

8976 Wellington Road Manassas, VA 20109

September 29, 2011

Mr. George Heitzman Division of Environmental Remediation New York State Dept. of Environmental Conservation 625 Broadway, 11th Floor Albany, New York 12233-7014

Re: IBM Kingston Facility, Part 373 Permit No. 3-5154-00067/00090 Transmittal of 2011 Semiannual Groundwater Monitoring Report

Dear Mr. Heitzman:

The purpose of this letter is to transmit the referenced document in compliance with the IBM Kingston site's Part 373 Permit, Module IV, Section D. 1 and Module V Sections H. 1. that was in effect for the previous semi-annual period (January 1, 2011 through June 30, 2011). This report also contains an evaluation of the effectiveness of groundwater collection and treatment implemented at this site.

This letter also serves to notify the Commissioner as per Module III condition C.1, that no new Solid Waste Management Units (SWMUs) as described in this permit condition have been identified at the facility during the previous semiannual period.

Per the Part 375 Order on Consent (Order) Index #D3-100236-11, dated July 8, 2011, the Part 373 RCRA permit was terminated and superseded by the Order,. Groundwater monitoring will continue as per the current approved Groundwater Monitoring Plan (GMP) prepared under the RCRA Permit until such time as a revised GMP under the Order has been approved by the agency. Reporting of routine groundwater monitoring activities will continue and occur as part of a Periodic Review Report.

After reviewing the information provided in this transmittal, should you have any questions please call Dean Chartrand at (703) 257-2583.

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Sincerely yours,

M. E. Muyen

M. E. Meyers Manager, Environmental Remediation Corporate Environmental Affairs

Cc:

Recipient Ken Brezner Wayne Mizerak James Reidy Kristin Kulow Steven Bates Alan Ginsberg NYSDEC Albany (electronic copy only) NYSDEC Region 3 (electronic copy only) NYSDEC Albany (electronic copy & hard copy) USEPA Region 2 (electronic copy & hard copy) NYSDOH, Oneonta (electronic copy only) NYSDOH, Troy (electronic copy only) Tech City Properties, Inc (hard copy)

Kingston, New York

2011 SEMIANNUAL GROUNDWATER MONITORING REPORT

Prepared for:

IBM Corporate Environmental Affairs Manassas, Virginia

September 29, 2011

Prepared by:

Groundwater Sciences Corporation

2601 Market Place Street, Suite 310 Harrisburg, Pennsylvania 17110 560 Route 52, Suite 202 Beacon, New York 12508

1108 Vestal Parkway East, Suite 2 Vestal, New York 13850

Table of Contents

1	INT	RODUCTION	1
2	OTH	HER ISSUES AND ACTIVITIES	3
	2.1	Monitoring Well MW-174S Area	3
	2.2	Monitoring Well MW-177S Area	6
	2.3	Monitoring Well MW-180S Area	7
	2.4	Supplemental Groundwater Monitoring	8
3	COF	RRECTIVE ACTION AND COMPLIANCE MONITORING	9
	3.1	Sampling and Analysis Plan	9
	3.2	Groundwater Elevations and Flow Directions	9
	3.3	Groundwater Chemistry	9
	3.3.1	1 Chemical Constituents in Groundwater	10
	3.3.2	2 Spatial Distribution	10
4	GRO	OUNDWATER COLLECTION AND TREATMENT	12
	4.1	System Operation Data	12
	4.1.1	1 Groundwater Collection System	12
	4.1.2	2 MW-504S	12
	4.1.3	3 North Parking Lot Area (Passive Groundwater Collection System)	13
	4.2	Groundwater Treatment System Effectiveness	13
	4.2.1	1 Groundwater Collection System (GWCS and NPLA)	13
	4.2.2	2 Extraction Well MW-504S	13
	4.3	Contaminant Recovery Levels	13
	4.4	Plume Capture Assessment	14
5	REF	FERENCES	16

Table of Tables

- Table 1-1Summary of Abbreviations Used in this Report
- Table 2-1Summary of Recent Sampling Results (MW-173S and MW-174S)
- Table 2-2Summary of Recent Sampling Results (MW-177S and MW-176S)

Table of Figures

- Figure 1-1 Site Location Map
- Figure 1-2 Site Areas Map
- Figure 3-1 Surficial Sand Aquifer Groundwater Elevation Contour Map, First Quarter 2011
- Figure 3-2 Surficial Sand Aquifer Groundwater Elevation Contour Map, Second Quarter 2011
- Figure 3-3 Tetrachloroethene Concentration Contour Map
- Figure 3-4 Trichloroethene Concentration Contour Map
- Figure 3-5 1,2-Dichloroethene (Total) Concentration Contour Map
- Figure 3-6 Vinyl Chloride Concentration Contour Map

- Figure 3-7 1,1,1-Trichloroethane Concentration Contour Map
- Figure 3-8 1,1-Dichloroethene Concentration Contour Map
- Figure 3-9 1,1-Dichloroethane Concentration Contour Map
- Figure 3-10 Freon® 113 Concentration Contour Map
- Figure 3-11 Freon® 123a Concentration Contour Map
- Figure 3-12 1,2-Dichloroethane Concentration Contour Map
- Figure 3-13 Chloroform Concentration Contour Map
- Figure 3-14 1,1,2-Trichloroethane Concentration Contour Map
- Figure 4-1 Groundwater Collection System Trench Extension Location Map
- Figure 4-2 Cumulative Gallons Pumped GWCS
- Figure 4-3Average Pumping Rate GWCS
- Figure 4-4 Time vs. TCA-Series Concentration, GWCS (semi-log plot)
- Figure 4-5 Time vs. TCE-Series Concentration, GWCS (semi-log plot)
- Figure 4-6 Cross Section Along NE Extension of GWCS
- Figure 4-7 Groundwater Elevation Comparison, TMP-2 and MW-184SA
- Figure 4-8 Groundwater Elevation Comparison, TMP-1 and MW-185SA
- Figure 4-9 Groundwater Elevation Comparison, MW-508S and MW-508SA
- Figure 4-10 Time vs. TCA-Series Concentration, MW-184SA
- Figure 4-11 Time vs. TCE-Series Concentration, MW-184SA
- Figure 4-12 Time vs. TCA-Series Concentration, MW-185SA
- Figure 4-13 Time vs. TCE-Series Concentration, MW-185SA

Table of Plates

Plate 1 Soil Boring, Test Pit and Well Location Map

Table of Appendices

- Appendix A Groundwater and Field QA/QC Data Report
- Appendix B Field Data Sheets and Chain of Custody Forms
- Appendix C Groundwater Elevation Table
- Appendix D Groundwater Withdrawal Data Tables (GWCS and NPLA)
- Appendix E Groundwater Extraction and Treatment System Data Report including Flux Calculations

1 INTRODUCTION

Groundwater Sciences Corporation (GSC) has prepared this report at the request of the International Business Machines Corporation, Manassas, Virginia (IBM). As such, this report satisfies semiannual reporting requirements specified in Module IV, Section D, Paragraph 1 and Module V, Section H, Paragraph 1 of the former Part 373 Permit for the former IBM Kingston, New York facility (IBM Kingston). Per the Part 375 Order on Consent (Index #D3-100236-11), dated July 8, 2011, the Part 373 RCRA Permit was terminated and superceded by the Order. The location of the Kingston site is shown on Figure 1-1.

This report provides the information required in the referenced paragraphs of Module IV and Module V, including sampling results and the analysis and interpretation of groundwater flow and chemistry data. This report also satisfies the reporting requirement relating to the evaluation of the corrective measures program which includes groundwater extraction from the Groundwater Collection System (GWCS) and well MW-504S (Figure 1-2).

This report also includes information with regard to an evaluation of the contaminant levels with respect to the groundwater concentration levels listed in Module V (an annual reporting requirement specified in Module IV, Section D, paragraph 2 (d)). The occurrence of chemical constituents in groundwater at levels exceeding the groundwater standard is reflected by the value of the lowest concentration contour on each concentration contour map presented in this report. Where the current New York State Groundwater Quality (Part 703) Standard (NYSGQS) is less than the groundwater concentration level listed in Module V, the comparison value used for these concentration contour maps is the NYSGQS and is so noted on the plate.

The remainder of this report is organized into the following sections. Section 2 reports on other issues and activities completed during the previous semiannual period. Section 3 reports the results of the sampling data collected during the semiannual reporting period of this report (January 1, 2011 through June 30, 2011). Section 4 presents the semiannual evaluation of the corrective measures program, including a report on the contaminant recovery levels and treatment efficiency data. Table 1-1 provides a summary of abbreviations used in this report.

Table 1-1. Summary of Abbreviations Used in this Report							
111-TCA	1,1,1-Trichlorethane						
11-DCA	1,1-Dichloroethane						
12-DCA	1,2-Dichloroethane						
11-DCE	1,1-Dichloroethene						
PCE	Tetrachloroethylene						
TCE	Trichloroethylene						
12-DCE	1,2-Dichloroethene (total)						
VC	Vinyl Chloride						
112-TCA	1,1,2-Trichloroethane						
DCM	Methylene Chloride						
TCM	Chloroform						
CIS13-DCPRE	cis-1,2-Dichloropropene						
Freon® 113	1,1,2-trichloro-1,2,2-trifluoroethane						
Freon® 123a	1,2-dichloro-1,2,2- trifluoroethane						
VOCs	Volatile Organic Compounds						
ug/l	Micrograms per liter						

2 OTHER ISSUES AND ACTIVITIES

The following sections present information relating to activities conducted during the preceding semiannual period.

2.1 Monitoring Well MW-174S Area

Beginning with the second quarter 2002, several volatile organic compounds (11-DCA, 11-DCE and 12-DCE) have been detected in samples collected from monitoring well MW-174S at concentrations that exceed the New York State Groundwater Quality Standard (NYSGQS). MW-174S is located along the southwestern portion of the 42-inch storm sewer and is within its capture zone (refer to Figures 3-1 and 3-2). Volatile organic compound (VOC) concentrations detected in monitoring well MW-173S, on the opposite side of the 42-inch storm sewer, have been consistent with historical VOC concentrations. Both MW-173S and MW-174S are monitored quarterly as per the approved GMP. Table 2-1 includes a summary of the VOC data for these two locations since the increase in concentrations at MW-174S (111-TCA; 11-DCA; 12-DCA; 11-DCE; TCE; 12-DCE; 112-TCA; and DCM). Sample results shown in **bold** text in Table 2-1 exceed the NYSGQS for that parameter. Two parameters were detected in the most recent sample collected from MW-174S; neither exceeded the NYSGQS. IBM will continue to monitor this area as per the GMP.

Table 2-1. Summary of Recent Sampling Results, MW-173S and MW-174S (All Results in ug/I)									
Location	Parameter	111-TCA	11-DCA	12-DCA	11-DCE	TCE	12-DCE (tot)	112-TCA	DCM
	NYSGQS	5 ug/l	5 ug/l	0.6 ug/l	5 ug/l	5 ug/l	5 ug/l	1 ug/l	5 ug/l
MW-173-S	03/15/02	47	340	7.7	230	72	20	4.1	ND@5
	06/11/02	58	470	7.6	330	59	19	4.6	ND@5
	09/19/02, avg	70.5	350	13	270	83	28	7.95	ND@5
	12/12/02	78	320	13	260	84	29	8.5	ND@5
	03/03/03	46	240	6.3	230	46	15	3.6	ND@1
	05/30/03	82	400	11	320	68	12	6.5	1.0
	9/2/03, avg	41.5	255	1.95	220	47.5	8.3	4.3	ND@1
	11/19/03	49	340	8.4	290	67	21	5.7	ND@1
	1/22/04	110	780	13	520	130	31	7.7	ND@1
	6/9/04	89	390	6.9	340	77	26	4.3	ND@1
	9/14/04, avg	48	280	9.3	250	55.5	41	5.85	ND@1
	12/9/04	66	360	10	300	75	17	6.4	ND@1
	2/23/05	63	430	9.6	350	76	23	5.3	ND@1
	5/19/05	77	340	10	270	70	25	7.4	ND@1
	8/9/05	38	260	ND@1	215	52	11	ND@1	ND@1
	12/19/05	42	180	8.6	130	34	20	4.6	ND@1
	2/21/06	48	260	7.0	190	44	15	3.0	ND@1
	5/12/06	37	190	6.4	150	49	12	2.5	ND@1
	9/14/06, avg	21	115	4.85	135	45.5	11.5	1.95	ND@1
	11/15/06	25	170	5.1	160	43	12	2.2	ND@1
	3/13/07	30	130	ND@1	150	54	14	1.6	ND@1
	5/23/07	15	55	2.0	51	29	5.6	0.85 J	ND@1
	7/31/07, avg	12.5	125	2.35	109	40	7.35	1.1	ND@1
	12/5/07	24	120	18	110	52	6.3	2.7	ND@1
	1/30/08	32	160	5.1	190	47	12	2.2	ND@1
	5/28/08	34	240	5.6	190	44	11	2.4	ND@1
	9/9/08, avg	14	185	3.6	130	37.5	10.5	1.7	ND@1
	12/3/08	36	290	8.2	210	62	18	3.5	ND@1
	2/12/09	19	140	4.3	110	39	12	1.9	ND@1
	5/13/09	29	300	7.6	200	50	15	3.1	ND@1
	9/21/09, avg	13	175	4.6	125	42	13	1.55	ND@1
	12/11/09	15	190	4.9	120	56	15	1.6	ND@1
	2/15/10	14	160	3.8	90	45	11	1.2	1.2
	5/24/10	12	190	4.0	160	36	8.3	1.3	1.5
	8/24/10	4.4 / 11	81 / 63	1.2 / 3.7	59 / 46	18 / 40	2.9 / 8.0	0.52 J / 1.3	ND@1
	12/13/10	19	180	6.2	160	41	12	2.9	ND@1
	2/4/11	15	170	3.9	150	42	8.9	1.6	ND@1
	5/26/11	14	150	4.7	150	42	8.5	1.9	ND@1

Table 2-1. Summary of Recent Sampling Results, MW-173S and MW-174S (All Results in ug/I) (continued)										
Location	Parameter	111-TCA	11-DCA	12-DCA	11-DCE	TCE	12-DCE (tot)	112-TCA	DCM	
-	NYSGQS	5 ug/l	5 ug/l	0.6 ug/l	5 ug/l	5 ug/l	5 ug/l	1 ug/l	5 ug/l	
MW-174-S	03/15/02	0.96	1.4	ND@1	0.75	ND@1	ND@1	ND@1	ND@1	
-	06/11/02	1.5	2.6	ND@1	1.1	ND@1	ND@1	ND@1	ND@1	
-	09/19/02	3.2	12	ND@1	21	ND@1	3.2	ND@1	ND@1	
	12/12/02	3.7	19	1.5	30	0.6	16	ND@1	1.2	
	03/03/03	1.3	5.0	ND@1	9.8	0.7	3.3	ND@1	ND@1	
-	05/30/03	0.9	3.2	ND@1	6.7	1.4	1.1	ND@1	1.0	
-	9/2/03	1.0	2.8	ND@1	6.8	12	1.2	ND@1	ND@1	
	11/19/03	1.1	3.6	ND@1	9.7	15	4.8	ND@1	ND@1	
	1/22/04	ND@1	1.6	ND@1	5.9	19	3.1	ND@1	ND@1	
	6/9/04	0.6	1.6	ND@1	3.7	4.9	1.8	ND@1	ND@1	
-	9/14/04	1.1	3.1	ND@1	13	15	9.5	ND@1	ND@1	
	12/9/04	3.3	12	ND@1	22	16	4.1	ND@1	ND@1	
	2/23/05	1.5	4.2	ND@1	8.5	17	2.5	ND@1	ND@1	
	5/19/05	0.97	1.9	ND@1	5.1	6.3	1.2	ND@1	ND@1	
	8/9/05	3.0	11.0	0.57	29	33	6.9	ND@1	ND@1	
-	12/19/05	2.7	14.0	ND@1	38	47	15	ND@1	ND@1	
	2/21/06	1.3	3.5	ND@1	13	38	3.1	ND@1	ND@1	
	5/12/06	3.5	12	0.65 J	31	32	7.3	ND@1	ND@1	
	9/14/06	1.7	5.0	ND@1	14	49	3.8	ND@1	ND@1	
	11/15/06	1.7	8.2	ND@1	20	41	6.0	ND@1	ND@1	
	3/13/07	1.7	5.3	ND@1	14	27	3.6	ND@1	ND@1	
	5/23/07	0.95 J	2.4	ND@1	5.3	13	1.1	ND@1	ND@1	
	7/31/07	0.50 J	0.89 J	ND@1	3.5	22	1.1	ND@1	ND@1	
	12/5/07	2.0	8.4	ND@1	20	45	5.2	ND@1	ND@1	
	1/30/08	1.5	7.2	0.49 J	18	39	5.1	ND@1	ND@1	
	5/28/08	0.43 J	1.4	ND@1	4.2	14	1.1	ND@1	ND@1	
	9/9/08	1.2	4.0	0.22J	9.3	45	3.4	0.12 J	ND@1	
	12/3/08	2.4	13	0.78 J	24	45	7.2	0.30 J	ND@1	
	2/12/09	0.94 J	4.4	0.29 J	9.9	36	3.4	0.14 J	ND@1	
	5/13/09	0.96 J	2.6	ND@1	6.3	22	1.7	ND@1	ND@1	
	9/21/09	1.2	2.7	0.28 J	8.9	36	3.7	ND@1	ND@1	
	12/11/09	0.73 J	0.70 J	0.16 J	2.7	21	1.3	ND@1	ND@1	
Į Į	2/15/10	0.51 J	0.54 J	ND@1	2.3	24	0.89 J	ND@1	ND@1	
l [5/24/10	0.51 J	0.46 J	ND@1	1.8	8.1	0.48 J	ND@1	ND@1	
Į Į	8/24/10	0.43 J	0.28 J	ND@1	0.99 J	8.8	0.29 J	ND@1	ND@1	
[12/13/10	0.80 J	0.89 J	ND@1	3.8	24	1.2	ND@1	ND@1	
l [2/4/11	0.75 J	1.2	ND@1	3.6	18	1.1	ND@1	ND@1	
	5/26/11	ND@1	ND@1	ND@1	0.23 J	4.8	ND@1	ND@1	ND@1	

2.2 Monitoring Well MW-177S Area

During 2004, low-level detections of several VOCs were observed in monitoring well MW-177S. The VOCs included 11-DCA, 12-DCA, 11-DCE and 12-DCE (total) and all detections were below the NYSGQS. MW-177S is located along the southwestern portion of the 42-inch storm sewer in the general area of MW-174S. VOC concentrations in monitoring well MW-176S, on the opposite side of the 42-inch storm sewer from MW-177S, were consistent with historical VOC concentrations. Recent results from these monitoring wells are summarized in Tables 2-2a and 2-2b. Sample results shown in **bold** text exceed the NYSGQS for that parameter. Only 11-DCA and 11-DCE were detected in the most recent sampling at MW-177S, but they did not exceed the NYSGQS. IBM will continue to monitor these locations at a quarterly frequency, as per the approved GMP.

Table 2-2. Summary of Recent Sampling Results, MW-176S (All Results in ug/I)									
Location	Parameter	111-TCA	11-DCA	12-DCA	11-DCE	12-DCE (tot)	VC		
Location	NYSGQS	5 ug/l	5 ug/l	0.6 ug/l	5 ug/l	5 ug/l	2 ug/l		
MW-176-S	1/21/04	3.1	28	ND@1	58	12	ND@1		
	6/9/04	1.0 J	9.9	ND@1	12	3.4	ND@1		
	9/14/04	3.2	27	ND@1	58	16	ND@1		
	12/9/04	2.1	19	ND@1	32	4.1	ND@1		
	2/23/05	3.4	25	ND@1	59	8.3	ND@1		
	5/19/05	2.2	19	ND@1	35	6.3	ND@1		
	8/9/05	ND@1	34	ND@1	68	7.2	ND@1		
	12/15/05	0.60 J	14	ND@1	11	3.5	ND@1		
	2/21/06	2.0	20	ND@1	44	4.0	ND@1		
	5/10/06	2.7	26	ND@1	52	5.0	ND@1		
	9/14/06	2.2	17	ND@1	38	4.1	ND@1		
	11/15/06	1.4	13	ND@1	29	3.2	ND@1		
	3/13/07	2.5	18	ND@1	41	4.3	ND@1		
	5/23/07, avg	0.99	12.5	ND@1	22	1.9	ND@1		
	7/31/07	2.6	29	ND@1	52	4.4	ND@1		
	12/5/07	1.4	12	ND@1	29	2.7	ND@1		
	1/30/08	1.4	12	0.24 J	28	2.5	ND@1		
	5/28/08, ave	1.2	16	0.22 J	33.5	2.5	ND@1		
	9/10/08	2.8	25	0.66 J	55	5.6	0.31 J		
	12/3/08	1.7	15	0.32 J	32	2.8	0.17 J		
	3/11/09	1.5	16	0.44 J	32	3.4	0.20 J		
	5/13/09, avg	1.7	17	0.39 J	37.5	4.3	0.24 J		
	9/21/09	2.2	18	0.54 J	39	5.2	0.17 J		
	12/8/09	2.2	22	0.33 J	49	6.0	0.24 J		
	2/15/10	1.7	18	0.38 J	44	4.7	0.16 J		
	5/25/10	1.6 / 1.7	14 / 15	0.17 J / 0.24 J	34 / 35	3.9 / 4.1	0.19 J / 0.27 J		
	8/24/10	1.3	15	0.14 J	29	3.0	0.16 J		
	12/13/10	1.4	13	0.21 J	27	2.8	ND@1		
	2/3/11	1.4	16	0.17 J	33	4.2	0.23 J		
	5/26/11	1.5 / 1.5	11/11	ND@1/ND@1	22 / 21	2.8 / 2.7	ND@1/ND@1		

Table 2-2. Summary of Recent Sampling Results, MW-176S (All Results in ug/l) (continued)									
Location	Parameter	111-TCA	11-DCA	12-DCA	11-DCE	12-DCE (tot)	VC		
Location	NYSGQS	5 ug/l	5 ug/l	0.6 ug/l	5 ug/l	5 ug/l	2 ug/l		
MW-177-S	1/22/04	ND@1	ND@1	ND@1	ND@1	ND@1	ND@1		
	6/9/04	ND@1	ND@1	4.2	ND@1	ND@1	ND@1		
	9/14/04	ND@1	3.0	ND@1	2.5	0.54 J	ND@1		
	12/9/04	ND@1	2.6	ND@1	2.0	ND@1	ND@1		
	2/23/05	ND@1	3.4	ND@1	2.0	ND@1	ND@1		
	5/19/05	ND@1	2.6	ND@1	1.1	ND@1	ND@1		
	8/9/05	ND@1	4.9	ND@1	6.4	ND@1	ND@1		
	12/19/05	ND@1	2.8	ND@1	2.2	ND@1	ND@1		
	2/21/06	ND@1	4.2	ND@1	2.4	ND@1	ND@1		
	5/10/06	ND@1	4.2	ND@1	3.9	ND@1	ND@1		
	9/14/06	ND@1	4.0	ND@1	2.6	ND@1	ND@1		
	11/15/06	ND@1	6.9	ND@1	4.9	ND@1	ND@1		
	3/13/07	ND@1	6.6	ND@1	11	ND@1	ND@1		
	5/23/07	ND@1	5.6	ND@1	6.3	ND@1	ND@1		
	7/31/07	ND@1	8.0	ND@1	9.5	ND@1	ND@1		
	12/5/07	0.83 J	13	ND@1	17	0.77 J	ND@1		
	1/30/08	0.52 J	13	ND@1	17	0.73 J	0.14 J		
	5/28/08	0.40 J	14	ND@1	20	0.64 J	ND@1		
	9/9/08	0.59 J	14	ND@1	21	0.87 J	ND@1		
	12/3/08	0.42 J	7.5	ND@1	11	0.48 J	ND@1		
	2/12/09	0.34 J	8.8	ND@1	12	0.58 J	0.22 J		
	5/13/09	ND@1	5.4	ND@1	6.9	0.40 J	0.15 J		
	9/21/09	ND@1	3.1	ND@1	3.7	0.23 J	ND@1		
	12/11/09	ND@1	5.9	ND@1	8.6	0.51 J	ND@1		
	2/15/10	ND@1	3.2	ND@1	4.8	0.27 J	ND@1		
	5/25/10	ND@1	3.2	ND@1	1.7	0.20 J	ND@1		
	8/24/10	ND@1	4.6	ND@1	5.7	0.22 J	ND@1		
	12/13/10	ND@1	6.2	ND@1	6.0	0.41 J	ND@1		
	2/3/11	ND@1	7.2	ND@1	8.9	0.40 J	0.15 J		
	5/26/11	ND@1	2.2	ND@1	2.2	ND@1	ND@1		

2.3 Monitoring Well MW-180S Area

Beginning in the fourth quarter of 2007, TCE has been sporadically detected in monitoring well MW-180S at concentrations that exceed the NYSGQS for this parameter (5 ug/l). MW-180S is located along the southeastern portion of the 42-inch storm sewer and to the west of Building 031. The most recent detection of this parameter at a concentration that was above the NYSGQS was during the third quarter 2009 (5.8 ug/l). TCE was detected in the first half of 2011 but at concentrations that were below the NYSGQS: 1.2 ug/l (first quarter 2011) 0.53 ug/l (second quarter 2011). IBM will continue to monitor this location at a quarterly frequency, as per the approved GMP.

2.4 Supplemental Groundwater Monitoring

In early 2009, IBM proposed to sample two monitoring wells, MW-169S and MW-609S, on a quarterly basis in relation to ongoing Parcel 1 area investigations. Based on the 2009 supplemental quarterly sampling, IBM proposed in the 2009 Annual Groundwater Monitoring Report to include these two wells in the GMP for the site. IBM proposed both wells to be sampled for VOCs and field parameters only with MW-169S to be sampled quarterly and MW-609S to be sampled semiannually. Sampling results for the semiannual period are presented in Appendix A of this report. It should be noted that historical monitoring at MW-609S included unconfirmed detections of Dichlorodifluormethane (DCDFM) and CBZ and; several detections of DCM. No other VOCs were detected during the historical monitoring at this location. The most recent sampling results from MW-609S show no VOCs were detected. Historical sampling at well MW-169S did not detect any VOCs to be present; first quarter 2011 sampling indicates the presence of 11-DCA and 11-DCE at levels below the NYSGQS. VOCs were not detected at well MW-169S in the second quarter.

Also as discussed with the NYSDEC beginning in early 2009 and as proposed in the 2009 Annual Groundwater Monitoring report as an addendum to the current approved Groundwater Monitoring Plan, IBM sampled two monitoring wells, MW-181S and MW-182S. Results for the first and second quarter 2011 are presented in Appendix A of this report. Second quarter results from MW-181S for TCE, 11-DCA, and 11-DCE exceeded the NYSGQS; all detections were less than 10 ug/l. Current sampling results detected several additional parameters including: 111-TCA; Freon® 113; 12-DCE and TCM. None of these parameters were detected at concentrations that exceed the NYSGQS. Historical monitoring at MW-182S included consistent detections of 111-TCA; 11-DCA; 11-DCE and TCE. In addition, several other parameters, including Freon® 113 and 12-DCE, were inconsistently detected during the historical monitoring at this location. Of these only two parameters, TCE and 11-DCE, were consistently detected above the NYSGQS. Current sampling results detected the same suite of parameters to those historically detected at this location. As with the historical data only two parameters, TCE and 11-DCE, were detected above the NYSGQS in the most recent sampling results.

3 CORRECTIVE ACTION AND COMPLIANCE MONITORING

This section reports on the results of corrective action and compliance monitoring for this site for the previous semiannual period. Spatial analyses of this data are also presented.

3.1 Sampling and Analysis Plan

Sampling and analysis of groundwater was performed at the site for the previous semiannual period in accordance with protocols contained in the current approved Groundwater Monitoring Plan (GMP). In addition, as noted in Section 2 of this report, supplemental sampling was conducted at four locations during both the first and second quarters. The results of all of the routine and supplemental groundwater sampling rounds and the associated Quality Assurance/ Quality Control data are reproduced in Appendix A. Appendix B contains copies of the Sampling Field Data sheets for the previous semiannual period. Copies of the Chain of Custody forms for the previous semiannual period are also provided in Appendix B.

3.2 Groundwater Elevations and Flow Directions

During each quarterly sampling round, water levels are measured in those wells designated in the current approved GMP as hydraulic effectiveness wells. The results of each of these water level surveys were converted to groundwater elevations and are published in Appendix C. Groundwater elevation measurements were then used to generate groundwater elevation contour maps for the shallow water table aquifer underlying most of the developed portion of the site. Figures 3-1 and 3-2 present groundwater elevation contour maps for the previous two quarters of 2011. These figures satisfy the semiannual permit conditions in Module IV, paragraph D 1. (b) (i) and (ii). An enlargement of the northern portion of the site, including the GWCS and the installed trench extension are included on these figures. Also shown on these figures are the locations of the storm sewer systems on the site that extend below the water table, the location of the GWCS trench (including the trench extension) and the utility trench barrier wall.

3.3 Groundwater Chemistry

As discussed in Section 3.1, groundwater samples were collected at the locations and sampling frequencies specified in the current approved GMP. In addition to these routine sampling activity results, the results from the supplemental sampling conducted at four locations during the reporting

period are also presented in Appendix A together with the associated Quality Assurance/ Quality Control data.

3.3.1 Chemical Constituents in Groundwater

The principal hazardous constituents identified in groundwater at this site are three VOCs: 111-TCA, TCE and PCE. In addition to these three principal constituents, transformation products of two of these constituents are also present in groundwater at this site. These include the TCA transformation products 11-DCE and 11-DCA and the TCE transformation product 12-DCE. In addition VC; Freon® 113; TCM and Freon® 123a have been detected in groundwater at the site.

3.3.2 Spatial Distribution

As per permit condition Module IV paragraph D.1.(b)(i), isoconcentration maps for monitored groundwater flow zones were prepared based on data obtained during the second quarter 2011. The second quarter subset of the semiannual data was selected because more locations were sampled during the second quarter than the first. These isoconcentration maps were prepared and include the delineation of the limits of hydraulic control, as per permit condition IV, paragraph D. (1) (b) (ii). Figures 3-3 through 3-14 correspond to the following compounds: PCE; TCE; 1,2-DCE; VC; TCA; 1,1-DCE; 1,1-DCA; Freon® 113; Freon® 123a; 1,2-DCA; TCM and 1,1,2-TCA.

As noted in Section 2 of this report, several VOCs have been detected in monitoring wells MW-174S and MW-177S, located along the southwestern portion of the 42-inch storm sewer. The most recent results for MW-174S indicate no parameters exceeded the NYSGQS. For the two parameters that were detected in the most recent sampling of MW-177S, none exceed the NYSGQS. Monitoring wells MW-173S and MW-176S, both lie on the opposite side of the 42-inch storm sewer, and showed concentrations consistent with historical levels for all compounds monitored. Since the fourth quarter 2009, TCE has been detected in well MW-180S but at concentrations that were below the NYSGQS. For the most recent sample, TCE was detected at 0.53 ug/l. MW-180S is located along the southeastern portion of the 42-inch storm sewer and to the west of Building 031. All of these wells are monitored quarterly as per the approved GMP.

As noted in Section 2.2, during early 2009, IBM initiated supplemental quarterly sampling at four locations: MW-169S, MW-609S; MW-181S and MW-182S. These results are included on the data

postings presented in Figures 3-3 through 3-13. For the period posted, the second quarter 2011, no VOCs were detected in wells MW-169S and MW-609S. For wells MW-181S and MW-182S, reported concentrations for the two quarters were within the ranges historically detected at these locations.

The limits of hydraulic control on Figure 3-2 through 3-13 are shown as the site control perimeter. This boundary begins in the northeast corner of the site along the 60-inch storm sewer, then follows the GWCS trench to the west and south along Enterprise Drive, where it continues southward along the limit of perennially saturated shallow sand and finally following the 42-inch storm sewer to the southeast and east. In general, groundwater plumes in the shallow sand aquifer are contained within this boundary with the exception of those plumes associated with the former IWSL area.

4 GROUNDWATER COLLECTION AND TREATMENT

This section presents the operating data for the groundwater collection systems currently active at this site, these are the GWCS and a passive groundwater collection system created as part of a storm water segregation project (NPLA). Extraction well MW-504S was offline during the current reporting period. This section also contains information relating to pumping rates and volumes, contaminant recovery levels and treatment efficiency data as per Module V, Section H, Paragraph 1. In addition, this section provides a plume capture assessment.

4.1 System Operation Data

System operation data for the groundwater collection systems currently active at the site are detailed in the following subsections.

4.1.1 Groundwater Collection System

The GWCS consists of a groundwater cutoff trench running parallel to the east side of Enterprise Drive and along the northern perimeter of the site. A separate, lateral trench extends to the southeast from a manhole connection to the main cutoff trench near its northernmost extent, as shown on Figure 4-1.

Appendix D includes a table presenting the withdrawal rates from the GWCS beginning in August 1990. Figure 4-2 is a plot of cumulative gallons pumped versus time from August 1990 through June 30, 2011. Figure 4-3 is a plot of the average pumping rate in gpm versus time for this same period. The chemistry of groundwater extracted from the GWCS is presented on time versus log concentration graphs for TCA-series and TCE-series compounds (Figure 4-4 and Figure 4-5, respectively). Appendix E contains a summary table of samples collected during the reporting period for the GWCS.

4.1.2 MW-504S

Groundwater extraction was begun at well MW-504S on April 1, 1987. On February 12, 2007, IBM notified the NYSDEC of the shutdown of MW-504S. IBM subsequently submitted a request to permanently shutdown MW-504S. MW-504S was not pumped during the first and second quarter of 2011.

The North Parking Lot Area Passive Groundwater Collection System (NPLA) went online in December 1997. Appendix D contains tabular summaries of metering data for this system. Appendix E contains a summary of the monitoring results for this extraction system for the reporting period.

4.2 Groundwater Treatment System Effectiveness

There is one groundwater treatment system currently installed and operating at the former IBM Kingston site to treat groundwater extracted by the GWCS and the NPLA. The effectiveness of this treatment system is discussed in the following subsections.

4.2.1 Groundwater Collection System (GWCS and NPLA)

Summary tables of individual sample results for upstream samples collected during the previous annual period are presented in Appendix E. Samples collected downstream of the air strippers during the reporting period are also presented in Appendix E. Throughout this reporting period, these tray aeration units show consistent VOC removal with effluent concentrations within the limits set for SPDES discharge.

4.2.2 Extraction Well MW-504S

As noted in section 4.1.2, MW-504S was not in operation for the January 1, 2011 to June 30, 2011 reporting period.

4.3 Contaminant Recovery Levels

As stated previously, Module V, Section H, Paragraph 1, requires IBM to report pumping rates and volumes, contaminant recovery levels and treatment efficiency data to the Commissioner on a semi-annual basis. A summary of the flux calculations for this semiannual period (January 1, 2011 through June 30, 2011) can be found in Appendix E.

Flux calculations presented in Appendix E utilized average concentrations for detected constituents and average daily flow values for the previous semiannual period (January 1, 2011 through June 30, 2011). As shown on the tables presented in Appendix E, a total of approximately 11.3 million gallons of groundwater was collected and treated at the GWCS or, on average, 61,727 gallons per day. The average pumping rate over the semiannual period calculates to 42.9 gpm. For this semiannual period, approximately 20.5 pounds of VOCs were removed by the GWCS.

As shown on the tables presented in Appendix E, a total of approximately 918,280 gallons of groundwater were collected from the NPLA pump stations, or, on average, 5,032 gallons per day for the previous semiannual period. Approximately 2.1 pounds of VOCs were removed by this passive groundwater collection system.

As noted in Section 4.1.2, MW-504S was removed from service on February 12, 2007.

4.4 Plume Capture Assessment

As stated previously, the historical groundwater elevation contours, NPLA plume chemistry and the storm sewer flow and chemistry all suggested that a portion of the NPLA plume was not being captured by the GWCS. Efforts have been implemented to maximize the effectiveness of this system by extending the GWCS interceptor trench and installing a utility trench barrier wall, both as shown on Figure 1-2. The conceptual design for the trench extension was presented to NYSDEC in a report titled Groundwater Collection System Trench Extension Report, (GSC, July 25, 1994) and the extension has been operational since May 1995. Review of the second quarter 2011 surficial sand aquifer groundwater elevation contour map (Figure 3-2), reveals that the extension is capturing groundwater flow between the former northeast terminus of the GWCS and the 60-inch storm sewer. The attached Figure 4-6 illustrates the configuration of the trench, manholes and monitoring wells along the northeast lateral of the GWCS including the trench extension. This cross section shows the pre-construction (April, 1994) and post-construction water tables (water levels collected May 6, 2011 adjacent to the trench extension on its north side. Based on the change in the water table, it can be concluded that the trench extension has lowered downgradient water levels by capturing groundwater that had previously flowed off the site to the north before the trench extension was constructed.

Graphical representations of groundwater elevation for similarly located well pairs (prior to and after reinstallation) are presented as Figures 4-7 through 4-9. As can be seen from these graphs,

groundwater elevation measurements in the reinstalled wells typically are lower than in a similarly located well prior to the trench extension installation. Lastly, a review of the groundwater elevation contour map prepared from the quarterly water level measurements collected during the second quarter 2011 (Figure 3-2) shows the inferred direction of groundwater flow in the area north of the GWCS trench extension is back toward the trench extension. Analysis of groundwater flow (Figure 3-2) and review of operation data for the GWCS indicate that most of the groundwater flow containing VOCs in the NPLA is collected by the GWCS for treatment prior to discharge under a SPDES-permit issued to IBM. The balance of that flow is intercepted by the 60-inch storm sewer and discharged under a SPDES-permit issued to the current site owner. This analysis also indicates that the portion of the NPLA plume, which previously may have discharged off-site to the north, is now being collected by the GWCS trench extension (Figure 3-2).

Visual inspection of the time versus TCA- and TCE-series concentration plots presented as Figures 4-10 through 4-13 for MW-184SA and MW-185SA indicate concentrations have decreased in these wells since the installation of the GWCS extension.

Analysis of groundwater flow (Figure 3-2) indicate that most of the groundwater flow containing VOCs in the southern and western portions of the site is intercepted by the 42-inch storm sewer and discharged under a SPDES-permit issued to the current site owner.

5 REFERENCES

- Dames & Moore, September 22, 1992, *Seventh Annual Hydrogeological Monitoring Program*, IBM Corporation, Kingston, New York.
- Golder Associates, April 2, 2009, Triangle Plume Area Work Plan, Former IBM Kingston Facility and associated RCRA Facility Investigation Management Plans, Kingston, New York..
- Groundwater Sciences Corporation, July 2, 1993, Postclosure Permit Application, Former Industrial Waste Sludge Lagoon, IBM Corporation, Kingston, New York.
- Groundwater Sciences Corporation, July 30, 1993, Corrective Action for Soil Waste Management Units, RCRA Facility Investigation, Scope of Work, IBM Corporation, Mid-Hudson Valley, New York.
- Groundwater Sciences Corporation, November 11, 1993, Groundwater Collection System Unscheduled Shutdown Event, IBM Corporation, Mid-Hudson Valley, New York.
- Groundwater Sciences Corporation, March 1, 1994, *Sewer Systems Assessment Report*, IBM Corporation, Mid-Hudson Valley, New York.
- Groundwater Sciences Corporation, July 25, 1994, Groundwater Collection System Trench Extension Report, IBM Corporation, Mid-Hudson Valley, New York.
- Groundwater Sciences Corporation, September 27, 1994, 1993-94 Annual Groundwater Monitoring Report, IBM Kingston Facility, Mid-Hudson Valley, New York.
- Groundwater Sciences Corporation, December 27, 1994, Newly Identified Solid Waste Management Units, Corrective Action RCRA Facility Investigation Scope of Work, IBM Kingston Facility, Mid-Hudson Valley, New York.
- Groundwater Sciences Corporation, September 27, 1995, 1994-95 Annual Groundwater Monitoring Report, IBM Kingston Facility, Mid-Hudson Valley, New York.
- Groundwater Sciences Corporation, April 12, 1996, *Revised RFI Scope of Work, Groundwater Plume and Source Investigation*, IBM Kingston Facility, Hudson Valley, New York.
- Groundwater Sciences Corporation, April 12, 1996, *RCRA Facility Investigations, Soil Gas Surveys* and Sewer Systems Sampling, IBM Kingston Facility, Hudson Valley, New York.
- Groundwater Sciences Corporation, March 14, 1997, *RCRA Facility Assessments of Newly Identified Solid Waste Management Units*, IBM Kingston Facility, Hudson Valley, New York.
- Groundwater Sciences Corporation, March 14, 1997, *RCRA Facility Investigation: Groundwater Plumes and Sources*, IBM Kingston Facility, Hudson Valley, New York.

- Groundwater Sciences Corporation, March 28, 1997, 1996 Annual Groundwater Monitoring Report, IBM Kingston Facility, Hudson Valley, New York.
- Groundwater Sciences Corporation, September 29, 1997, 1997 Semiannual Groundwater Monitoring Report, IBM Kingston Facility, Hudson Valley, New York.
- Groundwater Sciences Corporation, March 30, 1998, 1997 Annual Groundwater Monitoring Report, IBM Kingston Facility, Hudson Valley, New York.
- Groundwater Sciences Corporation, May 20, 1998, RCRA Facility Investigation Work Plan - Former Industrial Waste Sludge Lagoon, IBM Kingston Facility, Hudson Valley, New York.
- Groundwater Sciences Corporation, March 31, 1999, 1998 Annual Groundwater Monitoring Report, IBM Kingston Facility, Hudson Valley, New York.
- Groundwater Sciences Corporation, April 16, 1999, RCRA Facility Investigation Former Industrial Waste Sludge Lagoon, IBM Kingston Facility, Hudson Valley, New York.
- Groundwater Sciences Corporation, December 9, 1999, Expanded RCRA Facility Investigation Work Plan, Former Industrial Waste Sludge Lagoon - Arsenic and VOC Plume Source Investigation, IBM Kingston Facility.
- Groundwater Sciences Corporation, March 31, 2000, 1999 Annual Groundwater Monitoring Report, IBM Kingston Facility, Hudson Valley, New York.
- Groundwater Sciences Corporation, September 30, 2000, 2000 Semiannual Groundwater Monitoring Report, IBM Kingston, Hudson Valley, New York.
- Groundwater Sciences Corporation, March 28, 2001, 2000 Annual Groundwater Monitoring *Report*, IBM Kingston, Hudson Valley, New York.
- Groundwater Sciences Corporation, September 30, 2001, 2001 Semiannual Groundwater Monitoring Report, IBM Kingston, Hudson Valley, New York.
- Groundwater Sciences Corporation, March 28, 2002, 2001 Annual Groundwater Monitoring *Report*, IBM Kingston, Hudson Valley, New York.
- Groundwater Sciences Corporation, September 28, 2002, 2002 Semiannual Groundwater Monitoring Report, IBM Kingston, Kingston, New York.
- Groundwater Sciences Corporation, March 31, 2003, 2002 Annual Groundwater Monitoring *Report*, Former IBM Kingston, Kingston, New York.

- Groundwater Sciences Corporation, September 30, 2003, 2003 Semiannual Groundwater Monitoring Report, Former IBM Kingston, Kingston, New York.
- Groundwater Sciences Corporation, March 31, 2004, 2003 Annual Groundwater Monitoring *Report*, Former IBM Kingston, Kingston, New York.
- Groundwater Sciences Corporation, September 29, 2004, 2004 Semiannual Groundwater Monitoring Report, Former IBM Kingston, Kingston, New York.
- Groundwater Sciences Corporation, March 31, 2005, 2004 Annual Groundwater Monitoring *Report*, Former IBM Kingston, Kingston, New York.
- Groundwater Sciences Corporation, September 30, 2005, 2005 Semiannual Groundwater Monitoring Report, Former IBM Kingston, Kingston, New York.
- Groundwater Sciences Corporation, March 31, 2006, 2005 Annual Groundwater Monitoring *Report*, Former IBM Kingston, Kingston, New York.
- Groundwater Sciences Corporation, September 30, 2006, 2006 Semiannual Groundwater Monitoring Report, Former IBM Kingston, Kingston, New York.
- Groundwater Sciences Corporation, March 31, 2007, 2006 Annual Groundwater Monitoring *Report*, Former IBM Kingston, Kingston, New York.
- Groundwater Sciences Corporation, September 28, 2007, 2007 Semiannual Groundwater Monitoring Report, Former IBM Kingston, Kingston, New York.
- Groundwater Sciences Corporation, March 28, 2008, 2007 Annual Groundwater Monitoring *Report*, Former IBM Kingston, Kingston, New York.
- Groundwater Sciences Corporation, September 28, 2008, 2008 Semiannual Groundwater Monitoring Report, IBM Kingston, Kingston, New York.
- Groundwater Sciences Corporation, March 29, 2009, 2008 Annual Groundwater Monitoring *Report*, Former IBM Kingston, Kingston, New York.
- Groundwater Sciences Corporation, September 29, 2009, 2009 Semiannual Groundwater Monitoring Report, IBM Kingston, Kingston, New York.
- Groundwater Sciences Corporation, March 30, 2010, 2009 Annual Groundwater Monitoring *Report*, Former IBM Kingston, Kingston, New York.
- Groundwater Sciences Corporation, September 29, 2010, 2010 Semiannual Groundwater Monitoring Report, IBM Kingston, Kingston, New York.

- Groundwater Sciences Corporation, March 30, 2011, 2010 Annual Groundwater Monitoring Report, Former IBM Kingston, New York.
- Wehran-EnviroTech, August 1994, *Technical Specifications for the Extension of the Groundwater Collection System*, IBM Kingston Facility, Mid-Hudson Valley, New York.

⁹³⁰⁰²⁻⁰⁵⁹⁻E1 / 09-17-09

Former IBM Kingston Site Cumulative Gallons Pumped Groundwater Collection System August 1990 through June 30, 2010

Former IBM Kingston Site Average Pumping Rate Groundwater Collection System August 1990 through June 30, 2010

Concentration (ug/l)

Concentration (ug/l)

Former IBM Kingston Site Groundwater Elevation Comparison TMP-2 and MW-184SA

Figure 4-7

Groundwater Elevation (feet amsl)

Former IBM Kingston Site Groundwater Elevation Comparison TMP-1 and MW-185SA

Figure 4-8

Former IBM Kingston Site Groundwater Elevation Comparison MW-508S and MW-508SA

Groundwater Elevation (feet amsl)

Former IBM Kingston Site

Appendix A

Groundwater and Field QA/QC Data Reports

SAMPLE LOCATION SAMPLE DESCRIPTION SAMPLE DATE LABORATORY SAMPLE I.D. SAMPLE RUN NUMBER SAMPLE COMMENT CODES	G 4	MW-006-S ROUNDWATER 05/31/11 20-44124-8 01	MW-102-R GROUNDWATER 06/02/11 420-44239-7 01	MW-109-S GROUNDWATER 02/04/11 420-41396-4 01	MW-109-S GROUNDWATER 05/31/11 420-44124-6 01
PARAMETER	UNITS				
ACID EXTRACTABLES					
PHENOLS, TOTAL	ug/l	NA	NA	NA	NA
BASE/NEUTRAL EXTRACTABLES					
1.2-DICHLOROBENZENE	ug/l	ND@1	ND@1	ND@1	ND@1
1,3-DICHLOROBENZENE	ug/l	ND@1	ND@1	ND@1	ND@1
1,4-DICHLOROBENZENE	ug/l	ND@1	ND@1	ND@1	ND@1
2-CHLOROETHYLVINYL ETHER	ug/l	ND@1	ND@1	ND@1	NDØL
PCB 1016	ug/1	NA	NA NA	NA	NA
PCB 1221	ug/1	NA	NA	NA	NA
PCB 1232 PCB 1242	ug/1	NA	NA	NA	NA
PCB 1242	ug/1	NA	NA	NA	NA
PCB 1254	ug/l	NA	NA	NA	NA
PCB 1260	ug/1	NA.	NA	NA	NA
INDICATOR PARAMETERS					
	nH	7.17	7.67	6,98	6.95
SPECIFIC CONDUCTANCE	umhos/cm	2582	1581	678	565
TEMPERATURE	с	12.4	14.9	8.2	13.3
METALS					
ANTIMONY DISSOLVED	mg/l	NA	NA	NA	NA
ARSENIC, DISSOLVED	mg/l	NA	NA	NA	NA
CADMIUM, DISSOLVED	mg/l	NA	NA	NA	NA
LEAD, DISSOLVED	mg/l	NA	ND@0.0010	NA	NA
SILVER, DISSOLVED	mg/l	NA	NA	NA	NA
VOLATILE ORGANICS					
1.1.1.2-TETRACHLOROETHANE	ug/l	ND@1	NDØ1	ND@1	ND@1
1,1,1-TRICHLOROETHANE	ug/1	1.6	ND@1	0.70J	1.5
1,1,2,2-TETRACHLOROETHANE	ug/l	ND@1	ND@1	ND@1	ND@1
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	ug/l	ND@1	ND@1	ND@1	ND@1

SAMPLE LOCATION SAMPLE DESCRIPTION		MW-006-S GROUNDWATER	MW-102-R GROUNDWATER	MW-109-S GROUNDWATER	MW-109-S GROUNDWATER
SAMPLE DATE		05/31/11	06/02/11	02/04/11	05/31/11
LABORATORY SAMPLE I.D.		420-44124-8	420-44239-7	420-41396-4	420-44124-6
SAMPLE RUN NUMBER		01	01	01	01
SAMPLE COMMENT CODES					
PARAMETER	UNITS				
VOLATILE ORGANICS (Continued)					
1,1,2-TRICHLOROETHANE	ug/l	ND@1	ND@1	ND@1	ND@1
1,1-DICHLOROETHANE	ug/l	0.57J	ND@1	0.52J	0.67J
1,1-DICHLOROETHYLENE	ug/l	1.1	ND@1	0.44J	0.26J
1,2,3-TRICHLOROPROPANE	ug/l	ND@l	ND@1	ND@1	ND@1
1,2-DICHLORO-1,2,2-TRIFLUOROETHANE	ug/l	ND@1	ND@1	ND@1	ND@1
1,2-DICHLOROETHANE	ug/l	0.17J	ND@1	0.23J	0.18J
1,2-DICHLOROETHYLENE, TOTAL	ug/l	0.19J	ND@1	0.51J	0.26J
1,2-DICHLOROPROPANE	ug/l	ND@1	ND@1	ND@1	ND@1
1 - CHLOROHEXANE	ug/l	NA	NA	NA	NA
2 - CHLOROTOLUENE	ug/l	NA	NA	NA	NA
4 - CHLOROTOLUENE	ug/l	ND@1	ND@1	ND@1	ND@1
BENZENE	ug/l	NA	NA	NA	NA
BENZYL CHLORIDE	ug/l	ND@1	ND@1	ND@1	ND@1
BROMOBENZENE	ug/l	ND@1	ND@1	ND@1	ND@1
BROMODICHLOROMETHANE	ug/l	ND@1	ND@1	ND@1	ND@1
BROMOFORM	ug/l	ND@1	ND@1	ND@1	ND@1
BROMOMETHANE	ug/l	ND@1	ND@1	ND@1	ND@1
CARBON TETRACHLORIDE	ug/l	ND@1	ND@1	ND@1	ND@1
CHLOROBENZENE	ug/l	ND@1	ND@1	ND@1	ND@1
CHLORODIBROMOMETHANE	ug/l	ND@1	ND@1	ND@1	ND@1
CHLOROETHANE	ug/l	ND@1	ND@1	ND@1	ND@1
CHLOROFORM	ug/l	ND@1	ND@1	ND@1	ND@1
CHLOROMETHANE	ug/l	ND@1	ND@1	ND@1	ND@1
CIS-1,3-DICHLOROPROPYLENE	ug/l	NDØ1	ND@1	ND@1	ND@1
DIBROMOMETHANE	ug/l	ND@1	ND@1	ND@1	ND@1
DICHLORODIFLUOROMETHANE	ug/l	ND@1	ND@1	ND@1	ND@1
ETHYLBENZENE	ug/l	NA	NA	NA	NA
METHYLENE CHLORIDE	ug/l	ND@1	ND@1	ND@1	ND@1
TETRACHLOROETHYLENE	ug/1	ND@1	ND@1	ND@1	ND@1
TOLUENE	ug/l	NA	NA	NA	NA
TRANS-1,3-DICHLOROPROPENE	ug/l	ND@1	ND@1	ND@1	ND@1
TRICHLOROETHYLENE	ug/l	9.8	ND@1	6.9	6.1
TRICHLOROFLUOROMETHANE	ug/l	ND@1	ND@1	ND@1	ND@1
VINYL CHLORIDE	ug/l	ND@1	ND@1	0.17J	ND@1
XYLENE, TOTAL	ug/l	NA	NA	NA	NA

SAMPLE LOCATION SAMPLE DESCRIPTION SAMPLE DATE LABORATORY SAMPLE I.D. SAMPLE RUN NUMBER SAMPLE COMMENT CODES		MW-110-AS GROUNDWATER 05/31/11 420-44124-2 01	MW-111-S GROUNDWATER 05/31/11 420-44124-3 01	MW-113-S GROUNDWATER 05/26/11 420-44062-8 01
PARAMETER	UNITS			
ACID EXTRACTABLES				
PHENOLS, TOTAL	ug/l	NA	NA	NA
BASE/NEUTRAL EXTRACTABLES				
1.2-DICHLOROBENZENE	ug/1	ND@1	ND@1	ND@1
1, 3 - DICHLOROBENZENE	ug/1	ND@1	ND@1	ND@1
1,4-DICHLOROBENZENE	ug/l	ND@1	ND@1	ND@1
2-CHLOROETHYLVINYL ETHER	ug/l	ND@1	ND@1	ND@1
PCB 1016	ug/l	NA	NA	NA
PCB 1221	ug/l	NA	NA	NA
PCB 1232	ug/l	NA	NA	NA
PCB 1242	ug/l	NA	NA	NA
PCB 1248	ug/l	NA	NA	NA
PCB 1254	ug/l	NA	NA	NA
PCB 1260	ug/1	NA	NA	NA
INDICATOR PARAMETERS				
РН	рH	7.76	7.25	6,69
SPECIFIC CONDUCTANCE	umhos/cm	760	1500	1950
TEMPERATURE	с	12.6	12.8	12.0
METALS				
ANTIMONY, DISSOLVED	mg/l	NA	NA	NA
ARSENIC, DISSOLVED	mg/l	NA	NA	NA
CADMIUM, DISSOLVED	mg/l	NA	NA	NA
LEAD, DISSOLVED	mg/l	NA	NA	NA
SILVER, DISSOLVED	mg/l	NA	NA	NA
VOLATILE ORGANICS				
1,1,1,2-TETRACHLOROETHANE	ug/l	ND@1	ND@1	ND@1
1,1,1-TRICHLOROETHANE	ug/1	1.4	1.2	NDal
1, 1, 2, 2-TETRACHLOROETHANE	ug/l	ND@1	ND@1	ND@1
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	ug/1	ND@1	ND@1	ND@1

MW-110-AS

SAMPLE LOCATION SAMPLE DESCRIPTION SAMPLE DATE LABORATORY SAMPLE I.D. SAMPLE RUN NUMBER SAMPLE COMMENT CODES		MW-110-AS GROUNDWATER 05/31/11 420-44124-2 01	MW-111-S GROUNDWATER 05/31/11 420-44124-3 01	MW-113-S GROUNDWATER 05/26/11 420-44062-8 01
PARAMETER	UNITS			
VOLATILE ORGANICS (Continued)				
1,1,2-TRICHLOROETHANE	ug/l	ND@1	ND@1	ND@1
1.1-DICHLOROETHANE	ug/l	0.41J	ND@1	0.24J
1.1-DICHLOROETHYLENE	ug/l	0.47J	ND@1	0.92J
1.2.3-TRICHLOROPROPANE	ug/l	ND@1	ND@1	ND@1
1.2-DICHLORO-1.2.2-TRIFLUOROETHANE	ug/l	ND@1	ND@1	ND@1
1.2-DICHLOROETHANE	ug/l	ND@1	ND@1	ND@1
1.2-DICHLOROETHYLENE, TOTAL	ug/l	ND@1	0.81J	0.24J
1.2-DICHLOROPROPANE	ug/l	ND@1	ND@1	ND@1
1-CHLOROHEXANE	ug/l	NA	NA	NA
2 - CHLOROTOLUENE	ug/l	NA	NA	NA
4 - CHLOROTOLUENE	ug/l	ND@1	ND@1	ND@1
BENZENE	ug/l	NA	NA	NA
BENZYL CHLORIDE	ug/l	ND@1	ND@1	ND@1
BROMOBENZENE	ug/l	ND@1	ND@1	ND@1
BROMODICHLOROMETHANE	ug/l	ND@1	NDØl	ND@1
BROMOFORM	ug/l	ND@1	ND@1	ND@1
BROMOMETHANE	ug/l	ND@1	ND@1	ND@1
CARBON TETRACHLORIDE	ug/l	ND@1	ND@1	ND@1
CHLOROBENZENE	ug/l	ND@1	ND@1	ND@1
CHLORODIBROMOMETHANE	ug/l	ND@1	ND@1	ND@1
CHLOROETHANE	ug/1	ND@1	ND@1	ND@1
CHLOROFORM	ug/l	5.4	ND@1	ND@1
CHLOROMETHANE	ug/1	ND@1	ND@1	ND@1
CIS-1.3-DICHLOROPROPYLENE	ug/l	ND@1	ND@1	ND@1
DIBROMOMETHANE	ug/l	NDØl	ND@1	ND@1
DICHLORODIFLUOROMETHANE	ug/l	ND@1	NDØ1	ND@1
ETHYLBENZENE	ug/1	NA	NA	NA
METHYLENE CHLORIDE	ug/l	ND@1	ND@1	ND@1
TETRACHLOROETHYLENE	ug/1	ND@1	0.19J	ND@1
TOLUENE	ug/1	NA	NA	NA
TRANS-1.3-DICHLOROPROPENE	ug/l	ND@1	ND@1	ND@1
TRICHLOROETHYLENE	ug/1	13	5.9	6.0
TRICHLOROFLUOROMETHANE	ug/1	ND@1	NDØ1	ND@1
VINVI, CHLORIDE	ug/1	ND@1	ND@1	ND@1
XYLENE, TOTAL	ug/1	NA	NA	NA

SAMPLE LOCATION SAMPLE DESCRIPTION SAMPLE DATE LABORATORY SAMPLE I.D. SAMPLE RUN NUMBER SAMPLE COMMENT CODES		MW-114-S GROUNDWATER 05/26/11 420-44062-12 01	MW-116-S GROUNDWATER 05/26/11 420-44062-15 01	MW-117-S GROUNDWATER 05/26/11 420-44062-19 01
PARAMETER	UNITS			
ACID EXTRACTABLES				
PHENOLS, TOTAL	ug/l	NA	NA	NA
BASE/NEUTRAL EXTRACTABLES				
1 2-DICHLOROBENZENE	ug/1	ND@1	ND@1	ND@1
1.3-DICHLOROBENZENE	ug/l	ND@1	ND@1	ND@1
1,4-DICHLOROBENZENE	ug/l	ND@1	ND@1	ND@1
2-CHLOROETHYLVINYL ETHER	ug/l	ND@1	ND@1	ND@1
PCB 1016	ug/l	NA	NA	NA
PCB 1221	ug/l	NA	NA	NA
PCB 1232	ug/l	NA	NA	NA
PCB 1242	ug/l	NA	NA	NA
PCB 1248	ug/1	NA	NA	NA NA
PCB 1254	ug/l	NA	NA	NA
PCB 1260	ug/I	NA	MA	
INDICATOR PARAMETERS				
PH	рH	6.34	6.94	6.57
SPECIFIC CONDUCTANCE	umhos/cm	387	385	802
TEMPERATURE	С	13.7	13.7	14.9
METALS				
ANTIMONY DISSOUVED	mc / 1	NA	NA	NA
ARSENIC, DISSOLVED	mg/1	NA	NA	NA
CADMIUM, DISSOLVED	mg/l	ŇA	NA	NA
LEAD, DISSOLVED	mg/l	NA	NA	NA
SILVER, DISSOLVED	mg/l	NA	NA	NA
VOLATILE ORGANICS				
1.1.1.2-TETRACHLOROETHANE	ug/l	ND@1	ND@1	ND@1
1.1.1-TRICHLOROETHANE	ug/1	1.6	1.5	1.2
1,1,2,2-TETRACHLOROETHANE	ug/1	ND@1	ND@1	ND@1
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	ug/l	ND@1	ND@1	ND@1

MW-114-S

SAMPLE LOCATION		MW-114-S	MW-116-S	MW-117-S
SAMPLE DESCRIPTION		GROUNDWATER	GROUNDWATER	GROUNDWATER
SAMPLE DATE		05/26/11	05/26/11	05/26/11
LABORATORY SAMPLE I.D.		420-44062-12	420-44062-15	420-44062-19
SAMPLE RUN NUMBER		01	01	01
SAMPLE COMMENT CODES				
PARAMETER	UNITS			
VOLATILE ORGANICS (Continued)				
1,1,2-TRICHLOROETHANE	ug/l	ND@1	ND@1	ND@1
1,1-DICHLOROETHANE	ug/l	0.12J	0.25J	ND@1
1,1-DICHLOROETHYLENE	ug/l	ND@1	0.71J	ND@1
1,2,3-TRICHLOROPROPANE	ug/l	ND@1	ND@1	ND@1
1,2-DICHLORO-1,2,2-TRIFLUOROETHANE	ug/l	ND@1	ND@1	ND@1
1,2-DICHLOROETHANE	ug/l	ND@1	ND@1	ND@1
1,2-DICHLOROETHYLENE, TOTAL	ug/l	ND@1	ND@1	ND@1
1,2-DICHLOROPROPANE	ug/l	ND@1	ND@1	ND@1
1-CHLOROHEXANE	ug/l	NA	NA	NA
2 - CHLOROTOLUENE	ug/l	NA	NA	NA
4-CHLOROTOLUENE	ug/l	ND@1	ND@1	ND@1
BENZENE	ug/l	NA	NA	NA
BENZYL CHLORIDE	ug/1	ND@1	ND@1	ND@1
BROMOBENZENE	ug/l	ND@1	ND@1	ND@1
BROMODICHLOROMETHANE	ug/1	ND@1	ND@1	ND@1
BROMOFORM	ug/1	ND@1	ND@1	ND@1
BROMOMETHANE	ug/1	ND@1	ND@1	ND@1
CARBON TETRACHLORIDE	ug/1	ND@1	ND@1	ND@1
CHLOROBENZENE	ug/1	NDØI	NDØ1	ND@1
CHLORODIBROMOMETHANE	ug/1	NDØI	NDØL	NDØI
CHLOROETHANE	ug/1	NDØI NDØI	NDØI	NDØI
CHLOROFORM	ug/1	ND@1	NDØI	NDØI
CIE-1 2-DICHLOROPRODULENE	ug/1	ND@1	ND@1	NDØI
DIRCOMONETUNIE	ug/1	NDØI	ND@1	ND@1
DICHLODODIFLUODOMETHANE	ug/1	ND@1	NDØI	NDØI
FTHVLBENZENE	ug/1	NA	NDUI	NDUI
METHVLENE CHLORIDE	ug/1	ND@1	ND@1	ND@1
TETRACHLOROETHYLENE	ug/1	ND@1	0.31.7	0.197
TOLUENE	ug/1	NA	NA	NA
TRANS-1.3-DICHLOROPROPENE	ug/1	ND@1	NDØ1	NA ND@1
TRICHLOROETHYLENE	ug/1	7.6	0.84	0,51.7
TRICHLOROFLUOROMETHANE	ug/1	ND@1	ND@1	ND01
VINYL CHLORIDE	ug/1	ND@1	NDØ1	ND@1
XYLENE, TOTAL	ug/1	NA	NA	NA
	.			

SAMPLE LOCATION SAMPLE DESCRIPTION SAMPLE DATE LABORATORY SAMPLE I.D. SAMPLE RUN NUMBER SAMPLE COMMENT CODES		MW-122-S GROUNDWATER 06/02/11 420-44239-8 01	MW-125-S GROUNDWATER 06/02/11 420-44239-3 01	MW-161-S GROUNDWATER 05/31/11 420-44124-14 01
PARAMETER	UNITS			
ACID EXTRACTABLES				
PHENOLS, TOTAL	ug/l	NA	NA	NA
BASE/NEUTRAL EXTRACTABLES				
	ug/1	ND@1	ND@1	ND@1
1,2-DICHLOROBENZENE	ug/1	ND@1	ND@1	ND@l
1.4-DICHLOROBENZENE	ug/1	ND@1	ND@1	ND@1
2-CHLOROETHYLVINYL ETHER	ug/l	ND@1	ND@1	ND@1
PCB 1016	ug/l	NA	NA	NA
PCB 1221	ug/l	NA	NA	NA
PCB 1232	ug/l	NA	NA	NA
PCB 1242	ug/l	NA	NA NA	NA
PCB 1248	ug/1	NA ND	NA NA	NA
PCB 1254	ug/1	NA	NA	NA
FCB 1200	4 <u>9</u> / 1			
INDICATOR PARAMETERS				
PH	Hq	6.42	6.98	6.88
SPECIFIC CONDUCTANCE	umhos/cm	800	648	258
TEMPERATURE	С	13.8	12.0	15.2
METALS				
ANTIMONY DISSOLVED	mg/l	NA	NA	ND@0.00040
ARSENIC, DISSOLVED	mg/l	NA	NA	NA
CADMIUM, DISSOLVED	mg/1	NA	NA	NA
LEAD, DISSOLVED	mg/l	ND@0.0010	ND@0.0010	NA
SILVER, DISSOLVED	mg/l	NA	NA	NA
VOLATILE ORGANICS				
1 1 1 2-TETRACHLOROFTHANE	ug/1	ND@1	ND@1	ND@1
1 1 1-TRICHLOROETHANE	ug/1	ND@1	ND@1	ND@l
1,1,2,2-TETRACHLOROETHANE	ug/1	ND@1	ND@1	ND@1
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	ug/l	ND@1	ND@1	ND@l

SAMPLE LOCATION		MW-122-S	MW~125-S	MW-161-S
SAMPLE DESCRIPTION		GROUNDWATER	GROUNDWATER	GROUNDWATER
SAMPLE DATE		06/02/11	06/02/11	05/31/11
LABORATORY SAMPLE I.D.		420-44239-8	420-44239-3	420-44124-14
SAMPLE RUN NUMBER		01	01	01
SAMPLE COMMENT CODES				
PARAMETER	UNITS			
VOLATILE ORGANICS (Continued)				
1,1,2-TRICHLOROETHANE	ug/l	ND@1	ND@1	ND@1
1,1-DICHLOROETHANE	ug/l	ND@1	ND@1	ND@1
1,1-DICHLOROETHYLENE	ug/l	ND@1	ND@1	ND@1
1,2,3-TRICHLOROPROPANE	ug/l	ND@1	ND@1	ND@1
1,2-DICHLORO-1,2,2-TRIFLUOROETHANE	ug/l	ND@1	ND@1	ND@1
1,2-DICHLOROETHANE	ug/l	ND@1	ND@1	ND@1
1,2-DICHLOROETHYLENE, TOTAL	ug/l	ND@1	ND@1	ND@1
1,2-DICHLOROPROPANE	ug/l	ND@1	ND@1	ND@1
1-CHLOROHEXANE	ug/l	NA	NA	NA
2 - CHLOROTOLUENE	ug/l	NA	NA	NA
4 - CHLOROTOLUENE	ug/l	ND@1	ND@1	ND@1
BENZENE	ug/l	NA	NA	NA
BENZYL CHLORIDE	ug/l	ND@1	ND@1	ND@1
BROMOBENZENE	ug/l	ND@1	ND@1	ND@1
BROMODICHLOROMETHANE	ug/l	ND@1	ND@1	ND@1
BROMOFORM	ug/l	ND@1	ND@1	ND@l
BROMOMETHANE	ug/l	ND@1	ND@1	ND@1
CARBON TETRACHLORIDE	ug/l	ND@1	ND@1	ND@1
CHLOROBENZENE	ug/l	ND@1	ND@1	ND@1
CHLORODIBROMOMETHANE	ug/l	ND@1	ND@1	ND@1
CHLOROETHANE	ug/l	ND@1	ND@1	ND@1
CHLOROFORM	ug/l	ND@1	ND@1	ND@1
CHLOROMETHANE	ug/1	ND@1	ND@1	ND@1
CIS-1,3-DICHLOROPROPYLENE	ug/1	ND@1	ND@1	ND@1
DIBROMOMETHANE	ug/1	ND@1	ND@1	ND@1
DICHLORODIFLUOROMETHANE	ug/1	NDØI	ND@1	ND@1
ETHYLBENZENE	ug/1	NA ND01	NA	NA
METHYLENE CHLORIDE	ug/1	NDØ1	NDØI	ND@1
TETRACHLOROETHYLENE	ug/1	ND@1	NDØ1	ND@1
TOLUENE	ug/1	NA	NA	NA
TRANS-1, 3-DICHLOROPROPENE	ug/1	NDØI	ND@1	ND@1
TRICHLOROETHYLENE	ug/1	ND@1	ND@1	ND@1
TRICHLOROFLUOROMETHANE	ug/1	ND@1	NDØL	ND@1
VINYL CHLORIDE	ug/1	NDØL	NDØL	ND@1
XYLENE, TOTAL	ug/1	NA	NA	NA

SAMPLE LOCATION SAMPLE DESCRIPTION SAMPLE DATE LABORATORY SAMPLE I.D. SAMPLE RUN NUMBER SAMPLE COMMENT CODES		MW-162-S GROUNDWATER 05/31/11 420-44124-15 01	MW-164-S GROUNDWATER 05/31/11 420-44124-16 01	MW-170-S GROUNDWATER 02/04/11 420-41396-5 01	MW-170-S GROUNDWATER 05/31/11 420-44124-7 01
PARAMETER	UNITS				
ACID EXTRACTABLES					
PHENOLS, TOTAL	ug/l	NA	NA	NA	NA
BASE/NEUTRAL EXTRACTABLES					
1 2-DICHLOROBENZENE	ug/1	ND@1	ND@1	ND@1	ND@1
1.3-DICHLOROBENZENE	ug/1	ND@1	ND@1	ND@1	ND@1
1,4-DICHLOROBENZENE	ug/l	ND@1	ND@1	ND@1	ND@1
2-CHLOROETHYLVINYL ETHER	ug/l	ND@1	ND@1	ND@1	ND@1
PCB 1016	ug/l	NA	NA	NA	NA NA
PCB 1221	ug/1	NA NA	NA NA	NA	NA
PCB 1232	ug/1	NA	NA	NA	NA
PCB 1242	ug/l	NA	NA	NA	NA
PCB 1254	ug/l	NA	NA	NA	NA
PCB 1260	ug/l	NA	NA	NA	NA
INDICATOR PARAMETERS					
РН	На	6.73	7.00	7.07	7.05
SPECIFIC CONDUCTANCE	umhos/cm	325	1519	776	588
TEMPERATURE	С	13.8	13.6	5.3	13.2
METALS					
ANTTMONY DISSOLVED	mc / 1	ND@0.00040	ND@0.00040	NA	NA
ARSENIC, DISSOLVED	mg/1	NA	NA	NA	NA
CADMIUM, DISSOLVED	mg/l	NA	NA	NA	NA
LEAD, DISSOLVED	mg/l	NA	NA	NA	NA
SILVER, DISSOLVED	mg/l	NA	NA	NA	NA
VOLATILE ORGANICS					
1,1,1,2-TETRACHLOROETHANE	ug/l	ND@1	ND@1	ND@1	ND@1
1,1,1-TRICHLOROETHANE	ug/l	1.0	1.4	ND@1	ND@1
1,1,2,2-TETRACHLOROETHANE	ug/l	ND@1	ND@1	ND@1	ND@1
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	ug/l	ND@1	ND@1	ND@1	ND@1

SAMPLE LOCATION SAMPLE DESCRIPTION SAMPLE DATE		MW-162-S GROUNDWATER 05/31/11	MW-164-S GROUNDWATER 05/31/11	MW-170-S GROUNDWATER 02/04/11	MW-170-S GROUNDWATER 05/31/11
LABORATORY SAMPLE I.D. SAMPLE RUN NUMBER SAMPLE COMMENT CODES		420-44124-15 01	420-44124-16 01	420-41396-5 01	420-44124-7 01
PARAMETER	UNITS				
VOLATILE ORGANICS (Continued)					
1,1,2-TRICHLOROETHANE	ug/l	ND@1	ND@1	ND@1	ND@1
1,1-DICHLOROETHANE	ug/l	0.16J	0.38J	ND@1	ND@1
1,1-DICHLOROETHYLENE	ug/l	ND@1	ND@1	ND@1	ND@1
1,2,3-TRICHLOROPROPANE	ug/l	ND@1	ND@1	ND@1	ND@1
1,2-DICHLORO-1,2,2-TRIFLUOROETHANE	ug/l	ND@1	ND@1	ND@1	ND@1
1,2-DICHLOROETHANE	ug/l	ND@1	ND@l	ND@1	ND@1
1,2-DICHLOROETHYLENE, TOTAL	ug/l	ND@1	ND@1	ND@1	ND@1
1,2-DICHLOROPROPANE	ug/l	ND@1	ND@1	ND@1	ND@1
1 - CHLOROHEXANE	ug/l	NA	NA	NA	NA
2 - CHLOROTOLUENE	ug/l	NA	NA	NA	NA
4 - CHLOROTOLUENE	ug/l	ND@1	ND@1	ND@1	ND@1
BENZENE	ug/l	NA	NA	NA	NA
BENZYL CHLORIDE	ug/l	ND@1	ND@1	ND@1	ND@1
BROMOBENZENE	ug/l	ND@1	ND@1	ND@1	ND@1
BROMODICHLOROMETHANE	ug/l	ND@1	ND@1	ND@1	ND@1
BROMOFORM	ug/l	ND@1	ND@1	ND@1	ND@1
BROMOMETHANE	ug/l	ND@1	ND@1	ND@1	ND@1
CARBON TETRACHLORIDE	ug/l	ND@1	ND@1	ND@1	ND@1
CHLOROBENZENE	ug/l	ND@1	ND@1	ND@1	ND@1
CHLORODIBROMOMETHANE	ug/l	ND@1	ND@1	ND@1	ND@1
CHLOROETHANE	ug/l	ND@1	ND@1	0.16J	ND@1
CHLOROFORM	ug/l	ND@1	ND@1	ND@1	ND@1
CHLOROMETHANE	ug/l	ND@1	ND@1	ND@1	ND@1
CIS-1,3-DICHLOROPROPYLENE	ug/1	NDØI	NDØI	NDØI	NDØ1
DIBROMOMETHANE	ug/1	ND@1	ND@1	NDØL	ND@1
DICHLORODIFLUOROMETHANE	ug/1	ND@1	ND@1	NDØL	ND@1
ETHYLBENZENE	ug/1	NA	NA	NA	NA NDo1
METHYLENE CHLORIDE	ug/1	NDØL	NDØL	NDØL	ND@1
TETRACHLOROETHYLENE	ug/1	ND@1	ND@1	ND@1	ND@1
TOLUENE	ug/l	NA	NA	NA	NA
TRANS-1, 3-DICHLOROPROPENE	ug/l	ND@1	ND@1	ND@1	ND@1
TRICHLOROETHYLENE	ug/1	1.6	0.960	ND@1	NDØL
TRICHLOROFLUOROMETHANE	ug/1	NDØ1	ND@1	ND@1	NDØ1
VINYL CHLORIDE	ug/1	ND@1	ND@1	ND@1	ND@1
XYLENE, TOTAL	ug/l	NA	NA	NA	NA

SAMPLE LOCATION SAMPLE DESCRIPTION SAMPLE DATE LABORATORY SAMPLE I.D. SAMPLE RUN NUMBER SAMPLE COMMENT CODES		MW-171-S GROUNDWATER 02/03/11 420-41399-4 01	MW-171-S GROUNDWATER 05/25/11 420-44001-9 01	MW-172-S REPLICATE 06/02/11 220-15633-3 01	MW-172-S GROUNDWATER 06/02/11 420-44239-2 01
PARAMETER	UNITS				
ACID EXTRACTABLES					
PHENOLS, TOTAL	ug/l	NA	NA	NA	NA
BASE/NEUTRAL EXTRACTABLES					
1.2-DICHLOROBENZENE	ug/1	ND@1	ND@1	ND@0.5	ND@1
1.3-DICHLOROBENZENE	ug/l	NDØ1	ND@1	ND@0.5	NDØ1
1,4-DICHLOROBENZENE	ug/l	ND@1	ND@1	ND@0.5	ND@1
2-CHLOROETHYLVINYL ETHER	ug/l	ND@1	ND@1	ND@0.5	ND@1
PCB 1016	ug/l	NA	NA	NA	NA
PCB 1221	ug/l	NA	NA	NA	NA
PCB 1232	ug/l	NA	NA	NA	NA
PCB 1242	ug/1	NA	NA	NA	NA
PCB 1248	ug/l	NA	NA	NA	NA
PCB 1254 PCB 1260	ug/1	NA	NA	NA	NA NA
	~3/ 2				
INDICATOR PARAMETERS					
PH	рH	7.00	6.90	6.87	6.87
SPECIFIC CONDUCTANCE	umhos/cm	624	571	2141	2141
TEMPERATURE	с	9.8	14.1	14.5	14.5
METALS					
ANTIMONY, DISSOLVED	mg/l	NA	NA	NA	NA
ARSENIC, DISSOLVED	mg/l	NA	NA	NA	NA
CADMIUM, DISSOLVED	mg/l	NA	NA	NA	NA
LEAD, DISSOLVED	mg/l	NA	NA	NA	NA
SILVER, DISSOLVED	mg/l	NA	NA	NA	NA
VOLATILE ORGANICS					
1.1.1.2-TETRACHLOROETHANE	ug/l	ND@1	ND@1	ND@0 5	ND@1
1,1,1-TRICHLOROETHANE	ug/l	ND@1	ND@1	1.1	2.0
1, 1, 2, 2-TETRACHLOROETHANE	ug/l	ND@1	ND@1	ND@0.5	ND@1
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	ug/l	ND@1	ND@1	ND@0.5	ND@1

SAMPLE LOCATION		MW-171-S	MW-171-S	MW-172-S	MW-172-S
SAMPLE DESCRIPTION		GROUNDWATER	GROUNDWATER	REPLICATE	GROUNDWATER
SAMPLE DATE		02/03/11	05/25/11	06/02/11	06/02/11
LABORATORY SAMPLE I.D.		420-41399-4	420-44001-9	220-15633-3	420-44239-2
SAMPLE RUN NUMBER		01	01	01	01
SAMPLE COMMENT CODES					
PARAMETER	UNITS				
VOLATILE ORGANICS (Continued)					
1,1,2-TRICHLOROETHANE	ug/l	ND@1	ND@1	ND@0.5	ND@1
1,1-DICHLOROETHANE	ug/l	0.41J	5.6	1.3	0.88J
1,1-DICHLOROETHYLENE	ug/l	ND@1	0.30J	2.7	1.7
1,2,3-TRICHLOROPROPANE	ug/l	ND@1	ND@1	ND@0.5	ND@1
1,2-DICHLORO-1,2,2-TRIFLUOROETHANE	ug/l	ND@1	ND@1	ND@0.5	ND@1
1,2-DICHLOROETHANE	ug/l	ND@1	0.42J	ND@0.5	0.12J
1,2-DICHLOROETHYLENE, TOTAL	ug/l	ND@1	6.3	1.9	1.2
1,2-DICHLOROPROPANE	ug/l	ND@1	ND@1	ND@0.5	ND@1
1-CHLOROHEXANE	ug/l	NA	NA	ND@0.5	NA
2 - CHLOROTOLUENE	ug/l	NA	NA	NA	NA
4-CHLOROTOLUENE	ug/l	ND@1	ND@1	ND@0.5	ND@1
BENZENE	ug/l	NA	NA	NA	NA
BENZYL CHLORIDE	ug/1	ND@1	ND@1	ND@0.5	ND@1
BROMOBENZENE	ug/l	ND@1	ND@1	ND@0.5	ND@1
BROMODICHLOROMETHANE	ug/l	ND@1	ND@1	ND@0.5	ND@1
BROMOFORM	ug/1	ND@1	ND@1	ND@0.5	ND@1
BROMOMETHANE	ug/1	ND@1	ND@1	ND@1	ND@1
CARBON TETRACHLORIDE	ug/1	ND@1	ND@1	ND@0.5	ND@1
CHLOROBENZENE	ug/l	ND@1	ND@1	ND@0.5	ND@1
CHLORODIBROMOMETHANE	ug/l	ND@1	ND@1	ND@0.5	ND@1
CHLOROETHANE	ug/l	0.80J	4.7	ND@1	ND@1
CHLOROFORM	ug/l	ND@1	ND@1	ND@0.5	ND@1
CHLOROMETHANE	ug/1	ND@1	ND@1	ND@0.5	ND@1
CIS-1,3-DICHLOROPROPYLENE	ug/l	ND@1	ND@1	ND@0.5	ND@1
DIBROMOMETHANE	ug/l	ND@1	ND@1	ND@0.5	ND@1
DICHLORODIFLUOROMETHANE	ug/l	ND@1	ND@1	ND@1	ND@1
ETHYLBENZENE	ug/l	NA	NA	NA	NA
METHYLENE CHLORIDE	ug/1	ND@1	ND@1	ND@2	ND@1
TETRACHLOROETHYLENE	ug/l	ND@1	ND@1	0.41J	0.35J
TOLUENE	ug/l	NA	NA	NA	NA
TRANS-1,3-DICHLOROPROPENE	ug/l	ND@1	ND@1	ND@0.5	ND@1
TRICHLOROETHYLENE	ug/l	ND@1	0.42J	47	31D
TRICHLOROFLUOROMETHANE	ug/l	ND@1	ND@1	ND@0.5	ND@1
VINYL CHLORIDE	ug/l	0.36J	8.6	0.63	0.37J
XYLENE, TOTAL	ug/l	NA	NA	NA	NA

SAMPLE LOCATION SAMPLE DESCRIPTION SAMPLE DATE LABORATORY SAMPLE I.D. SAMPLE RUN NUMBER SAMPLE COMMENT CODES		MW-173-S GROUNDWATER 02/04/11 420-41396-2 01	MW-173-S GROUNDWATER 05/26/11 420-44076-2 01	MW-174-S GROUNDWATER 02/04/11 420-41396-3 01	MW-174-S GROUNDWATER 05/26/11 420-44076-3 01
PARAMETER	UNITS				
ACID EXTRACTABLES					
PHENOLS, TOTAL	ug/l	NA	NA	NA	NA
BASE/NEUTRAL EXTRACTABLES					
1.2-DICHLOROBENZENE	ug/1	ND@1	ND@1	ND@1	ND@1
1, 3-DICHLOROBENZENE	ug/l	ND@1	ND@1	ND@1	ND@1
1,4-DICHLOROBENZENE	ug/l	ND@1	ND@1	ND@1	ND@1
2-CHLOROETHYLVINYL ETHER	ug/l	ND@1	ND@1	ND@1	ND@1
PCB 1016	ug/l	NA	NA	NA	NA
PCB 1221	ug/l	NA	NA	NA	NA
PCB 1232	ug/l	NA	NA	NA	NA
PCB 1242	ug/l	NA	NA	NA	NA
PCB 1248	ug/l	NA	NA	NA	NA
PCB 1254	ug/1	NA	NA	NA	NA
PCB 1260	ug/1	NA	NA	NA	NA
INDICATOR PARAMETERS					
РН	нq	7.02	7.22	7.47	7.30
SPECIFIC CONDUCTANCE	umhos/cm	1177	784	463	505
TEMPERATURE	с	11.0	14.1	8.8	18.4
METALS	, ,				
ANTIMONY, DISSOLVED	mg/l	NA	NA	NA	NA
ARSENIC, DISSOLVED	mg/l	NA	NA	NA	NA
CADMIUM, DISSOLVED	mg/l	NA	NA	NA	NA
LEAD, DISSOLVED	mg/1	NA	NA	NA	NA
SILVER, DISSOLVED	mg/1	NA	NA	NA	NA
VOLATILE ORGANICS					
1.1.1.2-TETRACHLOROFTHANE	ug/l	ND@1	ND@1	ND@1	ND@1
1, 1, 1-TRICHLOROETHANE	ug/1	15	14	0.750	ND@1
1.1.2.2-TETRACHLOROFTHANE	ug/1	ND@1	ND@1	ND@1	ND@1
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	ug/l	0.64J	0.59J	ND@1	ND@1

SAMPLE LOCATION SAMPLE DESCRIPTION SAMPLE DATE LABORATORY SAMPLE I.D. SAMPLE RUN NUMBER SAMPLE COMMENT CODES		MW-173-S GROUNDWATER 02/04/11 420-41396-2 01	MW-173-S GROUNDWATER 05/26/11 420-44076-2 01	MW-174-S GROUNDWATER 02/04/11 420-41396-3 01	MW-174-S GROUNDWATER 05/26/11 420-44076-3 01
PARAMETER	UNITS				
VOLATILE ORGANICS (Continued)					
1,1,2-TRICHLOROETHANE	ug/l	1.6	1.9	ND@1	ND@1
1,1-DICHLOROETHANE	ug/l	170D	150D	1.2	ND@1
1,1-DICHLOROETHYLENE	ug/l	150D	150D	3.6	0.23J
1,2,3-TRICHLOROPROPANE	ug/l	ND@1	ND@1	ND@1	ND@1
1,2-DICHLORO-1,2,2-TRIFLUOROETHANE	ug/l	1.7	1.3	ND@1	ND@1
1,2-DICHLOROETHANE	ug/l	3.9	4.7	ND@1	ND@1
1,2-DICHLOROETHYLENE, TOTAL	ug/l	8.9	8.5	1.1	ND@1
1,2-DICHLOROPROPANE	ug/l	ND@1	ND@1	ND@1	ND@1
1 - CHLOROHEXANE	ug/l	NA	NA	NA	NA
2 - CHLOROTOLUENE	ug/l	NA	NA	NA	NA
4 - CHLOROTOLUENE	ug/l	ND@1	ND@1	ND@1	ND@1
BENZENE	ug/l	NA	NA	NA	NA
BENZYL CHLORIDE	ug/l	ND@1	ND@1	ND@1	ND@1
BROMOBENZENE	ug/l	ND@1	ND@1	ND@1	ND@1
BROMODICHLOROMETHANE	ug/1	ND@1	ND@1	ND@1	ND@1
BROMOFORM	ug/1	ND@1	NDØ1	ND@1	ND@1
BROMOMETHANE	ug/1	ND@1	ND@1	NDØI	NDØI
CARBON TETRACHLORIDE	ug/1	ND@1	ND@1	ND@1	ND@1
CHLOROBENZENE	ug/1	ND@1	ND@1	NDØL	NDØI
CHLORODIBROMOMETHANE	ug/1	ND@1	NDØI	NDØI	ND@1
CHLOROETHANE	ug/1	ND@1	ND@1	NDØI	ND@1
CHLOROFORM	ug/1	1.8	0.940	0.250	NDØL
CHLOROMETHANE	ug/1	ND@1	NDØI	NDGI	ND@1
CIS-1, 3-DICHLOROPROPYLENE	ug/l	ND@1	NDØI	NDØI	ND@1
DIBROMOMETHANE	ug/1	ND@1	NDØI	ND@1	NDØI
DICHLORODIFLUOROMETHANE	ug/1	ND@1	NDØI	NDØL	NDØ1
ETHYLBENZENE	ug/1	NA	NA	NA	NA
METHYLENE CHLORIDE	ug/1	NDØI	ND@1	NDØI	NDØL
TETRACHLOROETHYLENE	ug/1	0.320	0.550	ND@1	ND@1
TOLUENE	ug/1	NA	NA	NA	NA
TRANS-1, 3-DICHLOROPROPENE	ug/1	NDØI	NDØI	NDØL	ND@1
TRICHLOROETHYLENE	ug/1	42	42		4.8
TRICHLOROFLUOROMETHANE	ug/1	ND@1	NDØ1	NDØl	ND@1
VINYL CHLORIDE	ug/1	1.2	0.82J	ND@1	ND@1
XYLENE, TOTAL	ug/l	NA	NA	NA	NA

SAMPLE LOCATION SAMPLE DESCRIPTION SAMPLE DATE LABORATORY SAMPLE I.D. SAMPLE RUN NUMBER SAMPLE COMMENT CODES		MW-175-S GROUNDWATER 02/07/11 420-41408-6 01	MW-175-S REPLICATE 02/07/11 220-14713-5 01	MW-175-S GROUNDWATER 05/26/11 420-44076-4 01	MW-176-S GROUNDWATER 02/03/11 420-41399-10 01	MW-176-S GROUNDWATER 05/26/11 420-44076-5 01
PARAMETER	UNITS					
ACID EXTRACTABLES						
PHENOLS, TOTAL	ug/l	NA	NA	NA	NA	NA
BASE/NEUTRAL EXTRACTABLES						
1.2-DICHLOROBENZENE	ug/l	ND@1	ND@0.5	ND@1	ND@1	ND@1
1,3-DICHLOROBENZENE	ug/l	ND@1	ND@0.5	ND@1	ND@1	ND@1
1,4-DICHLOROBENZENE	ug/l	ND@1	ND@0.5	ND@1	ND@1	ND@1
2-CHLOROETHYLVINYL ETHER	ug/l	ND@1	ND@0.5	ND@1	ND@1	ND@1
PCB 1016	ug/l	NA	NA	NA	NA	NA
PCB 1221	ug/1	NA	NA	NA	NA	NA
PCB 1232	ug/1	NA	INA NA	NA	NA	NA NA
PCB 1242	ug/1	NA NA	NA	NA NA	NA	NA
PCB 1254	ug/1	NA	NA	NA	NA	NA
PCB 1260	ug/l	NA	NA	NA	NA	NA
INDICATOR PARAMETERS						
РН	На	6.86	6.86	7.48	7.19	7.20
SPECIFIC CONDUCTANCE	umhos/cm	1419	1419	496	278	1035
TEMPERATURE	с	7.7	7.7	18.9	15.2	16.3
METALS						
ANTTMONY DISSOLVED	ma / 1	NA	NA	NA	NA	NA
ARSENIC, DISSOLVED	mg/1	NA	NA	NA	NA	NA
CADMIUM, DISSOLVED	mg/1	NA	NA	NA	NA	NA
LEAD, DISSOLVED	mg/l	NA	NA	NA	NA	NA
SILVER, DISSOLVED	mg/1	NA	NA	NA	NA	NA
VOLATILE ORGANICS						
1, 1, 1, 2-TETRACHLOROETHANE	ug/l	ND@1	ND@0.5	ND@1	ND@1	ND@1
1,1,1-TRICHLOROETHANE	ug/l	0.97J	0.64	0.91J	1.4	1.5
1,1,2,2-TETRACHLOROETHANE	ug/l	ND@1	ND@0.5	ND@1	ND@1	ND@1
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	ug/l	ND@1	ND@0.5	ND@1	ND@1	ND@1

INTERNATIONAL BUSINESS MACHINES CORPORATION

MW-175-S

SAMPLE LOCATION SAMPLE DESCRIPTION SAMPLE DATE LABORATORY SAMPLE I.D. SAMPLE RUN NUMBER SAMPLE COMMENT CODES		MW-175-S GROUNDWATER 02/07/11 420-41408-6 01	MW-175-S REPLICATE 02/07/11 220-14713-5 01	MW-175-S GROUNDWATER 05/26/11 420-44076-4 01	MW-176-S GROUNDWATER 02/03/11 420-41399-10 01	MW-176-S GROUNDWATER 05/26/11 420-44076-5 01
PARAMETER	UNITS					
VOLATILE ORGANICS (Continued)						
1,1,2-TRICHLOROETHANE	ug/l	ND@1	0.25J	ND@1	0.23J	0.12J
1,1-DICHLOROETHANE	ug/l	2.8	3.6	0.31J	16	11
1,1-DICHLOROETHYLENE	ug/l	5.5	9.1	0.99J	33	22
1,2,3-TRICHLOROPROPANE	ug/l	ND@1	ND@0.5	ND@1	ND@l	ND@1
1,2-DICHLORO-1,2,2-TRIFLUOROETHANE	ug/l	ND@1	ND@0.5	ND@1	ND@1	ND@1
1,2-DICHLOROETHANE	ug/l	0.16J	0.25J	ND@1	0.17J	ND@1
1,2-DICHLOROETHYLENE, TOTAL	ug/1	2.5	3.3	0.35J	4.2	2.8
1,2-DICHLOROPROPANE	ug/l	ND@1	ND@0.5	ND@1	ND@1	ND@1
1-CHLOROHEXANE	ug/l	NA	ND@0.5	NA	NA	NA
2-CHLOROTOLUENE	ug/l	NA	NA	NA	NA	NA
4-CHLOROTOLUENE	ug/l	ND@1	ND@0.5	ND@1	ND@1	ND@1
BENZENE	ug/1	NA	NA	NA	NA	NA
BENZYL CHLORIDE	ug/1	ND@1	ND@0.5	ND@1	ND@1	ND@1
BROMOBENZENE	ug/1	ND@1	ND@0.5	ND@1	ND@1	ND@1
BROMODICHLOROMETHANE	ug/1	ND@1	ND@0.5	ND@1	ND@1	ND@1
BROMOFORM	ug/l	ND@1	ND@0.5	ND@1	ND@1	ND@1
CARRON WETHANE	ug/1	ND@1	ND@1	ND@1	ND@1	ND@1
CARBON TETRACHLORIDE	ug/1	ND@1	ND@0.5	ND@1	ND@1	ND@1
CHLOROBENZENE	ug/1	ND@1	ND@0.5	ND@1	ND@1	ND@1
CHLORODIBROMOMEINANE	ug/1	NDØI	ND@U.5	ND@1	ND@1	ND@1
CHLOROBINANE	ug/1	NDØI	NDØI	ND@1	ND@1	ND@1
CHLORONETHANE	ug/1	0.790	0.52	NDØL	ND@1	ND@1
CIG-1 2-DICHLOPODRODVIENE	ug/1	NDG1	ND@0.5	ND@1	ND@1	ND@1
DIRDOMOMETUNNE	ug/1	ND@1	ND@0.5	NDØL	ND@1	ND@1
DICHLODODIRLIODOMETHANE	ug/1	ND@1	NDØU.5	NDØI	ND@1	ND@1
FTWILBENZENE	ug/1	NDWI	NDØI	NDØI	NDØ1	ND@1
METHVLENE CHLORIDE	ug/1	NA ND@1	NA ND@2	NA NDG1	NA	NA
TETRACHLOPOETHYLENE	ug/1	ND@1	ND@2	ND@1	ND@1	NDØI
TOLUENE	ug/1	NDUI	NDWO.5	ND@1	0.130	ND@1
TRANS-1.3-DICHLOROPROPENE	ug/1	ND@1	NDOO E	NA NDQ1	NA	NA
TRICHLOROETHYLENE	ug/1	20	20	2 2 1700 T	NDØ1	ND@1
TRICHLOROFLUOROMETHANE	ug/1	ND@1	NDOD F	Z.Z	52D	40
VINYL CHLORIDE	ug/1	ND@1	ND@0.5	NDØJ		NDØ1
XYLENE, TOTAL	ug/1	NA	NDW0.5	ND ND	0.230	ND@1
	- 15-		INPL	INPL	NA	NA

SAMPLE LOCATION SAMPLE DESCRIPTION SAMPLE DATE LABORATORY SAMPLE I.D. SAMPLE RUN NUMBER SAMPLE COMMENT CODES		MW-176-S DUPLICATE 05/26/11 420-44076-6 01	MW-177-S GROUNDWATER 02/03/11 420-41399-11 01	MW-177-S GROUNDWATER 05/26/11 420-44076-7 01	MW-178-S GROUNDWATER 02/03/11 420-41399-16 01
PARAMETER	UNITS				
ACID EXTRACTABLES					
PHENOLS, TOTAL	ug/l	NA	NA	NA	NA
BASE/NEUTRAL EXTRACTABLES					
1.2-DICHLOROBENZENE	ug/l	ND@1	ND@1	ND@1	ND@1
1,3-DICHLOROBENZENE	ug/1	ND@1	ND@1	ND@1	ND@1
1,4-DICHLOROBENZENE	ug/l	ND@1	ND@1	ND@1	ND@1
2-CHLOROETHYLVINYL ETHER	ug/l	ND@1	ND@1	ND@1	ND@1
PCB 1016	ug/1	NA	NA	NA	NA
PCB 1221	ug/1	NA	NA	NA NA	NA NA
PCB 1232	ug/1	NA	NA	NA	NA
PCB 1248	ug/1	NA	NA	NA	NA
PCB 1254	ug/l	NA	NA	NA	NA
PCB 1260	ug/l	NA	NA	NA	NA
INDICATOR PARAMETERS					
РН	Ηα	7.20	7.37	7.35	7.00
SPECIFIC CONDUCTANCE	umhos/cm	1035	1411	990	390
TEMPERATURE	с	16.3	11.4	18.9	11.1
METALS					
ANTIMONY, DISSOLVED	mg/l	NA	NA	NA	NA
ARSENIC, DISSOLVED	mg/l	NA	NA	NA	NA
CADMIUM, DISSOLVED	mg/l	NA	NA	NA	NA
LEAD, DISSOLVED	mg/l	NA	NA	NA	NA
SILVER, DISSOLVED	mg/l	NA	NA	NA	NA
VOLATILE ORGANICS					
1,1,1,2-TETRACHLOROETHANE	ug/l	ND@1	ND@1	ND@1	ND@1
1,1,1-TRICHLOROETHANE	ug/l	1.5	ND@1	ND@1	3.3
1,1,2,2-TETRACHLOROETHANE	ug/l	ND@1	ND@1	ND@1	ND@1
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	ug/l	ND@l	ND@1	ND@1	0.47J

08/23/11
PARAMETER UNITS	
VOLATILE ORGANICS (Continued)	
1,1,2-TRICHLOROETHANE ug/l ND@1 ND@1 ND@1	ND@1
1,1-DICHLOROETHANE ug/1 11 7.2 2.2	24
1,1-DICHLOROETHYLENE ug/1 21 8.9 2.2	12
1,2,3-TRICHLOROPROPANE ug/1 ND@1 ND@1 ND@1	ND@1
1,2-DICHLORO-1,2,2-TRIFLUOROETHANE ug/1 ND@1 ND@1 ND@1	0.40J
1,2-DICHLOROETHANE ug/1 ND01 ND01 ND01	ND@1
1,2-DICHLOROETHYLENE, TOTAL ug/l 2.7 0.40J ND@l	0.28J
1,2-DICHLOROPROPANE ug/1 ND@1 ND@1 ND@1	ND@1
1-CHLOROHEXANE ug/l NA NA NA	NA
2-CHLOROTOLUENE ug/1 NA NA NA	NA
4-CHLOROTOLUENE ug/l ND@1 ND@1 ND@1	ND@1
BENZENE Ug/1 NA NA NA	NA
BENZYL CHLORIDE Ug/1 ND@1 ND@1 ND@1	ND@1
BROMOBENZENE Ug/1 ND@1 ND@1 ND@1	ND@1
BROWDICHLOROMETHANE Ug/1 ND01 ND01 ND01 ND01	ND@1
BROMOFORM UG/1 ND01 ND01 ND01	NDØ1
BKUMUMEIHANE UG/I NUGI NUGI NUGI	NDØI
CARBON TETRACHIORIDE UG/I NDGI NDGI NDGI	NDØI
CHLORODERAZENE UG/I ND@I ND@I ND@I	NDØ1
CHILOROPIERANE Ug/1 ND01 ND01 ND01	ND@1
CHICKOFINANE Ug/I NDGI NDGI NDGI NDGI	2 7
CHIDORFEVAND Ug/1 NDa1 NDa1 NDa1	ND@1
	NDØI
DIRDOMONTANE Ug/1 NDa1 NDa1 NDa1	ND@1
DIGHOROMETHANE ug/l NDal NDal NDal	ND@1
	NA
METHYLENE CHLORDER UG/L NDØL NDØL	ND@1
TETRACHLOROETHYLENE Ug/1 NDØ1 NDØ1 NDØ1	ND@1
TOLUENE Ug/1 NA NA	NA
TRANS-1.3-DICHLOROPROPENE ug/l NDØ1 NDØ1 NDØ1	ND@1
	10
TRICHLOROFLUOROMETHANE Ug/1 ND@1 ND@1 ND@1	ND@1
VINYL CHLORIDE Uq/1 ND@1 0.15J ND@1	0.16J
XYLENE, TOTAL UG/1 NA NA NA	NA

MW-176-S

SAMPLE LOCATION SAMPLE DESCRIPTION SAMPLE DATE LABORATORY SAMPLE I.D. SAMPLE RUN NUMBER SAMPLE COMMENT CODES		MW-178-S GROUNDWATER 05/26/11 420-44062-10 01	MW-180-S GROUNDWATER 02/03/11 420-41399-17 01	MW-180-S GROUNDWATER 05/26/11 420-44062-17 01	MW-183-S GROUNDWATER 02/03/11 420-41399-7 01
PARAMETER	UNITS				
ACID EXTRACTABLES					
PHENOLS, TOTAL	ug/l	NA	NA	NA	NA
BASE/NEUTRAL EXTRACTABLES					
1.2-DICHLOROBENZENE	uq/l	ND@1	ND@1	ND@1	ND@1
1,3-DICHLOROBENZENE	ug/1	ND@1	ND@1	ND@1	ND@1
1,4-DICHLOROBENZENE	ug/l	ND@1	NDØl	ND@1	ND@1
2-CHLOROETHYLVINYL ETHER	ug/l	ND@1	ND@1	ND@1	ND@1
PCB 1016	ug/l	NA NA	NA	NA NA	NA
PCB 1221	ug/1	NA NA	NA	NA	NA
PCB 1232	ug/1	NA	NA	NA	NA
PCB 1248	ug/1	NA	NA	NA	NA
PCB 1254	ug/l	NA	NA	NA	NA
PCB 1260	ug/l	NA	NA	NA	NA
INDICATOR PARAMETERS					
рн	На	6.57	7.05	6.89	6.22
SPECIFIC CONDUCTANCE	umhos/cm	630	437	4991	121
TEMPERATURE	с	11.6	9.8	14.2	11.5
METALS					
		272	NA	NA	NA
ANTIMONY, DISSOLVED	mg/1	NA NA	NA NA	NA	NA
CADMILIM DISSOLVED	mg/1	NA	NA	NA	NA
LEAD, DISSOLVED	mg/1	NA	NA	NA	NA
SILVER, DISSOLVED	mg/1	NA	NA	NA	NA
VOLATILE ORGANICS					
1.1.1.2-TETRACHLOROETHANE	ug/l	ND@1	ND@1	ND@1	ND@1
1,1,1-TRICHLOROETHANE	ug/l	1.2	ND@1	0.39J	ND@1
1,1,2,2-TETRACHLOROETHANE	ug/l	ND@1	ND@1	ND@1	ND@1
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	ug/l	ND@1	ND@1	ND@1	ND@1

MW-178-S

SAMPLE LOCATION		MW-178-S	MW-180-S	MW-180-S	MW-183-S
SAMPLE DESCRIPTION		GROUNDWATER	GROUNDWATER	GROUNDWATER	GROUNDWATER
SAMPLE DATE		05/26/11	02/03/11	05/26/11	02/03/11
LABORATORY SAMPLE I.D.		420-44062-10	420-41399-17	420-44062-17	420-41399-7
SAMPLE RUN NUMBER		01	01	01	01
SAMPLE COMMENT CODES					
PARAMETER	UNITS				
VOLATILE ORGANICS (Continued)					
1,1,2-TRICHLOROETHANE	ug/l	ND@1	ND@l	ND@1	ND@1
1,1-DICHLOROETHANE	ug/l	1.5	ND@1	ND@1	ND@1
1,1-DICHLOROETHYLENE	ug/l	3.2	ND@1	ND@1	ND@1
1,2,3-TRICHLOROPROPANE	ug/l	ND@1	ND@1	ND@1	ND@1
1,2-DICHLORO-1,2,2-TRIFLUOROETHANE	ug/l	ND@1	ND@1	ND@1	ND@1
1,2-DICHLOROETHANE	ug/l	ND@1	ND@1	ND@1	ND@1
1,2-DICHLOROETHYLENE, TOTAL	ug/l	ND@1	ND@1	ND@1	ND@1
1,2-DICHLOROPROPANE	ug/l	ND@1	ND@1	ND@1	ND@1
1-CHLOROHEXANE	ug/l	NA	NA	NA	NA
2-CHLOROTOLUENE	ug/l	NA	NA	NA	NA
4-CHLOROTOLUENE	ug/l	ND@1	ND@1	ND@1	ND@1
BENZENE	ug/l	NA	NA	NA	NA
BENZYL CHLORIDE	ug/l	ND@1	ND@1	ND@1	ND@1
BROMOBENZENE	ug/1	ND@1	ND@1	ND@1	ND@1
BROMODICHLOROMETHANE	ug/1	ND@1	ND@1	ND@1	ND@1
BROMOFORM	ug/1	ND@1	ND@1	ND@1	NDØI
BROMOMETHANE	ug/1	ND@1	ND@1	ND@1	NDØI
CARBON TETRACHLORIDE	ug/1	ND@1	ND@1	ND@1	ND@1
CHLOROBENZENE	ug/1	ND@1	ND@1	ND@1	ND@1
CHLORODIBROMOMETHANE	ug/1	NDØI	ND@1	ND@1	ND@1
CHLOROETHANE	ug/1	ND@1	NDØI	ND@1	ND@1
CHLOROFORM	ug/1	0.390	NDØI	NDØI	ND@1
CHLOROMETHANE	ug/1	ND@1	NDØI	ND@1	NDØI NDØI
CIS-I, 3-DICHLOROPROPYLENE	ug/1	NDGI	NDØI	NDØI	ND@1
DIBROMOMETHANE	ug/1	ND@I	NDØI	ND@1	ND@1
DICHLORODIFLUOROMETHANE	ug/1	NDØ1	NDØL	NDØI	NDØI
ETHYLBENZENE METHYLBENZENE	ug/1	NA ND@1	NA	NA ND@1	NA ND@1
METHILENE CHLORIDE	ug/1	ND@1	NDØI	NDOI	ND@1
TOLUENE	ug/1	NDGT	NDUI	NDWI	NDUI
TOLUENE TOLUENE	ug/1	NA NDel	NA	NA NDAI	NA NDA1
TRANG-1, 3-DICHLOROPKOPENE	ug/1	0 A	1 2		NDGI
TRICHLOROFILIODOMETUNNE	ug/1	2.4 ND@1	L.Z NDC1	V.530	ND@1
VINUL OU OPIDE	ug/1	NDØJ	ND01	NDel	ND@1
VINID CHOKIDE	ug/1	ND	NTA NTA	ND BL	NDØI
AIDENE, IVIAD	49/1	1974	INA	INA	INA

SAMPLE LOCATION SAMPLE DESCRIPTION SAMPLE DATE LABORATORY SAMPLE I.D. SAMPLE RUN NUMBER SAMPLE COMMENT CODES		MW-183-S GROUNDWATER 05/26/11 420-44062-11 01	MW-184-SA GROUNDWATER 02/04/11 420-41396-9 01	MW-184-SA GROUNDWATER 05/31/11 420-44124-11 01	MW-185-SA GROUNDWATER 02/04/11 420-41396-10 01
PARAMETER	UNITS				
ACID EXTRACTABLES					
PHENOLS, TOTAL	ug/1	NA	NA	NA	NA
BASE/NEUTRAL EXTRACTABLES					
1,2-DICHLOROBENZENE	ug/l	ND@1	ND@1	ND@1	ND@1
1, 3-DICHLOROBENZENE	ug/l	ND@1	ND@1	ND@1	ND@1
1,4-DICHLOROBENZENE	ug/l	ND@1	ND@1	ND@1	ND@1
2-CHLOROETHYLVINYL ETHER	ug/1	ND@1	ND@1	ND@1	ND@1
PCB 1016	ug/1	NA	NA	NA	NA
PCB 1221 PCB 1232	ug/l	NA	NA	NA NA	NA NA
PCB 1242	ug/1	NA	NA	NA	NA
PCB 1248	ug/l	NA	NA	NA	NA
PCB 1254	ug/l	NA	NA	NA	NA
PCB 1260	ug/l	NA	NA	NA	NA
INDICATOR PARAMETERS					
PH	Hq	6.25	7.16	7.29	7.19
SPECIFIC CONDUCTANCE	umhos/cm	216	421	149	1042
TEMPERATURE	С	13.5	6.6	12.8	8.7
METALS					
ANTIMONY. DISSOLVED	mg/l	NA	NA	NA	NA
ARSENIC, DISSOLVED	mg/l	NA	NA	NA	NA
CADMIUM, DISSOLVED	mg/l	NA	NA	NA	NA
LEAD, DISSOLVED	mg/l	NA	NA	NA	NA
SILVER, DISSOLVED	mg/l	NA	NA	NA	NA
VOLATILE ORGANICS					
1,1,1,2-TETRACHLOROETHANE	ug/l	ND@1	ND@1	ND@1	ND@1
1,1,1-TRICHLOROETHANE	ug/l	ND@1	0.57J	ND@1	0.88J
1, 1, 2, 2-TETRACHLOROETHANE	ug/l	ND@1	ND@1	ND@1	ND@1
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	ug/l	ND@1	ND@1	ND@1	ND@1

11 - 1

MW-183-S

SAMPLE LOCATION SAMPLE DESCRIPTION SAMPLE DATE LABORATORY SAMPLE I.D.		MW-183-S GROUNDWATER 05/26/11 420-44062-11	MW-184-SA GROUNDWATER 02/04/11 420-41396-9	MW-184-SA GROUNDWATER 05/31/11 420-44124-11	MW-185-SA GROUNDWATER 02/04/11 420-41396-10
SAMPLE COMMENT CODES		01	01	01	01
PARAMETER	UNITS				
VOLATILE ORGANICS (Continued)					
1,1,2-TRICHLOROETHANE	ug/l	ND@1	ND@1	ND@1	ND@1
1,1-DICHLOROETHANE	ug/l	ND@1	0.28J	ND@1	ND@1
1,1-DICHLOROETHYLENE	ug/l	ND@1	ND@1	ND@1	ND@1
1,2,3-TRICHLOROPROPANE	ug/l	ND@1	ND@1	ND@1	ND@1
1,2-DICHLORO-1,2,2-TRIFLUOROETHANE	ug/l	ND@1	ND@1	ND@1	ND@1
1,2-DICHLOROETHANE	ug/l	ND@1	ND@1	ND@1	ND@1
1,2-DICHLOROETHYLENE, TOTAL	ug/l	ND@1	0.62J	ND@1	ND@1
1,2-DICHLOROPROPANE	ug/l	ND@1	ND@1	ND@1	ND@1
1-CHLOROHEXANE	ug/l	NA	NA	NA	NA
2 - CHLOROTOLUENE	ug/l	NA	NA	NA	NA
4-CHLOROTOLUENE	ug/l	ND@1	ND@1	ND@1	ND@1
BENZENE	ug/l	NA	NA	NA	NA
BENZYL CHLORIDE	ug/l	ND@1	ND@1	ND@1	ND@1
BROMOBENZENE	ug/l	ND@1	ND@1	ND@1	ND@1
BROMODICHLOROMETHANE	ug/l	ND@1	ND@1	ND@1	ND@1
BROMOFORM	ug/1	ND@1	ND@1	ND@1	ND@l
BROMOMETHANE	ug/1	ND@1	ND@1	ND@1	ND@1
CARBON TETRACHLORIDE	ug/1	ND@1	ND@1	ND@1	ND@1
CHLOROBENZENE	ug/1	ND@1	ND@1	ND@1	ND@1
CHLORODIBROMOMETHANE	ug/1	ND@1	ND@1	ND@1	ND@1
CHLOROETHANE	ug/1	ND@1	ND@1	ND@1	ND@1
CHLOROFORM	ug/1	NDØ1	ND@1	ND@1	NDØ1
CHLOROMETHANE	ug/1	NDØI	ND@1	ND@1	NDØ1
DIBROWOWERUNNE	ug/1	NDØI	ND@1	NDØI	NDØL
DIBROMOMETHANE DICHLOBODIELUODOMETHANE	ug/1	NDØI NDØI	ND@1	ND@1	NDØI
DICHLORODIF LOOROME IMANE.	ug/1	NDØI	ND@1	NDØT	NDØL
METUVIENE CUI ODIDE	ug/1	NA NDC1	NA NDel	NA NDol	NA
TETRILENE CHLORIDE	ug/1	NDØI	NDØI	ND@1	ND@1
TOLUENE	ug/1	NDWI	NDUI	NDØI	NDUL
TRANS-1 2-DICHLOROPROPENE	ug/1	NA ND@1	NA NDA1	NA NDO1	NA NDel
TRICHLOROFTHYLENE	ug/1	ND@1	2 4		ND@1
TRICHLOROFLUOROMETHANE	ug/1	ND@1	2.4 ND@1	0.640 ND@1	2.4 NDC1
VINVI. CHLORIDE	ug/1	ND@1	NDG1	ND@1	NDG1
XVI.ENE TOTAL	ug/1	NA	TATA T	NDGT	IN LAGIT
and a second sec	~g/ 1	NA	INA	INA	INA

MW-183-S

SAMPLE LOCATION SAMPLE DESCRIPTION SAMPLE DATE LABORATORY SAMPLE I.D. SAMPLE RUN NUMBER SAMPLE COMMENT CODES		MW-185-SA GROUNDWATER 05/31/11 420-44124-12 01	MW-186-S GROUNDWATER 05/25/11 420-44001-11 01	MW-187-S GROUNDWATER 02/03/11 420-41399-5 01	MW-187-S DUPLICATE 02/03/11 420-41399-6 01
PARAMETER	UNITS				
ACID EXTRACTABLES					
PHENOLS, TOTAL	ug/1	NA	NA	NA	NA
BASE/NEUTRAL EXTRACTABLES					
1,2-DICHLOROBENZENE 1,3-DICHLOROBENZENE	ug/l ug/l	ND@1 ND@1	ND@1 ND@1	ND@1 ND@1	ND@1 ND@1
1,4-DICHLOROBENZENE	ug/l	ND@1	NDØ1	ND@1	ND@1
2-CHLOROETHYLVINYL ETHER	ug/l	ND@1	NDØl	ND@1	ND@1
PCB 1016	ug/l	NA	NA	NA	NA
PCB 1221	ug/1	NA	NA	NA	NA
PCB 1232	ug/1	NA	NA NA	NA NA	NA NA
PCB 1248	ug/1	NA	NA	NA	NA
PCB 1254	ug/1	NA	NA	NA	NA
PCB 1260	ug/l	NA	NA	NA	NA
INDICATOR PARAMETERS					
РН	PH	7.12	7.52	7-06	7.06
SPECIFIC CONDUCTANCE	umhos/cm	954	189	239	239
TEMPERATURE	c	12.2	15.4	10.3	10.3
METALS					
ANTIMONY, DISSOLVED	mg/l	NA	NA	NA	NA
ARSENIC, DISSOLVED	mg/1	NA	NA	NA	NA
CADMIUM, DISSOLVED	mg/1	NA	NA	NA	NA
LEAD, DISSOLVED	mg/l	NA	NA	NA	NA
SILVER, DISSOLVED	mg/l	NA	NA	NA	NA
VOLATILE ORGANICS					
1,1,1,2-TETRACHLOROETHANE	ug/l	ND@1	ND@1	ND@1	ND@1
1,1,1-TRICHLOROETHANE	ug/l	1.2	1.2	0.84J	0.74J
1,1,2,2-TETRACHLOROETHANE	ug/l	ND@1	ND@1	ND@1	ND@1
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	ug/l	ND@1	ND@1	ND@1	ND@1

MW-185-SA

SAMPLE LOCATION		MW-185-SA	MW-186-S	MW-187-S	MW-187-S
SAMPLE DESCRIPTION		GROUNDWATER	GROUNDWATER	GROUNDWATER	DUPLICATE
SAMPLE DATE		05/31/11	05/25/11	02/03/11	02/03/11
LABORATORY SAMPLE I.D.		420-44124-12	420-44001-11	420-41399-5	420-41399-6
SAMPLE RUN NUMBER		01	01	01	01
SAMPLE COMMENT CODES					
PARAMETER	UNITS				
VOLATILE ORGANICS (Continued)					
1,1,2-TRICHLOROETHANE	ug/l	ND@1	ND@1	ND@1	ND@1
1,1-DICHLOROETHANE	ug/l	ND@1	0.14J	0.25J	0.19J
1,1-DICHLOROETHYLENE	ug/l	ND@1	0.17J	0.44J	0.37J
1,2,3-TRICHLOROPROPANE	ug/l	ND@l	ND@1	ND@1	ND@1
1,2-DICHLORO-1,2,2-TRIFLUOROETHANE	ug/l	ND@1	ND@1	ND@1	ND@1
1,2-DICHLOROETHANE	ug/l	ND@1	ND@1	ND@1	ND@1
1,2-DICHLOROETHYLENE, TOTAL	ug/l	ND@1	ND@1	15	11
1,2-DICHLOROPROPANE	ug/l	ND@l	ND@1	ND@1	ND@1
1-CHLOROHEXANE	ug/l	NA	NA	NA	NA
2-CHLOROTOLUENE	ug/l	NA	NA	NA	NA
4 - CHLOROTOLUENE	ug/l	ND@1	ND@1	ND@1	ND@1
BENZENE	ug/l	NA	NA	NA	NA
BENZYL CHLORIDE	ug/l	ND@1	ND@1	ND@1	ND@1
BROMOBENZENE	ug/l	ND@1	ND@1	ND@1	ND@1
BROMODICHLOROMETHANE	ug/l	ND@1	ND@1	ND@1	ND@1
BROMOFORM	ug/l	ND@1	ND@1	ND@1	ND@1
BROMOMETHANE	ug/l	ND@1	ND@1	ND@1	ND@1
CARBON TETRACHLORIDE	ug/l	ND@1	ND@1	ND@1	ND@1
CHLOROBENZENE	ug/l	ND@1	ND@1	ND@1	ND@1
CHLORODIBROMOMETHANE	ug/l	ND@1	ND@1	ND@1	ND@1
CHLOROETHANE	ug/l	ND@1	ND@1	ND@1	ND@1
CHLOROFORM	ug/l	ND@1	ND@1	ND@1	ND@1
CHLOROMETHANE	ug/l	ND@1	ND@1	ND@1	ND@1
CIS-1,3-DICHLOROPROPYLENE	ug/l	ND@1	ND@1	ND@1	ND@1
DIBROMOMETHANE	ug/l	ND@1	ND@1	ND@1	ND@1
DICHLORODIFLUOROMETHANE	ug/l	ND@1	ND@1	ND@1	ND@1
ETHYLBENZENE	ug/l	NA	NA	NA	NA
METHYLENE CHLORIDE	ug/l	ND@1	ND@1	ND@1	ND@1
TETRACHLOROETHYLENE	ug/l	ND@1	0.22J	1.3	1.3
TOLUENE	ug/l	NA	NA	NA	NA
TRANS-1,3-DICHLOROPROPENE	ug/l	ND@1	ND@1	ND@1	ND@1
TRICHLOROETHYLENE	ug/l	1.6	12	44	44
TRICHLOROFLUOROMETHANE	ug/l	ND@1	ND@1	ND@1	ND@1
VINYL CHLORIDE	ug/l	ND@1	ND@1	ND@1	ND@1
XYLENE, TOTAL	ug/l	NA	NA	NA	NA

SAMPLE LOCATION SAMPLE DESCRIPTION SAMPLE DATE LABORATORY SAMPLE I.D. SAMPLE RUN NUMBER SAMPLE COMMENT CODES		MW-187-S GROUNDWATER 05/25/11 420-44001-8 01	MW-188-S GROUNDWATER 05/31/11 420-44124-9 01	MW-189-S GROUNDWATER 05/26/11 420-44062-20 01
PARAMETER	UNITS			
ACID EXTRACTABLES				
PHENOLS, TOTAL	ug/l	NA	NA	NA
BASE/NEUTRAL EXTRACTABLES				
1 2 DICULODODENZENE	ug/1	ND@1	ND@1	ND@1
1, 2-DICHLOROBENZENE	ug/1	ND@1	ND@1	ND@1
1, 4-DICHLOROBENZENE	ug/1	ND@1	ND@1	ND@1
2-CHLOROETHYLVINYL ETHER	ug/1	ND@1	ND@1	ND@1
PCB 1016	ug/l	NA	NA	NA
PCB 1221	ug/l	NA	NA	NA
PCB 1232	ug/l	NA	NA	NA
PCB 1242	ug/l	NA	NA	NA
PCB 1248	ug/l	NA	NA	NA
PCB 1254	ug/l	NA	NA	NA
PCB 1260	ug/l	NA	NA	NA
INDICATOR PARAMETERS				
PH	Нq	6.85	6.98	6.68
SPECIFIC CONDUCTANCE	umhos/cm	245	454	2553
TEMPERATURE	С	13.6	13.2	18.4
METALS				
	(=			
ANTIMONY, DISSOLVED	mg/1	NA	NA	NA
ARSENIC, DISSOLVED	mg/1	NA	NA	NA
CADMIUM, DISSOLVED	mg/l	NA	NA	NA
LEAD, DISSOLVED	mg/1	NA	NA	NA
STINER, DISSOLVED	llig/1			
VOLATILE ORGANICS				
1,1,1,2-TETRACHLOROETHANE	ug/l	ND@1	ND@1	ND@1
1, 1, 1-TRICHLOROETHANE	ug/l	1.0	ND@1	ND@1
1, 1, 2, 2-TETRACHLOROETHANE	ug/l	ND@1	ND@1	ND@1
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	ug/l	ND@1	ND@1	ND@1

SAMPLE LOCATION		MW-187-S	MW-188-S	MW-189-S
SAMPLE DESCRIPTION		GROUNDWATER	GROUNDWATER	GROUNDWATER
SAMPLE DATE		05/25/11	05/31/11	05/26/11
LABORATORY SAMPLE L.D.		420-44001-8	420-44124-9	420-44062-20
SAMPLE PUN NUMBER		01	01	01
SAMPLE COMMENT CODES				
SAMPLE COMMENT CODES				
PARAMETER	UNITS			
VOLATILE ORGANICS (Continued)				
1.1.2-TRICHLOROETHANE	ug/1	ND@1	ND@1	ND@1
1.1-DICHLOROETHANE	ug/1	0.23J	ND@1	ND@1
1.1-DICHLOROETHYLENE	ug/1	0.41J	ND@1	ND@1
1.2.3-TRICHLOROPROPANE	ug/1	ND@1	ND@1	ND@1
1,2-DICHLORO-1,2,2-TRIFLUOROETHANE	ug/l	ND@1	ND@1	ND@1
1.2-DICHLOROETHANE	ug/1	ND@1	ND@1	ND@1
1.2-DICHLOROETHYLENE, TOTAL	ug/1	9.1	ND@1	ND@1
1.2-DICHLOROPROPANE	ug/l	ND@1	ND@1	ND@1
1-CHLOROHEXANE	ug/l	NA	NA	NA
2-CHLOROTOLUENE	ug/l	NA	NA	NA
4-CHLOROTOLUENE	uq/l	ND@1	ND@1	ND@1
BENZENE	ug/l	NA	NA	NA
BENZYL CHLORIDE	ug/l	ND@1	ND@1	ND@1
BROMOBENZENE	ug/l	ND@1	ND@1	ND@1
BROMODICHLOROMETHANE	ug/l	ND@1	ND@1	ND@1
BROMOFORM	ug/l	ND@1	ND@1	ND@1
BROMOMETHANE	ug/l	ND@1	ND@l	ND@1
CARBON TETRACHLORIDE	ug/l	ND@1	ND@1	ND@1
CHLOROBENZENE	ug/l	ND@1	ND@1	ND@1
CHLORODIBROMOMETHANE	ug/l	ND@1	ND@1	ND@1
CHLOROETHANE	ug/l	ND@1	ND@1	ND@1
CHLOROFORM	ug/l	ND@1	ND@1	ND@1
CHLOROMETHANE	ug/l	ND@1	ND@1	ND@1
CIS-1,3-DICHLOROPROPYLENE	ug/l	ND@1	ND@1	ND@1
DIBROMOMETHANE	ug/l	ND@1	ND@1	ND@1
DICHLORODIFLUOROMETHANE	ug/l	ND@1	ND@1	ND@1
ETHYLBENZENE	ug/l	NA	NA	NA
METHYLENE CHLORIDE	ug/l	ND@1	ND@1	ND@1
TETRACHLOROETHYLENE	ug/l	1.6	ND@1	ND@1
TOLUENE	ug/l	NA	NA	NA
TRANS-1,3-DICHLOROPROPENE	ug/l	ND@1	ND@1	ND@1
TRICHLOROETHYLENE	ug/l	53D	ND@1	ND@1
TRICHLOROFLUOROMETHANE	ug/l	ND@1	ND@1	ND@1
VINYL CHLORIDE	ug/l	ND@1	ND@1	ND@1
XYLENE, TOTAL	ug/l	NA	NA	NA

SAMPLE LOCATION SAMPLE DESCRIPTION SAMPLE DATE LABORATORY SAMPLE I.D. SAMPLE RUN NUMBER SAMPLE COMMENT CODES		MW-201-S GROUNDWATER 05/27/11 420-44076-12 01	MW-204-S GROUNDWATER 02/04/11 420-41396-11 01	MW-204-S GROUNDWATER 05/31/11 420-44124-13 01	MW-206-S GROUNDWATER 02/07/11 420-41408-5 01
PARAMETER	UNITS				
ACID EXTRACTABLES					
PHENOLS, TOTAL	ug/l	NA	NA	NA	ND@10
BASE/NEUTRAL EXTRACTABLES					
1.2-DICHLOROBENZENE	ug/l	ND@1	ND@1	ND@1	0.65J
1,3-DICHLOROBENZENE	ug/1	ND@1	ND@1	ND@1	ND@1
1,4-DICHLOROBENZENE	ug/l	ND@1	ND@1	ND@1	ND@l
2-CHLOROETHYLVINYL ETHER	ug/l	ND@1	ND@1	ND@1	ND@1
PCB 1016	ug/l	NA	NA	NA	NA
PCB 1221	ug/1	NA	NA	NA	NA
PCB 1232	ug/1	NA	NA	NA	NA
PCB 1242	ug/1	NA NA	NA	NA NA	NA
PCB 1248		NA	NA	NA	NA
PCB 1260	ug/1	NA	NA	NA	NA
INDICATOR PARAMETERS					
DH	nH	7.43	7.96	7,43	7.67
SPECIFIC CONDUCTANCE	umhos/cm	492	421	311	777
TEMPERATURE	с	15.7	12.4	13.3	7.7
METALS					
NUTHONY DISCOUVED	mg/1	NĂ	NA	NA	N A
ANTIMONI, DISSOLVED	mg/l	NA	NA	NA	ND@0.0014
CADMIUM, DISSOLVED	mg/1	NA	NA	NA	ND@0.0010
LEAD, DISSOLVED	mg/l	NA	ND@0.0010	ND@0.0010	ND@0.0010
SILVER, DISSOLVED	mg/l	NA	NA	NA	ND@0.0010
VOLATILE ORGANICS					
1.1.1.2-TETRACHLOROETHANE	ug/1	ND@1	ND@1	ND@1	ND@1
1,1,1-TRICHLOROETHANE	ug/l	NDØ1	79D	56D	ND@1
1,1,2,2-TETRACHLOROETHANE	ug/l	ND@1	ND@1	ND@1	ND@1
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	ug/l	ND@1	0.51J	0.32J	ND@1

MW-201-S

SAMPLE LOCATION SAMPLE DESCRIPTION SAMPLE DATE LABORATORY SAMPLE I.D. SAMPLE RUN NUMBER SAMPLE COMMENT CODES		MW-201-S GROUNDWATER 05/27/11 420-44076-12 01	MW-204-S GROUNDWATER 02/04/11 420-41396-11 01	MW-204-S GROUNDWATER 05/31/11 420-44124-13 01	MW-206-S GROUNDWATER 02/07/11 420-41408-5 01
PARAMETER	UNITS				
VOLATILE ORGANICS (Continued)					
1,1,2-TRICHLOROETHANE	ug/l	ND@1	0.22J	ND@1	ND@1
1,1-DICHLOROETHANE	ug/l	ND@1	24	16	0.96J
1,1-DICHLOROETHYLENE	ug/l	ND@1	20	8.0	ND@1
1,2,3-TRICHLOROPROPANE	ug/l	ND@1	ND@1	ND@1	ND@1
1,2-DICHLORO-1,2,2-TRIFLUOROETHANE	ug/l	ND@1	ND@1	ND@1	ND@1
1,2-DICHLOROETHANE	ug/l	ND@1	2.8	0.31J	ND@1
1,2-DICHLOROETHYLENE, TOTAL	ug/l	ND@1	57D	22	0.27J
1,2-DICHLOROPROPANE	ug/l	ND@1	ND@1	ND@1	ND@1
1-CHLOROHEXANE	ug/l	NA	NA	NA	NA
2 - CHLOROTOLUENE	ug/l	NA	NA	NA	NA
4-CHLOROTOLUENE	ug/l	ND@1	ND@1	ND@1	ND@1
BENZENE	ug/l	NA	NA	NA	NA
BENZYL CHLORIDE	ug/l	ND@1	ND@1	ND@1	ND@1
BROMOBENZENE	ug/1	ND@1	ND@1	ND@1	ND@1
BROMODICHLOROMETHANE	ug/l	ND@1	ND@1	ND@1	ND@1
BROMOFORM	ug/1	ND@1	ND@1	ND@1	ND@1
BROMOMETHANE	ug/1	ND@1	ND@1	ND@1	ND@1
CARBON TETRACHLORIDE	ug/1	ND@1	ND@1	ND@1	ND@1
CHLOROBENZENE	ug/1	ND@1	ND@1	ND@1	ND@1
CHLORODIBROMOMETHANE	ug/1	ND@1	ND@1	ND@1	ND@1
CHLOROETHANE	ug/1	ND@1	0.15J	ND@1	0.61J
CHLOROFORM	ug/1	ND@1	3.8	1.8	ND@1
CHLOROMETHANE	ug/1	NDØI	ND@1	ND@1	ND@1
CIS-1,3-DICHLOROPROPYLENE	ug/1	ND@1	ND@1	ND@1	ND@1
DIBROMOMETHANE	ug/1	ND@1	ND@1	ND@1	ND@1
DICHLORODIFLUOROMETHANE	ug/1	NDØ1	ND@1	ND@1	ND@1
ETHYLBENZENE	ug/1	NA	NA	NA	NA
METHYLENE CHLORIDE	ug/1	ND@1	ND@1	ND@1	ND@1
TETRACHLOROETHYLENE	ug/1	NDØL	3.8	1.7	ND@1
TOLUENE	ug/1	NA	NA	NA	NA
TRANS-1, 3-DICHLOROPROPENE	ug/1	NDØ1	ND@1	ND@1	ND@1
TRICHLOROETHYLENE	ug/1	1.5	160D	66D	ND@1
TRICHLOROFEUOROMETHANE	ug/1	ND@1	ND@1	ND@1	ND@1
VINYL CHLORIDE	ug/1	ND@1	0.26J	ND@1	0.70J
XYLENE, TOTAL	ug/l	NA	NA	NA	NA

SAMPLE LOCATION SAMPLE DESCRIPTION SAMPLE DATE LABORATORY SAMPLE I.D. SAMPLE RUN NUMBER SAMPLE COMMENT CODES		MW-206-S GROUNDWATER 06/02/11 420-44239-9 01	MW-208-S GROUNDWATER 02/07/11 420-41408-4 01	MW-208-S REPLICATE 02/07/11 220-14713-3 01	MW-208-S GROUNDWATER 06/03/11 420-44288-7 01
PARAMETER	UNITS				
ACID EXTRACTABLES					
PHENOLS, TOTAL	ug/l	ND@10	ND@10	NA	ND@10
BASE/NEUTRAL EXTRACTABLES					
1,2-DICHLOROBENZENE	ug/l	0.42J	0.30J	0,38J	NDØ1
1,3-DICHLOROBENZENE	ug/l	ND@1	ND@1	ND@0.5	ND@1
1,4-DICHLOROBENZENE	ug/1	ND@l	0.10J	ND@0.5	ND@1
2-CHLOROETHYLVINYL ETHER	ug/l	ND@1	ND@1	ND@0.5	ND@1
PCB 1016	ug/l	NA	NA	NA	NA
PCB 1221	ug/l	NA	NA	NA	NA
PCB 1232	ug/l	NA	NA	NA	NA
PCB 1242	ug/1	NA	NA	NA	NA
PCB 1248	ug/1	NA	NA	NA	NA
PCB 1254	ug/1	NA	NA	NA	NA
	4 <u>9</u> / ±		na Na	NA	NA
INDICATOR PARAMETERS					
PH	Hq	7.28	7.10	7.10	6.91
SPECIFIC CONDUCTANCE	umhos/cm	707	522	522	367
TEMPERATURE	С	11.9	6.0	6.0	12.1
METALS					
ANTIMONY DISSOLVED	mcr/1	NIZ	NA	NIA	NT A
ARSENIC, DISSOLVED	mg/l	ND@0_0014	0.021	NA	0.012
CADMIUM, DISSOLVED	mg/1	ND@0.0010	ND@0.0010	NA	ND@0 0010
LEAD, DISSOLVED	mg/l	ND@0.0010	ND@0.0010	NA	ND@0.0010
SILVER, DISSOLVED	mg/l	ND@0.0010	ND@0.0010	NA	ND@0.0010
VOLATILE ORGANICS					
1,1,1,2-TETRACHLOROETHANE	ug/l	ND@1	ND@1	ND@0.5	ND@1
1,1,1-TRICHLOROETHANE	ug/l	ND@1	ND@1	ND@0.5	ND@1
1,1,2,2-TETRACHLOROETHANE	ug/l	ND@1	ND@1	ND@0.5	ND@1
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	ug/l	ND@1	ND@1	ND@0.5	ND@1

MW-206-S

SAMPLE LOCATION SAMPLE DESCRIPTION SAMPLE DATE LABORATORY SAMPLE I.D. SAMPLE RUN NUMBER SAMPLE COMMENT CODES		MW-206-S GROUNDWATER 06/02/11 420-44239-9 01	MW-208-S GROUNDWATER 02/07/11 420-41408-4 01	MW-208-S REPLICATE 02/07/11 220-14713-3 01	MW-208-S GROUNDWATER 06/03/11 420-44288-7 01
PARAMETER	UNITS				
VOLATILE ORGANICS (Continued)					
1,1,2-TRICHLOROETHANE	ug/l	ND@1	ND@1	ND@0.5	ND@1
1,1-DICHLOROETHANE	ug/l	0.90J	0.27J	0.40J	0.28J
1,1-DICHLOROETHYLENE	ug/l	ND@1	ND@1	ND@0.5	ND@1
1,2,3-TRICHLOROPROPANE	ug/l	ND@1	ND@1	ND@0.5	ND@1
1,2-DICHLORO-1,2,2-TRIFLUOROETHANE	ug/l	ND@1	ND@1	ND@0.5	ND@1
1,2-DICHLOROETHANE	ug/l	ND@1	ND@1	ND@0.5	ND@1
1,2-DICHLOROETHYLENE, TOTAL	ug/l	0.36J	0.28J	0.24J	0.49J
1,2-DICHLOROPROPANE	ug/l	ND@1	ND@1	ND@0.5	ND@1
1-CHLOROHEXANE	ug/l	NA	NA	ND@0.5	NA
2-CHLOROTOLUENE	ug/l	NA	NA	NA	NA
4-CHLOROTOLUENE	ug/l	ND@1	ND@1	ND@0.5	ND@1
BENZENE	ug/l	NA	NA	NA	NA
BENZYL CHLORIDE	ug/l	ND@1	ND@1	ND@0.5	ND@1
BROMOBENZENE	ug/l	ND@1	ND@1	ND@0.5	ND@1
BROMODICHLOROMETHANE	ug/l	ND@1	ND@1	ND@0.5	ND@1
BROMOFORM	ug/l	ND@1	ND@1	ND@0.5	ND@1
BROMOMETHANE	ug/l	ND@1	ND@1	ND@1	ND@1
CARBON TETRACHLORIDE	ug/l	ND@1	ND@1	ND@0.5	ND@1
CHLOROBENZENE	ug/l	1.8	1.8	1.2	ND@1
CHLORODIBROMOMETHANE	ug/l	ND@1	ND@1	ND@0.5	ND@1
CHLOROETHANE	ug/l	0.30J	0.20J	ND@1	0.16J
CHLOROFORM	ug/l	ND@1	ND@1	ND@0.5	ND@1
CHLOROMETHANE	ug/l	0.35J	ND@1	ND@0.5	ND@1
CIS-1,3-DICHLOROPROPYLENE	ug/l	ND@1	ND@l	ND@0.5	ND@1
DIBROMOMETHANE	ug/l	ND@1	ND@1	ND@0.5	ND@1
DICHLORODIFLUOROMETHANE	ug/l	ND@1	ND@1	ND@1	ND@1
ETHYLBENZENE	ug/l	NA	NA	NA	NA
METHYLENE CHLORIDE	ug/l	ND@1	ND@1	ND@2	ND@1
TETRACHLOROETHYLENE	ug/l	ND@1	ND@1	ND@0.5	ND@1
TOLUENE	ug/l	NA	NA	NA	NA
TRANS-1, 3-DICHLOROPROPENE	ug/l	ND@1	ND@1	ND@0.5	ND@1
TRICHLOROETHYLENE	ug/l	ND@1	ND@1	ND@0.5	0.12J
TRICHLOROFLUOROMETHANE	ug/l	ND@1	ND@1	ND@0.5	ND@1
VINYL CHLORIDE	ug/l	1.3	0.23J	0.24J	0.25J
XYLENE, TOTAL	ug/l	NA	NA	NA	NA

SAMPLE LOCATION SAMPLE DESCRIPTION SAMPLE DATE LABORATORY SAMPLE I.D. SAMPLE RUN NUMBER SAMPLE COMMENT CODES		MW-210-S GROUNDWATER 02/07/11 420-41408-3 01	MW-210-S REPLICATE 06/02/11 220-15633-5 01	MW-210-S GROUNDWATER 06/02/11 420-44239-4 01	MW-250-M GROUNDWATER 05/26/11 420-44062-18 01
PARAMETER	UNITS				
ACID EXTRACTABLES					
PHENOLS, TOTAL	ug/l	ND@10	NA	ND@10	NA
BASE/NEUTRAL EXTRACTABLES					
1 2-DICHLOROBENZENE	ug/1	ND@1	0.24J	ND@1	ND@1
1.3-DICHLOROBENZENE	ug/1	ND@1	ND@0.5	ND@1	ND@1
1,4-DICHLOROBENZENE	ug/l	ND@1	ND@0.5	ND@1	ND@1
2-CHLOROETHYLVINYL ETHER	ug/l	ND@1	ND@0.5	ND@1	ND@1
PCB 1016	ug/l	NA	NA	NA	NA
PCB 1221	ug/l	NA	NA	NA	NA NA
PCB 1232	ug/l	NA	NA	NA	NA NA
PCB 1242	ug/1	NA NA	NA	NA	NA
PCB 1248	ug/1 vg/1	NA	NA	NA	NA
PCB 1260	ug/l	NA	NA	NA	NA
INDICATOR PARAMETERS					
D¥	На	7.16	6.89	6.89	6.75
SPECIFIC CONDUCTANCE	umhos/cm	899	891	891	598
TEMPERATURE	c	7.4	11.3	11.3	13.9
METALS					
	mg/1	NA	NA	NA	NA
ANTIMONI, DISSOLVED	mg/1	0.068	NA	0.086	NA
CADMIUM, DISSOLVED	mg/l	ND@0.0010	NA	ND@0.0010	NA.
LEAD, DISSOLVED	mg/l	ND@0.0010	NA	ND@0.0010	NA
SILVER, DISSOLVED	mg/l	ND@0.0010	NA	ND@0.0010	NA
VOLATILE ORGANICS					
1.1.1.2-TETRACHLOROETHANE	ug/1	ND@1	ND@0.5	ND@1	ND@1
1.1.1-TRICHLOROETHANE	ug/1	ND@1	ND@0.5	ND@1	0.90J
1,1,2,2-TETRACHLOROETHANE	ug/l	ND@1	ND@0.5	ND@1	ND@1
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	ug/l	ND@1	ND@0.5	ND@1	ND@1

SAMPLE LOCATION SAMPLE DESCRIPTION SAMPLE DATE LABORATORY SAMPLE I.D.		MW-210-S GROUNDWATER 02/07/11 420-41408-3	MW-210-S REPLICATE 06/02/11 220-15633-5	MW-210-S GROUNDWATER 06/02/11 420-44239-4	MW-250-M GROUNDWATER 05/26/11 420-44062-18
SAMPLE RUN NUMBER SAMPLE COMMENT CODES		01	01	01	01
PARAMETER	UNITS				
VOLATILE ORGANICS (Continued)					
1,1,2-TRICHLOROETHANE	ug/l	ND@1	ND@0.5	ND@1	ND@1
1,1-DICHLOROETHANE	ug/l	0.80J	2.1	1.5	ND@1
1, 1-DICHLOROETHYLENE	ug/l	ND@1	ND@0.5	ND@1	ND@1
1,2,3-TRICHLOROPROPANE	ug/l	ND@1	ND@0.5	ND@1	ND@1
1,2-DICHLORO-1,2,2-TRIFLUOROETHANE	ug/l	ND@1	ND@0.5	ND@1	ND@1
1,2-DICHLOROETHANE	ug/l	ND@1	ND@0.5	ND@1	ND@1
1,2-DICHLOROETHYLENE, TOTAL	ug/l	0.26J	0.30J	ND@1	ND@1
1,2-DICHLOROPROPANE	ug/l	ND@1	ND@0.5	ND@1	ND@1
1-CHLOROHEXANE	ug/l	NA	ND@0.5	NA	NA
2 - CHLOROTOLUENE	ug/l	NA	NA	NA	NA
4 - CHLOROTOLUENE	ug/l	ND@1	ND@0.5	ND@1	ND@1
BENZENE	ug/l	NA	NA	NA	NA
BENZYL CHLORIDE	ug/l	ND@1	ND@0.5	ND@1	ND@1
BROMOBENZENE	ug/l	ND@1	ND@0.5	ND@1	ND@1
BROMODICHLOROMETHANE	ug/l	ND@1	ND@0.5	ND@1	NDØ1
BROMOFORM	ug/l	ND@1	ND@0.5	ND@1	ND@1
BROMOMETHANE	ug/l	ND@1	ND@1	ND@1	ND@1
CARBON TETRACHLORIDE	ug/l	ND@1	ND@0.5	ND@1	ND@1
CHLOROBENZENE	ug/1	1.0	1.1	0.66Ĵ	ND@1
CHLORODIBROMOMETHANE	ug/l	ND@1	ND@0.5	ND@1	ND@1
CHLOROETHANE	ug/l	4.5	1.8	1.6	ND@1
CHLOROFORM	ug/l	ND@1	ND@0.5	ND@1	ND@1
CHLOROMETHANE	ug/l	ND@1	ND@0.5	1.6	NDØl
CIS-1,3-DICHLOROPROPYLENE	ug/l	ND@1	ND@0.5	ND@1	ND@1
DIBROMOMETHANE	ug/l	ND@1	ND@0.5	ND@1	ND@1
DICHLORODIFLUOROMETHANE	ug/l	ND@1	ND@1	ND@1	ND@1
ETHYLBENZENE	ug/l	NA	NA	NA	NA
METHYLENE CHLORIDE	ug/l	ND@1	ND@2	ND@1	ND@1
TETRACHLOROETHYLENE	ug/l	ND@1	ND@0.5	ND@1	0.57J
TOLUENE	ug/l	NA	NA	NA	NA
TRANS-1,3-DICHLOROPROPENE	ug/l	ND@1	ND@0.5	ND@1	ND@1
TRICHLOROETHYLENE	ug/l	ND@1	ND@0.5	ND@1	0.16J
TRICHLOROFLUOROMETHANE	ug/l	ND@1	ND@0.5	ND@1	ND@1
VINYL CHLORIDE	ug/l	ND@1	0.20J	0.42J	ND@1
XYLENE, TOTAL	ug/l	NA	NA	NA	NA

MW-210-S

SAMPLE LOCATION SAMPLE DESCRIPTION SAMPLE DATE LABORATORY SAMPLE I.D. SAMPLE RUN NUMBER SAMPLE COMMENT CODES	G 42	MW-269-S ROUNDWATER 05/27/11 0-44076-20 01	MW-270-S GROUNDWATER 05/27/11 420-44076-19 01	MW-274-S GROUNDWATER 05/26/11 420-44062-13 01	MW-274-S DUPLICATE 05/26/11 420-44062-14 01
PARAMETER	UNITS				
ACID EXTRACTABLES					
PHENOLS, TOTAL	ug/1	NA	NA	NA	NA
BASE/NEUTRAL EXTRACTABLES					
1,2-DICHLOROBENZENE	ug/l	ND@1	ND@1	ND@1	ND@1
1, 3-DICHLOROBENZENE	ug/l	ND@1	ND@1	ND@1	ND@1
1,4-DICHLOROBENZENE	ug/l	ND@1	ND@1	ND@1	ND@1
2-CHLOROETHYLVINYL ETHER	ug/l	ND@1	ND@1	ND@1	ND@1
PCB 1016	ug/1	NA	NA	NA	NA
PCB 1221 PCB 1222		NA	NA NA	NA	NA
PCB 1232	ug/l	NA	NA	NA	NA
PCB 1248	ug/1	NA	NA	NA	NA
PCB 1254	ug/l	NA	NA	NA	NA
PCB 1260	ug/1	NA	NA	NA	NA
INDICATOR PARAMETERS					
PH	На	NA	NA	6.63	6.63
SPECIFIC CONDUCTANCE	umhos/cm	NA	NA	379	379
TEMPERATURE	с	NA	NA	14.6	14.6
METALS					
ANTIMONY, DISSOLVED	mg/l	NA	NA	NA	NA
ARSENIC, DISSOLVED	mg/l	NA	NA	NA	NA
CADMIUM, DISSOLVED	mg/l	NA	NA.	NA	NA
LEAD, DISSOLVED	mg/l	NA	NA	NA	NA
SILVER, DISSOLVED	mg/l	NA	NA	NA	NA
VOLATILE ORGANICS					
1,1,1,2-TETRACHLOROETHANE	ug/l	ND@1	ND@1	ND@1	ND@1
1,1,1-TRICHLOROETHANE	ug/1	2200D	250D	1.1	1.1
1, 1, 2, 2-TETRACHLOROETHANE	ug/l	ND@1	ND@1	ND@1	ND@1
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	ug/l	ND@1	6.0	ND@1	ND@1

SAMPLE LOCATION SAMPLE DESCRIPTION		MW-269-S GROUNDWATER	MW-270-S GROUNDWATER	MW-274-S GROUNDWATER	MW-274-S DUPLICATE
SAMPLE DATE		05/27/11	05/27/11	05/26/11	05/26/11
LABORATORY SAMPLE I.D.		420-44076-20	420-44076-19	420-44062-13	420-44062-14
SAMPLE RUN NUMBER		01	01	01	01
SAMPLE COMMENT CODES					
PARAMETER	UNITS				
VOLATILE ORGANICS (Continued)					
1,1,2-TRICHLOROETHANE	ug/l	0.14J	ND@l	ND@1	ND@1
1,1-DICHLOROETHANE	ug/l	210D	84D	0,12J	ND@1
1,1-DICHLOROETHYLENE	ug/l	32	15	ND@1	ND@1
1,2,3-TRICHLOROPROPANE	ug/l	ND@1	ND@1	ND@1	ND@1
1,2-DICHLORO-1,2,2-TRIFLUOROETHANE	ug/l	ND@1	3.9	ND@1	ND@1
1,2-DICHLOROETHANE	ug/l	1.2	1.1	ND@1	ND@1
1,2-DICHLOROETHYLENE, TOTAL	ug/l	780D	300D	ND@1	ND@1
1,2-DICHLOROPROPANE	ug/l	ND@1	ND@1	ND@1	ND@1
1 - CHLOROHEXANE	ug/l	NA	NA	NA	NA
2 - CHLOROTOLUENE	ug/l	ND@1	ND@1	NA	NA
4-CHLOROTOLUENE	ug/l	ND@1	ND@1	ND@1	ND@1
BENZENE	ug/l	0.20J	ND@1	NA	NA
BENZYL CHLORIDE	ug/l	ND@1	ND@1	ND@1	ND@1
BROMOBENZENE	ug/l	ND@1	ND@1	ND@1	ND@1
BROMODICHLOROMETHANE	ug/l	ND@1	ND@1	ND@l	ND@1
BROMOFORM	ug/l	ND@1	ND@1	ND@1	ND@1
BROMOMETHANE	ug/l	ND@1	ND@1	ND@1	ND@1
CARBON TETRACHLORIDE	ug/l	ND@1	ND@1	ND@1	ND@1
CHLOROBENZENE	ug/l	ND@1	ND@1	ND@1	ND@1
CHLORODIBROMOMETHANE	ug/l	ND@1	ND@1	ND@1	ND@1
CHLOROETHANE	ug/l	ND@1	ND@1	ND@1	ND@1
CHLOROFORM	ug/1	ND@1	ND@1	ND@1	ND@1
CHLOROMETHANE	ug/l	ND@1	ND@1	ND@1	ND@1
CIS-1, 3-DICHLOROPROPYLENE	ug/l	ND@1	ND@1	ND@1	ND@1
DIBROMOMETHANE	ug/l	ND@1	ND@1	ND@1	ND@1
DICHLORODIFLUOROMETHANE	ug/1	ND@1	ND@1	ND@1	ND@1
ETHYLBENZENE	ug/1	ND@1	16	NA	NA
METHYLENE CHLORIDE	ug/l	ND@1	0.52J	ND@1	ND@1
TETRACHLOROETHYLENE	ug/1	20	32	ND@1	ND@1
TOLUENE	ug/l	ND@1	5.4	NA	NA
TRANS-1, 3-DICHLOROPROPENE	ug/l	ND@1	ND@1	ND@1	ND@1
TRICHLOROETHYLENE	ug/l	1100D	420D	1.7	1.7
TRICHLOROFLUOROMETHANE	ug/1	ND@1	ND@1	ND@1	ND@1
VINYL CHLORIDE	ug/l	55J	210D	ND@1	ND@1
XYLENE, TOTAL	ug/l	0.46J	120	NA	NA

SAMPLE LOCATION SAMPLE DESCRIPTION SAMPLE DATE LABORATORY SAMPLE I.D. SAMPLE RUN NUMBER SAMPLE COMMENT CODES		MW-277-S GROUNDWATER 05/27/11 420-44076-9 01	MW-278-S GROUNDWATER 05/25/11 420-44001-12 01	MW-279-S GROUNDWATER 05/27/11 420-44076-10 01
PARAMETER	UNITS			
ACID EXTRACTABLES				
PHENOLS, TOTAL	ug/l	NA	NA	NA
BASE/NEUTRAL EXTRACTABLES				
1 2-DICHLOROBENZENE	ug/l	ND@1	ND@1	ND@1
1, 3-DI CHLOROBENZENE	ug/1	ND@1	ND@1	ND@1
1, 4-DICHLOROBENZENE	ug/l	ND@1	ND@1	ND@1
2-CHLOROETHYLVINYL ETHER	ug/l	ND@1	ND@1	ND@1
PCB 1016	ug/l	NA	NA	NA
PCB 1221	ug/l	NA	NA	NA
PCB 1232	ug/l	NA.	NA	NA
PCB 1242	ug/l	NA	NA	NA
PCB 1248	ug/l	NA	NA	NA NA
PCB 1254	ug/l	NA	NA	NA NA
PCB 1260	ug/1	NA	1742	MA
INDICATOR PARAMETERS				
DU .	ъĦ	7.54	7.15	7.13
SPECIFIC CONDUCTANCE	umhos/cm	598	711	1862
TEMPERATURE	C	12.6	13.6	13.6
METALS				
	/-	777	ND	N7.0
ANTIMONY, DISSOLVED	mg/l	NA	NA NΔ	NA
ARSENIC, DISSOLVED	mg/1	NA	NA	NA
CADMIUM, DISSOLVED	mg/1	NA	NA	NA
STINED DISSOLVED	mg/1	NA	NA	NA
VOLATILE ORGANICS				
1.1.1.2-TETRACHLOROETHANE	ug/1	ND@1	ND@1	ND@1
1.1.1-TRICHLOROETHANE	ug/1	1800D	790D	1.7
1, 1, 2, 2-TETRACHLOROETHANE	ug/1	ND@1	ND@l	ND@1
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	ug/l	2.4	4.5	ND@1

SAMPLE LOCATION		MW-277-S	MW-278-S	MW-279-S
SAMPLE DESCRIPTION		GROUNDWATER	GROUNDWATER	GROUNDWATER
SAMPLE DATE		05/27/11	05/25/11	05/27/11
LABORATORY SAMPLE I.D.		420-44076-9	420-44001-12	420-44076-10
SAMPLE RUN NUMBER		01	01	01
SAMPLE COMMENT CODES				
PARAMETER	UNITS			
VOLATILE ORGANICS (Continued)				
1,1,2-TRICHLOROETHANE	ug/l	9.2	17	ND@1
1,1-DICHLOROETHANE	ug/l	310D	200D	11
1,1-DICHLOROETHYLENE	ug/l	160D	270D	11
1,2,3-TRICHLOROPROPANE	ug/l	ND@1	ND@1	ND@1
1,2-DICHLORO-1,2,2-TRIFLUOROETHANE	ug/1	11	3.8	ND@1
1,2-DICHLOROETHANE	ug/l	16	ND@1	0.10J
1,2-DICHLOROETHYLENE, TOTAL	ug/1	12	19	0.62J
1,2-DICHLOROPROPANE	ug/l	ND@1	ND@1	ND@1
1-CHLOROHEXANE	ug/l	NA	NA	NA
2 - CHLOROTOLUENE	ug/l	NA	NA	NA
4-CHLOROTOLUENE	ug/l	ND@1	ND@1	ND@1
BENZENE	ug/l	NA	NA	NA
BENZYL CHLORIDE	ug/l	ND@1	ND@1	ND@1
BROMOBENZENE	ug/l	ND@1	ND@1	ND@1
BROMODICHLOROMETHANE	ug/l	ND@1	ND@1	ND@1
BROMOFORM	ug/l	ND@1	ND@1	ND@l
BROMOMETHANE	ug/l	ND@1	ND@1	ND@1
CARBON TETRACHLORIDE	ug/l	ND@1	ND@1	ND@1
CHLOROBENZENE	ug/l	ND@1	ND@1	ND@1
CHLORODIBROMOMETHANE	ug/l	ND@1	ND@1	ND@l
CHLOROETHANE	ug/l	ND@1	ND@1	ND@1
CHLOROFORM	ug/l	15	4.6	0.44J
CHLOROMETHANE	ug/l	ND@1	ND@1	ND@1
CIS-1,3-DICHLOROPROPYLENE	ug/l	ND@1	ND@1	ND@1
DIBROMOMETHANE	ug/l	ND@1	ND@1	ND@1
DICHLORODIFLUOROMETHANE	ug/l	ND@1	ND@1	ND@1
ETHYLBENZENE	ug/l	NA	NA	NA
METHYLENE CHLORIDE	ug/l	1.2	ND@1	ND@1
TETRACHLOROETHYLENE	ug/l	3.8	1.6	ND@1
TOLUENE	ug/l	NA	NA	NA
TRANS-1,3-DICHLOROPROPENE	ug/l	ND@1	ND@1	ND@1
TRICHLOROETHYLENE	ug/l	60D	170D	6.8
TRICHLOROFLUOROMETHANE	ug/l	ND@1	ND@1	ND@1
VINYL CHLORIDE	ug/l	1.4	1.8	ND@1
XYLENE, TOTAL	ug/l	NA	NA	NA

MW-277-S

SAMPLE LOCATION SAMPLE DESCRIPTION SAMPLE DATE LABORATORY SAMPLE I.D. SAMPLE RUN NUMBER SAMPLE COMMENT CODES		MW-282-S GROUNDWATER 05/25/11 420-44001-2 01	MW-282-S DUPLICATE 05/25/11 420-44001-3 01	MW-284-S GROUNDWATER 02/03/11 420-41399-19 01	MW-284-S DUPLICATE 02/03/11 420-41399-20 01	MW-284-S GROUNDWATER 05/25/11 420-44001-7 01
PARAMETER	UNITS					
ACID EXTRACTABLES						
PHENOLS, TOTAL	ug/l	NA	NA	NA	NA	NA
BASE/NEUTRAL EXTRACTABLES						
1,2-DICHLOROBENZENE 1,3-DICHLOROBENZENE 1,4-DICHLOROBENZENE 2-CHLOROBENYLVINYL ETHER PCB 1016 PCB 1221 PCB 1222 PCB 1242 PCB 1248 PCB 1254 PCB 1260	ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1	NDØ1 NDØ1 NDØ1 NA NA NA NA NA NA NA	ND@1 ND@1 ND@1 NA NA NA NA NA NA	ND@1 ND@1 ND@1 NA NA NA NA NA NA NA	ND@1 ND@1 ND@1 NA NA NA NA NA NA NA	ND@1 ND@1 ND@1 NA NA NA NA NA NA
INDICATOR PARAMETERS						
PH SPECIFIC CONDUCTANCE TEMPERATURE	pH umhos/cm C	6.33 614 13.4	6.33 614 13.4	7.44 541 10.1	7.44 541 10.1	6.76 1017 13.8
METALS						
ANTIMONY, DISSOLVED ARSENIC, DISSOLVED CADMIUM, DISSOLVED LEAD, DISSOLVED SILVER, DISSOLVED	mg/1 mg/1 mg/1 mg/1 mg/1	NA NA NA NA	NA NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA
VOLATILE ORGANICS						
1,1,1,2-TETRACHLOROETHANE 1,1,1-TRICHLOROETHANE 1,1,2,2-TETRACHLOROETHANE 1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	ug/l ug/l ug/l ug/l	ND@1 ND@1 ND@1 ND@1	ND@1 ND@1 ND@1 ND@1	ND@1 ND@1 ND@1 ND@1	NDØ1 NDØ1 NDØ1 NDØ1	ND@1 ND@1 ND@1 ND@1

MW-282-S

SAMPLE LOCATION SAMPLE DESCRIPTION SAMPLE DATE LABORATORY SAMPLE I.D. SAMPLE RUN NUMBER SAMPLE COMMENT CODES		MW-282-S GROUNDWATER 05/25/11 420-44001-2 01	MW-282-S DUPLICATE 05/25/11 420-44001-3 01	MW-284-S GROUNDWATER 02/03/11 420-41399-19 01	MW-284-S DUPLICATE 02/03/11 420-41399-20 01	MW-284-S GROUNDWATER 05/25/11 420-44001-7 01
PARAMETER	UNITS					
VOLATILE ORGANICS (Continued)						
1,1,2-TRICHLOROETHANE	ug/l	ND@1	ND@1	ND@1	ND@1	ND@1
1,1-DICHLOROETHANE	ug/l	ND@1	ND@1	ND@1	ND@1	ND@1
1,1-DICHLOROETHYLENE	ug/l	ND@1	ND@1	ND@1	ND@1	ND@1
1,2,3-TRICHLOROPROPANE	ug/l	ND@1	ND@1	ND@1	ND@1	ND@1
1,2-DICHLORO-1,2,2-TRIFLUOROETHANE	ug/1	ND@1	ND@1	ND@1	ND@1	ND@1
1,2-DICHLOROETHANE	ug/l	ND@1	ND@1	ND@1	ND@1	ND@1
1,2-DICHLOROETHYLENE, TOTAL	ug/l	1.7	1.8	12	12	15
1,2-DICHLOROPROPANE	ug/l	ND@1	ND@1	ND@1	ND@1	ND@1
1-CHLOROHEXANE	ug/l	NA	NA	NA	NA	NA
2-CHLOROTOLUENE	ug/l	NA	NA	NA	NA	NA
4 - CHLOROTOLUENE	ug/l	ND@1	ND@1	ND@1	ND@1	ND@1
BENZENE	ug/l	NA	NA	NA	NA	NA
BENZYL CHLORIDE	ug/l	ND@1	ND@1	ND@1	ND@1	ND@1
BROMOBENZENE	ug/l	ND@1	ND@1	ND@1	ND@1	ND@1
BROMODICHLOROMETHANE	ug/l	ND@1	ND@1	ND@1	ND@1	ND@1
BROMOFORM	ug/l	ND@1	ND@1	ND@1	ND@1	ND@1
BROMOMETHANE	ug/l	ND@1	ND@1	ND@1	ND@1	ND@1
CARBON TETRACHLORIDE	ug/l	ND@1	ND@1	ND@1	ND@1	ND@1
CHLOROBENZENE	ug/l	ND@1	ND@1	ND@1	ND@1	ND@1
CHLORODIBROMOMETHANE	ug/l	ND@1	ND@1	ND@1	ND@1	ND@1
CHLOROETHANE	ug/l	ND@1	ND@1	ND@1	ND@1	ND@1
CHLOROFORM	ug/l	ND@1	ND@1	ND@1	ND@1	ND@1
CHLOROMETHANE	ug/l	ND@1	ND@1	ND@1	ND@1	ND@1
CIS-1,3-DICHLOROPROPYLENE	ug/l	ND@1	ND@1	ND@1	ND@1	ND@1
DIBROMOMETHANE	ug/l	ND@1	ND@1	ND@1	ND@1	ND@1
DICHLORODIFLUOROMETHANE	ug/l	ND@1	ND@1	ND@1	ND@1	ND@1
ETHYLBENZENE	ug/l	NA	NA	NA	NA	NA
METHYLENE CHLORIDE	ug/l	ND@1	ND@1	ND@1	ND@1	ND@1
TETRACHLOROETHYLENE	ug/l	ND@1	ND@1	ND@1	ND@1	ND@1
TOLUENE	ug/l	NA	NA	NA	NA	NA
TRANS-1, 3-DICHLOROPROPENE	ug/l	ND@1	ND@1	ND@1	ND@1	ND@1
TRICHLOROETHYLENE	ug/l	6.4	6.1	16	15	14
TRICHLOROFLUOROMETHANE	ug/l	ND@1	ND@1	ND@1	ND@1	ND@1
VINYL CHLORIDE	ug/l	0.31J	0.42J	0.52J	0.53J	0.56J
XYLENE, TOTAL	ug/l	NA	NA	NA	NA	NA

SAMPLE LOCATION SAMPLE DESCRIPTION SAMPLE DATE LABORATORY SAMPLE I.D. SAMPLE RUN NUMBER SAMPLE COMMENT CODES		MW-285-S GROUNDWATER 05/31/11 420-44124-4 01	MW-285-S GROUNDWATER 05/31/11 L1107670-01 01	MW-288-S GROUNDWATER 05/27/11 420-44076-15 01	MW-297-S GROUNDWATER 05/27/11 420-44076-14 01
PARAMETER	UNITS				
ACID EXTRACTABLES					
PHENOLS, TOTAL	ug/l	NA	NA.	NA	NA
BASE/NEUTRAL EXTRACTABLES					
1,2-DICHLOROBENZENE	ug/l	ND@1	NA	ND@1	ND@1
1, 3-DICHLOROBENZENE	ug/l	ND@1	NA	ND@1	ND@1
1,4-DICHLOROBENZENE	ug/l	ND@1	NA	ND@1	ND@1
2-CHLOROETHYLVINYL ETHER	ug/l	ND@1	NA	ND@1	ND@1
PCB 1016	ug/l	NA	ND@0.083	NA	NA
PCB 1221	ug/l	NA	ND@0.083	NA	NA
PCB 1242	ug/l	NA	ND@0.083	NA	NA
PCB 1248	ug/l	NA	ND@0.083	NA	NA
PCB 1254	ug/l	NA	ND@0.083	NA	NA
PCB 1260	ug/l	NA	ND@0.083	NA	NA
INDICATOR PARAMETERS					
DU	ъH	7 16	NΔ	7 15	7.15
SPECIFIC CONDUCTANCE	umhos/cm	3113	NA	2757	533
TEMPERATURE	C	12.6	NA	12.9	12.7
METALS					
ANTTMONY DISCOLUTED	mg / 1	NA	NA	NA	NA
ARSENIC. DISSOLVED	mg/l	NA	NA	NA	NA
CADMIUM, DISSOLVED	mg/l	NA	NA	NA	NA
LEAD, DISSOLVED	mg/l	NA	NA	NA	NA
SILVER, DISSOLVED	mg/l	NA	NA	NA	NA
VOLATILE ORGANICS					
1,1,1,2-TETRACHLOROETHANE	ug/l	ND@1	NA	ND@1	ND@1
1,1,1-TRICHLOROETHANE	ug/l	1.7	NA	ND@1	9.4
1, 1, 2, 2-TETRACHLOROETHANE	ug/l	ND@1	NA	ND@1	ND@1
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	ug/1	ND@1	NA	0.94J	4.0J

20 - 1

SAMPLE LOCATION SAMPLE DESCRIPTION SAMPLE DATE LABORATORY SAMPLE I.D. SAMPLE PIN NUMBER		MW-285-S GROUNDWATER 05/31/11 420-44124-4 01	MW-285-S GROUNDWATER 05/31/11 L1107670-01 01	MW-288-S GROUNDWATER 05/27/11 420-44076-15 01	MW-297-S GROUNDWATER 05/27/11 420-44076-14 01
SAMPLE COMMENT CODES					
PARAMETER	UNITS				
VOLATILE ORGANICS (Continued)					
1,1,2-TRICHLOROETHANE	ug/l	ND@1	NA	ND@1	ND@1
1,1-DICHLOROETHANE	ug/l	0.47J	NA	8.2	9.2
1,1-DICHLOROETHYLENE	ug/l	ND@1	NA	1.7	5.1
1,2,3-TRICHLOROPROPANE	ug/l	ND@1	NA	ND@1	ND@1
1,2-DICHLORO-1,2,2-TRIFLUOROETHANE	ug/l	ND@1	NA	ND@1	ND@1
1,2-DICHLOROETHANE	ug/l	ND@1	NA	5.6	ND@1
1,2-DICHLOROETHYLENE, TOTAL	ug/l	3.0	NA	17	69D
1,2-DICHLOROPROPANE	ug/l	ND@1	NA	ND@1	ND@1
1-CHLOROHEXANE	ug/l	NA	NA	NA	NA
2-CHLOROTOLUENE	ug/l	NA	NA	NA	NA
4-CHLOROTOLUENE	ug/l	ND@1	NA	ND@1	ND@1
BENZENE	ug/l	NA	NA	NA	NA
BENZYL CHLORIDE	ug/l	ND@1	NA	ND@1	ND@1
BROMOBENZENE	ug/l	ND@1	NA	ND@1	ND@1
BROMODICHLOROMETHANE	ug/l	ND@1	NA	ND@1	ND@1
BROMOFORM	ug/l	ND@1	NA	ND@1	ND@1
BROMOMETHANE	ug/l	ND@1	NA	ND@1	ND@1
CARBON TETRACHLORIDE	ug/l	ND@1	NA	ND@1	ND@1
CHLOROBENZENE	ug/l	ND@1	NA	ND@1	ND@1
CHLORODIBROMOMETHANE	ug/l	ND@1	NA	ND@1	ND@1
CHLOROETHANE	ug/l	ND@1	NA	ND@1	ND@1
CHLOROFORM	ug/l	ND@1	NA	ND@1	ND@1
CHLOROMETHANE	ug/l	ND@1	NA	ND@1	ND@1
CIS-1,3-DICHLOROPROPYLENE	ug/l	ND@1	NA	ND@1	ND@1
DIBROMOMETHANE	ug/l	ND@1	NA	ND@1	ND@1
DICHLORODIFLUOROMETHANE	ug/l	ND@1	NA.	ND@1	ND@1
ETHYLBENZENE	ug/1	NA	NA	NA	NA
METHYLENE CHLORIDE	ug/l	ND@1	NA	ND@1	ND@1
TETRACHLOROETHYLENE	ug/l	1.5	NA	4.2	15
TOLUENE	ug/l	NA	NA	NA	NA
TRANS-1, 3-DICHLOROPROPENE	ug/l	ND@1	NA	ND@1	ND@1
TRICHLOROETHYLENE	ug/l	19	NA	140D	240D
TRICHLOROFLUOROMETHANE	ug/l	ND@1	NA	ND@1	ND@1
VINYL CHLORIDE	ug/l	ND@1	NA	0.16J	1.8
XYLENE, TOTAL	uq/l	NA	NA	NA	NA

SAMPLE LOCATION SAMPLE DESCRIPTION SAMPLE DATE LABORATORY SAMPLE I.D. SAMPLE RUN NUMBER SAMPLE COMMENT CODES		MW-402-S GROUNDWATER 06/02/11 420-44239-5 01	MW-406-S GROUNDWATER 05/31/11 420-44124-5 01	MW-407-S GROUNDWATER 05/27/11 420-44076-13 01
PARAMETER	UNITS			
ACID EXTRACTABLES				
PHENOLS, TOTAL	ug/l	NA	NA	NA
BASE/NEUTRAL EXTRACTABLES				
1 2-DICHLOROBENZENE	ug/l	ND@1	ND@1	ND@1
1.3-DICHLOROBENZENE	ug/1	ND@1	ND@1	ND@1
1.4-DICHLOROBENZENE	ug/l	ND@1	ND@1	ND@1
2-CHLOROETHYLVINYL ETHER	ug/l	ND@1	ND@1	ND@1
PCB 1016	ug/l	NA	NA	NA ND
PCB 1221	ug/l	NA	NA	NA
PCB 1232	ug/l	NA NA	NA	NA
PCB 1242	ug/1	NA NA	NA	NA
PCB 1248	ug/1	NA	NA	NA
PCB 1260	ug/l	NA	NA	NA
INDICATOR PARAMETERS				
	~ ¹	7 21	7.25	7.41
PH ADECTRIC CONDUCTINCE	рл umbos/cm	1750	3035	1239
TEMPERATURE	C	11.3	11.6	13.2
METTAT 0				
METAID				NT N
ANTIMONY, DISSOLVED	mg/1	NA	NA NA	NA
ARSENIC, DISSOLVED	mg/l	NA	NA NA	NA
CADMIUM, DISSOLVED	mg/1	NA	NA	NA
SILVER, DISSOLVED	mg/l	NA	NA	NA
VOLATILE ORGANICS				
1,1,1,2-TETRACHLOROETHANE	ug/l	ND@1	ND@1	ND@1
1,1,1-TRICHLOROETHANE	ug/l	ND@1	1.4	1.5
1,1,2,2-TETRACHLOROETHANE	ug/l	ND@1	ND@1	ND@1
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	ug/l	ND@1	ND@1	ND@1

SAMPLE LOCATION		MW-402-S	MW-406-S	MW-407-S
SAMPLE DESCRIPTION		GROUNDWATER	GROUNDWATER	GROUNDWATER
SAMPLE DATE		06/02/11	05/31/11	05/27/11
LABORATORY SAMPLE T.D.		420-44239-5	420-44124-5	420-44076-13
SAMPLE PIN NIMBER		01	01	01
SAMPLE COMMENT CODES				
SAMPLE COMMENT CODED				
PARAMETER	UNITS			
VOLATILE ORGANICS (Continued)				
1,1,2-TRICHLOROETHANE	ug/l	ND@1	ND@1	ND@1
1,1-DICHLOROETHANE	ug/l	ND@1	0.31J	0.46J
1,1-DICHLOROETHYLENE	ug/l	ND@1	ND@1	0.78J
1,2,3-TRICHLOROPROPANE	ug/l	ND@1	ND@1	ND@1
1,2-DICHLORO-1,2,2-TRIFLUOROETHANE	ug/l	ND@1	ND@1	ND@1
1.2-DICHLOROETHANE	ug/l	ND@1	ND@1	0.48J
1,2-DICHLOROETHYLENE, TOTAL	ug/l	ND@1	ND@1	0.98J
1.2-DICHLOROPROPANE	ug/l	ND@1	ND@1	ND@1
1-CHLOROHEXANE	ug/l	NA	NA	NA
2 - CHLOROTOLUENE	ug/l	NA	NA	NA
4 - CHLOROTOLUENE	ug/l	ND@1	ND@1	ND@1
BENZENE	ug/l	NA	NA	NA
BENZYL CHLORIDE	ug/l	ND@1	ND@1	ND@1
BROMOBENZENE	ug/l	ND@1	ND@1	ND@1
BROMODICHLOROMETHANE	ug/l	ND@1	ND@1	ND@1
BROMOFORM	ug/l	ND@1	ND@1	ND@1
BROMOMETHANE	ug/l	ND@1	ND@1	ND@1
CARBON TETRACHLORIDE	ug/l	ND@1	ND@1	ND@1
CHLOROBENZENE	ug/l	ND@1	ND@1	ND@1
CHLORODIBROMOMETHANE	ug/l	ND@1	ND@1	ND@1
CHLOROETHANE	ug/1	ND@1	ND@1	ND@1
CHLOROFORM	ug/1	ND@1	ND@1	ND@1
CHLOROMETHANE	ug/l	ND@1	ND@1	ND@1
CIS-1.3-DICHLOROPROPYLENE	ug/l	ND@1	ND@1	ND@1
DIBROMOMETHANE	ug/l	ND@1	ND@1	ND@1
DICHLORODIFLUOROMETHANE	ug/l	ND@1	ND@1	ND@1
ETHYLBENZENE	ug/l	NA	NA	NA
METHYLENE CHLORIDE	ug/l	ND@1	ND@1	ND@1
TETRACHLOROETHYLENE	ug/l	ND@1	ND@1	0.24J
TOLUENE	ug/1	NA	NA	NA
TRANS-1.3-DICHLOROPROPENE	ug/1	ND@1	ND@1	ND@1
TRICHLOROETHYLENE	ug/1	ND@1	7.1	22
TRICHLOROFLUOROMETHANE	ug/1	NDØ1	ND@1	ND@l
VINYL CHLORIDE	ug/1	ND@1	ND@1	ND@1
XYLENE, TOTAL	ug/1	NA	NA	NA

SAMPLE LOCATION SAMPLE DESCRIPTION SAMPLE DATE LABORATORY SAMPLE I.D. SAMPLE RUN NUMBER SAMPLE COMMENT CODES		MW-504-S GROUNDWATER 02/03/11 420-41399-18 01	MW-504-S GROUNDWATER 05/31/11 420-44124-17 01	MW-505-S GROUNDWATER 05/27/11 420-44076-17 01	MW-505-S DUPLICATE 05/27/11 420-44076-18 01
PARAMETER	UNITS				
ACID EXTRACTABLES					
PHENOLS, TOTAL	ug/l	NA	NA	NA	NA
BASE/NEUTRAL EXTRACTABLES					
1 2-DICHLODORENZENE	ug/1	ND@1	ND@1	ND@1	ND@1
1 3-DICHLOROBENZENE	ug/l	ND@1	ND@1	ND@1	ND@1
1.4-DICHLOROBENZENE	ug/1	ND@1	ND@1	ND@1	ND@1
2-CHLOROETHYLVINYL ETHER	ug/l	ND@1	ND@1	ND@1	ND@1
PCB 1016	ug/l	NA	NA	NA	NA
PCB 1221	ug/l	NA	NA	NA	NA
PCB 1232	ug/l	NA	NA	NA	NA
PCB 1242	ug/1	NA	NA	NA NA	NA
PCB 1248	ug/1	NA NA	NA	NA	NA
PCB 1254 PCB 1260	ug/1	NA	NA	NA	NA
	5,				
INDICATOR PARAMETERS					
PH	ЪН	7.13	7.02	7.24	7.24
SPECIFIC CONDUCTANCE	umhos/cm	1478	709	353	353
TEMPERATURE	С	9.0	13.7	11.6	11.6
METALS					
ANTTMONY DISCOLUED	ma/1	NA	NA	NA	NA
ARTIMONI, DISSOLVED	mg/1	NA	NA	NA	NA
CADMIUM, DISSOLVED	mg/l	NA	NA	NA	NA
LEAD, DISSOLVED	mg/l	NA	NA	NA	NA
SILVER, DISSOLVED	mg/l	NA	NA	NA	NA
VOLATILE ORGANICS					
	ug/1	ND@1	N Dທ1	າກອາ	ND@1
1,1,1,2-15IKACHLOKOEIHANE	ug/1	3.6	3.9	2.1	2.1
1 1 2 2-TETRACHLOROFTHANE	ug/1	ND@1	ND@1	ND@1	ND@1
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	ug/l	ND@1	ND@1	ND@1	ND@1

SAMPLE LOCATION SAMPLE DESCRIPTION SAMPLE DATE LABORATORY SAMPLE I.D. SAMPLE RUN NUMBER SAMPLE COMMENT CODES		MW-504-S GROUNDWATER 02/03/11 420-41399-18 01	MW-504-S GROUNDWATER 05/31/11 420-44124-17 01	MW-505-S GROUNDWATER 05/27/11 420-44076-17 01	MW-505-S DUPLICATE 05/27/11 420-44076-18 01
PARAMETER	UNITS				
VOLATILE ORGANICS (Continued)					
1.1.2-TRICHLOROETHANE	ug/l	NDØ1	ND@1	ND@1	ND@1
1.1-DICHLOROETHANE	ug/1	0.88J	0.87J	0.20J	0.197
1.1-DICHLOROETHYLENE	ug/1	0.60J	0.40J	ND@1	ND@1
1.2.3-TRICHLOROPROPANE	ug/1	ND@1	ND@1	ND@1	ND@1
1.2-DICHLORO-1.2.2-TRIFLUOROETHANE	uq/1	ND@1	ND@1	ND@1	ND@1
1.2-DICHLOROETHANE	ug/1	ND@1	ND@1	ND@1	ND@1
1.2-DICHLOROETHYLENE, TOTAL	ug/1	0.35.	0.25	ND@1	ND@1
1.2-DICHLOROPROPANE	ug/1	ND@1	ND@1	ND@1	ND@1
1-CHLOROHEXANE	ug/1	NA	NA	NA	NA
2 - CHLOROTOLUENE	ug/1	NA	NA	NA	NA
4 - CHLOROTOLUENE	ug/1	NDØ1	ND@1	ND@1	ND@1
BENZENE	ug/1	NA	NA	NA	NA
BENZYL CHLORIDE	ug/1	ND@1	ND@1	ND@1	ND@1
BROMOBENZENE	ug/1	ND@1	NDØ1	ND@1	NDG1
BROMODICHLOROMETHANE	ug/1	ND@1	NDØ1	ND@1	ND@1
BROMOFORM	ug/1	NDØ1	ND@1	ND@1	ND@1
BROMOMETHANE	ug/1	ND@1	ND@1	ND@1	ND@1
CARBON TETRACHLORIDE	ug/1	ND@1	ND@1	ND@1	ND@1
CHLOROBENZENE	ug/1	ND@1	ND@1	NDØI	ND@1
CHLORODIBROMOMETHANE	ug/1	ND@1	NDØI	ND@1	ND@1
CHLOROETHANE	ug/1	ND@1	ND@1	ND@1	ND@1
CHLOROFORM	ug/1	ND@1	ND@1	ND@1	ND@1
CHLOROMETHANE	ug/1	ND@1	ND@1	ND@1	ND@1
CIS-1.3-DICHLOROPROPYLENE	ug/1	ND@1	ND@1	ND@1	ND@1
DIBROMOMETHANE	ug/1	ND@1	NDØI	ND@1	ND@1
DICHLORODIFLUOROMETHANE	ug/1	ND@1	ND@1	ND@1	ND@1
ETHYLBENZENE	ug/1	NA	NA	NA	NA
METHYLENE CHLORIDE	ug/1	NTD@1	NDØI	ND@1	ND@1
TETRACHLOROETHYLENE	ug/1	1 0	22	4 7	4 9
TOLIENE	ug/1	NA	NA	1.7 NA	1.0 NA
TRANS-1.3-DICHLOROPROPENE	ug/1	ND@1	NDel	ND@1	NA
TRICHLOROETHYLENE	ug/1	1 4	1.3		NDer 50
TRICHLOROFTUOROMETHANE	ug/1		NDØI	4./ ND@1	D.U ND@1
VINYL CHLORIDE	ug/1	NDØI	ND@1	ND@1	NDWI
XYLENE, TOTAL	ug/1	NA	NA	NDW1 NA	NDEL
manuf tothe	~9/ 1	INPA	NA.	NA	AVL

SAMPLE LOCATION SAMPLE DESCRIPTION SAMPLE DATE LABORATORY SAMPLE I.D. SAMPLE RUN NUMBER SAMPLE COMMENT CODES		MW-506-S GROUNDWATER 05/27/11 420-44076-16 01	MW-508-SA GROUNDWATER 02/04/11 420-41396-6 01	MW-508-SA DUPLICATE 02/04/11 420-41396-7 01	MW-508-SA GROUNDWATER 05/31/11 420-44124-10 01
PARAMETER	UNITS				
ACID EXTRACTABLES					
PHENOLS, TOTAL	ug/l	NA	NA	NA	NA
BASE/NEUTRAL EXTRACTABLES					
1 2 DI CUI ODODENZENE	ug/1	ND@1	ND@1	ND@1	ND@1
1, 3-DICHLOROBENZENE	ug/l	ND@1	ND@1	ND@1	ND@1
1,4-DICHLOROBENZENE	ug/l	ND@1	ND@1	ND@1	ND@1
2-CHLOROETHYLVINYL ETHER	ug/l	ND@1	ND@1	ND@1	ND@1
PCB 1016	ug/l	NA	NA	NA	NA NA
PCB 1221	ug/1	NA NA	NA	NA	NA
PCB 1232	ug/1	NA	NA	NA	NA
PCB 1242 PCB 1248	ug/l	NA	NA	NA	NA
PCB 1254	ug/l	NA	NA	NA	NA
PCB 1260	ug/l	NA	NA	NA	NA
INDICATOR PARAMETERS					
DU	Ha	6.49	7.57	7.57	7.05
SPECIFIC CONDUCTANCE	umhos/cm	300	657	657	706
TEMPERATURE	с	12.9	6.2	6.2	14.1
METALS					
ANTIMONY DISSOLVED	mg/l	NA	NA	NA	NA
ARSENIC, DISSOLVED	mg/l	NA	NA	NA	NA
CADMIUM, DISSOLVED	mg/l	NA.	NA	NA	NA
LEAD, DISSOLVED	mg/l	NA	NA	NA	NA
SILVER, DISSOLVED	mg/1	NA	NA	NA	NA
VOLATILE ORGANICS					
1 1 1 2-TETEACHLOROFTHANE	ug/1	ND@1	ND@1	ND@1	ND@1
1.1.1.TRICHLOROETHANE	ug/1	36	ND@1	ND@1	ND@1
1,1,2,2-TETRACHLOROETHANE	ug/l	ND@1	ND@1	ND@1	ND@1
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	ug/l	ND@1	ND@1	ND@1	ND@1

SAMPLE LOCATION SAMPLE DESCRIPTION SAMPLE DATE LABORATORY SAMPLE I.D. SAMPLE RUN NUMBER SAMPLE COMMENT CODES		MW-506-S GROUNDWATER 05/27/11 420-44076-16 01	MW-508-SA GROUNDWATER 02/04/11 420-41396-6 01	MW-508-SA DUPLICATE 02/04/11 420-41396-7 01	MW-508-SA GROUNDWATER 05/31/11 420-44124-10 01
PARAMETER	UNITS				
VOLATILE ORGANICS (Continued)					
1,1,2-TRICHLOROETHANE	ug/l	0.17J	ND@1	ND@1	ND@1
1,1-DICHLOROETHANE	ug/l	19	0.27J	0.26J	ND@1
1,1-DICHLOROETHYLENE	ug/l	4.0	ND@1	ND@1	ND@1
1,2,3-TRICHLOROPROPANE	ug/l	ND@1	ND@1	ND@1	ND@1
1,2-DICHLORO-1,2,2-TRIFLUOROETHANE	ug/l	ND@1	ND@1	ND@1	ND@1
1,2-DICHLOROETHANE	ug/l	ND@1	0.22J	0.22J	ND@1
1,2-DICHLOROETHYLENE, TOTAL	ug/l	27D	ND@1	ND@1	ND@1
1,2-DICHLOROPROPANE	ug/l	ND@1	ND@1	ND@1	ND@1
1 - CHLOROHEXANE	ug/l	NA	NA	NA	NA
2-CHLOROTOLUENE	ug/l	NA	NA	NA	NA
4-CHLOROTOLUENE	ug/l	ND@1	ND@1	ND@1	ND@1
BENZENE	ug/l	NA	NA	NA	NA
BENZYL CHLORIDE	ug/l	ND@1	ND@1	ND@1	ND@1
BROMOBENZENE	ug/l	ND@1	ND@1	ND@1	ND@1
BROMODICHLOROMETHANE	ug/l	ND@1	ND@1	ND@1	ND@1
BROMOFORM	ug/l	ND@1	ND@1	ND@1	ND@1
BROMOMETHANE	ug/1	ND@1	ND@1	ND@1	ND@1
CARBON TETRACHLORIDE	ug/l	ND@1	ND@1	ND@1	ND@1
CHLOROBENZENE	ug/l	ND@1	ND@1	ND@1	ND@1
CHLORODIBROMOMETHANE	ug/1	ND@1	ND@1	ND@1	ND@1
CHLOROETHANE	ug/1	ND@1	ND@1	ND@1	ND@1
CHLOROFORM	ug/1	7.4	NDØL	ND@1	ND@1
CHLOROMETHANE	ug/1	ND@1	ND@1	ND@1	ND@1
CIS-1,3-DICHLOROPROPYLENE	ug/1	NDØL	ND@1	NDØ1	ND@1
DIBROMOMETHANE	ug/1	NDØL	ND@1	NDØI	NDØI
DICHLORODIFLUOROMETHANE	ug/1	NDØL	ND@L	NDØL	ND@T
ETHYLBENZENE	ug/1	NA NDel	NA	NA	NA
METHYLENE CHLORIDE	ug/1	ND@L	NDØI	ND@1	ND@1
TETRACHLOROETHYLENE	ug/1	11	ND@1	NDØL	ND@L
TOLUENE	ug/1	NA	NA	NA	NA
TRANS-1, 3-DICHLOROPROPENE	ug/1	ND@1	NDØ1	NDØL	NDØL
TRICHLOROETHYLENE	ug/1	3900	ND@1	NDØL	ND@1
TRICHLOROFLUOROMETHANE	ug/1	NDØL	NDØ1	NDØL	NDØL
VINYL CHLORIDE	ug/1	NDØ1	ND@1	ND@1	ND@1
XYLENE, TOTAL	ug/I	NA	NA	NA	NA

SAMPLE LOCATION SAMPLE DESCRIPTION SAMPLE DATE LABORATORY SAMPLE I.D. SAMPLE RUN NUMBER SAMPLE COMMENT CODES		MW-601-S GROUNDWATER 05/27/11 420-44076-8 01	MW-602-S GROUNDWATER 05/26/11 420-44062-9 01	MW-603-S GROUNDWATER 05/25/11 420-44001-6 01
PARAMETER	UNITS			
ACID EXTRACTABLES				
PHENOLS, TOTAL	ug/l	NA	NA	NA
BASE/NEUTRAL EXTRACTABLES				
1 2 DICHI ADADENZENE	ug/1	ND@1	ND@1	ND@1
1,2-DICHLOROBENZENE	ug/1	NDØ1	ND@1	ND@1
1.4-DICHLOROBENZENE	ug/1	ND@1	ND@1	ND@1
2-CHLOROETHYLVINYL ETHER	ug/l	ND@1	ND@1	ND@1
PCB 1016	ug/l	NA	NA	NA
PCB 1221	ug/l	NA	NA	NA
PCB 1232	ug/l	NA	NA	NA
PCB 1242	ug/l	NA	NA	NA NA
PCB 1248	ug/1	NA	NA	NA NA
PCB 1254	ug/1	NA NA	NA	NA
PCB 1260	ug/ 1	AVEX		
INDICATOR PARAMETERS				
PH	рH	7.83	6.45	6.88
SPECIFIC CONDUCTANCE	umhos/cm	319	851	128
TEMPERATURE	C	12.9	14.8	14.6
METALS				
ANTIMONY DI GOOI VED	mg/1	NA	NΔ	NA
ANTIMONY, DISSOLVED	mg/1	NA	NA	NA
CADMILM DISSOLVED	mg/1	NA	NA	NA
LEAD DISSOLVED	mg/1	NA	NA	NA
SILVER. DISSOLVED	mg/l	NA	NA	NA
	-			
VOLATILE ORGANICS				
1.1.1.2-TETRACHLOROETHANE	uq/l	ND@1	ND@1	ND@1
1,1,1-TRICHLOROETHANE	ug/l	4.3	3.2	1.4
1,1,2,2-TETRACHLOROETHANE	ug/l	ND@1	ND@1	ND@1
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	ug/l	ND@1	1.7	ND@1

08/23/11

SAMPLE LOCATION		MW-601-S	MW-602-S	MW-603-S
SAMPLE DESCRIPTION		GROUNDWATER	GROUNDWATER	GROUNDWATER
SAMPLE DATE		05/27/11	05/26/11	05/25/11
LABORATORY SAMPLE L.D.		420-44076-8	420-44062-9	420-44001-6
SAMPLE RIN NUMBER		01	01	01
SAMPLE COMMENT CODES				
SAMPLE COMMENT CODES				
PARAMETER	UNITS			
VOLATILE ORGANICS (Continued)				
1,1,2-TRICHLOROETHANE	ug/l	ND@1	1.2	ND@1
1,1-DICHLOROETHANE	ug/l	1.1	40	0.28J
1,1-DICHLOROETHYLENE	ug/l	1.3	73D	0.63J
1,2,3-TRICHLOROPROPANE	ug/l	ND@1	ND@1	ND@1
1,2-DICHLORO-1,2,2-TRIFLUOROETHANE	ug/l	ND@1	ND@1	ND@1
1,2-DICHLOROETHANE	ug/l	ND@1	0.95J	ND@1
1,2-DICHLOROETHYLENE, TOTAL	ug/l	ND@1	15	0.35J
1,2-DICHLOROPROPANE	ug/l	ND@1	ND@1	ND@1
1-CHLOROHEXANE	ug/l	NA	NA	NA
2-CHLOROTOLUENE	ug/l	NA	NA	NA
4 - CHLOROTOLUENE	ug/l	ND@1	ND@1	ND@1
BENZENE	ug/l	NA	NA	NA
BENZYL CHLORIDE	ug/l	ND@1	ND@1	ND@1
BROMOBENZENE	ug/l	ND@1	ND@1	ND@1
BROMODICHLOROMETHANE	ug/l	ND@1	ND@1	ND@1
BROMOFORM	ug/l	ND@1	NDØ1	ND@1
BROMOMETHANE	ug/l	ND@1	ND@1	ND@1
CARBON TETRACHLORIDE	ug/l	ND@1	ND@1	ND@1
CHLOROBENZENE	ug/l	ND@1	ND@1	ND@1
CHLORODIBROMOMETHANE	ug/l	ND@1	ND@1	ND@1
CHLOROETHANE	ug/l	ND@1	ND@1	ND@1
CHLOROFORM	ug/l	ND@1	1.4	ND@1
CHLOROMETHANE	ug/l	ND@1	ND@1	ND@1
CIS-1,3-DICHLOROPROPYLENE	ug/l	ND@1	ND@1	ND@1
DIBROMOMETHANE	ug/l	ND@1	ND@1	ND@1
DICHLORODIFLUOROMETHANE	ug/l	ND@1	ND@1	ND@1
ETHYLBENZENE	ug/l	NA	NA	NA
METHYLENE CHLORIDE	ug/l	ND@1	ND@1	ND@1
TETRACHLOROETHYLENE	ug/l	ND@1	3.0	ND@1
TOLUENE	ug/l	NA	NA	NA
TRANS-1,3-DICHLOROPROPENE	ug/l	ND@1	ND@1	ND@1
TRICHLOROETHYLENE	ug/l	0.19Ј	210D	7.4
TRICHLOROFLUOROMETHANE	ug/l	ND@1	ND@1	ND@1
VINYL CHLORIDE	ug/l	ND@1	0.27J	ND@1
XYLENE, TOTAL	ug/l	NA	NA	NA

SAMPLE LOCATION SAMPLE DESCRIPTION SAMPLE DATE LABORATORY SAMPLE I.D. SAMPLE RUN NUMBER SAMPLE COMMENT CODES		MW-604-S GROUNDWATER 02/03/11 420-41399-3 01	MW-604-S GROUNDWATER 05/25/11 420-44001-5 01	MW-605-S GROUNDWATER 05/25/11 420-44001-4 01	MW-610-S GROUNDWATER 05/31/11 420-44124-18 01
PARAMETER	UNITS				
ACID EXTRACTABLES					
PHENOLS, TOTAL	ug/l	NA	NA	NA	NA
BASE/NEUTRAL EXTRACTABLES					
1,2-DICHLOROBENZENE 1,3-DICHLOROBENZENE 1,4-DICHLOROBENZENE 2-CHLOROETHYLVINYL ETHER PCB 1016 PCB 1221 PCB 1222 PCB 1242 PCB 1248 PCB 1254 PCB 1260	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	ND@1 ND@1 ND@1 NA NA NA NA NA NA NA	ND@1 ND@1 ND@1 NA NA NA NA NA NA NA	ND@1 ND@1 ND@1 NA NA NA NA NA NA NA	ND@1 ND@1 ND@1 NA NA NA NA NA NA NA
INDICATOR PARAMETERS					
PH SPECIFIC CONDUCTANCE TEMPERATURE	pH umhos/cm C	7.20 221 11.9	6.97 2237 13.6	6.95 134 14.7	7.17 1379 12.4
METALS					
ANTIMONY, DISSOLVED ARSENIC, DISSOLVED CADMIUM, DISSOLVED LEAD, DISSOLVED SILVER, DISSOLVED	mg/l mg/l mg/l mg/l mg/l	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA
VOLATILE ORGANICS					
1,1,1,2-TETRACHLOROETHANE 1,1,1-TRICHLOROETHANE 1,1,2,2-TETRACHLOROETHANE 1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	ug/1 ug/1 ug/1 ug/1	ND@1 28 ND@1 ND@1	ND@1 53D ND@1 0.25J	ND@1 2.3 ND@1 ND@1	ND@1 ND@1 ND@1 ND@1

08/23/11

MW-604-S

SAMPLE LOCATION SAMPLE DESCRIPTION SAMPLE DATE LABORATORY SAMPLE I.D. SAMPLE RUN NUMBER SAMPLE COMMENT CODES		MW-604-S GROUNDWATER 02/03/11 420-41399-3 01	MW-604-S GROUNDWATER 05/25/11 420-44001-5 01	MW-605-S GROUNDWATER 05/25/11 420-44001-4 01	MW-610-S GROUNDWATER 05/31/11 420-44124-18 01
PARAMETER	UNITS				
VOLATILE ORGANICS (Continued)					
1,1,2-TRICHLOROETHANE	ug/l	ND@1	ND@1	ND@1	ND@1
1,1-DICHLOROETHANE	ug/l	8.0	19	0.36J	ND@1
1,1-DICHLOROETHYLENE	ug/l	3.5	13	0.71J	ND@1
1,2,3-TRICHLOROPROPANE	ug/l	ND@1	ND@1	ND@1	ND@1
1,2-DICHLORO-1,2,2-TRIFLUOROETHANE	ug/l	ND@1	ND@1	ND@1	ND@1
1,2-DICHLOROETHANE	ug/l	0.35J	0.58J	ND@1	ND@1
1,2-DICHLOROETHYLENE, TOTAL	ug/l	20	92D	ND@1	ND@1
1,2-DICHLOROPROPANE	ug/l	ND@1	ND@1	ND@1	ND@1
1-CHLOROHEXANE	ug/l	NA	NA	NA	NA
2-CHLOROTOLUENE	ug/l	NA	NA	NA	NA
4-CHLOROTOLUENE	ug/l	ND@1	ND@1	ND@1	ND@1
BENZENE	ug/l	NA	NA	NA	NA
BENZYL CHLORIDE	ug/l	ND@1	ND@1	ND@1	ND@1
BROMOBENZENE	ug/1	ND@1	ND@1	ND@1	ND@1
BROMODICHLOROMETHANE	ug/l	ND@1	ND@1	ND@1	ND@1
BROMOFORM	ug/1	ND@1	ND@1	ND@1	ND@1
BROMOMETHANE	ug/1	ND@1	ND@1	ND@1	ND@1
CARBON TETRACHLORIDE	ug/l	ND@1	ND@1	ND@1	ND@1
CHLOROBENZENE	ug/1	ND@1	ND@1	ND@1	ND@1
CHLORODIBROMOMETHANE	ug/1	ND@1	ND@1	ND@1	ND@1
CHLOROETHANE	ug/1	ND@1	ND@1	ND@1	ND@1
CHLOROFORM	ug/1	ND@1	ND@1	ND@1	ND@1
CHLOROMETHANE	ug/1	ND@1	ND@1	ND@1	ND@1
CIS-1, 3-DICHLOROPROPYLENE	ug/1	NDØI	ND@1	ND@1	ND@1
DIBROMOMETHANE	ug/1	NDØI	ND@1	ND@1	ND@1
DICHLORODIFLUOROMETHANE	ug/1	NDØI	ND@1	ND@1	ND@1
ATHILBENZENE MERUWI ENE CUI ODIDE	ug/1	NA	NA	NA	NA
METHYLENE CHLORIDE	ug/1	NDØI	NDØI	ND@1	ND@1
TETRACHLOROETHILENE	ug/1	2.2	4.1	ND@1	ND@1
	ug/I	INA ND@1	NA NDG1	NA	NA
TRANG-1,3-DICHICKOPROPENE	ug/1	NDØT	200D	NDØL	ND@1
TRICHLOROFILIODOMETHANE	ug/1	NDe1	2000	4.9	ND@1
UTNUL CULORIDE	ug/1	ND@1	NDOL	ND@1	ND@1
VINID CHIORIDE	ug/1	0.210	0.3/0	ND@1	ND@1
ALLENE, IUIAL	ug/1	NA	INA.	NA	NA

SAMPLE LOCATION SAMPLE DESCRIPTION SAMPLE DATE LABORATORY SAMPLE I.D. SAMPLE RUN NUMBER SAMPLE COMMENT CODES		MW-612-8 GROUNDWATER 02/04/11 420-41396-15 01	MW-612-S DUPLICATE 02/04/11 420-41396-16 01	MW-612-S GROUNDWATER 06/02/11 420-44239-10 01	MW-802 GROUNDWATER 02/07/11 420-41408-2 01	MW-802 GROUNDWATER 06/03/11 420-44288-6 01
PARAMETER	UNITS					
ACID EXTRACTABLES						
PHENOLS, TOTAL	ug/l	ND@10	ND@10	ND@10	ND@10	ND@10
BASE/NEUTRAL EXTRACTABLES						
1,2-DICHLOROBENZENE	ug/1	ND@1	ND@1	ND@1	ND@1	ND@1
1,3-DICHLOROBENZENE	ug/l	ND@1	ND@1	ND@1	ND@1	ND@1
1,4-DICHLOROBENZENE	ug/l	ND@1	ND@1	ND@1	ND@1	ND@1
2-CHLOROETHYLVINYL ETHER	ug/1	ND@1	ND@1	ND@1	ND@1	ND@1
PCB 1016	ug/1	NA	NA	NA	NA	NA NA
PCB 1232	ug/l	NA	NA	NA	NA	NA
PCB 1242	ug/l	NA	NA	NA	NA	NA
PCB 1248	ug/l	NA	NA	NA	NA	NA
PCB 1254	ug/l	NA	NA	NA	NA	NA
PCB 1260	ug/I	NA	NA	NA	NA	NA
INDICATOR PARAMETERS						
PH	На	7.38	7.38 .	7.25	7.21	7.21
SPECIFIC CONDUCTANCE	umhos/cm	681	681	606	977	780
TEMPERATURE	c	6.9	6.9	12.5	9.1	11.6
METALS						
ANTERNANY DISCOLUED	mer / 1	ND	77.7	222		22
ARSENIC, DISSOLVED	$m\sigma/1$	ND@0.0014	ND@0.0014	ND@0.0014	ND@0.0014	ND@0.0014
CADMIUM, DISSOLVED	mg/l	ND@0.0010	ND@0.0010	ND@0.0010	ND@0.0010	ND@0.0010
LEAD, DISSOLVED	mg/l	ND@0.0010	ND@0.0010	ND@0.0010	ND@0.0010	ND@0.0010
SILVER, DISSOLVED	mg/l	ND@0.0010	ND@0.0010	ND@0.0010	ND@0.0010	ND@0.0010
VOLATILE ORGANICS						
1,1,1,2-TETRACHLOROETHANE	ug/l	ND@1	ND@1	ND@1	ND@1	ND@1
1,1,1-TRICHLOROETHANE	ug/l	1.3	1.3	1.4	1.8	1.8
1,1,2,2-TETRACHLOROETHANE	ug/l	ND@1	ND@1	ND@1	ND@1	ND@1
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	ug/l	ND@1	ND@1	ND@1	ND@1	ND@1

08/23/11

26 - 1

MW-612-S

SAMPLE LOCATION SAMPLE DESCRIPTION SAMPLE DATE LABORATORY SAMPLE I.D. SAMPLE RUN NUMBER SAMPLE COMMENT CODES		MW-612-S GROUNDWATER 02/04/11 420-41396-15 01	MW-612-S DUPLICATE 02/04/11 420-41396-16 01	MW-612-S GROUNDWATER 06/02/11 420-44239-10 01	MW-802 GROUNDWATER 02/07/11 420-41408-2 01	MW-802 GROUNDWATER 06/03/11 420-44288-6 01
PARAMETER	UNITS					
VOLATILE ORGANICS (Continued)						
1, 1, 2-TRICHLOROETHANE	ug/l	ND@1	ND@1	ND@1	ND@1	ND@1
1,1-DICHLOROETHANE	ug/l	1.2	1.2	0.64J	1.2	1.6
1,1-DICHLOROETHYLENE	ug/l	0.43J	0.43J	0.24J	0.52J	0.64J
1,2,3-TRICHLOROPROPANE	ug/l	ND@1	ND@1	ND@1	ND@1	ND@1
1,2-DICHLORO-1,2,2-TRIFLUOROETHANE	ug/l	0.31J	0.31J	0.57J	ND@1	0.33J
1,2-DICHLOROETHANE	ug/l	ND@1	ND@1	ND@1	ND@1	ND@1
1,2-DICHLOROETHYLENE, TOTAL	ug/l	0.23J	0.22J	0.35J	0.25J	0.20J
1,2-DICHLOROPROPANE	ug/1	ND@1	ND@1	ND@1	ND@1	ND@1
1 ~ CHLOROHEXANE	ug/l	NA.	NA	NA	NA	NA
2 - CHLOROTOLUENE	ug/l	NA	NA	NA	NA	NA
4 - CHLOROTOLUENE	ug/l	ND@1	ND@1	ND@1	ND@1	ND@1
BENZENE	ug/l	NA	NA	NA	NA	NA
BENZYL CHLORIDE	ug/l	ND@1	ND@1	ND@1	ND@1	ND@1
BROMOBENZENE	ug/l	ND@1	ND@1	ND@1	ND@1	ND@1
BROMODICHLOROMETHANE	ug/l	ND@1	ND@1	ND@1	ND@1	ND@1
BROMOFORM	ug/l	ND@1	ND@1	ND@1	ND@1	ND@1
BROMOMETHANE	ug/l	ND@1	ND@1	ND@1	ND@1	ND@1
CARBON TETRACHLORIDE	ug/l	ND@1	ND@1	ND@1	ND@1	ND@1
CHLOROBENZENE	ug/l	ND@1	ND@1	ND@1	ND@1	ND@1
CHLORODIBROMOMETHANE	ug/l	ND@1	ND@1	ND@1	ND@1	ND@1
CHLOROETHANE	ug/l	ND@1	ND@1	ND@1	ND@1	ND@1
CHLOROFORM	ug/l	0.17J	0.17J	0.16J	0.16J	ND@1
CHLOROMETHANE	ug/l	ND@1	ND@1	ND@1	ND@1	ND@1
CIS-1,3-DICHLOROPROPYLENE	ug/l	ND@1	ND@1	ND@1	ND@1	ND@1
DIBROMOMETHANE	ug/l	ND@1	ND@1	ND@1	ND@1	ND@1
DICHLORODIFLUOROMETHANE	ug/l	ND@1	ND@1	ND@1	ND@1	ND@1
ETHYLBENZENE	ug/l	NA	NA	NA	NA	NA
METHYLENE CHLORIDE	ug/l	ND@1	ND@1	ND@1	ND@1	ND@1
TETRACHLOROETHYLENE	ug/l	0.46J	0.43J	0.42J	0.27J	0.17J
TOLUENE	ug/l	NA	NA	NA	NA	NA
TRANS-1, 3-DICHLOROPROPENE	ug/l	ND@1	ND@1	ND@1	ND@1	ND@1
TRICHLOROETHYLENE	ug/l	6.7	6.8	9.1	7.1	6.8
TRICHLOROFLUOROMETHANE	ug/l	ND@1	ND@1	ND@1	ND@1	0.33J
VINYL CHLORIDE	ug/1	ND@1	ND@1	ND@1	ND@1	ND@1
XYLENE, TOTAL	ug/l	NA	NA	NA	NA	NA

SAMPLE LOCATION SAMPLE DESCRIPTION SAMPLE DATE LABORATORY SAMPLE I.D. SAMPLE RUN NUMBER SAMPLE COMMENT CODES	GR(420-	MW-806-S DUNDWATER 05/26/11 -44062-16 01	MW-816 GROUNDWATER 02/04/11 420-41396-12 01	MW-816 GROUNDWATER 06/03/11 420-44288-2 01	MW-817 GROUNDWATER 02/04/11 420-41396-13 01
PARAMETER	UNITS				
ACID EXTRACTABLES					
PHENOLS, TOTAL	ug/l	NA	ND@10	ND@10	ND@10
BASE/NEUTRAL EXTRACTABLES					
1,2-DICHLOROBENZENE	ug/l	ND@1	ND@1	ND@1	ND@1
1,3-DICHLOROBENZENE	ug/l	ND@1	ND@1	ND@1	ND@1
1,4-DICHLOROBENZENE	ug/l	ND@1	ND@1	ND@1	ND@1
2-CHLOROETHYLVINYL ETHER	ug/l	ND@1	ND@1	ND@1	ND@1
PCB 1016	ug/l	NA	NA	NA	NA
PCB 1221	ug/l	NA	NA	NA	NA
PCB 1232	ug/l	NA	NA	NA	NA
PCB 1242	ug/1	NA	NA	NA	NA
PCB 1248	ug/1	NA	NA	NA	NA
PCB 1254	ug/1	NA	NA	NA	NA
	-3/-				NA
INDICATOR PARAMETERS					
РН	Н	6.68	7.20	7 16	7 40
SPECIFIC CONDUCTANCE	umhos/cm	790	651	640	667
TEMPERATURE	с	15.0	6.5	11.5	7.0
METALS					
ANTTMONY DISCOLUED	mg / 1	575			
ANTIMONI, DISSOLVED	mg/l	NA	NA NDao oolo		NA
CADMILIM DISSOLVED	mg/1	NA	ND@0.0014 ND@0.0010 N	ID@0.0014	ND@0.0014
LEAD, DISSOLVED	mg/1	NA NA	ND@0.0010 N	ID@0.0010	ND@0.0010
SILVER, DISSOLVED	mg/l	NA	ND@0.0010 N	JD@0.0010	ND@0.0010
	5.				
VOLATILE ORGANICS					
1,1,1,2-TETRACHLOROETHANE	ug/l	ND@1	ND@1	ND@1	ND@1
1,1,1-TRICHLOROETHANE	ug/l	ND@1	2.1	1.7	8.9
1, 1, 2, 2-TETRACHLOROETHANE	ug/l	ND@1	ND@1	NDØ1	ND@1
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	ug/l	ND@1	ND@1	ND@1	ND@1

08/23/11

27 - 1

MW-806-S
SAMPLE LOCATION SAMPLE DESCRIPTION SAMPLE DATE LABORATORY SAMPLE I.D. SAMPLE RUN NUMBER SAMPLE COMMENT CODES		MW-806-S GROUNDWATER 05/26/11 420-44062-16 01	MW-816 GROUNDWATER 02/04/11 420-41396-12 01	MW-816 GROUNDWATER 06/03/11 420-44288-2 01	MW-817 GROUNDWATER 02/04/11 420-41396-13 01
PARAMETER	UNITS				
VOLATILE ORGANICS (Continued)					
1,1,2-TRICHLOROETHANE	ug/l	NDØl	ND@1	ND@1	ND@1
1,1-DICHLOROETHANE	ug/l	ND@1	0.27J	ND@1	2.8
1,1-DICHLOROETHYLENE	ug/l	ND@1	ND@1	ND@1	1.5
1,2,3-TRICHLOROPROPANE	ug/l	ND@1	ND@1	ND@1	ND@1
1,2-DICHLORO-1,2,2-TRIFLUOROETHANE	ug/l	ND@1	ND@1	ND@1	ND@1
1,2-DICHLOROETHANE	ug/l	ND@1	ND@1	ND@1	1.7
1,2-DICHLOROETHYLENE, TOTAL	ug/l	ND@1	2.8	0.19J	7.2
1,2-DICHLOROPROPANE	ug/l	ND@1	ND@1	ND@1	ND@1
1-CHLOROHEXANE	ug/l	NA	NA	NA	NA
2-CHLOROTOLUENE	ug/l	NA	NA	NA	NA
4-CHLOROTOLUENE	ug/1	ND@1	ND@1	ND@1	ND@1
BENZENE	ug/l	NA	NA	NA	NA
BENZYL CHLORIDE	ug/l	ND@1	ND@1	ND@1	NDØL
BROMOBENZENE	ug/1	NDØ1	NDØI	NDØI	ND@1
BROMODICHLOROMETHANE	ug/1	NDØL	NDØI	NDØI	NDØI
BROMOFORM	ug/1	NDØ1	ND@1	ND@1	NDel
BROMOMETHANE	ug/1	ND@1	NDGI	ND@1	NDel
CARBON TETRACHLORIDE	ug/1	ND@1	ND@1	ND@1	ND@1
CHLOROBENZENE	ug/1	NDØL	ND@1	NDØI	NDel
CHLORODIBROMOMETHANE	ug/1	NDGI	ND@1	ND@1	ND@1
CHLOROETHANE	ug/1	NDØI		ND@1	1 2
CHLOROFORM	ug/1	NDØI	ND@1	ND@1	1.2 ND@1
CHLOROMETHANE	ug/1	NDØI	NDel	ND@1	ND@1
CIS-1, 3-DICHLOROPROPILENE	ug/1	NDØI	NDel	ND@1	ND@1
DIBROMOMETHANE	ug/1	ND@1	NDQ1	ND@1	ND@1
DICHLORODIFLOOROMEIRANE	ug/1	NDEL	NDGI	NA	NA
ETRILBENZENE MERUNIENE OUTOFIDE	ug/1	ND@1	NA ND@1	ND@1	ND@1
METHYLENE CHLORIDE	ug/1	NDØI 1 E	NDel	NDØI	ND@1
TEIRACHLOROEINILENE	ug/1	1.5	NA	NA	NA
TOLUENE TRANG 1 2 DICHLORODBODENE	ug/1	ND@1	NDC	ND@1	ND@1
TRANS-1, 3-DICHLOROPROPENE	ug/1	2 0	475	29	1100
TRICHLOROETHILENE	ug/1	2.0 ND@1	17 F	2 2 ND@1	ND@1
TETCHLOROF LUOROMETRAME	ug/1	ND@1	ND@1	ND@1	1 9
VINID CHLOKIDE	ug/1	NDAT	NDWL	NIA	1. J NA
AILENE, IUIAL	ug/1	INPL	NA	1471	1411

SAMPLE LOCATION SAMPLE DESCRIPTION SAMPLE DATE LABORATORY SAMPLE I.D. SAMPLE RUN NUMBER SAMPLE COMMENT CODES		MW-817 GROUNDWATER 06/03/11 420-44288-4 01	MW-817 DUPLICATE 06/03/11 420-44288-5 01	MW-A GROUNDWATER 06/02/11 420-44239-6 01	TMP-8 GROUNDWATER 05/27/11 420-44076-11 01
PARAMETER	UNITS				
ACID EXTRACTABLES					
PHENOLS, TOTAL	ug/l	ND@10	ND@10	NA	NA
BASE/NEUTRAL EXTRACTABLES					
1,2-DICHLOROBENZENE 1,3-DICHLOROBENZENE 1,4-DICHLOROBENZENE 2-CHLOROETHYLVINYL ETHER PCB 1016 PCB 1221 PCB 1232 PCB 1242 PCB 1248 PCB 1254 PCB 1260	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	ND@1 ND@1 ND@1 NA NA NA NA NA NA NA	ND@1. ND@1 ND@1 NA NA NA NA NA NA	ND@1 ND@1 ND@1 NA NA NA NA NA NA NA	ND@1 ND@1 ND@1 NA NA NA NA NA NA
INDICATOR PARAMETERS					
PH SPECIFIC CONDUCTANCE TEMPERATURE	pH umhos/cm C	7.12 501 13.0	7.12 501 13.0	7.54 196 10.3	6.68 503 12.4
METALS					
ANTIMONY, DISSOLVED ARSENIC, DISSOLVED CADMIUM, DISSOLVED LEAD, DISSOLVED SILVER, DISSOLVED	mg/1 mg/1 mg/1 mg/1 mg/1	NA ND@0.0014 ND@0.0010 ND@0.0010 ND@0.0010	NA ND@0.0014 ND@0.0010 ND@0.0010 ND@0.0010	NA NA NA NA	NA NA NA NA
VOLATILE ORGANICS					
1,1,1,2-TETRACHLOROETHANE 1,1,1-TRICHLOROETHANE 1,1,2,2-TETRACHLOROETHANE 1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	ug/l ug/l ug/l ug/l	ND@1 11 ND@1 ND@1	ND@1 11 ND@1 ND@1	ND@1 ND@1 ND@1 ND@1	ND@1 300D ND@1 1.6

08/23/11

MW-817

SAMPLE LOCATION SAMPLE DESCRIPTION SAMPLE DATE LABORATORY SAMPLE I.D. SAMPLE RUN NUMBER SAMPLE COMMENT CODES		MW-817 GROUNDWATER 06/03/11 420-44288-4 01	MW-817 DUPLICATE 06/03/11 420-44288-5 01	MW-A GROUNDWATER 06/02/11 420-44239-6 01	TMP-8 GROUNDWATER 05/27/11 420-44076-11 01
PARAMETER	UNITS				
VOLATILE ORGANICS (Continued)					
1,1,2-TRICHLOROETHANE	ug/l	ND@1	ND@1	ND@1	6.5
1.1-DICHLOROETHANE	ug/l	1.6	1.5	ND@1	100D
1,1-DICHLOROETHYLENE	ug/l	1.5	1.5	ND@1	110D
1,2,3-TRICHLOROPROPANE	ug/l	ND@1	ND@1	ND@1	ND@1
1,2-DICHLORO-1,2,2-TRIFLUOROETHANE	ug/l	ND@1	ND@1	ND@1	1.1
1,2-DICHLOROETHANE	ug/l	2.0	2.0	ND@1	3.3
1,2-DICHLOROETHYLENE, TOTAL	ug/l	2.8	2.7	ND@1	15
1,2-DICHLOROPROPANE	ug/l	ND@1	ND@1	ND@1	ND@1
1-CHLOROHEXANE	ug/l	NA	NA	NA	NA
2-CHLOROTOLUENE	ug/l	NA	NA	NA	NA
4-CHLOROTOLUENE	ug/l	ND@1	ND@1	ND@1	ND@1
BENZENE	ug/l	NA	NA	NA	NA
BENZYL CHLORIDE	ug/l	ND@1	ND@1	ND@1	ND@1
BROMOBENZENE	ug/l	ND@1	ND@1	ND@1	ND@1
BROMODICHLOROMETHANE	ug/l	ND@1	ND@1	ND@1	ND@1
BROMOFORM	ug/l	ND@1	ND@1	ND@1	ND@1
BROMOMETHANE	ug/l	ND@1	ND@1	ND@1	ND@1
CARBON TETRACHLORIDE	ug/l	ND@1	ND@1	ND@1	ND@1
CHLOROBENZENE	ug/l	ND@1	ND@l	ND@1	ND@1
CHLORODIBROMOMETHANE	ug/l	ND@1	ND@1	ND@1	ND@1
CHLOROETHANE	ug/l	ND@1	ND@1	ND@1	ND@1
CHLOROFORM	ug/l	1.1	1.1	ND@1	3.0
CHLOROMETHANE	ug/l	ND@1	ND@1	ND@1	ND@1
CIS-1,3-DICHLOROPROPYLENE	ug/l	ND@1	ND@1	ND@1	ND@1
DIBROMOMETHANE	ug/l	ND@1	ND@1	ND@1	ND@1
DICHLORODIFLUOROMETHANE	ug/l	ND@1	ND@1	ND@1	ND@1
ETHYLBENZENE	ug/l	NA	NA	NA	NA
METHYLENE CHLORIDE	ug/l	ND@1	ND@1	ND@1	ND@1
TETRACHLOROETHYLENE	ug/l	ND@1	ND@1	ND@1	2.5
TOLUENE	ug/l	NA	NA	NA	NA
TRANS-1,3-DICHLOROPROPENE	ug/l	ND@1	ND@1	ND@1	ND@1
TRICHLOROETHYLENE	ug/1	110D	110D	ND@1	180D
TRICHLOROFLUOROMETHANE	ug/l	ND@1	ND@1	ND@1	ND@1
VINYL CHLORIDE	ug/l	0.88J	0.70J	ND@1	0.25J
XYLENE, TOTAL	ug/l	NA	NA	NA	NA

EXPLANATION OF REPORTING CONVENTIONS AND KEY TO COMMENT CODES

REPORTING CONVENTIONS

NA	Not Analyzed
ND@X	Not Detected at Detection Limit X
BMRLØX	Below Minimum Reporting Limit of X

CODE EXPLANATION

- Non-Standard Measurement Unit
- c Sample contained sediment which may have contributed to reported results
- d 24 Hour Composite Sample
- B Organic analyte detected in both the sample and the laboratory blank
- D Compounds identifed at a secondary dilution factor
- E Concentration exceeds the calibration range of the GC/MS instrument
- J Estimated Value
- N Spiked sample recovery not within control limits
- P Lower of 2 GC column concentrations that have more than 25% difference
- R Reported value is less than the CRDL but greater than the IDL
- S Surrogate recoveries exceed acceptable control limits
- W Post digestion spike FAA out of control limits; sample absorbance < 50%
- * Manhole flooded when sediment sample collected
- B The reported value is less than the Contract Required Detection Limit (CRDL), but greater than the Instrument Detection Limit (IDL) (Inorganics)
- H Sample was prepped or run beyond the specified method holding time
- Value estimated. Possible meter malfunction.

SAMPLE LOCATION SAMPLE DESCRIPTION SAMPLE DATE LABORATORY SAMPLE I.D. SAMPLE RUN NUMBER SAMPLE COMMENT CODES		MW-169-S GROUNDWATER 02/03/11 420-41399-12 01	MW-169-S GROUNDWATER 05/26/11 420-44062-4 01	MW-181-S GROUNDWATER 02/03/11 420-41399-9 01	MW-181-S GROUNDWATER 05/26/11 420-44062-6 01
PARAMETER	UNITS				
BASE/NEUTRAL EXTRACTABLES					
1,2-DICHLOROBENZENE	ug/l	ND@1	ND@1	ND@l	ND@1
1,3-DICHLOROBENZENE	ug/l	ND@1	ND@1	ND@1	ND@1
1,4-DICHLOROBENZENE	ug/l	ND@1	ND@1	ND@1	ND@1
2-CHLOROETHYLVINYL ETHER	ug/l	ND@1	ND@1	ND@1	ND@1
INDICATOR PARAMETERS					
рн	рН	7.22	7.45	7.09	7.27
SPECIFIC CONDUCTANCE	umhos/cm	272	1663	692	989
TEMPERATURE	С	10.4	17.4	9.9	13.2
VOLATILE ORGANICS					
1,1,1,2-TETRACHLOROETHANE	ug/l	ND@1	ND@1	ND@1	ND@1
1,1,1-TRICHLOROETHANE	ug/l	ND@1	ND@1	0.92J	1.2
1,1,2,2-TETRACHLOROETHANE	ug/l	ND@1	ND@1	ND@1	ND@1
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	ug/l	ND@1	ND@1	ND@1	0.20J
1,1,2-TRICHLOROETHANE	ug/l	ND@1	ND@1	NDØ1	ND@1
1,1-DICHLOROETHANE	ug/l	0.58J	ND@1	5.4	8.1
1,1-DICHLOROETHYLENE	ug/l	0.49Ј	ND@1	5.0	6.5
1,2,3-TRICHLOROPROPANE	ug/l	ND@1	ND@1	ND@1	ND@1
1,2-DICHLORO-1,2,2-TRIFLUOROETHANE	ug/l	ND@1	ND@1	ND@1	ND@1
1,2-DICHLOROETHANE	ug/l	ND@1	ND@1	ND@1	ND@1
1,2-DICHLOROETHYLENE, TOTAL	ug/1	NDØI	ND@1	NDØ1	0.19J
1, Z-DICHLOROPROPANE	ug/1	ND01	NDØL	NDØL	ND@1
A-CHICKOIOLOENE	ug/1	ND@1	NDØI	ND@1	ND@1
BENZID CHICKIDE	ug/1	ND@1	ND@1	NDØI	ND@1
BROMODICHLOROMETHANE	ug/1	ND@1	ND@1	NDØI	ND@1
BROMOFORM	ug/1	ND@1	ND@1	ND@1	NDOI
BROMOMETHANE	ug/1	ND@1	NDØI	ND@1	ND@1
CARBON TETRACHLORIDE	ug/1	ND@1	ND@1	ND@1	ND@1
CHLOROBENZENE	ug/1	ND@1	ND@1	ND@1	ND@1
CHLORODIBROMOMETHANE	ug/l	ND@1	ND@1	ND@1	ND@1
CHLOROETHANE	ug/l	ND@1	ND@1	ND@1	ND@1
CHLOROFORM	ug/l	ND@1	ND@1	ND@1	0.16J
CHLOROMETHANE	ug/l	ND@1	ND@1	NDØL	ND@1
CIS-1,3-DICHLOROPROPYLENE	ug/l	ND@1	ND@1	ND@1	ND@1
DIBROMOMETHANE	ug/l	ND@1	ND@1	ND@1	ND@1
DICHLORODIFLUOROMETHANE	ug/l	ND@1	ND@1	ND@1	ND@1

MW-169-S

08/23/11

1 - 1

SAMPLE LOCATION SAMPLE DESCRIPTION SAMPLE DATE LABORATORY SAMPLE I.D. SAMPLE RUN NUMBER SAMPLE COMMENT CODES		MW-169-S GROUNDWATER 02/03/11 420-41399-12 01	MW-169-S GROUNDWATER 05/26/11 420-44062-4 01	MW-181-S GROUNDWATER 02/03/11 420-41399-9 01	MW-181-S GROUNDWATER 05/26/11 420-44062-6 01
PARAMETER	UNITS				
VOLATILE ORGANICS (Continued)					
METHYLENE CHLORIDE	ug/l	ND@1	ND@1	ND@1	ND@1
TETRACHLOROETHYLENE	ug/l	ND@1	ND@1	ND@1	ND@1
TRANS-1,3-DICHLOROPROPENE	ug/l	ND@1	ND@1	ND@1	ND@1
TRICHLOROETHYLENE	ug/l	ND@1	ND@1	8.3	6.5
TRICHLOROFLUOROMETHANE	ug/l	ND@1	ND@1	ND@1	ND@1
VINYL CHLORIDE	ug/l	ND@1	ND@1	ND@1	ND@1

MW-169-S

SAMPLE LOCATION SAMPLE DESCRIPTION SAMPLE DATE LABORATORY SAMPLE I.D. SAMPLE RUN NUMBER SAMPLE COMMENT CODES		MW-182-S GROUNDWATER 02/03/11 420-41399-15 01	MW-182-S GROUNDWATER 05/26/11 420-44062-7 01	MW-609-S GROUNDWATER 02/03/11 420-41399-13 01	MW-609-S DUPLICATE 02/03/11 420-41399-14 01	MW-609-S GROUNDWATER 05/26/11 420-44062-2 01
PARAMETER	UNITS					
BASE/NEUTRAL EXTRACTABLES						
1,2-DICHLOROBENZENE	ug/l	ND@1	ND@1	ND@1	ND@1	ND@1
1,3-DICHLOROBENZENE	ug/l	ND@1	ND@1	ND@1	ND@1	ND@1
1,4-DICHLOROBENZENE	ug/l	ND@1	ND@1	ND@1	ND@1	ND@1
2-CHLOROETHYLVINYL ETHER	ug/l	ND@1	ND@1	ND@1	ND@1	ND@1
INDICATOR PARAMETERS						
		P 03	C 50	7 10	7 10	7 22
PH PRETRIA CONDUCTIVICE	ph	7.03	6.58	7.12	7.12	/.22
SPECIFIC CONDUCTANCE		357	304	378	10 6	10 4
TEMPERATURE	C	6.0	11.7	12.0	12.0	10.4
VOLATILE ORGANICS						
1,1,1,2-TETRACHLOROETHANE	ug/l	ND@1	ND@1	ND@1	ND@1	ND@1
1,1,1-TRICHLOROETHANE	ug/l	1.2	1.2	ND@1	ND@1	ND@1
1,1,2,2-TETRACHLOROETHANE	ug/l	ND@1	ND@1	ND@1	ND@1	ND@1
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	ug/l	ND@1	0.30J	ND@1	ND@1	ND@1
1,1,2-TRICHLOROETHANE	ug/l	ND@1	ND@1	ND@1	ND@1	ND@1
1,1-DICHLOROETHANE	ug/l	4.7	3.0	ND@1	ND@1	ND@1
1,1-DICHLOROETHYLENE	ug/l	12	9.1	ND@1	ND@1	ND@1
1,2,3-TRICHLOROPROPANE	ug/l	ND@1	ND@1	ND@1	ND@1	ND@1
1,2-DICHLORO-1,2,2-TRIFLUOROETHANE	ug/l	ND@1	ND@1	ND@1	ND@1	ND@1
1,2-DICHLOROETHANE	ug/l	ND@1	ND@1	ND@1	ND@1	ND@1
1,2-DICHLOROETHYLENE, TOTAL	ug/l	0.35J	0.32J	ND@1	ND@1	ND@1
1,2-DICHLOROPROPANE	ug/l	ND@1	ND@1	ND@1	ND@1	ND@1
4 - CHLOROTOLUENE	ug/l	ND@1	ND@1	ND@1	ND@1	ND@1
BENZYL CHLORIDE	ug/l	ND@1	ND@1	ND@1	ND@1	ND@1
BROMOBENZENE	ug/l	ND@1	ND@1	ND@1	ND@1	ND@1
BROMODICHLOROMETHANE	ug/l	ND@1	ND@l	ND@1	ND@1	ND@1
BROMOFORM	ug/l	ND@1	ND@1	ND@1	ND@1	ND@1
BROMOMETHANE	ug/l	ND@1	ND@1	ND@1	ND@1	ND@1
CARBON TETRACHLORIDE	ug/l	ND@1	ND@1	ND@1	ND@1	ND@1
CHLOROBENZENE	ug/l	ND@1	ND@1	ND@1	ND@1	ND@1
CHLORODIBROMOMETHANE	ug/l	ND@1	ND@1	ND@1	ND@1	ND@1
CHLOROETHANE	ug/l	ND@1	ND@1	ND@1	ND@1	ND@1
CHLOROFORM	ug/l	ND@1	ND@1	ND@1	ND@1	ND@1
CHLOROMETHANE	ug/l	ND@1	ND@1	ND@1	ND@1	ND@1
CIS-1,3-DICHLOROPROPYLENE	ug/l	ND@1	ND@1	ND@1	ND@1	ND@1
DIBROMOMETHANE	ug/l	ND@1	ND@1	ND@1	ND@1	ND@1
DI CHLORODI FLUOROMETHANE	ug/l	ND@1	ND@1	ND@1	ND@1	ND@1

SAMPLE LOCATION SAMPLE DESCRIPTION SAMPLE DATE		MW-182-S GROUNDWATER 02/03/11	MW-182-S GROUNDWATER 05/26/11	MW-609-S GROUNDWATER 02/03/11	MW-609-S DUPLICATE 02/03/11	MW-609-S GROUNDWATER 05/26/11
LABORATORY SAMPLE I.D.		420-41399-15	420-44062-7	420-41399-13	420-41399-14	420-44062-2
SAMPLE RUN NUMBER		01	01	01	01	01
SAMPLE COMMENT CODES						
PARAMETER	UNITS					
VOLATILE ORGANICS (Continued)						
METHYLENE CHLORIDE	ug/l	ND@1	ND@1	ND@l	ND@1	ND@1
TETRACHLOROETHYLENE	ug/l	ND@1	ND@1	ND@1	ND@1	ND@1
TRANS-1,3-DICHLOROPROPENE	ug/l	ND@1	ND@1	ND@1	ND@l	ND@1
TRICHLOROETHYLENE	ug/l	27	18	ND@1	ND@1	ND@1
TRICHLOROFLUOROMETHANE	ug/l	ND@1	ND@1	ND@1	ND@1	ND@1
VINYL CHLORIDE	ug/l	ND@1	ND@1	ND@1	ND@1	ND@1

MW-182-S

SAMPLE LOCATION		MW-609-S
SAMPLE DESCRIPTION		DUPLICATE
SAMPLE DATE		05/26/11
LABORATORY SAMPLE I.D.		420-44062-3
SAMPLE RUN NUMBER		01
SAMPLE COMMENT CODES		
PARAMETER	UNITS	
BASE/NEUTRAL EXTRACTABLES		
1 2-DICHLOROBENZENE	ug/1	ND@1
1.3-DICHLOROBENZENE	ug/1	ND@1
1.4-DICHLOROBENZENE	ug/1	ND@1
2-CHLOROETHYLVINYL ETHER	ug/l	ND@1
INDICATOR PARAMETERS		
PH	рн	7.22
SPECIFIC CONDUCTANCE	umhos/cm	402
TEMPERATURE	с	18.4
VOLATILE ORGANICS		
1.1.1.2-TETRACHLOROETHANE	ug/l	ND@1
1,1,1-TRICHLOROETHANE	ug/l	ND@1
1,1,2,2-TETRACHLOROETHANE	ug/l	ND@1
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	ug/l	ND@1
1,1,2-TRICHLOROETHANE	ug/l	ND@1
1,1-DICHLOROETHANE	ug/l	ND@1
1,1-DICHLOROETHYLENE	ug/l	NDØl
1,2,3-TRICHLOROPROPANE	ug/l	ND@1
1,2-DICHLORO-1,2,2-TRIFLUOROETHANE	ug/l	ND@1
1,2-DICHLOROETHANE	ug/l	ND@1
1,2-DICHLOROETHYLENE, TOTAL	ug/l	ND@1
1,2-DICHLOROPROPANE	ug/l	ND@1
4-CHLOROTOLUENE	ug/l	ND@1
BENZYL CHLORIDE	ug/l	ND@1
BROMOBENZENE	ug/l	ND@1
BROMODICHLOROMETHANE	ug/l	ND@1
BROMOFORM	ug/l	ND@1
BROMOMETHANE	ug/l	ND@1
CARBON TETRACHLORIDE	ug/l	ND@1
CHLOROBENZENE	ug/1	ND@1
CHLORODIBROMOMETHANE	ug/1	ND@1
CHLOROETHANE	ug/1	ND@1
CHLOROFORM	ug/1	ND@1
CHLOROMETHANE	ug/1	ND@1
CIS-1, 3-DICHLOROPROPYLENE	ug/1	ND@1
DIBROMOMETHANE	ug/1	ND@1
DICHLORODIFLUOROMETHANE	ug/1	ND@1

SAMPLE LOCATION SAMPLE DESCRIPTION SAMPLE DATE LABORATORY SAMPLE I.D. SAMPLE RUN NUMBER SAMPLE COMMENT CODES		MW-609-S DUPLICATE 05/26/11 420-44062-3 01
PARAMETER	UNITS	
VOLATILE ORGANICS (Continued)		
METHYLENE CHLORIDE	ug/l	ND@1
TETRACHLOROETHYLENE	ug/l	ND@1
TRANS-1,3-DICHLOROPROPENE	ug/l	ND@1
TRICHLOROETHYLENE	ug/l	ND@1
TRICHLOROFLUOROMETHANE	ug/l	ND@1
VINYL CHLORIDE	ug/l	ND@1

MW-609-S

EXPLANATION OF REPORTING CONVENTIONS AND KEY TO COMMENT CODES

REPORTING CONVENTIONS

NA Not Analyzed ND@X Not Detected at Detection Limit X

BMRL@X Below Minimum Reporting Limit of X

CODE EXPLANATION

- ^ Non-Standard Measurement Unit
- c Sample contained sediment which may have contributed to reported results
- d 24 Hour Composite Sample
- B Organic analyte detected in both the sample and the laboratory blank
- D Compounds identifed at a secondary dilution factor
- E Concentration exceeds the calibration range of the GC/MS instrument
- J Estimated Value
- N Spiked sample recovery not within control limits
- P Lower of 2 GC column concentrations that have more than 25% difference
- R Reported value is less than the CRDL but greater than the IDL
- S Surrogate recoveries exceed acceptable control limits
- W Post digestion spike FAA out of control limits; sample absorbance < 50%
- Manhole flooded when sediment sample collected
- B The reported value is less than the Contract Required Detection Limit (CRDL), but greater than the Instrument Detection Limit (IDL) (Inorganics)
- H Sample was prepped or run beyond the specified method holding time
- Value estimated. Possible meter malfunction.

SAMPLE LOCATION SAMPLE DESCRIPTION SAMPLE DATE LABORATORY SAMPLE I.D. SAMPLE RUN NUMBER SAMPLE COMMENT CODES		EQ RINSE BLK WTR LVL IND 02/03/11 420-41399-2 01	EQ RINSE BLK WTR LVL IND 02/03/11 420-41399-8 01	EQ RINSE BLK WTR LVL IND 02/04/11 420-41396-8 01	EQ RINSE BLK WTR LVL IND 02/04/11 420-41396-14 01	EQ RINSE BLK WTR LVL IND 02/07/11 220-14713-2 01	EQ RINSE BLK WTR LVL IND 02/07/11 220-14713-4 01
PARAMETER	UNITS						
BASE/NEUTRAL EXTRACTABLES							
1.2-DICHLOROBENZENE	ug/l	ND@1	ND@1	ND@1	ND@1	ND@0.5	ND@0.5
1,3-DICHLOROBENZENE	ug/l	ND@1	ND@1	ND@1	ND@1	ND@0.5	ND@0.5
1,4-DICHLOROBENZENE	ug/l	ND@1	ND@1	ND@1	ND@1	ND@0.5	ND@0.5
2-CHLOROETHYLVINYL ETHER	ug/l	ND@1	ND@1	ND@1	ND@l	ND@0.5	ND@0.5
VOLATILE ORGANICS							
1, 1, 1, 2-TETRACHLOROETHANE	ug/l	ND@1	ND@1	ND@1	ND@1	ND@0.5	ND@0.5
1, 1, 1-TRICHLOROETHANE	ug/1	ND@1	ND@1	ND@1	ND@1	ND@0.5	ND@0.5
1,1,2,2-TETRACHLOROETHANE	ug/l	ND@1	ND@1	ND@1	ND@1	ND@0.5	ND@0.5
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	ug/l	ND@1	ND@1	ND@1	ND@1	ND@0.5	ND@0.5
1,1,2-TRICHLOROETHANE	ug/l	ND@1	ND@1	ND@1	ND@1	ND@0.5	ND@0.5
1,1-DICHLOROETHANE	ug/l	ND@1	ND@1	ND@1	ND@1	ND@0.5	ND@0.5
1,1-DICHLOROETHYLENE	ug/l	ND@1	ND@1	ND@1	ND@1	ND@0.5	ND@0.5
1,2,3-TRICHLOROPROPANE	ug/l	ND@1	ND@1	ND@1	ND@1	ND@0.5	ND@0.5
1,2-DICHLORO-1,2,2-TRIFLUOROETHANE	ug/1	ND@1	ND@1	ND@1	ND@1	ND@0.5	ND@0.5
1,2-DICHLOROETHANE	ug/1	NDØ1	NDØ1	ND@1	ND@1	NDØU.5	ND@0.5
1,2-DICHLOROETHYLENE, TOTAL	ug/1	NDØI	ND@1	NDØI	NDØL	NDOU.5	ND@0.5
1_CHLOROHEVANE	ug/1	NDUL	NDWI	NDWI	NDWI	NDW0.5	NDW0.5
2 - CHLOROTOLUENE	ug/1	NA	NA	NA	NA	NDW0.5	NDW0.5
4-CHLOROTOLUENE	ug/l	NDØ1	ND@1	ND@1	ND@1	ND@0.5	ND@0.5
BENZENE	ug/l	NA	NA	NA	NA	NA	NA
BENZYL CHLORIDE	ug/l	ND@1	ND@1	ND@1	ND@1	ND@0.5	ND@0.5
BROMOBENZENE	ug/l	ND@1	ND@1	ND@1	ND@1	ND@0.5	ND@0.5
BROMODICHLOROMETHANE	ug/l	ND@1	ND@1	ND@1	ND@1	ND@0.5	ND@0.5
BROMOFORM	ug/l	ND@1	ND@1	ND@1	ND@1	ND@0.5	ND@0.5
BROMOMETHANE	ug/l	ND@1	ND@1	ND@1	ND@1	ND@1	ND@1
CARBON TETRACHLORIDE	ug/l	ND@1	ND@1	ND@1	ND@1	ND@0.5	ND@0.5
CHLOROBENZENE	ug/l	ND@1	ND@1	ND@1	ND@1	ND@0.5	ND@0.5
CHLORODIBROMOMETHANE	ug/1	ND@1	ND@1	ND@1	ND@1	ND@0.5	ND@0.5
CHLOROETHANE	ug/1	ND@1	NDØL	ND@1	NDØI	NDØI	ND@1
CHLOROFORM	ug/1	ND@1	NDØ1	NDØL	NDØI NDØI	NDØU.5	NDØU.5
CIS-1 3-DICHLOPOPPOPVLENE	ug/1	ND@1	ND@1	ND@1	NDØ1	ND@0.5	NDW0.5
DIBROMOMETHANE	ug/1	ND@1	ND@1	ND@1	ND@1	ND@0.5	ND@0.5
DICHLORODIFLUOROMETHANE	ug/l	NDØ1	ND@1	ND@1	ND@1	ND@1	ND@1
ETHYLBENZENE	ug/1	NA	NA	NA	NA	NA	NA
METHYLENE CHLORIDE	ug/l	ND@1	ND@1	ND@1	NDØ1	ND@2	ND@2
TETRACHLOROETHYLENE	ug/1	ND@1	ND@1	ND@1	ND@1	ND@0.5	ND@0.5
TOLUENE	ug/l	NA	NA	NA	NA	NA	NA
TRANS-1,3-DICHLOROPROPENE	ug/l	ND@1	ND@1	ND@1	ND@1	ND@0.5	ND@0.5

SAMPLE LOCATION SAMPLE DESCRIPTION SAMPLE DATE LABORATORY SAMPLE I.D. SAMPLE RUN NUMBER SAMPLE COMMENT CODES		EQ RINSE BLK WTR LVL IND 02/03/11 420-41399-2 01	EQ RINSE BLK WTR LVL IND 02/03/11 420-41399-8 01	EQ RINSE BLK WTR LVL IND 02/04/11 420-41396-8 01	EQ RINSE BLK WTR LVL IND 02/04/11 420-41396-14 01	EQ RINSE BLK WTR LVL, IND 02/07/11 220-14713-2 01	EQ RINSE BLK WTR LVL IND 02/07/11 220-14713-4 01
PARAMETER	UNITS						
VOLATILE ORGANICS (Continued)							
TRICHLOROETHYLENE	ug/l	ND@1	ND@1	ND@1	ND@1	ND@0.5	ND@0.5
TRICHLOROFLUOROMETHANE	ug/l	ND@1	ND@1	ND@1	ND@1	ND@0.5	ND@0.5
VINYL CHLORIDE	ug/1	ND@1	ND@1	ND@1	ND@1	ND@0.5	ND@0.5
XYLENE. TOTAL	ug/1	NA	NA	NA	NA	NA	NA

SAMPLE LOCATION SAMPLE DESCRIPTION SAMPLE DATE LABORATORY SAMPLE I.D. SAMPLE RUN NUMBER SAMPLE COMMENT CODES		EQ RINSE BLK WTR LVL IND 05/25/11 420-44001-10 01	EQ RINSE BLK WTR LVL IND 05/26/11 420-44062-5 01	EQ RINSE BLK WTR LVL IND 06/02/11 220-15633-2 01	EQ RINSE BLK WTR LVL IND 06/02/11 220-15633-4 01	EQ RINSE BLK WTR LVL IND 06/03/11 420-44288-3 01
PARAMETER	UNITS					
BASE/NEUTRAL EXTRACTABLES						
1,2-DICHLOROBENZENE	ug/l	ND@1	ND@1	ND@0.5	ND@1	ND@1
1,3-DICHLOROBENZENE	ug/l	ND@1	ND@1	ND@0.5	ND@1	ND@1
1,4-DICHLOROBENZENE	ug/l	ND@1	ND@1	ND@0.5	ND@1	ND@1
2-CHLOROETHYLVINYL ETHER	ug/l	ND@1	ND@1	ND@0.5	ND@1	ND@1
VOLATILE ORGANICS						
1.1.1.2-TETRACHLOROETHANE	uq/l	ND@1	ND@1	ND@0.5	ND@1	ND@1
1,1,1-TRICHLOROETHANE	ug/l	ND@1	ND@1	ND@0.5	ND@1	ND@1
1,1,2,2-TETRACHLOROETHANE	ug/l	ND@1	ND@1	ND@0.5	ND@1	ND@1
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	ug/l	ND@1	ND@1	ND@0.5	ND@1	ND@1
1,1,2-TRICHLOROETHANE	ug/l	ND@1	ND@1	ND@0.5	ND@1	ND@1
1,1-DICHLOROETHANE	ug/l	ND@1	ND@1	ND@0.5	ND@1	NDØI
1,1-DICHLOROETHYLENE	ug/1	ND@1	NDØI	NDØU.5	NDØI	NDØ1
1,2,3-TRICHLOROPROPANE	ug/1	NDØL	ND@1	ND@0.5	NDØ1	NDØI
1,2-DICHLORO-1,2,2-TRIFLUOROETHANE	ug/1	ND@1	NDØI	NDO0.5	NDWI	ND@1
1, 2-DICHLOROETHANE	ug/1	ND@1	ND@1	ND@0.5	ND@1	ND@1
1,2-DICHLOROPODANE	ug/1	ND@1	ND@1	NDØ0.5	ND@1	ND@1
1-CHLOROHEXANE	ug/1	NA	NA	ND@0.5	NA	NA
2-CHLOROTOLUENE	ug/1	NA	NA	NA	NA	NA
4 - CHLOROTOLUENE	ug/1	ND@1	ND@1	ND@0.5	ND@1	ND@1
BENZENE	ug/l	NA	NA	NA	NA	NA
BENZYL CHLORIDE	ug/l	ND@1	ND@1	ND@0.5	ND@1	ND@1
BROMOBENZENE	ug/l	ND@1	ND@1	ND@0.5	ND@1	ND@1
BROMODICHLOROMETHANE	ug/l	ND@1	ND@1	ND@0.5	ND@1	ND@1
BROMOFORM	ug/1	ND@1	ND@1	ND@0.5	ND@1	ND@1
BROMOMETHANE	ug/l	ND@1	ND@1	ND@1	ND@1	ND@1
CARBON TETRACHLORIDE	ug/1	ND@1	NDØ1	ND@0.5	NDØI	NDØ1
CHLOROBENZENE	ug/l	NDGI	ND@1	NDØU.5	NDØI	NDWI
CHLORODIBROMOMETHANE	ug/1	ND@1	NDGI	ND@0.5	NDØI	ND@1
CHLOROEIHANE	ug/1	ND@1	ND@1	NDØD 5	ND@1	ND@1
CHLOROMETHANE	ug/1	ND@1	NDØ1	ND@0.5	ND@1	ND@1
CIS-1.3-DICHLOROPROPYLENE	ug/1	ND@1	ND@1	ND@0.5	ND@1	ND@1
DIBROMOMETHANE	ug/1	ND@1	ND@1	ND@0.5	ND@1	ND@1
DICHLORODIFLUOROMETHANE	ug/l	ND@1	ND@1	ND@1	ND@1	ND@1
ETHYLBENZENE	ug/l	NA	NA	NA	NA	NA
METHYLENE CHLORIDE	ug/l	ND@1	ND@1	ND@2	ND@1	ND@1
TETRACHLOROETHYLENE	ug/l	ND@1	ND@1	ND@0.5	ND@1	ND@1
TOLUENE	ug/l	NA	NA	NA	NA	NA
TRANS-1,3-DICHLOROPROPENE	ug/l	ND@1	ND@1	ND@0.5	ND@1	ND@1

SAMPLE LOCATION SAMPLE DESCRIPTION SAMPLE DATE LABORATORY SAMPLE I.D. SAMPLE RUN NUMBER SAMPLE COMMENT CODES		EQ RINSE BLK WTR LVL IND 05/25/11 420-44001-10 01	EQ RINSE BLK WTR LVL IND 05/26/11 420-44062-5 01	EQ RINSE BLK WTR LVL IND 06/02/11 220-15633-2 01	EQ RINSE BLK WTR LVL IND 06/02/11 220-15633-4 01	EQ RINSE BLK WTR LVL IND 06/03/11 420-44288-3 01
PARAMETER	UNITS					
VOLATILE ORGANICS (Continued)						
TRICHLOROETHYLENE	ug/l	ND@1	ND@1	ND@0.5	ND@1	ND@1
TRICHLOROFLUOROMETHANE	ug/l	ND@1	ND@1	ND@0.5	ND@1	ND@1
VINYL CHLORIDE	ug/l	ND@1	ND@1	ND@0.5	ND@1	ND@1
XYLENE, TOTAL	ug/l	NA	NA	NA	NA	NA

Former IBM Kingston Facility Field Quality Assurance / Quality Control Data January 1, 2011 - June 30, 2011

SAMPLE LOCATION SAMPLE DESCRIPTION SAMPLE DATE LABORATORY SAMPLE I.D. SAMPLE RUN NUMBER SAMPLE COMMENT CODES		TRIP BLANK 2/3-4/11 02/03/11 420-41399-1 01	TRIP BLANK 2/4/2011 02/04/11 420-41396-1 01	TRIP BLANK 2/7-8/11 02/07/11 420-41408-1 01	TRIP BLANK 2/7-9/11 02/07/11 220-14713-1 01	TRIP BLANK 5/25/2011 05/25/11 420-44001-1 01	TRIP BLANK 5/25-27/11 05/26/11 420-44062-1 01
PARAMETER	UNITS						
BASE/NEUTRAL EXTRACTABLES							
1.2-DICHLOROBENZENE	ug/l	ND@1	ND@1	ND@1	ND@0.5	ND@1	ND@l
1.3-DICHLOROBENZENE	ug/1	ND@1	ND@1	ND@1	ND@0.5	ND@1	ND@1
1,4-DICHLOROBENZENE	ug/l	ND@1	ND@1	ND@1	ND@0.5	ND@1	ND@1
2-CHLOROETHYLVINYL ETHER	ug/l	ND@1	ND@1	ND@1	ND@0.5	ND@1	ND@1
VOLATILE ORGANICS							
1,1,1,2-TETRACHLOROETHANE	ug/l	ND@1	ND@1	ND@1	ND@0 - 5	ND@1	ND@1
1,1,1-TRICHLOROETHANE	ug/l	ND@1	ND@1	NDØ1	ND@0.5	ND@1	ND@1
1, 1, 2, 2-TETRACHLOROETHANE	ug/l	ND@1	ND@1	ND@1	ND@0.5	ND@1	ND@1
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	ug/l	ND@1	ND@1	ND@1	ND@0.5	ND@1	ND@1
1, 1, 2-TRICHLOROETHANE	ug/l	ND@1	ND@1	ND@1	ND@0.5	ND@1	ND@1
1,1-DICHLOROETHANE	ug/l	ND@1	ND@1	ND@1	ND@0.5	ND@1	ND@1
1,1-DICHLOROETHYLENE	ug/l	ND@1	ND@1	ND@1	ND@0.5	ND@1	ND@1
1,2,3-TRICHLOROPROPANE	ug/l	ND@1	ND@1	ND@1	ND@0.5	ND@1	ND@1
1,2-DICHLORO-1,2,2-TRIFLUOROETHANE	ug/l	ND@1	ND@1	ND@1	ND@0.5	ND@1	ND@1
1,2-DICHLOROETHANE	ug/l	ND@1	ND@1	ND@1	ND@0.5	ND@1	ND@1
1,2-DICHLOROETHYLENE, TOTAL	ug/l	ND@1	ND@1	ND@1	ND@0.5	ND@1	ND@1
1,2-DICHLOROPROPANE	ug/l	ND@1	ND@1	ND@1	ND@0.5	ND@1	ND@1
1 - CHLOROHEXANE	ug/l	NA	NA	NA	ND@0.5	NA	NA
2 - CHLOROTOLUENE	ug/l	NA	NA	NA	NA	NA	NA
4 - CHLOROTOLUENE	ug/l	ND@1	ND@1	ND@1	ND@0.5	ND@1	ND@1
BENZENE	ug/l	NA	NA	NA	NA	NA	NA
BENZYL CHLORIDE	ug/l	ND@1	ND@1	ND@1	ND@0.5	ND@1	ND@1
BROMOBENZENE	ug/l	ND@1	ND@1	ND@1	ND@0.5	ND@1	ND@1
BROMODICHLOROMETHANE	ug/l	ND@1	ND@1	ND@1	ND@0.5	ND@1	ND@1
BROMOFORM	ug/l	ND@1	ND@1	ND@1	ND@0.5	ND@1	ND@1
BROMOMETHANE	ug/l	ND@1	ND@1	ND@1	ND@1	ND@1	ND@1
CARBON TETRACHLORIDE	ug/l	ND@1	ND@1	ND@1	ND@0.5	ND@1	ND@1
CHLOROBENZENE	ug/l	ND@1	ND@1	ND@1	ND@0.5	ND@1	ND@1
CHLORODIBROMOMETHANE	ug/l	ND@1	ND@1	ND@1	ND@0.5	ND@1	ND@1
CHLOROETHANE	ug/l	ND@1	ND@1	ND@1	ND@1	ND@1	ND@1
CHLOROFORM	ug/l	ND@1	ND@1	ND@1	ND@0.5	ND@1	ND@1
CHLOROMETHANE	ug/l	ND@1	ND@1	ND@1	ND@0.5	ND@1	ND@1
CIS-1,3-DICHLOROPROPYLENE	ug/l	ND@1	ND@1	ND@1	ND@0.5	ND@1	NDØ1
DIBROMOMETHANE	ug/l	ND@1	ND@1	ND@1	ND@0.5	ND@1	ND@1
DICHLORODIFLUOROMETHANE	ug/l	ND@1	ND@1	ND@1	ND@1	ND@1	ND@1
ETHYLBENZENE	ug/l	NA	NA	NA	NA	NA	NA
METHYLENE CHLORIDE	ug/l	ND@1	ND@1	ND@1	ND@2	ND@1	NDØ1
TETRACHLOROETHYLENE	ug/l	ND@1	ND@1	ND@1	ND@0.5	ND@1	ND@1
TOLUENE	ug/l	NA	NA	NA	NA	NA	NA
TRANS-1,3-DICHLOROPROPENE	uq/1	ND@1	ND@1	ND@1	ND@0.5	ND@1	ND@1

TRIP BLANK

Former IBM Kingston Facility Field Quality Assurance / Quality Control Data January 1, 2011 - June 30, 2011

SAMPLE LOCATION SAMPLE DESCRIPTION SAMPLE DATE LABORATORY SAMPLE I.D. SAMPLE RUN NUMBER SAMPLE COMMENT CODES		TRIP BLANK 2/3-4/11 02/03/11 420-41399-1 01	TRIP BLANK 2/4/2011 02/04/11 420-41396-1 01	TRIP BLANK 2/7-8/11 02/07/11 420-41408-1 01	TRIP BLANK 2/7-9/11 02/07/11 220-14713-1 01	TRIP BLANK 5/25/2011 05/25/11 420-44001-1 01	TRIP BLANK 5/25-27/11 05/26/11 420-44062-1 01
PARAMETER	UNITS						
VOLATILE ORGANICS (Continued)							
TRICHLOROETHYLENE	ug/l	ND@1	ND@1	ND@1	ND@0.5	ND@1	ND@1
TRICHLOROFLUOROMETHANE	ug/l	ND@1	ND@1	ND@1	ND@0.5	ND@1	ND@1
VINYL CHLORIDE	ug/l	ND@1	ND@1	ND@1	ND@0.5	ND@1	ND@1
XYLENE, TOTAL	ug/l	NA	NA	NA	NA	NA	NA

TRIP BLANK

TRIP BLANK

PARAMETE UNITS PARAMETE UNITS PARAMETE UNITS PARAMETE UNITS PARAMETER PARAMETE	SAMPLE LOCATION SAMPLE DESCRIPTION SAMPLE DATE LABORATORY SAMPLE I.D. SAMPLE RUN NUMBER SAMPLE COMMENT CODES		TRIP BLANK 5/26-27/11 05/26/11 420-44076-1 01	TRIP BLANK 5/31-6/1/11 05/31/11 420-44124-1 01	TRIP BLANK 6/2-3/11 06/02/11 220-15633-1T 01	TRIP BLANK 6/2-3/11 06/02/11 420-44239-1 01	TRIP BLANK 6/3/2011 06/03/11 420-44288-1 01
EASE/NEUTRAL EXTRACTABLES 1,2-DICHLOROBENZENE ug/1 NDe1 NDe1 NDe1. NDe1. NDe1. 1,2-DICHLOROBENZENE ug/1 NDe1 NDe1. NDe1. NDe1. NDe1. 1,4-DICHLOROBENZENE ug/1 NDe1. NDe1. NDe1. NDe1. NDe1. 2-GHLOROFENTADINE ug/1 NDe1. NDe1. NDe1. NDe1. NDe1. 2-GHLOROFENTADINE ug/1 NDe1. NDe1. NDe1. NDe1. NDe1. 1,1,1,2-TETRACHLOROFTHANE ug/1 NDe1. NDe1. NDe1. NDe1. NDe1. NDe1. 1,1,1,2-TETRACHLOROFTHANE ug/1 NDe1. NDe1. NDe1. NDe1. NDe1. 1,1,2-TETRACHLOROFTHANE ug/1 NDe1. NDe1. NDe1. NDe1. NDe1. 1,1,2-TETRACHLOROFTHANE ug/1 NDe1. NDe1. NDe1. NDe1. 1,1,2-TETRACHLOROFTHANE ug/1 NDe1. NDe1. NDe1. NDe1. 1,2-DICHLOROFTHANE u	PARAMETER	UNITS					
1,7-DICHLORGENTERE 9/1 NDB1 NDB1 NDB0.5 NDB1 NDB1 1,4-DICHLORGENTERE 9/1 NDB1 NDB1 NDB0.5 NDB1 NDB1 1,4-DICHLORGENTERE 9/1 NDB1 NDB1 NDB0.5 NDB1 NDB1 2-CHLORGENTERE 9/1 NDB1 NDB1 NDB0.5 NDB1 NDB1 1,4-DICHLORGENTERE 9/1 NDB1 NDB1 NDB0.5 NDB1 NDB1 1,1-2-TETRACHLORGENTERE 9/1 NDB1 NDB1 NDB0.5 NDB1 NDB1 1,2-2-TETRACHLORGENTERE 9/1 NDB1 NDB0.5 NDB1 NDB1 1,2-2-TETRACHLORGENTERE 9/1 NDB1 NDB1 NDB0.5 NDB1 NDB1 1,2-2-TETRACHLORGENTERE 9/1 NDB1 NDB1 NDB0.5 NDB1 NDB1 2.2-TETRACHLORGENTERE 9/1 NDB1 NDB1 NDB0.5 NDB1 NDB1 2.2-TETRACHLORGENTERE 9/1 NDB1 NDB1 NDB0.5 NDB1 NDB1 2.2-TETRACHLORGENTERE 9/1 NDB1 NDB1 NDB1 NDB1 NDB1 2.2-TETRACHLORGENTERE 9/1 NDB1 NDB1 NDB1 NDB1 NDB1 2.2-TETRACHLORGENTERE 9/1 NDB1 NDB1	BASE/NEUTRAL EXTRACTABLES						
1,3-DICHLOROGENZENE Ug/1 NDB1 NDB1 NDB1 NDB0.5 NDB1 NDB1 NDB0.5 NDB1 NDB1 2-GHOROGENTALVINYL ETHER Ug/1 NDB1 NDB1 NDB0.5 NDB1 NDB1 NDB1. NDB1 NDB0.5 NDB1 NDB1 NDB1. NDB0.5 NDB1 NDB1 1,1,1-7RICHLOROGETHANE Ug/1 NDB1 NDB1 NDB0.5 NDB1 NDB1 1,1,2-7RICHLOROFITANE Ug/1 NDB1 NDB1 NDB0.5 NDB1 NDB1 1,1-20CHUCROFITANE Ug/1 NDB1 NDB1 NDB0.5 NDB1 NDB1 1,2-7RICHLOROFITANE Ug/1 NDB1 NDB1 NDB0.5 NDB1 NDB1 1,2-7CHUCROFITANE Ug/1 NDB1 NDB1 NDB0.5 NDB1 NDB1 1,2-7CHUCROFITALENE Ug/1 NDB1 NDB1 NDB0.5 NDB1 NDB1 1,2-7CHUCROFITALENE	1,2-DICHLOROBENZENE	ug/l	ND@1	ND@1	ND@0.5	ND@1	ND@1
1.4-DICHLORGETHAUETHER Ug/1 NDe1 NDe1 NDe0.5 NDe1 NDe1 1.1.1.2-TETERACHLORGETHAUE Ug/1 NDE1 NDe1 NDe0.5 NDe1 NDe1 NDe1 NDe0.5 NDe1 NDe1 1.1.2.7-TETERACHLORGETHAUE Ug/1 NDE1 NDe1 NDe0.5 NDe1 NDe1 NDe1 NDe0.5 NDe1 NDe1 1.1.2.7-TETERACHLORGETHAUE Ug/1 NDE1 NDe1 NDe0.5 NDe1 NDe1 NDe1 NDe0.5 NDe1 NDE1 1.1.2.7-TETERACHLORGETHAUE Ug/1 NDE1 NDE1 NDE0.5 NDE1 NDE1 NDE1 NDE0.5 NDE1 NDE1 1.1.2.7-TETERACHLORGETHAUE Ug/1 NDE1 NDE1 NDE0.5 NDE1 NDE1 NDE1 NDE0.5 NDE1 NDE1 1.1.2.7-TETERACHLORGETHAUE Ug/1 NDE1 NDE1 NDE0.5 NDE1 NDE1 NDE1 NDE0.5 NDE1 NDE1 1.1.2.7-TETERACHLORGETHAUE Ug/1 NDE1 NDE1 NDE0.5 NDE1 NDE1 NDE1 NDE0.5 NDE1 NDE1 1.2.7-TETERACHLORGETHAUE Ug/1 NDE1 NDE1 NDE0.5 NDE1 NDE1 NDE1 NDE0.5 NDE1 NDE1 1.2.7-TETERACHLORGETHAUE Ug/1 NDE1 NDE1 NDE0.5 NDE1 NDE1 NDE0.5 NDE1 NDE1 NDE1 NDE0.5 N	1,3-DICHLOROBENZENE	ug/1	ND@1	ND@1	ND@0.5	ND@1	ND@1
2-CHLOROETHILVINU ETHER Ug/l NDe1 NDe1 NDe1 NDe1 NDe1 NDe1 NDe1 VOLATILE ORGANICS VOLATILE ORGANICS 1,1,1,2-TETRACHLOROETHANE Ug/l NDe1 NDe1 NDe0.5 NDe1 NDe1 1,1,2-TETRACHLOROETHANE Ug/l NDe1 NDe1 NDe0.5 NDe1 NDe1 1,1,2-TETRACHLOROETHANE Ug/l NDe1 NDe1 NDe1 NDe1 NDe1 NDe1 1,1,2-TETRACHLOROETHANE Ug/l NDE1	1,4-DICHLOROBENZENE	ug/1	ND@1	ND@1	ND@0.5	ND@1	ND@1
VOLATILE ORGANICS 1,1,1,2-TETRACHLOROFTHANE ug/1 ND01 ND01 ND00.5 ND01 ND01 1,1,2,2-TETRACHLOROFTHANE ug/1 ND01 ND01 ND00.5 ND01 ND01 1,1,2-TETRACHLOROFTHANE ug/1 ND01 ND01 ND00.5 ND01 ND01 1,2-3-TETCHLOROFTHANE ug/1 ND01 ND01 ND00.5 ND01 ND01 1,2-3-TETREFLOROFTHANE ug/1 ND01 ND01 ND00.5 ND01 ND01 1,2-3-TETREFLOROFTHANE ug/1 ND01 ND01 ND00.5 ND01 ND01 1,2-3-TETREFLOROFTHANE ug/1 ND01 ND01 ND00.5 ND01 ND01 1,2-3-TETREFLOROFTHANE </th <th>2-CHLOROETHYLVINYL ETHER</th> <th>ug/1</th> <th>ND@1</th> <th>ND@1</th> <th>ND@0.5</th> <th>ND@1</th> <th>ND@1</th>	2-CHLOROETHYLVINYL ETHER	ug/1	ND@1	ND@1	ND@0.5	ND@1	ND@1
1,1,1-TETRACHLOROFTHANEug/lNDe1NDe1NDe1NDe0.5NDe1NDe11,1,1-TETRACHLOROFTHANEug/lNDe1NDe1NDe0.5NDe1NDe11,1,2-TETCRACHLOROFTHANEug/lNDe1NDe1NDe0.5NDe1NDe11,1,2-TETCRACHLOROFTHANEug/lNDe1NDe1NDe0.5NDe1NDe11,2,2-TETCRACHLOROFTHANEug/lNDe1NDe1NDe0.5NDe1NDe11,2,2-TETCRACHLOROFTHANEug/lNDe1NDe1NDe0.5NDe1NDe11,2-2-TETCRACHLOROFTHANEug/lNDe1NDe1NDe0.5NDe1NDe11,2-2-TETCRACHLOROFTHANEug/lNDe1NDe1NDe0.5NDe1NDe11,2-2-TETCRACHLOROFTHANEug/lNDe1NDe1NDe0.5NDe1NDe11,2-2-TETCRACHCOROFTHANEug/lNDe1NDe1NDe0.5NDe1NDe11,2-2-TETCRACHCOROFTHANEug/lNDe1NDe1NDe0.5NDe1NDe11,2-2-TETCRACHCOROFTHANEug/lNDe1NDe1NDe0.5NDe1NDe11,2-2-TETCRACHCOROFTHANEug/lNDe1NDe1NDe0.5NDe1NDe11,2-2-TETCRACHCOROFTHANEug/lNDe1NDe1NDe0.5NDe1NDe11,2-2-TETCRACHCOROFTHANEug/lNDe1NDe1NDe0.5ND1NDe11,2-2-TETCRACHCOROFTHANEug/lNDe1NDe1NDe0.5ND1NDe11,2-2-TETCRACHCOROFTHANEug/lNDe1NDe1<	VOLATILE ORGANICS						
1,1,2,2-TRICHLOROBETHANE Ug/1 ND01 ND01 ND00.5 ND01 ND01 1,1,2-TRICHLOROBETHANE Ug/1 ND01 ND01 ND00.5 ND01 ND01 1,1,2-TRICHLOROBETHANE Ug/1 ND01 ND01 ND00.5 ND01 ND01 1,1,2-TRICHLOROBETHANE Ug/1 ND01 ND01 ND00.5 ND01 ND01 1,1-DICHLOROBETHANE Ug/1 ND01 ND01 ND00.5 ND01 ND01 1,2-DICHLOROBETHANE Ug/1 ND01 ND01 ND00.5 ND01 ND01 1-CHLOROBETHANE Ug/1 ND01 ND01 ND00.5 ND01 ND01 RCMODENEXANE Ug/1 ND01 ND01 ND00.5 ND01 ND01 RCMODENEXDE Ug/1 ND01 ND01 ND00.5 ND01 ND01 RCMODENEXDEE Ug/1 ND01 ND01 ND00.5 ND01 ND01 RCMODENEXDEE Ug/1 ND01 ND01 ND00.5 ND01 ND01 RCMODENEXDEE Ug/1 ND01 ND01 ND00.5 ND01 ND01 RCMODENEXDENE Ug/1 ND01 ND01 ND00.5 ND01 ND01 RCMODENEXDENE Ug/1 ND01 ND01	1,1,1,2-TETRACHLOROETHANE	ug/l	ND@1	ND@1	ND@0.5	ND@1	ND@1
1,1,2,2-TETRACHLOROETHANE ug/1 NDe1 NDe1 NDe0.5 NDe1 NDe1 1,1,2-TEICHLOROETHANE ug/1 NDe1 NDe1 NDe0.5 NDe1 NDe1 1,1,2-TEICHLOROETHANE ug/1 NDe1 NDe1 NDe0.5 NDe1 NDe1 1,1-DICHLOROETHANE ug/1 NDe1 NDe1 NDe0.5 NDe1 NDe1 1,2-DICHLOROETHANE ug/1 NDe1 NDe1 NDe1 NDe1	1,1,1-TRICHLOROETHANE	ug/l	ND@1	ND@1	ND@0.5	ND@1	ND@1
1,1,2-TRICHLORO.1,2,2-TRIFUORCETHANE ug/l NDe1 NDe1 NDe1 NDe1 NDe1 NDe1 NDe1 1,1,2-TRICHLOROETHANE ug/l NDe1 NDe1 NDe0.5 NDe1 NDe1 1,1-DICHLOROETHANE ug/l NDe1 NDe1 NDe0.5 NDe1 NDe1 1,1-DICHLOROETHANE ug/l NDe1 NDe1 NDe0.5 NDe1 NDe1 1,2-DICHLOROETHANE ug/l NDe1 NDe1 NDe1 NDe1 NDe1 1,2-DICHLOROETHANE ug/l NDe1 NDe1 NDe1 </td <td>1,1,2,2-TETRACHLOROETHANE</td> <td>ug/l</td> <td>ND@1</td> <td>ND@1</td> <td>ND@0.5</td> <td>ND@1</td> <td>ND@1</td>	1,1,2,2-TETRACHLOROETHANE	ug/l	ND@1	ND@1	ND@0.5	ND@1	ND@1
1,1,2-TRICHLOROETHANE ug/1 NDe1 ND1	1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	ug/l	ND@1	ND@1	ND@0.5	ND@1	ND@1
1,1-D1CHLOROSTHANE ug/1 NDe1 NDe1 NDe0.5 NDe1 NDe1 NDe0. 1,2-J3-TRICHLOROSTHANE ug/1 NDe1 NDe1 NDe0.5 NDe1 NDe1 1,2-DTCHLOROSTHANE ug/1 NDe1 NDe1 NDe0.5 NDe1 NDe1 1,2-DTCHLOROST,2,2-TRIFLUOROSTHANE ug/1 NDe1 NDe1 NDe0.5 NDe1 NDe1 1,2-DTCHLOROST,2,2-TRIFLUOROSTHANE ug/1 NDe1 NDe1 NDe0.5 NDe1 NDe1 1,2-DTCHLOROST,2,2-TRIFLUOROSTHANE ug/1 NDe1 NDe1 NDe0.5 NDe1 NDe1 1,2-DTCHLOROST,2,2-TRIFLUOROST ug/1 NDe1 NDe1 NDe0.5 NDe1 NDe1 1,2-TLCHCROROST,2,2-TRIFLUOROST ug/1 NDe1 NDe1 NDe0.5 NDe1 NDe1 1-CHLOROST,2,2-TRIFLUOROST Ug/1 NDE1 NDe1 NDe0.5 NDe1 NDe1 1-CHLOROST,2,2-TRIFLUOROST Ug/1 NDE1 NDe1 NDe0.5 NDe1 NDe1 2-CHLOROTOLUSNE ug/1 NDE1 NDe1 NDe0.5 NDe1 NDe1 NA NA NA NA 4-CHLOROTOLUSNE ug/1 NDe1 NDe1 NDe0.5 NDe1 NDe1 BENZENE ug/1 NDe1 NDe1 NDe0.5 NDe1 NDe1 BROMOSTHANE ug/1 NDe1 NDe1 NDe0.5 NDe1 NDe1 CLEOROSTHANE ug/1 NDe1 NDe1 NDe0.5 NDe1 NDe1 DISCOMMETHANE ug/1 NDe1 NDe1 NDe0.5 NDe1 NDe1 DISCOMMETHANE ug/1 NDe1 NDe1 NDe0.5 NDe1 NDe1 TDE0 CLEOROSTHANE ug/1 NDe1 NDe1 NDe0.5 NDe1 NDe1 TDE0 DISCOMMETHANE	1,1,2-TRICHLOROETHANE	ug/l	ND@1	ND@1	ND@0.5	ND@1	ND@1
1,1-D1CHLORNOFTHYLENE ug/1 NDe1 NDe1 NDe0.5 NDe1 NDe1 1,2,3-STRCHCOROPORNE ug/1 NDe1 NDe1 NDe0.5 NDe1 NDe1 1,2-DICHLOROFTHANE ug/1 NDe1 NDe1 NDe0.5 NDe1 NDe1 1,2-DICHLOROFTHALENE ug/1 NDe1 NDe1 NDe0.5 NDe1 NDe1 1,2-DICHLOROFTHALENE ug/1 NDe1 NDe1 NDe0.5 NDe1 NDe1 1,2-DICHLOROFTHALENE, TOTAL ug/1 NDe1 NDe1 NDe0.5 NDe1 NDe1 1,2-DICHLOROFTHALENE, TOTAL ug/1 NDe1 NDe1 NDe0.5 NDe1 NDe1 1,2-DICHLOROFTHALENE ug/1 NDe1 NDe1 NDe0.5 NDe1 NDe1 1,2-DICHLOROFTHALENE ug/1 NDe1 NDe1 NDe1 NDe1 NDe1 2-CHLOROTOLUENE ug/1 NDe1 NDe1 NDe1 NDe1 NDe1 BENZYL CHLORIDE ug/1 NDe1 NDe1 NDe1 NDe1 NDe1 BROMOBENZENE ug/1 NDe1 NDe1 NDe1 NDe1 NDe1 BROMOBENZENE ug/1 NDe1 NDe1 NDe1 NDe1 NDe1	1,1-DICHLOROETHANE	ug/1	ND@1	ND@1	ND@0.5	ND@1	ND@1
1,2,3-TRICHLOROFROME Ug/1 ND01 ND01 ND01. ND01. 1,2-DICHLOROFLANE Ug/1 ND01 ND01. ND01. ND01. 1,2-DICHLOROFLANE Ug/1 ND01 ND01. ND01. ND01. 1,2-DICHLOROFTHANE Ug/1 ND01. ND01. ND01. ND01. 2-CHLOROFCULENE Ug/1 ND01. ND01. ND01. ND01. 2-CHLOROFCULENE Ug/1 ND01. ND01. ND01. ND01. BENZENE Ug/1 ND01. ND01. ND01. ND01. ND01. BROMEDICHLOROFFLANE Ug/1 ND01. ND01. ND01. ND01. ND01. BROMEDICHLOROFFLANE Ug/1 ND01. ND01. ND01. ND01. ND01. BROMEDICHLOROFFLANE Ug/1 ND01. ND01.	1,1-DICHLOROETHYLENE	ug/l	ND@1	ND@1	ND@0.5	ND@1	ND@1
1, 2-DICHLOROC-1, 2, 2-TRIFLUCKOETHANE ug/l NDe1 NDe1 NDe0.5 NDe1 NDe1 1, 2-DICHLOROETHANE ug/l NDe1 NDe1 NDe0.5 NDe1 NDe1 1, 2-DICHLOROETHANE ug/l NDe1 NDe1 NDe0.5 NDe1 NDe1 1, 2-DICHLOROETHANE ug/l NDe1 NDe1 NDe0.5 ND ND 1, 2-DICHLOROETHANE ug/l ND ND <td< td=""><td>1,2,3-TRICHLOROPROPANE</td><td>ug/l</td><td>ND@1</td><td>ND@1</td><td>ND@0.5</td><td>ND@1</td><td>ND@1</td></td<>	1,2,3-TRICHLOROPROPANE	ug/l	ND@1	ND@1	ND@0.5	ND@1	ND@1
1,2-DICHLOROSTHAMS Ug/l NDe1 NDe1 NDe1. NDe1. NDe1. NDe1. NDe1. NDe1. NDe1. NDe1. NDe1. 1,2-DICHLOROSTHYLENS, TOTAL Ug/l NDe1 NDe1 NDe1. NDe1. <td>1,2-DICHLORO-1,2,2-TRIFLUOROETHANE</td> <td>ug/1</td> <td>ND@1</td> <td>ND@1</td> <td>ND@0.5</td> <td>ND@1</td> <td>ND@1</td>	1,2-DICHLORO-1,2,2-TRIFLUOROETHANE	ug/1	ND@1	ND@1	ND@0.5	ND@1	ND@1
1,2-DICHLOROPENTILENE, IOTALUg/1NDe1NDe1NDe1NDe0.5NDe1NDe11,2-DICHLOROPROPANEUg/1NANANANANANA2-CHLORONEXANEUg/1NDe1NANANANA2-CHLOROTOLUENEUg/1NDe1NDe1NDe0.5NDe1NDe1ENZZENEUg/1NDe1NDe1NDe0.5NDe1NDe1BENZZL CHLORIDEUg/1NDe1NDe1NDe0.5NDe1NDe1BROMODICHLOROMETHANEUg/1NDe1NDe1NDe0.5NDe1NDe1BROMODICHLOROMETHANEUg/1NDe1NDe1NDe0.5NDe1NDe1BROMODICHLOROMETHANEUg/1NDe1NDe1NDe1NDe1NDe1BROMOMETHANEUg/1NDe1NDe1NDe1NDe1NDe1NDe1CHLOROBENZENEUg/1NDe1NDe1NDe1NDe1NDe1NDe1CHLOROMETHANEUg/1NDe1NDe1NDe1NDe1NDe1NDe1CHLOROBENZENEUg/1NDe1NDe1NDe1NDe1NDe1NDe1CHLOROBETHANEUg/1NDe1NDe1NDe1NDe1NDe1NDe1CHLOROBETHANEUg/1NDe1NDe1NDe1NDe1NDe1NDe1CHLOROBETHANEUg/1NDe1NDe1NDe1NDe1NDe1NDe1CHLOROBETHANEUg/1NDe1NDe1NDe1NDe1NDe1NDe1CHLOROBETHANE </td <td>1,2-DICHLOROETHANE</td> <td>ug/1</td> <td>NDØ1</td> <td>ND@1</td> <td>ND@0.5</td> <td>ND@1</td> <td>ND@1</td>	1,2-DICHLOROETHANE	ug/1	NDØ1	ND@1	ND@0.5	ND@1	ND@1
1,2-DICHLOROPROFANEUg/1NDe1NDe1NDe1.NDe1NDe11-CHLOROTOLUENEUg/1NDe1NANANANA2-CHLOROTOLUENEUg/1NDe1NDe1NDe0.5NDe1NDe14-CHLOROTOLUENEUg/1NDe1NDe1NDe0.5NDe1NDe1ENZENEUg/1NDe1NDe1NDe0.5NDe1NDe1BROMOBRIZENEUg/1NDe1NDe1NDe0.5NDe1NDe1BROMOSTENEUg/1NDe1NDe1NDe0.5NDe1NDe1BROMOSTENAEUg/1NDe1NDe1NDe0.5NDe1NDe1BROMOSTENAEUg/1NDe1NDe1NDe0.5NDe1NDe1BROMOSTENAEUg/1NDe1NDe1NDe1NDe1NDe1CHLOROSTHANEUg/1NDe1NDe1NDe1NDe1NDe1CHLOROSTHANEUg/1NDe1NDe1NDe1NDe1NDe1CHLOROSTHANEUg/1NDe1NDe1NDe1NDe1NDe1CHLOROSTHANEUg/1NDe1NDe1NDe1NDe1NDe1CHLOROSTHANEUg/1NDe1NDe1NDe1NDe1NDe1CHLOROSTHANEUg/1NDe1NDe1NDe1NDe1NDe1CHLOROSTHANEUg/1NDe1NDe1NDe1NDe1NDe1CHLOROSTHANEUg/1NDe1NDe1NDe1NDe1NDe1CHLOROSTHANEUg/1NDe1NDe1NDe1N	1,2-DICHLOROETHYLENE, TOTAL	ug/1	NDØ1	ND@1	ND@0.5	ND@1	ND@1
1 - CHLORGHEARNEUG/1NANANANANANA2 - CHLOROTOLUENEUg/1ND01ND01NANANA4 - CHLOROTOLUENEUg/1ND01ND01ND01.5ND01ND01BENZENEUg/1ND01ND01ND01.5ND01ND01BENZTL CHLORIDEUg/1ND01ND01ND01.5ND01ND01BROMODERMZENEUg/1ND01ND01ND01.5ND01ND01BROMODICHLOROMETHANEUg/1ND01ND01ND01.5ND01ND01BROMOMETHANEUg/1ND01ND01ND01.5ND01ND01BROMOMETHANEUg/1ND01ND01ND01.5ND01ND01CHLOROBIZENEUg/1ND01ND01ND01.5ND01ND01CHLOROBIZENEUg/1ND01ND01ND01.5ND01ND01CHLOROBIZENEUg/1ND01ND01ND01.5ND01ND01CHLOROBIZENEUg/1ND01ND01ND01.5ND01ND01CHLOROBIZENEUg/1ND01ND01ND01.5ND01ND01CHLOROBIZENEUg/1ND01ND01ND01.5ND01ND01CHLOROBIZENEUg/1ND01ND01ND00.5ND01ND01CHLOROBIZENEUg/1ND01ND01ND00.5ND01ND01CHLOROBOPYLENEUg/1ND01ND01ND01.5ND01ND01CHLOROPOPYLENEUg/1	1, 2-DICHLOROPROPANE	ug/1	NDØI	ND@1	NDØU.5	NDØI	ND@1
A - CHLOROTOLUENEUg/1NANANANANANANA4 - CHLOROTOLUENEUg/1ND01ND01ND00.5ND01ND01BENZENEUg/1ND01ND01ND01.5ND01ND01BENZENEUg/1ND01ND01ND00.5ND01ND01BROMOBENZENEUg/1ND01ND01ND00.5ND01ND01BROMOPENANEUg/1ND01ND01ND00.5ND01ND01BROMOPORMUg/1ND01ND01ND00.5ND01ND01BROMOPENANEUg/1ND01ND01ND00.5ND01ND01CHLOROBENZENEUg/1ND01ND01ND00.5ND01ND01CHLOROBENZENEUg/1ND01ND01ND00.5ND01ND01CHLOROBENZENEUg/1ND01ND01ND01ND01ND01CHLOROBENZENEUg/1ND01ND01ND01ND01ND01CHLOROBENZENEUg/1ND01ND01ND01ND01ND01CHLOROBENZENEUg/1ND01ND01ND01ND01ND01CHLOROBENZENEUg/1ND01ND01ND01ND01ND01CHLOROBENZENEUg/1ND01ND01ND01ND01ND01CHLOROPROPYLENEUg/1ND01ND01ND01ND01ND01DIEROMOMETHANEUg/1ND01ND01ND01ND01ND01CHLOROPROPHENEUg/1ND01 <td< td=""><td>1-CHLOROHEXANE</td><td>ug/1</td><td>NA</td><td>NA</td><td>ND@0.5</td><td>NA</td><td>NA</td></td<>	1-CHLOROHEXANE	ug/1	NA	NA	ND@0.5	NA	NA
A CHLORADIOLINEUg/1ND01ND01ND01.5ND01ND01BENZENEUg/1ND01ND01ND01.5ND01ND01BROMODELLORADEUg/1ND01ND01ND01.5ND01ND01BROMODICLLORAMETHANEUg/1ND01ND01ND01.5ND01ND01BROMOTICLORAMETHANEUg/1ND01ND01ND01.5ND01ND01BROMOTETHANEUg/1ND01ND01ND01.5ND01ND01CARBON TETRACHLORIDEUg/1ND01ND01ND00.5ND01ND01CHLOROBENZENEUg/1ND01ND01ND00.5ND01ND01CHLOROFTHANEUg/1ND01ND01ND01.5ND01ND01CHLOROFTHANEUg/1ND01ND01ND01.5ND01ND01CHLOROFTHANEUg/1ND01ND01ND01.5ND01ND01CHLOROFTHANEUg/1ND01ND01ND01.5ND01ND01CHLOROFOPYLENEUg/1ND01ND01ND00.5ND01ND01DIEROMOMETHANEUg/1ND01ND01ND00.5ND01ND01DIEROMOMETHANEUg/1ND01ND01ND01.5ND01ND01CHLOROFOPYLENEUg/1ND01ND01ND01.5ND01ND01DIEROMOMETHANEUg/1ND01ND01ND01.5ND01ND01DIEROMOMETHANEUg/1ND01ND01ND01.5ND01ND01DIEROMOMETHANE	A CHI ODOTOLUENE	ug/1	NDØI	NA	NA NDOO 5	NA	NA
DENCENCEHg/1NDe1NDe1NANANANANABENZYL CHLORIDEug/1NDe1NDe1NDe0.5NDe1NDe1BROMOBENZENEug/1NDe1NDe1NDe0.5NDe1NDe1BROMODICHLORMETHANEug/1NDe1NDe1NDe0.5NDe1NDe1BROMOPORMug/1NDe1NDe1NDe0.5NDe1NDe1BROMOPORMug/1NDe1NDe1NDe1.5NDe1NDe1CARDON TETRACHLORIDEug/1NDe1NDe1NDe0.5NDe1NDe1CHLOROBENZENEug/1NDe1NDe1NDe0.5NDe1NDe1CHLOROBENZENEug/1NDe1NDe1NDe0.5NDe1NDe1CHLOROBENZENEug/1NDe1NDe1NDe0.5NDe1NDe1CHLOROBENZENEug/1NDe1NDe1NDe1NDe1NDe1CHLOROBENZENEug/1NDe1NDe1NDe1NDe1NDe1CHLOROBENZENEug/1NDe1NDe1NDe1NDe1NDe1CHLOROPROPYLENEug/1NDe1NDe1NDe1NDe1NDe1DIEROMOMETHANEug/1NDe1NDe1NDe1NDe1NDe1CHLOROPROPYLENEug/1NDe1NDe1NDe1NDe1NDe1DIEROMOMETHANEug/1NDe1NDe1NDe1NDe1NDe1DIEROMOMETHANEug/1NDe1NDe1NDe1NDe1NDe1DIELOROPROPYLENEu	4 - CHLOROTOLOENE	ug/1	NDØI	NDØI	NDØU.5	NDØL	NDØL
BROMDENZENEug/1NDe1NDe1NDe1NDe1NDe1NDe1NDe1BROMDENZENEug/1NDe1NDe1NDe1NDe0.5NDe1NDe1BROMODICHLOROMETHANEug/1NDe1NDe1NDe1NDe0.5NDe1NDe1BROMORTHANEug/1NDe1NDe1NDe1NDe1NDe1NDe1CARBON TETRACHLORIDEug/1NDe1NDe1NDe0.5NDe1NDe1CARBON TETRACHLORIDEug/1NDe1NDe1NDe0.5NDe1NDe1CHLOROBENZENEug/1NDe1NDe1NDe0.5NDe1NDe1CHLOROETHANEug/1NDe1NDe1NDe0.5NDe1NDe1CHLOROETHANEug/1NDe1NDe1NDe0.5NDe1NDe1CHLOROETHANEug/1NDe1NDe1NDe0.5NDe1NDe1CHLOROETHANEug/1NDe1NDe1NDe0.5NDe1NDe1CHLOROPROPYLENEug/1NDe1NDe1NDe0.5NDe1NDe1DIGHLOROPROPYLENEug/1NDe1NDe1NDe1NDe1NDe1DIGHLOROPROPYLENEug/1NDe1NDe1NDe1NDe1NDe1DICHLOROPROPYLENEug/1NDe1NDe1NDe1NDe1NDe1DIGHLOROPROPENEug/1NDe1NDe1NDe1NDe1NDe1TETRACHLOROPROPENEug/1NDe1NDe1NDe1NDe1NDe1TETRACHLOROPROPENEug/1NDe1NDe1 <td>BENZENE BENZVI. CULORIDE</td> <td>ug/1</td> <td>NDØI</td> <td>NA ND@1</td> <td>NDOD E</td> <td>NA ND@1</td> <td>NA NDA1</td>	BENZENE BENZVI. CULORIDE	ug/1	NDØI	NA ND@1	NDOD E	NA ND@1	NA NDA1
BROMODICHLOROMETHANEug/1NDe1NDe1NDe1.5NDe1NDe1BROMOTCHLOROMETHANEug/1NDe1NDe1NDe1.5NDe1NDe1BROMOTETHANEug/1NDe1NDe1NDe1.NDe1.NDe1CARBON TETRACHLORIDEug/1NDe1NDe1NDe1.5NDe1NDe1CHLOROBENZENEug/1NDe1NDe1NDe0.5NDe1NDe1CHLOROBENZENEug/1NDe1NDe1NDe1.5NDe1NDe1CHLOROBENZENEug/1NDe1NDe1NDe1.5NDe1NDe1CHLOROETHANEug/1NDe1NDe1NDe1.5NDe1NDe1CHLOROMETHANEug/1NDe1NDe1NDe1.5NDe1NDe1CHLOROMETHANEug/1NDe1NDe1NDe0.5NDe1NDe1CHLOROMETHANEug/1NDe1NDe1NDe0.5NDe1NDe1CHLOROMETHANEug/1NDe1NDe1NDe0.5NDe1NDe1CILOROFINANEug/1NDe1NDe1NDe0.5NDe1NDe1DICHLOROPROPYLENEug/1NDe1NDe1NDe1NDe1NDe1DICHLOROMETHANEug/1NDe1NDe1NDe1NDe1NDe1DICHLOROMETHANEug/1NDe1NDe1NDe1NDe1NDe1DICHLOROMETHANEug/1NDe1NDe1NDe1NDe1NDe1DICHLOROMETHANEug/1NDe1NDe1NDe1NDe1NDe1DICHLOROMETHA	BENZIL CHLORIDE BROMORENZENE	ug/1	NDel	NDØI	NDG0.5	NDØI	ND@1
BROMODITATION DATIANSug/1NDe1NDe1NDe0NDe0NDe1NDe1BROMORETHANEug/1NDe1NDe1NDe0NDe1NDe1NDe1BROMORETHANEug/1NDe1NDe1NDe1NDe1NDe1NDe1CARBON TETRACHLORIDEug/1NDe1NDe1NDe05NDe1NDe1CHLOROBENZENEug/1NDe1NDe1NDe1NDe1NDe1NDe1CHLOROETHANEug/1NDe1NDe1NDe1NDe1NDe1NDe1CHLOROETHANEug/1NDe1NDe1NDe1NDe1NDe1NDe1CHLOROFORMug/1NDe1NDe1NDe1NDe1NDe1NDe1CHLOROFORMug/1NDe1NDe1NDe1NDe1NDe1NDe1CHLOROFORMug/1NDe1NDe1NDe1NDe1NDe1NDe1CHLOROFORMug/1NDe1NDe1NDe1NDe1NDe1NDe1CHLOROFORMETHANEug/1NDe1NDe1NDe1NDe1NDe1NDe1DICHLOROPTIENEug/1NDe1NDe1NDe1NDe1NDe1NDe1DICHLOROFITHANEug/1NDe1NDe1NDe1NDe1NDe1NDe1ETHYLBENZENEug/1NDe1NDe1NDe1NDe1NDe1NDe1NDe1TETRACHLOROFTHYLENEug/1NDe1NDe1NDe1NDe1NDe1NDe1NDe1TOLUENEug/1NDe1NDe	BROMODICUL ODOMETUNIE	ug/1	NDØI	ND@1	ND@0.5	ND@1	NDØI
DRNOTORYug/1NDe1NDe1NDe1NDe1NDe1BROMOMETHANEug/1NDe1NDe1NDe1NDe1NDe1NDe1CARBON TETRACHLORIDEug/1NDe1NDe1NDe1NDe0.5NDe1NDe1CHLOROBENZENEug/1NDe1NDe1NDe1NDe0.5NDe1NDe1CHLORODIBROMOMETHANEug/1NDe1NDe1NDe1NDe1NDe1NDe1CHLOROFORMug/1NDe1NDe1NDe1NDe1NDe1NDe1CHLOROFORMug/1NDe1NDe1NDe1.5NDe1NDe1CHLOROMETHANEug/1NDe1NDe1NDe0.5NDe1NDe1CHLOROFORMug/1NDe1NDe1NDe0.5NDe1NDe1CHLOROMETHANEug/1NDe1NDe1NDe0.5NDe1NDe1DISCHLOROPROPYLENEug/1NDe1NDe1NDe0.5NDe1NDe1DICHLORODIFLUCROMETHANEug/1NDe1NDe1NDe1NDe1NDe1DICHLOROTITALENEug/1NDe1NDe1NDe1NDe1NDe1TTETACHLOROETHALENEug/1NDe1NDe1NDe2NDe1NDe1TETACHLOROETHYLENEug/1NDe1NDe1NDe1NDe1NDe1TTETACHLOROETHYLENEug/1NDe1NDe1NDe1NDe1NDe1TETACHLOROETHYLENEug/1NDe1NDe1NDe1NDe1NDe1TETACHLOROETHYLENEug/1NDe1NDe1 </td <td>BROMOFORM</td> <td></td> <td>ND@1</td> <td>ND@1</td> <td>NDe0.5</td> <td>ND@1</td> <td>ND@1</td>	BROMOFORM		ND@1	ND@1	NDe0.5	ND@1	ND@1
Disconstruintdg/1NDe1NDe1NDe1NDe1NDe1NDe1CARBON TETRACHLORIDEug/1NDe1NDe1NDe1NDe0.5NDe1NDe1CHLOROBENZENEug/1NDe1NDe1NDe1NDe0.5NDe1NDe1CHLORODIBROMOMETHANEug/1NDe1NDe1NDe1NDe1NDe1NDe1CHLOROFTHANEug/1NDe1NDe1NDe1NDe1NDe1NDe1CHLOROFTHANEug/1NDe1NDe1NDe1NDe1NDe1NDe1CHLOROFORMug/1NDe1NDe1NDe1NDe1NDe1NDe1CHLOROPROPYLENEug/1NDe1NDe1NDe0.5NDe1NDe1DIEROMOMETHANEug/1NDe1NDe1NDe0.5NDe1NDe1DICHLOROPROPYLENEug/1NDe1NDe1NDe1NDe1NDe1DICHLORODIFLUOROMETHANEug/1NDe1NDe1NDe1NDe1NDe1DICHLORODIFLUOROMETHANEug/1NDe1NDe1NDe1NDe1NDe1DICHLOROPTLENEug/1NDe1NDe1NDe1NDe1NDe1NDe1TETRACHLOROETHANEug/1NDe1NDe1NDe1NDe1NDe1NDe1TETRACHLOROETHYLENEug/1NDe1NDe1NDe1NDe1NDe1NDe1TRANS-1, 3 - DICHLOROPROPENEug/1NDe1NDe1NDe1NDe1NDe1NDe1	BROMOMETHANE	ug/1	NDOI	ND@1	ND@1	ND@1	ND@1
CHLOROBENZENEug/1NDe1NDe1NDe1NDe1NDe1NDe1CHLOROBENZENEug/1NDe1NDe1NDe0.5NDe1NDe1CHLOROETHANEug/1NDe1NDe1NDe1NDe0.5NDe1NDe1CHLOROFTHANEug/1NDe1NDe1NDe1NDe1NDe1NDe1CHLOROFTHANEug/1NDe1NDe1NDe1NDe1NDe1NDe1CHLOROFTHANEug/1NDe1NDe1NDe1NDe1NDe1NDe1CHLOROPROPYLENEug/1NDe1NDe1NDe1NDe1NDe1NDe1DIEROMOMETHANEug/1NDe1NDe1NDe1NDe1NDe1NDe1DICHLOROPICOPROPYLENEug/1NDe1NDe1NDe1NDe1NDe1DICHLOROPICOPROPYLENEug/1NDe1NDe1NDe1NDe1NDe1DICHLOROPICOPROPYLENEug/1NDe1NDe1NDe1NDe1NDe1DICHLOROPICOPROPYLENEug/1NDe1NDe1NDe1NDe1NDe1DICHLOROPICOPROPYLENEug/1NDe1NDe1NDe1NDe1NDe1TTETACHLOROETHANEug/1NDe1NDe1NDe1NDe1NDe1NDe1TCUENEug/1NDe1NDe1NDe1NDe1NDe1NDe1NDe1TRANS-1, 3 - DICHLOROPROPENEug/1NDe1NDe1NDe1NDe1NDe1NDe1	CARBON TETRACHLORIDE	ug/1	ND01	ND@1	NDO0 5	ND@1	NDG1
CHLORODIBROMOMETHANEug/lNDe1NDe1NDe1NDe1NDe1NDe1CHLORODIBROMOMETHANEug/lNDe1NDe1NDe1NDe1NDe1NDe1CHLOROFORMug/lNDe1NDe1NDe1NDe1NDe1NDe1CHLOROFORMug/lNDe1NDe1NDe1NDe1NDe1NDe1CHLOROFORMug/lNDe1NDe1NDe1NDe1NDe1NDe1CHLOROMETHANEug/lNDe1NDe1NDe0.5NDe1NDe1CIS-1,3-DICHLOROPROPYLENEug/lNDe1NDe1NDe1NDe1NDe1DIBROMMETHANEug/lNDe1NDe1NDe1NDe1NDe1DICHLORODIFLUOROMETHANEug/lNDe1NDe1NDe1NDe1NDe1DICHLORODIFLUOROMETHANEug/lNDe1NDe1NDe1NDe1NDe1DIEROMMETHANEug/lNDe1NDe1NDe1NDe1NDe1DICHLORODIFLUOROMETHANEug/lNDe1NDe1NDe1NDe1NDe1DICHLOROMETHANEug/lNDe1NDe1NDe2NDe1NDe1TETRACHLENEug/lNDe1NDe1NDe1NDe1NDe1NDe1TOLUENEug/lNDe1NDe1NDe1NDe1NDe1NDe1TRANS-1,3-DICHLOROPROPENEug/lNDe1NDe1NDe1NDe1NDe1	CHLOROBENZENE	ug/1	NDØI	ND@1	ND@0.5	ND@1	ND@1
CHLOROETHANEug/lNDe1NDe1NDe1NDe1NDe1CHLOROFORMug/lNDe1NDe1NDe1NDe1NDe1NDe1CHLOROFORMug/lNDe1NDe1NDe1NDe1NDe1NDe1CHLOROMETHANEug/lNDe1NDe1NDe1NDe1NDe1NDe1CIS-1,3-DICHLOROPROPYLENEug/lNDe1NDe1NDe1NDe1NDe1DIBROMOMETHANEug/lNDe1NDe1NDe1NDe1NDe1DICHLORODIFLUOROMETHANEug/lNDe1NDe1NDe1NDe1NDe1ETHYLBENZENEug/lNDe1NDe1NDe1NDe1NDe1TERACHLOROETHYLENEug/lNDe1NDe1NDe2NDe1NDe1TOLUENEug/lNDe1NDe1NDe1NDe1NDe1TRANS-1, 3-DICHLOROPROPENEug/lNDe1NDe1NDe1NDe1	CHLORODIBROMOMETHANE	ug/1	ND@1	ND@1	ND@0.5	ND@1	ND@1
CHLOROFORMug/lNDe1NDe1NDe1NDe1NDe1CHLOROFORMug/lNDe1NDe1NDe1NDe0.5NDe1NDe1CHLOROPROPYLENEug/lNDe1NDe1NDe1NDe0.5NDe1NDe1CIS-1,3-DICHLOROPROPYLENEug/lNDe1NDe1NDe1NDe0.5NDe1NDe1DIBROMOMETHANEug/lNDe1NDe1NDe1NDe1NDe1NDe1DICHLORODIFLUOROMETHANEug/lNDe1NDe1NDe1NDe1NDe1ETHYLBENZENEug/lNDe1NDe1NDe1NDe1NDe1TETRACHLOROETHYLENEug/lNDe1NDe1NDe0.5NDe1NDe1TOLUENEug/lNDe1NDe1NDe0.5NDe1NDe1TRANS-1, 3-DICHLOROPROPENEug/lNDe1NDe1NDe0.5NDe1NDe1	CHLOROETHANE	ug/1	ND@1	ND@1	ND@1	ND@1	ND@1
CHLOROMETHANEug/lNDe1NDe1NDe015NDe1NDe1CIS-1,3-DICHLOROPROPYLENEug/lNDe1NDe1NDe0.5NDe1NDe1DIBROMOMETHANEug/lNDe1NDe1NDe1NDe1NDe1NDe1DICHLORODIFLUOROMETHANEug/lNDe1NDe1NDe1NDe1NDe1DICHLORODIFLUOROMETHANEug/lNDe1NDe1NDe1NDe1NDe1ETHYLBENZENEug/lNDe1NDe1NDe1NDe1NDe1TETRACHLOROETHYLENEug/lNDe1NDe1NDe1NDe1NDe1TOLUENEug/lNDe1NDe1NDe1NDe1NDe1TRANS-1, 3-DICHLOROPROPENEug/lNDe1NDe1NDe1NDe1	CHLOROFORM	ug/1	ND@1	ND@1	ND@0 5	ND@1	ND@1
CIS-1,3-DICHLOROPROPYLENEug/lND01ND01ND00ND01ND01ND01DIBROMOMETHANEug/lND01ND01ND01ND01ND01ND01ND01DICHLORODIFLUOROMETHANEug/lND01ND01ND01ND01ND01ND01ETHYLBENZENEug/lND01ND01NANANAMETHYLENE CHLORIDEug/lND01ND01ND02ND01ND01TETRACHLOROETHYLENEug/lND01ND01ND00.5ND01ND01TOLUENEug/lND01ND01NANANATRANS-1,3-DICHLOROPROPENEug/lND01ND01ND00.5ND01ND01	CHLOROMETHANE	ug/1	ND@1	NDØI	ND@0 5	ND@1	ND@1
DIBROMOMETHANEug/lNDe1NDe1NDe1NDe1NDe1DICHLORODIFLUOROMETHANEug/lNDe1NDe1NDe1NDe1NDe1NDe1ETHYLBENZENEug/lNDe1NDe1NANANAMETHYLENEug/lNDe1NDe1NDe1NDe1NDe1TERACHLOROETHYLENEug/lNDe1NDe1NDe1NDe1NDe1TOLUENEug/lNDe1NDe1NDe1NDe1NDe1TRANS-1, 3-DICHLOROPROPENEug/lNDe1NDe1NDe1NDe1NDe1	CIS-1.3-DICHLOROPROPYLENE	ug/1	NDØJ	ND@1	ND@0 5	ND@1	NDØ1
DICHLORODIFLUOROMETHANEug/lNDe1NDe1NDe1NDe1NDe1ETHYLBENZENEug/lNDe1NDe1NANANAMETHYLENE CHLORIDEug/lNDe1NDe1NDe1NDe2NDe1NDe1TERACHLOROETHYLENEug/lNDe1NDe1NDe1NDe1NDe1NDe1TOLUENEug/lNDe1NDe1NDNDNDe1NDTRANS-1,3-DICHLOROPROPENEug/lNDe1NDe1NDe1NDND	DIBROMOMETHANE	ug/l	ND@1	ND@1	ND@0.5	ND@1	ND@1
ETHYLBENZENE ug/l NDe1 NA NA NA METHYLENE CHLORIDE ug/l NDe1 NDe1 NDe2 NDe1 NDe1 TETRACHLOROETHYLENE ug/l NDe1 NDe1 NDe0.5 NDe1 NDe1 TOLUENE ug/l NDe1 NDe1 NA NA NA TRANS-1, 3 - DICHLOROPROPENE ug/l NDe1 NDe1 NDe0.5 NDe1 NDe1	DICHLORODIFLUOROMETHANE	ug/1	ND@1	ND@1	ND@1	ND@1	ND@1
METHYLENE CHLORIDE ug/l ND01 ND01 ND02 ND01 ND01 TETRACHLOROETHYLENE ug/l ND01 ND01 ND00.5 ND01 ND01 TOLUENE ug/l ND01 ND01 NA NA NA TRANS-1,3-DICHLOROPROPENE ug/l ND01 ND01 ND00.5 ND01 ND01	ETHYLBENZENE	ug/1	ND@1	NA	NA	NA	NA
TETRACHLOROETHYLENE ug/l NDel NDel NDel NDel NDel TOLUENE ug/l NDel NA NA NA TRANS-1,3-DICHLOROPROPENE ug/l NDel NDel NDel NDel	METHYLENE CHLORIDE	ug/1	ND@1	ND@1	ND@2	ND@1	ND@1
TOLUENE ug/l ND@1 NA NA NA TRANS-1,3-DICHLOROPROPENE ug/l ND@1 ND@1 ND@1 ND@1 ND@1	TETRACHLOROETHYLENE	ug/1	ND@1	ND@1	NDO0 5	ND@1	NDG1
TRANS-1,3-DICHLOROPROPENE ug/l ND@1 ND@1 ND@0.5 ND@1 ND@1	TOLUENE	ug/1	ND@1	NA	NA	NA	NA
	TRANS-1,3-DICHLOROPROPENE	ug/l	ND@1	ND@1	ND@0.5	NDØ1	ND@1

Former IBM Kingston Facility Field Quality Assurance / Quality Control Data January 1, 2011 - June 30, 2011

SAMPLE LOCATION SAMPLE DESCRIPTION SAMPLE DATE LABORATORY SAMPLE I.D. SAMPLE RUN NUMBER SAMPLE COMMENT CODES		TRIP BLANK 5/26-27/11 05/26/11 420-44076-1 01	TRIP BLANK 5/31-6/1/11 05/31/11 420-44124-1 01	TRIP BLANK 6/2-3/11 06/02/11 220-15633-1T 01	TRIP BLANK 6/2-3/11 06/02/11 420-44239-1 01	TRIP BLANK 6/3/2011 06/03/11 420-44288-1 01
PARAMETER	UNITS					
VOLATILE ORGANICS (Continued)						
TRICHLOROETHYLENE	ug/l	ND@1	ND@1	ND@0.5	ND@1	ND@1
TRICHLOROFLUOROMETHANE	ug/l	ND@1	ND@1	ND@0.5	ND@1	ND@1
VINYL CHLORIDE	ug/l	ND@1	ND@1	ND@0.5	ND@1	ND@1
XYLENE, TOTAL	ug/l	ND@1	NA	NA	NA	NA

TRIP BLANK

Former IBM Kingston Facility Field Quality Assurance / Quality Control Data January 1, 2011 - June 30, 2011

EXPLANATION OF REPORTING CONVENTIONS AND KEY TO COMMENT CODES

REPORTING CONVENTIONS

NANot AnalyzedND@XNot Detected at Detection Limit XBMRL@XBelow Minimum Reporting Limit of X

CODE EXPLANATION

Non-Standard Measurement Unit

Appendix B Field Data Sheets and Chain of Custody Forms

Sample ID	Date	Personnel	Comments
KTBC09220923	9/22/09	KuB CJS	
KTBD09220924	9/22/09	CJS Kus	cT
KTBC09230924	9/23/09	CJS Kus	
KTBC12081209	12/8/09	(JS IWB	· · ·
KTBC12161211	12/10/07	CTS HUD	
KTBD121G1211	12/10/07	HUB CO	CT-
KTBC12111211	12/11/07	Kusts CJ	
KTBC102150216	2/15/10	KWB CJS	
KTBC62166217	2/16/10	Kurs Cot	
KTBD02160217	2/16/10	KWB CJS	CT
KTBC@217@218	2/17/10.	Kers 4	
KTBC62630204	2/3/11	Kub CI	
KTB (02040204	2/4/11	Ilus S	
KTBC12151216	12/15/10	CJS	
			·
			·
		· · · · · · · · · · · · · · · · · · ·	

IBM - Kingston, New York Trip Blank Index

Sample ID	Date	Personnel	Comments
KTBC02070208	2/7/11	CJS Kuig	
KTBD02070209	2/7/11	KWB CJI	CT
KTBC05250525	5/25/11	KWB COS	
KTBCQ5260527	5/26/11	KWB CJI	
KTB B05260527	5/26/11	KW3 CJS	
KTBC05310601	5/3/11	Kub CFS	
KTBC06020603	6/2/11	HuB CJS	-
KTBD06026603	6/2/11	KuB GJS	CT.
KTBC06030603	6/3/11	KuB 9	
KTBC09130914	9/13/11	JAR CJS	
KTBD09140915	9/14/11	JAR CJS	CT
KTBCO9140914	9/14/11	JAR CUS	
KTBC09150915	9/15/11	JAR C7	
		and the second	
			· · · · · · · · · · · · · · · · · · ·
			· · · · · · · · · · · · · · · · · · ·
			ê
5			

IBM - Kingston, New York Trip Blank Index

Sample ID	Date	Personnel	Sample Time	Equipment ID
KEQ90921WLID	9-21-09	KWB CJS	1210	25765
KEQ 96922WLID	9.22 09	Kub Cits	11.15	25765
KEQ90922WLID	92209	CJS KW3	1200	25765-CT
KEQ90922WLID	92209	CASKWR	1238	25765-CT
KEQ90922WLID	92209	Kub G	1327	25765
KE Q96923WLD	9-23 05	14mB g	0950	25765
KEQ91103WHD	11- 3-09	KINE CZS	Π.Ο	* 27858
KEQ91103WLID	11- 3.09	KWP, CJ4	1218	27858 CT
KEQ91208WLID	12 8 09	NWB CY	400	27858
KEQ 91210WLID	12-10-09	HUB CSI	815	27858 CT
KEQ9121QWLD	12-10-04	LWB CJ	1055	27858
KEQ91211WLID	12-11-09	luis q	820	27855
KEQ06215NUD	02 15 16	Kw3 G	1057	27855
KEQ00215WLID	02 15 10	MiB g	1348	27855
KEQOO216WLD	21610	Thus g	1110 :	27858 CT
KEQO@216WLND	21610	KUB CJ	13)	27858 CT.
KEQ002MWLD	21710	Kis cy	11:33	27855
KEQ01215WLD	12 15 10	Kurs og	1305	25765
KEQ10203WLID	2-3 11	ILWR S-	11:15	2576s
KEQ1@2@3WLID	2311	KuB g	1305	25765
KER10204WLID	2.4-11	hus y	1037	25765
		J		

IBM - Kingston, New York Equipment Blank Index

Sample ID	Date	Personnel	Sample Time	Equipment ID
KEQ10204WLID	2/4/11	CINN	13:15	25765
KEQ10207WLID	2/-1/1	KuB CJS	943	25765-CH
KERIO207WLID	2/7/4	ImB g	10 45	25765-C+
KEQ10525WLID	5/25/11	KWB CJS	1250	25765
KEQ10526WLD	5/26/11	KWB CJ/	900	25765
KEQ10602WLID	6/2/11	Kub CJS	900	25765 Ct
REQ 10603WLID	6/3/11	9	814	25765
KEQ10913WHD	a/13/11	JAR CTS	11:35	25765
KEQIGAIYWLD	9/14/11	JAR 8	825	25765-CT
KEQ10914WLD	9/14/11	JAR &	900	25765-CF
KERIGAHWLUS	9/14/11.	JAR 8	12:10	25765
KEQ 100914WLID	9/14/1	JARS	1250	25765
KEQ 10915WLIN	9/15/11	JAR g	905	25745
	· · ·			
		·	~	

c

IBM - Kingston, New York Equipment Blank Index

÷

				·
	E F	ield S	ampling Data	Sheet
	Kingston, New York			· · ·
	GENERAL INFORMATION:			
	Well No: MWA Date: (a	12	/1 Perso	onnel: <u>YWP</u>
	PURGING:			
	Reference Depth To Bottom (DTBr) 35	5 ⁹ ft.	Start: 1039	Stop: 043
	Measured Depth to Bottom (DTBm) 3.	S℃ a	Notes Use Reference Dept	h to Bottom for calculations
	Depth to Water (DTW): 9.12	<u>ך</u> ת	Well Yields:	Offes INo
. (2))	Target Volume: 8.74	gaL	Water Contained:	UYes PNo
	Actual Volume: 9-00	gal.	DTW After Purge:	10-02 ft.
	PID: Background:	Purgi	ng:	Not Applicable
	Purge Method		Rate	Equipment ID
	Bailer	<u> </u>		DELEQ
	Peristaltic Pump	<u> </u>	· · · · · · · · · · · · · · · · · · ·	
	🗖 Well Wizard			
	American Sigma		·	
	Bladder Pump		· ·	
	Submersible			
	SAMPLING:			
	Sample ID: ROOMW	AI	0602	G
	Sample Time: Start: 1045	Stop:	1051	
	Duplicate ID:	M A	++/h	
	Sampling Method: Ø Bail	er		Well Wizard
				rah.
	Signature: I	Gate:	QA/QC Review:	CES Date: 9/3//1

		Incia	Doguost Form
Kineston New		19818	Request Form
- Brond Link			قد . عو
Well Numb	er: MWA		Date: 6 1214
LABORATO	ORY:		
	/IBM - East Fishkill		
<u> </u>	EnviroTest		
	Other:		· .
ANALYSES	REQUESTED:		
	8010, Freon 113, Freon 123a	σ	Antimony (EPA 200.7 or 6010A)
	Phenols (total) (EPA 420.1)		Arsenic (EPA 206.2 or 7060A)
	Metals are Filtered	σ	Cadmium (EPA 7131)
σ	Metals are Unfiltered		Lead (EPA 239.2 or 7421)
σ	Modified Appendix 33		Silver (EPA 7761)
Othe	r: BOZIBHAILFZ		

Date	Time	Тетр (°С)	pH (SU)	Sp. Cond. (µmhos/cm)	Turbidity (NTU)	Notes
6/2/11	1050	10.3	7.54	196.2		Cloura

002515

COMMENTS:

٠

	•	
	eld Sampling Dat	a Sheet
Kingston, New York		· · · · · · · · · · · · · · · · · · ·
GENERAL INFORMATION:		
Well No: MW 65 Date: 5	131 / 11_ Pers	sonnel: <u>Cf 1</u> w
PURGING:		
Reference Depth To Bottom (DTBr) 24	6 fL Start: 1127	Stop: 130
Measured Depth to Bottom (DTBm) 21	7 ft. Note: Use Reference Dep	pth to Bottom for calculations
Depth to Water (DTW): 49[) ft. Well Yields:	Dies 🛛 No
Target Volume: 8-25	gal. Water Contained:	OYes ONO
Actual Volume: 9-00	gal DTW After Purge:	7.00 €.
TID: Backgrouna:	rurging:	
Purge Method	Rate	Equipment ID
Bailer		· · · · · · · · · · · · · · · · · · ·
Peristaltic Pump		
🗇 Well Wizard	·····	·
American Sigma		· · · · · · · · · · · · · · · · · · ·
Bladder Pump		
<u>SAMPLING</u> :		
Sample ID: KOQQ(0) (0	510531	G
1137		· ·
Sample Time: Start: 1100	Stop:	
Duplicate ID:	NATA	
Sampling Method: 🛛 Baile	a O	Well Wizard
	rican Sigma 🗍	Тар
<u>COMMENTS:</u> ()		
Signature:	5 3 OA/OC Review	V: CES Date: 48/31
		2 mm
7		

Kingston, New York	Ana	lysis	Request Form		
Well Number:(05		Date: 5 31, 11		
LABORATORY:					
🛛 🛛 ІВМ-Н	Bast Fishkill				
Enviro)	ſest		,		
Other:					
ANALYSES REQUE	ESTED:				
🗇 8010, F	reon 113, Freon 123a		Antimony (EPA 200.7 or 6010A)		
D Phenols	; (total) (EPA 420.1)	σ	Arsenic (EPA 206.2 or 7060A)		
Metals	are Filtered	σ	Cadmium (EPA 7131)		
Metals	are Unfiltered	σ	Lead (EPA 239.2 or 7421)		
🗖 Modifie	ed Appendix 33	σ	Silver (EPA 7761)		
Other:BHall Fran					

Date	Time	Temp (°C)	pH (SU)	Sp. Cond. (µmhos/cm)	Turbidity (NTU)	Notes
[31] _{[1}	(135	124	1.17	2582		Han
						<u>*************************************</u>
						· · ·

<u>COMMENTS:</u>

002495

				<u> </u>
	Kineston New York	eld S	ampling Data	Sheet
	CENEDAL INFORMATION			
	GENERAL INFORMATION:	~		
	Well No: MW 1021 Date: 6	12	/ () Perso	onnel: $\underline{C_1}$
	<u>PURGING</u> :			
	Reference Depth To Bottom (DTBr)	2 A.	Start: 1110	Stop: 200
	Measured Depth to Bottom (DTBm)] ft.	Note: Use Reference Dept	h to Bottom for calculations
_	Depth to Water (DTW): 30-02	ft.	Well Yields:	-DYes DNo
·657)	Target Volume: 143, 20	gal.	Water Contained:	I'les INO
	Actual Volume: 146 OV	gal	DTW After Purge:	92.31 A.
	PID: Background:	Purg	ing:	Not Applicable
	Drown Mathad		D /	
	Furge Meinoa		Kale	Equipment ID
				· · · · · ·
	Penstalic Pump			
	U Well Wizard			
	American Sigma		······································	
	Bladder Pump			A LOC
	Submersible			Ded KF
	SAMPLING:			
	Sample ID: KOIQ2	RI	0602	G-
	Sample Time: Start: 12.05	Stop:	1210	
		-		
	Duplicate ID:	15/ 1		
	Sampling Method: Baile	r	σ	Well Wizard
	<u>COMMENTS:</u>	ican Si	gma 🗍	Тар
	Signature:	$\frac{c}{2}_{1}$	QA/QC Review:	CES Date: 8/3/11

Kingston, New	VYork	lysis	Request Form
Well Numb	er: 102R		Date: 6 1214
LABORAT	<u>ORY</u> :		
σ	IBM - East Fishkill		
Q⁄	EnviroTest		
σ	Other:		
<u>ANALYSES</u>	<u>SREQUESTED:</u>		
σ	8010, Freon 113, Freon 123a		Antimony (EPA 200.7 or 6010A)
σ	Phenols (total) (EPA 420.1)	σ	Arsenic (EPA 206.2 or 7060A)
	Metals are Filtered		Cadmium (EPA 7131)
	Metals are Unfiltered		Lead (EPA 239.2 or 7421)
	Modified Appendix 33	σ	Silver (EPA 7761)
Othe	r: <u>802(BHall F</u> Pb(239-2	Cw	

Date	Time	Temp (°C)	pH (SU)	Sp. Cond. (µmhos/cm)	Turbidity (NTU)	Notes
6/21N	1209	14.9	7.67	1581		aco.

<u>COMMENTS</u>:

002516

			<u>.</u>
	ield S	ampling Data	Sheet
Kingston, New Fork		·	
GENERAL INFORMATION:			
Well No: MW1093 Date: 2	14	/// Perso	nnel: <u>Gh</u>
PURGING:			
Reference Depth To Bottom (DTBr)	55 ft.	Start: 927	Stop: 933
Measured Depth to Bottom (DTBm) 18 ()} ft.	Note: Use Reference Depth	to Bottom for calculations
Depth to Water (DTW): 8.25	? fL	Well Yields:	Offes [] No
Target Volume: 10-23	gal	Water Contained:	DYes DNo
Actual Volume: 10.50	gal	DTW After Purge:	(4-8) ft.
PID: Background:	Purg	ing:	Not Applicable
Purge Method		Rate	Equipment ID
Bailer		·	Draea
Peristaltic Pump			<u> </u>
🗇 Well Wizard		·	
🗇 American Sigma			
🗇 Bladder Pump			
□ Submersible			
<u>SAMPLING</u> :			
Sample ID: K 0 1 0 9	5 1	0204	G
Sample Times Starts 935	Ston	938	
Bumpie Inne. Blat	Stop		
Duplicate ID:	TN P	*	\rightarrow
Sampling Method: Ø Bail	ler		Well Wizard
COMMENTS:	erican S	Sigma 🛛	Tap
Signature:	2/4/1 Date:	QA/QC Review:	CES Date: 8/24/11

72			****				
	The Ana	Analysis Request Form					
Kingston, New	York		2.14				
Well Numb	er:09\$		Date: 2 14 14				
LABORAT	<u>ORY:</u>						
	IBM - East Fishkill						
	EnviroTest						
σ	Other:						
ANALYSES	<u>S REQUESTED</u> :						
	8010, Freon 113, Freon 123a		Antimony (EPA 200.7 or 6010A)				
	Phenols (total) (EPA 420.1)		Arsenic (EPA 206.2 or 7060A)				
	Metals are Filtered	Ο	Cadmium (EPA 7131)				
	Metals are Unfiltered		Lead (EPA 239.2 or 7421)				
	Modified Appendix 33		Silver (EPA 7761)				
Othe	r: 8021BHall Fra						

Date	Time	Temp (°C)	pH (SU)	Sp. Cond. (µmhos/cm)	Turbidity (NTU)	Notes
2/4/11	937	8.Z	6.98	6754		
						· · · · · · · · · · · · · · · · · · ·

COMMENTS:

002431

	ield S	Sampling Data	Sheet	
Kingston, New York				
GENERAL INFORMATION:				
Mull/98 - 5	.21		. (N
Vell No: 1100 10 (5) Date:	101	<u>Pers</u>	onnel:	<u> 1</u>
<u>PURGING</u> :				<u> </u>
Reference Depth To Bottom (DTBr) 79	55 f .	Start: 052	Stop: 10	57
Measured Depth to Bottom (DTBm) 8	<u>)8 ft</u>	Note: Use Reference Dep	th to Bottom f	or calculations
Depth to Water (DTW): 6 20	ft.	Well Yields:	ØYes	CT No
Target Volume: 7.49	gal.	Water Contained:	OYes	O'No
Actual Volume: 15.00	gal	DTW After Purge:	l/·	<u>45 ft.</u>
PID: Background:	Purg	ing:	Not	Applicable
Purge Method		Rate	Equip	ment ID
🛛 Bailer			_ Dea	20
T Peristaltic Pump				
Well Wizard			•	
American Sigma			•	
Bladder Pump				
SAMPLING:				
Sample ID: KOLO9	\$	0531	G	
		701	·	
Sample Time: Start:	Stop	: <u>1107</u>	·	
Duplicate ID:	N	++++	\square	
Sampling Method: Ø Bail	er	σ	Well W	izard
	erican S	Sigma 🗖	Tap	
	灯31 11.			. :
Signature:I	Date:	QA/QC Review	<u>. CES</u> 1	Date: 6131
()				

Kingston, New	Ver Ana	lysis	Request Form
Well Numb	er: 109\$		Date: $5, 31, 4$
LABORAT	<u>ORY</u> :		
o j	/ IBM - East Fishkill		
Ø	EnviroTest		
σ	Other:		
ANALYSE	<u>S REQUESTED</u> :		
	8010, Freon 113, Freon 123a		Antimony (EPA 200.7 or 6010A)
	Phenols (total) (EPA 420.1)		Arsenic (EPA 206.2 or 7060A)
σ	Metals are Filtered	Ο	Cadmium (EPA 7131)
	Metals are Unfiltered		Lead (EPA 239.2 or 7421)
	Modified Appendix 33	σ	Silver (EPA 7761)
Othe	er: 802(BtallFr	w.	

Date	Time	Temp (°C)	pH (SU)	Sp. Cond. (µmhos/cm)	Turbidity (NTU)	Notes
5/31/11	1104	133	6.95	565M		Hazy

<u>COMMENTS:</u>

002493

	Field S	Sampling Data	a Sheet
<u>GENERAL INFORMATION</u> : Well No: WW 109 ⁵ Date: 9	, 15	/ ^[] Pers	annel: TAR (
PIIPCINC.		<u> </u>	
Reference Depth To Bottom (DTBr)	55 ft.	Start: 11.7.7	Ston: 1(7.7
Measured Depth to Bottom (DTBm) 8 ()3 r.	Note: Use Reference Dep	th to Bottom for calculations
Depth to Water (DTW): 5-8] ft.	Well Yields:	Thes INO
Target Volume: 2.8°	Ĵ gal.	Water Contained:	I'Yes INo
Actual Volume: 3.00	gal.	DTW After Purge:	10.99 ft.
PID: Background:	Purg	ing:	Not Applicable
Purge Method Bailer		Rate	Equipment ID Der E&
Peristaltic Pump			
U Well Wizard			
American Sigma			
Bladder Pump			
□ Submersible			
SAMPLING.			
Sample D: Kallag	2	Q 9 15	
	121(0-
Sample Time: Start:	Stop:	1134	
Duplicate ID:	NA	F1/F	\square
Sampling Method: 🗗 Bai	ler erican S	igma 🗍	Well Wizard Tap
<u>COMMENTS</u> :	م) Date:	S/L	Data
		VY VC VCNEW :	Date:

Kingston, New	An:	alysis	Request Form
Well Numl	per:09\$		Date: 9, 15, 15
LABORAT	ORY:		
Ο	/IBM - East Fishkill		
đ	EnviroTest		
σ	Cther:		· ·
ANALYSE	<u>SREQUESTED</u> :		
σ	8010, Freon 113, Freon 123a	σ	Antimony (EPA 200.7 or 6010A)
	Phenols (total) (EPA 420.1)	σ	Arsenic (EPA 206.2 or 7060A)
	Metals are Filtered		Cadmium (EPA 7131)
Π	Metals are Unfiltered		Lead (EPA 239.2 or 7421)
		П	

:

Date	Time	Temp (°C)	pH (SU)	Sp. Cond. (µmhos/cm)	Turbidity (NTU)	Notes
9/15/1,	1135	13.5	7.11	627-1		Clea
	:					

<u>COMMENTS</u>:

002554

	Field S	ompling Date	Shoot
EEFER	Fleid S	sampning Data	a Sheet
GENERAL INFORMATION:			
Well No: <u>MW110</u> AS Date:	5 ,31	/ 1\ Pers	onnel: <u>410</u>
PURGING:			U
Reference Depth To Bottom (DTBr)	914 A.	Start: 937	Stop: 942
Measured Depth to Bottom (DTBm)	19-8V R	Note: Use Reference Dep	th to Bottom for calculations
Depth to Water (DTW):	1.52 €	Well Yields:	Deres DNo
Target Volume: 4	20 gal	Water Contained:	I'Yes I'No
Actual Volume: 5.0	() gal.	DTW After Purge:	9.59 ft.
DID. Reckaround	Dung		7 That Implication
TID: Ducigionnu.	1 #/8	····g.	Nor Applicable
Purge Method		Rate	Equipment ID
Bailer			Ded EQ
Peristaltic Pump			
🗖 Well Wizard			·····
American Sigma			
🗇 Bladder Pump			
□ Submersible			
SAMPLING:			
Sample ID:	ASI	0531	G
Sample Time: Start: 947	Ston	952	×.
pro annos Dunta <u>11</u>	. 500p.	<u></u>	
Duplicate ID:			
Sampling Method:	Bailer	σ	Well Wizard
	American S	igma 👘 🗖	Тар
Signature:	5/31/1	OMOC Perform	. CES Date dala
	Date:	VAVUC Keview	Date;

767			1
	An:	alysis	Request Form
Kingston, New	/York		، ر. في:
Well Numb	er:1075		Date: 5 13(14
LABORAT	<u>ORY</u> :		
	IBM - East Fishkill		
9	EnviroTest		
σ	Other:		
ANALYSES	SREQUESTED:		
	8010, Freon 113, Freon 123a		Antimony (EPA 200.7 or 6010A)
	Phenols (total) (EPA 420.1)		Arsenic (EPA 206.2 or 7060A)
σ	Metals are Filtered		Cadmium (EPA 7131)
σ	Metals are Unfiltered		Lead (EPA 239.2 or 7421)
	Modified Appendix 33		Silver (EPA 7761)
Othe	r: 2021BHallFr	<u>e</u> dn	

Date	Time	Temp (*C)	pH (SU)	Sp. Cond. (µmhos/cm)	Turbidity (NTU)	Notes
5/31/11	951	124	1.74	7400		CLOUDY
						0

<u>COMMENTS:</u>

002489

Field	eld S	ampling Data	Sheet
<u>GENERAL INFORMATION</u> :	, 31		annali Ci Kwa
PURGING:	<u> </u>		
Reference Depth To Bottom (DTBr) 21-98	ft.	Start: 954	Stop: 958
Measured Depth to Bottom (DTBm) 22,9	8 ft.	Note: Use Reference Dep	th to Bottom for calculations
Depth to Water (DTW): 8-(e)	ft.	Well Yields:	TYES INO
Target Volume: 14.72	gal.	Water Contained:	I'Yes INO
Actual Volume: 15-0U	gal.	DTW After Purge:	8.94 A.
PID: Background:	Purg	ing:	Not Applicable
Purge Method Bailer		Rate	Equipment ID DCO EO
			· · · ·
			······
			<u> </u>
		<u> </u>	
SAMPLING:			
Sample ID:	Þ.1	@ 531	G
Sample Time: Start: 1000	Stop	1005	
Duplicate ID:	10		P
Sampling Method: 🗹 Baile	er rican S	Sigma 🖸	Well Wizard Tap
<u>COMMENTS:</u> Signature:	5/31 hate:	QA/QC Review	: <u>CES</u> Date: <u>8 3 </u> 1

lysis	Request Form
	Date: <u>5,31,11</u>
	Antimony (EPA 200.7 or 6010A)
0	Antimony (EPA 200.7 or 6010A) Arsenic (EPA 206.2 or 7060A)
	Antimony (EPA 200.7 or 6010A) Arsenic (EPA 206.2 or 7060A) Cadmium (EPA 7131)
	Antimony (EPA 200.7 or 6010A) Arsenic (EPA 206.2 or 7060A) Cadmium (EPA 7131) Lead (EPA 239.2 or 7421)

-

7	Date	Time	Temp (°Ç)	pH (SU)	Sp. Cond. (µmhos/cm)	Turbidity (NTU)	Notes
	5/31/4	1004	12-8	7.25	1500w		Harr

<u>COMMENTS</u>:

002490

			·
E Fi	ield S	ampling Data	Sheet
Kingston, New Yock			20
GENERAL INFORMATION:			
Well No: <u>MW113</u> Bate: <u>5</u>	,24	/ (\ Perso	onnel: <u>Skr</u>
<u>PURGING</u> :	<u> </u>		
Reference Depth To Bottom (DTBr) 20.6	Õft.	Start: 957	Stop: 1002
Measured Depth to Bottom (DTBm) 20. la	7 ft.	Note: Use Reference Dept	h to Bottom for calculations
Depth to Water (DTW): 8.74	ft.	Well Yields:	ØYes DNo
Target Volume: 1209	gal.	Water Contained:	YesNo
Actual Volume: 14.00	/ gal.	DTW After Purge:	<u>X.40</u> #
PID: Background:	Purg	ing:	Not Applicable
Purge Method		Rate	Equipment ID
Ø Bailer		· · · ·	Deora
Peristaltic Pump			<u> </u>
Well Wizard	<u></u>		<u> </u>
🗖 American Sigma			
🗖 Bladder Pump			
□ Submersible	<u> </u>	· · · · · · · · · · · · · · · · · · ·	
SAMPLING:			
Sample ID: KOII3	5.	@526	G
Sample Time: Start: 1005	Stop	01\	
Duplicate ID:	h h	++++	E
Sampling Method:	er erican S		Well Wizard Tap
COMMENTS:	5/26/		res alor
	Jate:	QA/QC Review:	Date:

Kingston, New	Ana Ana	lysis	Request Form
Well Numl	per:1(3,\$		Date: <u>5 12/21 (1</u>
ABORAT	<u>'ORY</u> :		
	IBM - East Fishkill		
Ø	EnviroTest		
σ	Other:		· .
INALYSE	<u>S REQUESTED</u> :		
	8010, Freon 113, Freon 123a	σ	Antimony (EPA 200.7 or 6010A)
σ	Phenols (total) (EPA 420.1)		Arsenic (EPA 206.2 or 7060A)
	Metals are Filtered	۵	Cadmium (EPA 7131)
	Metals are Unfiltered		Lead (EPA 239.2 or 7421)
		п	Silver (EPA 7761)
	Modified Appendix 33		

Date	Time	Temp (°C)	рН (SU)	Sp. Cond. (µmhos/cm)	Turbidity (NTU)	Notes
5/210/11	1010	120	6.69	1950		Hazy
						(
					·	

<u>COMMENTS</u>:

002460
E Fi	eld S	ampling Data	Sheet
Kingston, New York			
GENERAL INFORMATION:			
Well No: <u>MW 1145</u> Date: <u>5</u>	, 2le	/_((onnel: KwB 9
PURGING:			
Reference Depth To Bottom (DTBr)	ft.	Start: 108	Stop: - 3
Measured Depth to Bottom (DTBm) 15-9) ft.	Note: Use Reference Dept	h to Bottom for calculations
Depth to Water (DTW): 5.45	ft.	Well Yields:	Pries IN0
Target Volume: 11-73	gaL	Water Contained:	OYes No
Actual Volume: 12-00	gal	DTW After Purge:	5.62 ft.
PID: Background:	Purgi	ing:	Not Applicable
Purge Method		Rate	Equipment ID
D Bailer			Deala
Peristaltic Pump			
🗇 Well Wizard			 · · · · · · · · · · · · · · · · · ·
American Sigma			
🗖 Bladder Pump			
Submersible			
<u>SAMPLING</u> :			
Sample ID:	151	6026	6
Sample Time: Start: 115	Stop:	11:20	
Duplicate ID:	NA	++++	F
Sampling Method: 🛛 Baile	er erican S	igma 🗍	Well Wizard Tap
COMMENTS: Signature:	5/26 Date:	QA/QC Review:	CES Date: 8/25/+1

Kingston, New		alysis	Request Form
Well Numb	er:		Date: 5 ,26, 11
LABORAT	<u>ORY</u> :		
	IBM - East Fishkill		
Ø	EnviroTest		
Ο	Other:		
ANALYSE	<u>SREQUESTED</u> :		
	8010, Freon 113, Freon 123a		Antimony (EPA 200.7 or 6010A)
	Phenols (total) (EPA 420.1)		Arsenic (EPA 206.2 or 7060A)
	Metals are Filtered	σ	Cadmium (EPA 7131)
σ	Metals are Unfiltered		Lead (EPA 239.2 or 7421)
	Modified Appendix 33		Silver (EPA 7761)
Othe	er: <u>8021Haloq</u>	·	

Date	Time	Temp (°C)	pH (SU)	Sp. Cond. (µmhos/cm)	Turbidity (NTU)	Notes
5/26/11	1119	13.7	6.34	386-7		Hary

002464

<u>COMMENTS</u>:

			<u> </u>
ê Fi	eld S	ampling Data	Sheet
Kingston, New York			1. A.
GENERAL INFORMATION:			
Well No: Mwille 5 Date: 5	, 2le	Perso	onnel: <u>Cy ber</u>
PURGING:			<u> </u>
Reference Depth To Bottom (DTBr) 1749	7 ft.	Start: 1227	Stop: 1233
Measured Depth to Bottom (DTBm) 17.50) ft.	Note: Use Reference Dept	h to Bottom for calculations
Depth to Water (DTW): 723	ft.	Well Yields:	Ques INO
Target Volume: 11.25	gal.	Water Contained:	DYes DXo
Actual Volume: 11.50	gal.	DTW After Purge:	831 fL
		•	
PID: Backgrouna:	Furg	ing:	Not Applicable
Purge Method		Rate	Equipment ID
Ø Bailer			Deata
Peristaltic Pump			
🗇 Well Wizard		· ·=·	······································
American Sigma			
Bladder Pump			- · · · ·
			× .
SAMPLING:			
Sample ID: KOLLO	\$.	0526	G
Sample Time: Start: 1235	Stop	1240	ж. С
Duplicate ID:	NA	+	Ð
Sampling Method: 🛛 Baile	2	σ	Well Wizard
COMMENTS:	rican S $5 _{2I_0}$	ligma 🗖	Tap
Signature: D	ate:	QA/QC Review:	Date: Date:

Kingston, New	Ana Yes Yook	alysis	Request Form	
Well Numb	er:		Date: 5 12614	-
LABORAT	<u>ORY</u> :			
	IBM - East Fishkill			
U	EnviroTest			
	Other:			
ANALYSES	SREQUESTED:			
σ	8010, Freon 113, Freon 123a		Antimony (EPA 200.7 or 6010A)	
	Phenols (total) (EPA 420.1)		Arsenic (EPA 206.2 or 7060A)	
σ	Metals are Filtered	Ο	Cadmium (EPA 7131)	
	Metals are Unfiltered		Lead (EPA 239.2 or 7421)	۰.
	Modified Appendix 33		Silver (EPA 7761)	
Othe	r:8021 Halog			

Date	Time	Temp (°C)	pH (SU)	Sp. Cond. (µmhos/cm)	Turbidity (NTU)	Notes
5/24/11	1239	13.1	6.94	265 V		Hazy
						-

002466

Fi Fi	eld S	Sampling Data	Sheet
Kingston, New York			-
GENERAL INFORMATION:			
Well No: <u>MW 117</u> ^S Date: <u>5</u>	,26	-/ (Pers	onnel:
PURGING:			0
Reference Depth To Bottom (DTBr)	ft.	Start: 334	Stop: 337
Measured Depth to Bottom (DTBm)	Z ft.	Note: Use Reference Dep	th to Bottom for calculations
Depth to Water (DTW): 5-25	ft.	Well Yields:	Tres INg
Target Volume: 7,18	gal	Water Contained:	Tres No
Actual Volume: 7.50	gal	DTW After Purge:	5.76 A.
PID: Background:	Purg	ing:	Not Applicable
Purge Method		Rate	Equipment ID
D Bailer			DedEQ
🗇 Peristaltic Pump			
U Well Wizard	<u>-</u>		
American Sigma			
Bladder Pump			
□ Submersible			
<u>SAMPLING</u> :			· ·
Sample ID: KOU17	5.1	0526	G
Sample Time: Start: 1340	Stop:	344	5.0 1
Dunlicate ID:			
Sampling Method: Baile	r		Well Wizard
<u>COMMENTS:</u>	ncan Si	igma 🗌 🗍	Тар
Signature: D	26/1	QA/QC Review:	(5) Date: 8/25/11
\bigcirc			

Kingston, New	Vork	alysis	Request Form
Well Numb	er:175		Date: 5,26, 4
LABORAT	ORY:		
σ	/IBM - East Fishkill		
Q	EnviroTest		
σ	Other:		
ANALYSES	SREQUESTED:		
σ	8010, Freon 113, Freon 123a	Ο	Antimony (EPA 200.7 or 6010A)
	Phenols (total) (EPA 420.1)		Arsenic (EPA 206.2 or 7060A)
σ	Metals are Filtered	Ξ	Cadmium (EPA 7131)
	Metals are Unfiltered		Lead (EPA 239.2 or 7421)
σ	Modified Appendix 33	Ο	Silver (EPA 7761)
Othe	r: 8021 Halus	•	

Date	Time	Temp (°C)	pH (SU)	Sp. Cond. (µmhos/cm)	Turbidity (NTU)	Notes
5/26/11	1343	14.9	657	802		Clca

<u>COMMENTS</u>:

i i i i i i i i i i i i i i i i i i i	Field S	ampling Data	Sheet
Kingston, New York			
GENERAL INFORMATION:			
Well No: MW122 S Date: 10	12	/ \/ Perso	onnel: <u>JUB</u> G
<u>PURGING</u> :	00		
Reference Depth To Bottom (DTBr) 13.	85 ft.	Start: 1115	Stop: 120
Measured Depth to Bottom (DTBm) 3.	SV ft.	Note: Use Reference Dep	th to Bottom for calculations
Depth to Water (DTW): 4.3	5 f ⊾	Well Yields:	Solves ONo
Target Volume:	gal.	Water Contained:	O OS O
Actual Volume:	gal	DIW Alter Purge:	9,9) I L
PID: Background:	Purgi	ng:	Not Applicable
Purge Method		Rate	Equipment ID
Bailer			Jea CV
Peristaltic Pump			
🗇 Well Wizard			·····
🗖 American Sigma	<u> </u>		
🖸 Bladder Pump			
🗇 Submersible			
SAMPLING:			
Sample ID: KOUZZ	_ <u>\$</u> (0602	6-
Sample Time: Start: 139	Stop:	1142	
Duplicate ID:	+N P		
Sampling Method: Ø Bai	iler		Well Wizard
		igma U	1ap
Signature:	Date:	QA/QC Review:	<u>CES</u> Date: 3/3/11

Kingston, New	VYork	lysis	Request Form
Well Numb	er:225		Date: $(0/2/1)$
LABORAT	ORY:		
	IBM - East Fishkill		
Ø	EnviroTest		
σ	Other:		
ANALYSES	S REQUESTED:		
	8010, Freon 113, Freon 123a		Antimony (EPA 200.7 or 6010A)
	Phenols (total) (EPA 420.1)	σ	Arsenic (EPA 206.2 or 7060A)
	Metals are Filtered		Cadmium (EPA 7131)
	Metals are Unfiltered		Lead (EPA 239.2 or 7421)
	Modified Appendix 33		Silver (EPA 7761)
Othe	er: <u>802(Btall Fra</u> Pb(239-2)	<u>ton</u>	

.

Date	Time	Temp (*C)	pH (SU)	Sp. Cond. (µmhos/cm)	Turbidity (NTU)	Notes
6/2/1,	114)	13.8	6.42	8064		Clam
			· .			
						· · · · · ·

COMMENTS:

. .

			·
E EEEEEEEEEEEEEEEEEEEEEEEEEEEEEE	ield S	ampling Data	Sheet
Kingston, New York			· · · · · · · · · · · · · · · · · · ·
GENERAL INFORMATION:			
Well No: MW1254 Date: 6	12	14 Perso	onnel: <u>5 IW</u>
<u>PURGING</u> :			
Reference Depth To Bottom (DTBr)	OUA.	Start: 923	Stop: 933
Measured Depth to Bottom (DTBm)	8 ft.	Note: Use Reference Dep	th to Bottom for calculations
Depth to Water (DTW): 11.105) ft.	Well Yields:	I'res DNo
Target Volume: 2,65	gal	Water Contained:	I'Yes Tho
Actual Volume: 1-25	gal.	DTW After Purge:	13.80 A.
PID: Background:	Purg	ing:	Not Applicable
Purge Method		Rate	Equipment D
Bailer		<u> </u>	Vica C.G.
Peristaltic Pump			
🗖 Well Wizard			
American Sigma			h
Bladder Pump			
□ Submersible			• <u> </u>
<u>SAMPLING</u> :			
Sample ID: KQ125	S	6602	D
Sample Time: Start: 1955	Stop:	101	- - -
Duplicate ID:	NA		
Sampling Method: Ø Baile	er rican Si	ioma 🗖	Well Wizard Tan
<u>COMMENTS:</u>	6		(TES Date Stalle
Pressing	ate:	QAVQC Review:	Date: 011 th

Kingston, New	An:	alysis	Request Form
Well Numb	er: _ @ MW 125 \$		Date: 2 4
LABORAT	ORY:		
σ	JBM - East Fishkill		
9	EnviroTest		
σ	Other:		
ANALYSE	S REQUESTED:		
σ	8010, Freon 113, Freon 123a		Antimony (EPA 200.7 or 6010A)
	Phenols (total) (EPA 420.1)		Arsenic (EPA 206.2 or 7060A)
	Metals are Filtered		Cadmium (EPA 7131)
	Metals are Unfiltered		Lead (EPA 239.2 or 7421)
Ū	Modified Appendix 33		Silver (EPA 7761)
Othe	r: <u>BOZIBITAIL Frza</u> Pb(239.2	·	

Date	Time	Temp (°C)	pH (SU)	Sp. Cond. (µmhos/cm)	Turbidity (NTU)	Notes
6/2/1,	1100	120	6.98	648-		Cluss
		_				
						-

002512

:

.

<u>сомментя</u>: 1.0₀₁ 9:25

i i i i i i i i i i i i i i i i i i i	eld S	ampling Data	Sheet			
Kingston, New York			e de la compañía			
GENERAL INFORMATION:						
Well No: <u>MW16</u> Date: <u>5</u>	,31	<u>/ l</u> Pers	onnel: <u>A</u> w			
PURGING:			\cup			
Reference Depth To Bottom (DTBr) 28	3 f	Start: 13-11	Stop: 13:15			
Measured Depth to Bottom (DTBm) 13.35 ft. Note: Use Reference Depth to Bottom for calculations						
Depth to Water (DTW): 3.53	ft.	Well Yields:	Tes INO			
Target Volume: 4.54	gal,	Water Contained:	ØYes ØNo			
Actual Volume: 5-00	gaL	DTW After Purge:	3.70 fl			
PID: Background:	Purg	ing:	Not Applicable			
Purge Method		Rate	Equipment ID			
Bailer			Deala			
Peristaltic Pump						
🗇 Well Wizard			·			
C American Sigma						
Bladder Pump						
<u>SAMPLING</u> :						
Sample ID: KQ161	\$ []	0531	G			
Sample Time: Start: 13:20	Stop:	1325				
Duplicate ID:	NA					
Sampling Method: 🗹 Bailer	Sampling Method: Bailer D Well Wizard					
	ican Si	igma 🗖	Тар			
CUMMENTS:	1311.					
Signature: Da	ate:	QA/QC Review:	CES Date: 8/31/11			

Kingston, New	York	lysis	Request Form	
Well Numb	er:[6 \$		Date: $5,31,4$	34
LABORAT	<u>ORY</u> :			
σ	IBM - East Fishkill			
Ð	EnviroTest			
	Other:			
ANALYSES	REQUESTED:			
	8010, Freon 113, Freon 123a		Antimony (EPA 200.7 or 6010A)	
Ο	Phenols (total) (EPA 420.1)		Arsenic (EPA 206.2 or 7060A)	
σ	Metals are Filtered		Cadmium (EPA 7131)	
σ	Metals are Unfiltered		Lead (EPA 239.2 or 7421)	
	Modified Appendix 33		Silver (EPA 7761)	••
Othe	r:8021BHallFr Sb (200-7)	<u>n</u> .		

Date	Time	Temp (*C)	pH (SU)	Sp. Cond. (µmhos/cm)	Turbidity (NTU)	Notes
5/31/4	(321	15.2	6.58	758-		Hazy
-						

<u>COMMENTS:</u>

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE	ield S	Sampling Data	Sheet
<u>GENERAL INFORMATION</u> : Well No: <u>MWI6</u> 2 ^B Date: <u>5</u>	13(/ C Pers	onnel:
PURGING:		· · · · · · · · · · · · · · · · · · ·	
Reference Depth To Bottom (DTBr) 25	<u>M</u> AL	Start: 1334	Stop: 1338
Measured Depth to Bottom (DTBm) 24) ft.	Note: Use Reference Dep	th to Bottom for calculations
Depth to Water (DTW): 558	ft.	Well Yields:	Offes DNo
Target Volume: 3.40	gaL	DTW Atter Contained:	Stall A
Actual Volume: 700	gaL	DIW Alter Furge:	
PID: Background:	Purg	ing:	Not Applicable
Purge Method		Rate	Equipment ID DCALQ
Peristaltic Pump			
Well Wizard			
American Sigma			
Bladder Pump			
C DUUTIOISIDIC			
<u>SAMPLING:</u>			·
Sample ID: KOII (2	\$1	0531	G
Sample Time: Start: 1340	Stop:	1345	······
Duplicate ID:	h.		E
Sampling Method: Ø Baile	er		Well Wizard
COMMENTS: Signature:	$\frac{5}{3!}$	igma 🗍	Tap Date:

Kingston, New	VYork	alysis	Request Form
Well Numb	er: 162 \$		Date: 5 ,3(,1,
LABORAT	ORY:		
	JBM - East Fishkill		
Ø	EnviroTest		
σ	Other:		
ANALYSE	<u>SREQUESTED</u> :		
Ο	8010, Freon 113, Freon 123a		Antimony (EPA 200.7 or 6010A)
	Phenols (total) (EPA 420.1)		Arsenic (EPA 206.2 or 7060A)
	Metals are Filtered		Cadmium (EPA 7131)
	Metals are Unfiltered	σ	Lead (EPA 239.2 or 7421)
σ	Modified Appendix 33		Silver (EPA 7761)
Othe	er: <u>802(3</u> ttau) Sb (200-7)		

Date	Time	Тетр (°С)	pH (SU)	Sp. Cond. (µmhos/cm)	Turbidity (NTU)	Notes
5/31/11	1344	<u>\</u> 38	(e.13	3250		Clear

COMMENTS:

¢

			·
Fi Fi	eld S	ampling Data	Sheet
Kingston, New York			· · · · · · · · · · · · · · · · · · ·
GENERAL INFORMATION:			
Well No: MW 1643 Date: 5	,31	/ l(Perso	onnel: <u>4 4</u>
<u>PURGING</u> :	~		
Reference Depth To Bottom (DTBr) 48	1 ft.	Start: 3.51	Stop: 1355
Measured Depth to Bottom (DTBm) 50.	8 ft.	Note: Use Reference Dept	h to Bottom for calculations
Depth to Water (DTW): 7.4	ft.	Well Yields:	Veres DNo
Target Volume: <u>5.64</u>	gaL	Water Contained:	OYes O'No
Actual Volume: 4.00	gal	DTW After Purge:	105 ft.
PID: Background:	Purg	ing:	Not Applicable
		.	
Purge Method		Rate	Equipment ID
D Peristaltic Pump		<u> </u>	
U Well Wizard		·	······
American Sigma		· · · · · · · · · · · · · · · · · · ·	
Bladder Pump			······
SAMPLING:			
	Ċ.	GEDU	6
	P_{-}	1015131	6
Sample Time: Start: 400	Stop:	_1406	
Duplicate ID:	A 4	++++	-
Sampling Method:	er	σ	Well Wizard
COLORED Ame	rican Si	igma 🗖	Тар
COMMENTS:	5/2,1		
Signature: D	ate:	QA/QC Review:	CES Date: 8/31/1

Kingston, New	An:	alysis	Request Form
Well Numb	er:1645		Date: 5,31,11
LABORAT	<u>ORY</u> :		
	IBM - East Fishkill		
	EnviroTest		
	Other:		
<u>ANALYSES</u>	EREQUESTED: 8010, Freon 113, Freon 123a Phenols (total) (EPA 420.1) Metals are Filtered Metals are Unfiltered Modified Appendix 33		Antimony (EPA 200.7 or 6010A) Arsenic (EPA 206.2 or 7060A) Cadmium (EPA 7131) Lead (EPA 239.2 or 7421) Silver (EPA 7761)
Othe	r: <u>8021Bttautra</u> 	·	

Date	Time	Temp (*C)	pH (SU)	Sp. Cond. (µmhos/cm)	Turbidity (NTU)	Notes
5/31/11	1405	13.6	7.00	15194		Hazy

1

<u>COMMENTS</u>:

	ield S	Sampling Data	Sheet
Fullgouri, IVON IVAL			
GENERAL INFORMATION:			
Well No: <u>Mw 1695</u> Date: 2	13	/ 11 Perso	onnel:
PURGING:			Ū.
Reference Depth To Bottom (DTBr) 28	(€9 fL	Start: 415	Stop: 14:22
Measured Depth to Bottom (DTBm) 28.	74 A.	Note: Use Reference Dept	th to Bottom for calculations
Depth to Water (DTW):	fL.	Well Yields:	ØYes ØNo
Target Volume: 8-36	gal.	Water Contained:	DYes DNo
Actual Volume: 9-00	gal.	DTW After Purge:	11.62 ft
PID: Background:	Pure	ing:	Not Applicable
Purge Method		Rate	Equipment ID
Ø Bailer		·	Ved t a
Peristaltic Pump			
🗇 Well Wizard			.
American Sigma			
🗖 Bladder Pump			
□ Submersible			
SAMPLING:			
Sample ID: 15 0 1 6 9	\$ 1	0203	C
Sample Time: Start: 1425	Stop:	1430	
Duplicate ID:	NA	h	
Sampling Method:	er	σ	Well Wizard
	rican S	igma 🗖 🗖	Тар
Signature:	2/=//1\ Date:	QA/QC Review:	<u>CES</u> Date: 81341

Analysis Request Form							
	Date: 2/3/11						
	Antimony (EPA 200.7 or 6010A)						
	Arsenic (EPA 206.2 or 7060A)						
	Cadmium (EPA 7131)						
	Lead (EPA 239.2 or 7421)						
Ο	Silver (EPA 7761)						
x							

Date	Time	Тетр (°С)	pH (SU)	Sp. Cond. (µmhos/cm)	Turbidity (NTU)	Notes
2/3/1	1429	10.4	7.22	272.4		Clear

<u>COMMENTS</u>:

	14 6	ampling Deta	Sheet					
Kingston, New York		amping Data	Sheet					
CENED IT INFORMATION								
GENERAL INFURMATION:	•							
Well No: <u>MW 169</u> Date: <u>5</u> ,26,11 Personnel: <u>KuB 9</u>								
PURGING:								
Reference Depth To Bottom (DTBr) 28 (₀5 f .	Start: 840	Stop: 97 845					
Measured Depth to Bottom (DTBm) 28.7	ų fL	Note: Use Reference Dep	th to Bottom for calculations					
Depth to Water (DTW): 8,72	- fL	Well Yields:	OYes D No					
Target Volume: 9.73	gai.	Water Contained:	IYes PNo					
Actual Volume: 10-00) gal.	DTW After Purge:	9 1(ft.					
PID: Background:	Purg	ing:	Not Applicable					
Purge Method		Rate	Equipment ID					
Bailer			VEACU					
Peristaltic Pump								
U Well Wizard			· · · · · · · · · · · · · · · · · · ·					
American Sigma								
Bladder Pump								
□ Submersible		<u> </u>						
SAMPLING:								
Sample ID: KOULO9	\$ 1	6526	G					
Samela Times State \$ 50		851						
Sample Time: Start:	Stop:							
Duplicate ID:	N A	+++	Ð					
Sampling Method: 🛛 Baile	er	σ	Well Wizard					
<u>COMMENTS:</u>	$\frac{1}{5}$	igma 🗇	Тар					
Signature: D	ate:	QA/QC Review:	CES Date: 825/11					

Kingston, New	Ana York	lysis	Request Form
Well Numb	per:MW1695		Date: 5 12614
LABORAT	ORY:		
	/ IBM - East Fishkill		
g	EnviroTest		
	Other:		
ANALYSE	S REQUESTED:		
	8010, Freon 113, Freon 123a		Antimony (EPA 200.7 or 6010A)
	Phenols (total) (EPA 420.1)	σ	Arsenic (EPA 206.2 or 7060A)
	Metals are Filtered	σ	Cadmium (EPA 7131)
	Metals are Unfiltered		Lead (EPA 239.2 or 7421)
σ	Modified Appendix 33	σ	Silver (EPA 7761)
Othe	er: 8021 Halog	 	· .

Date	Time	Temp (°C)	pH (SU)	Sp. Cond. (µmhos/cm)	Turbidity (NTU)	Notes
5/26/11	855	17.4	1.45	16le3		Clear.
						-

COMMENTS:

002457

7888			· · ·
	Field S	ampling Data	Sheet
Kingston, New York			a na sana sana sana sana sana sana sana
GENERAL INFORMATION:			
Well No: 1695 Date:	1,13	/ (\ Pers	onnel: JAR G
PURGING:			
Reference Depth To Bottom (DTBr) 28	.(4.5) fL	Start: 1052	Stop: 1100
Measured Depth to Bottom (DTBm) 28	13 m	Note: Use Reference Dep	th to Bottom for calculations
Depth to Water (DTW): 7.9	<u>}</u> ft.	Well Yields:	Dires DNo
Actual Volume: 10-10	/ gal.	DTW After Durger	T 911 A
		DIWAtter Turge.	
PID: Background:	Purg	ing:	Not Applicable
Purge Method		Rate	Equipment D
Bailer			pta coc
Peristaltic Pump	~		
🖸 Well Wizard			·
American Sigma	<u> </u>		
Bladder Pump			
□ Submersible			
SAMPLING:			
Sample ID: KONGO	1 \$ 1	0913	G
Sample Time: Start: 11-02	Stop:	11:07	· · ·
Duplicate ID:	WE	++++-	
Sampling Method: 🗹 Ba	uler nerican S	ioma · □	Well Wizard
	alia		rah
Signature:	Date:	QA/QC Review	Date:

Kingston, New Yo	Analysis Request Form						
Well Number	:69\$		Date:				
ABORATO	<u> </u>						
	BM - East Fishkill						
	EnviroTest						
	Other:						
NALYSES I	EQUESTED:						
	8010, Freon 113, Freon 123a		Antimony (EPA 200.7 or 6010A)				
	Phenols (total) (EPA 420.1)		Arsenic (EPA 206.2 or 7060A)				
	Metals are Filtered		Cadmium (EPA 7131)				
	Metals are Unfiltered	σ	Lead (EPA 239.2 or 7421)				
	Modified Appendix 33		Silver (EPA 7761)				
Other:	8021BHall Fr	tor-					

÷.,

ç

Date	Time	Temp (°C)	pH (SU)	Sp. Cond. (µmhos/cm)	Turbidity (NTU)	Notes
9/13/11	1106	14-9	7.37	1651		alum
						,

			<u></u>
Fi Fi	eld S	ampling Data	Sheet
Kingston, New York			
GENERAL INFORMATION:			
Well No: <u>Mw170</u> 5 Date: <u>2</u>	14	/ ⁽⁽ Perso	onnel:
PURGING:			_cty
Reference Depth To Bottom (DTBr) 164	8 fL	Start: 942	Stop: 79 10:08
Measured Depth to Bottom (DTBm)	Z ft.	Note: Use Reference Dept	h to Bottom for calculations
Depth to Water (DTW):	2.ft	Well Yields:	Oxes ONo
Target Volume: 44	gal	Water Contained:	OYes QNo
Actual Volume: 4-50	gal.	DTW After Purge:	1366 ft
PID: Background:	Purg	ing:	Not Applicable
Purge Method		Rate	Equipment ID
Bailer			- Phi Cu
Peristaltic Pump			
🖸 Well Wizard		<u> </u>	<u> </u>
American Sigma		. <u>.</u>	
🗖 Bladder Pump			
□ Submersible			
<u>SAMPLING:</u>			
Sample ID: KOU70	\$ 1	16264	G
Sample Time: Start: 10-10	Stop:	10:15	
Duplicate ID:	A 4	++++	
Sampling Method: D Baile	er	σ	Well Wizard
	rican S	igma 🗖	Тар
COMMENTS:	2/4/1		abul
Signature: D)ate:	QA/QC Review:	Date: <u>81-41+</u>

Kingston, New York

Analysis	Request	Form

Well Number: 1705	Date: 2,414
LABORATORY: IBM - East Fishkill EnviroTest Other:	
ANALYSES REQUESTED: 8010, Freon 113, Freon 123a Phenols (total) (EPA 420.1) Metals are Filtered Metals are Unfiltered Modified Appendix 33	Antimony (EPA 200.7 or 6010A) Arsenic (EPA 206.2 or 7060A) Cadmium (EPA 7131) Lead (EPA 239.2 or 7421) Silver (EPA 7761)

Date	Time	Temp (°C)	pH (SU)	Sp. Cond. (µmhos/cm)	Turbidity (NTU)	Notes
Zy	КH	5.3	7.07	776-		Harry
						U

<u>COMMENTS</u>:

002432

			·····
	ield S	ampling Data	1 Sheet
Kingston, New York			
GENERAL INFORMATION:			
Well No: MW 170,5 Date: 5	,31	/ ll Pers	onnel: <u>4</u>
PURGING:			\bigcirc
Reference Depth To Bottom (DTBr)	8 ft.	Start: (() 8	Stop: 11.15
Measured Depth to Bottom (DTBm)	L ft.	Note: Use Reference Dep	th to Bottom for calculations
Depth to Water (DTW):	9 ft.	Well Yields:	ØYes ØNo
Target Volume: 5.66	gal	Water Contained:	UYes No
Actual Volume: 0700	gal	DIW After Purge:	(U+3 ft_]
PID: Background:	Purgi	ing:	Not Applicable
Purge Method		Rate	Equipment ID
Bailer			UPOLLO
D Peristaltic Pump			
		· · · · · · · · · · · · · · · · · · ·	-
American Sigma			
Bladder Pump			
Submersible			
SAMPLING:			
Sample ID: KOI70	5.1	0531	G
Sample Time: Start: 11.17	Stop:	(12)	
Duplicate ID:	INP		
Sampling Method: 🛛 Bai	ler	a	Well Wizard
<u>COMMENTS</u> : $()$ \square Am	erican Si S/2	igma 🗌	Тар
Signature:	Date:	QA/QC Review	: CES Date: 8/31

Kingston, New York	alysis	Request Form
Well Number: <u>170</u> S		Date: <u>5,31,4</u>
LABORATORY:		
🗇 🛛 IBM - East Fishkill		
EnviroTest		
• Other:		
ANALYSES REQUESTED:		
8010, Freon 113, Freon 123a		Antimony (EPA 200.7 or 6010A)
Phenols (total) (EPA 420.1)		Arsenic (EPA 206.2 or 7060A)
Metals are Filtered		Cadmium (EPA 7131)
Metals are Unfiltered		Lead (EPA 239.2 or 7421)
Modified Appendix 33		Silver (EPA 7761)
Other: 8021 BHall F	o can	

Date	Time	Temp (°C)	pH (SU)	Sp. Cond. (µmhos/cm)	Turbidity (NTU)	Notes
5/31/1	1120	13.2	7.05	588		Cloupy
			-			

COMMENTS:

LET Fi	eld Sampling Data	a Sheet
Kingston, New York		
GENERAL INFORMATION:		
Well No: MUIDOS Date: 9	15/11 Pers	onnel: JAR CDS
PURGING:		
Reference Depth To Bottom (DTBr) 16 48	ft. Start: 1140	Stop: 1149
Measured Depth to Bottom (DTBm) 1, 55	ft. Note: Use Reference Dep	th to Bottom for calculations
Depth to Water (DTW): 4.66	ft. Well Yields:	Stes [] No
Target Volume: 5-77	gal Water Contained:	OYes DNo
Actual Volume: 6 -00	gal. DTW After Purge:	1297 ft.
PID: Background:	Purging:	Not Applicable
Purge Method	Rate	Equipment ID Ded 2 Q
Periotaltic Pump		
American Sigma	\ \	· · · · · · · · · · · · · · · · · · ·
		<u> </u>
L) Submersible	<u></u>	· ····· · · · · · · · · · · · · · · ·
SAMPLING:		
Sample D: 120170	\$ 10915	1 _C
	12/16	6
Sample Time: Start: 1200	Stop:	
Duplicate ID:	NATI	
Sampling Method: Ø Baile	r 🖸	Well Wizard
<u>COMMENTS</u> :	ncan Sigma	Tap
Signature:	115/11	n D-fu
	ALC: QA/QC REVIEW	· Date:

Kingston, New	Yook	lysis	Request Form
Well Numb	er:1705		Date: 9,15,11
LABORAT	<u>ORY:</u>		
	IBM - East Fishkill		
Ø	EnviroTest		
σ	Other:		
ANALYSES	REQUESTED:		
σ	8010, Freon 113, Freon 123a		Antimony (EPA 200.7 or 6010A)
	Phenols (total) (EPA 420.1)	σ	Arsenic (EPA 206.2 or 7060A)
	Metals are Filtered		Cadmium (EPA 7131)
	Metals are Unfiltered		Lead (EPA 239.2 or 7421)
σ	Modified Appendix 33	٥	Silver (EPA 7761)
Othe	r: _ 8021 BHall Fra	· 	

Date	Time	Тетр (*С)	pH (SU)	Sp. Cond. (µmhos/cm)	Turbidity (NTU)	Notes
9/15/1,	1205	13.3	7.17	6272		Cla

COMMENTS:

7888		·	5					· · · · ·
Kingston, New York	Field Sampling Dat	ta Sheet	, E	Kingston, New	₩ York		I	Analys
G <u>ENERAL INFORMATION</u> : Well No: (ハン (ヿ) ^ら Date:	2/3/\\ Pe i	rsonnel:	7	Vell Numb	er:	715		
			1	<u>ABORAT</u>	<u>ORY</u> :			
PURGING:					BM - E	ast Fishki	11	
Reference Depth To Bottom (DTBr)	7) ft. Start: 11-44	Stop: 150		년	EnviroT	est		
Measured Depth to Bottom (DTBm)	. 7, ft. Note: Use Reference D	epth to Bottom for calculations			Other:			
Depth to Water (DTW): 45	ft. Well Yleids:	ØYes DNo		NALYSE	S REOUE	STED:		
Target Volume: 4.49 5.01) gal. Water Contained:	Offes INO		П	8010 Fr	eon 113	Freon 123	
Actual Volume: 5-00	gal. DTW After Purge:	0.07 ft.		Ē	Phenole	(total) (F)	DA 490 11	
DID. Background	Puraing	Not Applicable		П	Metals	ra Filtara	4	, L ,
FID: Duckground:		Not Applicable			Motola o			د م
Purge Method	Rate	Equipment ID			Metals a		rea	د م
Bailer		Deale			Modifie	a Appena	IX 33	L
Peristaltic Pump				Othe		802	BHAR	Er
G Well Wizard				01110			(7),000	1720
American Sioma					-			
Riedder Pump					-			
			1	FIELD PA.	RAMETE	<u>RS</u> :		
			· .			, T	1	1
SAMPLING:		· .		Date	Time	Temp (*C)	pH (SID	Sp. Co
Sample ID. V (D) 1 7	1010200	2	Ī	2/21			(50)	(united as
Sumple ID: $[h][U][1]$	$\left[\left[\right] \right] \left[$	2 6		12/4	1154	4-8	7.00	624
Sample Time: Start: <u>1153</u>	Stop:1157							
Duplicate ID:		\square						
Sampling Method: Ø Ba	ailer 🗖	Well Wizard	<u>(</u>	COMMEN	<u>TS</u> :			
COMMENTS.	merican Sigma 👘 🗖	Тар						
	2/3/1	a						
Signature:	Date: QA/QC Revie	W: CES Date: 8/24/11						
\times								
\sim								

Date: 21311 Antimony (EPA 200.7 or 6010A) Arsenic (EPA 206.2 or 7060A) Cadmium (EPA 7131)

Analysis Request Form

Lead (EPA 239.2 or 7421)

Silver (EPA 7761)

Date	Time	Temp (°C)	pH (SU)	Sp. Cond. (µmhos/cm)	Turbidity (NTU)	Notes
43/4	1154	9-8	7.00	6244		Hazy
						l

Kingston, New York	ield S	Sampling Data	Sheet	
GENERAL INFORMATION:				
Well No: $\underline{M} [7]/\delta$ Date: 5	,25	/ C Pers	onnel: <u>KwB</u>	-1-
PURGING:				<u></u>
Reference Depth To Bottom (DTBr) 3.	<u>∩</u> <u>€</u>	Start: 1233	Stop: 1237	
Measured Depth to Bottom (DTBm) 3	70 f	Note: Use Reference Dep	th to Bottom for calculatio	<i>KS</i>
Depth to Water (DTW): 3-2"	5 f	Well Yields:	Offes D No	
Target Volume: 5.14	gal.	Water Contained:	Offes DNo	·
Actual Volume: 5.50	gaL	DTW After Purge:	9,19	ft.
PID: Background:	Purg	ing:	Not Applicable	
Purge Method		Rate	Equipment ID	
Bailer		<u> </u>		
Peristaltic Pump		·	• · · ·	
U Well Wizard			·	<u> </u>
American Sigma	<u> </u>			
Bladder Pump				
SAMPLING:				
Sample ID: [K6] 7]	Ś.I	6525	G	
Sample Time: Start: 1240	Stop:	1245		
Duplicate ID:		NALL		
Sampling Method: Signature:	er erican S 5/25/	igma 🗖	Well Wizard Tap	zlu
		X12 XC ICCIER.	Date	<u></u> ,

Kingston, New	An:	alysis	Request Form
Well Numl	per:171\$		Date: 5 125, 11
LABORAT	<u>'ORY</u> :		
	IBM - East Fishkill		
g	EnviroTest		
Ο	Other:		
ANALYSE	S REQUESTED:		/
<u>ANALYSE</u>	<u>S REOUESTED</u> : 8010, Freon 113, Freon 123a	σ	Antimony (EPA 200.7 or 6010A)
	<u>SREQUESTED:</u> 8010, Freon 113, Freon 123a Phenols (total) (EPA 420.1)	0	Antimony (EPA 200.7 or 6010A) Arsenic (EPA 206.2 or 7060A)
	<u>SREQUESTED:</u> 8010, Freon 113, Freon 123a Phenols (total) (EPA 420.1) Metals are Filtered		Antimony (EPA 200.7 or 6010A) Arsenic (EPA 206.2 or 7060A) Cadmium (EPA 7131)
	<u>SREQUESTED:</u> 8010, Freon 113, Freon 123a Phenols (total) (EPA 420.1) Metals are Filtered Metals are Unfiltered		Antimony (EPA 200.7 or 6010A) Arsenic (EPA 206.2 or 7060A) Cadmium (EPA 7131) Lead (EPA 239.2 or 7421)

۰<u>۱</u>

. .

Date	Time	Temp (*C)	pH (SU)	Sp. Cond. (µmhos/cm)	Turbidity (NTU)	Notes
5/25/11	1244	14.1	6.90	57143		Cloury
						0
· .						

COMMENTS:

			<u> </u>
E Fi	eld S	ampling Data	Sheet
Kingston, New York			
GENERAL INFORMATION:			
Well No: <u>MW1715</u> Date: <u>9</u>	,15	/ l(Perso	onnel: <u>JAR (</u>
PURGING:			
Reference Depth To Bottom (DTBr) 13.7) f .	Start: 1.0)	Stop: 1106
Measured Depth to Bottom (DTBm) 3. (e	5 ft.	Note: Use Reference Dept	h to Bottom for calculations
Depth to Water (DTW): 3.18	ft.	Well Yields:	ØYes 🛛 No
Target Volume: 5.17	gal.	Water Contained:	Tres INO
Actual Volume: 6.00	gal	DTW After Purge:	7.79 £
PID: Background:	Purg	ing:	Not Applicable
Purge Method		Rate	Equipment ID
Bailer		<u> </u>	Ver 20
Peristaltic Pump			<u> </u>
🗇 Well Wizard			
American Sigma			
🗇 Bladder Pump			
□ Submersible			
<u>SAMPLING</u> :		,	
Sample ID: Kall	51	0915	G
	<u>~ E</u> (
Sample Time: Start: <u>11-10</u>	Stop:	11.19	
Duplicate ID:	NA		
Sampling Method: D Baile	r	σ	Well Wizard
COMMENTS: Ame	rican S	igma 🗍	Tap
<u>COMMENTS:</u>	1151	1	
Signature:D	ate:	QA/QC Review:	Date:

Kingston, New York	An	alysis	Request Form
Well Number:	<u> </u>		Date: 9,15,01
ABORATORY:			
🗖 🖉 IBM - East Fishl	dII	~	
EnviroTest			
Other:			·
INALYSES REQUESTED:			
8010, Freon 113	, Freon 123a		Antimony (EPA 200.7 or 6010A)
D Phenols (total) (EPA 420.1)		Arsenic (EPA 206.2 or 7060A)
Metals are Filter	ed		Cadmium (EPA 7131)
Metals are Unfil	tered		Lead (EPA 239.2 or 7421)
Modified Appen	dix 33		Silver (EPA 7761)
Other: SV2	Hall Fr		

Date	Time	Temp (°C)	pH (SU)	Sp. Cond. (µmhos/cm)	Turbidity (NTU)	Notes
9/15/11	11:13	14.3	6.99	627m		Clam

002553

<u>COMMENTS:</u>

			:
Le	ield S	ampling Data	Sheet
Kingston, New York			
GENERAL INFORMATION:			
	2		
Well No: $M_{W} 12^{\beta}$ Date:	12	/ TI Pers	onnel: (10)
PURGING:			\bigcirc
Reference Depth To Bottom (DTBr) 3.	15 €.	Start: 902	Stop: 904
Messured Depth to Bottom (DTBm) 13.5	l fL	Note: Use Reference Dep	th to Bottom for calculations
Depth to Water (DTW):) ft.	Well Yields:	Tes ON0
Target Volume: 5.66	gal.	Water Contained:	Dies ON0
Actual Volume: 6-00	gal.	DTW After Purge:	5-01 ft.
		· · · · · · · · · · · · · · · · · · ·	
PID: Background:	Purg	ing:	Not Applicable
Purge Method		Rate	Equipment ID
Bailer			DedEQ
Peristaltic Pump			
Well Wizard			
American Sigma			
SAMPLING:			
	d		
	PI	Q Q Q Z	0
Sample Time: Start: <u>912</u>	Stop:	917	
Duplicate ID: KOL72	\$ 1	0602	D
Sampling Method: 💋 Baile	er	σ	Well Wizard
Ame	erican S	igma 🗖	Тар
<u>COMMENTS:</u>	,	1	
Signature:	la z	QA/QC Review	CES Date: 98/31/1
		-	

Kingston, New		lysis	Request Form
Well Numb	per: 1725		Date: 6 12 11
LABORAT	<u>ORY</u> :		
	IBM - East Fishkill		
Ū.	EnviroTest		
	Other:		
ANALYSE	<u>S REQUESTED</u> :		
	8010, Freon 113, Freon 123a		Antimony (EPA 200.7 or 6010A)
	Phenols (total) (EPA 420.1)		Arsenic (EPA 206.2 or 7060A)
	Metals are Filtered		Cadmium (EPA 7131)
	Metals are Unfiltered		Lead (EPA 239.2 or 7421)
	Modified Appendix 33		Silver (EPA 7761)
Othe	er:		

Date	Time	Тетр (°С)	pH (SU)	Sp. Cond. (µmhos/cm)	Turbidity (NTU)	Notes
6/2/11	916	145	6.87	21410		Harl

<u>COMMENTS:</u>

Fi Kingston, New York	eld S	ampling Data	Sheet
GENERAL INFORMATION:			
Well No: MW173 5 Date: 2	,4	/ ¹ \ Perso	onnel:
PURGING:			
Reference Depth To Bottom (DTBr) 20.	8) A.	Start: 839	Stop: 843
Measured Depth to Bottom (DTBm) 20.8	7 ft.	Note: Use Reference Dept	h to Bottom for calculations
Depth to Water (DTW):	ft.	Well Yields:	Tes DNo
Target Volume: 4-74	gal	Water Contained:	OYes ONo
Actual Volume: 500	gal.	DTW After Purge:	14.00 ft
PID: Background:	Purg	ing:	Not Applicable
Purge Method		Rate	Equipment ID
Bailer			DedEC
Peristaltic Pump			
U Well Wizard			· · ·
American Sigma			
D Submersione			
<u>SAMPLING</u> :			
Sample ID: KO173	Ś.	10204	G
Sample Time: Start: <u>845</u>	Stop:	850	
Duplicate ID:	NP		
Sampling Method: D Baile	ricon S	ianna 🖸	Well Wizard
COMMENTS:	ncan S		Tap
Signature: D	2/4/1 ate:	QA/QC Review:	CES Date: 8124/14

Kingston, New	York Ana	alysis	Request Form
Well Numb	er:		Date: 2,4,1
ABORAT	<u>ORY</u> :		
	_IBM - East Fishkill		
ď	EnviroTest		
σ	Other:		
NALYSES	S REQUESTED:		
	8010, Freon 113, Freon 123a		Antimony (EPA 200.7 or 6010A)
Ο	Phenols (total) (EPA 420.1)		Arsenic (EPA 206.2 or 7060A)
	Metals are Filtered		Cadmium (EPA 7131)
	Metals are Unfiltered		Lead (EPA 239.2 or 7421)
_	Modified Appendix 33		Silver (EPA 7761)

Date	Time	Temp (°C)	pH (SU)	Sp. Cond. (µmhos/cm)	Turbidity (NTU)	Notes
2/4/11	849	11.0	7.02	11770		Hazy

COMMENTS:

	eld S	ampling Data	Sheet	·	
Kingston, New York					
GENERAL INFORMATION:					
	. 21				
Well No: $\underline{M} \ \underline{M} $	12le	<u>/()</u> Perse	onnel: $()$	r	
<u>PURGING</u> :			\mathbf{O}		
Reference Depth To Bottom (DTBr) 20.8	fL	Start: 1489	Stop: 1414		
Measured Depth to Bottom (DTBm) 20-8	l ft.	Note: Use Reference Dep	th to Bottom for calcula	tions	
Depth to Water (DTW): 8-7"	1 ft.	Well Yields:	Oxes DNo	, .	
Target Volume: 5.87	gal.	Water Contained:	I'Yes INO	<u>'</u>	
Actual Volume: 6.00	gal.	DTW After Purge:	12.09	ft.	
DID. Reckmannde	Burn			Ыа	
	Imig				
Purge Method		Rate	Equipment L	D	
Bailer	. —		Drd EQ		
Peristaltic Pump					
🛛 Well Wizard					
🖸 American Sigma					
🗇 Bladder Pump					
Submersible					
SAMPLING:					
Sample ID: KOL73	SI	6526	G		
	2-1-1				
Sample Time: Start:	Stop:	19(9	`		
	N Là	1 1 1 1 1 1 1 1			
Duplicate ID:	NA		\square		
Sampling Method: Bailer D Well Wizard					
Amer	rican S	igma 🗍	Tap		
<u>COMMENTS:</u>	cl-	,			
Signature: D	⊃ 26 ate:	1 OA/OC Review	CES Date: 9	8/25/1	

Kingston, New York	Ana	lysis	Request Form
Well Number:	1735		Date: 5, 24, 4
LABORATORY))		
Б	M - East Fishkill		
🛛 En	viroTest		
🗖 ot	her:		
ANALYSES RE	QUESTED:		
D 80	10, Freon 113, Freon 123a		Antimony (EPA 200.7 or 6010A)
🗖 Ph	enols (total) (EPA 420.1)		Arsenic (EPA 206.2 or 7060A)
🗖 м	etals are Filtered	σ	Cadmium (EPA 7131)
🗖 м	etals are Unfiltered		Lead (EPA 239.2 or 7421)
П м	odified Appendix 33		Silver (EPA 7761)
Other:	2021 (tau		

Date	Time	Temp (°C)	pH (SU)	Sp. Cond. (µmhos/cm)	Turbidity (NTU)	Notes
5/20/11	1418	14.1	1,22	784		and
						· · · ·

COMMENTS:

CO2472

			. <u></u>
i i i i i i i i i i i i i i i i i i i	eld S	ampling Data	Sheet
Kingston, New York			· · · · · · · · · · · · · · · · · · ·
GENERAL INFORMATION:			
Well No: $\underline{M}_{\underline{M}} 73^{\underline{S}}$ Date: $\underline{\mathcal{I}}$	13	/ Perso	onnel: <u>JAK Y</u>
PURGING:			······
Reference Depth To Bottom (DTBr) 20-8	`\ ft.	Start: 1445	Stop: 452
Measured Depth to Bottom (DTBm) 20 8	MA	Note: Use Reference Dept	h to Bottom for calculations
Depth to Water (DTW): 7-90	j f .	Well Yields:	SYes INo
Target Volume: 6-24	gal.	Water Contained:	I'res ØNo
Actual Volume: (0.50	gal.	DTW After Purge:	9.83 ft.
PID: Background:	Purg	ing:	Not Applicable
Purge Method		Rate	Equipment ID
Bailer			- var uz
Peristaltic Pump			<u></u>
🗖 Well Wizard			
American Sigma	<u> </u>	<u></u>	
🗇 Bladder Pump			
SAMPLING:			
Sample ID: KOU73	\$	10913	G
Sample Time: Start: 1455	Stop	: 1502	
Duplicate ID: KOL73	\$	0913	
Sampling Method: D Baile		Serve C	Well Wizard
<u>COMMENTS:</u>	noan c		ταĥ
Signature: D	ate:	QA/QC Review:	Date:

	Date:
σ	Antimony (EPA 200.7 or 6010A)
σ	Arsenic (EPA 206.2 or 7060A)
	Cadmium (EPA 7131)
	Lead (EPA 239.2 or 7421)
	Silver (EPA 7761)

Date	Time	Temp (°C)	pH (SU)	Sp. Cond. (µmhos/cm)	Turbidity (NTU)	Notes
9/13/11	150 (14-2	7.25	791-		Clarz

002535

	ield S	ampling Data	Sheet
Kingston, New York			
GENERAL INFORMATION:			
Well No: MW 174 S Date: 2	,4	/ I\ Pers	onnel: Gim
PURGING:			U
Reference Depth To Bottom (DTBr) 5.2	27 A.	Start: 852	Stop: 857
Measured Depth to Bottom (DTBm) (54	$\mathcal{U}_{\mathbf{fL}}$	Note: Use Reference Dep	th to Bottom for calculations
Depth to Water (DTW):] ₽ .	Well Yields:	Iles INo
Target Volume: 2.10	gal.	Water Contained:	Tes -TNo
Actual Volume: 3.00	gal.	DTW After Purge:	13.80 fL
PID. Background	Pure		Not Applicable
Purge Method		Rate	Equipment ID
D -Bailer	·		Dealea
Peristaltic Pump	<u> </u>		
🗇 Well Wizard			·
🗇 American Sigma		<u></u>	
Bladder Pump			
SAMPLING:			
Sample ID: KOI74	\$	10204	G
		91U	<u></u>
Sample Time: Start:	Stop:		
Duplicate ID:	NA	++++-	Ð
Sampling Method: Baile	er vrican S	iema 🗍	Well Wizard
	2/4/1	1	P
Signature: E	Date:	QA/QC Review	: CES Date: 8/24/11

Kingston, New	Ana Yak	lysis	Request Form
Well Numb	er:745		Date: $2/4/4$
LABORAT	ORY:		
σ	IBM - East Fishkill		
9	EnviroTest		
	Other:		
ANALYSES	S REQUESTED:		
σ	8010, Freon 113, Freon 123a		Antimony (EPA 200.7 or 6010A)
	Phenols (total) (EPA 420.1)		Arsenic (EPA 206.2 or 7060A)
σ	Metals are Filtered		Cadmium (EPA 7131)
	Metals are Unfiltered		Lead (EPA 239.2 or 7421)
	Modified Appendix 33		Silver (EPA 7761)
Othe	er: <u>802</u> (B)Hall		

Date	Time	Temp (°C)	pH (SU)	Sp. Cond. (µmhos/cm)	Turbidity (NTU)	Notes
2/4/1,	903	7-8	7.47	4432		classy
						\mathcal{O}

	Field S	ampling Data	Sheet			
Kingston, New York						
CRARD (I DIRODM (TION						
FEINERAL HIVF ORMATION:	_					
Well No: (Mu) [74,5 Date:	5,26	/ li Pers	onnel:			
PURGING:						
Reference Depth To Bottom (DTBr) (5	.27 fL	Start: 14:21	Stop: 1424			
Measured Depth to Bottom (DTBm)	5.041	Note: Use Reference Dep	th to Bottom for calculations			
Depth to Water (DTW):	.12 A	Well Yields:	Tes DNo			
Target Volume: 3.01	gal	Water Contained:	Tes TNo			
Actual Volume: 3.5	jų gal.	DTW After Purge:	12.61 ft.			
PTD. Peekeeeund	Burn		7 E Not Ampliaghla			
TID: Duckground.	I HIG	ing:	I Not Applicable			
Purge Method		Rate	Equipment ID			
Bailer			Ded EQ.			
Peristaltic Pump						
U Well Wizard						
American Sigma						
Bladder Pump			-			
SAMPLING:						
Sample ID: SONT	451	0526	G			
1127		121				
Sample Time: Start: 1921	Stop:	1901				
	1, 1,					
Dupucate ID:	TNIA					
Sampling Method: Ø Bailer						
	merican S	igma 🗖	Tap			
<u>COMMENTS:</u>	5/201					
Signature:	_ Date:	QA/QC Review	CES Date: 8/25			

Kingston, New	Yook	alysis	Request Form
Well Numb	er:74\$		Date: 5,26, 11
LABORAT	<u>ORY</u> :		
	IBM - East Fishkill		
Ø	EnviroTest		
	Other:		<u></u>
ANALYSES	S REQUESTED:		
	8010, Freon 113, Freon 123a		Antimony (EPA 200.7 or 6010A)
σ	Phenols (total) (EPA 420.1)		Arsenic (EPA 206.2 or 7060A)
	Metals are Filtered		Cadmium (EPA 7131)
	Metals are Unfiltered		Lead (EPA 239.2 or 7421)
	Modified Appendix 33		Silver (EPA 7761)
Othe	r: <u>8021 Halog</u>		

<u>.</u>

=

Date	Time	Temp (°C)	рН (SU)	Sp. Cond. (µmhos/cm)	Turbidity (NTU)	Notes
5/24/4	1430	18.4	7.30	5050		Clary
5.						

Field Sampling Data Sheet						
Kingston, New York <u>GENERAL INFORMATION</u> :						
Well No: <u>MW 174</u> Date: 9	1 (3	<u>/ 4</u> Perso	nnel: JAC G			
PURGING:			0			
Reference Depth To Bottom (DTBr) 15, 2	7 ft.	Start: 1505	Stop: 1513			
Measured Depth to Bottom (DTBm) 15.0	5 ft.	Note: Use Reference Dept	to Bottom for calculations			
Depth to Water (DTW): 7.93	ft.	Well Yields:	Tres INO			
Target Volume: 3.58	gaL	Water Contained:	TYes No			
Actual Volume: 5-00	gal.	DTW After Purge:	8-13 ft.			
PID: Background:	Purg	ing:	Not Applicable			
Purge Method		Rate	Equipment ID			
Bailer			Dev.et			
U Peristaltic Pump			<u> </u>			
U Well Wizard		<u> </u>				
🗖 American Sigma						
🗖 Bladder Pump		<u> </u>				
SAMPLING:						
	<u>s</u>		G			
Sample Time: Start: 15:18	Stop:	523				
Duplicate IDr	NA	hhh				
Sampling Method: D Baile	r rican Si	igma 🖸	Well Wizard Tap			
<u>COMMENTS:</u>	alin	Ι.				
Signature D	Signature: () Date: OA/OC Review: Date:					

Kingston, New	An:	alysis	Request Form
Well Numb	er:1748		Date:
LABORAT	<u>ORY</u> :		
σ	IBM - East Fishkill		
Ø	EnviroTest		
σ	Other:		
ANALYSES	S REQUESTED:		
σ	8010, Freon 113, Freon 123a	Ο	Antimony (EPA 200.7 or 6010A)
	Phenols (total) (EPA 420.1)		Arsenic (EPA 206.2 or 7060A)
	Metals are Filtered	σ	Cadmium (EPA 7131)
	Metals are Unfiltered		Lead (EPA 239.2 or 7421)
σ	Modified Appendix 33		Silver (EPA 7761)
Othe	r: SUZIBHAUFZ		

Date	Time	Тетр (*С)	pH (SU)	Sp. Cond. (µmhos/cm)	Turbidity (NTU)	Notes
9/13/11	1522	18-6	7.33	52lus		Clerry
		-				

002536

			<u>.</u>			
	eld S	ampling Data	Sheet			
GENERAL INFORMATION:				0 le		
Well No: MW15/S Date:	/	<u>/ ()</u> Perso	onnel:(<u>S-m</u>		
PURGING:						
Reference Depth To Bottom (DTBr) 21.4	ff.	Start: 1050	Stop:	1056		
Measured Depth to Bottom (DTBm) 21-92	ft.	Note: Use Reference Dep	th to Bottom fo	r calculations		
Depth to Water (DTW):	<u>ft.</u>	Well Yields:	" IYes			
Target Volume: 5.10	gal	Water Contained:	lana	JØ NO		
Actual Volume: G-CU	gal	DIW Atter Purge:	10-42	щ		
PID: Background:	Purg	ing:	Ø Not.	Applicable		
Purge Method		Rate	Equip Ci	ment ID LEQ		
Danici Danici						
			<u></u>			
			,			
 Bladder Pump Submersible 						
SAMPLING:						
Sample ID: KQ175	\$	10207	C-			
Sample Time: Start: 1100	Stop	: 11:15	۰. د			
Duplicate ID: KOL75	É	@ 2 @ 7	D			
Sampling Method: D Baile	er erican S	Sigma 🗖	Well W Tap	izard		
<u>COMMENTS:</u>	21-	-	-			
Signature: D	ate:	QA/QC Review	: <u>455</u> I	Date: <u>8124</u> [1		

Kingston, New	Ana York	lysis	Request Form				
Well Numb	er: 1755		Date: 2,7,4				
LABORAT	<u>ORY</u> :						
	IBM - East Fishkill						
	EnviroTest						
σ	Other:						
ANALYSES	REQUESTED:						
σ	8010, Freon 113, Freon 123a		Antimony (EPA 200.7 or 6010A)				
σ	Phenols (total) (EPA 420.1)		Arsenic (EPA 206.2 or 7060A)				
	Metals are Filtered	đ	Cadmium (EPA 7131)				
	Metals are Unfiltered		Lead (EPA 239.2 or 7421)				
	Modified Appendix 33		Silver (EPA 7761)				
Othe	Other: 8021 Bitau Free						

Date	Time	Temp (°C)	pH (SU)	Sp. Cond. (µmhos/cm)	Turbidity (NTU)	Notes
2/7/4	11:14	7.7	4.84	14192		CIUNTY
1.0						

COMMENTS:

5

	eld S	ampling Data	Sheet
Kingston, New Yock			
GENERAL INFORMATION:			
Well No: MW175& Date: 5	<u>,</u> 2,	Perso	nnel: <u>Kuß g</u>
PURGING:			
Reference Depth To Bottom (DTBr) 21.49) ft.	Start: 1434	Stop: 1438
Measured Depth to Bottom (DTBm) 21-80) ft.	Note: Use Reference Dept	to Bottom for calculations
Depth to Water (DTW): 846	ft.	Well Yields:	Dies 🛛 No
Target Volume: (0.37	gal.	Water Contained:	Tres TNo
Actual Volume: (0 -50	gal.	DTW After Purge:	8.52 ft.
PID: Background:	Purg	ing:	Not Applicable
Purge Method		Rate	Equipment ID
Bailer			DedEQ
D Peristaltic Pump		<u></u>	
U Well Wizard			
American Sigma			
Bladder Pump			
□ Submersible			<u> </u>
<u>SAMPLING</u> :			
Sample ID: KO175	\$	10526	G
Sample Time: Start: 1940	Stop	1444	55 C
Duplicate ID:	r) /	++++-	
Sampling Method: Ø Baile	er rican S	Sigma 🗍	Well Wizard Tap
COMMENTS: Signature: D	5/24 ate:	QA/QC Review:	<u>CZS</u> Date: <u>8125</u>]11

Ana York	lysis	Request Form
er: <u>1755</u>		Date: 5 1 241 11
ORY:		
IBM - East Fishkill		
EnviroTest		
Other:		
SREQUESTED: 8010, Freon 113, Freon 123a Phenols (total) (EPA 420.1) Metals are Filtered Metals are Unfiltered Modified Appendix 33 r: <u>802(Halog</u>		Antimony (EPA 200.7 or 6010A) Arsenic (EPA 206.2 or 7060A) Cadmium (EPA 7131) Lead (EPA 239.2 or 7421) Silver (EPA 7761)
	York Ana York er:	York Analysis York Analysis York Analysis Analys

Date	Time	Temp (°C)	pH (SU)	Sp. Cond. (µmhos/cm)	Turbidity (NTU)	Notes
5/20/1	1443	189	7.48	4962		Clarg

COMMENTS:

002474

Fi	eld San	pling Data	Sheet			
Kingston, New York						
GENERAL INFORMATION:						
Well No: MW175 Date: 211314 Personnel: JAR 9						
<u>PURGING</u> :	<u> </u>					
Reference Depth To Bottom (DTBr) 2(19 A. St	urt: 14:25	Stop: 14.30			
Measured Depth to Bottom (DTBm) 21.7	U ft. Not	e: Use Reference Depti	to Bottom for calculations			
Depth to Water (DTW): 7.52	fL W	ell Yields:	Thes INo			
Target Volume: 683	gal. Wa	ter Contained:	I'Yes ONO			
Actual Volume: 7.00	gal DI	W After Purge:	fL_			
PID: Background:	Purging:	· · · ·	Not Applicable			
Purge Method	R	ate	Equipment ID			
Bailer			Veota			
Peristaltic Pump	<u> </u>					
U Well Wizard			<u> </u>			
American Sigma						
🗇 Bladder Pump						
Submersible		·····	- <u></u>			
SAMPLING:						
Sample ID: 130175	śl	0913	G			
Sample Time: Start: 1433	Stop:	14.38				
Duplicate ID:	Duplicate ID:					
Sampling Method: Bailer D Well Wizard						
<u>COMMENTS:</u>						
Signature: D	(13/1) late:	_QA/QC Review:	Date:			

Kingston, New	VYork Ana	alysis	Request Form
Well Numb	per:		Date: <u>9/13/1</u>
LABORAT	ORY:		
D	IBM - East Fishkill		
9	EnviroTest		
	Other:		
ANALYSE	<u>S REQUESTED</u> :		
	8010, Freon 113, Freon 123a		Antimony (EPA 200.7 or 6010A)
	Phenols (total) (EPA 420.1)		Arsenic (EPA 206.2 or 7060A)
	Metals are Filtered	σ	Cadmium (EPA 7131)
	Metals are Unfiltered		Lead (EPA 239.2 or 7421)
	Modified Appendix 33		Silver (EPA 7761)
Othe	BULLBHAUR	-	

Date	Time	Temp (*C)	pH (SU)	Sp. Cond. (µmhos/cm)	Turbidity (NTU)	Notes
9/13/11	1437	19.0	751	4980-		Clerry
						·

<u>COMMENTS:</u>

	≜ ≣ ₹ <u></u> F	ield S	ampling Data	Sheet
	GENERAL INFORMATION:			
	Well No: MWINES Date: 2	13	/ 11 Perso	nnel: <u>9 1</u> ~
	PURGING:			-
	Reference Depth To Bottom (DTBr) 15.4	L A.	Start: 1330	Stop: 1340
¥	Measured Depth to Bottom (DTBm) 15 H() ft.	Note: Use Reference Depti	to Bottom for calculations
	Depth to Water (DTW): 84	U AL	Well Yields:	ØYes/ DNo
	Target Volume: 3.45	gal	Water Contained:	Tres ONo
	Actual Volume: 4.00	gal	DTW After Purge:	<u>40</u> ft
	PID: Background:	Purg	ing:	Not Applicable
				1
	Purge Method		Rate	Equipment ID
	Bailer			praca
	Peristaltic Pump			
	🖸 Well Wizard			
	American Sigma	·	·	
	🗇 Bladder Pump			
	□ Submersible			
	SAMPLING:		·	
	Sample ID: KOU76	\$ 1	0203	6
	Sample Time: Start: 1345	Stop:		
	Duplicate ID:	NA	-1-1-1-	
	Sampling Method: 🛛 Bail	er		Well Wizard
	COMMENTS:	erican S	igma 🗖	Тар
	Signature: I	Date: 13	QA/QC Review:	CES Date: 8/24/11

Kingston, New	An:	lysis	Request Form
Well Numb	er:763		Date: $2/3/1$
LABORAT	<u>ORY</u> :		
	IBM - East Fishkill		
G	EnviroTest		
	Other:		
ANALYSES	<u>S REQUESTED</u> :		
	8010, Freon 113, Freon 123a		Antimony (EPA 200.7 or 6010A)
	Phenols (total) (EPA 420.1)	Ο	Arsenic (EPA 206.2 or 7060A)
	Metals are Filtered	Ο	Cadmium (EPA 7131)
	Metals are Unfiltered		Lead (EPA 239.2 or 7421)
	Modified Appendix 33		Silver (EPA 7761)
Othe	er:8021.51+a11.F	rzeni	

Date	Time	Тетр (*С)	pH (SU)	Sp. Cond. (µmhos/cm)	Turbidity (NTU)	Notes
2/3/11	1.349	j5.2	7.19	277.7		HEizy
•						3

* Initial DTB was 14.65-Weighted tape used to get hard bottom- will be redeveloped at 002420

	·		
	Field S	ampling Data	Sheet
Kingson, New York			· ·
GENERAL INFORMATION:			
Well No: MW 1765 Date:	5,26	Perse	onnel: <u>} kw</u>
PURGING:			
Reference Depth To Bottom (DTBr) 15	Ula ft.	Start: 448	Stop: 455
Measured Depth to Bottom (DTBm)	5.35 r.	Note: Use Reference Dep	th to Bottom for calculations
Depth to Water (DTW):	05 r	Well Yields:	effes [] No
Target Volume: 4-60) gal	Water Contained:	Dies 🛛 No
Actual Volume: 5-0() gal.	DTW After Purge:	(0.43 ft.
DTD. Reckensunde	Rund		T Mat Analizable
FID: Buckground:	Turgi	ing.	
Purge Method		Rate	Equipment ID
D Bailer			Ded EQ
Peristaltic Pump			
U Well Wizard			· · · · · · · · · · · · · · · · · · ·
American Sigma			
Bladder Pump			
Submersible			
SAMPLING:			
Sample ID: KO170	051	0526	G
Sample Time: Start: 1458	Stop:	503	
Duplicate ID: KOLT(6 3]	0526	D
Sampling Method: Z Ba	ailer	σ	Well Wizard
	merican Si	igma 👘 🗖	Tap
COMMENTS: Signature:	S/24	CA/OC Review	CES Date: 8/25/
			Date

Kingston, New Yo	Ana Ana	lysis	Request Form
Well Number	: 176 ŝ		Date: 5 ,26, 4
LABORATOP	<u> </u>		
	BM - East Fishkill		
ম য	EnviroTest		
	Other:		
ANALYSES H	REQUESTED:		
	8010, Freon 113, Freon 123a		Antimony (EPA 200.7 or 6010A)
	Phenols (total) (EPA 420.1)	σ	Arsenic (EPA 206.2 or 7060A)
	Metals are Filtered		Cadmium (EPA 7131)
	Metals are Unfiltered		Lead (EPA 239.2 or 7421)
	Modified Appendix 33	σ	Silver (EPA 7761)
Other:	8021Halug	·	

Date	Time	Temp (°C)	pH (SU)	Sp. Cond. (µmhos/cm)	Turbidity (NTU)	Notes
5/26/11	1502	163	7.20	10350		cion

	Field S	ampling Data	Sheet
Kingston, New York			
FENERAL INFORMATION:			
Well No: Mw 1765 Date:	9,13	/ 1(Pers	onnel: <u>JAP 9</u>
URGING:			
Reference Depth To Bottom (DTBr) 5	-46 A	Start: 14:08	Stop: 14:13
Measured Depth to Bottom (DTBm)	2-3 ft.	Note: Use Rejerence Dep	th to Bottom for calculations
Terret Volume: 501	<u>/ </u>	Water Contained:	Dies LINO
Actual Volume: 5.50	gal	DTW After Purge:	5.48 ft.
			- /
PID: Background:	Purg	ing:	Not Applicable
Purge Method		Rate	Equipment ID
Bailer			Ded CQ.
Peristaltic Pump			
Bladder Pump			
SAMPLING:			
Sample ID: KOITO	e \$	0913	G
S-1.7 St. 111.15		1420	
Sample Ilme: Start: 14/1/	Stop:	1700	
Duplicate ID:	-NP		
Sampling Method: D B	ailer merican S	igma 🖸	Well Wizard
<u>COMMENTS:</u>	ali	3/11	
Signature:	Date:	QA/QC Review	: Date:

Kingston, New	Ana Ana York	lysis	Request Form
Well Numb	er: 1765		Date: 9,13, 4
LABORAT	<u>ORY</u> :		
	IBM - East Fishkill		
9	EnviroTest		
	Other:		
ANALYSES	S REQUESTED:		
σ	8010, Freon 113, Freon 123a		Antimony (EPA 200.7 or 6010A)
	Phenols (total) (EPA 420.1)		Arsenic (EPA 206.2 or 7060A)
	Metals are Filtered		Cadmium (EPA 7131)
σ	Metals are Unfiltered		Lead (EPA 239.2 or 7421)
	Modified Appendix 33		Silver (EPA 7761)
Othe	er: 802 Bitall Fran	<u> </u>	

Date	Time	Тетр (°С)	pH (SU)	Sp. Cond. (µmhos/cm)	Turbidity (NTU)	Notes
9/3/11	1419	16.4	7.18	1044		Clear
				-		· ·

			· · · · · · · · · · · · · · · · · · ·
	eld S	ampling Data	Sheet
GENERAL INFORMATION:	_		<u>^</u>
Well No: <u>MW177</u> \$ Date: <u>2</u>	1.3	<u>/ (</u> Perso	onnel:
PURGING:			
Reference Depth To Bottom (DTBr) 16.8	2.ft	Start: 355	Stop: 1460
Measured Depth to Bottom (DTBm)	6938	Note: Use Reference Dept	h to Bottom for calculations
Depth to Water (DTW): 10.19 5 Buy	D ft.	Well Yields:	Effes INO
Target Volume: 3.24 444	gal.	Water Contained:	I'Yes INO
Actual Volume: 4-0V	gaL	DTW After Purge:	12.97 ft.
PID: Background:	Purg	ing:	Not Applicable
Purge Method		Rate	Equipment ID
Bailer			DedEQ
Peristaltic Pump			×
U Well Wizard			·
C American Sigma			
Bladder Pump			
			×
<u>SAMPLING</u> :		• • •	
Sample ID: KON77	Ş.	0203	6
Sample Time: Start: 1403	Stop	: 1409	
Duplicate ID:	NE	++++-	E
Sampling Method:	ricon S	lianna 🗖	Well Wizard
COMMENTS:	2/3/		LEL Datas 8/24/11
		<i>412 40 x4116</i>	y 2 anny

Kingston, Nev	Ana Ana York	alysis	Request Form
Well Numb	per:77\$		Date: 2,3,4
LABORAT	ORY:		
	IBM - East Fishkill		
Ū	EnviroTest		
	Other:		
ANALYSE	<u>SREQUESTED</u> : 8010 Freen 113 Freen 123a	п	Antimony (EPA 200.7 or 6010A)
Ē	Phenols (total) (EPA 420 1)	Ē	Amenia (EPA 206.2 or 7060A)
ā	Metals are Filtered	Ē	Cadmium (EPA 7131)
Ē	Metals are Infiltered	П	Lead (EPA 239 2 or 7421)
	Modified Appendix 33	٥	Silver (EPA 7761)
Othe	er: 8021BHallFr	Ta	

Date	Time	Temp (°C)	pH (SU)	Sp. Cond. (µmhos/cm)	Turbidity (NTU)	Notes
2/3/1	1408	11.4	7.37	1411/1		Clusy
						· · · · · · · · ·

COMMENTS:

002421

			······
i i i i i i i i i i i i i i i i i i i	'ield S	Sampling Data	a Sheet
Kingston, New York			
GENERAL INFORMATION:			
Well No: <u>MW177</u> Date: <u>5</u>	, 26	Pers	onnel:
Peference Denth To Bottom (DTBr)	Q7 A	Starte 15 M.	Store 15-17
Measured Depth to Bottom (DTBr)	97 A	Note: Use Reference Der	stop: 15-12
Depth to Water (DTW): 7 %	H A.	Well Yields:	Extes (INo
Target Volume:	/ gal.	Water Contained:	OYes ONO
Actual Volume: 4.50	gal.	DTW After Purge:	9.37 ft.
PID: Background:	Purg	ing:	De Not Applicable
Purge Method		Rate	Equipment ID f)r L EQ
SAMPLING:			
Sample ID: $K \square \square$	15 (@ 526	G
Sample Time: Start: 15 (5	Stop	1521	
Duplicate ID:	NN	+ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$	
Sampling Method: 🛛 Bail	ler		Well Wizard
Am	erican S	igma 🗖	Тар
COMMENTS:	5/26 Date:	() QA/OC Review	- CES Date: 8/25/11
\int			

Kingston, New	Anz	lysis	Request Form
Well Numb	er: _ 1775		Date: $5, 24, 4$
LABORAT	<u>ORY</u> :		
	IBM - East Fishkill		
g	EnviroTest		
σ	Other:		
ANALYSES	S REQUESTED:		
	8010, Freon 113, Freon 123a	σ	Antimony (EPA 200.7 or 6010A)
	Phenols (total) (EPA 420.1)		Arsenic (EPA 206.2 or 7060A)
	Metals are Filtered		Cadmium (EPA 7131)
σ	Metals are Unfiltered		Lead (EPA 239.2 or 7421)
	Modified Appendix 33	Ο	Silver (EPA 7761)
Othe	r: 8031 Halog	.′ •	

FIELD PARAMETERS:

Date	Time	Temp (°C)	pH (SU)	Sp. Cond. (µmhos/cm)	Turbidity (NTU)	Notes
5/26/11	1520	189	1.35	990		Harry
)

002476

<u>COMMENTS:</u>

-

Fi	eld S	ampling Data	Sheet
GENERAL INFORMATION:			
Well No: MWITTS Date: 9	<u>/ l</u>	311 Perso	nnel: <u>[]</u> JAn
PURGING:			
Reference Depth To Bottom (DTBr) 16.82	2/ fL	Start: 1345	Stop: 1350
Measured Depth to Bottom (DTBm) 16.9	(). ft .	Note: Use Reference Dept	to Bottom for calculations
Depth to Water (DTW): 7.0(, ft.	Well Yields:	Tes INO
Target Volume: 4,77	gal	Water Contained:	□Yes ØNo
Actual Volume: 500	gal.	DTW After Purge:	7.18 ft.
PID: Background:	Purg	ing:	VNot Applicable
Purge Method		Rate	Equipment D
-D Bailer	<u></u>		DEDEA
Peristaltic Pump			
🗇 Well Wizard			
American Sigma			
Bladder Pump			
	-		
<u>SAMPLING</u> :			
Sample ID: KOUT77	\$.	6913	G
Sample Time: Start: 355	Stop:	1359	
Duplicate ID:	NP		3
Sampling Method: D Ame	er rican S	igma 🛛	Well Wizard Tap
<u>COMMENTS</u> :	9/13/		•
Signature: D	ate:	QA/QC Review:	Date:

Kingston, New	Image: Second state Image: Analysis Image: Second state Image: Analysis Image: Second state Image: Analysis	lysis	Request Form
Well Numb	er: 1775		Date:
LABORAT	<u>ORY</u> :		
	IBM - East Fishkill		
Ū	EnviroTest		
σ	Other:		
ANALYSE	S REQUESTED:		
σ	8010, Freon 113, Freon 123a	σ	Antimony (EPA 200.7 or 6010A)
	Phenols (total) (EPA 420.1)		Arsenic (EPA 206.2 or 7060A)
	Metals are Filtered		Cadmium (EPA 7131)
	Metals are Unfiltered		Lead (EPA 239.2 or 7421)
	Modified Appendix 33		Silver (EPA 7761)
Othe	er: <u>8021BHallFra</u>	<u>~</u> ,	

Date	Time	Temp (°C)	pH (SU)	Sp. Cond. (µmhos/cm)	Turbidity (NTU)	Notes
9/13/11	1355	18-9	7.37	998		Hazy
				-		

002532

Kingston, New York	eld S	ampling Data	Sheet
GENERAL INFORMATION:			
Well No: <u>MW178</u> S Date: <u>2</u>	13	/ [] Perso	onnel: <u>Sh</u>
PURGING:		<u></u>	
Reference Depth To Bottom (DTBr) \ ()	<u>} ft.</u>	Start: 1514	Stop: 15-20
Measured Depth to Bottom (DTBm)	3 ft.	Note: Use Reference Dept	th to Bottom for calculations
Depth to Water (DTW): 10.18	ft.	Well Yields:	ØYes ØNo
Target Volume: 3.15	gaL m1	DTW After Durget	1040 A
Actual Volume: 4.00	gar	DIW Alter Furge:	10.90 1
PID: Background:	Purg	ing:	Not Applicable
Purge Method		Rate	Equipment ID
🛛 Bailer		· · · · · · · · · · · · · · · · · · ·	
Peristaltic Pump	<u> </u>		<u> </u>
🗇 Well Wizard			
🖸 American Sigma			
🗇 Bladder Pump			
□ Submersible			
SAMPLING:			
Sample ID: KOU78	\$	0Z03	G
Sample Time: Start: 1523	Stop	1527	
Duplicate ID:	NI		
Sampling Method:	er ricen S	Norma I	Well Wizard Tan
<u>COMMENTS:</u>	2/2/		
Signature: D	ate: 1	QA/QC Review	: <u>CES</u> Date: <u>31241</u> 11
\bigcirc			

. .

Kingston, New Y	Ana	lysis	Request Form
Well Number	<u> </u>		Date: 2/3/11
LABORATO	<u>RY</u> :		
	IBM - East Fishkill		
T	EnviroTest		
	Other:		
ANALYSES	REQUESTED:		
	8010, Freon 113, Freon 123a		Antimony (EPA 200.7 or 6010A)
	Phenois (total) (EPA 420.1)		Arsenic (EPA 206.2 or 7060A)
	Metals are Filtered		Cadmium (EPA 7131)
	Metals are Unfiltered		Lead (EPA 239.2 or 7421)
	Modified Appendix 33		Silver (EPA 7761)
Other	: BOZIBHAUFE	<u>dr</u>	

FIELD PARAMETERS:

Date	Time	Temp (*C)	pH (SU)	Sp. Cond. (µmhos/cm)	Turbidity (NTU)	Notes
2/3/11	1526	11.1	7,0U	389-6		Crear

<u>COMMENTS</u>:

	eld S	ampling Data	Sheet
$\frac{GENERAL INFORMATION}{Well No: M\omega 78^{\circ} Date: 5$	126	9/ Pers	onnel: <u>Cfliv</u>
PURGING:			
Reference Depth To Bottom (DTBr)	<u>3</u> €	Start: (1) 30	Stop: 1035
Measured Depth to Bottom (DTBm) 16.7	5 ft.	Note: Use Reference Dep	th to Bottom for calculations
Terret Volume: 275		Water Contained:	TYes Otho
Actual Volume: 4-0/1	gal	DTW After Purge:	8-98 ft.
PID: Background:	Purg	ing:	Not Applicable
Purge Method		Rate	Equipment ID Ded EQ
Peristaltic Pump			
🗇 Well Wizard		<u> </u>	
I American Sigma			
🗇 Bladder Pump			
□ Submersible			
SAMPLING: Sample ID: K. Q (78 Sample Time: Start: 1040	ج Stop:	16526 1044	G
Duplicate ID:	NC	\	
Sampling Method: D Baile	er rican S	igma 🖸	Well Wizard Tap
<u>COMMENTS</u> : Signature:	5/2(./ ate:	QA/QC Review	: <u>CES</u> Date: <u>8125</u> 11

Kingston, New	An:	llysis	Request Form
Vell Numb	er: 1785		Date: 5 , 26, 11
ABORAT	<u>ORY</u> :		
	IBM - East Fishkill		
g	EnviroTest		
σ	Other:		
NALYSES	S REQUESTED:		
	8010, Freon 113, Freon 123a		Antimony (EPA 200.7 or 6010A)
	Phenols (total) (EPA 420.1)		Arsenic (EPA 206.2 or 7060A)
σ	Metals are Filtered		Cadmium (EPA 7131)
σ	Metals are Unfiltered		Lead (EPA 239.2 or 7421)
	Modified Appendix 33		Silver (EPA 7761)

۰.

.

Date	Time	Temp (°C)	pH (SU)	Sp. Cond. (µmhos/cm)	Turbidity (NTU)	Notes
5/26/11	1045	11.6	6.57	630		Clam

002462

	Field S	ampling Data	1 Sheet	_
GENERAL INFORMATION	5			
Well No: MW 1785 Da	ate: 9,13	/ () Pers	onnel: The	4
PURGING:			· · · · · · · · · · · · · · · · · · ·	_
Reference Depth To Bottom (DT	Br) 16.63 ft	Start: 202	Stop: 2.15	
Measured Depth to Bottom (DTI	Bm) 16.72 ft.	Note: Use Reference Dep	th to Bottom for calculations	
Depth to Water (DTW):	8.39 ft.	Well Yields:	Tres DNo	
Target Volume: 4.(DC gal	Water Contained:	I'res O'No	
Actual Volume: 4.	51) gal	DTW After Purge:	8.39 f	t.
PID: Background:	Purg	ing:	Not Applicable	
Purge Method		Rate	Equipment ID Ded EQ	
Peristaltic Pump				
Well Wizard				
American Sigma				
I Bladder Pump				
Submersible			· · · · · · · · · · · · · · · · · · ·	
Sample ID: KOI	785 20 Stop:	Q q 1 3 1225	F	
Duplicate ID:		~/~/~	E-	
Sampling Method:	Bailer J American S	igma 🗍	Well Wizard Tap	
<u>COMMENTS:</u> Signature:	9(13) Date:	QA/QC Review	Date:	

Kingston, New	Ana	lysis	Request Form	
Well Numb	er:178\$		Date: 2,13,4	- 11 112 -
LABORATO	DRY: BM - East Fishkill EnviroTest			
ANALYSES	TREQUESTED:			
0	8010, Freon 113, Freon 123a Phenols (total) (EPA 420.1)		Antimony (EPA 200.7 or 6010A) Arsenic (EPA 206.2 or 7060A)	
	Metals are Filtered		Cadmium (EPA 7131)	
0	Metals are Unfiltered Modified Appendix 33	٥	Lead (EPA 239.2 or 7421) Silver (EPA 7761)	×
Othe	r: 8021 BH	tal I Fr	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	

Date	Time	Temp (°C)	pH (SU)	Sp. Cond. (µmhos/cm)	Turbidity (NTU)	Notes
9/13/11	12.24	11.5	6.59	6-663		<u>.</u>

<u>COMMENTS</u>:
			<u></u>				
Left Fid	eld S	ampling Data	Sheet				
Kingston, New York							
GENERAL INFORMATION:							
Well No: <u>MW180</u> ,5 Date: <u>2</u>	13	/ \ Perso	onnel: <u>Gy</u>				
PURGING:			U				
Reference Depth To Bottom (DTBr) 8-23	2_ fL	Start: 15:32	Stop: 1538				
Measured Depth to Bottom (DTBm) 18 48	ft.	Note: Use Reference Dept	h to Bottom for calculations				
Depth to Water (DTW):	ft.	Well Yields:	Tes 🗇 No				
Target Volume: 5.42	gal.	Water Contained:	Tes INO				
Actual Volume: 5.50	gal.	DTW After Purge:	8.71 ft.				
PID: Background:	Purg	ing:	Not Applicable				
Purge.Method		Rate	Equipment ID				
D Bailer		<u>.</u>	NEWCO				
Peristaltic Pump			<u></u>				
🗖 Well Wizard							
American Sigma		······································					
🗖 Bladder Pump			•				
□ Submersible							
<u>SAMPLING</u> :			· .				
Sample ID: 180180	5 1	0203	G				
Sample Time: Start: 1546	Stop:	1545					
Duplicate ID:	NA	+					
Sampling Method: Baile	r tican S	imma 🗌	Well Wizard				
COMMENTS:	2/2	/	rah				
Signature: Da	ate: <u>3</u>	QA/QC Review:	<u>CES</u> Date: <u>81241</u> 1				

Kingston, New York	Request Form	
Well Number:		Date: 2/3/11
LABORATORY:		
🗇 🛛 IBM - East Fishkill		
EnviroTest		
Other:		······································
ANALYSES REQUESTED:		
🖸 8010, Freon 113, Fre	n 123a 🛛	Antimony (EPA 200.7 or 6010A)
D Phenols (total) (EPA	20.1)	Arsenic (EPA 206.2 or 7060A)
Metals are Filtered		Cadmium (EPA 7131)
Metals are Unfiltered		Lead (EPA 239.2 or 7421)
Modified Appendix		Silver (EPA 7761)
Other:	all 52	

Date	Time	Temp (°C)	pH (SU)	Sp. Cond. (µmhos/cm)	Turbidity (NTU)	Notes
2/3/11	1544	9.8	7.05	436.8		Clour

002426

<u>COMMENTS:</u>

	<u></u>	ampling Data	Shoot
Kingston, New York	elu S	sampung Data	Sheet
GENERAL INFORMATION:			
Well No: <u>MW 180</u> S Date: <u>5</u>	126	Perso	nnel: <u>Luß</u>
PURGING:			
Reference Depth To Bottom (DTBr) 8.2	λft.	Start: 303	Stop: 307
Measured Depth to Bottom (DTBm) [8.4]	<u>f</u> t.	Note: Use Reference Dept	n to Bottom for calculations
Depth to Water (DTW): 5.85	ft.	Well Yields:	Offes INo
Target Volume: 6.64	gal.	Water Contained:	Offes () No
Actual Volume: 6.50	gal.	DTW After Purge:	7.75 #
PID: Background:	Purg	ing:	Not Applicable
Purge Method		Rate	Equipment ID
🛛 Bailer		<u> </u>	Dea EQ
Peristaltic Pump			· · ·
U Well Wizard			
American Sigma			
Bladder Pump			-
SAMPLING:			
Sample ID: KOLSO	5.1	@ 5 2 6	G
Sample Time: Start: 3:10	Stop	130 1314	
Duplicate ID:	NP	NALA	
Sampling Method: Ø Baile	rican S	imma 🗍	Well Wizard
<u>COMMENTS</u> :	5/26	/11	 •h
Signature: D	ate:	QA/QC Review:	CES Date: 912511
\bigcirc			

Kingston, New	Ana York	Analysis Request Form						
Well Numbe	er: (<u>80</u> \$		Date: 5,24,11					
LABORATO	<u>DRY</u> :							
0/	IBM - East Fishkill							
I	EnviroTest		• •					
σ	Other:							
<u>ANALYSES</u>	REQUESTED:							
	8010, Freon 113, Freon 123a		Antimony (EPA 200.7 or 6010A)					
	Phenols (total) (EPA 420.1)		Arsenic (EPA 206.2 or 7060A)					
	Metals are Filtered		Cadmium (EPA 7131)					
	Metals are Unfiltered		Lead (EPA 239.2 or 7421)					
	Modified Appendix 33		Silver (EPA 7761)					
Othe	r: 8021 Hawg							

Date	Time	Temp (°C)	pH (SU)	Sp. Cond. (µmhos/cm)	Turbidity (NTU)	Notes
5/20/11	1313	14.2	6.89	4991		Hazy

<u>COMMENTS</u>:

=

Fie Fie	eld S	ampling Data	Sheet				
Kingston, New York							
GENERAL INFORMATION:							
Well No: MW 180,5 Date: _9	, (3	<u>/_ll</u> Perso	nnel: <u>JARG</u>				
PURGING:							
Reference Depth To Bottom (DTBr) 8.2	ℓ£.	Start: 1305	Stop: 13-11				
Measured Depth to Bottom (DTBm) 1844	ft.	Note: Use Reference Dept	h to Bottom for calculations				
Depth to Water (DTW): 5.62	ft.	Well Yields:	ØYes DNo				
Target Volume:	gal.	Water Contained:	SYes IN0				
Actual Volume: 6.51)	gal.	DTW After Purge:	690 A.				
PID: Background:	Pure	ing:	Not Applicable				
	<u> </u>						
Purge Method		Rate	Equipment D				
Bailer			peore				
Peristaltic Pump							
🗖 Well Wizard	. <u> </u>		·				
American Sigma		<u> </u>					
🗇 Bladder Pump							
	<u>-</u> -						
SAMPLING:		<u> </u>					
Sample ID: KOL80	́к,	0913	6				
Sample Time: Start: 13:15	Stop:	[320					
Duplicate ID:	NG	tht					
Sampling Method: Baile	Sampling Method: Bailer						
<u>COMMENTS</u> :	ican S		тар				
Signature: Di	9[U] ate:	QA/QC Review:	Date:				

Kingston, New	Ana York	lysis	Request Form
Well Numb	er: <u>Mul 180 \$</u>		Date: 9 113, 11-
	IBM - East Fishkill EnviroTest Other:		
ANALYSES	S. <u>REOUESTED</u> : 8010, Freon 113, Freon 123a Phenols (total) (EPA 420.1) Metals are Filtered Metals are Unfiltered Modified Appendix 33		Antimony (EPA 200.7 or 6010A) Arsenic (EPA 206.2 or 7060A) Cadmium (EPA 7131) Lead (EPA 239.2 or 7421) Silver (EPA 7761)
Othe	r: <u>SO2IBHall Fran</u>	`	

ъ.,

Date	Time	Temp (°C)	pH (SU)	Sp. Cond. (µmhos/cm)	Turbidity (NTU)	Notes
9/13/11	1319	14.1	6.93	48.3h		Hazy

002530

Fi	ield S	Sampling Data	Sheet
Kingston, New York			
GENERAL INFORMATION:			
Well No: Mu 8 5 Date: 2	<u>, 3</u>	/ l Perso	nnel: <u>C</u> ur
PURGING:			
Reference Depth To Bottom (DTBr)	5) ft.	Start: 13:10	Stop: 13015
Measured Depth to Bottom (DTBm)	ft.	Note: Use Reference Dept	h to Bottom for calculations
Depth to Water (DTW): JOL	ft.	Well Yields:	₽Yes □No
Target Volume: 4-05	gal.	Water Contained:	I'ves VI No
Actual Volume: 5-00	gal	DTW After Purge:	8-09 ft.
PID: Background:	Purg	ing:	Not Applicable
Purge Method		Rate	Equipment ID
			va ca
D Peristaluc Pump			<u></u>
American Sigma		· · · · · · · · · · · · · · · · · · ·	
□ Bladder Pump。		· · ·	
		· · · · · · · · · · · · · · · · · · ·	
SAMPLING:		**	
Sample ID: Kall VI	e l	0703	6
			6-
Sample Time: Start: 13-18	Stop:		
Duplicate ID:	NA		
Sampling Method: Ø Baile	r rican Si	igma 🗖	Well Wizard Tap
COMMENTS: Signature: D	2/3/1· ate:	QA/QC Review:	CES Date:

.

•

Kingston, New York	Ana	lysis	Request Form
Well Number:	1813		Date: 2/3/14
<u>LABORATORY</u> :			
IBM - E	East Fishkill		
D Envirol	Test		
Other:			
ANALYSES REQUE	<u>STED</u> :	_	
U 8010, F	reon 113, Freon 123a		Antimony (EPA 200.7 or 6010A)
Phenols	(total) (EPA 420.1)		Arsenic (EPA 206.2 or 7060A)
Metals :	are Filtered		Cadmium (EPA 7131)
Metals :	are Unfiltered		Lead (EPA 239.2 or 7421)
🗖 Modifie	d Appendix 33		Silver (EPA 7761)
Other:	BUZIBIZUITSC	<u> </u>	

FIELD PARAMETERS:

Date	Time	Temp (*C)	pH (SU)	Sp. Cond. (µmhos/cm)	Turbidity (NTU)	Notes
2/3/11	1321	9.9	7.09	6924		Hazy
						,
						,

<u>COMMENTS</u>:

	ield S	ampling Data	Sheet
Kingston, New York			
GENERAL INFORMATION:			
Well No: <u>MW1816</u> Date: <u>5</u>	,26	/ (1 Perso	mnel: <u>Y</u>
PURGING:			
Reference Depth To Bottom (DTBr) 17.5	7 ft.	Start: 905	Stop: 910
Measured Depth to Bottom (DTBm) 7.10	8 ft.	Note: Use Reference Dept	h to Bottom for calculations
Depth to Water (DTW): (0-24	ft.	Well Yields:	Eles INO
Target Volume: 5.54	gal.	Water Contained:	ØYes ØNo
Actual Volume: 6.01)	gal,	DTW After Purge:	(j. 32 ft.
DID. Background	Burn		Net dealise the
TID: Duckground.	Turg	ing:	Not Applicable
Purge Method		Rate	Equipment ID
Bailer		······································	
Peristaltic Pump			
🖸 Well Wizard			······································
🗇 American Sigma			
Bladder Pump			
□ Submersible		<u> </u>	
SAMPLING:			•
Sample ID: $KOUSI$	51	0526	G
Q15		070	
Sample Time: Start:	Stop:	-120	
Duplicate ID:	Nn		7
Sampling Method: A Baile	er	П	Well Wizard
	rican Si	igma 🗍	Тар
<u>COMMENTS:</u>	-1		
Signature:	>\2\e ate:	OA/OC Review:	CES Date: 8/05/1
		.	· · · · ·

Kingston, New	VYork	alysis	Request Form
Well Numb <u>LABORAT</u>	per: <u> 8 3</u> <u>ORY</u> :		Date: 5 Rue M
	IBM - East Fishkill		
	EnviroTest		
	Other:		
ANALYSE	<u>S REQUESTED</u> :		
	8010, Freon 113, Freon 123a	σ	Antimony (EPA 200.7 or 6010A)
	Phenols (total) (EPA 420.1)		Arsenic (EPA 206.2 or 7060A)
	Metals are Filtered		Cadmium (EPA 7131)
σ	Metals are Unfiltered		Lead (EPA 239.2 or 7421)
	Modified Appendix 33		Silver (EPA 7761)
Othe	r: <u>8021 Halog</u>		

Date	Time	Тетр (°С)	pH (SU)	Sp. Cond. (µmhos/cm)	Turbidity (NTU)	Notes
5/26/4	919	13.2	-1.27	delm		Cleenzy
						3

<u>COMMENTS:</u>

002458

	Field Sampling Da	ta Sheet				
Kingston, New York	1 3			Kingston, New	v York	
GENERAL INFORMATION: Well No: $M\omega \hat{S}$ Date:	9/13/14 14	rsonnel: TAP S		Well Numb	oer:]	8 5
Date.	<u> </u>			LABORAT	<u>ORY</u> :	
PURGING:	······································	····			ВМ-Е	ast Fishl
Reference Depth To Bottom (DTBr)	17.57 ft. Start: 11:15	Stop: 22		J.	EnviroT	est
Measured Depth to Bottom (DTBm)	17 Leb ft. Note: Use Reference 1	Depth to Bottom for calculations			Other:	
Depth to Water (DTW): 5.	.58 ft. Well Yields:	Offes DNo		ANALYSE	S REOUE	STED.
Target Volume: 5.6	gal. Water Contained:	I'les ONo	·	<u> </u>	8010 Er	
Actual Volume: () /	00 gal DTW After Purge	≈ 5-58 ft.		п	Dhenola	(total) (
PID. Background	Puraina	Not Applicable		П	Metals	(Wal) (
TID: Dangionan	A #16805	B Nor Applicable		П	Metala	
Purge Method	Rate	Equipment ID			Modifie	
🛛 Bailer		DedEQ			Modifie	a Appen
Peristaltic Pump	·			Othe	er:	802
🗇 Well Wizard		·				
🗖 American Sigma						
Bladder Pump					_	
				FIELD PA	RAMETE	<u>RS</u> :
			z		1	
SAMPLING:				Date	Time	(°C)
Sample ID: KQ [8	3151091	3 G		9/13/11	1120	121
Sample Time: Start: 1125						<u>1 . (</u>
F						
Duplicate ID:	+-INIA					
Sampling Method:	Bailer	Well Wizard		<u>COMMEN</u>	<u>TS</u> :	
	American Sigma	J Tap				
	9/11					
Signature:	Date: QA/QC Revie	ew: Date:				

ingston, New	York An:	alysis	Request Form
ell Numb	er: 185		Date: <u>9 1 / 3 1 /1</u>
BORAT	<u>ORY</u> :		
	IBM - East Fishkill		
ď	EnviroTest		
	Other:		
ALYSES	SREQUESTED:		
σ	8010, Freon 113, Freon 123a		Antimony (EPA 200.7 or 6010A)
	Phenols (total) (EPA 420.1)	σ	Arsenic (EPA 206.2 or 7060A)
	Metals are Filtered		Cadmium (EPA 7131)
Ο	Metals are Unfiltered		Lead (EPA 239.2 or 7421)
	Modified Appendix 33		Silver (EPA 7761)
Othe	r: 8021 Bitall Fra	cor	

Date	Time	Temp (°C)	pH (SU)	Sp. Cond. (µmhos/cm)	Turbidity (NTU)	Notes
9/13/11	1129	13.1	7.24	991,2		Clary

	ield S	ampling Data	Sheet	
Kingston, New York				
GENERAL INFORMATION:				
Well No: <u>MW182</u> 5 Date: <u>2</u>	, 3	/ \\ Pers	onnel:	len
PURGING:				
Reference Depth To Bottom (DTBr) 2.0 (53 ft.	Start: 1500	Stop: 15	05
Measured Depth to Bottom (DTBm) 20	37 f .	Notes Use Reference Dep	th to Bottom for	calculations
Depth to Water (DTW): 10 (ct) fl.	Well Yields:	Dies	CT No
Target Volume: 4(2	gal.	Water Contained:	Tes	CT No
Actual Volume: 5.0C	gal.	DTW After Purge:	10:	70 ft.
PID: Background:	Purg	ing:	. IN Not .	Applicable
Purge Method Bailer		Rate	Equips	nent ID
Peristaltic Pump				
C well wizard				
				······
				
		<u> </u>		•••••
<u>SAMPLING</u> :				
Sample ID: KQ182	5	0203	6	
Sample Time: Start: 1507	Stop	15-11		
Duplicate ID:		JALL	6-	
Sampling Method: Ø Bail	er vricen S	iama 🗖	Well Wi	izard
	2/2		reh	
Signature: I	ate:	QA/QC Review	: <u>CES</u> D	ate: _ 412411

Kingston, New	An:	alysis	Request Form	
Well Numb	er: <u>82</u> \$		Date: <u>2/3/11</u>	
LABORAT	<u>ORY</u> :			
	IBM - East Fishkill			
<u>o</u> r	EnviroTest			
	Other:			
ANALYSES	<u>S REQUESTED</u> :			
	8010, Freon 113, Freon 123a		Antimony (EPA 200.7 or 6010A)	
σ	Phenols (total) (EPA 420.1)		Arsenic (EPA 206.2 or 7060A)	
	Metals are Filtered		Cadmium (EPA 7131)	
	Metals are Unfiltered		Lead (EPA 239.2 or 7421)	
	Modified Appendix 33		Silver (EPA 7761)	
Othe	er: <u>8021 Bittall</u>	Freu	, , , , ,	

	Date	Time	Temp (°C)	pH (SU)	Sp. Cond. (µmhos/cm)	Turbidity (NTU)	Notes
1	43/11	ISIU	6.0	7.03	357.2		Clear

<u>COMMENTS:</u>

002424

. ;

Field Sampling Data Sheet Field Sampling Data Sheet GENERAL INFORMATION: Well No: MW 182 S Date: 5 126 11 Personnel: 6 12 0.03 ft Start: 920 Stop: 934 Measured Depth To Bottom (DTBr) 20.03 ft New Use Reference Depth To Bottom (DTBr) 20.03 ft New Use Reference Depth to Bottom (DTBr) 20.32 ft New Use Reference Depth to Bottom (DTBr) 20.32 ft New Use Reference Depth to Bottom (DTBr) 20.32 ft New Use Reference Depth to Bottom for calculation Depth to Water (DTW): 3 (g() ft Well Yields: Cfree CNo Target Volume: 5 .58 gal Water Constanced: DTW after Purge: 8.76 ft Actual Volume: 6 .00 gal DTW After Purge: 8.76 ft 9.76 ft PID: Background: Purging: Ø Not Applicable Purge Method Rate Equipment ID Ø Bailer 0/d L Q 0/d L Q Ø Well Wizard 0 0.5 2 (g G; Sample ID: K @ 18 2 \$ stop: 951 951 Duplicate ID: American Sigma 951 Sampling Method: Ø Bailer Well Wizard OMMENTS: Guider Sigma Tap				
Field Sampling Data Sheet Kingdon, New York GENERAL INFORMATION: Well No: $M \cup [\& 2 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $				
GENERAL INFORMATION: GENERAL INFORMATION: Well No: $M \cup 182^{\circ}$ Date: $5/26/11$ Personnel: $1D/26/12$ Personnel: $D/26/12$ Personnel: $D/26$	EEFEVE	Field Sam	pling Data	Sheet
GENERAL INFORMATION: Well No: MW 182 S Date: 5 / 26 / 11 PURGING: Reference Depth To Bottom (DTBr) 20.03 ft. Start: 921 Stop: 934 Measured Depth to Bottom (DTBr) 20.32 ft. Near Use Reference Depth to Bottom (DTBr) 20.32 ft. Note: Use Reference Depth to Bottom (DTBr) 20.32 ft. Note: Use Reference Depth to Bottom (DTBr) 20.03 ft. Stop: 934 Measured Depth to Bottom (DTBr) 20.03 ft. Stop: 07.0 Target Volume: 5.58 gal. Water Contained: 07es 07ko Actual Volume: 6.00 gal. DTW After Purge: 8.716 ft PID: Background: Purging: 07kot Applicable Purge Method Rate Bailer 07d.22 Ord.2.0 07d.2.0 Purge Method Rate Bailer 07d.2.0 Well Wizard 05.2.6 Gample ID: 0.8.2.5 Sample ID: 0.9.51 Duplicate ID: 0.9.51 Duplicate ID: 0.9.51 American Sigma 0.751				
Well No: $\underline{M} \underline{W} \underline{8} 2 \ \ Date: \underline{5} \underline{26} H$ Personnel: $\underline{5} + \underline{26} H$ PURGING: Reference Depth To Bottom (DTBr) 20.03 ft. Start: $\underline{92} \underline{50p} : \underline{934} \underline{50p} \underline{50p}$	GENERAL INFORMATION:	_		
PURGING: Reference Depth To Bottom (DTBr) 20.03 ft. Start: 921 Stop: 934 Measured Depth to Bottom (DTBm) 20.32 ft. New Use Reference Depth to Bottom for calculation Depth to Water (DTW): 3 (cl), ft. Well Yields: Offer Offer Offer Offer Target Volume: 5.58 gal Water Contained: DYes Offer Target Volume: 6.00 gal DTW After Purge: 8.76 ft PID: Background: Purging: Ø Not Applicable Purge Method Rate Equipment ID Ø Bailer 0/d.CQ Offer Offer Purge Method Rate Equipment ID Ø Bailer 0/d.CQ Offer Offer Purge Method Rate Equipment ID Ø Bailer 0/d.CQ Offer Offer Bailer 0/d.CQ Offer Offer Ø Baider Pump 0 Submersible Sample ID: Sample ID: K @ 0/1 8 2 \$ 1 @ 5 2 \$ 6 \$ C_5 \$ Sampling Method: Ø Bailer Ø Duplicate ID: Maerican Sigma Tap	Well No: <u>MW 18</u> 25 Date:	5,26,	Perso	onnel: \
Reference Depth To Bottom (DTBr) 20.03 ft. Start: 924 Stop: 934 Measured Depth to Bottom (DTBm) 20.32 ft. Noes Use Reference Depth to Bottom for calculation. Depth to Water (DTW): 945 ft. Target Volume: 5.58 gal. Water Contained: DYes DNo Target Volume: 6.00 gal. DTW After Purge: 8.76 ft. PID: Background: Purging: Purge Method Rate Equipment ID Ø Bailer 0/d.C.Q 0/d.C.Q Peristaltic Pump 0/d.C.Q 0/d.C.Q Ø Well Wizard 0/d.C.Q 0/d.C.Q Bladder Pump 0/d.C.Q 0/d.C.Q Bladder Pump 0/d.C.Q 0/d.C.Q Sample ID: K.@@[82] Stop: 95] 0/d.C.G Sample ID: Start: 945 Stop: 95] Duplicate ID: Materican Sigma 1 Gampling Method: Bailer Well Wizard COMMENTS: 0 American Sigma 1	PURGING:			\bigcirc
Measured Depth to Bottom (DTBm) 20 32 ft. Note: Use Reference Depth to Bottom for celevitation. Depth to Water (DTW): 3 / 6(1) ft. Well Yields: DTwo Target Volume: 5.58 gal Water Contained: DTwo DTwo Actual Volume: 6.00 gal. DTW After Purge: 8.716 ft. PID: Background: Purging: D'Not Applicable Purge Method Rate Equipment ID Ø Bailer D'Not Applicable Image: Peristaltic Pump Image: Purge Method Rate Image: Method Rate Equipment ID Ø Bailer D'Not Applicable Image: Purge Method Image: Purge Method Image: Method Rate Equipment ID Image: Purge Method Image: Purge Method Image: Purge Method Rate Equipment ID Image: Purge Method Image: Purge Method Image: Purge Method Image: Purge Method Rate Equipment ID Image: Purge Method Image: Purge Method Image: Purge Method Image: Purge Method Rate Equipment ID Image: Purge Method Image: Purge	Reference Depth To Bottom (DTBr) 2/).03 ft. Star	rt 921,	Stop: 934
Depth to Water (DTW): $\Im \{g(), t. Well Yields: \Box Fas \Box No Target Volume: 5'.5\% gal Water Contained: \Box Fas \Box No Actual Volume: 6'.00 gal DTW After Purge: \Im Not Applicable PID: Background: Purging: \Im Not Applicable Purge Method Rate Equipment ID \Box Bailer \Im After Purge: \Im Not Applicable Purge Method Rate Equipment ID \Box Bailer \Im After Purge: \Im After Purge: \Box Well Wizard \Box \Box After Purge: \Box Muerican Sigma \Box \Box \Box Submersible \Box \Box fag: Sample ID: \Box [0] [8] [2] [5] [0] [5] [2] [6] [6] [6] [6] [6] [6] [6] [6] [6] [6$	Measured Depth to Bottom (DTBm) 2	0-32 ft. Note	u Use Reference Dept	th to Bottom for calculations
Target Volume: 5'.5% gal Water Constanced: DTer DNo Actual Volume: 6.00 gal. DTW After Purge: 8.716 f PID: Background: Purging: 9'Not Applicable Purge Method Rate Equipment ID Ø Bailer 0'A L Q Peristaltic Pump 0'A Applicable Well Wizard 0'A American Sigma Bladder Pump 0'A State Sample ID: K @ 18251@52.6.6 Sample ID: Stop: 951 Duplicate ID: Materican Sigma 1'A American Sigma Gampling Method: Ø Bailer Well Wizard COMMENTS: 0'A American Sigma Tap	Depth to Water (DTW):	6() ft. We	ll Yields:	Thes INO
Actual Volume: G.00 gal DTW After Purge: S.76 f PID: Background: Purging: Ø Not Applicable Purge Method Rate Equipment ID Ø Bailer Ø'd & Q Ø Peristaltic Pump Ø'd & Q Ø Well Wizard Ø'd & Q Ø Haider Pump Ø'd & Q Ø Baider Pump Ø'd & Q Ø Baider Pump Ø'd & Q Ø Submersible Ø'd & Q Sample ID: Ø'd & Q Ø Bailer Ø'd & Q Ø Bailer Ø'd & Q Ø Submersible Ø'd & Q Sample ID: Ø'd & Q Ø Bailer Well Wizard Ø American Sigma Tap	Target Volume: 5.58	gal Wat	ter Contained:	I'Yes DHO
PID: Background: Purging: Not Applicable Purge Method Rate Equipment ID Ø Bailer 01020 01020 Peristaltic Pump 01020 01020 Well Wizard 01000 01000 American Sigma 01000 01000 Bladder Pump 01000 01000 Sample ID: Xample Stop: 951 Duplicate ID: Xampling Method: 01000 Bailer 01000 01000 Gampling Method: 010000 01000 COMMENTS: 010000 01000	Actual Volume: 6-00	gal. DT	W After Purge:	8.76 ft.
Purge Method Rate Equipment ID Ø Bailer 0/d L Q Peristaltic Pump 0/d L Q Well Wizard 0 American Sigma 0 Bladder Pump 0 Submersible 0 Sample ID: K Ø 1825 05266 Gample ID: K Ø 1825 05266 Sample Time: Start: _045 Stop: _051 Duplicate ID: Ø Bailer Well Wizard Sampling Method: Ø Bailer Well Wizard OMMENTS: Ø Bailer Tap	BID. Background	Bundana	· · · · · · · · · · · · · · · · · · ·	Not Applicable
Purge Method Rate Equipment ID Ø Bailer 0/d L Q Peristaltic Pump	FID: Duckground.	Turging:	· · ·	Not Applicable
Ø Bailer Ord LQ Peristaltic Pump	Purge Method	Ra	ite	Equipment ID
Peristaltic Pump Well Wizard American Sigma Bladder Pump Submersible Sample ID: KOMENTS:	D Bailer			Deala
Well Wizard American Sigma Bladder Pump Submersible SAMPLING: Sample ID: K@182\$05266 Sample Time: Start: 945 Stop: 951 Duplicate ID: KAPA Stop: 951 Duplicate ID: KAPA Stop: 951 Comments: Bailer Under Start Sta	🗇 Peristaltic Pump			
American Sigma Bladder Pump Submersible Sample ID: KOI 8 2 5 0 5 2 6 G Sample ID: Sample Time: Start: 945 Stop: 951 Duplicate ID: Komple Time: Sampling Method: Bailer COMMENTS:	🗖 Well Wizard			
Bladder Pump	🗖 American Sigma	<u> </u>		
Submersible Sample ID: K01825065266 Sample ID: K01825065266 Sample Time: Start: 945 Duplicate ID: K044 Staple Time: Sampling Method: Bailer Well Wizard COMMENTS: Comments: Comments:	🗇 Bladder Pump			
SAMPLING: Sample ID: K01825065 Sample Time: Start: 945 Stop: 951 Duplicate ID: K044 Bailer Sampling Method: Ø Bailer Well Wizard COMMENTS: COMMENTS: O Comments Comments	Submersible			
Sample ID: KOI8250526G Sample Time: Start: 945 Stop: 951 Duplicate ID: KAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	SAMDI INC.			
Sample ID: KOISZGG Sample Time: Start: <u>945</u> Stop: <u>951</u> Duplicate ID: <u>Valuet Manuelle</u> Sampling Method: Ø Bailer Ø Well Wizard COMMENTS: O American Sigma Ø Tap				 .
Sample Time: Start: <u>945</u> Stop: <u>951</u> Duplicate ID: <u>HALANA</u> Sampling Method: <u>D</u> Bailer <u>D</u> Well Wizard COMMENTS: <u>American Sigma</u> <u>Tap</u>	Sample ID: $K[0] [1] \delta$	2510	0526	G
Duplicate ID:	Sample Time: Start: <u>94</u> 5	Stop:	951	
Sampling Method: Image: Bailer Image: Well Wizard COMMENTS: Image: American Sigma Image: Tap	Duplicate ID:	MAL		
COMMENTS:	Sampling Method: 🖸 E	ailer	σ	Well Wizard
COMMENTS:		merican Sigma	Ū	Тар
	<u>COMMENTS:</u>	d		
Signature: Date: 26 11 QA/QC Review: CES Date: 812	Signature:		_QA/QC Review:	CES Date: 8125

Kingston, New	VYork	Analysis Request Form			
Well Numb	her:		Date: 5 126-11		
LABORAT	<u>ORY</u> :				
	BM - East Fishkill				
Ø	EnviroTest				
	Other:				
ANALYSES	S REQUESTED:		· · · ·		
σ	8010, Freon 113, Freon 123a		Antimony (EPA 200.7 or 6010A)		
σ	Phenols (total) (EPA 420.1)	σ	Arsenic (EPA 206.2 or 7060A)		
σ	Metals are Filtered		Cadmium (EPA 7131)		
	Metals are Unfiltered		Lead (EPA 239.2 or 7421)		
σ	Modified Appendix 33		Silver (EPA 7761)		
Othe	er: <u>8021 Halog</u>				

Date	Time	Temp (°C)	pH (SU)	Sp. Cond. (µmhos/cm)	Turbidity (NTU)	Notes
5/24/11	950	11.7	6.58	303.9		Clou
×.						· · · · · · · · · · · ·

COMMENTS:

:

E Fie	eld Sampling Data	a Sheet
Kingston, New York		
GENERAL INFORMATION:		
Well No: <u>MW182</u> 5 Date: <u>9</u>	<u>1[3]11</u> Pers	onnel: JAR g
PURGING:		
Reference Depth To Bottom (DTBr) 20.0	3 ft. Start: 1140	Stop: 11.46
Measured Depth to Bottom (DTBm) Z0.3	ft. Note: Use Reference Dep	oth to Bottom for calculations
Depth to Water (DTW): 1.73	ft. Well Yields:	Øles ØNo
Target Volume: 601	gal Water Contained:	OYes ONo
Actual Volume: (p.50	gal. DTW After Purge:	/- /¥ ft.
PID: Background:	Purging:	Not Applicable
Purge Method	Rate	Equipment ID
	<u> </u>	
C American Sigma		
		a.c.t.
SAMPLING:		
Sample ID: KQ182	\$ [@ 9] 3	G
Sample Times State 1150	1156	
Sample Time: Start:	Stop:	
Duplicate ID:	-INIA-T-	\Box .
Sampling Method: Sampling Method:	r 🛛	Well Wizard
<u>COMMENTS</u> :	al. I	* .
Signature: Da	^{-[][3]} [] ate: QA/QC Review	: Date:

Kingston, New York	Ana	alysis	Request Form	-
Well Number:	182,5		Date: <u>9 113 1 11</u>	
LABORATORY:				
🗇 _ ІВМ	- East Fishkill			
🗹 Envi	roTest			
🗂 Othe	r			
ANALYSES REO	UESTED:			
D 8010	, Freon 113, Freon 123a	σ	Antimony (EPA 200.7 or 6010A)	
D Phen	ols (total) (EPA 420.1)		Arsenic (EPA 206.2 or 7060A)	
🗖 Meta	ls are Filtered		Cadmium (EPA 7131)	
Meta	ls are Unfiltered	Ο	Lead (EPA 239.2 or 7421)	
🗂 Mod	ified Appendix 33		Silver (EPA 7761)	
Other:	8021 BHall F	<u>vi</u> osi		

•...

ς

÷.

Date	Time	Temp (°C)	pH (SU)	Sp. Cond. (µmhos/cm)	Turbidity (NTU)	Notes
a(13/11	1155	11.9	(.81	317.6		ltazu

<u>COMMENTS:</u>

002526

Field Sampling Data Sheet				
<u>GENERAL INFORMATION</u> : Well No: <u>Mu 1835</u> Date: <u>2</u>	13	/ U Perso	nnel: 1648 S	
PURGING:			<u> </u>	
Reference Depth To Bottom (DTBr) 291	10ª	Start: 12:37	Stop: 1252	
Measured Depth to Bottom (DTBm) 29	37 ft.	Note: Use Reference Depth	to Bottom for calculations	
Depth to Water (DTW): 3.33	ft.	Well Yields:	Dires DNo	
Target Volume: 12.74	gaL	Water Contained:	I'Yes GHNO	
Actual Volume: 13.00	gal.	DTW After Purge:	4-90 ft.	
PID: Background:	Purg	ing:	-Not Applicable	
Purge Method		Rate	Equipment ID	
Bailer			Ded EQ	
Peristaltic Pump				
Well Wizard				
American Sigma				
Rigder Pump				
SAMPLING:			•	
Sample ID: KO183	5	0203	Ç	
Sample Time: Start: 1255	Stop	300	• •	
Duplicate ID:	NI	94444		
Sampling Method: D Baile	r rican S	Siema 🗍	Well Wizard Tap	
<u>COMMENTS:</u>	2/3/			
Signature: D	ate:	QA/QC Review:	<u>(4)</u> Date: <u>8124</u> 11.	

Kingston, New Y	Ana Ana	lysis	Request Form
Well Numbe	r: <u>835</u>		Date: $\frac{2}{3}, \frac{3}{1}$
LABORATO	<u>RY</u> :		
	IBM - East Fishkill		
Ø	EnviroTest		
	Other:		
ANALYSES	<u>REQUESTED</u> :		
	8010, Freon 113, Freon 123a		Antimony (EPA 200.7 or 6010A)
	Phenols (total) (EPA 420.1)		Arsenic (EPA 206.2 or 7060A)
	Metals are Filtered		Cadmium (EPA 7131)
	Metals are Unfiltered		Lead (EPA 239.2 or 7421)
	Modified Appendix 33		Silver (EPA 7761)
Other	: <u>80213Hall Fre</u>	<u></u>	

Date	Time	Temp (*C)	pH (SU)	Sp. Cond. (µmhos/cm)	Turbidity (NTU)	Notes
2/3/11	1259	11.5	6.22	121-3		Cica

<u>COMMENTS:</u>

. .

	eld S	ampling Data	Sheet	
<u>GENERAL INFORMATION</u> : Well No: <u>Mw 183</u> S Date: 5	1 2 le	_/ [\Pers	onnel: <u>Cy ku</u>	
PURGING:			0	
Reference Depth To Bottom (DTBr) 29	40 ft	Start: 050	Stop: 1058	
Measured Depth to Bottom (DTBm) 29.	32. ft	Note: Use Reference Dep	th to Bottom for calculations	
Depth to Water (DTW): 3.21	ft.	Well Yields:	Pres DNo	
Target Volume: 12-80	gal.	Water Contained:	OYes ONO	
Actual Volume: 13.() gai.	DTW After Purge;	<u> </u>	
PID: Background:	Purg	ing:	Not Applicable	
Purge Method		Rate	Equipment ID	
D Bailer	. <u>.</u>			
Peristaltic Pump	·			
U Well Wizard			<u></u>	
American Sigma	<u></u>			
Bladder Pump				
□ Submersible				
SAMPLING:				
Sample ID: KO183	\$1	0526	6	
Sample Time: Start: 1100	Stop:	1105		
Duplicate ID:	P P	h + h		
Sampling Method: Ø Baile	er erican S	igma 🗌	Well Wizard Tap	
COMMENTS:	5/24		CES pur alaul	
	ate:	QA/QC Review:	1 Date: <u>01251</u>	

Kingston, New	Verk	lysis	Request Form
Well Numb	er:83\$		Date: $5_{12}(2, 1)$
LABORAT	ORY:		
σ	IBM - East Fishkill		
đ	EnviroTest		
σ	Other:		
ANALYSES	S REQUESTED:		
	8010, Freon 113, Freon 123a		Antimony (EPA 200.7 or 6010A)
	Phenols (total) (EPA 420.1)	σ	Arsenic (EPA 206.2 or 7060A)
	Metals are Filtered		Cadmium (EPA 7131)
	Metals are Unfiltered		Lead (EPA 239.2 or 7421)
	Modified Appendix 33		Silver (EPA 7761)
Othe	er: 8021 (talos		

Date	Time	Temp (°C)	pH (SU)	Sp. Cond. (µmhos/cm)	Turbidity (NTU)	Notes
5/24/11	1104	13.5	6.25	215.4		Hazay
						×

<u>COMMENTS:</u>

ž

<u>ENERAL INFORMATION</u> : Vell No: <u>NW 183</u> 5 Date: <u>9</u>	,13	<u>, 1\</u>	Pers	onnel: JAP	- 9
URGING:			<u> </u>	F	
Leference Depth To Bottom (DTBr) 29.4	D ft.	Start:	2.40 Reference Den	Stop: 124	<u>8</u> Invitations
Pepth to Water (DTW): 7 : 3	<u>л</u> ft	Well Yie	lds:	WYes (TNo
Target Volume: 13.09	gal.	Water Co	ntained:	OYes 1	TN0
ctual Volume: 13.50	gal	DTW A	ter Purge:	2.69	ft
PID: Background:	Purgi	ing:		Not App	licable
Purge Method Ø Bailer		Rate	· · ·	Equipmen Ded E	nt ID Q
Peristaltic Pump					
🗇 Well Wizard					
C American Sigma					
🗇 Bladder Pump	<u></u>			<u> </u>	
□ Submersible				<u>.</u>	
<u>AMPLING</u> :	<u> </u>		51,1,5	, Tal	
ample ID: [40] 83	51	00	113	6	
	5 4	1300			
Sample Time: Start: 1253	Stop:				
Sample Time: Start: <u>1253</u>	Stop:	4		P	
Sample Time: Start: <u>\253</u> Duplicate ID: Sampling Method: Ame	stop:	1 1 igma		Well Wizar Tap	rd

Analysis Request Form

Well Numb	er: <u>MW 1835</u>		Date: <u>9/13/11</u>
LABORAT	<u>ORY</u> :		
σ	IBM - East Fishkill		
Ð	EnviroTest		
Ο	Other:		
ANALYSES	<u>SREQUESTED</u> :		
	8010, Freon 113, Freon 123a		Antimony (EPA 200.7 or 6010A)
σ	Phenols (total) (EPA 420.1)	σ	Arsenic (EPA 206.2 or 7060A)
σ	Metals are Filtered		Cadmium (EPA 7131)
σ	Metals are Unfiltered	σ	Lead (EPA 239.2 or 7421)
	Modified Appendix 33		Silver (EPA 7761)
Othe	r: 8021BHall Fren	<u>`</u>	

Date	Time	Тетр (*С)	pH (SU)	Sp. Cond. (µmhos/cm)	Turbidity (NTU)	Notes
a/13/11	1259	13.5	6.32	2207		Harry

<u>COMMENTS</u>:

002529

	Field S	Sampling Data	a Sheet				
Kingston, New York							
GENERAL INFORMATION:	1						
Well No: MW 18454 Date:	2,4	/ " Pers	onnel: <u>Slen</u>				
<u>PURGING</u> :			······				
Reference Depth To Bottom (DTBr)	13.40 #	Start: 1042	Stop: (046				
Measured Depth to Bottom (DTBm)	13.58 A	Note: Use Reference Dep	th to Bottom for calculations				
Depth to Water (DTW):	107 A	Well Yields:	OYes DNo				
Target Volume:	3 gal	Water Contained:	I'Yes I'No				
Actual Volume:	<u>50 gal</u>	DTW After Purge:	(2.87) ft.				
PID: Background:	Purg	ing:	Not Applicable				
Purge Method		Rate	Equipment ID				
Bailer		<u>_</u>					
U Peristaltic Pump							
U Well Wizard		<u>. </u>					
American Sigma		·······					
Bladder Pump							
□ Submersible							
SAMPLING:							
Sample ID: 12 8 4	SA1	0204	C				
Sample Time: Start: 1048	Stop:	_i051	· · · · · · · · · · · · · · · · · · ·				
Duplicate ID:							
Sampling Methods Ø Bailer Ø Well Wizard							
COMMENTS							
Signature:	2/4/1 Date:	QA/OC Review	: CES Date: 8124/11				

Kingston, New	VYork	lysis	Request Form
Well Numb	er:8454		Date: 2,4,11
LABORAT	<u>ORY</u> :		
	IBM - East Fishkill		
প্র	EnviroTest		
	Other:		·
ANALYSES	<u>S REQUESTED</u> :		
σ	8010, Freon 113, Freon 123a		Antimony (EPA 200.7 or 6010A)
	Phenois (total) (EPA 420.1)		Arsenic (EPA 206.2 or 7060A)
	Metals are Filtered	σ	Cadmium (EPA 7131)
σ	Metals are Unfiltered		Lead (EPA 239.2 or 7421)
	Modified Appendix 33	Ο	Silver (EPA 7761)
Othe	er: <u>8021BHau Frc</u> .		

Date	Time	Temp (*C)	pH (SU)	Sp. Cond. (µmhos/cm)	Turbidity (NTU)	Notes
2/4/11	1050	تها- یه)	7-16	4214		Harry
						·

002434

<u>COMMENTS</u>:

	Field	Sampling Dat	a Sheet					
Kingston, New York		L	······································					
GENERAL INFORMATION	<u>GENERAL INFORMATION:</u>							
Well No: <u>MW 184</u> 54 D	late: <u>5 13</u>	l, a Pers	sonnel:					
PURGING:			0					
Reference Depth To Bottom (D	TBr) 1340 A	Start: 1217	Stop: 1220					
Measured Depth to Bottom (D)	(Bm) 1353 ft	Note: Use Reference De	oth to Bottom for calculations					
Depth to Water (DTW):	9.7 A	Well Yields:	Stes IN0					
Target Volume:	2,06 gal	Water Contained:	DYes DNo					
Actual Volume:	2.50 gal	DTW After Purge:	9-35 fl					
PID: Background:	Pui	ging:	Not Applicable					
Purge Method Bailer		Rate	Equipment ID Ded EQ					
🗖 Peristaltic Pump	· · · · · · · · · · · · · · · · · · ·							
🗖 Well Wizard		<u> </u>	· · · · · · · · · · · · · · · · · · ·					
🗍 American Sigma	<u></u>							
🗇 Bladder Pump			·····					
C Submersible			<u> </u>					
SAMPLING:								
Sample ID:	348A	10531	.6					
Sample Time: Start: 12	<u>23</u> Stop	(227						
Duplicate ID:	F-WR)	Ð					
Sampling Method: Bailer 🛛 Well Wizard								
COMMENTS:	5/31 Date:	A/QC Review	: <u>CES</u> Date: <u>8 31 </u> 4					

Kingston, New	Vork	alysis	Request Form
Well Numb	per: 18451		Date: 5 31 11
LABORAT	<u>ORY</u> :		
σ	IBM - East Fishkill		
Ū	EnviroTest		
σ	Other:		
ANALYSE:	<u>S REQUESTED</u> :		
σ	8010, Freon 113, Freon 123a		Antimony (EPA 200.7 or 6010A)
	Phenols (total) (EPA 420.1)	σ	Arsenic (EPA 206.2 or 7060A)
σ	Metals are Filtered		Cadmium (EPA 7131)
Ο	Metals are Unfiltered		Lead (EPA 239.2 or 7421)
σ	Modified Appendix 33	Ο	Silver (EPA 7761)
Othe	r: 8021BHav Fr	con :	

Date	Time	Temp (°C)	pH (SU)	Sp. Cond. (µmhos/cm)	Turbidity (NTU)	Notes
5(31/11	1224	12.8	7.29	149.2		Hazy
.a.						· ·

^002498

<u>COMMENTS:</u>

	eld S	ampling Data	Sheet		
<u>GENERAL INFORMATION:</u>					
PURGING:	1				
Reference Depth To Bottom (DTBr) 3 4	() ft.	Start: 910	Stop: 9:15		
Measured Depth to Bottom (DTBm) 13.3	5 ft.	Note: Use Reference Dept	h to Bottom for calculations		
Depth to Water (DTW): (0.80	ft.	Well Yields:	SYes INO		
Target Volume: 3.22	gal	Water Contained:	I'Yes E No		
Actual Volume: 3.50	gal.	DTW After Purge:	7.04 ft.		
PID: Background:	Purg	ing:	Not Applicable		
Purge Method		Rate	Equipment ID Ded EQ		
Peristaltic Pump			(
U Well Wizard					
American Sigma					
SAMPLING:			·		
Sample ID: KI845	AI	0915	G		
Sample Time: Start: <u>920</u> Stop: <u>925</u>					
Duplicate ID:	Nh	+ + +	ن		
Sampling Method: Baile	er vrican S	igma 🗍	Well Wizard Tap		
<u>COMMENTS:</u> Signature:D	2/15/ Date:	QA/QC Review:	Date:		
\bigcirc					

Kingston, New	Ana York	lysis	Request Form
Well Numb	er: <u>184.5</u> 4		Date: <u>9 / 15 / 11</u>
LABORAT	<u>ORY</u> :		
	IBM - East Fishkill		· · · · · · · · · · · · · · · · · · ·
g	EnviroTest		
	Other:		
ANALYSES	S REQUESTED:		. /
. 🗖	8010, Freon 113, Freon 123a		Antimony (EPA 200.7 or 6010A)
	Phenols (total) (EPA 420.1)	σ	Arsenic (EPA 206.2 or 7060A)
	Metals are Filtered		Cadmium (EPA 7131)
	Metals are Unfiltered		Lead (EPA 239.2 or 7421)
σ	Modified Appendix 33		Silver (EPA 7761)
Othe	r: <u>8021 BHall Fr</u>	<u>,</u>	

.

Date	Time	Temp (°C)	pH (SU)	Sp. Cond. (µmhos/cm)	Turbidity (NTU)	Notes
9/15/1	924	12.9	7.37	157.8		Ci <i>eer</i>
						· · · ·

<u>COMMENTS</u>:

			<u></u>
≜eeeeeeeee	ield S	ampling Data	Sheet
Kingston, New York			
GENERAL INFORMATION:			
Well No: <u>Mw 8534</u> Date: <u>2</u>	,4	/ ¹ Perso	nnel: <u>C. JuR</u>
PURGING:			U
Reference Depth To Bottom (DTBr) 2.7	() f .	Start: 1054	Stop: 1058
Measured Depth to Bottom (DTBm) 2-8	Υft.	Note: Use Reference Depti	to Bottom for calculations
Depth to Water (DTW): 17-8) ft.	Well Yields:	Tes INO
Target Volume:) gal	Water Contained:	DYes DNo
Actual Volume: 2.00	gal.	DTW After Purge:	18.04 A
PID: Background:	Purgi	ing:	Not Applicable
Purge Method		Rate	_Equipment ID
Bailer			PEREQ
Peristaltic Pump			·
U Well Wizard		<u> </u>	•
American Sigma			· · · · · · · · · · · · · · · · · · ·
Bladder Pump			
□ Submersible			
SAMPLING:	1.1-		
Sample ID: $[A A S S$	A 11	6294	(-
Sample Time: Start:00	Stop:	1105	
Duplicate ID:	NO		3
Sampling Method: Ø Bail	er ericen Si		Well Wizard
COMMENTS:			rah
Signature:	- /۲/۱ 	QA/QC Review:	CES Date: 8/24/1
	:		· .

Kingston, New York	alysis	Request Form
Well Number: 1855A		Date: 21414
LABORATORY:		
🗇 🖉 IBM - East Fishkill		
EnviroTest		
Other:		
ANALYSES REQUESTED:		
8010, Freon 113, Freon 123a	σ	Antimony (EPA 200.7 or 6010A)
D Phenols (total) (EPA 420.1)		Arsenic (EPA 206.2 or 7060A)
Metals are Filtered	Π	Cadmium (EPA 7131)
Metals are Unfiltered		Lead (EPA 239.2 or 7421)
Modified Appendix 33		Silver (EPA 7761)
Other: 8021BHall F	(Ten	

Date	Time	Temp (°C)	pH (SU)	Sp. Cond. (µmhos/cm)	Turbidity (NTU)	Notes
2/4/11	1104	87	7,19	1042u		Cliev

002435

≜ ≣ €₹€F	ield S	Sampling Data	a Sheet
Kingston, New York			
GENERAL INFORMATION:			
Well No: <u>MW 18554</u> Date: <u>5</u>	13	L Pers	onnel: <u>Sha</u>
PURGING:			0
Reference Depth To Bottom (DTBr) 21.7	D ft.	Start: 230	Stop: 1234
Measured Depth to Bottom (DTBm) 2)	7 AL	Note: Use Reference Dep	th to Bottom for calculations
Depth to Water (DTW): 150	56 A.	Well Yields:	-OYes DNo
Target Volume: 3.2	gal.	Water Contained:	DYes No
Actual Volume: 3-50	gal.	DTW After Purge:	15.15 A
		·	
PID: Background:	Purg	ing:	Not Applicable
Purge Method		Rate	Equipment ID
Bailer			Deara
Peristaltic Pump			·
🗂 Well Wizard			·····
American Sigma			
Bladder Pump			
SAMPLING:			
Sample ID: K1855	AI	0531	G-
Sample Time: Start: 1237	Stop:	1241	
Duplicate ID:	NA		P
Sampling Method: Ø Baile	er vrican Si	ioma 🗖	Well Wizard
<u>COMMENTS:</u>	itout D	ل مسه.	reh
Signature: D	5/31	QA/QC Review:	CES Date: 3/31/11

Kingston, New	An Yook	alysis	Request Form
Well Numb	er:85SA		Date: 5 31 11
LABORAT	<u>ORY</u> :		
	IBM - East Fishkill		
5	EnviroTest		
	Other:		
ANALYSES	REQUESTED:		
	8010, Freon 113, Freon 123a		Antimony (EPA 200.7 or 6010A)
Ο	Phenols (total) (EPA 420.1)		Arsenic (EPA 206.2 or 7060A)
	Metals are Filtered		Cadmium (EPA 7131)
σ	Metals are Unfiltered		Lead (EPA 239.2 or 7421)
	Modified Appendix 33	Ο	Silver (EPA 7761)
Othe	r: 821BHallfor	~	

Date	Time	Temp (°C)	pH (SU)	Sp. Cond. (µmhos/cm)	Turbidity (NTU)	Notes
₹31/1,	1240	12.2	1.12	954"		aun
		-				
						· ·

COMMENTS:

002499

١ą.

		Fi	eld S	ampling Data	Sheet
	Kingsion, New York				
	<u>GENERAL INFORMAT</u>	<u>10N</u> :			
	Well No: <u>MW 185</u> 5A	Date:	, IS	/ 11 Pers	onnel: <u>JAR 4</u>
	PURGING:				
·	Reference Depth To Botton	a (DTBr) 21-70) ft.	Start: 848	Stop: 8:52
	Measured Depth to Bottom	(DTBm) 21.6	ft.	Note: Use Reference Dep	th to Bottom for calculations
	Depth to Water (DTW):	12-09	ft.	Well Yields:	Tes DNo
	Target Volume:	4.69	gal.	Water Contained:	OYes ONo
	Actual Volume:	5.00	gaL	DTW After Purge:	2.16 ft.
	PID: Background	•	Purg	ing:	Not Applicable
	Purge Method			Rate	Equipment ID
	Bailer				Ded EQ
	🗇 Peristaltic Pun	ф.			<u> </u>
	U Well Wizard				• <u>••</u> •••••••••••••••••••••••••••••••••
	🗖 American Sign	na .			
	🗖 Bladder Pump		<u></u>		
	Submersible				
	SAMPLING:				
	Sample ID:	855	A	0915	G
	Sample Time: Start: _	855	Stop:	900	
	Duplicate ID:	<u>F</u>	JA	++++	
	Sampling Method:	D Bailer	ican Si	oma 🗖	Well Wizard
	<u>COMMENTS</u> :	9	151.	<u></u>	rafy
	Signature:	Da	ite:	QA/QC Review:	Date:

Kingston, New	vYork	lysis	Request Form
Well Numb	per:85.5A		Date: 9, (5, 1)
	<u>ORY:</u> IBM - East Fishkill EnviroTest		
ANALYSE.	SREQUESTED: 8010, Freon 113, Freon 123a	0	Antimony (EPA 200.7 or 6010A)
	Metals are Filtered Metals are Unfiltered Modified Appendix 33		Arsenic (EPA 206.2 or 7060A) Cadmium (EPA 7131) Lead (EPA 239.2 or 7421) Silver (EPA 7761)
Othe	er: 8021BHau Forow	<u> </u>	

Date	Time	Temp (*C)	pH (SU)	Sp. Cond. (µmhos/cm)	Turbidity (NTU)	Notes
9/15/1,	859	12.0	7.21	10010		Hazy

002548

	ield S	Sampling Data	Sheet
KIIIKSUU, NEW TUK			
GENERAL INFORMATION:			
Well No: $\frac{MW}{800}$ Date: 5	,25	$\frac{1}{1}$ Perso	onnel: $-\frac{1}{2}$
PURGING:			\bigcirc
Reference Depth To Bottom (DTBr) 17.8	D ft.	Start: 252	Stop: 300
Measured Depth to Bottom (DTBm) 17	19 ft.	Note: Use Reference Dept	h to Bottom for calculations
Depth to Water (DTW): 2-74	ft.	Well Yields:	Offes D No
Target Volume: 1.36	gal.	Water Contained:	Tytes DNo
Actual Volume: 1-50	gal.	DTW After Purge:	1.80 ft.
PID: Background:	Purg	ing:	Not Applicable
·	_ <u>_</u>		
Purge Method		Rate	Equipment D
A Bailer			VEU CU
Peristaltic Pump		<u> </u>	
U Well Wizard			· ····································
🗖 American Sigma			
🗖 Bladder Pump			<u></u>
Submersible			
SAMPLING:			
Sample ID: 13 0 1 8 6	\$ 1	6525	G
	<u>17-</u> 1.1		
Sample Time: Start:/	Stop:		•
Duplicate ID:	NA	11+++-	
Sampling Method: Ø Bail	er	σ	Well Wizard
<u>COMMENTS:</u>	erican S S/25	igma 🗖	Tap
Signature: I	Date:	QA/QC Review:	<u>CES</u> Date: 8126 11
()			

Kingston, New	An:	alysis	Request Form
Well Numb	per:865		Date: $5, 25, 4$
LABORAT	<u>ORY</u> :		
σ	JBM - East Fishkill		
9	EnviroTest		
Ū	Other:		
ANALYSES	<u>SREOUESTED</u> :		
	8010, Freon 113, Freon 123a		Antimony (EPA 200.7 or 6010A)
σ	Phenols (total) (EPA 420.1)		Arsenic (EPA 206.2 or 7060A)
	Metals are Filtered		Cadmium (EPA 7131)
σ	Metals are Unfiltered		Lead (EPA 239.2 or 7421)
	Modified Appendix 33	٥	Silver (EPA 7761)
Othe	er: <u>8021 Halog</u>	·	

Date	Time	Temp (°C)	pH (SU)	Sp. Cond. (µmhos/cm)	Turbidity (NTU)	Notes
⁵ /25/11	1306	15.4	-1.52	189-1		Harry
			-			

			<u>.</u>
	Field S	ampling Data	Sheet
Kingston, New York			
GENERAL INFORMATION:			
Well No: <u>M~1875</u> Date:	2,3	/ ⁽⁾ Perso	onnel: <u>5 4</u>
<u>PURGING</u> ;			
Reference Depth To Bottom (DTBr)	167 #	Start: 12:02	Stop: 1212
Measured Depth to Bottom (DTBm)	67 A	Note: Use Reference Dept	h to Bottom for calculations
Depth to Water (DTW): 3.	42 fL	Well Yields:	Tes INo
Target Volume: 5.5	() gal.	Water Contained:	Otes DNo
Actual Volume: 6-0	0 gal.	DTW After Purge:	10-65 A
PID: Background:	Purgi	ing:	Not Applicable
Purge Method		Rate	Equipment ID
Bailer			
U Peristaltic Pump		<u>·</u>	
🖸 Well Wizard			· · · · · · · · · · · · · · · · · · ·
🗇 American Sigma			
🗇 Bladder Pump			
□ Submersible			<u> </u>
<u>SAMPLING</u> :			
Sample ID: KOV8	751	@ 2 @ 3	G
Sample Time: Start: 1215	Stop:	1220	
Duplicate ID: KOUS	751	0203	
Sampling Method:	Bailer	ioma 🗂	Well Wizard
<u>COMMENTS:</u>	2/2/	<u>ت س</u> ین.	- ab
Signature:		QA/QC Review:	CES Date: 8124/11
()			

Kingston, New York	lysis	Request Form
Vell Number: 1875		Date: 2,3,4
ABORATORY:		
🗇 🔎 IBM - East Fishkill		
🗹 EnviroTest		
Other:		
NALYSES REQUESTED:		
🔲 8010, Freon 113, Freon 123a		Antimony (EPA 200.7 or 6010A)
D Phenols (total) (EPA 420.1)		Arsenic (EPA 206.2 or 7060A)
Metals are Filtered		Cadmium (EPA 7131)
Metals are Unfiltered		Lead (EPA 239.2 or 7421)
Modified Appendix 33		Silver (EPA 7761)
Other: 2021 BHall Frz.		

" HET." LAND

 $\Delta_{1,2}$

002417

FIELD PARAMETERS:

Date	Time	Temp (°C)	pH (SU)	Sp. Cond. (µmhos/cm)	Turbidity (NTU)	Notes
43/1	1219	10-3	7.04	239.4		Crea

\$7

	eld S	ampling Data	Sheet
Augstal, New York			
<u>GENERAL INFORMATION:</u>			
Well No: MW 18 18 Date: 5	125	Pers	onnel: lev
PURGING:			Ŭ
Reference Depth To Bottom (DTBr) 4.6	f ft.	Start: 1209	Stop: (2:14)
Measured Depth to Bottom (DTBm) 14.5	8 ft.	Note: Use Reference Dep	th to Bottom for calculations
Depth to Water (DTW):	ft.	Well Yields:	Tres INO
Target Volume: 6-39	gal.	Water Contained:	Xes CNo
Actual Volume: 6-50	gal.	DTW After Purge:	4.90 ft.
PID: Background:	Purg	ing:	Not Applicable
Purge Method		Rate	Equipment ID
Baller			
I Well Wircord			
Riedder Pump			
Submersible			
		,	
<u>SAMPLING</u> :			
Sample ID: KOL87	\$ (0525	G
Samula Times Starts 1217	C4	12.2.3	·.
Sumple Tune. Statt	Stop:		
Duplicate ID:	N	ALL	P
Sampling Method:	r	σ	Well Wizard
	ican Si	gma 🗍	Tap
Signature: Da	5/25/1 ate:	QA/QC Review:	CES Date: 8/25

Kingston, New	An York	alysis	Request Form
Well Num	per:		Date: $5 , 25 , V$
<u>LABORAT</u>	<u>ORY</u> :		
	IBM - East Fishkill		
ত	EnviroTest		
σ	Other:		
ANALYSE.	SREQUESTED: 8010, Freon 113, Freon 123a Phenols (total) (EPA 420.1) Metals are Filtered Metals are Unfiltered Modified Appendix 33 er: <u>8021 [+alug</u>]		Antimony (EPA 200.7 or 6010A) Arsenic (EPA 206.2 or 7060A) Cadmium (EPA 7131) Lead (EPA 239.2 or 7421) Silver (EPA 7761)

Χ.

Date	Time	Temp (*C)	pH (SU)	Sp. Cond. (µmhos/cm)	Turbidity (NTU)	Notes
5/25/11	1222	13.6	6.85	245.3		Claugy
			-			

COMMENTS:

	old S	ampling Date	Shoot
Kingston, New York	eiu s	sampning Data	i Sheet
GENERAL INFORMATION:			
Well No: <u>MW 1875</u> Date: <u>9</u>	1 15	Pers	onnel: <u>JACS</u>
PURGING:			
Reference Depth To Bottom (DTBr) 4. (7 ft.	Start: 0.12	Stop: 1017
Measured Depth to Bottom (DTBm) 14.6	() R .	Note: Use Reference Dep	th to Bottom for calculations
Depth to Water (DTW): -26	ft.	Well Yields:	I'Yes INo
Target Volume: (6.55	gal.	Water Contained:	TYes ONo
Actual Volume: 7.60	gal.	DTW After Purge:	8-73 A
		•	7
PID: Backgrouna:	Purg	ing:	Not Applicable
Purge Method		Rate	Equipment ID
Bailer			Ver ZQ
Peristaltic Pump			
🗖 Well Wizard			
🗖 American Sigma			<u> </u>
🗇 Bladder Pump			
□ Submersible			<u> </u>
<u>SAMPLING</u> :			
Sample ID: KQ 187	\$ 1	@915	G
Same 10:20	~	1026	
Sample Time: Start: 10 20	Stop:		
Duplicate ID:	Nn	$h \rightarrow h$	
Sampling Method: D Baile	r 	0	Well Wizard
COMMENTS: Amer	ncan S	igma U	Tap
Signature: D	9/15) ate:	11 QA/QC Review:	: Date:

Kingston, New	Image: Specific Analysis York	lysis	Request Form
Well Numb	er: \ 87\$		Date: _ 1 / 15, 4
LABORAT	<u>ORY:</u>		
	BM - East Fishkill		
đ	EnviroTest		
	Other:		
ANALYSES	<u>SREQUESTED</u> :		
σ	8010, Freon 113, Freon 123a		Antimony (EPA 200.7 or 6010A)
σ	Phenols (total) (EPA 420.1)		Arsenic (EPA 206.2 or 7060A)
	Metals are Filtered		Cadmium (EPA 7131)
	Metals are Unfiltered	σ	Lead (EPA 239.2 or 7421)
	Modified Appendix 33		Silver (EPA 7761)
Othe	r: 8021 BHALL Free-	ر 	

Date	Time	Temp (°C)	pH (SU)	Sp. Cond. (µmhos/cm)	Turbidity (NTU)	Notes
9/15/1	1025	13.7	6.93	257.4		(lce

002552

	ield S	Sampling Data	Sheet
Kingston, New York			
GENERAL INFORMATION:			
Well No: <u>~~~~ 18</u> 85 Date: <u>5</u>	,31	/ U Pers	onnel: <u>Sha</u>
PURGING:		· · · · · · · · · · · · · · · · · · ·	
Reference Depth To Bottom (DTBr) 17,0	12 fL	Start: 1140	Stop: 1145
Measured Depth to Bottom (DTBm) 175	0 fL	Note: Use Reference Dep	th to Bottom for calculations
Depth to Water (DTW): (.2	() f .	Well Yields:	Yes DNo
Target Volume: 5,48	gal.	Water Contained:	I'Yes D'No
Actual Volume: 6-00	gal.	DTW After Purge:	(e.2) ft.
PID: Background:	Purg	ing:	Not Applicable
Purge Method		Rate	Equipment ID Drv EQ
Peristaltic Pump			
U Well Wizard			
American Sigma			
Bladder Pump			
<u>SAMPLING</u> :			•
Sample ID: 40188	\$.	0531	G
Sample Time: Start: 1147	Stop:	1151	•
Duplicate ID:	NA	++++	B
Sampling Method: Ø Baile	er missen Si		Well Wizard
<u>COMMENTS</u> :	5 31	nguna D	1ap
Signature: D	ate:	QA/QC Review:	CES Date: 8311
()			

Kingston, New	An:	alysis	Request Form
Well Numb	per:NW 1888		Date: 5, 34, 1
LABORAT	<u>ORY</u> :		
	IBM - East Fishkill		
Ø	EnviroTest		
σ	Other:		
ANALYSES	<u>SREQUESTED</u> :		
	8010, Freon 113, Freon 123a		Antimony (EPA 200.7 or 6010A)
	Phenols (total) (EPA 420.1)		Arsenic (EPA 206.2 or 7060A)
	Metals are Filtered		Cadmium (EPA 7131)
σ	Metals are Unfiltered		Lead (EPA 239.2 or 7421)
σ	Modified Appendix 33	Ó	Silver (EPA 7761)
Othe	r: _9021BHaufr	<u>.</u>	

Date	Time	Temp (°C)	pH (SU)	Sp. Cond. (µmhos/cm)	Turbidity (NTU)	Notes
5/31/1	11.50	13.2	6.98	453.6		Claudy
						0

<u>COMMENTS</u>:

	-		
761 <i>2</i>			
E F	ield S	ampling Data	Sheet
Kingston, New York			
GENERAL INFORMATION:			
Well No: MW 1895 Date: 5	12Ce	/(\ Pers	onnel: <u>Shr</u>
PURGING:			
Reference Depth To Bottom (DTBr)	ft.	Start: 1350	Stop: 355
Measured Depth to Bottom (DTBm) 10	18 ft.	Note: Use Reference Dep	th to Bottom for calculations
Depth to Water (DTW): 4-7.) fL	Well Yields:	ØYes 🗆 No
Target Volume: 2-98	gal.	Water Contained:	Dies DNo
Actual Volume: 3-00	gal.	DTW After Purge:	<u>8-39</u> ft
PID: Background:	Purgi	ing:	Not Applicable
Purge Method		Rate	Equipment ID
Bailer			<u></u>
Peristaltic Pump		<u></u>	<u> </u>
🗖 Well Wizard	<u>. </u>		·····
C American Sigma			
🗖 Bladder Pump			
□ Submersible			
SAMPLING:			
Sample ID: KO[89	\$ 1	0526	6
Sample Time: Start: 1400	Stop:	1406	
Duplicate ID:	te A		
Sampling Method:	ler		Well Wizard
<u>COMMENTS</u> :	erican Si	igma 👘 🗍	Тар
Signature:	Date:	U QA/QC Review:	DES Date: 9/25/1

Ana Kingston, New York	alysis	Request Form
Well Number: 89\$		Date: 5 , 26 , $1(*)$
LABORATORY:		
🗖 🦯 IBM - East Fishkill		
EnviroTest		
O Other:		
ANALYSES REQUESTED:		
8010, Freon 113, Freon 123a		Antimony (EPA 200.7 or 6010A)
D Phenols (total) (EPA 420.1)		Arsenic (EPA 206.2 or 7060A)
Metals are Filtered		Cadmium (EPA 7131)
Metals are Unfiltered		Lead (EPA 239.2 or 7421)
Modified Appendix 33		Silver (EPA 7761)
Other: 8021 Haly		\sim

۰.

Date	Time	Temp (°C)	pH (SU)	Sp. Cond. (µmhos/cm)	Turbidity (NTU)	Notes
Struly	1405	184	8 ها. وا	2553		Clargy
						0

COMMENTS:

002471

			<u>`</u>
	Field S	Sampling Data	a Sheet
Kingston, New York			
GENERAL INFORMATION:			
well No: NW201 Bate:	5 ,27	/ 1\ Pers	onnel: CA ALAP
	~	<u></u>	
PURGING;		and the	
Reference Depth To Bottom (DTBr)	7,91 ft	Start: 949	Stop: 950
Depth to Weter (DTW):	(1.7 A	Wall Vialdes	The to Bouss for calculations
Target Volume:	(40) <u>.</u> 741\ est.	Water Contained:	UYes ONO
Actual Volume: 2	.50 gal.	DTW After Purge:	GN ft.
		··	- /
PID: Background:	Purg	ing:	Not Applicable
Purge Method		Rate	Equipment ID
D Bailer			DraEa
D Peristaltic Pump			
🗇 Well Wizard		<u></u>	
American Sigma			
Bladder Pump			
☐ Submersible			
SAMPLING:			
Sample ID: KO20	181	@527	G
Sample Times Storts 951/	Store	651	
Sumple Line: Statt	stop:		
Duplicate ID:	HNG	++hh	\square
Sampling Method:	Bailer	σ	Well Wizard
	American S	igma 👘 🗂	Тар
<u>COMMENTS:</u>	<1.	.1.	
Signature: UK	Date:	QA/QC Review:	: <u>CES</u> Date: <u>8 3 </u>
()			

Well Number:

LABORATORY:

۵J

Ο

		······································
Yerk		s Request Form
r:20	15	Date: $5, 27, 10$
NRY:		
JBM - East Fi	shkill	

ANALYSES REQUESTED:

Other:

EnviroTest

- 8010, Freon 113, Freon 123a
- D Phenols (total) (EPA 420.1)
- Metals are Filtered
- Metals are Unfiltered
- Modified Appendix 33

8021 Halog

- Antimony (EPA 200.7 or 6010A)
- Arsenic (EPA 206.2 or 7060A)
- Cadmium (EPA 7131)
- Lead (EPA 239.2 or 7421)
 - Silver (EPA 7761)

FIELD PARAMETERS:

Other:

Date	Time	Temp (°C)	pH (SU)	Sp. Cond. (µmhos/cm)	Turbidity (NTU)	Notes		
5/2-1/1	955	15:1	-1.43	4921		Cloury		
						·		

002481

	TP: J.J.	<u>Carrollin</u>	Data	Shoot	-					Analysis	Request	Form	<u> </u>
Kingston, New York	Field	Sampling	g Data	Sneet	-	Kingston, New	York				liequest		
GENERAL INFORMAT	<u>ION</u> : Date: <u>2/4</u>	/ ^/	Person	mel: <u>Cf</u> Kud	۶ -	Well Numb	er:				Da	te:/ /	ز ج ب
PURGING:		-1	/		1		IBM - E	ast Fishki	11				
Reference Depth To Bottom	a (DTBr) ft	. Start:	I	Stop:			EnviroT	est					
Measured Depth to Bottom	(DTBm) ft	Note: Use Rej	erence Depth	to Bottom for calculations		U	Other:						
Depth to Water (DTW):	ft	. Well Yields	# 	OYes ONo		ANALYSES	REDUE	STED:					
Target Volume:	gal	Water Cont	nined:	Ures DNo			8010. Fr	eon 113.	Freon 12	3a 🗖	Antimony	(EPA 200 7 or 6010	4١
Actual Volume:	ga	. DIW Atte	- Furge:	ft.		0	Phenois	(total) (E	PA 420.1		Arsenic (F	(LA 11 20017 01 0010) (PA 206 2 or 7060 4)	n.j
PID: Background:	Put	ging:		Not Applicable			Metals a	re Filtere	d		Cadmium	(EPA 7131)	
						ø	Metals a	ueUnfilte	red		Lead (EPA	239.2 or 7421)	
Purge Method		Rate		Equipment ID			Modifie	d Append	ix 33		Silver (EP	A 7761)	
					- /				1_			,	
D Peristaltic Pun	₽				- (/ Othe	r: _						
🗖 Well Wizard	\				-`/	/			<u> </u>			÷	
🗖 American Sign	na \				- /								
🗖 Bladder Pump	\			<i>p</i>	- /		-		\				
□ Submersible	\				- /	<u>FIELD PAI</u>	RAMETE	<u>RS</u> :		\backslash			
<u>SAMPLING</u> :						Date	Time	Temp (*C)	pH (SU)	Sp. Cond.	Turbidity	Notes	٦
Sample ID:	TIN								()	-			1
Sample Time: Start:	Sto	b:										-	\neg
Duplicate ID:		Ń											
Sampling Method:	D Bailer		^j o	Well Wizard		COMMENT	rs:						
\sim	American	Sigma		Тар		1		dala	Chi	- clad		lscore	
<u>COMMENTS:</u>	71.	i				Well	15	Urg=				5	
Signature:	Dates_	11 QA/Q	C Review: _	CES Date: 8/24	<u>u</u> n		-+	Ba	iler				
									0				
									8				į
									-				

722											
	Field	Sampling D	ata Sheet		Kingston, New	₹ ≧ Yαrk		<i>F</i>	Analysis	Request	Form *
Kingston, New York	<u>TION</u> :				Well Numb	er:				Date	. 's 67
Well No: MW2038	5 Date: <u>5</u> 73	1/11	Personnel: <u><u> </u></u>		LARORAT	ORV.					
PURGING:			U			IBM - E	ast Fishki	11			
Reference Depth To Botto	em (DTBr) ft.	Start:	Stop:		σ	EnviroTe	est /				
Measured Depth to Botto	m (DTBm) ft.	Note: Use Referenc	e Depth to Bottom for calculations		Ο	Other:					
Depth to Water (DTW):	ft.	Well Yields:	I'res I No	•		_					
Target Volume:	gal	Water Contained	Yes INO	, ³ .	ANALYSES	REQUE	<u>STED</u> :		_		
Actual Volume	gal	DTW After Pur	ge: fL			8010, F /	eon 113	Freon 123	a 🗍	Antimony (EPA 200.7 or 6010A)
				•		Phenois	(total) (El	PA 420.1)		Arsenic (EF	A 206.2 or 7060A)
PID: Backgroun	d: Pur	ging:	Not Applicable			Metals à	re Filtere	d		Cadmium (I	EPA 7131)
Purge Method		Rate	Equipment ID			Metals a	re Unfilte	red		Lead (EPA	239.2 or 7421)
🗇 Bailer						priodified	a Append	x 33		Silver (EPA	. 7761)
🗇 Peristaltic Pu	,mp				Othe	/ r:	· · · .				
🗇 Well Wizard	·\							1.			
🗖 American Sig	ma					_		//			
🗇 Bladder Pum	p \					. –		X			
C Submersible	\				FIELD PAI	<u>AMETEI</u>	<u>RS</u> :				
	\backslash				Dett		Temp	-\ PH	Sp. Cond.	Turbidity	
<u>SAMPLING</u> :		<u> </u>		. /	Date	Lime	(°C)	(50)	(µmhos/cm)	(NTU)	Notes
Sample ID:									\land		
Sample Time: Start:	Stor	a:									
							<u> </u>				
Duplicate ID:		TV									
Sampling Method:	🗇 Bailer		Well Wizard		<u>COMMENT</u>	<u>s</u> :					
	American :	Sigma	🖸 Tap	V		, .	d	Ra	1001	MS Coo	
COMMENTS:	5/-	. 1			Well	[2]	UM-	M	WFI	VISCQ	K a
Signature:	Date:	(1) QA/QC Re	view: Date: Date:	и			WER	Che	cred		õ
									5/		25
									X		01
									\mathcal{O}		

	Field Compline	Data Shoot
Kingston, New York	Field Sampling	Data Sileet
GENERAL INFORMATION:		
Mul 2035 - C	1. (5. 11	- TAR CI
Well No: 1100 (1) Date:	1/10/11	Personnel: <u>OTROOF</u>
PURGING: 12	62	
Reference Depth To Bottom (DTBr)	3-2 ft. Start: 758	Stop: 808
Measured Depth to Bottom (DTBm) 2-	8 ft. Note: Use Refere	nce Depth to Bottom for calculations
Depth to Water (DTW):	4 ft. Well Yields:	I'Yes INO
Target Volume: 3.00 Joly	gal Water Contain	ed: Ures Dro
	gal, DIW Alter P	шrge: <u>(</u> , <u>)</u> , п.
PID: Background:	Purging:	Not Applicable
Purge Method	Rate	Equipment ID
Bailer		Dealeq
Peristaltic Pump		
🗇 Well Wizard		
American Sigma		
🗇 Bladder Pump		
Submersible	<u>-</u>	
SAMPLING:		
Sample ID: K0203	\$1091	56
Sample Time: Start: 818	Stop: <u><u></u><u></u><u></u><u></u><u>8</u><u>2</u><u>5</u></u>	_
Duplicate ID:	-NA	14-
Sampling Method: 🛛 Bai	iler	U Well Wizard
COMMENTS:	nerican Sigma	🗇 Tap
Signature:	9/15/1, Date: QA/QC I	Review: Date:
\bigcirc		

Kingston, New	York	alysis	Request Form	,
Well Numb <u>LABORAT</u>	er: <u>2035</u> <u>ORY</u> :		Date: 9,15,11	్ర
	✓IBM - East Fishkill EnviroTest Other:			
<u>ANALYSE:</u>	S. REQUESTED: 8010, Freon 113, Freon 123a Phenols (total) (EPA 420.1) Metals are Filtered Metals are Unfiltered Modified Appendix 33		Antimony (EPA 200.7 or 6010A) Arsenic (EPA 206.2 or 7060A) Cadmium (EPA 7131) Lead (EPA 239.2 or 7421) Silver (EPA 7761)	
Othe	er: <u>8021</u> BHall Fr	T <u>TT</u>		

Date	Time	Temp (°C)	pH (SU)	Sp. Cond. (µmhos/cm)	Turbidity (NTU)	Notes
^a lis/1	821	6-1	7.27	77len		Clausy

	eld S	ampling Data	Sheet
Kingston, New York			
GENERAL INFORMATION:			
Well No: MW 2045 Date: 2	14	/ U Perso	nnel: <u> </u>
PURGING:			
Reference Depth To Bottom (DTBr) 159	<u>} ₽.</u>	Start: . 0	Stop: 1117
Measured Depth to Bottom (DTBm)	() ft.	Note: Use Reference Depti	to Bottom for calculations
Depth to Water (DTW): 8.30	ft.	Well Yields:	eres 🛛 No
Target Volume: 840	gal	Water Contained:	OYes DNO
Actual Volume: 8-50	gal.	DTW After Purge:	1311 ft.
PID: Background:	Purg	ing:	Not Applicable
Purge Method		Rate	Equipment ID
Bailer		<u></u> -	Neu Cu
Peristaltic Pump		·	
U Well Wizard		· •	<u></u>
🗖 American Sigma			
🗖 Bladder Pump			
□ Submersible		·	<u></u>
<u>SAMPLING:</u> Sample ID:	Ŝ	QZQ4	6
Sample Time: Start:20	Stop:	1126	
Duplicate ID:	N A	F	
Sampling Method: 🗂 Baile	T rican S	iama 🗂	Well Wizard
COMMENTS: Signature: D	2/4/1 ate:	QA/QC Review:	CES_ Date: <u>Sort</u>

Kingston, New	Anal	ysis l	Request Form	
Well Numbe	er:204\$		Date: 2, 4, 11	
LABORAT	<u>ORY:</u>			
	IBM - East Fishkill			
G/	EnviroTest			
σ	Other:			
ANALYSES	REQUESTED:			
σ	8010, Freon 113, Freon 123a		Antimony (EPA 200.7 or 6010A)	
	Phenols (total) (EPA 420.1)		Arsenic (EPA 206.2 or 7060A)	
	Metals are Filtered	σ	Cadmium (EPA 7131)	
	Metals are Unfiltered	9	Lead (EPA 239.2 or 7421)	
	Modified Appendix 33		Silver (EPA 7761)	
Othe	r: <u>802(B)tall Fre</u>	- _ ·		

Date	Time	Temp (°C)	pH (SU)	Sp. Cond. (µmhos/cm)	Turbidity (NTU)	Notes
2/4/1	1125	12.4	7.96	42102		Hazi

002438

<u>COMMENTS:</u>

Kineston, New York	eld S	ampling Data	Sheet
CENERAL INFORMATION			•
MIZALE S	3	B.()	
Well No: $\underline{11W204}$ Date: $\phantom{00000000000000000000000000000000000$	101	<u>Pers</u>	onnel: <u></u>
PURGING:			
Reference Depth To Bottom (DTBr) 15 9	3 ft.	Start: 245	Stop: 1252
Measured Depth to Bottom (DTBm) (59)	ft.	Note: Use Reference Dep	th to Bottom for calculations
Depth to Water (DTW):	ft.	Well Yields:	Yes DNo
Target Volume: 10.15	gal.	Water Contained:	OYes No
Actual Volume:	gaL	DTW After Purge:	√.() ft.
PID: Background:	Purg	ing:	Not Applicable
Purge Method		Rate	Equipment ID
Bailer			Derec
Peristaltic Pump			·
U Well Wizard		· · · · · · · · · · · · · · · · · · ·	
🗖 American Sigma			
Bladder Pump			
SAMPLING.			
Samula ID: 1/ Co 2 Co 11	211	GE DI.	
6101210141	1211	19331	
Sample Time: Start: 1255	Stop:	1301	
Duplicate ID:	NA	++++	8
Sampling Method: Baile	r	σ	Well Wizard
<u>COMMENTS:</u>	ican Si	igma 🗖	Тар
Signature: Da	2/34/1 ate:	QA/QC Review:	<u>CES</u> Date: 8/3/14

Kingston, New	An: York	alysis	Request Form
Well Numb	er:204\$		Date: $5, 3l, u$
LABORAT	<u>ORY:</u>		
σ	IBM - East Fishkill		
	EnviroTest		
σ	Other:		
ANALYSES	SREQUESTED:		
	8010, Freon 113, Freon 123a		Antimony (EPA 200.7 or 6010A)
	Phenols (total) (EPA 420.1)		Arsenic (EPA 206.2 or 7060A)
	Metals are Filtered		Cadmium (EPA 7131)
	Metals are Unfiltered		Lead (EPA 239.2 or 7421)
	Modified Appendix 33		Silver (EPA 7761)
Othe	r: <u>BUU Bitall Fran</u> Pb		

Date	Time	Temp (°C)	pH (SU)	Sp. Cond. (µmhos/cm)	Turbidity (NTU)	Notes
5/31/11	1300	v3.3	7.43	311.4		CLUNAY
				:		· · · · · · · · · · · · · · · · · · ·

002502

	eld S	ampling Data	Sheet
GENERAL INFORMATION:			
Well No: <u>MW 20</u> 45 Date: 9	15	/ l(Perso	nnel: JNC
PURGING:			
Reference Depth To Bottom (DTBr) 5.9	3 A.	Start: 430	Stop: 937
Measured Depth to Bottom (DTBm)	Zft.	Note: Use Reference Dept	h to Bottom for calculations
Depth to Water (DTW): 5.69	ft.	Well Yields:	OYes INo
Target Volume: [1.23	gal	Water Contained:	UYes DNo
Actual Volume:	gaL	DTW Atter Purge:	6.50 ft.
PID: Background:	Purg	ing;	Not Applicable
Purge Method		Rate	Equipment ID
Baller		<u> </u>	
D Peristaltic Pump			
U Well Wizard			
American Sigma			·····
Bladder Pump			
Submersible			
SAMPLING:		•	
Sample ID: KQ2Q4	\$	09 (5	G
Sample Time: Start: <u>940</u>	Stop:	947	
Duplicate ID: KG2Q4	\$.	@915	D
Sampling Method: Ø Baile	r rican Si	igma 🗍	Well Wizard Tap
<u>COMMENTS:</u>		-	
Signature: Di	91/15/ ate:	QA/QC Review:	Date:

Kingston, New	An:	Analysis Request Form					
Well Numł	per: <u>204 s</u>		Date: <u>9, 15, 16</u>				
LABORAT	<u>ORY</u> :						
	IBM - East Fishkill						
	EnviroTest						
σ	Other:						
ANALYSE	S REQUESTED:						
	8010, Freon 113, Freon 123a		Antimony (EPA 200.7 or 6010A)				
	Phenols (total) (EPA 420.1)		Arsenic (EPA 206.2 or 7060A)				
	Metals are Filtered	σ	Cadmium (EPA 7131)				
	Metals are Unfiltered		Lead (EPA 239.2 or 7421)				
	Modified Appendix 33	Ο	Silver (EPA 7761)				
Othe	er: 8021 B Hall Fre-						

Date	Time	Temp (°C)	pH (SU)	Sp. Cond. (µmhos/cm)	Turbidity (NTU)	Notes
a/15/1	946	13.5	7.47	317.2		Clung
						-

<u>COMMENTS</u>:

-

ë≣ë₹ë Fi	eld S	ampling Data	Sheet
Kingston, New Yonk			
GENERAL INFORMATION:			
Well No: MW Aus Date: 2	,7	/ 11 Perso	nnel: Kur S
PURGING:			
Reference Depth To Bottom (DTBr) 7.1	3 ft.	Start: 1008	Stop: 0.13
Measured Depth to Bottom (DTBm) 17.21	, fL	Note: Use Reference Dept	h to Bottom for calculations
Depth to Water (DTW): 7.8	7 ft.	Well Yields:	EYes INO
Target Volume: 10-25	gal.	Water Contained:	OYes INo
Actual Volume:	gaL	DTW After Purge:	3-40 fL
PID: Background:	Purg	ing:	Not Applicable
Purge Method		Rate	Equipment ID
Peristaltic Pump			
🗇 Well Wizard			
American Sigma			
Bladder Pump			
Submersible			
SAMPIING			7
			-
	511	$ \psi \downarrow \psi \downarrow$	
Sample Time: Start: 10-19	Stop:	1030	
Duplicate ID:	NA	+++	
Sampling Method: 🛛 Baile	r	σ	Well Wizard
COMMENTS:	rican Si		Tap
	aue: [QAVQU Review:	Date:

Kingston, New	VYork An	alysis	Request Form
Well Numb	er:2012 \$		Date: 2714
LABORAT	<u>ORY</u> :		
o j	BM - East Fishkill		
Ø	EnviroTest		
	Other:		
ANALYSES	<u>REQUESTED</u> :		
o j	-8010, Freen 113, Freen 123a		Antimony (EPA 200.7 or 6010A)
Ø,	Phenols (total) (EPA 420.1)	Ø	Arsenic (EPA 206.2 or 7060A)
Þ	Metals are Filtered	ø	Cadmium (EPA 7131)
	Metals are Unfiltered	Ø	Lead (EPA 239.2 or 7421)
	Modified Appendix 33	Ø	Silver (EPA 7761)
Othe	r: 90218Hall Tre		

Date	Time	Temp (°C)	pH (SU)	Sp. Cond. (µmhos/cm)	Turbidity (NTU)	Notes
2/7/1	1020	1.7	7.67	1 Mui		an
16 ¹²						· · · · · · · · · · · · · · · · · · ·
						· .

			· · · · · · · · · · · · · · · · · · ·
i Fi	eld S	ampling Data	Sheet
Kingston, New York			
GENERAL INFORMATION:			
Well No: Mud 201e 5 Date:	,2	1 Pers	onnel: <u>Y</u> WP
PURGING:			·
Reference Depth To Bottom (DTBr) 17.18	fL	Start: 2:20	Stop: 1225
Measured Depth to Bottom (DTBm) 17.2	λ î £	Note: Use Reference Dep	th to Bottom for calculations
Depth to Water (DTW): 5.71	ft.	Well Yields:	ØYes 🗇 No
Target Volume: 1262	gal	Water Contained:	OYes DNo
Actual Volume: 13.00	gal.	DTW After Purge:	(6.45 ft.
PID: Background:	Purg	ing:	Not Applicable
Purge Method		Rate	Equipment ID
Bailer			Ded EQ
Peristaltic Pump		<u> </u>	
Well Wizard			
🛛 American Sigma		<u> </u>	
Bladder Pump			
□ Submersible			
<u>SAMPLING</u> :		· _	
Sample ID: KOZCeCe	\$.	0602	6
Sample Time: Start: 12.30	Stop	1238	
Duplicate ID:	NA		
Sampling Method: Ø Baile	er 	0	Well Wizard
<u>COMMENTS</u> :	$\frac{1}{\sqrt{2}}$		iap
Signature: D	ate:	QA/QC Review:	:_ <u>CES</u> Date: <u>81311</u> 4

Kingston, New	An York	alysis	Request Form	
Well Numb	er:20(e s		Date: $(a \mid Z \mid Y)$.,
LABORATO	<u>ORY:</u>			
	/ IBM - East Fishkill			
đ	EnviroTest			
σ	Other:		······	
ANALYSES	REQUESTED:			
σ	8010, Freon 113, Freon 123a		Antimony (EPA 200.7 or 6010A)	
	Phenols (total) (EPA 420.1)	Ð	Arsenic (EPA 206.2 or 7060A)	
	Metals are Filtered	Ø	Cadmium (EPA 7131)	
Ο	Metals are Unfiltered	Ø	Lead (EPA 239.2 or 7421)	
	Modified Appendix 33	1	Silver (EPA 7761)	
Othe	r: <u>8021Btall Fran</u> Total Phadi,	·	· ·	•••

Date	Time	Temp (°C)	pH (SU)	Sp. Cond. (µmhos/cm)	Turbidity (NTU)	Notes
5/2/11	1237	11.9	7.28	707-		Han
_						

002518

<u>COMMENTS</u>:

	eld S	amnling Data	Sheet
Kingston, New York		amping Data	Sheet
GENERAL INFORMATION			
120(5 Ø		ŧ١	TAC
Well No: MULOLe Date:	1 19	<u>/ \</u> Perso	onnel:
PURGING:			
Reference Depth To Bottom (DTBr)	fL	Start: 1145	Stop: 152
Measured Depth to Bottom (DTBm) 7.2	0 fL	Note: Use Reference Dept	h to Bottom for calculations
Depth to Water (DTW): 4-7] f L	Well Yields:	Tes DNo
Target Volume: 13.66	gal	Water Contained:	I'Yes INo
Actual Volume: 14.00	gal.	DTW After Purge:	<u>5.35</u> ft.
PID: Background:	Purg	ing:	Not Applicable
Purge Method		Rate	Equipment ID
Bailer		······································	DedEQ
🗇 Peristaltic Pump			
🗇 Well Wizard	<u>.</u>	······································	
American Sigma			
🗇 Bladder Pump			
□ Submersible			
SAMPI INC.			
Sample ID: [6] (0] [6]	S.	0914	6-
Sample Time: Start: 1155	Stop:	1203	
Duplicate ID: RE200	\$+1	109114	ÐS
Sampling Method: 🛛 Baile	r	σ	Well Wizard
	rican Si	igma 👘 🗖	Тар
	alul	گا	
Signature: D	ate:	QA/QC Review:	Date:

Kingston, New York	alysis Request Form
Well Number: _206 \$	Date: 9,14, 14
LABORATORY:	
1BM - East Fishkill	
EnviroTest	
Other:	· · ·
ANALYSES REQUESTED:	
8010, Freon 113, Freon 123a	Antimony (EPA 200.7 or 6010A)
Phenols (total) (EPA 420.1)	Arsenic (EPA 206.2 or 7060A)
Metals are Filtered	Cadmium (EPA 7131)
Metals are Unfiltered	Lead (EPA 239.2 or 7421)
Modified Appendix 33	Silver (EPA 7761)
Other: 8021 BHgli For	_
· · · · · · · · · · · · · · · · · · ·	· ·

41

Date	Time	Temp (°C)	pH (SU)	Sp. Cond. (µmhos/cm)	Turbidity (NTU)	Notes
9/14/y	1202	12-1	1.31	7217		Cleo

	·	
ê de se	eld Sampling Da	ta Sheet
Kingston, New York		
GENERAL INFORMATION:		
		0
Well No: $MW2C35$ Date:	<u>/ // \</u> Pe	rsonnel: <u> (j w</u>
PURGING:		\sim
Reference Depth To Bottom (DTBr)	8 ft. Start: 947	Stop: 953
Measured Depth to Bottom (DTBm)	5 ft. Note: Use Reference I	Depth to Bottom for calculations
Depth to Water (DTW): 831	ft. Well Yields:	Elles DNo
Target Volume:	gal. Water Contained:	DYes DNo
Actual Volume: 12.00	gal DTW After Purge	: 15.18 A.
PID: Background:	Purging:	Not Applicable
Purge Method	Rate	Equipment ID
Bailer		Ded EQ
Peristaltic Pump		
		· · · ·
Biadder Pump		
		<u> </u>
SAMPLING:		
	61020	70
Sample ID: $ \underline{K} \underline{U} \underline{\zeta} \underline{\psi} \underline{S} $	PILCILO	16
Sample Time: Start: 957	Stop: 1004	S
Dunlicate ID: V @ 2 1/2 Q	61620	TO DICT
<u>кристета</u>	PUVLV	
Sampling Method: D Baile		Well Wizard
COMMENTS:	rican Sigma	Ј Тар
Signature: Cul	ate: 27/ DA/OC Revie	W: CES Data: 81241
3	\ \ \ \ \C 2\C 1\K	

Kingston, New York	alysis Request Form
Well Number:	Date: 2 1714
LABORATORY:	
🗇 🛛 IBM - East Fishkill	
EnviroTest	
Other:	· · · · · · · · · · · · · · · · · · ·
ANALYSES REQUESTED:	
8010, Freon 113, Freon 123a	Antimony (EPA 200.7 or 6010A)
Phenols (total) (EPA 420.1)	Arsenic (EPA 206.2 or 7060A)
Metals are Filtered	Cadmium (EPA 7131)
Metals are Unfiltered	Lead (EPA 239.2 or 7421)
Modified Appendix 33	Silver (EPA 7761)
Other: <u>8021BiteuliFre</u>	

Date	Time	Temp (°C)	pH (SU)	Sp. Cond. (µmhos/cm)	Turbidity (NTU)	Notes
2/1/1	1003	(j. (j	7.10	5224		Clay

<u>COMMENTS:</u>

Fi	eld S	ampling Data	l Sheet
Kingston, New Yock <i>GENERAL INFORMATION</i> : Well No: (<u>MW 208</u> 5 Date: <u>(</u>	1 <u>3</u>	<u>/ \\</u> Pers	onnel:
PURGING:		1	
Reference Depth To Bottom (DTBr) 9.18	ft.	Start: 015	Stop: 0:21
Measured Depth to Bottom (DTBm) 18.0	X ft.	Note: Use Reference Dep	th to Bottom for calculations
Taryet Volume: 14 / 2	978L	Water Contained:	Thes The
Actual Volume: (5.0)	gal	DTW After Purge:	13.52 A.
PID: Background:	Purg	ing:	Not Applicable
Purge Method Bailer		Rate	Equipment ID DCC EQ
American Sigma		· · · · · · · ·	
D Bladder Pump			
SAMPLING: Sample ID: K0208 Sample Time: Start: 030	Stop:	1039	C
Duplicate ID:	-N A	+++	
Sampling Method:	rican S (0 3)	igma 🛛	Well Wizard Tap : <u>CE^S</u> Date: <u>83</u>

Kingston, New	Ana York	lysis]	Request Form
Well Numb	er: <u>208 Ś</u>		Date: $6,3,4$
LABORATO	<u>DRY</u> :		
	IBM - East Fishkill		
g	EnviroTest		
σ	Other:	<u> </u>	
ANALYSES	REQUESTED:		
	8010, Freon 113, Freon 123a	٥	Antimony (EPA 200.7 or 6010A)
σ	Phenols (total) (EPA 420.1)	ø	, Arsenic (EPA 206.2 or 7060A)
Ð	Metals are Filtered	₽,	Cadmium (EPA 7131)
	Metals are Unfiltered	ø	Lead (EPA 239.2 or 7421)
	Modified Appendix 33	P	Silver (EPA 7761)
Othe	Total Phenon	<u>'</u> 	

Date	Time	Temp (°C)	pH (SU)	Sp. Cond. (µmhos/cm)	Turbidity (NTU)	Notes
3/11	1038	121	691	3471		Harry
						· · · · · · · · · · · · · · · · · · ·

002523
772 2			
	eld S	ampling Data	Sheet
Kingston, New York			
GENERAL INFORMATION:			
Well No: MW208 Date: 9	, 14	/ ll Pers	onnel: <u>JAR</u>
PURGING:			
Reference Depth To Bottom (DTBr)	S fL	Start: 905	Stop: 912
Measured Depth to Bottom (DTBm) 14_0) ft.	Note: Use Reference Dep	th to Bottom for calculations
Depth to Water (DTW): 5.43	ft.	Well Yields:	◆DYes □No
Target Volume: 15.13	gal.	Water Contained:	IYes DNo
Actual Volume: 10-00	gal.	DTW After Purge:	12-88 ft.
PID: Background:	Purg	ing:	Not Applicable
Purge Method		Rate	Equipment ID
🗹 Bailer			Deal Q
Peristaltic Pump			
🗇 Well Wizard			
🗖 American Sigma			
🗇 Bladder Pump			
Submersible			·
SAMPLING:			
Sample The Kallag	c I		
	<u>, </u>		1 G
Sample Time: Start: <u>969</u>	Stop:	935	
Duplicate ID: KQ2Q8	\$	10914	\mathcal{D}
Sampling Method: Baile	er		Well Wizard
<u>COMMENTS:</u>	rican S	igma U	Tap
Signature: D	9/1 hate:	۲/۱ QA/QC Review	: Date:

ji ji

	alysis Request Form
Well Number:	Date: 9, 14, 17
LABORATORY:	
🗇 🕤 IBM - East Fishkill	
EnviroTest	
• Other:	
ANALYSES REQUESTED:	
🗖 🕖 8010, Freon 113, Freon 123a	Antimony (EPA 200.7 or 6010A)
Phenols (total) (EPA 420.1)	Arsenic (EPA 206.2 or 7060A)
Metals are Filtered	Cadmium (EPA 7131)
Metals are Unfiltered	🗗 / Lead (EPA 239.2 or 7421)
Modified Appendix 33	Silver (EPA 7761)
Other: <u>8021</u> BHall For	· · · · · · · · · · · · · · · · · · ·
8020 Fr-113/122 52	U.L

FIELD PARAMETERS:

Date	Time	Temp (°C)	pH (SU)	Sp. Cond. (µmhos/cm)	Turbidity (NTU)	Notes
9/14/1	934	12.0	6.95	3670		Clea

<u>COMMENTS</u>:

Kinesten New York	eld S	ampling Data	Sheet
<u>GENERAL INFORMATION</u> : Well No: <u>Mw210.</u> 5 Date: <u>2</u>	, 7	/ II Perso	nnel: <u></u>
PURGING:			
Reference Depth To Bottom (DTBr) 7.0	f fL	Start: 9:11	Stop: 927
Measured Depth to Bottom (DTBm) 7.0	j ft.	Note: Use Reference Depti	to Bottom for calculations
Depth to Water (DTW): 9.60	ft.	Well Yields:	OYes ON0
Target Volume: X.24	gal.	Water Contained:	Tes / No
Actual Volume: 7-00	gal.	DTW After Purge:	(0,4) ft.
PID: Background:	Purg	ing:	Not Applicable
Purge Method Bailer		Rate	Equipment ID
Peristaltic Pump		<u> </u>	
🗇 Well Wizard		· · ·	
🗇 American Sigma			
Bladder Pump			
□ Submersible		·	
SAMPLING:			
Sample ID: KC210	\$ l	0207	G-
Sample Time: Start:3	Stop:	940	
Duplicate ID:	NA	+	
Sampling Method: Baile COMMENTS: Signature: D	rican S / 기 (ate:	igma 🗍	Well Wizard Tap <u>CES</u> Date: <u>Sl24</u>

Kingston, New York	alysis Request Form
Well Number:	Date: 2,7,11
LABORATORY:	
🗇 IBM - East Fishkill	
D EnviroTest	·
Other:	
ANALYSES REQUESTED:	
🛛 8010, Freon 113, Freon 123a	Antimony (EPA 200.7 or 6010A)
Phenols (total) (EPA 420.1)	Arsenic (EPA 206.2 or 7060A)
Metals are Filtered	Cadmium (EPA 7131)
Metals are Unfiltered	Lead (EPA 239.2 or 7421)
Modified Appendix 33	Silver (EPA 7761)
Other: <u>8021 Bitall Fra</u>	<u>'dr'</u>

Date	Time	Temp (°C)	pH (SU)	Sp. Cond. (µmhos/cm)	Turbidity (NTU)	Notes
4111	9.39	7.4	1.16	8944		Clear
						-

<u>COMMENTS</u>:

002443

7662 <i>6</i>		······································
	Field Sampling D	ata Sheet
Augstal, New York		с
GENERAL INFORMATION:		
Well No: MW210 S Date: C	12 111	Personnel: Clarp
<u>PURGING</u> :		
Reference Depth To Bottom (DTBr) 17.	09 ft. Start: 943	Stop: 1000
Measured Depth to Bottom (DTBm) /7-	02 ft. Notes Use Reference	* Depth to Bottom for calculations
Depth to Water (DTW): 7.0	16 ft. Well Yields:	ØYes DNo
Target Volume: [0, 0]	gal. Water Contained	l: IYes INo
Actual Volume: 11.00) gal. DTW After Put	ge: 15.92 ft.
PID: Background:	Purging:	Not Applicable
Purge Method	Rate	Equipment ID
Bailer	·	Ved EQ
Peristaltic Pump	······	
🗇 Well Wizard	. <u> </u>	
American Sigma	<u></u>	
Bladder Pump		
□ Submersible		<u> </u>
<u>SAMPLING</u> :		
Sample ID: $K Q 2 1 Q$	51640	26
Sample Time: Start: 007	Stop: 1013	•
Duplicate ID: KO210	\$1040	ZD
Sampling Method: 🛛 Ba	iler	U Well Wizard
	nerican Sigma	🗇 Тар
Signature:	Date: OA/OC Re	view: CES Date: 8/31/1
$\overline{\mathbf{O}}$		

Kingston, New		alysis Requ	est Form	
Well Numb	er: 2105		Date: <u>(0121</u>	11
<u>LABORAT</u>	<u>ORY</u> :			
	IBM - East Fishkill			
Ø	EnviroTest			
. 🗂	Other:		_	
ANALYSES	S REQUESTED:			
σ	8010, Freon 113, Freon 123a	🗖 🖉 Antim	ony (EPA 200.7 or 60)	10A)
	Phenols (total) (EPA 420.1)	Arseni	ic (EPA 206.2 or 7060.	A)
σ	Metals are Filtered	Cadmi	ium (EPA 7131)	
	Metals are Unfiltered	Lead (EPA 239.2 or 7421)	
	Modified Appendix 33	Silver	(EPA 7761)	
Othe	r: <u>8021BHallFrz</u> Photols	in .		

:

Date	Time	Temp (°C)	pH (SU)	Sp. Cond. (µmhos/cm)	Turbidity (NTU)	Notes
6/2/1,	1012	Щ.З	1,89	89/148		Hazn
				1		

<u>СОММЕНТS:</u> 5 Л 10 Л 11 Л

Kingston, New York	eld S	ampling Data	ı Sheet
<u>GENERAL INFORMATION</u> : Well No: <u>MW210</u> , [§] Date: <u>9</u>	, 14	/ \\ Pers	onnel: JAR Q
PURGING:			
Reference Depth To Bottom (DTBr) 7.0	9 €	Start: 949	Stop: 000
Measured Depth to Bottom (DTBm) 7.0	le A	Note: Use Reference Dep	th to Bottom for calculations
Depth to Water (DTW):	ft.	Well Yields:	-OYes DNo
Target Volume:	gal.	Water Contained:	Tes Tho
Actual Volume:	gal.	DTW After Purge:	19-76 ft.
PID: Background:	Purg	ing:	Not Applicable
Purge Method Bailer		Rate	Equipment ID Ded EQ
D Peristaltic Pump			
🗇 Well Wizard		<u>.</u>	
🗖 American Sigma			
Bladder Pump		······	
□ Submersible			
SAMPLING:			
Sample ID: KO210	Ś.	09114	G
Sample Time: Start: 1005	Stop:	1011	
Duplicate ID:	NA		Đ
Sampling Method: 🗹 Baile	r	σ	Well Wizard
COMMENTS: Signature:	al -	igma 🗖	Tap : Date:

Kington New York	alysis Request Form
KILLESION, INCW I OFE	
Well Number: 2108	Date: $9//4/1^{-1}$
LABORATORY:	
🗇 🖉 IBM - East Fishkill	
EnviroTest	
Other:	
ANALYSES REQUESTED:	
8010, Freon 113, Freon 123a	Antimony (EPA 200.7 or 6010A)
Phenols (total) (EPA 420.1)	Arsenic (EPA 206.2 or 7060A)
Metals are Filtered	Cadmium (EPA 7131)
Metals are Unfiltered	🗹 🖉 Lead (EPA 239.2 or 7421)
Modified Appendix 33	Silver (EPA 7761)
Other: 80218Hall Fr	20~

;

· 1	Date	Time	Temp (*C)	pH (SU)	Sp. Cond. (µmhos/cm)	Turbidity (NTU)	Notes
all	41)	1010	11.5	7.02	9070		Clea

002539

1-**1**1

<u>COMMENTS:</u>

	ield S	ampling Data	Sheet
Kingston, New York			
GENERAL INFORMATION:			
1250M S	21	1.)	0.1
Well No: $\underline{N} \underline{J} \underline{J} \underline{J} \underline{J} \underline{J} \overline{J} \overline{J} \overline{J} \overline{J} \overline{J} \overline{J} \overline{J} \overline$	120	Perso	onnel: \
PURGING:			0
Reference Depth To Bottom (DTBr) 5.	elo fL	Start: 318	Stop: 322
Measured Depth to Bottom (DTBm) 15-	76 f .	Note: Use Reference Dept	h to Bottom for calculations
Depth to Water (DTW): 3-95	ft.	Well Yields:	ØYes 🗆 No
Target Volume: 5.72	gal	Water Contained:	Tres TNO
Actual Volume: (e.0()	gal.	DTW After Purge:	4-3) ft.
PID. Restancy rds	Dremo		Not Applicable
TID: Duckground.	Ing	ing.	1 Par Nor Applicable
Purge Method		Rate	Equipment ID
Bailer		···	Dealea
D Peristaltic Pump			
🖸 Well Wizard			<u></u>
🖸 American Sigma			
Bladder Pump			
<u>SAMPLING</u> :			
Sample ID: 30250	MI	(0526	G
	<u></u>	1229	
Sample Time: Start: <u>1907</u>	Stop:	<u></u>	
	L VI.		
Sampling Method: 🗖 Bail	er	a	Well Wizard
	erican S	igma 🗖	Тар
<u>COMMENTS:</u>	5/11	ſ.	
Signature:	ل 	QA/QC Review:	CES Date: 8/25/

Kingston, New	Analysis Request Form					
Well Numb	er:250 M		Date: $5/2(e_{1}, b_{2})$			
LABORAT	<u>ORY</u> :					
σ	IBM - East Fishkill		· •			
ø	EnviroTest					
Ο	Other:					
ANALYSES	S <u>REQUESTED</u> :					
σ	8010, Freon 113, Freon 123a		Antimony (EPA 200.7 or 6010A)			
σ	Phenols (total) (EPA 420.1)		Arsenic (EPA 206.2 or 7060A)			
	Metals are Filtered		Cadmium (EPA 7131)			
σ	Metals are Unfiltered		Lead (EPA 239.2 or 7421)			
	Modified Appendix 33		Silver (EPA 7761)			
Othe	r: <u>8021 Halos</u>					

Date	Time	Temp (°C)	pH (SU)	Sp. Cond. (µmhos/cm)	Turbidity (NTU)	Notes
5/26/11	1328	13.9	6.15	59805		Hoa

<u>COMMENTS</u>:

-

			÷	<u>.</u>	
E Fie	eld S	ampling I)ata	Sheet	
Kingston, New York					
FENERAL INFORMATION:					
Vell No: <u>MW2415</u> Date: <u>5</u>	, 31	/ 11	Perso	onnel:	CIUR
URGING:					
Reference Depth To Bottom (DTBr)	ft.	Start:	_	Stop:	
Measured Depth to Bottom (DTBm)	ft.	Note: Use Referen	ce Depl	h to Bottom fo	r calculations
Depth to Water (DTW):	ft.	Well Yields:	/	OYes	[] No
Target Volume:	gal.	Water Containe	d:	□Yes	D No
Actual Volume:	gaL	DTW After Pu	rge:		ft.
PID: Background:	Purg	ing:	<u></u>] 🗆 Not /	Ipplicable
Purge Method		Rate		Equip	nent ID
🗖 Bailer					<u>`</u>
D Peristaltic Punp			_		
🗇 Well Wizard				. <u></u>	
🗖 American Sigma 🔪 .					
D Bladder Pump			-		
□ Submersible .			_	<u> </u>	
SAMPLING:					
Sample ID:					
Sample Time: Start:	Stop:		-		
Duplicate ID:		TKI			
Sampling Method: 🗍 Baile	I ican S	ioma ·	а П	Well Wi	zard
COMMENTS:	5/3	() 	J	rah	مام
Signature: Da	ate:	QA/QC R	eview:	<u>(2)</u> D	ate: <u>8131</u>

	eld S	ampling Data	Sheet
Kingston, New York			
GENERAL INFORMATION:			
Well No: MW2675 Date: 5	,3(Perso	onnel: <u>C</u> (w
PURGING:			U
Reference Depth To Bottom (DTBr)	ft.	Start:	Stop:
Measured Depth to Bottom (DTBm)	ft.	Note: Use Reference Dep	th to Bottom for calculations
Depth to Water (DTW):	ft.	Well Yields:	🛛 Yes 🖉 No
Target Volume:	gal	Water Contained:	🛛 Yes 🖉 No
Actual Volume:	gal.	DTW After Purge:	ft.
PID: Rackground:	Purgi	ng:	Not Applicable
Purge Method		Rate	Equipment ID
D Peristaluc Pump			· · · · · · · ·
Well Wizard			
American Sigma			
🗖 Bladder Pump			
□ Submersible			• ···-
SAMPLING:			
Sample ID:	Д.		
Sample Time: Start:	Stop:		
	•		
Duplicate ID:			
Sampling Method: Baile	r	Ū	Well Wizard
<u>COMMENTS:</u>	rican Si 5 31	igma ()	Tap
Signature: D	ate:	QA/QC Review:	<u>CES</u> Date: <u>831</u>
· ()			

	Field S	Sampling Data	a Sheet
Kingston, New York			· · · · · ·
GENERAL INFORMATION:			
Vell No: Mul 21096 Date:	5 127	/) Pers	connet. Of les
100 <u>200</u> (*** Datt.			
PURGING:		<u>, </u>	
Reference Depth To Bottom (DTBr)	2840 1	Start: 210	Stop: 12-20
Measured Depth to Bottom (DTBm)	2867 A	Note: Use Reference Dep	oth to Bottom for calculations
Depth to Water (DTW):	9.51 A	Well Yields:	OYes DNo
Target Volume:	1.23 gal	Water Contained:	ØYes ØNo
Actual Volume:	.50 gal	DTW After Purge:	f.
PID: Background:	Pure	ing:	Not Applicable
Purge Method		Rate	Equipment ID
Bailer			Dea Za
Peristaltic Pump			
Well Wizard	<u> </u>		
American Sigma			
🗖 Bladder Pump			
□ Submersible			
SAMPLING:			
Sample ID: $\mathbb{K} \oplus \mathbb{Z} \oplus$	981	0527	G
1225		1729	
Sumple Time: Start: 100	Stop:		
Sampling Method:	Bailer	σ	Well Wizard
	American S	igma 🗖	Тар
<u>COMMENTS:</u>	5/2-	1.	
Signature:	Date:	QA/QC Review	: ET Date: 8/31
Ŭ [−]			

Kingston, New	Ana Yook	alysis	Request Form
Well Numb	er: <u>2695</u>		Date: 5 127111
LABORATO	<u>ORY</u> :		
	BM - East Fishkill		
g	EnviroTest		
σ	Other:		
ANALYSES	S REQUESTED:		
	8010, Freon 113, Freon 123a		Antimony (EPA 200.7 or 6010A)
σ	Phenols (total) (EPA 420.1)		Arsenic (EPA 206.2 or 7060A)
	Metals are Filtered		Cadmium (EPA 7131)
σ	Metals are Unfiltered		Lead (EPA 239.2 or 7421)
	Modified Appendix 33		Silver (EPA 7761)
Othe	r: 8021 Aoum / Halo	<u>ሳ</u> 	

42

.

<u>COMMENTS</u>:

7722		
	eld Sampling Da	ita Sheet
Kingston, New York		
GENERAL INFORMATION:		
Well No: MW 270\$ Date: 5	127/11 Pe	ersonnel: <u> </u>
<u>PURGING</u> :		
Reference Depth To Bottom (DTBr) 29.11	1 ft. Start: 140	Stop: 153
Measured Depth to Bottom (DTBm) 29 84	ft. Note: Use Reference	Depth to Bottom for calculations
Depth to Water (DTW):	ft. Well Yields:	Tes INO
Target Volume: 8-82	gal. Water Contained:	Dies' DNo
Actual Volume: 9.00	gal. DTW After Purge	e: 12.92 ft.
PID: Background:	Purging:	Not Applicable
Purge Method	Rate	Equipment ID
Bailer		Dea Ea
Peristaltic Pump		
U Well Wizard		
American Sigma		
	<u></u>	·
<u>SAMPLING</u> :		
Sample ID: K0270	\$1052	7 G
Sample Times Start 1200	1204	
Sample Time: Start: 12	Stop:	
Duplicate ID:	NALL	<u> </u>
Sampling Method: Baile	r C	Well Wizard
	rican Sigma	J Tap
<u>COMMENTS</u> :	_/	
Signature: D	5/27/11 ate: QA/QC Revi	ew: <u>CES</u> Date: 8/31/1
	•	

Kingston, New York	An	alysis	Request Form	÷د
Well Number:	2705		Date: 5 1271 1	
LABORATORY:				
	- East Fishkill			
🕑 Envi	roTest			
🗇 Othe	r:			
ANALYSES REQ	<u>UESTED:</u>			
8010	, Freon 113, Freon 123a		Antimony (EPA 200.7 or 6010A)	
D Pher	ols (total) (EPA 420.1)	Ο	Arsenic (EPA 206.2 or 7060A)	
🗖 Meta	als are Filtered		Cadmium (EPA 7131)	
🗖 Meta	ils are Unfiltered		Lead (EPA 239.2 or 7421)	
🖸 Mod	ified Appendix 33		Silver (EPA 7761)	
Other:	8021 Awn/ Hal	<u>v</u> 9		

.

			· · · · · · · · · · · · · · · · · · ·	
≜essa <u>F</u>	ield S	Sampling Data	Sheet	
Kingston, New York				
GENERAL INFORMATION:				
Well No: MW 274'S Date: 5	126	<u>/ l(</u> Pers	onnel: <u>Cy</u>	Ver
<u>PURGING:</u>			0	
Reference Depth To Bottom (DTBr) 22.	7(ft.	Start: 155	Stop: 12	02
Measured Depth to Bottom (DTBm) 224	94 ft.	Note: Use Reference Dep	th to Bottom for	calculations
Depth to Water (DTW): 5.7	3 ft.	Well Yields:	Ptes	□ No
Target Volume: 8.50	gal.	Water Contained:	OK	CI No
Actual Volume: 9.00	gai.	DTW After Purge:	5.8	2 ft.
PID: Background:	Purg	ing:	Not Ap	plicable
Purge Method		Rate	Equipm	ent ID
⊿ Bailer		·	_UEACI	
Peristaltic Pump				
🖸 Well Wizard		i		
🗇 American Sigma				
🗇 Bladder Pump		· · · · ·		
□ Submersible				
SAMPLING:				
Sample ID: KQ274	,s I	6526	G	
Sample Time: Start: 1205	Stop:	1211		
Duplicate ID: [6274	51	0526	D	
Sampling Method: Ø Baile	er Hinne Ci		Well Wiz	ard
<u>COMMENTS:</u>	chan S	igma 🗍	Тар	
Signature: D	s [U	QA/QC Review:	CES Dat	e: 812511

Kingston, New	Analysis Request Form					
Well Numb	er: <u>2745</u>		Date: 5 1261 4			
LABORAT	<u>ORY</u> :					
	IBM - East Fishkill					
\Box	EnviroTest					
	Other:					
ANALYSE	SREQUESTED:					
	8010, Freon 113, Freon 123a	Ο	Antimony (EPA 200.7 or 6010A)			
σ	Phenols (total) (EPA 420.1)		Arsenic (EPA 206.2 or 7060A)			
	Metals are Filtered	σ	Cadmium (EPA 7131)			
	Metals are Unfiltered		Lead (EPA 239.2 or 7421)			
	Modified Appendix 33		Silver (EPA 7761)			
Othe	r:8021 Halog					

ę .

Date	Time	Temp (*C)	pH (SU)	Sp. Cond. (µmhos/cm)	Turbidity (NTU)	Notes
5/210/11	1210	14.6	6.63	378.6		Clover

	eld S	ampling Data	Sheet
$\frac{GENERAL INFORMATION}{M \& 2775}$ Well No: $M \& 2775$ Date: 5	127	/ 1) Perso	onnel:ko
PURGING:			
Reference Depth To Bottom (DTBr)23 3	7 ft.	Start: 851	Stop: 856
Measured Depth to Bottom (DTBm) 23 5	U ft.	Note: Use Reference Dept	h to Bottom for calculations
Depth to Water (DTW): 8-58	ft.	Well Yields:	ØYes DNo
Target Volume: 7-23	gal.	Water Contained:	I'Yes TNo
Actual Volume: 7.50	gal.	DTW After Purge:	8.71 ft.
PID: Background:	Purg	ing:	Not Applicable
Purge Method Bailer		Rate	Equipment ID Ded EQ
			· ·
D American Sigma			<u> </u>
D Bladder Pump			<u></u>
U Submersible			
SAMPLING:			
Sample ID: K @ 277	\$ 1	0527	G
Sample Time: Start: 900	Stop:	905	
Duplicate ID:	NA	++++	F
Sampling Method: Ø Baile	er rican S	igma 🖸	Well Wizard Tap
COMMENTS: Signature: D	5 27 ate:	QA/QC Review:	<u>CES</u> Date: 831

Kingston, New York	alysis	Request Form
Well Number:277 \$		Date: 5,27,4
LABORATORY:		
IBM - East Fishkill		
EnviroTest		
• Other:		
ANALYSES REQUESTED:		
8010, Freon 113, Freon 123a		Antimony (EPA 200.7 or 6010A)
Phenols (total) (EPA 420.1)		Arsenic (EPA 206.2 or 7060A)
Metals are Filtered		Cadmium (EPA 7131)
Metals are Unfiltered		Lead (EPA 239.2 or 7421)
Modified Appendix 33		Silver (EPA 7761)
Other: <u>8021 Halu</u>		

Date	Time	Temp (°C)	pH (SU)	Sp. Cond. (µmhos/cm)	Turbidity (NTU)	Notes
5/21/11	904	12.6	7.54	598		Hau
				:		· · ·

<u>COMMENTS:</u>

	ield S	ampling Data	Sheet
Kingston, New York			· .
GENERAL INFORMATION:			
Well No: MW 278, S Date: 5	125	/ {\ Perso	onnel: <u>Skp</u>
PURGING:			
Reference Depth To Bottom (DTBr)	83 f	Start: 321	Stop: 13-28
Measured Depth to Bottom (DTBm) 9.	17 f .	Note: Use Reference Dept	h to Bottom for calculations
Depth to Water (DTW): 10-9	0 fL	Well Yields:	OYes DNo
Target Volume: 4-30	gal.	Water Contained:	QIes DNo
Actual Volume: 5-00	gal.	DTW After Purge:)099 ft.
PID: Background:	Purg	ing:	Not Applicable
Purge Method		Rate	Equipment ID
Bailer			JEO / Q
Peristaltic Pump		 .	
🗖 Well Wizard			
🗖 American Sigma	<u> </u>		
🗇 Bladder Pump			
Submersible	<u> </u>		
SAMPLING:			
Sample ID: K 0 2 7 8	S.	10525	G
Sample Time: Start: 1330	Stop:	1336	
Duplicate ID:	NA	Ph	\square
Sampling Method: D Baile	er	. O	Well Wizard
<u>COMMENTS:</u>	rican S	igma 🗍	Тар
Signature:D	ate:	QA/QC Review:	CES Date: 8/25/11

Kingston, New	VYork	alysis	Request Form
Well Numb	er: <u>278\$</u>		Date: 5 1251 4
	IBM - Fact Fichkill		
	EnviroTest		
σ	Other:		
ANALYSE	SREQUESTED:		
0	8010, Freon 113, Freon 123a		Antimony (EPA 200.7 or 6010A)
	Phenols (total) (EPA 420.1)		Arsenic (EPA 206.2 or 7060A)
	Metals are Filtered	σ	Cadmium (EPA 7131)
	Metals are Unfiltered		Lead (EPA 239.2 or 7421)
	Modified Appendix 33		Silver (EPA 7761)
Othe	er: 8021 Haluy	·····	

۰.

:

Date	Time	Temp (°C)	pH (SU)	Sp. Cond. (µmhos/cm)	Turbidity (NTU)	Notes
5/25/11	1335	\?). [₩]	7.15	7445		Curry

COMMENTS:

. . .

		<u></u>
	Field Sampling Data	a Sheet
Kingston, New York		л — л -
GENERAL INFORMATION:		
Well No: <u>Mw 279</u> 8 Date:	<u>5 127 1 1</u> Pers	sonnel: <u>kv</u> G
PURGING:		
Reference Depth To Bottom (DTBr) 2	1.103 ft. Start: 9:10	Stop: 915
Measured Depth to Bottom (DTBm) 20).40 ft. Note: Use Reference Dep	pth to Bottom for calculations
Depth to Water (DTW):	15 ft. Well Yields:	Dies DNo
Target Volume:	0 gal. Water Contained:	Dres DNo
Actual Volume:	ol gal. DTW After Purge:	9.28 ft.
PID: Background:	Purging:	Not Applicable
Purga Mathod	Pata	Fauinment ID
A Bailer	Aute	Deala
Periotaltia Puma	<u>, , , , , , , , , , , , , , , , , </u>	
		- <u></u>
	• <u>•</u> ••••••	
		· · · · · · · · · · · · · · · · · · ·
	<u>.</u>	
<u>SAMPLING</u> :		
Sample ID: $\angle 0 27$	9510527	G-
Sample Time: Start: <u>9</u> 20	Stop: <u>925</u>	
Duplicate ID:	TNALL	
Sampling Method: Ø B	Sailer	Well Wizard
	$\frac{1}{5}$	Тар
Signature:	_ Date: QA/QC Review	v: <u>CIS</u> Date: <u>813114</u>

Kingston, New	Ana Yet York	Analysis Request Form					
Well Numb	er: <u>2799</u>		Date: 5 127 11				
	– IBM - East Fishkill						
Ø	EnviroTest		·				
	Other:						
ANALYSES	<u>S REQUESTED</u> :						
٥	8010, Freon 113, Freon 123a		Antimony (EPA 200.7 or 6010A)				
Ο	Phenols (total) (EPA 420.1)	σ	Arsenic (EPA 206.2 or 7060A)				
	Metals are Filtered		Cadmium (EPA 7131)				
σ	Metals are Unfiltered		Lead (EPA 239.2 or 7421)				
σ	Modified Appendix 33		Silver (EPA 7761)				
Othe	r: <u>8021 Halog</u>	·					

Date	Time	Temp (*C)	pH (SU)	Sp. Cond. (µmhos/cm)	Turbidity (NTU)	Notes
127/1,	924	13.6	7.13	1862		Hazy

002479

<u>COMMENTS:</u>

Kingston, New York	Fiel	d S	ampling Data	Sheet
GENERAL INFORMATIC	<u>DN:</u>			
Well No: MW 2825	Date: <u>5</u> /	25	Perso	onnel:
PURGING:				
Reference Depth To Bottom (DTBr) 18.1.4	fL	Start: 100%	Stop: 1014
Measured Depth to Bottom (DTBm) 18-21	ft.	Note: Use Reference Dep	th to Bottom for calculations
Depth to Water (DTW):	6.00	ft.	Well Yields:	DYes DNo
Target Volume:	6.18	gal.	Water Contained:	ØYes ØNo
Actual Volume:	6.50	gal	DTW After Purge:	8.46 €
			· .	7
PID: Background:		Purgi	ing:	Not Applicable
Purge Method			Rate	Equipment ID
E Bailer				
🗖 Peristaltic Pump	• •			
🗖 Well Wizard	_			·
🗖 American Sigma				
🗇 Bladder Pump	_			
☐ Submersible	_			
•				
SAMPLING:				
Sample ID: KO	282\$)	0525	G
Sample Time: Start:	<u>020</u> s	Stop:	1025	
Duplicate ID: KO	2825	5	0525	D
Sampling Method:	Bailer	on 65		Well Wizard
<u>COMMENTS</u> :		all 31		τ α μ
Signature:	Date	<u>, 5</u>	25 11 QA/QC Review:	CES Date: 6125/11

Kingston, New York

	Ar	alysis Request Fo	rm
Kingston, New York			
Well Number:	NV 2823	Date:	5 125/11

LABORATORY:

- IBM - East Fishkill
- Ø EnviroTest
- \Box Other:

ANALYSES REQUESTED:

- 8010, Freon 113, Freon 123a
- Phenols (total) (EPA 420.1)
- Metals are Filtered Metals are Unfiltered

- Modified Appendix 33
- Antimony (EPA 200.7 or 6010A)
- Arsenic (EPA 206.2 or 7060A)
- Cadmium (EPA 7131)
 - Lead (EPA 239.2 or 7421)
 - Silver (EPA 7761)

Other: 8031 Halos

FIELD PARAMETERS:

Date	Time	Temp (°C)	pH (SU)	Sp. Cond. (µmhos/cm)	Turbidity (NTU)	Notes
5/25/11	1024	13.4	633	614		Harry

i i i i i i i i i i i i i i i i i i i	eld S	ampling Data	Sheet		
Kingston, New York					
GENERAL INFORMATION:					
Well No: <u>MW2845</u> Date: <u>2</u>	, 3	111 Perso	onnel: <u>gh</u>		
PURGING:			· · · · · · · · · · · · · · · · · · ·		
Reference Depth To Bottom (DTBr) 203	2 f .	Start: 1617	Stop: 1625		
Measured Depth to Bottom (DTBm) 20 .40	ft.	Note: Use Reference Dep	k to Bottom for calculations		
Depth to Water (DTW): 8-30	ft.	Well Yields:	Offes [] No		
Target Volume: 5.87	gal.	Water Contained:	I'res ING		
Actual Volume: 600	gal.	DTW After Purge:	9.00 ft.		
PID: Background:	Purg	ing:	Not Applicable		
Purge Method		Rate	Equipment ID		
Bailer		· · · · · · · · · · · · · · · · · · ·	Dedta		
T Peristaltic Pump					
American Sigma					
		······································			
SAMPLING:					
Sample ID: KQ254	\$.1	0203	G		
Sample Time: Start: 16:30	Stop:	16.37			
Duplicate ID: KQ284510203D					
Sampling Method: 🗹 Baile	r	σ	Well Wizard		
American Sigma 🗇 Tap					
COMMENTS:					
Signature: D	3/1) ate:	QA/QC Review:	CES Date: gloy11		
\bigcirc					

Kingston, New	Ana Ana	lysis	Request Form
Vell Numbe	r: <u>2845</u>		Date: 21314
ABORATO	<u>PRY</u> :		
	IBM - East Fishkill		
\mathcal{P}	EnviroTest		
	Other:		
NALYSES	REQUESTED:		
	8010, Freon 113, Freon 123a	σ	Antimony (EPA 200.7 or 6010A)
	Phenols (total) (EPA 420.1)		Arsenic (EPA 206.2 or 7060A)
	Metals are Filtered		Cadmium (EPA 7131)
	Metals are Unfiltered		Lead (EPA 239.2 or 7421)
	Modified Appendix 33		Silver (EPA 7761)
Other		<u> </u>	

Date	Time	Temp (°C)	pH (SU)	Sp. Cond. (µmhos/cm)	Turbidity (NTU)	Notes
2/3/1	1034	10.1	7.44	54142		Clear

<u>COMMENTS</u>:

002428

E E E E E E E E E E E E E E E E E E E	eld S	ampling Data	Sheet
GENERAL INFORMATION:			
Well No: <u>MW 2845</u> Date: <u>5</u>	125	/ 11 Perso	onnel: <u> </u>
PURGING:			2
Reference Depth To Bottom (DTBr) 20-3	ZfL	Start: 1147	Stop: 155
Measured Depth to Bottom (DTBm) 2.0 -4	₿ ft.	Note: Use Reference Dept	h to Bottom for calculations
Depth to Water (DTW): 7.32	ft.	Well Yields:	SYes INO
Target Volume: 6.35	gal.	Water Contained:	DYes DNo
Actual Volume: 6.50	gal.	DTW After Purge:	19.00 ft.
PID: Background:	Purg	ing:	Not Applicable
Purge Method		Rate	Equipment ID Deil
Daniel			
			<u>.</u>
		······································	····
 Bladder Pump Submersible 			
Sample ID: KQZ84 Sample Time: Start: <u>200</u>	Ś Stop:	1204	G
Duplicate ID:	H,	JALAN	
Sampling Method: Ø Baile	er		Well Wizard
COMMENTS:	S/21 Date:	$\frac{\left(\int_{U_1} QA/QC \text{ Review}\right)}{QA/QC \text{ Review}}$	Tap <u>CES</u> Date: <u>5(25)</u> 1

722							
è pe	📲 🔤 Ana	Analysis Request Form					
Kingston, New	York						
Well Numb	er:2845		Date: 5,25,1				
LABORAT	<u>ORY</u> :						
	IBM - East Fishkill						
9	EnviroTest						
	Other:						
ANALYSES	REQUESTED:		7				
	8010, Freon 113, Freon 123a		Antimony (EPA 200.7 or 6010A)				
Ο	Phenols (total) (EPA 420.1)		Arsenic (EPA 206.2 or 7060A)				
	Metals are Filtered		Cadmium (EPA 7131)				
	Metals are Unfiltered		Lead (EPA 239.2 or 7421)				
	Modified Appendix 33		Silver (EPA 7761)				

8021 Halog

002451

FIELD PARAMETERS:

Other:

Date	Time	Temp (°C)	pH (SU)	Sp. Cond. (µmhos/cm)	Turbidity (NTU)	Notes
8/25/4	1203	13.8	6.76	1017		Hazy

<u>COMMENTS</u>:

Gall 4 6.50

LER Fi	eld S	ampli	ng Data	Sheet	t	
Kingston, New York						
ENERAL INFORMATION:						
Well No: <u>MW2845</u> Date: <u>9,14,11</u> Personnel: <u>JARS</u>						
URGING:						
Reference Depth To Bottom (DTBr) 203	ft .	Start:	255	Stop:	13:06	
Measured Depth to Bottom (DTBm) 20.4	7 ft.	Note: Use	Reference Dep	th to Bottom	for calculations	
Depth to Water (DTW): 1.51	ft.	Well Yie	elds:	TYes	- DNo	
Target Volume: $(0, \angle)$	gal.	Water C	onthined:	Ures		
	gau.	DIWA	iter Furge:		<u>- [7] m.</u>	
PID: Background:	Purg	ing:			of Applicable	
Purge Method	Rate			Equi	pment ID	
Bailer				Ded	Ea.	
D Peristaltic Pump						
🗇 Well Wizard				 		
🗖 American Sigma			 .			
🖸 Bladder Pump						
□ Submersible			<u> </u>			
<u>SAMPLING</u> :						
Sample ID: KOZ84	\$1	Q	9114	G		
Sample Time: Start: 1310	Stop:	_13	15			
Duplicate ID:						
Sampling Method: D Bailer D Well Wizard						
<u>COMMENTS:</u>	al .	iguna	U	тар		
Signature: Di	ate:	QA	/QC Review		Date:	

Kingston, New York	alysis	Request Form
Well Number: <u>2843</u>		Date: <u>9 114 14</u>
LABORATORY:		
🗇 🖉 IBM - East Fishkill		
EnviroTest		
O Other:		
ANALYSES REQUESTED:		
8010, Freon 113, Freon 123a		Antimony (EPA 200.7 or 6010A)
D Phenols (total) (EPA 420.1)	σ	Arsenic (EPA 206.2 or 7060A)
Metals are Filtered		Cadmium (EPA 7131)
Metals are Unfiltered		Lead (EPA 239.2 or 7421)
Modified Appendix 33		Silver (EPA 7761)
Other: BUZIBHAN Tra		

:

Date	Time	Temp (°C)	pH (SU)	Sp. Cond. (µmhos/cm)	Turbidity (NTU)	Notes
9/14/1,	1314	14.2	6.81	1027-		ten

<u></u>	Field S	Sampling Dat	a Sheet
Kingston, New York			· · · · ·
GENERAL INFORMATION:			
Well No: MW2855 Dat	te: 5 131	/ 1(Per	sonnel: <u>Cy</u> lur
BUDCINC.	<u> </u>		()
Reference Denth To Battom (DTF	81) 2457 A	Start: 10-14	Stop: 1072
Measured Depth to Bottom (DTB	m) 24.40 ft	Note: Use Reference De	pth to Bottom for calculations
Depth to Water (DTW):	8-95 A	Well Yields:	Outes INo
Target Volume:	7.63 gal	Water Contained:	Stes DNo
Actual Volume:	8-00 gal	DTW After Purge:	8.95 ft.
	<u> </u>		·····
PID: Background:	Purg	ring:	Not Applicable
Purge Method		Rate	Equipment ID
A Bailer			Deala
Peristaltic Pump			
U Well Wizard			
American Sigma			
Bladder Pump			<u></u>
□ Submersible			<u></u>
-			
SAMPLING:			
Sample ID: KO2	8551	0531	G
Sample Times Starts 102	5 500	. 1037	
complexance Diate	Stop		
Duplicate ID:	-NI	++++	7
Sampling Method:	Bailer		Well Wizard
	American	Sigma 🗍	Тар
<u>COMMENTS</u> ;			
(\. Vi	53	15	101

Kingston, New	An:	lysis	Request Form
Well Numb	er: <u>2855</u>		Date: 5,31,4
LABORAT	<u>ORY</u> :		
	/ IBM - East Fishkill		
g	EnviroTest		
	Other:		
ANALYSE	S REQUESTED:		
	8010, Freon 113, Freon 123a		Antimony (EPA 200.7 or 6010A)
	Phenols (total) (EPA 420.1)	σ	Arsenic (EPA 206.2 or 7060A)
	Metals are Filtered		Cadmium (EPA 7131)
	Metals are Unfiltered		Lead (EPA 239.2 or 7421)
	Modified Appendix 33		Silver (EPA 7761)
Othe	PCBS	<u>0</u> N	

Date	Time	Temp (°C)	pH (SU)	Sp. Cond. (µmhos/cm)	Turbidity (NTU)	Notes
5/31/1,	1031	124	7.14	3113		Clury

i i i i i i i i i i i i i i i i i i i	eld Sa	ampling Data	Sheet
Kingston, New York			stration and strategy
GENERAL INFORMATION:			
Well No: <u>MW288</u> Bate: <u>5</u>	127,	/ 11 Perso	onnel: <u>4</u>
PURGING:			0
Reference Depth To Bottom (DTBr) 29,	911	Start: 1027	Stop: 0:32
Measured Depth to Bottom (DTBm) 29.	67A.	Note: Use Reference Dep	th to Bottom for calculations
Depth to Water (DTW): §.7]	ft.	Well Yields:	Detes DNo
Target Volume: 10-36	gal.	Water Contained:	I'Yes ONO
Actual Volume: 0.50) gal	DTW After Purge:	8-82 ft.
PID: Background:	Purgin	ıg:	Not Applicable
Purge Method		Rate	Equipment ID
D Bailer			DECRO
Peristaltic Pump			
🗇 Well Wizard			
🖸 American Sigma			
🗇 Bladder Pump			
<u>SAMPLING:</u>			
Sample ID: $\mathbb{K} \bigcirc \mathbb{Z} \otimes \mathbb{S}$	\$.1	@527	G
Sample Time: Start: 1035	Stop:	_1040	
Duplicate ID:	NA		
Sampling Method: 🗹 Baile	er		Well Wizard
<u>COMMENTS:</u>	rican Sig	gma U	Тар
Signature: D	5/27/1 nate:	QA/QC Review:	CES Date: -5131/1
$\langle \rangle$			

Kingston, New	Ana York	alysis	Request Form	
Well Numb	er: <u>288,5</u>		Date: 5,27,4	
LABORATO	<u>DRY</u> :			
, D	IBM - East Fishkill			
	EnviroTest			
	Other:			
ANALYSES	REQUESTED:			
	8010, Freon 113, Freon 123a		Antimony (EPA 200.7 or 6010A)	
	Phenols (total) (EPA 420.1)	σ	Arsenic (EPA 206.2 or 7060A)	
	Metals are Filtered		Cadmium (EPA 7131)	
	Metals are Unfiltered		Lead (EPA 239.2 or 7421)	
	Modified Appendix 33	σ	Silver (EPA 7761)	
Othe	r: 8021 Halog			

Date	Time	Temp (°C)	pH (SU)	Sp. Cond. (µmhos/cm)	Turbidity (NTU)	Notes
5/27/11	1039	12.9	7.15	2757		Hazy
_						

COMMENTS:

-

≟ē₹ Fi	eld S	Sampling Data	a Sheet			
Kingston, New York						
GENERAL INFORMATION:						
Well No: <u>MW 297</u> Date: <u>5</u>	127	Pers	onnel: <u>G</u> 1a			
<u>PURGING</u> :						
Reference Depth To Bottom (DTBr) 27.7	ί fL	Start: 012	Stop: 1017			
Measured Depth to Bottom (DTBm) 274	5 ft	Note: Use Reference Dep	th to Bottom for calculations			
Depth to Water (DTW): 9-00) ft.	Well Yields:	SYes DNo			
Target Volume: 9,17	gal	Water Contained:	DYes JNo			
	gal	DTW After Purge:	9.21 ft.			
PID: Background:	Purg	ing:	Not Applicable			
Purge Method		Rate	Equipment ID			
Bailer			Ded EQ			
Peristaltic Pump			· · · ·			
🗇 Well Wizard						
American Sigma						
Bladder Pump	•					
□ Submersible			······································			
SAMPLING:						
Sample ID: KOZ97	\$ 1	Q527	C			
Sample Time: Start: 10:20	Stop:	024				
Duplicate ID:	NP		\sim			
Sampling Method: D Bailer	r Joon Si		Well Wizard			
<u>COMMENTS:</u>	cl		Tap			
Signature: Da	5 27 ate:	QA/QC Review:	CES Date: 8/3/11			

Kingston, New York

Well Number:

Other:

Analysis Request Form								
2975	Date: 5 127, 1							

LABORATORY:

- IBM - East Fishkill
- đ EnviroTest

Other:

- ANALYSES REQUESTED:
 - 8010, Freon 113, Freon 123a
 - Phenols (total) (EPA 420.1)
 - Metals are Filtered

8021 Halva

- Metals are Unfiltered Modified Appendix 33

Lead (EPA 239.2 or 7421) Silver (EPA 7761)

Cadmium (EPA 7131)

Antimony (EPA 200.7 or 6010A)

Arsenic (EPA 206.2 or 7060A)

FIELD PARAMETERS:

Date	Time	Temp (*C)	pH (SU)	Sp. Cond. (µmhos/cm)	Turbidity (NTU)	Notes
5/27/11	1023	127	7.15	533%		Claudy
						0

COMMENTS:

	eld S	amnling Data	Sheet
Kingston, New York		amping Data	
GENERAL INFORMATION:	-		•
Well No: MW HOLS Date:	12	/ 11 Perso	onnel: <u>Cy len</u>
PURGING: 17.7	85		
Reference Depth To Bottom (DTBr) 256	⊥ £	Start: 10:20	Stop: (025
Measured Depth to Bottom (DTBm) 8.04	-\ ft.	Note: Use Reference Dept	th to Bottom for calculations
Depth to Water (DTW): 13.57	, ft.	Well Yields:	ØYes DNo
Target Volume: 4.69	gal.	Water Contained:	OYes DNo
Actual Volume: 5-80	gal	DTW After Purge:	10,80 ft.
PID: Background:	Purg	ing:	Not Applicable
Purge Method		Rate	Equipment ID
Bailer			Ded EQ
D Peristaltic Pump			
🗇 Well Wizard			· · · · · · · · · · · · · · · · · · ·
🗖 American Sigma			
🗇 Bladder Pump			
□ Submersible			
<u>SAMPLING</u> :			
Sample ID: 160402	Ś I	0602	G
Sample Time: Start: 10:30	Stop:	1035	
Duplicate ID:	NA	++++	
Sampling Method: 🛛 🖉 Baile	r	Ö	Well Wizard
COMMENTS: Ame: Signature: D	rican S 6/2/1 ate:	igma 🗍	Tap CES Date: 831/11

Kingston, New	An:	alysis	Request Form	
Well Numb	er: <u>402\$</u>		Date: 61214	
LABORATO	<u>ORY</u> :			
σ	IBM - East Fishkill			
	EnviroTest			
σ	Other:			
ANALYSES	REQUESTED:			
σ	8010, Freon 113, Freon 123a	σ	Antimony (EPA 200.7 or 6010A)	
	Phenols (total) (EPA 420.1)		Arsenic (EPA 206.2 or 7060A)	
σ	Metals are Filtered	σ	Cadmium (EPA 7131)	
	Metals are Unfiltered		Lead (EPA 239.2 or 7421)	
	Modified Appendix 33		Silver (EPA 7761)	
Othe	r: <u>8026B Hau</u>	Frei		

Date	Time	Temp (°C)	pH (SU)	Sp. Cond. (µmhos/cm)	Turbidity (NTU)	Notes
6/2/1,	1034	11.3	7.2)	752		Clausy
						<i>t</i>

COMMENTS:

							Analysis F	Request	Form
Serield S: Kingston, New York	ampling Data Sheet		Kingston, New	York					<u> </u>
GENERAL INFORMATION:			Well Numb	er:		Λ		Dat	re• / /
Vell No: MWH035 Date: 2 / 4	Personnel: G Mm					71		Dut	
	<u> </u>		LABORATO	<u>ORY</u> :					
PURGING:				IBM - E	ist Fishkil	11			
Reference Depth To Bottom (DTBr) ft.	Start: Stop:		а П	Other	st				
Denth to Water (DTW):	Wall Vialde:			Other: _	/	······································			
Target Volume:	Water Contained:		<u>ANALYSES</u>	REQUE	<u>STĦD</u> :				
Actual Volume: gal	DTW After Purge: ft.	- 		8010, Fr	eon 113, 1	Freon 123	Ba 🗖	Antimony	(EPA 200.7 or 6010A)
				Phenols	(total) (El	PA 420.1) 🗖	Arsenic (E	PA 206.2 or 7060A)
PID: Background: Purgin	ng: 🗆 Not Applicable			Metals a	re Filtere	±		Cadmium	(EPA 7131)
Purne Mathid	Pate Favioment ID			Metals a	re Unfilte	red		Lead (EPA	A 239.2 or 7421)
Bailer	Tute Equipment ID			Modified	I Append	ix 33		Silver (EP	A 7761)
			0.1	/					
			Othe /				\		
				-			<u>}</u> .		
Bladder Pump			1-			·			
			FIELD PA	RAMETE	<u>RS</u> :				
			r /					Turkidite	·····
SAMPLING:			Date	Time	(°C)	(SU)	(µmhos/cm)	(NTU)	Notes
Sample ID:		/	1						
Sampla Timas Starts Starts		/					<u> </u>		
Sumple Time: Statt Stop	······	/							
Duplicate ID:		/							
			L	_l,		<u> </u>	I		· · ·
Sampling Methods	U Well Wizard		<u>COMMEN</u>	<u>TS</u> :					
Sumpting Internou: D Baller				1	P	15 1	IN- W	as Ay	Pricel
COMMENTS:	gma 🗍 Tap				Cu			0	
$\underline{COMMENTS}:$	gma Tap			00	C ti		J	Ç.	envig
Sampling Internola: Image: Sampling Internola: COMMENTS: Image: Sampling Internola: Signature: Image: Sampling Internola:	gma Tap QA/QC Review: <u>حج</u> Date: <u>8</u> 24 1			N.	(SCOP	c +	Bailer		

002436

С

GENERAL INFORMATI	<u>0N</u> :				
Well No: <u>MU 403</u> \$	Date:	, 15	/// Pers	onnel: <u>JAR</u>	<u>.</u> C
PURGING:		0			
Reference Depth To Bottom	(DTBr) し.7	1 ft.	Start: 8:30	Stop: 836	
Depth to Water (DTW).	DTBm) 19.9	ft.	Wall Vielde:	IN TO BORION JOF CALC	Vo
Target Volume:	4.30	gal	Water Contained:	OYes -87	Vo
Actual Volume:	4-50	gal.	DTW After Purge:	12.37	ft
PID: Background:		Purg	ing:	Not Applie	able
Purge Method			Rate	Equipment Deil EC	ש ל
Deristaltic Pump					
Well Wizard					
American Sigma	1				
Bladder Pump					
SAMPLING:					
Sample ID:	403	\$ (0915	G-	
Sample Time: Start:	340	Stop:	844	·	
Duplicate ID:		NA		F	
Sampling Method:	D Baile	er rican S	igma 🗌 🗆	Well Wizard Tap	
				~ ••P	

Kingston, New	York Ana	lysis	Request Form
Well Numb	er: 403 \$		Date: 9 15, 1
LABORAT	<u>ORY</u> :		
	/IBM - East Fishkill		
Ø	EnviroTest		
	Other:		
ANALYSES	S REQUESTED:		
	8010, Freon 113, Freon 123a		Antimony (EPA 200.7 or 6010A)
	Phenols (total) (EPA 420.1)	σ	Arsenic (EPA 206.2 or 7060A)
	Metals are Filtered		Cadmium (EPA 7131)
σ	Metals are Unfiltered		Lead (EPA 239.2 or 7421)
	Modified Appendix 33	Ο	Silver (EPA 7761)
Othe	r: 8021BHallFra	-	

Date	Time	Temp (°C)	pH (SU)	Sp. Cond. (µmhos/cm)	Turbidity (NTU)	Notes
9/15/11	843	15-8	7.21	8974		Class
						· · · · · · · · · · · · · · · · · · ·

002547

	ield S	ampling Data	Sheet
Kingston, New LOEK			
<u>GENERAL INFORMATION</u> :			
Well No: MW 406 S Date: 5	131	/ 1(Pers	onnel: <u>Kurs</u>
PURGING:			
Reference Depth To Bottom (DTBr) 9 0	ft.	Start: 1030	Stop: 1043
Measured Depth to Bottom (DTBm) 8 8(, ft.	Note: Use Reference Dep	th to Bottom for calculations
Depth to Water (DTW): (2-70	ft.	Well Yields:	OYes DNo
Target Volume: 1355	gal	Water Contained:	Tes TNo
Actual Volume: 14,00	gal.	DTW After Purge:	7.30 ft.
PID: Background:	Purg	ing:	Not Applicable
Purge Method		Rate	Equipment ID
Bailer	<u> </u>	· · · · ·	DraEO
Peristaltic Pump		<u></u>	·
🗇 Well Wizard			
American Sigma			
Bladder Pump			
	·		<u></u>
<u>SAMPLING</u> :			
Sample D: 15 OH G G	¢	10531	G
	1 <u>/~ ł.</u>		
Sample Time: Start: 1045	Stop	1047	
	<u>, , , , , , , , , , , , , , , , , , , </u>		
Duplicate ID:	NI{		
Sampling Method: Ø Bail	er		Well Wizard
COMMENTS:	erican S	ligma 👘 🗍	Тар
Signature:	5/3) Date:	QA/QC Review	: <u>CES</u> Date: <u>9</u> [3]]
			-

gston, New Yor		alysis	Request Form
ell Number:	4065		Date: $5,30,4$
BORATOR	<u>r</u> :		
	3M - East Fishkill		
Д Е	nviroTest		
σo	ther:		
VALYSES R	EQUESTED:		
08	010, Freon 113, Freon 123a	σ	Antimony (EPA 200.7 or 6010A)
Пр	henols (total) (EPA 420.1)		Arsenic (EPA 206.2 or 7060A)
п,	letals are Filtered	σ	Cadmium (EPA 7131)
	· · · · · · · · · · · · · · · · · · ·		Lead (EPA 239.2 or 7421)
	letais are Unfiltered		

Date	Time	Temp (°C)	рН (SU)	Sp. Cond. (µmhos/cm)	Turbidity (NTU)	Notes
5/31/1,	1648	11.10	1.25	3035		Hazy
· .						· · · · · · · · · · · · · · · · · · ·

002492

Kingston, New York	eld S	ampling Data	a Sheet
<u>GENERAL INFORMATION</u> : Well No: <u>MW407</u> 8 Date: <u>5</u>	12	l, l] Pers	onnel: <u>CTS lus</u>
<u>PURGING</u> :			
Reference Depth To Bottom (DTBr) 7.9	3 €	start: 958	Stop: [003
Measured Depth to Bottom (DTBm) 17.9	7 ft.	Note: Use Reference Dep	th to Bottom for calculations
Depth to Water (DTW): 6.02	ft.	Well Yields:	Pres DNo
Target Volume:	gal	Water Contained:	I'ves ONo
Actual Volume: 14.00	gal.	DTW After Purge:	<u> </u>
PID: Background:	Purg	ing:	Not Applicable
Purge Method Ø Bailer		Rate	Equipment ID Ded <u>E O</u>
Peristaltic Pump			
🗇 Well Wizard			
American Sigma			
Bladder Pump			
□ Submersible			
SAMPLING:			•
Sample ID: K0407	\$1	0527	G
Sample Time: Start: 1005	Stop:	1009	N
Duplicate ID:	NA	$\lambda h h h$	\square
Sampling Method: Ø Baile	r rican Si	igma 🗍	Well Wizard Tap
<u>COMMENTS:</u>	d 1	-	
Signature: D	ate:) QA/QC Review:	<u>ES</u> Date: <u>8 3 </u> 1

Kingston, New	An:	alysis	Request Form	
Well Numb	er: 407%		Date: 5,27,4	
LABORAT	<u>ORY</u> :			
	BM - East Fishkill			
9	EnviroTest			
σ	Other:			
ANALYSES	REQUESTED:			
σ	8010, Freon 113, Freon 123a		Antimony (EPA 200.7 or 6010A)	
	Phenols (total) (EPA 420.1)	σ	Arsenic (EPA 206.2 or 7060A)	
σ	Metals are Filtered		Cadmium (EPA 7131)	
	Metals are Unfiltered		Lead (EPA 239.2 or 7421)	
	Modified Appendix 33	σ	Silver (EPA 7761)	
Othe	r: 8021 Halor			

Date	Time	Temp (°C)	pH (SU)	Sp. Cond. (µmhos/cm)	Turbidity (NTU)	Notes
5/27/11	1008	132	7,41	1239		Hazy

<u>COMMENTS:</u>

5

	eld Sampl	ing Data	Sheet
CENERAL INTONIA			
GENERAL INFORMATION:			
Well No: MW5045 Date:	<u>13 M</u>	Perso	onnel: <u>4</u> W
PURGING:			U .
Reference Depth To Bottom (DTBr) 14.3	3 ft. Start:	1551	Stop: 1600
Measured Depth to Bottom (DTBm) 1440	ft. Note: Us	e Reference Dept	th to Bottom for calculations
Depth to Water (DTW):	ft. Well Y	ields:	Yes DNo
Target Volume: 9.05	gal Water	Contained:	OYes DNo
Actual Volume: 4.50	gal. DTW	After Purge:	10.30 ft
PID: Background:	Purging:	· · · · · · · · · · · · · · · · · · ·	Not Applicable
Purge Method	Rate		Equipment ID
Deristaltic Pump			
			· · ·
SAMPLING:			
Sample ID: KQ5Q4	\$10	203	G
Sample Time: Start: 1003	Stop:	08	
Duplicate ID:	NAT	TH	E
Sampling Method: 🛛 Baile	r	σ	Well Wizard
COMMENTS: Amer	rican Sigma 	A/QC Review	Tap : <u>CES</u> Date: 812411

Kingston, New	An:	alysis	Request Form
Well Numb	per:5045		Date: 2,3,4,
LABORAT	<u>ORY</u> :		
	/IBM - East Fishkill		
T	EnviroTest		
	Other:		
ANALYSE	S REQUESTED:		
	8010, Freon 113, Freon 123a		Antimony (EPA 200.7 or 6010A)
	Phenols (total) (EPA 420.1)		Arsenic (EPA 206.2 or 7060A)
	Metals are Filtered		Cadmium (EPA 7131)
	Metals are Unfiltered		Lead (EPA 239.2 or 7421)
σ	Modified Appendix 33		Silver (EPA 7761)
Othe	er: 80213 Hall Fr	<u>.</u> 	

Date	Time	Тетр (°С)	pH (SU)	Sp. Cond. (µmhos/cm)	Turbidity (NTU)	Notes
2/3/11	1607	9.0	7.13	1478		Hazy
						· · ·

COMMENTS:

Kingston, New York <u>GENERAL INFORMATION</u> : Well No: (1) 5045 Date: 5	ોeld S ં , ૩(ampling Data	Sheet
Kingston, New York <u>GENERAL INFORMATION</u> : Well No: <u>(1) 504</u> 5 Date: <u>5</u>	- <u>1610 8</u>		Sheet
<u>GENERAL INFORMATION</u> : Well No: <u>ALW 504</u> 5 Date: <u>5</u>	,૩((¹)	
well No: <u>ALU 504</u> 5 Date: <u>5</u>	,3((¹)	<u>^</u>
Well No: <u>(1) 504</u> 5 Date: <u>5</u>	,31	(¹)	
		/ Perso	
PURGING:			<u> </u>
Reference Depth To Bottom (DTBr)	<u>37</u> €	Start: 14112	Stop: 1418
Measured Depth to Bottom (DTBm)	40 f	Note: Use Reference Dep	h to Bottom for calculations
Depth to Water (DTW): 3.	20 ft.	Well Ylelds:	TYes DNo
Target Volume: 2.25	gal	Water Contained:	IYes Tho
Actual Volume: 12.50	gal.	DTW After Purge:	940 ft.
PID. Background	Pure		T Not Applicable
1 ID.	1 4.6		
Purge Method		Rate	Equipment ID
Bailer			DEN Cla
🗇 Peristaltic Pump			
🗖 Well Wizard			
American Sigma			· · · · · · · · · · · · · · · · · · ·
D Bladder Pump			
<u>SAMPLING</u> :			
Sample ID: 10504	\$ 1	0531	G
Sample Time: Start: 14.21	Stop:	1425	
Duplicate ID:	-NA		H
Sampling Method: Ø Bai	iler	σ	Well Wizard
COMMENTS:	5/31(1 Date:	igma 🗍	Tap Date: <u>8 3 </u>

722			12.
	An:	lysis	Request Form
Kingston, New	York		
Well Numb	er: <u>504\$</u>		Date: 5,31, 1
LABORAT	<u>ORY</u> :		
	IBM - East Fishkill		
9	EnviroTest		
σ	Other:		<u></u>
ANALYSES	REQUESTED:		
	8010, Freon 113, Freon 123a		Antimony (EPA 200.7 or 6010A)
Ο	Phenols (total) (EPA 420.1)		Arsenic (EPA 206.2 or 7060A)
	Metals are Filtered		Cadmium (EPA 7131)
σ	Metals are Unfiltered		Lead (EPA 239.2 or 7421)
	Modified Appendix 33		Silver (EPA 7761)
Othe	r: <u>Bu 21 Bitall Fran</u>	<u> </u>	

Date	Time	Temp (°C)	pH (SU)	Sp. Cond. (µmhos/cm)	Turbidity (NTU)	Notes
5/31/11	1424	13:1	7.02	109m		Clam

COMMENTS:

Field Sampling Data Sheet Kingston, New York GENERAL INFORMATION: Well No: MW504 & Date: 9/13/4 Personnel: AR 9 PURGING: Reference Depth To Bottom (DTBr) 14.33 th Start: 1320 Stop: 13.30 Reference Depth to Bottom (DTBr) 14.33 th Start: 1320 Stop: 13.30 Measured Depth to Bottom (DTBr) 14.33 th Start: 1320 Stop: 13.30 Measured Depth to Bottom (DTBr) 14.33 th Start: 1320 Stop: 13.30 Measured Depth to Bottom (DTBr) 14.33 th Start: 1320 Stop: 13.30 Measured Depth to Bottom (DTBr) 14.03 th Start: 1320 Stop: 13.30 Depth to Water (DTW): 2.89 th Well Vields: ØTee ØNo Target Volume: 13.00 gal DTW After Purge: 9.24 ft PID: Background: Purging: Not Applicable Purge Method Rate Equipment ID Not Applicable Ø Bailer Dcd.E.C Ocd.E.C Stop: 13.30 Bladder Pump Submersible Stop: 13.30 Stop: 13.30 Sample ID: K @ 5 @ 4 \$ [@ 9 \$ [] 3 @] Opticate ID: Stop: 13.30 Stop: 13.30<									
Kingston, New York GENERAL INFORMATION: Well No: (MW 504) & Date: 9/(3/4) Personnel: Act (Act (Act (Act (Act (Act (Act (Act	Fi	Field Sampling Data							
GENERAL INFORMATION: Well No: MW504 & Date: 9/3/4 Personnel: TAR 9 PURGING: Reference Depth To Bottom (DTBr) 14.33 ft. Start: 1320 Stop: 13.30 Measured Depth to Bottom (DTBr) 14.03 ft. Note Use Reference Depth to Bottom (DTBr) 14.0 ft. Note Use Reference Depth to Bottom (DTBr) 14.0 ft. Note Use Reference Depth to Bottom (DTBr) Depth to Water (DTW): 2.89 ft. Well Yields: 07xc 07xc 07xc 07xc Target Volume: 12.54 gal. Water Contained: 17xc 07xc 07xc Actual Volume: 13.00 gal. DTW After Purge: 9.24 ft. ft. PID: Background: Purging: INot Applicable Purge Method Rate Equipment ID Ø Bailer DC&E.0 0 Peristaltic Pump 0 Vell Wizard Bladder Pump 0 Stop: 13.39 Sample ID: K @ 5.0 4 5 1 0 9 1 3 Cc Sample ID: Stop: 13.39 Sample Time: Stop: 13.39 Sampling Method: Ø Bailer Well Wizard	Kingston, New York								
Well No: MW504 & Date: 9 / (3 / 4) Personnel: TAR 9 PURGING: Reference Depth To Bottom (DTBr) 14.33 ft Start: 1320 Stop: 13.30 Measured Depth to Bottom (DTBr) 14.03 ft Note Use Reference Depth to Bottom for calculations Depth to Water (DTW): 2.89 ft Well Yields: ØTes No Target Volume: 12.69 gal Water Contained: DTes DTS Mode Area PID: Background: Purging: Not Applicable Purge Method Rate Equipment ID Ø Bailer DC&C.O DC&C.O Ø Well Wizard O American Sigma Stop: 13.30 Bladder Pump Submersible Stop: 13.30 Sample ID: K @ 5.0 4 5 1 0 9 1 3 C Stop: 13.30 Sample ID: K @ 5.0 4 5 1 0 9 1 3 C Stop: 13.30 Sample ID: Stop: 13.30 Stop: 13.30 Sample ID: Bailer Well Wizard Ø American Sigma Tap	GENERAL INFORMATION:								
PURCHING: Reference Depth To Bottom (DTBr) 14.33 ft. Start: 1320 Stop: 1330 Measured Depth to Bottom (DTBr) 14.03 ft. Note Use Reference Depth to Bottom for calculations Depth to Water (DTW): 2.89 ft. Well Yields: ØTes DNo Target Volume: 12.59 gal. Water Contained: DYs DNo Actual Volume: 13.00 gal. DTW After Purge: 9.24 ft. PID: Background: Purging: Not Applicable Purge Method Rate Equipment ID Ø Bailer DC&E.C. DC&E.C. Peristaltic Pump DC Submersible Sample ID: K @ 5 @ 4 5 [@ 9] [3 G Sample ID: Start: 13.23 Stop: 13.93 Stop: Sample ID: K @ 5 @ 4 5 [@ 9] [3 G Sampling Method: Ø Bailer Well Wizard	Well No: <u>MW504</u> B Date: <u>9</u>	,(3	Perso	mnel: <u>FAR G</u>					
Reserved Depth To Bottom (DTBR) 14.5 ft Start 500 soup: 19.60 Measured Depth to Bottom (DTBR) 14 40 ft Note: Use Reference Depth to Bottom for calculations Depth to Water (DTW): 2.89 ft Well Yields: DYes DNo Target Volume: 12.59 gal. Water Contained: DYes DNo Actual Volume: 12.59 gal. DTW After Purge: 9.24 ft PID: Background: Purging: Not Applicable Purge Method Rate Equipment ID Depth Vizard Depth Vizard Depth Vizard Bladder Pump Stop: 13.00 Stop: Sample ID: K @ 5 @ 4 5 [0 9 [3] 6 Stop: 3.9 Sample ID: K @ 5 @ 4 5 [0 9 [3] 6 Stop: 3.9 Duplicate ID: Method: Bailer Well Wizard American Sigma Bailer Well Wizard American Sigma Tap	PURGING:	120	Start 127()	Store (12.21)					
Depth to Water (DTW): 2.89 ft Well Yleids: ØYee ØNo Target Volume: 12.59 gal Wster Contained: ØYee ØNo Actual Volume: 13.00 gal DTW After Purge: 9.24 ft PID: Background: Purging: ØNot Applicable Purge Method Rate Equipment ID Ø Bailer DCd.E.O. Peristaltic Pump DCd.E.O. Ø Well Wizard Bladder Pump Sample ID: K.Ø5Ø450000000000000000000000000000000000	Measured Denth to Bottom (DTBm)	<u>) </u>	Note: Use Reference Dent	h to Bottom for calculations					
Target Volume: 12.59 gal Water Contained: DYes DNO Actual Volume: 13.00 gal DTW After Purge: 9.24 ft PID: Background: Purging: Not Applicable Purge Method Rate Equipment ID Defision Defision Defision Deficience Peristaltic Pump	Depth to Water (DTW): 7 .89	ft.	Well Yleids:	ØYes INo					
Actual Volume: 13.00 gal DTW After Purge: 9.24 ft PIID: Background: Purging: Not Applicable Purge Method Rate Equipment ID Ø Bailer Dcd.F.Q Ø Peristaltic Pump Dcd.F.Q Ø Well Wizard Dcd.F.Q Ø Well Wizard Dcd.F.Q Ø Baider Pump Ocd.F.Q Ø Baider Pump Submersible Sample ID: K Ø 5 Ø 4 5 [Ø 9 [3 G Sample ID: K Ø 5 Ø 4 5 [Ø 9 [3 G Sample ID: K Ø 5 Ø 4 5 [Ø 9 [3 G Sample ID: K Ø 5 Ø 4 5 [Ø 9 [3 G Sample Time: Start: 339 Stop: 1339 Stop: 1339 Duplicate ID: Bailer Well Wizard Ø Bailer Well Wizard	Target Volume: 12.59	gal	Water Contained:	OYes ONO					
PID: Background: Purging: Not Applicable Purge Method Rate Equipment ID Date Color Date Color Date Color Peristaltic Pump	Actual Volume: 13.00	gaL	DTW After Purge:	9-24 ft.					
PID: Backgrouna: Purge Method Rate Equipment ID Purge Method Rate DCAEO Peristaltic Pump		1.2	· · · · ·						
Purge Method Rate Equipment ID Deficient Deficient Peristaltic Pump	PID: Background:	Purg	ing:	Not Applicable					
Image: Stample ID: Image: S	Purge Method		Rate	Equipment ID					
Peristaltic Pump Well Wizard American Sigma Bladder Pump Submersible Sample ID: K@5@4510913G Sample Time: Start: 1339 Duplicate ID: Sampling Method: Ø Bailer Well Wizard Tap	Bailer		· <u> </u>	Ded E.O.					
Well Wizard	Peristaltic Pump		· .						
American Sigma	Well Wizard								
Bladder Pump	🗖 American Sigma								
Submersible Sample ID: K @ 5 @ 4 \$ [@ 9 [3 G Sample ID: K @ 5 @ 4 \$ [@ 9 [3 G Sample Time: Start: 339 Submersible Stop: 1339 Duplicate ID: H = 100000000000000000000000000000000000	🗖 Bladder Pump								
Sample ID: K @ 5 @ 4 5 [@ 9 [3 G Sample Time: Start: 33 Start: 133 Stop: Duplicate ID: How and a construction of the start of the s	Submersible								
Sample ID: K @ 5 @ 4 \$ [@ 9 [3 G Sample Time: Start: 1339 Supplicate ID: Stop: 1339 Sampling Method: Ø Bailer Well Wizard Omerican Sigma Tap	6 4 M D D C								
Sample ID: K Ø 4 5 0 9 3 G Sample Time: Start: 3^{30} Stop: 3^{39} Duplicate ID: 4 4 4 4 4 4 Sampling Method: Ø Bailer Well Wizard Omerican Sigma Tap	SAMPLING:	· · ·							
Sample Time: Start: 1330 Duplicate ID: Sampling Method: American Sigma Tap	Sample ID: KOSQ4	5.	09(3)	G					
Duplicate ID:	Sample Time: Start: 1330	Stop:	1339						
Sampling Method: Ø Bailer Ø Well Wizard Ø American Sigma Ø Tap	Duplicate ID:	pl		8					
🗖 American Sigma 🗖 Tap	Sampling Method: Ø Baile	er	σ	Well Wizard					
COMMENTE	COMMENTS. Ame	rican S	igma 🗖 🗖	Тар					
Signature: Date: Date: Date: Date:	Signature:	9/13	3/11 OA/OC Review	Dates					
Date: Date: Date:				Daw,					

Kingston, New	Ver Ana	lysis	Request Form
Well Numb	per: 5045		Date: <u>1/3/1/1</u>
LABORAT	<u>ORY</u> :		
	IBM - East Fishkill		
g	EnviroTest		
	Other:		
ANALYSE	<u>S REQUESTED</u> :		
	8010, Freon 113, Freon 123a		Antimony (EPA 200.7 or 6010A)
	Phenols (total) (EPA 420.1)	σ	Arsenic (EPA 206.2 or 7060A)
	Metals are Filtered		Cadmium (EPA 7131)
	Metals are Unfiltered		Lead (EPA 239.2 or 7421)
	Modified Appendix 33		Silver (EPA 7761)
Othe	er: 8021BHall Free	-	

Date	Time	Temp (°C)	pH (SU)	Sp. Cond. (µmhos/cm)	Turbidity (NTU)	Notes
9/13/11	1338	13.7	7.17	7190		Harry

002531

	eld Sampling Data	Sheet				
Kingston, New York		·				
GENERAL INFORMATION:						
Well No: MW505 S Date: 5	127,11 Pers	onnel: <u>Cyle</u>				
PURGING:		0				
Reference Depth To Bottom (DTBr) 13.4	ft. Start: 1:00	Stop: 1:22				
Measured Depth to Bottom (DTBm) 13 4	8 ft. Nois: Use Reference Dep	th to Bottom for calculations				
Depth to Water (DTW): (, 42	ft. Well Yields:	Tes INO				
Target Volume: 7.69	gal. Water Contained:	I'ves DNo				
Actual Volume: 8-00	gal DTW After Purge:	12.35 ft				
PID: Background:	Purging:	Not Applicable				
Purge Method	Rate	Equipment ID Dec EQ				
Well Wiggerd						
	<u> </u>					
	······					
<u>SAMPLING:</u>						
Sample ID: KQ5Q5	\$ (0 5 27	G-				
Sample Time: Start: 11-25	Stop: <u>1132</u>					
Duplicate ID: K0505	\$ 0527	\mathbb{D}				
Sampling Method: 🛛 Bailer 🔲 Well Wi						
COMMENTS:						
Signature:	5/27/ (1 ate: QA/QC Review	CES Date: 98/31/11				

Kingston, New	An:	alysis	Request Form
Well Numbe	er: <u>5056</u>		Date: 5 127, 4
	BM - East Fishkill EnviroTest Other:		
	REQUESTED: 8010, Freon 113, Freon 123a Phenols (total) (EPA 420.1) Metals are Filtered Metals are Unfiltered Modified Appendix 33		Antimony (EPA 200.7 or 6010A) Arsenic (EPA 206.2 or 7060A) Cadmium (EPA 7131) Lead (EPA 239.2 or 7421) Silver (EPA 7761)
Othe	r: 8021 Halog	·	

Date	Time	Тетр (*С)	pH (SU)	Sp. Cond. (µmhos/cm)	Turbidity (NTU)	Notes
5/27/1	(13/	11-6	7.24	352.6		Cleer
· .						

002486

		<u>_</u>	<u> </u>
	ield Sampl	ing Data	Sheet
Kingston, New York GENERAL INFORMATION:			· · · · ·
	2-1 11		
Well No: <u>MW500</u> Date:	121,11	Perso	nnel: <u>1603 4</u>
PURGING:			
Reference Depth To Bottom (DTBr) 28	ft. Start:	1042	Stop: 1047
Measured Depth to Bottom (DTBm) 28-	29 ft. Note: Us	e Reference Dept	h to Bottom for calculations
Depth to Water (DTW):	Vft. Well Y	ields:	Otes INO
Target Volume: 9.95	gal. Water	Contained:	I'ves TNo
Actual Volume: 0.00	gal DTW	After Purge:	8.22 ft.
PID: Background:	Purging:		Not Applicable
Purge Method	Rate	•	Equipment ID
Bailer		<u></u>	Vealo
Peristaltic Pump			·
U Well Wizard			
American Sigma	·		
D Bladder Pump			
SAMPLING:			
Sample ID: KO5010	\$ [[0]	527	G
Sample Time: Start: <u>USU</u>	Stop:0	54	۰.
Duplicate ID:	NAM	~~	
Sampling Method: Z Bail	er	σ	Well Wizard
	erican Sigma	· 🖸	Tap
<u>COMMENTS:</u>	Slad		1
Signature:	Date:Q	A/QC Review:	CES Date: 8/3/1
			2

Kingston, New	An:	lysis	Request Form
Well Numb	er: <u>506</u> \$		Date: 5 1271 1
LABORAT	ORY:		· · · · · · · · · · · · · · · · · · ·
	JBM - East Fishkill		
Ø	EnviroTest		
	Other:		
ANALYSE	S REQUESTED:		
	8010, Freon 113, Freon 123a		Antimony (EPA 200.7 or 6010A)
	Phenols (total) (EPA 420.1)		Arsenic (EPA 206.2 or 7060A)
	Metals are Filtered		Cadmium (EPA 7131)
	Metals are Unfiltered	σ	Lead (EPA 239.2 or 7421)
Ū	Modified Appendix 33		Silver (EPA 7761)
Othe	er: <u>8021 Halog</u>		

Date	Time	Temp (°C)	pH (SU)	Sp. Cond. (µmhos/cm)	Turbidity (NTU)	Notes
5/27/11	1053	12,9	6.49	300.1		Clea
× .						· · ·

tel	·					
<u>≜</u>		Fie	eld S	ampling Data	Sheet	
Kingston, New York	•					
GENERAL INF	ORMATION:					
Well No: M	<u>15075</u> Date:	5	,31	/() Perso	nnel:	Kur -
<u>PURGING</u> :						
Reference Depth	To Bottom (DTBr)		ft.	Start:	Stop:	
Measured Depth	to Bottem (DTBm)		ft.	Note: Use Reference Dept	h to Bottom for	calculations
Depth to Water	DTW):		ft.	Well Yields:	□Yes	ΩNo
Target Volume:			gal.	Water Contained:	OYes	D No
Actual Volume:			gal.	DTW After Purge:		ft.
				· · · · · ·	, /	
PID: Ba	ckground:		Purgi	ing:	Not A	plicable
Purge M	ethod			Rate	Equipm	ent ID
🛛 Bailer	- 1	_	<u>\.</u> `			
🖸 Perist	altic Pump	-				
🗇 Well	Wizard		`	\		
Amer	ican Sigma	-				
	ler Pump	_				
	ersible	-				
		-				
SAMPLING:				\backslash		1.
Sample ID:					$\overline{}$	
oumpic 101		ł I	!		<u> </u>	
Sample Time:	Start:		Stop:			
	r					\smile
Duplicate ID:						
Sampling Meth	od:	Bailer		σ	Well Wiz	ard
		Ameri	can Si	igma 🗖	Tap	
<u>COMMENTS:</u>	$\sim (/$	c	51~	1		
Signature:	in	Dat	ノ(3) te:	(U) QA/QC Review:	CES Da	te: 8/3/11
•				-		

=== <i>e</i>			· ·			
Field Field	ld S	ampling Data	Sheet			
Kingston, New York			<u></u>			
<u>GENERAL INFORMATION</u> :						
Well No: MW 508SA Date: 2	14	/ l Perso	nnel:			
PURGING:						
Reference Depth To Bottom (DTBr) 33) ft.	Start: 1021.	Stop: 1026			
Measured Depth to Bottom (DTBm) 1348	ft.	Note: Use Reference Depti	to Bottom for calculations			
Depth to Water (DTW): 9.13	fL.	Well Yields:	SYes INo			
Target Volume: 203	gal	Water Contained:	I'Yes INo			
Actual Volume: 2-50	gal	DTW After Purge:	12-84 ft.			
PID: Background:	Purg	ing:	Not Applicable			
Purge Method		Rate	Equipment ID			
Bailer .		·	Del EQ			
Peristaltic Pump		·				
🗇 Well Wizard						
American Sigma						
Bladder Pump						
<u>SAMPLING</u> :		•.				
Sample ID: K5085	A.	10204	G			
Samula Times Start 1030	Ston	1024				
Sumple time: State 1000 Stop:						
Duplicate ID: K508SAIOZOHD						
Sampling Method:	r rican S	Sigma 🗍	Well Wizard Tap			
<u>COMMENTS:</u>						
Signature: D	Signature: Cuthon Date: 2/4/11 Date: QA/QC Review: CES Date: 3/24/11					
\bigcirc						

	Anz	lysis	Request Form .
Kingston, New	York		
Well Numb	er: <u>508.54</u>		Date: $2, 4, 1$
LABORATO	<u>ORY</u> :		
	/IBM - East Fishkill		
B	EnviroTest		
	Other:		
ANALYSES	REQUESTED:		
	8010, Freon 113, Freon 123a		Antimony (EPA 200.7 or 6010A)
	Phenols (total) (EPA 420.1)		Arsenic (EPA 206.2 or 7060A)
	Metals are Filtered		Cadmium (EPA 7131)
	Metals are Unfiltered		Lead (EPA 239.2 or 7421)
	Modified Appendix 33		Silver (EPA 7761)
Othe	r: 2021 BHan Fr	<u>_</u> .	

Date	Time	Temp (°C)	pH (SU)	Sp. Cond. (µmhos/cm)	Turbidity (NTU)	Notes
2/u/14	103>	62	7.57	657.~		Hazy
				-		

3 66 6 <i>3</i>					
	eld S	ampli	ng Data	Sheet	
Kingston, New York					
GENERAL INFORMATION:					
Well No: MW 508SA Date: 5	,31	<i>,</i> 0	Pers	onnel:	Cy h
Date:	<u> </u>	<u>,</u>	2 0.0		0
PURGING:			202		200
Reference Depth To Bottom (DTBr) 3.30		Start:	LUJ Reference Den	Stop:	I COS
Depth to Water (DTW):	ft.	Well Yie	lds:	v o Yes	[] No
Target Volume: 270	gal.	Water Co	ntained:	□Yes	TNo
Actual Volume: 300	gal	DTW A	ter Purge:	12	(e8 ft.
				л./	/
PID: Background:	Purg	ing:		Not	Applicable
Purge Method	Rate			Equip	ment ID
Bailer				Ved l	<u> </u>
D Peristaltic Pump			<u> </u>		
🗇 Well Wizard				 	
American Sigma					
🗇 Bladder Pump					
□ Submersible				<u> </u>	
<u>SAMPLING</u> :					
Sample ID: K5085	AI	05	531	G	
Sample Time: Start: <u>1210</u>	Stop	. 12	14	· ·	
· · · · · · · · · · · · · · · · · · ·					
Duplicate ID:	NN	4-1-	h	\square	
Sampling Method: 7 Baile	er		п	Well V	Vizard
\wedge \Box Ame	rican S	ligma	· 0	Тар	
COMMENTS:	Jail	-		-	
Signature:	1011 ate:	QA	/QC Review	: CES	Date: 8/3/11
			-		
\bigvee					

Kingston, New	York	dysis	Request Form
Well Numb	er: <u>5085</u> A		Date: 5,31,4
LABORAT	<u>ORY</u> :		
σ	_ IBM - East Fishkill		
ľ	EnviroTest		
σ	Other:		·
ANALYSES	<u>SREQUESTED</u> :		
Ο	8010, Freon 113, Freon 123a	σ	Antimony (EPA 200.7 or 6010A)
	Phenols (total) (EPA 420.1)		Arsenic (EPA 206.2 or 7060A)
	Metals are Filtered		Cadmium (EPA 7131)
	Metals are Unfiltered		Lead (EPA 239.2 or 7421)
	Modified Appendix 33		Silver (EPA 7761)
Othe	r: 8021 BHall Fr	tur	

Date	Time	Temp (°C)	pH (SU)	Sp. Cond. (µmhos/cm)	Turbidity (NTU)	Notes
5/31/1	1213	IHЛ	1.05	76408		Hazy
						······································

<u>COMMENTS</u>:

002497

Field Sampling Data Sheet Field Sampling Data Sheet GENERAL INFORMATION: Well No: $M \cup S \otimes A$ Date: $9 / 14 / 1^{\circ}$ Personnel: $JAL CP$ PURGING: Reference Depth To Bottom (DTBr) $[3.30 \ ft]$ Start: 828 Stop: 834 Measured Depth to Bottom (DTBr) $[3.30 \ ft]$ Start: 828 Stop: 834 Measured Depth to Bottom (DTBr) $[3.30 \ ft]$ Start: 828 Stop: 834 Measured Depth to Bottom (DTBr) $[3.30 \ ft]$ Start: 828 Stop: 834 Measured Depth to Bottom (DTBr) $[3.30 \ ft]$ Start: 828 Stop: 834 Measured Depth to Bottom (DTBr) $[3.30 \ ft]$ Start: 828 Stop: 834 Measured Depth to Bottom (DTBr) $[3.30 \ ft]$ Start: 828 Stop: 076 Stop: 076 Depth to Bottom (DTBr) $[3.30 \ ft]$ Start: 828 Stop: 076 Depth to Bottom (DTBr) $[3.30 \ ft]$ Start: 828 Stop: 076 Diverse Start: 9.834 Interventioned: 0768 Stop: 0768 Purge Method Rate Purge Method Rate Purge Method Rate Purge Method Rate Rate				
Kingston, New York GENERAL INFORMATION: Well No: $M w 508 SA$ Date: $9 / 14 / 1^{\circ}$ Personnel: $JAL OF$ PURGING: Reference Depth To Bottom (DTBr) $[3, 30 \ ft. Start: 828 Stop: 834$ Measured Depth to Bottom (DTBr) $[3, 30 \ ft. Start: 828 Stop: 834$ Measured Depth to Bottom (DTBr) $[3, 54 \ ft. Note: Use Reference Depth to Bottom for calculations Depth to Water (DTW): 5.50 \ ft. Well Yields: GTee DNO Target Volume: 3.80 \ gal. Water Contained: OTE: 3.80 \ ft. Well Yields: GTee DNO Actual Volume: 4.00 \ gal. DTW After Purge: 5.49 \ ft. PID: Background: Purging: Mot Applicable Purge Method Rate Bailer 0.40 \ ft. Well Wizard 0.40 \ ft. American Sigma 0.41 \ ft. Bladder Pump 0.54 \ ft. Sample ID: [K \ 5 \ 0 \ 5 \ 5 \ A \ 1 \ 0 \ 9 \ 1 \ 4 \ Gt. Sample Time: Start: 840 Stop: 850 Duplicate ID: [K \ 5 \ 0 \ 5 \ 5 \ A \ 1 \ 0 \ 9 \ 1 \ 4 \ 1 \ 5 \ 0 \ 5 \ 5 \ 5 \ 6 \ 1 \ 0 \ 1 \ 4 \ 1 \ 5 \ 5 \ 5 \ 5 \ 5 \ 5 \ 5 \ 5 \ 5$	Fi Fi	eld S	Sampling Data	Sheet
GENERAL INFORMATION: Well No: $M \cup S \otimes S \wedge Date: 9 / 14 / 1^{\circ}$ Personnel: $\overline{JAL \circ \mathcal{F}}$ PURGING: Reference Depth To Bottom (DTBr) $[3,30 \ ft. Start: 828 \ Stop: 834$ Measured Depth to Bottom (DTBr) $[3,30 \ ft. Start: 828 \ Stop: 634$ Measured Depth to Bottom (DTBr) $[3,54 \ ft. Note: Use Reference Depth to Bottom for exclusions: Depth to Water (DTW): 5,50 \ ft. Well Yields: 97 \ ft. Stop: 97 \ ft. Well Yields: 97 \ ft. Stop: 97 \ ft. 700 \ Stop: 97 \ ft. 700$	Kingston, New York			
Well No: MW 508 SA Date: $9/14/1^{1}$ Personnel: \overline{JAL} \overline{O} PURGING: Reference Depth To Bottom (DTBr) $[3.30$ ft. Start: 828 Stop: 834 Measured Depth to Bottom (DTBr) $[3.30$ ft. Start: 828 Stop: 834 Measured Depth to Bottom (DTBr) $[3.30$ ft. Start: 828 Stop: 834 Depth to Bottom (DTBr) $[3.30$ ft. Start: 828 Stop: 834 Depth to Bottom (DTBr) $[3.30$ ft. Note Use Reference Depth to Bottom for calculation: Depth to Water (DTW): 5.50 ft. Well Yields: Offee Of	GENERAL INFORMATION:			
PURGING: Reference Depth To Bottom (DTBr) $ 3,30$ ft Start: 828 Stop: 834 Measured Depth to Bottom (DTBm) $ 3,54$ ft. Note: Use Reference Depth to Bottom for calculations Depth to Bottom (DTBm) $ 3,54$ ft. Note: Use Reference Depth to Bottom for calculations Depth to Water (DTW): $5,50$ ft. Well Yields: $CTes ONO$ Target Volume: $3,-81$ gal. Water Contained: OYes ONO Actual Volume: $4,00$ gal. OTW After Purge: $5,49$ ft. PUT: Background: Purging: ONOt Applicable Purge Method Rate Purge Method Rate ONOt Applicable Purge Method Rate Purge Method Rate Purge Method Rate ONOT Applicable ONOT Applicable ONOT American Sigma ONOT American Sigma Sample Time: Start: 840 Stop: 850	Well No: <u>MW508</u> 3A Date:	114	/ L Pers	onnel: JAL OF
Reference Depth To Bottom (DTBr) 3.30 ft Start: 82% Stop: $834'$ Measured Depth to Bottom (DTBm) 3.54 ft Note: Use Reference Depth to Bottom for calculations Depth to Water (DTW): 5.50 ft Well Yields: 21% 21% Target Volume: 3.63 gal Water Constanced: $D7es$ 27% Target Volume: 3.63 gal Water Constanced: $D7es$ 27% Actual Volume: 4.00 gal DTW After Purge: 5.4° ft PID: Background: Purging: 10% Atter Applicable Purge Method Rate Equipment ID 0% Bailer 0% 10% 0% 10% 10% 10% 10% 0% Well Wizard 0% 0% 10% 10% 10% 10% 10% 10% 10% 0% Well Wizard 0% 0% 10% 9% 10% 10% 10% 10% 10% $Sample ID:$ $K 50\%$ 5% 10% 9% 10%	PURGING:		·····	
Measured Depth to Bottom (DTBm) 7,54 ft. Note: Use Reference Depth to Bottom for calculations Depth to Water (DTW): 5.50 ft. Well Yields: Ifes Ifo Target Volume: 3.8 gal. Water Contained: Ifes Ifo Actual Volume: 3.8 gal. Water Contained: Ifes Iffo Actual Volume: 4.00 gal. DTW After Purge: 5.41 ft. Actual Volume: PID: Background: Purging: Iffo Actual Volume: S.40 ft. PID: Background: Purging: Iffo Actual Volume: S.40 ft. Purge Method Rate Equipment ID Not Applicable Purge Method Rate Equipment ID Iffo Bailer Iffo Iffo Iffo Peristaltic Pump Iffo Iffo Iffo Iffo Well Wizard Iffo Iffo Iffo Iffo Iffo Bladder Pump Iffo Iffo Iffo Iffo Iffo Sample ID: Iffo Iffo Iffo Iffo Iffo Iffo Samplie ID:	Reference Depth To Bottom (DTBr) 3.3	0 fL	Start: 828	Stop: 834
Depth to Water (DTW): 5.50 ft. Well Yields: Cafes DNo Target Volume: 3.8 gal. Water Contained: DYes DNo Actual Volume: 4.00 gal. DTW After Purge: 5.49 ft. PID: Background: Purging: C.Mot Applicable Purge Method Rate Equipment ID Bailer DCA EQ Peristaltic Pump DCA EQ Well Wizard Distance Bladder Pump Distance Submersible Stop: Sample ID: K 5 Q 8 5 A 1 Q 9 1 4 G Sample Time: Start: Stop: 550	Measured Depth to Bottom (DTBm) 13.5	HR.	Note: Use Reference Dep	th to Bottom for calculations
Target Volume: 3 - 8 gal Water Contained: Ofes Øffo Actual Volume: 4.00 gal DTW After Purge: 5.49 ft. PID: Background: Purging: Øffo Applicable Purge Method Rate Equipment ID Ø Bailer DCA EQ Ø Peristaltic Pump	Depth to Water (DTW): 5.50	ft.	Well Yields:	Thes INO
Actual Volume: 4.00 gal. DTW After Purge: 5.49 ft. PID: Background: Purging: 9.40 Rate Equipment ID Purge Method Rate Equipment ID 9.66 60 100 100 100 Purge Method Rate Equipment ID 9.66 100 100 100 100 Purge Method Rate Equipment ID 9.66 100 100 100 100 Purge Method Rate Equipment ID 9.66 100 100 100 100 Purge Method Rate Equipment ID 9.66 100 100 100 100 Purge Method Rate Equipment ID 10000 10000 100000 1000000 10000000 100000000000000000 100000000000	Target Volume: 3.8	gal.	Water Contained:	I'Yes ØNo
PID: Background: Purging: Mot Applicable Purge Method Rate Equipment ID Bailer NA EQ Peristaltic Pump NA EQ Well Wizard Image: Comparison of the second seco	Actual Volume: 4.00	gal.	DTW After Purge:	€-49 ft.
Purge Method Rate Equipment ID \square Bailer $\square \land IQ$ \square Peristaltic Pump $\square \land IQ$ \square Well Wizard \square \square American Sigma \square \square Bladder Pump \square \square Submersible \square Sample ID: $K = 0$ $S = A + 0$ $0 + 1 + Q$ Duplicate ID: $K = 0$ $S = A + 0$ $0 + 1 + Q$ Sampling Method: \square \square \square	PID: Background:	Purg	ing:	Not Applicable
Purge Method Rate Equipment ID \square Bailer $\square \land \land \land \land \land$ \square Peristaltic Pump \square \square Well Wizard \square \square American Sigma \square \square Bladder Pump \square \square Submersible \square Sample ID: $\[K \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$			· · ·	
Bailer $Ma u$ Peristaltic Pump	Purge Method		Rate	Equipment ID
Peristaltic Pump	Bailer			Ver LU
\Box Well Wizard	Peristaltic Pump			
American Sigma	🖸 Well Wizard			
Bladder Pump	American Sigma			
Submersible Sample ID: $K 5 0 8 5 A 1 0 9 1 4 G$ Sample ID: $K 5 0 8 5 A 1 0 9 1 4 G$ Sample Time: Start: 840 Stop: 850 Duplicate ID: $K 5 0 8 5 A 1 0 9 1 4 M$ Sampling Method: $8 9 1 4 M$	Bladder Pump			<u> </u>
SAMPLING: Sample ID: $K 5 0 8 5 A 1 0 9 1 4 G$ Sample Time: Start: 840 Stop: 850 Duplicate ID: $K 5 0 8 5 A 1 0 9 1 4 M$ Sampling Method: $8 0 8 5 A 1 0 9 1 4 M$	🗇 Submersible			
Sample ID: $K = 0$ $S = A$ 0 9 1 Q Sample Time: Start: 840 $Stop:$ 850 Duplicate ID: $K = 0$ $S = 5$ A 0 9 1 Q Sampling Method: M $Bailor M M M M $	SAMPLING:			
Sample Time: Start: $\underline{840}$ Stop: $\underline{850}$ Duplicate ID: $\underline{15085A10914N}$	Sample ID: K5085	A	109114	C
Sample Time: Start: 0.0 Stop: 0.0	<u>φ. τ. τε το το τ</u> <i>S</i> μι)		860	
Duplicate ID: K5085A10914A	Sample Time: Start: 010	Stop:		
Sampling Methods A Poiler I Wall Ward	Duplicate ID: 125085	A	09114	D
American Sioma Tan	Sampling Method: Ø Baile	rican S	ioma 🗖	Well Wizard
<u>COMMENTS:</u>	COMMENTS:	Lioun D		rah
Signature: QA/QC Review: Date:	Signature: D	9 14 ate:	QA/QC Review:	Date:

Kingston, New	An:	lysis	Request Form
Well Numb	per: <u>5085</u> A		Date: 911411
LABORAT	<u>ORY</u> :		
	_IBM - East Fishkill		
দ	EnviroTest		
σ	Other:		
ANALYSE	S REQUESTED:		
	8010, Freon 113, Freon 123a	σ	Antimony (EPA 200.7 or 6010A)
	Phenols (total) (EPA 420.1)	σ	Arsenic (EPA 206.2 or 7060A)
	Metals are Filtered	σ	Cadmium (EPA 7131)
	Metals are Unfiltered		Lead (EPA 239.2 or 7421)
	Modified Appendix 33		Silver (EPA 7761)
Othe	er: 8021 BHall Fre	~	
	8010 Fr11311232 5	ГИ.С	

Date	Time	Temp (°C)	pH (SU)	Sp. Cond. (µmhos/cm)	Turbidity (NTU)	Notes
9/14/1	849	14.3	7.11	70511		Clear
						· · · · · · · · ·

	old Compling Dot	to Shoot			
Kingston, New York	eid Sampling Dal	la Sheet			
CENERAL INFORMATION					
Well No: $\underline{NW} \underline{UU}$ Date: $\underline{5} \underline{12111}$ Personnel: $\underline{4aB} \underline{4}$					
PURGING: 20.78	÷ C				
Reference Depth To Bottom (DTBr)	ft. Start: 836	Stop: 843			
Measured Depth to Bottom (DTBm) 21.()(ft. Notes Use Reference D	epth to Bottom for calculations			
Depth to Water (DTW): 5-94	ft. Well Yields:	Tes IN0			
Target Volume: 16.33	gal. Water Contained:	I'Yes D'No			
Actual Volume: 16.50	gal. DTW After Purge:	: 60 ft.			
PID: Background:	Purging:	Not Applicable			
	<u> </u>				
Purge Method	Rate	Equipment ID			
Bailer		VEDICU			
Peristaltic Pump		· · · · · · · · · · · · · · · · · · ·			
U Well Wizard		. <u></u>			
🗖 American Sigma	·····	·····			
Bladder Pump	······	<u> </u>			
□ Submersible					
SAMPLING:					
	41052-				
	PILIUSL	/10-			
Sample Time: Start: <u>845</u>	Stop: <u>849</u>				
Duplicate ID:	NATT				
Sampling Method: Ø Baile		Well Wizard			
COMMENTS, Ame	rican Sigma 🛛 🗖	Тар			
	1211				
Signature: D	ate:QA/QC Revie	w: <u>LES</u> Date: <u>8 3 </u>			

Kineston New	Vet	lysis	Request Form
Well Numb	er: _ (00)\$		Date: 5 27, 1
LABORAT	<u>ORY</u> :		
	IBM - East Fishkill		
9	EnviroTest		
σ	Other:		
ANALYSES	REQUESTED:		
σ	8010, Freon 113, Freon 123a	Ο	Antimony (EPA 200.7 or 6010A)
σ	Phenols (total) (EPA 420.1)		Arsenic (EPA 206.2 or 7060A)
	Metals are Filtered		Cadmium (EPA 7131)
	Metals are Unfiltered		Lead (EPA 239.2 or 7421)
	Modified Appendix 33		Silver (EPA 7761)
Othe	r: 8021 Halog		

١.

:

Date	Time	Temp (°C)	pH (SU)	Sp. Cond. (µmhos/cm)	Turbidity (NTU)	Notes
5/27/1	848	12.9	1.83	318-8		Hazy

<u>COMMENTS:</u>
Field Sampling Data Sheet		Kingston, New York		A	nalysis	Request	Form
Kingston, New York GENERAL INFORMATION: Well No: MW (60)2 /5 Date: 5 /2(6 / W) Personnel: 4/6 PURGING: Reference Depth To Bottom (DTBr) 1/5 0 ft Start: 10'.12 Stop: 10.18 Measured Depth to Bottom (DTBr) 1/5 0 ft Start: 10'.12 Stop: 10.18 Measured Depth to Bottom (DTBr) 1/5 0 ft Start: 10'.12 Stop: 10.18 Measured Depth to Bottom (DTBr) 1/5 0 ft Start: 10'.12 Stop: 10.18 Measured Depth to Bottom (DTBr) 1/5 0 ft Start: 10'.12 Stop: 10.18 Measured Depth to Bottom (DTBr) 1/5 0 ft Start: 10'.12 Stop: 10.18 Measured Depth to Bottom (DTBr) 1/5 0 ft Start: 10'.12 Stop: 10.18 Measured Depth to Bottom (DTBr) 1/5 0 ft Start: 10'.12 Stop: 10.18 Measured Depth to Bottom (DTBr) 1/5 0 ft Start: 10'.12 Stop: 10.18 Measured Depth to Water (DTW): 8-57 ft Well Yields: 07es 07e Target Volume: 18 3/8 gal. Water Contained: 07es 07e Actual Volume: 19.00 gal. DTW After Purge: 9.82 ft. PID: Background: Purging: 0 Not Applicable Purge Method Rate Purge Method Rate Purge Method Rate O Peristaltic Pump 0 Well Wizard 0 Bladder Pump 0 Submersible 0		Well Number:	<u>e02</u> ast Fishkill est <u>STED</u> : con 113, Free (total) (EPA re Filtered re Unfiltered I Appendix <u>A) 2((-)</u> <u>A) 2((-)</u>	eon 123a 420.1) d 33 alog		Dat Antimony Arsenic (E Cadmium Lead (EPA Silver (EP	(EPA 200.7 or 6010A) PA 206.2 or 7060A) (EPA 7131) 239.2 or 7421) A 7761)
<u>SAMPLING</u> :		Date Time	Temp (*C)	рН (SU)	Sp. Cond. (µmhos/cm)	Turbidity (NTU)	Notes
Sample ID: KO (002510526G		5/24/11 102.5	14.8 6	0.45	85/u		CLOUPY
Sample Time: Start: 1020 Stop: 1026							
Duplicate ID:							<u> </u>
Sampling Method: I Bailer I Well Wizard COMMENTS: I American Sigma I Tap Signature: Signature: Signature: Galactic Signature: CES Date: Galactic Signature:	l	<u>COMMENTS</u> : Gull 5 10 15		E		L I	· · ·

002461

	ald S	ampling Data	Sheet				
Kingston, New York	Kingston, New York						
CENER IT INFORMATION							
GENERAL INFORMATION:							
Well No: $\underline{M} \underline{U} \underline{0} \underline{3} \underline{5}$ Date: 5	125	/// Pers	onnel:				
PURGING:		••••••••••••••••••••••••••••••••••••••	· · · · · · · · · · · · · · · · · · ·				
Reference Depth To Bottom (DTBr)	ft.	Start: 1109	Stop: 113				
Measured Depth to Bottom (DTBm) 10-2	7 ft.	Note: Use Reference Dep	th to Bottom for calculations				
Depth to Water (DTW): 3.80	ft.	Well Yields:	ØYes 🛛 No				
Target Volume: 4.7.9	gal.	Water Contained:	Dies DNo				
Actual Volume: 4-50	gal.	DTW After Purge:	5.07 ft.				
PID. Rackground	Pure	ina.	Not Applicable				
	1						
Purge Method		Rate	Equipment ID				
🛛 Bailer			Ded EQ				
Peristaltic Pump							
🗂 Well Wizard			· · · · · · · · · ·				
American Sigma							
Bladder Pump							
SAMPLING:							
Sample ID: KOGO3	5.	0525	G				
Sample Time: Start: 11.15	Stop	: 11:20					
Duplicate ID:	N	appp					
Sampling Method: Ø Baile	er j	σ	Well Wizard				
Ame	rican S	Sigma 🗖	Tap				
<u>COMMENTS:</u>	51	1					
Signature: D	125/ ate:	QA/QC Review	: <u>CES</u> Date: <u>8125</u> 11				

Kingston, New	Ana York	lysis	Request Form
Well Numb	er:(_0_3 \$		Date: <u>5,25,4</u>
LABORAT	<u>ORY</u> :		
	IBM - East Fishkill		
9	EnviroTest		
σ	Other:		
ANALYSES	S. REQUESTED: 8010, Freon 113, Freon 123a Phenols (total) (EPA 420.1) Metals are Filtered Metals are Unfiltered Modified Appendix 33 r: <u>8021 Halog</u>		Antimony (EPA 200.7 or 6010A) Arsenic (EPA 206.2 or 7060A) Cadmium (EPA 7131) Lead (EPA 239.2 or 7421) Silver (EPA 7761)
	, <u></u>		

Date	Time	Temp (°C)	pH (SU)	Sp. Cond. (µmhos/cm)	Turbidity (NTU)	Notes
5/25/11	11:19	14.60	6.88	1284		Cloudy
						· · ·

<u>COMMENTS:</u> Gall 5 10 14.5

.

756 <i>5</i>			
Fi Fi	eld S	ampling Data	Sheet
GENERAL INFORMATION:			
Well No: <u>mwb045</u> Date: <u>2</u>	13	/_1 Pers	onnel: <u>Cy</u> w
PURGING:			· · ·
Reference Depth To Bottom (DTBr) 7.0	Y ft.	Start: 11-22	Stop: 1.27
Measured Depth to Bottom (DTBm)] ft.	Note: Use Reference Dep	th to Bottom for calculations
Depth to Water (DTW): §_3 ¹⁻) ft.	Well Yields:	Yes ONo
Target Volume: 4,50	s gal	Water Contained:	Dres DNo
Actual Volume: 10-00	gai.	DIW After Purge:	3-52 tt.
PID: Background:	Purg	ing:	Not Applicable
Purge Method		Rate	Equipment ID
			100000
Peristaltic Pump			· · · · · · · · · · · · · · · · · · ·
U Well Wizard			
American Sigma		- 	
Bladder Pump			·····
□ Submersible		<u> </u>	•••••••••••••••••••••••••••••••••••••••
SAMPLING:	•		
Sample ID: KCCC4	Ŝ.	10203	¢.
Sample Time: Start: 1130	Stop	1137	
Duplicate ID:	NA	1-1-1-1-	
Sampling Method: I Baile	r rican S	igma 🗍	Well Wizard Tap
COMMENTS: Signature: D	2 3 ate:	QA/QC Review	<u>CES</u> Date: 812411

Kingston, New York		alysis	Request Form
Well Numb	per: <u>6043</u>		Date: 2 /3 / 1/ 3
LABORAT	<u>'ORY</u> :		
	IBM - East Fishkill		
	EnviroTest		
σ	Other:		
ANALYSE	<u>S REQUESTED</u> :		
σ	8010, Freon 113, Freon 123a		Antimony (EPA 200.7 or 6010A)
	Phenols (total) (EPA 420.1)		Arsenic (EPA 206.2 or 7060A)
	Metals are Filtered		Cadmium (EPA 7131)
	Metals are Unfiltered		Lead (EPA 239.2 or 7421)
	Modified Appendix 33		Silver (EPA 7761)
Othe	er: <u>8021 Sitentinza</u>	<u></u>	

Date	Time	Temp (°C)	pH (SU)	Sp. Cond. (µmhos/cm)	Turbidity (NTU)	Notes
73/1	1136	11.9	7.20	213		Clean

COMMENTS:

7882 <i>e</i>			
≜ējē Fi	ield S	ampling Data	Sheet
Kingston, New York			
GENERAL INFORMATION:			
Well No: <u>MW6049</u> Date: <u>5</u>	125	/][Perso	nnel: <u>Uuß cj</u>
PURGING:			<u> </u>
Reference Depth To Bottom (DTBr) 17.0	4 ft.	Start: 1054	Stop: 1059
Measured Depth to Bottom (DTBm) 16.9) ft.	Note: Use Reference Dept	h to Bottom for calculations
Depth to Water (DTW): 592	ft.	Well Yields:	Thes INO
Target Volume: 12.24	gal	Water Contained:	ØYes [] No
Actual Volume: 2-50	gal.	DTW After Purge:	(0.32 ft.
PID. Background	Pure		Not Applicable
	1418	<u></u>	S Nor Applicable
Purge Method		Rate	Equipment ID
D Bailer			Ded EQ
Peristaltic Pump		<u> </u>	<u>.</u>
🗇 Well Wizard			
🗖 American Sigma			
🗖 Bladder Pump			
□ Submersible		· · · · · · · ·	·
SAMPI INC.			•
Sample ID: $[A Q Q 4]$	S	0545	G-
Sample Time: Start: 102	Stop:	1106	
Duplicate ID:	t N F	444	-
Sampling Method:	er erican S	iema 🗖	Well Wizard Tap
<u>COMMENTS</u> :	5/25		res nu alzelii
	vate:	QA/QC Review:	Date: 111

Kingston, New	Anz York	ılysis	Request Form
Well Numb	er:604\$		Date: 5 125 1 1
LABORAT	<u>ORY</u> :		
σ	/ IBM - East Fishkill		
ত	EnviroTest		
	Other:		· · · · · · · · · · · · · · · · · · ·
ANALYSES	S REQUESTED:		
σ	8010, Freon 113, Freon 123a		Antimony (EPA 200.7 or 6010A)
	Phenols (total) (EPA 420.1)	Ο	Arsenic (EPA 206.2 or 7060A)
	Metals are Filtered		Cadmium (EPA 7131)
	Metals are Unfiltered		Lead (EPA 239.2 or 7421)
	Modified Appendix 33		Silver (EPA 7761)
Othe	er: <u>9021 Halog</u>	·	

ì	Date	Time	Temp (*C)	pH (SU)	Sp. Cond. (µmhos/cm)	Turbidity (NTU)	Notes
	5/25/11	165	13.60	6.97	2237		Clary

COMMENTS:

002449

788 <i>8</i>			
E Fi	ield S	ampling Data	Sheet
Kingston, New York			
GENERAL INFORMATION:			
Well No: <u>MW 604</u> 5 Date: <u>9</u>	, (5	Perso	nnel: <u>JAR G</u>
PURGING:			
Reference Depth To Bottom (DTBr)	<u>Ч А.</u>	Start: 955	Stop: 000
Measured Depth to Bottom (DTBm) 16-9	<u>Ц ft.</u>	Note: Use Reference Dept	s to Bottom for calculations
Depth to Water (DTW): 5.5%	ft.	Well Yields:	Tes INO
Target Volume: 12.60	gai.	Water Contained:	Over ONo
Actual Volume: 3.00	gal.	DTW After Purge:	<u> </u>
PID: Background:	Purg	ing:	Not Applicable
Purge Method		Rate	Equipment D
Bailer			Verel
Peristaltic Pump		<u></u> •	······································
🗇 Well Wizard			
🗖 American Sigma	<u>`</u>		
🗖 Bladder Pump	<u></u>		
□ Submersible			
SAMPLING:			
Sample ID: ROLO H	51	0915	6
	<u>/~ i </u>		
Sample Time: Start: 1002	Stop:		
Duplicate ID:		<u> </u>	7
Sampling Method: D Baile	er	σ	Well Wizard
COMMENTS:	erican S 9 15 Date:	igma	Tap Date:
		<u> <u>.</u></u>	

Kingston, New	Ana York	alysis	Request Form
Well Numb	per: <u>6045</u>		Date: <u>9 115 111</u>
LABORAT	<u>ORY</u> :		
U	BM - East Fishkill		
Ø	EnviroTest		
	Other:		
ANALYSE	S REQUESTED:		
	8010, Freon 113, Freon 123a		Antimony (EPA 200.7 or 6010A)
σ	Phenols (total) (EPA 420.1)		Arsenic (EPA 206.2 or 7060A)
	Metals are Filtered	σ	Cadmium (EPA 7131)
σ	Metals are Unfiltered		Lead (EPA 239.2 or 7421)
	Modified Appendix 33		Silver (EPA 7761)
Othe	er:		

Date	Time	Temp (°C)	pH (SU)	Sp. Cond. (µmhos/cm)	Turbidity (NTU)	Notes
a/15/11	1004	13.8	7.02	2371.		C1.00-
						· ·

<u>COMMENTS:</u>

	014 9	ampling Date	Sheet	
Kingston, New York		amping Data		
GENERAL INFORMATION				
		- ,		~
Well No: <u>MW 60</u> 55 Date: <u>7</u>	165	P/(1) Pers	sonnel: <u>A</u>	\mathcal{M}^{\prime}
PURGING:			\bigcirc	
Reference Depth To Bottom (DTBr) (1).5	入ft.	Start: 1039	Stop: 104	2
Measured Depth to Bottom (DTBm) 10.4	2. ft.	Note: Use Reference Dep	pth to Bottom for cal	ulations
Depth to Water (DTW): 7-25	ft.	Well Yields:	eres D	No
Target Volume: 3.61	gal	Water Contained:	Øres D	No
Actual Volume: 4-06	gal.	DTW After Purge:	8-16	ft.
PID. Background	Pure	inor	Not Appl	icable
	1			
Purge Method		Rate	Equipmen	t ID
Bailer			Dec EQ	
Peristaltic Pump	<u></u>			
O Well Wizard				
C American Sigma		<u> </u>		
🖸 Bladder Pump	<u> </u>			
□ Submersible			<u> </u>	
<u>SAMPLING</u> :		·		
Sample ID: KOGO5	Ś.	0525	G	
Sample Times Starts 1047	Store	1051		
bumple since orali.	Stop			
Duplicate ID:	NI	+h++		
Sampling Method: Bail	er	σ	Well Wizar	d
	rican S	Sigma 👘 🗖	Tap	
<u>COMMENTS:</u>	5			
Signature: r)ate:	QA/QC Review	v: CES Date:	8/25
\bigcirc				

Kingston, New	York Ans	lysis	Request Form	
Well Numb	er: <u>605\$</u>		Date: 5 12511	14
LABORAT	<u>ORY</u> :			
	JBM - East Fishkill			
Ū	EnviroTest			
σ	Other:			
ANALYSE	S REQUESTED:			
	8010, Freon 113, Freon 123a		Antimony (EPA 200.7 or 6010A)	
σ	Phenols (total) (EPA 420.1)		Arsenic (EPA 206.2 or 7060A)	
	Metals are Filtered		Cadmium (EPA 7131)	
	Metals are Unfiltered	σ	Lead (EPA 239.2 or 7421)	
	Modified Appendix 33	σ	Silver (EPA 7761)	
Othe	er: <u>8021</u> Halog			

Date	Time	Temp (°C)	pH (SU)	Sp. Cond. (µmhos/cm)	Turbidity (NTU)	Notes
5/25/11	1055	14-7	6.95	134-0		Clour
						1

5

COMMENTS:

			<u>,</u>
	ield S	ampling Data	Sheet
Kingston, New York			
GENERAL INFORMATION:			
Well No: MW 6098 Date: 2	13	/ I\ Perso	onnel: <u>Op Iw</u>
PURGING:			
Reference Depth To Bottom (DTBr) 15.19	<u>σ</u> ft.	Start: 1440	Stop: 1445
Measured Depth to Bottom (DTBm) 15-	10 ft.	Note: Use Reference Dept	h to Bottom for calculations
Depth to Water (DTW): 4-70	ft.	Well Yields:	QYes DNo
Target Volume: 600	gal.	Water Contained:	IYes INo
Actual Volume: 7-00	gal.	DTW After Purge:	11-60 ft.
PID: Background:	Purg	ing:	Not Applicable
Purge Method		Rate	Equipment D Ded EQ
Peristaltic Pump			
C Well Wizard			
American Sigma			
Bladder Pump			
SAMPLING:			
Sample ID: KOGQ9	\$	0203	6
Sample Time: Start: <u>1449</u>	Stop:	1454	
Duplicate ID: KO GOG	5 (0203	D
Sampling Method: Ø Baile	er	σ	Well Wizard
COMMENTS:	rican S	igma 🗖	Тар
Signature: D	2/3/ ate:	QA/QC Review:	CES Date: 93/24/11

.

Kingston, New	Ana Ana	lysis	Request Form		
Well Numb	er:(009 S		Date: 2 13 11		
LABORAT	<u>ORY</u> :				
σ	/ IBM - East Fishkill				
Ø	EnviroTest				
	Other:				
ANALYSES	SREQUESTED:				
	8010, Freon 113, Freon 123a		Antimony (EPA 200.7 or 6010A)		
	Phenols (total) (EPA 420.1)		Arsenic (EPA 206.2 or 7060A)		
	Metals are Filtered		Cadmium (EPA 7131)		
	Metals are Unfiltered		Lead (EPA 239.2 or 7421)		
	Modified Appendix 33		Silver (EPA 7761)		
Other: <u>BO21 B Hall Frzon</u>					

FIELD PARAMETERS:

Date	Time	Temp (°C)	pH (SU)	Sp. Cond. (µmhos/cm)	Turbidity (NTU)	Notes
2/3/1	1453	12.4	7.12	377.6		

<u>COMMENTS</u>:

.

784			<u></u>		
	Fi	eld S	ampling Data	Sheet	
Kingston, New York					
GENERAL INFORMATI	<u>ON</u> :				
Well No: <u>MW609</u> 5	Date: <u>5</u>	126	/l\ Perso	onnel: <u><u></u></u>	<u>, N</u>
<u>PURGING</u> :					
Reference Depth To Bottom	(DTBr) B	515A	Start: 8 8	Stop: Q 8	22
Measured Depth to Bottom (DTBm) 15.11) ft.	Note: Use Reference Dep	th to Bottom for calcul	ations
Depth to Water (DTW):	7.21	ft.	Well Yields:	ØYes ON	0
Target Volume:	8.74	gal.	Water Contained:	OYes OX	0
Actual Volume:	10.00	gal.	DTW After Purge:	9.20	ft.
PID: Background:		Purei	ing:	Not Applica	ıble
	<u>.</u>	1			
Purge Method			Rate	Equipment I	D
🛛 Bailer			•	VEOCA	<u> </u>
Peristaltic Pump)				
🗖 Well Wizard					
🗖 American Sigm	a				
🗇 Bladder Pump					
Submersible					
SAMPLING:					
Sample ID:	609	\$ 1	0526	G	
Sample Time: Start: 5	130	Stop:	836		
K O	609	,s Ī	0526	D	
Duplicate ID:	ЧŢЦ	NA	+++	GT GT	
Sampling Method:	Baile	er rican Si	iema 🗍	Well Wizard Tap	
<u>COMMENTS:</u>			U	- up	
Signature:	D	5 26 ate:	Ju QA/QC Review:	CES Date:	8/25/11
đ					/

Kingston, New	Ans York	lysis	Request Form
Well Numb	er: <u>6095</u>		Date: 5 12614
LABORAT	<u>ORY</u> :		
	BM - East Fishkill		
Ø	EnviroTest		
	Other:		
	S. REOUESTED: 8010, Freon 113, Freon 123a Phenols (total) (EPA 420.1) Metals are Filtered Metals are Unfiltered		Antimony (EPA 200.7 or 6010A) Arsenic (EPA 206.2 or 7060A) Cadmium (EPA 7131) Lead (EPA 239.2 or 7421)
Othe	modified Appendix 33		Silver (EPA 7761)

Date	Time	Temp (*C)	pH (SU)	Sp. Cond. (µmhos/cm)	Turbidity (NTU)	Notes
5/26/11	835	18.4	1.22	402.4		Classy
÷.,						

<u>COMMENTS</u>:

. .

	iald S	ampling Data	Shoot
Kingston, New York			Sheet
GENERAL INFORMATION:	1-		
Well No: MW 6095 Date:	/ 13	/// Perso	onnel: q fan
PURGING:			•
Reference Depth To Bottom (DTBr) 15	5 f .	Start: 10.17	Stop: 10-24
Measured Depth to Bottom (DTBm) 15.	OG A.	Note: Use Reference Dept	h to Bottom for calculations
Depth to Water (DTW):	ft.	Well Yields:	TYes INO
Target Volume: 9,70	gal.	Water Contained:	□Yes ØNo
Actual Volume: 10-00	gal.	DTW After Purge:	7.40 A
PID: Background:	Purg	ing:	Not Applicable
Purge Method		Rate	Equipment D
Baller		- <u></u> .	<u><u><u></u><u></u><u><u></u><u></u><u></u><u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u></u></u></u>
Peristaltic Pump			
🗖 Well Wizard			
🗖 American Sigma			······································
🗇 Bladder Pump			
□ Submersible			
SAMPLING:			· · ·
Sample ID: KOGO9	\$ 1	0913	C
Sample Time: Start: 1035	Stop:	1041	
Duplicate ID: 14 6 6 9 9	5 [0913	D
Sampling Method: 2 Baile	er erican S	igma 🗍	Well Wizard Tap
<u>COMMENTS:</u>	9/13/		
Signature:)ate:	QA/QC Review:	Date:

Kingston, New	York	lysis	Request Form	
Well Numb	er:6093		Date: <u>9,13,14</u>	3
LABORAT	<u>ORY</u> :			
	IBM - East Fishkill			
	EnviroTest			
	Other:			
ANALYSES	SREQUESTED:			
σ	8010, Freon 113, Freon 123a		Antimony (EPA 200.7 or 6010A)	
	Phenols (total) (EPA 420.1)		Arsenic (EPA 206.2 or 7060A)	
	Metals are Filtered		Cadmium (EPA 7131)	
	Metals are Unfiltered		Lead (EPA 239.2 or 7421)	
	Modified Appendix 33	٥	Silver (EPA 7761)	
Othe	r: 8021 BHall Frem			

Date	Time	Temp (*C)	pH (SU)	Sp. Cond. (µmhos/cm)	Turbidity (NTU)	Notes
a/13/11	1046	18-0	7.17	407.6		Hazy

<u>COMMENTS</u>:

	ield S	ampling Data	Sheet
Kingston, New 1 ork			•
GENERAL INFORMATION:			
Well No: <u>MW (UU)</u> S Date: <u>5</u>	131	/ ^{ll} Perso	nnel:
PURGING:			0
Reference Depth To Bottom (DTBr)	£ f.	Start: 1431	Stop: 1437
Measured Depth to Bottom (DTBm) 20	20 ft.	Note: Use Reference Dept	to Bottom for calculations
Depth to Water (DTW):	ft.	Well Yields:	Tes INO
Target Volume: 1152	gal.	Water Contained:	Øtes 🛛 No
Actual Volume: 12.0U	gal.	DTW After Purge:	9.95 ft.
			1
PID: Background:	Purg	ng:	Not Applicable
Purge Method		Rate	Equipment ID
Bailer			Pel Eq.
Peristaltic Pump		<u> </u>	
🗇 Well Wizard			· · · · · · · · · · · · · · · · · · ·
🗔 American Sigma			
🗇 Bladder Pump			
□ Submersible			
			1
<u>SAMPLING</u> :			
Sample ID: KOULO	51	0531	G
Sample Time: Start: 1440	Ston	1445	
Dumple Tunci Otati.	Biop.		
Duplicate ID:	NA	++++	
Sampling Method: Bail	ler	۵	Well Wizard
Am	erican Si	igma 🗖	Тар
<u>COMMENTS:</u>	5/211		
Signature:	Date:	QA/QC Review:	CES Date: 8/31/1

The set of						
	An:	Analysis Request Form				
Kingston, New	York		· · · · · · · · · · · · · · · · · · ·			
Well Numbe	er: <u>6(0</u> k		Date: $\frac{5}{3}$			
LABORATO	DRY:					
	IBM - East Fishkill					
Ø	EnviroTest					
Ο	Other:					
ANALYSES	REQUESTED:					
	8010, Freon 113, Freon 123a		Antimony (EPA 200.7 or 6010A)			
	Phenols (total) (EPA 420.1)		Arsenic (EPA 206.2 or 7060A)			
Ο	Metals are Filtered		Cadmium (EPA 7131)			
σ	Metals are Unfiltered		Lead (EPA 239.2 or 7421)			
	Modified Appendix 33		Silver (EPA 7761)			
Other	: 802 (Bitall Fr	con:				

Date	Time	Temp (°C)	pH (SU)	Sp. Cond. (µmhos/cm)	Turbidity (NTU)	Notes
5/31/11	1444	12.4	7.17	13-29.05		Cuiron
						$\overline{\mathbf{O}}$

<u>COMMENTS:</u>

		·	
	eld S	ampling Data	Sheet
GENERAL INFORMATION:			
Well No: MW 612 5 Date: 2	14	/ L Perso	onnel: <u>9 /w³</u>
PURGING:			
Reference Depth To Bottom (DTBr) 17. 8	H fL	Start: 13-20	Stop: 327
Measured Depth to Bottom (DTBm) 7.0	ε\ fL	Note: Use Reference Dep	th to Bottom for calculations
Depth to Water (DTW):	ft.	Well Yields:	Tes DNo
Target Volume: 8 H	gal.	Water Contained:	OYes ØNo
Actual Volume:	gal.	DTW After Purge:	14-82 ft.
PID: Background:	Purg	ing:	Not Applicable
Purge Method		Rate	Equipment ID
Bailer			
D Peristaltic Pump	<u> </u>		
	<u> </u>		· · · · · · · · · · · · · · · · · · ·
American Sigma			
U Bladder Pump		•	
SAMPLING:			
Sample ID: KOG12	5	0204	G
Sample Time: Start: 1330	Stop:	1340	
Duplicate ID: KOLLZ	Ś	QZQ4	
Sampling Method:	er erican S	igma 🗍	Well Wizard Tap
Signature:	2Jy	QA/QC Review:	Date:/

»...

Kingston, New York	lysis Request Form
Well Number: (2125	Date: <u>2 19 20</u>
LABORATORY:	
IBM - East Fishkill	
EnviroTest	
• Other:	
ANALYSES REQUESTED:	
8010, Freon 113, Freon 123a	Antimony (EPA 200.7 or 6010A)
Phenols (total) (EPA 420.1)	Arsenic (EPA 206.2 or 7060A)
Metals are Filtered	Cadmium (EPA 7131)
Metals are Unfiltered	Lead (EPA 239.2 or 7421)
Modified Appendix 33	Silver (EPA 7761)
Other: 8021 BHall Frzz	

FIELD PARAMETERS:

Date	Time	Temp (°C)	pH (SU)	Sp. Cond. (µmhos/cm)	Turbidity (NTU)	Notes
2/4/1	1334	6.9	7.38	6812		Clen
	-					-

COMMENTS:

÷

	eld Sampling Data	a Sheet
Kingston, New York		
GENERAL INFORMATION:		
Well No: M.J. 612 Bate: _ (0	<u>1211</u> Pers	onnel: <u>Aw</u>
<u>PURGING</u> :		
Reference Depth To Bottom (DTBr) 17.8	94 ft. Start: 1245	Stop: 253
Measured Depth to Bottom (DTBm)	ft. Note: Use Reference Dep	oth to Bottom for calculations
Depth to Water (DTW): 1.80	ft. Well Yields:	DYes DNo
Target Volume:	gal. Water Contained:	O'Z No
Actual Volume: 12-01	gal. DTW After Purge:	9.20 ft.
PID: Background:	Purging:	Not Applicable
Purge Method	Rate	Equipment ID
Bailer		DrdEQ
Peristaltic Pump		
🗇 Well Wizard		·····
🗇 American Sigma		
Bladder Pump		
□ Submersible		
·	*	
SAMPLING:		•
Sample ID: K (a) (a) 2	510002	G
1200	- (010	
Sample Time: Start: <u>1,700</u>	Stop:	
Duplicate ID:	NAT	Ð
Sampling Method: Ø Baile	er 🖸	Well Wizard
	rican Sigma 🛛 🗍	Tap
<u>COMMENTS:</u> ()	colol.	
Signature: D	ate:QA/QC Review	: CES Date: 8/31/11
X		

Kingston, New	An:	alysis	Request Form 7
Well Numbe	er:(0[2\$		Date: 612,11
LABORATO	DRY:		
σ	IBM - East Fishkill		
g	EnviroTest		
	Other:		
ANALYSES	REQUESTED:		
	8010, Freon 113, Freon 123a	σ	Antimony (EPA 200.7 or 6010A)
	Phenols (total) (EPA 420.1)	Ø	Arsenic (EPA 206.2 or 7060A)
	Metals are Filtered	Ð	Cadmium (EPA 7131)
	Metals are Unfiltered		Lead (EPA 239.2 or 7421)
	Modified Appendix 33	Ð	Silver (EPA 7761)
Other	TUtal Phenon	<u>~</u>	

Date	Time	Temp (°C)	pH (SU)	Sp. Cond. (µmhos/cm)	Turbidity (NTU)	Notes
6/2/1	1309	125	-1.25	60he		Claron

COMMENTS:

ς

		line Dete	Chast
Kingston, New York	elas	sampling Data	Sheet
GENERAL INFORMATION:			
Well No: Mwle125 Date:	114	/11 Pers	onnel: <u>JARZ</u>
PURGING:			······································
Reference Depth To Bottom (DTBr) 17.8	Ŷ₽.	Start: 12-15	Stop: 12:23
Measured Depth to Bottom (DTBm) 7.6	9 ft.	Note: Use Reference Dep	th to Bottom for calculations
Tarret Volume: 12 1.1	<u>ft.</u>	Well Yields:	Eles DNo
Actual Volume: 12.00	gal.	DTW After Purge:	7.82 ft
	6	Ditt inter ruge.	1-0 - 10
PID: Background:	Purg	ing:	Not Applicable
Purge Method		Rate	Equipment ID
Bailer		<u></u>	Deala
Peristaltic Pump		· · · · · · · · · · · · · · · · · · ·	<u> </u>
🗇 Well Wizard			
American Sigma			
🗇 Bladder Pump			
□ Submersible		<u> </u>	
SAMPLING:	6		
Sample ID:	<u>></u> .	@ 9 1 4	6-
Sample Time: Start: 1230	Stop:	1239	
Duplicate ID: K @ (9 1 2	ø	10914	D
Sampling Method: D Baile	r	D	Well Wizard
<u>COMMENTS:</u>	ncan S		Tap
Signature: D	4/4/ ate:	QA/QC Review:	Date:

Kingston, New York	alysis Request Form
Well Number: <u>(ol2)</u>	Date: <u>9,14,11</u>
LABORATORY:	
🗖 🚽 IBM - East Fishkill	
EnviroTest	
O Other:	
ANALYSES REQUESTED:	
8010, Freon 113, Freon 123a	Antimony (EPA 200.7 or 6010A)
Phenols (total) (EPA 420.1)	Arsenic (EPA 206.2 or 7060A)
Metals are Filtered	Cadmium (EPA 7131)
Metals are Unfiltered	Lead (EPA 239.2 or 7421)
Modified Appendix 33	Silver (EPA 7761)
Other: <u>8021BHaul Freo</u>	س

Date	Time	Temp (°C)	pH (SU)	Sp. Cond. (µmhos/cm)	Turbidity (NTU)	Notes
9/12/1)	1235	12.9	7.20	(e 22r		Cleary
					-	

<u>COMMENTS:</u>

				.
	Field Sampli	ng Data Sl	ieet	-
GENERAL INFORMATION:	2 7 1		ол	
Well No: <u>NW 80</u> 2 Date:	2111	Personne	el:	- ·
PURGING:	······			-
Reference Depth To Bottom (DTBr)	21-72 ft. Start:	540 Sto	p: 8.51	4
Measured Depth to Bottom (DTBm)	21.96 ft. Note: Use	Reference Depth to 1	Bottom for calculations	
Depth to Water (DTW):	5) ft. Well Yie	elds:	ØYes ØNo	1
Actual Volume:	U gal water C	fter Purget	1).58 A	- ·
	O.U. Bar DITTA	ici i uige.	<u> </u>	L
PID: Background:	Purging:		Not Applicable	
Purge Method	Rate	•	Equipment ID Del E Q	
				-
				-
American Sigma		··		
D Bladder Pump			- ··· ··· ····························	-
		<u> </u>	· · · · · · · · · · · · · · · · · · ·	
<u>SAMPLING</u> :				
Sample ID: KOOX	02100	2076]	
Cin	<u>1×14 11 14 14</u> 01		L	
Sample Time: Start:	Stop:	1	2.	
Duplicate ID:]- `	
Sampling Method:	Bailer	o v	Vell Wizard	
COMMENTS:	American Sigma	. 🗆 т	ap	
Signature:	Date: QA	/QC Review:	ES Date: 8/24	14

Kingston, New	Analysis Request Form
Well Numbe	er: <u>802</u> Date: <u>2,7,1</u>
LABORATO	DRY:
	IBM - East Fishkill
Q/	EnviroTest
σ	Other:
<u>ANALYSES</u>	REQUESTED:
	8010, Freon 113, Freon 123a 🔲 Antimony (EPA 200.7 or 6010A)
ভ	Phenols (total) (EPA 420.1) Arsenic (EPA 206.2 or 7060A)
Ø	Metals are Filtered Cadmium (EPA 7131)
Ο	Metals are Unfiltered Lead (EPA 239.2 or 7421)
σ	Modified Appendix 33 Silver (EPA 7761)
Other	. 8021 SHay Freen

Date	Time	Temp (*C)	pH (SU)	Sp. Cond. (µmhos/cm)	Turbidity (NTU)	Notes
2/1/4	9:10	9.1	7.21	977-		Cita

25

COMMENTS:

:

7882			· · · · · · · · · · · · · · · · · · ·
	Field Sa	ampling Data	Sheet
Kingston, New York			
GENERAL INFORMATION:			
Well No: MW 802 Date:	613	/ 11 Perso	nnel:
PURGING:	21.72 5		
Reference Depth To Bottom (DTBr)	MACHEO A.	Start: 946	Stop: 9,52
Measured Depth to Bottom (DTBm)	21.85 A	Note: Use Reference Dept	h to Bottom for calculations
Depth to Water (DTW):	IL ft.	Well Yields:	Dies DNo
Target Volume: 8	28 gal.	Water Contained:	I'res Arno
Actual Volume: 20	OD gal	DTW After Purge:	8-65 ft.
PID: Background:	Purel	ng:	Not Applicable
	18		
Purge Method		Rate	Equipment ID
Bailer			DPO 710
Peristaltic Pump		<u> </u>	· · · · · · · · · · · · · · · · · · ·
Well Wizard		<u> </u>	
🗇 American Sigma			
🗖 Bladder Pump			
□ Submersible			
SAMPLING:			
Sample ID: K 0 0 8	-m21	6403	C
Sample Time: Start: 170	Stop:	_1004	
Duplicate ID:	NA	F	
Sampling Method:	Bailer	σ	Well Wizard
	American Si	gma 🗍	Tap
<u>COMMENTS:</u>	6/3/1	1	
Signature:	Date:	QA/QC Review:	CES Date: 83111

Kingston, New York	alysis Request Form
Well Number:	Date: $\frac{6}{3}, 10$
LABORATORY:	
D _IBM - East Fishkill	
EnviroTest	
Other:	·
ANALYSES REQUESTED:	
8010, Freon 113, Freon 123a	Antimony (EPA 200.7 or 6010A)
Phenols (total) (EPA 420.1)	Arsenic (EPA 206.2 or 7060A)
Metals are Filtered	Cadmium (EPA 7131)
Metals are Unfiltered	Lead (EPA 239.2 or 7421)
Modified Appendix 33	Silver (EPA 7761)
Other: 8021 BHall From TOtal Phenoli	

.

Date	Time	Temp (°C)	pH (SU)	Sp. Cond. (µmhos/cm)	Turbidity (NTU)	Notes
6/3/11	1003	11.6	7.21	-180 ws		Clea

<u>COMMENTS:</u>

002522

Kingston, New York	eld S	ampling Data	Sheet	
<u>GENERAL INFORMATION:</u> Well No: <u>MW 80</u> 2 Date: 9	, 14	/ (\ Perso	onnel: J	ARCSI
PURGING:				
Reference Depth To Bottom (DTBr) 217	2 f .	Start: 11-17	Stop: 11	25
Measured Depth to Bottom (DTBm) 21-8	/ ft.	Note: Use Reference Dept	h to Bottom for	calculations
Depth to Water (DTW): 4.05	ft.	Well Yields:	4 Tes	DN0
Target Volume: [9.95	gal.	Water Contained:	OYes	[DHNo
Actual Volume: 20.00	gaL	DTW After Purge:	7.23	ft.
PID: Background:	Purg	ing:	Not A	pplicable
Purge Method		Rate	Equipm	ient ID
Bailer		<u> </u>	<u> </u>	<u> </u>
U Peristaltic Pump		· <u> </u>		
U Well Wizard				
🗖 American Sigma				
Bladder Pump				<u>_</u>
Submersible				······
SAMPLING:				
Sample ID: KOO8Q	2.1	Q914	G-	
Sample Time: Start: 130	Stop:	1137		
Duplicate ID:	NA	+++/~	E	
Sampling Method:	r rican S	ioma 🗍	Well Wiz Tan	zard
<u>COMMENTS:</u> Signature: D	9/14/ ate:	QA/QC Review:	D:	ite:

Kingston, New York	lysis Request Form
Well Number: 802	Date: $(4) (4)$
LABORATORY:	
🗖 🖉 IBM - East Fishkill	
EnviroTest	
Other:	
ANALYSES REQUESTED:	
🛛 🚽 8010, Freon 113, Freon 123a	Antimony (EPA 200.7 or 6010A)
Phenols (total) (EPA 420.1)	Arsenic (EPA 206.2 or 7060A)
Metals are Filtered	Cadmium (EPA 7131)
Metals are Unfiltered	Lead (EPA 239.2 or 7421)
Modified Appendix 33	Silver (EPA 7761)
Other: 8021 BHall From	

Date	Time	Temp (°C)	рН (SU)	Sp. Cond. (µmhos/cm)	Turbidity (NTU)	Notes
9/14/11	1136	11.9	7.31	79305		Cico
					-	·

COMMENTS:

	eld S	Sampling Data	Sheet
GENERAL INFORMATION:			
Well No: <u>MW 806</u> Date: <u>5</u>	126	Perso	onnel:
PURGING:			0
Reference Depth To Bottom (DTBr)	β fL	Start: 1243	Stop: 253
Measured Depth to Bottom (DTBm)	56 ft.	Note: Use Reference Dept	th to Bottom for celculations
Depth to Water (DTW): 2.102	, fL	Well Yields:	Tes INO
Target Volume: 15.59	gal.	Water Contained:	TYes No
Actual Volume: 16-00	gal.	DTW After Purge:	7.95 ft.
PID: Background:	Purg	ing:	Not Applicable
Purge Method		Rate	Equipment ID
Baller			
Peristaltic Pump			
Well Wizard	<u></u>		<u></u>
American Sigma			· · · · ·
🖵 Bladder Pump			
SAMPLING:			
Sample ID: KOO80	6	0526	G
Sample Time: Start: 1255	Stop:	1360	•
Duplicate ID:	Nr	7	
Sampling Method: 🗹 Baile	r rican S	igma 🗖	Well Wizard Tap
<u>COMMENTS:</u> Signature: D	5/2.($\frac{ l }{ l }$ QA/QC Review:	CES Date: 8/25/1

Kingston, New	An:	alysis	Request Form
Well Numb	er:		Date: 5 126, 4
LABORAT	<u>ORY</u> :		
	/ IBM - East Fishkill		
Ø	EnviroTest		
	Other:		
ANALYSES	S REOUESTED:		
	8010, Freon 113, Freon 123a		Antimony (EPA 200.7 or 6010A)
σ	Phenols (total) (EPA 420.1)	σ	Arsenic (EPA 206.2 or 7060A)
	Metals are Filtered	σ	Cadmium (EPA 7131)
	Metals are Unfiltered		Lead (EPA 239.2 or 7421)
Ξ	Modified Appendix 33	٥	Silver (EPA 7761)
Othe	r: <u>8021 Halog</u>		

Date	Time	Тетр (*С)	pH (SU)	Sp. Cond. (µmhos/cm)	Turbidity (NTU)	Notes
5/26/11	1259	15.0	6.68	290.		Clear
						<u> </u>

<u>COMMENTS</u>:

	14 6	ampling Data	Shoot			
Kingston, New York	ela S	sampting Data	Sheet			
GENERAL INFORMATION:						
Well No: MW 816 Date: 2	14	<u>/ l</u> e Perso	nnel: <u>Stu</u>			
PURGING:						
Reference Depth To Bottom (DTBr) 39] ft.	Start: 17:14	Stop: 2.20			
Measured Depth to Bottom (DTBm) 4-1	ft.	Note: Use Reference Dept	h to Bottom for calculations			
Depth to Water (DTW): 1349	ft.	Well Yields:	Tes INO			
Target Volume: 0.23	gal.	Water Contained:	I'res D'No			
Actual Volume: 0.25	gaL	DTW After Purge:	3.80 fL			
PID: Background:	Purg	ing:	Not Applicable			
Purge Method		Rate	Equipment ID			
			100 CQ			
Peristaltic Pump						
U Well Wizard		· · ·				
🗖 American Sigma			<u> </u>			
🗇 Bladder Pump		······································				
C Submersible						
<u>SAMPLING</u> :						
Sample ID: KOQ81	6	0204	G			
Sample Time: Start: 12.30	Stop	1300				
Duplicate ID:						
Sampling Method:	T	σ	Well Wizard			
COMMENTS: Ame	rican S 24 y/ ate:	igma 🗖	Tap <u>같은 (고무)</u>			

Kingston, New	York	alysis Request Form
Well Numb	er: <u>816</u>	Date: 21414
LABORAT	<u>ORY</u> :	•
	BM - East Fishkill	
Q/	EnviroTest	
	Other:	
ANALYSES	<u>REQUESTED</u> :	
	8010, Freon 113, Freon 123a	Antimony (EPA 200.7 or 6010A)
Ŕ	Phenols (total) (EPA 420.1)	Arsenic (EPA 206.2 or 7060A)
6	Metals are Filtered	Cadmium (EPA 7131)
Ο	Metals are Unfiltered	Lead (EPA 239.2 or 7421)
σ	Modified Appendix 33	Silver (EPA 7761)
Othe	r: 802 B Hall	Fra

Date	Time	Temp (°C)	pH (SU)	Sp. Cond. (µmhos/cm)	Turbidity (NTU)	Notes
2/4/1	12.59	6.5	7.20	651.		Clarpy
						-

COMMENTS:

			. <u></u>
	Field S	ampling Data	Sheet
Kingston, New York			,
GENERAL INFORMATION:			
Well No: <u>MJ 810</u> Date:	4,3	/ 11 Pers	onnel:
PURGING:			\bigcirc
Reference Depth To Bottom (DTBr)	3.97 ft.	Start: 7,50	Stop: 810
Measured Depth to Bottom (DTBm)	4.15 ft.	Note: Use Reference Dep	th to Bottom for calculations
Depth to Water (DTW):	30 ft	Well Yields:	Offes DNo
Target Volume:	9 gal.	Water Contained:	I'res IV6
Actual Volume: 2 W	gal.	DTW After Purge:	11(8) A.
PID: Background:	Purg	ing:	Not Applicable
Purge Method		Rate	Equipment ID
D Bailer	- <u></u>		Deall
Peristaltic Pump			
🗖 Well Wizard			
American Sigma	<u> </u>		<u> </u>
🗖 Bladder Pump			
Submersible		·	
<u>SAMPLING</u> :			
Sample ID: KO08	161	0603	G
Sample Time: Start: 855	Stop	910	
Duplicate ID:	NA	+++	\square
Sampling Method:	Bailer	σ	Well Wizard
	American S	igma 🗍	Тар
<u>COMMENTS:</u>	6/21		
Signature:	_ 5/ _ Date:	QA/QC Review	. CES Date: 8/3/11

Ana Kingston, New York	lysis Request Form
Well Number:	Date: <u>6134</u>
LABORATORY:	
IBM - East Fishkill	
EnviroTest	
Other:	
ANALYSES REQUESTED:	
8010, Freon 113, Freon 123a	Antimony (EPA 200.7 or 6010A)
Phenols (total) (EPA 420.1)	Arsenic (EPA 206.2 or 7060A)
Metals are Filtered	Cadmium (EPA 7131)
Metals are Unfiltered	Lead (EPA 239.2 or 7421)
Modified Appendix 33	Silver (EPA 7761)
Other: <u>SU2</u>) BHall Fran Total Phras	,

Date	Time	Temp (°C)	pH (SU)	Sp. Cond. (µmhos/cm)	Turbidity (NTU)	Notes
¹⁹ 3/11	904	11-5	7.16	6400		Clary
_						

<u>COMMENTS</u>:

3 vo 1 phe (meta) + 6 + 2 9 uin 3 pm Inth

002520

	iold S	ampling Data	Sheet				
Kingston, New York			Blieet				
GENERAL INFORMATION:			-				
Well No: MW814 Date: 9	Well No: MW814 Date: 9 114 11 Personnel: & TAV						
PURGING:							
Reference Depth To Bottom (DTBr) 3.9	7 ft.	Start: 10:21	Stop: 1025				
Measured Depth to Bottom (DTBm) 3.	19 ft.	Note: Use Reference Dept	h to Bottom for calculations				
Depth to Water (DTW): 8-58	ft.	Well Yields:	SYes DNo				
Target Volume: 263	gal.	Water Contained:	I'Yes No				
Actual Volume: 3-00	gal,	DTW After Purge:	1043 A				
PID: Background:	Purg	ing:	Not Applicable				
Purge Method		Rate	Equipment ID				
Bailer			DedEQ				
Peristaltic Pump							
🗖 Well Wizard			· · · · · · · · · · · · · · · · · · ·				
🗇 American Sigma							
🗇 Bladder Pump							
□ Submersible							
SAMPLING:							
Sample ID: $\mathbb{K} \bigcirc \mathbb{Q} \bigcirc \mathbb{S} $	6.1	0914	G				
Sample Time: Start: 10^{30} Stop: 10^{37}							
Duplicate ID:							
Sampling Method: Bailer Well Wizard							
<u>COMMENTS:</u>	erican S	igma 👘 🖵	Tap				
Signature:	Date:	QA/QC Review:	Date:				

Kingston, New York	alysis Request Form
Well Number: MWSU	Date: 9 / 14/4
LABORATORY:	
🗍 🔰 IBM - East Fishkill	
EnviroTest	
• Other:	
ANALYSES REQUESTED:	
8010, Freon 113, Freon 123a	Antimony (EPA 200.7 or 6010A)
Phenols (total) (EPA 420.1)	Arsenic (EPA 206.2 or 7060A)
Metals are Filtered	Cadmium (EPA 7131)
Metals are Unfiltered	Lead (EPA 239.2 or 7421)
Modified Appendix 33	Silver (EPA 7761)
Other: BUZIBHOUL Fr	~

۰.

:

Date	Time	Temp (°C)	pH (SU)	Sp. Cond. (µmhos/cm)	Turbidity (NTU)	Notes
9/14/11	1036	11.7	7.21	644.		Classing

.

COMMENTS:

002540

Kingston, New York	Sampling Data Sheet					
GENERAL INFORMATION:						
Well No: <u>MW8</u> Date: <u>2,4</u>	<u>/ li</u> Personnel: <u>Cj. 168</u>					
PURGING:						
Reference Depth To Bottom (DTBr) 16 09 ft.	Start: 223 Stop: 228					
Measured Depth to Bottom (DTBm) 16 47 ft.	Note: Use Reference Depth to Bottom for calculations					
Depth to Water (DTW): 13.13 ft.	Well Yields: Offes DNo					
Target Volume: 1.44 gal.	Water Contained: IYes DNo					
Actual Volume: 150 gal.	DTW After Purge: 10.2.17 ft.					
PID: Background: Purg	ring:					
Purge Method	Rate Equipment ID					
Bailer	UTACQ					
Peristaltic Pump						
🗖 Well Wizard						
American Sigma						
🗇 Bladder Pump	· · · · · · · · · · · · · · · · · · ·					
□ Submersible						
SAMPLING: Sample ID: K 0 0 8 1 7 0 2 6 4 6 Sample Time: Start: 1240 Stop: 1249						
Duplicate ID:						
Sampling Method: COMMENTS: Signature: Dat	ि Well Wizard Sigma ि Tap (1 QA/QC Review: <u>८६८</u> Date: १)२५)।					
\sim						

Kingston, New York	nalysis Request Form
Vell Number: 817	Date: 2, 4, 1/
ABORATORY:	
IBM - East Fishkill	
EnviroTest	
O Other:	······
NALYSES REQUESTED:	
8010, Freon 113, Freon 123a	a 🗍 Antimony (EPA 200.7 or 6010A)
Phenols (total) (EPA 420.1)	Arsenic (EPA 206.2 or 7060A)
Metals are Filtered	Cadmium (EPA 7131)
Metals are Unfiltered	Lead (EPA 239.2 or 7421)
Modified Appendix 33	Silver (EPA 7761)
Other: 80218 Hall Tr	TON

<u>`</u>

Date	Time	Temp (°C)	pH (SU)	Sp. Cond. (µmhos/cm)	Turbidity (NTU)	Notes
2/4/11	1248	7.0	7.40	467-1		Clea

002440

COMMENTS:

	Field C	ampling Date	Shoot
Kineston, New York	Fleid S	amping Data	i Sheet
GENERAL INFORMATION:			
Well No: MW817 Date: (<u>e 13</u>	/ Pers	onnel:
PURGING:			0
Reference Depth To Bottom (DTBr)	1609 A	Start: 827	Stop: 840
Measured Depth to Bottom (DTBm)	6.37 A.	Note: Use Reference Dep	th to Bottom for calculations
Depth to Water (DTW):	005 A	Well Yields:	ØYes 🛛 No
Target Volume: 2	<u>95 gal</u>	Water Contained:	DYes DYNo
Actual Volume: 3.	OV gal.	DTW After Purge:	(0-00 ft.
PID. Background:	Pure	ine:	Not Applicable
· · · · · · · · · · · · · · · · · · ·			
Purge Method		Rate	Equipment ID
Bailer Bailer		·	Ded EQ
Peristaltic Pump			
🗇 Well Wizard	<u></u>		
American Sigma			<u></u>
🗇 Bladder Pump		· · · · · · · · · · · · · · · · · · ·	
□ Submersible			
	1 - 1 -		
Sample ID: $[K] Q [O] S$	17	0603	6
Sample Time: Start: 915	Stop:	930	4
Duplicate ID: KOB	17	0 0 0 3	D
Sampling Method: Q H	Bailer American S	igma 🖸	Well Wizard Tap
COMMENTS:	6/3/4	0.4/02 Dest	Cas no alail
	Date:	QA/QC Review	Date: 01 31

Kingston, New York	alysis Request Form
Well Number: 817	Date: 6,3,4
LABORATORY:	
🔲 🖉 IBM - East Fishkill	
EnviroTest	
Other:	· · ·
ANALYSES REQUESTED:	
8010, Freon 113, Freon 123a	Antimony (EPA 200.7 or 6010A)
Phenols (total) (EPA 420.1)	Arsenic (EPA 206.2 or 7060A)
Metals are Filtered	Cadmium (EPA 7131)
Metals are Unfiltered	Lead (EPA 239.2 or 7421)
Modified Appendix 33	Silver (EPA 7761)
Other: 8021BHall Fran Total Phenoly	<u>/</u>

Date	Time	Temp (°C)	pH (SU)	Sp. Cond. (µmhos/cm)	Turbidity (NTU)	Notes
6/3/11	929	13.0	7.12	501u1		Clus

<u>COMMENTS</u>:

;

002521

EEET Fi	eld Sampling Dat	a Sheet
Kingsion, New York		
GENERAL INFORMATION:		
Well No: MN 81 Date: 9	, 14 , 11 Per	sonnel: <u>JA</u>
PURGING:		
Reference Depth To Bottom (DTBr)	9 ft. Start: 1040	Stop: 052
Measured Depth to Bottom (DTBm)	2 ft. Note: Use Reference De	pth to Bottom for calculations
Depth to Water (DTW): 8-3-7	ft. Well Yields:	ØYes 🛛 No
Target Volume: 3-7	gal. Water Contained:	OYes No
Actual Volume: H-00	gal. DTW After Purge:	4-19 ft.
PID: Background:	Purging:	Diot Applicable
Purge Method	Rate	Equipment ID
Bailer .		Dea EQ.
Peristaltic Pump		·
U Well Wizard		<u> </u>
American Sigma	· · · · · · · · · · · · · · · · · · ·	······
🗇 Bladder Pump		
□ Submersible		
SAMPLING:		
Sample ID: $\mathbb{K} \mathbb{Q} \mathbb{Q} \mathbb{S} \mathbb{I}$	710914	G
Sample Time: Start: 10 54	Stop:	
Duplicate ID:	ALT	H
Sampling Method: Bailer		Well Wizard
<u>COMMENTS:</u>	rcan Sigma	Тар
Signature: Da	9 19 QA/QC Review	r: Date:

Kingston, New	York	Analysis Request Form
Well Numb	ver: 817	Date:
LABORAT	<u>ORY</u> :	
	IBM - East Fishkill	
σ	EnviroTest	
	Other:	

Antimony (EPA 200.7 or 6010A)

Arsenic (EPA 206.2 or 7060A)

Date: _ 9 1M

- 8010, Freon 113, Freon 123a Phenols (total) (EPA 420.1)
- Ο Metals are Filtered
- Metals are Unfiltered
- Modified Appendix 33
- Cadmium (EPA 7131) Lead (EPA 239.2 or 7421)
- Silver (EPA 7761)

σ

FIELD PARAMETERS:

Other:

ANALYSES REQUESTED:

Date	Time	Temp (°C)	pH (SU)	Sp. Cond. (µmhos/cm)	Turbidity (NTU)	Notes
9/14/11	1102	13.3	7.28	5332		litary

COMMENTS:

			. <u></u>	
	Field S	ampling Data	Sheet	
Kingston, New York				
GENERAL INFORMATION:				
Well No: TMP8 Date: 5	,27	/ ¹¹ Pers	onnel: <u>I</u> W	35
PURGING:		930	935	<u> </u>
Reference Depth To Bottom (DTBr) 4	76 ft.	Start: 00	Stop: 920	
Measured Depth to Bottom (DTBm) 5	.09 ft.	Note: Use Reference Dep	th to Bottom for calcul	ations
Depth to Water (DTW): 6.80	<u>j</u> ft.	Well Yields:	ØYes ØN	o
Target Volume: 3.81	gal.	Water Contained:	ØYes DN	o .
Actual Volume: 4,C	o gal	DTW After Purge:	7.13	ft.
PID: Background:	Purg	ing:	Not Applica	ıble
Purge Method		Rate	Equipment I	D
Bailer	<u> </u>		Var I	
Peristaltic Pump			<u></u>	<u> </u>
🗖 Well Wizard				<i></i>
🗖 American Sigma				
🗇 Bladder Pump				
□ Submersible			<u> </u>	
SAMPLING:				
Samela III a TANI	0 0 1	6-2-7		
		1012141	9	
Sample Time: Start: 937	Stop:	941		
Duplicate ID:	INA	++++-	\square	
Sampling Method: Ø Ba	ailer		Well Wizard	
COMMENTS:	merican S	igma 🗍	Тар	
Signature:	Date:	7/11_QA/QC Review:	LES Date:	8/31/1
\cup				

Kingston, New	Ana Ana Ana	lysis	Request Form
Well Numb	er:MP8		Date: 5,27,4
LABORAT	ORY:		
σ	/ IBM - East Fishkill		
প্র	EnviroTest		
	Other:		
ANALYSE	S REQUESTED:		
	8010, Freon 113, Freon 123a		Antimony (EPA 200.7 or 6010A)
	Phenols (total) (EPA 420.1)		Arsenic (EPA 206.2 or 7060A)
	Metals are Filtered		Cadmium (EPA 7131)
σ	Metals are Unfiltered		Lead (EPA 239.2 or 7421)
	Modified Appendix 33		Silver (EPA 7761)
Othe	er: 8021 Halog		

.

۰. .

Date	Time	Temp (°C)	pH (SU)	Sp. Cond. (µmhos/cm)	Turbidity (NTU)	Notes
5/27/11	940	12.4	6-68	5034		HAZNY
				-		

<u>COMMENTS</u>:

nn2489

CUSTOMER NAME		7	B	EPORT TY	PE	TURN		REPORT # (Lab Use Only)	
ADDRESS		-	STANDA				_		
560 R+ 52 Suit 202		_	NJ REG				- <u> </u>	SAMPLETEMP A 4	
CITY, STATE, ZIP Deacon NV 1250	30		NYASP	A D B C		LI QUICK_		SAMPLE BECDIONICE	
	PHONE NO.	-	OTHER_	JP.Mr. 1937	er Sprent	🗆 VERBAL		ph CHECK II Y	
DoioThy Bergman 34	18960288 xH	r l	Belistrah	<u>us Properci</u>	d.			CHLORINE (RESIDUAL)	
TRM Kingstyn					Matri	x		REVIEWED BY:	
PROJECT NUMBER / PO NO.								NY PUBLIC WATER SUPPLIES	
93002 30			WW = WA 3	DIE WAIER	5L = 5LUI		OUND WATER	SOURCE ID	
		2/2/2		ide ide	2 27 2	2 20			
RECEIPT MOST DE 4		CL as	I Amb furic Wast	I Plass Plass Plass	ic Acii	I Plas Prile ZN AG fruric	00 (^{Glas}		
	of Cor	ier An	250m Sul rganic	Liter	250m 250m 250m	15 17 17 17 17 17 17 17 17 17 17 17 17 17			
# AM PM S C MAIHIX CLIEI	NT I.D.		· / °/		/			ANALYSIS REQUESTED	_
13/1 NA 4 AG KTELO2.	030204 2	2.					8	221 BHAN Tream	
- 13/1 1115 MAG 1 EQ1021	63WLID 3	3					86	121 Ottali Fredar,	
24/1. 1130 V GW K.OGONSI	0203G 3	3					80	21 BHan Fredu	-
- H1 153 VGW KOINSI	0203G 3	3					Er.	221 Billion Fron	
5 74. 1215 V GW KC 187310	2036 3	3					81	121 BIDH Freder	_
11 73/ 1219 V GN 1.018721	02030 3	3					. 7	021 BHAIL From	— ·
2 73/1 1255 V GW K @ 18351	0203G 3	3					86	221 BHAN Freen	
13/1 1305 V AG 1/EQ102	O3WLID 3	3					8	DZI B HANNER CO	
# 73/1 1318 V GW 1.018151	0203G 3	3					80	21 Brian Free-	_
44, 1345 V Gw 1.01760	@2036 3	3					8	1021 Bitan From	
4/1 1403 V GW KOTTSI	0203G 3	3					80	221 CHan Front	
14/1 1425 V GW LUILAS	102036 3	3					8	3021 BHM Frech	
SAMPLES SUBMITTED FOR ANALYSIS WILL BE SUE	JECT TO THE ETL TEP	MS AND C	ONDITIONS	OF SALE UNLE	ESS ALTERN	ATE TERMS ARE A	GREED IN WRITING	à.	
RELINQUISHED BY COMPAN	Y	DATE	TIME	211/10	RECEIVE	D/BY	60	MPANY DATE TIME 201.	٦
SAMPLED BY	Y	DATE	TIME		RECEIVE	DBY	CJI CO	MPANY DATE TIME	-
RELINQUISHED BY GS	Y 7-	DATE 4-11	TIME	1506	RECEIVE	DBY Fast	co	MPANY DATE TIME	-
COMMENTS INVAL TO BY SULLEY	the to GSC	for pe	inned	Cill		Miples	esthart .	and in god and did	1
								Ser Caller	

CUSTOMER NAME		RI	EPORT TY	PE	TURNAROU	1D	REPORT # (Lab Use Only)
ADDRESS	1	STANDA	ARD 🗆 ISI				
000 17 52 Sutr 202	_	NJ REG					SAMPLETEMP 2.4
Beacon NY 12508		NYASP					SAMPLE/REC'D ON ICE NY EIN
NAME OF CONTACT PHONE NO.		DIHER_	LOMI NG	<u>n pros</u> t	U VERBAL		ph CHECK IN THE
PROJECT LOCATION		W. R.C.G.	or kryon				
JEM Lugorn		-		Matri	X		REVIEWED BY
1 9 1 3 0 0 2 - 2		ں WW = WAS	TE WATER	SL = SLUI	S = SOIL O = OIL OGE GW = GROUND W	ATER	NY PUBLIC WATER SUPPLIES
NOTE: SAMPLE TEMPERATURE UPON /						777	SOURCE ID
RECEIPT MUST BE 4° ± 2°C.	lass In HCu	ic in the sheet	lastic cid floxide froxide	astic astic	lastic e lass c c s s s s c		ELAP TYPE
2 2 2 2 2 2		Som A Sultura iter An	Som P Viric A Som P Som P ter P	Somi P Somi P	Steril Steril Steril Sulture DO	/ /	FEDERAL ID
ETL DATE TIME MATRIX # AM PM Solution AM PM	Life,			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		/	ANALYSIS REQUESTED
1/3/10 1449 / GW 1.04095102036 3	3	:				- 20,	21 Bohn Frow
- 73/1 1443 / GW 1.0001-102030 3	3					802	21 Bahail From
43/11 1507 V GW 101820102036 3	3	_				80.	21 Btken From
73/1 1523 V GW KO1785 102036 3	3					Eo;	21 Bitall Freue
5 1/1 1540 V GW KO180=10203 G 3	3					8	021 Brian France
11 7/1, 163 GW K0504510203G 3	3		_			81	021 B Hall Freun
9 43/ 1630 Y Gw 1502845102836 2	3					30	21 Bilall Fraz
m 3/1 1.30 V GW 1.02845102030 3	3					30	21 Biten From
SAMPLES SUBMITTED FOR ANALYSIS WILL BE SUBJECT TO THE ETL TEI	RMS AND C	ONDITIONS	OF SALE UNLE	ESS ALTERN	ATE TERMS ARE AGREED	N WRITING.	
RELINQUISHED BY COMPANY	DATE		12:110	RECEIVE	бву	CON	MPANY DATE TIME
SAMPLED BY COMPANY	DATE	TIME		RECEIVE	et	CON	MPANY DATE TIME
REZINQUISHED BY COMPANY	DATE	TIME	1500	RECEIVE	the BY	CON	MPANY DATE TIME
COMMENTS THURLE to be submitted to GSC	fir on	Vim ed I	00	 	tis intert	0.00	I wood and tim ha

	∕ir bo	o ré rato	est pri	t ies l	nc	, ,			. ,	s		C	; -	Δ		N	0	F	C	;U	S	ST	0)Y	а 7 1								31) Ne TE FA	5 Fu wbur L (84 X (84	/ton gh, N 5) 562 5) 562	Aven Y 1255 2-0890 2-0841	ue 50
cus	TOMER	NAME	ć	~		1	~									DEI)T T					ті			011				R	EPC	DR.	T #	(Lab	Use	e On	ly)	
$\overline{\mathbf{S}}$	Olini	suato		<u>)(((?</u> N	<u>(e 5</u>	<u>(</u>	<u>04</u>)	<u></u>																							i de sein						
	RESS	Pip (72	Su	177	20	2																					<u>. 189</u> 2	<u>lean c</u>	 97	or ing	<u>) (</u>]	<u></u>	<u></u>	and and a second se			
CITY	STATE	, ZIP	* <u>****</u> *	<u> </u>		175		2															QUI	CK _				-	SA	NPL	eter	MP:	C	<u>n. 1</u>			di alle Au-	C
	<u>er(</u>		ľ	1 Å	· ·.	1 ·	$\frac{2}{2}$						OTHER TPANLING DA GREEK										SA	ARE STIE		CD		CE I	⊐ Y	-LI N								
DELOTING DECOMBON 845 8160226,14							1			<u>}04</u>	18 ah	115	Red	RUNI(1	À									_рп ∟оц	one Ce	UN INE I	DES	sint (τιν Δι.ι.Γ		E N							
PROJECT LOCATION																								RE	/IEV	VED I	BY:											
		KAR MARER		12 ^ 10							· · · · ·	_				ъw	= Di		ING \	<u>Mai</u> NATE	trix R	S = Š	SOIL	. 0	= 0	IL				iv			- 1 1		6 1			
	300	12.3/	2010 2	NO.										ww	/ = W	AST	EWA	TER	SL	. = SL	UDO	ΞĒ	GW	= GF	105	ND۱	WATI	ER		41	n U P		9: VY		n e	Strike Strike		
<u> </u>	NO	TE: S	- AM	PLET	EMP	ER/	ATU	RE	UPC	DN	·					<u>, </u>		1	7	7	,	7	7	7			/	7	SO	JRC	EID					er sa		
		REC	CEI	PT MU	IST I	BE 4	4° ±	2°() .		al Number	mi Glaco		mi Amt	ulturic er Amt	nic Washed	tric Acid	n Hydroxide	Prestic	turic Acid	in Plastic	Sterile	HZNACC	ini Glass ulfuric	mi Gi _{ass}	8	. /		EL/ FEI	NP T DER	YPE AL ID	<u>.</u> 1						
ETL	SAM DATE	PLING TIME AM PM	GRAB	MATRIX		с	LIEN	IT I.C).	_/	/25 6'5	4	Liter,	520		197 250	5550 M			52 / Sul	\$21	5		\$ %	40	/ /	/	/		•	٩NA	LY	SIS	RE	QUE	STE	D	
	24/1	1240		Gw	1.0	AC.		22	C 4 G	{	5	3																802	1.61	in Fr	(BM	(14 (4	Scars.	rcai <u>Silv</u>		Tutal	Phen	2h
	Lj.	1315		AG	1.5	0	107	264	uu 9	À	2	3																86	1 Ê L	Art 1	r Y Ala				•		•	
_	24.1	1220	. v	C.		<u></u> 74 .	<u>::::</u> ::::::::::::::::::::::::::::::::	- <u></u>	and C		5	2	-	i		1			\top									Sec.	i an	<u></u>	P_{i}	i Anger	Ļ		ر د الاس ر و	1 1210		
h. Friderica H	<u>790</u> 213	17.50	<u> </u>	SW_	151	<u> </u>	<u> 2 - 2 </u> 0 2		<u>enc</u>		1			- <u> </u> i		+ +			+									CRALLS .	<u>21298</u> 0.0.1	<u></u>	<u>* 1.64</u> 7.14 7.14	<u>t eri s.</u> Se	in in Le	tau At _	<u>- 1010</u>	<u>н ра</u>	<u>C108</u>	
273829 <u>27375</u> 27475	<u>14</u> 41	1330		(~W_	<u> }.(</u>	C(e)	23	621	<u> </u>		2	and the second		{	<u> </u>	,	-		+	1 :			-					081	6140	\$ <u>778</u> 3	1. ((#1 <u>:</u> -/*		<u>1</u>	1013	1 100	M/N	
\odot																			<u> </u>							.							. .					<u> </u>
					_																										_							
																					1																	
<u>indent</u>			-							· ·								1				· ·	-															
in the second se		<u> </u>	_													+		+	+		┼──				_													
																	_	_	<u> </u>			_														_		
				-												1																						
SAM	PLES S		D FC	OR ANALY	SIS WI	LL BE	SUB	JECT	TOTHE	E ET	LTE	RMS	AND	CONI		NS O	F SAL	.E UN	LESS	ALTE	RNAT		RMS	ARE	AGF	REED) IN W	/RITIN	G.					-				
RELI	NQUISI	IED BY		1		CO	MPAN	Y				, þ	ATE/		T	IЙE,				REØÉ	İVEÇ	BY	<u>}</u>					C		IY			,	DATE	<u> </u>	TI	MĘ 2.c	
SAM	PLED B	(<u></u> Y	1. the st	1		cor	MPAN	Y				/ <u>/</u> 2	1/// ATE	Ħ.	т	<i>] ⊄ .</i> IME	<u>(_)(</u>	10		RECE	IVED	1. 787						$-\omega$		Y			/	DATE	<u>)</u>	Ţ	1200	-
				and the second second		<u></u>		V	(1)	<u>``</u>	روز معروق الم		ATE					**************************************		ÉÉ PE				/		- ()	4	<u> </u>						<u>рат</u>	2	 TII		
	- <i>A</i>			.				<u>_</u>				יע יי	4.1)			150	b	L	Å.		Kt.	60	<u>k</u>				. 0		, I			C) [4]	t_{II}		" <u>"</u> OC	\mathbb{P}
۰ ۵۵۰۰		5	10er		hjer		har	Hrz	1 42) (<u>.</u>	<u>G</u> r	Ce	а л.	به می دیا	/	$ \sim $, l'i	0 2	- 	113	SI.	<		• 1	+-	4	, i 	2 / 3 .	4	. 7	.a. 1	1 I Cir	$\sim \sim$	1 à	ind+	tere
COM	WENTS	<u> </u>	V()7)	<u>, 19</u>				· 6.						-1	J		, <u> </u>	<u></u>	<u>_r</u>		<u> </u>	****	14	<u>_``</u>		<u> </u>	<u> </u>	<u> </u>		///		<u> </u>	·7 !	J	المريا فريده	<u>i ter</u>	a	<u>~///</u> (•

315 F Newburgh, NY 12550 TEL (845) 562-0890 FAX (845) 562-0841

CUSTOMER NAME		RE	PORT TY	'PE	TUF		REPORT # (Lab Use Only)				
ADDRESS		STANDAI	RD [] IS		TT NOB	MAL					
560 Br 52 Sut 202		NJ REG			_						
CITY, STATE, ZIP		NYASP	АП В[К					
NAME OF CONTACT PHONE NO.		OTHER_	TP.M 1.19	(MY Storial		BAL					
DeroThy Dogmann 845296 0288 x 14		Deliveran	v <u>, Estiman</u>	ø							
PROJECT LOCATION			:		REVIEWED BY:						
PROJECT NUMBER / PO NO.		DV	V = DRINKI	NG WATER	NY PUBLIC WATER SHPPHIES						
93002 30	1	WW = WAS	TEWATER	SL = SLUI	R SOURCEUD						
NOTE: SAMPLE TEMPERATURE UPON	77.		/ / 8/	1.1							
RECEIPT MUST BE $4^{\circ} \pm 2^{\circ}$ C.	er HC	Amber ric Masher Vashe	lastic Acid Clastic droxic	astic Plastic Acid	Plastic Ile V ACC	iass indexs					
Control Control Control	HCI HCI	Sulfu Sulfu fier A	iter p	Somi F	Sterr Sterr		FEDERAL ID				
	, Lite			^N O N			ANALYSIS REQUESTED				
7/1 NA / AQ 1 TRC 02070208 2 2							EST BHAN TREAM				
4/1 900 1 GW 1.00 80210 2076 53							2021 BHAIFFRON Codeman The That Phender				
7/1, 930 - GW 16218/102076 5 3	;		×.				3021 BHAIL FROM CAMER SILVER TOTAL Phonels				
- 7-1, 957 V GW K02085102076 53		()					EpiBlian From Pricincy Lead Total Pheadle				
5 7/11 1018 V GW 102065102076 139	ъř	3 1				, i i i i i i i i i i i i i i i i i i i	2021 Pillon From Endman Silver Tistal Plicauls				
111 4/1. 1100 - Gw KO1755102076 3 3	,						8021 Bitali Frear				
1000 J											
							· · · · ·				
201726											
		·			-		·				
		I					· · · · · · · · · · · · · · · · · · ·				
SAMPLES SUBMITTED FOR ANALYSIS WILL BE SUBJECT TO THE ETL TERMS	S AND CO	DNDITIONS C	OF SALE UNL	ESS ALTERN	ATE TERMS A	RE AGREED IN WE	RITING.				
RELINQUISHED BY COMPANY,		TIME	2.00	RECEIVE	DBY		COMPANY DATE TIME				
SAMPLED BY TS COMPANY		TIME	1.000	BECEIV	DBY	175-	COMPANYDATETIME				
RECINQUISHED BY COMPANY DATE TIME RECEIVED BY COMPANY DATE TIME 20											
The the base of the second of					a	C. Maria					
COMMENTS LOVAL TO VE SAMUNTY TO EX TOP	- <u>)</u> ", #		* 5	<u>xna 3043</u>	<u>- Collected</u>	TU, MILIMEST)				
All samples Kic, on Lee Into	<u>SC 101</u>		R (Cond		3.1 7t	2 +1714					

Laboratories Inc.

CHAIN OF CUSTODY

CUSTOMER NAME									F	REPO	ORT	TY	ΈE			TURNAROUND						REPORT # (Lab Use Only)				
ADD	RESS	0. r		<u></u>	0 . 0				ST	AND	ARD		IS	RA		1	J ~N	IORN	IAL _							
	60 STATE		2 2	241	H 202				NJ	REC	G 🗆					-	- -		, –						- 31	
Sur l	eac	, ZIP (10	Ν	Y 12	508				NY	'ASP	Α[вĽ		_P□	1		UICH	<			-	SAMPLE I	EC'D	ONICE DY	
NAN	EOFC	ONTACT		<u> </u>	PHONE NO.				01									′ □ N								
		$\frac{1}{2}$	29	Mam	0458460288 × 1	4			CHLORINE (RESIDUAL)									SIDUAL) 🖂 Y	(N							
	ે.M	KAAS	tyi	λ.					Matrix REVIEWED BY																	
PROJECT NUMBER / PO NO.								DW = DRINKING WATER S = SOIL O = OIL NY PUBLIC WATER										UPPLES								
	<u> 2002</u>	<u>. 90</u>							WW = WASTE WATER SL = SLUDGE GW = GROUND WATER																	
	NC	TE: S		IPLE TE	EMPERATURE UPON	N° /		7		1	20	10	<u>چ</u> /	/	. /	. /		/	/	7	7	7				
		KE	UE		SI BE 4 - 2°C.		ainer Giol	2 mass	Ambe		Plast Acial				C Acid	Plact	Place	N AC	Glase	/。				e e e	and the second se	
	SAM	PLING	<u>م</u> م	3		Total		er Am	250ml Sult	Liter, Banic	S50ml	SSOm F	Liter #	S50ml	220ml	125ml	150 Sta		40ml	/°/	' /	l	FEDERALU	D <u></u>	<u> </u>	
	DATE	TIME AM PM	NO NO NO NO NO NO NO NO NO NO NO NO NO N	MATRIX	CLIENT I.D.		/	15	<u> </u>	5		ŝ	/	/ .		[<u> </u>						AN	ALY	SIS REQUE	ISTED
	244m	NA		AQ	KTBDC2070209	2	2														8	021	F 113+12	30 b	1524.2	
	4-/n	943	V	AQ	I.EGY10207WLID	3	3														E	121	F 113- 12	≩a by	524.2	
h.	$\frac{1}{2}$	157	Ì	Gw	I WARKSIGZOND	3	3														54	<u>021</u>	Fr 112 + 123	7.6 kr.4	524 2	
BERER	44	1045	•)	AG	1:FG1020764D	3	3														8	14 <u>2</u> 1	F 112.123	a 10-1	524.2	
tina O	4-4	1100	X	EW	161755162070	3	73,														i Si	021	F 113, 12 30	و انهمانا	524.2	· · · · ·
)	- , · · · · · · · · · · · · · · · · · ·	
						1	1														-					
and the second																										
				+																						
्र इ.स.स.																										
													_										· · ·			
					· · · · · · · · · · · · · · · · · · ·				.																	
SAM	PLES S	UBMITTE	ED F	OR ANALYS	SIS WILL BE SUBJECT TO THE E	ETL TE	ERMS	AND C	OND	TIONS	OF S		UNLE	ESS A	ALTER	NATE	TER	MS AR	E AGF	REED IN	WRIT	ING.				
REL	NOUISI	HED BY	ź "i	al a	COMPANY		D'			TIM	Ē	يبن المتعمر بسم	2	F	REPER	VEE	BY	<u>y.</u> S.				CON	IPANY		DATE	TIME
SAM	PLED B	Y Y	1.50	A Production	COMPANY		// D/	ATE		TIM	<u> </u>	1.18	۲. 	╞╌┚	ECE!	VED	BY		<u></u>		<u>()</u>		IPANY		DATE	TIME
RELI	MQUIS	HED BY			COMPANY	7	D	ATE		TIM	12	. 2 4		Ē	RECEI	VĘQĮ	BY	÷,	<u> </u>	<u>()</u>		CON	IPANY		DATE	TIME
	Contraction of the second seco																									
COM	MENTS		_(\v	6.6 73	the July Minter 1 to	65	<u>.</u>	W	<u>36 y</u>	49.00	+				:			•							· · · · · · · · · · · · · · · · · · ·	<u> </u>
	the source and the hast to and the total the state																									

Enviro est Laboratories Inc.

CHAIN OF CUSTODY

315 F ton Avenue Newburgh, NY 12550 TEL (845) 562-0890 FAX (845) 562-0841

CUSTOMER NAME		BEE	PORTTYPE	TURNAROUND	REPORT # (Lab Use Only)						
ADDRESS	-	STANDAR		DT NORMAL							
560 Rtr 52 Suite 202		NJ REG									
CITY, STATE, ZIP		NYASP A									
NAME OF CONTACT PHONE NO.	-	OTHER T	TM LINGSTON	U VERBAL							
Durotny Rergmonn 845 8960288 ×14	4	Great De	Incame Required								
TRA Lucasta		·	Matri	ix.	REVIEWED BY						
PROJECT NUMBER / PO NO.	-	DW = DRINKING WATER S = SOIL O = OIL NY PUBLIC WATER SUP									
NOTE: SAMPLE TEMPEDATURE LIDON					SOURCE(ID						
BECEIPT MUST BE 4° ± 2°C					ELAPTYPE						
	rl Glas fCL mber I	I Place	ic Acie Hydrochast Plast TPlast TPlast TPlast	Point Contraction	FEDERAL ID						
ETL DATE TIME S AMATRIX	Liter A		250, 250, 250, 250, 250, 250, 250, 250,	40 20 20 20 20 20 20 20 20 20 20 20 20 20	ANALYSIS REQUESTED						
# AM PM 3 5 CLIENT I.D. //	~ ((
<u>725/11 NA VAU KABCOA25((525 2)</u>					ULA MANY AATA						
- Roga 1020 V GW 1.02 20105256 01	<u>)</u>				Ust that specate A						
12/1 1020 V GW 1: 0.282 \$ 10525D 3	3			<i>.</i>	221 Hawgentra						
Z=/1-1047 V GW 1.066105 110525 G 3	3				11 Haws Hated						
5 1/2 1102 V GW Kaka4 10 7256 3 3	3				30-1 Haloysattd						
11 23/ 1115 VEW KOLO3:105256 3	,				and Haligeneted						
\$ \$2% 1200 V GW K02845105256 7	e -				2021 Haligerat d						
0 7-1 1212 VGW 101870105250					621 Hologerotes						
× 25/11/240 VEW CUTTING 105 25 6 2	3				On Nationated						
TESTA 1250 VAG 1 EG10 - SWLID 3	3				aver Hat matrice						
1-1/1 1303 VEW 101260105556 2	3				BCI Haby at a						
7.5% 1330 VEW 1,0278-10525E 3	2				Chall shadow with a						
SAMPLES SUBMITTED TO THE ETL TER	MŞ AND C	ONDITIONS OF	SALE UNLESS ALTER	NATE TERMS ARE AGREED IN WRITIN	IG.						
RELINQUISHED BY SCINC COMPANY	DATE /	ITIME	REPEIV	ED BY C Paanan G	OMPANY DATE TIME						
SAMPLED BY COMPANY	DATE	TIME	RECEIV	ED BY TS C	OMPANY DATE TIME						
RELINQUISHED BY COMPANY	DATE	TIME	CON RECEIV	ED BY C	COMPANY DATE TIME						
COMMENTS INVOICE to be submitted to ese for payment und social encoded and in good condition Fa											

Enviro est Laboratories Inc.

CHAIN OF CUSTODY

315 F / ton Avenue Newburgh, NY 12550 TEL (845) 562-0890 FAX (845) 562-0841

CUSTOMER NAME		REPORT TYP	Έ	TURNAROUND	REPORT # (Lab Use Only)
ADDRESS					
560 P.Hr. 52 June 202					SANADIE TEMP 1.4
Reacon NY 12508		NYASP A 🗆 B 🗆	CLP		SAMPLE REC'D ON ICE DY D'N
NAME OF CONTACT PHONE NO.		OTHER TEM Kings	A Dreat	- ph CHECK I Y IN	
PROJECT LOCATION 845 891,0287 X14	<i>i</i>	Dehusiahin (gu	56		
IBM KINGSTUP			Matrix	REVIEWED BY:	
PROJECT NUMBER / PO NO.		DW = DRINKING WW = WASTE WATER	G WATER SL = SLUD	R NY PUBLIC WATER SUPPLIES	
NOTE: SAMPLE TEMPERATURE LIPON					SOURCE ID
RECEIPT MUST BE 4° ± 2°C.	58 S8	TCL Der Shed Shed Stic Stic	stic Sid	ss ss	
	HCL HCL	Prince Manual Control of Control	mi Pla Inic A		FEDERAL ID
	Lier, 4	Ľ! Ľ! 280 291 280 291 292	3.5 8.	40 82 82 850 850 850 850 850 850 850 850 850 850	ANALYSIS REQUESTED
The AMPMON AC INCOMPANY	7				Participant de tr
Had gree of Cul her ophoral (2					and the states
124130 V UN K((6(0451(05266 5)	2				OULT Halogenotica
724 Nov 800 V GW KC6093105260 3	2				EDil Halogeratra
1241 150 VEW 1.01695105266 3	3		_		CO21 Holes and ra
5 1/1 900 VAG 1. FG10 26 WLID 3	3		· .		8021 Hologenoted
11 74/1 915 VGW KR1216 125266 3	3				6021 Halvante
9 72/ 945 VGW 1-61825165266 3	3				2021 Halaguatd
0 74/ 1005 VGW 1013:145266 3	3				8021 Hatogenated
74/1 1020 VEW KOLA22105266 3	3				EU21 Hawanot d
Feb. 1040 VEW 1.9.78-18-266 3	3				Ev21 Home workd
7/20/100 VEW KO18331052663	3				8021 Howasoted
Zehillis VGW KEIN-105266 3	3				8021 Hawaenoted
SAMPLES SUBMITTED FOR ANALYSIS WILL BE SUBJECT TO THE ETL TE	RMS AND C	CONDITIONS OF SALE UNLES	SS ALTERN	ATE TERMS ARE AGREED IN W	RITING.
RELINQUISHEDBY (A C COMPANY) S	LEATEL	TIME	RECEIVE	ED BY	COMPANY DATE TIME
SAMPLED BY COMPANY	DATE	TIME	RECEIVE	ED BY	COMPANY DATE TIME
REZINGUISHED BY COMPANY	DATE	TIME 13:15	RECEIVE	CBZ71.	COMPANY STRATE IN TIME
	<u>~ /] / _</u>			Vang-	
COMMENTS THEORY TO BE THEAT TO GE	(tur	Real I		2 26 10-1	/ 0
HELLSAM (Los Ne culd intact d	- 4 .5 S	HULINAL TLOS		N/ Balline L	

315 Fighton Avenue Newburgh, NY 12550 TEL (845) 562-0890 FAX (845) 562-0841

CUSTOMER NAME	BEPORT TYPE	TURNAROUND	REPORT # (Lab Use Only)								
ADDRESS											
540 BH 52 July 202			TUC T								
D L L L L L C C A											
NAME OF CONTACT PHONE NO.	OTHER TEasting to perset	UERBAL									
Dorothy Bergman 4527100258,14	Dehussber heguns										
PROJECT LOCATION	Matrix		REVIEWED BY:								
PROJECT NUMBER PO NO.	DW = DRINKING WATER S = SOIL O = OIL										
93002 30 ROUTING	WW = WASTE WATER SL = SLUDGI	WW = WASTE WATER SL = SLUDGE GW = GROUND WATER									
RECEIPT MUST BE 4° - 2°C.	Plassi Plassi Plassi Plassi Plassi Plassi Plassi Plassi Plassi	The still a st									
	40ml HCLF American A American American Ameri American American Ameri American American	Ster Ster	FEDERAL ID								
ETL DATE TIME TIME MATRIX # AM PM O 0 CLIENT I.D. / * / /			ANALYSIS REQUESTED								
124/ 1205 VEW 1.0274-105266 3 3		8021	Habinziota								
720/ 1205 V GW 160274510526 D 33		802	Hoiogenated								
- Tut 1235 V GW Kalk Staszlag 3 3	,	- %01	1 Haussantik								
1259 VEW 10000105166 3 3	7		s status and a status								
Mula RAVEW LANGELESZEE 33			1 University								
W 126 175 V Gu 1025/00 1057/06 3 3		Et ::	1 La Lazarto A								
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	, , , , , , , , , , , , , , , , , , ,	1 EQ.	1 Haling water								
89 Think Mary V Car V C389 3465 2465 3 3		10	The second state								
			- Designation of the second seco								
			· · · · · · · · · · · · · · · · · · ·								
SAMPLES SUBMITTED FOR ANALYSIS WILL BE SUBJECT TO THE ETL TERMS /	IS AND CONDITIONS OF SALE UNLESS ALTERNATE	E TERMS ARE AGREED IN WRITING	· · · · · · · · · · · · · · · · · · ·								
RELINQUISHED BY COMPANY DA	DATE TIME RECEIVED	BYCO	MPANY DATE TIME								
SAMPLED BY COMPANY	DATE TIME RECEIVED	BY COL	MPANY DATE TIME								
REVINQUISHED BY COMPANY DA	DATE TIME 12:15 PECEIVED	BY (') col	MPANY STOPATELY TIME -								
L (MAS) have (22' 177		my E									
COMMENTS Trivere to be subsetted to Get for pay	aymon ITU SAMples Fli	certy/atact +	good long trong low Stulle								
	•		V 1,6°C								

Enviro . est Laboratories Inc.

CHAIN OF CUSTODY

CUSTOMER NAME		B	EPORT TY	PE	TURM		REPORT # (Lab Use Only)					
ADDRESS		STANDA				AL						
566 CHr 72 Suit 202	_	NJ REG										
Beacon NY 12508		NYASP	_А□ В□			SAMPLE RECTONICE						
NAME OF CONTACT PHONE NO.			10.MV ugite	- pera	🗆 VERBA	ph CHECK II Y II N						
PROJECT LOCATION	, 	Dense.	and equili	14			- CHLORINE (RESIDUAL)					
TT, M (ingstin	1			Matri	K		REVIEWED BY					
PROJECT NUMBER /PO NO.] ,	DW = DRINKING WATER S = SOIL O = OIL WW = WASTE WATER SL = SLUDGE GW = GROUND WATER NY PUBLIC WATER SUPPLIES										
NOTE: SAMPLE TEMPERATURE UPON							SOURCE ID					
RECEIPT MUST BE 4° \pm 2°C.	HCI ASS	inber Sther	id Pid Pid Pid Pid Pid Pid Pid Pid Pid P	astic astic	ACC ACC		ELAP TYPE					
	HCL HCL	Sulfur Sulfur The An	Omi P fitric A. Omi P, fer Pla	omi P Muric Omi P	Sterik Sterik Omi G Suffun		FEDERAL JD					
ETL DATE TIME SAMPLING MATRIX CLIENT I.D.	[fei 4		⊂ 82 C 82 C 28	123 23	AC 23	4	ANALYSIS REQUESTED					
Feld NA VAG 1-TEB 0724 8577 2	2					90	211/sharwtro / Aumotic					
1/24/1416 VEW 101732105266 3	3					Fil	031 Haluncaster a					
- Julius 1427 V GW 1 CIMY -110526 6 3	3					/;0	Albhratta					
- 1440 VEW 1-01755 10526 3	3					80	21 Habapaoted					
5 124 145.8 1 EW 10171 105266 3	3					- Ed	2ª Haliaranted					
11 1/20/10 1458 V GW 1:0.1716:10:26 D 3	3						5. College of the					
3 /24/1 1515 V Gr KIC 177-165266 2	3					8	Dillalognord					
0 m/ 845 VEW KG6010105276 3	3					R	221 Hatunsaatro					
\$1/11 900 V GW K @ 2775105276 3	3					81	021 Halogenoted					
7 1 920 V Gui 1 0.279 : 10527 G 3	3					8	021 Haligerated					
2m 937 VEW KETMPRIE5276 3	3		-			8	021 Halvgerated					
12/ 952 YEW KR201-105276 3.	3					70	21 Hatigenated					
SAMPLES SUBMITTED FOR ANALYSIS WILL BE SUBJECT TO THE ETL TER	MS AND CO	ONDITIONS	OF SALE UNLE	SS ALTERN	ATE TERMS ARE	E AGREED IN WRITING	G. C					
RELINQUISHED BY COMPANY	DATE	TIME	11.	RECEIVE	DBY	CC	DMPANY DATE TIME					
SAMPLED BY CTS	DATE	TIME	~	RECEIVE	D BY	0-55 00	OMPANY DATE TIME					
REKINQUISHED BY COMPANY	DATE	TIME	13:15	RECEIVE	Bar		DATE TIME					
MMENTS Invare to be subjected to back for Darmall												
MI (plspeceive) what taoul (Il colspective wait taoul (will than Temp Startice 162											
NIVO	101		ED MVO1E									

315 F() ton Avenue Newburgh, NY 12550 TEL (845) 562-0890 FAX (845) 562-0841

CUSTOMER NAME		BEPORT TYPE	TURNAROUND	REPORT # (Lab Use Only)							
ADDRESS	-	STANDARD TI ISRA T									
560 MH 52 SULL 202		NJ REG									
Rearcon NN 12508											
NAME OF CONTACT PHONE NO.	-	OTHER TO MI Instan presa!	ph CHECK IY IN								
DOLOTAY BAYMANN 845 8460288 x 14	-	Detwater brogened		CHLORINE (RESIDUAL) DY							
TBM Kingston		Matrix	REVIEWED BY								
PROJECT NUMBER/ PO NO.	,	DW = DRINKING WATER WW = WASTE WATER SL = SLUD	NY PUBLIC WATER SUPPLIES								
		······································		SOURCE ID							
RECEIPT MUST BE 4° \pm 2°C.		TCL Der Der Der Der Der Der Der Der Der Der		ELAP TYPE							
	HCL HCL	The second secon		FEDERAL ID							
	[ier, 40		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	ANALYSIS REQUESTED							
The water of the management of the	z			1 Halpsonoted							
1290 1017 VOV 109012105276 J	<u>/</u>			the production of the second s							
- 1711 1020 V EW 1.0291.100216 3	$\frac{2}{3}$		CC2	1 Haleseration							
27, 105 VEW 1.62285165276 5	<u>)</u>		802	1 Halogens Ko							
274 1050 V GW KG500 10927G 3 3	3			21 Habgerated							
O/2010 1125 VEW Ka5a53165276 3 3	<u>} . </u>		203	1 Haugeboted							
11 /21 1125 V Gw 1.0505=105270 3 3	3		1 2.2	1 Halugratea							
Fin La FW KG TREARER 3	3		802	1 Amatel Halogaated							
m /2-11 1225 V GW 1.02109-105276 3 1	3			Aumatic / Halusciatra							
				·) · · ·							
in the second				· · · · ·							
				· · ·							
SAMPLES SUBMITTED FOR ANALYSIS WILL BE SUBJECT TO THE ETL TERM	/IS AND CO	CONDITIONS OF SALE UNLESS ALTERNA	TE TERMS ARE AGREED IN WRITING	à.							
SAMIFLES SUBJUILTED FOR ARACTOS WILL DE SUBJECT TO THE ETL'TEMINS AND CONDITIONS OF SALE UNLESS ALTERNATE TERMS ARE AGREED IN WRITING. RELINQUISHED BY COMPANY DATE TIME RECEIVED BY COMPANY											
SAMPLED BY	DATE		DBY CO	DATE TIME							
REKINQUISHED BY COMPANY	DATE		Real COO	IMBANY JODATE TIME							
(140) shan (50 3-27-1' 13-15 1 M Dug 21 - S12-11(1 (5.15)											
somments Tougice to be inbantified to ESC for payment											
MISHM Harecus intact+	4.00	J Cod to Ph	p Kladle 1.60	• • • • • • • • • • • • • • • • • • • •							

CHAIN OF CUSTODY

CUS	TOMER	NAME	Ler	Scie	vas Cous]	REP	ORT	ΤΥΡ	Έ			٦	URN	AROL	JND	REPORT # (Lab Use Only)
ADD	RESS	<u>10:00-1</u>	1.	<u> </u>		-			ST	rane	DAR		ISR	A 🖸			้ทด	ORMA	L		
CITY	<u>) (00</u> STATE	<u> </u> {}; ZIP	τ	12	Sult: 202		_		N.	J RE	GΓ	<u> </u>	. —				O	IICK			SAMPLETEMP 30
- {	Bea	(ON	N	J.Y	12508					rue	א י היייים		3 []	CLPI	i						SAMPLE RECIDION ICE DY
NAM	E OF C	ONTACT	era	/	PHONE NO.		e			i⊓⊏i ¢İve	п <u>і</u> і Пам	- 1	1 <u>-728</u>	- Stel			VE				— ph/CHECK □Y □N
PRO.	JECT LO	DCATION	Jak	Mann	<u>400160266</u>	<u>X17</u>						<u>, 8.7.</u>	1	<i>φ</i>		1		• •			
PRO	P M	LIMBED /		10N			4				DW -	- DRIN	KING	M wat	atr	ix s-	so		- 01		
	602	30	ß	DUTING					ww	≃ W/	ASTE	WATE	RS	SL = S	LU	DGE	G١	N = GR	OUND	WAT	
	NO	TE: S	AM	PLE TE	MPERATURE UPO	N /		/ /	-1	- /	7		2/	1	7		7		7 /	· 7	
		RE	CEI	PT MU	ST BE 4° [±] 2°C.	Impo	ainers	1	Amber	Inc.	Nashe, Plastic	Plastic	lastic	Plastic Acid	Plastic	Plastic	Plastic	N ACC Glass	Glass	. /	
	SAM	PLING	<u>е</u> е			Total	40ml	ter Am	250ml	lier lie		Seon H	Liter	Suffuri	250ml	125ml Stel	AOH AOH	Suff	40m1	5	FEDERAL ID
	DATE	AM PM	GRA GRA	MATRIX	CLIENT I.D.	/	/.		\square	/ ð		8	_/_				~			<u> </u>	ANALYSIS REQUESTED
	抄心	NA	V	AQ	1 TECESSICION	2	2								_						BO21 BHall FreoN
	制	947	4	6w	1 110 AS10 531G	3	3														BOLL CHAR From
ža _{n.}	Tala	1000	V	EW	KOM 4105316	3	3														3021 FHLA Freer
CIRCUTERA ETERETERA	Eli	1025	¥	$\in \mathbb{V}$	1 C2 5/10/531 G	Ę	3			2											2021 GHAN FLORA PCBA
C	湖山	1045	V	Gw	1-0406510531E	3	3														EC21 Eliant Frese
	Tala	1100	V	fw	161091105316	2	3														3021 BHanferon
	制	117	1	ew	LEITESIRSSIE	3	3														2021 Bitan Fran
â	杨山	132	*	Gw	1000065105316	2	3														9021 BHall Free
	The state	147	č,	Gw	161281105316	2,	3														Pillip Bithis Filen
(2008 1 94	They.	1210	V	Gw	K5025A105316	3	3														DULIBHAN From
	Ehr	1223	v	GW	1.1845A16531 G		3														8021 Fillen From
-	杨	125	¥	Gw	1:25 A 10 731 C	3	3														6021 BHAIL TITON
SAM	SAMPLES SUBMITTED FOR ANALYSIS WILL BE SUBJECT TO THE ETL T									ITION	IS OF	SALE Ù	INLES	S ALT	ERN	NATE T	ERM	IS ARE	AGREE	D IN V	WRITING.
RELI	NQUISH	IED BY	il.		COMPANY		D	ATE		TIN	ЛЕ	اليكن		REC	EIV	ED BX		AA AA			COMPANY DATE TIME
SAM		Y	~~~		COMPANY C.T.S	<u> </u>	Q	ATE	-	TIM	AE			REC	EIV	ED BY	>	(17	5 ~	COMPANY DATE TIME
RELI	MOUISI		an	160	COMPANY	. 6	D.	ATÉ ()		TIN	ΛĒ (900		REC		EDE	~	Far			COMPANY (DATE II TOME)
001				in th	be ubwitted to	.<	4	nr.	era.	, whe	244				1	4	<i>ن</i> ـ,	77)		
	IENTS		d.	n w	rulo untrical	<u></u>	<u>~ :</u>	51	C	<u>بنا</u>		1		To	1.		2	In. I	16		2202
1.0	-70	· * × + - +	1 st		V- WIW121	NIV			140	<u></u>			<u>~~</u>	TDO	<u>_w</u>		<u>د ا</u>	EDA		40	

CHAIN OF CUSTODY

315 Fu on Avenue Newburgh, NY 12550 TEL (845) 562-0890 FAX (845) 562-0841

CU	TOME				e. Co.						REP	ORTT	YPE				TURN	AROU	IND	REPORT # (Lab Use Only)
ADI	RESS	14.00	<u> / ((/</u>		JUCAN COL				s	ΤΑΝΓ	AR		SRA			Z N	ORMA	L		
	560	Rit/		<u>2 5</u>	uite 202				N.	JRE	GΣ]	0.0.	_						SAMPLE TEMP
	r, SIAH	=, ZIP ∧ J	N	V	12508				N	YASP	A	В	ΠC	LΡÜ		_ (UICK_			
NAI	NE OF (CONTACT		1	PHONE NO.	×			0	THE	<u>∃_</u> }	MAR AR		pecis	1' C		ERBAL			ph CHECK I Y IN
	<u>>()]</u>	hy 1	<u> 201</u>	grain	04.046020	(EX)	s.j		E.	<u> </u>		$\sim \sqrt{c_{II}}$								CHLORINE (RESIDUAL)
PH	T 🔊	-UCATION King	si-yi	5.1 5.1										Mat	trix					REVIEWED BY.
PR	JECT	UMBER		NO.					10/10/	- \\/	DW			WATE	RS	S = S(DIL O		WATER	NY PUBLIC WATER SUPPLIES
1	007	<u>) 0 (</u>	(00	T) 201					** **	- ***				36	000					SOURCE ID
	N			PLE IE	EMPERAIURE UPU	N /	5.0	。/	5	5	led	xide		0.E	;e	2	20 / g	/。/		ELAP TYPE
		nĽ			51 DL 4 2 0.	N.W.	itaine,	10	Amt I	Amb	I Plas	C Acia Il Plas Hydro	Plast	ric Aci	" rias	erile ni Plac	ZNA	ll Glas	3 / /	
ETI	SA	APLING	d B B			Total	S \	iter A	520 ¹	rife) Tgani	SSGN 2	52 250 29 1 1 2 2 1 2 2 1 2 2 2 2 2 2 2 2 2 2	2201 [let	Suff. 250n	1521	Vace N	55	401	/ /	
_#		AM PM	<u>8</u> 6		CLIENT I.D.	·/		$\tilde{-}$		\vdash	(05				[$\left\{ - \right\}$	_{	((
	13%	1255	¥	GW	KQ204 10531G	4	3				1			-		<u> </u>			202	(Citalifican 16 (2) ??)
	物	1320	V	Gw	10101-105316	4	3				1								toi	Bibil Frank Cab (200.7)
No	Pah	1340	V	GW	1.011 ZONO DIE	4	3				١								80)	218/1211 Freen 71 (200-7)
Section of a	病	1400	V	GW	1.0164510531G	4	3				1								80	21 BHall From St. (200.7)
Ő	扬小	142)	√	60	1.8504-102316		3												70	2: Bhan From
8.4.4	5/m	1446		Gu	KOL10 + 105316	and a second	3												80	21 BHAILFrom
0)	1	1																		
<u></u>																				
10 Carlos																				
			\square					-												
<u> </u>	1																			· · · · · · · · · · · · · · · · · · ·
SA	MPLES	SUBMITT			SIS WILL BE SUBJECT TO THE	ETL T	ERMS	AND	CONE		IS OF	SALE UN	ILESS	ALTE	RNATI	E TER	MS ARE	AGREE	D IN WRITH	NG.
RE		SHED BY			COMPANY	<u> </u>	D	ATE		TIN	NE			RECE	IVED	BY			8	COMPANY DATE TIME
SA	APLED	BY	asec'		COMPANY CTS			ATE		TIN	NE NE	<u>.i. i</u> .		RECE	IVED	BY		DTO	. (COMPANY DATE TIME
RE	ANQUE	SHED BY	anr)en	COMPANY	6	1.1	ATE /		TIN	NE C	100		RECE		PZ	the	2	(COMPANY DATE TIME
CO	MENT	s <u> </u>	X ri	(1 -tz)	be intrationated	690	£	, þ	ey.	: E. +							هر)			
	M	Sak	ny	200	recud into	A.C.	-+	-4	0	0	<u>()</u>)(4	L.A.		Fe	mo	<u>B(</u>	ach	e 32 Reb

Enviro ... st Laboratories Inc.

CHAIN OF CUSTODY

315 Fu on Avenue Newburgh, NY 12550 TEL (845) 562-0890 FAX (845) 562-0841

CUS (TOMER	R NAME	r í	- CANTO	Con					F	REF	PORT	ТҮ	PE				TURN	IARO	JND) .	REPORT # (Lab Use Only)
ADD	PRESS	n r			<u> </u>				s	TAND	AR	D 🗆	IS	RA	Ż	1	21	ORMA	AL		-	
	60	Ntc -	2	Suite	202				N	J REC	зĽ]				_						CAMILE FEMP 17
ß	r, Statt CGL (c	ב, בוף ט N	¥	1250) Â				N	YASP	A		вD		LPロ			DUICK			 .	SAMPLE TEMP
NAN	IE OF C	CONTACT	-/		PHONE NO.				0	THEF	<u>1</u>	MIN	ngsh	in S	pra	<u>#</u> † [/ERBA	L	_		ph CHECK . Y IN
	UN DI	NY 1.X	Jav	时间入	845 146 028 k x M	1			() <i>/</i>	11574	的。:	1.0	qui	1.10								
PHC	U M		50	n											Mat	rix						REVIEWED BY:
PRO		NUMBER	PON	NO.					w/w	/ – WΔ	DW	= DRII	NKIN FR	NG W		RS	i = S(OIL O			FR	NY PUBLIC WATER SUPPLIES
_ { .	<u>د ۲۵۵ز</u> NIC	<u>ی الحد</u> TE• 6	<u>га</u> л Л М					,		, ,-		- WAII	,		- 0L			,, ai		,	, ,	SOURCE ID
	NC.	RE		PTMU	ST BE 4° ± 2°C.		is is	s /	Į Į	e / e	Ped		xide	e /			2		10	/ /	ŀ	ELAP TYPE
:						NIIII	ntain n Gia		ni Am		ni Pla	IC Aci				ni Pla	terije 11 pj.	IZN A In Glai	1 Glas	s /	/	FEDERAL ID
ETL	SAN		MP	MATRIX			3 / Ę 5 /	Lier A	520		250r		[ie	520	52 ⁰	152	N 220	5 \$ 0 5	- - - - - - - - - - - - - - - - - - -		/	
#	3	AM PM	8.8	Ac	CLIENT I.D.		(<i>(</i>	$\left\{ -\right\}$		/ °/		/	\vdash	<u> </u>	((1	
	72/m	MA	4	AQ	KTBCC6620663	2	2													-	00	21 BHAH From
	4th	912	_ 🗸	GW	150172510602G	3	3														80.	21 BHall From
in.:	12/11	1055	¥	Gw	10125010602G	4	3				ł									<u> </u>	80%	1 CHau From (b(239.2)
Contraction Contraction Contraction	6/2/m	1007	V	Gw	K02103101825	5	3														8021	BRUIFCAN TUTOLPHOND CAMILY SANS
Chuz O	12/m	1030	V	εw	640251060ZG	3	3		×												802	1 CHON Freda
	12hi	1045	1	GW	LOO MWALOGOZE	3	-3														80	21 Bitall From
0	42/11	1205	V	Gw	1: Q102R106626	4	3				1										80.	21611011 From Po(239 2)
20	4210	1135	v	Gu	KQ1225106026	4	3)										80	BHON FRAME (M. 29.2)
	2/1	17.30	. 1	GW	La206-101226	5	3		1		1									1	802	21 Phall Fran Total Phan Ar Duic Lead
rittenin	6/h	1300	T,	GW	K. G. 617 3101.026	5	3				1									1	8/12	I Film the the Table Desay Association
	1	1.1.2	-		1.0012 10000	ľ			<u>.</u>									<u>+</u>			1.00	1 CLIMA (TROM) DIRA MICHAEL, CAMILON SILVE
						-	<u> </u>															
SAN		SUBMITTE					BMS				5.05	SALE		-92								
REI	INQUIS	HED BY			COMPANY		0			TIM	E	JALE		 F	RECFI	VED	BY		AGREE			
CAL		S. D.C.	l.	;	COMPANY				<u></u>	TIM	<u>\</u>	Ç i		14	1		Sha	NAGA				<u>255 5.25.11 200</u>
SAN								AI E	_			-					7				0	OMPANY DATE TIME
REK	IN COUS		ha	<u> </u>	COMPANY	6	2.01	ATE //		TIM	E	4.1	0	, F	RECE		3U	y-			2	STE 601E/11 TIMEYIO
COL		Tr.	an.	- h , 150	Tuboutted to Ca		n Tur l	20	MA			84			,			0	•			
COM		Gina	06		Perry in fait	- <i>L</i>	Ca.S	~10	17	0.0	A.	th.	in	1	QA.	<u>^</u>	Ċ	RIA	1.6		7	
1	*1	VUT VI	~~~		C-VO UNIGOI	<u> </u>	Ξ£	100		<u> </u>			1.37	, 	~ ~	72	4			- 11		

Enviro 🤙 st 🔤 Laboratories Inc.

CHAIN OF CUSTODY

315 Fu on Avenue Newburgh, NY 12550 TEL (845) 562-0890 FAX (845) 562-0841

CUSTOMER NAME			REP	ORTT	YPE	ти	RNARO	UND	REPORT # (l	ab Use Only)
ADDRESS		STA			SRA 🖸		MAL			
CITY STATE ZIP		NJI	reg 🗆]			х К		SAMPLE TEMP	1
Beacon NY 12508		NYA	SP A	B			/N		SAMPLE REC'D ON IC	E DAY DIN
NAME OF CONTACT PHONE NO.	J		HER <u>()</u>	MINA	the species		BAL		рн СНЕСК 🛛 Ү 🗋 Й	
PROJECT LOCATION J		1)/1	voani.		srd				- CHLORINE (RESIDUAL) 🗆 Y 🔲 N
IPM Kington		a ,			Matr	ix			REVIEWED BY:	
PROJECT NUMBER / PO NO. 93002 30 ROUTTNI		WW =	DW = WASTE	WATER	NG WATER SL = SLU	S = SOIL DGE GW =	O = OIL GROUND	WATER		TER SUPPLIES
NOTE: SAMPLE TEMPERATURE UPON	[]		10/	1.81			1 1	777		
RECEIPT MUST BE 4° \pm 2°C.	umber ainers 21ass	Per HC	Mber Vashe	Plastic	lastic Plastic Acid	Plastic lie N ACC	itic siass siass siass		ELAP TYPE	
SAMPLING 0 m	Control Control	Sulfu	Somi Vitric	Somi H	50mi Hurio	Ster Ster		ă	FEDERAL ID	
	Ë		ő	Sod					ANALYSIS F	REQUESTED
1/1 NA VAG LTDDOUCZOUG3	22							105	0, FT 113- 1234 524	2
1/1 900 MAG KEGIGGGZWUND .	33			1				801	0 Fr 113+1230 5242	
- 42/1 912 V GN LEM2=10002D	33							801	0 F 113-1234 524	2
1/2/11 979 V AO KEGIECOZWLID	33							8010	2 Fring 1200 Jay	2
6 4/1 1007 V GW KO210-10602D	33							8010	F 11311230 524	L ·
N K (,	
m										
										·
359823						-			· · · · · · · · · · · · · · · ·	
							1			
			-						<u></u>	
SAMPLES SUBMITTED FOR ANALYSIS WILL BE SUBJECT TO THE ETI	L TERMS AND	CONDIT	IONS OF S	SALE UNI		ATE TERMS			G	· ·
RELINQUISHED BY COMPANY	DATE		TIME		REDEIV		34.	C(OMPANY 5 70	
SAMPLED BY COMPANY	DATE	. 11	TIME		RECEIV	ED BY	107	C	OMPANY	DATE TIME
RELINQUISHED BY Shain- COMPANY	62-11		TIME 10	ĵ .	FRECEIV	Sty		a Z	OMPANY GI	PATE IN TIME 10
CRMMENTS INVOIC to be insumitted to GSC	c fur po	Nr.et	V							
MI Simples read intact.	+900	2 a	Sud	tie	- le	131	ink(21.1	٠ ـ	

CHAIN OF CUSTODY

315 FL on Avenue Newburgh, NY 12550 TEL (845) 562-0890 FAX (845) 562-0841

cuş	TOMER	NAME	\$	Sec. St. A.	Con						F	REP	PORTT	/PE				TUF	NARO	UND		REPORT # (Lab Use Only)
ADD	RESS	<u></u>	<u></u> _	- Crack 3						s	TANC	ARI		SRA				NOR	MAL			
		<u><+~~)</u> 7IP	2	Sult	202			_		Ν	J RE	GΕ]	_	_	.			K		10 St.	SAMPLE TEMP 2
Be	al Or	, N-	1	12508	5					N	YASP	A	B	ЦC					n			SAMPLE RECIDION ICE DAY EIN
NAM	EOFC	ONTACT		<u> </u>	PHONE I	NO.	,			0	THEF	۲	CM Lap	101	Pres	1		VERE	BAL		C 12190	ph CHECK IY IN
PRC	JECT L		Jamo	141	07 0 6 16 02.6	<u>X 1 ~</u>	/			Ц¥	21110	4417	× 1.6491	. [0								
1	<u>BM</u>	King	5701	<u>^</u>				_					DDINIKI		Mat	trix	e - e		0 - 0"		1000 C	REVIEWED BY
ਸC	JECEΝ C(Ω)	омвени С	Rø	0. WTM-						ww	/ = WA	STE		SL	= SL	UDC	GE	GW =	GROUND	WAT	'ER	NY PUBLIC WATER SUPPLIES
	NO	TE: S	AMF	PLETE	MPERATURE U	JPON					7	_		/	\square	7	7	7		/ /	77	SOURCE ID
<i>t.</i> ,		RE	CEIF	PT MUS	ST BE 4° [±] 2°C.			liners Slace		Amba	Tic ver	Plack	Acid Plastic Vdroxid	lastic	Acid	Plastic	Plastic	V ACC	iric Siass	/	/ .	ELAP TYPE
	SAM		£ m				Coal N	40ml		20ml	ouffu Liter A Panic u	Som		Som!	Some -	25,001	Ster 2	PHZ 40HZ	Sulf.			FEDERAL ID
ETL #	DATE	TIME AM PM	GRAE	MATRIX	CLIENT I.D.		100	/	Ē	/	/ ð	/ ``	Soos			\square		2 		/	1	ANALYSIS REQUESTED
	1/1	NA	1	AQ	ITPCCUG3COU	Q3	2	2													30,	21 CHan From
	$g_{j_{k}}$	\$55	¥	Ew	1 devictores	G	131	q		3'		-									ENZIEN	Hill Files Total Prival Carping Tiles
Þæ.	$ \cdot _{\mathbb{N}}$	814	1	AG	FARCEGOUL	10 -	3	3													3023 1	STRUTTY'N
NATIONAL D	4th	915	V	Ew	1.00271660	3G	5	3		ł]									30218	Mult Front Tutal Promote Commen Silver
The search and the se	小	915	1	Gw	KOERNIGGE3	,D	5	3		-											2021 B	Hall From Total Place Codenie Som
E martin	13/1	958	~	Gu	16008021660	:3G	5	3		1						1					8021	BILGAFFRON TSTALPHEADS CAAMUM S. IVE
	6/1	1030	\checkmark	GW	1.020851.00	36	5	3				١									80111	Matter on Total Please, Pripare Lead
1																						
S. S. S. S. S. S. S. S. S. S. S. S. S. S																						
ALAGORINA																					1	
SAMPLES SUBMITTED FOR ANALYSIS WILL BE SUBJECT TO THE ETL TERMS A												S OF	SALE UNI	LESS	ALTE	RNA	TETE	RMS A	RE AGREE	ED IN V	WRITING.	
REL	INQUIS	HED BY	1		COMPANY			D/	ΛTE	17	TIM	IE	r.		PEPE	IVEC	DBY	hon	et a N		CON	MPANY DATE TIME (2.00
SAM	PLED B	IY	<u> (1 - 6) -</u>	7	COMPANY			D	ATE 1	1.	TIN	IE IE	el		RÉCE	IVEC	DBY		1		CON	MPANY DATE TIME
REL	NOUISI	HEDBY	91.10		COMPANY		6	131	YTE \		TIM	E	2:50		RECE	T	R	are			FON	MANY 6ATHIN MEDO
Ŀ		7			no the law is a for	0	7	2							ł	<u>.</u> y	Fret	0	ander	73.13	 	for Malaich
COM V	MENTS	<u>In</u>	<u>010</u>	1	111 to c - 2	<u>, v j</u>	A C	$\overline{\alpha}$		h	<u>/////////////////////////////////////</u>	$\overline{\mathbf{D}}$	D	~		7	\sim	1 1	O	1 6157	ey ser	Contraction and the second
7	44-	1/15 1	£ ($\nabla \phi$	vi actor	1000	NY	SDO	H 10	<u> </u>	<u>, 1</u> N.II	1 DFP	NV015	СТ СТ	DOPH		1-055	1 F		n <u>4</u> 0	·	· · · · · · · · · · · · · · · · · · ·

Appendix C

Groundwater Elevation Table

Kingston Site 2011 Water Level Data

Well Elevation 0	01/06/11	05/0	6/11
TOC D	TW GW	E DTW	GWE
MW-001-R 150.93 8	.20 142.	73 6.31	144.62
MW-003-S 173.03 4	.35 168.	68 3.00	170.03
MW 004 S 172 74 2	.21 167.	87 8.10 75 1.64	107.98
MW-006-S 172.74 3	.99 100. 72 165	07 1.04 07 1.50	168 10
MW-008-S 179.43 10	00 169	43 8 13	171.30
MW-010-S 176.94 7	31 169	63 2.98	173.96
MW-101-R 179.31 N.M.	.01 100.	N.M.	110.00
MW-102-R 183.93 42	.41 141.	52 27.61	156.32
MW-102-S 146.98 N.M.		12.33	134.65
MW-104-S 168.01 17	.43 150.	58 16.10	151.91
MW-105-S 168.07 20	.83 147.	24 19.61	148.46
MW-106-S 152.00 5	.86 146.	14 3.18	148.82
MW-107-S 173.53 11	.51 162.	02 9.52	164.01
MW-108-S 177.26 7	.51 169.	75 4.43	172.83
MW-109-S 174.53 /	.80 166.	73 5.67	168.86
MW-110-SA 180.15 10	.75 169.	40 9.33	170.82
MW 112 6 190 16 10	02 170	40 0.40	170.91
MW-112-5 180.10 10	35 160	68 8.86	171.23
MW-114-S 176.92 6	89 170	03 5.50	171 42
MW-115-S 181.20 9	.61 171.	59 8.23	172.97
MW-116-S 181.28 8	.66 172.	62 7.24	174.04
MW-117-S 180.75 6	.60 174.	15 5.09	175.66
MW-118-S 182.96 7	.54 175.	42 6.02	176.94
MW-119-S 183.87 8	.33 175.	54 6.94	176.93
MW-120-S 185.20 9	.61 175.	59 8.26	176.94
MW-122-S 183.62 5	.42 178.	20 4.18	179.44
MW-123-SA 178.21 3	.81 174.	40 3.51	174.70
MW-124-S 179.14 7	.00 172.	14 5.61	173.53
WW 126 5 173.88 12	.35 161.	53 8.40	105.42
MW-161-S 183.36 5	02 178	34 3.30	172.42
MW-162-S 184.36 6	75 177	61 5.03	178.94
MW-162-5 185.65 8	76 176	89 7 25	178.40
MW-164-S 182.31 8	.15 174.	16 7.25	175.06
MW-169-S 180.08 10	.72 169.	36 8.89	171.19
MW-170-S 174.36 6	.70 167.	66 4.31	170.05
MW-171-S 172.51 3	.88 168.	63 3.90	168.61
MW-172-S 171.68 3	.70 167.	98 1.38	170.30
MW-173-S 179.83 10	.88 168.	95 8.96	170.87
MW-174-S 179.89 10	.94 168.	95 8.90	170.99
MW-175-S 179.99 10	.41 169.	58 8.69	171.30
MW-177-S 177.33 0	.00 169.	50 8.00	171.20
MW-178-S 179.29 10	01 169.	28 8 93	170.36
MW-180-S 179.45 6	.01 100. 90 172	55 5.88	173.57
MW-181-S 177.38 7	.94 169.	44 6.30	171.08
MW-182-S 180.09 10	.30 169.	79 8.72	171.37
MW-183-S 174.38 3	.99 170.	39 3.39	170.99
MW-184-SA 171.30 10	.47 160.	83 8.70	162.60
MW-185-SA 176.88 16	.75 160.	13 14.65	162.23
MW-186-S 172.60 4	.07 168.	53 2.92	169.68
MW-187-S 170.82 2	.95 167.	87 1.38	169.44
MW-188-S 174.59 7	.70 166.	89 5.58	169.01
MW-201-S 175.52 0	.02 169. 25 167	50 4.80 75 6.74	170.72
MW-202-S 173.29 7	28 166	01 5.39	167.90
MW-203-S 175.16 Drv	.20 100.	11.57	163.59
MW-204-S 173.93 7	.91 166.	02 6.50	167.43
MW-206-S 152.42 7	.53 144.	89 5.38	147.04
MW-208-S 152.31 8	.00 144.	31 5.99	146.32
MW-209-S 152.02 8	.20 143.	6.23	145.79
MW-210-S 151.99 9	.09 142.	90 7.70	144.29
MW-232-M 180.94 10	.71 170.	23 9.25	171.69
WW-232-5 181.03 10	.79 170.	24 9.35	171.68
MW 261 S 479 95	.89 173.	20 4.01	174.08
MW-267-S 178.83 N.M.		N.M	
MW-269-S 180.89 10	87 170	02 9 64	171 25
MW-270-S 180.48 12	.22 168	26 11.80	168.68
MW-274-S 177.71 7	.30 170.	41 5.75	171.96

Kingston Site 2011 Water Level Data

Well	Elevation	01/0	6/11	05/0	5/11
	TOC	DTW	GWE	DTW	GWE
MW-277-S	180.33	10.20	170.13	8.68	171.65
MW-278-S	180.48	12.15	168.33	11.01	169.47
MW-279-S	180.23	10.65	169.58	9.18	171.05
MW-282-S	176.63	6.77	169.86	6.60	170.03
MW-284-S	174.77	8.08	166.69	7.22	167.55
MW-285-S	180.46	10.31	170.15	8.79	171.67
MW-288-S	180.22	10.34	169.88	8.74	171.48
MW-297-S	180.07	10.50	169.57	8.96	171.11
MW-402-S	173.94	17.64	156.30	13.45	160.49
MW-403-S	176.89	Dry		14.52	162.37
MW-404-S	171.17	4.54	166.63	2.73	168.44
MW-405-S	174.93	6.23	168.70	4.11	170.82
MW-406-S	175.85	8.55	167.30	6.17	169.68
MW-407-S	176.66	8.41	168.25	6.00	170.66
MW-502-S	180.90	6.60	174.30	5.22	175.68
MW-503-S	180.71	8.10	172.61	6.52	174.19
MW-504-S	177.11	4.20	172.91	3.04	174.07
MW-505-S	179.08	7.63	171.45	6.38	172.70
MW-506-S	180.14	9.68	170.46	8.23	171.91
MW-507-S	178.61	N.M.		N.M.	
MW-508-SA	169.89	8.65	161.24	6.36	163.53
MW-601-S	177.65	7.55	170.10	6.01	171.64
MW-602-S	180.25	10.00	170.25	8.50	171.75
MW-603-S	174.74	5.50	169.24	3.81	170.93
MW-604-S	175.93	7.68	168.25	6.00	169.93
MW-605-S	176.06	8.62	167.44	7.20	168.86
MW-607-S	175.78	Dry		Dry	
MW-608-S	170.23	8.77	161.46	7.03	163.20
MW-609-S	178.58	9.50	169.08	7.26	171.32
MW-610-S	181.16	11.04	170.12	9.40	171.76
MW-612-S	156.22	10.23	145.99	7.40	148.82
MW-801-S	152.27	6.62	145.65	4.20	148.07
MW-802-S	153.42	7.30	146.12	4.90	148.52
MW-804-S	152.74	7.23	145.51	5.01	147.73
MW-806-S	176.49	3.72	172.77	2.51	173.98
MW-807-S	177.63	7.08	170.55	5.89	171.74
MW-810	145.03	3.42	141.61	2.42	142.61
MW-811S	144.93	3.71	141.22	2.40	142.53
MW-812	146.73	7.60	139.13	6.85	139.88
MW-814	151.70	8.45	143.25	6.66	145.04
MW-815	156.30	10.10	146.20	7.23	149.07
WW-816	161.40	12.26	149.14	9.45	151.95
IVI VV-817	160.53	11.46	149.07	8.89	151.64
WW-819	154.79	0.81	147.98	3.30	151.49
WWV-821	154.70	7.88	146.82	4.41	150.29
IVIVV-A	172.34	7.85	164.49	8.50	163.84
TMD 7	1//.51	9.26	160.25	0.25	109.20
TMD 9	180.08	10.75	169.33	9.39	170.69
1 MIP-0	177.50	8.20	169.30	0.91	170.59

M.E. Measurement Error N.M. Not Measured

Appendix D

Groundwater Withdrawal Data Table (GWCS and NPLA)

	NPLA	Average	Total GWCS	Average	Average	Average	Cumulative	Cumulative	Cumulative
Date	PS1 & PS2	Pumping	Daily Flow	Pumping	Daily Flow	Pumping Rate	Gallons	Gallons	Gallons
	Daily	Rate (NPLA)	(gal)	Rate (GWCS)	Treatment	Treatment Sys	Pumped	Pumped	Pumped
	Flow (gal)	(gpm)		(gpm)	System (gal)	(gpm)	(NPLA only)	(GWCS only)	(Overall)
01-Jan-11	2,939	2.0	45,625	31.7	48,564	33.7	26,488,129	382,218,685	408,706,814
02-Jan-11	1,520	1.1	45,253	31.4	46,773	32.5	26,489,649	382,263,938	408,753,587
03-Jan-11	2,718	1.9	45,390	31.5	48,108	33.4	26,492,367	382,309,328	408,801,695
04-Jan-11	2,516	1.7	45,337	31.5	47,853	33.2	26,494,883	382,354,665	408,849,548
05-Jan-11	2,242	1.6	44,615	31.0	46,857	32.5	26,497,125	382,399,280	408,896,405
06-Jan-11	2,226	1.5	44,490	30.9	46,716	32.4	26,499,351	382,443,770	408,943,121
07-Jan-11	2,046	1.4	44,033	30.6	46,079	32.0	26,501,397	382,487,803	408,989,200
08-Jan-11	2,016	1.4	43,827	30.4	45,843	31.8	26,503,413	382,531,630	409,035,043
09-Jan-11	2,295	1.6	43,049	29.9	45,344	31.5	26,505,708	382,574,679	409,080,387
10-Jan-11	1,571	1.1	42,872	29.8	44,443	30.9	26,507,279	382,617,551	409,124,830
11-Jan-11	2,665	1.9	43,347	30.1	46,012	32.0	26,509,944	382,660,898	409,170,842
12-Jan-11	1,894	1.3	42,615	29.6	44,509	30.9	26,511,838	382,703,513	409,215,351
13-Jan-11	1,843	1.3	42,324	29.4	44,167	30.7	26,513,681	382,745,837	409,259,518
14-Jan-11	1,886	1.3	41,690	29.0	43,576	30.3	26,515,567	382,787,527	409,303,094
15-Jan-11	2,027	1.4	42,343	29.4	44,370	30.8	26,517,594	382,829,870	409,347,464
16-Jan-11	1,983	1.4	41,327	28.7	43,310	30.1	26,519,577	382,871,197	409,390,774
17-Jan-11	1,951	1.4	40,954	28.4	42,905	29.8	26,521,528	382,912,151	409,433,679
18-Jan-11	2,342	1.6	41,559	28.9	43,901	30.5	26,523,870	382,953,710	409,477,580
19-Jan-11	1,929	1.3	40,450	28.1	42,379	29.4	26,525,799	382,994,160	409,519,959
20-Jan-11	2,042	1.4	40,950	28.4	42,992	29.9	26,527,841	383,035,110	409,562,951
21-Jan-11	1,756	1.2	40,169	27.9	41,925	29.1	26,529,597	383,075,279	409,604,876
22-Jan-11	1,710	1.2	40,630	28.2	42,340	29.4	26,531,307	383,115,909	409,647,216
23-Jan-11	1,738	1.2	39.865	27.7	41,603	28.9	26,533,045	383,155,774	409,688,819
24-Jan-11	1,651	1.1	39.640	27.5	41,291	28.7	26.534.696	383,195,414	409.730.110
25-Jan-11	1,587	1.1	39.356	27.3	40,943	28.4	26,536,283	383.234.770	409.771.053
26-Jan-11	1.772	1.2	40,174	27.9	41,946	29.1	26,538,055	383,274,944	409.812.999
27-Jan-11	1,979	1.4	39,406	27.4	41,385	28.7	26,540,034	383,314,350	409,854,384
28-Jan-11	1.846	1.3	39,018	27.1	40.864	28.4	26,541,880	383 353 368	409 895 248
29-Jan-11	1.622	1.0	38,921	27.0	40,543	28.2	26 543 502	383 392 289	409 935 791
30-Jan-11	1,717	12	38.058	26.4	39,775	27.6	26 545 219	383 430 347	409 975 566
31- Jan-11	1 641	1.2	38 586	26.8	40 227	27.0	26,546,210	383 468 033	400,010,000
01-Eeb-11	1,597	1.1	38 569	26.8	40 166	27.9	26,548,457	383 507 502	410,015,795
02-Eeb-11	1,520	1.1	38 366	26.6	39,886	27.3	26,540,457	383 545 969	410,005,959
02-1 60-11	1 568	1.1	38 280	20.0	20,000	21.1	20,049,977	382 501 157	410,050,040
04 Eob 11	1,000	1.1	27.065	20.0	30 375	27.1	20,001,040	202,004,107	410,130,702
04-Feb-11	2 751	1.0	20,070	20.4	/1 830	21.3	20,002,900	383,822,122	410,175,077
05-Feb-11	2,701	1.9	39,079	27.1	41,000	29.0	26,555,706	383,661,201	410,216,907
06-Feb-11	∠,∠01	1.6	37,613	26.1	39,874	27.7	26,557,967	383,698,814	410,256,781

NPLA Average Total GWCS Average Cumulative Cumulative Cumulative Average Average **PS1 & PS2** Daily Flow Date Pumping Pumping Daily Flow Pumping Rate Gallons Gallons Gallons Rate (NPLA) Rate (GWCS) Pumped Pumped Pumped Daily (gal) Treatment Treatment Sys Flow (gal) (gpm) (gpm) System (gal) (gpm) (NPLA only) (GWCS only) (Overall) 2,493 41.402 07-Feb-11 1.7 38,909 27.0 28.8 26,560,460 383,737,723 410,298,183 08-Feb-11 2,149 39,802 410.337.985 1.5 37,653 26.1 27.6 26.562.609 383.775.376 1,877 40,101 410,378,086 09-Feb-11 1.3 38,224 26.5 27.8 26,564,486 383,813,600 2,022 39,773 10-Feb-11 1.4 37,751 26.2 27.6 26,566,508 383,851,351 410,417,859 1,955 40,120 11-Feb-11 1.4 38.165 26.5 27.9 26,568,463 383,889,516 410,457,979 12-Feb-11 1,840 1.3 37,007 25.7 38,847 27.0 26,570,303 383,926,523 410,496,826 13-Feb-11 3,128 2.2 38,297 26.6 41,425 28.8 26,573,431 383,964,820 410,538,251 2.387 39.654 14-Feb-11 1.7 37,267 25.9 27.5 26,575,818 384,002,087 410,577,905 2,293 39,946 15-Feb-11 1.6 37,653 26.1 384,039,740 410,617,851 27.7 26,578,111 2,708 40,378 16-Feb-11 1.9 37.670 26.2 28.0 26.580.819 384.077.410 410.658.229 17-Feb-11 3,935 2.7 38.085 26.4 42.020 29.2 26,584,754 384,115,495 410,700,249 4,674 44,324 18-Feb-11 3.2 39,650 27.5 30.8 26,589,428 384,155,145 410,744,573 19-Feb-11 4.005 2.8 40,345 28.0 44.350 26,593,433 384,195,490 410,788,923 30.8 20-Feb-11 3,692 2.6 41.913 29.1 45,605 31.7 26.597.125 384.237.403 410.834.528 3,732 46,396 21-Feb-11 2.6 42,664 29.6 32.2 26,600,857 384,280,067 410,880,924 3,846 46,419 22-Feb-11 2.7 42,573 29.6 32.2 26,604,703 384,322,640 410,927,343 3,544 46,479 23-Feb-11 2.5 42.935 29.8 32.3 26,608,247 384,365,575 410.973.822 24-Feb-11 7,486 5.2 43,899 30.5 51,385 411,025,207 35.7 26,615,733 384,409,474 5,582 49,819 25-Feb-11 3.9 44,237 30.7 34.6 26,621,315 384,453,711 411,075,026 5.237 50.839 26-Feb-11 3.6 45,602 31.7 35.3 26,626,552 384,499,313 411,125,865 27-Feb-11 8,291 5.8 46.679 32.4 54,970 38.2 26.634.843 384,545,992 411,180,835 7,537 48,799 33.9 56,336 28-Feb-11 5.2 39.1 26,642,380 384,594,791 411,237,171 6.982 01-Mar-11 4.8 51,595 35.8 58.577 411,295,748 40.7 26,649,362 384,646,386 58,598 6,238 02-Mar-11 4.3 52,360 36.4 40.7 26,655,600 384,698,746 411,354,346 5,896 59,132 03-Mar-11 4.1 53,236 37.0 41.1 384,751,982 411,413,478 26,661,496 04-Mar-11 5,688 4.0 54,230 37.7 59,918 41.6 26,667,184 384,806,212 411,473,396 8.233 5.7 64.671 05-Mar-11 56,438 39.2 44.9 26,675,417 384,862,650 411,538,067 11,072 06-Mar-11 7.7 76,416 53.1 87,488 384,939,066 411,625,555 60.8 26,686,489 9,757 87,610 07-Mar-11 6.8 77,853 54.1 60.8 26,696,246 385,016,919 411,713,165 9,525 08-Mar-11 6.6 77.883 54.1 87,408 411,800,573 60.7 26,705,771 385,094,802 9,671 87,151 411,887,724 09-Mar-11 6.7 77,480 53.8 60.5 26,715,442 385,172,282 10,956 92,818 10-Mar-11 7.6 81,862 56.8 385,254,144 411,980,542 64.5 26,726,398 11-Mar-11 9,723 6.8 83.344 57.9 93,067 412.073.609 64.6 26.736.121 385.337.488 9,435 92.884 12-Mar-11 6.6 83.449 58.0 64.5 26,745,556 385,420,937 412,166,493 9,214 92,679 13-Mar-11 6.4 83,465 58.0 64.4 26,754,770 385,504,402 412,259,172 9.094 92,403 14-Mar-11 6.3 83.309 57.9 64.2 26,763,864 385,587,711 412,351,575

NPLA Average Total GWCS Average Cumulative Cumulative Cumulative Average Average **PS1 & PS2** Daily Flow Date Pumping Pumping Daily Flow Pumping Rate Gallons Gallons Gallons Rate (NPLA) Rate (GWCS) Pumped Pumped Pumped Daily (gal) Treatment Treatment Sys Flow (gal) (gpm) (gpm) System (gal) (gpm) (NPLA only) (GWCS only) (Overall) 92,258 9.009 15-Mar-11 6.3 83,249 57.8 64.1 26,772,873 385,670,960 412,443,833 8,904 92,298 412,536,131 16-Mar-11 6.2 83,394 57.9 64.1 26.781.777 385.754.354 8,699 92,035 17-Mar-11 6.0 83,336 57.9 385,837,690 412,628,166 63.9 26,790,476 8.492 18-Mar-11 5.9 83,322 57.9 91.814 26,798,968 385,921,012 412,719,980 63.8 8,229 91,584 19-Mar-11 5.7 83,355 57.9 63.6 26,807,197 386,004,367 412,811,564 8,072 20-Mar-11 5.6 83,337 57.9 91,409 386,087,704 412,902,973 63.5 26,815,269 21-Mar-11 7,718 5.4 79,860 55.5 87,578 60.8 26,822,987 386,167,564 412,990,551 7.886 90.987 5.5 22-Mar-11 83.101 57.7 63.2 26,830,873 386,250,665 413,081,538 7,574 90,261 23-Mar-11 5.3 82,687 57.4 386,333,352 413,171,799 62.7 26,838,447 7,052 89,568 24-Mar-11 4.9 82.516 57.3 413.261.367 62.2 26.845.499 386.415.868 25-Mar-11 6,584 4.6 54.8 85,490 78,906 59.4 26,852,083 386,494,774 413,346,857 6,347 84,075 26-Mar-11 4.4 77,728 54.0 58.4 26,858,430 386,572,502 413,430,932 27-Mar-11 5.807 4.0 76,491 53.1 82.298 386,648,993 413,513,230 57.2 26,864,237 28-Mar-11 5,407 3.8 75.186 52.2 80,593 56.0 26.869.644 386.724.179 413.593.823 5,054 79,095 29-Mar-11 3.5 74,041 51.4 54.9 26,874,698 386,798,220 413,672,918 4,803 78,345 30-Mar-11 3.3 73,542 51.1 54.4 26,879,501 386,871,762 413,751,263 4,610 77,826 31-Mar-11 3.2 73.216 413.829.089 50.8 54.0 26.884.111 386,944,978 01-Apr-11 4,314 3.0 72,837 50.6 77,151 413,906,240 53.6 26,888,425 387,017,815 3,906 76,329 02-Apr-11 2.7 72,423 50.3 53.0 26,892,331 387,090,238 413,982,569 03-Apr-11 3.491 2.4 75.305 71,814 49.9 52.3 26,895,822 387,162,052 414,057,874 04-Apr-11 3,928 2.7 71.998 50.0 75,926 52.7 26.899.750 387,234,050 414.133.800 3,701 74,833 05-Apr-11 2.6 71,132 49.4 52.0 26,903,451 387,305,182 414,208,633 3.571 74.514 06-Apr-11 2.5 70,943 49.3 414,283,147 51.7 26,907,022 387,376,125 3,372 73.897 07-Apr-11 2.3 70,525 49.0 51.3 26,910,394 387,446,650 414,357,044 3,199 73,169 08-Apr-11 2.2 69,970 48.6 414,430,213 50.8 26,913,593 387,516,620 3,004 72.077 09-Apr-11 2.1 69.073 48.0 50.1 387,585,693 414,502,290 26,916,597 2.833 2.0 70.303 10-Apr-11 67,470 46.9 48.8 26,919,430 387,653,163 414,572,593 2,469 61,727 11-Apr-11 1.7 59,258 41.2 387,712,421 414,634,320 42.9 26,921,899 5,199 74,310 12-Apr-11 3.6 69,111 48.0 51.6 26,927,098 387,781,532 414,708,630 6,235 13-Apr-11 4.3 68.153 47.3 74,388 51.7 26,933,333 387,849,685 414,783,018 5,450 70,859 414,853,877 14-Apr-11 3.8 65.409 45.4 49.2 26,938,783 387,915,094 5,502 70,417 15-Apr-11 3.8 64,915 45.1 387,980,009 414,924,294 48.9 26,944,285 16-Apr-11 7,300 5.1 68.603 47.6 75,903 52.7 26.951.585 388.048.612 415.000.197 6.321 76.921 17-Apr-11 4.4 70.600 49.0 53.4 26,957,906 388,119,212 415,077,118 6,020 18-Apr-11 4.2 71,831 49.9 77,851 54.1 26,963,926 388,191,043 415,154,969 6,150 78,362 19-Apr-11 4.3 72,212 50.1 54.4 26,970,076 388,263,255 415,233,331

NPLA Average Total GWCS Average Cumulative Cumulative Cumulative Average Average Daily Flow Date **PS1 & PS2** Pumping Pumping Daily Flow Pumping Rate Gallons Gallons Gallons Rate (NPLA) Rate (GWCS) Pumped Pumped Pumped Daily (gal) Treatment Treatment Sys Flow (gal) (gpm) (gpm) System (gal) (gpm) (NPLA only) (GWCS only) (Overall) 5.756 78.218 20-Apr-11 4.0 72,462 50.3 54.3 26,975,832 388,335,717 415,311,549 5.655 78,055 21-Apr-11 3.9 72,400 50.3 54.2 26.981.487 388.408.117 415.389.604 78,050 5,499 22-Apr-11 3.8 72,551 50.4 388,480,668 415,467,654 54.2 26,986,986 5,335 78,130 23-Apr-11 3.7 72,795 50.6 54.3 26,992,321 388,553,463 415,545,784 5.095 77,823 24-Apr-11 3.5 72,728 50.5 54.0 26,997,416 388,626,191 415,623,607 77,949 25-Apr-11 5,018 3.5 72,931 50.6 27,002,434 388,699,122 415,701,556 54.1 26-Apr-11 4,978 3.5 72,836 50.6 77,814 54.0 27,007,412 388,771,958 415,779,370 6.602 4.6 80.313 27-Apr-11 73,711 51.2 55.8 27,014,014 388,845,669 415,859,683 10,564 85,420 28-Apr-11 7.3 74.856 52.0 388,920,525 415,945,103 59.3 27,024,578 10,652 85,555 29-Apr-11 7.4 74.903 52.0 59.4 27.035.230 388.995.428 416.030.658 30-Apr-11 10,447 7.3 74.845 52.0 85,292 59.2 27,045,677 389,070,273 416,115,950 9,503 84,092 01-May-11 6.6 74,589 51.8 27,055,180 389,144,862 416,200,042 58.4 02-May-11 8.662 6.0 74,283 51.6 82.945 389,219,145 416,282,987 57.6 27,063,842 03-Mav-11 9,055 6.3 74.159 51.5 83,214 57.8 27.072.897 389.293.304 416.366.201 9,065 84,236 04-May-11 6.3 75,171 52.2 58.5 27,081,962 389,368,475 416,450,437 8,390 82,965 05-May-11 5.8 74,575 51.8 57.6 27,090,352 389,443,050 416,533,402 7,755 81,692 06-Mav-11 5.4 73.937 51.3 56.7 27.098.107 389,516,987 416.615.094 07-May-11 7,325 5.1 73,195 50.8 80,520 389,590,182 416,695,614 55.9 27,105,432 6,878 79,481 08-May-11 4.8 72,603 50.4 55.2 27,112,310 389,662,785 416,775,095 6.460 78.898 09-May-11 4.5 72,438 50.3 54.8 27,118,770 389,735,223 416,853,993 10-Mav-11 6,193 4.3 72.090 50.1 78,283 54.4 27,124,963 389.807.313 416,932,276 5,901 77,656 11-May-11 4.1 71,755 49.8 53.9 27,130,864 389,879,068 417,009,932 77,573 5,976 12-May-11 4.2 71,597 49.7 417,087,505 53.9 27,136,840 389,950,665 5,401 76,666 53.2 13-May-11 3.8 71,265 49.5 27,142,241 390,021,930 417,164,171 5,448 76,554 14-May-11 3.8 71,106 49.4 53.2 390,093,036 417,240,725 27,147,689 15-May-11 6,410 4.5 70,652 49.1 77,062 53.5 27,154,099 390,163,688 417,317,787 7,148 5.0 77.912 16-May-11 70.764 49.1 54.1 27,161,247 390,234,452 417,395,699 8,022 79,002 17-May-11 5.6 70,980 49.3 390,305,432 417,474,701 54.9 27,169,269 8,676 82,817 18-May-11 6.0 74,141 51.5 57.5 27,177,945 390,379,573 417,557,518 8,093 19-Mav-11 5.6 79.329 55.1 87,422 60.7 27,186,038 390,458,902 417,644,940 7,988 88,920 20-May-11 56.2 417,733,860 5.5 80,932 61.8 27,194,026 390,539,834 7,791 88,989 21-May-11 5.4 81,198 56.4 27,201,817 390,621,032 417,822,849 61.8 22-Mav-11 7,731 5.4 81.255 56.4 88,986 61.8 27.209.548 390.702.287 417.911.835 7,479 23-May-11 88.019 5.2 80.540 55.9 61.1 27,217,027 390,782,827 417,999,854 6,981 24-May-11 4.8 78,832 54.7 85,813 59.6 27,224,008 390,861,659 418,085,667 7,083 84,949 25-May-11 4.9 77.866 54.1 59.0 27.231.091 390.939.525 418,170,616

NPLA Average Total GWCS Average Cumulative Cumulative Cumulative Average Average **PS1 & PS2** Daily Flow Date Pumping Pumping Daily Flow Pumping Rate Gallons Gallons Gallons Rate (NPLA) Rate (GWCS) Pumped Pumped Pumped Daily (gal) Treatment Treatment Sys Flow (gal) (gpm) (gpm) System (gal) (gpm) (NPLA only) (GWCS only) (Overall) 6.971 83.609 26-May-11 4.8 76,638 53.2 58.1 27,238,062 391,016,163 418,254,225 27-May-11 6,892 82,352 4.8 75,460 52.4 57.2 27.244.954 391.091.623 418,336,577 6,755 81,204 28-May-11 4.7 74,449 51.7 418,417,781 56.4 27,251,709 391,166,072 6,909 80.554 29-May-11 4.8 73,645 51.1 55.9 27,258,618 391,239,717 418,498,335 6,767 79,805 30-May-11 4.7 73,038 50.7 55.4 27,265,385 391,312,755 418,578,140 31-May-11 6,160 4.3 72,775 50.5 78,935 27,271,545 391,385,530 418,657,075 54.8 01-Jun-11 5,441 3.8 72,441 50.3 77,882 54.1 27,276,986 391,457,971 418,734,957 5,102 3.5 72.149 77.251 02-Jun-11 50.1 53.6 27,282,088 391,530,120 418,812,208 4,722 76,755 03-Jun-11 3.3 72,033 50.0 391,602,153 418,888,963 53.3 27,286,810 4,969 76,695 04-Jun-11 3.5 71.726 49.8 53.3 27.291.779 391.673.879 418.965.658 05-Jun-11 6.048 4.2 71,628 49.7 77,676 53.9 27,297,827 391,745,507 419,043,334 4,797 76,134 06-Jun-11 3.3 71,337 49.5 52.9 27,302,624 391,816,844 419,119,468 07-Jun-11 4.484 3.1 70,940 49.3 75.424 391,887,784 419,194,892 52.4 27,307,108 4,144 08-Jun-11 2.9 70.567 49.0 74,711 51.9 27.311.252 391.958.351 419.269.603 3,976 74,289 09-Jun-11 2.8 70,313 48.8 51.6 27,315,228 392,028,664 419,343,892 6,218 76,126 10-Jun-11 4.3 69,908 48.5 52.9 27,321,446 392,098,572 419,420,018 4,888 74,750 11-Jun-11 3.4 69.862 48.5 51.9 27,326,334 392,168,434 419.494.768 12-Jun-11 4,101 2.8 69,461 48.2 73,562 419,568,330 51.1 27,330,435 392,237,895 3,481 72,802 13-Jun-11 2.4 69,321 48.1 50.6 27,333,916 392,307,216 419,641,132 14-Jun-11 5.715 74.224 4.0 68,509 47.6 51.5 27,339,631 392,375,725 419,715,356 15-Jun-11 4.310 3.0 67.069 46.6 71,379 49.6 27.343.941 392.442.794 419.786.735 4,014 71,174 16-Jun-11 2.8 67,160 46.6 49.4 27,347,955 392,509,954 419,857,909 3.404 70.426 17-Jun-11 2.4 67,022 46.5 419,928,335 48.9 27,351,359 392,576,976 3,427 69,988 18-Jun-11 2.4 66,561 46.2 48.6 27,354,786 392,643,537 419,998,323 3,076 68,710 19-Jun-11 2.1 65,634 45.6 47.7 392,709,171 420,067,033 27,357,862 20-Jun-11 2,923 2.0 65.235 45.3 68,158 47.3 27,360,785 392,774,406 420,135,191 4.956 3.4 69.754 21-Jun-11 64.798 45.0 48.4 27,365,741 392,839,204 420,204,945 22-Jun-11 6,451 4.5 65,246 45.3 71,697 392,904,450 420,276,642 49.8 27,372,192 4,473 71,385 23-Jun-11 3.1 66,912 46.5 49.6 27,376,665 392,971,362 420,348,027 3,845 24-Jun-11 2.7 46.8 71,210 67.365 49.5 27,380,510 393,038,727 420,419,237 3,531 70,391 25-Jun-11 2.5 66,860 46.4 48.9 27,384,041 393,105,587 420,489,628 3,322 69,741 26-Jun-11 2.3 66,419 46.1 420,559,369 48.4 27,387,363 393,172,006 27-Jun-11 4,451 3.1 66.307 46.0 70,758 49.1 27.391.814 393.238.313 420.630.127 5.165 71.620 28-Jun-11 3.6 66.455 46.1 49.7 27,396,979 393,304,768 420,701,747 3,572 70,444 29-Jun-11 2.5 66.872 46.4 48.9 27,400,551 393,371,640 420,772,191 2,919 69,436 30-Jun-11 2.0 66.517 46.2 48.2 27.403.470 393.438.157 420,841,627

Appendix E

Groundwater Extraction and

Treatment System Effluent Data Report including Flux Calculations

SAMPLE LOCATION SAMPLE DESCRIPTION SAMPLE DATE LABORATORY SAMPLE I.D. SAMPLE RUN NUMBER SAMPLE COMMENT CODES		GWCS UP AS GROUNDWATER 01/06/11 420-40840-3 01	GWCS UP AS GROUNDWATER 01/13/11 420-40967-2 01	GWCS UP AS GROUNDWATER 02/04/11 420-41394-3 01	GWCS UP AS GROUNDWATER 02/10/11 420-41541-2 01	GWCS UP AS GROUNDWATER 03/03/11 420-41984-3 01	GWCS UP AS GROUNDWATER 03/10/11 420-42162-2 01
PARAMETER	UNITS						
BASE/NEUTRAL EXTRACTABLES							
1,2-DICHLOROBENZENE 1,3-DICHLOROBENZENE 1,4-DICHLOROBENZENE 2-CHLOROETHYLVINYL ETHER	ug/l ug/l ug/l ug/l	ND@1 ND@1 ND@1 ND@1	ND@1 ND@1 ND@1 ND@1	ND@1 ND@1 ND@1 ND@1	ND@1 ND@1 ND@1 ND@1	ND@1 ND@1 ND@1 ND@1	ND@1 ND@1 ND@1 ND@1
INDICATOR PARAMETERS							
PH TOTAL DISSOLVED SOLIDS TOTAL SUSPENDED SOLIDS	pH mg/l mg/l	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA
METALS							
LEAD, TOTAL	mg/l	NA.	NA.	NA	NA	NA	NA
VOLATILE ORGANICS							
1,1,1,2-TETRACHLOROETHANE	ug/l	ND@1	ND@1	ND@1	ND@1 57	ND@1 66	ND@1 44
1, 1, 2, 2 - TETER CHLOROFTHAME	ug/1	ND@1	ND@1	ND@1	ND@1	ND@1	ND@1
1 1 2-TRICHLORO-1 2 2-TRIFLUOROETHANE	ug/1	ND@1	ND@1	ND@1	ND@1	ND@1	ND@1
1.1.2-TRICHLOROETHANE	ug/1	ND@1	ND@1	ND@1	ND@1	ND@1	ND@1
1.1-DICHLOROETHANE	ug/l	19	19	19	19	22	13
1,1-DICHLOROETHYLENE	ug/l	11	14	13	13	12	9.6
1,2,3-TRICHLOROPROPANE	ug/l	ND@1	ND@1	ND@1	ND@1	ND@1	ND@1
1,2-DICHLORO-1,2,2-TRIFLUOROETHANE	ug/l	ND@1	ND@1	ND@1	ND@1	ND@1	NDØI
1,2-DICHLOROETHANE	ug/l	1.1	ND@1	1.1	NDØI	1.0	ND@1
1,2-DICHLOROETHYLENE, TOTAL	ug/1	43D	37 ND@1	44 ND@1	35 ND@1	ND@1	ND@1
1, 2-DICHLOROPROPANE	ug/1	ND@1	ND@1	ND@1	ND@1	ND@1	ND@1
A-CHLOROIOLOENE	ug/1	ND@5	ND@5	ND@5	ND@5	ND@5	ND@5
ACRYLONITRILE	ug/1	ND@5	ND@5	ND@5	ND@5	ND@5	ND@5
BENZENE	ug/1	ND@1	ND@1	ND@1	ND@1	ND@1	ND@1
BENZYL CHLORIDE	ug/l	ND@1	ND@1	ND@1	ND@1	ND@1	ND@1
BROMOBENZENE	ug/l	ND@1	ND@1	ND@1	ND@1	ND@1	ND@1
BROMODICHLOROMETHANE	ug/l	ND@1	ND@1	ND@1	ND@1	ND@1	ND@1
BROMOFORM	ug/l	ND@1	ND@1	ND@1	ND@1	ND@1	ND@1
BROMOMETHANE	ug/l	ND@1	ND@1	ND@1	ND@1	ND@1	ND@1

SAMPLE LOCATION SAMPLE DESCRIPTION SAMPLE DATE LABORATORY SAMPLE I.D. SAMPLE RUN NUMBER SAMPLE COMMENT CODES		GWCS UP AS GROUNDWATER 01/06/11 420-40840-3 01	GWCS UP AS GROUNDWATER 01/13/11 420-40967-2 01	GWCS UP AS GROUNDWATER 02/04/11 420-41394-3 01	GWCS UP AS GROUNDWATER 02/10/11 420-41541-2 01	GWCS UP AS GROUNDWATER 03/03/11 420-41984-3 01	GWCS UP AS GROUNDWATER 03/10/11 420-42162-2 01
PARAMETER	UNITS						
VOLATILE ORGANICS (Continued)							
CARBON TETRACHLORIDE	ug/l	ND@1	ND@1	ND@1	ND@1	ND@1	ND@1
CHLOROBENZENE	ug/l	ND@1	ND@1	ND@1	ND@1	ND@1	ND@1
CHLORODIBROMOMETHANE	ug/l	ND@1	ND@1	ND@1	ND@1	ND@1	ND@1
CHLOROETHANE	ug/l	ND@1	ND@1	ND@1	ND@1	ND@1	ND@1
CHLOROFORM	ug/l	ND@1	ND@1	ND@1	ND@1	ND@1	ND@1
CHLOROMETHANE	ug/l	ND@1	ND@1	ND@1	ND@1	ND@1	ND@1
CIS-1,3-DICHLOROPROPYLENE	ug/l	ND@1	ND@1	ND@1	ND@1	ND@1	ND@1
DIBROMOMETHANE	ug/l	ND@1	ND@1	ND@1	ND@1	ND@1	ND@1
DICHLORODIFLUOROMETHANE	ug/l	ND@1	ND@1	ND@1	ND@1	ND@1	ND@1
ETHYLBENZENE	ug/l	ND@1	ND@1	ND@1	ND@1	ND@1	ND@1
METHYLENE CHLORIDE	ug/l	ND@1	ND@1	ND@1	ND@1	ND@1	ND@1
TETRACHLOROETHYLENE	ug/l	2.3	1.7	1.8	1.5	2.4	1.5
TOLUENE	ug/l	ND@1	ND@1	ND@1	ND@1	ND@1	ND@1
TRANS-1, 3-DICHLOROPROPENE	ug/l	ND@1	ND@1	ND@1	ND@1	ND@1	ND@1
TRICHLOROETHYLENE	ug/l	84D	80	91	78	110D	73
TRICHLOROFLUOROMETHANE	ug/l	ND@1	ND@1	ND@1	ND@1	ND@1	ND@1
VINYL CHLORIDE	ug/l	ND@1	ND@1	ND@1	ND@1	ND@1	ND@1
XYLENE, TOTAL	ug/l	ND@1	ND@1	ND@1	ND@1	ND@1	ND@1

GWCS UP AS

SAMPLE LOCATION SAMPLE DESCRIPTION SAMPLE DATE LABORATORY SAMPLE I.D. SAMPLE RUN NUMBER SAMPLE COMMENT CODES		GWCS UP AS GROUNDWATER 04/07/11 420-42822-3 01	GWCS UP AS GROUNDWATER 04/14/11 420-43003-2 01	GWCS UP AS GROUNDWATER 05/04/11 420-43478-3 01	GWCS UP AS GROUNDWATER 05/12/11 420-43679-2 01	GWCS UP AS GROUNDWATER 06/02/11 420-44207-3 01	GWCS UP AS GROUNDWATER 06/09/11 420-44457-2 01
PARAMETER	UNITS						
BASE/NEUTRAL EXTRACTABLES							
1,2-DICHLOROBENZENE 1,3-DICHLOROBENZENE 1,4-DICHLOROBENZENE 2-CHLOROETHYLVINYL ETHER	ug/1 ug/1 ug/1 ug/1	ND@1 ND@1 ND@1 ND@1	ND@1 ND@1 ND@1 ND@1	ND@1 ND@1 ND@1 ND@1	ND@1 ND@1 ND@1 ND@1	ND@1 ND@1 ND@1 ND@1	ND@1 ND@1 ND@1 ND@1
INDICATOR PARAMETERS							
PH TOTAL DISSOLVED SOLIDS TOTAL SUSPENDED SOLIDS	pH mg/l mg/l	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA
METALS							
LEAD, TOTAL	mg/l	NA	NA	NA	NA	NA	NA
VOLATILE ORGANICS							
1,1,1,2-TETRACHLOROETHANE	ug/l	ND@1	ND@1	ND@1	ND@1	ND@1	ND@1
1,1,1-TRICHLOROETHANE	ug/l	54	56	64	61	40D	69
1,1,2,2-TETRACHLOROETHANE	ug/l	ND@1	ND@1	ND@1	ND@1	ND@1	ND@1
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	ug/1	ND@1	ND@1	ND@1	ND@1	ND@1	ND@1
1,1,2-TRICHLOROETHANE	ug/l	ND@1	ND@1	ND@1	ND@1	ND@1	ND@1
1,1-DICHLOROETHANE	ug/l	16	16	17	18	17	20
1,1-DICHLOROETHYLENE	ug/l	11	12	13	13	13	14
1,2,3-TRICHLOROPROPANE	ug/1	ND@1	ND@1	ND@1	ND@1	ND@1	ND@1
1,2-DICHLORO-1,2,2-TRIFLUOROETHANE	ug/1	ND@1	ND@1	ND@1	ND@1	ND@1	ND@1
1,2-DICHLOROETHANE	ug/1	ND@1	NDØL	ND@1	ND@1	ND@1	1.2
1,2-DICHLOROETHYLENE, TOTAL	ug/1	44 ND01	45	51	48	49	53
1, 2-DICHLOROPROPANE	ug/1	NDØ1	NDØI	NDØ1	ND@1	NDØI	NDØI
4-CHLOROTOLUENE	ug/1	NDØL	NDØI	NDØI	NDØI	NDØI	NDØI
	ug/1	ND@5	ND@E	ND@5	ND@5	ND@5	ND@5
ACKIDONIIKIDE	ug/1	ND@1	NDAJ	NDWD	NDWD	NDWD	NDWS
	ug/1	ND@1	ND@1	NDWI	ND@1	ND@1	NDWI
DOMODENZENE	ug/1	ND@1	NDA1	NDAI	NDAI	ND@1	NDWI
BROMODICUI ODOMUTUNE	ug/1	NDG1	ND@1	ND@1	ND@1	NDØJ	ND@1
DROMORODM	ug/1	NDØI	ND@1	NDWI	ND@1	ND@1	ND@1
DROMONUTURNE DDOMONUTURNE	ug/1	NDØJ	ND@1	NDØI	ND@1	ND@1	ND@1
BROHOMETIMINE	49/1	TATNALT	TATA AT	TATAAT	NDAT	TATAT	TATAAT

SAMPLE LOCATION SAMPLE DESCRIPTION SAMPLE DATE LABORATORY SAMPLE I.D. SAMPLE RUN NUMBER SAMPLE COMMENT CODES		GWCS UP AS GROUNDWATER 04/07/11 420-42822-3 01	GWCS UP AS GROUNDWATER 04/14/11 420-43003-2 01	GWCS UP AS GROUNDWATER 05/04/11 420-43478-3 01	GWCS UP AS GROUNDWATER 05/12/11 420-43679-2 01	GWCS UP AS GROUNDWATER 06/02/11 420-44207-3 01	GWCS UP AS GROUNDWATER 06/09/11 420-44457-2 01
PARAMETER	UNITS						
VOLATILE ORGANICS (Continued)							
CARBON TETRACHLORIDE	ug/l	ND@1	ND@1	ND@1	ND@1	ND@1	ND@1
CHLOROBENZENE	ug/l	ND@1	ND@1	ND@1	ND@1	ND@1	ND@1
CHLORODIBROMOMETHANE	ug/l	ND@1	ND@1	ND@1	ND@1	ND@1	ND@l
CHLOROETHANE	ug/l	ND@1	ND@1	ND@1	ND@1	ND@1	ND@1
CHLOROFORM	ug/l	ND@1	ND@1	ND@1	ND@1	ND@1	ND@1
CHLOROMETHANE	ug/l	ND@1	ND@1	ND@1	ND@1	ND@1	ND@1
CIS-1,3-DICHLOROPROPYLENE	ug/l	ND@1	ND@1	ND@1	ND@1	ND@1	ND@1
DIBROMOMETHANE	ug/l	ND@1	ND@1	ND@1	ND@1	ND@1	ND@1
DICHLORODIFLUOROMETHANE	ug/l	ND@1	ND@1	ND@1	ND@1	ND@1	ND@1
ETHYLBENZENE	ug/l	ND@1	ND@1	ND@1	ND@1	ND@1	ND@1
METHYLENE CHLORIDE	ug/l	ND@1	ND@1	ND@1	ND@1	ND@1	ND@1
TETRACHLOROETHYLENE	ug/l	1.6	1.7	1.9	1.7	1.8	2.8
TOLUENE	ug/l	ND@1	ND@1	ND@1	ND@1	ND@1	ND@1
TRANS-1,3-DICHLOROPROPENE	ug/l	ND@1	ND@1	ND@1	ND@1	ND@1	ND@1
TRICHLOROETHYLENE	ug/l	67D	68D	78D	79D	80D	130D
TRICHLOROFLUOROMETHANE	ug/l	ND@1	ND@1	ND@1	ND@1	ND@1	ND@l
VINYL CHLORIDE	ug/l	ND@1	ND@1	ND@1	ND@1	ND@1	ND@1
XYLENE, TOTAL	ug/l	ND@1	ND@1	ND@1	ND@1	ND@1	ND@1

SAMPLE LOCATION SAMPLE DESCRIPTION SAMPLE DATE LABORATORY SAMPLE I.D. SAMPLE RUN NUMBER SAMPLE COMMENT CODES		NPLA INFL GROUNDWATER 01/06/11 420-40840-2 01	NPLA INFL GROUNDWATER 02/04/11 420-41394-2 01	NPLA INFL GROUNDWATER 03/03/11 420-41984-2 01	NPLA INFL GROUNDWATER 04/07/11 420-42822-2 01	NPLA INFL GROUNDWATER 05/04/11 420-43478-2 01	NPLA INFL GROUNDWATER 06/02/11 420-44207-2 01
PARAMETER	UNITS						
BASE/NEUTRAL EXTRACTABLES							
1,2-DICHLOROBENZENE 1,3-DICHLOROBENZENE 1,4-DICHLOROBENZENE 2-CHLOROETHYLVINYL ETHER	ug/l ug/l ug/l ug/l	ND@1 ND@1 ND@1 ND@1	ND@1 ND@1 ND@1 ND@1	ND@1 ND@1 ND@1 ND@1	ND@1 ND@1 ND@1	ND@1 ND@1 ND@1 ND@1	ND@1 ND@1 ND@1 ND@1
INDICATOR PARAMETERS							
PH TOTAL DISSOLVED SOLIDS TOTAL SUSPENDED SOLIDS	pH mg/l mg/l	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA
METALS							
LEAD, TOTAL	mg/l	NA	NA	NA	NA	NA	NA
VOLATILE ORGANICS							
1,1,1,2-TETRACHLOROETHANE	ug/l	ND@1	ND@1	ND@1	ND@1	ND@1	ND@1
1,1,1-TRICHLOROETHANE	ug/l	28	3.8	1.5	27	62	50
1,1,2,2-TETRACHLOROETHANE	ug/l	ND@1	ND@1	ND@1	ND@1	ND@1	NDØ1
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	ug/l	ND@1	ND@1	ND@1	ND@1	9.9	16
1,1,2-TRICHLOROETHANE	ug/l	ND@1	ND@1	ND@1	ND@1	ND@1	ND@1
1,1-DICHLOROETHANE	ug/l	12	1.3	ND@1	3.7	6.3	8.1
1,1-DICHLOROETHYLENE	ug/l	2.0	ND@1	ND@1	1.3	2.9	3.2
1,2,3-TRICHLOROPROPANE	ug/1	ND@1	ND@1	ND@1	ND@1	ND@1	ND@1
1,2-DICHLORO-1,2,2-TRIFLUOROETHANE	ug/1	ND@1	ND@1	ND@1	ND@1	ND@1	ND@1
1,2-DICHLOROETHANE	ug/1	ND@1	ND@1	ND@1	ND@1	ND@1	ND@1
1,2-DICHLOROETHYLENE, TOTAL	ug/1	45D	5.2	2.8	12	27	41
1,2-DICHLOROPROPANE	ug/1	ND@1	ND@1	ND@1	ND@1	ND@1	NDØ1
4 - CHLOROTOLUENE	ug/I	ND@1	NDØI	NDØL	NDØI	NDØI	NDØI
ACROLEIN	ug/1	ND@5	ND@5	ND@5	ND@5	ND@5	ND@5
ACRYLONITRILE	ug/1	ND@5	ND@5	NDØ5	ND@5	ND@5	NDØ5
BENZENE	ug/1	ND@1	ND@I	NDØI	NDØT	NDØ1	NDØI
BENZIL CHLOKIDE	ug/1	NDØL	ND@1	NDØI	ND@1	NDØ1	NDØL
BRUMUBENZENE		NDGI	NDØI	NDØI	NDGI	ND@1	NDØ1
BROMODICHLOKOMETHANE	ug/1	NDGI	NDØT	NDØI	ND@1	NDGI	NDØ1
DROMON UKM		NDGI	NDØI	NDØI	ND@1	NDGI	ND@1
BROMOMETHANE	ug/I	ND@T	NDOL	ND@L	ND@L	ND@T	ND@1

SAMPLE LOCATION SAMPLE DESCRIPTION SAMPLE DATE LABORATORY SAMPLE I.D.		NPLA INFL GROUNDWATER 01/06/11 420-40840-2	NPLA INFL GROUNDWATER 02/04/11 420-41394-2	NPLA INFL GROUNDWATER 03/03/11 420-41984-2	NPLA INFL GROUNDWATER 04/07/11 420-42822-2	NPLA INFL GROUNDWATER 05/04/11 420-43478-2	NPLA INFL GROUNDWATER 06/02/11 420-44207-2
SAMPLE RON NOMBER SAMPLE COMMENT CODES		01	01	01	01	01	01
PARAMETER	UNITS						
VOLATILE ORGANICS (Continued)							
CARBON TETRACHLORIDE	ug/l	ND@1	ND@1	ND@1	ND@1	ND@1	ND@1
CHLOROBENZENE	ug/l	ND@1	ND@1	ND@1	ND@1	ND@l	ND@1
CHLORODIBROMOMETHANE	ug/l	ND@1	ND@1	ND@1	ND@1	ND@1	ND@1
CHLOROETHANE	ug/l	ND@1	ND@1	ND@1	ND@1	ND@1	ND@1
CHLOROFORM	ug/l	ND@1	ND@1	ND@1	ND@1	ND@1	ND@1
CHLOROMETHANE	ug/l	ND@1	ND@1	ND@1	ND@1	ND@1	ND@1
CIS-1,3-DICHLOROPROPYLENE	ug/l	ND@1	ND@1	ND@1	ND@1	ND@1	ND@1
DIBROMOMETHANE	ug/l	ND@1	ND@1	ND@1	ND@1	ND@1	ND@1
DICHLORODIFLUOROMETHANE	ug/1	ND@1	ND@1	ND@1	ND@1	ND@1	ND@1
ETHYLBENZENE	ug/l	ND@1	ND@1	ND@1	ND@1	ND@1	ND@1
METHYLENE CHLORIDE	ug/l	ND@1	ND@1	ND@1	ND@1	ND@1	ND@1
TETRACHLOROETHYLENE	ug/l	2.9	3.7	1.6	2.0	2.0	2.9
TOLUENE	ug/l	ND@1	ND@1	ND@1	ND@1	ND@1	ND@1
TRANS-1,3-DICHLOROPROPENE	ug/l	ND@1	ND@1	ND@1	ND@1	ND@1	ND@1
TRICHLOROETHYLENE	ug/l	41	8.6	13	37	380D	750D
TRICHLOROFLUOROMETHANE	ug/l	ND@1	ND@1	ND@1	ND@1	ND@1	ND@1
VINYL CHLORIDE	ug/l	ND@l	ND@1	ND@1	ND@1	ND@1	ND@1
XYLENE, TOTAL	ug/l	ND@l	ND@1	ND@1	ND@1	ND@1	ND@1

NPLA INFL

SPDES OF 01A

SAMPLE LOCATION SAMPLE DESCRIPTION SAMPLE DATE LABORATORY SAMPLE I.D. SAMPLE RUN NUMBER SAMPLE COMMENT CODES		SPDES OF 01A SPDES OUTFL 01/06/11 420-40839-1 01	SPDES OF 01A SPDES OUTFL 01/06/11 420-40840-1 01	SPDES OF 01A SPDES OUTFL 01/13/11 420-40967-1 01	SPDES OF 01A SPDES OUTFL 02/04/11 420-41394-1 01	SPDES OF 01A SPDES OUTFL 02/10/11 420-41541-1 01	SPDES OF 01A SPDES OUTFL 03/03/11 420-41984-1 01
PARAMETER	UNITS						
BASE/NEUTRAL EXTRACTABLES							
1,2-DICHLOROBENZENE 1,3-DICHLOROBENZENE 1,4-DICHLOROBENZENE 2-CHLOROETHYLVINYL ETHER	ug/1 ug/1 ug/1 ug/1	NA NA NA	ND@1 ND@1 ND@1 ND@1	ND@1 ND@1 ND@1 ND@1	ND@1 ND@1 ND@1 ND@1	ND@1 ND@1 ND@1 ND@1	ND@1 ND@1 ND@1 ND@1
INDICATOR PARAMETERS							
PH TOTAL DISSOLVED SOLIDS TOTAL SUSPENDED SOLIDS	pH mg/l mg/l	NA NA NA	8.16 290 ND@1.0	7.86 NA NA	6.97 270 ND@1.0	7.04 NA NA	8.17 280 ND@1.0
METALS							
LEAD, TOTAL	mg/l	ND@0.0050	NA	NA	NA	NA	NA
VOLATILE ORGANICS							
1,1,1,2-TETRACHLOROETHANE	ug/l	NA	ND@1	ND@1	ND@1	ND@1	ND@1
1,1,1-TRICHLOROETHANE	ug/l	NA	ND@1	ND@1	ND@1	ND@1	ND@1
1,1,2,2-TETRACHLOROETHANE	ug/l	NA	ND@1	ND@1	ND@1	ND@1	ND@1
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	ug/l	NA	ND@1	ND@1	ND@1	ND@1	ND@1
1,1,2-TRICHLOROETHANE	ug/1	NA	ND@1	ND@1	ND@1	ND@1	NDØI
1,1-DICHLOROETHANE	ug/1	NA	NDØI	ND@1	NDØI	NDØI	ND@1
1,1-DICHLOROETHYLENE	ug/1	NA	ND@1	NDØ1	NDØ1	NDØI	ND@1
1, 2, 3-TRICHLOROPROPANE	ug/1	NA	ND@1	ND@1	NDØ1	ND@1	NDØ1
1, 2-DICHLORO-1, 2, 2-TRIFLUOROETHANE	ug/1	NA NA	NDWI	NDØI	ND@1	ND@1	ND@1
1,2-DICHLOROBIHANE	ug/1	NA NA	NDØI	NDØI	ND@1	ND@1	ND@1
1 2-DICHLOROBPODANE	ug/1	NA	ND@1	NDal	ND@1	ND@1	ND@1
A-CHLOROTOLUENE	ug/1	NA	ND@1	NDØI	ND@1	ND@1	ND@1
ACROLEIN	ug/1	NA	ND@5	ND@5	ND@5	ND@5	ND@5
ACRYLONITRILE	ug/1	NA	ND@5	ND@5	ND@5	ND@5	ND@5
BENZENE	ug/1	NA	ND@1	ND@1	ND@1	ND@1	ND@1
BENZYL CHLORIDE	uq/1	NA	ND@1	ND@1	ND@1	ND@1	ND@1
BROMOBENZENE	ug/l	NA	ND@1	ND@1	ND@1	ND@1	ND@1
BROMODICHLOROMETHANE	ug/l	NA	ND@1	ND@1	ND@1	ND@1	ND@1
BROMOFORM	ug/l	NA	ND@1	ND@1	ND@1	ND@1	ND@1
BROMOMETHANE	ug/l	NA	ND@1	ND@1	ND@1	ND@1	ND@1

SPDES OF 01A

SAMPLE LOCATION		SPDES OF 01A	SPDES OF 01A	SPDES OF 01A	SPDES OF 01A	SPDES OF 01A	SPDES OF 01A
SAMPLE DESCRIPTION		SPDES OUTFL					
SAMPLE DATE		01/06/11	01/06/11	01/13/11	02/04/11	02/10/11	03/03/11
LABORATORY SAMPLE I.D.		420-40839-1	420-40840-1	420-40967-1	420-41394-1	420-41541-1	420-41984-1
SAMPLE RUN NUMBER		01	01	01	01	01	01
SAMPLE COMMENT CODES							
PARAMETER	UNITS						
VOLATILE ORGANICS (Continued)							
CARBON TETRACHLORIDE	ug/l	NA	ND@1	ND@1	ND@1	ND@1	ND@1
CHLOROBENZENE	ug/l	NA	ND@1	ND@1	ND@1	ND@1	ND@1
CHLORODIBROMOMETHANE	ug/l	NA	ND@1	ND@1	ND@1	ND@1	ND@1
CHLOROETHANE	ug/l	NA	ND@1	ND@1	ND@1	ND@1	ND@1
CHLOROFORM	ug/l	NA	ND@1	ND@1	ND@1	ND@1	ND@l
CHLOROMETHANE	ug/l	NA	ND@1	ND@1	ND@l	ND@1	ND@1
CIS-1,3-DICHLOROPROPYLENE	ug/l	NA	ND@1	ND@1	ND@1	ND@1	ND@1
DIBROMOMETHANE	ug/l	NA	ND@1	ND@1	ND@1	ND@1	ND@1
DICHLORODIFLUOROMETHANE	ug/l	NA	ND@1	ND@1	ND@1	ND@1	ND@1
ETHYLBENZENE	ug/l	NA	ND@1	ND@1	ND@1	ND@1	ND@1
METHYLENE CHLORIDE	ug/l	NA	ND@1	ND@1	ND@1	ND@1	ND@1
TETRACHLOROETHYLENE	ug/l	NA	ND@1	ND@1	ND@1	ND@1	ND@1
TOLUENE	ug/l	NA	ND@1	ND@1	ND@1	ND@1	ND@1
TRANS-1,3-DICHLOROPROPENE	ug/l	NA	ND@1	ND@1	ND@1	ND@1	ND@1
TRICHLOROETHYLENE	ug/l	NA	ND@1	ND@1	ND@1	ND@1	ND@1
TRICHLOROFLUOROMETHANE	ug/l	NA	ND@1	ND@1	ND@1	ND@1	ND@1
VINYL CHLORIDE	ug/l	NA	ND@1	ND@1	ND@1	ND@1	ND@1
XYLENE, TOTAL	ug/l	NA	ND@1	ND@1	ND@1	ND@1	ND@1

SAMPLE LOCATION SAMPLE DESCRIPTION SAMPLE DATE LABORATORY SAMPLE I.D. SAMPLE RUN NUMBER SAMPLE COMMENT CODES		SPDES OF 01A SPDES OUTFL 03/10/11 420-42162-1 01	SPDES OF 01A SPDES OUTFL 04/07/11 420-42821-1 01	SPDES OF 01A SPDES OUTFL 04/07/11 420-42822-1 01	SPDES OF 01A SPDES OUTFL 04/14/11 420-43003-1 01	SPDES OF 01A SPDES OUTFL 05/04/11 420-43478-1 01	SPDES OF 01A SPDES OUTFL 05/12/11 420-43679-1 01
PARAMETER	UNITS						
BASE/NEUTRAL EXTRACTABLES							
1,2-DICHLOROBENZENE	ug/l	ND@1	NA	ND@1	ND@1	ND@1	ND@1
1,3-DICHLOROBENZENE	ug/l	ND@1	NA	ND@1	ND@1	ND@1	ND@1
1,4-DICHLOROBENZENE	ug/l	ND@1	NA	ND@1	ND@1	ND@1	ND@1
2-CHLOROETHYLVINYL ETHER	ug/l	ND@1	NA	ND@1	ND@1	ND@1	ND@1
INDICATOR PARAMETERS							
DH	ъH	8.14	NA	7 85	8.27	8 16	7 88
TOTAL DISSOLVED SOLIDS	mcr/l	NA	NA	340	NA	460	,
TOTAL SUSPENDED SOLIDS	mg/1	NA	NA	ND@1.0	NA	ND@1.0	NA
METALS							
LEAD, TOTAL	mg/l	NA	ND@0.0050	NA	NA	NA	NA
VOLATILE ORGANICS							
1,1,1,2-TETRACHLOROETHANE	ug/l	ND@1	NA	ND@1	ND@1	ND@1	ND@1
1,1,1-TRICHLOROETHANE	ug/l	ND@1	NA	ND@1	ND@1	ND@1	ND@1
1,1,2,2-TETRACHLOROETHANE	ug/l	ND@1	NA	ND@1	ND@1	ND@1	ND@1
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	ug/l	ND@1	NA	ND@1	ND@1	ND@1	ND@1
1,1,2-TRICHLOROETHANE	ug/l	ND@1	NA	ND@1	ND@1	ND@1	ND@1
1,1-DICHLOROETHANE	ug/l	ND@1	NA	ND@1	ND@1	ND@1	ND@1
1,1-DICHLOROETHYLENE	ug/l	ND@1	NA	ND@1	ND@1	ND@1	ND@1
1,2,3-TRICHLOROPROPANE	ug/l	ND@1	NA	ND@1	ND@1	ND@1	ND@1
1,2-DICHLORO-1,2,2-TRIFLUOROETHANE	ug/l	ND@1	NA	ND@1	ND@1	ND@1	ND@1
1,2-DICHLOROETHANE	ug/1	ND@1	NA	ND@1	ND@1	ND@1	ND@1
1,2-DICHLOROETHYLENE, TOTAL	ug/1	ND@1	NA	ND@1	ND@1	ND@1	ND@1
1,2-DICHLOROPROPANE	ug/1	ND@1	NA	ND@1	ND@1	ND@1	ND@1
4-CHLOROTOLUENE	ug/1	ND@1	NA	ND@1	ND@1	ND@1	ND@1
ACROLEIN	ug/1	ND@5	NA	ND@5	ND@5	ND@5	ND@5
ACKILONITRILE	ug/1	NDØ5	NA	ND@5	ND@5	ND@5	ND@5
DENGENE DENGUL CHIODIDE	ug/1	NDØI	NA	NDØI	NDØ1	ND@1	ND@1
BENGIN CHLOKIDE	ug/1	NDØI	NA	NDØ1	ND@1	ND@1	ND@1
BROMODENZENE BROMODECUI ODOMERIUNNE	ug/1	NDØI	NA	NDØI	NDØ1	ND@1	ND@1
BROMOFORM	ug/1	NDØI	NA	ND@1	ND@1	ND@1	ND@1
BROMOF URM BROMOMETUNIE	ug/1	ND@1	NA	NDØT	NDØ1	NDØI	ND@1
BROHOMETHANE	49/1	TAT/@T	NA	ND@T	ND@1	ND@1	ND@1

SAMPLE LOCATION		SPDES OF 01A SPDES OUTFL	SPDES OF 01A SPDES OUTFL	SPDES OF 01A SPDES OUTFL	SPDES OF 01A SPDES OUTFL	SPDES OF 01A SPDES OUTFL	SPDES OF 01A SPDES OUTFL
SAMPLE DATE		03/10/11	04/07/11	04/07/11	04/14/11	05/04/11	05/12/11
LABORATORY SAMPLE I.D.		420-42162-1	420-42821-1	420-42822-1	420-43003-1	420-43478-1	420-43679-1
SAMPLE RUN NUMBER		01	01	01	01	01	01
SAMPLE COMMENT CODES							
DADAMETED	UNITS						
PRAMITER	ONLID						
VOLATILE ORGANICS (Continued)							
CARBON TETRACHLORIDE	ug/l	ND@1	NA	ND@1	ND@1	ND@1	ND@1
CHLOROBENZENE	ug/l	ND@1	NA	ND@1	ND@1	ND@1	ND@1
CHLORODIBROMOMETHANE	ug/l	ND@1	NA	ND@1	ND@1	ND@1	ND@1
CHLOROETHANE	ug/l	ND@1	NA	ND@1	ND@1	ND@1	ND@1
CHLOROFORM	ug/l	ND@1	NA	ND@1	ND@1	ND@1	ND@1
CHLOROMETHANE	ug/l	ND@1	NA	ND@1	ND@1	ND@1	ND@1
CIS-1, 3-DICHLOROPROPYLENE	ug/1	ND@1	NA	ND@1	ND@1	ND@1	ND@1
DIBROMOMETHANE	uq/l	ND@1	NA	ND@1	ND@1	ND@1	ND@1
DICHLORODIFLUOROMETHANE	ug/l	ND@1	NA	ND@1	ND@1	ND@1	ND@1
ETHYLBENZENE	ug/l	ND@1	NA	ND@1	ND@1	ND@1	ND@1
METHYLENE CHLORIDE	ug/1	ND@1	NA	ND@1	ND@1	ND@1	ND@1
TETRACHLOROETHYLENE	ug/l	ND@1	NA	ND@1	ND@1	ND@1	ND@1
TOLUENE	ug/l	ND@1	NA	ND@1	ND@1	ND@l	ND@1
TRANS-1, 3-DICHLOROPROPENE	ug/l	ND@1	NA	ND@1	ND@l	ND@1	ND@1
TRICHLOROETHYLENE	ug/l	ND@1	NA	ND@1	ND@1	ND@1	ND@1
TRICHLOROFLUOROMETHANE	ug/l	ND@1	NA	ND@1	ND@1	ND@1	ND@1
VINYL CHLORIDE	ug/l	ND@1	NA	ND@1	ND@1	ND@1	ND@1
XYLENE, TOTAL	ug/l	ND@1	NA	ND@1	ND@1	ND@1	ND@1

SAMPLE LOCATION SAMPLE DESCRIPTION SAMPLE DATE LABORATORY SAMPLE I.D. SAMPLE RUN NUMBER SAMPLE COMMENT CODES		SPDES OF 01A SPDES OUTFL 06/02/11 420-44207-1 01	SPDES OF 01A SPDES OUTFL 06/09/11 420-44457-1 01
PARAMETER	UNITS		
BASE/NEUTRAL EXTRACTABLES			
1,2-DICHLOROBENZENE	ug/l	ND@1	ND@1
1,3-DICHLOROBENZENE	ug/l	ND@1	ND@1
1,4-DICHLOROBENZENE	ug/l	ND@1	ND@1
2-CHLOROETHYLVINYL ETHER	ug/l	ND@1	ND@1
INDICATOR PARAMETERS			
рн	Hα	8.26	8.08
TOTAL DISSOLVED SOLIDS	mq/1	310	NA
TOTAL SUSPENDED SOLIDS	mg/l	ND@1.0	NA
METALS			
LEAD, TOTAL	mg/l	NA	NA
VOLATILE ORGANICS			
1,1,1,2-TETRACHLOROETHANE	ug/l	ND@1	ND@1
1,1,1-TRICHLOROETHANE	ug/l	ND@1	ND@1
1, 1, 2, 2-TETRACHLOROETHANE	ug/l	ND@1	ND@1
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	ug/l	ND@1	ND@1
1,1,2-TRICHLOROETHANE	ug/l	ND@1	ND@1
1,1-DICHLOROETHANE	ug/l	ND@1	ND@1
1,1-DICHLOROETHYLENE	ug/l	ND@1	ND@1
1,2,3-TRICHLOROPROPANE	ug/l	ND@1	ND@1
1,2-DICHLORO-1,2,2-TRIFLUOROETHANE	ug/l	ND@1	ND@1
1,2-DICHLOROETHANE	ug/l	ND@1	ND@1
1,2-DICHLOROETHYLENE, TOTAL	ug/l	ND@1	ND@1
1,2-DICHLOROPROPANE	ug/l	ND@1	ND@1
4 - CHLOROTOLUENE	ug/1	ND@1	ND@1
ACROLEIN	ug/l	ND@5	ND@5
ACRYLONITRILE	ug/l	ND@5	ND@5
BENZENE	ug/l	ND@1	ND@1
BENZYL CHLORIDE	ug/1	ND@1	ND@1
BROMOBENZENE	ug/1	ND@1	NDØ1
BROMODICHLOROMETHANE	ug/1	ND@1	ND@1
BROMOFORM	ug/1	ND@1	NDØ1
BROMOMETHANE	ug/1	ND@1	ND@L

6 - 1

SAMPLE LOCATION SAMPLE DESCRIPTION SAMPLE DATE LABORATORY SAMPLE I.D. SAMPLE RUN NUMBER SAMPLE COMMENT CODES		SPDES OF 01A SPDES OUTFL 06/02/11 420-44207-1 01	SPDES OF 01A SPDES OUTFL 06/09/11 420-44457-1 01
PARAMETER	UNITS		
VOLATILE ORGANICS (Continued)			
CARBON TETRACHLORIDE	uq/l	ND@1	ND@1
CHLOROBENZENE	uq/l	ND@1	ND@1
CHLORODIBROMOMETHANE	ug/l	ND@1	ND@1
CHLOROETHANE	ug/l	ND@1	ND@1
CHLOROFORM	ug/l	ND@1	ND@1
CHLOROMETHANE	ug/l	ND@1	ND@1
CIS-1, 3-DICHLOROPROPYLENE	ug/l	ND@1	ND@1
DIBROMOMETHANE	ug/l	ND@1	ND@1
DICHLORODIFLUOROMETHANE	ug/l	ND@1	ND@1
ETHYLBENZENE	ug/l	ND@1	ND@1
METHYLENE CHLORIDE	ug/1	ND@1	ND@1
TETRACHLOROETHYLENE	ug/l	ND@1	ND@1
TOLUENE	ug/l	ND@1	ND@1
TRANS-1,3-DICHLOROPROPENE	ug/l	ND@1	ND@1
TRICHLOROETHYLENE	ug/l	ND@1	ND@1
TRICHLOROFLUOROMETHANE	ug/l	ND@1	ND@1
VINYL CHLORIDE	ug/l	ND@1	ND@1
XYLENE, TOTAL	ug/l	ND@1	ND@1

EXPLANATION OF REPORTING CONVENTIONS AND KEY TO COMMENT CODES

REPORTING CONVENTIONS

NA	Not Analyzed
ND@X	Not Detected at Detection Limit X
BMRL@X	Below Minimum Reporting Limit of X

CODE EXPLANATION

- Non-Standard Measurement Unit
- c Sample contained sediment which may have contributed to reported results
- d 24 Hour Composite Sample
- B Organic analyte detected in both the sample and the laboratory blank
- D Compounds identifed at a secondary dilution factor
- E Concentration exceeds the calibration range of the GC/MS instrument
- J Estimated Value
- N Spiked sample recovery not within control limits
- P Lower of 2 GC column concentrations that have more than 25% difference
- R Reported value is less than the CRDL but greater than the IDL
- S Surrogate recoveries exceed acceptable control limits
- W Post digestion spike FAA out of control limits; sample absorbance < 50%
- * Manhole flooded when sediment sample collected
- B The reported value is less than the Contract Required Detection Limit (CRDL), but greater than the Instrument Detection Limit (IDL) (Inorganics)
- H Sample was prepped or run beyond the specified method holding time
- Value estimated. Possible meter malfunction.

Former IBM Kingston Facility Flux Calculations

Groundwater Collection System and MW-504S Pumping Well and North Parking Lot Area Passive Groundwater Collection System

Groundwater Collection System

Total Gallons Extracted January 1, 2011 - June 30, 2011: 11,265,097

Average Flow Rate

61,727 gal/day

	avg.	Flux
	ug/l	lbs/day
Tetrachloroethene	1.9	0.00097
Trichloroethene	84.8	0.04346
12-Dichloroethene(tot)	45.3	0.02323
Vinyl Chloride	0.0	0.00000
111-Trichloroethane	56.2	0.02878
11-Dichloroethane	17.9	0.00918
12-Dichloroethane	0.4	0.00019
11-Dichloroethene	12.4	0.00634
Freon 113	0.0	0.00000
Freon 123a	0.0	0.00000

Total flux contributed by GWCS: Semiannual Flux for GWCS: 0.11214 lbs/day 20.47 lbs

0

Pumping Well MW-504S (offline)

Total Gallons Extracted January 1, 2011 - June 30, 2011:

Average Flow Rate

0 gal/day

	avg. ug/l	Flux lbs/day
Tetrachloroethene		0.00000
Trichloroethene		0.00000
111-Trichloroethane		0.00000

Total flux contributed by MW-504S: Semiannual Flux for MW-504S: 0.00000 lbs/day 0.000 lbs

North Parking Lot Area Passive Groundwater Collection System

Total Gallons Extracted January 1, 2011 - June 30, 2011: 918,280

Average Flow Rate 5,032 gal/day avg. Flux lbs/day ug/l Tetrachloroethene 2.5 0.00011 Trichloroethene 204.9 0.00856 12-Dichloroethene(tot) 0.00093 22.2 Vinyl Chloride 0.0 0.00000 111-Trichloroethane 28.7 0.00120 11-Dichloroethane 5.2 0.00022 12-Dichloroethane 0.0 0.00000 11-Dichloroethene 1.6 0.00007 Freon 113 4.3 0.00018 Freon 123a 0.00000 0.0

> Total flux contributed by NPLA pump stations: Semiannual Flux for NPLA pump stations:

0.01125 lbs/day 2.05 lbs

overall flux:

22.5201