ТЕСНСІТУ

TOWN OF ULSTER, ULSTER COUNTY NEW YORK

SITE ID: 356002 Order On Consent Index: D3-10023-6-11

GROUNDWATER MONITORING PLAN

July 2013

TABLE OF CONTENTS

1.0	GROU	UNDWATER MONITORING PLAN	1
	1.1	Site Background	1
	1.2	Groundwater Plume Areas	2
	1.3	Generalized Geologic and Groundwater Flow Conditions	
	1.4	Groundwater Monitoring Plan Design	
2.0		PLING PROTOCOL	
	2.1	Pre-sampling Preparation and Tasks	
		2.1.1 Field Equipment Inspection, Calibration and Maintenance	
		2.1.2 Procurement and Preparation of Sample Containers	
		2.1.3 Equipment Storage, Handling and Decontamination Procedures	
		2.1.4 Personnel Protective Equipment / Health and Safety Measures	
	2.2	Water Level Measurements	
	2.3	Purge Methods	
	2.4	Groundwater Containment / Disposal of Purge Water	
	2.5	Sample Collection Methods	
	2.6	Field Quality Assurance / Quality Control (QA/QC) Requirements	
		2.6.1 Trip Blanks	
		2.6.2 Field Duplicates	10
		2.6.3 Equipment Rinse Blanks	
	2.7	Sample Numbering and Labeling	
	2.8	Chain of Custody Procedures	
	2.9	Sample Storage & Shipment	11
3.0	INAB	ILITY TO OBTAIN REPRESENTATIVE SAMPLES	12
5.0	3.1	Well Damage	
	3.2	Resampling	
	3.2	Dry Wells	
	5.5	Dry wens	12
4.0	WELI	L INSPECTION AND MAINTENANCE PLAN	13
5.0	LABO	DRATORY METHODS AND ANALYTICAL PROTOCOLS	
	5.1	Analytical Methods, Sampling Containers, Preservatives and Holding Time	
	5.2	Documentation and Reporting Format.	
	5.3	Laboratory Quality Assurance / Quality Control	
6.0		A MANAGEMENT & REPORTING REQUIREMENTS	15
0.0	6.1	Data Management and Documentation	
	6.1 6.2		
		Data Evaluation Procedures	
	6.3	Reporting Requirements	15

LIST OF TABLES

- Table D-2Sample Collection Order
- Table D-3Analytical Methods, Sample Containers, Preservatives, and Holding Times

LIST OF FIGURES

- Figure D-1 Site Location Map
- Site Layout and Investigation Area Map Generalized VOC Plume Areas Figure D-2
- Figure D-3
- Figure D-4 Groundwater Monitoring Plan Well Location Map

LIST OF ATTACHMENTS

Boring Logs and Monitoring Well Construction Details
Installed Well Status by Operable Unit
Monitoring Schedules
Field Documentation Forms
Health and Safety Plan: Groundwater Monitoring and Remediation Program
Laboratory Quality Assurance Plan

1.0 GROUNDWATER MONITORING PLAN

This Groundwater Monitoring Plan (GMP) has been prepared for the TechCity site (the Site) located at 300 Enterprise Drive, Kingston, Ulster County, New York (see Figure D-1) to satisfy the requirements detailed in the Order on Consent (Order), Index # D3-10023-6-11, for Site 356002.

This GMP conforms to the extent practicable to the NYSDEC Program Policy *DER-10*, *Technical Guidance for Site Investigation and Remediation (May 3, 2010)*. The GMP provides protocols and specifies methods which will allow for the collection and analysis of representative groundwater samples and related field data to assess the performance of the groundwater remediation. The GMP also includes specific Quality Assurance / Quality Control (QA/QC) requirements for associated groundwater monitoring activities.

This GMP may only be revised with the approval of the New York State Department of Environmental Conservation (NYSDEC).

1.1 Site Background

The Site is listed as a Class 4 Site (Site # 356002) in the Registry of Inactive Hazardous Waste Disposal Sites in New York State and was managed in compliance with the October 4, 1996 Hazardous Waste Management Permit #3-5154-00067/00090 (6 NYCRR Part 373) (RCRA Permit) issued to International Business Machines Corporation (IBM) until the Order on Consent (Order) was signed with New York State Department of Environmental Conservation (NYSDEC) by IBM and TechCity Properties on July 8, 2011.

The Order, which supersedes and replaces the former RCRA Permit, divides the Site into ten Operable Units (OUs). The locations of the OUs are depicted in Figure D-2. Table D-1 presents a list of the OUs, including the proposed OU use and which OUs will remain listed as a Class 4 Inactive Hazardous Waste Disposal Site.

Prior to the execution of the Order, IBM completed extensive RCRA Facility Investigations (RFIs) from the 1990s through 2002 to delineate the occurrence and extent of volatile organic compounds (VOCs) in groundwater beneath the Site. Groundwater remediation implemented by IBM includes the operation and maintenance of a perimeter control system that intercepts the groundwater plume. The perimeter control system consists of two stormwater sewer systems, an unsaturated portion of the surficial sand unit that underlies the Site, a utility trench barrier wall and a groundwater collection system (GWCS) (see Figure D-2).

Table D-1: Listing of Operable Units, Proposed Use and Status				
Operable Unit	Proposed Use	Status		
OU1	Commercial	To be removed from Class 4 Inactive Hazardous Waste Disposal Site # 356002 subject to OU specific restrictions.		
OU 2	Commercial	To be removed from Class 4 Inactive Hazardous Waste Disposal Site # 356002 subject to OU specific restrictions.		
OU 3	Commercial	Included as part of the Class 4 Inactive Hazardous Waste Disposal Site # 356002		
OU 3a	Commercial	Included as part of the Class 4 Inactive Hazardous Waste Disposal Site # 356002		
OU 4	Restricted Residential	To be removed from Class 4 Inactive Hazardous Waste Disposal Site # 356002 subject to OU specific restrictions.		
OU4a	Commercial	To be removed from Class 4 Inactive Hazardous Waste Disposal Site # 356002 subject to OU specific restrictions.		
OU5	Commercial	Included as part of the Class 4 Inactive Hazardous Waste Disposal Site # 356002		
OU6	Commercial	To be removed from Class 4 Inactive Hazardous Waste Disposal Site # 356002 subject to OU specific restrictions.		
OU7	Commercial	To be removed from Class 4 Inactive Hazardous Waste Disposal Site # 356002 subject to OU specific restrictions.		
OU8	Commercial	To be removed from Class 4 Inactive Hazardous Waste Disposal Site # 356002 subject to OU specific restrictions.		

1.2 Groundwater Plume Areas

Four groundwater plumes have been identified at the Site, including:

- The North Parking Lot Area (NPLA) Plume (located to the north of Buildings (B001 and B003) is primarily composed of volatile organic compounds (VOC) including trichloroethene (TCE) and trichloroethane (TCA), and to a lesser degree tetrachloroethene (PCE). Based on historic groundwater quality sampling and soil vapor screening investigations, the source areas for this plume are likely associated with historic manufacturing activities in B001, B002, B003, B004 and B005S. The primary source area appears to be the industrial waste sewer lines located beneath these buildings (as noted below) and north of B001 and B003. Concentrations of PCE, TCE and TCA in the NPLA Plume appear to originate in the central and western portions of the Site.
- The B005 Plume Area, located beneath B001, B002, B003, B004 and B005, is primarily composed of TCE and TCA. Based on historic groundwater quality sampling and soil vapor screening investigations, this plume is believed to have originated from activities in B001, B003, B004 and B005S.
- An isolated PCE plume, extending from the southern portion of B005 to the 42-inch sewer and originating from a release(s) at a PCE tank located in the southeastern corner of B005.
- The Industrial Waste Treatment Facility (IWTF) Plume, located in the vicinity of the former IWTF, near B036. The plume in this area is not likely to have originated from the IWTF, but is believed to have migrated from the eastern campus plume along the underground utility pipes prior to the installation of the utility trench barrier wall.

Figure D-3 presents a generalized depiction of areas where groundwater is impacted by VOCs.

1.3 Generalized Geologic and Groundwater Flow Conditions

The Site is located within the Hudson-Mohawk Lowland Physiographic Province. The bedrock underlying the western portion of the Site consists of siltstone and shale of the Middle Devonian Age Lower Hamilton Group. The eastern portion of the Site is underlain by both the Lower Hamilton Group and the Lower Devonian Age Onondaga Limestone. The exact location and nature of the contact between these units is not known. The Lower Hamilton Group forms a northnorthwest trending bedrock high approximately coincident with Enterprise Drive, and is described as a calcareous shale in boring logs completed during previous Site investigations.

Literature on regional geologic conditions indicate that a glacially-derived sand and gravel unit directly overlies the bedrock west of Enterprise Drive and a glacial till unit overlies the bedrock east of Enterprise Drive. These unconsolidated units are overlain by a varved silt and clay unit that is interpreted to be of lacustrine origin, with a thickness of zero feet in an area where it is absent proximate to the bedrock high, to over 180-feet in the central portion of East Campus as determined by previous Site borings. The clay portion of the varved silt and clay unit serves as an aquitard throughout most the Site, except in the localized area in the vicinity of the bedrock high where it is absent.

A well sorted, fine to coarse-grained sand of lacustrine origin, with intermittent, thin, silty-clay zones, overlies the varved silt and clay (or bedrock where the varved silt and clay is absent in the vicinity of the bedrock high). This surficial sand unit ranges in thickness across the Site from approximately 6-feet in the area of the bedrock ridge to greater than 30-feet in the central portion of the East Campus. A discontinuous transition zone of relatively fine-grained materials is present at the base of the surficial sand unit in some areas of the Site (GSC, 1997).

Generalized descriptions of the near-surface lithologic units encountered at the Site are as follows:

- **Surficial SAND Unit:** Consists of a light brown, fine to medium grained sand containing variable amounts of finer-grained silt and clay. This unit is typically saturated below a depth of approximately 6 to 7-feet below ground surface (ft bgs).
- SILTY-SAND and CLAY Transition Unit: Consists of variable amounts of reddish-brown to gray silt, sand, and clay. Typical appearance in a soil core is a silty-sand matrix containing thin lenses of silt and sandy clay. This unit, if present, is generally encountered between 15 to 20-ft bgs in the vicinity of Building 001 (B001).
- Varved CLAY Unit: Consists of red-brown and gray, plastic, cohesive, wet clay with intermittent silt zones. Typical appearance in a soil core is clay with laminae of silt and sometimes very fine-grained sand. This unit is typically encountered at approximately 20 to 25-ft bgs in the B001 area, with greater or lesser depths of first occurrence in localized areas.

The varved clay unit serves as an aquitard throughout most the Site. Therefore groundwater in the bedrock and in the deep sand and gravel and glacial till units that underlie the varved silt and clay is under confined conditions. Groundwater within the surficial sand unit that overlies the varved silt and clay unit is unconfined. The surficial sand unit is typically unsaturated in the area of the bedrock high along Enterprise Drive.

An east-west trending groundwater divide has been identified at the Site underlying B001, Building 002 (B002), B003, Building 004 (B004) and Building 005 (B005) (see Figure 3). Groundwater to the north of the divide flows west and northwest. Groundwater to the south of the divide flows west and southwest. The water table gradient in the eastern portion of the Site and in the vicinity of the Groundwater Collection System (GWCS) is reportedly higher than the water table gradient in the south and central portion of the Site, and estimated horizontal groundwater flow velocities range from approximately 0.8 ft/day to 2 ft/day (GSC, 1997b).

Groundwater flow is influenced by the presence of the perimeter control system (see Figure D-3), which is composed of:

- A 42-inch diameter storm sewer pipe that extends from east to west along a line south of B001 through B005, and then passes under Enterprise Drive to the south of Building 201 (B201).
- An unsaturated portion of the surficial sand unit that intersects the 42-inch storm sewer south of B201, and extends east-northeast back across Enterprise Drive, and then continues toward the north portion of the Site.
- The GWCS extends along the western and northern perimeter of the NPLA. The GWCS is comprised of a set of groundwater cut-off trenches. Water collected in the trenches is treated via air stripping.
- A 60-inch diameter storm sewer pipe that intersects the GWCS and extends along the western portion of the North Parking Lot Area.
- A utility trench barrier wall, consisting of an approximately 250-foot long trench backfilled with clay with the base keyed into the Varved Clay Unit and the top of the barrier wall completed a minimum of two feet above the recorded high water table. This barrier wall was installed to

mitigate the potential for groundwater migration along the underground utility pipes which ultimately terminate at the former IWTF.

The groundwater VOC plume is contained within the Site by this system.

1.4 Groundwater Monitoring Plan Design

Groundwater monitoring wells have been installed under various regulatory and other voluntary programs to monitor groundwater conditions at the Site. The groundwater monitoring plan has been designed to ascertain upgradient and down gradient conditions at the site control perimeter and to monitor conditions within the core portions of the Site. Attachment A contains copies of boring logs for each well installed at the Site; these boring logs contain well construction details and total depth. Attachment B contains a listing of wells by OU and details if the well is currently monitored under the GMP.

The groundwater quality sampling and analysis plan which includes the hydraulic effectiveness monitoring well locations are detailed in Table 1 of Attachment C. Hydraulic effectiveness monitoring wells include all groundwater quality locations shown on Figure D-4. Table 2 of Attachment C provides the anticipated sampling schedule.

2.0 SAMPLING PROTOCOL

All monitoring well sampling activities will be recorded in a field book on a groundwater sampling field data sheet presented in Attachment D. Other observations (e.g. well integrity, etc.) will be noted on the physical well inventory form presented in Attachment D. This physical well inventory form will serve as the inspection form for the groundwater monitoring well network.

2.1 Pre-sampling Preparation and Tasks

This section describes the procedures to be followed by field sampling personnel prior to the initiation of the sampling event.

2.1.1 Field Equipment Inspection, Calibration and Maintenance

Prior to the sampling event, sampling equipment will be inspected to verify cleanliness and to ensure proper working order. Preventive maintenance of field measuring instruments and field sampling devices will be accomplished as per the manufacturer's specifications. All field equipment will be calibrated immediately prior to each day's use. Calibration procedures will conform to manufacturer's standard instructions.

2.1.2 <u>Procurement and Preparation of Sample Containers</u>

All samples shall be collected into laboratory-prepared containers. Containers with preservative shall be tagged as such by the laboratory. Field personnel shall collect samples in appropriate containers for the required analytical methods.

2.1.3 Equipment Storage, Handling and Decontamination Procedures

Sampling equipment will be stored in a manner to prevent contact with contaminated equipment or materials. Whenever possible, dedicated sampling equipment shall be used to reduce the need for field decontamination of equipment. Purging and sampling equipment must be handled with gloved hands. Gloves shall be changed following each activity that may contaminate them and, at a minimum, between wells.

Since the hazardous constituents being monitored in groundwater at this Site are primarily VOCs, all non-dedicated well evacuation devices shall be decontaminated prior to placement down the borehole by high-pressure steam cleaning and thoroughly rinsing with organic-free deionized (DI) water.

Dedicated well evacuation and sampling equipment shall be decontaminated in a similar way prior to being placed in service, and whenever it is removed for inspection and repair.

Other non-dedicated field measurement devices such as water level indicators and pH, temperature and conductivity instruments shall be decontaminated prior to obtaining a measurement in such a manner so as not to damage the equipment. This non-dedicated field equipment shall be decontaminated by thoroughly rinsing with DI water.

2.1.4 Personnel Protective Equipment / Health and Safety Measures

A Health and Safety Plan (HASP) has been prepared specifically for the routine groundwater monitoring program and is a self-contained document reproduced as Attachment E to the GMP. Section 4 of the HASP presents an assessment of chemical hazards identified at the Site as a result of extensive and continuing sampling efforts. Section 6 of the HASP describes the personal protective equipment required for sampling personnel.

Disposable nitrile gloves will be used for all groundwater monitoring activities, regardless of the level of contamination. Gloves will be changed following each activity that may contaminate them and, at a minimum, between wells.

2.2 Water Level Measurements

Depth to water will be measured at all monitoring wells as per the schedule specified in Table 1 of Attachment C for Hydraulic Effectiveness Monitoring in addition to static water level measurements conducted as part of water quality sampling activities. All static water level measurements shall be obtained following this same procedure and will be recorded on a field form.

Depth to water measurements will be obtained using an electronic water level measuring device $(M\text{-scope}^{\circ} \text{ or equivalent})$ with 0.01 foot increments. These measurements will be taken at the designated permanent reference survey point marked on each well casing. In all instances, data will be reported and groundwater elevations calculated based on the measurement from the permanent reference survey point.

2.3 Purge Methods

For sampling techniques where well purging is appropriate, the purge volume for each well will be calculated based on water level measurement, well depth measurement, and well diameter. The depth to bottom of the well will be sounded and the purge volume will be calculated using the following formula:

Purge Volume = $n x$ (Depth To Bottom – Depth To Water) $x 3$			
	0.09 gal/ft for 1.5-inch diameter wells		
	0.16 gal/ft for 2-inch diameter wells		
Where $n =$	0.37 gal/ft for 3-inch diameter wells		
where $n =$	0.65 gal/ft for 4-inch diameter wells		
	1.47 gal/ft for 6-inch diameter wells		
	2.61 gal/ft for 8-inch diameter wells		

The intake structure of any purge device shall be positioned in a manner which allows for the removal of all stagnant water from the well. Confirmation of the removal of all stagnant water shall

be accomplished by verifying the drawdown of any pump used for purging or by bailing from the top of the column.

Monitoring wells will be purged using one of the following configurations or equivalent methods:

- A dedicated or non-dedicated submersible pump constructed of stainless steel and Teflon[®] components equipped with appropriate low-sorption discharge tubing.
- A variable-speed Teflon[®]-and-stainless-steel submersible pump with low sorption discharge tubing.
- A self-priming variable-speed low-volume peristaltic pump equipped with Teflon[®]/silicone tubing. The tubing is typically dedicated to the well.
- A bailer constructed of PVC, Teflon[®] or stainless steel.
- Other NYSDEC approved methods.

If any of the above equipment is dedicated, it will be stored in the well or in a dedicated storage container (PVC canisters or plastic bags) between sampling rounds.

2.4 Groundwater Containment / Disposal of Purge Water

Purge water from wells located in non-paved areas can be returned to the ground within a 20-foot radius of the well. In instances where purge water cannot be returned to the ground within a 20-foot radius of the well (e.g. paved area) and the well does not show evidence of the presence of non-aqueous phase liquid purge water will be properly disposed. If the presence of non-aqueous phase liquid is discovered in a well, that purge water will be contained and disposed of properly.

2.5 Sample Collection Methods

To ensure that a groundwater sample is representative, in all instances physical alteration of the sample will be minimized and chemical contamination must be prevented during the sampling process. The following is a list of sampling equipment and techniques that may be used to collect groundwater samples at this Site:

- *Teflon[®] or stainless steel bailers equipped with double check valves and a valved bottom emptying devices.* The bailers will be lowered slowly into the water column so as to minimize agitation of the water column. After the sample is brought to the surface, it will be emptied into the sample container using the bottom emptying device.
- A variable-speed Teflon[®]-and-stainless-steel submersible pump. The groundwater sample will be collected directly from the discharge line of the pump with the flow rate adjusted until as slow and steady a flow as possible is achieved.
- Other NYSDEC approved methods.

All samples will be collected into laboratory prepared, properly preserved sample containers.

VOC samples will be transferred to sampling containers in such a way as to minimize agitation and aeration. VOC sample containers shall be filled in such a manner as to have no headspace (air bubbles).

Dissolved metals samples will be field-filtered through a 0.45-micron filter made of Teflon[®], polypropylene, nylon, cellulose, or borosilicate glass. A new filter, sample transfer bottle and tubing shall be used for each sample collected. Samples shall be collected into clean sample transfer containers prior to undergoing filtration and shall be filtered immediately into properly preserved sample containers. Where required, total metals samples will be collected using the same equipment as for dissolved metals samples but will not be field filtered upon removal from the well. Dissolved and total metals samples will be acidified to pH<2. Preservative is added to the sampling containers prior to sample collection.

Field parameters (pH, specific conductance, and temperature) will be determined using a field meter after all samples have been collected following the sampling order specified in Table D-2. The measurement will be recorded after the meter reading has stabilized. Field measurements will be recorded in the sampling log book and will be entered into the field parameters database.

Table D-2: Sample Collection Order			
Priority	Parameter		
1	Volatile Organics		
2	Metals		
3	Phenol		
4	Field Parameters:		
	pH		
	Temperature		
Specific Conductance			

Sample collection will follow the priority listed in Table D-2 below.

2.6 Field Quality Assurance / Quality Control (QA/QC) Requirements

Field QA/QC requirements will be followed in the field to ensure the reliability and validity of field data gathered as part of the overall GMP. The field QA/QC program is based on the routine collection and analysis of three types of QC samples: trip blanks, duplicate samples, and equipment rinse blanks. All field QA/QC samples will be entered onto the Chain of Custody along with the primary samples. Equipment rinse blanks and trip blanks will also be recorded on Field QA/QC index forms, a sample of which is provided in Attachment D.

2.6.1 <u>Trip Blanks</u>

Trip blanks are used to verify that VOC bottles and samples are not contaminated during transportation and storage. Trip blanks shall be prepared by the laboratory and shall accompany sample containers throughout the event from collection through shipment to the laboratory for analysis.

• One trip blank will be submitted for analysis for every twenty (20) samples collected or at a minimum of one trip blank per shipped cooler that contains VOC samples.

2.6.2 <u>Field Duplicates</u>

Field duplicates serve as a check on the validity of the sample, sampling technique and laboratory precision. Each field duplicates is assigned a unique sample identification number from the primary environmental sample. Field duplicates shall be collected by alternating primary and field duplicate sample containers during sample collection.

• Field duplicates will be collected for all required analyses at a frequency of not less than 20 percent of the total number of environmental samples collected.

2.6.3 Equipment Rinse Blanks

Equipment rinse blanks will be collected in the field by passing laboratory supplied, analyte-free water over decontaminated non-dedicated equipment. Equipment rinse blanks confirm the effectiveness of decontamination procedures and will be analyzed for VOCs.

• Equipment Rinse Blanks will be collected once per sampling day from a piece of non-dedicated equipment, such as a water level indicator, non-dedicated purge pump, or sample bailer.

2.7 Sample Numbering and Labeling

A unique sample identification system will be used for all trip blanks, equipment blanks, duplicates, and environmental samples. All containers from one sample shall be labeled with this unique identification number. Samples will be labeled as follows:

Environmental Sample	K9999YYMMDDS where K designates Kingston; 99999 represents the location ID (e.g. 403S); YYMMDD is the date the sample was collected (e.g. $100112 = 2010$, January 12) and for the suffix S, G indicates the sample is the original groundwater sample, X is a split sample collected at that location (analyzed by secondary laboratory) and D is duplicate collected at that location (to primary laboratory)
Trip Blanks	KTZYMMDDMMDD where K designates Kingston; T indicates the sample is a trip blank; Z designates the sampler id; Y is the last digit of the year (e.g. $1 = 2011$); and MMDDMMDD is the period for which the trip blank is valid (e.g. 01230124 is January 23 through January 24)
Equipment	KEQYMMDDXXXX where K designates Kingston; EQ indicates

Rinse Blanks KEQYMMDDXXXX where K designates Kingston; EQ indicates the sample is an equipment rinse blank; YMMDD is the date that the rinse blank was collected and XXXX is an abbreviation for the type of rinse blank collected (e.g. BALR is bailer, PUMP is non-dedicated pump, WLID is water level indicator)

2.8 Chain of Custody Procedures

The chain of custody allows for the tracing of possession and handling of individual samples from the time of field collection through laboratory analysis. The chain of custody form identifies each sample collected, the individuals responsible for sample collection, shipment and receipt. The intent of the chain-of-custody procedure is to provide guidance to maintain sample integrity.

Upon sample collection, but prior to storage shipment or transportation, the field personnel shall properly and completely fill out the chain-of-custody form with a waterproof ink pen. If an error is made during the completion of the chain-of-custody form, a line shall be drawn through the error and the correction entered. The field personnel completing the form shall initial and date the error. Under no circumstances is white-out or erasing acceptable.

Preparation of the chain-of-custody form shall be as follows:

- Complete the chain-of-custody form. The project name, client name, the person to whom the laboratory analytical report shall be addressed and invoicing (Project Number) shall be identified in the top section of the form;
- Each person taking possession of the sample(s) shall sign and date the chain-of-custody as a recipient and shall also sign and date the chain-of-custody upon relinquishment of the sample(s). When the sample(s) have been delivered to the laboratory, the laboratory sample custodian will sign off the chain-of-custody as the last recipient of the samples.
- Sample-specific information shall include, at a minimum, unique sample identification number, date and time of sample collection, type of sample (e.g. groundwater), analyses requested, preservative (if any), volume/type of bottles, temperature of temperature blank in sample container (if necessary), and requested turn-around time. Any information relating to condition of samples upon receipt shall be written on the Chain of Custody form as a comment.

2.9 Sample Storage & Shipment

In the field, samples will be kept in a cooler lined with ice until such time as the samples can be refrigerated or received at the laboratory. The temperature of samples will be checked and recorded on the chain-of-custody form upon receipt of the samples by the laboratory.

Samples will be hand-delivered to the laboratory or shipped via a commercial priority overnight delivery service. In cases where the samples leave the immediate control of the sampling team (i.e. shipment via common carrier), the shipping container must be sealed and a custody seal will be provided on the shipping container to ensure that the samples have not been disturbed during transport. Samples which are at all times in the possession of the field crew or their designee will not require custody seals on the coolers.

Samples must be sent to the laboratory as soon as practicable and should be received by the laboratory within 48 hours of sampling.

3.0 INABILITY TO OBTAIN REPRESENTATIVE SAMPLES

This section describes the actions that will be taken when a well in the groundwater monitoring network cannot provide representative groundwater elevations or water quality data.

3.1 Well Damage

If it is determined that a well cannot provide representative samples or accurate piezometric values because it is damaged, NYSDEC will be notified of the problem. The notification to NYSDEC, will include information which describes the following: a) the nature of the problem, b) how the problem with the well has been rectified, and c) a schedule for the rehabilitation or replacement of the well. If a problem with a well prevented the collection of a scheduled sample, an initial characterization sample will be collected within twenty-one days after the rehabilitation or replacement of the well.

3.2 Resampling

When it is determined that a sample has been collected or analyzed out of protocol, the affected well will be re-sampled for the affected parameters within twenty-one days of such knowledge, unless this requirement is waived by NYSDEC after consultation.

3.3 Dry Wells

If any well does not contain sufficient water for a representative sample due to regional conditions that lower water levels in monitoring wells across the Site (e.g., drought conditions), then that well may go un-sampled for one sampling event. The viability of the well shall be evaluated by collection of additional water level measurements prior to the next scheduled sampling of the well. If this evaluation indicates that the well still does not contain sufficient water for a representative sample, then a proposal shall be submitted to the NYSDEC to either replace the well or substitute another existing well. If a well is dry on a recurring basis due to groundwater extraction activities, it may go un-sampled.

4.0 WELL INSPECTION AND MAINTENANCE PLAN

The groundwater monitoring system will be maintained to ensure that all monitoring points yield representative samples of high integrity.

The number for each well and piezometer shall be permanently affixed to or engraved into the well casing or cap and maintained in a legible condition. Steel security casings shall be painted and maintained as necessary to prevent corrosion. Monitoring wells which may be obscured by vegetation during the summer shall be flagged, and the flagging maintained or replaced as necessary so that the wells may be readily located.

During each sampling event, all contaminant monitoring wells shall be inspected for integrity and the results of which shall be recorded in the comments section of the Sampling Field Data Sheet. Depth to bottom measurements for program wells shall be conducted such that if the depth to bottom of the well differs from the baseline depth to bottom by more than 0.5 feet, the well must be redeveloped prior to the next scheduled sampling event.

All water quality monitoring, hydraulic effectiveness monitoring wells and other non-GMP wells shall be inspected on an annual basis. The physical well inventory form presented in Attachment D will serve as the inspection form for the groundwater monitoring well network. The results of this inspection will be included in the Periodic Review Report.

Should a well or piezometer be found to be damaged beyond usability, blocked or broken, or fail to recharge properly or as expected, it will either be repaired; decommissioned or replaced, as necessary. Should any significant cracking or frost heaving of grout be observed, repairs shall be made and the measuring point resurveyed, to ensure accurate computation of groundwater elevations. All necessary repairs or replacements shall be completed as soon as possible but not to exceed 120 days after identification of the problem. NYSDEC will be notified prior to repair or replacement and the repair or decommissioning and replacement process will be documented in the Periodic Review Report. Well decommissioning without replacement will be done only with the prior approval of NYSDEC. Well abandonment will be performed in accordance with NYSDEC's "Groundwater Monitoring Well Decommissioning Procedures". Monitoring wells that are decommissioned because they have been rendered unusable will be reinstalled in the nearest available location, unless otherwise approved by NYSDEC.

5.0 LABORATORY METHODS AND ANALYTICAL PROTOCOLS

All laboratories utilized under the GMP shall have current and appropriate certification, New York State Department of Health Environmental Laboratory Program (NYSDOH ELAP), for the parameters analyzed. Laboratories performing the analyses must provide appropriate notice should certification lapse.

Table D-3: Analytical Methods, Sample Containers, Preservatives, and Holding Times					
		Sample	Sample	Preservat	
Analyte	Methodology(s)	Container	Volume	ive	Holding Time
Volatile	SW-846 8021B	Glass - VOA	3 @ 40 ml	P-1a	7 days
Organics	8			P-1b	14 days
Metals	Current EPA or SW-	Polyethylene**	500 ml	P-2	6 months
	846 methodologies				Hg (28 days)
Phenol	EPA 420.1	Glass-Amber	1 liter	P-3	28 days
** Fluorocarbon resin may also be used.P-1a Cool to 4°C.					
P-1b	-1b Preserve with NaHSO4 or concentrated HCl, cool to 4°C.				
P-2	Preserve with concentrated HNO3 to pH<2, cool to 4°C.				
P-3	P-3 Preserve with concentrated H2SO4 to pH<2 and cool to 4°C.				

5.1	Analytical Methods, Sampling Containers, Preservatives and Holding Times
-----	--

Site specific parameter lists are provided in Table 1 of Attachment F.

5.2 **Documentation and Reporting Format**

The sample analytical report documentation will include the required elements, as described in the NYSDEC Division of Environmental Remediation (DER) *DER-10 Technical Guidance for Site Investigation and Remediation*, Appendix 2B (dated May 2010) for New York State Analytical Services Protocol (ASP), Category B.

Analytical data will be provided in an electronic format in accordance with DER-10.

5.3 Laboratory Quality Assurance / Quality Control

Laboratories will follow all quality assurance / quality control procedures specified in the approved analytical methods. The quality assurance plans for each laboratory that may analyze samples for the Site under the GMP are reproduced in Attachment F.

6.0 DATA MANAGEMENT & REPORTING REQUIREMENTS

6.1 Data Management and Documentation

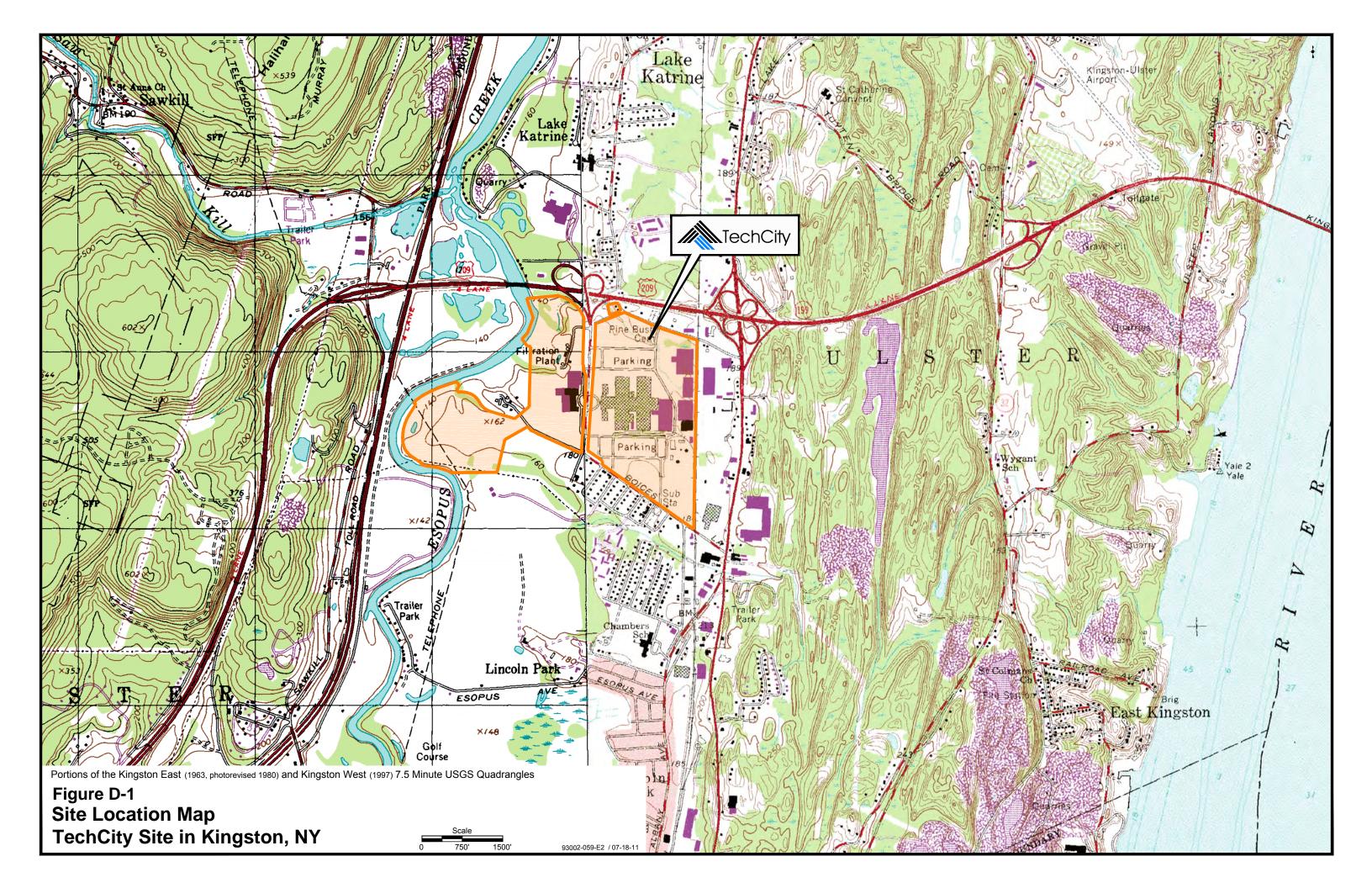
Field data will be recorded on field data sampling sheets. The field data will be summarized and reported, as appropriate. Field data validation will be accomplished through review of sampling field data sheets and periodic review of data collection procedures.

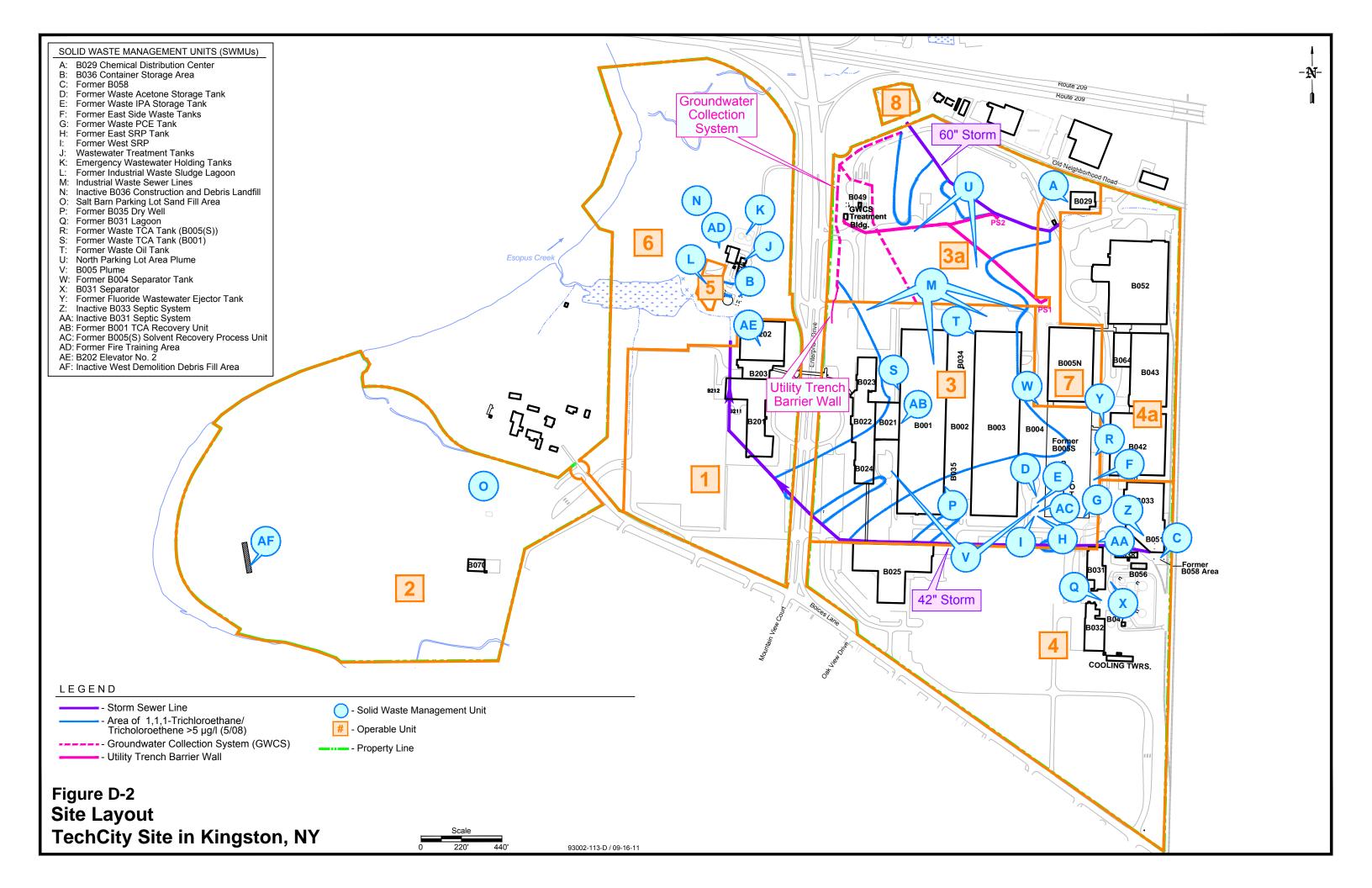
The laboratory will provide data following NYSDEC ASP Category B data deliverable requirements and will follow the documentation procedures identified in the respective Laboratory Quality Assurance Project Plan included in Attachment F.

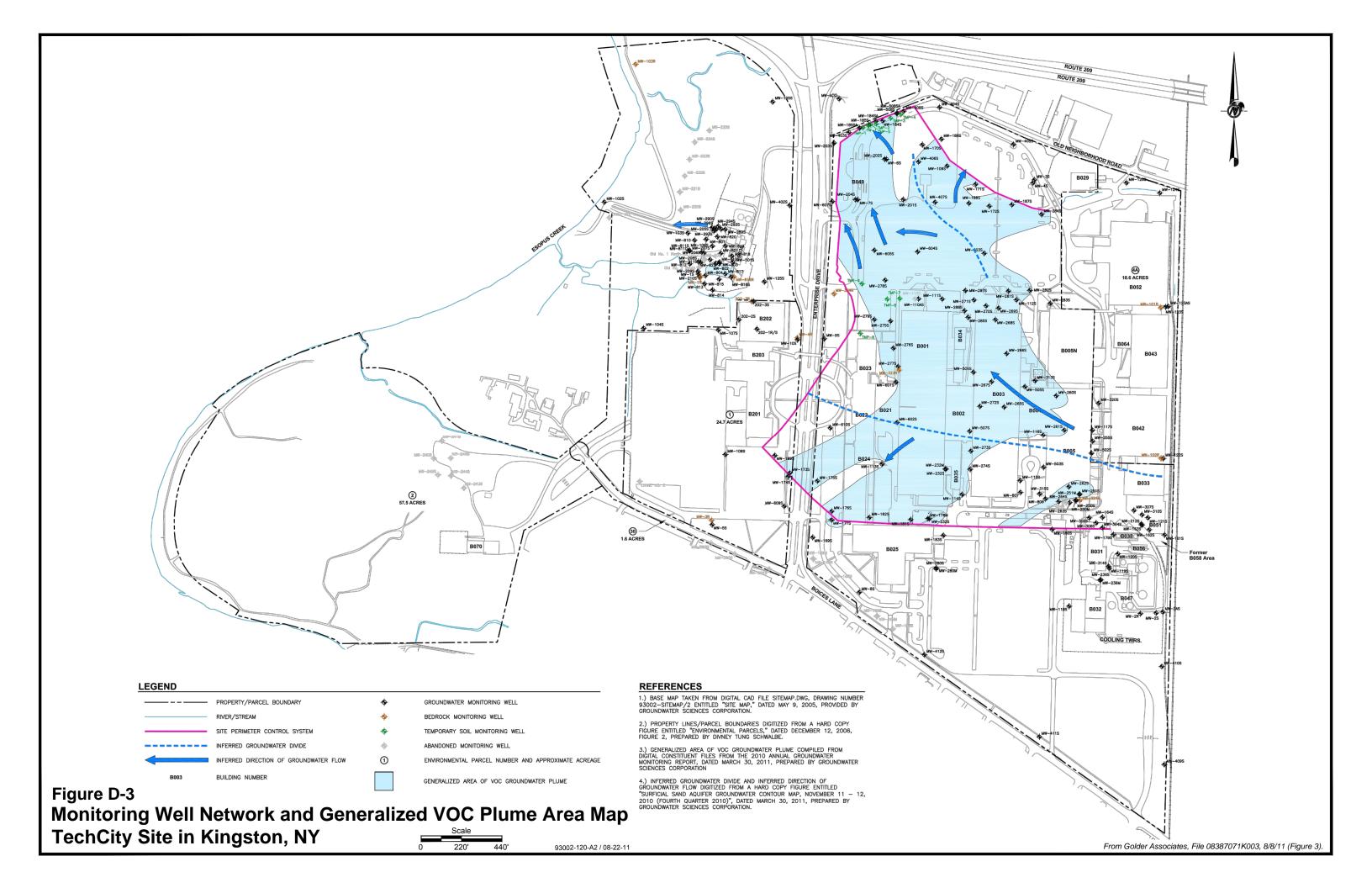
6.2 Data Evaluation Procedures

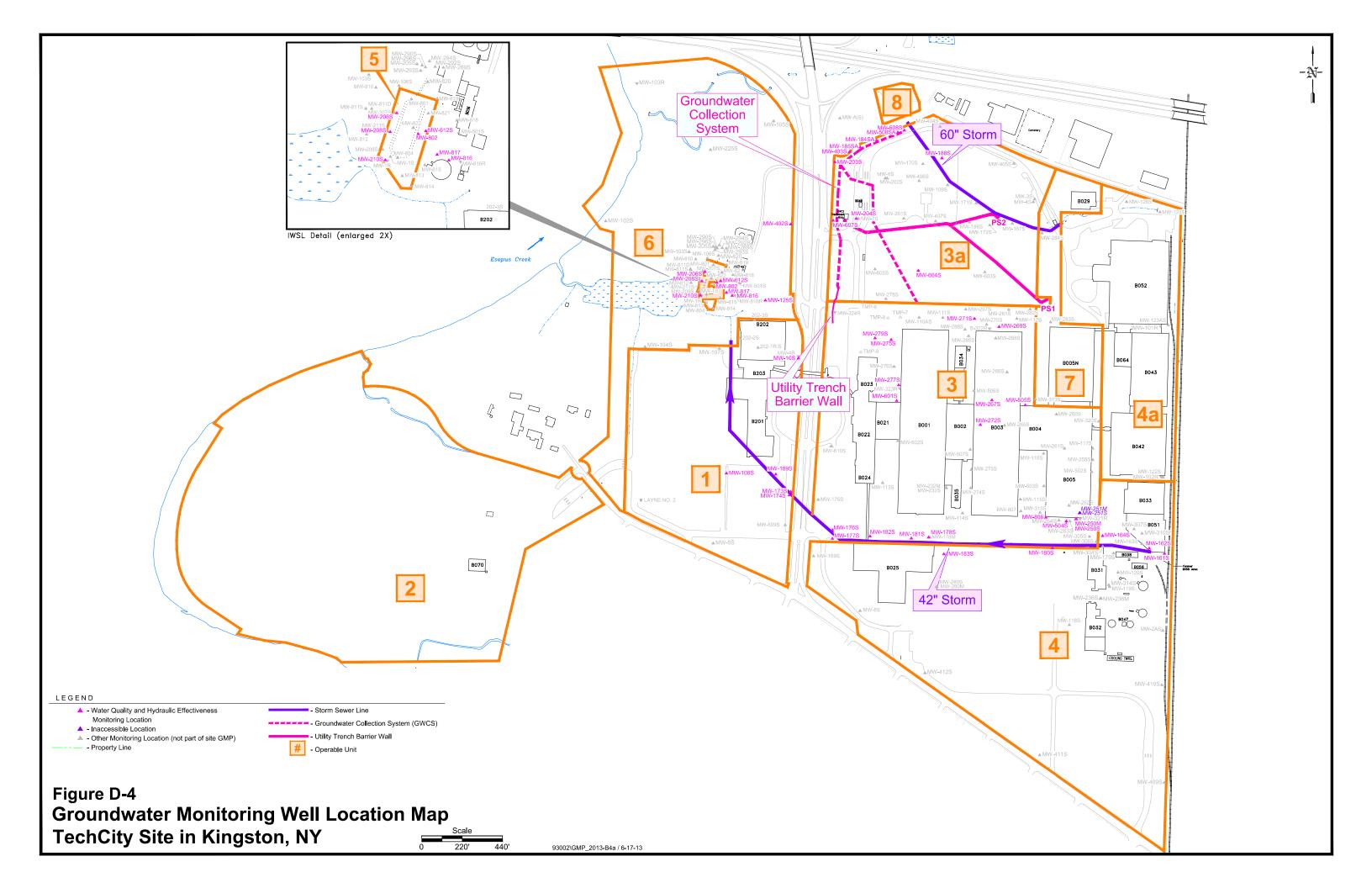
One hundred (100) percent of the laboratory-analyzed data will undergo a data evaluation and review and will consist of checks of chain of custody documentation, laboratory case narrative, holding times, duplicate results, blank results, and surrogate recoveries.

The findings of the data evaluations will be presented as a Data Usability Summary Report (DUSR). The DUSR will be prepared, to the extent possible, in accordance with the DUSR guidelines described in Appendix 2B of *DER-10 Technical Guidance for Site Investigation and Remediation*, dated May 2010.


Upon completion and resolution of data validation issues, the data will be entered into computer databases. Field and laboratory data will be stored in database files which contain certain field data such as the date and time of sampling, the sampler's initials, a unique field identification number, and a sample description; and certain analytical data such as parameter names, methods of analysis, reported results, and units of measure.


Groundwater elevation data is stored in computer spreadsheet and database files.


6.3 **Reporting Requirements**


All data generated will be submitted in an electronic data deliverable (EDD) format in accordance with DER-10.

A Periodic Review Report (PRR) will be submitted to NYSDEC which will include media sampling results such as those generated under the GMP. The PRR will be prepared in accordance with DER-10 and will be submitted within the schedule determined by the NYSDEC.

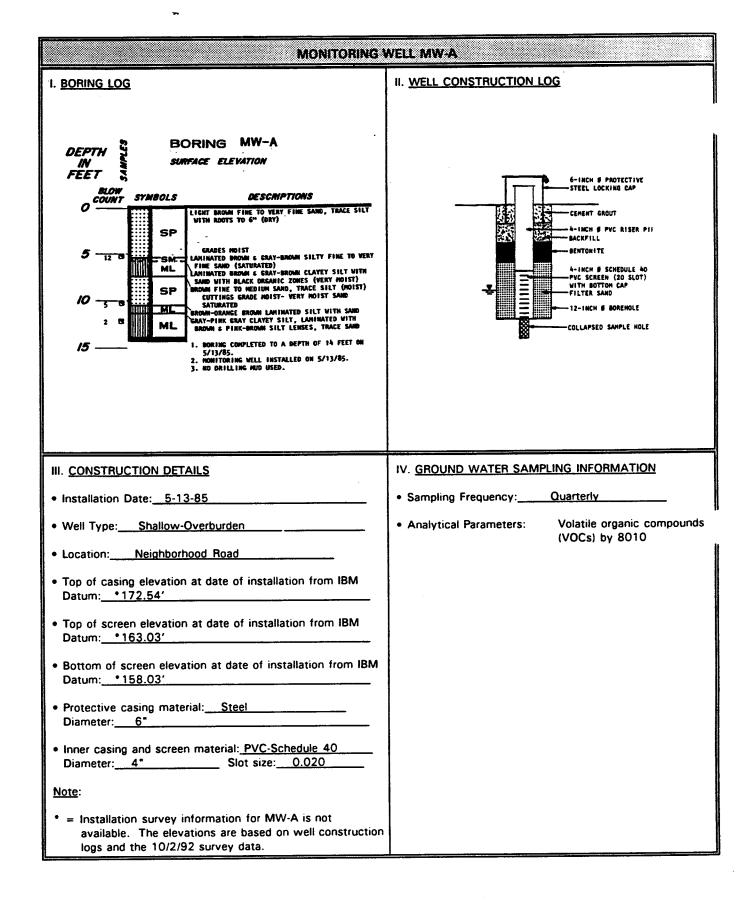
ATTACHMENT A

BORING LOG & MONITORING WELL CONSTRUCTION DETAILS

MONITORING WELL MW-A				
V. MODIFICATION DETAILS				
Modification Dat	te: <u>7-22-92</u>			
- Modifications i	nvolved the following activitie	s:		
Painting and	labelling of casing	<u>,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, </u>		
	-	······································		
- Performed by:	Dames & Moore			
Modification Da	te:9-30-92			
- Modifications	involved the following activitie	IS:		
Surface seal	repair and installation of wate	r-tight cap		
- Performed by:	Dames & Moore			
VI. SURVEY DATA TOP OF STEEL PROTECTIVE TOP OF PVC				
SURVEY DATE	PERFORMED BY	CASING ELEVATION	CASING ELEVATION	
10-2-92	Brinnier & Larios	172.54′	172.39'	

•

.


AAW02E44

MONITORING	WELL MW-A
VI. DEVELOPMENT HISTORY	
Redevelopment Date: 7-22-92	
- Total well depth at date of installation: <u>158.03</u>	
- Depth prior to development: <u>158.57'</u> - Difference in depth from installation: <u>0.54'</u>	Depth after development: <u>158.57'</u> Difference in depth from installation: <u>0.54'</u>
Change in depth (in feet):	no change
- Redevelopment method: Centrifugal Pump	
- Performed by: Dames & Moore	
Redevelopment Date: 10-2-92	
- Total well depth at date of installation: <u>158.03</u>	
Depth prior to development: 158.84' Difference in depth from installation: 0.81'	
Change in depth (in feet):_	0.21′
- Redevelopment method: Centrifugal Pump	
- Performed by: Dames & Moore	

.

**

AAW02E44

AAW02E44

Dames & Moore is pleased to submit this report "Evaluation of Layne Well No. 2." which was performed in accordance with our proposal dated July 28, 1988.

The background on the project is presented in Chapter 2.0. Chapter 3.0 discusses the regulatory requirements. The pumping test is reviewed in Chapter 4.0. The analytical results on the ground water are discussed in Chapter 5.0. Chapter 6.0 presents the pumping test results. The maximum capacity of the well screen is discussed in Chapter 7.0. The recommendations are presented in Chapter 8.0.

2.0 BACKGROUND

Layne Well No. 2 is located west of Neighborhood Road, in the southwest corner of Parking Lot No. 7, at the IBM -Kingston, New York facility (Figure 1). The well consists of a 6-inch diameter casing extending through approximately 99 feet of yellowish silty clay and clayey silt from approximately Elevations +167.31 to +68 feet above mean sea level. A 19-foot long screen extends from the base of this stratum into the fine to medium sand and gravel-water bearing zone. Figure 2 shows the cross-section of the Layne Well No. 2.

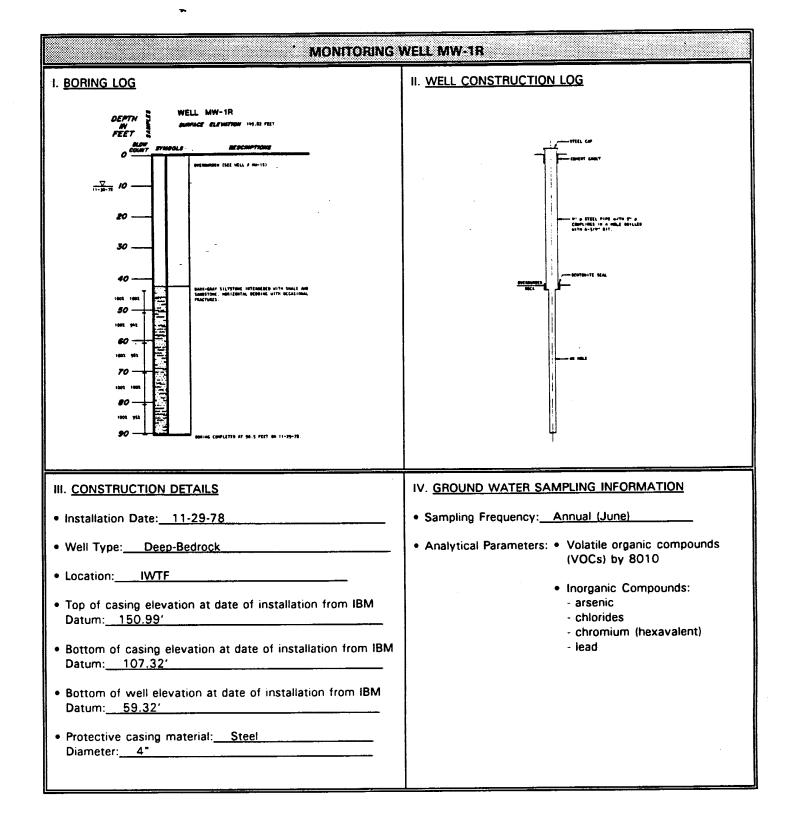
The water bearing zone is confined by the overlying silty clay layer which makes it an artesian aquifer. The static piezometric surface is within the clay zone, approximately 31 feet below the land surface and approximately 68 feet above the water bearing zone.

As shown in Figure 2, the sand and gravel layer pinches out to the north. The extent of the aquifer in the southerly and westerly directions is not known. The presence of the overlying silty clay layer and the confined conditions would likely afford significant protection.

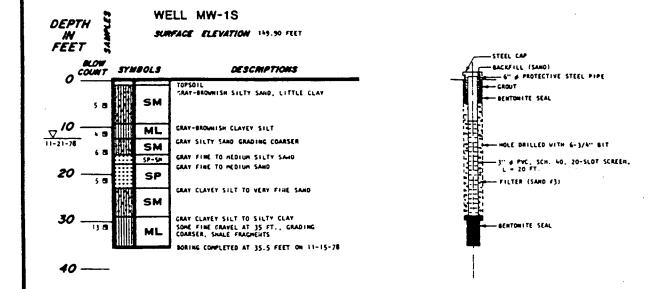
A short-term (8-hour) pumping test was performed on the well on June 19, 1985. The results of this pumping test were not conclusive with respect to long term high volume pumping and a 72-hour test was recommended to verify the original conclusions.

3.0 REGULATORY REQUIREMENTS

Due to the quantity of discharge water anticipated during the pumping test, the New York State Department of Environmental Conservation (NYSDEC) was contacted prior to pumping. Ground water analyses of the Layne Well No. 2 and a description of the proposed test was submitted to NYSDEC on August 12, 1988.


MONITORING WELL MW-1R						
V. MODIFICATION DETAILS						
Modification Dat	e: <u>7-22-92</u>					
- Modifications i	nvolved the following activities	:				
Painting & labelling of casing						
- Performed by:_	Dames & Moore	·····				
Modification Date: <u>9-30-92</u> Modifications involved the following activities: <u>Surface seal repair, installation of water tight cap, and inscription of reference mark</u>						
VI. <u>SURVEY DATA</u>						
SURVEY DATE PERFORMED BY TOP OF STEEL PROTECTIVE TOP OF PVC CASING ELEVATION CASING ELEVATION						
11-29-78	Brinnier & Larios	150.99'	•••••			
10-2-92	Brinnier & Larios	151.20′				

-


MONITORING WELL MW-1R			
VI. DEVELOPMENT HISTORY			
Redevelopment Date: 10-2-92			
- Total well depth at date of installation: <u>59.32'</u>			
Depth prior to development: <u>60.90'</u> Difference in depth from installation: <u>1.58'</u>	Depth after development: <u>59.87'</u> Difference in depth from installation: 0.55'		
Change in depth (in feet): <u>1.03'</u>			
- Redevelopment method: Submersible Pump			
- Performed by: Dames & Moore			

AAW02D03

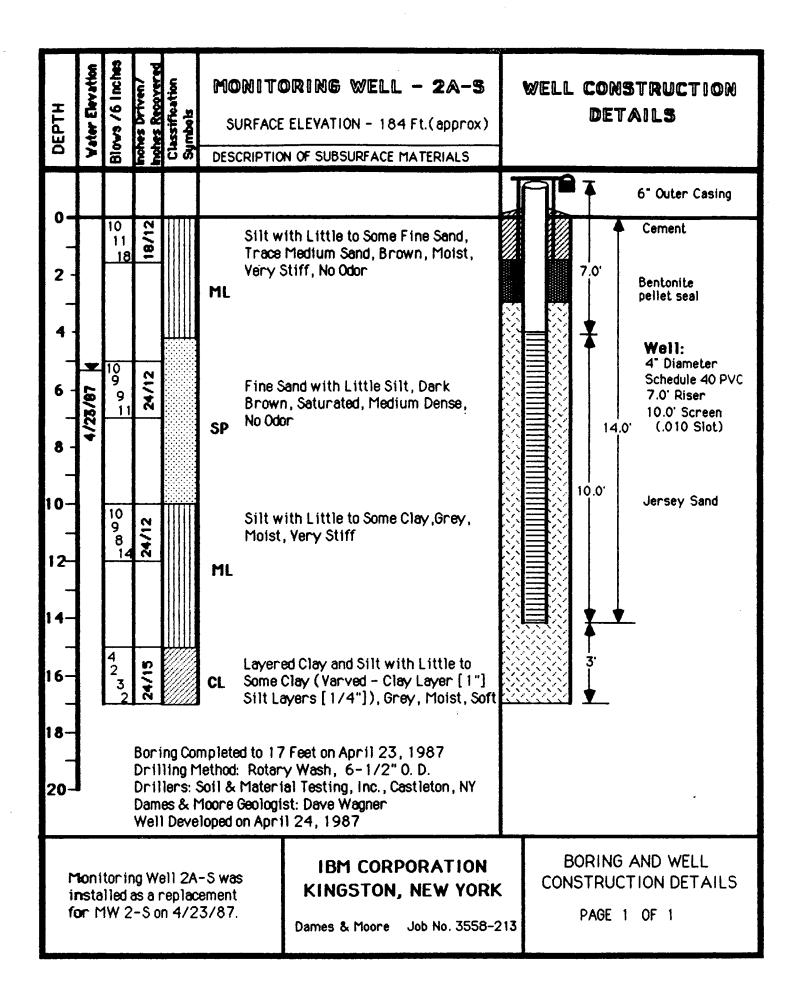
-

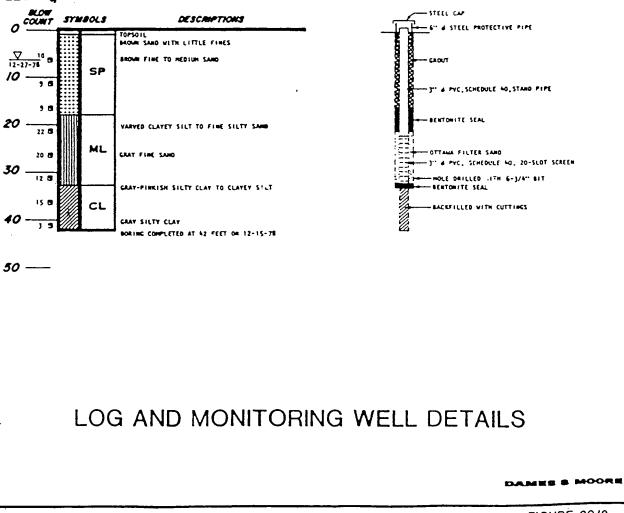
AAW02D03

LOG AND MONITORING WELL DETAILS

NOTES:

1


1. THE FIGURES IN THE COLUMN LABELED "BLOW COUNT" REFER TO THE NUMBER OF BLOWS REQUIRED TO DRIVE A STANDARD SPLIT-SPOON SAMPLER A DISTANCE OF OME FOOT USING A 140 POUND DRIVE VEIGHT FALLING 30 INCHES. THE STANDARD SPLIT-SPOON SAMPLER IS 2 INCHES 0.D. AND 1-3/8 INCHES 1.D.


THE LETTER """" IN THE "BLOW COUNT" COLUMN INDICATES THAT THE SAMPLER WAS ADVANCED BY THE WEIGHT OF THE DRILL ROD AND ORIVE VEIGHT WITHOUT DRIVING.

PERCENT FIGURES IN THE "BLOW COUNT" COLUMN INDICATE THE PERCENT OF CORE RECOVERT FOR A DOUBLE TUBE CORE BARREL NI SIZE CORE RUN (EXCEPT WHERE NOTED ON LOG). THE CORE BARREL IS 2-1/8 INCHES 1.D.

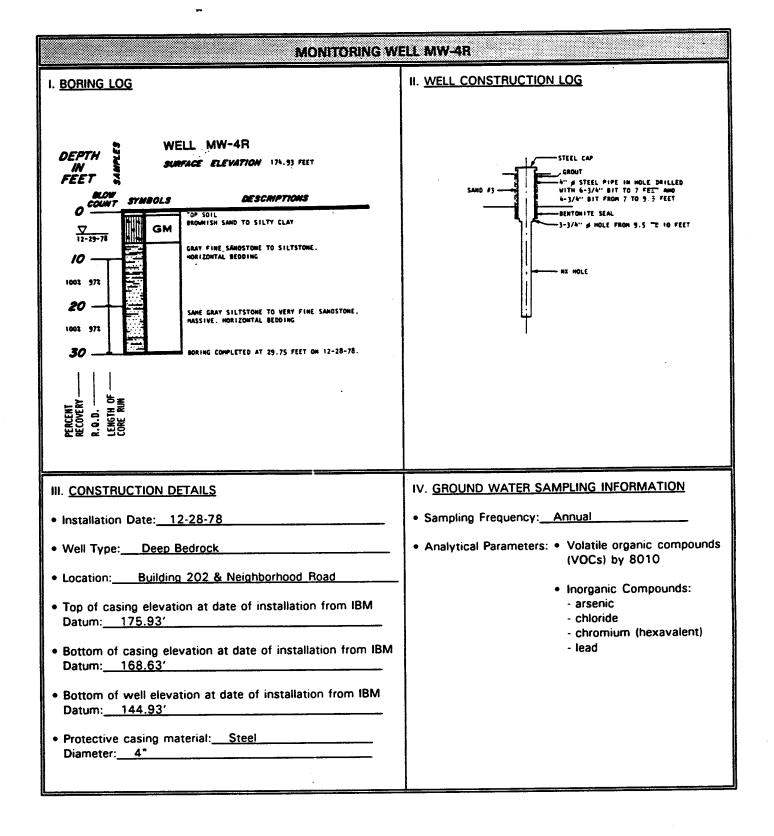
- 2. ELEVATIONS REFER TO MEAN SEA LEVEL DATUM.
- 3. THE DISCUSSION IN THE TEXT OF THE REPORT IS NECESSART FOR A PROPER UNDERSTANDING OF THE NATURE OF THE SUBSURFACE MATERIALS.

DAMES & MOORE

WELL MW-3S

SURFACE ELEVATION 173.30 FLET

DEPTH IN FEET


3

Bassie

3

ġ

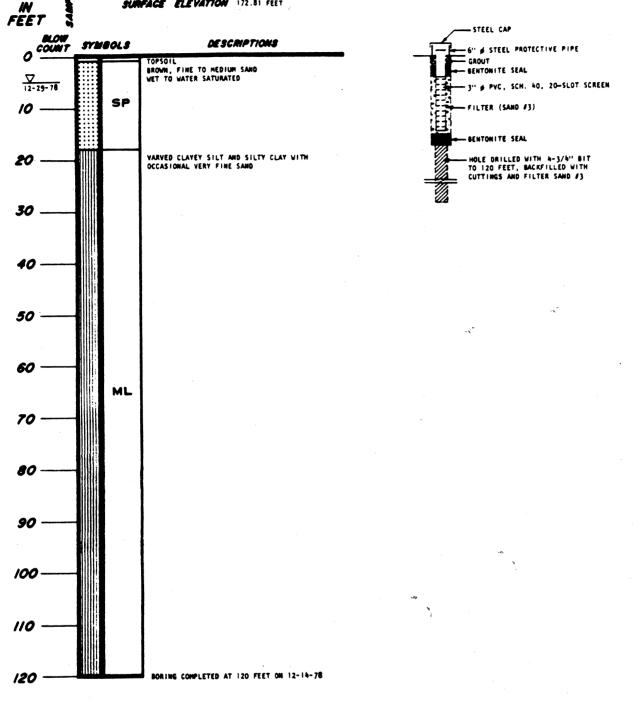
FIGURE 20/2

AAW02D03

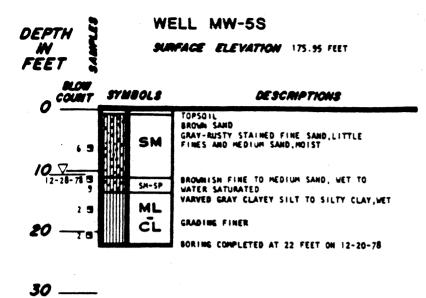
MONITORING WELL MW-4R				
V. MODIFICATION	I DETAILS			
Modification Date: 7-22-92				
- Modifications involved the following activities:				
Painting & labelling of casing				
	· · · · · · · · · · · · · · · · · · ·			
- Performed by: Dames & Moore				
Modification Date: <u>9-30-92</u> Modifications involved the following activities: <u>Surface seal repair, installation of water tight cap, and inscription of reference mark</u> Performed by: <u>Dames & Moore</u> VI. <u>SURVEY DATA</u>				
SURVEY DATE	PERFORMED BY	TOP OF STEEL PROTECTIVE	TOP OF PVC	
		CASING ELEVATION	CASING ELEVATION	
12-28-78	Brinnier & Larios	175.93'		
10-2-92	Brinnier & Larios	176.15'		

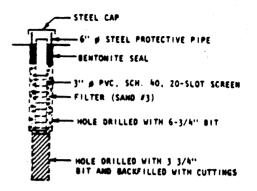
MONITORING	WELL MW-4R
VI. DEVELOPMENT HISTORY	
Redevelopment Date: 10-2-92	
- Total well depth at date of installation: 144,93'	
- Depth prior to development: <u>147.45'</u> - Difference in depth from installation: <u>2.52'</u>	Depth after development: <u>145.99'</u> Difference in depth from installation: <u>1.06'</u>
Change in depth (in feet):	1.46'
- Redevelopment method: <u>Submersible Pump</u>	
- Performed by:Dames & Moore	

;

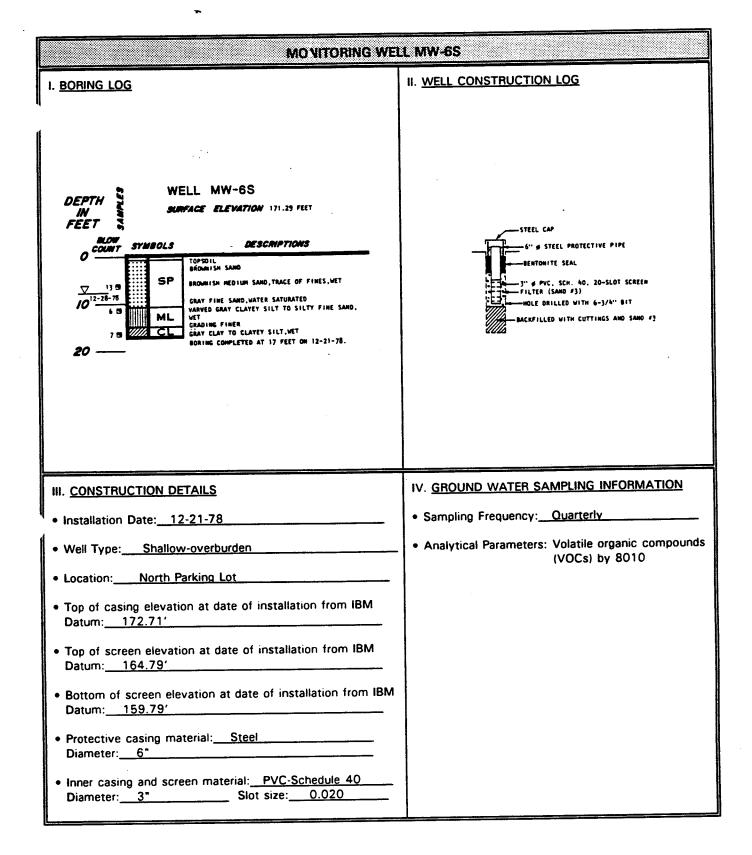

*

AAW02D03



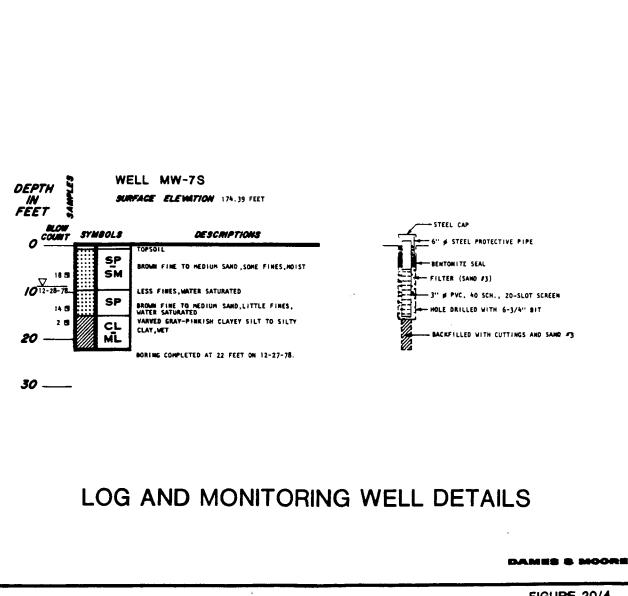

DEPTH

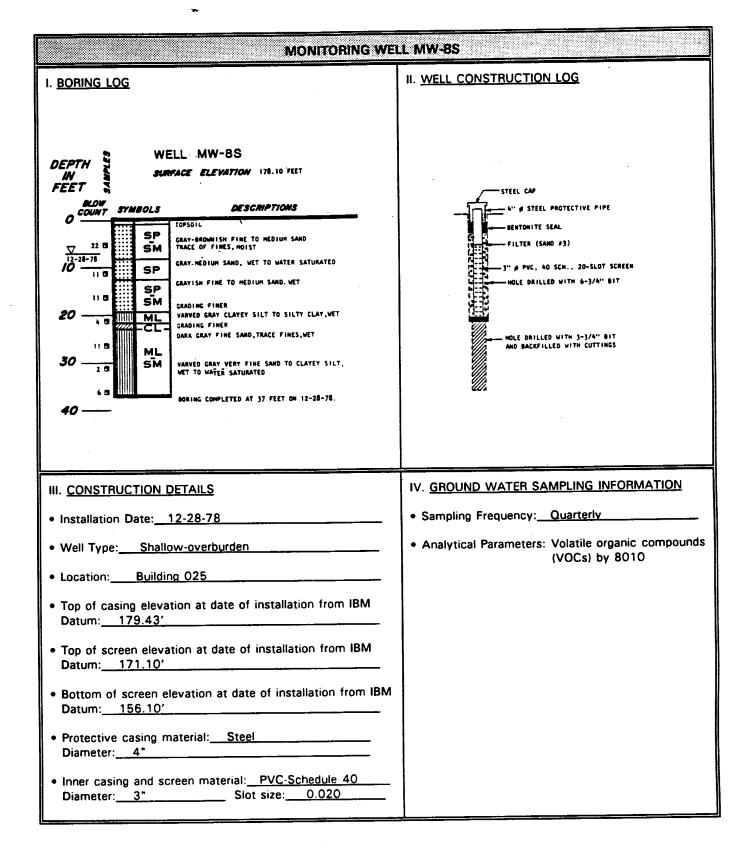
LOG AND MONITORING WELL DETAILS

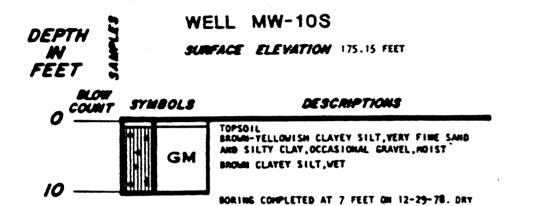


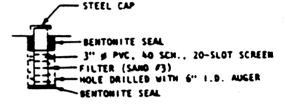
æ

LOG AND MONITORING WELL DETAILS

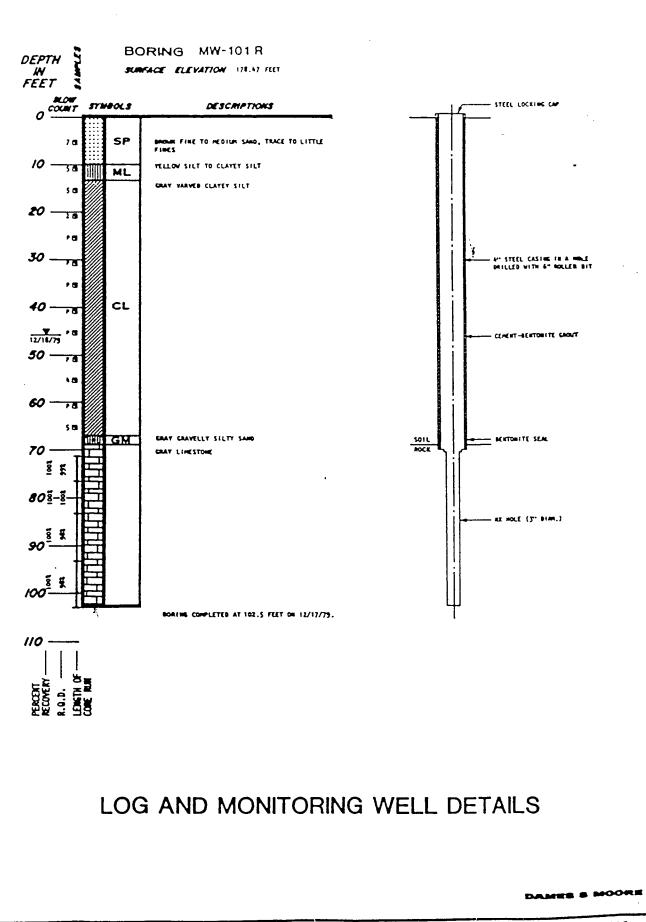

Dames & Moore




MONITORING WELL MW-6S			
V. MODIFICATION D	ETAILS		
 Modification Date: 	7-22-92		
- Modifications inv	olved the following activition	es:	
Painting and la	abelling of casing		
- Performed by:	Dames & Moore		
Modification Date:	9-30-92	· · · · · · · · · · · · · · · · ·	
	rolved the following activiti	es:	
		tight cap, and inscription of reference i	mark
·			
	Dames & Moore		
- Performed by:			
- Performed by:			
- Performed by:			
	PERFORMED BY	TOP OF STEEL PROTECTIVE CASING ELEVATION	TOP OF PVC CASING ELEVATION
VI. <u>SURVEY DATA</u>	PERFORMED BY Brinnier & Larios		· · · · · · · · · · · · · · · · · · ·

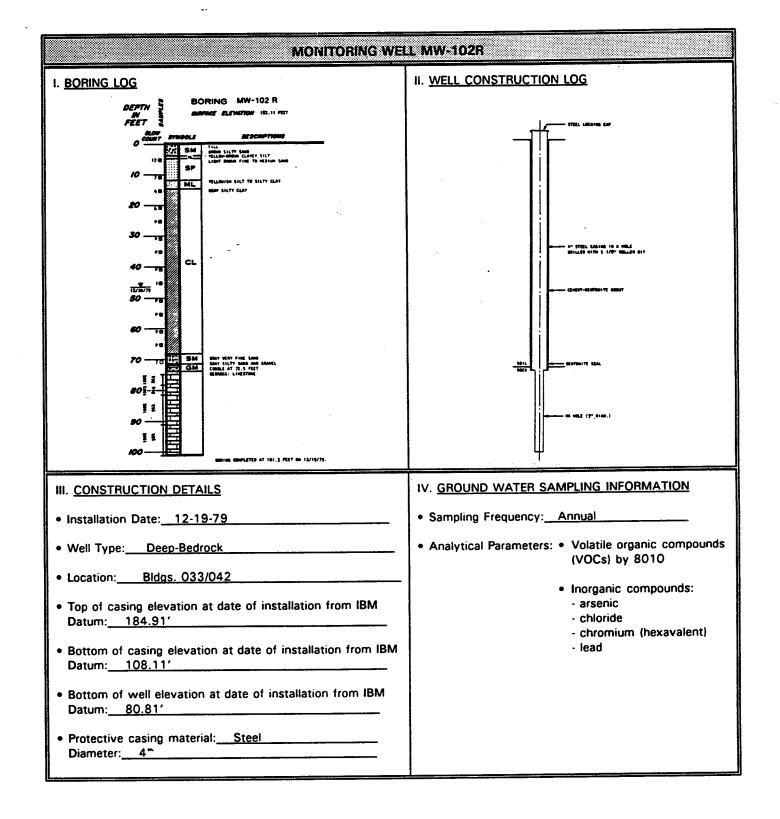

MONITORING WELL MW-6S
VI. DEVELOPMENT HISTORY
Redevelopment Date: 7-22-92
- Total well depth at date of installation: <u>159.79</u>
Depth prior to development: 160.69' Depth after development: 160.16' Difference in depth from installation: 0.90' Difference in depth from installation: 0.37'
Change in depth (in feet): 0.53'
- Redevelopment method: Centrifugal Pump
- Performed by: Dames & Moore
Redevelopment Date: 10-2-92
- Total well depth at date of installation: <u>159.79'</u>
Depth prior to development:161.54'Depth after development:160.53'Difference in depth from installation:1.75'Difference in depth from installation:0.74'
Change in depth (in feet): 1.01'
- Redevelopment method: Bladder Pump
- Performed by: <u>CTM Analytical Laboratories, Ltd.</u>

a and the monoto strategy



LOG AND MONITORING WELL DETAILS

DAMES & MOORE

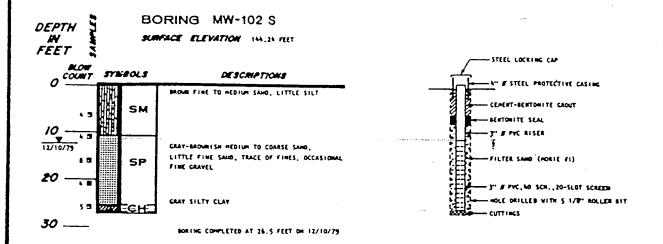


ş

à

ł

FIGURE 20/19


	MONIT	FORING WELL MW-102R	
V. MODIFICATION	V. MODIFICATION DETAILS		
Modification Date	e:7-22-92		
- Modifications ir	volved the following activities	S:	
Painting and	labelling of casing		
- Performed by:_	Dames & Moore	·······	
Modification Date: <u>9-30-92</u> Modifications involved the following activities: Surface seal repair and installation of water-tight cap Performed by: Dames & Moore			
VI. <u>SURVEY DATA</u>			
SURVEY DATE	PERFORMED BY	TOP OF STEEL PROTECTIVE CASING ELEVATION	TOP OF PVC CASING ELEVATION
12-19-79	Brinnier & Larios	184.91′	
10-2-92	Brinnier & Larios	184.03'	

-

AAW02D03

Ф

MONITORING WELL MW-102R				
VI. DEVELOPMENT HISTORY				
Redevelopment Date: <u>None</u>				
- Total well depth at date of installation:				
- Depth prior to development:	Depth after development: Difference in depth from installation:			
Change in depth (in feet):				
- Redevelopment method:				
- Performed by:				

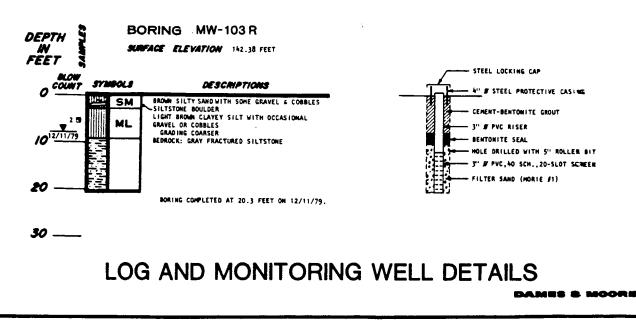
LOG AND MONITORING WELL DETAILS

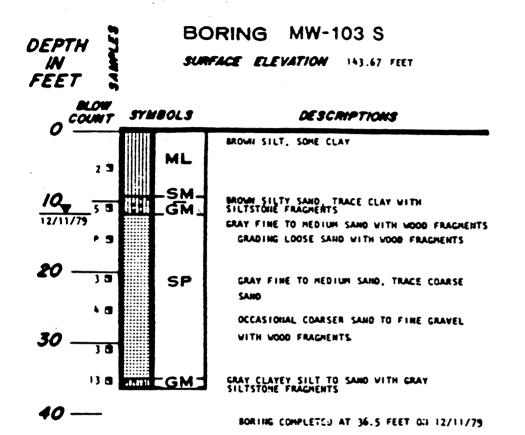
MOTES:

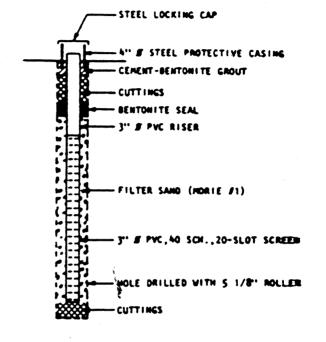
Ì,

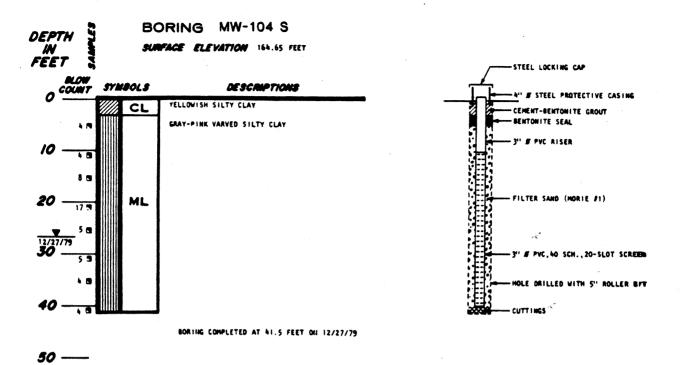
ł

 THE FIGURES IN THE COLUMN LARELED "BLOW COUNT" REFER TO THE MUMBER OF BLOWS REQUIRED TO DRIVE A STANDARD SPLIT-SPOON SAMPLER A DISTANCE OF OME FOOT USING A 164 POUND DRIVE VELOT FALLING SO INCHES, THE STANDARD SPLIT-SPOON SAMPLER IS 2 INCHES 0.0, AND 1-3/8 INCHES 1.0.

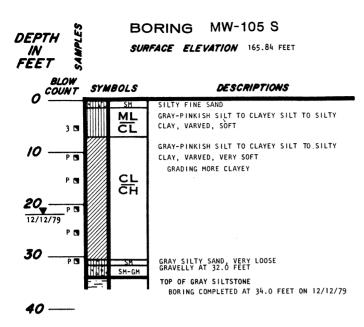

THE LETTER """ IN THE "SLOW COUNT" COLUMN INDICATES THAT THE SAMPLER WAS Advanced by the veight of the deill how and drive veight without drivens.

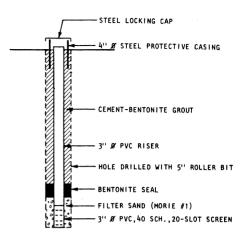

PERCENT FIGURES IN THE "BLOW COUNT" COLUMN INDICATE THE PERCENT OF COME AECOVERY FOR A DOUBLE TUBE CORE BARREL BE SIZE COME RUM (EECEPT WHERE NOTED ON LOC).THE CORE BARREL IS 2-1/8 INCHES 1.D.


2. ELEVATIONS REFER TO MEAN SEA LEVEL DATUM.


3. THE BISCUSSION IN THE TEET OF THE REPORT IS NECESSARY FOR A PROPER UNDERSTANDING OF THE NATURE OF THE SUBSURFACE MATERIALS.

DAMES & MOORS





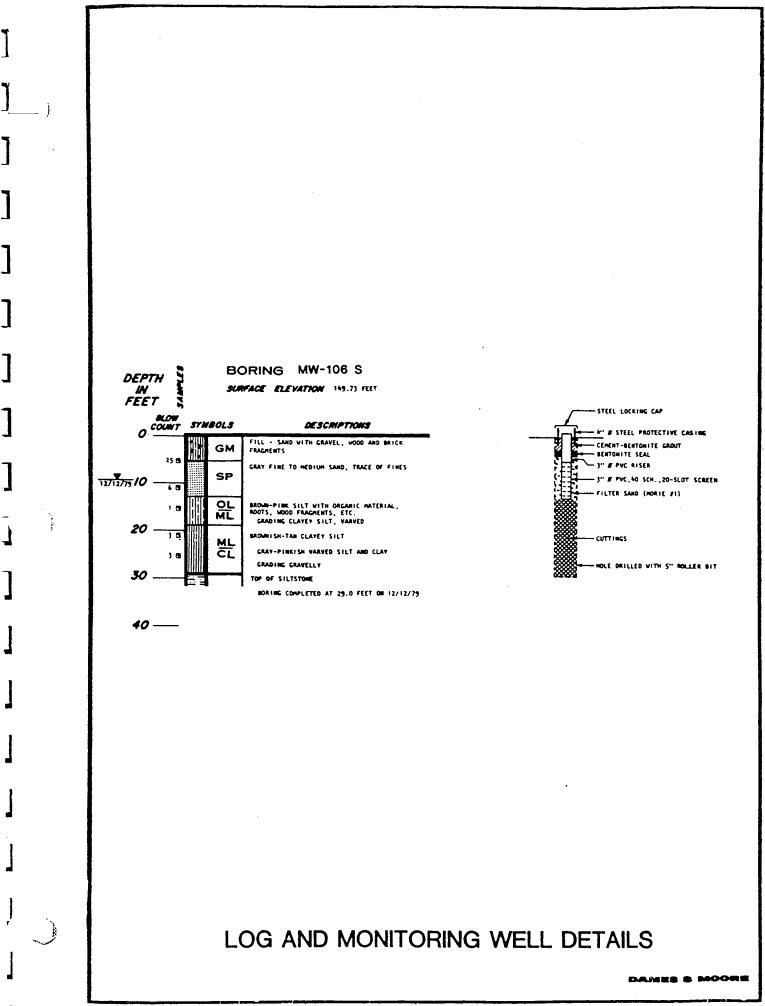
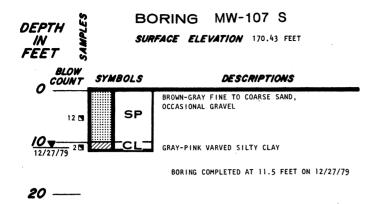
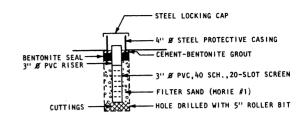
LOG AND MONITORING WELL DETAILS

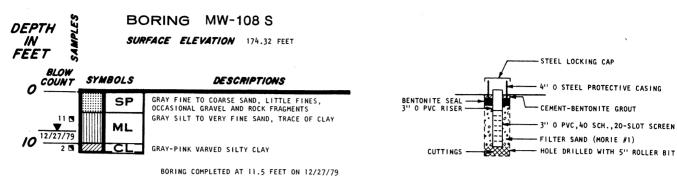
DAMES & MOORE

1

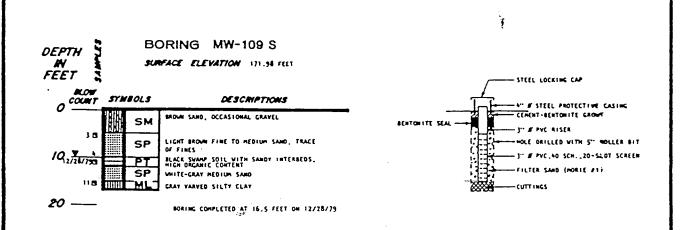
LOG AND MONITORING WELL DETAILS

DAMES & MOORE

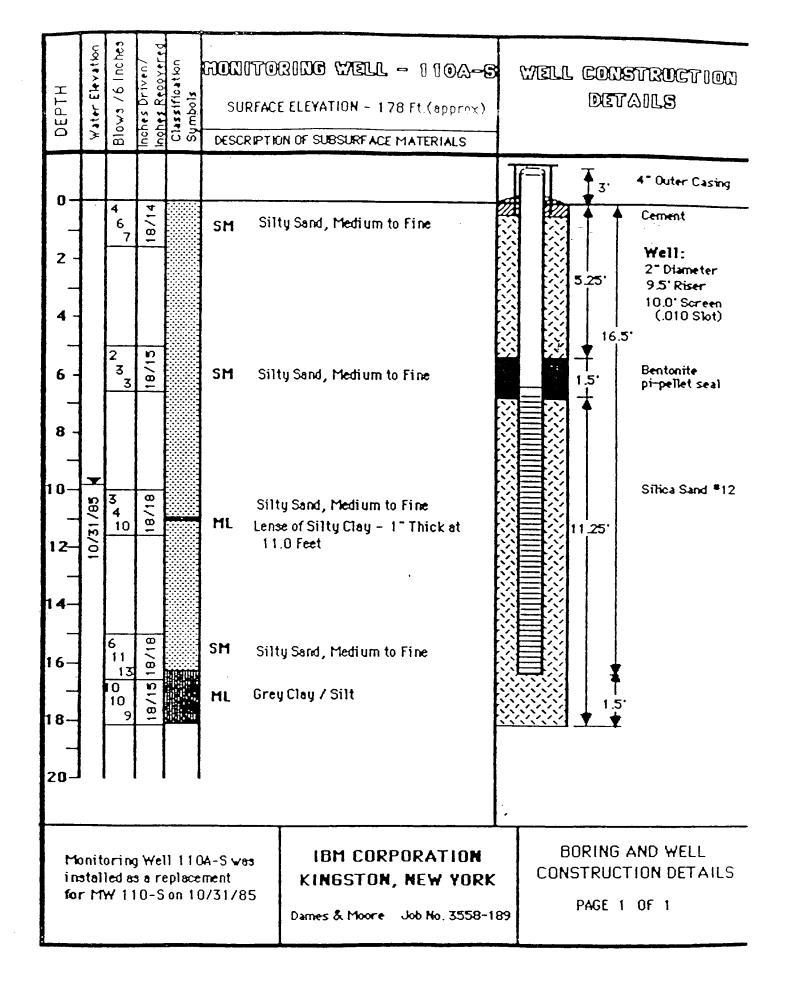




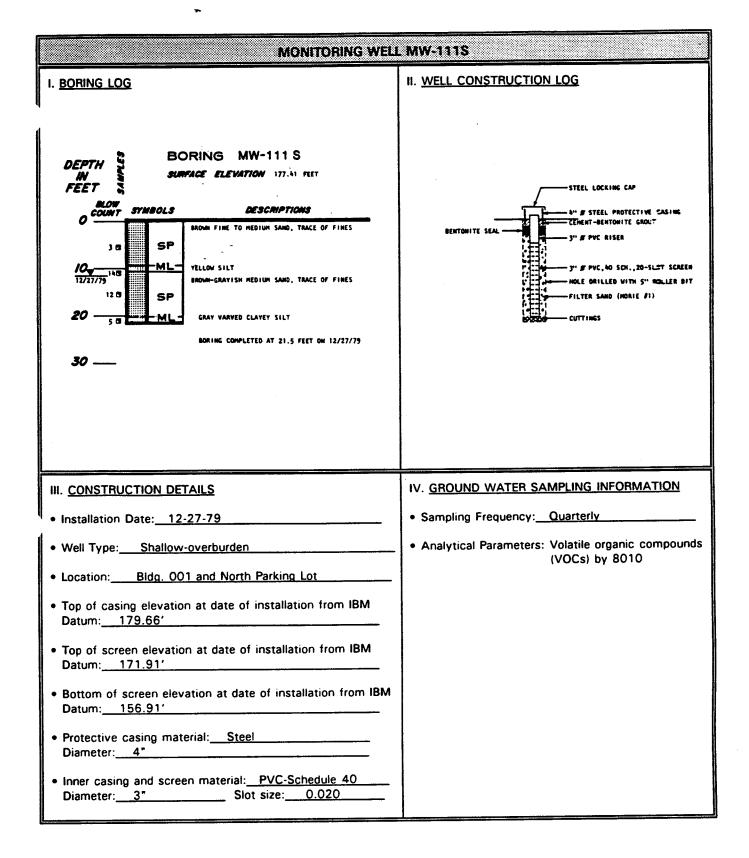

FIGURE 20/12

10


LOG AND MONITORING WELL DETAILS

LOG AND MONITORING WELL DETAILS


DAMES 8 MOORE

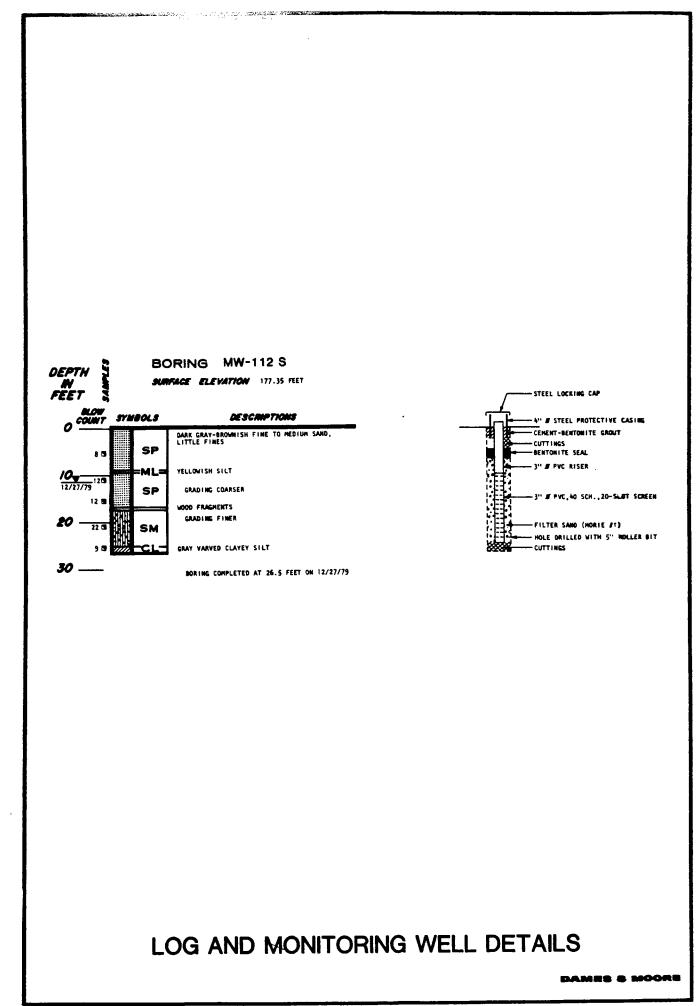


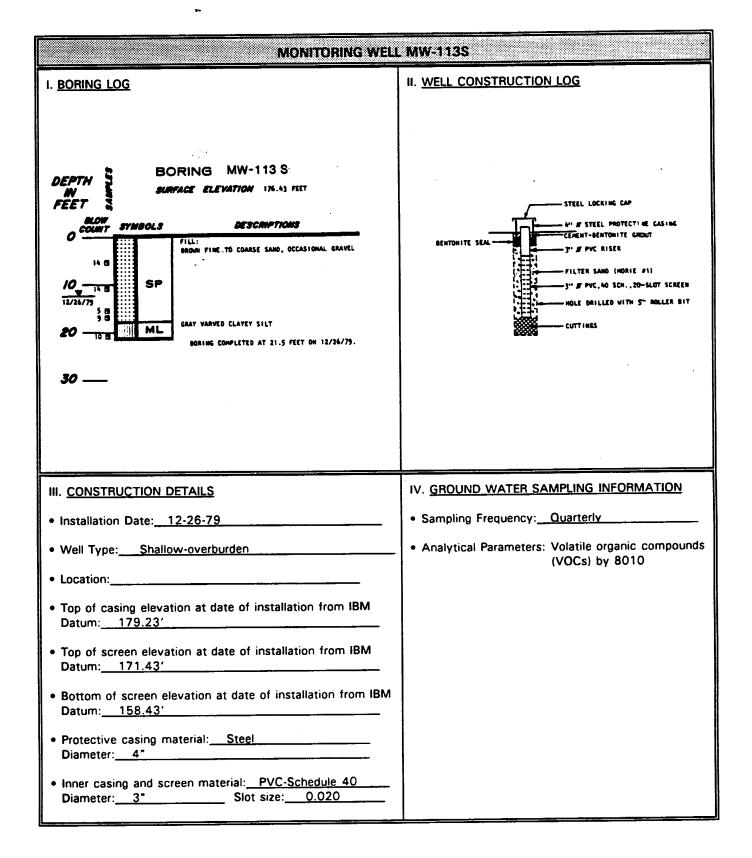
LOG AND MONITORING WELL DETAILS

AMEE & MOORE

FIGURE 20/13

V. MODIFICATION DETAILS • Modification Date: 7-22-92 - Modifications involved the following activities:		MON	ITORING WELL MW-111S	
Modifications involved the following activities: Painting and labelling of casing Performed by:Dames & Moore Modification Date:9-30-92 Modification Date:9-30-92 Modifications involved the following activities: Modifications involved the following activities: Performed by:Dames & Moore VI. SURVEY DATA VI. SURVEY DATE PERFORMED BY TOP OF STEEL PROTECTIVE TOP OF PVC CASING ELEVATION 12-27-79 Brinnier & Larios 179.66'	V. MODIFICATION D	DETAILS		
Painting and labelling of casing Performed by: Dames & Moore • Modification Date: 9-30-92 • Modifications involved the following activities: Surface seal repair and installation of water-tight cap - • Performed by: Dames & Moore • VI. SURVEY DATA SURVEY DATE PERFORMED BY TOP OF STEEL PROTECTIVE CASING ELEVATION 12-27-79 Brinnier & Larios 179.66'	Modification Date:	7-22-92		
Performed by:	- Modifications inv	olved the following activition	es:	
Modification Date: 9-30-92 Modifications involved the following activities: Surface seal repair and installation of water-tight cap Performed by: Dames & Moore VI. SURVEY DATA VI. SURVEY DATE PERFORMED BY TOP OF STEEL PROTECTIVE TOP OF PVC CASING ELEVATION 12-27-79 Brinnier & Larios 179.66'	Painting and la	abelling of casing		
Modifications involved the following activities: <u>Surface seal repair and installation of water-tight cap</u> Performed by: <u>Dames & Moore</u> VI. <u>SURVEY DATA VI. SURVEY DATA SURVEY DATE PERFORMED BY TOP OF STEEL PROTECTIVE CASING ELEVATION 12-27-79 Brinnier & Larios 179.66' </u>	- Performed by:	Dames & Moore	· · · · · · · · · · · · · · · · · · ·	
SURVEY DATE PERFORMED BY TOP OF STEEL PROTECTIVE CASING ELEVATION TOP OF PVC CASING ELEVATION 12-27-79 Brinnier & Larios 179.66'	- Modifications inv Surface seal.r	volved the following activiti	es: <u>iter-tight cap</u>	
SURVEY DATE PERFORMED BY CASING ELEVATION CASING ELEVATION 12-27-79 Brinnier & Larios 179.66'	VI. <u>SURVEY DATA</u>			
	SURVEY DATE	PERFORMED BY		······································
10-2-92 Brinnier & Larios 179.59' 178.40'	12-27-79	Brinnier & Larios	179.66′	
	10-2-92	Brinnier & Larios	179.59′	178.40'

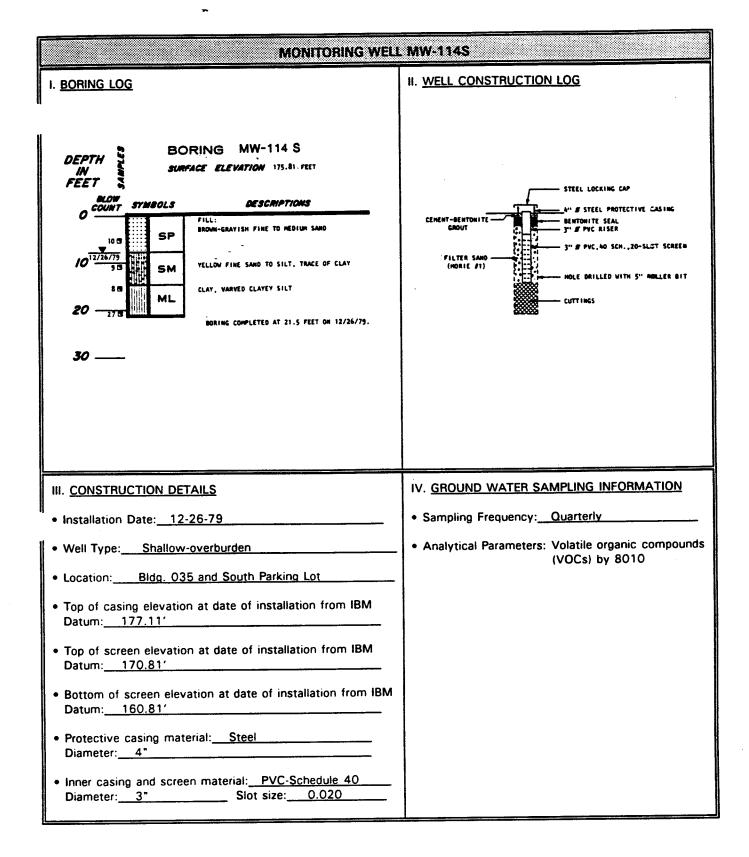

Ŧ


MONITORING	VELL MW-111S
VI. DEVELOPMENT HISTORY	
Redevelopment Date: None	
- Total well depth at date of installation:	
- Depth prior to development:	Depth after development: Difference in depth from installation:
Change in depth (in feet):	
- Redevelopment method:	
- Performed by:	

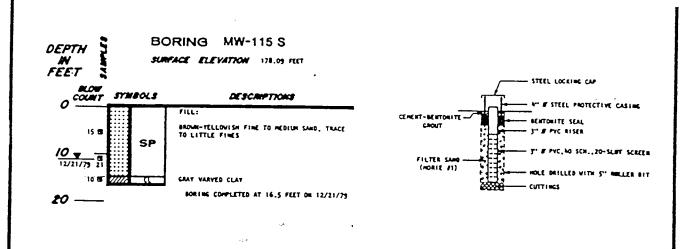
*

AAW02D03

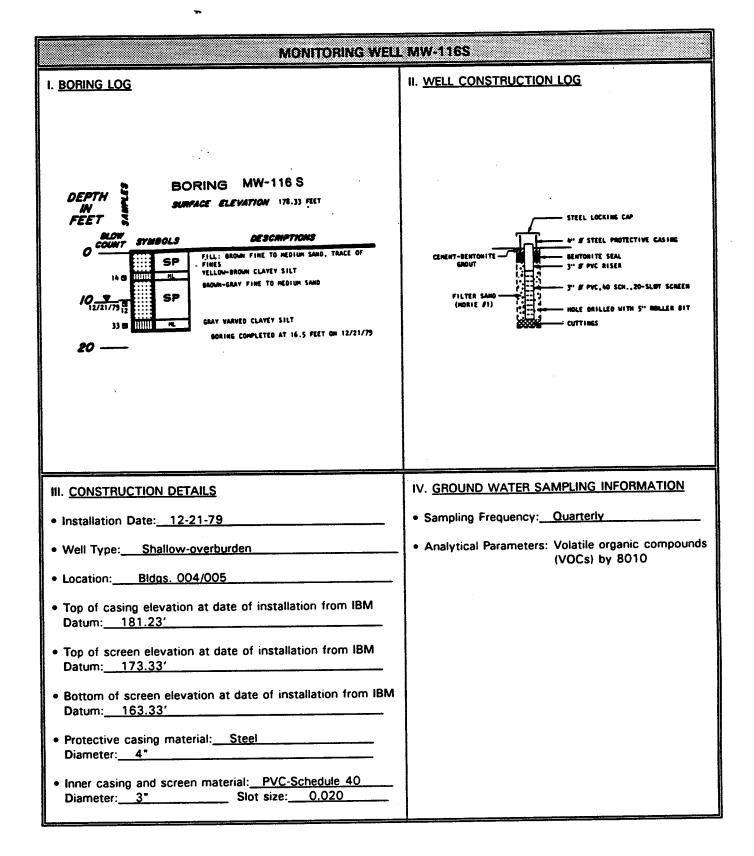
.



MONITORING WELL MW-113S			
V. MODIFICATION DETAILS			
Modification Date:7-22-92	2	····	
- Modifications involved the f	ollowing activitie	s:	
Painting and labelling of g	asing		
	······································		· · · · ·
- Performed by: Dames & N	loore		
Modification Date: 9-30-9	2		
- Modifications involved the f	ollowing activitie	s:	
Surface seal repair, extension of PVC casing (1.5'), and installation of water-tight cap			
- Performed by: Dames & Moore			
VI. <u>SURVEY DATA</u>			
SURVEY DATE PERFC	RMED BY	TOP OF STEEL PROTECTIVE CASING ELEVATION	TOP OF PVC CASING ELEVATION
12-26-79 Brinnie	er & Larios	179.23′	
10-2-92 Brinnie	er & Larios	180.60′	180.05′


MONITORING WELL MW-113S		
VI. DEVELOPMENT HISTORY		
Redevelopment Date: 10-2-92		
- Total well depth at date of installation: 158.43'		
- Depth prior to development: <u>160.20'</u> - Difference in depth from installation: <u>1.77'</u>	Depth after development: <u>159.47'</u> Difference in depth from installation: <u>1.04'</u>	
Change in depth (in feet):	0.73'	
- Redevelopment method: Bladder Pump		
- Performed by: <u>CTM Analytical Laboratories, Ltd.</u>		

-


	MONI	TORING WELL MW-114S	
V. MODIFICATION	I DETAILS		
Modification Da	te: <u>7-22-92</u>		
- Modifications	nvolved the following activitie	25:	
Painting and	l labelling of casing		
- Performed by:	Dames & Moore		
Modification Da	te:9-30-92		
- Modifications	involved the following activitie	es:	
Surface_sea	I repair and installation of wa	ter-tight cap	· · · · · · · · · · · · · · · · · · ·
- Performed by:	Dames & Moore		
VI. SURVEY DATA			
SURVEY DATE	PERFORMED BY	TOP OF STEEL PROTECTIVE CASING ELEVATION	TOP OF PVC CASING ELEVATION
12-26-79	Brinnier & Larios	177.11′	•••
10-2-92	Brinnier & Larios	177.24'	176.89′

MONITORING WELL MW-114S					
VI. DEVELOPMENT HISTORY					
Redevelopment Date: <u>None</u>					
- Total well depth at date of installation:	- Total well depth at date of installation:				
- Depth prior to development:	Depth after development: Difference in depth from installation:				
Change in depth (in feet):_					
- Redevelopment method:					
- Performed by:					

LOG AND MONITORING WELL DETAILS

DAMES & MOORS

MONITORING WELL MW-116S

V. MODIFICATION DETAILS

Modification Date: 7-22-92

- Modifications involved the following activities:

Painting and labelling of casing

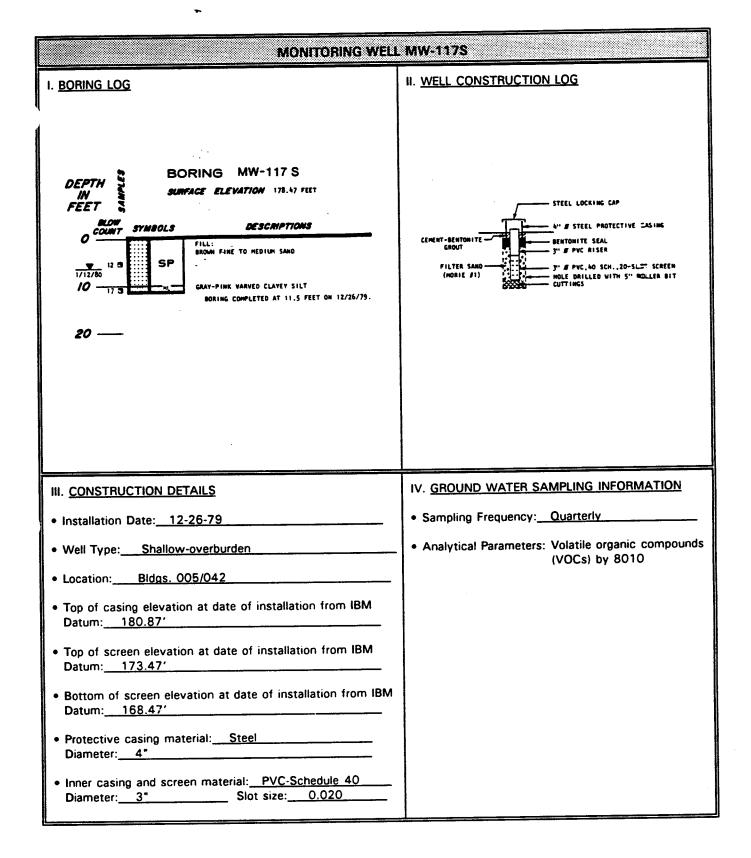
- Performed by: Dames & Moore

Modification Date: <u>9-30-92</u>

- Modifications involved the following activities:

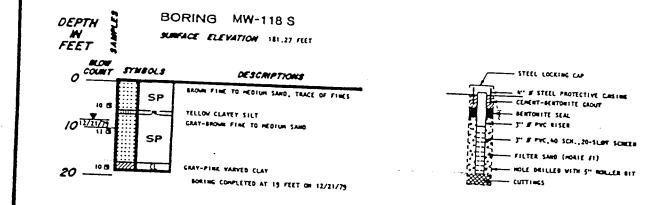
Surface seal repair and installation of water-tight cap

~


- Performed by: Dames & Moore

VI. SURVEY DATA

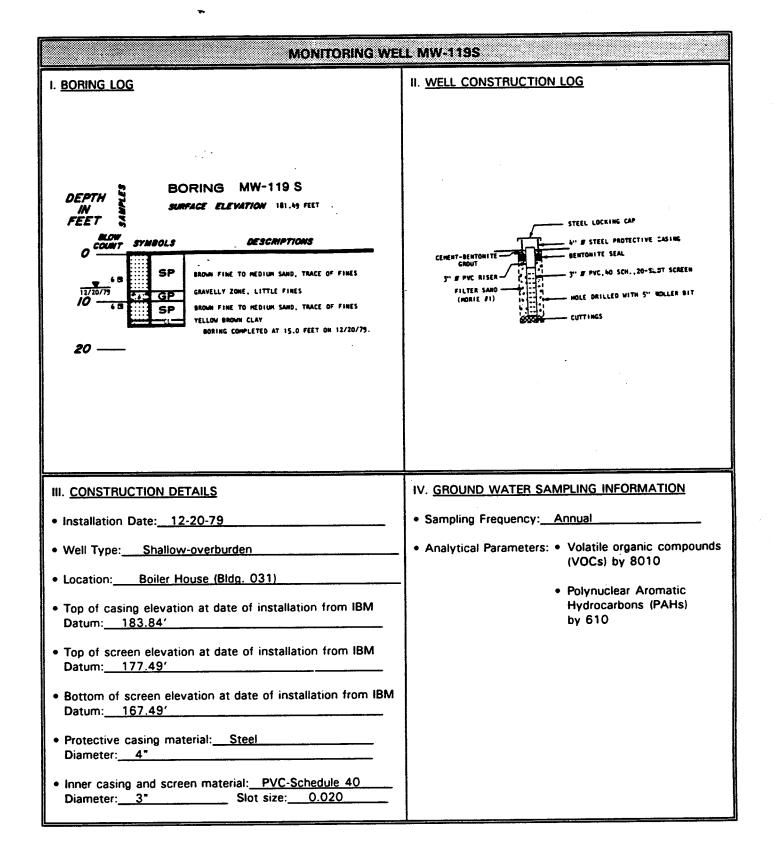
SURVEY DA	ATE PERFORMED BY	TOP OF STEEL PROTECTIVE CASING ELEVATION	TOP OF PVC CASING ELEVATION
12-21-7	9 Brinnier & Larios	181.23'	
10-2-92	Brinnier & Larios	181.35'	179.79'


MONITORING W	IELL MW-116S
VI. DEVELOPMENT HISTORY	
Redevelopment Date: 7-22-92	
- Total well depth at date of installation: <u>163.33'</u>	
- Depth prior to development: <u>164.63'</u> - Difference in depth from installation: <u>1.30'</u>	Depth after development: <u>164.63'</u> Difference in depth from installation: <u>1.30'</u>
Change in depth (in feet):	no change
- Redevelopment method: <u>Centrifugal Pump</u>	
- Performed by: Dames & Moore	
Redevelopment Date: 10-2-92	
- Total well depth at date of installation: 163.33'	
- Depth prior to development: <u>164.10'</u> - Difference in depth from installation: <u>0.77'</u>	Depth after development: <u>163.75'</u> Difference in depth from installation: <u>0.42'</u>
Change in depth (in feet):	0.35'
- Redevelopment method:Bladder Pump	
- Performed by: <u>CTM Analytical Laboratories, Ltd.</u>	

-

	MON	TORING WELL MW-117S							
V. MODIFICATION	N DETAILS								
 Modification Date 	te: <u>7-22-92</u>								
- Modifications	involved the following activitie	es:							
Painting an	Painting and labelling of casing								
- Performed by:	Dames & Moore								
Modification Da	te: 9-30-92								
- Modifications	involved the following activiti	es:							
Installation	of water-tight cap								
- Performed by:	Dames & Moore	с							
VI. <u>SURVEY DAT</u>	<u>A</u>								
SURVEY DATE	PERFORMED BY	TOP OF STEEL PROTECTIVE CASING ELEVATION	TOP OF PVC CASING ELEVATION						
12-26-79	Brinnier & Larios	180.87′							
10-2-92	Brinnier & Larios	181.02′	179.47'						
	· · · · · · · · · · · · · · · · · · ·								

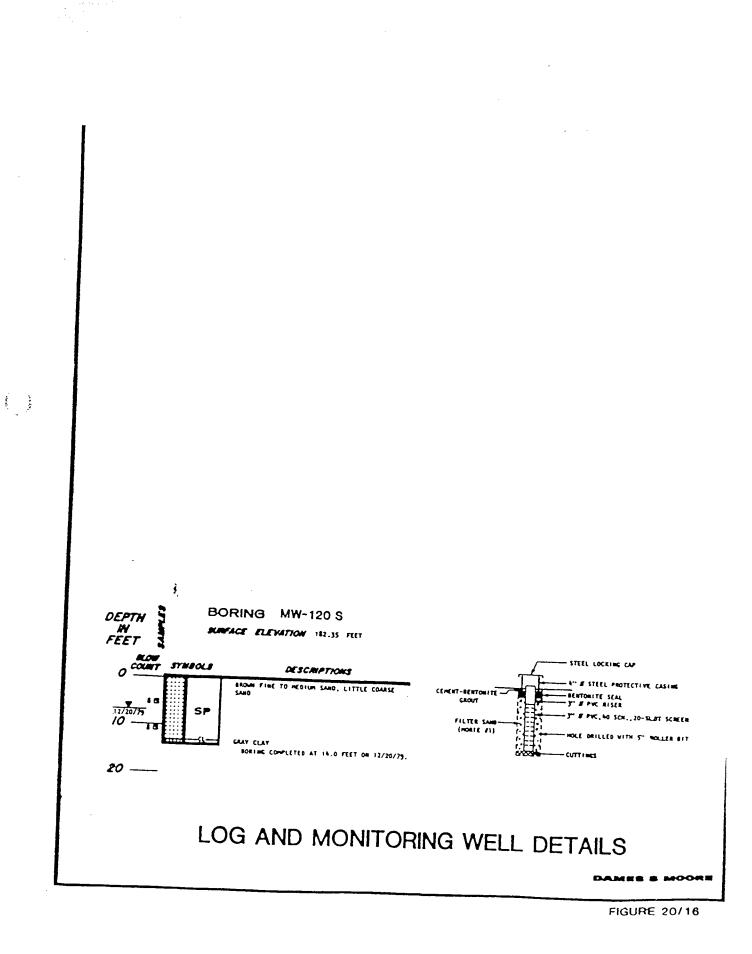
MONITORING W	/ELL MW-117S
VI. DEVELOPMENT HISTORY	
Redevelopment Date: 7-22-92	
- Total well depth at date of installation: <u>168.47'</u>	
Depth prior to development: 168.85' Difference in depth from installation: 0.38'	Depth after development: <u>168.85'</u> Difference in depth from installation: <u>0.38'</u>
Change in depth (in feet):	no change
- Redevelopment method: Centrifugal Pump	
- Performed by: Dames & Moore	
Redevelopment Date: 10-2-92	
- Total well depth at date of installation: 168.47'	
Depth prior to development: <u>169.12'</u> Difference in depth from installation: <u>0.65'</u>	
Change in depth (in feet):	
- Redevelopment method: Bladder Pump	
- Performed by: <u>CTM Analytical Laboratories, Ltd.</u>	

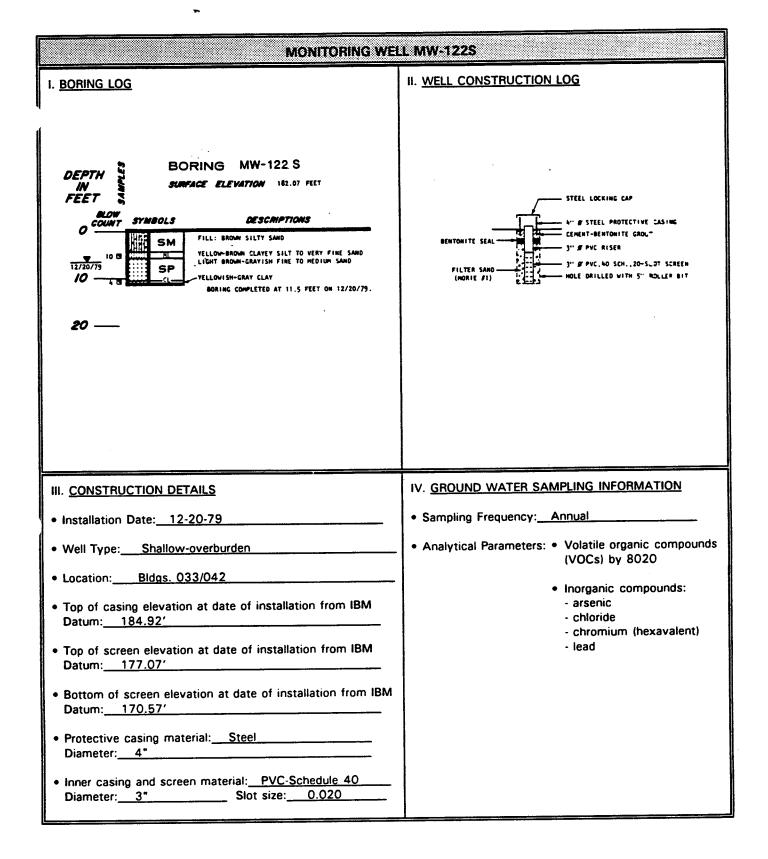


1

LOG AND MONITORING WELL DETAILS

DAMES & MOORE

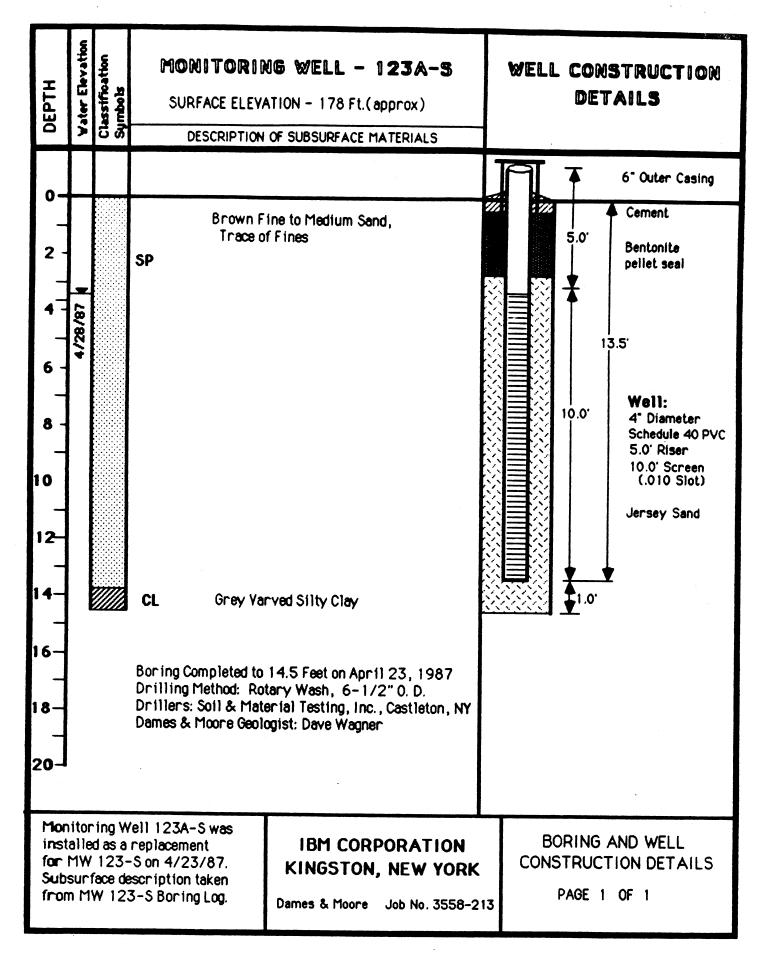

FIGURE 20/16

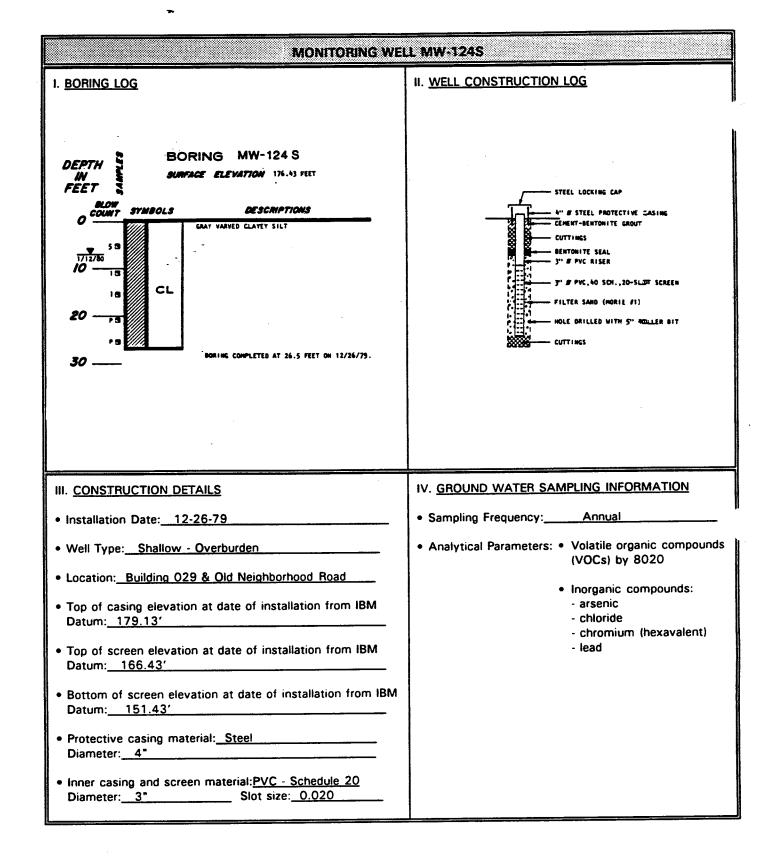


	MONI	TORING WELL MW-119S	
V. MODIFICATION D	ETAILS		
Modification Date:	7-22-92		
- Modifications inv	olved the following activitie	es:	
Painting and la	abelling of casing		
- Performed by:	Dames & Moore		
Surface seal r	olved the following activitie epair and installation of wa Dames & Moore	ter-tight cap	
vi. <u>Survey data</u>			
SURVEY DATE	PERFORMED BY	TOP OF STEEL PROTECTIVE CASING ELEVATION	TOP OF PVC CASING ELEVATION
12-20-79	Brinnier & Larios	183.84'	
10-2-92	Brinnier & Larios	183.92'	182.70′

*

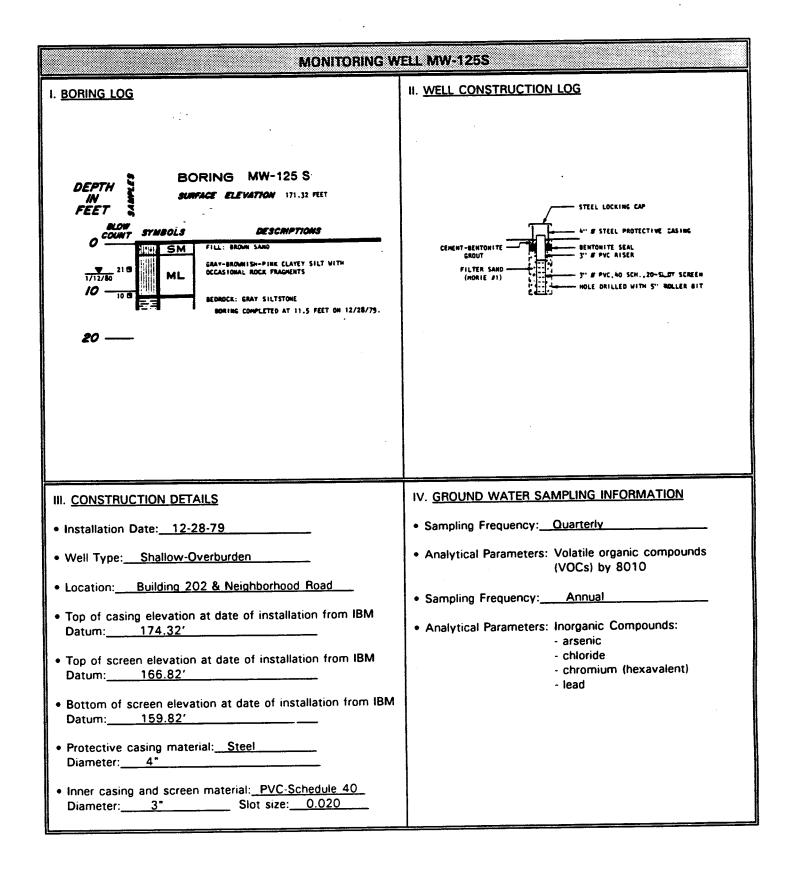
MONITORING W	/ELL MW-119S
VI. DEVELOPMENT HISTORY	
Redevelopment Date: 7-22-92	
- Total well depth at date of installation: <u>167.49'</u>	
- Depth prior to development: <u>168.40'</u> - Difference in depth from installation: <u>0.91'</u>	Depth after development: <u>168.40'</u> Difference in depth from installation: <u>0.91'</u>
Change in depth (in feet):_	no change
- Redevelopment method: <u>Centrifugal Pump</u>	
- Performed by:Dames & Moore	
Redevelopment Date: <u>10-2-92</u>	
- Total well depth at date of installation: <u>167.49</u>	
- Depth prior to development: <u>168.12'</u> - Difference in depth from installation: <u>0.63'</u>	Depth after development: <u>168.09'</u> Difference in depth from installation: <u>0.60'</u>
Change in depth (in feet):_	0.03'
- Redevelopment method: Bladder Pump	· · ·
- Performed by: <u>CTM Analytical Laboratories, Ltd.</u>	·




	MONITORING WELL MW-122S								
V. MODIFICATION	I DETAILS								
Modification Dat	te: <u>7-22-92</u>								
- Modifications i	nvolved the following activitie	s:							
Painting and	l labelling of casing								
									
- Performed by:	Dames & Moore								
Modification Dat	te: 9-30-92								
- Modifications i	nvolved the following activitie	:							
Surface_sea	I repair and installation of wat	ter-tight cap							
- Performed by:	Dames & Moore								
VI. <u>SURVEY DAT</u> A	2								
SURVEY DATE	PERFORMED BY	TOP OF STEEL PROTECTIVE CASING ELEVATION	TOP OF PVC CASING ELEVATION						
12-20-79	Brinnier & Larios	184.92′							
10-2-92	Brinnier & Larios	184.12′	186.35′						

MONITORING	VELL MW-122S
VI. DEVELOPMENT HISTORY	
Redevelopment Date: None	
- Total well depth at date of installation:	
- Depth prior to development:	Depth after development: Difference in depth from installation:
Change in depth (in feet):	<u></u>
- Redevelopment method:	
- Performed by:	

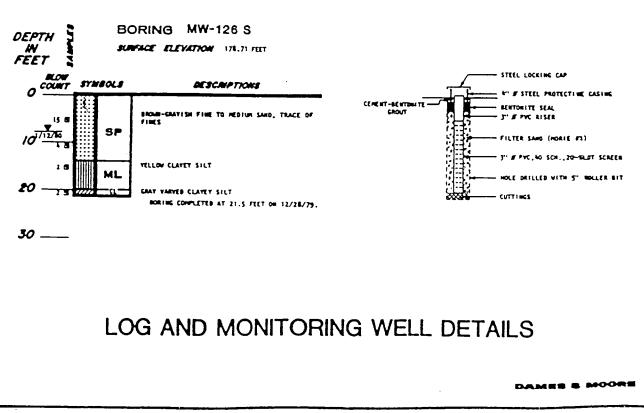
 \mathbf{r}



.

	MONIT	ORING WELL MW-124S	
V. MODIFICATION	N DETAILS		
Modification Date	te: <u>7-22-92</u>		
- Modifications	involved the following activities	:	
Painting a	nd labelling of casing		
	·		
- Performed by:	Dames & Moore	·	
Modification Da	ite: 9-30-92		
- Modifications	involved the following activities	:	
	-	ing (1.25'), and installation of water	-tight cap
- Performed by:	Dames & Moore		
VI. <u>Survey dat</u>	<u>A</u>		
SURVEY DATE	PERFORMED BY	TOP OF STEEL PROTECTIVE CASING ELEVATION	TOP OF PVC CASING ELEVATION
12-26-79	Brinnier & Larios	179.13′	
10-2-92	Brinnier & Larios	179.48'	179.21′

MONITORING	/ELL MW-124S
VI. DEVELOPMENT HISTORY	
Redevelopment Date: 7-22-92	
- Total well depth at date of installation: <u>151.43'</u>	
- Depth prior to development: <u>153.49'</u> - Difference in depth from installation: <u>2.06'</u>	Depth after development: <u>151.86'</u> Difference in depth from installation: <u>0.43'</u>
Change in depth (in feet):	1.63'
- Redevelopment method: Centrifugal Pump	_
- Performed by: Dames & Moore	
Redevelopment Date: 10-2-92	
- Total well depth at date of installation: 151.43'	
- Depth prior to development: <u>154.78'</u> - Difference in depth from installation: <u>3.35'</u>	Depth after development: <u>151.98'</u> Difference in depth from installation: <u>0.55'</u>
Change in depth (in feet):	2.80'
- Redevelopment method: Bladder Pump	_
- Performed by: CTM Analytical Laboratories, Ltd.	


AAW02E38

	MONI	TORING WELL MW-125S	
. MODIFICATION I	DETAILS		
Modification Date	. 7-22-92		
- Modifications inv	volved the following activitie	95:	
Painting and lab	elling of casing	· · · · · · · · · · · · · · · · · · ·	
- Performed by:	Dames & Moore		
	volved the following activitie	es: ing (4.5'), and installation of water-tig	ht cap
- Performed by:	Dames & Moore		
/I. <u>SURVEY DATA</u>			
SURVEY DATE	PERFORMED BY	TOP OF STEEL PROTECTIVE CASING ELEVATION	TOP OF PVC CASING ELEVATION
9-11-80	Brinnier & Larios	174.32'	
10-2-92	Brinnier & Larios	174.67′	174.25'

.

-

~

·····

		BM Mid-Hudson Valley, King No. 93005	ston Site		5	MW-161S Southeast corner B05	TOC Elev. 183.3
	-			(0	<u>e</u> *	Well	Y Page 1 of
Uepth Feet	Sample Number	Overburden/Litho Description	blogic	nscs	ə Volatile B Scan *	Construction Graphic	Well Construction Details
5		Ground Surface					6" flush-mount manhole w/2" wate tight sealing cap
		Blacktop to 3". FILL: SAND: poo	rly araded little silt				Concrete
, 		occ. f-c pebbles, occ. cobble, olive gray (gray brown w/asph	loose, moist,				Bentonite chips
	0203	FILL: SAND: well graded, very fir silt, fine to medium subangula bles, occ. asphalt frags, loose, and yellow brown.	r to subround peb-	FILL	0		2" Sch 40 PVC
1 =	0405	SAND: well graded, very fine to			0		4 riser
Ξ		trace fine pebbles, loose, satu	rated, brown.	SW			6" hand-augered
					-		6 boring
=	0607	SAND: mod. poorly graded, coar fine to med. sand, little silt, t	race clay, loose,		0		
-		saturated, gray brown to dark	yellow brown.				2" Sch 40 10- slot PVC screen
3 =	0809	SAND: as above.		SP	0.2		8 (3.0'-14.5')
E							
		: fining below 9.75' to fine to	very fine sand.				10
=	1011	SAND: well graded, very fine to compact, saturated, dark yellow			0		No. 0 sand
_		: pink quartz pebble at 11.5' SILT & CLAY LAYER: (.5') at 11	(1.5" diameter).	SW-			
2	1017	yellow brown.		SM	0.7		12
	1213	LAYERED SAND & SILT/CLAY: SA graded, med-coars, loose, sat SILT/CLAY: plastic, stiff, satura brown, dark yellow brown-brow	urated, brown; ted, varved light	SP	0.3		Bottom end cap
4=		SAND: well graded, very fine to	5 ,	SW	0		14
-		stiff, saturated, brown gray. SILT & CLAY: plastic, stiff, satur					Bentonite chips
6		ated, varved brown gray and g		ML-	-		-
				CL	-		16
Ξ		Total Depth: 16	5.25'				_
18							- 18
18							
							- 20
20=							20
		M. Ruchin, 630	Notes:			GROUNDWA	TER SCIENCES
		d by: S. Fisher, GSC Started: 4-2-93	* FID			CORP	ORATION
1	•	Completed: 4-2-95	Hand augered.				
	Well C	onstruction: 4-3-93					00, MW 1610
1		eveloped: 4-7-93				Geologic L	og: MW-161S
	well C	oords.: N717215.10 E592651.91	Static Water Level 3.6	51' (fro	m grad	e).	Revised 9/1/94

Clie	ent: I	Soil Augering Log IBM Mid-Hudson Valley, King			5	MW-162S		OC Elev. 184.36
Pro	,	No. 93005		Loca		nside south portion	B051	Page 1 of
Depth Feet	Sample Number	Overburden/Litho Description	ologic	nscs	d) Volatile (a Scan *	Well Construction Graphic	Depth Feet	Well Construction Details
0		Ground Surface					0	-6" flush-mount manhole w/2" water tight sealing cap
		 Concrete to 1.5'.						- Concrete
2	0203	FILL: SAND: mod poorly graded,		e	0			-Bentonite chips
4	0.405	pebble, angular-subangular, log yellow brown.		FILL d concrete	1			- 6"hand-augered boring
	0405	FILL: SAND: GRAVELLY: well grad angular-subang., f-c, loose, n FILL: GRAVEL: SLTY SAND: angul loose, moist, dk. yellow br., gr and dark brown, petroleum od.	noist, dk. yellow br. lar—subang. gravel, ravel stained orange	and	1			–2"Sch 40 PVC riser
	0607	FILL: GRAVEL: angular—subang., sand & silt, loose, saturated, SAND: well graded, some silt, tr saturated, dark yellow brown.	loose pebbles, tr f stained dk. brorng.		4			-2"Sch 40 10- slot PVC screen
8 =	0809	SAND: well graded, med-c, som stringers, loose, saturated, dk.		SW	0		8	(4.75'-13.0')
2	1011	LAYERED SAND & SILT: SAND: w some silt, loose, saturated, da SILT: plastic, stiff, saturated, la and very fine sand, yellow bro	irk yellow brown; aminated with clay	SW-	0			- No. 00 sand
12=	1213	LAYERED SAND & SILT: SAND: w silt, loose, saturated, dk. yellov clay, stiff, wet, yellow brown w (13') SILT: some clay, plastic,	w brown; SILT: some v/pale red laminae;	ML	0		= 12	– Bottom end cap – Swelled formation ar
14		brown gray.	very stirr, saturated,	ML			= 14	bentonite chips
16		Total Depth: 1	5.0'				16	
20=							E E	
	Logged	d by: S. Fisher, GSC	Notes: * FID Hand augered.					SCIENCES
	Drilling Well C Well D	Completed: 4-18-93 onstruction: 4-18-93 eveloped: 4-19-93	6" diam. red clay pip	e at 4	.75' (dr		Log:	MW-162S
Well Coords.: N717243.51 Static Water Level 5.			75'.				Revised 9/1/94	

Clie	ent: I	Soil Augering Log IBM Mid-Hudson Valley, King	ston Site		5	MW-163S	TOC Elev. 185.65'
Pro	-	No. 93005		Loca		ext to SW wall of	Page 1 of 1
Depth Feet	Sample Number	Overburden/Litho Description	ologic	nscs	d) Volatile W Scan *	Well Construction Graphic	Well Construction Details
	1415	Ground Surface Landscaping bark to 2" underlai SILTY SAND with rootlets. SAND: poorly graded, med-c, sa silt, fine-med. pebble, loose, to yellow brown; (7") siltstone col SAND: poorly graded, med-c, sa to subang. pebbles, loose, moi Saturated at 5.25'. SAND: well graded, coarse, little ated, yellow brown to brown. : change to dark gray. SAND: well graded, f-c, some s gray brown. SAND: well graded, f-c, some s gray brown. SAND: well graded, f-m, some dark yellow brown, fining with LAYERED SAND & SILT/CLAY: SA fine, loose, saturated; SILT/CLAY ated, yellow brown, brown, pale SILT & CLAY: stiff, saturated, la pale brown, occ. pale red; (13 vf sand, stiff, saturated, dk ye STRINGERS: vf-f sand, dense, SAND & SILT: poorly grade,d vf- med. sand, tr silt/clay stringer saturated, dark yellow brown. SILT & CLAY: (14.5') plastic, sti gray to gray red. Total Depth: 1	ome silt, occasional prown to dark bble at 3.75'. ome silt, some ang. st, dk. yellow brown. silt, loose, satur- silt, loose, saturated, depth. ND: poorly graded, AY: stiff, wet, lamin- e red. minated, yellow br., ') SILT & CLAY: tr el br; SAND: SILT saturated. -f sand, tr silt and 's, very loose, ff, saturated, brown	SW	0 1 2 1.5 0 0 1		4" Locking steel cap w/watertight inner ca 4" protective steel casing Concrete Bentonite chips 2 2" Sch 40 PVC riser 4 6" hand-augered boring 6 2" Sch 40 10-slot PVC screen (4.5'-14.5') 10 No. 0 sand 12 Bottom end cap 14 Swelled formation and bentonite chips 18 20
	Logged Drilling Drilling Well C Well D	d by: S. Fisher, GSC	Notes: * FID Hand augered.			CORP	<i>TER SCIENCES</i> <i>PORATION</i> og: MW-163S
	wen C	E592528.36	Static Water Level 5.2	25'.			Revised 12/15/94

Cli	ent:	Soil Augering Log IBM Mid-Hudson Valley, King			5	MW-164S	TOC Elev. 182.31'
	oject	No. 93005		Loca		outhwest of B051	Page 1 of 1
Depth Feet	Sample Number	Overburden/Litho Description		NSCS	d Volatile & Scan *	Well Construction Graphic	Well Construction Details
		Ground Surface Grass and topsoil to 5". SILT & dark brown. FILL: SILT, SAND, ANGULAR GRAV FILL: GRAVEL: SILT & SAND: ang graded sand, occ. rootlet, loos SAND: well graded, med-c, som angular-subangular gravel, loos yellow brown : olive gray at 5.5'. SILT: plastic, stiff, saturated, lar and some vf-med sand, yellow SAND: mod. poorly graded, med and silt, loose, saturated, dark SAND: mod. poorly graded, med and silt, loose saturated, dark SILTY SAND: mod. well graded, s saturated, yellow brown. (11.6') SILT: stiff, yellow browr SILT & CLAY: trace very fine sa saturated, brown to yellow bro SILT & CLAY: (12.25') plastic, s brown gray to gray red. Total Depth: 14	 WEL: moist. (ular-subangular, well se, moist, yellow br. a f sand & silt, occ. se, moist, dark minated w/organics w brown. -c, some fine sand yellow brown. -c, little fine sand yellow brown. silt stringers, loose, n (<0-25"). nd, plastic, stiff, wn. nd, plastic, stiff, wn. tiff, saturated, 		0.3 0.2 0 0		4" Locking steel cap w/watertight inner cap 4" protective steel casing Concrete Bentonite chips 2 2" Sch 40 PVC riser 4 6" hand-augered boring 6 2" Sch 40 10-slot PVC screen (4.5'-12.25') No. 0 sand 10 Bottom end cap 12 Swelled formation and bentonite chips 14 16 18 20
	Logged Drilling Drilling Well C Well D	M. Ruchin, GSC d by: S. Fisher, GSC g Started: 4-4-93 completed: 4-4-93 construction: 4-4-93 reveloped: 4-8-93 coords N717311 42	Notes: * FID Hand augered. TRENCH FILL ZONE 1. Static Water Level 5.7			CORPO	<i>DER SCIENCES</i> DRATION Og: MW-164S Revised 9/1/94

		-Huc	lson	Augering Lo Valley, Kir	0		-	MW-169S Approx. 150' N of MW-	TOC Elev. 180.08
Depth Feet	oject No. 920 Blow Counts	Sample Number		Over	burden/Lithologic Description	NSCS	d) Volatile (a Scan *	Well Construction Graphic	Page For 2
0	<u>Ground Surface</u>				vf-med., tr c sand, roots g-subround pebble, moist.				4" Locking steel cap w/2" expansion plug 4" protective steel casing Concrete pad, 24"x24
2 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	HAND AUGERED			SA-SR pebi	raded, f—med, tr silt, occ ole, loose, moist, yel. br. moisture at 4', med. r 4-4.5'.				Bentonite chips
6	5-4-6-6	1	17"	SAND: well g occ. organic loose, mois	ch layer at 5.5'. raded, vf-fine, some silt, cs, silt laminae at 13", t, mottled dark yellow br.		NR		8" HSA boring
8	5-4-3-2	2	18"	and med. <u>c</u> SAND: well g (silt layer 6 dark yellow	raded, vf-fine, some silt 5-8"), loose, saturated,		NR		2" Sch 40 10-slot PVC screen (8.0'-28.0')
12=	1/12"-1-1	3	20"		raded, f—med., little silt ;), loose, saturated, dark n.		NR		_
14-	1/12"-1-1	4	15"		raded, f—med, tr to little ose, saturated, dark yel—	SW	NR		No. 00 sand
16	1-2-2-3	5	16"	coarse sand urated, dark	raded, f-med., silt and d laminations, loose, sat- < yellow brown. raded, f-med., occ. silt		NR		5
18	4-3-4-6	6	24"	zones, coar saturated, c	raded, f—med., occ. sit isening below 12", loose, dark—med. yellow brown. raded, f—med., tr to little		NR		3
20	2-3-4-9	7	24"	silt, loose,	saturated, dark yellow br. silt over lower 5").		NR		
	Driller: SoilTes Logged by: S. Drilling Started Drilling Comple	Fish : 6-	er, (7-9	GSC 3	Notes: * FID Hand augered to 6.0'.			GROUNDWATE CORPOI	
	Well Construction Well Developed: Well Coords.:	on: 6 6-8	6-7- 8-93 201.	-93 3 73	Running sand: 22', 24 NR = No Reading Water level at 9.0' on		93.	Geologic Log	g: MW—169S _{Revised} 9/1/94

Clie	nt: IBM Mid			Augering Log Valley, Kingston Site		5	MW-169S		OC Elev.
	ject No. 920			·	Locat		Approx. 150' N Of	MW-16	Page 2 of 2
Depth Feet	Blow Counts	Sample Number	Recovery	Overburden/Lithologic Description	USCS	dð Volatile a Scan *	Well Construction Graphic	Depth Feet	Well Construction Details
22	2-3-5-13	8	24"	SAND: well graded, f—med., little silt (masses), loose, saturated, dark yellow brown (increased silt over lower 5").		NR		22	- 2" Sch 40 10-slot PVC screen (8.0'-28.0')
24-	2-3-3-7	9	24"	SAND: well graded, f-med, tr-little silthin silt laminae lower 2", loose, sat- urated, dk. yel. br change to dk. gray below 18", silt laminae brown gray.	- /	NR		 	
26	1-3-4-11	10	10"	SAND: well graded, very fine to fine, some silt, silt laminae 1", 2—3" and 9", compact, saturated, dark gray.	SW	NR		26	-8" HSA boring
28	8-8-9-9	11	10"	SAND: well graded, very fine to fine, little silt, increasing silt in lower 6", stiff, dense, saturated, dark gray.		NR		28	-Bottom end cap
22- 24- 26- 28- 30- 32- 34- 36- 36-	4-3-4-6	12	18"	SILT: trace clay, occasional very fine sand zone (3-5", 16-18"), plastic, dense, varved, brown gray-pale red.	ML	NR		30	-No. 00 sand
32=				Total Depth: 30.0'				= 32	
34								E E E 34	
36								= 36	
38								= <u>38</u> = =	
40								<u>40</u> <u>40</u> <u>42</u>	
									2 SCIENCES ATION
							Geologic	Log:	MW-169S
									Revised 9/1/94

Client: IBM Mid			Augering Log Valley, Kingston Site	e	ng No. M		TOC Elev. 174.36'
Project No. 930		5011		Loca	tion N o	of helipad, N Pa	rking Lot Page 1 of 1
Blow Seet the Counts	(ppm) Sample Number	Recovery	Overburden/L Descript	ithologic ion	nscs	Well Construction Graphic	Well Construction Details
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$) 2) 2) 3) 4	7" 10" 7" 16"	Grass and soil w/roots, G SAND: mod br to dk yel S, lit-some vc S, lit f SA-SR, dry, v hard & s well graded; gravelly f- (limestone). BOULDER/COBBLE: at 3', GRAVEL: below 3', w/sand BOULDER: 4'-7', brown s BOULDER: 4'-7', brown s SAND: dk yel br, f-m, tr siltstone frags, poorly g PEAT: 3-6", dk brown, m stalks visible w/organic SAND: bottom 1", f-m, s moist to wet, poorly gro SAND: olive gray, f-m, li changing color to dk ye silt content, tr vf sand, graded to well graded, laminae in lower 4". : increase in c sand, v SAND: f-m, some vf S & color dk-mod yel br/ye SAND: 9-11", c-vc, som silt, loose, wet, poorly g SILT: br-gray, varved, tr c dense, sl plastic, wet, s : more plastic, dense, v Total Depth:	br, f-c S, some v gravel, tr m gravel, sl indurated, crumbly c SA-SR below 2.5' brown siltstone. & silt, moist, loose. siltstone. c, some silt, tr raded, sl cohesive. hoist, roots and silt. silty, tr organics, aded, olive gray. t c sand, grad. el brown and incr. loose, wet, poorly tr dark organic wet, well graded. silt, lit c S, var. el orng, loose, wet; -vc, f G, loose, wet; -vc, f G, loose, wet; olastic. loy, tr organic fibers sharp top contact. varved, wet.	FILL Yaqınog SP-PT SM-SW		4" Locking Royer cap w/2" expansion plug 4" protective steel casing Concrete pad Bentonite chips 2" Sch 40 PVC riser 4 8" HSA bore hole 6 8 2" Sch 40 10-slot PVC screen (4'.0'-14.0') 10 No. 00 sand 12 Bottom end cap 14 Collapsed/swelled formation 16
Driller: SoilTes Logged by: S. Drilling Started Drilling Comple Well Constructi	. Fishe d: 9 eted: ion: 9	er, (3–9 9–3 –3–	-93 Original gr	ered to 3.0'. round surface at 7	<i>"</i> .5'.	COR	<i>ATER SCIENCES</i> <i>PORATION</i> Log: MW-170S
Well Developed Well Coords.:		338.	456	(9/14/93, 13:04;	from TOC	_	Revised 8/12/94

	oject No. 9			lson	Valley, Kingsto	on Site	Locat	ion E d	of helipad, N Po	arking l	₋ot Page 1 of
Uepth Feet	Blow Counts	(mqq)	Sample Number	Recovery		den/Lithologic escription		USCS	Well Construction Graphic	Depth Feet	Well Construction Details
0	Ground Surface					 0–2"; gravel base 1 AVEL: dark brown, m				0	— Asphalt — Backfilled w/bentoni slurry
4	HAND AUGERED					c SAND below 3', tr elow 3.5', moist bel		FILL		4	-Bentonite chips -2"Sch 40 PVC riser -8" HSA bore hole
	2-2-2-7	1.0	1	17"	silt. tr R f G. fre	isky yel br, some vf eq. rootlets, decayed or, sl more silt 4–5" plant frag at 14", lt , moist, loose & cru	leaves	SW SW-OL		6	- 2" Sch 40 10- slot PVC screen (7.0'-17.0')
	4-2-2-3	0	2	6"	: dusky yellow b	rown, tr organic frag rge rock fragments	gments,			E E 10	
12	2-2-2-2	0	3	15"	saturated, runnin of quartz & vari pred. brownish-g graded, homoger	f, lit vf, tr silt, loo g sand grains comp ous rock types & c gray to olive gray, p ieous texture. dk br organic mass	osed plors, oorly	SW		= 12	– No. 00 sand
4	1-6-4-6	0.8	4	19"	organic laminal SAND: vf, tr f S, more dense orgo sharp top contac aray silt layer at	tion at 6", wet. lit silt, brownish gro anic matter at top c ct, poorly graded, 1, ; top.	y, wet, ontact, ′4"	SP		 	
6	4-4-5-8	0	5	15"	hesive, sl more : fining to vf sa dense & cohes organic fragme	f—vf sand w/silt, we brownish gray. nd and silt at 7", n sive, wet, brownish g nts throughout.	nore ray,			16	
18	7-10-7-7	0	6	13"	poorly graded. SILT: varved, brow	grading into unit bel nish gray w/pale re tic, dense, cohesive, ay.	ow, d	MH		18	-Bottom end cap
201					Total	Depth: 18.0'.				E 20	
	Driller: Soi Logged by: Drilling Star Drilling Com Well Constru Well Abando	S. ted: plet uctio	Fish 9- ed: n: 9	er, (16— 9—1 —16	GSC Har 93 Orig 6–93 Wel –93 (N	es: nd augered to 6.0'. ginal ground surfac l abandoned; replac IW-171SA) drilled 7 nple no. 3 includes	e at 6.1 cement '' south	well		VATEH RPOR.	R SCIENCES ATION MW-171S
	Well Coords	.: N		191	31 ar	nd physical sedimer _ ~5.5' (9/17/93	itary an	alysis.		J	Revised 8/12/94

			-Huc		Augering Log Valley, Kingston Site		g No. M ion N F	IW–172S Parking Lot, SE		TOC Elev. 171.75
Depth Feet	bject No. S Blow Counts		Sample Number	Recovery	Overburden/Litho Description		S	Well Construction Graphic	Depth Feet	Page 1 of 7 Well Construction Details
0 2 4 6 10 12 14	<u>Ground Surface</u> HAND AUGERED 5-7-8-9 6-6-6-5 4-4-4-4 2-2-3-3 4-4-6-6		1 2 3 4	19" 13" 12" 19"	Asphalt pavement. SILT, SAND & GRAVEL: loose, SA-SR gravel, some water ru from gravel fill just below as SAND: f-m w/vf sand and sil brown w/frequent roots, leaf decayed twigs, moist, crumbl SAND: dk yel br to dusky yel silt some vf S, freq. org. fra & org., moist, crumbly, well to pred. It ol-gray to ol-gra S, some-lit f-vf S, tr silt, of tr f SR G, rootlets at 14" & homogeneous, poorly graded, SAND: dk-m yel br, vf-f san orng. w/silt, faint horiz. lam graded, wet, sl. cohesive, co yel br silt layer at 8.5" to 1 sl plastic, moist to wet. : homogeneous, slight tint of 2" saturated. : slightly more dk yel brown, saturated, mod yellow brow : SAA top 2". SAND: brownish gray (5YR4/1) silt, cohesive, dense, wet, po homogeneous appearance, no	Inning into hole sphalt at 4". frags and ly. br, f-m S & igs, silt is v dk graded, grades ay c S & med qtz S grains, c 18", S looks , moist to wet. d, some dk yel ination, poorly ilor banded, m 10.5", dense f gray, lower f gray, lower , tr med sand, vn lower 3".	FILL SM-OL SW-SP			 9" flush-mount manhole w/2" water- tight sealing cap Concrete Bentonite chips 2" Sch 40 PVC riser 8" HSA bore hole 2" Sch 40 10- slot PVC screen (4.0'-14.0') No. 00 sand Bottom end cap Bentonite chips
16	9-10-10-7	0	6	17"	: SAA, w/occ. pale red silt l increase in interstitial silt.	laminations, sl	SP-SM		16	— Collapsed/swelled
20	1-2-2-3	0	7	11"	SILT: varved, brownish gray w, inations, tr vf sand, dense, Total Depth: 20.0	plastic, wet.	МН		20	– Collapsed / swelled formation
	Driller: Soi Logged by: Drilling Star Drilling Corr Well Constru Well Develop Well Coords	S. ted: nplet uctic ped:	Fish 9- ed: n: 9 9-2	er, (17– 9–1 (–17 23–9 005.	Notes: SSC Hand augered 93 Original ground 7–93 Water level of hole at 10', at in drilling.	to 6.0'. d surface at 4. 5.5' measured fter ~15 minut	when e break	<i>COF</i> Geologic	POR	R SCIENCES ATION MW—172S _{Revised} 8/12/94

	ent: IBM N bject No. S		Hud		Augering Lo Valley, Kii	og ngston Site			10' of	f W s	ide Neig in gras	hborho	
Depth Feet	Blow Counts	(mqq)	Sample Number	Recovery	Ove	erburden/Lithologic Description		NSCS	Сс	Wel onstru Grapł	iction	Depth Feet	Well Construction Details
0	<u>Ground Surface</u> HAND AUGERED												 4" Locking Royer cap w/2" expansion plug 4" protective steel casing Concrete pad Bentonite chips 2" Sch 40 PVC riser
8	2-3-3-2	0	1	13"	tr SA grave graded. : change to some silt : SAA, tr f	l br, vf-f and silt, tr m- el, loose, crumbly, moist, o pred. mod yel brown, r , and vf-f sand, loose, r gravel, moist to wet (ou	well n-c S, noist.					6	—8" HSA bore hole
10	1/24"**	0	2	1"		was wet). I brown, f—m, some vf s	and &					= = 10	
12	2-1-2-6	0	3	18"	silt, tr c-v	c S, tr f SA-SR grovel, ell graded; SILT layer (2" wnish-gray, dense, plasti ag. at 7", shale frags at	wet, thick)	FILL*	$\overline{\wedge}$			E = 12	— 2" Sch 40 10-slot PVC screen (3.5'-18.5')
14	1-1-2-4	0	4	6"		umerous siltstone frags, , tr stem fragments.	SA—A,		2" RCP			E E E 14	
16	5-2-2-4	0	5	17"	w/silt, loos 4-9", A-SA lams below f-m sand SAND: dk ye	I br, vf-m, some vc sand e, wet, well graded, v gr sittstone frags, hor. orgo 9", dusky yel br, pred. and vf sand and silt. I br, f-m, some vf, tr c	avelly inic-rich loose, , occ.	SW	4			16	— No. 00 sand
18-	3-4-4-4	0	6	21"	loose, wet; hor. 11-13' 13-17", wet 18"; SAND:	silt masses 8-11", well SILT: mod yel br, dense, '; SAND: dk yel br, vf-f, s t, loose, poorly graded, SIL vf-f, some silt below 18	plastic, ome silt T: 17"-					18	— Bottom end cap
20=	3-1-1-1	0	7	24"	top contact to pred. br	5". hor., top surface sloped , mod yel br to lt pink, g ownish-gray w/pale red -rich laminations.	rades	МН				20	 Collapsed/swelled formation
	Driller: Soi Logged by: Drilling Star Drilling Com Well Constru Well Develop Well Coords	S. ted: pleto uctio ped: .: N	Fish 9- ed: n: 9 9-2	er, (20– 9–2 –20 23–' 552.	GSC 93 0-93 1-93 93 547	Notes: Hand augered to 6.0'. *Storm sewer invert is All soil in boring to the WL at 11' when hole a when hole at 22'; storr a few inches of flowing **Possible void from 8' SWL 9.99' (9/21/93;	ut depth t 16'; Wi n pipe ~ 1 water i 10'.	may be L at 14 -11'-15 n pipe.	e fill. 4.6'		COF	RPOR.	R SCIENCES ATION : MW—173S Revised 8/12/94

Client: IBM Mic Project No. 93	d–Hud		ugering Log Valley, Kingston Site		ion	MW—173S 10'off W side Neighb N of MW—609S in gra	orhood	OC Elev. 179.83' Rd. nd Page 2 of 2
	(ppm) Sample Number	Recovery	Overburden/Lithologic Description		NSCS	Well Construction Graphic	Depth Feet	Well Construction Details
20 2-1-2-2 22 24 24 26 28 30 30 32 34 34 34 34 34 40	2 8		SILT: weathered top 12–14", color ch grad. to br-gray in lower portion of dense, plastic, moist to wet. : SAA, br-gray, clay-rich, v plastic, dense. Total Depth: 22.0'.	anges spoon, moist,	MH MH-CH		20 22 24 26 28 30 30 32 34 36 38 38 40	- Collapsed/swelled formation
			Notes:					SCIENCES ATION
						Geologic I	Log:	MW-173S

			Huc		Augering Log Valley, King	ston Site		-	MW-174S S of MW-173		TOC Elev. 179.89'
	oject No. S			2					Well	6	Page 1 of 1 Well
Depth Feet	Blow Counts	(mqq)	Sample Number	Recovery	Overl	ourden/Lithologic Description		NSCS	Construction Graphic	Depth Feet	Construction Details
	Ground Surface HAND AUGERED 9-6-4-2 2/24" 1/24" 1-1-1-2 1-1-2-2	0	1 2 3 4 5	 12" 24" 24" 11"	SAND: dk yel t sand, tr f SA sand, tr c S, graded, occ. tr f SR grave SAND: dk yel t vc sand, tr f silt mass at 23", very loos : SAA, wet 0- sl flowing 9 8"-22"; sor zones below SAND: f-m an- dk brown org are mod yell SILT: varved, s and It. bluish top 7" appea br, all br-grc SILT: w/clay, v pale red and plastic, dense	dk yel brown, vf-f S, -SR gravel, moist, loc pr, vf-f sand & silt, l loose, crumbly, moist rootlet, siltstone frag l, tr silt layer fragmen pr, vf-m sand & silt, gravel, weathered mo 6", brown-gray silt m se, wet below 6", well -9" and 19-24", satu -9" and 19-24", satu 19", occ. wthrd. silt ne dark brown organic r 19", well graded. d vf, w/silt-rich zones anic-rich zone, silty lo brown, wet, loose. ome clay, br-gray w/ -gray laminae, dense, rs to be weathered, m by w/tint of purple be arved, brownish gray, It bluish-gray laminae , wet. btal Depth: 16.0'.	it med ;, well 3-4", nts. tr c- d br ass at graded. rated, masses c-rich s, occ. ayers pale red plastic, nod. yel ow, wet. occ.	FILL SM MH-CH			 4" Locking Royer cap w/2" expansion plug 4" protective steel casing Concrete pad Bentonite chips 2" Sch 40 PVC riser 8" HSA bore hole 2" Sch 40 10-slot PVC screen (3'.0'-13.0') No. 00 sand Bottom end cap Bentonite chips Collapsed/swelled formation
	Driller: Soil Logged by: Drilling Star Drilling Com Well Constru Well Develop Well Coords	S. ted: pleta uctio ped: .: N	Fish 9- ed: n: 9 9-2	20– 9–2 –20 23–9	GSC 93 20-93 9-93 93 633	Notes: Hand augered to 6.0 Very soft formation & SWL 10.02' (9/21/9	B'—12'.	n grad	<i>COF</i> Geologic	POR	R SCIENCES ATION : MW-174S Revised 12/15/94

	ent: IBM M bject No. 9		Huc		Augering Lo Valley, Kir	5		ion E	MW-175S side Neighborh of MW-610S		TOC Elev. 179.99 Page 1 of 2
Depth Feet	Blow Counts	(ppm)	0.5	Recovery	Ove	erburden/Lithologic Description		nscs	Well Construction Graphic	Depth Feet	Well Construction Details
0	Ground Surface				 Grass and se	oil with roots, 0-5".				0	 4" Locking Royer cap w/2" expansion plug 4" protective steel casing Concrete pad
4	HAND AUGERED				sand and c to moist, li : v loose, s moist, m-	some c, lit vf, tr silt, so cc. f SA—SR gravel, loos mestone rock frags. at 1 salt & pepper textured, c -c sand below 3', some v prown to It gray througho	e, dry .5'. Iry to variation	FILL			— Bentonite chips — 2" Sch 40 PVC riser
6	4-3-2-3	0	1	18"	faint mottlin masses top SILT & SAND	br, f, tr vf sand & silt, g (med gray), occ dk br 2", faint hor. banding, loc : at 15", mod yel br, sil laminated, wet, more cof ed	organic ose, dry; t w/vf	SM			
10=	3-3-1-2	0	2	8"	SAND: dk yel sand & silt,	br, m sand w/f sand, occ. It br silt masses ar near bottom, loose, wet,	nd lam.,	SW		= 10	— 8" HSA bore hole
12	1/12"-1-2	0	3	13"	& silt, occ f-m S, thin laminated s top & botto	dk yel br, some—lit f, tr silt masses, loose, wet, gr lam. of vc sand at 7.5', ilt layer at 10", sharp oc m, c sand below 10", gro t bottom, coarsening upwa	ading to 1" thick ontacts iding to	SW-SM		= 12	— 2" Sch 40 10-slot PVC screen (5.5'-20.5')
14	3-5-6-6	0	4	22"	SAND: dk yel vf sand and	br, m-c w/f sand, lit- lit-tr silt, tr silt masses raded, homogenous.	some	SW		 14	
16	2-2-3-7	0	5	21"	silt, loose, v vf-f sand, t increases w/	br, m—c, some f, lit—tr vet, homogenous, grading f rr m sand, some silt, silt 'depth, loose, wet, tr silt to poorly graded at bot	to pred. content masses,	SW-SP		16	
18	3-5-11-13	0	6	20"	gray vf-f	2", grading to med gray t sand w/silt, tr m S, tr se, wet, sl flowing, poorly	organic			- 18	— No. 00 sand
20=	2-2-2-2	0	7	10"	f-m sand	gray, vf—f sand, coarse below 8", some silt, loos aded.	ning to e, wet,	SP		20	
	Driller: Soi Logged by: Drilling Star Drilling Com	S. ted: plet	Fish 9- ed:	er, (2—9 9—2	GSC 3 2-93	Notes: Hand augered to 6.0' Sample no. 3 includes	s organi		CC	WATEI ORPOR.	R SCIENCES ATION
	Well Constru Well Develop Well Coords	bed: .: N	9-	14—: 508.	93 516	and physical sediment	,	,		c Log	: MW—175S Revised 8/12/94

	ent: IBM N bject No. S		Huc		Augering Lo Valley, Ki	og ngston Site		ion E	MW-175S Side Neighborhoo S of MW-610S		TOC Elev. 179.99' Page 2 of 2
Depth Feet	Blow Counts		Sample Number	Recovery	Ove	erburden/Lithologic Description		USCS	Well Construction Graphic	Depth Feet	Well Construction Details
	Ground_Surface 2-2-3-2	0	8	13"	layer /-9",	5" h gray, varved w/pale i ganic lam., pred silty v cohesive, v wet, flows dense and plastic. Total Depth: 22.0'.	red lams., f sand slightly,	SP MH		20 22 24 26 28 30 32 34 36 38 38 40	 2" Sch 40 10-slot PVC screen (5.5'-20.5') No. 00 sand Bottom end cap Collapsed/swelled formation
						Notes:					R SCIENCES ATION
									Geologic	Log:	: MW—175S Revised 8/12/94

	ject No. 🤅				Valley, Kingston Si	Loca.	tion F	arking Lot W of BC)25	Page 1 d
Feet	Blow Counts	(ppm)	Sample Number	Recovery	Overburden/ Descrip		nscs	Well Construction Graphic	Depth Feet	Well Constructio Details
-	<u>Ground_Surface</u>								0	-9" flush-mount manhole w/2" wa tight sealing cap -Concrete
					Asphalt, 0-3", c gravel SAND: f-m, some c, lit gravel, mod br to dk loose, f gravel absent	vc sand, tr f SA-SR yellow brown, moist,	FILL		2	-Bentonite chips
	HAND AUGERED						SW		4	-2"Sch 40 PVC riser
_					SAND: dk yel br, f-m s				6	-8" HSA bore hole
	2-2-1-2	0	1	18"	tr c sand, occ. vc sau v thin gray zone w/m loose, moist, v faint c well graded. : SAA top 5", grades	nd, SR gravel, occ. ore vf sand (<1"), olor banding visible,			8	-2"Sch 40 10- slot PVC screen (6.0'-16.0')
	2-2-1-2	0	2	10"	tr m S, occ v thin 5" & 8", turning we and cohesive in vf s graded, f sand inter	faint silt lam. betw t at 8", most dense sand zone, poorly	SW-SP		= 10	
	1-1-1-1	0	3	4"	SAND: silty vf-f sand, l sand, grains loose, we				= 12	-No. 00 sand
	1-1-2-4	0	4	20"	gray, vf—f, tr m S w	well graded, quickly : SAND: m gray to br	SW		 14	
	2-1-3-3	0	5	7"	: SAA, w/thin (0.25") dense, plastic, wet, p into dk yel br, f-m tr c sand, loose, we	boorly graded, grading sand, some vf sand,			16	-Bottom end cap
	2-4-2-3	0	6	15"	SAND: br-gray to med lit-tr f sand, several laminae between 1" ar cohesive, flows slightly	black organic—rich nd 5", wet, slightly	SP-SM		18	-Bentonite chips
	3-3-3-3	0	7	12"	: SAA, with increase in SILT: br-gray, varved, w 5"-8", tr clay, plastic, to f sand w/vf sand silt at bottom of inter	v/pale red lams. from dense, wet, grading below 8", varved	МН		20	-Collapsed/swelled formation and Bentonite chips
	Driller: Soi		-		Notes:			GROUNDWA	TER	SCIENCES
	Logged by: Drilling Star Drilling Corr	rted : nplet	9– ed:	1-9 9-2	-93 Water lev	gered to 6.0'. vel measured at drill	ed den		PORA	ATION
	Well Constru Well Develop Well Coords	oed: .: N	9-	-14- 343.	·93 of 16.0'. ·93 916			Geologic l	_og:	MW-1765

	nt: IBM M ect No. 9		Huc		Augering Log Valley, Kingston Site		Boring No. MW-176S TOC Elev. 177.55' Location Parking Lot W of B025 Page 2 of 2				
Depth Feet	Blow Counts	1	Sample Number	Recovery	Overburden/Li Descripti	ithologic ion	USCS	Well Construction Graphic	Depth Feet	Well Construction Details	
	2-3-3-3	0	8	23"	SAND & SILT: vf S w/silt, m gray, wet, cohesive, g silt w/tr clay, pale red lo plastic, grades quickly bo occ. faint silt laminae. Total Depth:	grades to varved aminae betw 7—12" ack into vf S w/				- Collapsed/swelled formation and Bentonite chips	
					Notes:					R SCIENCES ATION	
								Geologic	Log:	MW-176S	

	ent: IBM N bject No. S		Huc		Augering Log Valley, Kingston Site		ion Pa	MW-177S rking Lot W of E of MW-176S		TOC Elev. 179.30 Page 1 of 2	
Depth Feet	Blow Counts	(ppm)	Sample Number	Recovery	Overburden/Lithologic Description		nscs	Well Construction Graphic	Depth Feet	Well Construction Details	
0	Ground Surface				Grass and soil with roots, top 4".					 — 4" Locking Royer cap w/2" expansion plug — 4" protective steel casing — Concrete pad 	
2	HAND AUGERED				SAND: dk yel br to mod br, m-f, som lit-tr c sand, tr vc sand, loose, mois well graded, occ. SA-SR m siltstone o	st,	SW		2	— Bentonite chips	
6					SILT: top 2", mod-dk yel br, dense, sl w/vf sand, some color lamination. SAND: dk yel br, f-m, some vf, tr c, v		ML		6	— 2" Sch 40 PVC riser	
8	3-3-3-5	0	1	16"	should be be by the mass scattered white quar grains, tr organic masses at 7", loose moist to dry, well graded, tr silt. : SAA, sl more vf sand & silt 2-5", wet at 10", mod yel br silt mass a	rtz sand e, turning	SW			— 8" HSA bore hole	
10=	4-4-3-4	0	2	14"	loose, homogeneoús appearance, well graded. : SAA, f-m sand w/ incr vf sand and	d sl	SM-SW		= 10		
12	2-1-2-3	0	3	19"	incr in silt, homogenous, faint silt k 9-13", loose, saturated, well graded ing slightly, pred f-vf sand below 9 SAND: pred f-m dk yel br, some vf, t	, flow- ". r c top			= 12	← 2"Sch 40 10-slot PVC screen (6.0'-16.0')	
14	2-3-2-3	0	4	15"	6", fines to pred f sand w/vf sand & silt, sl cohesive, color lam. It-mod br dkr br lams, saturated, faint silt lams changing to med gray to br-gray, vf- 11", saturated, sl flowing, silty through	- & occ. , quickly -f S at hout.	SP		= 14	— No. 00 sand	
16	3-3-2-1	0	5	9"	 SAND: vf-f, med gray to brownish grasilt throughout, homogeneous, w/v th yellow brown silt lamination at 8", sli cohesive, saturated. : SAA top 1", turns to f-m dk yel br 	ightly - S, sl			16	←Bottom end cap	
18	3-5-6-7	0	6	11"	coarsening to pred m S, tr c S, so vf-f S, tr silt, loose, sat, 1/4" thick yel orange silty vf-f S layer at top sand, appears oxidized, silt laminatic SAA top 8", turns dk br 7-8", tr silt silt masses (It brown), tr c sand	of br on at 8". masses	SP-SM		18	- Collapsed formation	
20	2-4-4-6	0	7	21"	SILT: varved, br-gray w/pale red lam., to	, dense,	MH-SM		20		
	Driller: Soi Logged by: Drilling Star Drilling Com	S. ted: plet	Fish 9- ed:	er, (1–9 9–1	Hand augered to 6.0' -93		6'.		GROUNDWATER SCIENCE CORPORATION		
	Well Constru Well Develop Well Coords	bed: .: N	9-	14—: 297.	93 219	SWL 11.52' (9/14/93, 16:49; from grade).			Geologic Log: MW-177S Revised 8/12/94		

	ent: IBM I oject No.		Hud		Augering La Valley, Ki	og ngston Site		ion I	MW-177S Parking Lot W of S of MW-176S		TOC Elev. 179.30' Page 2 of 2
Depth Feet	Blow Counts	(mdd)	Sample Number	Recovery	Ov	erburden/Lithologic Description		NSCS	Well Construction Graphic	Depth Feet	Well Construction Details
	2-3-4-5	0	8 SC	7"	SILT & SANE tr f sand, ing, same	beschiption bis brownish gray silt w/v loose, dense, sl plastic, as 16-21" in above spo Total Depth: 22.0'.	of sand, sl flow- oon.	SM	Graphic		- Collapsed/swelled formation
40										– – 40	
						Notes: GROUNDWATER SCIE CORPORATION					
									Geologic	Log:	MW-177S

	ent: IBM M bject No. S		Huc	lson 1	Augering Lo Valley, Kir	og ngston Site	Borino Locat	ion -	MW-178 40'N of of MW-	B025,		TOC Elev. 180.17' GS Elev. 177.72' Page 1 of 2
Depth Feet	Blow Counts	(mqq)	Sample Number	Recovery	Ove	erburden/Lithologic Description		NSCS	We Constr Grap	uction	Depth Feet	Well Construction Details
	Ground Surface											 4" Locking Royer cap w/2" expansion plug 4" protective steel casing
2 4 6	HAND AUGERED				cobbles, dry.			SW				 Concrete pad Hydrated bentonite chips 2" Sch 40 PVC riser
8	1-1-1-1	0	. 1	17"	SAND: brown, n saturated at	m—c, loosely packed, moist (base.	at top,			20000000000		— 8" HSA borehole
	AUGERED					, brownish gray, m—c. SR—S/		SP/SM	\$			
18	2-3-2-2	0 0.2	2	24"	w/1" siİty clo SILTY SAND: 20 w/some f sa interlayer. SAND: 23—24",	iy lam & some organics, sat)-23", brownish gray, mostly nd, faintly laminated w/occ. brownish gray, f-m, loose, s	silt silt silty clay saturated.	SM		000000	 18	
20-	5-5-9-11	0 0.1	3	22"	silty clay lam	n gray, m—c, SR—SA, loose v inations (1/4"—1" thick), cla iganic frag, saturated.	y rip–up	SP/SM			-20	— Bentonite chips — No. 00N sand
	Driller: Nor Logged by: Drilling Star Drilling Com Well Constru Well Develop Well Coords	D. ted: nplet uctio ped: .: N	Muri 7- ed: n: 7 8-,	ceak 24– 7–2 –24 3–91 303.	6, GSC 96 4-96 96 6 356	Notes: *Top no. is volatile sco bottom no. is jar hea measurement. Length of well material SWL 9.23' (8/3/96; 1	l: 33.9'.	scan	on;	COF	RPOR	R SCIENCES Ation MW-178M

Well Construction Graphic Well Construction Details
20 2" Sch 40 PVC riser 22 No. 00N sand 8" HSA borehole 24 2" Sch 40 10-slot PVC screen (21.5'-31.5') 28 30 Bottom end cap 32 Collapsed/swelled formation 2" split-spoon borehole 34 40
GROUNDWATER SCIENCES CORPORATION
Well Log: MW-178M

			Huc		Augering Lo Valley, Kir	og ngston Site		-	MW—178S Grass area			TOC Elev. 179.29'
Depth Feet	Blow Counts	1	0 5	Recovery	Ove	erburden/Lithologic Description		nscs	Wel Constru Grapt	l ction	Depth Feet	Page 1 of 1 Well Construction Details
2	Ground Surface HAND AUGERED				c, tr vc, oc loose, mois	bots, top 4". low brown, f-m, some v cc A-SA f-c gravel, well t, occ. asphalt chunk. br, m-c, some f, lit vf	graded,	FILL				 4" Locking Royer cap w/2" expansion plug 4" protective steel casing Concrete pad Bentonite slurry Bentonite chips 2" Sch 40 PVC riser
8	2-1-2-2 2-2-3-3	0	1	18" 19"	graded, loo some variat fining lower sand, tr m SAND: pred f m-c at 10 3", loose, v thin clay/si interstitial s SAND: dk yel	se, moist, turning wet at ion in color at 6.5'-7.0', 3-4" to pred. f sand w and c sand, tr silt. 5-vf top 10", sharp chan ", some f, lit vf , tr vc vet, well graded, mod yel It stringer at 18", trace silt. br, well graded, m-f, li	6.5', , /lit vf ge to S lower br, t c, tr	SW			8	- 8" HSA bore hole
12	1-1-2-4	0.2	3	15"	at 13", sl m—c sand, SILT: top 4"	and, loose, wet, thin silt coarsening with depth to tr silt. lam'd., pred. mod yel br lams., dense, plastic, ho	w/pale	ML-SM			= 12	— 2" Sch 40 10-slot PVC screen (5.5'-15.5')
14=	2-4-3-2	0	4	13"	vf, tr c, hc well graded : SAA, top mod. vel	8", then pred. vf sand 8 br silt stringer at 10.5".	nod. -10.5", m-f	SW			= 14	— No. 00 sand
16 18 18 20	2-2-2-3	0	5	12"	sand belo below silt layer pool	w 10.5", loose, wet, lit-t , sl gray coloration in vf rly graded, tr silt. Total Depth: 16.0'.	r vf S	SP				— Bottom end cap
	Driller: Soi Logged by: Drilling Star Drilling Com Well Constru Well Develop Well Coords	S. ted: pletauctio ped: .: N	Fish 8- ed: n: 9 9-	er, (31— 8—3 9—1- -14-	GSC 93 1-93 -93 -93 789	Notes: Hand augered to 6.0' Water level 7.5', when total depth of 16' for SWL 8.20' (9/1/93, 0	hole a ~0.25	hr.	Geo	UNDW. COR	ATEI POR	R SCIENCES ATION : MW—178S _{Revised 8/12/94}

Clie	ent: IBM N	/id-			Augering La Valley, Kii	og ngston Site		-	MW-179S		TOC Elev. 184.33'
	oject No. 🤉				-		Locat	ion V	V end B038, E	ot B031	Page 1 of 1
Depth Feet	Blow Counts	(ppm)	Sample Number	Recovery	Ove	erburden/Lithologic Description		nscs	Well Constructic Graphic	Depth Feet	Well Construction Details
2	Ground Surface HAND AUGERED				SAND: dark ; : concrete	oil and roots, 0-5". yellow brown f-m, some mass in wall of boring a ation at ~5'.		FILL		0	 4" Locking steel cap w/2" expansion plug 4" protective steel casing Concrete pad Bentonite hole plug 2" Sch 40 PVC riser 8" HSA bore hole
6	2-2-2-3	0	1	14"	silt, lit vć : masses bela	l br, m—c, some vf—f sa sand, silt lamination and ow 10", f SR pebble at 11 loose, wet, tr organic ma	round 1" finer	SW		8	- 2"Sch 40 10-slot PVC screen (14.0'-4.0')
10	2-2-3-3	0	2	16"	tr silt máss black orgar geneous, pr	l br, f—v, some vf sand ses (pale yel br) and dk iic masses, loose, wet, h porly graded.	brown– omo–	SP		10	
12	2-1-3-2	0	3	18"	graded, w		, ,	58		12	— OON sand
14	3-5-6-7	0	4	24"	laminatior	sand, v thin mod yel br a at 21", bottom 1" is a rved silt, dense, cohesive, wet.	mod	SP-SM		E 14	— Bottom end cap
16	3-5-8-9	0	5	8"	stiff, plastic silt, lit—tr c laminae, de	mod yel brown, lit clay, , wet, changing to brownis clay, varved, occasional po nse, stiff, plastic, wet, 3 athered silt at top.	sh—gray ale red	МН-СН		16	— Bentonite hole plug
18	6-5-6-9		6	12"	: SAA, brow sand belo	nish-gray silt, varved, wi w 4", sand absent below	th vf 9".	МН		18	— Collapsed formation
20-						Total Depth: 18.0'.				20	
	Driller: Soi Logged by: Drilling Star Drilling Com	S. ted: plet	Fish 9- ed:	er, (2—9 9—2	GSC 3 2-93	Notes: Hand augered to 6.0'				DWATEF CORPOR	R SCIENCES ATION
	Well Construction: 9-3-93 Well Developed: 9-14-93 Well Coords.: N717217.095 E592374.110					SWL 8.2'(9/3/93, 08	8:00; fr	om gro		gic Log:	: MW—179S Revised 8/12/94

Clie	ent: IBM N	/id-			Augering Lo Valley, Kin	-			MW-180S		TOC Elev. 179.45'
	oject No. 🤉				, , , , , , , , , , , , , , , , , , ,		Locat	ion V	V of B031, S of	B005	Page 1 of 1
Depth Feet	Blow Counts	(mdd)	Sample Number	Recovery	Ove	rburden/Lithologic Description		nscs	Well Construction Graphic	Depth Feet	Well Construction Details
0	<u>Ground Surface</u> HAND AUGERED				SAND: v loos vf-m, lit-tr appearance, matter, well : visible wat SAND: dk yel	gravel base to 0.5'. e, dk yel br and It olive silt, tr c sand, salt & moist to dry, tr dk br graded. er surface at 5.5'. br, f-m, lit vf, tr silt, 1 5 R organic masses 4-1	pepper organic	SW			 4" Locking Royer cap w/2" expansion plug 4" protective steel casing Concrete pad Bentonite chips 2" Sch 40 PVC riser
8	1-2-4-5	0	1	18"	silt lam at moderately (2", mod yel br, wet v lo graded, occ silt mass, S	ose, R.			- 8	∼8" HSA bore hole
8	2-2-4-6	0	2	24"	masses to geneous b depth, one	ganic masses in top 5", p 3", absent below, v h elow 5", incr in f—vf sa e silt mass at 15".	omo- nd w/			10	-2" Sch 40 10-slot PVC screen (4.0'-16.0')
12	2-2-4-3	0	3	21"	f-vf S w/ir grades to p orng color S & silt, co	", occ organic mass, grad icr silt, more dense, sl pla pred. vf S & silt at 19-20 change at 20" to br-gray, ontact at 14" gradational b	stic, wet, ", dk yel pred vf ut rapid.	SP-SM		E E E 12	
14	WOR/12"-WOH-1	0	4	6"	wet, dense,	brownish-gray, vf sand sl plastic, top 1" dk bro ontal layer, tr silt lamin	ownish			14	— No. 00 sand
16	3-6-5-6	0	5	12"	tions, very	ase in number of silt lar silty throughout, slightly more plastic, wet.		SM		16	—Bottom end cap
18	4-8-7-7	0	6	15"	SILT: brownish plastic, wet.	n gray, varved, very dens	se,	МН		18	 Collapsed/swelled formation
20-					-	Fotal Depth: 18.0'.				20	
	Driller: Soi Logged by: Drilling Star Drilling Com Well Constru Well Develop Well Coords	S. ted: nplet uctio ped: .: N	Fish 12· ed: n: 1 12·	er, (-14 12- 2-1 -27 244.	GSC -93 ·14-93 4-93 -93 750	Notes: Hand augered to 6.0' WOR = Weight of Rod WOH = Weight of Ham SWL 5.25' (12/16/93, -	s nmer	om gro	Geologic	RPOR.	R SCIENCES ATION : MW—180S _{Revised 8/12/94}

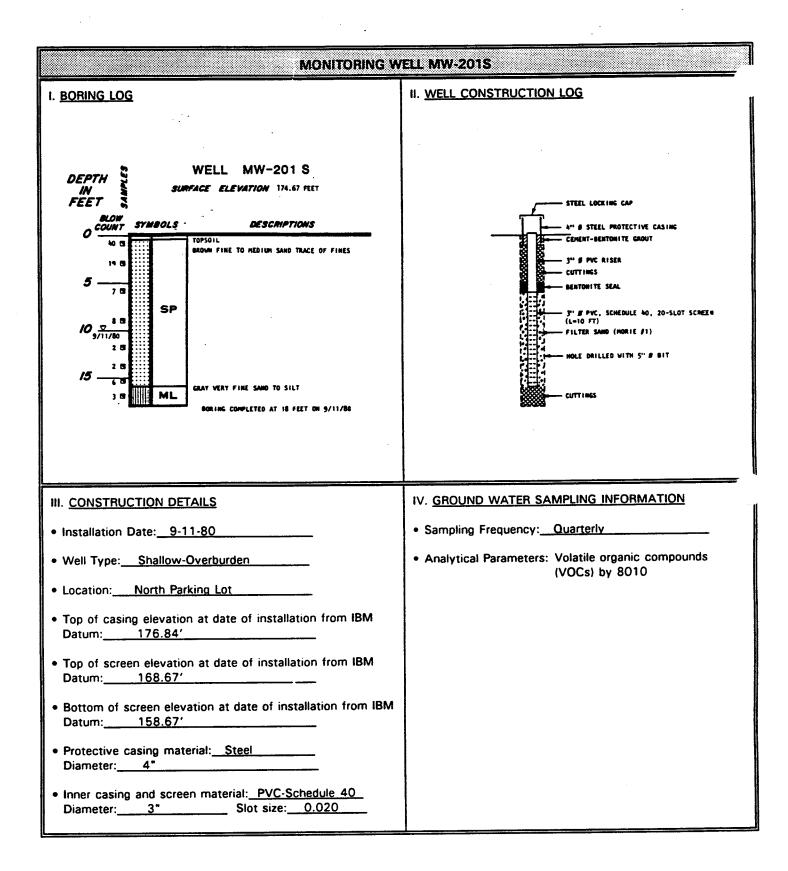
	ent: IBM M bject No. 9		Huc		Augering Log Valley, Kingston Site			MW—181S of B025 in parking	TOC Elev. 177.4 I lot Page 1 of
Uepth Feet	Blow Counts	1	Sample Number	Recovery	Overburden/Lithologic Description		NSCS	Well Construction Graphic	Well Construction Details
	Ground Surface				Asphalt pavement and gravel base to SAND & GRAVEL: yellow brown to gravel			M	9" flush-mount manhole w/2" wate tight sealing cap O Concrete
2 1111111111111	HAND AUGERED				w/occ. SA-SR f-m gravel, moist. SAND: mod yel brown, f-c, tr finer s silt, tr vc sand and f SA-SR gravel moist, well graded.	sand &			Bentonite chips
					: turning sI more gray w/a salt & appearance (quartz and rock grair moist, change at 5'. SAND: mottled dk-mod yel br & It oli	ns),	SW		- 6
3	6-7-6-7	0	1	16"	occ. dusky yel br zoné, f—c, lit vf, and vc sand, occ. small silt mass, blotches, moist, turning wet below 1 well graded.	tr silt organic 1",			
10	2-2-3-4	0	2	18"	SAND: more coarse top 10" (pred m- fining to pred. f—m below 10", grac some vf sand, lit silt, occ. silt mas urated, loose, tr vc sand top 8".	—c), dational, s, sat—			- 10
2	4-4-7-10	0	3	21"	SAND: pred. f-m, lit vf sand and silt loose, some dusky yel br and mod color banding in lower 4", lt br (5Y silty vf sand at base.	yel br	SW-SP		2" Sch 40 10- slot PVC screen (5.0'-18.0')
4	4-5-6-6	0	4	20"	: SAA top 11", increase in silt with dept SILT & SAND: mod yel br, pred m w/finer silt, occ silt stringer, wthrd appearance, we sl cohesive, less silt & f sands below 14", turns to med dk gray to br-gray m sand silt & finer S, sharp change to br gray, v	sands & et, loose, - , grad. w/some			- 14
6	4-2-4-4	0	5	10"	and silt below 17", all wet. SAND & SILT: br gray, tr m dk gray sand w/interstitial silt and occ. silt horizontal sl color banding lower 4", poorly graded.	lam, , wet,	SM		– No. 00 sand
8	1-2-6-8	0	6	12"	SAND & SILT: vf-f sand w/silt, sl ind lower 2", poorly graded, tr plant frag occ dk colored, organic-rich zone c lamination.	js 5−7",			Bottom end cap
20	3-4-8-6	0	7	22"	: SAA top 6". SILT: brownish gray, occ. pale red lar to 30° angle, lit—some vf sand, den plastic, wet, v silty, tr clay 6—10".		МН		Collapsed/swelled formation
					Total Depth: 20.0'.			K X I I	·
	Driller: Soi Logged by: Drilling Star Drilling Corr	S. ted:	Fish 12-	er, (-15	GSC Hand augered to 6.0'				TER SCIENCES ORATION
	Well Constru Well Develop Well Coords	uctio ped: .: N	n: 1 12·	2—1 -27 298.	5-93 -93 308	om grade	e).	Geologic L	og: MW—181S Revised 8/12/94

	ent: IBM M bject No. 9		Huc		Augering Log Valley, Kingston Site		tion	MW-182S N of B025, E of	TOC Elev. 180.09
Depth Feet	Blow Counts		Sample Number	Recovery	Overburden/Litholog Description	ic	nscs	glass causeway Well Construction Graphic	Page 1 of 1 Well Construction Details
0	Ground Surface HAND AUGERED				Grass and soil with roots to 4"; and pebbles mixed w/silty sand SAND: m-vc, dk yel br w/some l ings (appears to be old oil or t induration, moist to dry, mottled, tr vf sand and silt, moist, lt oli mod yel brown. SILT: 4.5-5', weathered, laminated, It gray, pale red and mod yel br : same as above.	below 4". black coat— iar, some f-m sand, ve gray to tr vf sand,	FILL SW		4" Locking Royer cap w/2" expansion plug 4" protective steel casing Concrete pad Bentonite chips 4 2" Sch 40 PVC riser
8	4-6-5-5	0	1	22"	SAND: dk yel br, vf-f, tr silt top silt lam., color banding 8-12", k grades to pred m sand, lit f sa sand & silt, turning wet, loose, r : SAA, pred m sand w/some c, t	oose, moist, Ind, tr finer nod graded.			- 8" HSA bore hole
10	3-3-4-5	0	2	21"	lit finer sands, tr silt, occ. silt lower 5", loose saturated, poor occ. organic blotch. SAND: dk yel br, m-c, tr f, occ silt	masses ly graded,	SP		E E_10
12	2-3-5-7	0	3	24"	grades to med s and pred f-vf silt 7", fines downward seq., some colo below 15", poor-mod graded, loose w/depth, silt layer at bottom, satur	y sand lower or banding 5', cohesive			2" Sch 40 10-slot PVC screen (5.0'-18.0')
14-	6-2-4-5	0	4	20"	: SAA, top 8" SAND: mod yel br to It br, wthrd, f- lit silt, silt mass at 9", silt lam at change to dusky yel br at 15", the yel br below, incr silt & vf S lower loose, poorly-mod graded.	11", color n to dk			
16	1-1-2-1	0	5	24"	: SAA, slight fining with depth, w	et, loose.	SP-SM		No. 00 sand
18	2-4-6-8	0	6	22"	: SAA, top 19". SILT: top contact angled 10-20° c cated(?), v dense, plastic, horiz. faint color banding, pale red to vf sand at bottom.	lams. and	MH		Bottom end cap
20	3-3-6-4	0	7	24"	SAND: dk yel br, pred f, lit m, so silt, occ. silt masses, loose, mas poorly—mod graded.		SP-SM		Collapsed formation
					Total Depth: 20.0'.		·	r ¥ 1	· · · ·
	Driller: Soi Logged by: Drilling Star Drilling Com	S. ted: plet	Fish 12· ed:	er, (-15 12-	GSC Hand augered to -93 15-93	6.0'.			ATER SCIENCES PORATION
	Well Constru Well Develop Well Coords	bed: .: N	12	-27 210.	-93 014	3; 13:30; frc	om grad		Log: MW-182S Revised 8/12/94

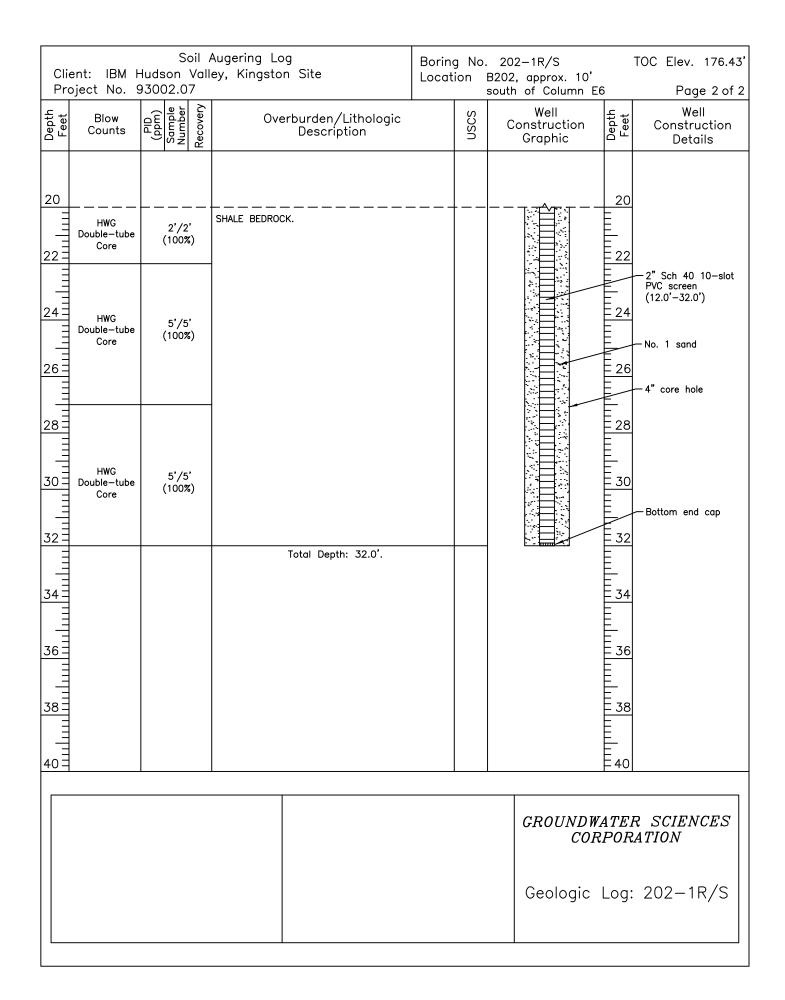
	ent: IBM M bject No. 9		-Huc		Augering Lo Valley, Kir	og ngston Site		ion I	MW-183S E of B025, in		TOC Elev. 174.59'
	Ject No. :	1		5					oading dock area Well	_	Page 1 of 2 Well
Depth Feet	Blow Counts	(UId OId)	Sample Number	Recovery	Ove	erburden/Lithologic Description		NSCS	Construction Graphic	Depth Feet	Construction Details
0	Ground Surface									0	−9" flush−mount manhole w/2" water− tight sealing cap
				·		ment and gravel base to	0.5'.				— Concrete
					SAND & GRA	VEL.		FILL			-Bentonite chips
4	HAND AUGERED					yellow brown, f-m, loose nd and silt, tr c sand.	, moist,				— 2"Sch 40 PVC riser
6								SW		6	
2 4 4 6 10 10 12	5-6-6-8	0	1	21"	brown orga wet, moder	l br, f−m, some vf, tr si t in lower 5", occ. dusky nic blotches lower 5", loc ately graded.	ose,	SW-SP			—8" HSA bore hole
10	3-5-6-5	0	2	18"	incr f—vf s graded, ma	mall silt masses 8—15", = and w/depth, loose, wet, ssive, homogeneous appe	mod. arance.	3W-3P			
12	4-5-7-7	0	3	24"	SAND: pred. pred. f, son yel br colon It olive gra sl cohesive,	f—m top 16", grades qui me vf, tr silt at 17", sl ration below 17", color tu y lower 6", poorly—mod. wet.	ickly to mod. ırns to graded,	SP		12	-2" Sch 40 10- slot PVC screen (4.0'-28.5')
14	4-5-8-8	0	4	24"	at top, gra	/e gray to dk yel br, pre des to pred. vf−f, wet, p graded, fining downward, d silt.	oorly-	эг			
16	2-3-4-6	0	5	19"	horizontal l pred. f—vf	mod yel br color bandin aminations, wet, sl cohes silty sand in lower 3".	ive,	SP-SM		111111111111	— No. 00 sand
18	8-4-3-6	0	6	24"	wet, loose, to brownish	br, f—vf at top, grades mod. graded, at 17" cha gray vf sand, w/intersti hor. silt stringers, wet, c	anging tial silt	SM		 18	
20	2-4-4-6	0	7	24"	incr grain s wthrd mod	l br, f—m, some vf, lit s size w/depth, sl color va yel br and dusky yel br se, wet, poorly graded.	riation,	SP		20	
									v ———		
	Driller: Soi Logged by: Drilling Star	S. ted:	Fish 12·	er, (-15	GSC —93	Notes: Hand augered to 6.0'					R SCIENCES ATION
	Drilling Com Well Constru Well Develop Well Coords	uctio ped: .: N	n: 1 12	2—1 —27 369.	6-93 -93 532	SWL 4.7' (12/17/93, fr	om grade	e).	Geologic	Log	: MW—183S Revised 8/12/94

	ent: IBM M bject No. 9		Huc		Augering Log Valley, Kingston Site		ion	MW-183S E of B025, in loading dock area		TOC Elev. 174.59' Page 2 of 2
Depth Feet	Blow Counts		Sample Number	Recovery	Overburden/Lithologic Description		NSCS	Well Construction Graphic	Depth Feet	Well Construction Details
20 22 24 24 26 28 30 32 30 32 34 36 38 40	8-8-9-13 8-10-13-15 2-1-3-4 2-4-13-19 5-6-5-5	0	8 9 10 11	24" 15" 12" 20"	 SAND: dk yel br, f-m, lit vf and lit-sl fining downward and incr in silt, mod. graded, wet, occ. silt masses silt-rich zones, faint horizontal layer SAND: sl incr in finer sands and silt, vf-f sand, approx. 4" to 12" saturat flowing, wet elsewhere, loose, moder well graded. SAND: dk yel br, pred f-m w/c sand vf sand, tr silt, loose, wet, well graded. SAND: homogeneous, massive, wet, we graded. SAA top 4", sl incr in c sand, lit v more gray in color, wet. SILT: brownish gray, varved beginning top contact sloped ~10"-15", interla silt & vf sand 4-6", silt w/vf sand all silt, tr clay below 10", freq. pale laminae, dense, plastic, wet to mois Total Depth: 30.0'. 	loose, and ring. pred. aed and ate- ded, ell vc sand, at 4", minated 6-10", e red	SP SW		20 22 24 26 28 30 30 32 34 36 38 38 40	 -8" HSA bore hole 2" Sch 40 10- slot PVC screen (4.0'-28.5') - No. 00 sand - Bottom end cap - Collapsed/swelled formation
										R SCIENCES ATION
								Geologic	Log:	: MW-183S
										Revised 8/12/94

			Huc	lson	Augering Log Valley, Kingston Site		ion N	MW-184SA side of GWCS	TOC Elev. 171.30'
Depth Feet	oject No. S Blow Counts		0.5		Overburden/Lithologic Description		n SCS	Well Well Construction Graphic	MH7 Page 1 of 1 Well Construction Details
0	<u>Ground</u> <u>Surface</u> HAND AUGERED				Sod 0-3". SAND: dk yel br, f-m w/vf, lit silt, tr c silt mass, loose, moist. : thin, med yel br silt layer at ~3.5', laminated, dense, plastic, est. ~3-4' SAND: dk yel br, f-m w/vf, tr c, tr-lit	horiz. ' thick.	SW		4" Locking Royer cap 2" Expansion plug 2" PVC stickup=~2.2' 4" protective steel casing Concrete pad Bentonite grout 4 Bentonite chips 2" Sch 40 PVC riser
8	2-5-4-5	0	1	17"	gray silt masses, sl cohesive, moist. SAND: at 4", dk yel br, f-m w/vf, tr silt geneous, loose to sl cohesive, moist. : SAA, more organic-rich dusky to dk noteable organic zone at 7", loose t cohesive, moist to wet, wet below 4'	, homo- yel br, o sl	SP		8" HSA borehole No. 00N sand 8 2" Sch 40 10-slot PVC screen
10	3-3-4-4	0	2	18"	mottling throughout. : SAA top 9" w/organic-rich dusky br I bottom cont., loose, sl flowing, homoge	am. at n., v wet.			(6.0'-11.0') 10 Bottom end cap
12 12 14 14 16 18 18	2-2-3-2	0	3	17"	SILL at s, stiff, plastic, some clay, chan brown gray, clay-rich silt w/pale red v - 13" (top 4" of silt & clay is oxidized) SILT w/CLAY: br gray, varved, plastic, de Total Depth: 14.0'.	ges to varves at , wet.			2" split-spoon borehole Collapsed/swelled formation 14 16 18 20
	Driller: Nor Logged by: Drilling Star Drilling Com Well Constru Well Develop Well Coords	S. ted: nplet uctic ped: .: N	Fish 11. ed: n: 1 12-	er, (-29 11- 1-2 -5- 466.	GSC -95 29-95 95 50 SAA = Same As Above Measured DTB 13.36'	(from TO		<i>COI</i> Geologic	<i>VATER SCIENCES</i> RPORATION Log: MW—184SA


			Huc	lson			No. MW-185SA TOC Elev. 176.8 N side of GWCS
	oject No. 9						between MHE and MH6 Page 1 of
Depth Feet	Blow Counts	(mqq)	Sample Number	Recovery	Overburden/Lithologic Description	nscs	Well Construction Graphic Well Construction Details
0	Ground Surface						4" Locking Royer of 2" Expansion plug 2" PVC stickup=~3 4" protective steel casing
2	HAND AUGERED				Sod 0-3". SAND: dk yel br, f-m w/vf, homogeneous, loc moist to dry.	se,	Concrete pad
4 =					SAND: dk yel br, f-m w/vf, tr c, lit silt, loos	SW	v E A Bentonite chips
8	1-1-2-1	0	1	16"	homogeneous, occ tr clay/silt (mod yel br), silty masses, tr grayish br silt masses & sil lam. at 4", fining sl toward bottom of sectio moist.	n,	2" Sch 40 PVC ris
10	3-2-3-3	0	2	20"	: SAA top 7" w/sl more vf sand, more cohe sive, pred homogeneous f—m, some vf bel 7", some faint dk yel orange mottling, moist.		
12=	WOR-1-2-1	0	3	13"	SAND: dk yel br, vf-m, lit silt, mod cohesive, moist top 2" then pred f-m, tr silt masses, homogeneous w/qtz grains (salt & pepper a pearance). SILT: at 10-12", mod yel br to pale red, varva		No. 00N sand
14=	3-4-4-4	0	4	19"	oxidized, clayey, horiz. Iam., sI plastic, moist. SAND: (as above), Iam. silt zone 3-5", then p vf-f w/m sand, tr silt 5-10", then pred f- w/vf, loose, homogeneous below 10", moist.	red <u>ML</u> m	
16	1-2-2-2	0	5	19"	SAND: dk yel br, f-m w/vf, tr silt, tr c, horiz silt lam. at 4", homogeneous, moist top 5", then wet. : SAA top 12", sl flowing, wet.	SP/S	
18	1-2-2-3	0 0.2 0	6	19"	SILT: 12-16.5', mod yel br w/dk yel orng & p red varves, horiz. lam., tr clay, dense, plasti moist to wet. SAND: below 16.5", silty, f-m w/vf, sl flowing v wet.	c, ML	
20	WOH-2-2-3	0	7	15"	SILTY SAND: mod yel br, vf-f w/m, silty w/od thin silty clay lam., wet, 0-7". SILT: at 7", br gray w/pale red lams. (varved dense, lit-tr clay, occ dk gray organic-rich lams., plastic, tr vf sand below 3", wet.		CH
		_	_	_	Total Depth: 20.0'.	_	
	Driller: Nor Logged by: Drilling Star Drilling Com Well Constru Well Develop Well Coords.	S. ted: plete ictio ed: : N	Fish 11. ed: n: 1 12. 719	er, (-29 11- 1-2 -5-	GSC -95 29-95 WOR = Weight of Rods WOH = Weight of Hammer SAA = Same As Above Measured DTB 21.60' (from		GROUNDWATER SCIENCES CORPORATION Geologic Log: MW-185SA

			Hud		Augering Log Valley, Kingston Site		ion Ea	MW-186S st of helipad,		TOC Elev. 172.70
	ject No. 9						Nc	rth Parking Lot		Page 1 of
Depth Feet	Blow Counts	(ppm)	Sample Number	Recovery	Overburden/Lithologic Description		nscs	Well Construction Graphic	Depth Feet	Well Construction Details
0	Ground Surface								0	9" flush-mount manhole w/2" water tight sealing cap
					Asphalt pavement and base gravel to SAND & GRAVEL: dk yel br, vf-c, so tr-lit vc sand w/f-m A-SR gravel	ome silt,				- Concrete
2 =					moist, occ. boulder or cobble.				2	— Bentonite chips — 2" Sch 40 PVC rise
4	HAND AUGERED						FILL			
6					: pred. sand below 5', occ. red clo frags, tr f—m gravel, turning wet				6	
	4-5-7-10	0	1	20"	SAND: dk yel br, f—m w/c, some vf tr silt, loose, wet, well graded, brown silt mass at 6", faint mottling thro	nish-gray	SW			\sim 8" HSA bore hole
8	3-2-4-4	0	2	22"	: SAA, f—m, loose, wet, mod grade organic—rich masses, dk br in cc : pred f—vf sand, some—lit silt bel loose, wet, poorly graded, faint h color banding.	olor. ow 15",				
12-	4-3-2-7	0	3	24"	: SAA: pred vf sand w/silt, mod ye dk yel br, faint hor. lams, wet, s mod. dense, poorly graded.				12	← 2" Sch 40 10-slot PVC screen (3.25'-18.25')
14	3-4-5-7	0	4	15"	SAND: dk yel br to dusky yel br, layer 0-4", silty vf S 4-7", f-m 7-11", v mat., dk br color 9-11", pred vf S & 4", loose, sl plastic in finer layers, s some mod yel br in silty zones, faint	aturated,				
16	1-3-4-10	0	5	24"	SAND: dk yel br, f—m sand w/vf sa silt, loose masses, wet. : turning v silty, moderate brown, weathered 13—14".				16	— No. 00 sand
	5-10-15-11	0	6	10"	SAND & SILT: vf S and silt at 14", masses, no lam., top contact rapic graditional, sl plastic, more dense cohesive, poorly graded. : SAA, incr silt content, occ. hor. s	l but and	SM		1	— Bottom end cap
=	WOR-WOH-3-3	0	7	8"	: SAA top 8" grading into silt rapic SILT: brownish gray, tr vf sand, tr c varved, occ pale red laminae, dens plastic, wet.	lay,	мн		20	- Collapsed/swelled formation
-					Total Depth: 20.0'.			<u>r x 1</u>		
	Driller: Soil Logged by:),				R SCIENCES ATION
	Drilling Star Drilling Com Well Constru Well Develop	plet uctio	ed: n: 1	12- 2-1	-93 14-93 WOR = Weight of Rc WOH = Weight of Hc	ods				: MW-186S
	Well Coords	.: N		020.	52	13:46; fr	om grade	·).		Revised 12/15/94


	ent: IBM N			MW-187S N of B059,		TOC Elev. 170.92'				
	oject No. 9 I	1302 I	1	~			1	North Parking Lot ,		Page 1 of 1
Depth Feet	Blow Counts	(ppm)	Sample Number	Recovery	Overburden/Lithologic Description		USCS	Well Construction Graphic	Depth Feet	Well Construction Details
0	Ground Surface				Asphalt and gravel base to 0.5'. SAND & GRAVEL: dk yel br, f—c, w/s frequent f gravel, moist.		FILL		0	Concrete Bentonite chips
4					SAND: dk yel br to dusky yel brown, some c, silty, wood frags, leaf frag organic silt throughout, moist, sl cc well graded, occ. mottled, tr f SA-S gravel and very coarse sand. : turning wet below 4'-5' (?), pred.	ments, hesive, SR	SM-OL			2" Sch 40 PVC riser
6					yellow brown, vf—m sand, silty. : SAA top 3".				6	-
8	10-9-8-11	0	1	12"	SAND: light olive gray, f—m, w/occ r organic fibers (rootlets), homogeneo pearance, loose, slightly silty, wet. : SAA: coarsens to pred m—c S, sa	us ap- turated,				2" Sch 40 10-slot PVC screen (3.0'-15.0')
10	4-4-6-7	0	2	18"	loose, poorly graded, turns dk yel br to f-m S w/some vf S & silt at 11 changes to It olive gray at 12", inc depth, loose, organic mat. throughou banding 11-15", several It gray silt 4-5" (rounded), sharp contact at	", color r silt w/ ut, color masses	SP			
12	3-6-8-9	0	3	12"	SAND & SILT: brownish gray, vf, w/silt	:, dense, us, wet,				No. 00 sand
14=	13-10-10-6	0	4	13"	: SAA, tr f sand, sl incr in density,					
16	5-4-9-14	0	5	16"	SILT & SAND: pred. silty vf sand, brc gray, pred varved silt 7—10" and 1: w/pale red laminae, sand horizontal ded, dense throughout, wet.	ownish 2—14", ly bed—	SM-ML			- Bottom end cap
18-		0	6	15"	: SAA, varved silt zones at 2-5" & sl increase in silt, overall wet.	9-12",				Bentonite chips
20=	WOR-WOH-3-3	0	7	24"	: SAA, top 4". SILT: brownish gray, varved, w/pale ra tr clay, v dense, v plastic, wet.	ed lams,	мн		20	Collapsed/swelled formation
	1	I	1		Total Depth: 20.0'.			ry1		1
	Driller: Soil Logged by: Drilling Star Drilling Com Well Constru	S. ted: plet	Fish 12· ed:	er, (-14 12-	GSC Hand augered to 6.0' -93 Original ground surfac -14-93 Occasional varves bel	ce at 2.				R SCIENCES RATION
	Well Develop Well Coords	oed: .: N	12	-31 012.	-93 WOR = Weight of Hor WOH = Weight of Hor 878	mmer	om grac	5	Log	: MW-187S Revised 12/15/94
					1					, · - , - · ·

	ent: IBM M bject No. S		-Huc		Augering Lo Valley, Kir	5		ion (MW—188S Grassy field N of Jorth Parking Lot	helipad	TOC Elev. 174.59' , Page 1 of 1
Depth Feet	Blow Counts	(mqq)	Sample Number	Recovery	Ονε	erburden/Lithologic Description		uscs	Well Construction Graphic	Depth Feet	Well Construction Details
	Ground Surface HAND AUGERED				SAND & GRA occ. asphal moist to we SAND: browni wood and p moist. SAND & SILT some m sa	sh gray, f—c, w/silt & nu plant fragments, loose, cr : brownish—gray, vf—f, w, ind, tr c, freq. wood frac	frag., umerous umbly, /silt, gments	FILL SW-PT			 4" Locking Royer cap w/2" expansion plug 4" protective steel casing Concrete pad Bentonite chips 2" Sch 40 PVC riser 8" HSA bore hole
8	10-9-11-13 6-8-7-15	0	1	20" 4"	organic-rich : SAA, turni	ootlets, cohesive, crumbly, n throughout. ng wet, tr f SA—SR grav k yellow brown.		SW-SM		8	- 2" Sch 40 10-slot PVC screen (3.0'-15.5')
12	9-13-15-19 11-13-13-7	0	3	16" 20"	~7-9", f-n sl cohesive, v wet below : SAA top 4 f S, faint mottled, g yel br col SAND: at 14" silt, wet, loc	gray, grades to dk yel br h w/vf sand and silt, tr tr organic frags top 9", v 11", well graded. ", grades to vf sand & s hor. lam., freq. organic th ray-orange to yel-gray, tr or, v silty, tr clay 11-14" dk yel br, m-c, tr f sc bse, moderately graded.	c sand, wet, silt, tr blotches, r mod and &	SW		12	— No. 00 sand
16	3-3-4-4	0	5	24"	lams, varved 16-18", wet SILT: br-gray v dense, pl	p 13"), gray-orng w/dk y d, tr vf S, tr clay, sl inci t, top cont. sharp, appear , varved, w/pale red hori astic, tr clay, tr vf sand,	r vf S s wthrd. z. lam, , wet.			= 16	— Bottom end cap — Bentonite chips
18	2-3-4-4	0	6	11"	8-11", w	[:] sand 3—7", v plastic, ti et, very dense.	r clay	МН		18	— Collapsed/swelled formation
20						Total Depth: 18.0'.				20	
	Driller: Soi Logged by: Drilling Star Drilling Com Well Constru Well Develop Well Coords	S. ted: plet uctio ped: .: N	Fish 12- ed: n: 1 12-	er, (-16 12- 2-1 -27 369.	GSC -93 ·16-93 6-93 -93 532	Notes: Hand augered to 6.0' Original ground surfac SWL 5.25' (12/17/93; 5	e at 4.		<i>co</i> Geologic	RPOR.	R SCIENCES ATION MW—188S Revised 8/12/94

	ent: IBM M bject No. 9		Huc		Augering Lo Valley, Kir	og ngston Site		ion ~	MW-189S -100'S of SE cor f B201		TOC Elev. 175.32 Page 1 of 1
Depth Feet	Blow Counts	(mdd)	~ -	Recovery	Ove	erburden/Lithologic Description		nscs	Well Construction Graphic	Depth Feet	
	Ground Surface HAND AUGERED 8-7-3-6 2-1-2-4 5-3-2-3 WOR-WOH-2-3	0		 22" 17" 19"	SAND: dk to tr silt and SILT: It br to wthrd, mois SAND: f-m, SAND: dk yel faint silty lar 0-15", mod SILT: mod yel varved, mois to silty vf sc SAND & SILT: silt 3-5", de & silt w/occ plastic, color occ dk yel t wthrd surf 9 SAND & SILT texture & c SILT: br-gray v dense, pl SILT: SAA, ve	avel base to 0.5'. med yellow brown, f-m, c sand, occ. f SA-SR gr to dry, tr vf sand 4.5- lit-tr vf sand & silt, no br, pred f w/vf, some m, tr graded. br to It br, tr pale red, wt t to wet, dense, plastic, gro and in lower 3", wet. dk yel br, f-vf, tr-lit silt ense, plastic, vorved, pred v t to it br, tr pale red wt t to wet, dense, plastic, gro and in lower 3", wet. dk yel br, f-vf, tr-lit silt ense, plastic, vorved, pred v t to it orng, wthrd lam., p " & 12", pred silt w/vf S : SAA top 8-9", incr silt, plae red & pale blue astic, wet, tr clay. ery dense, very plastic, tr Total Depth: 14.0'.	varved, 4.75'. gravel. r silt, noist top 3", f sand wet, sl live gray ossible lower 3" gradual unit. varves,	SW ML SW SP SM MH			Bottom end cap Bentonite chips Collapsed/swelled formation
	Driller: Soil Logged by: Drilling Star Drilling Com Well Constru Well Develop Well Coords	S. ted: pleta uctio ped: .: N	Fish 12- ed: n: 1 12- 12-	er, (-15 12- 2-1 -31	GSC -93 15-93 5-93 -93 456	Notes: Hand augered to 6.0'. Sample no. 1 collected hand auger. WOR = Weight of Rods WOH = Weight of Ham SWL 7.75' (12/16/93, Screen & riser removed reamed. Bottom end co Well reconstructed 4/6,	s mer from gro d 4/6/9 ap replac	ade). 4, bore	<i>COR</i> Geologic	POR	R SCIENCES PATION : MW-189S Revised 8/12/94

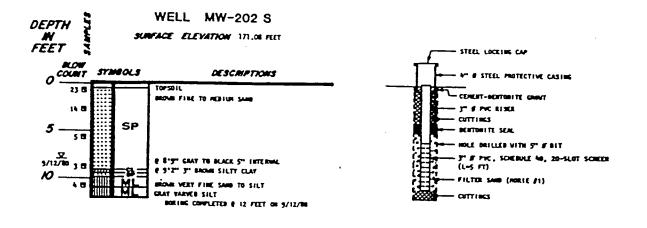
			son	Vall	Augering Log ey, Kingston Site			202–1R/S B202, approx. 10'		TOC Elev. 176.43
Pro	oject No. 9							south of Column E6		Page 1 of 2
Depth Feet	Blow Counts	(mqq) Old	Sample Number	Recovery	Overburden/Lithologic Description		NSCS	Well Construction Graphic	Ueptn Feet	Well Construction Details
0 2 11	Floor Surface _	<u>0.3</u>			CONCRETE: to 5".					 — 6" Morrison manhole, with 2" watertight sealing cap (<i>future</i>) — Bentonite grout
6	25–35–20–24	0	1	22"	SAND: 0–19", v fine, dry. CLAY: 19–22", med brown, varved.	maint			6	— 4.5" flush—joint casing borehole
8	28-31-32-24	0.3	2	18"	SILT & CLAY: brown and gray, varved, sl				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	- Bentonite chips
10	10-11-14-14	0	3	23"	SILT & CLAY: dark brown and blue gray laminations, varved, stiff, moist.	w/pink			10	—2" Sch 40 PVC riser
12	18–23–22–21	0	4	18"	: SAA.				12	
14=	8-11-12-14	0	5	24"	: SAA. : SAA: note: two lenses of silt to f sar	nd at			14	← 2" Sch 40 10-slot PVC screen
16=	4-6-6-10	0.3		24" 8"	 6-9.5" and 20-24" w/strong petroch odor, visibly darker (gray-black), mois SAA; note: lens of silt to f sand at 2 w/petrochemical odor, visibly darker (black) and moist; 3.5-8.5" varved silt of w (shale object) 	st. 2.5–3.5" arav–			16	(12.0'−32.0') —No. 1 sand
18	HWC		7 2.3'/2 (100%		clay mixed w/shale chips. SHALE BEDROCK.				18	
	Driller: Soil Logged by: Drilling Star Drilling Com Well Constru Well Develop	D. ted: plet uctio	Muri 6- ed: n: 6	27– 6–2 –28	96 Split spoon refusal at 18-96 Core from 17.7' to 32.	.0'. rom floor		<i>CORF</i> Geologic L	POR	<i>R SCIENCES</i> ATION : 202-1R/S

MONITORING WELL MW-201S										
V. MODIFICATION	V. MODIFICATION DETAILS									
Modification Date	e: <u>7-22-92</u>									
- Modifications ir	nvolved the following activitie	S:								
Painting and la	belling of casing	·								
			······							
- Performed by:_	Dames & Moore									
- Modifications in Installation o	Modification Date:9-30-92 Modifications involved the following activities: Installation of water tight cap Performed by:Dames & Moore									
VI. <u>SURVEY DATA</u>	<u>\</u>									
SURVEY DATE	SURVEY DATE PERFORMED BY TOP OF STEEL PROTECTIVE TOP OF PVC CASING ELEVATION CASING ELEVATION									
9-11-80	9-11-80 Brinnier & Larios 176.84'									
10-2-92	Brinnier & Larios	177.11′	175.88′							

-

•

MONITORING V	VELL MW-201S
VI. DEVELOPMENT HISTORY	
Redevelopment Date: None	
- Total well depth at date of installation:	
- Depth prior to development:	Depth after development: Difference in depth from installation:
Change in depth (in feet):	
- Redevelopment method:	
- Performed by:	


.

.

			son	Vall	Augering Lo ey, Kingsto			ion 🗄	202–29 8'W of B	202,		TOC Elev. 175.51
Pro	oject No. 9	-			1				108'N of	B203		Page 1 of 2
Depth Feet	Blow Counts	(mqq)	Sample Number	Recovery	Ove	erburden/Lithologic Description		NSCS	Const	/ell ruction 1phic	Depth Feet	Well Construction Details
0	Council Surface										0	— 4" locking Royer cap with 2" watertight sealing cap
2	Ground Surface				Sod 0-3". SILT, SAND &		fill).				2	— Concrete <i>(future)</i> — 4" Protective pipe
	HAND AUGERED										4	— Bentonite slurry
6 1 1 1 1	3-4-5-5	o	1	21"	SAND: at 6", p some silt, ma	ilt & sand w/organics, tr gr ale yel br to dusky yellow, y ottled w/occ rootlets, moist, wer 1" to pred m sand.	vf—f,					— 8" HSA borehole
10	5-5-5-6	0	2	12"	some vf to f silty 9.5" to SILT & CLAY: (varved, dense	at 10.5", mod yel brown, we , plastic, moist.	, crumbly, athered,				E E 10	
12	3-2-2-2	0	3	18"	red and dusk mod plastic,	varved, brownish gray w/occ y brown occ organic frags, occ vf sand lams.	moist,				12	— 2" Sch 40 PVC riser
14	2-2-2-2	0	4	13"		j wet, more plastic below, d e dusky yel lams, wet.	ense				14	-2" Sch 40 10-slot PVC screen
16	1-2-1-1	0	5	17"	yellow color	" w/tr vf sand lams and du , all brownish gray w/incr re wet.	isky ed lams					(12.0'–34.5')
18	2-1-2-1	0	6	16"	to 0.5" thic	then occ silty vf sandy lan k, typically 2—3mm, wet, plc	ns up ostic.				18	— No. 00 sand
20	WOH/1.5'-1	0	7	21"	v plastic, w	usky yellow vf sandy lams to et.	op 7",				20	
	Driller: Nor Logged by: Drilling Star Drilling Corr Well Constru Well Develop	S. ted: plet uctio	Fish 7- ed: n: 7	er, (10- 7-1 '-1C	GSC 96 10-96)-96	Notes: SAA = Same As Above WOH = Weight of Hamr Split spoon refusal at Measured DTB 34.6' (fro	ner 34.6'.	d surfa		COR	ATEI POR	R SCIENCES ATION g: 202-2S
						Measured DTB 34.6' (fro SWL 13.13' (7/18/96,	-		ace).	Geologic	: Lo	g: 202–2S

	Soil Augering Log Client: IBM Hudson Valley, Kingston Site Project No. 93002.07 Boring No. 202–2S Location 8'W of B202, 108'N of B20									TOC Elev. 175.51'
Depth Feet	Blow Counts		Sample Number 6		Overburden/Lithologic Description		NSCS	Well Construction Graphic	Depth Feet	Page 2 of 2 Well Construction Details
20 22 24 24 26 			8 9 10 11 12 13	 18" 24" 23" 24" 13" 12" 9"	 : SAA, all brownish gray w/pale red vf sa laminations, wet. : SAA, v clay-rich. : SAA w/occ pred silt layer, moist, thick, bedded with clay and silt or clay layers, v plastic, wet. : SAA w/occ dark gray silty vf sand lamin below 6" and 13", very plastic througho : SAA 0-8", pred dark gray silty vf, flowin 8-12", v wet, pred silty f sand lower 1 w/some vf sand, wet. : SAA w/frequent dk gray silty vf sand zc flowing sand layer 5-7", pred silty vf sc freq silty/clay laminations, wet. SAND & SILT: dk gray silty vf sand w/occ lamins, flowing, v wet top 8". SILT & CLAY: plastic, 8-18". SILT & CLAY: or gastor, wet. SILT & CLAY: a above w/1" oblate SA shale 2-3" & 7-8" w/occ vf sandy lams, wet. BEDROCK: at 34.6'. 	inter- nations ut, wet. ng sand ones, and w/ silt/clay I flowing frags at			20 22 24 24 26 28 30 32 30 32 34 36 38 38 40	 8" HSA borehole 2" Sch 40 10-slot PVC screen (12.0'-34.5') No. 00 sand Bottom end cap
										R SCIENCES ATION
								Geologic	Log	g: 202–2S

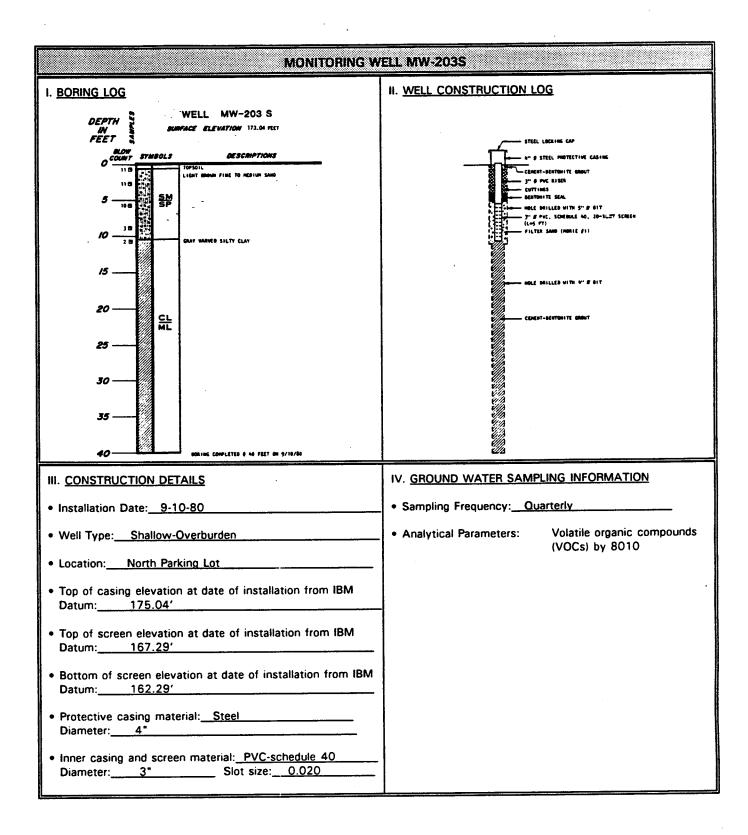
			son	Vall	Augering Log ey, Kingston Site	202–3S 6'N/56'E Northwest				
Pro	oject No. 9							of Building 202		Page 1 of 1
Depth Feet	Blow Counts	(mdd)	Sample Number	Recovery	Overburden/Lithologic Description		nscs	Well Construction Graphic	Depth Feet	Well Construction Details
										— 4" locking Royer cap with 2" watertight sealing cap
	<u>Ground</u> <u>Surface</u>	·			Sod 0-3", dk br silt & sand soil (fill), cl plastic sheeting at 1'. SAND: dk yel br, f-m w/vf sand, tr c, so					— Concrete <i>(future)</i> — 4" Protective pipe
2	HAND AUGERED				loose, moist. SAND & GRAVEL: mod yel br, f-vf w/silt, m, lit vc, some f-m SA-SR gravel, cohes : cobble/boulder at 2.6'.	some c-				
4 =	AUGERED				: asphalt layer at 3.2'. : olive gray to grayish brown sand & gr silt 3.2–5.5' (fill?).	avel w/			4	— Bentonite slurry
6					: softer form at 5.5'					— 2" Sch 40 PVC riser
8	4-5-5-7	10	1	13"	SILT: mottled, mod yel br to pale yel br, red lams, occ vf sand lams & near verti silt-filled wthrd fracts, cohesive, dense, filled root trace.	cal sand/			8	— 8" HSA borehole
10	6-6-6-6	-	2	NR						
12	2-2-3-3	0	3	22"	SILT & CLAY: mod yel br w/occ pale red pink lams (varves), widely—spaced (~1.2 clay—rich in red/pink zones, dense throu plastic, moist—wet, horiz. lam, occ. vf so	5–3") Ighout,			12	- 2" Sch 40 10-slot PVC screen (6.5'-19')
14	2-2-1-3	0	4	20"	SAA top 7". SILT & CLAY: br gray w/occ pale red lam, incr clay content, turning mod olive br belo occ vf-f sand lams, vc sand lam at 18 gray color bottom 2", dense, plastic, we	/w 14″w			E E E 14	
16	1-1-2-2	0	5	12"	SAA top 5". SAND: It olive br, vf w/f, some silt, occ horizontal lam, sl flowing, pred f lower 1 cohesive to loose, v wet.	", sl			16	— No. 00 sand
18	WOR/1'-2-2	0	6	15"	SILT/CLAY: top 11" w/f—vf sand layer 5 plastic, dense, wet. SILT & GRAVEL: at 11", brownish—black w SR gravel, v dense, plastic, some clay, v	/f-m SA-			E E 18	
	WOH-50/1' AUGERED	0	7	2"	: SAA, Ig shale rock frag top 1", wthrd,	dk gray.				—Bottom end cap
20					Total Depth: 19.1'.				E20	
	Driller: Nor Logged by: Drilling Star Drilling Com Well Constru Well Develop	S. ted: plete uctio	Fish 7- ed: n: 7	er, (8–9 7–8 ′–8-	GSC GSC GSC GSC GSC GSC GSC GSC	mer 18.6'. om groun		COR	POR.	R <i>SCIENCES</i> <i>ATION</i> g: 202-3S
					SWL 13.37' (7/9/96,			DC).		

LOG AND MONITORING WELL DETAILS

BUTES:

Ì

1

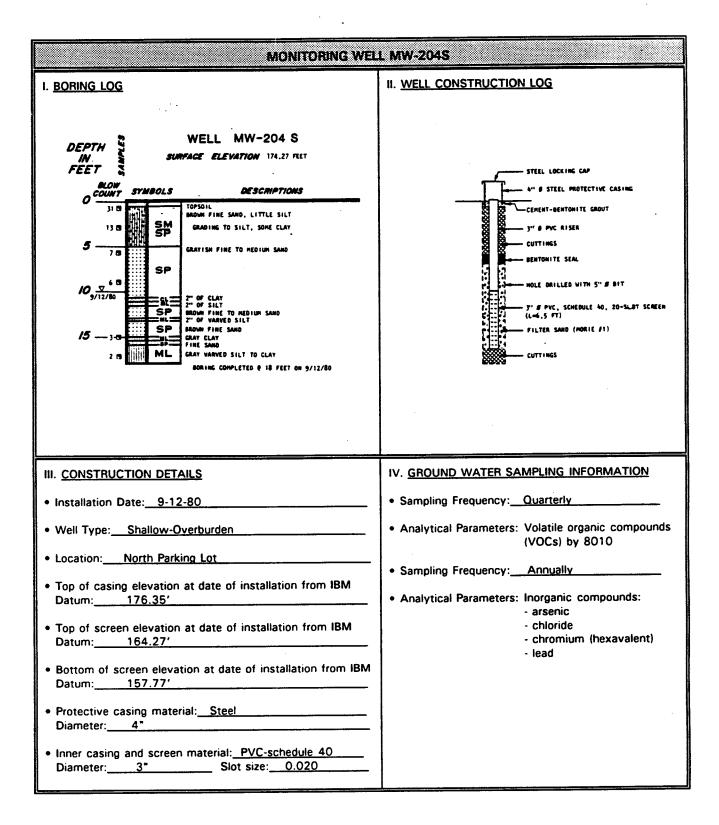

- 1

- 1. THE FIGHES IN THE COLORS LANGLED "DLAW COUNT" REPERTO THE MANNER OF BLANG REQUIRED TO DRIVE A SPLIT-SPON SAMPLER A DISTANCE OF ONE PORT MANNER A 300 POMOD DRIVE MEIONT FALLING 30 INCHES, THE WITLIZED SPLIT-SPON SAMPLERS WERE FROM 2 TO 36 INCHES 6.6.
- 2. RECARE IS A STANDAR PERCINCTION TEST ONLY A 2-INCH DIANCTER SPLIT-BOOM AND A 140-POUND MANDER ARE USED, ALL BLOW CONSTS DETAINED BUT STUDY BY BRITINE 2 TO 34-INCH DIANCTER SPLIT-SPOND WITH A 300-POUND MANNER FALLING 30-INCHES AND BOT WALLD FOR COMPASION WITH STANDARD FERETARTION REST BLOW CRAITS WALKES DETAINED IN PREVIOUE INVESTIGATIONS.

3. ELEVATIONS HEFER TO HERE SEA LEVEL MATHY.

 THE DISCUSSION IN THE YEAT OF THE REPORT IS HELESSARY FOR A FORFER WHERISTANDEDS OF THE DATUME OF THE SUBJURFACE NATERIALS.

A DOME IS DOORS

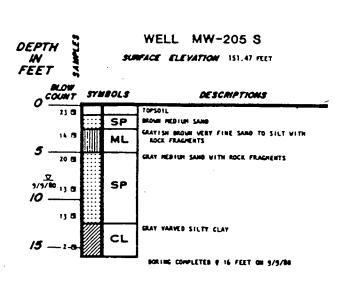


MONITORING WELL MW-203S									
V. MODIFICATION	V. MODIFICATION DETAILS								
Modification Da	te: <u>7-22-92</u>								
- Modifications i	nvolved the following activitie	s:							
Painting and	labelling of casing								
	-								
- Performed by:	-								
Modification Da	te: 9-30-92								
- Modifications	involved the following activitie	2S:							
<u>Surface sea</u>	al repair and installation of wat	ter tight cap							
- Performed by:	Dames & Moore								
	VI. SURVEY DATA SURVEY DATE PERFORMED BY TOP OF STEEL PROTECTIVE TOP OF PVC CASING REVICTION								
	SURVEY DATE PERFORMED BY CASING ELEVATION CASING ELEVATION								
9-10-80									
10-2-92	10-2-92 Brinnier & Larios 175.28' 174.36'								

-

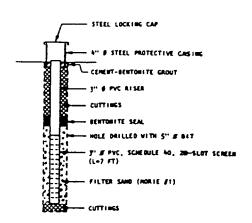
MONITORING	VELL MW-203S
VI. DEVELOPMENT HISTORY	
Redevelopment Date: <u>None</u>	
- Total well depth at date of installation:	
- Depth prior to development: - Difference in depth from installation:	Depth after development: Difference in depth from installation:
Change in depth (in feet):	
- Redevelopment method:	
- Performed by:	

-

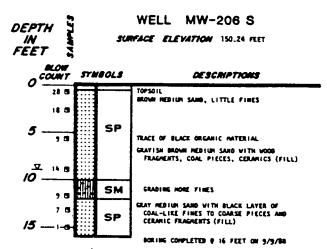


	MON	ITORING WELL MW-204S								
V. MODIFICATION D	ETAILS		·····							
Modification Date:	7-22-92	······································								
- Modifications inv	olved the following activiti	es:								
Painting and la	belling of casing									
	-									
- Performed by:	•									
	olved the following activiti	es: n of water tight cap and curbbox seal								
VI. <u>SURVEY DATA</u>			· · · · · · · · · · · · · · · · · · ·							
SURVEY DATE	SURVEY DATE PERFORMED BY TOP OF STEEL PROTECTIVE TOP OF PVC CASING ELEVATION CASING ELEVATION									
9-12-80	Brinnier & Larios	176.35′								
10-2-92	Brinnier & Larios	173.91′	173.48'							

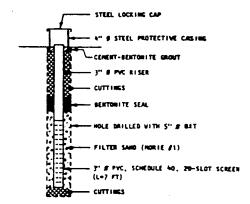
.


1814

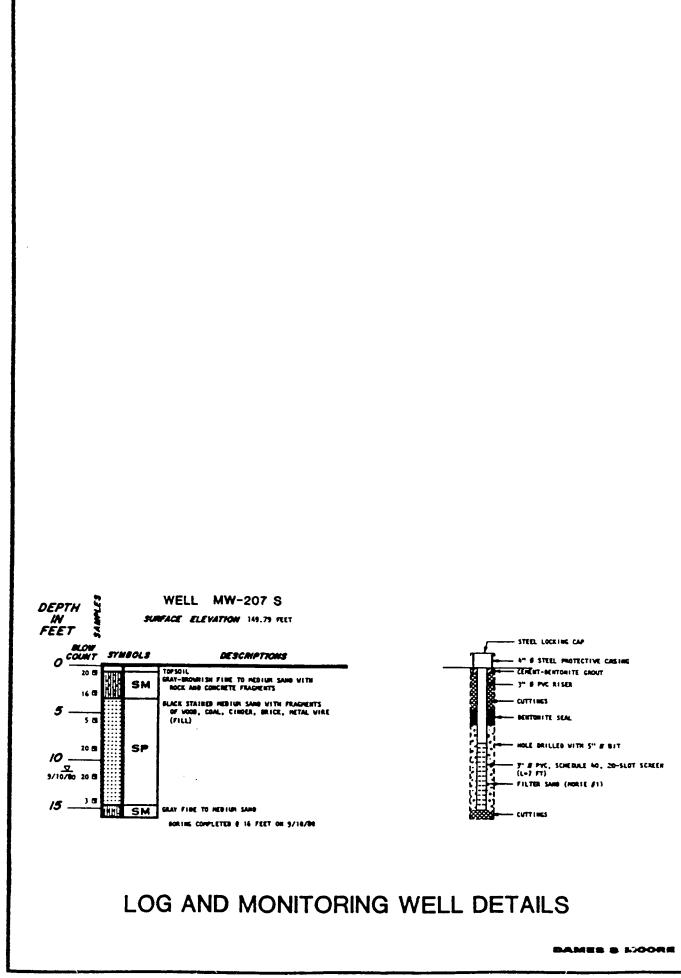
MONITORING WELL MW-204S	
VI. <u>DEVELOPMENT HISTORY</u>	
- Total well depth at date of installation: <u>157.77</u>	-
Depth prior to development: <u>158.47'</u> Difference in depth from installation: <u>0.70'</u>	_Depth after development:158.24' _Difference in depth from installation:0.47'
Change in depth (in feet):	0.23'
Redevelopment method: <u>Centrifugal Pump</u> Performed by: <u>Dames & Moore</u>	-


÷

)


LOG AND MONITORING WELL DETAILS

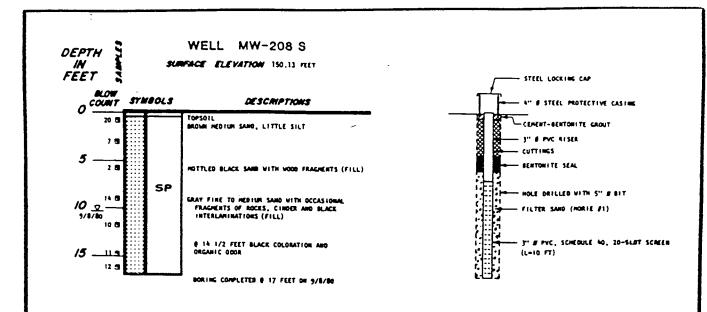
DAMES & L'OORS


÷

)

LOG AND MONITORING WELL DETAILS

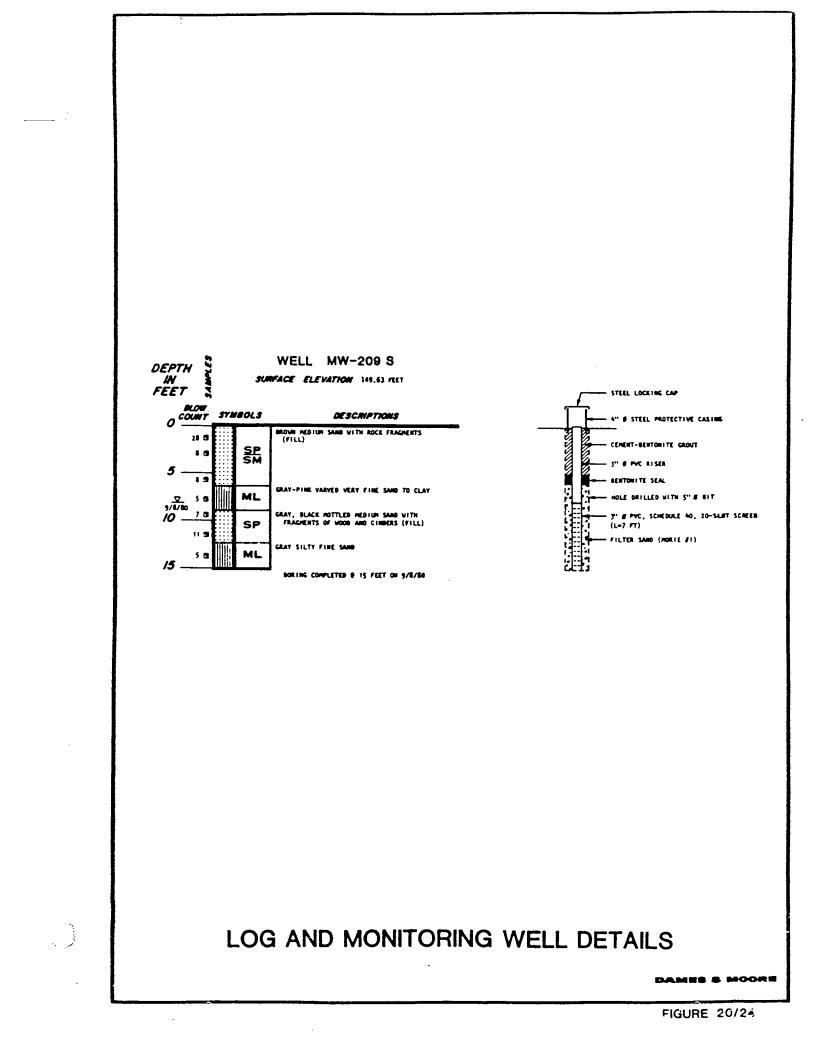
DAMES & L'OORE

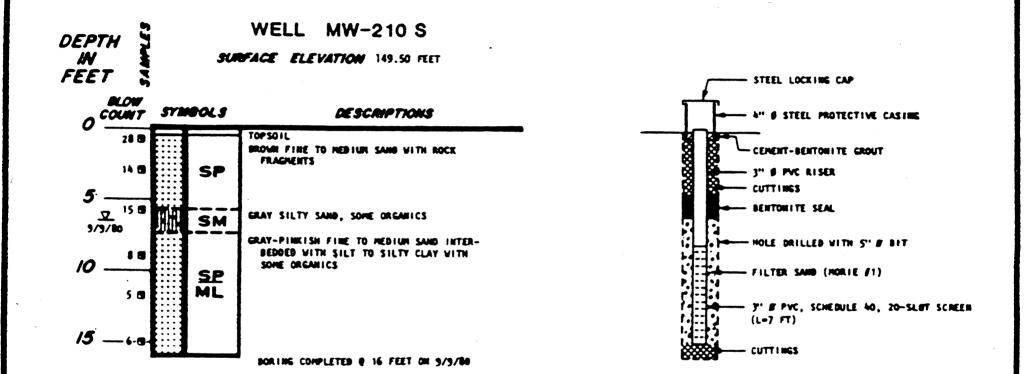


- . ·

÷

)

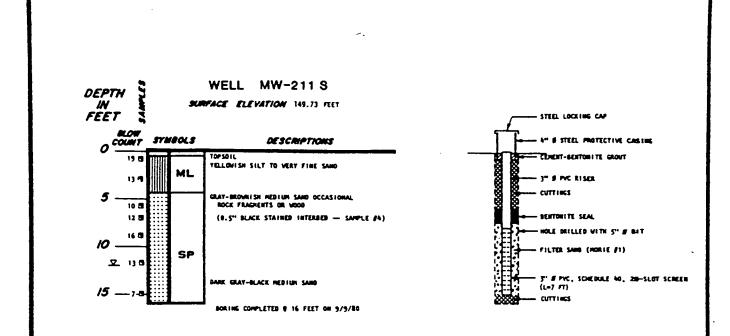

FIGURE 20/23



LOG AND MONITORING WELL DETAILS

DAMES & MOORE

FIGURE 20/24



LOG AND MONITORING WELL DETAILS

DAMES & MOORE

FIGURE 20/24

-

LOG AND MONITORING WELL DETAILS

DAMES & MOORE

	ent: IBM N bject No. S		Huc		Augering Lo Valley, Kir	0	-	ion	MW-225S C&D Landfill A NE of MW-224	rea	TOC Elev. 143.89 GS Elev. 141.43 Page 1 of 2
Depth Feet	Blow Counts	(mqq) * Old	Sample Number	Recovery	Ove	erburden/Lithologic Description		NSCS	Well Constructi Graphic		Well Construction Details
	Ground Surface	·					 then				 4" Locking Royer cap w/2" expansion plug 4" protective steel casing
2	2-2-3-4	0	1	21"	weathered yel plant debris,	low brown below w/occ rootl crumbly, moist.	ets and				— Concrete pad
4	4-4-2-2	0	2	20"	: same as at below 7", tı	bove, w/vf sand top 7", lit-s urning wet at 11", lit clay, sl	ome plastic.	ML/ OL			— Bentonite slurry
2 4 4 6 10	1-1-1-1	0	3	21"	clay, lit vf sa throughout, v sl gray color,	w brown to mod yellow brow ind w/decayed organic mater sandy in lower portion, pred loose in sand, cohesive in s	ial flakes vf—f, silt, wet.			6	— Bentonite chips — 2" Sch 40 PVC riser
8	1-1-1-1	0	4	10"	: same as ab SAND: at 5", c with silt, hom	bove, top 5". Jive gray to med gray, vf—f logeneous, loose, wet.	sand				
10	WOR-3-2-1	0	5	15"	f sand, f san silt lamination	ay to olive gray, silty vf-f so id w/occ pale red to brownis is between 6" and 12", same 3", cohesive, wet.	ind, pred sh gray e as	SP/ SM		10	—8" HSA borehole
12	WOR-1-1-2	0	6	16"		med gray to olive gray, vf—f It laminations, occ med sanc hesive, wet.				= 12	
14	2-1-2-1	0	7	21"		as above, laminated with occ s and med sand, laminated sive, wet.		SM			-2" Sch 40 10-slot PVC screen (6.5'-21.5')
16	WOR/1.5'-1	0	8	20"	vf sand lamir	gray, tr clay, faintly laminate lations, tr white flakes (orgar slightly plastic, wet to moist.	ed, tr nic),			 	× ,
18	1-2-4-4	0	9	22"		bove, 45' fracture filled with organic material, plastic, wet		ML		 	
20-	AUGERED WOR/2'	0	10	21"	SILT: as above	, top 12".				20	— No. OON sand
	Driller: Soi Logged by: Drilling Star Drilling Com Well Constru Well Develop	S. ted: nplet uctio ped:	Fish 10 [,] ed: n: 1 10 [,]	er, (-27 10- 0-2 -31-	GSC -94 27-94 27-94 -94	Notes: *No response to sampl scans. WOR — Weight of Rods Measured DTB from gro (10/28/94, 11:50): 2	ode	adspac	ce	NDWATE. CORPOR	R SCIENCES ATION : MW-225S
	Well Coords			415. 176.		SWL 4.25' (10/28/94,	11:49; fr	om gro	ode).		

Soil Augering Client: IBM Mid-Hudson Valley, Project No. 94013	Born		V–225S Landfill Area of MW–224S	TOC Elev. 143.89 GS Elev. 141.43 Page 2 of 2
Counts Counts Counts	Overburden/Lithologic Description		Well Construction Graphic	Well Construction Details
	dk gray, f-m w/vf, lit c, tr silt, loose, n silt mass in lower 1". SAND: as above e frags (lg frag at bot), tr clay masses. ROCK: at 21.5' (?), dk gray. Total Depth: 21.5'.	SW		26 28 30 32 34 36 38
	Notes: *No response to sample jar scan.	headspace		ER SCIENCES DRATION
			Geologic Lo	og: MW-225S

	ent: IBM N oject No. 9	9401	Huc 3	lson	Augering Lo Valley, Kir	-		on E	MW-232 3035 and Alcove			TOC Elev. 180.94 GS Elev. 178.23 Page 1 of 2
Depth Feet	Blow Counts	(ppm) (ppm)	Sample Number	Recovery	Ove	erburden/Lithologic Description		nscs	We Constr Grap	uction	Depth Feet	Well Construction Details
0 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Ground Surface HAND AUGERED										0	 4" Locking Royer cap w/2" expansion plug 4" protective steel casing Concrete pad
6	1-1-3-4	0 (0)	1	22"	SAND: fine-r	some silt, brown, dry. nedium, salt & pepper te 9 grains), dry.	exture,				6	— Bentonite slurry
8 =	4-5-6-8	0 (0.4)	2	18"	SAND: fine-r : wet.	nedium, as above.		SW				— 2" Sch 40 PVC riser
12	3-2-3-4	0 (0.3)	3	22"		ittle medium sand, browr		SP			= 12	
14	4-3-3-7	0 (0.6)	4	22"	medium s	hick brown—pink clay/silt 13.4' & 13.7', grading t sand.	lamin- o fine-					— 8" HSA borehole
16	6-14-19-23	0 (0)	5	24"	silt lamin	um, brown; 2—3mm thicl ation at 15.5'.						
18	10-17-21-23	0 (0.4)	6	16"	clay lamina		,	SP/ SM			E E 18	
20=	8-15-29-31	0 (1.2)	7	16"	clay lamina	prown, occasional 2—5mm tions.	n siit/				E 20	
	Driller: Soil Logged by: Drilling Star Drilling Com Well Constru Well Develop Well Coords	C. ted: plete uctio ped: .: N	Rine 10- ed: n: 1 10- 717	e, GS -25- 10- 0-2 -28-	SC -94 25-94 25-94 -94 54	Notes: Hand augered to 6.0' *Number in parenthes FID reading of jar h SWL 19.10' (from TOC)	ses repre eadspac	e.	Geo	COR	POR	R SCIENCES ATION : MW-232M

	ent: IBM N bject No. S	9401	Huc 13	lson	Augering Lo Valley, Kir	-		on B	MW-232M 035 and B001 Icove		TOC Elev. 180.94 GS Elev. 178.23 Page 2 of 2
Depth Feet	Blow Counts	(mqq)	Sample Number	Recovery	Ove	rburden/Lithologic Description		nscs	Well Construction Graphic	Depth Feet	Well Construction Details
20-									^	 20	
22	4-11-17-15	0 (0.6)	8	14"		nedium, brown. — — — ne, gray, tr silt.	_	SW SP			- Bentonite slurry
22-	10-19-18-8	0 (1.2)	9	14"		ay, tr very fine sand. ne, little silt, wet.	-	SM/ ML		- 22	— Bentonite chips
24	4-5-5-4	0	10	20"	SILT: gray. SAND: very fi	ne, some silt, gray.	-	SP ML SP		24	— 2" Sch 40 PVC riser
26	+ 3 3 +	(6.4)		20	SAND: very fi	arved, alternating pink ar ne—fine, gray. ıray, somewhat loose, we	_	MH/CH SW		26	—8" HSA bore hole
28	4-3-3-5	0 6.2)	11	14"	SAND: fine.			SP		28	
30	4-6-5-4	0 (6.8)	12	20"		clay, pink clay lam. at	29'.	MH/ CH		30	- 2" Sch 40 10-slot PVC screen (24.0'-34.0')
32	4-6-7-5	0 (10+)	13	14"	SAND: fine, g	Iray.		SP		 	
34=	8-6-4-6	0 (1.0)	14	16"	SAND: fine, g	ıray. tr clay, pink∕qray lams.					—Bottom end cap
34-	7-7-5-6	0 (3.6)	15	16"		arved, no sand.		МН/ СН		34	← No. 00N sand
						Total Depth: 36.0'.			<u>s (transformation</u>	 	
38										40	
										- 40	
						Notes:					R SCIENCES ATION
						*Number in parenthes FID reading of jar h			Geologic	Log	: MW-232M

Clie Pro	ent: IBM M ject No. S		Hud		Augering Log Valley, Kingston Site		ion	MW-232S B035 and B001 Alcove		Elev. 181.03 Elev. 178.23 Page 1 of 1
Depth Feet	Blow Counts	(ppm)	Sample Number	Recovery	Overburden/Lithologic Description		nscs	Well Construction Graphic	Depth Feet	Well Construction Details
	Ground Surface HAND AUGERED				[See log for MW-232M]				w/ 0 4" Co 2 Be 4 2" 6 8" 2" 6 8" 2" 10 (5. 12 No 12 14 Bo 16	Locking Royer cap 2" expansion plug protective steel sing ncrete pad ntonite slurry ntonite slurry Sch 40 PVC riser HSA bore hole Sch 40 10-slot C screen 0'-15.0') . 00N sand
18	Driller: Soi Logged by: Drilling Star Drilling Com Well Constru Well Develop Well Coords	C. ted: plet uctio ped: .: N	Rine 10- ed: n: 1 10-	-26- 10- 0-2 -28- 572.	-94 26-94 6-94 -94 12	↓ 11:33 fi	rom TC		ATER S	

	ent: IBM N bject No. 9	940	-Huc 13	lson	Augering Log Valley, Kingston Site		ion E	MW-236M Between B031 nd B032		TOC Elev. 180.80 GS Elev. 181.01 Page 1 of 2
Depth Feet	Blow Counts	* (mqq)	Sample Number	Recovery	Overburden/Lithologic Description		nscs	Well Construction Graphic	Depth Feet	Well Construction Details
	Ground Surface HAND AUGERED				Asphalt w/gravel base 0-6" gray silt, sand and angular gravel (fill). SAND: at 20", dk yellow brown, f-m sand tr silt, tr c-vc, homogeneous, loose, mo		FILL		0	9" flush-mount manhole w/2" water- tight sealing cap Concrete Bentonite slurry
6 8 10	3-4-2-3	0 (0) 0 (0)	1	20" 24"	: SWL at 5.5' in hand-auger hole. SAND: dk yel brown, pred f-m, lit vf, tr sil homogeneous, overall pred c, sl gravish tc silty mod brown lower 2", loose, tr dk bro organic flakes 7-20", wet. SAND: dk yel br, f-m, some c, tr silt, fir to 14", vc S grains at 3", faint mod It br 9-14", sharp contact at 14", loose, sl col SAND: at 14", dk yel br, m-c, some f, tt silt & vc sand, tr dk br organic flakes I SAND: dk yel br, m-c, some f, tt silt & vc sand, tr dk br organic flakes I SAND: dk yel br, m-c, some f, tt silt & ose, wet. SAND & SILT: at 10" moc varved, horiz, w/interlams of f-m sand, tr	pp 7", wm silt lams hesive, wet. r-It vf, tr below 14". vc, tr d yel br,	SW		8	- 8" HSA borehole
12	1-1-3-4	0 (0)	3	22"	 silt 14.5-15", 15.75-16.25" and 16.5-17" SILT: at 19" varved, mod yel br, tr clay, de plastic, faint vf sand lams, SA 0.25" pebbl 2", angled to varves. SILT: v dense, lit-tr clay, varved 1-3". SILT & SAND: mod-dk yel br, vf sand & si cohesive, yel orange to dk br organic-rich banks. occ. dk br organic flakes 12-14". 	nse, sl e at t, sl color more	SM ML		= 12	- Bentonite chips
14	2-1-1-2	0 (0)	4	16"	cohesive, stiff, sl less vf sand below 14" s color-banded, wet. SAND: dk yel br, f-c, lit vf, tr c grains, oc yel br weathered clay/silt mass, fining to f-m, some vf, tr silt below 14" then sl co	still c mod	SM		- 14	2" Sch 40 PVC riser
16=		0 (0)	5	24"	ing to pred m, lit c sand 18–19", wet. SILT: at 19", It br, varved, wthrd, dense, ray grading to unit below, wet. SAND & SILT: at 20", dk yel br, vf sand w/ homogeneous, sl color-banded, wet. SAND: dk yel br, f-m, homogeneous, tr s	/silt,	SW SM		16	2" Sch 40 10-slot PVC screen (14.0'-19.0')
18-	2-1-1-2	0 (0)	6	24"	masses, wet. SILT: at 14", brownish gray silt 14-15", t plastic, grades to mod yel br, sl plastic, w/faint pink lams below 20", moist, stiff sand below 22", laminated.	r clay, varved , lit vf	SP ML/ CL		- 18	-
20-	1-2-1-1	0 (0)	7	20"	SAND: dk yel br, f, lit m and vf, some si geneous, loose, wet. SILT: at 7", mod yel br, varved, wthrd, lit clay, dense, plastic, turning brownish gra gradational color change, varved, dense,	-some y at 13",	SP ML ML/ CH		20	— Bottom end cap — No. OON sand
	Driller: Soi Logged by: Drilling Star Drilling Com Well Constru Well Develog Well Coords	S. ted: nplet uctio ped: .: N	Fish 10 [.] ed: n: 1 10-	er, 19 -19 10- 0-1 -28- 971.	GSC Hand augered to 6.0 -94 *Number in parenthe 19-94 PID reading of jar 9-94 Measured DTB from g -94 (10/20/93, 07:44):	esis repre headspac rade 19.1'	ce.	CORI Geologic I	<i>20R</i>	<i>R SCIENCES</i> PATION : MW-236M

	ent: IBM N bject No. 9	940	Huc 13	lson	Augering Log Valley, Kingston Site		tion E	MW-236M Between B031 and B032		TOC Elev. 180.80 GS Elev. 181.01 Page 2 of 2
Depth Feet	Blow Counts	+ (udd)	Sample Number	Recovery	Overburden/Litholoo Description	gic	nscs	Well Construction Graphic	Depth Feet	Well Construction Details
20-									 20	
22=	2-4-3-4	0 (0)	8	24"	SILT w/CLAY: brownish gray, varv vf sand layer 9-10".	ved, dk gray,	MH/ CH		E - 22	— 2" dia split spoon boring
					Total Depth: 22.0'.				24 26 28 30 30 32 34 34 36 38 38	- Collapsed/swelled formation
					Notes: *Number in pare PID reading of	enthesis repr jar headspa	esents ce.	COR	POR	R SCIENCES ATION MW-236M

	ent: IBM N bject No. S		Huds		ugering Log Valley, Kingston Site		n 5	MW—236S 5'SW of MW—236M 8031/B032 Area		TOC Elev. 180.66 GS Elev. 181.01 Page 1 of 1
Depth Feet	Blow Counts	(mqq) Olq	Sample Number	Recovery	Overburden/Lithologic Description		nscs	Well Construction Graphic	Depth Feet	Well Construction Details
0 2 4 4 10 12 14 10 14 10 14 10 14 10 14 10 112					[See log for MW-236M] Total Depth: 9.0'.					9" flush-mount manhole w/2" water- tight sealing cap Concrete Bentonite slurry Bentonite chips 2" Sch 40 PVC riser 8" HSA borehole 2" Sch 40 10-slot PVC screen (4.0"-9.0") No. 00N sand Bottom end cap
	Driller: Soi Logged by: Drilling Star Drilling Com Well Constru	S. F ted: plete	ishe 10- d:	r, G 19- 10-	-94 19–94 Measured DTB from c	grade		COR.	POR	R SCIENCES ATION
	Well Develop Well Coords	bed: .: Nī	10-	28– 69.5	-94 51	07:41; from	n gro		Log	: MW-236S

	ent: IBM N bject No. S	960	-Huc 11.0	lson 1	Augering Log Valley, Kingston Site		ion [,]	MW-250M ~75'W and ~8'S c SE corner B005		TOC Elev. 178.09' GS Elev. 176.18' Page 1 of 1
Depth Feet	Blow Counts	(mdd)	Sample Number	Recovery	Overburden/Litholoo Description	gic	nscs	Well Construction Graphic	Depth Feet	Botano
0 2 4 6 10 12 14 16 18 18 10	2-2-2-3 1-1-3-4 1-1-2-1 1-1-2-2 3-2-2-5	0.1		 16" 24" 24" 10"	Sod 0-3". Dark brown sand w/gravel at 1'. : water at 2.9'. : flowing sand below 3'. SAND: dk yel br, f-m w/vf, pred m 5", homogeneous, loose, sl grayish v v wet. SAND: as above, tr organic flecks be w/more dk yel br than above betw tr c sand top 6", v wet. SAND: dk yel br, pred m w/f-vf, tr eous, wthrd silt/clay rip-up masses f SR oval qtz pebble at 11", tr org below 12", lit c sand below 11", we SAND: as above top 17" w/wthrd silt lo SILT: at 17", mod yel br w/lt br laye horiz. lam, cohesive, grades to unit SAND: as above top 20", v homogene rip-up masses. SILTY CLAY: at 20", mod yel br, wthr layering, dense, sl plastic, tr organic SILTY CLAY: as above w/dk yel br co layering, incr clay, color grades to b occ pale red varves lower 4", dense	tone to color, tw 7" and 14", 7" and 14", silt, homogen- at 13" & 17", anic(?) masses it. ams at 15-16". pers w/vf sand, below, wet. sand, homo- le frag at 13", eous, tr clay d, horizontal s. lor, tr horiz. r gray at 2.5",	SP			 4" Locking Royer cap w/2" expansion plug 4" protective steel casing Concrete pad Hydrated bentonite chips 8" HSA borehole 2" Sch 40 PVC riser Bentonite slurry Hydrated bentonite chips 2" Sch 40 10-slot PVC screen (11.3'-14.0') No. 00N sand Bottom end cap Collapsed/swelled formation 2" split-spoon borehole
	Driller: Nor Logged by: Drilling Star Drilling Com Well Constru Well Develop Well Coords	S. ted: plet uctic ped: .: N	Fish 7- ed: n: 7 7-	er, (16— 7—1 7—16 16— 403.	SSC *Volatile scan of 96 6-96 -96 Measured Depth 96 (from TOC). 96 SWL 2.9' (7/16/	to Bottom: '96; from gr	ade).	COI	RPOR	<i>R SCIENCES</i> 2 <i>ATION</i> WW-250M

	ent: IBM N oject No. S	9601	Hud 11.0	son 1	Augering La Valley, Kir			ocation [,]	MW-250S ~5'E of MW-250M S of B005		TOC Elev. 178.60' GS Elev. 176.20' Page 1 of 1
Depth Feet	Blow Counts	(mqq)	Sample Number	Recovery	Ove	erburden/Lithc Description	ologic	nscs	Well Construction Graphic	Depth Feet	Well Construction Details
0 2 4 6 10 12 14 16 18 18					[See MW-250M	Total Depth: 5.0		FILL SP		0 2 4 4 10 12 14 16 18 18 20	 -6" Locking Royer cap w/2" expansion plug -6" protective steel casing - Concrete pad - Hydrated bentonite chips -2" Sch 40 PVC riser -2" Sch 40 10-slot PVC screen (2.3'-5.0') -8" HSA borehole - No. 00N sand
	Driller: Nor Logged by: Drilling Star Drilling Corr Well Constru Well Develog Well Coords	S. ted: nplete uctio bed: .: N	Fishe 7- ed: n: 7 7-	er, (16- 7-1 -16 16-9	GSC 96 6-96 96 96 115	Notes: *Volatile scan of Measured Dept (from TOC). SWL 2.9' (7/1 5.33' (7/	th to Botto	om: 7.39' m grade)	COR	POR.	<i>R SCIENCES</i> A <i>TION</i> MW-250S

	ent: IBM N pject No. S		Huc	lson	Augering Lo Valley, Kii	og ngston Site		ion ~	MW-251M 55'W & ~26'N of orner B005, inside	SE	TOC Elev. 174.78' GS Elev. 175.10' Page 1 of 1
Depth Feet	Blow Counts	FID * (ppm)	Sample Number	Recovery	0ve	erburden/Lithologic Description		nscs	Well Construction Graphic	Depth Feet	Well Construction Details
	2-2-4-7 $1-1-2-1$ $1-1-2-4$ $2-4-4-4$	0	1 2 3 4 5 6	9" 18" 24" 16" 10"	SAND: dk yel I SR-SA gravel color below 1 SAND: dk yel I frag w/yel or br organic(?) SAND: dk yel I silt mass at masses, loose SAND: as above yf-f, tr m loi tr faint horiz. 207, loose to mass, incr si SAND: as above SILT/CLAY: br sand lower 1 plastic, wet. SAND: dk yel I tr silt/clay lc SAND: dk yel I tr silt/clay lc SAND: pred f- br, occ wthrd SILT/CLAY: at sand lams, h is oxidized m	0-8" w/wire mesh at base, 3-10". br, f-m w/vf, & c, some vc, 1 near top, loose, some olive 1.5', moist, water at 1.9'. br, f-m w/vf, tr c top 2", r range areole at 5", tr silt & masses, loose, flowing, v we br f-m w/vf, homogeneous, 5" & 16", tr dusky yel br oi e, flowing, wet. e, w/some-lit c top 8", fining wer 4", dk br organic-rich lan organic & silt/clay lams betw sl cohesive, occ wthrd silt/cla it w/depth, wet. e, f-m w/vf, lt silt, homogeneous gray to mod yel br, horiz. lc ", sharp top, gradational bass or, vf-m, lit silt, occ horiz co mm w/vf, tr silt, homogeneous d silt/clay lams below 12", w m w/vf, tr silt, homogeneous d silt/clay lams below 12", brownish gray, v dense, plastic Total Depth: 14.0'.	lit f-m gray usty iron tr dusky st. tr wthrd rganic(?) to pred n at 20", 15" & ay rip-up ous 0-8". im, tr vf e, dense, lor lams, y, tr vf top 1.5" ic.	FILL SP MH/CH SM			 6" flush-mount manhole w/2" water- tight sealing cap Concrete pad Hydrated granular bentonite Bentonite chips 8" HSA borehole 2" Sch 40 PVC riser 2" Sch 40 10-slot PVC screen (8.9'-11.6') No. 00N sand Bottom end cap Collapsed/swelled formation 2" split-spoon borehole
	Driller: Nor Logged by: Drilling Star Drilling Com Well Constru Well Develop Well Coords	S. ted: nplet uctio ped: .: N	Fish 7- ed: n: 7 7- 7174	er, (22– 7–2 7–22 30–9	GSC 96 2-96 96 96 394	Notes: *Top no. is volatile sca bottom no. is jar hea measurement. Backgrou WOH = Weight of Ham Measured DTB: 11.35' SWL 1.9' (7/22/96;	dspace und was mer (from	scan [°] ~3.5pp TOC).	m, COF	RPOR	<i>R SCIENCES</i> A <i>TION</i> MW-251M

	ent: IBM N oject No. S	960	-Huc 11.0	lson 1	Augering Log Valley, Kingston Site		ocation [,]	MW-251S ~52'W & ~26'N of corner B005, inside	TOC Elev. 174.85 SE GS Elev. 175.10' bldg. Page 1 of 1
Depth Feet	Blow Counts	(ppm)	Sample Number	Recovery	Overburden/Lit Descriptic		nscs	Well Construction Graphic	Well Construction Details
-	<u>Ground</u> Surface				[See MW-251M log for lithologi	c descriptions.]			6" flush-mount manhole w/2" water- tight sealing cap Concrete pad Hydrated bentonite chips 2" Sch 40 PVC riser 2" Sch 40 10-slot PVC screen (1.7'-4.4')
4							SP		8" HSA borehole
					Total Depth:	4 5'			No. 00N sand
2 4 6 10 12 14 16 18 18 20									Bottom end cap
	Driller: Nor Logged by: Drilling Star Drilling Com Well Constru	S. -ted: nplet uctio	Fish 7- ed: n: 7	er, (22– 7–2 7–22	SSC *Volatile scal 96 2–96 –96 Measured Da	n of split spo epth to Botto		CO	WATER SCIENCES RPORATION
	Well Develop Well Coords	.: N		136.	409 (from TOC).	/16/96; fro			_og: MW-251S

	ent: IBM M bject No. S	960	-Huc 11.0	lson 1	Augering Log Valley, Kingston Site		ion [,]	MW—255S ~8'E and ~320'N of SE corner of B005		TOC Elev. 178.62' GS Elev. 179.00' Page 1 of 1
Depth Feet	Blow Counts	FID * (ppm)	Sample Number	Recovery	Overburden/Lithologic Description		nscs	Well Construction Graphic	Depth Feet	Well Construction Details
		0 5 0 2 0 0	1 2 3	15" 24" 24"	 Asphalt pavement 0-3". Gravel base to 9". SAND: dk yel br to It br, f-m w/vf, lit c, and f gravel, occ clay mass, loose, mois : olive gray color, incr moisture below 4 : wet at 4.9'. SAND: dk yel br to olive gray, f-m w/vf, homogeneous, loose to cohesive, tr silt/c up masses, wet. SAND: as above, occ dk br organic masse geneous, mod yel br silt and clay layer horiz. oriented, some iron-staining in sat base of spoon. SAND: as above w/incr in slit/clay, SR rip-up several br gray masses at 10", zone containing several cla betw 13-15" w/tr vc sand and f SR-R SILT & CLAY: at 15", br gray w/some vf 3", sl flowing then v dense, plastic w/paler clay-rich, lg blk organic-rich zone at bottor Total Depth: 12.0'. 	t. tr silt, lay rip- 21-21.5", d at o masses, od yel br y masses gravel. sand top ed varves,	FILL SP MH/CH			 9" flush-mount manhole w/2" water- tight sealing cap Concrete pad Hydrated granular bentonite 2" Sch 40 PVC riser 8" HSA borehole 2" Sch 40 10-slot PVC screen (3.9'-11.6') No. 00N sand Bottom end cap Collapsed/swelled formation 2" split-spoon borehole
	Driller: Nor Logged by: Drilling Star Drilling Com Well Constru Well Develop Well Coords	S. ted: plet uctic ped: .: N	Fish 7- ed: n: 7 8-,	er, (24– 7–2 7–24 3–9 725.	SSC*Top no. is volatile so bottom no. is jar her measurement.96*Top no. is volatile so bottom no. is jar her measurement96WOR = Weight of Rods6Measured DTB from TC Measured DTB from gr	adspace 5 OC: 11.17 ade: 11.	scan [°] 7'. 6'.	on; COR.	POR.	<i>r sciences ation</i> ww-2558

	ent: IBM N bject No. S		Huc	lson	Augering Lo Valley, Kir	og ngston Site		ion I	MW-260S nside B005, ~40'S side/~45'E W side		TOC Elev. 178.85' GS Elev. 179.20' Page 1 of 1
Depth Feet	Blow Counts	(mdd)	Sample Number	Recovery	Ove	erburden/Lithologic Description		NSCS	Well Construction Graphic	Depth Feet	Well Construction Details
	<u>Ground Surface</u> HAND AUGERED				SAND: brown c	ES: in sand matrix to 2.1'. It top to brownish gray at bo nd cobbles, dry at top, moist		FILL	2020202020 20202020 20202020 20202020 20202020 20202020 20202020 20202020 20202020 20202020 20202020 20202020 20202020 20202020 20202020 20202020 20202020 20202020 20202020 20202020 20200 202020 202020 200 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 200 2	0	9" flush-mount manhole w/2" water- tight sealing cap Concrete pad Hydrated bentonite chips
6	3-3-5-4	0	. 1	14"	SAND: grayish iron—stained	brown, mostly m w/some fin zone at 4", loose, saturated.	ies,	SP		6	2" Sch 40 PVC riser 8" HSA borehole
8	5-5-5-8	0 0.1	2	20"	finely laminat SILTY CLAY: 6– SAND: 13–20",	grayish brown, m at top to f ed, saturated. 13", brownish gray, m stiff, la iron—stained at top, grayish loose, saturated, tr organics.	minated.	ML/CL			2" Sch 40 10-slot PVC screen (5.5'-15.5')
12	3-3-3-3	0 0.2	3	8"	saturated.	brown, m, loose, occ clay cl		SP		= 12	
14	3-3-4-5	0 0.1	4	14"		e w/faint oxidized zone at 2				14	- No. 00N sand
16=		0	5	13"	thick) at 6", silty lens, sat	ayish brown, lam, m stiff, sa	below	SP/SM ML/CL		16	Bottom end cap Collapsed/swelled formation
18						Total Depth: 16.0'.				18	2" split-spoon borehole
	Driller: Nor Logged by: Drilling Star Drilling Com Well Constru Well Develop Well Coords	D. ted: plet uctio ped: .: N	Muri 8- ed: n: 8 8-:	ceak 13– 8–1 5–13 20–5 974.	, GSC 96 3-96 5-96 96 382	Notes: *Top no. is volatile sco bottom no. is jar hea measurement. WOH = Weight of Hamr Length of well material SWL 7.1' (8/13/96; 1	dspace mer : 15.24'	scan [°]	on; COR	POF	<i>R SCIENCES</i> RATION MW-260S

	ent: IBM N bject No. 9		Huc	lson	Augering Lo Valley, Kir			ion I	MW-261S nside B005, ~190' SE of MW-260S		TOC Elev. 178.85' GS Elev. 179.20' Page 1 of 1
Depth Feet	Blow Counts	(mqq)	Sample Number	Recovery	Ove	erburden/Lithologic Description		NSCS	Well Construction Graphic	Depth Feet	Well Construction Details
0	Ground Surface HAND AUGERED				mostly m w/s	t top to grayish brown near some A gravel, dense gravel/ dry at top, saturated near t	cobble	FILL			9" flush-mount manhole w/2" water- tight sealing cap Concrete pad Hydrated bentonite chips 2" Sch 40 PVC riser
8	2-3-4	00.2	1	11"	SAND: grayish I	brown, m, loose with 1/8" s : 4" and 7", saturated. brown, m, loose w/ occ thin d small clay clasts, saturated	silty				- 8" HSA borehole - 2" Sch 40 10-slot
10-	2-3-5-5	0.4 0 0.4	2	18" 19"	SAND: as above	e, brownish orange near base		SP/SM		10	PVC screen (4.0'-19.0')
14	9-5-5-3	0	4	19"	silty clay lam SILTY SAND: 14 mix, faintly la	grayish brown, m, loose w/ and small clay clasts, satur —19", grayish brown, vf sana minated, saturated.	ated.	SM		14	No. 00N sand
16	WOH/2'	0	5	6"	at top, grades	above. prown w/iron-stained zone at s to m near base, occ clay prown, m, loose, occ silty clo	clasts.			16	-
18	6-6-6-6	0	6	6"	laminations, s		-2	SP/SM		18	- Bottom end cap
20-				NR		Total Depth: 20.0'.				20	Collapsed formation 2" split-spoon borehole
	Driller: Nor Logged by: Drilling Star Drilling Corr Well Constru Well Develor Well Coords	D. ted: nplete uctio ped: .: N	Muri 8- ed: n: 8 9-,	ceak 23– 8–2 –26 3–90 787.8	k, GSC 96 5-96 96 6 808	Notes: *Top no. is volatile sco bottom no. is jar hea measurement. WOH = Weight of Hamr NR = No Recovery Length of well material: SWL 6.14' (8/23/96;	dspace : mer 18.7'.	scan	on; COR	POF	<i>r sciences</i> Ration MW-261S

	ent: IBM M bject No. S	960	-Huc 11.0	lson 1	Augering Lo Valley, Kii	og ngston Site		ion Ir	MW-262S nside B005, ~130' W of SE corner B00	TOC Elev. 178.81' GS Elev. 179.20' 5 Page 1 of 1
Depth Feet	Blow Counts	FID * (ppm)	Sample Number	Recovery	0ve	erburden/Lithologic Description		nscs	Well Construction Graphic	Well Construction Details
0 2 4 4 6 1 1 1 0 1 1 0	<u>Ground Surface</u> HAND AUGERED				,	ES: with sand matrix to 2.7'. n gray, m, loose w/some gro		FILL		9" flush-mount manhole w/2" water- tight sealing cap Concrete pad - 2 Hydrated bentonite chips - 4 2" Sch 40 PVC riser
8		0000	1	16" 19"	SAND: brownisł	brown, m, occ clay clasts, s n gray, f—m, loose; irregularly -thick pinkish—gray silty clay aturated.	,	SP/SM		6 8" HSA borehole 8 2" Sch 40 10-slot PVC screen (5.0'-15.0')
123		0.1	3	18"	occ clay clas		ninated,	SP		10 (5.0 - 15.0) - 12
14		0.1 0	4	20"	center iron-s SAND: 12-20", finely lam'd, l	-12", iron-stained at top, br a tained at base, laminated, st iron-stained at top, br gray to bose, occ pinkish-gray clay cla	iff. base, m, ısts, sat.	<u>√</u> ML/CL SP		No. 00N sand
16		0.2 0	5	16"	SILTY CLAY: 6- base, 1/4"-tl	br gray, m, loose, f lams, sa 16", orangish brown at top to iick dk brown sand lens at 8' ad, faint tr of organic lams r ed.	, gray at ', med—			Bottom end cap - 16
18		0	6	7"	SILTY CLAY: gr saturated.	ay brown, finely laminated, m	ied stiff,	ML/CL		Collapsed/swelled formation 2" split-spoon borehole
20=						Total Depth: 18.0'.				- 20
	Driller: Nor Logged by: Drilling Star Drilling Com Well Constru Well Develop Well Coords	D. ted: plet uctio ped: .: N	Muri 8- ed: n: 8 8-2	ceak 12– 8–1 5–13 20–9	s, GSC 96 3-96 -96 96 310	Notes: *Top no. is volatile sco bottom no. is jar hea measurement. Blow counts not availabl could not be thrown pu Length of well material SWL 6.4' (8/13/96; t	dspace e becaus roperly. : 14.7'.	scan ['] se hamr	n; CORP	<i>TER SCIENCES ORATION</i> 1: MW-262S

	ent: IBM N bject No. S		-Huc	son	Augering Log Valley, Kings	ton Site		ion ~	MW-263S -22'E of MW-504S nd S of B005		TOC Elev. 177.82 GS Elev. 175.53 Page 1 of 1
Depth Feet	Blow Counts	FID * (ppm)	Sample Number	Recovery	Overbu [urden/Lithologic Description		nscs	Well Construction Graphic	Depth Feet	Botano
	1-1-3-4			13" 20" 19" 11" 16"	SAND: dark brown, laminations, 1/4"- at 8", saturated. SAND: as above, tc SILT: 8–13", grayis sand, saturated. SAND: 13–20", dark organic lam & lens SILTY SAND: top 2" occ iron-stained SAND: 2–17", brow SILTY CLAY: 17–19' bottom. SILTY CLAY: top 4", SAND: 4–11", brow stained w/lens of SILTY CLAY: gray w stiff, saturated. SILTY CLAY: as abo	h brown, mostly silt w/s brown, m-c, SR-SA, lo grayish brown silt, grayish brown silt w/v grains. nish gray, loose, saturat ', gray, med stiff w/pink gray, med stiff w/pink nish gray, c, organic-ric grayish-pink clay at bo /pink lam, occ organics	c organic rown silt some vf ose, occ saturated. f sand, ied. k lam to lam. ch, iron— ise.	SP/SM ML SP/SM SP ML/CL SP ML/CL			- Bottom end cap Collapsed/swelled formation 2" split-spoon borehol
	Driller: Nor Logged by: Drilling Star Drilling Com Well Constru Well Develop Well Coords	D. ted: nplet uctic ped: .: N	Muri 7- ed: n: 7 7-:	ceak 16– 7–1 –16 23–9 391.	s, GSC *T 96 b 6-96 m 96 Le 333	otes: op no. is volatile sca ottom no. is jar hea neasurement. ngth of well materia /L 5.04' (7/23/96;	idspace I: 13.8'.	scan	on; COR	POR	<i>R SCIENCES</i> A <i>TION</i> MW-263S

	ent: IBM M bject No. S	9601	Huc 11.0	lson 1			. MW-264S ~15'S and ~75'E of SW corner B005	TOC Elev. 177.91' GS Elev. 175.29' Page 1 of 1
Depth Feet	Blow Counts	(mqq)	Sample Number	Recovery	Overburden/Lithologic Description	USCS	Well Construction Graphic	Botano
	Ground Surface HAND AUGERED 3-3-4-3 2-3-3-2 1-2-2-2 1-1-1-5		1 1 3 4	 19" 16" 16"	Sod 0-3". : water at 3'. SAND: dk yel br, m w/c top 7", some vf-f, tr A-SA limestone pebble at 2", loose, grades to pred f-vf, tr silt below 7", dusky br organic(?) masses 15-16", then It br to yel orange, coarse ing sl to f-m, wet. SAND & SILT: at 18", br gray vf sand w/silt, dense, SILT: br gray silt w/vf sand, horiz. laminated 0- dense, sl plastic, wet, grading into unit below. SAND: f-m w/vf, tr silt, color change to dk yel br at 14". SAND: as above w/gray silt layer (~.5" thick) at becoming iron-stained, It br to yel orange 9-1 SILT: at 15", br gray, top 0.5" oxidized, dense, plastic, wet. SILT: as above, brownish gray, horiz. laminated, vf sand, wet. Total Depth: 12.0'.	9", SP 9", ML/SN 9", SP 5".		Concrete pad Hydrated granular bentonite 2" Sch 40 PVC riser 8" HSA borehole 2" Sch 40 10-slot PVC screen (2.3'-10.0') No. 00N sand Bottom end cap Collapsed/swelled formation 2" split-spoon borehole 2
	Driller: Nor Logged by: Drilling Star Drilling Com Well Constru Well Develop Well Coords	S. ted: nplete uctio ped: .: N	Fish 7- ed: n: 7 7-	er, (16– 7–1 23– 396.	SSC*Top no. is volatile scan of bottom no. is jar headspa96measurement96Measured DTB: 12.81' (from300Measured DTB: 12.81' (from	ce scan om TOC).	oon; CORPO Well Log:	<i>ER SCIENCES</i> <i>RATION</i> MW-264S

	ent: IBM N bject No. S		Hud	son	Augering Log Valley, Kingston Site	-	on li	MW—265S nside B003, ~82'W of Side; ~510'S of N s	TOC Elev. 178.77' GS Elev. 170.05' ide Page 1 of 2
Depth Feet	Blow Counts	(mqq)	Sample Number	Recovery	Overburden/Lithologic Description		nscs	Well Construction Graphic	- To Well Construction Details
	<u>Ground_Surface</u>				Concrete to 7". SAND: brown, mostly m w/some A gravel, lo	ose, dry.	FILL		9" flush-mount manhole w/2" water- tight sealing cap Concrete pad
4	HAND AUGERED						SP		Hydrated bentonite chips 4 2" Sch 40 PVC riser
8	5-5-7-6	1.7 2.6	1	13"	SAND: top 4", brown, m-c, loose, some or rich lams, dry. CLAY: 4-6", brownish orange, laminated, st SAND: 6-13", brown, m, loose, moist.	-	CL		- 8
10	6-8-8-10	0.2 4.2	2	7"	SAND: brown, m, faintly laminated, moist a saturated at base. SAND: brown, m grading to f-m near base				8" HSA borehole
12	4-4-3-4	0	3	12"	tr brownish-orange clay lam at 2", sature SAND: brownish gray at top to grayish brow	ated. wn	SP/SM		- 12
14-	3-3-3-3	0	4	17"	near base, f-m, fine laminations, loose, c clasts, saturated. SAND: grayish brown, f-m, laminated, loose	Jee eldy	JF / JM		2" Sch 40 10-slot PVC screen (6.3'-19.0')
16	5-4-2-3	0	5	16"	SAND: as above with 1/2" iron-rich zone	at base			- 16
18	3-4-2-2	0	6	14"	(note: silty sand in shoe of spoon). SILTY SAND: grayish brown, mostly silt w/s				No. 00N sand
20-	3-9-12-15	0	7	13"	sand, dense, laminated (some cross lams	<i>j</i> .	SM		Collapsed/swelled formation 20
	Driller: Nor Logged by: Drilling Star Drilling Com Well Constru Well Develop Well Coords	D. ted: pleto uctio ped: .: N	Muri 8- ed: n: 8 9-3	ceak 23– 8–2 –27 3–91	GSC*Top no. is volatile sco96bottom no. is jar hea7-96measurement96NR = No Recovery6Length of well material	: 18.7'.	scan	on; CORPO	<i>TER SCIENCES</i> ORATION : MW-265S
		E	5917	79.6	ST4 SWL 7.64' (9/3/96;	from TO	C).		

	ent: IBM M pject No. S	9601	Hud 11.0	lson 1	Augering Log Valley, Kingston Site			MW-265S nside B003, ~82'W (E side; ~510'S of N	of side	TOC Elev. 178.77' GS Elev. 179.05' Page 2 of 2
Depth Feet	Blow Counts	(mqq) FID *	Sample Number	Recovery	Overburden/Lithologic Description		NSCS	Well Construction Graphic	Depth Feet	Well Construction Details
20 22 24 24 26 30 30 32 30 32 34 36 38 38		0 0.7 - - 0 1.0 0 0.5 0 1.4	9 10 11 12	11" NR 16" 17"	SILTY SAND: as above with 1/4" silty clay la SILTY SAND: as above with silty clay lam a SILTY SAND: as above with thin intermittent of silty clay. Total Depth: 30.0'.	t 5".	SM SM/CL		20 22 24 26 28 30 32 34 34 36 38 40	 — 8" HSA borehole — Collapsed/swelled formation — 2" split—spoon borehole
										R SCIENCES ATION
								Well Lc	g:	MW-265S

	ent: IBM N pject No. S		Huc	lson	ugering Log Valley, Kingston Site		ion I	MW-266S nside B003, ~75'W of E side; ~218'S of N	f side	TOC Elev. 178.73' GS Elev. 179.15' Page 1 of 2
Depth Feet	Blow Counts	(mqq)	Sample Number	Recovery	Overburden/Li Descripti		NSCS	Well Construction Graphic	Leptn Feet	Well Construction Details
0	Ground Surface				Cement to 6". FILL: brown sand, m-c w/occ clasts, dry.	gravel, occ clay	777777		0	-9" flush-mount manhole w/2" water- tight sealing cap -Concrete pad
4	HAND AUGERED TO 7.25'						FILL	22222222222222222222222222222222222222	4	- Hydrated bentonite chips - 2" Sch 40 PVC riser
	14 15-15-12-12	0 11.5 5.2 42	1	9" 19"	FILL: brownish orange m-c san dense gray clay, occ gravel, FILL: grayish brown sand w/oc zones, mostly m, finely lamir base, dry at top, slightly mo	dry. cc black organic—rich nated, wood chip at			8	–8" HSA borehole
10 10 12 12	7-10-7-7	12 21	3	14"	SAND: grayish brown, c-vc at sand and silt at base, loose, saturated.	top grading to vf finely laminated,	SW		10	
14	6-10-7-8	0.1 34.8	4	13"	SAND: top 1", grayish brown, to silty clay mix, saturated. SILTY CLAY: 1-12" grayish bro sand/silt at top to silty clay n med-stiff. SAND: 12-13", grayish brown,	own, finely lam, vf near base, laminated,	ML/CL		14	— 2" Sch 40 10-slot PVC screen (8.0'-28.0')
16		0.6 20.4	5	13"	SAND: grayish brown, m, loose 1-4" w/occ grayish brown 1 silty clay laminations, saturat	e, organic—rich zone /8 to 1/4" thick			16	
18	5-6-6-7	0.4 5.2	6	17"	SAND: grayish brown, m at top base, loose, occ clay clast, s		SP/SM		18	-No. OON sand
18	7-8-7-7	0.8 6.8	7	14"	SAND: grayish brown, m gradir loose, large silty clay clast (saturated.	ng to f-m at base, ~1/2" thick) at 9",			20	
	Driller: Nor Logged by: Drilling Star Drilling Com Well Constru Well Develop Well Coords	D. ted: plete uctio ped: .: N	Muri 8- ed: n: 8 9-, 7182	ceak 20– 8–2 5–21 3–91	, GSC *Top no. is bottom no. measureme -96 WOH = Weig Faint odor of 520 Length of w	ht of Hammer	scan	on; GROUNDWA CORF	TEF POR⊿	R SCIENCES ATION MW-266S

	ent: IBM N bject No. S		Hud	son 1	Augering Log Valley, Kingston Site	ion	MW-266S nside B003, ~75'W c E side; ~218'S of N	of side	TOC Elev. 178.73' GS Elev. 179.15' Page 2 of 2
Depth Feet	Blow Counts	(mqq)	Sample Number	Recovery	Overburden/Lithologic Description	nscs	Well Construction Graphic	Depth Feet	Well Construction Details
20 22 24 24 26 		0.2 1 0.2 3.9 0.1 0.8 0 0.1	9	18" 13" 6"	SAND: top 4", gravish brown, m, loose, sat SILTY SAND: 4–18", gravish brown, vf sand silt mix, laminated, dense, saturated. SILTY SAND: as above. SILTY SAND: as above. SILTY SAND: as above, top 2". SILTY CLAY: 2–6", gray, mostly silt w/some laminated, med stiff. Total Depth: 28.0'.	SM SM		20 22 24 26 28 30 30 32 34 34 36 38 38	- 8" HSA borehole - 2" Sch 40 10-slot PVC screen (8.0'-28.0') - No. OON sand - Bottom end cap
									R SCIENCES ATION
							Well Lo	g: 1	WW-266S

	ent: IBM M bject No. S	9601	Hud 1.0	son 1	Augering Log Valley, Kingston Site		ion Ir	MW-267S nside B003, ~28'N 98'W of B002	and	TOC Elev. 178.77 GS Elev. 179.10 Page 1 of 2
Depth Feet	Blow Counts	FID *	Sample Number	Recovery	Overburden/Lithologic Description		nscs	Well Construction Graphic	Depth Feet	Well Construction Details
	<u>Ground</u> Surface				Cement to 0.3'. SAND: brown at top to grayish brown at base with some c and A gravel, dry at t	- — — —	177777		0	—9" flush-mount manhole w/2" water- tight sealing cap —Concrete pad
4	HAND AUGERED				slightly moist at base.		FILL	222222223		— Hydrated bentonite chips
6	WOH-2-3-4	0.2	1	10"	SAND: grayish brown, m, loose w/interlayer clay 4—8", large woodchip at 3", moist.	of silty			6	— 2" Sch 40 PVC riser
8	6-7-7-6	2.8 0.6 0.8	2	18"	SAND: grayish brown, m, loose, finely lamin interlayer of silty clay top 2", saturated.		SP/SM		= 8 = = = 10	— 8" HSA borehole
12	1-4-5-6	0.1 0	3	16"	SAND: grayish brown, mostly m with 1/4-1 interlayers of f sand at 1" and 15", loos saturated.	e,			 	
14	3-4-4-5	0	4	13"	SAND: gravish brown, m at top grading to base, 1/4" thick gravish pink silty clay lo at 7", loose, saturated. SAND: gravish brown, m loose, occ clay cl	imination			= 14	2" Sch 40 10-slot PVC screen (8.0'-28.0')
16	WOH-1-3-4	0 0.9	5	12"	SAND: gravish brown, m at top grading to				 16	
18	3-4-4-6	0	6	12"	SAND: grayish brown, m, finely laminated,		SP		18	— No. OON sand
20-	8-3-4-4	0 0.6	7	10"	saturated.	,			E E_20	
	Driller: Nor Logged by: Drilling Star Drilling Com Well Constru Well Develop Well Coords	D. ted: plet- uctio ped:	Muri 8- ed: n: 8 8-2	ceak 16– 8–1 –19 20–1	x, GSC*Top no. is volatile sc96bottom no. is jar hed9-96measurement.9-96WOH = Weight of Ham96Length of well materia	idspace [`] mer		on; COR	POR	r <i>sciences</i> <i>ation</i> MW-267S
			5917			from TC)C).			

	ent: IBM M bject No. S		Huc	lson	Augering Log Valley, Kingston Site	Borin Locat		MW-267S Inside B003, ~28'N c ~98'W of B002	and	TOC Elev. 178.77' GS Elev. 179.10' Page 2 of 2
Depth Feet	Blow Counts	(mqq)	Sample Number	Recovery	Overburden/Lithologic Description		NSCS	Well Construction Graphic	Depth Feet	Well Construction Details
20 22= 24= 24=	6-12-9-8 7-8-8-9 12-14-12-12 4-4-7-4 5-4-6-4	0 0.1 0 1.4		24" 4" 12"	SAND: top 19", gravish brown, mostly m of to f-m near base, loose, occ clay clast, s SILTY SAND: 19–24", gravish brown, vf san finely laminated, dense, saturated. SILTY SAND: as above. SILTY SAND: as above. SILTY SAND: as above. SILTY SAND: as above. SILTY SAND: as above. Total Depth: 30.0'.	prading aturated. nd & silt,	SM		20 22 24 26 28 30 30 32 34 36 38 38	 Bettins 8" HSA borehole 2" Sch 40 10-slot PVC screen (8.0'-28.0') No. 00N sand Bottom end cap Collapsed/swelled formation 2" split-spoon borehole
40-								GROUNDWA	1 <i>TEI</i>	R SCIENCES ATION
										MW-267S

	ent: IBM N bject No. S	9601	Huc 1.0	lson 1	Augering Lo Valley, Kir				MW-268S nside B003, and ~110'E		of N de	TOC Elev. 178.65 GS Elev. 179.05 Page 1 of 2
Depth Feet	Blow Counts	FID * (ppm)	Sample Number	Recovery	Ove	erburden/Lithologic Description		nscs	Wel Constru Grapł	ction	Depth Feet	Well Construction Details
	<u>Ground</u> Surface					, n, occ c, occ gravel, loose, noist near base.	dry at	SW			0	—9" flush—mount manhole w/2" water— tight sealing cap — Concrete pad
2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	HAND AUGERED				SAND: brown	n, occ c, occ A gravel, sl n	noist		000000000000000000000000000000000000000		4	 Hydrated bentonite chips 2" Sch 40 PVC riser
8	1-4-2-2	0 0.1 0	1	18" 24"	SAND: as abov	e; saturated near base.		SP			8	—8" HSA borehole
12	3-4-4-4	0	3	17"	осс с, осс А	t top to grayish brown at bo gravel, loose, saturated.					= = = 12	
14	3-4-5-6	0	4	19"	SAND: grayish zones at 6" silty clay lens	brown, m, loose with 1/2" in and 19", 1/2" laminated bro ses at 12" and 18", saturate	ron-rich wn d.				= 14	-2" Sch 40 10-slot PVC screen (7.5'-27.5')
	WOH-2-4-3	0	5	18"	to f-m at bo	brown, m w/some A gravel ise, iron-rich zone 10-12" v ty clay lam at base, loose, s	with [.]				 16	
18	3-5-7-12	0.1 0	6	19"	and 15—16", of iron—rich z saturated.	brown, m w/iron—rich zones 1/2" thick silty clay lams a zones, thin organic lam at 12	t base ", loose,	SP/SM			18	— No. OON sand
20=	4-6-7-8	0.4	7	24"	SAND: brownish loose, occ clo	n gray, m, slightly fining towo ay clasts, saturated.	ard base,				20	
	Driller: Nor Logged by: Drilling Star Drilling Com Well Constru Well Develop	D. ted: plete uctio ped:	Muri 8- ed: n: 8 8-	ceak 15– 8–1 –15 19–9	k, GSC 96 5-96 9-96 96	Notes: *Top no. is volatile sco bottom no. is jar hea measurement. WOH = Weight of Hamm Length of well material	dspace [`] mer		on;	COR	POR.	<i>r sciences Ation</i> MW-268S
	Well Coords		/18. 5917			SWL 9.4'(8/15/96;	from TC)C).				

		Hud	lson	Augering Log Valley, Kingston Site			MW-268S nside B003, ~28'S o nd ~110'E of W sic	of N Ie	TOC Elev. 178.65' GS Elev. 179.05' Page 2 of 2
Blow Counts	(mdd)	Sample Number	Recovery	Overburden/Lithologic Description		nscs	Well Construction Graphic	Depth Feet	Well Construction Details
8-8-5-6 3-4-4-5 5-7-7-9 5-3-2-2		9 10 11	14" 18" 12"	loose, saturated. SAND: as above.	t, finely –	SP SM ML/CL		34	 8" HSA borehole 2" Sch 40 10-slot PVC screen (7.5'-27.5') No. 00N sand Bottom end cap -2" split-spoon borehole Collapsed/swelled formation
							Well Lc	og:	MW-268S
	oject No. Blow Counts 8-8-5-6 3-4-4-5 5-7-7-9	oject No. 9601 Blow Counts Image: Counts 8-8-5-6 0 3-4-4-5 0.1 5-7-7-9 0 5-3-2-2 0	ent: IBM Mid-Huc oject No. 96011.0 Blow Counts $2000 + 100$ 3-4-4-5 = 0 5-7-7-9 = 0 5-3-2-2 = 0 11	ent: IBM Mid-Hudson oject No. 96011.01 Blow Counts $\begin{array}{c} & & & & & & & & & & & & & & & & & & &$	ent: IBM Mid—Hudson Valley, Kingston Site bject No. 96011.01 Blow Counts Image: Section of the sectin of the section of the section of the section	ent: IBM Mid-Hudson Valley, Kingston Site Digect No. 96011.01 Blow Counts 426 60 50 20 00 10 10 $108-8-5-6$ 0 8 14 " 3-4-4-5 0 9 18 " 5-7-7-9 0 10 16 " 5-3-2-2 0 11 12 " SILTY SAND: as above, top 8". SILTY CLAY: 8-12", gray, med stiff.	ent: IBM Mid-Hudson Valley, Kingston Site Location Ir bject No. 96011.01 Overburden/Lithologic Solution Blow Counts E E Overburden/Lithologic Solution Blow Counts E E Overburden/Lithologic Solution Solution Blow Counts E E E Overburden/Lithologic Solution Solution Blow Counts E E E Overburden/Lithologic Solution Solution Blow Counts E E E E E E E Blow Counts E E E E E E E E Blow Counts E	Participation BMM Mid — Hudson Valley, Kingston Site Location Blow Image and with the second state of	ent: IBM Mid—Hudson Valley, Kingston Site Dication Inside E003, ~28'S of N ord ~110'E of W side Blow ************************************

	ent: IBM N bject No. 9		Huc	lson	Augering Lo Valley, Kir		Boring Locat	ion	. MW–269S ~28'N and ~12 NE corner B003		TOC Elev. 180.89' GS Elev. 178.49' Page 1 of 2
Depth Feet	Blow Counts	(mdd) (ppm)	Sample Number	Recovery	Ove	rburden/Lithologic Description		nscs	Well Constructior Graphic	Depth Feet	Botano
0	<u>Ground Surface</u> HAND AUGERED				loose, drý to						 4" Locking Royer cap w/2" expansion plug 4" protective steel casing Concrete pad Bentonite slurry 2" Sch 40 PVC riser
8	1-1-1-1	0 4	1	11"	wthrd silt mas homogeneous, SAND: as above	e w/thin wthrd silt/clay lam	otlets, at 5",				
10	3-2-4-2	47 45	2	17"	trace rootlets, 9"w/strong p	stáined dk gray to br gray betrol. odor, wet below 5". to dusky br, f—m w/some v	below	SP		= 10	-8" HSA borehole
12	1-2-2-2	90 2000	3	19"	homogeneous, I fining to vf-f return to dk y	oose, si flowing w/petrol odor w/some silt, tr m below 14" yel br color below 15", wet.	& sheen, ,			 	
14	1-2-3-2	1 14	4	24"	homogeneous, wet.	r, pred f w/vf, lit—tr silt, tr loose, sl flowing, sl septic('	'm, ?) odor,			E E 14	2" Sch 40 10-slot PVC screen (6.0'-26.0')
16	1-1-2-1	4 40	5	18"	loose, sl flowi	r, f—m w/vf, tr silt, homoge ng, some mod yel br colora :vc disseminated sand grain	ition			= 16	
18	1-1-2-2	4 52	6	14"		e, f-m w/vf, top grading to 6-10", sI flowing, homogen 8" w/sI septic(?) odor, then ", wet.	pred neous, pred			= 18	- No. OON sand
20	2-2-2-1	9 31	7	21"	sl incr in silt SAND & SILT: t lams 12-18",	or gray vf sand & silt w/fai	int horiz	SM SP		20	
	Driller: Nor Logged by: Drilling Star Drilling Corr Well Constru Well Develor Well Coords	S. ted: nplet uctio ped: .: N	Fish 7- ed: n: 7 7-	er, (11- 7-1 7-11 18- 18-	GSC 96 1-96 -96 96 941	Notes: *Top no. is volatile sco bottom no. is jar hea measurement. WOH = Weight of Han Measured Depth to Ba (from TOC). SWL 8.70' (7/18/96;	idspace : mmer ottom: 2	scan [°] 28.26'	oon; C	ORPOR	<i>R SCIENCES</i> PATION MW-269S

	ent: IBM M bject No. 9		Huc	lson	Augering Log Valley, Kingston Site		ion	MW-269S ~28'N and ~125'E NE corner B003		TOC Elev. 180.89' GS Elev. 178.49' Page 2 of 2
Depth Feet	Blow Counts	FID * (ppm)	Sample Number	Recovery	Overburden/Lithologic Description		nscs	Well Construction Graphic	Depth Feet	Well Construction Details
20 22= 24= 24= 26= 	4-4-5-4 3-6-6-8 3-3-6-3 WOH-2-1-1	7 45 6 12 1.8 12 0.8 2.5	9	24" 24" 11"	SAND: dk yel br, pred vf-f, lit m, lit silt, h eous, loose, thin br gray silt/vf sand laye ~5" thick, some color banding betw 17- It to mod br, wet. SAND & SILT: br gray, pred vf & silt, tr f .25", wthrd It br to mod yel br, homogen faint horiz. layering(?), sl plastic, wet. SAND & SILT: below 15", br gray, pred silt sand, tr-lit clay, sl plastic, mod dense, w SAND & SILT: as above w/pred silt & clay 2-4", v plastic, v faint lam below 4", sl wet. SILT/CLAY: br gray, pred silt w/clay, varved, rich in vf sand at 1-2" & 11-12", horiz contorted varved clay/silt, w/pale red varve wet. Total Depth: 28.0'.	r at 17", 22" w/ sand top eous, -tr silt, tale), wet. w/vf ret. , varved plastic w/zones lavering.	SP SM SW SM MH/CH		20 22 24 26 28 30 32 34 36 38 38 36 38 38 36 38 38 36 38	 2" Sch 40 10-slot PVC screen (6.0'-26.0') 8" HSA borehole No. 00N sand Bottom end cap 2" split-spoon borehole Collapsed/swelled formation
										R SCIENCES ATION
								Well Lo	bg:	MW-269S

	ent: IBM N bject No. S		Hud	lson	Augering Lo Valley, Kir	-		ion ~	MW-2705 34'N and W corner	~58'E c		TOC Elev. 180.48' GS Elev. 177.82' Page 1 of 2
Depth Feet	Blow Counts	FID * (ppm)	Sample Number	Recovery	Ονε	erburden/Lithologic Description		nscs	We Constru Grap	uction	Depth Feet	Well Construction Details
2	Ground Surface HAND AUGERED				Sod 0-3". SAND: dk yel t loose, moist.		eous,	FILL	A C C C C C C C C C C C C C C C C C C C			 4" Locking Royer cap w/2" expansion plug 4" protective steel casing Concrete pad Hydrated bentonite chips 2" Sch 40 PVC riser
6 8 10	3-5-5-5	0 0 100	1	15"	loose, tr dusk SAND: dk yel b lit vf, tr silt betw 9-12", moist, wet be SAND: br gray	to olive gray, f-m w/vf, tr loose, top 1" stained dk ye	d w/f, common mbly, silt,	SP				- 8" HSA borehole
12	1-1-1-1	2200 5 18	3	14"	thick, wthrd s SAND: pred dk geneous belov mass at 12".	e, mod yel br, silty zone 3– silt/clay layer at 9", loose, w yel br, vf-f, some-lit silt, ł w 9", loose, sl flowing, wthrd e, br gray, coarsening sl to f-	et. 10m0- clay				10	2" Sch 40 10-slot PVC screen (6.5'-26.5')
14-	1-1-1-1	5 7600	4	22"	SILT/CLAY: mod dense, cohesi SAND: below 13 wet.	nd layer 9–10". d yel br, varved w/tr vf sand ve, wet, 11–18". 8", pred dk yel br, f-m w/v	f, tr silt,	МН/СН			E E 14	
16	1-1-2-2	2 76	5	18"	8-10", 13-1 in silt/clay, f	e w/mod yel br silt/clay varve 4" and 16—18", dense, mod lowing in sand, wet.	plastic	SP				- No. OON sand
18	1-1-2-2	0 24	6	15"	aeneous, v si	r, vf-f w/some silt, sl flowing Ity zone 2-5" w/distinct clay lass at 7" and faint silt/clay wet.	, lam				E E E 18	
20-	1-3-3-3	3 25	7	19"	SAND & SILT: betw 7-11".	3", mod yel br, dense, plastic br gray vf sand w/silt, some flowing 11—15", whtrd mod y br gray below 17", no sept	f sand vel br	MH/CH SM			20	
	Driller: Nor Logged by: Drilling Star Drilling Com Well Constru Well Develop Well Coords	S. ted: plete uctio ped: .: N	Fish 7- ed: n: 7 7-	er, (11- 7-1 7-11 18-9 463.	GSC 96 1-96 -96 96 212	Notes: *Top no. is volatile sco bottom no. is jar hea measurement. WOH = Weight of Hamn Measured DTB: 26.4' (7/ Measured DTB: 29.06' (5, SWL 8.70' (7/18/96;	dspace mer 18/96, f /18/96,	scan [°] rom gra from TC	de).	COR.	POR	<i>R SCIENCES</i> <i>PATION</i> MW-270S

	ent: IBM N bject No. S		Huc	lson	Augering Log Valley, Kingston Site		ion	MW−270S ~34'N and ~58'E o NW corner B003		TOC Elev. 180.48' GS Elev. 177.82' Page 2 of 2
Depth Feet	Blow Counts	FID * (ppm)	Sample Number	Recovery	Overburden/Lithologic Description		nscs	Well Construction Graphic	Depth Feet	Well Construction Details
20 22 24 24 26 30 30 32 34 36 38 40 40	5-8-11-10 3-5-7-7 WOH/2' 2-2-2-2	0 5 1.5 22 0.5 8 0 1.8	9	17" 19" 20"	SAND & SILT: br gray, vf sand w/silt, homory faint crossbedding throughout, top 1" is w to mod yel br, sl flowing 2-5", cohesive elsewhere, no septic odor, wet. SAND & SILT: br gray to med gray, vf san sl flowing, wet. : silt 7-9", br gray w/some clay varves, top contact : silt layer 11-12". SAND & SILT: below 12", wthrd, loose, flowing SAND & SILT: as above, flowing, faint horiz wthrd zone & flowing 10-12", some silt/or sand in lower 4", wet. SAND & SILT: as above top 7". SILT/CLAY: br gray, varved, tr vf sand lams plastic, dk gray organic-rich layer at top, Total Depth: 28.0'.	10", thrd d w/silt, angled ing. lams, clay, s, dense,	SM MH/CH		20 22 24 26 28 30 30 32 32 34 34 36 38 38 40	 2" Sch 40 10-slot PVC screen (6.5'-26.5') No. 00N sand 8" HSA borehole Bottom end cap Collapsed/swelled formation 2" split-spoon borehole
										R SCIENCES ATION
								Well Lo	g:	MW-270S

	ent: IBM N bject No. S		Huc	lson	Augering Lo Valley, Kir	•		ion r	MW-271S ~65'NNW of NW corner B003		TOC Elev. 180.17' GS Elev. 177.31' Page 1 of 2
Depth Feet	Blow Counts	(mqq)	Sample Number	Recovery	Ove	erburden/Lithologic Description		nscs	Well Construction Graphic	Depth Feet	Well Construction Details
2	<u>Ground Surface</u> HAND AUGERED				Sod 0-3". Dk yel br f-m loose, moist.	sand w/vf, tr silt, homoger	- — — —		60000000000000000000000000000000000000		 4" Locking Royer cap w/2" expansion plug 4" protective steel casing Concrete pad Hydrated bentonite chips 2" Sch 40 PVC riser
8	3-2-2-3	0.5 1 1.0	1	16"	vf-f top 5", masses 14-16 lit-tr c sand SAND: as abov pred f-m w/v	or to olive gray, f-m w/f, p some faint color staining, tr 5", homogeneous, loose to sl betw 5-9", moist, turning w e, silty top 5" w/mod yel b f, tr silt betw 5-13" w/tr bla 11-13", pred vf silty sand	organic cohesive, et at 9". r color, ck organic			6	— 8" HSA borehole
10	1-1-2-2	50 1.8 50	2	15" 13"	wet throughou SAND: dk yel br faint layering banding lower wet throughou	it. , pred vf sand w/f sand & s by grain size and horiz. col 1", v silty, dense, tr clay, s it.	silt, some or sl plastic,				-2" Sch 40 10-slot PVC screen (6.3'-24.0')
14	3-3-2-2	0 3 0	4	17"	fraction below grading slowly in silt, br gra loose, sl flowi	r, f-m w/vf, some silt, incr 9", laminated silt between into sand below, cohesive, s y clayey silt 3-11", then m ing m sand, v wet. yel br f-m w/vf, some silt vf-f sand below 7", loose, s rip-up mass at 5", v wet.	3—9", plastic od yel, . fining	SP/SM		14	— No. 00N sand
16-		4	6	21"	SAND: as abov silt/clay at 2 steeply dippin silt below, flo	e, vf—f, silty top 2", grading —5", bottom contact of silt/ g and irregular, then f—m w	y to gray clay is v/vf, tr	<u>MH/CH</u> SP		16	- NO. UUN Sana
20-	1-1-2-3	0.5 5	7	24"	at bottom co SAND: below 5' w/occ wthrd SILT/CLAY: belo		silt, loose,	MH/CH SP MH/CH		20	
	Driller: Nor Logged by: Drilling Star Drilling Com Well Constru Well Develop Well Coords	S. ted: plete uctio ped: .: N	Fish 7- ed: n: 7 7-	er, (11- 7-1 18-9 18-9	GSC 96 1-96 -96 96 741	Notes: *Top no. is volatile sc bottom no. is jar hed measurement. WOH = Weight of Ham Measured Depth to B (from TOC). SWL 9.71' (7/18/96;	ndspace mer ottom: 1	scan [°] 26.85'	on; CO	RPOR	<i>r sciences</i> A <i>tion</i> MW-271S

	ent: IBM N bject No. 9		Huc	lson	Augering Log Valley, Kingston Site		ion [,]	MW-271S ~65'NNW of NW corner B003		TOC Elev. 180.17' GS Elev. 177.31' Page 2 of 2
Depth Feet	Blow Counts	FID * (ppm)	Sample Number	Recovery	Overburden/Lithologic Description		nscs	Well Construction Graphic	Depth Feet	Well Construction Details
20 22= 24= 24= 24= 26= 28= 30= 30= 32= 34= 36= 38= 40= 40=	7-8-7-6 9-8-8-10 4-3-2-2 2-3-3-3	0 3 0 1 0 2 0 0.5	9	15" 21" 20" 24"	SILT/CLAY: br gray, dense, plastic, wet, O- SILT & SAND: br gray, vf sond w/silt, tr c faint horiz. lams, sl wthrd 3-5", dense, s wet. SILT & SAND: as above w/br gray silt/clay 1-9", and 14-15", faint varves, sl flowin sand, plastic in silt/clay, wet. SILT & SAND: silt & clay layers 0-5" and w/faint horiz. lams, dense, plastic, sl flow sand, dk gray to black organic lams at 1 top of silt/clay, wet. SILT & CLAY: at 14". SILT br gray, dense, sl plastic, cohesive, f horizontal lams, wet. Total Depth: 28.0'.	lay w/ sl plastic, g in 14-20" ving in 4" at	MH/CH SM		20 22 24 26 28 30 30 32 34 34 36 38 40	 2" Sch 40 10-slot PVC screen (6.3'-24.0') No. 00N sand 8" HSA borehole Bottom end cap 2" split-spoon borehole Collapsed/swelled formation
										R SCIENCES ATION
								Well Lc	og:	MW-271S

	ent: IBM M bject No. S		Huc	lson	Augering Log Valley, Kingston Site	Borine Locat	ion Ir	MW-272S nside B003, ~38'E of E c ~110'S of N side B00	TOC Elev. 178.71 GS Elev. 179.10 2 Page 1 of 2
Depth Feet	Blow Counts	FID * (ppm)	Sample Number	Recovery	Overburden/Lithc Description	logic	nscs	Well Construction Graphic	Well Construction Details
	<u>Ground Surface</u>				Cement to 0.5'. SAND: brown, m, loose w/some A dry.	gravel clasts,			9" flush-mount manhole w/2" water- tight sealing cap Concrete pad
2	HAND AUGERED						SW		Hydrated bentonite chips 2"2" Sch 40 PVC riser
		0			SAND: brownish gray, m-c, v loos	e, dry at top to			
8	4-5-6	0	1	12"	slightly moist at base. SAND: brownish gray, m-c, v loos	e occ organic			3
10	6-5-4-5	0	2	16"	laminations near base, saturated		SP		8" HSA borehole
12	5-4-3-3	0 0.3	3	16"	SAND: top 4", brownish gray, m-c to v dark brown f-m, faintly lam saturated. SILTY CLAY: 14-16", brown to gra laminated, med stiff.	yish brown,	ML/CL		2
14=	4-4-3-3	0 0.3	4	16"	SILTY CLAY: top 8", as above w/sc laminations. SAND: 8-16", brown to brownish I occ clay clasts & silty clay lami	olack, m. loose,			2" Sch 40 10-slot PVC screen (5.3'-23.0')
16-	WOH-2-2-1	0	5	16"	SAND: as above with 1/4" thick s lamination at 7", saturated. SILTY SAND: grayish brown, vf san finely laminated, dense, saturated	d and silt,	SP/SM		_
18	3-3-2-2	0 0.2	6	11"	SILTY SAND: as above, top 4". SILTY CLAY: 4-5", grayish brown, la SAND: 5-11", grayish brown, m, f loose, saturated.	minated, med stiff. inely laminated,	SM ML/CL		No. 00N sand
20-	1-2-3-3	0	7	16"	SAND: as above w/occ clay clasts	, saturated.	SP		_
	Driller: Nor Logged by: Drilling Star Drilling Com Well Constru Well Develop Well Coords	D. ted: nplet uctio ped: .: N	Muri 8- ed: n: 8 9-,	ceak 25– 8–2 5–27 3–9 917.	GSC*Top no. is vol bottom no. is96bottom no. is7-96measurement96WOH = Weight6Length of well323323		scan	on; GROUNDWATE	CR SCIENCES

		Huc	lson			ion Ir	nside B003, ~38'E o	f E B002	TOC Elev. 178.71' GS Elev. 179.10' Page 2 of 2
Blow Counts	(mdd)	Sample Number	Recovery	Overburden/Lithologic Description		uscs	Well Construction Graphic	Depth Feet	Well Construction Details
8-8-7-9 10-11-9-8 11-5-5-8 8-5-8-9 17	0 2.2 0. 0.8 0 0	9	11" 11" 37"	SILTY SAND: 3-11", grayish brown, mostly f sand, laminated, dense. SILTY SAND: as above.	w/some	SM/CL		<u>30</u> 32 34 36 38	 8" HSA borehole 2" Sch 40 10-slot PVC screen (5.3'-23.0') No. 00N sand Bottom end cap Collapsed/swelled formation 2" split-spoon borehole
							Well Lo	g:	MW-272S
	Dject No. 9	oject No. 9607 Blow Counts E 8-8-7-9 0 10-11-9-8 0 11-5-5-8 0 8-5-8-9 0 17 17	ent: IBM Mid-Huc oject No. 96011.0 Blow Counts 1 8-8-7-9 0 2.2 8 10-11-9-8 0 0.8 9 11-5-5-8 0 8-5-8-9 0 10 10 10 10 10 10 10 10 10 10 10 10 10	ent: IBM Mid-Hudson oject No. 96011.01	Blow Counts $\stackrel{\circ}{4} \stackrel{\circ}{6} \stackrel{\circ}{6} \stackrel{\circ}{6} \stackrel{\circ}{2} \stackrel{\circ}{2} \stackrel{\circ}{6} \stackrel{\circ}{2} \stackrel{\circ}{2}$ Overburden/Lithologic Description $8 - 8 - 7 - 9$ 0 2.2 8 $11"$ SAND: top 3", as above w/absence of silty SILTY SAND: $3 - 11"$, grayish brown, mostly f sand, laminated, dense. $10 - 11 - 9 - 8$ 0 0.8 9 $11"$ SILTY SAND: as above. $10 - 11 - 9 - 8$ 0 0.8 9 $11"$ SILTY SAND: as above. $10 - 11 - 9 - 8$ 0 0.8 9 $11"$ SILTY SAND: as above. $11 - 5 - 5 - 8$ $8 - 5 - 8 - 9$ 0 10 10 $37"$ SILTY SAND: as above with $1/2" - 1"$ thick laminations at $30"$ and $35"$. 17 10 $37"$ SILTY SAND: as above with $1/2" - 1"$ thick laminations at $30"$ and $35"$. 17 10 $37"$ Total Depth: $28.5'$.	ent: IBM Mid-Hudson Valley, Kingston Site oject No. 96011.01 Blow Counts $\frac{4}{4} \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 2.2 & 8 & 11" & SAND: top 3", as above w/absence of silty clay lams. SILTY SAND: 3-11", grayish brown, mostly w/some f sond, laminated, dense. 10-11-9-8 0.8 9 11" 11-5-5-8 0 10 37" 8-5-8-9 0 10 37" Total Depth: 28.5'.$	ent: IBM Mid-Hudson Valley, Kingston Site binding the second sec	ert: IBM Mid=Hudson Valley, Kingston Site Diget No. 96011.01 Blow Counts (E) 0 1 01 Blow Counts (E) 0 1 0 Blow Counts (E) 0 1 ent: IBM Mid-Hudson Valley, Kingston Site oject No. 96011.01 Location Inside Boo3, ~38'E of E & ~110'S of N side Boo2 Blow Counts ************************************	

	ent: IBM N bject No. S	9601	Huc 1.0	lson 1	Augering Lc Valley, Kir			ion r	MW-273S ~248'N and ~8 SW corner B003		TOC Elev. 177.91 GS Elev. 178.22 Page 1 of 2
Depth Feet	Blow Counts	(ppm) (ppm)	Sample Number	Recovery	Ονε	erburden/Lithologic Description		nscs	Well Constructic Graphic	Depth Feet	Well Construction Details
0	<u>Ground Surface</u> HAND AUGERED					n_c, SR_SA, dry.		FILL			 9" flush-mount manhole w/2" water- tight sealing cap Concrete pad Hydrated bentonite chips 2" Sch 40 PVC riser
8	3-3-2-3 WOH-1-1-2	0 0	1	22"	brown iron-st SAND: brownish mostly SR-SA SAND: brownish sand/silt mix.	brownish gray, f-m, some ained lams, sl moist. gray, m-c, some black org , saturated at bottom. gray, m-c, SR-SA grading saturated. pstly brown w/iron-rich zone	janics, to f			8	— 8" HSA borehole
12	WOH-1-1-2	0 0.2 0	3	18"	SAND: brownish clay laminatio	gray, m-c w/some vc, occ ns (1/8" thick), loose, satur e w/occ silty clay lams (1/8-	ated.	SP/SM ML/CL		10	
14	WOH-1-2-1	0	4	22"	grades to silt SAND: as abov	y sand at base, loose, satur e, grading to A, c at base,	ated. occ	SM		14	2" Sch 40 10-slot PVC screen (5.0'-25.0')
16=	WOH-1-1-2	0	5	16"	silty clay lam SAND: brownish	s (1/8" thick), loose, satura gray, m–c, SR–SA, loose, g own f–m, loose, saturated.	ted.			 16	
18	2-2-3-3	000000000000000000000000000000000000000	6 7	23" 24"		gray, m—c, SR—SA, loose, s	aturated.	SP		18	— No. 00N sand
	Driller: Nor Logged by: Drilling Star Drilling Com Well Constru Well Develop Well Coords	D. ted: plete uctio ped: .: N	Muri 7– ed: n: 7 7–、 7176	ceak 22– 7–2 7–22 30–9	k, GSC 96 22-96 2-96 96 161	Notes: *Top no. is volatile sco bottom no. is jar hea measurement. WOH = Weight of Hamr Length of well material SWL 6.67' (7/30/96;	dspace mer : 24.7'.	scan	on; C	CORPOR	<i>r sciences ation</i> MW–273S

	ent: IBM N bject No. S		Huc	lson	Augering Log Valley, Kingston Site	Boring No. Location	MW-273S ~248'N and ~8'W of SW corner B003	TOC Elev. 177.91' GS Elev. 178.22' Page 2 of 2
Depth Feet	Blow Counts	FID * (ppm)	Sample Number	Recovery	Overburden/Lithologic Description	nscs	کی Well Construction Graphic	Well Construction Details
20 22- 24- 24- 26- 28- 28- 30- 30- 32- 30- 32- 34- 36- 38- 38- 	1-3-2-4 AUGERED WOH-1-2-1		8	15"	SAND: as above. SAND: as above, top 3". SILTY CLAY: 3-12", grayish brown, med st laminated. Total Depth: 26.0'.	SP iff, ML/CL		<u>34</u> <u>36</u> <u>38</u>
								ER SCIENCES DRATION
							Well Log	: MW-273S

	ent: IBM N bject No. S		Huc	lson	Augering Log Valley, Kingston Site		ion ~6	MW-274S 'W and ~112'S of ' corner of B002	TOC Elev. 177.71 GS Elev. 178.00 Page 1 of 2
Depth Feet	Blow Counts	(mdd)	Sample Number	Recovery	Overburden/Lithologic Description		nscs	Well Construction Graphic	Well Construction Details
2	<u>Ground Surface</u> HAND AUGERED				Asphalt to 0.4'. SAND/GRAVEL: to 0.7'. SAND: grayish brown, m—c w/some A gra	— — — —	FILL		Concrete pad Hydrated bentonite chips 2" Sch 40 PVC riser
8	1-4-5-4	0.6 0	1	19"	SAND: brownish gray, m-c, SR-SA, occ c (1/4-1/2" thick), grading to finer sand moist at top, saturated at base. SAND: top 7", grayish brown, f-m, loose, s	at báse,	SP		_
10=	2-2-3-3	0	2	13"	SILTY SAND: 7-13", grayish brown, mostly f silt, loose, black to orange lams near bo saturated.	f w/some ise,	SM		8" HSA borehole
12=	1-2-3-3	0	3	11"	SAND: 9-11", brownish gray, m-c, occ cl	ack lams, ay clast,	ML/CL		2
14	WOH-1-1-2	1 0.4	4	14"	SAND: brownish gray, m-c, loose, occ silty (1/4 to 1/2" thick), grades to v loose, base, saturated.		\$		2" Sch 40 10-slot PVC screen (5.3'-23.0')
16	WOH/1'-1/1'	0 0.4	5	12"	SAND: brownish gray, m-c, SR-SA, loose, clay lams (1/4 to 1/2" thick), saturated		SP/SM		5
18	1-1-1-2	0 0.1	6	18"	SAND: brownish gray, m-c, occ clay clast silty clay laminations, saturated.	s and			No. 00N sand
20	2-3-4-5	0	7	24"	SAND: as above.				
	Driller: Nor Logged by: Drilling Star Drilling Com Well Constru Well Develop Well Coords	D. ted: pleto uctio ped: .: N	Muri 7– ed: n: 7 7–. 7175	ceak 23- 7-2 7-23 30-9	S, GSC*Top no. is volatile so bottom no. is jar he measurement.96*Top no. is volatile so bottom no. is jar he measurement96WOH = Weight of Ham Length of well materic339*Top no. is volatile so bottom no. is jar he measurement.	adspace nmer al: 22.7'.	scan		

	ent: IBM N bject No. S		Huc	son	Augering Log Valley, Kingston Site	Boring N Location	~6'W	V–274S / and ~112'S of corner of B002		TOC Elev. 177.71' GS Elev. 178.00' Page 2 of 2
Depth Feet	Blow Counts	(mdd)	Sample Number	Recovery	Overburden/Lithologic Description	nscs	(Well Construction Graphic	Depth Feet	Well Construction Details
20 22 24 24 26 30 32 34 36 38 40	 2-1-2-2 WOH-7-11-12	0 0.7 0 50	8	24"	SAND: brownish gray, m-c w/some vc, loos grading to f-m, loose, saturated. SILTY CLAY: gray, med stiff, laminated. Total Depth: 24.0'.	se, SW	_		20 22 24 26 28 30 30 32 34 34 36 38	 8" HSA borehole 2" Sch 40 10-slot PVC screen (5.3'-23.0') No. OON sand Bottom end cap 2" split-spoon borehole Collapsed/swelled formation
										R SCIENCES ATION
								Well Lc	g:	MW-274S

	ent: IBM N oject No. S		-Huc	lson	Augering Lo Valley, Kir	og ngston Site		ion	MW-275S ~60'W and ~58S of NW corner B001		C Elev. 180.97' Elev. 178.26' Page 1 of 1
Depth Feet	Blow Counts	FID * (ppm)	Sample Number	Recovery	Ove	erburden/Lithologic Description		nscs	Well Construction Graphic	Depth Feet	Well Construction Details
0	Ground Surface HAND AUGERED				SAND: brown, 1	m—c w/gravel and cobbles, c		FILL			" Locking Royer cap //2" expansion plug t" protective steel casing Concrete pad Hydrated bentonite thips 2" Sch 40 PVC riser
8		0.5	1	14"	SAND: brownish clay clasts, s laminations, r SAND: as abov		avel and	SW			3" HSA borehole
10	2-2-3-4	0	2	22"	SAND: brownish	∣ gray, m−c, SR−SA, loose, s	aturated.			 	
12	2-1-1-1	0	3	16"				SP			2" Sch 40 10-slot PVC screen (6.0'-16.0')
14	2-2-3-2	0.5 0.4	4	20"	SAND: as abov SAND: 12-20",	e top 12". f w/some silt, v loose, satu	urated.				lo. OON sand
16	1-1-1-2	0.5 0.2	5	17"	f silty sand, SILTY CLAY: an	, brownish gray, interbedded loose, saturated. zyish brown, iron—stained at ninations, saturated.		SP/SM			Bottom end cap
16		0	6	14"	SILTY CLAY: 12 organic layer	1–17", grayish brown, med st near base, saturated.	iff, black	OL			Collapsed/swelled formation 2" split—spoon borehole
20-						Total Depth: 18.0'				20	
	Driller: Nor Logged by: Drilling Star Drilling Com Well Constru Well Develop Well Coords	D. ted: nplet uctic ped: .: N	Muri 7- ed: n: 7 7-	ceak 19– 7–1 23– 380.	, GSC 96 9-96 96 96 528	Notes: *Top no. is volatile sco bottom no. is jar hea measurement. Length of well material SWL 10.67' (7/23/96	dspace : 18.4'.	scan	oon; COR.	PORA	<i>SCIENCES</i> TION W-275S

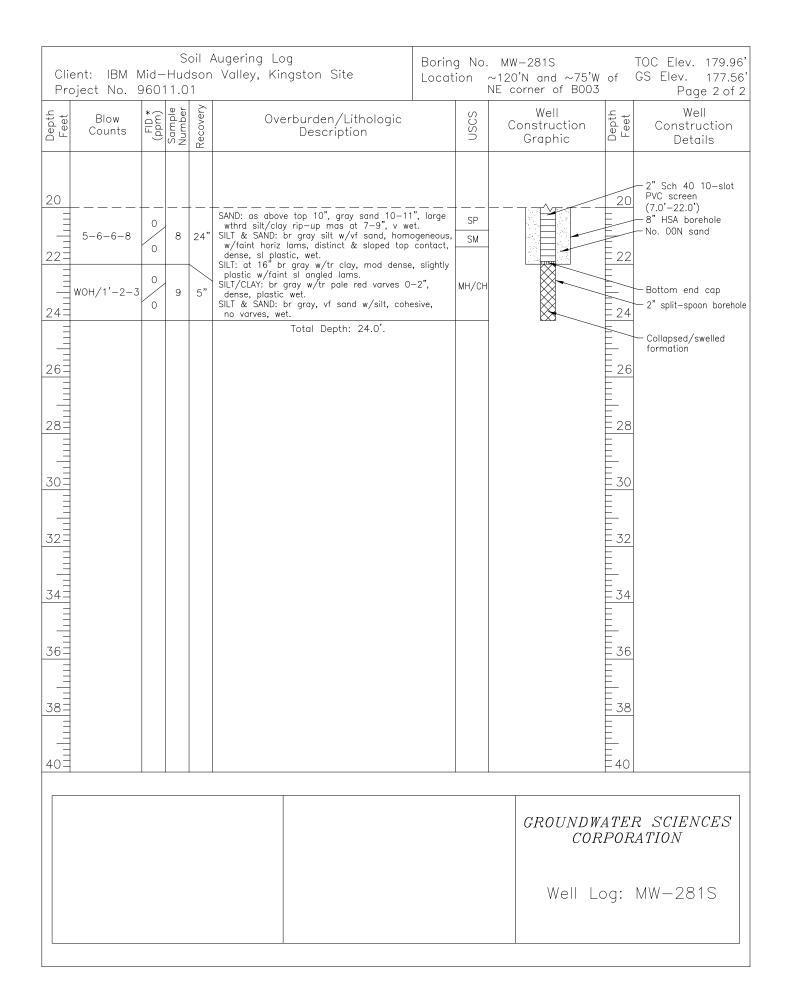
	ent: IBM N oject No. S		Huc	lson	Augering Log Valley, Kingston Site	Boring Locat	ion r	MW-276S ~200'S and ~40'W IW corner B001		TOC Elev. 180.17' GS Elev. 177.73' Page 1 of 2
Depth Feet	Blow Counts	FID *	Sample Number	Recovery	Overburden/Lithologic Description		uscs	Well Construction Graphic	Depth Feet	2010
0 2 4 4 4 10 10 12	<u>Ground Surface</u> HAND AUGERED 1-2-3-3 2-3-3-2 WOH/1'-1-1	0 0.1 0.1	 1 2	9 <u>2</u> 16" 19"	SAND: brown, m-c, loose, dry to moist nea SAND: brownish gray, m-c, SR-SA; grades at base, loosely packed, saturated. SAND: as above. SAND: top 5", brownish gray, vc w/some of SR-SA, saturated. SAND: 5-9", brownish gray, m-c w/some A loose, saturated.	to f—m gravel,	SP SP SP			 Details 4" Locking Royer cap w/2" expansion plug 4" protective steel casing Concrete pad Hydrated bentonite chips 2" Sch 40 PVC riser 8" HSA borehole 2" Sch 40 10-slot PVC screen
14	2-1-1-1	0	4	16"	SILTY SAND: brownish gray, mostly f w/sor loose, saturated. SAND: 9–18", brownish gray, m-c w/SA-A clasts, loose; grades to brownish gray, f- base w/occ gravel and cobbles, saturated	gravel -m at I.	SM		<u> 12</u> <u> </u>	(6.8'–19.5')
1.04	WOH/1'-1-2	0.1	5	11"	SAND: brownish gray, m-c, loose w/some gravel and cobbles, saturated. SAND: as above.	SA	SW		16	- No. 00N sand
18	2-2-3-2	0.1 0 0.4	6	24" 12"	SAND: top 9", brownish gray, f-m, SR-SA, iron-rich at base, saturated.		SP ML/CL		18	— Bottom end cap — Collapsed/swelled formation
	Driller: Nor Logged by: Drilling Star Drilling Com Well Constru Well Develop Well Coords	D. ted: plet uctio ped: .: N	Muri 7- ed: n: 7 7-:	ceak 18– 7–1 23– 233.	 K, GSC 8-96 96 96 96 96 96 96 42 *Top no. is volatile sc bottom no. is jar heat measurement. 96 42 	l: 21.5'.	scan	on; COR	POR	<i>R SCIENCES</i> EATION MW-276S

	ent: IBM oject No.	9601	Huc 11.0	lson 1	Augering Log Valley, Kingston Site	Boring No Location	~200	V-276S D'S and ~40'W corner B001		TOC Elev. 180.17' GS Elev. 177.73' Page 2 of 2
Depth Feet	Blow Counts	(mdq)	Sample Number	Recovery	Overburden/Lithologic Description	nscs	С	Well construction Graphic	Depth Feet	Well Construction Details
20 22 24 26 28 30 30 32 34 30 32 34 36 38	2-2-3-4	0	8	10"	SILTY CLAY: as above Total Depth: 22.0'.	ML/C			20 22 22 24 26 28 30 30 30 32 30 32 34 30 32 34 30 32 34 30 32 34 30 32 34 30 32 34 30 32 34 30 34 30 34 30 34 34 34 34 34 34 34 34 34 34 34 34 34	Collapsed/swelled formation 2" split-spoon borehole
										R SCIENCES ATION
								Well Lo	og:	MW-276S

	ent: IBM M bject No. S		Huc	son	Augering Log Valley, Kingston Site		ion [,]	MW–277S ~308'S and ~12'W NW corner B001		TOC Elev. 180.33 GS Elev. 177.96 Page 1 of 2
Depth Feet	Blow Counts	FID * (ppm)	Sample Number	Recovery	Overburden/Litholo Description	gic	nscs	Well Construction Graphic	Depth Feet	Well Construction Details
0 1111111111111111111111111111111111111	<u>Ground Surface</u> HAND AUGERED				SAND & GRAVEL: brown, m-c, mixed cobbles to ~0.5', dry. SAND: brown, m-c, grading to browni base, occ vc and gravel, slightly mo	ish gray near	FILL SW	ASSSSSSSSS		 4" Locking Royer cap w/2" expansion plug 4" protective steel casing Concrete pad Hydrated bentonite chips 2" Sch 40 PVC riser
8	5-5-5-5	0 0.1 0.1	1	19"	SAND: top 7", brownish gray, f-m, fi wood chips/roots, iron-rich zones. SILTY CLAY: 7-14", brownish orange w grading to brown silty sand w/orgar at base, saturated. SAND: 14-19", brownish gray, vf-f w/r lams (1/4" thick) & 1/2" thick pinl clay law zoneg of orange in f capa	/lams, nic laminations se, saturated. dk br m-c kish silty aray	OL/SM SP SW		6 11 11 11 11 11 11 11 11	— 8" HSA borehole
10= 10= 12= 14=	5-5-10-7 8-4-3-4	0.1	2	24" 13"	clay lam, zones of orange in f sam below lam (1/2" thick), saturated. SAND: 7-24", brownish gray, m, grad w/black lams near base, saturated. SAND: brown, m-c w/some vc, loose brownish gray, m, loose, saturated.	, grades to	SP		10	- 2" Sch 40 10-slot PVC screen (6.0'-21.0')
	13-9-8-7	0.1 0.3 0 0.1	4	13" 23"	black organic staining, saturated. SAND: as above w/occ brown silty cl (1/4 to 1/2" thick).	ay laminations	SP/SM			— No. OON sand
16	2-1-2-2	0.2	6	19"	SAND: brownish gray, m, v loose, sat SAND: as above, becomes finer near		SP		= 16 = = = 18	
20=	2-1-2-3	0.2	7	18"					= = 20	
	Driller: Nor Logged by: Drilling Star Drilling Com Well Constru Well Develop Well Coords	D. ted: plete uctio ped: .: N	Muri 7- ed: n: 7 7-,	ceak 24– 7–2 –24 30–9	GSC*Top no. is volatil96bottom no. is jan4-96measurement96-9696Length of well mo	r headspace	scan	on; COR	POR	<i>r sciences ation</i> MW–277S

	ent: IBM oject No.		Huc	lson 1	Augering Log Valley, Kingston Site	Borin Locat	ion	MW-277S ~308'S and ~12'W NW corner B001	of	TOC Elev. 180.33' GS Elev. 177.96' Page 2 of 2
Depth Feet	Blow Counts	(mdq)	Sample Number	Recovery	Overburden/Lithologic Description		nscs	Well Construction Graphic	Depth Feet	Well Construction Details
20 22 24 26 28 30 32 34 36 38 40	2-3-2-3	0.2	8	23"	SAND: top 10", brownish gray, m, loose, s SiLTY CLAY: 10–23", gray, laminated, med saturated. Total Depth: 22.0'.	aturated. stiff,	SP ML/CL			No. OON sand Bottom end cap Collapsed/swelled formation 2" split-spoon borehole
										R SCIENCES RATION
								Well Lo	bg:	MW-277S

	ent: IBM M oject No. 9		Huc	son	Augering Log Valley, Kingston Site		tion ~	MW-278S 188' NW of NW orner B001	TOC Elev. 177.3 GS Elev. 177.6 Page 1 of
Depth Feet	Blow Counts	(mqq)	Sample Number	Recovery	Overburden/Li Descripti		nscs	Well Construction Graphic	Well Construction Details
0 2 4 4 10 12 11 14	Ground Surface HAND AUGERED				Asphalt to 0.3', GRAVEL: to 0.5'. SAND: brown, m-c, loose w/s to 6', dry.		SP		9" flush-mount manhole w/2" water tight sealing cap Concrete pad 4 Hydrated bentonite chips 2" Sch 40 PVC rise
8	3-4-4-4	0	1	17"	SAND: grayish brown at top to SR-SA, occ iron- and organ moist at base. SAND: as above, top 3".				8" HSA borehole
10	1-3-2-3	0	2	17"	SILTY SAND: 3-9", grayish bro w/silt, some organics, saturc SILTY CLAY: 9-16", orange-br interlayers. SAND: 16-17", br gray, m-c, SF SAND: brownish gray, m-c, SF	ated. own w/some sand SR-SA loose saturated	SM SM/CL		10
12	1-1-2-2	0	3	14"	laminations (organic-rich), or SAND: brownish gray, m-c, SF	cc gravel, saturated. R—SA, occ A gravel	SP		2" Sch 40 10-slot PVC screen (7.0-17.0')
		0	4	16"	and cobbles, occ clay rip-up clay lenses, saturated. SAND: as above, top 8".	o clasts and thin			No. 00N sand
6		0 6.4	5	18"	SILTY CLAY: 8-18", brown to varves, orange streaking near grading to brown sand at bo	r base, med stiff, ise.			
8	3-4-3-3	0	6	16"	SILTY CLAY: brownish gray at streaking grading to gray silt saturated. SILTY CLAY: gray, med stiff, lc	y clay, med stiff,	ML/CL		Bottom end cap 2" split-spoon boreh
20	1-1-1-1	0 0.5	7	13"	Total Depth:	20.0'			Collapsed/swelled formation 20
	Driller: Nor Logged by: Drilling Star Drilling Com Well Constru Well Develop Well Coords	D. ted: plete uctio ped: .: N	Muri 7- ed: n: 7 7-:	ceak 22- 7-2 -22 23-1 503.1	g, Inc. Notes: , GSC *Top no. is 96 bottom no. 2-96 measureme -96 WOH = Weig 96 Length of w	volatile scan of s is jar headspace	scan	n; CORI	<i>TER SCIENCES</i> PORATION g: MW-278S


	ent: IBM N oject No. S		Huc	son	Augering Log Valley, Kings	ston Site		ion [,]	MW-279S ~95W and ~52'S o [.] N side B001		TOC Elev. 177.32 GS Elev. 177.60 Page 1 of 1
Depth Feet	Blow Counts	(mdd)	Sample Number	Recovery	Overb	ourden/Lithologic Description		USCS	Well Construction Graphic	Depth Feet	Well Construction Details
	Ground Surface							71/7/2		O	9" flush-mount manhole w/2" water- tight sealing cap Concrete pad
4	HAND AUGERED				GRAVEL/SAND: mix SAND: grayish bro dry 0.7-6.0'.	< 0.2−0.7'. wn, m−c w/some gravel,	cobbles,	FILL		2	 Hydrated bentonite chips 2" Sch 40 PVC riser
8	2-2-3-3	000	1	18"	m—c, SR—SA, sli	ing to grayish brown at b ghtly moist at base.				6	- 8" HSA borehole
10	1-1-1-1	0.1	2	13"	some clay clasts	wn, m—c w/occ vc, SR—S ; near base of spoon, sat //occ silty clay lamination	uratéd.	SP		 	
12	WOH-2-3-2	0	3	14"	thick), saturated.		3 (1) 0			= 12	2" Sch 40 10-slot PVC screen (5.3'-18.0')
14-	WOH-2-2-3	0.2 0	4	16"	SILTY SAND: 11-1 some silt, v loos	6", brownish gray, mostly		SM		 14	
16		0	5	24"	at base, loose, s	saturated.		SP/SM		16	— No. 00N sand
18	2-2-2-3	0	6	24"	SILTY CLAY: 22-24 iron-rich zone n	4", brown with pink varve: ear base, med stiff. h brown, laminated, med	-			18	- Bottom end cap
20	1-2-4-4	0	7	13"				ML/CL		20	2" split-spoon borehole Collapsed/swelled formation
	Driller: Nor Logged by: Drilling Star Drilling Com Well Constru Well Develop Well Coords	D. ted: plet uctio ped: .: N	Muri 7- ed: n: 7 7-:	ceał 22– 7–2 –22 23– 388.	g, Inc. N <, GSC * 96 22-96 2-96 W 96 L 980	otal Depth: 20.0' lotes: Top no. is volatile sca bottom no. is jar hea measurement. VOH = Weight of Ham ength of well material WL 7.61' (7/23/96;	dspace s mer I: 17.7'.	scan	on; COR.	POR	<i>r sciences</i> <i>Pation</i> MW-279S

	ent: IBM M oject No. S		Huc	lson	Augering Log Valley, Kingston Site		ion	MW-280M ~90'E and ~172'N SE corner B025		TOC Elev. 180.57 GS Elev. 178.17 Page 1 of 2
Depth Feet	Blow Counts	FID * (ppm)	Sample Number	Recovery	Overburden/Lithologic Description		nscs	Well Construction Graphic	Depth Feet	Botano
0	<u>Ground</u> <u>Surface</u> HAND AUGERED				SAND & GRAVEL: to 0.3'. SAND: brown, m-c w/some vc, loose, dry		FILL SW			4" Locking Royer cap w/2" expansion plug 4" protective steel casing Concrete pad
8	2-3-2-2	0	1	19"	SAND: grayish brown w/orange staining, n SR-SA, occ organics, moist at top, satu base. SAND: dark brown, c w/some vc, SR-SA, packed, occ organics, grading to brownis	rated at				- 8" HSA borehole
10=	1-1-2-2	00.4	2	17"	 m-c sand at base, saturated. SAND: brownish gray, m-c, SR-SA w/som occ clay clast, loosely packed, saturated 	ne A vc,			E_ E 10 E	-
12-	WOH-1-2-2 1-1-2-3	0.1	3	14" 20"	SAND: brownish gray, m—c, SR—SA w/som loosely packed, saturated.	ne A vc,	SP		<u> </u>	
16	1-1-2-3	0	5	23"	SAND: as above. SAND: as above.					-
18	4-4-5-7	0	6	24"	SAND: as above.					Bentonite chips
20=	2-3-3-4	0	7	24"					= 20	- No. 00N sand - 2" Sch 40 PVC riser
	Driller: Nor Logged by: Drilling Star Drilling Com Well Constru Well Develop Well Coords	D. ted: plet uctio ped: .: N	Muri 7- ed: n: 7 8-,	ceak 23– 7–2 7–23 3–9 033.0	 4 GSC 96 23-96 5-96 6 096 100 no. is volatile sibottom no. is jar he measurement. NR = No Recovery WOH = Weight of Har Length of well materi 	adspace nmer al: 38.4'.	scan	COF	POR	<i>r sciences</i> Ration MW–280M

Pro	ent: IBM M bject No. S	9601	Huc- 11.0	lson 1		tion	MW-280M ~90'E and ~172'N SE corner B025	of	TOC Elev. 180.57 GS Elev. 178.17 Page 2 of 2
Depth Feet	Blow Counts	(mdd)	Sample Number	Recovery	Overburden/Lithologic Description	nscs	Well Construction Graphic	Depth Feet	Well Construction Details
20	AUGERED			NR	Note: heaving sand.	SP		20	— 8" HSA borehole
Ξ	3-3-4-3 WOH/1'-1/1'	0.4	8	6"	SAND: brownish gray, m—c, SR—SA, loose, occ grayish brown silty clay lams (1/4—1/2" thick) and brown clay clasts, saturated.			26	- 2" Sch 40 10-slot PVC screen
30	2-3-2-4	0	10	18"	SAND: as above, top 5". SILTY SAND: 5-8", gray, mostly laminated f sand & silt w/m brown sand interlayers. SILTY CLAY: 8-11", gray, med stiff. SILTY SAND: 11-18", gray, mostly lam f sand & silt w/m br sand interlayers; zone of organic lam near base SILTY SAND: as above, top 5".	ML/CL		28	
32	3-3-3-6	00.2	11	16" 18"	 SAND: 5-16", brownish gray, m-c, loose w/occ orange lams and black streaks and grayish brown silty clay interlayers, saturated. SAND: top 10", as above w/occ gray silty clay interlayers, saturated. SAND: 10-16", grayish brown, m grading to f sanc and silt near base, loose, saturated. 	SP/SM		32	- No. OON sand
34	5-1-3-2	0	13	17"	SILTY CLAY: 16-18", gray, med stiff, laminated. SAND: grayish brown, m-c, loose, grades to f-m near base, soturated. SILTY CLAY: gray, med stiff, laminated (small amoun near base).	ML/CL		34	— Bottom end cap
38	2-2-1-1	0	14	1"	SILTY CLAY: gray, med stiff, laminated, saturated.	ML/CL		38	Collapsed/swelled formation 2" split-spoon borehol
40					Total Depth: 38.0'.			 40	
							COR.	POR	<i>R SCIENCES</i> 2 <i>ATION</i> MW-280M

	ent: IBM M bject No. S	960	-Huc 11.0	lson 1	Augering Log Valley, Kingston Site		ion 4	MW-280S 4.5'W of MW-280M, SE of B025	TOC Elev. 180.78' GS Elev. 178.17' Page 1 of 1
Depth Feet	Blow Counts	(mqq)	Sample Number	Recovery	Overburden/Lithologic Description		NSCS	Well Construction Graphic	Well Construction Details
					Total Depth: 17.0'.				4" Locking Royer cap w/2" expansion plug 4" protective steel casing Concrete pad 4 2 Hydrated bentonite chips 4 2" Sch 40 PVC riser 6 8" HSA borehole 8" HSA borehole 8 10 2" Sch 40 10-slot PVC screen (7.0'-17.0') 12 14 No. 00N sand 16 Bottom end cap 20
	Driller: Nor Logged by: Drilling Star Drilling Com Well Constru Well Develop	D. ted: plet uctio	Muri 7- ed: n: 7	ceak 23– 7–2 7–23	k, GSC *Top no. is volatile so 96 bottom no. is jar he 33-96 measurement. i-96 Well completion only; r	adspace	scan	on; COR	A <i>TER SCIENCES PORATION</i> og: MW-280S
	Well Coords	.: N)33.	388 Length of well materia		OC).		

	ent: IBM N bject No. S		Hud	son	Augering Lo Valley, Kir	og ngston Site		ion ~	MW-281S 120'N and E corner of			TOC Elev. 179.96' GS Elev. 177.56' Page 1 of 2
Depth Feet	Blow Counts	(mdd)	Sample Number	Recovery	Ove	erburden/Lithologic Description		nscs	Well Construc Graphi	tion c	Feet	Well Construction Details
0	Ground Surface AUGERED HAND				Asphalt pavem	ravel and soil, 0-1'. ent at 1'. .25', dk yel br, f-m w/vf, s		 FILL 			0	 4" Locking Royer cap w/2" expansion plug 4" protective steel casing Concrete pad Hydrated granular bentonite
4	AUGERED	0	1	18"	organic blotcl top 4", sl ma lower 4". SAND: dk yel t yf-f. lit silt l	or, f-m w/vf, tr silt, some c nes, homogeneous, cohesive, ottled to 13", moist, turning or, f-m w/vf, tr silt, fining t ower 3", some dusky br orga	dk br wet in o pred	SP			4	— 2" Sch 40 PVC riser
10 10 12 12	6-6-5-5 2-2-2-2 2-2-1-1	2 0 0 0	2 3	14" 24" 19"	cohesive to h cohesive, sl f SAND & SILT: lam & faint below 16", sl SAND: dk yel b loose, wthrd y	ome horiz. layering between 2 bose, sl flowing at bottom, s lowing, faint horiz. layering, o mod yel br, vf sand & silt y clay lams throughout 10-11" flowing, v wet. r, f-m w/vf, tr-lit silt, homo varved silt/clay layer, mod yel plastic, tr clay masses lower	aturated. silt, v wet. v/horiz. and geneous, br betw	SP/SM			- 10 - 12 -	 8" HSA borehole 2" Sch 40 10-slot PVC screen (7.0'-22.0')
14 		0	5	13"	at 10.5", less dense, stiff, j SAND: dk yel b at 6", v wet, SILT/CLAY: at	d yel br, then grading to br s cohesive, sl flowing 5–9", t plastic below, wet throughout. or, f-m w/vf, tr silt, loose, c 0-7". 7" mod yel br, grades to br.	lay mass	MH/CH SP MH/CH			<u>14</u> 16	-No. 00N sand
18	1-1/1'-1	0	7	17"	sl flowing in SAND: dk yel l	r w/dk yel orange below 10" e at 12", fining to vf-f belo f sand, v wet. or, f-m w/vf, tr silt, v homo wthrd silt mass at 8", v we	ogeneous,	SP			<u>18</u> - 20	
	Driller: Nor Logged by: Drilling Star Drilling Com Well Constru Well Develop Well Coords	S. ted: pleto uctio ped: .: N	Fish 7- ed: n: 7 7-	er, (12- 7-1 -12 16- 543.	GSC 96 2-96 2-96 96 949	Notes: *Top no. is volatile sco bottom no. is jar hea measurement. WOH = Weight of Hami Measured Depth to Ba (from TOC). SWL 9.70' (7/16/96;	dspace mer ottom: 2	scan [°] 24.00'	n;	CORP	OR⊿	<i>r sciences</i> A <i>tion</i> MW-281S

	ent: IBM N bject No. S		Huc	lson	Augering Log Valley, Kingston Site		tion [,]	MW-282S ~145'NW of NW corner of B005	TOC Elev. 176.63 GS Elev. 176.99 Page 1 of 1
Depth Feet	Blow Counts	FID * (ppm)	Sample Number	Recovery	Overburden/Lithologic Description	c	nscs	Well Construction Graphic	Well Construction Details
	<u>Ground</u> Surface								9" flush-mount manhole w/2" water- tight sealing cap
2					FILL: dark brown sand, m—c w/gravel, a wood chips to 6'.	cobbles and			Concrete pad
2 1111	HAND AUGERED						FILL	56555555 565555555	Hydrated bentonite chips 4
					FILL: top 16".				2" Sch 40 PVC riser
8	7-8-9-14	5	1	21"	SAND: grayish brown, m, slightly moist, o SAND: as above, saturated.	occ clay lens.			8" HSA borehole
10	7-10-10-11	0	2	17"	SAND: as above.				 10
12=	7-4-4-5	0	3	14"	SAND: as above.				2" Sch 40 10-slot PVC screen (6.3'-19.0')
14	2-2-3-3	0	4	12"			SP		
16	2-2-3-3	0	5	14"	SAND: as above.				No. 00N sand
18	2-2-3-4	0	6	17"	SAND: grayish brown, f—m, loose, silty o at 9", saturated.				
20-	4-4-8-10	0	7	12"	SILTY CLAY: gray, soft—med stiff, pink k	aminations.	ML/CL		Bottom end cap Bentonite chips
					Total Depth: 20.0'				·
	Driller: Nor Logged by: Drilling Star Drilling Corr	D. ted: plet	Muri 7- ed:	cea 15– 7–1	5–96 *Instrument malfunc spoon scan; FID re headspace scan me	adings for	jar		ATER SCIENCES PORATION
	Well Constru Well Develop Well Coords	bed: .: N	7-	16– 547.	96 Length of well mate			Well Lo	g: MW-282S

	ent: IBM M bject No. S		Huc	lson	Augering Lc Valley, Kir			ion r	MW-283S ~30'N of NW corne of B005N		TOC Elev. 180.26 GS Elev. 177.83 Page 1 of 2
Depth Feet	Blow Counts	FID *	Sample Number	Recovery	Ove	erburden/Lithologic Description		NSCS	Well Construction Graphic	Depth Feet	Well Construction Details
0 2 4 6	Ground Surface HAND AUGERED					sand w/vf, tr c, tr silt, loos		FILL		0	 4" Locking Royer cap w/2" expansion plug 4" protective steel casing Concrete pad Hydrated granular bentonite 2" Sch 40 PVC riser 8" HSA borehole
8	1-3-5-7	0.5 30	1	20"	br organic—rid crumbly, wet tr rootlets the SILT: 0—7", It	or, f-m w/vf, tr c, some sill ch layers betw 3-15", cohesi zone 4-8", more gray tint b roughout, top 3" dry, moist. olive gray, some vf sand top	ve, sl below 3", b 2" w/	OL			— 2" Sch 40 10-slot PVC screen (4.3'-12.0')
10	4-10-10-9	0 25	2	14"	laminations, c SAND & SILT: silt lam, som sand w/silt la	ganic frags throughout, faint cohesive, wet. 7–14", pred vf w/f, some si e faint, layering, cohesive, mo wer 2", wet. as above, wet 0–3" w/silt la	lt, tr ostly vf	SM		10	— No. OON sand
12=	4-3-3-2	0 64	3	15"	grading into SAND: It olive occ rootlets,	unit below. gray, f—m w/vf, tr silt, homo cohesive to sl flowing, wet.	ogeneous,	SP		E = 12	—Bottom end cap
14	WOH-1-2-1	06	4	9"	w/pale red lo 6", cohesive,	v/some vf sand, tr-lit clay, rms 3-6", dk gray m sand l sl plastic, wet. ossibly running sandy silt.	varved am at			 	Doptonito al·i
16	2-1-1-1	_	5	NR	SILT: as above	w/pale red clay-rich laminc	tions	ML/CL		16	— Bentonite chips
18	WOH/1'-1-2 5-7-7-8	0	6	10" 18"	3—4", sl plas SILT: as above	tic, wet. , no varves, sl flowing top 7	", wet.			- 18	 — 2" split-spoon borehol — Collapsed/swelled formation
	Driller: Nor Logged by: Drilling Star Drilling Com Well Constru Well Develop Well Coords	S. ted: nplet uctio ped: .: N	Fish 7- ed: n: 7 7-	er, (12- 7-1 7-12 19- 19-	GSC 96 2-96 2-96 96 427	Notes: *Top no. is volatile sco bottom no. is jar hea measurement. WOH = Weight of Hami NR = No Recovery Measured DTB: 14.59' SWL 9.18' (7/19/96;	dspace mer (from	scan [°] TOC).	on; COR.	POR	formation R SCIENCES ATION MW-283S

	ent: IBM I oject No.		Huc	lson	Augering Lo Valley, Kir	og ngston Site	Boring Locat		MW-283S ~30'N of NW corne of B005N		TOC Elev. 180.26' GS Elev. 177.83' Page 2 of 2
Depth Feet	Blow Counts	(mdd)	Sample Number	Recovery	Ove	erburden/Lithologic Description		nscs	Well Construction Graphic	Depth Feet	Well Construction Details
20 22 24 24 26 		0	8	17"	SILT: as above 15–16", cohe	w/vf sandy zone 13-15", v sive, wet. Total Depth: 22.0'.	varves	ML/CL		20 22 24 26 28 30 30 32 34 36 38 38 40	- 2" split-spoon borehole - Collapsed/swelled formation
											R SCIENCES PATION
									Well Lo	og:	MW-283S

	ent: IBM M bject No. S		Huc	lson	Augering Lo Valley, Kir			ion ~	MW-284S ~510'N of NV corner of B00		TOC Elev. 174.77' GS Elev. 172.45 Page 1 of 2
Depth Feet	Blow Counts	FID * (ppm)	Sample Number	Recovery	Ove	erburden/Lithologic Description		nscs	Well Construct Graphic		Botano
2	<u>Ground</u> Surface HAND AUGERED				GRAVEL: dk gro with some sill	 own sand and silt soil. ay m—c road bed gravel and t & sand, loose, moist. c'					Concrete pad Bentonite slurry
4	HAND AUGERED and AUGERED				: gravelly to	ο.		FILL			
8	1-4-8-10	0 3	1	2"	tr c-vc, orga crumbly, mois		/e, sl	SM			-
10	2-3-3-3	0 0.8	2	16"	silt, homogene gray & red s	to med gray, f-m w/vf, so eous, grains composed of qu hale, loose, saturated. d, no measurable recovery.		SP			2" Sch 40 10-slot PVC screen (3.0'-18.0')
12	4-4-3-3		3	NR		e, homogeneous w/rootlet at	. 7".				
14	1-1-2-4	0	4	10"	incr silt & vf	sand fraction lower 2".					No. 00N sand
16	3-4-4-3	0 0.6	5	16"	silt, tr black becoming pre homogeneous, sl plastic, mo	organic masses top 6", sl fl d br gray vf sand & silt bel v faint horiz lams, no varv re dense than above, wet. br gray vf sand w/silt, homo	owing, low 6", es,	SM			-
18	4-5-6-6	0	6	12"	no varves, sl SAND & SILT: t	plastic, dense, cohesive, wet or gray, homogeneous, vf-f s	sandy silt				-Bottom end cap
20-	4-2-3-1	0	7	21"	zones w/faint at 1-3", 5-7 w/vf, lit silt t SILT/CLAY: br homogeneous,	horiz lams, varved clayey s "& 12-13", v plastic, dens betw 13-17", wet. gray lower 4", v dense, v pla no varves.	iilt layers se, f—m astic,	SM/MH MH/CH		E20	Collapsed/swelled formation
	Driller: Nor Logged by: Drilling Star Drilling Com Well Constru Well Develop Well Coords	S. ted: pleto uctio ped: .: N	Fish 7- ed: n: 7 7- 7189	er, (9-9 7-9 '-9- 16-'	GSC 6 -96 -96 96 745	Notes: *Top no. is volatile sca bottom no. is jar hea measurement. NR = No Recovery Measured Depth to Ba (from TOC). SWL 6.95' (7/16/96;	dspace [.] ottom:	scan [°] 20.36'	on;	CORPOF	<i>R SCIENCES</i> RATION MW-284S

		Huc	lson			tion ~	510'N of NW		TOC Elev. 174.77' GS Elev. 172.45' Page 2 of 2
Blow Counts	FID * (ppm)	Sample Number	Recovery	Overburden/Lith Description	nologic n	nscs	Well Construction Graphic	Depth Feet	Well Construction Details
2-2-2-2	00	8	16"	lams elsewhere, wet.		MH/CH		20 22 24 24 26 28 30 30 30 32 30 32 34 36 38 38 40	- 8" HSA borehole - Collapsed/swelled formation
							Well L	og:	MW-284S
	oject No. 9	oject No. 9601	ent: IBM Mid-Huc oject No. 96011.0 Blow Counts 2-2-2-2 0 8 0 8	ent: IBM Mid-Hudson oject No. 96011.01	oject No. 96011.01	ent: IBM Mid-Hudson Valley, Kingston Site oject No. 96011.01 Blow Counts $\frac{1}{4} \frac{6}{6} \frac{1}{6} \frac{1}{2} \frac$	ent: IBM Mid-Hudson Valley, Kingston Site aject No. 96011.01 Blow Counts $\frac{1}{4} \frac{2}{6} \frac{1}{6} \frac{1}{2} \frac{1}{2} \frac{1}{6} \frac{1}{2} $	ert: IBM Mid=Hudson Valley, Kingston Site Location Stoch of NW corner of 8005N Blow Estic bill of NW Counts Stoch of NW Estic bill of NW Construction Well Z-2-2-2 8 net Still/CLX: as above w/more clay, v plastic, deme box charge dates, mogeneous w/all nonzonal WH/CH Z-2-2-2 8 net Imme elsewhere, well With charge dates, mogeneous w/all nonzonal Z-2-2-2 8 net Imme elsewhere, well WH/CH	ent: IBM Mid-Hudson Valley, Kingston Site Diget No. 96011.01 Blow tree by the second

	ent: IBM N bject No. S		Huc	lson	Augering Lo Valley, Kir	og ngston Site		ion [,]	MW-285S ~42'W and ~28'S V side of B003		TOC Elev. 177.49 GS Elev. 177.89 Page 1 of 2
Depth Feet	Blow Counts	(mdd) (ppm)	Sample Number	Recovery	Ove	erburden/Lithologic Description		NSCS	Well Construction Graphic	Depth Feet	Well Construction Details
0 2 4 6 10 10 12 14	Ground Surface HAND AUGERED 1-2-1/1' 3-3-3-3 WOH/1'-1-1 1-1-3-3	- - - 0.4 80	 	NR 8" 12"	SAND: dark bro moist. SAND: dark bro SR-SA, loose SAND: dark bro clay clasts, lo ~1/4" thick)	own, m—c, SR—SA, loose, occ own, m—c, SR—SA, loose, occ ly packed, saturated. own, m—c, SR—SA, occ organ pose, med brown silty clay le near base, saturated.	m-c, ics, occ ns	FILL SP			 9" flush-mount manhole w/2" water- tight sealing cap Concrete pad Hydrated bentonite chips 2" Sch 40 PVC riser 8" HSA borehole 2" Sch 40 10-slot PVC screen (4.3'-22.0')
16	1-1-1-1	4 48 0.1 64	5	17" 19"	SAND: as abov SAND: as abov	re with 1" silty clay lens at 1 re.	0".			16	- No. OON sand
18=	1-1-5-6	0.3	7	18"	SAND: as abov	e.				= 18 = = = 20	
	Driller: Nor Logged by: Drilling Star Drilling Com Well Constru Well Develop Well Coords	D. ted: plete uctio bed: .: N	Muri 7- ed: n: 7 7-	ceał 18– 7–1 7–18 19– 401.	<, GSC 96 8-96 3-96 96 017	Notes: *Top no. is volatile sco bottom no. is jar hear measurement. Oily sheen observed in spoon samples. NR = No Recovery WOH = Weight of Hamr Length of well material: SWL 6.80' (7/19/96;	dspace 12–16' ner : 21.5'.	scan split–	COl	RPOR	<i>r sciences</i> 2 <i>ation</i> MW–285S

	ent: IBM I bject No. 1		Huc	lson	Augering Log Valley, Kingston Site		Boring Locatio	on ~	MW-285S 42'W and ~28'S o side of B003		TOC Elev. 177.49' GS Elev. 177.89' Page 2 of 2
Depth Feet	Blow Counts	FID * (mdd)	Sample Number	Recovery	Overburden/L Descript	ithologic ion		USCS	Well Construction Graphic	Depth Feet	Well Construction Details
20 22 24 24 26 28 30 32 30 32 34 36 38 38	4-5-9-9		9	24"	SAND: as above, top 20". SILTY CLAY: 20–24", orange I thick, grading to gray silty of laminated, saturated. SILTY CLAY: gray, med stiff, I Total Depth:	clay, med stiff, laminated, satura	ited.	SP/SM		20 22 24 26 28 30 30 32 34 34 36 38 38	 2" Sch 40 10-slot PVC screen (4.3'-22.0') No. 00N sand Bottom end cap Collapsed/swelled formation 2" split-spoon borehole
											R SCIENCES PATION
									Well Lc	og:	MW-285S

	ent: IBM M bject No. S		Huc	lson	Augering Log Valley, Kingston Site		tion -	MW-288S ~58'W and ~8'N of NW corner B003	TOC Elev. 180.22 GS Elev. 177.81 Page 1 of 2
Depth Feet	Blow Counts	FID * (ppm)	Sample Number	Recovery	Overburden/Lithologic Description		nscs	کی Construction Graphic	Well Construction Details
0	Ground Surface HAND AUGERED				SAND: dark brown at top to grayish brown m—c, SR—SA, loosely packed, sl moist.	– <u>– –</u> – –			4" Locking Royer cap w/2" expansion plug 0 4" protective steel casing Concrete pad 2 Hydrated bentonite chips 4
8	3-3-4-4	0 0	1	17"	SAND: grayish brown, m-c, SR-SA, loose, top, saturated near base. SAND: as above.	moist at	SP		6 2" Sch 40 PVC riser 8 8
10	3-3-2-2	2	2	20"	SAND: top 8", br gray, m—c, SR—SA, loos SAND: 8—12", grayish brown, m—c, SR—SA,	loose sat			8" HSA borehole
12-	1-1-2-1	5 0 30	3	22" 24"	SILTY SAND: 12-15", br gray, mostly silt SILTY CLAY: 15-22", brown, stiff w/iron-s zones, saturated. SAND: grayish brown, m-c, SR-SA, loose, clasts throughout core, saturated.	w/f sand. tained	SM ML/CL		- PVC screen (7.5'-27.5') - 12
16	3-2-2-3	0 28	5	24"	SAND: as above with 1/4" thick brown sil lens at 14", saturated. SAND: as above with 1/2" thick silty clay le		SP/SM		No. 00N sand
18	2-1-1-1	0 2	6	22"	SAND: as above, top 5".				18
20-	2-2-4-5	0 18	7	24"	SILTY CLAY: 5—11", gray, soft—med stiff, satı	irated. nd with	ML/CL SM		20
	Driller: Nor Logged by: Drilling Star Drilling Com Well Constru Well Develop Well Coords	D. ted: plete uctio ped: .: N	Muri 7- ed: n: 7 7- 7184	ceak 17– 7–1 '–17 18–	K, GSC*Top no. is volatile so bottom no. is jar he measurement.7-96measurement969629Length of well materio	adspace al: 30.0'.	scan	on; CORPO	<i>TER SCIENCES</i> Dration : MW-288S

	ent: IBM I bject No. 1		Huc	lson	Augering Log Valley, Kingston Site		ion [,]	MW—288S ~58'W and ~8'N of NW corner B003		TOC Elev. 180.22' GS Elev. 177.81' Page 2 of 2
Depth Feet	Blow Counts	FID * (ppm)	Sample Number	Recovery	Overburden/Lithologic Description		nscs	Well Construction Graphic	Depth Feet	Well Construction Details
20 22= 24= 24= 26= 28= 30= 32= 34= 34= 36= 38= 40=	2-1-1-1 4-4-2-2 2-2-5-11 5-2-3-2 5-2-4-6	0 0.6 0 1 0 0 1.5	8 9 10 11	23" 22" 24" 12"	SAND: brownish gray, m-c, SR-SA, loose, s SAND: as above. SAND: as above. SILTY SAND: 7-24", brown, mostly f sand w silty clay laminations, saturated. SAND: top 7", brownish gray, m-c, SR-SA, SAND: 7-13", brown, m-c w/some fines & clay laminations. SILTY SAND: 13-19", brown, mostly f sand some silt. SILTY CLAY: 19-20", gray, laminated, stiff, sa SILTY CLAY: gray, med stiff to stiff, w/pink saturated. Total Depth: 30.0'.	v/some loose. silty with turated.	SP SM SP/SM SM ML/CL		20 22 24 26 28 30 30 30 30 32 34 36 38 36 38	 Bottom end cap Collapsed/swelled formation 2" split-spoon borehole
										R SCIENCES PATION
								Well Lo	og:	MW-288S

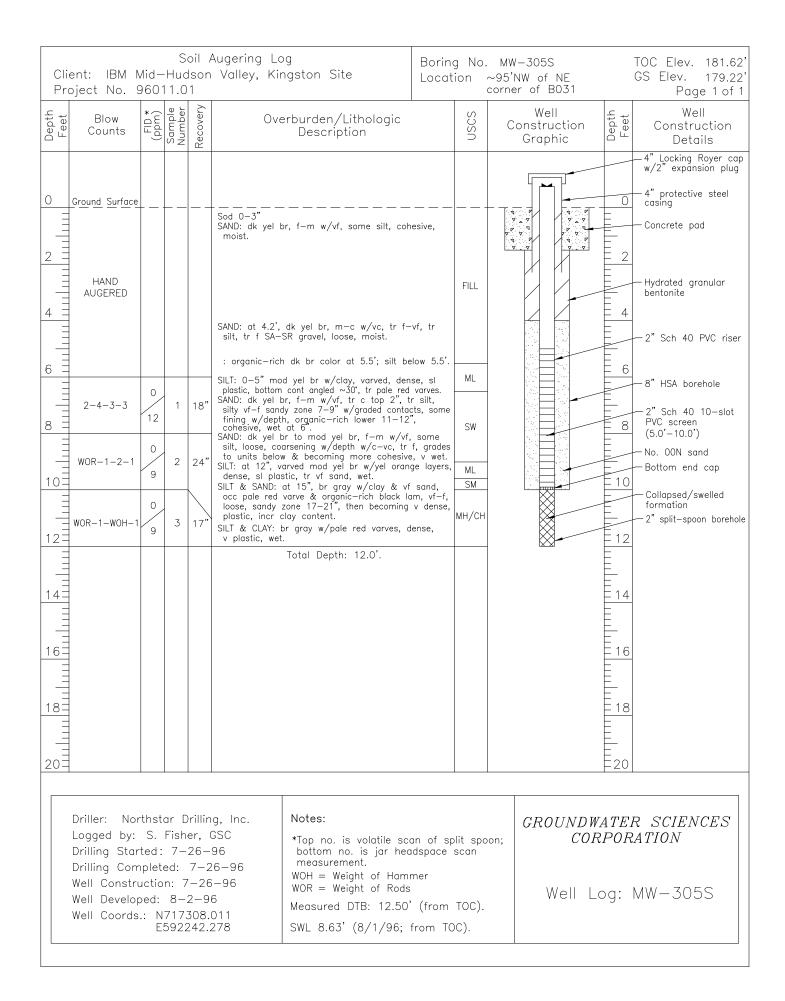
	ent: IBM N pject No. S		Huc	lson	Augering Lo Valley, Kir	og ngston Site		ion -	MW-289S ~98'NW of NW corner of B036		TOC Elev. 156.98' GS Elev. 154.50' Page 1 of 1
Depth Feet	Blow Counts	(mdd)	Sample Number	Recovery	Ove	erburden/Lithologic Description		nscs	Well Construction Graphic	Depth Feet	Well Construction Details
	3-4-5-8	0 0 0.1 1.1	1	 13" 16"	FILL: mix of m some gravel, saturated nec SAND: brownish clay clasts, s base, saturat SAND: top 8", throughout, g w/clay clasts SILTY CLAY: 8- abundant woc	nostly brownish gray m—c sa cobbles, and clay; moist nec ir base. n gray, m—c, loose, some A illy clay lam (~1/2" thick) r	nd w/ pr top, gravel, near s sand layers,	FILL SP/SM SP/OL OL SP			 4" Locking Royer cap w/2" expansion plug 4" protective steel casing Concrete pad Hydrated bentonite chips 2" Sch 40 PVC riser 2" Sch 40 10-slot PVC screen (6.0'-11.0') 8" HSA borehole No. 00N sand Bottom end cap 2" split-spoon borehole Collapsed/swelled formation
	Driller: Nor Logged by: Drilling Star Drilling Corr	D. ted: plet	Muri 7- ed:	cea 29– 7–2	<, GSC 96 29-96	Notes: *Top no. is volatile sco bottom no. is jar hea measurement.			00		R SCIENCES ATION
	Well Construction: 7-29-96 Well Developed: 8-1-96 Well Coords.: N718878.431 E590262.335					WOH = Weight of Ham Length of well material SWL 7.6' (8/1/96; fr	: 13.5'.	:).	Well	Log:	MW-289S

	ent: IBM M bject No. S	9601	Huc 11.0	lson 1	Augering La Valley, Ki	og ngston Site		ion -	MW−290S ~48'W of MW−289S Fire Training Area		TOC Elev. 154.83' GS Elev. 152.39' Page 1 of 1
Depth Feet	Blow Counts	(mqq) (ppm)	Sample Number	Recovery	0v	erburden/Lithologic Description		NSCS	Well Construction Graphic	Depth Feet	Botano
	4-7-9-11	0 0.3 0.8 0.3 0.4 0.1 1.2	1	10" 13" 18"	cobbles, dry. FILL: gray cerr FILL: brown sc m w/A grave SAND: grayish (1-1/2" thic iron-staining SAND: as abov at 1" and 7" grains near t SAND: top 16" 8" and 13", SILTY CLAY: 16	rown sand, m-c w/some vo nent foundation, 4-6'. ind at top to grayish brown l, occ roots, loose, saturated. brown, m, loose, silty clay I k) at 5" and 12", occ clay on some grains near top, s re w/silty clay lams (~1-1/ , occ clay clasts and dark c op. , as above w/silty clay lamin abundant organics (black woo 3-18", grayish brown, med s (wood chips, roots). Total Depth: 14.0'	at base, ams clasts, saturated. 2" thick gray/black ations at od chips).	FILL SP/OL			 No. 00N sand Bottom end cap Collapsed/swelled formation 2" split-spoon borehole
	Driller: Nor Logged by: Drilling Star Drilling Com Well Constru Well Develop Well Coords	D. ted: plet uctio ped: .: N	Muri 7- ed: n: 7 8-2	ceak 29– 7–2 7–29 2–91 379.2	6, GSC 96 9–96 –96 6 257	Notes: *Top no. is volatile sc bottom no. is jar hec measurement. Length of well materia SWL 7.6' (8/1/96; fi	ul: 15.4'.	scan	on; COR	POR	<i>R SCIENCES</i> <i>ATION</i> MW-290S

	ent: IBM N pject No. S		Huc	lson	Augering Lo Valley, Kir			ion	MW—292S ~22'W of MW—2 Fire Training Are	89S;	TOC Elev. 155.68' GS Elev. 153.12' Page 1 of 2
Depth Feet	Blow Counts	FID *	Sample Number	Recovery	Ove	erburden/Lithologic Description		nscs	Well Constructior Graphic	Depth Feet	Well Construction Details
	<u>Ground</u> <u>Surface</u> HAND				 FILL: clay, san						 4" Locking Royer cap w/2" expansion plug 4" protective steel casing Concrete pad Hydrated bentonite chips
2 4 4 6	AUGERED					top 14", slightly moist.		FILL			—2" Sch 40 PVC riser —8" HSA borehole
8	2-2-3-9	0.2 0.4	1	19"	lenses near b SAND: brownish	gray, m—c w/some c, loose vase, saturated. 1 gray, m—c near to grading	to f-m				— 2" Sch 40 10-slot PVC screen (4.2'-11.9')
10	2-4-5-7	0.2	2	17"	laminations, t saturated.	ose, occ clay clast & thin s rick fragment at top of sam gray, m—c, interlayered w/a	iple,	SP		= 10	— No. OON sand
12	5-5-3-3	5 50	3	14"	brown m san	d, loóse, saturated. lens at base, gray, med sti Total Depth: 11.9'.		ML/CL		= 12	—Bottom end cap
14	3-3-4-5	1 78	4	10"	SAND: brownish at top of cor	above, top 2". gray, m, roots and organic e, loose, saturated.				 14	
16	WOH/1'-2-2	0.8 20	5	12"	brick, 1/4" c saturated: arc	brown, m—c, v loose, small lay lamination near base (5" ides to brownish gray m san lam (~1/8" thick), saturate	thick), d. loose	SP/SM		- 16	←**See''Notes''
18	2-3-3-3	0.2 8	6	17"	lam near top	gray, m, loose, finely lam, s (~1/2" thick), occ iron-stai ome organics near base, satu	ned lams			= = = = 18	
20-	5-4-3-6	0.1	7	12"	SAND: brownish organics, iron- saturated.	ı gray, m, loose, finely lam, -stained zones throughout cor	some re,	SP		20	
	Driller: Nor Logged by: Drilling Star Drilling Com Well Constru Well Develop	D. ted: nplete uctio	Muri 7– ed: n: 7	ceak 25– 7–2 –25	, GSC 96 25-96 -96	Notes: *Top no. is volatile scan of split spoon; bottom no. is jar headspace scan measurement. **Boring drilled to 26.3' and abandoned; moved 5' west of original boring and installed well.			ed;	ORPOR	R SCIENCES ATION MW-292S
Well Coords.: N718880.403 E590240.209 Length of well material: 14.4'. SWL 6.81' (8/1/96; from TOC). SWL 6.81' (8/1/96; from TOC). 14.4'.											

	ent: IBM bject No.		Huc	lson			n ~2	/W—292S 2'W of MW—289S e Training Area		TOC Elev. 155.68' GS Elev. 153.12' Page 2 of 2
Depth Feet	Blow Counts	(Ppm)	Sample Number	Recovery	Overburden/Lithologic Description			Well Construction Graphic	Depth Feet	Well Construction Details
20 22 24 24 26 	6-4-5-7 2-4-4-5 7-8-9-5 50/-3'		9 10 11	111" 	SAND: brownish gray, m, finely laminated, loo saturated. SAND: as above. SAND: as above, top 1". SILTY CLAY: 1-8", gray, laminated, med stiff, 1" of f gray sand at base, saturated. SILTY CLAY: gray, laminated, stiff. BEDROCK: at 26.3'. Total Depth: 26.3'.	S	P /CL		20 22 24 26 28 30 30 32 34 36 38 38 40	
										R SCIENCES ATION
								Well Lo	og:	MW-292S

	ent: IBM N pject No. S		Huc	lson	Augering Lo Valley, Kir	og ngston Site		ion	MW−293S ~62'SW of MW- Training Are	-289S;	TOC Elev. 154.46 GS Elev. 151.97 Page 1 of 1
Depth Feet	Blow Counts	FID * (ppm)	Sample Number	Recovery	Ove	erburden/Lithologic Description		nscs	Well Constructio Graphic	Depth Feet	Well Construction Details
0 2 4 6 1 8	<u>Ground Surface</u> HAND AUGERED	0	1		clasts, occ w base. FILL: top 19", clasts, loose, GRAVEL: 19–20)".	ist near gravel	FILL			 4" Locking Royer cap w/2" expansion plug 4" protective steel casing Concrete pad Hydrated bentonite chips 2" Sch 40 PVC riser 8" HSA borehole
10	10-3-5-8 6-10-10-10	0 105 1.7 84	2	16"	base, m w/A clay clast, lo SAND: grayish clasts, finely	n gray at top to grayish brow gravel clasts, finely laminate ose, saturated. brown, m w/occ gravel and laminated, dark gray-black z) in center of core (~1" thic ed.	ed, occ clay zone	SP			2" Sch 40 10-slot PVC screen (5.0'-15.0')
	2-1-2-4	3.8 110	4	17"	core, distinct saturated.	brown, m, wood chips throug organic layering near top, lo /2" in shoe of spoon, organi	oose,				— No. 00N sand
16	2-1-2-1	2.4 205	5	16"	some silt, org SILTY CLAY: 6-	p 6", grayish brown, loose, v anics (wood chips), saturated. -16", grayish brown, med stif anics throughout (wood chip:	f,	SM OL		16	— Bottom end cap — 2" split-spoon borehold
18						Total Depth: 16.0'				18	— Collapsed/swelled formation
	Driller: Nor Logged by: Drilling Star Drilling Com Well Constru Well Develop Well Coords	D. ted: plete uctio bed: .: N	Muri 7- ed: n: 7 8-: 7188	ceak 29– 7–2 7–29 2–91	, GSC 96 9–96 –96 6 945	Notes: *Top no. is volatile sco bottom no. is jar hea measurement. Length of well material SWL 6.26' (8/2/96; -	dspace : 17.5'.	scan	on; C	ORPOR	<i>r sciences</i> <i>Ation</i> MW-293S


	ent: IBM N bject No. S		Huc	son	Augering Lo Valley, Kii	ngston Site		ion ~	MW—294S 40'NW of MW—28 re Training Area		TOC Elev. 155.82' GS Elev. 153.06' Page 1 of 1
Depth Feet	Blow Counts	FID * (ppm)	Sample Number	Recovery	Ove	erburden/Lithologic Description		nscs	Well Construction Graphic	Depth Feet	Well Construction Details
	<u>Ground Surface</u> HAND AUGERED 13-12-8-7 5-5-5-7 4-2-1-3 4-5-5-3	0 42 0 15 0 13 6 22			FILL: mix of c FILL: mostly bi chips at base FILL: as above SAND: 7–13", v loose, satu SAND: top 5", organic-rich SILTY CLAY: 5-	, top 7". brownish gray, m−c w/f larr	iragments. and shale hinations,	FILL SP/SM OL			 4" Locking Royer cap w/2" expansion plug 4" protective steel casing Concrete pad Hydrated bentonite chips 2" Sch 40 PVC riser 8" HSA borehole 2" Sch 40 10-slot PVC screen (1.3'-14.0') No. 00N sand Bottom end cap
	Driller: Nor Logged by: Drilling Star Drilling Com Well Constru	D. ted: plet	Muri 7— ed:	ceak 25– 7–2	, GSC 96 25-96	Notes: *Top no. is volatile scan of split spoon; bottom no. is jar headspace scan measurement.		0.01		R SCIENCES ATION	
	Well Develop Well Coords	oed: .: N	8-	1—9 396.	6 045	Length of well material: 16.7'. SWL 6.70' (8/1/96; from TOC).			Well L	og:	MW-294S

	ent: IBM N oject No. S	960	Huc- 11.0	lson 1	Augering Log Valley, Kingsto	n Site	Boring Locat	ion r	MW-296S ~60NW of MW-28 Fire Training Area	9S;	TOC Elev. 154.69 GS Elev. 152.19 Page 1 of 1
Depth Feet	Blow Counts	FID *	Sample Number	Recovery	Overburd De	den/Lithologic scription		NSCS	Well Construction Graphic	Depth Feet	Botano
0 2 4 6 10 12 14 16 18 20	10-11-8-7 3-5-7-7 4-8-12-15 X-9-10-11 4-2-3-7	0 0.1 0 0.6 0 1.4 0.2 46 1.8 280			 FILL: mostly brownish of loose gravel and layering near base, s FILL: as above, top 8 SAND: 8–16", brownis occ organic–rich gra saturated. SAND: brownish gray, iron–stained layer at wood chip near base SAND: grayish brown, laminations (1/4" th laminations near base SAND: top 7", grayish SILTY CLAY: 7–15", gr abundant organics (N 	,". h gray, m w/some c, ains, occ clay clasts, m w/some SR—SA gr t 9", well—preserved bl	e, zone organic loose, avel, lack clay , organic ted. turated. ff,	FILL SP/OL			 Concrete pad Hydrated bentonite chips 2" Sch 40 PVC riser 8" HSA borehole 2" Sch 40 10-slot PVC screen (5.0'-15.0') No. 00N sand Bottom end cap Collapsed/swelled formation 2" split-spoon borehol
	Driller: Nor Logged by: Drilling Star Drilling Com Well Constru Well Develop Well Coords	D. ted: nplet uctio ped: .: N	Muri 7- ed: n: 7 8-2	ceak 29– 7–2 7–29 2–9 384.	x, GSC *Top 96 bott 9–96 med –96 X = 6 Leng	Notes: *Top no. is volatile scan of split spoon; bottom no. is jar headspace scan measurement. X = Driller's error Length of well material: 17.5'. SWL 6.00' (8/2/96; from TOC).			on; COI	R <i>POF</i>	<i>r sciences</i> Ration MW-296S

	ent: IBM N bject No. S		Huc	lson	Augering Log Valley, Kingston Site		ion ~	MW-297S 130'NW of NW orner of B003	TOC Elev. 176.91 GS Elev. 177.31 Page 1 of 2
Depth Feet	Blow Counts	FID * (ppm)	Sample Number	Recovery	Overburden/Lithologic Description	2	nscs	Well Construction Graphic	Well Construction Details
0 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	<u>Ground</u> Surface HAND AUGERED				SAND: brown, m—c w/occ gravel, loosely	r packed.	SW		9" flush-mount manhole w/2" water- tight sealing cap Concrete pad 4 4
8	3-5-6-4 3-5-4-4	0 0 0.7	1	16"	SAND: brown to brownish pink, moist. SAND: dark brown, f—m w/lenses of gray SAND: as above.	silty sand.	SP		2" Sch 40 PVC riser
12	3-3-2-2	0 0 0.5 4.6	3	17" 24"	SAND: as above.				8" HSA borehole
16	1-3-3-4	0 0 0.3	5	19" 23"	SAND: top 4", brown, f-m, loosely packed SILTY CLAY: 4-6", pinkish, med stiff, sot SAND: 6-19", brown, f-m, loose saturat SAND: brown, f-m, loose, saturated.	turated.	ML/CL SP		2" Sch 40 10-slot PVC screen (7.3'-25.0')
20-	3-2-2-4	0	7	24"	SAND: as above.				No. 00N sand
	Driller: Nor Logged by: Drilling Star Drilling Corr Well Constru Well Develop Well Coords	D. ted: nplete uctio ped: .: N	Muri 7- ed: n: 7 7-	ceak 15– 7–1 7–15 19– 546.	K, GSC*Top no. is volatile s96bottom no. is jar h5-96measurement969626Length of well mater	rial: 24.7'.	scan	n; COR	<i>ATER SCIENCES PORATION</i> og: MW-297S

	ent: IBM N ject No. 9		Huc	lson	Augering Log Valley, Kingston Site		ion [,]	MW-297S ~130' NW of NW corner of B003		TOC Elev. 176.91' GS Elev. 177.31' Page 2 of 2
Depth Feet	Blow Counts	FID * (ppm)	Sample Number	Recovery	Overburden/Lithologic Description		NSCS	Well Construction Graphic	Depth Feet	Well Construction Details
20 22 24 24 24 26 28 30 32 34 36 38 38 40	3-2-2-4 3-5-3-5 5-4-2-3	0 0 0.8 0 0	9	23" 24" 18"	SAND: as above. SAND: as above, top 2". SILTY CLAY: 2-18", grayish brown, soft-me moist. Total Depth: 26.0'.	ed stiff,	SP ML/CL		20 22 24 24 26 28 30 30 32 34 36 38 38 38 40	 8" HSA borehole 2" Sch 40 10-slot PVC screen (7.3'-25.0') No. 00N sand Bottom end cap Collapsed/swelled formation 2" split-spoon borehole
										R SCIENCES ATION
								Well Lo	og:	MW-297S

	ent: IBM N pject No. S		Huc	lson	Augering Lo Valley, Kir	og ngston Site	Boring No. MW-304S Location ~5'N and ~5'W of NE corner B031				TOC Elev. 183.74' GS Elev. 181.24' Page 1 of 1
Depth Feet	Blow Counts	FID * (ppm)	Sample Number	Recovery	Ove	erburden/Lithologic Description		nscs	Well Construction Graphic	Depth Feet	Well Construction Details
0	Ground Surface HAND AUGERED				br organic—ri	or, f-m w/vf, tr c, tr silt, o ch silt masses up to 4-5" c nasses of lacustrine clay, loos	across				 4" Locking Royer cap w/2" expansion plug 4" protective steel casing Concrete pad Hydrated granular bentonite 2" Sch 40 PVC riser 8" HSA borehole
8 10 12	1-1-1-1 WOR/2.5'	0	1	13" NR	silt/clay rip- color, loose, more cohesiv : void? 8-10		gray			8	- 2" Sch 40 10-slot PVC screen (5.8'-13.5') - No. 00N sand
14	WOR-1-1-4	0 16 0 18	3	12"	clay rip-up r tr-lit silt belo SAND: as abov clay mass at organic-rich SILT & CLAY: o	nass, fining to pred f-m w/ ow 7", sl cohesive, sl fining, e 0-19", oxidized mod yel b 18" w/organic-rich sand at sand at base. at 20", br gray, dense, plast red clay lams, wet.	vf, wet. or silt/ 18",	SW MH/CH		12	— Bottom end cap
16- 18- 18- 20-						Total Depth: 14.0'.				16	 Collapsed/swelled formation 2" split-spoon borehole
	Driller: Nor Logged by: Drilling Star Drilling Com Well Constru Well Develop Well Coords	S. ted: plet uctic ped: .: N	Fish 7- ed: n: 7 8-	er, (25- 7-2 7-25 1-9 254.	GSC 96 25-96 5-96 6 6 611	Notes: *Top no. is volatile sca bottom no. is jar hea measurement. WOR = Weight of Rods NR = No Recovery Measured DTB: 16.15' SWL 9.88' (8/1/96; -	idspace (from	scan [°] TOC).	on; COR	POR	<i>r sciences ation</i> MW-304S

	ent: IBM N bject No. S		Huc	lson	Augering Lo Valley, Kii	og ngston Site		ion r	MW-306S ~50'NW of NE corner B031		TOC Elev. 182.79' GS Elev. 180.12' Page 1 of 1
Depth Feet	Blow Counts	(mdd)	Sample Number	Recovery	Ove	erburden/Lithologic Description		USCS	Well Construction Graphic	Depth Feet	Well Construction Details
0 2 4 4 6	<u>Ground Surface</u> HAND AUGERED				SAND: as abov			SW			 4" Locking Royer cap w/2" expansion plug 4" protective steel casing Concrete pad Hydrated bentonite chips 2" Sch 40 PVC riser
8	1-1-WOH/1'	0	. 1	18"	contorted, de SAND & SILT: lit c, tr vc, v masses, silty wet below 8"	at 8", dk yel br, f-m w/vf, v/contorted clay layers & clc finer sand layer 12-15", co	lam. tr silt, ay rip—up hesive,	MH/CH			— 8" HSA borehole
10	1-WOH-1-WOH	0	2	10"	w/br gray rip cohesive, con SAND: as abov	→up masses 5-7" & 8-14", tacts and ripped up, v wet. e 0-2".	, dense,	SM			2" Sch 40 10-slot PVC screen (4.0'-14.0')
12	1-WOH-1-WOH	0 12	3	12"	to yel orange	2-10", It br to br gray w/mc oxidation, dense, plastic, va D" f-vf w/some silt, tr m, lo (vf 0-3".	rved.	MH/CH SP		12	— No. OON sand
14	1-2-3-3	0 12	4	16"	SILT & CLAY: varved, dense SAND: below 1	3—8" becoming sand, vf laye e.		MH/CH SP			- Bottom end cap
16	WOR-1-6-6	0 24	5	12"	varves, top 3	" is oxidized yellow orange.		МН/СН		16	 Collapsed/swelled formation 2" split-spoon borehole
18						Total Depth: 16.0'.				18 20	
	Driller: Nor Logged by: Drilling Star Drilling Com Well Constru Well Develop Well Coords	S. ted: nplet uctio ped: .: N	Fish 7- ed: n: 7 8- 7172	er, (25– 7–2 7–25 2–9	GSC 96 25–96 9–96 6 150	Notes: *Top no. is volatile sca bottom no. is jar hea measurement. WOH = Weight of Hamr WOR = Weight of Rods Measured DTB: 16.41' SWL 9.22' (8/2/96; -	ndspace [`] mer (from	scan [°] TOC).	on; COR	POR	<i>R SCIENCES</i> ATION MW-306S

	ent: IBM N bject No. S		Huc	lson	Augering Lo Valley, Kir	og ngston Site			MW-307S nside Building 051		TOC Elev. 184.35 GS Elev. 184.70 Page 1 of 1
Depth Feet	Blow Counts**	FID * (ppm)	Sample Number	Recovery	Ove	erburden/Lithologic Description		NSCS	Well Construction Graphic	Leptn Feet	Well Construction Details
	<u>Ground_Surface</u> AUGERED				Concrete floor	0-6" w/gravel base below.				0	-6" flush-mount manhole w/2" water- tight sealing cap -Concrete pad
2 4 6 10	HAND AUGERED							SW		4	— Hydrated granular bentonite — 2" Sch 40 PVC riser
8	NA	0	1	14"	f gravel, loos to grayish blo horizontal col moist.	pr, f—m w/vf, some c, lit—tr e, dry to moist, 0–6"; dusky ack organic (?) staining w/so or banding 6–14", loose, cru	yel br ome mbly,				
10	NA	0	2	17"	3–13", turnin					10	— 8" HSA borehole
123	NA	0 2	3	17"	SILT: at 4-12' varved, wet t oxidized in la SAND: below 1 w/vf, tr silt.	e top 4" w/incr silt content, , br gray, dense, plastic with op 0.5", oxidized yel orange yers, organic-rich, dusky yel 2", dk olive gray to dk yel b silty at top, tr color laminati	i clay, lower 4", br. or, f-m			12	– No. OON sand
14	NA	0	4	24"	organic—rich SAND: dk yel b geneous, silty	arved br gray, oxidized lams, o lam at base, plastic w/clay, r, f-m w/vf, tr silt below 10' lower 2".	wet. ", homo-	МН/СН		14	- 2" Sch 40 10-slot PVC screen (6.5'-16.5')
16	NA	0	5	24"	wet throughou SILT: at 17" w turning to br SAND: at 22",	/some vf sand 17—19", mod gray color at 19". dk gray, f—m w/vf, tr silt, loo	l yel br,	SM ML SP		- 16	—Bottom end cap
18	NA	0	6	12"	SAND: dk gray SILT: br gray v	(as above) top 6". w/clay, dense, laminated, plas	stic, wet.	MH/CH		18	 Collapsed/swelled formation 2" split-spoon borehole
20										20	
	Driller: Nor Logged by: Drilling Star Drilling Com Well Constru Well Develop Well Coords	S. ted: plet- uctio ped:	Fish 8- ed: n: 8 8-	er, (10— 8—1 —10 19—	GSC 96 0-96 0-96 96	Notes: *Top no. is volatile sc bottom no. is jar hea measurement. **No blow counts - co representative throw. NA = Not Applicable Measured DTB: 15.70'	adspace ould not	ˈscanˈ get	CORF	POR	R <i>SCIENCES</i> A <i>TION</i> MW-307S
			5924			SWL approx. 9'(8/10,	/96; fra	om gra	de).		

	ent: IBM M bject No. S	960	-Huc 11.0	son 1	Augering Lo Valley, Kii	og ngston Site			MW-310S nside Building 051	TOC Elev. 184.31' GS Elev. 184.60' Page 1 of 1
Depth Feet	Blow Counts	FID * (ppm)	Sample Number	Recovery	0ve	erburden/Lithologic Description		nscs	Well Construction Graphic	Well Construction Details
0 2 11 11 11 11 11 11 11 11 11 11 11 11 1	Ground Surface HAND AUGERED				Cement to 0.6 SAND: brown, r		— — — —	FILL	10000000000000000000000000000000000000	9" flush-mount manhole w/2" water- tight sealing cap Concrete pad
6		0					l, m,			2" Sch 40 PVC riser
8		0	1	12" 13"	SAND/SILT: gro	ayish brown, m some/c-vc, i f sand and silt, finely lamina		SP SP/SM		8" HSA borehole
12=		0	3	8"	saturated, 1- SAND: grayish	ownish gray, finely laminated, -7". brown, f—m, v loose, saturat	ed.	ML/CL		2" Sch 40 10-slot PVC screen (5.0'-15.0')
14		0	4	24"	loose, finely	brown w/some orange brown laminated, saturated.		SP/SM		No. 00N sand
16		0	5	24"	silty clay lam SILTY CLAY: or	brown, m, loose, occ clay cl inations, saturated, top 10". ange at top, grayish brown c ed stiff, saturated.		ML/CL		Bottom end cap Collapsed/swelled formation
18						Total Depth: 16.0'				2" split-spoon borehole
	Driller: Nor Logged by: Drilling Star Drilling Com Well Constru Well Develop Well Coords	D. ted: plet uctio ped: .: N	Muri 8- ed: n: 8 8-	ceak 8-9 8-9 19-1 325.1	6 6 -96 -96 96 029	Notes: *Top no. is volatile sco bottom no. is jar hea measurement. Blow counts not availal hammer could not be Length of well material SWL 6.83' (8/9/96; f	dspace ble beco thrown : 14.8'.	scan ['] ause properly	on; GROUNDWA CORI	<i>TER SCIENCES</i> PORATION g: MW-310S

	ent: IBM oject No.		-Huc	lson	Augering Loo Valley, Kin			ion [,]	MW-313S ~65'W of SW corn of B005N		TOC Elev. 180.05 GS Elev. 177.60 Page 1 of 1
Depth Feet	Blow Counts	(mqq)	Sample Number	Recovery	Over	burden/Lithologic Description		USCS	Well Construction Graphic	Depth Feet	Well Construction Details
0 2 4 6 10 12 14 16 18 20	3-4-4-4 $1-1-1-1$ $2-3-3-3$ $1-1-1-1$ $2-3-2-1$ $4-6-8-5$			 15" 17" 12" 12"	 top 2", tr-lit s turning med c-m w/f, sc turning wet. SAND: olive groy top 3", grades 12-15", tr wth tr f SR-SA growet. SAND: as above br silt top 5", w/occ wthrd s ation), loose, s SAND: as above yel silty zone lit silt below 1 SAND: c-m, tr silt, then br g iron-stained (c silt rip-up ma SAND: dk yel br some c 4-10" sl cohesive, sl SILT: br gray, si 	w/lit vc, some vf-f, tr si 10-12", then fining to vf- 4", sl flowing, wet. vc top 6", grades to f-m ray f-vf sand, some silt lo ixidized) layer in sand at S ss about 9", wet. to olive gray, f-m w/vf, , then fining to f-m w/vf,	sening to e, f, tr vf l vf-f ogeneous, hesive, n, yel elow 11" orient- lt, mod f, some- w/vf, lit wer 3", 9", occ tr silt, lit silt, c, wet.				 4" Locking Royer cap w/2" expansion plug 4" protective steel casing Concrete pad Hydrated bentonite chips 2" Sch 40 PVC riser 8" HSA borehole 2" Sch 40 10-slot PVC screen (5.9'-15.9') No. 00N sand Bottom end cap Collapsed/swelled formation 2" split-spoon borehol
	Driller: No Logged by: Drilling Star Drilling Con Well Constr Well Develo Well Coords	S. rted: nplet uctic ped: s.: N	Fish 7- ed: n: 7 7-	er, (16– 7–1 7–16 19– 056.	GSC 96 6-96 5-96 96 188	Notes: *Top no. is volatile sc bottom no. is jar hea measurement. Measured Depth to B (from TOC). SWL 8.21' (7/16/96;	odspace :	scan ['] 18.44'	on; COI	RPOR	<i>R SCIENCES</i> ATION WW-313S

	ent: IBM M pject No. S	960	-Huc 11.0	lson 1	Augering Log Valley, Kin			ion -	MW-314S ~12'E and ~25 SE corner B031	'N of	TOC Elev. 183.52 GS Elev. 181.18 Page 1 of 1
Depth Feet	Blow Counts	(mqq)	Sample Number	Recovery	Over	burden/Lithologic Description		NSCS	Well Constructio Graphic	Depth Feet	Well Construction Details
0	Ground Surface HAND AUGERED				gravel, loose, r : gray gravel o SAND, SILT & G	at end, c-vc sand 2-2.5'. RAVEL: mod yel br to dk ye w/vc and f-m SA-SR gra	el br,		60000000000000000000000000000000000000		 4" Locking Royer cap w/2" expansion plug 4" protective steel casing Concrete pad Hydrated bentonite chips 2" Sch 40 PVC riser
6 8 10	1-WOH-2-3 WOR-1-2-2	0 30 0 20	1	12"	4", loose, wet SAND: dk yel br w/c, tr vc 7- cohesive, faint SAND: dk yel br tr vc, occ f g broken yel clay	top 4", wthrd black shale (fill). , f-m w/vf, lit-tr silt, occ 8", organic-rich lams below horizontal layering, wet. , f-m w/vf, tr silt, some-1 ravel, gravelly zone 2-5" Sf r pipe frags betw 9-14" w/ ie, no odor, occ broken sha bble, ~1" dia. at base, wel	lams 7", it c, R-R, /dk br	FILL			— 8" HSA borehole — 2" Sch 40 10-slot PVC screen
10 12 14	WOR-2-3-2 4-5-7-7	0 8 0	3	24" 16"	SAND: as above at 9" and 12" SAND: at 18", p w/some silt lo to sl flowing, r SAND: as above	top 18", broken yel clay p , wet. red mod yel br to dk yel t wer 2", v homogeneous, co	ipe frag or, f—vf, hesive				(4.8'-17.5') — No. 00N sand
14 16 18	WOR-1-WOH-1 4-4-3-2	7.5 0	5	24"	vc below 7", ir rip-up masses, clay lams at 1 SAND: dk yel br, masses at 13" SILT & CLAY: at	, f-m w/vf, tr silt, some-l cr c-vc betw 12-17" with fining to pred f-m w/vf be 9", cohesive throughout, we f w/m & vf, few small cla , v homogeneous, cohesive, 15.5", mod yel br to yel o , plastic, varved silt & clay	silt/clay elow 18", et. y rip-up wet. prange	SW		14 16	— Bottom end cap
18	1-2-4	9	7	1"	laminated, turn SILT & CLAY: br	ing br gray at 17.5", moist gray, dense, plastic, wet. Total Depth: 19.5'.	to wet.	MH/CH		= 18	— Collapsed/swelled formation — 2"split—spoon borehol
	Driller: Nor Logged by: Drilling Star Drilling Corr Well Constru Well Develop Well Coords	S. ted: plet uctio ped: .: N	Fish 7- ed: n: 7 8-	er, (24- 7-2 7-25 8-9 044.	SSC 96 -4-96 96 6 369	Notes: *Top no. is volatile sco bottom no. is jar hea measurement. Measured Depth to Bo (from TOC). SWL 7.62' (8/8/96; f	dspace [`] ottom:	scan [°] 19.15'	on; C	ORPOR.	R SCIENCES ATION MW-314S

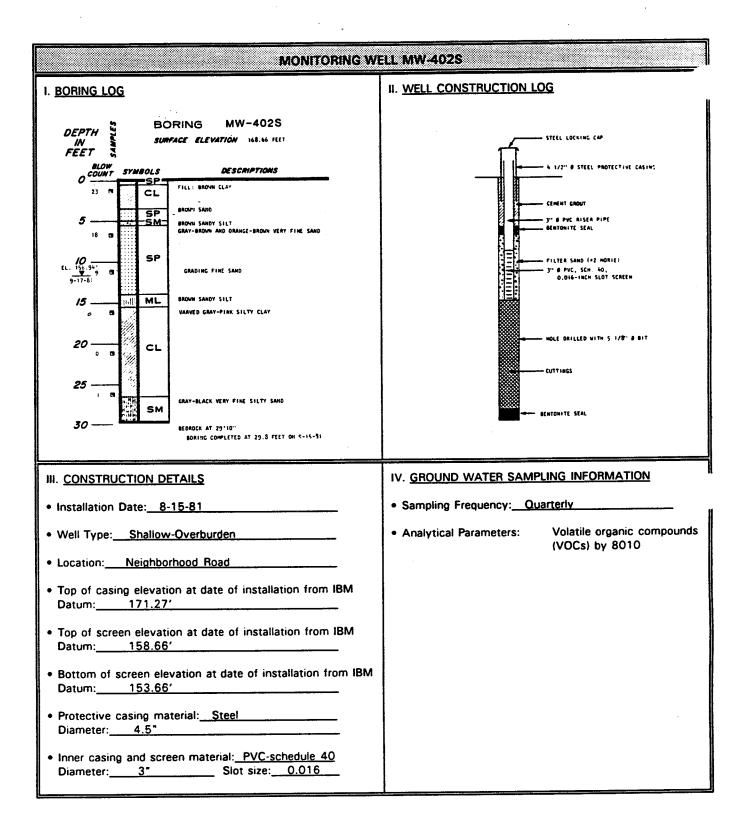
	ent: IBM M bject No. S		Hud	son	Augering Log Valley, Kingston Site		ion r	MW-315S ~68'W of SW corner of B005N	TOC Elev. 179.22 GS Elev. 176.80 Page 1 of 1
Depth Feet	Blow Counts	FID *	Sample Number	Recovery	Overburden/Lithologic Description		nscs	Well Construction Graphic	Well Construction Details
	Ground Surface								4" Locking Royer cap w/2" expansion plug 4" protective steel casing Concrete pad
	AUGERED 2-3-3-4	0	. 1	16"	FILL: brown, m sand w/some organics, vc and gravel.	grains	FILL		- 2 Hydrated bentonite chips - 2" Sch 40 PVC riser
4 =	3-3-3-3	0	2	16"	FILL: as above, top 4". SILTY SAND: 4—16", grayish brown, mostly f silt, laminated, iron—stained at transition to silty sand, some organics near base, saturated. SILTY SAND: grayish brown, mostly f sand	from fill loose, w/some	SM		6
8	2-3-3-2	0	3	16"	silt, laminated, occ iron-stained zone (1 loose, saturated. SAND & SILTY CLAY: grayish brown, f-m sc bedded with grayish brown laminated, me	ind inter-	SP/CL		8" HSA borehole 8 2" Sch 40 10-slot
10	2-3-3-3	0	4	12"	silty clay, saturated. SILTY SAND: grayish, mostly f w/some silt saturated. SILTY SAND/CLAY: small layer (~1"), gradi SAND: brown, m, loose, 1/4" silty clay lar w/iron-staining above and below lam, or	ng to: n at 14" ganic	SM SM/CL ²		PVC screen (4.0'-14.0') No. 00N sand
12	2-3-3-4	0 0.1 0.2	6	13"	traces near base, fines toward base, sat SAND: grayish brown, m, loose w/iron-sta organic-rich layer (1/2" thick) near base, SILTY CLAY: small amount at base, gray, laminated.	ined, saturated.	SP		12 Bottom end cap
16		0	7	12"	SILTY CLAY: as above. Total Depth: 16.0'		ML/CL		Collapsed/swelled formation 2" split-spoon borehole
18									- <u>18</u> - 20
	Driller: Nor Logged by: Drilling Star Drilling Com Well Constru Well Develop Well Coords	D. ted: nplet uctio ped: .: N	Muri 7- ed: n: 7 8-8	ceak 24– 7–2 –24 8–9 138.1	K, GSC*Top no. is volatile so bottom no. is jar he measurement.96measurement966855Length of well materia	adspace ['] al: 16.5'.	scan	on; GROUNDWA1	<i>TER SCIENCES ORATION</i> : MW-315S

	ent: IBM M oject No. S		Huc	lson	Augering La Valley, Ki	og ngston Site		ion r	MW-320S ~68'W of SW corner of B005N	TOC Elev. 181.62 GS Elev. 179.16 Page 1 of 1
Depth Feet	Blow Counts	FID * (ppm)	Sample Number	Recovery	0v	erburden/Lithologic Description		nscs	Well Construction Graphic	Botano
	WOH/.5'-1/1.5' WOH/1'-1/1' 2-2-4-3 3-5-5-5 5-4-4-4	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 2 3 4 5	 5" 22" 18" 13" 14"	and cobbles. SAND: brown, saturated. SAND: top 12", organics, occ SILTY CLAY: 12 stained (oran stiff, saturate SAND: top 5", SILTY CLAY: 5- SAND: 12–18" SAND: 3 abo SILTY CLAY: 5- saturated.	brownish gray to gray, m-c thin silty clay lams (~1/4" -12", iron-stained (orange b to gray silt at base, stiff. brown, f-m, loose, saturate	vc, some at base. w/iron- nated, to 1/2" rown) ed. ted. ted.	FILL FILL SP SW ML/CL SP ML/CL SP ML/CL		No. 00N sand Bottom end cap Collapsed/swelled formation 2" split-spoon borehole 6 8
	Driller: Nor Logged by: Drilling Star Drilling Com Well Constru Well Develop Well Coords	D. ted: nplet uctio ped: .: N	Muri 7- ed: n: 7 7-	ceak 18– 7–1 23– 935.	6, GSC 96 8-96 9-96 96 078	Notes: *Top no. is volatile sc bottom no. is jar hed measurement. WOH = Weight of Ham Length of well materia SWL 7.55' (7/23/96;	ndspace mer I: 15.4'.	scan	on; CORPO	<i>er sciences</i> <i>pration</i> MW-320S

Client: IBM Project No.	Air Rotary Drilling Kingston 93002.33.0002	Log	Location Sout			3005		TOC Elev. 177.5' GS Elev. ~175.5' Page 1 of 2
Depth Feet	Overburd Des	en/Lithologic cription		Graphic	We Constr Grap	uction	Depth Feet	Well Construction Details
20	SAND: dark yellow brown, m-c SAND: as above. SAND: as above, saturated. SAND: as above, light brown to CLAY & SILT: at 19", med gra f, saturated. SAND: dky ellow med dark gray and light red, CLAY: as above. varved, occasional sand zones.	o orange at 18", saturated. y, saturated. SAND: at 20", r brown, f-m, saturated. CLAY varved, tr silt, saturated	ned gray, : at 4",					 - 8" Locking Royer cap w/2" expansion plug Stickup = 1'9" - Temporary surface completion - 8" stainless-steel casing - 4" Sch 40 PVC riser
Logged by: Drilling Star Drilling Con	helbergers, Inc. C.E. Stoner, GSC ted: 10-24-00 npleted: 10-25-00 s.: N717403.1	Notes: Scale interval changes	on follc	wing po	age. GRO	COR	POR	R SCIENCES ATION
	E592191.7	Measured DTW: 43.7' Estimated Blown Yield:	-			wen L	og:	321–R

	Air Rotary Drilling Log ent: IBM Kingston bject No. 93002.33.0002			No. 3 on Sou	21–R Ith of B005		TOC Elev. 177.5 GS Elev. ~175.5' Page 2 of 2
Depth Feet	Overburden/Lithologic Description	2		Graphic	Well Construction Graphic	Depth Feet	Well Construction Details
40 50 60 70 80 90 100 110 120 130		tr med gray to light t 124' (yield: ∼20−4	: gray 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			40 50 60 70 80 90 100 110 120 130 140	 — 8" stainless-steel casing — 4" Sch 40 PVC riser — 4" Sch 40 PVC riser — Hydrated bentonite chips — 4" Sch 40 20-slot PVC screen [126.2'-115.7'] — Bottom end cap [126.6'] — Collapsed formation [127.5'-126.6']
	Note: S	Scale inverval change	es on this	page.			R SCIENCES ATION
					Well L	og:	321–R

	ent: IBM k bject No. 9	Kings	stor)2.3	۱	Loca	ation	lo. 322 Preliminary North of B003		TOC Elev' GS Elev. ~172' Page 2 of 2
Depth Feet	Blow Counts	(mqq)	Recovery	Sample #	Overburden/Lithologic Description	Graphic	Well Construction Graphic	Depth Feet	Well Construction Details
20 22= 24= 24= 26=	2-7-8-10 3-5-5-11 3-4-4-3		 15" 11"	 11* 12 13	SAND: as above. CLAY & SILT: dark gray, light brown lens near top, cohesive, v faint petroloeum odor, saturated. CLAY & SILT: as above. SAND: at 10", dark gray, vf, saturated. SAND: as above, varved, less cohesive at base, saturated.			20 22 22 24 24 26	- 8" HSA borehole
26= 28= 30=	1-2-3-3	0 NA 0 NA	11" 9"	14	CLAY & SILT: dark gray, varved, clay with tr silt in top half, bottom half is clayey silt, saturated. CLAY & SILT: dark gray, top 3" clayey silt, 3"-9" clay with some silt, saturated.			26 28 28 30	
32		0 NA 0	15"	16	CLAY: dk gray & It red, varved, firm, tr silt, sat. SILT: at 3", dark gray, clayey, saturated. CLAY: at 4", as above, saturated. SILT: at 7", dark gray, tr clay, less cohesive at base, saturated. CLAY & SILT: dark gray, mix of clayey silt and silt clay, v firm clay lens at 1", clayey silt grading to vf sand at base.	y		= <u>30</u> = <u>32</u> =	
34-	3-3-3-4 WOH	NA 0 0	12" NR	17 18*	SAND: at 4", dark gray, vf. SAND: as above.			<u> </u>	2" split-spoon borehole
38					Total Depth: 36.0'.			<u> </u>	
									R SCIENCES PATION
							Well Log:	322	Preliminary

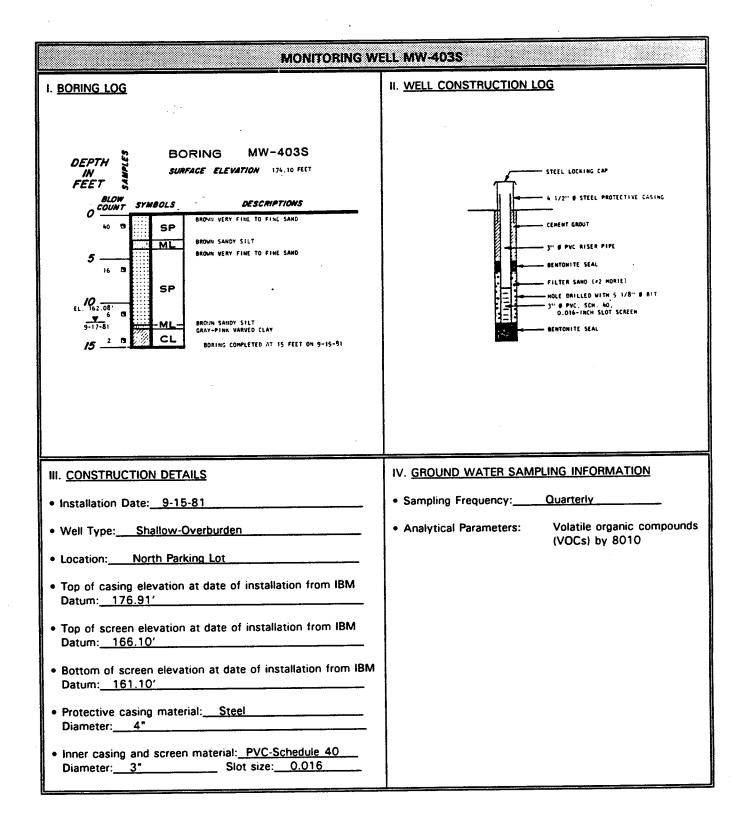

		Air Rotary Drilling Kingston 33002.33.0002	Log			323-R B023/B0	001 Alcove		TOC Elev. ~175' GS Elev. ~172' Page 1 of 3
Depth Feet		Overburden/L Descripti	ithologic ion		Graphic	Cons	Well truction aphic	Depth Feet	Well Construction Details
	Roorthstar Drilling, Inc.: 7/6/00.	SAND: dark yellow brown, m-c, SAND: dark yellow brown, m-c, SAND: as above, moist. SAND: as above, moist. SAND: as above, crushed grave water table at 7.5'. SAND & GRAVEL: sand and con SAND: at 5", dk yel brown, tr SAND: dark yellow brown, f-m, SAND: dark yellow brown, f-m, SAND: as above, no clay fragm SAND: as above, some iron lan CLAY: at 7", mod dark gray, si CLAY & SILT: dk gray/light red CLAY & SILT: as above.	crushed limestone at 9", mo sand, tr clay, tr gravel, poor ines & tr organics 11"-20", n l layer 6"-7", moist to saturc increte chunks. fines, iron staining near top, s tr clay frags, saturated. nents.	iy sorted, moist. ated; saturated.		Gr			
40-	CLAY.						A	- 40	
	Logged by: Drilling Star Drilling Com	nelbergers, Inc. CES/DAB, GSC ted: 10-28-00 ipleted: 10-29-00 .: N718114.4	Notes: Scale interval changes	on pag	e 2.	GI	COR	POR	R SCIENCES ATION
		E591207.9	Measured DTW: 25.96' Estimated Blown Yield:		-		wen L	og:	323–R

Air Rotary Drilling Log Client: IBM Kingston Project No. 93002.33.0002		323-R 023/B001 Alcove	TOC Elev. ~175' GS Elev. ~172' Page 2 of 3
Overburden/Lithologic	Graphic	Well Construction Graphic	Well Construction Details
40 CLAY. 50 60 70 80 90 100 100 110 CLAY: at 110' with limestone shale, SR/A inclusions. 120 CLAY. 130 140			
Note: Scale inve	rval changes on this page.		TER SCIENCES PORATION
		Well Log	g: 323–R

	Air Rotary Drilling Log ent: IBM Kingston bject No. 93002.33.0002		323-R 23/B001 Alcove	-	FOC Elev. ~175' GS Elev. ~172' Page 3 of 3
Depth Feet	Overburden/Lithologic Description	Graphic	Well Construction Graphic	Depth Feet	Well Construction Details
140 150 160 170 180 190 200 210 220 210 220 230 240 250	 SHALE: at 155', black, SR/SA calcareous limestone/argilaceous dolostone. BEDROCK: at 157.5', grayish-black calcareous shale. : as above, black. : as above, black, limestone calcite veins. SHALE: as above; calcite infilling, softer from 181–182'. : fines. : water-bearing zone at 187'. SHALE: at 189', black. : trace calcite crystals. : trace calcite. : trace calcite, softer zone, including fines in returns. : as above, black shale with calcite. : calcite infilling at 208'. 			140 150 160 170 180 190 200 210 220 210 220 230 220	 8" stainless-steel casing Drive shoe [157.5' bgs] 8" open borehole
				4TEH POR.	R SCIENCES Ation 323-R

		Air Rotary Drilling Kingston 93002.33.0002	Log	Borino Locat	ion	324-F Parking Near Ent	R Lot NW of terprise Driv	B023	TOC Elev. 175' GS Elev. 172.5' Page 1 of 2
Depth Feet		Overbui De	rden/Lithologic escription		Graphic	Cons	Well struction aphic	Depth Feet	Well Construction Details
0	Ground Surface							0	—8" Locking Royer cap w/2" expansion plug Stickup = 2.5'
		Asphalt, top 5". SAND: dark yellow brown, some	e fines, tr gravel.		00 0 0 0				— Temporary surface completion
4 =	Northstar Drilling, 7/6/00.	SAND/SILT/CLAY/GRAVEL: top & CLAY: pale yel br, tr silt, some CLAY: as above, orange redox	med red lenses w/med sand i	in center.				- 4	— 6" stainless-steel
8 -	Northstar 7	CLAY: as above. CLAY: as above, shale (?) frag	gment at base of spoon.					- 8 - -	casing
12 -	BEDROCK: at 1	1.5', grayish—black calcareous sh	ale.					- 12 	
16 -	: dry to 15'. : moist at 16	.5'.						16 	
20-								- <u>20</u>	- Drive shoe
24 -								- 24	[22.5' bgs]
28 -								 	
32 -								- 32	— 6" open borehole
36 -								 	
40 -	: possible wat	er-bearing zone at 37'.						 40	
							·		
	Logged by: Drilling Star	nelbergers, Inc. C.E. Stoner, GSC ted: 10-26-00	Notes:			G			R SCIENCES ATION
			Measured DTW: 25.96'	-			Well	Log:	324-R
	Estimated Blown Yield: <0.25 gpm.								

	Air Rotary Drilling Log ent: IBM Kingston oject No. 93002.33.0002	Boring No. Location Po	324-R arking Lot NW of B023 ear Enterprise Drive	TOC Elev. 175' GS Elev. 172.5' Page 2 of 2
Depth Feet	Overburden/Lithologic Description	Graphic	Well Construction Graphic	Well Construction Details
40	BEDROCK: grayish-black calcareous shale. Total Depth: 43.15'.			6" open borehole
44 44 52 56 60 64 64 68 72 76 80				
			GROUNDWATE CORPOI	
			Well Log	: 324-R

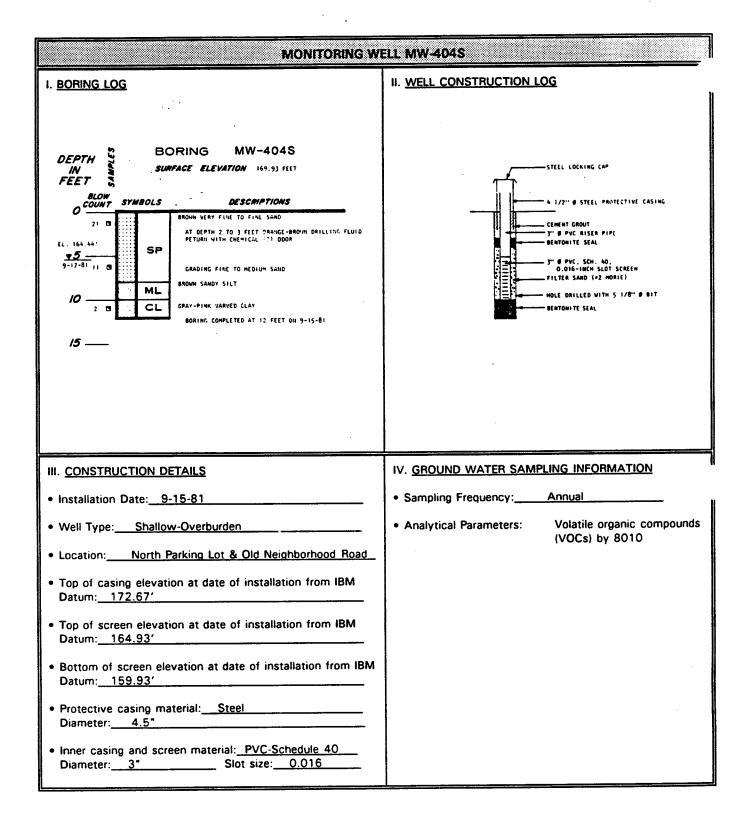


	MONITORING WELL MW-402S				
V. MODIFICATION D	V. MODIFICATION DETAILS				
• Modification Date:	7-22-92	and the second			
- Modifications inv	volved the following activiti	es:			
Painting and la	belling of casing	an a			
	- -	· · · · · · · · · · · · · · · · · · ·			
- Performed by:	Dames & Moore				
Modification Date:	9-30-92				
	volved the following activiti	es:			
	water tight cap				
- Performed by:	Dames & Moore				
VI. <u>SURVEY DATA</u>					
SURVEY DATE	PERFORMED BY	TOP OF STEEL PROTECTIVE CASING ELEVATION	TOP OF PVC CASING ELEVATION		
9-15-80	Brinnier & Larios	171.27'			
10-2-92	Brinnier & Larios	174.13′	173.24′		

. •

**

MONITORING WELL MW-402S		
VI. DEVELOPMENT HISTORY		
Redevelopment Date: 7-22-92	-	
- Total well depth at date of installation: 153.66'	-	
- Depth prior to development: <u>155.82'</u> - Difference in depth from installation: <u>2.16'</u>	_Depth after development:155.82' _Difference in depth from installation:2.16'	
- Change in depth (in feet):	no change	
- Redevelopment method: Centrifugal Pump	_	
- Performed by: Dames & Moore	-	
Redevelopment Date: <u>10-2-92</u>	_	
- Total well depth at date of installation: <u>153.66</u>	_	
- Depth prior to development: <u>155.93'</u> - Difference in depth from installation: <u>2.27'</u>	Depth after development:155.93' Difference in depth from installation:2.27'	
Change in depth (in feet):	no change	
- Redevelopment method: Centrifugal Pump	—	
- Performed by: <u>Dames & Moore</u>		

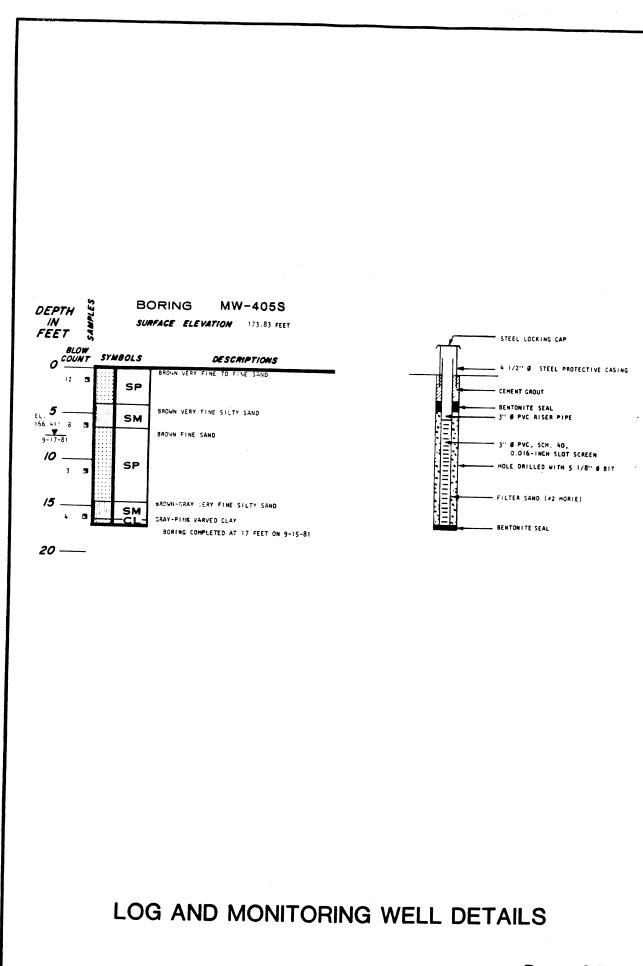


	MONI	TORING WELL MW-403S	
V. MODIFICATION	DETAILS		
Modification Dat	e: <u>7-22-92</u>	<u> </u>	
- Modifications i	nvolved the following activitie	es:	
Painting and I	abelling of casing	<u></u>	·
		· · · · · · · · · · · · · · · · · · ·	
- Performed by:_	Dames & Moore		
Modification Date: <u>9-30-92</u> Modifications involved the following activities: <u>Surface seal repair and installation of water-tight cap</u> Performed by: <u>Dames & Moore</u> VI. <u>SURVEY DATA</u>			
SURVEY DATE	PERFORMED BY	TOP OF STEEL PROTECTIVE CASING ELEVATION	TOP OF PVC CASING ELEVATION
9-15-81	Brinnier & Larios	176.91′	
10-2-92	Brinnier & Larios	177.22'	176.35'

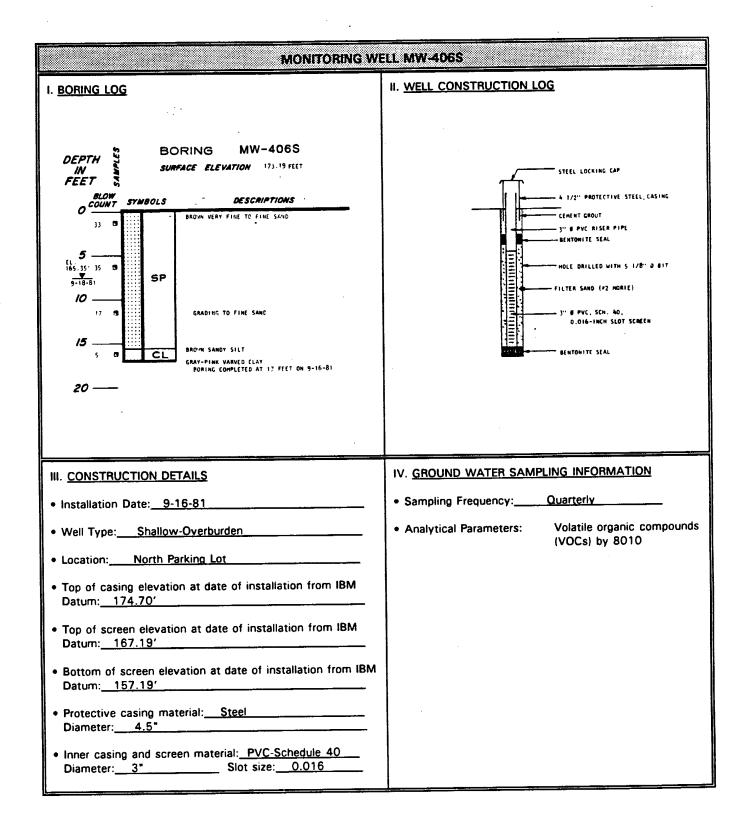
-

MONITORING WELL MW-403S				
VI. DEVELOPMENT HISTORY				
Redevelopment Date: None				
- Total well depth at date of installation:				
- Depth prior to development: - Difference in depth from installation:	Depth after development: Difference in depth from installation:			
Change in depth (in feet):				
- Redevelopment method:				
- Performed by:				

-


	MONI	TORING WELL MW-404S		
V. MODIFICATION D	ETAILS			
Modification Date:	7-22-92			
- Modifications inv	olved the following activitie	25:		
Labelling of curl	b box and lock replacement			
- Performed by:	Dames & Moore			
- Modifications inv <u>Installation of c</u>	Modification Date:9-30-92 Modifications involved the following activities:			
VI. <u>Survey data</u>				
SURVEY DATE	PERFORMED BY	TOP OF STEEL PROTECTIVE CASING ELEVATION	TOP OF PVC CASING ELEVATION	
9-15-81	Brinnier & Larios	172.67'		
10-2-92	Brinnier & Larios	170.90′	170.50'	

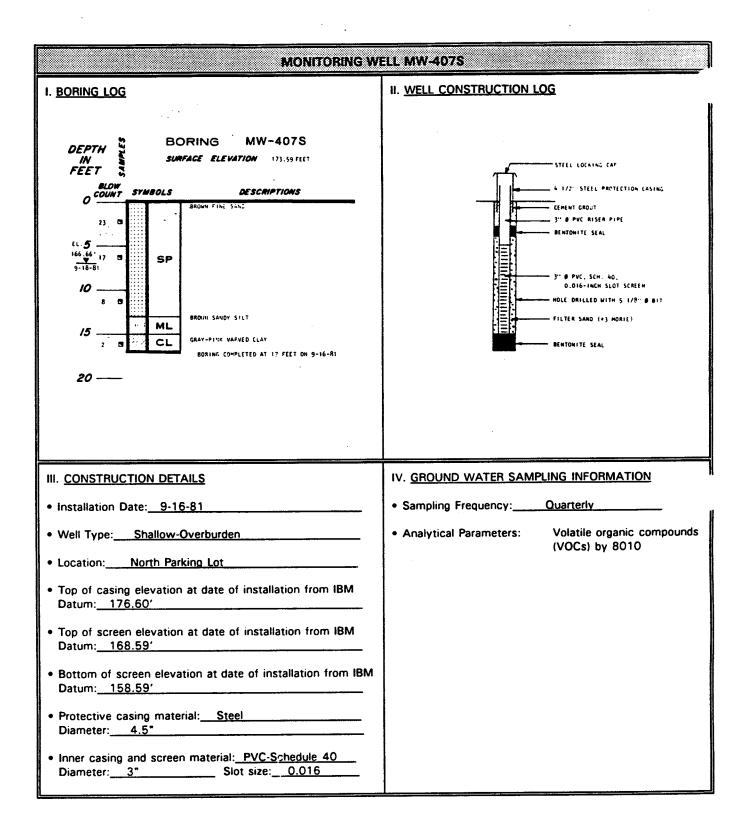
•


-

MONITORING WELL MW-404S		
VI. DEVELOPMENT HISTORY		
Redevelopment Date: 7-22-92		
- Total well depth at date of installation: <u>159.93</u>		
- Depth prior to development: <u>159.70'</u> - Difference in depth from installation: <u>0.23' (deeper)</u>	Depth after development: <u>159.09'</u> Difference in depth from installation: <u>0.84' (deeper)</u>	
Change in depth (in feet):	0.61′	
- Redevelopment method: <u>Centrifugal Pump</u>		
- Performed by: Dames & Moore		

-

Dames & Moore



	MONIT	FORING WELL MW-406S		
V. MODIFICATION	DETAILS			
Modification Date	:7-22-92			
- Modifications in	volved the following activities	S:		
Painting and la	belling of casing			
- Performed by:	Dames & Moore			
		<u> </u>		
 Modification Date 				
	volved the following activitie			
_Surface seal re	epair, installation of water-tig	ht cap, and lock replacement		
- Performed by:_	- Performed by:Dames & Moore			
VI. <u>SURVEY DATA</u>				
	TOP OF STEEL PROTECTIVE TOP OF PVC			
SURVEY DATE	PERFORMED BY	CASING ELEVATION	CASING ELEVATION	
9-16-81	Brinnier & Larios	174.70′		
10-2-92	Brinnier & Larios	175.97′	174.94'	

-

MONITORING WELL MW-406S		
VI. DEVELOPMENT HISTORY		
Redevelopment Date: 7-22-92 (not needed)		
- Total well depth at date of installation: <u>157.19'</u>		
Depth prior to development: <u>156.85'</u> Difference in depth from installation: <u>0.34'</u>	Depth after development: Difference in depth from installation:	
Change in depth (in feet):		
- Redevelopment method:	-	
- Performed by: Dames & Moore		

*

	MONITORING WELL MW-407S			
V. MODIFICATION	DETAILS			
Modification Dat	e: <u>7-22-92</u>			
- Modifications in	nvolved the following activitie	es:		
Painting and I	abelling of casing			
- Performed by:_	Dames & Moore			
Modification Dat	e:9-30-92			
- Modifications i	nvolved the following activitie	es:		
Surface seal	epair, installation of water-tig	ght cap, and lock replacement		
- Performed by:_	Dames & Moore			
	VI. SURVEY DATA TOP OF STEEL PROTECTIVE TOP OF PVC			
SURVEY DATE	PERFORMED BY	CASING ELEVATION	CASING ELEVATION	
9-16-81	Brinnier & Larios	176.60'	 	
10-2-92	Brinnier & Larios	176.93′	176.71′	

-

MONITORING W	VELL MW-407S			
VI. DEVELOPMENT HISTORY				
Redevelopment Date: None				
- Total well depth at date of installation:				
- Depth prior to development: - Difference in depth from installation:	Depth after development: Difference in depth from installation:			
Change in depth (in feet):				
- Redevelopment method:				
- Performed by:	-			

-

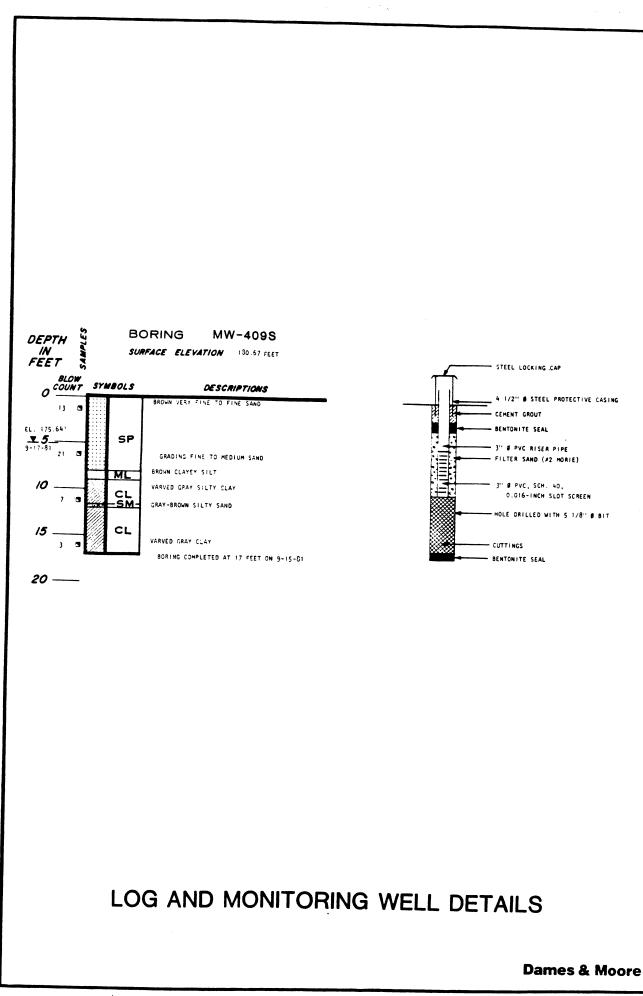
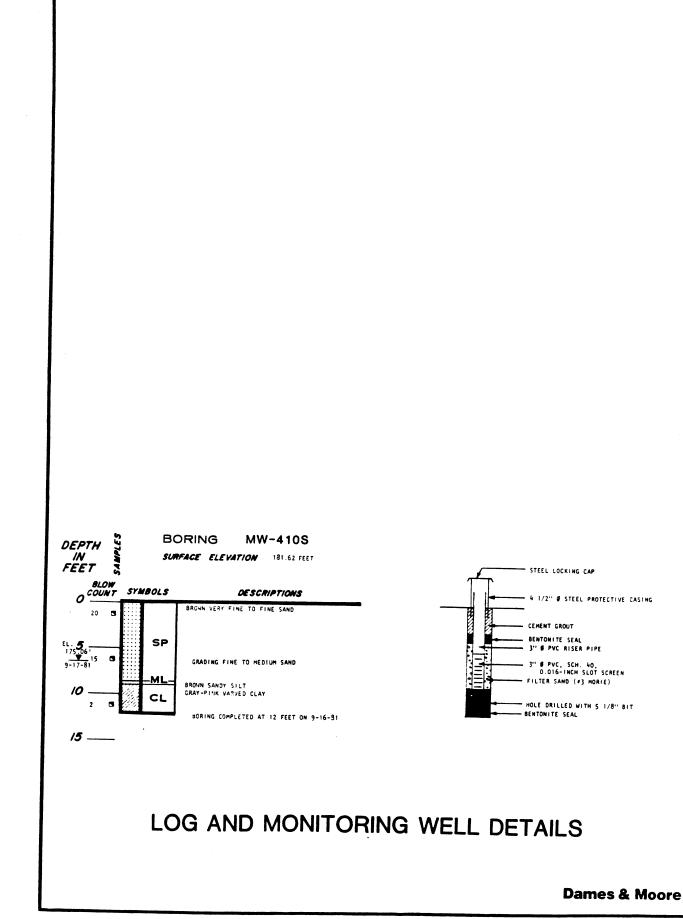
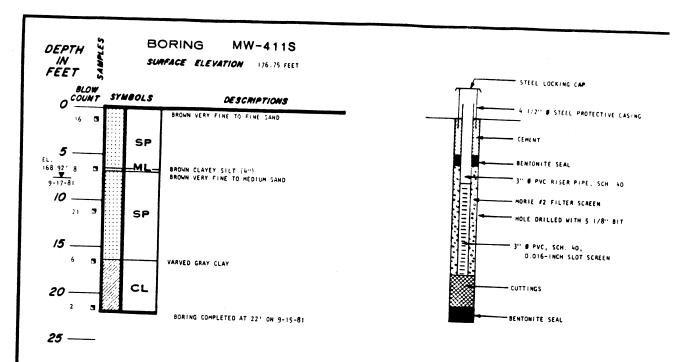
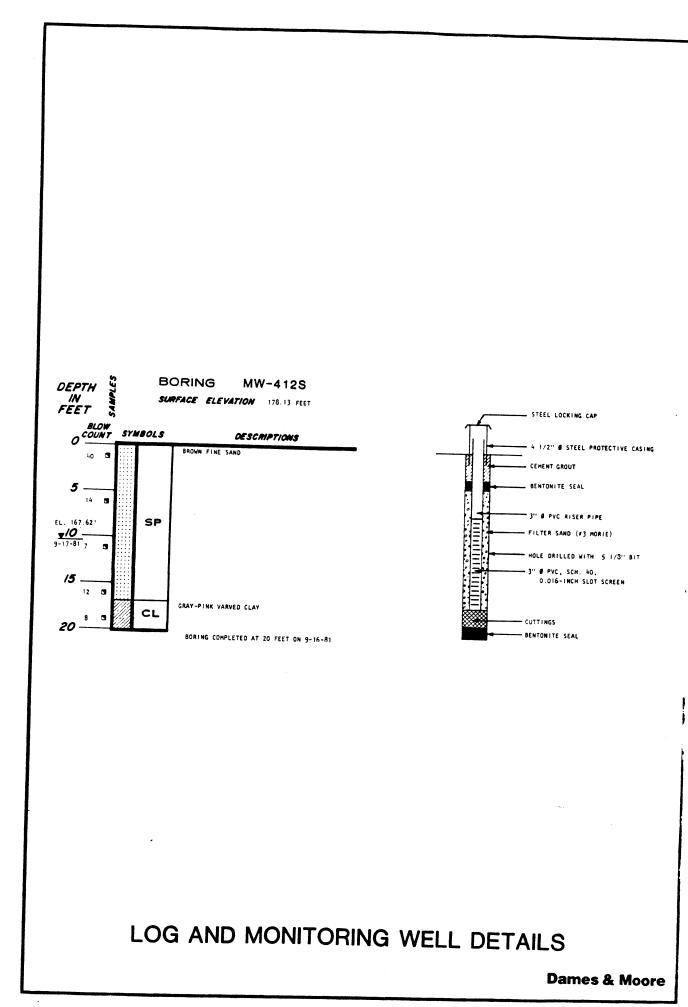




FIGURE 5

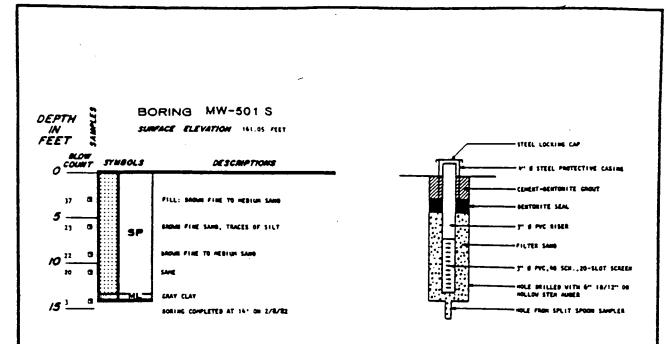
1


- ----

- L

1.4.

LOG AND MONITORING WELL DETAILS


Dames & Moore

1

- ----

...

LOG AND MONITORING WELL DETAILS

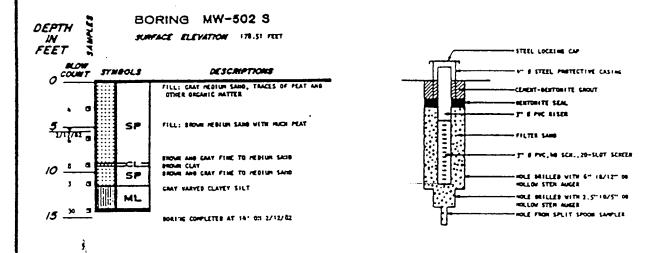
WITES :

a

1

 THE FIGURES IN THE COLUMN LABELED "SLOW COUNT" REFER TO THE NUMBER OF BLOWS ACQUIRED TO DRIVE A STANDARD SPLIT-FROM SAMPLER A DISTANCE OF DWE FOOT USING A 140 FOUND BUILT RELIM T FALLING TO INCRES, THE STANDARD SPLIT-SPORE SAMPLER 15 2 INCRES 0.8. AND 1-3/6 INCRES F.D.

2. ELEVATIONS REFER TO HEAR SEA LEVEL BATUR.

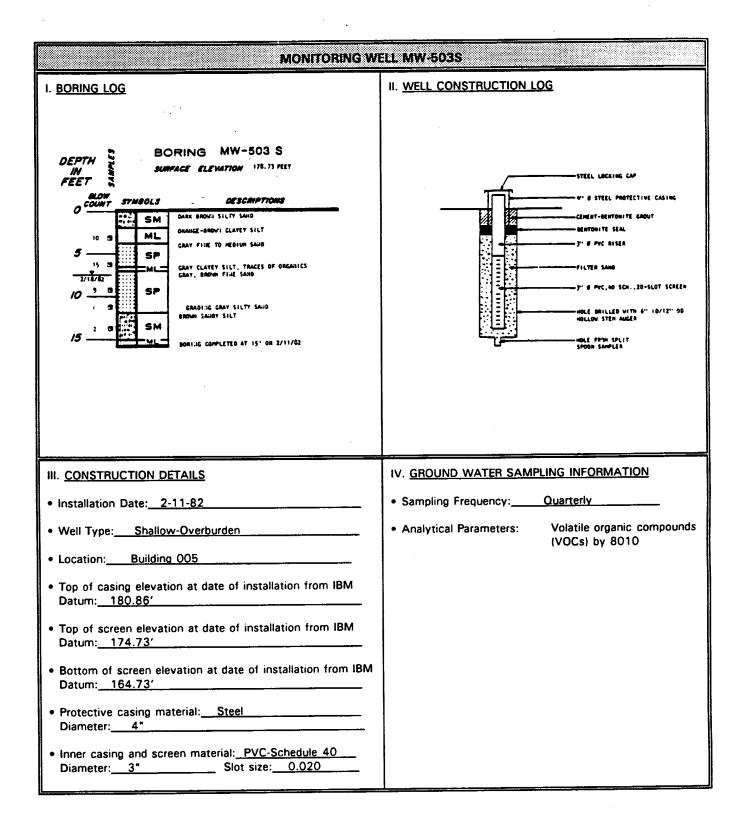

3. THE BISCUSSION IN THE TEXT OF THE REPORT IS RECESSARY FOR A FROMER UNDERSTANDING OF THE MATURE OF THE SUBSURFACE MATERIALS.

Dames & Moore

. .

5 - **5** - 10 - 10 - 10 - 10 - 10

LOG AND MONITORING WELL DETAILS

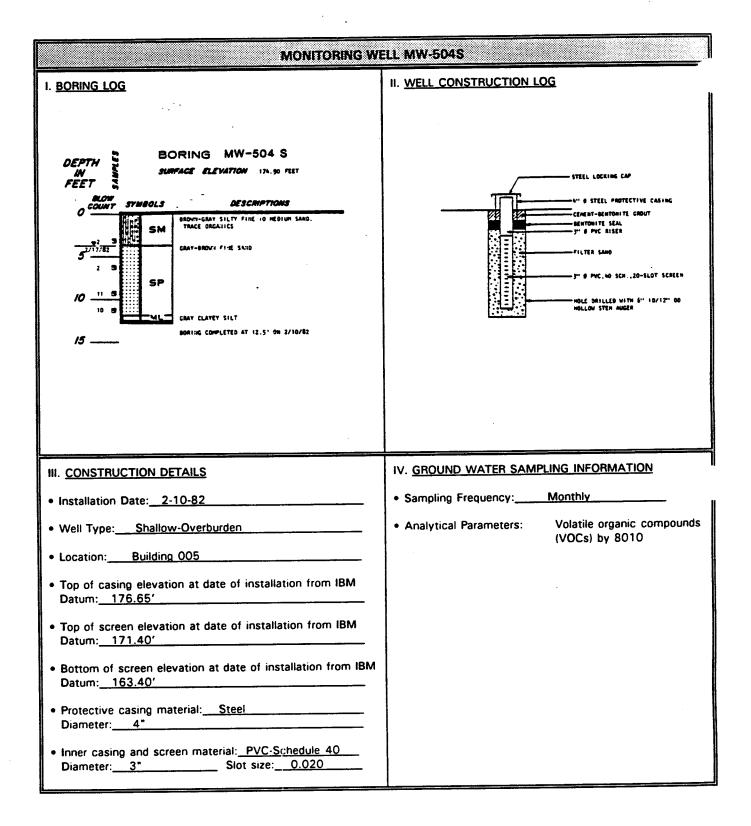

HOTES:

9

a

- 1. THE FIGURES IN THE COLUMN LABELES "SLOW COUNT" NEFER TO THE NUMBER OF NLOW NEQUIRES TO DRIVE A STANDARD SPLIT-SPOON SAMPLER A DISTANCE OF ONE FOOT USING A 140 POLMO DRIVE WEIGHT FALLING TO INCHES. THE STANDARD SPLIT-SPOON SAMPLER IS 2 INCHES 0.8. AND 1-378 INCHES 1.8.
- 2. CLEVATIONS NEPER TO HEAR SEA LEVEL BATUR.
- 3. THE BISCUSSION IN THE TEXT OF THE REPORT IS MECESSARY FOR A PROPER UNCERSTANDING OF THE NATURE OF THE SUBSURFACE MATERIALS.

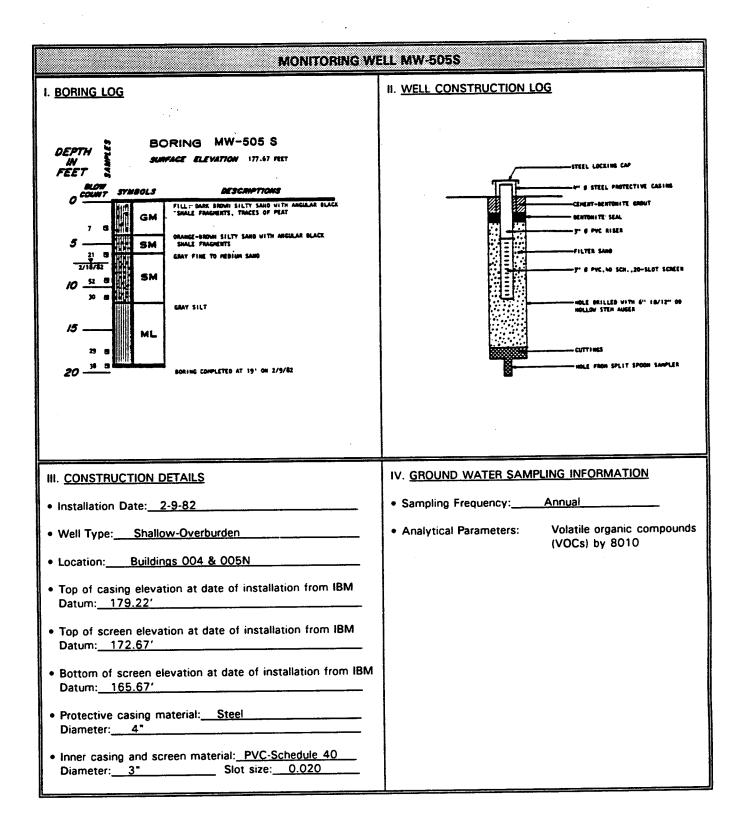
Dames & Moore


MONITORING WELL MW-503S			
V. MODIFICATION	DETAILS		
Modification Date	e: <u>7-22-92</u>		
- Modifications ir	nvolved the following activitie	25:	
Painting and li	abelling of casing		
- Performed by:_	Dames & Moore		
Surface seal r	nvolved the following activitie repair and installation of wate Dames & Moore	er-tight cap	
SURVEY DATE	PERFORMED BY	TOP OF STEEL PROTECTIVE CASING ELEVATION	TOP OF PVC CASING ELEVATION
2-11-82	Brinnier & Larios	180.86′	
10-2-92	Brinnier & Larios	180.92′	180.67

-

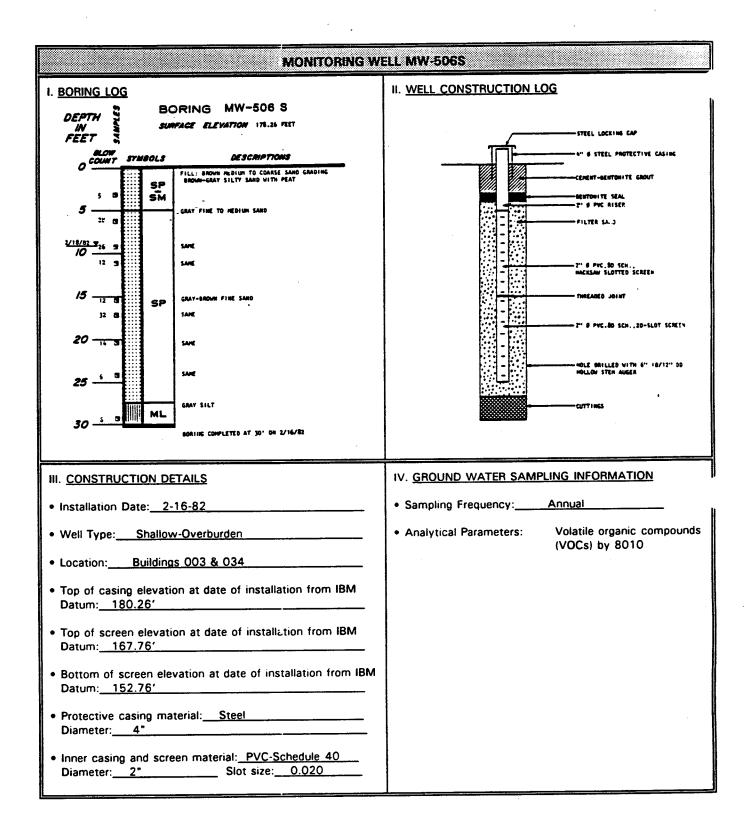
MONITORING	VELL MW-503S
VI. <u>DEVELOPMENT HISTORY</u>	
Redevelopment Date: 7-22-92	
- Total well depth at date of installation:164.73'	
- Depth prior to development:	Depth after development: <u>164.05'</u> Difference in depth from installation: <u>0.68' (deeper)</u>
Change in depth (in feet):	0.80'
- Redevelopment method: Centrifugal Pump	
- Performed by: Dames & Moore	
Redevelopment Date: <u>10-2-92</u> - Total well depth at date of installation: <u>164.73'</u>	
Depth prior to development:	Depth after development: <u>164.16'</u> Difference in depth from installation: <u>0.57' (deeper)</u>
Change in depth (in feet):	1.01′
- Redevelopment method: <u>Bladder Pump</u>	
- Performed by: <u>CTM Analytical Laboratories, Ltd.</u>	

•


**

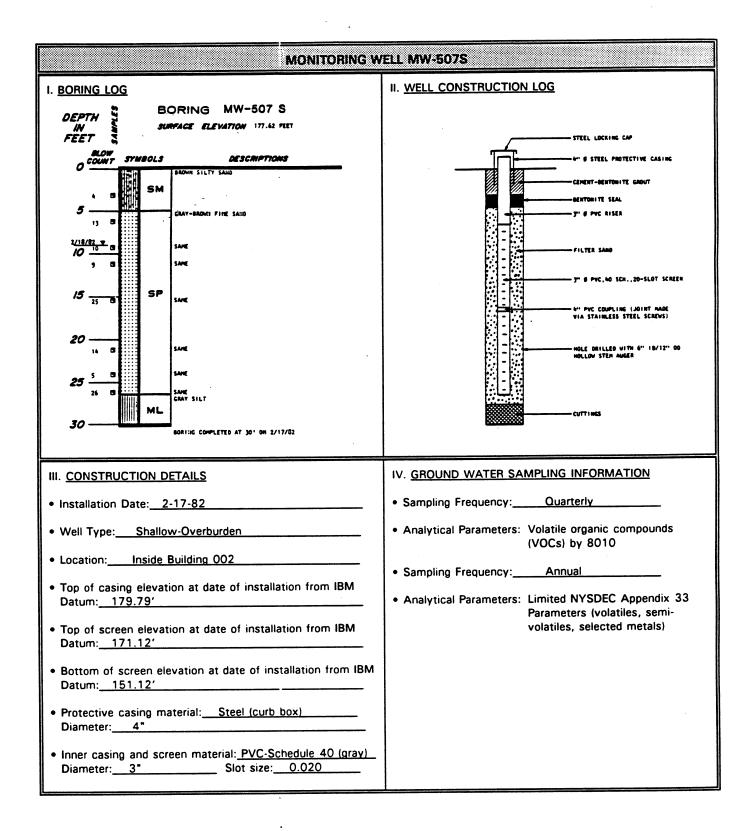
MONITORING WELL MW-504S				
V. MODIFICATION D	ETAILS			
Modification Date:	Modification Date: 7-22-92			
- Modifications inv	olved the following activitie	es:		
Painting and lat	elling of casing	······		
		······		
- Performed by:	Dames & Moore			
Surface seal re	volved the following activition	· · · · · · · · · · · · · · · · · · ·		
VI. <u>SURVEY DATA</u>				
SURVEY DATE	PERFORMED BY	TOP OF STEEL PROTECTIVE CASING ELEVATION	TOP OF PVC CASING ELEVATION	
2-10-82	Brinnier & Larios	176.65′		
10-2-92	Brinnier & Larios	177.12'	172.94′	

*


MONITORING	VELL MW-504S
VI. DEVELOPMENT HISTORY	
Redevelopment Date: <u>None</u>	
- Total well depth at date of installation:	
Depth prior to development: Difference in depth from installation:	Depth after development: Difference in depth from installation:
Change in depth (in feet):	
- Redevelopment method:	
- Performed by:	

	MONITORING WELL MW-505S				
V. MODIFICATION	DETAILS				
Modification Dat	e:7-22-92				
- Modifications i	nvolved the following activitie	es:			
	abelling of casing				
	- Performed by:Dames & Moore				
Surface seal	nvolved the following activitie	aht cap, and inscription of reference m	lark		
VI. <u>SURVEY DATA</u>		<u></u>	· · · · · · · · · · · · · · · · · · ·		
SURVEY DATE	PERFORMED BY	TOP OF STEEL PROTECTIVE CASING ELEVATION	TOP OF PVC CASING ELEVATION		
2-9-82	Brinnier & Larios	179.22'			
10-2-92	Brinnier & Larios	179.57'	179.17′		
	. <u> </u>				

•

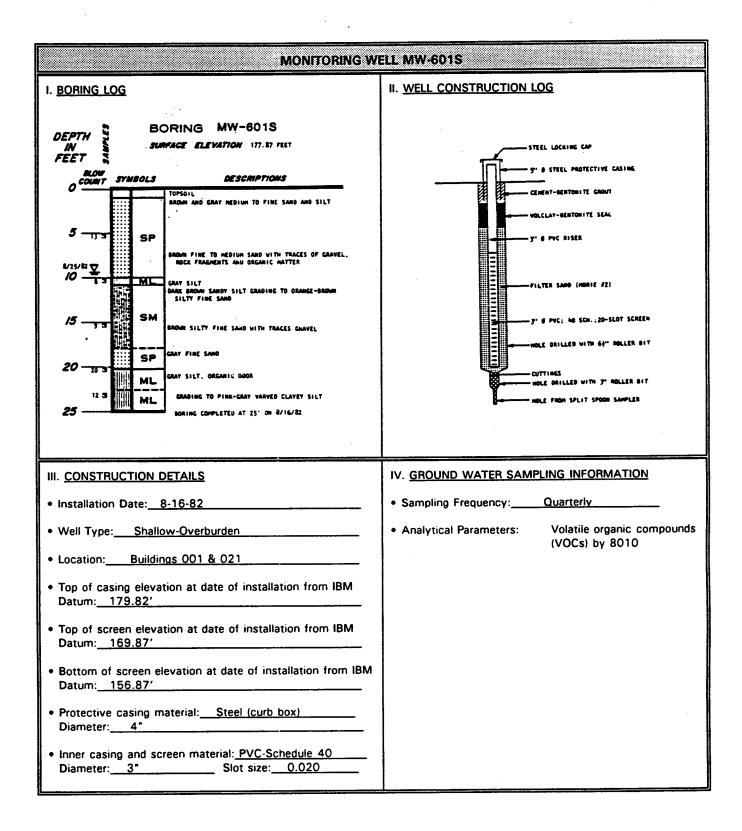

MONITORING V	VELL MW-505S
VI. DEVELOPMENT HISTORY	
Redevelopment Date: <u>None</u>	
- Total well depth at date of installation:	
- Depth prior to development: - Difference in depth from installation:	Depth after development: Difference in depth from installation:
Change in depth (in feet):	
- Redevelopment method:	
- Performed by:	

MONITORING WELL MW-506S			
V. MODIFICATION I	DETAILS		
Modification Date	. 7-22-92		
- Modifications in	volved the following activitie	es:	
Painting and la	belling of casing		
- Performed by:	Dames & Moore		
Surface seal re - Performed by:	: 9-30-92 volved the following activiti epair and installation of wate Dames & Moore	er-tight cap	
VI. <u>SURVEY DATA</u> TOP OF STEEL PROTECTIVE TOP OF PVC			
SURVEY DATE	PERFORMED BY	TOP OF STEEL PROTECTIVE CASING ELEVATION	CASING ELEVATION
2-16-82	Brinnier & Larios	180.26′	
10-2-92	Brinnier & Larios	180.43′	180.18′

-

MONITORING WELL MW-506S		
VI. DEVELOPMENT HISTORY		
Redevelopment Date: <u>10-2-92</u>		
- Total well depth at date of installation: <u>152.76</u>		
Depth prior to development: 154.68' Difference in depth from installation: 1.92'	Depth after development: <u>151.86'</u> Difference in depth from installation: <u>0.90' (deeper)</u>	
Change in depth (in feet):	1.02'	
- Redevelopment method: <u>Bladder Pump</u>		
- Performed by: <u>CTM Analytical Laboratories, Ltd.</u>		

	MONITORING WELL MW-507S				
V. MODIFICATION	DETAILS				
Modification Dat	te:9-30-92				
- Modifications i	nvolved the following activiti	es:			
Labelling of c	asing, installation of water-ti	ght cap, and inscription of reference m	ark		
- Performed by: Dames & Moore					
VI. <u>SURVEY DATA</u>					
SURVEY DATE	PERFORMED BY	TOP OF STEEL PROTECTIVE CASING ELEVATION	TOP OF PVC CASING ELEVATION		
2-17-82	Brinnier & Larios	179.79'			
10-2-92	Brinnier & Larios	178.88′	178.58′		

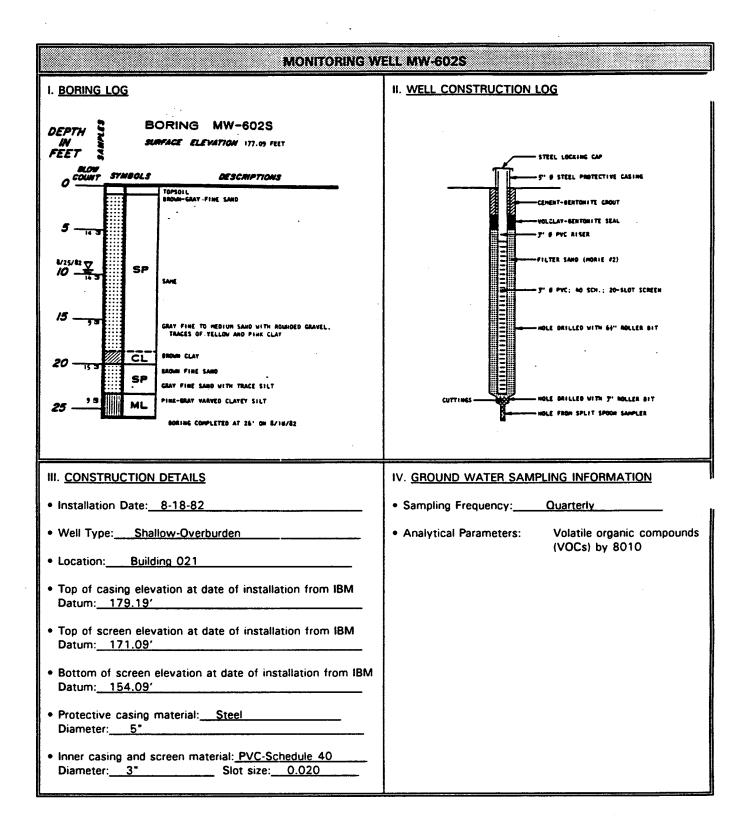

-

MONITORING WELL MW-507S			
VI. DEVELOPMENT HISTORY			
Redevelopment Date: 10-2-92			
- Total well depth at date of installation: <u>151.12'</u>			
- Depth prior to development: <u>151.88'</u> - Difference in depth from installation: <u>0.76'</u>	Depth after development: <u>151.72'</u> Difference in depth from installation: <u>0.60'</u>		
Change in depth (in feet):	0.16'		
- Redevelopment method: <u>Bladder Pump</u>			
- Performed by: <u>CTM Analytical Laboratories, Ltd.</u>			

MONITORING WELL MW-508S					
V. MODIFICATION	DETAILS				
Modification Date	:7-22-92				
- Modifications in	volved the following activitie	S:			
Painting and la	belling of casing				
- Performed by:	Performed by: Dames & Moore				
Modification Date: 9-30-92 Modifications involved the following activities: Surface seal repair and installation of water-tight cap					
- Performed by: Dames & Moore					
VI. <u>SURVEY DATA</u>					
SURVEY DATE	PERFORMED BY	TOP OF STEEL PROTECTIVE CASING ELEVATION	TOP OF PVC CASING ELEVATION		
2-15-82	Brinnier & Larios	169.98′			
10-2-92	Brinnier & Larios	170.27'	169.85'		

MONITORING	VELL MW-508S
VI. DEVELOPMENT HISTORY	
Redevelopment Date: None	
- Total well depth at date of installation:	
- Depth prior to development: - Difference in depth from installation:	Depth after development: Difference in depth from installation:
Change in depth (in feet):	
- Redevelopment method:	
- Performed by:	

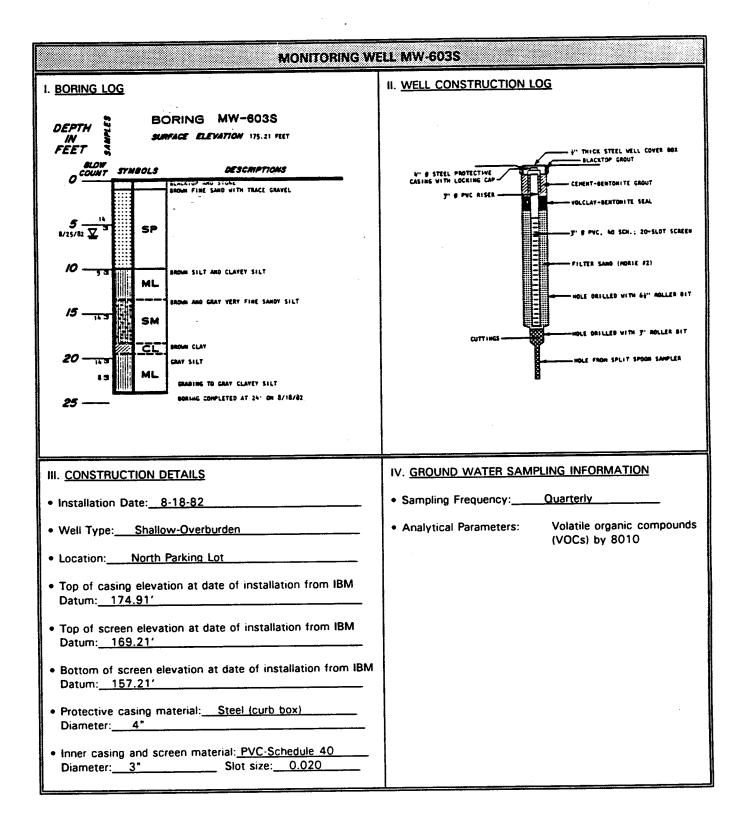
	Client: IBM Mid-Hudson Valley, Kingston Site Location N side of GWCS						TOC Elev. 169.89				
Pro	oject No. S		-						between MH7	⁷ and MH8	Page 1 of 1
Depth Feet	Blow Counts	(mqq)	Sample Number	Recovery	Ove	erburden/Lithologi Description	C	NSCS	Well Construc Graph	tion 🔒	Well Construction Details
	Ground Surface HAND AUGERED 2-4-10-8 7-8-7-4 5-7-6-6	0	1	9" 12" 16"	gravel, occ b black organic SILT & SAND: silt & vf-m frags through : occ cobble : soft formati auger return SAND & SILT: some m, tr frags through PEAT: 5-9", d silt w/wood SAND: at 3" o tr vc, tr silt, posed of whi shale, homog SILT & SAND: silty, tr f SA- out, Ig fibrou SILT: at 7", br lams., dense,	ion at 5.5' w/some gras ns. dusk yel to grayish br c, cohesive, organic—ric nout, moist to wet, 0—5 usky yel br to blk w/or frags, loose, moist to w	e, moist ganic-rich organic ss frags in silt, vf-f, h w/plant ". gganic-rich ret. 'f, lit-tr vf, grains com- and & gray sive, wet. , some c, gs through- isve, wet. , clay-rich	FILL SM Pt/OL SW MH/CH			Concrete pad Bentonite grout Bentonite chips 2" Sch 40 PVC riser 8" HSA borehole No. 00N sand 2" Sch 40 10-slot PVC screen (5.5'-10.5') Bottom end cap 2" split-spoon borehole Collapsed/swelled formation
	Driller: North Star Drilling Logged by: S. Fisher, GSC Drilling Started: 11-30-95 Drilling Completed: 11-30-95 Well Construction: 11-30-95 Well Developed: 12-5-95 Well Coords.: N719510.20				GSC -95 -30-95 30-95 95	Notes: SAA = Same As Abo Measured DTB 13.36		C).		CORPOI	<i>ER SCIENCES</i> R <i>ATION</i> : MW-508SA
	well Coords		1719 591			SWL 8.65' (12/1/9					


MONITORING WELL MW-601S						
V. MODIFICATION	V. MODIFICATION DETAILS					
Modification Date	9-30-92					
- Modifications in	volved the following activiti	es:				
Labelling of curb box, installation of water-tight cap and rubber curb box seal, inscription of reference mark, and lock replacement Performed by: Dames & Moore						
VI. <u>SURVEY DATA</u>						
SURVEY DATE	SURVEY DATE PERFORMED BY TOP OF STEEL PROTECTIVE TOP OF PVC CASING ELEVATION CASING ELEVATION					
8-16-82 Brinnier & Larios 179.82'						
10-2-92	Brinnier & Larios	177.91′	177.74′			

•

.

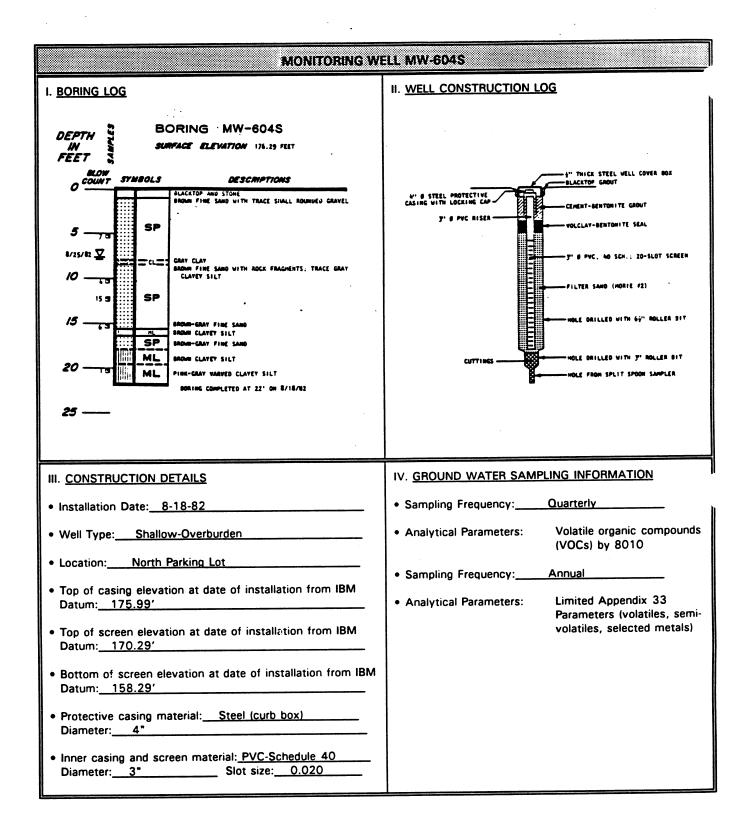
*


MONITORING V	VELL MW-601S						
VI. DEVELOPMENT HISTORY							
Redevelopment Date: 7-22-92	Redevelopment Date: 7-22-92						
- Total well depth at date of installation: <u>156.87'</u>	- Total well depth at date of installation: <u>156.87</u>						
Depth prior to development: <u>157.84'</u> Difference in depth from installation: <u>0.97'</u>	Depth after development: <u>156.59</u> Difference in depth from installation: <u>0.28' (deeper)</u>						
Change in depth (in feet):	0.69'						
- Redevelopment method: Centrifugal Pump							
- Performed by: Dames & Moore							

MONITORING WELL MW-602S				
V. MODIFICATION DETAILS				
Modification Date:_	7-22-92	······································		
- Modifications invo	olved the following activitie	IS:		
Painting and lab	elling of casing	<u> </u>	· .	
- Performed by:	Dames & Moore			
Modification Date:	9-30-92	······		
- Modifications inv	olved the following activitie	25:		
Installation of w	vater-tight cap			
	······································			
- Performed by:	Dames & Moore			
VI. <u>SURVEY DATA</u>				
SURVEY DATE	PERFORMED BY	TOP OF STEEL PROTECTIVE CASING ELEVATION	TOP OF PVC CASING ELEVATION	
8-18-82	Brinnier & Larios	179.19'		
10-2-92	Brinnier & Larios	180.49'	180.24′	

• •

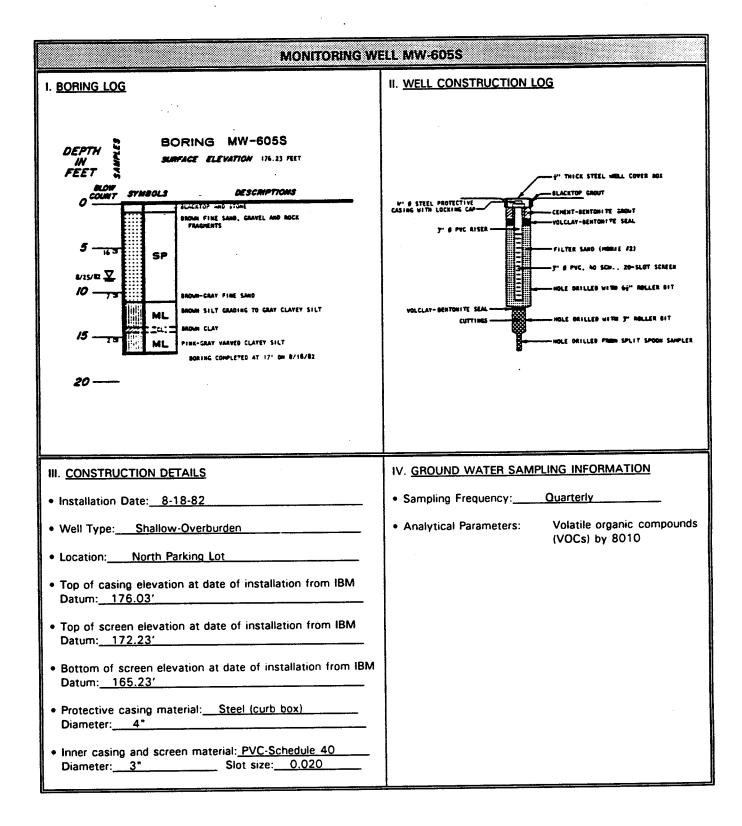
MONITORING W	VELL MW-602S
VI. DEVELOPMENT HISTORY	
Redevelopment Date: 7-22-92	
- Total well depth at date of installation: 154.09'	
Depth prior to development: <u>155.87'</u> Difference in depth from installation: <u>1.78'</u>	Depth after development: <u>155.09'</u> Difference in depth from installation: <u>1.00'</u>
Change in depth (in feet):	0.78'
- Redevelopment method: Centrifugal Pump	
- Performed by: Dames & Moore	
Redevelopment Date: <u>10-2-92</u>	
- Total well depth at date of installation: <u>154.09</u> '	
Depth prior to development: <u>155.87'</u> Difference in depth from installation: <u>1.78'</u>	Depth after development: <u>155.17'</u> Difference in depth from installation: <u>1.08'</u>
Change in depth (in feet):	0.70′
- Redevelopment method: Bladder Pump	
- Performed by: <u>CTM Analytical Laboratories, Ltd.</u>	



	MONITORING WELL MW-603S				
V. MODIFICATION	I DETAILS				
• Modification Da	te: <u> </u>				
- Modifications	involved the following activiti	es:			
inscription of	Labelling of curb box, curb box extension, installation of water-tight cap and rubber curb box seal, inscription of reference mark, and lock replacement - Performed by: Dames & Moore				
VI. <u>SURVEY DAT</u>	<u>A</u>				
SURVEY DATE	SURVEY DATE PERFORMED BY TOP OF STEEL PROTECTIVE TOP OF PVC CASING ELEVATION CASING ELEVATION				
8-18-82 Brinnier & Larios 174.91'					
10-2-92	10-2-92 Brinnier & Larios 175.29' 174.83'				

• •

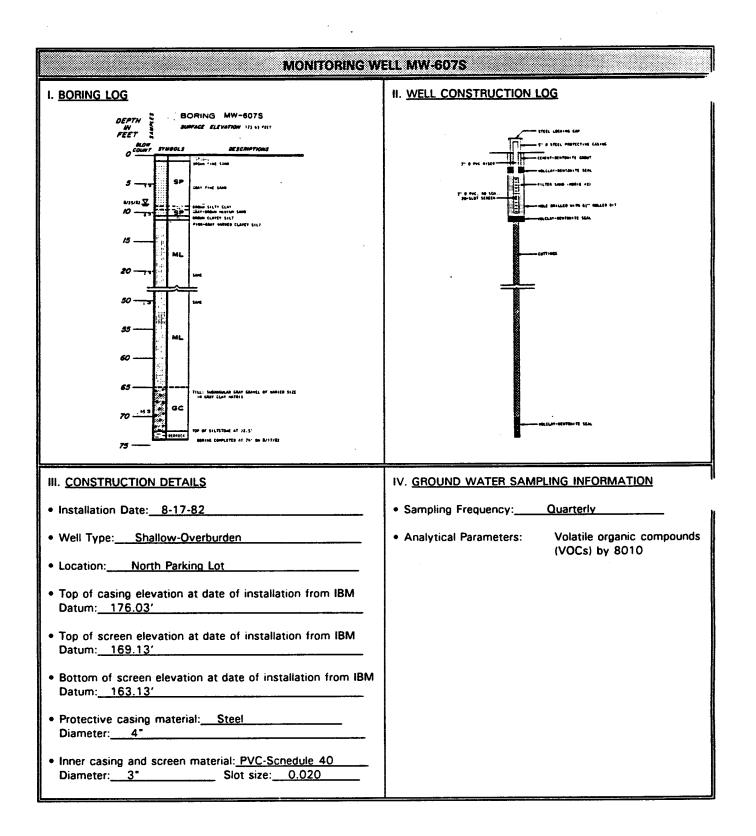
•


MONITORING WELL MW-603S			
VI. <u>DEVELOPMENT HISTORY</u>	Depth after development: <u>157.97</u> Difference in depth from installation: <u>0.76'</u>		
Redevelopment method: <u>Centrifugal Pump</u> Performed by: <u>Dames & Moore</u>			

MONITORING WELL MW-604S				
V. MODIFICATION DETAILS				
Modification Date:	9-30-92			
- Modifications inv	olved the following activiti	es:		
<u>Labelling of curb box, curb box extension, installation of water-tight cap and rubber curb box seal</u> <u>inscription of reference mark, and lock replacement</u> 				
VI. <u>SURVEY DATA</u>				
SURVEY DATE PERFORMED BY TOP OF STEEL PROTECTIVE TOP OF PVC CASING ELEVATION CASING ELEVATION				
8-18-82 Brinnier & Larios 175.99'				
10-2-92	Brinnier & Larios	176.35'	176.01′	

-

	VELL MW-604S
VI. <u>DEVELOPMENT HISTORY</u> • Redevelopment Date: 7-22-92	
- Total well depth at date of installation: <u>158.29</u>	Death offer development: 160.07'
Depth prior to development: <u>160.22'</u> Difference in depth from installation: <u>1.93'</u>	Difference in depth from installation: <u>1.78'</u>
Change in depth (in feet):	0.15'
- Redevelopment method: <u>Centrifugal Pump</u>	
- Performed by: Dames & Moore	
Redevelopment Date: 10-2-92	
- Total well depth at date of installation: <u>158.29</u> '	
- Depth prior to development: <u>160.45'</u> - Difference in depth from installation: <u>2 16'</u>	Depth after development: <u>160.29'</u> Difference in depth from installation: <u>2.00'</u>
Change in depth (in feet):	0.16'
- Redevelopment method: <u>Centrifugal Pump</u>	
- Performed by: Dames & Moore	



V. MODIFICATION D	ETAILS		
 Modification Date:_ 			
	9-30-92		
- Modifications invo	olved the following activities	es:	
	ference mark, and lock rep	installation of water-tight cap and rub placement	<u>ber curb box seal,</u>
VI. <u>Survey data</u>			
SURVEY DATE	PERFORMED BY	TOP OF STEEL PROTECTIVE CASING ELEVATION	TOP OF PVC CASING ELEVATION
8-18-82	Brinnier & Larios	176.03′	
10-2-92	Brinnier & Larios	176.28′	176.15'

MONITORING WELL MW-605S						
VI. DEVELOPMENT HISTORY						
Redevelopment Date: 7-22-92						
- Total well depth at date of installation: <u>165.23'</u>						
- Depth prior to development: <u>166.20'</u> - Difference in depth from installation: <u>0.97'</u>	Depth after development: <u>165.99'</u> Difference in depth from installation: <u>0.76'</u>					
Change in depth (in feet):	0.21'					
- Redevelopment method: <u>Centrifugal Pump</u>						
- Performed by: Dames & Moore						

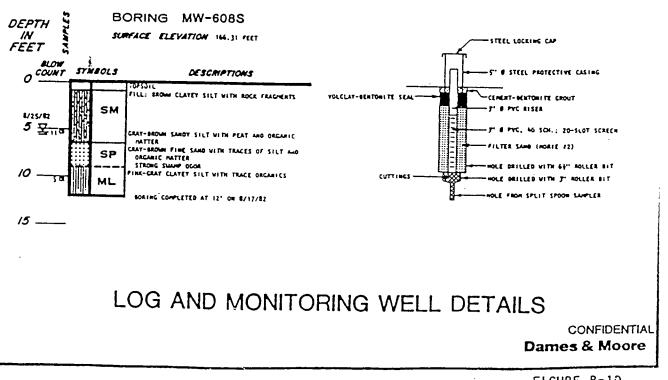
AAW02E44

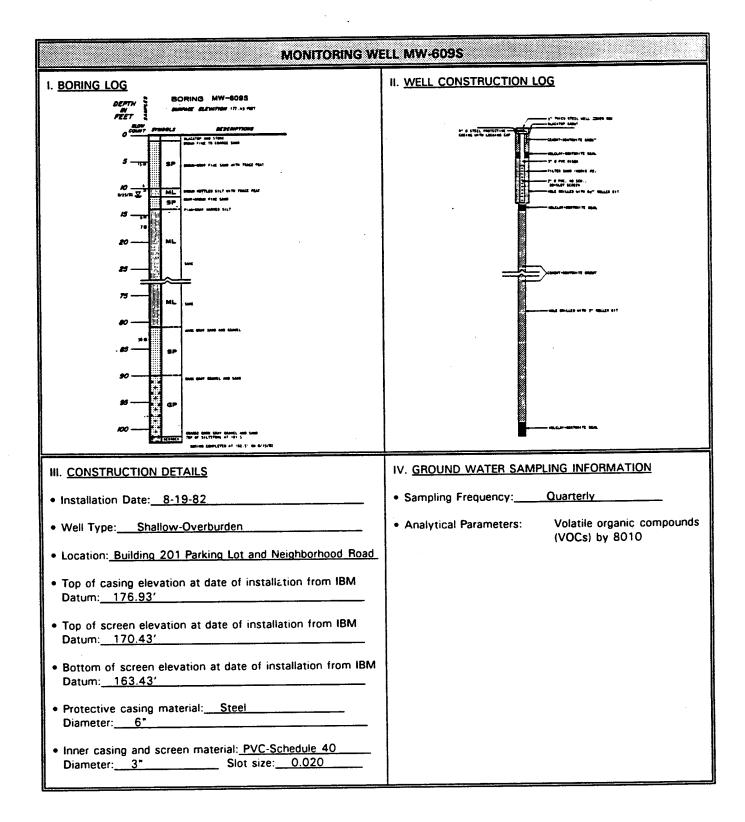
.

...

MONITORING WELL MW-607S						
V. MODIFICATION D	ETAILS					
Modification Date:	Modification Date: 7-22-92					
- Modifications inv	- Modifications involved the following activities:					
Painting and lab	elling of casing					
- Performed by:	Dames & Moore					
Modification Date:	9-30-92					
- Modifications inv	olved the following activiti	es:				
_Surface seal re	pair and installation of wate	er-tight cap				
- Performed by:	Dames & Moore					
	VI. SURVEY DATA TOP OF STEEL PROTECTIVE TOP OF PVC					
SURVEY DATE	PERFORMED BY	CASING ELEVATION	CASING ELEVATION			
8-17-82	Brinnier & Larios	176.03'				
10-2-92	Brinnier & Larios	176.36′	175.84'			

•

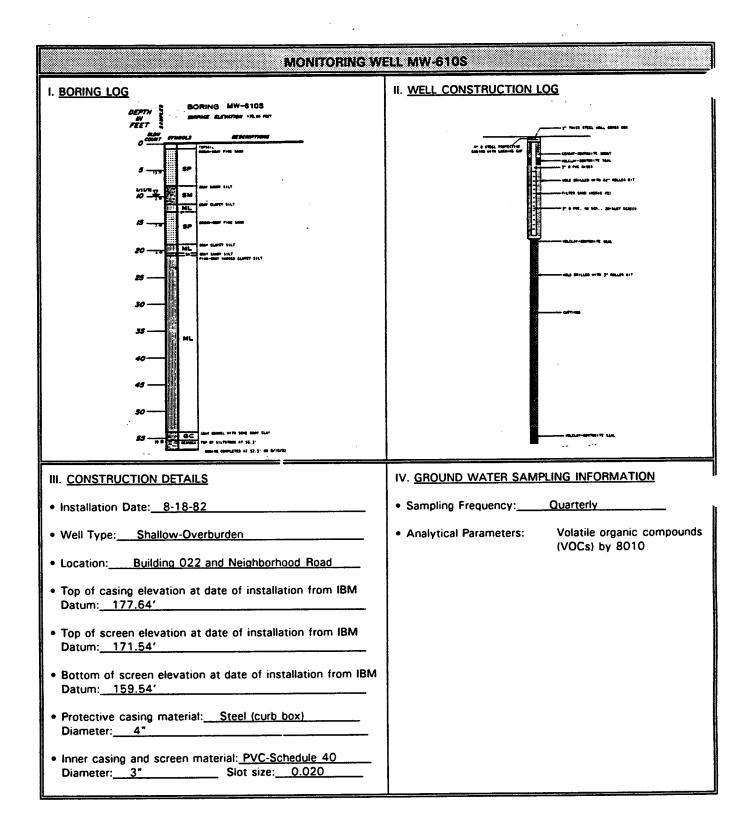

**


AAW02E44

.

MONITORING WELL MW-607S	
VI. DEVELOPMENT HISTORY	
Redevelopment Date: <u>None</u>	
- Total well depth at date of installation:	
- Depth prior to development: - Difference in depth from installation:	
Change in depth (in feet):	
- Redevelopment method:	
- Performed by:	-

.



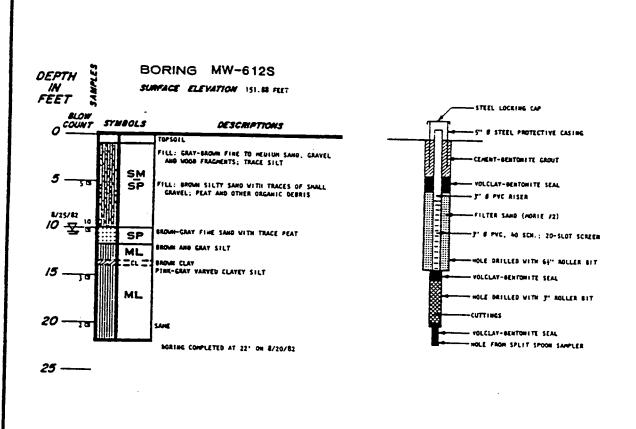
MONITORING WELL MW-609S										
V. MODIFICATION DETAILS										
Modification Date: 9-30-92										
- Modifications i	nvolved the following activiti	es:								
of water-tight	Installation, painting, and labelling of protective casing, extension of PVC casing (1.5'), installation of water-tight cap, and lock replacement - Performed by: Dames & Moore									
VI. <u>SURVEY DATA</u>	1									
SURVEY DATE	PERFORMED BY	TOP OF STEEL PROTECTIVE CASING ELEVATION	TOP OF PVC CASING ELEVATION							
8-19-82	Brinnier & Larios	176.93'								
10-2-92	Brinnier & Larios	179.36′	178.63′							

•

*

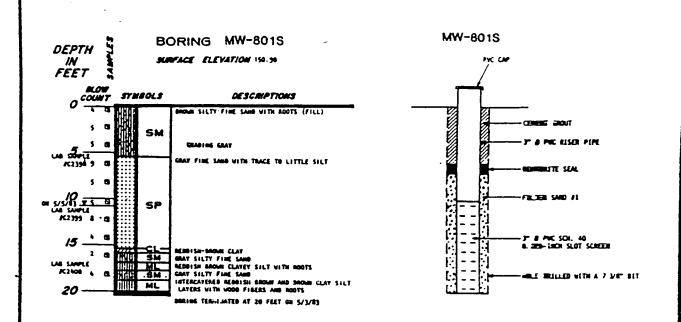
MONITORING V	VELL MW-609S
VI. <u>DEVELOPMENT HISTORY</u>	
Redevelopment Date: 10-2-92	
- Total well depth at date of installation: 163.43'	
Depth prior to development: <u>165.76'</u> Difference in depth from installation: <u>2.33'</u>	Depth after development: <u>163.56'</u> Difference in depth from installation: <u>0.13'</u>
Change in depth (in feet):	2.20'
- Redevelopment method: <u>Centrifugal Pump</u>	
- Performed by: Dames & Moore	

	MON	ITORING WELL MW-610S								
V. MODIFICATION D	ETAILS									
Modification Date: 7-22-92										
- Modifications involved the following activities:										
Labelling of curb box										
- Performed by:	Dames & Moore									
Installation of r	9-30-92 rolved the following activiti ubber curb box seal and wa Dames & Moore	ater-tight cap								
SURVEY DATE	PERFORMED BY	TOP OF STEEL PROTECTIVE CASING ELEVATION	TOP OF PVC CASING ELEVATION							
8-18-82	Brinnier & Larios	177.64′								
10-2-92	Brinnier & Larios	Brinnier & Larios 178.00' 177.81'								


•

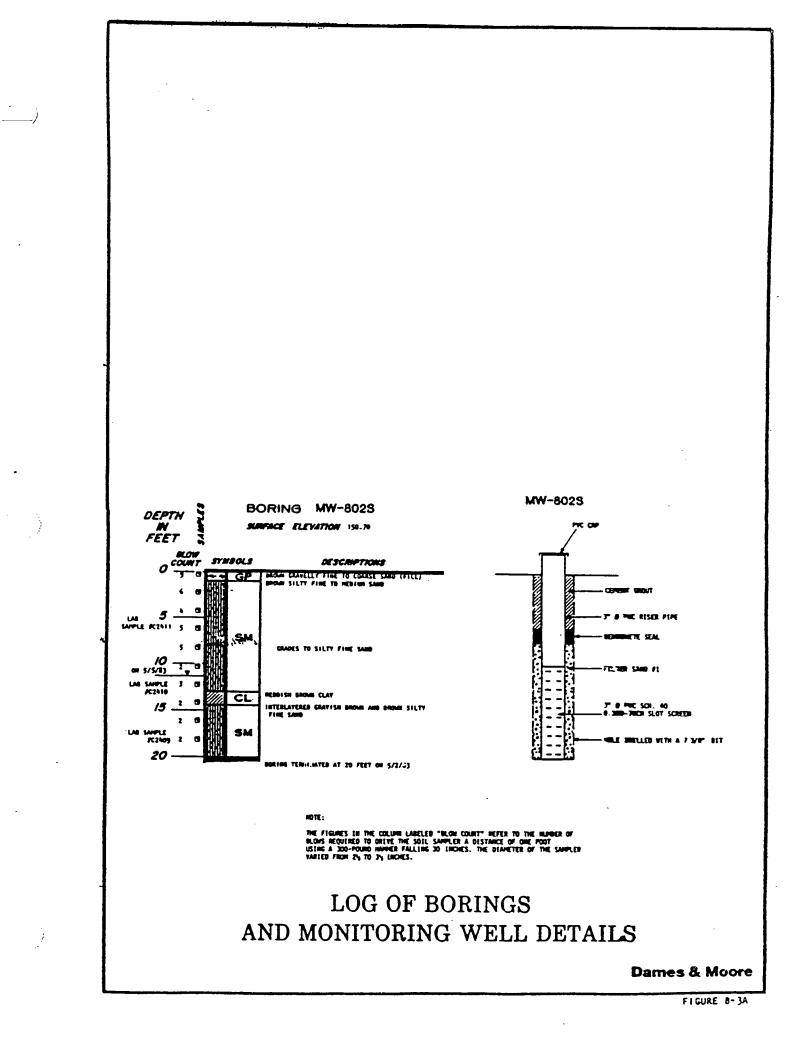
*

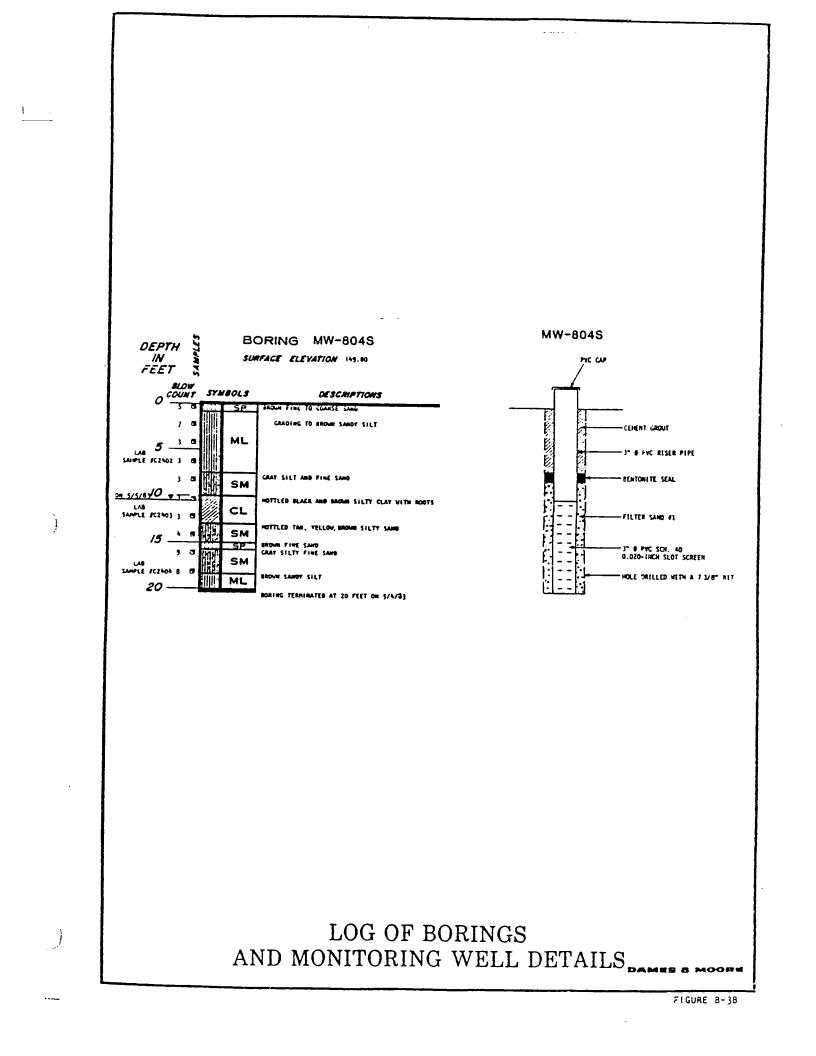
MONITORING V	YELL MW-610S
VI. DEVELOPMENT HISTORY	
Redevelopment Date: 7-22-92	
- Total well depth at date of installation: <u>159.54</u>	
Depth prior to development: <u>160.91'</u> Difference in depth from installation: <u>1.37'</u>	Depth after development: <u>160.72'</u> Difference in depth from installation: <u>1.18'</u>
Change in depth (in feet):	0.19'
- Redevelopment method: <u>Centrifugal Pump</u>	
- Performed by: Dames & Moore	
Redevelopment Date: 10-2-92	
- Total well depth at date of installation: <u>159.54</u>	
- Depth prior to development:161.21' - Difference in depth from installation:1.67'	Depth after development: <u>161.12'</u> Difference in depth from installation: <u>1.58'</u>
Change in depth (in feet):	0.09'
- Redevelopment method: Bladder Pump	
- Performed by: <u>CTM Analytical Laboratories, Lt</u>	<u>d.</u>

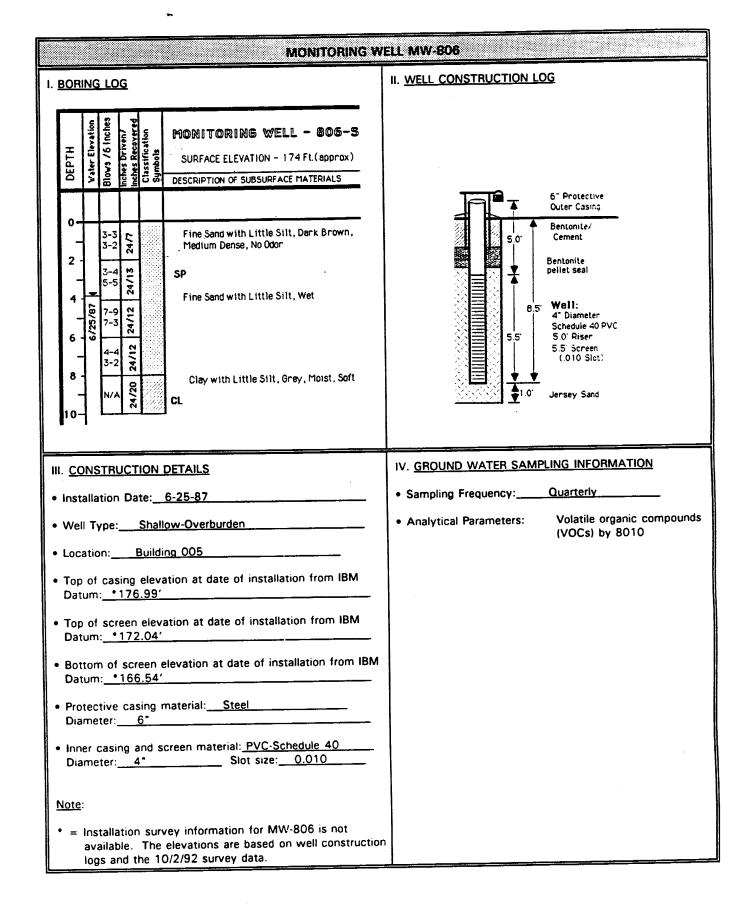

•

*

LOG AND MONITORING WELL DETAILS


CONFIDENTIAL Dames & Moore




LOG OF BORINGS AND MONITORING WELL DETAILS

;

Dames & Moore

	MONITORING WELL MW-806										
V. MODIFICATION	N DETAILS										
Modification Date: 7-22-92											
- Modifications involved the following activities:											
Painting and labelling of casing											
- Performed by:	Dames & Moore										
• Modification Da	ite: <u>9-30-92</u>	······································									
- Modifications	involved the following activitie	s:									
_Surface_seal	repair and installation of wate	r-tight cap									
- Performed by:	Dames & Moore										
VI. <u>SURVEY DAT</u>	<u>A</u>										
SURVEY DATE	PERFORMED BY	TOP OF STEEL PROTECTIVE CASING ELEVATION	TOP OF PVC CASING ELEVATION								
10-2-92	Brinnier & Larios	us 176.99' 176.50'									

.

*

ł

MONITORING WELL MW-806									
VI. DEVELOPMENT HISTORY									
Redevelopment Date: 10-2-92									
- Total well depth at date of installation: <u>166.54</u>									
- Depth prior to development: <u>165.85'</u> - Difference in depth from installation: <u>0.69'</u>	Depth after development: <u>165.92'</u> Difference in depth from installation: <u>0.62' (deeper)</u>								
Change in depth (in feet):	0.07′								
- Redevelopment method: <u>Bladder Pump</u>									
- Performed by: <u>CTM Analytical Laboratories, Ltd.</u>									

	ent: IBM N bject No. S	/id-	Huc	Auger Drilling Ison Valley, Kir 5		Borine Locat	ion N	MW-810 Iorthwest of formei VSL lagoon		TOC Elev. 147.63' GS Elev. 145.03' Page 1 of 1
Depth Feet	Blow Counts	(mdd)	Recovery	Over	burden/Lithologic Description		Graphic	Well Construction Graphic	Depth Feet	Well Construction Details
	Ground Surface HAND AUGERED 1-2-2-3 1-2-2-1 1/1'-1/1' 1-1-1-1 1-1-1-2	0.5	19" 19" 15"	SAND: light brown, n f sand (6-9"). SILTY CLAY: brown, SAND: brownish gray at 9", 12", 14". SILTY CLAY: brown w SAND: brownish gray SILTY CLAY: brown, material throughou	transitions to grayish brown mostly clay w/tr sit (9–20" , med, loose, sl moist (20– clay lams (1/4–1/2" thick) / roots at top of spoon. , f-m, loose, saturated (0– varved, soft w/tr roots, orge). 24"). 8"). anic	FILL			— Bottom end cap — Collapsed/swelled formation
	Driller: Nor Logged by: Drilling Star Drilling Corr	D. ted: plet	Muri 8– ed: 8	ceak, GSC 25–98 8–25–98	Notes: *Instrument reading denotes volatile scan of split spoon.				R SCIENCES PATION	
Well Construction: 8-25-98 Well Developed: 9-25-98 Well Coords.: N718819.49 E590095.57 SWL 5.65' (9/25/98,14:48; from TOC)									_og:	MW-810

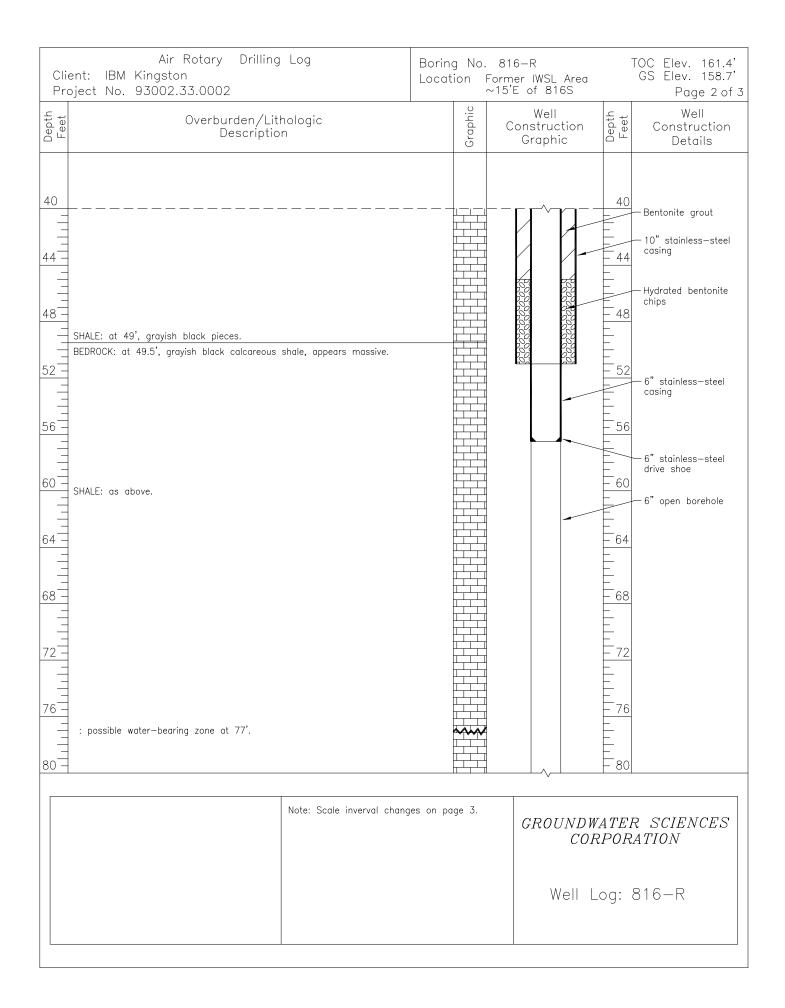
	ent: IBM M bject No. S	/lid-	Huc	Auger Drilling Ison Valley, Kir 5			ion N	MW—811 Jorthwest WSL lagoc	of forme		TOC Elev. 147.39' GS Elev. 145.03' Page 1 of 2
Depth Feet	Blow Counts	(mqq)	Recovery	Ove	rburden/Lithologic Description		Graphic	We Constr Grap	uction	Depth Feet	Well Construction Details
2	Ground Surface HAND AUGERED & AUGERED			FILL: brown loamy s tile and iron debri: cable at 4'.	sand w/brick, concrete, clinke s; 6-wire galvanized steel			10000000000000000000000000000000000000			 4" Locking Royer cap w/2" expansion plug 4" protective steel casing Concrete pad Hydrated bentonite chips
6 111	2-3-2-1	0	7"	SAND & GRAVEL. : large wood chip la	odged in shoe of spoon.		0.0			8	— 8-1/4" HSA borehole
10	2-7-2-2	NA	0"	SILT: aray w/tr f s	and, saturated (0-15").		?				— Bentonite slurry
12	3-3-3-3	0	17"	SILTY CLAY: grayish	pink, v soft (15–17"). chips and roots throughout.					<u> </u>	
16	4-4-6-6	0	19"		ood chip at 13" (0-15"). e, saturated.					- 16	-2" Sch 40 PVC riser
18	3-2-2-3	0	15" 2"	: as above.						= 18 = = = = 20	- 2" Sch 40 10-slot PVC screen (16.5'-31.5') [128.53'-113.53'] - No. 00 sand
	Driller: Nor Logged by: Drilling Star Drilling Com Well Constru	D. ted: plete	Muri 8- ed: 8	ceak, GSC 25–98 8–25–98	Notes: *Instrument reading der scan of split spoon.				GROUNDWATER SCIENCE: CORPORATION		ATION
	Well Develop Well Coords	bed: .: N	9—: 7187	28-98	SWL ~1.1 below grade silty clay unit in shallow Water level declined to SWL 12.72' (9/28/98,	section (12'.	[12.5–16	5.5').	Well L	og:	MW-811D

	ent: IBM N bject No. 9	/lid-	Hud	Auger Drilling Log Ison Valley, Kingston IWSL 5	Location West of former IWSL lagoon				TOC Elev. 147.39' GS Elev. 145.03' Page 2 of 2
Depth Feet	Blow Counts	(mqq)	Recovery	Overburden/Lithologic Description		Graphic	Well Construction Graphic	Depth Feet	Well Construction Details
20 22- 24- 24- 26- 30- 30- 30- 32- 34- 30- 34- 36- 38- 38- 40-			9" 8" 14" 11" 18"	: as above. : as above (0-6"). SILTY CLAY: brownish gray (6-10"). SAND: grayish brown, c w/some vc, clay lam (1/ thick) at 13" (10-14"). SAND: grayish brown, c, loose, saturated. : as above. : as above. : as above (0-5"). SILTY CLAY: grayish brown with pink laminations. Total Depth: 33.0'.	/2"			20 22 24 26 28 30 30 32 34 36 38 40	 8-1/4" HSA borehole 2" Sch 40 10-slot PVC screen (16.5'-31.5') [128.53'-113.53'] No. 00 sand Bottom end cap Collapsed/swelled formation
									R SCIENCES ATION
							Well L	.og:	MW-811D

	ent: IBM N ject No. 9	/id-	Huc	Auger Drilling Ison Valley, Ki 5			ion V	MW-811S /est of former VSL lagoon		TOC Elev. 147.53' GS Elev. 144.93' Page 1 of 1
Depth Feet	Blow Counts	(mdd) * DlJ	Recovery	Over	burden/Lithologic Description		Graphic	Well Constructior Graphic	Depth Feet	Well Construction Details
	Ground Surface HAND AUGERED 2-2-2-2 7-4-2-1 2-2-3-3 2-2	0 0.2 0 NA	9" 14" 3"	SAND: gray, m, sati : as above w/metal : as above w/wood : as above with wo	debris at 5", wood chips at at base of spoon (10-14")		FILL			 4" Locking Royer cap w/2" expansion plug 4" protective steel casing Concrete pad Hydrated bentonite chips 2" Sch 40 PVC riser 8-1/4" HSA borehole 2" Sch 40 10-slot PVC screen (3.0'-13.0') [141.93'-131.93'] No. 00 sand Bottom end cap
	Driller: Nor Logged by: Drilling Star Drilling Com Well Constru Well Develop	D. ted: plete uctio	Muri 8— ed: n:	ceak, GSC 27–98 8–27–98 8–27–98	Notes: *Instrument reading denotes volatile scan of split spoon. SWL ~2.5' below grade until augers penetrated borehole to 9'. Water level			C	ORPOR	<i>R SCIENCES</i> ATION MW-811S
	Well Coords.			765.99)66.94	declined to ~12'. SWL 5.17' (9/25/98, 1	15:07; fr	om TOC).		

	ent: IBM N bject No. S	/id-	Huc) 3.0	Auger Drilling Ison Valley, Kii 5			ion ۱	MW-812 Nest of former WSL lagoon		TOC Elev. 149.31' GS Elev. 146.73' Page 1 of 1
Depth Feet	Blow Counts	FID * (ppm)	Recovery	Over	burden/Lithologic Description		Graphic	Well Construction Graphic	Depth Feet	Well Construction Details
	Ground Surface HAND AUGERED & 44-15-12-8 4-4-8-8 5-11-12-11 14-15-12-11 12-8-7-8	0	15" 11" 11"	and gravel, dry. : as above, large w at base of shoe. SILTY SAND: saturat SAND: grayish brown silty clay lams (~ wood chips) at 6" SAND: grayish brown SILTY CLAY: brown, s	nod (loamy), loose w/tile fraction rood chip at 6", large cobb ed and running. n, m, v loose w/grayish brow 1/2-1" thick) w/organics (ro and 10", saturated. , m, v loose, soft (0-2"). soft (2-13"), varved. Total Depth: 16.0'.	le	FILL			 No. 00 sand Bottom end cap Collapsed/swelled formation
	Driller: Nor Logged by: Drilling Star Drilling Com Well Constru Well Develop	D. ted: plete uctio	Muri 8— ed: { n: {	ceak, GSC 26–98 8–26–98 8–26–98	Notes: *Instrument reading denotes volatile scan of split spoon.		COF	GROUNDWATER SCIEN CORPORATION Well Log: MW-81		
	Well Coords	.: N	7186		SWL 7.71'(9/28/98, 1	13:20; fro	om TO(-	

	ent: IBM N bject No. S	/lid-	Hud	Auger Drilling Ison Valley, Kir 5		Borin Locat	ion s	MW-813 South of former WSL lagoon	7	TOC Elev. 151.79' GS Elev. 149.4' Page 1 of 1
Depth Feet	Blow Counts	FID * (ppm)	Recovery	Overt	ourden/Lithologic Description		Graphic	Well Construction Graphic	Depth Feet	Well Construction Details
$\begin{array}{c} 0 \\ 2 \\ 4 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$	Ground Surface HAND AUGERED 3-3-3-3 2-2-3-2 2-3-3-2 3-2-2-3 3-4-45	0	10" 14" 15" 6"	GRAVEL/SILTY CLAY: : as above (0-3"). SAND/SILTY CLAY: f SILTY CLAY: brown, throughout, saturate : as above, saturate SAND/SILTY CLAY: br (1/4-1/2" thick) s : as above (0-12")	sand w/silty clay lams (3–6 mostly silt w/tr clay, organic ed (6–10"). ed. ed (0–6"). own, f sand w/silty clay lams saturated (6–10").	5"). S	FILL			 -4" Locking Royer cap w/2" expansion plug -4" protective steel casing - Concrete pad - Hydrated bentonite chips -2" Sch 40 PVC riser -8-1/4" HSA borehole -2" Sch 40 10-slot PVC screen (3.5'-13.5') [145.90'-135.90'] - No. 00 sand - Bottom end cap - Collapsed/swelled formation
	Driller: Nor Logged by: Drilling Star Drilling Com	D. ted:	Muri 8—	26–98	Notes: *Instrument reading de scan of split spoon.	notes vo	platile		GROUNDWATER SCIENCES CORPORATION	
	Well Constru Well Develop Well Coords	oed: .: N	9—: 7185	25–98	SWL 10.24' (9/25/98,	09:48; 1	rom TC		og:	MW-813


	ent: IBM M bject No. S	/id-	Huc	Auger Drilling Ison Valley, Kir 5			ion s	MW-814 South of forr WSL lagoon	mer	TOC Elev. 154.10' GS Elev. 151.7' Page 1 of 2
Depth Feet	Blow Counts	(mqq)	Recovery	Ove	erburden/Lithologic Description		Graphic	Well Construc Graphi		Well Construction Details
2	Ground Surface HAND AUGERED & AUGERED			: laminated silty cla : f-m sand and sil	sand with gravel (0-2"). y (2-3"). ty clay (3-6").). nownish gray f sand w/silty					4" Locking Royer cap w/2" expansion plug 4" protective steel casing Concrete pad Hydrated bentonite chips 2" Sch 40 PVC riser 4 8-1/4" HSA borehole
8	2-2-2-2	0	17"	clay laminations (2	rownish gray f sand w/silty 2-5"). brown, laminated (5-17").					2" Sch 40 10-slot PVC screen (4.0'-14.0') 8 [147.7'-137.7']
10=	2-2-2-2	NA	12"	: as above.						No. 00 sand
12	2-2-2-2	NA	12"	: as above.			· · · · · · · · · · · · · · · · · · ·			2
14	1-1-2-2	0	9"	: as above.						Bottom end cap
16	1-1-1-2	0	13"	: as above.						Abandoned original borehole with 6 bentonite slurry. Moved 4' to east
18	1-2-1-2	0	14"	: as above.						to drill and set well.
20	2-1-2-1	0	13"							
	Driller: Nor Logged by: Drilling Star Drilling Com Well Constru Well Develop	D. ted: plete uctio ped:	Muri 8- ed: 2 n: 2 9-2	ceak, GSC 26–98 8–27–98 8–27–98 25–98	Notes: *Instrument reading de scan of split spoon.	notes vol	atile		CORPO	<i>ER SCIENCES RATION</i> : MW-814
	Well Coords			049.60 068.37	SWL 9.84'(9/25/98, (09:26; fro	om TOC	;).		

	ent: IBM I oject No. 9	Mid-	Hud	Auger Drilling Log Ison Valley, Kingston IWSL 5	Boring No. MW-814 TOC Elev. Location South of former IWSL lagoon Pag			
Depth Feet	Blow Counts	FID * (ppm)	Recovery	Overburden/Lithologic Description	Graphic	Well Construction Graphic	Depth Feet	Well Construction Details
20 22= 24= 24= 26= 	2-2-2-2 $2-2-1-1$ $3-2-3-3$ $3-2-3-3$ $1-1-1-1$ $3-3-2-2$ $3-3-2-2$ $3-3-4-4$ $2-3-3-3$ $2-3-3-3$		14" 18" 14" 8" 16" 16" 14" 10" 12"	 : as above. 			20 22 24 24 26 28 30 30 32 30 32 34 36 38 38 40	- Abandoned original borehole with bentonite slurry. Moved 4' to east to drill and set well.
								R SCIENCES ATION
						Well	Log:	MW-814
						Well	Log:	MW-814

	ent: IBM N bject No. S	/id-	Huc) 3.0	Auger Drilling Ison Valley, Kii 5			ion s	MW-815 Southeast WSL lagoor	of former		TOC Elev. 158.65' GS Elev. 156.3' Page 1 of 1
Depth Feet	Blow Counts	(mdd) + Old	Recovery	Ove	rburden/Lithologic Description		Graphic	We Constru Grap	uction	Depth Feet	Well Construction Details
0	<u>Ground</u> <u>Surface</u> HAND AUGERED			FILL: loamy silty sa			FILL			0	 4" Locking Royer cap w/2" expansion plug 4" protective steel casing Concrete pad Hydrated bentonite chips 2" Sch 40 PVC riser 8-1/4" HSA borehole
6	1-2-2-2	0	16"	: as above, with wa	od chip at base.					6	- 2" Sch 40 10-slot PVC screen (4.0'-14.0')
10=	2-4-3-3	0.2	7"	SILTY CLAY/SILTY SA and silty sand with	ND: brownish gray silty clay n gravel.					= 10	[152.3'-142.3]
12	2-3-3-2	0	7"	SILTY CLAY: brownis (1/2" thick) dry.	n gray w/m sand laminations	5				= 12	— No. 00 sand
14	2-2-2-1	0	7"	: as above, saturat	ed at base of spoon.					= 14	—Bottom end cap
16	WOH/1'-1-2	NA	0"								— Collapsed/swelled formation
18	1-1-2-2	0	12"		pink laminations, saturated.					 18	
20	1-2-2-1	0	11"	: as above.						 20	
					Total Depth: 20.0'.						
	Driller: Nor Logged by: Drilling Star	D.	Muri		Notes: *Instrument reading de scan of split spoon.	notes vo	olatile	GRC			R SCIENCES ATION
	Drilling Com Well Constru Well Develop	ictio ed:	n: 3 9-2	8–27–98 25–98	WOH = Weight of Hammer				Well Lo	og:	MW-815
	Well Coords.			507.77 229.10	SWL 12.72'(9/25/98,	09:06; f	rom T(DC).			

	ent: IBM N bject No. S	/id-	Huc)3.0	Auger Drilling Ison Valley, Kii 5			ion E	MW-816 East of for WSL lagoor	mer 1		TOC Elev. 163.97' GS Elev. 161.4' Page 1 of 1
Depth Feet	Blow Counts	(mqq) (ppm)	Recovery	Ove	rburden/Lithologic Description		Graphic	We Constru Grap	uction	Depth Feet	Well Construction Details
		0	15" 10" 7"	gravel and cobbles SAND: brown to bro	wnish orange, c, loamy w/tr [.] gravel. (probably fill). e at top (0-5"). ose, dry (5-10"). saturated.		FILL				 4" Locking Royer cap w/2" expansion plug 4" protective steel casing Concrete pad Hydrated bentonite chips 8-1/4" HSA borehole 2" Sch 40 PVC riser 2" Sch 40 10-slot PVC screen (6.5'-11.5') [154.90'-149.90'] No. 00 sand Bottom end cap Collapsed/swelled formation
	Logged by: Drilling Star Drilling Com Well Constru	D. ted: plete uctio	Muri 9— ed: 9	1-98 9-1-98 9-1-98	Notes: *Instrument reading de scan of split spoon.	notes vo	latile		COR	POR	R SCIENCES ATION MW-816
	Well Develop Well Coords	.: N	7186		SWL 13.04' (10/30/98, 10:38; from TOC).						

1	Air Rotary Drilling ent: IBM Kingston oject No. 93002.33.0002	Log	Boring N Location	o. 816-R Former IWSL Area ~15'E of 816S		TOC Elev. 161.4' GS Elev. 158.7' Page 1 of 3
Depth Feet	Overburden/Li Descripti	thologic on	Graphic	Well Construction Graphic	Depth Feet	Well Construction Details
0	Ground Surface SAND/SILT/CLAY/GRAVEL: mix, top 7', woodchij	os, gravel layers present.			0	Temporary surface completion Hydrated bentonite chips
-	SAND: at 7', dark yellow brown, f—med, tr sil	t and clay.				Bentonite grout
12 - - - 16 -	CLAY: at 12', gray brown to dark gray, varved	d clay, tr silt (site varved cla	ay).		= 12 = = = 16	- 10" stainless-steel casing
12 - 					 	-
					- 28	
 					- <u>36</u> - <u>36</u> - <u>40</u>	-
	Driller: Eichelbergers, Inc. Logged by: C.E. Stoner, GSC Drilling Started: 10-17-00 Drilling Completed: 10-23-00	Notes: Scale interval changes	on page 3.			R SCIENCES RATION
	Well Coords.: N718620.9 E590309.6	Measured DTW: 91.9' Estimated Blown Yield:		Well L	_og:	816-R

	Air Rotary Drilling Log ent: IBM Kingston oject No. 93002.33.0002	Boring No. 8 Location Forr ~15	16-R mer IWSL Area 5'E of 816S	TOC Elev. 161.4' GS Elev. 158.7' Page 3 of 3
Depth Feet	Overburden/Lithologic Description	Graphic	Well لومstruction Graphic	Well Construction L Details
80 90 100 100 110 110 120 130 140 150 160 160 170 180	: slightly softer at 114'.			10 20 30 - 6" open borehole 40 50 60 70
	Note: Scale inverval chang	ges on this page.		ER SCIENCES DRATION
			Well Log	: 816-R

1	ent: IBM M oject No. S	/id-	Hud	Auger Drilling L Ison Valley, King 5			ion E	MW-817 ast of former VSL lagoon		TOC Elev. 162.72 GS Elev. 160.53 Page 1 of 2
Depth Feet	Blow Counts	(mdd) (ppm)	Recovery	Overb	urden/Lithologic Description		Graphic	Well Constructio Graphic	Depth Feet	Well Construction Details
	1-2-2-2 $2-2-2-3$ $1-1-1-2$ $1-2-2-2$ $1-2-1-1$ $2-2-2-2$ $1-2-1-2$	0	3" 9" 12" 11" 12" 11"	SAND: brown to dark SILTY CLAY: gray, soft : as above, varved, so : as above with orang : as above with orang : as above. : as above. : as above. : as above.	aturated.	ghout.				 4" Locking Royer cap w/2" expansion plug 4" protective steel casing Concrete pad Hydrated bentonite chips 2" Sch 40 PVC riser 8-1/4" HSA borehole 2" Sch 40 10-slot PVC screen (4.0'-14.0') [156.53'-146.53'] No. 00 sand Bottom end cap Abandoned original borehole with bentonite slurry. Moved 4' to southeast to drill and set well.
	Driller: Nor Logged by: Drilling Star Drilling Com Well Constru Well Develop	D. ted: plete uctio ped:	Muri 9- ed: 9 n: 9-2	rilling, Inc. ceak, GSC 1-98 9-1-98 9-1-98 25-98	Notes: *Instrument reading de scan of split spoon.	enotes vol	atile		CORPOR	R SCIENCES ATION MW-817
	Well Coords				SWL 13.83'(9/25/98,	08:44; f	rom TO(2).		

	ent: IBM N bject No. 9	Mid-	Hud)3.0	Auger Drilling Log son Valley, Kingston IWSL 5	Boring No. MW-817 Location East of former IWSL lagoon			TOC Elev. 162.72' GS Elev. 160.53' Page 2 of 2
Depth Feet	Blow Counts	(mdd)	Recovery	Overburden/Lithologic Description	Graphic	Well Construction Graphic	Depth Feet	Well Construction Details
20 22= 24= 24= 26= 	2-2-2-2 1-2-1-2 3-2-1-2 3-3-2-2 3-2-3-3		12" 12" 8" 6"	: as above. : as above. : as above. : as above. Total Depth: 30.0'.			20 22 24 24 26 28 30 30 32 34 36 38 36 38 40	Abandoned original borehole with bentonite slurry. Moved 4' to southeast to drill and set well.
								R SCIENCES ATION
						Well L	_og:	MW-817

	ent: IBM N bject No. 9	/lid-	Huc	Auger Drilling Ison Valley, Kir 5			ion E	MW-818 East of former WSL lagoon		TOC Elev. 160.94' GS Elev. 161.31' Page 1 of 1
Depth Feet	Blow Counts	(mqq)	Recovery	Over	burden/Lithologic Description		Graphic	Well Construction Graphic	Depth Feet	Well Construction Details
		0	12" 18"	FILL: brown sand, m fragments, dry. SAND: brown, m, loa : as above. : as above (0-4"). SILTY CLAY: brown, s		ler	FILL ?			 Flushmount completion with 2" watertight sealing cap Concrete pad Hydrated bentonite chips 8-1/4" HSA borehole 2" Sch 40 PVC riser 2" Sch 40 PVC riser 2" Sch 40 10-slot PVC screen (5.5'-10.5') [155.81'-150.81'] No. 00 sand Bottom end cap Collapsed/swelled formation
	Driller: Nor Logged by: Drilling Star Drilling Com Well Constru Well Develop Well Coords	D. ted: nplete uctio ped: .: N	Muri 9- ed: 9 n: 9 NA 7187	ceak, GSC 1–98 9–1–98 9–1–98	Notes: *Instrument reading de scan of split spoon. SWL: Dry.	enotes vo	olatile	COR	POR.	R SCIENCES ATION MW-818

	ent: IBM N pject No. S	/lid-	Huc)3.0	Auger Drilling Lu Ison Valley, King 5		n No IW:	MW-819 hrtheast of SL lagoon	f former		TOC Elev. 154.24' GS Elev. 154.79' Page 1 of 1
Depth Feet	Blow Counts	(mqq) (ppm)	Recovery		urden/Lithologic Description	Graphic	Well Constru Graph	ction	Depth Feet	Well Construction Details
0 2 4 4 6 10 12 14 14 16 18 18 10 12	6-12-12-12 6-5-4-3 2-3-3-3	0	13" 12" 15"	Asphalt (0-0.3'). Cobble subbase (0.3-1 SAND: brown, m, loose : as above without gro : as above, saturated. : as above. SILTY CLAY: brownish gr	w/gravel, dry.					 Flushmount completion with 2" watertight sealing cap Concrete pad Hydrated bentonite chips 8-1/4" HSA borehole 2" Sch 40 PVC riser 2" Sch 40 10-slot PVC screen (7.0'-12.0') [147.79'-142.79'] No. 00 sand Bottom end cap Collapsed/swelled formation
	Driller: Nor Logged by: Drilling Star Drilling Com Well Constru Well Develop Well Coords	D. ted: nplete uctio ped: .: N	Muri 8- ed: n: 9-: 718:	runng, mc. ceak, GSC * 28-98 8-28-98 8-28-98 25-98 788.90	Notes: "Instrument reading d scan of split spoon. WL 8.22' (9/25/98,			COR.	POR.	R SCIENCES ATION MW-819

	ent: IBM M oject No. S	/id-	Huc	Auger Drilling Log Ison Valley, Kingston IWSL 5		. MW-820 North of former Idgoon	TOC Elev. 153.97 GS Elev. 151.7' Page 1 of 1
Depth Feet	Blow Counts	FID * (ppm)	Recovery	Overburden/Lithologic Description	Graphic	Well Construction Graphic	Geb Geb Construction Details
0 2 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Ground Surface HAND AUGERED			FILL: brown clayey loam w/gravel and cobbles; brick fragment at 2'.			4" Locking Royer cap w/2" expansion plug 4" protective steel casing Concrete pad Hydrated bentonite chips 2" Sch 40 PVC riser
				 SAND: brown, f-m w/some silt, soft, loose. : as above, black wood chip at 12", moist at base of spoon. 			8-1/4" HSA borehole
8	1-2-1-2	0	16" 9"	: as above with gravel fragments at base of sp thin lens of clay (1/2" thick) at 5", moist.			<u> </u>
12	1-1-1-1	0	8"	: as above, saturated. : as above w/gravel fragment at base, silty cla lens (1/2" thick) at 6".	v		2" Sch 40 10-slot PVC screen (4.5'-19.5') 12 [147.2'-132.2']
14	1-2-2-2	0	10"	lens (1/2" thick) at 6". : as above with large black wood chip at base of spoon.			
16		0	13"	: as above.			No. 00 sand
18	3-2-1-2	0	4" 7"	SILTY CLAY: dark gray, soft.			Bottom end cap Collapsed/swelled formation
	Driller: Nor Logged by: Drilling Star Drilling Com Well Constru Well Develop Well Coords	D. ted: plete uction ped: .: N	Muri 8- ed: 8 n: 8 9-2 7188	ceak, GSC 25-98 8-25-98 8-25-98 8-25-98 25-98 WOH = Weight of Ham	nmer	GROUNDWA CORI	<i>TER SCIENCES</i> PORATION

	ent: IBM N bject No. S	/lid-	Huc	Auger Drilling Log Ison Valley, Kingston IWSL 5		on E	MW-821 Cast of former WSL lagoon		TOC Elev. 154.37' GS Elev. 154.70' Page 1 of 1
Depth Feet	Blow Counts	FID * (mdd)	Recovery	Overburden/Lithologic Description		Graphic	Well Construction Graphic	Depth Feet	Well Construction Details
2	<u>Ground</u> Surface HAND AUGERED			Asphalt (0-0.3'). Cobble subbase (0.3-0.8'). SAND/SANDY SILT: brown, mostly sand w/some so silt, loose, tr gravel, sl moist.		0000		0	 Flushmount completior with 2" watertight sealing cap Concrete pad Hydrated bentonite chips
6	3-4-4-4	0	24"	SAND: brown, m w/tr gravel, 1/4"—thick silty cl lamination at 15".		0		6 8	— 8—1/4" HSA borehole — 2" Sch 40 PVC riser
10	3-3-4-4	0	12"	: as above, saturated at base. : as above, saturated.	- - - - - - - - - - - - - - - - - - -	0		10	— 2" Sch 40 10-slot PVC screen (8.5'-13.5')
12	1-1-1-1	0	8"	: as above, 0-10", with wood at 6" and 9".	* * * * * * * * * *				[146.20'-141.20'] — No. 00 sand
14	2-3-4-3	0	14"	SILTY CLAY: brown w/organics (10-14"). Total Depth: 14.0'.	- - - - - - -	0			— Bottom end cap — Collapsed/swelled formation
16								16	
20								20	
	Driller: Nor Logged by: Drilling Star Drilling Corr Well Constru Well Develop Well Coords	D. ted: nplete uctio ped:	Muri 8- ed: n: 9-	ceak, GSC 28-98 8-28-98 8-28-98 25-98 25-98 748.77			COR Well	POR	R SCIENCES ATION : MW-821
		IN E:	5902	SWL 9.31' (9/25/98, 1	3:44; fro	m TOC	:).		

	ent: IBM M bject No. S	/lid-	Huc	Auger Drilling Ison Valley, Kir 5			ion V f	MW-822 Vithin bounc ormer IWSL	lary of lagoon		TOC Elev. 154.84 GS Elev. 152.5' Page 1 of 2
Depth Feet	Blow Counts	(mdd)	Recovery	Ονε	erburden/Lithologic Description		Graphic	Well Construc Graph	ction	Depth Feet	Well Construction Details
	Ground Surface			Silty sandy loam. br SAND: brown, f loos	own, loose, dry (0-1.5'). e, dry.	·					 4" Locking Royer cap w/2" expansion plug 4" protective steel casing Concrete pad
2	HAND AUGERED			: trace gravel 3—3.5	5'.		0.0	000000000000000000000000000000000000000	20202020202020		 ─ Hydrated bentonite chips ─ 8−1/4" HSA borehole
6 8	8-12-14-14	0 NA	16"	: as above.				20202020202020	10000000000000000000000000000000000000		
10=	14-19-18-30 AUGERED	0 NA	19"	thick) at 8.5".							— 2" Sch 40 PVC riser
12	10-12-10 8-9-7-12	0 NA 0 NA	8" 13"	: as above, saturate	f-m, odor. I, large wood chip 6-7". :k, m, loose. :s & wood (0-7") and 1/4"-thick						-2" Sch 40 10-slot PVC screen (10.0'-20.0')
16	8-10-5-7	4**	10"	SAND: gray-black, f : as above (0-7"),							[142.5'–132.5']
18	2-3-4-3	1 1 1.5	11"	SAND: grayish black, : as above w/roots silty clay laminatic		thick					— No. 00 sand
20-	3-3-6-5	1	12"							=20	— Bottom end cap
	Driller: Nor Logged by: Drilling Star	D. ted:	Muri 8—	ceak, GSC 27-98	Notes: *Top no. is volatile scan of split spoon; bottom no. is jar headspace scan measurement.			n; GRO	GROUNDWATER SCIENCE CORPORATION		
	Drilling Com Well Constru Well Develop Well Coords	uctio bed: .: N	n: 2 9-2 7187	8–27–98 25–98	** At base of spoon in sandy unit. SWL 11.11' (9/25/98, 10:19; from TOC).				Well Log: MW-		

Soil Auger Drilling Log Client: IBM Mid-Hudson Valley, Kingston IWSL Project No. 93003.05					Boring No. MW-822 Location Within boundary of former IWSL lagoon				TOC Elev. 162.72' GS Elev. 152.5' Page 2 of 2
	Blow bunts	(mqq)	Recovery	Overburden/Lithologic Description	· · · · · · · · · · · · · · · · · · ·	Graphic	Well Construction Graphic	Depth Feet	Well Construction Details
20 	 	0 NA	11"	SILTY CLAY: brown, soft, varved. Total Depth: 22.0'.				20 22 24 26 28 30 30 32 34 36 38 38 38 40	
									R SCIENCES ATION
							Well L	_og:	MW-822

			Hud		Augering Log Valley, Kingston Site		tion N	TMP-6 . Parking Lot Area,	TOC Elev. 177.51
	oject No. S			>				W of B001	Page 1 of 1
Depth Feet	Blow Counts	(mqq) Old	Sample Number	Recovery	Overburden/Lit Descriptic	hologic on	nscs	Well : Construction Graphic 4	Well Construction Details
0	Ground Surface								9" flush-mount manhole w/2" water- tight sealing cap
					Road gravel 0-6" with san SAND: It to mod br, m-f so & silt, tr c-vc sand, tr f g	and, some vf sand	+	M	Concrete
4	HAND AUGERED				 thin silt layer at 1.5'. turning to dk yellow brc m-c sand below 1.5', s silt, tr vc sand and gra 	own to It brown, ome f-vf sand, tr			2 Bentonite chips
4 =									2" Sch 40 PVC riser
8	5-6-6-7	0	1	19"	SAND: dk yel br to mod br, top 7", f-m, some vf, coc sand, some c, tr vc 7-9", w/silt mass at 11", fines 12" w/some organic patch poorly graded at bottom.	arsens to m w/f , silt zone 9—12", to f—m sand belov ies, loose, moist,			8" HSA bore hole
10	7-6-7-7	0	2	24"	poorly graded at bottom. : SAA top 5", sl silty, mo SAND: at 5", dk yel br, f- silt, loose, moist, changes m-c sand w/f 13-16", w change back to dk yel br to f-m below 16", loose,	s to It olive gray, wet at 13", color r, grain size fines wet.			2" Sch 40 10- slot PVC screen (5.0'-15.0')
12	8-7-7-9	0	3	20"	SAND: dk yel br, pred. f w top, incr silt content w/d depth, loose, homogeneou saturated.	/vf, some m near Iepth, fines with	SP		No. 00 sand
14-	2-2-4-4	0	4	16"	: SAA, pred f—m, lit vf so silt masses, homogeneo saturated.				- 14
16	2-2-2-2	0	5	24"	: SAA top 10". SILT: mod yel br, varved, t sand, some clay, dense, : turns br-gray at 19" w/p varves, tr vf sand lams,	plastic, wet. pale red & dk gray dense, plastic, wet.	dk gray MH tic, wet.		Bottom end cap Bentonite chips
18	2-1-1-2	0	6	15"	SILT: brownish gray w/pale dark gray organic-rich va dense, plastic, wet.	red varves, occ. arves, with clay,	мн/сн		Collapsed/swelled formation
20					Total Depth: 1	8.0'.			
20=								F	20
	Driller: Soil Logged by: Drilling Star	S. ted:	Fish 4-	er, (7-9	4	Notes: Hand augered to 6.0'. SWL 9.25' (from grade), 8.98' (TOC) 4/8/94.			TER SCIENCES PORATION
	Drilling Com Well Constru Well Coords	ictio	n: 4	-7-	94				Log: TMP-6
	wen Coords		5910						Revised 8/12/94

	ent: IBM N bject No. S		Huc		Augering Lo Valley, Kir	og ngston Site		ion ,	TMP-7 Approx. 75 feet W. of MW-110SA		TOC Elev. 180.08 Page 1 of 2
Depth Feet	Blow Counts		Sample Number	Recovery	Ove	erburden/Lithologic Description		NSCS	Well Construction Graphic	Depth Feet	Well Construction Details
	Ground Surface				Grass with r	pots to 4", dk yellow bro				0	 4" Locking Royer cap w/2" expansion plug 4" protective steel casing
	HAND AUGERED				and vf-m	sand, some c sand, occ frags below 2', moist.	f-c	SW			— Concrete pad — Bentonite chips
6						br, f—m, some vf, tr s bgeneous, well graded, lo				6	— 2" Sch 40 PVC riser
8	2-2-1-2	0	1	17" 12"	moist. SAND: SAA, s ing, olive g br, loose, f	Igeneous, weil graded, lo Il incr in f-vf, faint color ray and mod yel br in c iomogeneous, well graded r organic masses 9-11'	r band- dk yel d, wet,	SW			—8" HSA bore hole
10=	4-5-5-6	0	3	16"	SAND: SAA to f w/vf & m dusky yel br br below, pr cohesive, no : SAA top 5	o 14", wet, fining w/depth , sl incr silt w/depth, char at 14—15", then mod yel ed. silt w/vf sand below 1 n—plastic, organic—rich. ", wet, ang. siltstone frag	to pred. nge to br & It 5", wet, at 5".	SP		= 10	— 2" Sch 40 10-slot PVC screen (6.0'-21.0')
14=	2-4-4-4	0	4	15"	5-7.5", grad lams, wet, o SAND & SILT: mod yel br,	tr vf sand, pale yel br to des to br gray silt 7.5-9 changes to pale yel br at below 9", pred vf S w/s some dkr color band., cohes br, changes to br gray o	", hor. 9". silt, lt br sive, wet.	ML SM ML		E E E 14	
16	2-3-3-4 0 5 16" change to silt & vf sr sand at 5.5 sand, tr sil below 13",			change to H silt & vf sa sand at 5.5 sand, tr silt below 13", c SAND: 0-5: d	: br to mod yel br at 3", nd grades quickly to silty ", then to pred. f-m, sor below 6", sl incr in f-vf ohesive in silt, loose in sc k yel br, f-m, loose, wet.	lam., vf—f ne vf sand ınd, wet.	SM		16	— No. 00 sand	
18	4-8-8-9	0	6	20"	SILT: at 5", b wet, dense ir SAND & SILT horiz. lamino color before	r gray w/dk yel br sand l silt, sand 6.5–7", bot. conto mod yel br to lt br w/ ted, cohesive, changes to 11", hor. layer absent, br gray vf sand w/silt	ams. 5", act angled. vf sand, br gray wet.	SP ML SM		E E E 18	
20	10-14-14-12	0	7	14"	sive, homog divergent m yel br sand	peneous, w/occ wavy ver lod yel br streaks & f-r -filled fractures w/mod sand filled portions pinch	tical & m dk yel br			E E_20	
	Driller: SoilTesting, Inc. Logged by: S. Fisher, GSC Drilling Started: 4–5–94 Drilling Completed: 4–5–94 Well Construction: 4–5–94 Well Coords.: N718503.33 E591211.60				GSC 4 -94 -94 33	Notes: Hand augered to 6.0 Faint horizontal color layering from 14'-16 SWL 7.90' (from grade 4/6/94, 09:00.	, and gra		<i>COP</i> Geologi	RPOR	R SCIENCES ATION g: TMP-7 Revised 8/12/94

	ent: IBM N bject No. S		Huc		Augering Log Valley, Kingston Site		ion A	TMP-7 Approx. 75 feet N. of MW-110SA		TOC Elev. 180.08' Page 2 of 2
Depth Feet	Blow Counts		Sample Number	Recovery	Overburden/Lithologic Description		USCS	Well Construction Graphic	Depth Feet	Well Construction Details
20		0		14"	SAND & SILT: SAA top 9", wet. SILT: brownish gray w/pale red varves dense, plastic, tr clay, top contact i gradational but rapid, moist to wet.	— — — s at 9", s	SM		20	- 2" Sch 40 10-slot PVC screen (6.0'-21.0') - 8" HSA bore hole - No. 00 sand - Bottom end cap
24=	2-2-2-3	0	9	9"			мн-сн		24	
					Total Depth: 24.0'.					- Collapsed/swelled formation
					Notes:					R SCIENCES ATION
								Geologic	: Lo	g: TMP—7 Revised 8/12/94

Client: IBM Mid-Hudson Valley, Ki Project No. 94006						igston site	Locat	ion Ap	prox. 75'W of	IMP-/	Page 1 of
Feet	Blow Counts	(mqq)	Sample Number	Recovery	Ove	rburden/Lithologic Description		nscs	Well Construction Graphic	Depth Feet	Well Construction Details
)	Ground Surface				yellow brown SAND: pred.	nent to 6", gravel base n sand to 1.5'. mod yel brown to dk yel t silt, loose, moist.				0	— 9" flush—mount manhole w/2" wate tight sealing cap — Concrete
	HAND AUGERED				1-111 w/c, 1	t Siit, 1005e, Moist.		SW			—Bentonite chips — 2"Sch 40 PVC riser
					: turning m below 5',	ore olive gray to dk yel loose, moist.	brown			E 6	
	3-4-5-5	0	1	12"	sand, some	brown to It olive gray, f vf, tr silt, loose, variable c. organic—rich mass (du st.	e color,	SP			—8" HSA bore hole
	5-5-5-6	0	2	20"	w/silt-poor z ol gray & du bands/layers some c belov masses, loose	occ. silt-rich zones, grad. ones var. color, mod yel br sky yel br, sl cohesive, wet horiz., turning pred. m w/f v 12" w/occ mod yel br sil e, wet, poorly to mod grade 0-4", mod yel br w/vf-	to It , color sand, t/clay d.	SP-SM		= 0	— 2" Sch 40 10- slot PVC screen (5.0'-15.0')
2	2-2-2-3	0	3	17"	horiz. lamin SAND: below c, fining do	ated, dense, sl plastic, w 4", dk yel brown f-m, s wnward to pred. f sand y d, loose, wet.	et. ome	SP		E E 12	
4	2-2-3-5	0	4	16"	f-vf sand z 9-11", loose	br, f-m, some vf, tr sil one w/grad. contacts be e sl cohesive in finer zond ay mass, mod. yel br, we	tween es, occ	SP-SM		= 14	— No. 00 sand
6	e			some-lit vf change to t SILT & SAND:	br to It br, oxidized, varv sand, cohesive, dense, sl or gray at 13", pred silt. vf sand, no varves, org	plastic, anic	ML		E 16	—Bottom end cap	
	7-8-9-9	0	6	14"	SILT & SAND: zones w/gro clay lams b	.5", black, sl plastic, wet w/occ. horiz. silt/clay- ad. contacts, distinct hori etween 10-11", dense, co tic to non-plastic, wet	rich z. silt/	SM		18	—Bentonite chips
	7-8-7-5	0	7	14"	gray silt,	", grading to pred. browr some—lit clay, occ. pale astic, dense, wet.		MH-CH		20	
Driller: SoilTesting, Inc. Logged by: S. Fisher, GSC Drilling Started: 4-6-94			GSC	Notes: Hand augered to 6.0'.					R SCIENCES ATION		
Drilling Completed: 4-6-94 Well Construction: 4-6-94								Geologi	c Lo	g: TMP-8	
Well Coords.: N718499.12 E591143.57						SWL 7.9' (from grade), 7.5' (TOC), 4/6/94.					

Clie Pro	ent: IBM ject No.	9400	Hud)6	son	Augering La Valley, Kii	og ngston Site			TMP-8 pprox. 75'W of 1		OC Elev. 177.50' Page 2 of 2
Depth Feet	Blow Counts	(mqq) UIA	Sample Number	Recovery	Ove	erburden/Lithologic Description		USCS	Well Construction Graphic	Depth Feet	Well Construction Details
20 22 24 24 26 28 30 32 30 32 34 40	2-1-2-2	0	8		vf sand.	h gray w/pale red and o ck varves, clayey, v dens sandy zones 3-8" and 1 et in silt & clay, wet in Total Depth: 22.0'.	occ. se, v. 8–19", silt &	MH-CH		20 22 24 26 28 30 30 30 32 34 36 38 40	-8" HSA bore hole
											2 SCIENCES ATION
									Geologic	e Log	g: TMP-8

ATTACHMENT B

INSTALLED WELL STATUS BY OPERABLE UNIT

202-1R/S OU1 Non-GMP 202-2S OU1 Non-GMP 202-3S OU1 Non-GMP LAYNE NO. 2 OU1 Non-GMP MW-4R OU1 Non-GMP MW-4R OU1 Non-GMP MW-107S OU1 Non-GMP MW-108S OU1 GMP MW-173S OU1 GMP MW-174S OU1 GMP MW-189S OU1 GMP MW-189S OU1 Non-GMP MW-110AS OU3 Non-GMP MW-111S OU3 Non-GMP MW-112S OU3 Non-GMP MW-113S OU3 Non-GMP MW-114S OU3 Non-GMP MW-117S OU3 Non-GMP MW-117S OU3 Non-GMP MW-117S OU3 Non-GMP MW-117S OU3 Non-GMP MW-178 OU3 Non-GMP MW-178S OU3 GMP <	WELL ID	Operable Unit	Monitoring Status
202-3S OU1 Non-GMP LAYNE NO. 2 OU1 Non-GMP MW-4R OU1 Non-GMP MW-4R OU1 Non-GMP MW-5S OU1 Non-GMP MW-107S OU1 GMP MW-108S OU1 GMP MW-173S OU1 GMP MW-174S OU1 GMP MW-174S OU1 GMP MW-113S OU3 Non-GMP MW-110AS OU3 Non-GMP MW-111S OU3 Non-GMP MW-112S OU3 Non-GMP MW-113S OU3 Non-GMP MW-114S OU3 Non-GMP MW-117S OU3 Non-GMP MW-117S OU3 Non-GMP MW-117S OU3 Non-GMP MW-175S OU3 Non-GMP MW-178 OU3 Non-GMP MW-178 OU3 GMP MW-178S OU3 GMP <t< td=""><td></td><td></td><td>Non-GMP</td></t<>			Non-GMP
LAYNE NO. 2 OU1 Non-GMP MW-4R OU1 Non-GMP MW-5S OU1 Non-GMP MW-107S OU1 GMP MW-108S OU1 GMP MW-108S OU1 GMP MW-173S OU1 GMP MW-174S OU1 GMP MW-174S OU1 GMP MW-189S OU1 GMP MW-189S OU1 Non-GMP MW-110AS OU3 Non-GMP MW-111S OU3 Non-GMP MW-112S OU3 Non-GMP MW-115S OU3 Non-GMP MW-115S OU3 Non-GMP MW-117S OU3 GMP MW-117S OU3 GMP MW-117S OU3 GMP	202-2S	OU1	Non-GMP
MW-4R OU1 Non-GMP MW-5S OU1 Non-GMP MW-107S OU1 Non-GMP MW-108S OU1 GMP MW-108 OU1 GMP MW-108 OU1 GMP MW-173S OU1 GMP MW-174S OU1 GMP MW-174S OU1 GMP MW-189S OU1 GMP MW-110AS OU3 Non-GMP MW-111S OU3 Non-GMP MW-112S OU3 Non-GMP MW-114S OU3 Non-GMP MW-115S OU3 Non-GMP MW-116S OU3 Non-GMP MW-117S OU3 Non-GMP MW-178 OU3 Non-GMP MW-178 OU3 Non-GMP MW-178 OU3 GMP MW-178 OU3 GMP MW-178 OU3 GMP MW-181 OU3 GMP MW-2181<	202-3S	OU1	Non-GMP
MW-5S OU1 Non-GMP MW-107S OU1 GMP MW-108S OU1 GMP MW-108 OU1 GMP MW-108 OU1 GMP MW-173S OU1 GMP MW-174S OU1 GMP MW-189S OU1 GMP MW-118S OU3 Non-GMP MW-110AS OU3 Non-GMP MW-111S OU3 Non-GMP MW-112S OU3 Non-GMP MW-114S OU3 Non-GMP MW-115S OU3 Non-GMP MW-116S OU3 Non-GMP MW-175 OU3 Non-GMP MW-178 OU3 Non-GMP MW-178 OU3 GMP MW-178 OU3 Non-GMP MW-178 OU3 GMP MW-178 OU3 GMP MW-178 OU3 GMP MW-232 OU3 GMP MW-232			Non-GMP
MW-107S OU1 Non-GMP MW-108S OU1 GMP MW-10S OU1 GMP MW-173S OU1 GMP MW-174S OU1 GMP MW-189S OU1 GMP MW-189S OU1 Non-GMP MW-110AS OU3 Non-GMP MW-111S OU3 Non-GMP MW-112S OU3 Non-GMP MW-114S OU3 Non-GMP MW-115S OU3 Non-GMP MW-116S OU3 Non-GMP MW-117S OU3 Non-GMP MW-117S OU3 Non-GMP MW-178 OU3 Non-GMP MW-177S OU3 GMP MW-178B OU3 GMP MW-182S OU3 GMP MW-182S OU3 GMP MW-232M OU3 GMP MW-232S OU3 GMP MW-260S OU3 GMP MW	MW-4R	OU1	Non-GMP
MW-108S OU1 GMP MW-10S OU1 GMP MW-173S OU1 GMP MW-174S OU1 GMP MW-189S OU1 MOn-GMP MW-10AS OU3 Non-GMP MW-110AS OU3 Non-GMP MW-111S OU3 Non-GMP MW-112S OU3 Non-GMP MW-114S OU3 Non-GMP MW-115S OU3 Non-GMP MW-116S OU3 Non-GMP MW-117S OU3 Non-GMP MW-117S OU3 Non-GMP MW-175S OU3 Non-GMP MW-177S OU3 GMP MW-178M OU3 GMP MW-178M OU3 GMP MW-181S OU3 GMP MW-182S OU3 GMP MW-232M OU3 GMP MW-232S OU3 GMP MW-260S OU3 Inaccessible	MW-5S	OU1	Non-GMP
MW-10S OU1 GMP MW-173S OU1 GMP MW-174S OU1 GMP MW-189S OU1 GMP MW-609S OU1 Non-GMP MW-110AS OU3 Non-GMP MW-111S OU3 Non-GMP MW-112S OU3 Non-GMP MW-114S OU3 Non-GMP MW-115S OU3 Non-GMP MW-116S OU3 Non-GMP MW-117S OU3 Non-GMP MW-117S OU3 Non-GMP MW-175S OU3 Non-GMP MW-176S OU3 GMP MW-178M OU3 GMP MW-178S OU3 GMP MW-181S OU3 GMP MW-182S OU3 GMP MW-232M OU3 GMP MW-250S OU3 GMP MW-250S OU3 Inaccessible MW-251S OU3 Non-GMP	MW-107S	OU1	Non-GMP
MW-173S OU1 GMP MW-174S OU1 GMP MW-189S OU1 RMP MW-609S OU1 Non-GMP MW-110AS OU3 Non-GMP MW-111S OU3 Non-GMP MW-112S OU3 Non-GMP MW-113S OU3 Non-GMP MW-114S OU3 Non-GMP MW-115S OU3 Non-GMP MW-117S OU3 Non-GMP MW-117S OU3 Non-GMP MW-175S OU3 Non-GMP MW-176S OU3 RMP MW-177S OU3 GMP MW-178M OU3 GMP MW-178S OU3 GMP MW-181S OU3 GMP MW-182S OU3 GMP MW-232M OU3 GMP MW-250S OU3 GMP MW-250S OU3 Inaccessible MW-250S OU3 Non-GMP	MW-108S	OU1	GMP
MW-174S OU1 GMP MW-189S OU1 GMP MW-609S OU1 Non-GMP MW-110AS OU3 Non-GMP MW-111S OU3 Non-GMP MW-112S OU3 Non-GMP MW-113S OU3 Non-GMP MW-114S OU3 Non-GMP MW-115S OU3 Non-GMP MW-117S OU3 Non-GMP MW-117S OU3 Non-GMP MW-175 OU3 Non-GMP MW-177S OU3 GMP MW-178 OU3 GMP MW-178 OU3 GMP MW-178 OU3 GMP MW-178 OU3 GMP MW-181S OU3 GMP MW-232M OU3 GMP MW-232S OU3 GMP MW-250M OU3 GMP MW-251S OU3 Inaccessible MW-261S OU3 Non-GMP	MW-10S	OU1	GMP
MW-189S OU1 GMP MW-609S OU1 Non-GMP MW-110AS OU3 Non-GMP MW-111S OU3 Non-GMP MW-112S OU3 Non-GMP MW-113S OU3 Non-GMP MW-114S OU3 Non-GMP MW-115S OU3 Non-GMP MW-116S OU3 Non-GMP MW-117S OU3 Non-GMP MW-175S OU3 Non-GMP MW-177S OU3 GMP MW-178M OU3 GMP MW-178M OU3 GMP MW-178S OU3 GMP MW-181S OU3 GMP MW-182S OU3 GMP MW-232M OU3 GMP MW-250M OU3 GMP MW-251S OU3 Inaccessible MW-251S OU3 Non-GMP MW-260S OU3 Non-GMP MW-261S OU3 Non-GMP	MW-173S	OU1	GMP
MW-609S OU1 Non-GMP MW-110AS OU3 Non-GMP MW-111S OU3 Non-GMP MW-112S OU3 Non-GMP MW-113S OU3 Non-GMP MW-114S OU3 Non-GMP MW-114S OU3 Non-GMP MW-115S OU3 Non-GMP MW-117S OU3 Non-GMP MW-175S OU3 Non-GMP MW-175S OU3 Non-GMP MW-177S OU3 GMP MW-178 OU3 GMP MW-181S OU3 GMP MW-232M OU3 GMP MW-232S OU3 GMP MW-250N OU3 GMP MW-250S OU3 Inaccessible MW-251S OU3 Non-GMP	MW-174S	OU1	GMP
MW-110AS OU3 Non-GMP MW-111S OU3 Non-GMP MW-112S OU3 Non-GMP MW-113S OU3 Non-GMP MW-114S OU3 Non-GMP MW-114S OU3 Non-GMP MW-115S OU3 Non-GMP MW-116S OU3 Non-GMP MW-117S OU3 Non-GMP MW-175S OU3 Non-GMP MW-176S OU3 GMP MW-177S OU3 GMP MW-178S OU3 GMP MW-178S OU3 GMP MW-178S OU3 GMP MW-178S OU3 GMP MW-218S OU3 GMP MW-232M OU3 GMP MW-232S OU3 Non-GMP MW-232S OU3 GMP MW-250S OU3 Inaccessible MW-251S OU3 Inaccessible MW-261S OU3 Non-GMP	MW-189S	OU1	GMP
MW-111S OU3 Non-GMP MW-112S OU3 Non-GMP MW-113S OU3 Non-GMP MW-114S OU3 Non-GMP MW-115S OU3 Non-GMP MW-116S OU3 Non-GMP MW-117S OU3 Non-GMP MW-117S OU3 Non-GMP MW-17S OU3 GMP MW-177S OU3 GMP MW-178M OU3 GMP MW-178S OU3 GMP MW-181S OU3 GMP MW-182S OU3 GMP MW-232M OU3 GMP MW-232S OU3 Non-GMP MW-232S OU3 Non-GMP MW-250S OU3 Inaccessible MW-251S OU3 Inaccessible MW-260S OU3 Non-GMP MW-261S OU3 Non-GMP MW-262S OU3 Non-GMP MW-264S OU3 Non-GMP	MW-609S	OU1	Non-GMP
MW-112S OU3 Non-GMP MW-113S OU3 Non-GMP MW-114S OU3 Non-GMP MW-115S OU3 Non-GMP MW-116S OU3 Non-GMP MW-117S OU3 Non-GMP MW-117S OU3 Non-GMP MW-17S OU3 GMP MW-17S OU3 GMP MW-178S OU3 GMP MW-178M OU3 GMP MW-178S OU3 GMP MW-181S OU3 GMP MW-182S OU3 GMP MW-232M OU3 GMP MW-232S OU3 Non-GMP MW-232S OU3 Non-GMP MW-250M OU3 GMP MW-250S OU3 Inaccessible MW-251S OU3 Inaccessible MW-260S OU3 Non-GMP MW-260S OU3 Non-GMP MW-260S OU3 Non-GMP	MW-110AS	OU3	Non-GMP
MW-113S OU3 Non-GMP MW-114S OU3 Non-GMP MW-115S OU3 Non-GMP MW-116S OU3 Non-GMP MW-117S OU3 Non-GMP MW-117S OU3 Non-GMP MW-175S OU3 Non-GMP MW-176S OU3 GMP MW-177S OU3 GMP MW-178M OU3 GMP MW-178S OU3 GMP MW-182S OU3 GMP MW-182S OU3 GMP MW-232M OU3 Non-GMP MW-232S OU3 Non-GMP MW-232S OU3 Non-GMP MW-250M OU3 GMP MW-250S OU3 Inaccessible MW-251M OU3 Inaccessible MW-251S OU3 Non-GMP MW-260S OU3 Non-GMP MW-261S OU3 Non-GMP MW-262S OU3 Non-GMP	MW-111S	OU3	Non-GMP
MW-113S OU3 Non-GMP MW-114S OU3 Non-GMP MW-115S OU3 Non-GMP MW-116S OU3 Non-GMP MW-117S OU3 Non-GMP MW-117S OU3 Non-GMP MW-175S OU3 Non-GMP MW-176S OU3 GMP MW-177S OU3 GMP MW-178M OU3 GMP MW-178S OU3 GMP MW-182S OU3 GMP MW-182S OU3 GMP MW-232M OU3 Non-GMP MW-232S OU3 Non-GMP MW-232S OU3 Non-GMP MW-250M OU3 GMP MW-250S OU3 Inaccessible MW-251M OU3 Inaccessible MW-251S OU3 Non-GMP MW-260S OU3 Non-GMP MW-261S OU3 Non-GMP MW-262S OU3 Non-GMP	MW-112S	OU3	Non-GMP
MW-115S OU3 Non-GMP MW-116S OU3 Non-GMP MW-117S OU3 Non-GMP MW-175S OU3 GMP MW-176S OU3 GMP MW-177S OU3 GMP MW-178S OU3 GMP MW-178S OU3 GMP MW-178S OU3 GMP MW-181S OU3 GMP MW-232M OU3 GMP MW-232S OU3 Non-GMP MW-232S OU3 Non-GMP MW-250M OU3 GMP MW-250S OU3 GMP MW-250S OU3 Inaccessible MW-251S OU3 Inaccessible MW-260S OU3 Non-GMP MW-261S OU3 Non-GMP MW-263S OU3 Non-GMP MW-264S OU3 Non-GMP MW-264S OU3 Non-GMP MW-264S OU3 Non-GMP	MW-113S	OU3	Non-GMP
MW-116S OU3 Non-GMP MW-117S OU3 Non-GMP MW-175S OU3 GMP MW-176S OU3 GMP MW-177S OU3 GMP MW-178M OU3 GMP MW-178S OU3 GMP MW-178S OU3 GMP MW-181S OU3 GMP MW-182S OU3 GMP MW-232M OU3 GMP MW-232S OU3 Non-GMP MW-232S OU3 Non-GMP MW-250S OU3 GMP MW-250S OU3 GMP MW-251S OU3 Inaccessible MW-255S OU3 Non-GMP MW-260S OU3 Non-GMP MW-261S OU3 Non-GMP MW-263S OU3 Non-GMP MW-264S OU3 Non-GMP MW-265S OU3 Non-GMP MW-266S OU3 Non-GMP	MW-114S		
MW-117S OU3 Non-GMP MW-175S OU3 GMP MW-176S OU3 GMP MW-177S OU3 GMP MW-178M OU3 GMP MW-178S OU3 GMP MW-178S OU3 GMP MW-181S OU3 GMP MW-182S OU3 GMP MW-232M OU3 Non-GMP MW-232S OU3 Non-GMP MW-250M OU3 GMP MW-250S OU3 GMP MW-251S OU3 Inaccessible MW-251S OU3 Inaccessible MW-260S OU3 Non-GMP MW-261S OU3 Non-GMP MW-262S OU3 Non-GMP MW-263S OU3 Non-GMP MW-264S OU3 Non-GMP MW-265S OU3 Non-GMP MW-266S OU3 Non-GMP MW-266S OU3 Non-GMP	MW-115S	OU3	Non-GMP
MW-175S OU3 Non-GMP MW-176S OU3 GMP MW-177S OU3 GMP MW-178M OU3 Non-GMP MW-178S OU3 GMP MW-178S OU3 GMP MW-178S OU3 GMP MW-181S OU3 GMP MW-182S OU3 GMP MW-232M OU3 Non-GMP MW-232S OU3 Non-GMP MW-250M OU3 GMP MW-250S OU3 GMP MW-250S OU3 Inaccessible MW-251S OU3 Inaccessible MW-260S OU3 Non-GMP MW-261S OU3 Non-GMP MW-263S OU3 Non-GMP MW-264S OU3 Non-GMP MW-264S OU3 Non-GMP MW-264S OU3 Non-GMP MW-266S OU3 Non-GMP MW-266S OU3 Non-GMP	MW-116S	OU3	Non-GMP
MW-176S OU3 GMP MW-177S OU3 GMP MW-178M OU3 Non-GMP MW-178S OU3 GMP MW-178S OU3 GMP MW-178S OU3 GMP MW-181S OU3 GMP MW-182S OU3 Non-GMP MW-232M OU3 Non-GMP MW-232S OU3 Non-GMP MW-250M OU3 GMP MW-250S OU3 GMP MW-250S OU3 Inaccessible MW-251M OU3 Inaccessible MW-251S OU3 Non-GMP MW-260S OU3 Non-GMP MW-261S OU3 Non-GMP MW-263S OU3 Non-GMP MW-264S OU3 Non-GMP MW-265S OU3 Non-GMP MW-266S OU3 Non-GMP MW-266S OU3 Non-GMP MW-266S OU3 Non-GMP </td <td>MW-117S</td> <td>OU3</td> <td>Non-GMP</td>	MW-117S	OU3	Non-GMP
MW-176S OU3 GMP MW-177S OU3 GMP MW-178M OU3 Non-GMP MW-178S OU3 GMP MW-178S OU3 GMP MW-178S OU3 GMP MW-181S OU3 GMP MW-182S OU3 Non-GMP MW-232M OU3 Non-GMP MW-232S OU3 Non-GMP MW-250M OU3 GMP MW-250S OU3 GMP MW-250S OU3 Inaccessible MW-251M OU3 Inaccessible MW-251S OU3 Non-GMP MW-260S OU3 Non-GMP MW-261S OU3 Non-GMP MW-263S OU3 Non-GMP MW-264S OU3 Non-GMP MW-265S OU3 Non-GMP MW-266S OU3 Non-GMP MW-266S OU3 Non-GMP MW-266S OU3 Non-GMP </td <td>MW-175S</td> <td>OU3</td> <td>Non-GMP</td>	MW-175S	OU3	Non-GMP
MW-178M OU3 Non-GMP MW-178S OU3 GMP MW-181S OU3 GMP MW-182S OU3 GMP MW-232M OU3 Non-GMP MW-232S OU3 Non-GMP MW-250M OU3 GMP MW-250S OU3 GMP MW-250S OU3 GMP MW-251M OU3 Inaccessible MW-251S OU3 Inaccessible MW-251S OU3 Non-GMP MW-260S OU3 Non-GMP MW-261S OU3 Non-GMP MW-262S OU3 Non-GMP MW-263S OU3 Non-GMP MW-264S OU3 Non-GMP MW-265S OU3 Non-GMP MW-266S OU3 Non-GMP <td>MW-176S</td> <td>OU3</td> <td></td>	MW-176S	OU3	
MW-178M OU3 Non-GMP MW-178S OU3 GMP MW-181S OU3 GMP MW-182S OU3 GMP MW-232M OU3 Non-GMP MW-232S OU3 Non-GMP MW-250M OU3 GMP MW-250S OU3 GMP MW-250S OU3 GMP MW-251M OU3 Inaccessible MW-251S OU3 Inaccessible MW-251S OU3 Non-GMP MW-260S OU3 Non-GMP MW-261S OU3 Non-GMP MW-262S OU3 Non-GMP MW-263S OU3 Non-GMP MW-264S OU3 Non-GMP MW-265S OU3 Non-GMP MW-266S OU3 Non-GMP <td>MW-177S</td> <td>OU3</td> <td>GMP</td>	MW-177S	OU3	GMP
MW-178S OU3 GMP MW-181S OU3 GMP MW-182S OU3 GMP MW-232M OU3 Non-GMP MW-232S OU3 Non-GMP MW-250M OU3 GMP MW-250S OU3 GMP MW-250S OU3 GMP MW-250S OU3 Inaccessible MW-251M OU3 Inaccessible MW-251S OU3 Inaccessible MW-255S OU3 Non-GMP MW-260S OU3 Non-GMP MW-261S OU3 Non-GMP MW-262S OU3 Non-GMP MW-263S OU3 Non-GMP MW-264S OU3 Non-GMP MW-265S OU3 Non-GMP MW-266S OU3 Non-GMP MW-266S OU3 Non-GMP MW-266S OU3 Non-GMP MW-266S OU3 Non-GMP MW-268S OU3 Non-GM	MW-178M		Non-GMP
MW-181S OU3 GMP MW-182S OU3 GMP MW-232M OU3 Non-GMP MW-232S OU3 Non-GMP MW-232S OU3 GMP MW-232S OU3 GMP MW-232S OU3 GMP MW-250M OU3 GMP MW-250S OU3 GMP MW-251S OU3 Inaccessible MW-251S OU3 Inaccessible MW-255S OU3 Non-GMP MW-260S OU3 Non-GMP MW-261S OU3 Non-GMP MW-263S OU3 Non-GMP MW-263S OU3 Non-GMP MW-264S OU3 Non-GMP MW-265S OU3 Non-GMP MW-266S OU3 Non-GMP MW-266S OU3 Non-GMP MW-266S OU3 Non-GMP MW-268S OU3 Non-GMP MW-268S OU3 Non-GMP	MW-178S	OU3	GMP
MW-232MOU3Non-GMPMW-232SOU3Non-GMPMW-250MOU3GMPMW-250SOU3GMPMW-251MOU3InaccessibleMW-251SOU3InaccessibleMW-251SOU3Non-GMPMW-260SOU3Non-GMPMW-261SOU3Non-GMPMW-262SOU3Non-GMPMW-263SOU3Non-GMPMW-264SOU3Non-GMPMW-265SOU3Non-GMPMW-265SOU3Non-GMPMW-266SOU3Non-GMPMW-266SOU3Non-GMPMW-267SOU3GMPMW-269SOU3GMPMW-269SOU3Non-GMPMW-270SOU3Non-GMP		OU3	GMP
MW-232SOU3Non-GMPMW-250MOU3GMPMW-250SOU3GMPMW-250SOU3InaccessibleMW-251MOU3InaccessibleMW-251SOU3InaccessibleMW-255SOU3Non-GMPMW-260SOU3Non-GMPMW-261SOU3Non-GMPMW-262SOU3Non-GMPMW-263SOU3Non-GMPMW-264SOU3Non-GMPMW-265SOU3Non-GMPMW-266SOU3Non-GMPMW-266SOU3Non-GMPMW-267SOU3GMPMW-269SOU3GMPMW-269SOU3Non-GMP	MW-182S	OU3	GMP
MW-250MOU3GMPMW-250SOU3GMPMW-251MOU3InaccessibleMW-251SOU3InaccessibleMW-255SOU3Non-GMPMW-260SOU3Non-GMPMW-261SOU3Non-GMPMW-262SOU3Non-GMPMW-263SOU3Non-GMPMW-264SOU3Non-GMPMW-264SOU3Non-GMPMW-265SOU3Non-GMPMW-266SOU3Non-GMPMW-266SOU3Non-GMPMW-268SOU3GMPMW-269SOU3GMPMW-270SOU3Non-GMP	MW-232M	OU3	Non-GMP
MW-250SOU3GMPMW-251MOU3InaccessibleMW-251SOU3InaccessibleMW-255SOU3Non-GMPMW-260SOU3Non-GMPMW-261SOU3Non-GMPMW-262SOU3Non-GMPMW-263SOU3Non-GMPMW-264SOU3Non-GMPMW-265SOU3Non-GMPMW-265SOU3Non-GMPMW-266SOU3Non-GMPMW-267SOU3GMPMW-268SOU3GMPMW-269SOU3GMPMW-270SOU3Non-GMP	MW-232S	OU3	Non-GMP
MW-251MOU3InaccessibleMW-251SOU3InaccessibleMW-255SOU3Non-GMPMW-260SOU3Non-GMPMW-261SOU3Non-GMPMW-262SOU3Non-GMPMW-263SOU3Non-GMPMW-264SOU3Non-GMPMW-265SOU3Non-GMPMW-266SOU3Non-GMPMW-266SOU3Non-GMPMW-267SOU3GMPMW-269SOU3GMPMW-269SOU3Non-GMP	MW-250M	OU3	GMP
MW-251SOU3InaccessibleMW-255SOU3Non-GMPMW-260SOU3Non-GMPMW-261SOU3Non-GMPMW-262SOU3Non-GMPMW-263SOU3Non-GMPMW-264SOU3Non-GMPMW-265SOU3Non-GMPMW-266SOU3Non-GMPMW-266SOU3Non-GMPMW-267SOU3GMPMW-269SOU3GMPMW-269SOU3Non-GMP	MW-250S	OU3	GMP
MW-255SOU3Non-GMPMW-260SOU3Non-GMPMW-261SOU3Non-GMPMW-262SOU3Non-GMPMW-263SOU3Non-GMPMW-264SOU3Non-GMPMW-265SOU3Non-GMPMW-266SOU3Non-GMPMW-267SOU3GMPMW-268SOU3GMPMW-269SOU3GMPMW-270SOU3Non-GMP	MW-251M	OU3	Inaccessible
MW-260SOU3Non-GMPMW-261SOU3Non-GMPMW-262SOU3Non-GMPMW-263SOU3Non-GMPMW-264SOU3Non-GMPMW-265SOU3Non-GMPMW-266SOU3Non-GMPMW-267SOU3GMPMW-268SOU3GMPMW-269SOU3GMPMW-270SOU3Non-GMP	MW-251S	OU3	Inaccessible
MW-261SOU3Non-GMPMW-262SOU3Non-GMPMW-263SOU3Non-GMPMW-264SOU3Non-GMPMW-265SOU3Non-GMPMW-266SOU3Non-GMPMW-267SOU3GMPMW-268SOU3GMPMW-269SOU3GMPMW-270SOU3Non-GMP	MW-255S	OU3	Non-GMP
MW-261SOU3Non-GMPMW-262SOU3Non-GMPMW-263SOU3Non-GMPMW-264SOU3Non-GMPMW-265SOU3Non-GMPMW-266SOU3Non-GMPMW-267SOU3GMPMW-268SOU3GMPMW-269SOU3GMPMW-270SOU3Non-GMP	MW-260S	OU3	Non-GMP
MW-262S OU3 Non-GMP MW-263S OU3 Non-GMP MW-264S OU3 Non-GMP MW-265S OU3 Non-GMP MW-266S OU3 Non-GMP MW-266S OU3 Non-GMP MW-266S OU3 Non-GMP MW-267S OU3 GMP MW-268S OU3 GMP MW-269S OU3 GMP MW-270S OU3 Non-GMP	MW-261S	OU3	
MW-264S OU3 Non-GMP MW-265S OU3 Non-GMP MW-266S OU3 Non-GMP MW-267S OU3 GMP MW-268S OU3 GMP MW-269S OU3 GMP MW-270S OU3 MP	MW-262S	OU3	
MW-265S OU3 Non-GMP MW-266S OU3 Non-GMP MW-267S OU3 GMP MW-268S OU3 Non-GMP MW-269S OU3 GMP MW-270S OU3 GMP	MW-263S	OU3	Non-GMP
MW-266S OU3 Non-GMP MW-267S OU3 GMP MW-268S OU3 Non-GMP MW-269S OU3 GMP MW-270S OU3 Non-GMP	MW-264S	OU3	Non-GMP
MW-266S OU3 Non-GMP MW-267S OU3 GMP MW-268S OU3 Non-GMP MW-269S OU3 GMP MW-270S OU3 Non-GMP	MW-265S	OU3	Non-GMP
MW-268S OU3 Non-GMP MW-269S OU3 GMP MW-270S OU3 Non-GMP	MW-266S		Non-GMP
MW-268S OU3 Non-GMP MW-269S OU3 GMP MW-270S OU3 Non-GMP			GMP
MW-269S OU3 GMP MW-270S OU3 Non-GMP			Non-GMP
MW-270S OU3 Non-GMP			GMP
			Non-GMP
	MW-271S	OU3	GMP

MW-272S OU3 GMP MW-273S OU3 Non-GMP MW-274S OU3 Non-GMP MW-275S OU3 GMP MW-276S OU3 GMP MW-277S OU3 GMP MW-279S OU3 GMP MW-281S OU3 Non-GMP MW-282S OU3 Non-GMP MW-288S OU3 Non-GMP MW-288S OU3 Non-GMP MW-280S OU3 Non-GMP MW-305S OU3 Non-GMP MW-305S OU3 Non-GMP MW-315S OU3 Non-GMP MW-320S OU3 Non-GMP MW-321R OU3 Non-GMP MW-323R OU3 Non-GMP MW-502S OU3 Non-GMP MW-503S OU3 Non-GMP MW-504S OU3 Non-GMP MW-505S OU3 Non-GMP MW-506S OU3 Non-GMP	WELL ID	Operable Unit	Monitoring Status
MW-274S OU3 Non-GMP MW-275S OU3 GMP MW-276S OU3 GMP MW-277S OU3 GMP MW-279S OU3 GMP MW-281S OU3 Non-GMP MW-282S OU3 Non-GMP MW-288S OU3 Non-GMP MW-288S OU3 Non-GMP MW-288S OU3 Non-GMP MW-305S OU3 Non-GMP MW-305S OU3 Non-GMP MW-305S OU3 Non-GMP MW-300S OU3 Non-GMP MW-302S OU3 Non-GMP MW-323R OU3 Non-GMP MW-323R OU3 Non-GMP MW-502S OU3 Non-GMP MW-503S OU3 Non-GMP MW-504S OU3 GMP MW-505S OU3 Non-GMP MW-601S OU3 GMP MW-602S OU3 Non-GMP <th>MW-272S</th> <th>OU3</th> <th>GMP</th>	MW-272S	OU3	GMP
MW-275S OU3 GMP MW-276S OU3 Non-GMP MW-277S OU3 GMP MW-279S OU3 GMP MW-281S OU3 Non-GMP MW-281S OU3 Non-GMP MW-282S OU3 Non-GMP MW-285S OU3 Non-GMP MW-285S OU3 Non-GMP MW-285S OU3 Non-GMP MW-305S OU3 Non-GMP MW-305S OU3 Non-GMP MW-315S OU3 Non-GMP MW-320S OU3 Non-GMP MW-321R OU3 Non-GMP MW-322R OU3 Non-GMP MW-502S OU3 Non-GMP MW-503S OU3 Non-GMP MW-504S OU3 GMP MW-505S OU3 Non-GMP MW-506S OU3 Non-GMP MW-601S OU3 GMP MW-807 OU3 Non-GMP <	MW-273S	OU3	Non-GMP
MW-276S OU3 Non-GMP MW-277S OU3 GMP MW-279S OU3 GMP MW-281S OU3 Non-GMP MW-282S OU3 Non-GMP MW-282S OU3 Non-GMP MW-288S OU3 Non-GMP MW-288S OU3 Non-GMP MW-297S OU3 Non-GMP MW-306S OU3 Non-GMP MW-306S OU3 Non-GMP MW-315S OU3 Non-GMP MW-320S OU3 Non-GMP MW-321R OU3 Non-GMP MW-324R OU3 Non-GMP MW-502S OU3 Non-GMP MW-503S OU3 Non-GMP MW-504S OU3 Non-GMP MW-505S OU3 Non-GMP MW-507S OU3 Non-GMP MW-601S OU3 Non-GMP MW-602S OU3 Non-GMP MW-807 OU3 Non-GM	MW-274S	OU3	Non-GMP
MW-277S OU3 GMP MW-279S OU3 GMP MW-281S OU3 Non-GMP MW-282S OU3 Non-GMP MW-288S OU3 Non-GMP MW-288S OU3 Non-GMP MW-288S OU3 Non-GMP MW-297S OU3 Non-GMP MW-306S OU3 Non-GMP MW-306S OU3 Non-GMP MW-300S OU3 Non-GMP MW-320S OU3 Non-GMP MW-321R OU3 Non-GMP MW-322R OU3 Non-GMP MW-323R OU3 Non-GMP MW-502S OU3 Non-GMP MW-504S OU3 GMP MW-505S OU3 Non-GMP MW-506S OU3 Non-GMP MW-601S OU3 Non-GMP MW-602S OU3 Non-GMP MW-806 OU3 Non-GMP MW-807 OU3 Non-GMP <td>MW-275S</td> <td>OU3</td> <td>GMP</td>	MW-275S	OU3	GMP
MW-279S OU3 GMP MW-281S OU3 Non-GMP MW-282S OU3 Non-GMP MW-285S OU3 Non-GMP MW-288S OU3 Non-GMP MW-288S OU3 Non-GMP MW-297S OU3 Non-GMP MW-305S OU3 Non-GMP MW-305S OU3 Non-GMP MW-315S OU3 Non-GMP MW-320S OU3 Non-GMP MW-321R OU3 Non-GMP MW-323R OU3 Non-GMP MW-323R OU3 Non-GMP MW-502S OU3 Non-GMP MW-503S OU3 Non-GMP MW-505S OU3 Non-GMP MW-507S OU3 Non-GMP MW-601S OU3 GMP MW-602S OU3 Non-GMP MW-806 OU3 GMP MW-806 OU3 Non-GMP MW-806 OU3 Non-GMP	MW-276S	OU3	Non-GMP
MW-281SOU3Non-GMPMW-282SOU3Non-GMPMW-285SOU3Non-GMPMW-288SOU3Non-GMPMW-297SOU3Non-GMPMW-305SOU3Non-GMPMW-306SOU3Non-GMPMW-305SOU3Non-GMPMW-320SOU3Non-GMPMW-321ROU3Non-GMPMW-323ROU3Non-GMPMW-324ROU3Non-GMPMW-502SOU3Non-GMPMW-503SOU3Non-GMPMW-504SOU3GMPMW-505SOU3GMPMW-506SOU3GMPMW-601SOU3GMPMW-601SOU3GMPMW-806OU3GMPMW-807OU3Non-GMPMW-808OU3Non-GMPMW-807OU3Non-GMPMW-808OU3Non-GMPMW-809OU3Non-GMPMW-806OU3Non-GMPMW-807OU3Non-GMPMW-808OU3Non-GMPMW-809OU3Non-GMPMW-75OU3Non-GMPMW-75OU3Non-GMPMW-75OU3Non-GMPMW-75OU3aNon-GMPMW-109SOU3aNon-GMPMW-170SOU3aNon-GMPMW-171SOU3aNon-GMPMW-186SOU3aNon-GMPMW-186SOU3aNon-GMPMW-187SOU3aNon-GMP <t< td=""><td>MW-277S</td><td>OU3</td><td>GMP</td></t<>	MW-277S	OU3	GMP
NW-282SOU3Non-GMPMW-285SOU3Non-GMPMW-288SOU3Non-GMPMW-297SOU3Non-GMPMW-306SOU3Non-GMPMW-306SOU3Non-GMPMW-315SOU3Non-GMPMW-320SOU3Non-GMPMW-321ROU3Non-GMPMW-322ROU3Non-GMPMW-323ROU3Non-GMPMW-324ROU3Non-GMPMW-502SOU3Non-GMPMW-504SOU3GMPMW-504SOU3GMPMW-505SOU3Non-GMPMW-506SOU3Non-GMPMW-601SOU3GMPMW-601SOU3GMPMW-610SOU3Non-GMPMW-806OU3GMPMW-807OU3Non-GMPTMP-6OU3Non-GMPTMP-7OU3Non-GMPTMP-8OU3Non-GMPTMP-7OU3Non-GMPMW-48DOU3aNon-GMPMW-48SOU3aNon-GMPMW-78SOU3aNon-GMPMW-78SOU3aNon-GMPMW-109SOU3aNon-GMPMW-109SOU3aNon-GMPMW-117SOU3aNon-GMPMW-185AOU3aNon-GMPMW-186SOU3aNon-GMPMW-186SOU3aNon-GMPMW-187SOU3aNon-GMPMW-187SOU3aNon-GMP	MW-279S	OU3	GMP
NW-282SOU3Non-GMPMW-285SOU3Non-GMPMW-288SOU3Non-GMPMW-297SOU3Non-GMPMW-306SOU3Non-GMPMW-306SOU3Non-GMPMW-315SOU3Non-GMPMW-320SOU3Non-GMPMW-321ROU3Non-GMPMW-322ROU3Non-GMPMW-323ROU3Non-GMPMW-324ROU3Non-GMPMW-502SOU3Non-GMPMW-504SOU3GMPMW-504SOU3GMPMW-505SOU3Non-GMPMW-506SOU3Non-GMPMW-601SOU3GMPMW-601SOU3GMPMW-610SOU3Non-GMPMW-806OU3GMPMW-807OU3Non-GMPTMP-6OU3Non-GMPTMP-7OU3Non-GMPTMP-8OU3Non-GMPTMP-7OU3Non-GMPMW-48DOU3aNon-GMPMW-48SOU3aNon-GMPMW-78SOU3aNon-GMPMW-78SOU3aNon-GMPMW-109SOU3aNon-GMPMW-109SOU3aNon-GMPMW-117SOU3aNon-GMPMW-185AOU3aNon-GMPMW-186SOU3aNon-GMPMW-186SOU3aNon-GMPMW-187SOU3aNon-GMPMW-187SOU3aNon-GMP	MW-281S	OU3	Non-GMP
MW-288S OU3 Non-GMP MW-297S OU3 Non-GMP MW-305S OU3 Non-GMP MW-306S OU3 Non-GMP MW-315S OU3 Non-GMP MW-320S OU3 Non-GMP MW-320S OU3 Non-GMP MW-321R OU3 Non-GMP MW-323R OU3 Non-GMP MW-324R OU3 Non-GMP MW-502S OU3 Non-GMP MW-503S OU3 Non-GMP MW-504S OU3 GMP MW-505S OU3 GMP MW-506S OU3 Non-GMP MW-507S OU3 Non-GMP MW-601S OU3 GMP MW-602S OU3 Non-GMP MW-806 OU3 Non-GMP MW-807 OU3 Non-GMP MW-808 OU3 Non-GMP MW-809 OU3 Non-GMP MW-800 OU3 Non-GMP	MW-282S	OU3	
MW-297S OU3 Non-GMP MW-305S OU3 Non-GMP MW-306S OU3 Non-GMP MW-315S OU3 Non-GMP MW-320S OU3 Non-GMP MW-321R OU3 Non-GMP MW-321R OU3 Non-GMP MW-323R OU3 Non-GMP MW-324R OU3 Non-GMP MW-502S OU3 Non-GMP MW-504S OU3 Non-GMP MW-505S OU3 GMP MW-506S OU3 GMP MW-507S OU3 Non-GMP MW-601S OU3 GMP MW-602S OU3 Non-GMP MW-806 OU3 GMP MW-806 OU3 Non-GMP MW-806 OU3 Non-GMP MW-807 OU3 Non-GMP MW-806 OU3 Non-GMP MW-80 OU3 Non-GMP MW-80 OU3 Non-GMP	MW-285S	OU3	Non-GMP
MW-305S OU3 Non-GMP MW-306S OU3 Non-GMP MW-315S OU3 Non-GMP MW-320S OU3 Non-GMP MW-321R OU3 Non-GMP MW-321R OU3 Non-GMP MW-321R OU3 Non-GMP MW-322R OU3 Non-GMP MW-502S OU3 Non-GMP MW-503S OU3 Non-GMP MW-504S OU3 GMP MW-505S OU3 Non-GMP MW-506S OU3 Non-GMP MW-507S OU3 Non-GMP MW-601S OU3 Non-GMP MW-602S OU3 Non-GMP MW-806 OU3 Non-GMP MW-807 OU3 Non-GMP MW-808 OU3 Non-GMP MW-807 OU3 Non-GMP TMP-6 OU3 Non-GMP MW-805 OU3 Non-GMP MW-4S OU3a Non-GMP </td <td>MW-288S</td> <td>OU3</td> <td>Non-GMP</td>	MW-288S	OU3	Non-GMP
MW-305S OU3 Non-GMP MW-306S OU3 Non-GMP MW-315S OU3 Non-GMP MW-320S OU3 Non-GMP MW-321R OU3 Non-GMP MW-321R OU3 Non-GMP MW-321R OU3 Non-GMP MW-322R OU3 Non-GMP MW-502S OU3 Non-GMP MW-503S OU3 Non-GMP MW-504S OU3 GMP MW-505S OU3 Non-GMP MW-506S OU3 Non-GMP MW-507S OU3 Non-GMP MW-601S OU3 Non-GMP MW-602S OU3 Non-GMP MW-806 OU3 Non-GMP MW-807 OU3 Non-GMP MW-808 OU3 Non-GMP MW-807 OU3 Non-GMP TMP-6 OU3 Non-GMP MW-805 OU3 Non-GMP MW-4S OU3a Non-GMP </td <td>MW-297S</td> <td>OU3</td> <td>Non-GMP</td>	MW-297S	OU3	Non-GMP
MW-306S OU3 Non-GMP MW-315S OU3 Non-GMP MW-320S OU3 Non-GMP MW-321R OU3 Non-GMP MW-323R OU3 Non-GMP MW-324R OU3 Non-GMP MW-502S OU3 Non-GMP MW-504S OU3 Non-GMP MW-505S OU3 GMP MW-505S OU3 Non-GMP MW-506S OU3 Non-GMP MW-507S OU3 Non-GMP MW-601S OU3 Non-GMP MW-602S OU3 Non-GMP MW-806 OU3 Non-GMP MW-807 OU3 Non-GMP MW-803 Nol3 Non-GMP TMP-6 OU3 Non-GMP TMP-7 OU3 Non-GMP MW-805 OU3 Non-GMP MW-806 OU3 Non-GMP MW-807 OU3 Non-GMP MW-806 OU3 Non-GMP <td></td> <td></td> <td></td>			
MW-315S OU3 Non-GMP MW-320S OU3 Non-GMP MW-321R OU3 Non-GMP MW-323R OU3 Non-GMP MW-324R OU3 Non-GMP MW-502S OU3 Non-GMP MW-503S OU3 Non-GMP MW-504S OU3 GMP MW-505S OU3 GMP MW-506S OU3 Non-GMP MW-507S OU3 Non-GMP MW-601S OU3 Non-GMP MW-601S OU3 Non-GMP MW-610S OU3 Non-GMP MW-806 OU3 Non-GMP MW-807 OU3 Non-GMP MW-803 Non-GMP MP-7 MP-7 OU3 Non-GMP TMP-6 OU3 Non-GMP TMP-7 OU3 Non-GMP MW-800 OU3a Non-GMP MW-85 OU3a Non-GMP MW-7S OU3a Non-GMP			
MW-320SOU3Non-GMPMW-321ROU3Non-GMPMW-323ROU3Non-GMPMW-324ROU3Non-GMPMW-502SOU3Non-GMPMW-503SOU3Non-GMPMW-504SOU3GMPMW-505SOU3GMPMW-506SOU3Non-GMPMW-507SOU3Non-GMPMW-601SOU3GMPMW-602SOU3Non-GMPMW-806OU3GMPMW-807OU3Non-GMPTMP-6OU3Non-GMPTMP-7OU3Non-GMPTMP-8OU3Non-GMPTMP-8OU3Non-GMPTMP-7OU3Non-GMPTMP-8OU3Non-GMPTMP-9OU3Non-GMPMW-4SOU3aNon-GMPMW-4SOU3aNon-GMPMW-7SOU3aNon-GMPMW-109SOU3aNon-GMPMW-171SOU3aNon-GMPMW-172SOU3aNon-GMPMW-174SOU3aNon-GMPMW-175OU3aNon-GMPMW-175OU3aNon-GMPMW-175OU3aNon-GMPMW-185AOU3aNon-GMPMW-186SOU3aNon-GMPMW-186SOU3aNon-GMPMW-186SOU3aNon-GMPMW-186SOU3aNon-GMPMW-186SOU3aNon-GMPMW-186SOU3aNon-GMPMW-186SOU3aNon-GMP <td></td> <td></td> <td></td>			
MW-321ROU3Non-GMPMW-323ROU3Non-GMPMW-324ROU3Non-GMPMW-502SOU3Non-GMPMW-503SOU3SMPMW-504SOU3GMPMW-505SOU3SMPMW-506SOU3Non-GMPMW-507SOU3Non-GMPMW-601SOU3GMPMW-602SOU3Non-GMPMW-806OU3GMPMW-807OU3Non-GMPMW-808OU3Non-GMPTMP-6OU3Non-GMPTMP-7OU3Non-GMPTMP-8OU3Non-GMPTMP-9OU3Non-GMPMW-4SOU3aNon-GMPMW-4SOU3aNon-GMPMW-7SOU3aNon-GMPMW-17SOU3aNon-GMPMW-17SOU3aNon-GMPMW-17SOU3aNon-GMPMW-17SOU3aNon-GMPMW-17SOU3aNon-GMPMW-17SOU3aNon-GMPMW-17SOU3aNon-GMPMW-17SOU3aNon-GMPMW-17SOU3aNon-GMPMW-17SOU3aNon-GMPMW-185SAOU3aNon-GMPMW-186SOU3aNon-GMPMW-186SOU3aNon-GMPMW-186SOU3aNon-GMPMW-186SOU3aNon-GMPMW-186SOU3aNon-GMPMW-187SOU3aNon-GMP			
MW-323ROU3Non-GMPMW-324ROU3Non-GMPMW-502SOU3Non-GMPMW-503SOU3GMPMW-504SOU3GMPMW-505SOU3Non-GMPMW-506SOU3Non-GMPMW-507SOU3Non-GMPMW-601SOU3GMPMW-602SOU3Non-GMPMW-602SOU3Non-GMPMW-806OU3GMPMW-807OU3Non-GMPTMP-6OU3Non-GMPTMP-7OU3Non-GMPTMP-8OU3Non-GMPTMP-7OU3Non-GMPTMP-7OU3Non-GMPTMP-8OU3Non-GMPMW-4SOU3Non-GMPMW-17SOU3aNon-GMPMW-17SOU3aNon-GMPMW-17SOU3aNon-GMPMW-17SOU3aNon-GMPMW-17SOU3aNon-GMPMW-17SOU3aNon-GMPMW-17SOU3aNon-GMPMW-17SOU3aNon-GMPMW-17SOU3aNon-GMPMW-17SOU3aNon-GMPMW-185SAOU3aNon-GMPMW-186SOU3aNon-GMPMW-186SOU3aNon-GMPMW-186SOU3aNon-GMPMW-186SOU3aNon-GMPMW-187SOU3aNon-GMP			Non-GMP
MW-324ROU3Non-GMPMW-502SOU3Non-GMPMW-503SOU3GMPMW-504SOU3GMPMW-505SOU3Non-GMPMW-506SOU3Non-GMPMW-507SOU3GMPMW-601SOU3GMPMW-602SOU3Non-GMPMW-806OU3GMPMW-807OU3Non-GMPTMP-6OU3Non-GMPTMP-7OU3Non-GMPTMP-8OU3Non-GMPTMP-7OU3Non-GMPTMP-8OU3Non-GMPTMP-9OU3Non-GMPMW-4SOU3aNon-GMPMW-17SOU3aNon-GMPMW-109SOU3aNon-GMPMW-171SOU3aNon-GMPMW-172SOU3aNon-GMPMW-172SOU3aNon-GMPMW-174SOU3aNon-GMPMW-175OU3aNon-GMPMW-175OU3aNon-GMPMW-175OU3aNon-GMPMW-175OU3aNon-GMPMW-175OU3aNon-GMPMW-175OU3aNon-GMPMW-175OU3aNon-GMPMW-175OU3aNon-GMPMW-185AOU3aNon-GMPMW-186SOU3aNon-GMPMW-186SOU3aNon-GMPMW-187SOU3aNon-GMP			
MW-502SOU3Non-GMPMW-503SOU3Non-GMPMW-504SOU3GMPMW-505SOU3Non-GMPMW-506SOU3Non-GMPMW-507SOU3Non-GMPMW-601SOU3GMPMW-602SOU3Non-GMPMW-610SOU3Non-GMPMW-806OU3GMPMW-807OU3Non-GMPTMP-6OU3Non-GMPTMP-7OU3Non-GMPTMP-8OU3Non-GMPTMP-9OU3Non-GMPMW-4SOU3aNon-GMPMW-4SOU3aNon-GMPMW-7SOU3aNon-GMPMW-109SOU3aNon-GMPMW-171SOU3aNon-GMPMW-172SOU3aNon-GMPMW-172SOU3aNon-GMPMW-172SOU3aNon-GMPMW-185SAOU3aNon-GMPMW-186SOU3aNon-GMPMW-186SOU3aNon-GMPMW-186SOU3aNon-GMPMW-186SOU3aNon-GMPMW-186SOU3aNon-GMPMW-187SOU3aNon-GMPMW-187SOU3aNon-GMPMW-187SOU3aNon-GMPMW-187SOU3aNon-GMP			
MW-503SOU3Non-GMPMW-504SOU3GMPMW-505SOU3Non-GMPMW-506SOU3Non-GMPMW-507SOU3GMPMW-601SOU3GMPMW-602SOU3Non-GMPMW-610SOU3Non-GMPMW-806OU3GMPMW-807OU3Non-GMPTMP-6OU3Non-GMPTMP-7OU3Non-GMPTMP-8OU3Non-GMPTMP-9OU3Non-GMPMW-3SOU3aNon-GMPMW-4SOU3aNon-GMPMW-7SOU3aNon-GMPMW-109SOU3aNon-GMPMW-171SOU3aNon-GMPMW-172SOU3aNon-GMPMW-172SOU3aNon-GMPMW-172SOU3aNon-GMPMW-172SOU3aNon-GMPMW-185SAOU3aNon-GMPMW-186SOU3aNon-GMPMW-186SOU3aNon-GMPMW-186SOU3aNon-GMPMW-187SOU3aNon-GMPMW-187SOU3aNon-GMPMW-187SOU3aNon-GMP			
MW-504SOU3GMPMW-505SOU3GMPMW-506SOU3Non-GMPMW-507SOU3Non-GMPMW-601SOU3GMPMW-602SOU3Non-GMPMW-610SOU3GMPMW-806OU3GMPMW-807OU3Non-GMPTMP-6OU3Non-GMPTMP-7OU3Non-GMPTMP-8OU3Non-GMPTMP-9OU3Non-GMPMW-4SOU3aNon-GMPMW-6SOU3aNon-GMPMW-7SOU3aNon-GMPMW-109SOU3aNon-GMPMW-170SOU3aNon-GMPMW-172SOU3aNon-GMPMW-172SOU3aNon-GMPMW-178SOU3aNon-GMPMW-1715OU3aNon-GMPMW-172SOU3aNon-GMPMW-184SAOU3aNon-GMPMW-184SAOU3aMon-GMPMW-186SOU3aNon-GMPMW-186SOU3aNon-GMPMW-186SOU3aNon-GMPMW-187SOU3aNon-GMPMW-187SOU3aNon-GMP			
MW-505SOU3GMPMW-506SOU3Non-GMPMW-507SOU3Non-GMPMW-601SOU3GMPMW-602SOU3Non-GMPMW-610SOU3GMPMW-806OU3GMPMW-807OU3Non-GMPTMP-6OU3Non-GMPTMP-7OU3Non-GMPTMP-8OU3Non-GMPTMP-9OU3Non-GMPMW-4SOU3aNon-GMPMW-7SOU3aNon-GMPMW-109SOU3aNon-GMPMW-171SOU3aNon-GMPMW-172SOU3aNon-GMPMW-178SOU3aNon-GMPMW-178SOU3aNon-GMPMW-178SOU3aNon-GMPMW-178SOU3aNon-GMPMW-178SOU3aNon-GMPMW-178SOU3aNon-GMPMW-178SOU3aNon-GMPMW-178SOU3aNon-GMPMW-184SAOU3aGMPMW-186SOU3aNon-GMPMW-186SOU3aNon-GMPMW-186SOU3aNon-GMPMW-187SOU3aNon-GMP			
MW-506SOU3Non-GMPMW-507SOU3Non-GMPMW-601SOU3GMPMW-602SOU3Non-GMPMW-610SOU3GMPMW-806OU3GMPMW-807OU3Non-GMPTMP-6OU3Non-GMPTMP-7OU3Non-GMPTMP-8OU3Non-GMPTMP-9OU3Non-GMPMW-3SOU3aNon-GMPMW-4SOU3aNon-GMPMW-6SOU3aNon-GMPMW-7SOU3aNon-GMPMW-170SOU3aNon-GMPMW-170SOU3aNon-GMPMW-171SOU3aNon-GMPMW-172SOU3aNon-GMPMW-172SOU3aNon-GMPMW-172SOU3aNon-GMPMW-172SOU3aNon-GMPMW-172SOU3aNon-GMPMW-172SOU3aNon-GMPMW-184SAOU3aGMPMW-186SOU3aNon-GMPMW-186SOU3aNon-GMPMW-187SOU3aNon-GMP			
MW-507SOU3Non-GMPMW-601SOU3GMPMW-602SOU3Non-GMPMW-610SOU3Non-GMPMW-806OU3GMPMW-807OU3Non-GMPTMP-6OU3Non-GMPTMP-7OU3Non-GMPTMP-8OU3Non-GMPTMP-9OU3Non-GMPMW-3SOU3aNon-GMPMW-4SOU3aNon-GMPMW-6SOU3aNon-GMPMW-7SOU3aNon-GMPMW-109SOU3aNon-GMPMW-171SOU3aNon-GMPMW-172SOU3aNon-GMPMW-172SOU3aNon-GMPMW-172SOU3aNon-GMPMW-172SOU3aNon-GMPMW-172SOU3aNon-GMPMW-172SOU3aNon-GMPMW-172SOU3aNon-GMPMW-186SOU3aNon-GMPMW-186SOU3aNon-GMPMW-186SOU3aNon-GMPMW-187SOU3aNon-GMP			
MW-601SOU3GMPMW-602SOU3Non-GMPMW-610SOU3Non-GMPMW-806OU3GMPMW-807OU3Non-GMPTMP-6OU3Non-GMPTMP-7OU3Non-GMPTMP-8OU3Non-GMPTMP-9OU3Non-GMPMW-4SOU3aNon-GMPMW-7SOU3aNon-GMPMW-7SOU3aNon-GMPMW-109SOU3aNon-GMPMW-170SOU3aNon-GMPMW-172SOU3aNon-GMPMW-174SOU3aNon-GMPMW-184SAOU3aNon-GMPMW-184SAOU3aNon-GMPMW-184SAOU3aNon-GMPMW-184SAOU3aNon-GMPMW-184SAOU3aNon-GMPMW-184SAOU3aMON-GMPMW-184SAOU3aMON-GMPMW-184SAOU3aMON-GMPMW-184SAOU3aMON-GMPMW-186SOU3aNon-GMPMW-187SOU3aNon-GMP			
MW-602SOU3Non-GMPMW-610SOU3RMPMW-806OU3GMPMW-807OU3Non-GMPTMP-6OU3Non-GMPTMP-7OU3Non-GMPTMP-8OU3Non-GMPTMP-9OU3Non-GMPMW-3SOU3aNon-GMPMW-4SOU3aNon-GMPMW-6SOU3aNon-GMPMW-7SOU3aNon-GMPMW-109SOU3aNon-GMPMW-170SOU3aNon-GMPMW-171SOU3aNon-GMPMW-172SOU3aNon-GMPMW-184SAOU3aGMPMW-186SOU3aGMPMW-186SOU3aNon-GMPMW-186SOU3aNon-GMPMW-186SOU3aNon-GMPMW-186SOU3aNon-GMPMW-187SOU3aNon-GMPMW-187SOU3aNon-GMP			
MW-610SOU3Non-GMPMW-806OU3GMPMW-807OU3Non-GMPTMP-6OU3Non-GMPTMP-7OU3Non-GMPTMP-8OU3Non-GMPTMP-9OU3Non-GMPMW-3SOU3aNon-GMPMW-4SOU3aNon-GMPMW-6SOU3aNon-GMPMW-7SOU3aNon-GMPMW-109SOU3aNon-GMPMW-170SOU3aNon-GMPMW-171SOU3aNon-GMPMW-172SOU3aNon-GMPMW-185SAOU3aGMPMW-186SOU3aGMPMW-186SOU3aNon-GMPMW-186SOU3aNon-GMPMW-187SOU3aNon-GMPMW-187SOU3aNon-GMPMW-187SOU3aNon-GMPMW-187SOU3aNon-GMP			Non-GMP
MW-806OU3GMPMW-807OU3Non-GMPTMP-6OU3Non-GMPTMP-7OU3Non-GMPTMP-8OU3Non-GMPTMP-9OU3Non-GMPMW-3SOU3aNon-GMPMW-4SOU3aNon-GMPMW-6SOU3aNon-GMPMW-7SOU3aNon-GMPMW-109SOU3aNon-GMPMW-171SOU3aNon-GMPMW-172SOU3aNon-GMPMW-174SOU3aNon-GMPMW-185SAOU3aGMPMW-186SOU3aGMPMW-186SOU3aNon-GMPMW-187SOU3aNon-GMP			Non-GMP
MW-807OU3Non-GMPTMP-6OU3Non-GMPTMP-7OU3Non-GMPTMP-8OU3Non-GMPTMP-9OU3Non-GMPMW-3SOU3aNon-GMPMW-4SOU3aNon-GMPMW-6SOU3aNon-GMPMW-7SOU3aNon-GMPMW-109SOU3aNon-GMPMW-170SOU3aNon-GMPMW-171SOU3aNon-GMPMW-172SOU3aNon-GMPMW-174SOU3aNon-GMPMW-184SAOU3aGMPMW-185SAOU3aGMPMW-186SOU3aNon-GMPMW-187SOU3aNon-GMP			
TMP-6OU3Non-GMPTMP-7OU3Non-GMPTMP-8OU3Non-GMPTMP-9OU3Non-GMPMW-3SOU3aNon-GMPMW-4SOU3aNon-GMPMW-6SOU3aNon-GMPMW-7SOU3aNon-GMPMW-109SOU3aNon-GMPMW-170SOU3aNon-GMPMW-171SOU3aNon-GMPMW-172SOU3aNon-GMPMW-172SOU3aNon-GMPMW-184SAOU3aGMPMW-185SAOU3aGMPMW-186SOU3aNon-GMPMW-187SOU3aNon-GMP			Non-GMP
TMP-7OU3Non-GMPTMP-8OU3Non-GMPTMP-9OU3Non-GMPMW-3SOU3aNon-GMPMW-4SOU3aNon-GMPMW-6SOU3aNon-GMPMW-7SOU3aNon-GMPMW-109SOU3aNon-GMPMW-170SOU3aNon-GMPMW-171SOU3aNon-GMPMW-172SOU3aNon-GMPMW-184SAOU3aGMPMW-186SOU3aGMPMW-186SOU3aNon-GMPMW-187SOU3aNon-GMP	TMP-6		Non-GMP
TMP-8OU3Non-GMPTMP-9OU3Non-GMPMW-3SOU3aNon-GMPMW-4SOU3aNon-GMPMW-6SOU3aNon-GMPMW-7SOU3aNon-GMPMW-109SOU3aNon-GMPMW-170SOU3aNon-GMPMW-171SOU3aNon-GMPMW-172SOU3aNon-GMPMW-174SOU3aNon-GMPMW-184SAOU3aGMPMW-185SAOU3aGMPMW-186SOU3aNon-GMPMW-187SOU3aNon-GMP	TMP-7	OU3	Non-GMP
TMP-9OU3Non-GMPMW-3SOU3aNon-GMPMW-4SOU3aNon-GMPMW-6SOU3aNon-GMPMW-7SOU3aNon-GMPMW-109SOU3aNon-GMPMW-170SOU3aNon-GMPMW-171SOU3aNon-GMPMW-172SOU3aNon-GMPMW-184SAOU3aGMPMW-185SAOU3aGMPMW-186SOU3aNon-GMPMW-187SOU3aNon-GMP			
MW-3SOU3aNon-GMPMW-4SOU3aNon-GMPMW-6SOU3aNon-GMPMW-7SOU3aNon-GMPMW-109SOU3aNon-GMPMW-170SOU3aNon-GMPMW-171SOU3aNon-GMPMW-172SOU3aNon-GMPMW-172SOU3aNon-GMPMW-184SAOU3aGMPMW-185SAOU3aGMPMW-186SOU3aNon-GMPMW-187SOU3aNon-GMP			
MW-4SOU3aNon-GMPMW-6SOU3aNon-GMPMW-7SOU3aNon-GMPMW-109SOU3aNon-GMPMW-170SOU3aNon-GMPMW-171SOU3aNon-GMPMW-172SOU3aNon-GMPMW-184SAOU3aGMPMW-185SAOU3aGMPMW-186SOU3aNon-GMPMW-187SOU3aNon-GMP			
MW-6SOU3aNon-GMPMW-7SOU3aNon-GMPMW-109SOU3aNon-GMPMW-170SOU3aNon-GMPMW-171SOU3aNon-GMPMW-172SOU3aNon-GMPMW-184SAOU3aGMPMW-185SAOU3aGMPMW-186SOU3aNon-GMPMW-187SOU3aNon-GMP	MW-4S		Non-GMP
MW-7SOU3aNon-GMPMW-109SOU3aNon-GMPMW-170SOU3aNon-GMPMW-171SOU3aNon-GMPMW-172SOU3aNon-GMPMW-184SAOU3aGMPMW-185SAOU3aGMPMW-186SOU3aNon-GMPMW-187SOU3aNon-GMP			
MW-109SOU3aNon-GMPMW-170SOU3aNon-GMPMW-171SOU3aNon-GMPMW-172SOU3aNon-GMPMW-184SAOU3aGMPMW-185SAOU3aGMPMW-186SOU3aNon-GMPMW-187SOU3aNon-GMP	MW-7S	OU3a	
MW-170SOU3aNon-GMPMW-171SOU3aNon-GMPMW-172SOU3aNon-GMPMW-184SAOU3aGMPMW-185SAOU3aGMPMW-186SOU3aNon-GMPMW-187SOU3aNon-GMP	MW-109S	OU3a	
MW-171SOU3aNon-GMPMW-172SOU3aNon-GMPMW-184SAOU3aGMPMW-185SAOU3aGMPMW-186SOU3aNon-GMPMW-187SOU3aNon-GMP			
MW-172SOU3aNon-GMPMW-184SAOU3aGMPMW-185SAOU3aGMPMW-186SOU3aNon-GMPMW-187SOU3aNon-GMP			
MW-184SAOU3aGMPMW-185SAOU3aGMPMW-186SOU3aNon-GMPMW-187SOU3aNon-GMP			Non-GMP
MW-185SAOU3aGMPMW-186SOU3aNon-GMPMW-187SOU3aNon-GMP			
MW-186SOU3aNon-GMPMW-187SOU3aNon-GMP			
MW-187S OU3a Non-GMP			
	MW-188S	OU3a	GMP

MW-201S OU3a Non-GMP MW-202S OU3a GMP MW-203S OU3a GMP MW-204S OU3a GMP MW-204S OU3a GMP MW-204S OU3a Non-GMP MW-204S OU3a Non-GMP MW-403S OU3a Non-GMP MW-404S OU3a Non-GMP MW-405S OU3a Non-GMP MW-406S OU3a Non-GMP MW-407S OU3a GMP MW-608S OU3a Non-GMP MW-604S OU3a GMP MW-605S OU3a GMP MW-608S OU3a GMP MW-608S OU3a GMP MW-118S OU4 Non-GMP MW-120S OU4 Non-GMP MW-161S OU4 GMP MW-162S OU4 Non-GMP MW-163S OU4 Non-GMP MW-164S OU4 GMP	WELL ID	Operable Unit	Monitoring Status
MW-203S OU3a GMP MW-204S OU3a GMP MW-278S OU3a Non-GMP MW-403S OU3a Non-GMP MW-404S OU3a Non-GMP MW-405S OU3a Non-GMP MW-406S OU3a Non-GMP MW-406S OU3a Non-GMP MW-406S OU3a GMP MW-605S OU3a Non-GMP MW-603S OU3a GMP MW-604S OU3a GMP MW-607S OU3a GMP MW-608S OU3a GMP MW-608S OU3a GMP MW-118S OU4 Non-GMP MW-118S OU4 Non-GMP MW-161S OU4 GMP MW-162S OU4 Non-GMP MW-164S OU4 GMP MW-164S OU4 Non-GMP MW-164S OU4 Non-GMP MW-164S OU4 Non-GMP			
MW-204S OU3a GMP MW-278S OU3a Non-GMP MW-403S OU3a GMP MW-404S OU3a Non-GMP MW-405S OU3a Non-GMP MW-406S OU3a Non-GMP MW-406S OU3a Non-GMP MW-407S OU3a Non-GMP MW-608S OU3a GMP MW-604S OU3a GMP MW-604S OU3a GMP MW-608S OU3a GMP MW-608S OU3a GMP MW-608S OU3a GMP MW-608S OU4 Non-GMP MW-118S OU4 Non-GMP MW-118S OU4 Non-GMP MW-161S OU4 GMP MW-162S OU4 Non-GMP MW-164S OU4 GMP MW-163S OU4 Non-GMP MW-164S OU4 GMP MW-164S OU4 Non-GMP		OU3a	Non-GMP
MW-278S OU3a Non-GMP MW-403S OU3a GMP MW-404S OU3a Non-GMP MW-405S OU3a Non-GMP MW-406S OU3a Non-GMP MW-407S OU3a Non-GMP MW-407S OU3a Non-GMP MW-603S OU3a GMP MW-604S OU3a GMP MW-605S OU3a GMP MW-608S OU3a GMP MW-608S OU3a GMP MW-608S OU3a GMP MW-1013S OU4 Non-GMP MW-118S OU4 Non-GMP MW-119S OU4 Non-GMP MW-161S OU4 GMP MW-162S OU4 Non-GMP MW-163S OU4 Non-GMP MW-164S OU4 Non-GMP MW-163S OU4 Non-GMP MW-180S OU4 Non-GMP MW-236M OU4 Non-GMP	MW-203S	OU3a	GMP
MW-403S OU3a GMP MW-404S OU3a Non-GMP MW-405S OU3a Non-GMP MW-406S OU3a Non-GMP MW-407S OU3a Non-GMP MW-508SA OU3a GMP MW-603S OU3a GMP MW-604S OU3a GMP MW-605S OU3a GMP MW-605S OU3a GMP MW-608S OU3a GMP MW-608S OU3a GMP MW-105S OU4 Non-GMP MW-118S OU4 Non-GMP MW-118S OU4 Non-GMP MW-118S OU4 Non-GMP MW-161S OU4 GMP MW-162S OU4 Non-GMP MW-163S OU4 Non-GMP MW-164S OU4 Non-GMP MW-180S OU4 Non-GMP MW-180S OU4 Non-GMP MW-280M OU4 Non-GMP <td></td> <td>OU3a</td> <td>GMP</td>		OU3a	GMP
MW-404S OU3a Non-GMP MW-405S OU3a Non-GMP MW-406S OU3a Non-GMP MW-407S OU3a Non-GMP MW-508SA OU3a GMP MW-603S OU3a GMP MW-604S OU3a GMP MW-605S OU3a GMP MW-605S OU3a GMP MW-608S OU3a GMP MW-608S OU4a Non-GMP MW-118S OU4 Non-GMP MW-118S OU4 Non-GMP MW-120S OU4 Non-GMP MW-161S OU4 GMP MW-162S OU4 GMP MW-163S OU4 Non-GMP MW-164S OU4 GMP MW-163S OU4 Non-GMP MW-180S OU4 Non-GMP MW-180S OU4 Non-GMP MW-286M OU4 Non-GMP MW-280S OU4 Non-GMP <td>MW-278S</td> <td>OU3a</td> <td>Non-GMP</td>	MW-278S	OU3a	Non-GMP
MW-405SOU3aNon-GMPMW-406SOU3aNon-GMPMW-407SOU3aGMPMW-508SAOU3aGMPMW-603SOU3aGMPMW-604SOU3aGMPMW-605SOU3aGMPMW-607SOU3aGMPMW-608SOU3aGMPMW-608SOU3aGMPMW-108SOU4Non-GMPMW-118SOU4Non-GMPMW-119SOU4Non-GMPMW-161SOU4GMPMW-162SOU4GMPMW-163SOU4GMPMW-163SOU4Non-GMPMW-163SOU4Non-GMPMW-164SOU4Non-GMPMW-120SOU4Non-GMPMW-236SOU4Non-GMPMW-236SOU4Non-GMPMW-280SOU4Non-GMPMW-280SOU4Non-GMPMW-280SOU4Non-GMPMW-280SOU4Non-GMPMW-304SOU4Non-GMPMW-304SOU4Non-GMPMW-304SOU4Non-GMPMW-304SOU4Non-GMPMW-314SOU4Non-GMPMW-409SOU4Non-GMPMW-409SOU4Non-GMPMW-410SOU4Non-GMPMW-411SOU4Non-GMP	MW-403S	OU3a	GMP
MW-406SOU3aNon-GMPMW-407SOU3aOU7MW-508SAOU3aGMPMW-603SOU3aGMPMW-604SOU3aGMPMW-605SOU3aGMPMW-607SOU3aGMPMW-608SOU3aGMPMW-608SOU3aGMPMW-100SOU4Non-GMPMW-118SOU4Non-GMPMW-120SOU4Non-GMPMW-161SOU4GMPMW-162SOU4GMPMW-163SOU4GMPMW-163SOU4GMPMW-163SOU4GMPMW-163SOU4GMPMW-164SOU4GMPMW-169SOU4Non-GMPMW-280SOU4Non-GMPMW-236SOU4Non-GMPMW-280SOU4Non-GMPMW-280SOU4Non-GMPMW-280SOU4Non-GMPMW-280SOU4Non-GMPMW-304SOU4Non-GMPMW-304SOU4Non-GMPMW-304SOU4Non-GMPMW-304SOU4Non-GMPMW-304SOU4Non-GMPMW-304SOU4Non-GMPMW-304SOU4Non-GMPMW-409SOU4Non-GMPMW-409SOU4Non-GMPMW-410SOU4Non-GMPMW-411SOU4Non-GMP	MW-404S	OU3a	Non-GMP
MW-407SOU3aNon-GMPMW-508SAOU3aGMPMW-603SOU3aGMPMW-604SOU3aGMPMW-605SOU3aGMPMW-607SOU3aGMPMW-608SOU3aGMPMW-608SOU3aGMPMW-118SOU4Non-GMPMW-118SOU4Non-GMPMW-119SOU4Non-GMPMW-119SOU4GMPMW-161SOU4GMPMW-162SOU4GMPMW-163SOU4GMPMW-164SOU4GMPMW-169SOU4Non-GMPMW-180SOU4Non-GMPMW-236MOU4Non-GMPMW-236SOU4Non-GMPMW-280MOU4Non-GMPMW-280SOU4Non-GMPMW-280SOU4Non-GMPMW-304SOU4Non-GMPMW-304SOU4Non-GMPMW-310SOU4Non-GMPMW-314SOU4Non-GMPMW-409SOU4Non-GMPMW-410SOU4Non-GMPMW-411SOU4Non-GMPMW-411SOU4Non-GMP	MW-405S	OU3a	Non-GMP
MW-508SA OU3a GMP MW-603S OU3a Non-GMP MW-604S OU3a GMP MW-605S OU3a Non-GMP MW-607S OU3a GMP MW-608S OU3a GMP MW-608S OU3a GMP MW-8S OU4 Non-GMP MW-118S OU4 Non-GMP MW-119S OU4 Non-GMP MW-120S OU4 Non-GMP MW-161S OU4 GMP MW-162S OU4 Non-GMP MW-163S OU4 Non-GMP MW-164S OU4 Non-GMP MW-179S OU4 Non-GMP MW-183S OU4 Non-GMP MW-180S OU4 Non-GMP MW-280M OU4 Non-GMP MW-280S OU4 Non-GMP MW-280S OU4 Non-GMP MW-280S OU4 Non-GMP MW-304S OU4 Non-GMP	MW-406S	OU3a	Non-GMP
MW-603SOU3aNon-GMPMW-604SOU3aGMPMW-605SOU3aGMPMW-607SOU3aGMPMW-608SOU3aGMPMW-8SOU4Non-GMPMW-118SOU4Non-GMPMW-119SOU4Non-GMPMW-120SOU4Non-GMPMW-161SOU4GMPMW-162SOU4GMPMW-163SOU4GMPMW-164SOU4GMPMW-169SOU4Non-GMPMW-180SOU4Non-GMPMW-180SOU4Non-GMPMW-236MOU4Non-GMPMW-236SOU4Non-GMPMW-280SOU4Non-GMPMW-280SOU4Non-GMPMW-307SOU4Non-GMPMW-310SOU4Non-GMPMW-314SOU4Non-GMPMW-409SOU4Non-GMPMW-410SOU4Non-GMPMW-411SOU4Non-GMPMW-411SOU4Non-GMPMW-411SOU4Non-GMPMW-411SOU4Non-GMP	MW-407S	OU3a	Non-GMP
MW-604S OU3a GMP MW-605S OU3a Non-GMP MW-607S OU3a GMP MW-608S OU3a GMP MW-88S OU4 Non-GMP MW-118S OU4 Non-GMP MW-119S OU4 Non-GMP MW-119S OU4 Non-GMP MW-120S OU4 Non-GMP MW-161S OU4 GMP MW-162S OU4 GMP MW-163S OU4 Non-GMP MW-164S OU4 Non-GMP MW-169S OU4 Non-GMP MW-179S OU4 Non-GMP MW-180S OU4 Non-GMP MW-280M OU4 Non-GMP MW-280M OU4 Non-GMP MW-280S OU4 Non-GMP MW-280S OU4 Non-GMP MW-280S OU4 Non-GMP MW-304S OU4 Non-GMP MW-300S OU4 Non-GMP	MW-508SA	OU3a	GMP
MW-605S OU3a Non-GMP MW-607S OU3a GMP MW-608S OU3a GMP MW-8S OU4 Non-GMP MW-118S OU4 Non-GMP MW-119S OU4 Non-GMP MW-119S OU4 Non-GMP MW-120S OU4 Non-GMP MW-161S OU4 GMP MW-162S OU4 GMP MW-163S OU4 SMP MW-163S OU4 Non-GMP MW-163S OU4 Non-GMP MW-164S OU4 Non-GMP MW-169S OU4 Non-GMP MW-180S OU4 Non-GMP MW-180S OU4 Non-GMP MW-286M OU4 Non-GMP MW-280S OU4 Non-GMP MW-280S OU4 Non-GMP MW-280S OU4 Non-GMP MW-304S OU4 Non-GMP MW-307S OU4 Non-GMP	MW-603S	OU3a	Non-GMP
MW-607S OU3a GMP MW-608S OU3a GMP MW-8S OU4 Non-GMP MW-118S OU4 Non-GMP MW-119S OU4 Non-GMP MW-120S OU4 Non-GMP MW-120S OU4 OMP MW-161S OU4 GMP MW-162S OU4 GMP MW-162S OU4 GMP MW-162S OU4 Mon-GMP MW-162S OU4 Non-GMP MW-163S OU4 Non-GMP MW-164S OU4 Non-GMP MW-169S OU4 Non-GMP MW-180S OU4 Non-GMP MW-180S OU4 Non-GMP MW-286M OU4 Non-GMP MW-280M OU4 Non-GMP MW-280S OU4 Non-GMP MW-280S OU4 Non-GMP MW-307S OU4 Non-GMP MW-310S OU4 Non-GMP <td>MW-604S</td> <td>OU3a</td> <td>GMP</td>	MW-604S	OU3a	GMP
MW-608S OU3a GMP MW-8S OU4 Non-GMP MW-118S OU4 Non-GMP MW-119S OU4 Non-GMP MW-120S OU4 Non-GMP MW-161S OU4 GMP MW-162S OU4 GMP MW-163S OU4 GMP MW-163S OU4 Non-GMP MW-164S OU4 GMP MW-169S OU4 Non-GMP MW-180S OU4 Non-GMP MW-180S OU4 Non-GMP MW-280M OU4 Non-GMP MW-280S OU4 Non-GMP MW-280S OU4 Non-GMP MW-280S OU4 Non-GMP MW-280S OU4 Non-GMP MW-304S OU4 Non-GMP MW-307S OU4 Non-GMP MW-310S OU4 Non-GMP MW-314S OU4 Non-GMP MW-409S OU4 Non-GMP <	MW-605S	OU3a	Non-GMP
MW-8S OU4 Non-GMP MW-118S OU4 Non-GMP MW-119S OU4 Non-GMP MW-120S OU4 Non-GMP MW-161S OU4 GMP MW-162S OU4 GMP MW-163S OU4 GMP MW-163S OU4 Non-GMP MW-164S OU4 GMP MW-169S OU4 Non-GMP MW-169S OU4 Non-GMP MW-180S OU4 Non-GMP MW-180S OU4 Non-GMP MW-236M OU4 Non-GMP MW-236S OU4 Non-GMP MW-280M OU4 Non-GMP MW-280S OU4 Non-GMP MW-280S OU4 Non-GMP MW-304S OU4 Non-GMP MW-310S OU4 Non-GMP MW-314S OU4 Non-GMP MW-409S OU4 Non-GMP MW-410S OU4 Non-GMP	MW-607S	OU3a	GMP
MW-118S OU4 Non-GMP MW-119S OU4 Non-GMP MW-120S OU4 Non-GMP MW-161S OU4 GMP MW-162S OU4 GMP MW-162S OU4 GMP MW-162S OU4 Mon-GMP MW-163S OU4 Non-GMP MW-164S OU4 Non-GMP MW-169S OU4 Non-GMP MW-179S OU4 Non-GMP MW-180S OU4 Non-GMP MW-180S OU4 Non-GMP MW-236M OU4 Non-GMP MW-236S OU4 Non-GMP MW-280M OU4 Non-GMP MW-280S OU4 Non-GMP MW-280S OU4 Non-GMP MW-304S OU4 Non-GMP MW-307S OU4 Non-GMP MW-310S OU4 Non-GMP MW-314S OU4 Non-GMP MW-409S OU4 Non-GMP </td <td>MW-608S</td> <td>OU3a</td> <td>GMP</td>	MW-608S	OU3a	GMP
MW-119S OU4 Non-GMP MW-120S OU4 Non-GMP MW-161S OU4 GMP MW-162S OU4 GMP MW-163S OU4 Non-GMP MW-163S OU4 Non-GMP MW-164S OU4 GMP MW-169S OU4 Non-GMP MW-179S OU4 Non-GMP MW-180S OU4 Non-GMP MW-180S OU4 Non-GMP MW-180S OU4 Non-GMP MW-280M OU4 Non-GMP MW-280S OU4 Non-GMP MW-280S OU4 Non-GMP MW-280S OU4 Non-GMP MW-280S OU4 Non-GMP MW-304S OU4 Non-GMP MW-310S OU4 Non-GMP MW-314S OU4 Non-GMP MW-409S OU4 Non-GMP MW-410S OU4 Non-GMP MW-410S OU4 Non-GMP </td <td>MW-8S</td> <td>OU4</td> <td>Non-GMP</td>	MW-8S	OU4	Non-GMP
MW-120S OU4 Non-GMP MW-161S OU4 GMP MW-162S OU4 GMP MW-163S OU4 Non-GMP MW-164S OU4 GMP MW-169S OU4 GMP MW-169S OU4 Non-GMP MW-179S OU4 Non-GMP MW-180S OU4 Non-GMP MW-180S OU4 Non-GMP MW-280S OU4 Non-GMP MW-236S OU4 Non-GMP MW-280S OU4 Non-GMP MW-280S OU4 Non-GMP MW-280S OU4 Non-GMP MW-280S OU4 Non-GMP MW-304S OU4 Non-GMP MW-304S OU4 Non-GMP MW-310S OU4 Non-GMP MW-314S OU4 Non-GMP MW-409S OU4 Non-GMP MW-410S OU4 Non-GMP MW-411S OU4 Non-GMP	MW-118S	OU4	Non-GMP
MW-161S OU4 GMP MW-162S OU4 GMP MW-163S OU4 Non-GMP MW-164S OU4 GMP MW-169S OU4 Non-GMP MW-179S OU4 Non-GMP MW-179S OU4 Non-GMP MW-180S OU4 Non-GMP MW-183S OU4 GMP MW-280M OU4 Non-GMP MW-236S OU4 Non-GMP MW-280S OU4 Non-GMP MW-280S OU4 Non-GMP MW-280S OU4 Non-GMP MW-280S OU4 Non-GMP MW-304S OU4 Non-GMP MW-307S OU4 Non-GMP MW-310S OU4 Non-GMP MW-314S OU4 Non-GMP MW-409S OU4 Non-GMP MW-410S OU4 Non-GMP MW-411S OU4 Non-GMP	MW-119S	OU4	Non-GMP
MW-162SOU4GMPMW-163SOU4Non-GMPMW-164SOU4GMPMW-169SOU4Non-GMPMW-179SOU4Non-GMPMW-180SOU4Non-GMPMW-183SOU4GMPMW-236MOU4Non-GMPMW-236SOU4Non-GMPMW-280SOU4Non-GMPMW-280SOU4Non-GMPMW-280SOU4Non-GMPMW-20SOU4Non-GMPMW-304SOU4Non-GMPMW-310SOU4Non-GMPMW-310SOU4Non-GMPMW-314SOU4Non-GMPMW-409SOU4Non-GMPMW-410SOU4Non-GMPMW-411SOU4Non-GMP	MW-120S	OU4	Non-GMP
MW-163S OU4 Non-GMP MW-164S OU4 GMP MW-169S OU4 Non-GMP MW-179S OU4 Non-GMP MW-179S OU4 Non-GMP MW-180S OU4 Non-GMP MW-183S OU4 GMP MW-236M OU4 Non-GMP MW-236S OU4 Non-GMP MW-236S OU4 Non-GMP MW-236S OU4 Non-GMP MW-280S OU4 Non-GMP MW-280S OU4 Non-GMP MW-280S OU4 Non-GMP MW-304S OU4 Non-GMP MW-304S OU4 Non-GMP MW-310S OU4 Non-GMP MW-314S OU4 Non-GMP MW-409S OU4 Non-GMP MW-410S OU4 Non-GMP MW-411S OU4 Non-GMP	MW-161S	OU4	GMP
MW-164S OU4 GMP MW-169S OU4 Non-GMP MW-179S OU4 Non-GMP MW-180S OU4 Non-GMP MW-180S OU4 Non-GMP MW-183S OU4 GMP MW-236M OU4 Non-GMP MW-236S OU4 Non-GMP MW-236S OU4 Non-GMP MW-236S OU4 Non-GMP MW-280S OU4 Non-GMP MW-280S OU4 Non-GMP MW-280S OU4 Non-GMP MW-280S OU4 Non-GMP MW-304S OU4 Non-GMP MW-304S OU4 Non-GMP MW-310S OU4 Non-GMP MW-314S OU4 Non-GMP MW-409S OU4 Non-GMP MW-410S OU4 Non-GMP MW-411S OU4 Non-GMP	MW-162S	OU4	GMP
MW-169SOU4Non-GMPMW-179SOU4Non-GMPMW-180SOU4Non-GMPMW-183SOU4GMPMW-236MOU4Non-GMPMW-236SOU4Non-GMPMW-280MOU4Non-GMPMW-280SOU4Non-GMPMW-280SOU4Non-GMPMW-304SOU4Non-GMPMW-304SOU4Non-GMPMW-310SOU4Non-GMPMW-409SOU4Non-GMPMW-410SOU4Non-GMPMW-411SOU4Non-GMP	MW-163S	OU4	Non-GMP
MW-179S OU4 Non-GMP MW-180S OU4 Non-GMP MW-183S OU4 GMP MW-236M OU4 Non-GMP MW-236S OU4 Non-GMP MW-236S OU4 Non-GMP MW-280M OU4 Non-GMP MW-280S OU4 Non-GMP MW-280S OU4 Non-GMP MW-280S OU4 Non-GMP MW-280S OU4 Non-GMP MW-304S OU4 Non-GMP MW-304S OU4 Non-GMP MW-307S OU4 Non-GMP MW-310S OU4 Non-GMP MW-409S OU4 Non-GMP MW-410S OU4 Non-GMP MW-411S OU4 Non-GMP	MW-164S	OU4	GMP
MW-180SOU4Non-GMPMW-183SOU4GMPMW-236MOU4Non-GMPMW-236SOU4Non-GMPMW-280MOU4Non-GMPMW-280SOU4Non-GMPMW-2ASOU4Non-GMPMW-304SOU4Non-GMPMW-307SOU4Non-GMPMW-310SOU4Non-GMPMW-314SOU4Non-GMPMW-409SOU4Non-GMPMW-410SOU4Non-GMPMW-411SOU4Non-GMP	MW-169S	OU4	Non-GMP
MW-183SOU4GMPMW-236MOU4Non-GMPMW-236SOU4Non-GMPMW-280MOU4Non-GMPMW-280SOU4Non-GMPMW-2ASOU4Non-GMPMW-304SOU4Non-GMPMW-307SOU4Non-GMPMW-310SOU4Non-GMPMW-314SOU4Non-GMPMW-409SOU4Non-GMPMW-410SOU4Non-GMPMW-411SOU4Non-GMP	MW-179S	OU4	Non-GMP
MW-236MOU4Non-GMPMW-236SOU4Non-GMPMW-280MOU4Non-GMPMW-280SOU4Non-GMPMW-2ASOU4Non-GMPMW-304SOU4Non-GMPMW-307SOU4Non-GMPMW-310SOU4Non-GMPMW-314SOU4Non-GMPMW-409SOU4Non-GMPMW-410SOU4Non-GMPMW-411SOU4Non-GMP	MW-180S	OU4	Non-GMP
MW-236SOU4Non-GMPMW-280MOU4Non-GMPMW-280SOU4Non-GMPMW-2ASOU4Non-GMPMW-304SOU4Non-GMPMW-307SOU4Non-GMPMW-310SOU4Non-GMPMW-314SOU4Non-GMPMW-409SOU4Non-GMPMW-410SOU4Non-GMPMW-411SOU4Non-GMP	MW-183S	OU4	GMP
MW-280MOU4Non-GMPMW-280SOU4Non-GMPMW-2ASOU4Non-GMPMW-304SOU4Non-GMPMW-307SOU4Non-GMPMW-310SOU4Non-GMPMW-314SOU4Non-GMPMW-409SOU4Non-GMPMW-410SOU4Non-GMPMW-411SOU4Non-GMP	MW-236M	OU4	Non-GMP
MW-280SOU4Non-GMPMW-2ASOU4Non-GMPMW-304SOU4Non-GMPMW-307SOU4Non-GMPMW-310SOU4Non-GMPMW-314SOU4Non-GMPMW-409SOU4Non-GMPMW-410SOU4Non-GMPMW-411SOU4Non-GMP	MW-236S	OU4	Non-GMP
MW-2ASOU4Non-GMPMW-304SOU4Non-GMPMW-307SOU4Non-GMPMW-310SOU4Non-GMPMW-314SOU4Non-GMPMW-409SOU4Non-GMPMW-410SOU4Non-GMPMW-411SOU4Non-GMP	MW-280M	OU4	Non-GMP
MW-304S OU4 Non-GMP MW-307S OU4 Non-GMP MW-310S OU4 Non-GMP MW-314S OU4 Non-GMP MW-409S OU4 Non-GMP MW-410S OU4 Non-GMP MW-411S OU4 Non-GMP	MW-280S	OU4	Non-GMP
MW-307S OU4 Non-GMP MW-310S OU4 Non-GMP MW-314S OU4 Non-GMP MW-409S OU4 Non-GMP MW-410S OU4 Non-GMP MW-411S OU4 Non-GMP	MW-2AS	OU4	Non-GMP
MW-310S OU4 Non-GMP MW-314S OU4 Non-GMP MW-409S OU4 Non-GMP MW-410S OU4 Non-GMP MW-411S OU4 Non-GMP	MW-304S	OU4	Non-GMP
MW-314S OU4 Non-GMP MW-409S OU4 Non-GMP MW-410S OU4 Non-GMP MW-411S OU4 Non-GMP	MW-307S	OU4	Non-GMP
MW-409SOU4Non-GMPMW-410SOU4Non-GMPMW-411SOU4Non-GMP	MW-310S	OU4	Non-GMP
MW-410SOU4Non-GMPMW-411SOU4Non-GMP	MW-314S	OU4	Non-GMP
MW-411S OU4 Non-GMP	MW-409S	OU4	Non-GMP
	MW-410S	OU4	Non-GMP
MW-412S OU4 Non-GMP	MW-411S	OU4	Non-GMP
	MW-412S	OU4	Non-GMP
MW-101R OU4a GMP	MW-101R	OU4a	GMP
MW-102R OU4a GMP	MW-102R	OU4a	GMP
MW-122S OU4a GMP	MW-122S	OU4a	GMP
MW-123AS OU4a GMP	MW-123AS	OU4a	GMP
MW-124S OU4a Non-GMP	MW-124S	OU4a	Non-GMP
MW-126S OU4a GMP	MW-126S	OU4a	GMP

MW-1R OU5 Non-GMP MW-106S OU5 Non-GMP MW-206S OU5 GMP MW-208S OU5 GMP MW-208S OU5 GMP MW-208S OU5 GMP MW-201S OU5 GMP MW-210S OU5 GMP MW-210S OU5 GMP MW-801 OU5 GMP MW-802 OU5 GMP MW-804 OU5 Non-GMP MW-813 OU5 Non-GMP MW-814 OU5 GMP MW-813 OU5 Non-GMP MW-822 OU5 Non-GMP MW-823 OU5 Non-GMP MW-103S OU6 Non-GMP MW-103S OU6 Non-GMP MW-104S OU6 Non-GMP MW-205S OU6 Non-GMP MW-205S OU6 Non-GMP MW-205S OU6 Non-GMP MW-	WELL ID	Operable Unit	Monitoring Status
MW-106S OU5 Non-GMP MW-200S OU5 GMP MW-207S OU5 Non-GMP MW-208S OU5 Non-GMP MW-208S OU5 Non-GMP MW-210S OU5 Non-GMP MW-211S OU5 Non-GMP MW-812S OU5 GMP MW-801 OU5 Non-GMP MW-802 OU5 GMP MW-804 OU5 Non-GMP MW-813 OU5 GMP MW-814 OU5 GMP MW-813 OU5 Non-GMP MW-822 OU5 Non-GMP MW-822 OU5 Non-GMP MW-102S OU6 Non-GMP MW-103R OU6 Non-GMP MW-103S OU6 Non-GMP MW-104S OU6 Non-GMP MW-205S OU6 Non-GMP MW-205S OU6 Non-GMP MW-205S OU6 Non-GMP		OU5	Non-GMP
MW-206S OU5 GMP MW-207S OU5 Non-GMP MW-208S OU5 GMP MW-209S OU5 Non-GMP MW-210S OU5 GMP MW-211S OU5 GMP MW-811 OU5 Non-GMP MW-801 OU5 Non-GMP MW-802 OU5 MON-GMP MW-804 OU5 Non-GMP MW-813 OU5 Non-GMP MW-814 OU5 MON-GMP MW-812 OU5 Non-GMP MW-813 OU5 Non-GMP MW-814 OU5 Non-GMP MW-812 OU5 Non-GMP MW-102S OU6 Non-GMP MW-103R OU6 Non-GMP MW-102S OU6 Non-GMP MW-102S OU6 Non-GMP MW-12S OU6 Non-GMP MW-205S OU6 Non-GMP MW-207S OU6 Non-GMP	MW-1S	OU5	Non-GMP
MW-207S OU5 Non-GMP MW-209S OU5 GMP MW-209S OU5 Non-GMP MW-210S OU5 GMP MW-210S OU5 GMP MW-211S OU5 Non-GMP MW-812S OU5 GMP MW-801 OU5 Non-GMP MW-802 OU5 GMP MW-814 OU5 Non-GMP MW-813 OU5 GMP MW-814 OU5 GMP MW-812 OU5 Non-GMP MW-813 OU5 Non-GMP MW-822 OU5 Non-GMP MW-814 OU5 Non-GMP MW-102S OU6 Non-GMP MW-103R OU6 Non-GMP MW-104S OU6 Non-GMP MW-105S OU6 Non-GMP MW-205S OU6 Non-GMP MW-205S OU6 Non-GMP MW-205S OU6 Non-GMP		OU5	Non-GMP
MW-208S OU5 GMP MW-209S OU5 Non-GMP MW-210S OU5 GMP MW-211S OU5 GMP MW-612S OU5 GMP MW-801 OU5 Non-GMP MW-802 OU5 GMP MW-804 OU5 Non-GMP MW-813 OU5 Non-GMP MW-814 OU5 GMP MW-812 OU5 Non-GMP MW-814 OU5 Non-GMP MW-812 OU5 Non-GMP MW-822 OU5 Non-GMP MW-102S OU6 Non-GMP MW-103R OU6 Non-GMP MW-104S OU6 Non-GMP MW-105S OU6 Non-GMP MW-207S OU6 Non-GMP MW-205S OU6 Non-GMP MW-205S OU6 Non-GMP MW-208 OU6 Non-GMP MW-290S OU6 Non-GMP	MW-206S	OU5	GMP
MW-209S OU5 Non-GMP MW-210S OU5 GMP MW-211S OU5 Non-GMP MW-612S OU5 GMP MW-801 OU5 GMP MW-802 OU5 GMP MW-804 OU5 Non-GMP MW-813 OU5 Non-GMP MW-814 OU5 GMP MW-812 OU5 GMP MW-820 OU5 GMP MW-814 OU5 GMP MW-812 OU5 Non-GMP MW-820 OU6 Non-GMP MW-102S OU6 Non-GMP MW-103R OU6 Non-GMP MW-104S OU6 Non-GMP MW-105S OU6 Non-GMP MW-205S OU6 Non-GMP MW-207S OU6 Non-GMP MW-205S OU6 Non-GMP MW-229S OU6 Non-GMP MW-290S OU6 Non-GMP	MW-207S	OU5	Non-GMP
MW-210S OU5 GMP MW-211S OU5 Non-GMP MW-801 OU5 GMP MW-801 OU5 GMP MW-802 OU5 GMP MW-804 OU5 Non-GMP MW-802 OU5 GMP MW-813 OU5 Non-GMP MW-814 OU5 GMP MW-812 OU5 GMP MW-814 OU5 Non-GMP MW-814 OU5 Non-GMP MW-812 OU5 Non-GMP MW-822 OU5 Non-GMP MW-102S OU6 Non-GMP MW-103R OU6 Non-GMP MW-104S OU6 Non-GMP MW-105S OU6 Non-GMP MW-205S OU6 Non-GMP MW-211S OU6 Non-GMP MW-225S OU6 Non-GMP MW-229S OU6 Non-GMP MW-290S OU6 Non-GMP	MW-208S	OU5	GMP
MW-211S OU5 Non-GMP MW-612S OU5 GMP MW-801 OU5 Non-GMP MW-802 OU5 GMP MW-804 OU5 Non-GMP MW-813 OU5 Non-GMP MW-814 OU5 GMP MW-814 OU5 Non-GMP MW-812 OU5 Non-GMP MW-102S OU6 Non-GMP MW-103R OU6 Non-GMP MW-104S OU6 Non-GMP MW-105S OU6 Non-GMP MW-205S OU6 Non-GMP MW-205S OU6 Non-GMP MW-225S OU6 Non-GMP MW-228S OU6 Non-GMP MW-290S OU6 Non-GMP MW-292S OU6 Non-GMP	MW-209S	OU5	Non-GMP
MW-612S OU5 GMP MW-801 OU5 Non-GMP MW-802 OU5 GMP MW-804 OU5 Non-GMP MW-813 OU5 Non-GMP MW-814 OU5 GMP MW-814 OU5 GMP MW-814 OU5 GMP MW-814 OU5 GMP MW-812 OU5 Non-GMP MW-822 OU5 Non-GMP MW-102S OU6 Non-GMP MW-103R OU6 Non-GMP MW-104S OU6 Non-GMP MW-105S OU6 Non-GMP MW-105S OU6 Non-GMP MW-205S OU6 Non-GMP MW-205S OU6 Non-GMP MW-225S OU6 Non-GMP MW-228S OU6 Non-GMP MW-290S OU6 Non-GMP MW-292S OU6 Non-GMP MW-293S OU6 Non-GMP	MW-210S	OU5	GMP
MW-801 OUS Non-GMP MW-802 OUS GMP MW-804 OUS Non-GMP MW-813 OUS GMP MW-814 OUS GMP MW-819 OUS GMP MW-821 OUS Non-GMP MW-822 OUS Non-GMP MW-102S OU6 Non-GMP MW-103R OU6 Non-GMP MW-103S OU6 Non-GMP MW-104S OU6 Non-GMP MW-105S OU6 Non-GMP MW-105S OU6 Non-GMP MW-205S OU6 Non-GMP MW-207S OU6 Non-GMP MW-225S OU6 Non-GMP MW-225S OU6 Non-GMP MW-290S OU6 Non-GMP <td>MW-211S</td> <td>OU5</td> <td>Non-GMP</td>	MW-211S	OU5	Non-GMP
MW-802 OU5 GMP MW-804 OU5 Non-GMP MW-813 OU5 Non-GMP MW-813 OU5 GMP MW-814 OU5 GMP MW-814 OU5 GMP MW-819 OU5 GMP MW-821 OU5 Non-GMP MW-822 OU5 Non-GMP MW-102S OU6 Non-GMP MW-103R OU6 Non-GMP MW-103S OU6 Non-GMP MW-104S OU6 Non-GMP MW-105S OU6 Non-GMP MW-105S OU6 Non-GMP MW-205S OU6 Non-GMP MW-225S OU6 Non-GMP MW-225S OU6 Non-GMP MW-290S OU6 Non-GMP MW-290S OU6 Non-GMP MW-292S OU6 Non-GMP MW-293S OU6 Non-GMP MW-294S OU6 Non-GMP	MW-612S	OU5	GMP
MW-804 OU5 Non-GMP MW-813 OU5 Non-GMP MW-814 OU5 GMP MW-819 OU5 GMP MW-821 OU5 Non-GMP MW-822 OU5 Non-GMP MW-822 OU5 Non-GMP MW-102S OU6 Non-GMP MW-103R OU6 Non-GMP MW-103S OU6 Non-GMP MW-104S OU6 Non-GMP MW-105S OU6 Non-GMP MW-205S OU6 Non-GMP MW-205S OU6 Non-GMP MW-205S OU6 Non-GMP MW-225S OU6 Non-GMP MW-225S OU6 Non-GMP MW-290S OU6 Non-GMP MW-292S OU6 Non-GMP MW-293S OU6 Non-GMP MW-294S OU6 Non-GMP MW-294S OU6 Non-GMP MW-294S OU6 Non-GMP	MW-801	OU5	Non-GMP
MW-813 OU5 Non-GMP MW-814 OU5 GMP MW-819 OU5 GMP MW-821 OU5 Non-GMP MW-822 OU5 Non-GMP MW-102S OU6 Non-GMP MW-103R OU6 Non-GMP MW-103S OU6 Non-GMP MW-104S OU6 Non-GMP MW-105S OU6 Non-GMP MW-105S OU6 Non-GMP MW-205S OU6 Non-GMP MW-207S OU6 Non-GMP MW-225S OU6 Non-GMP MW-225S OU6 Non-GMP MW-225S OU6 Non-GMP MW-225S OU6 Non-GMP MW-290S OU6 Non-GMP MW-290S OU6 Non-GMP MW-293S OU6 Non-GMP MW-294S OU6 Non-GMP MW-295S OU6 Non-GMP MW-294S OU6 Non-GMP <td>MW-802</td> <td>OU5</td> <td>GMP</td>	MW-802	OU5	GMP
MW-814 OU5 GMP MW-819 OU5 GMP MW-821 OU5 Non-GMP MW-822 OU5 Non-GMP MW-102S OU6 Non-GMP MW-103R OU6 Non-GMP MW-103S OU6 Non-GMP MW-103S OU6 Non-GMP MW-104S OU6 Non-GMP MW-105S OU6 Non-GMP MW-125S OU6 Non-GMP MW-205S OU6 Non-GMP MW-205S OU6 Non-GMP MW-225S OU6 Non-GMP MW-225S OU6 Non-GMP MW-225S OU6 Non-GMP MW-290S OU6 Non-GMP MW-290S OU6 Non-GMP MW-293S OU6 Non-GMP MW-294S OU6 Non-GMP MW-294S OU6 Non-GMP MW-294S OU6 Non-GMP MW-810 OU6 Non-GMP <td>MW-804</td> <td>OU5</td> <td>Non-GMP</td>	MW-804	OU5	Non-GMP
MW-814 OU5 GMP MW-819 OU5 GMP MW-821 OU5 Non-GMP MW-822 OU5 Non-GMP MW-102S OU6 Non-GMP MW-103R OU6 Non-GMP MW-103S OU6 Non-GMP MW-103S OU6 Non-GMP MW-104S OU6 Non-GMP MW-105S OU6 Non-GMP MW-125S OU6 Non-GMP MW-205S OU6 Non-GMP MW-207S OU6 Non-GMP MW-225S OU6 Non-GMP MW-225S OU6 Non-GMP MW-290S OU6 Non-GMP MW-293S OU6 Non-GMP MW-293S OU6 Non-GMP MW-294S OU6 Non-GMP MW-294S OU6 Non-GMP MW-294S OU6 Non-GMP MW-294S OU6 Non-GMP MW-810 OU6 Non-GMP <td></td> <td></td> <td>Non-GMP</td>			Non-GMP
MW-819 OU5 GMP MW-821 OU5 Non-GMP MW-822 OU5 Non-GMP MW-102S OU6 Non-GMP MW-103R OU6 Non-GMP MW-103S OU6 Non-GMP MW-103S OU6 Non-GMP MW-104S OU6 Non-GMP MW-105S OU6 Non-GMP MW-205S OU6 Non-GMP MW-207S OU6 Non-GMP MW-211S OU6 Non-GMP MW-225S OU6 Non-GMP MW-225S OU6 Non-GMP MW-228S OU6 Non-GMP MW-290S OU6 Non-GMP MW-292S OU6 Non-GMP MW-293S OU6 Non-GMP MW-294S OU6 Non-GMP MW-295S OU6 Non-GMP MW-294S OU6 Non-GMP MW-294S OU6 Non-GMP MW-402S OU6 Non-	MW-814		GMP
MW-821 OU5 Non-GMP MW-822 OU5 Non-GMP MW-102S OU6 Non-GMP MW-103R OU6 Non-GMP MW-103S OU6 Non-GMP MW-104S OU6 Non-GMP MW-105S OU6 Non-GMP MW-125S OU6 Non-GMP MW-205S OU6 Non-GMP MW-207S OU6 Non-GMP MW-211S OU6 Non-GMP MW-225S OU6 Non-GMP MW-225S OU6 Non-GMP MW-225S OU6 Non-GMP MW-289S OU6 Non-GMP MW-290S OU6 Non-GMP MW-292S OU6 Non-GMP MW-293S OU6 Non-GMP MW-294S OU6 Non-GMP MW-294S OU6 Non-GMP MW-402S OU6 Non-GMP MW-810 OU6 Non-GMP MW-811D OU6			GMP
MW-822 OU5 Non-GMP MW-102S OU6 Non-GMP MW-103R OU6 Non-GMP MW-103S OU6 Non-GMP MW-104S OU6 Non-GMP MW-105S OU6 Non-GMP MW-105S OU6 Non-GMP MW-205S OU6 Non-GMP MW-207S OU6 Non-GMP MW-211S OU6 Non-GMP MW-225S OU6 Non-GMP MW-225S OU6 Non-GMP MW-225S OU6 Non-GMP MW-2290S OU6 Non-GMP MW-290S OU6 Non-GMP MW-293S OU6 Non-GMP MW-294S OU6 Non-GMP MW-296S OU6 Non-GMP MW-402S OU6 Non-GMP MW-810 OU6 Non-GMP MW-811D OU6 Non-GMP MW-811S OU6 Non-GMP MW-815 OU6 <td< td=""><td>MW-821</td><td></td><td>Non-GMP</td></td<>	MW-821		Non-GMP
MW-102S OU6 Non-GMP MW-103R OU6 Non-GMP MW-103S OU6 Non-GMP MW-104S OU6 Non-GMP MW-105S OU6 Non-GMP MW-125S OU6 GMP MW-205S OU6 Non-GMP MW-207S OU6 Non-GMP MW-211S OU6 Non-GMP MW-225S OU6 Non-GMP MW-225S OU6 Non-GMP MW-225S OU6 Non-GMP MW-225S OU6 Non-GMP MW-290S OU6 Non-GMP MW-292S OU6 Non-GMP MW-293S OU6 Non-GMP MW-294S OU6 Non-GMP MW-296S OU6 Non-GMP MW-296S OU6 Non-GMP MW-296S OU6 Non-GMP MW-810 OU6 Non-GMP MW-811D OU6 Non-GMP MW-812 OU6 Non			
MW-103R OU6 Non-GMP MW-103S OU6 Non-GMP MW-104S OU6 Non-GMP MW-105S OU6 Son-GMP MW-125S OU6 Son-GMP MW-205S OU6 Non-GMP MW-207S OU6 Non-GMP MW-211S OU6 Non-GMP MW-225S OU6 Non-GMP MW-228S OU6 Non-GMP MW-290S OU6 Non-GMP MW-290S OU6 Non-GMP MW-292S OU6 Non-GMP MW-293S OU6 Non-GMP MW-293S OU6 Non-GMP MW-293S OU6 Non-GMP MW-294S OU6 Non-GMP MW-295S OU6 Non-GMP MW-296S OU6 Non-GMP MW-296S OU6 Non-GMP MW-810 OU6 Non-GMP MW-811D OU6 Non-GMP MW-811S OU6 <t< td=""><td>MW-102S</td><td>OU6</td><td>Non-GMP</td></t<>	MW-102S	OU6	Non-GMP
MW-104S OU6 Non-GMP MW-105S OU6 SGMP MW-205S OU6 Non-GMP MW-207S OU6 Non-GMP MW-207S OU6 Non-GMP MW-207S OU6 Non-GMP MW-211S OU6 Non-GMP MW-225S OU6 Non-GMP MW-225S OU6 Non-GMP MW-229S OU6 Non-GMP MW-290S OU6 Non-GMP MW-292S OU6 Non-GMP MW-293S OU6 Non-GMP MW-294S OU6 Non-GMP MW-296S OU6 Non-GMP MW-296S OU6 Non-GMP MW-402S OU6 Non-GMP MW-810 OU6 Non-GMP MW-811D OU6 Non-GMP MW-811S OU6 Non-GMP MW-815 OU6 Non-GMP MW-816 OU6 Non-GMP MW-816R OU6 Non		OU6	Non-GMP
MW-105S OU6 Non-GMP MW-125S OU6 GMP MW-205S OU6 Non-GMP MW-207S OU6 Non-GMP MW-211S OU6 Non-GMP MW-225S OU6 Non-GMP MW-225S OU6 Non-GMP MW-225S OU6 Non-GMP MW-229S OU6 Non-GMP MW-290S OU6 Non-GMP MW-293S OU6 Non-GMP MW-294S OU6 Non-GMP MW-296S OU6 Non-GMP MW-296S OU6 Non-GMP MW-296S OU6 Non-GMP MW-402S OU6 Non-GMP MW-810 OU6 Non-GMP MW-811D OU6 Non-GMP MW-811S OU6 Non-GMP MW-812 OU6 Non-GMP MW-816 OU6 Non-GMP MW-816R OU6 Non-GMP MW-817 OU6 MOP </td <td>MW-103S</td> <td>OU6</td> <td>Non-GMP</td>	MW-103S	OU6	Non-GMP
MW-125S OU6 GMP MW-205S OU6 Non-GMP MW-207S OU6 Non-GMP MW-211S OU6 Non-GMP MW-225S OU6 Non-GMP MW-229S OU6 Non-GMP MW-290S OU6 Non-GMP MW-290S OU6 Non-GMP MW-293S OU6 Non-GMP MW-293S OU6 Non-GMP MW-294S OU6 Non-GMP MW-294S OU6 Non-GMP MW-296S OU6 Non-GMP MW-296S OU6 Non-GMP MW-402S OU6 Non-GMP MW-402S OU6 Non-GMP MW-810 OU6 Non-GMP MW-811D OU6 Non-GMP MW-811S OU6 Non-GMP MW-815 OU6 Non-GMP MW-816 OU6 Non-GMP MW-816 OU6 Non-GMP MW-817 OU6 Non-GM	MW-104S	OU6	Non-GMP
MW-205S OU6 Non-GMP MW-207S OU6 Non-GMP MW-211S OU6 Non-GMP MW-225S OU6 Non-GMP MW-289S OU6 Non-GMP MW-290S OU6 Non-GMP MW-290S OU6 Non-GMP MW-292S OU6 Non-GMP MW-293S OU6 Non-GMP MW-294S OU6 Non-GMP MW-294S OU6 Non-GMP MW-296S OU6 Non-GMP MW-296S OU6 Non-GMP MW-296S OU6 Non-GMP MW-402S OU6 Non-GMP MW-402S OU6 Non-GMP MW-810 OU6 Non-GMP MW-811D OU6 Non-GMP MW-812 OU6 Non-GMP MW-815 OU6 Non-GMP MW-816 OU6 Non-GMP MW-817 OU6 MP MW-818 OU6 Non-GMP<	MW-105S	OU6	Non-GMP
MW-207S OU6 Non-GMP MW-211S OU6 Non-GMP MW-225S OU6 Non-GMP MW-289S OU6 Non-GMP MW-290S OU6 Non-GMP MW-292S OU6 Non-GMP MW-293S OU6 Non-GMP MW-293S OU6 Non-GMP MW-294S OU6 Non-GMP MW-294S OU6 Non-GMP MW-296S OU6 Non-GMP MW-296S OU6 Non-GMP MW-296S OU6 Non-GMP MW-402S OU6 Non-GMP MW-402S OU6 Non-GMP MW-810 OU6 Non-GMP MW-811D OU6 Non-GMP MW-811S OU6 Non-GMP MW-815 OU6 Non-GMP MW-816 OU6 MP MW-817 OU6 MP MW-818 OU6 Non-GMP MW-820 OU6 Non-GMP	MW-125S	OU6	GMP
MW-211S OU6 Non-GMP MW-225S OU6 Non-GMP MW-289S OU6 Non-GMP MW-290S OU6 Non-GMP MW-292S OU6 Non-GMP MW-293S OU6 Non-GMP MW-294S OU6 Non-GMP MW-294S OU6 Non-GMP MW-294S OU6 Non-GMP MW-294S OU6 Non-GMP MW-296S OU6 Non-GMP MW-296S OU6 Non-GMP MW-296S OU6 Non-GMP MW-402S OU6 Non-GMP MW-402S OU6 Non-GMP MW-810 OU6 Non-GMP MW-811S OU6 Non-GMP MW-811S OU6 Non-GMP MW-815 OU6 Non-GMP MW-816 OU6 MOP MW-817 OU6 MP MW-818 OU6 Non-GMP MW-818 OU6 Non-GMP	MW-205S	OU6	Non-GMP
MW-225S OU6 Non-GMP MW-289S OU6 Non-GMP MW-290S OU6 Non-GMP MW-292S OU6 Non-GMP MW-293S OU6 Non-GMP MW-293S OU6 Non-GMP MW-294S OU6 Non-GMP MW-296S OU6 Non-GMP MW-810 OU6 Non-GMP MW-810 OU6 Non-GMP MW-811S OU6 Non-GMP MW-812 OU6 Non-GMP MW-815 OU6 Non-GMP MW-816 OU6 MP MW-817 OU6 Non-GMP MW-818 OU6 Non-GMP MW-818 OU6 Non-GMP MW-820 OU6 Non-GMP <td></td> <td>OU6</td> <td>Non-GMP</td>		OU6	Non-GMP
MW-289S OU6 Non-GMP MW-290S OU6 Non-GMP MW-292S OU6 Non-GMP MW-293S OU6 Non-GMP MW-294S OU6 Non-GMP MW-294S OU6 Non-GMP MW-294S OU6 Non-GMP MW-296S OU6 Non-GMP MW-402S OU6 Non-GMP MW-402S OU6 Non-GMP MW-501S OU6 Non-GMP MW-810 OU6 Non-GMP MW-811D OU6 Non-GMP MW-811S OU6 Non-GMP MW-812 OU6 Non-GMP MW-815 OU6 Non-GMP MW-816 OU6 MOR-GMP MW-816 OU6 Non-GMP MW-817 OU6 MP MW-818 OU6 Non-GMP MW-818 OU6 Non-GMP	MW-211S	OU6	Non-GMP
MW-289S OU6 Non-GMP MW-290S OU6 Non-GMP MW-292S OU6 Non-GMP MW-293S OU6 Non-GMP MW-294S OU6 Non-GMP MW-294S OU6 Non-GMP MW-294S OU6 Non-GMP MW-296S OU6 Non-GMP MW-402S OU6 Non-GMP MW-402S OU6 Non-GMP MW-501S OU6 Non-GMP MW-810 OU6 Non-GMP MW-811D OU6 Non-GMP MW-811S OU6 Non-GMP MW-812 OU6 Non-GMP MW-815 OU6 Non-GMP MW-816 OU6 MOR-GMP MW-816 OU6 Non-GMP MW-817 OU6 MP MW-818 OU6 Non-GMP MW-818 OU6 Non-GMP	MW-225S	OU6	Non-GMP
MW-292S OU6 Non-GMP MW-293S OU6 Non-GMP MW-294S OU6 Non-GMP MW-296S OU6 Non-GMP MW-402S OU6 GMP MW-501S OU6 Non-GMP MW-810 OU6 Non-GMP MW-811D OU6 Non-GMP MW-811S OU6 Non-GMP MW-811S OU6 Non-GMP MW-811S OU6 Non-GMP MW-811S OU6 Non-GMP MW-812 OU6 Non-GMP MW-815 OU6 Non-GMP MW-816 OU6 GMP MW-816 OU6 GMP MW-817 OU6 GMP MW-818 OU6 Non-GMP MW-818 OU6 Non-GMP MW-820 OU6 Non-GMP	MW-289S	OU6	
MW-293S OU6 Non-GMP MW-294S OU6 Non-GMP MW-296S OU6 Non-GMP MW-402S OU6 GMP MW-501S OU6 Non-GMP MW-810 OU6 Non-GMP MW-811D OU6 Non-GMP MW-811S OU6 Non-GMP MW-812 OU6 Non-GMP MW-815 OU6 Non-GMP MW-816 OU6 GMP MW-816R OU6 Non-GMP MW-817 OU6 GMP MW-818 OU6 Non-GMP MW-818 OU6 Non-GMP MW-820 OU6 Non-GMP	MW-290S	OU6	Non-GMP
MW-294S OU6 Non-GMP MW-296S OU6 Non-GMP MW-402S OU6 GMP MW-501S OU6 Non-GMP MW-810 OU6 Non-GMP MW-811D OU6 Non-GMP MW-811S OU6 Non-GMP MW-811S OU6 Non-GMP MW-811S OU6 Non-GMP MW-815 OU6 Non-GMP MW-815 OU6 Non-GMP MW-816 OU6 GMP MW-816 OU6 GMP MW-816 OU6 Non-GMP MW-816 OU6 Non-GMP MW-817 OU6 GMP MW-818 OU6 Non-GMP MW-820 OU6 Non-GMP	MW-292S	OU6	Non-GMP
MW-296S OU6 Non-GMP MW-402S OU6 GMP MW-501S OU6 Non-GMP MW-810 OU6 Non-GMP MW-811D OU6 Non-GMP MW-811S OU6 Non-GMP MW-811S OU6 Non-GMP MW-811S OU6 Non-GMP MW-811S OU6 Non-GMP MW-812 OU6 Non-GMP MW-815 OU6 Non-GMP MW-816 OU6 GMP MW-816 OU6 SMP MW-816 OU6 Non-GMP MW-817 OU6 MP MW-818 OU6 Non-GMP MW-820 OU6 Non-GMP	MW-293S	OU6	Non-GMP
MW-402S OU6 GMP MW-501S OU6 Non-GMP MW-810 OU6 Non-GMP MW-811D OU6 Non-GMP MW-811S OU6 Non-GMP MW-811S OU6 Non-GMP MW-815 OU6 Non-GMP MW-815 OU6 Non-GMP MW-816 OU6 GMP MW-816 OU6 GMP MW-816 OU6 Non-GMP MW-816 OU6 Non-GMP MW-817 OU6 MP MW-818 OU6 Non-GMP MW-820 OU6 Non-GMP	MW-294S	OU6	Non-GMP
MW-501S OU6 Non-GMP MW-810 OU6 Non-GMP MW-810 OU6 Non-GMP MW-811D OU6 Non-GMP MW-811S OU6 Non-GMP MW-812 OU6 Non-GMP MW-815 OU6 Non-GMP MW-816 OU6 GMP MW-816R OU6 OU6 MW-817 OU6 MP MW-818 OU6 Non-GMP MW-810 OU6 MOH		OU6	Non-GMP
MW-810 OU6 Non-GMP MW-811D OU6 Non-GMP MW-811S OU6 Non-GMP MW-812 OU6 Non-GMP MW-815 OU6 Non-GMP MW-816 OU6 GMP MW-816R OU6 GMP MW-817 OU6 Non-GMP MW-818 OU6 Non-GMP MW-820 OU6 Non-GMP	MW-402S	OU6	GMP
MW-811D OU6 Non-GMP MW-811S OU6 Non-GMP MW-812 OU6 Non-GMP MW-815 OU6 Non-GMP MW-816 OU6 GMP MW-816R OU6 GMP MW-817 OU6 Non-GMP MW-818 OU6 Non-GMP MW-818 OU6 Non-GMP MW-820 OU6 Non-GMP	MW-501S	OU6	Non-GMP
MW-811S OU6 Non-GMP MW-812 OU6 Non-GMP MW-815 OU6 Non-GMP MW-816 OU6 GMP MW-816R OU6 Non-GMP MW-817 OU6 GMP MW-818 OU6 Non-GMP MW-820 OU6 Non-GMP	MW-810	OU6	Non-GMP
MW-811S OU6 Non-GMP MW-812 OU6 Non-GMP MW-815 OU6 Non-GMP MW-816 OU6 GMP MW-816R OU6 Non-GMP MW-817 OU6 GMP MW-818 OU6 Non-GMP MW-820 OU6 Non-GMP	MW-811D	OU6	Non-GMP
MW-815 OU6 Non-GMP MW-816 OU6 GMP MW-816R OU6 Non-GMP MW-817 OU6 GMP MW-818 OU6 Non-GMP MW-820 OU6 Non-GMP		OU6	Non-GMP
MW-816 OU6 GMP MW-816R OU6 Non-GMP MW-817 OU6 GMP MW-818 OU6 Non-GMP MW-820 OU6 Non-GMP	MW-812	OU6	Non-GMP
MW-816R OU6 Non-GMP MW-817 OU6 GMP MW-818 OU6 Non-GMP MW-820 OU6 Non-GMP	MW-815	OU6	Non-GMP
MW-817 OU6 GMP MW-818 OU6 Non-GMP MW-820 OU6 Non-GMP	MW-816	OU6	GMP
MW-818 OU6 Non-GMP MW-820 OU6 Non-GMP	MW-816R	OU6	Non-GMP
MW-820 OU6 Non-GMP			
MW-820 OU6 Non-GMP	MW-818	OU6	Non-GMP
		OU6	Non-GMP
			Non-GMP

WELL ID	Operable Unit	Monitoring Status
MW-284S	OU7	Non-GMP
MW-313S	OU7	Non-GMP

Notes:

1. No wells are located within OU2 and OU8

2. MW-A(S) does not fall within an OU.

ATTACHMENT C MONITORING SCHEDULES

Attachment C: Monitoring Schedules TechCity Site. Ulster County, New York Site: 356002

Table 1: Water Quality Monitoring Sampling and Analysis Plan

Sampling at the below listed locations will be conducted every 5th quarter, beginning with the third quarter 2013. Additional sampling may occur as directed by the NYSDEC at other locations and frequencies.

Monitoring Well	OU #	Monitoring Purpose	Sampling Parameters	Analytical Method
MW-10S	OU 1	Utility Trench Barrier Wall	VOCs (Halogenated)	SW846 8021
MW-108S	OU 1	Triangle Plume Area	VOCs (Halogenated)	SW846 8021
MW-125S	OU 6	Utility Trench Barrier Wall	VOCs (Halogenated)	SW846 8021
MW-161S	OU 4	Upgradient Former B058	VOCs (Halogenated)	SW846 8021
MW-162S	OU 4	Former B058	VOCs (Halogenated)	SW846 8021
MW-164S	OU 4	Former B058	VOCs (Halogenated)	SW846 8021
MW-173S	OU 1	Drainage to 42" Storm	VOCs (Halogenated)	SW846 8021
MW-174S	OU 1	42" Storm Control Perimeter	VOCs (Halogenated)	SW846 8021
MW-176S	OU 3	Drainage to 42" Storm	VOCs (Halogenated)	SW846 8021
MW-177S	OU 3	42" Storm Control Perimeter	VOCs (Halogenated)	SW846 8021
MW-178S	OU 3	Drainage to 42" Storm	VOCs (Halogenated)	SW846 8021
MW-180S	OU 4a	42" Storm Control Perimeter	VOCs (Halogenated)	SW846 8021
MW-181S	OU 3	42" Storm Control Perimeter	VOCs (Halogenated)	SW846 8021
MW-182S	OU 3a	42" Storm Control Perimeter	VOCs (Halogenated)	SW846 8021
MW-183S	OU 4	42" Storm Control Perimeter	VOCs (Halogenated)	SW846 8021
MW-184SA	OU 3a	GWCS Trench Effectiveness	VOCs (Halogenated)	SW846 8021
MW-185SA	OU 3a	GWCS Trench Effectiveness	VOCs (Halogenated)	SW846 8021
MW-188S	OU 3a	60" Storm Control Perimeter	VOCs (Halogenated)	SW846 8021
MW-189S	OU 1	B005 Plume	VOCs (Halogenated)	SW846 8021
MW-203S	OU 3a	GWCS Trench Effectiveness	VOCs (Halogenated)	SW846 8021
MW-204S	OU 3a	NPLA Plume	VOCs (Halogenated)	SW846 8021
MW-206S	OU 5	Former IWSL	VOCs (Halogenated)	SW846 8021
			Arsenic	SW846 6020
			Cadmium	SW846 6020
			Lead	SW846 6020
			Silver	SW846 6020
			Phenols (total)	LAC-10-210-001-A
MW-208S	OU 5	Former IWSL	VOCs (Halogenated)	SW846 8021
			Arsenic	SW846 6020
			Cadmium	SW846 6020
			Lead	SW846 6020
			Silver	SW846 6020
			Phenols (total)	LAC-10-210-001-A
MW-210S	OU 5	Former IWSL	VOCs (Halogenated)	SW846 8021
			Arsenic	SW846 6020
			Cadmium	SW846 6020
			Lead	SW846 6020
			Silver	SW846 6020
			Phenols (total)	LAC-10-210-001-A
MW-250S	OU3	B005 PCE Source	VOCs (Halogenated)	SW846 8021
MW-250M	OU 3	B005 PCE Source	VOCs (Halogenated)	SW846 8021
MW-267S	OU 3	B003	VOCs (Halogenated)	SW846 8021
MW-269S	OU 3	B003 N Source	VOCs (Halogenated)	SW846 8021
			VOCs (Aromatics)	SW846 8021
MW-271S	OU 3	B003 N Source	VOCs (Halogenated)	SW846 8021
			VOCs (Aromatics)	SW846 8021
MW-272S	OU 3	B003	VOCs (Halogenated)	SW846 8021
MW-275S	OU 3	B003 B001 N Plume	VOCs (Halogenated)	SW846 8021
MW-277S	OU 3	B001 N Source	VOCs (Halogenated)	SW846 8021
MW-279S	OU 3	B001 N Plume Boundary	VOCs (Halogenated)	SW846 8021

Attachment C: Monitoring Schedules TechCity Site. Ulster County, New York Site: 356002

Table 1: Water Quality Monitoring Sampling and Analysis Plan

Sampling at the below listed locations will be conducted every 5th quarter, beginning with the third quarter 2013. Additional sampling may occur as directed by the NYSDEC at other locations and frequencies.

Monitoring Well	OU #	Monitoring Purpose	Sampling Parameters	Analytical Method
MW-402S	OU 6	GWCS Trench Effectiveness	VOCs (Halogenated)	SW846 8021
MW-403S	OU 3a	GWCS Trench Effectiveness	VOCs (Halogenated)	SW846 8021
MW-504S	OU 3	Groundwater Extraction Well	VOCs (Halogenated)	SW846 8021
MW-505S	OU 3	B005 Plume	VOCs (Halogenated)	SW846 8021
MW-508SA	OU 3a	GWCS Trench Effectiveness	VOCs (Halogenated)	SW846 8021
MW-601S	OU 3	B005 Plume	VOCs (Halogenated)	SW846 8021
MW-604S	OU 3a	NPLA Plume	VOCs (Halogenated)	SW846 8021
MW-607S	OU 3a	GWCS Trench Effectiveness	VOCs (Halogenated)	SW846 8021
MW-608S	OU 3a	GWCS Trench Effectiveness	VOCs (Halogenated)	SW846 8021
MW-612S	OU 5	Former IWSL	VOCs (Halogenated)	SW846 8021
			Arsenic	SW846 6020
			Cadmium	SW846 6020
			Lead	SW846 6020
			Silver	SW846 6020
			Phenols (total)	LAC-10-210-001-A
MW-802	OU 5	Former IWSL	VOCs (Halogenated)	SW846 8021
			Arsenic	SW846 6020
			Cadmium	SW846 6020
			Lead	SW846 6020
			Silver	SW846 6020
			Phenols (total)	LAC-10-210-001-A
MW-806	OU 3	B005 PCE Plume	VOCs (Halogenated)	SW846 8021
MW-816	OU 6	Former IWSL	VOCs (Halogenated)	SW846 8021
			Arsenic	SW846 6020
			Cadmium	SW846 6020
			Lead	SW846 6020
			Silver	SW846 6020
			Phenols (total)	LAC-10-210-001-A
MW-817	OU 6	Former IWSL	VOCs (Halogenated)	SW846 8021
			Arsenic	SW846 6020
			Cadmium	SW846 6020
			Lead	SW846 6020
			Silver	SW846 6020
			Phenols (total)	LAC-10-210-001-A

Attachment C: Monitoring Schedules TechCity Site. Ulster County, New York Site: 356002

 Table 2: Routine GMP Sampling Schedule

YEAR	Quarter Sampled
2013	Third Quarter
2014	Fourth Quarter
2016	First Quarter
2017	Second Quarter
2018	Third Quarter
2019	Fourth Quarter
2021	First Quarter
2022	Second Quarter
2023	Third Quarter
2024	Fourth Quarter
2027	First Quarter
2028	Second Quarter
2029	Third Quarter

ATTACHMENT D

FIELD DOCUMENTATION FORMS

Field Sampling Data Sheet

GENERAL INFORMATION:

Well No:		Date:		/	/			Pers	onne	l:		
<u>PURGING</u> :												
Reference Depth	To Bottor	n (DTBr))	ft.	Star	t:			Stop):		
Measured Depth	to Bottom	n (DTBm))	ft.	Note:	Use Rej	feren	ce Dept	h to Ba	ottom for	calculat	ions
Depth to Water	(DTW):			ft.	Well	Yield	s:		(J Yes	🗖 N	0
Target Volume:				gal.	Wate	er Cont	taine	d:	(⊐ Yes	🗖 N	0
Actual Volume:				gal.	DTV	V Afte	r Pu	rge:				ft.
PID: Bo	ackground:	•		Purgi	ng:					J Not A	Applicat	ble
Purge M					Rat	e			ł	Equipn	nent I	D
								_ ·				
	altic Pum	p										
🗖 Subm	ersible							- ·				
Other	:							- ·				
<u>SAMPLING</u> :												
Sample ID:												
Sample Time:	Start:	• • •	_	Stop:								
Duplicate ID:												
Sampling Meth	od:		Bailer Perist							ole (Ta	•	
<u>COMMENTS</u> :												
Signature:			Da	te:	Q	A/QC	C Rev	iew:		Da	te:	

Analysis Request Form

Well Numb	er:		Date:	/	/
LABORATO	<u>DRY</u> :				
	EnviroTest Laboratories, Inc.				
	Lancaster Laboratories				
	Other:				
<u>ANALYSES</u>	<u>REQUESTED</u> :				
	8021, Freon 113, Freon 123a		Antimony (EPA 20	00.7 or	6010A)
	Phenols (total) (EPA 420.1)		Arsenic (EPA 206	.2 or 70	60A)
	Metals are Filtered		Cadmium (EPA 71	.31)	
	Metals are Unfiltered		Lead (EPA 239.2 d	or 7421))
	Other Parameter (specify below)		Silver (EPA 7761)		
Othe	r:	_			

FIELD PARAMETERS:

Date	Time	Temp (°C)	pH (SU)	Sp. Cond. (µmhos/cm)	Turbidity (NTU)	Notes

<u>COMMENTS</u>:

TechCity Site			Needs Repair		No		
Physical Well	Inventory Form	I	Date repair w	as completed	d:		
Well #:							
Date:							
Evaluation:							
Anhole Manhole	Standpipe	Other			_		
Is the ID # of the	well visible	yes	no	n/a			
Is the Royer or Co		yes	no	n/a			
	re an expanding plug	yes	no	n/a			
Is the lock function		yes	no	n/a			
	e a concrete apron	yes	no	n/a			
Is the surface com	-	yes	no	n/a			
Is the well paint in	-	yes	no	n/a			
Verify well locati	yes	no	n/a				
Does well location	yes	no	n/a				
Is the survey marl	yes	no	n/a				
Measurements	5:						
	survey mark	Static W	ater Level: _				
	top of casing	Depth to	Depth to Bottom:				
	• other	Diamete	r of well:				
Standpipe measurement above grade: Manhole measurement below grade:							
Location of Well:							
Comments:							
Well Inventory Pe	erformed By (Name):						

ATTACHMENT E

HEALTH AND SAFETY PLAN GROUNDWATER MONITORING and REMEDIATION PROGRAM

ТЕСНСІТУ

TOWN OF ULSTER, ULSTER COUNTY NEW YORK SITE ID: 356002 ORDER ON CONSENT INDEX: D3-10023-6-11

HEALTH AND SAFETY PLAN

GROUNDWATER MONITORING AND REMEDIATION PROGRAM

October 2011

Prepared by:

Groundwater Sciences Corporation

2601 Market Place Street, Suite 310 Harrisburg, Pennsylvania 17110 560 Route 52, Suite 202 Beacon, New York 12508

1108 Vestal Parkway East, Suite 2 Vestal, New York 13850

Harrisburg, PA/Beacon, NY/Vestal, NY

Table of Contents

1.0	SITE	DESCRI	PTION					
	1.1	Site Lo	ocation & B	ackground Information1				
	1.2	Potent	ial Hazards					
		1.2.1	Chemical	Hazards1				
		1.2.2	Physical H	Iazards1				
			1.2.2.1	Utilities				
			1.2.2.2	Confined Space/Excavation				
			1.2.2.3	Slipping/tripping and uneven terrain				
		1.2.3	Mechanica	al Hazards2				
		1.2.4	Biological	Hazards				
		1.2.5	Noise Haz	zards2				
		1.2.6	Eye Hazar	rd				
		1.2.7	Heat Stres	s and Fatigue Hazard				
		1.2.8	Cold Stres	ss – Hypothermia and Frostbite				
		1.2.9	Affected A	Area and Control Measures4				
2.0	WOR	K OBJE	CTIVES					
3.0	ORG	ANIZAT	ION, COOF	RDINATION, AND SITE ACCESS6				
	3.1	Distrib	oution of the	HASP6				
	3.2	Contra	ctor's Cond	uct7				
4.0	CHEN	MICAL H	HAZARD E	VALUATION				
5.0	DECO	ONTAMI	NATION P	ROCEDURES 10				
	5.1	Person	al					
	5.2	Equipr	nent					
	5.3	Dispos	sable Items					
6.0	AIR M	MONITO	RING					
7.0	PERS	SONAL P	ROTECTIV	/E EQUIPMENT 12				
	7.1	Level	D					
	7.2	Modifi	ied Level D					
	7.3	Level	С					
	7.4	Level	В					
8.0	CON	CONFINED SPACE ENTRY PROCEDURES15						
	8.1	Confin	ed Space Er	ntry Permit				
	8.2	Personal Protective Equipment16						
	8.3	Monito	oring Equip	ment16				

	8.4	Role of Attendant16
	8.5	Emergency Response
9.0	LOCK	-OUT/TAG-OUT/CONTROL OF HAZARDOUS ENERGY
	9.1	Preparation for Lock-out/Tag-out
	9.2	Sequence of Lock-out or Tag-out System Procedure
	9.3	Restoring Machines or Equipment to Normal Operations
	9.4	Electrical Safety and Lock-out/Tag-out19
	9.5	Temporary Removal of Lock-out/Tag-out Devices
	9.6	Common Pitfalls of Lock-out/Tag-out
10.0	EMER	GENCY PROCEDURES AND EQUIPMENT
	10.1	Emergency Contacts and Directions
	10.2	Emergency Equipment
	10.3	Exposure Symptoms for Chemicals
	10.4	First Aid
		10.4.1 Eye Contact
		10.4.2 Skin Contact
		10.4.3 Inhalation
		10.4.4 Ingestion
		10.4.5 Contact with Separate-Phase Solvent
	10.5	Emergency Procedures
		10.5.1 Personnel Injury
		10.5.2 Fire Explosion
		10.5.3 Equipment Failure
11.0	ACKN	OWLEDGMENT OF PLAN

Table of Appendices

Appendix A	NIOSH Pocket Guide to Chemical Hazards Information for Significant VOCs
Appendix B	Relative Response of Field Monitoring Equipment to Selected Organic Compounds
Appendix C	Confined Space Entry Permit (sample)
Appendix D	Hospital Route Map

1.0 SITE DESCRIPTION

Groundwater Sciences Corporation (GSC) has prepared this Health and Safety Plan for the TechCity Site (Site) under requirements set forth in Exhibit C of the Order on Consent (Order), Index # D3-10023-6-11, for Site 356002.

1.1 Site Location & Background Information

The Site is located north of the City of Kingston in the Town of Ulster, Ulster County, New York and is bounded by John M. Clarke Drive and Route 9W to the east, Old Neighborhood Road and Route 209 to the north, Esopus Creek to the west and Boices Lane to the south (see Figure 1). The total area of the Site is comprised of three Operable Units as detailed in the Order and is approximately 66.3 acres.

The Site is currently listed as a Class 4 Site on the New York State Department of Environmental Conservation, Inactive Hazardous Waste Registry, Site Code 356002.

1.2 Potential Hazards

Potential hazards are listed in the following subsections.

1.2.1 Chemical Hazards

The primary chemicals of concern at this Site include chlorinated ethenes, chlorinated ethanes, and other compounds in groundwater. The significant chemicals at the Site are described below. The primary chemical safety concerns are inhalation of vapor-phase contamination originating from contaminated groundwater as well as dermal contact with contaminated groundwater. The chemical hazards associated with contaminated groundwater and soils are evaluated in Section 4: Chemical Hazard Evaluation.

1.2.2 Physical Hazards

1.2.2.1 Utilities

Electrical shock or electrocution can result from exposed wiring, electrical panels, extension cords, and motors. Extension cords shall be inspected for fraying and shall not be used in a way that creates a tripping hazard. GFCI outlets shall be used whenever possible. Appropriate lock-out/tag-

out procedures must be followed prior to servicing electrical equipment (see Section 9, Lockout/Tag-out/Control of Hazardous Energy).

1.2.2.2 Confined Space/Excavation

If entry into a confined space is necessary, proper confined space procedures, including the use of a permit, will be followed. The safety concerns in these confined spaces are lack of oxygen and possible inhalation of vapors. These concerns are addressed in Section 8: Confined Space Entry Procedures.

1.2.2.3 Slipping/tripping and uneven terrain

Wet floors in the various groundwater treatment facilities may be slippery when wet. In addition, metal floor grates must be kept in place.

1.2.3 <u>Mechanical Hazards</u>

Heavy equipment, including drilling rigs, tender vehicles, backhoes, and dump trucks, may be used during certain Site activities. Loose clothing that could become entangled during operation of devices equipped with cables, chains, or belts shall be removed. Generators shall not be refueled while they are operating. Extension cords shall be inspected for fraying and shall not be used in a way that creates a tripping hazard.

1.2.4 <u>Biological Hazards</u>

Mosquitoes, bees, and wasps are expected to be present throughout the spring and summer. Avoid direct contact with animals.

1.2.5 Noise Hazards

Hearing protection such as earplugs or earmuffs shall be used during the operation of power tools and equipment that create percussive sounds, particularly in confined areas. Hearing protection shall also be used during drilling, construction, maintenance, testing, and waste management activities where required by Section 7.1 of this HASP.

1.2.6 Eye Hazard

Protective eyewear shall be worn during activities such as welding, cutting, or sawing, and other field activities where a splash hazard exists. A portable eyewash must be present at all times during such activities.

1.2.7 Heat Stress and Fatigue Hazard

Heat stress monitoring of pulse rates and heat stress/hydration breaks shall be required for personnel in Tyvek or other protective clothing when the ambient temperature exceeds 85°F. If heat stress or heat stroke symptoms are identified, then immediate medical attention is required.

1.2.8 Cold Stress – Hypothermia and Frostbite

Personnel conducting field activities in exceptionally cold temperatures should take the appropriate precautions to prevent hypothermia or frostbite. Warm, dry clothing should be worn at all times while working in cold temperatures.

Hypothermia usually is caused by extended exposure to cold. Hypothermia results when more heat is lost than the body can generate. Common causes include being outside without enough covering in winter, wearing wet clothing for an extended period of time in windy or very cold weather, or heavy exertion, or poor fluid or food intake in cold weather, even in above-freezing temperatures. The onset of symptoms is usually slow. There is likely to be a gradual loss of mental acuity and physical ability. The person experiencing hypothermia, in fact, may be unaware that he or she is in a state that requires emergency medical treatment. Symptoms of hypothermia include apathy, lethargy, confusion, drowsiness, loss of coordination, pale skin, slowing of breathing, slurred speech, uncontrollable shivering, and weakness. It requires immediate emergency medical attention.

Frostbite is, literally, frozen body tissue - usually skin but sometimes deeper - and must be handled carefully to prevent permanent tissue damage or loss. You can help prevent frostbite in cold weather by dressing in layers, making sure you come indoors at regular intervals, and watching for frostnip, frostbite's early warning signal. Frostnip usually affects areas that are exposed to the cold, such as the cheeks, nose, ears, fingers, and toes, leaving them white and numb. Frostbite is

characterized by white, waxy skin that feels numb and hard. It requires immediate emergency medical attention.

1.2.9 Affected Area and Control Measures

The work zones typically associated with a health and safety plan (exclusion zone, contaminant reduction zone, and support zone) are required for some anticipated field activities.

The work areas requiring possible perimeter control measures are primarily in the immediate vicinity of the well drilling sites, groundwater monitoring and groundwater extraction and treatment system sampling locations. The areas where soil and/or groundwater contamination may be present, and where the greatest potential for chemical exposure and physical injury exists, are in the immediate vicinity of drilling and sampling operations. Perimeter control measures will be set up at each drilling or sampling location. The perimeter control area will be determined individually for each location by the Project Manager, Assistant Project Manager, or Field Team Leader and will be based on the proximity to roads and structures, and on the general nature of the surrounding area. Perimeter control measures shall include one or more of the following: traffic cones, safety fence, caution tape, or fencing. Only OSHA-trained personnel necessary for completion of the specific task will be allowed inside of the bounded areas.

All field personnel and samplers in particular, shall use appropriate personal protective equipment and health and safety measures detailed in this HASP to minimize exposure to contaminated vapor, groundwater or soil.

2.0 WORK OBJECTIVES

Various work plans and sampling plans prepared describe the field activities that will be performed by GSC and others. These activities may include:

- 1. Surveying and reconnaissance activities such as topographic mapping.
- 2. Drilling of monitoring wells, extraction wells, and soil borings.
- 3. Construction of monitoring wells and extraction wells.
- 4. Hydraulic testing.
- 5. Sampling of soil, groundwater, surface water, sewer, and soil vapor.
- 6. Management of soil, water, and drill cuttings.
- 7. Measurement of groundwater elevations in monitoring wells.
- 8. Maintenance, repair, and installation of groundwater transport piping, treatment facilities, and associated equipment.
- 9. Well rehabilitation and decommissioning activities.

3.0 ORGANIZATION, COORDINATION, AND SITE ACCESS

The following personnel are designated to carry out the stated job functions. (Note: One person may carry out more than one job function.)

Project Director:	Craig G. Robertson
Project Managers:	Dorothy A. Bergmann Mitchell W. Ruchin
Assistant Project Managers	C. Edward Stoner
Project Quality Assurance Manager:	Dorothy A. Bergmann
GSC Health and Safety Officer:	Charles A. Rine
GSC Field Team Leaders/Members:	Kenneth W. Bittner Glenn S. Carson Stephen M. Fisher Matthew T. Luckman Charles A. Rine Mitchell W. Ruchin C. Edward Stoner Christopher J. Shannon Kaitlin B. Fleming Robert C. Watson
Client Representatives:	IBM: Dean Chartrand

Project personnel may be rotated, added, or dropped as needed. All personnel conducting field activities shall be authorized to do so by GSC. GSC field personnel will advise IBM employees, GEMs employees, subcontractors, and other persons without proper personal protective equipment or health and safety training that they will not be allowed on the Site.

3.1 Distribution of the HASP

All subcontractors working at the Site, or who otherwise could be exposed to health and safety hazards, will be advised of known hazards through distribution of this Health and Safety Plan. They shall be solely responsible for the health and safety of their employees and shall comply with applicable state and federal health and safety laws and regulations. All GSC personnel and subcontractors of GSC working at the Site shall review this Health and Safety Plan in its entirety and shall read and sign Section 11 of this HASP.

3.2 Contractor's Conduct

All relevant procedures described in the *Health and Safety Plan* shall be followed. Smoking and use of chewing tobacco is prohibited during work activities associated with this HASP.

4.0 CHEMICAL HAZARD EVALUATION

Ten volatile organic compounds (VOCs) have been identified as significant with regard to concentration and lateral distribution in groundwater at the Site. Only low concentrations in soil vapor are expected to be encountered during field activities because the source of the vapor is typically partitioning from groundwater. In addition, Poly Chlorinate Biphenyls (PCBs or Arochlors) have been identified in soils and groundwater at the Site, specifically in wells associated with SWMU T, the Former Waste Oil Tank located proximal to the northern end of Building 003. Information from the *NIOSH Pocket Guide to Chemical Hazards* for each of the ten VOCs and PCBs are presented in Appendix A. These significant VOCs are listed below with their Chemical Abstract Service Registration Numbers (CASRN).

Substances	CASRN			
Tetrachloroethene (PCE)*	127-18-4			
Trichloroethene* (TCE)*	79-01-6			
cis-1,2-Dichloroethene	540-59-0			
Vinyl Chloride*	75-01-4			
1,1,1-Trichloroethane (Methyl Chloroform)	71-55-6			
1,1,2-Trichloroethane*	79-00-5			
1,1-Dichloroethane	75-34-3			
1,1-Dichloroethene*	75-35-4			
1,2-Dichloroethane*	107-06-2			
1,1,2-Trichloro-1,2,2,-trifluoroethane (Freon 113)	76-13-1			
Chloroform*	67-66-3			
* - NIOSH potential occupational carcinogen.				

substances are also summarized in Appendix B of this HASP. Potential chemical exposures from the work activities detailed in Section 2 of this HASP are via skin contact with, and inhalation of, contaminated media.

This information in Appendix A includes primary routes of exposure and exposure limits. Time-

weighted averages (TWAs) and/or short-term exposure limits (STELs) for these and other

Appropriate personal protective equipment will be required as described in Section 7 of this HASP.

5.0 DECONTAMINATION PROCEDURES

Items that come into contact with potentially contaminated soil and groundwater will be disposed of or decontaminated as described in an approved Work Plan or the Quality Assurance Project Plan.

5.1 Personal

Because the degree of contamination is known and the potential for transfer is judged to be minimal, scrubbing and rinsing of personal protective equipment (PPE) generally will not be necessary. PPE, including gloves will be removed, placed in labeled plastic bags, and disposed of properly.

5.2 Equipment

Non-disposable groundwater gauging equipment, such as interface probes and water level meters, will be decontaminated as specified in an approved Work Plan, the Groundwater Monitoring Plan or the Quality Assurance Project Plan.

Non-disposable drilling equipment (such as augers, sampling spoons, drill rods, etc.), excavating equipment and all other non-disposable tools that come into contact with Site soils and/or groundwater will be decontaminated as specified in the relevant drilling procedure of the Quality Assurance Project Plan.

5.3 Disposable Items

Decontamination shall not be required for disposable items. Disposable items shall be placed into labeled plastic bags or containers and disposed of properly.

6.0 AIR MONITORING

VOC concentrations in the breathing air in all work areas during normal work activities (not including confined space entry and drilling activities) are expected to be minimal (less than 1 part per million as measured by an organic vapor analyzer in the breathing zone). During typical groundwater sampling and testing activities, continuous and periodic air monitoring for VOCs will not be performed.

If air monitoring for VOCs is required (confined space entry and drilling activities) or otherwise deemed necessary due to noticeable odor or suspected elevated levels of VOCs in water or soil, then this air monitoring will be performed either continuously or at periodic intervals (at least every 15 minutes) in the breathing zone using a photoionization detector (PID) or flame ionization detector equipped with an 11.7 eV lamp. If a PID with a lower eV rating is used (e.g., 10.2 eV), then the user must be aware that TCA will not be detectable by the PID. The FID or PID will be calibrated according to the manufacturer's instructions. If persistent concentrations greater than 5 ppm above background are measured in the breathing zone, then workers will leave the area until the contamination dissipates or until alternative protection measures, such as high volume fan ventilation or Level C or B respiratory protection, are established (refer to Section 7). The air monitoring frequency may be changed at the discretion of the Health and Safety Officer or Field Team Leader.

Prior to entering a confined space such as a well pit, air monitoring for oxygen content and combustible gases shall be performed as described in Section 8.3.

7.0 PERSONAL PROTECTIVE EQUIPMENT

Based on an evaluation of potential hazards, level D protection will be designated to perform most sampling, maintenance and monitoring activities. Modified level D (with Tyvek, Saranex, or chemical-resistant apron) protection maybe designated where splash protection is necessary. Appropriate ventilation or Level B or C respiratory protection will be required where organic vapor concentrations, as measured with a PID, exceed 5 ppm above background in the breathing zone. The following levels of personal protection have been designated for the applicable work areas or tasks:

Location Activity		Level of Protection
Well Drilling Sites	Monitoring well drilling, construction, and related activities	D, Mod. D, C, or B depending on the organic vapor concentration in the breathing zone and the presence of VC in groundwater
Monitoring Well Sites	Purging and sampling; hydraulic testing	D
Confined spaces	Activities requiring entry into an GAC units, pits, tanks, or excavations determined to be a confined space	D, Mod. D or B, depending on O_2 level
Groundwater Extraction System	Operation, maintenance, and monitoring of groundwater treatment systems	D or Mod. D, except for confined space work

Specific levels of protective equipment for each level of protection are as follows:

7.1 Level D

<u>Clothing</u>: Regular work clothes, not loose fitting, shall be worn. Shirt sleeves shall preferably cover the entire arm. Shorts are not permitted.

<u>Hearing protection</u>: Earplugs or earmuffs shall be worn during operations where the 8-hour timeweighted average sound level (slow response) is greater than 85 dB. Exposure to impulsive or impact noise should not exceed 140 dB peak sound pressure level, with or without hearing protection. Eye protection: Wraparound glasses or goggles shall be worn when operating percussion tools and during sampling activities where the potential for a splash hazard exists. Welding glasses or goggles specifically designed for use during welding or torch cutting shall be used for those activities.

Footwear: Steel toe boots or shoes shall be worn at all times.

<u>Hand protection</u>: Chemical resistant gloves shall be worn for sampling-related activities. Disposable vinyl or nitrile surgical-type gloves are acceptable. Where a puncture risk exists, protective leather or neoprene outer gloves shall be worn over the vinyl inner gloves.

Head protection: ANSI spec hard hats shall be worn while working around heavy equipment.

7.2 Modified Level D

Includes all of the items listed in Level D plus Tyvek coveralls for particulate protection or Tyvek Saranex for splash protection. Disposable boots or boot covers may also be worn. Gloves and boots may be taped to coveralls using duct tape.

7.3 Level C

Includes all of the items listed for Level D and modified Level D plus a chemical cartridge respirator with organic vapor cartridge(s) or a powered, air-purifying respirator with organic vapor cartridge(s).

7.4 Level B

Includes all of the items listed for Level D and modified Level D plus (1) a self-contained breathing apparatus (SCBA) that has a full facepiece and is operated in a pressure-demand or other positive-pressure mode or (2) a supplied-air respirator that has a full facepiece and is operated in a pressure-demand or other positive-pressure mode in combination with an auxiliary self-contained positive-pressure breathing apparatus.

Facial hair which interferes with the operation and fit of the respirator face piece shall be removed prior to using such equipment. Contact lenses are not compatible with SCBA or airline respirators and shall not be worn. Eyeglass lens inserts shall be used instead.

Each SCBA and airline respirator unit will be fit- and pressure-tested prior to use. The contact surfaces of all respiratory protection equipment will be cleaned with rubbing alcohol after each use.

Personal protective equipment may be modified at the discretion of the Health and Safety Officer or Field Team Leader. No changes to the specified levels of protection shall be made without the approval of the Health and Safety Officer or Field Team Leader.

8.0 CONFINED SPACE ENTRY PROCEDURES

Confined spaces at the Site may include shored excavations that are deeper than they are wide and certain areas of the groundwater treatment system such as well pits and tanks. Confined space entry is defined as inserting any part of the body past the plane of the portal to the confined space. For example, putting one's arm into a large tank constitutes confined space entry; looking into the tank from outside the manway does not.

All confined spaces, are presumed to be potentially dangerous, and entry will require the issuance of a confined space entry permit. Appropriate safety measures shall be taken before entering a confined space or vessel. Under no circumstances is a vessel to be entered without an authorized confined space permit.

Confined spaces may be entered for various sampling and maintenance purposes. These activities will be conducted by personnel who have received specific confined space entry training in addition to the required 40-hour HAZWOPER training (with 8-hour annual refresher training, where applicable).

8.1 Confined Space Entry Permit

A confined space entry permit is a written document provided to allow and control entry into a permit-required space. In the case of a non-permit-required space, the entry permit will serve as the written certification required by OSHA that the space is safe for entry. The form presented in Appendix C of this HASP, or an equivalent form, shall be completed for all permit-required confined spaces. No one shall enter a permit-required confined space unless a permit, authorized for the specific location and activity, has been completed by the field team leader or other trained professional. A new confined space permit will be required daily, or when an activity stops and starts up again after a delay.

Confined space activities on this property require a confined space permit.

8.2 Personal Protective Equipment

Personal protective equipment shall be as described in Section 7. A body harness attached to a life line should be used if the other end of the life line can be securely anchored to a tripod, hoist or other device outside the confined space.

8.3 Monitoring Equipment

Prior to entry into a confined space, an attempt shall be made to ventilate the confined space. Ventilation may be accomplished by the use of a fan designed for this purpose. The confined space atmosphere shall be checked and continuous monitoring shall occur as long as the entrant is within the confined space. The atmosphere will be checked for oxygen content and lower explosive limit (LEL). Continuous monitoring of oxygen levels is not necessary if the entrant is using SCBA or an airline respirator.

Oxygen levels are to be between 19.5 and 23 percent prior to entry into the confined space. If the oxygen concentration within the confined space, as determined by continuous monitoring, is not within this range while the entrant is in the confined space, then the entrant will immediately exit the confined space unless using a supplied air device. The oxygen meter shall be calibrated at an elevation similar to the elevation of the confined space.

After the oxygen content of the confined space is determined to be between 19.5 and 23 percent, the LEL will be measured. If the LEL is less than 10 percent, then the confined space may be entered. Where an explosive vapor hazard is expected, the LEL will be monitored continuously while the entrant is in the confined space, and if the concentration increases to greater than 10 percent, then the entrant shall immediately exit the confined space.

8.4 Role of Attendant

An attendant shall be present outside of the confined space for the entire time that the entrant is in the confined space. The entrant shall be within sight of the attendant at all times or shall otherwise make verbal contact at approximately one-minute intervals. The attendant is not permitted to perform entry-type rescue unless relieved of the attending responsibilities and by a properly trained and equipped person. The attendant is not to perform any procedure that would detract from the attendant's ability to recognize and warn of unsafe conditions and is in no instance allowed to break

the plane of the confined space. This does not preclude the attendant from performing such tasks as getting tools and sampling equipment and passing them to the persons working in the confined space. The attendant will also perform the role of supervisor with all of the necessary responsibilities. The attendant will, therefore, be responsible for adherence to standard operating procedures, and for keeping unauthorized personnel from entering the confined space.

8.5 Emergency Response

In the event that an emergency situation arises within the confined space, the attendant shall immediately notify the emergency number (refer to Section 10). The attendant is then to return to the confined space unless the emergency is of such a nature that the safety of the attendant would be threatened. The attendant is to render only non-entry assistance until such time as the emergency response personnel arrive at the confined space.

9.0 LOCK-OUT/TAG-OUT/CONTROL OF HAZARDOUS ENERGY

To ensure that all individuals working on the Site are protected from accidental or unexpected activation of mechanical and/or electrical equipment during maintenance, repair, cleaning, servicing, or adjusting of prime movers, machinery, or equipment, a lock-out/tag-out procedure must be followed.

The term "lock-out" refers to the practice of using keyed or combination security devices ("locks") to prevent the unwanted activation of mechanical or electrical equipment. The term "tag-out" refers to the practice of using tags in conjunction with locks to increase the visibility and awareness that equipment is not to be energized or activated until such devices are removed.

Lock-out/tag-out requirements are specified by OSHA in 29CFR1910.147. Specific lock-out/tagout procedures for operation, maintenance, and monitoring of the groundwater treatment facilities are described in the following sections.

9.1 **Preparation for Lock-out/Tag-out**

Make a survey to locate and identify all isolating devices to be certain which switches, valves, or other energy isolating devices apply to the equipment to be locked and tagged out. More than one energy source (electrical, mechanical, stored energy, or others) may be involved.

9.2 Sequence of Lock-out or Tag-out System Procedure

Notify affected employees that a lock-out or tag-out system is using used and the reason for its use. The authorized employee shall know the type and magnitude of energy that the machine or equipment uses and shall understand the hazards associated with the machine or equipment.

If the machine or equipment is operating, shut it down by the normal stopping procedure (depress stop button, open toggle switch, etc.).

Operate the switch, valve, or other energy isolating devices so that the equipment is isolated from its energy sources. Stored energy (such as in springs, elevated machine members, rotating

flywheels, hydraulic systems, and air, gas, steam, or water pressure) must be dissipated or restrained by methods such as repositioning, blocking, or bleeding down.

Lock-out/tag-out the energy-isolating devices with assigned individual locks or tags.

To verify that all energy sources have been disconnected, operate the push button or other normal operating controls to make certain the equipment will not operate. CAUTION: Return operating controls to neutral or off position after the test.

The equipment is now locked out or tagged out.

9.3 Restoring Machines or Equipment to Normal Operations

After the maintenance activity is complete and equipment is ready for normal operations, check the area around the machines or equipment to ensure that no one is exposed.

After all tools have been removed from the machine or equipment, guards have been reinstalled, and employees are in the clear, remove all lock-out or tag-out devices. Operate the energy-isolating devices to restore energy to the machine or equipment.

9.4 Electrical Safety and Lock-out/Tag-out

In the preceding steps, if more than one individual is required to lock-out or tag-out equipment, each shall place his own personal lock-out/tag-out device on the energy-isolating devices. When an energy-isolating device cannot accept multiple locks or tags, a multiple lock-out or tag-out device such as a hasp may be used. If lock-out is used, a single lock may be used to lock out the machine or equipment with the key being placed in a lock-out box or cabinet that allows the use of multiple locks to secure it. Each employee will then use his own lock to secure the box or cabinet. As each person no longer needs to maintain his lock-out protection, that person will remove his lock from the box or cabinet.

9.5 Temporary Removal of Lock-out/Tag-out Devices

In situations where lock-out/tag-out devices must be temporarily removed from the energy-isolating device and the machine or equipment energized to test or position the machine, equipment, or component, the following sequence of actions will be followed:

- 1. Remove non-essential items and ensure that the machine or equipment components are operationally intact.
- 2. Notify affected employees that the lock-out/tag-out devices have been removed and ensure that all employees have been safely positioned or removed from the area.
- 3. Have employees who applied the lock-out/tag-out devices remove the lock-out/tag-out devices.
- 4. Energize and proceed with testing or positioning.
- De-energize all systems and reapply energy control measures in accordance with section 9.1.2 of these procedures.

9.6 Common Pitfalls of Lock-out/Tag-out

The lock-out/tag-out procedure is to be adhered to in all situations when working on electrically powered equipment. The following is a list of common pitfalls of lock-out/tag-out systems that are to be avoided:

- 1. Failure to use the lock.
- 2. Locking through another lock instead of through the device to be locked out.
- 3. Leaving the key in the lock.
- 4. Asking others to attach the lock.
- 5. Failure to use tags.
- 6. Failure to check inside the switch box to confirm with a voltage meter that the power has been disconnected.
- 7. Pulling fuses without performing a lock out.
- 8. Failure to identify all switches and disconnects in-line with equipment.
- 9. Assuming the equipment is inoperable and failing to lock out.
- 10. Assuming the job is too small to merit locking out.

10.0 EMERGENCY PROCEDURES AND EQUIPMENT

10.1 Emergency Contacts and Directions

Emergency Phone Numbers: AMBULANCE: 911 FIRE: 911 Nearest Hospital: Kingston Hospital Campus

Address: 396 Broadway, Kingston, NY 12401 (845) 331-3131

A Hospital Route Map is attached to this HASP as Appendix D.

Driving directions to Kingston Hospital Campus (Kingston, NY) (estimated driving time 11 minutes, distance 3.4 miles):		
Head South on Enterprise Drive toward Boices Lane	305 feet	
Turn Left onto Boices Lane	0.4 miles	
Take Right onto Morton Boulevard	0.5 miles	
Turn Right onto Ulster Avenue	0.9 miles	
Continue onto Albany Avenue	0.4 miles	
Turn Left onto Foxhall Avenue	1.1 miles	
Turn Right onto Broadway, Kingston Hospital will be on the right	285 feet	

Additional Emergency Phone Numbers:

Agency for Toxic Substances and Disease Registry: 404-639-0615 National Poison Control Center: 800-764-7661

10.2 Emergency Equipment

First aid equipment is available at the following locations:

Fire Extinguisher: In all GSC vehicles.

Emergency Eye Wash: In all GSC vehicles.

First Aid Kit: In all GSC vehicles.

10.3 Exposure Symptoms for Chemicals

Emergency medical information for the Site's principal substances is included in Appendix A. This information is from the NIOSH Pocket Guide online at <u>http://www.cdc.gov/niosh/npg</u>.

10.4 First Aid

First aid for contact with materials or groundwater contaminated with the ten substances listed as significant in this HASP is described below.

10.4.1 Eye Contact

If contaminated groundwater contacts the eyes, immediately wash the eyes with large amounts of water, occasionally lifting the lower and upper lids.

10.4.2 Skin Contact

If contaminated groundwater contacts the skin, promptly wash the contaminated skin with soap and water. If this chemical penetrates the clothing, promptly remove the clothing and wash the skin with soap and water.

10.4.3 Inhalation

If a person breathes in significant VOC vapors, move the exposed person to fresh air at once.

10.4.4 Ingestion

Ingestion is not considered to be a likely route of exposure.

10.4.5 Contact with Separate-Phase Solvent

In case of contact with separate-phase solvent, follow the first aid procedures described above and get medical attention immediately. If breathing has stopped as a result of vapor inhalation, perform rescue breathing. Keep the affected person warm and at rest and get medical attention immediately.

10.5 Emergency Procedures

10.5.1 Personnel Injury

All injuries, no matter how minor, shall be reported to the Project Manager or Health and Safety Officer and will be logged and recorded.

Upon notification of an injury, work will cease and the injured person will be removed from the work area. The Site Safety Officer and/or field team members will assess the nature of the injury, will initiate the appropriate first aid, and will arrange for transportation to the designated medical facility, if required. If the injury increases the risk to other Site workers, activities on site will not resume until the added risk is removed or minimized.

10.5.2 Fire Explosion

In the event of fire or explosion, all personnel will immediately evacuate the site and will move to a safe distance from the affected area. The emergency phone number (911) shall be contacted. If it is safe to do so, site personnel may use firefighting equipment available on-site to control or extinguish the fire, and may attempt to isolate flammable materials that may contribute to the fire.

10.5.3 Equipment Failure

If equipment, including personal protective equipment, fails to operate properly, the Site Safety Officer or Project Manager will determine the effect of this failure on continuing the planned activity. If the failure affects the safety of personnel or prevents completion of tasks, work will cease until the equipment is repaired or until other appropriate actions are taken.

Following all emergency situations, work will not resume until:

- 1. The conditions resulting in the emergency have been corrected.
- 2. The hazards have been reassessed.
- 3. This Health and Safety Plan has been reviewed.
- 4. Site personnel have been briefed on changes to this Health and Safety Plan.

11.0 ACKNOWLEDGMENT OF PLAN

All site workers performing intrusive work activities shall have completed 40 hours of HAZWOPER safety training under the requirements of 29 CFR 1910.120 and 8 hours of annual HAZWOPER refresher training within the past 12 months. Certificates shall be supplied and kept on file with GSC.

By signing in the designated space below, GSC personnel acknowledge that they have read this Health and Safety Plan and are familiar with its provisions.

Name	Title	Signature

If a subcontractor does not have a site-specific health and safety plan, then they may accept and acknowledge this HASP with their modifications, if any, or prepare a HASP at least as stringent as this HASP. If the subcontractor chooses to accept this HASP for its own use, then the subcontractor shall sign this HASP in the designated space below. In so doing, the subcontractor accepts full responsibility for the use of this HASP by the subcontractor and subcontractor's employees. The subcontractor agrees to fully indemnify GSC and IBM from any and all liability arising out of reliance on this HASP by the subcontractor's employees.

Name	Company	Signature

APPENDIX A

NIOSH POCKET GUIDE TO CHEMICAL HAZARDS INFORMATION FOR SIGNIFICANT VOCs

			Tetrach	loroethylene	
Synonyms & Tra	ide Names Perc	hlorethylene, Perch	lloroethylene, Perk, T	etrachlorethylene	
cas no. 127-1	8-4	RTECS No. KX3850 rtecs/KX3ABF10.ht		DOT ID & Guide 1897 <u>160</u> & <u>(http://wwwa</u> gmu/erg/guidepage.aspx?guide=160)	pps.tc.gc.ca/saf-sec-sur/3/erg-
Formula Cl ₂ C	=CCl ₂	Conversion 1 ppm =	6.78 mg/m ³	<mark>югн</mark> Ca [150 ppm] See: <u>127184 (/niosh/idlh/127184.html)</u>	
Exposure Limits NIOSH REL : Ca Minimize workplace exposure concentrations. <u>See</u> <u>Appendix A (nengapdxa.html)</u> OSHA PEL <u>† (nengapdxg.html)</u> : TWA 100 ppm C 200 ppm (for 5 minutes in any 3-hour period), with a maximum peak of 300 ppm		Measurement Methods NIOSH 1003 1 (/niosh/docs/2003-154/pdfs/1003.pdf); OSHA 1001 1 (/niosh/docs/2003-154/pdfs/1001.pdf) See: NMAM (/niosh/docs/2003-154/) or OSHA Methods (http://www.osha.gov/dts/sltc/methods/index.html)			
Physical Descri	otion Colorles	s liquid with a mild,	chloroform-like odor	ſ.	
MW : 165.8	BP: 250°F	FRZ: -2°F	Sol: 0.02%	vp: 14 mmHg	IP: 9.32 eV
<mark>Sp.Gr</mark> : 1.62	FI.P: NA	UEL: NA	LEL: NA		
Noncombus	tible Liquid, ł	out decomposes in a	fire to hydrogen chlo	oride and phosgene.	
Incompatibilitie potash	es & Reactivities	Strong oxidizers; cł	nemically-active meta	ls such as lithium, beryllium & barium;	caustic soda; sodium hydroxide;
Exposure Route	s inhalation,	skin absorption, in	gestion, skin and/or e	ye contact	
			spiratory system; nau potential occupation	usea; flush face, neck; dizziness, incoord al carcinogen]	ination; headache, drowsiness;
Target Organs	Eyes, skin, re	spiratory system, liv	/er, kidneys, central n	iervous system	
r.	animals: live	n tumo onol			

Personal Protection/Sanitation (See protection codes (protect.html))	First Aid (See procedures (firstaid.html))
Skin: Prevent skin contact	Eye: Irrigate immediately
Eyes: Prevent eye contact	Skin: Soap wash promptly
Wash skin: When contaminated	Breathing: Respiratory support
Remove: When wet or contaminated	Swallow: Medical attention immediately
Change: No recommendation	
Provide: Eyewash, Quick drench	

Respirator Recommendations

NIOSH

At concentrations above the NIOSH REL, or where there is no REL, at any detectable concentration:

(APF = 10,000) Any self-contained breathing apparatus that has a full facepiece and is operated in a pressure-demand or other positive-pressure mode

(APF = 10,000) Any supplied-air respirator that has a full facepiece and is operated in a pressure-demand or other positive-pressure mode in combination with an auxiliary self-contained positive-pressure breathing apparatus

Escape:

(APF = 50) Any air-purifying, full-facepiece respirator (gas mask) with a chin-style, front- or back-mounted organic vapor canister Any appropriate escape-type, self-contained breathing apparatus

Г

			Trichlor	oethylene	
Synonyms & Tra	ide Names Ethy	lene trichloride, TCE,	Trichloroethene, Tril	lene	
cas no. 79-01	-6	RTECS No. <u>KX455000</u> <u>rtecs/KX456D70.html</u>		DOT ID & Guide 1710 <u>160</u> DOT ID & GUIDE 1710 DOT ID & GUIDE 171	
Formula ClCH	I=CCl ₂	Conversion 1 ppm = 5.	37 mg/m ³	<mark>югн</mark> Са [1000 ppm] See: <u>79016 (/niosh/idlh/79016.html)</u>	
(nengapdxc.ht <mark>OSHA PEL <u>† (n</u></mark>	ca <u>See Append</u> t <u>ml)</u> lengapdxg.html	lix A (nengapdxa.html)): TWA 100 ppm C 20 1 any 2 hours)		Measurement Methods NIOSH 1022 🔂 (/niosh/docs/2003-1 (/niosh/docs/2003-154/pdfs/3800.pdf) OSHA 1001 🔁 (/niosh/docs/2003-15 See: NMAM (/niosh/docs/2003-154/) (http://www.osha.gov/dts/sltc/methods	; <u>4/pdfs/1001.pdf)</u> or <u>OSHA Methods</u> &
Physical Descrip	otion Colorless	liquid (unless dyed b	lue) with a chloroforr	n-like odor.	
MW : 131.4	BP: 189°F	FRZ: -99°F	Sol: 0.1%	vp: 58 mmHg	IP: 9.45 eV
Sp.Gr: 1.46	FI.P: ?	UEL(77°F): 10.5%	LEL(77°F): 8%		
Combustible	Liquid, but b	urns with difficulty.	·	·	<u>.</u>
<mark>Incompatibilitie</mark> beryllium)	s & Reactivities	Strong caustics & alka	lis; chemically-active	metals (such as barium, lithium, sodi	ım, magnesium, titanium &
Exposure Route	s inhalation, s	skin absorption, inges	tion, skin and/or eye	contact	
	0			(weakness, exhaustion), dizziness, tre [potential occupational carcinogen]	emor, drowsiness, nausea,
Target Organs	Eyes, skin, res	piratory system, hear	t, liver, kidneys, centr	ral nervous system	
r.		r & kidney cancer]			

Personal Protection/Sanitation (See protection codes (protect.html))	First Aid (See procedures (firstaid.html))
Skin: Prevent skin contact	Eye: Irrigate immediately
Eyes: Prevent eye contact	Skin: Soap wash promptly
Wash skin: When contaminated	Breathing: Respiratory support
Remove: When wet or contaminated	Swallow: Medical attention immediately
Change: No recommendation	
Provide: Eyewash, Quick drench	
Remove: When wet or contaminated Change: No recommendation	

Respirator Recommendations

NIOSH

At concentrations above the NIOSH REL, or where there is no REL, at any detectable concentration:

(APF = 10,000) Any self-contained breathing apparatus that has a full facepiece and is operated in a pressure-demand or other positive-pressure mode

(APF = 10,000) Any supplied-air respirator that has a full facepiece and is operated in a pressure-demand or other positive-pressure mode in combination with an auxiliary self-contained positive-pressure breathing apparatus

Escape:

(APF = 50) Any air-purifying, full-facepiece respirator (gas mask) with a chin-style, front- or back-mounted organic vapor canister Any appropriate escape-type, self-contained breathing apparatus

			1.2-	Dichloroethylene	
Synonyms & Tra	de Names Ace	tylene dichloride, ci	s-Acetylene di	chloride, trans-Acetylene dichloride, sym-Dichloro	ethylene
CAS No. 540-5	69-0	RTECS No. KV9360 rtecs/KV8ED280.ht		DOT ID & Guide 1150 <u>130P</u> G (http://www.apps.tc.gc.c. gmu/erg/guidepage.aspx?guide=130&poly=1)	a/saf-sec-sur/3/erg-
Formula ClCH	=CHCl	Conversion 1 ppm =	3.97 mg/m ³	IDLH 1000 ppm See: <u>540590 (/niosh/idlh/540590.html)</u>	
	WA 200 ppn	n (790 mg/m³) (790 mg/m³)		Measurement Methods NIOSH 1003 1 (/niosh/docs/2003-154/pdfs/100 OSHA 7 1 1001 1 (/niosh/docs/2003-154/) See: NMAM (/niosh/docs/2003-154/) or OSHA Methods (http://www.osha.gov/dts/sltc/methods/index.html)	/organic/org001/org001.html)
Physical Descrip	tion Colorles	s liquid (usually a m	ixture of the c	is & trans isomers) with a slightly acrid, chloroforr	n-like odor.
MW: 97.0	BP: 118-140°F	FRZ: -57 to -115° F	Sol: 0.4%	VP: 180-265 mmHg	IP: 9.65 eV
Sp.Gr(77° F): 1.27	FI.P: 36-39°F	UEL: 12.8%	LEL: 5.6%		
Class IB Flan	nmable Liqu	id: Fl.P. below 73°F	and BP at or a	bove 100°F.	
Incompatibilitie polymerizati		Strong oxidizers, st	rong alkalis, p	otassium hydroxide, copper [Note: Usually contair	s inhibitors to prevent
Exposure Routes	s inhalation,	ingestion, skin and	/or eye contac	t	
Symptoms irrit	tation eyes, r	espiratory system; c	entral nervous	s system depression	
Target Organs	Eyes, respirat	tory system, central	nervous syste	m	
Personal Protect (protect.html)		(See protection cod	es	First Aid (See procedures (firstaid.html)) Eye: Irrigate immediately	

Skin: Prevent skin contact Eyes: Prevent eye contact Wash skin: When contaminated Remove: When wet (flammable) Change: No recommendation

Skin: Soap wash promptlyBreathing: Respiratory supportSwallow: Medical attention immediately

Respirator Recommendations NIOSH/OSHA

Up to 1000 ppm:

(APF = 25) Any supplied-air respirator operated in a continuous-flow mode[£]

(APF = 25) Any powered, air-purifying respirator with organic vapor cartridge(s) £

(APF = 50) Any chemical cartridge respirator with a full facepiece and organic vapor cartridge(s)

(APF = 50) Any air-purifying, full-facepiece respirator (gas mask) with a chin-style, front- or back-mounted organic vapor canister

(APF = 50) Any self-contained breathing apparatus with a full facepiece

(APF = 50) Any supplied-air respirator with a full facepiece

Emergency or planned entry into unknown concentrations or IDLH conditions:

(APF = 10,000) Any self-contained breathing apparatus that has a full facepiece and is operated in a pressure-demand or other positive-pressure mode

(APF = 10,000) Any supplied-air respirator that has a full facepiece and is operated in a pressure-demand or other positive-pressure mode in combination with an auxiliary self-contained positive-pressure breathing apparatus

Escape:

(APF = 50) Any air-purifying, full-facepiece respirator (gas mask) with a chin-style, front- or back-mounted organic vapor canister Any appropriate escape-type, self-contained breathing apparatus

Vinyl chloride

Synonyms & Trade Names Chloroethene, Chloroethylene, Ethylene monochloride, Monochloroethene, Monochloroethylene, VC, Vinyl chloride monomer (VCM)

CAS No. 75-01-4	RTECS No. KU9625000 (/niosh -rtecs/KU92DDA8.html)	DOT ID & Guide 1086 <u>116P</u> / (http://wwwapps.tc.gc.ca/saf-sec-sur/3/erg- gmu/erg/guidepage.aspx?guide=116&poly=1) (inhibited)
Formula CH ₂ =CHCl	$\begin{array}{ c c }\hline \textbf{Conversion} & 1 \text{ ppm} = 2.56 \\ mg/m^3 \end{array}$	DLH Ca [N.D.] See: IDLH INDEX (/niosh/idlh/intridl4.html)
	<u>pendix A (nengapdxa.html)</u>] TWA 1 ppm C 5 ppm [15-	Measurement Methods NIOSH 1007 1/2 (/niosh/docs/2003-154/pdfs/1007.pdf); OSHA 4 1/2 (/niosh/docs/2003-154/pdfs/1007.pdf); OSHA 4 1/2 (/niosh/docs/2003-154/pdfs/1007.pdf); (http://www.osha.gov/dts/sltc/methods/organic/org004/org004.html), 75 1/2 (http://www.osha.gov/dts/sltc/methods/organic/org075/org075.html) See: NMAM (/niosh/docs/2003-154/) or OSHA Methods 1/2 (http://www.osha.gov/dts/sltc/methods/index.html) Image: NMAM (/niosh/docs/2003-154/) or OSHA Methods 1/2

Physical Description Colorless gas or liquid (below 7°F) with a pleasant odor at high concentrations. [Note: Shipped as a liquefied compressed gas.]

MW: 62.5	вр: 7°F	FRZ: -256°F	Sol(77°F): 0.1%	VP : 3.3 atm	IP: 9.99 eV
	FI.P: NA (Gas)	UEL: 33.0%	LEL: 3.6%	RGasD: 2.21	

Flammable Gas

Incompatibilities & Reactivities Copper, oxidizers, aluminum, peroxides, iron, steel [Note: Polymerizes in air, sunlight, or heat unless stabilized by inhibitors such as phenol. Attacks iron & steel in presence of moisture.]

Exposure Routes inhalation, skin and/or eye contact (liquid)

Symptoms lassitude (weakness, exhaustion); abdominal pain, gastrointestinal bleeding; enlarged liver; pallor or cyanosis of extremities; liquid: frostbite; [potential occupational carcinogen]

Target Organs Liver, central nervous system, blood, respiratory system, lymphatic system

Cancer Site [liver cancer]

Personal Protection/Sanitation (See protection codes	First Aid (See procedures (firstaid.html))
(protect.html))	Eye: Frostbite
Skin: Frostbite	Skin: Frostbite
Eyes: Frostbite	Breathing: Respiratory support
Wash skin: No recommendation	
Remove: When wet (flammable)	
Change: No recommendation	
Provide: Frostbite wash	

Respirator Recommendations

(See Appendix E) (nengapdxe.html)

NIOSH

At concentrations above the NIOSH REL, or where there is no REL, at any detectable concentration:

(APF = 10,000) Any self-contained breathing apparatus that has a full facepiece and is operated in a pressure-demand or other positive-pressure mode

(APF = 10,000) Any supplied-air respirator that has a full facepiece and is operated in a pressure-demand or other positive-pressure mode in combination with an auxiliary self-contained positive-pressure breathing apparatus

Escape:

(APF = 50) Any air-purifying, full-facepiece respirator (gas mask) with a chin-style, front- or back-mounted canister providing protection against the compound of concern

Any appropriate escape-type, self-contained breathing apparatus

Г

			Methyl	chloroform	
Synonyms & Tra	de Names Chlo	prothene; 1,1,1-Trichlor	oethane; 1,1,1-Trich	loroethane (stabilized)	
cas № . 71-55	-6	RTECS No. <u>KJ2975000</u> <u>rtecs/KJ2D6518.html)</u>	(/niosh-	DOT ID & Guide 2831 160 2 (http://ww gmu/erg/guidepage.aspx?guide=160)	wapps.tc.gc.ca/saf-sec-sur/3/erg-
Formula CH ₃ (CCl ₃	Conversion 1 ppm = 5.4	l6 mg/m ³	поли 700 ррт See: <u>71556 (/niosh/idlh/71556.html)</u>	
(nengapdxc.ht	2 350 ppm (19 <u>tml) (</u> Chloroe	900 mg/m³) [15-minut thanes) 1) : TWA 350 ppm (190		Measurement Methods NIOSH 1003 🔂 (/niosh/docs/2003- See: <u>NMAM (/niosh/docs/2003-154/)</u> (http://www.osha.gov/dts/sltc/method	_or <u>OSHA Methods</u> 🔮
Physical Descrip	otion Colorless	s liquid with a mild, ch	loroform-like odor.		
мw : 133.4	BP: 165°F	FRZ: -23°F	Sol: 0.4%	vp : 100 mmHg	IP: 11.00 eV
Sp.Gr : 1.34	FI.P: ?	UEL: 12.5%	LEL: 7.5%		
Combustible	Liquid, but h	ourns with difficulty.			
		Strong caustics; strong : Reacts slowly with wa		lly-active metals such as zinc, alumin hloric acid.]	um, magnesium powders, sodium
Exposure Route	s inhalation,	ingestion, skin and/or	eye contact		
	tation eyes, s /thmias; liver		e (weakness, exhau	stion), central nervous system depres	sion, poor equilibrium; dermatitis
Target Organs	Eyes, skin, ce	ntral nervous system, o	cardiovascular syste	m, liver	
Skin: Preve Eyes: Preve	<mark>tion/Sanitation</mark> nt skin contac nt eye contac : When conta	t	protect.html))	First Aid (See procedures (firstaid.htm Eye: Irrigate immediately Skin: Soap wash promptly	<u>l)</u>)

Remove: When wet or contaminated **Change:** No recommendation

Respirator Recommendations NIOSH/OSHA

Up to 700 ppm:

(APF = 10) Any supplied-air respirator* (APF = 50) Any self-contained breathing apparatus with a full facepiece

Emergency or planned entry into unknown concentrations or IDLH conditions:

(APF = 10,000) Any self-contained breathing apparatus that has a full facepiece and is operated in a pressure-demand or other positive-pressure mode

(APF = 10,000) Any supplied-air respirator that has a full facepiece and is operated in a pressure-demand or other positive-pressure mode in combination with an auxiliary self-contained positive-pressure breathing apparatus

Escape:

(APF = 50) Any air-purifying, full-facepiece respirator (gas mask) with a chin-style, front- or back-mounted organic vapor canister Any appropriate escape-type, self-contained breathing apparatus

Г

			1,1,2-Tr	ichloroethane		
Synonyms & Trae	de Names Etha	ne trichloride, ß-Tric	hloroethane, Viny	l trichloride		
CAS No. 79-00-5 RTECS No. KJ3150000 (/niosh- rtecs/KJ3010B0.html)				DOT ID & Guide		
Formula CHCl ₂ CH ₂ Cl Conversion 1 ppm = 5.46 mg/m ³			.46 mg/m ³	DLH Ca [100 ppm] See: <u>79005 (/niosh/idlh/79005.html)</u>		
Exposure Limits NIOSH REL : Ca TWA 10 ppm (45 mg/m ³) [skin] <u>See Appendix A</u> <u>(nengapdxa.html) See Appendix C (nengapdxc.html)</u> (Chloroethanes) OSHA PEL : TWA 10 ppm (45 mg/m ³) [skin]			1 1	Measurement Methods NIOSH 1003 ★ (/niosh/docs/2003-154/pdfs/1003.pdf); OSHA 11 ★ (http://www.osha.gov/dts/sltc/methods/organic/org011/org011.html) See: NMAM (/niosh/docs/2003-154/) or OSHA Methods ★ (http://www.osha.gov/dts/sltc/methods/index.html)		
Physical Descrip	tion Colorless	liquid with a sweet, o	chloroform-like od	lor.		
MW : 133.4	вр: 237°F	FRZ: -34°F	Sol: 0.4%	VP : 19 mmHg	IP : 11.00 eV	
Sp.Gr : 1.44	FI.P: ?	UEL: 15.5%	LEL: 6%			
Combustible	Liquid, form	s dense soot.				
Incompatibilities potassium)	s & Reactivities	Strong oxidizers & ca	ustics; chemically-	active metals (such as aluminum, magr	nesium powders, sodium &	
Exposure Routes	inhalation,	skin absorption, inge	stion, skin and/or	eye contact		
Symptoms irrit	ation eyes, n	ose; central nervous s	ystem depression;	; liver, kidney damage; dermatitis; [pot	ential occupational carcinogen]	
Target Organs E	Eyes, respirat	ory system, central ne	ervous system, live	er, kidneys		
Cancer Site [in	animals: live	r cancer]				
Personal Protect Skin: Prever		(<u>See protection codes</u> ct	(protect.html))	First Aid (See procedures (firstaid.html) Eye: Irrigate immediately)	

Eyes: Prevent eye contact	Skin: Soap wash promptly
Wash skin: When contaminated	Breathing: Respiratory support
Remove: When wet or contaminated	Swallow: Medical attention immediately
Change: No recommendation	
Provide: Eyewash, Quick drench	

Respirator Recommendations

NIOSH

At concentrations above the NIOSH REL, or where there is no REL, at any detectable concentration:

(APF = 10,000) Any self-contained breathing apparatus that has a full facepiece and is operated in a pressure-demand or other positive-pressure mode

(APF = 10,000) Any supplied-air respirator that has a full facepiece and is operated in a pressure-demand or other positive-pressure mode in combination with an auxiliary self-contained positive-pressure breathing apparatus

Escape:

(APF = 50) Any air-purifying, full-facepiece respirator (gas mask) with a chin-style, front- or back-mounted organic vapor canister Any appropriate escape-type, self-contained breathing apparatus

			1,1-	Dichloroethane				
Synonyms & Tr	ade Names As	ymmetrical dichlore	oethane; Ethylide	ene chloride; 1,1-Ethylidene dichloride				
		DOT ID & Guide 2362 130 2 (http://www.apps.tc.gc.ca/saf-sec-sur/3/erg- gmu/erg/guidepage.aspx?guide=130)						
Formula CHC	FormulaCHCl2CH3Conversion1 ppm = 4.05 mg/m3		<mark>юн 3000 ppm See: <u>75343 (/niosh/idlh/75343.html)</u></mark>					
Exposure Limits NIOSH REL : TWA 100 ppm (400 mg/m ³) <u>See Appendix C</u> (nengapdxc.html) (Chloroethanes) OSHA PEL : TWA 100 ppm (400 mg/m ³)		Measurement Methods NIOSH 1003 1003 1000 1000 1000 1000000000000						
Physical Descri	ption Colorle	ess, oily liquid with a	a chloroform-like	e odor.				
MW: 99.0	BP: 135°F	FRZ: -143°F	Sol: 0.6%	0.6% VP : 182 mmHg IP : 11.06 eV				
Sp.Gr: 1.18	FI.P: 2°F	UEL: 11.4%	LEL: 5.4%					
Class IB Fla	mmable Liq	uid: Fl.P. below 73°	F and BP at or al	pove 100°F.	·			
Incompatibiliti	es & Reactivitie	s Strong oxidizers, s	strong caustics					
Exposure Route	s inhalatior	n, ingestion, skin an	d/or eye contact					
Symptoms irr	itation skin;	central nervous sys	tem depression;	liver, kidney, lung damage				
Target Organs	Skin, liver, l	kidneys, lungs, cent	ral nervous syste	m				
Personal Protection/Sanitation (See protection codes (protect.html)) Skin: Prevent skin contact Eyes: Prevent eye contact Wash skin: When contaminated			<u>des</u>	First Aid (See procedures (firstaid.html)) Eye: Irrigate immediately Skin: Soap flush promptly Breathing: Respiratory support Swallow: Medical attention immediately				

Remove: When wet (flammable) **Change:** No recommendation

Respirator Recommendations NIOSH/OSHA

Up to 1000 ppm: (APF = 10) Any supplied-air respirator

Up to 2500 ppm:

(APF = 25) Any supplied-air respirator operated in a continuous-flow mode

Up to 3000 ppm:

(APF = 50) Any self-contained breathing apparatus with a full facepiece (APF = 50) Any supplied-air respirator with a full facepiece

Emergency or planned entry into unknown concentrations or IDLH conditions:

(APF = 10,000) Any self-contained breathing apparatus that has a full facepiece and is operated in a pressure-demand or other positive-pressure mode

(APF = 10,000) Any supplied-air respirator that has a full facepiece and is operated in a pressure-demand or other positive-pressure mode in combination with an auxiliary self-contained positive-pressure breathing apparatus

Escape:

(APF = 50) Any air-purifying, full-facepiece respirator (gas mask) with a chin-style, front- or back-mounted organic vapor canister Any appropriate escape-type, self-contained breathing apparatus

Vinylidene chloride Synonyms & Trade Names 1,1-DCE; 1,1-Dichloroethene; 1,1-Dichloroethylene; VDC; Vinylidene chloride monomer; Vinylidene dichloride CAS No. 75-35-4 RTECS No. KV9275000 (/niosh-DOT ID & Guide 1303 130P 2 (http://www.apps.tc.gc.ca/saf-sec-sur/3/ergrtecs/KV8D8678.html) gmu/erg/guidepage.aspx?guide=130&poly=1) (inhibited) Conversion Formula CH₂=CCl₂ IDLH Ca [N.D.] See: IDLH INDEX (/niosh/idlh/intridl4.html) **Measurement Methods Exposure** Limits NIOSH 1015 💏 (/niosh/docs/2003-154/pdfs/1015.pdf); **NIOSH REL** : Ca See Appendix A (nengapdxa.html) **OSHA** 19 @ (http://www.osha.gov/dts/sltc/methods/organic/org019/org019.html) **OSHA PEL** <u>† (nengapdxg.html)</u> : none See: NMAM (/niosh/docs/2003-154/) or OSHA Methods # (http://www.osha.gov/dts/sltc/methods/index.html) Physical Description Colorless liquid or gas (above 89°F) with a mild, sweet, chloroform-like odor. **BP:** 89° **VP:** 500 mmHg MW: 96.9 FRZ: -189°F Sol: 0.04% **IP:** 10.00 eV F **Fl.P:** -2° **Sp.Gr:** 1.21 **UEL:** 15.5% LEL: 6.5% F Class IA Flammable Liquid: Fl.P. below 73°F and BP below 100°F. Incompatibilities & Reactivities Aluminum, sunlight, air, copper, heat [Note: Polymerization may occur if exposed to oxidizers, chlorosulfonic acid, nitric acid, or oleum. Inhibitors such as the monomethyl ether of hydroquinone are added to prevent polymerization.] **Exposure Routes** inhalation, skin absorption, ingestion, skin and/or eye contact **Symptoms** irritation eyes, skin, throat; dizziness, headache, nausea, dyspnea (breathing difficulty); liver, kidney disturbance; pneumonitis; [potential occupational carcinogen] Target Organs Eyes, skin, respiratory system, central nervous system, liver, kidneys **Cancer Site** [in animals: liver & kidney tumors]

Personal Protection/Sanitation (See protection codes	First Aid (See procedures (firstaid.html))
(protect.html))	Eye: Irrigate immediately
Skin: Prevent skin contact	Skin: Soap flush immediately
Eyes: Prevent eye contact	Breathing: Respiratory support
Wash skin: When contaminated	Swallow: Medical attention immediately
Remove: When wet (flammable)	
Change: No recommendation	
Provide: Eyewash, Quick drench	

Respirator Recommendations

NIOSH

At concentrations above the NIOSH REL, or where there is no REL, at any detectable concentration:

(APF = 10,000) Any self-contained breathing apparatus that has a full facepiece and is operated in a pressure-demand or other positive-pressure mode

(APF = 10,000) Any supplied-air respirator that has a full facepiece and is operated in a pressure-demand or other positive-pressure mode in combination with an auxiliary self-contained positive-pressure breathing apparatus

Escape:

(APF = 50) Any air-purifying, full-facepiece respirator (gas mask) with a chin-style, front- or back-mounted organic vapor canister Any appropriate escape-type, self-contained breathing apparatus

Ethylene dichloride Synonyms & Trade Names 1,2-Dichloroethane; Ethylene chloride; Glycol dichloride CAS No. 107-06-2 RTECS No. KI0525000 (/niosh-DOT ID & Guide 1184 131 2 (http://www.apps.tc.gc.ca/saf-sec-sur/3/ergrtecs/KI802C8.html) gmu/erg/guidepage.aspx?guide=131) Formula ClCH₂CH₂Cl **Conversion** 1 ppm = 4.05 mg/m^3 **IDLH** Ca [50 ppm] See: 107062 (/niosh/idlh/107062.html) **Measurement Methods Exposure** Limits **NIOSH** <u>1003</u> <u>(/niosh/docs/2003-154/pdfs/1003.pdf)</u>; NIOSH REL : Ca TWA 1 ppm (4 mg/m³) ST 2 ppm (8 mg/m³) See **OSHA** 3 🛃 Appendix A (nengapdxa.html) See Appendix C (nengapdxc.html) (http://www.osha.gov/dts/sltc/methods/organic/org003/org003.html) (Chloroethanes) See: NMAM (/niosh/docs/2003-154/) or OSHA Methods @ OSHA PEL † (nengapdxg.html) : TWA 50 ppm C 100 ppm 200 ppm (http://www.osha.gov/dts/sltc/methods/index.html) [5-minute maximum peak in any 3 hours] Physical Description Colorless liquid with a pleasant, chloroform-like odor. [Note: Decomposes slowly, becomes acidic & darkens in color.] **MW:** 99.0 **BP:** 182°F **FRZ:** -32°F **Sol:** 0.9% vp: 64 mmHg **IP:** 11.05 eV **LEL:** 6.2% **Sp.Gr:** 1.24 **FI.P:** 56°F **UEL:** 16% Class IB Flammable Liquid: Fl.P. below 73°F and BP at or above 100°F. Incompatibilities & Reactivities Strong oxidizers & caustics; chemically-active metals such as magnesium or aluminum powder, sodium & potassium; liquid ammonia [Note: Decomposes to vinyl chloride & HCl above 1112°F.] **Exposure Routes** inhalation, ingestion, skin absorption, skin and/or eye contact Symptoms irritation eyes, corneal opacity; central nervous system depression; nausea, vomiting; dermatitis; liver, kidney, cardiovascular system damage; [potential occupational carcinogen] Target Organs Eyes, skin, kidneys, liver, central nervous system, cardiovascular system **Cancer Site** [in animals: forestomach, mammary gland & circulatory sys cancer]

Respirator Recommendations

NIOSH

At concentrations above the NIOSH REL, or where there is no REL, at any detectable concentration:

(APF = 10,000) Any self-contained breathing apparatus that has a full facepiece and is operated in a pressure-demand or other positive-pressure mode

(APF = 10,000) Any supplied-air respirator that has a full facepiece and is operated in a pressure-demand or other positive-pressure mode in combination with an auxiliary self-contained positive-pressure breathing apparatus

Escape:

(APF = 50) Any air-purifying, full-facepiece respirator (gas mask) with a chin-style, front- or back-mounted organic vapor canister Any appropriate escape-type, self-contained breathing apparatus

1,1,2-Trichloro-1,2,2-trifluoroethane

Synonyms & Trade	e Names Chlo	orofluorocarbo	on-113, CFC-113, Fre	con® 113, Genetron® 113, Halocarbon 113, F	Refrigerant 113, TTE		
CAS No. 76-13-1 RTECS No. KJ4000000 (/niosh- rtecs/KJ3D0900.html)				DOT ID & Guide			
FormulaCCl2FCClF2Conversion1 ppm = 7.67 mg/m3			$pm = 7.67 mg/m^3$	<mark>прін</mark> 2000 ppm See: <u>76131 (/niosh/idlh/76131.html)</u>			
Exposure Limits NIOSH REL : TWA 1000 ppm (7600 mg/m ³) ST 1250 ppm (9500 mg/m ³) OSHA PEL <u>† (nengapdxg.html)</u> : TWA 1000 ppm (7600 mg/m ³)				Measurement Methods NIOSH 1020 1/20 1/20 1/20 1/20 1/20 1/20 1/20			
Physical Description Colorless to water-white liquid with an od				or like carbon tetrachloride at high concentr	ations. [Note: A gas above 118°F.]		
MW : 187.4	<mark>вр:</mark> 118° F	FRZ: -31°F	Sol(77°F): 0.02%	vp : 285 mmHg	IP: 11.99 eV		
Sp.Gr(77°F): 1.56	FI.P: ?	UEL: ?	LEL: ?				
Noncombustil	ole Liquid a	t ordinary tem	peratures, but the g	as will ignite and burn weakly at 1256°F.			
Incompatibilities & Reactivities Chemically-active metals such as calcium, powdered aluminum, zinc, magnesium & beryllium [Note: Decomposes if in contact with alloys containing >2% magnesium.]							
Exposure Routes	inhalation,	ingestion, skii	n and/or eye contac	t			
Symptoms irrita	ition skin, t	hroat, drowsin	ess, dermatitis; cen	tral nervous system depression; in animals:	cardiac arrhythmias, narcosis		
Target Organs Sk	xin, heart, c	entral nervous	system, cardiovasc	ular system			
Personal Protection/Sanitation (See protection codes (protect.html))			<u>n codes</u>	First Aid (See procedures (firstaid.html)) Eye: Irrigate immediately			

Skin: Prevent skin contact	Skin: Soap wash promptly
Eyes: Prevent eye contact	Breathing: Respiratory support
Wash skin: When contaminated	Swallow: Medical attention immediately
Remove: When wet or contaminated	
Change: No recommendation	

Respirator Recommendations NIOSH/OSHA

Up to 2000 ppm:

(APF = 10) Any supplied-air respirator (APF = 50) Any self-contained breathing apparatus with a full facepiece

Emergency or planned entry into unknown concentrations or IDLH conditions:

(APF = 10,000) Any self-contained breathing apparatus that has a full facepiece and is operated in a pressure-demand or other positive-pressure mode

(APF = 10,000) Any supplied-air respirator that has a full facepiece and is operated in a pressure-demand or other positive-pressure mode in combination with an auxiliary self-contained positive-pressure breathing apparatus

Escape:

(APF = 50) Any air-purifying, full-facepiece respirator (gas mask) with a chin-style, front- or back-mounted organic vapor canister Any appropriate escape-type, self-contained breathing apparatus

			Cl	hloroform		
Synonyms & Tra	ade Names Me	thane trichloride,	Trichloromethane			
CAS No. 67-66-3RTECS No. FS9100000 (/niosh- rtecs/FS8ADAE0.html)				DOT ID & Guide 1888 <u>151</u> (http://wwwapps.tc.gc.ca/saf-sec-sur/3/erg-gmu/erg/guidepage.aspx?guide=151)		
Formula CHC	l ₃	Conversion 1 ppm	= 4.88 mg/m ³	IDLH Ca [500 ppm] See: <u>67663 (/niosh/idlh/67663.html)</u>		
Exposure Limits NIOSH REL : Ca ST 2 ppm (9.78 mg/m ³) [60-minute] <u>See</u> <u>Appendix A (nengapdxa.html)</u> OSHA PEL <u>† (nengapdxg.html)</u> : C 50 ppm (240 mg/m ³)				Measurement Methods NIOSH 1003 1000 1000000000000000000000000000		
Physical Descri	ption Colorles	ss liquid with a pl	easant odor.			
MW : 119.4	BP: 143°F	FRZ: -82°F	Sol(77°F): 0.5%	vp : 160 mmHg	IP: 11.42 eV	
Sp.Gr: 1.48 Fl.P: NA UEL: NA LEL: NA						
Noncombus	tible Liquid		·	•		
			chemically-active met sition, forms phosgen	als such as aluminum or magnesium pow e gas.]	der, sodium & potassium; strong	
Exposure Route	s inhalation	, skin absorption,	ingestion, skin and/o	r eye contact		
•	J	skin; dizziness, m occupational car		a, confusion; headache, lassitude (weakne	ss, exhaustion); anesthesia;	
Target Organs	Liver, kidney	/s, heart, eyes, ski	n, central nervous sys	tem		
Cancer Site [ir	animals: liv	er & kidney cance	er]			
Personal Protec Skin: Preve		· •	odes (protect.html))	First Aid (See procedures (firstaid.html)) Eye: Irrigate immediately		

Eyes: Prevent eye contact	Skin: Soap wash promptly
Wash skin: When contaminated	Breathing: Respiratory support
Remove: When wet or contaminated	Swallow: Medical attention immediately
Change: No recommendation	
Provide: Eyewash, Quick drench	

Respirator Recommendations

NIOSH

At concentrations above the NIOSH REL, or where there is no REL, at any detectable concentration:

(APF = 10,000) Any self-contained breathing apparatus that has a full facepiece and is operated in a pressure-demand or other positive-pressure mode

(APF = 10,000) Any supplied-air respirator that has a full facepiece and is operated in a pressure-demand or other positive-pressure mode in combination with an auxiliary self-contained positive-pressure breathing apparatus

Escape:

(APF = 50) Any air-purifying, full-facepiece respirator (gas mask) with a chin-style, front- or back-mounted organic vapor canister Any appropriate escape-type, self-contained breathing apparatus

APPENDIX B RELATIVE RESPONSE TABLE FOR FIELD MONITORING EQUIPMENT

Compound	IP (eV)	PID (<10.2eV)	FID (<15.4eV)	%LEL	Odor Threshold (ppm)	TWA (ppm)	STEL (ppm)
p-xylene	8.44	Е	Е	1.1	NA	100	150
o,m-xylene	8.56	Е	Е	0.9	NA	100	150
ethylbenzene	8.76	Е	Е	0.8	0.092-0.60	100	125
toluene	8.82	Е	Е	1.1	0.16-37	100 (C300)	150
1,2-dichlorobenzene	9.06	Е	NA	2.2	0.70	C50	NA
chlorobenzene	9.07	Е	NA	1.3	1.3	75	NA
benzene	9.24	Е	Е	1.2	34-119	0.1	1
tetrachloroethene	9.32	G	F		47	25 (C200)	NA
trichloroethene	9.45	G	G	8.0	82	50 (C200)	200
methyl ethyl ketone (2-butanone)	9.54	G	G	1.4	1-30	200	300
cis/trans-1,2-dichloroethene	9.65	G	NA	5.6	0.08-17	200	NA
acetone (2-propanone)	9.69	G	Е	2.5	3.6-653	250	NA
vinyl chloride	9.99	F	F	3.6	10-20	1 (C5)	NA
1,1-dichloroethene	10.00	G	NA	6.5	NA	1	NA
chloroethane	10.97	NR	Е	3.8	4.2	1000	NA
1,1,1-trichloroethane	11.00	NR	Е	7.5	390	C350	NA
1,1,2-trichloroethane	11.00	NR	NA	6.0	0.5-167	10	NA
1,2-dichloroethane	11.05	NR	G	6.2	6-185	1	2
1,1-dichloroethane	11.06	NR	NA	5.4	49-1359	100	NA
methylene chloride	11.32	NR	G-E	13	160	25	125
chloroform	11.42	NR	G	NR	133-276		2
dichlorodifluoromethane (Freon 12)	11.75	NR	F-P	NR	NA	1000	NA
trichlorofluoromethane (Freon 11)	11.77	NR	F-P	NR	5-100	C1000	NA
1,1,2-trichloro-1,2,2- trifluoroethane (Freon 113)	11.99	NR	G	NR	0.5-200	1000	1250

IP = ionization potential

PID = photoionization detector

FID = flame ionization detector

%LEL = percent lower explosive limit (for explosimeter)

ppm = parts per million

TWA = 8-hour time-weighted average: value listed is the lowest of NIOSH and OSHA values

STEL = short-term exposure limit: value listed is the lowest of NIOSH and OSHA values

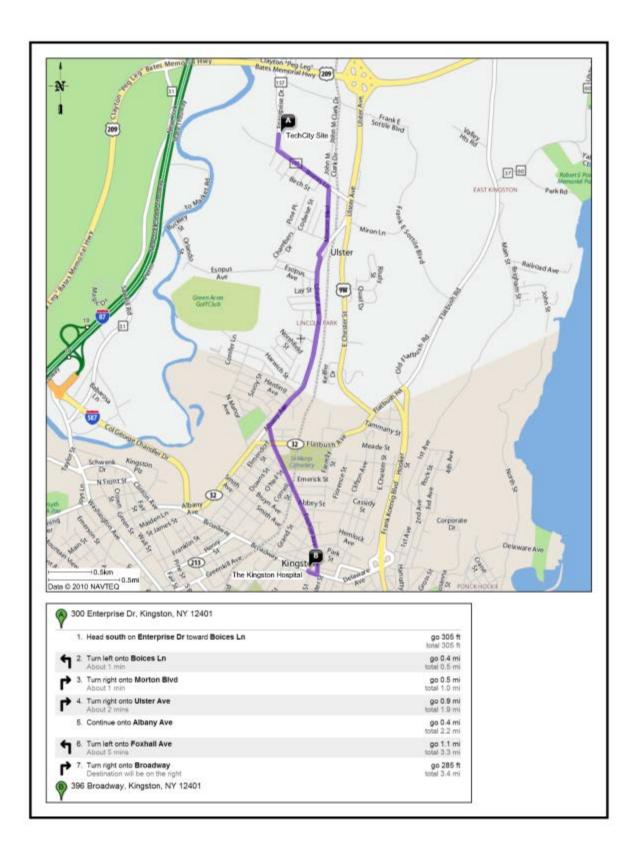
C = ceiling value, do not exceed

NR = no response (i.e., compound is not flammable or has a higher IP than the detector)

NA = not available

Response relative to methane standard for PID or benzene standard for FID:

E = excellent G = good F = fair P = poor


APPENDIX C

CONFINED SPACE ENTRY PERMIT (sample)

Y N Personnel Trained In Y N Emergency Entry & Exit Procedures First Aid Use of Appropriate Respirators Rescue Procedures & First Aid When & How to Exit the Space Use of Confined Space Equipment Drainer of Metricit Data (MSDSI2) None of Communication	Y	N	NA
Emergency Entry & Exit ProceduresFirst AidUse of Appropriate RespiratorsRescue Procedures & First AidWhen & How to Exit the SpaceUse of Confined Space Equipment	Y	N	NA
Review of Material Data Sheets (MSDS's) Means of Communication How hazards are Controlled Non-routine Tasks Signs & Symptoms of Chemical Exposure Lockout Tagout Procedures Other: Safe Work Practices Potential Confined Space Hazards Y N NA Oxygen Deficient/Enriched Atmosphere Hechanical Flammable/Explosive Atmosphere Hechanical Equipment Hazards Humidity/Temperature Toxic Gases/Fumes Full Body Harness w/D' Ring Electrical Lockout Emergency Escape Retreval Equip. Mechanical Lockout Lifelines Purge-Flush & Vent Fire Extinguisher(s) Secure Area (baracade, post & flag) Lighting (explosion proof) Calibrated of Confined Space Meter Protective Clothing Forced Air Ventilation Burning & Welding Permit Breathing Apparatus Burning & Welding Permit Ground Fault Protection (GFCI) Authorized Attendant Other: Area Free of Flammables, Toxic Chemicals Communication System Tested/On-site Secure Area of Flammables, Toxic Chemicals	Y		NA
Bump Check Readings: %O2 %LEL H2S (ppm) CO (ppm) Other Toxic:			
Atmospheric testing shall be continous throughout entry - document the readings every two hours			
Time %O2 %LEL H2S CO Other Toxic 19.5 - 23.5 % <10% < 10 ppm < 35 ppm Gases/Fumes: < 2 ppm	Init	ials	
Name (print clearly) Entry Supervisor: Attendant: Entrant: Entrant: Entrant:			
Entrant: Authorization/Approval (Director, Manager, or Supervisor): Date: Date: This permit cannot be issued for a time period exceeding one uninterrupted work shift.		_	

This permit cannot be issued for a time period exceeding one uninterrupted work shift.

APPENDIX D HOSPITAL ROUTE MAP

ATTACHMENT F

LABORATORY QUALITY ASSURANCE PLAN

Attachment F TechCity Site, Ulster County NY Site: 356002

Table 1: Site Specific Parameter List

		Detection	Reporting	
Method	Parameter Name	Limits	Units	Group
SW846 8021	BENZENE	ND@1	ug/l	VOCs (Aromatics)
SW846 8021	ETHYLBENZENE	ND@1	ug/l	VOCs (Aromatics)
SW846 8021	TOLUENE	ND@1	ug/l	VOCs (Aromatics)
SW846 8021	XYLENE, TOTAL	ND@1	ug/l	VOCs (Aromatics)
SW846 8021	CHLOROBENZENE	ND@1	ug/l	VOCs (Halogenated)
SW846 8021	1.2-DICHLOROBENZENE	ND@1	ug/l	VOCs (Halogenated)
SW846 8021	1,3-DICHLOROBENZENE	ND@1	ug/l	VOCs (Halogenated)
SW846 8021	1.4-DICHLOROBENZENE	ND@1	ug/l	VOCs (Halogenated)
SW846 8021	CHLOROMETHANE	ND@1	ug/l	VOCs (Halogenated)
SW846 8021	BROMOMETHANE	ND@1	ug/l	VOCs (Halogenated)
SW846 8021	DICHLORODIFLUOROMETHANE	ND@1	ug/l	VOCs (Halogenated)
SW846 8021	VINYL CHLORIDE	ND@1	ug/l	VOCs (Halogenated)
SW846 8021	CHLOROETHANE	ND@1	ug/l	VOCs (Halogenated)
SW846 8021	METHYLENE CHLORIDE	ND@1	ug/l	VOCs (Halogenated)
SW846 8021	TRICHLOROFLUOROMETHANE	ND@1	ug/l	VOCs (Halogenated)
SW846 8021	1.1-DICHLOROETHYLENE	ND@1	ug/l	VOCs (Halogenated)
SW846 8021	1,1-DICHLOROETHANE	ND@1	ug/l	VOCs (Halogenated)
SW846 8021	CHLOROFORM	ND@1	ug/l	VOCs (Halogenated)
SW846 8021	1,2-DICHLOROETHANE	ND@1	ug/l	VOCs (Halogenated)
SW846 8021 SW846 8021	1,1,1-TRICHLOROETHANE	ND@1	U U	VOCs (Halogenated)
SW846 8021 SW846 8021		ND@1	ug/l	
		-	ug/l	VOCs (Halogenated)
SW846 8021	BROMODICHLOROMETHANE	ND@1	ug/l	VOCs (Halogenated)
SW846 8021	1,2-DICHLOROPROPANE	ND@1	ug/l	VOCs (Halogenated)
SW846 8021	TRICHLOROETHYLENE	ND@1	ug/l	VOCs (Halogenated)
SW846 8021	CHLORODIBROMOMETHANE	ND@1	ug/l	VOCs (Halogenated)
SW846 8021	DIBROMOMETHANE	ND@1	ug/l	VOCs (Halogenated)
SW846 8021	BROMOFORM	ND@1	ug/l	VOCs (Halogenated)
SW846 8021	1,1,1,2-TETRACHLOROETHANE	ND@1	ug/l	VOCs (Halogenated)
SW846 8021	1,2,3-TRICHLOROPROPANE	ND@1	ug/l	VOCs (Halogenated)
SW846 8021	1,1,2,2-TETRACHLOROETHANE	ND@1	ug/l	VOCs (Halogenated)
SW846 8021	TETRACHLOROETHYLENE	ND@1	ug/l	VOCs (Halogenated)
SW846 8021	BROMOBENZENE	ND@1	ug/l	VOCs (Halogenated)
SW846 8021	4-CHLOROTOLUENE	ND@1	ug/l	VOCs (Halogenated)
SW846 8021	CIS-1,3-DICHLOROPROPYLENE	ND@1	ug/l	VOCs (Halogenated)
SW846 8021	TRANS-1,3-DICHLOROPROPENE	ND@1	ug/l	VOCs (Halogenated)
SW846 8021	2-CHLOROETHYLVINYL ETHER	ND@1	ug/l	VOCs (Halogenated)
SW846 8021	1-CHLOROHEXANE	ND@1	ug/l	VOCs (Halogenated)
SW846 8021	1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	ND@1	ug/l	VOCs (Halogenated)
SW846 8021	1,2-DICHLORO-1,2,2-TRIFLUOROETHANE	ND@1	ug/l	VOCs (Halogenated)
SW846 8021	BENZYL CHLORIDE	ND@1	ug/l	VOCs (Halogenated)
SW846 8021	1,1,2-TRICHLOROETHANE	ND@1	ug/l	VOCs (Halogenated)
SW846 8021	1,2-DICHLOROETHYLENE, TOTAL	ND@1	ug/l	VOCs (Halogenated)
SW846 6020	SILVER, DISSOLVED	ND@0.00030	mg/l	Metals
SW846 6020	ARSENIC, DISSOLVED	ND@0.0014	mg/l	Metals
SW846 6020	CADMIUM, DISSOLVED	ND@0.00030	mg/l	Metals
SW846 6020	LEAD, DISSOLVED	ND@0.00030	mg/l	Metals
LAC-10-210-001-A	PHENOLS, TOTAL	ND@10	ug/l	Phenols, total

QAPP 4 Revision 1 October 12, 2011 Page 1 of 39

Quality Assurance Project Plan

For

Analytical Services In Support of TechCity Site, Kingston, Ulster County, New York

Prepared For: Groundwater Sciences Corporation 2601 Market Place Street Suite 310 Harrisburg, PA 17110

Prepared By: EnviroTest Laboratories, Inc. 315 Fullerton Avenue Newburgh, NY 12550

Approved: EnviroTest President

Douglas, O. Tawse/

Approved:

InviroTest VP Operations Specialist Ronald A. Bayer

Approved:

ÉnviroTest QA/QC Director Maria Pistole

Approved:

Groundwater Sciences Corporation President/ Project Manager Craig G. Robertson Date: 12 001 2011

Date: <u>/0/19/11</u>

Date: 10/12/11

Date:

QAPP 4 Revision 1 October 12, 2011 Page 2 of 39

2.0 Table of Contents

Section			
Number	Content	Revision	Date
1.0	Title Page and Signatures	1	October 12, 2011
2.0	Table of Contents	1	October 12, 2011
3.0	Project Description	1	October 12, 2011
3.1	Introduction		and the second
4.0	Organization and Personnel	1	October 12, 2011
4.1	QA Policy and Objectives		
4.2	QA Management		en an
4.2.1	Organization and Responsibilities		
4.2.2	QA Document Control Procedures		
4.2.3	QA Program assessment Procedures		
4.3	Personnel		······································
5.0	Facilities and Equipment	1	October 12, 2011
5.1	Instrumentation and Equipment		
5.2	Maintenance Activities and Schedules		
5.3	Waste Disposal Facilities		and a second
6.0	Document Control	1	October 12, 2011
6.1	Laboratory Notebook Policy		
6.2	Sample Tracking/ Custody Procedures		
6.3	Procedures for Preparation, Approval,		
	Review, Revision, and distribution of SOPs		
7.0	Analytical Methodology	1	October 12, 2011
7.1	Calibration Procedures and Frequency		
7.1.1	Volatile Organics- 8021B		
7.1.2	Metals- ICPMS		
7.1.3	Total Phenol		· · · · · · · · · · · · · · · · · · ·
7.2	Analytical Procedures		· · · · · · · · · · · · · · · · · · ·
8.0	Data Generation	1	October 12, 2011
8.1	Data Reduction		an in the angle of a second
8.2	Data Validation		
8.3	Data Reporting and Authorization		
	Procedures		

QAPP 4 Revision 1 October 12, 2011 Page 3 of 39

Section			· · · · · · · · · · · · · · · · · · ·
Number	Content	Revision	Date
9.0	Quality Control	1	October 12, 2011
9.1	Internal Quality Control		
9.2	Internal Quality Assurance		
10.0	Quality Assurance	1	October 12, 2011
10.1	System and Performance Audits		
10.2	Specific Routine Procedures to Asses Data		
	Precision, Accuracy, and Completeness		
10.2.1	Accuracy and Precision		
10.2.2	Completeness		
10.3	Corrective Action		
10.4	Quality Assurance Reporting Procedures		

Figure Number	Content	Section	Page Number
4.3	Project Organization Chart	4	10
10.5	EnviroTest Decision, Processes, Procedures and Responsibility for Initiation of Corrective Action	10	39

Table			Page
Number	Content	Section	Number
3.2	Project Analyte List	3	5-6
4.2	Container Type and Preservatives	4	12
7.2	Quality Control Objectives	7	21-26
7.3	Quality Control Measures and Frequency	7	27-29
7.5	Summary of Analytical Methods	7	30
10.1	Laboratory Performance Evaluation	10	36
	Schedule		

QAPP 4 Revision 1 October 12, 2011 Page 4 of 39

3.0 PROJECT DESCRIPTION

3.1 Introduction

This Quality Assurance Project Plan (QAPP), submitted by EnviroTest Laboratories, Inc. describes the Quality Assurance and Quality Control (QA/QC) procedures employed to ensure the integrity, validity and usability of analytical results to be given in support of the TechCity Site, Kingston in Ulster County, New York project. These services will include sample analysis by EPA and SW-846 approved methodologies for the analysis of metals, phenols, and GC volatile parameters. A project analyte list for this project is given in Table 3.2. Analytical methods are outlined in Table 7.5.

This QAPP presents, in specific terms, the policies, organization, objectives, functional guidelines and specific Quality Assurance and Quality Control activities designed to achieve the data quality requirements of the client and meet all project objectives.

QAPP 4 Revision 1 October 12, 2011 Page 5 of 39

Table 3.2 Project Analyte List

~ • •

SW846 Method 8021B Halogenated Compound List		
Volatiles	CAS Number	Water ug/L
1. Cloromethane	74-87-3	1.0
2. Bromomethane	74-83-9	1.0
3. Dichlorodifluoromethane	75-71-8	1.0
4. Vinyl Chloride	75-01-4	1.0
5. Chloroethane	75-00-3	1.0
6. Methylene Chloride	75-09-2	1.0
7. Trichlorofluoromethane	75-69-4	1.0
8. 1,1- Dichloroethene	75-35-4	1.0
9. 1,1-Dichloroethane	75-34-3	1.0
10. 1,2-Dichloroethene, Total	540-59-0	1.0
11. Chloroform	67-66-3	1.0
12. 1,2-Dichloroethane	107-06-2	1.0
13. 1,1,1-Trichloroethane	71-55-6	1.0
14. Carbon Tetrachloride	56-23-5	1.0
15. Bromodichloromethane	75-27-4	1.0
16. 1,2-Dichloropropane	78-87-5	1.0
17. cis-1,3-Dichloropropene	10061-01-5	1.0
18. Trichloroethene	79-01-6	1.0
19. Dibromochloromethane	124-48-1	1.0
20. trans-1,3-Dichloropropene	10061-02-6	1.0
21. 1,1,2-Trichloroethane	79-00-5	1.0
22. 2-Chloroethylvinyl Ether	100-75-8	1.0
23. Bromoform	75-25-2	1.0
24. 1,1,2,2-Tetrachloroethane	79-34-5	1.0
25. Tetrachloroethene	127-18-4	1.0
26. Chlorobenzene	108-90-7	1.0
27. 1,3-Dichlorobenzene	541-73-1	1.0
28. 1,2-Dichlorobenzene	95-50-1	1.0
29. 1,4-Dichlorobenzene	106-46-7	1.0
30. Dibromomethane	74-95-3	1.0
31. 1,1,1,2-Tetrachloroethane	630-20-6	1.0
32. 1,2,3-Trichloropropane	96-18-4	1.0
33. Bromobenzene	108-86-1	1.0
34. Benzyl Chloride	100-44-7	1.0
35. 4-Chlorotoluene	95-49-8	1.0
36. Freon 113	76-13-1	1.0
37. Freon 123A	354-23-4	1.0
38. 2-Chlorotoluene	95-49-8	1.0

Table 3.2 Project Analyte List (cont.)

SW846 Method 8021B Aromatic Compound List

Volatiles	CAS Number	Water ug/L
1. Benzene	71-43-2	1.0
2. Ethylbenzene	100-41-4	1.0
3. Toluene	108-88-3	1.0
4. Total xylenes	1330-20-7	1.0

Table 3.2 Project Analyte List (cont.)

	INORGANICS	<u>CAS</u> <u>Number</u>	<u>Water</u> ug/L
1.	Antimony	7440-36-0	60
2.	Arsenic	7440-38-2	10
3.	Cadmium	7440-43-9	5
4.	Lead	7439-92-1	3
5.	Silver	7440-22-4	10

MISCELLANEOUS COMPOUND LIST

		<u>CAS</u> Number	<u>Water</u> mg/L
1.	Total Phenol	Not listed	0.010

4.0 ORGANIZATION AND PERSONNEL

4.1 <u>QA Policy and Objectives</u>

4.1.1 The primary objective of analytical Quality Assurance/Quality Control is to ensure the integrity and usefulness of the analytical results. Data quality is assessed for precision, accuracy, completeness, representativeness and comparability.

4.1.2 The routine analysis of replicate and spiked samples will provide precision and accuracy data for assessing the validity of analytical result. These Quality Control measures, their control limits and frequency are summarized in Tables 7.2 and 7.3. The control limits listed in these tables are established by the NYSDEC ASP program or are experimentally determined criteria.

4.1.3 Strict quality control requirements are established to ensure the reliability and credibility of the analytical results. All sample analysis reports contain documentation of a series of QC operations that are performed to demonstrate that the laboratory has met these stringent requirements in the analysis of samples.

4.2 <u>QA Management</u>

4.2.1 Organization and Responsibilities

The responsibilities of the individuals associated with this Quality Assurance Project Plan (QAPP) are described below and illustrated in Figure 4.3:

The <u>Customer Service Representative</u> has overall responsibility for management of the analytical requirements of the project. The duties and responsibilities of the Customer Service representative are to:

- A. Administer and supervise all requirements of the analytical tasks to ensure meeting the client objectives on schedule.
- B. Act as liaison between the laboratory and the client to discuss and resolve any problems that may occur.
- C. Work with laboratory supervisors in planning and conducting progress meetings.
- D. Take part in corrective actions.

The <u>Sample Management Supervisor</u> acts as sample custodian for the laboratory. The duties and responsibilities of the Sample Management Supervisor are to:

A. Sign for the incoming field samples and verify the data entered on the chain-ofcustody forms.

4.2.1 Organization and Responsibilities (cont.)

- B. Advise the Project Manager of discrepancies, omissions or inappropriate samples.
- C. Oversee sample information entry into the laboratory sample database.
- D. Generate computerized sample tracking data entry forms.

The System Manager is responsible for:

- A. The management and quality control of all computing systems.
- B. The installation, operation and maintenance of software and programs.

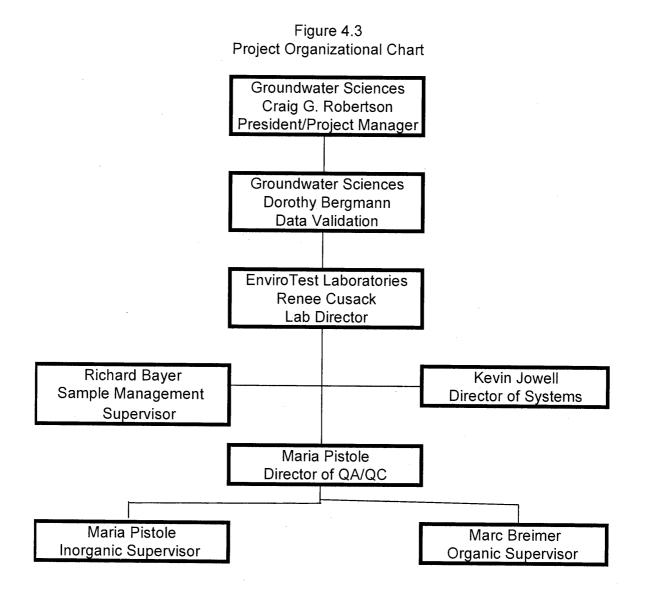
The QA/QC Director is responsible for reviewing and advising on all aspects of QA/QC. The duties and responsibilities of the QA/QC director are to:

- A. Assist the Customer Service Representative in specifying QA/QC procedures to be used during sample analysis.
- B. Implement quality control procedures and techniques to assure that the laboratory achieves established standards of quality.
- C. Evaluate data quality and maintain records on related QC charts and other pertinent information.
- D. Monitor laboratory activities to determine conformance with the authorized quality assurance policy, and to implement appropriate steps to ensure adherence to quality assurance programs.
- E. Coordinate internal audits with the Customer Service Representative.
- F. Review performance evaluation results.
- G. Administer intralaboratory and interlaboratory QA efforts.
- H. Prepare quality assurance report to management.

The <u>Laboratory Supervisors</u> are responsible for meeting all the technical and analytical terms and conditions for sample analysis. Their areas of responsibilities are to:

- A. Organize the personnel, equipment and materials in a manner required to fulfill the analytical requirements of sample analysis.
- B. Oversee all aspects of laboratory analyses and provide technical support when necessary.
- C. Review analytical data for validity and clarity.
- D. Maintain contact with the Customer Service Representative in areas of technical concern, and advise the Customer Service Representative of analytical progress, needs of potential problems that occur.

4.2.1 Organization and Responsibilities (cont.)


The <u>Sample Analysts</u> are responsible for the analysis of samples. The analysts will:

- A. Schedule, prepare and analyze samples according to the requirements as defined in the contract.
- B. Advise the laboratory supervisor of progress, needs and potential problems that occur.
- C. Verify that the laboratory QC and analytical procedures are being followed as specified.
- D. Review sample QC data, at least daily, including inspection of raw chromatograms and calibration curves.
- E. Inform laboratory supervisors if the daily review indicates a decline in data quality and implement actions.

4.2.2 QA Document Control Procedures

The goal of the program is to assure that all documents for a group of samples will be accounted for. Before releasing analytical result, the laboratory assembles and cross checks the information of custody records, lab bench sheets, analyst and instrument logs and other relevant data to ensure that pertaining to each particular sample is consistent throughout the record.

QAPP 4 Revision 1 October 12, 2011 Page 10 of 39

Note: For latest update of Project Organizational Chart please contact your customer service representative.

QAPP 4 Revision 1 October 12, 2011 Page 11 of 39

4.2.3 <u>QA</u> Program Assessment Procedures

A. <u>Levels of QC Efforts</u> - Every attempt will be made to have all data generated be valid data. The precision of laboratory analysis will be evaluated using sample duplicates and matrix spike duplicates. Analytical accuracy will be monitoring using recovery of analytes from system monitoring compounds, matrix spikes, blank spikes, EPA reference check standards and Performance Evaluation (PE) samples. These QA efforts will assist in determining the reliability of the analytical data.

B. <u>Accuracy and Precision</u> - Accuracy is a measure of the degree of agreement between the analyzed value and the true or accepted reference value where it is known. Accuracy is usually expressed as a percent recovery. Precision is a measure of the mutual agreement among individual measurements of the same parameter under similar conditions, usually expressed as a relative percent difference or as standard deviation. Accuracy and precision in the laboratory are assessed by the regular analysis of known standards and duplicate samples.

C. <u>Completeness</u> - Completeness is a measure of the amount of valid data obtained from the analytical measurement system, expressed as a percentage of the number of valid measurements that should have been or were planned to be collected. EnviroTest will make every attempt to generate valid data from all samples received. However, realistically, some samples may be lost in laboratory accidents or some results may be deemed questionable based on internal QC procedures. Due to the variable nature of the completeness value, the objective will be to have data completeness for all samples received for analysis as high as possible to meet completeness objectives as described by the client.

D. <u>Representativeness</u> - Representativeness is a measure of how closely the measured results reflect the actual concentration or distribution of the chemical compounds in the sample. Sampling will be performed by the client. Sample handling protocols (e.g., storage, preservation and transportation) have been developed to preserve the representativeness of the collected samples. Proper documentation will establish that protocols have been followed and that sample identification and integrity have been assured.

E. <u>Comparability</u> - Comparability is a QA objective wherein all sample data is comparable with other representative measurements made by EnviroTest or another organization. EnviroTest Laboratories, Inc. will achieve comparability by operating within the instrument linear range and by strict adherence to analytical protocols. The use of published analytical methods, standards reporting units and thorough documentation will ensure meeting this objective.

QAPP 4 Revision 1 October 12, 2011 Page 12 of 39

Analysis	Bottle Type	Preservative	Holding Times
Metals	Plastic liter or 250 ml	Nitric acid to pH <2	6 months
Volatile Organics	3 glass 40 mL vials	HCL, Cool 4 °C	14 days from date of collection
Total Phenol	Amber 250 mL	Sulfuric Acid to pH <2	26 days from collection

,

Table 4.2 Container Types, Preservatives & Holding Times

QAPP 4 Revision 1 October 12, 2011 Page 13 of 39

4.3 Personnel

4.3.1 Education and Experience

Douglas Tawse – MBA Business Administration, University of New Hampshire, Durham, NH; B.A. Business Administration, University of New Hampshire, Durham, NH Responsibilities: President Experience: Over 30 years in the Environmental and Business Field

Ronald Bayer – M.S., Environmental Sciences, Syracuse University, B.A., Chemistry, SUNY at Cortland Responsibilities: VP Operations Experience: Over 30 years in the Environmental and Business Field.

Renee M. Cusack – B.S., Biology, Mount Saint Mary College, NY Responsibilities: Laboratory Director Experience: Over 30 years in the Environmental Field

Kevin Jowell - B.S. Information Technology, University of Phoenix, Phoenix, AZ Responsibilities: Systems Administrator, Data Management Experience: 10 years I.T., 8 years analytical

Maria Pistole - B.S. Biology, Minor Chemistry, Marist College, Poughkeepsie, NY Responsibilities: Quality Manager, Inorganic Supervisor

Experience: Over 25 years Environmental Field, 13 years EnviroTest

Marc Breimer – Ph.D. Chemistry, SUNY Binghamton, NY, B.S. Chemistry, SUNY Binghamton, NY Responsibilities: Organics Manager Experience: 9 years Environmental Field, 7 years EnviroTest

Debra R. Bayer – A.A.S. Management, State University of New York, Delhi, NY Responsibility: Customer Service/ Sample Management Manger Experience: 24 years

Richard Bayer -High School Graduate Responsibilities: Field Service Manager Experience: Over 30 years in the Environmental Field

Note: For latest update of Personnel please contact your customer service representative.

QAPP 4 Revision 1 October 12, 2011 Page 14 of 39

5.0 FACILITIES AND EQUIPMENT

5.1 Instrumentation and Equipment

Instrument Type	Manufacturer	Model	Purchase Date	Autosampler	Method Performed
ICP	Perkin Elmer S/N 069N9012702	3300XL Optima Trace		Yes	6010B, 200.7
	Thermo Scientific S/N 20113414	3000 Optima Trace	1998	Yes	6010B, 200.7
ICP/MS	Perkin Elmer Sciex S/N P1610402	ELAN 9000	2004	Yes	6020, 200.8
Mercury Analyzer	Leeman S/N 010-00073-1	Hydra AA	2002	Yes	7471A, 7470, 245.1
Ion Chromatograph	Dionex S/N 880721	DX-120	2001	Yes	300.0
ТОС	OI Analytical S/N 1010	1010	2002	Yes	5310C
TKN Digestion System	LACHAT Instruments Block Digestor S/N 1800-763	BD-46	2003	No	LAC 10-107-062D
UV/VIS	Thermo Spectronic S/N 3SGD117031	Genesys 20	1996	No	HACH 8000, 375.4, 4500NO2B, 4500CN-E, 3500CR-D, 5540C, 4500PE, 365.3, 354.1, NYS89-9, 4500S-E
Flow Injection System	Lachat S/N A83000-1011	Quick Chem 8000	1998	Yes	LAC 10-107-06-2, LAC 10- 210-00-1-A, LAC 10-204-00- 1-A, lac-10-510-00-1
Autotitrator (pH, Alkalinity, turbidity, calcium hardness	Man-Tech (ATZ) S/N MS-OEI-582	PC – Titrate PC-1000	2003	Yes	4500HB, 150.1, 2320B, 130.2, 1, 2130B B,
pH Meter	Fisher S/N 5228013	Accumet Meter		No	4500HB, 9045C, 150.1
	Corning S/N 32723	pH Meter 340		No	4500HB, 9045C 150.1
Turbidimeter	HACH s/n 07120C023206	2100N	2008	No	2130B, 180.1
Turbidimeter	HACH S/N	2100A		No	2130B, 180.1
Conductivity Meter	Thermo Orion S/N 205922	Model 150		No	2510B

QAPP 4 Revision 1 October 12, 2011 Page 15 of 39

Instrument Type	Manufacturer	Model	Purchase Date	Autosampler	Method Performed
Automated Distillation Apparatus	Westco S/N	Easy Digest 40/20	2003	No	4500NH3, Phenol, LACHAT 10-210-001A
COD	HACH S/N 1159604	REACTOR	2006	No	410.2, 410.4, HACH 8000
COD	HACH S/N 5283	REACTOR	2005	No	410.2, 410.4, HACH 8000
Automated BOD Analyzer	Mandel Scientific Instruments S/N 164334	BOD Magic/YSI 5100	2003	No	405.1, 5210B
lfrared	Perkin Elmer S/N 500504	1420	2003	No	418.1
Hot Block Digestor	Environmental Express		1998	No	3005A, 3010A, 3020A
	Environmental Express		1998	No	3005A, 3010A, 3020A
Utrasonic Processor	Misonic S/N 62771	XL-2020		No	95.3
Auto Shaker	Glas-Col S/N 279668	3D-Shaker		No	Extractions
GC/MS Volatiles	Hewlett-Packard MSD S/N 3022A29134	5970		Yes	524/624/8260
GC/MS Volatiles	Hewlett-Packard MS3 S/N US00006787	5972		Yes	524/624/8260
GC/MS Volatiles	Hewlett-Packard MS4 S/N CN10803090	5975	2008	Yes	524/624/8260
GC Semivolatiles	Hewlett-Packard (A) S/N 3033A32718	5890A Dual FID		Yes	8015 Alcohol 8015 DRO
	Hewlett-Packard (E) S/N 3018A21718	5890 FID		Yes	8015 Alcohol 8015 DRO
GC Volatiles	OI Analytical S/N US00003177 GC 5	6890 ELCD/PID		Yes	502.2/8021 601/602
-	Hewlett Packard S/N 3022A28968 GC 6	5890 PID/FID		Yes	8015GRO 8021Stars/502.2 PID only
	Hewlett-Packard (J) S/N 3336A61811 GC 4	5890A PID/ELCD		Yes	8021/502.2/601/602
	OI Analytical S/N US10343086 GC 7	6890 ELCD/PID		Yes	502.2/8021 601/602
	OI Analytical S/N US10402016 GC 8	6890 ELCD/PID		Yes	502.2/8021 601/602

Note: For latest update of instrumentation and equipment please contact your customer service representative

5.1 Instrumentation and Equipment Cont.

Laboratory Information Management System

Lab Management System: T.A.L.S. - Automated Compliance and Reporting Systems Microsoft SQL Server 2005 Windows Active Directory- based network

Computers/Workstations: 36 IBM compatibles

Printers/Copiers: 16 Hewlett-Packard (various models) Toshiba eStudio 451c large capacity all-in-one copier/printer/scanner

5.2 Maintenance Activities and Schedules

- 5.2.1 A complete listing of instrumentation may be found in Table 5.1. Instrument preventative maintenance and careful calibration help to assure accurate measurements from laboratory instruments. Laboratory instrumentation is serviced by the applicable instrument manufacturer or licensed service organization.
- 5.2.2 Preventative maintenance procedures such as lubrication, source cleaning, detector cleaning and the frequency of such maintenance are performed according to the procedures delineated in the manufacturer's instrument manual or when deemed necessary by the analyst.
- 5.2.3 Instrument logbooks are in the laboratory at all times. They contain records of usage, calibration, maintenance and repairs. Adequate supplies of spare parts such as GC columns, syringes, septa, injection port liners, and electronic parts are maintained in the laboratory so that they are available when needed.

5.3 Waste Disposal Facilities

- 5.3.1 Laboratory hazardous waste products are properly disposed of according to applicable local, state, and federal hazardous waste regulations by a NYSDEC and EPA Registered hazardous waste hauler.
- 5.3.2 Prior to disposal EnviroTest stores all hazardous waste samples separately from non-hazardous samples. Also, all waste solvents and standards are labeled, segregated and secured for lab packing according to specific laboratory SOPs.

6.0 DOCUMENT CONTROL

6.1 Laboratory Notebook Policy

- 6.1.1 All observations and results recorded by EnviroTest Laboratories (ETL) are entered into the laboratory data entry system or into permanent laboratory notebooks. Data recorded are referenced with the project laboratory number, date and analyst's signature at the top of the page. All pertinent data are maintained in the project file.
- 6.1.2 All logbook and other document entries are made in ink. Any corrections made in a logbook will be made by crossing a line through the error and entering the correct information. The person will subsequently date and initial the correction. Corrections made to other data records are made by crossing a single line through the error, entering the correct information and initialing and dating the correction.

6.2 Samples Tracking/ Custody Procedures

- Samples are received at the laboratory by the sample custodian or designee who removes the samples from the shipping containers together with all accompanying documentation such as chain-of-custody (COC) forms, analysis request forms, etc.
- The condition of the custody seal is examined and recorded on the COC.
- The temperature of the samples upon receipt will be recorded on the COC.
- The sample will be tested for the presence of residual chlorine (when required) and recorded on the COC.
- The pH of the sample (when required) will be taken upon receipt. Any inappropriate pH reading will be recorded on the COC. Necessary pH adjustments will be made as required and documented on the COC, or when adjusted at bench level; Lab bench sheet or logbook.
- The samples are inspected for general condition and the letter or COC received with any samples is examined for discrepancies between package contents and the enclosed documents.
- Discrepancies, omissions, or inappropriate samples discovered will be noted and discussed with the Customer Service Representative who will contact the client to resolve the problem.
- If the client cannot be reached, the samples will be assigned to cold storage (4 degrees +- 2 degrees C) until the problem is resolved.

QAPP 4 Revision 1 October 12, 2011 Page 18 of 39

6.2 <u>Samples Tracking/ Custody Procedures (cont.)</u>

- Samples delivered directly by the sample collector are received and inspected by the Sample Receipt Technician or designee in the presence of the sample collector. Discrepancies, omissions, or inappropriate samples should be noted and discussed with the sample collector to resolve the problem.
- Samples receipted through COC by the Sample Receipt Technician or designee will be assigned an ETL laboratory number.
- The Sample Receipt Technician or designee will complete the ETL COC with the ETL laboratory number and corresponding individual sample number. The ETL sample number will be written on the client sample bottle or adhered via printed label to the client sample bottle.
- All documents will be reviewed a second time to ensure that there are no transposition errors. The Customer Service Representative or designee will validate the accuracy of the sample log-in procedure.
- The samples will be entered by sample entry into the laboratory sample data-base upon successful completion of the sample log-in procedure. Sample entry will prepare a laboratory chronicle for all projects that will be used for regulatory purposes. All documents, sample tags, shipping labels, etc. will be stapled to the original COC.
- Once in the possession of the Laboratory, all samples and extracts are stored and refrigerated in areas that are accessible only to Laboratory personnel. The building is locked during non-routine working hours.
- Access to the Laboratory facilities is limited to Laboratory personnel.
- All Samples are stored at the Laboratory for a minimum of 30 days after receipt and are not disposed of until at least one week after the final report has been issued.
- Samples are preserved per requirements or specific regulatory programs.

6.3 Procedures for Preparation, Review, Revision and Distribution of SOPs

6.3.1 Standard Operation Procedures are prepared to provide direction for the stepby-step execution of an operation, analysis or action which is used as the method for performing laboratory routines and analyses. All EnviroTest SOPs reflect current laboratory operations. The QA/QC department prepares SOPs with initial review conducted by the applicable Section Supervisor. The Laboratory Director conducts final review and approval. All SOPs are reviewed regularly by the appropriate section Supervisor and updated as necessary when laboratory procedural modifications are made. The SOPs are archived electronically for future reference and appropriate SOPs are made available as a reference material for laboratory analysts.

7.0 ANALYTICAL METHODOLOGY

7.1 Calibration Procedures and Frequency

Instrument or method calibration is performed in accordance with the specific analytical methods and as outlined below.

7.1.1 Volatile Organics- GC, Method 8021B

A. Initial calibration for GC Volatiles consist of 6 calibration standards containing each target analyte plus surrogate compounds. Calibration standards must include concentrations at or below the reporting level, if these limits/levels are known. The validity of the initial calibration is verified by:

- % relative standard deviation (RSD) of the calibration factor (RRF) for target compound.*

- Assessment of the relative retention time (RRT) shift for each compound between each standard run.

- Analysis of a standard obtained from a second source

*In the event that linearity through the origin is suspect and the average response factor does not meet acceptance criteria, calibration of affected compounds shall be by linear regression so long as the linear fit is > 0.990.

B. Continuing calibration is performed when the initial calibration is not performed on the day of analysis. A continuing calibration check must be performed at the beginning and end of each analytical batch. The validity of the continuing calibration is verified by:

- assessment of % difference (%D) of the calibration factor versus the initial calibration average calibration factor for each compound

- RRT shift for each compound between successive calibration runs.

- The continuing calibration verification checks must include

concentrations at the mid-point concentration of the initial calibration.

C. Standard Preparation Procedures

Calibration Standards

- Purchase commercially available certified stock solutions.

- Prepare working standards by dilution of the stock standards.

- Verify the working standards by analysis of a calibration check standard prepared independently from standards.

7.1.2 Metals - ICPMS

- A. Daily Optimization of ICPMS consists of a Daily Performance Check before and after Tune/Mass Calibration. Results must fall within manufacturer's limits.
- B. Initial calibration for ICPMS metals consists of a method blank and 3 calibration standards. The validity of the initial calibration is verified by:

- The analysis of an independently prepared standard immediately after calibration (ICV).

- Results must be within 90% to 110% of true value for each metal analyzed for analysis to begin.

C. Continuing calibration is performed by analysis of the Calibration Check Verification (CCV) standard at a frequency of 10% of sample volume, or every 2 hours, whichever is more frequent and at close of analytical run. The concentration of the CCV is at or near the mid-range of the calibration curve for each metal. The validity of the calibration and analysis of preceding samples is verified by CCV results within 85% to 115% of true value.

D. Standards Preparation Procedures

Calibration Standards

- Prepare calibration standards by dilution of the stock standard.

- The calibration standards are prepared in reagent grade water, with the same acid concentrations as the digested sample.

7.1.3 Total Phenol

A. The standard curve for phenol consists of a blank and 6 calibration standards. The standard curve is prepared each time the instrument is setup.

B. The validity of the calibration is verified by the analysis of a known sample which is distilled with each batch of samples to be analyzed.

Table 7.2 Quality Control Objectives

Sample Type	Parameter	Control Limit
Trip Blank (b)	Any project analyte	≤ MDL
Method Blank (b)	Any project analyte	≤ MDL
Continuing	411	<u>Max. %Diff</u>
Continuing Calibration	All compounds except the following:	20
	Dichlorodifluoromethane	50
	Chloromethane	50
	2-Chloroethylvinylether	50
	Bromomethane	50

GC Volatile Organics - GC 8021 Hallogenated

MDL = Method Detection Limit

(b) – Unless otherwise requested the trip blank and method blank are aqueous samples prepared by EnviroTest Laboratories which are submitted for analysis by the laboratory

QAPP 4 Revision 1 October 12, 2011 Page 22 of 39

Table 7.2 Quality Control Objectives (cont.)

GC Volatile Organics - GC 8021 Hallogenated (cont.)

Sample Type	Parameter	Control Limit	
System Monitoring Compounds	Dibromofluoromethane 4-Bromofluorobenzene	Aqueous <u>% Recover</u> 64-120 59-121	гу
Matrix Spike/Matrix Spike D All compounds except those		Aqueous <u>%Recover</u> 70-130	<u>y</u> <u>RPD</u> 20
	1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Clorobenzene 1,1-Dichloroethene Trichloroethene Methylene chloride Tetrachloroethene	67-124 60-138 75-127 74-124 74-126 68-138 63-128 69-125	≤ 21 ≤ 21 ≤ 21 ≤ 22 ≤ 24 ≤ 21 ≤ 21 ≤ 21

CRDL – Contract Required Quantitation Limit RF – Response Factor RPD – Relative Percent Difference

Sample Type	Parameter	Control Limit
Trip Blank (b)	Any project analyte	≤ MDL
Method Blank (b)	Any project analyte	\leq MDL
Continuing Calibration	All compounds	<u>Max. %Diff</u> 20

GC Volatile Organics - GC 8021 Aromatics

MDL = Method Detection Limit

(b) – Unless otherwise requested the trip blank and method blank are aqueous samples prepared by EnviroTest Laboratories which are submitted for analysis by the laboratory

GC Volatile Organics - GC 8021 Aromatics (cont.)

Sample Type	Parameter	Control Limit
		Aqueous <u>% Recovery</u>
System Monitoring Compounds	4-Bromofluorobenzene	57-121
		Aqueous <u>%Recovery RPD</u>
Matrix Spike/Matrix Spike	Benzene	
Duplicate/Matrix Spike	Toluene	$\begin{array}{rrrr} 78-122 & \leq 22 \\ 70-122 & \leq 24 \end{array}$
Blank	Ethylbenzene	$77-127 \leq 21$
	Xylenes, total	$72-120 \leq 20$

CRDL – Contract Required Quantitation Limit RF – Response Factor RPD – Relative Percent Difference

Wet Chemistry - Phenols

Quality Control Measure	Control Limit	
Calibration Blank	≤ CRDL	
Spike Recovery	55-143%	
Initial Calibration Verification (ICV) (an independent reference)	91-111%	
Continuing Calibration Verification (CCV)	90-111%	
Laboratory Control Sample (LCS)	56-144%	

CRDL – Contract Required Detection Limit

Sample Type	Element	Control Limit
Preparation Blank	All	\leq CRDL (b)
Analytical Spike	All	70-130%
Initial Calibration Verification (ICV)	All	90-110%
Continuing Calibration (CCV)	All	85-115%
Laboratory Control Sample (LCS)	All	85-115%
Duplicate Samples	All	<u><</u> 20% RPD

Metals - ICPMS

CRDL - Contract Required Detection Limit

(b) The absolute value of the blank must be $\langle CRDL$ or $\langle 10X$ the lowest concentration in the preparation batch.

QAPP 4 Revision 1 October 12, 2011 Page 27 of 39

Table 7.3 Quality Control Measures and Frequency

Volatile Organics

Sample Type

Frequency

Trip Blank

Laboratory Method Blank

Continuing Calibration

System Monitoring Compounds

Matrix Spike/Matrix Spike Duplicate and Blank Spike

GC/MS Tuning (GC/MS Volatiles only)

Performance Evaluation Samples

Laboratory Evaluation Samples

One per bottle set

One per 12 hour time period

One per 12 hour time period

Added to each sample, matrix spike, matrix Spike duplicate, blank and standard.

One per: each case of field samples received; each 20 field samples in a case; ea each group of samples of a similar concentration level (soils only); or each 14 calendar day period during which samples were received – whichever is more frequent.

Once per day or per 12 hour period, whichever is more frequent.

As required for State Certifications

As required by the analytical methodology

QAPP 4 Revision 1 October 12, 2011 Page 28 of 39

Metals – ICPMS Sample Type Frequency **Preparation Blank** One per matrix, batch, or one for every 20 samples, whichever is more frequent Analytical Spike One per matrix, batch, or one for every Recovery 20 samples, whichever is more frequent. **Duplicate Precision** One per matrix, or per batch (if sample Quantity allows) Initial Calibration Once for each time instrument is Verification calibrated Continuing Calibration One per every 10 analyses and at close of Verification analytical run Performance Evaluation As required for State Certifications Samples Laboratory Control One per matrix, batch, or one for every Samples 20 samples, whichever is more frequent

Table 7.3 Quality Control Measures and Frequency (cont.)

QAPP 4 Revision 1 October 12, 2011 Page 29 of 39

Table 7.3 Quality Control Measures and Frequency (cont.)

Wet Chemistry - Phenols

Sample Type	Frequency	
Preparation Blank	One per twenty samples of similar matrix	
Spike	One per twenty samples of similar matrix	
Duplicate	One per twenty samples of similar matrix	
Initial Calibration Verification	One for each time the instrument is calibrated	
Continuing Calibration Verification	One per every ten analyses	
Laboratory Control Sample	One per twenty samples of similar matrix	
Performance Evaluation Samples	As required for State Certifications	

7.2 <u>Analytical Procedures</u>

7.2.1 The analytical procedures to be used in this project are contained in the <u>Test</u> <u>Methods for Evaluation Solid Waste</u>, USEPA-SW846, Third Edition, September 1986 with all current revisions and the <u>New York State Department of</u> <u>Environmental Conservation</u>, Analytical Services Protocol, September 1989, 10/95 revisions. Other methods may be taken from <u>Methods for Chemical</u> <u>Analysis of Water and Wastewater</u>, EPA-600/4-79-020, March 1983 and <u>Standard</u> <u>Methods for the Examination of Water and Wastewater</u>, 18th Edition, 1992 or Methods for the Determination of Organic Compound in Drinking Water, Supplement 2, PB92-207703, August 1992.

Table 7.5 Summary of Analytical Methods

<u>Analysis</u>

Aqueous

Groundwater Liquid/Solid <u>Matrices</u>

ICPMS Metals Phenols Volatile Organics EPA- 200.8 (1) LAC-10-210-001-A (6)

SW846 6020 (2)

SW-846-8021B (2)

- 1. "Methods for Chemical Analysis of Water and Wastewater", EPA-600/4-79-020, March 1983.
- 2. "Test Methods for Evaluating Solid Waste", USEPA-SW846, Third Edition, September 1986 with all current revisions.
- 3. "Standard Methods for the Examination of Water and Wastewater", 18th Edition, 1992.
- 4. "Methods for the Determination of Organic Compounds in Drinking Water", Supplement II, PB92-207703, August 1992.
- 5. Quick Chem method 10-210-00-1-A, Zellweger Analytics, revised 9/6/96.
- 6. Quick Chem method 10-210-00-1-A, Zellweger Analytics, revised 12/18/00.
- 7. EPA Method 420.4 Revision 1.0 August 1993.

8.0 DATA GENERATION

8.1 Data Reduction

8.1.1 Analysis results will be reduced to the concentrations units specified in the analytical procedures using the equations provided in the analytical references listed in section 7.2. All calculations will be independently checked by senior laboratory staff.

8.2 Data Validation

- 8.2.1 Data validation is the process by which analytical data are evaluated and accepted or rejected based on a set of criteria. ETL personnel use the following criteria in the validation of laboratory data:
 - use of published or approved analytical procedures
 - use of properly operating and calibrated instrumentation
 - precision and accuracy achieved comparable to that achieved in similar analytical programs

- precision, accuracy and blank contamination meeting the analysis specified criteria as and/or the criteria found in the applicable method.

- completeness of data set.
- 8.2.2 All data will be validated by laboratory supervisors and the QA/QC Department prior to being released for reporting purposes to the ETL Laboratory Director. The persons validating the data will have sufficient knowledge of the technical work to identify questionable values. All analyses requiring ETL protocols will be validated in accordance with the requirements of those protocols.

8.3 Data Reporting and Authorization Procedures

8.3.1 Figure 7.3 depicts the analytical data reduction, validation and reporting process. Key personnel who will handle data gathering and evaluation are shown in the ETL Organizational Chart. ETL uses a computerized sample tracking for routine tracking and reporting of analysis data.

Reports will include:

- statement of methods for each parameter
- initialed chain-of-custody form
- minimum detection limits for each method
- sample extraction and analysis dates

QAPP 4 Revision 1 October 12, 2011 Page 32 of 39

8.3 Data Reporting and Authorization Procedures (cont.)

Specific Requirements- Organics

- sample Form I and chromatograms
- blank results and chromatograms
- calibration summary and chromatograms
- surrogate summary
- method blank summary
- MS/MSD/MSB form I and chromatograms

Specific Requirements- Metals

- sample form I
- calibration summary and raw data
- method blank summary
- ICP interference check sample results
- laboratory control sample results
- serial dilution summary (if applicable)

Specific Requirements- Phenols

- sample Form I
- supporting raw data

The reports issued will include a cover page/case narrative which will outline the case specifics or corrective actions.

- 8.3.2 EnviroTest uses a custom designed data management system for reporting inorganic and organic data according to the protocol.
- 8.3.3 Data acceptance is based on the specific criteria contained within the specific analytical method protocols and requirements. The data must be adequate to meet the precision and accuracy requirements of the specific analytical project under which the samples are submitted. The data will be complete, in terms of the analytical work performed versus what was requested and be representative of the sampling site under consideration.

9.0 QUALITY CONTROL

9.1 Internal Quality Control

9.1.1 Quality control is the routine application of procedures for obtaining prescribed standards of performance in the monitoring and measurement process. Quality Control checks are the application of ETL Quality Control program for laboratory analysis in order to ensure the generation of valid analytical results on project samples. These checks are performed by project participants throughout the program, under the guidance of the Quality Assurance Manager.

9.1.1.1 Proficiency Testing

Proficiency Test (PT) samples are analyzed as required for accreditation. As required by NELAC ETL participates in the PT program semi-annually for each PT Field of Testing (FoT) for which it is accredited, according to the NELAC PT FoT published guidelines. Under SDWA, the laboratory also analyzes a PT sample by each method once per year, if the laboratory uses more than one method for the analyte.

In addition to the PT program required for NELAC accreditation, ETL participates in a number of additional PT programs, as appropriate for the laboratory.

PT samples are handled and tested in the same manner (procedural, equipment, staff) as environmental samples. PT test sample data is archived using the requirements for project and raw data record retention.

9.1.2 Quality Control Samples

A. Blank Samples

Blanks are used to assess contamination introduced in transit, storage or in the laboratory.

- Preparation Blanks For inorganic analyses, these deionized water blanks are prepared using the same reagents and analytical procedures as the samples, in order to assess possible laboratory contamination.
- Laboratory Method Blanks For organic analyses, theses blanks are "clean" samples, prepared in the laboratory to include surrogates, and analyzed

according to a prescribed method in order to assess possible laboratory contamination.

- Laboratory Holding Blank For organic analyses, these blanks are placed in cold storage with the volatile organic samples during the holding time to assess contamination which may be introduced in storage.
- Storage Blank For organic analyses, these blanks are placed in the sample container storage area to assess contamination that may be introduced in storage.
- Calibration Blanks For all analyses, these blanks are used in instrument calibration and contain all the reagents used in preparing instrument calibration standards except the parameters of interest.

B. Initial and Continuing Calibration Verification

Verification samples are analyzed during each analysis run to assure calibration accuracy for each analyte. For inorganic analysis, these are prepared from a source other than that used for calibration.

C. System Monitoring Compounds

For organic analyses, all samples are spiked with surrogate compounds prior to sample preparation in order to assess the behavior of actual components in individual samples during the entire preparative and analysis scheme. Surrogate standard compounds are chemically similar to compounds of interest (target compounds).

D. Matrix Spikes/Analytical Spikes

For all analyses at frequencies particular to each method, spiking solutions are added to samples in order to evaluate any matrix effects of the sample on the analytical method. Matrix spikes and analytical spikes are performed using actual elements of interest or target compounds.

E. <u>Duplicate</u> Samples

For all analyses, a second aliquot of a sample carried through all sample preparation procedures to verify the precision of the analytical method. At least one sample in each analysis batch of 20 or fewer samples is analyzed in duplicate.

QAPP 4 Revision 1 October 12, 2011 Page 35 of 39

F. Laboratory Control Samples

For inorganic analyses, at least one sample in each preparation batch of 20 or fewer samples is prepared and analyzed for each analyte of interest, in order to verify the preparation and analytical methods.

G. Blank Spikes

For organic analyses, reagent water is spiked with all the target analytes.

Reagents used in the laboratory are normally of analytical reagent grade or higher purity. Each lot of acid or analytical solvent received is checked for acceptability prior to lab use. All reagents are labeled with the date received and date opened. The quality of the laboratory water is continuously monitored through the use of an in-line conductivity meter.

9.2 Internal Quality Assurance

9.2.1 To monitor quality, the QA/QC Department conducts internal quality assurance audits including:

A. <u>Internal Data Audit</u> - Data authenticity audits shall be performed on 100% of all analysts by the QA Department or designee independent from the operations. Performing data authenticity checks will typically include verifying raw data, evaluating calculation tools and independently reproducing the final results and comparing it to the Hard copy on randomly selected batches of data.

- B. <u>Internal Laboratory Audits</u> The QA/QC Directory will perform laboratory audits annually or as needed. This involves evaluation of:
 - sample storage
 - chain of custody
 - instrument maintenance
 - documentation
 - precision
 - accuracy

In addition the QA/QC manager will meet frequently with the project manager and laboratory supervisor to review QA/QC data summaries and other pertinent information.

QAPP 4 Revision 1 October 12, 2011 Page 36 of 39

10.0 QUALITY ASSURANCE

10.1 System and Performance Audits

10.1.1 System Audits

A system audit is an evaluation of the various components of a laboratory's measurements system to assess proper selection and use. This audit will consist of an on-site review of a laboratory's quality assurance system and physical facilities for sampling, calibration and measurements. System audits are performed on a regular basis by the various regulatory agencies. The audit may included several or all of the components listed below:

- Personnel, facilities and equipment
- Chain of custody procedures
- Instrument calibration and maintenance
- Standards preparation and verification
- Analytical procedures
- Quality control procedures
- Data handling procedures
- Documentation control procedures

10.1.2 Performance Audits

Performance audits provide a systematic check of laboratory operations and measurement systems by comparing independently obtained data with routinely obtained data. To fulfill the PT requirements for NELAC accreditation, EnviroTest routinely participates in laboratory performance evaluations received from the NYSDOH ELAP as part of the Potable and Non-Potable Water/Solid & Hazardous Waste/Air & Emissions Chemistry Proficiency Programs. EnviroTest also analyzes proficiency samples to maintain participation in the NYSDEC CLP program. A schedule for EnviroTest's participation in these performance evaluations is detailed in Table 10.1.

 Table 10.1 Laboratory Performance Evaluation Schedule (1 year)

Source	1 st Quarter	2 nd Quarter	3 rd Quarter	4 th Quarter
NYSDOH		X		X
Potable				
NYSDOH				
Non-Potable				
Solid &	Х		X X	
Hazardous				
Waste				
Chemistry	_			

10.2 Specific Routine Procedures to Assess Data Precision, Accuracy and Completeness

10.2.1 Accuracy and Precision

Accuracy is a measure of the degree of agreement between the analyzed value and the true or accepted reference value where it is known. Accuracy is usually expressed as a percent recovery. Precision is a measure of the mutual agreement among individual measurements of the sample parameter under similar conditions, usually expressed as a relative percent difference or as standard deviation. Accuracy and precision in the laboratory are assessed by the regular analysis of known standards and duplicate samples.

10.2.2 Completeness

Completeness is a measure of the amount of valid data obtained from the analytical measurement system, expressed as a percentage of the number of valid measurements that should have been or were planned to be collected. EnviroTest will make every attempt to generate valid data from all samples received. However, realistically, some samples may be lost in laboratory accidents or some results may be deemed questionable based on internal QC procedures. Due to the variable nature of the completeness value, the objective will be to have data completeness for all samples received for analysis as high as possible to meet completeness objectives as described by the client.

10.3 Corrective Action

An important part of any quality assurance program is a well-defined, effective policy for correcting quality problems. This is depicted in the figure 1. EnviroTest maintains a closed-loop corrective action system, which operates under the directions of the QA Manager. While the entire quality assurance program is designed to avoid problems, it also serves to identify and correct those that may exist. Usually these quality problems fall into two categories, immediate corrective action or long- term corrective action.

Specific quality control procedures are designed to help analysts detect the need for corrective action. Often an analyst's experience will be most valuable in identifying suspicious data or malfunctioning equipment; and an immediate corrective action may then be taken. The actions should be noted in laboratory notebooks but no other formal documentation is required unless further corrective action is necessary.

The need for long-term action may be identified by standard QC procedures, control charts, performance or system audits. Any quality problem that cannot be

solved by immediate corrective action falls into this long-term category. EnviroTest uses a system to insure that the condition is reported to a person who is part of the closed-loop action and follow up plan (figure 1)

The essential steps in the closed –loop corrective action system are:

- the problem will be identified
- responsibility for investigating the problem will be assigned.
- The cause of the problem will be investigated and determined.
- A corrective action to eliminate the problem will be determined
- Responsibility for implementing the corrective action will be assigned and accepted.
- The effectiveness of the corrective action will be established and corrective action implemented
- The fact that the corrective action has eliminated the problem will be verified
- The complete process of establishing and implementing corrective action will be documented.

This process of corrective action will be used to make all corrections deemed necessary by the EnviroTest Project Manager or QA/QC Department.

10.4 Quality Assurance Reporting Procedures

Data review is preformed at three discrete levels after initial generation and calculation and prior to final report release: analytical Section Supervisor (Organics and Inorganics); QA/QC Director: Laboratory Director. Data Review encompasses the quality control elements detailed in the specific methods of analysis and also includes such items as holding time compliance, accuracy of calculations, transcription checks, and correct concentration units.

< Sample Analysis Λ < Primary Review \wedge No Yes All components of No >Calculations >Reanalysis Appropriate? review achieved? correct? Yes Yes v No Secondary Review Notify Supervisor or QA Manager of problem Yes > No All components of review achieved? v No Begin Corrective Action Yes Process >Enter data into LIMS Xo Yes Completeness Review Yes All components of review achieved? Yes Report Data

Figure 10.5: EnviroTest Decision Processes, Procedures and Responsibility for Initiation of Corrective Action

LABORATORY QUALITY ASSURANCE PROJECT PLAN

May 16, 2002 (Revised August 21, 2007)

WARNING: The information contained herein is of a highly confidential and proprietary nature. Lancaster Laboratories, Inc. specifically prohibits the dissemination or transfer of this information to any person or organization not directly affiliated with the project for which it was prepared.

GROUP A

PROJECT MANAGEMENT

Element A1 Revision No. 3 Date: 08/21/07 Page 1 of 1

A1. Title and Approval Sheet

Laboratory Quality Assurance Project Plan

Lancaster Laboratories, Inc.

Approving Official:

สรมวย ${\boldsymbol{c}}$

4

Kathleen Loewen, B.S., Quality Assurance Director

Date

Element A2 Revision No. 3 Date: 08/21/07 Page 1 of 2

A2. Table of Contents

.

.

	Section	<u>Pages</u>	<u>Revision</u>	Date
	Project Management			
A1	Title and Approval Sheet	1	3	08/21/07
A2	Table of Contents	2	3	08/21/07
A3	Distribution List	1	0	05/16/02
A4	Project/Task Organization	5	2	08/08/07
A5	Problem Definition/Background	1	1	07/01/04
A6	Project/Task Description	1	2	07/16/07
A7	Quality Objectives and Criteria	3	3	07/16/07
A8	Specialized Training/Certification	2	3	04/24/07
· A9	Documents and Records	6	2	06/11/07
	Measurement/Data Acquisition			
B1	Sampling Process Design	1	0	05/16/02
B2	Sampling Methods Requirements	4	2	07/16/07
B3	Sample Handling and Custody Requirements	23	2	07/16/07
B4	Analytical Methods Requirements	43	3	08/15/07
B5	Quality Control	34	3	07/20/07
B6	Instrument/Equipment Testing, Inspection, and Maintenance Requirements	4	3	04/24/07
[°] B7	Instrument Calibration and Frequency	5	3	04/24/07
B8	Inspection/Acceptance Requirements for Supplies and Consumables	1	2	07/16/07
B9	Data Acquisition Requirements	2	1	07/01/04
B10	Data Management	10	1	07/01/04

Element A2 Revision No. 3 Date: 08/21/07 Page 2 of 2

	Section Assessment and Oversight	<u>Pages</u>	<u>Revision</u>	<u>Date</u>
C1	Assessments and Response Actions	23	2	04/24/07
C2	Reports to Management	1	1	07/01/04
	Data Validation and Usability			
D1	Data Review, Verification, and Validation	2	2	07/20/07
D2	Verification and Validation Methods	1	1	07/01/04
D3	Reconciliation with User Requirements	4	1	07/01/04

120

Appendix A – Example Report Forms

.

Element A3 Revision No. 0 Date: 05/16/02 Page 1 of 1

.

A3. Distribution List

This is a generic QA Project Plan; therefore, a distribution list will not be included. A list of organizations and persons that receive the generic QA Project Plan is maintained at Lancaster Laboratories.

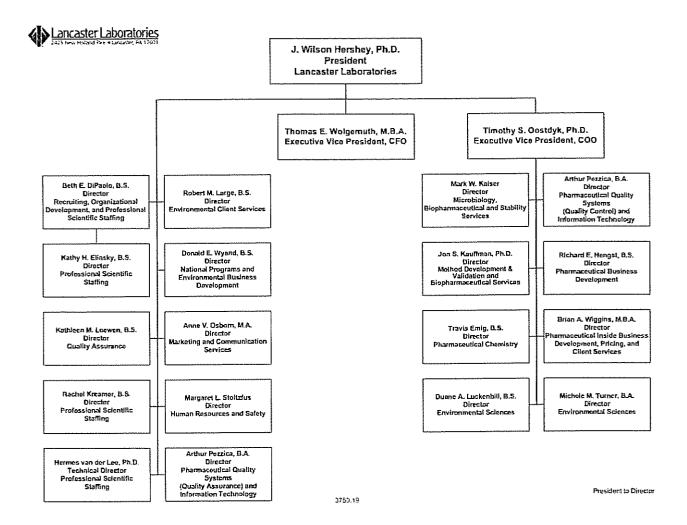
Element A4 Revision No. 2 Date: 08/08/07 Page 1 of 5

A4. Project/Task Organization

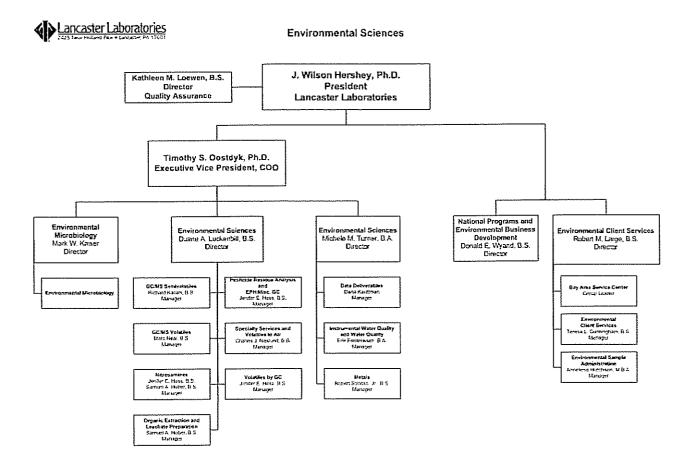
The objectives of the laboratory Quality Assurance Program are to establish procedures which will ensure that data generated in the laboratory are within acceptable limits of accuracy and precision, to ensure that quality control measures are being carried out, and to ensure accountability of the data through sample and data management procedures. To this end, a Quality Assurance Department has been established. The Quality Assurance Director reports directly to the President of Lancaster Laboratories and has no direct responsibilities for data production, thus avoiding any conflict of interest. The Quality Assurance Director is the responsible party for maintaining the official, approved QA project plan.

The attached organizational charts show key managerial personnel. Resumes of key individuals may be found in the *Environmental Quality Policy Manual*.

The Sample Administration Group will be responsible for receiving samples, signing the external chain of custody, checking sample condition, assigning unique laboratory sample identification numbers, and initiating internal chain-of-custody forms if requested. Sample Support personnel will be responsible for assigning storage locations, checking and adjusting preservation, homogenizing the sample as needed, and discarding samples. The Bottles Group is responsible for pre-preserving bottles as required by the method, preparing trip blanks and field blanks when required, and packing the bottle kits, then sending them to the client's requested location.

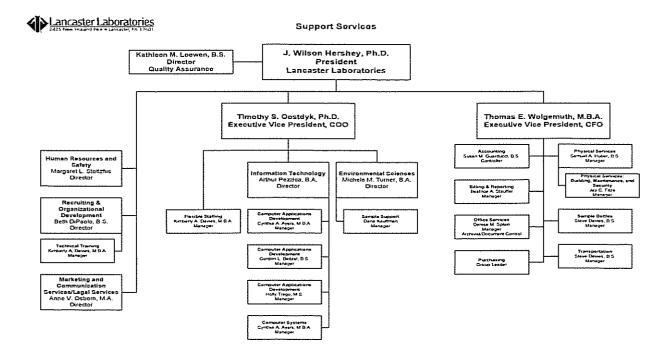

Managers listed in each technical area are responsible for performing laboratory analyses, quality control as specified in the methods, instrument calibration, and technical data review. Data is reported using a computerized sample management system, which tracks sample progress through the laboratory and generates client reports when all analyses are complete. Quality control data is entered onto the same system for purposes of charting and monitoring data quality.

Element A4 Revision No. 2 Date: 08/08/07 Page 2 of 5


The Quality Assurance Department is responsible for reviewing quality control data, conducting audits in the laboratory and reporting findings to management, maintaining current copies of all analytical methods, reviewing and approving Standard Operating Procedures (SOPs), submitting blind samples to the laboratory, and ensuring that appropriate corrective action is taken when quality problems are observed.

Data package deliverables are available upon request. The Quality Assurance Department reviews a representative sampling of the deliverables for completeness and to ensure that all quality control checks were performed and met specifications. This step includes a review of holding times, calibrations, instrument tuning, blank results, duplicate results, matrix spike results, surrogate results, and laboratory control samples (where applicable). Every attempt to meet specifications will be made, and any item outside of the specifications will be noted in the narrative. The laboratory will not validate data with regard to usability since this generally requires specific knowledge about the site. All data is archived according to corporate procedures.

Element A4 Revision No. 2 Date: 08/08/07 Page 3 of 5



Element A4 Revision No. 2 Date: 08/08/07 Page 4 of 5

3760.14

Element A4 Revision No. 2 Date: 08/08/07 Page 5 of 5

3762.09

Element A5 Revision No. 1 Date: 07/01/04 Page 1 of 1

A5. Problem Definition/Background

The purpose of this generic QA Project Plan is to provide specific quality assurance and quality control procedures involved in the generation of data of acceptable quality and completeness. This QA Project Plan provides the laboratory requirements to meet *EPA Requirements for Quality Assurance Project Plans*, EPA QA/R-5, March 2001 and EPA's *Guidance for Quality Assurance Project Plans*, EPA QA/G-5, December 2002.

The procedures in this QA Project Plan have been standardized to make them applicable to all types of environmental monitoring and measurement projects. However, under certain site-specific conditions, not all of the procedures discussed in this document may be appropriate. In such cases, it will be necessary to adapt the procedures to the specific conditions of the investigation.

The analyses in this document are representative of what the laboratory performs but are not all encompassing. It is intended to provide a client with an overview of systems and procedures at Lancaster Laboratories. It is not project or sitespecific and may not address all analyses required for a particular project. If additional analytical information is necessary, arrangements can be made with Lancaster Laboratories to generate a project specific or site specific QAPP.

Element A6 Revision No. 2 Date: 07/16/07 Page 1 of 1

A6. Project/Task Description

Tests will be performed according to the analytical methodology set forth in the USEPA Test Methods for Evaluating Solid Waste—Physical/Chemical Methods, SW-846, 3rd edition, Update III, December 1996; Methods for Chemical Analysis of Waters and Wastes, USEPA, 600/4-79-020; and Standard Methods for the Examination of Water and Wastewater, 20th edition. SW-846 provides specific analytical procedures to be used and defines the specific application of these procedures. Proven instruments and techniques will be used to identify and measure the concentrations of volatiles, semivolatiles, and pesticide compounds and/or the inorganic elements. The laboratory will employ state-of-the-art GC/MS and/or GC techniques to perform all organic analysis. Inorganic analyses will be performed using inductively coupled plasma (ICP), cold vapor AA, and ICP-MS. Instrumental wet chemistry will be using an auto-analyzer spectrophotometer, TOC analyzer, and Ion Chromatography. Classic wet chemistry will use appropriate instrumentation. The client is responsible for providing specifics on the project site. In addition to the technical references noted, LLI processes are in accordance with the current NELAC standards.

Element A7 Revision No. 3 Date: 07/16/07 Page 1 of 3

A7. Quality Objectives and Criteria

Quality assurance is the overall program for assuring reliability of monitoring and measurement data. Quality control is the routine application of procedures for obtaining set standards of performance in the monitoring and measurement process. Data quality requirements are based on the intended use of the data, the measurement process, and the availability of resources. The quality of all data generated and processed during this investigation will be assessed for precision, accuracy, representativeness, comparability, and completeness. These specifications will be met through precision and accuracy criteria as specified in Element B5. Detection limits are presented in Element B4.

To ensure attainment of the quality assurance objectives, SOPs are in place detailing the requirements for the correct performance of laboratory procedures. As described in LOM-SOP-LAB-201, "Writing and Reviewing Lancaster Laboratories Policies and Operating Procedures," the laboratory SOPs are written and organized into a four-tiered hierarchy:

- 1. Corporate policies and Quality Policy Manuals
- 2. Laboratory Operations Manual SOPs
- 3. Departmental Procedures
- 4. Quality Records (notebooks, logbooks, forms, etc.)

All SOPs are approved by the QA Department prior to implementation. The distribution of current SOPs and archiving of outdated ones are controlled by the Office Services Group through a master file. Additional information is provided in the *Environmental Quality Policy Manual (EQPM)*, including general information on Document Control, Archiving, an index of our SOPs, etc. Table A7-1 provides an index of SOPs in place in support of the Quality Assurance objectives. These requirements are supplemented by the procedures in the laboratory and analytical SOPs.

Element A7 Revision No. 3 Date: 07/16/07 Page 2 of 3

Table A7-1

Document #	Document Title
EQPM	Environmental Quality Policy Manual
LOM-SOP-ES-209	Investigation and Corrective Action of Noncompliant Data
LOM-SOP-ES-212	Internal Chain-of-Custody Documentation
LOM-SOP-ES-213	Quality Control Records
LOM-SOP-ES-215	Subcontracting to Other Laboratories
LOM-SOP-ES-216	Proficiency Test Samples
LOM-SOP-ES-219	Documentation for the Parallax Analysis Information Function
LOM-SOP-ES-220	Sample Storage and Discard
LOM-SOP-ES-221	Analytical Methods for Nonstandard Analyses
LOM-SOP-ES-222	Instrument and Equipment Maintenance and Calibration
LOM-SOP-ES-223	Missed Holding Time Reports
LOM-SOP-ES-224	Data Rounding, Parallax Entry, Verification and Reporting
LOM-SOP-ES-225	Reagents and Standards
LOM-SOP-ES-226	Validation and Authorization of Analytical Methods
LOM-SOP-LAB-201	Writing and Reviewing Lancaster Laboratories Policies and Operating Procedures
LOM-SOP-LAB-202	Document Control
LOM-SOP-LAB-203	Data and Record Storage, Security, Retention, Archival, and Disposal
LOM-SOP-LAB-204	Regulatory Training
LOM-SOP-ES-229	Employee Training Program
LOM-SOP-ES-230	Investigation and Corrective Action Reporting for Laboratory Problems
LOM-SOP-LAB-218	Procurement of Laboratory Supplies

Element A7 Revision No. 3 Date: 07/16/07 Page 3 of 3

Table A7-1 – Continued

Document #	Document Title	
LOM-SOP-LAB-220	Laboratory Notebooks, Logbooks, and Documentation	
LOM-SOP-ES-231 Handling of Client Technical Complaints (Investigations and Response)		
LOM-SOP-LAB-224	Compliance with Good Laboratory Practice (GLP) Regulations	
LOM-SOP-LAB-226	Guidelines for Analytical Decision Making	
SOP-CS-049	Implementation of the Computer Services Division Validation Master Plan	

Element A8 Revision No. 3 Date: 04/24/07 Page 1 of 2

A8. Specialized Training/Certification

Lancaster Laboratories has a core curriculum of training that contains the basic courses relevant to all the employees. This in part, includes teaching the quality policy, quality assurance/quality control, ethics training, chemical hygiene training, health and safety classes, and any function specific training (i.e. GC, Statistics). Much of this training is performed at Lancaster Laboratories through the Human Resources Group. The following list shows examples of course offerings:

- Laboratory Technician Program: Designed for new employees who need to develop laboratory skills or who need a refresher on laboratory basics.
- Practical Process Improvement Training: This course introduces why quality is important, explains Lancaster Laboratories quality philosophy and processes, and shows how to apply quality thinking and techniques on the job.
- Putting Our Values to Work: This seminar is designed to introduce new employees to the Statement of Values by examining how it translates to everyday jobs and includes ethical decision making.
- Chemical Hygiene Plan: Introduces the new employee to LLI's Chemical Hygiene Plan and the OSHA Lab Standard regulation and requirements.
- CPR: This course includes CPR history, relevance of CPR, cardiovascular disease, adult one-rescuer CPR, airway obstruction, safety in CPR, and use of the Automated External Defibrillator (AED).
- 24-hour HAZWOPER Emergency Response: Part of a proactive safety and emergency
 preparedness effort, this training is provided to a core group of people and volunteers who may
 respond to emergencies.
- Statistical Analysis: Topics include: rounding, mean standard deviation, normal distribution, z-scores, estimate, confidence intervals, hypothesis testing, one sample t-test, F-test, two sample t-test, paired t-test, ANOVA, outlier, calibration, etc.
- Gas Chromatography: Principles in GC, separation, qualitative/quantitative analysis, hardware, software, troubleshooting techniques, and the applications for GC use at Lancaster Laboratories.
- GC/MS Basics: Review of the fundamentals for GC/MS analysis.
- HPLC: Principles and practices on HPLC and the applications at Lancaster Laboratories.

Element A8 Revision No. 3 Date: 04/24/07 Page 2 of 2

If the training can not be accomplished at Lancaster Laboratories, then the employee may have off-site training. Within each technical or support group, the employee also receives on-the-job training before performing work independently. The details of this training are noted in each departmental group's SOPs.

The analysts must perform an initial demonstration of capability before using any test method; this is reviewed and signed by the technical department's management and Quality Assurance. The analyst must also complete an annual demonstration of capability for each test method per matrix.

All training and proficiencies are documented in each employee's training records as described in LOM-SOP-ES-229, "Employee Training Program."

Element A9 Revision No. 2 Date: 06/11/07 Page 1 of 6

A9. Documents and Records

The group leaders in each technical area are responsible for overseeing the performance of analysis, quality control as specified in the method, instrument calibration, and technical data review. There is a secondary review on 100% of all data by a supervisor or experienced analyst prior to reporting the results. The Laboratory Information Management System (LIMS) tracks sample progress through the laboratory and generates client reports. During analysis, raw data must be recorded in indelible ink in bound notebooks or on printouts from instruments and is then entered into the LIMS against sample number and analytical method. Many instruments' data systems can transfer data directly to the LIMS, eliminating manual transcription. Quality control data is entered into the same system for purposes of charting and monitoring data quality. When all analyses are completed and have been verified by a supervisor or designee, the computer generates a report. The client receives a copy of the report containing the results of the analysis plus comments entered by the analyst where necessary. Copies of the reports and associated raw data are retained in secured archives.

Currently Lancaster Laboratories has over fifteen different reporting formats. Table A9-1 shows some of the formats available. Unless a specific report format is requested, the standard laboratory procedure is to report results to the limit of quantitation (LOQ) using report type 0 (see Table A9-1). However, it is possible to estimate to a value below the LOQ, if lower values are needed. Estimates are made to the reported method detection limit (MDL) which is based on annual MDL studies performed per method/matrix and instrument. An example analysis report is included in Appendix A.

The data packages are consistent with EPA CLP, NJDEP, and other state or agency formats. Custom formats are also accommodated. The data package types differ in the level of raw data and QC that would be submitted. Table A9-2 shows the formats offered and the information that can be included in a data package. Appendix A shows examples of the data package forms used for various types of methodology (i.e., GC/MS Volatiles, pesticides, etc.) The data packages are available as hard copy deliverables or a *.pdf* file on CDROM.

Element A9 Revision No. 2 Date: 06/11/07 Page 2 of 6

After the data package has been compiled, a content review and QA/QC compliance review on 100% of the data packages is performed by the Data Deliverable department or by other fully-trained staff. During the content review, the field chain of custody is compared to the reports to check the analysis performed, dates/times of collection, and sample designation. In addition to making sure data from all the appropriate departments is present, the following are also checked: method summary/reference, title page, table of contents, sample reference list, sample administration receipt documentation logs, and internal chains of custody (if required). In addition to making sure the data for all analyses are included, the following are also checked during the QA/QC compliance review: spot check results on the report against the raw data, ensure analyses performed within holding time, check quality control summary forms for compliance issues, and read the case narrative to make sure all nonconformances and anomalies are addressed.

In addition, the Quality Assurance Department reviews a representative sampling of the deliverables for completeness and to be sure that all batch quality control checks were performed and met specifications. This step includes review of holding times, calibrations, instrument tuning, blank results, duplicate results, matrix spike results, surrogate results, and laboratory control samples (where applicable). Every attempt to meet specifications will be made, and any item outside of the specifications will be noted in the case narrative. The laboratory will not validate data with regard to usability since this generally requires specific knowledge about the site.

Element A9 Revision No. 2 Date: 06/11/07 Page 3 of 6

Analytical results are delivered to the client in several electronic formats. LLI supports more than twelve industry-standard EDD formats and well over 100 custom EDD formats. The data for the EDD and hardcopy reports are retrieved directly from our LIMS. LLI offers data deliverables in many custom formats using a standard ASCII formatted structure (tab-delimited text; comma-delimited text; fixed length), structures for Microsoft Excel spreadsheets, and Microsoft Access database tables. In addition, LLI offers these industry standard EDD formats:

- EDF (California/COELT)
- Enviro Data (Geotech)
- EquIS, and its many variations, including:
 - Delaware "3DM" EPA Region 2 "MEDD" EPA Region 5 "ED MAN"
- ERPIMS (AFCEE)
- GIS/Key
- HazSite (HZRESULT table) for NJDEP
- Locus EIM
- TerraBase (Integrate)

We ensure the quality of our electronic data by providing 100 percent manual quality review of all data fields for new formats and a 10 percent review thereafter.

LLabWeb.com allows a client to access their verified analytical results round-theclock through Lancaster Laboratories computer system using a secure Internet browser. Only analytical results on samples that are completed and verified can be accessed by this system.

Element A9 Revision No. 2 Date: 06/11/07 Page 4 of 6

A corporate procedure is in place for documentation, error correction, and control of logbooks (LOM-SOP-LAB-220, "Laboratory Notebooks, Logbooks, and Documentation"). The Office Services Group is responsible for maintaining the document and version control of the QA project plan and SOPs. All documents are assigned a revision number and date by the Office Services Group. They record all individuals or departments that have been issued a copy of a document and track that old versions are returned when the new one is issued. They are also responsible for maintaining the archive system to securely store records from all areas of the laboratory. LOM-SOP-LAB-203, "Data and Record Storage, Security, Retention, Archival, and Disposal" describes procedures for transferring data from the laboratories to the archives and maintaining the archives (including record retention schedule and disposal). The length of time for retention of hardcopy data is 10 years. All copies that are disposed of are incinerated. The Data Deliverables Group scans copies of the data packages onto CD-ROM for archiving. Electronic data files are saved and stored off-site for a minimum of 5 years.

			Entered Result		
	_ · _	Exactly Negative Zero	MDL LOQ	Above LOQ	Limit Shown on Report
	0	<l< th=""><th>Rounded Result</th><th>LOQ</th></l<>	Rounded Result	LOQ	
Format	1	N.D.	<loq< th=""><th>Rounded Result</th><th>LOQ</th></loq<>	Rounded Result	LOQ
sport	3	N.D.	Result with "J" Qualifier	Rounded Result	LOQ
R	4	N.D.	Result with "J" Qualifier	Rounded Result	MDL
	10	N.D. if TMDL >MDL N.D. # if MDL >TMDL		Rounded Result	Greater of MDL or TMDL
	12	MDL with "U" Qualifier	Result with "J" Qualifier	Rounded Result	MDL

Table A9-1 Data Reporting Formats

Key:

MDL = Method Detection Limit

LOQ = Limit of Quantitation

BMQL = Below Minimum Quantitation Limit

TMDL = Target Method Detection Limit

J = Estimated Value

U = Client requested replacement for "<"

Element A9 Revision No. 2 Date: 06/11/07 Page 5 of 6

Table A9-2 Data Package Formats

Type I, NJ Regulatory (non-CLP)

- Title page
- Sample reference list
- · Analysis request form, field chain of custody
- · Sample administration receipt and documentation log
- Internal chain of custody (if required)
- Method summary/references
- · Analysis reports/laboratory chronicles
- Case narrative
- Quality control summary; duplicates, matrix spike, matrix spike duplicate, blank, LCS, and surrogate recovery summary forms; GC/MS tuning summary and internal standard area summary
- Sample data; all raw sample data including instrument printouts and MDL summary form
- Standard Data; initial and continuing calibration summary forms, all raw initial and continuing calibrations and standardization data including instrument printouts
- · Quality control raw data; all raw quality control sample data including printouts, preparation logs, run logs

Type III, NJ Reduced Deliverables (non-CLP)

- Title page
- Sample reference list
- Analysis request form, field chain of custody
- Sample administration receipt and documentation log
- Internal chain of custody (if required)
- Method summary/reference
- Analysis reports/laboratory chronicles
- · Case narrative and conformance/nonconformance summary
- Quality control summary; duplicate, matrix spike, matrix spike duplicate, blank, LCS, and surrogate recovery forms; GC/MS tuning summary and internal standard area summary; summaries for calibration and standardization
- Sample data; MDL summary form, all raw sample data including instrument printouts for GC, GC/MS, and TPH only (including calibration raw data)
- Quality control raw data; blank raw data for GC, GC/MS, and TPH only, preparation logs

Type IV, Full CLP Deliverables

- Title page
- Sample reference list
- Case narrative
- Analysis request form, field chain of custody
- Sample administration receipt and documentation log
- Internal chain of custody (if required)
- All CLP reporting forms; QC analytical results and calibration summaries
- Sample data; all raw data including instrument printouts
- Standard Data; all raw initial and continuing calibrations and standardization data including instrument printouts
- Quality control raw data; all raw quality control sample data including printouts, preparation logs, run logs

Element A9 Revision No. 2 Date: 06/11/07 Page 6 of 6

Table A9-2 - ContinuedData Package Formats

Type V, Reduced CLP Deliverables

- Title page
- Sample reference list
- Case narrative
- Analysis request form, field chain of custody
- Sample administration receipt and documentation log
- Internal chain of custody (if required)
- All CLP reporting forms; QC analytical results and calibration summaries
- · Sample raw data; all raw sample data including instrument printouts for organics only
- · Quality control raw data; blank raw data for organics only, preparation logs

Type VI, Raw Data Only

- Title page
- · Sample data; all raw sample data including instrument printouts
- Quality control raw data; blank raw data, LCS raw data

GROUP B

MEASUREMENT/DATA ACQUISITION

Element B1 Revision No. 0 Date: 05/16/02 Page 1 of 1

B1. Sampling Process Design

In order for meaningful analytical data to be produced, the samples analyzed must be representative of the system from which they are drawn. It is the responsibility of the client to ensure that the samples are collected according to accepted or standard sampling methods. The client should evaluate the number, location, and type of samples to be collected. The appropriate number and frequency of field QC samples should also be determined by the client.

For non-standard matrices such as fish, worms, biota, large concrete or wood chunks, or other assorted waste, a discussion should take place with the laboratory to identify special handling requirements and confirm method performance for the particular matrix.

Element B2 Revision No. 2 Date: 07/16/07 Page 1 of 4

B2. Sampling Methods

The sampling methods should be selected by the client with regard to the intended application of the data.

The laboratory will provide the appropriate sample containers, required preservative, chain-of-custody forms, shipping containers, labels, and custody seals for the sampling. Trip blanks will be prepared by the laboratory and accompany sample containers at the project required frequency. Analyte free water will also be provided for field blanks. Temperature blanks will be included for monitoring cooler temperature upon receipt of the samples back at the laboratory. Pre-cleaned containers, with vendor supplied traceability documentation are available upon request. Because the laboratory does not stock this type of traceable container, 2 weeks prior notice is required.

Before use, each lot of preservative is documented and checked for contaminants. The appropriate bottle will be preserved with the new preservative and filled with deionized water to represent a sample. A similar container (that does not contain preservative) will be filled with deionized water to be used as a blank check. Analysis results are documented and reviewed for each preservative lot number.

A list of containers, preservatives, and holding times follows in Table B2-1.

Element B2 Revision No. 2 Date: 07/16/07 Page 2 of 4

Table B2-1Sample Containers, Preservatives, andHolding Times for Aqueous and Solid Samples

	Vol. Reg. (mL)	Container P=Plastic	2	Fror Co	ing Time ^d n Date of ollection	
Fraction	Wt. Req. (g)	G=Glass	Preservation ^a	Water	Soil	
Volatiles	<u>3 × 40 mL</u> 100 g '	G	Cool, 4°C ^b pH <2 w/ HCl		14 Days	
Pesticides	<u>2 × 1000 mL</u> 100 g	G	Cool, 4°C ^b	7 Days te	14 extraction ^e	
Herbicides	<u>2 × 1000 mL</u> 100 g	G	Cool, 4°C ^b	7 Days te	14 extraction ^e	•
Halocarbons (Volatiles by GC)	<u>3 × 40 mL</u> N/A	G	Cool, 4°C ^b pH <2 w/ HCl ^c		N/. Days	
Aromatics/Petroleum (Volatiles by GC)	<u>3 × 40 mL</u> 100 g ¹	G	Cool, 4°C ^b pH <2 w/ HCl		14 Days	
Semivolatiles (Acid/Base Neutrals)	<u>2 × 1000 mL</u> 100 g	G	Cool, 4°C ^b	7 Days t	14 • extraction	
PAHs (HPLC)	<u>2 × 1000 mL</u> 100 g	G	Cool, 4°C Na ₂ S ₂ O ₃	7 Days	14 to extraction	
Metals	<u>100 mL</u> 100 g	P,G	HNO₃ to pH <2	1	6 Months 3 28 Days	
Cyanide	<u>500 mL</u> 100 g	P,G	Cool, 4°C NaOH to pH >12 ascorbic acid	14	14 Days	
Sulfide	<u>500 mL</u> 100 g	G	Cool, 4°C (NaOH, ZnAC Waters Only)	7	N/ Days	Ά
Phenol	<u>1000 mL</u> 100 g	G	Cool, 4°C H₂SO₄ to pH <2	28	28 Days	
ТРН	<u>2 × 1000 mL</u> 100 g	G	Cool, 4°C pH <2 w/ HCl	7	14 Days	
Hexane Extractable Materials (HEM)	<u>2 × 1000 mL</u> 100 g	G	Cool, 4°C pH <2 w/ HCl	28	28 Days	
TPH-GRO	<u>3 × 40 mL</u> 100 g	G	Cool, 4°C pH <2 w/ HCl	7	14 Days	
TPH-DRO	<u>2 × 1000 mL</u> 200 g	G	Cool, 4°C pH <2 w/ HCl	14 Days	14 to extraction	
тос	<u>125 mL</u> 20 g	G	Cool, 4°C H₂SO₄ to pH <2	28	28 Days	В
Total Nitrite/Nitrate	120 mL	P,G	Cool, 4°C H₂SO₄ to pH <2	28	N/ Days ⁹	ΙA

Element B2 Revision No. 2 Date: 07/16/07 Page 3 of 4

^apH Adjustment with acid/base is performed on water samples only.

^bSodium thiosulfate needed for chlorinated water samples

^CDue to the inaccurate recovery of 2-chloroethyl vinyl ether in the presence of HCl, Halocarbon samples analyzed for this compound should not be preserved.

^dSamples will be analyzed as soon as possible after collection. The times listed are the maximum times that samples will be held before analysis and still be considered valid.

eAnalysis 40 days from extraction.

^fThis is for soil bulk jars for method 5030A. For methods 5035 and 5035A see below.

9Holding time is 48 hours from time of collection for unpreserved samples.

NOTE: For volatiles analysis, the container should be filled completely, with no headspace. All sample containers, preservatives, and mailers will be supplied at no additional charge upon request, except for the special containers with traceability documentation. There is an additional charge for this type of container.

Soil Sampling for Volatile Organics by SW-846 5035 and 5035A

These are methods for collection and analysis of soils and solid waste samples for volatile organic compounds. Method 5035 is described in Update III to the Third Edition of SW-846, *Test Methods for Evaluating Solid Waste, Physical/Chemical Methods*, and is required for all analytical methods using purge and trap techniques (8021B, 8015B, and 8260B). Method 5035A is published by EPA on their website and provides more detail and clarification (e.g. temperature preservation).

The volatile analysis is performed over two ranges:

	GC/MS (8260)	<u>GC (8021 or 8015B)</u>
Low Level	5 – 300 µg/kg >250 µg/kg	Not Available >20 μg/kg
High Level	P 200 pg/rg	=° F33

The different levels require different sampling techniques. The low-level method can only handle samples within a specific concentration range (these samples CANNOT be diluted); therefore, a high-level sample MUST be collected to ensure that all the target analytes can be quantified.

Naturally occurring carbonates in some soils may cause effervescence (foaming) on contact with the sodium bisulfate (NaHSO₄) solution used as preservative for the low-level preparation. This interference makes it necessary for the laboratory to use the high-level prep or an alternative technique for low level.

Element B2 Revision No. 2 Date: 07/16/07 Page 4 of 4

		No. of	Sample	
Low-L	evel (LL) Options	Containers*	Size (g)	Holding Time†
1	LL EnCore	2	5	48 hours
	HL EnCore	1	5	48 hours
2	LL Field Preserved NaHSO ₄	2	5	14 days
	HL Field Preserved Methanol	1	5	14 days
3	LL VOA Vial with Water	2	5	48 hours
	HL Methanol VOA Vial	1	5	14 days
	alesses	No. of	Sample	
High-l	Level (HL) Options	Containers*	Size (g)	Holding Time†
4	Field Preserved Methanol	1	10	14 days
5	Field Preserved Methanol	1	5	14 days
6	Field Preserved Methanol	1	15	14 days
7	HL Encore	1	5	48 hours
8	HL Encore	1	25	48 hours

Lancaster Laboratories supports the following options for the two levels:

*Additional containers will be needed for MS/MSD.

†Because of the need to preserve the samples within 48 hours of collection, it is imperative that samples be returned to the laboratory within one day of sample collection. Once preserved the holding time is 14 days from collection. Although not recommended, samples can be submitted in bulk containers. The holding time for these samples is 14 days from collection.

If samples are collected in EnCore or other approved core samplers, a small quantity of soil must be collected for a moisture determination and to determine if the soil effervesces with the addition of sodium bisulfate. If the soils do react, they will be frozen until analysis in place of chemical preservation.

Options 1, 2, 6, 7, 8, and 9 follow EPA 5035. Options 3, 4, and 5 follow EPA method 5035A.

Element B3 Revision No. 2 Date: 07/16/07 Page 1 of 23

B3. Sampling Handling and Custody Requirements

Samples are unpacked and inspected in the sample receipt area. At this time, the samples are examined for breakage and agreement with the associated client paperwork. The cooler temperatures will be checked upon receipt and recorded. As the samples are unpacked, the sample label information will be compared to the chain-of-custody record and any discrepancies or missing information will be documented. If necessary, the cooler will be closed and placed in cold storage until instructions and resolution of any discrepancies are received from the client.

A member of our Sample Administration Group will act as sample custodian for the project. To ensure accountability of our results, a unique identification number is assigned to each sample as soon as possible after receipt at the laboratory. Upon entry into our LIMS and assignment of the seven digit sample number, labels are generated, along with an acknowledgement summarizing samples entered and the analyses scheduled. When samples requiring preservation by either acid or base are received at the laboratory, the pH will be checked and documented, with the exception of samples designated for volatile analysis, which are checked at the time of analysis. Samples requiring refrigeration will be stored at 2° to 4°C. The use of our computer system in tracking samples (by the Lancaster Labs sample number assignment) will control custody of the sample from receipt until the time of its disposal. The security system on our laboratory building allows us to designate the entire facility as a secure area since all exterior doors are either locked or attended. Therefore, hand-to-hand chain-of-custody is not part of our routine procedure, but is available upon request. If requested, hand-to-hand chain-of-custody will be provided as per attached LOM-SOP-ES-212, "Internal Chain-of-Custody Documentation." The laboratory chain-of-custody will begin with the preparation of bottles. The procedures for sample log-in, storage, and chain-of-custody documentation are detailed in the EQPM (see sections 5.2 and 5.3 in Figure B3-2) and the QA standard operating procedures included in Element B3 (LOM-SOP-ES-220, "Sample Storage and Discard" and LOM-SOP-ES-212, "Internal Chain-of-Custody Documentation"). Examples of sample labels and a custody seal are shown in Figure B3-1.

Element B3 Revision No. 2 Date: 07/16/07 Page 2 of 23

Figure B3-1

Sample Label (Field)

	CLIENT	ace on even ion ob uoy it three becauler ad ton the attuney	own) with us, payment is received.	
-	SAMPLE IDENTIFICATION	/ LDCATION	CL RES:	
-	COLLECTION INFORMATIK	DH:	COMPOSITE	
-	DATE	TIME 87:	PRESERVATIVE(8) ADDED	
	(ES) NO RECORD			
2				
	Lancaste	r Laboratories		
	8			
	Samp	le Label (Labo	oratory)	
^п 425826	4 ASR-000 4 GRP-882948 E		NDARD FORM#: 2607 ults due 04/30/04 15:0 up_form_#: 2607_Sam	7 X0
		Grod	up_form_#:_2607_Sam	ple_torm_#:_1722
()))))))))))))))))))))))))))))))))))))	abs			
		tile_Blank ID:-60		
Tumble Batch Bia 01163 03636	57-8792 SPLP Vola DI H2OVessel Ink	, io io.		
		- ·		
	Outgoin	g on Cooler or	Kit (blue)	
_				DATE
Lancaster Laborator		CUSTODY SE	AL	TVRE:
T Whee quarty is soon.	2425 New Holla	nd Pike, Lancasater, PA 1760	11-5994 (717) 658-2300	
Incor	ning on Coo	oler Containing	g Samples (ye	ellow)
		•••••		DATE
	tories	137603 CUSTODY 5	JEAL	SIGNATURE:
Where quality is a science.	2425 New I	Holland Pike, Lancasater, PA	17601-5994 (717) 656-2300)

Element B3 Revision No. 2 Date: 07/16/07 Page 3 of 23

Figure B3-2

Environmental Quality Policy Manual

5.2. Sample Receipt and Entry

Samples can be received at the laboratory 24 hours a day, 7 days a week, 365 days of the year. Receipt can occur in one of three ways:

- Lancaster Laboratories courier services (i.e., Transportation Department)
- Personal delivery
- Commercial courier

All samples received for testing are delivered to the Sample Administration Department immediately upon arrival. This group is responsible for the unpacking and organizing of the samples. This process includes checking custody seals if present, paperwork agreement, signing the chain of custody, recording cooler temperatures, documenting the condition of containers, accounting for all sample bottles, observing any safety hazards, and reporting any problems to Client Services for communication to the client. For non-compliant samples, the client is given the option to resample or have the sample analyzed and reported with a comment. This receipt process is documented.

As soon as practical after sample receipt, all samples are entered into our laboratory information management system (LIMS). Samples awaiting log-in are stored in temporary holding areas, at appropriate storage conditions to maintain sample integrity. If there is doubt about the suitability of items received or if items do not conform to the description provided or the testing required is not clear or specified, the client will be contacted and the conversation documented.

At the time of entry, the LIMS will assign a unique Lancaster Laboratories' identification number to each sample. This number is sequentially assigned. Upon entry of pertinent client information and assignment of a unique sample number, a label will print identifying each container, which is attached to the sample container.

Samples are tracked to the minute upon arrival. This will allow the client to see exactly how long it took the samples to pass through receipt, unpacking, and entry.

A sample acknowledgement will print from the LIMS per sample delivery group (SDG). This notification is sent to the client to confirm sample receipt and entry on the day following sample log-in. Internally, appropriate personnel will audit all applicable sample entry and client paperwork.

5.3. Sample Identification and Tracking

A sample label is generated for each sample and; in addition to the assigned Lancaster Laboratories' sample number, the following information is printed on the label: client name, sample identification assigned by the client, sample collection information, storage area, bottle code ID, analyses requested, and any applicable notes to laboratory personnel.

To ensure accountability of results, the unique sample number assigned is used to identify the sample in all laboratory data documentation, including notebooks, instrument printouts, and final reports. The sample number will also be used to identify additionel containers of the sample that may be created during sample preparation and analysis (e.g., subsamples, extracts, digests).

Element B3 Revision No. 2 Date: 07/16/07 Page 4 of 23

LOM-SOP-ES-220.03 Supersedes Date: 11/08/04 Effective Date: Page 1 of 6 NOV 1 5 2006

LABORATORY OPERATIONS MANUAL – ENVIRONMENTAL SCIENCES Sample Storage and Discard

Table of Contents

Revision Log:	3
Reference:	ł
Cross Reference:	
Purpose:	4
Scope:	4
Safety Precautions:	4
Personnel Training and Qualifications:	4
Procedure:	4
A. Sample storage and transfer	4
B. Security of storage areas	
C. Sample discard	5
D. Storage conditions	6

Element B3 Revision No. 2 Date: 07/16/07 Page 5 of 23

Lancaster Laboratories

LOM-SOP-ES-220.03 Supersedes Date: 11/08/04 Effective Date: NOV 1 5 2006 Page 2 of 6

Approvais

Date: 10131604 Forlara ed Prepared by: Senior Specialist Date: 10-31-06 Kentofm M lanci Approved by: Environmental Sciences Management Date: 11/1/06 onthe Jar Approved by: Quality Assurance

Element B3 Revision No. 2 Date: 07/16/07 Page 6 of 23

LOM-SOP-ES-220.03 Supersedes Date: 11/08/04 Effective Date: NOV 1.5 2005 Page 3 of 6

Revision Log:

<u>Ver.</u> # 00	Effective Date 08/15/02	<u>Change</u> Previous Issue SOP-QA-103.04
01	11/12/03	Major changes are as follows:
		Updated to LOM-SOP format.
		 Separated out Pharmaceutical references.
02	11/08/04	Major changes are as follows:
•		 Update the cross references section and the SOPs referenced within the SOP
		Update the procedure section
03	NOV 1 5 2006	Major changes are as follows:
		 Made some minor wording changes to Section A of the procedure

,

LOMSOPES220_03.DOC 103106

Element B3 Revision No. 2 Date: 07/16/07 Page 7 of 23

LOM-SOP-ES-220.03 Supersedes Date: 11/08/04 Effective Date: NOV 1 5 2006 Page 4 of 6

Reference:

Chemical Hyglene Plan, Lancaster Laboratories, current version.

Cross Reference:

		e - 1
Document	Document Title	
	Forensic Laboratory Services	
LOM-SOP-ES-212	Internal Chain-of-Custody Documentation	
LOM-SOP-LAB-220	Laboratory Notebooks, Logbooks, and Documentation	ł

Purpose:

Sample integrity can be compromised by improper storage conditions. The objective of this procedure is to prevent sample deterioration and mix-up prior to analysis. The laboratory information menagement system (LIMS) is used to assign storage locations to assist in the orderly storage of samples. Systems are also in place to ensure organized retrieval of samples for analysis and discard/return to client at an appropriate date.

Scope:

This procedure applies to Lancaster Laboratories Environmental Business units. The content of this procedure will describe general systems that are in place for sample storage, retrieval, return, and discard. Additional procedures within Sample Support describe the specific storage operations and requirements. Forensic storage is described in LOM-SOP-ES-201.

Safety Precautions:

Refer to the corporate *Chemical Hygiene Plan* which provides safety information. Contact your supervisor if you have questions or concerns about a sample.

Personnel Training and Qualifications:

Personnel who handle client samples must be familiar with the requirements of this procedure.

Procedure:

A. Sample storage and transfer

- Sample Administration will gather information into the LIMS at the time of sample entry about the approximate size of samples to be received in a group and the type of storage they require (e.g., refrigerator, freezer, or room temperature).
- The LIMS will assign a storage location for each container and record the length of time the samples must be retained after the analysis report has been issued.
- 3. Samples will be stored in a assigned storage location, when not in the laboratory area.

Element B3 Revision No. 2 Date: 07/16/07 Page 8 of 23

LOM-SOP-ES-220.03 Supersedes Date: 11/08/04 Effective Date: NOV 1.5 2005 Page 5 of 6

- 4. In the event that a sample storage location change is needed due to a temperature adjustment, a sample custodian or sample administrator will access the appropriate LIMS program and choose a naw location. After a successful change in location has occurred, a new label will be reprinted and adhered to the sample. The sample containers will then be transferred to the new storage location.
- Analysts requiring the use of a sample container may determine its location by referring to a departmental sample stetus sheet, LIMS, or SA entry paperwork.
- To prevent unnecessary deterioration of the samples, the contents needed for analysis shall be removed and the sample returned to storage with a minimum of delay.
- B. Security of storage areas

There are varying degrees of additional security requirements for storage areas, which are in addition to the building security. This additional security may be driven by various regulatory agencies or client requirements. The following are different levels of security which are in place at the laboratory.

- Samples are stored in a controlled access area and are tracked by an automated sample retrieval storage system (ASRS). Samples are barcoded in and out of this system to track retrieval, return, and disposal.
- 2. Forensic storage areas are locked and admission to these areas is permitted only to sample custodians. See LOM-SOP-ES-201 for further details on forensic storege. Most of the samples stored in these areas require chain-of-custody documentation as outlined in LOM-SOP-ES-212. Samples may not be removed from this area without signing a chain-of-custody form. A chain-of-custody record may also be kept for samples, at the request of the client, even if the samples are not for forensic purposes.
- C. Sample discard
 - When the retention time for sample storage has expired, a discard list will be generated from the LIMS. The retention dates are based upon client requirements or defaulted to a given number of days past the date when the final analysis report is generated, if no client requirement is given.
 - These samples will be removed from their assigned storage area by a sample custodian or analyst, and either disposed of or returned to the client.
 - Hazardous samples shall either be returned to clients, decontaminated, or disposed of by personnel trained in hazardous waste discard assessment or health and sefety parsonnel.

Element B3 Revision No. 2 Date: 07/16/07 Page 9 of 23

LOM-SOP-ES-220.03 Supersedes Date: 11/08/04 Effective Date: NOV 1 5 2006 Page 6 of 6

D. Storage conditions

- The temperature of each sample storage location requiring a temperature control is continuously monitored by the Andover system or it is checked during each normal working day by an assigned person responsible for the sample storage area. This information shall be recorded. Temperature monitoring documentation shall be recorded in ink and changes shall be made in accordance with the error correction procedure outlined in LOM-SOP-LAB-220.
- 2. The following temperature ranges need to be maintained within storage units, unless otherwise specified.

Refrigerator	Freezer	Room
Storage	Storage	Temperature
2° to 4°C	-10° to -20°C	NA

NOTE: Storage conditions of -40° \pm 10°C and -80° \pm 10°C are also available.

- If the temperature recorded does not fall within these ranges, corrective action must be taken and documented as per policy.
- Temperature records must be reviewed by a second qualified person and this information must be permanently archived.
- 5. In the event that additional storage areas are needed as "overflow" storage, systems must be put into place before samples can be stored. These areas must also be monitored for acceptable storage conditions.
- If a client requests storage conditions which are outside the temperature ranges defined above, arrangements will be made to accommodate the request, if possible.

Element B3 Revision No. 2 Date: 07/16/07 Page 10 of 23

LOM-SOP-ES-212.03 Supersedes Date: 03/23/05 Effective Date: APR 1 4 2006 Page 1 of 14

LABORATORY OPERATIONS MANUAL – ENVIROMENTAL SCIENCES SECTION Internal Chain-of-Custody Documentation

Table of Contents

Revision Log:
Reference:
Cross Reference:
Purpose:
Scope:
Definitions: 4
Personnel Training and Qualifications:
Procedure:
A. Initial documentation
B. Creating the internal COC
C. Documentation of custody changes
D. Additional COC Issues
E. Completion of the process

Element B3 Revision No. 2 Date: 07/16/07 Page 11 of 23

Lancaster Laboratories

.

LOM-SOP-ES-212.03 Supersedes Date: 03/23/05 Effective Date: APR 1 4 2005 Page 2 of 14

Approvals

Prepared by:	<u>Elaine</u> Stoltyfes	Date: 33106
Approved by:	Executive Management	Date: 3/31/0.6
Approved by:	Durth, MAne	Date: 3/3//074

Element B3 Revision No. 2 Date: 07/16/07 Page 12 of 23

LOM-SOP-ES-212.03 Supersedes Date: 03/23/05 Effective Date: APR 1 4 2005 Page 3 of 14

Revision Log:

<u>Ver. #</u>	Effective Date	<u>Change</u>
		Previous Issue: SOP-QA-104.05
01	02/20/03	Major changes are as follows:
		 Removed Pharmaceutical information Updated to LOM-SOP format Minor clarifications throughout Updated Figure 3 and 5
02	03/23/05	Major changes are as follows:
		 Updated Cross Reference section Clarified Procedure section A Initial documentation Updated Figures 2, 4, and 5 Incorporated Procedural Amendment
03	APR 1 4 2006	Major changes are as follows:
	AI N X 2	 Updated Form numbers in Cross Reference section Revised Procedure, Section B, Number 3 concerning filing the original copy of the external client COC/analysis raquest Updated employee titles Updated Figures Updated computer terms Parallax and Evolution to Laboratory Information Management System (LIMS) Updated and clarified wording throughout document

LOMSOPES212_03.DOC 033106

Element B3 Revision No. 2 Date: 07/16/07 Page 13 of 23

LOM-SOP-ES-212.03 Supersedes Date: 03/23/05 Effective Date: APR 1 4 2006 Page 4 of 14

Reference:

Environmental Quality Policy Manual, Lancaster Laboratories, Inc., current version.

Cross Reference:

Document	Document Title	
LOM-SOP-LAB-220	Laboratory Notebooks, Logbooks, and Documentation	
Form 2016	Secure Storage Chain of Custody Original Sample	
Form 2102	Analysis Request/Environmental Services Chain of Custody	
Form 2174	Sample Administration Receipt Documentation Log	
Form 2231	Department Storage Chain of Custody Metals	
Form 2236	Secure Storage Chain of Custody Leachates	
Form 2237	Department Storage Chain of Custody Water Quality	
Form 2349	Chain-of-Custody Transfer Record	
Form 2354	Secure Storage Chain of Custody Supplemental Information	
Form 2355	Secure Storage Chain of Custody Subsample	
Form 2365	Master List of Chains of Custody	
Form 2667	Sample Storage Off-Shift Entry Logbook	

Purpose:

In order to demonstrate reliability of data which may be used as evidence in a legal case, required by a regulatory agency, or required by a client, an accurate written record tracing the possession of samples must be maintained from the time they are received at the laboratory until the last requested analysis is verified. The purpose of a chain of custody (COC) is to ensure traceability of samples while they are in the possession of the laboratory.

Scope:

This procedure describes the initiating and maintaining of COC documentation for samples that require this level of traceability. It applies to the Environmental Division of Lancaster Laboratories when a client or regulatory agency requests an accurate written record tracing the possession of samples from the time they are received at the laboratory until the last requested analysis is verified.

Definitions:

A sample is in custody if it is in any one of the following states:

- 1. In actual physical possession
- 2. In view after being in physical possession
- 3. Locked up so no one can tamper with it
- In a secured area, restricted to authorized personnel (e.g., in the ASRS).

Element B3 Revision No. 2 Date: 07/16/07 Page 14 of 23

LOM-SOP-ES-212.03 Supersedes Date: 03/23/05 Effective Date: Page 5 of 14 APR 1 4 2006

Personnel Training and Qualifications:

Training for this procedure consists of reading this SOP. Supervisory review of all COC documentation should be done until the trainer is satisfied that proficiency has been achieved. Training of all laboratory personnel is the responsibility of the department manager. Documentation that this training has been completed must be kept in the employee's training record.

Procedure:

NOTE: Many of the COC forms listed in this SOP are available on Lab Links; therefore, they are not attached to the end of this SOP. Forms 2016, 2231, 2236, 2237, 2349, 2354, 2355, 2365 should be printed from Lab Links when needed to ensure the latest version of the form is being used at all times.

A. Initial documentation

- Chain-of-custody documentation shall be kept upon the request of the client or for any samples that are known to be involved in a legal dispute. As with all analytical data, it is extremely important that this documentation is filled out completely and accurately with every sample bottle transfer. Everyone who handles the COC is responsible to check for documentation compliance to the point of their acquisition. If changes need to be made to the COC, they must be made in accordance to the error correction procedure addressed in LOM-SOP-LAB-220. It is the responsibility of the person who made an error in documentation to correct the error.
- If requested by the client, the COC documentation will begin with the preparation of sampling containers. The person packing the bottle order for shipment to the client initiates Form 2102 (Figure 1). If the delivery of containers is via Lancaster Laboratories Transportation Department, the Sample Container Record (SCR) Number (written on Form 2102, Section 6) will be utilized to track the person preparing
- the bottle order. The Lancaster Laboratories' drivers must sign Form 2102, Section 9 when they relinquish the bottles to the client. Drivers must also sign COC forms when they pick up samples from the client for transportation to the laboratory.
- 3. When samples arrive at the laboratory for analysis, a member of the Sample Administration (SA) personnel will receive them and sign the external COC form that accompanies the samples, if provided. If our Transportation department picked up the samples, the driver must sign the COC to relinquish the samples to Sample Administration.
- The Sample Administration Group will track the custody of samples between receipt and entry into LIMS on Form 2174 (Figure 2). The client's sample designation will be used for identification purposes until a unique Lancaster Laboratories number is assigned.

Element B3 Revision No. 2 Date: 07/16/07 Page 15 of 23

ď

LOM-SOP-ES-212.03 Supersedes Date: 03/23/05 Effective Date: Page 6 of 14 APR 1 4 2006

- 5. Samples will be entered into the Sample Management System as described in Environmental Quality Policy Manual. Sample Administration will enter an analysis number for "Laboratory Chain of Custody" if requested. A lab note will print to inform analysts of the need for COC documentation. This note will also be automatically printed on the sample labels.
- B. Creating the internal COC
 - At the time of sample entry, Sample Administration personnel shall initiate Form 2365 for each sample group. They shall also initiate an Internal Laboratory Chain of Custody Form 2016 (Figure 3) for each type of bottle in the sample group.
 - 2. The samples will then be temporarily stored in a secure location that is named SA HOLD. This change of custody from sample entry personnel to SA HOLD shall be documented on the chain, as well as any interim exchanges for rush analysis. The internal COC forms will then accompany the samples until the last requested analysis is verified.
 - 3. If samples need to be checked out from the Sample Administration Group (for rush or short hold time analyses) before Lancaster Laboratories' numbers have been assigned to them, SA is responsible for starting a Form 2016 COC form. They will note the available header information and the samples being relinquished (documented by the client sample designation).
 - 4. After the original copy of the external client COC/analysis request form is scanned into LIMS, it will be filed within Client Services. If requested, the original copy of the external client COC/analysis request form will be sent to Billing and Reporting to be sent to the client with their report.
- C. Documentation of custody changes
 - The COC needs signed each time the sampla bottle is placed into storage and removed from storage. The sample bottle exchange may be person to person or person to place, but never place to place. A person's signature is required on each line of the COC. Two examples of how to document changes in sample custody are shown in Figures 3 and 4. Each change-of-sample custody must be accurately documented in a consistent format. All signatures documenting changes of custody will use the following format:

Signatures: First initial, full last name, employee number Date: Month/day/year Time: Documented as military time Ink: Black ink is preferred, red ink and pencil are not acceptable

Element B3 Revision No. 2 Date: 07/16/07 Page 16 of 23

LOM-SOP-ES-212.03 Supersedes Date: 03/23/05 Effective Date: APR 1 4 2006 Page 7 of 14

- a. The samples will be moved from temporary SA HOLD storage to the permanent storage area known as MAIN STORAGE. Sample Storage personnel shall document this transfer of custody from SA HOLD to MAIN STORAGE on the COC. Any movement within the MAIN STORAGE area itself is tracked through bar codes and a validated LIMS tracking system.
- b. When an analyst receives samples from Main Storage, they must completely and accurately fill out the information requested on the COC for each sample bottle. In the technical areas, the COC needs signed each time the sample bottle physically changes hands.
- c. When samples are returned to storage, this process must again be followed.
- 2. Sample handling should be kept to a minimum. Analysts requiring use of a sample will requisition it through the LIMS requisition program. During the hours when the Sample Storage area is staffed, Sample Support personnel will receive the computerized requisition and remove the sample from the ASRS. The Sample Support personnel will ensure that the sample number and bottle type listed on the COC form matches the sample number and bottle type being distributed.
- Each analyst must accurately documant each specific test (analysis) that is performed in conjunction with the associated sample numbers before the samples are returned to MAIN STORAGE.
- 4. When an analyst requires the use of samples during hours when the Sample Storage area is not normally staffed (such as weekends or holidays), the analyst must place a requisition for the required samples earlier in the day or on the previous day. The requisition should be for the real time and date needed.

If a Sample Support staff member or a Sample Support designee is not available when an analyst needs the samples from MAIN STORAGE, he/she will contact the security person on duty to unlock the Main Storage unit. The analyst must sign Logbook Form 2667 (Figure 5) and fill out the required information to document entry into the storage unit. The security person must co-sign as a witness. Once the notebook is signed, the analyst may enter MAIN STORAGE and retrieve the samples. The analyst retrieving the samples must also completely and accurately fill out the information requested on the COC for each COC sample bottle.

When the analyst is ready to return his/her samples to MAIN STORAGE, security must again be contacted. The process of signing Logbook Form 2667 must again be followed. The analyst returning the samples must again completely and accurately fill out the information requested on the COC for each COC sample bottle.

- 5. The following changes of custody will be handled as noted below:
 - a. Documentation is required for all shift changes. Signatures involving transfers from one shift to another shall be the responsibility of the analyst who originally acquired the samples from MAIN STORAGE.

Element B3 Revision No. 2 Date: 07/16/07 Page 17 of 23

LOM-SOP-ES-212.03 Supersedes Date: 03/23/05 Effective Date: APR 1 4 2006 Page 8 of 14

- b. Occasionally, a sample container will be needed for analysis by an analyst in one department while it is in the custody of an analyst in another department. It will be the responsibility of the first person who received the sample to note on the COC the specific sample numbers requested by the second person and to sign the "Released By" column. The second person will sign the "Received By" column and note the time, date, and reason for sample transfer. After the second person is finished with the sample, the sample will be returned back to the first person or to MAIN STORAGE.
- c. In situations when a sample group needs to be split between departments working on different analyses, Sample Support personnel are responsible for starting a Form 2354 supplemental COC. The supplemental chain will accompany that portion of the sample group that is needed by a second department, when the first department has part of the sample group and the original sample COC. This supplementel COC will be created only when absolutely necessary to minimize paperwork and confusion. This chain must also be documanted on the master list of chains (Form 2365).
- d. If COC samples are stored in other areas of the laboratory or in a specific department, they must be stored in a secured area. Whan samples are entered into to this area, the "Recaived By" column will be noted as "Department XX storage." When samples are taken from a departmental storage area, the "Released By" column of the COC is documented as "Department XX storage."
- D. Additional COC issues
 - Analysts in possession of samples shall remove the aliquot required for their analysis and return the samples to MAIN STORAGE with a minimum of delay. During this time of possession, samples must fall under the definition of sample custody.
 - 2. If additional containers of the sample are created (e.g., subsamples, extracts, distillates, leachates, digests, etc.), then an additional COC form must be created by the department if they do not document this information on the original COC form. This form will be marked with the container type and will be initiated to eccompany the new sample container. Many departments in the lab have specifically designed COC forms that will be used if new containers are created (Forms 2231, 2236, 2237, 2355 are examples). All changes of custody involving new containers in the department (e.g., analysis, storage, vials on instruments, etc.) must be documented on a departmental specific COC form or on the original COC form.

Element B3 Revision No. 2 Date: 07/16/07 Page 18 of 23

LOM-SOP-ES-212.03 Supersedes Date: 03/23/05 Effective Date: APR 1 4 2006 Page 9 of 14

E. Completion of the process

 After sample analysis, COC samples shall be returned with their proper chains to the Sample Support Group as soon as possible. At this time, it is the responsibility of the Sample Support Group to review the COC forms to ensure that all documentation on the forms is complete before they file the forms in their area.

All chains should either end with a note of "All Sample Consumed," "Discerd," or "Storage" for the final reason of transfer.

2. All completed COC forms for the original sample containers will be retained in files within Sample Support until the Data Deliverables Group personnel retrieves these forms so a copy can be included in the data package. The personnel retrieving the COC needs to fill out Form 2349 so the Sample Support Group has a record of the COC leaving their area. The Data Deliverables Group also retrieves all departmental created COC forms so a copy can be included in the data package. The original copy of all COC forms will be retained on file by the laboratory.

NOTE for the Date Deliverables Group personnel who collect COC forms for data packages: If you find a completed COC form that does not get a data package, send the COC form to the project manager for that account. The project manager will determine whether copies of the COCs get sent to the client with the reports.

- 3. All personnel who handle sample containers shall make every attempt to ensure that all changes of custody are accurately and completely documented. Disciplinary action may be taken for employees who fail to comply with these important requirements.
- 4. In the event that a signature or other information is inadvertently not recorded on a COC form, then the Semple Support Group and the Data Package Group, in conjunction with the technicel groups, shall determine what information is missing. Checking computer requisition records, raw data, or the Sample Support work schedule are useful tools for this. The responsible party shall add the missing information or make the necessary correction at the bottom of the COC form, in addition to noting the situation that caused the error in documentation. The person making this note needs to sign and date the information using the current date. Any errors in COC documentation that cause noncompliances must be noted in the case narrative of the sample data package.

•---

Lancaster Laboratories

LOM-SOP-ES-212.03 Supersedes Date: 03/23/05 Effective Date: APR 1 4 2006 Page 10 of 14

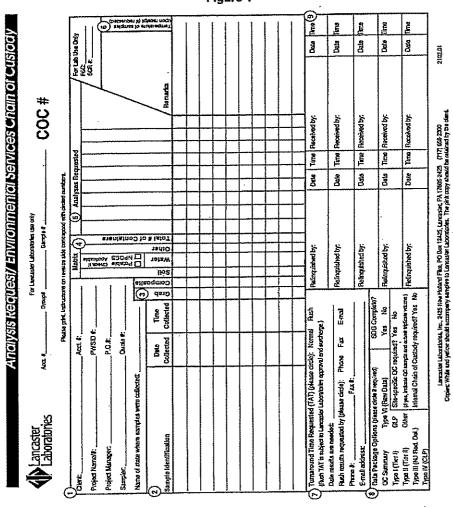


Figure 1

Element B3 Revision No. 2 Date: 07/16/07 Page 20 of 23

ŧ

LOM-SOP-ES-212.03 Supersedes Date: 03/23/05 Effective Date: Page 11 of 14 APR 1 4 2006

Figure 2

Lancaster Laboratories

Environmental Sample Administration Receipt Documentation Log

Client/Project	Shipping Container Sealed: Y / N
Dato of Receipt:	Custody Seal Present: Y / N
Time of Recoipt:	Custody Scal Intact: Y / N / NA
Source Code:	Package: Chilled / Not Chilled

Unpacker Emp. No.: ...

Temperature of Shipping Containers					
#1		#2			
Thermometer ID:		Themometer ID:			
Temp.:		Temp.:			
Тетр. ВоЩе / Ѕипасе Тетр.		Temp. Bollle / Surface Temp.			
Wet Ice / Dry Ice / Ice Pack	S	Wet Ice / Dry Ice / Ice Packs	Wet Ice / Dry Ice / Ice Packs		
Ice Present? Y / N	Loose / Bagged	Ica Present? Y / N	Loose / Bagged		
#3		#4			
Thermometer ID:	·····	Thermometer ID:			
Temp.:		Temp.:			
Temp. Bottle / Surface Temp.		Temp. Bottle / Surface Temp.			
Wat Ice / Dry Ice / Ice Packs		Wet ice / Dry ice / ice Packs			
Ice Present? Y / N	Loose / Bagged	Ice Present? Y / N	Loose / Bagged		

Paperwork Discrepancy/Unpacking Problems:

Sample Administration Internal Chain of Custody					
Name Date Time Reason for					
			Unpacking		
			Place in Storage or Entry		
			Remove from Storage		
			Place in Storage or Entry		
·······	1	1	Entry		

2174.01

Lancaster Laboratories

LOM-SOP-ES-212.03 Supersedes Date: 03/23/05 Effective Date: Page 12 of 14 APR 1 4 2006

Figure 3

Lancaster Laboratories

A A A A A A A A A A A A A A A A A A A	Secure Storage Chain of Custod Original Sample	y Example
Client/Project:	3c Corporation	

Sample # Range from Entry Group: 1234	567 -70	sog: A	BCOI
Preservative: <u>None</u>	Matrix	Bolle Type:	05

Sample Number(s) in Custody	Released By	Received By	Date of Transfer	Time of Transfer	Reason for Change of Custody	Dist., Extr., or Digest Chain Created (X)
1234567-70	5-21reen 108	SA Hold	3)8]04	1405	Entry to Stocaal	
1234567-70	SA Hold	a milite	310/06	JAZO	sample	
1234567-70	a ristite 1002	Storage	3/9/06	1235	storage	
1234567,68,70	Main Storage	N Red 76B	3/10/06	0845	Filter for silica	X
1234567,68,70	M-Red FLB	main	3/10/06	1115	storage.	
1234567 -70	main	9 Black	3/10/06	H SD	202	
1234567-70	a Black	Main Storage	3/10/06	1710	storage	
	<u> </u>					

2016.02

:

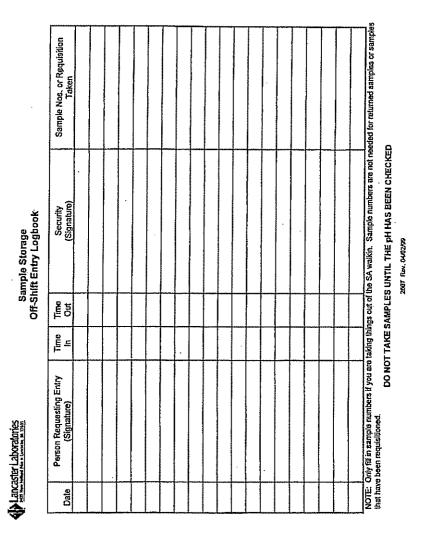
Lancaster Laboratories

LOM-SOP-ES-212.03 Supersedes Date: 03/23/05 Effective Date: APR 1 4 2006 Page 13 of 14

Figure 4

Department Storage Chain of Custody E+ample Water Quality								
Cir	Circle One: Digest Distiliate Extract (Filtrate) Subsample							
Client/Project: <u>ABC Corporation</u>								
	nple # Rang G: <u>AB</u>		•	12345	67 -70		в Туре: <u>// А</u>	
	Sample N	umber(s) stody	Released By	Received By	Date of Transfer	Time of Transfer	Reason for Change of Custody	
	1234567,		m Real	Dept 29 Storage	3110/06	1030	· Storage	
3112/06	1234567,	68.70	Dept 29	M Red 76B	3/12/06	0810	silica.	
-108(4)	1234567.		M Hid 768	Dept 29 Storage	3/ 12/04	1105	storage	
	1234567,		Dept 29 Storage	5 Pueple 37	3) 14/06	1635	Discard	
		·····						
			· · · · · · · · · · · · · · · · · · ·					
				·				
	<u> </u>							
			[

2237.01


Element B3 Revision No. 2 Date: 07/16/07 Page 23 of 23

.

Lancaster Laboratories

LOM-SOP-ES-212.03 Supersedes Date: 03/23/05 Effective Date: Page 14 of 14 APR 1 4 2006

Figure 5

Element B4 Revision No. 3 Date: 08/15/07 Page 1 of 43

B4. Analytical Methods Requirements

The analytical procedures to be used for organics and inorganics are those described in the USEPA SW-846 3rd Edition, Update III, 1996; Standard Methods for the Examination of Water and Wastewater, 20th edition; and Methods for the Chemical Analysis of Waters and Wastes, USEPA, 600/4-79-020 for the preparation and analysis of water, sediment, and soil for the client specified compounds. Copies of the analytical procedures are located in the laboratory and available for use by analysts. Copies of analytical methods are available upon request. Quantitation and detection limits for the following methods are noted in Tables B4-2 through B4-25. These are evaluated annually and are subject to change, as per the guidelines given in 40 CFR Part 136 Appendix B.

Inorganic Analysis

<u>Metals by Inductively Coupled Plasma (ICP)</u> – This is a technique for the simultaneous determination of elements in solution after acid digestion. The basis of the method is the measurement of atomic emission by an optical spectroscopic technique. Characteristic atomic line emission spectra are produced by excitation of the sample in a radio frequency inductively coupled plasma. Method 6010B, See Table B4-1 for list of elements and prep methods.

<u>Mercury by Cold Vapor Atomic Absorption</u> – Organic mercury compounds are oxidized and the mercury is reduced to the elemental state and aerated from solution in a closed system. The mercury vapor passes through a cell positioned in the light path of a spectrophotometer and absorbance (peak height) is measured. Method 7470A/7471A.

Metals by Inductively Coupled Plasma Mass Spectrometer (ICP/MS) – This is a technique for the simultaneous determination of elements in solution after acid digestion. The method involves the breakdown of molecules into elemental ions in a plasma followed by a mass spectrometric measurement. Characteristic mass spectra are produced by the element's natural isotopes. Method 6020. See Table B4-1 for list of elements and prep methods.

Element B4 Revision No. 3 Date: 08/15/07 Page 2 of 43

Miscellaneous Wet Chemistry

<u>Moisture</u> – A known sample weight is placed in a drying oven maintained at 103° to 105°C for 8 to 24 hours. The sample is reweighed after drying and this value is divided by the original weight. The result is used to calculate analytical concentration on a dry-weight basis. Method 160.3 (modified).

<u>Cyanide, total</u> – Distillation of the sample releases the cyanide from cyanide complexes as HCN. The liberated HCN and simple cyanides are converted to cyanogen chloride by reaction with chloramine T. This reacts with pyridine and barbituric acid reagent to give a red colored complex. The absorbance is read at 570 nm and is compared to a standard curve using an automated spectrophotometer. Method 9012A.

<u>Phenolics, total</u> – This method is based on automated distillation of phenol and the subsequent reaction with 4-aminoantipyrine and ferriccyanide in basic buffer to produce a red colored complex. The absorbance is read at 505 nm and is compared to a standard curve using an automated spectrophotometer. Method 9066.

<u>Sulfide, total</u> – The sample is acidified and a known excess of iodine is added. The iodine reacts with sulfide in acid solution, oxidizing sulfide to sulfur. The excess iodine is back-titrated with sodium thiosulfate. SM20 4500 S_2F .

<u>Total Petroleum Hydrocarbons</u> – Samples are extracted with freon and the resulting solution is treated with silica gel to remove fatty acids and other polar compounds. The remaining nonpolar compounds are designated as petroleum hydrocarbons and are quantitatively measured using Fourier Transform Infrared Spectroscopy (FTIR), Method 418.1 (modified for soils).

<u>Hexane Extractable Materials (HEM)</u> – For HEM a one liter sample is acidified to a pH <2 and serially extracted with *n*-hexane in a separatory funnel. The solvent is evaporated from the extract, and the residual HEM is weighed. For SGT-HEM a one liter sample is serially extracted with *n*-hexane in a separatory funnel. The extract is mixed with silica gel, filtered through sodium sulfate, the solvent evaporated from the extract, and the residual SGT-HEM is weighed. Method 1664A.

Element B4 Revision No. 3 Date: 08/15/07 Page 3 of 43

<u>Total Organic Carbon (TOC)</u> – Following acidification, the sample is purged with nitrogen to remove inorganic carbon. Persulfate is injected to oxidize organic carbon to carbon dioxide which is detected by IR. Method 9060.

<u>Total Nitrite/Nitrate</u> – Using an autoanalyzer, the sample is passed through a column containing granulated copper-cadmium to reduce nitrate to nitrite. The nitrite ion reacts with sulfanilamide to yield a diazo compound which couples with *n*-1-naphylethylenediamine dihydrochloride to form a soluble, highly colored dye. The absorbance is read at 540 nm and compared to a standard curve. Method 353.2.

Organic Analysis

<u>Volatiles by GC/MS</u> – This method determines the concentration of volatile (purgeable) organics. The analysis is based on purging the volatiles onto a Tenax/silica gel trap, desorbing the volatiles onto a gas chromatographic column which separates them and identifying the separated components with a mass spectrometer. Method 8260B/5030B/5035.

<u>Semivolatiles by GC/MS</u> – This method determines the concentration of semivolatile organic compounds that are separated into an organic solvent and are amenable to gas chromatography. The method involves solvent extraction of the sample to isolate analytes and GC/MS analysis to determine semivolatile compounds present in the sample. Method 8270C/3550B/3510C.

<u>Volatiles by GC</u> – This method determines the concentration of volatile (purgeable) organic compounds. The analysis is based on purging the volatiles from the sample onto an appropriate sorbent trap and desorbing the volatiles onto a gas chromatographic column. Using an appropriate temperature program, the compounds are separated by the column and both qualitative and quantitative detection is achieved with a photoionization and/or electrolytic conductivity detector. Method 8021B/5030B/5035. Non-halogenated organics are analyzed by flame ionization detectors. Method 8015B/5030B/5035.

Element B4 Revision No. 3 Date: 08/15/07 Page 4 of 43

<u>TPH-GRO</u> – This method determines the concentration of gasoline range organics (2-methylpentane to 1,2,4-trimethylbenzene). The analysis is based on purging the volatiles from the sample onto an appropriate sorbent trap and desorbing the volatiles onto a gas chromatographic column. Using an appropriate temperature program, the compounds are separated by the column and both qualitative and quantitative detection is achieved with a flame ionization detector. BTEX may be determined simultaneously on systems equipped with a photoionization detector in tandem with the FID. Method 8015B/5030B/5035.

<u>TPH-DRO</u> – This method determines the concentration of diesel range organics (C-10 to C-28 hydrocarbons). The procedure includes solvent extraction of the sample and analysis of the extract on a gas chromatograph/flame ionization detector (GC/FID) using a megabore capillary column. Method 8015B.

Pesticides, PCBs, and Herbicides – These methods determine the concentration of organochloride pesticides, polychlorinated biphenyls, herbicides, and organophosphate pesticides. The procedures include solvent extraction of the sample, analysis of the extract on a gas chromatograph/electron capture detector (GC/EC) using a capillary column, and confirmation on a GC/EC using a second capillary column. A nitrogen-phosphorus detector is used for organophosphates. If the compound concentration is sufficient, confirmation may be performed on GC/MS upon request. Pesticides methods 8081A/3550B/3510C and 8141A/3550B/3510C. PCBs Method 8082/3550B/3510C. Herbicides Method 8151A/3550B.

<u>PAHs by HPLC</u> – The sample aliquot is extracted with methylene chloride. The extract is filtered (soils), dried, concentrated by evaporation and exchanged into acetonitrile. The extract is analyzed by reverse-phase HPLC with both UV and fluorescence detectors. Methods 8310/3550B/3510C.

Element B4 Revision No. 3 Date: 08/15/07 Page 5 of 43

Table B4-1Inorganic Analytical Method Numbers

	ICP	ICP/MS
Aluminum	6010B/3005A/3010/3050B	6020/3010MOD/3050B
Antimony	6010B/3005A/3010/3050B	6020/3010MOD/3050B
Arsenic	6010B/3005A/3010/3050B	6020/3010MOD/3050B
Barium	6010B/3005A/3010/3050B	6020/3010MOD/3050B
Beryllium	6010B/3005A/3010/3050B	6020/3010MOD/3050B
Cadmium	6010B/3005A/3010/3050B	6020/3010MOD/3050B
Calcium	6010B/3005A/3010/3050B	6020/3010MOD/3050B
Chromium	6010B/3005A/3010/3050B	6020/3010MOD/3050B
Cobalt	6010B/3005A/3010/3050B	6020/3010MOD/3050B
Copper	6010B/3005A/3010/3050B	6020/3010MOD/3050B
lron	6010B/3005A/3010/3050B	6020/3010MOD/3050B
Lead	6010B/3005A/3010/3050B	6020/3010MOD/3050B
Magnesium	6010B/3005A/3010/3050B	6020/3010MOD/3050B
Manganese	6010B/3005A/3010/3050B	6020/3010MOD/3050B
Molybdenum	6010B/3005A/3010/3050B	6020/3010MOD/3050B
Nickel	6010B/3005A/3010/3050B	6020/3010MOD/3050B
Potassium	6010B/3005A/3010/3050B	6020/3010MOD/3050B
Selenium	6010B/3005A/3010/3050B	6020/3010MOD/3050B
Silver	6010B/3005A/3010/3050B	6020/3010MOD/3050B
Sodium	6010B/3005A/3010/3050B	6020/3010MOD/3050B
Thallium	6010B/3005A/3010/3050B	6020/3010MOD/3050B
Tin	6010B/3005A/3010/3050B	6020/3010MOD/3050B
Vanadium	6010B/3005A/3010/3050B	6020/3010MOD/3050B
Zinc	6010B/3005A/3010/3050B	6020/3010MOD/3050B

The number of parameters analyzed and the method used will be determined by the site-specific requirements.

Mercury by Cold Vapor - 7470A/7471A.

Element B4 Revision No. 3 Date: 08/15/07 Page 6 of 43

Table B4-2Metals Compound List (TAL)

	Wat	ters	Soils**		
Analyte	LOQ* (mg/L)	MDL (mg/L)	LOQ* (mg/kg)	MDL (mg/kg)	
Aluminum	0.2	0.08	20	3.4	
Antimony	0.02	0.0097	2.	0.9	
Arsenic	0.02	0.01	2.	0.91	
Barium	0.005	0.00062	0.5	0.023	
Beryllium	0.005	0.00094	0.5	0.068	
Cadmium	0.005	0.00091	0.5	0.065	
Calcium	0.2	0.1	20	13	
Chromium	0.015	0.0023	1.5	0.58	
Cobalt	0.005	0.0021	0.5	0.13	
Copper	0.01	0.0022	1.	0.18	
Iron	0.2	0.052	20	4.7	
Lead	0.015	0.00685	1.5	0.441	
Magnesium	0.1	0.014	10	1.9	
Manganese	0.005	0.00036	0.5	0.056	
Molybdenum	0.010	0.0056	1.0	0.0105	
Mercury ¹	0.0002	0.000056	0.100	0.0105	
Nickel	0.01	0.0056	1.	0.61	
Potassium	0.5	0.05	50	3.3	
Selenium	0.02	0.0094	2.	0.98	
Silver	0.005	0.0016	0.5	0.17	
Sodium	1.	0.43	100	35	
Thallium	0.020	0.0135	2.00	1.33	
Vanadium	0.005	0.0015	0.5	0.16	
Zinc	0.02	0.0081	2.	0.66	
Cyanide, total ²	0.01	0.005	0.5	0.18	

Analyzed by ICP

1Analyzed by Cold Vapor

²Analyzed by automated spectrophotometer

*Specific quantitation limits are highly matrix dependent. The quantitation limits listed herein are provided for guidance and may not always be achievable.

**Quantitation limits listed for soil/sediment are based on wet weight. The quantitation limits calculated by the laboratory for soil/sediment, calculated on a dry-weight basis, will be higher.

The laboratory routinely reports at the limit of quantitation (LOQ) but can estimate down to the MDL when requested by the client. Values reported below the LOQ are reported with a J-flag and are defined as estimated values.

LOQs and MDLs are evaluated annually and subject to change.

Element B4 Revision No. 3 Date: 08/15/07 Page 7 of 43

Table B4-3Inorganic Priority Pollutants List

	Wa	ters	Soils***	
Analyte	LOQ** (mg/L)	MDL (mg/L)	LOQ** (mg/kg)	MDL (mg/kg)
Antimony	0.02	0.0097	2.	0.9
Arsenic	0.02	0.01	2.	0.91
Beryllium	0.005	0.00094	0.5	0.068
Cadmium	0.005	0.00091	0.5	0.065
Chromium	0.015	0.0023	1.5	0.58
Copper	0.01	0.0022	1.	0.18
Lead	0.015	0.00685	1.5	0.441
Mercury*	0.0002	0.000056	0.100	0.0105
Nickel	0.01	0.0056	1.	0.61
Selenium	0.02	0.0094	2.	0.98
Silver	0.005	0.0016	0.5	0.17
Thallium	0.020	0.0135	2.00	1.33
Zinc	0.02	0.0081	2.	0.66
Cyanide, total [†]	0.01	0.005	0.5	0.18
Phenolics, total [†]	0.03	0.009	3.5	1.2

*Mercury is analyzed by Cold Vapor.

Except for Cyanide, Phenolics, and Mercury, all other elements analyzed by ICP.

†Cyanide and Phenolics analyzed by distillation followed by automated colorimetry.

**Specific quantitation limits are highly matrix dependent. The quantitation limits listed herein are provided for guidance and may not always be achievable.

***Quantitation limits listed for soil/sediment are based on wet weight. The quantitation limits calculated by the laboratory for soil/sediment, calculated on a dry-weight basis will be higher.

The laboratory routinely reports at the limit of quantitation (LOQ) but can estimate down to the MDL when requested by the client. Values reported below the LOQ are reported with a J-flag and are defined as estimated values.

LOQ and MDLs are evaluated annually and subject to change.

Element B4 Revision No. 3 Date: 08/15/07 Page 8 of 43

Table B4-4Inorganic Appendix IX Analyte List

	Wa	ters	Soils***	
Analyte	LOQ** (mg/L)	MDL (mg/L)	LOQ** (mg/kg)	MDL (mg/kg)
Antimony	0.02	0.0085	2.	0.66
Arsenic	0.01	0.0049	1.	0.5
Barium	0.005	0.00042	0.5	0.032
Beryllium	0.005	0.00034	0.5	0.059
Cadmium	0.005	0.00087	0.5	0.054
Chromium	0.005	0.0022	0.5	0.2
Cobalt	0.005	0.0016	0.5	0.14
Copper	0.01	0.0021	1.	0.19
Lead	0.02	0.0093	2.	0.79
Mercury*	0.0002	0.00016	0.1	0.0028
Nickel	0.01	0.0038	1.	0.2
Selenium	0.01	0.0047	1.	0.47
Silver	0.005	0.0018	0.5	0.15
Thallium	0.02	0.0089	2.	0.93
Tin	0.02	0.005	10.	0.41
Vanadium	0.005	0.0017	0.5	0.16
Zinc	0.005	0.0041	2.	0.18
Cyanide, total [†]	0.01	0.005	0.5	0.18
Sulfide, total	2.	0.53	30	8.4

*Mercury is analyzed by Cold Vapor.

Except for Cyanide, Sulfide, and Mercury, all other elements are analyzed by ICP.

†Cyanide is analyzed by distillation followed by automated colorimetry.

ttSulfide is analyzed by 9034 (modified), titrimetric analysis.

**Specific quantitation limits are highly matrix dependent. The quantitation limits listed herein are provided for guidance and may not always be achievable.

***Quantitation limits listed for soil/sediment are based on wet weight. The quantitation limits calculated by the laboratory for soil/sediment, calculated on a dry-weight basis will be higher.

The laboratory routinely reports at the limit of quantitation (LOQ) but can estimate down to the MDL when requested by the client. Values reported below the LOQ are reported with a J-flag and are defined as estimated values.

LOQ and MDLs are evaluated annually and subject to change.

Element B4 Revision No. 3 Date: 08/15/07 Page 9 of 43

Table B4-5Metals by ICP/MS List

	Waters		Soil	S***
Analyte	LOQ** (mg/L)	MDL (mg/L)	LOQ** (mg/kg)	MDL (mg/kg)
Aluminum	0.1	0.013	10	0.74
Antimony	0.001	0.000038	0.1	0.005
Arsenic	0.002	0.00067	0.2	0.017
Barium	0.0005	0.000072	0.5	0.094
Beryllium	0.0002	0.000052	0.02	0.0028
Cadmium	0.00025	0.000099	0.025	0.0038
Calcium	0.075	0.023	75	18
Chromium	0.002	0.00026	0.2	0.031
Cobalt	0.0001	0.000012	0.01	0.00013
Соррег	0.001	0.0002	0.1	0.035
Iron	0.075	0.025	20	2.1
Lead	0.001	0.000047	0.1	0.015
Magnesium	0.01	0.003	2.	0.43
Manganese	0.00075	0.00013	0.2	0.016
Molybdenum	0.001	0.000031	0.1	0.0044
Nickel	0.0002	0.00043	0.2	0.05
Potassium	0.05	0.011	5	0.6
Selenium	0.002	0.0005	0.2	0.037
Silver	0.0005	0.000023	0.05	0.0035
Sodium	0.2	0.067	20	5
Strontium	0.0005	0.000074	0.1	0.0098
Thallium	0.0005	0.000037	0.05	0.00094
Tin	0.0005	0.00013	1.	0.07
Titanium	0.001	0.00031	0.2	0.036
Vanadium	0.005	0.0011	0.05	0.0029
Zinc	0.015	0.0017	2.	0.25

**Specific quantitation limits are highly matrix dependent. The quantitation limits listed herein are provided for guidance and may not always be achievable.

***Quantitation limits listed for soil/sediment are based on wet weight. The quantitation limits calculated by the laboratory for soil/sediment, calculated on a dry-weight basis will be higher.

The laboratory routinely reports at the limit of quantitation (LOQ) but can estimate down to the MDL when requested by the client. Values reported below the LOQ are reported with a J-flag and are defined as estimated values.

Method 6020 (ICP/MS) - LOQ and MDLs are evaluated annually and subject to change.

Element B4 Revision No. 3 Date: 08/15/07 Page 10 of 43

Table B4-6Miscellaneous Chemistry Analyte List

	Waters		Soils**	
Parameter	LOQ* (mg/L)	MDL (mg/L)	LOQ* (mg/kg)	MDL (mg/kg)
Cyanide, total	0.01	0.005	0.5	0.18
Hexane Extractable Materials (1664A)	5.	1.4	N/A	N/A
Moisture	N/A	N/A	0.5 wt.%	0.5 wt.%
Phenolics, total	0.04	0.012	3.5	1.2
Sulfide, total	2.	0.53	N/A	N/A
тос	2.	0.5	170	60
Total Nitrite/Nitrate	0.1	0.04	N/A	N/A
TPH (418.1)	1.5	0.5	69	23

*Specific quantitation limits are highly matrix dependent. The quantitation limits listed herein are provided for guidance and may not always be achievable.

**Quantitation limits listed for soil/sediment are based on wet weight. The quantitation limits calculated by the laboratory for soil/sediment, calculated on a dry-weight basis will be higher.

The laboratory routinely reports at the limit of quantitation (LOQ) but can estimate down to the MDL when requested by the client. Values reported below the LOQ are reported with a J-flag and are defined as estimated values.

LOQ and MDLs are evaluated annually and subject to change.

Element B4 Revision No. 3 Date: 08/15/07 Page 11 of 43

Table B4-7Volatile Full Compound List by GC/MS (8260B)

Compound Name	Wa	ters	Soils**		
	LOQ* (µg/L)	MDL (µg/L)	LOQ* (µg/kg)	MDL (µg/kg)	
Dichlorodifluoromethane	5.	2.	5.	2.	
Chloromethane	5.	1.	5.	2.	
Vinyl Chloride	5.	1.	5.	1.	
Bromomethane	5.	1.	5.	2.	
Chloroethane	5.	1.	5.	2.	
Trichlorofluoromethane	5.	2.	5.	2.	
1,1-Dichloroethene	5.	0.8	5.	1.	
1,1-Dichloroethane	5.	1.	5.	1.	
Methylene Chloride	5.	2.	5.	2.	
trans-1,2-Dichloroethene	5.	0.8	5.	1.	
2,2-Dichloropropane	5.	1.	5.	1.	
cis-1,2-Dichloroethene	5.	0.8	5.	1.	
Chloroform	5.	0.8	5.	1.	
Bromochloromethane	5.	1.	5.	1.	
1,1,1-Trichloroethane	5.	0.8	5.	1.	
Carbon Tetrachloride	5.	1.	5.	1.	
1,1-Dichloropropene	5.	1.	5.	1.	
Benzene	5.	0.5	5.	0.5	
1,2-Dichloroethane	5.	1.	5.	1.	
Trichloroethene	5.	1.	5.	1.	
1,2-Dichloropropane	5.	1.	5.	1.	
Dibromomethane	5.	1.	5.	1.	
Bromodichloromethane	5.	1.	5.	1.	
Toluene	5.	0.7	5.	1.	
1,1,2-Trichloroethane	5.	0.8	5.	1.	
Tetrachloroethene	5.	0.8	5.	1.	
1,3-Dichloropropane	5.	1.	5.	1.	
Dibromochloromethane	5.	1.	5.	1.	
1,2-Dibromoethane	5.	1.	5.	1.	
Chlorobenzene	5.	0.8	5.	1.	
1,1,1,2-Tetrachloroethane	5.	1.	5.	1.	
Ethylbenzene	5.	0.8	5.	1.	

Element B4 Revision No. 3 Date: 08/15/07 Page 12 of 43

Table B4-7 – Continued

Volatile Full Compound List by GC/MS (8260B)

	Wat	aters Soils**		S**
Compound Name	LOQ* (µg/L)	MDL (µg/L)	LOQ* (µg/kg)	MDL (µg/kg)
m+p-Xylene	5.	0.8	5.	1.
o-Xylene	5.	0.8	5.	1.
Styrene	5.	1.	5.	1.
Bromoform	5.	1.	5.	1.
Isopropylbenzene	5.	1.	5.	1.
1,1,2,2-Tetrachloroethane	5.	1.	5.	1.
Bromobenzene	5.	1.	5.	1.
1,2,3-Trichloropropane	5.	1.	5.	1.
n-Propylbenzene	5.	1,	5.	1.
2-Chlorotoluene	5.	1.	5.	1.
1,3,5-Trimethylbenzene	5.	1.	5.	1.
4-Chlorotoluene	5.	1.	5.	1.
tert-Butylbenzene	5.	1.	5.	1.
1,2,4-Trimethylbenzene	5.	1.	5.	1.
sec-Butylbenzene	5.	1.	5.	1.
p-Isopropyltoluene	5.	1.	5.	1.
1,3-Dichlorobenzene	5.	1.	5.	1.
1,4-Dichlorobenzene	5.	1.	5.	1.
n-Butylbenzene	5.	1.	5.	1.
1,2-Dichlorobenzene	5.	1.	5.	1.
1,2-Dibromo-3-chloropropane	5.	2.	5.	2.
1,2,4-Trichlorobenzene	5.	1.	5.	1.
Hexachlorobutadiene	5.	2.	5.	2.
Naphthalene	5.	1.	5.	1.
1,2,3-Trichlorobenzene	5.	1.	5.	1.

*Specific quantitation limits are highly matrix dependent. The quantitation limits listed herein are provided for guidance and may not always be achievable.

**Quantitation limits listed for soil/sediment are based on wet weight. The quantitation limits calculated by the laboratory for soil/sediment, calculated on a dry-weight basis will be higher.

The laboratory routinely reports at the limit of quantitation (LOQ) but can estimate down to the MDL when requested by the client if a valid mass spectrum is obtained. Values reported below the LOQ are reported with a J-flag and are defined as estimated values.

Element B4 Revision No. 3 Date: 08/15/07 Page 13 of 43

Table B4-8

Volatile Priority Pollutant Compound List by GC/MS (8260B)

Compound Name	Wai	ters	Soils**		
	LOQ* (µg/L)	MDL (µg/L)	LOQ* (µg/kg)	MDL (µg/kg)	
1,1,1-Trichloroethane	5.	0.8	5.	1.	
1,1,2,2-Tetrachloroethane	5.	1.	5.	1.	
1,1,2-Trichloroethane	5.	0.8	5.	1.	
1,1-Dichloroethane	5.	1.	5.	1.	
1,1-Dichloroethene	5.	0.8	5.	1.	
1,2-Dichloroethane	5.	1.	5.	1.	
1,2-Dichloropropane	5.	1.	5.	1.	
2-Chloroethylvinyl ether	10	2.	10	2.	
Acrolein	100	40	100	20	
Acrylonitrile	20	4.	20	4.	
Benzene	5.	0.5	5.	0.5	
Bromodichloromethane	5.	1.	5.	1.	
Bromoform	5.	1.	5.	1.	
Bromomethane	5.	1.	5.	2.	
Carbon tetrachloride	5.	1.	5.	1.	
Chlorobenzene	5.	0.8	5.	1.	
Chloroethane	5.	1.	5.	2.	
Chloroform	5.	0.8	5,	1.	
Chloromethane	5.	1.	5.	2.	
cis-1,2-Dichloroethene	5.	0.8	5.	1.	
cis-1,3-Dichloropropene	5.	1.	5.	1.	
Dibromochloromethane	5.	1.	5.	1.	
Ethylbenzene	5.	0.8	5.	1.	
Methylene chloride	5.	2.	5.	2.	
Tetrachloroethene	5.	0.8	5.	1.	
Toluene	5.	0.7	5.	1.	
trans-1,2-Dichloroethene	5.	0.8	5.	1.	
trans-1,3-Dichloropropene	5.	1.	5.	1.	
Trichloroethene	5.	1.	5.	1.	
Trichlorofluoromethane	5.	2.	5.	2.	
Vinyl chloride	5.	1.	5.	1.	
Xylene (total)	5.	0.8	5.	1.	

*Specific quantitation limits are highly matrix dependent. The quantitation limits listed herein are provided for guidance and may not always be achievable.

**Quantitation limits listed for soil/sediment are based on wet weight. The quantitation limits calculated by the laboratory for soil/sediment, calculated on a dry-weight basis will be higher.

The laboratory routinely reports at the limit of quantitation (LOQ) but can estimate down to the MDL when requested by the client if a valid mass spectrum is obtained. Values reported below the LOQ are reported with a J-flag and are defined as estimated values.

Element B4 Revision No. 3 Date: 08/15/07 Page 14 of 43

Table B4-9Appendix IX Volatile Compounds by GC/MS (8260B)

Compound Name	Wa	ters	Soils**	
	LOQ* (µg/L)	MDL (µg/L)	LOQ* (µg/kg)	MDL (µg/kg)
Chloromethane	5.	1.	5.	2.
Bromomethane	5.	1.	5.	2.
Vinyl chloride	5.	1.	5.	1.
Dichlorodifluoromethane	5.	2.	5.	2.
Chloroethane	5.	1.	5,	2.
Methyl iodide	5.	1.	5.	3.
Acrolein	100	40	100	20
Acrylonitrile	20	4.	20	4.
Acetonitrile	100	25	100	25
Methylene chloride	5.	2.	5.	2.
Acetone	20	6.	20	7.
Trichlorofluoromethane	5.	2.	5.	2.
Carbon disulfide	5.	1.	5.	1.
Propionitrile	100	30	100	30
1,1-Dichloroethene	5.	0.8	5.	1.
Allyl chloride	5.	1.	5.	1.
1,1-Dichloroethane	5.	1.	5.	1.
trans-1,2-Dichloroethene	5.	0.8	5.	1.
Chloroform	5.	0.8	5.	1.
1,2-Dichloroethane	5.	1.	5.	1.
Methacrylonitrile	50	10	50	5.
2-Butanone	10	3.	10	4.
Dibromomethane	5.	1.	5.	1.
1,1,1-Trichloroethane	5.	0.8	5.	1.
1,4-Dioxane	250	70	250	70
Carbon tetrachloride	5.	1.	5.	1.
Isobutyl alcohol	250	100	250	100
Vinyl acetate	10	2.	10	2.
Bromodichloromethane	5.	1.	5.	1.
2-Chloro-1,3-butadiene	5.	1.	5.	1.
1,2-Dichloropropane	5.	1.	5.	1.
trans-1,3-Dichloropropene	5.	1.	5.	1.

Element B4 Revision No. 3 Date: 08/15/07 Page 15 of 43

Table B4-9 – Continued

Appendix IX Volatile Compounds by GC/MS (8260B)

	Wa	Waters		Soils**	
Compound Name	LOQ* (µg/L)	MDL (µg/L)	LOQ* (µg/kg)	MDL (µg/kg)	
Trichloroethene	5.	1.	5.	1.	
Dibromochloromethane	5.	1.	5.	1.	
1,1,2-Trichloroethane	5.	0.8	5.	1.	
1,2-Dibromoethane	5.	1.	5.	1.	
cis-1,2-Dichloroethene	5.	0.8	5.	1.	
Benzene	5.	0.5	5.	0.5	
cis-1,3-Dichloropropene	5.	1.	5.	1.	
Methyl methacrylate	5.	1.	5.	1.	
1,1,1,2-Tetrachloroethane	5.	1.	5.	1.	
Bromoform	5.	1.	5.	1.	
trans-1,4-Dichloro-2-butene	50	15	50	10	
1,2,3-Trichloropropane	5.	1.	5.	1.	
2-Hexanone	10	3.	10	3.	
4-Methyl-2-pentanone	10	3.	10	3.	
Tetrachloroethene	5.	0.8	5.	1.	
1,1,2,2-Tetrachloroethane	5.	1.	5.	1.	
Toluene	5.	0.7	5.	1.	
Ethyl methacrylate	5.	1.	5.	1.	
Chlorobenzene	5.	0.8	5.	1.	
Pentachloroethane	5.	1.	5.	1.	
Ethylbenzene	5.	0.8	5.	1.	
1,2-Dibromo-3-chloropropane	5.	2.	5.	2.	
Styrene	5.	1.	5.	1.	
Xylenes (total)	5.	0.8	5.	1.	

For samples preserved with 1:1 HCl to pH <2, low recovery of acid labile compounds is likely to occur.

*Specific quantitation limits are highly matrix dependent. The quantitation limits listed herein are provided for guidance and may not always be achievable.

**Quantitation limits listed for soil/sediment are based on wet weight. The quantitation limits calculated by the laboratory for soil/sediment, calculated on a dry-weight basis will be higher.

The laboratory routinely reports at the limit of quantitation (LOQ) but can estimate down to the MDL when requested by the client if a valid mass spectrum is obtained. Values reported below the LOQ are reported with a J-flag and are defined as estimated values.

Element B4 Revision No. 3 Date: 08/15/07 Page 16 of 43

Table B4-10TCL3.2 Volatile Compounds by GC/MS (8260B)

Compound Name	Wa	ters	Soils**	
	LOQ* (µg/L)	MDL (µg/L)	LOQ* (µg/kg)	MDL (µg/kg)
Chloromethane	5.	1.	5.	2.
Bromomethane	5.	1.	5.	2.
Vinyl chloride	5.	1.	5.	1.
Chloroethane	5.	1.	5.	2.
Methylene chloride	5.	2.	5.	2.
Acetone	20	6.	20	7.
Carbon disulfide	5.	1.	5.	1.
1,1-Dichloroethane	5.	1.	5.	1.
1,1-Dichloroethene	5.	0.8	5.	1.
Chloroform	5.	0.8	5.	1.
1,2-Dichloroethane	5.	1.	5.	1.
2-Butanone	10	3.	10	4.
1,1,1-Trichloroethane	5.	0.8	5.	1.
Carbon tetrachloride	5.	1.	5.	1.
Bromodichloromethane	5.	1.	5.	1.
1,2-Dichloropropane	5.	1.	5.	1.
trans-1,3-Dichloropropene	5.	1.	5.	1.
Trichloroethene	5.	1.	5.	1.
Dibromochloromethane	5.	1.	5.	1.
1,1,2-Trichloroethane	5.	0.8	5.	1.
Benzene	5.	0.5	5.	0.5
cis-1,3-Dichloropropene	5.	1.	5.	1.
Bromoform	5.	1.	5.	1.
2-Hexanone	10	3.	10	3.
4-Methyl-2-pentanone	10	3.	10	3.
Tetrachloroethene	5.	0.8	5.	1.
1,1,2,2-Tetrachloroethane	5.	1.	5.	1.

Element B4 Revision No. 3 Date: 08/15/07 Page 17 of 43

Table B4-10 -- Continued

TCL3.2 Volatile Compounds by GC/MS (8260B)

	Wa	Waters Soils		s**
Compound Name	LOQ* (µg/L)	MDL (µg/L)	LOQ* (µg/kg)	MDL (µg/kg)
Toluene	5.	0.7	5.	1.
Chlorobenzene	5.	0.8	5.	1.
Ethylbenzene	5.	0.8	5.	1.
Styrene	5.	1.	5.	1.
Xylenes (total)	5.	0.8	5.	1.
cis-1,2-Dichloroethene	5.	0.8	5.	1.

For samples preserved with 1:1 HCl to pH <2, low recovery of acid labile compounds is likely to occur.

*Specific quantitation limits are highly matrix dependent. The quantitation limits listed herein are provided for guidance and may not always be achievable.

**Quantitation limits listed for soil/sediment are based on wet weight. The quantitation limits calculated by the laboratory for soil/sediment, calculated on a dry-weight basis will be higher.

The laboratory routinely reports at the limit of quantitation (LOQ) but can estimate down to the MDL when requested by the client if a valid mass spectrum is obtained. Values reported below the LOQ are reported with a J-flag and are defined as estimated values.

Element B4 Revision No. 3 Date: 08/15/07 Page 18 of 43

Table B4-11TCL4.3 Volatile Compounds by GC/MS (8260B)

	Wa	ters	Soils**	
Compound Name	LOQ* (µg/L)	MDL (µg/L)	LOQ* (µg/kg)	MDL (µg/kg)
1,1,1-Trichloroethane	5.	0.8	5.	1.
1,1,2,2-Tetrachloroethane	5.	1.	5.	1.
1,1,2-Trichloroethane	5.	0.8	5.	1.
1,1-Dichloroethene	5.	0.8	5.	1.
1,1-Dichloroethane	5.	1.	5.	1.
1,2,4-Trichlorobenzene	5.	1.	5.	1.
1,2-Dibromo-3-chloropropane	5.	2.	5.	2.
1,2-Dibromoethane	5.	1.	5.	1.
1,2-Dichlorobenzene	5.	1.	5.	1.
1,2-Dichloroethane	5.	1.	5.	1.
1,2-Dichloropropane	5.	1.	5.	1.
1,3-Dichlorobenzene	5.	1.	5.	1.
1,4-Dichlorobenzene	5.	1.	5.	1.
2-Butanone	10	3.	10	4.
2-Hexanone	10	3.	10	3.
4-Methyl-2-pentanone	10	3.	10	3.
Acetone	20	6.	20	7.
Benzene	5.	0.5	5.	0.5
Bromodichloromethane	5.	1.	5.	1.
Bromoform	5.	1,	5.	1.
Bromomethane	5.	1.	5.	2.
Carbon disulfide	5.	1.	5.	1.
Carbon tetrachloride	5.	1.	5.	1.
Chlorobenzene	5.	0.8	5.	1.
Chloroethane	5.	1.	5.	2.
Chloroform	5.	0.8	5.	1.
Chloromethane	5.	1.	5.	2.
cis-1,2-Dichloroethene	5.	0.8	5.	1.
cis-1,3-Dichloropropene	5.	1.	5.	1.
Cyclohexane	5.	2.	5.	1.

Element B4 Revision No. 3 Date: 08/15/07 Page 19 of 43

Table B4-11 – Continued

TCL4.3 Volatile Compounds by GC/MS (8260B)

	Wa	ters	Soi	S**
Compound Name	LOQ* (µg/L)	MDL (µg/L)	LOQ* (µg/kg)	MDL (µg/kg)
Dibromochloromethane	5.	1.	5.	1.
Dichlorodifluoromethane	5.	2.	5.	2.
Ethylbenzene	5.	0.8	5.	1.
Freon 113	10	2.	10	2.
Isopropylbenzene	5.	1.	5.	1.
Methyl Acetate	5.	1.	5.	2.
Methyl t-butyl ether	5.	0.5	5.	0.5
Methylcyclohexane	5.	1.	5.	1.
Methylene chloride	5.	2.	5.	2.
Styrene	5.	1.	5.	1.
Tetrachloroethene	5.	0.8	5.	1.
Toluene	5.	0.7	5,	1.
trans-1,2-Dichloroethene	5.	0.8	5.	1.
trans-1,3-Dichloropropene	5.	1.	5.	1.
Trichloroethene	5.	1.	5.	1.
Trichlorofluoromethane	5.	2.	5.	2.
Vinyl chloride	5.	1.	5.	1.
Xylenes (total)	5.	0.8	5.	1.

For samples preserved with 1:1 HCl to pH <2, low recovery of acid labile compounds is likely to occur.

*Specific quantitation limits are highly matrix dependent. The quantitation limits listed herein are provided for guidance and may not always be achievable.

**Quantitation limits listed for soil/sediment are based on wet weight. The quantitation limits calculated by the laboratory for soil/sediment, calculated on a dry-weight basis will be higher.

The laboratory routinely reports at the limit of quantitation (LOQ) but can estimate down to the MDL when requested by the client if a valid mass spectrum is obtained. Values reported below the LOQ are reported with a J-flag and are defined as estimated values.

Element B4 Revision No. 3 Date: 08/15/07 Page 20 of 43

Table B4-12

Semivolatile Full Compound List by GC/MS (8270C)

Compound Name	Wa	ters	Soils**	
	LOQ⁺ (µg/L)	MDL (µg/L)	LOQ* (µg/kg)	MDL (µg/kg)
Acenaphthene	5	1.	170	33
Acenaphthylene	5	1.	170	33
Acetophenone	5	2.	170	67
Aramite ²	15	5.	1700	33
2-Acetylaminofluorene	5	2.	170	67
4-Aminobiphenyl	5	2.	500	170
Aniline	5	1.	500	170
Anthracene	5	1.	170	33
Benzidine	60	20	3300	1200
Benzo(a)anthracene	5	1.	170	33
Benzo(b)fluoranthene	5	1.	170	33
Benzo(k)fluoranthene	5	1.	170	33
Benzo(g,h,i)perylene	5	1.	170	33
Benzo(a)pyrene	5	1.	170	33
Benzyl alcohol	15	5.	500	170
bis (2-Chloroethoxy)methane	5	1.	170	33
bis(2-Chloroethyl)ether	5	1.	170	33
bis(2-Chloroisopropyl)ether	5	1.	170	33
bis(2-Ethylhexyl)phthalate	5	2.	330	67
4-Bromophenyl phenylether	5	1.	170	33
Butylbenzylphthalate	5	2.	170	67
4-Chloroaniline	5	1.	170	67
Carbazole	5	1.	170	33
Chlorobenzilate	10	3.	170	33
4-Chloro-3-methylphenol	5	1.	170	67
2-Chloronaphthalene	5	2.	170	33
2-Chlorophenol	5	1.	170	33
4-Chlorophenyl phenylether	5	2.	170	33
Chrysene	5	1.	170	33
2-Methylnaphthalene	5	1.	170	33
3 or 4-methyl phenol ³	5	2.	170	67

Element B4 Revision No. 3 Date: 08/15/07 Page 21 of 43

Table B4-12 – Continued

Semivolatile Full Compound List by GC/MS (8270C)

	Wa	ters	Soi	ls**
Compound Name	LOQ* (µg/L)	MDL (µg/L)	LOQ* (µg/kg)	MDL (µg/kg)
Diallate (cis/trans)	5	1.	170	33
Dibenzofuran	5	1.	170	33
Di-n-butylphthalate	5	2.	170	67
Dibenz(a,h)anthracene	5	1.	170	33
1,2-Dichlorobenzene	5	1.	170	33
1,3-Dichlorobenzene	5	1.	170	33
1,4-Dichlorobenzene	5	1.	170	33
3,3'-Dichlorobenzidine	5	2.	330	100
2,4-Dichlorophenol	5	1.	170	33
2,6-Dichlorophenol	5	2.	170	67
Diethylphthalate	5	2.	170	67
Dimethoate	10	3.	500	170
p-(Dimethylamino)azobenzene	5	2.0	170	67
7,12-Dimethylbenz(a)anthracene	5	2.	170	33
3,3'-Dimethylbenzidine	25	10.	1000	330
a,a-Dimethylphenethylamine ²	50	2.	1700	100
2,4-Dimethylphenol	10	3.	170	67
Dimethylphthalate	5	2.	170	67
1,3-Dinitrobenzene	5	2.	170	67
4,6-Dinitro-2-methylphenol	15	5.	500	170
2,4-Dinitrophenol	60	20	2000	670
2,4-Dinitrotoluene	5	1.	170	67
2,6-Dinitrotoluene	5	1.	170	33
Di-n-octylphthalate	5	2.	170	67
1,2-Diphenylhydrazine ⁴	5	1.	170	33
Ethylmethanesulfonate	5	2.	170	67
Fluoranthene	5	1.	170	33
Fluorene	5	1.	170	33
Hexachlorobenzene	5	1.	170	33
Hexachlorobutadiene	5	1.	170	67
Hexachlorocyclopentadiene	15	5.	500	170
Hexachloroethane	5	1.	170	33

Element B4 Revision No. 3 Date: 08/15/07 Page 22 of 43

Table B4-12 – Continued

Semivolatile Full Compound List by GC/MS (8270C)

	Wa	ters	Soi	Soils**	
Compound Name	LOQ* (µg/L)	MDL (µg/L)	LOQ* (µg/kg)	MDL (µg/kg)	
Hexachloropropene	5	2.	330	100	
Indeno(1,2,3-cd)pyrene	5	1.	170	33	
Isodrin	5	1.	170	33	
Isophorone	5	1.	170	33	
Isosafrole	5	2.	170	67	
Methapyrilene	50	15	5000	1700	
3-Methylcholanthrene	5	2.	170	67	
Methylmethanesulfonate	5	1.	170	33	
2-Methylphenol	5	1.	170	67	
1-Methylnaphthalene	5	1.	170	33	
2-Methylnaphthalene	5	1.	170	33	
Naphthalene	5	1.	170	33	
1,4-Naphthoquinone	30	10	3300	830	
1-Naphthylamine	15	5.	500	170	
2-Naphthylamine	15	5.	500	170	
2-Nitroaniline	5	1.	170	33	
3-Nitroaniline	5	1.	170	67	
4-Nitroaniline	5	1.	170	67	
Nitrobenzene	5	1.	170	33	
2-Nitrophenol	5	1.	170	33	
4-Nitrophenol	30	10	500	170	
4-Nitroquinoline-1-oxide	60	20	1000	330	
<i>n</i> -Nitrosodi- <i>n</i> -butylamine	5	2.	170	67	
n-Nitrosodiethylamine	5	2.	170	67	
n-Nitrosodimethylamine	5	2.	170	67	
n-Nitrosodiphenylamine ¹	5	2.	170	33	
n-Nitrosodi-n-propylamine	5	1.	170	33	
n-Nitrosomethylethylamine	5	2.	170	67	
n-Nitrosomorpholine	5	2.	170	67	
n-Nitrosopiperidine	5	2.	170	67	
n-Nitrosopyrrolidine	5	2.	170	67	
5-Nitro-o-toluidine	5	3.	500	170	

Element B4 Revision No. 3 Date: 08/15/07 Page 23 of 43

Table B4-12 – Continued

Semivolatile Full Compound List by GC/MS (8270C)

	Wa	ters	Soi	Soils**	
Compound Name	LOQ* (µg/L)	MDL (µg/L)	LOQ* (µg/kg)	MDL (µg/kg)	
2,2'-oxybis(1-Chloropropane)	5	1.	170	33	
Pentachlorobenzene	5	2.	170	67	
Pentachloronitrobenzene	5	2.	170	67	
Pentachlorophenol	15	3.	500	170	
Phenacetin	5	2.	170	67	
Phenanthrene	5	1.	170	33	
Phenol	5	1.	170	33	
1,4-Phenylenediamine	250	75	33000	12000	
2-Picoline	5	2.	330	100	
Pronamide	5	1.	170	33	
Pyrene	5	1.	170	33	
Pyridine	5	2.	170	67	
Safrole	5	2.	170	67	
1,2,4,5-Tetrachlorobenzene	5	2.	170	67	
2,3,4,6-Tetrachlorophenol	5	2.	170	67	
Tetraethyldithiopyrophosphate	5	1.	170	67	
Thionazin	5	2.	170	67	
o-Toluidine	5	1.	670	200	
1,2,4-Trichlorobenzene	5	1.	170	33	
2,4,5-Trichlorophenol	5	1.	170	67	
2,4,6-Trichlorophenol	5	1.	170	33	
O,O,O-Triethylphosphorothioate	5	2.	170	67	
1,3,5-Trinitrobenzene	15	5.	500	170	

*Specific quantitation limits are highly matrix dependent. The quantitation limits listed herein are provided for guidance and may not always be achievable.

**Quantitation limits listed for soil/sediment are based on wet weight. The quantitation limits calculated by the laboratory for soil/sediment, calculated on a dry-weight basis will be higher.

The laboratory routinely reports at the limit of quantitation (LOQ) but can estimate down to the MDL when requested by the client if a valid mass spectrum is obtained. Values reported below the LOQ are reported with a J-flag and are defined as estimated values.

¹n-Nitrosodiphenylamine decomposes in the GC inlet forming diphenylamine. The result reported for n-Nitrosodiphenylamine represents the combined total of both compounds.

²Aramite and a.a-dimethylphenethylamine can be determined upon request.

³3-methylphenol and 4-methylphenol cannot be resolved under this analysis. The combined total of both compounds is reported as 4-methylphenol.

⁴1,2-Diphenylhydrazine cannot be distinguished from azobenzene, therefore, the value reported represents the combined total of both.

Element B4 Revision No. 3 Date: 08/15/07 Page 24 of 43

Table B4-13

Semivolatile Priority Pollutant Compound List by GC/MS (8270C)

	Wa	ters	Soils**	
Compound Name	LOQ* (µg/L)	MDL (µg/L)	LOQ* (µg/kg)	MDL (µg/kg)
2-Chlorophenol	5	1.	170	33
Phenol	5	1.	170	33
2-Nitrophenol	5	1.	170	33
2,4-Dimethylphenol	10	3	170	33
2,4-Dichlorophenol	5	1.	170	67
4-Chloro-3-methylphenol	5	1.	170	67
2,4,6-Trichlorophenol	5	1.	170	33
2,4-Dinitrophenol	60	20	2000	670
4-Nitrophenol	30	10	500	170
4,6-Dinitro-2-methylphenol	15	5.	500	170
Pentachlorophenol	15	3.	500	170
n-Nitrosodimethylamine	5	2.	330	67
bis(2-Chloroethyl)ether	5	1.	170	33
1,3-Dichlorobenzene	5	1.	170	33
1,4-Dichlorobenzene	5	1.	170	33
1,2-Dichlorobenzene	5	1.	170	33
bis(2-Chloroisopropyl)ether	5	1.	170	33
Hexachloroethane	5	1.	170	33
n-Nitrosodi-n-propylamine	5	1.	170	33
Nitrobenzene	5	1.	170	33
Isophorone	5	1.	170	33
bis (2-Chloroethoxy)methane	5	1.	170	33
1,2,4-Trichlorobenzene	5	1.	170	33
Naphthalene	5	1.	170	33
Hexachlorobutadiene	5	1.	170	67
Hexachlorocyclopentadiene	15	5.	500	170
2-Chloronaphthalene	5	2	170	33
Acenaphthylene	5	1.	170	33
Dimethylphthalate	5	2.	170	67
2,6-Dinitrotoluene	5	1.	170	33
Acenaphthene	5	1.	170	33
2,4-Dinitrotoluene	5	1.	170	67

Element B4 Revision No. 3 Date: 08/15/07 Page 25 of 43

Table B4-13 – Continued

Semivolatile Priority Pollutant Compound List by GC/MS (8270C)

	Wat	ers	Soils**	
Compound Name	LOQ* (µg/L)	MDL (µg/L)	LOQ* (µg/kg)	MDL (µg/kg)
Fluorene	5	1.	170	33
4-Chlorophenyl phenylether	5	2	170	33
Diethylphthalate	5	2.	170	67
1,2-Diphenylhydrazine	5	1.	170	33
n-Nitrosodiphenylamine ¹	5	2.	170	33
4-Bromophenyl phenylether	5	1.	170	33
Hexachlorobenzene	5	1.	170	33
Phenanthrene	5	1.	170	33
Anthracene	5	1.	170	33
Di-n-butylphthalate	5	2.	170	67
Fluoranthene	5	1.	170	33
Pyrene	5	1.	170	33
Benzidine	60	20	3300	1200
Butylbenzylphthalate	5	2.	170	67
Benzo(a)anthracene	5	1.	170	33
Chrysene	5	1.	170	33
3,3'-Dichlorobenzidine	5	2	330	100
bis(2-Ethylhexyl)phthalate	5	2.	330	67
Di-n-octylphthalate	5	2.	170	67
Benzo(b)fluoranthene	5	1.	170	33
Benzo(k)fluoranthene	5	1.	170	33
Benzo(a)pyrene	5	1.	170	33
Indeno(1,2,3-cd)pyrene	5	1.	170	33
Dibenz(a,h)anthracene	5	1.	170	33
Benzo(g,h,i)perylene	5	1.	170	33

*Specific quantitation limits are highly matrix dependent. The quantitation limits listed herein are provided for guidance and may not always be achievable.

**Quantitation limits listed for soil/sediment are based on wet weight. The quantitation limits calculated by the laboratory for soil/sediment, calculated on a dry-weight basis will be higher.

The laboratory routinely reports at the limit of quantitation (LOQ) but can estimate down to the MDL when requested by the client if a valid mass spectrum is obtained. Values reported below the LOQ are reported with a J-flag and are defined as estimated values.

¹*n*-Nitrosodiphenylamine decomposes in the GC inlet forming diphenylamine. The result reported for *n*-Nitrosodiphenylamine represents the combined total of both compounds.

Element B4 Revision No. 3 Date: 08/15/07 Page 26 of 43

Table B4-14

Appendix IX Semivolatile Compounds by GC/MS (8270C)

	Wat	ters	So	Soils**		
Compound Name	LOQ* (µg/L)	MDL (µg/L)	LOQ* (µg/kg)	MDL (µg/kg)		
Acenaphthene	5	1.	170	33		
Acenaphthylene	5	1.	170	33		
Acetophenone	5	2.	170	67		
2-Acetylaminofluorene	5	2.	170	67		
4-Aminobiphenyl	5	2.	500	170		
Aniline	5	1.	500	170		
Anthracene	5	1.	170	33		
Aramite ²	15	5	1700	33		
Benzo(a)anthracene	5	1.	170	33		
Benzo(b)fluoranthene	5	1.	170	33		
Benzo(k)fluoranthene	5	1.	170	33		
Benzo(g,h,i)perylene	5	1.	170	33		
Benzo(a)pyrene	5	1.	170	33		
Benzyl alcohol	15	5.	500	170		
bis (2-Chloroethoxy)methane	5	1.	170	33		
bis(2-Chloroethyl)ether	5	1.	170	33		
bis(2-Chloroisopropyl)ether	5	1.	170	33		
bis(2-Ethylhexyl)phthalate	5	2.	330	67		
4-Bromophenyl phenylether	5	1.	170	33		
Butylbenzylphthalate	5	2.	170	67		
4-Chloroaniline	5	1.	170	67		
Chlorobenzilate	10	3.	170	33		
4-Chloro-3-methylphenol	5	1.	170	67		
2-Chloronaphthalene	5	2	170	33		
2-Chlorophenol	5	1.	170	33		
4-Chlorophenyl phenylether	5	2	170	33		
Chrysene	5	1.	170	33		
2-Methylphenol	5	1.	170	67		
3- or 4-Methylphenol ³	5	2.	170	67		
Diallate (cis/trans)	5	1.	170	33		
Dibenzofuran	5	1.	170	33		

Element B4 Revision No. 3 Date: 08/15/07 Page 27 of 43

Table B4-14 – Continued

Appendix IX Semivolatile Compounds by GC/MS (8270C)

	Wa	ters	So	Soils**	
Compound Name	LOQ* (µg/L)	MDL (µg/L)	LOQ* (µg/kg)	MDL (µg/kg)	
Di- <i>n</i> -butylphthalate	5	2.	170	67	
Dibenz(a,h)anthracene	5	1.	170	33	
1,2-Dichlorobenzene	5	1.	170	33	
1,3-Dichlorobenzene	5	1.	170	33	
1,4-Dichlorobenzene	5	1.	170	33	
3,3'-Dichlorobenzidine	5	2	330	100	
2,4-Dichlorophenol	5	1.	170	33	
2,6-Dichlorophenol	5	2.	170	67	
Diethylphthalate	5	2.	170	67	
Dimethoate	10	3.	500	170	
<i>p</i> -(Dimethylamino)azobenzene	5	2.	170	67	
7,12-Dimethylbenz(a)anthracene	5	2.	170	33	
3,3'-Dimethylbenzidine	25	10	1000	330	
a,a-Dimethylphenethylamine ²	50	2	1700	100	
2,4-Dimethylphenol	10	3	170	67	
Dimethylphthalate	5	2.	170	67	
1,3-Dinitrobenzene	5	2	170	67	
4,6-Dinitro-2-methylphenol	15	5.	500	170	
2,4-Dinitrophenol	60	20	2000	670	
2,4-Dinitrotoluene	5	1.	170	67	
2,6-Dinitrotoluene	5	1.	170	33	
Di-n-octylphthalate	5	2.	170	67	
Ethyimethanesulfonate	5	2.	170	67	
Fluoranthene	5	1.	170	33	
Fluorene	5	1.	170	33	
Hexachlorobenzene	5	1.	170	33	
Hexachlorobutadiene	5	1.	170	67	
Hexachlorocyclopentadiene	15	5.	500	170	
Hexachloroethane	5	1.	170	33	
Hexachloropropene	5	2.	330	100	
Indeno(1,2,3-cd)pyrene	5	1.	170	33	
Isodrin	5	1.	170	33	

Element B4 Revision No. 3 Date: 08/15/07 Page 28 of 43

Table B4-14 – Continued

Appendix IX Semivolatile Compounds by GC/MS (8270C)

	Wat	ters	So	Soils**	
Compound Name	LOQ* (µg/L)	MDL (µg/L)	LOQ* (µg/kg)	MDL (µg/kg)	
Isophorone	5	1.	170	33	
Isosafrole	5	2	170	67	
Methapyrilene	50	15	5000	1700	
3-Methylcholanthrene	5	2.	170	67	
Methylmethanesulfonate	5	1.	170	33	
1-Methylnaphthalene	5	1.	170	33	
2-Methylnaphthalene	5	1.	170	33	
Naphthalene	5	1.	170	33	
1,4-Naphthoquinone	30	10	3300	830	
1-Naphthylamine	15	5.	500	170	
2-Naphthylamine	15	5.	500	170	
2-Nitroaniline	5	1.	170	33	
3-Nitroaniline	5	1.	170	67	
4-Nitroaniline	5	1.	170	67	
Nitrobenzene	5	1.	170	33	
2-Nitrophenol	5	1.	170	33	
4-Nitrophenol	30	10	500	170	
4-Nitroquinoline-1-oxide	60	20	1000	330	
n-Nitrosodiethylamine	5	2.	170	67	
n-Nitrosodimethylamine	5	2.	170	67	
n-Nitrosodi-n-butylamine	5	2.	170	67	
n-Nitrosodi-n-propylamine	5	1.	170	33	
n-Nitrosodiphenylamine ¹	5	2.	170	33	
n-Nitrosomethylethylamine	5	2.	170	67	
n-Nitrosomorpholine	5	2.	170	67	
n-Nitrosopiperidine	5	2.	170	67	
n-Nitrosopyrrolidine	5	2.	170	67	
5-Nitro-o-toluidine	5	3.	500	170	
Pentachlorobenzene	5	2.	170	67	
Pentachloronitrobenzene	5	2.	170	67	
Pentachlorophenol	15	3.	500	170	
Phenacetin	5	2.	170	67	

Element B4 Revision No. 3 Date: 08/15/07 Page 29 of 43

Table B4-14 – Continued

Appendix IX Semivolatile Compounds by GC/MS (8270C)

	Wat	ters	So	ils**
Compound Name	LOQ* (µg/L)	MDL (µg/L)	LOQ* (µg/kg)	MDL (µg/kg)
Phenanthrene	5	1.	170	33
Phenol	5	1.	170	33
1,4-Phenylenediamine	250	75	33000	12000
2-Picoline	5	2.	330	100
Pronamide	5	1.	170	33
Pyrene	5	1.	170	33
Pyridine	5	2.	170	67
Safrole	5	2.	170	67
1,2,4,5-Tetrachlorobenzene	5	2.	170	67
2,3,4,6-Tetrachlorophenol	5	2.	170	67
Tetraethyldithiopyrophosphate	5	1.	170	67
Thionazin	5	2.	170	67
o-Toluidine	5	1.	670	200
1,2,4-Trichlorobenzene	5	1.	170	33
2,4,5-Trichlorophenol	5	1.	170	67
2,4,6-Trichlorophenol	5	1.	170	33
O,O,O-Triethylphosphorothioate	5	2.	170	67
1,3,5-Trinitrobenzene	15	5.	500	170

*Specific quantitation limits are highly matrix dependent. The quantitation limits listed herein are provided for guidance and may not always be achievable.

**Quantitation limits listed for soil/sediment are based on wet weight. The quantitation limits calculated by the laboratory for soil/sediment, calculated on a dry-weight basis will be higher.

The laboratory routinely reports at the limit of quantitation (LOQ) but can estimate down to the MDL when requested by the client if a valid mass spectrum is obtained. Values reported below the LOQ are reported with a J-flag and are defined as estimated values.

¹n-Nitrosodiphenylamine decomposes in the GC inlet forming diphenylamine. The result reported for n-Nitrosodiphenylamine represents the combined total of both compounds.

²Aramite and a,a-dimethylphenethylamine can be determined upon request.

³3-methylphenol and 4-methylphenol cannot be resolved under this analsis. The combined total of both compounds is reported as 4-methylphenol.

Element B4 Revision No. 3 Date: 08/15/07 Page 30 of 43

Table B4-15

TCL3.2 Semivolatiles by GC/MS (8270C)

	Wat	ers	Soils**		
Compound Name	LOQ* (µg/L)	MDL (µg/L)	LOQ* (µg/kg)	MDL (µg/kg)	
1,2,4-Trichlorobenzene	5	1.	170	33	
1,2-Dichlorobenzene	5	1.	170	33	
1,3-Dichlorobenzene	5	1.	170	33	
1,4-Dichlorobenzene	5	1.	170	33	
2,2'-Oxybis(1-Chloropropane)	5	1.	170	33	
2,4,5-Trichlorophenol	5	1.	170	67	
2,4,6-Trichlorophenol	5	1.	170	33	
2,4-Dichlorophenol	5	1.	170	33	
2,4-Dimethylphenol	10	3	170	67	
2,4-Dinitrophenol	60	20	2000	670	
2,4-Dinitrotoluene	5	1.	170	67	
2,6-Dinitrotoluene	5	1.	170	33	
2-Chloronaphthalene	5	2	170	33	
2-Chlorophenol	5	1.	170	33	
2-Methylnaphthalene	5	1.	170	33	
2-Methylphenol	5	1.	170	67	
2-Nitroaniline	5	1.	170	33	
2-Nitrophenol	5	1.	170	33	
3,3'-Dichlorobenzidine	5	2	330	100	
3-Nitroaniline	5	1.	170	67	
4,6-Dinitro-2-methylphenol	15	5.	500	170	
4-Bromophenyl-phenylether	5	1.	170	33	
4-Chloro-3-methylphenol	5	1.	170	67	
4-Chloroaniline	5	1.	170	67	
4-Chlorophenyl-phenylether	5	2	170	33	
4-Methylphenol	5	2.	170	67	
4-Nitroaniline	5	1.	170	67	
4-Nitrophenol	30	10	500	170	
Acenaphthene	5	1.	170	33	
Acenaphthylene	5	1.	170	33	
Anthracene	5	1.	170	33	
Benzo(a)anthracene	5	1.	170	33	
Benzo(a)pyrene	5	1.	170	33	
Benzo(b)fluoranthene	5	1.	170	33	
Benzo(g,h,i)perylene	5	1.	170	33	
Benzo(k)fluoranthene	5	1.	170	33	
bis(2-Chloroethoxy)methane	5	1.	170	33	

Element B4 Revision No. 3 Date: 08/15/07 Page 31 of 43

Table B4-15 – Continued

TCL3.2 Semivolatiles by GC/MS (8270C)

	Wa	ters	Soils**		
Compound Name	LOQ* (µg/L)	MDL (µg/L)	LOQ* (µg/kg)	MDL (µg/kg)	
bis(2-Chloroethyl)ether	5	1.	170	33	
bis(2-Ethylhexyl)phthalate	5	2.	330	67	
Butylbenzylphthalate	5	2.	170	67	
Carbazole	5	1.	170	33	
Chrysene	5	1.	170	33	
Dibenz(a,h)anthracene	5	1.	170	33	
Dibenzofuran	5	1.	170	33	
Diethylphthalate	5	2.	170	67	
Dimethylphthalate	5	2.	170	67	
Di-n-butylphthalate	5	2.	170	67	
Di-n-octylphthalate	5	2.	170	67	
Fluoranthene	5	1.	170	33	
Fluorene	5	1.	170	33	
Hexachlorobenzene	5	1.	170	33	
Hexachlorobutadiene	5	1.	170	67	
Hexachlorocyclopentadiene	15	5.	500	170	
Hexachloroethane	5	1.	170	33	
Indeno(1,2,3-cd)pyrene	5	1.	170	33	
Isophorone	5	1.	170	33	
Naphthalene	5	1.	170	33	
Nitrobenzene	5	1.	170	33	
n-Nitroso-di-n-propylamine	5	1.	170	33	
n-Nitrosodiphenylamine ¹	5	2.	170	33	
Pentachlorophenol	15	3.	500	170	
Phenanthrene	5	1.	170	33	
Phenol	5	1.	170	33	
Pyrene	5	1.	170	33	

*Specific quantitation limits are highly matrix dependent. The quantitation limits listed herein are provided for guidance and may not always be achievable.

**Quantitation limits listed for soil/sediment are based on wet weight. The quantitation limits calculated by the laboratory for soil/sediment, calculated on a dry-weight basis will be higher.

The laboratory routinely reports at the limit of quantitation (LOQ) but can estimate down to the MDL when requested by the client if a valid mass spectrum is obtained. Values reported below the LOQ are reported with a J-flag and are defined as estimated values.

¹*n*-Nitrosodiphenylamine decomposes in the GC inlet forming diphenylamine. The result reported for *n*-Nitrosodiphenylamine represents the combined total of both compounds.

Element B4 Revision No. 3 Date: 08/15/07 Page 32 of 43

Table B4-16

TCL4.3 Semivolatiles by GC/MS (8270C)

***************************************	Wat	iers	Soi	ls**
Compound Name	LOQ* (µg/L)	MDL (µg/L)	LOQ* (µg/kg)	MDL (µg/kg)
1,1'-Biphenyl	5	1.	170	33
2,2'-Oxybis(1-Chloropropane)	5	1.	170	33
2,4,5-Trichlorophenol	5	1.	170	67
2,4,6-Trichlorophenol	5	1.	170	33
2,4-Dichlorophenol	5	1.	170	33
2,4-Dimethylphenol	10	3	170	67
2,4-Dinitrophenol	60	20	2000	670
2,4-Dinitrotoluene	5	1.	170	67
2,6-Dinitrotoluene	5	1.	170	33
2-Chloronaphthalene	5	2	170	33
2-Chlorophenol	5	1.	170	33
2-Methylnaphthalene	5	1.	170	33
2-Methylphenol	5	1.	170	67
2-Nitroaniline	5	1.	170	33
2-Nitrophenol	5	1.	170	33
3,3'-Dichlorobenzidine	5	2	330	100
3-Nitroaniline	5	1.	170	67
4,6-Dinitro-2-methylphenol	15	5.	500	170
4-Bromophenyl-phenylether	5	1.	170	33
4-Chloro-3-methylphenol	5	1.	170	67
4-Chloroaniline	5	1.	170	67
4-Chlorophenyl-phenylether	5	2	170	33
4-Methylphenol	5	2.	170	67
4-Nitroaniline	5	1.	170	67
4-Nitrophenol	30	10	500	170
Acenaphthene	5	1.	170	33
Acenaphthylene	5	1.	170	33
Acetophenone	5	2.	170	67
Anthracene	5	1.	170	33
Atrazine	5	2	170	33
Benzaldehyde	5	1.	170	67
Benzo(a)anthracene	5	1.	170	33
Benzo(a)pyrene	5	1.	170	33
Benzo(b)fluoranthene	5	1.	170	33
Benzo(g,h,i)perylene	5	1.	170	33
Benzo(k)fluoranthene	5	1.	170	33
bis(2-Chloroethoxy)methane	5	1.	170	33
bis(2-Chloroethyl)ether	5	1.	170	33

Element B4 Revision No. 3 Date: 08/15/07 Page 33 of 43

Table B4-16 – Continued

TCL4.3 Semivolatiles by GC/MS (8270C)

	Wa	ters	Soils**	
Compound Name	LOQ* (µg/L)	MDL (µg/L)	LOQ* (µg/kg)	MDL (µg/kg)
bis(2-Ethylhexyl)phthalate	5	2.	330	67
Butylbenzylphthalate	5	2.	170	67
Caprolactam	15	5.	170	33
Carbazole	5	1.	170	33
Chrysene	5	1.	170	33
Dibenz(a,h)anthracene	5	1.	170	33
Dibenzofuran	5	1.	170	33
Diethylphthalate	5	2.	170	67
Dimethylphthalate	5	2.	170	67
Di-n-butylphthalate	5	2.	170	67
Di-n-octylphthalate	5	2.	170	67
Fluoranthene	5	1.	170	33
Fluorene	5	1.	170	33
Hexachlorobenzene	5	1.	170	33
Hexachlorobutadiene	5	1.	170	67
Hexachlorocyclopentadiene	15	5.	500	170
Hexachloroethane	5	1.	170	33
Indeno(1,2,3-cd)pyrene	5	1.	170	33
Isophorone	5	1.	170	33
Naphthalene	5	1.	170	33
Nitrobenzene	5	1.	170	33
n-Nitroso-di-n-propylamine	5	1.	170	33
<i>n</i> -Nitrosodiphenylamine ¹	5	2.	170	33
Pentachlorophenol	15	3.	500	170
Phenanthrene	5	1.	170	33
Phenol	5	1.	170	33
Pyrene	5	1.	170	33

*Specific quantitation limits are highly matrix dependent. The quantitation limits listed herein are provided for guidance and may not always be achievable.

**Quantitation limits listed for soil/sediment are based on wet weight. The quantitation limits calculated by the laboratory for soil/sediment, calculated on a dry-weight basis will be higher.

The laboratory routinely reports at the limit of quantitation (LOQ) but can estimate down to the MDL when requested by the client if a valid mass spectrum is obtained. Values reported below the LOQ are reported with a J-flag and are defined as estimated values.

¹*n*-Nitrosodiphenylamine decomposes in the GC inlet forming diphenylamine. The result reported for *n*-Nitrosodiphenylamine represents the combined total of both compounds.

Element B4 Revision No. 3 Date: 08/15/07 Page 34 of 43

Table B4-17

Volatiles Halocarbons and Aromatics by GC (8021B)

*******	Waters		
Compound Name	LOQ* (µg/L)	MDL (µg/L)	
1,1,1-Trichloroethane	2.	0.5	
1,1,2,2-Tetrachloroethane	2.	0.5	
1,1,2-Trichloroethane	2.	0.5	
1,1-Dichloroethane	2.	0.5	
1,1-Dichloroethene	2.	0.5	
1,2-Dichlorobenzene	2.	0.5	
1,2-Dichloroethane	2.	0.5	
1,2-Dichloropropane	2.	0.5	
1,3-Dichlorobenzene	2.	0.5	
1,4-Dichlorobenzene	2.	0.5	
Benzene	2.	0.5	
Bromodichloromethane	2.	0.5	
Bromoform	2.	0.5	
Bromomethane	5.	0.5	
Carbon Tetrachloride	2.	0.5	
Chlorobenzene	2.	0.5	
Chloroethane	2.	0.5	
Chloroform	2.	0.5	
Chloromethane	5.	0.5	
cis-1,2-Dichloroethene	2.	0.5	
cis-1,3-Dichloropropene	2.	0.5	
Dibromochloromethane	2.	0.5	
Dichlorodifluoromethane	2.	0.5	
Ethylbenzene	2.	0.5	
Methylene Chloride	2.	0.5	
Tetrachloroethene	2.	0.5	
Toluene	2.	0.5	
trans-1,2-Dichloroethene	2.	0.5	
trans-1,3-Dichloropropene	2.	0.5	
Trichloroethene	2.	0.5	
Trichlorofluoromethane	2.	0.5	
Vinyl Chloride	2.	0.5	
Xylene (total)	3.	0.6	

*Specific quantitation limits are highly matrix dependent. The quantitation limits listed herein are provided for guidance and may not always be achievable.

The laboratory routinely reports at the limit of quantitation (LOQ) but can estimate down to the MDL when requested by the client. Values reported below the LOQ are reported with a J-flag and are defined as estimated values.

Element B4 Revision No. 3 Date: 08/15/07 Page 35 of 43

Table B4-18Petroleum Analysis by GC (8021B)

	Waters		Soils**	
Compound Name	LOQ* (µg/L)	MDL (µg/L)	LOQ* (mg/kg)	MDL (mg/kg)
Benzene	1.	0.2	0.005	0.002
Ethylbenzene	1.	0.2	0.005	0.002
Methyl t-butyl ether	1.	0.3	0.02	0.005
Naphthalene	5.	1.	0.02	0.01
Toluene	1.	0.2	0.005	0.002
Total Xylene	3.	0.6	0.015	0.005

*Specific quantitation limits are highly matrix dependent. The quantitation limits listed herein are provided for guidance and my not always be achievable.

**Quantitation limits listed for soil/sediment are based on wet weight. The quantitation limits calculated by the laboratory for soil/sediment, calculated on a dry-weight basis will be higher.

The laboratory routinely reports at the limit of quantitation (LOQ) but can estimate down to the MDL when requested by the client. Values reported below the LOQ are reported with a J-flag and are defined as estimated values.

Element B4 Revision No. 3 Date: 08/15/07 Page 36 of 43

Table B4-19TPH GRO/DRO by GC (8015B)

	Waters		Soils**	
Compound Name	LOQ* (mg/L)	MDL (mg/L)	LOQ* (mg/kg)	MDL (mg/kg)
TPH-DRO	0.1	0.029	12	4.
TPH-GRO	0.05	0.02	1.	0.2

NOTE: MDLs listed are higher than determined MDLs. This is because the method sums the total detectable area under the chromatographic plot in region of interest, instead of actual fuel peak area as the respective fuel.

*Specific quantitation limits are highly matrix dependent. The quantitation limits listed herein are provided for guidance and may not always be achievable.

**Quantitation limits listed for soil/sediment are based on wet weight. The quantitation limits calculated by the laboratory for soil/sediment, calculated on a dry-weight basis will be higher.

The laboratory routinely reports at the limit of quantitation (LOQ) but can estimate down to the MDL when requested by the client. Values reported below the LOQ are reported with a J-flag and are defined as estimated values.

Element B4 Revision No. 3 Date: 08/15/07 Page 37 of 43

Table B4-20

Pesticide (8081A)

	Waters		So	ils**
Compound Name	LOQ* (µg/L)	MDL (µg/L)	LOQ* (µg/kg)	MDL (µg/kg)
4,4-DDD	0.02	0.004	1.7	0.33
4,4-DDE	0.02	0.005	1.7	0.33
4,4-DDT	0.02	0.006	1.7	0.33
Aldrin	0.02	0.004	0.83	0.19
alpha-BHC	0.01	0.0027	1.	0.33
beta-BHC	0.024	0.008	2.	0.61
Chlordane	0.5	0.07	17	4.
delta-BHC	0.024	0.008	0.83	0.17
Dieldrin	0.02	0.004	1.7	0.33
Endosulfan I	0.01	0.003	0.83	0.22
Endosulfan II	0.02	0.004	1.7	0.33
Endosulfan sulfate	0.04	0.012	1.7	0.33
Endrin	0.02	0.004	1.7	0.33
Endrin aldehyde	0.1	0.02	1.7	0.33
gamma-BHC (Lindane)	0.01	0.002	0.83	0.17
Heptachlor	0.01	0.003	0.83	0.17
Heptachlor epoxide	0.024	0.008	0.83	0.17
Methoxychlor	0.1	0.03	8.3	1.7
Toxaphene	1.	0.3	33	11

*Specific quantitation limits are highly matrix dependent. The quantitation limits listed herein are provided for guidance and may not always be achievable.

**Quantitation limits listed for soil/sediment are based on wet weight. The quantitation limits calculated by the laboratory for soil/sediment, calculated on a dry-weight basis will be higher.

The laboratory routinely reports at the limit of quantitation (LOQ) but can estimate down to the MDL when requested by the client. Values reported below the LOQ are reported with a J-flag and are defined as estimated values.

Element B4 Revision No. 3 Date: 08/15/07 Page 38 of 43

Table B4-21Appendix IX Organochlorine Pesticides (8081A)

	Wa	Waters		Soils**	
Compound Name	LOQ* (µg/L)	MDL (µg/L)	LOQ* (µg/kg)	MDL (µg/kg)	
4,4-DDD	0.02	0.004	1.7	0.33	
4,4-DDE	0.02	0.005	1.7	0.33	
4,4-DDT	0.02	0.006	1.7	0.33	
Aldrin	0.02	0.004	0.83	0.19	
alpha-BHC	0.01	0.0027	1.	0.33	
beta-BHC	0.024	0.008	2.	0.61	
Chlordane	0.5	0.07	17	4.	
delta-BHC	0.024	0.008	0.83	0.17	
Dieldrin	0.02	0.004	1.7	0.33	
Endosulfan I	0.01	0.003	0.83	0.22	
Endosulfan II	0.02	0.004	1.7	0.33	
Endosulfan sulfate	0.04	0.012	1.7	0.33	
Endrin	0.02	0.004	1.7	0.33	
Endrin aldehyde	0.1	0.02	1.7	0.33	
gamma-BHC (Lindane)	0.01	0.002	0.83	0.17	
Heptachlor	0.01	0.003	0.83	0.17	
Heptachlor epoxide	0.024	0.008	0.83	0.17	
Kepone	0.2	0.07	7.	2.3	
Methoxychlor	0.1	0.03	8.3	1.7	
Toxaphene	1.	0.3	33	11	

*Specific quantitation limits are highly matrix dependent. The quantitation limits listed herein are provided for guidance and may not always be achievable.

**Quantitation limits listed for soil/sediment are based on wet weight. The quantitation limits calculated by the laboratory for soil/sediment, calculated on a dry-weight basis will be higher.

The laboratory routinely reports at the limit of quantitation (LOQ) but can estimate down to the MDL when requested by the client. Values reported below the LOQ are reported with a J-flag and are defined as estimated values.

Element B4 Revision No. 3 Date: 08/15/07 Page 39 of 43

Table B4-22 TCL Pesticides (8081A) (OLM03.2 and OLM04.3 lists)

	Waters		So	ils**
Compound Name	LOQ* (µg/L)	MDL (µg/L)	LOQ* (µg/kg)	MDL (µg/kg)
4,4'-DDD	0.02	0.004	1.7	0.33
4,4'-DDE	0.02	0.005	1.7	0.33
4,4'-DDT	0.02	0.006	1.7	0.33
Aldrin	0.02	0.004	0.83	0.19
alpha-BHC	0.01	0.0027	1.	0.33
alpha-Chlordane	0.01	0.003	0.83	0.17
beta-BHC	0.024	0.008	2.	0.61
delta-BHC	0.024	0.008	0.83	0.17
Dieldrin	0.02	0.004	1.7	0.33
Endosulfan I	0.01	0.003	0.83	0.22
Endosulfan II	0.02	0.004	1.7	0.33
Endosulfan sulfate	0.04	0.012	1.7	0.33
Endrin	0.02	0.004	1.7	0.33
Endrin aldehyde	0.1	0.02	1.7	0.33
Endrin ketone	0.04	0.013	1.7	0.33
gamma-BHC/Lindane	0.01	0.002	0.83	0.17
gamma-Chlordane	0.01	0.003	3	1
Heptachlor	0.01	0.003	0.83	0.17
Heptachlor epoxide	0.024	0.008	0.83	0.17
Methoxychlor	0.1	0.03	8.3	1.7
Toxaphene	1.	0.3	33	11

*Specific quantitation limits are highly matrix dependent. The quantitation limits listed herein are provided for guidance and may not always be achievable.

**Quantitation limits listed for soil/sediment are based on wet weight. The quantitation limits calculated by the laboratory for soil/sediment, calculated on a dry-weight basis will be higher.

The laboratory routinely reports at the limit of quantitation (LOQ) but can estimate down to the MDL when requested by the client if a valid mass spectrum is obtained. Values reported below the LOQ are reported with a J-flag and are defined as estimated values.

Element B4 Revision No. 3 Date: 08/15/07 Page 40 of 43

Table B4-23PCB Compound List by GC (8082)

	Waters		Soils**	
Compound Name	LOQ* (µg/L)	MDL (µg/L)	LOQ* (µg/kg)	MDL (µg/kg)
PCB-1016	0.5	0.1	17	3.3
PCB-1221	0.5	0.1	17	5.2
PCB-1232	0.5	0.2	17	3.3
PCB-1242	0.5	0.1	17	3.3
PCB-1248	0.5	0.1	17	3.3
PCB-1254	0.5	0.1	17	3.3
PCB-1260	0.5	0.1	17	3.3

*Specific quantitation limits are highly matrix dependent. The quantitation limits listed herein are provided for guidance and may not always be achievable.

**Quantitation limits listed for soil/sediment are based on wet weight. The quantitation limits calculated by the laboratory for soil/sediment, calculated on a dry-weight basis will be higher.

The laboratory routinely reports at the limit of quantitation (LOQ) but can estimate down to the MDL when requested by the client. Values reported below the LOQ are reported with a J-flag and are defined as estimated values.

Element B4 Revision No. 3 Date: 08/15/07 Page 41 of 43

Table B4-24Appendix IX Organphosphate Pesticides (8141A)

	Waters		Soils**	
Compound Name	LOQ* (µg/L)	MDL (µg/L)	LOQ* (µg/kg)	MDL (µg/kg)
Bolstar	2.	0.4	67	22
Coumaphos	3.	0.68	67	22
Demeton-O	2.	0.4	67	22
Demeton-S	3.	0.85	67	22
Diazinon	4.	1.4	67	22
Dichlorvos	3.	1.	67	22
Disulfoton	2.	0.45	75	25
Dursban (Chlorpyrifos)	2.	0.4	67	22
EPN	4.	0.4	67	22
Ethion	2.	0.4	67	22
Ethoprop	3.	1.	67	22
Ethyl parathion	2.	0.4	67	22
Famphur	3.	0.8	67	22
Fensulfothion	15.	5.	67	22
Fenthion	2.	0.4	67	22
Guthion (Azinphos-methyl)	4.	0.6	67	22
Malathion	3.	0.8	67	22
Merphos	6.	2.	67	22
Methyl parathion	2.	0.4	67	22
Mevinphos	4.	1.1	67	22
Naled	3.	0.4	67	22
Phorate	2.	0.4	67	22
Ronnel	2.	0.4	67	22
Stirophos	2.	0.65	67	22
Tokuthion	2.	0.4	67	22
Trichloronate	2.	0.4	67	22
Trithion	2.	0.4	67	22

*Specific quantitation limits are highly matrix dependent. The quantitation limits listed herein are provided for guidance and may not always be achievable.

**Quantitation limits listed for soil/sediment are based on wet weight. The quantitation limits calculated by the laboratory for soil/sediment, calculated on a dry-weight basis will be higher.

The laboratory routinely reports at the limit of quantitation (LOQ) but can estimate down to the MDL when requested by the client. Values reported below the LOQ are reported with a J-flag and are defined as estimated values.

Element B4 Revision No. 3 Date: 08/15/07 Page 42 of 43

Table B4-25Herbicides by GC (8151A)

	Waters		Soils**	
Compound Name	LOQ* (µg/L)	MDL (µg/L)	LOQ* (µg/kg)	MDL (µg/kg)
2,4,5 - T	0.05	0.013	1.7	0.75
2,4,5-TP	0.05	0.01	1.7	0.75
2,4-D	0.5	0.16	17	5.
2,4-DB	1.	0.3	17	5.3
2,4-DP (Dichlorprop)	0.5	0.16	17	5.
Dalapon	1.3	0.25	60	23
Dicamba	0.3	0.06	5.	1.6
Dinoseb	0.5	0.1	8.3	1.7
МСРА	1000	300	6000	2000
МСРР	200	50	2500	750
Pentachlorophenol	0.05	0.027	1.7	0.33

*Specific quantitation limits are highly matrix dependent. The quantitation limits listed herein are provided for guidance and may not always be achievable.

**Quantitation limits listed for soil/sediment are based on wet weight. The quantitation limits calculated by the laboratory for soil/sediment, calculated on a dry-weight basis will be higher.

The laboratory routinely reports at the limit of quantitation (LOQ) but can estimate down to the MDL when requested by the client. Values reported below the LOQ are reported with a J-flag and are defined as estimated values.

Element B4 Revision No. 3 Date: 08/15/07 Page 43 of 43

Table B4-26 PAHs by HPLC (8310)

	Wa	Waters		Soils**	
Compound Name	LOQ* (µg/L)	MDL (µg/L)	LOQ* (µg/kg)	MDL (µg/kg)	
1-Methylnaphthalene	20	2.2	330	80	
2-Methylnaphthalene	20	2.1	330	80	
Acenaphthene	16	0.9	270	40	
Acenapthylene	16	1.4	270	40	
Anthracene	0.2	0.04	5.3	0.6	
Benzo(a)anthracene	0.1	0.02	6.7	1.3	
Benzo(a)pyrene	0.1	0.02	13	2.0	
Benzo(b)fluoranthene	0.2	0.04	13	2.7	
Benzo(g,h,i)perylene	0.6	0.1	13	2.7	
Benzo(k)fluoranthene	0.1	0.02	6.7	1.3	
Chrysene	0.4	0.08	13	2.0	
Dibenzo(a,h)anthracene	0.2	0.04	5.3	2.0	
Fluoranthene	0.2	0.04	5.3	1.3	
Fluorene	0.8	0.5	27	4.0	
Indeno(1,2,3-cd)pyrene	0.4	0.08	13	3.3	
Naphthalene	12	1.3	330	47	
Phenanthrene	0.4	0.08	13	2.0	
Pyrene	0.8	0.18	27	4.7	

*Specific quantitation limits are highly matrix dependent. The quantitation limits listed herein are provided for guidance and may not always be achievable.

**Quantitation limits listed for soil/sediment are based on wet weight. The quantitation limits calculated by the laboratory for soil/sediment, calculated on a dry-weight basis will be higher.

The laboratory routinely reports at the limit of quantitation (LOQ) but can estimate down to the MDL when requested by the client. Values reported below the LOQ are reported with a J-flag and are defined as estimated values.

Element B5 Revision No. 3 Date: 07/20/07 Page 1 of 34

B5. Quality Control

The particular types and frequencies of quality control checks analyzed with each sample are defined in USEPA SW-846 3rd Edition, Update III, 1996; Standard Methods for the Examination of Water and Wastewater, 20th edition; and Methods for the Chemical Analysis of Waters and Wastes, USEPA, 600/4-79-020. The quality control checks routinely performed during sample analysis include blanks, laboratory control samples, surrogates, duplicates, internal standards, and matrix spikes. In addition to these checks, some inorganic analyses employ serial dilutions and interference check samples.

<u>Blanks</u> (method, preparation) – Blanks are an analytical control consisting of a volume of deionized, distilled laboratory water for water samples, or a purified solid matrix for soil/sediment samples. (Metals use a digested reagent blank with soils.) They are treated with the same reagents, internal standards, and surrogate standards and carried through the entire analytical procedure. The blank is used to define the level of laboratory background contamination.

Laboratory Control Samples (LCS) or Reference materials – Aqueous and solid control samples of known composition are analyzed using the same sample preparation, reagents, and analytical methods employed for the sample. These materials may be purchased from NIST or commercial supply houses either as neat compounds or as solutions with certified concentrations, or prepared in the technical department. The accuracy and quality of the purchased standards are documented on certificates provided by the supply houses. Certificates are maintained on file in the laboratory. The accuracy information determined from reference materials and laboratory control samples is valuable because variables specific to sample matrix are eliminated. The acceptance criteria for this type of quality control is either dictated by the agency from whom the material is obtained or by statistical analysis of past information generated in the technical department. A LCS is analyzed with every sample preparation batch to demonstrate accuracy of the procedure and process control.

Element B5 Revision No. 3 Date: 07/20/07 Page 2 of 34

<u>Surrogates</u> (used for organic analysis only) – Each sample, matrix spike, matrix spike duplicate, and blank are spiked with surrogate compounds prior to purging and extraction in order to monitor preparation and analysis. Surrogates are used to evaluate analytical efficiency by measuring recovery. The recovery data is compared to method stipulated or statistically generated limits.

<u>Duplicates</u> (matrix or LCS spike duplicate – organics and inorganics; duplicateinorganics) – A second aliquot of a matrix/sample is analyzed at the same time as the original sample in order to determine the precision of the method. The relative percent difference (RPD) between the two determinations is calculated and compared to values prescribed by the EPA or the laboratory's statistically generated limits.

Internal Standards (used for GC/MS and some GC analysis) – Internal standards are compounds added to every standard, blank, LCS, matrix spike, matrix spike duplicate, and sample at a known concentration, prior to analysis. The peak areas of the internal standards are used for internal standard quantitation as well as monitoring changes in the instrument response that may adversely affect quantification of target compounds.

<u>Matrix Spikes</u> – Matrix spikes are samples fortified with a target analyte and subjected to the entire analytical procedure. The recovery of the analyte(s) is calculated and indicates the appropriateness of the method for the matrix. The matrix spike and its duplicate is a pair of fortified samples from the same source. Analysis of the matrix spike duplicates yields precision and accuracy information. The acceptance criteria for percent recovery of spiked samples is prescribed by the EPA or determined by statistical analysis of historical data generated in the technical department.

<u>Serial Dilutions</u> (used for inorganics ICP, and ICP/MS only) – If the analyte concentration is sufficiently high, an analysis of a five-fold dilution must agree within 10% of the original determination. If the dilution analysis is not within 10%, a chemical or physical interference effect should be suspected.

Element B5 Revision No. 3 Date: 07/20/07 Page 3 of 34

Interference Check Sample (ICP and ICP/MS) – To verify interelement and background correction factors a solution containing both interfering and analyte elements of known concentration is analyzed at the beginning and end of each analysis run or a minimum of twice per 8 hours.

<u>Second Source Check</u> – A second source check is analyzed using either the LCS or an ICV (Initial Calibration Verification). The second source is a standard that is made from a solution or neat purchased from a different vendor than that used for the calibration standards. For some organic custom mixes, the same vendor but a different lot and preparation is used. This ensures that potential problems with a vendor supply would be evident in the analysis. Some areas of the lab may use the continuing calibration verification standards as a second source from the initial calibration.

The results of all quality control samples are entered into the LIMS in the same way as the results of client samples. The computer is programmed to compare the individual values with the acceptance limits (statistically determined or method specified) and inform the analyst if the results of the quality control tests are in or out of specification. If the results are not within the acceptance criteria, corrective action suitable to the situation must be taken. This may include, but is not limited to, checking calculations, examining other quality control analyzed with the same batch of samples, qualifying results with a comment stating the observed deviation, and reanalysis of the samples in the batch. In addition, computerized reports on the results for all quality control analyses (including mean and standard deviation) are generated monthly. These are used by the Quality Assurance Department to check for trends that may indicate method bias. Control charts are plotted via computer and may be accessed at any time by all analysts.

The following tables list the specific QC used for each method and the applicable QC windows. These windows are generated statistically and are subject to change. Statistical limits are determined for recovery and relative percent difference (RPD) data using historical data (minimum of 20 data points) and applying a 99% confidence interval around the mean. The limits are generated every 6 months for SW-846 methods and annually for other methods, and updated as needed. The tables list the full list of analytes for a method. Sublists (TCL, PPL, etc.) may be reported based on the clients requirements. See Element B4 for the particular analytes associated with a regulatory list.

Element B5 Revision No. 3 Date: 07/20/07 Page 4 of 34

Table B5-1

Quality Control Inorganics

Туре	Acceptance Limits (%)	Frequency	Corrective Action
Matrix Spikes:	See Table B5-2 See Table B5-2A for ICP/MS	Each group of samples of similar matrix/level (≤20) each method	Analyze post-digestion spike sample
Matrix Spike Duplicate (RPD):	±20% RPD	Each group of samples of similar matrix/level (≤20) each method	Analyze post-digestion spike sample if not already run for MS, flag the data
Duplicates (RPD):	±20% RPD for sample values ≥5× LOQ	Each group of samples of similar matrix/level (≤20) each method	Flag the data
Blanks: Initial Calibration (ICB) Continuing Calibration (CCB)	ICP and ICP/MS: <3× IDL or blank <1/10 conc. of action level and samples not ±10% of action level GFAA and CVAA: <loq< td=""><td>Each element immediately after calibration verification at 10% frequency or every 2 hours (beginning and end of run min.)</td><td>Correct problem, recalibrate, and rerun</td></loq<>	Each element immediately after calibration verification at 10% frequency or every 2 hours (beginning and end of run min.)	Correct problem, recalibrate, and rerun
Preparation Blank (PB)	≤LOQ	Each SDG or batch (≤20 samples)	Redigest and reanalyze blank and associated samples if sample result <20× blank result
Serial Dilutions (excluding Hg):	Within ±10% of the original determination	Each group (≤20) of similar matrix/level	Flag the data
Interference Check Sample (ICP and ICP/MS only):	±20% of the true value for the analytes	Each element after Initial Calibration Verification at beginning and end of the run or min. of 2× per 8 hour	Recalibrate the instrument
Laboratory Control Sample:	See Table B5-2 See Table B5-2A for ICP/MS	Each SDG or batch (≤20 samples), each method	Redigest and reanalyze LCS and associated samples. Elements in the LCS that fail high and are ND in the samples can be reported.

Element B5 Revision No. 3 Date: 07/20/07 Page 5 of 34

Table B5-1 – Continued

Quality Control Metals

Туре	Acceptance Limits (%)	Frequency	Corrective Action
Post Digestion Spike:	ICP and ICP/MS: 75% to 125% GFAA and CVAA: 85% to 115%	When matrix spikes are outside 75% to 125% range, or the stastical wiwndow (whichever is tighter)	Flag the data

Acceptance limits are based on statistical evaluation of laboratory data and are subject to change. This criteria is for TAL, PPL, and Appendix IX metals.

Element B5 Revision No. 3 Date: 07/20/07 Page 6 of 34

Table B5-2Statistical Acceptance Limits for Metals

	Wat	ers	So	Soils		
Analyte	LCS/LCSD (%)	MS/MSD (%)	LCS/LCSD (%)	MS/MSD (%)		
Aluminum	90-112	75-125	85-115	75-125		
Antimony	80-120	75-125	0-211	75-125		
Arsenic	80-120	75-125	80-119	75-125		
Barium	90-110	75-125	83-117	75-125		
Beryllium	90-111	87-114	83-117	83-111		
Boron	90-110	88-111	64-136	80-110		
Cadmium	90-112	83-116	82-118	75-125		
Calcium	90-112	75-125	81-119	75-125		
Chromium	90-110	81-120	79-121	75-125		
Cobalt	90-110	87-112	82-118	81-110		
Copper	90-112	86-122	83-117	75-125		
Iron	90-112	75-125	35-165	75-125		
Lead ¹	90-113	75-125	82-118	80-120		
Magnesium	89-110	75-125	78-122	75-125		
Manganese	90-110	75-125	82-118	75-125		
Mercury ²	80-120	80-120	66-133	80-120		
Molybdenum	90-110	89-112	80-120	77-10		
Nickel	90-111	86-115	82-118	75-125		
Potassium	88-119	75-125	73-127	75-125		
Selenium	80-120	75-125	78-122	81-112		
Silver	90-117	75-125	66-134	75-125		
Sodium	80-120	75-125	64-136	75-125		
Strontium	90-110	90-110	80-120	80-111		
Thallium	80-120	75-125	77-123	78-109		
Tin	90-110	86-118	70-130	80-110		
Titanium	90-113	90-110	85-115	75-125		
Vanadium	90-110	90-111	68-132	75-125		
Zinc	90-111	75-125	79-121	75-125		

¹Analyzed by GFAA

²Analyzed by Cold Vapor

All other elements analyzed by ICP.

Acceptance limits are based on statistical evaluation of laboratory data and are subject to change.

The acceptance limits above pertain to the TAL, PPL and Appendix IX lists.

Element B5 Revision No. 3 Date: 07/20/07 Page 7 of 34

Table B5-2AAcceptance Limits for ICP/MS

	Wate	ers	Soils	
Analyte	LCS/LCSD (%)	MS/MSD (%)	LCS/LCSD (%)	MS/MSD (%)
Antimony	80-120	75-125	0-264	75-125
Arsenic	80-120	75-125	79-121	75-125
Barium	80-120	75-125	81-119	75-125
Beryllium	80-120	75-125	80-120	75-125
Cadmium	80-120	75-125	81-119	75-125
Chromium	80-120	75-125	73-127	75-125
Copper	80-120	75-125	82-118	75-125
Lead	80-120	75-125	82-118	75-125
Nickel	80-120	75-125	82-118	75-125
Selenium	80-120	75-125	74-126	75-125
Silver	80-120	75-125	47-154	75-125
Thallium	80-120	75-125	78-122	75-125
Zinc	80-120	75-125	78-121	75-125

Acceptance limits are statistically derived or method-specified, whichever is more stringent.

Element B5 Revision No. 3 Date: 07/20/07 Page 8 of 34

Table B5-3

Quality Control Miscellaneous Chemistry

Parameter	Acceptance Limits (%)	Frequency	Corrective Action
Moisture:			
LCS/LCSD:	See Table B5-4	Each group (≤20) of samples	Batch is repeated
Duplicate:	≤15%	Each group (≤20) of samples	Ensure that LCS meets acceptance criteria
Cyanide, total:			
Initial Calibration Blank (ICB):	≤LOQ	After every calibration	Recalibrate
Continuing Calibration Blank (CCB):	≤LOQ	After each CCV, which is every 10 samples	Reanalyze bracketed sample
Prep Blank (PB):	≤LOQ	Each group (≤20) of samples	Batch is repeated
LCS: (LCSD when requested, or if there is not sufficient volume for Matrix QC)	See Table B5-4 LCSD ≤20% RPD	Each group (≤20) of samples	Batch is repeated LCS that fails high, and cyanide is ND in the sample, can be reported.
MS:	See Table B5-4	Every 10 samples	Post digestion spike is performed, MSA is performed for CN by SW-846 9012A
Duplicates:	≤20%	Every 10 samples	Ensure that LCS meets acceptance criteria
Phenolics, total:			
Blanks:	≤LOQ	Each group (≤20) of samples	Batch is repeated
LCS:	See Table B5-4	Each group (≤20) of	Batch is repeated
(LCSD when requested)	LCSD ≤20% RPD	samples	LCS that fails high, and phenolics are ND in the sample, can be reported.
MS/MSD:	See Table B5-4 MSD ≤20% RPD	Every 10 samples	Ensure that LCS meets acceptance criteria
Duplicates:	≤20%	Every 10 samples	Ensure that LCS meets acceptance criteria
Sulfide, total:			
Blanks:	≤LOQ	Each group (≤20) of samples	Batch is repeated
LCS: (LCSD when requested)	See Table B5-4 LCSD ≤20% RPD	Each group (≤20) of samples	Batch is repeated LCS that fails high, and sulfide is ND in the sample, can be reported.
MS/MSD:	See Table B5-4 MSD ≤20% RPD	Each group (≤20) of samples	Ensure that LCS meets acceptance criteria
Duplicate:	≤20% (statistically evaluated)	Each group (≤20) of samples	Ensure that LCS meets acceptance criteria

Element B5 Revision No. 3 Date: 07/20/07 Page 9 of 34

Table B5-3 – Continued

Quality Control Miscellaneous Chemistry

Parameter	Acceptance Limits (%)	Frequency	Corrective Action
ТРН (418.1):			
Blanks:	≤LOQ	Each group (≤20) of samples	Batch is repeated
LCS: (LCSD when requested)	See Table B5-4 LCSD ≤20% RPD	Each group (≤20) of samples	Batch is repeated LCS that fails high, and TPH is ND in the sample, can be reported.
MS/MSD:	See Table B5-4 MSD ≤20% RPD	Each group (≤20) of samples	Ensure that LCS meets acceptance criteria
Duplicates:	≤34% wastewater ≤21% solid waste	Each group (≤20) of samples	Ensure that LCS meets acceptance criteria
Hexane Extractable Materials (1664A):			
Blanks:	≤LOQ	Each group (≤20) of samples	Batch is repeated
LCS: (LCSD when requested)	See Table B5-4 LCSD ≤20% RPD	Each group (≤20) of samples	Batch is repeated LCS that fails high, and HEM is ND in the sample, can be reported.
MS/MSD:	See Table B5-4 MSD ≤20% RPD	Each group (≤20) of samples	Ensure that LCS meets acceptance criteria
Duplicates:	≤18%	Each group (≤20) of samples	Ensure that LCS meets acceptance criteria
тос:			
Initial Calibration Blank (ICB):	≤LOQ	After every calibration	Recalibrate
Continuing Calibration Blank (CCB):	≤LOQ	After every 10 injections	Reanalyze bracketed sample
Prep Blank (PB):	≤LOQ	Each group (≤20) of samples	Batch is repeated
LCS: (LCSD when requested)	See Table B5-4 LCSD ≤20% RPD	Each group (≤20) of samples	Batch is repeated LCS that fails high, and TOC is ND in the sample, can be reported.
MS/MSD:	See Table B5-4 MSD ≤20% RPD	Every 10 samples	Ensure that LCS meets acceptance criteria
Duplicates:	≤4%	Every 10 samples	Ensure that LCS meets acceptance criteria

Element B5 Revision No. 3 Date: 07/20/07 Page 10 of 34

Table B5-3 – Continued

Quality Control Miscellaneous Chemistry

Parameter	Acceptance Limits (%)	Frequency	Corrective Action
Total Nitrite/Nitrate:			
Initial Calibration Blank (ICB):	≤LOQ	After initial calibration	Repeat calibration
Prep Blank (PBW):	≤LOQ	Each group (≤20) of samples	Batch is repeated
LCS: (LCSD when requested)	See Table B5-4 LCSD ≤20% RPD	Each group (≤20) of samples	Batch is repeated LCS that fails high, and total nitrite/nitrate is ND in the sample, can be reported.
MS/MSD:	See Table B5-4 MSD ≤20% RPD	Each group (≤20) of samples	Ensure that LCS meets acceptance criteria
Duplicates:	≤2%	Every 10 samples	Ensure that LCS meets acceptance criteria

Element B5 Revision No. 3 Date: 07/20/07 Page 11 of 34

Table B5-4

Quality Control Statistical Acceptance Limits for Miscellaneous Chemistry

	Wat	ers	Soils	
Parameter	LCS/LCSD (%)	MS/MSD (%)	LCS/LCSD (%)	MS/MSD (%)
Cyanide, total	90-110	83-111	90-110	59-124
HEM (1664A)	79-114	79-114	N/A	N/A
Moisture	N/A	N/A	99-101	N/A
Phenolics, total	80-109	73-115	82-113	38-175
Sulfide, total	80-120	86-113	N/A	N/A
TOC	80-120	62-148	40-148	51-115
Total Nitrite/Nitrate	90-110	90-110	N/A	N/A
TPH (418.1)	54-113	39-132	64-115	30-128

Acceptance limits are based on statistical evaluation of laboratory data and are subject to change.

٠

Element B5 Revision No. 3 Date: 07/20/07 Page 12 of 34

Table B5-5

Quality Control Volatiles by GC/MS (8260B)

	Acceptance Li	mits (%)		
Туре	Waters	Soils	Frequency	Corrective Action
Surrogates: Toluene-d ₈ Bromofluorobenzene 1,2-Dichloroethane-d₄ Dibromofluoromethane	85-112 83-113 82-112 81-120	70-130 70-128 70-121 70-129	Each sample, MS, MSD, LCS, and blank	Reanalyze sample if outside limits; if reanalysis confirms original, document on report and/or case narrative
Matrix Spikes: Spike all compounds of interest	See Table B5-6		Each group (≤20) of samples per matrix/level	Evaluation in conjunction with acceptable LCS. Acceptable LCS would be indicative of matrix effects on the MS/MSD.
Laboratory Control Samples: Spike all compounds of interest	See Table B5-6		Each group (≤20) of samples per matrix/level	Reanalyze LCS and associated samples for compounds outside acceptance limits. Compounds that fail high in the LCS, and are ND in the sample, can be reported.
Matrix Spike Duplicates (RPD): Spike all compounds of interest	≤30% for waters a	and soils	Each group (≤20) of samples per matrix/level	Evaluated by analyst in relationship to other QC results
Blanks:	≤LOQ for all com	pounds	Once for each 12-hour time period or ≤20 samples	Reanalyze blank and associated samples if blank outside limits
Internal Standards: Chlorobenzene-d₅ 1,4-Dichlorobenzene-d₄	-50% to +100% o standard area of STD RT Change ≤30 s	12-hour	Each sample, MS, MSD, LCS, and blank	Reanalyze samples; if reanalysis confirms original, document on report or case narrative

Acceptance limits are based on statistical evaluation of laboratory data and are subject to change. This criteria is for PPL, Appendix IX, and TCL lists.

Element B5 Revision No. 3 Date: 07/20/07 Page 13 of 34

Table B5-6

Statistical Acceptance Limits for Volatiles by GC/MS (8260B)

	Wa	ters	So	ils
Compound Name	LCS/LCSD (%)	MS/MSD (%)	LCS/LCSD (%)	MS/MSD (%)
1,1,1,2-Tetrachloroethane	83-114	83-119	78-115	58-115
1,1,1-Trichloroethane	83-127	81-142	74-127	64-118
1,1,2,2-Tetrachloroethane	72-119	73-121	64-121	37-142
1,1,2-Trichloroethane	86-113	77-125	81-112	64-118
1,1-Dichloroethane	83-127	85-135	82-116	65-115
1,1-Dichloroethene	76-122	87-145	74-115	56-113
1,1-Dichloropropene	84-116	86-134	75-121	57-114
1,2,3-Trichlorobenzene	67-114	65-127	63-120	10-122
1,2,3-Trichloropropane	78-117	73-125	69-119	44-140
1,2,4-Trichlorobenzene	65-114	60-121	60-116	11-121
1,2,4-Trimethylbenzene	78-117	80-125	74-117	47-122
1,2-Dibromo-3-chloropropane	62-128	52-137	49-127	39-128
1,2-Dibromoethane	81-114	78-120	77-114	66-108
1,2-Dichlorobenzene	81-112	82-117	81-109	50-111
1,2-Dichloroethane	77-132	70-143	76-126	62-130
1,2-Dichloropropane	80-117	83-129	78-119	64-112
1,3,5-Trimethylbenzene	78-116	77-124	74-112	52-117
1,3-Dichlorobenzene	81-114	79-123	76-112	47-109
1,3-Dichloropropane	84-119	82-121	80-115	66-110
1,4-Dichlorobenzene	84-116	81-122	78-108	47-109
2,2-Dichloropropane	74-130	79-146	72-123	64-115
2-Butanone	52-163	57-137	45-154	37-148
2-Chloroethyl Vinyl Ether	66-125	1-156	26-148	22-133
2-Chlorotoluene	78-115	78-121	73-114	53-113
2-Hexanone	61-140	60-135	38-154	33-146
4-Chlorotoluene	80-112	81-123	75-110	52-113
4-Methyl-2-pentanone	70-130	68-133	51-141	37-138
Acetone	32-200	48-143	26-198	26-184
Acrolein	26-151	19-154	52-128	10-135
Acrylonitrile	67-128	63-132	58-122	43-117
Benzene	78-119	83-128	84-115	59-120
Bromobenzene	82-110	83-121	77-113	52-118
Bromochloromethane	83-121	82-129	75-121	65-116
Bromodichloromethane	83-121	80-129	77-116	57-117
Bromoform	69-118	64-119	63-120	54-114

Element B5 Revision No. 3 Date: 07/20/07 Page 14 of 34

Table B5-6 – Continued

Statistical Acceptance Limits for Volatiles by GC/MS (8260B)

	Wat	ers	Soils		
Compound Name	LCS/LCSD (%)	MS/MSD (%)	LCS/LCSD (%)	MS/MSD (%)	
Bromomethane	47-129	54-141	61-118	50-114	
Carbon Disulfide	69-119	74-135	69-109	45-107	
Carbon Tetrachloride	77-130	82-149	76-122	56-120	
Chlorobenzene	85-115	83-120	81-112	58-109	
Chloroethane	57-125	56-140	63-120	52-114	
Chloroform	86-124	83-139	81-117	69-117	
Chloromethane	47-132	46-149	58-123	38-115	
cis-1,2-Dichloroethene	84-117	83-126	84-113	67-110	
cis-1,3-Dichloropropene	78-114	80-126	80-113	58-113	
Dibromochloromethane	78-119	82-119	79-118	69-113	
Dibromomethane	87-117	82-128	79-118	69-113	
Dichlorodifluoromethane	26-157	31-185	28-134	15-127	
Ethylbenzene	82-119	82-129	82-115	54-116	
Hexachlorobutadiene	62-119	51-135	57-122	11-123	
Isopropylbenzene	80-120	81-130	82-110	41-120	
m+p-Xylene	83-113	82-130	82-117	44-127	
Methylene Chloride	85-120	79-133	75-120	42-131	
Naphthalene	61-116	50-124	52-121	10-123	
n-Butylbenzene	75-120	73-134	68-116	17-131	
n-Propylbenzene	78-119	74-138	76-122	46-121	
o-Xylene	83-113	82-130	82-117	44-127	
<i>p</i> -lsopropyltoluene	72-118	72-128	72-113	43-117	
sec-Butylbenzene	72-120	73-137	72-112	38-124	
Styrene	82-111	69-131	79-108	48-111	
tert-Butylbenzene	74-114	76-128	72-113	44-118	
Tetrachloroethene	74-125	78-133	70-117	40-140	
Toluene	85-115	83-127	81-116	38-131	
trans-1,2-Dichloroethene	83-117	82-133	77-113	60-110	
trans-1,3-Dichloropropene	79-114	77-123	79-112	60-110	
Trichloroethene	87-117	83-136	81-114	48-124	
Trichlorofluoromethane	57-141	64-165	58-125	49-127	
Vinyl Chloride	54-143	54-143	60-118	48-113	
Xylene (Total)	83-113	82-130	82-117	44-127	
Allyl Chloride	73-129	65-145	75-126	59-121	
2-Chloro-1,3-butadiene	62-139	61-161	61-134	35-133	

Element B5 Revision No. 3 Date: 07/20/07 Page 15 of 34

Table B5-6 – Continued

Statistical Acceptance Limits for Volatiles by GC/MS (8260B)

	Wat	Waters		ils
Compound Name	LCS/LCSD (%)	MS/MSD (%)	LCS/LCSD (%)	MS/MSD (%)
trans-1,4-Dichloro-2-butene	49-135	37-141	57-125	45-124
1,2-Dichloroethene (Total)	84-117	83-126	79-113	61-111
1,4-Dioxane	54-139	44-148	52-124	42-126
Ethyl Methacrylate	77-118	74-120	67-114	32-125
Isobutyl Alcohol	48-144	48-151	42-143	25-134
Methacrylonitrile	80-125	68-131	70-131	50-128
Methyl Iodide	70-116	72-128	67-119	53-115
Methyl Methacrylate	72-121	68-126	61-121	47-122
Propionitrile	68-137	62-142	61-137	52-131
Vinyl Acetate	68-134	62-137	41-148	10-181

Element B5 Revision No. 3 Date: 07/20/07 Page 16 of 34

Table B5-7Quality ControlSemivolatiles by GC/MS (8270C)

	Acceptance	Limits (%)		
Туре	Waters	Soils	Frequency	Corrective Action
Surrogates: Nitrobenzene-d₅ 2-Fluorobiphenyl Terphenyl-d ₁₄ Phenol-d ₆ 2-Fluorophenol 2,4,6-Tribromophenol	54-124 64-112 43-116 10-80 23-94 40-136	47-128 55-123 49-133 45-120 41-119 46-136	Each sample, MS, MSD, LCS, and blank	Repeat extraction and analysis; if reanalysis confirms originals, document on report and/or case narrative
Matrix Spikes: Spike all compounds of	See Table B5-8 fo limits	or acceptance	Each group (≤20) of samples per	Evaluation in conjunction with acceptable LCS.
interest			matrix/level	Acceptable LCS would be indicative of matrix effects on the MS/MSD.
Laboratory Control Sample: Spike all compounds of interest	See Table B5-8 for acceptance limits		Each group (≤20) of samples per matrix/level	Re-extract and reanalyze LCS and associated samples for compounds outside acceptance limits. Compounds that fail high in the LCS, and are ND in the sample, can be reported.
Matrix Spike Duplicates (RPD):	≤30% for waters and soils		Each group (≤20) of samples per matrix/level	Evaluated by analyst in relationship to other QC results
Same as for matrix spikes				
Blanks:	≤LOQ for all compounds		Once per extraction group (≤20) of samples, each matrix/level	Re-extract and reanalyze blank and associated samples
Internal Standards: 1,4-Dichlorobenzene-d ₄ Naphthalene-d ₈ Acenaphthene-d ₁₀	-50% to +100% o standard area of RT change ≤30 s	12-hour STD	Each sample, MS, MSD, LCS, and blank	Reanalyze samples; if reanalysis confirms original, document on report and/or case narrative
Acenaphthene-d ₁₀ Phenanthrene-d ₁₀ Chrysene-d ₁₂ Perylene-d ₁₂		<u>,</u>		

Acceptance limits are based on statistical evaluation of laboratory data and are subject to change.

This criteria is for PPL, Appendix IX, and TCL lists.

Element B5 Revision No. 3 Date: 07/20/07 Page 17 of 34

Table B5-8

Statistical Acceptance Limits for Semivolatiles by GC/MS (8270C)

I		ters	Soils		
Compound Name	LCS/LCSD (%)	MS/MSD (%)	LCS/LCSD (%)	MS/MSD (%)	
1,1'-Biphenyl	73-106	72-113	69-108	39-146	
1,2,4,5-Tetrachlorobenzene	74-109	72-102	67-117	60-119	
1,2,4-Trichlorobenzene	61-113	65-105	68-105	54-118	
1,2-Dichlorobenzene	58-100	59-106	59-108	40-117	
1,2-Diphenylhydrazine	62-106	60-113	62-115	56-125	
1,3,5-Trinitrobenzene	21-154	45-124	5-111*	5-126*	
1,3-Dichlorobenzene	52-106	55-105	56-103	41-117	
1,3-Dinitrobenzene	78-113	75-112	73-113	59-119	
1,4-Dichlorobenzene	54-103	50-112	58-104	42-118	
1,4-Dinitrobenzene	70 -130	70-130	80-110	65-110	
1,4-Dioxane	37-79	29-76	19-65	15-67	
1,4-Naphthoquinone	70-130	70-130	70-130	70-130	
1,4-Phenylenediamine	70-130	70-130	70-130	70-130	
1-Methylnaphthalene	65-107	60-126@	69-104	39-142	
1-Naphthylamine	40-105	5-124*	5-73*	5-125*	
2,2'-oxybis(1-Chloropropane)	70-143	71-140	70-134	50-146	
2,3,4,6-Tetrachlorophenol	61-131	44-125	72-125	18-153	
2,4,5-Trichlorophenol	70-115	37-128	73-104	23-143	
2,4,6-Trichlorophenol	69-111	35-138	73-112	27-149	
2,4-Dichlorophenol	66-110	33-135	74-105	35-138	
2,4-Dimethylphenol	60-107	9-139	68-103	43-135	
2,4-Dinitrophenol	52-124	20-154*	33-122	20-152*	
2,4-Dinitrotoluene	75-122	52-130	73-115	44-138	
2,6-Dichlorophenol	70-112	74-100	70-113	60-116	
2,6-Dinitrotoluene	70-108	71-111	75-109	50-132	
2-Acetylaminofluorene	49-127	74-114	64-117	55-119	
2-Chloronaphthalene	56-100	53-96	60-101	42-110	
2-Chlorophenol	63-112	20-144	73-105	48-125	
2-Methylnaphthalene	64-105	58-110	67-101	39-127	
2-Methylphenol	56-105	9-122	64-112	39-129	
2-Naphthylamine	8-88	5-118*	5-47*	5-107*	
2-Nitroaniline	73-115	63-125	76-117	45-139	
2-Nitrophenol	82-121	43-148	74-113	36-146	
2-Picoline	52-96	51-95	47-102	40-109	
3- or 4-methylphenol	52-97	30-114	65-113	40-132	
3,3'-Dichlorobenzidine	52-113	27-128	12-107	3-142*	
3,3'-Dimethylbenzidine	10-103*	10-88*	22-111	10-122*	
3-Methylcholanthrene	46-128	64-112	71-111	49-114	
3-Nitroaniline	63-112	42-134	46-108	27-140	
4,6-Dinitro-2-methylphenol	74-122	21-150	56-120	5-156*	

Element B5 Revision No. 3 Date: 07/20/07 Page 18 of 34

Table B5-8 – Continued

Statistical Acceptance Limits for Semivolatiles by GC/MS (8270C)

T	Wa		Soils	
Compound Name	LCS/LCSD (%)	MS/MSD (%)	LCS/LCSD (%)	MS/MSD (%)
4-Aminobiphenyl	4-66	2-90*	5-55*	5-102*
4-Bromophenyl phenylether	67-110	76-112	70-111	52-136
4-Chloro-3-methylphenol	72-114	22-157	61-134	48-135
4-Chloroaniline	42-115	20-123	2-116*	2-130*
4-Chlorophenyl phenylether	65-110	62-113	69-110	50-128
4-Methylphenol	51-98	2-129	64-116	36-136
4-Nitroaniline	55-107	38-118	45-101	22-129
4-Nitrophenol	9-78	10-100*	57-123	5-165*
4-Nitroquinoline-1-oxide	20-115*	20-126*	10-80*	10-50*
5-Nitro-o-toluidine	37-92	20-96	28-62	1-106
7,12-Dimethylbenz(a)anthracene	50-101	32-134	67-125	24-148
a,a-Dimethylphenethylamine	70-130	70-130	70-130	70-130
Acenaphthene	68-111	68-117	74-110	48-129
Acenaphthylene	76-117	71-118	79-115	45-144
Acetophenone	65-114	78-99	73-105	24-146
Aniline	56-105	40-110	32-107	5-162*
Anthracene	68-108	68-115	69-109	17-161
Aramite	20-60	14-67	70-130	70-130
Atrazine	63-124	45-125	65-137	16-156
Benzaldehyde	1-67	1-63	2-46*	2-124*
Benzenethiol	5-75*	70-130	1-53	70-130
Benzidine	20-163*	10-148*	35-115*	35-134*
Benzo(a)anthracene	71-113	65-116	72-112	22-158
Benzo(a)pyrene	68-121	66-120	71-119	25-154
Benzo(b)fluoranthene	65-122	61-125	66-123	12-165
Benzo(g,h,i)perylene	67-126	64-124	66-120	28-148
Benzo(k)fluoranthene	67-120	64-120	67-121	21-154
Benzoic Acid	6-59*	6-81*	20-159	5-173*
Benzyl alcohol	51-99	72-89	64-116	57-117
bis (2-Chloroethoxy)methane	69-119	64-128	75-114	50-137
bis(2-Chloroethyl)ether	57-110	69-103	60-112	41-122
bis(2-Chloroisopropyl)ether	68-133	66-142	68-132	52-152
bis(2-Ethylhexyl)phthalate	62-126	61-118	63-131	33-148
Butylbenzylphthalate	63-120	60-117	69-117	46-138
Caprolactam	16-37	16-36	69-112	1-181
Carbazole	66-109	32-154	69-109	36-143
Chlorobenzilate	67-115	55-119	68-123	59-125
Chrysene	70-111	67-115	71-112	19-158
Diallate (cis/trans)	69-122	80-98	79-120	56-127
Dibenz(a,h)anthracene	68-129	70-131	70-130	36-151

Element B5 Revision No. 3 Date: 07/20/07 Page 19 of 34

Table B5-8 – Continued

Statistical Acceptance Limits for Semivolatiles by GC/MS (8270C)

······································	Waters		So	ils
Compound Name	LCS/LCSD (%)	MS/MSD (%)	LCS/LCSD (%)	MS/MSD (%)
Dibenzofuran	70-109	65-110	72-107	37-135
Diethylphthalate	61-110	43-127	75-109	49-128
Dimethoate	3-109*	3-75*	5-66*	5-138*
Dimethylphthalate	56-113	12-141	76-108	46-131
Diphenyl ether	67-102	69-108	82-102	64-113
Di-n-butylphthalate	63-113	62-111	68-112	49-128
Di-n-octylphthalate	58-118	55-119	61-117	38-147
Ethylmethanesulfonate	67-108	70-103	68-105	57-114
Fluoranthene	66-108	61-112	66-109	23-142
Fluorene	75-112	65-110	66-115	30-146
Hexachlorobenzene	68-113	62-117	69-114	45-138
Hexachlorobutadiene	40-127	48-125	66-112	45-129
Hexachlorocyclopentadiene	31-135	10-156	33-152	5-154*
Hexachloroethane	40-117	42-122	56-112	31-125
Hexachloropropene	51-124	50-132	61-123	3-168
Indeno(1,2,3-cd)pyrene	64-125	62-122	66-123	28-149
Isodrin	72-117	27-135	71-126	1-157
Isophorone	63-105	65-94	65-93	31-122
Isosafrole	65-97	69-96	69-96	61-106
Methapyrilene	70-130	70-130	27-171	70-130
Methylmethanesulfonate	29-83	45-80	38-87	22-98
Naphthalene	68-108	53-123	70-107	33-137
Nitrobenzene	61-111	55-126	68-105	38-136
<i>n</i> -Nitrosodiethylamine	66-110	67-104	66-103	58-110
<i>n</i> -Nitrosodimethylamine	39-84	37-87	52-108	43-113
<i>n</i> -Nitrosodi- <i>n</i> -butylamine	55-119	58-106	65-125	52-136
<i>n</i> -Nitrosodi- <i>n</i> -propylamine	56-109	27-137	61-109	35-133
<i>n</i> -Nitrosodiphenylamine	75-112	64-127	67-105	46-150
<i>n</i> -Nitrosomethylethylamine	61-111	57-108	63-106	57-107
<i>n</i> -Nitrosomorpholine	53-107	60-102	65-113	53-129
<i>n</i> -Nitrosopiperidine	70-110	76-99	73-106	61-118
<i>n</i> -Nitrosopyrrolidine	62-109	62-105	76-103	60-118
	74-106	74-108	70-113	56-120
O,O,O-Triethylphosphorothioate	31-109	28-109	23-107	16-117
	70-130	70-130	70-130	70-130
Pentachloroacetophenone	2-158*	63-102	39-106	2-157
<i>p</i> -(Dimethylamino)azobenzene	79-108	73-104	67-110	24-145
Pentachlorobenzene	66-135	71-110	69-129	56-123
Pentachloronitrobenzene	48-108	7-136	47-110	5-140
Pentachlorophenol	66-126	66-112	70-117	63-121
Phenacetin	00-120	00-112	10-111	

Element B5 Revision No. 3 Date: 07/20/07 Page 20 of 34

Table B5-8 – Continued

Statistical Acceptance Limits for Semivolatiles by GC/MS (8270C)

<u> </u>	Waters		So	ils
Compound Name	LCS/LCSD (%)	MS/MSD (%)	LCS/LCSD (%)	MS/MSD (%)
Phenanthrene	68-111	68-116	70-107	4-176
Phenol	17-72	2-81	66-113	36-135
Pronamide	71-114	73-109	72-112	69-118
Pyrene	68-114	63-117	67-116	28-155
Pyridine	24-89	28-81	36-89	2-121*
Safrole	70-110	75-101	76-105	68-109
Tetraethyldithiopyrophosphate	59-120	68-117	63-114	58-123
Thionazin	67-115	70-104	64-125	42-143
a,a-Dimethylphenethylamine	1-77	4-65	70-130	70-130
N,N-dimethylformamide	70-130	70-130	70-130	70-130
N,N-diemthylacetamide	70-130	70-130	70-130	53-104
4,4'-Methylenebis(2-chloroaniline)	70-130	70-130	34-109	12-131
Indene	40-109	70-130	46-102	8-127
Quinoline	77-113	70-130	81-112	6-170
6-Methylchrysene	75-111	70-130	70-130	28-143
Dibenz(a,h)acridine	76-116	70-130	71-124	16-153
Phenothiazine	70-130	70-130	70-130	70-130
Dinoseb	70-130	70-130	70-130	70-130
Methyl Parathion	70-130	70-130	70-130	70-130
Octochlorostyrene	70-130	70-130	70-130	70-130
Parathion	70-130	70-130	70-130	70-130
Phorate	70-130	70-130	70-130	70-130
a-Methylstyrene	70-130	70-130	70-130	70-130
1,2,3,4-Tetrahydronaphthalene	70-130	70-130	70-130	70-130
1-Chloronaphthalene	70-130	70-130	70-130	70-130
Acylamide	70-130	70-130	70-130	70-130
Disulfoton	70-130	70-130	70-130	70-130
Famphur	70-130	70-130	70-130	70-130
(2-Bromoethyl)benzene	70-130	70-130	70-130	70-130
Dibenz(a,j)acridine	70-130	70-130	70-130	70-130

Acceptance limits are based on statistical evaluation of laboratory data and are subject to change.

* = Lower limit adjusted for compound MDL.

@ = less than 20 data points.

All 70-130 windows are advisory due to insufficient data points except for 1,4-naphthoquinone,

1,4-phenylenediamine and methapyrilene. These windows are 70-130 are to the poor reproducibility of these compounds.

Element B5 Revision No. 3 Date: 07/20/07 Page 21 of 34

Table B5-9

Quality Control Volatiles Halocarbons and Aromatics by GC (8021B)

	Waters		
Туре	Acceptance Limits (%)	Frequency	Corrective Action
Surrogates: Halocarbons; 1-Bromo-4- chlorobenzene (ELCD) Aromatics; 1-Bromo-4-	73-124 72-122	Each sample, MS, MSD, LCS, and blank	Reanalyze if the surrogate recovery is outside the limits unless matrix related problems are evident
chlorobenzene (PID) Halocarbons/Aromatics; 1-Bromo-4- chlorobenzene (ELCD/PID)	See above 81-121		
Non-halogenated; 2-hexanone (FID)	01-121		
Matrix Spikes: Spike all compounds of interest	See Table B5-10 for acceptance limits	Each group of samples of similar matrix/level (≤20) each method	Evaluation in conjunction with acceptable LCS. Acceptable LCS would be indicative of matrix effects on the MS/MSD.
Laboratory Control Samples/Check Standards: Spike all compounds of interest	See Table B5-10 for acceptance limits	Each group (≤20); LCSD is analyzed if sufficient volume is not available for MS/MSD	Reanalyze LCS and associated samples for compounds outside of acceptance limits. Compounds that fail high in the LCS, and are ND in the sample, can be reported.
Internal Standards: Fluorobenzene (ELCD/PID)	80-120	Each sample, MS, MSD, LCS, and blank	Reanalyze samples; if reanalysis confirms original, document on report and/or case narrative; in cases where matrix is elevating the internal standard (ISTD) recovery, a dilution may be performed to bring the ISTD within specifications
Matrix Spike Duplicates (RPD): Same compounds as matrix spikes	≤30%	Each group (≤20) of samples per matrix/level	Evaluated by analyst in relationship to other QC results
Blanks:	≤LOQ for all compounds	At least one per 20 samples and at least one per 24 hours	Reanalyze blank and associated samples if blank is outside limits

Element B5 Revision No. 3 Date: 07/20/07 Page 22 of 34

Table B5-10

Statistical Acceptance Limits for Volatiles Halocarbons and Aromatics by GC (8021B)

	Wa	iters
Compound Name	LCS/LCSD (%)	MS/MSD (%)
1,1,1-Trichloroethane	73-121	80-121
1,1,2,2-Tetrachloroethane	73-115	66-135
1,1,2-Trichloroethane	79-119	65-121
1,1-Dichloroethane	70-135	85-125
1,1-Dichloroethene	61-124	66-144
1,2-Dichlorobenzene	74-121	66-129
1,2-Dichloroethane	78-120	81-117
1,2-Dichloropropane	83-118	77-118
1,3-Dichlorobenzene	78-123	65-140
1,4-Dichlorobenzene	78-114	81-129
Benzene	75-114	77-131
Bromodichloromethane	81-115	80-118
Bromoform	72-126	64-143
Bromomethane	72-128	51-150
Carbon tetrachloride	67-116	81-128
Chlorobenzene	84-115	67-134
Chloroethane	65-130	67-146
Chloroform	75-121	81-119
Chloromethane	68-130	21-157
cis-1,2-Dichloroethene	67-120	71-136
cis-1,3-Dichloropropene	74-116	57-131
Dibromochloromethane	76-115	82-122
Dichlorodifluoromethane	58-150	51-181
Ethylbenzene	77-116	79-122
Methylene chloride	55-135	62-131
Tetrachloroethene	74-122	71-122
Toluene	76-116	88-122
trans-1,2-Dichloroethene	58-122	45-153
trans-1,3-Dichloropropene	72-119	55-123
Trichloroethene	71-117	62-136
Trichlorofluoromethane	67-128	47-154
Vinyl chloride	55-121	57-152
Xylene (total)	84-115	78-131

Element B5 Revision No. 3 Date: 07/20/07 Page 23 of 34

Table B5-11

Quality Control Petroleum Analysis by GC (8021B)

	Acceptance	Limits (%)		
Туре	Waters	Soils	Frequency	Corrective Action
Surrogates: a,a,a-Trifluorotoluene (PID)	66-136	72-122	Each sample, MS, MSD, LCS, and blank	Reanalyze if the surrogate recovery is outside the limits unless matrix-related problems are evident
Matrix Spikes: Spike all compounds of interest	See Table B	5-12	Each group (≤20) of samples per matrix/level	Evaluation in conjunction with acceptable LCS. Acceptable LCS would be indicative of matrix effects on the MS/MSD.
Laboratory Control Samples: Spike all compounds of interest	See Table B	5-12	Each group (≤20) of samples per matrix/level LCSD – analyzed if sufficient volume is not available for MS/MSD.	Reanalyze LCS and associated samples for compounds outside acceptance limits. Compounds that fail high in the LCS, and are ND in the sample, can be reported.
Matrix Spike Duplicates (RPD):	≤30% for wa soils	ters and	Each group (≤20) of samples per matrix/level	Evaluated by an analyst in relationship to other QC results
Blanks:	≤LOQ for all compounds		At least one per 20 samples and at least one per 24 hours	Reanalyze blank and associated samples if blank is outside limits
Internal Standards: 1-Chloro-3-fluorobenzene (PID)	-50% to +150 internal stand		Each sample, MS, MSD, LCS, and blank analyzed on the PID	Reanalyze samples; if reanalysis confirms original, document on report or case narrative; in cases where matrix is elevating the ISTD recovery, a dilution may be performed to bring ISTD within specifications

Element B5 Revision No. 3 Date: 07/20/07 Page 24 of 34

Table B5-12

Statistical Acceptance Limits for Petroleum Analysis by GC (8021B)

	Wat	ters	Soils		
Compound Name	LCS/LCSD (%)	MS/MSD (%)	LCS/LCSD (%)	MS/MSD (%)	
Benzene	86-119	78-131	76-118	52-135	
Ethylbenzene	81-119	75-133	77-115	56-132	
MTBE	82-124	70-134	71-118	52-141	
Naphthalene	52-136	50-146	61-117	53-122	
Toluene	82-119	78-129	72-115	59-129	
Total Xylenes	82-120	84-131	78-115	54-134	

Element B5 Revision No. 3 Date: 07/20/07 Page 25 of 34

Table B5-13Quality ControlTPH-GRO by GC (8015B)

	Acceptanc	e Limits (%)		
Туре	Waters	Soils	Frequency	Corrective Action
Surrogates: Trifluorotoluene (FID)	57-146	71-122	Each sample, MS, MSD, LCS, and blank	Reanalyze if the surrogate recovery is outside the limits unless matrix-related problems are evident
Matrix Spikes: Gasoline standard 8015B	63-154	39-118	Each group of samples of similar matrix/level (≤20) each method	Evaluation in conjunction with acceptable LCS. Acceptable LCS would be indicative of matrix effects on the MS/MSD.
Laboratory Control Samples: Gasoline standard	70-130	67-119	Each group (≤20) of samples. LCSD analyzed if sufficient volume is not available for MS/MSD.	Reanalyze LCS and associated samples. LCS that fails high, and GRO is ND in the sample, can be reported.
Matrix Spike Duplicates (RPD): Same compounds as matrix spikes	≤30% for w soils	aters and	Each group (≤20) of samples per matrix/level	Evaluated by analyst in relationship to other QC results
Blanks:	≤LOQ	·	At least one per 20 samples and at least one per 24 hours	Reanalyze blank and associated samples if blank is outside limits

Element B5 Revision No. 3 Date: 07/20/07 Page 26 of 34

Table B5-14Quality ControlTPH-DRO by GC (8015B)

	Acceptanc	e Limits (%)		
Туре	Waters	Soils	Frequency	Corrective Action
Surrogates: <i>o</i> -Terphenyl	54-127	60-131	Added to each sample, MS/MSD, blank, and LCS/LCSD during the extraction phase	Repeat extraction and analysis; if reanalysis confirms original result, report results and comment in case narrative
Matrix Spikes: #2 Fuel Oil 8015B API California	41-145	37-153	Each group (≤20) of samples per matrix/level	Reinject if surrogates appear low. If still out of spec, evaluate for matrix effect. If matrix effect, accept based on LCS data. If no matrix effect, repeat batch.
Laboratory Control Samples: No. 2 Fuel	53-126	74-118	Each group ≤20	Reinject if surrogates appear low. If still out of spec, repeat batch. LCS that fails high, and DRO is ND in the sample, can be reported.
Laboratory Control Duplicates (RPD): #2 Fuel	≤20% for w soils	raters and	Each group (≤20) of samples per matrix/level	Evaluated by analyst in relationship to other QC results
Blanks:	≤LOQ		Once per case or extraction group (≤20) of samples, each matrix, level, instrument	Inject a solvent blank first to be sure the analytical system is clean then reinject the blank itself. If the reinjected blank is acceptable, any samples extracted with this blank should be reinjected, if they, too, contain the analyte that was contaminating the blank. If the reinjected blank is unacceptable, any affected samples must be re-extracted.

Element B5 Revision No. 3 Date: 07/20/07 Page 27 of 34

Table B5-15

Quality Control Organochlorine Pesticides/PCBs (8081A/8082) Herbicides (8151A) Organophosphate Pesticides (8141A)

	Acceptance	e Limits (%)		
Туре	Waters	Soils	Frequency	Corrective Action
Surrogates: Organochlorine Pesticides:			Added to each sample, MS/MSD, blank, LCS/LCSD	Repeat extraction and analysis; if reanalysis confirms original result,
DCB	47-155	62-159	during the extraction	report results and comment
тсх	45-125	58-149	phase	in case narrative
Herbicides:				
DCAA	31-137	31-137		
Organophosphate Pesticides:				
2NMX	46-117	69-118		
Matrix Spikes: <u>Organochlorine Pesticides</u> (for 8081A/8082) (spike all compounds of interest, except PCBs, chlordane, and toxaphene);	See Table E through B5- acceptance	18 for	Each extraction group (≤20) of samples per matrix/level	Evaluation in conjunction with acceptable LCS. Acceptable LCS would be indicative of matrix effects on the MS/MSD.
<u>Herbicides</u> (spike all compounds of interest);				
Organophosphate Pesticides (spike all compounds of interest);				
PCBs (for 8082 only)	***			
Aroclor 1016 Aroclor 1260				

Element B5 Revision No. 3 Date: 07/20/07 Page 28 of 34

Table B5-15 – Continued

Quality Control Organochlorine Pesticides/PCBs (8081A/8082) Herbicides (8151A) Organophosphate Pesticides (8141A)

	Acceptance			
Туре	Waters	Soils	Frequency	Corrective Action
Laboratory Control Samples: <u>Organochlorine Pesticides</u> (for 8081A/8082) (spike all compounds of interest, except PCBs, chlordane, and toxaphene);	See Table B5-16 through B5-18 for acceptance limits		Each group (≤20) when MS/MSD falls outside established limits	Re-extract and reanalyze LCS and associated samples for compounds outside acceptance limits. Compounds that fail high in the LCS, and are ND in the sample, can be reported.
<u>Herbicides</u> (spike all compounds of interest);				
Organophosphate Pesticides (spike all compounds of interest);				
PCBs (for 8082 only)				
Aroclor 1016 Aroclor 1260				
Matrix Spike Duplicates (RPD): Organochlorine Pesticides (for 8081A/8082) (spike all compounds of interest, except PCBs, chlordane, and toxaphene);	≤30%	≤50%	Each group (≤20) of samples per matrix/level	Evaluated by analyst in relationship to other QC results. Acceptable LCS would be indicative of matrix effects on the MS/MSD.
Herbicides (spike all compounds of interest);				
Organophosphate Pesticides (spike all compounds of interest);				
PCBs (for 8082 only) Aroclor 1016 Aroclor 1260				

Element B5 Revision No. 3 Date: 07/20/07 Page 29 of 34

Table B5-15 – Continued

Quality Control Organochlorine Pesticides/PCBs (8081A/8082) Herbicides (8151A) Organophosphate Pesticides (8141A)

	Acceptance Li			
Туре	Waters	Soils	Frequency	Corrective Action
Blanks:	≤LOQ		Once per extraction group (≤20) of samples, each matrix, level, instrument	Inject a hexane or solvent blank first to be sure the analytical system is clean then reinject the blank itself. If the reinjected blank is acceptable, any samples extracted with this blank should be reinjected if they too, contain the analyte that was contaminating the blank. If the reinjected blank is unacceptable, any affected samples must be re-extracted.
Internal Standards(ISTD): <u>Herbicides</u> : 4,4'- dibromooctafluorobiphenyl (DBOB) <u>OP Pesticides</u> : 1-bromo-2- nitrobenzene	-50% to +100% internal standa of 12-hour STD RT change ≤30	rd area)	Each sample, MS, MSD, LCS, and blank	Reanalyze samples; if reanalysis confirms original, document on report and/or case narrative

Element B5 Revision No. 3 Date: 07/20/07 Page 30 of 34

Table B5-16

Statistical Acceptance Limits for Organochlorine Pesticides/PCBs (8081A/8082)

	Wa	Waters		ils
Compound Name	LCS/LCSD (%)	MS/MSD (%)	LCS/LCSD (%)	MS/MSD (%)
4,4-DDD	65-125	81-119	60-153	52-181
4,4-DDE	65-123	48-138	52-159	48-175
4,4-DDT	59-133	40-128	57-124	62-166
Aldrin	47-122	41-131	58-138	21-141
alpha-BHC	71-123	46-131	60-127	25-146
alpha-Chlordane	77-127	45-140	66-127	3-157
beta-BHC	64-143	30-147	68-137	31-176
Chlordane	N/A	N/A	N/A	N/A
delta-BHC	64-128	50-129	66-118	68-158
Dieldrin	71-129	48-135	71-133	68-139
Endosulfan I	77-120	45-132	71-130	41-166
Endosulfan II	75-124	53-136	73-134	65-144
Endosulfan sulfate	69-130	58-141	58-133	65-154
Endrin	53-132	55-127	65-134	58-171
Endrin aldehyde	61-131	46-131	40-119	63-125
Endrin Ketone	61-139	61-142	70-143	33-173
gamma-BHC (Lindane)	71-124	48-143	74-133	43-154
gamma-Chlordane	52-153	28-170	63-145	30-157
Heptachlor	52-153	70-138	61-129	70-138
Heptachlor epoxide	73-141	50-131	72-132	69-133
Kepone	N/A	N/A	N/A	N/A
Methoxychlor	49-155	55-131	56-168	74-162
PCB-1016	52-123	66-115	45-125	72-120
PCB-1221	N/A	N/A	N/A	N/A
PCB-1232	N/A	N/A	N/A	N/A
PCB-1242	N/A	N/A	N/A	N/A
PCB-1248	N/A	N/A	N/A	N/A
PCB-1254	N/A	N/A	N/A	N/A
PCB-1260	62-133	75-114	62-130	65-137
Toxaphene	N/A	N/A	N/A	N/A

Element B5 Revision No. 3 Date: 07/20/07 Page 31 of 34

Table B5-17

Statistical Acceptance Limits for Organophosphate Pesticides (8141A)

	Wa	Waters		ils
Compound Name	LCS/LCSD (%)	MS/MSD (%)	LCS/LCSD (%)	MS/MSD (%)
Bolstar	63-140	80-123	68-122	59-140
Coumaphos	54-140	71-125	44-167	18-210
Demeton-O	41-111	28-97	34-94	22-122
Demeton-S	20-151	85-191	63-170	41-214
Diazinon	52-130	82-160	68-146	60-148
Dichlorvos	66-162	83-165	25-154	48-181
Disulfoton	62-131	71-141	51-127	54-130
Dursban (Chlorpyrifos)	62-136	66-148	74-149	53-156
EPN	26-128	48-134	54-140	48-162
Ethion	61-140	74-121	57-153	57-157
Ethoprop	52-131	75-127	65-141	76-134
Ethyl parathion	64-129	58-157	58-145	34-181
Famphur	20-130	34-151	26-150	45-199
Fensulfothion	20-106	56-140	61-200	74-143
Fenthion	57-137	74-134	68-149	66-137
Guthion (Azinphos-methyl)	39-148	57-169	36-174	47-130
Malathion	62-120	46-150	75-116	39-176
Merphos	61-129	27-159	25-127	1-238
Methyl parathion	57-143	51-167	56-141	63-147
Mevinphos	20-111	63-140	42-130	25-231
Naled	52-145	24-183	19-175	19-170
Phorate	67-129	44-163	61-134	65-130
Ronnel	65-132	76-128	62-133	67-135
Stirophos	48-135	68-143	67-138	31-228
Tokuthion	69-138	86-124	66-142	51-168
Trichloronate	66-137	77-120	56-131	63-129
Trithion	58-135	69-138	71-120	55-173

Element B5 Revision No. 3 Date: 07/20/07 Page 32 of 34

Table B5-18

Statistical Acceptance Limits for Herbicides (8151A)

	Wa	Waters		ils
Compound Name	LCS/LCSD (%)	MS/MSD (%)	LCS/LCSD (%)	MS/MSD (%)
2,4,5-T	39-143	12-177	48-119	13-189
2,4,5-TP	52-140	44-161	44-137	30-151
2,4-D	50-144	38-176	40-140	41-158
2,4-DB	41-163	30-186	57-127	72-168
2,4-DP (Dichlorprop)	76-127	46-187	76-120	59-136
Dalapon	31-113	32-98	18-82	12-86
Dicamba	59-134	28-161	40-115	52-126
Dinoseb	19-96	13-132	1-36	1-48
МСРА	16-139	48-157	34-113	48-145
МСРР	42-126	43-159	37-114	33-123
Pentachlorophenol	61- 1 21	29-151	55-108	20-117

Element B5 Revision No. 3 Date: 07/20/07 Page 33 of 34

Table B5-19Quality ControlPAHs by HPLC (8310)

		e Limits (%)		
Туре	Waters	Soils	Frequency	Corrective Action
Surrogates: Nitrobenzene or Triphenylene	63-154 59-131	59-121 48-161	Added to each sample, MS/MSD, blank, LCS/LCSD during the extraction phase	Surrogate must be within the limits unless matrix related problems are evident. If matrix related problems are evident, comment on report and in case narrative.
Matrix Spikes: Spike all compounds of interest	See Table E	35-20	Each group (≤20) of samples per matrix/level	Evaluation in conjunction with acceptable LCS. Acceptable LCS would be indicative of matrix effects on the MS/MSD.
Laboratory Control Samples: Spike all compounds of interest	See Table E	35-20	Each group (≤20) of samples per matrix/level	Re-extract and reanalyze LCS and associated samples for compounds outside acceptance limits. Compounds that fail high in the LCS, and are ND in the sample, can be reported.
Matrix Spike Duplicates (RPD): Spike all compounds of interest	≤30%	≤50%	Each group (≤20) of samples per matrix/level	Evaluated by analyst in relation to other QC results
Blanks:	≤LOQ		Once per extraction group (≤20) of samples, each matrix/level	Inject a hexane or solvent blank first, to be sure the analytical system is clean then reinject the blank itself. If the reinjected blank is acceptable, any samples extracted with this blank should be reinjected, if they contain the analyte, which was present in the blank. If the reinjected blank is unacceptable, any affected samples must be re-extracted.

Element B5 Revision No. 3 Date: 07/20/07 Page 34 of 34

Table B5-20

Statistical Acceptance Limits for PAHs by HPLC (8310)

	Wa	Waters		ls
Compound Name	LCS/LCSD (%)	MS/MSD (%)	LCS/LCSD (%)	MS/MSD (%)
Acenaphthene	60-116	59-114	76-103	66-113
Acenaphthylene	59-96	54-117	66-110	60-118
Anthracene	67-109	68-104	68-117	1-168
Benzo(a)anthracene	73-114	63-111	72-115	14-71
Benzo(a)pyrene	68-112	65-133	75-111	61-127
Benzo(b)fluoranthene	72-113	71-121	71-119	69-112
Benzo(g,h,i)perylene	28-138	68-116	73-116	58-125
Benzo(k)fluoranthene	72-119	70-109	71-119	69-112
Chrysene	70-111	69-107	71-108	48-132
Dibenz(a,h)anthracene	44-130	75-115	73-116	50-146
Fluoranthene	70-112	67-119	73-107	1-190
Fluorene	66-106	65-121	71-106	70-112
Indeno(1,2,3-cd)pyrene	60-111	72-119	68-129	53-127
Naphthalene	55-94	54-112	61-120	2-155
Phenanthrene	67-115	66-115	73-112	68-125
Pyrene	69-113	66-106	67-117	1-172

Element B6 Revision No. 3 Date: 04/24/07 Page 1 of 4

B6. Instrument/Equipment Testing, Inspection, and Maintenance Requirements

Conditions of the laboratory equipment and instrumentation can have a marked effect on the accuracy and precision of analysis. In order to ensure timely production of data and prevent/address potential malfunctions, Lancaster Laboratories schedules routine preventive maintenance of instruments based on manufacturer's recommendations. Maintenance of the laboratory instruments is the responsibility of the technical group using the equipment in conjunction with our in-house Equipment Maintenance Group. A schedule of routinely performed instrument maintenance tasks is attached as Table B6-1. All preventive maintenance, as well as maintenance performed as corrective action, is recorded in instrument logs. Equipment/Instrumentation is assigned unique designations to allow tracking of the piece of equipment within laboratory documentation. This allows the laboratory to substantiate the instrument condition during the time it was used for testing.

Critical spare parts are kept in supply at the laboratory by the Equipment Maintenance Group. Most items not kept in stock at the laboratory are available through overnight delivery from the manufacturer. In addition, Lancaster Labs maintains multiple numbers of most of the critical instruments used in our laboratory operations. A recent equipment inventory may be found in the *Environmental Quality Policy Manual*. Because we are a large laboratory with redundant capacity, the problems of instrument downtime are minimized.

Element B6 Revision No. 3 Date: 04/24/07 Page 2 of 4

Table B6-1Preventive Maintenance Schedule

Instrument	Preventive Maintenance	Frequency
GC/MS	Change septum	AN*: Min. weekly
	Clean/replace injection port seal and liner	AN
	Check fans	Monthly
	Check cool flow	Monthly
	Clean source	Bimonthly or AN
	Change oil in diffusion pump	Annually
	Change oil in rough pump	Annually
GC Volatiles	Check propanol level in ELCD resevoir	AN: Min. semiweekly
	Check all liquid and gas flows	Prior to calib. or AN
	Clean ELCD cell, change reaction tube	AN
	Change ELCD, Teflon line, and resin tube	AN
	Replace absorbant trap in concentrators	AN
	Column maintenance	AN
	Change PID lamp	AN
	Precalibration instrument settings check	Prior to each calibration
GC	Septum change	Each run
	Column/injection port maintenance	AN
	Clean detector	AN
	Vacuum filters	Semiannually
	Leak check ECDs	Semiannually
Cold Vapor AA	Replace pump tubing	AN: Min. weekly
	Lubricate pump head and autosampler	AN
	Inspect optical cell and windows	Monthly

Element B6 Revision No. 3 Date: 04/24/07 Page 3 of 4

Table B6-1 – Continued

Preventive Maintenance Schedule

Instrument	Preventive Maintenance	Frequency
ICP	Replace pump winding	AN
	Lubricate autosampler	AN
	Vacuum instrument airfilters and air intakes	AN
	Change vacuum pump oil	Semiannually
	Clean optics and lenses	AN
	Clean Torch and injector tip	AN
	Clean nebulizer and spray chamber	AN
Infrared	Check on-demand diagnostics	Weekly
Spectrometer (FTIR)	Change dessicant	AN
HPLC	Pump lubrication	Annually
	Check pump seals	Annually
	Check valves cleaned or rebuilt	AN
	Replace and/or adjust detector bulb	AN
	Clean detector flow cell	AN
	Replace Teflon lines	AN
	Autosampler septa replacement	AN
	In-line filter sonication/cleaning	AN
	System passivation	AN
	PCRS pump lubrication	AN
	Empty waste liquid resevoir	Daily
ICP/MS	Change interface rough pump oil	Quarterly
	Change MS rough pump oil	Semiannually
	Clean cones and ion lenses	AN
	Clean torch, injector tip, nebulizer, and spray chamber	AN
	Change peristalic tubing	Weekly
	Vacuum instrument airfilters and air intakes	AN
	Empty waste liquid resevoir	Daily

Element B6 Revision No. 3 Date: 04/24/07 Page 4 of 4

Table B6-1 – Continued

Preventive Maintenance Schedule

Instrument	Preventive Maintenance	Frequency
Total Organic	Check IR zero and IR cell	AN
Carbon Analyzer	Check for leaks	AN
	Check acid pump calibration	Bimonthly
	Check persulfate pump calibration	Bimonthly
	Inspect 6-port rotary valve	AN
	Inspect sample pump head	AN
	Wash molecular sieve	AN
	Check sample loop calibration	Monthly
	Clean gas permeation tube	AN
	Inspect digestion vessel O-rings	AN
	Check activated carbon scrubber	AN
	Dust back and clean circuit boards	AN
Total Organic	Polish counter electrode	Daily
Halogen Analyzer	Polish sensor electrode	Daily
	Clean loaders and pistons	Weekly
Autoanalyzer	Clean sample probe	AN
spectrophotometer	Clean proportioning pump	AN
	Inspect pump tubing, replace if worn	AN
	Clean wash receptacles	Monthly

* AN means as needed. Any of these items may be performed more frequently if response during operation indicates this is necessary.

Element B7 Revision No. 3 Date: 04/24/07 Page 1 of 5

B7. Instrument Calibration and Frequency

All measuring and testing equipment having an effect on the accuracy or validity of calibrations and tests will be calibrated and/or verified on an on-going and routine basis. Procedures for initial calibration and continuing calibration verification are in place for all instruments within the laboratory. The calibrations generally involve checking instrument response to standards (standardization) for each target compound to be analyzed. The source and accuracy of standards used for this purpose are integral to obtaining the best quality data. Standards used at Lancaster Laboratories are purchased from commercial supply houses either as neat compounds or as solutions with certified concentrations. The accuracy and quality of these purchased standards is verified through documentation provided by these commercial sources. Most solutions and all neat materials require subsequent dilution to an appropriate working range. All dilutions performed are documented and the resulting solution is checked by obtaining the instrument response of the new solution and comparing with the response to the solution currently in use. Any discrepancies between the responses are investigated and resolved before the new solution is used. Each standard is assigned a code that allows traceability to the original components. The standard container is marked with the code, name of solution, concentration, date prepared, expiration date, and the initials of the preparer. Shelf life and storage conditions for standards are included in the standard operating procedures and old standards are replaced before their expiration date.

Each instrument is calibrated with a given frequency using one or more concentrations of the standard solution. As analysis proceeds, the calibration is checked for any unacceptable change in instrument response. If the calibration check verifies the initial response, the analysis proceeds. If the calibration check indicates that a significant change in instrument response has occurred, then a new calibration is initiated. If necessary, maintenance may be performed before the recalibration.

Some instrumentation calibration involves the comparison of an instrument reading to a physical standard with a known certified value such as balance/weights or comparison against other instrumentation/apparatus such as NIST thermometer.

Element B7 Revision No. 3 Date: 04/24/07 Page 2 of 5

Calibration records are usually kept in the form of raw data with the other instrument printouts. In cases where no data system is used, calibration data is manually recorded in notebooks. Any maintenance or repair is also recorded in a notebook. The information that is recorded either in the notebooks or on the instrument printout includes the date, instrument ID, employee name and/or identification number, and concentration or code number of standard.

The frequency of calibration and calibration verification, number of concentrations analyzed, and acceptance criteria for each of the instruments to be used are listed in Table B7-1. In addition to checking the instrument response to target compounds, the GC/MS units are checked to ensure that standard mass spectral abundance criteria are met. Before each calibration, instruments used for volatile compound analysis are tuned using bromofluorobenzene (BFB) and instruments used for semivolatile analysis are tuned using decafluorotriphenylphosphine (DFTPP). The key ions and their abundance criteria are listed in Table B7-2.

Element B7 Revision No. 3 Date: 04/24/07 Page 3 of 5

Table B7-1Instrument Calibration and Frequency

		Initial	Calibration	Cor	tinuing Ca	alibration Verification
Instrument	Frequency	# Std Conc.	Acceptance Criteria	Frequency	# Std Conc.	Acceptance Criteria
GC/MS Volatiles*	After C-cal fails	6	RF for SPCCs >0.300 for chlorobenzene, and 1,1,2,2-tetrachloroethane, and >0.100 for 1,1-dichloroethene, bromoform, and chloromethane CCCs ≤30%	Every 12 hours	1	RF for SPCCs >0.300 for chlorobenzene, and 1,1,2,2-tetrachloroethane, and >0.100 for 1,1-dichloroethene, bromoform, and chloromethane %Drift for CCCs ≤20
GC/MS Semivolatiles*	After C-cal fails	6	RF for SPCCs ⊉0.050 %RSD for CCCs ≤30%	Every 12 hours	1	RF for SPCCs ⊉0.050 %Drift for CCCs <i>≤</i> 20
GC VOA Halocarbons and/or Aromatics	After C-cal fails	At least 5	%RSD of <20% for individual compounds or for average of all compounds	Every 12 hours, or every 10 samples	1	%Drift ±15% for individual compounds or average of all compounds
GC Pesticides and Herbicides (DDT/Endrin degradation applies to method 8081A only)	Each new run After C-cal fails	5	≤20% RSD of RFs of initial calibration to use avg. RF, otherwise use curve fit. Degradation for DDT, endrin 15%. Alternatively, if the average of the %RSDs of all compounds in the calibration standard is ≤20%, then the AVG RF can be used for all compounds.	Every 10 samples Every 20 samples or 12 hours for method 8081A, 8082	1	 ≤ 5% difference for individual analytes, from initial response for quantitation or A CCV is also compliant if the average RPD for all compounds in the CCV standard is ≤15%. DDT/Endrin degradation check every 12 hours or 20 injections
HPLC PAHs	Each new run or after C-cal fails	5	20% RSD of RFs of initial calibration to use average RF, otherwise use curve fit. Alternatively, if the average of the %RSDs of all compounds in the calibration standard is ≤20%, then the AVG RF can be used for all compounds.	Every 10 samples	1	≤5% difference for individual analytes, from initial response for quantitation or A CCV is also compliant if the average RPD for all compounds in the CCV standard is ≤15%.
GC TPH-GRO	After C-cal fails	At least 5	%RSD of <20% otherwise use calibration curve	Every 12 hours or every 10 samples	1	%Drift ±15%
GC TPH-DRO	After C-cal fails	5	% RSD of <20% for average RF otherwise use calibration curve	Every 10 samples	1	%Drift ±15%

Element B7 Revision No. 3 Date: 04/24/07 Page 4 of 5

Table B7-1 – Continued

Instrument Calibration and Frequency

		Initial	Calibration	Con	Continuing Calibration Verification					
ICP Each ne run		Each new 1 Independent calibration run verification (ICV) within ±10%, standards <5%RSD		Every 10 samples	1	Same as initial				
ICP-MS	Each new run	3	Independent calibration verification (ICV) within ±10% Corr. coeff. ⊉0.995	CV) within 10 samples		±10% of true value				
CVAA	Each new run	5	Independent calibration verification within ±10% Corr. coeff. >0.995			±20% of true value				
TOC Analyzer (w) Inst #1 (w) Inst #2 (s) Inst #3	Weekly	1 5 4	±10% @ STD Corr. coeff. >0.995 Corr. coeff. >0.995	Every 10 samples	1	±10% of true value				
Autoanalyzer	Daily	6	Соп. coeff. >0.995	Every 10 samples	1	±10% of true value				
Infrared Spectrophotomet er (FTIR)	Monthly	7	Согт. coeff. >0.995	Every 10 samples	1	±10% of true value				
Balance	Daily	4	Top-loading balance \pm .5% Analytical balances \pm .1% for weights >.1 g .05 g \pm .5% .02 g \pm 1.0% .01 g \pm 2.0% .005 g \pm 2.0%	N/A	N/A	N/A				

*All compounds with %RSD >15 must use first or second order regression fit of the six calibration points. Alternatively, the AVG RF can be used for each compound.

Abbreviations

Std Conc. - The number of standard concentrations used

SPCCs - System performance check compounds

CCCs – Calibration check compounds

RF - Response factor

%RSD - Percent relative standard deviation

CCV - Continuing calibration verification

CVAA - Cold vapor atomic absorption spectrophotometer

HPLC - High Performance Liquid Chromatography

ICP – Inductively coupled plasma spectrophotometer; ICP run also includes interelement correction check standard (beginning and end of run)

Element B7 Revision No. 3 Date: 04/24/07 Page 5 of 5

Table B7-2Mass and Ion Abundance Criteria

BFB Key lons	Abundance Criteria
50	15% to 40% of mass 95
75	30% to 60% of mass 95
95	Base peak, 100% relative abundance
96	5% to 9% of mass 95
173	Less than 2% of mass 174
174	Greater than 50% of mass 95
175	5% to 9% of mass 174
176	Greater than 95% but less than 101% of mass 174
177	5% to 9% of mass 176
DFTPP Key lons	Abundance Criteria
51	30% to 60% of mass 198
68	Less than 2% of mass 69
70	Less than 2% of mass 69
127	40% to 60% of mass 198
197	Less than 1% of mass 198
198	Base peak, 100% relative abundance
199	5% to 9% of mass 198
275	10% to 30% of mass 198
365	Greater than 1% of mass 198
441	Present but less than mass 443
442	Greater than 40% of mass 198
443	17% to 23% of mass 442

Element B8 Revision No. 2 Date: 07/16/07 Page 1 of 1

B8. Inspection/Acceptance Requirements for Supplies and Consumables

Analytical results can be affected by the type and quality of reagents, standards, and equipment. Time and effort could be lost if the reagents, standards, and equipment do not meet the specifications required for the method. Therefore, the specifications and/or requirements for reagents, standards, and equipment necessary to perform the testing methods are included in the analytical SOPs. Each technical department evaluates the reagents, standards and equipment they receive for acceptance and use in specific procedures. There are SOPs in place for procurement of supplies, and acceptance/evaluation of reagents and standards.

Sample bottles and vials provided to clients are purchased pre-cleaned to meet EPA specifications and guidelines for sample containers. Each lot of preservative purchased is analyzed for quality (signs of contamination) before being added to a sample container.

The deionized water system utilized by Lancaster Laboratories generates water for analytical purposes. Reagent water is defined as water that has been purified to remove contaminants and interferences to a level low enough to be acceptable for use in laboratory procedures. Analytes must not be present above LLI analytical detection levels or corrective action/data qualification may be needed. The routine test parameters for reagent water used by Lancaster Laboratories (LLI) are based on ASTM D1193, under Type II water and the USEPA Manual for the Certification of Laboratories Analyzing Drinking Water requirements. In addition, analytical methods employ the use of preparation and/or method blanks to demonstrate that the reagent water is appropriate for use.

Element B9 Revision 1 Date: 07/01/04 Page 1 of 2

B9. Data Acquisition Requirements (Non-Direct Measurements)

The data acquired from the analytical procedures will be assessed for precision, accuracy, representativeness, comparability, and completeness (PARCCs). These specifications will be met through precision and accuracy criteria as specified in Element B5 and MDLs as specified in Element B4.

<u>Precision</u> – Precision is determined by measuring the agreement among individual measurements of the same property, under similar conditions. The laboratory objective is to equal or exceed the precision demonstrated for the applied analytical method on comparable samples. The degree of agreement is expressed as the relative percent difference (RPD%). Evaluation of the RPD% is based on statistical evaluation of past lab data or guidelines within the methods for organic and inorganic analyses. External evaluation of precision is accomplished by analysis of standard reference material and interlaboratory performance data.

<u>Accuracy</u> – Accuracy is a measure of the closeness of an individual measurement to the true or expected value. Analyzing a reference material of known concentration or reanalyzing a sample which has been spiked with a known concentration/amount is a way to determine accuracy. Accuracy is expressed as a percent recovery (%R). Evaluation of the %R is based on statistical evaluation of past lab data or guidelines within the methods for organic and inorganic analyses.

<u>Representativeness</u> – Representativeness expresses the degree to which data accurately represents the media and conditions being measured. The representativeness of the data from the sampling site will depend on the sampling procedure. Sample collection is the responsibility of the client. Samples will be homogenized, if required, as part of the laboratory sample preparation. By comparing the quality control data for the samples against other data for similar samples analyzed at the same time, representativeness can be determined for this objective.

Element B9 Revision 1 Date: 07/01/04 Page 2 of 2

<u>Comparability</u> – Comparability conveys the confidence with which one set of data can be compared to another. The analytical results can be compared to other laboratories by using traceable standards, standard methodology, and consistent reporting units. The Laboratory Quality Assurance Program documents internal performance, and the interlaboratory studies document performance compared to other laboratories.

<u>Completeness</u> – Completeness is a measure of the quantity of valid data acquired from a measurement process compared to the amount that was expected to be acquired under the measurement conditions. The completeness of an analysis can be documented by including in the data deliverables sufficient information to allow the data user to assess the quality of the results. Additional information will be stored in the laboratory's archives, both hard copy and magnetic tape. SOPs are in place to provide traceability of all reported results.

<u>Uncertainty</u> – (ISO 17025) "All uncertainty components which are of importance in a given situation shall be taken into account using appropriate methods of analysis." (5.4.6.3) This means the laboratory must determine the uncertainty contribution of all steps in the testing process such as equipment, calibration, standards, reagents, preparation, cleanups, etc. Since, in most methods, the laboratory control sample (LCS) goes through the entire process of preparation to analysis; all factors that would contribute to uncertainty will be evident through the LCS results. LCS are performed with every batch of samples where appropriate for the method.

Element B10 Revision No. 1 Date: 07/01/04 Page 1 of 10

B10. Data Management

At a minimum, data management is initiated when Lancaster Laboratories receives the samples from the client. In many instances, client-communicated requirements for bottleware and analyses are documented on an Incoming Sample Activity Report (ISAR) prior to sample receipt. This communication helps ensure that analysis and reporting meet the client needs. Sample information and requested analyses are entered into the Laboratory Information Management System (LIMS) where it can be accessed by all laboratory personnel. The entry is based on the ISAR and the client's COC. After entry, labels are printed for each container and an Acknowledgement is printed for the client. This will show exactly what was entered for the client's samples.

The flow of data from the time the samples enter the laboratory until the data is reported is summarized in Table B10-1. Raw analytical data generated in the laboratories is collected on printouts from the instruments and associated data system or manually in bound notebooks. All data is tracked by a unique seven-digit sample number assignment. Analysts review data as it is generated to determine that the instruments and methods are performing within specifications. This review includes calibration checks, surrogate recoveries, blank checks, retention time reproducibility, and other QC checks described in Elements B4, B5, and B7. If any problems are noted during the analytical run and/or at completion, corrective action is taken and documented.

Any data recorded manually is collected in bound notebooks and recorded in indelible ink, as described in Element A9. Procedures are in place for handling erroneous entries and all changes are dated, initialed, and explained. All data is uploaded automatically or manually entered into the LIMS. The LIMS is programmed to accept and track the results of quality control samples including blanks, surrogates, recoveries, duplicates, controls, and reference materials. The LIMS is programmed with the acceptance criteria for each QC type and if results are outside specifications, then a message is displayed to the analyst.

Element B10 Revision No. 1 Date: 07/01/04 Page 2 of 10

Data obtained from instrument printouts are dated and contain the signature and/or identification of the analyst responsible for the generation. The LIMS also produces control charts and statistics, which are reviewed by QA staff for trends that may indicate problems with the analytical data.

Computer technology is an integral part of laboratory operations including analytical instrumentation and central corporate functions. The laboratory makes extensive use of computers for business applications, technical operations, and the QA program. The Information Technology (IT) group support hardware and software applications at all levels as their primary function. Although some commercial software has been adapted to the laboratory operation, a larger portion is custom programmed by the IT group. The System Development Life Cycle (SDLC) approach is utilized and hardware and software are evaluated for appropriate functionality, accuracy, and security. Changes to systems and testing are documented. As part of QA's routine traceability audits, the electronic records are reviewed.

The principal criteria used to validate data will be the acceptance criteria described in Elements B4, B5, and B7 and protocols specified in laboratory SOPs. Following review, interpretation, and data reduction by the analyst, data is transferred to the LIMS by direct data upload from the analytical data system or manually. This system stores client information, sample results, and QC results. Element D1 describes the data deliverables validation performed by the laboratory.

Project files are created per client/project and contain chain-of-custody records, analysis requirements, and laboratory acknowledgments that document samples received, laboratory sample number assignment, and analyses requested. Raw data is filed per batch number assignment and laboratory sample number that correlates to the sample receipt documents. When the project is complete, all documentation is archived for 10 years in a locked storage area.

Element B10 Revision No. 1 Date: 07/01/04 Page 3 of 10

Table B10-1

Sample and Data Flow

Action	Personnel Involved
Sample received at Lancaster Labs	Sample Administration
 Unpacked and reconciled against the client paper work or Chain of Custody 	
SA Documentation log completed	
Sample is entered into sample management system	Sample Administration
Lab ID number assigned	
Analyses entered	
Chain of custody started	
Storage location assigned	
Electronic record of sample number	
Labels generated	
 Acknowledgement printed (record of samples received and analysis entered) 	
Sample stored in assigned location (refrigerator, freezer, etc.)	Sample Support
Electronic record of sample #, bottle code, and location	
Acknowledgment sent to client	Sample Administration
Sample removed from storage for analysis	Technical Personnel
Electronic requisition of sample number by bottle code	
Necessary aliquot taken	
Sample returned to storage	
Analysis is performed according to selected analytical method	Technical Personnel
Raw data recorded	
Reviewed	
 Transferred to computer by chemist or technician* (this is tracked by the unique sample number and batch number.) 	
Computer performs calculations as programmed according to methods	Data Processing
Second chemist or supervisor verifies raw data vs. LIMS entry	Technical Personnel
Analytical reports are printed and reviewed prior to sending to the client	Billing and Reporting staff and Technical Personnel
Data package deliverables are assembled	Data Package Group
Data packages are reviewed prior to sending to client	QA, Data Package Personnel, and Laboratory Management
Data packages are scanned, creating Adobe Acrobat PDF files, which can be e-mailed or stored on a CD-ROM and sent to the client	Data Package Personnel, Office Services, Technical Personnel
Hard copy of batch raw data is archived	
Electronic files are backed up and archived	

* Analyses requiring the chemist's interpretation may involve manual data reduction before entry into the computer.

Element B10 Revision No. 1 Date: 07/01/04 Page 4 of 10

Each analytical run is reviewed by a chemist for completeness and accuracy before interpretation and data reduction. The following calculations are used to reduce raw data to reportable results.

Semivolatiles and Volatiles by GC/MS Calculations:

GC/MS calculation used by the data system to determine concentration in extract for semivolatiles or in the sample itself for volatiles:

$$Q = \frac{(A_x) (I_s)}{(A_{is}) (RRF) (V_i)}$$

Where:

Q = Concentration determined by the data system (mg/L)
 A_x = Peak area
 A_{is} = Internal standard peak area
 I_s = Amount of internal standard injected (ng)
 RRF = Relative response factor
 V_i = Volume of extract injected (L) or volume sample purged (mL)

The extract concentration is further reduced by considering the initial sample weight or volume and the final extract volume:

Sample Concentration =
$$\frac{(Q) (D) (F) (1000)}{IV (or IW)}$$

Where:

- Q = Concentration determined by the data system (mg/L)
- D = Dilution factor if needed
- F = Final extract volume (mL)
- IW = Initial sample weight (g)
- IV = Initial sample volume (mL)

Element B10 Revision No. 1 Date: 07/01/04 Page 5 of 10

Results are reported in µg/L for water samples and µg/kg for solid samples. Soil samples are reported on a dry-weight basis. The results are reported on Lancaster Labs Analysis Report Forms shown in Appendix A.

Volatiles by GC and Petroleum Analysis Calculations:

For volatiles by GC and petroleum analysis, a calibration is performed with a minimum of five levels using either an internal standard calibration or external calibration.

A. Internal standard calibration

$$CF = \frac{(A_x)(C_{is})}{(A_{is})(C_x)} \text{ or } CF = \frac{(H_x)(C_{is})}{(H_{is})(C_x)}$$

Where:

- A_x = Peak area of the compound to be measured in that level of the initial calibration
- H_x = Height area of the compound to be measured in that level of the initial calibration
- A_{is} = Peak area of the internal standard
- H_{is} = Height are of the internal standard
- C_{is} = Concentration of the internal standard
- C_x = Concentration of the compound spiked into that level

$$\overline{CF} = \frac{\sum all \ CF \ in \ the \ initial \ calibration}{n}$$

Where:

n = Number of levels in the initial calibration

Element B10 Revision No. 1 Date: 07/01/04 Page 6 of 10

$$Concentration = \frac{(A_x)(C_{is})}{(A_{is})(\overline{CF})} \times DF \text{ or } \frac{(H_x)(C_{is})}{(H_{is})(\overline{CF})} \times DF$$

Where:

 A_x = Peak area of the compound to be measured

 H_x = Height area of the compound to be measured

A_{is} = Peak area of the internal standard

H_{is} = Height area of the internal standard

 C_{is} = Concentration of the internal standard.

 \overline{CF} = Average calibration factor

DF = Dilution factor or preparation factor

B. External calibration

$$Concentration = \frac{A_x}{CF} \times DF \text{ or } \frac{H_x}{CF} \times DF$$

Where all parameters are defined in A above.

Results are reported in μ g/L for water samples and mg/kg for solid samples. Soil samples are reported on a dry-weight basis. Results are reported on Lancaster Labs Analysis Report Forms shown in Appendix A.

Herbicides and Organophosphate Pesticides:

For herbicides and organophosphate pesticides, an internal standard calibration is used. The results are calculated from the average response factor when the individual analyte %RSD is \leq 20% or when the <u>average</u> of all analyte %RSDs is \leq 20%. Otherwise, the results are calculated using the curve.

A. Curve

Sample Concentration, $\mu g/kg$ or $\mu g/L = Extract$ Concentration $\times \frac{DF \times FV \times AF}{IW}$ (or IV)

Where:

Extract Concentration = (peak ht. – y-intercept)/slope FV = Final volume IW = Initial weight (g) IV = Initial volume (mL) DF = Dilution Factor AF = Additional preparation factors

B. Average response factor

Extract Conc.,
$$mg/L = \frac{Pk \ Ht \ in \ sample}{ARF} \times \frac{Int \ std \ ht \ in \ L3 \ std}{Int \ std \ ht \ in \ sample}$$

Where:

ARF = Average Response Factor [(RF Calib1 + ... + RF Calib5)/5] RF = Peak height/conc. in standard

Results are reported as μ g/L for water samples and μ g/kg for solid samples. Soil samples are reported on a dry-weight basis. Results are reported on Lancaster Labs Analysis Report Forms shown in Appendix A.

PAHs by HPLC and Pesticide/PCB Calculations:

The results for the PAHs by HPLC and pesticide/PCBs analyses are calculated using external standard. The pesticides/PCBs results are calculated from the average response factor when the individual analyte %RSD is \leq 20% or when the average of all analyte %RSDs is \leq 20%. Otherwise, the results are calculated using the curve.

$$\frac{Pk Ht \times FV \times DF \times AF}{ARF \times IV \text{ (or IW)}} = Concentration (mg/L \text{ or } \mu g/kg)$$

Where:

Pk Ht	Ξ	Peak height found in sample
ARF	==	Average response factor [(RFCalib1 ++ RFCalib5)/5]
FV		Final volume of sample extract (mL)
DF	=	Dilution factor (where applicable)
IV	==	Initial volume of sample extracted (mL)
IW	=	Initial weight of the sample extracted (g)
AF	=	Additional factor

If a curve is used, then $\frac{Pk Ht}{ARF}$ is replaced by the following in the preceding equation:

Results are reported as μ g/L for water samples and μ g/kg for solid samples. Soil samples are reported on dry-weight basis. Results are reported on Lancaster Labs Analysis Report Forms shown in Appendix A.

Element B10 Revision No. 1 Date: 07/01/04 Page 9 of 10

TPH-GRO and TPH-DRO Calculations:

For TPH-GRO and TPH-DRO, an external calibration procedure of at least five levels of standards is used. The resulting point-to-point calibration curve is used by the data system to calculate analyte concentrations. The equations that the data system uses for calculating analyte concentrations are shown below:

$$Concentration = \left(\frac{Ax}{ARF}\right) \times (DF)$$

Where:

Ax = Total peak area in region defined as analyte

DF = Dilution factor

ARF = Average response factor from the calibration curve, calculated as shown below:

$$ARF = \frac{[(As1/Qs1) + (As2/Qs2) + (As3/Qs3) + (As4/Qs4) + (As5/Qs5) + ...(Asn/Qsn)]}{n}$$

Where:

As# = Analyte peak sum area for all components of calibration level #

Qs# = Analyte concentration sum for all components of calibration level #

For DRO, the concentration determined is then multiplied by F/IV (or IW) to account for the sample preparation.

Where:

F = Final extract volume (mL)

IV = Initial sample volume (mL)

IW = Initial sample weight (g)

Results are reported in mg/L for water samples and in mg/kg for solid samples. Soil samples are reported on a dry-weight basis. Results are reported on Lancaster Labs Analysis Report Forms shown in Appendix A.

Element B10 Revision No. 1 Date: 07/01/04 Page 10 of 10

Inorganic Calculations:

The results for inorganic analyses are calculated using the following equation:

$$Concentration = \frac{(A) (D) (E)}{IV (or IW)}$$

Where:

- A = The concentration determined using calibration data programmed into the instrument (mg/L)
- D = Dilution factor if needed
- E = Final extract volume (mL)
- IW = Initial sample weight (g)
- IV = Initial sample volume (mL)

Results are usually reported in mg/L for water samples and in mg/kg for solid samples. Alternate units are available upon request. Soil samples are reported on a dry-weight basis. The results are reported on Lancaster Labs Analysis Report Forms shown in Appendix A.

GROUP C

ASSESSMENT AND OVERSIGHT

Element C1 Revision No. 2 Date: 04/24/07 Page 1 of 23

C1. Assessments and Response Actions

Whenever any of the data generated falls outside of the established acceptance criteria outlined for instrument tune and calibration (Element B7) and internal QC (Element B5), the cause of this irregularity must be investigated, corrected, and documented. The documentation will be used to prevent a recurrence of the problem and to inform management of the situation.

If the results are not within acceptance criteria, the appropriate corrective action will be initiated. This may include, but is not limited to, checking calculations and instrument performance, reanalysis of the associated samples, examining other QC analyzed with the same batch of samples, and qualifying results with a comment stating the observed deviation.

A standard operating procedure is in place, which outlines the procedures to be followed when quality control data for an analysis falls outside of previously established acceptance limits. All batch QC data is entered into the computerized QC system promptly after its generation and evaluated for compliance. When the QC (blanks, check standards, continuing calibration verification, LCS/LCSD, etc) is noncompliant then corrective action is needed.

The Quality Assurance Department reviews monthly summaries of the quality control data entered onto the computerized sample management system by analysts. Control charts and statistics are reviewed for trends that may indicate problems with the analytical data. In this way, small problems are identified before they have any significant impact on laboratory results.

System audits are conducted on each department at Lancaster Laboratories by members of the Quality Assurance Department to ensure compliance with laboratory procedures and assist in identifying and correcting deficiencies. The audits include checks on methodology, reagent preparation, equipment calibration and maintenance, quality control results, and training of personnel. These audits may entail observation of procedures in process or a review of records to demonstrate traceability and compliance with all documented record keeping procedures. The QA Department will then issue a written report to management and the department that summarizes the audit. The department must respond in

Element C1 Revision No. 2 Date: 04/24/07 Page 2 of 23

writing to the audit report within 30 days of report receipt. The response must address the corrective action that needs to be taken along with an expected completion date and identify the employee responsible for completing the action. Audit results and the corresponding response are communicated to laboratory personnel and management. Follow-up audits verify that proper corrective action has been implemented.

Audits by outside organizations including clients, regulatory personnel, and the USEPA are permitted by arrangement with the Quality Assurance Department.

Performance audits consist of both intralaboratory and interlaboratory check samples. QC samples from commercial suppliers are analyzed quarterly to assess laboratory accuracy including a double blind program. The Laboratory also participates in a number of interlaboratory performance evaluation studies, which involve analysis of samples with concentrations of analytes that are known to the sponsoring organization, but unknown to the laboratory. Inorganics, pesticide/herbicides, trihalomethanes, volatile organic compounds, semivolatile organic compounds, and traditional wet chemistry analyses are analyzed by Lancaster Labs for studies conducted by various state agencies and private vendors (WS, WP, solid and hazardous waste). Representative results from some of these studies are in Figure C1-2.

When performance evaluation studies are identified as out of specification or when a nonconformance is due to a repetitive laboratory error, system failures, or observable trend, an Investigation and Corrective Action Report (ICAR) is issued. An example of an ICAR form is in Figure C1-1. The QA Department will circulate all completed Investigation and Corrective Action forms to the appropriate management.

Annually the QA Department itself is audited for compliance with corporate and departmental procedures, and meeting regulatory requirements. In a separate event, the laboratory Executive Group reviews the previous year's activities and documentation to evaluate the effectiveness of the quality system and its implementation/adequacy for the operation.

Element C1 Revision No. 2 Date: 04/24/07 Page 3 of 23

Figure C1-1

Lancaster Laboratories

No. _____

Investigation and Corrective Action Report (ICAR)

Part I - Description of the Problem (Attach additional pages, if needed, in addition to supporting documentation.)

- 1. Date of issue:
- Department(s) involved:
- 3. LL sample number(s) involved:
- 4. Nature of the problem (describe in detail):

Initiated by:

Part II - The Investigation (Attach additional pages, If needed, in addition to supporting documentation.)

- 1. Steps taken to investigate the problem:
- Explanation of probable cause(s) (Refer to LOM-SOP-ES-230 Procedure section for a list of the six areas of real/root cause):
- Steps taken to prevent future occurrence (describe in detail and use corrective action check boxes below):

Corrective action(s): Check the appropriate box and attach supporting documentation

- Employee(s) retrained. (Attach proof of training)
- Employee(s) reread SOP, OMC, EQV, etc. (Attach copy of updated training record form)
- Other measures taken (Allach memo or equivalent proof)
- Further investigation needed from additional areas. (Include proof of the transfer of information)
- 4. Must investigation be complete before reporting further data to clients? Yes No
- In addition to the samples listed above, would any additional data already reported to clients be affected by this problem? Yes No If yes, please explain:

Investigator(s):	Date:	
Departmental Review*:	Date:	<u> </u>
Quality Assurance:	Date:	
Return to QA by:	Date:	

2064.04

Element C1 Revision No. 2 Date: 04/24/07 Page 4 of 23

Figure C1-2

Final Report Results For Laboratory Lancaster Laboratories

Page 1 of 20

Element C1 Revision No. 2 Date: 04/24/07 Page 5 of 23

Figure C1-2 – Continued

Study: WP-144 ERA Laboratory Code: L272101 Laboratory Name: Lancaster Laboratories

Inorganic Results

Page 2 of 20

Element C1 Revision No. 2 Date: 04/24/07 Page 6 of 23

Figure C1-2 – Continued

WP-144 Final Complete Report

QA Se Lanca 2425 I Lanca	Doupe EPA ID: enior Specialist ERA Laboratory Code aster Laboratories Report Issued: New Holland Pike Study Dates: aster, PA 17601-5994 Agency ID: 56-2308 Study Dates					PA00009 de: L272101 03/22/07 01/15/07 - 03/01/07		
Anal. No,	Analyte	Units	Reported Value	Assigned Value	Acceptance Limits	Performance Evaluation	Method Description	
Demai	nd							
0037	TOC	mp/L	20.3	18.6	15.4 - 21.8	Acceptable	EPA 415,1	
Simple	e Nutrients							
1820	Nitrate + Nitrite as N	mg/L	0.749	0.853	0.688 - 1,01	Acceptable	EPA 353.2	
Total (Cvanide			•	·			
0071	Cyanide, total	mg/L	0.293	0.329	0.171 - 0.493	Acceptable	EPA 335.4	
Total I	Phenolics (4-AAP)			h			,	
0097	Phenolics, total	mg/L	0.105	0.140	0.0694 - 0.211	Acceptable	EPA 420.2	
Oil & (Grease	<u> </u>	1	[
· · · · · · · · · · · · · · · · · · ·	Oil & Grease (Gravimetric)	mg/L	51.1	67.5	45.8 - 80.3	Acceptable	EPA 1664A	
Trace	Metals	1	<u></u>	1	1	1	L. MIGGIN	
	Aluminum	μg/L	Γ	518	485 - 749	Not Reported		
1 A. S. A. A. A.	Antimony	μg/L	322	307	209 - 372	Acceptable	EPA 6020	
1 · · · ·	Arsenic	µg/L	438.	4D1	335 - 47D	Acceptable	EPA 6020	
1015	Barium	ug/L	2080.	2080	1810 - 2350	Acceptable	EPA 6020	
0003	Beryllium	μg/L	79.9	80.8	67.5 - 91.4	Acceptable	EPA 6020	
1025	Baron	յեր հետ	13.5	1890	1540 - 2200	Not Reported	EFA 0020	
0004	Cadmium	μg/L	634.	673	574 - 764	Acceptable	EPA 6020	
0006	Chromium	µg/L	579,	568	495 - 642	Acceptable	EPA 6020	
0006	Cobalt	µg/L		585	514 - 656	Not Reported		
0007	Copper	ug/L	696.	660	594 - 726	Acceptable	EPA 6020	
0008	Iron	µg/L		604	532 - 685	Not Reported		
0012	Lead	µg/∟	655	647	565 - 726	Acceptable	EPA 6020	
0010	Manganese	ug/L	1.17771	227	202 - 252	Not Reported		
0074	Mołybdenum	µg/L		104	83.2 - 124	Not Reported		
0011	Nickel	μg/L	181,	175	152 - 199	Acceptable	EPA 6020	
0013	Selenium	µg/L	1040.	991	768 - 1150	Acceptable	EPA 6020	
0017	Silver	µg/L		181	155 - 208	Not Reported		
0075	Strontium	μg/L		91.1	76.9 - 105	Not Reported		
0018	Thallium	ug/L	572.	552	445 662	Acceptable	EPA 6020	
0014	Vanadium	µg/L	· · · ·	1530	1340 - 1710	Not Reported	· · · · · · · ·	
0015	Zinc	µg/L		169	143 - 200	Not Reported	******	

Page 3 of 20 All analytes are included in ERA's A2LA accreditation. Lob Code: 1539-01

Element C1 Revision No. 2 Date: 04/24/07 Page 7 of 23

Figure C1-2 – Continued

WP-144 Final Complete Report

Amy Doupe QA Senior Specialist Lancaster Laboratories 2425 New Holland Pike Lancaster, PA 17601-5994 717-656-2308			EPA ID: PA00009 ERA Laboratory Code: L272101 Report Issued: 03/22/07 Study Dates: 01/15/07 - 03/01/07 Agency ID:				
Anal. No.	Anaiyte	Units	Reported Value	Assigned Value	Acceptance Limits	Performance Evaluation	Method Description
Trace	Metais						
0001	Aluminum	µg/L	5 27.	618	485 - 749	Acceptable	EPA 6010B
0016	Antimony	µg/L	303.	307	209 - 372	Acceptable	EPA 6010B
0002	Arsenic	µg/L	388.	401	335 - 470	Acceptable	EPA 6010B
1015	Barium	µg/L	2070.	2080	1810 - 2350	Acceptable	EPA 6010B
0003	Beryllium	µg/L	81.4	80.8	67.5 - 91.4	Acceptable	EPA 60108
1025	Boton	µg/L	1840.	1890	1540 - 2200	Acceptable	EPA 6010B
0004	Cadmium	µg/L	658.	673	574 - 764	Acceptable	EPA 60108
0006	Chromium	hâ\r	557.	568	495 - 642	Acceptable	EPA 60108
0005	Cobalt	µg∕L	606	585	514 - 656	Acceptable	EPA 6010B
0007	Copper	µд/L	672.	660	594 - 726	Acceptable	EPA 6010B
0008	iren	µg∧_	593	604	532 - 685	Acceptable	EPA 60108
0012	Lead	μg/L	655.	647	565 - 726	Acceptable	EPA 6010B
0010	Manganese	µg/L	234.	227	202 - 252	Acceptable	EPA 6010B
0074	Molybdenum	µg/L	104.	104	B3.2 - 124	Acceptable	EPA 60109
0011	Nickel	µg/L	177.	175	152 - 199	Acceptable	EPA 60109
0013	Selenium	µg/L	926.	991	788 1150	Acceptable	EPA 6010B
0017	Silver	μg/L	179.	181	155 - 208	Acceptable	EPA 6010B
0075	Strontium	µg/L	92.3	91.1	76,9 - 105	Acceptable	EPA 6010B
0018	Thallium	µg/L	534.	552	446 - 662	Acceptable	EPA 6010B
0014	Vanadium	µg/L	1510.	1530	1340 - 1710	Acceptable	EPA 60108
0015	Zinc	µg/L	175.	169	143 - 200	Acceptable	EPA 6010B
Mercu	N						
	Мекситу	μg/L	14.9	16.4	10.1 - 22.2	Acceptable	EPA 7470A
Tin &	Titanium						
	Tin	µg∕L	1620.	1700	1340 - 2060	Acceptable	EPA 6010
0076	Titenium	µg/L	183.	190	163 - 214	Acceptable	EPA 6010
Sulfid	e						
2005	Sulfide	mg/L	6.99	8.18	3.97 - 11.6	Acceptable	EPA 376,1

Page 4 of 20 All analytes are included in ERA's A2LA accreditation. Lab Code: 1539-01

Element C1 Revision No. 2 Date: 04/24/07 Page 8 of 23

Figure C1-2 – Continued

Study: WP-144 ERA Laboratory Code: L272101 Laboratory Name: Lancaster Laboratories

Organic Results

Page 5 of 20

WP-144 Final Complete Report

Amy Doupe QA Senior Specialist Lancaster Laboratories 2425 New Holland Pike Lancaster, PA 17601-5994 717-656-2308			nior Specialist ERA Laboratory Co ster Laboratories Report Issued: New Holland Pike Study Dates: ster, PA 17601-5994 Agency ID:				PA00009 / Code: L272101 03/22/07 01/15/07 - 03/01/07		
Anal. No.	Analyte	Units	Reported Value	Assigned Vaiue	Acceptance Limits	Performance Evaluation	Method Description		
Volatiles									
4315	Acetone	µց/L		118	23.5 - 192	Not Reported			
4320	Acetonitrile	µg/L		0.00		Not Reported			
4325	Acrolein	μg/L		0,00		Not Reported			
4340	Acrylonitrile	μg/L	[·	0.00		Not Reported			
0065	Benzene	µg/L	44.2	43.5	31.1 - 55.6	Acceptable	EPA 80218		
0060	Bromodichloromethane	µg/L	35.3	33,4	23.3 - 45.0	Acceptable	EPA 6021B		
0052	Bromaform	µg/L	38,3	31.8	19.6 - 43.4	Acceptable	EPA 6021B		
4950	Bromomethane	µg/L		0.00		Not Reported			
4410	2-Butanone (MEK)	µg/L		0,00		Not Reported			
5000	tert-Butyl methyl ether (MTBE)	µg/L_	< 0.5	0.00		Acceptable	EPA 80218		
4450	Carbon disulfide	µg/L		45,8	25.9 - 76.6	Nat Reported			
0058	Carbon tetrachloride	µg/L	20.9	20.5	11.7 - 29.4	Acceptable	EPA 8021B		
0064	Chiorobenzene	µg/L	53.6	47.7	34.4 - 59.9	Acceptable	EPA 60218		
0061	Chlorodibromomethane	µg/L	45,9	42.6	29.0 - 56.5	Acceptable	EPA 60218		
4485	Chloroethane	µg/L	< 0.5	0.00		Acceptable	EPA 60218		
4500	2-Chloroethylvinylether	µg/L		0.00		Not Reported			
0055	Chloroform	µg/L	20.0	20.7	14.2 - 27.7	Acceptable	EPA 80215		
4960	Chloromethane	µg/L	< 0.5	0.00		Acceptable	EPA 80215		
4570	1.2-Dibromo-3-chloropropane (DBCP)	μg/L	< 0,5	0.00		Acceptable	EPA 8021B		
4585	1,2-Dibromoethane (EDB)	µg/L		0.00		Not Reported			
4595	Dibromomethane	µg/L	· ·	0.00	****	Nat Reported			
0094	1,2-Dichlorobenzene	µg/L	35.1	39.8	27.3 - 51.9	Acceptable	EPA 8021B		
0095	1,3-Dichlorobenzene	µg/L	12.9	10.9	6.56 - 14.5	Acceptable	EPA 6021B		
0095	1.4-Dichlorobenzene	ug/L	47.4	42.6	28.6 - 54.0	Acceptable	EPA 6021B		
4625	Dichlorodifluoromethane	hâlt hâlt	< 0.5	0.00		Acceptable	EPA 5021B		
4630	1,1-Dichloroethane	µg/L	28.6	28.5	19.2 - 38.9	Acceptable	EPA 50218		
0054	1,2-Dichloroethane	µg/L	23.9	24.2	16.7 - 32.7	Acceptable	EPA 80218		
4640	1,1-Dichlorcethylene	µg/L	< 0.5	0.00		Acceptable	EPA 60218		
4645	cis-1,2-Dichlaroethylene	μg/L	< 0.5	0.00		Acceptable	EPA 80218		
	trans-1,2-Dichloroethylene	µg/L	< 0.5	0.00		Acceptable	EPA 8021B		
4655	1,2-Dichloropropane	12,L	41.9	47.2	30,7 - 62,6	Acceptable	EPA 80218		
	cis-1,3-Dichloropropylene	նը/Ը	< 0.5	0.00		Acceptable	EPA 80218		

Page 5 of 20 All analytes are included in ERA's A2LA accreditation. Lab Code: 1539-01

Amy Doupe QA Senior Specialist Lancaster Laboratories 2425 New Holland Pike Lancaster, PA 17601-5994 717-656-2308			natories Report Issued: nd Pike Study Dates: 0				
Anal. No.	Analyte	Units	Reported Value	Assigned Value	Acceptance Limits	Performance Evaluation	Method Description
Volatil	es (Continued)						
4685	trans-1,3-Dichloropropylene	րը/լ	< 0.5	0.00		Acceptable	EPA 8021B
0066	Ethylbenzene	μg/L	46.8	43.6	29.9 - 55.7	Acceptable	EPA 8021B
4835	Hexachlorobutadiene	µg/L	67.5	63.2	6.32 - 78.8	Acceptable	EPA 8021B
4860	2-Hexanone	µg/L		0.00		Not Reported	
0063	Melhylene chloride	µg/L	65.8	63,0	38.6 - 87.7	Acceptable	EPA 8021B
4995	4-Methyl-2-pentanone (MIBK)	μg/L		82.0	38.2 - 123	Not Reported	
5005	Naphthalene	μg/L	43.6	42.5	13.4 - 53.7	Acceptable	EPA 8021B
5100	Styrene	μg/L	37.6	33.3	21.9 - 45.0	Acceptable	EPA 8021B
5105	1,1,1,2-Tetrachloroethane	pg/L	1	0.00		Not Reported	
5110	1,1,2,2-Tetrachloroelhane	μg/L	30.7	32.3	17.5 - 49.3	Acceptable	EPA 8021B
0059	Tetrachloroethylene	µg/L	15.0	14.6	7.00 - 19.5	Acceptable	EPA 80218
0067	Toluene	µg/L	45.7	44.B	31.1 - 56.4	Acceptable	EPA 60216
5155	1,2,4-Trichlorobenzene	µg/L	< 0.5	0.00		Acceptable	EPA 60218
0056	1,1,1-Trichloroethane	µg/L	36,7	42.5	26.6 - 56.2	Acceptable	EPA 80218
5165	1,1,2-Trichloroethane	µg/L	96.B	53.9	65.0 - 121	Acceptable	EPA 60218
0057	Trichloroethylene	µg/L	38,6	37,6	23.9 - 49.8	Acceptable	EPA 8021B
5175	Trichlorofluoromethane	µg/L	< 0.5	0.00		Acceptable	EPA 80218
5180	1.2.3-Trichloropropane (TCP)	µg/L		0.00		Not Reported	
5225	Vinyl acetate	µg/L	I	0.00		Not Reported	
5235	Vinyl chloride	µg/L	21.4	21.4	8.56 - 34.2	Acceptable	EPA 8021B
5260	Xylenes, total	µg/L	142.	132	75.6 - 178	Acceptable	EPA 8021B

Page 7 of 20 All analytes are included in ERA's A2LA accreditation, Lab Code: 1539-01

Lanca 2425 Lanca	Doupe enior Specialist ister Laboratories New Holland Pike ister, PA 17601-5994 56-2308		EPA ID: PA00009 ERA Laboratory Code: L272101 Report Issued: 03/22/07 Study Dates: 01/15/07 - 03/01/07 Agency ID:									
Anal. No.	Analyte	Units	Reported Value	Assigned Value	Acceptance Limits	Performance Evaluation	Method Description					
Volati	Volatiles											
4315	Acetone	μց/լ	123.	118	23.5 - 192	Acceptable	EPA 8260					
4320	Acetonitrile	μg/L	< 25.	0.00		Acceptable	EPA 8260					
4325	Acrolein	µg/L	< 40.	0.00		Acceptable	EPA 8260					
4340	Acrylonitrile	µg/L	< 4,	0.00		Acceptable	EPA 8260					
0065	Benzene	µg/L	46.4	43.5	31.1 - 55.6	Acceptable	EPA 8260					
0060	Bromodichloromethane	hðyr	35.1	33.4	23.3 - 45.0	Acceptable	EPA 8260					
0062	Bromoform	µg/L	32.0	31,8	19,6 - 43.4	Acceptable	EPA 8260					
4950	Bromomethane	µg/L	< 1,0	0.00		Acceptable	EPA 6260					
4410	2-Butanone (MEK)	µgA_	< 3.0	0.00		Acceptable	EPA 8260					
5000	tert-Butyi methyl ether (MTBE)	µg/L	< 0.5	0.00		Acceptable	EPA 8260					
4450	Carbon disulfide	µg/L	58.1	48.8	25.9 - 76.6	Acceptable	EPA 8260					
0058	Carbon tetrachloride	µg/L	22.8	20,5	11.7 - 28.4	Acceptable	EPA 8260					
0064	Chlorobenzene	µg/L	50.2	47.7	34.4 - 59.9	Acceptable	EPA 8260					
0051	Chlorodibromomethane	µg/L	43.8	42.6	29.0 - 56.5	Acceptable	EPA 8250					
4485	Chiproelhane	µg/L	< 1.0	0.00		Acceptable	EPA 8260					
4500	2-Chlaroethylvinylether	µg/L	< 2.0	0.00		Acceptable	EPA 8260					
0055	Chloroform	µg/L	22.1	20.7	14.2 - 27.7	Acceptable	EPA 8260					
4960	Chloromethane	µg∕L	< 1.0	0.00		Acceptable	EPA 8260					
4570	1.2-Dibromo-3-chloropropane (DBCP)	µg∕L	< 2.0	0,00		Acceptable	EPA 8260					
4585	1.2-Dibromoethane (EDB)	µg/L	< 1.0	0.00		Acceptable	EPA 8260					
4595	Dibromomethane	µg/L	< 1.0	0.00		Acceptable	EPA 8260					
0094	1,2-Dichlarabenzene	µg/∟	41.2	39.8	27.3 - 51.9	Acceptable	EPA 8260					
0096	1,3-Dichlorobenzene	µg/L	11.3	10.9	6.56 - 14.5	Acceptable	EPA 8260					
0095	1,4-Dichlombenzene	µg/L	44.6	42.6	28.6 - 54.0	Acceptable	EPA 8260					
4625	Dichlorodifluoromethane	µg/L	< 2.0	0,00		Acceptable	EPA 8260					
4530	1,1-Dichioroethane	μg/L	31.1	28.5	19.2 - 38.9	Acceptable	EPA 8260					
0054	1,2-Dichloroethane	µg/L	26.8	24.2	15.7 - 32.7	Acceptable	EPA 8260					
4640	1,1-Dichloroethylene	µg/L	< 0.8	0.00		Acceptable	EPA 8260					
4645	cis-1,2-Dichloroethylene	μg/L	< 0.B	0.00		Acceptable	EPA 8260					
4700	trans-1,2-Dichloroethylene	µg/L	< 0.8	0.00		Acceptable	EPA 8260					
4655	1,2-Dichloropropane	μg/L	49.5	47.2	30,7 - 62,5	Acceptable	EPA 8260					
4680	cis-1,3-Dichloropropylene	ug/L	< 1.0	0.00		Acceptable	EPA 8250					

Page 8 of 20 All analytes are included in ERA's A2LA accreditation, Lob Code; 1539-01

WP-144 Final Complete Report

Amy Doupe QA Senior Specialist Lancaster Laboratories 2425 New Holland Pike Lancaster, PA 17601-5994 717-656-2308			EPA ID: PA00009 ERA Laboratory Code: L272101 Report issued: 03/22/07 Study Dates: 01/15/07 - 03/01/07 Agency ID:					
Anal. No.	Analyte	Units	Reported Value	Assigned Value	Acceptance Limits	Performance Evaluation	Method Description	
	les (Continued)	· · · · · · · · · · · · · · · · · · ·						
4685	trans-1,3-Dichloropropylene	µg/L	< 1.0	0.00		Acceptable	EPA 8260	
0056	Ethylbenzene	µg/L	46.0	43.6	29.9 - 55,7	Acceptable	EPA 8260	
4835	Hexachlorobutadiene	µg/L	68.3	63.2	6.32 - 78.8	Acceptable	EPA 8260	
4860	2-Hexanone	µg/L	< 3.0	0.00		Acceptable	EPA 8260	
0063	Methylene chloride	µg/L	70.7	G3,0	38.6 - 87.7	Acceptable	EPA 8250	
4995	4-Methyl-2-pentanone (MIBK)	µg/L	83.2	82.0	38.2 - 123	Acceptable	EPA 8260	
5005	Naphthalene	µg/L	43.1	42.5	13.4 - 53.7	Acceptable	EPA 8260	
5100	Styrene	µg/L	35.1	33.3	21.9 - 45.0	Acceptable	EPA 8260	
5105	1,1,1,2-Tetrachloroethane	µg/L	< 1.0	0.00		Acceptable	EPA 8260	
5110	1,1,2,2-Tetrachloroethane	µg/L	34.4	32.3	17.5 - 49.3	Acceptable	EPA 8250	
0059	Tetrachloroethylene	µg/L	15.1	14,6	7.00 - 19.5	Acceptable	EPA 8260	
0067	Toluene	μgΛ	47.7	44.8	31.1 - 56.4	Acceptable	EPA 8260	
5155	1,2,4-Trichlorobenzene	L/gu	< 1.0	0.00	~ ~ ~ ~ ~ ~ ~ ~	Acceptable	EPA 8260	
0056	1.1.1-Trichloroethane	μg/L	46.4	42.5	26.6 - 56.2	Acceptable	EPA 8250	
5165	1.1,2-Trichloroethane	µg/L	103.	93,9	65.0 - 121	Acceptable	EPA 8260	
0057	Trichloroethylene	µg/L	40.0	37.8	23,9 - 49,8	Acceptable	EPA 8260	
5175	Trichlorofluoromethane	µg/L	< 2.0	0.00		Acceptable	EPA 8260	
5180	1,2,3-Trichloropropane (TCP)	μg/L	< 1.0	0.00		Acceptable	EPA 8250	
5225	Vinyl acetate	µg/L	< 2.0	0.00	~ ~	Acceptable	EPA 8260	
5235	Vinyl chioride	нал	23.3	21,4	8.55 - 34.2	Acceptable	EPA 8250	
5260	Xylenes, total	μg/L.	138	132	75.6 - 178	Acceptable	EPA 8260	
PCBs .	in Water					1	J	
0040	Arociar 1016	μg/L.	< 0.1	0.00		Acceptable	EPA 6082	
8885	Arociar 1221	µg/L	< 0,1	0.00		Acceptable	EPA 8082	
0042	Arocior 1232	µg/∟	< 0.1	0.00		Acceptable	EPA 8062	
0040	Aroclor 1242	µg/Ц	< 0.1	0.00		Acceptable	EPA 8082	
0044	Aroclor 1248	րնդ	< 0,1	0.00		Acceptable	EPA 6082	
0045	Aroclor 1254	µg/L	4.72	4,50	2.10 - 5.88	Acceptable	EPA 6062	
0046	Arociar 1260	µg/L	< 0,1	0.00		Acceptable	EPA 8082	
PCBs i	in Oil							
0099	Aroclor 1016/1242	mg/kg	28.0	43,6	8.20 - 58.0	Acceptable	EPA 8082	
0100	Aroclor 1254	mg/kg	< 0,60	0.00		Acceptable	EPA 8082	
0101	Arocler 1250	mg/kg	< 0.60	0.00		Acceptable	EPA B082	

Page 9 of 20 All analytes are included in ERA's A2LA accreditation. Lab Cade: 1539-01

Element C1 Revision No. 2 Date: 04/24/07 Page 13 of 23

Figure C1-2 – Continued

WP-144 Final Complete Report

Amy Doupe QA Senior Specialist Lancaster Laboratories 2425 New Holland Pike Lancaster, PA 17601-5994 717-656-2308			Repo Stud	ID: Laborato ort Issued y Dates: acy ID:				
Anal. No,	Analyte	Units	Reported Value	Assigned Value	Acceptance Limits	Performance Evaluation	Method Description	
Organ	ochlorine Pesticides							
0047	Aldrin	µg/L	2.78	3.26	0.934 - 4.51	Acceptable	EPA 6091A	
7110	alpha-BHC	µg/L	8.87	8,85	3.92 - 12.0	Acceptable	EPA 8081A	
7115	beta-BHC	µg/L	4.59	4.65	1,90 - 6.43	Acceptable	EPA 8081A	
7105	delta-BHC	µg/L	2.85	2,74	0.874 - 3.85	Acceptable	EPA 8081A	
7120	gamma-BHC(Lindane)	μg/L	2.14	2.19	0.828 - 3.15	Acceptable	EPA 8081A	
7240	alpha-Chlordane	μg/L	3.53	3.42	1.53 - 4.71	Acceptable	EPA 8081A	
7245	gamma-Chlordane	μg/L	2.04	214	0.932 - 3.02	Acceptable	EPA 6081A	
0049	4,4'-DDD	μg/L	8.80	8,92	3.25 - 12.7	Acceptable	EPA 8081A	
0050	4,4'-DDE	µg/L	8.68	9.42	4.21 - 12.1	Acceptable	EPA 8081A	
0051	4,4'-DDT	µg/L	5.70	7.74	2.89 - 10.9	Acceptable	EPA 8081A	
0048	Dieldrin	µg/L	11.8	11.5	5,66 - 15,6	Acceptable	EPA 8081A	
7540	Endrin	µg/L	4.51	4.77	1.78 - 7.20	Acceptable	EPA 8081A	
7530	Endrin aldehyde	µg/L	7,56	7.29	2.03 - 11.2	Acceptable	EPA 8081A	
7535	Endrin ketone	µg/L	6.02	6,01	3.30 - 8.71	Acceptable	EPA 8081A	
7510	Endosulfan I	µg/L	11.0	13.7	4,19 - 20,0	Acceptable	EPA 8081A	
7515	Endosulfan II	µg/L	15.6	16.6	5.02 - 21.9	Acceptable	EPA 8081A	
7520	Endosulfan sulfate	µg/L	9.66	9.12	3.43 - 13.3	Acceptable	EPA 8081A	
0052	Heptachior	µg/L	2.85	3,35	1.09 - 4.63	Acceptable	EPA 8081A	
0078	Heptachlor epoxide (beta)	µg/L	2.92	2.85	1.37 - 4.05	Acceptable	EPA 8081A	
7810	Methoxychlor	ug/L	10.8	13.7	3.72 - 21.5	Acceptable	EPA 8081A	
Chiora	lane							
0053	Chiordane, technical	нау	14.3	14.0	5.25 - 20.2	Acceptable	EPA 5081A	
Тохар	ћеле							
8250	Техарнеле	µg/L	8.31	21.7	2.17 - 39.3	Acceptable	EPA 8081A	

Page 10 of 20 All analytes are included in ERA's A2LA accreditation, Lab Code: 1539-01

Element C1 Revision No. 2 Date: 04/24/07 Page 14 of 23

Figure C1-2 – Continued

WP-144 Final Complete Report

Lanca 2425 I Lanca	Doupe Inior Specialist Ister Laboratories Jew Holland Pike Ister, PA 17601-5994 56-2308		Repo Stud		s: 01/15/07 - 03/01/07				
Anal. No.	Analyte	Units	Reported Value	Assigned Value	Acceptance Limits	Performance Evaluation	Method Description		
Chlori	nated Acid Herbicides								
8505	Acifluorfen	µg/L		0.00		Not Reported			
8530	Bentazon	μg/L		9.69	0.969 - 18.9	Not Reported			
8540	Chloramben	μg/L		0.00		Not Reported			
8545	2.4-D	µg/L	4.55	6,95	0,696 - 11.2	Acceptable	EPA 8151		
8560	2,4-DB	µg/L	5,82	8.18	0,818 - 15,7	Acceptable	EPA 8151		
8550	Dacthal diacid (DCPA)	µg/L		2.82	0.419 - 4.89	Not Reported			
8555	Dalapon	µg/L	< 0.25	0.00		Acceptable	EPA 8151		
8595	Dicamba	ដូចូ/L	21.7	2.65	0.265 - 4.06	Not Acceptable	EPA 8151		
8600	3,5-Dichlombenzoic acid	µg/L		9,48	2.82 - 14.0	Not Reported			
8605	Dichlorprop	µg/L	< 0.16	0.00		Acceptable	EPA 8151		
8620	Dinoseb	μg/L	1,99	3.80	0.380 - 5.96	Acceptable	EPA 8151		
7775	МСРА	µg/L	< 300.	0.00		Acceptable	EPA 8151		
7760	MCPP	µg/L	< 50.0	12.8	0.00 - 34.7	Not Acceptable	EPA 8151		
6500	4-Nitrophenol	µg/L		0.00	1	Not Reported			
6605	Pentachiorophenol	µg/L	< 0.027	0.00		Acceptable	EPA 8151		
8645	Picloram	μg/L		0.00		Not Reported			
8655	2.4,5-T	µg/L	35.2	4.72	0.472 - 7.08	Not Acceptable	EPA 8151		
8650	2.4.5-TP (Silvex)	μαΛ	35.0	4.47	0.541 - 6.62	Not Acceptable	EPA 8151		

Page 11 of 20 All analytes are included in ERA's A2LA accreditation. Lab Code: 1539-01

Element C1 Revision No. 2 Date: 04/24/07 Page 15 of 23

Figure C1-2 – Continued

WP-144 Final Complete Report

Amy Doupe QA Senior Specialist Lancaster Laboratories 2425 New Holland Pike Lancaster, PA 17601-5994 717-656-2308			EPA ID: PA00009 ERA Laboratory Code: L272101 Report Issued: 03/22/07 Study Dates: 01/15/07 - 03/01/07 Agency ID:					
Ansi. No.	Analyte	Units	Reported Value	Assigned Value	Acceptance Limits	Performance Evaluation	Method Description	
Base/	Veutrais	******	A					
5500	Acenaphthene	μg/L	< 1.	0.00		Acceptable	EPA 8270C	
5505	Acenaphthylene	µg/L	17.9	20.1	7.09 - 26.4	Acceptable	EPA 6270C	
5145	2-Amino-1-methylbenzene (o-toluidine)	µg/L	106.	128	25.3 - 172	Acceptable	EPA 8270C	
5545	Aniline	µg/L	< 1.	0.00		Acceptable	EPA 8270C	
5555	Anthracene	µg/L	26.7	28.2	12.4 - 37.0	Acceptable	EPA 8270C	
5595	Benzidine	µg/L	< 20.	0.00		Acceptable	EPA 8270C	
5575	Benzo(a)anthracene	μg/L	15,6	15.9	6.67 - 21.0	Acceptable	EPA 8270C	
5585	Benzo(b)fluoranthene	µg/L	20.4	23.9	7.43 - 34.0	Acceptable	EPA 8270C	
5600	Senzo(k)fluoranthene	µg/L	<1.	0.00		Acceptable	EPA 8270C	
5590	Benzo(g.h.i)perylene	µg/L	< 1.	0.00		Acceptable	EPA 8270C	
5580	Benzo(a)pyrene	µg/L	21.9	21.9	7.56 - 33.0	Acceptable	EPA 8270C	
5630	Benzyl alcohol	µg/L	< 5.	0.00		Acceptable	EPA 8270C	
5660	4-Bromophenyl-phenylether	µg/L	37.6	38.5	13.8 - 53.2	Acceptable	EPA 8270C	
5670	Butylbenzylphthalate	µg/L	136.	149	30.5 - 210	Acceptable	EPA 8270C	
5680	Carbazole	µg/L	58.4	55.5	32.0 - 80.2	Acceptable	EPA 8270C	
5745	4-Chloroaniline	µg/L	< 1.	0.00		Acceptable	EPA 8270C	
5760	bis(2-Chloroethoxy)methane	µg/L	63,7	64.0	25.1 - 76.9	Acceptable	EPA 8270C	
5765	bis(2-Chloroethyl)ether	µg/L	15.0	18.5	6.90 - 26.9	Acceptable	EPA 8270C	
5780	bis(2-Chloroisopropyl)ether	µg/L	85.8	60,2	20.6 - 99.2	Acceptable	EPA 8270C	
5790	1-Chloronaphthalene	µg/L	< 1.	0.00		Acceptable	EPA 8270C	
5795	2-Chloronaphthalene	µg/L	<2	0.00		Acceptable	EPA 8270C	
5825	4-Chlorophenyi-phenylether	µg/L	B4.4	92.2	34.7 - 115	Acceptable	EPA 8270C	
5855	Chrysene	µg/L	16.3	17.3	7.98 - 25.9	Acceptable	EPA 8270C	
5895	Dibenz(a,h)anthracene	µg/L	29.1	28.5	7.42 - 42.3	Acceptable	EPA 8270C	
5905	Dibenzofuran	μg/L	110.	121	42.0 - 149	Acceptable	EPA 8270C	
5925	Di-n-butylphthalate	µg/L	95.	97.6	32.0 - 128	Acceptable	EPA 8270C	
4610	1,2-Dichlorobenzene	µg/L	50.3	54.1	6.87 - 79,0	Acceptable	EPA 8270C	
4615	1.3-Dichlorobenzene	មព្វ/L	37,2	48.6	6.58 - 58.6	Acceptable	EPA 8270C	
4520	1,4-Dichloroberzene	ին\Ր	103.	128	12.8 - 151	Acceptable	EPA 8270C	
5945	3,3'-Dichlorobenzidine	μg/L	< 2.	0.00		Acceptable	EPA 8270C	
5070	Diethylphthalate	րնդ	< Z.	0.00		Acceptable	EPA 8270C	
6135	Dimethylphthalate	hðy	<2_	0.00		Acceptable	EPA 6270C	

Page 12 of 20 All analytes are included in ERA's A2LA accreditation. Lab Code: 1539-01

Amy Doupe QA Senior Specialist Lancaster Laboratories 2425 New Holland Pike Lancaster, PA 17601-5994 717-656-2308			ratories Report Issued; nd Pike Study Dates: 0'				
Anal. No.	Analyte	Units	Reported Value	Assigned Value	Acceptance Limits	Performance Evaluation	Method Description
Base/	Neutrals (Continued)						
6185	2.4-Dinitrotoluene	µg/L	44.8	49.4	17.0 - 64.1	Acceptable	EPA 8270C
6190	2,6-Dinitrotoluene	µg/L	80.5	90.6	37.3 - 114	Acceptable	EPA 8270C
6200	Di-n-octylphthalate	µg/L	96.3	103	22.5 - 152	Acceptable	EPA 8270C
6255	bis(2-Ethylhexyl)phthalate	µg/L	62.6	6 8.6	20,6 - 96,5	Acceptable	EPA 8270C
6265	Fluoranthene	µg/L	39,3	40.3	18.9 - 52.4	Acceptable	EPA 8270C
6270	Fluorene	µg/L	120.	131	57.B - 154	Acceptable	EPA 8270C
6275	Hexachlorobenzene	µg/L	< 1.	0.00		Acceptable	EPA 8270C
4835	Hexachlorobutadiene	µg/L	< 1.	0.00		Acceptable	EPA 8270C
6285	Hexachlorocyclopentadiene	µg/L	< 5.	0.00		Acceptable	EPA 6270C
4840	Hexachloroethane	µg/L	< 1.	0.00		Acceptable	EPA 8270C
6315	indeno(1,2,3-cd)pyrene	µg/L_	30.9	30.5	4.47 - 44.4	Acceptable	EPA 8270C
6320	isopharone	μg/L	45.6	53.1	21.5 - 69.4	Acceptable	EPA 8270C
6385	2-Melhylnaphthalene	µg/L	35.7	40.2	5.66 - 54.1	Acceptable	EPA 6270C
5005	Naphthalene	µg/L	37.7	43.6	13.6 - 54.9	Acceptable	EPA 8270C
6460	2-Nitroaniline	µg/L	< 1.	0.00		Acceptable	EPA 8270C
6465	3-Nitroaniline	µg/L	< 1.	0.00		Acceptable	EPA 8270C
6470	4-Nitroaniline	μg/L	< 1.	0.00		Acceptable	EPA 8270C
5015	Nitrobenzene	µg/L	55.5	63.5	20.3 - 78.7	Acceptable	EPA 8270C
6525	N-Nitrosodiethylamine	µg/L	85.1	97.3	19.8 - 107	Acceptable	EPA 8270C
6530	N-Nitrosodimethylamine	µg/L	60,2	109	10.9 - 129	Acceptable	EPA 8270C
6535	N-Nitrosodiphenylamine	µg/L	< 2.	0.00		Acceptable	EPA 8270C
6545	N-Nitroso-di-n-propylamine	µg/L	< 5.	0,00		Acceptable	EPA 8270C
6590	Pentachlorobenzene	µg/L	49.7	58.8	11.6 - 78.8	Acceptable	EPA 6270C
6615	Phenanthrene	µg/L	113.	116	53.2 - 139	Acceptable	EPA 8270C
6665	Pyrene	µg/L	< 1.	00.0		Acceptable	EPA B270C
5095	Pyridine	µg/L	<2	0.00		Acceptable	EPA 8270C
6715	1,2,4,5-Teirachlorobenzene	µg/L	< 2.	0.00		Acceptable	EPA 8270C
5155	1,2,4-Trichlorobenzene	µg/L	< 1.	0.00		Acceptable	EPA 8270C

Page 13 of 20 All analytes are included in ERA's A2LA accreditation. Lab Code: 1539-01

WP-144 Final Complete Report

Amy Doupe QA Senior Specialist Lancaster Laboratories 2425 New Holland Pike Lancaster, PA 17601-5994 717-656-2308			EPA ID: PA00009 ERA Laboratory Code: L272101 Report Issued: 03/22/07 Study Dates: 01/15/07 - 03/01/07 Agency ID:					
Anal. No.	Analyte	Units	Reported Value	Assigned Value	Acceptance Limits	Performance Evaluation	Method Description	
Base/I	Neutrals						······	
5500	Acenaphthene	μg/L	< 0.05	0.00		Acceptable	EPA 8270-SIM	
5505	Acenaphthylene	µg/L	19.0	20.1	7.09 - 26.4	Acceptable	EPA B27D-SIM	
5145	2-Amino-1-methylbenzene (o-toluidine)	µg/L		128	25.3 - 172	Not Reported		
5545	Aniline	μg/L		0.00		Not Reported		
5555	Anthracene	µg/L	28.5	28.2	12.4 - 37.0	Acceptable	EPA 8270-5IM	
5595	Benzidine	µg/L		0.00		Not Reported		
5575	Benzo(a)anthracene	hâ/r	16,9	15.9	6.67 - 21.0	Acceptable	EPA 8270-SIM	
5585	Benzo(b)fluoranthene	µg/L	22.4	Z3.9	7.43 - 34.0	Acceptable	EPA 827D-SIM	
5600	Benzo(k)fluoranthene	µg/L	< 0.01	0,00		Acceptable	EPA 8270-SIM	
5590	Benzo(g,h,i)perylene	μg/L	< 0.02	0.00		Acceptable	EPA 8270-SIM	
5580	Benzo(a)pyrene	µg/L	21,4	23.9	7.56 - 33.0	Acceptable	EPA 8270-SIM	
5630	Benzyl alcohol	μg/L		0.00		Not Reported		
5660	4-Bromophenyl-phenylether	µg/L		38.5	13.8 - 53.2	Not Reported		
5670	Butylbenzyiphthalate	μg/L		149	30.5 - 210	Not Reported		
5680	Carbazole	µg/L		55,5	32,0 - BD,2	Not Reported		
5745	4-Chloroaniline	µg/L		0.00		Not Reported		
5760	bis(2-Chloroethoxy)methane	µg/L		64.0	25,1 - 76,9	Not Reported		
5765	bis(2-Chloroethyl)ether	µg/L	[.	18.5	6.90 - 26,9	Not Reported		
5780	bis(2-Chloroisopropyl)ether	µg/L	1	80.2	20.6 - 99.2	Not Reported		
5790	1-Chloronaphthalene	µg/L		0.00		Not Reported		
5795	2-Chioronaphthalene	µg/L		0,00		Not Reported		
5825	4-Chiorophenyl-phenylether	µg/L		92.2	34.7 - 115	Not Reported		
5855	Chrysene	րու	17.7	17,3	7.98 - 25.9	Acceptable	EPA 8270-SIM	
5895	Dibenz (a,h)anthracene	µg/L	2B,B	28.5	7.42 - 42.3	Acceptable	EPA 8270-SIM	
5905	Dibenzofuran	μg/L		121	42.0 - 149	Not Reported		
5925	Di-n-butylphthalate	µg/L		97.6	32.0 - 128	Not Reported	****	
4610	1,2-Dichlombenzene	µg/L		64.1	6.87 - 79.0	Not Reported		
4615	1,3-Dichlörobenzene	μg/L		48.6	6.58 - 58.6	Not Reported	· · · · ·	
4620	1,4-Dichlorobenzene	µg/L		128	12.8 - 151	Not Reported		
5945	3,3'-Dichlorobenzidine	µg/L		0.00		Not Reported	*****	
6070	Diethylphthalate	hâ/r	· ·	0.00		Not Reported		
6135	Dimethylphthalate	µg/L		0.00		Not Reported		

Page 14 of 20 All analytes are included in ERA's A2LA accreditation. Lob Code: 1539-01

QA Se Lanca 2425 (Lanca	Doupe enior Specialist ister Laboratories Vew Holland Pike ister, PA 17601-5994 56-2308		EPA ID: PA00009 ERA Laboratory Code: L272101 Report Issued: 03/22/07 Study Dates: 01/15/07 - 03/01/07 Agency ID:					
Anal. No.	Analyte	Units	Reported Value	Assigned Value	Acceptance Limits	Performance Evaluation	Method Description	
Base/	Neutrais (Continued)							
6185	2,4-Dinitrotoluene	µg/L	I	49,4	17.0 - 64.1	Not Reported		
6190	2,6-Dinitrotoluene	µg/L		90,6	37.3 - 114	Not Reported		
6200	Di-n-octylphthalate	µg/L	I	103	22.5 - 152	Not Reported		
6255	bis(2-Ethylhexyl)phthalate	µց/Լ		68.6	20.6 - 96.5	Not Reported		
6265	Fluoranthene	µg/L	44.6	40.3	18.9 - 52.4	Acceptable	EPA 827D-SIM	
6270	Fluorene	µg/L	138,	131	57,8 - 154	Acceptable	EPA 8270-SIM	
6275	Hexachlorobenzene	µg/L		0.00		Not Reported		
4835	Hexachlorobutadiene	µg/L		0.00		Not Reported		
6285	Hexachlorocyclopentadiene	µg/L		0.00		Not Reported		
4840	Hexachloroethane	µg/L		0.00		Not Reported		
6315	Indeno(1,2,3-cd)pyrene	μg/L	32.2	30.5	4.47 - 44.4	Acceptable	EPA B270-SIM	
6320	isophomne	µg/L		53,1	21.5 - 69.4	Not Reported		
6385	2-Methyinaphthalene	µg/Ц	42.2	40.2	5,86 - 54,1	Acceptable	EPA 8270-SIM	
5005	Naphthalene	µg/L	44.2	43.6	13.6 - 54.9	Acceptable	EPA 827D-SIM	
646D	2-Nitroaniline	µg/L		0.00		Not Reported		
6465	3-Nitroaniline	ug/L		0.00		Not Reported		
6470	4-Nitroaniline	ug/L		0.00		Not Reported		
5015	Nitrobenzene	ug/L		63.5	20.3 - 78.7	Not Reported		
6525	N-Nitrosodiethylamine	µg∕L		97,3	19.8 - 107	Not Reported		
6530	N-Nitrosodimethylamine	µg/L		109	10.9 - 129	Not Reported		
6535	N-Nitrosodiphenylamine	μg/L		0,00		Not Reported		
6545	N-Nitroso-di-n-propylamine	μg/L		0.00		Not Reported		
6590	Pentachlorobenzene	μg/L		59.8	11.6 - 78.8	Not Reported		
6615	Phenanthrene	µg/L	118.	115	53.2 - 139	Acceptable	EPA 8270-SIM	
6665	Pyrene	µg/L	< 0.2	0.00		Acceptable	EPA 8270-SIM	
5095	Pyridine	µg/L		a.oo		Not Reported		
6715	1,2,4,5-Tetrachlorobenzene	µg/L		0.00		Not Reported		
5155	1,2,4-Trichlorobenzene	µg/L		0.00		Not Reported		

.

Page 15 of 20 All analytes are included in ERA's A2LA accreditation. Lab Code: 1539-01

Figure C1-2 – Continued

WP-144 Final Complete Report

Amy Doupe QA Senior Specialist Lancaster Laboratories 2425 New Holland Pike Lancaster, PA 17601-5994 717-656-2308			EPA ID: ERA Laboratory Code: Report Issued: Study Dates: 01/ Agency ID:			PA00009 L272101 03/22/07 15/07 - 03/01/07	
Ansi. No.	Analyte	Units	Reported Value	Assigned Value	Acceptance Limits	Performance Evaluation	Method Description
Base/I	leutrals						
5500	Acenaphthene	µg/L	< 0.9	0.00		Acceptable	EPA 8310
5505	Acenaphthylene	hâ.r	18.0	20.1	7.09 - 26.4	Acceptable	EPA 8310
5145	2-Amino-1-methylbenzene (o-toluidine)	µg/L		128	25.3 - 172	Not Reported	
5545	Aniline	µg/L		0.00		Not Reported	
5555	Anthracene	ពុច្ច/1_	23.1	28.2	12.4 - 37.0	Acceptable	EPA 8310
5595	Benzidine	្ពុរព្វ/L		0.00		Not Reported	
5575	Benzo(a)anthracene	µg/L	14.5	15.9	6.67 - 21.0	Acceptable	EPA 8310
5585	Benzo(b)fluoranthene	µg/L	20.1	23.9	7.43 - 34.0	Acceptable	EPA 8310
5600	Benzo(k)liuoranthene	µgA∟	< 0.05	0.00		Acceptable	EPA 8310
5590	Benzo(g,h,i)perylene	µg/L	< 0.1	0.00		Acceptable	EPA 8310
5580	Benzo(a)pyrene	µg/L	20.4	23.9	7.56 - 33.0	Acceptable	EPA 8310
5630	Benzyl alcohol	µg/L		0.00		Not Reported	
5560	4-Bromophenyl-phenylether	μg/L		38.5	13.8 - 53.2	Not Reported	
5670	Butylbenzylphthaiate	µg/L		149	30.5 - 210	Not Reported	
5680	Carbazole	µg/L		55.5	32.0 - 80.2	Not Reported	
5745	4-Chioroaniline	μg/L		0,00		Not Reported	
5760	bis(2-Chloroethoxy)methane	µg/L		64.0	25,1 - 76.9	Not Reported	
5765	bis(2-Chloroethyl)ether	µg/L		18,5	6,90 - 26,9	Not Reported	
5780	bis(2-Chloroisopropyl)ether	µg/L		60.2	20.6 - 99.2	Not Reported	*** * * * * * * *
5790	1-Chloronaphthalene	μg/L		0,00		Not Reported	
5795	2-Chioronaphthalene	µg/Ц		D.00		Not Reported	
5825	4-Chlorophenyl-phenylether	μg/L		92.2	34.7 - 115	Not Reported	
5855	Chrysene	ид/Ц	16.6	17.3	7.98 - 25.9	Acceptable	EPA 8310
5895	Dibenz(a,h)anthracene	μg/L	24.3	28.5	7.42-42.3	Acceptable	EPA 8310
5905	Dibenzofuran	µg/L	1	121	42.0 - 149	Not Reported	
5925	Di-n-butylohthalate	ացո.		97.6	32.0 - 128	Not Reported	
4610	1.2-Dichlorobenzene	µg/L		64.1	6.87 - 79.0	Not Reported	
4615	1.3-Dichlorobenzene	բց – µg/L	···	48.6	6.58 - 58.6	Not Reported	
4520	1.4-Dichlorobenzene	hâ.r	· · · ·	128	12.8 - 151	Not Reported	
5945	3.3-Dichlatobenzidine	µg/L		0.00	1.	Not Reported	* • • • • • • • • • • • • • • •
6070	Diethylphthalate	hair hair		0.00		Not Reported	
6135	Dimethylphthalate	pg/L		0.00		Not Reported	

Page 16 of 20 All analytes are included in ERA's A2LA accreditation, Lob Code: 1539-01

Element C1 Revision No. 2 Date: 04/24/07 Page 20 of 23

Figure C1-2 – Continued

WP-144 Final Complete Report

Lanca 2425 N Lanca	Joupe nior Specialist ster Laboratories Jew Holland Pike ster, PA 17601-5994 i6-2308		EPA ID: PA00009 ERA Laboratory Code: L272101 Report Issued: 03/22/07 Study Dates: 01/15/07 - 03/01/07 Agency ID:				
Anal. No,	Analyte	Units	Reported Value	Assigned Value	Acceptance Limits	Performance Evaluation	Method Description
Base/M	leutrals (Continued)						· · · · · · · · · · · · · · · · · · ·
6185	2,4-Dinitrotoluene	hð\r	Τ	49.4	17.0 - 64.1	Not Reported	
6190	2,6-Dinitrotoluene	µg/L		90.6	37.3 - 114	Not Reported	
6200	Di-n-octylphthalate	µg/L		103	22.5 - 152	Not Reported	
6255	bis(2-Ethylbexyl)phthalate	µg/L		68.6	20.6 - 96.5	Not Reported	
6265	Fluoranthene	µg/L	34,0	40.3	18.9 - 52.4	Acceptable	EPA 8310
6270	Fluorene	μg/L	311.	131	57.8 - 154	Acceptable	EPA 8310
6275	Hexachlorobenzene	µg/L		0.00		Not Reported	
4835	Hexachlorobutadiene	µg/L		0.00		Not Reported	
6285	Hexachlorocyclopentadiene	µg/L		0,00		Not Reported	
4840	Hexachloroethane	µg/L		0.00		Not Reported	
6315	Indeno(1,2,3-cd)pyrene	µg/L	26.2	30.5	4.47 - 44.4	Acceptable	EPA 8310
6320	Isophorane	ինլ⊤		53.1	21.5 - 69.4	Not Reported	
6385	2-Methylnaphthalene	µg/L	324.	40.2	5.86 - 54.1	Not Acceptable	EPA 8310
	Naphthalene	µg/L	38.7	43.6	13.6 - 54.9	Acceptable	EPA 8310
6460	2-Nitroaniline	µg/L		0,00		Not Reported	
6465	3-Nitroaniline	µg/L	[0,00		Not Reported	
6470	4-Nitroaniline	µg/L		0,00		Not Reported	
5015	Nitrobenzene	μg/L		63,5	20.3 - 78,7	Not Reported	
6525	N-Nitrosodiethylamine	μg/L		97.3	19.8 - 107	Not Reported	
6530	N-Nitrosodimethylamine	µg/L		109	10.9 - 129	Not Reported	
6535	N-Nitrosodiphenylamine	µg/L		0.00		Not Reported	
6545	N-Nitroso-di-n-propylamine	µg/L		0.00		Not Reported	
6590	Pentachlorobenzene	hã/r		58,8	11.6 - 78.8	Not Reported	
6615	Phenanthrene	µg/L	100.	115	53,2 - 139	Acceptable	EPA 8310
6665	Pyrene	нgл	< 0.2	0.00		Acceptable	EPA 8310
5095	Pyridine	µg/L		0.00		Not Reported	
5715	1,2,4,5-Tetrachlorobenzene	րց/Լ	1	0.00		Not Reported	
5155	1,2,4-Trichlarabenzene	μg/L		0,00		Not Reported	

Page 17 of 20 All analytes are included in ERA's A2LA accreditation. Lab Code: 1539-01

Element C1 Revision No. 2 Date: 04/24/07 Page 21 of 23

Figure C1-2 – Continued

WP-144 Final Complete Report

Amy Doupe QA Senior Specialist Lancaster Laboratories 2425 New Holland Pike Lancaster, PA 17601-5994 717-656-2308			Repo Stud	ID: Laborato ort Issued y Dates: hcy ID:	:	PA00009 L272101 03/22/07 /15/07 - 03/01/07		
Anal. No.	Analyle	Units	Reported Value	Assigned Value	Acceptance Limits	Performance Evaluation	Method Description	
Acids								
5610	Benzoic acid	րց/Լ	< 6.0	0.00		Acceptable	EPA 8270C	
5700	4-Chioro-3-methylphenol	µg/L	127.	128	50.0 - 164	Acceptable	EPA 8270C	
5800	2-Chlorophenol	µg/L	145.	158	44,6 - 198	Acceptable	EPA 8270C	
6000	2.4-Dichlorophenol	µg/L	132.	131	42.6 - 161	Acceptable	EPA 8270C	
6005	2,6-Dichlorophenol	µg/L	184	175	61.3 - 216	Acceptable	EPA 8270C	
6130	2,4-Dimethylphenol	µg/L	65.0	68.4	13.0 - 90.7	Acceptable	EPA 8270C	
6360	4.6-Dinitro-2-methylphenol	µg/L	93.2	130	44,4 - 184	Acceptable	EPA 8270C	
6175	2,4-Dinitrophenol	µg/L	60.4	120	12.0 - 169	Acceptable	EPA 8270C	
6400	2-Methylphenol	µg/L	61.5	74.1	14.0 - 92.7	Acceptable	EPA 8270C	
641D	4-Methylphenol	µg/L	65.7	109	10.9 - 141	Acceptable	EPA 6270C	
5490	2-Nitrophenol	µg/L	167	154	35.0 - 202	Acceptable	EPA 8270C	
6500	4-Nitrophenol	μg/L	52.6	116	11.6 - 157	Acceptable	EPA 8270C	
6605	Pentachlorophenol	μgΛ	69.0	74.5	17.3 - 103	Acceptable	EPA 8270C	
6625	Phenol	μg/L	64.0	151	15.1 - 202	Acceptable	EPA 8270C	
6735	2,3,4,6-Tetrachlorophenol	µg/L	48.5	45.7	4.67 - 63.8	Acceptable	EPA 8270C	
6835	2,4,5-Trichloraphenol	µg/L_	74.2	79.1	29.1 - 103	Acceptable	EPA 8270C	
6840	2,4,6-Trichloraphenol	µg/L	129.	130	41.6 - 162	Acceptable	EPA 8270C	

Page 18 of 20 All analytes are included in ERA's A2LA accreditation, Lab Code: 1539-01

Element C1 Revision No. 2 Date: 04/24/07 Page 22 of 23

Figure C1-2 – Continued

WP-144 Final Complete Report

Lanca 2425 I Lanca	Doupe enior Specialist ister Laboratories New Holland Pike ister, PA 17601-5994 56-2308		Rept Stud	ID: Laborato ort Issued y Dates: icy ID:	:	PA0000 L27210 03/22/0 15/07 - 03/01/0	01 07
Anal. No.	Analyte	Units	Reported Value	Assigned Value	Acceptance Limits	Performance Evaluation	Method Description
Nitrog	en Pesticides						
7005	Alachlor	μg/L	7.59	7.32	4.83 - 9.66	Acceptable	EPA 8141
7035	Ametryn	μg/L		0.00		Not Reported	
7045	Anilazine	µg/L		0.00		Not Reported	
7060	Atraton	µg/L		0.00		Not Reported	
7065	Atrazine	µg/L	18.0	15.9	9.64 - 21.4	Acceptable	EPA 8141
7130	Bromacil	μg/L		0,00		Not Reported	
7160	Butachior	₽g/L	1	0.00		Not Reported	
7175	Butylate	րը/Ր		0.00		Not Reported	
7340	Cyanazine	µg/L	10.1	9.44	1.26 - 15.9	Acceptable	EPA 8141
7066	Deethyl atrazine	µд∕L		0.00		Not Reported	
7067	Deisopropyl atrazine	μg/L		0.00		Not Reported	
706B	Diaminoatrazine	μg/L		0.00		Not Reported	
7555	EPTC (Epiam)	μց/Ն		19.1	6.38 - 24.5	Not Reported	
7705	Hexazinone	µg/L		0.00		Not Reported	
7835	Metolachior	µg/L	18.4	17,2	6.78 - 26.3	Acceptable	EPA 8141
7845	Metribuzin	µg/L		11.3	1.93 - 16.9	Not Reported	
6440	Napropamide	µg/∟		10,5	3.68 - 15,5	Not Reported	
8035	Prometon	μg/L		6.74	1,68 - 10.6	Not Reported	
8040	Prometryn	μg/L		0.00		Not Reported	
6650	Pronamide	μg/L		0.00		Not Reported	
8045	Propachlor	µg/L		12.7	8.31 - 15.B	Not Reported	
8060	Propazine	µg/L		0.00		Not Reported	
8125	Simazine	ug/L	13,5	11.5	4.35 - 16.4	Acceptable	EPA 8141
B180	Terbacil	µg/∟		0.00		Not Reported	
8295	Trifluralin	hā\r		4.04	0.456 - 6.54	Not Reported	

Page 19 of 20 All analytes are included in ERA's A2LA accreditation. Lab Code: 1539-01

Element C1 Revision No. 2 Date: 04/24/07 Page 23 of 23

Figure C1-2 – Continued

WP-144 Final Complete Report

QA S Lanca 2425 Lanca 717-6	Doupe enior Specialist aster Laboratories New Holland Pike aster, PA 17601-5994 56-2308		EPA ID: ERA Laboratory Code: Report Issued: Study Dates: 01/ Agency ID:			PA00009 L272101 03/22/07 15/07 - 03/01/07	
Anal. No.	Analyte	Units	Reported Value	Assigned Value	Acceptance Limits	Performance Evaluation	Method Description
Organ	ophosphorous Pesticides (OPP)	A				1	2
7075	Azinphos-methyl (Guthion)	µg/L	8.20	11.4	1.48 - 19.5	Acceptable	EPA 8141
7220	Carbophenothion	µg/L	13.0	14.8	2.45 - 25.1	Acceptable	EPA 8141
7300	Chlorpyrifos	µg/L	< 0.4	11.6	5.56 - 15.8	Not Acceptable	EPA 8141
7395	Demeton-O	µg/L	< 0.4	0.00		Acceptable	EPA 8141
7385	Demeton-S	µg/L	< 0.85	0.00		Acceptable	EPA 8141
7410	Diazinon	µg/L	7.18	9.45	3.51 - 14.0	Acceptable	EPA 8141
8510	Dichlorvos (DDVP)	µg/L	< 1.0	0.00		Acceptable	EPA 8141
7475	Dimethoate	µg/L		0.00		Not Reported	an a
7495	Dioxathion	µg/L		0.00		Not Reported	· · · · · · · · · · · · · · ·
8625	Disulfaton	µg/L	5.35	5.76	0,952 - 9.40	Acceptable	EPA 8141
7565	Ethion	µg/L	7.07	7.44	1.24 - 12.6	Acceptable	EPA 8141
7570	Ethoprop	μg/L	< 1.0	0.00		Acceptable	EPA 8141
7955	Ethyl Parathion	μg/L	4.63	5.02	2.76 - 7.28	Acceptable	EPA 8141
7580	Famphur	ug/L	< 0,8	0.00		Acceptable	EPA 8141
7640	Fanolos	µg/L		0.00	~	Not Reported	
7770	Malathion	μg/L	10.6	12.3	2.75 - 19.4	Acceptable	EPA 8141
7825	Methyl Parathion	µg/L	5.97	6.65	0.950 - 10.5	Acceptable	EPA 8141
7985	Phorate	µg/L	< 0,4	0,00		Acceptable	EPA 8141
8000	Phosmet	µg/L		0.00		Not Reported	** * *****
8110	Ronnel	րը/լ	13.9	16.0	2.66 - 27.2	Acceptable	EPA 8141
8200	Stirophos	µg/L	< 0.65	0.00		Acceptable	EPA 8141
8185	Terbufos	µg/L		3.83	0.932 - 5.78	Not Reported	· ·
Gasoli	ne Range Organics (GRO) in Water						
9408	Gasoline Range Organics (GRO)	րց/Ը	3090,	2480	963 - 4380	Acceptable	EPA 8015B
4375	Benzene in GRO	µg/L		15,6	6.73 - 26.2	Not Reported	
4765	Ethylbenzene in GRO	µg/L		68.7	39.2 - 96.0	Not Reported	*** **** *
5140	Toluene in GRO	µg/L		194	103 - 259	Not Reported	**** ** * * * *
5260	Xylenes, total in GRO	µg/L.		276	157 - 373	Not Reported	****** * * * * * * * * *
Diesel	Range Organics (DRO) in Water						
	Diesel Range Organics (DRO)	µg/L_	2910.	3200	781 - 4130	Acceptable	EPA 60159
Total F	Petroleum Hydrocarbons (TPH) in Wa			<u></u> 1			
	TPH (Gravimetric)	 тgД	T	60.0	27,3 - 86,6	Not Reported	
1935	TPH (IR)	mg/L	74.4	73.8	34.1 - 105	Acceptable	EPA 418.1

Page 20 of 20 All analytes are included in ERA's A2LA accreditation. Lab Code: 1539-01

Element C2 Revision No. 1 Date: 07/01/04 Page 1 of 1

C2. Reports To Management

Reports of quality status from the Quality Assurance Department to management are made frequently and in various forms. All results from internal or external performance evaluation samples are circulated to management along with corrective action responses. A report of each audit performed is prepared and copied to management. Monthly summaries of data obtained from analysis of quality control check samples are generated via the computerized sample management system. These summaries include mean and standard deviation to aid in assessment of data accuracy and precision. These are reviewed by QA personnel to evaluate trends. Any issues are communicated to the technical department management. Documentation summarizing problems that require investigation and corrective action are completed by group leaders and circulated to management. Through these channels, laboratory management is kept apprised of QA/QC activities.

Any problems or unusual observations that occur during the analysis of samples for a specific project will be listed on the laboratory report and/or in the case narrative delivered with the data package. The items often discussed in this manner include samples with surrogate recovery outside of the acceptance criteria and samples with matrix problems requiring dilution and causing increased detection limits. Where applicable, any corrective action attempted or performed to address the problem will also be presented.

Monthly and quarterly reports are sent to management, which provide them with the quality status on each technical department. The reports detail areas of improvement, observable trends, ICAR summaries, MDL/statistical window status, and a summary of client/agency issues. Reports are also generated for support groups closely tied to technical operations (i.e., Sample Administration, Bottles, and Sample Support).

The laboratory will contact the client for direction regarding major problems. Such as, but not limited to samples listed on the chain of custody but missing from the shipping container, samples which arrive broken or are accidentally broken in the laboratory, and samples with severe matrix problems. The client will be contacted if it is necessary to change any item in the original approved project plan.

GROUP D

DATA VALIDATION AND USABILITY

Element D1 Revision No. 2 Date: 07/20/07 Page 1 of 2

D1. Data Review, Verification, and Validation

As stated in Element B10, following review, interpretation, and data reduction by the analyst, the data is transferred into the Laboratory Information Management System (LIMS) by manual entry or direct upload from the analytical data system. This system stores the client information, sample results, and QC results. A security system is in place to control access of laboratory personnel and to provide an audit trail for information changes.

The data is again reviewed by the group leader or another analyst whose function is to provide an independent review before data is verified on the LIMS. The person performing the verification step reviews all data including quality control information before verifying the data. Any errors identified and corrected during the review process are documented and addressed with appropriate personnel to ensure generation of quality data.

If data package deliverables have been requested, the data deliverables department will complete the appropriate forms (see Appendix A) summarizing the quality control information, and include copies of all raw data (instrument printouts, spectra, chromatograms, laboratory notebooks, etc.). This group will combine the information from the various analytical tests and the analytical reports from the LIMS into one package in the client requested format. This package is reviewed for quality, compliance, and conformance to SOPs and QC requirements. Any analytical problems are discussed in the case narrative, which is also included with the data package deliverables.

Element D1 Revision No. 2 Date: 07/20/07 Page 2 of 2

The validation of the data for quality and compliance includes spot checking raw data versus the final report, checking that all pertinent raw data is included and does refer to the samples analyzed, review of all QC results for conformance with the method, and review of the case narrative for description of any unusual occurrences during analysis. This validation is performed using techniques similar to those used by the Sample Management Office for the USEPA's Contract Laboratory Program.

The validation performed by the laboratory does not address usability of the data, which usually requires some knowledge of the site. The laboratory will make every attempt to meet requirements of the project, thus reducing the need to assess usability of the data.

Element D2 Revision No. 1 Date: 07/01/04 Page 1 of 1

D2. Verification and Validation Methods

Lancaster Laboratories has procedures in place to verify that instrumental computers and the LIMS perform at the required accuracy, traceability, and security for reporting verified data. Element B10 describes this process in more detail.

Knowledge of the site and sampling methods are necessary to assess data usability. Therefore, overall data validation and assessment of data usability is the responsibility of the client. Lancaster Laboratories will evaluate the analytical data to verify that method and/or project requirements have been met.

Element D3 Revision No. 1 Date: 07/01/04 Page 1 of 4

D3. Reconciliation with User Requirements

Data quality requirements are based on the measurement process and the intended use of the data. Lancaster Laboratories evaluates the QC data generated by the following data quality objectives.

<u>Precision</u> – Precision refers to the reproducibility of a method when it is repeated on a second aliquot of the same sample. The degree of agreement is expressed as the relative percent difference (RPD). The RPD will be calculated according to the following equation:

$$RPD = \frac{|D_2 - D_1|}{(D_1 - D_2)} \times 100$$

Where:

 D_1 = First sample value D_2 = Second sample value (Duplicate)

Duplicates will be run on at least 5% of the samples for inorganics analyses and matrix spike duplicates are used for organics analyses. Acceptance criteria are detailed in Element B5. All quality control sample results are entered into the LIMS and compared with acceptance limits. In addition, there is a monthly review of values on the computer QC system. Data obtained from quality control samples is entered onto our LIMS that charts the data and calculates a mean and standard deviation on a monthly basis. The Quality Assurance Department then reviews this data for trends, which may indicate analytical problems. The control charts are graphical methods for monitoring precision and bias over time.

Element D3 Revision No. 1 Date: 07/01/04 Page 2 of 4

<u>Accuracy</u> – Accuracy refers to the agreement between the amount of a compound measured by the test method and the amount present. Accuracy is usually expressed as a percent recovery (R). Recoveries will be calculated according to the following equations:

Surrogate % Recovery
$$= \frac{Qd}{Qa} \times 100$$

Where:

Qd = Quantity determined by analysis Qa = Quantity added to sample

Matrix Spike % Recovery =
$$\frac{(SSR - SR)}{SA} \times 100$$

Where:

SSR = Spiked sample results SR = Sample results SA = Spike added

Laboratory Control Sample % Recovery =
$$\frac{LCS \text{ found}}{LCS \text{ true}} \times 100$$

As directed by the methods, surrogate standards are added to each sample analyzed for organics. Spikes and laboratory control samples will be run on at least 5% of the samples (each batch or Sample Delivery Group [SDG], ≤20 samples). Refer to Element B5 for acceptance criteria for accuracy. The LIMS is programmed to compare the individual values with the acceptance limits and inform the analyst if the results meet specifications. If the results are not within the acceptance criteria, corrective action suitable to the situation will be taken. This may include, but is not limited to, checking calculations and instrument performance, reanalysis of the associated samples, examining other QC analyzed with the same batch of samples, and qualifying results with documentation of any QC problems in the case narrative.

Element D3 Revision No. 1 Date: 07/01/04 Page 3 of 4

Commercial quality control materials are run at least quarterly to ensure accuracy of the analytical procedure. Repetitive analysis of a reference material will also yield precision data. Accuracy information determined from reference materials is valuable because variables specific to sample matrix are eliminated. The QC program is capable of charting data for surrogates, spikes, control materials, and reference materials. The Quality Assurance Department reviews these charts in association with the monthly trend report for any indication of possible problems (i.e., shift in the mean and standard deviation).

<u>Completeness</u> – Completeness is the percentage of valid data acquired from a measurement system compared to the amount of valid measurements that were planned to be collected. The objective is analysis of all samples submitted intact, and to ensure that sufficient sample weight/volume is available should the initial analysis not meet acceptance criteria. The laboratory's LIMS will assign a unique identification number to the sample which tracks and controls movement of samples from the time of receipt until disposal. All data generated will be recorded referencing the corresponding sample identification number. The completeness of an analysis can be documented by including in the data deliverables sufficient information to allow the data user to assess the quality of the results. This information will include, but is not limited to, summaries of QC data and sample results, chromatograms, spectra, and instrument tune and calibration data. Additional information will be stored in the laboratory's archives, both hard copy and electronic.

 $Completeness = \frac{Number of valid measurements}{Total measurements needed} \times 100$

Element D3 Revision No. 1 Date: 07/01/04 Page 4 of 4

<u>Method Detection Limit</u> – It is important to ascertain the limit of quantitation that can be achieved by a given method, particularly when the method is commonly used to determine trace levels of analyte. The Environmental Protection Agency has set forth one method for determining method detection limits (MDLs) from which limits of quantitation (LOQs) can be extrapolated. MDLs are evaluated on an annual basis. MDL is defined as follows for all measurements:

$$MDL = t (n - 1, 1 - a = 0.99) \times S$$

Where:

MDL		Method detection limit
s	=	Standard deviation of the replicate analyses
t _{(n-1,1-a} = 0.99)	Ξ	Students' t-value for a one-sided 99% confidence level and a
		standard deviation estimate with n-1 degrees of freedom

Definitions:

<u>Calculated Method Detection Limit</u> – The calculated method detection limit is defined as the minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero. It is determined from analysis, on a given instrument, of a sample in a given matrix containing the analyte.

<u>Reported Method Detection Limit (MDL)</u> – The reported MDL is defined as the highest of all calculated MDLs obtained from all instruments used for a particular method/matrix. This can be the actual value or a default value set above the calculated values.

<u>Limit of Quantitation (LOQ)</u> – The limit of quantitation is defined as the level above which quantitative results may be obtained with a specified degree of confidence. The Lancaster Laboratories' policy is to set quantitation limits at a value at least 3× the MDL. Regulatory limits may require setting a lower LOQ. The judgement of the technical department management may be used to assess the feasibility of a lower LOQ.

APPENDIX A

EXAMPLE REPORTING FORMS

Analysis Report

ANALYTICAL RESULTS

Prepared for:

Example Client 2425 New Holland Pike Lancaster, PA 17601

Prepared by:

Lancaster Laboratories 2425 New Holland Pike Lancaster, PA 17605-2425

SAMPLE GROUP

The sample group for this submittal is 1029138. Samples arrived at the laboratory on Tuesday, March 13, 2007. The PO# for this group is 4000010170 and the release number is 6-066.

Client Description Sludge-Mix_No._3 Waste Sludge Sample Sludge-Mix_No._4 Waste Sludge Sample Lancaster Labs Number 5003785 5003788

METHODOLOGY

The specific methodologies used in obtaining the enclosed analytical results are indicated on the laboratory chronicles.

1 COPY TO 1 COPY TO Example Client Data Package Group Attn: Ms. Joanne Smith

Questions? Contact your Client Services Representative Katherine A Klinefelter at (717) 656-2300

Respectfully Submitted,

Barbara F. Reedy Senior Specialist

Explanation of Symbols and Abbreviations

The following defines common symbols and abbreviations used in reporting technical data:

RL N.D.	Reporting Limit none detected	BMQL MPN	Below Minimum Quantitation Level Most Probable Number
TNTC	Too Numerous To Count	CP Units	cobait-chloroplatinate units
1U	International Units	NTU	nephelometric turbidity units
umhos/cm	micromhos/cm		· ·
С	degrees Celsius	F	degrees Fahrenheit
meq	milliequivalents	lb.	pound(s)
g	gram(s)	kg	kilogram(s)
ug	microgram(s)	mg	milligram(s)
ml	milliliter(s)	1	liter(s)
m3	cubic meter(s)	ui	microliter(s)

- < less than The number following the sign is the limit of guantitation, the smallest amount of enalyte which can be reliably determined using this specific test.
- > greater than
- J estimated value -- The result is ≥ the Method Detection Limit (MDL) and < the Limit of Quantitation (LOQ).
- ppm parts per million One ppm is equivalent to one milligram per kilogram (mg/kg), or one gram per million grams. For aqueous liquids, ppm is usually taken to be equivalent to milligrams per liter (mg/l), because one liter of water has a weight very close to a kilogram. For gases or vapors, one ppm is equivalent to one microliter of gas per liter of gas.
- ppb parts per billion
- Dry weight basis Results printed under this heading have been adjusted for moisture content. This increases the analyte weight concentration to approximate the value present in a similar sample without moisture. All other results are reported on an as-received basis.
- U.S. EPA CLP Data Qualifiers:

Organic Qualifiers

- A TIC is a possible aldol-condensation product
- B Analyte was also detected in the blank
- C Pesticide result confirmed by GC/MS
- D Compound quantitated on a diluted sample
- E Concentration exceeds the calibration range of the instrument
- Presumptive evidence of a compound (TICs only)
 P Concentration difference between primary and
- confirmation columns >25%
- U Compound was not detected
- X,Y,Z Defined in case narrative

Inorganic Qualifiers

- B Value is <CRDL, but ≥IDL</p>
- E Estimated due to interference
- M Duplicate injection precision not met
- N Spike sample not within control limits
- S Method of standard additions (MSA) used for calculation
- U Compound was not detected
- W Post digestion spike out of control limits
- Duplicate analysis not within control limits
- + Correlation coefficient for MSA <0.995

Analytical test results for methods listed on the laboratories' accreditation scope meet all requirements of NELAC unless otherwise noted under the individual analysis.

Measurement uncertainty values, as applicable, are available upon request.

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff. This report shall not be reproduced except in full, without the written approval of the laboratory.

WARRANTY AND LIMITS OF LIABLITY - In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL LANCASTER LABORATORIES BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF LANCASTER LABORATORIES AND (B) WHETHER LANCASTER LABORATORIES HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Lancaster Laboratories which includes any conditions that vary from the Standard Terms and Conditions of Lancaster Laboratories and we hereby object to any conflicting terms contained in any acceptance or order submitted by client.

Page 1 of 5

Lancaster Laboratories Sample No. SW 5003785

Sludge-Mix No._3 Waste Sludge Sample SITE ID: 6-066 SAMPLE ID: Sludge-Mix_No._3 6-066 Collected:03/12/2007 08:00 by DG

Submitted: 03/13/2007 09:20 Reported: 04/02/2007 at 14:03 Discard: 06/02/2007 Account Number: 06195

Example Client 2425 New Holland Pike Lancaster, PA 17601

AMIX3 SDG#: PDR73-01

				Dry		
CAT			Dry	Method		Dilution
No.	Analysis Name	CAS Number	Result	Detection Limit	Unite	Pactor
00159	9.38 Mercury	7439-97-6	0.0258 J	0.0115	mg/kg	l
01643	Aluminum	7429-90-5	9,170.	3.78	ng/kg	1
01650	Calcium	7440-70-2	217,000.	143.	mg/kg	10
01654	Iron	7439-89-6	5,110.	5.32	mg/kg	1
01657	Magnesium	7439-95-4	2,000.	2,87	mg/kg	1
D1662	Potassium	7440-09-7	2,000.	3.74	mg/kg	1
01667	Sodium	7440-23-5	3,970.	39.3	mg/kg	1
06925	Thallium	7440-28-0	N.D.	1.50	mg/kg	1
06935	Arsenic	7440-38-2	3.58	1.03	mg/kg	1
06936	Selenium	7782-49-2	N.D.	1,10	mg/kg	1
06944	Antimony	7440-36-0	N.D.	1.02	mg/kg	1
06946	Barium	7440-39-3	307.	0.0260	mg/kg	1
06947	Beryllium	7440-41-7	0.673	0.0767	mg/kg	1
06949	Cadmium	7440-43-9	0.470 J	0.0734	mg/kg	1
06951	Chromium	7440-47-3	16.4	0.658	mg/kg	1
06952	Cobalt	7440-48-4	4.88	0.147	mg/kg	1
06953	Copper	7440-50-8	21.4	0,203	mg/kg	1
06955	Lead	7439-92-1	62.2	0.498	mg/kg	1
06958	Manganese	7439-96-5	190.	0.0632	mg/kg	1
06961	Nickel	7440-02-0	33.6	0.684	mg/kg	1
06966	Silver	7440-22-4	N.D.	0.192	mg/kg	1
06971	Vanadium	7440-62-2	142.	0.101	mg/kg	1
06972	Zinc	7440-66-6	40.5	0.739	mg/kg	1
04173	20.90 Formaldehyde in Soil	50-00-0	N.D.	1,100.	ug/kg	1
00111	18.60 Moisture	n.a.	21.4	0.50	5	1
07400	"Moisture" represents the loss 103 - 105 degrees Celsius. The as-received basis.	moisture resul	he sample after t reported abov		•	1
0/400	18.50 Total Residue	n.a.	8B.6	0.50	ł	I
	The total residue is calculate 100%.	d by subtractin	g the moisture	value from		
04688	B.44 TCL Semivolatiles/Soil					
00176	l,4-Dioxane	123-91-1	N.D.	1,100.	ug/kg	1
01185	Phenol	108-95-2	15,000.	380.	ug/kg	1
01186	2-Chlorophenol	95-57-8	N.D.	380.	ug/kg	1
01287	1,4-Dichlorobenzene	106-46-7	N.D.	380.	ug/kg	1
01188	N-Nitroso-di-n-propylamine	621-64-7	N.D.	380.	ug/kg	ĩ
01189	1,2,4-Tricblorobenzene	120-82-1	N.D.	380,	ug/kg	1
01190	4-Chloro-3-methylphenol	59-50-7	N.D.	750.	ug/kg	1
01191	Acenaphthene	83-32-9	N.D.	380.	ug/kq	1
				-		-

Lancaster Laboratories, Inc. 2425 New Holland Pike PO 80x 12425 Lancaster, PA 17605-2425 717-656-2300 Fax: 717-656-2681

,

Page 2 of 5

Lancaster Laboratories Sample No. SW 5003785

Sludge-Mix No. 3 Waste Sludge Sample SITE ID: 6-066 SAMPLE ID: Sludge-Mix_No._3 6-066 Collected:03/12/2007 08:00 by DG

Submitted: 03/13/2007 09:20 Reported: 04/02/2007 at 14:03 Discard: 06/02/2007 Account Number: 06195

Example Client 2425 New Holland Pike Lancaster, PA 17601

AMIX3 SDG#: PDR73-01

WITY?	3DG#: PDR/3-01				Dry		
CAT			Dry		Method		Dilution
No.	Analysis Name	CAS Number	Result		Detection Limit	Units	Factor
01192	4~Nitrophenol	100-02-7	N.D.		1,900.	ug/kg	1
01193	2,4-Dinitrotoluene	121-14-2	N.D.		750.	ug/kg	1
01194	Pentachlorophenol	87-86-5	N.D.		1,900.	ug/kg	1
01195	Pyrene	129-00-0	N.D.		380.	ug/kg	1
03746	2-Nitrophenol	88-75-5	N.D.		380.	ug/kg	1
03747	2,4-Dimethylphenol	105-67-9	N.D.		750.	ug/kg	1
03748	2,4-Dichlorophenol	120-83-2	560.	J	380.	ug/kg	1
03749	2,4,6-Trichlorophenol	B8-06-2	N.D.		380.	ug/kg	l
03750	2,4-Dinitrophenol	51-28-5	N.D.		7,500.	ug/kg	1
03751	4,6-Dinitro-2-methylphenol	534~52~1	N.D.		1,900.	ug/kg	1
03753	bis(2-Chloroethyl)ether	111-44-4	N.D.		380.	ug/kg	1
03754	1,3-Dichlorobenzene	541-73-1	N.D.		380.	ug/kg	l
03755	1,2-Dichlorobenzene	95-50-1	N.D.		380.	ug/kg	1
03757	Hexachloroethane	67-72-1	N.D.		380.	ug/kg	1
03758	Nitrobenzene	98-95-3	N.D.		380.	ug/kg	1
03759	Isophorone	7B-59-1	N.D.		380.	ug/kg	1
03760	bis (2-Chloroethoxy) methane	111-91-1	N.D.		380.	ug/kg	1
03761	Naphthalene	91-20-3	3,600.		380.	ug/kg	1
03762	Hexachlorobutadiene	87-68-3	N.D.		750.	ug/kg	1
03763	Hexachlorocyclopentadiene	77-47-4	N.D.		1,900.	ug/kg	1
03764	2-Chloronaphthalene	91-58-7	N.D.		380.	ug/kg	1
03765	Acenaphthylene	208-96-B	N.D.		380.	ug/kg	1
03766	Dimethylphthalate	131-11-3	N.D.		750.	ug/kg	1
03767	2,6-Dinitrotoluene	606-20-2	N.D.		380.	ug/kg	1
0376B	Fluorene	86-73-7	490.	J	380.	ug/kg	1
03769	4-Chlorophenyl-phenylether	7005-72-3	N.D.		380.	ug/kg	1
03770	Diethylphthalate	84-66-2	N.D.		750.	ug/kg	1
03772	N-Nitrosodiphenylamine	86-30-6	N.D.		380.	ug/kg	1
03773	N-nitrosodiphenylamine decompos The result reported for N-nitro total of both compounds. 4-Bromophenyl-phenylether	ses in the GC i psodiphenylamir 101-55-3	nlet formi: ne represen N.D.	ng dipl ts the	nenylamine. combined 380.		
03774	Hexachlorobenzene	118-74-1	N.D.		380. 380.	ug/kg	1
03775	Phenanthrene	85-01-8	N.D. 4.200.		380.	ug/kg	1
03776	Anthracene	120-12-7	4,200. N.D.		380.	ug/kg	1
03777	Di-n-butylphthalate	84~74~2	N.D.		750.	ug/kg	1
03778	Fluoranthene	206-44-0	N.D.		750. 380.	ug/kg	1
03780	Butylbenzylphthalate	85-68-7	N.D.		750.	ug/kg	1
03781	Benzo(a) anthracene	56-55-3	N.D. N.D.		750. 380.	ug/kg	1
03782	Chrysene	218-01-9	N.D. 1,500.	J	380.	ug/kg	1
03783	3,3'-Dichlorobenzidine	91-94-1	1,500. N.D.	J	1,100.	ug/kg	1
03784	bis(2-Ethylhexyl)phthalare	117-B1-7	N.D.		1,100. 750.	ug/kg	1
		~~/~//~//	TA * 70 *		, 0 .	ug/kg	T

Lancaster Laboratories, Inc. 2425 New Holland Pike PO Box 12425 Lancaster, PA 17605-2425 717-656-2300 Fax: 717-656-26B1

Analysis Repon

Account Number: 06195

2425 New Holland Pike

Lancaster, PA 17601

Example Client

Page 3 of 5

Lancaster Laboratories Sample No. SW 5003785

Sludge-Mix_No. 3 Waste Sludge Sample SITE ID: 6-066 SAMPLE ID: Sludge-Mix_No._3 6-066 Collected:03/12/2007 08:00 by DG

Submitted: 03/13/2007 09:20 Reported: 04/02/2007 at 14:03 Discard: 06/02/2007

AMIX3 SDG#: PDR73-01

					Dry		
CAT			Dry		Method		Dilution
No.	Analysis Name	CAS Number	Result		Detection Limit	Dnits	Factor
03785	Di-n-octylphthalate	117-84-0	N.D.		750.	ug/kg	l
03786	Benzo (b) fluoranthene	205-99-2	N.D.		3B0.	ug/kg	1
03787	Benzo(k) fluoranthene	207-0B-9	N.D.		380.	ug/kg	1
03788	Benzo (a) pyrene	50-32-8	N.D.		380,	ug/kg	1
03789	Indeno (1, 2, 3~cd) pyrene	193-39-5	N.D.		380.	ug/kg	1
03790	Dibenz (a, h) anthracene	53-70-3	N.D.		380.	ug/kg	1
03791	Benzo(g,h,i)perylene	191-24-2	N.D.		380.	ug/kg	2
04690	2-Methylphencl	95-48-7	N.D.		750.	ug/kg	1
04691	2,2'-oxybis(1-Chloropropane)	108-60-1	N.D.		380.	ug/kg	1
04692	4-Methylphenol	106-44-5	1,300.	3	750.	ug/kg	1
04693	3-Methylphenol and 4-methylpher chromatographic conditions used for 4-methylphenol represents t 4-Chloroaniline	l for sample ar	alvsis. The	result	reported	ug/kg	·
04694	2-Methylnaphthalene	91-57-6	4,000.		3BO.	ug/kg	1 1
04695	2,4,5-Trichlorophenol	95-95-4	N.D.		750.	ug/kg	1 1
04696	2-Nitroaniline	88-74-4	N.D.		380.	ug/kg	1
04697	3-Nitroaniline	99-09-2	N.D.		750.	ug/kg	1
04698	Dibenzofuran	132-64-9	N.D.		380.	ug/kg	1
04700	4-Nitroaniline	100-01-6	N.D.		750.	ug/kg	
04702	Carbazole	86-74-8	N.D.		380.	ug/kg	1 1
	Due to sample matrix interferen	ces observed d		stract:		237 AG	±

normal reporting limits were not attained.

Surrogate recoveries were outside of QC limits for the GC/MS semivolatile compounds due to the increased final volume from the sample extraction.

06292 8.32 TCL VOAs by 8260 (soil)

02016	Methyl Tertiary Butyl Ether	1634-04-4	N.D.	0.6	ug/kq	ı
05444	Chloromethane	74-87-3	N.D.	2.	uq/kq	1
05445	Vínyl Chloride	75-01-4	N.D.	1.	ug/kg	1
05446	Bromomethane	74-83-9	N.D.	2,	ug/kg	1
05447	Chloroethane	75-00-3	N.D.	2.	uq/kq	1
05449	1,1-Dichloroethene	75-35-4	N.D.	1.	ug/kg	7
05450	Methylene Chloride	75-09-2	4. J	2,	ug/kg	-
05451	trans-1,2-Dichloroethene	156-60-5	N.D.	1.	ug/kg	1
05452	1,1-Dichloroethane	75-34-3	N.D.	1.	vg/kg	1
05454	cis-1,2-Dichloroethene	156-59-2	N.D.	1.	ug/kg	1
05455	Chloroform	67-66-3	N.D.	1.	uq/kq	1
05457	1,1,1-Trichloroethane	71-55-6	N.D.	1.	uq/kq	1
05458	Carbon Tetrachloride	56-23-5	N.D.	1.	ug/kg	ı

Lancaster Laboratories, Inc. 2425 New Holland Pike PO Box 12425 Lancaster, PA 17605-2425 717-656-2300 Fax; 717-656-2681

Account Number: 06195

2425 New Holland Pike

Lancaster, PA 17601

Example Client

Page 4 of 5

Lancaster Laboratories Sample No. SW 5003785

Sludge-Mix_No._3 Waste Sludge Sample SITE ID: 6-066 SAMPLE ID: Sludge-Mix_No._3 6-066 Collected:03/12/2007 08:00 by DG

Submitted: 03/13/2007 09:20 Reported: 04/02/2007 at 14:03 Discard: 06/02/2007

22. 00/02/200/

AMIX3 SDG#: PDR73-01

MILLAD	5DG#: FDR/5-01				Dry		
CAT			Dry		Method		Dilution
No.	Analysis Name	CAS Number	Resul	.t	Detection Limit	Units	Factor
05460	Benzene	71-43-2	2.	J	0.6	ug/kg	1
05461	1,2-Dichloroethane	107-06-2	N.D.		1,	ug/kg	1
05462	Trichloroethene	79-01-6	N.D.		1.	ug/kg	1
05463	1,2-Dichloropropane	78-87-5	N.D.		1.	ug/kg	1
05465	Bromodichloromethane	75-27-4	N.D.		1.	ug/kg	1 .
05466	Toluene	108-88-3	2.	J	1.	ug/kg	l
05467	1,1,2-Trichloroethane	79-00-5	N.D.		1.	ug/kg	1
05468	Tetrachloroethene	127-18-4	N.D.		1.	ug/kg	1
05470	Dibromochloromethane	124-48-1	N.D.		1.	ug/kg	1
05472	Chlorobenzene	108-90-7	N.D.		1.	ug/kg	1
05474	Etbylbenzene	100-41-4	N.D.		1.	ug/kg	1
05477	Styrene	100-42-5	N.D.		1.	ug/kg	1
05478	Bromoform	75-25-2	N.D.		1.	ug/kg	1
05480	1,1,2,2-Tetrachloroethane	79-34-5	N.D.		1.	ug/kg	1
06293	Acetone	67-64-1	120.		8.	ug/kg	1
06294	Carbon Disulfide	75-15-0	2.	J	1.	ug/kg	1
06296	2-Butanone	78-93-3	12.		5.	ug/kg	1
06297	trans-1,3-Dichloropropene	10061-02-6	N.D.		1.	ug/kg	1
06298	cis-1,3-Dichloropropene	10061-01-5	N.D.		1.	ug/kg	1
06299	4-Methyl-2-pentanone	108-10-1	N.D.		з.	ug/kg	1
06300	2-Hexanone	591-78-6	N.D.		з	ug/kg	l
06301	Xylene (Total)	1330-20-7	11.		1.	ug/kg	1
	Surrogate recoveries were out	side of QC limit	s for t	he GC/M	S volatile		

fraction. The analysis was repeated and out of specification surrogate recoveries were again observed indicating a matrix effect. A GC/MS volatile internal standard peak area was also outside the QC limits for the re-analysis.

Commonwealth of Pennsylvania Lab Certification No. 36-037

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

		Laboratory	Chro	nicle		
CAT		-		Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
00159	9.38 Mercury	SW-846 7471A	1	03/16/2007 09:54	Damary Valentin	1
01643	Aluminum	SW-846 6010B	1	03/19/2007 22:18	Choon Y Tian	1

Lancaster Laboratories, Inc. 2425 New Holland Pike PO Box 12425 Lancaster, PA 17605-2425 717-656-2300 Fax: 717-656-2681

Lancaster Laboratories Sample No. SW 5003785

Sludge-Mix_No._3 Waste Sludge Sample SITE ID: 6-066 SAMPLE ID: Sludge-Mix_No._3 6-066 Collected:03/12/2007 08:00 by DG

Submitted: 03/13/2007 09:20 Reported: 04/02/2007 at 14:03 Discard: 06/02/2007 Account Number: 06195

Example Client 2425 New Holland Pike Lancaster, PA 17601

AMIX3	SDG#: PDR73-01					
01650	Calcium	SW-846 6010B	1	03/19/2007 22:23	Choon Y Tian	10
01654	Iron	SW-846 6010B	ī	03/19/2007 22:18	Choon Y Tian	1
01657	Magnesium	SW-846 6010B	ī	03/19/2007 22:18	Choon Y Tian	î
01662	Potassium	SW-846 6010B	ī	03/19/2007 22:18	Choon Y Tian	1
D1667	Sodium	SW-846 6010B	1	03/19/2007 22:18	Choon Y Tian	1
06925	Thallium	SW-846 6010B	ī	03/19/2007 22:18	Choon Y Tian	1
06935	Arsenic	5W-846 6010B	1	03/19/2007 22:18	Choop Y Tian	1
06936	Selenium	SW-846 6010B	1	03/19/2007 22:18	Choon Y Tian	1
06944	Antimony	SW-846 6010B	ī	03/19/2007 22:18	Choon Y Tian	1
06946	Barium	SW-846 6010B	1	03/19/2007 22:18	Choon Y Tian	1
06947	Beryllium	SW-846 6010B	1	03/19/2007 22:18	Choon Y Tian	1
06949	Cadmium	SW-846 6010B	1	03/20/2007 19:4B	Choon Y Tian	1
06951	Chromium	SW-846 6010B	ī	03/19/2007 22:18	Choon Y Tian	1
06952	Cobalt	SW-846 6010B	1	03/19/2007 22:18	Choon Y Tian	1
06953	Copper	SW-846 6010B	1	03/19/2007 22:18	Choon Y Tian	1
06955	Lead	SW-846 6010B	ī	03/19/2007 22:18	Choon Y Tian	1
06958	Manganese	SW-846 6010B	ī	03/19/2007 22:18	Choon Y Tian	1
06961	Nickel	SW-846 6010B	ī	03/19/2007 22:1B	Choon Y Tian	1
06966	Silver	SW-846 6010B	ī	03/19/2007 22:18	Choon Y Tian	1
06971	Vanadium	SW-846 6010B	ī	03/19/2007 22:18	Choon Y Tian	1
06972	Zinc	SW-846 6010B	ī	03/19/2007 22:18	Choon Y Tian	1
04173	20.90 Formaldehyde in Soil	SW-846 8315A	1	03/21/2007 21:05	James H Place	1
00111	18.60 Moisture	EPA 160.3 modified	ī	03/15/2007 17:23	Scott W Freisher	ĩ
07400	18.50 Total Residue	EPA 160.3 modified	1	03/15/2007 17:23	Scott W Freisher	1
04688	8.44 TCL	SW-846 8270C	ı	03/17/2007 0B:25	William T Parker	ī
	Semivolatiles/Soil		-	•••,•••	Maradan i Taiher	*
06292	8.32 TCL VOAs by 8260 (soil)	SW-846 8260B	l	03/20/2007 17:26	Emiley A King	1
00374	GC/MS - Bulk Sample Prep	SW-846 5030A	l	03/20/2007 14:34	Emiley A King	n.a.
00381	BNA Soil Extraction	SW-846 3550B	1	03/15/2007 18:30	Sally L Appleyard	1
	SW SW846 ICP Digest	SW-846 3050B	1	03/15/2007 20:10	Annamaria Stipkovits	1
05711	SW SW846 Hg Digest	SW-846 7471A modified	1	03/15/2007 23:20	Annamaria Stipkovits	1
05876	Formaldehyde Solid Extraction	SW-846 8315A	1	03/21/2007 08:15	Deborah M Zimmerman	1

Page 5 of 5

APPENDIX A

GC/MS VOLATILES DATA DELIVERABLES FORMS

2A

WATER VOLATILE SYSTEM MONITORING COMPOUND RECOVERY

Lab Name: Lancaster Laboratories Contract:

Lab Code: LANCAS ____ Case No.: ____ SAS No.: ____ SDG No.:LS433____

	EPA	SMC1	SMC2	SMC3	TOT
	SAMPLE NO.	(DCA) #	(TOL)#	(BFB) #	OUT
	===========	=====	=====	======	===
01	VBLKR32	105	102	98	0
02	TB322	107	102	100	0
03	IN322DL	109	103	101	0
04	IN322	109	102	106	0
05	VIBLKR00	107	103	98	0
05	IN322MS	110	101	103	0
07	VIBLKR01	110	102	98	0
08	IN322MSD	105	104	106	0
:		l			

				QC LIMITS
SMC1	(DCA)	=	1,2-Dichloroethane-d4	(76-114)
SMC2	(TOL)	Ħ	Toluene-d8	(88- 1 10)
SMC3	(BFB)	÷	4-Bromofluorobenzene	(86-115)

 1A VOLATILE ORGANICS ANALYSIS DATA SHEET

CAS NO. COMPOUND

EPA SAMPLE NO.

	VBLKR32
Lab Name: Lancaster Laboratories '	Contract:
Lab Code: LANCAS Case No.:	SAS No.: SDG No.:
Matrix: (soil/water) WATER	Lab Sample ID: VBLKR32
Sample wt/vol: 5.00 (g/mL) mL	Lab File ID: HP07566.i/07apr02a.b/ra02b01.d
Level: (low/med) LOW	Date Received:
Moisture: not dec.	Date Analyzed: 04/02/07
GC Column: DB-624 ID: 0.25 (mm)	Dilution Factor: 1.0

CONCENTRATION UNITS:

(ug/L or ug/Kg) ug/L

.:

74-B7-3Chloromethane	10	υ
75-01-4Vinyl Chloride	10	υ
74-B3-9Bromomethane	10	U
75-00-3Chloroethane	10	σ
75-35-41,1-Dichloroethene	10	U
67-64-1Acetone	10	υ
75-15-0Carbon Disulfide	10	σ
75-09-2Methylene Chloride	10	υ
75-34-31,1-Dichloroethane	10	U
78-93-32-Butanone	10	υ
67-66-3Chloroform	10 ·	U
71-55-61,1,1-Trichloroethane	10	ប
56-23-5Carbon Tetrachloride	10	υ
71-43-2Benzene	10	υ
107-06-21,2-Dichloroethane	10	U
79-01-6Trichloroethene	10	U
78-87-51,2-Dichloropropane	10	υ
75-27-4Bromodichloromethane	10	υ
10061-01-5cis-1,3-Dichloropropene	10	<u></u> ד
108-10-14-Methyl-2-Pentanone	10	υ
10B-88-3Toluene	10	U
10061-02-6trans-1,3-Dichloropropene	10	U
79-00-51,1,2-Trichloroethane	10	U
127-18-4Tetrachloroethene	10	υ
591-78-62-Hexanone	10	ប
124-48-1Dibromochloromethane	10	υ
108-90-7Chlorobenzene	10	υ
100-41-4Bthylbenzene	10	υ
1330-20-7Xylene (Total)	10	υ
100-42-5Styrene	10	υ
		I

OLM03.0

 IA
 EPA SAMPLE NO.

 VOLATILE ORGANICS ANALYSIS DATA SHEET
 VBLKR32

 ub Name: Lancaster Laboratories
 Contract:
 VBLKR32

 ub Code: LANCAS
 Case No.;
 SAS No.:
 SDG No.:

 utrix: (soil/water) WATER
 Lab Sample ID: VBLKR32
 Imple wt/vol: 5.00 (g/mL) mL
 Lab File ID: HP07566.i/07apr02a.b/ra02b01.d

 svel: (low/med) LOW
 Date Received:
 Date Ralyzed: 04/02/07

 Column: DB-624 ID: 0.25 (mm)
 Dilution Factor: 1.0

CONCENTRATION UNITS:

75-25-2Bromoform 10 U	CAS NO.	Q
79-34-51,1,2,2-Tetrachloroethane 10 U		10 U 10 U
540-59-01,2-Dichloroethene (Total) 10 U		10 U

4A VOLATILE METHOD BLANK SUMMARY	EPA SAMPLE NO.
Lab Name: Lancaster Laboratories Contract:	VBLKR32
Lab Code: LANCAS Case No.: SAS No.:	SDG No.:
Lab File ID: ra02b01.d Lab Sam	ple ID: VBLKR32
Date Analyzed: 04/02/07 Time Ar	alyzed: 19:23
GC Column: DB-624 ID: 0.25 (mm) Heated	Purge: (Y/N) N
Instrument ID: HP07566	

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS AND MSD:

1	EPA	LAB	LAB	TIME
j	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED
1	===========	*********		
01	246TB	5012043	ra02s01.d	20:09
02	TB322	5013066	ra02s02.d	20:34
03	IN322DL	5013065	ra02s03.d	20:59
04	IN322	5013065	ra02s04.d	21:24
05	VIBLKR00	VIBLKR00	ra02505.d	21:49
06	IN322MS	5013065	ra02s06.d	22:13
07	VIBLKR01	VIBLKR01	ra02s07.d	22:38
DB	IN322MSD	5013065	ra02s08.d	23:03
-				

COMMENTS: R070921AA

page 1 of 1

.

.

5A

VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

Lab	Name:	Lancaster	Labora	atories	Contract:	·
Lab	Code:	LANCAS	Case	No.:	SAS No.:	SDG No.:
Lab	File :	ID: ra02t0	2.đ		BFB Injection I	Date: 04/02/07
Ins	trumen	t ID: HP075	66		BFB Injection 7	Sime: 18:03
GC (Column	: DB-624	ID:	.25 (mm)	Heated Purge: ((Y/N) N

		& RELATIVE
m/e	ION ABUNDANCE CRITERIA	ABUNDANCE
=====		
50	8.0 ~ 40.0% of mass 95	22.5
75	30.0 - 66.0% of mass 95	50.7
95	Base peak, 100% relative abundance	100.0
96	5.0 - 9.0% of mass 95	6.6
173	Less than 2.0% of mass 174	0.2 (0.3)1
174	50.0 - 120.0% of mass 95	73.7
175	4.0 ~ 9.0% of mass 174	6.2 (8.4)1
176	93.0 - 101.0% of mass 174	71.7 (97.3)1
177	5.0 - 9.0% of mass 176	5.6 (7.8)2

1-Value is % mass 174

2-Value is % mass 176

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

	EPA	LAB	LAB	DATE	TIME
j	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
1	**********	===============		=========	
01	VSTD050	VSTD050	ra02c01.d	04/02/07	18:27
02	VBLKR32	VBLKR32	ra02b01.d	04/02/07	19:23
03	246TB	5012043	ra02s01.d	04/02/07	20:09
04	TB322	5013066	ra02s02.d	04/02/07	20:34
05	IN322DL	5013065	ra02s03.d	04/02/07	20:59
06	IN322	5013065	ra02s04.d	04/02/07	21:24
07	VIBLKR00	VIBLKR00	ra02s05.d	04/02/07	21:49
08	IN322MS	5013065	ra02s06.d	04/02/07	22:13
09	VIBLKR01	VIBLKR01	ra02s07.d	04/02/07	22:38
10	IN322MSD	5013065	ra02s08.d	04/02/07	23:03
					İİ

•

8A

VOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

1		IS1(BCM)		IS2 (DFB)		IS3 (CBZ)	
		area #	RT #	AREA #	RT #	AREA #	RT #
ļ		==========			=======	=========	=======
1	12 HOUR STD	120834	6.378	754713	7.777	709348	11.111
1	UPPER LIMIT	241668	6.878	1509426	8.277	1418696	11.611
	LOWER LIMIT	60417	5.878	377356	7.277	354674	10.511
	=========	========		=========	======		======
I	EPA SAMPLE						
	NO.						
				========	======		=======
01	VBLKR32	109279	6.385	672355	7.780	608086	11.114
02	246TB	105039	6.3Bl	643582	7.783	578415	11.114
03	TB322	104435	6.384	623680	7.783	576801	11.114
04	IN322DL	101733	6.380	627469	7.779	569573	11.113
05	IN322	101651	6.380	624145	7.780	574489	11.113
06	VIBLKR00	100325	6.381	622238	7.777	563361	11.111
07	IN322MS	100923	6.374	630675	7.777	578000	11.111
08	VIBLKR01	98881	6.3Bl	616494	7.777	565944	11.111
09	IN322M5D	103311	6.380	627595	7.776	560061	11.113

IS1 (BCM)=Bromochloromethane
IS2 (DFB)=1,4-Difluorobenzene

IS3 (CBZ) =Chlorohenzene-d5

ŗ

1

AREA UPPER LIMIT = +100% of internal standard area AREA LOWER LIMIT = - 50% of internal standard area RT UPPER LIMIT = +0.50 minutes of internal standard RT RT LOWER LIMIT = -0.50 minutes of internal standard RT

Column used to flag values outside QC limits with an asterisk
* Values outside of QC limits.
uge 1 of 1

OLM03.0

6A VOLATILE ORGANICS INITIAL CALIBRATION DATA

Leb Name: Loncaster Laborat	cories Contract:		
Lab Code: LANCAS Case N	ID.: SAS No.:	SDG	No.:
Instrument ID: HPD7566	Calibration Date(s): 12/15/06		12/15/06
Heated Purge: (Y/N) N	Calibration Time(s): 05:20		D6:58

GC Column: DB-624 1D: .25 (mm)

	1					[*
COMPOUND	RRF 10	RRF 20	RRF 5D	RRF100	RRF20D	RRF	RSD
			222222 / 0770		===== 3.9305	4_0029	1.9
Chloromethane	3.6054	3.9407	3.707/	7 6761	3 5777	3.6236	1.7
	2.1743	2.22/4	3,7034	2 2750	2 1571	2,1780	1.9
	2.0194	4 DBE/	5 0763	2 0850	2 0054	2.0343	2.2
	2.2039	1.9074	2.0/02	2 2121	2 2576	2 1860	5.5
	1.0936	1.9(00	4 0020	0.027	1 0051	1 0070	5.4
	1.0950	0.9049	1.0000	0 4570	8 0575	8.3778	7.4
Carbon Disulfide	8.1512	1.4002	5.1100	2 4000	2.7219	2 4732	4.1
Hethylene Chloride	2.6892	2.485/	2.7000	2.0790	2.5470	2 1523	6.2
trans-1,2-Dichloroethene	2.4392	2,1940	2.5045	2.210/	12.3410	1 0/19	6.0
	*4.8474	4,4654	5.1890	12.1001	3.1037	4.9418	5.6
cis-1,2-Dichloroethene	2.6065	2.3984	2.7578	2.(150	12.1314	2.6432	4.8
2-Butanone	1,6435	1.5925	1.768/	1.6506	11.1133	1.6858	5.6
	*3.990D	3.7728	4.3056	4.242>	4,2/10	4.1164	6.7
1,1,1-Trichlorpethane	*D. 5157	0.4569	0.5450	0.5297	10.5344	0.5164	7.5
a be Tean-blands of	*0.4072	0.3568	0.4311	0.4216	0.4292	0.4092	
A D. Dieblemesthope (Intal)	2.5229	2.2962	2.6612	2.6161	2.6422	2.5477	5.9
N	*1.6955	1.5335	1.7797	1.7409	1.7284	1.6956	5.6
1 7 Di-Llasathono	*3.3042	3.2259	3.6694	3.5919	3.6164	3.4816	5.8
Trichloroethene	±0 3606	0.3145	10.3701	10.3696	0.3723	10.3574	6.8
1.2-Dichloropropane	in 4657	10.4344	D.5045	10.4875	10.4882	0.4761	5.7
Bromodichloromethane	¥n 2580	In 4424	In.51D9	10.5098	10.5120	0.4866	6.9
cis-1,3-Dichloropropene	±n 6652	in_6230	10.7356	510.7209	0.7253	0.6940	7.0
4-Methyl-2-Pentanone	in 5815	10.5791	10.6463	510.6011	10.6420	10.6100	1 2.2
Toluene	±1 0551	1.7110	11.9720	11.9392	11.9273	11.9009	5.6
trans-1,3-Dichloropropene	*D 6019	0.5840	10.6753	510.6659	0.6715	10.6398	5.0
1,1,2-Trichloroethane	*D 3465	10.3277	10.369	510.3599	710.3593	510.3522	4.D
Tetrachloroethene	*n 2021	In 2566	lo. 2966	310.293	510.3028	310.2884	5.5
• •	In 3040	10 2080	110.4498	310.422	710.4536	5 0.4238	6.>
	*n 2001	10 2012	0.3449	210.343	310.3543	5 0.5266	8.9
Dibromochloromethane	In 3801	10 3731	10.420	710.412	210.4153	510.4021	5.0
1,2-Dibromoethane	+1 1/01	1 073	1.167	5 1.153	1.1655	5 1.1317	5.4
Chlorobenzene	*n 6686	In 560	310.655	2 0.650	D.6583	5 0.6346	6.5
Ethylbenzene	In 70%	0.701	0.812	5 0.805	D.8144	4 0.7856	6.1
m+p-Xylen⊵	*0 7707		0.793	7 0.784	7 0.796	5 0.7662	6.0
Xylene (Total)	in 7707	0 685	0 703	710.784	70.796	5 0.7662	6.0
o-Xylene	*1 7//0	10.000	6 1 313	4 1.309	4 1.325	1 1.2653	6.3
Styrene	*0 1020	0 106	7 0 232	oln. 235	710.248	4 0.2209	11.5
Bromoform 1,1,2,2-Tetrachloroethane	*D E49	0.174		3 0.579	6 0.585	6 0.5780	3.5
1,1,2,2-Tetrachioroethane 1,2-Dibromo-3-Chioropropan	10.000 10 100		010 113	3 0.109	6 0.116	7 0.1101	5.3
1,2-Dibromo-3-Chloropropan	e 0. 107	510.101				= ======	=====
				3 0 575	2 0.575	4 0.5580	1 2.9
1,2-Dichloroethane-d4(mz10	230.548	210.741	2 2 2 2 2 1	0 2 821	A 2 810	9 2.7287	3.6
1,2-Dichloroethane-d4	2.585	112.110	010.05/	0 1 000	/ n op/	9 0.9792	2
Toluene-dB(mz100)	0.962	010.975	7 0.704	01.000	010 /00	7 0 300	3.7
4-Bromofluorobenzene(mz174) 0.37B	210.588	4 0.5/0	4 4 674	D 1 514	5 1.4922	2
Toluene-d8	11.469	611.499	UE1.443		011-210	0 0.5641	
4-Bromofluorobenzene	*D.551	910.565	61U,54C	sju.>/¢	10-210	10 { U + 204	1

* Compounds with required minimum RRF and maximum %RSD values. All other compounds must meet a minimum RRF of 0.D10.

VOLATILE CONTINUING CALIBRATION CHECK

Lab Name: Lancaster I	aboratories	Contract:	
Lab Code: LANCAS	Case No.:	SAS No.:	SDG No.:
Instrument ID: HP0756	6 Calibratic	on Date: 12/15/06	Time: 09:39
Lab File ID: rd15cv2.	d Init. Cali	ib. Date(s): 12/15/00	6 12/15/06
Heated Purge: (Y/N)	N Init. Cali	ib. Time(s): 05:20	09:39
3C Column: DB-624	ID: .25 (mm)		

.

				MIN		MAX
c	COMPOUND	RRF	RRF50	RRF	۴D	åD
-		======	=====	=====		=====
	loromethane		4.2255		- 5.6	
	inyl Chloride	3.6236	3.7482	0.10	3.4	25.0*
	comomethane	2.1780	2.2935	0.10	5.3	25.0*
	loroethane		2.1530		5.8	
	,1-Dichloroethene	•	1.7370		-20.6	25.0*
	cetone		0.9905		-1.6	1
	arbon Disulfide	8	6.4144		-23.4	
	≥thylene Chloride	,	2.3588		-11.8	
	rans-1,2-Dichloroethene		2.1474		-12.4	1
	,1-Dichloroethane	•	4.5086		-8.8	25.0*
	is-1,2-Dichloroethene	•	2.4221	•	-B.4	ÌI
2	-Butanone		1.7776		5.4	
,	hloroform		3.9069		-5.1	25.0*
	,1,1-Trichloroethane		0.4754		-7.9	25.0*
	arbon Tetrachloride	•	0.3708	1	-9.4	25.0*
	,2-Dichloroethene (Total)	2.5477			-10.3	
,	enzene	•	1.5612	:	-7.9	25.0*
	,2-Dichloroethane	•	3.3732	:	-3.1	25.01
	richloroethene	0.3574	0.3311	0.30	-7.4	25.0
	,2-Dichloropropane	•	0.4579	:	-3.8	
	romodichloromethane	0.4866	0.4892	0.20	0.5	25.0
	is-1,3-Dichloropropene	•	0.6834	•	-1.5	25.0
	-Methyl-2-Pentanone		0.6758		10.8	
•	oluene	1	1.8018		-5.2	25.0
-	rans-1,3-Dichloropropene	0.6398	0.6336	0.10	-1.0	25.0
	,1,2-Trichloroethane		0.3448		-2.1	25.0
	etrachloroethene	•	0.2659		7.8	25.0
	-Hexanone		0.4612		8.8	İ
	ibromochloromethane		0.3392		3.8	25.0
	,2-Dibromoethane		0.3976		-1.1	
,	hlorobenzene		1.1027		-2.6	25.0
	thylbenzene		0.6031		-5.0	25.0
	+p-Xylene	•	0.7533		-4.1	
	(Total)	1	0.7353	:	-4.0	25.0
	-Xylene	•	0.7353	1	-4.0	-
•	Styrene	•	1.2993		1	i
··	i c y z canc					İ

All other compounds must meet a minimum RRF of 0.010.

page 1 of 2

FORM VII VOA

7A

VOLATILE CONTINUING CALIBRATION CHECK

Lab Name: Lancaster	Laboratories	Contract:	
Lab Code: LANCAS	Case No.:	SAS No.:	SDG No.:
Instrument ID: HP075	66 Calibrati	on Date: 12/15/06	Time: 09:39
Lab File ID: rdl5cv2	.d Init. Cal	ib. Date(s): 12/15/0	6 12/15/06
Heated Purge: (Y/N)	N Init. Cal	ib. Time(s): 05:20	09:39
GC Column: DB-624	ID: .25 (mm)		

	[]	MIN		MAX
COMPOUND	RRF	RRF50	RRF	%D	&D
	======	======		=====	=====
* Bromoform	0.2209	0.2260	0.10	2.3	25.0*
* 1,1,2,2-Tetrachloroethane	0.5780	0.5912	0.30	2.3	25.0*
1,2-Dibromo-3-Chloropropane	0.1101	0.1112		1.0	
		======	=====	=====	
1,2-Dichloroethane-d4	2.7287	2.7448		0.6	
Toluene-d8	1.4922	1.4694	1	-1.5	
* 4-Bromofluorobenzene	0.5641	0.5616	0.20	-0.4	25.0*
······································	I		l		

All other compounds must meet a minimum RRF of 0.010.

.

.

.

APPENDIX A

GC/MS SEMIVOLATILES DATA DELIVERABLES FORMS

2C WATER SEMIVOLATILE SURROGATE RECOVERY

Lab Name:Lancaster Laboratories(Contract:							
Lab Code:	Lab Code: Case No.:		SAS No.: SDG No.:LS433							
]	EPA	S1	I S2	S3	S4	S5	S6	S7	S8 ·	TOTI
] LL #'s	SAMPLE NO.	(TBP)#	(PHL)#	(DCB)#	(2FP) #	(2CP)#	(TPH)#	(NBZ)#	(FBP)#	[OUT]
======================================	==============		=====	======	masas		====			====]
)1 5013065	IN322	121	91	1 70	73	84	86	97	85	0
12 5013065DL	IN322DL	105	102	74	83	94	78	100	90	
)3 SBLKWB085	SBLKWB0858	110	89	69	76	83	101	93	81	0
)4 085WBLCS	085WBLCS8	118	90	72	76	82	96	91	81	0
)5 085WBLCSD	085WBLCSD8	116	91	72	75	82	95	91	82	01
l	1	l	1	1						1
										·

QC LIMITS S1 (TBP) = 2,4,6-Tribromophenol (10 - 123)S2 (PHL) = Phenol-d5 (10 - 110)S3 (DCB) = 1,2-Dichlorobenzene-d4 (16-110) (advisory) S4 (2FP) = 2-Fluorophenol (21-110) S5 (2CP) = 2-Chlorophenol-d4 (33-110) (advisory) S6 (TPH) = Terphenyl-d14 (33-141) S7 (NBZ) = Nitrobenzene-d5 (35-114) S8 (FBP) = 2-Fluorobiphenyl (43-116)

Column to be used to flag recovery values * Values outside of contract required QC limits D Surrogate diluted out

page 1 of 1

FORM II SV-1

3/90

,

Unspiked: cy23s24.c LECS3 4773655 Method: SOW OLM 10/ Instrument: KP10193	/92	Matrix Spike: cy23s25.d LECS3MS 4773656 Matrix/Level: WL Dilution Factor: 1.00			. Li	pike Dupl ECS3MSD atch: CO6	4773657			
						*=====	.======		*====	=====
**************************************	IS CON	C MS CONC	MSD CON	MS REC	MSD RE	c Ran	nge l	INSPEC	RPD	RPD

	SPIKE	SPIKE	ng	ng	ng	×	%	LOWER-UPPER		X	MAX
Vinyl Chloride Carbon Tetrachloride Benzene 1,2-Dichloroethane Trichloroethene 1,2-Dichloropropane cis-1,3-Dichloropropene 1,1,2-Trichloroethane Tetrachloroethene 1,2-Dibromoethane Bromoform 1,4-Dichlorobenzene	125.0 125.0 125.0 125.0 125.0 125.0 125.0 125.0 125.0 125.0 125.0 125.0 125.0	125.0 125.0 125.0 125.0 125.0 125.0 125.0 125.0 125.0 125.0 125.0 125.0	ND ND ND	157 144 133 144 134 134 124 124 125 135 132 13 13 13 13 14	0 140 3 131 5 144 3 137 9 127 3 117 0 130 0 127 4 120 8 136	122 112 107 116 108 103 98 104 104 104 104 104 119	123 112 105 115 108 102 94 104 102 96 109 114	60-140 60-140 60-140 60-140 60-140 60-140 60-140 60-140 60-140 60-140 60-140 60-140	YES YES YES YES YES YES YES YES YES YES	0.6 0 1.8 1.1 0 1.2 4.7 0 2.4 3.3 1.4 3.6	30 30 30 30 30 30 30 30 30 30 30 30

#***=====#############################	N/C = Could not calculate
Lab Chronicle:	Eme:+Dy
	Ver. by

.

3B

SOIL VOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab Name:Lancaster Laboratories	Contract:
Lab Code: LANCAS Case No.:	SAS No.:SDG No.:
Matrix Spike - EPA Sample No.:0011	5 Level: (low/med) LOW

		SAMPLE	MS	MS	QC.
	SPIKE ADDED		CONCENTRATION	¥	LIMITS REC.
COMPOUND	(ug/Kg)	(ug/Kg)	(ug/Kg)	REC #	======
1,1-Dichloroethene	60.47	0.00	63.29	_105	59-172
Benzene	_60.47	_2.09	62.21	_99 	66-142
Trichloroethene	_60.47	2.16	53.96	115	59-139
Toluene Chlorobenzene	_60.47 60.47		58.56	_97	60-133
	I			I	!

	SPIKE	MSD	MSD			
		CONCENTRATION	*	8	QC LIMITS	
		(ug/Kg)	REC #	RPD #	RPD	REC.
COMPOUND	(ug/Kg)	(ug/ng/			======	=====
*****	========		82	24*	22	59-172
1,1-Dichloroethene	_57.11	_46.90	77	25*	21	66-142
Benzene	_57.11	_46.26	1 74	1 18	24	62-137
Trichloroethene	57.11	_42.41	!	34*	21	59-139
Toluene	_57.11	48.76	B2	27 + -2	21	60-133
Chlorobenzene	_57.11	42.09	⁷⁴	· · · · · · · · ·	1 4 -	
	l				1	1
	• • • • • • • • • • • • • • • • • • • •					

.

. .

Column to be used to flag recovery and RPD values with an asterisk

* Values outside of QC limits

RPD: 4 out of 5 outside limits Spike Recovery: 0 out of 10 outside limits

COMMENTS:

FORM III VOA-1

OLM03.0

-

0040

۰.

Lancaster Laboratories, Inc. Volatiles Laboratory Control Sample Recoveries

LCS: cu18l01.d Client ID: LCSCO7 Method: SW-846 8260B (25ML) Instrument: HP10193 LCS Duplicate: cu18102.d Client ID: LCOCO7 Matrix/Level: WL Dilution Factor: 1.0

Batch: CO71691AA

NAME	LEVEL	UG/L	UG/L	X	*	LOWER-UPPER	x	MAX	
ichlorodifluoromethane	5.00	4,58	4.32	92	86	44-146	6	30	YE
hloromethane	5,00	5.03	4.82	101	96	51-135	4	30	YE
inyl Chloride	5.00	5.11	4,90	102	98	65-120	4	30	YE
romomethane	5.00	5.11	4.89	102	98	74-113	4	30	YE
hloroethane	5.00	5.29	5.00	106	100	64-121	6	30	Y
crolein	37,50	35,43	34.87	94	93	10-138	2	30	Y
.1-Dichloroethene	5.00	4.94	4.75	99	95	84-117	4	30	Y. Y
reon 113	5.00	4.84	4.62	97	92	78-114	5	30	Ý
cetone	37.50	40.68	39.68	108	106	64-129	2	30 30	Y
Carbon Disulfide	5.00	4.44	4.15	89	83	77-123	7	30	Y
llyl Chloride	5.00	5.19	4.97	104	99	67-128	47	30	· Y
lethyl Acetate	5.00	5.39	5.00	108	100	34-178	3	30	Y
ethylene Chloride	5.00	4.95	4.81	99	96	83-111	8	30	Y
-Butyl Alcohol	50.00	48.49	44.69	97	89	68-132	8	30	Ý
Acrylonitrile	25.00	30,20		121	112	71-128	5	30	Ý
rans-1,2-Dichloroethene	5.00	4.95	4.73	99	95	86-111	1	30	Ý
lethyl Tertiary Butyl Ether	5.00	4.80		96	96	83-110	4	30	Y
Hexane	5.00	5.29		106	101	73-121	3	30	י ז
.1-Dichloroethane	5.00	5.51	5.33	110	107	84-116	د 6	30	י א
-Chloro-1,3-Butadiene	5.00	5.50		110	104	62-158	1	30	י
thyl t-Butyl Ether	5.00	4.89		98	97	83-115	ו 5	30	•
2.2-Dichloropropane	5,00	5.00		100	95	78-121	3		ì
is-1,2-Dichloroethene	5.00	4.82		96	93	86-113	3	30	
2-Butanone	37.50	46.37		124	119	71-132		30	1
Propionitrile	37.50	44.37	41.69		111	69-135	6	30	
Aethacrylonitrile	37.50	43.60		116	111	87-115	5	30	
Promochloromethane	5.00	4.44	4.38		88	83-115	1	30	1
Tetrahydrofuran	25,00	27.33			105	81-115		30	1
Chloroform	5.00	5.49	5.33		107	83-121	3 5	30 30	,
1,1,1-Trichloroethane	5.00	5.53			106	83-123	5		
Cyclohexane	5.00	5.22			99	78-121	-	30	, ,
1,1-Dichloropropene	5.00	5.36	5.04		101	87-114	6 5	30	,
Carbon Tetrachloride	5.00	5.42	5.17		103	76-134	_	30	
Isobutyl Alcohol	125.00	136.40			104	56-138	5	30	
Benzene	5.00	5.11	4.90		98	87-111	4	30	,
1,2-Dichloroethane	5.00	5,93	5.81		116	83-130	2	30	,
t-Amyl Methyl Ether	5,00	4.56			90	84-112	1	30	
n-Heptane	5,D0	5.89	5.53	118	111	79-115	6	30	
n-Butanol	250.00	225,14	216.68		87	53-127	4	30	
Trichloroethene	5.00	5,09) 4 . 88		98	87-116	4	30	
Methylcyclohexane	5.00	4.91	4.62	98	· 92	- 86-116	6	30	
1.2-Dichloropropane	5.00	5.40) 5.24	. 108	105	85-115	3	30	
Dibromomethane	5.00	5.14	5,08	· 103	102	90-116	1	30	
Methyl Methacrylate	5.00	5.37	, 5.09	o 107	102	76-116	5	30	
Bromodichloromethane	5.00	5.56	5.48	111	110	85-123	1	30	
cis-1,3-Dichloropropene	5.00	4.83	5 4.72	97	94	79-114	2		
4-Methyl-2-Pentanone	25.00			10B	108	71-130	0	30	
Toluene	5.00		2 4.90) 102	98	89-113	4	30	
trans-1,3-0ichloropropene	5,00		5.18	3 105	104	77-122	2	30	
Ethyl Hethacrylate	5,00			> 99	100		1		
1,1,2-Trichloroethane	5.00			5 102	101	87-115	1	30	
	5.00				85	81-116	5		
Tetrachloroethene	5.00				108		2		
1,3-Dichloropropane	25.00				116		1		
2-Hexanone Dibromochloromethane	5.00			· · · · ·	104		3		
1 2 Albaccathana	5,00			-	100		2		
1,2-Dibromoethane	5,00				97		3		
Chlorobenzene 1,1,1,2-Tetrachloroethane	E 00		7 60	R 103	100	86-119	4		
1,1,1,2-Tetrachloroethane				================				********	==
						N/C = Coul		ulate • ^{by} 3 2	

LCS: cu18101.d Client ID: LCSC07 Method: SW-846 8260B (25ML) Instrument: KP10193

.

,.

LCS Duplicate: cu18102.d Client 1D: LCOCO7 Matrix/Level: WL Dilution Factor: 1.0 Batch: CO71691AA

.

COMPOUND NAME	SPIKE LEVEL	LCS CONC UG/L	LCSD CONC UG/L	LCS REC	LCSD REC %	Range LOWER-UPPER	RPD X	RPD MAX	INSPE
Ethylbenzene	5.00	5.40		108	103	88-114	4	30	YES
m+p-Xylene	10.00	10,12	9,70	101	97	88-115	4	30	YES
o-Xylene	5.00	5.06		101	98	88-115	3	30	YES
Styrene	5.00	4,77	4.63	95	93	85-118	3	30	YES
Bromoform	5.00	4,40		88	86	79-126	2	30	YES
Isopropylbenzene	5.DO	5.11	4.89	102	98	87-115	4	30	YES
1,1,2,2-Tetrachloroethane	5.00	5.59	5.61	112	112	83-119	0	30	YES
Bromobenzene	5.00	4.96		99	96	84-112	3	30	YES
trans-1,4-Dichloro-2-Butene	25.00	27.73	26.23	111	105	15-165	6	30	YES
n-Propylbenzene	5.00	6.10		122	117	88-116	4	30	NO
2-Chlorotoluene	5.00	5.35	5.16	107	103	90-112	4	30	YES
4-Chlorotoluene	5.00	5,46		109	105	90-113	4	30	YES
1,3,5-Trimethylbenzene	5.00	5.65		113	109	86-113	4	30	YES
Pentachioroethane	5.00	4.98		100	99	86-122	1	30	YES
tert-Butylbenzene	5.00	5.15		103	99	90-114	4	30	YES
1,2,4-Trimethylbenzene	5.00	5,66		113	110	86-114	3	30	YES
sec-Butylbenzene	5.00	.5.57		111	108	83-115	3	30	YES
1,3-Dichlorobenzene	5.00	5.07		101	100	85-109	1	30	YES
p-Isopropyltoluene	5.00	5.39		108	104	85-115	4	30	YES
1.4-Dichlorobenzene	5.00	5.08		102	100	85-112	2	30	YES
Benzyl Chloride	5.00	4.47		89	88	70-130	1	30	YES
n-Butylbenzene	5.00	5.80		116	113	82-115	3	30	ND
1,2-Dichlorobenzene	5.00	5.00		100	99	89-114	1	30	YEŞ
1,2-Dibromo-3-Chloropropane	5.00	4.56		91	88	76-120	4	30	YES
1,2,4-Trichlorobenzene	5.00	4.39		88	90	78-117	2	30	YES
Hexachlorobutadiene	5.00	4.37		87	88	75-120	D	30	YES
Naphthalene	5.00	4.81		96	95	75-123	1	30	YES
1,2,3-Trichlorobenzene	5.00	4.35		87	88	84-116	· 1	30	YES

Lab Chronicle: ___________Ver. by $\Theta \supseteq \overline{B^{1}\Sigma}$

.

.

.

ab Name: LANCASTER LABS		-	e: LANCAS					-				
UNSP1XED:ed1383.d \$2030 5034293		MATRIX SPI SZOJOMS	KE:ed1384. 5034293		SP 1 KE S 2030i		2:ed1385 503429					
VAT USED:30.0 g		AMT USED:	30.0 g		U TKA		30.0 g					
FINAL VOL:1 ml		INAL VOL:	1 ml		FINAL	VOL:	1 mi					
INSTRUMENT: HP09572		C	ILUTION FA	CTOR: 1		BATCH:	07114s	LA026				
		EXTRACT	SPIKE LEV	EL: 2192.9	8							
					MSD CONC	MS REC	MSD REC	Range	INSPEC	RPD	RPD	INSPE
COMPOUND NAME	MS SPIKE	MSD SPIKE	US CONC UG/KG	UG/KG	UG/KG	% %		OWER-UPPER		*	MAX	
Benzaldehyde	2192.98	2192.98	ND	829.89			29 86	2-124 36-135	YES	27 1	30 30	YE: YE:
Phenol	2192.98	2192.98 2192.98	ND ND	1904.56 2026.15			90	41-122	YES	ź	30	YE
bis(2-Chloroethyl)ether	2192.98 2192.98	2192.98	ND	2133.83		97	93	48-125	YES	4	30	YE
2-Chiorophenol	2192.90	2192.98	ND	1917.05			89	39-129	YES	2	30	YE
2-Methylphenol	2192.98	2192.98	ND	1621.93			71	45-146	YES	4	30	YE
-1- 1 - 1	2192.98	2192.98	ND	2020.57			9 0	24-146	YES	2	30	ΥE
Acetophenone	2192.98	2192.98	ND	2001.40			91	35-133	YES	Û	30	YE
N-Nitroso-di-n-propylamine 4-Methylphenol	2192.98	2192.98	ND	2207.80		101	100	36-136	YES	1	30	YE
· · ·	2192.98	2192.98	ND	1931.00		88	81	31-125	YES	8	30	ΥE
Rexachloroethane	2192.98	2192.98	ND	1941.99		89	89	38-136	YES	Q	30	ΥĒ
Nitrobenzene	2192.98	2192,98	ND	1818.09		83	82	31-122	YES	1	30	ΥĒ
Isophorone 2-Nîtrophenol	2192.98	2192.98	ND	2172.62	2206.92		101	36-146	YES	2	30	ΥË
2,4-Dimethylphenol	2192.98	2192.98	ND	2000.93	1986.08	91	91	43-135	YES	0	30	YE
bis(2-Chloroethoxy)methane	2192.98	2192.98	ND	2057.26	2026.71		92	50-137	YES	2	30	YE
2,4-Dichlorophenol	2192.98	2192.98	ND	2076.84			94	35-138	YES	1	30	YE
Naphthalene	2192.98	2192.98	ND	1978.62	1975.19		90	33-137	YES	0	30	YE
4-Chloroaniline	2192.98	2192.98	ND	1891.15			89	2-130	YÉS	3	30	YE
Hexachlorobutadiene	2192.98	2192.98	ND	1989.23			91	45-129	YES	0	30	YE
Caprolactam	2192.98	2192.98	ND	1969.53			93	1-181	YES	3	30	YE
4-Chloro-3-methylphenol	2192.98	2192.98	ND	2089.96			93	48-135	YES	2	30 30	. YĘ
2-Methylnaphthalene	2192.98	2192.98	ND	1981.88			92	39-127	YES		30	YE YE
Hexachlorocyclopentadiene	4385.96	4385.96	ND	3673.96			78	5-154	YES YES	1		YĘ
2,4,6-Trichlorophenol	2192.98	2192.98	ND	2143.48		_	97	27-149	YES	5	30	YE
2,4,5-Trichlorophenol	2192.98	2192.98	ND	2046.25			98	23-142 39-146	YES	1	30	YE
1,1 ¹ -Biphenyl	2192.98	2192.98	ND	2053.74			95 72	42-110	YES	Ó	30	YE
2-Chloronaphthalene	2192.98	2192.98	ND	1576.06			96	42-110	YES	3	30	YE
2-Nitroaniline	2192.98	2192.98	ND	2168.03			97	46-131	YES	2	30	YE
Dimethylphthalate	2192.98	2192.98	ND	2094.08		_	98	50-132	YES	1	30	YE
2,6-Dinitrotoluene	2192.98	2192.98	ND	2171.08				45-144	YES	o	30	YE
Acenaphthylene	2192.98	2192.98	ND	2072.03				27-140	YES	ŏ	30	ÝE
3-Nitroaniline	2192.98	2192.98	ND	2060.23			96	48-129	YES	1	30	ÝE
Acenaphthene	2192.98	2192.98	ND	2089.08	_		79	20-152	YES	ż	30	YE
2,4-Dinitrophenol	2192.98	2192.98	ND	1779.49 1736.80	· _ · -	-		5-165	YES	- 4	30	YE
4-Nitrophenol	2192.98	2192.98	ND	2080.22				37-135	YES	0	30	YE
Dibenzofuran	2192.98	2192.98	ND	2173.47				44-138	YES	Ó	30	YE
2,4-Dinitrotoluene	2192.98	2192.98	ND ND	2126.90				49-128	YES	2	30	YE
Diethylphthalate	2192.98	2192.98	ND	2123.67				30-146	YES	0	30	Y
Fluorene	2192.98	2192.98	ND	2183.52				50-128	YES	1	30	YE
4-Chlorophenyl-phenylether	2192.98	2192.98	ND	1739.80				22-129	YES		30	Y
4-Nitroaniline	2192.98	2192.98 2192.98	ND	2150.70			·	5-156	YES		30	Y
4,6-Dinitro-2-methylphenol	2192.98 2192.98	2192.98	ND	2178.48				46-150	YES	0	30	Y
N-Nitrosodiphenylamine	2192.98	2192.98	ND	2176.33				52-136	YES	1		Y
4-Bromophenyl-phenylether	2192.98	2192.98	ND	2146.52				45-138	YES			Ϋ́
Hexachlorobenzene	2192.98	2192.98	ND	2160.38		_		16-156	YES			Ý
Atraziņe Poptachiosophenol	2192.98	2192.98	ND	1623.25			72	5-140	YES			Ý
Pentachlorophenol	2192.98	2192.98	ND	2141.00			97	4-176	YES			Ý
Phenanthrene Anthracene	2192.98	2192.98	ND	2128.97			96	17-161	YES			Y
Carbazole	2192.98	2192.98	ND	2045.09			94	36-143	YES			Y
	2192.98	2192.98	ND	2283,44			104	49-128	YES		. 30	Y
Di-n-butylphthalate	2192.98	2192.98	ND	1993.34			90	23-142	YES		30	Y
Fluoranthene	2192.98	2192.98	ND	2249.32			9 9	28-155	YES			Y
Pyrene Rutul banzul obthal ate	2192.98	2192.98	ND	2228.04			100	46-138	YES		30	Y
Butylbenzylphthalate 3,3'-Dichlorobenzidine	2192.98	2192.98	ND	2006.06			90	3-142	YES			Y
ala n reuron openationne	2192.98	2192.98	ND	2301.19			101	22-158	YES	- 4	30	Y
Benzo(a)anthracene	2142 4C			2001010								

ş

.

.

D85WBL Method	nc154.d .CS8 085WBL J: SOW 0LM03.2 .ment: KP04629		085WBLCSt Matrix/Le		B5WBLCSD		Batch: (06085W)	AB026	
COMPOUND	SPIKE	LCS CONC	LCSD CONC	LCS REC	LCSD REC	Range	REC	RPD	RPD	RPD
NAME	LEVEL	UG/L	UG/L		%	LOWER-UPPER	INSPEC	%	Max	INSPEC
Phenol	75.00	59.47	59,46	79	79	12-110	YES	0	42	YES
2-Chiorophenol	75.00	57.13	58,04	76	77	27-123	YES	2	4D	
1,4-Dichiarobenzene	50.00	35.57	35,94	71	72	36-103	YES	1	28	
1,2,4-Trichiorobenzene	50.00	40.46	40,72	81	B1	39-103	YES	1	28	

•

~

	*	
	N/C = Could not calculate	
Lab Chronicle:		אי
· · · · · · · · · · · · · · · · · · ·		
	Ver. 1	ру

1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET EPA SAMPLE NO.

Client Sample ID:W-TSI-INF-032207 Lab Name: Lancaster Laboratories Contrac	ct:
Lab Code: LANCAS Case No.: SAS No	o.: SDG No.:_LS433
Matrix: (soil/water) WATER	Lab Sample ID: 5013065
Sample wt/vol: 1046 (g/mL)ML	Lab File ID: hc156.d
Level: (low/med) LOW	Date Received: 03/23/07
<pre>% Moisture: not dec: dec:</pre>	Date Extracted: 03/26/07
Concentrated Extract Volume: 1000 (uL)	Date Analyzed: 03/28/07
Injection Volume: 2 (uL)	Dilution Factor: 1.0
SPC Cleanup: (Y/N) N pH:	Extraction: Cont

CONCENTRATION UNITS:

CAS NO. COMPOUND

(ug/L or ug/Kg) LOQ UG/L Q

108-95-2 Phenol	52]
95-57-8 2-Chlorophenol	77	E.
541-73-1 1,3-Dichlorobenzene	10	U
106-46-7 1,4-Dichlorobenzene	29	
95-50-1 1,2-Dichlorobenzene	9	
120-83-2 2,4-Dichlorophenol	9	
120-82-1 1,2,4-Trichlorobenzene	6	
91-20-3 Naphthalene	10	U
BB-06-2 2,4,6-Trichlorophenol	10	υ
118-74-1 Hexachlorobenzene	22	υ
85-01-8 Phenanthrene	10	υ
206-44-0 Fluoranthene	10	U

4B SEMIVOLATILE METHOD BLANK SUMMARY EPA SAMPLE NO.

Ē

Lab Name: Lancaster Laboratories	Contract:
Lab Code: LANCAS Case No.:	SAS No.: SDG No.:
Lab File ID: hc153.d	Lab Sample ID: SBLKWB085
Date Extracted: 01/01/00	Extraction: Cont
Date Analyzed: 03/28/07	Time Analyzed: 01:30
Matrix (soil/water): WATER	Level: (low/med) LOW

Instrument ID: HP04629

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS AND MSD:

	EPA	LAB	LAB	DATE
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED
	==============	===========	**************	
01	085WBLCS8	085WBLCS	hc154.d	03/28/07
02	085WBLCSD8	085WBLCSD	hc155.d	03/28/07
03	IN322	5013065	hc156.d	03/28/07
04	IN322DL	5013065DL	hc157.d	03/28/07
		l	l	l

COMMENTS:

page 1 of 1

OLMO3.0

5B SEMIVOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK DECAFLUOROTRIPHENYLPHOSPHINE (DFTPP)

Lab	Name:	Lancaster	Laboratories	Contract			
Lab	Code:	LANCAS	Case No.:	SAS No.		SDG	No.:
Lab	File 1	D: hb160.d		DFTPP	Injection	Date:	02/08/07
Ins	trument	ID: HP046	29	DFTPP	Injection	Time:	21:19

1		<pre>% RELATIVE</pre>
m/e	ION ABUNDANCE CRITERIA	ABUNDANCE
=====		
51	30.0 ~ 80.0% of mass 198	42.9
6B	Less than 2.0% of mass 69	0.0 (0.0)1
69	Mass 69 relative abundance	62.4
70	Less than 2.0% of mass 69	0.31 (0.5)1
127	25.0 - 75.0% of mass 198	36.7
197	Less than 1.0% of mass 198	0.0
198	Base peak, 100% relative abundance	100.0
199	5.0 to 9.0% of mass 198	6.96
275	10.0 - 30.0% of mass 19B	22.3
, 365	Greater than 0.75% of mass 198	2.62
441	Present, and less than mass 443	7.06
442	40.0 - 110% of mass 198	51.8
443	15.0 - 24.0% of mass 442] 11.1 (21.5)2
]
*	$2 - \frac{1}{2} = \frac{1}{2} + \frac{1}{2} = $	n of 440

1-Value is % mass 69

2-Value is % mass of 442

THIS TUNE APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

1	EPA	LAB	LAB	DATE	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
		*********		********	
01	SSTD05023	CLP0197	hb161.d	02/08/07	21:43
02	SSTD16023	CLP0197	hb162.d	02/0B/07	22:49
03	SSTD12023	CLP0197	hb163.d	02/08/07	23:56
04	SSTD0B023	CLP0197	hb164.d	02/09/07	01:02
05	SSTD01023	CLP0197	hb165.d	02/09/07	02:08
06	537029:23	ICV2196	hb166.d	02/09/07	03:15
07	551763622	4964245DL	hb167.d	02/09/07	04:21
				• •	

6. LS 1557 2/21/17

page l of l

. •

5B SEMIVOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK DECAFLUOROTRIPHENYLPHOSPHINE (DFTPP)

Lab	Name:	Lancaster	Laboratories	Contract			
Lab	Code:	LANCAS	Case No.:	SAS No.		SDG 1	No.:
Lab	File 1	D: hc150.d		DFTPP	Injection	Date:	03/27/07
Inst	rument	ID: HP046	29	DFTPP	Injection	Time:	22:45

		% RELATIVE
¦m∕e	ION ABUNDANCE CRITERIA	ABUNDANCE
======	======================================	============
51	30.0 - 80.0% of mass 198	48.5
68	Less than 2.0% of mass 69	0.0 (0.0)1
69	Mass 69 relative abundance	64.2
70	Less than 2.0% of mass 69	0.22 (0.35)1
127	25.0 - 75.0% of mass 198	37.5
197	Less than 1.0% of mass 198	0.0
198	Base peak, 100% relative abundance	100.0
199	5.0 to 9.0% of mass 198	6.71
275	10.0 ~ 30.0% of mass 198	19.5
365	Greater than 0.75% of mass 198	2.56
441	Present, and less than mass 443	7.49
442	40.0 - 110% of mass 198	49.6
443	15.0 - 24.0% of mass 442	9.6 (19.4)2
		İ İ
	1-Value is % mass 69 2-Value is % mas	s of 442

THIS TUNE APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

	EPA	LAB	LAB	DATE	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
	===========	******		*******	========
01	SSTD05079	CLP0197	hc151.d	03/27/07	23:09
02	SBLKWB0858	SBLKWB085	hc153.d	03/28/07	01:30
03	085WBLCS8	085WBLCS	hc154.d	03/28/07	02:36
04	085WBLCSDB	085WBLCSD	hc155.d	03/28/07	03:43
05	IN322	5013065	hc156.d	03/28/07	04:49
06	IN322DL	5013065DL	hc157.d	03/28/07	05:56

page 1 of 1

8B

SEMIVOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

		IS1 (DCB)		IS2 (NPT)	1	IS3 (ANT)	1
ļ	l	AREA #	RT #	AREA #	RT #	j area #	RT #
		=========	******			=======================================	
	12 HOUR STD	247005	14.158	811547	17.995	532981	23.487
	UPPER LIMIT	494010	14.658	1623094	18.495	1065962	23.987
	LOWER LIMIT	123502	13.658	405774	17.495	266490	22.987
ļ	===========		======				=======
	EPA SAMPLE					i i	-
ł	NO.						-
	===============	=============	******	==========		==============================	
01	SBLKWB0858	266693	14.163	868249	17.991	586103	23.486
02	085WBLCS8	257367	14.164	B13479	17.994	584944	23.480
03	085WBLCSD8	265895	14.164	842958	17.994	596324	23.491
04	IN322	230134	14.158	702063	17.99B	476596	23.485
05	IN322DL	307647	14.15B	908313	17.988	621326	23.483

IS1 (DCB) = 1,4-Dichlorobenzene-d4
IS2 (NPT) = Naphthalene-d8
IS3 (ANT) = Acenaphthene-d10

AREA UPPER LIMIT (advisory) = +100% of internal standard area AREA LOWER LIMIT (advisory) = -50% of internal standard area RT UPPER LIMIT = +0.50 minutes of internal standard RT RT LOWER LIMIT = -0.50 minutes of internal standard RT

Column used to flag internal standard are and RT values with an asterisk * Values outside of QC limits.

FORM VIII SV-1

OLM03.0

8C

 Lab Name: LANCASTER LABS
 Contract:______

 Lab Code: LANCAS Case No.:
 SAS No.:
 SDG No.:

 Lab File ID (Standard): hc151.d
 Date Analyzed: 03/27/07

 Instrument ID: HP04629
 Time Analyzed: 23:09

		IS4 (PHN)		IS5 (CRY)		IS6 (PRY)	[
1		AREA #	RT #	AREA #	RT #	AREA #	RT #
		==========		===========			======
	12 HOUR STD	1006237	27.984	725087	35.490	486895	43.683
ĺ	UPPER LIMIT	2012474	28.484	1450174	35.990	973790	44.183
	LOWER LIMIT	503118	27.484	362544	34.990	243448	43.183
-			======				
	EPA SAMPLE						
1	NO.]					
			-=-==		======		
01	SBLKWB0858	984214	27.984	63746B	35.475	358546	43.678
02	085WBLCSB	992751	27.984	680707	35.476	376794	43.689
03	085WBLCSD8	1030635	27.985	706658	35.47B	388947	43.690
04	IN322	800792	27.991	541905	35.485	397167	43.708
05	IN322DL	1043421	27.987	749080	35.479	47B401	43.680
ĺ	·	l	I		ļ		

IS4 (PHN) = Phenanthrene-d10
IS5 (CRY) = Chrysene-d12
IS6 (PRY) = Perylene-d12

.

AREA UPPER LIMIT (advisory) = +100% of internal standard area AREA LOWER LIMIT (advisory) = -50% of internal standard area RT UPPER LIMIT = +0.50 minutes of internal standard RT RT LOWER LIMIT = -0.50 minutes of internal standard RT

Column used to flag internal standard are and RT values with an asterisk * Values outside of QC limits.

68 SEMIVOLATILE ORGANICS INITIAL CALIBRATION DATA

Lab Name: Lancaster Laborat	tories Contract:		
Lab Code: LANCAS Case I	No.: SAS No.:	SDG	No.:
Instrument ID: HPD4629	Calibration Date(s):	02/08/07	02/09/07
	Calibration Times:	21:43	02:08

LAB FILE ID: RRF8023 = hb164.d	RRF1023 RRF1202				23 ≃ hb 023 ≃ hl		
				1			
					1 23RF1602		RSD
N-Nitrosodimethylamine	1.251	1.141	1.216	1.124	1.171	1.181	=====' 4
Pyridine	1.790	1.688	1.709	1.562	1.575	1.665	6
N,N-dimethyl formamide	1.114	1.250	1.332	1.309	0.868	1.175	16
2-methylcyclohexanone	0.409	D.416	D.428	0.409	0.402	0.413	2
3-methylcyclohexanone	0.415	0.386	D.380	0.364	0.336	0.376	8
4-methylcyclohexanone	0.382	0.370	0.346	0.330	0.304	0.347	9
Benzaldehyde	1.126					0.821	26
1,3,5-Trimethylbenzene	2.745	2.726	;			£	3
Aniline	2.106	1.904					12
Phenol	* 1.928	1.668			1.594	1.728	8*
bis(2-Chioroethyl)ether	* 1.592	1.450					. 6*
2-Chlorophenol	1.340	1.205		4	,	E	6*
1,2,4-Trimethylbenzene	2.884	2.883		2.891	2.698		3
1,3-Dichlorobenzene	* 1.639	1.521			•	t	5*
1,4-Dichlorobenzene	† 1.641	1.517					4*
1,2,3-Trimethylbenzene	2.827						3
1,2-Dichlorobenzene	± 1.557	1.429			1.367		6*
2-Methylphenol	* 1.338	1.153					7*
2,2:-oxybis(1-Chloropropane)	3.110			2.572	2.558		
bis(2-Chloroisopropyl)ether	3.110			2.572	2,558		8
Acetophenone	1.976	2.013					2
N-Nitroso-di-n-propylamine	* 1.639	1.488		1.443	1.435		6*
o-Toluidine	2.201	1.928		1.697	1.536		14
4-Methylphenol	* 1.396 * 0.785	1.231		1.235	1.229		6*
Hexachloroethane	0.100	0.769					3*
	* 0.633	0.594		0.569	0.594		4*
		1.051	1.115	1.014	1.058		6* 5+
2-Nitrophenol	* 0.265 * 0.541	0.236 0.493		0,240	0.249		5* 5*
-,			0.529		0.513		
1-chloro-2-nitro-4(trifluorom bis(2-Chloroethoxy)methane	* 0.582	0.193 0.516		0.202			4 6*
2,4-Dichlorophenol	* 0.406			0.522	0.537 0.415		 4*
	* 0.408	0.365		0.395			. 4~ 4*
2-Tertbutylphenol	0.470	0.478	0.521	0.505	0.467 0.495		4
Naphthalene	1.029	0.935	D.984	0,914	D.933		5+
4-Chloroaniline	0.442	0.377		0.262			27
Hexachlorobutadiene	0.303	0.295	0.308	0.297	0.319		3
Caprolactam	0.135	0.127		0.144	0.113		9
4-Chloro-3-methylphenol	+ 0.325	0.285		0.284	D.296		6*
	* 0.745			D.662	D.694	0.701	5*
Phthalic anhydride	0.432	0.298		0.270			36]
Hexachiorocyclopentadiene	0.413	0.498		0.493	0.551	D.495	10
2,4,6-Trichlorophenol	* D.468	0.459		0.472	0.508	D.484	5*
	*	0.495		0.499		D.527	6*
1,1'-Biphenyl	1.196	1.347		1.356	1.396	1.337	6
Diphenyl	1.196	1.358		1.364	1.392	1.341	6
	* 1.228	1.180		1.145	1.208	1.204	4*
4-Tertbutylphenol	D.688	0.638		0.685	0.668		31
2-Nitroaniline	1	0.608		D.596	0.621	0.618	4
Dimethylphthalate	1.604	1.464	1.586	1.454	1.514	1.525	4
2,6-Dinitrotoluene	+ D.387	0.376		0.382	0.413	0.396	5÷
	* 1.896	1.770	1.873	1.691	1.759		5*
· ·							1
							1

* Compounds with required minimum RRF and maximum %RSD values. All other compounds must meet a minimum RRF of 0.010.

i

B1528 2-12-07

FORM VI SV-1

OLM03.0

6C SEMIVOLATILE DRGANICS INITIAL CALIBRATION DATA

Lab Name: Lancaster Laborat	cories Contract:		
Lab Code: LANCAS Case M	lo.: SAS No.:	SDG	No.:
Instrument ID: HP04629	Calibration Date(s):	02/08/07	02/09/07
	Calibration Times:	21:43	02:08

RRFB023 = hb164.d RRF12023 = hb163.d RRF16023 = hb162.d COMPOUND RRF1023RRF5023RRF8023RF12023RF16023 RFF S-Hitroaniline 0.308 0.312 0.261 0.250 0.28 Acenaphthene 1.096 1.033 1.106 1.025 1.102 1.07 2,4-Dinitrophenol 0.362 0.46 0.322 0.366 0.337 -Nitrophenol 0.362 0.400 0.377 0.377 0.377 Dibenzofuran 1.780 1.657 1.814 1.634 1.751 1.72 2,4-Dinitrophenol 0.517 0.557 0.557 0.553 0.53 2,6-Dinitrophenol 0.551 0.572 0.527 0.557 0.553 0.53 2,6-Dinitrophenol 1.700 1.534 1.684 1.522 1.604 1.074 Diethylphthalate 1.770 0.579 0.743 0.683 0.775 0.711 4 Cthlorophenyl-phenylether 1.021 1.035 0.984 0.969 1.001 4 Cthlorophenyl-phenylether 1.021 1.035 0.984 0.969 1.022 4,6-Dinitro-2-methylphenol 1.017 0.926 0.548 0.616 0.567 0.602 0.588 2,4-Dinitrobobenzene 1.027 0.228 0.226 0.2215 0.220 N+Wircosodiphenylemine (1) 0.591 0.548 0.616 0.567 0.602 0.588 3,5-Ditertburylphenol 1.017 0.926 0.262 0.227 0.228 0.224 4,6-Dinitrophenol 1.027 0.227 0.228 0.221 0.224 9.4 corphenyl-phenylether +0.232 0.226 0.227 0.301 0.28	I	61.d	3 = hb1	RRESOZ	d.	= hb165	RRF1023	LAB FILE ID:
Bernanking and the second se								
Between and the second secon	I							
Between the second se	*							
3-Nitroaniline 0.308 0.312 0.261 0.250 0.283 Acenaphthene * 1.096 1.053 1.106 1.025 1.102 1.073 2,4-Dinitrophenol 0.289 0.346 0.322 0.366 0.337 0:benzofuran * 1.780 1.657 1.814 1.634 1.751 1.72 2,4-Dinitrophenol 0.507 0.572 0.527 0.537 <td< td=""><td>RSD</td><td>. 1</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	RSD	. 1						
Accenaphthene * 1.096 1.033 1.106 1.025 1.102 1.07. 2,4-Dinitrophenol 0.366 0.322 0.366 0.332 Dibenzofuran * 1.780 1.657 1.814 1.634 1.751 1.72 2,4-Dinitrotoluene * 0.517 0.505 0.572 0.527 0.553 0.533 2,6-Dinitrotoluene * 0.517 0.544 0.144 0.146 0.151 0.741 0.711 0.74 2,6-Dinitrotoluene * 1.700 1.534 1.684 1.521 1.361 1.306 2,6-Dinitro-2-methylphenol 0.650 0.881 0.720 0.741 0.711 0.74 4-Chlorophenyl-phenylether * 0.727 0.679 0.743 0.683 0.755 0.71 4-Chirorohiro-2-methylphenol 1.002 1.021 1.035 0.984 0.969 1.002 4-Vitrosodiphenylamine (1) 0.571 0.578 0.577 0.616 0.567 0.602 0.588 2,2-Diphenylhydrazine 1.071 0.726 0.964 0.874 0.896 0.933	=====						= ======	
2,4-binitrophenol 0.289 0.346 0.322 0.366 0.332 4-Nitrophenol 0.362 0.400 0.370 0.377 0.371 Dibenzofuran * 1.780 1.657 1.814 1.634 1.751 1.72 2,4-binitrophenol 0.517 0.555 0.557 0.557 0.557 0.553 0.532 2,6-Dinitrophenol 0.650 0.881 0.720 0.741 0.741 0.741 0.ietryphthalate 1.700 1.534 1.684 1.522 1.604 1.607 fluorene * 1.354 1.231 1.351 1.221 1.044 0.146 0.160 4-Kitroaniline 0.727 0.679 0.743 0.683 0.725 0.733 0.533 4,6-0initro-2-methylphenol 1.002 1.011 0.324 0.351 0.323 0.333 0.333 4,6-0initro-2-methylphenol 1.413 1.455 1.579 1.613 1.161 1.533 1,2-0iphenyl-phenylether 1.027 0.228 0.226 0.220 0.224 0.224 4-bitroph						-		
4-Nirrophenol 0.362 0.400 0.370 0.370 0.371 Dibenzofuran * 1.780 1.657 1.814 1.634 1.751 1.72 2,4-Dinirrophenol 0.517 0.505 0.527 0.553 0.532 2,6-Dinirrophenol 0.121 0.144 0.146 0.140 0.141 2,6-Dinirrophenol 0.527 0.573 0.533 0.533 2,6-Dinirrophenol 0.650 0.881 0.720 0.741 0.711 0.74 Diethylphthalate 1.700 1.534 1.684 1.522 1.604 1.607 4-Chorophenyl-phenylether * 0.727 0.679 0.743 0.683 0.755 0.71 4-Kert-Octyl)phenol 1.002 1.021 1.035 0.984 0.969 1.001 4-Nitrosodiphenylamine (1) 0.591 0.548 0.616 0.567 0.602 0.588 2,4-Ditertbutylphenol 1.092 1.119 1.261 1.221 1.171 4-Boromophenyl-phenylether * 0.282 0.262 0.224 0.221 0.224 0.221 <td< td=""><td>4*</td><td></td><td></td><td></td><td></td><td></td><td>* 1.096</td><td></td></td<>	4*						* 1.096	
Dibenzofuran * 1.780 1.657 1.814 1.634 1.751 1.72 2,4-Dinitrotoluene * 0.517 0.505 0.572 0.527 0.553 0.53 2,6-Dinitrophenol 0.121 0.144 0.146 0.141 0.143 0.451 0.441 0.771 0.741 0.741 0.711 0.741 0.711 0.741 0.711 0.741 0.711 0.741 0.711 0.743 0.683 0.755 0.711 4.601 1.602 1.601 0.322 0.333 0.333 0.333 0.333 0.333 0.333 1.632 1.612 1.633 1.612 1.533 1.621 1.613 1.614 1.644 1.221 1.613 1.612 1.533 1.622 1.613 1.644 0.846 0.846	10							
2,4-Dinitrotoluene * 0.517 0.505 0.572 0.527 0.553 0.533 2,6-Dinitrophenol 0.121 0.144 0.146 0.151 0.141 2,6-Dirertbutylphenol 0.650 0.881 0.720 0.741 0.741 0.741 0iethylphthalate 1.700 1.534 1.684 1.522 1.644 1.004 4-Chlorophenyl-phenylether * 0.727 0.679 0.743 0.683 0.755 0.71 4(tert-Octylphenol 1.002 1.021 1.035 0.984 0.969 1.00 0.4*Nitrosodiphenylamine 1 0.183 0.212 0.206 0.215 0.20 1.4-13 1.455 1.579 1.613 1.612 1.533 2,4-Dirertbutylphenol 1.017 0.926 0.964 0.874 0.896 0.933 3,5-Dirertbutylphenol 1.092 1.191 1.216 1.221 1.221 1.221 1.221 4-araine 0.208 0.227 0.228 0.224 0.221 0.224 0.221 0.224 0.221 0.224 0.221 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
2,6-Dinitrophenol 0.121 0.144 0.146 0.151 0.141 2,6-Ditertbutylphenol 0.650 0.881 0.720 0.741 0.711 0.74 Diethylphtalate 1.700 1.534 1.684 1.522 1.604 1.600 Fluorene *1.354 1.231 1.351 1.336 1.231 1.346 1.002 4-Chlorophenyl-phenylether *0.727 0.679 0.743 0.683 0.755 0.711 4(tert-Octyl)phenol 1.002 1.021 1.035 0.984 0.969 1.002 4-Nitrosodiphenylamine 1 0.121 0.743 0.683 0.755 0.711 4-Vitrosodiphenylamine 1 0.021 1.021 1.035 0.984 0.969 1.002 1,2-Diphenylhydrazine 1.017 0.926 0.646 0.874 0.866 0.933 3,5-Ditertbutylphenol 1.092 1.119 1.216 1.221 1.271 1.77 4-Bromophenyl-phenylether *0.232 0.226 0.227 0.221 0.224 0.221 0.224 0.221	5*							
2,6-Ditertbutylphenol 0.650 0.881 0.720 0.741 0.711 0.74 Diethylphthalare 1.700 1.534 1.634 1.522 1.604 1.60 Fluorene * 1.354 1.231 1.346 1.30 4-Chiorophenyl-phenylether * 0.727 0.679 0.743 0.683 0.755 0.711 4(tert-Octyl)phenol 1.002 1.021 1.035 0.984 0.969 1.00 4.6-Dinitro-2-methylphenol 0.324 0.351 0.333 0.332 0.235 0.262 0.241 1.221 1.221 1.717 </td <td>I</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>= U.517</td> <td></td>	I						= U.517	
Diethylphthalate 1.700 1.534 1.684 1.522 1.604 1.600 Fluorene 1.354 1.231 1.351 1.231 1.346 1.300 4-Chlorophenyl-phenylether 0.727 0.679 0.743 0.683 0.755 0.71 4(tert-0ctyl)phenol 1.002 1.035 0.984 0.969 1.000 4-Nitrosodiphenylamine (1) 0.591 0.548 0.616 0.567 0.602 0.588 2,4-Ditertbutylphenol 1.613 1.612 1.533 1,2-Diphenylhydrazine 1.017 0.926 0.964 0.874 0.896 0.933 3,5-Ditertbutylphenol 1.017 0.926 0.964 0.874 0.896 0.933 3,5-Ditertbutylphenol 1.017 0.926 0.215 0.200 N-Nitrosodiphenylether 0.232 0.228 0.254 0.235 0.262 0.244 Hexachlorobenzene 0.232 0.228 0.254 0.235 0.262 0.244 Hexachlorobenzene 0.282 0.262 0.290 0.275 0.301 0.288 Atrazine 0.208 0.227 0.228 0.224 0.22 Pentachlorophenol * 0.997 1.091 1.016 1.047 1.044 Anthracene * 1.150 1.014 1.090 1.013 1.041 1.066 Carbazole 1.056 0.9927 1.091 1.013 1.041 1.064 0.790 0.797 1.697 1.603 1.618 1.544 Butylbenzylphthalate 1.464 1.289 1.327 1.212 1.203 1.29 Fluoranthene * 1.151 1.497 1.635 0.947 0.977 Di-n-butylphthalate 1.079 0.799 0.857 0.777 0.840 0.813 3,3'-Dichlorobenzidine 0.431 0.253 0.228 0.232 0.235 0.288 Benzo(a)anthracene * 1.628 1.518 1.736 1.626 1.618 1.544 Di-n-octylphthalate 1.027 1.030 1.155 1.039 1.111 1.061 1.047 Butylbenzylphthalate 1.027 1.030 1.155 1.039 1.111 1.061 1.047 Benzo(b)fluoranthene * 1.628 1.518 1.736 1.626 1.682 1.633 Benzo(a)pyrene * 1.628 1.518 1.736 1.626 1.682 1.633 Benzo(a)pyrene * 1.628 1.518 1.736 1.626 1.682 1.633 Benzo(a)pyrene * 1.628 1.518 1.736 1.626 1.682 1.633 Benzo(b)fluoranthene * 1.628 1.518 1.736 1.626 1.682 1.633 Benzo(c)fluoranthene * 1.628 1.518 1.736 1.626 1.682 1.633 Benzo(a)pyrene * 1.628 1.518 1.736 1.626 1.682 1.633 Benzo(b)fluoranthene * 1.628 1.518 1.736 1.626 1.682 1.633 Benzo(c)fluoranthene * 1.627 1.108 1.209 1.114 1.068 Benzo(g, h, i)perylene * 1.047 1.108 1.209 1.148 1.319 1.166 Benzo(g, h, i)perylene * 1.047 1.108 1.209 1.148 1.319 1.166 Benzo(g, h, i)perylene * 1.047 1.108 1.209 1.148 1.319 1.166 Benzo(g, h, i)perylene * 1.047 1.368 1.463 1.324 1.326 1.379 Phen	10						0.000	
Fluorene * 1.354 1.231 1.351 1.231 1.346 1.302 4-Chlorophenyl-phenylether * 0.727 0.679 0.743 0.683 0.755 0.711 4(tert-Octyl)phenol 1.002 1.021 1.035 0.984 0.969 1.002 4-Nitrosodiphenylamine 1.002 1.035 0.333 0.333 0.333 4,6-Dinitro-2-methylphenol 0.548 0.616 0.567 0.602 0.583 2,4-Ditertbutylphenol 1.413 1.455 1.579 1.613 1.612 1.533 3,5-Ditertbutylphenol 1.017 0.926 0.964 0.874 0.896 0.933 3,5-Ditertbutylphenol 1.017 0.926 0.964 0.874 0.896 0.933 3,5-Ditertbutylphenol 1.017 0.926 0.275 0.201 0.227 0.228 0.221 0.228 0.221 0.228 0.221 0.228 0.221 0.228 0.221 0.228 0.221 0.228 0.221 0.228 0.221 0.228 0.221 0.228 0.221 0.205 0.277 <								
4-Chlorophenyl-phenylether * 0.727 0.679 0.743 0.683 0.755 0.711 4(tert-Octyl)phenol 1.002 1.021 1.035 0.984 0.969 1.003 4.6-Dinitro-2-methylphenol 0.324 0.351 0.323 0.333 0.333 4.6-Dinitro-2-methylphenol 0.183 0.212 0.206 0.215 0.200 N-Witrosodiphenylamine 1 0.591 0.548 0.616 0.567 0.602 0.581 2.4-Ditertbutylphenol 1.413 1.455 1.579 1.613 1.612 1.533 3.5-Ditertbutylphenol 1.097 0.926 0.964 0.874 0.896 0.933 4-Bromophenyl-phenylether * 0.232 0.228 0.254 0.225 0.226 0.244 Hexachlorobenzene * 0.282 0.262 0.279 0.275 0.301 0.288 Atrazine 0.208 0.227 0.228 0.221 0.224 0.221 Pentachlorophenol * 1.095 0.997 1.091 1.016 1.047 1.044 Antrazene * 1.150<								
4(tert-0cty()phenol 1.002 1.021 1.035 0.984 0.969 1.002 4-Nitroaniline 0.324 0.351 0.323 0.333 0.333 4, 6-Dinitro-2-methylphenol 0.183 0.212 0.206 0.215 0.205 N-Witrosodiphenylamine (1) 0.591 0.548 0.616 0.567 0.602 0.588 2, 4-Ditertbutylphenol 1.413 1.455 1.579 1.613 1.612 1.533 3, 5-Ditertbutylphenol 1.092 1.119 1.216 1.221 1.221 1.177 4-Bromophenyl-phenylether * 0.232 0.228 0.227 0.224 0.221 0.208 0.227 0.224 0.221 0.208 0.227 0.224 0.221 0.208 0.221 0.208 0.221 0.224 0.221 0.208 0.221 0.224 0.221 0.224 0.221 0.228 0.221 0.224 0.221 0.228 0.221 0.224 0.221 0.208 0.224 0.21 0.208 0.221 0.208 0.221 0.208 0.221 0.208 0.221	-							
4-Nitroaniline 0.324 0.351 0.323 0.333 0.333 4,6-Dinitro-2-methylphenol 0.183 0.212 0.206 0.215 0.20 N-Witrosodiphenylamine 1 0.591 0.548 0.616 0.602 0.583 2,4-Ditertbutylphenol 1.413 1.455 1.579 1.613 1.612 1.533 3,5-Ditertbutylphenol 1.092 1.119 1.216 1.221 1.211 1.74 4-Bromophenyl-phenylether * 0.232 0.228 0.224 0.227 0.224 0.227 0.235 0.285 0.997 1.091 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>								
4,6-Dinitro-2-methylphenol 0.183 0.212 0.206 0.215 0.200 N-Nitrosodiphenylamine (1) 0.591 0.548 0.616 0.567 0.602 0.583 2,4-Ditertbutylphenol 1.413 1.455 1.579 1.613 1.612 1.533 1,2-Diphenylhydrazine 1.017 0.926 0.944 0.874 0.896 0.933 3,5-Ditertbutylphenol 1.092 1.119 1.216 1.221 1.21 1.177 4-Bromophenyl-phenylether * 0.232 0.228 0.227 0.228 0.221 0.224 0.224 Hexachlorobenzene * 0.190 0.221 0.208 0.224 0.21 Pentachlorophenol * 1.095 0.997 1.091 1.016 1.047 1.041 Anthracene * 1.056 0.922 1.013 0.935 0.947 0.97 Di-n-butylphthalate 1.056 0.922 1.013 1.061 1.041 1.062 Pyrene * 1.515 1.497 1.636 1.466 1.618 1.54	1 1]					1.002	
N-Witrosodiphenylamine (1) 0.591 0.548 0.616 0.567 0.602 0.583 2,4-Ditertbutylphenol 1.413 1.455 1.579 1.613 1.612 1.533 1,2-Diphenylhydrazine 1.017 0.926 0.964 0.874 0.896 0.933 3,5-Ditertbutylphenol 1.092 1.119 1.216 1.221 1.221 1.77 4-Bromophenyl-phenylether * 0.232 0.228 0.224 0.224 0.224 Hexachlorophenol * 0.190 0.221 0.208 0.224 0.224 Pentachlorophenol * 0.190 0.221 0.208 0.224 0.224 Phenanthrene * 1.095 0.997 1.091 1.016 1.047 1.044 Antrazine 1.055 0.997 1.091 1.016 1.047 1.047 Antrazine 1.055 0.997 1.091 1.016 1.047 1.047 Antrazine 1.055 0.997 1.091 1.016 1.047 1.047 Anthracene * 1.505	F 4							
2,4-Ditertbutylphenol 1,2-Diphenylhydrazine 1,2-Diphenylhydrazine 1,017 0,926 0,964 0,874 0,896 0,933 3,5-Ditertbutylphenol 1,092 1,119 1,216 1,221 1,221 1,221 1,221 1,272 1,272 0,228 0,224 0,225 0,235 0,285 0,232 0							0 501	
1,2-Diphenylhydrazine 1.017 0.926 0.964 0.874 0.896 0.933 3,5-Ditertbutylphenol 1.092 1.119 1.216 1.221 1.221 1.177 4-Bromophenyl-phenylether * 0.232 0.228 0.254 0.235 0.262 0.290 Atrazine 0.208 0.227 0.228 0.221 0.224 0.224 Pentachiorophenol * 0.190 0.221 0.224 0.224 0.224 Phenanthrene * 1.095 0.997 1.091 1.016 1.047 1.047 Anthracene * 1.150 1.014 1.090 1.013 1.041 1.066 Carbazole 1.056 0.922 1.013 0.935 0.967 0.977 Di-n-butylphthalate 1.666 1.636 1.464 1.289 1.327 1.212 1.203 1.293 Pyrene * 1.515 1.497 1.636 1.466 1.618 1.54 Butylbenzylphthalate 0.790 0.979 0.857 0.777 0.840 0.81 S,3'-Dichlorobenzidine								
3,5-Ditertbutytphenol 1.092 1.119 1.216 1.221 1.221 1.117 4-Bromophenyl-phenylether * 0.232 0.228 0.254 0.235 0.262 0.244 Hexachlorobenzene * 0.282 0.262 0.275 0.301 0.28 Atrazine 0.208 0.227 0.228 0.224 0.224 0.224 Pentachlorophenol * 0.190 0.221 0.208 0.224 0.224 Phenanthrene * 1.095 0.997 1.091 1.016 1.047 1.047 Anthracene * 1.150 1.014 1.090 1.013 1.041 1.067 Carbazole 1.056 0.922 1.013 0.935 0.947 0.97 Di-n-butylphthalate 1.464 1.289 1.327 1.212 1.203 1.29 Fluoranthene * 1.176 0.997 1.094 1.010 1.010 1.010 1.010 1.010 1.010 1.010 1.010 1.010 1.055 0.232 0.235 0.285 0.232 0.235 0.285 0.232 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>								
4-Bromophenyl-phenylether * 0.232 0.228 0.254 0.235 0.262 0.244 Hexachlorobenzene * 0.282 0.262 0.290 0.275 0.301 0.28 Atrazine 0.208 0.227 0.228 0.221 0.224 0.224 Pentachlorophenol * 0.190 0.221 0.208 0.224 0.224 Phenanthrene * 1.095 0.997 1.091 1.016 1.047 1.044 Anthracene * 1.150 1.014 1.067 1.041 1.067 0.975 Di-n-butylphthalate 1.464 1.289 1.327 1.212 1.203 1.297 Fluoranthene * 1.176 0.997 1.094 1.010 1.010 1.056 Pyrene * 1.515 1.464 1.289 1.327 1.212 1.203 1.297 Fluoranthene * 1.176 0.997 0.947 0.977 0.860 0.813 3.3'-bichlorobenzidine 0.470 0.799 0.857 0.777 0.860 0.813 3.3'-bichlorobenzidine * 1.059	1 -						1	
Hexachlorobenzene * 0.282 0.262 0.290 0.275 0.301 0.288 Atrazine 0.208 0.227 0.228 0.221 0.224 0.22 Pentachlorophenol * 0.190 0.221 0.208 0.224 0.21 Phenanthrene * 1.095 0.997 1.091 1.016 1.047 1.04 Anthracene * 1.150 1.014 1.090 1.013 1.041 1.066 Carbazole 1.056 0.922 1.013 0.935 0.947 0.97 Di-n-butylphthalate 1.464 1.289 1.327 1.212 1.203 1.29 Pyrene * 1.515 1.497 1.636 1.466 1.618 1.54 Butylbenzylphthalate 0.790 0.799 0.857 0.777 0.840 0.81 3.3'-Dichlorobenzidine 0.431 0.253 0.285 0.232 0.235 0.28 Benzo(a)anthracene * 1.029 1.037 1.72 1.079 1.160 1.02 bis(2-Ethylhexyl)phthalate 1.027 1.032 1.352<								
Atrazine 0.208 0.227 0.228 0.221 0.224 0.224 Pentachlorophenol * 0.190 0.221 0.208 0.224 0.21 Phenanthrene * 1.095 0.997 1.091 1.016 1.047 1.044 Anthracene * 1.150 1.014 1.090 1.015 1.041 1.067 Carbazole 1.056 0.922 1.013 0.935 0.947 0.97 Di-n-butylphthalate 1.464 1.289 1.327 1.212 1.203 1.29 Fluoranthene * 1.515 1.497 1.636 1.466 1.618 1.54 Butylbenzylphthalate 0.790 0.799 0.857 0.777 0.840 0.81 3,3'-Dichlorobenzidine 0.431 0.253 D.285 0.232 0.235 0.28 Benzo(a)anthracene * 1.027 1.030 1.172 1.079 1.160 1.020 bis(2-Ethylhexyl)phthalate 1.027 1.030 1.135 1.039 1.111 1.06 Benzo(b)fluora	1							
Pentachiorophenol * 0.190 0.221 0.208 0.224 0.21 Phenanthrene * 1.095 0.997 1.091 1.016 1.047 1.044 Anthracene * 1.150 1.014 1.090 1.015 1.041 1.066 Carbazole 1.056 0.922 1.013 0.935 0.947 0.977 Di-n-butylphthalate 1.464 1.289 1.327 1.212 1.203 1.297 Fluoranthene * 1.176 0.997 1.094 1.010 1.010 1.057 Pyrene * 1.515 1.497 1.636 1.466 1.618 1.54 Butylbenzylphthalate 0.790 0.799 0.857 0.777 0.840 0.813 3,3'-Dichlorobenzidine 0.431 0.253 D.285 0.232 0.235 0.285 Benzo(a)anthracene * 1.027 1.037 1.172 1.079 1.160 1.061 1.20 Di-n-octylphthalate 1.027 1.037 1.172 1.079 1.60 1.03 1.	· · ·							
Phenanthrene * 1.095 0.997 1.091 1.016 1.047 1.047 Anthracene * 1.150 1.014 1.090 1.013 1.041 1.060 Carbazole 1.056 0.922 1.013 0.935 0.947 0.977 Di-n-butylphthalate 1.464 1.289 1.327 1.212 1.203 1.297 Fluoranthene * 1.515 1.497 1.636 1.466 1.618 1.54 Butylbenzylphthalate 0.790 0.797 0.857 0.777 0.840 0.813 3,3'-Dichlorobenzidine 0.431 0.253 D.285 0.232 0.235 0.285 Benzo(a)anthracene * 1.223 1.152 1.283 1.180 1.261 1.222 Chrysene * 1.059 1.037 1.172 1.079 1.60 1.10 bis(2-Ethylhexyl)phthalate 1.027 1.030 1.355 1.039 1.111 1.06 Di-n-octylphthalate 1.628 1.518 1.736 1.626 1.682 1.631 1.58 Benzo(k)fluoranthene * 1.628								
Anthracene * 1.150 1.014 1.090 1.015 1.041 1.061 Carbazole 1.056 0.922 1.013 0.935 0.947 0.97 Di-n-butylphthalate 1.464 1.289 1.327 1.212 1.203 1.29 Fluoranthene * 1.176 0.997 1.094 1.010 1.010 1.010 1.050 Pyrene * 1.515 1.497 1.636 1.466 1.618 1.544 Butylbenzylphthalate 0.790 0.797 0.857 0.777 0.840 0.817 3,3'-Dichlorobenzidine 0.431 0.253 D.285 0.232 0.235 0.285 Benzo(a)anthracene * 1.223 1.152 1.283 1.180 1.261 1.22 Chrysene * 1.059 1.037 1.172 1.079 1.160 1.10 bis(2-Ethylhexyl)phthalate 1.027 1.030 1.135 1.039 1.111 1.06 Di-n-octylphthalate 1.628 1.542 1.624 1.631 1.58 Benzo(k)fluoranthene * 1.628 1.542	1	1.049					* 1 005	
Carbazole 1.056 0.922 1.013 0.935 0.947 0.977 Di-n-butylphthalate 1.464 1.289 1.327 1.212 1.203 1.29 Fluoranthene * 1.176 0.997 1.094 1.010 1.010 1.050 Pyrene * 1.515 1.497 1.636 1.466 1.618 1.54 Butylbenzylphthalate 0.790 0.799 0.857 0.777 0.840 0.81 3,3'-bichlorobenzidine 0.431 0.253 0.285 0.232 0.235 0.285 Benzo(a)anthracene * 1.223 1.152 1.283 1.180 1.261 1.22 Chrysene * 1.059 1.037 1.172 1.079 1.160 1.10 bis(2-Ethylhexyl)phthalate 1.027 1.030 1.135 1.039 1.111 1.06 Di-n-octylphthalate 2.499 2.584 2.942 2.742 2.816 2.71 Benzo(k)fluoranthene * 1.628 1.558 1.631 1.58 1.621 1.631 1.58 Benzo(a)pyrene * 1.432	1	1.062						
Di-n-butylphthalate 1.464 1.289 1.327 1.212 1.203 1.29 Fluoranthene * 1.176 0.997 1.094 1.010 1.010 1.050 Pyrene * 1.515 1.497 1.636 1.466 1.618 1.548 Butylbenzylphthalate 0.790 0.799 0.857 0.777 0.840 0.813 3,3'-Dichlorobenzidine 0.431 0.253 D.285 0.232 0.235 0.235 Benzo(a)anthracene * 1.223 1.152 1.283 1.180 1.261 1.226 Chrysene * 1.059 1.037 1.172 1.079 1.160 1.10 Di-n-octylphthalate 1.027 1.030 1.135 1.039 1.111 1.06 Di-n-octylphthalate 2.499 2.584 2.942 2.742 2.816 2.71 Benzo(b)fluoranthene * 1.628 1.518 1.736 1.626 1.682 1.631 Benzo(a)pyrene * 1.432 1.362 1.542 1.453 1.521 1.466 Jobenz(a,h)anthracene * 1.020 <td< td=""><td></td><td>0.975</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>		0.975						
Fluoranthene * 1.176 0.997 1.094 1.010 1.010 1.050 Pyrene * 1.515 1.497 1.636 1.466 1.618 1.548 Butylbenzylphthalate 0.790 0.799 0.857 0.777 0.860 0.817 3,3'-Dichlorobenzidine 0.431 0.253 0.285 0.232 0.235 0.285 Benzo(a)anthracene * 1.223 1.152 1.283 1.180 1.261 1.225 Chrysene * 1.059 1.037 1.172 1.079 1.160 1.105 bis(2-Ethylhexyl)phthalate 1.027 1.037 1.135 1.039 1.111 1.06 Di-n-octylphthalate 2.584 2.942 2.742 2.816 2.71 Benzo(b)fluoranthene * 1.628 1.518 1.736 1.626 1.682 1.631 Benzo(a)pyrene * 1.432 1.362 1.542 1.453 1.521 1.46 Indeno(1,2,3-cd)pyrene * 1.084 1.088 1.162 1.107 1.244 1.13 Dibenz(a,h)anthracene * 1.027 1.010 <td></td> <td>1.299</td> <td></td> <td></td> <td></td> <td></td> <td>i ' </td> <td></td>		1.299					i '	
Pyrene * 1.515 1.497 1.636 1.466 1.618 1.548 Butylbenzylphthalate 0.790 0.799 0.857 0.777 0.840 0.817 3,3'-Dichlorobenzidine 0.431 0.253 D.285 0.232 0.235 0.285 Benzo(a)anthracene * 1.223 1.152 1.283 1.180 1.261 1.222 Chrysene * 1.059 1.037 1.172 1.079 1.160 1.10 bis(2-Ethylhexyl)phthalate 1.027 1.030 1.135 1.039 1.111 1.06 Di-n-octylphthalate 2.499 2.584 2.942 2.742 2.816 2.71 Benzo(b)fluoranthene * 1.628 1.518 1.736 1.626 1.682 1.631 Benzo(a)pyrene * 1.432 1.362 1.542 1.453 1.521 1.466 Indeno(1, 2, 3-cd)pyrene * 1.084 1.088 1.162 1.107 1.244 1.13 Dibenz(a, h)anthracene * 1.020 1.016 1.144 1.068 1.204 1.08 Benzo(g, h, i)perylene <t< td=""><td></td><td>1.058</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>		1.058						
Butylbenzylphthalate0.7900.7990.8570.7770.8400.8133,3'-Dichlorobenzidine0.4310.253D.2850.2320.2350.285Benzo(a)anthracene* 1.2231.1521.2831.1801.2611.223Chrysene* 1.0591.0371.1721.0791.1601.10bis(2-Ethylhexyl)phthalate1.0271.0301.1351.0391.1111.06Di-n-octylphthalate2.4992.5842.9422.7422.8162.71Benzo(b)fluoranthene* 1.6281.5761.4861.6681.5381.6311.58Benzo(a)pyrene* 1.4321.3621.5421.4531.5211.46Indeno(1, 2, 3-cd)pyrene* 1.0841.0881.1621.1071.2441.13Dibenz(a, h)anthracene* 1.0471.1081.2091.1481.3191.162-Fluorophenol* 1.4791.3681.4631.3241.3261.39Phenol-d5* 1.9441.6741.7701.5851.5791.71	1	1.546						
3,3'-Dichlorobenzidine 0.431 0.253 0.285 0.232 0.235 0.285 Benzo(a)anthracene * 1.223 1.152 1.283 1.180 1.261 1.22 Chrysene * 1.059 1.037 1.172 1.079 1.160 1.10 bis(2-Ethylhexyl)phthalate 1.027 1.030 1.135 1.039 1.111 1.06 Di-n-octylphthalate 2.499 2.584 2.942 2.742 2.816 2.71 Benzo(b)fluoranthene * 1.628 1.518 1.736 1.626 1.682 1.631 1.58 Benzo(k)fluoranthene * 1.432 1.362 1.542 1.453 1.521 1.46 Indeno(1, 2, 3-cd)pyrene * 1.084 1.088 1.162 1.107 1.244 1.13 Dibenz(a, h)anthracene * 1.020 1.016 1.114 1.068 1.204 1.08 Benzo(g, h, i)perylene * 1.047 1.108 1.209 1.148 1.319 1.16 Chrysene * 1.479 1.368 1.463 1.324 1.326 1.39 Benzo(a,	4	0.813	0.840		D.857			
Benzo(a)anthracene * 1.223 1.152 1.283 1.180 1.261 1.22 Chrysene * 1.059 1.037 1.172 1.079 1.160 1.10 bis(2-Ethylhexyl)phthalate 1.027 1.030 1.135 1.039 1.111 1.06 Di-n-octylphthalate 2.499 2.584 2.942 2.742 2.816 2.71 Benzo(b)fluoranthene * 1.628 1.518 1.736 1.626 1.682 1.631 Benzo(a)pyrene * 1.432 1.362 1.542 1.453 1.521 1.46 Indeno(1, 2, 3-cd)pyrene * 1.084 1.088 1.162 1.107 1.244 1.13 Dibenz(a,h)anthracene * 1.020 1.016 1.114 1.068 1.204 1.08 Benzo(g, h, i)perylene * 1.047 1.088 1.463 1.324 1.39 1.148 V-Fluorophenol * 1.479 1.368 1.463 1.324 1.326 1.39 Phenol-d5 * 1.474 1.674 1.770 1.585 1.579 1.71	29	0.287	0.235		D.285			
Chrysene * 1.059 1.037 1.172 1.079 1.160 1.10 bis(2-Ethylhexyl)phthalate 1.027 1.030 1.135 1.039 1.111 1.06 Di-n-octylphthalate 2.499 2.584 2.942 2.742 2.816 2.71 Benzo(b)fluoranthene * 1.628 1.518 1.736 1.626 1.682 1.63 Benzo(k)fluoranthene * 1.576 1.486 1.668 1.538 1.631 1.58 Benzo(a)pyrene * 1.432 1.362 1.542 1.453 1.521 1.46 Indeno(1, 2, 3-cd)pyrene * 1.020 1.016 1.107 1.244 1.13 Dibenz(a,h)anthracene * 1.020 1.016 1.114 1.068 1.204 1.08 Benzo(g,h,i)perylene * 1.047 1.108 1.209 1.148 1.319 1.16 2-Fluorophenol * 1.479 1.368 1.463 1.324 1.326 1.39 Phenol-d5 * 1.944 1.674 1.770 1.585 1.579 1.71 <td>4</td> <td>1.220</td> <td>1.261</td> <td>1.180</td> <td>1.283</td> <td></td> <td></td> <td></td>	4	1.220	1.261	1.180	1.283			
bis(2-Ethylhexyl)phthalate 1.027 1.030 1.135 1.039 1.111 1.06 Di-n-octylphthalate 2.499 2.584 2.942 2.742 2.816 2.71 Benzo(b)fluoranthene * 1.628 1.518 1.736 1.626 1.682 1.63 Benzo(k)fluoranthene * 1.628 1.518 1.736 1.626 1.682 1.63 Benzo(a)pyrene * 1.432 1.362 1.542 1.453 1.521 1.46 Indeno(1,2,3-cd)pyrene * 1.020 1.016 1.114 1.068 1.204 1.08 Benzo(g,h,i)perylene * 1.020 1.016 1.114 1.068 1.204 1.08 Benzo(g,h,i)perylene * 1.047 1.108 1.209 1.148 1.319 1.16 Benzo(g,h,i)perylene * 1.479 1.368 1.463 1.324 1.326 1.39 Phenol-d5 * 1.479 1.368 1.463 1.324 1.326 1.39	6*	1.102	1,160	1.079	1.172	1.037	* 1.059	
Di-n-octylphthalate 2.499 2.584 2.942 2.742 2.816 2.71 Benzo(b)fluoranthene * 1.628 1.518 1.736 1.626 1.682 1.63 Benzo(a)pyrene * 1.432 1.362 1.542 1.433 1.571 1.466 Indeno(1,2,3-cd)pyrene * 1.084 1.088 1.162 1.107 1.244 1.13 Dibenz(a,h)anthracene * 1.020 1.016 1.114 1.068 1.204 1.08 Benzo(g,h,i)perylene * 1.047 1.108 1.209 1.148 1.319 1.16 2-Fluorophenol * 1.479 1.368 1.463 1.324 1.326 1.39 Phenol-d5 * 1.944 1.674 1.770 1.585 1.579 1.71	5	1.068	1.111	1.039	1.135	1.030	1.027	bis(2-Ethylhexyl)phthalate
Benzo(k)fluoranthene * 1.576 1.486 1.668 1.538 1.631 1.58 Benzo(a)pyrene * 1.432 1.362 1.542 1.453 1.521 1.46 Indeno(1,2,3-cd)pyrene * 1.084 1.088 1.162 1.107 1.244 1.13 Dibenz(a,h)anthracene * 1.020 1.016 1.114 1.068 1.204 1.08 Benzo(g,h,i)perylene * 1.047 1.108 1.209 1.148 1.319 1.16 2-Fluoraphenol * 1.479 1.368 1.463 1.324 1.326 1.39 Phenol-d5 * 1.944 ,1674 1.770 1.585 1.579 1.71	6	2.717	2.816	2.742	2.942	2,584	2.499	Di-n-octylphthalate
Benzo(a)pyrene * 1.432 1.362 1.542 1.453 1.521 1.463 Indeno(1,2,3-cd)pyrene * 1.084 1.088 1.162 1.107 1.244 1.13 Dibenz(a,h)anthracene * 1.020 1.016 1.114 1.068 1.204 1.08 Benzo(g,h,i)perylene * 1.047 1.108 1.209 1.148 1.319 1.16 2-Fluorophenol * 1.479 1.368 1.463 1.324 1.326 1.39 Phenol-d5 * 1.944 ,1674 1.770 1.585 1.579 1.71	5*	1.638	1.682	1.626	1.736	1.518	+ 1.628	Benzo(b)fluoranthene
Indeno(1,2,3-cd)pyrene * 1.084 1.088 1.162 1.107 1.244 1.13 Dibenz(a,h)anthracene * 1.020 1.016 1.114 1.068 1.204 1.08 Benzo(g,h,i)perylene * 1.047 1.108 1.209 1.148 1.319 1.16 2-Fluorophenol * 1.479 1.368 1.463 1.324 1.326 1.39 Phenol-d5 * 1.944 ,1674 1.770 1.585 1.579 1.71		1.580		1.538	1.668	1.486	* 1.576	Benzo(k)fluoranthene
Dibenz(a,h)anthracene * 1.020 1.016 1.114 1.068 1.204 1.08 Benzo(g,h,i)perylene * 1.047 1.108 1.209 1.148 1.319 1.16 2-Fluorophenol * 1.479 1.368 1.463 1.324 1.326 1.39 Phenol-d5 * 1.944 ,1674 1.770 1.585 1.579 1.71	5*	1.462	1.521	1.453	1.542	1.362	* 1.432	Benzo(a)pyrene
Benzo(g,h,i)perylene * 1.047 1.108 1.209 1.148 1.319 1.16 2-Fluorophenol * 1.479 1.368 1.463 1.324 1.326 1.39 Phenol-d5 * 1.944 ,1.674 1.770 1.585 1.579 1.71		1.137	1.244	1.107	1.162	1.088	* 1.084	Indeno(1,2,3-cd)pyrene
2-Fluorophenol * 1.479 1.368 1.463 1.324 1.326 1.39 Phenol-d5 * 1.944 ,1.674 1.770 1.585 1.579 1.71		1.085				1.016	* 1.020	Dibenz(a,h)anthracene
2-Fluorophenol + 1.479 1.368 1.463 1.324 1.326 1.39 Phenol-d5 + 1.944 ,1.674 1.770 1.585 1.579 1.71	9*	1,166				1.108	* 1.D47	Benzo(g,h,i)perylene
Phenol-d5 * 1.944 ,1.674 1.770 1.585 1.579 1.71					=====			
		1.392						2-Fluorophenol
				1				
		1.300	1.245			1,261	* 1.394	
								-
	1	0.607		3				
	1	1.438		1	1 ·		111440	
Terphenyl-d14 * 1.018 1.010 1.112 1.022 1.161 1.06	6*	1.065	1.161	1.022	1.112	1.010	* 1.018	Terphenyl-d14
	. I				l	L		l

Cannot be separated from Diphenylamine All other compounds must meet a minimum RRF of 0.010.

.

7B

SEMIVOLATILE CONTINUING CALIBRATION CHECK

Lab Name: Lancaster Laborate	ories Contract:	ann air an an an Anna Anna Anna Anna Anna Anna
Lab Code: LANCAS Case No	5.: 5AS No.:	SDG No.:
Instrument ID: HP04629	Calibration Date: 03/27	/07 Time: 23:09
Lab File ID: hcl51.d	<pre>Init. Calib. Date(s):</pre>	02/08/07 02/09/07
	Init. Calib. Times(s):	21:43 02:08

[MIN		MAX
	COMPOUND	RRF	RRF50	RRF	\$D	₿D
1			<u>!</u>	=======	======	======
•	-Nitrosodimethylamine	1.181			4	
•	yridine	1.665	1	•	. 1	
	I,N-dimethyl formamide	1.175	1.261		7	
•	-methylcyclohexanone	0.413			7	
	-methylcyclohexanone	0.376		•	3	
4	-methylcyclohexanone	0.346	4	•	6	
•	Benzaldehyde		0.902	•	10	
1	.,3,5-Trimethylbenzene	2.706	2.656		-2	
I A	miline	1.801	1.794		0	
* E	henol	1.72B	1.711	0.800	-1	25 *
* £	is (2-Chloroethyl) ether	1.477	1.443	0.700	2	25 *
* 2	-Chlorophenol	1.230	1.217	0.800	~1	25 *
1	,2,4-Trimethylbenzene	2.855	2.807		-2	
* 1	.,3-Dichlorobenzene	1.542	1.532	0.600	-1	25 4
* 1	,4-Dichlorobenzene	1.548	1.522	0.500	2	25 *
1 1	.,2,3-Trimethylbenzene	2.836	2.807		-1	
* 1	,2-Dichlorobenzene	1.435	1.425	0.400	-1	25 🕯
* 2	-Methylphenol	1.206	1.167	0.700	-3	25 🔹
2	,2'-oxybis(l-Chloropropane)	2.747	2.621		-4	
İь	is(2-Chloroisopropyl)ether	2.747	2.621		-4	
	cetophenone	2.029	1.984		-2	
* N	I-Nitroso-di-n-propylamine	1.520	1.397	0.500	-в	25 🕯
	-Toluidine	1. <u></u> 830	1.748		-4	
* 4	-Methylphenol	1.290		0.600	O	25 *
	Iexachloroethane	0.769	0.716	0.300	-7	25 *
* N	Jitrobenzene	0.601	0.539	0.200	+10	25 *
* I	sophorone	1.083		•		25 *
	-Nitrophenol	0.250			- 9	25 *
	,4-Dimethylphenol	0.512	0.484	0.200	-6	· 25 *
	-chloro-2-nitro-4 (trifluorome				-11	
•	is (2-Chloroethoxy) methane	0.546			-7	25 *
	2,4-Dichlorophenol	0.406				25 *
	,2,4-Trichlorobenzene	0.460				25 *
	-Terthutylphenol	0.494			-7	
•	Japhthalene	0.959			-2	25 *
	-Chloroaniline	0.332			9	
1		2.222	0.004		-	

All other compounds must meet a minimum RRF of 0.010. FORM VII SV-1 MN195 031250/07 OLM03.0

;

7C

SEMIVOLATILE CONTINUING CALIBRATION CHECK

Lab Name: Lancaster Laborate	ories Contract:	<u></u>	
Lab Code: LANCAS Case N	D.: SAS No.:	SDG No	, 1 <u></u>
Instrument ID: HP04629	Calibration Date: 03/27	7/07 Time:	23:09
Lab File ID: hcl51.d	<pre>Init. Calib. Date(s):</pre>	02/08/07	02/09/07
	Init. Calib. Times(s):	21:43	02:08

	1]	MIN		MAX
COMPOUND	RRF	RRF50	RRF	₽₽	₽D
	======		======	=======	=======
Hexachlorobutadiene	0.304	0.287		-6	
Caprolactam	0.132	0.133		1 I	
* 4-Chloro-3-methylphenol	0.301	0.289	0.200	-4	25
* 2-Methylnaphthalene	0.701	0.678	0.400	-3	25
Phthalic anhydride	0.288	0.225		-22	
Hexachlorocyclopentadiene	0.494	0.424		-14	
* 2,4,6-Trichlorophenol	0.484	0.449	0.200	-7	25 י
* 2,4,5-Trichlorophenol	0.527	0.496	0.200	-6	25
l,l'-Biphenyl	1.337	1.355		1	
Diphenyl	1.341			1	
* 2-Chloronaphthalene	1.204	•		+5	25 '
4-Tertbutylphenol	0.672			-7	
2-Nitroaniline	0.618	0.582		-6	
Dimethylphthalate	1.525	1,483		-3	
* 2,6-Dinitrotoluene	0.396	0.384	0.200	-3	25
* Acenaphthylene	1.79B	1.773	0.900	~l	25 י
3-Nitroaniline	0.283	0.300		6	
* Acenaphthene	1.073	1.021	0.900	~5	25 *
2,4-Dinitrophenol	0.331	0.204		-38	
4-Nitrophenol	0.378	0.276		-27	
* Dibenzofuran	1.727		0.500	-6	25 י
* 2,4-Dinitrotoluene	0.535	0.504	0.200	-6	25 ·
2,6-Dinitrophenol	0.140	0.084	i	-40	
2,6-Ditertbutylphenol	0.740			-16	
Diethylphthalate	1.609	1.524	1	-5	
* Fluorene	1.303	1.156	0.900	-11	25 7
* 4-Chlorophenyl-phenylether	0.717		0.400	-13	25
4(tert-Octyl)phenol	1.002	0.984	İ	-2	
4-Nitroaniline	0.333	0,281	ĺ	-16	
4,6-Dinitro-2-methylphenol	0.204	0.160		-21	
N-Nitrosodiphenylamine (1)	0.585		-	-11	
2,4-Ditertbutylphenol	1.534	1.350	*	-12	
1,2-Diphenylhydrazine	0.935		ĺ	-12	
3,5-Ditertbutylphenol	1.174			-10	
* 4-Bromophenyl-phenylether	0.242		0.100	- 8	י 25
* Hexachlorobenzene	0.282	0.253	0.100	-10	25 *
1			1		1

(1) Cannot be Separated from Diphenylamine

All other compounds must meet a minimum RRF of 0.010. FORM VII SV-1

7C cont SEMIVOLATILE CONTINUING CALIBRATION CHECK

. .

Lab Name: Lancaster Laborat	cories Contract:	
Lab Code: LANCAS Case M	No.: SAS No.:	SDG No.:
Instrument ID: HP04629	Calibration Date: 03/27/07	Time: 23:09
Lab File ID: hcl51.d	<pre>Init. Calib. Date(s): 02/08/</pre>	07 02/09/07
	Init. Calib. Times(s): 21:43	02:08

			MIN		MAX
COMPOUND	RRF	RRF50	RRF	&D	¦ %D
		======	=======	======	=======
Atrazine	0.222	0.226		2	
* Pentachlorophenol	0.211	0.163	0.050	-23	25 י
* Phenanthrene	1.049	0.994	0.700	-5	25 '
* Anthracene	1.062	0.998	0.700	-6	25 י
Carbazole	0.975	0.912		-6	
Di-n-butylphthalate	1.299	1.312		1 1	
* Fluoranthene	1.058	1.0B0	0.600	2	25 *
* Pyrene	1.546	1.512	0.600	-2	25 *
Butylbenzylphthalate	0.813	0.822		1	
3,3'-Dichlorobenzidine	0.287	0.288		0	
* Benzo(a)anthracene	1.220	1.161	0.B00	~5	25 1
* Chrysene	1.102	1.042	0.700	-5	25 *
bis(2-Ethylhexyl)phthalate	1.068	1.151		В	
Di-n-octylphthalate	2.717	2.743		1	
* Benzo(b) fluoranthene	1.638	1.564	0.700	-4	25 *
* Benzo(k)fluoranthene	1.580	1.495	0.700	-5	25 *
* Benzo(a)pyrene	1.462	1.359	0.700	-7	25 🕈
* Indeno (1, 2, 3-cd) pyrene	1.137	0.857	0.500	-25	25 *
* Dibenz(a,h) anthracene	1.085	0.739	0.400	-32	25 🖌
* Benzo(g,h,i)perylene	1.166	0.908	0.500	-22	25 *
	======	======		======	=======
* 2-Fluorophenol	1.392	1.469	0.600	6	25 🕈
* Phenol-d5	1.710	1.708	0.800	0	25 *
* 2-Chlorophenol-d4	1.300	1.250	0.800	-4	25 *
* 1,2-Dichlorobenzene-d4	1,035	1.037	0.400	0	25 *
* Nitrobenzene-d5	0.607	0.553	0.200	-9	25 *
* 2-Fluorobiphenyl	1.438	1.322	0.700	-8	25 *
2,4,6-Tribromophenol	0.150	0.120		-20	
* Terphenyl-d14	1.065	1.003	0.500	-6	25 *
]			

All other compounds must meet a minimum RRF of 0.010. FORM VII SV-1

APPENDIX A

GC VOLATILES DATA DELIVERABLES FORMS

Quality Control Summary SDG# WRF18

Surrogate Recovery Volatiles by GC - Soil

ī	LL	1	Sample	Dilution	TFT-F	TO	T
1	Sample#	I	Code	Factor 18	SoilFID	100	Τļ
1		I		1 19	Recover	γI	-1
1		_		II		!	_ 1
	4997216 %	1	13-60	25.0	77	1	_)
-	4997216MS	1	13-60	25.0	80	I	I
1	4997216MSD	-	13-60	25.0	75	I	I
İ	5015033	1	HA-18	2561.48	2D	1	1
1	5015034 %	I	76SMP	585937.51	3 D	1	1
1	BLK3438	1	METHOD BLANK	25.0	79	I	1
ļ	LCS3438	۱	LAB CONTROL	1.0	102	I.	I
1		1		۱۱			1

* = Values outside quality control limits.

D = Surrogates diluted - not counted towards total out. TOT OUT = Total # of surrogates with recovery outside control limits.

> Control Limits Lower Upper 61 122

TFT-F = Trifluorotoluene (Soil - FID)

Matrix Spike Petroleum Analysis - Water

Unspiked Sample Number....: 4912610 Spiked Sample Number.....: 4912610MS Method Reference....: GRO

Batch Number..... 06318A53 Date..... 11/14/06 Instrument..... 7530

Compound	Spike	Sample	MS	MS	QC
	Added	Conc	Conc	%	Limits
	(UG/L)	(UG/L)	(UG/L)	Recov	Recov
GRO	1100	0.00	1500	136	63-154

MS=Matrix Spike; ND=None Detected; * = Value outside quality control limits.

Lab Control/Lab Control Duplicate Petroleum Analysis - Water

.

.

Lab Control Sample Number: Lab Control Sample Number: Method Reference	LD22420
Batch Number Date Instrument	TO/02/00

	Spike Added	LCS Conc	LDS Conc	LCS %	LDS % Recov	LCS Limits Recov	RPD	LCS Limits RPD
Compound	(UG/L)	(UG/L)	(UG/L)	Recov	Recov			
GRO	1100	1170	1220	107	111	70-130	4	30
		I	I	l	· · · · ·			rence

LCS=Lab Control Sample; LDS=Lab Control Sample Duplicate; RPD=Relative Percent Difference

* = Value outside quality control limits.

Quality Control Summary SDG# WRF18

Method Blank Volatiles by GC - Water

Blank ID..... BLK3438 Date..... 03/27/07 Instrument..... 5398 Batch Number....: 07086A34A Time....: 22:35 Matrix....: Water

 	Sample Information								
ì	LL	Sample	1	Anal	Ly:	sis ·	1		
I	Sample#	l Code	1	Date	1	Time	1		
1_		1	١_		_ļ.		_!		
1	LCS3438	LAB CONTROL		03/27/07		23:47	ļ		
I	4997216 %	13-60		03/28/07	I	00:24	I		
-	4997216MS	13-60	-	03/28/07	ł	01:00	1		
ł	4997216MSD	13-60	I	03/28/07	1	01:36	1		
Ì	5015033	HA-18	I	03/28/07	1	02:26	1		
Í	5015034 %	76SMP	1	03/28/07		09:20	1		
ł		۰	1_		_1		_		

}		Method Blank F	Results]
CAS	 1	Compound	Blank Conc.	LOQ	MDL
Number 			(UG/L)	(UG/L)	(UG/L) (UG/L)
0000-00-0	GRO		ND	1000	200

LOQ = Limit of Quantitation; MDL = Method Detection Limit ND = None Detected; * = Above Limit of Quantitation

Initial Calibration Summary

Instrument ID: 5398 Calibration Batch: 07052A34A Method Reference: GRO Initial Calibration Date(s): 02/21/07(FID)

FUISO 34052

	usr *	വ
		64587.6 76782.7
	c (RRF) LEVEL5	50486.2
LEVEL 5 02/21/07 16:28	se Factor LEVEL4	62844.4 6 79460.0
LEVEL 4 02/21/07 15:52	Relative Response Factor (RRF) LEVEL2 LEVEL3 LEVEL4 LEVEL5	62956.7 76701.1
LEVEL LEVEL <th< td=""><td>Retention Time Relative Response Factor (RRF) LEVEL 3 Window LEVEL1 LEVEL2 LEVEL3 LEVEL4 LEVEL5</td><td>(FID) 2.000 0.03 70634.4 66016.3 62956.7 62844.4 60486.2 64587.6 (FID) 6.990 0.03 80601.9 71244.0 76701.1 79460.0 75906.4 76782.7</td></th<>	Retention Time Relative Response Factor (RRF) LEVEL 3 Window LEVEL1 LEVEL2 LEVEL3 LEVEL4 LEVEL5	(FID) 2.000 0.03 70634.4 66016.3 62956.7 62844.4 60486.2 64587.6 (FID) 6.990 0.03 80601.9 71244.0 76701.1 79460.0 75906.4 76782.7
LEVEL 2 02/21/07 14:40	ELEVEJ	70634 80601
02/2 14	n Time Windov	0.03
LEVEL 1 02/21/07 14:04	Retention Time LEVEL 3 Window	2.000
	DR)	(FID) (FID)
STANDARD DATE INJECTED TIME INJECTED	COMPOUND (DETECTOR)	GRO SURR-TFT-F

Page 1 of 1

•

whith ms/ss

٠

.

Calibration Verification Summary

.

Instrument ID: 5398 Method Reference: GRO Data File: C:\DEPT25\34052B.0014.RAW Date Injected: 02/21/07 Time Injected: 18:52

1	}
нs	to +15 to +46
*DRIFT LIMITS	ដុប្
	- 15 - 43
& DRIFT	цг €г-
RETENTION TIME THEORETICAL ACTUAL ACTUAL WINDOW WINDOW CONCENTRATION START END (UG/L) (UG/L)	195.8
THEORETICAL CONCENTRATION (UG/L)	220.0 30.0
DND MOONIM AMD	7.060
TUAL WINDOW WINI TUAL WINDOW WINI START ENI	6.980 6.900 7.060
ACTUAL	6.980
(DETECTOR)	(FID) (FID)
COMPOUND (DETECTOR)	GRO SURR~TFT-F

* = %DRIFT outside control limits.

Page 1 of 1

•

.

APPENDIX A

PESTICIDES/PCBs DATA DELIVERABLES FORMS

2E WATER SURROGATE RECOVERY

Lab Name: Lancaster Laboratories

Lab Code: Case No.:

Contract: SAS No:

SDG No.: LS433

GC Column (2): RTXCLPII ID: .32

GC Column (1): RTXCLP Batchnumber: 070830012A

SAMPLE	SAMPLE CODE NO.	TCX 1 % REC #	TCX 2 % REC #	DCB 1 % REC #	DCB 2 % REC #	TOT OUT
5013065	IN322	163 *	79	95	101	1
BLANKA	PBLKOB	89	87	102	105	0
LCSA	LCSX0	93	92	95	99	0
LCSDA	LCSDX0	89	89	100	104	0

ID: ,32

	ADVISORY QC LIMITS	NOMINA CONCEI	AL VTRATION
= Tetrachloro-m-xylene	(30 - 150)	0.200	ug/l
= Decachlorobiphenyl	(30 - 150)	0.204	ug/l

Column to be used to flag recovery values

* Values outside of QC Limits

D Surrogate diluted out

	3E	
Water Matrix Sp	ke/Matrix Spike Duplicate Recover	У
Laboratories	Contract:	

Lab Name: Lancaster Laboratories

Lab Code: Case No.:

SAS No.:

SDG No.:

Matrix Spike - Sample Code No.: WO-10

Querequind	Spike Added	Sample Concen (ug/l)	MS Concen (ug/l)	MSD Concen (ug/l)	MS % Rec _#	MSD % Rec _#	MS-MSD % REC Limits	% RPD #	% RPD Lim	
Compound	(ug/l)			and the second se	90	88	(70 - 124)	2	l 30	1
Formaldehyde	500	70	520	510	90		(10 12.)	L	<u>l</u>	1

Column to be used to flag recovery and RPD values with an asterisk

* Values outside of QC limits

RPD: 0 out of 1 outside limits Spike Recovery: 0 out of 2 outside limits

Comments: Results calculated on as-received basis.

Sample No.: 5000751 Ba

Batch: 070680018A

Water Lab Control Spike/Lab Control Spike Duplicate Recovery

Lab Name: Lancaster Laboratories

Contract: SAS No.:

SDG No.:

Lab Code:

Laboratory Control Spike - EPA Sample No.: LCSX0

Case No.:

Compound	Spike Added (ug/l)	LCS Concen (ug/i)	LCS % Rec _#	LCS-LCSD % REC Limits
gamma-BHC (Lindane)	0.50	0.51	102	56 - 123
	0.50	0.45	90	40 - 131
Heptachlor	0.50	0.38	76	40 - 120
Aldrin	1.0	1.0	100	52 - 126
Dieldrin	1.0	1.1	110	56 - 121
Endrin 4,4°-DDT	1.0	1,0	100	38 - 127

	Spike Addeo	LCSD Concen	LCSD % Rec _#	% RPD #	RPD Lìm	LCS-LCSD % REC Limits
Compound	(ug/l)	(ug/l)	100	2	15	56 - 123
amma-BHC (Lindane)	0.50	0.50				40 - 131
	0.50	0.44	88	2	20	1
leptachlor	0.50	0.35	70	8	22	40 - 120
Aldrin		1.0	100	0	18	52 - 126
Dieldrin	1.0			10	21	56 - 121
Endrin	1.0	0.99	99	10		
4,4'-DDT	1.0	0.96	96	4	27	38 - 127

Column to be used to flag recovery and RPD values with an asterisk

* Values outside of QC limits

RPD: 0 out of 6 outside limits

Spike Recovery: 0 out of 12 outside limits

Comments:

1

Results calculated on as-received basis.

Sample No.: LCSA

Batch: 070830012A

	1D		SAMPLE CODE NO.
	ORGANICS ANALYSIS	S DATA SHEET	IN322
Client Sample ID: <u>W-T</u> Lab Name: Lancaster L	• · · ·	Batchn	umber: 070830012A
Lab Code:	Case No.:	SAS No.:	SDG No.: LS433
Matrix: (soil/water) <u>W</u>	ATER		Sample ID: 5013065
Sample wt/vol:	<u>1015</u> (g/ml) <u>ml</u>		File ID: 5D1053.29R
% Moisture:	Decanted: (Y/N)	Date	e Received: <u>3/23/2007</u>
Extraction: (SepF/Cor	nt/Sonc) <u>SEPF</u>	Dat	e Extracted: <u>3/25/2007</u>
Concentrated Extract	Volume: <u>10000</u> (uL)	Dat	e Analyzed: 3/29/2007
Injection Volume:	1 (uL)	Dilu	ution Factor: 1
GPC Cleanup: (Y/N)		Sul	fur Cleanup: (Y/N) N
		CONCENTRATI	•
CAS NO.	COMPOUND	(UG/L or UG/KC	
172-55-9	4,4-DDE		0.35U
959-98-8	Endosulfan I		0.050U 0.34U
50-29-3	4,4'-DDT	<u> </u>	0.540

	METHOD BLANK		SAMPLE CODE NO).
		C SOIAIIAIAK I	PBLKOB	
Lab Name: Lancaster Labora	tories Contract:			
Lab Code:	Case No.:	SAS No.:	SDG No.: LS433	
Lab Sample ID <u>BLANKA</u>	Batch 070830012A		Lab File ID: <u>5D1053.26R</u> 5	D1053B.26R
Matrix: (soil/water) WATEF	3		Extraction: (SepF/Cont/Sonc)	SEPF
Sulfur Cleanup: (Y/N) <u>N</u>			Date Extracted: 3/25/2007	
Date Analyzed (1): 3/29/200)7		Date Analyzed (2): 3/29/2007	
Time Analyzed (1): 13:46:38	3		Time Analyzed (2): <u>13:46:38</u>	
Instrument ID (1): V5807A			Instrument ID (2): V5807B	
GC Column: <u>RTXCLP</u>	ID: <u>0.32</u> (mm)		GC Column: RTXCLPII	ID: <u>0.32</u> (
THIS METHOD BLAN	K APPLIES TO THE FO	DLLOWING SAM	MPLES, MS, AND MSD	

DATE

ANALYZED 1

3/29/2007

3/29/2007

3/29/2007

3/29/2007

DATE

ANALYZED 2

3/29/2007

3/29/2007

3/29/2007

3/29/2007

.

4C

COMMENTS:

SAMPLE

CODE NO.

IN322

PBLKOB

LCSDX0

LCSX0

01

02 03

04

LAB SAMPLEID

5013065

BLANKA

LCSA

LCSDA

.

(mm)

6D INITIAL CALIBRATION - RETENTION TIME SUMMARY

Lab Name: Lancaster Labor	atories	Contract:					
Lab Code:	Case No.:	SAS No.:				SDG N	lo.: LS433
Instrument ID: V5807A		Level (x Low): low	1.0	mid	4.0	high	20.0
GC Column (1): RTXCLP	ID: 0.32 (mm)	Date	(s) An	alyzed:	: 02/	/22/07	02/23/07

	.RT O	RT OF STANDARDS MEAN			RT WINDOW		
COMPOUND	LOW	MID	HIGH	ਸ਼ਾ	FROM	то	
alpha-BHC	7.45	7.44	7.44	7.44	7.39	7.49	
gamma-BHC (Lindane)	8.20	8.19	8.20	8.19	8.14	8.24	
beta-BHC	8.43	8.42	8.43	Low water and the second second second second second second second second second second second second second s		8.47	
delta-BHC	8.83	8.82	8.83		8.77	8.87	
Heptachlor	9.31	9.30	9.30			9.35	
Aldrin	9.99	9.98	9,99		9.93	10.03	
Heptachlor epoxide	11.34	11.34	11.35			11.39	
gamma-Chlordane	11.62	11.61	11.62			11.66	
alpha-Chlordane	11.91	11.90	11.91	1		11.95	
4,4'-DDE	12.10	12.10	12.11	1		12.17	
Endosulfan I	12.19	12.18	12.18			12.23	
Dieldrin	12.70	12.69	12.70			12.76	
Endrin	13.19	13.18	13.18	1	and the second second second second second second second second second second second second second second second	13.25	
4,4'-DDD	13.37	13.35	13.36	the second second second second second second second second second second second second second second second s		13.42	
Endosulfan II	13.67	13.66	13.67			13.73	
4,4'-DDT	13.95	13.94	13.94			14.01	
Endrin aldehyde	14.55	14.54	14.56	Laure and the second second second second second second second second second second second second second second		14.62	
Methoxychlor	14.97	14.96	14.96	and the second se		15.03	
Endosulfan sulfate	15.46	15.45	15.46		and the second se	15.52	
Endrin ketone	16.04	16.03	16.04	16.03	15.96	16.10	
Tetrachloro-m-xylene	6.09	6.08	6.08	6.08			
Decachlorobiphenyl	18.36	18.35	18.35	18.35	18.25	18.45	

*Surrogate retention times are measured from Standard Mix A analyses.

Retentiontime Windows are +/- 0.05 minutes for all compounds that elute before Heptachlor epoxide, +/- 0.07 minutes for all other compounds, except +/- 0.100 minutes for Decachlorobiphenyl

6D

INITIAL CALIBRATION - RETENTION TIME SUMMARY

Lab Name: Lancaster Labor	atories	Contract:					
Lab Code:	Case No.:	SAS No.:				SDG N	o.: LS433
Instrument ID: V5807B		Level (x Low): low	1.0	mid	4.0	high	20.0
GC Column (2): RTXCLPII	ID: 0.32 (mm)	Date(s) An	alyzed:	02	/22/07	02/23/07

٠.

	RT OF STANDARDS MEAN			MEAN	RT WI	NDOW
COMPOUND	LOW	MID	HIGH	RT	FROM	TO
alpha-BHC	7.57	7.56	7.56	7.56	7.51	7.61
gamma-BHC (Lindane)	8.42	8.41	8.42	8,41	8.36	8.46
beta-BHC	8.65	8.64	8.65	8.65	8.60	8.70
delta-BHC	9.32	9.31	9.32	9.31	9.26	9.36
Heptachlor	9.41	9.40	9.40	9.40	9.35	9.45
Aldrin	10.13	10.12	10.13	10.12	10.07	10.17
Heptachlor epoxide	11.43	11.42	11.43			11.47
gamma-Chlordane	11.83	11.82	11.83	11.82	11.77	11.87
alpha-Chlordane	12.15	12.14	12.15	12.14		12.19
Endosulfan I	12.26	12.25	12.25	12.25	12.20	12.30
4,4'-DDE	12.55	12.54	12.56	12.54		12.62
Dieldrin	12.85	12.84	12.84	12.84	12.77	12.91
Endrin	13.49	13.48	13.48	13.48	13.41	13.55
4,4'-DDD	13.7B	13.77	13.77	13.77	13.70	13.84
Endosulfan II	13.95	13.94	13.95	13,95	13.88	14.02
4,4'-DDT	14.43	14.41	14.42	14.42	14.34	14.48
Endrin aldehyde	14.68	14.67	14.68	14.67	14.60	14.74
Endosulfan sulfate	15.26	15.25	15.26	15.25	15.18	15.32
Methoxychlor	15.89	15.88	15.88	1		15.95
Endrin ketone	16.37	16.36	16.37	16.36	16.29	16.43
Tetrachloro-m-xylene	6.04	6.03	6.03	6.03	5.98	6.08
Decachlorobiphenyl	19.51	19.50	19.50	19.50	19.40	19.60

*Surrogate retention times are measured from Standard Mix A analyses.

Retentiontime Windows are +/- 0.05 minutes for all compounds that elute before Heptachlor epoxide, +/- 0.07 minutes for all other compounds, except +/- 0.100 minutes for Decachlorobiphenyl

INITIAL CALIBRATION - CALIBRATION FACTOR SUMMARY

Lab Name: Lancaster Laboratories

Lab Code:

Contract:

SAS No.:

SDG No.: LS433

Level (x Low): low 1.0 mid 4.0 high 20.0

Date(s) Analyzed: 2/22/2007 2/23/2007

Instrument: V5807A

GC Column (1) : <u>RTXCLP</u> ID: <u>0.32 (mm)</u>

Case No.:

		CALIBRATION FACTORS						
COMPOUND	LOW	MID	HIGH	MEAN	%RSD			
alpha-BHC	5.06E+02	4.94E+02	5.17E+02	5.06E+02	2.3			
gamma-BHC (Lindane)	4.55E+02	4.37E+02	4.51E+02	4.48E+02	2.1			
beta-BHC	1.76E+02	1.81E+02	1.53E+02	1.70E+02	8.7			
delta-BHC	4.05E+02	4.25E+02	4.20E+02	4.16E+02	2.5			
Heptachlor	4.50E+02	4.34E+02	4.42E+02	4.42E+02	1.8			
Aldrin	3.95E+02	4.25E+02	4.03E+02	4.08E+02	3.8			
Heptachlor epoxide	3.61E+02	3.78E+02	3.50E+02	3.63E+02	4.(
gamma-Chlordane	3.47E+02	3.65E+02	3.46E+02	3.53E+02	3.(
alpha-Chlordane	3.43E+02	3.42E+02	3.24E+02	3.37E+02	3.2			
4,4'-DDE	3.24E+02	3.41E+02	3.43E+02	3.36E+02	3.1			
Endosulfan I	3.58E+02	3.44E+02	3.37E+02	3.46E+02	3.1			
Dieldrin	3.61E+02	3.53E+02	3.66E+02	3.60E+02	1.6			
Endrin	2.83E+02	2.64E+02	2.69E+02	2.72E+02	3.5			
4,4'-DDD	2.59E+02	2.53E+02	2.80E+02	2.64E+02	5.4			
Endosulfan II	2.85E+02	2.84E+02	2.87E+02	2.85E+02	.4			
4,4'-DDT	2.84E+02	2.70E+02	2.95E+02	2.83E+02	4.4			
Endrin aldehyde	2.02E+02	2.12E+02	1.98E+02	2.04E+02	3.5			
Methoxychlor	1.27E+02	1.29E+02	1.22E+02	1.26E+02	2.8			
Endosulfan sulfate	2.16E+02	2.22E+02	2.22E+02	2.20E+02	1.:			
Endrin ketone	2.63E+02	2.75E+02	2.79E+02	2.73E+02	3.1			
Tetrachloro-m-xylene	2.83E+02	2.68E+02	2.51E+02	2.68E+02	5.9			
Decachlorobiphenyl	1.93E+02	1.85E+02	1.75E+02	1.84E+02	4.1			

*Surrogate calibration factors are measured from standard Mix A analyses.

6E INITIAL CALIBRATION - CALIBRATION FACTOR SUMMARY

Lab Name: Lancaster Laboratories

Lab Code:

Contract:

SAS No.:

Instrument: <u>V5807B</u>

GC Column (2): RTXCLPII

ID: <u>0.32 (mm)</u>

Case No.:

Date(s) Analyzed: <u>2/22/2007</u> <u>2/23/2007</u>

Level (x Low): low 1.0 mid 4.0 high 20.0

SDG No.: LS433

		CALIBRATION FACTORS				
COMPOUND	LOW	MID	HIGH	MEAN	%RSD	
alpha-BHC	7.08E+02	6.75E+02	6.37E+02	6.73E+02	5.2	
gamma-BHC (Lindane)	6.22E+02	5.89E+02	5.65E+02	5.92E+02	4.8	
beta-BHC	2.34E+02	2.39E+02	2.01E+02	2.25E+02	9.1	
delta-BHC	5.48E+02	5.56E+02	5.15E+02	5.40E+02	4.0	
ieptachlor	6.29E+02	5.87E+02	5.50E+02	5.89E+02	6.7	
Aldrin	5.46E+02	5.69E+02	4.15E+02	5.10E+02	16.3	
Heptachlor epoxide	5.00E+02	5.13E+02	4.47E+02	4.87E+02	7.2	
gamma-Chlordane	4.74E+02	4.98E+02	4.50E+02	4.74E+02	5.0	
alpha-Chlordane	4.55E+02	4.69E+02	4.31E+02	4.52E+02	4.2	
Endosulfan I	4.85E+02	4.49E+02	4.20E+02	4.52E+02	7.2	
4,4'-DDE	3.68E+02	3.93E+02	3.62E+02	3.74E+D2	4.4	
Dieldrin	5.10E+02	4.81E+02	4.13E+02	4.68E+02	10.6	
Endrin	3.81E+02	3.55E+02	3.25E+02	3.54E+02	8.0	
4,4'-DDD	2.93E+02	3.28E+02	3.00E+02	3.07E+02	6.1	
Endosulfan li	3.65E+02	3.83E+02	3.39E+02	3.62E+02	6.2	
4,4'-DDT	3.37E+02	3.28E+02	3.31E+02	3.32E+02	1.4	
Endrin aldehyde	2.66E+02	2.85E+02	2.53E+02	2.68E+02	6.0	
Endosulfan sulfate	2.90E+02	2.87E+02	2.67E+02	2.82E+02	4.4	
Methoxychlor	1.42E+02	1.44E+02	1.09E+02	1.31E+02	14,6	
Endrin ketone	3.41E+02	3.50E+02	3.25E+02	3.39E+02	3.8	
Tetrachloro-m-xylene	3.71E+02	3.56E+02	3.26E+02	3.51E+02	6.6	
Decachlorobiphenyl	2.23E+02	2.01E+02	1.85E+02	2.03E+02	9.2	

*Surrogate calibration factors are measured from standard Mix A analyses.

INITIAL CALIBRATION OF MULTICOMPONENT ANALYTES

Lab Name: Lancaster Laboratories Case No.:

Lab Code:

Contract:

SAS No.:

SDG No.: LS433

Date(s) Analyzed: 02/22/07

02/23/07

Instrument: V5807A GC Column (1): RTXCLP

ID: 0.32 (mm)

	AMOUNT			RT WI	NDOW	CALIBRATION
COMPOUND	(ng)	PEAK ¹	RT	FROM	то	FACTOR
Aroclor-1016	100.000	1	6.98	6.92	7.06	5.255
	100.000	2	7.82	7.75	7.89	6.495
	100.000	3	9.19	9.12	9.26	7.362
Arocior-1221	200.000	1	6.54	6.47	6.61	2.834
	200.000	2	6.89	6.82	6. 9 6	1.953
	200.000	3	6.99	6.92	7.06	7.039
Aroclor-1232	100.000	1	6.99	6,92	7.06	6.607
	100.000	2	7.82	7.75	7.8 9	3.013
· •	100.000	3	9.19	. 9,12	9.26	3.562
Aroclor-1242	100.000	1	6.98	6.91	7.05	4.524
	100.000	2	7.82	7.75	7.89	5.321
	100.000	3	9.19	9.12	9.26	6.025
Aroclor-1248	100.000	1	10.29	10.22	10.36	5.856
	100.000	2	11.02	10.95	11.09	8.605
	100.000	3	11.08	11.01	11.15	7.418
Aroclor-1254	100.000	1	11.48	11.41	11.55	10.544
	100.000	2	12,33	12.26	12.40	16.462
	100.000	3	12.91	12.84	12.98	15.280
Aroclor-1260	100.000	1	15.27	15.20	15.34	35.549
	100.000	2	15.86	15.79	15.93	15.273
	100.000	3	17.18	17.11	17.25	8.034
Toxaphene	500.000	1	14.75	14.68	14.82	3.868
•	500.000	2	15.59	15.52	15.66	3.919
	500.000	3	16.30	16.23	16.37	3.514

¹ At least 3 peaks for each column are required for identification of multicomponent analytes.

INITIAL CALIBRATION OF MULTICOMPONENT ANALYTES

Lab Name: Lancaster Laboratories

Lab Code:

Contract:

Case No.:

SAS No.:

SDG No.: LS433

Instrument: V5807B

242 NO.

Date(s) Analyzed: 02/22/07 02/23/07

GC Column (2): RTXCLPII

ID: 0.32 (mm)

	AMOUNT		1	RT WI	NDOW	CALIBRATION
COMPOUND	(ng)	PEAK	RT	FROM	TD	FACTOR
Arocior-1016	100.000	1	7.25	7.18	7.32	6.263
	100.000	2	9.52	9.44	9.5B	9.020
	100.000	3	9.74	9.67	9.81	6.989
Aroclos-1221	200.000	1	6,77	6.70	6.84	3.B22
	200.000	2	7.11	7.04	7.18	2.626
	200.000	3	7.25	7,18	7.32	7.759
Aroclor-1232	100.000	1	7.25	7.18	7.32	7.140
	100.000	2	9.52	9.45	9.59	3,918
	100.000	3	9.74	9.67	9.81	3.722
Arocior-1242	100.000	1	7.25	7.18	7,32	5.216
	100.000	2	9.51	9.44	9.58	7.377
	100.000	3	9.74	9.67	9.81	6.113
Arocior-1248	100.000	1	10.55	10.48	10.62	10.083
	100.000	2	10,81	10.74	10.88	8,861
	100.000	3	11.36	11.29	11.43	10.650
Arocior-1254	100.000	1	12.45	12.38	12.52	4.379
	100.000	2	13.30	13.23	13.37	12.352
	100.000	3	13.66	13.59	13.73	10.155
Aroclor-1260	100.000	1	15.73	15.66	15.80	39.034
	100,000	2	16.50	16.44	16.58	13.662
	100.000	3	17.81	17.74	17.88	8.267
Toxaphene	500.000	1	14.12	14.05	14.19	13.687
	500.000	2	16.55	16.48	16.62	4.388
	500.000	3	16.96	16.89	17.03	2.660

¹ At least 3 peaks for each column are required for identification of multicomponent analytes.

Contract:

PESTICIDE CALIBRATION VERIFICATION SUMMARY

Lab Name: Lancaster Laboratories Lab Code: Case No.: GC Column (1) : RTXCLP ID: .32 (mm) EPA Sample No. (PIBLK): PIBLKAA

EPA Sample No. (PIBLK): PIBLKAA Lab Sample ID (PIBLK): IBLKX0624B EPA Sample ID (PEM): PEMAA Lab Sample ID (PEM): PEMXX0724D
 SAS No.:
 SDG No.:

 Init. Calib Date(s):02/22/07
 02/23/07

 Date Analyzed:
 02/22/07

 Time Analyzed:
 19:10

 Date Analyzed:
 02/22/07

 Time Analyzed:
 02/22/07

 Time Analyzed:
 19:10

 Date Analyzed:
 19:41

		RT WINDOW			NOM AMOUNT	
PEM	RT	FROM	TO	AMOUNT (ng)	(ng)	%D
COMPOUND				0.010	0.020	-8.8
Tetrachloro-m-xylene	6.08	6.04	6.14	the second second second second second second second second second second second second second second second s		
alpha-BHC	7.44	7.39	7.49		0.010	f
gamma-BHC (Lindane)	8,19	8.15	8.25	0.010		·
beta-BHC	8.42	8.38	8.48	0.010	0.010	-0.4
4,4'-DDE	12.09	12.03	12.17		the second second second second second second second second second second second second second second second s	
Endrin	13.18	13.11	13.25			0.2
4,4'-DDD	13.36	13.29	13.43			
4,4'-DDT	13.94	13.87	14.01		the second second second second second second second second second second second second second second second s) -7.6
Endrin aldehyde	14.54	14.48	14.62	in the second second second second second second second second second second second second second second second	the second second second second second second second second second second second second second second second s	
Methoxychlor	14.96	14.90	15.04			-7.5
Endrin ketone	16.02	15.96	16.10			<u> </u>
Decachlorobiphenyl	18.35	18.25	18.45	0.018	0.020) -9.8

4'4-DDT % Breakdown (1): 3.4

Endrin % Breakdown (1): 4.6

Combined % Breakdown (1): 8

Contract:

PESTICIDE CALIBRATION VERIFICATION SUMMARY

Lab Name: Lancaster Laboratories Lab Code: Cese No.: GC Column (1) : RTXCLP ID: .32 (mm) EPA Sample No. (PIBLK): PIBLKDM Lab Sample ID (PIBLK): IBLKX0724A EPA Sample No. (INDAM): INDAMUG Lab Sample ID (INDA): INDAM0724A

1

 SAS No.:
 SDG No.:

 Init. Calib Date(s):02/22/07
 02/23/07

 Date Analyzed:
 03/29/07

 Time Analyzed:
 12:16

 Date Analyzed:
 03/29/07

 Time Analyzed:
 12:46

		RT WINDOW			NOM AMOUNT	
	RT	FROM	то	AMOUNT (ng)	(ng)	%D
COMPOUND	6.08	6.04	6.14	0.020	0.020	-2.2
Tetrachloro-m-xylene alpha-BHC	7.44		7.49	the second second second second second second second second second second second second second second second s	0.020	-0.7
gamma-BHC (Lindane)	8.20		8.25		0,020	
Heplachlor	9.30	9.26	9.36	0,020		1
Endosulfan I	12.18	12.13	12.23		0.020	
Dieldrin	12.69	12.63	12.77			L
Endrin	13.18		13.25			1
4,4'-DDD	13.36		13.43			L
4,4'-DDT	13.94	L	14.01			1
Methoxychlor	14.96	+	15.04			1
Decachlorobiphenyl	18.34	18.25	18.45	0.039	0.040	1

EPA Sample No. (INDBM): INDBMUE Lab Sample ID (INDB): INDBM0724A Date Analyzed: 03/29/07 Time Analyzed: 13:16

		RT WINDOW			NOM AMOUNT	
INDIVIDUAL MIX B	RT	FROM	то	AMOUNT (ng)	(ng)	%D
COMPOUND				0.020	0.020	-0.9
Tetrachloro-m-xylene	6.08		6.14	and the second design of the second design of the second design of the second design of the second design of the		ł
beta-BHC	8.42		8.48		0.020	
delta-BHC	8.82	B.78	8.8B		0.020	
Aldrin	9.98	9,92	10.02	0.019	0.020	
Heptachlor epoxide	11.33	11.29	11.39	0.020	0.020	1
gamma-Chlordane	11.60	11.57	11.67	0.020		
alpha-Chlordane	11.89	11.85	11.95	0.020	second and the second sec	
4.4'-DDE	12.09	12.03	12.17	0.037	0.040	
Endosulfan II	13.65	13,60	13.74	0.039	0.040	
Endrin aldehyde	14.54	L	14.62	0.039	0.040	
Endosulfan sulfate	15.44	15.39	15.53	0.039	0.040	
Endrin ketone	16.02		16.10	A second s	0.040	-2.5
Decachlorobiphenyl	18.34	1	18.45	<u></u>	0.040	-1.5

8D ANALYTICAL SEQUENCE

Sequence: 1D1053	Lab Name: <u>La</u>	ancaster laboratories	Contract:
Lab Code:	Case No.:	SAS No:	SDG No.;
GC Column: RTXCLP		ID: <u>0.32</u>	

Instrument: V5807A

THIS ANALYTICAL SEQUENCE OF BLANKS, SAMPLES AND STANDARDS IS GIVEN BELOW:

	Sample Code No.	Lab Sample ID	Date Analyzed	Time Analyzed	Calibration File	тсх	DCB
001		CONDITIONER	02/22/2007	17:09:43	2D1053	6.08	18,35
002		CONDITIONER	02/22/2007	17:40:00	2D1053 ·	6.09	18.36
003		CONDITIONER	02/22/2007	18:10:13	2D1053	6.09	18.36
004	AA	RCMXX0724A	02/22/2007	18:40:29	2D1053	6.09	18.36
005	PIBLKAA	IBLKX0624B	02/22/2007	19:10:46	2D1053	6.09	18.36
006	PEMAA	PEMXX0724D	02/22/2007	19:41:09	2D1053	6.08	18.35
007	AR1660AA	PR16X0624B	02/22/2007	20:11:26	2D1053	6.09	18.36
800	AR1221AA	PR21X0624B	02/22/2007	20:41:44	2D1053	6.09	18.36
009	AR1232AA	PR32X0624B	02/22/2007	21;12:02	2D1053	6.09	18.36
010	AR1242AA	PR42X0624B	02/22/2007	21:42:19	2D1053	6.09	18.36
011	AR1248AA	PR48X0624B	02/22/2007	22:12:35	2D1053	6,10	18.36
012	AR1254AA	PR54X0624B	02/22/2007	22:42:50	2D1053	6.09	18.36
013	ТОХАРНАА	PTOXX0624B	02/22/2007	23:13:02	2D1053	6.09	18.35
014	INDALAA	·INDAL0624C	02/22/2007	23:43:16	1D1053	6.09	18.36
015	INDBLAA	INDBL0624C	02/23/2007	00:13:29	1D1053	6.09	18.36
016	INDAMAA	INDAM0624C	02/23/2007	00:43:46	1D1053	6.08	18.35
017	INDBMAA	INDBM0624C	02/23/2007	01:14:00	1D1053	6.09	18.35
018	INDAHAA	INDAH0624C	02/23/2007	01:44:14	1D1053	6.08	18.35
019	INDBHAA	INDBH0624C	02/23/2007	02:14:26	ID1053	6.09	18.36
020	PIBLKAA	IBLKX0624B	02/23/2007	02:44:40	2D1053	6.09	18.36
021	PEMAB	PEMXX0724D	02/23/2007	03:14:52	2D1053	6.09	18.35
022	PBLKNL	BLANKA	02/23/2007	03:45:07	2D1053	6.09	18.35
023	LCSX7	LCSA	02/23/2007	04:15:17	2D1053	6.08	18.35
024	LCSDBV	LCSDA	02/23/2007	04:45:28	2D1053	6.09	18.36
025	KQA-1	4975036	02/23/2007	05:15:41	2D1053	6.08	18.35
026	KQA-2	4975037	02/23/2007	05:45:55	2D1053	6.09	18.35
027	AA	GPC38BL051	02/23/2007	06:16:05	2D1053		
028	AA	GPC38MS051	02/23/2007	06:46:17	2D1053		
029	AA	CONTROL	02/23/2007	07:16:26	2D1053		
030	AA	GPC38AR051	02/23/2007	07:46:38	2D1053		18.36
031	PIBLKYN	IBLKX0624B	02/23/2007	08:16:50	2D1053	6.09	18.36

ICAL Dates

 TCX = Terrachloro-m-xylene DCB = Decachlorobiphenyl TCX = Tetrachloro-m-xylene DCB = Decachlorobiphenyl

ICAL RT QC Limits

6.08	(6.03 - 6.13 Minutes)
18.35	(18.25 - 18.45 Minutes)
6.09	(6.04 • 6.14 Minutes)
18.35	(18-25 - 18.45 Minutes)

8D ANALYTICAL SEQUENCE

Sequence: 1D1053	Lab Name: Lancaster	laboratories	Contract:
Lab Code:	Case No.:	SAS No:	SDG No.:
GC Column: <u>RTXCLP</u>		ID: <u>0.32</u>	
Instrument: V5807A			

THIS ANALYTICAL SEQUENCE OF BLANKS, SAMPLES AND STANDARDS IS GIVEN BELOW:

	Sample Code No.	Lab Sample ID	Date Analyzed	Time Analyzed	Calibration File	TCX	DCB
032	INDAMTP	INDAM0624C	02/23/2007	08:47:03	2D1053	6.08	18.35
033	INDBMTN	INDBM0624C	02/23/2007	09:17:13	2D1053	6.08	18.35
034	PIBLKZL	IBLKX0724A	03/05/2007	15:41:41	2D1053	6.09	18.35
035	PEMAA	PEMXX0724E	03/05/2007	16:11:57	2D1053	6.09	18.35
036	PBLK5F	BLANKA	03/05/2007	16:42:12	2D1053	6.09	18.35
037	LCSEU	LCSA	03/05/2007	17:12:22	2D1053	6.09	18.36
038	LCSDM9	LCSDA	03/05/2007	17:42:33	2D1053	6.09	18.36
039	228IN .	4994055	03/05/2007	18:12:48	2D1053	6.09	18.35
040	AA	GPC38BL059	03/05/2007	18:42:59	2D1053		
041	AA	GPC38MS059	03/05/2007	19:13:15	2D1053		
042	AA	CONTROL	03/05/2007	19:43:28	2D1053	1	
043	AA	GPC38AR059	03/05/2007	20:13:40	2D1053		18.35
044	PIBLKZM	IBLKX0724A	03/05/2007	20:43:51	2D1053	6.09	18.35
045	INDAMTR	ITR INDAM0624C		21:14:05	2D1053	6.08	18.34
046	INDBMTP	INDBM0624C	03/05/2007	21:44:19	2D1053	6.08	18.34

	ICAL Dates		ICAL H	RT QC Limits
1D1053	02/22/2007 - 02/23/2007	TCX = Tetrachloro-m-xylene	6.08	(6.03 - 6.13 Minutes)
		DCB = Decachlorobiphenyl	18.35	(18.25 - 18.45 Minutes)
2D1053	02/22/2007 - 02/23/2007	TCX = Tetrachloro-m-xylene	6.09	(6.04 - 6.14 Minutes)
		DCB = Decachlorobiphenyl	18.35	(18.25 - 18,45 Minutes)

APPENDIX A

METALS DATA DELIVERABLES FORMS

.

FORM 2A

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: LANCASTER_LABORATORIES

SDG No.: DWD02

Initial Calibration Source: LLI

Continuing Calibration Source: LLI

.

Concentration Units: UG/L

Analyte		Initial True	Calibrat Found	ion %R(1)	True	Contir Found	uing C %R(2)	alibratio True	n Found	ዬ ጽ(2)	м
Arsenic	75	50.0	51.21	102.4	25.0	25.33	101.3	25.0	25.06	.100.2	MS
Barium		600.0	578.03	96.3	500.0	491.13	98.2	500.0	475.35	95.1	Р
Chromium		600.D	586.88	97.B	500.0	502.75	100.6	500.0	489.44	97.9	Р
Nickel		600.D	584.35	97.4	500.0	495.62	99.1	500.D	489.82		
Selenium	77	50.0	52.27	104.5	25.0	25.72	102.9	25.0	25.36	101.4	MS
Vanadium		600.0	584.96	97.5	500.0	501.66	100.3	500.D	488.71	97.7	Р
Zinc		600.0	588.77	98.1	500.0	503.05	100.6	500.0	492.14	98.4	P

(1) Control Limits: All Metals: 90-110

(2) Control Limits: All Metals: 90-110

.

.

FORM 2A

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: LANCASTER_LABORATORIES

SDG No.: DWD02

Initial Calibration Source: LLI

Continuing Calibration Source: LLI

Concentration Units: UG/L

		Initia	l Calibra	tion							
Analyte		True	Found	%R(1)	True	Found	%R(2)	True	Found	&R(2)	м
Arsenic	75			1	25.0	25.25	101.0	25.0	24.47	97.9	MS
Barium			*		500.0	478.29	95.7	500.0	489.38	97.9	P
Chromium					500.0	494.53	98.9	500.0	505.76	101.2	P
Nickel			•		500.0	490.61	98.1	500.0	506.80	101.4	P
Selenium	77				25.0	25.55	102.2	25.0	24.65	98.6	MS
Vanadium					500.0	491.82	98.4	500.0	503.92	100.8	P
Zinc			······································		500.0	495.91	99.2	500.0	508.08	101.6	P

(1) Control Limits: All Metals: 90-110

(2) Control Limits: All Metals: 90-110

FORM 2B

LOW LEVEL CHECK STANDARD FOR AA AND ICP

Lab Name: LANCASTER_LABORATORIES

SDG No.: DWD02

AA CRDL Standard Source: LLI

ICP CRDL Standard Source: LLI

Concentration Units: UG/L

		AΑ ·	·		Initia	ICP al	Final	L
Analyte	True	Found	ŧR	True	Found	%R	Found	¥R.
Arsenic 75		1	}	2.0	1.99	99.5	2.13	105.5
Barium				5.0	4.90	98.0	4.94	98.8
Chromium			1	15.0	14.63	97.5	15.00	100.0
Nickel			1	10.0	10.10	101.0	13.42	134.2
Selenium 77			1	2.0	2.18	109.0	2.16	108.0
Vanadium			1	5.0	4.99	99.8	4.87	97.4
Zinc				20.0	20.34	101.7	20.44	102.2

Control limits apply to values up to 10 times the true value of the low level check standard. Mercury, GFAA and ICP-MS: 50 - 150%. ICP: See statistical windows form.

FORM 2B

LOW LEVEL CHECK STANDARD FOR AA AND ICP

Lab Name: LANCASTER_LABORATORIES

SDG No.: DWD02

.

;

AA CRDL Standard Source: LLI

ICP CRDL Standard Source: LLI

Concentration Units: UG/L

		AA			Init	ICP ial	Fina	1
Analyte	True	Found	ξR	True	Found	₽R	Found	₽R
Arsenic								
Barium								
Chromium								
Nickel								
Selenium 82		<u>,</u>		2.0	2.15	107.5	2.23	111.5
Vanadium			[
Zinc			1				<u> </u>	

Control limits apply to values up to 10 times the true value of the low level check standard. Mercury, GFAA and ICP-MS: 50 - 150%. ICP: See statistical windows form.

Statistical Windows for Low Level Check

	True Value	Statistical
Element	ug/L	Window (%)
Aluminum	200	0 - 200
Antimony	20	25 - 175
Arsenic	20	50 - 150
Barium	5	75 - 125
Beryllium	5	50 - 150
Boron	50	50 - 150
Cadmium	5	75 - 125
Calcium	200	0 - 200
Chromium	15	50 - 150
Cobalt	5	25 - 175
Copper	10	25 - 175
Iron	200	25 - 175
Lead	15	50 - 150
Magnesium	100	0 - 200
Manganese	5	50 - 150
Molybdenum	10	25 - 175
Nickel	10	50 - 150
Potassium	200	75 - 125
Selenium	20	50 - 150
Silver	5	50 - 150
Sodium	1000	25 - 175
Strontium	. 5	75 - 125
Thallium	20	0 - 200
Tin	20	25 - 175
Titanium	10	50 - 150
Vanadium	5	50 - 150
Zinc	20	75 - 125

Effective: 12/29/2005

ŧ

FORM 3

BLANKS

Lab Name: LANCASTER_LABORATORIES

SDG No.: DWD02

Preparation Blank Matrix (soil/water): WATER

Preparation Blank Concentration Units (ug/L or mg/kg): UG/L

	-	Initial Calibration Blank (ug/L)	1	Continuing Calibration Blank (ug/L)				Preparation Blank									
Analyte	Mass	C	7	1	c	2	C	3	С	Mass		C	Sa	amŢ	ple	ID	м
Arsenic	75	0.150	J	0.15	ט	0.15	ΰ	0.15	U	75	0.670	Ŭ	P0	68	50A	в	MS
Barium		0.26E	3	0.32	B	-0.13	в	-0.21	в		0.620	υ	P0	68	05A	ъВ	₽
Chromium		1.10	5	1.1	в	1.1	υ	1.1	υ		2.300	D	P0	68	05A	B	₽
Nickel		2.30	_	2.3	υ	2.3	U	2.3	U		5.600	U	P0	68	05A	B	₽
Selenium	77	0.470	5	0.47	σ	0.47	ΰ	0.47	U	77	0.500	ΰ	PC	68	50A	В	MS
Vanadium		0.910	J	0.91	U	0.91	ט	0.91	υ		1.500	σ	PC	68	05A	B	Þ
Zinc		0.41	ד	0.42	в	0.41	υ	0.41	U		8.200	U	PO	68	05A	B	₽

FORM 3

.

BLANKS

Lab Name: LANCASTER_LABORATORIES

SDG No.: DWD02

Preparation Blank Matrix (soil/water): WATER

Preparation Blank Concentration Units (ug/L or mg/kg): UG/L

		Initial Calibration Blank (ug/L)	Co		uing Ca lank (u		ion			Prepara Blani		a	
Analyte	Mass	С	1	C	2	С	3	C	Mass		C	Sample II	M
rsenic	75		0.	150		11					Π		MS
arium			0.	130						÷			₽
hromium			1	.10									Р
ickel	1		2	.30	+								Ρ
elenium	77		0.	470					82	0.500	UE	06850AB	MS
anadium	1		0.	910							Π		₽
inc	1		0.	41 U							\prod		₽

FORM 4A

ICP-AES INTERFERENCE CHECK SAMPLE

Lab Name: LANCASTER_LABORATORIES

SDG No.: DWD02

ICP-AES Instrument ID: 05478 ICS Source: LLI

Concentration Units: UG/L

	Tr	ue		[nitia]	l Found			Final	Found	
	Sol.	Sol.	Sol.		Sol.	1	Sol.		Sol.	
Analyte	A	AB	A	åR	AB	8R	А	ቼR	AB	۶R
luminum	500000	500000	507410	101.5	507449.7	101.5	511273	102.3	517378.3	103.5
arium	0	500	0		516.2	103.2	0		524.3	104.9
alcium	500000	500000	533296	106.7	532441.7	106.5	541195	108.2	545142.3	109.0
hromium	0	500	-3		504.3	100.9	-2		514.4	102.9
Iron	200000	200000	209770	104.9	209485.3	104.7	212075	105.0	213971.8	107.0
lagnesium	500000	500000	511293	102.3	511328.1	102.3	516461	103.3	522030.4	104.4
lickel	0	1000	1		992.2	99.2	-1.		1013.0	101.3
'anadium	0	500	-2		502.2	100.4	-3		514.0	102.8
inc	0	1000	6		1029.4	102.9	. 7		1055.6	105.6

Control Limits: All Metals 80%-120%

4B-IN

ICP-MS INTERFERENCE CHECK SAMPLE

Lab Name: LANCASTER_LABORATORIES

SDG No.: DWD02

ICP-MS Instrument ID: 10007 ICS Source: LLI

٠

Concentration Units: UG/L

		T	rue	Found					
		Sol.	Sol.	Sol.		Sol.			
Analyte		A	AB	A	ቴR	AB	&R		
Aluminum	27	10000	10000	10480	104.8	10517.9	105.2		
Arsenic	75	Ð	20	0		19.9	99.5		
Calcium	43	10000	10000	10466	104.7	10836.9	108.4		
Carbon	13	20000	20000	NA		NA			
Chloride	37	100000	100000	NA		NA			
Iron	54	10000	10000	10384	103.8	10559.7	105.6		
Magnesium	24	10000	10000	10427	104.3	10553.0	105.5		
Molybdenum	98	200	200	209	104.5	215.4	108.2		
Phosphorus	31	10000	10000	NA		NA			
Potassium	39	10000	10000	10328	103.3	10785.3	107.9		
Selenium	77	0	0	- 2		2.1			
Sodium	23	10000	10000	10354	103.5	10653.0	106.5		
Sulfur	34	10000	10000	NA		NA			
Titanium	47	200	200	241	120.5	243.3	121.7		

Control Limits: All Metals 80%-120%

16

ICP-MS INTERNAL Standards Relative Intensity Summary

Lab Name: LANCASTER_LABORATORIES

SDG No.: DWD02

ICP-MS Instrument ID: 10007

Start Date: 03/12/2007

.

End Date: 03/13/2007

· · · · · ·					Ĩ'n	ternal Sta	ano	dards %RI	Fo	or:			
EPA Sample	Time	Element		Element	Ē	Element		Element	<u> </u>	Element	Γ	Element	
No.		GE-72	Q		Q		Q		Q		Q		Q
S0	2234	100		•	Î	1			1				Í
S	2237	103											
LRS	2240	97			Γ								
CCS	2243	98											
ICV	2246	102				•							
ICB	2248	100											
LLC	2251	100											
ICSA	2254	105			I.								
ICSAB	2257	103			l								
CCV	2300	101			Ī						[
CCB	2303	98											
P06850AB	2305	99			Γ								
P06850AQ	2308	97		•		·							
WO-10	2311	95											
WO-10A	2314	96			Ι				·]
WO-10D	2317	96											
WO-10S	2319	98			Ī								
WO-10M	2322	97											
WO-10L	2325	105											
DWM16	. 2328	103											
DWM39	2331	101											
CCV	2334	100											
ССВ	2336	97											
DWM46	2339	97		<u></u>									
BINAB	2342	9,6											
BINEB	2345	94											
BIN36	2348	97											}
BIN35	2351	96											
BI35D ·	2354	96									Γ		
BIN45	2356	95											1
BINM6	2359	100											
BIN40	0002	97				1							

16

ICP-MS INTERNAL Standards Relative Intensity Summary

Lab Name: LANCASTER_LABORATORIES

.

. •

,

SDG No.: DWD02

ICP-MS Instrument ID: 10007

Start Date: 03/12/2007

End Date: 03/13/2007

.

					In	ternal St	and	lards %RI	Fc)I:			
EPA Sample	Time	Element		Element		Element	Γ	Element		Element		Element	
No.		GE-72	Q		Q		Q		Q		Q		Q
BIN22	0005	97											<u> </u>
CCV	0008	98											4
CCB	0011	94							_		ļ		1
BIN44	0013	. 95								L			1
BINM7	0016	98									ļ		_
BIN43	0019	94									Ļ	L	<u> </u>
BIN19	0022	95									L		_
BI19D	0025	95									ļ	ļ	<u> </u>
WO-47	0028	94										L	ļ
WO-48	0031	95								l	<u> </u>		
LLC	0033	93		,									
ICSA	0036	99									L		<u> </u>
ICSAB	0039	97				•						<u> </u>	1
CCV	0042	97										l	
CCB	0045	94	•							1		<u> </u>	

MATRIX SPIKE/MATRIX SPIKE DUPLICATE

Lab Name: LANCASTER_LABORATORIES

SDG No.: DWD02

Matrix (Soil/Water): WATER

& Solids for sample: 0.0

Batch Id(s) : P06850A, P06805A

Concentration Units (ug/l or mg/kg dry weight): UG/L

Level (low/med): LOW

CLIENT SAMPLE NO.

801-0M

Analyte	Σ	Sample Result C	.MS Sample Result C	MSD · Sample Result C	MS Spike Added	MSD Spike Added	MS AR Q	Q RSM CRM	Control Limit &R	арр д	Ctl Lím RPD
Arsenic 7	75 MS	7.2762	17.6185	17.5774	10.0000	10.0000	103	103	75 - 125	0	20
Barium	Ы	69,8800	2079.7500	2071.7500	2000.0000	2000.0000	100	100	75 - 125	0	20
Chromium	d.	4.6300 B	203.1000	203,6000	200.0000	200.0000	66	66	81 - 120	0	20
Nickel	4	5.6000 U	504.2600	500.1100	500.0000	500.0000	101	1001	86 - 115	1	20
Selenium 7	77 MS		8.1721	8.0053	10:0000	10.0000	38 N	36 N	- 52 -	2	20
Vanadium	<u>a</u> ,	5.5500	508.3900	505.7900	500.0000	500.0000	101	100	111 - 06	1	20
Zinc	d,	8.2000 U	514.3700	508.3500	500.0000	500,0000	103	102	75 - 125	1	20

FORM 5B

POST DIGEST SPIKE SAMPLE RECOVERY

Lab Name: LANCASTER_LABORATORIES

SDG No.: DWD02

Matrix (soil/water): WATER

Concentration Units: UG/L

Batch ID(s): P06850A

Analyte	Control Limit &R	Spiked Sample Result (SSR)	с	Sample Result (SR)	с	Spike Added (SA)	\$ R	Q	м
Arsenic									NR
Barium									NR
Chromium									NR
Nickel	[NR
Selenium 77		8.7440		4.3854		4.0000	109		MS
Vanadium									NR
Zinc								L	NR

Comments:

CLIENT SAMPLE No.

WO-10A

Level (low/med): LOW

.

Form 6

DUPLICATES

Lab Name: LANCASTER_LABORATORIES

SDG No.: DWD02

Matrix (soil/water): WATER

% Solids for Sample: 0.0

Concentration Units (ug/L or mg/kg dry weight): UG/L

Quality Assurance Summary.

Batch ID(s): P06850A, P06805A

Analyte		Control Limit	Samples (S)	с	Duplicate (D)	с	RPD	Q	м
Arsenic	75	2.0	7.2762		7.2391	7	1		MS
Barium			69.8800		72.550)	4		P
Chromium			4.6300	В	4.270	B	8		P
Nickel			5.6000	υ	5,600(υ		_	p
Selenium	77	2.0	4.3854		4.1497	1	6		MS
Vanadium		5.0	5.5500		5.470(1		P
Zinc			8.2000	υ	8.2000	U U			P

.

NOTE :

An asterisk (*) in column "Q" indicates poor duplicate precision (RPD > 20% OR |(S) - (D)| > LOQ for values < 5x LOQ). The data are considered to be valid because the laboratory control sample is within the control limits. See the Laboratory Control Sample page of the

CLIENT SAMPLE No.

WO-10D

Level (low/med): LOW

% Solids of Duplicate: 0.0

.

FORM 7

LABORATORY CONTROL SAMPLE

Lab Name: LANCASTER_LABORATORIES

SDG No.: DWD02

Solid LCS Source:

Aqueous LCS Source: LLI

Analyte		Sample ID	Aque True	ous (ug/L Found) %R(1)	True	Sol , Found	id (mg C	/kg) Limit	\$R
Arsenic	75	P06850AQ	. 10.0	10.32	103		1			
Barium		P05805AQ	2000.0	1997.55	100					
Chromium		P06805AQ	200.0	200.56	100					
Nickel		P06805AQ	500.0	509.26	102					
Selenium	82	P06850AQ	10.0	10.06	101					
Vanadium		P06805AQ	500.0	507.01	101		1			
Zinc		P06805AQ	500.0	512.14	102					

(1) Control Limits: Statistically determined

Statistical Windows: Waters LCS/LCSD

EPA600	ICP	
	True value	Statistical
Element	ug/L	Window
AL	2000	85-115
SB	500	85-115
AS	140	85-115
BA	2000	85-115
BE	50	85-115
В	2000	85-115
CD	50	85-115
CA	4000	85-115
CR	200	85-115
CO	500	85-115
CU	250	85-115
FE	1000	85-115
PB	120	85-115
MG	2000	85-115
MN	500	85-115
МО	2000	85-115
NI	500	85-115
К	4000	85-115
SE	110	85-115
AG	50	85-115
NA	4000	85-115
SR	1000	85-115
TL	150	85-115
SN	4000	85-115
TI	1000	85-115
V	500	85-115
ZN	500	85-115

EPA600	GFAA	
	True value	Statistical
Element	ug/L	Window
SB	50	85-115
AS	40	85-115
BE	2.5	85-115
CD	2.5	86-110
CR	10	85-115
CU	20	87-110
PB	20	85-115
NI	20	85-115
SE	10	85-115
AG	2.5	85-115
TL	50	90-110

EPA600	Mercury	
	True value	Statistical
Element	ug/L	Window
HG	1	85-115

Effective Date: 03/26/2007

Statistical Windows: Waters LCS/LCSD

SW846	ICP	
	True value	Statistical
Element	ug/L	Window
AL	2000	90-112
SB	500	88-111
AS	140	90-119
BA	2000	90-110
BE	50	90-111
В	2000	90-110
CD	50	90-112
CA	4000	90-112
CR	200	90-110
СО	500	90-110
CU	250	90-112
FE	1000	90-112
PB	120	90-113
LI	4000	80-120
MG	2000	89-110
MN	500	90-110
MO	2000	90-110
NI	500	90-111
к	4000	88-119
SE	110	80-120
AG	50	90-117
NA	4000	80-120
SR	1000	90-110
TL	150	80-120
SN	4000	90-110
TI	1000	90-113
ν	500	90-110
ZN	500	90-111

SW846	GFAA	
	True value	Statistical
Element	ug/L	Window
SB	50	80-120
AS	40	80-120
BE	2.5	86.6-112.2
CD	2.5	80-120
CR	10	80-111
CU	20	87-110
PB	20	80-120
NI	20	80-120
SE	10	80-120
AG	2.5	85-116
TL	50	80-120

SW846	Mercury	
	True value	Statistical
Element	ug/L	Window
HG	1	80-120

Effective Date: 03/26/2007

Statistical Windows: V	Waters	LCS/LCSD
------------------------	--------	----------

SW846 ICP-MS			
	True value	Statistical	
Element	ug/L	Window	
Antimony	6	80 - 120	
Arsenic	10	80 - 120	
Barium	50	80 - 120	
Beryllium	4	89 - 113	
Cadmium	5	90 - 114	
Chromium	50	90 - 118	
Copper	50	80 - 120	
Lead	15	90 - 115	
Nickel	50	80 - 120	
Selenium	10	80 - 120	
Silver	50	80 - 120	
Thallium	2	89 - 116	
Zinc	50	80 - 120	

Effective 03/26/2007

FORM 9

SERIAL DILUTIONS

Lab Name: LANCASTER_LABORATORIES

SDG No.: DWD02

Matrix (soil/water): WATER

WO-10 L

CLIENT SAMPLE No.

Level (low/med): LOW

Concentration Units: UG/L

Analyte		Initial Sample Result (I)	с	Serial Dilution Result (S)	с	१ Differ- ence	Q	м
Arsenic	75	7.2762		7.1069	B	2		MS
Barium	- T	69.8800		64.9500		- 7		P
Chromium		4.6300	в	11.5000	U	100		P
Nickel		5.6000	U	28.0000	U			P
Selenium	77	4.3854		4.9209	В	12		MS
Vanadium		5.5500		. 7.5000	υ	100		P
Zinc	Ī	8.2000	υ	41.0000	U			P

NOTE: An E in column Q indicates the presence of a chemical or physical interference in the matrix when the % difference is greater than 10%. This applies only when (I) is greater than or equal to 50x MDL for ICP, 100x MDL for ICP-MS (6020), 50x MDL for ICP-MS (200.8), or 25x MDL for GFAA.

FORM 10

INSTRUMENT DETECTION LIMITS (BIANNUALLY)

Lab Name: LANCASTER_LABORATORIES

SDG No.: DWD02

ICP Instrument ID: 05478

Flame Instrument ID:

Furnace Instrument ID:

•

Method: P

Analyte	Wavelength (nm)	Back- ground	IDL (ug/L)
Arsenic			
Barium	493.40		0.13
Chromium	267.71		1.1
Nickel	231.60		2.3
Selenium		-	
Vanadium	292.40		0.91
Zinc	213.85		0.41

Comments:

Date: 01/2007

FORM 10 MDL

METHOD DETECTION LIMITS (ANNUALLY)

Lab Name: LANCASTER_LABORATORIES

SDG No.: DWD02

Method: P

i

Date: 05/2006

.

Matrix (soil/water): WATER

Analyte	Wavelength (nm)	Background	LOQ (ug/L)	MDL (ug/L)
Arsenic				
Barium	493.40		5.0	0.62
Chromium	267.71	•	15.0	2.3
Nickel	231.60	······	10.0	5.6
Selenium				
Vanadium	292.40		5.0	1.5
Zinc	213.85		20.0	8.2

** The LOQ must be adjusted for % Solids and Sample Weight for samples reporting in mg/kg and ug.

Comments:

FORM 11

ICP INTERELEMENT CORRECTION FACTORS (ANNUALLY)

Lab Name: LANCASTER_LABORATORIES

SDG No. : DWD02

ICP Instrument ID: 05478

Date: 11/2006

Analyte	Wave- length (nm)	AL	Interelement CA	Correction FE	Factor for: MG	со
Arsenic			<u> </u>		ļļ	
Barium	493.40	0.0000000	0.0000020	0.0000020	0.000000	0.000000
Chromium	267.71	0.000000	0.0000000	-0.0000200	0.000060	0.000000
Nickel	231.60	0.000000	0.0000000	0.0000000	0.0000060	-0.0005702
Selenium						
Vanadium	292.40	0.0000008	0.0000000	-0.0002904	0.0000000	0.000000
Zinc	213.85	0,0000050	0.0000020	0.0000910	0.0000028	0.0000000

Comments:

FORM 12

LINEAR RANGES

Lab Name: LANCASTER_LABORATORIES

SDG No.: DWD02

ICP Instrument ID: 05478

Date: 01/2007

Method: P

.

÷

F		, F	
Analyte	Wavelength (nm)	Integration Time (Sec.)	Concentration (ug/L)
Arsenic		· · · · ·	
Barium	493.4	10.00	10000.0
Chromium	267.71	10.00	10000.0
Nickel	231.6	10.00	10000.0
Selenium	·	·	
Vanadium	292.4	10.00	10000.0
Zinc	213.85	10.00	10000.0

Comments:

Form 15

ICP-MS TUNE

Lab Name: LANCASTER_LABORATORIES____

SDG No.: DWD02____

Matrix: WATER

.

ICP-MS Instrument ID: 10007

Date: 03/12/2007

Element - Mass	Avg. Measured Mass (amu)	Avg.Peak Width at 5% Peak Height (amu)	%RSD
LI - 6.015	6.03	0.65	1.9
MG - 23.985	23.98	0.65	1.8
RH - 102.905	102.98	0.65	1.0
IN - 114.904	114.93	0.66	0.6
CE - 139.905	139.93	0.65	0.8
PB - 207.977	207.98	0.65	1.5
υ – 238.050	238.03	0.65	0.9

Comments:

FORM 13

PREPARATION LOG

Lab Name: LANCASTER_LABORATORIES____

SDG No.: DWD02_

Method: P_

Batch ID: P06805A

EPA			
Sample	Preparation	Weight	Volume
No.	Date	(gram)	(ml)
BI19D	03/11/2007		50
BI35D	03/11/2007		50
BIN19	03/11/2007		50
BIN22	03/11/2007		50
BIN35	03/11/2007		50
BIN36	03/11/2007		50
BIN40	03/11/2007		50
BIN43	03/11/2007		50
BIN44	03/11/2007		50
BIN45	03/11/2007		50
BINAB	03/11/2007		50
BINEB	03/11/2007		50
BINM5	03/11/2007	· · · · ·	50
BINM7	03/11/2007		50
DWM16	03/11/2007	·	50
DWM39	03/11/2007		50
DWM46	03/11/2007		50
WO-47	03/11/2007		50
WO-48	03/11/2007		50
WO-10	03/11/2007		50
WO-10D	03/11/2007		50
WO-10M	03/11/2007		50
WO-105	03/11/2007		50
P06805AB	03/11/2007		50
P06805AQ	03/11/2007		.50

,

FORM 14

ANALYSIS RUN LOG

Lab Name: LANCASTER_LABORATORIES

SDG No.: DWD02

Instrument ID Number: 05478

Method: P

Start Date: 03/12/2007

End Date: 03/12/2007

EPA				Τ						·							An	al	yt	es												·
Sample	D/F	Time	ξR	5	75		1.7	17	1	1.0		· · · · ·			·····		F			r	r	.	1	—			T		+	·	r	r
No.	DIE	TTHE	ъ.	S	A	E	I	S E	ľ	Z N											1	ļ	[
					1	ſ	1	Ē		T.											ļ,						ŀ					
2	1.00	2053		1	x	x	x	+	x	x													-		\vdash	┼─		┢	+			
	1.00	2057	*******			1	Γ	1	t	1													<u> </u>	1	†	\vdash	┢	†	-	<u> </u>		\vdash
	1.00	2101			x	1	x		<u> </u>	x													İ		 	1	t	┢──	\vdash			
	1.00	2104			Γ	X			x							-		_						ŀ	<u> </u>	1	┢──	╆──	1			\vdash
IV VI	1.00	2109	****		X	x	X		x	X														-	1	1	+	f	1			
2B 2C	1.00	2113		1	X	x	X		x	X				-					·						┢──	†	<u>†</u>	<u> </u>	1			
	1.00	2116		1	X	X	X			x					-										 	ļ÷-		†	1			
2SA	1.00	2120	*******		Х	X	x		x	х					-1	-									-							\dashv
2SAB	1.00	2124		T	X	X	Х								-												┢──	┢──				
IV VI	1.00	2127			X	x	X		X	x					-1												<u> </u>					-
2B	1.00	2131			X		x		х	X						-									<u> </u>			 				-+
)6805AB	1.00	2135			X		X			X		-						-1								<u> </u>						
)6805AQ	. 1.00	2138	****		X	x	х			X	-	\neg		- 1		-		-	1		-1							<u> </u>			1	
>-10	1.00	2142			X	X	х			X		1		-	1		-1	-1		-1												
2-10A	1.00	2146					·					-		-†	-+		-1	-+													-+	-
2-10D	1.00	2149	•		X	X	X		X	X		-	-	-†																	+	
)-10S	1.00	2153					X			X	-	-	-	-	1	-		-+													-+	
)-10M	1.00	2157					X			X	1	-	\neg	-	+	-1	. 1	-			-1	\neg										-+
)-10L	5.00	2200				x				x	1	1		-†	1	1	\neg	-†			-1		-	-							-+	
VM16	1.00	2204			X					X	-†	-+	-†	-†	-†	-	Ť	-+			$\neg \uparrow$	-		-							+	
VM39	1.00	2208			X				X		-		1	+	-+	-†	-+				-+		- 1					<i>:</i>				
ZV VI	1.00	2211				x	X			X	1	†-	-	-+	-+	-+		-		-+	-+		-1								+	
СВ	1.00	2215				X			x		-	-†	\uparrow	+	1	1	-+	-+	\neg										-		+	-+
VM46	1.00	2219	·			x			x		+	-+		+	+	+	\neg	\neg	-†	-1	-+	╡										
ENAB	1.00	2222			x	x	X		x			-	\neg	-†		t	-	-	-+	-												
INEB	1.00	2226				x			x				-	-†-	\neg	-	\uparrow	+		-	-†	+									-+	
IN36	1.00	2230	····		x				x		-†			+	+	╈	-	\uparrow	-+	\uparrow		\neg		\neg				\neg		-+	-+	+
IN35	1.00	2234			X		-f		x		-	\neg	-+	+	-	\uparrow	-+	\neg	-+	-+	-	+	-				-		\neg	-+	-+	+
135D	1.00	2237			X				x		-		\neg	-†-	+	+	-+	+		-†-	+	+	-+			-					-+	
IN45	1.00	2241				x	-			x	+		-	+		+	-	-	\neg	-†	-+	-	+	\neg								
INM6	1.00	2245				x	-			x	-		-	\neg		+	-+	+	-	-	+	╉		-	-+					-+	-+	
N40	1.00	2248				$\frac{1}{x}$	\neg		$\overline{\mathbf{x}}$		-+	\neg		-+-	+	+	-+	+	+	-	-+	┉┼	-+	-+	-+		-+	-+				

FORM 14

.

ANALYSIS RUN LOG

Lab Name: LANCASTER_LABORATORIES

SDG No.: DWD02

.

.

Instrument ID Number: 05478 Method: P

Start Date: 03/12/2007 End Date: 03/12/2007

.

		1																												
EPĄ																	Aı	na]	lyt	es	3		 			 				
Sample No.	D/F	Time	% R	A S		C R		F	v	Z N								Γ												
BIN22	1.00	2252			х	х			X	x	1	1	1	<u> </u>	T			T	1	1										
ccv	1.00	2256			X	X	х		х	X		T	1			1	1					1								
CCB	1.00	2259			Χ	X	Х		X	x	Γ	Τ	Τ			Γ	1	T				1					 \square		T	-
BIN44	1.00	2303			X	Х			х	X	1	1	T			1	1	1	1	1	1	1				 ~~~~~				
BINM7	1.00	2307			Х	Х	х		Χ	x	1	1	1			1	1	1	T	1	T									
BIN43	1.00	2311	·		х	X			Х	Х		T	1			1	1		1	1		1					\square			
BIN19	1.00	2314			Х	Х			X	х			1				Í	1 ·		T	Ì						\Box		1	
BI19D	1.00	2318			X	X			X	X			Ī				1	1	1	1	1						\square			-
WO-47	1.00	2322		Π	Х	X			X	X	[1	1				Γ		T	1	1					_	\square		1	
WO-48	1.00	2325			Х	х			X	X		1	1				1	1	1	T	1						\square	Ť		
LLC	1.00	2329			Х	X	X		X	X			Γ						T	1							\square		\uparrow	
ICSA	1.00	2333			X	x	X		X	X									1	1	1							-	-	
ICSAB	1.00	2336			X	x	X		x	X		1	1				1		1	1-	1							-	-	-
CCV	1.00	2340			X	X	X		X	X		1					[Γ	1	1			i	-1				\neg	\neg
ССВ	1.00	2344			Х	X	X		х	X							[Γ		Γ	1					. ا		_	1	7

APPENDIX A

WET CHEMISTRY DATA DELIVERABLES FORMS

Quality Control Summary Method Blank Miscellaneous Wet Chemistry SDG: DWD02 Matrix: LIQUID

Analyte	Analysis Date 1	Method	Batch Number	Blank Results	Units	MDL	LOQ
Fluoride (distilled)	03/13/07	MTR	07071144801	N.D.	mg/l	0.03	0.1
	03/15/07	MTR	07073144801	N.D.	mg/l	0.03	0.1
Sulfide	03/12/07	co	07071023002	N.D.	mg/l	0.054	0.16
	03/14/07	со	07073023001	N.D.	mg/l	0.054	0.16

Quality Control Summary Matrix Spike Analysis/ Matrix Spike Duplicate (MS/MSD) Miscellaneous Wet Chemistry SDG: BLH25 Matrix: LIQUID

			Spike										MSD			% RPD
Samule	Samule		Analysis				MS Spike	MSD Spike					Rec			Limits
Number	Code	Analyte	Date	МБ	Batch #	Result	Added	Added	MS Result	Added Added MS Result MSD Result Units	Units	(%)	(%)	Window (%)	(%)	=/>
P016170 6170R	6170R	Sulfate	70/1E/E0	MTR	MTR 07090112502A		40	40	58.0	58.7	mg/l		96	66 - 134		9
P016170	Ŵ0/19	'n													- 11	
		016-910														~~~~~
16010	0917R	P010917 0917R Total Diss.	03/26/07	c	07085021201A	604.	800	800	1430.	1400,	mg/l	601	100	60 - 140	7	5
116010	M7160	Solids Code														
		072														

Comments: If the background and/or matrix spike/matrix spike duplicate result is less than five times the limit of quantitation, the RPD is not considered applicable and is program deleted.

If the background result was more than four times the spike added amount the percent recovery is program deleted.

Quality Control Summary Duplicate Analysis Miscellaneous Wet Chemistry SDG: DWD02 Matrix: LIQUID

Sample Number	Sample Code	Analyte	Analysis Date	ME	Batch #	Sample Result	Duplicate Result	Units	RPD (%)	Control Limits %
P999045	9045D	Fluoride (distilled)	03/13/07	MTR	07071144801A	62.3	62.5	mg/l	NA	NA
4998486	DWM46	Sulfide	03/12/07	со	07071023002A	0.71	0.70	mg/l	NA	NA

Comments: If the background and/or the duplicate result was less than the limit of quantitation, the RPD is not required.

If the background and/or duplicate result is less than five times the limit of quantitation, the RPD is not considered applicable and is program deleted.

Quality Control Summary Laboratory Control Standard (LCS) Laboratory Control Standard Duplicate (LCSD) Miscellaneous Wet Chemistry SDG: DWD02 Matrix: LIQUID

	Baich #	Analyte	Analysis Date	ME	True LCS/LCSD Value	LCS Results	LCSD Results	Units	Acceptance Range	% RPD Results	% RPD Acceptance =</th
	07071144801	Fluoride (distilled)	03/13/07	MTR	l	0.929	NA	mg/l	0.89 - 1.04	NA	NA
	07073144801	Fluoride (distilled)	03/15/07	MTR	1	0.912	NA	mg/1	0.89 - 1.04	NA	NA
	07071023002	Sulfide	03/12/07	со	I	1.1	NA	mg/l	0.9 - 1.1	NA	NA
L	07073023001	Sulfide	03/14/07	со	1	0.96	NA	mg/l	0.9 + 1.1	NA	NA

Lancaster Laboratories

Quality Control Summary Initial Calibration Miscellaneous Wet Chemistry Total Petroleum Hydrocarbons Instrument Identification: 10097

Calibration Date: 04/03/05

				•••••			SDG: KIA2	2	
Batch Number	Units Conc. mg/L	Blank 0.0000	STD 1 1.0000	STD 2 5.0000	STD 3 10.0000	STD 4 20.0000	STD 5 30.0000	STD 6 40.0000	Correlation Coefficient
0610D112BD1A	ABS	0.001	0.019	0.099	0.212	0.418	0.620	. 0.762	0,996

Analysis Date: 04/11/06

,

Units mg/L

	Reference		%		
Parameter	Concentration	Result	Recovery	Acceptance	Range
ICV	5.0	5,142	103	4.475 -	5.52495
CCV	20.0	19.378	97	17.9 ~	22.0998
CCV	30.0	29.024	97	26.85 -	33,1497
CCV	20.0	19.411	97	17.9 -	22.0998
				•	

.

ABBREVIATION KEY ICV = Initial Calibration Verification CCV = Conti, Calibration Verification

APPENDIX A

INSTRUMENTAL WATER QUALITY DATA DELIVERABLES FORMS

Quality Control Summary Method Blank Instrumental Water Quality SDG: DWD02 Matrix: LIQUID

Analysis Date Method Batch Number Total Cyanide (water) 03/12/07 AK 07068117102 03/12/07 AK 07068117101 03/12/07 03/14/07 AK 07073117101	Blank Results N.D. N.D. N.D.	<u>_Units</u> mg/l mg/l mg/l	MDL 0.0050 0.0050 0.0050	LOQ 0,010 0.010 0.010	L
---	---------------------------------------	---------------------------------------	-----------------------------------	--------------------------------	---

Comments: The blank is acceptable when the result is less than the limit of quantitation.

Quality Control Summary Matrix Spike Analysis/ Matrix Spike Duplicate (MS/MSD) Instrumental Water Quality SDG: BLH25 Matrix: LIQUID

Comple	Comule		Spike Analvsis			Sample	MS Spike	MSD Spi		-		MS Rec	MSD Rec	Acceptance	RPD	% RPD Limits
Viimher	Code		Date	ME	Batch #	Result	Added	Added	MS Result	MS Result MSD Result	Units	(%)	(%)	Window (%)	(%)	⇒!:
5012388	5012388 -171-	Chloride	04/03/07		07092196101B	34.0	40	AN	72.9	AN	ng/l	67	AN	90 - 110	4 Z	AN
		Code 404														
5012394	5012394 MFG-3	Total	03/26/07	AK	07085118101A	N.D.		NA	0.96	NA	mg/l	96	ΝA	90 - 110	NA	NA
		Nitrite/Nitrate					_									
		Nitrogen														

Comments: If the background and/or matrix spike/matrix spike duplicate result is less than five times the limit of quantitation, the RPD is not considered applicable and is program deleted.

If the background result was more than four times the spike added amount the percent recovery is program deleted.

Quality Control Summary Duplicate Analysis Instrumental Water Quality SDG: DWD02 Matrix: LIQUID

Sample Number	Sample Code	Analyte	Analysis Dat e	ME	Batch #	Sample R e sult	Duplicate Result	Units	RPD (%)	Control Limits %
5000754	WO-10	Total Cyanide (water)	03/14/07	АК	07073117101A	N.D.	N.D.	mg/l	NA	NA

Comments: If the background and/or the duplicate result was less than the limit of quantitation, the RPD is not required.

If the background and/or duplicate result is less than five times the limit of quantitation, the RPD is not considered applicable and is program deleted.

Quality Control Summary Laboratory Control Standard (LCS) Laboratory Control Standard Duplicate (LCSD) Instrumental Water Quality SDG: DWD02 Matrix: L1QUID

Batch #	Analyte	Analysis Date	ME	True LCS/LCSD Value	LCS Results	LCSD Results	Units	Acceptance Range		% RPD Acceptance =</th
07068117101	Total Cyanide (water)	03/12/07	AK	0.2	0.20	NA	mg/l	0.179 - 0.2208	NA	NA
07068117102	Total Cyanide (water)	03/12/07	AK	0.2	0.20	NA	mg/l	0.179 - 0.2208	NA	NA
07073117101	Total Cyanid e (water)	03/14/07	AK	0.2	0.20	NA	mg/l	0.179 - 0.2208	NA	NA

Lancaster Laboratories

Quality Control Summary Initial And Continuing Calibration Instrumental Analysis Total Cyanide SDG: DWD02 Instrument Identification: 09037

*=Out of Specifications

Initial Calibration Date: 03/12/07, 03/14/07, 03/16/07 Continuing Calibration Dates:03/12/07, 03/14/07, 03/16/07

	True Value	Acceptance Range
	(mg/L)	
ICV/CCV	Varies	+/- 10%
ICB/CCB	0	< LOQ

	alibration ion/Blank	Result (mg/L)	ء Recovery
	True Value		
ICV	0.15	0.14800	99
ICB	0	ND	NA
ICV	0.15	0.14780	99
ICB	0	ND	NA
ICV	0.15	0.14800	99
ICB	0	ND	NA

.

Continuing	Calibration		
Verificat	ion/Blank	Result	5
		(mg/L)	Recovery
	True Value		
CCV2	0.15	0.14910	99
CCB 1	0	ND	NA
CCV2	0.15	0.14850	99
CCB 2	0	ND	NA
CCV2	0.15	0.14880	99
CCB 3	0	ND	NA
CCV2	0.15	0.14870	99
CCB 4	0	ND	NA
CCV2	0.15	0.14670	98
CCB 1	CCB 1 0		NA
CCV2	0.15	0.14950	100
CCB 2	0	ND	NA
CCV2	0.15	0.14690	99
CCB 3	0	ND	NA
CCV2	0.15	0.14940	100
CCB 4	0	ND	NA
CCV2	0.15	0.14680	98
CCB 5	0	ND	NA
CCV2	0.15	0.15400	103
CCB 1	0	ND	NA

Lancaster Laboratories

Quality Control Summary Initial And Continuing Calibration Instrumental Analysis Nitrite-N SDG: ALT03 Instrument Identification: 09106

*=Out of Specifications

Initial Calibration Date: 06/14/07, 06/15/07, 06/16/07, 06/19/07 Continuing Calibration Dates:06/14/07, 06/15/07, 06/16/07, 06/19/07

	<u>True Value</u>	Acceptance Range
ICV/CCV ICB/CCB	(mg/L) Varies	+/- 10% < LOO
TCD/CCD	v	1002

	Calibration tion/Blank	Result (mg/L)	۶ Recovery
	True Value		
ICV	0.6	0.60600	101
ICB	0	ND	NA
ICV	0.6	0.59903	100
ICB	0	ND	NA
ICV	0.6	0.59204	99
ICB	0	ND	NA
ICV	0.6	0.61535	103
ICB	0	ND	NA

Continuing	Calibration		
Verificat	ion/Blank	Result	뭉
		(mg/L)	Recovery
	True Value		
CCV2	0.6	0.54778	91
CCB 1	0	ND	NA
CCV2	0.6	0.61808	103
CCB 2	0	ND	NA
CCV2	0.6	0.57776	96
CCB 2	0	ND	NA
CCV2	0.6	0.55228	92
CCB 3	0	ND	NA
CCV2	0.6	0.57059	95
CCB 4	0	ND	NA
CCV2	0.6	0.61444	102
CCB 5	0	ND	NA
CCV2	0.6	0.60041	100
CCB 1	0	ND	NA
CCV2	0.6	0.59272	99
CCB 2	0	ND	NA
CCV2	0.6	0.57452	96
CCB 3	0	ND	NA
CCV2	0.6	0.60555	101
CCB 5	0	ND	NA
CCV2	0.6	0.60408	101
CCB 6	0	ND	NA
CCV2	0.6	0.61322	102
CCB 1	0	ND	NA
CCV2	0.6	0.61275	102
CCB 2	0	ND	NA

Lancaster Laboratories

Quality Control Summary Initial and Continuing Calibration Instrumental Analysis/Anion Scan

Instrument Identification: 0B022 Calibration Date: 04/01/07 SDG: BLH25

-

Batch Number	Analysis/ Parameter	AUTO CAL1	AUTO CAL2	AUTO CAL3	AUTO CAL4	AUTO CAL5	R ²	сс
07092196101A 07092196101B	Fluoride Chloride Nitrite-N Bromide Nitrate-N Sulfate	0.143	0.274	0.666	1.427	2.293	0.997053	0.998525

ICV/CCV Control Limits: 90% - 110% ICB/CCB < LOQ of the Analyte Concentration units: mg/L

Analysis Dates: 04/01/07, 04/02/07, 04/03/07

			alibration tion/Blank		Continui	ng Calibrati	on Verificat	ion/Blank
Analyte	True	ICV	\$Rec	ICB	True	CCV1	%Rec	CCB1
Fl Cl NO2	3	2.9202	97	0.0000	3	2.8851	96	0,0000
Br NO3 SO4								

1	Continui	ng Calibrati	on Verifica	tion/Blank	Continuír	ng Calibratio	on Verificat	ion/Blank
Analyte	True	CCV2	%Rec	CCB2	True	CCV3	\$Rec	CCB3
Fl								
C1	3	2.8854	96	0.0000	3	2.8879	96	0.0000
NO2								
Br (
NO3								
SO4								

	Continui	ng Calibrati	on Verifica	tion/Blank	Continuir	ng Calibratio	n Verificat	ion/Blank
Analyte	True	CCV4	%Rec	CCB4	True	CCV5	*Rec	CCB5
Fl	. T	I						
C1	3	2.8953	97	0.0000				
NO2								
Br								
103	-			1]	
SO4						1		

Lancaster Laboratories

Correlation Coefficient: 0.99992

8.17679 mv

6.09124 mv

6.61163 mv

mν

mν

6.96 mv

Blank:

Blank:

Blank:

Blank:

Blank:

Blank Average:

Quality Con	trol Summary
-------------	--------------

Initial Calibration & Linearity Check Instrumental Analysis Total Organic Carbon Instrument Identification: 5214 Calibration Date: 1/09/ SDG: CVL38 Matrix: WATER

	Method	ICV/	ICV/	ICV/	ICV/	ICV/	ICV/
Batch Number	Blank	2.0 mg/L	7.5 mg/L	10 mg/L	25 mg/L	50 mg/L	75 mg/
07022049513A/B	0.35847	2.89716	7.54704				
			ł				

Standard:

Standard:

Standard:

Standard:

Standard:

Average:

372.312 mv

374.753 mv

372,312 mv

373.13 mv

mv

m٧

·····	1	7	
Continuing Calibration	TRUE	Result	%
Verification	Value	(mg/L)	Recovery
CCV	25.0	24.47370	98
CCV	25.0	24.27840	97
CCV	25.0	24.47370	98
CCV	25.0	24.50630	98
· .			
		ļ	
	.		
	{		

Continuing Calibration

True Value (mg/L) ICV/CCV Varies

Acceptance Range +/- 10%

* Out of Specification

APPENDIX A

EPA MISC GC METHOD DATA DELIVERABLES FORMS

2E WATER SURROGATE RECOVERY

Lab Name: Lancaster Laboratories

Contract: SAS No:

SDG No.: ETX15 ID:

GC Column (1): GS-ALUMINA ID: .53

GC Column (2):

Batchnumber, 062780007A

Lab Code:

SAMPLE	SAMPLE CODE NO.	PROP 1 % REC #	PROP 2 % REC #	TOT OUT
4879969	титсз	93		0
4879970	TUT10	65		0
4880903	FRE02	79		0
4880903 MS	FRE02MS	. 77		0
4880903 MSD	FRE02MSD	80		0
BLANKA	PBLKRK	109		0
LCSA	LCSZP	107		0

Case No.:

ADVISORY	NOMINAL			
QC LIMITS	CONCENTRATION			
(38 - 129)	20.7	ug/l		

PROP = PROPENE

Column to be used to flag recovery values

* Values outside of QC Limits

D Surrogate diluted out

-	_
~	

Water Lab Control Spike/Lab Control Spike Duplicate Recovery

> Name: Lancaster Laboratories Contract:

5 Code: Case No.: SAS No.: SDG No.:

boratory Control Spike - Sample Code No.: LCSZP

Compound	Spike Added (ug/l)	LCS Concen (ug/l)	LCSD Concen (ug/l)	LCS % Rec _#	LCSD % Rec _#	LCS-LCSD % REC Limits	% RPD #	% RPD Lim
METHANE	59	62		105		(80 - 120)		20
ETHANE	61	63		103		(80 - 120)		20
ETHENE	61	64		105		(80 - 120)		20
PROPANE	61	64		105		(73 - 125)		20

Column to be used to flag recovery and RPD values with an asterisk

* Values outside of QC limits

RPD: 0 out of 4 outside limits Spike Recovery: 0 out of 4 outside limits

omments: Results calculated on as-received basis. Sample No.: LCSA Batch: 062780007A

FORM III-1

3E

Water Matrix Spike/Matrix Spike Duplicate Recovery

Lab Name: Lancaster Laboratories

Lab Code:

Contract:

Case No.: SAS No.: SDG No.:

Matrix Spike - Sample Code No.: FRE02

Compound	Spike Added (ug/l)	Sample Concen (ug/l)	MS Concen (ug/l)	MSD Concen (ug/l)	MS % Rec _#	MSD % Rec _#	MS-MSD % REC Limits	% RPD #	% RPD Lim
METHANE	59	2.7	61	66	99	107	(63 - 124)	8	20
ETHANE	61	0	64	69	105	113	(63 - 127)	8	20
ETHENE	61	0	81	87	133*	143*	(69 - 126)	7	20
PROPANE	61	0	57	59	93	97	(56 - 136)	3	20

Column to be used to flag recovery and RPD values with an asterisk

* Values outside of QC limits/

RPD: 0 out of 4 outside limits Spike Recovery: 2 out of 8 outside limits

 Comments:
 Results calculated on as-received basis.

 Sample No.:
 4880903

 Batch:
 062780007A

SAMPLE CODE NO.

ORGANICS ANALYSIS DATA SHEET

Lab Name: Lancaster Laboratories Contract: SAS No.: Lab Code: Case No.:

Batchnumber: 062780007A

PBLKRK

Matrix: (soil/water) WATER

Sample wt/vol: <u>5</u> (g/ml) <u>m</u>l

% Moisture: Decanted: (Y/N)

Extraction: (SepF/Cont/Sonc) Headspace

Concentrated Extract Volume: 5000 (uL) Injection Volume: 1000 (uL)

GPC Cleanup: (Y/N) N pH: SDG No.:

Lab Sample ID: BLANKA

Lab File ID: 7S19254.44R

Date Received:

Date Extracted: 10/5/2006

Date Analyzed: 10/6/2006

Dilution Factor: 1

Sulfur Cleanup: (Y/N) N

CONCENTRATION UNITS

CAS NO.	COMPOUND	(UG/L or UG/KG) <u>ug/l</u> Q
74-82-8	METHANE	2.0U
74-84-0	ETHANE	.1.0U
74-85-1	ETHENE	1.0U
74-98-6	PROPANE	1.0U

METHOD BLANK SUMMARY

SAMPLE CODE NO.

PBLKRK

Lab Name: Lancaster Laboratories Contract

Lab Code:	Case No.:	SAS No.:	SDG No.: ETX15		
Lab Sample ID <u>BLANKA</u>	Batch 062780007A		Lab File ID: <u>7S19254.44R</u>		
Matrix: (soil/water) <u>WATE</u>	3		Extraction: (SepF/Cont/Sonc)	Headspace	
Sulfur Cleanup: (Y/N) <u>N</u>			Date Extracted: 10/5/2006		
Date Analyzed (1): <u>10/6/20</u>	<u>D6</u>		Date Analyzed (2):		
Time Analyzed (1): <u>10:50:0</u> 3	<u>3</u>		Time Analyzed (2):		
Instrument ID (1): H4132A			Instrument ID (2):		
GC Column: <u>GS-ALUMINA</u>	ID: <u>0.53</u> (mm)		GC Column:	ID:	(mm)
THIS METHOD BLAN	IK APPLIES TO THE FO	DLLOWING SAM	IPLES, MS, AND MSD		

DATE SAMPLE LAB SAMPLEID DATE ANALYZED 1 CODE NO. ANALYZED 2 **TUTC3** 4879969 01 10/6/2006 02 TUT10 4879970 10/6/2006 03 FRE02 4880903 10/6/2006 FRE02MS 10/6/2006 04 4880903 05 FRE02MSD 4880903 10/6/2006 10/6/2006 06 PBLKRK BLANKA 07 LCSZP LCSA 10/6/2006

COMMENTS:

FORM IV PEST

6D

INITIAL CALIBRATION - RETENTION TIME SUMMARY

Lab Name: Lancaster La	<u>boratories</u>	Contract:	
Lab Code:	Case No.:	SAS No .:	SDG No.:
Instrument: <u>H4132A</u>		Calibration File:	<u>1S19254</u>
GC Column (1): GS-ALL	<u>JMINA</u> ID: <u>0.53 (mm)</u>	Update File:	
		Date(s) Analyze	d: <u>9/11/2006</u> <u>9/12/2006</u>
	RT OF STAN		NT AT WINDOW
COMPOUND		a unum of BT	

COMPOUND	LEVEL 1	LEVEL 2	LEVEL 3	LEVEL 4	LEVEL 5	ŘΤ	FROM	то
METHANE	1.24		1.23	1.23	1.24	1.24	1.21	1.27
ETHANE	1.47	1.47	1.46	1.47	1,47	1.47	1.44	1.50
ETHENE	1.78	1.77	1.78	1.78	1.78	1.78	1.73	1.83
PROPANE	2.22	2.21	2.21	2.22	2.22	2.22	2.16	2.28
PROPENE	2.89	2.86	2.88	2.88	2.88	2.89	2.76	3.02

6D INITIAL CALIBRATION - RETENTION TIME SUMMARY

Lab Name: Lancaster La	boratories		C	Contract				
Lab Code:	Case	No.:		SAS	No.:		SDG N	D.:
Instrument: <u>H4132A</u>	ument: <u>H4132A</u> Calibration File: <u>2S19254</u>							
GC Column (1): GS-ALL	GC Column (1): GS-ALUMINA ID: 0.53 (mm) Update File: 6S19254.19R							
					Date(s) A	nalyzed:	10/3/2006	10/3/2006
	1	RT	OF STANDA	RDS		MIDPOINT	RT WIN	DOW
COMPOUND	LEVEL 1	LEVEL 2	LEVEL 3	LEVEL 4	LEVEL 5	RT	FROM	то
METHANE	1			1.17		1.17	1.14	1.20
ETHANE				1.39		1.39	1.36	1.42
ETHENE		1		1:69		1.69	1.64	1.74

2.13

2.80

2.19 2.92

2.13

2.79

2.07

2.66

Page 1 of 1

PROPANE

PROPENE

6E **INITIAL CALIBRATION - CALIBRATION FACTOR SUMMARY**

Lab Name: Lancaster Laboratories

Contract:

Lab Code:

.

÷

i

İ 1

SDG No.: SAS No.: Calibration File: <u>1M27137</u>

Instrument: H2739A

Case No.:

Date(s) Analyzed: 5/17/2007 5/18/2007

7

ID: <u>0.53 (mm)</u> GC Column (1): <u>RTX-200</u>

		CALIBRATION FACTORS						
COMPOUND	LEVEL 1	LEVEL 2	LEVEL 3	LEVEL 4	LEVEL 5	LEVEL 6	MEAN	%RSD
Methanol	1.15E+00	1.11E+00	1.00E+00	1.02E+00	9.88E-01		1.06E+00	6.9
ethanol	1.75E+00	1.62E+00	1.39E+00	1.39E+00	1.60E+00		1.55E+00	10.1
ISOPROPANOL	1.81E+00	1.77E+00	1.64E+00	1.67E+00	2.03E+00		1.78E+00	8.6
Acetone	1.76E+00	1.70E+00	1.70E+00	1.69E+00	1.65E+00		1.70E+00	2.4
	I					Δνετασε	% BSD:	7

Average % RSD:

INITIAL CALIBRATION - CALIBRATION FACTOR SUMMARY

Lab Name: Lancaster Laboratories

Case No.: Lab Code:

Contract:

SAS No.:

Instrument: H4132A

GC Column (1): GS-ALUMINA ID: 0.53 (mm)

Date(s) Analyzed: 10/3/2006 10/3/2006

Calibration File: 2S19254

SDG No.:

		CALIBRATION FACTORS					
COMPOUND	LEVEL 1	LEVEL 2	LEVEL 3	LEVEL 4	LEVEL 5	MEAN	%RSD
METHANE	2.51E+03	1.83E+03	1.52E+03	1.45E+03	1.53E+03	1.77E+03	25.0
ETHANE	1.30E+03	1.41E+03	1.40E+03	1.34E+03	1.47E+03	1.39E+03	4.8
ETHENE	1.64E+03	1.81E+03	1.77E+03	1.73E+03	1.84E+03	1.76E+03	4.4
PROPANE	2.50E+03	2.69E+03	2.87E+03	2.70E+03	2.64E+03	2.68E+03	5.0
PROPENE	5.91E+03	5.90E+03	5.58E+03	5.79E+03	5.93E+03	5.82E+03	2.5
					Average	% RSD:	8.3

Page 1 of 1

7E

CALIBRATION VERIFICATION SUMMARY

Lab Name: Lancaster Laboratories Contract: SDG No.: SAS No.: Lab Code: Case No.: 09/12/06 Instrument: H4132A Init. Calib Date(s): 09/12/06 ID: .53 (mm) Date Analyzed: 09/12/06 GC Column (1): GS-ALUMINA Lab File ID: 1S19254.16R Time Analyzed: 10:48 Initial Calibration: 1S19254 Lab Standard ID: 71053AI

COMPOUND	RT	RT WIND FROM	DOW TO	CALC AMOUNT	NOM AMOUNT	%D
METHANE	1.23	1.21	1.27	57.67	59.84	-3.6
ETHANE	1.46	1.44	1.50	58.62	59.08	-0.8
ETHENE	1.77	1.73	1.83	59.77	60.56	-1.3
PROPANE	2.21	2.16	2.28	57.72	60.60	-4.8
PROPENE	2.89	2.76	3.02	19.53	21.27	-8.2
					t to(D)	

Average of %D: 3.7

8D ANALYTICAL SEQUENCE

Sequence: 1S19254	Lab Name: Lancaster	aboratories	Contract:
Lab Code:	Case No.:	SAS No:	SDG No.:
GC Column: <u>GS-ALUMINA</u>		ID: <u>0.53</u>	
Instrument: <u>H4132A</u>			

THIS ANALYTICAL SEQUENCE OF BLANKS, SAMPLES AND STANDARDS IS GIVEN BELOW:

	Sample Code No.	Lab Sample ID	Date Analyzed	Time Analyzed	Calibration File	PROP
001		CONDITIONER	09/11/2006	13:24:07	1S19254	
002		CONDITIONER	09/11/2006	13:36:59	1819254	
003	71051AA	710510632E	09/11/2006	13:50:31	1S19254	2.90
004	71052AA	710520632BE	09/11/2006	14:03:32	1S19254	2.90
005	71053AA	710530632CV	09/11/2006	14:16:45	1S19254	2.88
006	71054AA	710540632CG	09/11/2006	14:30:02	1S19254	2.88
007	71055AA	710550632E	09/11/2006	14:43:22	1S19254	2.88
008	HSMDXAA	HSMDX0632E	09/11/2006	14:56:32	1S19254	2.88
009	71053AI	710530632CW	09/11/2006	15:09:42	1S19254	2.88
010	71051AA	710510632E	09/11/2006	15:26:05	1S19254	2.86
011	71052AA	710520632BE	09/11/2006	15:42:08	1\$19254	2.86
012		CONDITIONER	09/12/2006	08:05:17	1S19254	
013		CONDITIONER	09/12/2006	08:18:01	1S19254	
014	71051AA	710510632E	09/12/2006	08:31:13	1S19254	2.90
015	71051AA	710510632E	09/12/2006	09:07:30	1S19254	2.89
016	71053AI	710530632CW	09/12/2006	10:48:55	1S19254	2.89
017	AA	CONDITIONER	09/12/2006	13:49:44	1S19254	2.93
018		CONDITIONER	09/12/2006	14:02:36	1S19254	
019	71053AJ	710530632CX	09/12/2006	14:15:57	1\$19254	2.88
020	PBLK30	BLANKA	09/12/2006	14:29:23	1\$19254	2.87
021	LCS9D	LCSA	09/12/2006	14:42:25	1S19254	2.87
022	URIID	4856709	09/12/2006	14:55:40	1S19254	2.87
023	URIIDMS	4856710	09/12/2006	15:08:54	1S19254	2.85
024	URIIDMSD	4856711	09/12/2006	15:22:14	1S19254	2.84
025	GW20A	4855970	09/12/2006	15:35:25	1S19254	2.84
026	ADL04	4856192	09/12/2006	15:48:46	1\$19254	2.84
027	ADL06	4856194	09/12/2006	16:02:14	1S19254	2.84
028	ADL4D	4856202	09/12/2006	16:15:20	1S19254	2.84
029	URS03	4856706	09/12/2006	16:28:47	1S19254	2.84
030	71053AK	710530632CX	09/12/2006	16:41:52	1S19254	2.84
031	URS09	4856707	09/12/2006	16:55:20	1S19254	2.84
032	URS11	4856708	09/12/2006	17:08:35	1S19254	2.84
033	URS23	4856712	09/12/2006	17:21:41	1S19254	2.83

ICAL Dates 1519254 09/11/2006 - 09/12/2006

PROP = PROPENE

ICAL RT QC Limits 2.89 (2.76 - 3.02 Minutes)

8D ANALYTICAL SEQUENCE

Sequence: 1S19254	Lab Name: <u>Lancaster I</u>	<u>aboratories</u>	Contract:
Lab Code:	Case No.:	SAS No:	SDG No.:
GC Column: <u>GS-ALUMINA</u>		ID: <u>0.53</u>	
Instrument: <u>H4132A</u>			

THIS ANALYTICAL SEQUENCE OF BLANKS, SAMPLES AND STANDARDS IS GIVEN BELOW:

	Sample Code No.	Lab Sample ID	Date Analyzed	Time Analyzed	Calibration File	PROP
034	URS26	4856713	09/12/2006	17:34:58	1S19254	2.83
035	URSFD	4856714	09/12/2006	17:48:10	1519254	2.83
036	GW-8A	4855968	09/12/2006	18:01:26	1519254	2.83
037	GW20A	4855970	09/12/2006	18:14:43	1519254	2.81
038	ETV11	4856164	09/12/2006	18:28:13	1519254	2.81
039	ADL05	4856193	09/12/2000	18:41:15	1519254	2.81
040	ADL08	4856196	09/12/2006	18:54:40	1519254	2.81
040	71053AL	710530632CX	09/12/2006	19:07:46	1519254	2.82
041	ADL13	4856199	09/12/2006	19:07:40	1519254	2.82
042	URS03	4856706	{	19:21:04	1S19254	
			09/12/2006		····	2.79
044	URS09	4856707	09/12/2006	19:47:38	1S19254	2.95
045	URS11	4856708	09/12/2006	20:00:51	1S19254	2.79
046	URS23	4856712	09/12/2006	20:14:07	1519254	2.80
047	URS26	4856713	09/12/2006	20:27:24	1S19254	2.79
048	URSFD	4856714	09/12/2006	20:40:44	1S19254	2.79
049	71053AM	710530632CX	09/12/2006	20:58:38	1S19254	2.81
050	PBLK4B	BLANKA	09/12/2006	21:11:35	1S19254	2.82
051	LCSAV	LCSA	09/12/2006	21:25:00	1S19254	2.81
052	GW7BT	4857525	09/12/2006	21:38:38	1S19254	2.81
053	GW7B	4857526	09/12/2006	21:51:47	1S19254	2.82
054	GW7B-MS	4857527	09/12/2006	22:05:23	1S19254	2.80
055	GW7B-MSD	4857528	09/12/2006	22:18:31	1S19254	2.81
056	GW7BD	4857530	09/12/2006	22:32:01	1S19254	2.81
057	GW7BB	4857531	09/12/2006	22:45:15	1S19254	2.82
058	GAR1R	4859180	09/12/2006	22:58:41	1S19254	2.81
059	GAR2R	4859181	09/12/2006	23:11:58	1S19254	2.81
060	71053AN	710530632CX	09/12/2006	23:25:30	1S19254	2.81
061	GARM3	4859182	09/12/2006	23:38:50	1S19254	2.79
062	GARM4	4859183	09/12/2006	23:52:12	1S19254	2.80
063	GARM5	4859184	09/13/2006	00:05:42	1S19254	2.79
064	GAR6R	4859185	09/13/2006	00:18:55	1S19254	2.79
065	GAR7R	4859186	09/13/2006	00:32:16	1S19254	2.80
066	GAR8R	4859187	09/13/2006	00:45:50	1S19254	2.79

ICAL Dates 1519254 09/11/2006 - 09/12/2006

PROP = PROPENE

ICAL RT QC Limits 2.89 (2.76 - 3.02 Minutes)

8D ANALYTICAL SEQUENCE

Sequence: 1S19254	Lab Name: <u>Lancaster</u>	Contract:	
Lab Code:	Case No.:	SAS No:	SDG No.:
GC Column: <u>GS-ALUMINA</u>		ID: <u>0.53</u>	
Instrument: H4132A			

THIS ANALYTICAL SEQUENCE OF BLANKS, SAMPLES AND STANDARDS IS GIVEN BELOW:

	Sample Code No.	Lab Sample ID	Date Analyzed	Time Analyzed	Calibration File	PROP
067	GARM9	4859188	09/13/2006	00:59:04	IS19254	2.80
068	GAR10	4859189	09/13/2006	01:12:27	1\$19254	2.80
069	GAR11	4859190	09/13/2006	01:25:45	IS19254	2.79
070	GAR12	4859191	09/13/2006	01:39:14	IS19254	2.79
071	71053AO	710530632CX	09/13/2006	01:52:45	1S19254	2.81
072	GAR13	4859192	09/13/2006	02:05:57	1S19254	2.79
073	GAR14	4859193	09/13/2006	02:19:13	1S19254	2.80
074	MNA20	4859283	09/13/2006	02:32:40	1S19254	2.78
075	MN114	4859284	09/13/2006	02:46:02	1S19254	2.79
076	71053AP	710530632CX	09/13/2006	02:59:23	1S19254	2.81

1CAL Dates 1S19254 09/11/2006 - 09/12/2006

PROP = PROPENE

ICAL RT QC Limits 2.89 (2.76 - 3.02 Minutes)

-

Surrogate Recovery TPH with Ranges EPH/Misc Organics

Matrix......Water Batch Number.... 062770002A

LL	Client	S1	S2			
Sample No.	Designation					
BLANKA	PBLKQ6	72	85			
LCSA	LCSXV	63	62			
LCSDA	LCSDOU	86	92			
4879968	TUTG8	85	98			
4879969	TUTC3	116	63			
4879970	TUT10	75	85			
		•				
L		<u>. </u>	QC LIMITS			
S1 = Chlorobenzene		28-152				
S2 = o-Terphenyl		52-131				
ABBRE						
* = VALUES OUTSID						
NC = NOT CALCULAT						
	I ENFENCIUE					
D = DILUTED OUT						
1			÷			

Lancaster Laboratories, Inc. • 2425 New Holiand Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681

Method Blank TPH with Ranges EPH/Misc Organics

*** BLANK INFORMATION ***

Matrix	Water
Extraction Date	10/4/2006
Concertration Units	mg/l
Batch Number	062770002A

Sample Informa	tion	Blank Conta	amination Information		
LL	Client	CAS		Blank	MDL
Sample No.	Designation	Number	Compound	Result	
BLANKA	PBLKQ6				
LCSA	LCSXV				
LCSDA	LCSDOU		C10-C28	ND	0.2
4879968	TUTG8		>C28-C40	ND	0.2
4879969	TUTC3		Total TPH	ND	0.2
4879970	TUT10				
		ABBREVIATION KEY			
		LOQ = LIMIT OF QUANTITATION			
		ND = NONE DETECTED			
		J = ESTIMATED VALUE BELOW THE LOQ			00
·					

Laboratory Control Sample TPH with Ranges EPH/Misc Organics

Matrix...... Water Units......mg/l Batch Number.......062770002A

Compound	Amount Spiked	LCS Result	LCS % Rec	LCSD Result	LCSD % Rec	QC Rec Limits	% RPD	RPD Limits
Total TPH	0.801	0.522	65	0.743	93	53-120	35 *	20

ABBREVIATION KEY

VALUES OUTSIDE QC LIMITS

N/A = NOT APPLICABLE

ND = NONE DETECTED

Continuing Calibration TPH with Ranges EPH/Misc Organics

% Difference	+/-15
Units	ppm

File Number	Compound	Reference Conc.	Continuing Cal. Conc.	% Difference
R272.08R	ТРН	272	276.9	1.8
R272.02R	TPH	144	141.8	-1.5
R272.17R	TPH	576	545.6	-5.3
R272.02R	Chlorobenzene	8	7.76	-3.1
R272.17R	Chlorobenzene	32	30.6	-4.4
R272.02R	o-Terphenyl	8	7.92	-1.0
R272.17R	o-Terphenyl	32	29.12	-9.0