

Route 100 Somers, NY 10589

August 14, 2007

#### RECEIVED

w

AUG 1 6 2007

Remedial Bareau C Division of Environmental Remediation

New York Department of Environmental Conservation Division of Environmental Remediation 625 Broadway Albany, New York 12233-7014

Attn: Mr. John Miller

Re: April 2007 Soil Vapor Sampling Event Mead Property Site Highland, New York IBM Corporation NYSDEC Site Code No. 3-56-019

Dear Mr. Miller:

The purpose of this letter is to report the activities and data associated with completion of the April 18, 2007 soil vapor sampling at the Mead Property Site in Highland, New York ("the Site"). This work was performed in accordance with the *Draft Soil Vapor and Sub-Slab Sampling Work Plan* dated April 9, 2007.

**Objective:** The objective of this work was to evaluate the soil vapor, specifically the total volatile organic compounds (VOCs) within the plume area. This report details the activities associated with the tasks specified in the work plan including soil vapor point installation, soil vapor sampling, and data evaluation. Each of these tasks is discussed in further detail below.

**Soil Vapor Point Installation:** On April 11 and 12, 2007, on behalf of IBM, URS mobilized to the Site to install seven soil vapor sampling points. All seven soil vapor points were installed into glacial till using hand augers. At each soil vapor location a six inch stainless steel screen was attached to a piece of polyethylene tubing and placed into the boring. Each boring was backfilled using No. 2 sand, hydrated bentonite pellets, and sealed at the ground surface using a Portland cement grout with a steel flush mount cap. Soil vapor point construction logs are included as **Appendix A**.

Soil vapor points SV-1 and SV-2 were installed to a depth of 2.5 feet to 3.0 feet below ground surface (bgs), whereas soil vapor points SV-3, SV-4, SV-5, SV-6, and SV-7 were installed to a depth of 2.0 feet to 2.5 feet bgs to account for the seasonal fluctuation of the groundwater table elevation. **Figure 1** shows the locations of the soil vapor point installations.

Mr. John Miller NYSDEC August 14, 2007 Page -2-

**Soil Vapor Point Sampling:** On April 18, 2007, URS sampled all seven (7) soil vapor points. All vapor points were purged prior to sampling for one to three times the well volume of the sampling point (tubing and screened area combined). The soil vapor purged from the sampling points was field screened for oxygen, carbon dioxide, and methane using a Gem 2000, and for volatile organic compounds (VOCs) using a Photoionization Detector (PID). The levels of these compounds were recorded prior to sampling and are included as **Table 1**.

During purging and sampling activities, the atmosphere surrounding the soil vapor points was enriched with helium to verify the integrity of the soil vapor probe seal. A MGD-2002 real-time helium monitor was used to screen the vapor being purged from the soil vapor point, to determine if helium was present in elevated amounts.

Following vapor point purging, a laboratory cleaned and blanked 6-liter Summa canister was attached to each soil vapor point for sampling. Samples were regulated over a 2 hour period, so that air flow did not exceed 0.2 liters per minute air flow.

In addition to the samples collected by URS, Steven Phelps of Precision Environmental Services, a New York Department of Environmental Conservation (NYSDEC) sub-contractor, collected spilt samples on all seven (7) soil vapor points.

The Summa canisters containing the samples were packaged for shipment, accompanied by a proper chain-of-custody, and sent via FedEx to the Severn Trent Laboratory (STL) in Knoxville, Tennessee for analysis of 1,1,1-Trichloroethane (1,1,1-TCA), Trichloroethene (TCE), and Helium parameters via USEPA Method TO-15. A summary of the analytical results are compared to the New York Department of Health (NYDOH) screening values in **Table 2**. The laboratory analytical data package is included in **Appendix B**.

**<u>Results of Sampling:</u>** The soil vapor sampling results, located on **Table 2**, indicate that both TCE and 1,1,1-TCA were "non-detect" for the two sampling points (SV-3 and SV-4) located closest to the two nearest homes (520 and 522 North Riverside Road). TCE was detected at SV-2 (11.3  $\mu$ g/m<sup>3</sup>), SV-5 (3.44  $\mu$ g/m<sup>3</sup>), SV-6 (5.9  $\mu$ g/m<sup>3</sup>), and SV-7 (1.13  $\mu$ g/m<sup>3</sup>). 1,1,1-TCA was detected in SV-1 (1.2  $\mu$ g/m<sup>3</sup>), SV-2 (34.4  $\mu$ g/m<sup>3</sup>), SV-5 (12.54  $\mu$ g/m<sup>3</sup>), and SV-7 (7.1  $\mu$ g/m<sup>3</sup>).

The highest concentration detected of TCE  $(11.3\mu g/m^3)$  and 1,1,1-TCA  $(34.4\mu g/m^3)$  occurred at SV-2, which is located on-site, within the fenced area, and approximately 300 feet northwest of the closest residents (see **Figure 1**).

A single detection of helium occurred at SV-5 with a concentration of 0.97%, which is below the NYDOH threshold of 10%, therefore the detection of helium in SV-5 is minimal and the integrity of the vapor point has not been compromised.

Mr. John Miller NYSDEC August 14, 2007 Page -3-

**<u>Conclusions</u>**: Based on the January 2007 groundwater sampling results and the April 2007 soil vapor analytical results in conjunction with the field data obtained from both the groundwater sampling event and the soil vapor sampling event, we offer the following conclusions:

- January 2007 groundwater elevations in wells nearest to the soil vapor points ranged between 2.71'bgs at MW-17B to 7.95'bgs at MW-2S. These groundwater elevations appear consistent with previous late winter/early spring groundwater measurements, and are higher than the groundwater elevations seen in summer/fall groundwater sampling events.
- Analytical results for both (SV-1 and SV-2) on-Site soil vapor points, indicate low concentrations for TCE (11.3  $\mu$ g/m<sup>3</sup> was the highest reading) and 1,1,1-TCA (34.4  $\mu$ g/m<sup>3</sup> was the highest reading).
- Soil vapor points SV-5, SV-6, and SV-7 are located down gradient of the historic source wells (MW-7B, MW-9B, MW-12B, and MW-15B) and again indicated low concentrations for TCE (5.9 μg/m<sup>3</sup> was the highest reading) and for 1,1,1-TCA (12.54 μg/m<sup>3</sup> was the highest reading).
- Analytical results for soil vapor points SV-3 (located near 522 North Riverside Road) and SV-4 (located near 520 North Riverside Road) indicate that TCE and 1,1,1-TCA were "non-detect" at both sampling points.
- The detection of elevated levels of carbon dioxide, along with decreased levels of oxygen prior to sampling (see **Table 1**) are characteristic of a reducing environment indicating a favorable condition for both the biotic and abiotic dechlorination of chlorinated VOCs.

Based on the results of the April 2007 soil vapor point sampling and the preceding groundwater sampling results, IBM considers the Site soil vapor evaluation complete and the need to proceed with sub-slab vapor and indoor air sampling is not warranted.

If you have any questions or comments or require additional information, please contact Randy Crispino of URS Corporation at (215) 367-2528 or me at (914) 766-2739.

Sincerely Yours, , Moins

Thomas D. Morris, P.E. Program Manager Corporate Environmental Programs

Mr. John Miller NYSDEC August 14, 2007 Page -4-

cc:

Randy Crispino (URS Corporation)

Attachments

### Table 1 Soil Vapor Screening/Sampling Field Data Collection Sheet Mead Property Site Highland, New York

| Job Locati | on: Mead Prop  | ertv Site. High       | land. New Yo           | Sample Point ID: SV-1 |            |                                                     |                       |                 |                                             |  |  |  |  |  |  |  |
|------------|----------------|-----------------------|------------------------|-----------------------|------------|-----------------------------------------------------|-----------------------|-----------------|---------------------------------------------|--|--|--|--|--|--|--|
| Data and T |                | © 00.01.00            | ,                      |                       |            | Sample II                                           | D: SV-1               |                 |                                             |  |  |  |  |  |  |  |
| Soil Vapor | Sampler(s): JT | @ 08:21:30<br>B/MC    |                        |                       |            | Laboratory Parameters Tested: 1,1,1-Trichloroethane |                       |                 |                                             |  |  |  |  |  |  |  |
| Project Ma | nager: Randy C | rispino               |                        |                       |            |                                                     |                       |                 |                                             |  |  |  |  |  |  |  |
| Sampling M | Method:        | Summa Cani            | ster: 11207            | Canister Vac          | a<br>cuum: | 30'' Hg                                             | Final Sumn            | Vacuum: 8" Hg   |                                             |  |  |  |  |  |  |  |
| Time       | Temperature    | Purging<br>Time (sec) | Barometric<br>Pressure | PID<br>(ppm/ppb)      | O2<br>(%)  | CO2<br>(%)                                          | ata<br>Methane<br>(%) | Hellum<br>(ppm) | Field<br>Observations/Weather<br>Conditions |  |  |  |  |  |  |  |
| 8:21:00    | 47             | 0                     | 29.17                  | 400 ppb               | 19.4       | 0.6                                                 | 1.7                   | 0.0             | 10 ppb background                           |  |  |  |  |  |  |  |
| 8:21:15    | 47             | 30                    | 29.17                  | 340 ppb               | 19.4       | 1.6                                                 | 1.7                   | 0.0             |                                             |  |  |  |  |  |  |  |
|            |                |                       |                        |                       |            |                                                     |                       |                 |                                             |  |  |  |  |  |  |  |
|            |                |                       |                        |                       |            |                                                     |                       |                 |                                             |  |  |  |  |  |  |  |
|            |                |                       |                        |                       |            |                                                     |                       |                 |                                             |  |  |  |  |  |  |  |
|            |                |                       |                        |                       |            |                                                     |                       |                 |                                             |  |  |  |  |  |  |  |
|            |                |                       |                        |                       |            |                                                     |                       |                 |                                             |  |  |  |  |  |  |  |
|            |                |                       | _                      |                       |            |                                                     |                       |                 |                                             |  |  |  |  |  |  |  |
|            |                |                       |                        |                       | _          |                                                     |                       |                 |                                             |  |  |  |  |  |  |  |
|            |                |                       |                        |                       |            |                                                     |                       |                 |                                             |  |  |  |  |  |  |  |
|            |                |                       |                        |                       |            |                                                     |                       |                 |                                             |  |  |  |  |  |  |  |
|            |                |                       |                        | *                     |            |                                                     |                       |                 |                                             |  |  |  |  |  |  |  |
|            |                |                       |                        |                       |            |                                                     |                       |                 |                                             |  |  |  |  |  |  |  |
|            |                |                       |                        |                       |            |                                                     |                       |                 |                                             |  |  |  |  |  |  |  |
|            |                |                       |                        |                       |            |                                                     |                       |                 |                                             |  |  |  |  |  |  |  |
|            |                |                       |                        |                       |            |                                                     |                       |                 |                                             |  |  |  |  |  |  |  |
|            |                |                       |                        |                       |            |                                                     |                       |                 |                                             |  |  |  |  |  |  |  |
|            |                |                       | -                      |                       |            |                                                     |                       |                 |                                             |  |  |  |  |  |  |  |
|            |                |                       |                        |                       |            |                                                     |                       |                 |                                             |  |  |  |  |  |  |  |

Comments: Steven Phelps (Precision Environmental Services, NSYDEC sub-contractor) allowed split sampling summa canister to fill in approx. 20-25 min. and canister remained connected in line for remainder of sampling.

not a

Start @ 08:21, Stop @ 10:21

Flow Controller ID # K-224

#### Table 1 Soil Vapor Screening/Sampling Field Data Collection Sheet Mead Property Site Highland, New York

| Job Locatio | on: Mead Prope  | rty Site, Highl       | and, New York                | Sample Point ID: SV-2 |        |                       |                               |                   |                                    |  |  |  |  |  |  |
|-------------|-----------------|-----------------------|------------------------------|-----------------------|--------|-----------------------|-------------------------------|-------------------|------------------------------------|--|--|--|--|--|--|
| Date and Ti | me: 4-18-2007 ( | n na.us               |                              |                       |        | Sample II             | ): SV-2                       |                   |                                    |  |  |  |  |  |  |
| Soil Vapor  | Sampler(s): JTB | /MC                   |                              |                       |        | Laborato<br>Trichloro | ry Parameter<br>ethene, Heliu | s Tested: 1<br>Im | ,1,1-Trichloroethane,              |  |  |  |  |  |  |
| Project Mar | nager: Randy Cr | ispino                |                              |                       |        |                       |                               |                   |                                    |  |  |  |  |  |  |
| Sampling N  | lethod:         | ster: 8815B           | Initial Summ<br>Canister Vac | ia<br>cuum:           | 28" Hg | Final Summ            | Vacuum: 8" Hg                 |                   |                                    |  |  |  |  |  |  |
|             |                 |                       |                              |                       | Sc     | creening D            | ata                           |                   | Field                              |  |  |  |  |  |  |
| Time        | Temperature     | Purging<br>Time (sec) | Barometric<br>Pressure       | (ppm/ppb)             | (%)    | CO2<br>(%)            | Methane<br>(%)                | (ppm)             | Observations/Weather<br>Conditions |  |  |  |  |  |  |
| 8:57:00     | 47              | 0                     | 29.17                        | 2.0 ppm               | 20.2   | 0.5                   | 1.5                           | 0.0               | 0.0 ppb background                 |  |  |  |  |  |  |
| 8:57:30     | 47              | 30                    | 29.17                        | 2.3 ppm               | 20.2   | 0.9                   | 1.6                           | 0.0               |                                    |  |  |  |  |  |  |
|             |                 |                       |                              |                       |        |                       |                               |                   |                                    |  |  |  |  |  |  |
|             |                 |                       |                              |                       |        |                       |                               |                   |                                    |  |  |  |  |  |  |
|             |                 |                       |                              |                       |        |                       |                               |                   |                                    |  |  |  |  |  |  |
|             |                 |                       | _                            |                       |        |                       |                               |                   |                                    |  |  |  |  |  |  |
|             |                 |                       |                              |                       |        |                       |                               |                   |                                    |  |  |  |  |  |  |
|             |                 |                       |                              |                       |        |                       |                               |                   |                                    |  |  |  |  |  |  |
|             |                 |                       |                              |                       |        |                       |                               |                   |                                    |  |  |  |  |  |  |
|             |                 |                       |                              |                       |        |                       |                               |                   |                                    |  |  |  |  |  |  |
|             |                 |                       |                              |                       |        |                       |                               |                   |                                    |  |  |  |  |  |  |
|             |                 |                       |                              |                       |        |                       |                               |                   |                                    |  |  |  |  |  |  |
|             |                 |                       |                              |                       |        |                       |                               |                   |                                    |  |  |  |  |  |  |
|             |                 |                       |                              |                       |        |                       |                               |                   |                                    |  |  |  |  |  |  |
|             |                 |                       |                              |                       |        |                       |                               |                   |                                    |  |  |  |  |  |  |
|             |                 |                       |                              |                       |        |                       |                               |                   |                                    |  |  |  |  |  |  |
|             |                 |                       |                              |                       |        |                       |                               |                   |                                    |  |  |  |  |  |  |
|             |                 |                       |                              |                       |        |                       |                               |                   |                                    |  |  |  |  |  |  |
|             |                 |                       |                              |                       |        |                       |                               |                   |                                    |  |  |  |  |  |  |
|             |                 |                       |                              |                       |        |                       |                               |                   |                                    |  |  |  |  |  |  |

Comments: Start @ 09:02, Stop @ 11:02 Flow Controller # K-217

### Table 1 Soil Vapor Screening/Sampling Field Data Collection Sheet Mead Property Site Highland, New York

| Job Locatio | on: Mead Prope  | rty Site, Highla      | and, New York          | Sample Point ID: SV-3 |           |                                                                                 |                |                   |                                    |  |  |  |  |  |  |  |
|-------------|-----------------|-----------------------|------------------------|-----------------------|-----------|---------------------------------------------------------------------------------|----------------|-------------------|------------------------------------|--|--|--|--|--|--|--|
| Date and Ti | ma: 4-18-2007 @ | 0 11:32               |                        |                       |           | Sample ID:                                                                      | SV-3           |                   |                                    |  |  |  |  |  |  |  |
| Soil Vapor  | Sampler(s): JTB | /MC                   |                        |                       | -         | Laboratory Parameters Tested: 1,1,1-Trichloroethane,<br>Trichloroethene, Hellum |                |                   |                                    |  |  |  |  |  |  |  |
| Project Mar | ager: Randy Cr  | ispino                |                        |                       |           |                                                                                 |                |                   |                                    |  |  |  |  |  |  |  |
| Sampling N  | lethod:         | Summa Canle           | ster: 6643             | Canister Vac          | uum:<br>9 | 29.5" Hg                                                                        | Final Summ     | r Vacuum: 8.5" Hg |                                    |  |  |  |  |  |  |  |
| Time        | Temperature     | Purging<br>Time (sec) | Barometric<br>Pressure | PID<br>(ppm/ppb)      | 02<br>(%) | CO2<br>(%)                                                                      | Methane<br>(%) | Helium<br>(ppm)   | Observations/Weather<br>Conditions |  |  |  |  |  |  |  |
| 11:29:00    | 46              | 0                     | 29.28                  | 2.9                   | 19.5      | 0.0                                                                             | 0.0            | 0.0               |                                    |  |  |  |  |  |  |  |
| 11:29:30    | 46              | 24                    | 29.28                  | 4                     | 19.7      | 0.0                                                                             | 0.0            | 0.0               |                                    |  |  |  |  |  |  |  |
|             |                 |                       |                        |                       |           |                                                                                 |                |                   |                                    |  |  |  |  |  |  |  |
|             |                 |                       |                        |                       |           |                                                                                 |                |                   |                                    |  |  |  |  |  |  |  |
|             |                 |                       |                        |                       | -         |                                                                                 |                |                   |                                    |  |  |  |  |  |  |  |
|             |                 |                       |                        |                       |           |                                                                                 |                |                   |                                    |  |  |  |  |  |  |  |
|             |                 |                       |                        |                       |           |                                                                                 |                |                   |                                    |  |  |  |  |  |  |  |
|             |                 |                       |                        |                       |           |                                                                                 |                |                   |                                    |  |  |  |  |  |  |  |
|             |                 |                       |                        |                       |           |                                                                                 |                |                   |                                    |  |  |  |  |  |  |  |
|             |                 |                       |                        |                       |           |                                                                                 |                |                   |                                    |  |  |  |  |  |  |  |
|             |                 |                       |                        |                       |           |                                                                                 |                |                   |                                    |  |  |  |  |  |  |  |
|             |                 |                       |                        |                       |           |                                                                                 |                |                   |                                    |  |  |  |  |  |  |  |
|             |                 |                       |                        |                       |           |                                                                                 |                |                   |                                    |  |  |  |  |  |  |  |
|             |                 |                       |                        |                       |           |                                                                                 |                |                   |                                    |  |  |  |  |  |  |  |
|             |                 |                       |                        |                       |           |                                                                                 |                |                   |                                    |  |  |  |  |  |  |  |
|             |                 |                       |                        |                       |           |                                                                                 |                |                   |                                    |  |  |  |  |  |  |  |
|             |                 |                       |                        |                       |           |                                                                                 |                |                   |                                    |  |  |  |  |  |  |  |
|             |                 |                       |                        |                       |           |                                                                                 |                |                   |                                    |  |  |  |  |  |  |  |
|             |                 |                       |                        |                       |           |                                                                                 |                |                   |                                    |  |  |  |  |  |  |  |

Comments: Start @ 11:32, Stop @ 13:32 Flow Controler ID# K-276

Left's Composition

| Table 1                                                   |
|-----------------------------------------------------------|
| Soil Vapor Screening/Sampling Field Data Collection Sheet |
| Mead Property Site                                        |
| Highland, New York                                        |

|             |                 |                 |                        | Sample P     | oint ID: SV- | 4                        |             |            |                               |  |  |  |  |  |  |  |  |
|-------------|-----------------|-----------------|------------------------|--------------|--------------|--------------------------|-------------|------------|-------------------------------|--|--|--|--|--|--|--|--|
| Job Locatio | on: Mead Prope  | erty Site, High | and, New Yori          | (            |              |                          |             |            |                               |  |  |  |  |  |  |  |  |
| Date and Ti | me: 4-18-2007 ( | @ 10:53         |                        |              |              | Sample ID: SV-4          |             |            |                               |  |  |  |  |  |  |  |  |
| Date and Th | 110. 4-10-2007  | y 10.00         |                        |              |              | Laborator                | ry Paramete | rs Tested: | 1,1,1-Trichloroethane,        |  |  |  |  |  |  |  |  |
| Soil Vapor  | Sampler(s): JTE |                 |                        |              |              | _Trichloroethene, Heilum |             |            |                               |  |  |  |  |  |  |  |  |
| Project Mar | ager: Randy Ci  | rispino         |                        |              |              |                          |             |            |                               |  |  |  |  |  |  |  |  |
|             |                 |                 |                        | Initial Summ | a –          |                          |             |            |                               |  |  |  |  |  |  |  |  |
| Sampling N  | lethod:         | Summa Canl      | ster: 12522            | Canister Vac | uum:         | 29" Hg                   | Final Summ  | na Caniste | r Vacuum: 8" Hg               |  |  |  |  |  |  |  |  |
| Time        | Temperature     | Puraina         | Barometric<br>Pressure | PID          | 02           | CO2                      | Methane     | Hellum     | Field<br>Observations/Weather |  |  |  |  |  |  |  |  |
|             |                 | Time (sec)      |                        | (ppm/ppb)    | (%)          | (%)                      | (%)         | (ppm)      | Conditions                    |  |  |  |  |  |  |  |  |
| 10:50:00    | 46              | 0               | 29.29                  | 1.6          | 21.3         | 0.5                      | 1.6         | 0.0        |                               |  |  |  |  |  |  |  |  |
| 10:50:30    | 46              | 24              | 29.29                  | 1.5          | 21.4         | 0.5                      | 1.5         | 0.0        |                               |  |  |  |  |  |  |  |  |
|             |                 |                 |                        |              |              |                          |             |            |                               |  |  |  |  |  |  |  |  |
|             |                 |                 |                        |              |              |                          |             |            |                               |  |  |  |  |  |  |  |  |
|             |                 |                 |                        |              |              |                          |             |            |                               |  |  |  |  |  |  |  |  |
|             |                 |                 |                        |              |              |                          |             |            |                               |  |  |  |  |  |  |  |  |
|             |                 |                 |                        |              |              |                          |             |            |                               |  |  |  |  |  |  |  |  |
|             |                 |                 |                        |              |              |                          |             |            |                               |  |  |  |  |  |  |  |  |
|             |                 |                 |                        |              |              |                          |             |            |                               |  |  |  |  |  |  |  |  |
|             |                 |                 |                        |              |              |                          |             |            |                               |  |  |  |  |  |  |  |  |
|             |                 |                 |                        |              |              |                          |             |            |                               |  |  |  |  |  |  |  |  |
|             |                 |                 |                        |              |              |                          |             |            |                               |  |  |  |  |  |  |  |  |
|             |                 |                 |                        |              |              |                          |             |            |                               |  |  |  |  |  |  |  |  |
|             |                 |                 |                        |              |              |                          |             |            |                               |  |  |  |  |  |  |  |  |
|             |                 |                 |                        |              |              |                          |             |            |                               |  |  |  |  |  |  |  |  |
|             |                 |                 |                        |              |              |                          |             |            |                               |  |  |  |  |  |  |  |  |
|             |                 |                 |                        |              |              |                          |             |            |                               |  |  |  |  |  |  |  |  |
|             |                 |                 |                        |              |              |                          |             |            |                               |  |  |  |  |  |  |  |  |
|             |                 |                 |                        |              |              | -                        |             |            |                               |  |  |  |  |  |  |  |  |
|             |                 |                 |                        |              |              |                          |             |            |                               |  |  |  |  |  |  |  |  |

Comments: Start @ 10:53, Stop @ 12:53

**53** Flow Controller # K-222

### Table 1 Soil Vapor Screening/Sampling Field Data Collection Sheet Mead Property Site Highland, NY

| Job Locatio  | on: Mead Prop   | arty Site, High       | land, New York         | Sample Point ID: SV-5        |            |                                                                                 |                |                  |                                                   |  |  |  |  |  |  |  |
|--------------|-----------------|-----------------------|------------------------|------------------------------|------------|---------------------------------------------------------------------------------|----------------|------------------|---------------------------------------------------|--|--|--|--|--|--|--|
| Date and Ti  | mo: 4-19-2007   | @ 12.16               |                        |                              |            | Sample II                                                                       | D: SV-5        |                  |                                                   |  |  |  |  |  |  |  |
| Soil Vapor S | Sampler(s): JTE | B/MC                  |                        |                              |            | Laboratory Parameters Tested: 1,1,1-Trichloroethane,<br>Trichloroethene, Hellum |                |                  |                                                   |  |  |  |  |  |  |  |
| Project Mar  | ager: Randy C   | rispino               |                        |                              |            |                                                                                 |                |                  |                                                   |  |  |  |  |  |  |  |
| Sampling M   | lethod:         | Summa Cani            | ster: 93282            | Initial Summ<br>Canister Vac | a<br>cuum: | 29.5" Hg                                                                        | Final Summ     | ər Vacuum: 8" Hg |                                                   |  |  |  |  |  |  |  |
|              |                 |                       |                        |                              | S          | creening D                                                                      | ata            |                  | Field                                             |  |  |  |  |  |  |  |
| Time         | Temperature     | Purging<br>Time (sec) | Barometric<br>Pressure | (ppm/ppb)                    | (%)        | (%)                                                                             | Methane<br>(%) | (ppm)            | Observations/Weather<br>Conditions                |  |  |  |  |  |  |  |
| 13:14:00     | 47              | 0                     | 29.33                  | 2.8                          | 17.8       | 0                                                                               | 1.7            | 0.0              | Able to collect only one reading<br>during purge. |  |  |  |  |  |  |  |
|              |                 |                       |                        |                              |            |                                                                                 |                |                  |                                                   |  |  |  |  |  |  |  |
|              |                 |                       |                        |                              |            |                                                                                 |                |                  |                                                   |  |  |  |  |  |  |  |
|              |                 |                       |                        |                              |            |                                                                                 |                |                  |                                                   |  |  |  |  |  |  |  |
|              |                 |                       |                        |                              |            |                                                                                 |                |                  |                                                   |  |  |  |  |  |  |  |
|              |                 |                       |                        |                              |            |                                                                                 |                |                  |                                                   |  |  |  |  |  |  |  |
|              |                 |                       |                        |                              |            |                                                                                 |                |                  |                                                   |  |  |  |  |  |  |  |
|              |                 |                       |                        |                              |            |                                                                                 |                |                  |                                                   |  |  |  |  |  |  |  |
|              |                 |                       |                        |                              |            |                                                                                 |                |                  |                                                   |  |  |  |  |  |  |  |
|              |                 |                       |                        |                              |            |                                                                                 |                |                  |                                                   |  |  |  |  |  |  |  |
|              |                 |                       |                        |                              |            |                                                                                 |                |                  |                                                   |  |  |  |  |  |  |  |
|              |                 |                       |                        |                              |            |                                                                                 |                |                  |                                                   |  |  |  |  |  |  |  |
|              |                 |                       |                        |                              |            |                                                                                 |                |                  |                                                   |  |  |  |  |  |  |  |
|              |                 |                       |                        |                              |            |                                                                                 |                |                  |                                                   |  |  |  |  |  |  |  |
|              |                 |                       |                        |                              |            |                                                                                 |                |                  |                                                   |  |  |  |  |  |  |  |
|              |                 |                       |                        |                              |            |                                                                                 |                |                  |                                                   |  |  |  |  |  |  |  |
|              |                 |                       |                        |                              | -          |                                                                                 |                |                  |                                                   |  |  |  |  |  |  |  |
|              |                 |                       |                        |                              |            |                                                                                 |                | -                |                                                   |  |  |  |  |  |  |  |
|              |                 |                       |                        |                              |            |                                                                                 |                |                  |                                                   |  |  |  |  |  |  |  |

Comments: Start @ 13:16, Stop @ 15:16 Flow Controler ID # K-302

## Table 1 Soil Vapor Screening/Sampling Field Data Collection Sheet Meand Property Site Highland, New York

| Job Locatio | on: Mead Prope  | erty Site, High | land, New York         | Sample Point ID: SV-6 |           |                                                                             |                |                 |                                                |  |  |  |  |  |
|-------------|-----------------|-----------------|------------------------|-----------------------|-----------|-----------------------------------------------------------------------------|----------------|-----------------|------------------------------------------------|--|--|--|--|--|
| Date and T  | me: 4-18-2007 ( | @ 13·54         |                        |                       |           | Sample II                                                                   | D: SV-6        |                 |                                                |  |  |  |  |  |
| Soil Vapor  | Sampler(s): JTE | <u>3/MC</u>     |                        |                       |           | Laboratory Parameters Tested: 1,1,1-Trichloroeth<br>Trichloroethene, Hellum |                |                 |                                                |  |  |  |  |  |
| Project Mar | hager: Handy Ci |                 | Initial Summ           | a                     |           |                                                                             |                |                 |                                                |  |  |  |  |  |
| Sampling N  | lethod:         | Summa Canl      | ster: 6598             | Canister Vac          | uum:      | 29.5" Hg                                                                    | Final Sumn     | na Canister     | r Vacuum: 9.5" Hg                              |  |  |  |  |  |
| Time        | Temperature     | Purging<br>Time | Barometric<br>Preasure | PID<br>(ppm/ppb)      | 02<br>(%) | CO2<br>(%)                                                                  | Methane<br>(%) | Hellum<br>(ppm) | Field<br>Observations/Weather<br>Conditions    |  |  |  |  |  |
| 13:52:00    | 47              | 0               | 29.31                  | 2.2                   | 21.3      | 0.8                                                                         | 1.6            | 0.0             | Able to collect only one reading during pruge. |  |  |  |  |  |
|             |                 |                 |                        |                       |           |                                                                             |                |                 |                                                |  |  |  |  |  |
|             |                 |                 |                        |                       |           |                                                                             |                |                 |                                                |  |  |  |  |  |
|             |                 |                 |                        |                       |           |                                                                             |                |                 |                                                |  |  |  |  |  |
|             |                 |                 |                        |                       |           |                                                                             |                |                 |                                                |  |  |  |  |  |
|             |                 |                 |                        |                       |           |                                                                             |                |                 |                                                |  |  |  |  |  |
|             |                 |                 |                        |                       |           |                                                                             |                |                 |                                                |  |  |  |  |  |
|             |                 |                 |                        |                       |           |                                                                             |                |                 | _                                              |  |  |  |  |  |
|             |                 |                 |                        |                       |           |                                                                             |                |                 |                                                |  |  |  |  |  |
|             |                 |                 |                        |                       |           |                                                                             |                |                 |                                                |  |  |  |  |  |
|             |                 |                 |                        |                       |           |                                                                             |                |                 |                                                |  |  |  |  |  |
|             |                 |                 |                        |                       |           |                                                                             |                |                 |                                                |  |  |  |  |  |
|             |                 | _               |                        |                       |           |                                                                             |                |                 |                                                |  |  |  |  |  |
|             |                 |                 |                        |                       |           |                                                                             |                |                 |                                                |  |  |  |  |  |
|             |                 |                 |                        |                       |           |                                                                             |                |                 |                                                |  |  |  |  |  |
|             |                 |                 |                        |                       |           |                                                                             |                |                 |                                                |  |  |  |  |  |
|             |                 |                 |                        |                       |           |                                                                             |                |                 |                                                |  |  |  |  |  |

Comments: Start @ 13:54, Stop @ 15:54

Flow Controler ID # K-250

# Table 1 Soil Vapor Screening/Sampling Field Data Collection Sheet Mead Property Site Highland, New York

| Job Locati | on: Mead Prope   | erty Site, High | land, New York         | Sample Point ID: SV-7        |           |                                                                                 |                       |                 |                                                   |  |  |  |  |  |  |  |
|------------|------------------|-----------------|------------------------|------------------------------|-----------|---------------------------------------------------------------------------------|-----------------------|-----------------|---------------------------------------------------|--|--|--|--|--|--|--|
| Date and T | Ime: 4-18-2007 ( | a 14·07         |                        |                              |           | Sample II                                                                       | D: SV-7               | -               |                                                   |  |  |  |  |  |  |  |
| Soil Vapor | Sampler(s): JTE  | 3/MC            |                        |                              |           | Laboratory Parameters Tested: 1,1,1-Trichloroethane,<br>Trichloroethene, Hellum |                       |                 |                                                   |  |  |  |  |  |  |  |
| Project Ma | nager: Randy C   | ispino          |                        | A the set set of the         |           |                                                                                 |                       |                 |                                                   |  |  |  |  |  |  |  |
| Sampling I | Method:          | Summa Canl      | ster: 6609             | Initial Summ<br>Canister Vac | a<br>uum: | 29" Hg                                                                          | Final Summ            | Vacuum: 8" Hg   |                                                   |  |  |  |  |  |  |  |
| Time       | Temperature      | Purging<br>Time | Barometric<br>Preasure | PID<br>(ppm/ppb)             | 02<br>(%) | CO2<br>(%)                                                                      | ata<br>Methane<br>(%) | Hellum<br>(ppm) | Field<br>Observations/Weather<br>Conditions       |  |  |  |  |  |  |  |
| 14:05      | 47               | 0               | 29.31                  | 2.2                          | 19.3      | 0.7                                                                             | 1,7                   | 0.0             | Able to collect only one reading<br>during purge. |  |  |  |  |  |  |  |
|            |                  |                 |                        |                              |           |                                                                                 |                       |                 |                                                   |  |  |  |  |  |  |  |
|            |                  |                 |                        |                              |           |                                                                                 |                       |                 |                                                   |  |  |  |  |  |  |  |
|            |                  |                 |                        |                              |           |                                                                                 |                       |                 |                                                   |  |  |  |  |  |  |  |
|            |                  |                 |                        |                              |           |                                                                                 |                       |                 |                                                   |  |  |  |  |  |  |  |
|            |                  |                 |                        |                              |           |                                                                                 |                       |                 |                                                   |  |  |  |  |  |  |  |
|            |                  |                 |                        |                              |           | <u> </u>                                                                        |                       |                 |                                                   |  |  |  |  |  |  |  |
|            |                  |                 |                        |                              |           |                                                                                 |                       |                 |                                                   |  |  |  |  |  |  |  |
|            |                  |                 |                        |                              |           | <u> </u>                                                                        |                       |                 |                                                   |  |  |  |  |  |  |  |
|            |                  |                 |                        |                              |           |                                                                                 |                       |                 |                                                   |  |  |  |  |  |  |  |
|            |                  |                 |                        |                              |           |                                                                                 |                       |                 |                                                   |  |  |  |  |  |  |  |
|            |                  |                 |                        | _                            |           |                                                                                 |                       |                 |                                                   |  |  |  |  |  |  |  |
|            |                  |                 |                        |                              |           |                                                                                 |                       |                 |                                                   |  |  |  |  |  |  |  |
|            |                  |                 |                        |                              |           |                                                                                 | -                     |                 |                                                   |  |  |  |  |  |  |  |
|            |                  |                 |                        |                              |           |                                                                                 |                       |                 |                                                   |  |  |  |  |  |  |  |
|            |                  |                 |                        |                              |           |                                                                                 |                       |                 |                                                   |  |  |  |  |  |  |  |
|            |                  |                 |                        |                              |           |                                                                                 |                       |                 |                                                   |  |  |  |  |  |  |  |
| I          |                  |                 |                        |                              |           |                                                                                 |                       |                 |                                                   |  |  |  |  |  |  |  |

Comments: Start @ 14:07, Stop @ 16:07

Flow Controler ID # K-168

TABLES

#### TABLE 2

#### Soil Vapor Analytical Results **Mead Property Site** April 2007 Sampling Event Highland, New York

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |                      |                      |                                             |                          |                          | T  |           |   |   |                       |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sample | Loca      | tion and | Dep | th (fe    | et)     |   |           |         |   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------------------|----------------------|---------------------------------------------|--------------------------|--------------------------|----|-----------|---|---|-----------------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------|----------|-----|-----------|---------|---|-----------|---------|---|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |                      |                      | AND ALL MOTION                              |                          |                          |    | SV-1      |   |   | SV-2                  |     | SV-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |           | SV-4     |     |           | SV-5    |   |           | SV-6    |   |           | SV-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1   |
| Pscameler                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CAS<br>Number | Number of<br>Samples | Number of<br>Detects | Vapor Action<br>levels (µg/m <sup>3</sup> ) | Meximum<br>Concentration | Minimum<br>Concentration |    | 2.5 - 3.0 |   |   | 2.5 - 3.0             |     | 2.0 - 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        | 2.0 - 2.5 |          |     | 2.0 - 2.5 |         | 5 | 2.0 - 2.5 |         | 5 | 2.0 - 2.5 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .5  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |                      |                      |                                             |                          |                          |    | 4/18/07   |   |   | 4/18/07               |     | 4/18/0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7      |           | 4/18/07  |     |           | 4/18/07 |   |           | 4/18/07 |   |           | 4/18/0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7   |
| Volatile Organic Compounds (ppb(v v)) 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |                      |                      |                                             |                          |                          |    |           |   |   |                       |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |           |          |     |           |         |   |           |         |   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |
| 111 Trichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 71-55-6       | 7                    | 4                    | NA                                          | 6.3                      | 0.22                     | ÎΤ | 0.22      |   |   | 6.3                   |     | 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | D U    | <         | 0.080    | U   | ГТ        | 2.3     |   |           | 1.3     |   | <         | 0.080                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | J U |
| Themoroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 79-01-6       | 7                    | 4                    | NA                                          | 2.1                      | 0.21                     | <  | 0.040     | U |   | 2.1                   |     | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ) U    | <         | 0.040    | U   |           | 0.640   |   |           | 1.1     |   |           | 0.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| Volatile Organic Com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | pounds (up    | Hm 3) 20             |                      |                                             |                          |                          |    |           |   |   |                       |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |           |          |     |           |         |   |           | 1000    |   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |
| 111 Trichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 71-55-6       | 7                    | 4                    | <100                                        | 34.4                     | 1.2                      | ÎT | 1.20      |   |   | 34.4                  | <   | 0.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        | <         | 0.436    | U   |           | 12.54   |   |           | 7.1     | T | <         | 0.436                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | j U |
| Trichlorsethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 79-01-6       | 7                    | 4                    | -50                                         | 11.3                     | 1.13                     | <  | 0.215     | U |   | 11.3                  |     | 0.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5 U    |           | 0.215    | U   |           | 3.438   |   |           | 5.9     |   |           | 1.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| Helium (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |                      |                      |                                             |                          |                          |    |           |   |   |                       |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |           |          |     |           |         |   |           |         |   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |
| Heium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 108-88-3      | 7                    | 1                    | NA                                          | 0.97                     | 0.97                     | <  | 0.24      | U | < | 0.28                  | U < | 0.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | U      | <         | 0.28     | Ú   |           | 0.97    |   | <         | 0.29    | U | <         | 0.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | U   |
| A LOOP AND |               |                      |                      |                                             |                          |                          |    |           |   |   | and the second second |     | and the other Designation of the local division of the local divis |        |           |          |     |           |         |   |           |         |   |           | and the second se |     |

Sold results indicate a detection of the compound

Not Applicable

. Analyte not delected

Concentration shown as part per billion by volume as reported by the analytical laboratory.

Economication shown as micrograms cubic meter for comparison to the NYSDOH Matrix 1 (Trichloroethene) and Matrix 2

"Inchiorpethanel standards.

(24 46 Molecular Weight of the analyte) (24 46 Molecular Weight of the analyte)

1 Trichloroethane = 133.41

\*-choroethene = 131 39

FIGURES

