

AECOM 40 British American Boulevard Latham, New York 12110

July 28, 2011

Mr. Baruch Singer 1033 Kings Highway, LLC 95 Delancey Street New York, NY 10002

Subject: Soil Vapor Intrusion Study Former Ferroxcube site, Site Code #356011, 1033 Kings Highway, Saugerties NY

Dear Mr. Singer,

On April 15, 2011 AECOM conducted a soil vapor intrusion study for the property located at 1033 Kings Highway, in Saugerties, New York. The request to complete a soil vapor intrusion study was made by the New York State Department of Environmental Conservation (NYSDEC), in consultation with the NYS Department of Health (NYSDOH). The samples were collected at two unoccupied buildings at the property as part of the investigation of the former Ferroxcube site, located at 1033 Kings Highway.

As background information, "vapor intrusion" refers to the process by which volatile chemicals move from a subsurface source into the indoor air of overlying or adjacent buildings. The subsurface source can either be contaminated groundwater or contaminated soil which releases vapors into the pore spaces in the soil. The goal of the sampling was to assess the potential for vapors from volatile organic compounds (VOCs) in groundwater to enter the building at the property through soil vapor intrusion. This letter describes the sampling that was performed, the results of the sampling, and our conclusions.

OVERALL CONCLUSION

Actions to further evaluate the potential for soil vapor intrusion into the buildings at the property may be appropriate in the future depending on their intended use.

SAMPLING OVERVIEW

When indoor air samples are collected and analyzed, it is typical to detect some level of VOCs because these substances are present in products used daily at home and at work, and in outdoor air that enters a building. To assess whether VOCs may be present in indoor air due to soil vapor intrusion, from vapors released by indoor sources (e.g., stored products, fuel storage and combustion, etc.), or by the infiltration of outdoor air, the following evaluation was performed:

- A Building Inventory (enclosed with this letter) was completed, which includes a list of
 products present in the buildings that may contain VOCs, and identifies potential points of
 entry for soil vapor in the buildings. (i.e. drains, discontinuous floor slab, etc). Products
 containing VOCs were not observed near the sampling locations in Building 2 (northern
 most building). Several products stored in Building 1 (the southern building) contained
 VOCs, but were in sealed containers. A Photo Ionization Detector (PID) used to monitor for
 the potential presence of VOCs did not indicate the products were releasing VOCs.
- A total of three indoor locations were sampled at the property, including two locations in Building 2 and one location in Building 1 (see the sketch maps contained within the Building Inventory).

- One air sample was collected from beneath the slab at each location (referred to as a subslab vapor sample), to determine if site related compounds are present beneath the buildings, and one sample of air inside the building was collected at each location.
- One air sample was collected outdoors to determine if outdoor sources of VOCs could impact the indoor air,
- The samples were sent to a laboratory to analyze for the presence of VOCs by EPA Method TO-15,
- The laboratory data was sent to an independent third party chemist to verify its validity and usability. The data validator's report (enclosed with this letter) stated that none of the data was rejected, and the data package was considered acceptable for the intended purpose.

INDOOR AIR RESULTS

- **Building 1**: Carbon tetrachloride, a VOC unrelated to the Ferroxcube site, was detected in the indoor air sample from Building 1 (IA-P3) at a low concentration of 0.47 micrograms per cubic meter, or ug/m³), similar to its concentration in outside air (0.46 ug/m³).
- **Building 1:** Trichloroethene (TCE) was detected in sample IA-P3 at a low concentration of 0.29 ug/m³. TCE is a constituent of interest in groundwater at the Ferroxcube site. TCE was also detected at the corresponding sub-slab vapor sample at this location (SS-P3).
- **Building 1:** Several other VOCs were detected in the indoor air of the building at levels typically found in indoor air. These VOCs were not detected in the sub-slab vapor sample. A summary table (**Table 1**) comparing these results to sub-slab and outdoor air samples collected at the buildings is enclosed with this letter.
- **Building 2**: The VOC Freon-113 (1,1,2-Trichloro-1,2,2-trifluoroethane), a constituent of interest in groundwater at the Ferroxcube site, was detected in the indoor air sample IA-P2 at a low concentration of 1.5 ug/m³. Freon was also detected at the corresponding sub-slab vapor sample at this location (SS-P2).
- **Building 2**: Carbon tetrachloride, a VOC unrelated to the Ferroxcube site, was detected in the indoor air sample from Building 2 (IA-P2) at a low concentration of 0.47 ug/m³, similar to its concentration in outside air (0.46 ug/m³). Several other VOCs were detected in the indoor air of the building at levels typically found in indoor air.

SUB-SLAB VAPOR RESULTS

- **Building 1:** TCE was detected at the sub-slab vapor sample location (SS-P3) at a concentration of 3,400 ug/m³. The VOCs 1,1,1-Trichloroethane (TCA) at 57 ug/m³, tetrachloroethene (PCE) at 290 ug/m³, cis-1, 2 dichloroethene (790 ug/m³), and trans-1,2 dichloroethene (59 ug/m³), were also detected at this location.
- **Building 2**: Freon-113 was detected at the sub-slab vapor sample locations (SS-P1 and SS-P2) at concentrations of 1,100 ug/m³ and 11,000 ug/m³, respectively

OUTDOOR AIR RESULTS

• VOCs were detected in an outdoor air sample collected outside the buildings at levels consistent with typical outdoor air background levels, and are not a concern.

CONTACT INFORMATION

If you wish to discuss these results or any of the information provided in this letter, please contact Ms. Kristin Kulow of the NYSDOH at (607) 432-3911, or Ms. Michelle Tipple of the NYSDEC at (845) 256-3146.

Yours sincerely,

Richard Hixon, LEP, RG

AECOM Technical Services Northeast 40 British American Boulevard Latham, NY 12110

- cc: Ms. Michelle Tipple, NYSDEC Region 3 Ms. Kristin Kulow, NYSDOH, Oneonta NY Mr. Ray Larkin, Philips Electronics North America Corporation
- Enc: Table 1: A summary table showing the results for each sample.
 A Data Usability Summary Report containing the validated laboratory results for each sample.
 A copy of the *Indoor Air Quality Questionnaire and Building Inventory* for Buildings 1 and 2.

Table 1 Ferroxcube Soil Vapor Intrusion Study Laboratory Results

Sample ID	IA-P1-041411	SS-P1-041411	IA-P2-041411	SS-P2-041411	IA-P3-041411	SS-P3-041411	OA-041411
Collection Date & Time	4/15/2011 935	4/15/2011 940	4/15/2011 915	4/15/2011 920	4/15/2011 1115	4/15/2011 1125	4/15/2011 1135
	Results (ug/m3)						
Analyte	Results (ug/1115)	Results (ug/1113)	Results (ug/1115)	Results (ug/1113)	Results (ug/1115)	Results (ug/1115)	Results (ug/1115)
Carbon tetrachloride	0.52	6.3 U	0.47	59 U	0.47	38 U	0.46
Trichloroethene	0.21 U	5.4 U	0.21 U	51 U	0.29	3400	0.21 U
1,1,1-Trichloroethane	0.22 U	5.5 U	0.22 U	51 U	0.22 U	57	0.22 U
Tetrachloroethene	0.27 U	6.8 U	0.27 U	64 U	0.27 U	290	0.27 U
1,1,2,2-Tetrachloroethane	0.27 U	6.9 U	0.27 U	65 U	0.27 U	42 U	0.27 U
Freon TF	1.5 U	1100	1.5	11000	1.5 U	47 U	1.5 U
1,1,2-Trichloroethane	0.22 U	5.5 U	0.22 U	51 U	0.22 U	33 U	0.22 U
1,1-Dichloroethane	0.16 U	4 U	0.16 U	38 U	0.16 U	25 U	0.16 U
1,1-Dichloroethene	0.16 U	4 U	0.16 U	37 U	0.16 U	24 U	0.16 U
1,2-Dibromoethane	0.31 U	7.7 U	0.31 U	72 U	0.31 U	47 U	0.31 U
1,2-Dichloroethane	0.32 U	4 U	0.32 U	38 U	0.32 U	25 U	0.32 U
1,2-Dichloropropane	0.37 U	4.6 U	0.37 U	43 U	0.37 U	28 U	0.37 U
1,2-Dichlorotetrafluoroethane	0.28 U	7 U	0.28 U	66 U	0.28 U	43 U	0.28 U
1,3,5-Trimethylbenzene	0.39 U	4.9 U	0.39 U	46 U	0.39 U	30 U	0.39 U
1,3-Butadiene	0.18 U	2.2 U	0.18 U	21 U	0.18 U	13 U	0.18 U
2,2,4-Trimethylpentane	0.19 U	4.7 U	0.19 U	44 U	0.19 U	28 U	0.32
3-Chloropropene	0.25 U	7.8 U	0.25 U	74 U	0.25 U	48 U	0.25 U
4-Ethyltoluene	0.2 U	4.9 U	0.2 U	46 U	0.2 U	30 U	0.2 U
Benzene	0.33	5.9	0.36	30 U	0.23	19 U	0.48
Bromodichloromethane	0.27 U	6.7 U	0.27 U	63 U	0.27 U	41 U	0.27 U
Bromoethene(Vinyl Bromide)	0.35 U	4.4 U	0.35 U	41 U	0.35 U	27 U	0.35 U
Bromoform	0.41 UJ	10 U	0.41 UJ	97 U	0.41 UJ	63 U	0.41 UJ
Bromomethane	0.31 U	3.9 U	0.31 U	37 U	0.31 U	24 U	0.31 U
Chloroethane	0.21 U	6.6 U	0.21 U	62 U	0.21 U	40 U	0.21 U
Chloroform	0.2 U	4.9 U	0.2 U	46 U	0.2 U	30 U	0.2 U
cis-1,2-Dichloroethene	0.16 U	5	0.16 U	37 U	0.16 U	790	0.16 U
cis-1,3-Dichloropropene	0.18 U	4.5 U	0.18 U	43 U	0.18 U	28 U	0.18 U
Cyclohexane	0.14 U	3.4 U	0.18	32 U	0.14 U	21 U	5.3
Dibromochloromethane	0.34 U	8.5 U	0.34 U	80 U	0.34 U	52 U	0.34 U
Dichlorodifluoromethane	2.8	12 U	2.5	120 U	2.4	75 U	2.3
Ethylbenzene	0.17 U	4.3 U	0.17 U	41 U	0.17 U	26 U	0.41
Methyl tert-butyl ether	0.14 U	3.6 U	0.14 U	34 U	0.14 U	22 U	0.14 U
Methylene Chloride	2.8 U	8.7 U	2.8 U	82 U	2.8 U	53 U	2.8 U
m-Xylene & p-Xylene	0.35 U	11 U	0.35 U	100 U	0.35 UJ	66 U	0.89 J
n-Heptane	0.16 U	8	0.5	39 U	0.16 U	25 U	0.55
n-Hexane	0.28 U	22	0.59	65	0.28 U	21 U	0.82
o-Xylene	0.17 U	4.3 U	0.17 U	41 U	0.17 UJ	26 U	0.32 J
Toluene	0.38	4.2	0.77	35 U	0.43	23 U	15
trans-1,2-Dichloroethene	0.16 U	4 U	0.16 U	37 U	0.16 U	59	0.16 U
trans-1,3-Dichloropropene	0.18 U	4.5 U	0.18 U	43 U	0.18 U	28 U	0.18 U
Trichlorofluoromethane	1.3	5.6 U	1.2	53 U	1.2	34 U	1.1
Vinyl chloride	0.2 U	2.6 U	0.2 U	24 U	0.2 U	16 U	0.2 U
1,2-Dichloroethene, Total	0.16 U	5	0.16 U	37 U	0.16 U	850	0.16 U
Xylenes, Total	0.17 U	4.3 U	0.43	51	0.17 UJ	26 U	1.2 J

Bold values indicate that the analyte was detected in laboratory analysis.

J-The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

UJ -The analyte was not detected above the sample reporting limit; and the reporting limit is approximate.

U- The analyte was analyzed for, but was not detected above the sample reporting limit.

ENVIRONMENTAL Data Services, Inc.

DATA USABILITY SUMMARY REPORT PHILIPS, SAUGERTIES, NEW YORK

Client:AECOM Technical Services, Inc., Latham, New YorkSDG:200-4780Laboratory:Test America, Burlington, VermontSite:Philips, Saugerties, New YorkDate:May 20, 2011

EDS ID	Client ID	Laboratory ID	Matrix
1	SS-P1-041411	200-4780-1	Air
2*	IA-P1-041411	200-4780-2	Air
3	SS-P2-041411	200-4780-3	Air
4*	IA-P2-041411	200-4780-4	Air
5	SS-P3-041411	200-4780-5	Air
6*	IA-P3-041411	200-4780-6	Air
7*	OA-041411	200-4780-7	Air
7DL*	OA-041411DL	200-4780-7DL	Air

*- Analyzed for Low Level TO15

A Data Usability Summary Review was performed on the analytical data for seven air samples collected April 15, 2011 by AECOM Technical Services at the Philips site in Saugerties, New York State. The samples were analyzed under "Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air, Second Edition January 1999, EPA/625/R-96/010B", Compendium Method TO-15, "Determination Of Volatile Organic Compounds (VOCs) In Air Collected In Specially-Prepared Canisters And Analyzed By Gas Chromatography/Mass Spectrometry (GC/MS)".

The data have been evaluated according to the protocols and quality control (QC) requirements of the USEPA Region II Data Review Standard Operating Procedure (SOP) Number HW-31, Revision 4, October 2006: Validating Volatile Organics of Ambient Air on Canisters by Method TO-15, and the reviewer's professional judgment.

Organics

The following items/criteria were reviewed for this report:

- Data Completeness
- Cover letter, Narrative, and Data Reporting Forms
- Canister Certification Blanks
- Canister Certification Pressures Differences
- Chains-of-Custody and Traffic Reports
- Holding Times and sample preservation
- Laboratory Control Sample (LCS) recoveries
- Surrogate Compound Recoveries

- Surrogate Compound Recoveries
- GC/MS Tuning
- Method Blank Contamination
- Initial and Continuing Calibration Summaries
- Compound Quantitation
- Internal Standard (IS) Area Performance
- Field Duplicate Sample Precision

The items listed above were technically and contractually in compliance with the method and SOP criteria with the exceptions discussed in the text below. The data have been reviewed according to the procedures outlined above and qualified accordingly.

Overall Evaluation of Data and Potential Usability Issues

There were no rejections of data.

Overall the remaining data is acceptable for the intended purposes. Data were qualified for the following deficiencies.

• Several compounds were qualified as estimated in several samples due to high continuing calibration %D values.

Data Completeness

• The data is a complete Category B data package as defined under the requirements for the NYS Department of Environmental Conservation Analytical Services Protocol.

Cover letter, Narrative, and Data Reporting Forms

• All criteria were met

Canister Certification Blanks

• The batch blank checks were non-detect or < RL.

Canister Certification Pressures Differences

• All criteria were met.

Chains-of-Custody and Traffic Reports

• All criteria were met

Holding Times

• All samples were analyzed within 30 days for air samples.

Laboratory Control Samples

• The LCS samples exhibited acceptable %R values.

Surrogate Compound Recoveries

• All samples exhibited acceptable surrogate recoveries.

GC/MS Tuning

• All criteria were met.

Method Blank

• The method blanks were free of contamination.

Initial Calibration

• The initial calibrations exhibited acceptable %RSD and mean RRF values.

Continuing Calibration

 The following table presents compounds that exceeded 30 percent deviation (%D) and/or RRF values <0.05 in the continuing calibration (CCAL). A low RRF indicates poor instrument sensitivity for these compounds. Positive results for these compounds in the affected samples are considered estimated and qualified (J). Non-detect results for these compounds in the affected samples are rejected (R) and are unusable for project objectives. A high %D may indicate a potential high or low bias. All results for these compounds in affected samples are considered estimated and qualified (J/UJ).

CCAL Date	Compound	%D/RRF	Qualifier	Affected Samples
04/22/11	Bromoform	35.7%	J/UJ	2, 4
04/25/11	m-Xylene	30.5%	J/UJ	6, 7, 7DL
	p-Xylene	30.3%	J/UJ	
	Bromoform	42.6%	J/UJ	

Compound Quantitation

- All samples were analyzed at various dilutions due to high concentrations of target • compounds.
- EDS sample ID #7 exhibited a high concentration of the compound toluene over the calibration range, and was flagged (E) by the laboratory. The sample was reanalyzed at a 5X dilution, and the dilution results for toluene should be used for reporting purposes.
- EDS sample IDs 2, 4, 6, 7, and 7DL were analyzed for low-level TO15 volatile organic • compounds.

Internal Standard (IS) Area Performance

All internal standards met response and retention time (RT) criteria. •

Field Duplicate Sample Precision

Field duplicate samples were not analyzed. •

Package Summary:

All data are valid and usable with qualifications as noted in this review.

Signed:

ucy Wlaver Dated: 5/24/11 Nancy Weaver

Senior Chemist

Data Qualifiers

- J = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- UJ = The analyte was not detected above the sample reporting limit; and the reporting limit is approximate.
- U = The analyte was analyzed for, but was not detected above the sample reporting limit.
- R = The sample results is rejected due to serious deficiencies. The presence or absence of the analyte cannot be verified.

Analytical Data Client: AECOM, Inc. Job Number: 200-4780-1 Sdg Number: 200-4780 **Client Sample ID:** SS-P1-041411 1 Date Sampled: 04/15/2011 0940 Lab Sample ID: 200-4780-1 Client Matrix: Air Date Received: 04/20/2011 1020 TO-15 Volatile Organic Compounds in Ambient Air G.i Analysis Method: TO-15 Analysis Batch: 200-17029 Instrument ID: Prep Method: Summa Canister Prep Batch: N/A Lab File ID: gfif008.d Dilution: 5.0 Initial Weight/Volume: 40 mL 04/25/2011 1442 Analysis Date: Final Weight/Volume: 200 mL Prep Date: 04/25/2011 1442 Injection Volume: 200 mL Analyte Result (ug/m3) Qualifier RL 12 Dichlorodifluoromethane 12 U 1,2-Dichlorotetrafluoroethane 7.0 U 7.0 U 2.6 Vinyl chloride 2.6 1,3-Butadiene 2.2 U 2.2 3.9 Bromomethane 3.9 U Chloroethane 6.6 U 6.6 Bromoethene(Vinyl Bromide) 4.4 U 4.4 Trichlorofluoromethane 5.6 U 5.6 4.0 1,1-Dichloroethene 4.0 U 7.8 3-Chloropropene 7.8 U Methylene Chloride 8.7 U 8.7 Methyl tert-butyl ether 3.6 U 3.6

Methyl tert-butyl ether	5.0	0	5.0
trans-1,2-Dichloroethene	4.0	U	4.0
Freon TF	1100		7.7
n-Hexane	22		3.5
1,1-Dichloroethane	4.0	U	4.0
cis-1,2-Dichloroethene	5.0		4.0
1,2-Dichloroethene, Total	5.0		4.0
Chloroform	4.9	U	4.9
1,1,1-Trichloroethane	5.5	U	5.5
Cyclohexane	3.4	U	3.4
Carbon tetrachloride	6.3	U	6.3
2,2,4-Trimethylpentane	4.7	U	4.7
Benzene	5.9		3.2
1,2-Dichloroethane	4.0	U	4.0
n-Heptane	8.0		4.1
Trichloroethene	5.4	U	5.4
1,2-Dichloropropane	4.6	U	4.6
Bromodichloromethane	6.7	U	6.7
cis-1,3-Dichloropropene	4.5	U	4.5
Toluene	4.2		3.8
trans-1,3-Dichloropropene	4.5	U	4.5
1,1,2-Trichloroethane	5.5	U	5.5
Tetrachloroethene	6.8	U	6.8
Dibromochloromethane	8.5	U	8.5
1,2-Dibromoethane	7.7	U	7.7
Ethylbenzene	4.3	U	4.3
m,p-Xylene	11	U	11
Xylene, o-	4.3	U	4.3
Xylene (total)	4.3	U	4.3
Bromoform	10	U	10
1,1,2,2-Tetrachloroethane	6.9	U	6.9
4-Ethyltoluene	4.9	U	4.9
1,3,5-Trimethylbenzene	4.9	U	4.9

Client: AECOM, Inc.

Job Number: 200-4780-1 Sdg Number: 200-4780

Client Sample ID:	IA-P1-041411	2
Lab Sample ID:	200-4780-2	Date Sampled: 04/15/2011 0935
Client Matrix:	Air	Date Received: 04/20/2011 1020

	TO15 LL Volatile O	iganic compounds		1, 201 00			
Analysis Method:	TO15 LL	Analysis Batch:	200-16960		Instrument ID:	E.i	
Prep Method:	Summa Canister	Prep Batch:	N/A		Lab File ID:	eejs()25.d
Dilution:	4.0				Initial Weight/Volume:	125	mL
Analysis Date:	04/23/2011 0653				Final Weight/Volume:	500	mL
Prep Date:	04/23/2011 0653				Injection Volume:	500	mL
Analyte		Result (u	g/m3)	Qualifier			RL
Dichlorodifluoromet	hane	2.8				****	0.20
1,2-Dichlorotetraflu		0.28		U			0.28
Vinyl chloride		0.20		U			0.20
1,3-Butadiene		0.18		U			0.18
Bromomethane		0.31		Ŭ			0.31
Chloroethane		0.21		Ŭ			0.21
Bromoethene(Vinyl	Bromide)	0.35		Ŭ			0.35
Trichlorofluorometh		1.3		•			0.22
1,1,2-Trichloro-1,2,		1.5		U			1.5
1,1-Dichloroethene		0.16		U			0.16
3-Chloropropene		0.25		U			0.25
Methylene Chloride		2.8		U			2.8
Methyl tert-butyl eth		0.14		U			0.14
		0.14		U			0.14
trans-1,2-Dichloroe n-Hexane	uiene						
		0.28		U			0.28
1,1-Dichloroethane		0.16		U			0.16
cis-1,2-Dichloroeth	ene	0.16		U			0.16
Chloroform		0.20		U			0.20
1,1,1-Trichloroetha	ne	0.22		U			0.22
Cyclohexane		0.14		U			0.14
Carbon tetrachlorid		0.52					0.25
2,2,4-Trimethylpent	ane	0.19		U			0.19
Benzene		0.33					0.13
1,2-Dichloroethane		0.32		U			0.32
n-Heptane		0.16		U			0.16
Trichloroethene		0.21		U			0.21
1,2-Dichloropropan		0.37		U			0.37
Bromodichlorometh		0.27		U			0.27
cis-1,3-Dichloropro	pene	0.18		U			0.18
Toluene		0.38					0.15
trans-1,3-Dichlorop	•	0.18		U			0.18
1,1,2-Trichloroetha	ne	0.22		U			0.22
Tetrachloroethene		0.27		U			0.27
Dibromochlorometh		0.34		U			0.34
1,2-Dibromoethane	2	0.31		U			0.31
Ethylbenzene		0.17		U			0.17
o-Xylene		0.17		U			0.17
Bromoform		0.41 u	ゴ	AN I			0.41
1,1,2,2-Tetrachloro	ethane	0.27		U			0.27
4-Ethyltoluene		0.20		U			0.20
1,3,5-Trimethylben	zene	0.39		U			0.39
1,2-Dichloroethene	, Total	0.16		U			0.16
m-Xylene & p-Xyle	ne	0.35		U			0.35
Xylenes, Total		0.17		U			0.17

Client: AECOM, Inc.

SS-P2-041411

200-4780-3

Air

Client Sample ID:

Lab Sample ID:

Client Matrix:

Analytical Data

Job Number: 200-4780-1 Sdg Number: 200-4780

3

Date Sampled: 04/15/2011 0920 Date Received: 04/20/2011 1020

		TO-15 Volatile Organic		Ambler			
Analysis Method:	TO-15	Analysis Batch:	200-16922		Instrument ID:	G.i	
Prep Method:	Summa Canister	Prep Batch:	N/A		Lab File ID:	gfie025.d	
Dilution:	47				Initial Weight/Volume:	20 mL	
Analysis Date:	04/23/2011 0642				Final Weight/Volume:	200 mL	
Prep Date:	04/23/2011 0642				Injection Volume:	200 mL	
Analyte		Result (u	g/m3)	Qualifie	r	RL	
Dichlorodifluoromet	hane	120	000000000000000000000000000000000000000	U		120	000000000000000000000000000000000000000
1,2-Dichlorotetraflue	proethane	66		U		66	
Vinyl chloride		24		U		24	
1,3-Butadiene		21		U		21	
Bromomethane		37		U		37	
Chloroethane		62		U		62	
Bromoethene(Vinyl	Bromide)	41		U		41	
Trichlorofluorometh		53		U		53	
1,1-Dichloroethene		37		U		37	
3-Chloropropene		74		U		74	
Methylene Chloride		82		Ŭ		82	
Methyl tert-butyl eth	er	34		Ŭ		34	
trans-1,2-Dichloroet		37		U		37	
Freon TF		11000		Ũ		72	
n-Hexane		65				33	
1,1-Dichloroethane		38		U		38	
cis-1,2-Dichloroethe		37		U		37	
1,2-Dichloroethene,		37		U			
Chloroform	Iotai	46				37	
1,1,1-Trichloroethar				U		46	
Cyclohexane	le	51		U		51	
-		32		U		32	
Carbon tetrachloride		59		U		59	
2,2,4-Trimethylpent	ane	44		U		44	
Benzene		30		U		30	
1,2-Dichloroethane		38		U		38	
n-Heptane		39		U		39	
Trichloroethene		51		U		51	
1,2-Dichloropropan		43		U		43	
Bromodichlorometh		63		U		63	
cis-1,3-Dichloroprop	bene	43		U		43	
Toluene		35		U		35	
trans-1,3-Dichlorop	•	43		U		43	
1,1,2-Trichloroethar	ne	51		U		51	
Tetrachloroethene		64		U		64	
Dibromochlorometh	ane	80		U		80	
1,2-Dibromoethane		72		U		72	
Ethylbenzene		41		U		41	
m,p-Xylene		100		U		100	
Xylene, o-		41		U		41	
Xylene (total)		51				41	
Bromoform		97		U		97	
1,1,2,2-Tetrachloroe	ethane	65		U		65	
4-Ethyltoluene		46		U		46	
1,3,5-Trimethylbenz		46		-			

Client: AECOM, Inc.

Job Number: 200-4780-1 Sdg Number: 200-4780

Client Sample ID:	IA-P2-041411		4
Lab Sample ID: Client Matrix:	200-4780-4 Air		Date Sampled: 04/15/2011 0915 Date Received: 04/20/2011 1020

Analysis Method:	TO15 LL	Analysis Batch:	200-16960	Instrument ID:	E.i	
Prep Method:	Summa Canister	Prep Batch:	N/A	Lab File ID:	eejs026.d	
Dilution:	4.0			Initial Weight/Volume:	125 mL	
Analysis Date:	04/23/2011 0749			Final Weight/Volume:	500 mL	
Prep Date:	04/23/2011 0749			Injection Volume:	500 mL	
Analyte		Result (u	g/m3) Qu	ualifier	RL	100005424915005100100101456666666666666666
Dichlorodifluoromet		2.5			0.20	
1,2-Dichlorotetrafluc	proetnane	0.28	U		0.28	
Vinyl chloride		0.20	U		0.20	
1,3-Butadiene		0.18	U		0.18	
Bromomethane		0.31	U		0.31	
Chloroethane		0.21	U		0.21	
Bromoethene(Vinyl		0.35	U		0.35	
Frichlorofluorometh		1.2			0.22	
1,1,2-Trichloro-1,2,2	2-trifluoroethane	1.5			1.5	
1,1-Dichloroethene		0.16	U		0.16	
3-Chloropropene		0.25	U		0.25	
Methylene Chloride		2.8	U		2.8	
Methyl tert-butyl eth	er	0.14	U		0.14	
rans-1,2-Dichloroet	hene	0.16	U		0.16	
n-Hexane		0.59			0.28	
1,1-Dichloroethane		0.16	U		0.16	
cis-1,2-Dichloroethe	ene	0.16	U		0.16	
Chloroform		0.20	U		0.20	
1,1,1-Trichloroethar	e	0.22	U		0.22	
Cyclohexane		0.18			0.14	
Carbon tetrachlorid	e	0.47			0.25	
2,2,4-Trimethylpent	ane	0.19	U		0.19	
Benzene		0.36			0.13	
1,2-Dichloroethane		0.32	U		0.32	
n-Heptane		0.50			0.16	
Trichloroethene		0.21	U		0.21	
1,2-Dichloropropan	9	0.37	U U		0.37	
Bromodichlorometh		0.27	U		0.27	
cis-1,3-Dichloropro		0.18	Ŭ		0.18	
Toluene		0.77			0.15	
trans-1,3-Dichlorop	ronene	0.18	U		0.18	
1,1,2-Trichloroetha	•	0.22	U		0.22	
Tetrachloroethene		0.22	U		0.27	
Dibromochlorometh	200	0.34	U		0.34	
		0.34	Ŭ		0.31	
1,2-Dibromoethane		0.31	U		0.31	
Ethylbenzene		0.17	U		0.17	
o-Xylene Bromoform		0.41	-	/	0.17	
	othene					
1,1,2,2-Tetrachloro	emane	0.27	U		0.27	
4-Ethyltoluene		0.20	U		0.20	
1,3,5-Trimethylben		0.39	U		0.39	
1,2-Dichloroethene		0.16	U		0.16	
m-Xylene & p-Xyler	1e	0.35	U		0.35	

TestAmerica Burlington

Client: AECOM, Inc.

SS-P3-041411

Client Sample ID:

Job Number: 200-4780-1 Sdg Number: 200-4780

5 Date Sampled: 04/15/2011 1125 Date Received: 04/20/2011 1020

Lab Sample ID: Client Matrix:	200-4780-5 Air				Sampled: 04/15/20 Received: 04/20/20
		TO-15 Volatile Organic	Compounds in	Ambient Air	
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	TO-15 Summa Canister 30.5 04/23/2011 0733 04/23/2011 0733	Analysis Batch: Prep Batch:	200-16922 N/A	Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume: Injection Volume:	G.i gfie026.d 30 mL 200 mL 200 mL
Analyte		Result (u	a/m3) (Qualifier	RL
Dichlorodifluoromet	thane	75	<u> </u>	U	75
1,2-Dichlorotetraflu		43		U	43
Vinyl chloride		16		U	16
1,3-Butadiene		13		U	13
Bromomethane		24		U	24
Chloroethane		40		U	40
Bromoethene(Vinyl	Bromide)	27		U	27
Trichlorofluorometh		34		U STATE	34
1,1-Dichloroethene		24		U	24
3-Chloropropene		48	·	U	48
Methylene Chloride)	53	I	U	53
Methyl tert-butyl eth	ner	22	·	U	22
trans-1,2-Dichloroe	thene	59			24
Freon TF		47	l	U	47
n-Hexane		21	·	U	21
1,1-Dichloroethane		25	I	U	25
cis-1,2-Dichloroethe	ene	790			24
1,2-Dichloroethene	, Total	850			24
Chloroform		30	, i	U	30
1,1,1-Trichloroetha	ne	57			33
Cyclohexane		21	i i	U	21
Carbon tetrachlorid		38	I	U	38
2,2,4-Trimethylpent	tane	28	I	U	28
Benzene		19	· I	U	19
1,2-Dichloroethane		25		U	25
n-Heptane		25	I	U	25
Trichloroethene		3400			33
1,2-Dichloropropan		28		U	28
Bromodichlorometh		41		U	41
cis-1,3-Dichloropro	pene	28		U	28
		23		U	23
trans-1,3-Dichlorop 1,1,2-Trichloroetha		28 33		U U	28
Tetrachloroethene		290	,	0	33
Dibromochlorometh	nane	52		U	41 52
1,2-Dibromoethane		47		U	52 47
Ethylbenzene	•	26		U	26
m,p-Xylene		66		U	66
Xylene, o-		26		U	26
Xylene (total)		26		U	26
Bromoform		63		U	63
1,1,2,2-Tetrachloro	ethane	42		U	42
4-Ethyltoluene		30		U	30
1,3,5-Trimethylben	zene	30		U	30
-					

6

Client: AECOM, Inc.

Job Number: 200-4780-1 Sdg Number: 200-4780

Date Sampled: 04/15/2011 1115 Date Received: 04/20/2011 1020

Client Sample ID:	IA-P3-041411
Lab Sample ID:	200-4780-6
Client Matrix:	Air

Analysis Method:	TO15 LL	Analysis Batch:	200-17015	Instrument ID:	E.i	
Prep Method:	Summa Canister	Prep Batch:	N/A	Lab File ID:	eejt014.d	
Dilution:	4.0			Initial Weight/Volume:	125 mL	
Analysis Date:	04/25/2011 2118			Final Weight/Volume:	500 mL	
Prep Date:	04/25/2011 2118			Injection Volume:	500 mL	
-						
Analyte		Result (ug/m3) Qual	ifier	RL	
Dichlorodifluoromet	hane	2.4			0.20	******
,2-Dichlorotetrafluc	proethane	0.28	U		0.28	
∕inyl chloride		0.20	U		0.20	
1,3-Butadiene		0.18	U		0.18	
Bromomethane		0.31	U		0.31	
Chloroethane		0.21	U		0.21	
Bromoethene(Vinyl	Bromide)	0.35	U		0.35	
Frichlorofluorometha		1.2			0.22	
1,1,2-Trichloro-1,2,2	2-trifluoroethane	1.5	U		1.5	
1,1-Dichloroethene		0.16	U		0.16	
3-Chloropropene		0.25	U		0.25	
Methylene Chloride		2.8	U		2.8	
Methyl tert-butyl eth	er	0.14	U		0.14	
rans-1,2-Dichloroet	hene	0.16	U		0.16	
n-Hexane		0.28	U		0.28	
1,1-Dichloroethane		0.16	U		0.16	
cis-1,2-Dichloroethe	ene	0.16	U		0.16	
Chloroform	, x	0.20	U		0.20	
1,1,1-Trichloroethar	ne	0.22	U		0.22	
Cyclohexane		0.14	U		0.14	
Carbon tetrachloride	e	0.47			0.25	
2,2,4-Trimethylpent	ane	0.19	U		0.19	
Benzene		0.23	2		0.13	
1,2-Dichloroethane		0.32	U		0.32	
n-Heptane		0.16	U		0.16	
Trichloroethene		0.29	5		0.21	
1,2-Dichloropropane	e	0.37	U		0.37	
Bromodichlorometh		0.27	Ŭ		0.27	
cis-1,3-Dichloroprop	bene	0.18	U		0.18	
Toluene		0.43	2		0.15	
rans-1,3-Dichlorop	ropene	0.18	U		0.18	
1,1,2-Trichloroethar		0.22	Ŭ		0.22	
Fetrachloroethene		0.27	Ŭ		0.27	
Dibromochlorometh	ane	0.34	Ű		0.34	
1.2-Dibromoethane		0.31	U		0.31	
Ethylbenzene		0.17	U		0.17	
-Xylene			ע דו		0.17	
Bromoform			IJ V		0.41	
1,1,2,2-Tetrachloroe	ethane	0.27	U 24		0.27	
4-Ethyltoluene		0.20	U		0.20	
1,3,5-Trimethylbenz	zene	0.39	U		0.39	
1,2-Dichloroethene,		0.16	U		0.16	
m-Xylene & p-Xyler			של לא		0.35	
in Agiene a p-Agier			id y		0.55	

Client: AECOM, Inc.

OA-041411

200-4780-7

Air

Client Sample ID:

Lab Sample ID:

Client Matrix:

Job Number: 200-4780-1 Sdg Number: 200-4780

7 Date Sampled: 04/15/2011 1135 Date Received: 04/20/2011 1020

Analysis Method:	TO15 LL	Analysis Batch:	200-17015	Instrument ID:	E.i
Prep Method:	Summa Canister	Prep Batch:	N/A	Lab File ID:	eejt015.d
Dilution:	4.0			Initial Weight/Volume:	125 mL
Analysis Date:	04/25/2011 2214			Final Weight/Volume:	500 mL
Prep Date:	04/25/2011 2214			Injection Volume:	500 mL
Analyte		Result (u	g/m3) Quali	fier	RL
Dichlorodifluoromet	hane	2.3			0.20
1,2-Dichlorotetraflu		0.28	U		0.28
Vinyl chloride		0.20	U		0.20
1,3-Butadiene		0.18	U		0.18
Bromomethane		0.31	U		0.31
Chloroethane		0.21	U		0.21
Bromoethene(Vinyl	Bromide)	0.35	Ū		0.35
Trichlorofluorometh		1.1	Ū		0.22
1,1,2-Trichloro-1,2,		1.5	U		1.5
1,1-Dichloroethene		0.16	U		0.16
3-Chloropropene		0.25	U		0.25
Methylene Chloride		2.8	U		2.8 0.14
Methyl tert-butyl eth		0.14	U		
trans-1,2-Dichloroe	thene	0.16	U		0.16
n-Hexane		0.82			0.28
1,1-Dichloroethane		0.16	U		0.16
cis-1,2-Dichloroeth	ene	0.16	U		0.16
Chloroform		0.20	U		0.20
1,1,1-Trichloroetha	ne	0.22	U		0.22
Cyclohexane		5.3			0.14
Carbon tetrachlorid	e	0.46			0.25
2,2,4-Trimethylpen	tane	0.32			0.19
Benzene		0.48			0.13
1,2-Dichloroethane		0.32	U		0.32
n-Heptane		0.55			0.16
Trichloroethene		0.21	U		0.21
1,2-Dichloropropan	e	0.37	U		0.37
Bromodichlorometh		0.27	U		0.27
cis-1,3-Dichloropro	pene	0.18	U		0.18
Toluene		15-13	Je -		0.15 0.19
trans-1,3-Dichlorop	ropene	0.18	Ū		0.18
1,1,2-Trichloroetha		0.22			0.22
Tetrachloroethene		0.27	U U		0.27
Dibromochloromet	hane	0.34	U		0.34
1,2-Dibromoethane		0.34	U		0.34
		0.31	U		0.17
Ethylbenzene					0.17
o-Xylene		0.32 J 0.41 U			
Bromoform					0.41
1,1,2,2-Tetrachloro	ethane	0.27	U		0.27
4-Ethyltoluene		0.20	U		0.20
1,3,5-Trimethylben		0.39	U		0.39
1,2-Dichloroethene		0.16	. U		0.16
m-Xylene & p-Xyle	ne	0.89 J			0.35
Xylenes, Total		1.2 J			0.17

Client: AECOM, Inc.

Job Number: 200-4780-1 Sdg Number: 200-4780

FDL

Client Sample ID:	OA-041411	FDL
Lab Sample ID:	200-4780-7	Date Sampled: 04/15/2011 1135
Client Matrix:	Air	Date Received: 04/20/2011 1020

	TO15 LL Volati	ile Organic Compounds	in Ambient Air	, Low Concentration (GC	/MS)	
Analysis Method:	TO15 LL	Analysis Batch:	200-17015	Instrument ID:	E.i	1,082
Prep Method:	Summa Canister	Prep Batch:	N/A	Lab File ID:	eejt026.d	Wer 'all
Dilution:	5.0			Initial Weight/Vo	lume: 100 mL	nigin
Analysis Date:	04/26/2011 0828	Run Type:	DL	Final Weight/Vol		0') .
Prep Date:	04/26/2011 0828			Injection Volume		
-				•		boriginal priginal
Analyte		Result (u	g/m3)	Qualifier	RL	1,2
Dichlorodifluoromet		2.2		\$ /	0.25	
,2-Dichlorotetrafluc	proethane	0.35		U /	0.35	
/inyl chloride		0.26		U /	0.26	
,3-Butadiene		0.22		U	0.22	
Bromomethane		0.39		U /	0.39	
Chloroethane		0.26		U /	0.26	
Bromoethene(Vinyl		0.44		U/	0.44	
Frichlorofluorometh		1.1		TP	0.28	
,1,2-Trichloro-1,2,2	2-trifluoroethane	1.9		U S	1.9	
,1-Dichloroethene		0.20		U	0.20	
-Chloropropene		0.31		U	0.31	
lethylene Chloride		3.5	/	U	3.5	
lethyl tert-butyl eth	er	0.18		U	0.18	
ans-1,2-Dichloroet	thene	0.20		U	0.20	
-Hexane		0.79		ø	0.35	
,1-Dichloroethane		0.20		U	0.20	
is-1,2-Dichloroethe	ene	0.20		U	0.20	
hloroform		0.24		U	0.24	
,1,1-Trichloroethar	ne	0.27		U	0.27	
yclohexane		4.9		ø	0.17	
arbon tetrachloride	e	0.42		P	0.31	
2,2,4-Trimethylpent	ane	0.24		P	0.23	
Benzene		0.37		Ď.	0.16	
,2-Dichloroethane	/	0.40		Ŭ	0.40	
-Heptane	/	0.46		Ø	0.20	
richloroethene		0.27		U	0.27	
,2-Dichloropropane	e /	0.46		U	0.46	
Bromodichlorometh	ane /	0.34		U	0.34	
is-1,3-Dichloroprop	bene /	0.23		U	0.23	
oluene		(13)		D	0.19)
rans-1,3-Dichlorop	ropene	0.23	,	U	0.23	
,1,2-Trichloroethar		0.27		U	0.27	
etrachloroethene		0.34		U	0.34	
bibromochlorometh	ane	0.43		U v	0.43	
,2-Dibromoethane		0.38		U	0.38	
thylbenzene		0.33		ฮ้	0.22	
-Xylene		0.28 J		ฮ	0.22	
Bromoform		0.52		ملا	0.52	
,1,2,2-Tetrachloroe	ethane	0.34	_	U	0.34	
-Ethyltoluene		0.25		U	0.25	
.3,5-Trimethylbenz	zene	0.49		U	0.23	
,2-Dichloroethene,		0.49		U	0.49	
n-Xylene & p-Xyler		0.20 0.80 J		p p	0.20	

Page 29 of 501 Nul 5/20/11

NEW YORK STATE DEPARTMENT OF HEALTH INDOOR AIR QUALITY QUESTIONNAIRE AND BUILDING INVENTORY CENTER FOR ENVIRONMENTAL HEALTH

This form must be completed for each residence involved in indoor air testing.

Preparer's Name John Santacroce Date/Time Prepared April 14, 2011
Preparer's Affiliation <u>AECOM</u> Phone No. <u>513-951-2700</u>
Purpose of Investigation Soil Vapor Investigation, Former Ferrorche Site
1. OCCUPANT:
Interviewed: Y(N) Building was not occupied.
Last Name: First Name:
Address:
County:
Home Phone: Office Phone:
Number of Occupants/persons at this location None Age of Occupants
2. OWNER OR LANDLORD: (Check if same as occupant)
Interviewed: YN: Not at this address
Last Name: First Name: 1033 Kings Highway & LC
Address: <u>95 Delancey Street, NY</u> , NY
County:
Home Phone: Office Phone: 2 (2-254-4374

3. BUILDING CHARACTERISTICS

Type of Building: (Circle appropriate response)

Residential	School	Commercial/Multi-use
Industrial, Vac	cant Church	Other:

Modular Log Home Other:							
If multiple units, how many?							
If the property is commercial, type?							
Business Type(s) <u>No operating business</u> was apparent. Does it include residences (i.e., multi-use)? Y/N If yes, how many?							
Does it include residences (i.e., multi-use)? Y / N If yes, how many?							
Other characteristics:							
Other characteristics: One floor building on a concrete slab.) Number of floors 1 Building age Approx. 1960							
Is the building insulated? Y(N) How air tight? Tight / Average / Not Tight							
4. AIRFLOW							
Use air current tubes or tracer smoke to evaluate airflow patterns and qualitatively describe:							
Airflow between floors							
Not analyzed							
Airflow near source							
N/A							
Outdoor air infiltration							
\sim							
Infiltration into air ducts λ / A							

2

If the property is residential, type? (Circle appropriate response)

5. **BASEMENT AND CONSTRUCTION CHARACTERISTICS** (Circle all that apply)

a. Above grade construction:	wood frame	concrete	stone brick over steel frame
b. Basement type:	full	crawlspace	slab other
c. Basement floor: (at grade)	concrete	dirt	stone other
d. Basement floor:	uncovered	covered	covered with
e. Concrete floor:	unsealed	sealed	sealed with <u>epoxy</u>
f. Foundation walls:	poured	block	stone & other <u>Slab</u> only.
g. Foundation walls:	unsealed	sealed	sealed with (ν/μ)
frstfloor h. The b asement is:	wet	damp	dry moldy
i. The basement is:	finished	unfinished	partially finished N/A
j. Sump present?	Y/N N/	A	
	not applicable	>	
Basement/Lowest level depth below	grade:	(feet) (at	grade)

Identify potential soil vapor entry points and approximate size (e.g., cracks, utility ports, drains)

Slas	is (relatively	Sound,	but	Hore	are	numerous
per for	ations	s for for	mer util	ities.			

6. HEATING, VENTING and AIR CONDITIONING (Circle all that apply)

Type of heating system(s) used in this building: (circle all that apply – note primary)

Type of nearing system(s) use	a in this building	ig: (ch cle all th	at apply – note prima	(y)
Hot air circulation Space Heaters Electric baseboard	Heat pu Stream Wood :	radiation	Hot water baseboard Radiant floor Outdoor wood boiler	Other (The Suilding 1 Other (The Suildings are not being heated or cooled).
The primary type of fuel used	is:			heated or cooled).
Natural Gas Electric Wood	Fuel Oil Propane Coal		Kerosene Solar	
Domestic hot water tank fuele	ed by:			
Boiler furnace located in:	Basement	Outdoors	Main Floor	Other Building 1
Air conditioning:	Central Air	Window units	Open Windows	None

3

Are there air distribution ducts present?

Y/N) None noted, but building was dark.

Describe the supply and cold air return ductwork, and its condition where visible, including whether there is a cold air return and the tightness of duct joints. Indicate the locations on the floor plan diagram.

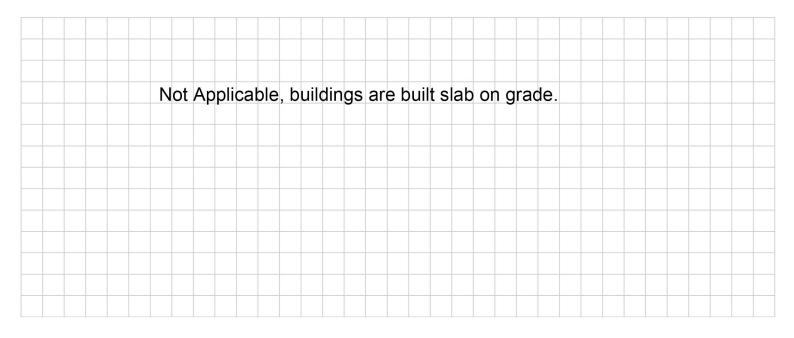
	None	observed
101		
7. OCCUP	ANCY	
Is basement/	lowest level occupied? Full-time Occa	asionally Seldom Almost Never
Level	General Use of Each Floor (e.g., familyro	om, bedroom, laundry, workshop, storage)
Basement	Noue	the texcept for
1 st Floor	Former production an	eas, othes. Vacant except for in Building Z.
2 nd Floor	Nore	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
3 rd Floor	Mone	
4 th Floor	None	
8. FACTOR	S THAT MAY INFLUENCE INDOOR AIR (QUALITY
a. Is there a	an attached garage?	YN
b. Does the	garage have a separate heating unit?	Y/N/NA
c. Are petroleum-powered machines or vehicles stored in the garage (e.g., lawnmower, atv, car)		Y/N/NA A propane forklift (Y)N/NA A propane forklift Please specify is stored in Buldy 1
d. Has the	building ever had a fire?	Y / When?
e. Is a kero	sene or unvented gas space heater present?	Y /N Where?
f. Is there a	workshop or hobby/craft area?	Y/N Where & Type? NA
g. Is there s	smoking in the building?	Y/N How frequently? λA

h. Have cleaning products been used recently?

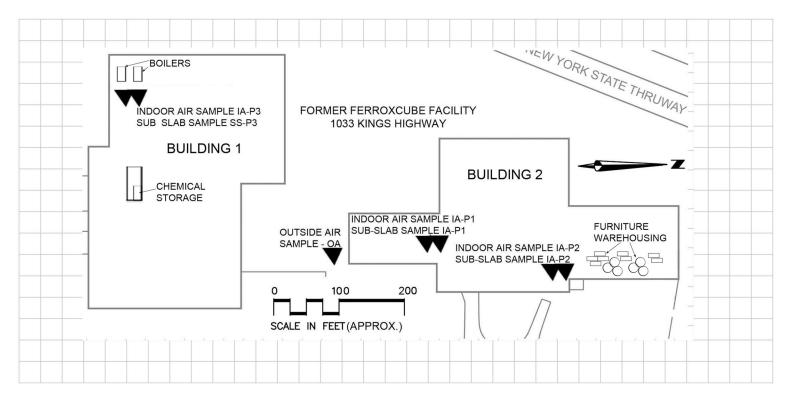
i. Have cosmetic products been used recently?

Y/N When & Type? \land A

4

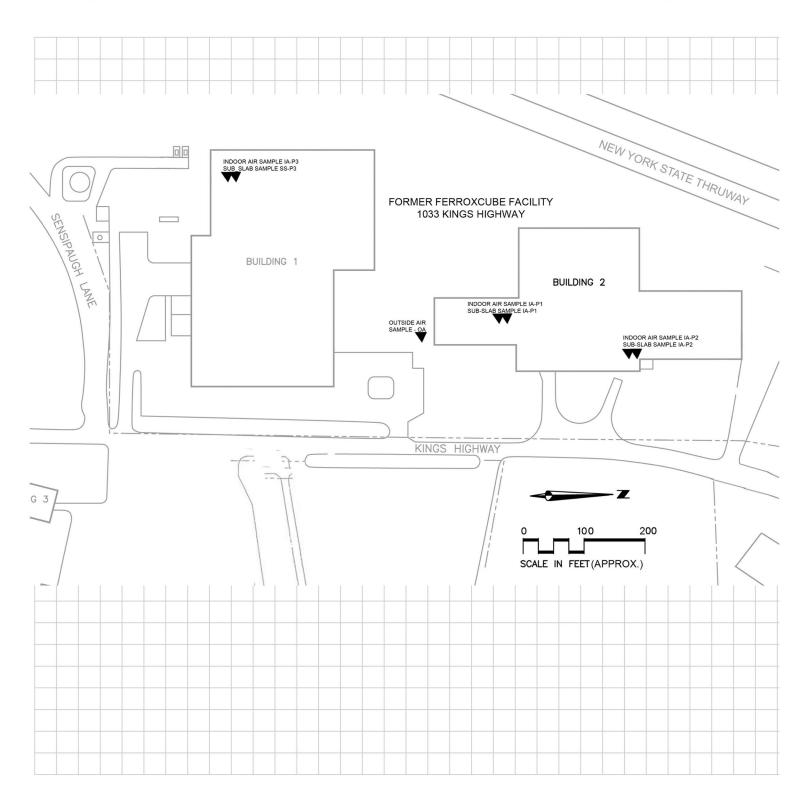

5

j. Has painting/staining been done in the last 6 months	s? Y (N) Where & When?
k. Is there new carpet, drapes or other textiles?	Y (N) Where & When?
l. Have air fresheners been used recently?	Y (N) When & Type?
m. Is there a kitchen exhaust fan?	Y (N) If yes, where vented?
n. Is there a bathroom exhaust fan?	YN If yes, where vented?
o. Is there a clothes dryer?	Y(N) If yes, is it vented outside? Y / N
p. Has there been a pesticide application?	Y(N) When & Type?
Are there odors in the building? If yes, please describe: <u>The facility was manufacturing factory</u> , and bears substances used. Do any of the building occupants use solvents at work? (e.g., chemical manufacturing or laboratory, auto mechanic boiler mechanic, pesticide application, cosmetologist Silverts If yes, what types of solvents are used?	Y / N or auto body shop, painting, fuel oil delivery,
If yes, are their clothes washed at work?	V (N)
Do any of the building occupants regularly use or work a response) Yes, use dry-cleaning regularly (weekly)	at a dry-cleaning service? (Circle appropriate
Yes, use dry-cleaning infrequently (monthly or less) Yes, work at a dry-cleaning service	Unknown
Is there a radon mitigation system for the building/struct Is the system active or passive? Active/Passive	ture? Y(N) Date of Installation:
9. WATER AND SEWAGE	
Water Supply: Public Water Orilled Well Dri	ven Well Dug Well Other:
Sewage Disposal: Public Sewer Septic Tank Lea	ach Field Dry Well Other:
10. RELOCATION INFORMATION (for oil spill residen	ntial emergency)
a. Provide reasons why relocation is recommended:	N IA
b. Residents choose to: remain in home relocate to	friends/family relocate to hotel/motel
c. Responsibility for costs associated with reimbursen	nent explained? Y / N
d. Relocation package provided and explained to resid	dents? Y / N


11. FLOOR PLANS

Draw a plan view sketch of the basement and first floor of the building. Indicate air sampling locations, possible indoor air pollution sources and PID meter readings. If the building does not have a basement, please note.

Basement:


First Floor:

12. OUTDOOR PLOT

Draw a sketch of the area surrounding the building being sampled. If applicable, provide information on spill locations, potential air contamination sources (industries, gas stations, repair shops, landfills, etc.), outdoor air sampling location(s) and PID meter readings.

Also indicate compass direction, wind direction and speed during sampling, the locations of the well and septic system, if applicable, and a qualifying statement to help locate the site on a topographic map.

13. PRODUCT INVENTORY FORM

Pho Check 5000 photoionization detector Make & Model of field instrument used: Builduz 1 the residence that have the potential to affect indoor air quality.

List specific products found in the

Loca		Product Description	Size (units)	Condition [*]	Chemical Ingredients	Field Instrument Reading (units)	Photo ** <u>Y / N</u>
Bu la	ling 1	Cigoid Propance Ciginder	20 155	Nisted	Propane	0	N
h	- ee	Zepure class	-32 02	Govel	Ammonia	0	Y
ાષ્ટ	u	Stard thir t-ink marsmotic 797	NO MI	Good	Dilute phenol	0	Y
•25	Ψ¢.	Liqued Plumber	Zats	Good	Sodium by dopilo/kupsdilo Alpha Olefin Sulfornate	te O	Ý
×	te	Zepitko Liver	Igd.	Coud	Alpha Olefon Sulfonato, Nonylphenory pity ethylene oxy ethanoi	0	N
6	le .	North 212 skin	2×1 901	Good	water mininal oil, a ly cerine	0	Y
×.	1	Formulabs fuorescent dye tablet	Borthe 100 tes		None haze, dous per 20, (FR 1910.1200	0	Y.
	ĸ	Zud multi purpose	1902	Good	D: propulence of lycol ether	0	Y
4	"1	CRC Industrial We & corrosia militate	lloz	Good	iso paratinic updrotation mineral oil carbon disside	0	Y
L	ĸ	by sol dis n fectur balliour dechet	1302	Good	Diethylene glycolmous htpl etter, sodium hydexicla	0	N
`	11-	Brenzowate .	7x 14 02	Good	Propane	0	Ý
1	11	Cheer Lainchy De tergent	2.5	Good	Soda to the linear ally porcent sulfanate, alloufate	Ö	Y
×	•	ZED FIN	igul.	boord	Silicate felds par, crystallie silica, sodiumbenzonesulfaut	6	Y
4	11	NADA Lacque-	116.	Cool	Tale, to be the nitrorelluse philate, are falle, ethyl benza	e O	Y
x	11	NAMA Asiglass	199.	Good	keinsaturated pulyestar resin, ethenyl benzenelstyre,	. D	ÿ
M	н	Duw Corning mojykate grese	5.3	Good	Fhis strate grass with		Y
ŀ	n	Bérnzomatic Isud-fine Flue	·Soz	Good	Tin, copper, urea	0	Y
u.	11	Data No 95 Fred	B.2.		Detro latim (0:1 mist) zinc chlorido, tin, conoor	0	Y
v	11	Silicone cank	thes	Govel	Pretipleum distallates, methylariacetoxysilane	0	

* Describe the condition of the product containers as Unopened (UO), Used (U), or Deteriorated (D) ** Photographs of the front and back of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

P:\Sections\SIS\Oil Spills\Guidance Docs\OSR-3.doc

13. PRODUCT INVENTORY FORM (Conknued)

Make & Model of field instrument used: <u>Phol Check 5000</u> Building 1 List specific products found in the residentee that have the potential to affect indoor air quality.

86

Location	Product Description	Size (units)	Condition [*]	Chemical Ingredients	Field Instrument Reading (units)	Photo ** <u>Y / N</u>
B.Aday 1	REVERE F. ber Patch BANY Flux Rosundicor	51.	Gasel	Diglycidy lether of bisphenol Xylone, ethyl benzene	0	Y
11 4	Imperial Calgon State Remoter	10.	Good	Sulfamic acid	Ö	N
t is	Goop Hand Cleaner	1402	6.p	Isoparaffiks, surfactents, guycerin, landin	0	Y
h 17	Sto- put Pleinters	3165	Good	Calcium Carbonate, Kaolinite, guartz	0	Y
y li	Clorox firsch scat	·3× 19021	(100d	Hydrogen peroxide myristmic	0	Y
λ(<i>μ</i>	Sheetrick joint Compound	12 145	Good	(rystallino silica	0	Y
n li	Trul Test Fibred Plustic poof compart	Súl.	Good	Petroleum asphalt, Fillers, mineral spirits	0	N
n le	Elvers Carporter	901	Guod	No hazardows ingrediants	0	N
$x_0 = h$	Gojo Pumice	Sils	Good	D- Limonene	0	N
N 10	Rote Pofsson	32	Gast	potassium Hydroxide	0	N
11 11	CRC Brakeklan non-chloring tid	132	Good	- Methanol, ace tone bon folgene, heptane, forde	0	Y
n u	In start Red dian chener	1102	Good	So diom by dovide, he dovide	0	N
ц И	200 next step Flar Restorer	32. 52	Good	130 propy1 alcohol, tetasodismethylenestiunine tetracctate	0	N
ų 7 <u>1</u>	Tectnonic, Excell 101 all puppese cleaner	gal.	Good	No hazordous ingredicuts (1910.)	0	N
щ II	Gassiel action 23 TBC clemer	32	Good	Hydrogen deloride	Ő	N
y h	Bruske blog-it	2.5135		inert forhulation of bound clay minerals	0	N
ч "	ligitia alki-form	4x	Good	Sodium hydride	0	N
W 11	Henry premium Flooning adhisive	1 gal. 3 x 1 gal.	Good	Light naphthene distallate ethyleus gigcol should the diethyleu	Ö	N
« 4	United Laborations 24mc-ort degreesing agent	gal	Good	ethyline glycol shere letter diethyler No hazardow mengiycol shere as per 1910 1200	the ()	N

* Describe the condition of the product containers as **Unopened (UO)**, **Used (U)**, or **Deteriorated (D)** ** Photographs of the **front and back** of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

P:\Sections\SIS\Oil Spills\Guidance Docs\OSR-3.doc

13. PRODUCT INVENTORY FORM

Pho' Check Sous Make & Model of field instrument used: _____

List specific products found in the residence that have the potential to affect indoor air quality.

Product Description	Size (units)	Condition [*]	Chemical Ir	ngredients	Field Instrument Reading (units)	Photo ** <u>Y / N</u>
No c	hem	icals o	Sserved in	Building	0	
				0		
			1			
		(umits)			No che mi cals observed in Buildig	(units) Keading (units)

* Describe the condition of the product containers as **Unopened (UO)**, **Used (U)**, or **Deteriorated (D)** ** Photographs of the **front and back** of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

P:\Sections\SIS\Oil Spills\Guidance Docs\OSR-3.doc

				VAPO	VAPOR INTRUSION SURVEY	NOIS	RVEY					
					Site City, Si Date Sampleo	City, State: PhilipS City, State: Couc Date: 4/14-15 ampled by: John	Sound Con	Site: Philips City, State: Sougenties, NY Date: 4/14-15/11 Sampled by: John Soutervere	N a			
						Inches	Liters	Liters		PPM ¹	Inches o	Inches of Mercury
Sample ID	Sample Date	Canister Number	Regulator Number	Sample Start Time	Sample Stop Time	Sample Depth	Purge Volume	Sampled Volume	Moisture Content	PID Reading	Vacuum Before	Vacuum After
SS-P2-D4-D4141/14-15/11	4/14-15/11	4139	4730	1053	9:20	- (0"		70		0.951	30	N
114140-AO	-1- I-	4289	3986	1443 11:35	11:35	+3'		70)		0.000	30	QIL
SS-F3-04HII		 十 H H L S ト H H L S L	5230	12:25	11:25	- 10 "		Cot		2200	30	-7-
IA-P3-041411		3201	5233	12:25	11:45	1 H F		101		000.0	28.5	5,
IA-PI-0414II		5043	49.37	1046 9:35		+4'		(OL		000.0	>30	8-
55-P1-04/4/1	11/11	4020	2840	JUHU	04:40	-10''		(oL		10.3	730	Ś
IA-P2-041411	\geqslant	3471	5210	10539:15	0:15	+5'		lo L		0.000 >30	>30	'n
1		-										

ł

2-Regulators were pre-set by laboratory for 24-hr sample 0.951 - N. Pt. 0.900 0.000 0.000

Notes:

9