd, New C	ity, NY		RIG: Geoprobe 66	10	
Depth Sample Below Interval		Blow Counts/	Well			BORE HOLE DATA	
Grade & Name	(ppm)	Recovery (feet)	ompletion	Field Descri	ption of Soil	Drilling Direct Push Method:	
				Soil not charac PID head space was 0.1 ppm.	terized. reading after install	Hole Dia.: 2-inch Depth: 10.1 ft	
				was O.1 ppm.		WELL DATA	
						Riser SC 40 PVC Type:	
4						Riser Dia.: 1 inch Riser Length: 5 ft Interval: 0-5 ft	
_ 5 _ 6						Screen SC 40 PVC	
-		<u> </u>	·_ `.•			Screen Dia.: 1 inch	
7			.			Screen Length: 5 ft	
						Slot: 0.1 slotted screen	
_ "						Interval: <u>5-10.1 ft</u>	
9						FILTER PACK	
<u> </u>						Source: silica filter sand	
- "						Composition:	
-						Volume Used: 25 lbs	
-						Interval: 6 inch -10.1 ft	
						GROUT / SEAL	
-						Type: Bentonite	
						Volume Used: 1 L	
F						Interval: 0-6 inch	
						WELL HEAD COMPLETION	
						Manhole: YES NO Size: temporary well	
	ts now ==	llion nd-n-t	detector			Concrete Pad: YES NO	
Notes: ppm=par c:\hydro8\pressly\a		NK.DWG		LEGEND		WELL DEVELOPMENT	
Bentonite	1 E Z	Z Groundwater level					
Sand		trace=1-10%	fine sar	ne sand=0.6-0.13 nd=0.13-0.25mm	gravel=4-64mm	Performed: YES NO Method: low-flow	
//// Not filled		some=20-30	medium	sand=0.25-0.50 sand=0.5-1mm	0mm cobble=64-256mm boulder=256mm	Amt. Purged: 0.5 gals	
	J L	and=30-50%	100000	urse sand=1-2m		Date: 6/15/22	

BORING NAME MW-8A

CLIENT: Tor Valley, Inc.						DATE STARTED/COMPLETED: 6/10 - 6/15/2022 LOGGED BY: H. Sudwischer		
PROJECT	r: <u>265</u>	S Little 7	Γor Rd			DRILLER: Coastal	VISCILEI	
LOCATIO	N: 265	S Little To	or Rd, New	City, NY		RIG: Geoprobe 66	10	
F	Sample nterval	P.I.D. Reading	Blow Counts/	Well			BORE HOLE DATA	
Grade &	Name	(ppm)	(feet)	Completion	Field Descrip	otion of Soil	Drilling Direct Push Method:	
					Soil not charac	terized	Hole Dia.: 2-inch	
1				/		reading after install	Depth: 10 ft	
_ 2							WELL DATA	
_3				/ /			Riser SC 40 PVC	
⊢							Riser Dia.: 1 inch	
- 4				/			Riser Length: 5 ft	
-							Interval: 0-5 ft	
5							Screen SC 40 PVC	
							Screen Dia.: 1 inch	
- 7				· - ·			Screen Length: 5 ft	
4-							slot: 0.1 slotted screen	
8				• •			Interval: 5-10 ft	
				• •				
				• •			FILTER PACK	
— ₁₀							Source: silica filter sand	
- '`							Composition:	
-							Volume Used: 25 lbs	
-							Interval: 6 inch -10 ft	
							GROUT / SEAL	
-			1 1 1				Type: Bentonite	
1							Volume Used: 1 L	
							Interval: 0-6 inch	
E 1							WELL HEAD COMPLETION	
				5			Manhole: YES V NO	
-	10						Size: temporary well	
							Concrete Pad: YES NO	
		s per mil		ot detected	LECEND		WELL DEAL ODVENO	
			7 Groundwat	er	LEGEND	ì	WELL DEVELOPMENT	
Benton Sand	inte		level	fine ser	ne sand=0.6-0.13	17	Performed: YES NO Method: low-flow	
/// Not f	illed		little=10-2	2U% I	nd=0.13-0.25mm n_sand=0.25-0.50	gravel=4-64mm omm cobble=64-256mm		
[]] NOUT	meu		some=20-	100000	sand=0.5-1mm	boulder=256mm	Amt. Purged: 0.5 gals	
	1,00		and=30-50	yery co	urse sand=1-2m	m groundwater table	Date: 6/13/22	

BORING NAME MW-12A

CLIENT: Tor PROJECT: 265	S Little	Tor Rd	-	DATE STARTED/COMPLETED: 6/10 - 6/15/2022 LOGGED BY: H. Sudwischer DRILLER: Coastal		
LOCATION: 265	5 S Little To	or Rd, New City, N	NY	RIG: Geoprobe 661	0	
Depth Sample Below Interval	Reading	Blow Counts/ Well			BORE HOLE DATA	
Grade & Name	(ppm)	Recovery Comp (feet)	letion Field Des	cription of Soil	Drilling Direct Push Method:	
		/	Soil not char	racterized.	Hole Dia.: 2-inch Depth: 10.2 ft	
_ 2					WELL DATA	
3			7 /		Riser SC 40 PVC	
4					Riser Dia.: 1 inch Riser Length: 5 ft Interval: 0-5 ft	
5 6		-			Screen SC 40 PVC Type:	
- <u>-</u>			. .•		Screen Dia.: 1 inch	
					Screen Length: 5 ft	
<u>8</u>			.		Slot: 0.1 slotted screen	
-			- .		Interval: 5-10.2 ft	
9			.		FILTER PACK	
<u> </u>			_		Source: silica filter sand	
- 1	-				Composition:	
-					Volume Used: 25 lbs	
					Interval: 6 inch -10.2 ft	
					GROUT / SEAL	
- 1					Type: Bentonite	
					Volume Used: 1 L	
}-					Interval: 0-6 inch	
					WELL HEAD COMPLETION	
E					Manhole: YES NO Size: temporary well	
					Concrete Pad: YES NO	
		llion, nd=not det				
C:\HYDR08\PRESSLY\A		7 Groundwater	LEGEND	ì	WELL DEVELOPMENT	
Bentonite Sand		trace=1-10% V	ery fine sand=0.6-0 ine sand=0.13-0.25m nedium sand=0.25-0	nm gravel=4-64mm	Performed: YES NO Method: low-flow	
/// Not filled		some=20-30% c	ourse sand=0.5-1mi	m boulder=256mm	Amt. Purged: U.5 gals	
		and=30-50% V	ery course sand=1-	2mm groundwater table	Date: 6/15/22	

BORING NAME MW-13A

CLIENT: Tor Valley, Inc. PROJECT: 265 S Little Tor Rd							DATE STARTED/COMPLETED: 6/10 - 6/15/2022 LOGGED BY: H. Sudwischer DRILLER: Coastal			
LOCAT	TION: _265	S Little To	or Rd, Nev	v City	, NY		RIG: Geoprobe 66	10		
Depth Below Grade	Sample Interval & Name	P.I.D. Reading (ppm)	Blow Counts/ Recovery		Tell	Field Decem	inking of Spil	BORE HOLE DATA Drilling Direct Push		
			(feet)	_	-	Field Descr	iption of Soil	Method:		
$\begin{bmatrix} 0 \\ -1 \end{bmatrix}$						Soil not chara	cterized.	Hole Dia.: 2-inch Depth: 15 ft		
_ 2	3			/				WELL DATA		
3				n /				Riser SC 40 PVC		
4				/				Riser Dia.: 1 inch Riser Length: 10 ft Interval: 0-10 ft		
<u></u>				/				Screen SC 40 PVC		
6				/				Screen Dia.: 1 inch		
L '								Screen Length: 5 ft Slot: 0.1 slotted screen		
8				/				Interval: 10-15 ft		
— 9								FILTER PACK		
- - - - 11	1 9			<u>_</u>	-			Source: silica filter sand Composition: Volume Used: 25 lbs Interval: 6 inch -15 ft		
12				•				GROUT / SEAL		
L 13					\square			Type: Bentonite		
14					- .			Volume Used: 1 L Interval: 0-6 inch		
15								WELL HEAD COMPLETION		
E	16							Manhole: YES NO Size: temporary well		
Notes:	ppm=par	s per mil	lion nd-	not e	detected			Concrete Pad: YES NO Size:		
	8\PRESSLY\AG	AD_DWG\BLAN	K.DWG			LEGEND		WELL DEVELOPMENT		
Ben Sar			Groundw level trace=1-little=10-some=20	10% -20%	very fin fine san medium course	e sand=0.6-0.1 d=0.13-0.25mn sand=0.25-0.5 sand=0.5-1mm	gravel=4-64mm cobble=64-256mm boulder=256mm	Amt. Purged: 1.25 gals		

APPENDIX C
Well Decommissioning Logs

Drilling Contractor

Site Name: 265 S Little Tor Road	Well I.D.: MW-4
Site Location: 265 South Little Tor Rd, New City, NY	Driller: ECMS, Inc.
Drilling Co.: ECMS, Inc.	Inspector:
	Date: June 10, 2022

DECOMMISSIONING	WELL SCHEMATIC*			
(Fill in all that appl	y)	Depth		Grout
		(feet)		/
OVERDRILLING			_	
Interval Drilled	0-5 ft			
Drilling Method(s)			_	
Borehole Dia. (in.)	6 inches		_	
Temporary Casing Installed? (y/n) Depth temporary casing installed	No	0.4		
Casing type/dia. (in.)		2 ft	_	
Method of installing			_	/
Wethod of histaning				/
CASING PULLING			_	
Method employed	Pulled	4 ft		
Casing retrieved (feet)	Entire casing			Sand fill
Casing type/dia. (in)	2" PVC			Y ./.
<u>CASING PERFORATING</u>				
Equipment used		6 ft		/
Number of perforations/foot				
Size of perforations				
Interval perforated			_	
GROUTING		8 ft		/
Interval grouted (FBLS)	0-6 inches	011	_	'
# of batches prepared	Approx. 1			
For each batch record:	bag per well		_	
Quantity of water used (gal.)	bag per well			/
Quantity of cement used (lbs.)		10 ft		
Cement type				
Quantity of bentonite used (lbs.)				
Quantity of calcium chloride used (lbs.)				
Volume of grout prepared (gal.)				
Volume of grout used (gal.)		J		
COMP (ENTER		1		
COMMENTS:		1	Il relevant decommissioning	_
		interval over	rdrilled, interval grouted, ca	sing left in hole,
		well stickup	, etc.	
Harry Sudwischer				

Drilling Contractor

Site Name: 265 S Little Tor Road	Well I.D.: MW-5
Site Location: 265 South Little Tor Rd, New City, NY	Driller: ECMS, Inc.
Drilling Co.: ECMS, Inc.	Inspector:
	Date: June 10, 2022

DECOMMISSIONING	DATA	W	ELL SCHEMATIC*	
(Fill in all that apply)		Depth	ſ	Grout
		(feet)	/	
OVERDRILLING			_ //	
Interval Drilled	0-5 ft	_	_	
Drilling Method(s)		_	_	
Borehole Dia. (in.)	6 inches	_	_	
Temporary Casing Installed? (y/n) Depth temporary casing installed	No	_	-	
Casing type/dia. (in.)		_2 ft	\dashv \mid \not	
Method of installing		-	-	
Wethod of instanning		-	-	
CASING PULLING		-	-	
Method employed	Pulled	4 ft -	┦ /	- L 611
Casing retrieved (feet)	Entire casing		┪	Sand fill
Casing type/dia. (in)	2" PVC	_	┦ /,/,	
		_	\neg $ V $	
<u>CASING PERFORATING</u>		1 _		
Equipment used		6 ft	_	
Number of perforations/foot		_	_	
Size of perforations		_	_	
Interval perforated		_	-	
GROUTING		8 ft	- /	
Interval grouted (FBLS)	0-6 inches	- 011	⊣	
# of batches prepared	Approx. 1	-	-	
For each batch record:	bag per well	-	\dashv \mid \not	
Quantity of water used (gal.)	bag por won	_	┨	
Quantity of cement used (lbs.)		10 ft	7 🔼	
Cement type				
Quantity of bentonite used (lbs.)		_		
Quantity of calcium chloride used (lbs.)		_	_	
Volume of grout prepared (gal.)		_	_	
Volume of grout used (gal.)		J _	_	
COMMENTS.		7		
COMMENTS:		7	evant decommissioning data, in	-
		1	led, interval grouted, casing left	ın hole,
		well stickup, etc.		
Harry Sudwischer		1		

Harry Sudwischer

Drilling Contractor

Site Name: 265 S Little Tor Road	Well I.D.: MW-8
Site Location: 265 South Little Tor Rd, New City, NY	Driller: ECMS, Inc.
Drilling Co.: ECMS, Inc.	Inspector:
	Date: June 10, 2022

DECOMMISSIONING (Fill in all that appl		Depth	WELL SCHEMATIC* Grout
, , , , , , , , , , , , , , , , , , , ,	y)	(feet)	/
OVERDRILLING Interval Drilled Drilling Method(s) Borehole Dia. (in.) Temporary Casing Installed? (y/n) Depth temporary casing installed Casing type/dia. (in.) Method of installing		2 ft	Sand fill
CASING PULLING Method employed Casing retrieved (feet) Casing type/dia. (in)	Unthread 5 ft 2" PVC	_4 ft	
CASING PERFORATING Equipment used Number of perforations/foot Size of perforations Interval perforated		<u>6 ft</u>	Remaining casing
GROUTING Interval grouted (FBLS) # of batches prepared For each batch record: Quantity of water used (gal.) Quantity of cement used (lbs.)	0-6 inches Approx. 1 bag per well	8 ft 10 ft	
Cement type Quantity of bentonite used (lbs.) Quantity of calcium chloride used (lbs.) Volume of grout prepared (gal.) Volume of grout used (gal.)			
COMMENTS:			Il relevant decommissioning data, including: rdrilled, interval grouted, casing left in hole, o, etc.

Drilling Contractor

Site Name: 265 S Little Tor Road	Well I.D.: MW-UG
Site Location: 265 South Little Tor Rd, New City, NY	Driller: ECMS, Inc.
Drilling Co.: ECMS, Inc.	Inspector:
	Date: August 3, 2022

DECOMMISSIONING	DATA	l V	VELL SCHEMA	TIC*
(Fill in all that apply)		Depth		/—Grout
		(feet)		/
<u>OVERDRILLING</u>				/
Interval Drilled				\vee
Drilling Method(s)				
Borehole Dia. (in.)				
Temporary Casing Installed? (y/n)				
Depth temporary casing installed		2 ft		
Casing type/dia. (in.)				/
Method of installing			_	/
CACINIC DITLINIC				
CASING PULLING Method employed	Pulled		_	
Casing retrieved (feet)	Entire casing	_4 ft	_	Sand fill
Casing type/dia. (in)	1" PVC			//
Cusing type/dia. (iii)	1 1 0		_	V
CASING PERFORATING				
Equipment used		6 ft		/
Number of perforations/foot				/
Size of perforations				
Interval perforated				
				/
GROUTING		8 ft		/
Interval grouted (FBLS)	0-6 inches			
# of batches prepared	Approx. 1			
For each batch record:	bag per well			
Quantity of water used (gal.)				/
Quantity of cement used (lbs.)		10 ft		
Cement type			_	
Quantity of bentonite used (lbs.)				
Quantity of calcium chloride used (lbs.)				
Volume of grout prepared (gal.)			_	
Volume of grout used (gal.)		J		
COMMENTS:		* Class 1: 1: -11	alassant da a accomingioni	data in district
COMMITTINI 5.		1	elevant decommissioning	_
		1	illed, interval grouted, cas	ing left in hole,
		well stickup, et	tc.	
Harry Sudwischer				

Drilling Contractor

Site Name: 265 S Little Tor Road	Well I.D.: MW-2A
Site Location: 265 South Little Tor Rd, New City, NY	Driller: ECMS, Inc.
Drilling Co.: ECMS, Inc.	Inspector:
	Date: August 3, 2022

DECOMMISSIONING	DATA		WELL SCHEMA	TIC*	
(Fill in all that apply)		Depth		_	Grout
		(feet)		/	
<u>OVERDRILLING</u>				V	
Interval Drilled					
Drilling Method(s)					
Borehole Dia. (in.)					
Temporary Casing Installed? (y/n)					
Depth temporary casing installed		2 ft	_		
Casing type/dia. (in.)			\dashv	/	
Method of installing			_	/	
CASING PULLING			\dashv		
Method employed	Pulled	4 ft	-		
Casing retrieved (feet)	Entire casing	411	\dashv	<i> //</i> ├	Sand fill
Casing type/dia. (in)	1" PVC			Y./	
			\neg	V	
<u>CASING PERFORATING</u>					
Equipment used		6 ft		/	
Number of perforations/foot				/	
Size of perforations					
Interval perforated			\dashv		
GROUTING		8 ft	\dashv	/	
Interval grouted (FBLS)	0-6 inches	011	\dashv	ľ	
# of batches prepared	Approx. 1		-		
For each batch record:	bag per well		\dashv		
Quantity of water used (gal.)	bag por won			/	
Quantity of cement used (lbs.)		10 ft			
Cement type					
Quantity of bentonite used (lbs.)					
Quantity of calcium chloride used (lbs.)					
Volume of grout prepared (gal.)					
Volume of grout used (gal.)		l		Ш	
COMMENTS.		1			
COMMENTS:			I relevant decommissioning		-
			rdrilled, interval grouted, cas	sing left ir	n hole,
		well stickup	, etc.		
Llam, Cuduia de an]			
Harry Sudwischer					

Harry Sudwischer

Drilling Contractor

Site Name: 265 S Little Tor Road	Well I.D.: MW-4A
Site Location: 265 South Little Tor Rd, New City, NY	Driller: ECMS, Inc.
Drilling Co.: ECMS, Inc.	Inspector:
	Date: August 3, 2022

DECOMMISSIONING	DATA		WELL SCHEMA	TIC*
(Fill in all that apply	y)	Depth		Grout
OVEDDBILL DIG		(feet)		/
<u>OVERDRILLING</u>			_	
Interval Drilled			\dashv	V
Drilling Method(s) Borehole Dia. (in.)			\dashv	
Temporary Casing Installed? (y/n)			\dashv	
Depth temporary casing installed		2 ft	\dashv	
Casing type/dia. (in.)			\dashv	/
Method of installing				/
			\neg	ľ l l
CASING PULLING				
Method employed	Pulled	_4 ft		Sand fill
Casing retrieved (feet)	Entire casing		\Box	//
Casing type/dia. (in)	1" PVC		\exists	[]
CASING DEDEODATING			\dashv	[]
CASING PERFORATING Equipment used		6 f f	\dashv	/
Number of perforations/foot		<u>6 ft</u>	\dashv	/
Size of perforations			\dashv	
Interval perforated			\exists	
			\neg	/
GROUTING		8 ft		V
Interval grouted (FBLS)	0-6 inches			
# of batches prepared	Approx. 1		\exists	
For each batch record:	bag per well		\exists	/
Quantity of water used (gal.) Quantity of cement used (lbs.)		10 ft	\dashv	 /
Cement type		1011	\dashv	
Quantity of bentonite used (lbs.)			\dashv	
Quantity of calcium chloride used (lbs.)			\dashv	
Volume of grout prepared (gal.)			\exists	
Volume of grout used (gal.)				
			_	
COMMENTS:		* Sketch in all	relevant decommissioning	data, including:
		interval overc	drilled, interval grouted, cas	sing left in hole,
		well stickup,	etc.	

Drilling Contractor

Site Name: 265 S Little Tor Road	Well I.D.: MW-5A
Site Location: 265 South Little Tor Rd, New City, NY	Driller: ECMS, Inc.
Drilling Co.: ECMS, Inc.	Inspector:
	Date: August 3, 2022

DECOMMISSIONING	DATA		WELL SCHEMA	TIC*
(Fill in all that apply)		Depth		/—Grout
		(feet)		/
<u>OVERDRILLING</u>				/
Interval Drilled				V
Drilling Method(s)				
Borehole Dia. (in.)			_	
Temporary Casing Installed? (y/n) Depth temporary casing installed		0.5	_	
Casing type/dia. (in.)		2 ft	\dashv	
Method of installing			$\overline{}$	/
Wethod of mstanning			-	/
CASING PULLING				
Method employed	Pulled	4 ft	\dashv	
Casing retrieved (feet)	Entire casing			Sand fill
Casing type/dia. (in)	1" PVC			Y,/
<u>CASING PERFORATING</u>				
Equipment used		6 ft		/
Number of perforations/foot				/
Size of perforations				
Interval perforated				
GROUTING		8 ft	_	/
Interval grouted (FBLS)	0-6 inches	011	\dashv	ľ l
# of batches prepared	Approx. 1		-	
For each batch record:	bag per well		\dashv	
Quantity of water used (gal.)	Dag per wen			/
Quantity of cement used (lbs.)		10 ft		
Cement type				
Quantity of bentonite used (lbs.)				
Quantity of calcium chloride used (lbs.)				
Volume of grout prepared (gal.)				
Volume of grout used (gal.)		J		
COMPARATE		1		
COMMENTS:		1	relevant decommissioning	_
			drilled, interval grouted, cas	sing left in hole,
		well stickup,	etc.	
Harry Sudwischer				

Drilling Contractor

Site Name: 265 S Little Tor Road	Well I.D.: MW-6A
Site Location: 265 South Little Tor Rd, New City, NY	Driller: ECMS, Inc.
Drilling Co.: ECMS, Inc.	Inspector:
	Date: August 3, 2022

DECOMMISSIONING	DATA		WELL SCHEMAT	TIC*
(Fill in all that apply)		Depth		
OVERDRY VIVIG		(feet)		ر Grout
<u>OVERDRILLING</u>				/
Interval Drilled			-	V
Drilling Method(s) Borehole Dia. (in.)			- 'i	\dashv
Temporary Casing Installed? (y/n)			\dashv	Sand fill
Depth temporary casing installed		5 ft	\dashv	
Casing type/dia. (in.)		010	-	
Method of installing			-	/
			一	′
CASING PULLING				
Method employed	Pulled	10 ft		
Casing retrieved (feet)	Entire casing			/
Casing type/dia. (in)	1" PVC		_ [
CASING PERFORATING			-	
Equipment used		15 ft	\dashv	/
Number of perforations/foot		1011	⊣	/
Size of perforations			\neg	
Interval perforated				
<u>GROUTING</u>				
Interval grouted (FBLS)	0-6 inches			
# of batches prepared	Approx. 1		_	
For each batch record:	bag per well		-	
Quantity of water used (gal.) Quantity of cement used (lbs.)			-	
Cement type			-	
Quantity of bentonite used (lbs.)			\dashv	
Quantity of calcium chloride used (lbs.)			\neg	
Volume of grout prepared (gal.)				
Volume of grout used (gal.)				
COMMENTS:		* Sketch in a	all relevant decommissioning of	lata, including:
		interval ove	erdrilled, interval grouted, casi	ng left in hole,
		well stickup	o, etc.	
Harry Sudwischer				

Harry Sudwischer

Drilling Contractor

Site Name: 265 S Little Tor Road	Well I.D.: MW-7A
Site Location: 265 South Little Tor Rd, New City, NY	Driller: ECMS, Inc.
Drilling Co.: ECMS, Inc.	Inspector:
	Date: August 3, 2022

DECOMMISSIONING	DATA	WI	ELL SCHEMATIC*	
(Fill in all that appl	ly)	Depth	. /.	—Grout
OVED DRILLING		(feet)	/	
OVERDRILLING			-	
Interval Drilled Drilling Method(s)		_	-	
Borehole Dia. (in.)		_	 	
Temporary Casing Installed? (y/n)		_	-	
Depth temporary casing installed			1	
Casing type/dia. (in.)			1 /	
Method of installing		_	1 /	
		_] []	
<u>CASING PULLING</u>	<u> </u>	_]]	
Method employed	Pulled	4 ft		Sand fill
Casing retrieved (feet)	Entire casing		-	0 0.1101
Casing type/dia. (in)	1" PVC	_	-	
CASING PERFORATING		_	-	
Equipment used		6 ft	1 /	
Number of perforations/foot		<u> </u>	/	
Size of perforations		_	1	
Interval perforated		_		
	.	<u> </u>] /	
GROUTING		8 ft	<u> </u>	
Interval grouted (FBLS)	0-6 inches		_	
# of batches prepared For each batch record:	Approx. 1	_	-	
Quantity of water used (gal.)	bag per well	_	1 / 1	
Quantity of water used (gar.) Quantity of cement used (lbs.)		10 ft	/	
Cement type			1 -	
Quantity of bentonite used (lbs.)		_	1	
Quantity of calcium chloride used (lbs.)		_]	
Volume of grout prepared (gal.)		<u> </u>		
Volume of grout used (gal.)				
COMMENTS:		* 61	vant decommissioning data, in	ala dia a
COMMUNICATION.			vant decommissioning data, inceed, interval grouted, casing left	Ü
			a, mervai grouted, casing left	in noie,
		well stickup, etc.		

Harry Sudwischer

Drilling Contractor

Site Name: 265 S Little Tor Road	Well I.D.: MW-8A
Site Location: 265 South Little Tor Rd, New City, NY	Driller: ECMS, Inc.
Drilling Co.: ECMS, Inc.	Inspector:
	Date: August 3, 2022

DECOMMISSIONING (Fill in all that appl		Depth	WELL SCHEMATIC* Grout
	y)	(feet)	
OVERDRILLING Interval Drilled Drilling Method(s) Borehole Dia. (in.) Temporary Casing Installed? (y/n) Depth temporary casing installed Casing type/dia. (in.) Method of installing		2 ft	Sand fill
CASING PULLING Method employed Casing retrieved (feet) Casing type/dia. (in)	Unthread 5 ft 2" PVC	_4 ft	
CASING PERFORATING Equipment used Number of perforations/foot Size of perforations Interval perforated		<u>6 ft</u>	Remaining casing
GROUTING Interval grouted (FBLS) # of batches prepared For each batch record: Quantity of water used (gal.) Quantity of cement used (lbs.)	0-6 inches Approx. 1 bag per well	8 ft 10 ft	
Cement type Quantity of bentonite used (lbs.) Quantity of calcium chloride used (lbs.) Volume of grout prepared (gal.) Volume of grout used (gal.)			
COMMENTS:			Il relevant decommissioning data, including: rdrilled, interval grouted, casing left in hole, o, etc.

Harry Sudwischer

Drilling Contractor

Site Name: 265 S Little Tor Road	Well I.D.: MW-12A
Site Location: 265 South Little Tor Rd, New City, NY	Driller: ECMS, Inc.
Drilling Co.: ECMS, Inc.	Inspector:
	Date: August 3, 2022

DECOMMISSIONING	DATA	V	WELL SCHEMA	TIC*
(Fill in all that appl	y)	Depth		Grout
OVEDDBILLING		(feet)		/
OVERDRILLING Interval Drilled		<u> </u>	_	/ V.
Drilling Method(s)			\dashv	
Borehole Dia. (in.)			$\overline{}$	
Temporary Casing Installed? (y/n)				
Depth temporary casing installed		2 ft		
Casing type/dia. (in.)				
Method of installing				/
				[
CASING PULLING Method ampleyed	Dullad		\exists	
Method employed Casing retrieved (feet)	Pulled Entire casing	_4 ft	_	Sand fill
Casing type/dia. (in)	1" PVC		\dashv	//
Casing type, and. (iii)	1 1 00			
CASING PERFORATING				
Equipment used		6 ft		/
Number of perforations/foot				/
Size of perforations				
Interval perforated			\exists	
GROUTING		8 ft	\dashv	/
Interval grouted (FBLS)	0-6 inches	<u> </u>	\dashv	[
# of batches prepared	Approx. 1			
For each batch record:	bag per well			
Quantity of water used (gal.)				/
Quantity of cement used (lbs.)		10 ft		
Cement type			\exists	
Quantity of bentonite used (lbs.) Quantity of calcium chloride used (lbs.)			_	
Volume of grout prepared (gal.)			\dashv	
Volume of grout used (gal.)			\dashv	
<i>C</i> (6)			_	'
COMMENTS:		* Sketch in all 1	relevant decommissioning	data, including:
		interval overd	rilled, interval grouted, cas	sing left in hole,
		well stickup, e	etc.	

Drilling Contractor

Site Name: 265 S Little Tor Road	Well I.D.: MW-13A
Site Location: 265 South Little Tor Rd, New City, NY	Driller: ECMS, Inc.
Drilling Co.: ECMS, Inc.	Inspector:
	Date: August 3, 2022

DECOMMISSIONING	DATA		WELL SCHEMAT	ΓIC*
(Fill in all that apply)		Depth		
OVEDDBH I DIC		(feet)		Grout
OVERDRILLING			_	/
Interval Drilled Drilling Method(s)			-	V
Borehole Dia. (in.)			- -	
Temporary Casing Installed? (y/n)			\dashv	Sand fill
Depth temporary casing installed		5 ft	-	
Casing type/dia. (in.)				
Method of installing				/
CASING PULLING Method employed	Dullad	10 ft	_	
Casing retrieved (feet)	Pulled Entire casing	1011	\dashv	
Casing type/dia. (in)	1" PVC		\dashv	/
Cusing type, and (m)				
CASING PERFORATING				
Equipment used		15 ft		
Number of perforations/foot				
Size of perforations			_	
Interval perforated			_	
GROUTING			\dashv	
Interval grouted (FBLS)	0-6 inches		_	
# of batches prepared	Approx. 1			
For each batch record:	bag per well			
Quantity of water used (gal.)			_	
Quantity of cement used (lbs.) Cement type			_	
Quantity of bentonite used (lbs.)			\dashv	
Quantity of calcium chloride used (lbs.)			\dashv	
Volume of grout prepared (gal.)				
Volume of grout used (gal.)				
		1		
COMMENTS:		1	ll relevant decommissioning d	_
		interval ove	rdrilled, interval grouted, casi	ing left in hole,
		well stickup	o, etc.	
Harry Sudwischer				

APPENDIX D
Phoenix Environmental Laboratory Analytical Reports

Monday, May 09, 2022

Attn: Mr. Harry Sudwischer ECMS, Inc 10 Filmont Drive NY, NY 10956

Project ID: 22.066 LITTLE TOR

SDG ID: GCK98458

Sample ID#s: CK98458 - CK98465

This laboratory is in compliance with the NELAC requirements of procedures used except where indicated.

This report contains results for the parameters tested, under the sampling conditions described on the Chain Of Custody, as received by the laboratory. This report is incomplete unless all pages indicated in the pagination at the bottom of the page are included.

A scanned version of the COC form accompanies the analytical report and is an exact duplicate of the original.

Enclosed are revised Analysis Report pages. Please replace and discard the original pages. If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Sincerely yours,

Phyllis/Shiller

Laboratory Director

NELAC - #NY11301 CT Lab Registration #PH-0618 MA Lab Registration #M-CT007 ME Lab Registration #CT-007

ME Lab Registration #C1-007
NH Lab Registration #213693-A,B

NJ Lab Registration #CT-003 NY Lab Registration #11301 PA Lab Registration #68-03530 RI Lab Registration #63

UT Lab Registration #CT00007 VT Lab Registration #VT11301

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

NY ANALYTICAL SERVICES PROTOCOL DATA PACKAGE

Client: ECMS, Inc

Project: 22.066 LITTLE TOR Laboratory Project: GCK98458

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06040 Tel. (860) 645-1102 Fax (860) 645-0823

NY Analytical Services Protocol Format

May 09, 2022 SDG I.D.: GCK98458

ECMS, Inc 22.066 LITTLE TOR

Methodology Summary

Volatiles in Air

Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air: Method TO-15, Second Edition, U. S. Environmental Protection Agency, January 1999.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06040 Tel. (860) 645-1102 Fax (860) 645-0823

NY Analytical Services Protocol Format

May 09, 2022 SDG I.D.: GCK98458

ECMS, Inc 22.066 LITTLE TOR

Laboratory Chronicle

Sample	Analysis	Collection Date	Prep Date	Analysis Date	Analyst	Hold Time Met
CK98458	Volatiles (TO15)	03/30/22	04/01/22	04/01/22	KCA	Y
CK98459	Volatiles (TO15)	03/30/22	04/01/22	04/01/22	KCA	Υ
CK98460	Volatiles (TO15)	03/30/22	04/01/22	04/01/22	KCA	Y
CK98461	Volatiles (TO15)	03/30/22	04/01/22	04/01/22	KCA	Y
CK98462	Helium (% volume/volume)	03/30/22	04/04/22	04/04/22	KCA	Y
CK98462	Volatiles (TO15)	03/30/22	04/01/22	04/01/22	KCA	Y
CK98463	Helium (% volume/volume)	03/30/22	04/04/22	04/04/22	KCA	Y
CK98463	Volatiles (TO15)	03/30/22	04/01/22	04/01/22	KCA	Y
CK98464	Helium (% volume/volume)	03/30/22	04/04/22	04/04/22	KCA	Y
CK98464	Volatiles (TO15)	03/30/22	04/04/22	04/04/22	KCA	Υ
CK98465	Volatiles (TO15)	03/30/22	04/01/22	04/01/22	KCA	Y

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

SDG Comments

May 09, 2022

SDG I.D.: GCK98458

Any compound that is not detected above the MDL/LOD is reported as ND on the report and is reported in the electronic deliverables (EDD) as <RL or U at the RL per state and EPA guidance.

Version 1: Analysis results minus raw data.

Version 2: Complete report with raw data.

Environmental Laboratories, Inc. 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Sample Id Cross Reference

May 09, 2022

SDG I.D.: GCK98458

Project ID: 22.066 LITTLE TOR

Client Id	Lab Id	Matrix
IA-1	CK98458	AIR
IA-2	CK98459	AIR
IA-3	CK98460	AIR
IA-4	CK98461	AIR
SG-1	CK98462	AIR
SG-2	CK98463	AIR
SG-3	CK98464	AIR
OA-1	CK98465	AIR

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

May 09, 2022

FOR: Attn: Mr. Harry Sudwischer

> ECMS, Inc 10 Filmont Drive NY, NY 10956

Sample Information **Custody Information** Date <u>Time</u> Collected by: HS/SS 03/30/22 18:34 Matrix: AIR Received by: Location Code: **ECMS** В 03/31/22 16:11

Rush Request: Standard Analyzed by: see "By" below

P.O.#:

Laboratory Data SDG ID: GCK98458 Canister Id: 28602 Phoenix ID: CK98458

22.066 LITTLE TOR Project ID:

Client ID: IA-1

Parameter	ppbv Result	ppbv RL	LOD/ MDL	ug/m3 Result	ug/m3 RL	3 LOD/ MDL	Date/Time	Ву	Dilution	
Volatiles (TO15)										
1,1,1,2-Tetrachloroethane	ND	0.146	0.146	ND	1.00	1.00	04/01/22	KCA	1	1
1,1,1-Trichloroethane	ND	0.183	0.183	ND	1.00	1.00	04/01/22	KCA	1	
1,1,2,2-Tetrachloroethane	ND	0.146	0.146	ND	1.00	1.00	04/01/22	KCA	1	
1,1,2-Trichloroethane	ND	0.183	0.183	ND	1.00	1.00	04/01/22	KCA	1	
1,1-Dichloroethane	ND	0.247	0.247	ND	1.00	1.00	04/01/22	KCA	1	
1,1-Dichloroethene	ND	0.051	0.051	ND	0.20	0.20	04/01/22	KCA	1	
1,2,4-Trichlorobenzene	ND	0.135	0.135	ND	1.00	1.00	04/01/22	KCA	1	
1,2,4-Trimethylbenzene	ND	0.204	0.204	ND	1.00	1.00	04/01/22	KCA	1	
1,2-Dibromoethane(EDB)	ND	0.130	0.130	ND	1.00	1.00	04/01/22	KCA	1	
1,2-Dichlorobenzene	ND	0.166	0.166	ND	1.00	1.00	04/01/22	KCA	1	
1,2-Dichloroethane	ND	0.247	0.247	ND	1.00	1.00	04/01/22	KCA	1	
1,2-dichloropropane	ND	0.217	0.217	ND	1.00	1.00	04/01/22	KCA	1	
1,2-Dichlorotetrafluoroethane	ND	0.143	0.143	ND	1.00	1.00	04/01/22	KCA	1	
1,3,5-Trimethylbenzene	ND	0.204	0.204	ND	1.00	1.00	04/01/22	KCA	1	
1,3-Butadiene	ND	0.452	0.452	ND	1.00	1.00	04/01/22	KCA	1	
1,3-Dichlorobenzene	ND	0.166	0.166	ND	1.00	1.00	04/01/22	KCA	1	
1,4-Dichlorobenzene	ND	0.166	0.166	ND	1.00	1.00	04/01/22	KCA	1	
1,4-Dioxane	ND	0.278	0.278	ND	1.00	1.00	04/01/22	KCA	1	
2-Hexanone(MBK)	ND	0.244	0.244	ND	1.00	1.00	04/01/22	KCA	1	1
4-Ethyltoluene	ND	0.204	0.204	ND	1.00	1.00	04/01/22	KCA	1	1
4-Isopropyltoluene	ND	0.182	0.182	ND	1.00	1.00	04/01/22	KCA	1	1
4-Methyl-2-pentanone(MIBK)	ND	0.244	0.244	ND	1.00	1.00	04/01/22	KCA	1	
Acetone	1.20	0.421	0.421	2.85	1.00	1.00	04/01/22	KCA	1	
Acrylonitrile	ND	0.461	0.461	ND	1.00	1.00	04/01/22	KCA	1	
Benzene	ND	0.313	0.313	ND	1.00	1.00	04/01/22	KCA	1	
Benzyl chloride	ND	0.193	0.193	ND	1.00	1.00	04/01/22	KCA	1	

Client ID: IA-1

Parameter	ppbv Result	ppbv RL	LOD/ MDL	ug/m3 Result	ug/m: RL	3LOD/ MDL	Date/Time	Ву	Dilution	
Bromodichloromethane	ND	0.149	0.149	ND	1.00	1.00	04/01/22	KCA	1	
Bromoform	ND	0.097	0.097	ND	1.00	1.00	04/01/22	KCA	1	
Bromomethane	ND	0.258	0.258	ND	1.00	1.00	04/01/22	KCA	1	
Carbon Disulfide	ND	0.321	0.321	ND	1.00	1.00	04/01/22	KCA	1	
Carbon Tetrachloride	0.056	0.032	0.032	0.35	0.20	0.20	04/01/22	KCA	1	
Chlorobenzene	ND	0.217	0.217	ND	1.00	1.00	04/01/22	KCA	1	
Chloroethane	ND	0.379	0.379	ND	1.00	1.00	04/01/22	KCA	1	
Chloroform	ND	0.205	0.205	ND	1.00	1.00	04/01/22	KCA	1	
Chloromethane	0.512	0.485	0.485	1.06	1.00	1.00	04/01/22	KCA	1	
Cis-1,2-Dichloroethene	ND	0.051	0.051	ND	0.20	0.20	04/01/22	KCA	1	
cis-1,3-Dichloropropene	ND	0.221	0.221	ND	1.00	1.00	04/01/22	KCA	1	
Cyclohexane	ND	0.291	0.291	ND	1.00	1.00	04/01/22	KCA	1	
Dibromochloromethane	ND	0.118	0.118	ND	1.00	1.00	04/01/22	KCA	1	
Dichlorodifluoromethane	0.262	0.202	0.202	1.29	1.00	1.00	04/01/22	KCA	1	
Ethanol	44.4	E 0.531	0.531	83.6	1.00	1.00	04/01/22	KCA	1	1
Ethyl acetate	ND	0.278	0.278	ND	1.00	1.00	04/01/22	KCA	1	1
Ethylbenzene	ND	0.230	0.230	ND	1.00	1.00	04/01/22	KCA	1	
Heptane	ND	0.244	0.244	ND	1.00	1.00	04/01/22	KCA	1	
Hexachlorobutadiene	ND	0.094	0.094	ND	1.00	1.00	04/01/22	KCA	1	
Hexane	ND	0.284	0.284	ND	1.00	1.00	04/01/22	KCA	1	
Isopropylalcohol	0.493	0.407	0.407	1.21	1.00	1.00	04/01/22	KCA	1	
Isopropylbenzene	ND	0.204	0.204	ND	1.00	1.00	04/01/22	KCA	1	
m,p-Xylene	ND	0.230	0.230	ND	1.00	1.00	04/01/22	KCA	1	
Methyl Ethyl Ketone	ND	0.339	0.339	ND	1.00	1.00	04/01/22	KCA	1	
Methyl tert-butyl ether(MTBE)	ND	0.278	0.278	ND	1.00	1.00	04/01/22	KCA	1	
Methylene Chloride	ND	0.863	0.863	ND	3.00	3.00	04/01/22	KCA	1	1
n-Butylbenzene	ND	0.182	0.182	ND	1.00	1.00	04/01/22	KCA	1	'
o-Xylene	ND	0.230	0.230	ND	1.00	1.00	04/01/22	KCA	1	1
Propylene	ND ND	0.581	0.581	ND ND	1.00	1.00	04/01/22	KCA KCA	1	1
sec-Butylbenzene	ND ND	0.182	0.182		1.00	1.00	04/01/22	KCA	1	'
Styrene	ND ND	0.235 0.037	0.235 0.037	ND ND	1.00 0.25	1.00 0.25	04/01/22 04/01/22	KCA	1 1	
Tetrachloroethene Tetrahydrofuran	ND	0.339	0.339	ND	1.00	1.00	04/01/22	KCA	1	1
Toluene	0.298	0.266	0.339	1.12	1.00	1.00	04/01/22	KCA	1	
Trans-1,2-Dichloroethene	0.290 ND	0.252	0.252	ND	1.00	1.00	04/01/22	KCA	1	
trans-1,3-Dichloropropene	ND	0.232	0.232	ND	1.00	1.00	04/01/22	KCA	1	
Trichloroethene	ND	0.037	0.037	ND	0.20	0.20	04/01/22	KCA	1	
Trichlorofluoromethane	0.189	0.178	0.178	1.06	1.00	1.00	04/01/22	KCA	1	
Trichlorotrifluoroethane	ND	0.131	0.131	ND	1.00	1.00	04/01/22	KCA	1	
Vinyl Chloride	ND	0.078	0.078	ND	0.20	0.20	04/01/22	KCA	1	
QA/QC Surrogates/Internals		0.070	0.0.0		0.20	0.20	0 ., 0 ., ==		·	
% Bromofluorobenzene	100	%	%	100	%	%	04/01/22	KCA	1	
% IS-1,4-Difluorobenzene	99	%	%	99	%	%	04/01/22	KCA	1	
% IS-Bromochloromethane	102	%	%	102	%	%	04/01/22	KCA	1	
% IS-Chlorobenzene-d5	100	%	%	100	%	%	04/01/22	KCA	1	

Phoenix I.D.: CK98458

Client ID: IA-1

ppbv ppbv LOD/ ug/m3 ug/m3LOD/
Parameter Result RL MDL Result RL MDL Date/Time By Dilution

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected BRL=Below Reporting Level L=Biased Low LOD=Limit of Detection MDL=Method Detection Limit1

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

E = Estimated value quantitated above calibration range for this compound.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

May 09, 2022

^{1 =} This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

May 09, 2022

FOR: Attn: Mr. Harry Sudwischer

> ECMS, Inc 10 Filmont Drive NY, NY 10956

> > ua/m3 LOD/

Sample Information **Custody Information** Date <u>Time</u> Collected by: HS/SS 03/30/22 18:22 Matrix: AIR Received by: Location Code: **ECMS** В 03/31/22 16:11

Rush Request: Standard Analyzed by: see "By" below

vdaa

P.O.#:

Laboratory Data SDG ID: GCK98458 Canister Id: 220 Phoenix ID: CK98459

ua/m3

ppbv LOD/

22.066 LITTLE TOR Project ID:

Client ID: IA-2

Parameter	Result	RL RL	MDL	Result	RL	MDL	Date/Time	Ву	Dilution	
Volatiles (TO15)										
1,1,1,2-Tetrachloroethane	ND	0.146	0.146	ND	1.00	1.00	04/01/22	KCA	1	1
1,1,1-Trichloroethane	ND	0.183	0.183	ND	1.00	1.00	04/01/22	KCA	1	
1,1,2,2-Tetrachloroethane	ND	0.146	0.146	ND	1.00	1.00	04/01/22	KCA	1	
1,1,2-Trichloroethane	ND	0.183	0.183	ND	1.00	1.00	04/01/22	KCA	1	
1,1-Dichloroethane	ND	0.247	0.247	ND	1.00	1.00	04/01/22	KCA	1	
1,1-Dichloroethene	ND	0.051	0.051	ND	0.20	0.20	04/01/22	KCA	1	
1,2,4-Trichlorobenzene	ND	0.135	0.135	ND	1.00	1.00	04/01/22	KCA	1	
1,2,4-Trimethylbenzene	ND	0.204	0.204	ND	1.00	1.00	04/01/22	KCA	1	
1,2-Dibromoethane(EDB)	ND	0.130	0.130	ND	1.00	1.00	04/01/22	KCA	1	
1,2-Dichlorobenzene	ND	0.166	0.166	ND	1.00	1.00	04/01/22	KCA	1	
1,2-Dichloroethane	ND	0.247	0.247	ND	1.00	1.00	04/01/22	KCA	1	
1,2-dichloropropane	ND	0.217	0.217	ND	1.00	1.00	04/01/22	KCA	1	
1,2-Dichlorotetrafluoroethane	ND	0.143	0.143	ND	1.00	1.00	04/01/22	KCA	1	
1,3,5-Trimethylbenzene	ND	0.204	0.204	ND	1.00	1.00	04/01/22	KCA	1	
1,3-Butadiene	ND	0.452	0.452	ND	1.00	1.00	04/01/22	KCA	1	
1,3-Dichlorobenzene	ND	0.166	0.166	ND	1.00	1.00	04/01/22	KCA	1	
1,4-Dichlorobenzene	ND	0.166	0.166	ND	1.00	1.00	04/01/22	KCA	1	
1,4-Dioxane	ND	0.278	0.278	ND	1.00	1.00	04/01/22	KCA	1	
2-Hexanone(MBK)	ND	0.244	0.244	ND	1.00	1.00	04/01/22	KCA	1	1
4-Ethyltoluene	ND	0.204	0.204	ND	1.00	1.00	04/01/22	KCA	1	1
4-Isopropyltoluene	ND	0.182	0.182	ND	1.00	1.00	04/01/22	KCA	1	1
4-Methyl-2-pentanone(MIBK)	ND	0.244	0.244	ND	1.00	1.00	04/01/22	KCA	1	
Acetone	1.21	0.421	0.421	2.87	1.00	1.00	04/01/22	KCA	1	
Acrylonitrile	ND	0.461	0.461	ND	1.00	1.00	04/01/22	KCA	1	
Benzene	ND	0.313	0.313	ND	1.00	1.00	04/01/22	KCA	1	
Benzyl chloride	ND	0.193	0.193	ND	1.00	1.00	04/01/22	KCA	1	

Client ID: IA-2

Client ID: IA-2										
Parameter	ppbv Result	ppbv RL	LOD/ MDL	ug/m3 Result	ug/m: RL	3LOD/ MDL	Date/Time	Ву	Dilution	
Bromodichloromethane	ND	0.149	0.149	ND	1.00	1.00	04/01/22	KCA	1	
Bromoform	ND	0.097	0.097	ND	1.00	1.00	04/01/22	KCA	1	
Bromomethane	ND	0.258	0.258	ND	1.00	1.00	04/01/22	KCA	1	
Carbon Disulfide	ND	0.321	0.321	ND	1.00	1.00	04/01/22	KCA	1	
Carbon Tetrachloride	0.048	0.032	0.032	0.30	0.20	0.20	04/01/22	KCA	1	
Chlorobenzene	ND	0.217	0.217	ND	1.00	1.00	04/01/22	KCA	1	
Chloroethane	ND	0.379	0.379	ND	1.00	1.00	04/01/22	KCA	1	
Chloroform	ND	0.205	0.205	ND	1.00	1.00	04/01/22	KCA	1	
Chloromethane	ND	0.485	0.485	ND	1.00	1.00	04/01/22	KCA	1	
Cis-1,2-Dichloroethene	ND	0.051	0.051	ND	0.20	0.20	04/01/22	KCA	1	
cis-1,3-Dichloropropene	ND	0.221	0.221	ND	1.00	1.00	04/01/22	KCA	1	
Cyclohexane	ND	0.291	0.291	ND	1.00	1.00	04/01/22	KCA	1	
Dibromochloromethane	ND	0.118	0.118	ND	1.00	1.00	04/01/22	KCA	1	
Dichlorodifluoromethane	ND	0.202	0.202	ND	1.00	1.00	04/01/22	KCA	1	
Ethanol	2.49	0.531	0.531	4.69	1.00	1.00	04/01/22	KCA	1	1
Ethyl acetate	ND	0.278	0.278	ND	1.00	1.00	04/01/22	KCA	1	1
Ethylbenzene	ND	0.230	0.230	ND	1.00	1.00	04/01/22	KCA	1	
Heptane	ND	0.244	0.244	ND	1.00	1.00	04/01/22	KCA	1	
Hexachlorobutadiene	ND	0.094	0.094	ND	1.00	1.00	04/01/22	KCA	1	
Hexane	ND	0.284	0.284	ND	1.00	1.00	04/01/22	KCA	1	
Isopropylalcohol	ND	0.407	0.407	ND	1.00	1.00	04/01/22	KCA	1	
Isopropylbenzene	ND	0.204	0.204	ND	1.00	1.00	04/01/22	KCA	1	
m,p-Xylene	ND	0.230	0.230	ND	1.00	1.00	04/01/22	KCA	1	
Methyl Ethyl Ketone	ND	0.339	0.339	ND	1.00	1.00	04/01/22	KCA	1	
Methyl tert-butyl ether(MTBE)	ND	0.278	0.278	ND	1.00	1.00	04/01/22	KCA	1	
Methylene Chloride	ND	0.863	0.863	ND	3.00	3.00	04/01/22	KCA	1	
n-Butylbenzene	ND	0.182	0.182	ND	1.00	1.00	04/01/22	KCA	1	1
o-Xylene	ND	0.230	0.230	ND	1.00	1.00	04/01/22	KCA	1	
Propylene	ND	0.581	0.581	ND	1.00	1.00	04/01/22	KCA	1	1
sec-Butylbenzene	ND	0.182	0.182	ND	1.00	1.00	04/01/22	KCA	1	1
Styrene	ND	0.235	0.235	ND	1.00	1.00	04/01/22	KCA	1	
Tetrachloroethene	ND	0.037	0.037	ND	0.25	0.25	04/01/22	KCA	1	1
Tetrahydrofuran	ND	0.339	0.339 0.266	ND	1.00	1.00	04/01/22	KCA KCA	1	'
Toluene	ND ND	0.266	0.252	ND ND	1.00 1.00	1.00 1.00	04/01/22 04/01/22	KCA	1 1	
Trans-1,2-Dichloroethene	ND	0.252 0.221	0.232	ND	1.00	1.00	04/01/22	KCA	1	
trans-1,3-Dichloropropene Trichloroethene	ND	0.037	0.037	ND	0.20	0.20	04/01/22	KCA	1	
Trichlorofluoromethane	ND	0.037	0.037	ND	1.00	1.00	04/01/22	KCA	1	
Trichlorotrifluoroethane	ND	0.178	0.176	ND	1.00	1.00	04/01/22	KCA	1	
Vinyl Chloride	ND	0.131	0.131	ND	0.20	0.20	04/01/22	KCA	1	
QA/QC Surrogates/Internals	ND	0.076	0.070	ND	0.20	0.20	04/01/22	NOA	ı	
% Bromofluorobenzene	98	%	%	98	%	%	04/01/22	KCA	1	
% IS-1,4-Difluorobenzene	98	%	%	98	%	%	04/01/22	KCA	1	
% IS-Bromochloromethane	101	%	%	101	%	%	04/01/22	KCA	1	
% IS-Chlorobenzene-d5	99	%	%	99	%	%	04/01/22	KCA	1	
70 10 0111010001120110 do		,,	. •		,,	, ,	, . 		•	

Phoenix I.D.: CK98459

Client ID: IA-2

ppbv ppbv LOD/ ug/m3 ug/m3LOD/
Parameter Result RL MDL Result RL MDL Date/Time By Dilution

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected BRL=Below Reporting Level L=Biased Low LOD=Limit of Detection MDL=Method Detection Limit1

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

May 09, 2022

^{1 =} This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

May 09, 2022

FOR: Attn: Mr. Harry Sudwischer

> ECMS, Inc 10 Filmont Drive NY, NY 10956

> > ua/m3 LOD/

Sample Information **Custody Information** Date <u>Time</u> Collected by: HS/SS 03/30/22 Matrix: AIR 18:20 Received by: Location Code: **ECMS** В 03/31/22 16:11

Rush Request: Standard Analyzed by: see "By" below

vdaa

P.O.#:

Laboratory Data SDG ID: GCK98458 Canister Id: 252 Phoenix ID: CK98460

ua/m3

ppbv LOD/

22.066 LITTLE TOR Project ID:

Client ID: IA-3

Parameter	Result	RL	MDL	Result	ug/III. RL	MDI S LOD/	Date/Time	Ву	Dilution	
	resuit	111	IVIDE	result	11/2	IVIDE	Date/Time	Бу	Dilation	
Volatiles (TO15)										
1,1,1,2-Tetrachloroethane	ND	0.146	0.146	ND	1.00	1.00	04/01/22	KCA	1	1
1,1,1-Trichloroethane	ND	0.183	0.183	ND	1.00	1.00	04/01/22	KCA	1	
1,1,2,2-Tetrachloroethane	ND	0.146	0.146	ND	1.00	1.00	04/01/22	KCA	1	
1,1,2-Trichloroethane	ND	0.183	0.183	ND	1.00	1.00	04/01/22	KCA	1	
1,1-Dichloroethane	ND	0.247	0.247	ND	1.00	1.00	04/01/22	KCA	1	
1,1-Dichloroethene	ND	0.051	0.051	ND	0.20	0.20	04/01/22	KCA	1	
1,2,4-Trichlorobenzene	ND	0.135	0.135	ND	1.00	1.00	04/01/22	KCA	1	
1,2,4-Trimethylbenzene	ND	0.204	0.204	ND	1.00	1.00	04/01/22	KCA	1	
1,2-Dibromoethane(EDB)	ND	0.130	0.130	ND	1.00	1.00	04/01/22	KCA	1	
1,2-Dichlorobenzene	ND	0.166	0.166	ND	1.00	1.00	04/01/22	KCA	1	
1,2-Dichloroethane	ND	0.247	0.247	ND	1.00	1.00	04/01/22	KCA	1	
1,2-dichloropropane	ND	0.217	0.217	ND	1.00	1.00	04/01/22	KCA	1	
1,2-Dichlorotetrafluoroethane	ND	0.143	0.143	ND	1.00	1.00	04/01/22	KCA	1	
1,3,5-Trimethylbenzene	ND	0.204	0.204	ND	1.00	1.00	04/01/22	KCA	1	
1,3-Butadiene	ND	0.452	0.452	ND	1.00	1.00	04/01/22	KCA	1	
1,3-Dichlorobenzene	ND	0.166	0.166	ND	1.00	1.00	04/01/22	KCA	1	
1,4-Dichlorobenzene	ND	0.166	0.166	ND	1.00	1.00	04/01/22	KCA	1	
1,4-Dioxane	ND	0.278	0.278	ND	1.00	1.00	04/01/22	KCA	1	
2-Hexanone(MBK)	ND	0.244	0.244	ND	1.00	1.00	04/01/22	KCA	1	1
4-Ethyltoluene	ND	0.204	0.204	ND	1.00	1.00	04/01/22	KCA	1	1
4-Isopropyltoluene	ND	0.182	0.182	ND	1.00	1.00	04/01/22	KCA	1	1
4-Methyl-2-pentanone(MIBK)	ND	0.244	0.244	ND	1.00	1.00	04/01/22	KCA	1	
Acetone	1.23	0.421	0.421	2.92	1.00	1.00	04/01/22	KCA	1	
Acrylonitrile	ND	0.461	0.461	ND	1.00	1.00	04/01/22	KCA	1	
Benzene	ND	0.313	0.313	ND	1.00	1.00	04/01/22	KCA	1	
Benzyl chloride	ND	0.193	0.193	ND	1.00	1.00	04/01/22	KCA	1	

Client ID: IA-3

Parameter	ppbv Result	ppbv RL	LOD/ MDL	ug/m3 Result	ug/m: RL	3LOD/ MDL	Date/Time	Ву	Dilution	
Bromodichloromethane	ND	0.149	0.149	ND	1.00	1.00	04/01/22	KCA	1	
Bromoform	ND	0.097	0.097	ND	1.00	1.00	04/01/22	KCA	1	
Bromomethane	ND	0.258	0.258	ND	1.00	1.00	04/01/22	KCA	1	
Carbon Disulfide	ND	0.321	0.321	ND	1.00	1.00	04/01/22	KCA	1	
Carbon Tetrachloride	0.055	0.032	0.032	0.35	0.20	0.20	04/01/22	KCA	1	
Chlorobenzene	ND	0.217	0.217	ND	1.00	1.00	04/01/22	KCA	1	
Chloroethane	ND	0.379	0.379	ND	1.00	1.00	04/01/22	KCA	1	
Chloroform	ND	0.205	0.205	ND	1.00	1.00	04/01/22	KCA	1	
Chloromethane	0.500	0.485	0.485	1.03	1.00	1.00	04/01/22	KCA	1	
Cis-1,2-Dichloroethene	ND	0.051	0.051	ND	0.20	0.20	04/01/22	KCA	1	
cis-1,3-Dichloropropene	ND	0.221	0.221	ND	1.00	1.00	04/01/22	KCA	1	
Cyclohexane	ND	0.291	0.291	ND	1.00	1.00	04/01/22	KCA	1	
Dibromochloromethane	ND	0.118	0.118	ND	1.00	1.00	04/01/22	KCA	1	
Dichlorodifluoromethane	0.242	0.202	0.202	1.20	1.00	1.00	04/01/22	KCA	1	
Ethanol	3.66	0.531	0.531	6.89	1.00	1.00	04/01/22	KCA	1	1
Ethyl acetate	ND	0.278	0.278	ND	1.00	1.00	04/01/22	KCA	1	1
Ethylbenzene	ND	0.230	0.230	ND	1.00	1.00	04/01/22	KCA	1	
Heptane	ND	0.244	0.244	ND	1.00	1.00	04/01/22	KCA	1	
Hexachlorobutadiene	ND	0.094	0.094	ND	1.00	1.00	04/01/22	KCA	1	
Hexane	ND	0.284	0.284	ND	1.00	1.00	04/01/22	KCA	1	
Isopropylalcohol	ND	0.407	0.407	ND	1.00	1.00	04/01/22	KCA	1	
Isopropylbenzene	ND	0.204	0.204	ND	1.00	1.00	04/01/22	KCA	1	
m,p-Xylene	ND	0.230	0.230	ND	1.00	1.00	04/01/22	KCA	1	
Methyl Ethyl Ketone	ND	0.339	0.339	ND	1.00	1.00	04/01/22	KCA	1	
Methyl tert-butyl ether(MTBE)	ND	0.278	0.278	ND	1.00	1.00	04/01/22	KCA	1	
Methylene Chloride	ND	0.863	0.863	ND	3.00	3.00	04/01/22	KCA	1	
n-Butylbenzene	ND	0.182	0.182	ND	1.00	1.00	04/01/22	KCA	1	1
o-Xylene	ND	0.230	0.230	ND	1.00	1.00	04/01/22	KCA	1	
Propylene	ND	0.581	0.581	ND	1.00	1.00	04/01/22	KCA	1	1
sec-Butylbenzene	ND	0.182	0.182	ND	1.00	1.00	04/01/22	KCA	1	1
Styrene	ND	0.235	0.235	ND	1.00	1.00	04/01/22	KCA	1	
Tetrachloroethene	ND	0.037	0.037	ND	0.25	0.25	04/01/22	KCA	1	1
Tetrahydrofuran	ND	0.339	0.339	ND	1.00	1.00	04/01/22	KCA	1	'
Toluene	ND	0.266	0.266	ND	1.00	1.00	04/01/22	KCA	1	
Trans-1,2-Dichloroethene	ND	0.252	0.252	ND	1.00	1.00	04/01/22 04/01/22	KCA KCA	1	
trans-1,3-Dichloropropene	ND ND	0.221	0.221 0.037	ND ND	1.00	1.00 0.20	04/01/22	KCA	1 1	
Trichloroethene Trichlorofluoromethane	0.190	0.037	0.037	1.07	0.20		04/01/22	KCA	1	
	0.190 ND	0.178	0.176	ND	1.00	1.00	04/01/22	KCA		
Trichlorotrifluoroethane	ND	0.131 0.078	0.131	ND	1.00 0.20	0.20	04/01/22	KCA	1 1	
Vinyl Chloride	ND	0.076	0.076	ND	0.20	0.20	04/01/22	NOA	ı	
<u>QA/QC Surrogates/Internals</u> % Bromofluorobenzene	100	%	%	100	%	%	04/01/22	KCA	1	
% IS-1,4-Difluorobenzene	98	% %	%	98	% %	%	04/01/22	KCA	1	
% IS-Bromochloromethane	102	%	%	102	%	%	04/01/22	KCA	1	
% IS-Chlorobenzene-d5	97	%	%	97	%	%	04/01/22	KCA	1	
/8 13-0111010De112e11e-03	31	70	70	<i>31</i>	70	/0	J-7/0 1/22	NOA	ı	

Phoenix I.D.: CK98460

Client ID: IA-3

ppbv ppbv LOD/ ug/m3 ug/m3LOD/
Parameter Result RL MDL Result RL MDL Date/Time By Dilution

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected BRL=Below Reporting Level L=Biased Low LOD=Limit of Detection MDL=Method Detection Limit1

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

May 09, 2022

^{1 =} This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

May 09, 2022

FOR: Attn: Mr. Harry Sudwischer

> ECMS, Inc 10 Filmont Drive NY, NY 10956

> > ua/m3 LOD/

Sample Information **Custody Information** Date <u>Time</u> Collected by: HS/SS 03/30/22 Matrix: AIR 18:28 Received by: Location Code: **ECMS** В 03/31/22 16:11

Rush Request: Standard Analyzed by: see "By" below

vdaa

P.O.#:

Laboratory Data SDG ID: GCK98458 Canister Id: 11289 Phoenix ID: CK98461

ua/m3

ppbv LOD/

22.066 LITTLE TOR Project ID:

Client ID: IA-4

Parameter	Result	RL	MDL	Result	ug/III. RL	MDI S LOD/	Date/Time	Ву	Dilution	
	rtoodit	112	WIDE	rtoouit	111	WIDE	Date, Time		Dilation	
Volatiles (TO15)										
1,1,1,2-Tetrachloroethane	ND	0.146	0.146	ND	1.00	1.00	04/01/22	KCA	1	1
1,1,1-Trichloroethane	ND	0.183	0.183	ND	1.00	1.00	04/01/22	KCA	1	
1,1,2,2-Tetrachloroethane	ND	0.146	0.146	ND	1.00	1.00	04/01/22	KCA	1	
1,1,2-Trichloroethane	ND	0.183	0.183	ND	1.00	1.00	04/01/22	KCA	1	
1,1-Dichloroethane	ND	0.247	0.247	ND	1.00	1.00	04/01/22	KCA	1	
1,1-Dichloroethene	ND	0.051	0.051	ND	0.20	0.20	04/01/22	KCA	1	
1,2,4-Trichlorobenzene	ND	0.135	0.135	ND	1.00	1.00	04/01/22	KCA	1	
1,2,4-Trimethylbenzene	ND	0.204	0.204	ND	1.00	1.00	04/01/22	KCA	1	
1,2-Dibromoethane(EDB)	ND	0.130	0.130	ND	1.00	1.00	04/01/22	KCA	1	
1,2-Dichlorobenzene	ND	0.166	0.166	ND	1.00	1.00	04/01/22	KCA	1	
1,2-Dichloroethane	ND	0.247	0.247	ND	1.00	1.00	04/01/22	KCA	1	
1,2-dichloropropane	ND	0.217	0.217	ND	1.00	1.00	04/01/22	KCA	1	
1,2-Dichlorotetrafluoroethane	ND	0.143	0.143	ND	1.00	1.00	04/01/22	KCA	1	
1,3,5-Trimethylbenzene	ND	0.204	0.204	ND	1.00	1.00	04/01/22	KCA	1	
1,3-Butadiene	ND	0.452	0.452	ND	1.00	1.00	04/01/22	KCA	1	
1,3-Dichlorobenzene	ND	0.166	0.166	ND	1.00	1.00	04/01/22	KCA	1	
1,4-Dichlorobenzene	ND	0.166	0.166	ND	1.00	1.00	04/01/22	KCA	1	
1,4-Dioxane	ND	0.278	0.278	ND	1.00	1.00	04/01/22	KCA	1	
2-Hexanone(MBK)	ND	0.244	0.244	ND	1.00	1.00	04/01/22	KCA	1	1
4-Ethyltoluene	ND	0.204	0.204	ND	1.00	1.00	04/01/22	KCA	1	1
4-Isopropyltoluene	ND	0.182	0.182	ND	1.00	1.00	04/01/22	KCA	1	1
4-Methyl-2-pentanone(MIBK)	ND	0.244	0.244	ND	1.00	1.00	04/01/22	KCA	1	
Acetone	4.14	0.421	0.421	9.8	1.00	1.00	04/01/22	KCA	1	
Acrylonitrile	ND	0.461	0.461	ND	1.00	1.00	04/01/22	KCA	1	
Benzene	ND	0.313	0.313	ND	1.00	1.00	04/01/22	KCA	1	
Benzyl chloride	ND	0.193	0.193	ND	1.00	1.00	04/01/22	KCA	1	

Client ID: IA-4

Parameter	ppbv Result	ppbv RL	LOD/ MDL	ug/m3 Result	ug/m: RL	3LOD/ MDL	Date/Time	Ву	Dilution	
Bromodichloromethane	ND	0.149	0.149	ND	1.00	1.00	04/01/22	KCA	1	
Bromoform	ND	0.097	0.097	ND	1.00	1.00	04/01/22	KCA	1	
Bromomethane	ND	0.258	0.258	ND	1.00	1.00	04/01/22	KCA	1	
Carbon Disulfide	ND	0.321	0.321	ND	1.00	1.00	04/01/22	KCA	1	
Carbon Tetrachloride	0.059	0.032	0.032	0.37	0.20	0.20	04/01/22	KCA	1	
Chlorobenzene	ND	0.217	0.217	ND	1.00	1.00	04/01/22	KCA	1	
Chloroethane	ND	0.379	0.379	ND	1.00	1.00	04/01/22	KCA	1	
Chloroform	0.439	0.205	0.205	2.14	1.00	1.00	04/01/22	KCA	1	
Chloromethane	0.558	0.485	0.485	1.15	1.00	1.00	04/01/22	KCA	1	
Cis-1,2-Dichloroethene	ND	0.051	0.051	ND	0.20	0.20	04/01/22	KCA	1	
cis-1,3-Dichloropropene	ND	0.221	0.221	ND	1.00	1.00	04/01/22	KCA	1	
Cyclohexane	ND	0.291	0.291	ND	1.00	1.00	04/01/22	KCA	1	
Dibromochloromethane	ND	0.118	0.118	ND	1.00	1.00	04/01/22	KCA	1	
Dichlorodifluoromethane	0.453	0.202	0.202	2.24	1.00	1.00	04/01/22	KCA	1	
Ethanol	33.8	0.531	0.531	63.6	1.00	1.00	04/01/22	KCA	1	1
Ethyl acetate	ND	0.278	0.278	ND	1.00	1.00	04/01/22	KCA	1	1
Ethylbenzene	ND	0.230	0.230	ND	1.00	1.00	04/01/22	KCA	1	
Heptane	ND	0.244	0.244	ND	1.00	1.00	04/01/22	KCA	1	
Hexachlorobutadiene	ND	0.094	0.094	ND	1.00	1.00	04/01/22	KCA	1	
Hexane	0.866	0.284	0.284	3.05	1.00	1.00	04/01/22	KCA	1	
Isopropylalcohol	0.521	0.407	0.407	1.28	1.00	1.00	04/01/22	KCA	1	
Isopropylbenzene	ND	0.204	0.204	ND	1.00	1.00	04/01/22	KCA	1	
m,p-Xylene	ND	0.230	0.230	ND	1.00	1.00	04/01/22	KCA	1	
Methyl Ethyl Ketone	0.694	0.339	0.339	2.05	1.00	1.00	04/01/22	KCA	1	
Methyl tert-butyl ether(MTBE)	ND	0.278	0.278	ND	1.00	1.00	04/01/22	KCA	1	
Methylene Chloride	3.39	0.863	0.863	11.8	3.00	3.00	04/01/22	KCA	1	
n-Butylbenzene	ND	0.182	0.182	ND	1.00	1.00	04/01/22	KCA	1	1
o-Xylene	ND	0.230	0.230	ND	1.00	1.00	04/01/22	KCA	1	
Propylene	ND	0.581	0.581	ND	1.00	1.00	04/01/22	KCA	1	1
sec-Butylbenzene	ND	0.182	0.182	ND	1.00	1.00	04/01/22	KCA	1	1
Styrene	ND	0.235	0.235	ND	1.00	1.00	04/01/22	KCA	1	
Tetrachloroethene	ND	0.037	0.037	ND	0.25	0.25	04/01/22	KCA	1	
Tetrahydrofuran	0.439	0.339	0.339	1.29	1.00	1.00	04/01/22	KCA	1	1
Toluene	0.500	0.266	0.266	1.88	1.00	1.00	04/01/22	KCA	1	
Trans-1,2-Dichloroethene	ND	0.252	0.252	ND	1.00	1.00	04/01/22	KCA	1	
trans-1,3-Dichloropropene	ND	0.221	0.221	ND	1.00	1.00	04/01/22	KCA	1	
Trichloroethene	ND	0.037	0.037	ND	0.20	0.20	04/01/22	KCA	1	
Trichlorofluoromethane	0.251	0.178	0.178	1.41	1.00	1.00	04/01/22	KCA	1	
Trichlorotrifluoroethane	ND	0.131	0.131	ND	1.00	1.00	04/01/22	KCA	1	
Vinyl Chloride	ND	0.078	0.078	ND	0.20	0.20	04/01/22	KCA	1	
QA/QC Surrogates/Internals	400		0.4	100		0/	0.4/0.4/0.0	140.4		
% Bromofluorobenzene	100	%	%	100	%	%	04/01/22	KCA	1	
% IS-1,4-Difluorobenzene	94	%	%	94	%	%	04/01/22	KCA	1	
% IS-Bromochloromethane	97	%	%	97	%	%	04/01/22	KCA	1	
% IS-Chlorobenzene-d5	93	%	%	93	%	%	04/01/22	KCA	1	

Phoenix I.D.: CK98461

Client ID: IA-4

ppbv ppbv LOD/ ug/m3 ug/m3LOD/
Parameter Result RL MDL Result RL MDL Date/Time By Dilution

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected BRL=Below Reporting Level L=Biased Low LOD=Limit of Detection MDL=Method Detection Limit1

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

May 09, 2022

^{1 =} This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

May 09, 2022

FOR: Attn: Mr. Harry Sudwischer

> ECMS, Inc 10 Filmont Drive NY, NY 10956

Sample Information **Custody Information Time** Date AIR Collected by: HS/SS 03/30/22 Matrix: 18:19 Received by: Location Code: **ECMS** В 03/31/22 16:11

Rush Request: Standard Analyzed by: see "By" below

P.O.#:

Laboratory Data SDG ID: GCK98458 Canister Id: 18111 Phoenix ID: CK98462

22.066 LITTLE TOR Project ID:

Client ID: SG-1

Parameter	ppbv Result	ppbv RL	LOD/ MDL	ug/m3 Result	ug/m3 RL	B LOD/ MDL	Date/Time	Ву	Dilution	
Helium (% volume/volume)	ND	10		ND			04/04/22	KCA	1	1
Volatiles (TO15)										
1,1,1,2-Tetrachloroethane	ND	0.146	0.146	ND	1.00	1.00	04/01/22	KCA	1	1
1,1,1-Trichloroethane	ND	0.183	0.183	ND	1.00	1.00	04/01/22	KCA	1	
1,1,2,2-Tetrachloroethane	ND	0.146	0.146	ND	1.00	1.00	04/01/22	KCA	1	
1,1,2-Trichloroethane	ND	0.183	0.183	ND	1.00	1.00	04/01/22	KCA	1	
1,1-Dichloroethane	ND	0.247	0.247	ND	1.00	1.00	04/01/22	KCA	1	
1,1-Dichloroethene	ND	0.051	0.051	ND	0.20	0.20	04/01/22	KCA	1	
1,2,4-Trichlorobenzene	ND	0.135	0.135	ND	1.00	1.00	04/01/22	KCA	1	
1,2,4-Trimethylbenzene	1.18	0.204	0.204	5.80	1.00	1.00	04/01/22	KCA	1	
1,2-Dibromoethane(EDB)	ND	0.130	0.130	ND	1.00	1.00	04/01/22	KCA	1	
1,2-Dichlorobenzene	ND	0.166	0.166	ND	1.00	1.00	04/01/22	KCA	1	
1,2-Dichloroethane	ND	0.247	0.247	ND	1.00	1.00	04/01/22	KCA	1	
1,2-dichloropropane	ND	0.217	0.217	ND	1.00	1.00	04/01/22	KCA	1	
1,2-Dichlorotetrafluoroethane	ND	0.143	0.143	ND	1.00	1.00	04/01/22	KCA	1	
1,3,5-Trimethylbenzene	0.359	0.204	0.204	1.76	1.00	1.00	04/01/22	KCA	1	
1,3-Butadiene	ND	0.452	0.452	ND	1.00	1.00	04/01/22	KCA	1	
1,3-Dichlorobenzene	ND	0.166	0.166	ND	1.00	1.00	04/01/22	KCA	1	
1,4-Dichlorobenzene	ND	0.166	0.166	ND	1.00	1.00	04/01/22	KCA	1	
1,4-Dioxane	ND	0.278	0.278	ND	1.00	1.00	04/01/22	KCA	1	
2-Hexanone(MBK)	ND	0.244	0.244	ND	1.00	1.00	04/01/22	KCA	1	1
4-Ethyltoluene	1.15	0.204	0.204	5.65	1.00	1.00	04/01/22	KCA	1	1
4-Isopropyltoluene	ND	0.182	0.182	ND	1.00	1.00	04/01/22	KCA	1	1
4-Methyl-2-pentanone(MIBK)	ND	0.244	0.244	ND	1.00	1.00	04/01/22	KCA	1	
Acetone	43.2	2.11	2.11	103	5.01	5.01	04/01/22	KCA	5	
Acrylonitrile	ND	0.461	0.461	ND	1.00	1.00	04/01/22	KCA	1	
Benzene	0.360	0.313	0.313	1.15	1.00	1.00	04/01/22	KCA	1	

Client ID: SG-1

Parameter	ppbv Result	ppbv RL	LOD/ MDL	ug/m3 Result		BLOD/ MDL	Date/Time	Ву	Dilution	
Benzyl chloride	ND	0.193	0.193	ND	1.00	1.00	04/01/22	KCA	1	
Bromodichloromethane	ND	0.149	0.149	ND	1.00	1.00	04/01/22	KCA	1	
Bromoform	ND	0.097	0.097	ND	1.00	1.00	04/01/22	KCA	1	
Bromomethane	ND	0.258	0.258	ND	1.00	1.00	04/01/22	KCA	1	
Carbon Disulfide	ND	0.321	0.321	ND	1.00	1.00	04/01/22	KCA	1	
Carbon Tetrachloride	0.063	0.032	0.032	0.40	0.20	0.20	04/01/22	KCA	1	
Chlorobenzene	ND	0.217	0.217	ND	1.00	1.00	04/01/22	KCA	1	
Chloroethane	ND	0.379	0.379	ND	1.00	1.00	04/01/22	KCA	1	
Chloroform	ND	0.205	0.205	ND	1.00	1.00	04/01/22	KCA	1	
Chloromethane	4.06	0.485	0.485	8.38	1.00	1.00	04/01/22	KCA	1	
Cis-1,2-Dichloroethene	ND	0.051	0.051	ND	0.20	0.20	04/01/22	KCA	1	
cis-1,3-Dichloropropene	ND	0.221	0.221	ND	1.00	1.00	04/01/22	KCA	1	
Cyclohexane	ND	0.291	0.291	ND	1.00	1.00	04/01/22	KCA	1	
Dibromochloromethane	ND	0.118	0.118	ND	1.00	1.00	04/01/22	KCA	1	
Dichlorodifluoromethane	0.584	0.202	0.202	2.89	1.00	1.00	04/01/22	KCA	1	
Ethanol	66.6	2.66	2.66	125	5.01	5.01	04/01/22	KCA	5	1
Ethyl acetate	0.435	0.278	0.278	1.57	1.00	1.00	04/01/22	KCA	1	1
Ethylbenzene	1.63	0.230	0.230	7.07	1.00	1.00	04/01/22	KCA	1	
Heptane	0.495	0.244	0.244	2.03	1.00	1.00	04/01/22	KCA	1	
Hexachlorobutadiene	ND	0.094	0.094	ND	1.00	1.00	04/01/22	KCA	1	
Hexane	0.580	0.284	0.284	2.04	1.00	1.00	04/01/22	KCA	1	
Isopropylalcohol	2.29	0.407	0.407	5.63	1.00	1.00	04/01/22	KCA	1	
Isopropylbenzene	ND	0.204	0.204	ND	1.00	1.00	04/01/22	KCA	1	
m,p-Xylene	6.01	0.230	0.230	26.1	1.00	1.00	04/01/22	KCA	1	
Methyl Ethyl Ketone	1.88	0.339	0.339	5.54	1.00	1.00	04/01/22	KCA	1	
Methyl tert-butyl ether(MTBE)	ND	0.278	0.278	ND	1.00	1.00	04/01/22	KCA	1	
Methylene Chloride	1.29	0.863	0.863	4.48	3.00	3.00	04/01/22	KCA	1	
n-Butylbenzene	ND	0.182	0.182	ND	1.00	1.00	04/01/22	KCA	1	1
o-Xylene	1.88	0.230	0.230	8.16	1.00	1.00	04/01/22	KCA	1	
Propylene	ND	0.581	0.581	ND	1.00	1.00	04/01/22	KCA	1	1
sec-Butylbenzene	ND	0.182	0.182	ND	1.00	1.00	04/01/22	KCA	1	1
Styrene	ND	0.235	0.235	ND	1.00	1.00	04/01/22	KCA	1	
Tetrachloroethene	0.621	0.037	0.037	4.21	0.25	0.25	04/01/22	KCA	1	
Tetrahydrofuran	ND	0.339	0.339	ND	1.00	1.00	04/01/22	KCA	1	1
Toluene	6.30	0.266	0.266	23.7	1.00	1.00	04/01/22	KCA	1	
Trans-1,2-Dichloroethene	ND	0.252	0.252	ND	1.00	1.00	04/01/22	KCA	1	
trans-1,3-Dichloropropene	ND	0.221	0.221	ND	1.00	1.00	04/01/22	KCA	1	
Trichloroethene	ND	0.037	0.037	ND	0.20	0.20	04/01/22	KCA	1	
Trichlorofluoromethane	0.274	0.178	0.178	1.54	1.00	1.00	04/01/22	KCA	1	
Trichlorotrifluoroethane	ND	0.131	0.131	ND	1.00	1.00	04/01/22	KCA	1	
Vinyl Chloride	ND	0.078	0.078	ND	0.20	0.20	04/01/22	KCA	1	
QA/QC Surrogates/Internals	ND	0.070	0.070	ND	0.20	0.20	0-1/01/22	11071		
% Bromofluorobenzene	99	%	%	99	%	%	04/01/22	KCA	1	
% IS-1,4-Difluorobenzene	80	%	%	80	%	%	04/01/22	KCA	1	
% IS-Bromochloromethane	83	%	%	83	% %	%	04/01/22	KCA	1	
% IS-Chlorobenzene-d5	80	%	%	80	% %	%	04/01/22	KCA	1	
% Bromofluorobenzene (5x)	99	%	%	99	% %	% %	04/01/22	KCA	5	
% IS-1,4-Difluorobenzene (5x)	82	%	%	82	% %	% %	04/01/22	KCA	5	
% IS-Bromochloromethane (5x)	85	%	%	85	% %	% %	04/01/22	KCA	5	
70 10-DIOMOGNIOIONEUIANE (OX)	00	70	70	00	70	70	U-1/U 1/LL	NOA	J	

Client ID: SG-1

Parameter	ppbv Result	ppbv RL	LOD/ MDL	ug/m3 Result	ug/m3LOD RL MDL	/ . Date/Time	Ву	Dilution	
% IS-Chlorobenzene-d5 (5x)	83	%	%	83	% %	04/01/22	KCA	5	

^{1 =} This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected BRL=Below Reporting Level L=Biased Low LOD=Limit of Detection MDL=Method Detection Limit1

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Helium is reported in units of percent (%)

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

May 09, 2022

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

May 09, 2022

FOR: Attn: Mr. Harry Sudwischer

> ECMS, Inc 10 Filmont Drive NY, NY 10956

Sample Information **Custody Information** Date <u>Time</u> Collected by: HS/SS 03/30/22 Matrix: AIR 19:17 Received by: Location Code: **ECMS** В 03/31/22 16:11

Rush Request: Standard Analyzed by: see "By" below

P.O.#:

Laboratory Data SDG ID: GCK98458 Canister Id: 362 Phoenix ID: CK98463

22.066 LITTLE TOR Project ID:

Client ID: SG-2

Parameter	ppbv Result	ppbv RL	LOD/ MDL	ug/m3 Result	ug/m3 RL	3 LOD/ MDL		Ву	Dilution	
Helium (% volume/volume)	ND	10		ND			04/04/22	KCA	1	1
Volatiles (TO15)										
1,1,1,2-Tetrachloroethane	ND	0.146	0.146	ND	1.00	1.00	04/01/22	KCA	1	1
1,1,1-Trichloroethane	ND	0.183	0.183	ND	1.00	1.00	04/01/22	KCA	1	
1,1,2,2-Tetrachloroethane	ND	0.146	0.146	ND	1.00	1.00	04/01/22	KCA	1	
1,1,2-Trichloroethane	ND	0.183	0.183	ND	1.00	1.00	04/01/22	KCA	1	
1,1-Dichloroethane	ND	0.247	0.247	ND	1.00	1.00	04/01/22	KCA	1	
1,1-Dichloroethene	ND	0.051	0.051	ND	0.20	0.20	04/01/22	KCA	1	
1,2,4-Trichlorobenzene	ND	0.135	0.135	ND	1.00	1.00	04/01/22	KCA	1	
1,2,4-Trimethylbenzene	0.383	0.204	0.204	1.88	1.00	1.00	04/01/22	KCA	1	
1,2-Dibromoethane(EDB)	ND	0.130	0.130	ND	1.00	1.00	04/01/22	KCA	1	
1,2-Dichlorobenzene	ND	0.166	0.166	ND	1.00	1.00	04/01/22	KCA	1	
1,2-Dichloroethane	ND	0.247	0.247	ND	1.00	1.00	04/01/22	KCA	1	
1,2-dichloropropane	ND	0.217	0.217	ND	1.00	1.00	04/01/22	KCA	1	
1,2-Dichlorotetrafluoroethane	ND	0.143	0.143	ND	1.00	1.00	04/01/22	KCA	1	
1,3,5-Trimethylbenzene	ND	0.204	0.204	ND	1.00	1.00	04/01/22	KCA	1	
1,3-Butadiene	ND	0.452	0.452	ND	1.00	1.00	04/01/22	KCA	1	
1,3-Dichlorobenzene	ND	0.166	0.166	ND	1.00	1.00	04/01/22	KCA	1	
1,4-Dichlorobenzene	ND	0.166	0.166	ND	1.00	1.00	04/01/22	KCA	1	
1,4-Dioxane	0.458	0.278	0.278	1.65	1.00	1.00	04/01/22	KCA	1	
2-Hexanone(MBK)	ND	0.244	0.244	ND	1.00	1.00	04/01/22	KCA	1	1
4-Ethyltoluene	0.393	0.204	0.204	1.93	1.00	1.00	04/01/22	KCA	1	1
4-Isopropyltoluene	ND	0.182	0.182	ND	1.00	1.00	04/01/22	KCA	1	1
4-Methyl-2-pentanone(MIBK)	ND	0.244	0.244	ND	1.00	1.00	04/01/22	KCA	1	
Acetone	31.7	0.421	0.421	75.3	1.00	1.00	04/01/22	KCA	1	
Acrylonitrile	ND	0.461	0.461	ND	1.00	1.00	04/01/22	KCA	1	
Benzene	0.385	0.313	0.313	1.23	1.00	1.00	04/01/22	KCA	1	

Client ID: SG-2

Client ID: SG-2	1	1.	L 0.D./	. / 0	. /	01 OD/				
Parameter	ppbv Result	ppbv RL	LOD/ MDL	ug/m3 Result	ug/m: RL	3LOD/ MDL	Date/Time	Ву	Dilution	
Benzyl chloride	ND	0.193	0.193	ND	1.00	1.00	04/01/22	KCA	1	
Bromodichloromethane	ND	0.149	0.149	ND	1.00	1.00	04/01/22	KCA	1	
Bromoform	ND	0.097	0.097	ND	1.00	1.00	04/01/22	KCA	1	
Bromomethane	ND	0.258	0.258	ND	1.00	1.00	04/01/22	KCA	1	
Carbon Disulfide	ND	0.321	0.321	ND	1.00	1.00	04/01/22	KCA	1	
Carbon Tetrachloride	0.052	0.032	0.032	0.33	0.20	0.20	04/01/22	KCA	1	
Chlorobenzene	ND	0.217	0.217	ND	1.00	1.00	04/01/22	KCA	1	
Chloroethane	ND	0.379	0.379	ND	1.00	1.00	04/01/22	KCA	1	
Chloroform	ND	0.205	0.205	ND	1.00	1.00	04/01/22	KCA	1	
Chloromethane	ND	0.485	0.485	ND	1.00	1.00	04/01/22	KCA	1	
Cis-1,2-Dichloroethene	ND	0.051	0.051	ND	0.20	0.20	04/01/22	KCA	1	
cis-1,3-Dichloropropene	ND	0.221	0.221	ND	1.00	1.00	04/01/22	KCA	1	
Cyclohexane	ND	0.291	0.291	ND	1.00	1.00	04/01/22	KCA	1	
Dibromochloromethane	ND	0.118	0.118	ND	1.00	1.00	04/01/22	KCA	1	
Dichlorodifluoromethane	0.258	0.202	0.202	1.28	1.00	1.00	04/01/22	KCA	1	
Ethanol	25.4	0.531	0.531	47.8	1.00	1.00	04/01/22	KCA	1	1
Ethyl acetate	0.764	0.278	0.278	2.75	1.00	1.00	04/01/22	KCA	1	1
Ethylbenzene	0.683	0.230	0.230	2.96	1.00	1.00	04/01/22	KCA	1	
Heptane	0.397	0.244	0.244	1.63	1.00	1.00	04/01/22	KCA	1	
Hexachlorobutadiene	ND	0.094	0.094	ND	1.00	1.00	04/01/22	KCA	1	
Hexane	0.508	0.284	0.284	1.79	1.00	1.00	04/01/22	KCA	1	
Isopropylalcohol	2.85	0.407	0.407	7.00	1.00	1.00	04/01/22	KCA	1	
Isopropylbenzene	ND	0.204	0.204	ND	1.00	1.00	04/01/22	KCA	1	
m,p-Xylene	2.51	0.230	0.230	10.9	1.00	1.00	04/01/22	KCA	1	
Methyl Ethyl Ketone	1.34	0.339	0.339	3.95	1.00	1.00	04/01/22	KCA	1	
Methyl tert-butyl ether(MTBE)	ND	0.278	0.278	ND	1.00	1.00	04/01/22	KCA	1	
Methylene Chloride	3.73	0.863	0.863	12.9	3.00	3.00	04/01/22	KCA	1	
n-Butylbenzene	ND	0.182	0.182	ND	1.00	1.00	04/01/22	KCA	1	1
o-Xylene	0.806	0.230	0.230	3.50	1.00	1.00	04/01/22	KCA	1	
Propylene	ND	0.581	0.581	ND	1.00	1.00	04/01/22	KCA	1	1
sec-Butylbenzene	ND	0.182	0.182	ND	1.00	1.00	04/01/22	KCA	1	1
Styrene	ND	0.235	0.235	ND	1.00	1.00	04/01/22	KCA	1	
Tetrachloroethene	0.384	0.037	0.037	2.60	0.25	0.25	04/01/22	KCA	1	1
Tetrahydrofuran	ND	0.339	0.339	ND	1.00	1.00	04/01/22	KCA	1	'
Toluene	4.60	0.266	0.266	17.3	1.00	1.00	04/01/22 04/01/22	KCA	1	
Trans-1,2-Dichloroethene	ND	0.252	0.252	ND	1.00	1.00		KCA	1	
trans-1,3-Dichloropropene	ND 0.055	0.221	0.221 0.037	ND 0.30	1.00	1.00	04/01/22 04/01/22	KCA KCA	1 1	
Trichloroethene Trichlorofluoromethane	0.055 0.235	0.037 0.178	0.037	0.30 1.32	0.20 1.00	0.20 1.00	04/01/22	KCA	1	
Trichlorotrifluoroethane	0.233 ND	0.176	0.178	ND	1.00	1.00	04/01/22	KCA	1	
	ND	0.131	0.131	ND	0.20	0.20	04/01/22	KCA	1	
Vinyl Chloride QA/QC Surrogates/Internals	ND	0.076	0.070	ND	0.20	0.20	04/01/22	ROA	ı	
% Bromofluorobenzene	99	%	%	99	%	%	04/01/22	KCA	1	
% IS-1,4-Difluorobenzene	80	%	%	80	%	%	04/01/22	KCA	1	
% IS-Bromochloromethane	84	%	%	84	%	%	04/01/22	KCA	1	
% IS-Chlorobenzene-d5	82	%	%	82	%	%	04/01/22	KCA	1	
,5 10 Officiabolizono-do	<u> </u>	, ,	,,	V-	70	,0	<u></u>		•	

Phoenix I.D.: CK98463

Client ID: SG-2

ppbv ppbv LOD/ ug/m3 ug/m3LOD/
Parameter Result RL MDL Result RL MDL Date/Time By Dilution

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected BRL=Below Reporting Level L=Biased Low LOD=Limit of Detection MDL=Method Detection Limit1

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Helium is reported in units of percent (%)

The canister was received under no vacuum, therefore sample results may not be representative.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

May 09, 2022

^{1 =} This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

May 09, 2022

FOR: Attn: Mr. Harry Sudwischer

> ECMS, Inc 10 Filmont Drive NY, NY 10956

Sample Information **Custody Information** Date <u>Time</u> AIR Collected by: HS/SS 03/30/22 Matrix: 18:38 Received by: Location Code: **ECMS** В 03/31/22 16:11

Rush Request: Standard Analyzed by: see "By" below

P.O.#: Canister Id: 28581

22.066 LITTLE TOR

Client ID: SG-3

Project ID:

Laboratory Data SDG ID: GCK98458 Phoenix ID: CK98464

Parameter	ppbv Result	ppbv RL	LOD/ MDL	ug/m3 Result	ug/m3 RL	B LOD/ MDL		Ву	Dilution	
Helium (% volume/volume)	ND	10		ND			04/04/22	KCA	1	1
Volatiles (TO15)										
1,1,1,2-Tetrachloroethane	ND	0.146	0.146	ND	1.00	1.00	04/02/22	KCA	1	1
1,1,1-Trichloroethane	ND	0.183	0.183	ND	1.00	1.00	04/02/22	KCA	1	
1,1,2,2-Tetrachloroethane	ND	0.146	0.146	ND	1.00	1.00	04/02/22	KCA	1	
1,1,2-Trichloroethane	ND	0.183	0.183	ND	1.00	1.00	04/02/22	KCA	1	
1,1-Dichloroethane	ND	0.247	0.247	ND	1.00	1.00	04/02/22	KCA	1	
1,1-Dichloroethene	ND	0.051	0.051	ND	0.20	0.20	04/02/22	KCA	1	
1,2,4-Trichlorobenzene	ND	0.135	0.135	ND	1.00	1.00	04/02/22	KCA	1	
1,2,4-Trimethylbenzene	0.353	0.204	0.204	1.73	1.00	1.00	04/02/22	KCA	1	
1,2-Dibromoethane(EDB)	ND	0.130	0.130	ND	1.00	1.00	04/02/22	KCA	1	
1,2-Dichlorobenzene	ND	0.166	0.166	ND	1.00	1.00	04/02/22	KCA	1	
1,2-Dichloroethane	ND	0.247	0.247	ND	1.00	1.00	04/02/22	KCA	1	
1,2-dichloropropane	ND	0.217	0.217	ND	1.00	1.00	04/02/22	KCA	1	
1,2-Dichlorotetrafluoroethane	ND	0.143	0.143	ND	1.00	1.00	04/02/22	KCA	1	
1,3,5-Trimethylbenzene	ND	0.204	0.204	ND	1.00	1.00	04/02/22	KCA	1	
1,3-Butadiene	3.54	0.452	0.452	7.83	1.00	1.00	04/02/22	KCA	1	
1,3-Dichlorobenzene	ND	0.166	0.166	ND	1.00	1.00	04/02/22	KCA	1	
1,4-Dichlorobenzene	ND	0.166	0.166	ND	1.00	1.00	04/02/22	KCA	1	
1,4-Dioxane	ND	0.278	0.278	ND	1.00	1.00	04/02/22	KCA	1	
2-Hexanone(MBK)	1.00	0.244	0.244	4.09	1.00	1.00	04/02/22	KCA	1	1
4-Ethyltoluene	0.230	0.204	0.204	1.13	1.00	1.00	04/02/22	KCA	1	1
4-Isopropyltoluene	ND	0.182	0.182	ND	1.00	1.00	04/02/22	KCA	1	1
4-Methyl-2-pentanone(MIBK)	3.81	0.244	0.244	15.6	1.00	1.00	04/02/22	KCA	1	
Acetone	303	8.42	8.42	719	20.0	20.0	04/04/22	KCA	20	
Acrylonitrile	ND	0.461	0.461	ND	1.00	1.00	04/02/22	KCA	1	
Benzene	0.917	0.313	0.313	2.93	1.00	1.00	04/02/22	KCA	1	

Client ID: SG-3

Parameter	ppbv Result	ppbv RL	LOD/ MDL	ug/m3 Result	ug/m3 RL	3LOD/ MDL	Date/Time	Ву	Dilution	
Benzyl chloride	ND	0.193	0.193	ND	1.00	1.00	04/02/22	KCA	1	
Bromodichloromethane	ND	0.149	0.149	ND	1.00	1.00	04/02/22	KCA	1	
Bromoform	ND	0.097	0.097	ND	1.00	1.00	04/02/22	KCA	1	
Bromomethane	ND	0.258	0.258	ND	1.00	1.00	04/02/22	KCA	1	
Carbon Disulfide	0.400	0.321	0.321	1.24	1.00	1.00	04/02/22	KCA	1	
Carbon Tetrachloride	ND	0.032	0.032	ND	0.20	0.20	04/02/22	KCA	1	
Chlorobenzene	ND	0.217	0.217	ND	1.00	1.00	04/02/22	KCA	1	
Chloroethane	ND	0.379	0.379	ND	1.00	1.00	04/02/22	KCA	1	
Chloroform	ND	0.205	0.205	ND	1.00	1.00	04/02/22	KCA	1	
Chloromethane	ND	0.485	0.485	ND	1.00	1.00	04/02/22	KCA	1	
Cis-1,2-Dichloroethene	0.055	0.051	0.051	0.22	0.20	0.20	04/02/22	KCA	1	
cis-1,3-Dichloropropene	ND	0.221	0.221	ND	1.00	1.00	04/02/22	KCA	1	
Cyclohexane	ND	0.291	0.291	ND	1.00	1.00	04/02/22	KCA	1	
Dibromochloromethane	ND	0.118	0.118	ND	1.00	1.00	04/02/22	KCA	1	
Dichlorodifluoromethane	0.446	0.202	0.202	2.20	1.00	1.00	04/02/22	KCA	1	
Ethanol	14.5	0.531	0.531	27.3	1.00	1.00	04/02/22	KCA	1	1
Ethyl acetate	390	5.55	5.55	1400	20.0	20.0	04/04/22	KCA	20	1
Ethylbenzene	0.560	0.230	0.230	2.43	1.00	1.00	04/02/22	KCA	1	
Heptane	0.462	0.244	0.244	1.89	1.00	1.00	04/02/22	KCA	1	
Hexachlorobutadiene	ND	0.094	0.094	ND	1.00	1.00	04/02/22	KCA	1	
Hexane	1.22	0.284	0.284	4.30	1.00	1.00	04/02/22	KCA	1	
Isopropylalcohol	2.56	0.407	0.407	6.29	1.00	1.00	04/02/22	KCA	1	
Isopropylbenzene	ND	0.204	0.204	ND	1.00	1.00	04/02/22	KCA	1	
m,p-Xylene	1.59	0.230	0.230	6.90	1.00	1.00	04/02/22	KCA	1	
Methyl Ethyl Ketone	340	6.79	6.79	1000	20.0	20.0	04/04/22	KCA	20	
Methyl tert-butyl ether(MTBE)	ND	0.278	0.278	ND	1.00	1.00	04/02/22	KCA	1	
Methylene Chloride	ND	0.863	0.863	ND	3.00	3.00	04/02/22	KCA	1	
n-Butylbenzene	ND	0.182	0.182	ND	1.00	1.00	04/02/22	KCA	1	1
o-Xylene	0.472	0.230	0.230	2.05	1.00	1.00	04/02/22	KCA	1	
Propylene	5.59	0.581	0.581	9.6	1.00	1.00	04/02/22	KCA	1	1
sec-Butylbenzene	ND	0.182	0.182	ND	1.00	1.00	04/02/22	KCA	1	1
Styrene	ND	0.235	0.235	ND	1.00	1.00	04/02/22	KCA	1	
Tetrachloroethene	0.300	0.037	0.037	2.03	0.25	0.25	04/02/22	KCA	1	
Tetrahydrofuran	ND	0.339	0.339	ND	1.00	1.00	04/02/22	KCA	1	1
Toluene	1.84	0.266	0.266	6.93	1.00	1.00	04/02/22	KCA	1	
Trans-1,2-Dichloroethene	ND	0.252	0.252	ND	1.00	1.00	04/02/22	KCA	1	
trans-1,3-Dichloropropene	ND	0.221	0.221	ND	1.00	1.00	04/02/22	KCA	1	
Trichloroethene	ND	0.037	0.037	ND	0.20	0.20	04/02/22	KCA	1	
Trichlorofluoromethane	0.243	0.178	0.178	1.36	1.00	1.00	04/02/22	KCA	1	
Trichlorotrifluoroethane	ND	0.131	0.131	ND	1.00	1.00	04/02/22	KCA	1	
Vinyl Chloride	ND	0.078	0.078	ND	0.20	0.20	04/02/22	KCA	1	
QA/QC Surrogates/Internals		0.0.0			0.20					
% Bromofluorobenzene	96	%	%	96	%	%	04/02/22	KCA	1	
% IS-1,4-Difluorobenzene	100	%	%	100	%	%	04/02/22	KCA	1	
% IS-Bromochloromethane	102	%	%	102	%	%	04/02/22	KCA	1	
% IS-Chlorobenzene-d5	102	%	%	102	%	%	04/02/22	KCA	1	
% Bromofluorobenzene (20x)	100	%	%	100	%	%	04/04/22	KCA	20	
% IS-1,4-Difluorobenzene (20x)	108	%	%	108	%	%	04/04/22	KCA	20	
% IS-Bromochloromethane (20x)	109	%	%	109	%	%	04/04/22	KCA	20	
(2011)					. •	. •		.=. •		

Client ID: SG-3

Parameter	ppbv Result	ppbv RL	LOD/ MDL	ug/m3 Result	ug/m3LOI RL MD	D/ L Date/Time	Ву	Dilution	
% IS-Chlorobenzene-d5 (20x)	107	%	%	107	% %	04/04/22	KCA	20	

^{1 =} This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected BRL=Below Reporting Level L=Biased Low LOD=Limit of Detection MDL=Method Detection Limit1

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Helium is reported in units of percent (%)

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

May 09, 2022

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

May 09, 2022

FOR: Attn: Mr. Harry Sudwischer

> ECMS, Inc 10 Filmont Drive NY, NY 10956

Sample Information **Custody Information** Date <u>Time</u> Collected by: HS/SS 03/30/22 18:41 Matrix: AIR Received by: Location Code: **ECMS** В 03/31/22 16:11

Rush Request: Standard Analyzed by: see "By" below

P.O.#:

Laboratory Data SDG ID: GCK98458 Canister Id: 28608 Phoenix ID: CK98465

22.066 LITTLE TOR Project ID:

Client ID: OA-1

Parameter	ppbv Result	ppbv RL	LOD/ MDL	ug/m3 Result	ug/m3 RL	B LOD/ MDL	Date/Time	Ву	Dilution	
Volatiles (TO15)										
1,1,1,2-Tetrachloroethane	ND	0.146	0.146	ND	1.00	1.00	04/01/22	KCA	1	1
1,1,1-Trichloroethane	ND	0.183	0.183	ND	1.00	1.00	04/01/22	KCA	1	
1,1,2,2-Tetrachloroethane	ND	0.146	0.146	ND	1.00	1.00	04/01/22	KCA	1	
1,1,2-Trichloroethane	ND	0.183	0.183	ND	1.00	1.00	04/01/22	KCA	1	
1,1-Dichloroethane	ND	0.247	0.247	ND	1.00	1.00	04/01/22	KCA	1	
1,1-Dichloroethene	ND	0.051	0.051	ND	0.20	0.20	04/01/22	KCA	1	
1,2,4-Trichlorobenzene	ND	0.135	0.135	ND	1.00	1.00	04/01/22	KCA	1	
1,2,4-Trimethylbenzene	ND	0.204	0.204	ND	1.00	1.00	04/01/22	KCA	1	
1,2-Dibromoethane(EDB)	ND	0.130	0.130	ND	1.00	1.00	04/01/22	KCA	1	
1,2-Dichlorobenzene	ND	0.166	0.166	ND	1.00	1.00	04/01/22	KCA	1	
1,2-Dichloroethane	ND	0.247	0.247	ND	1.00	1.00	04/01/22	KCA	1	
1,2-dichloropropane	ND	0.217	0.217	ND	1.00	1.00	04/01/22	KCA	1	
1,2-Dichlorotetrafluoroethane	ND	0.143	0.143	ND	1.00	1.00	04/01/22	KCA	1	
1,3,5-Trimethylbenzene	ND	0.204	0.204	ND	1.00	1.00	04/01/22	KCA	1	
1,3-Butadiene	ND	0.452	0.452	ND	1.00	1.00	04/01/22	KCA	1	
1,3-Dichlorobenzene	ND	0.166	0.166	ND	1.00	1.00	04/01/22	KCA	1	
1,4-Dichlorobenzene	ND	0.166	0.166	ND	1.00	1.00	04/01/22	KCA	1	
1,4-Dioxane	ND	0.278	0.278	ND	1.00	1.00	04/01/22	KCA	1	
2-Hexanone(MBK)	ND	0.244	0.244	ND	1.00	1.00	04/01/22	KCA	1	1
4-Ethyltoluene	ND	0.204	0.204	ND	1.00	1.00	04/01/22	KCA	1	1
4-Isopropyltoluene	ND	0.182	0.182	ND	1.00	1.00	04/01/22	KCA	1	1
4-Methyl-2-pentanone(MIBK)	ND	0.244	0.244	ND	1.00	1.00	04/01/22	KCA	1	
Acetone	1.90	0.421	0.421	4.51	1.00	1.00	04/01/22	KCA	1	
Acrylonitrile	ND	0.461	0.461	ND	1.00	1.00	04/01/22	KCA	1	
Benzene	ND	0.313	0.313	ND	1.00	1.00	04/01/22	KCA	1	
Benzyl chloride	ND	0.193	0.193	ND	1.00	1.00	04/01/22	KCA	1	

Parameter	ppbv Result	ppbv RL	LOD/ MDL	ug/m3 Result		3LOD/ MDL	Date/Time	Ву	Dilution	
Bromodichloromethane	ND	0.149	0.149	ND	1.00	1.00	04/01/22	KCA	1	
Bromoform	ND	0.097	0.097	ND	1.00	1.00	04/01/22	KCA	1	
Bromomethane	ND	0.258	0.258	ND	1.00	1.00	04/01/22	KCA	1	
Carbon Disulfide	ND	0.321	0.321	ND	1.00	1.00	04/01/22	KCA	1	
Carbon Tetrachloride	0.056	0.032	0.032	0.35	0.20	0.20	04/01/22	KCA	1	
Chlorobenzene	ND	0.217	0.217	ND	1.00	1.00	04/01/22	KCA	1	
Chloroethane	ND	0.379	0.379	ND	1.00	1.00	04/01/22	KCA	1	
Chloroform	ND	0.205	0.205	ND	1.00	1.00	04/01/22	KCA	1	
Chloromethane	0.489	0.485	0.485	1.01	1.00	1.00	04/01/22	KCA	1	
Cis-1,2-Dichloroethene	ND	0.051	0.051	ND	0.20	0.20	04/01/22	KCA	1	
cis-1,3-Dichloropropene	ND	0.221	0.221	ND	1.00	1.00	04/01/22	KCA	1	
Cyclohexane	ND	0.291	0.291	ND	1.00	1.00	04/01/22	KCA	1	
Dibromochloromethane	ND	0.118	0.118	ND	1.00	1.00	04/01/22	KCA	1	
Dichlorodifluoromethane	ND	0.202	0.202	ND	1.00	1.00	04/01/22	KCA	1	
Ethanol	3.28	0.531	0.531	6.18	1.00	1.00	04/01/22	KCA	1	1
Ethyl acetate	ND	0.278	0.278	ND	1.00	1.00	04/01/22	KCA	1	1
Ethylbenzene	ND	0.230	0.230	ND	1.00	1.00	04/01/22	KCA	1	
Heptane	ND	0.244	0.244	ND	1.00	1.00	04/01/22	KCA	1	
Hexachlorobutadiene	ND	0.094	0.094	ND	1.00	1.00	04/01/22	KCA	1	
Hexane	0.304	0.284	0.284	1.07	1.00	1.00	04/01/22	KCA	1	
Isopropylalcohol	ND	0.407	0.407	ND	1.00	1.00	04/01/22	KCA	1	
Isopropylbenzene	ND	0.204	0.204	ND	1.00	1.00	04/01/22	KCA	1	
m,p-Xylene	ND	0.230	0.230	ND	1.00	1.00	04/01/22	KCA	1	
Methyl Ethyl Ketone	ND	0.339	0.339	ND	1.00	1.00	04/01/22	KCA	1	
Methyl tert-butyl ether(MTBE)	ND	0.278	0.278	ND	1.00	1.00	04/01/22	KCA	1	
Methylene Chloride	ND	0.863	0.863	ND	3.00	3.00	04/01/22	KCA	1	
n-Butylbenzene	ND	0.182	0.182	ND	1.00	1.00	04/01/22	KCA	1	1
o-Xylene	ND	0.230	0.230	ND	1.00	1.00	04/01/22	KCA	1	
Propylene	ND	0.581	0.581	ND	1.00	1.00	04/01/22	KCA	1	1
sec-Butylbenzene	ND	0.182	0.182	ND	1.00	1.00	04/01/22	KCA	1	1
Styrene	ND	0.235	0.235	ND	1.00	1.00	04/01/22	KCA	1	
Tetrachloroethene	0.047	0.037	0.037	0.32	0.25	0.25	04/01/22	KCA	1	
Tetrahydrofuran	ND	0.339	0.339	ND	1.00	1.00	04/01/22	KCA	1	1
Toluene	ND	0.266	0.266	ND	1.00	1.00	04/01/22	KCA	1	
Trans-1,2-Dichloroethene	ND	0.252	0.252	ND	1.00	1.00	04/01/22	KCA	1	
trans-1,3-Dichloropropene	ND	0.221	0.221	ND	1.00	1.00	04/01/22	KCA	1	
Trichloroethene	ND	0.037	0.037	ND	0.20	0.20	04/01/22	KCA	1	
Trichlorofluoromethane	0.189	0.178	0.178	1.06	1.00	1.00	04/01/22	KCA	1	
Trichlorotrifluoroethane	ND	0.131	0.131	ND	1.00	1.00	04/01/22	KCA	1	
Vinyl Chloride	ND	0.078	0.078	ND	0.20	0.20	04/01/22	KCA	1	
QA/QC Surrogates/Internals										
% Bromofluorobenzene	99	%	%	99	%	%	04/01/22	KCA	1	
% IS-1,4-Difluorobenzene	101	%	%	101	%	%	04/01/22	KCA	1	
% IS-Bromochloromethane	103	%	%	103	%	%	04/01/22	KCA	1	
	101	%	%	101	%	%		KCA		

Client ID: OA-1

ppbv ppbv LOD/ ug/m3 ug/m3LOD/
Parameter Result RL MDL Result RL MDL Date/Time By Dilution

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected BRL=Below Reporting Level L=Biased Low LOD=Limit of Detection MDL=Method Detection Limit1

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

May 09, 2022

^{1 =} This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Canister Sampling Information

May 09, 2022

FOR: Attn: Mr. Harry Sudwischer

ECMS, Inc 10 Filmont Drive NY, NY 10956

Location Code: ECMS

SDG I.D.: GCK98458

Project ID: 22.066 LITTLE TOR

						Laboratory						Field					
		Canis	ster	Reg.	Chk Out	Out	In	Out	In	Flow	Start	End	Sampling	Sampling			
Client Id	Lab Id	ld	Туре	ld	Date	Hg	Hg	Flow	Flow	RPD	Hg	Hg	Start Date	End Date			
IA-1	CK98458	28602	6.0L	3513	03/29/22	-30	-5	11.1	10.6	4.6	-30	-9	03/30/22 11:20	03/30/22 18:34			
IA-2	CK98459	220	6.0L	5387	03/29/22	-30	-6	10.9	10.9	0.0	-30	-8.5	03/30/22 11:28	03/30/22 18:22			
IA-3	CK98460	252	6.0L	5380	03/29/22	-30	-7	10.8	10.7	0.9	-29.5	-9	03/30/22 11:29	03/30/22 18:20			
IA-4	CK98461	11289	6.0L	10594	03/29/22	-30	-6	11	11.3	2.7	-30	-8	03/30/22 11:23	03/30/22 18:28			
SG-1	CK98462	18111	6.0L	3188	03/21/22	-30	-7	10.8	11.5	6.3	-30	-8	03/30/22 11:21	03/30/22 18:19			
SG-2	CK98463	362	6.0L	5237	03/21/22	-30	0	10.8	11.3	4.5	-30	-5	03/30/22 11:27	03/30/22 19:17			
SG-3	CK98464	28581	6.0L	3507	03/21/22	-30	-5	10.8	10.9	0.9	-30	-8	03/30/22 11:19	03/30/22 18:38			
OA-1	CK98465	28608	6.0L	7017	03/29/22	-30	-5	11.1	10.8	2.7	-30	-8	03/30/22 11:17	03/30/22 18:41			

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

QA/QC Report

May 09, 2022

cis-1,3-Dichloropropene

Dibromochloromethane

Dichlorodifluoromethane

Cyclohexane

ND

ND

ND

ND

0.220

0.290

0.120

0.200

ND

ND

ND

ND

1.00

1.00

1.02

0.99

106

104

111

123

ND

ND

ND

1.29

ND

ND

ND

1.25

ND

ND

ND

0.262

ND

ND

ND

0.253

NC

NC

NC

NC

70 - 130

70 - 130

70 - 130

70 - 130

25

25

25

25

QA/QC Data

SDG I.D.: GCK98458 Blk Blk Sample Sample Sample Sample Blk Blk RL LCS DUP Rec **RPD** RL Dup Result Dup Result ug/m3 **RPD** ug/m3 ug/m3 ua/m3 ppbv ppbv Limits Limits Parameter ppbv ppbv % QA/QC Batch 618322 (ppbv), QC Sample No: CK98458 (CK98458, CK98459, CK98460, CK98461, CK98462 (1X, 5X), CK98463, CK98465) **Volatiles** 1,1,1,2-Tetrachloroethane ND 0.150 ND 1.03 105 ND ND ND ND NC 70 - 130 25 1,1,1-Trichloroethane ND 0.180 ND 0.98 107 ND ND ND ND NC 70 - 130 25 1,1,2,2-Tetrachloroethane ND 0.150 ND 1.03 101 ND ND ND ND NC 70 - 130 25 1,1,2-Trichloroethane ND 0.180 ND 0.98 108 ND ND ND ND NC 70 - 130 25 1,1-Dichloroethane ND 0.250 ND 1.01 96 ND ND ND ND NC 70 - 130 25 ND 1,1-Dichloroethene ND 0.050 ND 0.20 106 ND ND ND NC 70 - 130 25 1,2,4-Trichlorobenzene ND 0.130 ND 0.96 112 ND ND ND ND NC 70 - 130 25 1,2,4-Trimethylbenzene ND 0.200 ND 0.98 100 ND ND ND ND NC 70 - 130 25 1,2-Dibromoethane(EDB) ND ND 1.00 106 ND ND ND ND 0.130 NC 70 - 13025 1,2-Dichlorobenzene ND 0.170 ND 101 ND ND ND ND 1 02 NC 70 - 13025 ND ND 0.250 ND 1.01 108 ND ND ND 1,2-Dichloroethane NC 70 - 130 25 1,2-dichloropropane ND 0.220 ND 1.02 106 ND ND ND ND NC 70 - 130 25 ND 0.140 ND 0.98 ND ND ND ND 70 - 130 1,2-Dichlorotetrafluoroethane 154 NC 25 1.3.5-Trimethylbenzene ND 0.200 ND 0.98 101 ND ND ND ND NC 70 - 130 25 1,3-Butadiene ND 0.450 ND 0.99 103 ND ND ND ND NC 70 - 130 25 1.3-Dichlorobenzene ND 0.170 ND 1.02 100 ND ND ND ND NC 70 - 130 25 1,4-Dichlorobenzene ND 0.170 ND 1.02 102 ND ND ND ND NC 70 - 130 25 ND 0.280 ND 1.01 93 ND ND ND ND 1,4-Dioxane NC 70 - 13025 2-Hexanone(MBK) ND 0.240 ND 0.98 94 ND ND ND ND NC 70 - 130 25 ND ND 70 - 130 4-Ethyltoluene ND 0.200 ND 0.98 102 ND ND NC 25 ND 0.180 ND 0.99 94 ND ND ND ND 70 - 130 4-Isopropyltoluene NC 25 4-Methyl-2-pentanone(MIBK) ND 0.240 ND 0.98 97 ND ND ND ND NC 70 - 13025 2.85 2.80 Acetone ND 0.420 ND 1.00 93 1.20 1.18 NC 70 - 13025 Acrylonitrile ND 0.460 ND 1 00 91 ND ND ND ND 70 - 130 NC 25 Benzene ND 0.310 ND 0.99 102 ND ND ND ND NC 70 - 130 25 ND Benzyl chloride ND 0.190 ND 0.98 101 ND ND ND NC 70 - 130 25 Bromodichloromethane ND 0.150 ND 1.00 110 ND ND ND ND NC 70 - 130 25 Bromoform ND 0.097 ND 1.00 111 ND ND ND ND NC 70 - 130 25 Bromomethane ND 0.260 ND 1.01 102 ND ND ND ND NC 70 - 13025 Carbon Disulfide ND 0.320 ND 1.00 108 ND ND ND ND NC 70 - 130 25 Carbon Tetrachloride 0.20 0.35 ND 0.032 ND 107 0.37 0.056 0.059 NC 70 - 13025 Chlorobenzene ND 0.220 ND 1.01 105 ND ND ND ND NC 70 - 13025 Chloroethane ND 0.380 ND 1.00 102 ND ND ND ND NC 70 - 130 25 0.200 0.98 Chloroform ND ND 105 ND ND ND ND NC 70 - 130 25 Chloromethane ND 0.480 ND 0.99 1.06 0.512 0.537 104 1.11 NC 70 - 13025 Cis-1.2-Dichloroethene ND 0.050 ND 0.20 107 ND ND ND ND NC 70 - 130 25

QA/QC Data

SDG I.D.: GCK98458

Parameter	Blk ppbv	Blk RL ppbv	Blk ug/m3	Blk RL ug/m3	LCS %	Sample Result ug/m3	Sample Dup ug/m3	Sample Result ppbv	Sample Dup ppbv	DUP RPD	% Rec Limits	% RPD Limits	
Ethanol	ND	0.530	ND	1.00	119	83.6 E	81.5	44.4 E	43.3	2.5	70 - 130	25	
Ethyl acetate	ND	0.280	ND	1.01	113	ND	ND	ND	ND	NC	70 - 130	25	
Ethylbenzene	ND	0.230	ND	1.00	103	ND	ND	ND	ND	NC	70 - 130	25	
Heptane	ND	0.240	ND	0.98	102	ND	ND	ND	ND	NC	70 - 130	25	
Hexachlorobutadiene	ND	0.094	ND	1.00	113	ND	ND	ND	ND	NC	70 - 130	25	
Hexane	ND	0.280	ND	0.99	97	ND	ND	ND	ND	NC	70 - 130	25	
Isopropylalcohol	ND	0.410	ND	1.01	103	1.21	1.18	0.493	0.479	NC	70 - 130	25	
Isopropylbenzene	ND	0.200	ND	0.98	100	ND	ND	ND	ND	NC	70 - 130	25	
m,p-Xylene	ND	0.230	ND	1.00	105	ND	ND	ND	ND	NC	70 - 130	25	
Methyl Ethyl Ketone	ND	0.340	ND	1.00	102	ND	ND	ND	ND	NC	70 - 130	25	
Methyl tert-butyl ether(MTBE)	ND	0.280	ND	1.01	97	ND	ND	ND	ND	NC	70 - 130	25	
Methylene Chloride	ND	0.860	ND	2.99	106	ND	ND	ND	ND	NC	70 - 130	25	
n-Butylbenzene	ND	0.180	ND	0.99	94	ND	ND	ND	ND	NC	70 - 130	25	
o-Xylene	ND	0.230	ND	1.00	104	ND	ND	ND	ND	NC	70 - 130	25	
Propylene	ND	0.580	ND	1.00	113	ND	ND	ND	ND	NC	70 - 130	25	
sec-Butylbenzene	ND	0.180	ND	0.99	97	ND	ND	ND	ND	NC	70 - 130	25	
Styrene	ND	0.230	ND	0.98	100	ND	ND	ND	ND	NC	70 - 130	25	
Tetrachloroethene	ND	0.037	ND	0.25	106	ND	ND	ND	ND	NC	70 - 130	25	
Tetrahydrofuran	ND	0.340	ND	1.00	100	ND	ND	ND	ND	NC	70 - 130	25	
Toluene	ND	0.270	ND	1.02	103	1.12	1.07	0.298	0.284	NC	70 - 130	25	
Trans-1,2-Dichloroethene	ND	0.250	ND	0.99	103	ND	ND	ND	ND	NC	70 - 130	25	
trans-1,3-Dichloropropene	ND	0.220	ND	1.00	103	ND	ND	ND	ND	NC	70 - 130	25	
Trichloroethene	ND	0.037	ND	0.20	108	ND	ND	ND	ND	NC	70 - 130	25	
Trichlorofluoromethane	ND	0.180	ND	1.01	108	1.06	1.06	0.189	0.189	NC	70 - 130	25	
Trichlorotrifluoroethane	ND	0.130	ND	1.00	108	ND	ND	ND	ND	NC	70 - 130	25	
Vinyl Chloride	ND	0.078	ND	0.20	107	ND	ND	ND	ND	NC	70 - 130	25	
% Bromofluorobenzene	98	%	98	%	99	100	99	100	99	NC	70 - 130	25	
% IS-1,4-Difluorobenzene	101	%	101	%	90	99	99	99	99	NC	60 - 140	25	
% IS-Bromochloromethane	102	%	102	%	92	102	102	102	102	NC	60 - 140	25	
% IS-Chlorobenzene-d5	100	%	100	%	91	100	100	100	100	NC	60 - 140	25	
QA/QC Batch 618529 (ppbv), Q	C Sam	ple No: C	CK99247	(CK984	64)								
Volatiles				,	,								
1,1,1,2-Tetrachloroethane	ND	0.500	ND	3.43	106	ND	ND	ND	ND	NC	70 - 130	25	
1,1,1-Trichloroethane	ND	0.500	ND	2.73	102	ND	ND	ND	ND	NC	70 - 130	25	
1,1,2,2-Tetrachloroethane	ND	0.010	ND	0.07	93	ND	ND	ND	ND	NC	70 - 130	25	
1,1,2-Trichloroethane	ND	0.020	ND	0.11	96	ND	ND	ND	ND	NC	70 - 130	25	
1,1-Dichloroethane	ND	0.150	ND	0.61	90	ND	ND	ND	ND	NC	70 - 130	25	
1,1-Dichloroethene	ND	0.200	ND	0.79	99	ND	ND	ND	ND	NC	70 - 130	25	
1,2,4-Trichlorobenzene	ND	0.054	ND	0.40	152	ND	ND	ND	ND	NC	70 - 130	25	1
1,2,4-Trimethylbenzene	ND	0.500	ND	2.46	118	ND	ND	ND	ND	NC	70 - 130	25	
1,2-Dibromoethane(EDB)	ND	0.010	ND	0.08	97	ND	ND	ND	ND	NC	70 - 130	25	
1,2-Dichlorobenzene	ND	0.100	ND	0.60	116	ND	ND	ND	ND	NC	70 - 130	25	
1,2-Dichloroethane	ND	0.020	ND	0.08	104	0.09	ND	0.022	ND	NC	70 - 130	25	
1,2-dichloropropane	ND	0.020	ND	0.09	91	ND	ND	ND	ND	NC	70 - 130	25	
1,2-Dichlorotetrafluoroethane	ND	0.500	ND	3.49	108	ND	ND	ND	ND	NC	70 - 130	25	
1,3,5-Trimethylbenzene	ND	0.500	ND	2.46	115	ND	ND	ND	ND	NC	70 - 130	25	
1,3-Butadiene	ND	0.500	ND	1.11	109	ND	ND	ND	ND	NC	70 - 130	25	
1,3-Dichlorobenzene	ND	0.100	ND	0.60	125	ND	ND	ND	ND	NC	70 - 130	25	
1,4-Dichlorobenzene	ND	0.080	ND	0.48	117	ND	ND	ND	ND	NC	70 - 130	25	
1,4-Dioxane	ND	0.130	ND	0.47	101	ND	ND	ND	ND	NC	70 - 130	25	
2-Hexanone(MBK)	ND	0.500	ND	2.05	107	ND	ND	ND	ND	NC	70 - 130	25	
4-Ethyltoluene	ND	0.500	ND	2.46	114	ND	ND	ND	ND	NC	70 - 130	25	
•													

SDG I.D.: GCK98458

Parameter	Blk ppbv	Blk RL ppbv	Blk ug/m3	Blk RL ug/m3	LCS %	Sample Result ug/m3	Sample Dup ug/m3	Sample Result ppbv	Sample Dup ppbv	DUP RPD	% Rec Limits	% RPD Limits	
4-Isopropyltoluene	ND	0.500	ND	2.74	116	ND	ND	ND	ND	NC	70 - 130	25	
4-Methyl-2-pentanone(MIBK)	ND	0.500	ND	2.05	107	ND	ND	ND	ND	NC	70 - 130	25	
Acrylonitrile	ND	0.500	ND	1.08	107	ND	ND	ND	ND	NC	70 - 130	25	
Benzene	ND	0.200	ND	0.64	89	1.06	1.00	0.333	0.314	NC	70 - 130	25	
Benzyl chloride	ND	0.500	ND	2.59	110	ND	ND	ND	ND	NC	70 - 130	25	
Bromodichloromethane	ND	0.020	ND	0.13	100	ND	ND	ND	ND	NC	70 - 130	25	
Bromoform	ND	0.150	ND	1.55	121	ND	ND	ND	ND	NC	70 - 130	25	
Bromomethane	ND	0.140	ND	0.54	103	ND	ND	ND	ND	NC	70 - 130	25	
Carbon Disulfide	ND	0.500	ND	1.56	89	ND	ND	ND	ND	NC	70 - 130	25	
Carbon Tetrachloride	ND	0.086	ND	0.54	109	0.55	0.54	0.087	0.086	NC	70 - 130	25	
Chlorobenzene	ND	0.200	ND	0.92	103	ND	ND	ND	ND	NC	70 - 130	25	
Chloroethane	ND	0.500	ND	1.32	99	ND	ND	ND	ND	NC	70 - 130	25	
Chloroform	ND	0.200	ND	0.98	95	ND	ND	ND	ND	NC	70 - 130	25	
Chloromethane	ND	0.500	ND	1.03	105	1.78	1.59	0.864	0.769	NC	70 - 130	25	
Cis-1,2-Dichloroethene	ND	0.200	ND	0.79	93	ND	ND	ND	ND	NC	70 - 130	25	
cis-1,3-Dichloropropene	ND	0.100	ND	0.45	94	ND	ND	ND	ND	NC	70 - 130	25	
Cyclohexane	ND	0.500	ND	1.72	83	ND	ND	ND	ND	NC	70 - 130	25	
Dibromochloromethane	ND	0.010	ND	0.09	102	ND	ND	ND	ND	NC	70 - 130	25	
Dichlorodifluoromethane	ND	0.500	ND	2.47	107	2.68	2.73	0.542	0.553	NC	70 - 130	25	
Ethanol	ND	0.750	ND	1.41	124	981 E	934	521 E	496	4.9	70 - 130	25	
Ethylbenzene	ND	0.500	ND	2.17	108	ND	ND	ND	ND	NC	70 - 130	25	
Heptane	ND	0.500	ND	2.05	108	ND	ND	ND	ND	NC	70 - 130	25	
Hexachlorobutadiene	ND	0.010	ND	0.11	141	ND	ND	ND	ND	NC	70 - 130	25	1
Hexane	ND	0.450	ND	1.59	102	1.87	1.72	0.531	0.488	NC	70 - 130	25	
Isopropylalcohol	ND	0.750	ND	1.84	119	3.68	3.46	1.50	1.41	NC	70 - 130	25	
Isopropylbenzene	ND	0.500	ND	2.46	106	ND	ND	ND	ND	NC	70 - 130	25	
m,p-Xylene	ND	1.00	ND	4.34	112	5.86	5.64	1.35	1.30	NC	70 - 130	25	
Methyl tert-butyl ether(MTBE)	ND	0.500	ND	1.80	98	ND	ND	ND	ND	NC	70 - 130	25	
Methylene Chloride	ND	3.00	ND	10.4	102	ND	ND	ND	ND	NC	70 - 130	25	
n-Butylbenzene	ND	0.500	ND	2.74	110	ND	ND	ND	ND	NC	70 - 130	25	
o-Xylene	ND	0.500	ND	2.17	112	ND	ND	ND	ND	NC	70 - 130	25	
Propylene	ND	0.500	ND	0.86	102	ND	ND	ND	ND	NC	70 - 130	25	
sec-Butylbenzene	ND	0.500	ND	2.74	108	ND	ND	ND	ND	NC	70 - 130	25	
Styrene	ND	0.200	ND	0.85	115	ND	ND	ND	ND	NC	70 - 130	25	
Tetrachloroethene	ND	0.100	ND	0.68	106	18.2	17.6	2.68	2.59	3.4	70 - 130	25	
Tetrahydrofuran	ND	0.500	ND	1.47	102	ND	ND	ND	ND	NC	70 - 130	25	
Toluene	ND	0.500	ND	1.88	98	10.4	10.4	2.75	2.75	0.0	70 - 130	25	
Trans-1,2-Dichloroethene	ND	0.200	ND	0.79	95	ND	ND	ND	ND	NC	70 - 130	25	
trans-1,3-Dichloropropene	ND	0.500	ND	2.27	96	ND	ND	ND	ND	NC	70 - 130	25	
Trichloroethene	ND	0.050	ND	0.27	103	ND	ND	ND	ND	NC	70 - 130	25	
Trichlorofluoromethane	ND	0.500	ND	2.81	116	ND	ND	ND	ND	NC	70 - 130	25	
Trichlorotrifluoroethane	ND	0.500	ND	3.83	92	ND	ND	ND	ND	NC	70 - 130	25	
Vinyl Chloride	ND	0.100	ND	0.26	104	ND	ND	ND	ND	NC	70 - 130	25	
% Bromofluorobenzene	92	%	92	%	101	104	102	104	102	NC	70 - 130	25	
% IS-1,4-Difluorobenzene	97	%	97	%	105	81	84	81	84	NC	60 - 140	25	
% IS-Bromochloromethane	90	%	90	%	101	88	91	88	91	NC	60 - 140	25	
% IS-Chlorobenzene-d5	93	%	93	%	109	81	84	81	84	NC	60 - 140	25	
QA/QC Batch 618712 (ppbv), Q Volatiles	C Sam	pie No: C	K99/10	(CK984	64 (20X))								
Acetone	ND	0.750	ND	1.78	105	81.4	84.3	34.3	35.5	3.4	70 - 130	25	
Ethyl acetate	ND	0.500	ND	1.80	101	5.51	5.15	1.53	1.43	NC	70 - 130	25	
Methyl Ethyl Ketone	ND	0.450	ND	1.33	98	4.72	4.75	1.60	1.61	NC	70 - 130	25	
				-		-	-		-	-			

QA/QC Data

Parameter	Blk ppbv	Blk RL ppbv	Blk ug/m3	Blk RL ug/m3	LCS %	Sample Sample Sample % % Result Dup Result Dup DUP Rec RPD ug/m3 ug/m3 ppbv ppbv RPD Limits Limits
% Bromofluorobenzene	93	%	93	%	102	102 103 102 103 NC 70 - 130 25
% IS-1,4-Difluorobenzene	100	%	100	%	113	101 104 101 104 NC 60 - 140 25
% IS-Bromochloromethane	97	%	97	%	109	104 104 104 104 NC 60 - 140 25
% IS-Chlorobenzene-d5	99	%	99	%	123	106 107 106 107 NC 60 - 140 25

I = This parameter is outside laboratory LCS/LCSD specified recovery limits.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

RPD - Relative Percent Difference

LCS - Laboratory Control Sample

LCSD - Laboratory Control Sample Duplicate

MS - Matrix Spike

MS Dup - Matrix Spike Duplicate

NC - No Criteria

Intf - Interference

Phyllis/Shiller, Laboratory Director

SDG I.D.: GCK98458

Monday, May 09, 2022 Criteria: NY: AIRIA, AIRSV

Sample Criteria Exceedances Report

GCK98458 - ECMS

			GCK98458 - ECMS					
State: NY	≻ Z						귐	Analysis
SampNo	Acode	Phoenix Analyte	Criteria	Result	RL	Criteria	Criteria	Units
CK98458	\$AIR_NYTO15	Carbon Tetrachloride	NY / Air Guideline Values / Indoor Air	0.056	0.032	0.032	0.032	nddd
CK98458	\$AIR_NYTO15	Carbon Tetrachloride	NY / Air Guideline Values / Indoor Air	0.35	0.2	0.2	0.2	ng/m3
CK98459	\$AIR_NYTO15	Carbon Tetrachloride	NY / Air Guideline Values / Indoor Air	0.048	0.032	0.032	0.032	nqdd
CK98459	\$AIR_NYTO15	Carbon Tetrachloride	NY / Air Guideline Values / Indoor Air	0.30	0.2	0.2	0.2	ng/m3
CK98460	\$AIR_NYTO15	Carbon Tetrachloride	NY / Air Guideline Values / Indoor Air	0.055	0.032	0.032	0.032	nqdd
CK98460	\$AIR_NYTO15	Carbon Tetrachloride	NY / Air Guideline Values / Indoor Air	0.35	0.2	0.2	0.2	ng/m3
CK98461	\$AIR_NYTO15	Carbon Tetrachloride	NY / Air Guideline Values / Indoor Air	0.059	0.032	0.032	0.032	vdqd
CK98461	\$AIR_NYTO15	Methylene Chloride	NY / Air Guideline Values / Indoor Air	3.39	0.863	0.864	0.864	nqdd
CK98461	\$AIR_NYTO15	Carbon Tetrachloride	NY / Air Guideline Values / Indoor Air	0.37	0.2	0.2	0.2	ng/m3
CK98461	\$AIR_NYT015	Methylene Chloride	NY / Air Guideline Values / Indoor Air	11.8	က	က	က	ng/m3
CK98462	\$AIR_NYTO15	Tetrachloroethene	NY / Air Guideline Values / Indoor Air	0.621	0.037	0.443	0.443	\qdd
CK98462	\$AIR_NYTO15	Carbon Tetrachloride	NY / Air Guideline Values / Indoor Air	0.063	0.032	0.032	0.032	hddd
CK98462	\$AIR_NYTO15	Methylene Chloride	NY / Air Guideline Values / Indoor Air	1.29	0.863	0.864	0.864	nqdd
CK98462	\$AIR_NYTO15	Methylene Chloride	_	4.48	က	က	က	ng/m3
CK98462	\$AIR_NYTO15	Tetrachloroethene	NY / Air Guideline Values / Indoor Air	4.21	0	က	က	ng/m3
CK98462	\$AIR_NYTO15	Carbon Tetrachloride	NY / Air Guideline Values / Indoor Air	0.40	0.2	0.2	0.2	ng/m3
CK98463	\$AIR_NYTO15	Carbon Tetrachloride	NY / Air Guideline Values / Indoor Air	0.052	0.032	0.032	0.032	vdqq
CK98463	\$AIR_NYTO15	Methylene Chloride	NY / Air Guideline Values / Indoor Air	3.73	0.863	0.864	0.864	nqdd
CK98463	\$AIR_NYTO15		_	0.055	0.037	0.037	0.037	nqdd
CK98463	\$AIR_NYTO15	Carbon Tetrachloride	NY / Air Guideline Values / Indoor Air	0.33	0.2	0.2	0.2	ng/m3
CK98463	\$AIR_NYTO15	Methylene Chloride	NY / Air Guideline Values / Indoor Air	12.9	က	က	က	ng/m3
CK98463	\$AIR_NYTO15	Trichloroethene	NY / Air Guideline Values / Indoor Air	0.30	0.2	0.2	0.2	ng/m3
CK98464	\$AIR_NYTO15	Cis-1,2-Dichloroethene	NY / Air Guideline Values / Indoor Air	0.055	0.051	0.051	0.051	vdqqq
CK98464	\$AIR_NYTO15	Cis-1,2-Dichloroethene	NY / Air Guideline Values / Indoor Air	0.22	0.2	0.2	0.2	ng/m3
CK98465 CK98465	\$AIR_NYTO15	\$AIR_NYTO15 Carbon Tetrachloride	NY / Air Guideline Values / Indoor Air NY / Air Guideline Values / Indoor Air	0.056	0.032	0.032	0.032	ppbv nd/m3
010010			/ All Guidellie Values	5.5	7.	, ,	7.	dg/!!!

Phoenix Laboratories does not assume responsibility for the data contained in this exceedance report. It is provided as an additional tool to identify requested criteria exceedences. All efforts are made to ensure the accuracy of the data (obtained from appropriate agencies). A lack of exceedence information does not necessarily suggest conformance to the criteria. It is ultimately the site professional's responsibility to determine appropriate compliance.

CHAIN OF CUSTODY RECORD AIR ANALYSES

P.O. #	Page	of	1	
Data Delivery:				
☐ Fax #:				

Envi	ronmental Laboratories, Inc.				860-645	-1102				Fax #: _								
587 Eas	st Middle Turnpike, P.O. Box 370, Manchester, CT 06040 Telephone 860.645.1102 • Tax 860.645.0823			email	: greg@p	hoenixlal	bs.com			☐ Email:	harrys@ecmsr	ny.com						
										Phone #	:	203-241-1030)					
Report to:	Harry Sudwischer	Project Name		22.066	5 Little	Tor		Data Format:	(Circle)	Equis	Excel	Other:						
Customer:	ECMS,Inc.	Invoice to:	Harry :	Sudwis	cher			Requeste	d Delivera	ble: RCP	ASP CAT B)						
Address:	10 Filmont Dirve, New City, NY 10956									МСР	NJ Deliverabl	les						
		Sampled by:	Harry :	Sudwis	cher/S	am Ste	enson	Quote Nu	mber:				Air		Composite (C)			
							,								odu			
Phoenix ID #	Client Sample ID	Canister ID #	Canister Size (L)	Outgoing Canister Pressure (' Hg)	Incoming Canister Pressure ("Hg)	Flow Regulator ID#	Flow Controller Setting (mL/min)	Sampling Start Time		Sample Start Date	Canister Pressure at Start (" Hg)	Canister Pressure at End ("Hg)	Ambient/Indoor		Grab (G) Coi	TO-15	АРН	Helium
			THIS SEC	TION FOR	LAB USE	ONLY							M	ATRD	×	AN	IALYSE	S
78458	IA-1	28602	6L	-30	-5	3513		11:20	18:34	3/30/2022		9	х		_	х	_	
78459	IA-2	220	6L	-30	ھا-	5387	109	11:28		3/30/2022		8.5	х			х	_	
78460	IA-3	252	6L	- 30	-7	5380	10.8	11:29		3/30/2022		9	х	\perp		х		
78461	IA-4	11289	6L	- 30	-6	10594		11-23		3/30/2022	30	8	х	\perp		х	_	
78462	SG-1	18111	6L	-30	-7	3188	10.8	11:21	-	3/30/2022		8,		х	_	x	×	(
78463	SG-2	362	6L	-30	0	5237		11:27	19:17	3/30/2022		5		х	_	х	×	(
78464	SG-3	28581	6L	-30	-5	3507	10.8	11:19		3/30/2022		8		х	_	x	×	(
98465	OA-1	28608	6L	-30	-5	7017	11-1	11:17	18:41	3/30/2022	30+	8	х		_	х		
														\dashv	\dashv	_	\dashv	
200		1				D		Time:				/- 5/					h	
Relinquished by		Accepted by:	人	\mathcal{I}		Date:	[Z_	11,72			eased by Phoen n and agree to							
		OB	And			3.31	28	14:30	Signature	. <u> </u>				Date	<u>:: 3/</u>	/30/	/22	
itate When Samp	ples Collected: NY		Turnaround 1 Day	i Time:	Requested CT:	d Criteria: (Please Circ MA:	le)	NI:		NY:		<u>PA:</u>			/T:		
PECIAL INSTRU	UCTIONS, OC REQUIREMENTS, REGULATORY INFORM	IATION:	2 Day		TAC I/C		Indoor A Residenti		Indoor A	1	Vapor Intru	sion	l	oor Air	<u>* </u>	Indoo:		
			,		SVVC I/C	2	Ind/Com		Ind/Com	mercial			1	identia	al	Indust	trial	
doul:	3/31/3> (Mo 3/31/10	ا۱۱		X	SVVC RE GWV I/C GWV CE	2	Soil Gas: Residenti Ind/Com	al	Soil Gas Resident Ind/Com	ial			Nor resi	n- idential	1	Sub-sl Reside	ential	
THE .	a a 1 00 1 1 0 0 0 0 1 1 1	u 1 1 $ u$			I GMA CE	J	1 2011		and/Com	1104 6161			L			HIGUS	AT IGH	

Thursday, June 23, 2022

Attn: Mr. Harry Sudwischer ECMS, Inc **10 Filmont Drive** NY, NY 10956

Project ID: 2655 LITTLE TOR RD

SDG ID: GCL57220

Sample ID#s: CL57220 - CL57228

This laboratory is in compliance with the NELAC requirements of procedures used except where indicated.

This report contains results for the parameters tested, under the sampling conditions described on the Chain Of Custody, as received by the laboratory. This report is incomplete unless all pages indicated in the pagination at the bottom of the page are included.

A scanned version of the COC form accompanies the analytical report and is an exact duplicate of the original.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Sincerely yours,

Laboratory Director

NELAC - #NY11301

CT Lab Registration #PH-0618

MA Lab Registration #M-CT007

ME Lab Registration #CT-007

NH Lab Registration #213693-A,B

NJ Lab Registration #CT-003

NY Lab Registration #11301

PA Lab Registration #68-03530

RI Lab Registration #63

UT Lab Registration #CT00007

VT Lab Registration #VT11301

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

SDG Comments

June 23, 2022

SDG I.D.: GCL57220

8260 Volatile Organics:

1,2-Dibromoethane, 1,2,3 Trichloropropane, and 1,2-Dibromo-3-chloropropane do not meet NY TOGS GA criteria, these compounds are analyzed by GC/ECD method 504 or 8011 to achieve this criteria.

CL57221

Volatile Comment:

Elevated reporting limits due to the foamy nature of the sample. Not all requested criteria could be achieved.

Sample Id Cross Reference

June 23, 2022

SDG I.D.: GCL57220

Project ID: 2655 LITTLE TOR RD

Client Id	Lab Id	Matrix
PMW-UG	CL57220	GROUND WATER
PMW-2A	CL57221	GROUND WATER
PMW-4A	CL57222	GROUND WATER
PMW-5A	CL57223	GROUND WATER
PMW-6A	CL57224	GROUND WATER
PMW-7A	CL57225	GROUND WATER
PMW-8A	CL57226	GROUND WATER
PMW-12A	CL57227	GROUND WATER
PMW-13A	CL57228	GROUND WATER

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

June 23, 2022

FOR: Attn: Mr. Harry Sudwischer

ECMS, Inc 10 Filmont Drive NY, NY 10956

Sample Information

Matrix: GROUND WATER

Location Code: ECMS

Rush Request: Standard

P.O.#:

Custody Information Date

Collected by: 06/13/22

Received by: MMN 06/15/22 16:40

Analyzed by: see "By" below

Laboratory Data

RL/

SDG ID: GCL57220

Time

13:00

Phoenix ID: CL57220

Project ID: 2655 LITTLE TOR RD

Client ID: PMW-UG

Parameter Result **PQL** Units Dilution Date/Time Bv Reference **Volatiles** 06/17/22 1,1,1,2-Tetrachloroethane ND 1.0 ug/L 1 МН SW8260C ND 06/17/22 SW8260C 1,1,1-Trichloroethane 1.0 ug/L 1 MH ND 0.50 ug/L 06/17/22 МН SW8260C 1,1,2,2-Tetrachloroethane ND 06/17/22 SW8260C 1,1,2-Trichloroethane 1.0 ug/L 1 MH SW8260C ND 1.0 ug/L 1 06/17/22 MH 1,1-Dichloroethane ND 06/17/22 SW8260C 1,1-Dichloroethene 1.0 ug/L 1 MH SW8260C ND 1.0 ug/L 1 06/17/22 MH 1,1-Dichloropropene 06/17/22 MH SW8260C 1,2,3-Trichlorobenzene ND 1.0 ug/L 1 1,2,3-Trichloropropane ND 0.25 ug/L 1 06/17/22 MH SW8260C SW8260C 1,2,4-Trichlorobenzene ND 1.0 ug/L 1 06/17/22 MH SW8260C ND 1 06/17/22 1.0 ug/L MH 1,2,4-Trimethylbenzene ND 0.50 1 06/17/22 MH SW8260C 1,2-Dibromo-3-chloropropane ug/L ND 0.25 ug/L 1 06/17/22 MH SW8260C 1,2-Dibromoethane ND 1.0 ug/L 1 06/17/22 MH SW8260C 1,2-Dichlorobenzene ND 0.60 ug/L 1 06/17/22 MH SW8260C 1,2-Dichloroethane SW8260C ND 1.0 ug/L 06/17/22 MH 1 1,2-Dichloropropane SW8260C ND 1.0 1 06/17/22 MH 1,3,5-Trimethylbenzene ug/L ND 1 06/17/22 МН SW8260C 1.0 ug/L 1,3-Dichlorobenzene ND 1.0 ug/L 1 06/17/22 MH SW8260C 1,3-Dichloropropane ND 1.0 ug/L 1 06/17/22 SW8260C 1,4-Dichlorobenzene ND 1.0 ug/L 1 06/17/22 MH SW8260C 2,2-Dichloropropane 2-Chlorotoluene ND 1.0 ug/L 1 06/17/22 MH SW8260C ND 5.0 ug/L 1 06/17/22 SW8260C 2-Hexanone MH ND 1.0 1 06/17/22 SW8260C 2-Isopropyltoluene ug/L MH 4-Chlorotoluene ND 1.0 ug/L 1 06/17/22 МН SW8260C ND 5.0 ug/L 1 06/17/22 MH SW8260C 4-Methyl-2-pentanone

Client ID: PMW-UG

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
Acetone	ND	25	ug/L	1	06/17/22	МН	SW8260C
Acrylonitrile	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
Benzene	2.4	0.70	ug/L	1	06/17/22	MH	SW8260C
Bromobenzene	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
Bromochloromethane	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
Bromodichloromethane	ND	0.50	ug/L	1	06/17/22	MH	SW8260C
Bromoform	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
Bromomethane	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
Carbon Disulfide	ND	5.0	ug/L	1	06/17/22	MH	SW8260C
Carbon tetrachloride	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
Chlorobenzene	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
Chloroethane	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
Chloroform	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
Chloromethane	ND	1.0	ug/L	1	06/17/22	МН	SW8260C
cis-1,2-Dichloroethene	ND	1.0	ug/L	1	06/17/22	МН	SW8260C
cis-1,3-Dichloropropene	ND	0.40	ug/L	1	06/17/22	МН	SW8260C
Dibromochloromethane	ND	0.50	ug/L	1	06/17/22	МН	SW8260C
Dibromomethane	ND	1.0	ug/L	1	06/17/22	МН	SW8260C
Dichlorodifluoromethane	ND	1.0	ug/L	1	06/17/22	МН	SW8260C
Ethylbenzene	ND	1.0	ug/L	1	06/17/22	МН	SW8260C
Hexachlorobutadiene	ND	0.40	ug/L	1	06/17/22	МН	SW8260C
Isopropylbenzene	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
m&p-Xylene	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
Methyl ethyl ketone	ND	5.0	ug/L	1	06/17/22	MH	SW8260C
Methyl t-butyl ether (MTBE)	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
Methylene chloride	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
Naphthalene	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
n-Butylbenzene	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
n-Propylbenzene	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
o-Xylene	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
p-Isopropyltoluene	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
sec-Butylbenzene	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
Styrene	ND	1.0		1	06/17/22	MH	SW8260C
tert-Butylbenzene	ND	1.0	ug/L	1	06/17/22	МН	SW8260C
Tetrachloroethene			ug/L				
Tetrahydrofuran (THF)	ND	2.5	ug/L	1	06/17/22	MH	002000
Toluene	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
Total Xylenes	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
trans-1,2-Dichloroethene	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
trans-1,3-Dichloropropene	ND	0.40	ug/L	1	06/17/22	MH	SW8260C
trans-1,4-dichloro-2-butene	ND	5.0	ug/L	1	06/17/22	MH	SW8260C
Trichloroethene	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
Trichlorofluoromethane	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
Trichlorotrifluoroethane	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
Vinyl chloride	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
QA/QC Surrogates							
% 1,2-dichlorobenzene-d4	100		%	1	06/17/22	MH	70 - 130 %
% Bromofluorobenzene	84		%	1	06/17/22	МН	70 - 130 %
% Dibromofluoromethane	98		%	1	06/17/22	MH	70 - 130 %

Project ID: 2655 LITTLE TOR RD Phoenix I.D.: CL57220

Client ID: PMW-UG

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
% Toluene-d8	96		%	1	06/17/22	МН	70 - 130 %

^{1 =} This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

Comments:

Volatile Comment:

To achieve client's objectives, where the lowest calibration standard or LOD justifies lowering the RL/PQL, the RL/PQL of some compounds have been lowered to meet criteria.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

June 23, 2022

Reviewed and Released by: Phyllis Shiller, Laboratory Director

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

June 23, 2022

FOR: Attn: Mr. Harry Sudwischer

ECMS, Inc 10 Filmont Drive NY, NY 10956

Sample Information

Matrix: GROUND WATER

Location Code: ECMS

Rush Request: Standard

P.O.#:

Custody Information Date

Collected by: 06/15/22

Received by: MMN

Analyzed by: see "By" below

Laboratory Data

RL/

SDG ID: GCL57220

<u>Time</u>

10:27

16:40

Phoenix ID: CL57221

06/15/22

Project ID: 2655 LITTLE TOR RD

Client ID: PMW-2A

Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Volatiles							
1,1,1,2-Tetrachloroethane	ND	5.0	ug/L	10	06/17/22	PS	SW8260C
1,1,1-Trichloroethane	ND	5.0	ug/L	10	06/17/22	PS	SW8260C
1,1,2,2-Tetrachloroethane	ND	5.0	ug/L	10	06/17/22	PS	SW8260C
1,1,2-Trichloroethane	ND	1.0	ug/L	10	06/17/22	PS	SW8260C
1,1-Dichloroethane	ND	5.0	ug/L	10	06/17/22	PS	SW8260C
1,1-Dichloroethene	ND	5.0	ug/L	10	06/17/22	PS	SW8260C
1,1-Dichloropropene	ND	5.0	ug/L	10	06/17/22	PS	SW8260C
1,2,3-Trichlorobenzene	ND	10	ug/L	10	06/17/22	PS	SW8260C
1,2,3-Trichloropropane	ND	1.0	ug/L	10	06/17/22	PS	SW8260C
1,2,4-Trichlorobenzene	ND	10	ug/L	10	06/17/22	PS	SW8260C
1,2,4-Trimethylbenzene	ND	5.0	ug/L	10	06/17/22	PS	SW8260C
1,2-Dibromo-3-chloropropane	ND	1.0	ug/L	10	06/17/22	PS	SW8260C
1,2-Dibromoethane	ND	1.0	ug/L	10	06/17/22	PS	SW8260C
1,2-Dichlorobenzene	ND	4.7	ug/L	10	06/17/22	PS	SW8260C
1,2-Dichloroethane	ND	1.0	ug/L	10	06/17/22	PS	SW8260C
1,2-Dichloropropane	ND	1.0	ug/L	10	06/17/22	PS	SW8260C
1,3,5-Trimethylbenzene	ND	5.0	ug/L	10	06/17/22	PS	SW8260C
1,3-Dichlorobenzene	ND	3.0	ug/L	10	06/17/22	PS	SW8260C
1,3-Dichloropropane	ND	5.0	ug/L	10	06/17/22	PS	SW8260C
1,4-Dichlorobenzene	ND	5.0	ug/L	10	06/17/22	PS	SW8260C
2,2-Dichloropropane	ND	5.0	ug/L	10	06/17/22	PS	SW8260C
2-Chlorotoluene	ND	5.0	ug/L	10	06/17/22	PS	SW8260C
2-Hexanone	ND	50	ug/L	10	06/17/22	PS	SW8260C
2-Isopropyltoluene	ND	5.0	ug/L	10	06/17/22	PS	SW8260C 1
4-Chlorotoluene	ND	5.0	ug/L	10	06/17/22	PS	SW8260C
4-Methyl-2-pentanone	ND	50	ug/L	10	06/17/22	PS	SW8260C

Client ID: PMW-2A

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
Acetone	ND	50	ug/L	10	06/17/22	PS	SW8260C
Acrylonitrile	ND	5.0	ug/L	10	06/17/22	PS	SW8260C
Benzene	ND	1.0	ug/L	10	06/17/22	PS	SW8260C
Bromobenzene	ND	5.0	ug/L	10	06/17/22	PS	SW8260C
Bromochloromethane	ND	5.0	ug/L	10	06/17/22	PS	SW8260C
Bromodichloromethane	ND	5.0	ug/L	10	06/17/22	PS	SW8260C
Bromoform	ND	10	ug/L	10	06/17/22	PS	SW8260C
Bromomethane	ND	5.0	ug/L	10	06/17/22	PS	SW8260C
Carbon Disulfide	ND	50	ug/L	10	06/17/22	PS	SW8260C
Carbon tetrachloride	ND	5.0	ug/L	10	06/17/22	PS	SW8260C
Chlorobenzene	ND	5.0	ug/L	10	06/17/22	PS	SW8260C
Chloroethane	ND	5.0	ug/L	10	06/17/22	PS	SW8260C
Chloroform	ND	7.0	ug/L	10	06/17/22	PS	SW8260C
Chloromethane	ND	5.0	ug/L	10	06/17/22	PS	SW8260C
cis-1,2-Dichloroethene	ND	5.0	ug/L	10	06/17/22	PS	SW8260C
cis-1,3-Dichloropropene	ND	1.0	ug/L	10	06/17/22	PS	SW8260C
Dibromochloromethane	ND	5.0	ug/L	10	06/17/22	PS	SW8260C
Dibromomethane	ND	5.0	ug/L	10	06/17/22	PS	SW8260C
Dichlorodifluoromethane	ND	5.0	ug/L	10	06/17/22	PS	SW8260C
Ethylbenzene	ND	5.0	ug/L	10	06/17/22	PS	SW8260C
Hexachlorobutadiene	ND	1.0	ug/L	10	06/17/22	PS	SW8260C
Isopropylbenzene	ND	5.0	ug/L	10	06/17/22	PS	SW8260C
m&p-Xylene	ND	10	ug/L	10	06/17/22	PS	SW8260C
Methyl ethyl ketone	ND	50	ug/L	10	06/17/22	PS	SW8260C
Methyl t-butyl ether (MTBE)	ND	10	ug/L	10	06/17/22	PS	SW8260C
Methylene chloride	ND	5.0	ug/L	10	06/17/22	PS	SW8260C
Naphthalene	ND	5.0	ug/L	10	06/17/22	PS	SW8260C
n-Butylbenzene	ND	5.0	ug/L	10	06/17/22	PS	SW8260C
n-Propylbenzene	ND	5.0	ug/L	10	06/17/22	PS	SW8260C
o-Xylene	ND	5.0	ug/L	10	06/17/22	PS	SW8260C
p-Isopropyltoluene	ND	5.0	ug/L	10	06/17/22	PS	SW8260C
sec-Butylbenzene	ND	5.0	ug/L	10	06/17/22	PS	SW8260C
Styrene	ND	5.0	ug/L	10	06/17/22	PS	SW8260C
tert-Butylbenzene	ND	5.0	ug/L	10	06/17/22	PS	SW8260C
Tetrachloroethene	ND	5.0	ug/L	10	06/17/22	PS	SW8260C
Tetrahydrofuran (THF)	ND	25	ug/L	10	06/17/22	PS	SW8260C 1
Toluene	ND	5.0	ug/L	10	06/17/22	PS	SW8260C
Total Xylenes	ND	5.0	ug/L	10	06/17/22	PS	SW8260C
trans-1,2-Dichloroethene	ND	5.0	ug/L	10	06/17/22	PS	SW8260C
trans-1,3-Dichloropropene	ND	1.0	ug/L	10	06/17/22	PS	SW8260C
trans-1,4-dichloro-2-butene	ND	5.0	ug/L	10	06/17/22	PS	SW8260C
Trichloroethene	ND	5.0	ug/L	10	06/17/22	PS	SW8260C
Trichlorofluoromethane	ND	5.0	ug/L	10	06/17/22	PS	SW8260C
Trichlorotrifluoroethane	ND	5.0	ug/L	10	06/17/22	PS	SW8260C
Vinyl chloride	ND	2.0	ug/L	10	06/17/22	PS	SW8260C
QA/QC Surrogates							
% 1,2-dichlorobenzene-d4 (10x)	100		%	10	06/17/22	PS	70 - 130 %
% Bromofluorobenzene (10x)	87		%	10	06/17/22	PS	70 - 130 %
% Dibromofluoromethane (10x)	102		%	10	06/17/22	PS	70 - 130 %

Client ID: PMW-2A

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
% Toluene-d8 (10x)	98		%	10	06/17/22	PS	70 - 130 %

^{1 =} This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Volatile Comment:

Elevated reporting limits due to the foamy nature of the sample. Not all requested criteria could be achieved.

Volatile Comment:

To achieve client's objectives, where the lowest calibration standard or LOD justifies lowering the RL/PQL, the RL/PQL of some compounds have been lowered to meet criteria.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

June 23, 2022

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Time

15:45

16:40

Analysis Report

June 23, 2022

FOR: Attn: Mr. Harry Sudwischer

ECMS, Inc 10 Filmont Drive NY, NY 10956

Sample Information

Matrix: GROUND WATER

Location Code: ECMS

Rush Request: Standard

P.O.#:

<u>Custody Information</u> <u>Date</u>

Collected by: 06/13/22

Received by: MMN

Analyzed by: see "By" below

Laboratory Data

RL/

SDG ID: GCL57220

Phoenix ID: CL57222

06/15/22

Project ID: 2655 LITTLE TOR RD

Client ID: PMW-4A

Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Volatiles							
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L	1	06/17/22	МН	SW8260C
1,1,1-Trichloroethane	ND	1.0	ug/L	1	06/17/22	МН	SW8260C
1,1,2,2-Tetrachloroethane	ND	0.50	ug/L	1	06/17/22	МН	SW8260C
1,1,2-Trichloroethane	ND	1.0	ug/L	1	06/17/22	МН	SW8260C
1,1-Dichloroethane	ND	1.0	ug/L	1	06/17/22	МН	SW8260C
1,1-Dichloroethene	ND	1.0	ug/L	1	06/17/22	МН	SW8260C
1,1-Dichloropropene	ND	1.0	ug/L	1	06/17/22	МН	SW8260C
1,2,3-Trichlorobenzene	ND	1.0	ug/L	1	06/17/22	МН	SW8260C
1,2,3-Trichloropropane	ND	0.25	ug/L	1	06/17/22	MH	SW8260C
1,2,4-Trichlorobenzene	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
1,2,4-Trimethylbenzene	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
1,2-Dibromo-3-chloropropane	ND	0.50	ug/L	1	06/17/22	MH	SW8260C
1,2-Dibromoethane	ND	0.25	ug/L	1	06/17/22	MH	SW8260C
1,2-Dichlorobenzene	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
1,2-Dichloroethane	ND	0.60	ug/L	1	06/17/22	MH	SW8260C
1,2-Dichloropropane	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
1,3,5-Trimethylbenzene	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
1,3-Dichlorobenzene	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
1,3-Dichloropropane	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
1,4-Dichlorobenzene	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
2,2-Dichloropropane	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
2-Chlorotoluene	ND	1.0	ug/L	1	06/17/22	МН	SW8260C
2-Hexanone	ND	5.0	ug/L	1	06/17/22	МН	SW8260C
2-Isopropyltoluene	ND	1.0	ug/L	1	06/17/22	МН	SW8260C 1
4-Chlorotoluene	ND	1.0	ug/L	1	06/17/22	МН	SW8260C
4-Methyl-2-pentanone	ND	5.0	ug/L	1	06/17/22	МН	SW8260C

Client ID: PMW-4A

Client ID. FIVIVV-4A		51.7					
Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
Acetone	ND	25	ug/L	1	06/17/22	MH	SW8260C
Acrylonitrile	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
Benzene	ND	0.70	ug/L	1	06/17/22	MH	SW8260C
Bromobenzene	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
Bromochloromethane	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
Bromodichloromethane	ND	0.50	ug/L	1	06/17/22	MH	SW8260C
Bromoform	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
Bromomethane	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
Carbon Disulfide	ND	5.0	ug/L	1	06/17/22	MH	SW8260C
Carbon tetrachloride	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
Chlorobenzene	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
Chloroethane	ND	1.0	ug/L	1	06/17/22	МН	SW8260C
Chloroform	ND	1.0	ug/L	1	06/17/22	МН	SW8260C
Chloromethane	ND	1.0	ug/L	1	06/17/22	МН	SW8260C
cis-1,2-Dichloroethene	23	1.0	ug/L	1	06/17/22	МН	SW8260C
cis-1,3-Dichloropropene	ND	0.40	ug/L	1	06/17/22	MH	SW8260C
Dibromochloromethane	ND	0.50	ug/L	1	06/17/22	МН	SW8260C
Dibromomethane	ND	1.0	ug/L	1	06/17/22	МН	SW8260C
Dichlorodifluoromethane	ND	1.0	ug/L	1	06/17/22	МН	SW8260C
Ethylbenzene	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
Hexachlorobutadiene	ND	0.40	ug/L	1	06/17/22	MH	SW8260C
Isopropylbenzene	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
m&p-Xylene	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
Methyl ethyl ketone	ND	5.0	ug/L	1	06/17/22	MH	SW8260C
Methyl t-butyl ether (MTBE)	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
Methylene chloride	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
Naphthalene	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
n-Butylbenzene	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
n-Propylbenzene	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
o-Xylene	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
p-Isopropyltoluene	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
sec-Butylbenzene	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
Styrene	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
tert-Butylbenzene	110	50	ug/∟ ug/L	50	06/17/22	МН	SW8260C SW8260C
Tetrachloroethene			_		06/17/22		SW8260C 1
Tetrahydrofuran (THF)	ND	2.5	ug/L	1		MH	SW8260C
Toluene	ND	1.0	ug/L	1	06/17/22	MH	
Total Xylenes	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
trans-1,2-Dichloroethene	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
trans-1,3-Dichloropropene	ND	0.40	ug/L	1	06/17/22	MH	SW8260C
trans-1,4-dichloro-2-butene	ND	5.0	ug/L	1	06/17/22	MH	SW8260C
Trichloroethene	8.6	1.0	ug/L	1	06/17/22	MH	SW8260C
Trichlorofluoromethane	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
Trichlorotrifluoroethane	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
Vinyl chloride	ND	1.0	ug/L	1	06/17/22	МН	SW8260C
QA/QC Surrogates							
% 1,2-dichlorobenzene-d4	101		%	1	06/17/22	MH	70 - 130 %
% Bromofluorobenzene	87		%	1	06/17/22	MH	70 - 130 %
% Dibromofluoromethane	100		%	1	06/17/22	МН	70 - 130 %

Client ID: PMW-4A

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
% Toluene-d8	97		%	1	06/17/22	МН	70 - 130 %
% 1,2-dichlorobenzene-d4 (50x)	99		%	50	06/18/22	MH	70 - 130 %
% Bromofluorobenzene (50x)	82		%	50	06/18/22	MH	70 - 130 %
% Dibromofluoromethane (50x)	94		%	50	06/18/22	MH	70 - 130 %
% Toluene-d8 (50x)	96		%	50	06/18/22	MH	70 - 130 %

^{1 =} This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Volatile Comment:

To achieve client's objectives, where the lowest calibration standard or LOD justifies lowering the RL/PQL, the RL/PQL of some compounds have been lowered to meet criteria.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

June 23, 2022

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

June 23, 2022

FOR: Attn: Mr. Harry Sudwischer

ECMS, Inc 10 Filmont Drive NY, NY 10956

Sample Information

Matrix: GROUND WATER

Location Code: ECMS

Rush Request: Standard

P.O.#:

Custody Information Date

Collected by: 06/15/22

Received by: MMN

MMN

see "By" below

06/15/22

9:47 16:40

Time

Laboratory Data

Analyzed by:

RL/

SDG ID: GCL57220

Phoenix ID: CL57223

Project ID: 2655 LITTLE TOR RD

Client ID: PMW-5A

Parameter Result **PQL** Units Dilution Date/Time Bv Reference **Volatiles** 06/18/22 1,1,1,2-Tetrachloroethane ND 1.0 ug/L 1 МН SW8260C ND 06/18/22 SW8260C 1,1,1-Trichloroethane 1.0 ug/L 1 MH ND 0.50 ug/L 06/18/22 МН SW8260C 1,1,2,2-Tetrachloroethane ND 06/18/22 SW8260C 1,1,2-Trichloroethane 1.0 ug/L 1 MH SW8260C ND 1.0 ug/L 1 06/18/22 MH 1,1-Dichloroethane ND 06/18/22 SW8260C 1,1-Dichloroethene 1.0 ug/L 1 MH SW8260C ND 1.0 ug/L 1 06/18/22 MH 1,1-Dichloropropene 06/18/22 SW8260C 1,2,3-Trichlorobenzene ND 1.0 ug/L 1 MH 1,2,3-Trichloropropane ND 0.25 ug/L 1 06/18/22 MH SW8260C SW8260C 1,2,4-Trichlorobenzene ND 1.0 ug/L 1 06/18/22 MH SW8260C ND 1 06/18/22 1.0 ug/L MH 1,2,4-Trimethylbenzene ND 0.50 1 06/18/22 SW8260C 1,2-Dibromo-3-chloropropane ug/L MH ND 0.25 ug/L 1 06/18/22 MH SW8260C 1,2-Dibromoethane ND ug/L 1 06/18/22 MH SW8260C 1,2-Dichlorobenzene 1.0 ND 0.60 ug/L 1 06/18/22 MH SW8260C 1,2-Dichloroethane SW8260C ND 1.0 ug/L 06/18/22 MH 1 1,2-Dichloropropane SW8260C ND 1.0 1 06/18/22 MH 1,3,5-Trimethylbenzene ug/L ND 1 06/18/22 МН SW8260C 1.0 ug/L 1,3-Dichlorobenzene ND 1.0 ug/L 1 06/18/22 MH SW8260C 1,3-Dichloropropane ND 1.0 ug/L 1 06/18/22 MH SW8260C 1,4-Dichlorobenzene ND 1.0 ug/L 1 06/18/22 MH SW8260C 2,2-Dichloropropane 2-Chlorotoluene ND 1.0 ug/L 1 06/18/22 MH SW8260C ND 5.0 ug/L 1 06/18/22 SW8260C 2-Hexanone MH ND 1.0 1 06/18/22 SW8260C 2-Isopropyltoluene ug/L MH 4-Chlorotoluene ND 1.0 ug/L 1 06/18/22 МН SW8260C ND 5.0 ug/L 1 06/18/22 MH SW8260C 4-Methyl-2-pentanone

Client ID: PMW-5A

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
Acetone	ND	25	ug/L	1	06/18/22	МН	SW8260C
Acrylonitrile	ND	1.0	ug/L	1	06/18/22	MH	SW8260C
Benzene	ND	0.70	ug/L	1	06/18/22	MH	SW8260C
Bromobenzene	ND	1.0	ug/L	1	06/18/22	MH	SW8260C
Bromochloromethane	ND	1.0	ug/L	1	06/18/22	MH	SW8260C
Bromodichloromethane	ND	0.50	ug/L	1	06/18/22	MH	SW8260C
Bromoform	ND	1.0	ug/L	1	06/18/22	MH	SW8260C
Bromomethane	ND	1.0	ug/L	1	06/18/22	MH	SW8260C
Carbon Disulfide	ND	5.0	ug/L	1	06/18/22	МН	SW8260C
Carbon tetrachloride	ND	1.0	ug/L	1	06/18/22	МН	SW8260C
Chlorobenzene	ND	1.0	ug/L	1	06/18/22	МН	SW8260C
Chloroethane	ND	1.0	ug/L	1	06/18/22	МН	SW8260C
Chloroform	ND	1.0	ug/L	1	06/18/22	МН	SW8260C
Chloromethane	ND	1.0	ug/L	1	06/18/22	МН	SW8260C
cis-1,2-Dichloroethene	ND	1.0	ug/L	1	06/18/22	МН	SW8260C
cis-1,3-Dichloropropene	ND	0.40	ug/L	1	06/18/22	МН	SW8260C
Dibromochloromethane	ND	0.50	ug/L	1	06/18/22	МН	SW8260C
Dibromomethane	ND	1.0	ug/L	1	06/18/22	МН	SW8260C
Dichlorodifluoromethane	ND	1.0	ug/L	1	06/18/22	МН	SW8260C
Ethylbenzene	ND	1.0	ug/L	1	06/18/22	МН	SW8260C
Hexachlorobutadiene	ND	0.40	ug/L	1	06/18/22	МН	SW8260C
Isopropylbenzene	ND	1.0	ug/L	1	06/18/22	МН	SW8260C
m&p-Xylene	ND	1.0	ug/L	1	06/18/22	МН	SW8260C
Methyl ethyl ketone	ND	5.0	ug/L	1	06/18/22	МН	SW8260C
Methyl t-butyl ether (MTBE)	ND	1.0	ug/L	1	06/18/22	МН	SW8260C
Methylene chloride	ND	1.0	ug/L	1	06/18/22	MH	SW8260C
Naphthalene	ND	1.0	ug/L	1	06/18/22	МН	SW8260C
n-Butylbenzene	ND	1.0	ug/L	1	06/18/22	MH	SW8260C
n-Propylbenzene	ND	1.0	ug/L	1	06/18/22	MH	SW8260C
o-Xylene	ND	1.0	ug/L	1	06/18/22	MH	SW8260C
p-Isopropyltoluene	ND	1.0	ug/L	1	06/18/22	MH	SW8260C
sec-Butylbenzene	ND	1.0	ug/L	1	06/18/22	MH	SW8260C
•	ND	1.0	ug/L	1	06/18/22	MH	SW8260C
Styrene tert-Butylbenzene	ND	1.0	ug/L	1	06/18/22	MH	SW8260C
Tetrachloroethene	550	20	ug/L	20	06/17/22	MH	SW8260C
	ND	2.5	ug/L	1	06/17/22	MH	SW8260C 1
Tetrahydrofuran (THF)	ND	1.0	ug/L	1	06/18/22	MH	SW8260C
Toluene	ND ND	1.0		1	06/18/22		SW8260C
Total Xylenes			ug/L	1		MH	
trans-1,2-Dichloroethene	ND	1.0	ug/L	1	06/18/22	MH	SW8260C SW8260C
trans-1,3-Dichloropropene	ND	0.40	ug/L	1	06/18/22	MH	
trans-1,4-dichloro-2-butene	ND	5.0	ug/L	1	06/18/22	MH	SW8260C
Trichloroethene	1.3	1.0	ug/L	1	06/18/22	MH	SW8260C
Trichlorofluoromethane	ND	1.0	ug/L	1	06/18/22	MH	SW8260C
Trichlorotrifluoroethane	ND	1.0	ug/L	1	06/18/22	MH	SW8260C
Vinyl chloride	ND	1.0	ug/L	1	06/18/22	МН	SW8260C
QA/QC Surrogates			2.	,	00/46/22		70 400 0/
% 1,2-dichlorobenzene-d4	96		%	1	06/18/22	MH	70 - 130 %
% Bromofluorobenzene	83		%	1	06/18/22	MH	70 - 130 %
% Dibromofluoromethane	98		%	1	06/18/22	МН	70 - 130 %

Client ID: PMW-5A

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
% Toluene-d8	98		%	1	06/18/22	МН	70 - 130 %
% 1,2-dichlorobenzene-d4 (20x)	101		%	20	06/17/22	MH	70 - 130 %
% Bromofluorobenzene (20x)	86		%	20	06/17/22	MH	70 - 130 %
% Dibromofluoromethane (20x)	103		%	20	06/17/22	MH	70 - 130 %
% Toluene-d8 (20x)	97		%	20	06/17/22	MH	70 - 130 %

^{1 =} This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Volatile Comment:

To achieve client's objectives, where the lowest calibration standard or LOD justifies lowering the RL/PQL, the RL/PQL of some compounds have been lowered to meet criteria.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

June 23, 2022

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Time

10:08

16:40

Analysis Report

June 23, 2022

FOR: Attn: Mr. Harry Sudwischer

ECMS, Inc 10 Filmont Drive NY, NY 10956

Sample Information

Matrix: GROUND WATER

Location Code: ECMS

Rush Request: Standard

P.O.#:

Custody Information
Collected by:

Received by: MMN

RL/

Analyzed by: see "By" below

Laboratory Data

SDG ID: GCL57220

Phoenix ID: CL57224

Date

06/15/22

06/15/22

Project ID: 2655 LITTLE TOR RD

Client ID: PMW-6A

Parameter Result **PQL** Units Dilution Date/Time Bv Reference **Volatiles** 06/17/22 1,1,1,2-Tetrachloroethane ND 1.0 ug/L 1 МН SW8260C ND 06/17/22 SW8260C 1,1,1-Trichloroethane 1.0 ug/L 1 MH ND 0.50 ug/L 06/17/22 МН SW8260C 1,1,2,2-Tetrachloroethane ND 06/17/22 SW8260C 1,1,2-Trichloroethane 1.0 ug/L 1 MH SW8260C ND 1.0 ug/L 1 06/17/22 MH 1,1-Dichloroethane ND 06/17/22 SW8260C 1,1-Dichloroethene 1.0 ug/L 1 MH SW8260C ND 1.0 ug/L 1 06/17/22 MH 1,1-Dichloropropene 06/17/22 MH SW8260C 1,2,3-Trichlorobenzene ND 1.0 ug/L 1 1,2,3-Trichloropropane ND 0.25 ug/L 1 06/17/22 MH SW8260C SW8260C 1,2,4-Trichlorobenzene ND 1.0 ug/L 1 06/17/22 MH SW8260C ND 1 06/17/22 1.0 ug/L MH 1,2,4-Trimethylbenzene ND 0.50 1 06/17/22 SW8260C 1,2-Dibromo-3-chloropropane ug/L MH ND 0.25 ug/L 1 06/17/22 MH SW8260C 1,2-Dibromoethane ND ug/L 1 06/17/22 MH SW8260C 1,2-Dichlorobenzene 1.0 ND 0.60 ug/L 1 06/17/22 MH SW8260C 1,2-Dichloroethane SW8260C ND 1.0 ug/L 06/17/22 MH 1 1,2-Dichloropropane SW8260C ND 1.0 1 06/17/22 MH 1,3,5-Trimethylbenzene ug/L ND 1 06/17/22 МН SW8260C 1.0 ug/L 1,3-Dichlorobenzene ND 1.0 ug/L 1 06/17/22 MH SW8260C 1,3-Dichloropropane ND 1.0 ug/L 1 06/17/22 MH SW8260C 1,4-Dichlorobenzene ND 1.0 ug/L 1 06/17/22 MH SW8260C 2,2-Dichloropropane 2-Chlorotoluene ND 1.0 ug/L 1 06/17/22 MH SW8260C ug/L 1 06/17/22 SW8260C 2-Hexanone ND 5.0 MH ND 1.0 1 06/17/22 SW8260C 2-Isopropyltoluene ug/L MH 4-Chlorotoluene ND 1.0 ug/L 1 06/17/22 МН SW8260C ND 5.0 ug/L 1 06/17/22 MH SW8260C 4-Methyl-2-pentanone

Client ID: PMW-6A

Gliefit ID. 1 WWW-0A		RL/				_	
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Acetone	ND	25	ug/L	1	06/17/22	MH	SW8260C
Acrylonitrile	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
Benzene	ND	0.70	ug/L	1	06/17/22	MH	SW8260C
Bromobenzene	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
Bromochloromethane	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
Bromodichloromethane	ND	0.50	ug/L	1	06/17/22	MH	SW8260C
Bromoform	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
Bromomethane	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
Carbon Disulfide	ND	5.0	ug/L	1	06/17/22	MH	SW8260C
Carbon tetrachloride	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
Chlorobenzene	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
Chloroethane	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
Chloroform	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
Chloromethane	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
cis-1,2-Dichloroethene	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
cis-1,3-Dichloropropene	ND	0.40	ug/L	1	06/17/22	MH	SW8260C
Dibromochloromethane	ND	0.50	ug/L	1	06/17/22	MH	SW8260C
Dibromomethane	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
Dichlorodifluoromethane	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
Ethylbenzene	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
Hexachlorobutadiene	ND	0.40	ug/L	1	06/17/22	МН	SW8260C
Isopropylbenzene	ND	1.0	ug/L	1	06/17/22	МН	SW8260C
m&p-Xylene	ND	1.0	ug/L	1	06/17/22	МН	SW8260C
Methyl ethyl ketone	ND	5.0	ug/L	1	06/17/22	МН	SW8260C
Methyl t-butyl ether (MTBE)	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
Methylene chloride	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
Naphthalene	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
n-Butylbenzene	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
n-Propylbenzene	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
o-Xylene	ND	1.0	ug/L	1	06/17/22	МН	SW8260C
p-Isopropyltoluene	ND	1.0	ug/L	1	06/17/22	МН	SW8260C
sec-Butylbenzene	ND	1.0	ug/L	1	06/17/22	МН	SW8260C
Styrene	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
tert-Butylbenzene	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
Tetrachloroethene	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
Tetrahydrofuran (THF)	ND	2.5	ug/L	1	06/17/22	MH	SW8260C 1
Toluene	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
Total Xylenes	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
trans-1,2-Dichloroethene	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
	ND	0.40	ug/L	1	06/17/22	MH	SW8260C
trans-1,3-Dichloropropene	ND	5.0	ug/L	1	06/17/22	MH	SW8260C
trans-1,4-dichloro-2-butene	ND	1.0			06/17/22	MH	SW8260C
Trichloroethene			ug/L	1			
Trichlorofluoromethane	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
Trichlorotrifluoroethane	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
Vinyl chloride	ND	1.0	ug/L	1	06/17/22	МН	SW8260C
QA/QC Surrogates	100		24	,	00/47/00		70 400.0/
% 1,2-dichlorobenzene-d4	100		%	1	06/17/22	MH	70 - 130 %
% Bromofluorobenzene	87		%	1	06/17/22	MH	70 - 130 %
% Dibromofluoromethane	103		%	1	06/17/22	МН	70 - 130 %

Client ID: PMW-6A

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
% Toluene-d8	97		%	1	06/17/22	МН	70 - 130 %

^{1 =} This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

Comments:

Volatile Comment:

To achieve client's objectives, where the lowest calibration standard or LOD justifies lowering the RL/PQL, the RL/PQL of some compounds have been lowered to meet criteria.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

June 23, 2022

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

<u>Time</u>

9:57

16:40

Analysis Report

June 23, 2022

FOR: Attn: Mr. Harry Sudwischer

ECMS, Inc 10 Filmont Drive NY, NY 10956

Sample Information

Matrix: GROUND WATER

Location Code: ECMS

Rush Request: Standard

P.O.#:

<u>Custody Information</u> <u>Date</u>
Collected by: 06/15/22

Received by: MMN 06/15/22

Analyzed by: see "By" below

Laboratory Data

RL/

SDG ID: GCL57220

Phoenix ID: CL57225

Project ID: 2655 LITTLE TOR RD

Client ID: PMW-7A

Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Volatiles							
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L	1	06/17/22	МН	SW8260C
1,1,1-Trichloroethane	ND	1.0	ug/L	1	06/17/22	МН	SW8260C
1,1,2,2-Tetrachloroethane	ND	0.50	ug/L	1	06/17/22	МН	SW8260C
1,1,2-Trichloroethane	ND	1.0	ug/L	1	06/17/22	МН	SW8260C
1,1-Dichloroethane	ND	1.0	ug/L	1	06/17/22	МН	SW8260C
1,1-Dichloroethene	ND	1.0	ug/L	1	06/17/22	МН	SW8260C
1,1-Dichloropropene	ND	1.0	ug/L	1	06/17/22	МН	SW8260C
1,2,3-Trichlorobenzene	ND	1.0	ug/L	1	06/17/22	МН	SW8260C
1,2,3-Trichloropropane	ND	0.25	ug/L	1	06/17/22	МН	SW8260C
1,2,4-Trichlorobenzene	ND	1.0	ug/L	1	06/17/22	МН	SW8260C
1,2,4-Trimethylbenzene	ND	1.0	ug/L	1	06/17/22	МН	SW8260C
1,2-Dibromo-3-chloropropane	ND	0.50	ug/L	1	06/17/22	МН	SW8260C
1,2-Dibromoethane	ND	0.25	ug/L	1	06/17/22	МН	SW8260C
1,2-Dichlorobenzene	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
1,2-Dichloroethane	ND	0.60	ug/L	1	06/17/22	MH	SW8260C
1,2-Dichloropropane	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
1,3,5-Trimethylbenzene	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
1,3-Dichlorobenzene	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
1,3-Dichloropropane	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
1,4-Dichlorobenzene	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
2,2-Dichloropropane	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
2-Chlorotoluene	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
2-Hexanone	ND	5.0	ug/L	1	06/17/22	MH	SW8260C
2-Isopropyltoluene	ND	1.0	ug/L	1	06/17/22	MH	SW8260C 1
4-Chlorotoluene	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
4-Methyl-2-pentanone	ND	5.0	ug/L	1	06/17/22	МН	SW8260C

Client ID: PMW-7A

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
Acetone	ND	25	ug/L	1	06/17/22	МН	SW8260C
Acrylonitrile	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
Benzene	ND	0.70	ug/L	1	06/17/22	MH	SW8260C
Bromobenzene	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
Bromochloromethane	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
Bromodichloromethane	ND	0.50	ug/L	1	06/17/22	MH	SW8260C
Bromoform	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
Bromomethane	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
Carbon Disulfide	ND	5.0	ug/L	1	06/17/22	MH	SW8260C
Carbon tetrachloride	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
Chlorobenzene	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
Chloroethane	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
Chloroform	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
Chloromethane	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
cis-1,2-Dichloroethene	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
cis-1,3-Dichloropropene	ND	0.40	ug/L	1	06/17/22	MH	SW8260C
Dibromochloromethane	ND	0.50	ug/L	1	06/17/22	MH	SW8260C
Dibromomethane	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
Dichlorodifluoromethane	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
Ethylbenzene	2.0	1.0	ug/L	1	06/17/22	MH	SW8260C
Hexachlorobutadiene	ND	0.40	ug/L	1	06/17/22	MH	SW8260C
Isopropylbenzene	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
m&p-Xylene	ND	1.0	ug/L	1	06/17/22	МН	SW8260C
Methyl ethyl ketone	ND	5.0	ug/L	1	06/17/22	MH	SW8260C
Methyl t-butyl ether (MTBE)	ND	1.0	ug/L	1	06/17/22	МН	SW8260C
Methylene chloride	ND	1.0	ug/L	1	06/17/22	МН	SW8260C
Naphthalene	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
n-Butylbenzene	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
n-Propylbenzene	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
o-Xylene	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
p-Isopropyltoluene	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
sec-Butylbenzene	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
Styrene	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
tert-Butylbenzene	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
Tetrachloroethene	3.5	1.0	ug/L	1	06/17/22	MH	SW8260C
Tetrahydrofuran (THF)	ND	2.5	ug/L	1	06/17/22	MH	SW8260C 1
Toluene	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
Total Xylenes	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
trans-1,2-Dichloroethene	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
trans-1,3-Dichloropropene	ND	0.40	ug/L	1	06/17/22	MH	SW8260C
trans-1,4-dichloro-2-butene	ND	5.0	ug/L	1	06/17/22	MH	SW8260C
Trichloroethene	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
Trichlorofluoromethane	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
Trichlorotrifluoroethane	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
Vinyl chloride	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
QA/QC Surrogates							
% 1,2-dichlorobenzene-d4	101		%	1	06/17/22	MH	70 - 130 %
% Bromofluorobenzene	88		%	1	06/17/22	MH	70 - 130 %
% Dibromofluoromethane	99		%	1	06/17/22	MH	70 - 130 %

Client ID: PMW-7A

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
% Toluene-d8	98		%	1	06/17/22	МН	70 - 130 %

^{1 =} This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

Comments:

Volatile Comment:

To achieve client's objectives, where the lowest calibration standard or LOD justifies lowering the RL/PQL, the RL/PQL of some compounds have been lowered to meet criteria.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

June 23, 2022

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

June 23, 2022

FOR: Attn: Mr. Harry Sudwischer

> ECMS, Inc 10 Filmont Drive NY, NY 10956

Sample Information

GROUND WATER Matrix:

Location Code: **ECMS**

Rush Request: Standard

P.O.#:

Custody Information Collected by:

Received by: MMN

06/13/22 06/15/22

Date

Time 13:16 16:40

Analyzed by: see "By" below

Laboratory Data

RL/

SDG ID: GCL57220

Phoenix ID: CL57226

2655 LITTLE TOR RD Project ID:

Client ID: PMW-8A

Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Volatiles							
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L	1	06/17/22	МН	SW8260C
1,1,1-Trichloroethane	ND	1.0	ug/L	1	06/17/22	МН	SW8260C
1,1,2,2-Tetrachloroethane	ND	0.50	ug/L	1	06/17/22	МН	SW8260C
1,1,2-Trichloroethane	ND	1.0	ug/L	1	06/17/22	МН	SW8260C
1,1-Dichloroethane	ND	1.0	ug/L	1	06/17/22	МН	SW8260C
1,1-Dichloroethene	ND	1.0	ug/L	1	06/17/22	МН	SW8260C
1,1-Dichloropropene	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
1,2,3-Trichlorobenzene	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
1,2,3-Trichloropropane	ND	0.25	ug/L	1	06/17/22	MH	SW8260C
1,2,4-Trichlorobenzene	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
1,2,4-Trimethylbenzene	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
1,2-Dibromo-3-chloropropane	ND	0.50	ug/L	1	06/17/22	MH	SW8260C
1,2-Dibromoethane	ND	0.25	ug/L	1	06/17/22	MH	SW8260C
1,2-Dichlorobenzene	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
1,2-Dichloroethane	ND	0.60	ug/L	1	06/17/22	MH	SW8260C
1,2-Dichloropropane	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
1,3,5-Trimethylbenzene	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
1,3-Dichlorobenzene	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
1,3-Dichloropropane	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
1,4-Dichlorobenzene	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
2,2-Dichloropropane	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
2-Chlorotoluene	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
2-Hexanone	ND	5.0	ug/L	1	06/17/22	MH	SW8260C
2-Isopropyltoluene	ND	1.0	ug/L	1	06/17/22	MH	SW8260C 1
4-Chlorotoluene	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
4-Methyl-2-pentanone	ND	5.0	ug/L	1	06/17/22	МН	SW8260C

Client ID: PMW-8A

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
Acetone	ND	25	ug/L	1	06/17/22	МН	SW8260C
Acrylonitrile	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
Benzene	ND	0.70	ug/L	1	06/17/22	MH	SW8260C
Bromobenzene	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
Bromochloromethane	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
Bromodichloromethane	ND	0.50	ug/L	1	06/17/22	MH	SW8260C
Bromoform	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
Bromomethane	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
Carbon Disulfide	ND	5.0	ug/L	1	06/17/22	MH	SW8260C
Carbon tetrachloride	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
Chlorobenzene	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
Chloroethane	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
Chloroform	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
Chloromethane	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
cis-1,2-Dichloroethene	21	1.0	ug/L	1	06/17/22	МН	SW8260C
cis-1,3-Dichloropropene	ND	0.40	ug/L	1	06/17/22	MH	SW8260C
Dibromochloromethane	ND	0.50	ug/L	1	06/17/22	MH	SW8260C
Dibromomethane	ND	1.0	ug/L	1	06/17/22	МН	SW8260C
Dichlorodifluoromethane	ND	1.0	ug/L	1	06/17/22	МН	SW8260C
Ethylbenzene	ND	1.0	ug/L	1	06/17/22	МН	SW8260C
Hexachlorobutadiene	ND	0.40	ug/L	1	06/17/22	MH	SW8260C
Isopropylbenzene	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
m&p-Xylene	ND	1.0	ug/L	1	06/17/22	МН	SW8260C
Methyl ethyl ketone	ND	5.0	ug/L	1	06/17/22	МН	SW8260C
Methyl t-butyl ether (MTBE)	ND	1.0	ug/L	1	06/17/22	МН	SW8260C
Methylene chloride	ND	1.0	ug/L	1	06/17/22	МН	SW8260C
Naphthalene	ND	1.0	ug/L	1	06/17/22	МН	SW8260C
n-Butylbenzene	ND	1.0	ug/L	1	06/17/22	МН	SW8260C
n-Propylbenzene	ND	1.0	ug/L	1	06/17/22	МН	SW8260C
o-Xylene	ND	1.0	ug/L	1	06/17/22	МН	SW8260C
p-Isopropyltoluene	ND	1.0	ug/L	1	06/17/22	МН	SW8260C
sec-Butylbenzene	ND	1.0	ug/L	1	06/17/22	МН	SW8260C
Styrene	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
tert-Butylbenzene	ND	1.0	ug/L	1	06/17/22	МН	SW8260C
Tetrachloroethene	4.5	1.0	ug/L	1	06/17/22	MH	SW8260C
Tetrahydrofuran (THF)	ND	2.5	ug/L	1	06/17/22	MH	SW8260C 1
Toluene	ND	1.0	ug/L	1	06/17/22	МН	SW8260C
Total Xylenes	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
trans-1,2-Dichloroethene	ND	1.0	ug/L	1	06/17/22	МН	SW8260C
trans-1,3-Dichloropropene	ND	0.40	ug/L	1	06/17/22	MH	SW8260C
trans-1,4-dichloro-2-butene	ND	5.0	ug/L	1	06/17/22	MH	SW8260C
Trichloroethene	3.7	1.0	ug/L	1	06/17/22	MH	SW8260C
Trichlorofluoromethane	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
Trichlorotrifluoroethane	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
Vinyl chloride	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
QA/QC Surrogates	110	1.0	4g/ ∟	•	00/11/22	1411 1	21.02000
% 1,2-dichlorobenzene-d4	101		%	1	06/17/22	МН	70 - 130 %
% 1,2-dichlorobenzene-d4 % Bromofluorobenzene	86		% %	1	06/17/22	МН	70 - 130 % 70 - 130 %
% Dibromofluoromethane	102		%	1	06/17/22	MH	70 - 130 %
	102		70	ı	00/11/22	1411 1	. 5 100 /5

Client ID: PMW-8A

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
% Toluene-d8	98		%	1	06/17/22	МН	70 - 130 %

^{1 =} This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

Comments:

Volatile Comment:

To achieve client's objectives, where the lowest calibration standard or LOD justifies lowering the RL/PQL, the RL/PQL of some compounds have been lowered to meet criteria.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

June 23, 2022

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

June 23, 2022

FOR: Attn: Mr. Harry Sudwischer

ECMS, Inc 10 Filmont Drive NY, NY 10956

Sample Information

Matrix: GROUND WATER

Location Code: ECMS

Rush Request: Standard

P.O.#:

Custody InformationDateTimeCollected by:06/15/229:21Received by:MMN06/15/2216:40

Analyzed by: see "By" below

Laboratory Data

RL/

SDG ID: GCL57220

Phoenix ID: CL57227

Project ID: 2655 LITTLE TOR RD

Client ID: PMW-12A

Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Volatiles							
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L	1	06/17/22	МН	SW8260C
1,1,1-Trichloroethane	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
1,1,2,2-Tetrachloroethane	ND	0.50	ug/L	1	06/17/22	MH	SW8260C
1,1,2-Trichloroethane	ND	1.0	ug/L	1	06/17/22	МН	SW8260C
1,1-Dichloroethane	ND	1.0	ug/L	1	06/17/22	МН	SW8260C
1,1-Dichloroethene	ND	1.0	ug/L	1	06/17/22	МН	SW8260C
1,1-Dichloropropene	ND	1.0	ug/L	1	06/17/22	МН	SW8260C
1,2,3-Trichlorobenzene	ND	1.0	ug/L	1	06/17/22	МН	SW8260C
1,2,3-Trichloropropane	ND	0.25	ug/L	1	06/17/22	МН	SW8260C
1,2,4-Trichlorobenzene	ND	1.0	ug/L	1	06/17/22	МН	SW8260C
1,2,4-Trimethylbenzene	ND	1.0	ug/L	1	06/17/22	МН	SW8260C
1,2-Dibromo-3-chloropropane	ND	0.50	ug/L	1	06/17/22	МН	SW8260C
1,2-Dibromoethane	ND	0.25	ug/L	1	06/17/22	МН	SW8260C
1,2-Dichlorobenzene	ND	1.0	ug/L	1	06/17/22	МН	SW8260C
1,2-Dichloroethane	ND	0.60	ug/L	1	06/17/22	MH	SW8260C
1,2-Dichloropropane	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
1,3,5-Trimethylbenzene	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
1,3-Dichlorobenzene	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
1,3-Dichloropropane	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
1,4-Dichlorobenzene	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
2,2-Dichloropropane	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
2-Chlorotoluene	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
2-Hexanone	ND	5.0	ug/L	1	06/17/22	MH	SW8260C
2-Isopropyltoluene	ND	1.0	ug/L	1	06/17/22	MH	SW8260C 1
4-Chlorotoluene	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
4-Methyl-2-pentanone	ND	5.0	ug/L	1	06/17/22	МН	SW8260C

Client ID: PMW-12A

Client ID. FIVIVV-12A		51./					
Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
Acetone	ND	25	ug/L	1	06/17/22	MH	SW8260C
Acrylonitrile	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
Benzene	ND	0.70	ug/L	1	06/17/22	MH	SW8260C
Bromobenzene	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
Bromochloromethane	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
Bromodichloromethane	ND	0.50	ug/L	1	06/17/22	MH	SW8260C
Bromoform	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
Bromomethane	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
Carbon Disulfide	ND	5.0	ug/L	1	06/17/22	MH	SW8260C
Carbon tetrachloride	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
Chlorobenzene	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
Chloroethane	ND	1.0	ug/L	1	06/17/22	МН	SW8260C
Chloroform	ND	1.0	ug/L	1	06/17/22	МН	SW8260C
Chloromethane	ND	1.0	ug/L	1	06/17/22	МН	SW8260C
cis-1,2-Dichloroethene	5.3	1.0	ug/L	1	06/17/22	МН	SW8260C
cis-1,3-Dichloropropene	ND	0.40	ug/L	1	06/17/22	MH	SW8260C
Dibromochloromethane	ND	0.50	ug/L	1	06/17/22	МН	SW8260C
Dibromomethane	ND	1.0	ug/L	1	06/17/22	МН	SW8260C
Dichlorodifluoromethane	ND	1.0	ug/L	1	06/17/22	МН	SW8260C
Ethylbenzene	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
Hexachlorobutadiene	ND	0.40	ug/L	1	06/17/22	MH	SW8260C
Isopropylbenzene	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
m&p-Xylene	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
Methyl ethyl ketone	ND	5.0	ug/L	1	06/17/22	MH	SW8260C
Methyl t-butyl ether (MTBE)	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
Methylene chloride	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
Naphthalene	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
n-Butylbenzene	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
n-Propylbenzene	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
o-Xylene	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
p-Isopropyltoluene	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
sec-Butylbenzene	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
Styrene	ND	1.0		1	06/17/22	MH	SW8260C
tert-Butylbenzene	3.3	1.0	ug/L ug/L	1	06/17/22	МН	SW8260C SW8260C
Tetrachloroethene			_		06/17/22		SW8260C 1
Tetrahydrofuran (THF)	ND	2.5	ug/L	1		MH	
Toluene	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
Total Xylenes	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
trans-1,2-Dichloroethene	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
trans-1,3-Dichloropropene	ND	0.40	ug/L	1	06/17/22	MH	SW8260C
trans-1,4-dichloro-2-butene	ND	5.0	ug/L	1	06/17/22	MH	SW8260C
Trichloroethene	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
Trichlorofluoromethane	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
Trichlorotrifluoroethane	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
Vinyl chloride	ND	1.0	ug/L	1	06/17/22	МН	SW8260C
QA/QC Surrogates							
% 1,2-dichlorobenzene-d4	100		%	1	06/17/22	MH	70 - 130 %
% Bromofluorobenzene	87		%	1	06/17/22	MH	70 - 130 %
% Dibromofluoromethane	101		%	1	06/17/22	МН	70 - 130 %

Client ID: PMW-12A

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
% Toluene-d8	98		%	1	06/17/22	МН	70 - 130 %

^{1 =} This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

Comments:

Volatile Comment:

To achieve client's objectives, where the lowest calibration standard or LOD justifies lowering the RL/PQL, the RL/PQL of some compounds have been lowered to meet criteria.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

June 23, 2022

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Time

9:29

Analysis Report

June 23, 2022

FOR: Attn: Mr. Harry Sudwischer

ECMS, Inc 10 Filmont Drive NY, NY 10956

Sample Information

Matrix: GROUND WATER

Location Code: ECMS

Rush Request: Standard

P.O.#:

Custody InformationDateCollected by:06/15/22

Received by: MMN 06/15/22 16:40

Analyzed by: see "By" below

Laboratory Data

RL/

SDG ID: GCL57220

Phoenix ID: CL57228

Project ID: 2655 LITTLE TOR RD

Client ID: PMW-13A

Parameter Result **PQL** Units Dilution Date/Time Bv Reference **Volatiles** 06/17/22 1,1,1,2-Tetrachloroethane ND 1.0 ug/L 1 МН SW8260C ND 06/17/22 SW8260C 1,1,1-Trichloroethane 1.0 ug/L 1 MH ND 0.50 ug/L 06/17/22 МН SW8260C 1,1,2,2-Tetrachloroethane ND 06/17/22 SW8260C 1,1,2-Trichloroethane 1.0 ug/L 1 MH SW8260C ND 1.0 ug/L 1 06/17/22 MH 1,1-Dichloroethane ND 06/17/22 SW8260C 1,1-Dichloroethene 1.0 ug/L 1 MH SW8260C ND 1.0 ug/L 1 06/17/22 MH 1,1-Dichloropropene 06/17/22 SW8260C 1,2,3-Trichlorobenzene ND 1.0 ug/L 1 MH 1,2,3-Trichloropropane ND 0.25 ug/L 1 06/17/22 MH SW8260C SW8260C 1,2,4-Trichlorobenzene ND 1.0 ug/L 1 06/17/22 MH SW8260C ND 1 06/17/22 1.0 ug/L MH 1,2,4-Trimethylbenzene ND 0.50 1 06/17/22 SW8260C 1,2-Dibromo-3-chloropropane ug/L MH ND 0.25 ug/L 1 06/17/22 MH SW8260C 1,2-Dibromoethane ND ug/L 06/17/22 MH SW8260C 1,2-Dichlorobenzene 1.0 1 ND 0.60 ug/L 1 06/17/22 MH SW8260C 1,2-Dichloroethane SW8260C ND 1.0 ug/L 06/17/22 MH 1 1,2-Dichloropropane SW8260C ND 1.0 1 06/17/22 MH 1,3,5-Trimethylbenzene ug/L ND 1 06/17/22 МН SW8260C 1.0 ug/L 1,3-Dichlorobenzene ND 1.0 ug/L 1 06/17/22 MH SW8260C 1,3-Dichloropropane ND 1.0 ug/L 1 06/17/22 MH SW8260C 1,4-Dichlorobenzene ND 1.0 ug/L 1 06/17/22 MH SW8260C 2,2-Dichloropropane 2-Chlorotoluene ND 1.0 ug/L 1 06/17/22 MH SW8260C ug/L 1 06/17/22 SW8260C 2-Hexanone ND 5.0 MH ND 1.0 1 06/17/22 SW8260C 2-Isopropyltoluene ug/L MH 4-Chlorotoluene ND 1.0 ug/L 1 06/17/22 МН SW8260C ND 5.0 ug/L 1 06/17/22 MH SW8260C 4-Methyl-2-pentanone

Client ID: PMW-13A

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
Acetone	ND	25	ug/L	1	06/17/22	МН	SW8260C
Acrylonitrile	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
Benzene	ND	0.70	ug/L	1	06/17/22	MH	SW8260C
Bromobenzene	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
Bromochloromethane	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
Bromodichloromethane	ND	0.50	ug/L	1	06/17/22	MH	SW8260C
Bromoform	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
Bromomethane	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
Carbon Disulfide	ND	5.0	ug/L	1	06/17/22	MH	SW8260C
Carbon tetrachloride	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
Chlorobenzene	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
Chloroethane	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
Chloroform	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
Chloromethane	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
cis-1,2-Dichloroethene	45	2.0	ug/L	2	06/18/22	MH	SW8260C
cis-1,3-Dichloropropene	ND	0.40	ug/L	1	06/17/22	MH	SW8260C
Dibromochloromethane	ND	0.50	ug/L	1	06/17/22	MH	SW8260C
Dibromomethane	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
Dichlorodifluoromethane	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
Ethylbenzene	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
Hexachlorobutadiene	ND	0.40	ug/L	1	06/17/22	MH	SW8260C
Isopropylbenzene	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
m&p-Xylene	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
Methyl ethyl ketone	ND	5.0	ug/L	1	06/17/22	MH	SW8260C
Methyl t-butyl ether (MTBE)	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
Methylene chloride	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
Naphthalene	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
n-Butylbenzene	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
n-Propylbenzene	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
o-Xylene	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
p-Isopropyltoluene	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
sec-Butylbenzene	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
Styrene	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
tert-Butylbenzene	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
Tetrachloroethene	39	2.0	ug/L	2	06/18/22	MH	SW8260C
Tetrahydrofuran (THF)	ND	2.5	ug/L	1	06/17/22	MH	SW8260C 1
Toluene	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
Total Xylenes	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
trans-1,2-Dichloroethene	ND	1.0	ug/L	1	06/17/22	MH	SW8260C
trans-1,3-Dichloropropene	ND	0.40	ug/L	1	06/17/22	MH	SW8260C
trans-1,4-dichloro-2-butene	ND	5.0	ug/L	1	06/17/22	MH	SW8260C
Trichloroethene	12	1.0	ug/L	1	06/17/22	МН	SW8260C
Trichlorofluoromethane	ND	1.0	ug/L	1	06/17/22	МН	SW8260C
Trichlorotrifluoroethane	ND	1.0	ug/L	1	06/17/22	МН	SW8260C
Vinyl chloride	ND	1.0	ug/L	1	06/17/22	МН	SW8260C
QA/QC Surrogates			3				
% 1,2-dichlorobenzene-d4	102		%	1	06/17/22	MH	70 - 130 %
% Bromofluorobenzene	86		%	1	06/17/22	MH	70 - 130 %
% Dibromofluoromethane	103		%	1	06/17/22	МН	70 - 130 %

Client ID: PMW-13A

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
% Toluene-d8	96		%	1	06/17/22	МН	70 - 130 %
% 1,2-dichlorobenzene-d4 (2x)	97		%	2	06/18/22	MH	70 - 130 %
% Bromofluorobenzene (2x)	81		%	2	06/18/22	MH	70 - 130 %
% Dibromofluoromethane (2x)	98		%	2	06/18/22	MH	70 - 130 %
% Toluene-d8 (2x)	98		%	2	06/18/22	MH	70 - 130 %

^{1 =} This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Volatile Comment:

To achieve client's objectives, where the lowest calibration standard or LOD justifies lowering the RL/PQL, the RL/PQL of some compounds have been lowered to meet criteria.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

June 23, 2022

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

QA/QC Report

June 23, 2022

QA/QC Data

Parameter	Blank	Blk RL	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits
QA/QC Batch 629690 (ug/L), Q	C Samp	le No: CL56413 (CL57220. C	L57221 (1	0X) . CL	57222	CL572	223 (20)	() . CL	57224. (CL57225.
CL57226, CL57227, CL57228)		, , ,	•	- , , -				, , -	,	,
Volatiles - Ground Water										
1,1,1,2-Tetrachloroethane	ND	1.0	103	101	2.0				70 - 130	30
1,1,1-Trichloroethane	ND	1.0	97	95	2.1				70 - 130	30
1,1,2,2-Tetrachloroethane	ND	0.50	91	89	2.2				70 - 130	30
1,1,2-Trichloroethane	ND	1.0	89	92	3.3				70 - 130	30
1,1-Dichloroethane	ND	1.0	94	94	0.0				70 - 130	30
1,1-Dichloroethene	ND	1.0	103	104	1.0				70 - 130	30
1,1-Dichloropropene	ND	1.0	108	105	2.8				70 - 130	30
1,2,3-Trichlorobenzene	ND	1.0	100	101	1.0				70 - 130	30
1,2,3-Trichloropropane	ND	1.0	83	86	3.6				70 - 130	30
1,2,4-Trichlorobenzene	ND	1.0	103	103	0.0				70 - 130	30
1,2,4-Trimethylbenzene	ND	1.0	104	100	3.9				70 - 130	30
1,2-Dibromo-3-chloropropane	ND	1.0	101	103	2.0				70 - 130	30
1,2-Dibromoethane	ND	1.0	98	98	0.0				70 - 130	30
1,2-Dichlorobenzene	ND	1.0	100	98	2.0				70 - 130	30
1,2-Dichloroethane	ND	1.0	87	88	1.1				70 - 130	30
1,2-Dichloropropane	ND	1.0	92	92	0.0				70 - 130	30
1,3,5-Trimethylbenzene	ND	1.0	106	102	3.8				70 - 130	30
1,3-Dichlorobenzene	ND	1.0	102	100	2.0				70 - 130	30
1,3-Dichloropropane	ND	1.0	94	96	2.1				70 - 130	30
1,4-Dichlorobenzene	ND	1.0	101	100	1.0				70 - 130	30
2,2-Dichloropropane	ND	1.0	105	95	10.0				70 - 130	30
2-Chlorotoluene	ND	1.0	106	103	2.9				70 - 130	30
2-Hexanone	ND	5.0	79	80	1.3				70 - 130	30
2-Isopropyltoluene	ND	1.0	105	101	3.9				70 - 130	30
4-Chlorotoluene	ND	1.0	108	102	5.7				70 - 130	30
4-Methyl-2-pentanone	ND	5.0	76	78	2.6				70 - 130	30
Acetone	ND	5.0	66	75	12.8				70 - 130	30 г
Acrylonitrile	ND	5.0	86	90	4.5				70 - 130	30
Benzene	ND	0.70	101	101	0.0				70 - 130	30
Bromobenzene	ND	1.0	104	104	0.0				70 - 130	30
Bromochloromethane	ND	1.0	92	97	5.3				70 - 130	30
Bromodichloromethane	ND	0.50	92	89	3.3				70 - 130	30
Bromoform	ND	1.0	97	98	1.0				70 - 130	30
Bromomethane	ND	1.0	97	95	2.1				70 - 130	30
Carbon Disulfide	ND	1.0	93	94	1.1				70 - 130	30
Carbon tetrachloride	ND	1.0	100	119	17.4				70 - 130	30
Chlorobenzene	ND	1.0	103	101	2.0				70 - 130	30
Chloroethane	ND	1.0	94	93	1.1				70 - 130	30
Chloroform	ND	1.0	89	91	2.2				70 - 130	30
Chloromethane	ND	1.0	78	80	2.5				70 - 130	30
- 2		-								

QA/QC Data

SDG I.D.: GCL57220

% % Blk LCS **LCSD** LCS MS MSD **RPD** MS Rec RPD Blank RL % % **RPD** Limits Limits % Parameter cis-1,2-Dichloroethene ND 1.0 97 97 0.0 70 - 130 30 cis-1,3-Dichloropropene ND 0.40 92 92 0.0 70 - 130 30 70 - 130 Dibromochloromethane ND 0.50 100 98 2.0 30 Dibromomethane ND 1.0 92 94 2.2 70 - 130 30 Dichlorodifluoromethane ND 1.0 87 85 2.3 70 - 130 30 Ethylbenzene ND 1.0 108 106 1.9 70 - 130 30 Hexachlorobutadiene ND 0.40 104 103 1.0 70 - 130 30 108 ND 1.0 112 3.6 70 - 130 Isopropylbenzene 30 ND 106 103 2.9 70 - 130 30 m&p-Xylene 1.0 Methyl ethyl ketone ND 5.0 70 77 9.5 70 - 130 30 Methyl t-butyl ether (MTBE) ND 1.0 84 85 1.2 70 - 130 30 87 ND 1.0 89 2.3 Methylene chloride 70 - 130 30 Naphthalene ND 1.0 91 93 2.2 70 - 130 30 n-Butylbenzene ND 1.0 104 102 1.9 70 - 130 30 n-Propylbenzene ND 1.0 111 106 4.6 70 - 130 30 o-Xylene ND 1.0 105 102 2.9 70 - 130 30 ND 108 105 p-Isopropyltoluene 1.0 2.8 70 - 13030 sec-Butylbenzene ND 1.0 107 104 2.8 70 - 130 30 ND 1.0 105 102 2.9 Styrene 70 - 130 30 tert-Butylbenzene ND 1.0 108 102 5.7 70 - 130 30 Tetrachloroethene ND 1.0 109 108 0.9 70 - 130 30 Tetrahydrofuran (THF) ND 2.5 77 77 0.0 70 - 130 30 Toluene ND 1.0 101 99 2.0 70 - 130 30 trans-1,2-Dichloroethene ND 1.0 102 102 0.0 70 - 130 30 trans-1,3-Dichloropropene ND 0.40 89 90 1.1 70 - 130 30 ND 95 trans-1,4-dichloro-2-butene 5.0 96 1.0 70 - 130 30 Trichloroethene ND 1.0 107 106 0.9 70 - 130 30 Trichlorofluoromethane ND 1.0 99 98 1.0 70 - 130 30 Trichlorotrifluoroethane ND 1.0 101 101 0.0 70 - 130 30 Vinyl chloride ND 1.0 99 97 2.0 70 - 130 30 100 % 1.2-dichlorobenzene-d4 % 98 99 1.0 70 - 130 30 % Bromofluorobenzene 84 % 94 94 0.0 70 - 130 30 % Dibromofluoromethane 101 % 93 98 5.2 70 - 130 30 % Toluene-d8 97 % 96 97 1.0 70 - 130 30 Comment:

A LCS and LCS Duplicate were performed instead of a matrix spike and matrix spike duplicate.

Additional 8260 criteria: 10% of LCS/LCSD compounds can be outside of acceptance criteria as long as recovery is 40-160%, 25-160% for Chloroethane-HL and Trichlorofluoromethane-HL.

QA/QC Batch 629717 (ug/L), QC Sample No: CL57223 (CL57222 (50X), CL57223, CL57228 (2X))

Volatiles - Ground Water

ND	1.0	99	102	3.0	70 - 130	30
ND	1.0	88	93	5.5	70 - 130	30
ND	0.50	86	93	7.8	70 - 130	30
ND	1.0	80	92	14.0	70 - 130	30
ND	1.0	93	99	6.3	70 - 130	30
ND	1.0	104	107	2.8	70 - 130	30
ND	1.0	100	106	5.8	70 - 130	30
ND	1.0	85	99	15.2	70 - 130	30
ND	1.0	75	87	14.8	70 - 130	30
ND	1.0	91	101	10.4	70 - 130	30
ND	1.0	104	105	1.0	70 - 130	30
ND	1.0	85	95	11.1	70 - 130	30
	ND N	ND 1.0 ND 0.50 ND 1.0 ND 1.0 ND 1.0 ND 1.0 ND 1.0 ND 1.0 ND 1.0 ND 1.0 ND 1.0	ND 1.0 88 ND 0.50 86 ND 1.0 80 ND 1.0 93 ND 1.0 104 ND 1.0 100 ND 1.0 85 ND 1.0 75 ND 1.0 91 ND 1.0 104	ND 1.0 88 93 ND 0.50 86 93 ND 1.0 80 92 ND 1.0 93 99 ND 1.0 104 107 ND 1.0 100 106 ND 1.0 85 99 ND 1.0 75 87 ND 1.0 91 101 ND 1.0 104 105	ND 1.0 88 93 5.5 ND 0.50 86 93 7.8 ND 1.0 80 92 14.0 ND 1.0 93 99 6.3 ND 1.0 104 107 2.8 ND 1.0 100 106 5.8 ND 1.0 85 99 15.2 ND 1.0 75 87 14.8 ND 1.0 91 101 10.4 ND 1.0 104 105 1.0	ND 1.0 88 93 5.5 70 - 130 ND 0.50 86 93 7.8 70 - 130 ND 1.0 80 92 14.0 70 - 130 ND 1.0 93 99 6.3 70 - 130 ND 1.0 104 107 2.8 70 - 130 ND 1.0 100 106 5.8 70 - 130 ND 1.0 85 99 15.2 70 - 130 ND 1.0 75 87 14.8 70 - 130 ND 1.0 91 101 10.4 70 - 130 ND 1.0 104 105 1.0 70 - 130

QA/QC Data

SDG I.D.: GCL57220

Parameter	Blank	Blk RL	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits	
1,2-Dibromoethane	ND	1.0	92	97	5.3				70 - 130	30	
1,2-Dichlorobenzene	ND	1.0	96	100	4.1				70 - 130	30	
1,2-Dichloroethane	ND	1.0	77	83	7.5				70 - 130	30	
1,2-Dichloropropane	ND	1.0	89	97	8.6				70 - 130	30	
1,3,5-Trimethylbenzene	ND	1.0	105	104	1.0				70 - 130	30	
1,3-Dichlorobenzene	ND	1.0	102	104	1.9				70 - 130	30	
1,3-Dichloropropane	ND	1.0	89	96	7.6				70 - 130	30	
1,4-Dichlorobenzene	ND	1.0	99	102	3.0				70 - 130	30	
2,2-Dichloropropane	ND	1.0	97	103	6.0				70 - 130	30	
2-Chlorotoluene	ND	1.0	108	108	0.0				70 - 130	30	
2-Hexanone	ND	5.0	73	83	12.8				70 - 130	30	
2-Isopropyltoluene	ND	1.0	103	103	0.0				70 - 130	30	
4-Chlorotoluene	ND	1.0	107	109	1.9				70 - 130	30	
4-Methyl-2-pentanone	ND	5.0	70	81	14.6				70 - 130	30	
Acetone	ND	5.0	56	75	29.0				70 - 130	30	1
Acrylonitrile	ND	5.0	87	94	7.7				70 - 130	30	
Benzene	ND	0.70	97	103	6.0				70 - 130	30	
Bromobenzene	ND	1.0	103	105	1.9				70 - 130	30	
Bromochloromethane	ND	1.0	85	96	12.2				70 - 130	30	
Bromodichloromethane	ND	0.50	80	88	9.5				70 - 130	30	
Bromoform	ND	1.0	87	95	8.8				70 - 130	30	
Bromomethane	ND	1.0	82	85	3.6				70 - 130	30	
Carbon Disulfide	ND	1.0	93	98	5.2				70 - 130	30	
Carbon tetrachloride	ND	1.0	110	115	4.4				70 - 130	30	
Chlorobenzene	ND	1.0	100	104	3.9				70 - 130	30	
Chloroethane	ND	1.0	95	100	5.1				70 - 130	30	
Chloroform	ND	1.0	83	90	8.1				70 - 130	30	
Chloromethane	ND	1.0	77	82	6.3				70 - 130	30	
cis-1,2-Dichloroethene	ND	1.0	94	102	8.2				70 - 130	30	
cis-1,3-Dichloropropene	ND	0.40	83	92	10.3				70 - 130	30	
Dibromochloromethane	ND	0.50	92	99	7.3				70 - 130	30	
Dibromomethane	ND	1.0	82	91	10.4				70 - 130	30	
Dichlorodifluoromethane	ND	1.0	89	91	2.2				70 - 130	30	
Ethylbenzene	ND	1.0	106	108	1.9				70 - 130	30	
Hexachlorobutadiene	ND	0.40	89	92	3.3				70 - 130	30	
Isopropylbenzene	ND	1.0	110	111	0.9				70 - 130	30	
m&p-Xylene	ND	1.0	103	105	1.9				70 - 130	30	
Methyl ethyl ketone	ND	5.0	71	76	6.8				70 - 130	30	
Methyl t-butyl ether (MTBE)	ND	1.0	75	86	13.7				70 - 130	30	
Methylene chloride	ND	1.0	74	80	7.8				70 - 130	30	
Naphthalene	ND	1.0	77	91	16.7				70 - 130	30	
n-Butylbenzene	ND	1.0	99	100	1.0				70 - 130	30	
n-Propylbenzene	ND	1.0	108	107	0.9				70 - 130	30	
o-Xylene	ND	1.0	101	104	2.9				70 - 130	30	
p-Isopropyltoluene	ND	1.0	104	104	0.0				70 - 130	30	
sec-Butylbenzene	ND	1.0	101	101	0.0				70 - 130	30	
Styrene	ND	1.0	100	104	3.9				70 - 130	30	
tert-Butylbenzene	ND	1.0	102	103	1.0				70 - 130	30	
Tetrachloroethene	ND	1.0	98	104	5.9				70 - 130	30	
Tetrahydrofuran (THF)	ND	2.5	68	76	11.1				70 - 130	30	1
Toluene	ND	1.0	95	101	6.1				70 - 130	30	
trans-1,2-Dichloroethene	ND	1.0	100	107	6.8				70 - 130	30	
trans-1,3-Dichloropropene	ND	0.40	79	89	11.9				70 - 130	30	
1 11 1											

QA/QC Data

Parameter	Blank	Blk RL	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits
trans-1,4-dichloro-2-butene	ND	5.0	91	99	8.4				70 - 130	30
Trichloroethene	ND	1.0	99	105	5.9				70 - 130	30
Trichlorofluoromethane	ND	1.0	91	94	3.2				70 - 130	30
Trichlorotrifluoroethane	ND	1.0	96	99	3.1				70 - 130	30
Vinyl chloride	ND	1.0	95	103	8.1				70 - 130	30
% 1,2-dichlorobenzene-d4	98	%	96	97	1.0				70 - 130	30
% Bromofluorobenzene	83	%	90	92	2.2				70 - 130	30
% Dibromofluoromethane	99	%	84	96	13.3				70 - 130	30
% Toluene-d8	97	%	96	96	0.0				70 - 130	30
Comment:										

A LCS and LCS Duplicate were performed instead of a matrix spike and matrix spike duplicate.

Additional 8260 criteria: 10% of LCS/LCSD compounds can be outside of acceptance criteria as long as recovery is 40-160%, 25-160% for Chloroethane-HL and Trichlorofluoromethane-HL.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

RPD - Relative Percent Difference

LCS - Laboratory Control Sample

LCSD - Laboratory Control Sample Duplicate

MS - Matrix Spike

MS Dup - Matrix Spike Duplicate

NC - No Criteria

Intf - Interference

Phyllis/Shiller, Laboratory Director

SDG I.D.: GCL57220

June 23, 2022

I = This parameter is outside laboratory LCS/LCSD specified recovery limits.

Thursday, June 23, 2022 Criteria: NY: GW

Sample Criteria Exceedances Report GCL57220 - ECMS

State:	NY		COLUTZE COMO				RL	Analysis
SampNo	Acode	Phoenix Analyte	Criteria	Result	RL	Criteria	Criteria	Units
CL57220	\$8260GWR	Benzene	NY / TAGM - Volatile Organics / Groundwater Standards	2.4	0.70	0.7	0.7	ug/L
CL57220	\$8260GWR	1,2-Dibromo-3-chloropropane	NY / TOGS - Water Quality / GA Criteria	ND	0.50	0.04	0.04	ug/L
CL57220	\$8260GWR	1,2-Dibromoethane	NY / TOGS - Water Quality / GA Criteria	ND	0.25	0.0006	0.0006	ug/L
CL57220	\$8260GWR	Benzene	NY / TOGS - Water Quality / GA Criteria	2.4	0.70	1	1	ug/L
CL57220	\$8260GWR	1,2,3-Trichloropropane	NY / TOGS - Water Quality / GA Criteria	ND	0.25	0.04	0.04	ug/L
CL57221	\$8260GWR	Benzene	NY / TAGM - Volatile Organics / Groundwater Standards	ND	1.0	0.7	0.7	ug/L
CL57221	\$8260GWR	Hexachlorobutadiene	NY / TOGS - Water Quality / GA Criteria	ND	1.0	0.5	0.5	ug/L
CL57221	\$8260GWR	trans-1,3-Dichloropropene	NY / TOGS - Water Quality / GA Criteria	ND	1.0	0.4	0.4	ug/L
CL57221	\$8260GWR	cis-1,3-Dichloropropene	NY / TOGS - Water Quality / GA Criteria	ND	1.0	0.4	0.4	ug/L
CL57221	\$8260GWR	1,2-Dichloroethane	NY / TOGS - Water Quality / GA Criteria	ND	1.0	0.6	0.6	ug/L
CL57221	\$8260GWR	1,2-Dibromoethane	NY / TOGS - Water Quality / GA Criteria	ND	1.0	0.0006	0.0006	ug/L
CL57221	\$8260GWR	1,2-Dibromo-3-chloropropane	NY / TOGS - Water Quality / GA Criteria	ND	1.0	0.04	0.04	ug/L
CL57221	\$8260GWR	1,2,3-Trichloropropane	NY / TOGS - Water Quality / GA Criteria	ND	1.0	0.04	0.04	ug/L
CL57222	\$8260GWR	Tetrachloroethene	NY / TAGM - Volatile Organics / Groundwater Standards	110	50	5	5	ug/L
CL57222	\$8260GWR	Trichloroethene	NY / TAGM - Volatile Organics / Groundwater Standards	8.6	1.0	5	5	ug/L
CL57222	\$8260GWR	1,2-Dibromo-3-chloropropane	NY / TOGS - Water Quality / GA Criteria	ND	0.50	0.04	0.04	ug/L
CL57222	\$8260GWR	1,2-Dibromoethane	NY / TOGS - Water Quality / GA Criteria	ND	0.25	0.0006	0.0006	ug/L
CL57222	\$8260GWR	cis-1,2-Dichloroethene	NY / TOGS - Water Quality / GA Criteria	23	1.0	5	5	ug/L
CL57222	\$8260GWR	Tetrachloroethene	NY / TOGS - Water Quality / GA Criteria	110	50	5	5	ug/L
CL57222	\$8260GWR	Trichloroethene	NY / TOGS - Water Quality / GA Criteria	8.6	1.0	5	5	ug/L
CL57222	\$8260GWR	1,2,3-Trichloropropane	NY / TOGS - Water Quality / GA Criteria	ND	0.25	0.04	0.04	ug/L
CL57223	\$8260GWR	Tetrachloroethene	NY / TAGM - Volatile Organics / Groundwater Standards	550	20	5	5	ug/L
CL57223	\$8260GWR	1,2-Dibromoethane	NY / TOGS - Water Quality / GA Criteria	ND	0.25	0.0006	0.0006	ug/L
CL57223	\$8260GWR	1,2,3-Trichloropropane	NY / TOGS - Water Quality / GA Criteria	ND	0.25	0.04	0.04	ug/L
CL57223	\$8260GWR	Tetrachloroethene	NY / TOGS - Water Quality / GA Criteria	550	20	5	5	ug/L
CL57223	\$8260GWR	1,2-Dibromo-3-chloropropane	NY / TOGS - Water Quality / GA Criteria	ND	0.50	0.04	0.04	ug/L
CL57224	\$8260GWR	1,2,3-Trichloropropane	NY / TOGS - Water Quality / GA Criteria	ND	0.25	0.04	0.04	ug/L
CL57224	\$8260GWR	1,2-Dibromo-3-chloropropane	NY / TOGS - Water Quality / GA Criteria	ND	0.50	0.04	0.04	ug/L
CL57224	\$8260GWR	1,2-Dibromoethane	NY / TOGS - Water Quality / GA Criteria	ND	0.25	0.0006	0.0006	ug/L
CL57225	\$8260GWR	1,2,3-Trichloropropane	NY / TOGS - Water Quality / GA Criteria	ND	0.25	0.04	0.04	ug/L
CL57225	\$8260GWR	1,2-Dibromo-3-chloropropane	NY / TOGS - Water Quality / GA Criteria	ND	0.50	0.04	0.04	ug/L
CL57225	\$8260GWR	1,2-Dibromoethane	NY / TOGS - Water Quality / GA Criteria	ND	0.25	0.0006	0.0006	ug/L
CL57226	\$8260GWR	cis-1,2-Dichloroethene	NY / TOGS - Water Quality / GA Criteria	21	1.0	5	5	ug/L
CL57226	\$8260GWR	1,2,3-Trichloropropane	NY / TOGS - Water Quality / GA Criteria	ND	0.25	0.04	0.04	ug/L
CL57226	\$8260GWR	1,2-Dibromo-3-chloropropane	NY / TOGS - Water Quality / GA Criteria	ND	0.50	0.04	0.04	ug/L
CL57226	\$8260GWR	1,2-Dibromoethane	NY / TOGS - Water Quality / GA Criteria	ND	0.25	0.0006	0.0006	ug/L
			•					Ü

Thursday, June 23, 2022 Criteria: NY: GW

Sample Criteria Exceedances Report GCL57220 - ECMS

State: NY

SampNo	Acode	Phoenix Analyte	Criteria	Result	RL	Criteria	RL Criteria	Analysis Units
CL57227	\$8260GWR	cis-1,2-Dichloroethene	NY / TOGS - Water Quality / GA Criteria	5.3	1.0	5	5	ug/L
CL57227	\$8260GWR	1,2-Dibromoethane	NY / TOGS - Water Quality / GA Criteria	ND	0.25	0.0006	0.0006	ug/L
CL57227	\$8260GWR	1,2,3-Trichloropropane	NY / TOGS - Water Quality / GA Criteria	ND	0.25	0.04	0.04	ug/L
CL57227	\$8260GWR	1,2-Dibromo-3-chloropropane	NY / TOGS - Water Quality / GA Criteria	ND	0.50	0.04	0.04	ug/L
CL57228	\$8260GWR	Tetrachloroethene	NY / TAGM - Volatile Organics / Groundwater Standards	39	2.0	5	5	ug/L
CL57228	\$8260GWR	Trichloroethene	NY / TAGM - Volatile Organics / Groundwater Standards	12	1.0	5	5	ug/L
CL57228	\$8260GWR	Trichloroethene	NY / TOGS - Water Quality / GA Criteria	12	1.0	5	5	ug/L
CL57228	\$8260GWR	1,2,3-Trichloropropane	NY / TOGS - Water Quality / GA Criteria	ND	0.25	0.04	0.04	ug/L
CL57228	\$8260GWR	1,2-Dibromo-3-chloropropane	NY / TOGS - Water Quality / GA Criteria	ND	0.50	0.04	0.04	ug/L
CL57228	\$8260GWR	1,2-Dibromoethane	NY / TOGS - Water Quality / GA Criteria	ND	0.25	0.0006	0.0006	ug/L
CL57228	\$8260GWR	cis-1,2-Dichloroethene	NY / TOGS - Water Quality / GA Criteria	45	2.0	5	5	ug/L
CL57228	\$8260GWR	Tetrachloroethene	NY / TOGS - Water Quality / GA Criteria	39	2.0	5	5	ug/L

Phoenix Laboratories does not assume responsibility for the data contained in this exceedance report. It is provided as an additional tool to identify requested criteria exceedences. All efforts are made to ensure the accuracy of the data (obtained from appropriate agencies). A lack of exceedence information does not necessarily suggest conformance to the criteria. It is ultimately the site professional's responsibility to determine appropriate compliance.

A

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Comments

June 23, 2022 SDG I.D.: GCL57220

The following analysis comments are made regarding exceptions to criteria not already noted in the Analysis Report or QA/QC Report:

VOA Narration

CL57220, CL57221, CL57222, CL57223, CL57224, CL57225, CL57226, CL57227, CL57228

Chem 17 is a 25ml purge instrument. The laboratory minimum response factor is set at 0.01 instead of 0.05 for the 25ml purge instruments. EPA method 8260D Table 4 supports this approach.

The following Initial Calibration compounds did not meet RSD% criteria: Acetone 26% (20%), Methyl ethyl ketone 21% (20%), Methylene chloride 21% (20%)

The following Initial Calibration compounds did not meet maximum RSD% criteria: None.

The following Initial Calibration compounds did not meet recommended response factors: 1,2-Dibromo-3-chloropropane 0.039 (0.05), 2-Hexanone 0.066 (0.1), 4-Methyl-2-pentanone 0.096 (0.1), Acetone 0.050 (0.1), Acrylonitrile 0.047 (0.05), Methyl ethyl ketone 0.065 (0.1), Tetrahydrofuran (THF) 0.038 (0.05)

The following Initial Calibration compounds did not meet minimum response factors: 1,2-Dibromo-3-chloropropane 0.039 (0.05), Acrylonitrile 0.047 (0.05), Tetrahydrofuran (THF) 0.038 (0.05)

The following Continuing Calibration compounds did not meet recommended response factors: 1,2-Dibromo-3-chloropropane 0.035 (0.05), Acetone 0.035 (0.05), Acrylonitrile 0.040 (0.05), Methyl ethyl ketone 0.049 (0.05), Tetrahydrofuran (THF) 0.028 (0.05)

The following Continuing Calibration compounds did not meet minimum response factors: 1,2-Dibromo-3-chloropropane 0.039 (0.05), Acetone 0.050 (0.05), Acrylonitrile 0.047 (0.05), Methyl ethyl ketone 0.065 (0.05), Tetrahydrofuran (THF) 0.038 (0.05)

Up to eight compounds can be outside of ICAL %RSD criteria and up to sixteen compounds can be outside of CCAL %Dev criteria if less than 40%.

CHEM17 06/18/22-1: CL57222, CL57223, CL57228

Chem 17 is a 25ml purge instrument. The laboratory minimum response factor is set at 0.01 instead of 0.05 for the 25ml purge instruments. EPA method 8260D Table 4 supports this approach.

The following Initial Calibration compounds did not meet RSD% criteria: Acetone 26% (20%), Methyl ethyl ketone 21% (20%), Methylene chloride 21% (20%)

The following Initial Calibration compounds did not meet maximum RSD% criteria: None.

The following Initial Calibration compounds did not meet recommended response factors: 1,2-Dibromo-3-chloropropane 0.039 (0.05), 2-Hexanone 0.066 (0.1), 4-Methyl-2-pentanone 0.096 (0.1), Acetone 0.050 (0.1), Acrylonitrile 0.047 (0.05), Methyl ethyl ketone 0.065 (0.1), Tetrahydrofuran (THF) 0.038 (0.05)

The following Initial Calibration compounds did not meet minimum response factors: 1,2-Dibromo-3-chloropropane 0.039 (0.05), Acrylonitrile 0.047 (0.05), Tetrahydrofuran (THF) 0.038 (0.05)

The following Continuing Calibration compounds did not meet % deviation criteria: Acetone 40%L (30%)

The following Continuing Calibration compounds did not meet Maximum % deviation criteria: None.

The following Continuing Calibration compounds did not meet recommended response factors: 1,2-Dibromo-3-chloropropane 0.036 (0.05),

Acetone 0.030 (0.05), Acrylonitrile 0.046 (0.05), Methyl ethyl ketone 0.048 (0.05), Tetrahydrofuran (THF) 0.028 (0.05)

The following Continuing Calibration compounds did not meet minimum response factors: 1,2-Dibromo-3-chloropropane 0.039 (0.05), Acetone 0.050 (0.05), Acrylonitrile 0.047 (0.05), Methyl ethyl ketone 0.065 (0.05), Tetrahydrofuran (THF) 0.038 (0.05)

Up to eight compounds can be outside of ICAL %RSD criteria and up to sixteen compounds can be outside of CCAL %Dev criteria if less than 40%.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

NY # 11301

NY Temperature Narration

June 23, 2022

SDG I.D.: GCL57220

The samples in this delivery group were received at 2.0° C. (Note acceptance criteria for relevant matrices is above freezing up to 6° C)

																			Coola		ooler; PK 📝			No H
7)7 7/	\ 773	7777			NY/NJ	/PA	CH.	AIN	OF C	วบร	TOD	ΥF	REC	ORD		Г				mp*Z.	~~ .	Pg		
PHC Environme	IF/\ ental La	IX S boratories,	nc.		587 East M Emai	l: info	o@pho	enixla	P.O. Bo abs.con i ces (3	n F	ах (86	30) 64	15-082				F4	none: ax: mail;	(20	3)Z	241	-/03	o ,.con	1
Customer: Address:		C/15 5 Vew	ne City,	Try			Proje Rep Invo Quo	ort to ice t	o:	<u> V</u>	7 7 7	5,		To Xhar	28			Pro	oject l Thi :	P.O <u>:</u> s sec	ctior letec		ST b	
Sampler's Signature Matrix Code: DW-Drinking Wate RW-Raw Water S OIL-Oil B-Bulk I	or GW -Grou	ind Water SW- Si SL=Sludge S =S	urface Wal	Date: Ler WW=Waste	/5/2L		Analys Reque		Zull.						1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	S. S	\$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		\$ 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	17. 18. 18. 18. 18. 18. 18. 18. 18. 18. 18	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	Section of the sectio	SESTIN SESTIN	J. 185° 55°
PHOENIX USE ONLY SAMPLE #	lde	mer Sample	Sample Matrix	Date Sampled	l'ime Sampled	_	6 7	/	//	/	_	_	/		3 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3			See Hides	8		27 X	\$\f\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	\$1.50° 25°	a sitti di general distributi di sino
<u> 57220</u>	(3MM)		0-6)	6/13/22	13:00	Х	\sqcup	\perp		ļ.,							١.	·						
<u>57221</u>	PMW.	- · ·		6/15/22	10:27	4										_		3	\coprod			\perp	$\perp \perp$	
<u>57222</u>	PMW	<u>-4A</u>		6/13/22	15:45	Ш								Ш			.3	>			_	\perp		
<u>57223</u>	PMW	<u>-54</u>		6/15/22	9:47	Ш																		
<u>57224</u>	12796	6A		6/15/22	10:06													3				\perp		
57225	PMW-	· 7A		6/15/22	9-57													3						
57220	PMW	-8A		6/13/22	13:16													3						
57227	PMW	-12A	l l	6/15/22	9.21	1												3						
57228	PMW	~ (3A)	GW	6/15/22	9:29	X											-	3						
'	,																							
Relifiquished by	72	Accepted by	S. L.	e e	C 15	 U.S			.05 40		aroun 1 Day* 2 Days 3 Days 5 Days 10 Day	*		Impact	riteria es. Criter to GW S p Criteria	ia Dil	CP 37 Ur			[.		PA-GW	ill Limit / Limits	s
omments, Special	Requiremen	nte or Regulation	# :	Data Forma	t:						Other			Impact	to GW	'	Re	5SCO sidentia	al Soil		_ 	A Spil	Restric	ted
				☐ Phoenix	Std Report		EQui:	S azsite	EDD	* SL	IRCHAR	GE		soil scr Criteria GW Crite	1		Re Re	SCO sidentia stricted SSCO				–	non-rest	
				₩ PDF			NY E	ZEDI	D (ASP)	¢Q	ta Pack	age:				7	c	mmerc	iat Soil		State	Sampl	es ColJe	cted?
				GI\$/Kr	y		Othe				IJ Redu IY Enh			_) Other		Inc	5SCO dustrial boart 5			_	1	IP	

rage sy or

Wednesday, March 08, 2023

Attn: Mr. Harry Sudwischer ECMS, Inc 10 Filmont Drive NY, NY 10956

Project ID: LITTLE TOR SDG ID: GCN47696

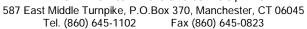
Sample ID#s: CN47696 - CN47697

This laboratory is in compliance with the NELAC requirements of procedures used except where indicated.

This report contains results for the parameters tested, under the sampling conditions described on the Chain Of Custody, as received by the laboratory. This report is incomplete unless all pages indicated in the pagination at the bottom of the page are included.

A scanned version of the COC form accompanies the analytical report and is an exact duplicate of the original.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.


Sincerely yours,

Phyllis/Shiller

Laboratory Director

NELAC - #NY11301 CT Lab Registration #PH-0618 MA Lab Registration #M-CT007 ME Lab Registration #CT-007 NH Lab Registration #213693-A,B NJ Lab Registration #CT-003 NY Lab Registration #11301 PA Lab Registration #68-03530 RI Lab Registration #63 VT Lab Registration #VT11301

Sample Id Cross Reference

March 08, 2023

SDG I.D.: GCN47696

Project ID: LITTLE TOR

Client Id	Lab Id	Matrix
IA-1	CN47696	AIR
OA-1	CN47697	AIR

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

March 08, 2023

FOR: Attn: Mr. Harry Sudwischer

> ECMS. Inc 10 Filmont Drive NY, NY 10956

Sample Information **Custody Information** Date Time 02/21/23 Matrix: AIR Collected by: 16:53 Received by: **ECMS** MMN 02/22/23 17:04 **Location Code:** Analyzed by: see "By" below

Rush Request: Standard

P.O.#:

SDG ID: GCN47696 aboratory Data Canister Id: 28622 Phoenix ID: CN47696

LITTLE TOR Project ID:

IA-1 Client ID:

Parameter	ppbv Result	ppbv RL	ug/m3 Result	ug/m3 RL	Date/Time	Ву	Dilution
Volatiles (TO15)							
Methylene Chloride	ND	0.863	ND	3.00	02/22/23	KCA	1
QA/QC Surrogates/Internals							
% Bromofluorobenzene	106	%	106	%	02/22/23	KCA	1
% IS-1,4-Difluorobenzene	102	%	102	%	02/22/23	KCA	1
% IS-Bromochloromethane	101	%	101	%	02/22/23	KCA	1
% IS-Chlorobenzene-d5	102	%	102	%	02/22/23	KCA	1

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

E = Estimated value quantitated above calibration range for this compound.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

March 08, 2023

Reviewed and Released by: Greg Lawrence, Assistant Lab Director

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

March 08, 2023

FOR: Attn: Mr. Harry Sudwischer

ECMS, Inc 10 Filmont Drive NY, NY 10956

Sample Information **Custody Information** Date Time 02/21/23 Matrix: AIR Collected by: 16:54 Location Code: **ECMS** Received by: MMN 02/22/23 17:04 Rush Request: Standard Analyzed by: see "By" below

P.O.#:

Canister Id: 488 Laboratory Data SDG ID: GCN47696
Phoenix ID: CN47697

Project ID: LITTLE TOR

Client ID: OA-1

Parameter	ppbv Result	ppbv RL	ug/m3 Result	ug/m3 RL	Date/Time	Ву	Dilution
Volatiles (TO15)							
Methylene Chloride	ND	0.863	ND	3.00	02/22/23	KCA	1
QA/QC Surrogates/Internals							
% Bromofluorobenzene	104	%	104	%	02/22/23	KCA	1
% IS-1,4-Difluorobenzene	97	%	97	%	02/22/23	KCA	1
% IS-Bromochloromethane	99	%	99	%	02/22/23	KCA	1
% IS-Chlorobenzene-d5	98	%	98	%	02/22/23	KCA	1

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

March 08, 2023

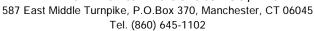
Reviewed and Released by: Greg Lawrence, Assistant Lab Director

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Canister Sampling Information

March 08, 2023

FOR: Attn: Mr. Harry Sudwischer


ECMS, Inc 10 Filmont Drive NY, NY 10956

Location Code: ECMS SDG I.D.: GCN47696

Project ID: LITTLE TOR

						Laboratory Field								
		Canis	ster	Reg.	Chk Out	Out	In	Out	In	Flow	Start	End	Sampling	Sampling
Client Id	Lab Id	ld	Type	ld	Date	Hg	Hg	Flow	Flow	RPD	Hg	Hg	Start Date	End Date
IA-1	CN47696	28622	6.0L	10702	02/17/23	-30	-8.5	11.5	11.4	0.9	-30	-9	02/21/23 10:29	02/21/23 16:53
OA-1	CN47697	488	6.0L	10594	02/17/23	-30	-7	10.5	10.5	0.0	-30	-9	02/21/23 10:30	02/21/23 16:54

QA/QC Report

QA/QC Data March 08, 2023

March 08, 2023				<u>QA/QC Data</u>					SDG I.D.: GCN47696					
Parameter	Blk ppbv	Blk RL ppbv	Blk ug/m3	Blk RL ug/m3	LCS %	Sample Result ug/m3	Sample Dup ug/m3	Sample Result ppbv	Sample Dup ppbv	DUP RPD	% Rec Limits	% RPD Limits		
QA/QC Batch 665482 (ppbv), C	2C Sam	ple No:	CN46971	(CN476	96, CN47697)									
<u>Volatiles</u>														
Methylene Chloride	ND	3.00	ND	10.4	101	ND	ND	ND	ND	NC	70 - 130	25		
% Bromofluorobenzene	104	%	104	%	105	104	105	104	105	NC	70 - 130	25		
% IS-1,4-Difluorobenzene	105	%	105	%	103	96	93	96	93	NC	60 - 140	25		
% IS-Bromochloromethane	104	%	104	%	100	95	94	95	94	NC	60 - 140	25		
% IS-Chlorobenzene-d5	105	%	105	%	107	98	96	98	96	NC	60 - 140	25		

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

RPD - Relative Percent Difference

LCS - Laboratory Control Sample

LCSD - Laboratory Control Sample Duplicate

MS - Matrix Spike

MS Dup - Matrix Spike Duplicate

NC - No Criteria

Intf - Interference

March 08, 2023

Wednesday, March 08, 2023

Sample Criteria Exceedances Report GCN47696 - ECMS

Criteria: None State: NY

RL Analysis SampNo Acode Phoenix Analyte Criteria Units

Phoenix Laboratories does not assume responsibility for the data contained in this exceedance report. It is provided as an additional tool to identify requested criteria exceedences. All efforts are made to ensure the accuracy of the data (obtained from appropriate agencies). A lack of exceedence information does not necessarily suggest conformance to the criteria. It is ultimately the site professional's responsibility to determine appropriate compliance.

^{***} No Data to Display ***

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Comments

March 08, 2023 SDG I.D.: GCN47696

The following analysis comments are made regarding exceptions to criteria not already noted in the Analysis Report or QA/QC Report: None.

) attest that all media released by Phoenix Erwironmental Laboratories, inc. have been received in good working condition and agree to the terms and conditions as listed on the back of this NALYSES Sub-slab Residential Industrial Residential Indoor Air Industrial HdV Date: iely) TOVO 又 X Page 1 of 1 (G) Composite (C) 1907) 241-1030 Residential Non-residential Indoor Air sed lied Ä ni A 100 ball tasidan A × × Pressure at End ("Hg) Carrister 6 <u>G</u>her: T Vapor Intrusion NJ Deliverables Pressure at Start (* Hg) ASP CAT B જ્ર 30 Data Delivery: Ä M Phone #: Email: ☐ Fax #. Sample Start Date Equis 10:29 16:53 12/2 P.O. # Ind/Commercial Ind/Commercial MCP Requested Deliverable: ξ Residential Indoor Air Residential Sail Gas: 15.45 Signature: Sampling End Time 10:30 6:54 ocument: (Circle) Quote Number: ź Sampling Start Time Format e£231 Ind/Commercial Data Ind/Commercial Time: Indoor Air. Residential CHAIN OF CUSTODY RECORD Requested Criteria: (Please Circle) Residential Soil Gag Flow Controller (mCnrin) Setting email: greg@phoenixlabs.com 11.5 10.9 10.5 2-21.23 AIR ANALYSES Regulator **5** 01 10702 10565 Flow 10594 860-645-1102 THIS SECTION FOR LAB USE ONLY SVVC I/C SVVC RES Larry Sulliviether GWV I/C GWV CES Canister Pressure TAC RES TACI/C 386 Project Name: Little Tor Carrister Pressure SURCHARGES MAY APPLY (FHg) Ŗ R 용 1 Day*
2 Day*
3 Day*
4 Day*
5 Day* Size (L) Carrister 6.01 ਰੂ 형 Canister ID # Sampled by: Invoice to: Acepted by: woody intecting 28622 12863 HOILL SCHOOL 88 SPECIAL INSTRUCTIONS, OC REQUIREMENTS, REGULATORY INFORMATION. Client Sample ID ì 583 Sez Middle Tumprie, P.O. Box 370, Manchester, (100040). Telephron: 650,645,1102 + Fax: 860,645,0803. 3 LAK 1-80 aret used Harry Sudwischer 10 Filmont Drive 🕶 ples Collected: 🔔 NY, NY 10956 DAY 2-23-33 ECMS, Inc ECMS Relinquished by: Phoenix ID # 25/5 State Where Sa .69(L) Report to: Customer (3) - 6.0L 8 hr Address: 14375

Thursday, March 09, 2023

Attn: Mr. Harry Sudwischer ECMS, Inc 10 Filmont Drive NY, NY 10956

Project ID: LITTLE TOR SDG ID: GCN54458 Sample ID#s: CN54458

This laboratory is in compliance with the NELAC requirements of procedures used except where indicated.

This report contains results for the parameters tested, under the sampling conditions described on the Chain Of Custody, as received by the laboratory. This report is incomplete unless all pages indicated in the pagination at the bottom of the page are included.

A scanned version of the COC form accompanies the analytical report and is an exact duplicate of the original.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Sincerely yours,

Phyllis/Shiller

Laboratory Director

NELAC - #NY11301 CT Lab Registration #PH-0618 MA Lab Registration #M-CT007 ME Lab Registration #CT-007 NH Lab Registration #213693-A,B NJ Lab Registration #CT-003 NY Lab Registration #11301 PA Lab Registration #68-03530 RI Lab Registration #63 VT Lab Registration #VT11301

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Sample Id Cross Reference

March 09, 2023

SDG I.D.: GCN54458

Project ID: LITTLE TOR

Client Id	Lab Id	Matrix
MW-5A	CN54458	GROUND WATER

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

March 09, 2023

FOR: Attn: Mr. Harry Sudwischer

> ECMS. Inc 10 Filmont Drive NY, NY 10956

Sample Information Custody Information Date Time **GROUND WATER** Collected by: 03/06/23 13:00 Matrix: Received by: **Location Code: ECMS** MMN 03/07/23 17:00

Rush Request: 24 Hour Analyzed by: see "By" below

P.O.#:

SDG ID: GCN54458 aboratory Data

Phoenix ID: CN54458

LITTLE TOR Project ID: Client ID: MW-5A

RL/ Parameter Result **PQL** Units Dilution Date/Time Βv Reference ND 5.0 03/07/23 Tetrachloroethene ug/L MH SW8260C

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

Comments:

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

March 09, 2023

Reviewed and Released by: Anil Makol, Project Manager

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102

QA/QC Report

March 09, 2023

QA/QC Data

SDG I.D.: GCN54458

Parameter	Blank	BIk RL	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits	
QA/QC Batch 667109 (ug/ Volatiles - Ground Wa	•	e No: CN54078 (CN54458)									
Tetrachloroethene Comment:	ND	1.0	106	105	0.9				70 - 130	30	

A LCS and LCS Duplicate were performed instead of a matrix spike and matrix spike duplicate.

Additional 8260 criteria: 10% of LCS/LCSD compounds can be outside of acceptance criteria as long as recovery is 40-160%, 25-160% for Chloroethane-HL and Trichlorofluoromethane-HL.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

RPD - Relative Percent Difference

LCS - Laboratory Control Sample

LCSD - Laboratory Control Sample Duplicate

MS - Matrix Spike

MS Dup - Matrix Spike Duplicate

NC - No Criteria

Intf - Interference

Phyllis/Shiller, Laboratory Director

March 09, 2023

Thursday, March 09, 2023 Criteria: NY: GW

Sample Criteria Exceedances Report GCN54458 - ECMS

State: NY

RL Analysis SampNo Acode Phoenix Analyte Criteria Units

Phoenix Laboratories does not assume responsibility for the data contained in this exceedance report. It is provided as an additional tool to identify requested criteria exceedences. All efforts are made to ensure the accuracy of the data (obtained from appropriate agencies). A lack of exceedence information does not necessarily suggest conformance to the criteria. It is ultimately the site professional's responsibility to determine appropriate compliance.

^{***} No Data to Display ***

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Comments

March 09, 2023 SDG I.D.: GCN54458

The following analysis comments are made regarding exceptions to criteria not already noted in the Analysis Report or QA/QC Report: None.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

NY # 11301

NY Temperature Narration

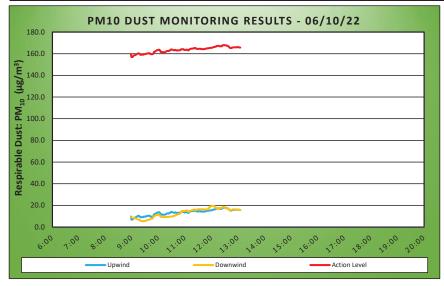
March 09, 2023

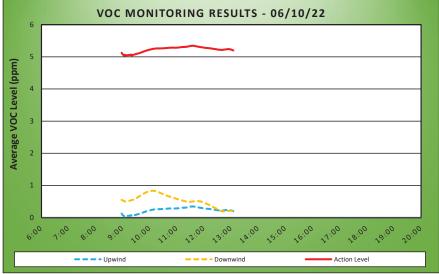
SDG I.D.: GCN54458

The samples in this delivery group were received at 2.7° C. (Note acceptance criteria for relevant matrices is above freezing up to 6° C)

Cooler: Yes No	°C Pg of	Data Delivery/Contact Options:			This section MUST be completed with	Bottle Quantities.	14000 1000	US INDE	Rich Black B									<u>Data Format</u>	Excel	☐ GIS/Key	Other Data Package		Dhoenix Std Report Other	- SURCHARGE APPLIES
Cook Cookenty	Lemp	Data Delivery/Conta	Email:	Project P.O.		A B	CON TORINA	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	(2) (2) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4									MCP Certification GW-1	GW-2 S-110% CALC	GW-3 S-1 GW-1 ☐ S-1 GW-2 ☐ S-1 GW-3	S-2 GW-1	J ∺ I	were collected:
	RECORD	Manchester, CT 06040	Ξ	The Tor 1	Tamy Suglimistre				O CORRECTION OF THE PROPERTY O									CT	ure Rop Cert	GW Protection SW Protection	GA Mobility	GB Mobility Residential DEC	I/C DEC	- S
	CHAIN OF CUSTODY RECORD	587 East Middle Turnpike, P.O. Box 370, Manchester, CT 06040 Email Makrina Nolan: makrina@nhoaniylahs.com — Fax (860) 645-0	Cllent Services (860) 645-1102)	Report to:	QUOTE#	Analysis			M								Time: Ri	11.6X	-	Time: GA Leachability	GB Leachability	GA-GW Objectives	Other Objectives
	ა	3 11			Jake V		idification 3/6	f Water Ww=waste Water >Solid W=Wipe OIL=Oil	Sample Date Time	13:00 3/6 UT	•		1 Jan. C.	20 / 2-1	•			ă	3.7-23	CD/LIE	Turneral Time	1 Day.	2 Cays 3 Days*	
		HOEINIX W	Environmental Laboratories, Inc	K.C.MS. Smc.	10 CHING		Client Sample - Information - Joseph Cation	Matrix Code: DW=Drinking Water GW=Ground Water SW=Surface Water WW=Waste Water RW=Raw Water SE=Sediment SL=Studge S=Soil SD=Soild W=Wipe OIL=O: B=Bulk L=Liquid X = (Other)	Customer Sample San	MW-5A C		1	-	h\M/ //	:	10/1/	<u> </u>	Accepted by:	144 C		Comments, Special Requirements or Regulations:	5AT gailelle		*MSANSD are considered site samples and will be billed as such in accordance with the prices and well be billed.
		MAC	Environment	Customer:	Address:	I	Clié Sampler's Signature	Matrix Code: DW=Drinking Water G RW=Raw Water SE=St B=Bulk L=Liquid X =	PHOENIX USE ONLY	STASS								Relinquished by:	X		Comments, Special Re	- Joseph -	N N N N N N N N N N N N N N N N N N N	MS/MSD are considered a

APPENDIX E
CAMP Monitoring Data and Graphs


DAILY AIR MONITORING REPORT


265 Little Tor Road New City, New York

06/10/22	
Project number:	
Page 1 of 1	Rev No 0
Submitted By:	IVEV. IVO. U
Dust Action Level	150 µg/m³
TVOC Action Level	5 ppm

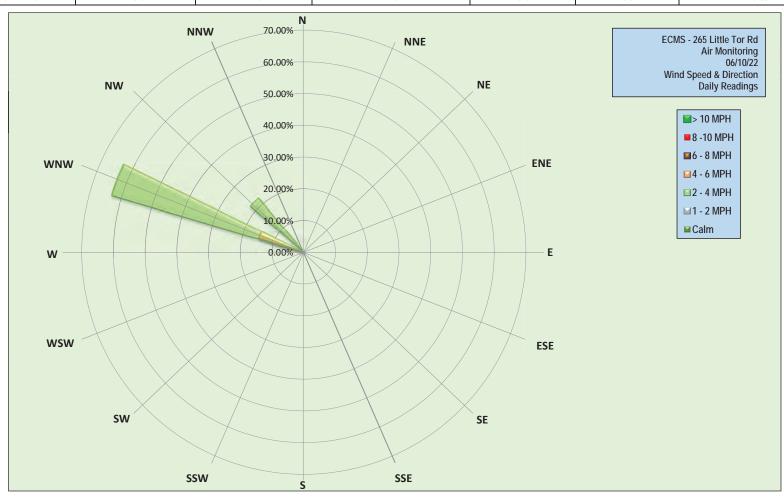
Weather Data Range for	or Work Day	Wind Direction	WNW	Relative Humidity (%)	47.0 - 72.0	Daily Rain (in)	0.00	Readings in the summary table and graphs below are the reported downwind
Temp (°F)	65.0 - 74.0	Wind Speed (MPH)	2.8 - 4.5	Barometer (inHg)	29.80 - 29.80	Dany Kam (m)	0.00	concentrations.

Station Location Work Area	Daily Avg. Dust Concentration (µg/m³)	Max 15 Min Dust Concentration (µg/m³)	Time of Maximum 15 Minute Avg Dust Reading	Daily Avg. VOC Concentration (ppm)	Max 15 Min VOC Concentration (ppm)	Time of Max VOC Reading
Upwind	13.5	17.9	12:27	0.2	0.3	11:36
Downwind	13.0	19.5	12:07	0.5	0.8	10:08

Air Monitoring Notes:

Sampling Notes:

Weather Notes:


DAILY AIR MONITORING REPORT

265 Little Tor Road New City, New York

06/10/22									
Project number:									
Page 1 of 1	Rev. No. 0								
Submitted By:	Nev. No. 0								
Dust Action Level	150 µ g/m³								
TVOC Action Level	5 ppm								

Weather Data Range for	or Work Day	Wind Direction	WNW	Relative Humidity (%)	47.0 - 72.0	Daily Rain (in)	0.00	Readings in the summary table and graphs below are the reported downwind
Temp (°F)	65.0 - 74.0	Wind Speed (MPH)	2.8 - 4.5	Barometer (inHg)	29.80 - 29.80	Daily Kalii (iii)	0.00	concentrations.

Station Location Work Area	Daily Avg. Dust Concentration (µg/m³)	Max 15 Min Dust Concentration (µg/m³)	Time of Maximum 15 Minute Avg Dust Reading	Daily Avg. VOC Concentration (ppm)	Max 15 Min VOC Concentration (ppm)	Time of Max VOC Reading
Upwind	13.5	17.9	12:27	0.2	0.3	11:36
Downwind	13.0	19.5	12:07	0.5	0.8	10:08

Number of Instances Where Downwind Particulates Exceeds Upwind Particulate + 150 =

Number of Comparable Data Points = 248

Start Time: 8:43 End Time: 13:05

PARTICULATE DATA

	Upwi		T	Downy		
Time	Concentration (ug/m³)	15-Min Avg Concentration (ug/m ³)	Time	Concentration (ug/m³)	15-Min Avg Concentration (ug/m ³)	Exceeds Particulate Alarm Limit
8:43	11.8	-	8:43	11.8	-	-
8:44	47.8	-	8:44	10.8	-	-
8:45	9.8	-	8:45	10.0	-	-
8:46	10.3	-	8:46	10.0	-	-
8:47	8.8	-	8:47	10.0	-	-
8:48	7.8	-	8:48	10.5	-	-
8:49	6.8	-	8:49	9.0	-	-
8:50	6.0	-	8:50	9.0	-	-
8:51	5.5	-	8:51	9.0	-	-
8:52	6.0	-	8:52	9.0	-	-
8:53	5.5	-	8:53	8.5	-	-
8:54	6.0	-	8:54	8.8	-	-
8:55	6.3	-	8:55	8.3	-	-
8:56	6.8	-	8:56	8.0	-	-
8:57	6.0	-	8:57	8.0	-	-
8:58	7.0	9.7	8:58	8.0	9.1	-
8:59	6.8	7.0	8:59	8.5	9.0	-
9:00	8.0	6.9	9:00	8.5	8.9	-
9:01	10.8	6.9	9:01	7.5	8.7	-
9:02	12.0	7.1	9:02	8.0	8.6	-
9:03	15.4	7.6	9:03	9.0	8.5	-
9:04	15.5	8.2	9:04	9.0	8.5	-
9:05	9.3	8.4	9:05	9.3	8.5	-
9:06	7.0	8.5	9:06	6.8	8.3	-
9:07	7.4	8.6	9:07	6.0	8.1	-
9:08	8.8	8.9	9:08	6.0	8.0	-
9:09	8.2	9.0	9:09	6.5	7.8	-
9:10	10.5	9.3	9:10	6.0	7.7	-
9:11	10.3	9.5	9:11	6.0	7.5	-
9:12	10.0	9.8	9:12	6.0	7.4	-
9:13	10.3	10.0	9:13	6.0	7.3	-
9:14	11.5	10.3	9:14	6.0	7.1	-
9:15	8.8	10.4	9:15	5.3	6.9	-
9:16	8.5	10.2	9:16	5.0	6.7	-
9:17	8.8	10.0	9:17	5.0	6.5	-
9:18	8.0	9.5	9:18	5.0	6.3	-
9:19	8.5	9.0	9:19	5.8	6.0	-
9:20	8.5	9.0	9:20	5.0	5.8	-
9:21	8.5	9.1	9:21	5.0	5.6	-
9:22	8.5	9.2	9:22	5.0	5.6	-
9:23	8.3	9.1	9:23	5.0	5.5	-
9:24	8.3	9.1	9:24	5.0	5.4	-
9:25	9.0	9.0	9:25	6.0	5.4	-
9:26	13.8	9.3	9:26	6.0	5.4	-
9:27	15.8	9.7	9:27	6.0	5.4	-
9:28	9.5	9.6	9:28	6.0	5.4	-
9:29	11.0	9.6	9:29	6.8	5.5	-

Number of Instances Where Downwind Particulates Exceeds Upwind Particulate + 150 =

Number of Comparable Data Points = 248

Start Time: 8:43 End Time: 13:05

PARTICULATE DATA

	Upwi		T	Downw	vind	
Time	Concentration (ug/m³)	15-Min Avg Concentration (ug/m ³)	Time	Concentration (ug/m³)	15-Min Avg Concentration (ug/m³)	Exceeds Particulate Alarm Limit
9:30	9.3	9.6	9:30	7.0	5.6	-
9:31	9.8	9.7	9:31	7.0	5.7	-
9:32	10.0	9.8	9:32	8.0	5.9	-
9:33	11.8	10.0	9:33	7.8	6.1	-
9:34	10.5	10.2	9:34	7.0	6.2	-
9:35	9.3	10.2	9:35	7.0	6.3	-
9:36	9.5	10.3	9:36	7.0	6.4	-
9:37	9.3	10.3	9:37	7.0	6.6	-
9:38	9.5	10.4	9:38	7.0	6.7	-
9:39	9.0	10.5	9:39	7.0	6.8	-
9:40	9.0	10.5	9:40	7.0	6.9	-
9:41	9.0	10.1	9:41	7.0	7.0	-
9:42	9.0	9.7	9:42	10.8	7.3	-
9:43	9.0	9.7	9:43	9.5	7.5	-
9:44	9.5	9.6	9:44	8.8	7.7	-
9:45	10.0	9.6	9:45	8.3	7.7	-
9:46	10.0	9.6	9:46	8.5	7.8	-
9:47	10.3	9.6	9:47	8.8	7.9	-
9:48	16.0	9.9	9:48	18.3	8.6	-
9:49	18.3	10.4	9:49	18.8	9.4	-
9:50	27.0	11.6	9:50	16.3	10.0	-
9:51	12.5	11.8	9:51	12.3	10.3	-
9:52	10.0	11.9	9:52	8.0	10.4	-
9:53	11.8	12.0	9:53	8.3	10.5	-
9:54	15.5	12.5	9:54	11.0	10.8	-
9:55	13.3	12.7	9:55	11.3	11.0	-
9:56	13.3	13.0	9:56	9.0	11.2	-
9:57	12.0	13.2	9:57	11.8	11.2	-
9:58	11.0	13.4	9:58	9.5	11.2	-
9:59	10.8	13.4	9:59	8.5	11.2	-
10:00	11.8	13.6	10:00	10.0	11.3	-
10:01	11.3	13.6	10:01	10.8	11.5	-
10:02	11.0	13.7	10:02	8.8	11.5	-
10:03	10.3	13.3	10:03	9.0	10.9	-
10:04	10.0	12.8	10:04	8.5	10.2	-
10:05	10.0	11.6	10:05	8.0	9.6	-
10:06	11.5	11.6	10:06	8.5	9.4	-
10:07	12.0	11.7	10:07	9.8	9.5	-
10:08	12.0	11.7	10:08	8.5	9.5	-
10:09	12.0	11.5	10:09	8.8	9.4	-
10:10	11.3	11.3	10:10	9.0	9.2	-
10:11	12.0	11.3	10:11	9.0	9.2	-
10:12	13.3	11.3	10:12	9.5	9.1	-
10:13	11.8	11.4	10:13	10.0	9.1	-
10:14	11.3	11.4	10:14	10.0	9.2	-
10:15	12.8	11.5	10:15	9.8	9.2	-
10:16	13.5	11.6	10:16	10.0	9.1	-

Number of Instances Where Downwind Particulates Exceeds Upwind Particulate + 150 =

Number of Comparable Data Points = 248 8:43

Start Time:

End Time: 13:05

		ſ	PARTICU	LATE DATA	End Time:	13:05
	Upwi			Downw	/ind	
Time	Concentration (ug/m³)	15-Min Avg Concentration (ug/m ³)	Time	Concentration (ug/m³)	15-Min Avg Concentration (ug/m³)	Exceeds Particulate Alarm Limit
10:17	14.3	11.9	10:17	9.3	9.2	-
10:18	15.5	12.2	10:18	10.0	9.2	-
10:19	13.0	12.4	10:19	10.0	9.3	-
10:20	11.8	12.5	10:20	9.0	9.4	-
10:21	12.0	12.6	10:21	9.0	9.4	-
10:22	11.5	12.5	10:22	9.0	9.4	-
10:23	11.3	12.5	10:23	9.0	9.4	-
10:24	14.0	12.6	10:24	9.0	9.4	-
10:25	17.5	13.0	10:25	9.8	9.5	-
10:26	12.3	13.0	10:26	10.0	9.6	-
10:27	16.3	13.2	10:27	10.0	9.6	-
10:28	19.8	13.8	10:28	10.8	9.6	-
10:29	13.8	13.9	10:29	11.0	9.7	
10:30	12.0	13.9	10:30	10.5	9.8	-
10:31	12.0	13.8	10:31	10.8	9.8	-
10:32	12.0	13.6	10:32	11.0	9.9	-
10:33	11.3	13.4	10:33	11.0	10.0	-
10:34	11.8	13.3	10:34	11.0	10.1	-
10:35	11.5	13.3	10:35	11.0	10.2	-
10:36	11.8	13.2	10:36	11.3	10.3	-
10:37	12.8	13.3	10:37	11.8	10.5	•
10:38	13.8	13.5	10:38	13.0	10.8	-
10:39	13.0	13.4	10:39	12.0	11.0	-
10:40	12.0	13.1	10:40	11.5	11.1	-
10:41	12.0	13.0	10:41	12.0	11.2	-
10:42	18.0	13.2	10:42	13.3	11.5	-
10:43	18.3	13.1	10:43	14.3	11.7	-
10:44	13.0	13.0	10:44	14.5	11.9	-
10:45	13.8	13.1	10:45	12.0	12.0	-
10:46	12.3	13.1	10:46	12.0	12.1	-
10:47	12.0	13.1	10:47	12.0	12.2	-
10:48	12.0	13.2	10:48	12.5	12.3	-
10:49	12.0	13.2	10:49	12.5	12.4	-
10:50	14.0	13.4	10:50	13.8	12.6	-
10:51	19.8	13.9	10:51	26.5	13.6	-
10:52	17.0	14.2	10:52	26.0	14.5	-
10:53	13.0	14.1	10:53	14.5	14.6	-
10:54	12.8	14.1	10:54	13.0	14.7	-
10:55	12.5	14.2	10:55	13.0	14.8	-
10:56	13.0	14.2	10:56	13.0	14.9	-
10:57	13.5	13.9	10:57	13.0	14.8	-
10:58	12.8	13.6	10:58	14.0	14.8	-
10:59	13.0	13.6	10:59	13.0	14.7	-
11:00	12.3	13.5	11:00	14.0	14.9	-
11:01	13.0	13.5	11:01	14.0	15.0	-
11:02	13.0	13.6	11:02	14.0	15.1	-
11:03	13.0	13.6	11:03	14.0	15.2	-

Number of Instances Where Downwind Particulates Exceeds Upwind Particulate + 150 =

Number of Comparable Data Points = 248 8:43

Start Time:

End Time: 13:05

РΔ	RTI	CU	LATE	DAT	ΓΔ

	Upwi	nd		Downw		
	Concentration	15-Min Avg		Concentration	15-Min Avg	Exceeds Particulate
Time		Concentration	Time		Concentration	Alarm Limit
	(ug/m³)	(ug/m³)		(ug/m³)	(ug/m³)	Alaim Limit
11:04	13.3	13.7	11:04	14.0	15.3	-
11:05	14.8	13.8	11:05	14.3	15.4	-
11:06	13.0	13.3	11:06	15.3	14.6	-
11:07	13.8	13.1	11:07	16.8	14.0	-
11:08	14.0	13.2	11:08	16.5	14.1	-
11:09	16.3	13.4	11:09	17.8	14.4	-
11:10	20.0	13.9	11:10	17.3	14.7	-
11:11	17.5	14.2	11:11	16.5	15.0	-
11:12	16.8	14.4	11:12	15.3	15.1	-
11:13	14.0	14.5	11:13	14.5	15.1	-
11:14	13.8	14.6	11:14	15.0	15.3	-
11:15	14.0	14.7	11:15	15.0	15.3	-
11:16	13.0	14.7	11:16	15.0	15.4	-
11:17	13.8	14.7	11:17	14.8	15.5	-
11:18	14.0	14.8	11:18	17.3	15.7	-
11:19	14.8	14.9	11:19	16.6	15.8	-
11:20	16.5	15.0	11:20	17.4	16.1	-
11:21	14.5	15.1	11:21	15.5	16.1	-
11:22	15.3	15.2	11:22	15.5	16.0	-
11:23	16.5	15.4	11:23	15.0	15.9	-
11:24	14.0	15.2	11:24	17.5	15.9	-
11:25	14.0	14.8	11:25	17.8	15.9	-
11:26	14.0	14.6	11:26	16.0	15.9	-
11:27	14.0	14.4	11:27	17.0	16.0	-
11:28	14.0	14.4	11:28	17.5	16.2	-
11:29	14.0	14.4	11:29	16.0	16.3	-
11:30	14.2	14.4	11:30	16.3	16.3	-
11:31	14.2	14.5	11:31	16.5	16.4	-
11:32	14.0	14.5	11:32	16.0	16.5	-
11:33	14.3	14.5	11:33	16.0	16.4	-
11:34	14.8	14.5	11:34	16.0	16.4	-
11:35	14.0	14.4	11:35	15.5	16.3	-
11:36	16.0	14.5	11:36	16.0	16.3	-
11:37	14.0	14.4	11:37	16.3	16.4	-
11:38	14.0	14.2	11:38	17.0	16.5	-
11:39	14.0	14.2	11:39	16.5	16.4	-
11:40	14.0	14.2	11:40	16.0	16.3	-
11:41	14.0	14.2	11:41	17.0	16.4	-
11:42	14.0	14.2	11:42	17.0	16.4	-
11:43	14.0	14.2	11:43	16.5	16.3	-
11:44	14.8	14.3	11:44	15.8	16.3	-
11:45	15.0	14.3	11:45	15.3	16.2	-
11:46	16.0	14.5	11:46	16.0	16.2	-
11:47	16.0	14.6	11:47	16.3	16.2	-
11:48	16.8	14.8	11:48	16.0	16.2	-
11:49	16.5	14.9	11:49	16.0	16.2	-
11:50	15.8	15.0	11:50	16.0	16.2	-

Number of Instances Where Downwind Particulates Exceeds Upwind Particulate + 150 =

Number of Comparable Data Points = 248

Start Time: 8:43 End Time: 13:05

PARTICULATE DATA

	Upwi		1	Downw	/ind	
Time	Concentration (ug/m³)	15-Min Avg Concentration (ug/m ³)	Time	Concentration (ug/m³)	15-Min Avg Concentration (ug/m³)	Exceeds Particulate Alarm Limit
11:51	15.0	14.9	11:51	16.0	16.2	-
11:52	15.0	15.0	11:52	16.5	16.3	-
11:53	15.0	15.1	11:53	35.0	17.5	-
11:54	14.8	15.1	11:54	20.5	17.7	-
11:55	15.0	15.2	11:55	16.8	17.8	-
11:56	15.0	15.2	11:56	23.8	18.2	-
11:57	15.5	15.3	11:57	30.5	19.1	-
11:58	15.3	15.4	11:58	17.0	19.2	-
11:59	15.0	15.4	11:59	17.8	19.3	-
12:00	15.3	15.5	12:00	16.3	19.4	-
12:01	17.0	15.5	12:01	16.5	19.4	-
12:02	17.0	15.6	12:02	16.8	19.4	-
12:03	20.0	15.8	12:03	16.5	19.5	-
12:04	19.5	16.0	12:04	16.3	19.5	-
12:05	18.5	16.2	12:05	16.8	19.5	-
12:06	15.3	16.2	12:06	15.8	19.5	-
12:07	16.0	16.3	12:07	16.8	19.5	-
12:08	17.5	16.4	12:08	16.2	18.3	-
12:09	15.0	16.5	12:09	15.0	17.9	-
12:10	16.8	16.6	12:10	16.6	17.9	-
12:11	20.8	17.0	12:11	17.0	17.4	-
12:12	16.8	17.0	12:12	17.8	16.6	-
12:13	16.3	17.1	12:13	16.3	16.5	-
12:14	16.0	17.2	12:14	18.0	16.6	-
12:15	17.0	17.3	12:15	20.8	16.9	-
12:16	17.0	17.3	12:16	19.5	17.1	-
12:17	16.0	17.2	12:17	22.0	17.4	-
12:18	15.3	16.9	12:18	17.3	17.5	-
12:19	18.3	16.8	12:19	17.0	17.5	-
12:20	19.3	16.9	12:20	16.8	17.5	-
12:21	15.8	16.9	12:21	15.0	17.5	-
12:22	16.8	17.0	12:22	18.0	17.5	-
12:23	15.3	16.8	12:23	19.3	17.7	-
12:24	22.8	17.3	12:24	18.8	18.0	-
12:25	23.5	17.8	12:25	23.5	18.5	-
12:26	20.8	17.8	12:26	22.5	18.8	-
12:27	19.0	17.9	12:27	16.8	18.8	-
12:28	16.3	17.9	12:28	15.8	18.7	-
12:29	15.0	17.9	12:29	15.0	18.5	-
12:30	17.8	17.9	12:30	15.0	18.1	-
12:31	15.3	17.8	12:31	15.0	17.8	-
12:32	15.5	17.8	12:32	15.3	17.4	-
12:33	15.0	17.7	12:33	15.3	17.3	-
12:34	15.0	17.5	12:34	15.0	17.1	-
12:35	15.0	17.2	12:35	15.0	17.0	-
12:36	15.0	17.2	12:36	16.0	17.1	-
12:37	15.0	17.1	12:37	15.0	16.9	-

Number of Instances Where Downwind Particulates Exceeds Upwind Particulate + 150 =

Number of Comparable Data Points = 248

Start Time:

8:43

End Time:

13:05

	РΔ	RTI	CU	LATE	DAT	ГΔ
--	----	-----	----	------	-----	----

	Upwi	nd		Downw		
Time	Concentration (ug/m³)	15-Min Avg Concentration (ug/m³)	Time	Concentration (ug/m³)	15-Min Avg Concentration (ug/m³)	Exceeds Particulate Alarm Limit
12:38	15.0	17.1	12:38	15.0	16.6	-
12:39	15.0	16.5	12:39	15.0	16.3	-
12:40	15.0	16.0	12:40	17.3	15.9	-
12:41	15.0	15.6	12:41	15.5	15.5	-
12:42	15.0	15.3	12:42	19.0	15.6	-
12:43	15.0	15.2	12:43	16.3	15.6	-
12:44	15.0	15.2	12:44	15.0	15.6	-
12:45	16.5	15.2	12:45	18.3	15.9	-
12:46	20.3	15.5	12:46	17.5	16.0	-
12:47	18.3	15.7	12:47	17.0	16.1	-
12:48	16.3	15.8	12:48	17.0	16.3	-
12:49	16.0	15.8	12:49	16.5	16.4	-
12:50	15.5	15.9	12:50	15.0	16.4	-
12:51	15.5	15.9	12:51	15.0	16.3	-
12:52	15.0	15.9	12:52	15.0	16.3	-
12:53	15.0	15.9	12:53	15.3	16.3	-
12:54	15.0	15.9	12:54	15.8	16.4	-
12:55	15.0	15.9	12:55	15.5	16.2	-
12:56	15.8	15.9	12:56	15.5	16.2	-
12:57	15.8	16.0	12:57	15.3	16.0	-
12:58	15.5	16.0	12:58	15.0	15.9	-
12:59	15.5	16.1	12:59	15.3	15.9	-
13:00	18.3	16.2	13:00	18.8	16.0	-
13:01	18.3	16.0	13:01	20.5	16.2	-
13:02	15.8	15.9	13:02	16.8	16.1	-
13:03	15.0	15.8	13:03	14.3	16.0	-
13:04	15.0	15.7	13:04	14.0	15.8	-
13:05	15.0	15.7	13:05	14.0	15.7	-

Number of Instances Where Downwind VOCs Exceeds Upwind VOCs + 5 =

Number of Comparable Data Points =

 Start Time:
 8:43

 End Time:
 13:05

248

PID DATA

Upwind			Downw	rind		
Time	Concentration (ppm)	15-Min Avg Concentration (ppm)	Time	Concentration (ppm)	15-Min Avg Concentration (ppm)	Exceeds VOC Alarm Limit
8:43	0.6	-	8:43	0.6	-	-
8:44	0.3	-	8:44	0.6	-	-
8:45	0.3	-	8:45	0.6	-	-
8:46	0.2	-	8:46	0.6	-	-
8:47	0.1	-	8:47	0.6	-	-
8:48	0.3	-	8:48	0.6	-	-
8:49	0.2	-	8:49	0.6	-	-
8:50	0.1	-	8:50	0.6	-	-
8:51	0.1	-	8:51	0.5	-	-
8:52	0.1	-	8:52	0.5	-	-
8:53	0.0	-	8:53	0.5	-	-
8:54	0.0	-	8:54	0.5	-	-
8:55	0.0	-	8:55	0.5	-	-
8:56	0.0	-	8:56	0.5	-	-
8:57	0.0	-	8:57	0.5	-	-
8:58	0.1	0.1	8:58	0.5	0.6	-
8:59	0.0	0.1	8:59	0.5	0.5	-
9:00	0.0	0.1	9:00	0.5	0.5	-
9:01	0.0	0.1	9:01	0.5	0.5	-
9:02	0.0	0.1	9:02	0.5	0.5	-
9:03	0.0	0.0	9:03	0.5	0.5	-
9:04	0.0	0.0	9:04	0.5	0.5	-
9:05	0.5	0.1	9:05	0.5	0.5	-
9:06	0.0	0.1	9:06	0.5	0.5	-
9:07	0.0	0.0	9:07	0.6	0.5	-
9:08	0.0	0.0	9:08	0.5	0.5	-
9:09	0.0	0.0	9:09	0.5	0.5	-
9:10	0.0	0.0	9:10	0.5	0.5	-
9:11 9:12	0.0	0.1	9:11 9:12	0.5	0.5	-
9:12	0.0	0.1	9:12	0.5	0.5	-
9:13		0.1	_		0.5	-
9:14	0.0	0.1	9:14 9:15	0.5	0.5 0.5	-
9:15	0.0	0.1	9:15	0.6	0.5	-
9:17	0.1	0.1	9:17	0.5	0.5	-
9:17	0.1	0.1	9:17	0.6	0.5	-
9:19	0.1	0.1	9:19	0.6	0.5	-
9:20	0.1	0.0	9:20	0.6	0.5	-
9:21	0.1	0.0	9:21	0.6	0.5	-
9:22	0.1	0.1	9:22	0.6	0.5	-
9:23	0.1	0.1	9:23	0.6	0.6	_
9:24	0.1	0.1	9:24	0.6	0.6	-
9:25	0.1	0.1	9:25	0.6	0.6	_
9:26	0.1	0.1	9:26	0.6	0.6	-
9:27	0.1	0.1	9:27	0.6	0.6	-
9:28	0.1	0.1	9:28	0.6	0.6	_
9:29	0.1	0.1	9:29	0.7	0.6	-
3.23	0.1	J. 1	5.25	0.7	0.0	1

Number of Instances Where Downwind VOCs Exceeds Upwind VOCs + 5 =

Number of Comparable Data Points =

 Start Time:
 8:43

 End Time:
 13:05

248

PID DATA

Upwind			Downw	rind		
Time	Concentration (ppm)	15-Min Avg Concentration (ppm)	Time	Concentration (ppm)	15-Min Avg Concentration (ppm)	Exceeds VOC Alarm Limit
9:30	0.1	0.1	9:30	0.7	0.6	-
9:31	0.1	0.1	9:31	0.7	0.6	-
9:32	0.1	0.1	9:32	0.7	0.6	-
9:33	0.1	0.1	9:33	0.7	0.6	-
9:34	0.1	0.1	9:34	0.7	0.6	-
9:35	0.1	0.1	9:35	0.7	0.6	-
9:36	0.1	0.1	9:36	0.7	0.7	-
9:37	0.1	0.1	9:37	0.7	0.7	-
9:38	0.2	0.1	9:38	0.7	0.7	-
9:39	0.2	0.1	9:39	0.7	0.7	-
9:40	0.2	0.1	9:40	0.7	0.7	-
9:41	0.2	0.1	9:41	0.8	0.7	-
9:42	0.2	0.1	9:42	0.8	0.7	-
9:43	0.2	0.1	9:43	0.8	0.7	-
9:44	0.2	0.1	9:44	0.8	0.7	-
9:45	0.2	0.2	9:45	0.8	0.7	-
9:46	0.2	0.2	9:46	0.8	0.7	-
9:47	0.2	0.2	9:47	0.8	0.7	-
9:48	0.2	0.2	9:48	0.8	0.8	-
9:49	0.2	0.2	9:49	0.8	0.8	-
9:50	0.2	0.2	9:50	8.0	0.8	-
9:51	0.2	0.2	9:51	0.8	0.8	-
9:52	0.2	0.2	9:52	0.8	0.8	-
9:53	0.2	0.2	9:53	0.8	0.8	-
9:54	0.2	0.2	9:54	0.8	0.8	-
9:55	0.2	0.2	9:55	0.8	0.8	-
9:56	0.2	0.2	9:56	0.8	0.8	-
9:57	0.2	0.2	9:57	0.8	0.8	-
9:58	0.2	0.2	9:58	0.8	0.8	-
9:59	0.2	0.2	9:59	0.8	0.8	-
10:00	0.3	0.2	10:00	0.8	0.8	-
10:01	0.2	0.2	10:01	0.8	0.8	-
10:02	0.2	0.2	10:02	0.8	0.8	-
10:03	0.3	0.2	10:03	0.8	0.8	-
10:04	0.3	0.2	10:04	0.8	0.8	-
10:05	0.3	0.2	10:05	0.8	0.8	-
10:06	0.3	0.2	10:06	0.8	0.8	-
10:07	0.3	0.2	10:07	0.8	0.8	-
10:08	0.3	0.2	10:08	0.8	0.8	-
10:09	0.3	0.2	10:09	0.8	0.8	-
10:10	0.3	0.3	10:10	0.8	0.8	-
10:11	0.3	0.3	10:11	0.8	0.8	-
10:12	0.3	0.3	10:12	0.8	0.8	-
10:13	0.3	0.3	10:13	0.8	0.8	-
10:14	0.3	0.3	10:14	0.8	0.8	-
10:15	0.3	0.3	10:15	0.8	0.8	-
10:16	0.3	0.3	10:16	0.8	0.8	-

Number of Instances Where Downwind VOCs Exceeds Upwind VOCs + 5 =

Number of Comparable Data Points =

Start Time: 8:43

248

End Time: 13:05

PID	DA	١Т	Α
-----	----	----	---

	Upwir	nd		Downw		
Time	Concentration (ppm)	15-Min Avg Concentration (ppm)	Time	Concentration (ppm)	15-Min Avg Concentration (ppm)	Exceeds VOC Alarm Limit
10:17	0.3	0.3	10:17	0.8	0.8	-
10:18	0.3	0.3	10:18	0.8	0.8	-
10:19	0.3	0.3	10:19	0.7	0.8	-
10:20	0.3	0.3	10:20	0.7	0.8	-
10:21	0.3	0.3	10:21	0.7	0.8	-
10:22	0.3	0.3	10:22	0.7	0.8	-
10:23	0.3	0.3	10:23	0.7	0.8	-
10:24	0.3	0.3	10:24	0.7	0.8	-
10:25	0.3	0.3	10:25	0.7	0.8	-
10:26	0.3	0.3	10:26	0.7	0.7	-
10:27	0.3	0.3	10:27	0.7	0.7	-
10:28	0.3	0.3	10:28	0.7	0.7	-
10:29	0.3	0.3	10:29	0.7	0.7	-
10:30	0.3	0.3	10:30	0.7	0.7	-
10:31	0.3	0.3	10:31	0.7	0.7	-
10:32	0.3	0.3	10:32	0.7	0.7	-
10:33	0.3	0.3	10:33	0.7	0.7	-
10:34	0.3	0.3	10:34	0.7	0.7	-
10:35	0.3	0.3	10:35	0.7	0.7	-
10:36	0.3	0.3	10:36	0.7	0.7	-
10:37	0.3	0.3	10:37	0.7	0.7	-
10:38	0.3	0.3	10:38	0.6	0.7	-
10:39	0.3	0.3	10:39	0.6	0.7	-
10:40	0.3	0.3	10:40	0.6	0.7	-
10:41	0.3	0.3	10:41	0.6	0.7	-
10:42	0.3	0.3	10:42	0.6	0.7	-
10:43	0.3	0.3	10:43	0.6	0.7	-
10:44	0.3	0.3	10:44	0.6	0.7	-
10:45	0.3	0.3	10:45	0.6	0.6	-
10:46	0.3	0.3	10:46	0.6	0.6	-
10:47	0.3	0.3	10:47	0.6	0.6	-
10:48	0.3	0.3	10:48	0.6	0.6	-
10:49	0.3	0.3	10:49	0.6	0.6	-
10:50	0.3	0.3	10:50	0.6	0.6	-
10:51	0.3	0.3	10:51	0.6	0.6	-
10:52	0.3	0.3	10:52	0.6	0.6	-
10:53	0.3	0.3	10:53	0.6	0.6	-
10:54	0.3	0.3	10:54	0.6	0.6	-
10:55	0.3	0.3	10:55	0.6	0.6	-
10:56	0.3	0.3	10:56	0.6	0.6	-
10:57	0.3	0.3	10:57	0.6	0.6	-
10:58	0.3	0.3	10:58	0.5	0.6	-
10:59	0.3	0.3	10:59	0.6	0.6	-
11:00	0.3	0.3	11:00	0.6	0.6	-
11:01	0.3	0.3	11:01	0.5	0.6	-
11:02	0.3	0.3	11:02	0.6	0.6	-
11:03	0.3	0.3	11:03	0.5	0.6	-

Number of Instances Where Downwind VOCs Exceeds Upwind VOCs + 5 =

Number of Comparable Data Points =

Start Time: 8:43 13:05

248

End Time:

D	ID	D	Δ.	ГΑ
	ıv	v	н.	IH

Upwind		T	Downw	vind		
Time	Concentration (ppm)	15-Min Avg Concentration (ppm)	Time	Concentration (ppm)	15-Min Avg Concentration (ppm)	Exceeds VOC Alarm Limit
11:04	0.3	0.3	11:04	0.5	0.6	-
11:05	0.3	0.3	11:05	0.5	0.6	-
11:06	0.3	0.3	11:06	0.5	0.6	-
11:07	0.3	0.3	11:07	0.5	0.5	-
11:08	0.3	0.3	11:08	0.5	0.5	-
11:09	0.3	0.3	11:09	0.5	0.5	-
11:10	0.3	0.3	11:10	0.5	0.5	-
11:11	0.3	0.3	11:11	0.5	0.5	-
11:12	0.3	0.3	11:12	0.5	0.5	-
11:13	0.3	0.3	11:13	0.5	0.5	-
11:14	0.3	0.3	11:14	0.5	0.5	-
11:15	0.3	0.3	11:15	0.5	0.5	-
11:16	0.3	0.3	11:16	0.5	0.5	-
11:17	0.3	0.3	11:17	0.5	0.5	-
11:18	0.3	0.3	11:18	0.5	0.5	-
11:19	0.3	0.3	11:19	0.5	0.5	-
11:20	0.3	0.3	11:20	0.5	0.5	-
11:21	0.3	0.3	11:21	0.5	0.5	-
11:22	0.3	0.3	11:22	0.5	0.5	-
11:23	0.3	0.3	11:23	0.5	0.5	-
11:24	0.3	0.3	11:24	0.5	0.5	-
11:25	0.4	0.3	11:25	0.5	0.5	-
11:26	0.4	0.3	11:26	0.5	0.5	-
11:27	0.4	0.3	11:27	0.5	0.5	-
11:28	0.4	0.3	11:28	0.5	0.5	-
11:29 11:30	0.4	0.3	11:29 11:30	0.5 0.5	0.5 0.5	-
11:31	0.4	0.3	11:31	0.5	0.5	-
11:32	0.3	0.3	11:32	0.5	0.5	-
11:32	0.3	0.3	11:32	0.5	0.5	-
11:34	0.3	0.3	11:34	0.5	0.5	-
11:35	0.3	0.3	11:35	0.5	0.5	-
11:36	0.3	0.3	11:36	0.5	0.5	-
11:37	0.3	0.3	11:37	0.5	0.5	<u>-</u>
11:38	0.3	0.3	11:38	0.5	0.5	-
11:39	0.3	0.3	11:39	0.5	0.5	-
11:40	0.3	0.3	11:40	0.5	0.5	-
11:41	0.3	0.3	11:41	0.5	0.5	-
11:42	0.3	0.3	11:42	0.5	0.5	-
11:43	0.3	0.3	11:43	0.5	0.5	-
11:44	0.3	0.3	11:44	0.5	0.5	-
11:45	0.3	0.3	11:45	0.5	0.5	-
11:46	0.3	0.3	11:46	0.5	0.5	-
11:47	0.3	0.3	11:47	0.5	0.5	-
11:48	0.3	0.3	11:48	0.5	0.5	-
11:49	0.3	0.3	11:49	0.5	0.5	-
11:50	0.3	0.3	11:50	0.5	0.5	-
	0.0	5.5	55		3.5	1

Number of Instances Where Downwind VOCs Exceeds Upwind VOCs + 5 =

Number of Comparable Data Points =

Start Time: 8:43

248

End Time: 13:05

	PI	D	D	A.	T.	Δ
--	----	---	---	----	----	---

	Unwir	nd .	T PID	DATA Downw		
Upwind Concentration 15-Min Avg				Concentration 15-Min Avg		Exceeds VOC
Time	(ppm)	Concentration (ppm)	Time	(ppm)	Concentration (ppm)	Alarm Limit
11:51	0.3	0.3	11:51	0.5	0.5	-
11:52	0.3	0.3	11:52	0.5	0.5	-
11:53	0.3	0.3	11:53	0.5	0.5	-
11:54	0.3	0.3	11:54	0.4	0.5	-
11:55	0.3	0.3	11:55	0.4	0.5	-
11:56	0.3	0.3	11:56	0.4	0.5	-
11:57	0.3	0.3	11:57	0.4	0.5	-
11:58	0.3	0.3	11:58	0.4	0.5	-
11:59	0.3	0.3	11:59	0.4	0.5	-
12:00	0.3	0.3	12:00	0.4	0.5	-
12:01	0.3	0.3	12:01	0.4	0.5	-
12:02	0.3	0.3	12:02	0.4	0.5	-
12:03	0.3	0.3	12:03	0.4	0.4	-
12:04	0.3	0.3	12:04	0.4	0.4	-
12:05	0.3	0.3	12:05	0.4	0.4	-
12:06	0.3	0.3	12:06	0.4	0.4	-
12:07	0.3	0.3	12:07	0.4	0.4	-
12:08	0.3	0.3	12:08	0.4	0.4	-
12:09	0.3	0.3	12:09	0.4	0.4	-
12:10	0.3	0.3	12:10	0.3	0.4	-
12:11	0.3	0.3	12:11	0.3	0.4	-
12:12	0.2	0.3	12:12	0.3	0.4	-
12:13	0.2	0.3	12:13	0.3	0.4	-
12:14	0.2	0.3	12:14	0.3	0.4	-
12:15	0.3	0.3	12:15	0.3	0.4	-
12:16	0.2	0.3	12:16	0.3	0.4	-
12:17	0.2	0.3	12:17	0.3	0.4	-
12:18	0.2	0.3	12:18	0.3	0.3	-
12:19	0.2	0.3	12:19	0.3	0.3	-
12:20	0.2	0.3	12:20	0.3	0.3	-
12:21	0.2	0.2	12:21	0.3	0.3	-
12:22	0.2	0.2	12:22	0.3	0.3	-
12:23	0.2	0.2	12:23	0.3	0.3	-
12:24	0.2	0.2	12:24	0.3	0.3	-
12:25	0.2	0.2	12:25	0.2	0.3	-
12:26	0.2	0.2	12:26	0.2	0.3	-
12:27	0.2	0.2	12:27	0.2	0.3	-
12:28	0.2	0.2	12:28	0.2	0.3	-
12:29	0.2	0.2	12:29	0.2	0.3	-
12:30	0.2	0.2	12:30	0.2	0.3	-
12:31	0.2	0.2	12:31	0.2	0.3	-
12:32	0.2	0.2	12:32	0.2	0.2	-
12:33	0.2	0.2	12:33	0.2	0.2	-
12:34	0.2	0.2	12:34	0.2	0.2	-
12:35	0.2	0.2	12:35	0.2	0.2	-
12:36	0.2	0.2	12:36	0.2	0.2	-
12:37	0.2	0.2	12:37	0.2	0.2	-

Number of Instances Where Downwind VOCs Exceeds Upwind VOCs + 5 =

Number of Comparable Data Points =

Start Time: 8:43

248

End Time: 13:05

P	ID	D	Δ٦	ΓΔ

Upwind			Downw			
Time	Concentration (ppm)	15-Min Avg Concentration (ppm)	Time	Concentration (ppm)	15-Min Avg Concentration (ppm)	Exceeds VOC Alarm Limit
12:38	0.2	0.2	12:38	0.2	0.2	-
12:39	0.2	0.2	12:39	0.2	0.2	-
12:40	0.2	0.2	12:40	0.2	0.2	-
12:41	0.2	0.2	12:41	0.2	0.2	-
12:42	0.2	0.2	12:42	0.2	0.2	-
12:43	0.2	0.2	12:43	0.2	0.2	-
12:44	0.2	0.2	12:44	0.2	0.2	-
12:45	0.2	0.2	12:45	0.2	0.2	-
12:46	0.2	0.2	12:46	0.2	0.2	-
12:47	0.2	0.2	12:47	0.2	0.2	-
12:48	0.2	0.2	12:48	0.2	0.2	-
12:49	0.3	0.2	12:49	0.2	0.2	-
12:50	0.2	0.2	12:50	0.2	0.2	-
12:51	0.2	0.2	12:51	0.2	0.2	-
12:52	0.3	0.2	12:52	0.2	0.2	-
12:53	0.2	0.2	12:53	0.2	0.2	-
12:54	0.2	0.2	12:54	0.2	0.2	-
12:55	0.2	0.2	12:55	0.2	0.2	-
12:56	0.2	0.2	12:56	0.2	0.2	-
12:57	0.2	0.2	12:57	0.2	0.2	-
12:58	0.2	0.2	12:58	0.2	0.2	-
12:59	0.2	0.2	12:59	0.2	0.2	-
13:00	0.2	0.2	13:00	0.2	0.2	-
13:01	0.2	0.2	13:01	0.2	0.2	-
13:02	0.2	0.2	13:02	0.2	0.2	-
13:03	0.2	0.2	13:03	0.2	0.2	-
13:04	0.2	0.2	13:04	0.2	0.2	-
13:05	0.2	0.2	13:05	0.2	0.2	-