

February 5, 2010

Project No.: 083-87071-01 VIA EMAIL AND FEDEX

Mr. Michael J. Kominek IBM 8976 Wellington Road Manassas, Virginia 20109

RE: SUPPLEMENTAL TRIANGLE PLUME AREA INVESTIGATION FORMER IBM KINGSTON FACILITY KINGSTON, ULSTER COUNTY, NEW YORK

Dear Mr. Kominek:

Golder Associates Inc. (Golder) has prepared this letter report on behalf of International Business Machines Corporation (IBM), to present the findings of the additional subsurface investigation performed at a portion of the former IBM Kingston Facility (Site), located at 300 Enterprise Drive, Kingston, Ulster County, New York (see Figure 1), referred to as the "Triangle Plume Area" (TPA). IBM, agreed to perform additional subsurface investigation activities in the vicinity of the TPA at the request of the New York State Department of Environmental Conservation (NYSDEC) during a meeting on October 14, 2009.

1.0 INTRODUCTION AND SITE BACKGROUND

The Site is located north of the City of Kingston in the Town of Ulster, Ulster County, New York and is bounded by John M. Clarke Drive and Route 9W to the east, Old Neighborhood Road and Route 209 to the north, Esopus Creek to the west and Boices Lane to the south. The portion located west of Enterprise Drive includes the Bank of America (BOA) facility (former IBM Facility Buildings B201, B202 and B203); a large parking area south and west of the BOA facility (Parcel 1); and generally undeveloped land further to the southwest (Parcel 2) and north (Parcel 3) of the BOA facility. The TPA is located south of the BOA facility on Parcel 1 (see Figure 2).

The Site is listed as a New York State Inactive Hazardous Waste Disposal Site (6 NYCRR Part 375) and a Resource Conservation and Recovery Act (RCRA) Hazardous Waste Site and is currently managed in compliance with the October 4, 1996 Hazardous Waste Management Permit #3-5154-00067/0090 (6 NYCRR Part 373) referenced herein as the RCRA Permit. IBM completed extensive RCRA Facility Investigations (RFIs) beginning in the 1990s through 2002 to delineate the occurrence and extent of volatile organic compounds (VOCs) in groundwater beneath the Site. Corrective Measures implemented by IBM include the operation and maintenance of a perimeter control system that intercepts the groundwater plume. IBM currently performs groundwater quality monitoring to evaluate the effectiveness of the Corrective Measures and submits semi-annual monitoring reports to NYSDEC.

The current Site owner, TechCity Properties Inc. (TechCity) is in the process of redeveloping the property. As part of its redevelopment plans, TechCity intends to demolish either complete or select portions of buildings and historic infrastructure and modify the RCRA Permit by removing select parcels of land, including Parcel 1. In accordance with the RCRA Permit requirements, IBM retained Golder to prepare RFI Work Plans to perform subsurface investigations at four previously inaccessible SWMUs, including SWMU AB, SWMU G, SWMU M, and SWMU V.

In addition to the required RFIs at inaccessible SWMUs, IBM elected to perform investigative work to better define the nature and extent of groundwater containing VOCs in and upgradient of the TPA. The Work Plans for each of these five areas were approved by NYSDEC on April 28, 2009. The inaccessible

SWMU investigations outlined in each Work Plan are scheduled to be performed once each SWMU area becomes accessible during the course of the Site redevelopment.

Due to delays associated with redevelopment activities, only the Triangle Plume Area Investigation has been completed to date. The results of this work were described in the *Triangle Plume Area Investigation Report* (TPAIR), submitted to NYSDEC by IBM on September 16, 2009. The TPAIR concluded that the downgradient extent of VOC impacts in the surficial sand is limited by the area where the surface of the varved clay unit rises rapidly and that the combined effect of the varved clay and the groundwater capture provided by the 42-inch stormwater sewer line, effectively controls the downgradient migration of dissolved-phase VOCs in the TPA.

Based on a review historic site boring logs; TechCity's RCRA Permit modification application; TechCity's *Draft Parcels 1 and 4A Investigation Report (ERM, 2009)*; historic TechCity reports; and preliminary review of the TPAIR, NYSDEC identified the potential for migration of groundwater containing VOCs from the TPA to the area north and west of the BOA facility. This area was not addressed during TechCity's most recent investigation and was not part of the scope of work outlined in IBM's Triangle Plume Area Investigation Work Plan.

During a meeting with NYSDEC on October 14, 2009, IBM agreed to perform additional investigation work to evaluate subsurface conditions north and west of the TPA on Parcel 1. A summary of the field activities and procedures and the results of the supplemental TPA investigation are presented in the following sections.

2.0 INVESTIGATION ACTIVITIES AND PROCEDURES

On behalf of IBM, Golder performed the following additional investigation work during November 2009 to further evaluate subsurface conditions in the vicinity of the TPA as shown on Figure 3.

- Advancement of seven Membrane Interface Probes (MIP) northwest of the TPA.
- Advancement of thirteen direct-push soil borings for geologic logging at locations positioned adjacent to MIP locations to confirm the MIP results or at selected locations to provide additional lithologic characterization data.
- Installation of one temporary monitoring well.
- Installation of two new sentinel monitoring wells downgradient of existing monitoring well MW-174S as recommended in the TPAIR.
- Collection of groundwater samples for VOC analysis from the temporary monitoring well and new sentinel monitoring wells.

Golder performed these tasks as part of a larger field investigation initiated on October 26, 2009¹. Environmental Probing Inc. (EPI) was retained to provide direct-push services and Peak Investigations, LLC (Peak) was retained to provide MIP services. Surveying services were provided by Brinnier and Larios, P.C., a New York licensed surveyor. Lancaster Laboratories, Inc. (Lancaster), a New York State Department of Health (NYSDOH) certified laboratory, performed analytical services.

2.1 Membrane Interface Probe and Soil Boring Investigation

A MIP was used to further refine the understanding of the lithology and distribution of VOCs in the vicinity of the TPA. The MIP is a direct-sensing tool that is advanced into the subsurface using direct-push

¹ The work described herein was completed during a three-week field program that also included subsurface investigations in accessible portions of SWMU G and SWMU M and additional evaluation of the perimeter control system in the southeast portion of the Site. IBM will present the results of this work in future investigation reports upon obtaining access and completing the planned investigations within each of the currently inaccessible SWMU areas as per the previously approved RFI Work Plans.

equipment (e.g., GeoProbe[®]). Golder used information from the soil borings and groundwater analytical data collected from the temporary monitoring well to corroborate MIP results.

The MIP used during this investigation includes an electron capture detector (ECD) element and an electric conductivity (EC) element. The ECD detects the presence of total chlorinated VOCs in the vapor, sorbed, and dissolved phases. The EC measures soil conductivity with depth as the probe is driven into the ground and is used to identify changes in lithology and/or other subsurface conditions, including soil moisture, that change subsurface conductivity.

EPI advanced a total of seven MIPs and thirteen soil borings at the locations shown on Figure 3. Before positioning the direct-push equipment for subsurface advancement, EPI hand augured each location to approximately 5-feet below ground surface (ft bgs) as an additional precaution to reduce the potential for drilling into subsurface obstructions or features (i.e., utilities).

EPI used a direct-push rig and a dual-tube continuous sampler for the collection of soil cores. Golder logged the cores for lithology and screened the soil using a photo-ionization detector (PID). Attachment A contains soil boring logs for each location.

Peak conducted the MIP investigation in general accordance with American Society for Testing and Materials (ASTM) *Standard Practice for Direct Push Technology for Volatile Contaminant Logging with the Membrane Interface Probe* (MIP)–D7532-07 (ASTM, 2007), Standard Operating Procedure (SOP-9), provided in the Quality Assurance Project Plan (QAPP)², and as described in the TPAIR. MIP field forms and data plots are included in Attachment B.

The boreholes typically collapsed upon removal of the probe to a depth of approximately 6 to 8-ft bgs. EPI grouted portions of the boreholes that did not collapse with cement-bentonite slurry in accordance with QAPP SOP-10. Borings advanced through asphalt parking lot areas were patched with asphalt upon completion.

2.2 Monitoring Well Installation and Groundwater Sampling

Temporary monitoring well BOA-TW-01 was installed at the location shown on Figure 3 in accordance with QAPP SOP-2. Golder selected the screened interval and depth based on the results of the MIP and soil borings advanced in the immediate vicinity of this location. Temporary monitoring well construction information is included in Attachment A. The temporary well was removed following sample collection and the borehole was abandoned in accordance with QAPP SOP-10.

EPI installed two permanent groundwater sentinel monitoring wells (TSW-01 and TSW-02) consistent with NYSDEC protocols at the locations shown on Figure 3. The monitoring wells were constructed of 2-inch diameter, Schedule 40 PVC riser pipe and five feet of 2-inch diameter, Schedule 40 PVC 0.010-inch slot sized well screen. The wells were installed inside hollow stem augers to approximately 15-ft bgs to intersect the interface between the surficial sand and the varved clay units observed at the time of drilling³.

Following installation of the riser and screen, EPI installed a #1-sized silica sand pack was installed in the borehole annulus from the bottom of the borehole (approximately one foot below the screen) to approximately two feet above the top of the screen. The remainder of the borehole annulus was backfilled with cement-bentonite grout and capped with concrete to provide a surface seal. A flush-mount manhole cover and concrete pad were installed to complete the well at the surface. The wells were secured with locking caps. Monitoring well installation logs are included in Attachment A.

³ Per NYSDEC's request, the screened interval for TSW-01 was targeted to intersect the interface between the surficial sand and the silty sand and clay transition units. However the results from borings TA SB-01A, TA-SB-01B, and TA-SB-01C confirmed previous interpretations that the silty sand and clay unit pinches out and is absent immediately downgradient (i.e., within five feet) of MW-174S.

² The QAPP and associated SOPs are included as part of the *RCRA Facility Investigation Management Plans*.

Well development was performed via continuous cycles of pumping and surging using a submersible pump and bailer until water quality indicator parameters stabilized. Well development field forms are included in Attachment C.

IBM managed investigation-derived waste (IDW) in accordance with QAPP SOP-8.

Golder collected groundwater samples from BOA-TW-01, TSW-01, and TSW-02 in accordance with the general procedure described in QAPP SOP-2 and submitted the samples to Lancaster under chain-of-custody procedures for VOC analysis. Groundwater sampling information is included in Attachment C. Groundwater sampling analytical results are presented in Section 3.2.

3.0 INVESTIGATION RESULTS

The following sections present the refined interpretation of the TPA geologic and hydrogeologic conditions and additional delineation of the nature and extent of VOC-impacted groundwater north and west of the TPA based on the information obtained during this supplemental investigation.

3.1 Triangle Plume Area Geology and Hydrogeology

Information regarding regional and Site-wide near-surface geologic conditions is contained in previous reports prepared by Groundwater Sciences Corporation and summarized in the TPAIR.

Information obtained during this investigation and from work completed by others (i.e., TechCity's *Draft Parcels 1 and 4A Investigation Report (ERM, 2009)* and historic TechCity reports) on the west side of Enterprise Drive was used to update the interpretation of the geologic and hydrogeologic conditions in the TPA. The new information resulted in minor modifications to the interpretation presented in the TPAIR. The characteristics of the near-surface lithologic units encountered during this investigation are in general agreement to that described in the TPAIR and are summarized as follows:

- Surficial SAND Unit: Consists of a light brown, very fine to medium-grained sand containing variable amounts of silt. This unit was typically saturated below a depth of approximately 7.5 to 8.5-ft bgs during the November 2009 investigation, which is about one foot greater than the depth of the water table surface encountered during the TPA Investigation conducted in April 2009. In certain borings (i.e., BOA-SB-03 and BOA-SB-05), the surficial sand unit was observed to contain more silt and fine-grained sand and appeared "soupy" compared to observations from other borings and resulted in limited sample recovery.
- SILTY-SAND and CLAY Transition Unit: Consists of variable amounts of brown and gray silt, sand, and clay. Typical appearance in a soil core is a silty-sand matrix containing thin lenses of silt and sandy clay. Golder definitively identified this transition zone between the surficial sand and varved clay units in only one boring advanced during this investigation: TSW-SB-01C, located approximately four feet southwest of monitoring well MW-174S.
- Varved CLAY Unit: Consists of red-brown and gray, plastic, cohesive, wet clay. Typical appearance in a soil core is clay with laminae of fine-grained sand and silt.

Figure 4 illustrates the updated interpreted bottom of surficial sand contours (i.e., top of varved clay unit) in the vicinity of the TPA. Geologic cross-sections are presented in Figure 5. Of note is the following:

During advancement of the TSW-SB-02 series borings southwest of the TPA (see cross-section C-C' on Figure 5) the saturated surficial sand unit was encountered below the first substantial occurrence of the varved clay unit, indicating fingering of these two units in this area.

- During advancement of boring BOA-SB-03, located upgradient of the perimeter control system (see cross-section B-B' on Figure 5), the silty sand and clay transition unit was encountered below the first substantial occurrence of the varved clay unit similar to observations made during advancement of borings on the east side of Enterprise Drive (i.e., TA-SB-05, TA-SB-06, and TA-SB -12) during April 2009 as reported in the TPAIR.
- The elevation of the base of the surficial sand unit and the top of varved clay unit rises to the west of the Site perimeter control system and monitoring wells MW-173S and MW-174S in the TPA where it forms a ridge at an elevation between 164 and 168-feet above mean sea level (ft msl). Based on the new information obtained during this investigation and a review of historic boring log information reported by others, the peak of the ridge occurs west of the BOA facility along a north-south trending line between approximately BOA-SB-01 and MW-7 and extends southeast in the vicinity of monitoring well MW-609S (see Figure 4 and cross-section B-B' on Figure 5).
- The saturated thickness of the surficial sand unit increases on the west side of the varved clay ridge. Based on historic boring logs, the saturated thickness of the surficial sand unit is greatest in the vicinity of monitoring well MW-13 and forms a north-south trending depression that extends from approximately MW-13, through BOA-SB-05/BOA-TW-01 (Golder observed approximately five feet of saturated surficial sand in boring BOA-SB-05) and north toward the location of monitoring well MW-174. This area of increased saturated surficial sand thickness is bounded by the aforementioned varved clay ridge to the east, limited saturated thickness of the surficial sand to the west in BOA-SB-06 (Golder observed approximately one foot of saturated surficial sand in boring BOA-SB-06) and the absence of saturated surficial sand reported in historic boring logs for monitoring wells MW-14 and MW-15 (see cross-section B-B' on Figure 5).
- The surficial sand unit extends to a depth of approximately 17-ft bgs in boring BOA-SB-02. As shown on Figure 5 (cross-section A-A'), the surficial sand unit in this area forms an apparent abrupt contact with the varved clay unit observed in borings BOA-SB-01 (located approximately ten feet southwest of boring BOA-SB-02) and boring BOA-SB-04 (located less than fifty feet west of boring BOA-SB-02).
- The 42-inch storm sewer line appears to be capturing groundwater from the surficial sand unit in the vicinity of boring BOA-SB-02 based on the relative depth of saturation (approximately 13.5 ft bgs) observed in boring BOA-SB-02 during drilling compared to boring BOA-SB-01 (saturated at approximately 7.5 ft bgs) and the measured depth to the bottom of the storm sewer line (approximately 13.6 ft bgs at a nearby catch basin).

3.2 MIP ECD and Analytical Sampling Results

The MIP ECD data and groundwater sample analytical results provided additional information on the distribution of VOCs in the vicinity of the TPA. Groundwater sample analytical results were compared to 6-NYCRR Part 703 New York State Groundwater Quality Standards (NYSGWQS).

Golder validated laboratory analytical data following NYSDEC Analytical Services Protocol (ASP) Category B deliverables requirements and the *Draft NYSDEC DER-10 Technical Guidance for Site Investigation and Remediation, Appendix B Guidance for the Development of Data Usability Summary Reports* (December, 2002), to identify data quality issues which could affect the use of the data for decision making purposes. Analytical procedures were performed in accordance with methods summarized in QAPP. Three primary samples were analyzed for VOCs following USEPA SW-846 Method 8260B. The laboratory provided NYSDEC Analytical Services Protocol (ASP) Category B data packages that contained the information needed for validation of the data.

⁴ Golder could not locate monitoring well MW-17 during this investigation.

Data were evaluated for sample preservation and holding times, method, field and trip blanks, surrogate spikes, matrix spike/matrix spike duplicates, and laboratory control samples. Golder deemed the analytical data to be acceptable for their intended use with no exceptions. Laboratory Data Sheets are included as Attachment D.

3.2.1 MIP ECD Results

As described in Section 2.1, EPI advanced a total of seven MIP probes at the locations shown on Figure 3. Golder subtracted out background levels as observed in the upper few feet of each probe location from the actual measured instrument response. Background levels measured during this investigation were typically on the order of 1×10^5 microvolts (μ V). MIP ECD results were at or near background levels (i.e., no greater than 3 x 10^4 μ V above background) at all seven locations. The lack of instrument response above background levels suggests an absence of dissolved-phase VOCs in the surficial sand unit.

3.2.2 Groundwater Sampling Results

As described in Section 2.3, Golder collected groundwater samples from one temporary well (BOA-TW-01) and from each of the two new sentinel monitoring wells (TSW-01 and TSW-02). Groundwater analytical sample results are presented in Table 1 and on Figure 6.

No VOCs were detected above NYSGWQS. VOCs detected at concentrations below NYSGWQS include 1,1,1-trichloroethane (TCA), 1,1-dichloroethane (1,1-DCA), 1,1-dichloroethene (1,1-DCE), 1,2-dichloroethene (1,2-DCE) in TSW-01 and chloroform in TSW-02. No detections of VOCs were reported in the groundwater sample collected at temporary well BOA-TW-01.

4.0 CONCLUSIONS

The additional data collected during this investigation provided refined lateral and vertical definition of the near-surface lithology and supplemental information on the nature and extent of VOC impacts in the vicinity of the TPA. The results of this investigation support the interpretations and conclusions presented in the TPAIR and the interpretation presented previously by IBM. Key findings include the following:

- The information obtained during this investigation confirms the previously interpreted rapid decrease in thickness of the silty-sand and clay transition unit immediately downgradient of MW-174S and the TPA. With the exception of TSW-SB-01C, located within approximately five feet of MW-174S, the silty sand and clay unit was absent in borings advanced during this investigation west of the TPA and was not identified in historic boring logs.
- The varved clay ridge serves as a barrier to groundwater flow between the saturated surficial sand in the TPA and the limited area of saturated surficial sand northwest and west of the TPA.
- The presence of dissolved-phase VOCs was not indicated by the results of MIP ECD probes advanced north and west of the TPA. This was corroborated by the analytical results of a sample collected from temporary monitoring well BOA-TW-01, which indicated no detections of VOCs.
- VOCs were not detected above NYSGWQS in the analytical results from the groundwater samples collected from the two new sentinel monitoring wells (TWA-01 and TWA-02).

In summary, the migration of dissolved-phased VOCs in the surficial sand unit downgradient of the TPA is effectively limited by a combination of the following subsurface features:

- The absence of the silty sand and clay transition unit.
- The decrease in saturated surficial sand thickness.

- The presence of a varved clay ridge.
- The groundwater capture provided by the 42-inch stormwater sewer line.

Golder believes that no additional evaluation of the TPA is warranted at this time. The new sentinel monitoring wells should be sampled on a semi-annual basis as part of IBM's RCRA Permit groundwater monitoring program to monitor and verify the conclusion of the TPA investigation.

Golder appreciates this opportunity to be of continued assistance to IBM on this project. If you have any questions or require additional information, please do not hesitate to contact either of the undersigned at (973)-645-1922.

Sincerely

GOLDER ASSOCIATES INC.

Christopher D. Hemingway, P.G. Senior Hydrogeologist

CDH/AS/ab

authory Sanico

Anthony Savino Senior Consultant

cc: Mitch Meyers, IBM Alistair Macdonald, Golder Associates Dan Wieneke, TechCity Properties Gary Casper, NYSDEC Ed Hinchey, ERM Inc. Doreen Simmons, Hancock & Estabrook

Attachments:

- Figure 1 Site Location Map
 Figure 2 Site Layout
 Figure 3 Membrane Interface Probe, Soil Boring and Monitoring Well Locations
 Figure 4 Interpreted Base of Surficial Sand Contour Map Triangle Plume Area
 Figure 5 Interpreted Geologic Cross Sections A-A', B-B' C-C'
 Figure 6 Groundwater Results Summary Map
 Table 1 Groundwater Sampling Results
 Attachment A Soil Boring and Well Construction Logs
- Attachment B Membrane Interface Probe Information
- Attachment C Groundwater Sampling Information

Attachment D - Laboratory Data Sheets

FIGURES

	PROPERTY/PARCEL BOUNDARY
	RIVER/STREAM
	42-INCH DIAMETER SEWER SYSTEM (SITE PERIMETER CONTROL SYSTEM)
	UNSATURATED SURFICIAL SAND UNIT (SITE PERIMETER CONTROL SYSTEM)
	GROUNDWATER COLLECTION SYSTEM (SITE PERIMETER CONTROL SYSTEM)
	60-INCH DIAMETER SEWER SYSTEM (SITE PERIMETER CONTROL SYSTEM)
SS SS	STORM SEWER LINE
	INTERPRETED PORTION OF UNSATURATED SAND UNIT
B003	BUILDING NUMBER
1	PARCEL NUMBER AND APPROXIMATE ACREAGE
	TRIANGLE PLUME AREA ON PARCEL 1

NOTE

1.) THE INTERPRETED EXTENT OF THE UNSATURATED SURFICIAL SAND IS BASED ON WORK/INFORMATION PRIOR TO THE TRIANGLE PLUME INVESTIGATION.

2.) THE PORTION OF THE SITE EAST OF ENTERPRISE DRIVE IS REFERRED TO AS THE "EAST CAMPUS". THE PORTION OF THE SITE WEST OF ENTERPRISE DRIVE IS REFERRED TO AS THE "WEST CAMPUS".

REFERENCES

1.) BASE MAP FROM DIGITAL CAD FILE SITEMAP.DWG, DRAWING NUMBER 93002-SITEMAP/2 ENTITLED "SITE MAP," DATED MAY 9, 2005, PROVIDED BY GROUNDWATER SCIENCES CORPORATION.

2.) PROPERTY LINES/PARCEL BOUNDARIES DIGITIZED FROM A HARD COPY FIGURE ENTITLED "ENVIRONMENTAL PARCELS," DATED DECEMBER 12, 2006, FIGURE 2, PREPARED BY DIVNEY TUNG SCHWALBE.

3.) STORM SEWER LINE AND INTERPRETED PORTION OF UNSATURATED SURFICIAL SAND UNIT TAKEN FROM DIGITAL FILE 93002-109-T2_GWE2008-12.dxf, ENTITLED "SURFICIAL SAND AQUIFER GROUNDWATER ELEVATION CONTOUR MAP, DECEMBER 2, 2008 (FOURTH QUARTER 2008), PROVIDED BY GROUNDWATER SCIENCES CORPORATION.

Former B058 Area

LEGEND

	PROPERTY / PARCEL BOUNDARY
	42-INCH DIAMETER SEWER SYSTEM (SITE PERIMETER CONTROL SYSTEM)
	UNSATURATED SURFICIAL SAND UNIT (SITE PERIMETER CONTROL SYSTEM)
SS SS	STORM SEWER LINE
	INTERPRETED PORTION OF UNSATURATED SAND UNIT (GSC 2008)
	CATCH BASIN
(13.60)	DEPTH TO BOTTOM OF CATCH BASIN (FT. BGS)
B003	BUILDING NUMBER
+	EXISTING IBM MONITORING WELL
+	EXISTING TECHCITY MONITORING WELL
۲	PREVIOUS SOIL BORING LOCATION (APRIL 2009 INVESTIGATION)
۲	MIP/SOIL BORING LOCATION (NOVEMBER 2009 INVESTIGATION)
*	TEMPORARY MONITORING WELL LOCATION (NOVEMBER 2009)
<	TRIANGLE PLUME AREA SENTINEL WELL (TSW) LOCATION

REFERENCES

1.) BASE MAP FROM DIGITAL CAD FILE SITEMAP.DWG, DRAWING NUMBER 93002-SITEMAP/2 ENTITLED "SITE MAP," DATED MAY 9, 2005, PROVIDED BY GROUNDWATER SCIENCES CORPORATION.

2.) PROPERTY LINES/PARCEL BOUNDARIES DIGITIZED FROM A HARD COPY FIGURE ENTITLED "ENVIRONMENTAL PARCELS," DATED DECEMBER 12, 2006, FIGURE 2, PREPARED BY DIVNEY TUNG SCHWALBE.

3.) SURVEY INFORMATION FOR EXISTING MONITORING WELLS MW-1 THROUGH MW-17 TAKEN FROM "SUMMARY OF MONITORING WELL COMPLETION DATA," TABLE 4, PREPARED BY TECHCITY. MONITORING WELLS MW-18 THROUGH MW-22 DIGITIZED FROM A HARDCOPY FILE ENTITLED "CROSS SECTION OVERVIEW MAP," FIGURE 6, DATED APRIL 2009, PREPARED BY ERM.

TA-SB-09

			50	0	5	0 1	00					
			SCALE			FEE	1					
REV	DATE	DES		REVISION	DESCRIPTI	ON		CADD	СНК	RVW		
S	FORMER IBM FACILITY SUPPLEMENTAL TRIANGLE PLUME AREA INVESTIGATION KINGSTON, NEW YORK											
TITLE	MEMBRANE INTERFACE PROBE, SOIL BORING AND MONITORING WELL LOCATIONS											
		NJ	Authorization #24GA28029100	PROJECT	ΓNο.	083-87071	FILE No.	08	838707	1H003		
				DESIGN	RG	02/05/10	SCALE A	S SHOW	WN REV	<i>V</i> . 0		
		ĒG	older	CADD	CDH	02/05/10						
	J	Ass	ociates	CHECK	CDH	02/05/10	l FIC	GUF	RE :	3		
I 1	-	Newar	. New Jersev	REVIEW	AS	02/05/10				-		

VERTICAL EXAGGERATION X2

CHECK CDH 02/05/10

REVIEW AS 02/05/10

Associates

Newark, New Jersey

FIGURE 5

LEGEND

	PROPERTY/PARCEL BOUNDARY
	42-INCH DIAMETER SEWER SYSTEM (SITE PERIMETER CONTROL SYSTEM)
	UNSATURATED SURFICIAL SAND UNIT (SITE PERIMETER CONTROL SYSTEM)
SS SS	STORM SEWER LINE
	INTERPRETED PORTION OF UNSATURATED SAND UNIT (GSC 2008)
	CATCH BASIN
(13.60)	DEPTH TO BOTTOM OF CATCH BASIN (FT. BGS)
B003	BUILDING NUMBER
+	EXISTING IBM MONITORING WELL
	EXISTING TECHCITY MONITORING WELL
۲	PREVIOUS SOIL BORING LOCATION (APRIL 2009 INVESTIGATION)
۲	MIP/SOIL BORING LOCATION (NOVEMBER 2009 INVESTIGATION)
*	TEMPORARY MONITORING WELL LOCATION
<	TRIANGLE PLUME AREA SENTINEL WELL (TSW) LOCATION

NOTE

1.) ALL RESULTS IN MICROGRAMS PER LITER (ug/L).

REFERENCES

1.) BASE MAP FROM DIGITAL CAD FILE SITEMAP.DWG, DRAWING NUMBER 93002-SITEMAP/2 ENTITLED "SITE MAP," DATED MAY 9, 2005, PROVIDED BY GROUNDWATER SCIENCES CORPORATION.

2.) PROPERTY LINES/PARCEL BOUNDARIES DIGITIZED FROM A HARD COPY FIGURE ENTIFLED "ENVIRONMENTAL PARCELS," DATED DECEMBER 12, 2006, FIGURE 2, PREPARED BY DIVNEY TUNG SCHWALBE.

3.) SURVEY INFORMATION FOR EXISTING MONITORING WELLS MW-1 THROUGH MW-17 TAKEN FROM "SUMMARY OF MONITORING WELL COMPLETION DATA," TABLE 4, PREPARED BY TECHCITY. MONITORING WELLS MW-18 THROUGH MW-22 DIGITIZED FROM A HARDCOPY FILE ENTITLED "CROSS SECTION OVERVIEW MAP," FIGURE 6, DATED APRIL 2009, PREPARED BY ERM.

TA-SB-09

			50 SCALE	0	5	0 1 FEE	00 T					
BEV	DATE	DES		REVISION	DESCRIPT			CADD	CHK	DVAV		
PRO.	ECT	UES		REVISION	DESCRIPT			CADD	UHK	RVW		
S	FORMER IBM FACILITY SUPPLEMENTAL TRIANGLE PLUME AREA INVESTIGATION KINGSTON, NEW YORK											
TITLE	GROUNDWATER RESULTS SUMMARY MAP TRIANGLE PLUME AREA											
	NJ Authorization #24GA28029100 PROJECT No. 083-87071 FILE No. 08387071H007											
				DESIGN	RG	02/05/10	SCALE A	S SHOV	NN RE	<i>V</i> . 0		
		F G	older	CADD	CDH	02/05/10						
	J	Ass	ociates	CHECK	CDH	02/05/10	FIG	SUF	RE (6		
	-	Newarl	New Jersey	REVIEW	AS	02/05/10				-		

TABLES

TABLE 1 GROUNDWATER SAMPLING RESULTS SUPPLEMENTAL TRIANGLE PLUME AREA INVESTIGATION FORMER IBM KINGSTON FACILITY KINGSTON, NEW YORK

	BO	A-TW-0	1-09		TSW-0)1	TSW-02						
	B	OA-TW-	01		TSW-0	1	TSW-02						
		Sam	ole Date:	1	1/12/200)9		11/4/20	09	11/4/2009			
Parameter	Parameter CAS Unit GWQS Result L.Qual Rept Limit				Rept Limit	Result	L.Qual	Rept Limit	Result	L.Qual	Rept Limit		
1,1,1,2-Tetrachloroethane	630-20-6	ug/l	5	0.1	U	0.1	0.1	U	0.1	0.1	U	0.1	
1,1,1-Trichloroethane	71-55-6	ug/l	5	0.1	U	0.1	0.1	J	0.1	0.1	U	0.1	
1,1,2,2-Tetrachloroethane	79-34-5	ug/l	5	0.1	U	0.1	0.1	U	0.1	0.1	U	0.1	
1,1,2-Trichloroethane	79-00-5	ug/l	1	0.1	U	0.1	0.1	U	0.1	0.1	U	0.1	
1,1-Dichloroethane	75-34-3	ug/l	5	0.1	U	0.1	0.3	J	0.1	0.1	U	0.1	
1,1-Dichloroethene	75-35-4	ug/l	5	0.1	U	0.1	1.2		0.1	0.1	U	0.1	
1,2,3-Trichloropropane	96-18-4	ug/l	0.04	0.3	U	0.3	0.3	U	0.3	0.3	U	0.3	
1,2-Dichloro-1,1,2-trifluoroethane	354-23-4	ug/l	5	0.2	U	0.2	0.2	U	0.2	0.2	U	0.2	
1,2-Dichlorobenzene	95-50-1	ug/l	3	0.1	U	0.1	0.1	U	0.1	0.1	U	0.1	
1,2-Dichloroethane	107-06-2	ug/l	0.6	0.1	U	0.1	0.1	U	0.1	0.1	U	0.1	
1,2-Dichloroethene, Total	540-59-0	ug/l	5	0.1	U	0.1	0.2	J	0.1	0.1	U	0.1	
1,2-Dichloropropane	78-87-5	ug/l	1	0.1	U	0.1	0.1	U	0.1	0.1	U	0.1	
1,3-Dichlorobenzene	541-73-1	ug/l	3	0.1	U	0.1	0.1	U	0.1	0.1	U	0.1	
1,4-Dichlorobenzene	106-46-7	ug/l	3	0.1	U	0.1	0.1	U	0.1	0.1	U	0.1	
2-Chlorotoluene	95-49-8	ug/l	5	0.1	U	0.1	0.1	U	0.1	0.1	U	0.1	
4-Chlorotoluene	106-43-4	ug/l	5	0.1	U	0.1	0.1	U	0.1	0.1	U	0.1	
Benzene	71-43-2	ug/l	1	0.1	U	0.1	0.1	U	0.1	0.1	U	0.1	
Benzyl Chloride	100-44-7	ug/l	NS	0.1	U	0.1	0.1	U	0.1	0.1	U	0.1	
Bromobenzene	108-86-1	ug/l	5	0.1	U	0.1	0.1	U	0.1	0.1	U	0.1	
Bromodichloromethane	75-27-4	ug/l	5	0.1	U	0.1	0.1	U	0.1	0.1	U	0.1	
Bromoform	75-25-2	ug/l	NS	0.1	U	0.1	0.1	U	0.1	0.1	U	0.1	
Bromomethane	74-83-9	ug/l	5	0.1	U	0.1	0.1	U	0.1	0.1	U	0.1	
Carbon Tetrachloride	56-23-5	ug/l	5	0.1	U	0.1	0.1	U	0.1	0.1	U	0.1	
Chlorobenzene	108-90-7	ug/l	5	0.1	U	0.1	0.1	U	0.1	0.1	U	0.1	
Chloroethane	75-00-3	ug/l	5	0.1	U	0.1	0.1	U	0.1	0.1	U	0.1	
Chloroform	67-66-3	ug/l	7	0.1	U	0.1	0.1	U	0.1	0.7		0.1	
Chloromethane	74-87-3	ug/l	NS	0.2	U	0.2	0.2	U	0.2	0.2	U	0.2	
cis-1,3-Dichloropropene	10061-01-5	ug/l	0.4	0.1	U	0.1	0.1	U	0.1	0.1	U	0.1	
Dibromochloromethane	124-48-1	ug/l	5	0.1	U	0.1	0.1	U	0.1	0.1	U	0.1	
Dibromomethane	74-95-3	ug/l	5	0.1	U	0.1	0.1	U	0.1	0.1	U	0.1	
Dichlorodifluoromethane	75-71-8	ug/l	5	0.1	U	0.1	0.1	U	0.1	0.1	U	0.1	
Ethylbenzene	100-41-4	ug/l	5	0.1	U	0.1	0.1	U	0.1	0.1	U	0.1	
Freon 113	76-13-1	ug/l	5	0.2	U	0.2	0.2	U	0.2	0.2	U	0.2	
Methylene Chloride	75-09-2	ug/l	5	0.2	U	0.2	0.2	U	0.2	0.2	U	0.2	
Tetrachloroethene	127-18-4	ug/l	5	0.1	U	0.1	0.1	U	0.1	0.1	U	0.1	
Toluene	108-88-3	ug/l	5	0.1	U	0.1	0.1	U	0.1	0.1	U	0.1	
trans-1,3-Dichloropropene	10061-02-6	ug/l	0.4	0.1	U	0.1	0.1	U	0.1	0.1	U	0.1	
Trichloroethene	79-01-6	ug/l	5	0.1	U	0.1	0.1	U	0.1	0.1	U	0.1	
Trichlorofluoromethane	75-69-4	ug/l	5	0.1	U	0.1	0.1	U	0.1	0.1	U	0.1	
Vinyl Chloride	75-01-4	ug/l	2	0.1	U	0.1	0.1	U	0.1	0.1	U	0.1	
Xylenes, Total	1330-20-7	ug/l	5	0.1	U	0.1	0.1	U	0.1	0.1	U	0.1	

Notes:

GWQS - NYS Part 703 Groundwater Quality Standard

NS - No Standard Available

ug/I - micrograms per liter

U - Result was not detected above the method detection limit

J - Result was detected between the method detection limit and the reporting limit.

Bold/Italic - Result is greater than the listed standard.

L. Qual - Laboratory Qualifier - data hae not been validated.

Rept Limit - Reporting Limit

ATTACHMENT A
SOIL BORING AND WELL CONSTRUCTION LOGS

GOLDER NJ-PA 05-24-06.GDT IBM-KINGSTON SWMU G-SWMU M.GPJ RECORD ш BOREHOL

RECORD OF BOREHOLE							TSW-01-B SHEET 1 of 1						
PROJECT: Former IBM - Kingston DRILL METHOD: Direct Push PROJECT NUMBER: 083-87071.01 DRILL RIG: 6600							DATUM: New York State Plane COORDS: N: 717.524.8 F: 590 588 6						
DR		DEPTH: 15.0 ft DATE STAR	TED: 1	0/29/09) A/NA	GS ELEVATION: 177.4 ft TOC ELEVATION: N/A							
LÕ	CATION	I: Triangle Area, near MW-174S WEATHER:	Cloudy	/. 10/2	,00				TE	MPERATURE: 54 F			
	z	SOIL PROFILE		1			SAMP	LES					
(ft)	(ft)		ν.	UH CT	ELEV.	Ш	ш	(md	ATT				
B	ELE	DESCRIPTION	nsc	LOC	DEPTH	NUME	ТҮР	d) Ol	EC /	COMMENTS			
0 —		0.0.05	SM	31.3	(ft)	2		μ.	<u>م</u>				
-		Dark brown, SILTY fine SAND, grass and root material, damp, no odor (SM) (TOPSOIL)	5101		0.5								
-	175	0.5 - 4.0 Red-brown, very fine to fine SAND, mostly fine, dry, no odor (SP)	SP				MACRO)	50				
-						1	CORE	0.0	5.0				
-		4.0 - 4.8	<u>e</u> p		173.4								
5 —		Light gray-brown, very fine SAND, little Silt, dense, dry, no odor	SP		5.0								
-		4.8 - 5.0 Orange-brown, fine SAND, oxidized, dry, no odor (SP)	SP										
-	- 170	5.0 - 7.0 Light gray-brown, fine to medium SAND, damp at 7.0 ft bgs, no odor			170.4 7.0	2	MACRO)	5.0				
-		(SP) 7.0 - 10.0	e D			2	CORE	0.0	5.0				
-		Brown and gray, time to medium SAND, oxidization in horizons, wet at 8.25 ft bgs, no odor (SP)											
10 —		10.0 - 12.0			167.4 10.0								
-		Dark brown, fine to medium SAND, mostly medium, wet, no odor (SP)	SP										
-	- 165	12.0 - 15.0		/////	165.4 12.0	3	MACRO) _{0 0}	5.0				
-		Gray and light brown, CLAY, little to some fine Sand, soft, plastic, wet, no odor (CL)	CL				CORE	0.0	5.0				
-													
15 —		Boring completed at 15.0 ft			162.4								
-													
-	- 160												
-													
-													
20 —													
-													
-	- 155												
-													
25													
_	$\left - \right $												
_	- 150												
30 -	F												
30 -													
_													
	145												
_													
35 —													
_													
_													
-	140												
-	[]												
40 —	$\left[\right]$												
LOC	G SCA	LE: 1 in = 5 ft	. (GA INS	SPECT	OR:	D.Go	rman	۱ <u>ــــــــــــــــــــــــــــــــــــ</u>				
DRI	LLING	COMPANY: Env. Probing Inc	(CHECI	KED BY	/: CI	ЭΗ			Golder			
DRI	LLER:	W. Atkinson	[DATE:	12/28/	09				VAssociates			

RECORD OF BOREHOLE							TSW-01-C SHEET 1 of 1					
PROJECT: Former IBM - Kingston DRILL METHOD: Direct Push						DATUM: New York State Plane COORDS: N: 717 579 4 F: 590 601 3						
DR		DEPTH: 20.0 ft DATE STOR	10000	0/29/09)				GS	SELEVATION: 177.2 ft		
LO	CATION	I: Triangle Area, near MW-174S WEATHER:	Overca	ast 10/29	9/09				TE	MPERATURE: 53 F		
	7	SOIL PROFILE			_		SAMF	PLES				
TH (ATIO			Q	ELEV.	щ		Ê	╞			
DEF (f	LEV/	DESCRIPTION	ISCS	MPH LOG		IMBE	LYPE	ıdd) (C/A	COMMENTS		
	ш			В П	DEPTH (ft)	R		ЫЦ	Ë.			
0	-	0.0 - 0.5	SM	<u> </u>	176.7							
-	-	odor (SM) (TOPSOIL)			0.5							
-	- 175	Red-brown, very fine to fine SAND, dry, no odor (SP)	SP			1	MACRO	0.0	4.0			
-	-						CORE		5.0			
-	_	4.0 - 5.0			173.2 4.0							
5 —	_	NO RECOVERY 5.0 - 9.0		0.925	172.2							
-	_	Red-brown to brown, very fine to fine SAND, mostly fine, little Silt, wet at 8.5 ft bgs, 1/4-inch light gray brown SILTY CLAY at 7.75 ft										
-	- 170	bgs, no odor (SP)	SP						5.0			
_						2	CORE	0.0	5.0			
_		0.0.40.0			168.2							
10		3.0 - 10.0 Dark brown, SILTY very fine SAND and very fine SANDY SILT, wet,	ML		9.0							
_	-	9.25 ft bgs, no odor (ML)	/		10.0							
	-	Brown, SILTY fine SAND, wet, no odor (SM)	SM									
	- 165	12.5 - 13.0	SP		164.7 164.2	3	MACRO CORE	0.0	<u>5.0</u> 5.0			
_	-	Dark brown to black, fine SAND, wet, no odor (SP)	ML		13.0 163.2							
_	-	Light brown, SILT, little to some Clay, trace very fine Sand, soft, wet, no odor (ML)	CL		14.0							
15	-	14.0 - 15.0 Gray, CLAY, trace to little very fine Sand, soft, plastic, wet, no odor	SP		15.0							
-	-		CL-ML		161.2							
-	- 160	Dark brown, fine SAND, trace Silt, wet, no odor (SP)		77777 777777	17.3	4	MACRO	0.0	5.0			
-	-	Light brown, CLAYEY SILT, little fine Sand, wet, no odor (CL-ML)					CORE	0.0	5.0			
-	_	16.5 - 16.8 Dark brown, fine SAND, wet, no odor (SP)	CL									
20 —	_	16.8 - 17.0 Light gray, fine SANDY CLAY, soft, plastic, wet, no odor (CL)	r	<i>\////</i>	157.2							
_	_	17.0 - 17.3 Brown, fine SAND, trace to little Silt, wet, no odor (SP)										
-	- 155	17.3 - 20.0 Gray, CLAY, trace to little Silt, soft, plastic, wet, no odor (CL)										
_	155	Boring completed at 20.0 ft										
_												
25	_											
	-											
	-											
	- 150											
_	-											
_	-											
30 —	_											
	-											
-	- 145											
-	-		1									
-	-											
35 —	L											
-	L											
-	- 140											
-			1									
			1									
40												
		IE: 1 in – 5 ft	1					rmor	<u> </u>	<u> </u>		
DRI	LLING	COMPANY: Env. Probing Inc	(KED BY	/: Cl	DH.GO	nnaí		Colder		
DRI	LLER:	W. Atkinson	I	DATE:	12/28/	09				VAssociates		
L												

GOLDER NJ-PA 05-24-06. SWMU G-SWMU M.GPJ **IBM-KINGSTON** RECORD ш BOREHOI

	RECORD OF BOREHOLE							TSW-02-B SHEET 1 of 1						
	PROJECT: Former IBM - Kingston DRILL METHOD: Direct Push PROJECT NUMBER: 083-87071.01 DRILL RIG: 6600						DATUM: New York State Plane COORDS: N: 717,398.8 E: 590,424.1							
ĺ	DRI	LLED D MUTH:	DEPTH: 15.0 ft DATE STAR N/A DATE COMF	TED: 1	0/30/09 : 10/30)/09				GS TC	SELEVATION: 176.6 ft DC ELEVATION: N/A			
			I: Bank of America Parking Lot WEATHER:	Overca	st			CAME		TE	MPERATURE: 53 F			
		NO	SUIL PROFILE					SAIVIP	LES					
DEPTI	(1	ELEVATI (ft)	DESCRIPTION	NSCS	GRAPHIC LOG	ELEV. DEPTH (ft)	NUMBER	ТҮРЕ	PID (ppm)	REC / ATT	COMMENTS			
	0-	_	0.0 - 0.3 ASPHALT			0.3	-							
	-	175 	0.3 - 4.0 Brown to dark brown, very fine to fine SAND, trace to little Silt, dense, dry, no odor (SP)	SP		172.6	1	MACRO CORE	0.0	<u>5.0</u> 5.0				
		-	4.0 - 5.0 Dark gray, SILTY very fine SAND, dense, dry, no odor (SM)	SM		4.0 171.6								
	- - -	- 170 	5.0 - 9.0 Orange-brown, fine to medium SAND, mottled black from 8.75 - 9.0 ft bgs, dry to 7.5 ft and wet at 8.0 ft bgs, no odor (SP)	SP		5.0	2	MACRO	0.0	<u>5.0</u> 5.0				
	_	-		MI		167.6								
10	0-	-	0.0 - 0.3 Orange and light brown, interlayered, SILT, trace very fine Sand, 1) stiff, wet. no odor (ML)			166.6								
	-	-	9.3 - 10.0 Light gray, SILT and CLAY, stiff, plastic, wet, no odor (CL-ML)	SP		165.1								
	-	- 165	10.0 - 11.5 Brown, fine SAND, trace to little Silt, wet, no odor (SP)			11.5	3	MACRO) _{0 0}	5.0				
	-	_	11.5 - 15.0 Gray, CLAY, trace very fine Sand, very soft to soft, plastic, wet, no odor (CL)	CL				CORE	0.0	5.0				
		-				161.6								
1	5	-	Boring completed at 15.0 ft											
]	— 160												
	-	-												
	-	-												
2	₀-[-												
	-	- 155												
	-	-												
		-												
2/5/10	5_	-												
GDT		-												
24-06.	-	— 150												
A 05-2	-	-												
R NJ-F	-[_												
S OLDEI	0-[_												
Р. Q	-	- 145												
D.M.C]	-												
SWML		-												
₩N G	5	-												
N SWI	4	-												
GSTO	-	- 140												
N-KIN	-[_												
G B	ļ	-												
У <u>4</u> Н	v −1		E: 1 in _ 5 ft				∩¤.		rmer		Ē			
	RIL	LLING	COMPANY: Env. Probing Inc	C		(ED B)	0n: /: Cl	D.Go DH	man		Golder			
D A	DRILLER: W. Atkinson DATE: 12/28/09										V Associates			

	RECORD OF BOREHOLE								TSW-02-C SHEET 1 of 1						
	PRC PRC DRI AZII	DJECT: DJECT LLED D MUTH:	Former IBM - Kingston DRILL METH NUMBER: 083-87071.01 DRILL RIG: 0EPTH: 15.0 ft DATE STAR N/A DATE COMP	IOD: Di 6600 TED: 1 PLETED	irect Pu 0/30/09 :: 10/30	ish)/09	DATUM: New York State Plane COORDS: N: 717,410.1 E: 590,442.5 GS ELEVATION: 176.6 ft TOC ELEVATION: N/A								
_		ATION	Bank of America Parking Lot WEATHER:	Overca	st			SAMP	I ES	TE	MPERATURE: 53 F				
DEPTH	(ft)	ELEVATION (ft)	DESCRIPTION	nscs	GRAPHIC LOG	ELEV. DEPTH (ft)	NUMBER	ТҮРЕ	PID (ppm)	REC / ATT	COMMENTS				
	0 		0.0 - 0.3 ASPHALT 0.3 - 1.0	GP		175.6 1.0									
	-	- 175	Brown, fine to medium GRAVEL and fine to medium SAND, dense, dry, no odor (GP) (SUB-BASE) 1.0 - 2.5 Orange-brown, very fine to fine SAND, dry, no odor (SP)	SP		174.1 2.5	1	MACRO	0.0	<u>5.0</u> 5.0					
	5-	-	2.5 - 5.0 Light brown, fine SAND, dry, no odor (SP)	SP		171.6									
	-	- 170	Brown, fine SAND, damp at 7.5 ft bgs, no odor (SP)	SP		169.1				5.0					
	-		7.5 - 8.0 Gray-brown, fine SAND, with orange and red oxidized fine SANDY SILT 1/4-inch thick at 8.0 ft bgs, wet at 8.0 ft bgs, no odor (SP) 8.0 - 9.0	SP CL-ML		168.6 8.0 167.6	2	CORE	0.0	5.0					
1	0-	-	Gray and brown, SILTY CLAY, trace very fine Sand, very soft, plastic, no odor (CL-ML) 9.0 - 10.0 Light gray, CLAY, soft, plastic, wet, no odor (CL)	CL SP		166.6 166.1 10.5									
	-	— 165 -	10.0 - 10.5 Light brown, very fine to fine SAND, little Silt, wet, no odor (SP) 10.5 - 15.0 Gray, CLAY, very soft to soft, plastic, wet, no odor (CL)	CL			3	MACRO CORE	0.0	<u>5.0</u> 5.0					
1	5-	-	Paging completed at 15.0 ft			161.6									
	-	- 160													
	-	-													
2	:0	-													
	-	— 155 -													
/5/10		-													
-06.GDT 2		- 150													
-PA 05-24	-	-													
OLDER NJ	- 	-													
M.GPJ G		- 145 -													
G-SWMU		-													
NMWS NC	15	- 140													
1-KINGSTC	-	-													
A LOG IBN	- - 0.	-													
AA GEOTEC	LOG SCALE: 1 in = 5 ftGA INSPECTOR: D.GormanDRILLING COMPANY: Env. Probing IncCHECKED BY: CDHDRILLER: W. AtkinsonDATE: 12/28/09														

		RECORD OF I	DLE	BOA-SB-01 SHEET 1 of 1							
PR PR	OJECT OJECT	Former IBM - Kingston DRILL METH NUMBER: 083-87071.01 DRILL RIG:	ish	DATUM: New York State Plane COORDS: N: 717,842.7 E: 590,307.7							
DR AZI	ILLED [IMUTH:	DEPTH: 15.0 ft DATE STAR NA DATE COMP	TED: 1 PLETED	1/5/09 : 11/5/	09				GS TC	SELEVATION: 174.4 ft CELEVATION: N/A	
LO		I: West side, B.O.A. bldg WEATHER:	Cloudy			SAMPLES					
т	NOI						0,		L		
DEPT (ft)	EVAT (ft)	DESCRIPTION	scs	APHIC	ELEV.	MBER	ΥΡΕ	(mqq)	LTA / 3	COMMENTS	
	=) S	GR/	DEPTH (ft)	NN	L L	PID	REC		
0 —	-	0.0 - 3.0 Brown SILTY year fine to fine SAND grass and root material day		<u>717</u> 7							
-	1	no odor (SM) (TOPSOIL)	SM	1/ <u>1/</u>							
-	1-			<u>\\</u>	171.4	1		0.0	<u>5.0</u> 5.0		
-	-	3.0 - 4.0 Brown mottled orange, SILT, trace very fine Sand, dry, no odor	ML		3.0 170.4						
_	- 170	\(ML) 4.0 - 5.0	CL-ML		4.0 169.4						
5-	}	Brown and light gray, SILTY CLAY, soft, plastic, dry, no odor (CL-ML)	CL-MI		5.0						
_	-	5.0 - 7.0 Light gray and orange-brown, CLAYEY SILT and SILTY CLAY, stiff, tripble plastic dov pa odor (CLML)			167.4						
_	-	7.0 - 7.5 Red-brown CLAY very soft plastic wet at 7.5 ft bris no odor (CL)	CL		166.9 7.5	2	CORE	0.0	<u>5.0</u> 5.0		
	-	7.5 - 10.0 Gray, CLAY, soft, plastic, wet, no odor (CL)	CL								
10 -	- 165	100 110			164.4						
-	-	Gray, very fine SANDY SILT and CLAY, loose, plastic, wet, no odor (CL-ML) (Possible SLOUGH)	CL-ML		163.4 11.0	-					
-	E	11.0 - 15.0 Gray, interlayered, CLAY, very fine Sand lenses less than 1/2-inch					MACRO		5.0		
-	Ł	in thickness, soft, plastic, wet, no odor (CL)	CL			3	CORE	0.0	5.0		
-	160										
15		Boring completed at 15.0 ft		//////	159.4						
-	1										
-	+										
-	-										
-	- 155										
20-	}										
_	-										
_	-										
. –	-										
25	- 150										
-	F										
-	[
-	L										
	- 145										
30 —	Ļ										
-	+										
-	-										
-	1										
	- 140										
35 -	-										
	-										
_	F										
-	 										
40 —	135										
LOC	G SCA	LE: 1 in = 5 ft	(GA INS	SPECT	OR:	D.Go	rman	i	Â	
DRI		COMPANY: Env. Probing Inc	(/: CI	DН			Golder	
DRI	DRILLER: W. Atkinson DATE: 12/28/09										

	RECORD OF BOREHOLE BOA-SB-02 SHEET 1 of 1										
PRC PRC	OJECT: OJECT	Former IBM - Kingston DRILL METH NUMBER: 083-87071.01 DRILL RIG:	ısh	DATUM: New York State Plane COORDS: N: 717,850.0 E: 590,317.4							
DRI AZII	ILLED D MUTH:	DEPTH: 20.0 ft DATE STAR N/A DATE COMF	TED: 1 PLETED	1/5/09): 11/5/	09				GS TC	SELEVATION: 174.7 ft DC ELEVATION: N/A	
LOC		I: West side, B.O.A. bldg WEATHER:	Cloudy				SAME		TE	MPERATURE: 41 F	
	NO						3AIVII				
(ff)	EVATI (ft)		S	DHIC	ELEV.	BER	ЪЕ	(mqq	/ ATT	COMMENTS	
	ELE		IN	GRA	DEPTH	NUN	1	PID (REC	COMMENTS	
0 —		0.0 - 2.0		<u>, 18. 1</u>	(11)						
-	-	Light brown, SILTY very fine to fine SAND, grass and root material, dry, no odor (SM) (TOPSOIL)	SM	<u>1/ \\1/</u>							
-	-	2.0 - 4.5		$\frac{1}{1}$	172.7 2.0	1	MACRO)	5.0		
-	-	Light gray and brown, very fine SANDY SILT, stiff, dry, no odor (ML)	ML				CORE	0.0	5.0		
-	-				170.2						
5	- 170	4.5 - 4.8 Light brown mottled orange, very fine SANDY CLAY, stiff, plastic,			5.0						
-	-	dry, no odor (CL) 4.8 - 5.0	ML								
-	-	Brown, very fine SAND and SILT, damp, 1-inch of fine gravel fragments at 4.75 ft bgs, no odor (ML)			167.7 7.0		MACRO)	5.0		
-	-	5.0 - 7.0 Brown, very fine SANDY SILT, stiff, damp, no odor (ML)	CD CD			2	CORE	0.0	5.0		
-	-	7.0 - 10.0 Brown, fine to medium SAND, mostly medium, damp, 2-inches	55								
10 -	- 165	gray-brown soft plastic GLAY at 8.75 ft, no odor (SP) 10.0 - 12.0			164.7 10.0						
-	-	NO RECOVERY									
-	-	12.0 - 13.5			162.7 12.0	2	MACRO) ₀ 0	<u>3.0</u>		
-	-	Brown, fine to medium SAND, damp, no odor (SP)	SP		161.2		CORE	0.0	5.0		
-	-	13.5 - 15.0 Brown, fine to medium SAND, mostly medium, some very fine	SP	0	13.5						
15 -	- 160	Gravel, little Slit, wet at 13.75 ft bgs, no odor (SP) 15.0 - 17.0		<u> (.)</u>	159.7 15.0						
-	-	Brown, fine to medium SAND, mostly medium, little Silt, little very fine Gravel, wet, no odor (SP)	SP								
-	-	17.0 - 18.0	SP-SM	111	157.7 17.0	4	MACRO) _{0 0}	5.0		
-	-	Brown, fine to medium SAND, little to some Silt, wet, no odor (SP-SM)	51-51		156.7 18.0	-	CORE	0.0	5.0		
-	-	18.0 - 20.0 Gray and red-brown, varved, CLAY and very fine SANDY SILT,	CL								
20 —	- 155	Boring completed at 20.0 ft			154.7						
-	-										
-	-										
-	-										
-	-										
25 —	- 150										
-	-										
-	-										
-											
-											
30 —	- 145										
-	-										
-	_										
-	_										
-	140										
35 —	- 140										
-											
-											
-											
-	- 125										
40	- 135										
LOG	SCA	LE: 1 in = 5 ft	(GA INS	SPECT	OR:	D.Go	rmar	I		
	LLING LLFR·	W. Atkinson	(1	JHECI DATE:	רבט ש\ 12/28	r: Cl /09	JH			Golder	
		·····			, _0,					- 13500 Martin	

	RECORD OF BOREHOLE					BOA-SB-03 SHEET 1 of 1				
PR PR DF AZ	PROJECT: Former IBM - Kingston DRILL METHC PROJECT NUMBER: 083-87071.01 DRILL RIG: 66 DRILLED DEPTH: 30.0 ft DATE STARTE AZIMUTH: N/A DATE COMPL LOCATION: B O A Parking Lot near CS-444 WEATHER: C		HOD: Di 6600 TED: 1 [°] PLETED Cloudy	/D: Direct Push 300 ED: 11/5/09 ETED: 11/5/09		DATUM: New York St COORDS: N: 717,662 GS ELEVATION: 1/5, TOC ELEVATION: N/ TEMPERATURE: 40			D/ CC GS TC	ATUM: New York State Plane DORDS: N: 717,662.6 E: 590,498.1 S ELEVATION: 175.2 ft DC ELEVATION: N/A MPERATURE: 40 F
		SOIL PROFILE	Cloudy				SAMF	PLES		
DEPTH (ff)	ELEVATION (ff)	DESCRIPTION	NSCS	GRAPHIC LOG	ELEV. DEPTH (ft)	NUMBER	ТҮРЕ	PID (ppm)	REC / ATT	COMMENTS
- 0	- 175 	0.0 - 0.5 ASPHALT 0.5 - 5.0 Brown, very fine to fine SAND, mostly very fine, little Silt, dry, no odor (SP)	SP		174.7 0.5	1	MACRO	0.0	<u>4.5</u> 5.0	
5	- 170 	5.0 - 8.0 Brown, very fine to fine SAND, mostly very fine, some to and Silt, damp at 7.5 ft bgs, no odor (SP-SM)	SP-SM		170.2 5.0 167.2	2	MACRO	0.0	<u>5.0</u> 5.0	
10 -	 	8.0 - 8.3 Brown, very fine SAND and SILT, soft, wet, no odor (SM) 8.3 - 9.0 Light brown, SILT, little to some Sand, stiff, wet, no odor (ML) 9.0 - 9.8 Light gray and brown, CLAY, trace to little very fine Sand, stiff, plastic, wet, no odor (CL)	SM ML CL SP CL SC		166.2 165.5 10.3 164.0					
-		9.8 - 10.0 Dark brown, fine to medium SAND, mostly fine, trace Silt, wet, no odor (SP) 10.0 - 10.3 Gray, CLAY, soft, plastic, wet, no odor (CL) 10.3 - 11.3 Brown CLAYEY very fine SAND, very soft with 1/2 - 1 inch CLAY	CL SC-SM		11.3 161.7 13.5	3	MACRO	0.0	<u>5.0</u> 5.0	
15 - - -	- 160 	nodules, wet, no odor (SC) 11.3 - 13.5 Gray and light brown, CLAY, trace to little very fine Sand, soft, plastic, wet, no odor (CL) 13.5 - 15.0 Brown, CLAYEY and SILTY very fine SAND, with fine to medium Gravel from 14.75 - 15.0 ft bgs, and 2-inches brown soft plastic CLAY at 14.15 ft and 1.5-inches brown soft plastic CLAY at 14.75 ft brown to action (CD)	SP	2.4.11 2.7.7.7 3.7.7.7 3.7.	160.2 159.7 15.8 157.2 18.0	4	MACRO	0.0	<u>4.5</u> 5.0	
20 -	 155 	15.0 - 15.5 NO RECOVERY 15.5 - 15.8 Brown, very fine SANDY CLAY, soft, plastic, wet, no odor (CL) 15.8 - 18.0 Brown, SILTY very fine to fine SAND, mostly fine, wet, no odor	CL		155.7 155.2 20.0				0.5	
- 25/10	 150	(SW) 18.0 - 19.5 Brown, very fine to fine SAND, with fine Gravel, little to some Silt, wet, no odor (SP) 19.5 - 20.0 Gray, CLAY, trace to little very fine Sand, soft, plastic, wet, no odor (CL)			150.2 25.0	5	CORE		5.0	
-PA 05-24-06.GDT		20.0 - 25.0 NO RECOVERY: 0.5-feet of very soft Silty fine Sand with a fragment of large gravel in the shoe of the sampler 25.0 - 30.0 NO RECOVERY				6	MACRO	Þ	<u>0.0</u> 5.0	
10 M.GPJ GOLDER NJ	- - 145 - - -	Boring completed at 30.0 ft			145.2					
	- - - - - - -									
- 04 FCH LOG IBM-	G SCA	LE: 1 in = 5 ft		A INS	SPECTO	OR:	D.Go	rman		
	LOG SCALE: 1 in = 5 ftGA INSPECTOR: D.GormanDRILLING COMPANY: Env. Probing IncCHECKED BY: CDHDRILLER: W. AtkinsonDATE: 12/28/09									

	RECORD OF BOREHOLE					BOA-SB-04 SHEET 1 of 1				
PR PR	PROJECT: Former IBM - Kingston DRILL METHOD: Direct Push PROJECT NUMBER: 083-87071.01 DRILL RIG: 6600 DRILL ED DEPTH: 15.0 ft DATE STARTED: 11/11/00								DA	TUM: New York State Plane DORDS: N: 717,845.8 E: 590,272.3
AZIMUTH: N/A DATE COMPLETED: 11/11/ LOCATION: West side, B.O.A. bldg WEATHER: Windy					/09	TOC ELEVATION: N/A TEMPERATURE: 48 F				
	Z	SOIL PROFILE	1	1			SAMP	LES		
DEPTH (ft)	ELEVATIO (ft)	DESCRIPTION	nscs	GRAPHIC LOG	ELEV. DEPTH	NUMBER	ТҮРЕ	PID (ppm)	REC / ATT	COMMENTS
0	-	0.0 - 0.5 Dark brown, SILTY fine SAND, grass and root material, dry, no odor (SM) (TOPSOIL)	SM GP		. <u>173.1</u> 0.8					
-		0.5 - 0.8 Gray, fine to medium GRAVEL and fine to medium SAND, dry, no odor (GP) (SUB-BASE)	ML		171.1	1		0.0	<u>5.0</u>	
-	- 170	0.8 - 2.5 Brown to red-brown, very fine SANDY SILT, stiff, dry, no odor (ML) 2.5 - 5.0 Light brown to brown, SILT, little very fine Sand, firm, damp, no	ML		168.6					
5-		 odor (ML) 5.0 - 6.5 Light brown to brown, SILT, trace very fine Sand, stiff, damp, no 	ML		5.0 167.1					
-	- - - 165	6.5 - 9.8 Brown, CLAY, stiff from 6.5 to 8.0 ft bgs, soft from 8.0 to 9.75 ft bgs, plastic, wet at 8.0 ft bgs, no odor (CL)	CL		6.5	2	MACRO CORE	0.0	<u>5.0</u> 5.0	
10 -		9.8 - 10.0	CL		163.8	-				
-		(CL) 10.0 - 11.5 (CL)	CL		162.1					
-	- 	Brown, CLAY, little to some very fine Sand, very soft, plastic, wet, no odor (CL) 11.5 - 12.5 Brown, very fine SAND and CLAY, very soft, plastic, wet, no odor (CL)	CL		<u>161.1</u> 12.5	3	MACRO CORE	0.0	<u>5.0</u> 5.0	
15 —	-	12.5 - 15.0 Brown to gray, CLAY, soft, plastic, with 1/2-inch thick very fine SAND in lenses between 14.0 - 15.0 ft bgs, wet, no odor (CL) Boring completed at 15.0 ft			158.6					
-	-									
-	- 155									
20 -	- - -									
-	-									
-	- 150									
25 -										
-	-									
-	- 145									
30 -	- -									
-										
-	- 140									
35 -										
-										
-	- 135									
40 -								rm c :-		
DRI	ILLING	COMPANY: Env. Probing Inc W. Atkinson	(CHECH CHECH DATE:	(ED B) 12/28/	0R: 7: CI 709	D.GO DH	iman	I	Golder

GOLDER NJ-PA 05-24-06.GDT IBM-KINGSTON SWMU G-SWMU M.GPJ RECORD ш BOREHOL

	RECORD OF BOREHOLE					DLE	BOA-SB-06 SHEET 1 of 1				
F	PROJECT: Former IBM - Kingston DRILL METHOD: Direct F PROJECT NUMBER: 083-87071.01 DRILL RIG: 6600			irect Pu	ısh				DA CC	TUM: New York State Plane DORDS: N: 717,983.1 E: 590,028.6	
	DRILLED DEPTH: 15.0 ft DATE STARTED: 11 AZIMUTH: N/A DATE COMPLETED: LOOMPLETED: DATE COMPLETED:			1/11/99): 11/11	/09				GS TC	SELEVATION: 168.6 ft DC ELEVATION: N/A	
	<u>.0C</u> A		: Western B.O.A. parking lot WEATHER: SOIL PROFILE	Windy				SAMP	LES	IE	MPERATURE: 48 F
Ŧ		NOL			0		~	-	_	⊢	
DEPT	E	EVA]-	DESCRIPTION	scs	APHIC OG	ELEV.	MBEF	ΥΡΕ	mqq)	C / AT	COMMENTS
	i				GR	DEPTH (ft)	R	-	DIA	REC	
0) -		0.0 - 0.5 \ ASPHALT /	GP		168.1 167.6					
	}		0.5 - 1.0 Gray, fine to medium GRAVEL and fine to medium SAND, dry, no odor (GP) (SUB BASE)	SP CL	,,,,,,,	1.5					
	ł		1.0 - 1.3 Brown, very fine SAND, damp, no odor (SP)	SP			1	CORE	0.0	<u>5.0</u> 5.0	
	ł	165	1.3 - 1.5 Light brown, CLAY, soft, plastic, damp, no odor (CL)								
5	;-		1.5 - 4.8 Brown, fine to medium SAND, trace to little Silt from 1.5 - 3.0 ft bgs,	CL	,,,,,,,	163.9 5.0					
	-		damp, no odor (SP) 4.8 - 5.0	SP	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	162.4					
	-[(CL)			0.0	2	MACRO	0.0	5.0	
	ſ	- 160	Light brown, very fine to fine SAND, little Silt, wet, no odor (SP)	CL				CORE		5.0	
	1		Brown to gray, distinctive color change at 7.5 ft bgs, CLAY, soft, plastic, with very fine SAND laminations, wet, no odor (CL)			158.6					
10)- -		10.0 - 10.5 \ Gray, CLAY, soft, plastic, wet, no odor (CL) /	CL		158.1					
]		10.5 - 13.5 Light gray, CLAY, trace to little fine Sand, very soft, plastic, wet, no								
	ŀ		odor (CL)				3	MACRO	0.0	<u>5.0</u> 5.0	
	ł	155	13.5 - 15.0 Gray CLAX soft plastic with yary fine SAND laminations wat no			155.1 13.5					
15	;		odor (CL) Boring completed at 15.0 ft			153.6					
	ł										
	f										
	Ē	150									
	ſ	150									
20)-										
	1										
]-										
	-	145									
01/2/2	;										
GDT	ł										
24-06.	ł										
A 05-	ł										
A-UN %	-[• 140									
30 10)-[
1 60											
M.GP	1										
MMU	1	135									
の 切 コ 35]-										
MWS SWW	ŀ										
STON	ł										
KING	ł										
-IBM	ł	130									
90 40)-[
	DG :	SCA	LE: 1 in = 5 ft	(GA INS	SPECT	OR:	D.Go	rmar	I	
	rill Rill	LING LER:	COMPANY: Env. Probing Inc W. Atkinson	([DATE:	×ED B۱ /12/28	r: CI '09	JH			Golder Associates
₹											

	RECORD OF BOREHOLE					BOA-SB-07 SHEET 1 of 1				
PR PR DF AZ	PROJECT: Former IBM - Kingston DRILL METHOD: Direct Push PROJECT NUMBER: 083-87071.01 DRILL RIG: 6600 DRILLED DEPTH: 15.0 ft DATE STARTED: 11/12/09 AZIMUTH: N/A DATE COMPLETED: 11/12/09 LOCATION: Northwest of TA-MIP-11 WEATHER: Windu:		DATUM: New York State Plane COORDS: N: 717,573.4 E: 590,512.2 GS ELEVATION: 175.9 ft TOC ELEVATION: N/A							
		SOIL PROFILE	Windy				SAMP	LES		
DEPTH (ft)	ELEVATION (ft)	DESCRIPTION	nscs	GRAPHIC LOG	ELEV. DEPTH (ft)	NUMBER	ТҮРЕ	PID (ppm)	REC / ATT	COMMENTS
0 -		0.0 - 0.5			175.4					
-	_= 1/5 _=	(SP-14) Brown and yellow brown, fine SAND,little to some Silt, dry, no odor (SP-SM)	SP-SM		174.4 1.5	1	MACRO) _{0.0}	5.0	
-	-	1.5 - 5.0 Brown and yellow brown, fine SAND, mottled black from 3.75 - 4.0 ft bgs, dry, no odor (SP)	SP		170.0		CORE		5.0	
5	170 170	5.0 - 8.5 Brown, fine to medium SAND, mostly medium, damp at 6.0 ft bgs, no odor (SP)	SP		5.0	2	MACRO) _{0 0}	5.0	
-		8.5 - 8.8 Brown, SILT, soft, wet, no odor (ML)	- ML SP CI -MI		167.4 166.6	-	CORE	0.0	5.0	
10 -	165	0.0 - 9.3 Brown, fine to medium SAND, wet, no odor (SP) 9.3 - 10.0 Light brown, SILTY CLAY, sof, plastic, wet, no odor (CL-ML)		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	165.9 10.0 164.9 11.0					
-		SLOUGH 11.0 - 15.0 Gray and red-brown, CLAY, with very fine SAND laminations, soft, plastic, wet, no odor (CL)	CL			3	MACRO CORE	0.0	<u>4.0</u> 5.0	
15 -	+	Boring completed at 15.0 ft			160.9					
-	- 160									
DER NJ-PA 05-24-06.GDT 2/5/10 	- - - - - - - - - - - - - - - - - - -									
	145									
DG IBM-KINGSTON SWMU G-SWMU M.GI	- 									
AA GEOTECH L	40 GA INSPECTOR: D.Gorman LOG SCALE: 1 in = 5 ft GA INSPECTOR: D.Gorman DRILLING COMPANY: Env. Probing Inc CHECKED BY: CDH DRILLER: W. Atkinson DATE: 12/28/09									

ATTACHMENT B MEMBRANE INTERFACE PROBE INFORMATION

DPG

SITE DESCRIPTION	BORING DESCRIPTION
Project Name: IBM/Kingston	MIP Boring ID: Bo A-MIP-60
Project Number: 083-87071	Date 1 <u>405/09</u> Start Time: 1053
Location: Kingston, NY	Date: 11/05/09 End Time: 1//7
	MIP Contractor. PEAK INV
WEATHER CONDITIONS	MIP Operator: T. Ath STA ALG
Temperature <u>40°F</u>	
Wind: <u>UGH7</u>	INSTRUMENT INFORMATION
Precipitation: <u>NONE</u>	Delectors Used: <u>EC/ECD/PID</u>
	Probe Typer MP4510 MP6520
	Probe S/N: P700-135
LOGGING INFORMATION	
MIPFile Name MUP 0028	
Pre-Log Response Test File Namer MP 7-09 82 7	
Response Test Compound: 16	Concentration; 2/Pm
Trip Time (seconds):	
Final Depth of Penetration: 21, 5 F-7	
Post Log Response Test File Name: MP7-0030	
Response Test Compound: <u>76</u>	Concentration: Z-PPM
Trip Time (seconds): 445-ec.	
OBSERVATIONS	
BASE: 106,000 MAP: 433,000	

Ð.

SITE DESCRIPTION

 $= \sum_{k=1}^{n-1} \sum_{\substack{k=1,\dots,k\\k=1}}^{n-1} \sum_{$

Project Name	IBM/Kingston	
Project Number:	083-87071	
Location:	Kingston, NY	

WEATHER CONDITIONS

Temperature	AIDE	
Wind:	NONÉ	
Precipitation:	Nolie	

MIP Boring ID: <u>Bo</u> A	-MIP-61
Dater 11/05/09	Start Time: 1153
Date 11/05/09	End Time 1213
MIP Contractor: <u>PEA</u>	KINV
MIP Operator: <u>1. A.</u>	LMGTRONG
INSTRUMENT INFORM	IATION
Delectors Used: <u>EC</u>	IECO/PID
Probe Type: MP45	10 MP65 <u>10</u>
Probe S/N:	120-135

BORING DESCRIPTION

LOGGING INFORMATION

MIPFileName <u>MIP-0031</u>	
Pre-Log Response Test File Name MP1-003A	
Response Test Compound: <u> </u>	Concentration: 2PPM
Trip Time (seconds):45.0	
Final Depth of Penetration: 21.5 F7	
Post Log Response Test File Name: MP1- DQ32	
Response Test Compound: TCE	Concentration: 21pm
Trip Time (seconds):	

OBSERVATIONS

BASE 999000	MAY!	356000
-------------	------	--------

 (516)

Adopted from ASTM D 7352-07

į.

6 ¹

7PG

K

SITE DESCRIPTION BORING DESCRIPTION Project Name: IBM/Kingston MIP Boring ID: BOA-MIP-62 Project Number: Date 11/05/09 083-87071 Start Time: 1706 Location: Kingston, NY Date: 11/05/01 End Time 1935 MIP Contractor. PEAK INV WEATHER CONDITIONS T. ARMSTRONG MIP Operator: Temperature 391F Wind: <u>CIGHT</u> INSTRUMENT INFORMATION Precipitation: NONG Delectors Used: SC/ECD/PIO Probe Type: MP4510 (MP6510) 1700-135 Probe S/N: LOGGING INFORMATION MIPFile Name MIP-0033 MPT-0032 Pre-Log Response Test File Name TLE Response Test Compound: ZPPM Concentration: 42sec Trip Time (seconds): 29.5 FY Final Depth of Penetration: Post Log Response Test File Name M17-0834 Response Test Compound: TCE Concentration: 2 7PM Trip Time (seconds): 45cm

OBSERVATIONS

BAS5	104,000	11AP. 262,0007

SITE DESCRIPTION BORING DESCRIPTION Project Name ____ IBM/Kingston MIPBoring ID: BOA-MIP-63 Project Number: 083-87071 Date: 11/05/09 Start Time: 1503 Location: Kingston, NY Date: 11/05/09 End Time 1525 MIP Contractor: PEAK INV WEATHER CONDITIONS T. PRIMSTRONG MIP Operator: Temperature 38°F Wind: _ [16 147 INSTRUMENT INFORMATION Precipitation: NOVE Delectors Used; ER/ECD/PID Probe Type: MP4510 MP6520 P700-135 Probe S/N: LOGGING INFORMATION MIPFile Name MIP-0035 Pre-Log Response Test File Name ______ MP 7 - 2034 Response Test Compound: TCE Concentration: 2PPM Trip Time (seconds): Final Depth of Penetralion: 2-1.5FT Post Log Response Test File Name: WP7-0036 TCE Response Test Compound: Concentration: 2.P.P.M Trip Time (seconds): 46 Sec

OBSERVATIONS

BASE ! BR, DOC	omar 3Bonoo	
		(S&)

Adopted from ASTM D 7352-07

114-12/18 600/ e-cf

DPO

SITE DESCRIPTION		BORING DESCI	RIPTION	
Project Name: IBM/Kingston		MIP Boring ID:	BOA-MIP-BQ	
Project Number: 083-87071		Date <u>11/11/09</u>	Start Time: d	1815
Location: Kingston, NY		Date: 11/11/09	End Time	241
WEATHER CONDITIONS		MIP Contractor: MIP Operator:	PEAK INV T. ARMSTRONG	
Wind: 15-20 - pH		INSTRUMENT I	NEORMATION	
Precipitation: NONE		Detectors Used:	EC/ECD/PID	
		Probe Type:	MP4510 (MP6520)	
		Probe S/N;	P700-135	
LOGGING INFORMATION	5			
MIP File Name	H1P-0072		_	
Pre-Log Response Test File Name	<u>HPT-001</u>			
Response Test Compound:	162		Concentration: / PPM	
Trip Time (seconds):	fise		-	
Final Depth of Penetration:	25,571		-	
Post Log Response Test File Name:	MPT-007	3	-	
Response Test Compound:	TCE		Concentration: 1PPM	
Trip Time (seconds):	44see			
OBSERVATIONS BASE! 12,000 MAX' 372,000	·			
·				

MPT-0470 scrap

Adopted from ASTM D 7352-07

Start Time: 09/@ End Time: <u>0935</u>

MP6540

DPG

1

SITE DESCRIPTION	BORING DESCRIPTION
Project Name IBM/Kingston	MIP Boring ID: Bo A - MIP-BI
Project Number:083-87071	Date <u>11/11/01</u> Start 1
Location: Kingston, NY	Date: <u>///////06</u> EndTi
WEATHER CONDITIONS	MIP Contractor: <u>PEAK INN</u>
Temperature 41°F	MIP Operator: <u>1. ARMS 1 Rp N G</u>
Wind: 15-70 M	INSTRUMENT INFORMATION
Precipitation: IVV NC	Detectors Used: <u>Ecisco/Pi</u> P
	Probe Type: MP4510 MP652
	Probe S/N: <u>P700-135</u>
LOGGING INFORMATION	

MIP File Name MUP - 0074	
Pre-Log Response Test File Name <u>Mt 1 - 007-3</u>	
Response Test Compound: TC 2	Concentration: / ? PM
Trip Time (seconds): 445	
Final Depth of Penetralion: 25, S F1	
Post Log Response Test File Namer MPT-00 75	
Response Test Compound: <u>TCE</u>	Concentration: 1 PP M
Trip Time (seconds): 435-cc	

OBSERVATIONS

BASE: 143,000 MAY: 435,000

SITE DESCRIPTION

Project Name	IBM/Kingston	
Project Number:	083-87071	
Location:	Kingston, NY	

Wind: 15-20 mph

BORING DESCRIPTION

1225

_	
Start Time:	1009
End Time	1035
on G	
	-
	Start Time: End Time:

Precipitation: NON4_

WEATHER CONDITIONS Temperature 41°F

Precipitation: <u>N9N4</u>		Detectors Used:	EC/ELD/PID
		Probe Type:	MP4510 (
		Probe S/N:	Pt02-135
LOGGING INFORMATION			
MIP File Name_	MIP-0076		_
Pre-Log Response Test File Name	MP1-0075		
Response Test Compound:	TCE		_ Concentration:
Trip Time (seconds): _	435EC		_
Final Depth of Penetration:	25,5F1		
Post Log Response Test File Name:	MPT-0077		-
Response Test Compound:	TCE		- Concentration:
Trip Time (seconds):	44ser		-

Concentration: PPM

MP65/0

ł

Concentration: ITM

OBSERVATIONS

BASE		116.00	MAV		395.000
10000	-	TIMP	14 11 12	×.	0.00,000

Adopted from ASTM D 7352-07

ATTACHMENT C GROUNDWATER SAMPLING INFORMATION

WELL DEVELOPMENT FIELD RECORD

JOB NAME DEVELOPED BY STARTED DEVEL. W.L. BEFORE DEVEL. WELL DEPTH: BEFORE DEVEL. STANDING WATER COLUMN (FT.) SCREEN LENGTH <u>S FT.</u>		KINGSTON 71 134-0 TIME 1 DATE TIME 13.50		JOB N DATE COMP W.L. / AFTE STAN DRILL	IO. (OF INSTALL. PLETED DEVEL. AFTER DEVEL. R DEVEL. DING WELL VOI ING WATER LO	283-87071 WELL NO. ISW-01 10/30/09 SHEET of 11/03/09 1435 DATE TIME 7.251 II/04/04 I045 DEPTH DATE TIME WELL DIA. (In) 2 gal. SS
	VOLUME		FIELD PA	RAMETERS		
DATE/TIME	REMOVED (GALS)	SPEC COND. (ms/cm)	TEMP. (C)	pH (s.u.)	TURBIDITY (NTU)	REMARKS (DTW, Pumping Rate, etc.)
11/03/09 1345	15	4.921	16.75	6.94	\$2000	
1360	210	2.007	16.96	6.72	42000	
1352						dry
	-	- 070	11 20		P	0
140+	150	1.912	16.79	6,70	12000	
1412	120	1.729	16.01	6.70	72000	dial
1410			_			U.Y.
14.27	~75	1727	1679	10:70	189	
14-29		1.1041		0.10)	due
		the state of the s				0
						ů.
			, ,			
		075				1
L					(yai.)	
DEVELOPMENT METHOD	: purgeo	wolume	with y	whale p	ump 9 te	flon lined turzing
	0					
				200-00		
NOTES: Will p Minutes, pr Duged dr	unped uged d	dry aft my after 1 17 ga	01 10 2, 12 2, 12 01019	gallon	v, waitre v, wait	fe waited 15 ied 15 mainutes

WELL DEVELOPMENT FIELD RECORD

JOB NAME DEVELOPED BY STARTED DEVEL. W.L. BEFORE DEVEL. WELL DEPTH: BEFORE DEVEL. STANDING WATER COLUMN (FT.) SCREEN LENGTH JBM-KINGS TGS DATE MAI DEPTH DATI DEPTH DATI				JGSTON JOB NO. OB3-87071 WELL NO. 1 1449 DATE OF INSTALL. 10/30/09 SHEET 1 1 1449 COMPLETED DEVEL. 11/03/09 / 153 1 1 153 DATE TIME 1 W.L. AFTER DEVEL. 11/03/09 / 153 DATE TIME DATE TIME 14,755 AFTER DEVEL. DEPTH DATE 14,755 AFTER DEVEL. WELL DIA. (In) STANDING WELL VOLUME ga 7. DRILLING WATER LOSS N) A ga			083-87071 WELL NO. TSW-00. 10/30/09 SHEET 1 of 1 11/03/09 / 1530 DATE TIME 7.06 / 11/04/09 11555 DEPTH DATE TIME WELL DIA. (In) 2 JUME	
[VOLUME FIELD PARAMETERS							
DATE	/TIME	REMOVED (GALS)	SPEC COND. (ms/cm)	TEMP. (C)	рН (s.u.)	TURBIDITY (NTU)	REMARKS (DTW, Pumping Rate, etc.)	
11/03/09	1453	15	7.27	18.72	6.98	\$2000		
-1.1.2.1.2.1	1458	210	7.09	19.09	6.71	#2000		
	HELL	-	-		-	_	dry.	
	1458						0	
	1503	~15	6.21	19.09	6.60	0001		
	1609	120	5,78	19,21	6.59	nm		
	1509	-	-			1	dry	
	1520	299	4.32	19.24	6.48	M.	0	
	1525	128	4.09	19.31	6.41	25		
	1529		-			-	dry	
							0	
			.20	- TOTA				
		I	100	= TOTAL	VOLUME RE	MOVED (gal.)		
DEVELOPME	ENT METHOD	: DUNGEC	t volun	re vitt	n ushal	e pump	+teflon lined tubing	
		0 1					0	
V								
		94. III I I I I I I I I I I I I I I I I I						
-				1. A. A.		- I	a the second second	
NOTES: V	vell p	imped	dry aft	er 106	pallono	, waited	+nen purgeci-10	
arc	illari	TO du	y, Her	DUNA	tet v	saited	then purged ~ 10	
a	allow	b of c	ini	(, U	
0)		5.		2120			
G:\FORM	S\Well Develo	pment Field R	lecord no DO					

GROUNDWATER SAMPLE COLLECTION FORM

SITE DESCRIPTION		SAMPLE DESCRIPTION		
Project Name: IBM/Ki	ngston	Sample ID:	TSW-01	
Project Number: 083-8	37071	Date:	1104/09	
Location: Kingst	on, NY	Time at Well Site:		
		Time of Sample Collection:	×140	
WEATHER CONDITIONS		Sampled by:	(TGS/DPG/CDH	
Temperature: 405		Sampling Method:	Teflon Bailer	
Wind:		Type of Sampling Equipment:	Teflon Bailer	
Precipitation:				
FIELD BLANK NOTES Field Blank Name:		VOLUME OF WATER TO B Casing Inside Diameter:	E PURGED	
Field Blank /Rinse water type:		Casing volume:	().1(03 gaint	
I ot Number		Volume of Water in Well:	(0,05 reet	(2051)
Analyzes		Well Volumes to Purces	gauous	(2.00-)
Anacysts.		Min Volume to be Purged:	E po gallons	(19.05L)
COLUMN OF WATER IN W Total Depth of Well	ELL BEFORE PURGE	Method of Purging: Well Purged Dry?:	PERISTALTIC F Yes No	UMP.
Column of Water in Well: Depth to Water after Purge:	<u>5.25</u> ft <u>6.25</u> ft ft TOC			

Appearance of Sample:

ilian, no alon

WELL PURGE CONTROL	Purge 1	Purge 2	Purge 3	Purge 4	Purge 5	Purge 6
Time:	1054	1104	1110	1115	1122	//30
Volume Removed (liters):	~4	18	112	216	120	-254
pH:	10.63	6.60	6.58	6.60	6.60	6.61
Specific Conductance (uS/cm):	1.649	1.695	1.60D	1.609	1.571	1.572
Temperature (Degrees C):	16,74	10,78	16.85	162.85	1.6.91	11.90
Turbidity (NTU):	1.33	1.01	0.86	0.77	0.53	0.51
Eh (millivolts):	:257.0	255,3	294.4	253.6	053.1	960.8
DO (mg/l) :	7.30	7.11	7,08	6,83	6,45	6.43

Starting Purge Time: Ending Purge Time; 1047 1131 Average Purge Rate: Total Volume Purged:

ml/min liters

SAMPLE CONTAINERS REQUIRED

Analysis	Container Number, Type and Size	Filter	Preservative and Source
Volatiles (8260B)	.3 (42) 40 ml vials	NA	HCL
	n vojema su se		
	and the second		

Chain of Custody #: Shuttle ID: Trip Blank ID: Lab Name: Air Bill #: Stress 735 988666 2021614 -221615

REMARKS: moderate vehicle walke noted duri mourie Stypel

Field Team TANYA E. SHARKET

GROUNDWATER SAMPLE COLLECTION FORM

					A Nor
SITE DESCRIPTION		SAMDLE	DESCRIPTION		
Project Name: IBM/Kin	aston	DANG 14	Sample ID:	TSW-0	2
Project Number: 083-8	7071	-	Date:	11 In-HO	Ā
Location: Kingsto	n, NY		Time at Well Site:	,	·
		Time of 3	Sample Collection:	1362	
WEATHER CONDITIONS			Sampled by:	TGS/DPG/	CDH
Temperature: 40 s			Sampling Method:	Tetion Ba	iler
Wilki:		_ Type of Sa	npling Equipment:	I ETION Ba	lier
Precipitation;					
FIELD BLANK NOTES		VOLUME (F WATER TO R	EPURGED	
Field Blank Name:		Casi	g Inside Diameter:	4 inc	bes
Field Blank /Rinse Water type:		_	Casing Volume:	0.163 gal	/ft
		Colum	o of Water in Well:	1.70 fee	t j
Lot Number:		Volum	e of Water in Well:	1.255 gal	lons (4,74L)
Analyses:		Well	Volumes to Purge:	<u>^S</u>	. (07.71)
CONTRINCT ON THE OTHER SHE WITH		Min. Vo	hume to be Purged;	<u></u>	lons (Jo. + L.)
COLUMN OF WATER IN WE	LL BEFORE PURGE		Method of Purging:	<u>HENISTER D</u> CI	rump
Dopth to Water 1			went Purgen Dry ::		
Column of Water in Wells	4,000 n 100				
Depth to Water after Purge:					
	at the also		H- L.I.		
Appearance of Sample:	cloudy al	al to blown	und in	woun.	
	0,		ant a Dea	NCOIL	
	B	D	emplytion		n
WELL PURGE CONTROL	Purge 1	Purge 2 Purg	e 3 - Purge 4	Purge 5	Purge 6
Volume Rem	nunci 1204		5 12.57	1270	300
+ Change Real	nH: 1, 38	1. 21. 10.	100	123	<u>~~~</u>
Specific Conducta	10903/cm): 3.080	2 21 2.1	72 3 097	3 000 1	020
Temperature	(Degrees C); 1044	19.56 195	4 19.62	19.76 1	9.69
Turb	idity (NTU): 428	12.70 1.3	6. 099	0.82 0	.83
Eb	(millivolts): 238	2374 23	8 8 782.9	185.61	95.9
	DO (mg/l) : 674	651 61	5 598	5.63 3	5.72
	· · · ·			-	
Starting	Purge Time: 1150	<u>e /</u>	verage Purge Rate:	m	/min
Ending	Purge 1100;	<u>0/</u> 20	tal volume Purgeo;	ua	ars
SAMPLE CONTAINERS REO	TIRED				
Analysis	Container Nu	mber. Type and Size	Filter	Preservative an	id Source
Volatiles (8260B)	3x (2) 4	0 ml vials	NA	HCL	
				1	
		<u> </u>		ļ	
				l	
	· · · · · · · · · · · · · · · · · · ·			ļ	
L	<u> </u>			L	
Chain of Custody #:	<u>ு ஆய்பு</u>	1615 REMA	RKS		
Shuttle ID:				· · · ·	
Trip Blank ID:	TP-6W-110409		<u></u>		
Lab Name:	LANCASTER		·		
Air Bill #:	86887359886	Field Team?	eader: TANUA	G.SHAR	K0.
		SAMP	LER		

SAMPLE COLLECTIO FORM	N		C	Golder
SITE DESCRIPTION Project Name	M/Kingston 33-87071 gston, NY 40's	SAMPLED Tir Time of San Sar Type of Sampl	ESCRIPTIO Sample II Dat ne at Well Sit sple Collectio Sampled b npling Methou ing Equipmen	N B- B- B- T- SHARLO Paistatic Pump (B) Tefion Bailer Poly & Silicon Hubing (L) Nylon Rope
FIELD BLANK NOTES Field Blank Name Field Blank /Rinse Water type Lot Number Analyses COLUMN OF WATER IN W Total Depth of Wate Depth to Water after Purg	$\frac{1}{1} \frac{1}{2} \frac{1}$	VOLUME OF 1 Casing Ir Column of Volume of Well Vol Min Volume Meth Wel	WATER TO as de Dramete as ing Voluma Water in Wel Water in Wel umes to Purge to be Purged od of Purging I Purged Dry?	BE PURGED Inches <u>0.0408</u> gal/ft feet <u>0.184</u> gallons <u>0.184</u> gallons <u>0.184</u> gallons <u>0.1846</u> gallons <u>1.0416</u>
Appearance of Sample <u>WELL PURGE CONTROL</u> Volume Re Specific Conduc Temperatur Tu Startim Endin	Clow, no od Time 7019 Time 5.088 Todata 5.088 Todata 5.088 Todata 5.038 Todata 5.0	Urge 2 Purge 3 925 /030 12 13 16 6,76 156 5:183 0.00 /7.99 11 /92 7.3 //5.8 0.03 /157 Average	Purge 4 1035 44 6,75 5.21D 18 115 115 115 139 e Purge Rate	Purge 5 Purge 6 1040 1045 15 16 6.75 6.74 5.218 5.214 17.97 17.97 9.3 $9.5.6$ $\mu 3.9$ 12.6 0.918 0.85
SAMPLE CONTAINERS RE Analysis Volatiles (8260B)	QUIRED Container Number, T)	ype and Size	Filter NA	Preserveluve and Source HCL

TABLE 1 - ATTACHMENT C FIELD PARAMETERS SUMMARY SUPPLEMENTAL TRIANGLE PLUME AREA INVESTIGATION FORMER IBM KINGSTON FACILITY KINGSTON, NEW YORK

	Sample ID Sample Date	BOA-TW-01-09 11/12/2009	TSW-01 11/4/2009	TSW-02 11/4/2009
Parameter	Unit of Measure			
Temperature	°C	17.97	16.9	19.69
pH	S.U.	6.74	6.61	6.57
Specific Conductivity	mS/cm	5.214	1.572	2.928
Turbidity	NTU	92.6	0.51	0.83
Dissolved Oxygen	mg/L	0.85	6.43	5.72
Oxidation Reduction Potential	mV	112.6	252.8	195.9
Depth to Water	ft-bmp	5.3	7.25	7.06

Notes:

Values are the final reading after five well volumes had been removed, after well was purged dry, or after stabilization except for depth to water which was collected prior to purging.

ORP - Oxidation Reduction Potential

°C - Degrees Celsius

mS/cm - milliSiemens per centimeter

BTU - Nephelometric Turbidity Units

mg/L - milligrams per liter

S.U. - Standard Units

ft-bmp - feet below measuring point

mV - millivolts

ATTACHMENT D LABORATORY DATA SHEETS

Sample Description: T5W-01 Grab Water Former Kingston Site

Page	1	of	2
------	---	----	---

	LLI LLI	Sample Group	# #	WW 116	582704 9612	9
·				NY		

Project Name: IBM Kingston: Additional Subsurface Investigation

Collected: 11/04/2009 11:40 by TGS

Submitted: 11/05/2009 09:00 Reported: 11/11/2009 at 13:52 Discard: 12/12/2009 IBM 8976 Wellington Road Manassas VA 20109

Account Number: 12694

KTSW1 SDG#: IBK07-23

CAT No.	Analysis Name		CAS Rumber	As Received Result	As secolved Nethod Detection Limit*	AS Received Limit of Quantitation	Dilution Factor
GC/MS	Volatiles	SW-846 82	60B 25mL	ug/1	ug/l	ug/l	
	1	purge					
02898	Benzene		71-43-2	N.D.	0.1	0.5	1
02898	Benzyl Chloride		100-44-7	N.D.	0.1	0.5	1
02898	Bromobenzene		108-86-1	N.D.	0.1	0.5	1
02898	Bromodichloromethane		75-27-4	N.D.	0.1	0.5	1
02898	Bromoform		75-25-2	N.D.	0.1	0.5	1
02898	Bromomethane		74-83-9	N.D.	0.1	0.5	1
02898	Carbon Tetrachloride		56-23-5	N.D.	0.1	0.5	L
02898	Chlorobenzene		108-90-7	N.D.	0.1	0.5	1
02698	Chloroethane		75-00-3	N.D.	0.1	0.5	1
02898	Chloroform		67-66-3	N.D.	0.1	0.5	1
02898	Chloromethane		74-87-3	N.D.	0.2	0.5	1
02898	2-Chlorotoluene		95-49-8	N.D.	0.1	0.5	1
02898	4-Chlorotoluene		106-43-4	N.D.	0.1	0.5	1
02898	Dibromochloromethane		124-48-1	N.D.	0.1	0.5	1
02898	Dibromomethane		74-95-3	N.D.	0.1	0.5	1
02898	1,2-Dichlorobenzene		95-50-1	N.D.	0.1	0.5	1
02898	1,3-Dichlorobenzene		541-73-1	N.D.	0.1	0.5	1
02898	1,4-Dichlorobenzene		106-46-7	N.D.	0.1	0.5	1
02898	Dichlorodifluoromethe	ane	75-71-8	N.D.	0.1	0.5	1
02898	1,1-Dichloroethane	1	75-34-3	0.3 J	0.1	0.5	1
02898	1,2-Dichloroethane		107-06-2	N.D.	0.1	0.5	1
02898	1,1-Dichloroethene	1	75-35-4	1.2	0.1	0.5	1
02898	1,2-Dichloroethene	(Total)	540-59-0	0.2 J	0.1	0.5	1
02898	1,2-Dichloropropane		78-87-5	N.D.	0.1	0.5	1
02898	cis-1,3-Dichloroprop	ene	10061-01-5	N.D.	0.1	0.5	1
02898	trans-1,3-Dichloropro	opane	10061-02-6	N.D.	0.1	0.5	1
02898	Ethylbenzene		100-41-4	N.D.	0.1	0.5	1
02898	Freon 113		76-13-1	N.D.	0.2	0.5	1
02896	Freon 123a		354-23-4	N.D.	0.2	0.5	1
02898	Methylene Chloride		75-09-2	N.D.	0.2	Q.5	1
02898	1,1,1,2-Tetrachloroe	thane	630-20-6	N.D.	0.1	0.5	1
02898	1,1,2,2-Tetrachloroe	thane	79-34-5	N.D.	0.1	0.5	1
02898	Tetrachloroethene		127-18-4	N.D.	0.1	0.5	1
02898	Toluene		108-88-3	N.D.	0.1	0.5	1
02898	1,1,1-Trichloroath	ane	71-55-6	0.1 J	0.1	0.5	1
02898	1,1,2-Trichloroethan	e	79-00-5	N.D.	0.1	0.5	1
02898	Trichloroethene		79-01-6	N.D.	0.1	0.5	1
02698	Trichlorofluorometha	ne	75-69-4	N.D.	0.1	0.5	1
02898	1,2,3-Trichloropropa	ne	96-18-4	N.D.	0.3	1.0	1
02898	Vinyl Chloride		75-01-4	N.D.	0.1	0.5	1
02898	Xylene (Total) 🦿		1330-20-7	N.D.	0.1	0.5	1
	-						

a i a

IBK07 0085

Lahcaster Laboratoriës, Inc. 2425 New Holland Pike PO Box 12425 Lancaster, PA 17605-2425 717-656-2300 Fax: 717-656-2681

*=This limit was used in the evaluation of the final result

2216 Rev. 3/27/06

Page 2 of 2

LLI Sample # WW 5827049 LLI Group # 1169612 NY

Project Name: IBM Kingston: Additional Subsurface Investigation

Former Kingston Site

Collected: 11/04/2009 11:40 by TGS

Sample Description: TSW-01 Grab Water

Submitted: 11/05/2009 09:00 Reported: 11/11/2009 at 13:52 Discard: 12/12/2009

State of New York Certification No. 10670

Lancaster Laboratories, Inc.

2425 New Holland Pike PO Box 12425 Lancaster, PA 17605-2425 717-656-2300 Fax: 717-656-2681

KTSW1 SDG#: IBK07-23

General Sample Comments

IBM

Account Number: 12694

8976 Wellington Road

Manassas VA 20109

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record

CAT No.	Analysis Name	Nethod	Trial#	Batch	Analysis Date and Time	Analyst	Dilution Factor
02898	EPA SW846/8260 (water-25ml)	5W-846 82608 2	25mL 1	C093131AA	11/09/2009 08:45	Holly Berry	1
01163	GC/MS VOA Water Prep	purge SW-846 5030B	1	C093131AA	11/09/2009 08:45	Holly Berry	1

2216 Rev. 3/27/06

LLI Sample # WW 5827050 LLI Group # 1169612

As Received

Project Name: IBM Kingston: Additional Subsurface Investigation

Former Kingston Site

Collected: 11/04/2009 13:05 by TGS Account Number: 12694 Submitted: 11/05/2009 09:00 IBM Reported: 11/11/2009 at 13:52

Discard: 12/12/2009

Sample Description: TSW-02 Grab Water

KTSW2 SDG#: IBK07-24*

CAT No.	Analysis Name	CAS Number	As Received Regult	Detection Limit*	Quantitation	Dilution Factor
GC/MS	Volatiles SW-84	6 8260B 25mL	ug/1	ug/1	ug/1	
	purge					
02898	Benzene	71-43-2	N.D.	0.1	0.5	1
02898	Benzyl Chloride	100-44-7	N.D.	0.1	0.5	1
02898	Bromobenzene	108-86-1	N.D.	0.1	0.5	ĩ
02898	Bromodichloromethane	75-27-4	N.D.	0.1	0.5	1
02898	Bromoform	75-25-2	N.D.	0.1	0.5	1
02896	Bromomethane	74-83-9	N.D.	0.1	0.5	1
02898	Carbon Tetrachloride	56-23-5	N.D.	0.1	0.5	1
02898	Chlorobenzene	108-90-7	N.D.	0.1	0.5	1
02898	Chloroethane	75-00-3	N.D.	0.1	0.5	1
02898	Chloroform	67-66-3	0.7	0.1	0.5	1
02898	Chloromethane	74-87-3	N.D.	0.2	0.5	1
02898	2-Chlorotoluene	95-49-8	N.D.	0.1	0.5	ī
02898	4-Chlorotoluene	106-43-4	N.D.	0.1	0.5	1
02898	Dibromochloromethane	124-48-1	N.D.	0.1	0.5	1
02898	Dibromomethane	74-95-3	N.D.	0.1	0.5	1
02898	1,2-Dichlorobenzene	95-50-1	N.D.	0.1	0.5	1
02898	1,3-Dichlorobenzene	541-73-1	N.D.	0.1	0.5	1
02898	1,4-Dichlorobenzene	106-46-7	N.D.	0,1	0.5	1
02898	Dichlorodifluoromethane	75-71-8	N.D.	0.1	0.5	1
02898	1,1-Dichloroethane	75-34-3	N.D.	0.1	0.5	1
02898	1,2-Dichloroethane	107-06-2	N.D.	0.1	0.5	1
02898	1,1-Dichloroethene	75-35-4	N.D.	0,1	0.5	1
02898	1,2-Dichloroethene (Total)	540-59-0	N.D.	0.1	0.5	1
02898	1,2-Dichloropropane	78-87-5	N.D.	0.1	0.5	1
02898	cis-1,3-Dichloropropene	10061-01-5	N.D.	0.1	0.5	1
02898	trans-1,3-Dichloropropene	10061-02-6	N.D.	0.1	0.5	1
02898	Ethylbenzene	100-41-4	N.D.	0.1	0.5	1
02898	Freon 113	76-13-1	N.D.	0.2	0.5	1
02898	Freon 123a	354-23-4	N.D.	0.2	0.5	1
02858	Methylene Chloride	75-09-2	N.D.	0.2	0.5	1
02896	1,1,1,2-Tetrachloroethane	630-20-6	N.D.	0.1	0,5	1
02898	1,1,2,2-Tetrachloroethane	79-34-5	N.D.	0.1	0.5	1
02898	Tetrachloroethene	127-18-4	N.D.	0.1	0.5	1
02898	Toluene	108-68-3	N.D.	0.1	0.5	1
02898	1,1,1-Trichloroethane	71-55-6	N.D.	0.1	0.5	1
02898	1,1,2-Trichloroethane	79-00-5	N.D.	0.1	0.5	1
02898	Trichloroethene	79-01-6	N.D.	0.1	0.5	1
02898	Trichlorofluoromethane	75-69-4	N.D.	0.1	0.5	1
02898	1,2,3-Trichloropropane	96-18-4	N.D.	0.3	1.0	1
02698	Vinyl Chloride	75-01-4	N.D.	0.1	0.5	1
02898	Xylène (Total)	1330-20-7	N.D.	0.1	0.5	1

18807 M087

.

NY

Page 1 of 2

8976 Wellington Road Manassas VA 20109

As Received

Sample Description: TSW-02 Grab Water Former Kingston Site

LLI Sample # WW 5827050 LLI Group # 1169612 NY

Project Name: IBM Kingston: Additional Subsurface Investigation

Collected: 11/04/2009 13:05 by TGS

Submitted: 11/05/2009 09:00 Reported: 11/11/2009 at 13:52 Discard: 12/12/2009

KTSW2 SDG#: IBK07-24*

General Sample Comments

State of New York Certification No. 10670

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record

CAT No.	Analymis Name	Mathod	Trial#	Batch	Analysis Data and Time	Analyst	Dilution Factor
02898	EPA SW846/8260 (water-25ml)	SW-846 82608 25ml	. 1	C093131AA	11/09/2009 09:07	Holly Berry	1
01163	#1 GC/MS VOA Water Prep	purge SW-846 5030B	1	C093131AA	11/09/2009 09:07	Holly Berry	l

LBX07 0088

estigation Account Number: 12694

IBM 8976 Wellington Road Manassas VA 20109

2216 Rev. 3/27/06

Page 1 of 2

Sample Description: BOA-TW-01-09 Grab Water	LLI Sampl LLI Group	e # WW 5836342 # 1170930
Project Name: IBM Kingston: Additional Subsurface Inv	restigation	NY
Collected: 11/12/2009 10:50 by TS	Account Number: 12694	
Submitted: 11/13/2009 09:10 Reported: 11/17/2009 at 15:04	IBM 8976 Wellington Road	

Manassas VA 20109

R rted: 11/17/2009 at 15:04 Discard: 12/18/2009

B0109 SDG#: IBK08-06

CAT No.	Analysis Name		CAS Number	As Received Result	As Received Nathod Detection Li <u>m</u> it*	As Received Limit of Quantitation	Dilution Factor
GC/MS	Volatiles	SW-846	8260B 25mL	ug/1	ug/l	ug/l	
		purge					
02898	Benzene		71-43-2	N.D.	0.1	0.5	1
02898	Benzyl Chloride		100-44-7	N.D.	0.1	0.5	1
02898	Bromobenzene		108-86-1	N.D.	0.1	0.5	1
02898	Bramodichlorometha	ane	75-27-4	N.D.	0.1	0.5	1
02898	Bronoform		75-25-2	N.D.	0,1	0.5	1
02898	Browomethane		74-83-9	N.D.	0.1	0.5	1
02898	Carbon Tetrachlor	ide	56-23-5	N.D.	0.1	0.5	1
02896	Chlorobenzene		108-90-7	N.D.	0.1	0.5	ĩ
02898	Chloroethane		75-00-3	N.D.	0.1	0.5	ĩ
02898	Chloroform		67-66-3	N.D.	0.1	D-5	1
02898	Chloromethane		74-87-3	N.D.	0.2	0.5	1
02698	2-Chlorotoluene		95-49-8	N.D.	0.1	0.5	1
02898	4-Chlorotoluene		106-43-4	N.D.	0.1	0.5	1
02898	Dibromochlorometha	ane	124-48-1	N.D.	0.1	0.5	1
02898	Dibromomethane		74-95-3	N.D.	0.1	0.5	1
02698	1,2-Dichlorobenzer	ne	95-50-1	N.D.	0.1	0.5	1
02698	1,3-Dichlorobenze	ne	541-73-1	N.D.	0.1	0.5	1
02898	1,4-Dichlorobenze	ne	106-46-7	N.D.	0.1	0.5	1
02898	Dichlorodifluorom	ethane	75-71-8	N.D.	0.1	0.5	1
02898	1.1-Dichloroethan	2	75-34-3	N.D.	0.1	0.5	ī
02898	1.2-Dichloroethan	2	107-06-2	N.D.	0.1	0.5	1
02898	1.1-Dichlorosthen		75-35-4	N.D.	0.1	0.5	ī
02898	1.2-Dichloroethen	e (Total)	540-59-0	N.D.	0.1	0.5	1
02898	1.2-Dichloropropa	ne	78-87-5	N.D.	0.1	0.5	1
02898	cis-1.3-Dichlorop	ropene	10061-01-5	N.D.	0.1	0.5	1
02898	trans-1.3-Dichlor	ppropene	10061-02-6	N.D.	0.1	0.5	1
02898	Ethylbenzene	· · · · · · · · · · · · · · · · · · ·	100-41-4	N.D.	0.1	0.5	1
02898	Freon 113		76-13-1	N.D.	0.2	0.5	ī
02898	Freon 123a		354-23-4	N.D.	0.2	0.5	1
02898	Methylene Chloride	2	75-09-2	N.D.	0.2	0.5	1
02898	1,1,1,2-Tetrachlo	roethane	630-20-6	N.D.	0.1	0.5	1
02898	1,1,2,2-Tetrachlo	roethane	79-34-5	N.D.	0.1	0.5	1
02898	Tetrachloroethene		127-18-4	N.D.	0.1	0.5	1
02898	Toluene		108-88-3	N.D.	0.1	0.5	ī
02898	1.1.1-Trichloroet	bāne	71-55-6	N.D.	0.1	0.5	รั
02896	1.1.2-Trichloroet	hane	79-00-5	N.D.	0.1	0.5	ī
02898	Trichloroethene	-	79-01-6	N.D.	0.1	0.5	1
02898	Trichlorofluorome	hane	75-69-4	N.D.	0.1	0.5	1
02898	1,2,3-Trichloropro	ppane	96-18-4	N.D.	0.3	1.0	1
02898	Vinyl Chlorida		75-01-4	N.D.	0.1	0.5	1
02898	Xylene (Total)		1330-20-7	N.D.	0.1	0.5	1

IBX08 #024

_ __

Page 2 of 2

Sample Description: BOA-TW-01-09 Grab Water	LLI	Sample	#	WW 5836342	
Project Name: IBM Kingston: Additional Subsurface In	vestigation	111	Group	8	NY
Collected: 11/12/2009 10:50 by TS	Account Number: 12694				
Submitted: 11/13/2009 09:10	IBM				
Reported: 11/17/2009 at 15:04	8976 Wellington Road				
Discard: 12/18/2009	Manassas VA 20109				
B0109 SDG#: IBK08-06					

General Sample Comments

State of New York Certification No. 10670 The temperature of the sample bottle(s) upon receipt at the lab was 6.8-7.5 C using an IR thermometer.

All QC is compliant unless otherwise noted. Please rafer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record

CAT No.	Analysis Name	Nethod T	rial#	Batch#	Analysis Data and Time	Analyst	Dilution
02898	EPA SW846/8260 (water-25ml) #1	SW-846 8260B 25mL	1	C093201AA	11/16/2009 19:22	Kerri E Koch	1
01163	GC/MS VOA Water Prep	SW-846 50308	1	C093201AA	11/16/2009 19:22	Kerri E Koch	1

IBK08 8025

_ .