OFF-SITE INVESTIGATION REPORT

SUBJECT SITE:
Former Revonak Dry Cleaners
12 New Paltz Plaza
New Paltz
Ulster County, New York

NYSDEC Site No. 3-56-021 Callout ID: 117664

PREPARED BY:

Aztech Technologies, Inc. 5 McCrea Hill Road Ballston Spa, New York 12020 518-885-5383

September, 2009

TABLE OF CONTENTS

INTRODUCTIO Site Ba	N ackground	1 1
	ESTIGATION ab Vapor Investigation Sub-Slab Vapor Point Installation Sub-Slab Vapor and Indoor Air Sample Collection dwater Investigation Monitoring Well Installation - Overburden Monitoring Well Installation - Shallow Bedrock Well Development and Top of Casing Survey Groundwater Sampling	1 2 2 3 3 4 4 5 5
Sub-SI	NVESTIGATION ab Vapor Investigation dwater Investigation Groundwater Flow Direction Groundwater Analytical Results	6 6 7 7 8
TABLE 1 TABLE 2 TABLE 3 TABLE 4 TABLE 5	TABLES Monitoring Well Specifications – Off-Site Investigation Groundwater Elevations Field Parameters Summary of Sub-Slab & Indoor Air Analytical Results Summary of Groundwater Analytical Results – June 10, 2009	
FIGURE 1	FIGURES Site Location Map	
FIGURE 2 FIGURE 3 FIGURE 4 FIGURE 5 FIGURE 6 FIGURE 7	Site Map Sub-Slab & Indoor Air Sampling Results – March 10, 2009 Groundwater Contour Map – Overburden – June 9, 2009 Groundwater Contour Map – Shallow Bedrock – June 9, 2009 Chlorinated Solvents in Overburden – June 10, 2009 Chlorinated Solvents in Shallow Bedrock – June 10, 2009	
APPENDIX A APPENDIX B APPENDIX C APPENDIX D APPENDIX E APPENDIX F	APPENDICES Sub-Slab Vapor Investigation Disposal Manifest Monitoring Well Completion Logs Summary Tables Laboratory Analytical Reports – Groundwater Data Usability Summary Report	

Aztech Technologies, Inc.

INTRODUCTION

At the request of Mr. Matthew Hubicki of the New York State Department of Environmental Conservation (NYSDEC) Central Office, Aztech Technologies, Inc. (Aztech) implemented an off-site investigation of the areas adjacent to the north side of the New Paltz Plaza. These areas include building no. 4, no. 5 and no. 6 of the Meadowbrook Farms Apartments located north of the New Paltz Plaza and, a portion of the property to the east (the New Paltz Medical Center), along that property's northern access road. The properties included in the off-site investigation are accessed via Henry Dubois Road in New Paltz, Ulster County, New York (**Figure 1**).

The scope of work requested for the off-site investigation was defined by NYSDEC in their January, 2009 Standby Subcontractor Authorization (Callout ID 117664) and Site Characterization Work Plan. The January, 2009 Site Characterization Work Plan included collection of sub-slab vapor and indoor air samples from the Meadowbrook Farms Apartments and, installation of overburden and bedrock monitoring well couplets at three locations (**Figure 2**). The sub-slab vapor and indoor air sampling was conducted on March 10, 2009. Installation of monitoring wells was conducted in March and May, 2009 and groundwater sampling was conducted in June, 2009.

This Off-Site Investigation Report provides the following information:

- sub-slab and indoor air sampling analytical results;
- soil and shallow bedrock descriptions based on observations during drilling;
- monitoring well completion logs;
- groundwater flow direction;
- analytical results of groundwater samples, and;
- Data Usability Summary Report (DUSR), in accordance with NYSDEC's Draft DER-10 Technical Guidance for Site Investigation and Remediation (December, 2002)

Site Background

The New Paltz Plaza is located on Main Street (NYS Route 299) in proximity to Exit 18 of the New York State Thruway. The former Revonak Dry Cleaners, located at 12 New Paltz Plaza, is listed in the State Registry of Inactive Hazardous Waste Disposal Sites. According to the NYSDEC Fact Sheet for the site, the former Revonak Dry Cleaners used previous equipment and procedures, during and prior to the 1980's, that led to the release of an unknown quantity of the dry cleaning solvent tetrachloroethene (which is also commonly referred to as perc and/or PCE). The current dry cleaning operation at this location utilizes equipment that is in accordance with New York State rules and regulations.

During the investigations and remedial actions conducted under the Voluntary Cleanup Program, approximately 220 tons of soil impacted with PCE was removed from the area behind the dry cleaners site. Removal of this soil has eliminated it from being a continuous source of site related compounds to soil and groundwater. However, analysis of soil vapor and groundwater samples has identified PCE to be present in on-site groundwater and soil vapor. In 1993, the New York State and Ulster County Departments of Health sampled approximately 30 residential water supply wells in proximity to the site. The results of that sampling program did not identify any PCE impacts at those off-site locations.

OFF-SITE INVESTIGATION

Based on the findings of the on-site investigations and the sampling of nearby residential water supply wells, NYSDEC has requested Aztech to conduct an off-site investigation to characterize off-site groundwater quality in overburden and shallow bedrock and, to evaluate the potential for soil vapor intrusion into nearby residences at the Meadowbrook Farms Apartments. The

Meadowbrook Farms Apartments are located north of the site. The scope of the investigation included:

- installation of sub-slab vapor sampling points at selected residences within building no. 4, no. 5 and no. 6 of the Meadowbrook Farms Apartments;
- collection of sub-slab vapor and indoor air samples from selected residences within the Meadowbrook Farms Apartments;
- installation of overburden and shallow bedrock monitoring well couplets at three (3) locations;
- sampling of on-site and off-site groundwater;
- preparation of a site map that encompasses the on-site and off-site areas, and;
- developing groundwater contour maps to evaluate groundwater flow direction in the overburden and shallow bedrock.

Aztech commenced with the off-site investigation in March, 2009.

Sub-Slab Vapor Investigation

Prior to initiating the sub-slab vapor investigation and indoor air sampling, an informational meeting was conducted at the Meadowbrook Farms apartments. The purpose of the meeting, which was conducted on March 10, 2009 and attended by NYSDEC, the Meadowbrook Farms property Manager and Aztech, was to answer residents questions regarding the off-site investigation. Installation of sub-slab vapor points at 10 locations commenced after the meeting was completed. These included three locations in building no. 4 (apartment #401; #405 & #410); four locations in building no. 5 (apartment #501; #503; #507 & #512), and; three locations in building no. 6 (apartment #603; #605 & #610).

The general approach for sub-slab and indoor air sampling of each apartment was to determine suitable locations that would provide representative data. Indoor air sampling locations were typically placed on a table within either a dining or living room area. Sub-slab vapor points were installed within closet areas. A floor plan for each apartment included in the sub-slab vapor investigation was sketched showing the approximate sampling locations. Additionally, an inventory of household chemicals and cleaning products was compiled (as well as photographs of these chemical containers) for each apartment sampled. The floor plan sketch, list of household chemicals and photographs for each apartment are included in **Appendix A**.

Additional sampling conducted as part of the sub-slab vapor investigation included collection of one ambient outdoor air sample and soil vapor samples from two previously existing soil vapor points located on the northern side of the New Paltz Plaza property. The outdoor air sample was obtained in the area behind building no. 5 during the March 10, 2009 sub-slab vapor sampling and the two previously existing soil vapor points were sampled on March 31, 2009. Locations of all samples collected during the sub-slab vapor investigation are included in **Figure 3**.

<u>Sub-Slab Vapor Point Installation:</u> Each of the sub-slab vapor point installations were initiated by advancing a 1.5-inch diameter borehole approximately half-way through the concrete slab. A smaller, 0.5-inch diameter borehole was continued through the concrete slab until the bottom of the slab was perforated. The borehole was continued approximately 2.0-inches beyond the bottom of the concrete slab, the drill tooling removed and an appropriate length of nylon tubing was installed in the borehole. The nylon tubing was subsequently sealed to the concrete slab using a combination of beeswax and bentonite slurry to prevent short-circuiting of ambient indoor air into the sub-slab vapor point during sampling. After completing installation of the sub-slab vapor point, the integrity of the seal through the concrete was tested in order to ensure that the sub-slab vapor sample was not affected by infiltrating indoor air.

Testing of the seal was conducted by extending an appropriate length of nylon tubing from the sub-slab vapor point through a tracer gas enclosure. The nylon tubing was sealed to the tracer gas enclosure and the outer rim of the enclosure sealed to the concrete slab using a rubber gasket, bentonite slurry or beeswax (or, any combination thereof). Once the tracer gas enclosure was in place, the sub-slab vapor point was purged of approximately three volumes at a flow rate of less than 0.2 liters per minute (lpm) using a purge pump. After purging was completed, a syringe was used to obtain a field sample from the sub-slab vapor point. The field sample was screened for its concentration of total volatile organic compounds (VOCs) using a Photoionization Detector (PID) calibrated with an isobutylene calibrant gas and adjusted by a chlorinated solvent correction factor. After determining the total VOC concentration of the field sample, the atmosphere within the tracer gas enclosure was enriched with helium and, the sub sub-slab vapor point again purged of approximately three volumes using the purge pump. A second field sample was obtained and tested for the presence of helium with a helium detector.

Once the seal through the concrete slab was confirmed via helium testing, sampling of the subslab vapor point commenced.

Sub-Slab Vapor and Indoor Air Sample Collection: All sub-slab, indoor air, outdoor air and soil vapor samples were collected via Summa® canisters. The Summa® canisters were 1.0-liter in volume, of stainless steel construction and certified "clean" by the analytical laboratory (Centek Laboratories, LLC of Syracuse, NY under sub-contract to Adirondack Environmental Services, Inc. of Albany, New York). A vacuum was imposed on the Summa® canisters at the laboratory where they were sealed and shipped ready for use. The sub-slab vapor, indoor air and outdoor air samples were collected over a 24-hour period; the two soil vapor samples were collected over a 2.0-hour period. Each sample was obtained by attaching a Summa® canister to the sub-slab (or soil) vapor point via nylon tubing. The rate of flow and duration of the sampling period was controlled by the laboratory calibrated regulator (also certified to be "clean" by the laboratory) that was affixed to the Summa® canister and sampling point. Once the sampling time was completed, the Summa® canister was re-sealed, disconnected from the sampling location and returned to its packaging for shipment back to the lab. Corresponding indoor air samples (and the one ambient outdoor air sample) were also collected concurrently with the sub-slab sampling. These indoor (and outdoor) air samples were collected at approximately 3.0-feet above the floor (or ground) surface.

After completing the sub-slab vapor sampling, a second helium tracer test was performed at each sub-slab sampling point in order to confirm that it remained adequately sealed to the concrete slab throughout the sampling event. This testing was consistent with the helium tracer testing described previously. Once the integrity of the seal was verified, the nylon tubing was removed and the concrete patched as appropriate. The Summa[®] canisters were returned to the laboratory where they were analyzed for VOCs by EPA Method TO-15.

Groundwater Investigation

The groundwater investigation included installation of one overburden and one shallow bedrock monitoring well at each of three locations. The general locations of the well couplets were selected by NYSDEC based on their spatial distribution in the area generally to the north of the New Paltz Plaza. As shown on the site map (Figure 2), two well couplet locations are on the Meadowbrook Farms property (MW-14S and BR-6 in proximity to Building no. 4, and; MW-15S and BR-7 in proximity to Building no. 5). The third well couplet location (MW-13S and BR-5) is east of the New Paltz Plaza along the access road for the New Paltz Medical Center.

During the advancement of boreholes in the overburden and bedrock, all drill cuttings, drilling fluids from the borehole and water generated via steam cleaning of the drill tooling between boreholes was collected and containerized in steel 55-gallon drums for eventual disposal at Cycle Chem, Inc. of Elizabeth, New Jersey. The disposal manifest is included in **Appendix B**.

Monitoring Well Installation – Overburden

The drilling program for the overburden wells commenced on March 30, 2009 with the installation of one shallow overburden well at each of the three well couplet locations. At each location, continuous split spoon samples were collected in advance of 4-¼ inch inside diameter (ID) hollow stem augers until auger refusal was encountered. At two locations (MW-14S and MW-15S), the augers were advanced through hard, dense glacial till to auger refusal at approximately 7.0-feet and 8.0 feet below grade, respectively. At the third location (MW-13S), approximately 5.0 feet of dark brown organic-rich silt and clay was overlying the glacial till. Auger refusal at that location was encountered at approximately 13 feet below grade. Once the augers were advanced to refusal, overburden monitoring wells were installed.

Overburden monitoring wells were installed by removing the center-plug from the augers and placing 2.0-inch ID schedule 40 PVC well screen (no. 10 slot) and riser pipe into the center of the auger string. The auger string was incrementally removed from the borehole as no. 0 graded well sand was used to fill the annular space between the well screen and borehole walls. The sand pack was installed to a depth approximately 1.0 foot above the top of the well screen and granular bentonite was placed on top of the well sand and hydrated. The remaining annular space was backfilled with concrete. Well MW-13S was completed above grade with a locking steel protective well casing; wells MW-14S and MW-15S were completed with flush mounted road boxes with steel bolt-down lids.

Monitoring Well Installation - Shallow Bedrock

The drilling program for the shallow bedrock wells commenced on May 10, 2009 with the installation of shallow bedrock wells at each of the three well couplet locations. At each location, 4-1/4 inch ID hollow stem augers were advanced until auger refusal was encountered. After encountering auger refusal at well BR-7, the center plug was removed from the augers and the borehole advanced via 4.0-inch diameter air hammer. At wells BR-5 and BR-6, the bedrock portion of the borehole was advanced using a roller bit after encountering auger refusal. The bedrock portion of each borehole was advanced until a sufficient quantity of water was returned from the borehole in order to ensure an adequate volume of water for collecting groundwater samples. Once the total depth of the borehole at each location was determined, the drill cuttings were cleaned from the borehole and a shallow bedrock monitoring well installed.

Shallow bedrock monitoring wells were installed by removing the drill tooling from the borehole and placing 2.0-inch ID schedule 40 PVC well screen (no. 10 slot) and riser pipe into the center of the auger string and down into the bedrock. The annular space between the well screen and borehole wall was backfilled with no. 0 graded well sand. The well sand was placed to extend up to 4.0 feet above the top of the well screen and sealed with hydrated bentonite chips. The bentonite seal was placed to extend across the interface between the weathered and unweathered bedrock and, the remaining annular space was backfilled with a 95/5 percent mixture of cement/bentonite grout that was placed via the tremie method. Well BR-5 was completed above grade with a locking steel protective well casing; wells BR-6 and BR-7 were completed with flush mounted road boxes with steel bolt-down lids. Monitoring well specifications are summarized below in Table 1; well completion logs are included in **Appendix C**.

		Monitoring Well S	Table 1 pecifications – Of	f Site Investigatior	1	
Well Identification	Depth to Weathered <u>Bedrock</u>	Depth to Competent <u>Bedrock</u>	Total Depth of Borehole	Screened Interval	Sand Packed Interval	Bentonite <u>Seal</u>
MW-13S	12.2	ND	12.2	3.2 – 12.2	2.2 – 12.2	1.5 – 2.2
BR-5	13	15	28.5	18.5 – 28.5	16 – 28.5	14.5 - 16
MW-14S	7.0	ND	7.0	3.0 - 7.0	2.8 - 7.0	1.0 - 2.8
BR-6	7.0	13	26.5	16 - 26	14 - 26.5	3.5 – 14
MW-15S	8.0	ND	7.0	3.0 - 7.0	2.5 - 7.0	2.0 - 2.5
BR-7	8.0	8.5	25	14 - 24	12.5 - 24	7.5 – 12.5

All depths given in feet below grade.
 NA = Not Determined.

Well Development and Top of Casing Survey

After completing their installation, the wells were developed by pumping and monitoring field parameters (pH, specific conductance, temperature and turbidity) until stabilization. The general procedure for each well was to collect an initial depth to water measurement and an initial sample for determining field parameters at the start of well development. Three to five well volumes were subsequently purged and another set of field parameters were collected. Another one to three well volumes were removed and a third sample for field parameters collected. This procedure was repeated until field parameters stabilized (i.e. were within 10 percent) and turbidity was at or below 50 nephalometric turbidity units (NTUs). Well development data is tabulated and presented in **Appendix D.**

In addition to well development, each of the newly installed off-site wells was tied in to the top of well casing survey used for groundwater monitoring conducted for the on-site area. The off-site wells were surveyed based on the top of casing (TOC) elevation provided for on-site well MW-9 (92.04 feet). This elevation was used so that groundwater contour maps encompassing both areas can be generated and help to evaluate the direction of groundwater flow throughout the area.

Groundwater Sampling

Groundwater samples were obtained from all existing on-site and off-site wells, except on-site well MW-3, on June 10, 2009. A sample was not collected from well MW-3 at that time because this well contains hydrogen release compound (HRC). Depth to water measurements and well purging was completed on June 9, 2009; collection of groundwater samples was completed on June 10, 2009.

Groundwater sampling was initiated by first removing the expandable plugs from each of the wells and water levels were allowed to equilibrate with atmospheric conditions. After equilibration, depth to water measurements (presented in **Table 2**) were obtained from each of the monitoring wells. The volume of water in casing storage was subsequently determined, and the wells were either purged of three (3) well volumes or, were purged to dryness using dedicated, disposable bailers. After completing the well purging, the wells were allowed to recharge overnight. Allowing the wells to recharge overnight allowed the turbidity observed in the purge water sufficient time to settle out of the water column prior to sample collection.

					ole 2 er Elevations				
Well ID	Water Bearing <u>Zone</u>	TOC Elevation	Depth to <u>Water</u>	GW <u>Elevation</u>	Well ID	Water Bearing <u>Zone</u>	TOC Elevation	Depth to <u>Water</u>	GW Elevation
MW-1	ОВ	98.42	0.48	97.94	MW-12	ОВ	92.22	8.99	83.23
MW-2	ОВ	98.24	3.31	94.93	MW-13S	ОВ	88.60	4.86	83.74
MW-3	ОВ	WE	LL FULL OF H	HRC	MW-14S	OB	80.17	4.34	75.83
MW-4	ОВ	96.68	1.89	94.79	MW-15S	ОВ	77.45	1.22	76.23
MW-5	ОВ		DESTROYED)	BR-1	BR	97.52	3.97	93.55
MW-6	ОВ	97.86	3.34	94.52	BR-2	BR	95.76	2.61	93.15
MW-7	ОВ	95.99	2.53	93.46	BR-3	BR		ABANDONED)
MW-8	ОВ		DESTROYED)	BR-4	BR	92.08	12.95	79.13
MW-9	OB	92.04	3.79	88.25	BR-5	BR	89.09	5.71	83.38
MW-10	OB	92.19	9.56	82.63	BR-6	BR	79.84	4.10	75.74
MW-11	ОВ	93.24	11.34	81.90	BR-7	BR	77.98	2.02	75.96

Notes:

Depth to water measurements taken in feet from top of PVC casing June 9, 2009

• OB = Overburden; BR = Bedrock

Groundwater samples were retrieved from each well and placed into pre-preserved laboratory supplied sample vials containing hydrochloric acid. The samples were placed on ice and delivered to Adirondack, following chain of custody protocols and procedures, where they were

analyzed for the full list of VOCs via analytical method 8260. After securing the sample container for laboratory analysis, a second aliquot of sample was obtained for determining field parameters. Field Parameters determined during the June, 2009 sampling event are summarized below in **Table 3**.

					ole 3 rameters				
Well ID	<u>PH</u>	SC (uS/cm)	<u>Temp</u> (°F)	Turbidity (NTU)	Well ID	рН	SC (uS/cm)	<u>Temp</u> (°F)	Turbidity (NTU)
MW-1	7.37	154	67.2	20	MW-12	6.80	1,492	57.7	0.4
MW-2	6.93	412	66.8	5.3	MW-13S	6.89	1,599	58.9	7.6
MW-3		WELL FUL	L OF HRC		MW-14S	6.93	2,937	63.4	1.8
MW-4	7.05	375	69.4	28	MW-15S	7.04	5.44	66.4	45
MW-5		DESTF	ROYED		BR-1	7.48	435	60.0	6.1
MW-6	6.95	226	66.4	40	BR-2	7.25	97	66.5	28
MW-7	7.21	101	67.2	13	BR-3		ABAND	OONED	
MW-8		DESTF	ROYED		BR-4	7.22	615	56.9	1.8
MW-9	6.82	1,692	67.3	50	BR-5	7.00	715	59.4	7.1
MW-10	6.81	1,472	59.2	2.2	BR-6	7.05	639	64.4	4.0
MW-11	6.85	1,098	59.9	1.4	BR-7	7.08	898	67.5	5.2

Notes:

- Field parameters collected on June 10, 2009
- SC = Specific Conductance in micro siemens per centimeter

RESULTS OF INVESTIGATION

Sub-Slab Vapor Investigation

A total of 23 samples were collected as part of the sub-slab vapor investigation. These included 10 sub-slab vapor and 10 indoor air samples collected from 10 residences within the three buildings included in the investigation from the Meadowbrook Farms apartments; one outdoor air sample collected concurrently with the sub-slab vapor and indoor air sampling, and; two soil vapor samples collected from two previously installed soil vapor points on the New Paltz Plaza (On-Site Area). These soil vapor samples were obtained approximately three weeks after collection of the sub-slab vapor and indoor air samples.

According to the Final NYSDOH CEH BEEI Soil Vapor Intrusion Guidance of October, 2006, the NYSDOH has developed guidelines for PCE, trichloroethene (TCE) and methylene chloride (as well as other compounds) in air. These guidelines are given in units of micrograms per cubic meter (ug/m³) at 100 ug/m³ (PCE); 5.0 ug/m³ (TCE), and; 60 ug/m³ (methylene chloride). A review of the data collected during the sub-slab investigation, and summarized in Table 4 indicates that none of the indoor air (or outdoor air) samples exceeded the NYSDOH guidelines with respect to these compounds. The sub-slab vapor sample collected from Apartment #501 (SS-501) exceeded the 5.0 ug/m³ air guideline with respect to TCE at a concentration of 5.8 ug/m³. The concentration of TCE in the corresponding indoor air sample associated with that location (IA-501) was 0.38 ug/m³. The soil vapor sample from on-site sampling point SV-1 also exceeded the air guideline for TCE at a concentration of 5.6 ug/m³; the soil vapor sample from SV-2 exceeded the 100 ug/m³ air guideline with respect to PCE at a concentration of 470 ug/m³. Other compounds identified in the highest concentrations in the sub-slab or indoor air samples (and included on Table 4) are acetone, freon 12 and isopropyl alcohol. Acetone (found in nail polish remover) and isopropyl alchohol are common household products. Concentrations of these compounds were typically higher in the indoor air sample when compared to their subslab counterpart. Freon 12, a common refrigerant typically used in air conditioning units, was generally higher by at least an order of magnitude in several sub slab samples when compared to their indoor air counterparts.

		Summary of Sub-	Table 4 Slab & Indoor Air	Analytical Results	3	
Sample ID	<u>TCE</u>	PCE	Methylene <u>Chloride</u>	<u>Acetone</u>	Freon 12	Isopropyl <u>Alchohol</u>
NYSDOH Air Guideline	5.0	100	60	NA	NA	NA
SS-401	0.60	4.8	0.88	30	350	6.2
IA-401	0.38	ND	0.64	45	4.9	13
SS-405	1.9	3.2	0.92	170	380	150
IA-405	0.55	ND	4.3	170	8.4	36
SS-410	0.93	4.8	0.74	27	340	6.7
IA-410	0.44	0.76	0.56	48	5.8	ND
SS-501	5.8	3.2	0.71	17	66	ND
IA-501	0.38	1.0	0.60	140	5.0	150
SS-503	1.5	5.4	0.99	160	86	34
IA503	0.55	ND	11	93	32	800
SS-507	ND	6.6	0.85	20	9.7	4.1
IA-507	0.60	1.0	0.56	43	6.3	8.2
SS-512	0.66	6.6	0.81	130	240	ND
IA-512	0.44	0.83	0.53	180	3.3	ND
SS-603	0.66	5.0	0.67	48	150	8.7
IA-603	ND	0.69	0.64	46	ND	13
SS-605	0.76	5.4	7.5	45	80	32
IA-605	ND	ND	0.71	130	5.1	470
SS-610	0.66	4.5	0.81	19	32	ND
IA-610	ND	0.90	0.56	130	3.9	24
Outdoor Air	0.38	0.90	ND	26	2.7	ND
SV-1	5.6	2.8	3.2	46	2.9	ND
SV-2	36	470	0.49	81	2.3	ND

Notes:

- Concentrations in micrograms per cubic meter
- NYSDOH Air Guidline from Final NYSDOH CEH BEEI Soil Vapor Intrusion Guidance, October, 2006
- SS = Sub-Slab Sample: IA = Indoor Air Sample
- NA = Not Applicable; ND = Not Detected

The spatial distribution of PCE, TCE and the related degradation by-products cis-1,2 dichloroethene (CIS) and vinyl chloride (VC) identified in the sampling conducted as part of the sub-slab vapor investigation is included in Figure 3. The analytical results are tabulated and included with the summary tables presented in Appendix D; analytical laboratory reports are included in Appendix A.

Groundwater Investigation

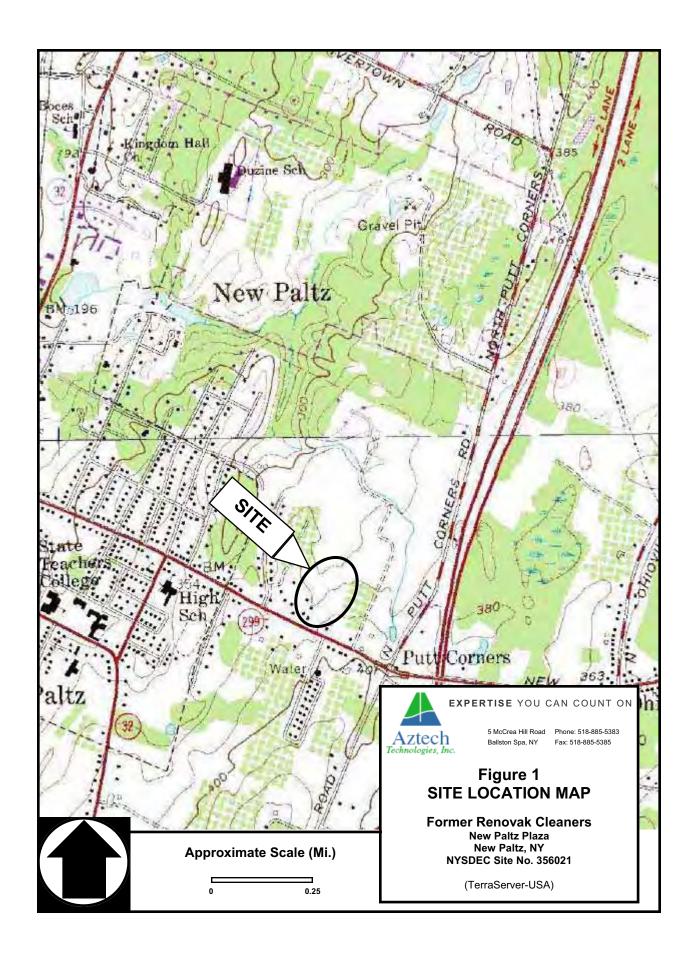
Two zones of groundwater occurrence and movement encompassing the on-site and off-site area have been investigated. This includes a relatively thin zone of overburden that consists primarily of glacial till, while the lower zone consists of calcareous shale and fine grained sandstone. Thirteen monitoring wells are completed within the overburden. Ten of these are located in the on-site area and three are located in the off site area. Six monitoring wells are completed within the upper portions of the calcareous bedrock. Three of these are located in the on-site area and three are located in the off-site area.

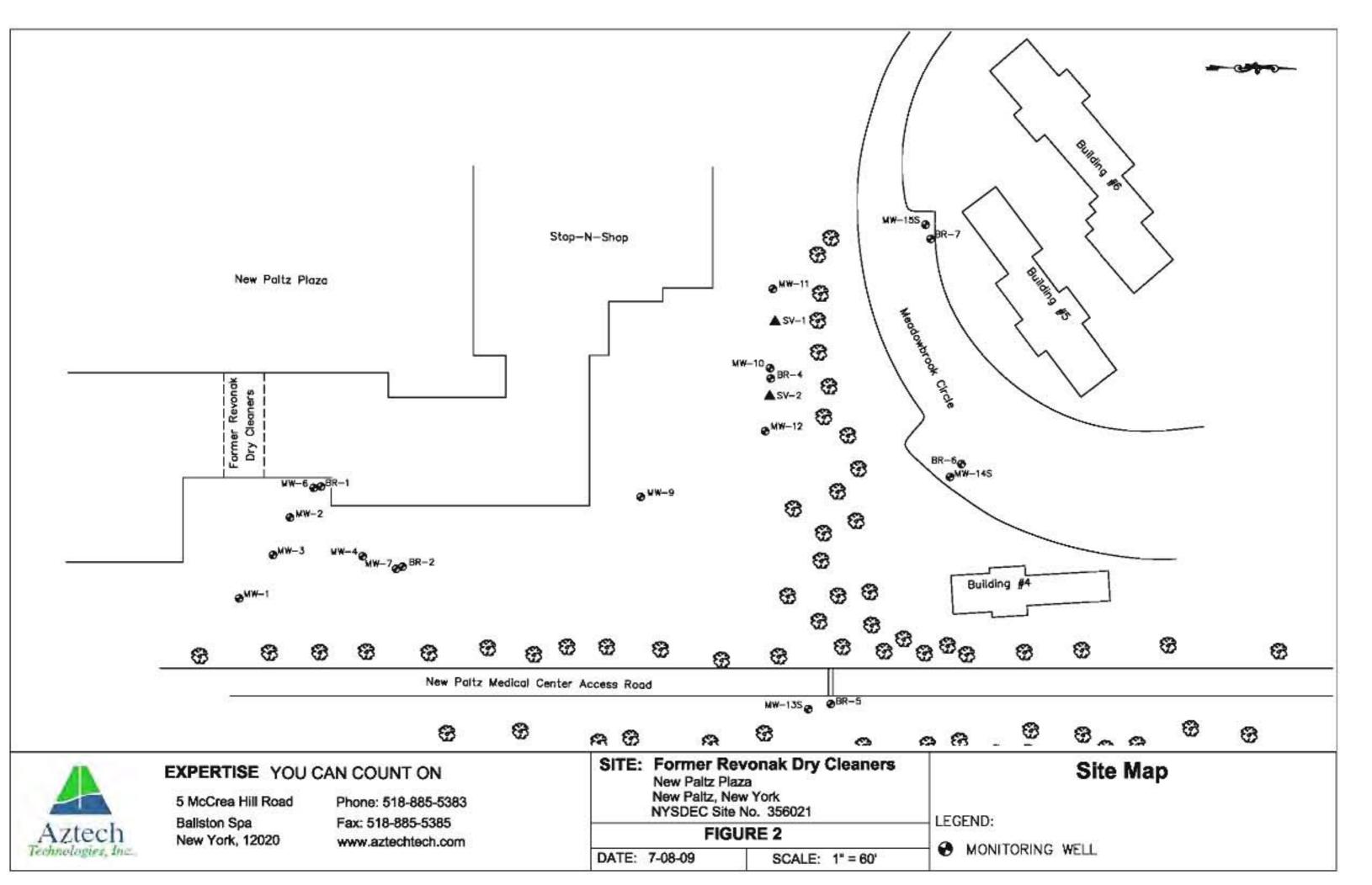
Groundwater Flow Direction

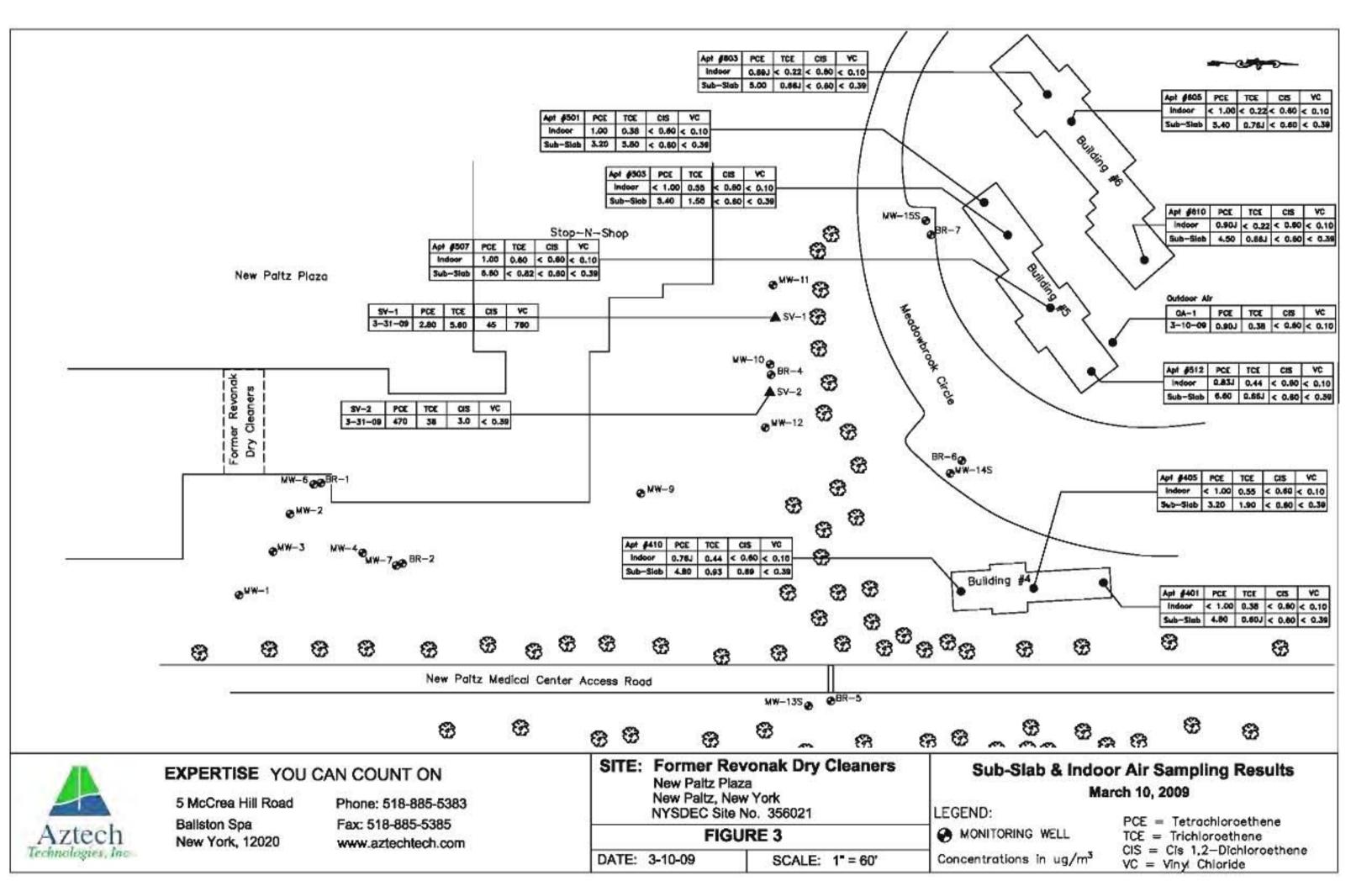
Groundwater elevations were determined for the both the overburden and shallow bedrock zones from the top of casing elevations and depth to water measurements obtained prior to the June, 2009 groundwater sampling event. The groundwater elevations, which were presented previously in Table 2, were used to prepare groundwater contour maps for the overburden (**Figure 4**) and shallow bedrock (**Figure 5**). As shown on both contour maps, the direction of groundwater flow within both zones is generally toward the north-northwest.

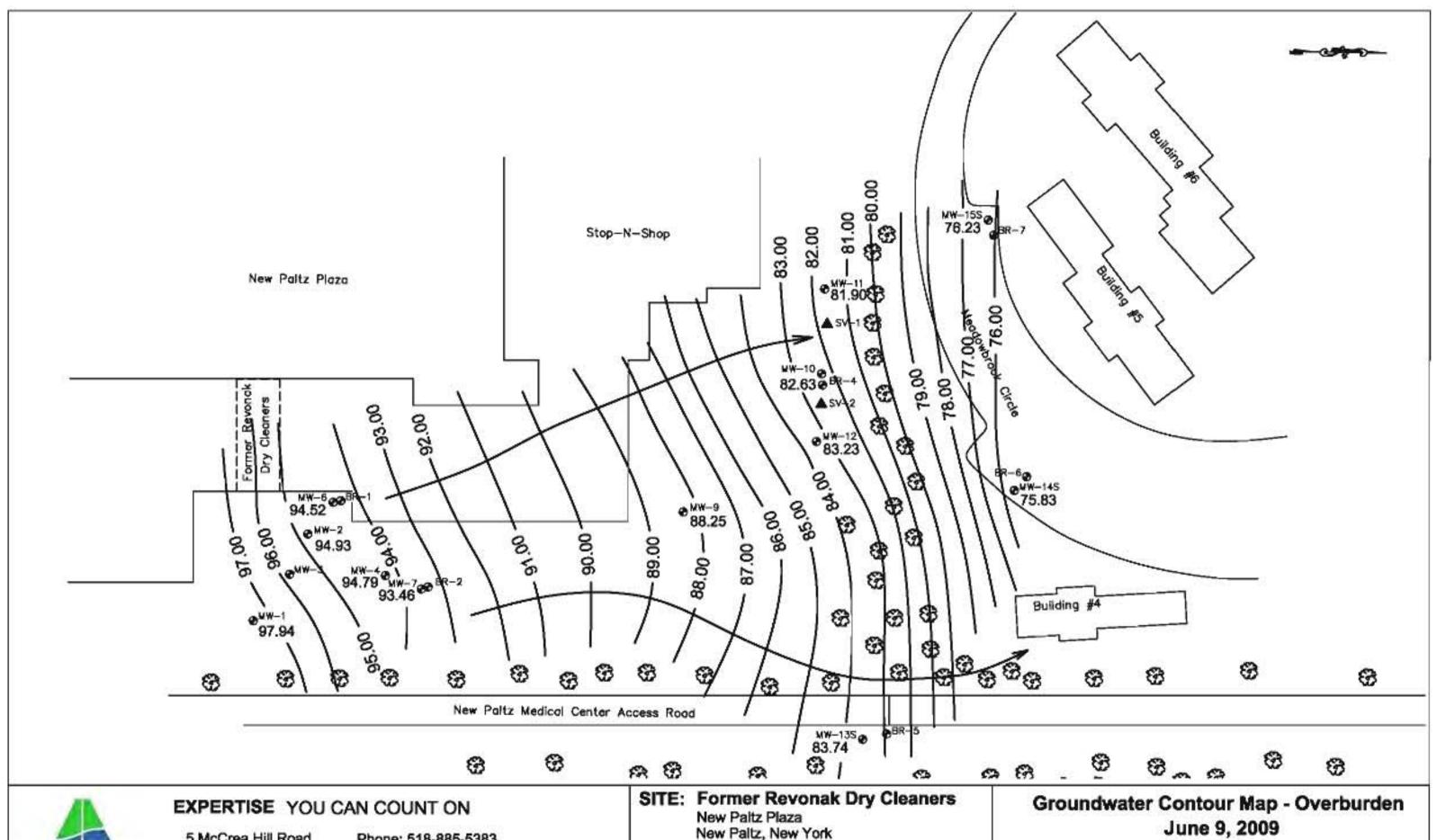
Groundwater Analytical Results

The analytical results of the groundwater sampling conducted on June 10, 2009 are summarized below on Table 5. These results indicate that concentrations of the chlorinated solvents PCE and TCE (and its degradation by-products CIS and/or VC) were identified in excess of the class GA groundwater standards developed by NYSDEC (6 NYCRR Part 703) in several of the overburden wells located within the on-site area (MW-2, MW-4, MW-9, MW-10, MW-11 and MW-12). PCE and TCE are commonly related to dry cleaning operations. It is interesting to note that none of these compounds were identified in overburden groundwater samples obtained from the off-site wells (MW-13S, MW-14S or MW-15S). Acetone was also identified in several of the on-site overburden groundwater samples and each of the off-site overburden groundwater samples. Within the shallow bedrock, CIS was identified in on-site wells BR-1 and BR-4 at concentrations in excess of the class GA groundwater standard. VOCs were not detected in any of the newly installed shallow bedrock wells in the off-site area.

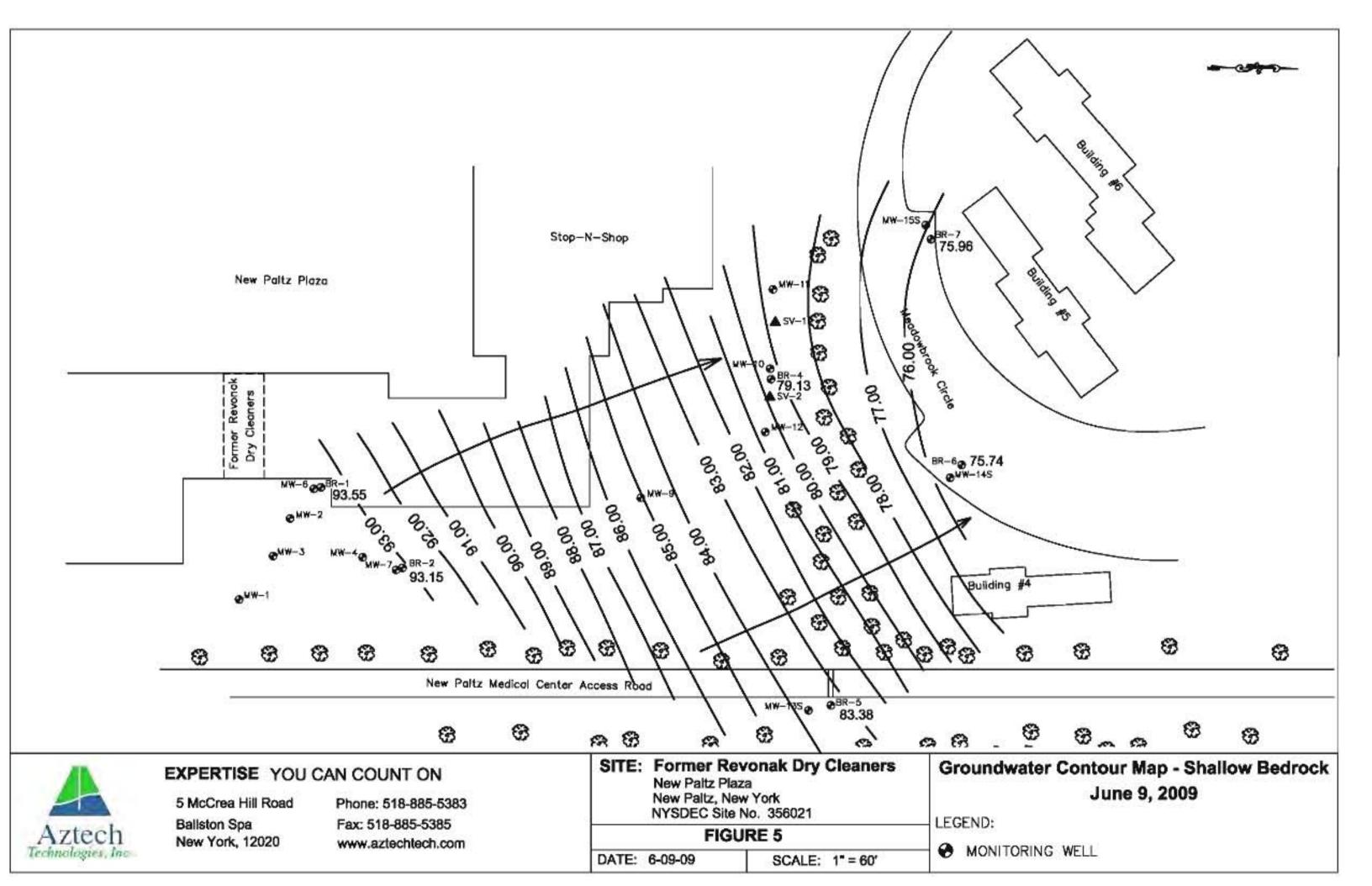

			ble 5		
	Sur	mmary of Groundv June 1	vater Analytical Resu 0, 2009	Its	
Well ID	Vinyl Chloride	Acetone	cis-1,2 DCE	TCE	PCE
Groundwater Standard	2.0	50 (GV)	5.0	5.0	5.0
Overburden Wells					
MW-1	ND	ND	ND	ND	ND
MW-2	11	ND	35	ND	5.3
MW-3			WELL FULL OF HRC		
MW-4	ND	ND	ND	ND	6.6
MW-5	·		DESTROYED		•
MW-6	ND	44	ND	ND	ND
MW-7	ND	32	ND	ND	ND
MW-8			DESTROYED		
MW-9	ND	ND	76	24	190
MW-10	96	ND	930	30	130
MW-11	ND	31	160	9.1	17
MW-12	ND	ND	380	42	140
MW-13S	ND	15	ND	ND	ND
MW-14S	ND	94	ND	ND	ND
MW-15S	ND	23	ND	ND	ND
Bedrock Wells					
BR-1	ND	ND	5.9	ND	ND
BR-2	ND	16	ND	ND	ND
BR-3	·		ABANDONED		•
BR-4	ND	ND	11	ND	ND
BR-5	ND	ND	ND	ND	ND
BR-6	ND	ND	ND	ND	ND
BR-7	ND	ND	ND	ND	ND

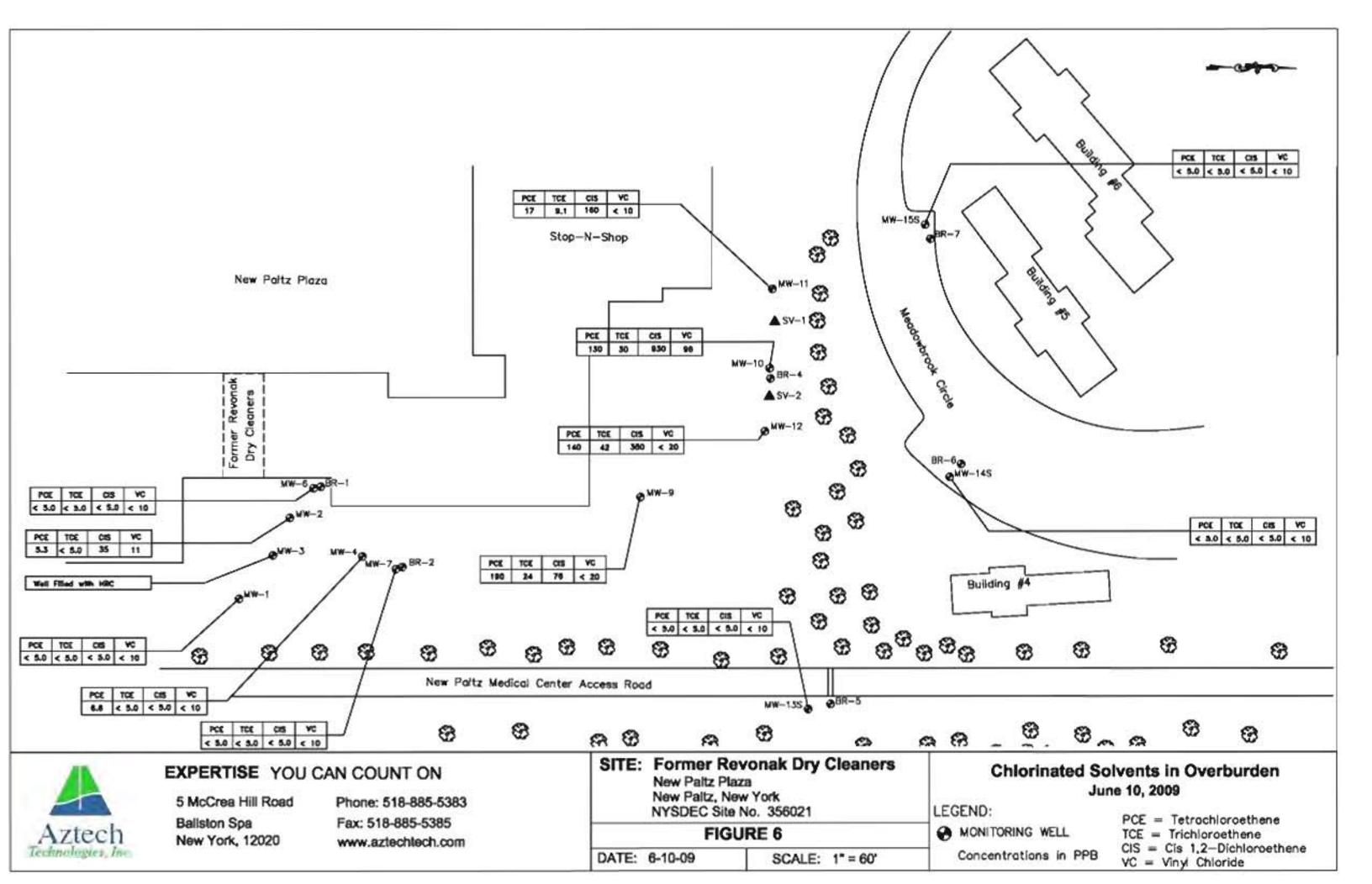

Concentrations in parts per billion (ppb)

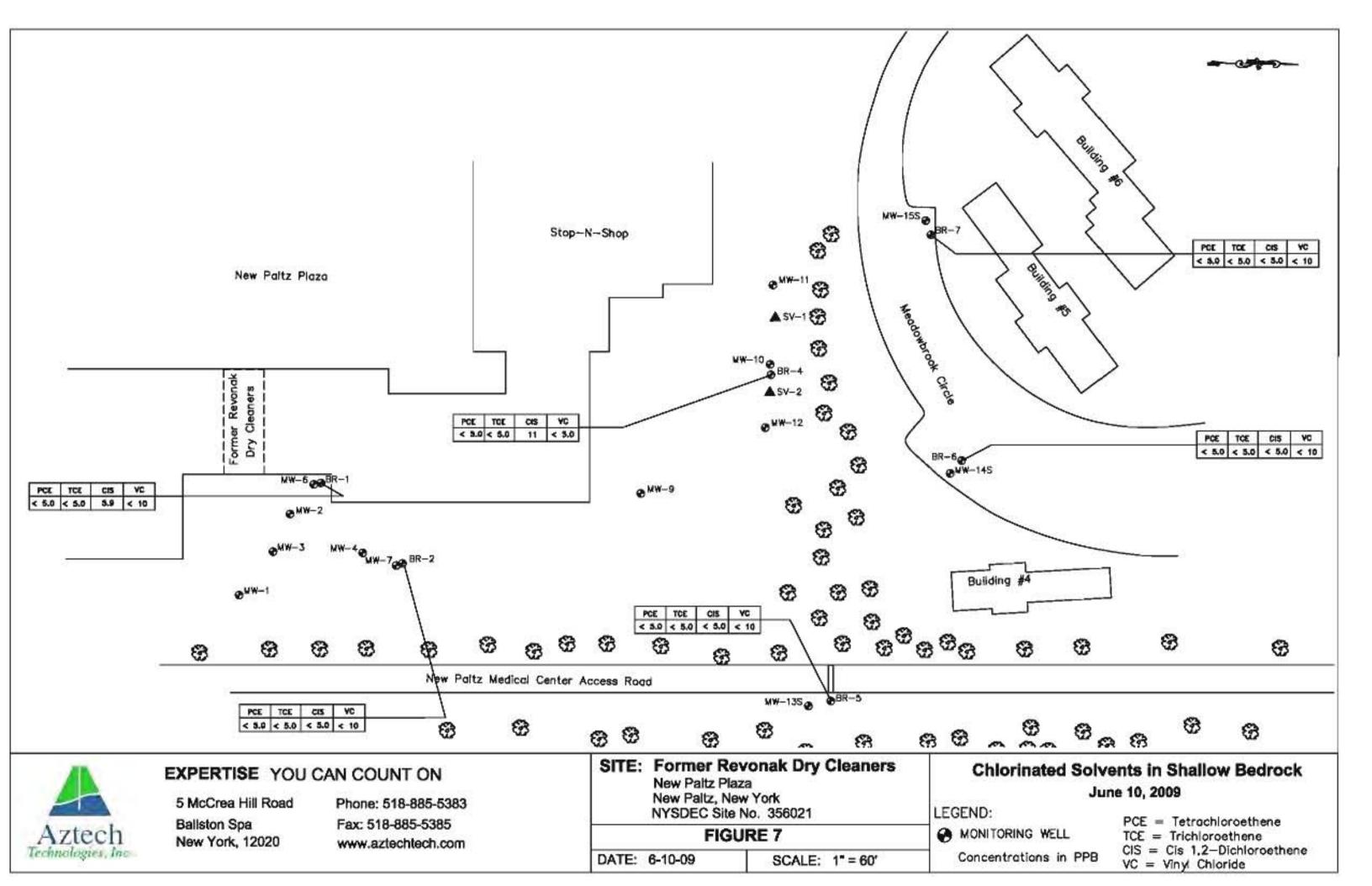

- GW Stnd = Class GA Groundwater Standard (6 NYCRR Part 703)
- - Concentrations in bold are in excess of their Class GA groundwater standard or GV.
- DCE = Dichloroethene
- TCE = Trichloroethene
- PCE = Tetrachloroethene
- ND = Not Detected


The distribution of the chlorinated solvents PCE, TCE (and related degradation by-products CIS and VC) in the overburden and shallow bedrock groundwater are presented in Figure 6 and Figure 7, respectively: laboratory analytical reports for the overburden and shallow groundwater samples are included in **Appendix E**.

FIGURES


5 McCrea Hill Road **Ballston Spa** New York, 12020


Phone: 518-885-5383 Fax: 518-885-5385 www.aztechtech.com NYSDEC Site No. 356021


FIGURE 4

DATE: 6-09-09 SCALE: 1" = 60" LEGEND:

MONITORING WELL

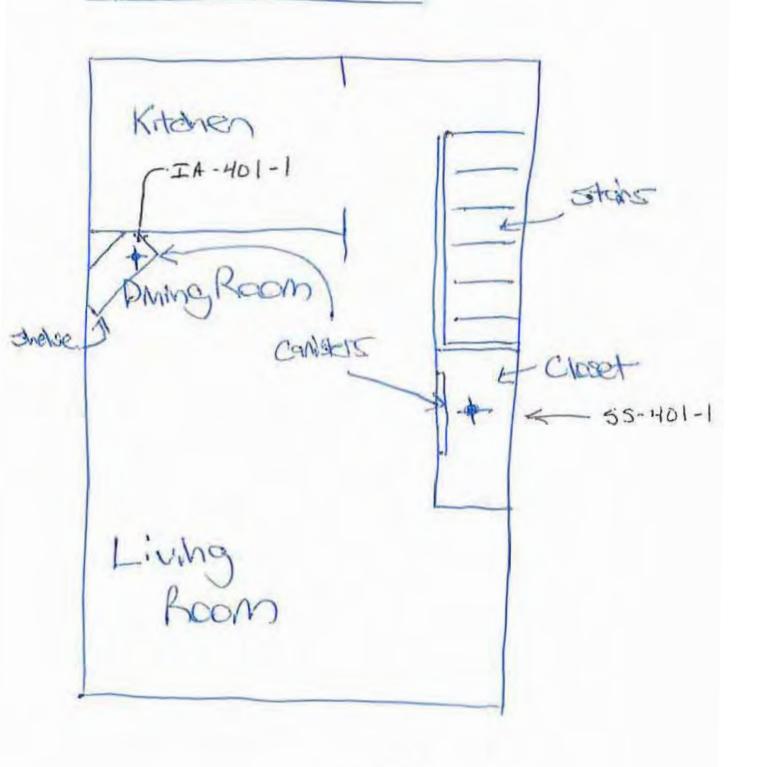
APPENDIX A

SUB-SLAB VAPOR INVESTIGATION

J.Notde 3/10/109

13. PRODUCT INVENTORY FORM

3.6.3. 0.3.6.3.1.0.0.13.1		4	(A)
Make & Model of field instrument used:		 <	$H \subseteq \mathcal{H}$


List specific products found in the residence that have the potential to affect indoor air quality.

Location	Product Description	Size (oz.)	Condition	Chemical Ingredients	Field Instrument Reading	Photo Y/N
Kitchen		50	Guel	Plato	· O -	
11	Wood + monet miles	17.5	и	ls .	0-	t,
iv	200 - Shower Tyle design	~	Ŕ	и	0	ч
н	Mr. Clear	40	iı	ti .	0	t _i
4	Pure Power	60	Vi i	μ .		H
11	Pure Buser Engospiecely	16	l. ·	te '	0.1	h .
į.	Conet claver-	20	· · ·	H	0	¥ ,
Н	Kalacon cleaner	36	н.	И	0	4
li,	Glass creases,	32	li	Ч	O	q
	Grant Cill		k	13	0	t
Ą	ajax Landy Deleget	- 30	V	l i		ŁŸ
Lį	KINDS FORSI ISHON	32)î ,	(1	.0-	4
	<u> </u>					
				_ _		
				- 		

^{*} Describe the condition of the product containers as Unopened (UO), Used (U), or Deteriorated (D)

^{**} Photographs of the front and back of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

First Floor Plan

APT #401 Meadow brook Farms NEW PalTZ, NY

Location: Meadowbrook Farms
Apartments

Subject:

Cleaning products/chemicals found in home.

(photo 723)

Apartment #401

Location: Meadowbrook Farms
Apartments

Subject:

Cleaning products/chemicals found in home.

(photo 724)

Location: Meadowbrook Farms
Apartments

Subject:

Cleaning products/chemicals found in home.

(photo 725)

Apartment #401

Location: Meadowbrook Farms
Apartments

Subject:

Cleaning products/chemicals found in home.

(photo 726)

Location: Meadowbrook Farms
Apartments

Subject:

Cleaning products/chemicals found in home.

(photo 727)

Apartment #401

Location: Meadowbrook Farms
Apartments

Subject:

Cleaning products/chemicals found in home.

(photo 728)

Location: Meadowbrook Farms
Apartments

Subject:

Cleaning products/chemicals found in home.

(photo 729)

Apartment #401

Location: Meadowbrook Farms
Apartments

Subject:

Cleaning products/chemicals found in home.

(photo 730)

13. PRODUCT INVENTORY FORM

405

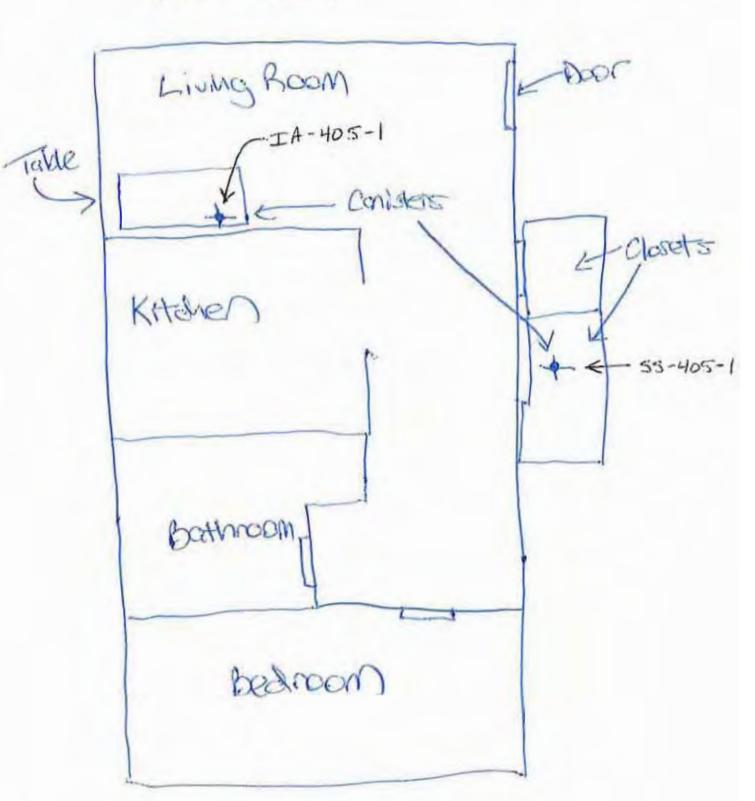
Make & Model of field instrument used:	r
--	---

List specific products found in the residence that have the potential to affect indoor air quality.

Location	Product Description	Size	Condition	Chemical Ingredients	Field	Photo **
1/1 1/2	Plahaa	(oz.)	Crod	Di. L	Instrument	$\frac{Y/N}{\sqrt{N}}$
KEDRA	, Pledge '	32		Photo	Reading	<u> </u>
)(MOD & GIOW	16	j.\	<u> </u>	←	LY
11	Mahler (soap)	16	. (N.		
11	house (floor and	27	<i>t</i> ·	h	0.2	Y
h	1/201 - Distiflection	24	14	·	0.6	Y
11	Kabcom	27_	H ,	16	0.1	Y
4	Droise Glora	24	н '	, , , , , , , , , , , , , , , , , , ,	-67	Y.
٠,١	Rustic Tayon	Fb"	ધ		.0	t('
H	Wholex	32	Ις,	4	-0-	ч
1)	Femila 409	22	b 1	()	0	4
N	Lysol Dewedot	22.	H	11	.0	11
	untra Delegant	50	,1	и	Θ-	ا ا
F _i	FOUNT OF RESIDEN	re 27	H,	N	0	((
1 1	GKES Plus	32	13	· · · · · · · · · · · · · · · · · · ·	0	(i
**	Cleares wherein	33_	jì	1(0,4	/t
H	HUMERCAY	22	a l	ų	.0-	<i>r</i>
1/	Const	11	lt	11	0	I(
11	Carolle+Lamp Cil	52,	iv	И	0	/(
	Carpuba Wax	14	: 11	I.	0	11
н		27	şi .	11		1/

* Describe the condition of the product containers as Unopened (UO), Used (U), or Deteriorated (D)

** Photographs of the front and back of product containers can replace the handwritten list of chemical


ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

AN WICK

TOTAL OFF (OVER Clearer) 16

BTSA\Sections\SIS\Oil Spills\Guidance Docs\Aiproto4.doc

Floor Plan

APT # 405 Meadow Brook Farms NEW Paltz, NY

Location: Meadowbrook Farms
Apartments

Subject:

Cleaning products/chemicals found in home.

(photo 711)

Apartment #405

Location: Meadowbrook Farms
Apartments

Subject:

Cleaning products/chemicals found in home.

(photo 712)

Location: Meadowbrook Farms
Apartments

Subject:

Cleaning products/chemicals found in home.

(photo 713)

Apartment #405

Location: Meadowbrook Farms
Apartments

Subject:

Cleaning products/chemicals found in home.

(photo 714)

Location: Meadowbrook Farms
Apartments

Subject:

Cleaning products/chemicals found in home.

(photo 715)

Apartment #405

Location: Meadowbrook Farms
Apartments

Subject:

Cleaning products/chemicals found in home.

(photo 716)

Location: Meadowbrook Farms
Apartments

Subject:

Cleaning products/chemicals found in home.

(photo 717)

Apartment #405

Location: Meadowbrook Farms
Apartments

Subject:

Cleaning products/chemicals found in home.

(photo 718)

Location: Meadowbrook Farms
Apartments

Subject:

Cleaning products/chemicals found in home.

(photo 719)

Apartment #405

Location: Meadowbrook Farms
Apartments

Subject:

Cleaning products/chemicals found in home.

(photo 720)

Location: Meadowbrook Farms
Apartments

Subject:

Cleaning products/chemicals found in home.

(photo 721)

Apartment #405

Location: Meadowbrook Farms
Apartments

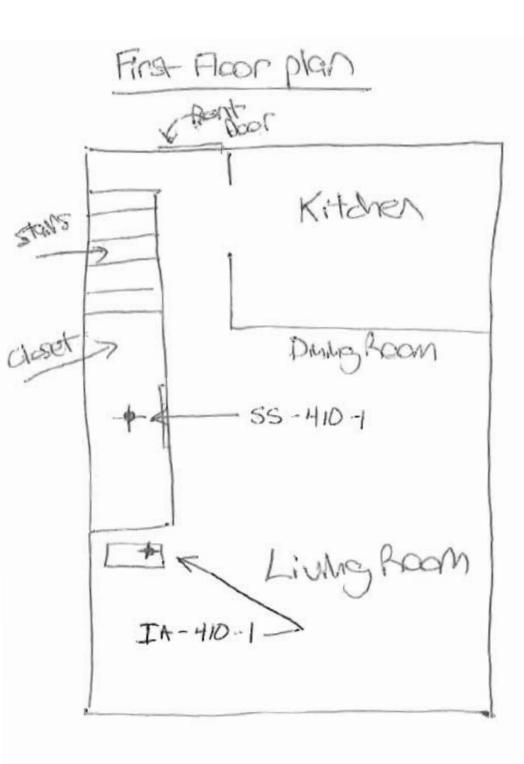
Subject:

Cleaning products/chemicals found in home.

(photo 722)

Α.				•
Pic	' S	731	, E.	733

c	1	
	ľ	


13. PRODUCT INVENTORY FORM

Make & Model of field instrument used:	#40
List specific products found in the residence that have the potential to affect indoor air quality	•

Location	Product Description	Size (oz.)	Condition	Chemical Ingredients	Field Instrument Reading	Photo " Y/N
Kitaver	Clorex -bleady	90	Coal	Photo	0	Y
+1	Febreze ("essects)	3:7	R	l]		4
f)	Wirdex	28	<u> </u>	<u> </u>	- (-	Ч
q	Hess (011)	32	11	1(6	li
11	mopa elo clearer	32,	H i ,	ii .	0	4
A	Expert removed	30	R 1	u, u,	G-	H
A	All -Delevent	32	H	R	0	н ,
11	MH -Ready Patch	0.746	R,	н	Θ	1(
I I	Spray	18	k	ч	0	*(
	Further Pough	10	H	u ,	0	«
14 (Murphy STO	16	Įί	и	Θ	l(
11 6	alunity Core	160	jt ,	и	Θ	4
			;			
					-	

^{*} Describe the condition of the product containers as Unopened (UO), Used (U), or Deteriorated (D)

^{**} Photographs of the front and back of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

APT #410 Meadow brook Fairms NEW Paltz, NY

Location: Meadowbrook Farms
Apartments

Subject:

Cleaning products/chemicals found in home.

(photo 731)

Apartment #410

Location: Meadowbrook Farms
Apartments

Subject:

Cleaning products/chemicals found in home.

(photo 732)

Location: Meadowbrook Farms
Apartments

Subject:

Cleaning products/chemicals found in home.

(photo 733)

Apartment #410

Location: Meadowbrook Farms
Apartments

Subject:

Cleaning products/chemicals found in home.

(photo 734)

Location: Meadowbrook Farms
Apartments

Subject:

Cleaning products/chemicals found in home.

(photo 735)

Apartment #410

Location: Meadowbrook Farms
Apartments

Subject:

Cleaning products/chemicals found in home.

(photo 736)

Location: Meadowbrook Farms
Apartments

Subject:

Cleaning products/chemicals found in home.

(photo 737)

Apartment #410

Location: Meadowbrook Farms
Apartments

Subject:

Cleaning products/chemicals found in home.

(photo 738)

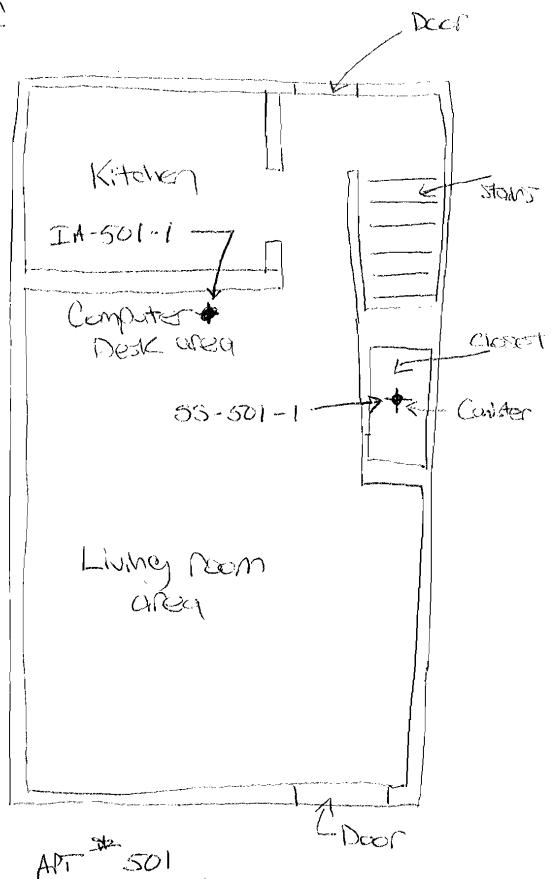
fic's	756	· w	765
-------	-----	-----	-----

4	r	3
	,	٤

3/10/09

13. PRODUCT INVENTORY FORM

· · · · · · · · · · · · · · · · · · ·	j.	
Make & Model of field instrument used: _		<u> #501</u>


List specific products found in the residence that have the potential to affect indoor air quality.

Location	Product Description	Size (oz.)	Condition	Chemical Ingredients	Field Instrument Reading	Photo Y/N
Kitchen	comet	24	Court	Phietro	0	7
H	Thex	32.	ıl İ	ıl		પ
1)	-Sealer-MUET	13	11	л	0	ts T
• •	C 114 ~ C ~ 11	100	11	11	0-	4
	Litter Downy	44	. 11	ŀ	0	ä
	Clarke Dray	15	к'	, ",	0	4
И	Raid Grant hach Kilker	175	, , , ,	H .	-0-	1
		5.5	£0.,	н	0	4
1.	Euzy DD The Tol	16	R	lt .	()	Ц
		48	Ц	<i>I</i> (-6-	/(
11	-du britax crava	40	((1(0	R
ic &	Wolax - Window	26	H ,	Į l	-0-	(
4	SWATER + Shine	757	H	(1		tr
11 1	Ulogaza	22.	10	lt	-0-	H
	_					
-			*			

^{*} Describe the condition of the product containers as Unopened (UO), Used (U), or Deteriorated (D)

^{**} Photographs of the front and back of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

Floor Plan

APT 501 Meadow brook Farms NEW Paltz NY

Location: Meadowbrook Farms
Apartments

Subject:

Cleaning products/chemicals found in home.

(photo 756)

Apartment #501

Location: Meadowbrook Farms
Apartments

Subject:

Cleaning products/chemicals found in home.

(photo 757)

Location: Meadowbrook Farms
Apartments

Subject:

Cleaning products/chemicals found in home.

(photo 758)

Apartment #501

Location: Meadowbrook Farms
Apartments

Subject:

Cleaning products/chemicals found in home.

(photo 759)

Location: Meadowbrook Farms
Apartments

Subject:

Cleaning products/chemicals found in home.

(photo 760)

Apartment #501

Location: Meadowbrook Farms
Apartments

Subject:

Cleaning products/chemicals found in home.

(photo 761)

Location: Meadowbrook Farms

Apartments

Subject:

Cleaning products/chemicals found

in home.

(photo 762)

Apartment #501

Location: Meadowbrook Farms

Apartments

Subject:

Cleaning products/chemicals found

in home.

(photo 763)

Location: Meadowbrook Farms
Apartments

Subject:

Cleaning products/chemicals found in home.

(photo 764)

Apartment #501

Location: Meadowbrook Farms
Apartments

Subject:

Cleaning products/chemicals found in home.

(photo 765)

J.Natale 3/10/09

13. PRODUCT INVENTORY FORM

1	1	parting
Make & Model of field instrument used:		 #303

List specific products found in the residence that have the potential to affect indoor air quality.

Location	Product Description	Size (oz.)	Condition	Chemical Ingredients	Field Instrument Reading	Photo Y/N
Kitchen	THE THEY	32	Gad	Photo		Y
11	Fabricaso -Multi-clarge Mr. Clean	28	11	j. c	0	ł,
ļi —	Mr. Clean Min Directed	32.	11	11		ri
II	Brokelth	16	11	n	<i>-</i>	1
H	Throng pellon Thre painer - Bleach	96	μ.,	n .	0	11
n (Irin + Irinue	64	ri	. H	- (ma)	W
lt .	Interior Paint 3/7	851.	, "	ji .	6	4 ,
	.'				.	
			-	1		
	,					
						 -
			-			· -
		·				
			:			

^{*} Describe the condition of the product containers as Unopened (UO), Used (U), or Deteriorated (D)

^{**} Photographs of the front and back of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

Floor Layacit Kitchen Stars Claset -Cinister 55-503-1-IA-503-1 Living Room

APT # 503 Meadow brook Farms NEW Paltz, NY

Location: Meadowbrook Farms
Apartments

Subject:

Cleaning products/chemicals found in home.

(photo 750)

Apartment #503

Location: Meadowbrook Farms
Apartments

Subject:

Cleaning products/chemicals found in home.

(photo 751)

Location: Meadowbrook Farms
Apartments

Subject:

Cleaning products/chemicals found in home.

(photo 752)

Apartment #503

Location: Meadowbrook Farms
Apartments

Subject:

Cleaning products/chemicals found in home.

(photo 753)

Location: Meadowbrook Farms

Apartments

Subject:

Cleaning products/chemicals found in home.

(photo 754)

Apartment #503

Location: Meadowbrook Farms

Apartments

Subject:

Cleaning products/chemicals found in home.

(photo 755)

1.Notex 10109

13. PRODUCT INVENTORY FORM

37.3		#507
Make & Model of field instrument used:	,	1 001

List specific products found in the residence that have the potential to affect indoor air quality.

Location	Product Description	Size (oz.)	Condition	Chemical Ingredients	Field Instrument Reading	Photo ** Y/N
Kitchen	Klass Guard	12.5	bugh	Photo		7
11	Green Thumb Troub, ant ophilor kills	15	11	Н	•	Y
) i	LACT CLEASE	16	μ	h	0	Y
(1	Realise deeps	27	X	li	0	7
			1 4			
	1		,	1		
		ui .				1
	.'					
		· _				
	· .			<u>-</u>		
			4			
				_		
				<u>.</u>		
				·		

^{*} Describe the condition of the product containers as Unopened (UO), Used (U), or Deteriorated (D)

^{**} Photographs of the front and back of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

Floor Layout Living Boom Frat Cart lack Decar - IA-507-1 Kitcher Storage area 55-507-1 Carles Jocathen Coct Bathroom APT 507 Meadowsbrook Farms NEW PalTZ, NY bedroom

Location: Meadowbrook Farms

Apartments

Subject:

Cleaning products/chemicals found in home.

(photo 748)

Apartment #507

Location: Meadowbrook Farms

Apartments

Subject:

Cleaning products/chemicals found in home.

(photo 749)

3/10/09

13. PRODUCT INVENTORY FORM

1	,	
Make & Model of field instrument used:	1	 #517
	,	4516

List specific products found in the residence that have the potential to affect indoor air quality.

Location	Product Description	Size	Condition	Chemical Ingredients	Field	Photo **
		(oz.)		January angles are and	Instrument	<u>Y / N</u>
	1				Reading	,
Kitcher	whichild	22.	Excel	ploto.		Y
HILLSON	resolve		H CXXV	 		11
	- comot everes-	22				
H	Tilex '	32	11	l N		· ·
11	Motor Miles	10	n	ti .		4
ii	Febrere	27	ş1 ·	ik .	Θ	Ŋ
11	CHOOLE RESERVE	9	н	i ii i	Θ	10
П	ProSafe bothe	32	11	ļ\	() -	11
		,	,			
2nd Fleat BB	Lysul Tolick Dewl Clearer	24	μ	K	. ()	li
Н	CIOCOX -Convidere sur v	22	şi	N ,		/1
) L	- Dismission	12.5		N	-0-	
u	Zud -Haw Day Cleber	24	H.	H	0	
Ц	-Hawy Day Clever Lysul -Distleant spray	12.5	11	lı		4
1.3	Musex	26	li .		0	4
		·	- ''			
	<u></u>					

^{*} Describe the condition of the product containers as Unopened (UO), Used (U), or Deteriorated (D)

^{**} Photographs of the front and back of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

17 Floor Layout Frod Dock KHOVES 55-512-1 Dinha - IA-512-1 43000 face solve Living

Door

APT 512 Meadowbrook Farms NEW Paltz NY

Location: Meadowbrook Farms
Apartments

Subject:

Cleaning products/chemicals found in home.

(photo 739)

Apartment #512

Location: Meadowbrook Farms
Apartments

Subject:

Cleaning products/chemicals found in home.

(photo 740)

Location: Meadowbrook Farms
Apartments

Subject:

Cleaning products/chemicals found in home.

(photo 741)

Apartment #512

Location: Meadowbrook Farms
Apartments

Subject:

Cleaning products/chemicals found in home.

(photo 742)

Location: Meadowbrook Farms
Apartments

Subject:

Cleaning products/chemicals found in home.

(photo 743)

Apartment #512

Location: Meadowbrook Farms
Apartments

Subject:

Cleaning products/chemicals found in home.

(photo 744)

Location: Meadowbrook Farms
Apartments

Subject:

Cleaning products/chemicals found in home.

(photo 745)

Apartment #512

Location: Meadowbrook Farms
Apartments

Subject:

Cleaning products/chemicals found in home.

(photo 746)

Location: Meadowbrook Farms Apartments

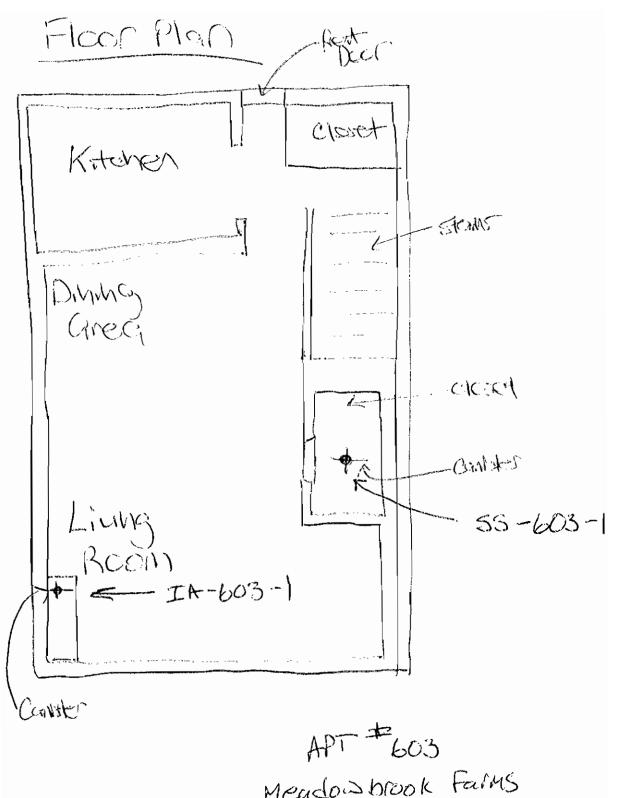
Subject:

Cleaning products/chemicals found in home.

(photo 747)

7,Notele 3/10/09

13. PRODUCT INVENTORY FORM


į.		. 11 / 00
Make & Model of field instrument used:	1	#603

List specific products found in the residence that have the potential to affect indoor air quality.

T a 4! a -	D. d. a D. d. d.	Size	1 C . 1111 -	CI LY II	120	DI . **
Location	Product Description	(oz.)	Condition	Chemical Ingredients	Field Instrument	Photo Y/N
	1	(02.)			Reading	1/19
टाटाइस	· / \				Reading	
Cicce	Paint (sy sky)	31	Gard	Photos		
fx	Paint	 	11	11		4
	(paper (rea)	31	ļ	,,		
H	MA	31	li .	/ F	-	4
11	Part Place					. \
,,	(Kierkon Yellow)	<u> </u>	l í	11		N
11	Part		11 1 1	11	-	4
	(Cut + Rive Ruge)	31				,
R	(Bradeberry Wie)	31	#1 '	11		11
li li	Paint (dramily Loce)	31	П	FI		4 :
1/10	duy Forth		μ.	11	7.6	4
Kitcher	-an owne does	2.2.				·
H	Lysis hearthy wires		H	li .	~	ч
CONTROL		1	-7	-2-2-2-		7/7
USIGIVS	P. wo Paver	$\overline{\Omega}_{I}$	11			1
JUSE-	Rive Faver	96				
H	Mire Power	24	be ,	H	-	4
	Chry V Share Kork					
						
						
						
					Ī	
			,			
			*			}
						

^{*} Describe the condition of the product containers as Unopened (UO), Used (U), or Deteriorated (D)

^{**} Photographs of the **front and back** of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

Meadow brook Farms NEW PalTZ NY

Location: Meadowbrook Farms
Apartments

Subject:

Cleaning products/chemicals found in home.

(photo 782)

Apartment #603

Location: Meadowbrook Farms
Apartments

Subject:

Cleaning products/chemicals found in home.

(photo 783)

Location: Meadowbrook Farms
Apartments

Subject:

Cleaning products/chemicals found in home.

(photo 784)

Apartment #603

Location: Meadowbrook Farms
Apartments

Subject:

Cleaning products/chemicals found in home.

(photo 785)

Location: Meadowbrook Farms
Apartments

Subject:

Cleaning products/chemicals found in home.

(photo 786)

Apartment #603

Location: Meadowbrook Farms
Apartments

Subject:

Cleaning products/chemicals found in home.

(photo 787)

Location: Meadowbrook Farms
Apartments

Subject:

Cleaning products/chemicals found in home.

(photo 788)

Apartment #603

Location: Meadowbrook Farms
Apartments

Subject:

Cleaning products/chemicals found in home.

(photo 789)

Location: Meadowbrook Farms
Apartments

Subject:

Cleaning products/chemicals found in home.

(photo 790)

Apartment #603

Location: Meadowbrook Farms
Apartments

Subject:

Cleaning products/chemicals found in home.

(photo 791)

Location: Meadowbrook Farms
Apartments

Subject:

Cleaning products/chemicals found in home.

(photo 792)

Apartment #603

Location: Meadowbrook Farms
Apartments

Subject:

Cleaning products/chemicals found in home.

(photo 793)

Location: Meadowbrook Farms
Apartments

Subject:

Cleaning products/chemicals found in home.

(photo 794)

Apartment #603

Location: Meadowbrook Farms Apartments

Subject:

Cleaning products/chemicals found in home.

(photo 795)

Location: Meadowbrook Farms
Apartments

Subject:

Cleaning products/chemicals found in home.

(photo 796)

Apartment #603

Location: Meadowbrook Farms Apartments

Subject:

Cleaning products/chemicals found in home.

(photo 797)

Location: Meadowbrook Farms
Apartments

Subject:

Cleaning products/chemicals found in home.

(photo 798)

Apartment #603

Location: Meadowbrook Farms
Apartments

Subject:

Cleaning products/chemicals found in home.

(photo 799)

SloteV.T

13. PRODUCT INVENTORY FORM

1	1	and the second
Make & Model of field instrument used:		 #605
		(C) Les

List specific products found in the residence that have the potential to affect indoor air quality.

Location	Product Description	Size (oz.)	Condition*	Chemical Ingredients	Field Instrument Reading	Photo '' Y/N
Kitchen	Clorex 2 - Alexch	26	Cay	Photo	-0-	
il il	ummeria	37_	11	н	-	it
1(2x uma all	50	R	11		11
1(Shop Bate 21. 22	40	14	Æ	-	4
1(Clarox	24	и ,	H	0	4(
н	Shop Rife Clorox	67	R	ι(()	4
		11				ı
	-					
	,'					
				1		
		-				<u> </u>
			,			
						<u>-</u>
						_ · · _ · · · · · · · · · · · · · · · ·
			,			

^{*} Describe the condition of the product containers as Unopened (UO), Used (U), or Deteriorated (D)

^{**} Photographs of the front and back of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

Floor Plan Lime Room CONSEL TA-605-1 Kitchen Closet Closet Carlans bathroom 55-605-1 APT \$605 Meadowbrook Farms NEW Paltz, NY

Location: Meadowbrook Farms
Apartments

Subject:

Cleaning products/chemicals found in home.

(photo 776)

Apartment #605

Location: Meadowbrook Farms
Apartments

Subject:

Cleaning products/chemicals found in home.

(photo 777)

Location: Meadowbrook Farms
Apartments

Subject:

Cleaning products/chemicals found in home.

(photo 778)

Apartment #605

Location: Meadowbrook Farms
Apartments

Subject:

Cleaning products/chemicals found in home.

(photo 779)

Location: Meadowbrook Farms
Apartments

Subject:

Cleaning products/chemicals found in home.

(photo 780)

Apartment #605

Location: Meadowbrook Farms
Apartments

Subject:

Cleaning products/chemicals found in home.

(photo 781)

J.Natale 3/10/09

13. PRODUCT INVENTORY FORM

35.1.0.35.1.00.314		11 11
Make & Model of field instrument used:	1	 #610
		 1 6 1 0

List specific products found in the residence that have the potential to affect indoor air quality.

Location	Product Description	Size (oz.)	Condition*	Chemical Ingredients	Field Instrument Reading	Photo ** Y/N
Keteber	am + Hanner	70	Coccl	Protos	0	Y
it	Rusex Solves	126	ч	+1		li .
ч	Clorox Bleach	96	k	н	-0-	iq
3 (100 - 201	20	11	11	0	4
1)	Muti-cotte	22.	11 4		()	ij
rl	Whidex	26	u i	μ1	()	ι,
11	First force	32	ft	11	-	// '
И	EOSY CHEVRI	16	Rused	16	Ŏ	ч
М	Chauty Core	12.5	Good	li .	·O	Ц
h	Pro Picie To	32	11	и ,	0)t
21076(1) 1912	Niggia sterch	5	11	11	-0-	İt
ł,	Restre	22	ι,	4		ц
łı	Quality Core BUSA	12,5	11	11	<i></i>	И
h	Conet	25	18	11	-	и

^{*} Describe the condition of the product containers as Unopened (UO), Used (U), or Deteriorated (D)

^{**} Photographs of the front and back of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

Floor plan: ve front dear Kitchen FAIR Closet TA-610-1 DMMy Room Entertainment 55-610-1-Liwey Room

APT \$610 Meadowhrook Farms NEW Paltz, NY

Location: Meadowbrook Farms
Apartments

Subject:

Cleaning products/chemicals found in home.

(photo 766)

Apartment #610

Location: Meadowbrook Farms
Apartments

Subject:

Cleaning products/chemicals found in home.

(photo 767)

Location: Meadowbrook Farms
Apartments

Subject:

Cleaning products/chemicals found in home.

(photo 768)

Apartment #610

Location: Meadowbrook Farms
Apartments

Subject:

Cleaning products/chemicals found in home.

(photo 769)

Location: Meadowbrook Farms
Apartments

Subject:

Cleaning products/chemicals found in home.

(photo 770)

Apartment #610

Location: Meadowbrook Farms
Apartments

Subject:

Cleaning products/chemicals found in home.

(photo 771)

Location: Meadowbrook Farms

Apartments

Subject:

Cleaning products/chemicals found in home.

(photo 772)

Apartment #610

Location: Meadowbrook Farms

Apartments

Subject:

Cleaning products/chemicals found

in home.

(photo 773)

Location: Meadowbrook Farms
Apartments

Subject:

Cleaning products/chemicals found in home.

(photo 774)

Apartment #610

Location: Meadowbrook Farms
Apartments

Subject:

Cleaning products/chemicals found in home.

(photo 775)

CLIENT: Adirondack Environmental Services, Inc

Lab Order: C0903021

Project: Revonak Cleaners

Lab ID: C0903021-001A

Date: 20-Mar-09

Client Sample ID: SS-405-1

Tag Number: 86, 260

Collection Date: 3/10/2009
Matrix: AIR

Analyses	Result	Limit (Qual U	nits	DF	Date Analyzed
1UG/M3 BY METHOD TO15		TO-1	15			Analyst: RJP
1,1,1-Trichloroethane	ND	0.83	ug	ı/m3	1	3/20/2009 12:53:00 AM
1,1,2,2-Tetrachloroethane	ND	1.0	ug	ı/m3	1	3/20/2009 12:53:00 AM
1,1,2-Trichloroethane	ND	0.83	ug	ı/m3	1	3/20/2009 12:53:00 AM
1,1-Dichloroethane	ND	0.62	ug	ı/m3	1	3/20/2009 12:53:00 AM
1,1-Dichloroethene	ND	0.60	ug	ı/m3	1	3/20/2009 12:53:00 AM
1,2,4-Trichlorobenzene	ND	1.1	ug	ı/m3	1	3/20/2009 12:53:00 AM
1,2,4-Trimethylbenzene	7.6	0.75	ug	ı/m3	1	3/20/2009 12:53:00 AM
1,2-Dibromoethane	ND	1.2	ug	ı/m3	1	3/20/2009 12:53:00 AM
1,2-Dichlorobenzene	ND	0.92	ug	ı/m3	1	3/20/2009 12:53:00 AM
1,2-Dichloroethane	ND	0.62	ug	ı/m3	1	3/20/2009 12:53:00 AM
1,2-Dichloropropane	ND	0.70	ug	ı/m3	1	3/20/2009 12:53:00 AM
1,3,5-Trimethylbenzene	2.6	0.75	ug	ı/m3	1	3/20/2009 12:53:00 AM
1,3-butadiene	ND	0.34	ug	ı/m3	1	3/20/2009 12:53:00 AM
1,3-Dichlorobenzene	ND	0.92	ug	ı/m3	1	3/20/2009 12:53:00 AM
1,4-Dichlorobenzene	1.3	0.92	ug	ı/m3	1	3/20/2009 12:53:00 AM
1,4-Dioxane	ND	1.1	ug	ı/m3	1	3/20/2009 12:53:00 AM
2,2,4-trimethylpentane	ND	0.71	ug	ı/m3	1	3/20/2009 12:53:00 AM
4-ethyltoluene	2.5	0.75	ug	ı/m3	1	3/20/2009 12:53:00 AM
Acetone	170	29	ug	ı/m3	40	3/20/2009 1:26:00 AM
Allyl chloride	ND	0.48	ug	ı/m3	1	3/20/2009 12:53:00 AM
Benzene	ND	0.49	ug	ı/m3	1	3/20/2009 12:53:00 AM
Benzyl chloride	ND	0.88	ug	ı/m3	1	3/20/2009 12:53:00 AM
Bromodichloromethane	ND	1.0	ug	ı/m3	1	3/20/2009 12:53:00 AM
Bromoform	ND	1.6	ug	ı/m3	1	3/20/2009 12:53:00 AM
Bromomethane	ND	0.59	ug	ı/m3	1	3/20/2009 12:53:00 AM
Carbon disulfide	0.38	0.47	J ug	ı/m3	1	3/20/2009 12:53:00 AM
Carbon tetrachloride	ND	0.96	ug	ı/m3	1	3/20/2009 12:53:00 AM
Chlorobenzene	ND	0.70	ug	ı/m3	1	3/20/2009 12:53:00 AM
Chloroethane	ND	0.40	ug	ı/m3	1	3/20/2009 12:53:00 AM
Chloroform	1.9	0.74	ug	ı/m3	1	3/20/2009 12:53:00 AM
Chloromethane	ND	0.31	ug	ı/m3	1	3/20/2009 12:53:00 AM
cis-1,2-Dichloroethene	ND	0.60	ug	ı/m3	1	3/20/2009 12:53:00 AM
cis-1,3-Dichloropropene	ND	0.69	ug	ı/m3	1	3/20/2009 12:53:00 AM
Cyclohexane	ND	0.52	ug	ı/m3	1	3/20/2009 12:53:00 AM
Dibromochloromethane	ND	1.3	ug	ı/m3	1	3/20/2009 12:53:00 AM
Ethyl acetate	ND	0.92	ug	ı/m3	1	3/20/2009 12:53:00 AM
Ethylbenzene	1.9	0.66	ug	ı/m3	1	3/20/2009 12:53:00 AM
Freon 11	9.1	0.86	ug	ı/m3	1	3/20/2009 12:53:00 AM
Freon 113	ND	1.2	ug	ı/m3	1	3/20/2009 12:53:00 AM
Freon 114	ND	1.1	ug	J/m3	1	3/20/2009 12:53:00 AM

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- $\label{eq:JN-Non-routine} JN \quad \mbox{ Non-routine analyte. Quantitation estimated.}$
- S Spike Recovery outside accepted recovery limits
- E Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

CLIENT: Adirondack Environmental Services, Inc

Lab Order: C0903021

Project: Revonak Cleaners

Lab ID: C0903021-001A

Date: 20-Mar-09

Client Sample ID: SS-405-1

Tag Number: 86, 260

Collection Date: 3/10/2009

Matrix: AIR

Analyses	Result	Limit Qu	ıal Units	DF	Date Analyzed
1UG/M3 BY METHOD TO15		TO-15			Analyst: RJP
Freon 12	380	30	ug/m3	40	3/20/2009 1:26:00 AM
Heptane	2.2	0.62	ug/m3	1	3/20/2009 12:53:00 AM
Hexachloro-1,3-butadiene	ND	1.6	ug/m3	1	3/20/2009 12:53:00 AM
Hexane	1.6	0.54	ug/m3	1	3/20/2009 12:53:00 AM
Isopropyl alcohol	150	15	ug/m3	40	3/20/2009 1:26:00 AM
m&p-Xylene	7.9	1.3	ug/m3	1	3/20/2009 12:53:00 AM
Methyl Butyl Ketone	ND	1.2	ug/m3	1	3/20/2009 12:53:00 AM
Methyl Ethyl Ketone	6.3	9.0	J ug/m3	10	3/19/2009 3:22:00 AM
Methyl Isobutyl Ketone	2.0	1.2	ug/m3	1	3/20/2009 12:53:00 AM
Methyl tert-butyl ether	ND	0.55	ug/m3	1	3/20/2009 12:53:00 AM
Methylene chloride	0.92	0.53	ug/m3	1	3/20/2009 12:53:00 AM
o-Xylene	2.3	0.66	ug/m3	1	3/20/2009 12:53:00 AM
Propylene	ND	0.26	ug/m3	1	3/20/2009 12:53:00 AM
Styrene	6.4	0.65	ug/m3	1	3/20/2009 12:53:00 AM
Tetrachloroethylene	3.2	1.0	ug/m3	1	3/20/2009 12:53:00 AM
Tetrahydrofuran	6.5	0.45	ug/m3	1	3/20/2009 12:53:00 AM
Toluene	17	5.7	ug/m3	10	3/19/2009 3:22:00 AM
trans-1,2-Dichloroethene	ND	0.60	ug/m3	1	3/20/2009 12:53:00 AM
trans-1,3-Dichloropropene	ND	0.69	ug/m3	1	3/20/2009 12:53:00 AM
Trichloroethene	1.9	0.82	ug/m3	1	3/20/2009 12:53:00 AM
Vinyl acetate	ND	0.54	ug/m3	1	3/20/2009 12:53:00 AM
Vinyl Bromide	ND	0.67	ug/m3	1	3/20/2009 12:53:00 AM
Vinyl chloride	ND	0.39	ug/m3	1	3/20/2009 12:53:00 AM

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

 $[\]label{eq:JN-Non-routine} JN \quad \mbox{ Non-routine analyte. Quantitation estimated.}$

S Spike Recovery outside accepted recovery limits

E Value above quantitation range

J Analyte detected at or below quantitation limits

ND Not Detected at the Reporting Limit

CLIENT: Adirondack Environmental Services, Inc

Lab Order: C0903021

Project: Revonak Cleaners

Lab ID: C0903021-002A

Date: 20-Mar-09

Client Sample ID: IA-405-1

Tag Number: 87, 308 **Collection Date:** 3/10/2009

Matrix: AIR

Analyses	Result	Limit	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		TO	-15			Analyst: RJP
1,1,1-Trichloroethane	ND	0.83		ug/m3	1	3/18/2009 8:54:00 PM
1,1,2,2-Tetrachloroethane	ND	1.0		ug/m3	1	3/18/2009 8:54:00 PM
1,1,2-Trichloroethane	ND	0.83		ug/m3	1	3/18/2009 8:54:00 PM
1,1-Dichloroethane	ND	0.62		ug/m3	1	3/18/2009 8:54:00 PM
1,1-Dichloroethene	ND	0.60		ug/m3	1	3/18/2009 8:54:00 PM
1,2,4-Trichlorobenzene	ND	1.1		ug/m3	1	3/18/2009 8:54:00 PM
1,2,4-Trimethylbenzene	2.9	0.75		ug/m3	1	3/18/2009 8:54:00 PM
1,2-Dibromoethane	ND	1.2		ug/m3	1	3/18/2009 8:54:00 PM
1,2-Dichlorobenzene	ND	0.92		ug/m3	1	3/18/2009 8:54:00 PM
1,2-Dichloroethane	0.58	0.62	J	ug/m3	1	3/18/2009 8:54:00 PM
1,2-Dichloropropane	ND	0.70		ug/m3	1	3/18/2009 8:54:00 PM
1,3,5-Trimethylbenzene	1.8	0.75		ug/m3	1	3/18/2009 8:54:00 PM
1,3-butadiene	ND	0.34		ug/m3	1	3/18/2009 8:54:00 PM
1,3-Dichlorobenzene	ND	0.92		ug/m3	1	3/18/2009 8:54:00 PM
1,4-Dichlorobenzene	ND	0.92		ug/m3	1	3/18/2009 8:54:00 PM
1,4-Dioxane	ND	1.1		ug/m3	1	3/18/2009 8:54:00 PM
2,2,4-trimethylpentane	ND	0.71		ug/m3	1	3/18/2009 8:54:00 PM
4-ethyltoluene	1.4	0.75		ug/m3	1	3/18/2009 8:54:00 PM
Acetone	170	29		ug/m3	40	3/19/2009 4:43:00 PM
Allyl chloride	ND	0.48		ug/m3	1	3/18/2009 8:54:00 PM
Benzene	10	4.9		ug/m3	10	3/19/2009 4:10:00 PM
Benzyl chloride	ND	0.88		ug/m3	1	3/18/2009 8:54:00 PM
Bromodichloromethane	ND	1.0		ug/m3	1	3/18/2009 8:54:00 PM
Bromoform	ND	1.6		ug/m3	1	3/18/2009 8:54:00 PM
Bromomethane	ND	0.59		ug/m3	1	3/18/2009 8:54:00 PM
Carbon disulfide	0.51	0.47		ug/m3	1	3/18/2009 8:54:00 PM
Carbon tetrachloride	ND	0.26		ug/m3	1	3/18/2009 8:54:00 PM
Chlorobenzene	ND	0.70		ug/m3	1	3/18/2009 8:54:00 PM
Chloroethane	ND	0.40		ug/m3	1	3/18/2009 8:54:00 PM
Chloroform	1.0	0.74		ug/m3	1	3/18/2009 8:54:00 PM
Chloromethane	10	3.1		ug/m3	10	3/19/2009 4:10:00 PM
cis-1,2-Dichloroethene	ND	0.60		ug/m3	1	3/18/2009 8:54:00 PM
cis-1,3-Dichloropropene	ND	0.69		ug/m3	1	3/18/2009 8:54:00 PM
Cyclohexane	ND	0.52		ug/m3	1	3/18/2009 8:54:00 PM
Dibromochloromethane	ND	1.3		ug/m3	1	3/18/2009 8:54:00 PM
Ethyl acetate	17	9.2		ug/m3	10	3/19/2009 4:10:00 PM
Ethylbenzene	2.4	0.66		ug/m3	1	3/18/2009 8:54:00 PM
Freon 11	88	8.6		ug/m3	10	3/19/2009 4:10:00 PM
Freon 113	ND	1.2		ug/m3	1	3/18/2009 8:54:00 PM
Freon 114	ND	1.1		ug/m3	1	3/18/2009 8:54:00 PM

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- E Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

CLIENT: Adirondack Environmental Services, Inc

Lab Order: C0903021

Project: Revonak Cleaners

Lab ID: C0903021-002A

Date: 20-Mar-09

Client Sample ID: IA-405-1

Tag Number: 87, 308 **Collection Date:** 3/10/2009

Matrix: AIR

Analyses	Result	Limit Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		TO-15			Analyst: RJP
Freon 12	8.4	0.75	ug/m3	1	3/18/2009 8:54:00 PM
Heptane	2.2	0.62	ug/m3	1	3/18/2009 8:54:00 PM
Hexachloro-1,3-butadiene	ND	1.6	ug/m3	1	3/18/2009 8:54:00 PM
Hexane	ND	0.54	ug/m3	1	3/18/2009 8:54:00 PM
Isopropyl alcohol	36	3.7	ug/m3	10	3/19/2009 4:10:00 PM
m&p-Xylene	7.0	1.3	ug/m3	1	3/18/2009 8:54:00 PM
Methyl Butyl Ketone	ND	1.2	ug/m3	1	3/18/2009 8:54:00 PM
Methyl Ethyl Ketone	15	9.0	ug/m3	10	3/19/2009 4:10:00 PM
Methyl Isobutyl Ketone	2.1	1.2	ug/m3	1	3/18/2009 8:54:00 PM
Methyl tert-butyl ether	ND	0.55	ug/m3	1	3/18/2009 8:54:00 PM
Methylene chloride	4.3	0.53	ug/m3	1	3/18/2009 8:54:00 PM
o-Xylene	1.9	0.66	ug/m3	1	3/18/2009 8:54:00 PM
Propylene	ND	0.26	ug/m3	1	3/18/2009 8:54:00 PM
Styrene	4.1	0.65	ug/m3	1	3/18/2009 8:54:00 PM
Tetrachloroethylene	ND	1.0	ug/m3	1	3/18/2009 8:54:00 PM
Tetrahydrofuran	ND	0.45	ug/m3	1	3/18/2009 8:54:00 PM
Toluene	34	5.7	ug/m3	10	3/19/2009 4:10:00 PM
trans-1,2-Dichloroethene	ND	0.60	ug/m3	1	3/18/2009 8:54:00 PM
trans-1,3-Dichloropropene	ND	0.69	ug/m3	1	3/18/2009 8:54:00 PM
Trichloroethene	0.55	0.22	ug/m3	1	3/18/2009 8:54:00 PM
Vinyl acetate	ND	0.54	ug/m3	1	3/18/2009 8:54:00 PM
Vinyl Bromide	ND	0.67	ug/m3	1	3/18/2009 8:54:00 PM
Vinyl chloride	ND	0.10	ug/m3	1	3/18/2009 8:54:00 PM

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

 $[\]label{eq:JN-Non-routine} JN \quad \mbox{ Non-routine analyte. Quantitation estimated.}$

S Spike Recovery outside accepted recovery limits

E Value above quantitation range

J Analyte detected at or below quantitation limits

ND Not Detected at the Reporting Limit

CLIENT: Adirondack Environmental Services, Inc

Lab Order: C0903021

Project: Revonak Cleaners

Lab ID: C0903021-003A

Date: 20-Mar-09

Client Sample ID: SS-401-1

Tag Number: 130, 281 **Collection Date:** 3/10/2009

Matrix: AIR

Analyses	Result	Limit Qu	al Units	DF	Date Analyzed
1UG/M3 BY METHOD TO15		TO-15			Analyst: RJP
1,1,1-Trichloroethane	ND	0.83	ug/m3	1	3/20/2009 2:00:00 AM
1,1,2,2-Tetrachloroethane	ND	1.0	ug/m3	1	3/20/2009 2:00:00 AM
1,1,2-Trichloroethane	ND	0.83	ug/m3	1	3/20/2009 2:00:00 AM
1,1-Dichloroethane	ND	0.62	ug/m3	1	3/20/2009 2:00:00 AM
1,1-Dichloroethene	ND	0.60	ug/m3	1	3/20/2009 2:00:00 AM
1,2,4-Trichlorobenzene	ND	1.1	ug/m3	1	3/20/2009 2:00:00 AM
1,2,4-Trimethylbenzene	3.7	0.75	ug/m3	1	3/20/2009 2:00:00 AM
1,2-Dibromoethane	ND	1.2	ug/m3	1	3/20/2009 2:00:00 AM
1,2-Dichlorobenzene	ND	0.92	ug/m3	1	3/20/2009 2:00:00 AM
1,2-Dichloroethane	ND	0.62	ug/m3	1	3/20/2009 2:00:00 AM
1,2-Dichloropropane	ND	0.70	ug/m3	1	3/20/2009 2:00:00 AM
1,3,5-Trimethylbenzene	1.9	0.75	ug/m3	1	3/20/2009 2:00:00 AM
1,3-butadiene	ND	0.34	ug/m3	1	3/20/2009 2:00:00 AM
1,3-Dichlorobenzene	ND	0.92	ug/m3	1	3/20/2009 2:00:00 AM
1,4-Dichlorobenzene	1.2	0.92	ug/m3	1	3/20/2009 2:00:00 AM
1,4-Dioxane	ND	1.1	ug/m3	1	3/20/2009 2:00:00 AM
2,2,4-trimethylpentane	ND	0.71	ug/m3	1	3/20/2009 2:00:00 AM
4-ethyltoluene	1.6	0.75	ug/m3	1	3/20/2009 2:00:00 AM
Acetone	30	7.2	ug/m3	10	3/19/2009 3:54:00 AM
Allyl chloride	ND	0.48	ug/m3	1	3/20/2009 2:00:00 AM
Benzene	0.65	0.49	ug/m3	1	3/20/2009 2:00:00 AM
Benzyl chloride	ND	0.88	ug/m3	1	3/20/2009 2:00:00 AM
Bromodichloromethane	ND	1.0	ug/m3	1	3/20/2009 2:00:00 AM
Bromoform	ND	1.6	ug/m3	1	3/20/2009 2:00:00 AM
Bromomethane	ND	0.59	ug/m3	1	3/20/2009 2:00:00 AM
Carbon disulfide	ND	0.47	ug/m3	1	3/20/2009 2:00:00 AM
Carbon tetrachloride	ND	0.96	ug/m3	1	3/20/2009 2:00:00 AM
Chlorobenzene	ND	0.70	ug/m3	1	3/20/2009 2:00:00 AM
Chloroethane	ND	0.40	ug/m3	1	3/20/2009 2:00:00 AM
Chloroform	0.94	0.74	ug/m3	1	3/20/2009 2:00:00 AM
Chloromethane	ND	0.31	ug/m3	1	3/20/2009 2:00:00 AM
cis-1,2-Dichloroethene	ND	0.60	ug/m3	1	3/20/2009 2:00:00 AM
cis-1,3-Dichloropropene	ND	0.69	ug/m3	1	3/20/2009 2:00:00 AM
Cyclohexane	ND	0.52	ug/m3	1	3/20/2009 2:00:00 AM
Dibromochloromethane	ND	1.3	ug/m3	1	3/20/2009 2:00:00 AM
Ethyl acetate	1.3	0.92	ug/m3	1	3/20/2009 2:00:00 AM
Ethylbenzene	1.5	0.66	ug/m3	1	3/20/2009 2:00:00 AM
Freon 11	5.8	0.86	ug/m3	1	3/20/2009 2:00:00 AM
Freon 113	ND	1.2	ug/m3	1	3/20/2009 2:00:00 AM
Freon 114	ND	1.1	ug/m3	1	3/20/2009 2:00:00 AM

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- $\label{eq:JN-Non-routine} JN \quad \mbox{ Non-routine analyte. Quantitation estimated.}$
- S Spike Recovery outside accepted recovery limits
- E Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

CLIENT: Adirondack Environmental Services, Inc

Lab Order: C0903021

Project: Revonak Cleaners

Lab ID: C0903021-003A

Date: 20-Mar-09

Client Sample ID: SS-401-1

Tag Number: 130, 281 **Collection Date:** 3/10/2009

Matrix: AIR

Analyses	Result	Limit Q	ual Units	DF	Date Analyzed
1UG/M3 BY METHOD TO15		TO-15	5		Analyst: RJP
Freon 12	350	30	ug/m3	40	3/20/2009 2:33:00 AM
Heptane	1.9	0.62	ug/m3	1	3/20/2009 2:00:00 AM
Hexachloro-1,3-butadiene	ND	1.6	ug/m3	1	3/20/2009 2:00:00 AM
Hexane	ND	0.54	ug/m3	1	3/20/2009 2:00:00 AM
Isopropyl alcohol	6.2	3.7	ug/m3	10	3/19/2009 3:54:00 AM
m&p-Xylene	4.9	1.3	ug/m3	1	3/20/2009 2:00:00 AM
Methyl Butyl Ketone	ND	1.2	ug/m3	1	3/20/2009 2:00:00 AM
Methyl Ethyl Ketone	4.3	0.90	ug/m3	1	3/20/2009 2:00:00 AM
Methyl Isobutyl Ketone	1.7	1.2	ug/m3	1	3/20/2009 2:00:00 AM
Methyl tert-butyl ether	ND	0.55	ug/m3	1	3/20/2009 2:00:00 AM
Methylene chloride	0.88	0.53	ug/m3	1	3/20/2009 2:00:00 AM
o-Xylene	1.5	0.66	ug/m3	1	3/20/2009 2:00:00 AM
Propylene	ND	0.26	ug/m3	1	3/20/2009 2:00:00 AM
Styrene	4.6	0.65	ug/m3	1	3/20/2009 2:00:00 AM
Tetrachloroethylene	4.8	1.0	ug/m3	1	3/20/2009 2:00:00 AM
Tetrahydrofuran	3.8	0.45	ug/m3	1	3/20/2009 2:00:00 AM
Toluene	13	5.7	ug/m3	10	3/19/2009 3:54:00 AM
trans-1,2-Dichloroethene	ND	0.60	ug/m3	1	3/20/2009 2:00:00 AM
trans-1,3-Dichloropropene	ND	0.69	ug/m3	1	3/20/2009 2:00:00 AM
Trichloroethene	0.60	0.82	J ug/m3	1	3/20/2009 2:00:00 AM
Vinyl acetate	ND	0.54	ug/m3	1	3/20/2009 2:00:00 AM
Vinyl Bromide	ND	0.67	ug/m3	1	3/20/2009 2:00:00 AM
Vinyl chloride	ND	0.39	ug/m3	1	3/20/2009 2:00:00 AM

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

 $[\]label{eq:JN-Non-routine} JN \quad \mbox{ Non-routine analyte. Quantitation estimated.}$

S Spike Recovery outside accepted recovery limits

E Value above quantitation range

J Analyte detected at or below quantitation limits

ND Not Detected at the Reporting Limit

CLIENT: Adirondack Environmental Services, Inc

Lab Order: C0903021

Project: Revonak Cleaners

Lab ID: C0903021-004A

Date: 20-Mar-09

Client Sample ID: IA-401-1

Tag Number: 234, 251 **Collection Date:** 3/10/2009

Matrix: AIR

Analyses	Result	Limit	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		TO-	·15			Analyst: RJP
1,1,1-Trichloroethane	ND	0.83		ug/m3	1	3/18/2009 9:27:00 PM
1,1,2,2-Tetrachloroethane	ND	1.0		ug/m3	1	3/18/2009 9:27:00 PM
1,1,2-Trichloroethane	ND	0.83		ug/m3	1	3/18/2009 9:27:00 PM
1,1-Dichloroethane	ND	0.62		ug/m3	1	3/18/2009 9:27:00 PM
1,1-Dichloroethene	ND	0.60		ug/m3	1	3/18/2009 9:27:00 PM
1,2,4-Trichlorobenzene	ND	1.1		ug/m3	1	3/18/2009 9:27:00 PM
1,2,4-Trimethylbenzene	1.5	0.75		ug/m3	1	3/18/2009 9:27:00 PM
1,2-Dibromoethane	ND	1.2		ug/m3	1	3/18/2009 9:27:00 PM
1,2-Dichlorobenzene	ND	0.92		ug/m3	1	3/18/2009 9:27:00 PM
1,2-Dichloroethane	ND	0.62		ug/m3	1	3/18/2009 9:27:00 PM
1,2-Dichloropropane	ND	0.70		ug/m3	1	3/18/2009 9:27:00 PM
1,3,5-Trimethylbenzene	1.1	0.75		ug/m3	1	3/18/2009 9:27:00 PM
1,3-butadiene	ND	0.34		ug/m3	1	3/18/2009 9:27:00 PM
1,3-Dichlorobenzene	ND	0.92		ug/m3	1	3/18/2009 9:27:00 PM
1,4-Dichlorobenzene	ND	0.92		ug/m3	1	3/18/2009 9:27:00 PM
1,4-Dioxane	ND	1.1		ug/m3	1	3/18/2009 9:27:00 PM
2,2,4-trimethylpentane	ND	0.71		ug/m3	1	3/18/2009 9:27:00 PM
4-ethyltoluene	0.50	0.75		ug/m3	1	3/18/2009 9:27:00 PM
Acetone	45	7.2		ug/m3	10	3/19/2009 5:15:00 PM
Allyl chloride	ND	0.48		ug/m3	1	3/18/2009 9:27:00 PM
Benzene	1.1	0.49		ug/m3	1	3/18/2009 9:27:00 PM
Benzyl chloride	ND	0.88		ug/m3	1	3/18/2009 9:27:00 PM
Bromodichloromethane	ND	1.0		ug/m3	1	3/18/2009 9:27:00 PM
Bromoform	ND	1.6		ug/m3	1	3/18/2009 9:27:00 PM
Bromomethane	ND	0.59		ug/m3	1	3/18/2009 9:27:00 PM
Carbon disulfide	ND	0.47		ug/m3	1	3/18/2009 9:27:00 PM
Carbon tetrachloride	ND	0.26		ug/m3	1	3/18/2009 9:27:00 PM
Chlorobenzene	ND	0.70		ug/m3	1	3/18/2009 9:27:00 PM
Chloroethane	ND	0.40		ug/m3	1	3/18/2009 9:27:00 PM
Chloroform	0.94	0.74		ug/m3	1	3/18/2009 9:27:00 PM
Chloromethane	ND	0.31		ug/m3	1	3/18/2009 9:27:00 PM
cis-1,2-Dichloroethene	ND	0.60		ug/m3	1	3/18/2009 9:27:00 PM
cis-1,3-Dichloropropene	ND	0.69		ug/m3	1	3/18/2009 9:27:00 PM
Cyclohexane	0.80	0.52		ug/m3	1	3/18/2009 9:27:00 PM
Dibromochloromethane	ND	1.3		ug/m3	1	3/18/2009 9:27:00 PM
Ethyl acetate	61	9.2		ug/m3	10	3/19/2009 5:15:00 PM
Ethylbenzene	0.62	0.66		ug/m3	1	3/18/2009 9:27:00 PM
Freon 11	38	8.6		ug/m3	10	3/19/2009 5:15:00 PM
Freon 113	ND	1.2		ug/m3	1	3/18/2009 9:27:00 PM
Freon 114	ND	1.1		ug/m3	1	3/18/2009 9:27:00 PM

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- E Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

CLIENT: Adirondack Environmental Services, Inc

Lab Order: C0903021

Project: Revonak Cleaners

Lab ID: C0903021-004A

Date: 20-Mar-09

Client Sample ID: IA-401-1

Tag Number: 234, 251 **Collection Date:** 3/10/2009

Matrix: AIR

Analyses	Result	Limit Qua	l Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		TO-15			Analyst: RJP
Freon 12	4.9	0.75	ug/m3	1	3/18/2009 9:27:00 PM
Heptane	1.0	0.62	ug/m3	1	3/18/2009 9:27:00 PM
Hexachloro-1,3-butadiene	ND	1.6	ug/m3	1	3/18/2009 9:27:00 PM
Hexane	0.82	0.54	ug/m3	1	3/18/2009 9:27:00 PM
Isopropyl alcohol	13	3.7	ug/m3	10	3/19/2009 5:15:00 PM
m&p-Xylene	1.6	1.3	ug/m3	1	3/18/2009 9:27:00 PM
Methyl Butyl Ketone	ND	1.2	ug/m3	1	3/18/2009 9:27:00 PM
Methyl Ethyl Ketone	ND	0.90	ug/m3	1	3/18/2009 9:27:00 PM
Methyl Isobutyl Ketone	ND	1.2	ug/m3	1	3/18/2009 9:27:00 PM
Methyl tert-butyl ether	ND	0.55	ug/m3	1	3/18/2009 9:27:00 PM
Methylene chloride	0.64	0.53	ug/m3	1	3/18/2009 9:27:00 PM
o-Xylene	0.71	0.66	ug/m3	1	3/18/2009 9:27:00 PM
Propylene	ND	0.26	ug/m3	1	3/18/2009 9:27:00 PM
Styrene	1.6	0.65	ug/m3	1	3/18/2009 9:27:00 PM
Tetrachloroethylene	ND	1.0	ug/m3	1	3/18/2009 9:27:00 PM
Tetrahydrofuran	ND	0.45	ug/m3	1	3/18/2009 9:27:00 PM
Toluene	9.2	5.7	ug/m3	10	3/19/2009 5:15:00 PM
trans-1,2-Dichloroethene	ND	0.60	ug/m3	1	3/18/2009 9:27:00 PM
trans-1,3-Dichloropropene	ND	0.69	ug/m3	1	3/18/2009 9:27:00 PM
Trichloroethene	0.38	0.22	ug/m3	1	3/18/2009 9:27:00 PM
Vinyl acetate	ND	0.54	ug/m3	1	3/18/2009 9:27:00 PM
Vinyl Bromide	ND	0.67	ug/m3	1	3/18/2009 9:27:00 PM
Vinyl chloride	ND	0.10	ug/m3	1	3/18/2009 9:27:00 PM

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

 $[\]label{eq:JN-Non-routine} JN \quad \mbox{ Non-routine analyte. Quantitation estimated.}$

S Spike Recovery outside accepted recovery limits

E Value above quantitation range

J Analyte detected at or below quantitation limits

ND Not Detected at the Reporting Limit

CLIENT: Adirondack Environmental Services, Inc

Lab Order: C0903021

Project: Revonak Cleaners

Lab ID: C0903021-005A

Date: 20-Mar-09

Client Sample ID: SS-410-1 Tag Number: 315, 62

Collection Date: 3/10/2009

Matrix: AIR

Analyses	Result	Limit Qu	al Units	DF	Date Analyzed
1UG/M3 BY METHOD TO15		TO-15		Analyst: RJP	
1,1,1-Trichloroethane	ND	0.83	ug/m3	1	3/20/2009 3:07:00 AM
1,1,2,2-Tetrachloroethane	ND	1.0	ug/m3	1	3/20/2009 3:07:00 AM
1,1,2-Trichloroethane	ND	0.83	ug/m3	1	3/20/2009 3:07:00 AM
1,1-Dichloroethane	ND	0.62	ug/m3	1	3/20/2009 3:07:00 AM
1,1-Dichloroethene	ND	0.60	ug/m3	1	3/20/2009 3:07:00 AM
1,2,4-Trichlorobenzene	ND	1.1	ug/m3	1	3/20/2009 3:07:00 AM
1,2,4-Trimethylbenzene	3.5	0.75	ug/m3	1	3/20/2009 3:07:00 AM
1,2-Dibromoethane	ND	1.2	ug/m3	1	3/20/2009 3:07:00 AM
1,2-Dichlorobenzene	ND	0.92	ug/m3	1	3/20/2009 3:07:00 AM
1,2-Dichloroethane	ND	0.62	ug/m3	1	3/20/2009 3:07:00 AM
1,2-Dichloropropane	ND	0.70	ug/m3	1	3/20/2009 3:07:00 AM
1,3,5-Trimethylbenzene	3.0	0.75	ug/m3	1	3/20/2009 3:07:00 AM
1,3-butadiene	ND	0.34	ug/m3	1	3/20/2009 3:07:00 AM
1,3-Dichlorobenzene	ND	0.92	ug/m3	1	3/20/2009 3:07:00 AM
1,4-Dichlorobenzene	1.3	0.92	ug/m3	1	3/20/2009 3:07:00 AM
1,4-Dioxane	ND	1.1	ug/m3	1	3/20/2009 3:07:00 AM
2,2,4-trimethylpentane	ND	0.71	ug/m3	1	3/20/2009 3:07:00 AM
4-ethyltoluene	1.6	0.75	ug/m3	1	3/20/2009 3:07:00 AM
Acetone	27	7.2	ug/m3	10	3/19/2009 4:27:00 AM
Allyl chloride	ND	0.48	ug/m3	1	3/20/2009 3:07:00 AM
Benzene	ND	0.49	ug/m3	1	3/20/2009 3:07:00 AM
Benzyl chloride	ND	0.88	ug/m3	1	3/20/2009 3:07:00 AM
Bromodichloromethane	ND	1.0	ug/m3	1	3/20/2009 3:07:00 AM
Bromoform	ND	1.6	ug/m3	1	3/20/2009 3:07:00 AM
Bromomethane	ND	0.59	ug/m3	1	3/20/2009 3:07:00 AM
Carbon disulfide	0.47	0.47	ug/m3	1	3/20/2009 3:07:00 AM
Carbon tetrachloride	ND	0.96	ug/m3	1	3/20/2009 3:07:00 AM
Chlorobenzene	ND	0.70	ug/m3	1	3/20/2009 3:07:00 AM
Chloroethane	ND	0.40	ug/m3	1	3/20/2009 3:07:00 AM
Chloroform	ND	0.74	ug/m3	1	3/20/2009 3:07:00 AM
Chloromethane	ND	0.31	ug/m3	1	3/20/2009 3:07:00 AM
cis-1,2-Dichloroethene	0.69	0.60	ug/m3	1	3/20/2009 3:07:00 AM
cis-1,3-Dichloropropene	ND	0.69	ug/m3	1	3/20/2009 3:07:00 AM
Cyclohexane	ND	0.52	ug/m3	1	3/20/2009 3:07:00 AM
Dibromochloromethane	ND	1.3	ug/m3	1	3/20/2009 3:07:00 AM
Ethyl acetate	ND	0.92	ug/m3	1	3/20/2009 3:07:00 AM
Ethylbenzene	34	6.6	ug/m3	10	3/19/2009 4:27:00 AM
Freon 11	5.8	0.86	ug/m3	1	3/20/2009 3:07:00 AM
Freon 113	ND	1.2	ug/m3	1	3/20/2009 3:07:00 AM
Freon 114	ND	1.1	ug/m3	1	3/20/2009 3:07:00 AM

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- $\label{eq:JN-Non-routine} JN \quad \mbox{ Non-routine analyte. Quantitation estimated.}$
- S Spike Recovery outside accepted recovery limits
- E Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

CLIENT: Adirondack Environmental Services, Inc

Lab Order: C0903021

Project: Revonak Cleaners

Lab ID: C0903021-005A

Date: 20-Mar-09

Client Sample ID: SS-410-1

Tag Number: 315, 62

Collection Date: 3/10/2009

Matrix: AIR

Analyses	Result	Limit Q	ual Units	DF	Date Analyzed
1UG/M3 BY METHOD TO15		TO-15		Analyst: RJP	
Freon 12	340	30	ug/m3	40	3/20/2009 3:39:00 AM
Heptane	1.3	0.62	ug/m3	1	3/20/2009 3:07:00 AM
Hexachloro-1,3-butadiene	ND	1.6	ug/m3	1	3/20/2009 3:07:00 AM
Hexane	ND	0.54	ug/m3	1	3/20/2009 3:07:00 AM
Isopropyl alcohol	6.7	3.7	ug/m3	10	3/19/2009 4:27:00 AM
m&p-Xylene	6.3	1.3	ug/m3	1	3/20/2009 3:07:00 AM
Methyl Butyl Ketone	ND	1.2	ug/m3	1	3/20/2009 3:07:00 AM
Methyl Ethyl Ketone	4.3	0.90	ug/m3	1	3/20/2009 3:07:00 AM
Methyl Isobutyl Ketone	1.2	1.2	J ug/m3	1	3/20/2009 3:07:00 AM
Methyl tert-butyl ether	ND	0.55	ug/m3	1	3/20/2009 3:07:00 AM
Methylene chloride	0.74	0.53	ug/m3	1	3/20/2009 3:07:00 AM
o-Xylene	1.7	0.66	ug/m3	1	3/20/2009 3:07:00 AM
Propylene	ND	0.26	ug/m3	1	3/20/2009 3:07:00 AM
Styrene	4.1	0.65	ug/m3	1	3/20/2009 3:07:00 AM
Tetrachloroethylene	4.8	1.0	ug/m3	1	3/20/2009 3:07:00 AM
Tetrahydrofuran	3.3	0.45	ug/m3	1	3/20/2009 3:07:00 AM
Toluene	14	5.7	ug/m3	10	3/19/2009 4:27:00 AM
trans-1,2-Dichloroethene	ND	0.60	ug/m3	1	3/20/2009 3:07:00 AM
trans-1,3-Dichloropropene	ND	0.69	ug/m3	1	3/20/2009 3:07:00 AM
Trichloroethene	0.93	0.82	ug/m3	1	3/20/2009 3:07:00 AM
Vinyl acetate	ND	0.54	ug/m3	1	3/20/2009 3:07:00 AM
Vinyl Bromide	ND	0.67	ug/m3	1	3/20/2009 3:07:00 AM
Vinyl chloride	ND	0.39	ug/m3	1	3/20/2009 3:07:00 AM

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

 $[\]label{eq:JN-Non-routine} JN \quad \mbox{ Non-routine analyte. Quantitation estimated.}$

S Spike Recovery outside accepted recovery limits

E Value above quantitation range

J Analyte detected at or below quantitation limits

ND Not Detected at the Reporting Limit

CLIENT: Adirondack Environmental Services, Inc

Lab Order: C0903021

Project: Revonak Cleaners

Lab ID: C0903021-006A

Date: 20-Mar-09

Client Sample ID: IA-410-1

Tag Number: 351, 155 **Collection Date:** 3/10/2009

Matrix: AIR

Analyses	Result	Limit Qu	ıal Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		TO-15			Analyst: RJP
1,1,1-Trichloroethane	ND	0.83	ug/m3	1	3/18/2009 10:00:00 PM
1,1,2,2-Tetrachloroethane	ND	1.0	ug/m3	1	3/18/2009 10:00:00 PM
1,1,2-Trichloroethane	ND	0.83	ug/m3	1	3/18/2009 10:00:00 PM
1,1-Dichloroethane	ND	0.62	ug/m3	1	3/18/2009 10:00:00 PM
1,1-Dichloroethene	ND	0.60	ug/m3	1	3/18/2009 10:00:00 PM
1,2,4-Trichlorobenzene	ND	1.1	ug/m3	1	3/18/2009 10:00:00 PM
1,2,4-Trimethylbenzene	1.4	0.75	ug/m3	1	3/18/2009 10:00:00 PM
1,2-Dibromoethane	ND	1.2	ug/m3	1	3/18/2009 10:00:00 PM
1,2-Dichlorobenzene	ND	0.92	ug/m3	1	3/18/2009 10:00:00 PM
1,2-Dichloroethane	ND	0.62	ug/m3	1	3/18/2009 10:00:00 PM
1,2-Dichloropropane	ND	0.70	ug/m3	1	3/18/2009 10:00:00 PM
1,3,5-Trimethylbenzene	1.0	0.75	ug/m3	1	3/18/2009 10:00:00 PM
1,3-butadiene	ND	0.34	ug/m3	1	3/18/2009 10:00:00 PM
1,3-Dichlorobenzene	ND	0.92	ug/m3	1	3/18/2009 10:00:00 PM
1,4-Dichlorobenzene	ND	0.92	ug/m3	1	3/18/2009 10:00:00 PM
1,4-Dioxane	ND	1.1	ug/m3	1	3/18/2009 10:00:00 PM
2,2,4-trimethylpentane	ND	0.71	ug/m3	1	3/18/2009 10:00:00 PM
4-ethyltoluene	0.55	0.75 J	J ug/m3	1	3/18/2009 10:00:00 PM
Acetone	48	7.2	ug/m3	10	3/19/2009 5:47:00 PM
Allyl chloride	ND	0.48	ug/m3	1	3/18/2009 10:00:00 PM
Benzene	0.97	0.49	ug/m3	1	3/18/2009 10:00:00 PM
Benzyl chloride	ND	0.88	ug/m3	1	3/18/2009 10:00:00 PM
Bromodichloromethane	ND	1.0	ug/m3	1	3/18/2009 10:00:00 PM
Bromoform	ND	1.6	ug/m3	1	3/18/2009 10:00:00 PM
Bromomethane	ND	0.59	ug/m3	1	3/18/2009 10:00:00 PM
Carbon disulfide	ND	0.47	ug/m3	1	3/18/2009 10:00:00 PM
Carbon tetrachloride	0.64	0.26	ug/m3	1	3/18/2009 10:00:00 PM
Chlorobenzene	ND	0.70	ug/m3	1	3/18/2009 10:00:00 PM
Chloroethane	ND	0.40	ug/m3	1	3/18/2009 10:00:00 PM
Chloroform	1.3	0.74	ug/m3	1	3/18/2009 10:00:00 PM
Chloromethane	1.5	0.31	ug/m3	1	3/18/2009 10:00:00 PM
cis-1,2-Dichloroethene	ND	0.60	ug/m3	1	3/18/2009 10:00:00 PM
cis-1,3-Dichloropropene	ND	0.69	ug/m3	1	3/18/2009 10:00:00 PM
Cyclohexane	0.80	0.52	ug/m3	1	3/18/2009 10:00:00 PM
Dibromochloromethane	ND	1.3	ug/m3	1	3/18/2009 10:00:00 PM
Ethyl acetate	6.5	0.92	ug/m3	1	3/18/2009 10:00:00 PM
Ethylbenzene	1.1	0.66	ug/m3	1	3/18/2009 10:00:00 PM
Freon 11	120	8.6	ug/m3	10	3/19/2009 5:47:00 PM
Freon 113	ND	1.2	ug/m3	1	3/18/2009 10:00:00 PM
Freon 114	ND	1.1	ug/m3	1	3/18/2009 10:00:00 PM

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- $\label{eq:JN-Non-routine} JN \quad \mbox{ Non-routine analyte. Quantitation estimated.}$
- S Spike Recovery outside accepted recovery limits
- E Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

CLIENT: Adirondack Environmental Services, Inc

Lab Order: C0903021

Project: Revonak Cleaners

Lab ID: C0903021-006A

Date: 20-Mar-09

Client Sample ID: IA-410-1

Tag Number: 351, 155 **Collection Date:** 3/10/2009

Matrix: AIR

Analyses	Result	Limit Q	Qual Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		TO-1	5		Analyst: RJP
Freon 12	5.8	0.75	ug/m3	1	3/18/2009 10:00:00 PM
Heptane	5.4	0.62	ug/m3	1	3/18/2009 10:00:00 PM
Hexachloro-1,3-butadiene	ND	1.6	ug/m3	1	3/18/2009 10:00:00 PM
Hexane	1.3	0.54	ug/m3	1	3/18/2009 10:00:00 PM
Isopropyl alcohol	ND	0.37	ug/m3	1	3/18/2009 10:00:00 PM
m&p-Xylene	3.2	1.3	ug/m3	1	3/18/2009 10:00:00 PM
Methyl Butyl Ketone	ND	1.2	ug/m3	1	3/18/2009 10:00:00 PM
Methyl Ethyl Ketone	2.7	0.90	ug/m3	1	3/18/2009 10:00:00 PM
Methyl Isobutyl Ketone	5.0	1.2	ug/m3	1	3/18/2009 10:00:00 PM
Methyl tert-butyl ether	ND	0.55	ug/m3	1	3/18/2009 10:00:00 PM
Methylene chloride	0.56	0.53	ug/m3	1	3/18/2009 10:00:00 PM
o-Xylene	1.2	0.66	ug/m3	1	3/18/2009 10:00:00 PM
Propylene	ND	0.26	ug/m3	1	3/18/2009 10:00:00 PM
Styrene	2.0	0.65	ug/m3	1	3/18/2009 10:00:00 PM
Tetrachloroethylene	0.76	1.0	J ug/m3	1	3/18/2009 10:00:00 PM
Tetrahydrofuran	2.5	0.45	ug/m3	1	3/18/2009 10:00:00 PM
Toluene	10	5.7	ug/m3	10	3/19/2009 5:47:00 PM
trans-1,2-Dichloroethene	ND	0.60	ug/m3	1	3/18/2009 10:00:00 PM
trans-1,3-Dichloropropene	ND	0.69	ug/m3	1	3/18/2009 10:00:00 PM
Trichloroethene	0.44	0.22	ug/m3	1	3/18/2009 10:00:00 PM
Vinyl acetate	ND	0.54	ug/m3	1	3/18/2009 10:00:00 PM
Vinyl Bromide	ND	0.67	ug/m3	1	3/18/2009 10:00:00 PM
Vinyl chloride	ND	0.10	ug/m3	1	3/18/2009 10:00:00 PM

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

 $[\]label{eq:JN-Non-routine} JN \quad \mbox{ Non-routine analyte. Quantitation estimated.}$

S Spike Recovery outside accepted recovery limits

E Value above quantitation range

J Analyte detected at or below quantitation limits

ND Not Detected at the Reporting Limit

CLIENT: Adirondack Environmental Services, Inc

Lab Order: C0903021

Project: Revonak Cleaners

Lab ID: C0903021-007A

Date: 20-Mar-09

Client Sample ID: SS-512-1

Tag Number: 129, 373 **Collection Date:** 3/10/2009

Matrix: AIR

Analyses	Result	Limit Qu	al Units	DF	Date Analyzed
1UG/M3 BY METHOD TO15		TO-15		Analyst: RJP	
1,1,1-Trichloroethane	ND	0.83	ug/m3	1	3/20/2009 4:13:00 AM
1,1,2,2-Tetrachloroethane	ND	1.0	ug/m3	1	3/20/2009 4:13:00 AM
1,1,2-Trichloroethane	ND	0.83	ug/m3	1	3/20/2009 4:13:00 AM
1,1-Dichloroethane	ND	0.62	ug/m3	1	3/20/2009 4:13:00 AM
1,1-Dichloroethene	ND	0.60	ug/m3	1	3/20/2009 4:13:00 AM
1,2,4-Trichlorobenzene	ND	1.1	ug/m3	1	3/20/2009 4:13:00 AM
1,2,4-Trimethylbenzene	4.0	0.75	ug/m3	1	3/20/2009 4:13:00 AM
1,2-Dibromoethane	ND	1.2	ug/m3	1	3/20/2009 4:13:00 AM
1,2-Dichlorobenzene	ND	0.92	ug/m3	1	3/20/2009 4:13:00 AM
1,2-Dichloroethane	ND	0.62	ug/m3	1	3/20/2009 4:13:00 AM
1,2-Dichloropropane	ND	0.70	ug/m3	1	3/20/2009 4:13:00 AM
1,3,5-Trimethylbenzene	2.3	0.75	ug/m3	1	3/20/2009 4:13:00 AM
1,3-butadiene	ND	0.34	ug/m3	1	3/20/2009 4:13:00 AM
1,3-Dichlorobenzene	ND	0.92	ug/m3	1	3/20/2009 4:13:00 AM
1,4-Dichlorobenzene	1.7	0.92	ug/m3	1	3/20/2009 4:13:00 AM
1,4-Dioxane	ND	1.1	ug/m3	1	3/20/2009 4:13:00 AM
2,2,4-trimethylpentane	1.5	0.71	ug/m3	1	3/20/2009 4:13:00 AM
4-ethyltoluene	1.6	0.75	ug/m3	1	3/20/2009 4:13:00 AM
Acetone	130	29	ug/m3	40	3/20/2009 4:46:00 AM
Allyl chloride	ND	0.48	ug/m3	1	3/20/2009 4:13:00 AM
Benzene	2.7	0.49	ug/m3	1	3/20/2009 4:13:00 AM
Benzyl chloride	ND	0.88	ug/m3	1	3/20/2009 4:13:00 AM
Bromodichloromethane	ND	1.0	ug/m3	1	3/20/2009 4:13:00 AM
Bromoform	ND	1.6	ug/m3	1	3/20/2009 4:13:00 AM
Bromomethane	ND	0.59	ug/m3	1	3/20/2009 4:13:00 AM
Carbon disulfide	0.47	0.47	ug/m3	1	3/20/2009 4:13:00 AM
Carbon tetrachloride	ND	0.96	ug/m3	1	3/20/2009 4:13:00 AM
Chlorobenzene	ND	0.70	ug/m3	1	3/20/2009 4:13:00 AM
Chloroethane	ND	0.40	ug/m3	1	3/20/2009 4:13:00 AM
Chloroform	ND	0.74	ug/m3	1	3/20/2009 4:13:00 AM
Chloromethane	ND	0.31	ug/m3	1	3/20/2009 4:13:00 AM
cis-1,2-Dichloroethene	ND	0.60	ug/m3	1	3/20/2009 4:13:00 AM
cis-1,3-Dichloropropene	ND	0.69	ug/m3	1	3/20/2009 4:13:00 AM
Cyclohexane	ND	0.52	ug/m3	1	3/20/2009 4:13:00 AM
Dibromochloromethane	ND	1.3	ug/m3	1	3/20/2009 4:13:00 AM
Ethyl acetate	4.4	0.92	ug/m3	1	3/20/2009 4:13:00 AM
Ethylbenzene	2.6	0.66	ug/m3	1	3/20/2009 4:13:00 AM
Freon 11	5.7	0.86	ug/m3	1	3/20/2009 4:13:00 AM
Freon 113	ND	1.2	ug/m3	1	3/20/2009 4:13:00 AM
Freon 114	ND	1.1	ug/m3	1	3/20/2009 4:13:00 AM

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- $\label{eq:JN-Non-routine} JN \quad \mbox{ Non-routine analyte. Quantitation estimated.}$
- S Spike Recovery outside accepted recovery limits
- E Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

CLIENT: Adirondack Environmental Services, Inc

Lab Order: C0903021

Project: Revonak Cleaners

Lab ID: C0903021-007A

Date: 20-Mar-09

Client Sample ID: SS-512-1 Tag Number: 129, 373

Collection Date: 3/10/2009

Matrix: AIR

Analyses	Result	Limit Qu	ıal Units	DF	Date Analyzed
1UG/M3 BY METHOD TO15	TO-15			Analyst: RJP	
Freon 12	240	30	ug/m3	40	3/20/2009 4:46:00 AM
Heptane	4.2	0.62	ug/m3	1	3/20/2009 4:13:00 AM
Hexachloro-1,3-butadiene	ND	1.6	ug/m3	1	3/20/2009 4:13:00 AM
Hexane	5.8	0.54	ug/m3	1	3/20/2009 4:13:00 AM
Isopropyl alcohol	ND	0.37	ug/m3	1	3/20/2009 4:13:00 AM
m&p-Xylene	8.7	1.3	ug/m3	1	3/20/2009 4:13:00 AM
Methyl Butyl Ketone	ND	1.2	ug/m3	1	3/20/2009 4:13:00 AM
Methyl Ethyl Ketone	4.6	0.90	ug/m3	1	3/20/2009 4:13:00 AM
Methyl Isobutyl Ketone	3.8	1.2	ug/m3	1	3/20/2009 4:13:00 AM
Methyl tert-butyl ether	ND	0.55	ug/m3	1	3/20/2009 4:13:00 AM
Methylene chloride	0.81	0.53	ug/m3	1	3/20/2009 4:13:00 AM
o-Xylene	2.7	0.66	ug/m3	1	3/20/2009 4:13:00 AM
Propylene	ND	0.26	ug/m3	1	3/20/2009 4:13:00 AM
Styrene	3.1	0.65	ug/m3	1	3/20/2009 4:13:00 AM
Tetrachloroethylene	6.6	1.0	ug/m3	1	3/20/2009 4:13:00 AM
Tetrahydrofuran	5.6	0.45	ug/m3	1	3/20/2009 4:13:00 AM
Toluene	18	5.7	ug/m3	10	3/19/2009 4:59:00 AM
trans-1,2-Dichloroethene	ND	0.60	ug/m3	1	3/20/2009 4:13:00 AM
trans-1,3-Dichloropropene	ND	0.69	ug/m3	1	3/20/2009 4:13:00 AM
Trichloroethene	0.66	0.82	J ug/m3	1	3/20/2009 4:13:00 AM
Vinyl acetate	ND	0.54	ug/m3	1	3/20/2009 4:13:00 AM
Vinyl Bromide	ND	0.67	ug/m3	1	3/20/2009 4:13:00 AM
Vinyl chloride	ND	0.39	ug/m3	1	3/20/2009 4:13:00 AM

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

 $JN \quad \ Non-routine \ analyte. \ Quantitation \ estimated.$

S Spike Recovery outside accepted recovery limits

E Value above quantitation range

J Analyte detected at or below quantitation limits

ND Not Detected at the Reporting Limit

CLIENT: Adirondack Environmental Services, Inc

Lab Order: C0903021

Project: Revonak Cleaners

Lab ID: C0903021-008A

Date: 20-Mar-09

Client Sample ID: IA-512-1

Tag Number: 237, 387

Collection Date: 3/10/2009

Matrix: AIR

Analyses	Result	Limit Qu	ıal Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		TO-15			Analyst: RJP
1,1,1-Trichloroethane	ND	0.83	ug/m3	1	3/18/2009 10:32:00 PM
1,1,2,2-Tetrachloroethane	ND	1.0	ug/m3	1	3/18/2009 10:32:00 PM
1,1,2-Trichloroethane	ND	0.83	ug/m3	1	3/18/2009 10:32:00 PM
1,1-Dichloroethane	ND	0.62	ug/m3	1	3/18/2009 10:32:00 PM
1,1-Dichloroethene	ND	0.60	ug/m3	1	3/18/2009 10:32:00 PM
1,2,4-Trichlorobenzene	ND	1.1	ug/m3	1	3/18/2009 10:32:00 PM
1,2,4-Trimethylbenzene	2.1	0.75	ug/m3	1	3/18/2009 10:32:00 PM
1,2-Dibromoethane	ND	1.2	ug/m3	1	3/18/2009 10:32:00 PM
1,2-Dichlorobenzene	ND	0.92	ug/m3	1	3/18/2009 10:32:00 PM
1,2-Dichloroethane	ND	0.62	ug/m3	1	3/18/2009 10:32:00 PM
1,2-Dichloropropane	ND	0.70	ug/m3	1	3/18/2009 10:32:00 PM
1,3,5-Trimethylbenzene	1.0	0.75	ug/m3	1	3/18/2009 10:32:00 PM
1,3-butadiene	ND	0.34	ug/m3	1	3/18/2009 10:32:00 PM
1,3-Dichlorobenzene	ND	0.92	ug/m3	1	3/18/2009 10:32:00 PM
1,4-Dichlorobenzene	ND	0.92	ug/m3	1	3/18/2009 10:32:00 PM
1,4-Dioxane	ND	1.1	ug/m3	1	3/18/2009 10:32:00 PM
2,2,4-trimethylpentane	0.81	0.71	ug/m3	1	3/18/2009 10:32:00 PM
4-ethyltoluene	0.85	0.75	ug/m3	1	3/18/2009 10:32:00 PM
Acetone	180	29	ug/m3	40	3/19/2009 6:52:00 PM
Allyl chloride	ND	0.48	ug/m3	1	3/18/2009 10:32:00 PM
Benzene	2.2	0.49	ug/m3	1	3/18/2009 10:32:00 PM
Benzyl chloride	ND	0.88	ug/m3	1	3/18/2009 10:32:00 PM
Bromodichloromethane	ND	1.0	ug/m3	1	3/18/2009 10:32:00 PM
Bromoform	ND	1.6	ug/m3	1	3/18/2009 10:32:00 PM
Bromomethane	ND	0.59	ug/m3	1	3/18/2009 10:32:00 PM
Carbon disulfide	ND	0.47	ug/m3	1	3/18/2009 10:32:00 PM
Carbon tetrachloride	ND	0.26	ug/m3	1	3/18/2009 10:32:00 PM
Chlorobenzene	ND	0.70	ug/m3	1	3/18/2009 10:32:00 PM
Chloroethane	ND	0.40	ug/m3	1	3/18/2009 10:32:00 PM
Chloroform	ND	0.74	ug/m3	1	3/18/2009 10:32:00 PM
Chloromethane	1.8	0.31	ug/m3	1	3/18/2009 10:32:00 PM
cis-1,2-Dichloroethene	ND	0.60	ug/m3	1	3/18/2009 10:32:00 PM
cis-1,3-Dichloropropene	ND	0.69	ug/m3	1	3/18/2009 10:32:00 PM
Cyclohexane	1.1	0.52	ug/m3	1	3/18/2009 10:32:00 PM
Dibromochloromethane	ND	1.3	ug/m3	1	3/18/2009 10:32:00 PM
Ethyl acetate	18	9.2	ug/m3	10	3/19/2009 10.32.00 PM
Ethylbenzene	1.1	0.66	ug/m3	10	3/18/2009 10:32:00 PM
Freon 11	1.1	8.6	· ·	10	3/19/2009 10:32:00 PM 3/19/2009 6:20:00 PM
Freon 11 Freon 113	ND	8.6 1.2	ug/m3	10	
			ug/m3		3/18/2009 10:32:00 PM
Freon 114	ND	1.1	ug/m3	1	3/18/2009 10:32:00 PM

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- $\label{eq:JN-Non-routine} JN \quad \mbox{ Non-routine analyte. Quantitation estimated.}$
- S Spike Recovery outside accepted recovery limits
- E Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

CLIENT: Adirondack Environmental Services, Inc

Lab Order: C0903021

Project: Revonak Cleaners

Lab ID: C0903021-008A

Date: 20-Mar-09

Client Sample ID: IA-512-1

Tag Number: 237, 387

Collection Date: 3/10/2009

Matrix: AIR

Analyses	Result	Limit Q	ual Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		TO-15	•		Analyst: RJP
Freon 12	3.3	0.75	ug/m3	1	3/18/2009 10:32:00 PM
Heptane	2.2	0.62	ug/m3	1	3/18/2009 10:32:00 PM
Hexachloro-1,3-butadiene	ND	1.6	ug/m3	1	3/18/2009 10:32:00 PM
Hexane	2.7	0.54	ug/m3	1	3/18/2009 10:32:00 PM
Isopropyl alcohol	ND	0.37	ug/m3	1	3/18/2009 10:32:00 PM
m&p-Xylene	3.5	1.3	ug/m3	1	3/18/2009 10:32:00 PM
Methyl Butyl Ketone	ND	1.2	ug/m3	1	3/18/2009 10:32:00 PM
Methyl Ethyl Ketone	4.2	0.90	ug/m3	1	3/18/2009 10:32:00 PM
Methyl Isobutyl Ketone	2.1	1.2	ug/m3	1	3/18/2009 10:32:00 PM
Methyl tert-butyl ether	ND	0.55	ug/m3	1	3/18/2009 10:32:00 PM
Methylene chloride	0.53	0.53	ug/m3	1	3/18/2009 10:32:00 PM
o-Xylene	1.2	0.66	ug/m3	1	3/18/2009 10:32:00 PM
Propylene	ND	0.26	ug/m3	1	3/18/2009 10:32:00 PM
Styrene	1.7	0.65	ug/m3	1	3/18/2009 10:32:00 PM
Tetrachloroethylene	0.83	1.0	J ug/m3	1	3/18/2009 10:32:00 PM
Tetrahydrofuran	ND	0.45	ug/m3	1	3/18/2009 10:32:00 PM
Toluene	10	5.7	ug/m3	10	3/19/2009 6:20:00 PM
trans-1,2-Dichloroethene	ND	0.60	ug/m3	1	3/18/2009 10:32:00 PM
trans-1,3-Dichloropropene	ND	0.69	ug/m3	1	3/18/2009 10:32:00 PM
Trichloroethene	0.44	0.22	ug/m3	1	3/18/2009 10:32:00 PM
Vinyl acetate	ND	0.54	ug/m3	1	3/18/2009 10:32:00 PM
Vinyl Bromide	ND	0.67	ug/m3	1	3/18/2009 10:32:00 PM
Vinyl chloride	ND	0.10	ug/m3	1	3/18/2009 10:32:00 PM

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

 $[\]label{eq:JN-Non-routine} JN \quad \mbox{ Non-routine analyte. Quantitation estimated.}$

S Spike Recovery outside accepted recovery limits

E Value above quantitation range

J Analyte detected at or below quantitation limits

ND Not Detected at the Reporting Limit

CLIENT: Adirondack Environmental Services, Inc

Lab Order: C0903021

Project: Revonak Cleaners

Lab ID: C0903021-009A

Date: 20-Mar-09

Client Sample ID: SS-507-1

Tag Number: 328, 391 **Collection Date:** 3/10/2009

Matrix: AIR

1UG/M3 BY METHOD TO15 1,1,1-Trichloroethane ND 1,1,2,2-Tetrachloroethane ND 1,1,2-Trichloroethane ND 1,1-Dichloroethane ND 1,1-Dichloroethene ND 1,2,4-Trichlorobenzene ND	TO-15 0.83 1.0 0.83 0.62 0.60 1.1 0.75 1.2 0.92	ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3	1 1 1 1 1	Analyst: RJP 3/20/2009 5:20:00 AM 3/20/2009 5:20:00 AM 3/20/2009 5:20:00 AM 3/20/2009 5:20:00 AM 3/20/2009 5:20:00 AM 3/20/2009 5:20:00 AM
1,1,2,2-TetrachloroethaneND1,1,2-TrichloroethaneND1,1-DichloroethaneND1,1-DichloroetheneND	1.0 0.83 0.62 0.60 1.1 0.75 1.2	ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3	1 1 1 1	3/20/2009 5:20:00 AM 3/20/2009 5:20:00 AM 3/20/2009 5:20:00 AM 3/20/2009 5:20:00 AM
1,1,2-TrichloroethaneND1,1-DichloroethaneND1,1-DichloroetheneND	0.83 0.62 0.60 1.1 0.75 1.2	ug/m3 ug/m3 ug/m3 ug/m3 ug/m3	1 1 1 1	3/20/2009 5:20:00 AM 3/20/2009 5:20:00 AM 3/20/2009 5:20:00 AM
1,1-Dichloroethane ND 1,1-Dichloroethene ND	0.62 0.60 1.1 0.75 1.2	ug/m3 ug/m3 ug/m3 ug/m3	1 1 1	3/20/2009 5:20:00 AM 3/20/2009 5:20:00 AM
1,1-Dichloroethene ND	0.60 1.1 0.75 1.2	ug/m3 ug/m3 ug/m3	1 1	3/20/2009 5:20:00 AM
,	1.1 0.75 1.2	ug/m3 ug/m3	1	
1.2.4 Trichlorohonzono	0.75 1.2	ug/m3		3/20/2009 5:20:00 AM
1,2,4-Trichlorobenzene ND	1.2	_	1	5, _5, _ 5, _ 5, _ 6, _ 6, _ 6, _ 7, WI
1,2,4-Trimethylbenzene 2.8		na/m3	ı	3/20/2009 5:20:00 AM
1,2-Dibromoethane ND	0.92	ug/iiio	1	3/20/2009 5:20:00 AM
1,2-Dichlorobenzene ND		ug/m3	1	3/20/2009 5:20:00 AM
1,2-Dichloroethane ND	0.62	ug/m3	1	3/20/2009 5:20:00 AM
1,2-Dichloropropane ND	0.70	ug/m3	1	3/20/2009 5:20:00 AM
1,3,5-Trimethylbenzene 1.5	0.75	ug/m3	1	3/20/2009 5:20:00 AM
1,3-butadiene ND	0.34	ug/m3	1	3/20/2009 5:20:00 AM
1,3-Dichlorobenzene ND	0.92	ug/m3	1	3/20/2009 5:20:00 AM
1,4-Dichlorobenzene 1.7	0.92	ug/m3	1	3/20/2009 5:20:00 AM
1,4-Dioxane ND	1.1	ug/m3	1	3/20/2009 5:20:00 AM
2,2,4-trimethylpentane ND	0.71	ug/m3	1	3/20/2009 5:20:00 AM
4-ethyltoluene 1.1	0.75	ug/m3	1	3/20/2009 5:20:00 AM
Acetone 20	7.2	ug/m3	10	3/19/2009 5:31:00 AM
Allyl chloride ND	0.48	ug/m3	1	3/20/2009 5:20:00 AM
Benzene 0.62	0.49	ug/m3	1	3/20/2009 5:20:00 AM
Benzyl chloride ND	0.88	ug/m3	1	3/20/2009 5:20:00 AM
Bromodichloromethane ND	1.0	ug/m3	1	3/20/2009 5:20:00 AM
Bromoform ND	1.6	ug/m3	1	3/20/2009 5:20:00 AM
Bromomethane ND	0.59	ug/m3	1	3/20/2009 5:20:00 AM
Carbon disulfide ND	0.47	ug/m3	1	3/20/2009 5:20:00 AM
Carbon tetrachloride 0.70	0.96 J	ug/m3	1	3/20/2009 5:20:00 AM
Chlorobenzene ND	0.70	ug/m3	1	3/20/2009 5:20:00 AM
Chloroethane ND	0.40	ug/m3	1	3/20/2009 5:20:00 AM
Chloroform ND	0.74	ug/m3	1	3/20/2009 5:20:00 AM
Chloromethane	0.31	ug/m3	1	3/20/2009 5:20:00 AM
cis-1,2-Dichloroethene ND	0.60	ug/m3	1	3/20/2009 5:20:00 AM
cis-1,3-Dichloropropene ND	0.69	ug/m3	1	3/20/2009 5:20:00 AM
Cyclohexane ND	0.52	ug/m3	1	3/20/2009 5:20:00 AM
Dibromochloromethane ND	1.3	ug/m3	1	3/20/2009 5:20:00 AM
Ethyl acetate ND	0.92	ug/m3	1	3/20/2009 5:20:00 AM
Ethylbenzene 1.5	0.66	ug/m3	1	3/20/2009 5:20:00 AM
Freon 11 5.3	0.86	ug/m3	1	3/20/2009 5:20:00 AM
Freon 113 ND	1.2	ug/m3	1	3/20/2009 5:20:00 AM
Freon 114 ND	1.1	ug/m3	1	3/20/2009 5:20:00 AM

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- E Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

CLIENT: Adirondack Environmental Services, Inc

Lab Order: C0903021

Project: Revonak Cleaners

Lab ID: C0903021-009A

Date: 20-Mar-09

Client Sample ID: SS-507-1

Tag Number: 328, 391 **Collection Date:** 3/10/2009

Matrix: AIR

Analyses	Result	Limit Qu	ıal Units	DF	Date Analyzed
1UG/M3 BY METHOD TO15		TO-15		Analyst: RJP	
Freon 12	9.7	0.75	ug/m3	1	3/20/2009 5:20:00 AM
Heptane	2.0	0.62	ug/m3	1	3/20/2009 5:20:00 AM
Hexachloro-1,3-butadiene	ND	1.6	ug/m3	1	3/20/2009 5:20:00 AM
Hexane	ND	0.54	ug/m3	1	3/20/2009 5:20:00 AM
Isopropyl alcohol	4.1	0.37	ug/m3	1	3/20/2009 5:20:00 AM
m&p-Xylene	4.4	1.3	ug/m3	1	3/20/2009 5:20:00 AM
Methyl Butyl Ketone	ND	1.2	ug/m3	1	3/20/2009 5:20:00 AM
Methyl Ethyl Ketone	3.3	0.90	ug/m3	1	3/20/2009 5:20:00 AM
Methyl Isobutyl Ketone	1.8	1.2	ug/m3	1	3/20/2009 5:20:00 AM
Methyl tert-butyl ether	ND	0.55	ug/m3	1	3/20/2009 5:20:00 AM
Methylene chloride	0.85	0.53	ug/m3	1	3/20/2009 5:20:00 AM
o-Xylene	1.2	0.66	ug/m3	1	3/20/2009 5:20:00 AM
Propylene	ND	0.26	ug/m3	1	3/20/2009 5:20:00 AM
Styrene	3.3	0.65	ug/m3	1	3/20/2009 5:20:00 AM
Tetrachloroethylene	6.6	1.0	ug/m3	1	3/20/2009 5:20:00 AM
Tetrahydrofuran	3.1	0.45	ug/m3	1	3/20/2009 5:20:00 AM
Toluene	11	5.7	ug/m3	10	3/19/2009 5:31:00 AM
trans-1,2-Dichloroethene	ND	0.60	ug/m3	1	3/20/2009 5:20:00 AM
trans-1,3-Dichloropropene	ND	0.69	ug/m3	1	3/20/2009 5:20:00 AM
Trichloroethene	ND	0.82	ug/m3	1	3/20/2009 5:20:00 AM
Vinyl acetate	ND	0.54	ug/m3	1	3/20/2009 5:20:00 AM
Vinyl Bromide	ND	0.67	ug/m3	1	3/20/2009 5:20:00 AM
Vinyl chloride	ND	0.39	ug/m3	1	3/20/2009 5:20:00 AM

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

 $JN \quad \ Non-routine \ analyte. \ Quantitation \ estimated.$

S Spike Recovery outside accepted recovery limits

E Value above quantitation range

J Analyte detected at or below quantitation limits

ND Not Detected at the Reporting Limit

CLIENT: Adirondack Environmental Services, Inc

Lab Order: C0903021

Project: Revonak Cleaners

Lab ID: C0903021-010A

Date: 20-Mar-09

Client Sample ID: IA-507-1

Tag Number: 236, 179 **Collection Date:** 3/10/2009

Matrix: AIR

TUG/M3 W/ 0.25UG/M3 CT-TCE-VC
1,1,2,2-Tetrachloroethane ND 1.0 ug/m3 1 3/18/2009 11:04:00 PM 1,1,2-Trichloroethane ND 0.83 ug/m3 1 3/18/2009 11:04:00 PM 1,1-Dichloroethane ND 0.62 ug/m3 1 3/18/2009 11:04:00 PM 1,1-Dichloroethene ND 0.60 ug/m3 1 3/18/2009 11:04:00 PM 1,2,4-Trinethylbenzene ND 1.1 ug/m3 1 3/18/2009 11:04:00 PM 1,2-Dichorobenzene ND 1.2 ug/m3 1 3/18/2009 11:04:00 PM 1,2-Dichlorobenzene ND 0.92 ug/m3 1 3/18/2009 11:04:00 PM 1,2-Dichlorobenzene ND 0.62 ug/m3 1 3/18/2009 11:04:00 PM 1,2-Dichloropropane ND 0.70 ug/m3 1 3/18/2009 11:04:00 PM 1,3-Dichlorobenzene ND 0.75 ug/m3 1 3/18/2009 11:04:00 PM 1,3-Dichlorobenzene ND 0.75 ug/m3 1 3/18/2009 11:04:00 PM 1,3-Dichlorobenzene ND
1,1,2-Trichloroethane ND 0.83 ug/m3 1 3/18/2009 11:04:00 PM 1,1-Dichloroethane ND 0.62 ug/m3 1 3/18/2009 11:04:00 PM 1,1-Dichloroethene ND 0.60 ug/m3 1 3/18/2009 11:04:00 PM 1,2,4-Trichlorobenzene ND 1.1 ug/m3 1 3/18/2009 11:04:00 PM 1,2-Dibromoethane ND 1.2 ug/m3 1 3/18/2009 11:04:00 PM 1,2-Dichlorobenzene ND 0.92 ug/m3 1 3/18/2009 11:04:00 PM 1,2-Dichlorobenzene ND 0.92 ug/m3 1 3/18/2009 11:04:00 PM 1,2-Dichloropropane ND 0.70 ug/m3 1 3/18/2009 11:04:00 PM 1,3-Dutadiene ND 0.75 ug/m3 1 3/18/2009 11:04:00 PM 1,3-Dichlorobenzene ND 0.34 ug/m3 1 3/18/2009 11:04:00 PM 1,3-Dichlorobenzene ND 0.92 ug/m3 1 3/18/2009 11:04:00 PM 1,4-Dichlorobenzene ND 0.92
1,1-Dichloroethane ND 0.62 ug/m3 1 3/18/2009 11:04:00 PM 1,1-Dichloroethene ND 0.60 ug/m3 1 3/18/2009 11:04:00 PM 1,2,4-Trichlorobenzene ND 1.1 ug/m3 1 3/18/2009 11:04:00 PM 1,2,4-Trimethylbenzene 1.7 0.75 ug/m3 1 3/18/2009 11:04:00 PM 1,2-Dichlorobenzene ND 0.92 ug/m3 1 3/18/2009 11:04:00 PM 1,2-Dichloroethane ND 0.62 ug/m3 1 3/18/2009 11:04:00 PM 1,2-Dichloropropane ND 0.62 ug/m3 1 3/18/2009 11:04:00 PM 1,2-Dichloropropane ND 0.75 ug/m3 1 3/18/2009 11:04:00 PM 1,3-5-Trimethylbenzene ND 0.75 ug/m3 1 3/18/2009 11:04:00 PM 1,3-bichlorobenzene ND 0.92 ug/m3 1 3/18/2009 11:04:00 PM 1,4-Dichlorobenzene ND 0.92 ug/m3 1 3/18/2009 11:04:00 PM 1,4-Dichlorobenzene ND
1,1-Dichloroethene ND 0.60 ug/m3 1 3/18/2009 11:04:00 PM 1,2,4-Trichlorobenzene ND 1.1 ug/m3 1 3/18/2009 11:04:00 PM 1,2,4-Trimethylbenzene 1.7 0.75 ug/m3 1 3/18/2009 11:04:00 PM 1,2-Dibromoethane ND 1.2 ug/m3 1 3/18/2009 11:04:00 PM 1,2-Dichlorobenzene ND 0.92 ug/m3 1 3/18/2009 11:04:00 PM 1,2-Dichloropropane ND 0.62 ug/m3 1 3/18/2009 11:04:00 PM 1,2-Dichloropropane ND 0.70 ug/m3 1 3/18/2009 11:04:00 PM 1,2-Dichloropropane ND 0.75 ug/m3 1 3/18/2009 11:04:00 PM 1,3-Dichlorobenzene ND 0.75 ug/m3 1 3/18/2009 11:04:00 PM 1,3-Dichlorobenzene ND 0.92 ug/m3 1 3/18/2009 11:04:00 PM 1,4-Dichlorobenzene ND 0.92 ug/m3 1 3/18/2009 11:04:00 PM 1,4-Dichlorobenzene ND
1,2,4-Trichlorobenzene ND 1.1 ug/m3 1 3/18/2009 11:04:00 PM 1,2,4-Trimethylbenzene 1.7 0.75 ug/m3 1 3/18/2009 11:04:00 PM 1,2-Dibromoethane ND 0.92 ug/m3 1 3/18/2009 11:04:00 PM 1,2-Dichlorobenzene ND 0.92 ug/m3 1 3/18/2009 11:04:00 PM 1,2-Dichloroptenae ND 0.62 ug/m3 1 3/18/2009 11:04:00 PM 1,2-Dichloroptopane ND 0.70 ug/m3 1 3/18/2009 11:04:00 PM 1,2-Dichlorobenzene ND 0.75 ug/m3 1 3/18/2009 11:04:00 PM 1,3-butadiene ND 0.94 ug/m3 1 3/18/2009 11:04:00 PM 1,3-Dichlorobenzene ND 0.92 ug/m3 1 3/18/2009 11:04:00 PM 1,4-Dichlorobenzene ND 0.92 ug/m3 1 3/18/2009 11:04:00 PM 1,4-Dioxane ND 0.92 ug/m3 1 3/18/2009 11:04:00 PM 1,4-Dioxane ND 1.1
1,2,4-Trimethylbenzene 1.7 0.75 ug/m3 1 3/18/2009 11:04:00 PM 1,2-Dibromoethane ND 1.2 ug/m3 1 3/18/2009 11:04:00 PM 1,2-Dichlorobenzene ND 0.92 ug/m3 1 3/18/2009 11:04:00 PM 1,2-Dichloroptopane ND 0.62 ug/m3 1 3/18/2009 11:04:00 PM 1,2-Dichloroptopane ND 0.75 ug/m3 1 3/18/2009 11:04:00 PM 1,3-Frimethylbenzene 1.0 0.75 ug/m3 1 3/18/2009 11:04:00 PM 1,3-Dichlorobenzene ND 0.92 ug/m3 1 3/18/2009 11:04:00 PM 1,3-Dichlorobenzene ND 0.92 ug/m3 1 3/18/2009 11:04:00 PM 1,4-Dichlorobenzene ND 0.92 ug/m3 1 3/18/2009 11:04:00 PM 1,4-Dichlorobenzene ND 0.92 ug/m3 1 3/18/2009 11:04:00 PM 1,4-Dichlorobenzene ND 0.91 ug/m3 1 3/18/2009 11:04:00 PM 1,4-Dichlorobenzene ND
1,2-Dibromoethane ND 1.2 ug/m3 1 3/18/2009 11:04:00 PM 1,2-Dichlorobenzene ND 0.92 ug/m3 1 3/18/2009 11:04:00 PM 1,2-Dichloroethane ND 0.62 ug/m3 1 3/18/2009 11:04:00 PM 1,2-Dichloropropane ND 0.70 ug/m3 1 3/18/2009 11:04:00 PM 1,3-5-Trimethylbenzene 1.0 0.75 ug/m3 1 3/18/2009 11:04:00 PM 1,3-bichlorobenzene ND 0.34 ug/m3 1 3/18/2009 11:04:00 PM 1,3-Dichlorobenzene ND 0.92 ug/m3 1 3/18/2009 11:04:00 PM 1,4-Dichlorobenzene ND 0.92 ug/m3 1 3/18/2009 11:04:00 PM 1,4-Dichlorobenzene ND 0.92 ug/m3 1 3/18/2009 11:04:00 PM 1,4-Dichlorobenzene ND 0.71 ug/m3 1 3/18/2009 11:04:00 PM 1,4-Dichlorobenzene ND 0.71 ug/m3 1 3/18/2009 11:04:00 PM 4,2,4-trimethylpentane ND
1,2-Dichlorobenzene ND 0.92 ug/m3 1 3/18/2009 11:04:00 PM 1,2-Dichloroethane ND 0.62 ug/m3 1 3/18/2009 11:04:00 PM 1,2-Dichloropropane ND 0.70 ug/m3 1 3/18/2009 11:04:00 PM 1,3,5-Trimethylbenzene 1.0 0.75 ug/m3 1 3/18/2009 11:04:00 PM 1,3-butadiene ND 0.34 ug/m3 1 3/18/2009 11:04:00 PM 1,3-Dichlorobenzene ND 0.92 ug/m3 1 3/18/2009 11:04:00 PM 1,4-Dichlorobenzene ND 0.92 ug/m3 1 3/18/2009 11:04:00 PM 1,4-Dioxane ND 0.92 ug/m3 1 3/18/2009 11:04:00 PM 1,4-Dioxane ND 0.71 ug/m3 1 3/18/2009 11:04:00 PM 2,2,4-trimethylpentane ND 0.71 ug/m3 1 3/18/2009 11:04:00 PM 4-ethyltoluene 0.55 0.75 J ug/m3 1 3/18/2009 11:04:00 PM Acetone 43 7.2 ug/m3
1,2-Dichloroethane ND 0.62 ug/m3 1 3/18/2009 11:04:00 PM 1,2-Dichloropropane ND 0.70 ug/m3 1 3/18/2009 11:04:00 PM 1,3-5-Trimethylbenzene 1.0 0.75 ug/m3 1 3/18/2009 11:04:00 PM 1,3-butadiene ND 0.34 ug/m3 1 3/18/2009 11:04:00 PM 1,3-Dichlorobenzene ND 0.92 ug/m3 1 3/18/2009 11:04:00 PM 1,4-Dichlorobenzene ND 0.92 ug/m3 1 3/18/2009 11:04:00 PM 1,4-Dichlorobenzene ND 0.91 ug/m3 1 3/18/2009 11:04:00 PM 1,4-Dichlorobenzene ND 0.91 ug/m3 1 3/18/2009 11:04:00 PM 1,4-Dichlorobenzene ND 0.71 ug/m3 1 3/18/2009 11:04:00 PM 1,4-Dichlorobenzene ND 0.71 ug/m3 1 3/18/2009 11:04:00 PM 4-ethyltoluene 0.55 0.75 J ug/m3 1 3/18/2009 11:04:00 PM 4-ethyltoluene 0.55 0.75
1,2-Dichloropropane ND 0.70 ug/m3 1 3/18/2009 11:04:00 PM 1,3,5-Trimethylbenzene 1.0 0.75 ug/m3 1 3/18/2009 11:04:00 PM 1,3-butadiene ND 0.34 ug/m3 1 3/18/2009 11:04:00 PM 1,3-Dichlorobenzene ND 0.92 ug/m3 1 3/18/2009 11:04:00 PM 1,4-Dickne ND 0.92 ug/m3 1 3/18/2009 11:04:00 PM 1,4-Dioxane ND 1.1 ug/m3 1 3/18/2009 11:04:00 PM 2,2-4-trimethylpentane ND 0.71 ug/m3 1 3/18/2009 11:04:00 PM 4-ethyltoluene 0.55 0.75 J ug/m3 1 3/18/2009 11:04:00 PM 4-ethyltoluene 0.55 0.75 J ug/m3 1 3/18/2009 11:04:00 PM Acetone 43 7.2 ug/m3 1 3/18/2009 11:04:00 PM Allyl chloride ND 0.48 ug/m3 1 3/18/2009 11:04:00 PM Benzyl chloride ND 0.88 ug/m3
1,3,5-Trimethylbenzene 1.0 0.75 ug/m3 1 3/18/2009 11:04:00 PM 1,3-butadiene ND 0.34 ug/m3 1 3/18/2009 11:04:00 PM 1,3-Dichlorobenzene ND 0.92 ug/m3 1 3/18/2009 11:04:00 PM 1,4-Dichlorobenzene ND 0.92 ug/m3 1 3/18/2009 11:04:00 PM 1,4-Dioxane ND 0.71 ug/m3 1 3/18/2009 11:04:00 PM 2,2,4-trimethylpentane ND 0.71 ug/m3 1 3/18/2009 11:04:00 PM 4-ethyltoluene 0.55 0.75 J ug/m3 1 3/18/2009 11:04:00 PM Acetone 43 7.2 ug/m3 1 3/18/2009 11:04:00 PM Ally chloride ND 0.48 ug/m3 1 3/18/2009 11:04:00 PM Benzene 0.97 0.49 ug/m3 1 3/18/2009 11:04:00 PM Benzene 0.97 0.49 ug/m3 1 3/18/2009 11:04:00 PM Bromodichloromethane ND 1.0 ug/m3 1 3/18/2009 11:04:00 PM Bromoform ND 0.59
1,3-butadiene ND 0.34 ug/m3 1 3/18/2009 11:04:00 PM 1,3-Dichlorobenzene ND 0.92 ug/m3 1 3/18/2009 11:04:00 PM 1,4-Dichlorobenzene ND 0.92 ug/m3 1 3/18/2009 11:04:00 PM 1,4-Dioxane ND 0.71 ug/m3 1 3/18/2009 11:04:00 PM 2,2,4-trimethylpentane ND 0.71 ug/m3 1 3/18/2009 11:04:00 PM 4-ethyltoluene 0.55 0.75 J ug/m3 1 3/18/2009 11:04:00 PM Acetone 43 7.2 ug/m3 1 3/18/2009 11:04:00 PM Allyl chloride ND 0.48 ug/m3 1 3/18/2009 11:04:00 PM Benzene 0.97 0.49 ug/m3 1 3/18/2009 11:04:00 PM Benzenle ND 0.88 ug/m3 1 3/18/2009 11:04:00 PM Bromodichloromethane ND 1.6 ug/m3 1 3/18/2009 11:04:00 PM Bromodichloromethane ND 0.59 ug/m3 1<
1,3-Dichlorobenzene ND 0.92 ug/m3 1 3/18/2009 11:04:00 PM 1,4-Dichlorobenzene ND 0.92 ug/m3 1 3/18/2009 11:04:00 PM 1,4-Dioxane ND 1.1 ug/m3 1 3/18/2009 11:04:00 PM 2,2,4-trimethylpentane ND 0.71 ug/m3 1 3/18/2009 11:04:00 PM 4-ethyltoluene 0.55 0.75 J ug/m3 1 3/18/2009 11:04:00 PM Acetone 43 7.2 ug/m3 10 3/19/2009 7:24:00 PM Allyl chloride ND 0.48 ug/m3 1 3/18/2009 11:04:00 PM Benzene 0.97 0.49 ug/m3 1 3/18/2009 11:04:00 PM Benzyl chloride ND 0.88 ug/m3 1 3/18/2009 11:04:00 PM Bromodichloromethane ND 1.0 ug/m3 1 3/18/2009 11:04:00 PM Bromoform ND 1.6 ug/m3 1 3/18/2009 11:04:00 PM Bromofichloromethane ND 0.47 ug/m3 1
1,4-Dichlorobenzene ND 0.92 ug/m3 1 3/18/2009 11:04:00 PM 1,4-Dioxane ND 1.1 ug/m3 1 3/18/2009 11:04:00 PM 2,2,4-trimethylpentane ND 0.71 ug/m3 1 3/18/2009 11:04:00 PM 4-ethyltoluene 0.55 0.75 J ug/m3 1 3/18/2009 11:04:00 PM Acetone 43 7.2 ug/m3 1 3/18/2009 11:04:00 PM Allyl chloride ND 0.48 ug/m3 1 3/18/2009 11:04:00 PM Benzene 0.97 0.49 ug/m3 1 3/18/2009 11:04:00 PM Benzyl chloride ND 0.88 ug/m3 1 3/18/2009 11:04:00 PM Bromodichloromethane ND 1.0 ug/m3 1 3/18/2009 11:04:00 PM Bromoform ND 1.6 ug/m3 1 3/18/2009 11:04:00 PM Bromomethane ND 0.59 ug/m3 1 3/18/2009 11:04:00 PM Carbon disulfide ND 0.47 ug/m3 1
1,4-Dioxane ND 1.1 ug/m3 1 3/18/2009 11:04:00 PM 2,2,4-trimethylpentane ND 0.71 ug/m3 1 3/18/2009 11:04:00 PM 4-ethyltoluene 0.55 0.75 J ug/m3 1 3/18/2009 11:04:00 PM Acetone 43 7.2 ug/m3 10 3/19/2009 7:24:00 PM Allyl chloride ND 0.48 ug/m3 1 3/18/2009 11:04:00 PM Benzene 0.97 0.49 ug/m3 1 3/18/2009 11:04:00 PM Benzyl chloride ND 0.88 ug/m3 1 3/18/2009 11:04:00 PM Bromodichloromethane ND 1.0 ug/m3 1 3/18/2009 11:04:00 PM Bromoform ND 1.6 ug/m3 1 3/18/2009 11:04:00 PM Bromomethane ND 0.59 ug/m3 1 3/18/2009 11:04:00 PM Carbon disulfide ND 0.47 ug/m3 1 3/18/2009 11:04:00 PM Chlorobenzene ND 0.70 ug/m3 1 <td< td=""></td<>
2,2,4-trimethylpentane ND 0.71 ug/m3 1 3/18/2009 11:04:00 PM 4-ethyltoluene 0.55 0.75 J ug/m3 1 3/18/2009 11:04:00 PM Acetone 43 7.2 ug/m3 10 3/19/2009 7:24:00 PM Allyl chloride ND 0.48 ug/m3 1 3/18/2009 11:04:00 PM Benzene 0.97 0.49 ug/m3 1 3/18/2009 11:04:00 PM Benzyl chloride ND 0.88 ug/m3 1 3/18/2009 11:04:00 PM Bromodichloromethane ND 1.0 ug/m3 1 3/18/2009 11:04:00 PM Bromoform ND 1.6 ug/m3 1 3/18/2009 11:04:00 PM Bromomethane ND 0.59 ug/m3 1 3/18/2009 11:04:00 PM Carbon disulfide ND 0.47 ug/m3 1 3/18/2009 11:04:00 PM Carbon tetrachloride ND 0.26 ug/m3 1 3/18/2009 11:04:00 PM Chloroethane ND 0.40 ug/m3 1
4-ethyltoluene 0.55 0.75 J ug/m3 1 3/18/2009 11:04:00 PM Acetone 43 7.2 ug/m3 10 3/19/2009 7:24:00 PM Allyl chloride ND 0.48 ug/m3 1 3/18/2009 11:04:00 PM Benzene 0.97 0.49 ug/m3 1 3/18/2009 11:04:00 PM Benzyl chloride ND 0.88 ug/m3 1 3/18/2009 11:04:00 PM Bromodichloromethane ND 1.0 ug/m3 1 3/18/2009 11:04:00 PM Bromoform ND 1.6 ug/m3 1 3/18/2009 11:04:00 PM Bromomethane ND 0.59 ug/m3 1 3/18/2009 11:04:00 PM Carbon disulfide ND 0.47 ug/m3 1 3/18/2009 11:04:00 PM Chlorobenzene ND 0.70 ug/m3 1 3/18/2009 11:04:00 PM Chloroform 0.69 0.74 J ug/m3 1 3/18/2009 11:04:00 PM Chloromethane 1.3 0.31 ug/m3 1 3/18/2009 11:04:00 PM
4-ethyltoluene 0.55 0.75 J ug/m3 1 3/18/2009 11:04:00 PM Acetone 43 7.2 ug/m3 10 3/19/2009 7:24:00 PM Allyl chloride ND 0.48 ug/m3 1 3/18/2009 11:04:00 PM Benzene 0.97 0.49 ug/m3 1 3/18/2009 11:04:00 PM Benzyl chloride ND 0.88 ug/m3 1 3/18/2009 11:04:00 PM Bromodichloromethane ND 1.0 ug/m3 1 3/18/2009 11:04:00 PM Bromoform ND 1.6 ug/m3 1 3/18/2009 11:04:00 PM Bromomethane ND 0.59 ug/m3 1 3/18/2009 11:04:00 PM Carbon disulfide ND 0.47 ug/m3 1 3/18/2009 11:04:00 PM Chlorobenzene ND 0.70 ug/m3 1 3/18/2009 11:04:00 PM Chloroform 0.69 0.74 J ug/m3 1 3/18/2009 11:04:00 PM Chloromethane 1.3 0.31 ug/m3 1 3/18/2009 11:04:00 PM
Allyl chloride ND 0.48 ug/m3 1 3/18/2009 11:04:00 PM Benzene 0.97 0.49 ug/m3 1 3/18/2009 11:04:00 PM Benzyl chloride ND 0.88 ug/m3 1 3/18/2009 11:04:00 PM Bromodichloromethane ND 1.0 ug/m3 1 3/18/2009 11:04:00 PM Bromoform ND 1.6 ug/m3 1 3/18/2009 11:04:00 PM Bromomethane ND 0.59 ug/m3 1 3/18/2009 11:04:00 PM Carbon disulfide ND 0.47 ug/m3 1 3/18/2009 11:04:00 PM Carbon tetrachloride ND 0.26 ug/m3 1 3/18/2009 11:04:00 PM Chlorobenzene ND 0.70 ug/m3 1 3/18/2009 11:04:00 PM Chloroform 0.69 0.74 J ug/m3 1 3/18/2009 11:04:00 PM Chloromethane 1.3 0.31 ug/m3 1 3/18/2009 11:04:00 PM
Benzene 0.97 0.49 ug/m3 1 3/18/2009 11:04:00 PM Benzyl chloride ND 0.88 ug/m3 1 3/18/2009 11:04:00 PM Bromodichloromethane ND 1.0 ug/m3 1 3/18/2009 11:04:00 PM Bromoform ND 1.6 ug/m3 1 3/18/2009 11:04:00 PM Bromomethane ND 0.59 ug/m3 1 3/18/2009 11:04:00 PM Carbon disulfide ND 0.47 ug/m3 1 3/18/2009 11:04:00 PM Carbon tetrachloride ND 0.26 ug/m3 1 3/18/2009 11:04:00 PM Chlorobenzene ND 0.70 ug/m3 1 3/18/2009 11:04:00 PM Chloroethane ND 0.40 ug/m3 1 3/18/2009 11:04:00 PM Chloromethane 0.69 0.74 J ug/m3 1 3/18/2009 11:04:00 PM Chloromethane 1.3 0.31 ug/m3 1 3/18/2009 11:04:00 PM
Benzyl chloride ND 0.88 ug/m3 1 3/18/2009 11:04:00 PM Bromodichloromethane ND 1.0 ug/m3 1 3/18/2009 11:04:00 PM Bromoform ND 1.6 ug/m3 1 3/18/2009 11:04:00 PM Bromomethane ND 0.59 ug/m3 1 3/18/2009 11:04:00 PM Carbon disulfide ND 0.47 ug/m3 1 3/18/2009 11:04:00 PM Carbon tetrachloride ND 0.26 ug/m3 1 3/18/2009 11:04:00 PM Chlorobenzene ND 0.70 ug/m3 1 3/18/2009 11:04:00 PM Chloroethane ND 0.40 ug/m3 1 3/18/2009 11:04:00 PM Chloromethane 0.69 0.74 J ug/m3 1 3/18/2009 11:04:00 PM Chloromethane 1.3 0.31 ug/m3 1 3/18/2009 11:04:00 PM
Bromodichloromethane ND 1.0 ug/m3 1 3/18/2009 11:04:00 PM Bromoform ND 1.6 ug/m3 1 3/18/2009 11:04:00 PM Bromomethane ND 0.59 ug/m3 1 3/18/2009 11:04:00 PM Carbon disulfide ND 0.47 ug/m3 1 3/18/2009 11:04:00 PM Carbon tetrachloride ND 0.26 ug/m3 1 3/18/2009 11:04:00 PM Chlorobenzene ND 0.70 ug/m3 1 3/18/2009 11:04:00 PM Chloroethane ND 0.40 ug/m3 1 3/18/2009 11:04:00 PM Chloroform 0.69 0.74 J ug/m3 1 3/18/2009 11:04:00 PM Chloromethane 1.3 0.31 ug/m3 1 3/18/2009 11:04:00 PM
Bromoform ND 1.6 ug/m3 1 3/18/2009 11:04:00 PM Bromomethane ND 0.59 ug/m3 1 3/18/2009 11:04:00 PM Carbon disulfide ND 0.47 ug/m3 1 3/18/2009 11:04:00 PM Carbon tetrachloride ND 0.26 ug/m3 1 3/18/2009 11:04:00 PM Chlorobenzene ND 0.70 ug/m3 1 3/18/2009 11:04:00 PM Chloroethane ND 0.40 ug/m3 1 3/18/2009 11:04:00 PM Chloroform 0.69 0.74 J ug/m3 1 3/18/2009 11:04:00 PM Chloromethane 1.3 0.31 ug/m3 1 3/18/2009 11:04:00 PM
Bromomethane ND 0.59 ug/m3 1 3/18/2009 11:04:00 PM Carbon disulfide ND 0.47 ug/m3 1 3/18/2009 11:04:00 PM Carbon tetrachloride ND 0.26 ug/m3 1 3/18/2009 11:04:00 PM Chlorobenzene ND 0.70 ug/m3 1 3/18/2009 11:04:00 PM Chloroethane ND 0.40 ug/m3 1 3/18/2009 11:04:00 PM Chloroform 0.69 0.74 J ug/m3 1 3/18/2009 11:04:00 PM Chloromethane 1.3 0.31 ug/m3 1 3/18/2009 11:04:00 PM
Carbon disulfide ND 0.47 ug/m3 1 3/18/2009 11:04:00 PM Carbon tetrachloride ND 0.26 ug/m3 1 3/18/2009 11:04:00 PM Chlorobenzene ND 0.70 ug/m3 1 3/18/2009 11:04:00 PM Chlorofethane ND 0.40 ug/m3 1 3/18/2009 11:04:00 PM Chloroform 0.69 0.74 J ug/m3 1 3/18/2009 11:04:00 PM Chloromethane 1.3 0.31 ug/m3 1 3/18/2009 11:04:00 PM
Carbon tetrachloride ND 0.26 ug/m3 1 3/18/2009 11:04:00 PM Chlorobenzene ND 0.70 ug/m3 1 3/18/2009 11:04:00 PM Chloroethane ND 0.40 ug/m3 1 3/18/2009 11:04:00 PM Chloroform 0.69 0.74 J ug/m3 1 3/18/2009 11:04:00 PM Chloromethane 1.3 0.31 ug/m3 1 3/18/2009 11:04:00 PM
Chlorobenzene ND 0.70 ug/m3 1 3/18/2009 11:04:00 PM Chloroethane ND 0.40 ug/m3 1 3/18/2009 11:04:00 PM Chloroform 0.69 0.74 J ug/m3 1 3/18/2009 11:04:00 PM Chloromethane 1.3 0.31 ug/m3 1 3/18/2009 11:04:00 PM
Chloroethane ND 0.40 ug/m3 1 3/18/2009 11:04:00 PM Chloroform 0.69 0.74 J ug/m3 1 3/18/2009 11:04:00 PM Chloromethane 1.3 0.31 ug/m3 1 3/18/2009 11:04:00 PM
Chloroform 0.69 0.74 J ug/m3 1 3/18/2009 11:04:00 PM Chloromethane 1.3 0.31 ug/m3 1 3/18/2009 11:04:00 PM
Chloromethane 1.3 0.31 ug/m3 1 3/18/2009 11:04:00 PM
cis_1.2_Dichloroothene ND 0.60 ug/m3 1 3/19/2000 14:04:00 DM
cis-1,3-Dichloropropene ND 0.69 ug/m3 1 3/18/2009 11:04:00 PM
Cyclohexane ND 0.52 ug/m3 1 3/18/2009 11:04:00 PM
Dibromochloromethane ND 1.3 ug/m3 1 3/18/2009 11:04:00 PM
Ethyl acetate 2.8 0.92 ug/m3 1 3/18/2009 11:04:00 PM
Ethylbenzene 0.57 0.66 J ug/m3 1 3/18/2009 11:04:00 PM
Freon 11 50 8.6 ug/m3 10 3/19/2009 7:24:00 PM
Freon 113 ND 1.2 ug/m3 1 3/18/2009 11:04:00 PM
Freon 114 ND 1.1 ug/m3 1 3/18/2009 11:04:00 PM

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- $\label{eq:JN-Non-routine} JN \quad \mbox{ Non-routine analyte. Quantitation estimated.}$
- S Spike Recovery outside accepted recovery limits
- E Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

CLIENT: Adirondack Environmental Services, Inc

Lab Order: C0903021

Project: Revonak Cleaners

Lab ID: C0903021-010A

Date: 20-Mar-09

Client Sample ID: IA-507-1

Tag Number: 236, 179

Collection Date: 3/10/2009

Matrix: AIR

Analyses	Result	Limit (Qual Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		TO-	15		Analyst: RJP
Freon 12	6.3	0.75	ug/m3	1	3/18/2009 11:04:00 PM
Heptane	1.2	0.62	ug/m3	1	3/18/2009 11:04:00 PM
Hexachloro-1,3-butadiene	ND	1.6	ug/m3	1	3/18/2009 11:04:00 PM
Hexane	ND	0.54	ug/m3	1	3/18/2009 11:04:00 PM
Isopropyl alcohol	8.2	3.7	ug/m3	10	3/19/2009 7:24:00 PM
m&p-Xylene	1.5	1.3	ug/m3	1	3/18/2009 11:04:00 PM
Methyl Butyl Ketone	ND	1.2	ug/m3	1	3/18/2009 11:04:00 PM
Methyl Ethyl Ketone	4.0	0.90	ug/m3	1	3/18/2009 11:04:00 PM
Methyl Isobutyl Ketone	1.1	1.2	J ug/m3	1	3/18/2009 11:04:00 PM
Methyl tert-butyl ether	ND	0.55	ug/m3	1	3/18/2009 11:04:00 PM
Methylene chloride	0.56	0.53	ug/m3	1	3/18/2009 11:04:00 PM
o-Xylene	0.71	0.66	ug/m3	1	3/18/2009 11:04:00 PM
Propylene	ND	0.26	ug/m3	1	3/18/2009 11:04:00 PM
Styrene	1.4	0.65	ug/m3	1	3/18/2009 11:04:00 PM
Tetrachloroethylene	1.0	1.0	ug/m3	1	3/18/2009 11:04:00 PM
Tetrahydrofuran	2.0	0.45	ug/m3	1	3/18/2009 11:04:00 PM
Toluene	6.7	0.57	ug/m3	1	3/18/2009 11:04:00 PM
trans-1,2-Dichloroethene	ND	0.60	ug/m3	1	3/18/2009 11:04:00 PM
trans-1,3-Dichloropropene	ND	0.69	ug/m3	1	3/18/2009 11:04:00 PM
Trichloroethene	0.60	0.22	ug/m3	1	3/18/2009 11:04:00 PM
Vinyl acetate	ND	0.54	ug/m3	1	3/18/2009 11:04:00 PM
Vinyl Bromide	ND	0.67	ug/m3	1	3/18/2009 11:04:00 PM
Vinyl chloride	ND	0.10	ug/m3	1	3/18/2009 11:04:00 PM

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

 $[\]label{eq:JN-Non-routine} JN \quad \mbox{ Non-routine analyte. Quantitation estimated.}$

S Spike Recovery outside accepted recovery limits

E Value above quantitation range

J Analyte detected at or below quantitation limits

ND Not Detected at the Reporting Limit

CLIENT: Adirondack Environmental Services, Inc

Lab Order: C0903021

Project: Revonak Cleaners

Lab ID: C0903021-011A

Date: 20-Mar-09

Client Sample ID: SS-503-1

Tag Number: 460, 345 **Collection Date:** 3/10/2009

Matrix: AIR

Analyses	Result	Limit Qu	ual Units	DF	Date Analyzed
1UG/M3 BY METHOD TO15	TO-15				Analyst: RJP
1,1,1-Trichloroethane	ND	0.83	ug/m3	1	3/20/2009 5:54:00 AM
1,1,2,2-Tetrachloroethane	ND	1.0	ug/m3	1	3/20/2009 5:54:00 AM
1,1,2-Trichloroethane	ND	0.83	ug/m3	1	3/20/2009 5:54:00 AM
1,1-Dichloroethane	ND	0.62	ug/m3	1	3/20/2009 5:54:00 AM
1,1-Dichloroethene	ND	0.60	ug/m3	1	3/20/2009 5:54:00 AM
1,2,4-Trichlorobenzene	ND	1.1	ug/m3	1	3/20/2009 5:54:00 AM
1,2,4-Trimethylbenzene	4.0	0.75	ug/m3	1	3/20/2009 5:54:00 AM
1,2-Dibromoethane	ND	1.2	ug/m3	1	3/20/2009 5:54:00 AM
1,2-Dichlorobenzene	ND	0.92	ug/m3	1	3/20/2009 5:54:00 AM
1,2-Dichloroethane	ND	0.62	ug/m3	1	3/20/2009 5:54:00 AM
1,2-Dichloropropane	ND	0.70	ug/m3	1	3/20/2009 5:54:00 AM
1,3,5-Trimethylbenzene	2.0	0.75	ug/m3	1	3/20/2009 5:54:00 AM
1,3-butadiene	ND	0.34	ug/m3	1	3/20/2009 5:54:00 AM
1,3-Dichlorobenzene	ND	0.92	ug/m3	1	3/20/2009 5:54:00 AM
1,4-Dichlorobenzene	1.8	0.92	ug/m3	1	3/20/2009 5:54:00 AM
1,4-Dioxane	ND	1.1	ug/m3	1	3/20/2009 5:54:00 AM
2,2,4-trimethylpentane	ND	0.71	ug/m3	1	3/20/2009 5:54:00 AM
4-ethyltoluene	1.4	0.75	ug/m3	1	3/20/2009 5:54:00 AM
Acetone	160	29	ug/m3	40	3/20/2009 6:26:00 AM
Allyl chloride	ND	0.48	ug/m3	1	3/20/2009 5:54:00 AM
Benzene	ND	0.49	ug/m3	1	3/20/2009 5:54:00 AM
Benzyl chloride	ND	0.88	ug/m3	1	3/20/2009 5:54:00 AM
Bromodichloromethane	ND	1.0	ug/m3	1	3/20/2009 5:54:00 AM
Bromoform	ND	1.6	ug/m3	1	3/20/2009 5:54:00 AM
Bromomethane	ND	0.59	ug/m3	1	3/20/2009 5:54:00 AM
Carbon disulfide	0.54	0.47	ug/m3	1	3/20/2009 5:54:00 AM
Carbon tetrachloride	ND	0.96	ug/m3	1	3/20/2009 5:54:00 AM
Chlorobenzene	ND	0.70	ug/m3	1	3/20/2009 5:54:00 AM
Chloroethane	ND	0.40	ug/m3	1	3/20/2009 5:54:00 AM
Chloroform	ND	0.74	ug/m3	1	3/20/2009 5:54:00 AM
Chloromethane	ND	0.31	ug/m3	1	3/20/2009 5:54:00 AM
cis-1,2-Dichloroethene	ND	0.60	ug/m3	1	3/20/2009 5:54:00 AM
cis-1,3-Dichloropropene	ND	0.69	ug/m3	1	3/20/2009 5:54:00 AM
Cyclohexane	ND	0.52	ug/m3	1	3/20/2009 5:54:00 AM
Dibromochloromethane	ND	1.3	ug/m3	1	3/20/2009 5:54:00 AM
Ethyl acetate	ND	0.92	ug/m3	1	3/20/2009 5:54:00 AM
Ethylbenzene	1.7	0.66	ug/m3	1	3/20/2009 5:54:00 AM
Freon 11	15	8.6	ug/m3	10	3/19/2009 6:03:00 AM
Freon 113	ND	1.2	ug/m3	1	3/20/2009 5:54:00 AM
Freon 114	ND	1.1	ug/m3	1	3/20/2009 5:54:00 AM

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- E Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

CLIENT: Adirondack Environmental Services, Inc

Lab Order: C0903021

Project: Revonak Cleaners

Lab ID: C0903021-011A

Date: 20-Mar-09

Client Sample ID: SS-503-1

Tag Number: 460, 345 **Collection Date:** 3/10/2009

Matrix: AIR

Analyses	Result	Limit Q	ual Units	DF	Date Analyzed
1UG/M3 BY METHOD TO15	TO-15			Analyst: RJP	
Freon 12	86	7.5	ug/m3	10	3/19/2009 6:03:00 AM
Heptane	7.0	0.62	ug/m3	1	3/20/2009 5:54:00 AM
Hexachloro-1,3-butadiene	ND	1.6	ug/m3	1	3/20/2009 5:54:00 AM
Hexane	9.0	5.4	ug/m3	10	3/19/2009 6:03:00 AM
Isopropyl alcohol	34	3.7	ug/m3	10	3/19/2009 6:03:00 AM
m&p-Xylene	6.0	1.3	ug/m3	1	3/20/2009 5:54:00 AM
Methyl Butyl Ketone	ND	1.2	ug/m3	1	3/20/2009 5:54:00 AM
Methyl Ethyl Ketone	4.6	0.90	ug/m3	1	3/20/2009 5:54:00 AM
Methyl Isobutyl Ketone	6.7	1.2	ug/m3	1	3/20/2009 5:54:00 AM
Methyl tert-butyl ether	ND	0.55	ug/m3	1	3/20/2009 5:54:00 AM
Methylene chloride	0.99	0.53	ug/m3	1	3/20/2009 5:54:00 AM
o-Xylene	1.8	0.66	ug/m3	1	3/20/2009 5:54:00 AM
Propylene	ND	0.26	ug/m3	1	3/20/2009 5:54:00 AM
Styrene	3.9	0.65	ug/m3	1	3/20/2009 5:54:00 AM
Tetrachloroethylene	5.4	1.0	ug/m3	1	3/20/2009 5:54:00 AM
Tetrahydrofuran	5.0	0.45	ug/m3	1	3/20/2009 5:54:00 AM
Toluene	13	5.7	ug/m3	10	3/19/2009 6:03:00 AM
trans-1,2-Dichloroethene	ND	0.60	ug/m3	1	3/20/2009 5:54:00 AM
trans-1,3-Dichloropropene	ND	0.69	ug/m3	1	3/20/2009 5:54:00 AM
Trichloroethene	1.5	0.82	ug/m3	1	3/20/2009 5:54:00 AM
Vinyl acetate	ND	0.54	ug/m3	1	3/20/2009 5:54:00 AM
Vinyl Bromide	ND	0.67	ug/m3	1	3/20/2009 5:54:00 AM
Vinyl chloride	ND	0.39	ug/m3	1	3/20/2009 5:54:00 AM

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

 $[\]label{eq:JN-Non-routine} JN \quad \mbox{ Non-routine analyte. Quantitation estimated.}$

S Spike Recovery outside accepted recovery limits

E Value above quantitation range

J Analyte detected at or below quantitation limits

ND Not Detected at the Reporting Limit

CLIENT: Adirondack Environmental Services, Inc

Lab Order: C0903021

Project: Revonak Cleaners

Lab ID: C0903021-012A

Date: 20-Mar-09

Client Sample ID: IA-503-1 Tag Number: 354, 146

Collection Date: 3/10/2009

Matrix: AIR

Analyses	Result	Limit Q	ual Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		Analyst: RJP			
1,1,1-Trichloroethane	ND	0.83	ug/m3	1	3/18/2009 11:36:00 PM
1,1,2,2-Tetrachloroethane	ND	1.0	ug/m3	1	3/18/2009 11:36:00 PM
1,1,2-Trichloroethane	ND	0.83	ug/m3	1	3/18/2009 11:36:00 PM
1,1-Dichloroethane	ND	0.62	ug/m3	1	3/18/2009 11:36:00 PM
1,1-Dichloroethene	ND	0.60	ug/m3	1	3/18/2009 11:36:00 PM
1,2,4-Trichlorobenzene	ND	1.1	ug/m3	1	3/18/2009 11:36:00 PM
1,2,4-Trimethylbenzene	8.0	7.5	ug/m3	10	3/19/2009 8:47:00 AM
1,2-Dibromoethane	ND	1.2	ug/m3	1	3/18/2009 11:36:00 PM
1,2-Dichlorobenzene	ND	0.92	ug/m3	1	3/18/2009 11:36:00 PM
1,2-Dichloroethane	ND	0.62	ug/m3	1	3/18/2009 11:36:00 PM
1,2-Dichloropropane	ND	0.70	ug/m3	1	3/18/2009 11:36:00 PM
1,3,5-Trimethylbenzene	4.0	0.75	ug/m3	1	3/18/2009 11:36:00 PM
1,3-butadiene	ND	0.34	ug/m3	1	3/18/2009 11:36:00 PM
1,3-Dichlorobenzene	ND	0.92	ug/m3	1	3/18/2009 11:36:00 PM
1,4-Dichlorobenzene	8.6	0.92	ug/m3	1	3/18/2009 11:36:00 PM
1,4-Dioxane	ND	1.1	ug/m3	1	3/18/2009 11:36:00 PM
2,2,4-trimethylpentane	5.8	0.71	ug/m3	1	3/18/2009 11:36:00 PM
4-ethyltoluene	5.3	0.75	ug/m3	1	3/18/2009 11:36:00 PM
Acetone	93	29	ug/m3	40	3/19/2009 9:19:00 AM
Allyl chloride	ND	0.48	ug/m3	1	3/18/2009 11:36:00 PM
Benzene	7.5	4.9	ug/m3	10	3/19/2009 8:47:00 AM
Benzyl chloride	ND	0.88	ug/m3	1	3/18/2009 11:36:00 PM
Bromodichloromethane	ND	1.0	ug/m3	1	3/18/2009 11:36:00 PM
Bromoform	ND	1.6	ug/m3	1	3/18/2009 11:36:00 PM
Bromomethane	ND	0.59	ug/m3	1	3/18/2009 11:36:00 PM
Carbon disulfide	ND	0.47	ug/m3	1	3/18/2009 11:36:00 PM
Carbon tetrachloride	ND	0.26	ug/m3	1	3/18/2009 11:36:00 PM
Chlorobenzene	ND	0.70	ug/m3	1	3/18/2009 11:36:00 PM
Chloroethane	ND	0.40	ug/m3	1	3/18/2009 11:36:00 PM
Chloroform	1.6	0.74	ug/m3	1	3/18/2009 11:36:00 PM
Chloromethane	ND	0.31	ug/m3	1	3/18/2009 11:36:00 PM
cis-1,2-Dichloroethene	ND	0.60	ug/m3	1	3/18/2009 11:36:00 PM
cis-1,3-Dichloropropene	ND	0.69	ug/m3	1	3/18/2009 11:36:00 PM
Cyclohexane	10	5.2	ug/m3	10	3/19/2009 8:47:00 AM
Dibromochloromethane	ND	1.3	ug/m3	1	3/18/2009 11:36:00 PM
Ethyl acetate	7.7		J ug/m3	10	3/19/2009 8:47:00 AM
Ethylbenzene	8.9	0.66	ug/m3	1	3/18/2009 11:36:00 PM
Freon 11	32	8.6	ug/m3	10	3/19/2009 8:47:00 AM
Freon 113	1.2	1.2	ug/m3	1	3/18/2009 11:36:00 PM
Freon 114	37	11	ug/m3	10	3/19/2009 8:47:00 AM

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- $\label{eq:JN-Non-routine} JN \quad \mbox{ Non-routine analyte. Quantitation estimated.}$
- S Spike Recovery outside accepted recovery limits
- E Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

CLIENT: Adirondack Environmental Services, Inc

Lab Order: C0903021

Project: Revonak Cleaners

Lab ID: C0903021-012A

Date: 20-Mar-09

Client Sample ID: IA-503-1

Tag Number: 354, 146

Collection Date: 3/10/2009
Matrix: AIR

Analyses	Result	Limit	Qual Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC	TO-15			Analyst: RJP	
Freon 12	32	7.5	ug/m3	10	3/19/2009 8:47:00 AM
Heptane	10	6.2	ug/m3	10	3/19/2009 8:47:00 AM
Hexachloro-1,3-butadiene	ND	1.6	ug/m3	1	3/18/2009 11:36:00 PM
Hexane	18	5.4	ug/m3	10	3/19/2009 8:47:00 AM
Isopropyl alcohol	800	100	ug/m3	270	3/19/2009 7:57:00 PM
m&p-Xylene	26	13	ug/m3	10	3/19/2009 8:47:00 AM
Methyl Butyl Ketone	ND	1.2	ug/m3	1	3/18/2009 11:36:00 PM
Methyl Ethyl Ketone	4.0	0.90	ug/m3	1	3/18/2009 11:36:00 PM
Methyl Isobutyl Ketone	10	12	J ug/m3	10	3/19/2009 8:47:00 AM
Methyl tert-butyl ether	ND	0.55	ug/m3	1	3/18/2009 11:36:00 PM
Methylene chloride	11	5.3	ug/m3	10	3/19/2009 8:47:00 AM
o-Xylene	7.5	6.6	ug/m3	10	3/19/2009 8:47:00 AM
Propylene	ND	0.26	ug/m3	1	3/18/2009 11:36:00 PM
Styrene	2.7	0.65	ug/m3	1	3/18/2009 11:36:00 PM
Tetrachloroethylene	ND	1.0	ug/m3	1	3/18/2009 11:36:00 PM
Tetrahydrofuran	ND	0.45	ug/m3	1	3/18/2009 11:36:00 PM
Toluene	57	5.7	ug/m3	10	3/19/2009 8:47:00 AM
trans-1,2-Dichloroethene	ND	0.60	ug/m3	1	3/18/2009 11:36:00 PM
trans-1,3-Dichloropropene	ND	0.69	ug/m3	1	3/18/2009 11:36:00 PM
Trichloroethene	0.55	0.22	ug/m3	1	3/18/2009 11:36:00 PM
Vinyl acetate	ND	0.54	ug/m3	1	3/18/2009 11:36:00 PM
Vinyl Bromide	ND	0.67	ug/m3	1	3/18/2009 11:36:00 PM
Vinyl chloride	ND	0.10	ug/m3	1	3/18/2009 11:36:00 PM

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

 $JN \quad \ Non-routine\ analyte.\ Quantitation\ estimated.$

S Spike Recovery outside accepted recovery limits

E Value above quantitation range

J Analyte detected at or below quantitation limits

ND Not Detected at the Reporting Limit

CLIENT: Adirondack Environmental Services, Inc

Lab Order: C0903021

Project: Revonak Cleaners

Lab ID: C0903021-013A

Date: 20-Mar-09

Client Sample ID: SS-501-1

Tag Number: 108, 372

Collection Date: 3/10/2009

Matrix: AIR

Analyses	Result	Limit (Qual U	J nits	DF	Date Analyzed
1UG/M3 BY METHOD TO15		TO-	15			Analyst: RJP
1,1,1-Trichloroethane	ND	0.83	u	ıg/m3	1	3/20/2009 7:00:00 AM
1,1,2,2-Tetrachloroethane	ND	1.0	u	ıg/m3	1	3/20/2009 7:00:00 AM
1,1,2-Trichloroethane	ND	0.83	u	ıg/m3	1	3/20/2009 7:00:00 AM
1,1-Dichloroethane	ND	0.62	u	ıg/m3	1	3/20/2009 7:00:00 AM
1,1-Dichloroethene	ND	0.60	u	ıg/m3	1	3/20/2009 7:00:00 AM
1,2,4-Trichlorobenzene	ND	1.1	u	ıg/m3	1	3/20/2009 7:00:00 AM
1,2,4-Trimethylbenzene	1.8	0.75	u	ıg/m3	1	3/20/2009 7:00:00 AM
1,2-Dibromoethane	ND	1.2	u	ıg/m3	1	3/20/2009 7:00:00 AM
1,2-Dichlorobenzene	ND	0.92	u	ıg/m3	1	3/20/2009 7:00:00 AM
1,2-Dichloroethane	ND	0.62	u	ıg/m3	1	3/20/2009 7:00:00 AM
1,2-Dichloropropane	ND	0.70	u	ıg/m3	1	3/20/2009 7:00:00 AM
1,3,5-Trimethylbenzene	1.2	0.75	u	ıg/m3	1	3/20/2009 7:00:00 AM
1,3-butadiene	ND	0.34	u	ıg/m3	1	3/20/2009 7:00:00 AM
1,3-Dichlorobenzene	ND	0.92	u	ıg/m3	1	3/20/2009 7:00:00 AM
1,4-Dichlorobenzene	1.2	0.92	u	ıg/m3	1	3/20/2009 7:00:00 AM
1,4-Dioxane	ND	1.1		ıg/m3	1	3/20/2009 7:00:00 AM
2,2,4-trimethylpentane	ND	0.71		ıg/m3	1	3/20/2009 7:00:00 AM
4-ethyltoluene	0.95	0.75		ıg/m3	1	3/20/2009 7:00:00 AM
Acetone	17	7.2		ıg/m3	10	3/19/2009 6:34:00 AM
Allyl chloride	ND	0.48		ıg/m3	1	3/20/2009 7:00:00 AM
Benzene	0.36	0.49		ıg/m3	1	3/20/2009 7:00:00 AM
Benzyl chloride	ND	0.88		ıg/m3	1	3/20/2009 7:00:00 AM
Bromodichloromethane	ND	1.0		ıg/m3	1	3/20/2009 7:00:00 AM
Bromoform	ND	1.6		ıg/m3	1	3/20/2009 7:00:00 AM
Bromomethane	ND	0.59		ıg/m3	1	3/20/2009 7:00:00 AM
Carbon disulfide	ND	0.47		ıg/m3	1	3/20/2009 7:00:00 AM
Carbon tetrachloride	0.77	0.96		ıg/m3	1	3/20/2009 7:00:00 AM
Chlorobenzene	ND	0.70		ıg/m3	1	3/20/2009 7:00:00 AM
Chloroethane	ND	0.40		ıg/m3	1	3/20/2009 7:00:00 AM
Chloroform	ND	0.74		ıg/m3	1	3/20/2009 7:00:00 AM
Chloromethane	ND	0.31		ıg/m3	1	3/20/2009 7:00:00 AM
cis-1,2-Dichloroethene	ND	0.60		ıg/m3	1	3/20/2009 7:00:00 AM
cis-1,3-Dichloropropene	ND	0.69		ıg/m3	1	3/20/2009 7:00:00 AM
Cyclohexane	ND	0.52		ıg/m3	1	3/20/2009 7:00:00 AM
Dibromochloromethane	ND	1.3		ıg/m3	1	3/20/2009 7:00:00 AM
Ethyl acetate	ND	0.92		ıg/m3	1	3/20/2009 7:00:00 AM
Ethylbenzene	1.0	0.66		ıg/m3 ıg/m3	1	3/20/2009 7:00:00 AM
Freon 11	1.0	8.6		ıg/m3 ıg/m3	10	3/19/2009 6:34:00 AM
Freon 113	ND	1.2		ıg/m3	10	3/20/2009 7:00:00 AM
Freon 114	ND ND	1.2		ıg/m3	1	3/20/2009 7:00:00 AM

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- E Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

CLIENT: Adirondack Environmental Services, Inc

Lab Order: C0903021

Project: Revonak Cleaners

Lab ID: C0903021-013A

Date: 20-Mar-09

Client Sample ID: SS-501-1

Tag Number: 108, 372 **Collection Date:** 3/10/2009

Matrix: AIR

Analyses	Result	Limit (Qual Units	DF	Date Analyzed
1UG/M3 BY METHOD TO15		TO-1	5		Analyst: RJP
Freon 12	66	7.5	ug/m3	10	3/19/2009 6:34:00 AM
Heptane	1.3	0.62	ug/m3	1	3/20/2009 7:00:00 AM
Hexachloro-1,3-butadiene	ND	1.6	ug/m3	1	3/20/2009 7:00:00 AM
Hexane	ND	0.54	ug/m3	1	3/20/2009 7:00:00 AM
Isopropyl alcohol	ND	0.37	ug/m3	1	3/20/2009 7:00:00 AM
m&p-Xylene	3.2	1.3	ug/m3	1	3/20/2009 7:00:00 AM
Methyl Butyl Ketone	ND	1.2	ug/m3	1	3/20/2009 7:00:00 AM
Methyl Ethyl Ketone	2.8	0.90	ug/m3	1	3/20/2009 7:00:00 AM
Methyl Isobutyl Ketone	1.2	1.2	J ug/m3	1	3/20/2009 7:00:00 AM
Methyl tert-butyl ether	ND	0.55	ug/m3	1	3/20/2009 7:00:00 AM
Methylene chloride	0.71	0.53	ug/m3	1	3/20/2009 7:00:00 AM
o-Xylene	1.1	0.66	ug/m3	1	3/20/2009 7:00:00 AM
Propylene	ND	0.26	ug/m3	1	3/20/2009 7:00:00 AM
Styrene	2.1	0.65	ug/m3	1	3/20/2009 7:00:00 AM
Tetrachloroethylene	3.2	1.0	ug/m3	1	3/20/2009 7:00:00 AM
Tetrahydrofuran	2.6	0.45	ug/m3	1	3/20/2009 7:00:00 AM
Toluene	9.2	5.7	ug/m3	10	3/19/2009 6:34:00 AM
trans-1,2-Dichloroethene	ND	0.60	ug/m3	1	3/20/2009 7:00:00 AM
trans-1,3-Dichloropropene	ND	0.69	ug/m3	1	3/20/2009 7:00:00 AM
Trichloroethene	5.8	0.82	ug/m3	1	3/20/2009 7:00:00 AM
Vinyl acetate	ND	0.54	ug/m3	1	3/20/2009 7:00:00 AM
Vinyl Bromide	ND	0.67	ug/m3	1	3/20/2009 7:00:00 AM
Vinyl chloride	ND	0.39	ug/m3	1	3/20/2009 7:00:00 AM

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

 $JN \quad \ Non-routine\ analyte.\ Quantitation\ estimated.$

S Spike Recovery outside accepted recovery limits

E Value above quantitation range

J Analyte detected at or below quantitation limits

ND Not Detected at the Reporting Limit

CLIENT: Adirondack Environmental Services, Inc

Lab Order: C0903021

Project: Revonak Cleaners

Lab ID: C0903021-014A

Date: 20-Mar-09

Client Sample ID: IA-501-1

Tag Number: 225, 81 **Collection Date:** 3/10/2009

Matrix: AIR

Analyses	Result	Limit Qu	ial Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		TO-15			Analyst: RJP
1,1,1-Trichloroethane	ND	0.83	ug/m3	1	3/19/2009 12:08:00 AM
1,1,2,2-Tetrachloroethane	ND	1.0	ug/m3	1	3/19/2009 12:08:00 AM
1,1,2-Trichloroethane	ND	0.83	ug/m3	1	3/19/2009 12:08:00 AM
1,1-Dichloroethane	ND	0.62	ug/m3	1	3/19/2009 12:08:00 AM
1,1-Dichloroethene	ND	0.60	ug/m3	1	3/19/2009 12:08:00 AM
1,2,4-Trichlorobenzene	ND	1.1	ug/m3	1	3/19/2009 12:08:00 AM
1,2,4-Trimethylbenzene	1.3	0.75	ug/m3	1	3/19/2009 12:08:00 AM
1,2-Dibromoethane	ND	1.2	ug/m3	1	3/19/2009 12:08:00 AM
1,2-Dichlorobenzene	ND	0.92	ug/m3	1	3/19/2009 12:08:00 AM
1,2-Dichloroethane	ND	0.62	ug/m3	1	3/19/2009 12:08:00 AM
1,2-Dichloropropane	ND	0.70	ug/m3	1	3/19/2009 12:08:00 AM
1,3,5-Trimethylbenzene	ND	0.75	ug/m3	1	3/19/2009 12:08:00 AM
1,3-butadiene	ND	0.34	ug/m3	1	3/19/2009 12:08:00 AM
1,3-Dichlorobenzene	ND	0.92	ug/m3	1	3/19/2009 12:08:00 AM
1,4-Dichlorobenzene	ND	0.92	ug/m3	1	3/19/2009 12:08:00 AM
1,4-Dioxane	ND	1.1	ug/m3	1	3/19/2009 12:08:00 AM
2,2,4-trimethylpentane	ND	0.71	ug/m3	1	3/19/2009 12:08:00 AM
4-ethyltoluene	ND	0.75	ug/m3	1	3/19/2009 12:08:00 AM
Acetone	140	29	ug/m3	40	3/19/2009 9:02:00 PM
Allyl chloride	ND	0.48	ug/m3	1	3/19/2009 12:08:00 AM
Benzene	1.0	0.49	ug/m3	1	3/19/2009 12:08:00 AM
Benzyl chloride	ND	0.88	ug/m3	1	3/19/2009 12:08:00 AM
Bromodichloromethane	ND	1.0	ug/m3	1	3/19/2009 12:08:00 AM
Bromoform	ND	1.6	ug/m3	1	3/19/2009 12:08:00 AM
Bromomethane	ND	0.59	ug/m3	1	3/19/2009 12:08:00 AM
Carbon disulfide	ND	0.47	ug/m3	1	3/19/2009 12:08:00 AM
Carbon tetrachloride	ND	0.26	ug/m3	1	3/19/2009 12:08:00 AM
Chlorobenzene	ND	0.70	ug/m3	1	3/19/2009 12:08:00 AM
Chloroethane	ND	0.40	ug/m3	1	3/19/2009 12:08:00 AM
Chloroform	1.7	0.74	ug/m3	1	3/19/2009 12:08:00 AM
Chloromethane	1.4	0.31	ug/m3	1	3/19/2009 12:08:00 AM
cis-1,2-Dichloroethene	ND	0.60	ug/m3	1	3/19/2009 12:08:00 AM
cis-1,3-Dichloropropene	ND	0.69	ug/m3	1	3/19/2009 12:08:00 AM
Cyclohexane	1.2	0.52	ug/m3	1	3/19/2009 12:08:00 AM
Dibromochloromethane	ND	1.3	ug/m3	1	3/19/2009 12:08:00 AM
Ethyl acetate	11	9.2	ug/m3	10	3/19/2009 8:30:00 PM
Ethylbenzene	0.71	0.66	ug/m3	1	3/19/2009 12:08:00 AM
Freon 11	110	8.6	ug/m3	10	3/19/2009 8:30:00 PM
Freon 113	ND	1.2	ug/m3	1	3/19/2009 12:08:00 AM
Freon 114	ND	1.1	ug/m3	1	3/19/2009 12:08:00 AM

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- E Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

CLIENT: Adirondack Environmental Services, Inc

Lab Order: C0903021

Project: Revonak Cleaners

Lab ID: C0903021-014A

Date: 20-Mar-09

Client Sample ID: IA-501-1

Tag Number: 225, 81 **Collection Date:** 3/10/2009

Matrix: AIR

Analyses	Result	Limit Q	ual Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		TO-1	5		Analyst: RJP
Freon 12	5.0	0.75	ug/m3	1	3/19/2009 12:08:00 AM
Heptane	1.8	0.62	ug/m3	1	3/19/2009 12:08:00 AM
Hexachloro-1,3-butadiene	ND	1.6	ug/m3	1	3/19/2009 12:08:00 AM
Hexane	ND	0.54	ug/m3	1	3/19/2009 12:08:00 AM
Isopropyl alcohol	150	15	ug/m3	40	3/19/2009 9:02:00 PM
m&p-Xylene	1.7	1.3	ug/m3	1	3/19/2009 12:08:00 AM
Methyl Butyl Ketone	ND	1.2	ug/m3	1	3/19/2009 12:08:00 AM
Methyl Ethyl Ketone	ND	0.90	ug/m3	1	3/19/2009 12:08:00 AM
Methyl Isobutyl Ketone	1.7	1.2	ug/m3	1	3/19/2009 12:08:00 AM
Methyl tert-butyl ether	ND	0.55	ug/m3	1	3/19/2009 12:08:00 AM
Methylene chloride	0.60	0.53	ug/m3	1	3/19/2009 12:08:00 AM
o-Xylene	0.75	0.66	ug/m3	1	3/19/2009 12:08:00 AM
Propylene	ND	0.26	ug/m3	1	3/19/2009 12:08:00 AM
Styrene	1.8	0.65	ug/m3	1	3/19/2009 12:08:00 AM
Tetrachloroethylene	1.0	1.0	ug/m3	1	3/19/2009 12:08:00 AM
Tetrahydrofuran	ND	0.45	ug/m3	1	3/19/2009 12:08:00 AM
Toluene	8.0	5.7	ug/m3	10	3/19/2009 8:30:00 PM
trans-1,2-Dichloroethene	ND	0.60	ug/m3	1	3/19/2009 12:08:00 AM
trans-1,3-Dichloropropene	ND	0.69	ug/m3	1	3/19/2009 12:08:00 AM
Trichloroethene	0.38	0.22	ug/m3	1	3/19/2009 12:08:00 AM
Vinyl acetate	ND	0.54	ug/m3	1	3/19/2009 12:08:00 AM
Vinyl Bromide	ND	0.67	ug/m3	1	3/19/2009 12:08:00 AM
Vinyl chloride	ND	0.10	ug/m3	1	3/19/2009 12:08:00 AM

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

 $JN \quad \ Non-routine\ analyte.\ Quantitation\ estimated.$

S Spike Recovery outside accepted recovery limits

E Value above quantitation range

J Analyte detected at or below quantitation limits

ND Not Detected at the Reporting Limit

CLIENT: Adirondack Environmental Services, Inc

Lab Order: C0903021

Project: Revonak Cleaners

Lab ID: C0903021-015A

Date: 20-Mar-09

Client Sample ID: SS-610-1

Tag Number: 327, 120 **Collection Date:** 3/10/2009

Matrix: AIR

Analyses	Result	Limit	Qual	Units	DF	Date Analyzed
1UG/M3 BY METHOD TO15		TO-	-15			Analyst: RJP
1,1,1-Trichloroethane	ND	0.83		ug/m3	1	3/20/2009 7:34:00 AM
1,1,2,2-Tetrachloroethane	ND	1.0		ug/m3	1	3/20/2009 7:34:00 AM
1,1,2-Trichloroethane	ND	0.83		ug/m3	1	3/20/2009 7:34:00 AM
1,1-Dichloroethane	ND	0.62		ug/m3	1	3/20/2009 7:34:00 AM
1,1-Dichloroethene	ND	0.60		ug/m3	1	3/20/2009 7:34:00 AM
1,2,4-Trichlorobenzene	ND	1.1		ug/m3	1	3/20/2009 7:34:00 AM
1,2,4-Trimethylbenzene	1.8	0.75		ug/m3	1	3/20/2009 7:34:00 AM
1,2-Dibromoethane	ND	1.2		ug/m3	1	3/20/2009 7:34:00 AM
1,2-Dichlorobenzene	ND	0.92		ug/m3	1	3/20/2009 7:34:00 AM
1,2-Dichloroethane	ND	0.62		ug/m3	1	3/20/2009 7:34:00 AM
1,2-Dichloropropane	ND	0.70		ug/m3	1	3/20/2009 7:34:00 AM
1,3,5-Trimethylbenzene	1.4	0.75		ug/m3	1	3/20/2009 7:34:00 AM
1,3-butadiene	ND	0.34		ug/m3	1	3/20/2009 7:34:00 AM
1,3-Dichlorobenzene	ND	0.92		ug/m3	1	3/20/2009 7:34:00 AM
1,4-Dichlorobenzene	ND	0.92		ug/m3	1	3/20/2009 7:34:00 AM
1,4-Dioxane	ND	1.1		ug/m3	1	3/20/2009 7:34:00 AM
2,2,4-trimethylpentane	ND	0.71		ug/m3	1	3/20/2009 7:34:00 AM
4-ethyltoluene	0.85	0.75		ug/m3	1	3/20/2009 7:34:00 AM
Acetone	19	7.2		ug/m3	10	3/19/2009 7:06:00 AM
Allyl chloride	ND	0.48		ug/m3	1	3/20/2009 7:34:00 AM
Benzene	0.45	0.49		ug/m3	1	3/20/2009 7:34:00 AM
Benzyl chloride	ND	0.88		ug/m3	1	3/20/2009 7:34:00 AM
Bromodichloromethane	ND	1.0		ug/m3	1	3/20/2009 7:34:00 AM
Bromoform	ND	1.6		ug/m3	1	3/20/2009 7:34:00 AM
Bromomethane	ND	0.59		ug/m3	1	3/20/2009 7:34:00 AM
Carbon disulfide	ND	0.47		ug/m3	1	3/20/2009 7:34:00 AM
Carbon tetrachloride	0.70	0.96		ug/m3	1	3/20/2009 7:34:00 AM
Chlorobenzene	ND	0.70		ug/m3	1	3/20/2009 7:34:00 AM
Chloroethane	ND	0.40		ug/m3	1	3/20/2009 7:34:00 AM
Chloroform	ND	0.74		ug/m3	1	3/20/2009 7:34:00 AM
Chloromethane	ND	0.31		ug/m3	1	3/20/2009 7:34:00 AM
cis-1,2-Dichloroethene	ND	0.60		ug/m3	1	3/20/2009 7:34:00 AM
cis-1,3-Dichloropropene	ND	0.69		ug/m3	1	3/20/2009 7:34:00 AM
Cyclohexane	ND	0.52		ug/m3	1	3/20/2009 7:34:00 AM
Dibromochloromethane	ND	1.3		ug/m3	1	3/20/2009 7:34:00 AM
Ethyl acetate	ND	0.92		ug/m3	1	3/20/2009 7:34:00 AM
Ethylbenzene	1.3	0.66		ug/m3	1	3/20/2009 7:34:00 AM
Freon 11	2.1	0.86		ug/m3	1	3/20/2009 7:34:00 AM
Freon 113	ND	1.2		ug/m3	1	3/20/2009 7:34:00 AM
Freon 114	ND	1.1		ug/m3	1	3/20/2009 7:34:00 AM

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- E Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

CLIENT: Adirondack Environmental Services, Inc

Lab Order: C0903021

Project: Revonak Cleaners

Lab ID: C0903021-015A

Date: 20-Mar-09

Client Sample ID: SS-610-1 Tag Number: 327, 120

Collection Date: 3/10/2009

Matrix: AIR

Analyses	Result	Limit Q	ual Units	DF	Date Analyzed
1UG/M3 BY METHOD TO15	TO-15			Analyst: RJP	
Freon 12	32	7.5	ug/m3	10	3/19/2009 7:06:00 AM
Heptane	1.4	0.62	ug/m3	1	3/20/2009 7:34:00 AM
Hexachloro-1,3-butadiene	ND	1.6	ug/m3	1	3/20/2009 7:34:00 AM
Hexane	ND	0.54	ug/m3	1	3/20/2009 7:34:00 AM
Isopropyl alcohol	ND	0.37	ug/m3	1	3/20/2009 7:34:00 AM
m&p-Xylene	4.1	1.3	ug/m3	1	3/20/2009 7:34:00 AM
Methyl Butyl Ketone	ND	1.2	ug/m3	1	3/20/2009 7:34:00 AM
Methyl Ethyl Ketone	3.0	0.90	ug/m3	1	3/20/2009 7:34:00 AM
Methyl Isobutyl Ketone	1.3	1.2	ug/m3	1	3/20/2009 7:34:00 AM
Methyl tert-butyl ether	ND	0.55	ug/m3	1	3/20/2009 7:34:00 AM
Methylene chloride	0.81	0.53	ug/m3	1	3/20/2009 7:34:00 AM
o-Xylene	1.2	0.66	ug/m3	1	3/20/2009 7:34:00 AM
Propylene	ND	0.26	ug/m3	1	3/20/2009 7:34:00 AM
Styrene	3.1	0.65	ug/m3	1	3/20/2009 7:34:00 AM
Tetrachloroethylene	4.5	1.0	ug/m3	1	3/20/2009 7:34:00 AM
Tetrahydrofuran	3.0	0.45	ug/m3	1	3/20/2009 7:34:00 AM
Toluene	10	5.7	ug/m3	10	3/19/2009 7:06:00 AM
trans-1,2-Dichloroethene	ND	0.60	ug/m3	1	3/20/2009 7:34:00 AM
trans-1,3-Dichloropropene	ND	0.69	ug/m3	1	3/20/2009 7:34:00 AM
Trichloroethene	0.66	0.82	J ug/m3	1	3/20/2009 7:34:00 AM
Vinyl acetate	ND	0.54	ug/m3	1	3/20/2009 7:34:00 AM
Vinyl Bromide	ND	0.67	ug/m3	1	3/20/2009 7:34:00 AM
Vinyl chloride	ND	0.39	ug/m3	1	3/20/2009 7:34:00 AM

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

 $JN \quad \ Non-routine\ analyte.\ Quantitation\ estimated.$

S Spike Recovery outside accepted recovery limits

E Value above quantitation range

J Analyte detected at or below quantitation limits

ND Not Detected at the Reporting Limit

CLIENT: Adirondack Environmental Services, Inc

Lab Order: C0903021

Project: Revonak Cleaners

Collection Date: 3/10/2009

Matrix:

Tag Number: 413, 292

Client Sample ID: IA-610-1

Date: 20-Mar-09

Lab ID: C0903021-016A **Matrix**

Analyses	Result	Limit (Qual Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC	-	TO-	15		Analyst: RJP
1,1,1-Trichloroethane	ND	0.83	ug/m3	1	3/19/2009 12:40:00 AM
1,1,2,2-Tetrachloroethane	ND	1.0	ug/m3	1	3/19/2009 12:40:00 AM
1,1,2-Trichloroethane	ND	0.83	ug/m3	1	3/19/2009 12:40:00 AM
1,1-Dichloroethane	ND	0.62	ug/m3	1	3/19/2009 12:40:00 AM
1,1-Dichloroethene	ND	0.60	ug/m3	1	3/19/2009 12:40:00 AM
1,2,4-Trichlorobenzene	ND	1.1	ug/m3	1	3/19/2009 12:40:00 AM
1,2,4-Trimethylbenzene	1.8	0.75	ug/m3	1	3/19/2009 12:40:00 AM
1,2-Dibromoethane	ND	1.2	ug/m3	1	3/19/2009 12:40:00 AM
1,2-Dichlorobenzene	ND	0.92	ug/m3	1	3/19/2009 12:40:00 AM
1,2-Dichloroethane	ND	0.62	ug/m3	1	3/19/2009 12:40:00 AM
1,2-Dichloropropane	ND	0.70	ug/m3	1	3/19/2009 12:40:00 AM
1,3,5-Trimethylbenzene	0.90	0.75	ug/m3	1	3/19/2009 12:40:00 AM
1,3-butadiene	ND	0.34	ug/m3	1	3/19/2009 12:40:00 AM
1,3-Dichlorobenzene	ND	0.92	ug/m3	1	3/19/2009 12:40:00 AM
1,4-Dichlorobenzene	ND	0.92	ug/m3	1	3/19/2009 12:40:00 AM
1,4-Dioxane	ND	1.1	ug/m3	1	3/19/2009 12:40:00 AM
2,2,4-trimethylpentane	ND	0.71	ug/m3	1	3/19/2009 12:40:00 AM
4-ethyltoluene	0.60	0.75	J ug/m3	1	3/19/2009 12:40:00 AM
Acetone	130	29	ug/m3	40	3/19/2009 10:07:00 PM
Allyl chloride	ND	0.48	ug/m3	1	3/19/2009 12:40:00 AM
Benzene	0.97	0.49	ug/m3	1	3/19/2009 12:40:00 AM
Benzyl chloride	ND	0.88	ug/m3	1	3/19/2009 12:40:00 AM
Bromodichloromethane	ND	1.0	ug/m3	1	3/19/2009 12:40:00 AM
Bromoform	ND	1.6	ug/m3	1	3/19/2009 12:40:00 AM
Bromomethane	ND	0.59	ug/m3	1	3/19/2009 12:40:00 AM
Carbon disulfide	ND	0.47	ug/m3	1	3/19/2009 12:40:00 AM
Carbon tetrachloride	0.45	0.26	ug/m3	1	3/19/2009 12:40:00 AM
Chlorobenzene	ND	0.70	ug/m3	1	3/19/2009 12:40:00 AM
Chloroethane	ND	0.40	ug/m3	1	3/19/2009 12:40:00 AM
Chloroform	0.74	0.74	ug/m3	1	3/19/2009 12:40:00 AM
Chloromethane	1.2	0.31	ug/m3	1	3/19/2009 12:40:00 AM
cis-1,2-Dichloroethene	ND	0.60	ug/m3	1	3/19/2009 12:40:00 AM
cis-1,3-Dichloropropene	ND	0.69	ug/m3	1	3/19/2009 12:40:00 AM
Cyclohexane	0.63	0.52	ug/m3	1	3/19/2009 12:40:00 AM
Dibromochloromethane	ND	1.3	ug/m3	1	3/19/2009 12:40:00 AM
Ethyl acetate	32	9.2	ug/m3	10	3/19/2009 9:34:00 PM
Ethylbenzene	0.71	0.66	ug/m3	1	3/19/2009 12:40:00 AM
Freon 11	30	8.6	ug/m3	10	3/19/2009 9:34:00 PM
Freon 113	ND	1.2	ug/m3	1	3/19/2009 12:40:00 AM
Freon 114	ND	1.1	ug/m3	1	3/19/2009 12:40:00 AM

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- $JN \quad \ Non-routine\ analyte.\ Quantitation\ estimated.$
- S Spike Recovery outside accepted recovery limits
- E Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

CLIENT: Adirondack Environmental Services, Inc

Lab Order: C0903021

Project: Revonak Cleaners

Lab ID: C0903021-016A **Matrix:**

Analyses	Result	Limit Q	ual Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		TO-15		Analyst: RJP	
Freon 12	3.9	0.75	ug/m3	1	3/19/2009 12:40:00 AM
Heptane	1.2	0.62	ug/m3	1	3/19/2009 12:40:00 AM
Hexachloro-1,3-butadiene	ND	1.6	ug/m3	1	3/19/2009 12:40:00 AM
Hexane	ND	0.54	ug/m3	1	3/19/2009 12:40:00 AM
Isopropyl alcohol	24	3.7	ug/m3	10	3/19/2009 9:34:00 PM
m&p-Xylene	2.3	1.3	ug/m3	1	3/19/2009 12:40:00 AM
Methyl Butyl Ketone	ND	1.2	ug/m3	1	3/19/2009 12:40:00 AM
Methyl Ethyl Ketone	2.3	0.90	ug/m3	1	3/19/2009 12:40:00 AM
Methyl Isobutyl Ketone	ND	1.2	ug/m3	1	3/19/2009 12:40:00 AM
Methyl tert-butyl ether	ND	0.55	ug/m3	1	3/19/2009 12:40:00 AM
Methylene chloride	0.56	0.53	ug/m3	1	3/19/2009 12:40:00 AM
o-Xylene	0.88	0.66	ug/m3	1	3/19/2009 12:40:00 AM
Propylene	ND	0.26	ug/m3	1	3/19/2009 12:40:00 AM
Styrene	1.8	0.65	ug/m3	1	3/19/2009 12:40:00 AM
Tetrachloroethylene	0.90	1.0	J ug/m3	1	3/19/2009 12:40:00 AM
Tetrahydrofuran	ND	0.45	ug/m3	1	3/19/2009 12:40:00 AM
Toluene	9.6	5.7	ug/m3	10	3/19/2009 9:34:00 PM
trans-1,2-Dichloroethene	ND	0.60	ug/m3	1	3/19/2009 12:40:00 AM
trans-1,3-Dichloropropene	ND	0.69	ug/m3	1	3/19/2009 12:40:00 AM
Trichloroethene	ND	0.22	ug/m3	1	3/19/2009 12:40:00 AM
Vinyl acetate	ND	0.54	ug/m3	1	3/19/2009 12:40:00 AM
Vinyl Bromide	ND	0.67	ug/m3	1	3/19/2009 12:40:00 AM
Vinyl chloride	ND	0.10	ug/m3	1	3/19/2009 12:40:00 AM

Qualifiers:

Date: 20-Mar-09

Client Sample ID: IA-610-1

Tag Number: 413, 292 **Collection Date:** 3/10/2009

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

 $JN \quad \ Non-routine \ analyte. \ Quantitation \ estimated.$

S Spike Recovery outside accepted recovery limits

E Value above quantitation range

J Analyte detected at or below quantitation limits

ND Not Detected at the Reporting Limit

CLIENT: Adirondack Environmental Services, Inc

Lab Order: C0903021

Project: Revonak Cleaners

Lab ID: C0903021-017A

Date: 20-Mar-09

Client Sample ID: SS-605-1

Tag Number: 224, 262 **Collection Date:** 3/10/2009

Matrix: AIR

Analyses	Result	Limit Q	ual Units	DF	Date Analyzed
1UG/M3 BY METHOD TO15		TO-1	5		Analyst: RJP
1,1,1-Trichloroethane	ND	0.83	ug/m3	1	3/20/2009 8:08:00 AM
1,1,2,2-Tetrachloroethane	ND	1.0	ug/m3	1	3/20/2009 8:08:00 AM
1,1,2-Trichloroethane	ND	0.83	ug/m3	1	3/20/2009 8:08:00 AM
1,1-Dichloroethane	ND	0.62	ug/m3	1	3/20/2009 8:08:00 AM
1,1-Dichloroethene	ND	0.60	ug/m3	1	3/20/2009 8:08:00 AM
1,2,4-Trichlorobenzene	ND	1.1	ug/m3	1	3/20/2009 8:08:00 AM
1,2,4-Trimethylbenzene	2.0	0.75	ug/m3	1	3/20/2009 8:08:00 AM
1,2-Dibromoethane	ND	1.2	ug/m3	1	3/20/2009 8:08:00 AM
1,2-Dichlorobenzene	ND	0.92	ug/m3	1	3/20/2009 8:08:00 AM
1,2-Dichloroethane	ND	0.62	ug/m3	1	3/20/2009 8:08:00 AM
1,2-Dichloropropane	ND	0.70	ug/m3	1	3/20/2009 8:08:00 AM
1,3,5-Trimethylbenzene	2.0	0.75	ug/m3	1	3/20/2009 8:08:00 AM
1,3-butadiene	ND	0.34	ug/m3	1	3/20/2009 8:08:00 AM
1,3-Dichlorobenzene	ND	0.92	ug/m3	1	3/20/2009 8:08:00 AM
1,4-Dichlorobenzene	1.7	0.92	ug/m3	1	3/20/2009 8:08:00 AM
1,4-Dioxane	ND	1.1	ug/m3	1	3/20/2009 8:08:00 AM
2,2,4-trimethylpentane	ND	0.71	ug/m3	1	3/20/2009 8:08:00 AM
4-ethyltoluene	1.1	0.75	ug/m3	1	3/20/2009 8:08:00 AM
Acetone	45	7.2	ug/m3	10	3/19/2009 7:39:00 AM
Allyl chloride	ND	0.48	ug/m3	1	3/20/2009 8:08:00 AM
Benzene	0.81	0.49	ug/m3	1	3/20/2009 8:08:00 AM
Benzyl chloride	ND	0.88	ug/m3	1	3/20/2009 8:08:00 AM
Bromodichloromethane	ND	1.0	ug/m3	1	3/20/2009 8:08:00 AM
Bromoform	ND	1.6	ug/m3	1	3/20/2009 8:08:00 AM
Bromomethane	ND	0.59	ug/m3	1	3/20/2009 8:08:00 AM
Carbon disulfide	ND	0.47	ug/m3	1	3/20/2009 8:08:00 AM
Carbon tetrachloride	0.64	0.96	J ug/m3	1	3/20/2009 8:08:00 AM
Chlorobenzene	ND	0.70	ug/m3	1	3/20/2009 8:08:00 AM
Chloroethane	ND	0.40	ug/m3	1	3/20/2009 8:08:00 AM
Chloroform	ND	0.74	ug/m3	1	3/20/2009 8:08:00 AM
Chloromethane	ND	0.31	ug/m3	1	3/20/2009 8:08:00 AM
cis-1,2-Dichloroethene	ND	0.60	ug/m3	1	3/20/2009 8:08:00 AM
cis-1,3-Dichloropropene	ND	0.69	ug/m3	1	3/20/2009 8:08:00 AM
Cyclohexane	ND	0.52	ug/m3	1	3/20/2009 8:08:00 AM
Dibromochloromethane	ND	1.3	ug/m3	1	3/20/2009 8:08:00 AM
Ethyl acetate	18	9.2	ug/m3	10	3/19/2009 7:39:00 AM
Ethylbenzene	1.5	0.66	ug/m3	1	3/20/2009 8:08:00 AM
Freon 11	5.5	0.86	ug/m3	1	3/20/2009 8:08:00 AM
Freon 113	ND	1.2	ug/m3	1	3/20/2009 8:08:00 AM
Freon 114	ND	1.1	ug/m3	1	3/20/2009 8:08:00 AM

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- $JN \quad \ Non-routine\ analyte.\ Quantitation\ estimated.$
- S Spike Recovery outside accepted recovery limits
- E Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

CLIENT: Adirondack Environmental Services, Inc

Lab Order: C0903021

Project: Revonak Cleaners

Lab ID: C0903021-017A

Date: 20-Mar-09

Client Sample ID: SS-605-1 Tag Number: 224, 262

Collection Date: 3/10/2009

Matrix: AIR

Analyses	Result	Limit (Qual Units	DF	Date Analyzed
1UG/M3 BY METHOD TO15		TO-1		Analyst: RJP	
Freon 12	80	7.5	ug/m3	10	3/19/2009 7:39:00 AM
Heptane	2.2	0.62	ug/m3	1	3/20/2009 8:08:00 AM
Hexachloro-1,3-butadiene	ND	1.6	ug/m3	1	3/20/2009 8:08:00 AM
Hexane	ND	0.54	ug/m3	1	3/20/2009 8:08:00 AM
Isopropyl alcohol	32	3.7	ug/m3	10	3/19/2009 7:39:00 AM
m&p-Xylene	5.0	1.3	ug/m3	1	3/20/2009 8:08:00 AM
Methyl Butyl Ketone	ND	1.2	ug/m3	1	3/20/2009 8:08:00 AM
Methyl Ethyl Ketone	4.4	0.90	ug/m3	1	3/20/2009 8:08:00 AM
Methyl Isobutyl Ketone	2.0	1.2	ug/m3	1	3/20/2009 8:08:00 AM
Methyl tert-butyl ether	ND	0.55	ug/m3	1	3/20/2009 8:08:00 AM
Methylene chloride	7.5	0.53	ug/m3	1	3/20/2009 8:08:00 AM
o-Xylene	1.3	0.66	ug/m3	1	3/20/2009 8:08:00 AM
Propylene	ND	0.26	ug/m3	1	3/20/2009 8:08:00 AM
Styrene	3.3	0.65	ug/m3	1	3/20/2009 8:08:00 AM
Tetrachloroethylene	5.4	1.0	ug/m3	1	3/20/2009 8:08:00 AM
Tetrahydrofuran	3.2	0.45	ug/m3	1	3/20/2009 8:08:00 AM
Toluene	12	5.7	ug/m3	10	3/19/2009 7:39:00 AM
trans-1,2-Dichloroethene	ND	0.60	ug/m3	1	3/20/2009 8:08:00 AM
trans-1,3-Dichloropropene	ND	0.69	ug/m3	1	3/20/2009 8:08:00 AM
Trichloroethene	0.76	0.82	J ug/m3	1	3/20/2009 8:08:00 AM
Vinyl acetate	ND	0.54	ug/m3	1	3/20/2009 8:08:00 AM
Vinyl Bromide	ND	0.67	ug/m3	1	3/20/2009 8:08:00 AM
Vinyl chloride	ND	0.39	ug/m3	1	3/20/2009 8:08:00 AM

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

 $JN \quad \ Non-routine \ analyte. \ Quantitation \ estimated.$

S Spike Recovery outside accepted recovery limits

E Value above quantitation range

J Analyte detected at or below quantitation limits

ND Not Detected at the Reporting Limit

CLIENT: Adirondack Environmental Services, Inc

Lab Order: C0903021

Project: Revonak Cleaners

Lab ID: C0903021-018A **Matrix:**

Analyses	Result	Limit Q	ual Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		TO-1	5		Analyst: RJP
1,1,1-Trichloroethane	ND	0.83	ug/m3	1	3/19/2009 1:13:00 AM
1,1,2,2-Tetrachloroethane	ND	1.0	ug/m3	1	3/19/2009 1:13:00 AM
1,1,2-Trichloroethane	ND	0.83	ug/m3	1	3/19/2009 1:13:00 AM
1,1-Dichloroethane	ND	0.62	ug/m3	1	3/19/2009 1:13:00 AM
1,1-Dichloroethene	ND	0.60	ug/m3	1	3/19/2009 1:13:00 AM
1,2,4-Trichlorobenzene	ND	1.1	ug/m3	1	3/19/2009 1:13:00 AM
1,2,4-Trimethylbenzene	1.9	0.75	ug/m3	1	3/19/2009 1:13:00 AM
1,2-Dibromoethane	ND	1.2	ug/m3	1	3/19/2009 1:13:00 AM
1,2-Dichlorobenzene	ND	0.92	ug/m3	1	3/19/2009 1:13:00 AM
1,2-Dichloroethane	ND	0.62	ug/m3	1	3/19/2009 1:13:00 AM
1,2-Dichloropropane	ND	0.70	ug/m3	1	3/19/2009 1:13:00 AM
1,3,5-Trimethylbenzene	1.1	0.75	ug/m3	1	3/19/2009 1:13:00 AM
1,3-butadiene	ND	0.34	ug/m3	1	3/19/2009 1:13:00 AM
1,3-Dichlorobenzene	ND	0.92	ug/m3	1	3/19/2009 1:13:00 AM
1,4-Dichlorobenzene	ND	0.92	ug/m3	1	3/19/2009 1:13:00 AM
1,4-Dioxane	ND	1.1	ug/m3	1	3/19/2009 1:13:00 AM
2,2,4-trimethylpentane	ND	0.71	ug/m3	1	3/19/2009 1:13:00 AM
4-ethyltoluene	0.75	0.75	ug/m3	1	3/19/2009 1:13:00 AM
Acetone	130	29	ug/m3	40	3/19/2009 10:24:00 AM
Allyl chloride	ND	0.48	ug/m3	1	3/19/2009 1:13:00 AM
Benzene	3.1	0.49	ug/m3	1	3/19/2009 1:13:00 AM
Benzyl chloride	ND	0.88	ug/m3	1	3/19/2009 1:13:00 AM
Bromodichloromethane	ND	1.0	ug/m3	1	3/19/2009 1:13:00 AM
Bromoform	ND	1.6	ug/m3	1	3/19/2009 1:13:00 AM
Bromomethane	ND	0.59	ug/m3	1	3/19/2009 1:13:00 AM
Carbon disulfide	ND	0.47	ug/m3	1	3/19/2009 1:13:00 AM
Carbon tetrachloride	0.51	0.26	ug/m3	1	3/19/2009 1:13:00 AM
Chlorobenzene	ND	0.70	ug/m3	1	3/19/2009 1:13:00 AM
Chloroethane	ND	0.40	ug/m3	1	3/19/2009 1:13:00 AM
Chloroform	0.55	0.74	J ug/m3	1	3/19/2009 1:13:00 AM
Chloromethane	3.0	0.31	ug/m3	1	3/19/2009 1:13:00 AM
cis-1,2-Dichloroethene	ND	0.60	ug/m3	1	3/19/2009 1:13:00 AM
cis-1,3-Dichloropropene	ND	0.69	ug/m3	1	3/19/2009 1:13:00 AM
Cyclohexane	ND	0.52	ug/m3	1	3/19/2009 1:13:00 AM
Dibromochloromethane	ND	1.3	ug/m3	1	3/19/2009 1:13:00 AM
Ethyl acetate	44	9.2	ug/m3	10	3/19/2009 9:52:00 AM
Ethylbenzene	1.1	0.66	ug/m3	1	3/19/2009 1:13:00 AM
Freon 11	33	8.6	ug/m3	10	3/19/2009 9:52:00 AM
Freon 113	ND	1.2	ug/m3	1	3/19/2009 1:13:00 AM
Freon 114	ND	1.1	ug/m3	1	3/19/2009 1:13:00 AM

Qualifiers:

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- E Value above quantitation range
- J Analyte detected at or below quantitation limits

Date: 20-Mar-09

Client Sample ID: IA-605-1

Tag Number: 246, 255 **Collection Date:** 3/10/2009

ND Not Detected at the Reporting Limit

CLIENT: Adirondack Environmental Services, Inc

Lab Order: C0903021

Project: Revonak Cleaners

Lab ID: C0903021-018A

Date: 20-Mar-09

Client Sample ID: IA-605-1

Tag Number: 246, 255 **Collection Date:** 3/10/2009

Matrix:

Analyses	Result	Limit (Qual Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		TO-1	5		Analyst: RJP
Freon 12	5.1	0.75	ug/m3	1	3/19/2009 1:13:00 AM
Heptane	1.3	0.62	ug/m3	1	3/19/2009 1:13:00 AM
Hexachloro-1,3-butadiene	ND	1.6	ug/m3	1	3/19/2009 1:13:00 AM
Hexane	ND	0.54	ug/m3	1	3/19/2009 1:13:00 AM
Isopropyl alcohol	470	35	ug/m3	90	3/19/2009 10:40:00 PM
m&p-Xylene	3.5	1.3	ug/m3	1	3/19/2009 1:13:00 AM
Methyl Butyl Ketone	ND	1.2	ug/m3	1	3/19/2009 1:13:00 AM
Methyl Ethyl Ketone	4.7	0.90	ug/m3	1	3/19/2009 1:13:00 AM
Methyl Isobutyl Ketone	1.2	1.2	ug/m3	1	3/19/2009 1:13:00 AM
Methyl tert-butyl ether	ND	0.55	ug/m3	1	3/19/2009 1:13:00 AM
Methylene chloride	0.71	0.53	ug/m3	1	3/19/2009 1:13:00 AM
o-Xylene	1.1	0.66	ug/m3	1	3/19/2009 1:13:00 AM
Propylene	ND	0.26	ug/m3	1	3/19/2009 1:13:00 AM
Styrene	2.6	0.65	ug/m3	1	3/19/2009 1:13:00 AM
Tetrachloroethylene	ND	1.0	ug/m3	1	3/19/2009 1:13:00 AM
Tetrahydrofuran	2.1	0.45	ug/m3	1	3/19/2009 1:13:00 AM
Toluene	18	5.7	ug/m3	10	3/19/2009 9:52:00 AM
trans-1,2-Dichloroethene	ND	0.60	ug/m3	1	3/19/2009 1:13:00 AM
trans-1,3-Dichloropropene	ND	0.69	ug/m3	1	3/19/2009 1:13:00 AM
Trichloroethene	ND	0.22	ug/m3	1	3/19/2009 1:13:00 AM
Vinyl acetate	ND	0.54	ug/m3	1	3/19/2009 1:13:00 AM
Vinyl Bromide	ND	0.67	ug/m3	1	3/19/2009 1:13:00 AM
Vinyl chloride	ND	0.10	ug/m3	1	3/19/2009 1:13:00 AM

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

 $JN \quad \ Non-routine\ analyte.\ Quantitation\ estimated.$

S Spike Recovery outside accepted recovery limits

E Value above quantitation range

J Analyte detected at or below quantitation limits

ND Not Detected at the Reporting Limit

CLIENT: Adirondack Environmental Services, Inc

Lab Order: C0903021

Project: Revonak Cleaners

Lab ID: C0903021-019A

Date: 20-Mar-09

Client Sample ID: SS-603-1

Tag Number: 417, 187

Collection Date: 3/10/2009

Matrix: AIR

Analyses	Result	Limit Qua	al Units	DF	Date Analyzed
1UG/M3 BY METHOD TO15		TO-15			Analyst: RJP
1,1,1-Trichloroethane	ND	0.83	ug/m3	1	3/20/2009 8:42:00 AM
1,1,2,2-Tetrachloroethane	ND	1.0	ug/m3	1	3/20/2009 8:42:00 AM
1,1,2-Trichloroethane	ND	0.83	ug/m3	1	3/20/2009 8:42:00 AM
1,1-Dichloroethane	ND	0.62	ug/m3	1	3/20/2009 8:42:00 AM
1,1-Dichloroethene	ND	0.60	ug/m3	1	3/20/2009 8:42:00 AM
1,2,4-Trichlorobenzene	ND	1.1	ug/m3	1	3/20/2009 8:42:00 AM
1,2,4-Trimethylbenzene	2.3	0.75	ug/m3	1	3/20/2009 8:42:00 AM
1,2-Dibromoethane	ND	1.2	ug/m3	1	3/20/2009 8:42:00 AM
1,2-Dichlorobenzene	ND	0.92	ug/m3	1	3/20/2009 8:42:00 AM
1,2-Dichloroethane	ND	0.62	ug/m3	1	3/20/2009 8:42:00 AM
1,2-Dichloropropane	ND	0.70	ug/m3	1	3/20/2009 8:42:00 AM
1,3,5-Trimethylbenzene	1.4	0.75	ug/m3	1	3/20/2009 8:42:00 AM
1,3-butadiene	ND	0.34	ug/m3	1	3/20/2009 8:42:00 AM
1,3-Dichlorobenzene	ND	0.92	ug/m3	1	3/20/2009 8:42:00 AM
1,4-Dichlorobenzene	1.8	0.92	ug/m3	1	3/20/2009 8:42:00 AM
1,4-Dioxane	ND	1.1	ug/m3	1	3/20/2009 8:42:00 AM
2,2,4-trimethylpentane	ND	0.71	ug/m3	1	3/20/2009 8:42:00 AM
4-ethyltoluene	1.1	0.75	ug/m3	1	3/20/2009 8:42:00 AM
Acetone	48	7.2	ug/m3	10	3/19/2009 8:11:00 AM
Allyl chloride	ND	0.48	ug/m3	1	3/20/2009 8:42:00 AM
Benzene	ND	0.49	ug/m3	1	3/20/2009 8:42:00 AM
Benzyl chloride	ND	0.88	ug/m3	1	3/20/2009 8:42:00 AM
Bromodichloromethane	ND	1.0	ug/m3	1	3/20/2009 8:42:00 AM
Bromoform	ND	1.6	ug/m3	1	3/20/2009 8:42:00 AM
Bromomethane	ND	0.59	ug/m3	1	3/20/2009 8:42:00 AM
Carbon disulfide	0.82	0.47	ug/m3	1	3/20/2009 8:42:00 AM
Carbon tetrachloride	ND	0.96	ug/m3	1	3/20/2009 8:42:00 AM
Chlorobenzene	ND	0.70	ug/m3	1	3/20/2009 8:42:00 AM
Chloroethane	ND	0.40	ug/m3	1	3/20/2009 8:42:00 AM
Chloroform	ND	0.74	ug/m3	1	3/20/2009 8:42:00 AM
Chloromethane	ND	0.31	ug/m3	1	3/20/2009 8:42:00 AM
cis-1,2-Dichloroethene	ND	0.60	ug/m3	1	3/20/2009 8:42:00 AM
cis-1,3-Dichloropropene	ND	0.69	ug/m3	1	3/20/2009 8:42:00 AM
Cyclohexane	ND	0.52	ug/m3	1	3/20/2009 8:42:00 AM
Dibromochloromethane	ND	1.3	ug/m3	1	3/20/2009 8:42:00 AM
Ethyl acetate	ND	0.92	ug/m3	1	3/20/2009 8:42:00 AM
Ethylbenzene	2.1	0.66	ug/m3	1	3/20/2009 8:42:00 AM
Freon 11	1.9	0.86	ug/m3	1	3/20/2009 8:42:00 AM
Freon 113	ND	1.2	ug/m3	1	3/20/2009 8:42:00 AM
Freon 114	ND	1.1	ug/m3	1	3/20/2009 8:42:00 AM

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- E Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

CLIENT: Adirondack Environmental Services, Inc

Lab Order: C0903021

Project: Revonak Cleaners

Lab ID: C0903021-019A

Date: 20-Mar-09

Client Sample ID: SS-603-1

Tag Number: 417, 187 **Collection Date:** 3/10/2009

Matrix: AIR

Analyses	Result	Limit (Qual Units	DF	Date Analyzed
1UG/M3 BY METHOD TO15	TO-15				Analyst: RJP
Freon 12	150	30	ug/m3	40	3/20/2009 9:15:00 AM
Heptane	6.2	0.62	ug/m3	1	3/20/2009 8:42:00 AM
Hexachloro-1,3-butadiene	ND	1.6	ug/m3	1	3/20/2009 8:42:00 AM
Hexane	ND	0.54	ug/m3	1	3/20/2009 8:42:00 AM
Isopropyl alcohol	8.7	3.7	ug/m3	10	3/19/2009 8:11:00 AM
m&p-Xylene	4.9	1.3	ug/m3	1	3/20/2009 8:42:00 AM
Methyl Butyl Ketone	ND	1.2	ug/m3	1	3/20/2009 8:42:00 AM
Methyl Ethyl Ketone	4.2	0.90	ug/m3	1	3/20/2009 8:42:00 AM
Methyl Isobutyl Ketone	5.4	1.2	ug/m3	1	3/20/2009 8:42:00 AM
Methyl tert-butyl ether	ND	0.55	ug/m3	1	3/20/2009 8:42:00 AM
Methylene chloride	0.67	0.53	ug/m3	1	3/20/2009 8:42:00 AM
o-Xylene	1.5	0.66	ug/m3	1	3/20/2009 8:42:00 AM
Propylene	ND	0.26	ug/m3	1	3/20/2009 8:42:00 AM
Styrene	5.8	0.65	ug/m3	1	3/20/2009 8:42:00 AM
Tetrachloroethylene	5.0	1.0	ug/m3	1	3/20/2009 8:42:00 AM
Tetrahydrofuran	4.0	0.45	ug/m3	1	3/20/2009 8:42:00 AM
Toluene	17	5.7	ug/m3	10	3/19/2009 8:11:00 AM
trans-1,2-Dichloroethene	ND	0.60	ug/m3	1	3/20/2009 8:42:00 AM
trans-1,3-Dichloropropene	ND	0.69	ug/m3	1	3/20/2009 8:42:00 AM
Trichloroethene	0.66	0.82	J ug/m3	1	3/20/2009 8:42:00 AM
Vinyl acetate	ND	0.54	ug/m3	1	3/20/2009 8:42:00 AM
Vinyl Bromide	ND	0.67	ug/m3	1	3/20/2009 8:42:00 AM
Vinyl chloride	ND	0.39	ug/m3	1	3/20/2009 8:42:00 AM

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

 $JN \quad \ Non-routine\ analyte.\ Quantitation\ estimated.$

S Spike Recovery outside accepted recovery limits

E Value above quantitation range

J Analyte detected at or below quantitation limits

ND Not Detected at the Reporting Limit

CLIENT: Adirondack Environmental Services, Inc

C0903021 Lab Order:

Tag Number: 421, 381 Collection Date: 3/10/2009 Project: Revonak Cleaners

Matrix: AIR Lab ID: C0903021-020A

Analyses	Result	Limit	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		то	-15			Analyst: RJP
1,1,1-Trichloroethane	0.78	0.83	J	ug/m3	1	3/19/2009 1:45:00 AM
1,1,2,2-Tetrachloroethane	ND	1.0		ug/m3	1	3/19/2009 1:45:00 AM
1,1,2-Trichloroethane	ND	0.83		ug/m3	1	3/19/2009 1:45:00 AM
1,1-Dichloroethane	ND	0.62		ug/m3	1	3/19/2009 1:45:00 AM
1,1-Dichloroethene	ND	0.60		ug/m3	1	3/19/2009 1:45:00 AM
1,2,4-Trichlorobenzene	ND	1.1		ug/m3	1	3/19/2009 1:45:00 AM
1,2,4-Trimethylbenzene	6.9	0.75		ug/m3	1	3/19/2009 1:45:00 AM
1,2-Dibromoethane	ND	1.2		ug/m3	1	3/19/2009 1:45:00 AM
1,2-Dichlorobenzene	ND	0.92		ug/m3	1	3/19/2009 1:45:00 AM
1,2-Dichloroethane	ND	0.62		ug/m3	1	3/19/2009 1:45:00 AM
1,2-Dichloropropane	ND	0.70		ug/m3	1	3/19/2009 1:45:00 AM
1,3,5-Trimethylbenzene	1.9	0.75		ug/m3	1	3/19/2009 1:45:00 AM
1,3-butadiene	ND	0.34		ug/m3	1	3/19/2009 1:45:00 AM
1,3-Dichlorobenzene	ND	0.92		ug/m3	1	3/19/2009 1:45:00 AM
1,4-Dichlorobenzene	1.4	0.92		ug/m3	1	3/19/2009 1:45:00 AM
1,4-Dioxane	ND	1.1		ug/m3	1	3/19/2009 1:45:00 AM
2,2,4-trimethylpentane	ND	0.71		ug/m3	1	3/19/2009 1:45:00 AM
4-ethyltoluene	1.8	0.75		ug/m3	1	3/19/2009 1:45:00 AM
Acetone	46	7.2		ug/m3	10	3/19/2009 11:13:00 PM
Allyl chloride	ND	0.48		ug/m3	1	3/19/2009 1:45:00 AM
Benzene	1.1	0.49		ug/m3	1	3/19/2009 1:45:00 AM
Benzyl chloride	ND	0.88		ug/m3	1	3/19/2009 1:45:00 AM
Bromodichloromethane	ND	1.0		ug/m3	1	3/19/2009 1:45:00 AM
Bromoform	ND	1.6		ug/m3	1	3/19/2009 1:45:00 AM
Bromomethane	ND	0.59		ug/m3	1	3/19/2009 1:45:00 AM
Carbon disulfide	0.41	0.47	J	ug/m3	1	3/19/2009 1:45:00 AM
Carbon tetrachloride	ND	0.26		ug/m3	1	3/19/2009 1:45:00 AM
Chlorobenzene	ND	0.70		ug/m3	1	3/19/2009 1:45:00 AM
Chloroethane	ND	0.40		ug/m3	1	3/19/2009 1:45:00 AM
Chloroform	1.0	0.74		ug/m3	1	3/19/2009 1:45:00 AM
Chloromethane	ND	0.31		ug/m3	1	3/19/2009 1:45:00 AM
cis-1,2-Dichloroethene	ND	0.60		ug/m3	1	3/19/2009 1:45:00 AM
cis-1,3-Dichloropropene	ND	0.69		ug/m3	1	3/19/2009 1:45:00 AM
Cyclohexane	ND	0.52		ug/m3	1	3/19/2009 1:45:00 AM
Dibromochloromethane	ND	1.3		ug/m3	1	3/19/2009 1:45:00 AM
Ethyl acetate	12	9.2		ug/m3	10	3/19/2009 11:13:00 PM
Ethylbenzene	1.5	0.66		ug/m3	1	3/19/2009 1:45:00 AM
Freon 11	23	8.6		ug/m3	10	3/19/2009 11:13:00 PM
Freon 113	ND	1.2		ug/m3	1	3/19/2009 1:45:00 AM
Freon 114	ND	1.1		ug/m3	1	3/19/2009 1:45:00 AM

Qualifiers:

- В Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded Η
- JN Non-routine analyte. Quantitation estimated.
- Spike Recovery outside accepted recovery limits
- Е Value above quantitation range
- Analyte detected at or below quantitation limits J

Date: 20-Mar-09

Client Sample ID: IA-603-1

Not Detected at the Reporting Limit

CLIENT: Adirondack Environmental Services, Inc

Lab Order: C0903021

Project: Revonak Cleaners

Lab ID: C0903021-020A

Date: 20-Mar-09

Client Sample ID: IA-603-1

Tag Number: 421, 381 **Collection Date:** 3/10/2009

Matrix: AIR

Analyses	Result	Limit	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC	TO-15				Analyst: RJP	
Freon 12	ND	0.75	ι	ug/m3	1	3/19/2009 1:45:00 AM
Heptane	1.7	0.62	ι	ug/m3	1	3/19/2009 1:45:00 AM
Hexachloro-1,3-butadiene	ND	1.6	ι	ug/m3	1	3/19/2009 1:45:00 AM
Hexane	ND	0.54	ι	ug/m3	1	3/19/2009 1:45:00 AM
Isopropyl alcohol	13	3.7	ι	ug/m3	10	3/19/2009 11:13:00 PM
m&p-Xylene	4.5	1.3	ι	ug/m3	1	3/19/2009 1:45:00 AM
Methyl Butyl Ketone	ND	1.2	ι	ug/m3	1	3/19/2009 1:45:00 AM
Methyl Ethyl Ketone	4.4	0.90	ι	ug/m3	1	3/19/2009 1:45:00 AM
Methyl Isobutyl Ketone	ND	1.2	ι	ug/m3	1	3/19/2009 1:45:00 AM
Methyl tert-butyl ether	ND	0.55	ι	ug/m3	1	3/19/2009 1:45:00 AM
Methylene chloride	0.64	0.53	ι	ug/m3	1	3/19/2009 1:45:00 AM
o-Xylene	2.1	0.66	ι	ug/m3	1	3/19/2009 1:45:00 AM
Propylene	ND	0.26	ι	ug/m3	1	3/19/2009 1:45:00 AM
Styrene	4.4	0.65	ι	ug/m3	1	3/19/2009 1:45:00 AM
Tetrachloroethylene	0.69	1.0	Jι	ug/m3	1	3/19/2009 1:45:00 AM
Tetrahydrofuran	3.7	0.45	ι	ug/m3	1	3/19/2009 1:45:00 AM
Toluene	11	5.7	ι	ug/m3	10	3/19/2009 11:13:00 PM
trans-1,2-Dichloroethene	ND	0.60	ι	ug/m3	1	3/19/2009 1:45:00 AM
trans-1,3-Dichloropropene	ND	0.69	ι	ug/m3	1	3/19/2009 1:45:00 AM
Trichloroethene	ND	0.22	ι	ug/m3	1	3/19/2009 1:45:00 AM
Vinyl acetate	ND	0.54	ι	ug/m3	1	3/19/2009 1:45:00 AM
Vinyl Bromide	ND	0.67	ι	ug/m3	1	3/19/2009 1:45:00 AM
Vinyl chloride	ND	0.10	ι	ug/m3	1	3/19/2009 1:45:00 AM

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

 $JN \quad \ Non-routine\ analyte.\ Quantitation\ estimated.$

S Spike Recovery outside accepted recovery limits

E Value above quantitation range

J Analyte detected at or below quantitation limits

ND Not Detected at the Reporting Limit

CLIENT: Adirondack Environmental Services, Inc

Lab Order: C0903021

Project: Revonak Cleaners

Lab ID: C0903021-021A

Date: 20-Mar-09

Client Sample ID: OA-1

Tag Number: 193, 394

Collection Date: 3/10/2009

Matrix: AIR

Analyses	Result	Limit Qı	ual Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		TO-15			Analyst: RJP
1,1,1-Trichloroethane	ND	0.83	ug/m3	1	3/19/2009 2:18:00 AM
1,1,2,2-Tetrachloroethane	ND	1.0	ug/m3	1	3/19/2009 2:18:00 AM
1,1,2-Trichloroethane	ND	0.83	ug/m3	1	3/19/2009 2:18:00 AM
1,1-Dichloroethane	ND	0.62	ug/m3	1	3/19/2009 2:18:00 AM
1,1-Dichloroethene	ND	0.60	ug/m3	1	3/19/2009 2:18:00 AM
1,2,4-Trichlorobenzene	ND	1.1	ug/m3	1	3/19/2009 2:18:00 AM
1,2,4-Trimethylbenzene	0.95	0.75	ug/m3	1	3/19/2009 2:18:00 AM
1,2-Dibromoethane	ND	1.2	ug/m3	1	3/19/2009 2:18:00 AM
1,2-Dichlorobenzene	ND	0.92	ug/m3	1	3/19/2009 2:18:00 AM
1,2-Dichloroethane	ND	0.62	ug/m3	1	3/19/2009 2:18:00 AM
1,2-Dichloropropane	ND	0.70	ug/m3	1	3/19/2009 2:18:00 AM
1,3,5-Trimethylbenzene	ND	0.75	ug/m3	1	3/19/2009 2:18:00 AM
1,3-butadiene	ND	0.34	ug/m3	1	3/19/2009 2:18:00 AM
1,3-Dichlorobenzene	ND	0.92	ug/m3	1	3/19/2009 2:18:00 AM
1,4-Dichlorobenzene	ND	0.92	ug/m3	1	3/19/2009 2:18:00 AM
1,4-Dioxane	ND	1.1	ug/m3	1	3/19/2009 2:18:00 AM
2,2,4-trimethylpentane	ND	0.71	ug/m3	1	3/19/2009 2:18:00 AM
4-ethyltoluene	ND	0.75	ug/m3	1	3/19/2009 2:18:00 AM
Acetone	26	7.2	ug/m3	10	3/19/2009 11:45:00 PM
Allyl chloride	ND	0.48	ug/m3	1	3/19/2009 2:18:00 AM
Benzene	0.84	0.49	ug/m3	1	3/19/2009 2:18:00 AM
Benzyl chloride	ND	0.88	ug/m3	1	3/19/2009 2:18:00 AM
Bromodichloromethane	ND	1.0	ug/m3	1	3/19/2009 2:18:00 AM
Bromoform	ND	1.6	ug/m3	1	3/19/2009 2:18:00 AM
Bromomethane	ND	0.59	ug/m3	1	3/19/2009 2:18:00 AM
Carbon disulfide	ND	0.47	ug/m3	1	3/19/2009 2:18:00 AM
Carbon tetrachloride	0.58	0.26	ug/m3	1	3/19/2009 2:18:00 AM
Chlorobenzene	ND	0.70	ug/m3	1	3/19/2009 2:18:00 AM
Chloroethane	ND	0.40	ug/m3	1	3/19/2009 2:18:00 AM
Chloroform	ND	0.74	ug/m3	1	3/19/2009 2:18:00 AM
Chloromethane	ND	0.31	ug/m3	1	3/19/2009 2:18:00 AM
cis-1,2-Dichloroethene	ND	0.60	ug/m3	1	3/19/2009 2:18:00 AM
cis-1,3-Dichloropropene	ND	0.69	ug/m3	1	3/19/2009 2:18:00 AM
Cyclohexane	ND	0.52	ug/m3	1	3/19/2009 2:18:00 AM
Dibromochloromethane	ND	1.3	ug/m3	1	3/19/2009 2:18:00 AM
Ethyl acetate	ND	0.92	ug/m3	1	3/19/2009 2:18:00 AM
Ethylbenzene	ND	0.66	ug/m3	1	3/19/2009 2:18:00 AM
Freon 11	1.4	0.86	ug/m3	1	3/19/2009 2:18:00 AM
Freon 113	ND	1.2	ug/m3	1	3/19/2009 2:18:00 AM
Freon 114	ND	1.1	ug/m3	1	3/19/2009 2:18:00 AM

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- E Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

CLIENT: Adirondack Environmental Services, Inc

Lab Order: C0903021

Project: Revonak Cleaners

Lab ID: C0903021-021A

Date: 20-Mar-09

Client Sample ID: OA-1

Tag Number: 193, 394

Collection Date: 3/10/2009

Matrix: AIR

Analyses	Result	Limit	Qual	Units	DF	Date Analyzed	
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC	TO-15					Analyst: RJP	
Freon 12	2.7	0.75		ug/m3	1	3/19/2009 2:18:00 AM	
Heptane	0.75	0.62		ug/m3	1	3/19/2009 2:18:00 AM	
Hexachloro-1,3-butadiene	ND	1.6		ug/m3	1	3/19/2009 2:18:00 AM	
Hexane	0.90	0.54		ug/m3	1	3/19/2009 2:18:00 AM	
Isopropyl alcohol	ND	0.37		ug/m3	1	3/19/2009 2:18:00 AM	
m&p-Xylene	1.1	1.3	J	ug/m3	1	3/19/2009 2:18:00 AM	
Methyl Butyl Ketone	ND	1.2		ug/m3	1	3/19/2009 2:18:00 AM	
Methyl Ethyl Ketone	1.7	0.90		ug/m3	1	3/19/2009 2:18:00 AM	
Methyl Isobutyl Ketone	ND	1.2		ug/m3	1	3/19/2009 2:18:00 AM	
Methyl tert-butyl ether	ND	0.55		ug/m3	1	3/19/2009 2:18:00 AM	
Methylene chloride	ND	0.53		ug/m3	1	3/19/2009 2:18:00 AM	
o-Xylene	0.49	0.66	J	ug/m3	1	3/19/2009 2:18:00 AM	
Propylene	ND	0.26		ug/m3	1	3/19/2009 2:18:00 AM	
Styrene	0.78	0.65		ug/m3	1	3/19/2009 2:18:00 AM	
Tetrachloroethylene	0.90	1.0	J	ug/m3	1	3/19/2009 2:18:00 AM	
Tetrahydrofuran	ND	0.45		ug/m3	1	3/19/2009 2:18:00 AM	
Toluene	4.7	0.57		ug/m3	1	3/19/2009 2:18:00 AM	
trans-1,2-Dichloroethene	ND	0.60		ug/m3	1	3/19/2009 2:18:00 AM	
trans-1,3-Dichloropropene	ND	0.69		ug/m3	1	3/19/2009 2:18:00 AM	
Trichloroethene	0.38	0.22		ug/m3	1	3/19/2009 2:18:00 AM	
Vinyl acetate	ND	0.54		ug/m3	1	3/19/2009 2:18:00 AM	
Vinyl Bromide	ND	0.67		ug/m3	1	3/19/2009 2:18:00 AM	
Vinyl chloride	ND	0.10		ug/m3	1	3/19/2009 2:18:00 AM	

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

 $JN \quad \ Non-routine\ analyte.\ Quantitation\ estimated.$

S Spike Recovery outside accepted recovery limits

E Value above quantitation range

J Analyte detected at or below quantitation limits

ND Not Detected at the Reporting Limit

Centek Laborate	ories,	LLC	Ch	ain of Cus	tody	Site Name: Revovir	nex cl.	Detection Limit	Report Level
143 Midler Park Drive	-		,			Project:	DF OI	5ppbv 7	Level
Syracuse, NY 13206						PO#: NYSDEC :	SITE	1ug/M3	Level
Phone: 315-431-9730 Fa	ax: 315-4	131-9731	Emergency:	315-416-2751 / 4	16-2752	Other: 3560		1ug/M3 +TCE .25	at "B" Like
	Check	Rush TAT	Due	Company:		- ! -	Company:		
Turnaround Time:	Qne	Surcharge %	Date:		CK ENV.		Ad	VRONDACK	ENV. SICS
5 Business Days	₩-	0%				ue	Invoice:		
4 Business Days		35%		31					
3 Business Days		50%		_ <i>+</i> 1	LBANY 1	Jy 12207			
2 Business Days		75%				1 + 10 ²⁰ . 3 a			
Next Day by 5pm		100%		Phone:	วิเ <i>B) 434-</i>	<u>-4546</u>	Phone:		
Next Day by Noon		150%		Fax:	- 45 4 1 1 5 4	A	Fax:		
Same Day		200%				ack environmental			_
Sample ID		Date	Sampled	Canister	Regulator	Analysis Request *	com	Comments	Vacuum
				Number	Number		ļ <u>.</u>		Start/Stop
54-1		3-31	-09 <u> </u>	139	181	TO 15	0.0	PID	29/0
SV-2		3-3	-08	84	297	T015	0.7	PID	30/1.15
									7, 1
							<u> </u>		
			_						
1 Dt	~ ~	0000	<u>'0 0</u>	10.00		2 11 - 111	00-81	 	
* Plea	155	Provi	ne	Cate	OKY	B' Delivi	T asu		
					1			AHH)	
							1		
					-				
		_							
* Please	Sen	o Repor	75 TO:	hstubi	CKO)GW	· DEC.STATE.A	MY.US		ļ
				7.7.			1		
			<u> </u>	Ostanos	6) 122	ECH TECH . C			
				KADOSE	PHEI	ECH TEURIO	27~		
						_	<u> </u>		
				-			1		
<u></u>							<u> </u>		
Chain of Custody		Print Name			Signature		Date/Time	Courier:	
Sampled by:	Rosa	JOY Ha	05E		Randol	the of the told			
. ,					De Dord		4.60	50 0005	
Relinquished by:	1 CCC+	Jogg Ha	∞\$ <u>E</u>		Kanon My	h of som		D 0905	
Received at Lab by:	M/ ~	Tex			M. 10		413/04		www.CentekLabs.com

.

CLIENT: Adirondack Environmental Services, Inc

Lab Order: C0904008

Project: Revonak Dry Cleaners

Lab ID: C0904008-001A

Date: 13-Apr-09

Client Sample ID: SV-1

Tag Number: 139, 181 **Collection Date:** 3/31/2009

Matrix: AIR

Analyses	Result	Limit Q	ual Units	DF	Date Analyzed
1UG/M3 BY METHOD TO15		TO-15		Analyst: LL	
1,1,1-Trichloroethane	ND	0.83	ug/m3	1	4/8/2009 4:57:00 PM
1,1,2,2-Tetrachloroethane	ND	1.0	ug/m3	1	4/8/2009 4:57:00 PM
1,1,2-Trichloroethane	ND	0.83	ug/m3	1	4/8/2009 4:57:00 PM
1,1-Dichloroethane	ND	0.62	ug/m3	1	4/8/2009 4:57:00 PM
1,1-Dichloroethene	ND	0.60	ug/m3	1	4/8/2009 4:57:00 PM
1,2,4-Trichlorobenzene	ND	1.1	ug/m3	1	4/8/2009 4:57:00 PM
1,2,4-Trimethylbenzene	7.2	0.75	ug/m3	1	4/8/2009 4:57:00 PM
1,2-Dibromoethane	ND	1.2	ug/m3	1	4/8/2009 4:57:00 PM
1,2-Dichlorobenzene	ND	0.92	ug/m3	1	4/8/2009 4:57:00 PM
1,2-Dichloroethane	ND	0.62	ug/m3	1	4/8/2009 4:57:00 PM
1,2-Dichloropropane	ND	0.70	ug/m3	1	4/8/2009 4:57:00 PM
1,3,5-Trimethylbenzene	2.0	0.75	ug/m3	1	4/8/2009 4:57:00 PM
1,3-butadiene	ND	0.34	ug/m3	1	4/8/2009 4:57:00 PM
1,3-Dichlorobenzene	ND	0.92	ug/m3	1	4/8/2009 4:57:00 PM
1,4-Dichlorobenzene	0.92	0.92	ug/m3	1	4/8/2009 4:57:00 PM
1,4-Dioxane	ND	1.1	ug/m3	1	4/8/2009 4:57:00 PM
2,2,4-trimethylpentane	230	28	ug/m3	40	4/8/2009 6:04:00 PM
4-ethyltoluene	3.6	0.75	ug/m3	1	4/8/2009 4:57:00 PM
Acetone	46	7.2	ug/m3	10	4/8/2009 5:31:00 PM
Allyl chloride	ND	0.48	ug/m3	1	4/8/2009 4:57:00 PM
Benzene	4.1	0.49	ug/m3	1	4/8/2009 4:57:00 PM
Benzyl chloride	ND	0.88	ug/m3	1	4/8/2009 4:57:00 PM
Bromodichloromethane	ND	1.0	ug/m3	1	4/8/2009 4:57:00 PM
Bromoform	ND	1.6	ug/m3	1	4/8/2009 4:57:00 PM
Bromomethane	ND	0.59	ug/m3	1	4/8/2009 4:57:00 PM
Carbon disulfide	1.1	0.47	ug/m3	1	4/8/2009 4:57:00 PM
Carbon tetrachloride	ND	0.96	ug/m3	1	4/8/2009 4:57:00 PM
Chlorobenzene	ND	0.70	ug/m3	1	4/8/2009 4:57:00 PM
Chloroethane	2.7	0.40	ug/m3	1	4/8/2009 4:57:00 PM
Chloroform	ND	0.74	ug/m3	1	4/8/2009 4:57:00 PM
Chloromethane	ND	0.31	ug/m3	1	4/8/2009 4:57:00 PM
cis-1,2-Dichloroethene	45	6.0	ug/m3	10	4/8/2009 5:31:00 PM
cis-1,3-Dichloropropene	ND	0.69	ug/m3	1	4/8/2009 4:57:00 PM
Cyclohexane	20	5.2	ug/m3	10	4/8/2009 5:31:00 PM
Dibromochloromethane	ND	1.3	ug/m3	1	4/8/2009 4:57:00 PM
Ethyl acetate	ND	0.92	ug/m3	1	4/8/2009 4:57:00 PM
Ethylbenzene	7.5	6.6	ug/m3	10	4/8/2009 5:31:00 PM
Freon 11	3.0	0.86	ug/m3	1	4/8/2009 4:57:00 PM
Freon 113	26	12	ug/m3	10	4/8/2009 5:31:00 PM
Freon 114	ND	1.1	ug/m3	10	4/8/2009 4:57:00 PM

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- E Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

CLIENT: Adirondack Environmental Services, Inc

Lab Order: C0904008

Project: Revonak Dry Cleaners

Lab ID: C0904008-001A

Date: 13-Apr-09

Client Sample ID: SV-1

Tag Number: 139, 181

Collection Date: 3/31/2009

Matrix: AIR

Analyses	Result	Limit Qua	l Units	DF	Date Analyzed	
1UG/M3 BY METHOD TO15	TO-15				Analyst: LL	
Freon 12	2.9	0.75	ug/m3	1	4/8/2009 4:57:00 PM	
Heptane	2.9	0.62	ug/m3	1	4/8/2009 4:57:00 PM	
Hexachloro-1,3-butadiene	ND	1.6	ug/m3	1	4/8/2009 4:57:00 PM	
Hexane	12	5.4	ug/m3	10	4/8/2009 5:31:00 PM	
Isopropyl alcohol	ND	0.37	ug/m3	1	4/8/2009 4:57:00 PM	
m&p-Xylene	21	13	ug/m3	10	4/8/2009 5:31:00 PM	
Methyl Butyl Ketone	ND	1.2	ug/m3	1	4/8/2009 4:57:00 PM	
Methyl Ethyl Ketone	14	9.0	ug/m3	10	4/8/2009 5:31:00 PM	
Methyl Isobutyl Ketone	2.7	1.2	ug/m3	1	4/8/2009 4:57:00 PM	
Methyl tert-butyl ether	ND	0.55	ug/m3	1	4/8/2009 4:57:00 PM	
Methylene chloride	3.2	0.53	ug/m3	1	4/8/2009 4:57:00 PM	
o-Xylene	6.9	0.66	ug/m3	1	4/8/2009 4:57:00 PM	
Propylene	ND	0.26	ug/m3	1	4/8/2009 4:57:00 PM	
Styrene	7.8	6.5	ug/m3	10	4/8/2009 5:31:00 PM	
Tetrachloroethylene	2.8	1.0	ug/m3	1	4/8/2009 4:57:00 PM	
Tetrahydrofuran	9.9	4.5	ug/m3	10	4/8/2009 5:31:00 PM	
Toluene	78	5.7	ug/m3	10	4/8/2009 5:31:00 PM	
trans-1,2-Dichloroethene	6.2	0.60	ug/m3	1	4/8/2009 4:57:00 PM	
trans-1,3-Dichloropropene	ND	0.69	ug/m3	1	4/8/2009 4:57:00 PM	
Trichloroethene	5.6	0.82	ug/m3	1	4/8/2009 4:57:00 PM	
Vinyl acetate	ND	0.54	ug/m3	1	4/8/2009 4:57:00 PM	
Vinyl Bromide	ND	0.67	ug/m3	1	4/8/2009 4:57:00 PM	
Vinyl chloride	760	120	ug/m3	320	4/9/2009 9:40:00 AM	

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

S Spike Recovery outside accepted recovery limits

E Value above quantitation range

J Analyte detected at or below quantitation limits

ND Not Detected at the Reporting Limit

CLIENT: Adirondack Environmental Services, Inc

Lab Order: C0904008

Project: Revonak Dry Cleaners

Lab ID: C0904008-002A

Date: 13-Apr-09

Client Sample ID: SV-2

Tag Number: 84, 297

Collection Date: 3/31/2009

Matrix: AIR

Analyses	Result	Limit Qu	ual Units	DF	Date Analyzed	
1UG/M3 BY METHOD TO15		TO-15			Analyst: LL	
1,1,1-Trichloroethane	0.78	0.83	J ug/m3	1	4/8/2009 6:37:00 PM	
1,1,2,2-Tetrachloroethane	ND	1.0	ug/m3	1	4/8/2009 6:37:00 PM	
1,1,2-Trichloroethane	ND	0.83	ug/m3	1	4/8/2009 6:37:00 PM	
1,1-Dichloroethane	ND	0.62	ug/m3	1	4/8/2009 6:37:00 PM	
1,1-Dichloroethene	ND	0.60	ug/m3	1	4/8/2009 6:37:00 PM	
1,2,4-Trichlorobenzene	ND	1.1	ug/m3	1	4/8/2009 6:37:00 PM	
1,2,4-Trimethylbenzene	5.9	0.75	ug/m3	1	4/8/2009 6:37:00 PM	
1,2-Dibromoethane	ND	1.2	ug/m3	1	4/8/2009 6:37:00 PM	
1,2-Dichlorobenzene	ND	0.92	ug/m3	1	4/8/2009 6:37:00 PM	
1,2-Dichloroethane	ND	0.62	ug/m3	1	4/8/2009 6:37:00 PM	
1,2-Dichloropropane	ND	0.70	ug/m3	1	4/8/2009 6:37:00 PM	
1,3,5-Trimethylbenzene	1.6	0.75	ug/m3	1	4/8/2009 6:37:00 PM	
1,3-butadiene	ND	0.34	ug/m3	1	4/8/2009 6:37:00 PM	
1,3-Dichlorobenzene	ND	0.92	ug/m3	1	4/8/2009 6:37:00 PM	
1,4-Dichlorobenzene	2.5	0.92	ug/m3	1	4/8/2009 6:37:00 PM	
1,4-Dioxane	ND	1.1	ug/m3	1	4/8/2009 6:37:00 PM	
2,2,4-trimethylpentane	1.0	0.71	ug/m3	1	4/8/2009 6:37:00 PM	
4-ethyltoluene	2.4	0.75	ug/m3	1	4/8/2009 6:37:00 PM	
Acetone	81	29	ug/m3	40	4/8/2009 7:41:00 PM	
Allyl chloride	ND	0.48	ug/m3	1	4/8/2009 6:37:00 PM	
Benzene	3.6	0.49	ug/m3	1	4/8/2009 6:37:00 PM	
Benzyl chloride	ND	0.88	ug/m3	1	4/8/2009 6:37:00 PM	
Bromodichloromethane	ND	1.0	ug/m3	1	4/8/2009 6:37:00 PM	
Bromoform	ND	1.6	ug/m3	1	4/8/2009 6:37:00 PM	
Bromomethane	ND	0.59	ug/m3	1	4/8/2009 6:37:00 PM	
Carbon disulfide	1.7	0.47	ug/m3	1	4/8/2009 6:37:00 PM	
Carbon tetrachloride	ND	0.96	ug/m3	1	4/8/2009 6:37:00 PM	
Chlorobenzene	ND	0.70	ug/m3	1	4/8/2009 6:37:00 PM	
Chloroethane	ND	0.40	ug/m3	1	4/8/2009 6:37:00 PM	
Chloroform	4.6	0.74	ug/m3	1	4/8/2009 6:37:00 PM	
Chloromethane	0.46	0.31	ug/m3	1	4/8/2009 6:37:00 PM	
cis-1,2-Dichloroethene	3.0	0.60	ug/m3	1	4/8/2009 6:37:00 PM	
cis-1,3-Dichloropropene	ND	0.69	ug/m3	1	4/8/2009 6:37:00 PM	
Cyclohexane	ND	0.52	ug/m3	1	4/8/2009 6:37:00 PM	
Dibromochloromethane	ND	1.3	ug/m3	1	4/8/2009 6:37:00 PM	
Ethyl acetate	ND	0.92	ug/m3	1	4/8/2009 6:37:00 PM	
Ethylbenzene	3.1	0.66	ug/m3	1	4/8/2009 6:37:00 PM	
Freon 11	33	8.6	ug/m3	10	4/8/2009 7:09:00 PM	
Freon 113	ND	1.2	ug/m3	1	4/8/2009 6:37:00 PM	
Freon 114	ND	1.1	ug/m3	1	4/8/2009 6:37:00 PM	

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- $JN \quad \ Non-routine\ analyte.\ Quantitation\ estimated.$
- S Spike Recovery outside accepted recovery limits
- E Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

CLIENT: Adirondack Environmental Services, Inc

Lab Order: C0904008

Project: Revonak Dry Cleaners

Lab ID: C0904008-002A

Date: 13-Apr-09

Client Sample ID: SV-2

Tag Number: 84, 297

Collection Date: 3/31/2009

Matrix: AIR

Analyses	Result	Limit	Qual	Units	DF	Date Analyzed
1UG/M3 BY METHOD TO15		ТО			Analyst: LL	
Freon 12	2.3	0.75		ug/m3	1	4/8/2009 6:37:00 PM
Heptane	0.58	0.62	J	ug/m3	1	4/8/2009 6:37:00 PM
Hexachloro-1,3-butadiene	ND	1.6		ug/m3	1	4/8/2009 6:37:00 PM
Hexane	ND	0.54		ug/m3	1	4/8/2009 6:37:00 PM
Isopropyl alcohol	ND	0.37		ug/m3	1	4/8/2009 6:37:00 PM
m&p-Xylene	6.6	13	J	ug/m3	10	4/8/2009 7:09:00 PM
Methyl Butyl Ketone	ND	1.2		ug/m3	1	4/8/2009 6:37:00 PM
Methyl Ethyl Ketone	4.3	0.90		ug/m3	1	4/8/2009 6:37:00 PM
Methyl Isobutyl Ketone	ND	1.2		ug/m3	1	4/8/2009 6:37:00 PM
Methyl tert-butyl ether	ND	0.55		ug/m3	1	4/8/2009 6:37:00 PM
Methylene chloride	0.49	0.53	J	ug/m3	1	4/8/2009 6:37:00 PM
o-Xylene	3.4	0.66		ug/m3	1	4/8/2009 6:37:00 PM
Propylene	ND	0.26		ug/m3	1	4/8/2009 6:37:00 PM
Styrene	6.9	0.65		ug/m3	1	4/8/2009 6:37:00 PM
Tetrachloroethylene	470	41		ug/m3	40	4/8/2009 7:41:00 PM
Tetrahydrofuran	1.6	0.45		ug/m3	1	4/8/2009 6:37:00 PM
Toluene	15	5.7		ug/m3	10	4/8/2009 7:09:00 PM
trans-1,2-Dichloroethene	ND	0.60		ug/m3	1	4/8/2009 6:37:00 PM
trans-1,3-Dichloropropene	ND	0.69		ug/m3	1	4/8/2009 6:37:00 PM
Trichloroethene	36	8.2		ug/m3	10	4/8/2009 7:09:00 PM
Vinyl acetate	ND	0.54		ug/m3	1	4/8/2009 6:37:00 PM
Vinyl Bromide	ND	0.67		ug/m3	1	4/8/2009 6:37:00 PM
Vinyl chloride	ND	0.39		ug/m3	1	4/8/2009 6:37:00 PM

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

S Spike Recovery outside accepted recovery limits

E Value above quantitation range

J Analyte detected at or below quantitation limits

ND Not Detected at the Reporting Limit

APPENDIX B

DISPOSAL MANIFEST

Printed/Typed Name

18. Designated Facility Owner or Operator: Certification of receipt of materials covered by the manifest except as noted in Issue 17a

APPENDIX C

MONITORING WELL COMPLETION LOGS

WELL / BORING NO. MW-13S	EXPERTISE YOU CAN COUNT ON 5 McCree He Road Phone: 518-585-5383							
Site Name: Revonak Dry Cleaners - New Paltz, NY Date	Aztech New York 12020 Fast 518-685-5385 www.aziechiech.com							
Location: New Pattz Medical Center Drilling Co.: Aztach Technologies, Inc.								
Client: NYSDEC - Central Office Driller: Ron Marshall KEY:								
Phone No.: Log	ged by:	R. Hoose	Bantonita Native Screen					
Drilling Method: Hollow Stem Auger (Dia):4 1/4" S	ampling	Method: Geoprobe (Ola); Z	0 Sand Concrete - Orip Cap					
Drilled TD: 12.2 (Ne): 8" S	ampled	TD: 13' (Dia); 2"	SITE PLAN:					
Well TD: 12.2 (Dia):2" V	Vell Typ	9: Monitoring	See Site Map					
Screen Interval: 3.2-12.2 Slot Size: #105	Sint .	Diameter 20-hoh						
Cased Interval: 0.0'-3.2 Type: PVC		_ Diameter20-inch						
Sand Pack Interval: 2.2'-12.2' Type:	#0	_Wellhead Prot: Stick-up						
Bentonite Seal Interval: 1.5-22 Type: Be	intonite chi	28 Grouted Interval:N/A						
1 2 2								
Depth Sample: Well Recovery: Construction Blows	PID (ppm):	Description /	Soil Classification					
0								
-2//20 12//20		0.0' - 1.9' Brown fine to coarse Se "Tilly" in composition an	ind and Silf, and fine to coerse Gravel. id appearance.					
8-1: (0.0'-5.0') Rec: 20'/6.0'	20	1.9' - 5.0' Dark brown SILT and CI	LAY. 1.9'					
		Organic No odor						
	26	— WET @ ~5.0'						
8-2: (5.07-107)		5.0' - 13' Brown fine to coarse Sa Stiff; Wat	and and Silt, and fine to coerse Gravel. 5.0"					
Rec 4.0' / 5.0'	28	No odor Cogres SAND, little slit.	some fine gravel from 10.0" - 10.4"					
		Very stiff @ 10.4'						
10	90	No odor						
9-3: (10'-13')								
12 Rec: 3.0' / 3.0'	52	No odor	(Gladel TII)					
14			@ 12.2. Install 9.0 of 2.0" ID PVC screen 13"					
-		(#10 slot) and riser to grade. Well fir	hished as a "stick-up" completion.					
16 —								
<u></u>								
18 —								
20 —								
22 –								
24 _								
0-								
26 —								
29								
26 —								
Monitoring Well Completion / Boring Log drafted by Aztech	Technolog	les, Inc.	PAGE 1 of 1					

WELL / BORING NO. MW-148	EXPERTISE YOU CAN COUNT ON 5 McCres Hill Road Phone: 618-686-6836 Balleton Soa Fac: 518-685-6836
Site Name: Revorak Dry Cleeners - New Patz, NY Date Drilled Location: Meedowbrook Farms Apartments Drilling Co.	Aztech New York 12020 www.azlechlech.com
27111119	20 000 AC 100 AC
Ciletic Dillier.	NAME OF THE PARTY
Phone No.: Logged by:	Soll pvc Riser
Drilling Method: Hollow Stem Auger (Dia):4 1/4" Sampling	72 National State
Drilled TD: 7.0' (Die): 8" Sampled	The state of the s
Well TD: 7.0' (Dia): 2" Well Typ	8: Monitoring See Site Map
Screen Interval: 3.0' - 7.0' Slot Size: # 10 Slot	Dlameter20-hgh
Cased Interval: 0.5'-3.0' Type: PVC	Diameter:20-inch
Sand Pack Interval: 2.6' - 7.0' Type: #0	Wellhead Prot:_Road Box
Bentonite Seal Interval: 1.0' - 2.8' Type: Bentonite th	bs Grouted Interval: N/A
Depth Sample:	<u> </u>
Well Recovery: PID Construction Blows (ppm)	Description / Soil Classification
0 - 1/2	
	0.0 - 1.5' Asphalt & road base
2 — S-1: (0.0'-5.0') Rep: 4.0'/5.0'	1.5' - 7.0' Orange/brown/gray fine to coarse Sand and Silt and fine to coarse 1.5' gravel. Stiff
	"Tilly" in composition and appearance. Color change to brown and thin, varved slit & day from 3.9" - 4.1"
7.0	Return to Sand/Silt/Gravel mix @ 4.1' WET @ -4.0' No odor
8 - S-2 (6.0°-7.0°) Rec 1.5 / 2.0° 7.7	DRY @ ~6.0' (Glacial TIII)
13 V. 3. V.	Sample and Auger refusal @ 7.0'. Install 4.0' of 2.0" ID PVC screen (#10 slot) 7.0"
8 -	and riser to grade. Well finished as flush-mount completion.
10 —	
4	
12 —	
14]	
4	
16 —	
18 —	
20 –	
- 1	
22 –	
24 -	
26 _	
28 —	
Monitoring Well Completion / Boring Log drafted by Aztech Technolog	fee, Inc. PAGE 1 of 1

WELL / BORING NO. MW-158	EXPERTISE YOU CAN COUNT ON 5 McCres HE Rest Phone: 518-585-5383 Balleton 804 Fac: 518-685-5385
Site Name: Revorsk Dry Cleaners - New Paltz, NY Date Drill Location: Meedowbrook Farms Apartments Drilling C	Aztech New York 12020 www.uzdechlech.com
Location Diming	The Market
Client: NYSDEC - Central Office Driller:	NATE
Phone No.: Logged	Soil pvc Riser
Drilling Method: Hollow Stern Auger (Die):4 1/4" Samp	ing Method: Geoprobe (Dia); 2" 0 Sand Concrete - Grip Cap
Drilled TD: 7.0' (De): 8" Samp	TOTAL TOTAL CONTROL OF THE PROPERTY OF THE PRO
Well TD: 7.0' (Na):2" Well T	ype: Monitoring See Site Map
Screen Interval: 3.0' - 7.0' Slot Size: #10 Slot	Diameter20-lngh
Cased Interval: 0.5'-3.0' Type: PVC	Diameter:20-inch
Sand Pack Interval: 2.5' - 7.0' Type: #0	Wellhead Prot: Road Box
Bentonite Seal Interval: 20'-25' Type: Bentonite	delia Grouted Interval: N/A.
Depth Sample: Well Recovery: Pil Construction Blows (pp	2 n): Description / Soil Classification
0 //// = 1///	
	0.0 - 1.5' Asphalt & roed base
2 - S-1: (0.0' - 5.0') Rec: 4.3' / 6.0'	1.5' - 7.0' Brown fine to coarse Sand and Silt, and fine to coarse Gravel. 1.5' Tilly" in composition and appearance.
	— WÉT @ ~3.0'
	No odor
8-2 (5.0'-8.0')	r l
Rec: 3.0' / 3.0'	DRY @ ~7.2" (Glacial Till)
8 -	Sample refusal @ 8.0'; auger refusal @ 7.0'. Install 4.0' of 2.0" ID PVC screen (#10 slot) and riser to grade. Well finished as flush-mount completion.
10 —	(*10 aux) and race to grane. The imprisor as inter-reconnecting
·-	
12 —	
14 —	
16 —	
18 —	
20 —	
22 -	
24]	
26 —	
_	
28 —	
Monitoring Well Completion / Boring Log drafted by Aztech Technic	logies, inc. PAGE 1 of 1

WELL / BORING NO. BR-	-5_			EXPERTISE YOU CAN COUNT ON
Site Name: Revonak Dry Cleaners - New	Paltz, NY Date Drilled	May 10, 2009	Aztech	5 McCres HII Rossi Phone: 518-585-5383 Belleton Spa Fac: 518-685-5386 New York 12020 www.sziechiech.com
Location: New Paltz Medical Center	Drilling Co.;	Aztach Technologies,	Inc. Technologies, Inc.	
Client NYSDEC - Central Office	Driller	Merty Herrington	KEY:	Native Screen
Phone No.:	Logged by:	R. Hoose	Bentonite	Soll/cuttings pvc Riser
Drilling Method: HSA/At Hammer	(De) 4 1/4" Sampling	Method: Geoprobe	(Dia); 2" Sand	Concrete Grip Cap
Drilled TD: 15/28.5'	2004 - 20 - 100 -			724
Well TD: 28.5			See Sitte Map	
Screen Interval: 18.5'-28.5' Slot S	acontrol and a control and a c		ngh	
Cased Interval: 0.0'-18.5 Type	: PVC	Diameter: 20-i	nch	
Sand Pack Interval: 18'-28.5			Stick-up	
Bentonite Seal Interval: 14.5 - 16			***	
Dornolling Cool lines var.		<u> </u>		
Depth Well	Sample: Recovery: PID			
Construction	Blows (ppm):		Description / Soil Classificat	
0 10000		from well MW-138.		m grade to 13' below grade taken
			e to coarse Sand and Silt, and f composition and appearance.	ine to coarse Gravel.
	3-1: (0.0" - 5.0") 20 Resc: 2.0" / 5.0"		wn SILT and CLAY.	1.9"
4		Organic No odor		
*******	25	o Dassinina - a an	-5.0' (SILT & CLAY)	Ine to coerse Gravel. 5.0'
8	S-2: (5.0' - 10')	5.0' - 13' Brown fin Stiff; Wet	e to coarse Sand and Silt, and f	ine to coarse Gravel. 5.0
	Rec: 4.0' / 5.0' 28	No odor	AND, little silt, some fine gravel	from 10 0' - 10 4'
8 - *******		Very stiff	다른 기업을 보았다. 이 경기 경기 경기 (1945) (1945) (1945) (1945) (1945) (1945) (1945) (1945) (1945) (1945) (1945) (1945) (1945) 	10.0
10	90	No odor		
	S-3: (10' - 13')			
12 - ***********************************	lec; 3.0° / 3.0° 52	No odor	(Glacial Ti	n)
14 -		13' - 15' Weather	ed dark gray calcareous shale v	rith occasional fine 13'
-		3 .0140.00	calcareous sandstone. (Weathered Be	
16 -		PART TO MANAGEMENT TO STATE OF THE PARTY OF	y calcareous shale with occasio calcareous sandstone.	nal interlayered gray fine 15'
		No odor		
18 —			ten'possible water producing zo: ten'possible water producing zo:	70 3 3 5 3 4 5 - 1 5 5 5
20 1		- 100 A-0 4000 C		200 - 170 -
		Rig Chai	ter/possible water producing zo	ne natea (g ~20.5)
22		No odor	C	
		DI		
24 1		100 00 9000 0	ter/possible water producing zor ter/possible water producing zor	[2] [1] (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)
26		NSX	(Bedrock)	3.73
			(3); auger refusel @ 15). Contin 26.5) below grade, install 10) of	ue borehole into bedrock with 28.5 2.0" ID PVC screen (#10 slot)
28			Well finished as a "stick-up" cor	
Monitoring Well Completion / Boring Log dr	reflect by Aztech Technologi	es, Inc.		PAGE 1 of 1

WELL / BORING NO. BI	R-6_				1	EXPERTISE YOU CAN COUNT ON
Site Name: Revonak Dry Cleaners - N	lew Paltz, NY Date	: Drilled:	May 11, 2009	-	Aztech	5 McCree Hill Road Belleton Spa New York 12020 www.szlechiachucan
Location: Meadowbrook Farma Ap	ertments Drilli	ing Co.:	Aztach Technol	logies, Inc.	Technologies Inc	
Client: NYSDEC - Central Office	Drilk	er	Merty Herringto	<u> </u>	KEY:	Native Screen
Phone No.:	Log(ged by:	R. Hoose		Bentonite	Soli/cuttings pvc Riser
Drilling Method: HSA/Air Hamme	(Dia):4 1/4" St	ampling	Method: Geop	robe (Dia): 2"	0 Sand	Concrete Grip Cap
Drilled TD: 13/28.5'	(Die):8"/4" Si	ampled '	TD: 7.0	(Dia): 2"	SITE PLAN:	
Well TD: 28'	(Dia);_2" W	ell Type	: Monitoring		See Sittle Map	
Screen Interval: 16'-25' Sk	ot Size: #10.9	lot	_Dlameter	2.0-Ingh		
Cased Interval: 0.5'-18' Ty	pe: <u>PVC</u>		_Diameter	2.0-inch		
Sand Pack Interval: 14'-26.5	Type:	#0	_Wellhead Pro	ot: Rosed Box		
Bentonite Seal Interval: 3.6'-1	<u>('</u> Type <u>:Ber</u>	ritonite chip	B Grouted Inter	vel:0.0'-3.6'		
1	Clas					*
Depth Well Construction	Sample: Recovery: Blows	PID (ppm):		Description / S		
0 7// - 7//			from well MW-148	3.	description from	n grade to 7.0' below grade taken
	12788 <u>1731882 166</u> 8	[2	phalt & road base		
2 - V///////////////////////////////////	S-1: (0.0' - 5.0') Rec: 4.3' / 5.0'	2.0		Orange/brown/gray fili gravel. Stiff	ne to coarse San	d and Silt and fine to coarse 1.5'
4 -	Leithe and Livin		•	"Tilly" in composition	7-47-3111	
14-00-00-00-00-00-00-00-00-00-00-00-00-00		8.7		Return to Sand/Sitt/G	Fravel mbx @ 4.1	ed allt & clay from 3.9' - 4.1'
6 —	8-2: (5.0' - 8.0')	0.8		WET@2~4.0° Nood DRY@2~6.0°	dor (Glacial Till)	
17 <u>-</u> 2	Rec: 3.0' / 3.0'	7.7	7.0' (+/-) - 13'			le with occasional gray 7.0' (+/-)
8 —		Stronger		fine grained calcared	us sandstone.	est-cont.ts
10 —						
9 - 8				No odor		
12 —		[<u>-</u>		(Weathered Be	
14 - 1050005000 (207000000)	į			k gray calcareous she areous sandstone.	ale with occasion	el gray fine grained 13'
			PRODUC	odor		
16						
18 1			Rig	chatter/possible water	er producing zone	noted @ -17'
20 -						
2						
			No	odor		
24 —						
					20 L 13	
26		ł	Sempler refusal 6	7) 8.0': auciar refusal	(Bedrock) Ø 13'. Continue	borehole Into bedrock with 26.5'
28 —			4.0" ID air rotary	to 26.5' below grade	Install 10' of 2.0	O" ID PVC screen (#10 slot)
Monitoring Well Completion / Boring Lo	draffed by Aztech 7	[echnologic		e. Well finished as fix	ish-mount comple	PAGE 1 of 1
		CHICAGO CONTRACTOR OF CONTRACT				

SEVAR 1940	1
WELL / BORING NO. BR-7	EXPERTISE YOU CAN COUNT ON 5 McCrear HE Rosed Phone: 618-886-6383
Site Name: Revonak Dry Cleeners - New Paltz, NY Date Drilled	Aztech www.azechectorn
Location: Meadowbrook Farms Apartments Drilling Co.:	23309 32 23 39
Client NYSDEC - Central Office Driller Driller	Solventines Solventines
Phone No.: Logged by:	R. Hoose Bentonite Grount pvc Riser
Drilling Method: HSA/Air Hammer (Dia):4 1/4" Sampling	Method: Geoprobe (Dia): 2" Sand Concrete - Grip Cap
Drilled TD: 8.5/25 (De): 8"4" Sampled	The state of the s
Well TD: 24' (Dia): 2" Well Typ	9: Monitoring See Site Map
Screen Interval: 14'-24' Slot Size: #10 Stot	Dlameter20-Ingh
Cased Interval: 0.5'-14' Type: PVC	Diameter:20-inch
Sand Pack Interval: 12.5' - 24' Type: #0	_Wellhead Prot: Road Box
Bentonite Seal Interval: 7.6' - 12.5' Type: Bentonite thi	28 Grouted Interval: 1.0' - 7.6'
1 22 00 00	
Depth Sample: Well Recovery: PID Construction Blows (ppm):	
0	Bedrock well nested with MW-15S. Soil description from grade to 7.0' below grade taken from well MW-15S.
	0.0 - 1.5' Asphalt & roed base
2 — S-1: (0.0' - 5.0')	1.5' - 8.0' Brown fine to coarse Sand and Sitt, and fine to coarse Gravel. 1.5' Tilly" in composition and appearance.
- Rec: 4.3' / 6.0'	Tilly" in composition and appearance. WET @ ~3.0'
8.7	No odor
8-2 (5.0' - 8.0')	DRY @ ~7.2
Rec: 3.0*/3.0*	(Glacial Till)
8 -	8.0' - 8.5' Weathered dark gray calcareous shale and fine grained calcareous 8.0' sandstone.
10 —	(Weathered Bedrock)
9 -	8.5 - 25' Dark gray calcareous shale with occasional fine grained calcareous 8.5' sandstone
12 —	No odor
14	
16 -	water producing zone noted @ ~16*
	No odor
20	
2 - ()	No oder
24	
	(Bedrock)
26 —	Sample refusal @ 8.0'; suger refusal @ 8.5'. Continue borehole into bedrock with 25' 4.0" ID air harmner to 25' below grade. Approx 1.0' of drill cuttings in bottom of borehole.
	Inetall 10' of 2.0" ID PVC screen (#10 elot)and river to grade. Well finished se flush-mount completion.
28 —	
Monitoring Well Completion / Boring Log drafted by Aztech Technolog	les, Inc. PAGE 1 of 1

APPENDIX D

SUMMARY TABLES

Well Development Revonak Dry Cleaners New Paltz, NY

Monitoring Wells:

Well ID	DTW (TOC)	Total Depth	Volume Purged	Time	pН	Cond.	Temp.	Turbidity
	(TOC)	(TOC)	(Gallons)		-		-	
	1.75		1.5	11:55	7.22	0.970	59.59	> 50
	2.00		1.0	12:21	7.32	0.938	60.03	> 50
	2.08		0.75	12:31	7.27	0.936	61.29	> 50
	2.00		1.0	2:02	7.20	0.721	60.57	> 50
MW-15S 5-13-09			1.0	2:46	7.18	0.828	94.28	> 50
5-13-09			0.25	3:07	7.24	0.823	62.64	> 50
			0.25	3:13	7.24	0.837	61.30	> 50
			0.25	3:18	7.22	0.837	60.04	> 50
	1.50	6.70		5-14	-09 @ 10:1	5 am		2.66
	1.30		3.5	12:44	7.19	.849	59.45	> 50
	8.60		4.0	12:59	7.27	.826	59.65	> 50
	8.50		3.5	1:02	7.17	.49	58.39	> 50
	6.30		4.0	1:13	7.13	.911	54.36	> 50
	7.20		4.0	1:27	7.14	.899	53.14	> 50
			4.5	1:38	7.13	.902	55.34	> 50
DD 7	8.60		4.5	1:52	7.13	.906	53.48	> 50
BR-7 5-13-09			4.0	2:11	7.21	.835	56.89	> 50
5-15-09			4.5	2:25	7.16	.889	54.83	> 50
			9.0	2:41	7.16	.870	55.27	> 50
			0.25	3:03	7.25	.473	60.12	> 50
			0.25	3:09	7.20	.836	69.76	> 50
			0.25	3:15	7.16	.882	60.10	> 50
			0.25	3:20	7.18	.888	60.10	> 50
	1.37	23.6		5-14	-09 @ 10:0	0 am	•	35.4

Developed By: Bob Gannon/Aztech Date: 5-13-09

Well Development Revonak Dry Cleaners New Paltz, NY

Monitoring Wells:

Monitoring Well ID	DTW (TOC)	Total Depth (TOC)	Volume Purged (Gallons)	Time	рН	Cond.	Temp.	Turbidity
	4.84	12.9	15	12:15	7.09	1.83	52.30	> 50
			2.0	12:40	7.09	1.83	52.04	> 50
MW-13S			2.0	12:45	7.09	1.85	52.35	> 50
5-14-09			2.0	12:50	7.09	1.85	51.92	> 50
			2.0	12:55	7.09	1.84	51.70	28
							•	•
	5.69	30.5	2.0	12:20	7.16	1.52	53.50	> 50
DD 5			2.0	12:25	7.14	1.02	52.75	> 50
BR-5			2.0	12:30	7.16	0.87	53.04	> 50
5-14-09			2.0	12:35	7.15	0.90	52.99	> 50
			2.0	12:40	7.15	0.90	52.98	> 50
	3.58	26	4.0	9:45	7.20	0.69	55.47	> 50
			4.0	10:00	7.21	0.71	55.67	> 50
			4.0	10:22	7.21	0.75	54.05	42.7
			2.0	10:27	7.18	0.71	53.70	25
			2.0	10:39	7.20	0.85	53.85	25
BR-6			2.0	10:45	7.19	0.79	53.93	25
5-14-09			2.0	10:55	7.20	0.83	53.57	
			2.0	11:00	7.18	0.71	54.03	
			2.0	11:05	7.20	0.76	53.73	
			2.0	11:10	7.20	0.71	53.37	
			2.0	11:15	7.21	0.71	53.46	
			2.0	11:20	7.20	0.71	53.52	

Developed By: Tim Zabel/Aztech Date: 5-14-09

Well Development Revonak Dry Cleaners New Paltz, NY

Monitoring Wells:

Well ID	DTW (TOC)	Total Depth (TOC)	Volume Purged (Gallons)	Time	рН	Cond.	Temp.	Turbidity
	3.71	6.53	2.0	10:10	7.14	3.55	57.65	< 50
			0.5	10:30	7.11	3.58	56.48	49
			0.5	10:50	7.11	3.41	56.75	48
			0.5	11:00	7.12	3.33	56.75	36
MW-14S 5-14-09			0.5	11:10	7.11	3.22	56.22	
5-14-09			0.5	11:20	7.12	3.05	56.71	
					7.12	2.95	57.17	
		·			7.12	2.88	57.09	
					7.13	2.87	57.01	

Developed By: Tim Zabel/Aztech Date: 5-14-09

Summary of Compounds Detected Sub-Slab Vapor Investigation - March 10, 2009 Meadowbrook Farms Apartments Henry Dubois Road

New Paltz, NY

		Apt	# 401	Apt # 405		Apt # 410		Apt # 501	
CAS Number	Compound	Sub Slab	Indoor	Sub Slab	Indoor	Sub Slab	Indoor	Sub Slab	Indoor
		SS-401	IA-401	SS-405	IA-405	SS-410	IA-410	SS-501	IA-501
71-55-6	1,1,1-Trichloroethane								
95-63-6	1,2,4-Trimethylbenzene	3.7	1.5	7.6	2.9	3.5	1.4	1.8	1.3
07-06-2	1,2-Dichloroethane				0.58				
108-67-8	1,3,5-Trimethylbenzene	1.9	1.1	2.6	1.8	3.0	1.0	1.2	
106-46-7	1,4-Dichlorobenzene	1.2		1.3		1.3		1.2	
540-84-1	2,2,4-trimethylpentane								
622-96-8	4-ethyltoluene	1.6	0.50 J	2.5	1.4	1.6	0.55 J	0.95	
67-64-1	Acetone	30	45	170	170	27	48	17	140
71-43-2	Benzene	0.65	1.1		10		0.97	0.36 J	1.0
75-15-0	Carbon disulfide			0.38 J	0.51	0.47			
75-00-3	Chloroethane								
56-23-5	Carbon tetrachloride						0.64	0.77 J	
67-66-3	Chloroform	0.94	0.94	1.9	1.0		1.3		1.7
74-87-3	Chloromethane				10		1.5		1.4
156-59-2	cis-1,2-Dichloroethene					0.69			
110-82-7	Cyclohexane		0.80				0.80		1.2
141-78-6	Ethyl acetate	1.3	61		17		6.5		11
100-41-4	Ethylbenzene	1.5	0.62 J	1.9	2.4	34	1.1	1.0	0.71
75-69-4	Freon 11	5.8	38	9.1	88	5.8	120	15	110
76-13-1	Freon 113								
76-14-2	Freon 114								
75-71-8	Freon 12	350	4.9	380	8.4	340	5.8	66	5.0
142-82-5	Heptane	1.9	1.0	2.2	2.2	1.3	5.4	1.3	1.8
110-54-3	Hexane		0.82	1.6			1.3		
67-63-0	Isopropyl alcohol	6.2	13	150	36	6.7			150
179601-23-1	m&p-Xylene	4.9	1.6	7.9	7.0	6.3	3.2	3.2	1.7
78-93-3	Methyl Ethyl Ketone	4.3		6.3 J	15	4.3	2.7	2.8	
108-10-1	Methyl Isobutyl Ketone	1.7		2.0	2.1	1.2 J	5.0	1.2 J	1.7
75-09-2	Methylene chloride	0.88	0.64	0.92	4.3	0.74	0.56	0.71	0.60
95-47-6	o-Xylene	1.5	0.71	2.3	1.9	1.7	1.2	1.1	0.75
100-42-5	Styrene	4.6	1.6	6.4	4.1	4.1	2.0	2.1	1.8
127-18-4	Tetrachloroethylene	4.8	1	3.2		4.8	0.76 J	3.2	1.0
109-99-9	Tetrahydrofuran	3.8		6.5		3.3	2.5	2.6	1.0
08-88-3	Toluene	13	9.2	17	34	14	10	9.2	8.0
156-60-5	trans-1,2-Dichloroethene		J. <u>Z</u>		04	1-7		J. <u>~</u>	0.0
79-01-6	Trichloroethene	0.60 J	0.38	1.9	0.55	0.93	0.44	5.8	0.38
75-01-04	Vinyl Chloride	0.00	0.30	1.5	0.55	0.93	0.44	5.0	0.50

Notes:

Analysis by Centek Laboratories, Inc. via method TO-15

Concentrations in micrograms per cubic meter (ug/m³)

Blank spaces indicate that this compound was not detected

Compounds that were not detected in any of the samples included in this sample group are not listed hereon.

J indicates estimated concentration

Summary of Compounds Detected Sub-Slab Vapor Investigation - March 10, 2009 Meadowbrook Farms Apartments Henry Dubois Road

New Paltz, NY

		Apt	# 503	Apt	# 507	Apt	# 512	Apt # 603	
CAS Number	Compound	Sub Slab	Indoor	Sub Slab	Indoor	Sub Slab	Indoor	Sub Slab	Indoor
		SS-503	IA-503	SS-507	IA-507	SS-512	IA-512	SS-603	IA-603
71-55-6	1,1,1-Trichloroethane								0.78 J
95-63-6	1,2,4-Trimethylbenzene	4.0	8.0	2.8	1.7	4.0	2.1	2.3	6.9
107-06-2	1,2-Dichloroethane								
108-67-8	1,3,5-Trimethylbenzene	2.0	4.0	1.5	1.0	2.3	1.0	1.4	1.9
106-46-7	1,4-Dichlorobenzene	1.8	8.6	1.7		1.7		1.8	1.4
540-84-1	2,2,4-trimethylpentane		5.8			1.5	0.81		
622-96-8	4-ethyltoluene	1.4	5.3	1.1	0.55 J	1.6	0.85	1.1	1.8
67-64-1	Acetone	160	93	20	43	130	180	48	46
71-43-2	Benzene		7.5	0.62	0.97	2.7	2.2		1.1
75-15-0	Carbon disulfide	0.54				0.47		0.82	0.41 J
75-00-3	Chloroethane								
56-23-5	Carbon tetrachloride			0.70 J					
67-66-3	Chloroform		1.6		0.69 J				1.0
74-87-3	Chloromethane				1.3		1.8		
156-59-2	cis-1,2-Dichloroethene								
110-82-7	Cyclohexane		10				1.1		
141-78-6	Ethyl acetate		7.7 J		2.8	4.4	18		12
100-41-4	Ethylbenzene	1.7	8.9	1.5	0.57 J	2.6	1.1	2.1	1.5
75-69-4	Freon 11	15	32	5.3	50	5.7	18	1.9	23
76-13-1	Freon 113		1.2						
76-14-2	Freon 114		37						
75-71-8	Freon 12	86	32	9.7	6.3	240	3.3	150	
142-82-5	Heptane	7.0	10	2.0	1.2	4.2	2.2	6.2	1.7
110-54-3	Hexane	9.0	18			5.8	2.7		
67-63-0	Isopropyl alcohol	34	800	4.1	8.2			8.7	13
179601-23-1	m&p-Xylene	6.0	26	4.4	1.5	8.7	3.5	4.9	4.5
78-93-3	Methyl Ethyl Ketone	4.6	4.0	3.3	4.0	4.6	4.2	4.2	4.4
108-10-1	Methyl Isobutyl Ketone	6.7	10 J	1.8	1.1 J	3.8	2.1	5.4	
75-09-2	Methylene chloride	0.99	11	0.85	0.56	0.81	0.53	0.67	0.64
95-47-6	o-Xylene	1.8	7.5	1.2	0.71	2.7	1.2	1.5	2.1
100-42-5	Styrene	3.9	2.7	3.3	1.4	3.1	1.7	5.8	4.4
127-18-4	Tetrachloroethylene	5.4		6.6	1.0	6.6	0.83 J		0.69 J
109-99-9	Tetrahydrofuran	5.0		3.1	2.0	5.6		4.0	3.7
108-88-3	Toluene	13	57	11	6.7	18	10	17	11
156-60-5	trans-1,2-Dichloroethene								
79-01-6	Trichloroethene	1.5	0.55		0.60	0.66 J	0.44	0.66 J	
75-01-04	Vinyl Chloride								

Notes:

Analysis by Centek Laboratories, Inc. via method TO-15

Concentrations in micrograms per cubic meter (ug/m³)

Blank spaces indicate that this compound was not detected

Compounds that were not detected in any of the samples included in this sample group are not listed hereon.

J indicates estimated concentration

Summary of Compounds Detected Sub-Slab Vapor Investigation - March 10, 2009 Meadowbrook Farms Apartments Henry Dubois Road New Paltz, NY

		Apt i	# 605	Apt	# 610	Outdoor Air		SV-1	SV-2
CAS Number	Compound	Sub Slab	Indoor	Sub Slab	Indoor	Outdoor Air	BLANK	(3-31-09)	(3-31-09)
		SS-605	IA-605	SS-610	IA-610	OA-1		(3-31-09)	(3-31-09)
71-55-6	1,1,1-Trichloroethane								0.78 J
95-63-6	1,2,4-Trimethylbenzene	2.0	1.9	1.8	1.8	0.95		7.2	5.9
107-06-2	1,2-Dichloroethane								
108-67-8	1,3,5-Trimethylbenzene	2.0	1.1	1.4	0.90			2.0	1.6
106-46-7	1,4-Dichlorobenzene	1.7						0.92	2.5
540-84-1	2,2,4-trimethylpentane							230	1.0
622-96-8	4-ethyltoluene	1.1	0.75	0.85	0.60 J			3.6	2.4
67-64-1	Acetone	45	130	19	130	26		46	81
71-43-2	Benzene	0.81	3.1	0.45 J	0.97	0.84		4.1	3.6
75-15-0	Carbon disulfide							1.1	1.7
75-00-3	Chloroethane							2.7	
56-23-5	Carbon tetrachloride	0.64 J	0.51	0.70 J	0.45	0.58			
67-66-3	Chloroform		0.55 J		0.74				4.6
74-87-3	Chloromethane		3.0		1.2				0.46
156-59-2	cis-1,2-Dichloroethene							45	3.0
110-82-7	Cyclohexane				0.63			20	
141-78-6	Ethyl acetate	18	44		32				
100-41-4	Ethylbenzene	1.5	1.1	1.3	0.71			7.5	3.1
75-69-4	Freon 11	5.5	33	2.1	30	1.4		3.0	33
76-13-1	Freon 113							26	
76-14-2	Freon 114								
75-71-8	Freon 12	80	5.1	32	3.9	2.7		2.9	2.3
142-82-5	Heptane	2.2	1.3	1.4	1.2	0.75		2.9	0.58 J
110-54-3	Hexane					0.90		12	
67-63-0	Isopropyl alcohol	32	470		24				
179601-23-1	m&p-Xylene	5.0	3.5	4.1	2.3	1.1 J		21	6.6 J
78-93-3	Methyl Ethyl Ketone	4.4	4.7	3.0	2.3	1.7		14	4.3
108-10-1	Methyl Isobutyl Ketone	2.0	1.2	1.3				2.7	
75-09-2	Methylene chloride	7.5	0.71	0.81	0.56			3.2	0.49 J
95-47-6	o-Xylene	1.3	1.1	1.2	0.88	0.49 J		6.9	3.4
100-42-5	Styrene	3.3	2.6	3.1	1.8	0.78		7.8	6.9
127-18-4	Tetrachloroethylene	5.4		4.5	0.90 J	0.90 J		2.8	470
109-99-9	Tetrahydrofuran	3.2	2.1	3.0				9.9	1.6
108-88-3	Toluene	12	18	10	9.6	4.7		78	15
156-60-5	trans-1,2-Dichloroethene							6.2	
79-01-6	Trichloroethene	0.76 J		0.66 J		0.38		5.6	36
75-01-04	Vinyl Chloride							760	

Notes:

Analysis by Centek Laboratories, Inc. via method TO-15

Concentrations in micrograms per cubic meter (ug/m³)

Blank spaces indicate that this compound was not detected

Compounds that were not detected in any of the samples included in this sample group are not listed hereon.

J indicates estimated concentration

APPENDIX E

LABORATORY ANALYTICAL REPORTS - GROUNDWATER

Experience is the solution

June 23, 2009

Matt Hubicki-11th Floor NYS DEC 625 Broadway

Albany, NY 12233-7014

TEL: (518) 402-9605

FAX: (518) 402-9679

Site # / Callout 356021 / 117534

Work Order No: 090611003

RE: Revonak Dry Cleaners New Paltz NY - Ulster Co

Dear Matt Hubicki-11th Floor:

Adirondack Environmental Services, Inc received 12 samples on 6/10/2009 for the analyses presented in the following report.

There were no problems with the analyses and all associated QC met EPA or laboratory specifications, except if noted.

If you have any questions regarding these tests results, please feel free to call.

Sincerely,

ELAP#: 10709 AIHA#: 100307

Christopher Hess QA Manager

R - RPD outside accepted recovery limits

Date: 23-Jun-09

CLIENT: NYS DEC Client Sample ID: MW-1
Work Order: 090611003 Collection Date: 6/10/2009

Reference: Revonak Dry Cleaners / New Paltz NY - Ulster Lab Sample ID: 090611003-001

PO#: Matrix: GROUNDWATER

Site # / Callout 356021 / 117534

Analyses	Result	PQL	Qual Units	DF	Date Analyzed
VOLATILE ORGANICS SW8260B					Analyst: ML
Chloromethane	< 10	10	μg/L	1	6/22/2009 11:28:00 AM
Bromomethane	< 10	10	μg/L	1	6/22/2009 11:28:00 AM
Vinyl chloride	< 10	10	μg/L	1	6/22/2009 11:28:00 AM
Chloroethane	< 10	10	μg/L	1	6/22/2009 11:28:00 AM
Methylene chloride	< 5.0	5.0	μg/L	1	6/22/2009 11:28:00 AM
Acetone	< 10	10	μg/L	1	6/22/2009 11:28:00 AM
Carbon disulfide	< 5.0	5.0	μg/L	1	6/22/2009 11:28:00 AM
1,1-Dichloroethene	< 5.0	5.0	μg/L	1	6/22/2009 11:28:00 AM
1,1-Dichloroethane	< 5.0	5.0	μg/L	1	6/22/2009 11:28:00 AM
trans-1,2-Dichloroethene	< 5.0	5.0	μg/L	1	6/22/2009 11:28:00 AM
cis-1,2-Dichloroethene	< 5.0	5.0	μg/L	1	6/22/2009 11:28:00 AM
Chloroform	< 5.0	5.0	μg/L	1	6/22/2009 11:28:00 AM
1,2-Dichloroethane	< 5.0	5.0	μg/L	1	6/22/2009 11:28:00 AM
2-Butanone	< 10	10	μg/L	1	6/22/2009 11:28:00 AM
1,1,1-Trichloroethane	< 5.0	5.0	μg/L	1	6/22/2009 11:28:00 AM
Carbon tetrachloride	< 5.0	5.0	μg/L	1	6/22/2009 11:28:00 AM
Bromodichloromethane	< 5.0	5.0	μg/L	1	6/22/2009 11:28:00 AM
1,2-Dichloropropane	< 5.0	5.0	μg/L	1	6/22/2009 11:28:00 AM
cis-1,3-Dichloropropene	< 5.0	5.0	μg/L	1	6/22/2009 11:28:00 AM
Trichloroethene	< 5.0	5.0	μg/L	1	6/22/2009 11:28:00 AM
Dibromochloromethane	< 5.0	5.0	μg/L	1	6/22/2009 11:28:00 AM
1,1,2-Trichloroethane	< 5.0	5.0	μg/L	1	6/22/2009 11:28:00 AM
Benzene	< 5.0	5.0	μg/L	1	6/22/2009 11:28:00 AM
trans-1,3-Dichloropropene	< 5.0	5.0	μg/L	1	6/22/2009 11:28:00 AM
Bromoform	< 5.0	5.0	μg/L	1	6/22/2009 11:28:00 AM
4-Methyl-2-pentanone	< 10	10	μg/L	1	6/22/2009 11:28:00 AM
2-Hexanone	< 10	10	μg/L	1	6/22/2009 11:28:00 AM
Tetrachloroethene	< 5.0	5.0	μg/L	1	6/22/2009 11:28:00 AM
1,1,2,2-Tetrachloroethane	< 5.0	5.0	µg/L	1	6/22/2009 11:28:00 AM
Toluene	< 5.0	5.0	μg/L	1	6/22/2009 11:28:00 AM
Chlorobenzene	< 5.0	5.0	μg/L	1	6/22/2009 11:28:00 AM
Ethylbenzene	< 5.0	5.0	μg/L	1	6/22/2009 11:28:00 AM
Styrene	< 5.0	5.0	μg/L	1	6/22/2009 11:28:00 AM
m,p-Xylene	< 5.0	5.0	μg/L	1	6/22/2009 11:28:00 AM
o-Xylene	< 5.0	5.0	μg/L	1	6/22/2009 11:28:00 AM
Methyl tert-butyl ether	< 5.0	5.0	μg/L	1	6/22/2009 11:28:00 AM
Dichlorodifluoromethane	< 10	10	μg/L	1	6/22/2009 11:28:00 AM
Methyl Acetate	< 5.0	5.0	μg/L	1	6/22/2009 11:28:00 AM

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

X - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

T - Tentitively Identified Compound-Estimated Conc.

E - Value above quantitation range

Date: 23-Jun-09

CLIENT:

NYS DEC

Client Sample ID: MW-1

Work Order:

090611003

Collection Date: 6/10/2009

Reference:

Revonak Dry Cleaners / New Paltz NY - Ulster

Lab Sample ID: 090611003-001

PO#:

Matrix: GROUNDWATER

Site # / Callout 356021 / 117534

Analyses	Result	PQL Q	ual Units	DF	Date Analyzed
VOLATILE ORGANICS SW8260B					Analyst: ML
1,1,2-Trichloro-1,2,2-trifluoroethane	< 5.0	5.0	µg/L	1	6/22/2009 11:28:00 AM
Cyclohexane	< 10	10	μg/L	1	6/22/2009 11:28:00 AM
Trichlorofluoromethane	< 5.0	5.0	μg/L	1	6/22/2009 11:28:00 AM
Methyl Cyclohexane	< 5.0	5.0	μg/L	1	6/22/2009 11:28:00 AM
1,2-Dibromoethane	< 5.0	5.0	μg/L	1	6/22/2009 11:28:00 AM
1,3-Dichlorobenzene	< 5.0	5.0	μg/L	1	6/22/2009 11:28:00 AM
Isopropylbenzene	< 5.0	5.0	μg/L	1	6/22/2009 11:28:00 AM
1,2-Dichlorobenzene	< 5.0	5.0	μg/L	1	6/22/2009 11:28:00 AM
1,4-Dichlorobenzene	< 5.0	5.0	μg/L	1	6/22/2009 11:28:00 AM
1,2-Dibromo-3-chloropropane	< 10	10	μg/L	1	6/22/2009 11:28:00 AM
1,2,4-Trichlorobenzene	< 5.0	5.0	μg/L	1	6/22/2009 11:28:00 AM

R - RPD outside accepted recovery limits

T - Tentitively Identified Compound-Estimated Conc.

CLIENT: NYS DEC

Work Order: 090611003

Reference: Revonak Dry Cleaners / New Paltz NY - Ulster

PO#:

Site # / Callout 356021 / 117534

X - Value exceeds Maximum Contaminant Level

Date: 23-Jun-09

Client Sample ID: MW-2

Collection Date: 6/10/2009

E - Value above quantitation range

Page 4 of 25

Lab Sample ID: 090611003-002

Matrix: GROUNDWATER

Analyses		Result	PQL	Qual	Units	DF	Date Analyzed	
OLATILE OF	RGANICS SW8260B						Analyst: ML	
Chloromethan	e	< 10	10		μg/L	1	6/22/2009 11:57:00 AM	
Bromomethan	е	< 10	10		μg/L	1	6/22/2009 11:57:00 AM	
Vinyl chloride		11	10		μg/L	1	6/22/2009 11:57:00 AM	
Chloroethane		< 10	10		μg/L	1	6/22/2009 11:57:00 AM	
Methylene chlo	oride	< 5.0	5.0		μg/Ľ	1	6/22/2009 11:57:00 AM	
Acetone		< 10	10		μg/L	1	6/22/2009 11:57:00 AN	
Carbon disulfic	de	< 5.0	5.0		μg/L	1	6/22/2009 11:57:00 AM	
1,1-Dichloroet	hene	< 5.0	5.0		μg/L	1	6/22/2009 11:57:00 AM	
1,1-Dichloroet	hane	< 5.0	5.0		μg/L	1	6/22/2009 11:57:00 AM	
trans-1,2-Dich	loroethene	< 5.0	5.0		μg/L	1	6/22/2009 11:57:00 AM	
cis-1,2-Dichlor	oethene	35	5.0		μg/L	1	6/22/2009 11:57:00 AM	
Chloroform		< 5.0	5.0		μg/L	1	6/22/2009 11:57:00 AM	
1,2-Dichloroeti	hane	< 5.0	5.0		μg/L	1	6/22/2009 11:57:00 AM	
2-Butanone		< 10	10		μg/L	1	6/22/2009 11:57:00 AM	
1,1,1-Trichloro	ethane	< 5.0	5.0		μg/L	1	6/22/2009 11:57:00 AN	
Carbon tetrach		< 5.0	5.0		μg/L	1	6/22/2009 11:57:00 AM	
Bromodichloro	methane	< 5.0	5.0		μg/L	1	6/22/2009 11:57:00 AN	
1,2-Dichloropr	opane	< 5.0	5.0		μg/L	1	6/22/2009 11:57:00 AM	
cis-1,3-Dichlor	•	< 5.0	5.0		μg/L	1	6/22/2009 11:57:00 AN	
Trichloroethen	• •	< 5.0	5.0		μg/L	1	6/22/2009 11:57:00 AN	
Dibromochloro		< 5.0	5.0		μg/L	1	6/22/2009 11:57:00 AN	
1,1,2-Trichloro		< 5.0	5.0		μg/L	1	6/22/2009 11:57:00 AM	
Benzene	othano	< 5.0	5.0		μg/L	1	6/22/2009 11:57:00 AN	
trans-1,3-Dich	loropropene	< 5.0	5.0		μg/L	1	6/22/2009 11:57:00 AN	
Bromoform	ююрюроно	< 5.0	5.0		μg/L	1	6/22/2009 11:57:00 AN	
4-Methyl-2-per	ntanone	< 10	10		μg/L	1	6/22/2009 11:57:00 AN	
2-Hexanone	itariono	< 10	10		μg/L	1	6/22/2009 11:57:00 AN	
Tetrachloroeth	ana	5.3	5.0		μg/L μg/L	1	6/22/2009 11:57:00 AN	
1,1,2,2-Tetracl		< 5.0	5.0		μg/L μg/L	1	6/22/2009 11:57:00 AN	
Toluene	moroettane	< 5.0	5.0		μg/L	1	6/22/2009 11:57:00 AN	
Chlorobenzen	^	< 5.0	5.0			1	6/22/2009 11:57:00 AN	
	5	< 5.0	5.0		μg/L	1	6/22/2009 11:57:00 AN	
Ethylbenzene		< 5.0			μg/L		6/22/2009 11:57:00 AN	
Styrene			5.0		μg/L	1		
m,p-Xylene		< 5.0	5.0		μg/L	1	6/22/2009 11:57:00 AN	
o-Xylene		< 5.0	5.0		μg/L	1	6/22/2009 11:57:00 AN	
Methyl tert-but	•	< 5.0	5.0		μg/L	1	6/22/2009 11:57:00 AN	
Dichlorodifluor		< 10	10		μg/L	1	6/22/2009 11:57:00 AN	
Methyl Acetate		< 5.0	5.0		µg/L	1	6/22/2009 11:57:00 AM	
Qualifiers:					S - Spike Recovery outside accepted recovery limits R - RPD outside accepted recovery limits			
	B - Analyte detected in the	•	Blank			•	•	
	5 - Analyte detected in the	associated Michiga	Diank	,	T - Tentitively Identified Compound-Estimated Conc.			

CLIENT: NYS DEC

NYS DEC Client Sample ID: MW-2 090611003 Collection Date: 6/10/2009

Reference: I

Work Order:

Revonak Dry Cleaners / New Paltz NY - Ulster

Lab Sample ID: 090611003-002

Date: 23-Jun-09

PO#:

Matrix: GROUNDWATER

Site # / Callout 356021 / 117534

Analyses	Result	PQL Q	ual Units	DF	Date Analyzed
VOLATILE ORGANICS SW8260B					Analyst: ML
1,1,2-Trichloro-1,2,2-trifluoroethane	< 5.0	5.0	μg/L	1	6/22/2009 11:57:00 AM
Cyclohexane	< 10	10	μg/L	1	6/22/2009 11:57:00 AM
Trichlorofluoromethane	< 5.0	5.0	μg/L	1	6/22/2009 11:57:00 AM
Methyl Cyclohexane	< 5.0	5.0	μg/L	1	6/22/2009 11:57:00 AM
1,2-Dibromoethane	< 5.0	5.0	μg/L	1	6/22/2009 11:57:00 AM
1,3-Dichlorobenzene	< 5.0	5.0	μg/L	1	6/22/2009 11:57:00 AM
Isopropylbenzene	< 5.0	5.0	μg/L	1	6/22/2009 11:57:00 AM
1,2-Dichlorobenzene	< 5.0	5.0	μg/L	1	6/22/2009 11:57:00 AM
1,4-Dichlorobenzene	< 5.0	5.0	µg/∟	1	6/22/2009 11:57:00 AM
1,2-Dibromo-3-chloropropane	< 10	10	μg/L	1	6/22/2009 11:57:00 AM
1,2,4-Trichlorobenzene	< 5.0	5.0	μg/L	1	6/22/2009 11:57:00 AM

R - RPD outside accepted recovery limits

T - Tentitively Identified Compound-Estimated Conc.

CLIENT: NYS DEC

Client Sample ID: MW-4

Work Order:

090611003

Collection Date: 6/10/2009

Reference:

Lab Sample ID: 090611003-003

Date: 23-Jun-09

T - Tentitively Identified Compound-Estimated Conc.

Page 6 of 25

E - Value above quantitation range

PO#:

Revonak Dry Cleaners / New Paltz NY - Ulster

Matrix: GROUNDWATER

Site # / Callout 356021 / 117534

B - Analyte detected in the associated Method Blank

X - Value exceeds Maximum Contaminant Level

Analyses	Result	PQL	Qual	Units	DF	Date Analyzed
OLATILE ORGANICS SW8260B	_		-			Analyst: ML
Chloromethane	< 10	10		µg/L	1	6/22/2009 12:25:00 PM
Bromomethane	< 10	10		μg/L	1	6/22/2009 12:25:00 PM
Vinyl chloride	< 10	10		μg/L	1	6/22/2009 12:25:00 PM
Chloroethane	< 10	10		μg/L	1	6/22/2009 12:25:00 PM
Methylene chloride	< 5.0	5.0		μg/L	1	6/22/2009 12:25:00 PM
Acetone	< 10	10		µg/L	1	6/22/2009 12:25:00 PM
Carbon disulfide	< 5.0	5.0		µg/L	1	6/22/2009 12:25:00 PM
1,1-Dichloroethene	< 5.0	5.0		μg/L	1	6/22/2009 12:25:00 PM
1,1-Dichloroethane	< 5.0	5.0		μg/L	1	6/22/2009 12:25:00 PM
trans-1,2-Dichloroethene	< 5.0	5.0		μg/L	1	6/22/2009 12:25:00 PM
cis-1,2-Dichloroethene	< 5.0	5.0		μg/L	1	6/22/2009 12:25:00 PM
Chloroform	< 5.0	5.0		μg/L	1	6/22/2009 12:25:00 PM
1,2-Dichloroethane	< 5.0	5.0		μg/L	1	6/22/2009 12:25:00 PM
2-Butanone	< 10	10		μg/L	1	6/22/2009 12:25:00 PM
1,1,1-Trichloroethane	< 5.0	5.0		μg/L	1	6/22/2009 12:25:00 PM
Carbon tetrachloride	< 5.0	5.0		μg/L	1	6/22/2009 12:25:00 PM
Bromodichloromethane	< 5.0	5.0		μg/L	1	6/22/2009 12:25:00 PM
1,2-Dichloropropane	< 5.0	5.0		μg/L	1	6/22/2009 12:25:00 PN
cis-1,3-Dichloropropene	< 5.0	5.0		µg/L	1	6/22/2009 12:25:00 PN
Trichloroethene	< 5.0	5.0		μg/L	1	6/22/2009 12:25:00 PM
Dibromochloromethane	< 5.0	5.0		μg/L	1	6/22/2009 12:25:00 PM
1,1,2-Trichloroethane	< 5.0	5.0		μg/L	1	6/22/2009 12:25:00 PM
Benzene	< 5.0	5.0		μg/L	1	6/22/2009 12:25:00 PM
trans-1,3-Dichloropropene	< 5.0	5.0		µg/L	1	6/22/2009 12:25:00 PM
Bromoform	< 5.0	5.0		μg/L	1	6/22/2009 12:25:00 PM
4-Methyl-2-pentanone	< 10	10		μg/L	1	6/22/2009 12:25:00 PN
2-Hexanone	< 10	10		μg/L	1	6/22/2009 12:25:00 PM
Tetrachloroethene	6.6	5.0		μg/L	1	6/22/2009 12:25:00 PM
1,1,2,2-Tetrachloroethane	< 5.0	5.0		μg/L	1	6/22/2009 12:25:00 PM
Toluene	< 5.0	5.0		μg/L	1	6/22/2009 12:25:00 PM
Chlorobenzene	< 5.0	5.0		µg/L	1	6/22/2009 12:25:00 PM
Ethylbenzene	< 5.0	5.0		µg/L	1	6/22/2009 12:25:00 PM
Styrene	< 5.0	5.0		μg/L	1	6/22/2009 12:25:00 PM
m,p-Xylene	< 5.0	5.0		µg/L	1	6/22/2009 12:25:00 PM
o-Xylene	< 5.0	5.0		µg/L	1	6/22/2009 12:25:00 PM
Methyl tert-butyl ether	< 5.0	5.0		µg/L	1	6/22/2009 12:25:00 PM
Dichlorodifluoromethane	< 10	10		μg/L	1	6/22/2009 12:25:00 PM
Methyl Acetate	< 5.0	5.0		μg/L	1	6/22/2009 12:25:00 PM
Qualifiers: ND - Not Detected at the R	eporting Limit	After the same a see and 4 stor-	S.	- Spike Recov	ery outside acc	epted recovery limits
J - Analyte detected below	quanititation limits		R	- RPD outside	accepted reco	very limits
		n			1 10 10	

Date: 23-Jun-09

CLIENT:

NYS DEC

Client Sample ID: MW-4

Work Order:

090611003

Collection Date: 6/10/2009

Reference:

Revonak Dry Cleaners / New Paltz NY - Ulster

Lab Sample ID: 090611003-003

PO#:

Matrix: GROUNDWATER

Site # / Callout 356021 / 117534

Analyses	Result	PQL Q	ual Units	DF	Date Analyzed
VOLATILE ORGANICS SW8260B					Analyst: ML
1,1,2-Trichloro-1,2,2-trifluoroethane	< 5.0	5.0	μg/L	1	6/22/2009 12:25:00 PM
Cyclohexane	< 10	10	μg/L	1	6/22/2009 12:25:00 PM
Trichlorofluoromethane	< 5.0	5.0	μg/L	1	6/22/2009 12:25:00 PM
Methyl Cyclohexane	< 5.0	5.0	μg/L	1	6/22/2009 12:25:00 PM
1,2-Dibromoethane	< 5.0	5.0	μg/L	1	6/22/2009 12:25:00 PM
1,3-Dichlorobenzene	< 5.0	5.0	μg/L	1	6/22/2009 12:25:00 PM
Isopropylbenzene	< 5.0	5.0	μg/L	1	6/22/2009 12:25:00 PM
1,2-Dichlorobenzene	< 5.0	5.0	μg/L	1	6/22/2009 12:25:00 PM
1,4-Dichlorobenzene	< 5.0	5.0	μg/L	1	6/22/2009 12:25:00 PM
1,2-Dibromo-3-chloropropane	< 10	10	μg/L	1	6/22/2009 12:25:00 PM
1,2,4-Trichlorobenzene	< 5.0	5.0	μg/L	1	6/22/2009 12:25:00 PM

X - Value exceeds Maximum Contaminant Level

- R RPD outside accepted recovery limits
- T Tentitively Identified Compound-Estimated Conc.
- E Value above quantitation range

Date: 23-Jun-09

CLIENT:

NYS DEC

Client Sample ID: MW-6

Work Order:

090611003

Collection Date: 6/10/2009

Reference:

Revonak Dry Cleaners / New Paltz NY - Ulster

PO#:

Lab Sample ID: 090611003-004

Matrix: GROUNDWATER

Site # / Callout 356021 / 117534

Analyses	Result	PQL	Qual	Units	DF	Date Analyzed
VOLATILE ORGANICS SW8260B						Analyst: ML
Chloromethane	< 10	10		μg/L	1	6/22/2009 12:54:00 PM
Bromomethane	< 10	10		μg/L	1	6/22/2009 12:54:00 PM
Vinyl chloride	< 10	10		μg/L	1	6/22/2009 12:54:00 PM
Chloroethane	< 10	10		μg/L	1	6/22/2009 12:54:00 PM
Methylene chloride	< 5.0	5.0		μg/L	1	6/22/2009 12:54:00 PM
Acetone	44	10		μg/L	1	6/22/2009 12:54:00 PM
Carbon disulfide	< 5.0	5.0		μg/L	1	6/22/2009 12:54:00 PM
1,1-Dichloroethene	< 5.0	5.0		μg/L	1	6/22/2009 12:54:00 PM
1,1-Dichloroethane	< 5.0	5.0		μg/L	1	6/22/2009 12:54:00 PM
trans-1,2-Dichloroethene	< 5.0	5.0		μg/L	1	6/22/2009 12:54:00 PM
cis-1,2-Dichloroethene	< 5.0	5.0		μg/L	1	6/22/2009 12:54:00 PM
Chloroform	< 5.0	5.0		μg/L	1	6/22/2009 12:54:00 PM
1,2-Dichloroethane	< 5.0	5.0		μg/L	1	6/22/2009 12:54:00 PM
2-Butanone	< 10	10		μg/L	1	6/22/2009 12:54:00 PM
1,1,1-Trichloroethane	< 5.0	5.0		μg/L	1	6/22/2009 12:54:00 PM
Carbon tetrachloride	< 5.0	5.0		μg/L	1	6/22/2009 12:54:00 PM
Bromodichloromethane	< 5.0	5.0		μg/L	1	6/22/2009 12:54:00 PM
1,2-Dichloropropane	< 5.0	5.0		μg/L	1	6/22/2009 12:54:00 PM
cis-1,3-Dichloropropene	< 5.0	5.0		μg/L	1	6/22/2009 12:54:00 PM
Trichloroethene	< 5.0	5.0		μg/L	1	6/22/2009 12:54:00 PM
Dibromochloromethane	< 5.0	5.0		μg/L	1	6/22/2009 12:54:00 PM
1,1,2-Trichloroethane	< 5.0	5.0		μg/L	1	6/22/2009 12:54:00 PM
Benzene	< 5.0	5.0		μg/L	1	6/22/2009 12:54:00 PM
trans-1,3-Dichloropropene	< 5.0	5.0		μg/L	1	6/22/2009 12:54:00 PM
Bromoform	< 5.0	5.0		μg/L	1	6/22/2009 12:54:00 PM
4-Methyl-2-pentanone	< 10	10		μg/L	1	6/22/2009 12:54:00 PM
2-Hexanone	< 10	10		μg/L	1	6/22/2009 12:54:00 PM
Tetrachloroethene	< 5.0	5.0		μg/L	1	6/22/2009 12:54:00 PM
1,1,2,2-Tetrachloroethane	< 5.0	5.0		μg/L	1	6/22/2009 12:54:00 PM
Toluene	< 5.0	5.0		μg/L	1	6/22/2009 12:54:00 PM
Chlorobenzene	< 5.0	5.0		μg/L	1	6/22/2009 12:54:00 PM
Ethylbenzene	< 5.0	5.0		μg/L	1	6/22/2009 12:54:00 PM
Styrene	< 5.0	5.0		μg/L	1	6/22/2009 12:54:00 PM
m,p-Xylene	< 5.0	5.0		μg/L	1	6/22/2009 12:54:00 PM
o-Xylene	< 5.0	5.0		μg/L	1	6/22/2009 12:54:00 PM
Methyl tert-butyl ether	< 5.0	5.0		μg/L	1	6/22/2009 12:54:00 PM
Dichlorodifluoromethane	< 10	10		μg/L	1	6/22/2009 12:54:00 PM
Methyl Acetate	< 5.0	5.0		μg/L	1	6/22/2009 12:54:00 PM

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

X - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

T - Tentitively Identified Compound-Estimated Conc.

E - Value above quantitation range

Date: 23-Jun-09

CLIENT:

NYS DEC

Client Sample ID: MW-6

Work Order:

Collection Date: 6/10/2009

090611003

Reference:

Revonak Dry Cleaners / New Paltz NY - Ulster

Lab Sample ID: 090611003-004

PO#:

Matrix: GROUNDWATER

Site # / Callout 356021 / 117534

Analyses	Result	PQL Qu	ual Units	DF	Date Analyzed
VOLATILE ORGANICS SW8260B					Analyst: ML
1,1,2-Trichloro-1,2,2-trifluoroethane	< 5.0	5.0	μg/L	1	6/22/2009 12:54:00 PM
Cyclohexane	< 10	10	μg/L	1	6/22/2009 12:54:00 PM
Trichlorofluoromethane	< 5.0	5.0	µg/∟	1	6/22/2009 12:54:00 PM
Methyl Cyclohexane	< 5.0	5.0	μg/L	1	6/22/2009 12:54:00 PM
1,2-Dibromoethane	< 5.0	5.0	μg/L	1	6/22/2009 12:54:00 PM
1,3-Dichlorobenzene	< 5.0	5.0	μg/L	1	6/22/2009 12:54:00 PM
Isopropylbenzene	< 5.0	5.0	μg/L_	1	6/22/2009 12:54:00 PM
1,2-Dichlorobenzene	< 5.0	5.0	μg/L	1	6/22/2009 12:54:00 PM
1,4-Dichlorobenzene	< 5.0	5.0	µg/∟	1	6/22/2009 12:54:00 PM
1,2-Dibromo-3-chloropropane	< 10	10	μg/L	1	6/22/2009 12:54:00 PM
1,2,4-Trichlorobenzene	< 5.0	5.0	μg/L	1	6/22/2009 12:54:00 PM

X - Value exceeds Maximum Contaminant Level

R - RPD outside accepted recovery limits

T - Tentitively Identified Compound-Estimated Conc-

Date: 23-Jun-09

CLIENT: NYS

NYS DEC

Client Sample ID: MW-7

Work Order:

090611003

Collection Date: 6/10/2009

Reference:

Revonak Dry Cleaners / New Paltz NY - Ulster

Lab Sample ID: 090611003-005

PO#:

Matrix: GROUNDWATER

Site # / Callout 356021 / 117534

Analyses	Result	PQL	Qual Units	DF	Date Analyzed
VOLATILE ORGANICS SW8260B					Analyst: ML
Chloromethane	< 10	10	µg/L	1	6/22/2009 1:22:00 PM
Bromomethane	< 10	10	μg/L	1	6/22/2009 1:22:00 PM
Vinyl chloride	< 10	10	μg/L	1	6/22/2009 1:22:00 PM
Chloroethane	< 10	10	μg/L	1	6/22/2009 1:22:00 PM
Methylene chloride	< 5.0	5.0	μg/L	1	6/22/2009 1:22:00 PM
Acetone	32	10	μg/L	1	6/22/2009 1:22:00 PM
Carbon disulfide	< 5.0	5.0	μg/L	1	6/22/2009 1:22:00 PM
1,1-Dichloroethene	< 5.0	5.0	μg/L.	1	6/22/2009 1:22:00 PM
1,1-Dichloroethane	< 5.0	5.0	μg/L	1	6/22/2009 1:22:00 PM
trans-1,2-Dichloroethene	< 5.0	5.0	μg/L	1	6/22/2009 1:22:00 PM
cis-1,2-Dichloroethene	< 5.0	5.0	μg/L	1	6/22/2009 1:22:00 PM
Chloroform	< 5.0	5.0	μg/L	1	6/22/2009 1:22:00 PM
1,2-Dichloroethane	< 5.0	5.0	μg/L	1	6/22/2009 1:22:00 PM
2-Butanone	< 10	10	μg/L	1	6/22/2009 1:22:00 PM
1,1,1-Trichloroethane	< 5.0	5.0	μg/L	1	6/22/2009 1:22:00 PM
Carbon tetrachloride	< 5.0	5.0	μg/L	1	6/22/2009 1:22:00 PM
Bromodichloromethane	< 5.0	5.0	μg/L	1	6/22/2009 1:22:00 PM
1,2-Dichloropropane	< 5.0	5.0	μg/L	1	6/22/2009 1:22:00 PM
cis-1,3-Dichloropropene	< 5.0	5.0	μg/L	1	6/22/2009 1:22:00 PM
Trichloroethene	< 5.0	5.0	μg/L	1	6/22/2009 1:22:00 PM
Dibromochloromethane	< 5.0	5.0	μg/L	1	6/22/2009 1:22:00 PM
1,1,2-Trichloroethane	< 5.0	5.0	μg/L	1	6/22/2009 1:22:00 PM
Benzene	< 5.0	5.0	μg/L	1	6/22/2009 1:22:00 PM
trans-1,3-Dichloropropene	< 5.0	5.0	μg/L	1	6/22/2009 1:22:00 PM
Bromoform	< 5.0	5.0	μg/L	1	6/22/2009 1:22:00 PM
4-Methyl-2-pentanone	< 10	10	μg/L	1	6/22/2009 1:22:00 PM
2-Hexanone	< 10	10	μg/L	1	6/22/2009 1:22:00 PM
Tetrachloroethene	< 5.0	5.0	μg/L	1	6/22/2009 1:22:00 PM
1,1,2,2-Tetrachloroethane	< 5.0	5.0	μg/L	1	6/22/2009 1:22:00 PM
Toluene	< 5.0	5.0	μg/L	1	6/22/2009 1:22:00 PM
Chlorobenzene	< 5.0	5.0	μg/L	1	6/22/2009 1:22:00 PM
Ethylbenzene	< 5.0	5.0	μg/L	1	6/22/2009 1:22:00 PM
Styrene	< 5.0	5.0	μg/L	1	6/22/2009 1:22:00 PM
m,p-Xylene	< 5.0	5.0	μg/L	1	6/22/2009 1:22:00 PM
o-Xylene	< 5.0	5.0	μg/L	1	6/22/2009 1:22:00 PM
Methyl tert-butyl ether	< 5.0	5.0	μg/L	1	6/22/2009 1:22:00 PM
Dichlorodifluoromethane	< 10	10	μg/L	1	6/22/2009 1:22:00 PM
Methyl Acetate	< 5.0	5.0	μg/L	1	6/22/2009 1:22:00 PM

Qualifiers:

ND - Not Detected at the Reporting Limit

 $[\]boldsymbol{S}$ - Spike Recovery outside accepted recovery limits

J - Analyte detected below quantitation limits

R - RPD outside accepted recovery limits

B - Analyte detected in the associated Method Blank

T - Tentitively Identified Compound-Estimated Conc.

X - Value exceeds Maximum Contaminant Level

E - Value above quantitation range

Date: 23-Jun-09

CLIENT:

NYS DEC

Client Sample ID: MW-7

Work Order:

090611003

Collection Date: 6/10/2009

Reference:

Revonak Dry Cleaners / New Paltz NY - Ulster

Lab Sample ID: 090611003-005

PO#:

Matrix: GROUNDWATER

Site # / Callout 356021 / 117534

Analyses	Result	PQL Q	ual Units	DF	Date Analyzed
VOLATILE ORGANICS SW8260B					Analyst: ML
1,1,2-Trichloro-1,2,2-trifluoroethane	< 5.0	5.0	μg/L	1	6/22/2009 1:22:00 PM
Cyclohexane	< 10	10	μg/L	1	6/22/2009 1:22:00 PM
Trichlorofluoromethane	< 5.0	5.0	μg/L	1	6/22/2009 1:22:00 PM
Methyl Cyclohexane	< 5.0	5.0	μg/L	1	6/22/2009 1:22:00 PM
1,2-Dibromoethane	< 5.0	5.0	μg/L	1	6/22/2009 1:22:00 PM
1,3-Dichlorobenzene	< 5.0	5.0	μg/L	1	6/22/2009 1:22:00 PM
Isopropylbenzene	< 5.0	5.0	μg/L	1	6/22/2009 1:22:00 PM
1,2-Dichlorobenzene	< 5.0	5.0	μg/L	1	6/22/2009 1:22:00 PM
1,4-Dichlorobenzene	< 5.0	5.0	μg/L	1	6/22/2009 1:22:00 PM
1,2-Dibromo-3-chloropropane	< 10	10	μg/L	1	6/22/2009 1:22:00 PM
1,2,4-Trichlorobenzene	< 5.0	5.0	μg/L	1	6/22/2009 1:22:00 PM

R - RPD outside accepted recovery limits

T - Tentitively Identified Compound-Estimated Conc.

Date: 23-Jun-09

CLIENT:

NYS DEC

Client Sample ID: MW-9

Work Order:

090611003

Collection Date: 6/10/2009

Lab Sample ID: 090611003-006

Reference:

Revonak Dry Cleaners / New Paltz NY - Ulster

PO#:

Matrix: GROUNDWATER

Site # / Callout 356021 / 117534

Analyses	Result	PQL	Qual Units	DF	Date Analyzed
VOLATILE ORGANICS SW8260B					Analyst: ML
Chloromethane	< 20	20	μg/L	2	6/22/2009 6:35:00 PM
Bromomethane	< 20	20	μg/L	2	6/22/2009 6:35:00 PM
Vinyl chloride	< 20	20	μg/L	2	6/22/2009 6:35:00 PM
Chloroethane	< 20	20	μg/L	2	6/22/2009 6:35:00 PM
Methylene chloride	< 10	10	μg/L	2	6/22/2009 6:35:00 PM
Acetone	< 20	20	μg/L	2	6/22/2009 6:35:00 PM
Carbon disulfide	< 10	10	μg/L	2	6/22/2009 6:35:00 PM
1,1-Dichloroethene	< 10	10	μg/L	2	6/22/2009 6:35:00 PM
1,1-Dichloroethane	< 10	10	μg/L	2	6/22/2009 6:35:00 PM
trans-1,2-Dichloroethene	< 10	10	μg/L	2	6/22/2009 6:35:00 PM
cis-1,2-Dichloroethene	76	10	μg/L	2	6/22/2009 6:35:00 PM
Chloroform	< 10	10	μg/L	2	6/22/2009 6:35:00 PM
1,2-Dichloroethane	< 10	10	μg/L	2	6/22/2009 6:35:00 PM
2-Butanone	< 20	20	μg/L	2	6/22/2009 6:35:00 PM
1,1,1-Trichloroethane	< 10	10	μg/L	2	6/22/2009 6:35:00 PM
Carbon tetrachloride	< 10	10	μg/L	2	6/22/2009 6:35:00 PM
Bromodichloromethane	< 10	10	μg/L	2	6/22/2009 6:35:00 PM
1,2-Dichloropropane	< 10	10	μg/L	2	6/22/2009 6:35:00 PM
cis-1,3-Dichloropropene	< 10	10	μg/L	2	6/22/2009 6:35:00 PM
Trichloroethene	24	10	μg/L	2	6/22/2009 6:35:00 PM
Dibromochloromethane	< 10	10	μg/L	2	6/22/2009 6:35:00 PM
1,1,2-Trichloroethane	< 10	10	μg/L	2	6/22/2009 6:35:00 PM
Benzene	< 10	10	μg/L	2	6/22/2009 6:35:00 PM
trans-1,3-Dichloropropene	< 10	10	μg/L	2	6/22/2009 6:35:00 PM
Bromoform	< 10	10	μg/L	2	6/22/2009 6:35:00 PM
4-Methyl-2-pentanone	< 20	20	μg/L	2	6/22/2009 6:35:00 PM
2-Hexanone	< 20	20	μg/L	2	6/22/2009 6:35:00 PM
Tetrachloroethene	190	10	μg/L	2	6/22/2009 6:35:00 PM
1,1,2,2-Tetrachloroethane	< 10	10	μg/L	2	6/22/2009 6:35:00 PM
Toluene	< 10	10	μg/L	2	6/22/2009 6:35:00 PM
Chlorobenzene	< 10	10	μg/L	2	6/22/2009 6:35:00 PM
Ethylbenzene	< 10	10	μg/L	2	6/22/2009 6:35:00 PM
Styrene	< 10	10	μg/L	2	6/22/2009 6:35:00 PM
m,p-Xylene	< 10	10	μg/L	2	6/22/2009 6:35:00 PM
o-Xylene	< 10	10	μg/L	2	6/22/2009 6:35:00 PM
Methyl tert-butyl ether	< 10	10	μg/L	2	6/22/2009 6:35:00 PM
Dichlorodifluoromethane	< 20	20	μg/L	2	6/22/2009 6:35:00 PM
Methyl Acetate	< 10	10	μg/L	2	6/22/2009 6:35:00 PM

Qualifiers:

ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

J - Analyte detected below quantitation limits

R - RPD outside accepted recovery limits

B - Analyte detected in the associated Method Blank

T - Tentitively Identified Compound-Estimated Conc.

X - Value exceeds Maximum Contaminant Level

E - Value above quantitation range

Date: 23-Jun-09

CLIENT:

NYS DEC

Client Sample ID: MW-9

Work Order:

090611003

Collection Date: 6/10/2009

Reference:

Revonak Dry Cleaners / New Paltz NY - Ulster

Lab Sample ID: 090611003-006

PO#:

Matrix: GROUNDWATER

Site # / Callout 356021 / 117534

Analyses	Result	PQL Q	ual Units	DF	Date Analyzed
VOLATILE ORGANICS SW8260B					Analyst: ML
1,1,2-Trichloro-1,2,2-trifluoroethane	< 10	10	μg/L	2	6/22/2009 6:35:00 PM
Cyclohexane	< 20	20	μg/L	2	6/22/2009 6:35:00 PM
Trichlorofluoromethane	< 10	10	μg/L	2	6/22/2009 6:35:00 PM
Methyl Cyclohexane	< 10	10	μg/L	2	6/22/2009 6:35:00 PM
1,2-Dibromoethane	< 10	10	μg/L	2	6/22/2009 6:35:00 PM
1,3-Dichlorobenzene	< 10	10	μg/L	2	6/22/2009 6:35:00 PM
Isopropylbenzene	< 10	10	μg/L	2	6/22/2009 6:35:00 PM
1,2-Dichlorobenzene	< 10	10	μg/L	2	6/22/2009 6:35:00 PM
1,4-Dichlorobenzene	< 10	10	μg/L	2	6/22/2009 6:35:00 PM
1,2-Dibromo-3-chloropropane	< 20	20	μg/L	2	6/22/2009 6:35:00 PM
1,2,4-Trichlorobenzene	< 10	10	μg/L	2	6/22/2009 6:35:00 PM

X - Value exceeds Maximum Contaminant Level

R - RPD outside accepted recovery limits

T - Tentitively Identified Compound-Estimated Conc.

NYS DEC

Client Sample ID: MW-10

CLIENT:

Work Order:

090611003

Collection Date: 6/10/2009

Reference:

Revonak Dry Cleaners / New Paltz NY - Ulster

Lab Sample ID: 090611003-007

Date: 23-Jun-09

PO#:

Matrix: GROUNDWATER

Site # / Callout 356021 / 117534

Analyses	Result	PQL Q	ual Units	DF	Date Analyzed
VOLATILE ORGANICS SW8260B					Analyst: ML
Chloromethane	< 50	50	μg/L	5	6/22/2009 7:03:00 PM
Bromomethane	< 50	50	μg/L	5	6/22/2009 7:03:00 PM
Vinyl chloride	96	50	μg/L	5	6/22/2009 7:03:00 PM
Chloroethane	< 50	50	μg/L	5	6/22/2009 7:03:00 PM
Methylene chloride	< 25	25	μg/L	5	6/22/2009 7:03:00 PM
Acetone	< 50	50	μg/L	5	6/22/2009 7:03:00 PM
Carbon disulfide	< 25	25	μg/L	5	6/22/2009 7:03:00 PM
1,1-Dichloroethene	< 25	25	μg/L	5	6/22/2009 7:03:00 PM
1,1-Dichloroethane	< 25	25	μg/L	5	6/22/2009 7:03:00 PM
trans-1,2-Dichloroethene	< 25	25	μg/L	5	6/22/2009 7:03:00 PM
cis-1,2-Dichloroethene	930	25	μg/L	5	6/22/2009 7:03:00 PM
Chloroform	< 25	25	μg/L	5	6/22/2009 7:03:00 PM
1,2-Dichloroethane	< 25	25	μg/L	5	6/22/2009 7:03:00 PM
2-Butanone	< 50	50	μg/L	5	6/22/2009 7:03:00 PM
1,1,1-Trichloroethane	< 25	25	μg/L	5	6/22/2009 7:03:00 PM
Carbon tetrachloride	< 25	25	μg/L	5	6/22/2009 7:03:00 PM
Bromodichloromethane	< 25	25	μg/L	5	6/22/2009 7:03:00 PM
1,2-Dichloropropane	< 25	25	μg/L	5	6/22/2009 7:03:00 PM
cis-1,3-Dichloropropene	< 25	25	µg/∟	5	6/22/2009 7:03:00 PM
Trichloroethene	30	25	μg/L	5	6/22/2009 7:03:00 PM
Dibromochloromethane	< 25	25	μg/L	5	6/22/2009 7:03:00 PM
1,1,2-Trichloroethane	< 25	25	μg/L	5	6/22/2009 7:03:00 PM
Benzene	< 25	25	μg/L	5	6/22/2009 7:03:00 PM
trans-1,3-Dichloropropene	< 25	25	μg/L	5	6/22/2009 7:03:00 PM
Bromoform	< 25	25	μg/L	5	6/22/2009 7:03:00 PM
4-Methyl-2-pentanone	< 50	50	μg/L	5	6/22/2009 7:03:00 PM
2-Hexanone	< 50	50	μg/L	5	6/22/2009 7:03:00 PM
Tetrachloroethene	130	25	μg/L	5	6/22/2009 7:03:00 PM
1,1,2,2-Tetrachloroethane	< 25	25	μg/∟	5	6/22/2009 7:03:00 PM
Toluene	< 25	25	μg/L	5	6/22/2009 7:03:00 PM
Chlorobenzene	< 25	25	μg/L	5	6/22/2009 7:03:00 PM
Ethylbenzene	< 25	25	μg/L	5	6/22/2009 7:03:00 PM
Styrene	< 25	25	μg/L	5	6/22/2009 7:03:00 PM
m,p-Xylene	< 25	25	μg/L	5	6/22/2009 7:03:00 PM
o-Xylene	< 25	25	μg/L	5	6/22/2009 7:03:00 PM
Methyl tert-butyl ether	< 25	25	μg/L	5	6/22/2009 7:03:00 PM
Dichlorodifluoromethane	< 50	50	μg/L	5	6/22/2009 7:03:00 PM
Methyl Acetate	< 25	25	μg/L	5	6/22/2009 7:03:00 PM

Qualifiers:

ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

J - Analyte detected below quantitation limits

R - RPD outside accepted recovery limits

B - Analyte detected in the associated Method Blank

T - Tentitively Identified Compound-Estimated Conc.

X - Value exceeds Maximum Contaminant Level

E - Value above quantitation range

Page 14 of 25

Date: 23-Jun-09

CLIENT:

NYS DEC

Client Sample ID: MW-10

Work Order:

090611003

Collection Date: 6/10/2009

Lab Sample ID: 090611003-007

Reference:

Revonak Dry Cleaners / New Paltz NY - Ulster

PO#:

Matrix: GROUNDWATER

Site # / Callout 356021 / 117534

Analyses	Result	PQL	Qual Units	DF	Date Analyzed
VOLATILE ORGANICS SW8260B					Analyst: ML
1,1,2-Trichloro-1,2,2-trifluoroethane	< 25	25	μg/L	5	6/22/2009 7:03:00 PM
Cyclohexane	< 50	50	µg/∟	5	6/22/2009 7:03:00 PM
Trichlorofluoromethane	< 25	25	μg/L	5	6/22/2009 7:03:00 PM
Methyl Cyclohexane	< 25	25	μg/L	5	6/22/2009 7:03:00 PM
1,2-Dibromoethane	< 25	25	μg/L	5	6/22/2009 7:03:00 PM
1,3-Dichlorobenzene	< 25	25	µg/L	5	6/22/2009 7:03:00 PM
Isopropylbenzene	< 25	25	μg/L	5	6/22/2009 7:03:00 PM
1,2-Dichlorobenzene	< 25	25	μg/L	5	6/22/2009 7:03:00 PM
1,4-Dichlorobenzene	< 25	25	μg/L	5	6/22/2009 7:03:00 PM
1,2-Dibromo-3-chloropropane	< 50	50	μg/L	5	6/22/2009 7:03:00 PM
1,2,4-Trichlorobenzene	< 25	25	μg/L	5	6/22/2009 7:03:00 PM

X - Value exceeds Maximum Contaminant Level

R - RPD outside accepted recovery limits

T - Tentitively Identified Compound-Estimated Conc.

Date: 23-Jun-09

CLIENT:

NYS DEC

Client Sample ID: MW-11

Work Order:

090611003

Collection Date: 6/10/2009

Lab Sample ID: 090611003-008

Reference:

Revonak Dry Cleaners / New Paltz NY - Ulster

PO#:

Matrix: GROUNDWATER

Site # / Callout 356021 / 117534

Analyses	Result	PQL	Qual Units	DF	Date Analyzed
VOLATILE ORGANICS SW8260B					Analyst: ML
Chloromethane	< 10	10	μg/L	1	6/22/2009 2:47:00 PM
Bromomethane	< 10	10	μg/L	1	6/22/2009 2:47:00 PM
Vinyl chloride	< 10	10	μg/L	1	6/22/2009 2:47:00 PM
Chloroethane	< 10	10	μg/L	1	6/22/2009 2:47:00 PM
Methylene chloride	< 5.0	5.0	μg/L	1	6/22/2009 2:47:00 PM
Acetone	31	10	μg/L	1	6/22/2009 2:47:00 PM
Carbon disulfide	< 5.0	5.0	μg/L	1	6/22/2009 2:47:00 PM
1,1-Dichloroethene	< 5.0	5.0	μg/L	1	6/22/2009 2:47:00 PM
1,1-Dichloroethane	< 5.0	5.0	µg/L	1	6/22/2009 2:47:00 PM
trans-1,2-Dichloroethene	< 5.0	5.0	μg/L	1	6/22/2009 2:47:00 PM
cis-1,2-Dichloroethene	160	5.0	μg/L	1	6/22/2009 2:47:00 PM
Chloroform	< 5.0	5.0	μg/L	1	6/22/2009 2:47:00 PM
1,2-Dichloroethane	< 5.0	5.0	μg/L	1	6/22/2009 2:47:00 PM
2-Butanone	< 10	10	μg/L	1	6/22/2009 2:47:00 PM
1,1,1-Trichloroethane	< 5.0	5.0	μg/L	1	6/22/2009 2:47:00 PM
Carbon tetrachloride	< 5.0	5.0	μg/L	1	6/22/2009 2:47:00 PM
Bromodichloromethane	< 5.0	5.0	μg/L	1	6/22/2009 2:47:00 PM
1,2-Dichloropropane	< 5.0	5.0	μg/L	1	6/22/2009 2:47:00 PM
cis-1,3-Dichloropropene	< 5.0	5.0	μg/L	1	6/22/2009 2:47:00 PM
Trichloroethene	9.1	5.0	μg/L	1	6/22/2009 2:47:00 PM
Dibromochloromethane	< 5.0	5.0	μg/L	1	6/22/2009 2:47:00 PM
1,1,2-Trichloroethane	< 5.0	5.0	μg/L	1	6/22/2009 2:47:00 PM
Benzene	< 5.0	5.0	μg/L	1	6/22/2009 2:47:00 PM
trans-1,3-Dichloropropene	< 5.0	5.0	μg/L	1	6/22/2009 2:47:00 PM
Bromoform	< 5.0	5.0	μg/L	1	6/22/2009 2:47:00 PM
4-Methyl-2-pentanone	< 10	10	μg/L	1	6/22/2009 2:47:00 PM
2-Hexanone	< 10	10	μg/L	1	6/22/2009 2:47:00 PM
Tetrachloroethene	17	5.0	μg/L	1	6/22/2009 2:47:00 PM
1,1,2,2-Tetrachloroethane	< 5.0	5.0	μg/L	1	6/22/2009 2:47:00 PM
Toluene	< 5.0	5.0	μg/L	1	6/22/2009 2:47:00 PM
Chlorobenzene	< 5.0	5.0	μg/L	1	6/22/2009 2:47:00 PM
Ethylbenzene	< 5.0	5.0	μg/L	1	6/22/2009 2:47:00 PM
Styrene	< 5.0	5.0	μg/L	1	6/22/2009 2:47:00 PM
m,p-Xylene	< 5.0	5.0	μg/L	1	6/22/2009 2:47:00 PM
o-Xylene	< 5.0	5.0	μg/L	1	6/22/2009 2:47:00 PM
Methyl tert-butyl ether	< 5.0	5.0	μg/L	1	6/22/2009 2:47:00 PM
Dichlorodifluoromethane	< 10	10	μg/L	1	6/22/2009 2:47:00 PM
Methyl Acetate	< 5.0	5.0	μg/L	1	6/22/2009 2:47:00 PM

Qualifiers:

ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

J - Analyte detected below quantitation limits

R - RPD outside accepted recovery limits

B - Analyte detected in the associated Method Blank

T - Tentitively Identified Compound-Estimated Conc.

X - Value exceeds Maximum Contaminant Level

E - Value above quantitation range

Date: 23-Jun-09

NYS DEC CLIENT: Client Sample ID: MW-11 Work Order: 090611003 Collection Date: 6/10/2009

Reference: Revonak Dry Cleaners / New Paltz NY - Ulster Lab Sample ID: 090611003-008

PO#: Matrix: GROUNDWATER

Site # / Callout 356021 / 117534

Analyses	Result	PQL Q	ual Units	DF	Date Analyzed
VOLATILE ORGANICS SW8260B					Analyst: ML
1,1,2-Trichloro-1,2,2-trifluoroethane	< 5.0	5.0	μg/L	1	6/22/2009 2:47:00 PM
Cyclohexane	< 10	10	μg/L	1	6/22/2009 2:47:00 PM
Trichlorofluoromethane	< 5.0	5.0	μg/L	1	6/22/2009 2:47:00 PM
Methyl Cyclohexane	< 5.0	5.0	μg/L	1	6/22/2009 2:47:00 PM
1,2-Dibromoethane	< 5.0	5.0	μg/L	1	6/22/2009 2:47:00 PM
1,3-Dichlorobenzene	< 5.0	5.0	μg/L	1	6/22/2009 2:47:00 PM
Isopropylbenzene	< 5.0	5.0	μg/L	1	6/22/2009 2:47:00 PM
1,2-Dichlorobenzene	< 5.0	5.0	μg/L	1	6/22/2009 2:47:00 PM
1,4-Dichlorobenzene	< 5.0	5.0	μg/L	1	6/22/2009 2:47:00 PM
1,2-Dibromo-3-chloropropane	< 10	10	μg/L	1	6/22/2009 2:47:00 PM
1,2,4-Trichlorobenzene	< 5.0	5.0	μg/L	1	6/22/2009 2:47:00 PM

R - RPD outside accepted recovery limits

T - Tentitively Identified Compound-Estimated Conc.

Date: 23-Jun-09

CLIENT: NYS DEC Client Sample ID: MW-12 Work Order: 090611003 Collection Date: 6/10/2009

Revonak Dry Cleaners / New Paltz NY - Ulster Lab Sample ID: 090611003-009 Reference:

PO#: Matrix: GROUNDWATER

Site # / Callout 356021 / 117534

Analyses	Result	PQL (Qual Units	DF	Date Analyzed
VOLATILE ORGANICS SW8260B				_	Analyst: ML
Chloromethane	< 20	20	μg/L	2	6/23/2009 12:17:00 AM
Bromomethane	< 20	20	μg/L	2	6/23/2009 12:17:00 AM
Vinyl chloride	< 20	20	μg/L	2	6/23/2009 12:17:00 AM
Chloroethane	< 20	20	μg/L	2	6/23/2009 12:17:00 AM
Methylene chloride	< 10	10	μg/L	2	6/23/2009 12:17:00 AM
Acetone	< 20	20	μg/L	2	6/23/2009 12:17:00 AM
Carbon disulfide	< 10	10	μg/L	2	6/23/2009 12:17:00 AM
1,1-Dichloroethene	< 10	10	μg/L	2	6/23/2009 12:17:00 AM
1,1-Dichloroethane	< 10	10	μg/L	2	6/23/2009 12:17:00 AM
trans-1,2-Dichloroethene	< 10	10	μg/L	2	6/23/2009 12:17:00 AM
cis-1,2-Dichloroethene	380	10	μg/L	2	6/23/2009 12:17:00 AM
Chloroform	< 10	10	μg/L	2	6/23/2009 12:17:00 AM
1,2-Dichloroethane	< 10	10	μg/L	2	6/23/2009 12:17:00 AM
2-Butanone	< 20	20	μg/L	2	6/23/2009 12:17:00 AM
1,1,1-Trichloroethane	< 10	10	μg/L	2	6/23/2009 12:17:00 AM
Carbon tetrachloride	< 10	10	μg/L	2	6/23/2009 12:17:00 AM
Bromodichloromethane	< 10	10	μg/L	2	6/23/2009 12:17:00 AM
1,2-Dichloropropane	< 10	10	μg/L	2	6/23/2009 12:17:00 AM
cis-1,3-Dichloropropene	< 10	10	μg/L	2	6/23/2009 12:17:00 AM
Trichloroethene	42	10	μg/L	2	6/23/2009 12:17:00 AM
Dibromochloromethane	< 10	10	μg/L	2	6/23/2009 12:17:00 AM
1,1,2-Trichloroethane	< 10	10	μg/L	2	6/23/2009 12:17:00 AM
Benzene	< 10	10	μg/L	2	6/23/2009 12:17:00 AM
trans-1,3-Dichloropropene	< 10	10	μg/L	2	6/23/2009 12:17:00 AM
Bromoform	< 10	10	µg/L	2	6/23/2009 12:17:00 AM
4-Methyl-2-pentanone	< 20	20	μg/L	2	6/23/2009 12:17:00 AM
2-Hexanone	< 20	20	μg/L	2	6/23/2009 12:17:00 AM
Tetrachloroethene	140	10	μg/L	2	6/23/2009 12:17:00 AM
1,1,2,2-Tetrachloroethane	< 10	10	μg/L	2	6/23/2009 12:17:00 AM
Toluene	< 10	10	μg/L	2	6/23/2009 12:17:00 AM
Chlorobenzene	< 10	10	μg/L	2	6/23/2009 12:17:00 AM
Ethylbenzene	< 10	10	μg/L	2	6/23/2009 12:17:00 AM
Styrene	< 10	10	μg/L	2	6/23/2009 12:17:00 AM
m,p-Xylene	< 10	10	μg/L	2	6/23/2009 12:17:00 AM
o-Xylene	< 10	10	μg/L	2	6/23/2009 12:17:00 AM
Methyl tert-butyl ether	< 10	10	μg/L	2	6/23/2009 12:17:00 AM
Dichlorodifluoromethane	< 20	20	μg/L	2	6/23/2009 12:17:00 AM
Methyl Acetate	< 10	10	μg/L	2	6/23/2009 12:17:00 AM

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

X - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

T - Tentitively Identified Compound-Estimated Conc.

E - Value above quantitation range

Page 18 of 25

CLIENT:

NYS DEC

Client Sample ID: MW-12 Collection Date: 6/10/2009

Work Order:

090611003

Lab Sample ID: 090611003-009

Date: 23-Jun-09

Reference:

Revonak Dry Cleaners / New Paltz NY - Ulster

Matrix: GROUNDWATER

PO#:

Site # / Callout 356021 / 117534

Analyses	Result	PQL Q	ual Units	DF	Date Analyzed
VOLATILE ORGANICS SW8260B					Analyst: ML
1,1,2-Trichloro-1,2,2-trifluoroethane	< 10	10	μg/L	2	6/23/2009 12:17:00 AM
Cyclohexane	< 20	20	μg/L	2	6/23/2009 12:17:00 AM
Trichlorofluoromethane	< 10	10	μg/L	2	6/23/2009 12:17:00 AM
Methyl Cyclohexane	< 10	10	μg/L	2	6/23/2009 12:17:00 AM
1,2-Dibromoethane	< 10	10	μg/L	2	6/23/2009 12:17:00 AM
1,3-Dichlorobenzene	< 10	10	μg/L	2	6/23/2009 12:17:00 AM
Isopropylbenzene	< 10	10	μg/L	2	6/23/2009 12:17:00 AM
1,2-Dichlorobenzene	< 10	10	μg/L	2	6/23/2009 12:17:00 AM
1,4-Dichlorobenzene	< 10	10	μg/L	2	6/23/2009 12:17:00 AM
1,2-Dibromo-3-chloropropane	< 20	20	μg/L	2	6/23/2009 12:17:00 AM
1,2,4-Trichlorobenzene	< 10	10	μg/L	2	6/23/2009 12:17:00 AM

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

X - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

T - Tentitively Identified Compound-Estimated Conc.

E - Value above quantitation range

Page 19 of 25

Date: 23-Jun-09

CLIENT:

NYS DEC

Client Sample ID: MW-13

Work Order:

090611003

Collection Date: 6/10/2009

Reference:

Revonak Dry Cleaners / New Paltz NY - Ulster

Lab Sample ID: 090611003-010

PO#:

Matrix: GROUNDWATER

Site # / Callout 356021 / 117534

Analyses	Result	PQL Qu	ual Units	DF	Date Analyzed
VOLATILE ORGANICS SW8260B					Analyst: ML
Chloromethane	< 10	10	μg/L	1	6/22/2009 3:44:00 PM
Bromomethane	< 10	10	μg/L	1	6/22/2009 3:44:00 PM
Vinyl chloride	< 10	10	μg/L	1	6/22/2009 3:44:00 PM
Chloroethane	< 10	10	μg/L	1	6/22/2009 3:44:00 PM
Methylene chloride	< 5.0	5.0	μg/L	1	6/22/2009 3:44:00 PM
Acetone	15	10	μg/L	1	6/22/2009 3:44:00 PM
Carbon disulfide	< 5.0	5.0	μg/L	1	6/22/2009 3:44:00 PM
1,1-Dichloroethene	< 5.0	5.0	μg/L	1	6/22/2009 3:44:00 PM
1,1-Dichloroethane	< 5.0	5.0	μg/L	1	6/22/2009 3:44:00 PM
trans-1,2-Dichloroethene	< 5.0	5.0	μg/L	1	6/22/2009 3:44:00 PM
cis-1,2-Dichloroethene	< 5.0	5.0	μg/L	1	6/22/2009 3:44:00 PM
Chloroform	< 5.0	5.0	μg/L	1	6/22/2009 3:44:00 PM
1,2-Dichloroethane	< 5.0	5.0	μg/L	1	6/22/2009 3:44:00 PM
2-Butanone	< 10	10	μg/L	1	6/22/2009 3:44:00 PM
1,1,1-Trichloroethane	< 5.0	5.0	μg/L	1	6/22/2009 3:44:00 PM
Carbon tetrachloride	< 5.0	5.0	μg/L	1	6/22/2009 3:44:00 PM
Bromodichloromethane	< 5.0	5.0	μg/L	1	6/22/2009 3:44:00 PM
1,2-Dichloropropane	< 5.0	5.0	μg/L	1	6/22/2009 3:44:00 PM
cis-1,3-Dichloropropene	< 5.0	5.0	μg/L	1	6/22/2009 3:44:00 PM
Trichloroethene	< 5.0	5.0	μg/L	1	6/22/2009 3:44:00 PM
Dibromochloromethane	< 5.0	5.0	μg/L	1	6/22/2009 3:44:00 PM
1,1,2-Trichloroethane	< 5.0	5.0	μg/L	1	6/22/2009 3:44:00 PM
Benzene	< 5.0	5.0	μg/L	1	6/22/2009 3:44:00 PM
trans-1,3-Dichloropropene	< 5.0	5.0	μg/L	1	6/22/2009 3:44:00 PM
Bromoform	< 5.0	5.0	μg/L	1	6/22/2009 3:44:00 PM
4-Methyl-2-pentanone	< 10	10	μg/L	1	6/22/2009 3:44:00 PM
2-Hexanone	< 10	10	μg/L	1	6/22/2009 3:44:00 PM
Tetrachloroethene	< 5.0	5.0	μg/L	1	6/22/2009 3:44:00 PM
1,1,2,2-Tetrachloroethane	< 5.0	5.0	μg/L	1	6/22/2009 3:44:00 PM
Toluene	< 5.0	5.0	μg/L	1	6/22/2009 3:44:00 PM
Chlorobenzene	< 5.0	5.0	μg/L	1	6/22/2009 3:44:00 PM
Ethylbenzene	< 5.0	5.0	μg/L	1	6/22/2009 3:44:00 PM
Styrene	< 5.0	5.0	μg/L	1	6/22/2009 3:44:00 PM
m,p-Xylene	< 5.0	5.0	μg/L	1	6/22/2009 3:44:00 PM
o-Xylene	< 5.0	5.0	μg/L	1	6/22/2009 3:44:00 PM
Methyl tert-butyl ether	< 5.0	5.0	μg/L	1	6/22/2009 3:44:00 PM
Dichlorodifluoromethane	< 10	10	μg/L	1	6/22/2009 3:44:00 PM
Methyl Acetate	< 5.0	5.0	μg/L	1	6/22/2009 3:44:00 PM

Qualifiers:

- ND Not Detected at the Reporting Limit
- J Analyte detected below quantitation limits
- B Analyte detected in the associated Method Blank
- X Value exceeds Maximum Contaminant Level
- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- T Tentitively Identified Compound-Estimated Conc.
- E Value above quantitation range

CLIENT:

Work Order:

NYS DEC Client Sample ID: MW-13 090611003 Collection Date: 6/10/2009

Reference: Revonak Dry Cleaners / New Paltz NY - Ulster Lab Sample ID: 090611003-010

PO#: Matrix: GROUNDWATER

Site # / Callout 356021 / 117534

Analyses	Result	PQL Q	ual Units	DF	Date Analyzed
VOLATILE ORGANICS SW8260B					Analyst: ML
1,1,2-Trichloro-1,2,2-trifluoroethane	< 5.0	5.0	μg/L	1	6/22/2009 3:44:00 PM
Cyclohexane	< 10	10	μg/L	1	6/22/2009 3:44:00 PM
Trichlorofluoromethane	< 5.0	5.0	μg/L	1	6/22/2009 3:44:00 PM
Methyl Cyclohexane	< 5.0	5.0	μg/L	1	6/22/2009 3:44:00 PM
1,2-Dibromoethane	< 5.0	5.0	μg/L	1	6/22/2009 3:44:00 PM
1,3-Dichlorobenzene	< 5.0	5.0	μg/L	1	6/22/2009 3:44:00 PM
Isopropylbenzene	< 5.0	5.0	μg/L	1	6/22/2009 3:44:00 PM
1,2-Dichlorobenzene	< 5.0	5.0	μg/L.	1	6/22/2009 3:44:00 PM
1,4-Dichlorobenzene	< 5.0	5.0	μg/L	1	6/22/2009 3:44:00 PM
1,2-Dibromo-3-chloropropane	< 10	10	μg/L	1	6/22/2009 3:44:00 PM
1,2,4-Trichlorobenzene	< 5.0	5.0	μg/L	1	6/22/2009 3:44:00 PM

Date: 23-Jun-09

B - Analyte detected in the associated Method Blank

X - Value exceeds Maximum Contaminant Level

R - RPD outside accepted recovery limits

 $[\]ensuremath{\mathsf{T}}$ - Tentitively Identified Compound-Estimated Conc.

NYS DEC

Client Sample ID: MW-14

Work Order:

Collection Date: 6/10/2009 090611003 Lab Sample ID: 090611003-011

Reference: PO#:

CLIENT:

Revonak Dry Cleaners / New Paltz NY - Ulster

Matrix: GROUNDWATER

Date: 23-Jun-09

Site # / Callout 356021 / 117534

Analyses	Result	PQL Qu	ual Units	DF	Date Analyzed
VOLATILE ORGANICS SW8260B					Analyst: ML
Chloromethane	< 10	10	μg/L	1	6/22/2009 4:13:00 PM
Bromomethane	< 10	10	μg/L	1	6/22/2009 4:13:00 PM
Vinyl chloride	< 10	10	μg/L	1	6/22/2009 4:13:00 PM
Chloroethane	< 10	10	μg/L	1	6/22/2009 4:13:00 PM
Methylene chloride	< 5.0	5.0	μg/L	1	6/22/2009 4:13:00 PM
Acetone	94	10	μg/L	1	6/22/2009 4:13:00 PM
Carbon disulfide	< 5.0	5.0	μg/L	1	6/22/2009 4:13:00 PM
1,1-Dichloroethene	< 5.0	5.0	μg/L	1	6/22/2009 4:13:00 PM
1,1-Dichloroethane	< 5.0	5.0	μg/L	1	6/22/2009 4:13:00 PM
trans-1,2-Dichloroethene	< 5.0	5.0	μg/L	1	6/22/2009 4:13:00 PM
cis-1,2-Dichloroethene	< 5.0	5.0	μg/L	1	6/22/2009 4:13:00 PM
Chloroform	< 5.0	5.0	μg/L	1	6/22/2009 4:13:00 PM
1,2-Dichloroethane	< 5.0	5.0	μg/L	1	6/22/2009 4:13:00 PM
2-Butanone	< 10	10	μg/L	1	6/22/2009 4:13:00 PM
1,1,1-Trichloroethane	< 5.0	5.0	μg/L	1	6/22/2009 4:13:00 PM
Carbon tetrachloride	< 5.0	5.0	µg/L	1	6/22/2009 4:13:00 PM
Bromodichloromethane	< 5.0	5.0	μg/L	1	6/22/2009 4:13:00 PM
1,2-Dichloropropane	< 5.0	5.0	μg/L	1	6/22/2009 4:13:00 PM
cis-1,3-Dichloropropene	< 5.0	5.0	μg/L	1	6/22/2009 4:13:00 PM
Trichloroethene	< 5.0	5.0	μg/L	1	6/22/2009 4:13:00 PM
Dibromochloromethane	< 5.0	5.0	μg/L	1	6/22/2009 4:13:00 PM
1,1,2-Trichloroethane	< 5.0	5.0	µg/L	1	6/22/2009 4:13:00 PM
Benzene	< 5.0	5.0	μg/L	1	6/22/2009 4:13:00 PM
trans-1,3-Dichloropropene	< 5.0	5.0	μg/L	1	6/22/2009 4:13:00 PM
Bromoform	< 5.0	5.0	μg/L	1	6/22/2009 4:13:00 PM
4-Methyl-2-pentanone	< 10	10	μg/L	1	6/22/2009 4:13:00 PM
2-Hexanone	< 10	10	μg/L	1	6/22/2009 4:13:00 PM
Tetrachloroethene	< 5.0	5.0	μg/L	1	6/22/2009 4:13:00 PM
1,1,2,2-Tetrachloroethane	< 5.0	5.0	μg/L	1	6/22/2009 4:13:00 PM
Toluene	< 5.0	5.0	μg/L	1	6/22/2009 4:13:00 PM
Chlorobenzene	< 5.0	5.0	μg/L	1	6/22/2009 4:13:00 PM
Ethylbenzene	< 5.0	5.0	μg/L	1	6/22/2009 4:13:00 PM
Styrene	< 5.0	5.0	μg/L	1	6/22/2009 4:13:00 PM
m,p-Xylene	< 5.0	5.0	μg/L	1	6/22/2009 4:13:00 PM
o-Xylene	< 5.0	5.0	μg/L	1	6/22/2009 4:13:00 PM
Methyl tert-butyl ether	< 5.0	5.0	μg/L	1	6/22/2009 4:13:00 PM
Dichlorodifluoromethane	< 10	10	μg/L	1	6/22/2009 4:13:00 PM
Methyl Acetate	< 5.0	5.0	μg/L	1	6/22/2009 4:13:00 PM

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

R - RPD outside accepted recovery limits

B - Analyte detected in the associated Method Blank

T - Tentitively Identified Compound-Estimated Conc.

S - Spike Recovery outside accepted recovery limits

X - Value exceeds Maximum Contaminant Level

E - Value above quantitation range

Page 22 of 25

Date: 23-Jun-09

CLIENT:

NYS DEC

Client Sample ID: MW-14

Collection Date: 6/10/2009

Work Order:

090611003

Lab Sample ID: 090611003-011

Reference:

Revonak Dry Cleaners / New Paltz NY - Ulster

Matrix: GROUNDWATER

PO#:

Site # / Callout 356021 / 117534

Analyses	Result	PQL Qu	ıal Units	DF	Date Analyzed
VOLATILE ORGANICS SW8260B					Analyst: ML
1,1,2-Trichloro-1,2,2-trifluoroethane	< 5.0	5.0	μg/L	1	6/22/2009 4:13:00 PM
Cyclohexane	< 10	10	µg/L	1	6/22/2009 4:13:00 PM
Trichlorofluoromethane	< 5.0	5.0	μg/L	1	6/22/2009 4:13:00 PM
Methyl Cyclohexane	< 5.0	5.0	μg/L	1	6/22/2009 4:13:00 PM
1,2-Dibromoethane	< 5.0	5.0	μg/L	1	6/22/2009 4:13:00 PM
1,3-Dichlorobenzene	< 5.0	5.0	μg/L	1	6/22/2009 4:13:00 PM
Isopropylbenzene	< 5.0	5.0	μg/L	1	6/22/2009 4:13:00 PM
1,2-Dichlorobenzene	< 5.0	5.0	μg/L	1	6/22/2009 4:13:00 PM
1,4-Dichlorobenzene	< 5.0	5.0	μg/L	1	6/22/2009 4:13:00 PM
1,2-Dibromo-3-chloropropane	< 10	10	μg/L	1	6/22/2009 4:13:00 PM
1,2,4-Trichlorobenzene	< 5.0	5.0	μg/L	1	6/22/2009 4:13:00 PM

X - Value exceeds Maximum Contaminant Level

R - RPD outside accepted recovery limits

T - Tentitively Identified Compound-Estimated Conc.

Date: 23-Jun-09

CLIENT:

NYS DEC

Client Sample ID: MW-15

Work Order:

Collection Date: 6/10/2009

090611003

Lab Sample ID: 090611003-012

Reference:

Revonak Dry Cleaners / New Paltz NY - Ulster

PO#:

Matrix: GROUNDWATER

Site # / Callout 356021 / 117534

Analyses	Result	PQL	Qual Units	DF	Date Analyzed
/OLATILE ORGANICS SW8260B				_	Analyst: ML
Chloromethane	< 10	10	μg/L	1	6/22/2009 4:41:00 PM
Bromomethane	< 10	10	μg/L	1	6/22/2009 4:41:00 PM
Vinyl chloride	< 10	10	μg/L	1	6/22/2009 4:41:00 PM
Chloroethane	< 10	10	μg/L	1	6/22/2009 4:41:00 PM
Methylene chloride	< 5.0	5.0	μg/L	1	6/22/2009 4:41:00 PM
Acetone	23	10	μg/L	1	6/22/2009 4:41:00 PM
Carbon disulfide	< 5.0	5.0	μg/L	1	6/22/2009 4:41:00 PM
1,1-Dichloroethene	< 5.0	5.0	μg/L	1	6/22/2009 4:41:00 PM
1,1-Dichloroethane	< 5.0	5.0	μg/L	1	6/22/2009 4:41:00 PM
trans-1,2-Dichloroethene	< 5.0	5.0	μg/L	1	6/22/2009 4:41:00 PM
cis-1,2-Dichloroethene	< 5.0	5.0	μg/L	1	6/22/2009 4:41:00 PM
Chloroform	< 5.0	5.0	μg/L	1	6/22/2009 4:41:00 PM
1,2-Dichloroethane	< 5.0	5.0	μg/L	1	6/22/2009 4:41:00 PM
2-Butanone	< 10	10	μg/L	1	6/22/2009 4:41:00 PM
1,1,1-Trichloroethane	< 5.0	5.0	μg/L	1	6/22/2009 4:41:00 PM
Carbon tetrachloride	< 5.0	5.0	μg/L	1	6/22/2009 4:41:00 PM
Bromodichloromethane	< 5.0	5.0	μg/L	1	6/22/2009 4:41:00 PM
1,2-Dichloropropane	< 5.0	5.0	μg/L	1	6/22/2009 4:41:00 PM
cis-1,3-Dichloropropene	< 5.0	5.0	μg/L	1	6/22/2009 4:41:00 PM
Trichloroethene	< 5.0	5.0	μg/L	1	6/22/2009 4:41:00 PM
Dibromochloromethane	< 5.0	5.0	μg/L	1	6/22/2009 4:41:00 PM
1,1,2-Trichloroethane	< 5.0	5.0	μg/L	1	6/22/2009 4:41:00 PM
Benzene	< 5.0	5.0	µg/∟	1	6/22/2009 4:41:00 PM
trans-1,3-Dichloropropene	< 5.0	5.0	μg/L	1	6/22/2009 4:41:00 PM
Bromoform	< 5.0	5.0	μg/L	1	6/22/2009 4:41:00 PM
4-Methyl-2-pentanone	< 10	10	μg/L	1	6/22/2009 4:41:00 PM
2-Hexanone	< 10	10	μg/L	1	6/22/2009 4:41:00 PM
Tetrachloroethene	< 5.0	5.0	μg/L	1	6/22/2009 4:41:00 PM
1,1,2,2-Tetrachloroethane	< 5.0	5.0	µg/∟	1	6/22/2009 4:41:00 PM
Toluene	< 5.0	5.0	µg/∟	1	6/22/2009 4:41:00 PM
Chlorobenzene	< 5.0	5.0	μg/L	1	6/22/2009 4:41:00 PM
Ethylbenzene	< 5.0	5.0	μg/L	1	6/22/2009 4:41:00 PM
Styrene	< 5.0	5.0	μg/L	1	6/22/2009 4:41:00 PM
m,p-Xylene	< 5.0	5.0	μg/L	1	6/22/2009 4:41:00 PM
o-Xylene	< 5.0	5.0	μg/L	1	6/22/2009 4:41:00 PM
Methyl tert-butyl ether	< 5.0	5.0	μg/L	1	6/22/2009 4:41:00 PM
Dichlorodifluoromethane	< 10	10	μg/L	1	6/22/2009 4:41:00 PM
Methyl Acetate	< 5.0	5.0	μg/L	1	6/22/2009 4:41:00 PM

Qualifiers:

ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

J - Analyte detected below quantitation limits

R - RPD outside accepted recovery limits

B - Analyte detected in the associated Method Blank

T - Tentitively Identified Compound-Estimated Conc.

X - Value exceeds Maximum Contaminant Level

E - Value above quantitation range

Date: 23-Jun-09

CLIENT:

NYS DEC

Client Sample ID: MW-15

Work Order:

090611003

Collection Date: 6/10/2009

Reference:

Lab Sample ID: 090611003-012

PO#:

Matrix: GROUNDWATER

Site # / Callout 356021 / 117534

Revonak Dry Cleaners / New Paltz NY - Ulster

Analyses	Result	PQL Q	ual Units	DF	Date Analyzed
VOLATILE ORGANICS SW8260B					Analyst: ML
1,1,2-Trichloro-1,2,2-trifluoroethane	< 5.0	5.0	μg/L	1	6/22/2009 4:41:00 PM
Cyclohexane	< 10	10	μg/L	1	6/22/2009 4:41:00 PM
Trichlorofluoromethane	< 5.0	5.0	μg/L	1	6/22/2009 4:41:00 PM
Methyl Cyclohexane	< 5.0	5.0	μg/L	1	6/22/2009 4:41:00 PM
1,2-Dibromoethane	< 5.0	5.0	μg/L	1	6/22/2009 4:41:00 PM
1,3-Dichlorobenzene	< 5.0	5.0	μg/L	1	6/22/2009 4:41:00 PM
Isopropylbenzene	< 5.0	5.0	μg/L	1	6/22/2009 4:41:00 PM
1,2-Dichlorobenzene	< 5.0	5.0	μg/L	1	6/22/2009 4:41:00 PM
1,4-Dichlorobenzene	< 5.0	5.0	μg/L	1	6/22/2009 4:41:00 PM
1,2-Dibromo-3-chloropropane	< 10	10	μg/L	1	6/22/2009 4:41:00 PM
1,2,4-Trichlorobenzene	< 5.0	5.0	μg/L	1	6/22/2009 4:41:00 PM

X - Value exceeds Maximum Contaminant Level

R - RPD outside accepted recovery limits

T - Tentitively Identified Compound-Estimated Conc.

314 North Pearl Street Albany, New York 12207 518-434-4546/434-0891 FAX

CHAIN OF CUSTODY RECORD

A full service analytical research laboratory offering solutions to environmental concerns

Client Name:	C - Central Office 625 Broadway, Albany, NY											
Send Report To:	- Ochilal (J11100	Project Nam			, 111	Samplers: (Names)					
Matt Hub	oicki				, Cleaners -	Offsite		Jack Garle				
Client Phone No.		Client Fax No:	J		lumber.	47504				ignature	3)	
(518) 402	2-9605			C	allout # 1		1)(E	4/10	160	The Agricult	
AES Sample Number	Sa	Client mple Identification	& Location	OLESTIA COMMONTO TOTAL ROLL	Date Sampled	Time A=a.m P=p.m.	Matri	Typ X Sum X	Grab	Number of Cont's	Analysis Required	
001	MVV-1				UNCO	10:20 P	Or.		χ̈́	Ź	VCCS/FAIRA)	
002	MW-2				10 mm	DIE P			*	La.	VOCs (full List) via 8260	
•	MW-3_			<u> </u>		A P			×	<u>I.</u>	VOCs (full List) via 8260	
003	MW-4					1:15 A			X	Ž.	VOCs (full List) via 8260	
004	MW-6				ja	0152 A			X.	Z	VOCs (full List) via 8260	
005	MW-7					A P)		X	2	VOCs (full List) via 8260	
006	MW-9		<u></u>			2.59 A			Ŋ	L	VOCs (full List) via 8260	
007	MW-10					12:15 A			X.	2	VOCs (full List) via 8260	
008	MW-11	_			(2000)	P P			X.	L	VOCs (full List) via 8260	
009	MW-12				1. The second se	R:41			X	2	VOCs (full List) via 8260	
010	MW-13				4	C ST A			×	Z	VOCs (full List) via 8260	
011	MW-14					P	4	,	X	Z,	VOCs (full List) via 8260	
012	MW-15					125 A)			X	2	VOCs (full List) via 8260	
						A P	-					
AES Work Order	#:	**************************************		CC Report	To / Special Ins	structions/Re	emarks	:				
	2906//OC	3		Site #	# 356021; I	_ab Callo	out#	1175	34			
Turnaround Time Request: 1 Day			Please e-mail results to RHoose@Aztechtech.com							ech.com		
Refinquished by:	uished by: (Signature) Receiv			Received i	eceived by: (Signalure)						Date/Time	
Relinquished by:	hed by: (Signature) Received			Received I	ved by: (Signature)						Date/Time	
Relinquished by:	by: (Signature) Received				prior Laboratory by:					0ate/Time 6/10/09 5:0/		
	Temperature	_			ERLY PRESERVE)				Receive	D WITHIN HOLDING TIMES	
Am	iblent or Cl	nilled		Ø N				€ N				
Notes:			Notes	Notes:				No	tes			

WHITE - Lab Copy

YELLOW - Sampler Copy

PINK - Generator Copy

314 North Pearl Street • Albany, New York 12207 • (518) 434-4546 • Fax (518) 434-0891

TERMS, CONDITIONS & LIMITATIONS

All service rendered by the **Adirondack Environmental Services, Inc.** are undertaken and all rates are based upon the following terms:

- (a) Neither Adirondack Environmental Services, Inc., nor any of its employees, agents or sub-contractors shall be liable for any loss or damage arising out of Adirondack Environmental Services, Inc.'s performance or nonperformance, whether by way of negligence or breach of contract, or otherwise, in any amount greater than twice the amount billed to the customer for the work leading to the claim of the customer. Said remedy shall be the sole and exclusive remedy against Adirondack Environmental Services, Inc. arising out of its work.
- (b) All claims made must be in writing within forty-five (45) days after delivery of the **Adirondack Environmental Services, Inc.** report regarding said work or such claim shall be deemed or irrevocably waived.
- (c) Adirondack Environmental Services, Inc. reports are submitted in writing and are for our customers only. Our customers are considered to be only those entities being billed for our services. Acquisition of an Adirondack Environmental Services, Inc. report by other than our customer does not constitute a representation of Adirondack Environmental Services, Inc. as to the accuracy of the contents thereof.
- (d) In no event shall **Adirondack Environmental Services, Inc.**, its employees, agents or sub-contractors be responsible for consequential or special damages of any kind or in any amount.
- (e) No deviation from the terms set forth herein shall bind Adirondack Environmental Services, Inc. unless in writing and signed by a Director of Adirondack Environmental Services, Inc.
- (f) Results pertain only to items analyzed. Information supplied by client is assumed to be correct. This information may be used on reports and in calculations and Adirondack Environmental Services, Inc. is not responsible for the accuracy of this information.
- (g) Payments by credit card are subject to a 3% additional charge.

Experience is the solution

314 North Pearl Street ♦ Albany, New York 12207 (800) 848-4983 ♦ (518) 434-4546 ♦ Fax (518) 434-0891

June 23, 2009

Matt Hubicki-11th Floor NYS DEC 625 Broadway

Albany, NY 12233-7014

TEL: (518) 402-9605

FAX: (518) 402-9679

Site # / Callout 356021 / 117534

Work Order No: 090611004

RE: Revonak Dry Cleaners New Paltz NY - Ulster Co

Dear Matt Hubicki-11th Floor:

Adirondack Environmental Services, Inc received 7 samples on 6/10/2009 for the analyses presented in the following report.

There were no problems with the analyses and all associated QC met EPA or laboratory specifications, except if noted.

If you have any questions regarding these tests results, please feel free to call.

Sincerely,

ELAP#: 10709 AIHA#: 100307

Christopher Hess QA Manager

R - RPD outside accepted recovery limits

T - Tentitively Identified Compound-Estimated Conc.

Date: 23-Jun-09

CLIENT:

NYS DEC

Client Sample ID: BR-1

Work Order:

090611004

Collection Date: 6/10/2009

Reference:

Revonak Dry Cleaners / New Paltz NY - Ulster

Lab Sample ID: 090611004-001

PO#:

Matrix: GROUNDWATER

Site # / Callout 356021 / 117534

Analyses	Result	PQL	Qual	Units	DF	Date Analyzed
VOLATILE ORGANICS SW8260B		_				Analyst: ML
Chloromethane	< 10	10		μg/L	1	6/22/2009 7:32:00 PM
Bromomethane	< 10	10		μg/L	1	6/22/2009 7:32:00 PM
Vinyl chloride	< 10	10		μg/L	1	6/22/2009 7:32:00 PM
Chloroethane	< 10	10		μg/L	1	6/22/2009 7:32:00 PM
Methylene chloride	< 5.0	5.0		μg/L	1	6/22/2009 7:32:00 PM
Acetone	< 10	10		μg/L	1	6/22/2009 7:32:00 PM
Carbon disulfide	< 5.0	5.0		μg/L	1	6/22/2009 7:32:00 PM
1,1-Dichloroethene	< 5.0	5.0		μg/L	1	6/22/2009 7:32:00 PM
1,1-Dichloroethane	< 5.0	5.0		μg/L	1	6/22/2009 7:32:00 PM
trans-1,2-Dichloroethene	< 5.0	5.0		μg/L	1	6/22/2009 7:32:00 PM
cis-1,2-Dichloroethene	5.9	5.0		μg/L	1	6/22/2009 7:32:00 PM
Chloroform	< 5.0	5.0		μg/L	1	6/22/2009 7:32:00 PM
1,2-Dichloroethane	< 5.0	5.0		µg/L	1	6/22/2009 7:32:00 PM
2-Butanone	< 10	10		μg/L	1	6/22/2009 7:32:00 PM
1,1,1-Trichloroethane	< 5.0	5.0		μg/L	1	6/22/2009 7:32:00 PM
Carbon tetrachloride	< 5.0	5.0		μg/L	1	6/22/2009 7:32:00 PM
Bromodichloromethane	< 5.0	5.0		μg/L	1	6/22/2009 7:32:00 PM
1,2-Dichloropropane	< 5.0	5.0		μg/L	1	6/22/2009 7:32:00 PM
cis-1,3-Dichloropropene	< 5.0	5.0		μg/L	1	6/22/2009 7:32:00 PM
Trichloroethene	< 5.0	5.0		μg/L	1	6/22/2009 7:32:00 PM
Dibromochloromethane	< 5.0	5.0		μg/L	1	6/22/2009 7:32:00 PM
1,1,2-Trichloroethane	< 5.0	5.0		μg/L	1	6/22/2009 7:32:00 PM
Benzene	< 5.0	5.0		μg/L	1	6/22/2009 7:32:00 PM
trans-1,3-Dichloropropene	< 5.0	5.0		μg/L	1	6/22/2009 7:32:00 PM
Bromoform	< 5.0	5.0		μg/L	1	6/22/2009 7:32:00 PM
4-Methyl-2-pentanone	< 10	10		μg/L	1	6/22/2009 7:32:00 PM
2-Hexanone	< 10	10		µg/L	1	6/22/2009 7:32:00 PM
Tetrachloroethene	< 5.0	5.0		μg/L	1	6/22/2009 7:32:00 PM
1,1,2,2-Tetrachloroethane	< 5.0	5.0		μg/L	1	6/22/2009 7:32:00 PM
Toluene	< 5.0	5.0		μg/L	1	6/22/2009 7:32:00 PM
Chlorobenzene	< 5.0	5.0		μg/L.	1	6/22/2009 7:32:00 PM
Ethylbenzene	< 5.0	5.0		μg/L	1	6/22/2009 7:32:00 PM
Styrene	< 5.0	5.0		μg/L	1	6/22/2009 7:32:00 PM
m,p-Xylene	< 5.0	5.0		μg/L	1	6/22/2009 7:32:00 PM
o-Xylene	< 5.0	5.0		μg/L	1	6/22/2009 7:32:00 PM
Methyl tert-butyl ether	< 5.0	5.0		μg/L	1	6/22/2009 7:32:00 PM
Dichlorodifluoromethane	< 10	10		μg/L	1	6/22/2009 7:32:00 PM
Methyl Acetate	< 5.0	5.0		μg/L	1	6/22/2009 7:32:00 PM

Qualifiers:

ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

J - Analyte detected below quanititation limits

R - RPD outside accepted recovery limits

B - Analyte detected in the associated Method Blank

T - Tentitively Identified Compound-Estimated Conc.

X - Value exceeds Maximum Contaminant Level

E - Value above quantitation range

Page 2 of 15

NYS DEC CLIENT:

Client Sample ID: BR-1

Work Order:

090611004

Collection Date: 6/10/2009

Reference:

Revonak Dry Cleaners / New Paltz NY - Ulster

Lab Sample ID: 090611004-001

PO#:

Matrix: GROUNDWATER

Date: 23-Jun-09

Site # / Callout 356021 / 117534

Analyses	Result	PQL Q	ual Units	DF	Date Analyzed
VOLATILE ORGANICS SW8260B					Analyst: ML
1,1,2-Trichloro-1,2,2-trifluoroethane	< 5.0	5.0	μg/L	1	6/22/2009 7:32:00 PM
Cyclohexane	< 10	10	μg/L	1	6/22/2009 7:32:00 PM
Trichlorofluoromethane	< 5.0	5.0	μg/L	1	6/22/2009 7:32:00 PM
Methyl Cyclohexane	< 5.0	5.0	μg/L	1	6/22/2009 7:32:00 PM
1,2-Dibromoethane	< 5.0	5.0	µg/L	1	6/22/2009 7:32:00 PM
1,3-Dichlorobenzene	< 5.0	5.0	μg/L	1	6/22/2009 7:32:00 PM
Isopropylbenzene	< 5.0	5.0	μg/L	1	6/22/2009 7:32:00 PM
1,2-Dichlorobenzene	< 5.0	5.0	μg/L	1	6/22/2009 7:32:00 PM
1,4-Dichlorobenzene	< 5.0	5.0	µg/∟	1	6/22/2009 7:32:00 PM
1,2-Dibromo-3-chloropropane	< 10	10	μg/L	1	6/22/2009 7:32:00 PM
1,2,4-Trichlorobenzene	< 5.0	5.0	μg/L	1	6/22/2009 7:32:00 PM

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

X - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

T - Tentitively Identified Compound-Estimated Conc.

E - Value above quantitation range

Page 3 of 15

Date: 23-Jun-09

CLIENT:

NYS DEC

Client Sample ID: BR-2

Work Order:

090611004

Collection Date: 6/10/2009

Reference:

Revonak Dry Cleaners / New Paltz NY - Ulster

Lab Sample ID: 090611004-002

PO#:

Site # / Callout 356021 / 117534

Matrix: GROUNDWATER

Analyses	Result	PQL	Qual	Units	DF	Date Analyzed
VOLATILE ORGANICS SW8260B						Analyst: ML
Chloromethane	< 10	10	ļ	μg/L	1	6/22/2009 8:00:00 PM
Bromomethane	< 10	10	ŀ	μg/L	1	6/22/2009 8:00:00 PM
Vinyl chloride	< 10	10	ļ	μg/L	1	6/22/2009 8:00:00 PM
Chloroethane	< 10	10	ŀ	μg/L	1	6/22/2009 8:00:00 PM
Methylene chloride	< 5.0	5.0	ı	μg/L	1	6/22/2009 8:00:00 PM
Acetone	16	10	!	µg/L	1	6/22/2009 8:00:00 PM
Carbon disulfide	< 5.0	5.0	ļ	μg/L	1	6/22/2009 8:00:00 PM
1,1-Dichloroethene	< 5.0	5.0	ŀ	μg/L	1	6/22/2009 8:00:00 PM
1,1-Dichloroethane	< 5.0	5.0	1	μg/L	1	6/22/2009 8:00:00 PM
trans-1,2-Dichloroethene	< 5.0	5.0	ŀ	μg/L	1	6/22/2009 8:00:00 PM
cis-1,2-Dichloroethene	< 5.0	5.0	ļ	μg/L	1	6/22/2009 8:00:00 PM
Chloroform	< 5.0	5.0	ŀ	μg/L	1	6/22/2009 8:00:00 PM
1,2-Dichloroethane	< 5.0	5.0	Į	µg/L	1	6/22/2009 8:00:00 PM
2-Butanone	< 10	10	1	µg/L	1	6/22/2009 8:00:00 PM
1,1,1-Trichloroethane	< 5.0	5.0	l	μg/L	1	6/22/2009 8:00:00 PM
Carbon tetrachloride	< 5.0	5.0	j	µg/L	1	6/22/2009 8:00:00 PM
Bromodichloromethane	< 5.0	5.0	!	μg/L	1	6/22/2009 8:00:00 PN
1,2-Dichloropropane	< 5.0	5.0	j	μg/L	1	6/22/2009 8:00:00 PM
cis-1,3-Dichloropropene	< 5.0	5.0	ŀ	μg/L	1	6/22/2009 8:00:00 PM
Trichloroethene	< 5.0	5.0	ļ	μg/L	1	6/22/2009 8:00:00 PM
Dibromochloromethane	< 5.0	5.0	ŀ	μg/L	1	6/22/2009 8:00:00 PM
1,1,2-Trichloroethane	< 5.0	5.0	١	μg/L	1	6/22/2009 8:00:00 PM
Benzene	< 5.0	5.0	ļ	μg/L	1	6/22/2009 8:00:00 PN
trans-1,3-Dichloropropene	< 5.0	5.0	ı	μg/L	1	6/22/2009 8:00:00 PM
Bromoform	< 5.0	5.0	1	μg/L	1	6/22/2009 8:00:00 PM
4-Methyl-2-pentanone	< 10	10	ļ	μg/L	1	6/22/2009 8:00:00 PM
2-Hexanone	< 10	10	١	μg/L	1	6/22/2009 8:00:00 PM
Tetrachloroethene	< 5.0	5.0	ŀ	μg/L	1	6/22/2009 8:00:00 PM
1,1,2,2-Tetrachloroethane	< 5.0	5.0	ŀ	μg/L	1	6/22/2009 8:00:00 PM
Toluene	< 5.0	5.0		μg/L	1	6/22/2009 8:00:00 PM
Chlorobenzene	< 5.0	5.0		μg/L	1	6/22/2009 8:00:00 PM
Ethylbenzene	< 5.0	5.0	ı	μg/L	1	6/22/2009 8:00:00 PM
Styrene	< 5.0	5.0	ı	μg/L	1	6/22/2009 8:00:00 PM
m,p-Xylene	< 5.0	5.0		μg/L	1	6/22/2009 8:00:00 PM
o-Xylene	< 5.0	5.0		μg/L	1	6/22/2009 8:00:00 PN
Methyl tert-butyl ether	< 5.0	5.0	j	μg/L	1	6/22/2009 8:00:00 PM
Dichlorodifluoromethane	< 10	10		μg/L	1	6/22/2009 8:00:00 PM
Methyl Acetate	< 5.0	5.0		μg/L	1	6/22/2009 8:00:00 PM

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

X - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

T - Tentitively Identified Compound-Estimated Conc

E - Value above quantitation range

NYS DEC CLIENT:

090611004

Client Sample ID: BR-2

Work Order:

Collection Date: 6/10/2009

Reference:

Lab Sample ID: 090611004-002

Date: 23-Jun-09

PO#:

Revonak Dry Cleaners / New Paltz NY - Ulster

Matrix: GROUNDWATER

Site # / Callout 356021 / 117534

Analyses	Result	PQL Q	ual Units	DF	Date Analyzed
VOLATILE ORGANICS SW8260B					Analyst: ML
1,1,2-Trichloro-1,2,2-trifluoroethane	< 5.0	5.0	μg/L	1	6/22/2009 8:00:00 PM
Cyclohexane	< 10	10	μg/L	1	6/22/2009 8:00:00 PM
Trichlorofluoromethane	< 5.0	5.0	μg/L	1	6/22/2009 8:00:00 PM
Methyl Cyclohexane	< 5.0	5.0	μg/L	1	6/22/2009 8:00:00 PM
1,2-Dibromoethane	< 5.0	5.0	µg/L	1	6/22/2009 8:00:00 PM
1,3-Dichlorobenzene	< 5.0	5.0	μg/L	1	6/22/2009 8:00:00 PM
Isopropylbenzene	< 5.0	5.0	μg/L	1	6/22/2009 8:00:00 PM
1,2-Dichlorobenzene	< 5.0	5.0	μg/L	1	6/22/2009 8:00:00 PM
1,4-Dichlorobenzene	< 5.0	5.0	μg/L	1	6/22/2009 8:00:00 PM
1,2-Dibromo-3-chloropropane	< 10	10	μg/L	1	6/22/2009 8:00:00 PM
1,2,4-Trichlorobenzene	< 5.0	5.0	μg/L	1	6/22/2009 8:00:00 PM

- B Analyte detected in the associated Method Blank
- X Value exceeds Maximum Contaminant Level
- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- T Tentitively Identified Compound-Estimated Conc
- E Value above quantitation range

Date: 23-Jun-09

CLIENT:

NYS DEC

Client Sample ID: BR-4

Work Order:

090611004

Collection Date: 6/10/2009

Reference:

Revonak Dry Cleaners / New Paltz NY - Ulster

PO#:

Lab Sample ID: 090611004-003

Matrix: GROUNDWATER

Site # / Callout 356021 / 117534

Analyses	Result	PQL Qu	ıal Units	DF	Date Analyzed
VOLATILE ORGANICS SW8260B					Analyst: ML
Chloromethane	< 10	10	μg/L	1	6/22/2009 8:28:00 PM
Bromomethane	< 10	10	µg/L	1	6/22/2009 8:28:00 PM
Vinyl chloride	< 10	10	μg/L	1	6/22/2009 8:28:00 PM
Chloroethane	< 10	10	µg/L	1	6/22/2009 8:28:00 PM
Methylene chloride	< 5.0	5.0	μg/L	1	6/22/2009 8:28:00 PM
Acetone	< 10	10	μg/L	1	6/22/2009 8:28:00 PM
Carbon disulfide	< 5.0	5.0	μg/L	1	6/22/2009 8:28:00 PM
1,1-Dichloroethene	< 5.0	5.0	μg/L	1	6/22/2009 8:28:00 PM
1,1-Dichloroethane	< 5.0	5.0	μg/L	1	6/22/2009 8:28:00 PM
trans-1,2-Dichloroethene	< 5.0	5.0	μg/L	1	6/22/2009 8:28:00 PM
cis-1,2-Dichloroethene	11	5.0	µg/L	1	6/22/2009 8:28:00 PM
Chloroform	< 5.0	5.0	μg/L	1	6/22/2009 8:28:00 PM
1,2-Dichloroethane	< 5.0	5.0	μg/L	1	6/22/2009 8:28:00 PM
2-Butanone	< 10	10	μg/l₋	1	6/22/2009 8:28:00 PM
1,1,1-Trichloroethane	< 5.0	5.0	μg/L	1	6/22/2009 8:28:00 PM
Carbon tetrachloride	< 5.0	5.0	μg/L	1	6/22/2009 8:28:00 PM
Bromodichloromethane	< 5.0	5.0	μg/L	1	6/22/2009 8:28:00 PM
1,2-Dichloropropane	< 5.0	5.0	μg/L.	1	6/22/2009 8:28:00 PM
cis-1,3-Dichloropropene	< 5.0	5.0	μg/L	1	6/22/2009 8:28:00 PM
Trichloroethene	< 5.0	5.0	μg/L	1	6/22/2009 8:28:00 PM
Dibromochloromethane	< 5.0	5.0	μg/L	1	6/22/2009 8:28:00 PM
1,1,2-Trichloroethane	< 5.0	5.0	μg/L	1	6/22/2009 8:28:00 PM
Benzene	< 5.0	5.0	μg/L	1	6/22/2009 8:28:00 PM
trans-1,3-Dichloropropene	< 5.0	5.0	μg/L	1	6/22/2009 8:28:00 PM
Bromoform	< 5.0	5.0	μg/L	1	6/22/2009 8:28:00 PM
4-Methyl-2-pentanone	< 10	10	μg/L	1	6/22/2009 8:28:00 PM
2-Hexanone	< 10	10	μg/L	1	6/22/2009 8:28:00 PM
Tetrachloroethene	< 5.0	5.0	μg/L	1	6/22/2009 8:28:00 PM
1,1,2,2-Tetrachloroethane	< 5.0	5.0	μg/L	1	6/22/2009 8:28:00 PM
Toluene	< 5.0	5.0	μg/L	1	6/22/2009 8:28:00 PM
Chlorobenzene	< 5.0	5.0	μg/L	1	6/22/2009 8:28:00 PM
Ethylbenzene	< 5.0	5.0	μg/L	1	6/22/2009 8:28:00 PM
Styrene	< 5.0	5.0	μg/L	1	6/22/2009 8:28:00 PM
m,p-Xylene	< 5.0	5.0	μg/L	1	6/22/2009 8:28:00 PM
o-Xylene	< 5.0	5.0	μg/L	1	6/22/2009 8:28:00 PM
Methyl tert-butyl ether	< 5.0	5.0	μg/L	1	6/22/2009 8:28:00 PM
Dichlorodifluoromethane	< 10	10	μg/L	1	6/22/2009 8:28:00 PM
Methyl Acetate	< 5.0	5.0	μg/L	1	6/22/2009 8:28:00 PM

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

X - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

T - Tentitively Identified Compound-Estimated Conc.

E - Value above quantitation range

Date: 23-Jun-09

CLIENT:

NYS DEC

Client Sample ID: BR-4

Work Order:

090611004

Collection Date: 6/10/2009

Reference:

Revonak Dry Cleaners / New Paltz NY - Ulster

Lab Sample ID: 090611004-003

PO#:

Matrix: GROUNDWATER

Site # / Callout 356021 / 117534

Analyses	Result	PQL Qu	ıal Units	DF	Date Analyzed
VOLATILE ORGANICS SW8260B					Analyst: ML
1,1,2-Trichloro-1,2,2-trifluoroethane	< 5.0	5.0	μg/L	1	6/22/2009 8:28:00 PM
Cyclohexane	< 10	10	µg/∟	1	6/22/2009 8:28:00 PM
Trichlorofluoromethane	< 5.0	5.0	μg/L	1	6/22/2009 8:28:00 PM
Methyl Cyclohexane	< 5.0	5.0	μg/L	1	6/22/2009 8:28:00 PM
1,2-Dibromoethane	< 5.0	5.0	μg/L	1	6/22/2009 8:28:00 PM
1,3-Dichlorobenzene	< 5.0	5.0	μg/L	1	6/22/2009 8:28:00 PM
Isopropylbenzene	< 5.0	5.0	μg/L	1	6/22/2009 8:28:00 PM
1,2-Dichlorobenzene	< 5.0	5.0	μg/L	1	6/22/2009 8:28:00 PM
1,4-Dichlorobenzene	< 5.0	5.0	µg/L	1	6/22/2009 8:28:00 PM
1,2-Dibromo-3-chloropropane	< 10	10	μg/L	1	6/22/2009 8:28:00 PM
1,2,4-Trichlorobenzene	< 5.0	5.0	μg/L	1	6/22/2009 8:28:00 PM

R - RPD outside accepted recovery limits

T - Tentitively Identified Compound-Estimated Conc.

CLIENT: NYS DEC Client Sample ID: BR-5 Work Order: 090611004 Collection Date: 6/10/2009

Revonak Dry Cleaners / New Paltz NY - Ulster Lab Sample ID: 090611004-004 Reference:

PO#: Matrix: GROUNDWATER

Site # / Callout 356021 / 117534

Analyses	Result	PQL	Qual	Units	DF	Date Analyzed
VOLATILE ORGANICS SW8260B						Analyst: ML
Chloromethane	< 10	10		μg/L	1	6/22/2009 8:57:00 PM
Bromomethane	< 10	10		μg/L	1	6/22/2009 8:57:00 PM
Vinyl chloride	< 10	10		μg/L	1	6/22/2009 8:57:00 PM
Chloroethane	< 10	10		µg/L	1	6/22/2009 8:57:00 PM
Methylene chloride	< 5.0	5.0		μg/L	1	6/22/2009 8:57:00 PM
Acetone	< 10	10		μg/L	1	6/22/2009 8:57:00 PM
Carbon disulfide	< 5.0	5.0		μg/L	1	6/22/2009 8:57:00 PM
1,1-Dichloroethene	< 5.0	5.0		μg/L	1	6/22/2009 8:57:00 PM
1,1-Dichloroethane	< 5.0	5.0		μg/L	1	6/22/2009 8:57:00 PM
trans-1,2-Dichloroethene	< 5.0	5.0		μg/L	1	6/22/2009 8:57:00 PM
cis-1,2-Dichloroethene	< 5.0	5.0		μg/L	1	6/22/2009 8:57:00 PM
Chloroform	< 5.0	5.0		μg/L	1	6/22/2009 8:57:00 PM
1,2-Dichloroethane	< 5.0	5.0		μg/L	1	6/22/2009 8:57:00 PM
2-Butanone	< 10	10		μg/L	1	6/22/2009 8:57:00 PM
1,1,1-Trichloroethane	< 5.0	5.0		μg/L	1	6/22/2009 8:57:00 PM
Carbon tetrachloride	< 5.0	5.0		μg/L	1	6/22/2009 8:57:00 PM
Bromodichloromethane	< 5.0	5.0		μg/L	1	6/22/2009 8:57:00 PM
1,2-Dichloropropane	< 5.0	5.0		μg/L	1	6/22/2009 8:57:00 PM
cis-1,3-Dichloropropene	< 5.0	5.0		µg/L	1	6/22/2009 8:57:00 PM
Trichloroethene	< 5.0	5.0		μg/L	1	6/22/2009 8:57:00 PM
Dibromochloromethane	< 5.0	5.0		μg/L	1	6/22/2009 8:57:00 PM
1,1,2-Trichloroethane	< 5.0	5.0		μg/L	1	6/22/2009 8:57:00 PM
Benzene	< 5.0	5.0		μg/L	1	6/22/2009 8:57:00 PM
trans-1,3-Dichloropropene	< 5.0	5.0		μg/L	1	6/22/2009 8:57:00 PM
Bromoform	< 5.0	5.0		μg/L	1	6/22/2009 8:57:00 PM
4-Methyl-2-pentanone	< 10	10		μg/L	1	6/22/2009 8:57:00 PM
2-Hexanone	< 10	10		μg/L	1	6/22/2009 8:57:00 PM
Tetrachloroethene	< 5.0	5.0		μg/L	1	6/22/2009 8:57:00 PM
1,1,2,2-Tetrachloroethane	< 5.0	5.0		μg/L	1	6/22/2009 8:57:00 PM
Toluene	< 5.0	5.0		μg/L	1	6/22/2009 8:57:00 PM
Chlorobenzene	< 5.0	5.0		μg/L	1	6/22/2009 8:57:00 PM
Ethylbenzene	< 5.0	5.0		μg/L	1	6/22/2009 8:57:00 PM
Styrene	< 5.0	5.0		μg/L	1	6/22/2009 8:57:00 PM
m,p-Xylene	< 5.0	5.0		μg/L	1	6/22/2009 8:57:00 PM
o-Xylene	< 5.0	5.0		μg/L	1	6/22/2009 8:57:00 PM
Methyl tert-butyl ether	< 5.0	5.0		μg/L	1	6/22/2009 8:57:00 PM
Dichlorodifluoromethane	< 10	10		μg/L	1	6/22/2009 8:57:00 PM
Methyl Acetate	< 5.0	5.0		μg/L	1	6/22/2009 8:57:00 PM

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

X - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

Date: 23-Jun-09

R - RPD outside accepted recovery limits

T - Tentitively Identified Compound-Estimated Conc.

E - Value above quantitation range

SW8260B

Date: 23-Jun-09

CLIENT:

NYS DEC

Client Sample ID: BR-5

Work Order:

090611004

Collection Date: 6/10/2009

Reference:

Analyses

Cyclohexane

VOLATILE ORGANICS

Trichlorofluoromethane

Methyl Cyclohexane

1,2-Dibromoethane

Isopropylbenzene

1,3-Dichlorobenzene

1,2-Dichlorobenzene

1,4-Dichlorobenzene

1,2,4-Trichlorobenzene

1,2-Dibromo-3-chloropropane

1,1,2-Trichloro-1,2,2-trifluoroethane

Revonak Dry Cleaners / New Paltz NY - Ulster

Result

< 5.0

< 10

< 5.0

< 5.0

< 5.0

< 5.0

< 5.0

< 5.0

< 5.0

< 10

< 5.0

5.0

5.0

5.0

5.0

10

5.0

μg/L

μg/L

μg/L

μg/L

μg/L

μg/L

Lab Sample ID: 090611004-004

6/22/2009 8:57:00 PM

PO#:

Matrix: GROUNDWATER

Site # / Callout 356021 / 117534

PQL Qual Units DF Date Analyzed Analyst: ML 5.0 6/22/2009 8:57:00 PM μg/L 1 10 μg/L 6/22/2009 8:57:00 PM 5.0 μg/L 1 6/22/2009 8:57:00 PM 5.0 μg/L 6/22/2009 8:57:00 PM 5.0 μg/L 6/22/2009 8:57:00 PM

1

1

X - Value exceeds Maximum Contaminant Level

R - RPD outside accepted recovery limits

T - Tentitively Identified Compound-Estimated Conc-

CLIENT: NYS DEC Work Order: 090611004

PO#:

Reference:

Revonak Dry Cleaners / New Paltz NY - Ulster

Matrix: GROUNDWATER

Date: 23-Jun-09

Client Sample ID: BR-6

Collection Date: 6/10/2009

Lab Sample ID: 090611004-005

Site # / Callout 356021 / 117534

Analyses	Result	PQL (Qual Units	DF	Date Analyzed
VOLATILE ORGANICS SW8260B					Analyst: ML
Chloromethane	< 10	10	μg/L	1	6/22/2009 9:25:00 PM
Bromomethane	< 10	10	μg/L	1	6/22/2009 9:25:00 PM
Vinyl chloride	< 10	10	μg/L	1	6/22/2009 9:25:00 PM
Chloroethane	< 10	10	μg/L	1	6/22/2009 9:25:00 PM
Methylene chloride	< 5.0	5.0	μg/L	1	6/22/2009 9:25:00 PM
Acetone	< 10	10	μg/L	1	6/22/2009 9:25:00 PM
Carbon disulfide	< 5.0	5.0	μg/L	1	6/22/2009 9:25:00 PM
1,1-Dichloroethene	< 5.0	5.0	μg/L	1	6/22/2009 9:25:00 PM
1,1-Dichloroethane	< 5.0	5.0	μg/L	1	6/22/2009 9:25:00 PM
trans-1,2-Dichloroethene	< 5.0	5.0	μg/L	1	6/22/2009 9:25:00 PM
cis-1,2-Dichloroethene	< 5.0	5.0	μg/L	1	6/22/2009 9:25:00 PM
Chloroform	< 5.0	5.0	μg/L	1	6/22/2009 9:25:00 PM
1,2-Dichloroethane	< 5.0	5.0	μg/L	1	6/22/2009 9:25:00 PM
2-Butanone	< 10	10	μg/L	1	6/22/2009 9:25:00 PM
1,1,1-Trichloroethane	< 5.0	5.0	μg/L	1	6/22/2009 9:25:00 PM
Carbon tetrachloride	< 5.0	5.0	μg/L	1	6/22/2009 9:25:00 PM
Bromodichloromethane	< 5.0	5.0	μg/L	1	6/22/2009 9:25:00 PM
1,2-Dichloropropane	< 5.0	5.0	μg/L	1	6/22/2009 9:25:00 PM
cis-1,3-Dichloropropene	< 5.0	5.0	μg/L	1	6/22/2009 9:25:00 PM
Trichloroethene	< 5.0	5.0	μg/L	1	6/22/2009 9:25:00 PM
Dibromochloromethane	< 5.0	5.0	μg/L	1	6/22/2009 9:25:00 PM
1,1,2-Trichloroethane	< 5.0	5.0	μg/L	1	6/22/2009 9:25:00 PM
Benzene	< 5.0	5.0	μg/L	1	6/22/2009 9:25:00 PM
trans-1,3-Dichloropropene	< 5.0	5.0	μg/L	1	6/22/2009 9:25:00 PM
Bromoform	< 5.0	5.0	μg/L	1	6/22/2009 9:25:00 PM
4-Methyl-2-pentanone	< 10	10	μg/L	1	6/22/2009 9:25:00 PM
2-Hexanone	< 10	10	μg/L	1	6/22/2009 9:25:00 PM
Tetrachloroethene	< 5.0	5.0	μg/L	1	6/22/2009 9:25:00 PM
1,1,2,2-Tetrachloroethane	< 5.0	5.0	μg/L	1	6/22/2009 9:25:00 PM
Toluene	< 5.0	5.0	μg/L	1	6/22/2009 9:25:00 PM
Chlorobenzene	< 5.0	5.0	μg/L	1	6/22/2009 9:25:00 PM
Ethylbenzene	< 5.0	5.0	μg/L	1	6/22/2009 9:25:00 PM
Styrene	< 5.0	5.0	μg/L	1	6/22/2009 9:25:00 PM
m,p-Xylene	< 5.0	5.0	μg/L	1	6/22/2009 9:25:00 PM
o-Xylene	< 5.0	5.0	μg/L	1	6/22/2009 9:25:00 PM
Methyl tert-butyl ether	< 5.0	5.0	μg/L	1	6/22/2009 9:25:00 PM
Dichlorodifluoromethane	< 10	10	µg/∟	1	6/22/2009 9:25:00 PM
Methyl Acetate	< 5.0	5.0	μg/L	1	6/22/2009 9:25:00 PM

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

X - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

T - Tentitively Identified Compound-Estimated Conc.

E - Value above quantitation range

Date: 23-Jun-09

CLIENT:

NYS DEC

Client Sample ID: BR-6

Work Order:

090611004

Collection Date: 6/10/2009

Reference:

Revonak Dry Cleaners / New Paltz NY - Ulster

Lab Sample ID: 090611004-005

PO#:

Matrix: GROUNDWATER

Site # / Callout 356021 / 117534

Analyses	Result	PQL Q	ual Units	DF	Date Analyzed
VOLATILE ORGANICS SW8260B					Analyst: ML
1,1,2-Trichloro-1,2,2-trifluoroethane	< 5.0	5.0	µg/L	1	6/22/2009 9:25:00 PM
Cyclohexane	< 10	10	µg/L	1	6/22/2009 9:25:00 PM
Trichlorofluoromethane	< 5.0	5.0	μg/L	1	6/22/2009 9:25:00 PM
Methyl Cyclohexane	< 5.0	5.0	μg/L	1	6/22/2009 9:25:00 PM
1,2-Dibromoethane	< 5.0	5.0	μg/L	1	6/22/2009 9:25:00 PM
1,3-Dichlorobenzene	< 5.0	5.0	μg/L	1	6/22/2009 9:25:00 PM
Isopropylbenzene	< 5.0	5.0	μg/L	1	6/22/2009 9:25:00 PM
1,2-Dichlorobenzene	< 5.0	5.0	μg/L	1	6/22/2009 9:25:00 PM
1,4-Dichlorobenzene	< 5.0	5.0	μg/L	1	6/22/2009 9:25:00 PM
1,2-Dibromo-3-chloropropane	< 10	10	μg/L	1	6/22/2009 9:25:00 PM
1,2,4-Trichlorobenzene	< 5.0	5.0	μg/L	1	6/22/2009 9:25:00 PM

X - Value exceeds Maximum Contaminant Level

- R RPD outside accepted recovery limits
- T Tentitively Identified Compound-Estimated Conc

Date: 23-Jun-09

NYS DEC CLIENT: Client Sample ID: BR-7 Work Order: 090611004 Collection Date: 6/10/2009

Revonak Dry Cleaners / New Paltz NY - Ulster Lab Sample ID: 090611004-006 Reference:

PO#: Matrix: GROUNDWATER

Site # / Callout 356021 / 117534

Analyses	Result	PQL	Qual Units	D F	Date Analyzed
VOLATILE ORGANICS SW8260B					Analyst: ML
Chloromethane	< 10	10	μg/L	1	6/22/2009 9:53:00 PM
Bromomethane	< 10	10	μg/L	1	6/22/2009 9:53:00 PM
Vinyl chloride	< 10	10	μg/L	1	6/22/2009 9:53:00 PM
Chloroethane	< 10	10	μg/L	1	6/22/2009 9:53:00 PM
Methylene chloride	< 5.0	5.0	μg/L	1	6/22/2009 9:53:00 PM
Acetone	< 10	10	µg/L	1	6/22/2009 9:53:00 PM
Carbon disulfide	< 5.0	5.0	μg/L.	1	6/22/2009 9:53:00 PM
1,1-Dichloroethene	< 5.0	5.0	μg/L	1	6/22/2009 9:53:00 PM
1,1-Dichloroethane	< 5.0	5.0	μg/L	1	6/22/2009 9:53:00 PM
trans-1,2-Dichloroethene	< 5.0	5.0	μg/L	1	6/22/2009 9:53:00 PM
cis-1,2-Dichloroethene	< 5.0	5.0	μg/L	1	6/22/2009 9:53:00 PM
Chloroform	< 5.0	5.0	μg/L	1	6/22/2009 9:53:00 PM
1,2-Dichloroethane	< 5.0	5.0	µg/∟	1	6/22/2009 9:53:00 PM
2-Butanone	< 10	10	μg/L	1	6/22/2009 9:53:00 PM
1,1,1-Trichloroethane	< 5.0	5.0	μg/L	1	6/22/2009 9:53:00 PM
Carbon tetrachloride	< 5.0	5.0	μg/L	1	6/22/2009 9:53:00 PM
Bromodichloromethane	< 5.0	5.0	μg/L	1	6/22/2009 9:53:00 PM
1,2-Dichloropropane	< 5.0	5.0	μg/L	1	6/22/2009 9:53:00 PM
cis-1,3-Dichloropropene	< 5.0	5.0	μg/L	1	6/22/2009 9:53:00 PM
Trichloroethene	< 5.0	5.0	μg/L	1	6/22/2009 9:53:00 PM
Dibromochloromethane	< 5.0	5.0	μg/L	1	6/22/2009 9:53:00 PM
1,1,2-Trichloroethane	< 5.0	5.0	μg/L	1	6/22/2009 9:53:00 PM
Benzene	< 5.0	5.0	μg/L	1	6/22/2009 9:53:00 PM
trans-1,3-Dichloropropene	< 5.0	5.0	µg/L	1	6/22/2009 9:53:00 PM
Bromoform	< 5.0	5.0	μg/L	1	6/22/2009 9:53:00 PM
4-Methyl-2-pentanone	< 10	10	μg/L	1	6/22/2009 9:53:00 PM
2-Hexanone	< 10	10	μg/L	1	6/22/2009 9:53:00 PM
Tetrachloroethene	< 5.0	5.0	μg/L	1	6/22/2009 9:53:00 PM
1,1,2,2-Tetrachloroethane	< 5.0	5.0	μg/L	1	6/22/2009 9:53:00 PM
Toluene	< 5.0	5.0	μg/L	1	6/22/2009 9:53:00 PM
Chlorobenzene	< 5.0	5.0	μg/L	1	6/22/2009 9:53:00 PM
Ethylbenzene	< 5.0	5.0	μg/L	1	6/22/2009 9:53:00 PM
Styrene	< 5.0	5.0	μg/L	1	6/22/2009 9:53:00 PM
m,p-Xylene	< 5.0	5.0	μg/L	1	6/22/2009 9:53:00 PM
o-Xylene	< 5.0	5.0	μg/L	1	6/22/2009 9:53:00 PM
Methyl tert-butyl ether	< 5.0	5.0	μg/L	1	6/22/2009 9:53:00 PM
Dichlorodifluoromethane	< 10	10	μg/L	1	6/22/2009 9:53:00 PM
Methyl Acetate	< 5.0	5.0	μg/L	1	6/22/2009 9:53:00 PM

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

X - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

T - Tentitively Identified Compound-Estimated Conc

E - Value above quantitation range

Page 12 of 15

Date: 23-Jun-09

CLIENT:

NYS DEC

Client Sample ID: BR-7

Work Order:

090611004

Collection Date: 6/10/2009

Lab Sample ID: 090611004-006

Reference:

Revonak Dry Cleaners / New Paltz NY - Ulster

PO#:

Matrix: GROUNDWATER

Site # / Callout 356021 / 117534

Analyses	Result	PQL Q	ual Units	DF	Date Analyzed
VOLATILE ORGANICS SW8260B					Analyst: ML
1,1,2-Trichloro-1,2,2-trifluoroethane	< 5.0	5.0	μg/L	1	6/22/2009 9:53:00 PM
Cyclohexane	< 10	10	μg/L	1	6/22/2009 9:53:00 PM
Trichlorofluoromethane	< 5.0	5.0	μg/L	1	6/22/2009 9:53:00 PM
Methyl Cyclohexane	< 5.0	5.0	μg/L	1	6/22/2009 9:53:00 PM
1,2-Dibromoethane	< 5.0	5.0	μg/L	1	6/22/2009 9:53:00 PM
1,3-Dichlorobenzene	< 5.0	5.0	μg/L	1	6/22/2009 9:53:00 PM
Isopropylbenzene	< 5.0	5.0	μg/L	1	6/22/2009 9:53:00 PM
1,2-Dichlorobenzene	< 5.0	5.0	μg/L	1	6/22/2009 9:53:00 PM
1,4-Dichlorobenzene	< 5.0	5.0	μg/L	1	6/22/2009 9:53:00 PM
1,2-Dibromo-3-chloropropane	< 10	10	μg/L	1	6/22/2009 9:53:00 PM
1,2,4-Trichlorobenzene	< 5.0	5.0	μg/L	1	6/22/2009 9:53:00 PM

X - Value exceeds Maximum Contaminant Level

R - RPD outside accepted recovery limits

T - Tentitively Identified Compound-Estimated Conc.

CLIENT: NYS DEC

Work Order:

Client Sample ID: Drummed Water

Date: 23-Jun-09

090611004 Collection Date: 6/10/2009

Reference: Revonak Dry Cleaners / New Paltz NY - Ulster **Lab Sample ID:** 090611004-007 PO#:

Matrix: GROUNDWATER

Site # / Callout 356021 / 117534

Analyses	Result	PQL	Qual T	Units	DF	Date Analyzed
VOLATILE ORGANICS SW8260B				_		Analyst: ML
Chloromethane	< 10	10	1-	ıg/L	1	6/22/2009 10:22:00 PM
Bromomethane	< 10	10	<u> </u>	ıg/L	1	6/22/2009 10:22:00 PM
Vinyl chloride	24	10		ıg/L	1	6/22/2009 10:22:00 PM
Chloroethane	< 10	10	1	ıg/L	1	6/22/2009 10:22:00 PM
Methylene chloride	< 5.0	5.0	1	ıg/L	1	6/22/2009 10:22:00 PM
Acetone	< 10	10	ļ.	ıg/L	1	6/22/2009 10:22:00 PM
Carbon disulfide	< 5.0	5.0	Ļ	ıg/L	1	6/22/2009 10:22:00 PM
1,1-Dichloroethene	< 5.0	5.0	-	ıg/L	1	6/22/2009 10:22:00 PM
1,1-Dichloroethane	< 5.0	5.0	Ļ	ıg/L	1	6/22/2009 10:22:00 PM
trans-1,2-Dichloroethene	< 5.0	5.0		ıg/L	1	6/22/2009 10:22:00 PM
cis-1,2-Dichloroethene	100	5.0		ıg/L	1	6/22/2009 10:22:00 PM
Chloroform	< 5.0	5.0		ıg/L	1	6/22/2009 10:22:00 PM
1,2-Dichloroethane	< 5.0	5.0		ıg/L	1	6/22/2009 10:22:00 PM
2-Butanone	< 10	10	L	ıg/L	1	6/22/2009 10:22:00 PM
1,1,1-Trichloroethane	< 5.0	5.0	Ļ	ıg/L	1	6/22/2009 10:22:00 PM
Carbon tetrachloride	< 5.0	5.0		ıg/L	1	6/22/2009 10:22:00 PM
Bromodichloromethane	< 5.0	5.0		ıg/L	1	6/22/2009 10:22:00 PM
1,2-Dichloropropane	< 5.0	5.0		ıg/L	1	6/22/2009 10:22:00 PM
cis-1,3-Dichloropropene	< 5.0	5.0	ļ.	ıg/L	1	6/22/2009 10:22:00 PM
Trichloroethene	< 5.0	5.0		ıg/L	1	6/22/2009 10:22:00 PM
Dibromochloromethane	< 5.0	5.0	-	ıg/L	1	6/22/2009 10:22:00 PM
1,1,2-Trichloroethane	< 5.0	5.0	-	ıg/L	1	6/22/2009 10:22:00 PM
Benzene	< 5.0	5.0	-	ıg/L	1	6/22/2009 10:22:00 PM
trans-1,3-Dichloropropene	< 5.0	5.0		ıg/L	1	6/22/2009 10:22:00 PM
Bromoform	< 5.0	5.0	-	ıg/L	1	6/22/2009 10:22:00 PM
4-Methyl-2-pentanone	< 10	10	ŀ	ıg/L	1	6/22/2009 10:22:00 PM
2-Hexanone	< 10	10		ıg/L	1	6/22/2009 10:22:00 PM
Tetrachloroethene	13	5.0		ıg/L	1	6/22/2009 10:22:00 PM
1,1,2,2-Tetrachloroethane	< 5.0	5.0		ıg/L	1	6/22/2009 10:22:00 PM
Toluene	< 5.0	5.0		ıg/L	1	6/22/2009 10:22:00 PM
Chlorobenzene	< 5.0	5.0		ıg/L	1	6/22/2009 10:22:00 PM
Ethylbenzene	< 5.0	5.0		ıg/L	1	6/22/2009 10:22:00 PM
Styrene	< 5.0	5.0		ıg/L	1	6/22/2009 10:22:00 PM
m,p-Xylene	< 5.0	5.0		ıg/L	1	6/22/2009 10:22:00 PM
o-Xylene	< 5.0	5.0		ıg/L	1	6/22/2009 10:22:00 PM
Methyl tert-butyl ether	< 5.0	5.0		ıg/L	1	6/22/2009 10:22:00 PM
Dichlorodifluoromethane	< 10	10		ıg/L	1	6/22/2009 10:22:00 PM
Methyl Acetate	< 5.0	5.0		ıg/L	1	6/22/2009 10:22:00 PM

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

X - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

T - Tentitively Identified Compound-Estimated Conc.

E - Value above quantitation range

Date: 23-Jun-09

NYS DEC CLIENT: Client Sample ID: Drummed Water Work Order: 090611004 Collection Date: 6/10/2009

Reference: Revonak Dry Cleaners / New Paltz NY - Ulster Lab Sample ID: 090611004-007

PO#: Matrix: GROUNDWATER

Site # / Callout 356021 / 117534

Analyses	Result	PQL Qua	l Units	D F	Date Analyzed
VOLATILE ORGANICS SW8260B					Analyst: ML
1,1,2-Trichloro-1,2,2-trifluoroethane	< 5.0	5.0	μg/L	1	6/22/2009 10:22:00 PM
Cyclohexane	< 10	10	μg/L	1	6/22/2009 10:22:00 PM
Trichlorofluoromethane	< 5.0	5.0	μg/L	1	6/22/2009 10:22:00 PM
Methyl Cyclohexane	< 5.0	5.0	μg/L	1	6/22/2009 10:22:00 PM
1,2-Dibromoethane	< 5.0	5.0	μg/L	1	6/22/2009 10:22:00 PM
1,3-Dichlorobenzene	< 5.0	5.0	μg/L	1	6/22/2009 10:22:00 PM
Isopropylbenzene	< 5.0	5.0	μg/L	1	6/22/2009 10:22:00 PM
1,2-Dichlorobenzene	< 5.0	5.0	μg/L	1	6/22/2009 10:22:00 PM
1,4-Dichlorobenzene	< 5.0	5.0	μg/L	1	6/22/2009 10:22:00 PM
1,2-Dibromo-3-chloropropane	< 10	10	μg/L	1	6/22/2009 10:22:00 PM
1,2,4-Trichlorobenzene	< 5.0	5.0	μg/L	1	6/22/2009 10:22:00 PM

R - RPD outside accepted recovery limits

T - Tentitively Identified Compound-Estimated Conc.

314 North Pearl Street Albany, New York 12207 518-434-4546/434-0891 FAX

CHAIN OF CUSTODY RECORD

A full service analytical research laboratory offering solutions to environmental concerns

Client Name:	3.00		Address:									
NYSDEC	C - Central (Office	625 Broa	idway	, Albany	, NY						
Send Report To:			Project Name (Lo	ocation)	<u></u>			Samp	ilers:	(Na	imes)	4
Matt Hub	oicki		Revonak [Ory Cl	eaners -	· Offsi	te		(ري إ	U		1 (time)
Client Phone No		Client Fax No:		PO Nur	nber:						gnature) [
(518) 40	2-9605			Ca	llout # 1	17534	-	X	A			
AES Sample Number	Sa	Client mpte Identification &	Location		Date Sampled	Time A=a.m P=p.m		Sample Matrix		Grab	Number of Cont's	Analysis Required
001	BR-1			Č	idos	"Aite	AF (3.1	7	*	2	It Calful Lide) 526
007	BR-2					加設	A) P)		2	VOCs (full List) via 8260
003	BR-4				(1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-		A P			×	E.	VOCs (full List) via 8260
004	BR-5	-				0115	A)	1	ļ.	X	2	VOCs (full List) via 8260
005	BR-6					7:35	A) P	1		X	2	VOCs (full List) via 8260
006	BR-7				<u> </u>	715		541		X	2	VOCs (full List) via 8260
1007	Drumm	ed Water			<u> </u>		-	tu	, X		1_	VOCs (full List) via 8260
							A P					
	7						A P					
							A			+		
					<u> </u>		P A					
							P					
						h-	A P					
							A		-	+		
						+	Р					
						h	A P					
AEO W O	- H		Inn		/ Special Ins		<u> </u>					NEW (PER LANGE)
AES Work Orde	<u> #:</u>			•	,							
	0906/10	04		Site # 3	356021; l	.ab Ca	llou	ıt # 11	753	34		
Turnaround Time		- Special Control of the Control of										
□ 1 Day □ 2 Day	□ 3 Day □ 5 Day	Normal		Please	e-mail re	sults to	RI	Hoose	e@ <i>F</i>	۹zt	echte	ch.com
Relinquished by	: (Signature)	Targan	Rec	eived by:	(Signature)	100 Hall 100	***************************************	ra Lauterree hil er Tarn samuel on en s			поня	Date/Time
Relinquished by	: (Signature)	1177	Rec	eived by:	(Signature)							Date/Time
Relinquished by	: (Signature)		Rec	eived for	Laboratory b	y:			white and		.,,,,	Date/Time 6/10/07 5:07
	Temperature			PROPER	LY PRESERVED)				F	RECEIVED	Within Holding Times
Ar	nbient or Ø1	iilled		(B)	N							ix N
Notes:			Notes:						Not	les:		
	WHITE - Lai	Сору		ELLOW - S	Sampler Copy					PII	VK - Ge	nerator Copy

Experience is the solution

314 North Pearl Street • Albany, New York 12207 • (518) 434-4546 • Fax (518) 434-0891

TERMS, CONDITIONS & LIMITATIONS

All service rendered by the Adirondack Environmental Services, Inc. are undertaken and all rates are based upon the following terms:

- Neither Adirondack Environmental Services, Inc., nor any of its employees, agents or sub-contractors shall be liable for any loss or damage arising out of Adirondack Environmental Services, Inc.'s performance or nonperformance, whether by way of negligence or breach of contract, or otherwise, in any amount greater than twice the amount billed to the customer for the work leading to the claim of the customer. Said remedy shall be the sole and exclusive remedy against Adirondack Environmental Services, Inc. arising out of its work.
- All claims made must be in writing within forty-five (45) days after delivery of the Adirondack Environmental Services, Inc. report regarding said work or such claim shall be deemed or irrevocably waived.
- Adirondack Environmental Services, Inc. reports are submitted in writing and are for our customers only. Our customers are considered to be only those entities being billed for our services. Acquisition of an Adirondack Environmental Services, **Inc.** report by other than our customer does not constitute a representation of Adirondack Environmental Services, Inc. as to the accuracy of the contents thereof.
- In no event shall Adirondack Environmental Services, Inc., its employees, (d) agents or sub-contractors be responsible for consequential or special damages of any kind or in any amount.
- No deviation from the terms set forth herein shall bind Adirondack Environmental (e) Services, Inc. unless in writing and signed by a Director of Adirondack Environmental Services, Inc.
- Results pertain only to items analyzed. Information supplied by client is assumed (f) to be correct. This information may be used on reports and in calculations and Adirondack Environmental Services, Inc. is not responsible for the accuracy of this information.
- (g) Payments by credit card are subject to a 3% additional charge.

APPENDIX F

DATA USABILITY SUMMARY REPORT

Data Usability Summary Report Revonak Dry Cleaners - Off Site Area

New Paltz, New York

September 2009

Data Usability Summary Report

Revonak Dry Cleaners - Off Site Area New Paltz, New York

Prepared By:

EnviroAnalytics
Data Validation Service
2117 Rowley Road, Apt 1
Ballston Spa, New York 12020

EXECUTIVE SUMMARY

This report addresses data quality for air and water samples collected at the Revonak Dry Cleaners – Off Site Area located in New Paltz, New York. The samples were analyzed for volatile organics (VOCs) following New York State Department of Environmental Conservation (NYSDEC) Analytical Services Protocol (ASP) methodologies. Sample collection was performed by Aztech Technologies, Inc. of Ballston Spa, New York. Analytical services were provided by Adirondack Environmental Services, Inc. located in Albany, New York.

The volatile organic analyses data were determined to be usable for qualitative and quantitative purposes with the exception of the non-detected results for 1,2,4-trichlorobenzene for samples SV-1 and SV-2 that were rejected due to continuing calibration deviations. Sample results for several compounds were also approximated based on deviations from sample preservation, initial calibration, continuing calibration, and surrogate recovery criteria.

TABLE of CONTENTS

SECTION 1 - INTRODUCTION	1
1.1 Introduction	1
1.2 Analytical Methods	2
1.3 Validation Protocols	2
1.3.1 Organic Parameters	3
1.4 Data Qualifiers	3
SECTION 2 - DATA VALIDATION SUMMARY	5
2.1 Volatiles Organics Analysis	5
SECTION 3 - DATA USABILITY and PARCC EVALUATION	8
3.1 Data Usability	8
3.2 PARCC Evaluation	8
3.2.1 Precision	8
3.2.2 Accuracy	8
3.2.3 Representativeness	8
3.2.4 Comparability	8
3.2.5 Completeness	9

Appendices

Appendix A – Qualified Laboratory Data Sheets Appendix B - Data Validation Checklist

SECTION 1 - INTRODUCTION

1.1 Introduction

This report addresses data quality for air and water samples collected at the Revonak Dry Cleaners – Off Site Area located in New Paltz, New York. The samples were analyzed for volatile organics (VOCs) following New York State Department of Environmental Conservation (NYSDEC) Analytical Services Protocol (ASP) methodologies. Sample collection was performed by Aztech Technologies, Inc. of Ballston Spa, New York. Analytical services were provided by Adirondack Environmental Services, Inc. located in Albany, New York and Centek Laboratories, LLC located in Syracuse, New York. The quantity and types of samples that were submitted for data validation are tabulated below.

Table 1: Introduction - Sample Summary Table

GD G#	Date		Sample Identification						
SDG#	Collected	Sample Matrix	Client ID	Laboratory ID					
C0903021	3/10/09	Air	SS-405-1	C0903021-001A					
			IA-405-1	C0903021-002A					
			SS-401-1	C0903021-003A					
			IA-401-1	C0903021-004A					
			SS-410-1	C0903021-005A					
			IA-410-1	C0903021-006A					
			SS-512-1	C0903021-007A					
			IA-512-1	C0903021-008A					
			SS-507-1	C0903021-009A					
			IA-507-1	C0903021-010A					
			SS-503-1	C0903021-011A					
			IA-503-1	C0903021-012A					
			SS-501-1	C0903021-013A					
			IA-501-1	C0903021-014A					
			SS-610-1	C0903021-015A					
			IA-610-1	C0903021-016A					
			SS-605-1	C0903021-017A					
			IA-605-1	C0903021-018A					
			SS-603-1	C0903021-019A					
			IA-603-1	C0903021-020A					
			OA-1	C0903021-021A					
C0904008	3/31/09	Air	SV-1	C0904008-001A					
			SV-2	C0904008-002A					

	Date		Sample I	dentification
SDG#	Collected	Sample Matrix	Client ID	Laboratory ID
BR-1	6/10/09	Groundwater	MW-1	090611003-001
			MW-2	090611003-002
			MW-4	090611003-003
			MW-6	090611003-004
			MW-7	090611003-005
			MW-9	090611003-006
			MW-10	090611003-007
			MW-11	090611003-008
			MW-12	090611003-009
			MW-13	090611003-010
			MW-14	090611003-011
			MW-15	090611003-012
			BR-1	090611004-001
			BR-1	090611004-002
			BR-4	090611004-003
			BR-5	090611004-004
			BR-6	090611004-005
			BR-7	090611004-006
			Drummed Water	090611004-007

1.2 Analytical Methods

The samples were analyzed for volatile organics (VOCs) following New York State Department of Environmental Conservation (NYSDEC) Analytical Services Protocol (ASP) methodologies (2005 update). Laboratory analyses were provided by Adirondack Environmental Services, Inc. located in Albany, New York and Centek Laboratories, LLC located in Syracuse, New York.

1.3 Validation Protocols

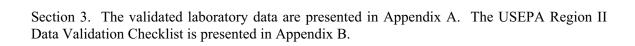
Data validation is a process that involves the evaluation of analytical data against prescribed quality control criteria to determine the usefulness of the data. The analytical data addressed in this report were evaluated utilizing the quality control criteria presented in the following documents:

- USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review, EPA-540-R-08-01, June 2008.
- *CLP Organics Data Review and Preliminary Review*, SOP No. HW-6 Revision #14, USEPA Region II, September 2006.
- Validating Volatile Organic Compounds By Gas Chromatography/Mass Spectrometry SW-846 Method 8260B, SOP No. HW-24 Revision #2, USEPA Hazardous Waste Support Branch, October 2006.
- Validating Air Samples Volatile Organic Analysis of Ambient Air in Canister by Method TO-15, SOP No. HW-31 Revision #4, USEPA Hazardous Waste Support Branch, October 2006.
- Exhibit E of New York State Department of Environmental Conservation Analytical Services Protocol (NYSDEC ASP), NYSDEC June 2005.

1.3.1 Organic Parameters

The validation of organic parameters for this project followed the requirements presented in the analytical methodology and the data validation guidelines presented above. The following QA/QC parameters were evaluated:

Volatile Organics Analyses


- 1. Holding Times
- 2. GC/MS Instrument Tuning Criteria
- 3. Calibration
 - a. Initial Calibration
 - b. Continuing Calibration
- 4. Blank Analysis
- 5. Surrogate Recovery
- 6. Matrix Spike / Matrix Spike Duplicate Analysis
- 7. Reference Standard Analysis
- 8. Internal Standards Recovery
- 9. Compound Identification and Quantification
- 10. Field Duplicate Analysis
- 11. System Performance
- 12. Documentation Completeness
- 13. Overall Data Assessment

1.4 Data Qualifiers

The following qualifiers as specified in the guidance documents presented in Section 1.3 of this report have been used for this data validation.

- U Indicates that the compound was analyzed for, but was not detected. The sample quantification limit is presented and adjusted for dilution. This qualifier is also used to signify that the detection limit of an analyte was raised due to blank contamination.
- J Indicates that the result should be considered approximate. This qualifier is used when the data validation procedure identifies a deficiency in the data generation process.
- UJ Indicates that the detection limit for the analyte in this sample should be considered approximate. This qualifier is used when the data validation process identifies a deficiency in the data generation process.
- R Indicates that the previously reported detection limit or sample result has been rejected due to a major deficiency in the data generation procedure. The data are considered to be unusable for both qualitative and quantitative purposes.

The following sections of this document present a summary of the data validation process. Section 2 discusses data compliance with established QA/QC criteria and qualifications performed on the sample data. A discussion of the Precision, Accuracy, Representativeness, Comparability, and Completeness (PARCC) of the data and data usability are discussed in

SECTION 2 - DATA VALIDATION SUMMARY

This section presents a discussion of QA/QC parameter compliance with established criteria and the qualification of data performed when QA/QC parameter deviations were identified. When several deviations from established QA/QC criteria were observed, the final qualifier assigned to the data was based on the cumulative effect of the deviations.

2.1 Volatile Organics Analysis

Data validation was performed for nineteen water samples and twenty-three air samples. The QA/QC parameters presented in Section 1.3.2 of this report were found to be within specified limits with the exception of the following:

Sample Preservation

Sample preservation criteria specify that the samples for volatile organics analyses be maintained at 4 ± 2 degrees Celsius from the time of sample collection until validated time of sample receipt (VTSR) at the laboratory. The groundwater samples collected on 6/10/09 (SDG# BR-1) were received at the laboratory at a temperature of 11 degrees Celsius. Due to this deviation from prescribed criteria, all volatile organics data for all samples collected for SDG# BR-1 were qualified as approximated (J, UJ) for both detected and non-detected sample results.

Surrogate Recovery

Surrogate compounds are added to the samples prior to sample preparation to evaluate the efficiency of the sample preparation procedures. The surrogate compounds are required to have percent recovery values within specific prescribed limits. When one or more of the surrogate compounds exceeds the prescribed recovery limits, but are greater than ten percent, the associated sample data require qualification. When one or more surrogate compound recovery is greater than the upper control limit, the associated detected results are approximated (J). The following samples required qualification for surrogate compound deficiencies.

Table 2: Volatile Organics Analyses - Surrogate Compound Deviations

Sample ID	Surrogate Compound	Percent Recovery	Control Limits	Qualifier
MW-11	bromofluorobenzene	121 %	80% to 120%	J
	toluene-d8	121 %	80% to 120%	J
MW-13	bromofluorobenzene	122 %	80% to 120%	J
MW-14	bromofluorobenzene	121 %	80% to120%	J

Please note that in preparing the NYSDEC ASP category B data package for the SW-846 method 8260B analyses, the laboratory applied the ASP surrogate recovery control limits instead of the SW-846 method 8260B prescribed control limits. To determine method compliance for the data usability evaluation the SW-846 method 8260B surrogate recovery control limit of 80 to 120 percent was utilized.

Instrument Performance Check

The GC/MS system used for volatiles analysis is required to have instrument performance evaluated every twelve hours through the analysis of a bromofluorobenzene performance check standard. The analytical sequence initiated on 6/22/09 exceeded the twelve hour analysis window for samples Drummed Water and MW-12. During this analytical sequence, the matrix spike/matrix spike duplicate (MS/MSD) samples and the laboratory control sample (LCS) were also analyzed outside of the twelve hour window. Since the MS/MSD and LCS samples exhibited results within prescribed limits, additional qualification of samples Drummed Water and MW-12 was not required for this deviation.

Initial Calibration

Initial calibration criteria require the percent relative standard deviation (%RSD) to be less than 30 percent for each compound. Qualification of sample data included the qualification of non-detected results as approximated for compounds with %RSD values greater than 30. Volatile compounds that exceeded initial calibration criteria and the samples qualified due to those deviations are tabulated below.

Table 3: Volatile Organics Analyses - Initial Calibration Deviations

Date Analyzed	Compound	%RSD	Result Qualifier	Affected Samples
6/5/09	trichlorofluoromethane	35.7 %	UJ	MW-1
	1,2-dibromo-3-chloropropane	30.3 %	UJ	MW-2
				MW-4
				MW-6
				MW-7
				MW-9
				MW-10
				MW-11
				MW-12
				MW-13
				MW-14
				MW-15
				BR-1
				BR-1
				BR-4
				BR-5
				BR-6
				BR-7
				Drummed Water

Continuing Calibration

The continuing calibration percent difference (%D) limit which requires the %D to be less than 25 percent (30 percent for TO-15 samples) was exceeded for several compounds. Sample qualification included the approximation of results when %D criteria were exceeded, but were less than 90 percent. Non-detected sample results were rejected for compounds with %D values greater than 90 percent. Samples requiring qualification due to these deviations are tabulated below.

Table 4: Volatile Organics Analyses - Continuing Calibration Deviations

Date Analyzed	Compound	%D	Qualifier	Affected Samples
3/19/2009	benzyl chloride	35.8 %	UJ	SS-405-1
				SS-401-1
				SS-410-1
				SS-512-1
				SS-507-1
				SS-503-1
				SS-501-1
				IA-501-1
				SS-610-1
				IA-610-1
				SS-605-1
				IA-605-1
				SS-603-1
				IA-603-1
				OA-1
4/8/2009	1,2,4-trichlorobenzene	163.9 %	R	SV-1
	hexachloro-1,3-butadiene	48.7 %	UJ	SV-2
6/22/09	dichlorodifluoromethane	48.29 %	UJ	MW-1
	1,2-dibromo-3-chloropropane	43.04 %	UJ	MW-2
				MW-4
				MW-6
				MW-7
				MW-9
				MW-10
				MW-11
				MW-12
				MW-13
				MW-14
				MW-15
				BR-1
				BR-1
				BR-4
				BR-5
				BR-6
				BR-7
				Drummed Water

Overall Data Assessment

Overall, the laboratory performed volatile organic analyses in accordance with the requirements specified in the methods listed in Section 1.2. These data were determined to be usable for qualitative and quantitative purposes with the exception of the non-detected results for 1,2,4-trichlorobenzene for samples SV-1 and SV-2 that were rejected due to continuing calibration deviations. Sample results for several compounds were also approximated based on deviations from sample preservation, initial calibration, continuing calibration, and surrogate recovery criteria.

SECTION 3 - DATA USABILITY and PARCC EVALUATION

3.1 Data Usability

This section presents a summary of the usability of the analytical data and an evaluation of the PARCC parameters. Data usability was calculated as the percentage of data that was not qualified as rejected based on a significant deviation from established QA/QC criteria. Data usability which was calculated separately for each type of analysis is tabulated below.

Table 5: Data Usability and PARCC Evaluation - Data Usability

Parameter	Usability	Deviations
Volatile organics	99.92 %	Non-detected sample results for 1,2,4-trichlorobenzene for samples SV-1 and SV-2 that were rejected due to continuing calibration deviations.

3.2 PARCC Evaluation

The following sections provide an evaluation of the analytical data with respect to the precision, accuracy, representativeness, comparability, and completeness (PARCC) parameters.

3.2.1 Precision

Precision is measured through field duplicate samples, split samples, and laboratory duplicate samples. For this sampling program, none of the data were qualified for field or laboratory duplicate criteria deviations.

3.2.2 Accuracy

Matrix spike sample, surrogate recovery, internal standard recovery, laboratory control samples, and calibration criteria indicate the accuracy of the data. For this sampling program, none of the analytical data were qualified for deviations from matrix spike recovery criteria; 0.25 percent of the data were qualified for surrogate recovery criteria deviations; none of the data were qualified for internal standard recovery criteria deviations; none of the data were qualified for laboratory control sample deviations; and 3.96 percent of the data were qualified for calibration criteria deviations.

3.2.3 Representativeness

Holding times, sample preservation, and blank analysis are indicators of the representativeness of the analytical data. For this investigation, none of the analytical data required qualification for holding time deviations, 39.6 percent of the analytical data required qualification for sample preservation deviations, and none of the analytical data required qualification for blank analysis deviations.

3.2.4 Comparability

Comparability is not compromised provided that the analytical methods did not change over time. A major component of comparability is the use of standard reference materials for calibration and QC. These standards are compared to other unknowns to

verify their concentrations. Since standard analytical methods and reporting procedures were consistently used by the laboratory, the comparability criteria for the analytical data were met.

3.2.5 Completeness

The percent usability or completeness of the data was 99.92 percent.

APPENDIX A

VALIDATED LABORATORY DATA

								BR-1	
ab Name:	AES, Inc.					Contract:	NYSDEC		
ab Code:	AES	Case No	. :	DEC0937		SAS No.:		SDG No.:	BR-1
atrix (soi	1/water):	W	ATER			Lab Sample ID:	09061100	4-001A	
ample wt/v	ol: 5.0	(g/mL)	m1			Lab File ID:	C2293.D		
evel (low/	med):	-		_		Date Received:	6/10/09	_	
Moisture:		100				Date Analyzed:	6/22/09	_	
C Column:	DB624		ID:	0.18	(mm)	Dilution Factor	. 1	. 0	

(uL)

Soil Extract Volume:

CONCENTRATION UNITS:

Soil Aliquot Volume:

CAS No.	Compound (ug/L or ug/Kg) ug/L	Q	-
75-71-8	Dichlorodifluoromethane	10	Ų	UJ
74-87-3	Chloromethane	10	U	1
75-01-4	Vinyl chloride	10	Ų	41
74-83-9	Bromomethane	10	U	
75-00-3	Chloroethane	10	U	41
75-69-4	Trichlorofluoromethane	5.0	U	
75-35-4	1,1-Dichloroethene	5.0	U	
76-13-1	1,1,2-Trichloro-1,2,2-tri	5.0	U	
75-15-0	Carbon disulfide	5.0	U	
67-64-1	Acetone	10	U	_
79-20-9	Methyl Acetate	5.0	U	-
75-09-2	Methylene Chloride	5.0	U	41
156-60-5	trans-1,2-Dichloroethene	5.0	U	_
1634-04-4	Methyl tert-butyl Ether	5.0	U	
75-34-3	1,1-Dichloroethane	5.0	U	V
156-59-2	cis-1,2-Dichloroethene	5.9	5	100
74-97-5	Bromochloromethane	5.0	Ų	U.
67-66-3	Chloroform	5.0	U	
110-82-7	Cyclohexane	5.0	U	41
107-06-2	1,2-Dichloroethane	5.0	J	41
78-93-3	2-Butanone	10	U	41
108-87-2	Methyl Cyclohexane	5.0	U	_
71-55-6	1,1,1-Trichloroethane	5.0	U U	
56-23-5	Carbon Tetrachloride	5.0	U	
71-43-2	Benzene	5.0	U	_
79-01-6	Trichloroethene	5.0	U	
78-87-5	1,2-Dichloropropane	5.0	U	
75-27-4	Bromodichloromethane	5.0	U	
10061-01-5	cis-1,3-Dichloropropene	5.0	Ų	_
10061-01-5	trans-1,3-Dichloropropene	5.0	U	
79-00-5	1,1,2-Trichloroethane	5.0	U	
124-48-1	Dibromochloromethane	5.0	U	
106-93-4	1,2-Dibromoethane	5.0	U	
75-25-2	Bromoform	5.0	U	

EPA SAMPLE NO.

(uL)

EPA SAMPLE NO. BR-1 AES, Inc. Lab Name: Contract: NYSDEC Lab Code: DEC0937 SAS No.: SDG No.: BR-1 AES Case No.: Matrix (soil/water): Lab Sample ID: 090611004-001A WATER Sample wt/vol: 5.0 (g/mL) Lab File ID: C2293.D ml Date Received: Level (low/med): 6/10/09 % Moisture: not dec. 100 Date Analyzed: 6/22/09 GC Column: DB624 ID: 0.18 (mm) Dilution Factor: 1.0 Soil Extract Volume: (uL) Soil Aliquot Volume: (uL) CONCENTRATION UNITS: CAS No. Compound (ug/L or ug/Kg) ug/L Q U.J 108-10-1 4-Methyl-2-Pentanone 108-88-3 5.0 Toluene 127-18-4 Tetrachloroethene 5.0 591-78-6 2-Hexanone 10 U 5.0 108-90-7 Chlorobenzene 100-41-4 Ethyl Benzene 5.0 126777-61-2 m,p-Xylenes 5.0 U 5.0 95-47-6 o-Xylene 100-42-5 Styrene 5.0 98-82-8 Isopropylbenzene 5.0 5.0 1,1,2,2-Tetrachloroethane 79-34-5 1,3-Dichlorobenzene 5.0 541-73-1 5.0 106-46-7 1,4-Dichlorobenzene U 1,2-Dichlorobenzene 5.0 95-50-1 96-12-8 1,2-Dibromo-3-Chloropropane 10 5.0 1,2,4-Trichlorobenzene 120-82-1

My glood

EPA SAMPLE NO. BR-2

Lab Name:	AES, Inc.					Contract:	NYSDEC		
Lab Code:	AES	Case No	.:	DEC093	7	SAS No.:		SDG No.:	BR-1
Matrix (soi	l/water):	WA	TER			Lab Sample ID:	090611004	1-002A	_
Sample wt/ve	5.0	(g/mL)	ml			Lab File ID:	C2294.D		
Level (low/	ned):					Date Received:	6/10/09		
Moisture:	not dec.	100				Date Analyzed:	6/22/09		
GC Column:	DB624		ID:	0.18	(mm)	Dilution Factor:	1.	0	
Soil Extract	t Volume:		_	(uL)		Soil Aliquot Vol	lume:		(uL)
					COM	COMPANION INTRO-			

CONCENTRATION	TIME TOTAL
CONCENTRATION	UNITS

CAS No.	Compound (ug/L or ug/Ko	ug/L	Q	-
75-71-8	Dichlorodifluoromethane	10	Ā	U
74-87-3	Chloromethane	10	T U	1
75-01-4	Vinyl chloride	10	U	
74-83-9	Bromomethane	10	U	
75-00-3	Chloroethane	10	U	
75-69-4	Trichlorofluoromethane	5.0	U	
75-35-4	1,1-Dichloroethene	5.0	J	
76-13-1	1,1,2-Trichloro-1,2,2-tri	5.0	D	
75-15-0	Carbon disulfide	5.0	v	-1
67-64-1	Acetone	16	J	
79-20-9	Methyl Acetate	5.0	Ч	UJ
75-09-2	Methylene Chloride	5.0	t	
156-60-5	trans-1,2-Dichloroethene	5.0	t	
1634-04-4	Methyl tert-butyl Ether	5.0	U	
75-34-3	1,1-Dichloroethane	5.0	Ų	
156-59-2	cis-1,2-Dichloroethene	5.0	U	
74-97-5	Bromochloromethane	5.0	U	
67-66-3	Chloroform	5.0	U	
110-82-7	Cyclohexane	5.0	U	
107-06-2	1,2-Dichloroethane	5.0	U	
78-93-3	2-Butanone	10	U	1
108-87-2	Methyl Cyclohexane	5.0	U	
71-55-6	1,1,1-Trichloroethane	5.0	U	
56-23-5	Carbon Tetrachloride	5.0	U	
71-43-2	Benzene	5.0	U	
79-01-6	Trichloroethene	5.0	U	
78-87-5	1,2-Dichloropropane	5.0	t	
75-27-4	Bromodichloromethane	5.0	U	
10061-01-5	cis-1,3-Dichloropropene	5.0	U	
10061-02-6	trans-1,3-Dichloropropene	5.0	U	
79-00-5	1,1,2-Trichloroethane	5.0	U	
124-48-1	Dibromochloromethane	5.0	U	
106-93-4	1,2-Dibromoethane	5.0	U	
75-25-2	Bromoform	5.0	U	

EPA SAMPLE NO. BR-2 Contract: NYSDEC AES, Inc. Lab Name: SDG No.: SAS No. : BR-1 Case No.: DEC0937 Lab Code: AES Lab Sample ID: 090611004-002A Matrix (soil/water): WATER Sample wt/vol: Lab File ID: C2294.D 5.0 (g/mL) ml Date Received: 6/10/09 Level (low/med): & Moisture: not dec. 100 Date Analyzed: 6/22/09 Dilution Factor: 1.0 (mm) ID: 0.18 GC Column: DB624 (uL) (uL) Soil Aliquot Volume: Soil Extract Volume: CONCENTRATION UNITS: Q Compound (ug/L or ug/Kg) ug/L CAS No. UJ 4-Methyl-2-Pentanone 108-10-1 5.0 108-88-3 Toluene Tetrachloroethene 5.0 127-18-4 10 591-78-6 2-Hexanone 108-90-7 Chlorobenzene 5.0 Ethyl Benzene 5.0 100-41-4 5.0 m,p-Xylenes 126777-61-2 5.0 95-47-6 o-Xylene 5.0 100-42-5 Styrene Isopropylbenzene 5.0 98-82-8 5.0 1,1,2,2-Tetrachloroethane 79-34-5 5.0 541-73-1 1,3-Dichlorobenzene

1,4-Dichlorobenzene

1,2-Dichlorobenzene

1,2,4-Trichlorobenzene

1,2-Dibromo-3-Chloropropane

106-46-7

95-50-1

96-12-8

120-82-1

11/2 of

5.0

5.0

10

5.0

and the artist of the second o		
	EPA SAMPLE NO.	_
	BR-4	

Contract: NYSDEC Lab Name: AES, Inc. SAS No.: SDG No.: BR-1 Case No.: DEC0937 Lab Code: 090611004-003A Lab Sample ID: Matrix (soil/water): WATER Sample wt/vol: 5.0 Lab File ID: C2295.D (g/mL) ml. Date Received: 6/10/09 Level (low/med): 6/22/09 Date Analyzed: % Moisture: not dec. 100 1.0 ID: 0.18 (mm) Dilution Factor: GC Column: DB624 (uL) Soil Aliquot Volume: Soil Extract Volume: (uL)

CONCENTRATION UNITS:

CAS No.	Compound (ug/L or ug/Kg	ug/L	Q	
75-71-8	Dichlorodifluoromethane	10	h	
74-87-3	Chloromethane	10	Ü	
75-01-4	Vinyl chloride	10	U	
74-83-9	Bromomethane	10	U	\perp
75-00-3	Chloroethane	10	U	
75-69-4	Trichlorofluoromethane	5.0	U	
75-35-4	1,1-Dichloroethene	5.0	U	_
76-13-1	1,1,2-Trichloro-1,2,2-tri	5.0	b	
75-15-0	Carbon disulfide	5.0	l v	
67-64-1	Acetone	10	U	
79-20-9	Methyl Acetate	5.0	U	
75-09-2	Methylene Chloride	5.0	U	
156-60-5	trans-1,2-Dichloroethene	5.0	U	
1634-04-4	Methyl tert-butyl Ether	5.0	1	
75-34-3	1,1-Dichloroethane	5.0	Ų.	
156-59-2	cis-1,2-Dichloroethene	11	T	
74-97-5	Bromochloromethane	5.0	p	
67-66-3	Chloroform	5.0	U	
110-82-7	Cyclohexane	5.0	U	
107-06-2	1,2-Dichloroethane	5.0	U	
78-93-3	2-Butanone	10	U	_
108-87-2	Methyl Cyclohexane	5.0	U	_
71-55-6	1,1,1-Trichloroethane	5.0	U	_
56-23-5	Carbon Tetrachloride	5.0	U	
71-43-2	Benzene	5.0	U	_
79-01-6	Trichloroethene	5.0	U	
78-87-5	1,2-Dichloropropane	5.0	U	_
75-27-4	Bromodichloromethane	5.0	U	_
10061-01-5	cis-1,3-Dichloropropene	5.0	U	
10061-02-6	trans-1,3-Dichloropropene	5.0	U	╝
79-00-5	1,1,2-Trichloroethane	5.0	U	
124-48-1	Dibromochloromethane	5.0	U	
106-93-4	1,2-Dibromoethane	5.0	U	
75-25-2	Bromoform	5.0	U	

EPA SAMPLE NO. BR-4 NYSDEC Lab Name: AES, Inc. Contract: SAS No. : SDG No.: BR-1 DEC0937 Case No.: Lab Code: Lab Sample ID: 090611004-003A Matrix (soil/water): WATER Sample wt/vol: Lab File ID: C2295.D 5.0 (g/mL) ml Date Received: 6/10/09 Level (low/med): Date Analyzed: 6/22/09 % Moisture: not dec. 100 ID: 0.18 (mm) Dilution Factor: 1.0 GC Column: DB624 (uL) Soil Aliquot Volume: (uL) Soil Extract Volume: CONCENTRATION UNITS: 0 (ug/L or ug/Kg) ug/L CAS No. Compound U.5 Ų 10 108-10-1 4-Methyl-2-Pentanone 5.0 108-88-3 Toluene 5.0 Tetrachloroethene 127-18-4 10 2-Hexanone 591-78-6 5.0 108-90-7 Chlorobenzene 5.0 Ethyl Benzene 100-41-4 5.0 m,p-Xylenes 126777-61-2 U 5.0 95-47-6 o-Xylene U Styrene 5.0 100-42-5 U 5.0 Isopropylbenzene 98-82-8 U 1,1,2,2-Tetrachloroethane 5.0 79-34-5 U 5.0 1,3-Dichlorobenzene 541-73-1 U 5.0 1,4-Dichlorobenzene 106-46-7 U 5.0 1,2-Dichlorobenzene 95-50-1

1,2-Dibromo-3-Chloropropane

1,2,4-Trichlorobenzene

96-12-8

120-82-1

M7 9/20/09

U

U

10

5.0

Lab Name:	AES, Inc.				Contract:	NYSDEC	
Lab Code:	AES	Case No.	: DEC	0937	SAS No.:	SDG No.:	BR-1
Matrix (soi	1/water):	WA	rer		Lab Sample ID:	090611004-004A	
Sample wt/v	ol: 5.0	(g/mL)	ml		Lab File ID:	C2296.D	
Level (low/	med):				Date Received:	6/10/09	
% Moisture:	not dec.	100			Date Analyzed:	6/22/09	
GC Column:	DB624		ID: 0.18	(mm)	Dilution Factor	1.0	
Soil Extrac	t Volume:		(uL)		Soil Aliquot Vo	lume:	(uL)

CONCENTRATION UNITS:

CAS No.	Compound (ug/L or ug/Kg	ug/L	Q		
75-71-8	Dichlorodifluoromethane	10	h		
74-87-3	Chloromethane	10	U		
75-01-4	Vinyl chloride	10	U		
74-83-9	Bromomethane	10	U		
75-00-3	Chloroethane	10	U		
75-69-4	Trichlorofluoromethane	5.0	U		
75-35-4	1,1-Dichloroethene	5.0	b		
76-13-1	1,1,2-Trichloro-1,2,2-tri	5.0	U		
75-15-0	Carbon disulfide				
67-64-1	Acetone	10	U		
79-20-9	Methyl Acetate	5.0	v		
75-09-2	Methylene Chloride	5.0	Ψ		
156-60-5	trans-1,2-Dichloroethene	5.0	U		
1634-04-4	Methyl tert-butyl Ether	5.0	U		
75-34-3	1,1-Dichloroethane	5.0	U		
156-59-2	cis-1,2-Dichloroethene	5.0	U		
74-97-5	Bromochloromethane	5.0	U		
67-66-3	Chloroform	5.0	U		
110-82-7	Cyclohexane	5.0	U		
107-06-2	1,2-Dichloroethane	5.0	U		
78-93-3	2-Butanone	10	Ų		
108-87-2	Methyl Cyclohexane	5.0	U		
71-55-6	1,1,1-Trichloroethane	5.0	U		
56-23-5	Carbon Tetrachloride	5.0	U		
71-43-2	Benzene	5.0	U		
79-01-6	Trichloroethene	5.0	U		
78-87-5	1,2-Dichloropropane	5.0	U		
75-27-4	Bromodichloromethane	5.0	U		
10061-01-5	cis-1,3-Dichloropropene	5.0	U		
10061-02-6	trans-1,3-Dichloropropene	5.0	U		
79-00-5	1,1,2-Trichloroethane				
124-48-1	Dibromochloromethane	5.0	U		
106-93-4	1,2-Dibromoethane	5.0	U		
75-25-2	Bromoform	5.0	U		

EPA SAMPLE NO. BR-5 Lab Name: AES, Inc. Contract: NYSDEC Lab Code: Case No.: AES DEC0937 SAS No.: SDG No.: BR-1 Matrix (soil/water): WATER Lab Sample ID: 090611004-004A Sample wt/vol: 5.0 (g/mL) Lab File ID: C2296.D ml Level (low/med): Date Received: 6/10/09 % Moisture: not dec. 100 Date Analyzed: 6/22/09 GC Column: ID: 0.18 (mm) DB624 Dilution Factor: 1.0 Soil Extract Volume: (uL) Soil Aliquot Volume: (uL) CONCENTRATION UNITS: CAS No. Compound (ug/L or ug/Kg) ug/L Q UJ 108-10-1 4-Methyl-2-Pentanone 10 108-88-3 Toluene 5.0 127-18-4 Tetrachloroethene 5.0 591-78-6 2-Hexanone 10 108-90-7 Chlorobenzene 5.0 100-41-4 Ethyl Benzene 5.0 126777-61-2 m,p-Xylenes 5.0 95-47-6 o-Xylene 5.0 100-42-5 Styrene 5.0 98-82-8 Isopropylbenzene 5.0 79-34-5 1,1,2,2-Tetrachloroethane 5.0 541-73-1 1,3-Dichlorobenzene 5.0 106-46-7 1,4-Dichlorobenzene 5.0 95-50-1 1,2-Dichlorobenzene U 5.0

1,2-Dibromo-3-Chloropropane

1,2,4-Trichlorobenzene

96-12-8

120-82-1

M1 9 9 120 109

U

10

5.0

BR-6

Lab Name: AES, Inc.		ac.			Contract:	NYSDEC		
Lab Code:	AES	Case No.	DEC093	37	SAS No.:	SDG No.:	BR-1	
Matrix (soil	/water):	WAT	PER		Lab Sample ID:	090611004-005A	_	
Sample wt/vo	1: 5.0	(g/mL)	ml		Lab File ID:	C2297.D		
Level (low/m	ed):				Date Received:	6/10/09		
Moisture:	not dec.	100			Date Analyzed:	6/22/09		
GC Column:	DB624	1	ID: 0.18	(mm)	Dilution Factor	: 1.0		
Soil Extract	Volume:		(uL)		Soil Aliquot Vo.	lume:	(uL)	

CONCENTRATION UNITS:

CAS No.	Compound (ug/L or ug/Kg	L or ug/Kg) ug/L	
75-71-8	Dichlorodifluoromethane	10	h
74-87-3	Chloromethane	10	U
75-01-4	Vinyl chloride	10	U
74-83-9	Bromomethane	10	U
75-00-3	Chloroethane	10	U
75-69-4	Trichlorofluoromethane	5.0	U
75-35-4	1,1-Dichloroethene	5.0	U
76-13-1	1,1,2-Trichloro-1,2,2-tri	5.0	U
75-15-0	Carbon disulfide	5.0	U
67-64-1	Acetone	10	U
79-20-9	Methyl Acetate	5.0	U
75-09-2	Methylene Chloride	5.0	U
156-60-5	trans-1,2-Dichloroethene	5.0	U
1634-04-4	Methyl tert-butyl Ether	5.0	U
75-34-3	1,1-Dichloroethane	5.0	U
156-59-2	cis-1,2-Dichloroethene	5.0	U
74-97-5	Bromochloromethane	5.0	U
67-66-3	Chloroform	5.0	U
110-82-7	Cyclohexane	5.0	U
107-06-2	1,2-Dichloroethane	5.0	U
78-93-3	2-Butanone 10		U
108-87-2	Methyl Cyclohexane 5.0		U
71-55-6	1,1,1-Trichloroethane	5.0	U
56-23-5	Carbon Tetrachloride	5.0	U
71-43-2	Benzene	5.0	U
79-01-6	Trichloroethene	5.0	U
78-87-5	1,2-Dichloropropane	5.0	Ų
75-27-4	Bromodichloromethane	5.0	U
10061-01-5	cis-1,3-Dichloropropene	5.0	U
10061-02-6	trans-1,3-Dichloropropene	5.0	U
79-00-5	1,1,2-Trichloroethane	5.0	U
124-48-1	Dibromochloromethane	5.0	U
106-93-4	1,2-Dibromoethane	5.0	U
75-25-2	Bromoform	5.0	U

MJ 9/20/09: 00014

EPA SAMPLE NO. BR-6 Contract: NYSDEC Lab Name: AES, Inc. SDG No.: BR-1 SAS No.: DEC0937 Case No.: Lab Code: AES 090611004-005A Lab Sample ID: WATER Matrix (soil/water): Sample wt/vol: Lab File ID: C2297.D 5.0 (g/mL) Date Received: 6/10/09 Level (low/med): 6/22/09 Date Analyzed: % Moisture: not dec. 100 (mm) Dilution Factor: 1.0 ID: 0.18 GC Column: DB624 (uL) (uL) Soil Aliquot Volume: Soil Extract Volume: CONCENTRATION UNITS: ug/L Q (ug/L or ug/Kg) Compound CAS No. 05 10 4-Methyl-2-Pentanone 108-10-1 5.0 Toluene 108-88-3 5.0 Tetrachloroethene 127-18-4 10 2-Hexanone 591-78-6 5.0 Chlorobenzene 108-90-7 5.0 Ethyl Benzene 100-41-4 5.0 m,p-Xylenes 126777-61-2 5.0 95-47-6 o-Xylene 5.0 Styrene 100-42-5 5.0 Isopropylbenzene 98-82-8 5.0 1,1,2,2-Tetrachloroethane 79-34-5 5.0 1,3-Dichlorobenzene 541-73-1 5.0 1,4-Dichlorobenzene 106-46-7 5.0 1,2-Dichlorobenzene 95-50-1 1,2-Dibromo-3-Chloropropane 10 96-12-8 5.0 1,2,4-Trichlorobenzene 120-82-1

M7 9/20/09

EPA	SAMPLE	NO.
	BR-7	

Lab Name:	AES, Inc.					Contract:	NYSD	EC		_
Lab Code:	AES	Case No	. :	DEC093	7	SAS No.:		SDG No.:	BR-1	
Matrix (soil	/water):	W	TER			Lab Sample ID:	090611	004-006A	_	
Sample wt/vo		(g/mL)	ml			Lab File ID:	C2298.	D		
Level (low/m	ned):					Date Received:	6/10/0	9		,
% Moisture:	_	100				Date Analyzed:	6/22/09	9		
GC Column:	DB624		ID:	0.18	(mm)	Dilution Factor:	_	1.0		
Soil Extract	t Volume:			(uL)		Soil Aliquot Vol	lume:	_	(uL)	

CAS No.	Compound (ug/L or ug/Kg) ug/L	Q
75-71-8	Dichlorodifluoromethane	10	h
74-87-3	Chloromethane	10	t t
75-01-4	Vinyl chloride	10	U
74-83-9	Bromomethane	10	U
75-00-3	Chloroethane	10	U
75-69-4	Trichlorofluoromethane	5.0	U
75-35-4	1,1-Dichloroethene	5.0	U
76-13-1	1,1,2-Trichloro-1,2,2-tri	5.0	U
75-15-0	Carbon disulfide	5.0	U
67-64-1	Acetone	10	U
79-20-9	Methyl Acetate	5.0	U
75-09-2	Methylene Chloride	5.0	U
156-60-5	trans-1,2-Dichloroethene	5.0	U
1634-04-4	Methyl tert-butyl Ether	5.0	U
75-34-3	1,1-Dichloroethane	5.0	U
156-59-2	cis-1,2-Dichloroethene	5.0	U
74-97-5	Bromochloromethane	5.0	U
67-66-3	Chloroform	5.0	U
110-82-7	Cyclohexane	5.0	U
107-06-2	1,2-Dichloroethane	5.0	U
78-93-3	2-Butanone	10	U
108-87-2	Methyl Cyclohexane	5.0	U
71-55-6	1,1,1-Trichloroethane	5.0	U
56-23-5	Carbon Tetrachloride	5.0	U
71-43-2	Benzene	5.0	U
79-01-6	Trichloroethene	5.0	U
78-87-5	1,2-Dichloropropane	5.0	U
75-27-4	Bromodichloromethane	5.0	U
10061-01-5	cis-1,3-Dichloropropene	5.0	U
10061-02-6	trans-1,3-Dichloropropene	5.0	U
79-00-5	1,1,2-Trichloroethane	5.0	U
124-48-1	Dibromochloromethane	5.0	U
106-93-4	1,2-Dibromoethane	5.0	U
75-25-2	Bromoform	5.0	U

BR-7 Contract: NYSDEC AES, Inc. Lab Name: SDG No.: BR-1 SAS No.: DEC0937 Case No.: Lab Code: AES 090611004-006A Lab Sample ID: WATER Matrix (soil/water): Lab File ID: C2298.D Sample wt/vol: (g/mL) ml 5.0 Date Received: 6/10/09 Level (low/med): 6/22/09 Date Analyzed: 100 & Moisture: not dec. Dilution Factor: 1.0 ID: 0.18 (mm) GC Column: DB624 (uL) Soil Aliquot Volume: (uL) Soil Extract Volume: CONCENTRATION UNITS: Q (ug/L or ug/Kg) ug/L Compound CAS No. Ų 20 10 4-Methyl-2-Pentanone 108-10-1 5.0 Toluene 108-88-3 5.0 Tetrachloroethene 127-18-4 10 2-Hexanone 591-78-6 5.0 Chlorobenzene 108-90-7 5.0 Ethyl Benzene 100-41-4 5.0 m,p-Xylenes 126777-61-2 5.0 o-Xylene 95-47-6 5.0 Styrene 100-42-5 5.0 Isopropylbenzene 98-82-8 1,1,2,2-Tetrachloroethane 5.0 79-34-5 5.0 1,3-Dichlorobenzene 541-73-1 5.0 1,4-Dichlorobenzene 106-46-7 5.0 1,2-Dichlorobenzene 95-50-1 10 1,2-Dibromo-3-Chloropropane

1,2,4-Trichlorobenzene

96-12-8

120-82-1

M1 9 120/09

5.0

EPA SAMPLE NO.

Drummed Water

Lab Name: Al	ES, Inc.		Contract:	NYSDEC		
Lab Code: Al	ES Case No	DEC0937	SAS No.:		SDG No.:	BR-1
Matrix (soil/wa	ter): W	ATER	Lab Sample ID:	090611004	-007A	
Sample wt/vol:	5.0 (g/mL)	m1	Lab File ID:	C2299.D		
	5.0 (g/mb/	- M.L	Hab Elle ID.	C2299.D		
Level (low/med)	:		Date Received:	6/10/09		
% Moisture: not	dec. 100		Date Analyzed:	6/22/09		
GC Column: DE	3624	ID: 0.18 (m	m) Dilution Facto	r: 1.	0	
Soil Extract Vo	lume:	(uL)	Soil Aliquot V	olume:		(uL)
	-	_		_	-	
			CONCENTRATION UNITS:			
CAS N	0.	Compound	(ug/L or ug/Kg)	ug/L	Q	0.00
75-73	1-8	Dichlorodifluor	omethane	10	Ų	U.J
74-8	7-3	Chloromethane		10	d	U.J
75-03	1-4	Vinyl chloride		24	1	
74-83	3-9	Bromomethane		1.0	Ų	45
75-00	0-3	Chloroethane	- 10	10	U	
75-69	9-4	Trichlorofluoro	methane	5.0	U	
75-35	5-4	1,1-Dichloroeth	ene	5.0	V	
76-13	3-1	1,1,2-Trichloro	-1,2,2-tri	5.0	Ψ	
75-15	5-0	Carbon disulfid	e	5.0	V	
67-64		Acetone		10	U	
79-20	0-9	Methyl Acetate		5.0	U	0
75-09	9-2	Methylene Chlor	ide	5.0	Ų	
156-6	60-5	trans-1,2-Dichl	oroethene	5.0	U	
1634	-04-4	Methyl tert-but		5.0	U	
75-34		1,1-Dichloroeth		5.0	U	1
156-5	59-2	cis-1,2-Dichlor		100	7	
74-97	7-5	Bromochlorometh		5.0	Ų	U.J
67-66	6-3	Chloroform		5.0	ψ	1
110-8	32-7	Cyclohexane		5.0	U	
107-0		1,2-Dichloroeth	ane	5.0	D	
78-93	3-3	2-Butanone		10	J	
108-8		Methyl Cyclohex	ane	5.0	J	
71-55		1,1,1-Trichloro		5.0	U	
56-23		Carbon Tetrachl		5.0	U	
71-43		Benzene		5.0	IJ	
79-01		Trichloroethene		5.0	U	1
78-87		1,2-Dichloropro		5.0	U	
75-27		Bromodichlorome		5.0	U	
	1-01-5	cis-1,3-Dichlor		5.0	U	
	1-02-6	trans-1,3-Dichl		5.0	U	
79-00		1,1,2-Trichloro		5.0	U	
124-4		Dibromochlorome		5.0	U	
106-9		1,2-Dibromoetha		5.0	U	
75-25		Bromoform		5.0	t	1
13-23	J 6	DAOMOLOLIII		W . W		. 1/

Drummed Water NYSDEC Lab Name: AES, Inc. Contract: Lab Code: SAS No.: SDG No.: Case No.: DEC0937 BR-1 AES Matrix (soil/water): Lab Sample ID: 090611004-007A WATER Sample wt/vol: Lab File ID: 5.0 (g/mL) C2299.D ml Level (low/med): Date Received: 6/10/09 % Moisture: not dec. Date Analyzed: 6/22/09 100 (mm) GC Column: DB624 ID: 0.18 Dilution Factor: 1.0 Soil Aliquot Volume: (uL) Soil Extract Volume: (uL) CONCENTRATION UNITS: Q CAS No. Compound (ug/L or ug/Kg) ug/L Ute 10 108-10-1 4-Methyl-2-Pentanone 5.0 U 108-88-3 Toluene UJ Tetrachloroethene 13 127-18-4 UJ 10 591-78-6 2-Hexanone 5.0 108-90-7 Chlorobenzene 100-41-4 Ethyl Benzene 5.0 5.0 126777-61-2 m,p-Xylenes 5.0 95-47-6 o-Xylene 100-42-5 Styrene 5.0 5.0 98-82-8 Isopropylbenzene 1,1,2,2-Tetrachloroethane 5.0 79-34-5 541-73-1 1,3-Dichlorobenzene 5.0 5.0 106-46-7 1,4-Dichlorobenzene 5.0 1,2-Dichlorobenzene 95-50-1

1,2-Dibromo-3-Chloropropane

1,2,4-Trichlorobenzene

96-12-8

120-82-1

My 9/20/09

U

10

5.0

				MW-	-1
ab Name: AES, I	nc.		Contract:	NYSDEC	(
ab Code: AES	Case No.:	DEC0937	SAS No.:	SDG No.:	BR-1
Matrix (soil/water):	WAT	ER	Lab Sample ID:	090611003-001A	_
sample wt/vol: 5	.0 (g/mL)	ml	Lab File ID:	C2276.D	
evel (low/med):			Date Received:	6/10/09	
Moisture: not dec.	100		Date Analyzed:	6/22/09	
C Column: DB624	1	D: 0.18 (m	um) Dilution Factor	: 1.0	
oil Extract Volume:		(uL)	Soil Aliquot Vo	lume:	(uL)

(uL)

Soil Extract Volume:

CONCENTRATION UNITS:

CAS No.	Compound (ug/L or ug/Kg	n) ug/L	Q
75-71-8	Dichlorodifluoromethane	10	Ų
74-87-3	Chloromethane	10	U
75-01-4	Vinyl chloride	10	U
74-83-9	Bromomethane	10	þ
75-00-3	Chloroethane	10	U
75-69-4	Trichlorofluoromethane	5.0	U
75-35-4	1,1-Dichloroethene	5.0	U
76-13-1	1,1,2-Trichloro-1,2,2-tri	5.0	U
75-15-0	Carbon disulfide	5.0	U
67-64-1	Acetone	10	U
79-20-9	Methyl Acetate	5.0	U
75-09-2	Methylene Chloride	5.0	U
156-60-5	trans-1,2-Dichloroethene	5.0	U
1634-04-4	Methyl tert-butyl Ether	5.0	U
75-34-3	1,1-Dichloroethane	5.0	U
156-59-2	cis-1,2-Dichloroethene	5.0	D
74-97-5	Bromochloromethane	5.0	U
67-66-3	Chloroform	5.0	U
110-82-7	Cyclohexane	5.0	l d
107-06-2	1,2-Dichloroethane	5.0	l v
78-93-3	2-Butanone	10	U
108-87-2	Methyl Cyclohexane	5.0	1 0
71-55-6	1,1,1-Trichloroethane	5.0	U
56-23-5	Carbon Tetrachloride	5.0	l v
71-43-2	Benzene	5.0	T T
79-01-6	Trichloroethene	5.0	Ų
78-87-5	1,2-Dichloropropane	5.0	U
75-27-4	Bromodichloromethane	5.0	Ų
10061-01-5	cis-1,3-Dichloropropene	5.0	U
10061-02-6	trans-1,3-Dichloropropene	5.0	U
79-00-5	1,1,2-Trichloroethane	5.0	U
124-48-1	Dibromochloromethane	5.0	1 0
106-93-4	1,2-Dibromoethane	5.0	D
75-25-2	Bromoform	5.0	b

My 9/20/09:00020

EPA SAMPLE NO. MW-1 NYSDEC Contract: Lab Name: AES, Inc. Lab Code: Case No.: DEC0937 SAS No.: SDG No.: BR-1 AES Lab Sample ID: 090611003-001A Matrix (soil/water): WATER Sample wt/vol: Lab File ID: (g/mL) C2276.D 5.0 ml Level (low/med): Date Received: 6/10/09 Date Analyzed: 6/22/09 % Moisture: not dec. 100 Dilution Factor: 1.0 GC Column: DB624 ID: 0.18 (man) Soil Extract Volume: (uL) Soil Aliquot Volume: (uL) CONCENTRATION UNITS: Compound (ug/L or ug/Kg) ug/L Q CAS No. UJ 10 108-10-1 4-Methyl-2-Pentanone 5.0 108-88-3 Toluene 5.0 127-18-4 Tetrachloroethene 10 2-Hexanone 591-78-6 108-90-7 Chlorobenzene 5.0 5.0 100-41-4 Ethyl Benzene 126777-61-2 m,p-Xylenes 5.0 5.0 o-Xylene 95-47-6 5.0 100-42-5 Styrene 5.0 98-82-8 Isopropylbenzene 5.0 79-34-5 1,1,2,2-Tetrachloroethane 5.0 541-73-1 1,3-Dichlorobenzene 1,4-Dichlorobenzene 5.0 106-46-7 5.0 95-50-1 1,2-Dichlorobenzene

1,2-Dibromo-3-Chloropropane

1,2,4-Trichlorobenzene

96-12-8

120-82-1

My 9120109

10

5.0

EPA SAMPLE NO.

MW-2

Lab Name:	AES, Inc.			Contract:	NYSDEC
Lab Code:	AES	Case No.:	DEC0937	SAS No.:	SDG No.: BR-1
Matrix (soil	1/water):	WATE	R	Lab Sample ID:	090611003-002A
Sample wt/vo	5.0	(g/mL) m	1	Lab File ID:	C2277.D
Level (low/	ned):		=	Date Received:	6/10/09
% Moisture:	not dec.	100		Date Analyzed:	6/22/09
GC Column:	DB624	ID	: 0.18 (mm)	Dilution Factor	1.0
Soil Extract	t Volume:		(uL)	Soil Aliquot Vo	olume: (uL)

CAS No.	Compound (ug/L or ug/Kg) ug/L	Q	
75-71-8	Dichlorodifluoromethane	10	10-	
74-87-3	Chloromethane	10	U	
75-01-4	Vinyl chloride	11	J	1
74-83-9	Bromomethane	10	Ψ	1
75-00-3	Chloroethane	10	U	4
75-69-4	Trichlorofluoromethane	5.0	U	1
75-35-4	1,1-Dichloroethene	5.0	U	4
76-13-1	1,1,2-Trichloro-1,2,2-tri	5.0	t	4
75-15-0	Carbon disulfide	5.0	U	_
67-64-1	Acetone	10	U	4
7920-9	Methyl Acetate	5.0	U	
75-09-2	Methylene Chloride	5.0	U	
156-60-5	trans-1,2-Dichloroethene	5.0	U	4
1634-04-4	Methyl tert-butyl Ether	5.0	U	1
75-34-3	1,1-Dichloroethane	5.0	t	
156-59-2	cis-1,2-Dichloroethene	35	J	-
74-97-5	Bromochloromethane	5.0	n	
67-66-3	Chloroform	5.0	l v	4
110-82-7	Cyclohexane	5.0	U	
107-06-2	1,2-Dichloroethane	5.0	U	4
78-93-3	2-Butanone	10	U	
108-87-2	Methyl Cyclohexane	5.0	U	_
71-55-6	1,1,1-Trichloroethane	5.0	t	
56-23-5	Carbon Tetrachloride	5.0	U	4
71-43-2	Benzene	5.0	U	_
79-01-6	Trichloroethene	5.0	U	_
78-87-5	1,2-Dichloropropane	5.0	U	4
75-27-4	Bromodichloromethane	5.0	U	_
10061-01-5	cis-1,3-Dichloropropene	5.0	U	_
10061-02-6	trans-1,3-Dichloropropene	5.0	Ü	
79-00-5	1,1,2-Trichloroethane	5.0	U	
124-48-1	Dibromochloromethane	5.0	U	_
106-93-4	1,2-Dibromoethane	5.0	U	
75-25-2	Bromoform	5.0	u	

EPA SAMPLE NO. MW-2 Contract: NYSDEC Lab Name: AES, Inc. Case No.: DEC0937 SAS No.: SDG No.: BR-1 Lab Code: AES Lab Sample ID: 090611003-002A Matrix (soil/water): WATER Sample wt/vol: Lab File ID: C2277.D 5.0 (g/mL) ml Date Received: 6/10/09 Level (low/med): Date Analyzed: 6/22/09 % Moisture: not dec. 100 1.0 ID: 0.18 (mm) Dilution Factor: GC Column: DB624 Soil Aliquot Volume: (uL) (uL) Soil Extract Volume: CONCENTRATION UNITS: (ug/L or ug/Kg) ug/L Q Compound CAS No. W UJ 10 4-Methyl-2-Pentanone 108-10-1 U UJ 5.0 Toluene 108-88-3 5.3 Tetrachloroethene 127-18-4 UJ 10 2-Hexanone 591-78-6 5.0 Chlorobenzene 108-90-7 5.0 Ethyl Benzene 100-41-4 5.0 126777-61-2 m,p-Xylenes 5.0 o-Xylene 95-47-6 5.0 100-42-5 Styrene 5.0 98-82-8 Isopropylbenzene 5.0 1,1,2,2-Tetrachloroethane 79-34-5 5.0 1,3-Dichlorobenzene 541-73-1 5.0 1,4-Dichlorobenzene 106-46-7

1,2-Dichlorobenzene

1,2,4-Trichlorobenzene

1,2-Dibromo-3-Chloropropane

95-50-1

96-12-8

120-82-1

M 1 7/20/09

5.0

10

5.0

EPA SAMPLE NO. MW-4 Contract: NYSDEC SAS No. : SDG No.: BR-1 DEC0937 Case No.: Lab Sample ID: 090611003-003A WATER Lab File ID: C2278.D (g/mL) ml Date Received: 6/10/09 Date Analyzed: 6/22/09 100

GC Column: DB624 ID: 0.18 (mm) Dilution Factor: 1.0

AES, Inc.

5.0

AES

Matrix (soil/water):

% Moisture: not dec.

Sample wt/vol:

Level (low/med):

Lab Name:

Lab Code:

Soil Extract Volume: (uL) Soil Aliquot Volume: (uL)

CAS No.	Compound (ug/L or ug/Kg	ug/L	Q
75-71-8	Dichlorodifluoromethane	10	h
74-87-3	Chloromethane	10	U
75-01-4	Vinyl chloride	10	U
74-83-9	Bromomethane	10	U
75-00-3	Chloroethane	10	U
75-69-4	Trichlorofluoromethane	5.0	D
75-35-4	1,1-Dichloroethene	5.0	U
76-13-1	1,1,2-Trichloro-1,2,2-tri	5.0	U
75-15-0	Carbon disulfide	5.0	U
67-64-1	Acetone	10	U
79-20-9	Methyl Acetate	5.0	IJ
75-09-2	Methylene Chloride	5.0	J
156-60-5	trans-1,2-Dichloroethene	5.0	U
1634-04-4	Methyl tert-butyl Ether	5.0	U
75-34-3	1,1-Dichloroethane	5.0	U
156-59-2	cis-1,2-Dichloroethene	5.0	Ψ
74-97-5	Bromochloromethane	5.0	U
67-66-3	Chloroform	5.0	U
110-82-7	Cyclohexane	5.0	U
107-06-2	1,2-Dichloroethane	5.0	Ų
78-93-3	2-Butanone	10	Ų
108-87-2	Methyl Cyclohexane	5.0	U
71-55-6	1,1,1-Trichloroethane	5.0	U
56-23-5	Carbon Tetrachloride	5.0	U
71-43-2	Benzene	5.0	V
79-01-6	Trichloroethene	5.0	Ų
78-87-5	1,2-Dichloropropane	5.0	Ų
75-27-4	Bromodichloromethane	5.0	Ų.
10061-01-5	cis-1,3-Dichloropropene	5.0	U
10061-02-6	trans-1,3-Dichloropropene	5.0	U
79-00-5	1,1,2-Trichloroethane	5.0	U
124-48-1	Dibromochloromethane	5.0	U
106-93-4	1,2-Dibromoethane	5.0	U
75-25-2	Bromoform	5.0	Ų

EPA SAMPLE NO. MW-4 NYSDEC Lab Name: AES, Inc. Contract: SAS No.: SDG No.: BR-1 Case No.: DEC0937 Lab Code: AES Matrix (soil/water): WATER Lab Sample ID: 090611003-003A Sample wt/vol: 5.0 (g/mL) Lab File ID: C2278.D ml Date Received: 6/10/09 Level (low/med): Date Analyzed: 6/22/09 % Moisture: not dec. 100 ID: 0.18 (mm) Dilution Factor: 1.0 GC Column: DB624 Soil Aliquot Volume: (uL) Soil Extract Volume: (uL) CONCENTRATION UNITS: Q (ug/L or ug/Kg) Compound ug/L CAS No. 05 U 10 108-10-1 4-Methyl-2-Pentanone 05 U. 5.0 Toluene 108-88-3 6.6 127-18-4 Tetrachloroethene 05 10 591-78-6 2-Hexanone 5.0 108-90-7 Chlorobenzene 100-41-4 Ethyl Benzene 5.0 5.0 126777-61-2 m,p-Xylenes 5.0 95-47-6 o-Xylene 5.0 100-42-5 Styrene 5.0 98-82-8 Isopropylbenzene 1,1,2,2-Tetrachloroethane 5.0 79-34-5 1,3-Dichlorobenzene 5.0 541-73-1 5.0 1,4-Dichlorobenzene 106-46-7

1,2-Dichlorobenzene

1,2,4-Trichlorobenzene

1,2-Dibromo-3-Chloropropane

95-50-1

96-12-8

120-82-1

Mt 9/20/09

ψ

5.0

10

5.0

EPA SAMPLE NO.

M
P.

Lab Name:	AES, Inc.				Contract:	NYSDEC	
Lab Code:	AES	Case No	.: DEC	0937	SAS No.:	SDG No.	BR-1
Matrix (soi	1/water):	WA	TER		Lab Sample ID:	090611003-004A	
Sample wt/v	ol: 5.0	(g/mL)	ml		Lab File ID:	C2279,D	
Level (low/	med):				Date Received:	6/10/09	
% Moisture:	not dec.	100			Date Analyzed:	6/22/09	
GC Column:	DB624		ID: 0.18	(mm)	Dilution Factor:	1.0	
Soil Extrac	t Volume:		(uL)		Soil Aliquot Vol	lume:	(uL)

CAS No.	Compound (ug/L or ug/Kg	ug/L	Q
75-71-8	Dichlorodifluoromethane	10	ų
74-87-3	Chloromethane	10	U
75-01-4	Vinyl chloride	10	U
74-83-9	Bromomethane	10	U
75-00-3	Chloroethane	10	U
75-69-4	Trichlorofluoromethane	5.0	U
75-35-4	1,1-Dichloroethene	5.0	U
76-13-1	1,1,2-Trichloro-1,2,2-tri	5.0	U
75-15-0	Carbon disulfide	5.0	U
67-64-1	Acetone	44	T
79-20-9	Methyl Acetate	5.0	Ų
75-09-2	Methylene Chloride	5,0	U
156-60-5	trans-1,2-Dichloroethene	5.0	U
1634-04-4	Methyl tert-butyl Ether	5.0	U
75-34-3	1,1-Dichloroethane	5.0	t
156-59-2	cis-1,2-Dichloroethene	5.0	U
74-97-5	Bromochloromethane	5.0	U
67-66-3	Chloroform	5.0	U
110-82-7	Cyclohexane	5.0	U
107-06-2	1,2-Dichloroethane	5.0	Ų
78-93-3	2-Butanone	10	U
108-87-2	Methyl Cyclohexane	5.0	U
71-55-6	1,1,1-Trichloroethane	5.0	U
56-23-5	Carbon Tetrachloride	5.0	U
71-43-2	Benzene	5.0	U
79-01-6	Trichloroethene	5.0	U
78-87-5	1,2-Dichloropropane	5.0	U
75-27-4	Bromodichloromethane	5.0	U
10061-01-5	cis-1,3-Dichloropropene	5.0	U
10061-02-6	trans-1,3-Dichloropropene	5.0	U
79-00-5	1,1,2-Trichloroethane	5.0	U
124-48-1	Dibromochloromethane	5.0	U
106-93-4	1,2-Dibromoethane	5.0	U
75-25-2	Bromoform	5.0	U

EPA SAMPLE NO. MW-6 Contract: NYSDEC Lab Name: AES, Inc. SDG No.: BR-1 SAS No.: Lab Code: Case No.: DEC0937 AES Lab Sample ID: 090611003-004A Matrix (soil/water): WATER Sample wt/vol: Lab File ID: C2279.D 5.0 (g/mL) ml Date Received: 6/10/09 Level (low/med): Date Analyzed: 6/22/09 % Moisture: not dec. 100 Dilution Factor: 1.0 GC Column: DB624 ID: 0.18 (mm) (uL) Soil Aliquot Volume: Soil Extract Volume: (uL) CONCENTRATION UNITS: ug/L Q (ug/L or ug/Kg) CAS No. Compound UJ 10 108-10-1 4-Methyl-2-Pentanone 5.0 Toluene 108-88-3 5.0 127-18-4 Tetrachloroethene 10 591-78-6 2-Hexanone 5.0 Chlorobenzene 108-90-7 5.0 100-41-4 Ethyl Benzene 5.0 126777-61-2 m,p-Xylenes 5.0 95-47-6 o-Xylene 5.0 Styrene 100-42-5 5.0 98-82-8 Isopropylbenzene 1,1,2,2-Tetrachloroethane 5.0 79-34-5 541-73-1 1,3-Dichlorobenzene 5.0 5.0 106-46-7 1,4-Dichlorobenzene 5.0 1,2-Dichlorobenzene 95-50-1 1,2-Dibromo-3-Chloropropane 10 96-12-8 5.0 120-82-1 1,2,4-Trichlorobenzene

my 9/20/09

								MW-7	
Lab Name:	AES, Inc.					Contract:	NYSDEC		
Lab Code:	AES	Case No	.:	DEC0937	7	SAS No.:		SDG No.:	BR-1
Matrix (soi	1/water):	W	ATER			Lab Sample ID:	090611003	-005A	6
Sample wt/v	ol: 5.0	(g/mL)	m1	2		Lab File ID:	C2280.D		
Level (low/	med):	-	-	7.5		Date Received:	6/10/09		
% Moisture:	not dec.	100				Date Analyzed:	6/22/09		
GC Column:	DB624		ID:	0.18	(mm)	Dilution Factor	: 1.	_	
Soil Extrac	t Volume:			(uL)		Soil Aliquot Vo	lume:	(uL)

CONCENTRATION UNITS:

CAS No.	Compound (ug/L or ug/Kg) ug/L	Q	
75-71-8	Dichlorodifluoromethane	10	U	U.
74-87-3	Chloromethane	10	U	1
75-01-4	Vinyl chloride	10	U	41
74-83-9	Bromomethane	10	U	41
75-00-3	Chloroethane	10	U	41
75-69-4	Trichlorofluoromethane	5.0	U	41
75-35-4	1,1-Dichloroethene	5.0	U	41
76-13-1	1,1,2-Trichloro-1,2,2-tri	5.0	U	_
75-15-0	Carbon disulfide	5.0	U	-1
67-64-1	Acetone	32	J	
79-20-9	Methyl Acetate	5.0	U	U
75-09-2	Methylene Chloride	5.0	U	-1
156-60-5	trans-1,2-Dichloroethene	5.0	U	
1634-04-4	Methyl tert-butyl Ether	5.0	U	-11
75-34-3	1,1-Dichloroethane	5.0	U	41
156-59-2	cis-1,2-Dichloroethene	5.0	U	_
74-97-5	Bromochloromethane	5.0	U	_
67-66-3	Chloroform	5.0	U	_
110-82-7	Cyclohexane	5.0	U	_
107-06-2	1,2-Dichloroethane	5.0	U	-
78-93-3	2-Butanone	10	U	
108-87-2	Methyl Cyclohexane	5.0	Ų	_
71-55-6	1,1,1-Trichloroethane	5.0	U	_
56-23-5	Carbon Tetrachloride	5.0	Ų	
71-43-2	Benzene	5.0	U	-
79-01-6	Trichloroethene	5.0	U	
78-87-5	1,2-Dichloropropane	5.0	U	
75-27-4	Bromodichloromethane	5.0	U	
10061-01-5	cis-1,3-Dichloropropene	5.0	U	_
10061-02-6	trans-1,3-Dichloropropene	5.0	U	
79-00-5	1,1,2-Trichloroethane	5.0	U	_
124-48-1	Dibromochloromethane	5.0	U	
106-93-4	1,2-Dibromoethane	5.0	U	
75-25-2	Bromoform	5.0	U	

MW-7 Contract: NYSDEC Lab Name: AES, Inc. SDG No.: BR-1 SAS No.: DEC0937 Case No.: AES Lab Code: Lab Sample ID: 090611003-005A Matrix (soil/water): WATER Lab File ID: C2280.D Sample wt/vol: 5.0 (g/mL) ml Date Received: 6/10/09 Level (low/med): Date Analyzed: 6/22/09 100 % Moisture: not dec. 1.0 (mm) Dilution Factor: ID: 0.18 GC Column: DB624 (uL) Soil Aliquot Volume: (uL) Soil Extract Volume: CONCENTRATION UNITS: Q ug/L Compound (ug/L or ug/Kg) CAS No. 05 10 4-Methyl-2-Pentanone 108-10-1 5.0 Toluene 108-88-3 5.0 Tetrachloroethene 127-18-4 10 2-Hexanone 591-78-6 5.0 Chlorobenzene 108-90-7 5.0 Ethyl Benzene 100-41-4 5.0 m,p-Xylenes 126777-61-2 5.0 o-Xylene 95-47-6 5.0 Styrene 100-42-5 5.0 Isopropylbenzene 98-82-8 1,1,2,2-Tetrachloroethane 5.0 79-34-5

1,3-Dichlorobenzene

1,4-Dichlorobenzene

1,2-Dichlorobenzene

1,2,4-Trichlorobenzene

1,2-Dibromo-3-Chloropropane

541-73-1

106-46-7

95-50-1

96-12-8

120-82-1

M17 9120109

5.0

5.0

5.0

10

5.0

U

U

U

15 15 75	SAMPLE	NICH
E. F. P.	CONTRACTOR LAND	1100

MW-9	

Lab Name:	AES, Inc.					Contract:	NYSDEC		
Lab Code:	AES	Case No	. :	DEC093	37	SAS No.:		SDG No.:	BR-1
Matrix (soil	/water):	WA	TER			Lab Sample ID:	090611003	-006A	
Sample wt/vo	1: 5.0	(g/mL)	ml			Lab File ID:	C2291.D		
Level (low/me	ed):					Date Received:	6/10/09		
% Moisture:	not dec.	100				Date Analyzed:	6/22/09		
GC Column:	DB624		ID:	0.18	(mm)	Dilution Factor	2.	0	
Soil Extract	Volume:		_ (uL)		Soil Aliquot Vol	lume:		(uL)

CAS No.	Compound (ug/L or ug/Kg)		Ω	1.
75-71-8	Dichlorodifluoromethane	20	U	U
74-87-3	Chloromethane	20	1	-1
75-01-4	Vinyl chloride	20	1	- 1
74-83-9	Bromomethane	20	U	-11
75-00-3	Chloroethane	20	U	- 1
75-69-4	Trichlorofluoromethane	10	U	- 1
75-35-4	1,1-Dichloroethene	10	U	-11
76-13-1	1,1,2-Trichloro-1,2,2-tri	10	V	
75-15-0	Carbon disulfide	10	U	- 1
67-64-1	Acetone	20	U	-11
79-20-9	Methyl Acetate	10	U	-11
75-09-2	Methylene Chloride	10	t	-11
156-60-5	trans-1,2-Dichloroethene	10	U	_
1634-04-4	Methyl tert-butyl Ether	10	U	-11
75-34-3	1,1-Dichloroethane	10	u	1
156-59-2	cis-1,2-Dichloroethene	76	1	_
74-97-5	Bromochloromethane	10	V	U
67-66-3	Chloroform	10	U	_ 1
110-82-7	Cyclohexane	10	U	41
107-06-2	1,2-Dichloroethane	10	U	-11
78-93-3	2-Butanone	20	U	41
108-87-2	Methyl Cyclohexane	10	U	-11
71-55-6	1,1,1-Trichloroethane	10	U	_
56-23-5	Carbon Tetrachloride	10	U	-11
71-43-2	Benzene	10	U	_ 1
79-01-6	Trichloroethene	24	1	_
78-87-5	1,2-Dichloropropane	10	U	0
75-27-4	Bromodichloromethane	10	U	- 1
10061-01-5	cis-1,3-Dichloropropene	10	U	41
10061-02-6	trans-1,3-Dichloropropene	10	U	
79-00-5	1,1,2-Trichloroethane	10	U	\perp
124-48-1	Dibromochloromethane	10	U	
106-93-4	1,2-Dibromoethane	10	U	
75-25-2	Bromoform	10	U	

MW-9 Contract: NYSDEC AES, Inc. Lab Name: SDG No.: BR-1 SAS No.: DEC0937 Lab Code: Case No.: AES Lab Sample ID: 090611003-006A Matrix (soil/water): WATER Sample wt/vol: 5.0 Lab File ID: C2291.D (g/mL) ml. 6/10/09 Date Received: Level (low/med): Date Analyzed: 6/22/09 % Moisture: not dec. 100 2.0 Dilution Factor: (mm) GC Column: DB624 ID: 0.18 (uL) Soil Aliquot Volume: (uL) Soil Extract Volume: CONCENTRATION UNITS: (ug/L or ug/Kg) Q ug/L Compound CAS No. US U 20 4-Methyl-2-Pentanone 108-10-1 10 U UJ Toluene 108-88-3 190 127-18-4 Tetrachloroethene UJ 20 2-Hexanone 591-78-6 10 Chlorobenzene 108-90-7 10 Ethyl Benzene 100-41-4 10 m,p-Xylenes 126777-61-2 10 95-47-6 o-Xylene 10 Styrene 100-42-5 10 98-82-8 Isopropylbenzene 1,1,2,2-Tetrachloroethane 10 79-34-5 10 541-73-1 1,3-Dichlorobenzene 10 1,4-Dichlorobenzene 106-46-7 1,2-Dichlorobenzene 10 95-50-1 20 1,2-Dibromo-3-Chloropropane 96-12-8 10 1,2,4-Trichlorobenzene 120-82-1

1114 01/20109

EPA	SAMPLE	NO.
	MW-10	

b Name:	AES, Inc.					Contract:	NYS	DEC		
o Code:	AES	Case No	.:	DEC093	37	SAS No.:		SDG	No.:	BR-1
rix (soil/	water):	W	ATER			Lab Sample ID:	09061	1003-00	7A	
ple wt/vol	5.0	(g/mL)	m1			Lab File ID:	C2292	2.D		
vel (low/med	41 .		-	_		Date Received:	6/10/	0.9		
	_	100				Date Analyzed:		-		
Moisture: no	ot dec.	100				bace maryzed.	0/22/	-		
Column:	DB624		ID:	0.18	(mm)	Dilution Facto	r:	5.0		
il Extract '	Volume:			uL)	-	Soil Aliquot V	olume:		(1	uL)
L DALLUGE	· Oz. dilici i	-	_ `					-	_	100
					CON	CENTRATION UNITS				
CAS	No.		Com	pound		(ug/L or ug/Kg)	ug/L	9	ž.	
75-	71-8		Dich	lorodi	fluorome	thane	50	J	r (1)	5
74-	87-3		Chlo	rometh	ane		50	1	Lu	5
75-	01-4		Viny	l chlo	ride		96	2		
	83-9		Bron	ometha	ne		50		U	5
	00-3		Chlo	roetha	ne		50	t	1	
	69-4		Tric	hlorof	luoromet	hane	25	1		
	35-4		1,1-	Dichlo	roethene		25	t		
	13-1		_			2,2-tri	25	Ţ		
-	15-0			on dis			25	I		
	64-1		Acet				50	t		
-	20-9			yl Ace	tate		25	t		
-	09-2				Chloride		25	Ţ		
-	-60-5			-	Dichloro		25	t		
	4-04-4				t-butyl		25	1		
-	34-3				roethane		25	I	1	
	-59-2				chloroet	A. D. Line	930			
-	97-5				omethane	-	25		0	1
-	66-3			roform			25	I	1	
	-82-7			ohexan			25	I		
	-06-2				roethane		25	1		
	93-3			tanone			50	1		
	-87-2				lohexane		25	I		
	55-6				hloroeth		25	t		
	23-5		_		rachlori		25	I		
	43-2		Benz				25	I	5	1
	01-6		_	hloroe	thene		30			and the same
-	87-5				ropropar	ne	25	1	J U.	7
	27-4				orometha		25	I	1	
	61-01-5				chloropi		25	1		
	61-02-6					propene	25	1		
	00-5				hloroeth		25	1		
	-48-1				orometha		25			
	-93-4				oethane		25			
106	-93-4		112	DIDIOM	Jemane		05	1 7		1

MW-10 Lab Name: AES, Inc. Contract: NYSDEC SDG No.: BR-1 Lab Code: Case No.: DEC0937 SAS No.: Matrix (soil/water): Lab Sample ID: 090611003-007A WATER Sample wt/vol: Lab File ID: 5.0 (g/mL) C2292.D Level (low/med): Date Received: 6/10/09 % Moisture: not dec. 100 Date Analyzed: 6/22/09 (mm) GC Column: DB624 ID: 0.18 Dilution Factor: 5.0 (uL) Soil Aliquot Volume: (uL) Soil Extract Volume:

CONCENTRATION UNITS:

CAS No.	Compound (ug/L or ug/Kg)	ug/L	Q
108-10-1	4-Methyl-2-Pentanone	50	D-
108-88-3	Toluene	25	U
127-18-4	Tetrachloroethene	130	1
591-78-6	2-Hexanone	50	Ų
108-90-7	Chlorobenzene	25	1 0
100-41-4	Ethyl Benzene	25	U
126777-61-2	m,p-Xylenes	25	V
95-47-6	o-Xylene	25	ų v
100-42-5	Styrene	25	U
98-82-8	Isopropylbenzene	25	U
79-34-5	1,1,2,2-Tetrachloroethane	25	t
541-73-1	1,3-Dichlorobenzene	25	U
106-46-7	1,4-Dichlorobenzene	25	U
95-50-1	1,2-Dichlorobenzene	25	U
96-12-8	1,2-Dibromo-3-Chloropropane	50	U
120-82-1	1,2,4-Trichlorobenzene	25	t

My 9/20/09

EPA SAMPLE NO.

MW-11

Lab Name:	AES, Inc.					Contract:	NYSDEC		
Lab Code:	AES	Case No	. :	DEC0937	7	SAS No.:		SDG No.:	BR-1
Matrix (soi	1/water):	WA	TER			Lab Sample ID:	090611003	-008A	
Sample wt/v	5.0	(g/mL)	m1			Lab File ID:	C2283.D		
Level (low/	med):					Date Received:	6/10/09		
% Moisture:	not dec.	100				Date Analyzed:	6/22/09		
GC Column:	DB624		ID:	0.18	(mm)	Dilution Factor:	1.	0	
Soil Extrac	t Volume:		(uL)		Soil Aliquot Vol	tume :	(uL)

CAS No.	Compound (ug/L or ug/Kg	ug/L	Q	
75-71-8	Dichlorodifluoromethane	10	Ų	U.
74-87-3	Chloromethane	10	U	
75-01-4	Vinyl chloride	10	U	
74-83-9	Bromomethane	10	U	
75-00-3	Chloroethane	10	Ų	
75-69-4	Trichlorofluoromethane	5.0	U	
75-35-4	1,1-Dichloroethene	5.0	b	
76-13-1	1,1,2-Trichloro-1,2,2-tri	5.0	U	
75-15-0	Carbon disulfide	5.0	ų.	1
67-64-1	Acetone	31	T	
79-20-9	Methyl Acetate	5.0	Ų	W
75-09-2	Methylene Chloride	5.0	U	1
156-60-5	trans-1,2-Dichloroethene	5.0	U	
1634-04-4	Methyl tert-butyl Ether	5.0	U	
75-34-3	1,1-Dichloroethane	5.0	U	./
156-59-2	cis-1,2-Dichloroethene	160	J	
74-97-5	Bromochloromethane	5.0	Ų	U
67-66-3	Chloroform	5.0	U	1
110-82-7	Cyclohexane	5.0	T d	
107-06-2	1,2-Dichloroethane	5.0	U	
78-93-3	2-Butanone	10	U	
108-87-2	Methyl Cyclohexane	5.0	U	
71-55-6	1,1,1-Trichloroethane	5.0	U	
56-23-5	Carbon Tetrachloride	5.0	U	
71-43-2	Benzene	5.0	U	V
79-01-6	Trichloroethene	9.1	J	
78-87-5	1,2-Dichloropropane	5.0	U	U
75-27-4	Bromodichloromethane	5.0	y	
10061-01-5	cis-1,3-Dichloropropene	5.0	U	
10061-02-6	trans-1,3-Dichloropropene	5.0	U	
79-00-5	1,1,2-Trichloroethane	5.0	U	
124-48-1	Dibromochloromethane	5.0	U	
106-93-4	1,2-Dibromoethane	5.0	U	
75-25-2	Bromoform	5.0	U	1

EPA SAMPLE NO. MW-11 NYSDEC Contract: Lab Name: AES, Inc. DEC0937 SAS No.: SDG No.: BR-1 Case No.: Lab Code: AES Lab Sample ID: 090611003-008A Matrix (soil/water): WATER Sample wt/vol: Lab File ID: C2283.D 5.0 (g/mL) Date Received: 6/10/09 Level (low/med): Date Analyzed: 6/22/09 % Moisture: not dec. 100 GC Column: DB624 ID: 0.18 (mm) Dilution Factor: 1.0 Soil Aliquot Volume: (uL) Soil Extract Volume: (uL) CONCENTRATION UNITS: (ug/L or ug/Kg) ug/L Q Compound CAS No. U 10 108-10-1 4-Methyl-2-Pentanone U 5.0 Toluene 108-88-3 17 Tetrachloroethene 127-18-4 10 591-78-6 2-Hexanone 5.0 Chlorobenzene 108-90-7 5.0 100-41-4 Ethyl Benzene 5.0 m,p-Xylenes 126777-61-2 5.0 95-47-6 o-Xylene 5.0 100-42-5 Styrene 5.0 98-82-8 Isopropylbenzene 1,1,2,2-Tetrachloroethane 5.0 79-34-5 5.0 1,3-Dichlorobenzene 541-73-1 5.0 1,4-Dichlorobenzene 106-46-7 1,2-Dichlorobenzene 95-50-1 5.0 10 96-12-8 1,2-Dibromo-3-Chloropropane

1,2,4-Trichlorobenzene

120-82-1

1118 9120/04

5.0

_	 SAMPLE	
	MW-12	

Lab Name:	AES, Inc.			Contract:	NYSDEC	
Lab Code:	AES	Case No.:	DEC0937	SAS No.:	SDG No.:	BR-1
Matrix (soil	l/water):	WATE	R	Lab Sample ID:	090611003-009A	
Sample wt/vo	5.0	(g/mL) n	1	Lab File ID:	C2303.D	
Level (low/s	ned):			Date Received:	6/10/09	
% Moisture:	not dec.	100		Date Analyzed:	6/23/09	
GC Column:	DB624	II	: 0.18 (mm)	Dilution Factor	: 2.0	
Soil Extract	t Volume:		(uL)	Soil Aliquot Vo	lume: (uL)

CAS No.	Compound (ug/L or ug/Kg)	ug/L	Q	
75-71-8	Dichlorodifluoromethane	20	A	0.5
74-87-3	Chloromethane	20	U	1
75-01-4	Vinyl chloride	20	U	
74-83-9	Bromomethane	20	U	2
75-00-3	Chloroethane	20	U	
75-69-4	Trichlorofluoromethane	10	U	1
75-35-4	1,1-Dichloroethene	10	U	1
76-13-1	1,1,2-Trichloro-1,2,2-tri	10	U	2
75-15-0	Carbon disulfide	10	D	_
67-64-1	Acetone	20	U	
79-20-9	Methyl Acetate	10	U	
75-09-2	Methylene Chloride	10	U	
156-60-5	trans-1,2-Dichloroethene	10	ū	_
1634-04-4	Methyl tert-butyl Ether	10	U	
75-34-3	1,1-Dichloroethane	10	· ·	1
156-59-2	cis-1,2-Dichloroethene	380	1	I. V
74-97-5	Bromochloromethane	10	Ų	LJ
67-66-3	Chloroform	10	ų t	1
110-82-7	Cyclohexane	10	Ų	
107-06-2	1,2-Dichloroethane	10	Ų	4 1
78-93-3	2-Butanone	20	U	_
108-87-2	Methyl Cyclohexane	10	U	
71-55-6	1,1,1-Trichloroethane	10	U	
56-23-5	Carbon Tetrachloride	10	U	
71-43-2	Benzene	10	U	- 1
79-01-6	Trichloroethene	42	J	-
78-87-5	1,2-Dichloropropane	10	Ų	07
75-27-4	Bromodichloromethane	10	U	
10061-01-5	cis-1,3-Dichloropropene	10	Ü	
10061-02-6	trans-1,3-Dichloropropene	10	U	
79-00-5	1,1,2-Trichloroethane	10	u	
124-48-1	Dibromochloromethane	10	U	
106-93-4	1,2-Dibromoethane	10	U	
75-25-2	Bromoform	10	U	

EPA SAMPLE NO. MW-12 AES, Inc. Contract: NYSDEC Lab Name: DEC0937 SAS No.: SDG No.: BR-1 Case No.: Lab Code: AES Lab Sample ID: 090611003-009A Matrix (soil/water): WATER Sample wt/vol: 5.0 (g/mL) Lab File ID: C2303.D ml Date Received: 6/10/09 Level (low/med): Date Analyzed: 6/23/09 % Moisture: not dec. 100 GC Column: ID: 0.18 (mm) Dilution Factor: 2.0 DB624 Soil Aliquot Volume: (uL) (uL) Soil Extract Volume: CONCENTRATION UNITS: Q (ug/L or ug/Kg) ug/L Compound CAS No. H-45 20 4-Methyl-2-Pentanone 108-10-1 UJ U Toluene 10 108-88-3 Tetrachloroethene 140 127-18-4 15 20 591-78-6 2-Hexanone 10 Chlorobenzene 108-90-7 10 100-41-4 Ethyl Benzene 10 m,p-Xylenes 126777-61-2 10 o-Xylene 95-47-6 10 100-42-5 Styrene U 10 98-82-8 Isopropylbenzene U 1,1,2,2-Tetrachloroethane 10 79-34-5 U 10 1,3-Dichlorobenzene 541-73-1 10 U 1,4-Dichlorobenzene 106-46-7 U 1,2-Dichlorobenzene 10 95-50-1 U 20 96-12-8 1,2-Dibromo-3-Chloropropane

1,2,4-Trichlorobenzene

120-82-1

11/ 9/20/09

10

EPA SAMPLE NO.

MW-13

Lab Name:	AES, Inc.				Contract:	NYSDEC	
Lab Code:	AES	Case No	.: DEC093	7	SAS No.:	SDG No.:	BR-1
Matrix (soi	1/water):	WA	TER		Lab Sample ID:	090611003-010A	_
Sample wt/vo	5.0	(g/mL)	ml		Lab File ID:	C2285.D	
Level (low/	med):				Date Received:	6/10/09	
% Moisture:	not dec.	100			Date Analyzed:	6/22/09	
GC Column:	DB624		ID: 0.18	(mm)	Dilution Factor	: 1.0	
Soil Extrac	t Volume:		(uL)		Soil Aliquot Vo	lume:	(uL)

CONCENTRATION UNITS:

CAS No.	Compound (ug/L or ug/Kg) ug/L	Q
75-71-8	Dichlorodifluoromethane	10	Ų
74-87-3	Chloromethane	10	b
75-01-4	Vinyl chloride	10	l v
74-83-9	Bromomethane	10	b
75-00-3	Chloroethane	10	l p
75-69-4	Trichlorofluoromethane	5.0	U
75-35-4	1,1-Dichloroethene	5.0	U
76-13-1	1,1,2-Trichloro-1,2,2-tri	5.0	D
75-15-0	Carbon disulfide	5.0	l d
67-64-1	Acetone	15	1 1
79-20-9	Methyl Acetate	5.0	p
75-09-2	Methylene Chloride	5.0	U
156-60-5	trans-1,2-Dichloroethene	5.0	U
1634-04-4	Methyl tert-butyl Ether	5.0	U
75-34-3	1,1-Dichloroethane	5.0	V
156-59-2	cis-1,2-Dichloroethene	5.0	Ų
74-97-5	Bromochloromethane	5.0	U
67-66-3	Chloroform	5.0	U
110-82-7	Cyclohexane	5.0	Ų
107-06-2	1,2-Dichloroethane	5.0	U
78-93-3	2-Butanone	10	U
108-87-2	Methyl Cyclohexane	5.0	U
71-55-6	1,1,1-Trichloroethane	5.0	U
56-23-5	Carbon Tetrachloride	5.0	U
71-43-2	Benzene	5.0	U
79-01-6	Trichloroethene	5.0	U
78-87-5	1,2-Dichloropropane	5.0	U
75-27-4	Bromodichloromethane	5.0	Ü
10061-01-5	cis-1,3-Dichloropropene	5.0	U
10061-02-6	trans-1,3-Dichloropropene	5.0	U
79-00-5	1,1,2-Trichloroethane	5.0	U
124-48-1	Dibromochloromethane	5.0	U
106-93-4	1,2-Dibromoethane	5.0	U
75-25-2	Bromoform	5.0	U

111 9/20/09: 20038

EPA SAMPLE NO. MW-13 Lab Name: AES, Inc. Contract: NYSDEC Lab Code: SAS No.: SDG No.: BR-1 AES Case No.: DEC0937 Lab Sample ID: Matrix (soil/water): WATER 090611003-010A Sample wt/vol: Lab File ID: 5.0 (g/mL) C2285.D Level (low/med): Date Received: 6/10/09 % Moisture: not dec. Date Analyzed: 6/22/09 100 GC Column: DB624 ID: 0.18 (mm) Dilution Factor: 1.0 Soil Aliquot Volume: (uL) Soil Extract Volume: (uL) CONCENTRATION UNITS: 0 CAS No. Compound (ug/L or ug/Kg) ug/L 11-5 Ų 108-10-1 4-Methyl-2-Pentanone 10 Toluene 108-88-3 5.0 127-18-4 Tetrachloroethene 5.0 2-Hexanone 10 591-78-6 5.0 108-90-7 Chlorobenzene 5.0 100-41-4 Ethyl Benzene m,p-Xylenes 5.0 126777--61-2 5.0 95-47-6 o-Xylene 5.0 100-42-5 Styrene 5.0 98-82-8 Isopropylbenzene

1,1,2,2-Tetrachloroethane

1,2-Dibromo-3-Chloropropane

1,3-Dichlorobenzene 1,4-Dichlorobenzene

1,2-Dichlorobenzene

1,2,4-Trichlorobenzene

79-34-5

541-73-1

106-46-7 95-50-1

96-12-8

120-82-1

11 + 9/2d09

5.0

5.0

5.0

5.0

EPA SAMPLE NO.

MW-14	
True Ta	
	MW-14

Contract: NYSDEC AES, Inc. Lab Name: SDG No.: BR-1 DEC0937 SAS No.: Case No.: Lab Code: 090611003-011A Lab Sample ID: Matrix (soil/water): WATER Sample wt/vol: Lab File ID: C2286.D 5.0 (g/mL) ml 6/10/09 Date Received: Level (low/med): 6/22/09 Date Analyzed: % Moisture: not dec. 100 1.0 Dilution Factor: ID: 0.18 (mm) GC Column: DB624 (uL) Soil Aliquot Volume: (uL) Soil Extract Volume:

CAS No.	Compound (ug/L or ug/Kg	ug/L	L Q		
75-71-8	Dichlorodifluoromethane	10	Ų	U	
74-87-3	Chloromethane	10	U	_	
75-01-4	Vinyl chloride	10	U		
74-83-9	Bromomethane	10	U		
75-00-3	Chloroethane	10	U		
75-69-4	Trichlorofluoromethane	5.0	U		
75-35-4	1,1-Dichloroethene	5.0	t		
76-13-1	1,1,2-Trichloro-1,2,2-tri	5.0	t		
75-15-0	Carbon disulfide	5.0	u		
67-64-1	Acetone	94	1		
79-20-9	Methyl Acetate	5.0	Ų	-	
75-09-2	Methylene Chloride	5.0	V		
156-60-5	trans-1,2-Dichloroethene	5.0	V		
1634-04-4	Methyl tert-butyl Ether	5.0	U	_	
75-34-3	1,1-Dichloroethane	5.0	U	41	
156-59-2	cis-1,2-Dichloroethene	5.0	U		
74-97-5	Bromochloromethane	5.0	U	_	
67-66-3	Chloroform	5.0	U		
110-82-7	Cyclohexane	5.0	U		
107-06-2	1,2-Dichloroethane	5.0	U		
78-93-3	2-Butanone	10	U		
108-87-2	Methyl Cyclohexane	5.0	U		
71-55-6	1,1,1-Trichloroethane	5.0	U		
56-23-5	Carbon Tetrachloride	5.0	Ψ		
71-43-2	Benzene	5.0	U		
79-01-6	Trichloroethene	5.0	U		
78-87-5	1,2-Dichloropropane	5.0	Ų		
75-27-4	Bromodichloromethane	5.0	U		
10061-01-5	cis-1,3-Dichloropropene	5.0	U		
10061-02-6	trans-1,3-Dichloropropene	5.0	U	4	
79-00-5	1,1,2-Trichloroethane	5.0	U		
124-48-1	Dibromochloromethane	5.0	U		
106-93-4	1,2-Dibromoethane	5.0	U		
75-25-2	Bromoform	5.0	U		

EPA SAMPLE NO. MW-14 NYSDEC Contract: Lab Name: AES, Inc. SDG No.: SAS No.: BR-1 Case No.: DEC0937 Lab Code: AES Lab Sample ID: 090611003-011A Matrix (soil/water): WATER Sample wt/vol: Lab File ID: C2286.D 5.0 (g/mL) ml 6/10/09 Date Received: Level (low/med): 6/22/09 Date Analyzed: % Moisture: not dec. 100 ID: 0.18 (mm) Dilution Factor: 1.0 GC Column: DB624 (uL) Soil Aliquot Volume: (uL) Soil Extract Volume: CONCENTRATION UNITS: Q (ug/L or ug/Kg) ug/L CAS No. Compound 25 10 Ų 108-10-1 4-Methyl-2-Pentanone 5.0 Toluene 108-88-3 5.0 Tetrachloroethene 127-18-4 10 591-78-6 2-Hexanone 5.0 U Chlorobenzene 108-90-7 U 5.0 100-41-4 Ethyl Benzene U 5.0 126777-61-2 m,p-Xylenes U 5.0 95-47-6 o-Xylene U 5.0 100-42-5 Styrene 5.0 98-82-8 Isopropylbenzene 1,1,2,2-Tetrachloroethane 5.0 79-34-5 5.0 1,3-Dichlorobenzene 541-73-1 5.0 1,4-Dichlorobenzene

1,2-Dichlorobenzene

1,2,4-Trichlorobenzene

1,2-Dibromo-3-Chloropropane

106-46-7

95-50-1

96-12-8

120-82-1

MY 9/20/09

5.0

10

5.0

-	EPA	SAMPLE	NO.
		MW-15	

Lab Name:	AES, Inc.					Contract:	NYSDEC		
Lab Code:	AES	Case No.	: 1	DEC0937	7	SAS No.:		SDG No.:	BR-1
Matrix (soi	1/water):	WA:	TER			Lab Sample ID:	090611003	3-012A	_
Sample wt/ve	ol: 5.0	(g/mL)	ml			Lab File ID:	C2287.D		
Level (low/s	med):					Date Received:	6/10/09		
% Moisture:	not dec.	100				Date Analyzed:	6/22/09		
GC Column:	DB624		ID: 0	.18	(mm)	Dilution Factor	: _1.	0	
Soil Extrac	t Volume:		(u)	L)		Soil Aliquot Vo	lume:		(uL)
					CON	CENTRATION UNITS:			

CAS No.	Compound (ug/L or ug/Kg	ug/L	Q
75-71-8	Dichlorodifluoromethane	10	U
74-87-3	Chloromethane	10	U
75-01-4	Vinyl chloride	10	U
74-83-9	Bromomethane	10	U
75-00-3	Chloroethane	10	U
75-69-4	Trichlorofluoromethane	5.0	U
75-35-4	1,1-Dichloroethene	5.0	U
76-13-1	1,1,2-Trichloro-1,2,2-tri	5.0	U
75-15-0	Carbon disulfide	5.0	U
67-64-1	Acetone	23	1
79-20-9	Methyl Acetate	5,0	U
75-09-2	Methylene Chloride	5.0	V
156-60-5	trans-1,2-Dichloroethene	5.0	U
1634-04-4	Methyl tert-butyl Ether	5.0	U
75-34-3	1,1-Dichloroethane	5.0	U
156-59-2	cis-1,2-Dichloroethene	5.0	U
74-97-5	Bromochloromethane	5.0	P
67-66-3	Chloroform	5.0	U
110-82-7	Cyclohexane	5.0	Ų
107-06-2	1,2-Dichloroethane	5.0	U
78-93-3	2-Butanone	10	Ų
108-87-2	Methyl Cyclohexane	5.0	U
71-55-6	1,1,1-Trichloroethane	5.0	U
56-23-5	Carbon Tetrachloride	5.0	U
71-43-2	Benzene	5.0	U
79-01-6	Trichloroethene	5.0	U
78-87-5	1,2-Dichloropropane	5.0	U
75-27-4	Bromodichloromethane	5.0	U
10061-01-5	cis-1,3-Dichloropropene	5.0	U
10061-02-6	trans-1,3-Dichloropropene	5.0	U
79-00-5	1,1,2-Trichloroethane	5.0	U
124-48-1	Dibromochloromethane	5.0	U
106-93-4	1,2-Dibromoethane	5.0	U
75-25-2	Bromoform	5.0	U

MW-15 NYSDEC Contract: Lab Name: AES, Inc. SDG No.: BR-1 SAS No.: DEC0937 Case No.: Lab Code: AES 090611003-012A Lab Sample ID: WATER Matrix (soil/water): Sample wt/vol: Lab File ID: C2287.D 5.0 (g/mL) ml 6/10/09 Date Received: Level (low/med): 6/22/09 Date Analyzed: 100 % Moisture: not dec. 1.0 (mm) Dilution Factor: ID: 0.18 GC Column: DB624 (uL) Soil Aliquot Volume: (uL) Soil Extract Volume: CONCENTRATION UNITS: Q (ug/L or ug/Kg) ug/L Compound CAS No. UJ 10 4-Methyl-2-Pentanone 108-10-1 5.0 Toluene 108-88-3 5.0 Tetrachloroethene 127-18-4 10 2-Hexanone 591-78-6 5.0 Chlorobenzene 108-90-7 5.0 Ethyl Benzene 100-41-4 5.0 m,p-Xylenes 126777-61-2 5.0 o-Xylene 95-47-6 5.0 Styrene 100-42-5 5.0 Isopropylbenzene 98-82-8 5.0 1,1,2,2-Tetrachloroethane 79-34-5 5.0 1,3-Dichlorobenzene 541-73-1 5.0 1,4-Dichlorobenzene 106-46-7 5.0 1,2-Dichlorobenzene 95-50-1 1,2-Dibromo-3-Chloropropane 10 96-12-8 5.0 1,2,4-Trichlorobenzene 120-82-1

My 9/20/09

CLIENT: Adirondack Environmental Services, Inc.

Lab Order: (

C0904008

Project:

Revonak Dry Cleaners

Lab ID:

C0904008-001A

Date: 12-May-09

Client Sample ID: SV-1

Tag Number: 139, 181

Collection Date: 3/31/2009

Matrix: AIR

Analyses	Result	**Limit Qual	Units	DF	Date Analyzed
FIELD PARAMETERS		FLD			Analyst:
Lab's Vacuum Reading	-1		"Hg		4/3/2009
IUG/M3 BY METHOD TO15		TO-15			Analyst: LL
1,1,1-Trichloroethane	ND	0.15	ppbV	1	4/8/2009 4:57:00 PM
1,1,2,2-Tetrachloroethane	ND	0.15	ppbV	1	4/8/2009 4:57:00 PM
1,1,2-Trichloroethane	ND	0.15	ppbV	1	4/8/2009 4:57:00 PM
1,1-Dichloroethane	ND	0.15	ppbV	1	4/8/2009 4:57:00 PM
1,1-Dichloroethene	ND	0.15	ppbV	1	4/8/2009 4:57:00 PM
1,2,4-Trichlorobenzene	ND	0.15	ppbV R	1	4/8/2009 4:57:00 PM
1,2,4-Trimethylbenzene	1.4	0.15	ppbV	1	4/8/2009 4:57:00 PM
1,2-Dibromoethane	ND	0.15	ppbV	1	4/8/2009 4:57:00 PM
1,2-Dichlorobenzene	ND	0.15	ppbV	1	4/8/2009 4:57:00 PM
1,2-Dichloroethane	ND	0.15	ppbV	1	4/8/2009 4:57:00 PM
1,2-Dichloropropane	ND	0.15	ppbV	1	4/8/2009 4:57:00 PM
1,3,5-Trimethylbenzene	0.40	0.15	ppbV	1	4/8/2009 4:57:00 PM
1,3-butadiene	ND	0.15	ppbV	1	4/8/2009 4:57:00 PM
1,3-Dichlorobenzene	ND	0.15	ppbV	1	4/8/2009 4:57:00 PM
1,4-Dichlorobenzene	0.15	0.15	ppbV	1	4/8/2009 4:57:00 PM
1,4-Dioxane	ND	0.30	ppbV	1	4/8/2009 4:57:00 PM
2,2,4-trimethylpentane	49	6.0	ppbV	40	4/8/2009 6:04:00 PM
4-ethyltoluene	0.73	0.15	ppbV	1	4/8/2009 4:57:00 PM
Acetone	19	3.0	ppbV	10	4/8/2009 5:31:00 PM
Allyl chloride	ND	0.15	ppbV	1	4/8/2009 4:57:00 PM
Benzene	1.2	0.15	ppbV	1	4/8/2009 4:57:00 PM
Benzyl chloride	ND	0.15	ppbV	1	4/8/2009 4:57:00 PM
Bromodichloromethane	ND	0.15	Vdqq	1	4/8/2009 4:57:00 PM
Bromoform	ND	0.15	ppbV	1	4/8/2009 4:57:00 PM
Bromomethane	ND	0.15	ppbV	1	4/8/2009 4:57:00 PM
Carbon disulfide	0.34	0.15	ppbV	1	4/8/2009 4:57:00 PM
Carbon tetrachloride	ND	0.15	ppbV	1	4/8/2009 4:57:00 PM
Chlorobenzene	ND	0.15	ppbV	1	4/8/2009 4:57:00 PM
Chloroethane	1.0	0.15	ppbV	1	4/8/2009 4:57:00 PM
Chloroform	ND	0.15	ppbV	1	4/8/2009 4:57:00 PM
Chloromethane	ND	0.15	ppbV	1	4/8/2009 4:57:00 PM
cis-1,2-Dichloroethene	11	1.5	ppbV	10	4/8/2009 5:31:00 PM
cls-1,3-Dichloropropene	ND	0.15	ppbV	1	4/8/2009 4:57:00 PM
Cyclohexane	5.6	1.5	ppbV	10	4/8/2009 5:31:00 PM
Dibromochloromethane	ND	0.15	ppbV	1	4/8/2009 4:57:00 PM
Ethyl acetate	ND	0.25	ppbV	1	4/8/2009 4:57:00 PM
Ethylbenzene	1.7	1.5	ppbV	10	4/8/2009 5:31:00 PM

Qualifiers:

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- ** Reporting Limit

- Walue above quantitation range
- J Analyte detected at or below quantitation limits

MA 9/28/09

- ND Not Detected at the Reporting Limit
 - Results reported are not blank corrected

Page 1 of 4

Page 15 of 187.

Date: 12-May-09

CLIENT: Adirondac

Adirondack Environmental Services, Inc.

Lab Order:

C0904008

Project: Revonak Dry Cleaners

Lab ID:

C0904008-001A

Client Sample ID: SV-1

Tag Number: 139, 181

Collection Date: 3/31/2009

Matrix: AIR

Analyses	Result	**Limit (Qual	Units		DF	Date Analyzed
1UG/M3 BY METHOD TO15		TO-1	15				Analyst: LL
Freon 11	0.52	0.15		ppbV		1	4/8/2009 4:57:00 PM
Freon 113	3.3	1.5		ppbV		10	4/8/2009 5:31:00 PM
Freon 114	ND	0.15		ppbV		1	4/8/2009 4:57:00 PM
Freon 12	0.58	0.15		ppbV		1	4/8/2009 4:57:00 PM
Heptane	0.70	0.15		ppbV		1	4/8/2009 4:57:00 PM
Hexachloro-1,3-butadiene	ND	0.15		ppbV	UT	1	4/8/2009 4:57:00 PM
Hexane	3.4	1.5		ppbV		10	4/8/2009 5:31:00 PM
Isopropyl alcohol	ND	0.15		ppbV		1	4/8/2009 4:57:00 PM
m&p-Xylene	4.8	3.0		ppbV		10	4/8/2009 5:31:00 PM
Methyl Butyl Ketone	ND	0.30		ppbV		1	4/8/2009 4:57:00 PM
Methyl Ethyl Ketone	4.6	3.0		ppbV		10	4/8/2009 5:31:00 PM
Methyl Isobutyl Ketone	0.65	0.30		ppbV		1	4/8/2009 4:57:00 PM
Methyl tert-butyl ether	ND	0.15		ppbV		1	4/8/2009 4:57:00 PM
Methylene chloride	0.91	0.15		ppbV		1	4/8/2009 4:57:00 PM
o-Xylene	1.6	0.15		ppbV		1	4/8/2009 4:57:00 PM
Propylene	ND	0.15		ppbV		1	4/8/2009 4:57:00 PM
Styrene	1.8	1.5		ppbV		10	4/8/2009 5:31:00 PM
Tetrachloroethylene	0.41	0.15		ppbV		1	4/8/2009 4:57:00 PM
Tetrahydrofuran	3.3	1.5		ppbV		10	4/8/2009 5:31:00 PM
Toluene	20	1.5		ppbV		10	4/8/2009 5:31:00 PM
trans-1,2-Dichloroethene	1.5	0.15		ppbV		1	4/8/2009 4:57:00 PM
trans-1,3-Dichloropropene	ND	0.15		ppbV		1	4/8/2009 4:57:00 PM
Trichloroethene	1.0	0.15		ppbV		1	4/8/2009 4:57:00 PM
Vinyl acetate	ND	0.15		ppbV		1	4/8/2009 4:57:00 PM
Vinyl Bromide	ND	0.15		ppbV		1	4/8/2009 4:57:00 PM
Vinyl chloride	290	48		ppbV		320	4/9/2009 9:40:00 AM
Surr: Bromofluorobenzene	112	70-130		%REC		1	4/8/2009 4:57:00 PM

MA 9/25/09

Qualifiers:

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- ** Reporting Limit

- B Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit
 - Results reported are not blank corrected

Date: 12-May-09

CLIENT: Adirondack Environmental Services, Inc

Lab Order:

C0904008

Project:

Revonak Dry Cleaners

Lab ID:

C0904008-002A

Client Sample ID: SV-2

Tag Number: 84, 297

Collection Date: 3/31/2009

Matrix: AIR

Analyses	Result	**Limit	Qual	Units		DF	Date Analyzed
FIELD PARAMETERS		FI	.D				Analyst:
Lab's Vacuum Reading	-1			"Hg			4/3/2009
1UG/M3 BY METHOD TO15		то	-15				Analyst: LL
1,1,1-Trichloroethane	0.14	0.15	J	ppbV		1	4/8/2009 6:37:00 PM
1,1,2,2-Tetrachlorgethane	ND	0.15		ppbV		1	4/8/2009 6:37:00 PM
1,1,2-Trichloroethane	ND	0.15		ppbV		1	4/8/2009 6:37:00 PM
1,1-Dichloroethane	ND	0.15		ppbV		1	4/8/2009 6:37:00 PM
1,1-Dichloroethene	ND	0.15		ppbV	-	1	4/8/2009 6:37:00 PM
1,2,4-Trichlorobenzene	ND	0.15		ppbV	- R	1	4/8/2009 6:37:00 PM
1,2,4-Trimethylbenzene	1.2	0.15		ppbV	,	1	4/8/2009 6:37:00 PM
1,2-Dibromoethane	ND	0.15		ppbV		1	4/8/2009 6:37:00 PM
1,2-Dichlorobenzene	ND	0.15		ppbV		1	4/8/2009 6:37:00 PM
1,2-Dichloroethane	ND	0.15		ppbV		1	4/8/2009 6:37:00 PM
1,2-Dichloropropane	ND	0.15		ppbV		1	4/8/2009 6:37:00 PM
1,3,5-Trimethylbenzene	0.32	0.15		ppbV		1	4/8/2009 6:37:00 PM
1,3-butadiene	ND	0.15		ppbV		1	4/8/2009 6:37:00 PM
1,3-Dichlorobenzene	ND	0.15		ppbV		1	4/8/2009 6:37:00 PM
1,4-Dichlorobenzene	0.41	0.15		ppbV		1	4/8/2009 6:37:00 PM
1,4-Dloxane	ND	0.30		Vdqq		1	4/8/2009 6:37:00 PM
2,2,4-trimethylpentane	0.22	0.15		Vdqq		1	4/8/2009 6:37:00 PM
4-ethyltoluene	0.49	0.15		ppbV		1	4/8/2009 6:37:00 PM
Acetone	34	12		ppbV		40	4/8/2009 7:41:00 PM
Allyl chloride	ND	0.15		ppbV		1	4/8/2009 6:37:00 PM
Benzene	1.1	0.15		ppbV		1	4/8/2009 6:37:00 PM
Benzyl chloride	ND	0.15		ppbV		1	4/8/2009 6:37:00 PM
Bromodichloromethane	ND	0.15		ppbV		1	4/8/2009 6:37:00 PM
Bromoform	ND	0.15		ppbV		1	4/8/2009 6:37:00 PM
Bromomethane	ND	0.15		ppbV		1	4/8/2009 6:37:00 PM
Carbon disulfide	0.53	0.15		ppbV		1	4/8/2009 6:37:00 PM
Carbon tetrachloride	ND	0.15		ppbV		1	4/8/2009 6:37:00 PM
Chlorobenzene	ND	0.15		ppbV		1	4/8/2009 6:37:00 PM
Chloroethane	ND	0.15		ppbV		1	4/8/2009 6:37:00 PM
Chloroform	0.92	0.15		ppbV		1	4/8/2009 6:37:00 PM
Chloromethane	0.22	0.15		ppbV		1	4/8/2009 6:37:00 PM
cis-1,2-Dichloroethene	0.74	0.15		ppbV		1	4/8/2009 6:37:00 PM
cis-1,3-Dichloropropene	ND	0.15		ppbV		1	4/8/2009 6:37:00 PM
Cyclohexane	ND	0.15		ppbV		1	4/8/2009 6:37:00 PM
Dibromochloromethane	ND	0.15		ppbV		1	4/8/2009 6:37:00 PM
Ethyl acetate	ND	0.25		ppbV		1	4/8/2009 6:37:00 PM
Ethylbenzene	0.71	0.15		ppbV		1	4/8/2009 6:37:00 PM

Qualiflers:

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- ** Reporting Limit

- B. Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit
 - Results reported are not blank corrected

Page 3 of 4

11/9125/09

Date: 12-May-09

CLIENT:

Adirondack Environmental Services, Inc.

Lab Order:

C0904008

Project:

Revonak Dry Cleaners

Lab ID:

C0904008-002A

Client Sample ID: SV-2

Tag Number: 84, 297 Collection Date: 3/31/2009

Matrix: AIR

Analyses	Result	**Limit Qual	Units	DF	Date Analyzed
1UG/M3 BY METHOD TO15		TO-15			Analyst: LL
Freon 11	5.7	1.5	ppbV	10	4/8/2009 7:09:00 PM
Freon 113	ND	0.15	ppbV	1	4/8/2009 6:37:00 PM
Freon 114	ND	0.15	ppbV	1	4/8/2009 6:37:00 PM
Freon 12	0.45	0.15	ppbV	1	4/8/2009 6:37:00 PM
Heptane	0.14	0.15 J	ppbV	1	4/8/2009 6:37:00 PM
Hexachloro-1,3-butadiene	ND	0.15	ppbV	05 1	4/8/2009 6:37:00 PM
Hexane	ND	0.15	ppbV	1	4/8/2009 6:37:00 PM
Isopropid alcohol	ND	0.16	Mdan		4/9/2000 8:27:00 DM

Freon 12	0.45	0.15		ppbV		1	4/8/2009 6:37:00 PM	
Heptane	0.14	0.15	J	ppbV		1	4/8/2009 6:37:00 PM	
Hexachloro-1,3-butadiene	ND	0.15		ppbV	05	1	4/8/2009 6:37:00 PM	
Hexane	ND	0.15		ppbV		1	4/8/2009 6:37:00 PM	
Isopropyl alcohol	ND	0.15		ppbV		1	4/8/2009 6:37:00 PM	
m&p-Xylene	1.5	3.0	J	ppbV		10	4/8/2009 7:09:00 PM	
Methyl Butyl Ketone	ND	0.30		ppbV		1	4/8/2009 6:37:00 PM	
Methyl Ethyl Ketone	1.4	0.30		ppbV		1	4/8/2009 6:37:00 PM	
Methyl Isobutyl Ketone	ND	0.30		ppbV		1	4/8/2009 6:37:00 PM	
Methyl tert-butyl ether	ND	0.15		ppbV		1	4/8/2009 6:37:00 PM	
Methylene chloride	0.14	0.15	J	ppbV		1	4/8/2009 6:37:00 PM	
o-Xylene	0.76	0.15		ppbV		1	4/8/2009 6:37:00 PM	
Propylene	ND	0.15		ppbV		1	4/8/2009 6:37:00 PM	
Styrene	1.6	0.15		ppbV		1	4/8/2009 6:37:00 PM	
Tetrachloroethylene	69	6.0		ppbV		40	4/8/2009 7:41:00 PM	
Tetrahydrofuran	0.52	0.15		ppbV		1	4/8/2009 6:37:00 PM	
Toluene	4.0	1.5		ppbV		10	4/8/2009 7:09:00 PM	
trans-1,2-Dichloroethene	ND	0.15		ppbV		1	4/8/2009 6:37:00 PM	
trans-1,3-Dichloropropene	ND	0.15		Vdqq		1	4/8/2009 6:37:00 PM	
Trichloroethene	6.5	1.5		ppbV		10	4/8/2009 7:09:00 PM	
Vinyl acetate	ND	0.15		Vdqq		1	4/8/2009 6:37:00 PM	
Vinyl Bromide	ND	0.15		ppbV		1	4/8/2009 6:37:00 PM	
Vinyl chloride	ND	0.15		ppbV		1	4/8/2009 6:37:00 PM	

70-130

%REC

116

11/ 9/28/09

Qualifiers:

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- Spike Recovery outside accepted recovery limits
- Reporting Limit

Surr: Bromofluorobenzene

- Value above quantitation range
- Analyte detected at or below quantitation limits
- Not Detected at the Reporting Limit
 - Results reported are not blank corrected

4/8/2009 6:37:00 PM

Date: 25-Apr-09

CLIENT:

Adirondack Environmental Services, Inc.

Lab Order:

C0903021

Project:

New Paltz, NY

Lab ID:

C0903021-001A

Client Sample ID: SS-405-1

ent Sample 11): 33-403-

Tag Number: 86, 260 Collection Date: 3/10/2009

Matrix: AIR

Analyses	Result	**Limit	Qual	Units		DF	Date Analyzed
FIELD PARAMETERS		FL	D				Analyst:
Lab's Vacuum Reading	-2			"Hg			3/13/2009
1UG/M3 BY METHOD TO15		то	-15				Analyst: RJP
1,1,1-Trichloroethane	ND	0.15	14.45	ppbV		1	3/20/2009 12:53:00 AM
1,1,2,2-Tetrachloroethane	ND	0.15		ppbV		1	3/20/2009 12:53:00 AM
1,1,2-Trichloroethane	ND	0.15		ppbV		1	3/20/2009 12:53:00 AM
1,1-Dichloroethane	ND	0.15		ppbV		1	3/20/2009 12:53:00 AM
1,1-Dichloroethene	ND	0.15		ppbV		1	3/20/2009 12:53:00 AM
1,2,4-Trichlorobenzene	ND	0.15		ppbV		1	3/20/2009 12:53:00 AM
1,2,4-Trimethylbenzene	1.5	0.15		ppbV		1	3/20/2009 12:53:00 AM
1,2-Dibromoethane	ND	0.15		ppbV		1	3/20/2009 12:53:00 AM
1,2-Dichlorobenzene	ND	0.15		ppbV		1	3/20/2009 12:53:00 AM
1,2-Dichloroethane	ND	0.15		ppbV		1	3/20/2009 12:53:00 AM
1,2-Dichloropropane	ND	0.15		ppbV		1	3/20/2009 12:53:00 AM
1,3,5-Trimethylbenzene	0.53	0.15		ppbV		1	3/20/2009 12:53:00 AM
1,3-butadiene	ND	0.15		ppbV		1	3/20/2009 12:53:00 AM
1,3-Dichlorobenzene	ND	0.15		ppbV		1	3/20/2009 12:53:00 AM
1,4-Dichlorobenzene	0.21	0.15		ppbV		1	3/20/2009 12:53:00 AM
1,4-Dioxane	ND	0.30		ppbV		1	3/20/2009 12:53:00 AM
2,2,4-trimethylpentane	ND	0.15		ppbV		1	3/20/2009 12:53:00 AM
4-ethyltoluene	0.51	0.15		ppbV		1	3/20/2009 12:53:00 AM
Acetone	72	12		ppbV		40	3/20/2009 1:26:00 AM
Allyl chloride	ND	0.15		ppbV		1	3/20/2009 12:53:00 AM
Benzene	ND	0.15		ppbV	_	1	3/20/2009 12:53:00 AM
Benzyl chloride	ND	0.15		ppbV	07	1	3/20/2009 12:53:00 AM
Bromodichloromethane	ND	0.15		ppbV		1	3/20/2009 12:53:00 AM
Bromoform	ND	0.15		ppbV		1	3/20/2009 12:53:00 AM
Bromomethane	ND	0.15		ppbV		1	3/20/2009 12:53:00 AM
Carbon disulfide	0.12	0.15	J	ppbV		1	3/20/2009 12:53:00 AM
Carbon tetrachloride	ND	0.15		ppbV		1	3/20/2009 12:53:00 AM
Chlorobenzene	ND	0.15		ppbV		1	3/20/2009 12:53:00 AM
Chloroethane	ND	0.15		ppbV		1	3/20/2009 12:53:00 AM
Chloroform	0.38	0.15		ppbV		1	3/20/2009 12:53:00 AM
Chloromethane	ND	0.15		ppbV		1	3/20/2009 12:53:00 AM
cis-1,2-Dichloroethene	ND	0.15		ppbV		1	3/20/2009 12:53:00 AM
cis-1,3-Dichloropropene	ND	0.15		ppbV		1	3/20/2009 12:53:00 AM
Cyclohexane	ND	0.15		ppbV		1	3/20/2009 12:53:00 AN
Dibromochloromethane	ND	0.15		ppbV		1	3/20/2009 12:53:00 AM
Ethyl acetate	ND	0.25		ppbV		1	3/20/2009 12:53:00 AM
Ethylbenzene	0.43	0.15		ppbV		1	3/20/2009 12:53:00 AM

Qualifiers:

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- ** Reporting Limit

- Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit
 - Results reported are not blank corrected

Page 1 of 42

11/ 9/28/09

Date: 25-Apr-09

CLIENT:

Adirondack Environmental Services, Inc.

Lab Order:

C0903021

Project:

New Paltz, NY

Lab ID:

C0903021-001A

Client Sample ID: SS-405-1

Tag Number: 86, 260

Collection Date: 3/10/2009

Matrix: AIR

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
1UG/M3 BY METHOD TO15	0.1	то	-15			Analyst: RJP
Freon 11	1.6	0.15		ppbV	1	3/20/2009 12:53:00 AM
Freon 113	ND	0.15		ppbV	1	3/20/2009 12:53:00 AM
Freon 114	ND	0.15		ppbV	1	3/20/2009 12:53:00 AM
Freon 12	76	6.0		ppbV	40	3/20/2009 1:26:00 AM
Heptane	0.53	0.15		ppbV	1	3/20/2009 12:53:00 AM
Hexachloro-1,3-butadiono	ND	0.15		ppbV	1	3/20/2009 12:53:00 AM
Hexane	0.44	0.15		ppbV	1	3/20/2009 12:53:00 AM
Isopropyl alcohol	61	6.0		ppbV	40	3/20/2009 1:26:00 AM
m&p-Xylene	1.8	0.30		ppbV	1	3/20/2009 12:53:00 AM
Methyl Butyl Ketone	ND	0.30		ppbV	1	3/20/2009 12:53:00 AM
Methyl Ethyl Ketone	2.1	3.0	J	ppbV	10	3/19/2009 3:22:00 AM
Methyl Isobutyl Ketone	0.48	0.30		Vdqq	1	3/20/2009 12:53:00 AM
Methyl tert-butyl ether	ND	0.15		Vdqq	1	3/20/2009 12:53:00 AM
Methylene chloride	0.26	0.15		ppbV	1	3/20/2009 12:53:00 AM
o-Xylene	0.52	0.15		ppbV	1	3/20/2009 12:53:00 AM
Propylene	ND	0.15		ppbV	1	3/20/2009 12:53:00 AM
Styrene	1.5	0.15		ppbV	1	3/20/2009 12:53:00 AM
Tetrachloroethylene	0.46	0.15		ppbV	1	3/20/2009 12:53:00 AM
Tetrahydrofuran	2.2	0.15		ppbV	1	3/20/2009 12:53:00 AM
Toluene	4.4	1.5		ppbV	10	3/19/2009 3:22:00 AM
trans-1,2-Dichloroethene	ND	0.15		ppbV	1	3/20/2009 12:53:00 AM
trans-1,3-Dichloropropene	ND	0.15		ppbV	1	3/20/2009 12:53:00 AM
Trichloroothene	0.34	0.15		ppbV	1	3/20/2009 12:53:00 AM
Vinyl acetate	ND	0.15		ppbV	1	3/20/2009 12:53:00 AM
Vinyl Bromide	ND	0.15		ppbV	1	3/20/2009 12:53:00 AM
Vinyl chloride	ND	0.15		ppbV	1	3/20/2009 12:53:00 AM
Surr: Bromofluorobenzene	114	70-130		%REC	1	3/20/2009 12:53:00 AM

			_		
Ou	21	13	n	0.0	æ

- Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- Spike Recovery outside accepted recovery limits
- Reporting Limit

- Value above quantitation range
- Analyte detected at or below quantitation limits
- Not Detected at the Reporting Limit
 - Results reported are not blank corrected

Page 2 of 42

Date: 25-Apr-09

CLIENT:

Adirondack Environmental Services, Inc.

Lab Order:

C0903021

Project:

New Paltz, NY

Lab ID:

C0903021-003A

Client Sample ID: SS-401-1

ent Sample ID. 33-401-

Tag Number: 130, 281 Collection Date: 3/10/2009

Matrix: AIR

Analyses	Result	**Limit Qual	Units		DF	Date Analyzed
FIELD PARAMETERS		FLD				Analyst:
Lab's Vacuum Reading	-3		*Hg			3/13/2009
TUG/M3 BY METHOD TO15		TO-15				Analyst: RJP
1,1,1-Trichloroethane	ND	0.15	ppbV		1	3/20/2009 2:00:00 AM
1,1,2,2-Tetrachloroethane	ND	0.15	ppbV		1	3/20/2009 2:00:00 AM
1,1,2-Trichloroethane	ND	0.15	ppbV		1	3/20/2009 2:00:00 AM
1,1-Dichloroethane	ND	0.15	ppbV		1	3/20/2009 2:00:00 AM
1,1-Dichloroethene	ND	0.15	ppbV		1	3/20/2009 2:00:00 AM
1,2,4-Trichlorobenzene	ND	0.15	ppbV		1	3/20/2009 2:00:00 AM
1,2,4-Trimethylbenzene	0.74	0.15	ppbV		1	3/20/2009 2:00:00 AM
1,2-Dibromoethane	ND	0.15	ppbV		1	3/20/2009 2:00:00 AM
1,2-Dichlorobenzene	ND	0.15	ppbV		1	3/20/2009 2:00:00 AM
1,2-Dichloroethane	ND	0.15	ppbV		1	3/20/2009 2:00:00 AM
1,2-Dichloropropane	ND	0.15	ppbV		1	3/20/2009 2:00:00 AM
1,3,5-Trimethylbenzene	0.39	0.15	ppbV		1	3/20/2009 2:00:00 AM
1,3-butadiene	ND	0.15	ppbV		1	3/20/2009 2:00:00 AM
1,3-Dichlorobenzene	ND	0.15	ppbV		1	3/20/2009 2:00:00 AM
1,4-Dichlorobenzene	0.20	0.15	ppbV		1	3/20/2009 2:00:00 AM
1,4-Dioxane	ND	0.30	ppbV		1	3/20/2009 2:00:00 AM
2,2,4-trimethylpentane	ND	0.15	ppbV		1	3/20/2009 2:00:00 AM
4-ethyltoluene	0.32	0.15	ppbV		1	3/20/2009 2:00:00 AM
Acetone	12	3.0	ppbV		10	3/19/2009 3:54:00 AM
Allyl chloride	ND	0.15	ppbV		1	3/20/2009 2:00:00 AM
Benzene	0.20	0.15	ppbV	-	1	3/20/2009 2:00:00 AM
Benzyl chloride	ND	0.15	Vdqq	UJ	1	3/20/2009 2:00:00 AM
Bromodichloromethane	ND	0.15	ppbV		1	3/20/2009 2:00:00 AM
Bromoform	ND	0.15	Vdqq		1	3/20/2009 2:00:00 AM
Bromomethane	ND	0.15	ppbV		1	3/20/2009 2:00:00 AM
Carbon disulfide	ND	0.15	ppbV		1	3/20/2009 2:00:00 AM
Carbon tetrachloride	ND	0.15	ppbV		1	3/20/2009 2:00:00 AM
Chlorobenzene	ND	0.15	ppbV		1	3/20/2009 2:00:00 AM
Chloroethane	ND	0.15	ppbV		1	3/20/2009 2:00:00 AM
Chloroform	0.19	0.15	ppbV		1	3/20/2009 2:00:00 AM
Chloromethane	ND	0.15	ppbV		1	3/20/2009 2:00:00 AM
cls-1,2-Dichloroethene	ND	0.15	ppbV		1	3/20/2009 2:00:00 AM
cis-1,3-Dichloropropene	ND	0.15	ppbV		1	3/20/2009 2:00:00 AM
Cyclohexane	ND	0.15	ppbV		1	3/20/2009 2:00:00 AM
Dibromochloromethane	ND	0.15	ppbV		1	3/20/2009 2:00:00 AM
Ethyl acetate	0.36	0.25	ppbV		1	3/20/2009 2:00:00 AM
Ethylbenzene	0.34	0.15	ppbV		1	3/20/2009 2:00:00 AM

Qualifiers:

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- ** Reporting Limit

- Value above quantitation range
- I Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit
 - Results reported are not blank corrected

Page 5 of 42

Date: 25-Apr-09

CLIENT: Adire

Adirondack Environmental Services, Inc

C0903021

Lab Order: Project:

New Paltz, NY

Lab ID:

C0903021-003A

Client Sample ID: SS-401-1

Tag Number: 130, 281

Collection Date: 3/10/2009

Matrix: AIR

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
1UG/M3 BY METHOD TO15		то	-15			Analyst: RJF
Freon 11	1.0	0.15		ppbV	1	3/20/2009 2:00:00 AM
Freon 113	ND	0.15		ppbV	1	3/20/2009 2:00:00 AM
Freon 114	ND	0.15		ppbV	1	3/20/2009 2:00:00 AM
Freon 12	69	6.0		ppbV	40	3/20/2009 2:33:00 AM
Heptane	0.46	0.15		ppbV	1	3/20/2009 2:00:00 AM
Hexachloro-1,3-butadiene	ND	0.15		ppbV	1	3/20/2009 2:00:00 AM
Hexane	ND	0.15		ppbV	1	3/20/2009 2:00:00 AM
Isopropyl alcohol	2.5	1.5		ppbV	10	3/19/2009 3:54:00 AM
m&p-Xylene	1.1	0.30		ppbV	1	3/20/2009 2:00:00 AM
Methyl Butyl Ketone	ND	0.30		ppbV	1	3/20/2009 2:00:00 AM
Methyl Ethyl Ketone	1.4	0.30		ppbV	1	3/20/2009 2:00:00 AM
Methyl Isobutyl Ketone	0.40	0.30		ppbV	1	3/20/2009 2:00:00 AM
Methyl tert-butyl ether	ND	0.15		ppbV	1	3/20/2009 2:00:00 AM
Methylene chloride	0.25	0.15		ppbV	1	3/20/2009 2:00:00 AM
o-Xylene	0.33	0.15		ppbV	1	3/20/2009 2:00:00 AM
Propylene	ND	0.15		ppbV	1	3/20/2009 2:00:00 AM
Styrene	1.1	0.15		ppbV	1	3/20/2009 2:00:00 AM
Tetrachloroethylene	0.69	0.15		ppbV	1	3/20/2009 2:00:00 AM
Tetrahydrofuran	1.3	0.15		ppbV	1	3/20/2009 2:00:00 AM
Toluene	3.5	1.5		ppbV	10	3/19/2009 3:54:00 AM
trans-1,2-Dichloroethene	ND	0.15		ppbV	1	3/20/2009 2:00:00 AM
trans-1,3-Dichloropropene	ND	0.15		Vdqq	1	3/20/2009 2:00:00 AM
Trichloroothene	0.11	0.15	J	ppbV	1	3/20/2009 2:00:00 AM
Vinyl acetate	ND	0.15		ppbV	1	3/20/2009 2:00:00 AM
Vinyl Bromide	ND	0.15		ppbV	1	3/20/2009 2:00:00 AM
Vinyl chloride	ND	0.15		ppbV	1	3/20/2009 2:00:00 AM
Surr: Bromofluorobenzene	122	70-130		%REC	1	3/20/2009 2:00:00 AM

Qualifiers:	
-------------	--

- Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- ** Reporting Limit

- E Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit
 - Results reported are not blank corrected

Page 6 of 42

Date: 25-Apr-09

CLIENT: Adirondack Environmental Services, Inc.

Lab Order:

C0903021

Project:

New Paltz, NY

Lab ID: C0903021-005A Client Sample ID: SS-410-1

Tag Number: 315, 62 Collection Date: 3/10/2009

Matrix: AIR

Analyses	Result	**Limit Qual	Units		DF	Date Analyzed
FIELD PARAMETERS		FLD				Analyst:
Lab's Vacuum Reading	-2	100	*Hg			3/13/2009
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		TO-15				Analyst: RJP
1,1,1-Trichloroethane	ND	0.15	ppbV		1	3/20/2009 3:07:00 AM
1,1,2,2-Tetrachloroethane	ND	0.15	ppbV		1	3/20/2009 3:07:00 AM
1,1,2-Trichloroethane	ND	0.15	ppbV		1	3/20/2009 3:07:00 AM
1,1-Dichloroothane	ND	0.15	ppbV		1	3/20/2009 3:07:00 AM
1,1-Dichloroethene	ND	0.15	ppbV		1	3/20/2009 3:07:00 AM
1,2,4-Trichlorobenzene	ND	0.15	ppbV		1	3/20/2009 3:07:00 AM
1,2,4-Trimethylbenzene	0.70	0.15	ppbV		1	3/20/2009 3:07:00 AM
1,2-Dibromoethane	ND	0.15	ppbV		1	3/20/2009 3:07:00 AM
1,2-Dichlorobenzene	ND	0.15	Vdqq		1	3/20/2009 3:07:00 AM
1,2-Dichloroethane	ND	0.15	ppbV		1	3/20/2009 3:07:00 AM
1,2-Dichloropropane	ND	0.15	ppbV		1	3/20/2009 3:07:00 AM
1,3,5-Trimethylbenzene	0.60	0.15	ppbV		1	3/20/2009 3:07:00 AM
1,3-butadlene	ND	0.15	ppbV		1	3/20/2009 3:07:00 AM
1,3-Dichlorobenzene	ND	0.15	ppbV		1	3/20/2009 3:07:00 AM
1,4-Dichlorobenzene	0.22	0.15	ppbV		1	3/20/2009 3:07:00 AM
1,4-Dioxane	ND	0.30	ppbV		1	3/20/2009 3:07:00 AM
2,2,4-trimethylpentane	ND	0.15	ppbV		1	3/20/2009 3:07:00 AM
4-ethyltoluene	0.33	0.15	ppbV		1	3/20/2009 3:07:00 AM
Acetone	11	3.0	ppbV		10	3/19/2009 4:27:00 AM
Allyl chloride	ND	0.15	ppbV		1	3/20/2009 3:07:00 AM
Benzene	ND	0.15	ppbV		1	3/20/2009 3:07:00 AM
Benzyl chloride	ND	0.15	ppbV	UJ	1	3/20/2009 3:07:00 AM
Bromodichloromethane	ND	0.15	ppbV		1	3/20/2009 3:07:00 AM
Bromoform	ND	0.15	ppbV		1	3/20/2009 3:07:00 AM
Bromomethane	ND	0.15	ppbV		1	3/20/2009 3:07:00 AM
Carbon disulfide	0.15	0.15	ppbV		1	3/20/2009 3:07:00 AM
Carbon tetrachloride	ND	0.15	ppbV		1	3/20/2009 3:07:00 AM
Chlorobenzene	ND	0.15	ppbV		1	3/20/2009 3:07:00 AM
Chlorcethane	ND	0.15	ppbV		1	3/20/2009 3:07:00 AM
Chloroform	ND	0.15	ppbV		1	3/20/2009 3:07:00 AM
Chloromethane	ND	0.15	ppbV		1	3/20/2009 3:07:00 AM
cis-1,2-Dichloroethene	0.17	0.15	ppbV		1	3/20/2009 3:07:00 AM
cis-1,3-Dichloropropene	ND	0.15	ppbV		1	3/20/2009 3:07:00 AM
Cyclohexane	ND	0.15	ppbV		1	3/20/2009 3:07:00 AM
Dibromochloromethane	ND	0.15	ppbV		1	3/20/2009 3:07:00 AM
Ethyl acetate	ND	0.25	ppbV		1	3/20/2009 3:07:00 AM
Ethylbenzene	7.7	1.5	ppbV		10	3/19/2009 4:27:00 AM

Qualifiers:

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- 1K Non-routine analyte. Quantitation estimated.
- Spike Recovery outside accepted recovery limits
- Reporting Limit

- B Value above quantitation range
- Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit
 - Results reported are not blank corrected

Page 9 of 42

111 9128/09

Date: 25-Apr-09

CLIENT:

Adirondack Environmental Services, Inc

Lab Order:

C0903021

Project:

New Paltz, NY

Lab ID:

C0903021-005A

Client Sample ID: SS-410-1

Tag Number: 315, 62

Collection Date: 3/10/2009

Matrix: AIR

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		то	-15			Analyst: RJP
Freon 11	1.0	0.15		ppbV	1	3/20/2009 3:07:00 AM
Freon 113	ND	0.15		ppbV	1	3/20/2009 3:07:00 AM
Freon 114	ND	0.15		ppbV	1	3/20/2009 3:07:00 AM
Freon 12	67	6.0		ppbV	40	3/20/2009 3:39:00 AM
Hoptano	0.31	0.15		ppbV	1	3/20/2009 3:07:00 AM
Hexachloro-1,3-butadiene	ND	0.15		ppbV	1	3/20/2009 3:07:00 AM
Hexane	ND	0.15		ppbV	1	3/20/2009 3:07:00 AM
Isopropyl alcohol	2.7	1.5		ppbV	10	3/19/2009 4:27:00 AM
m&p-Xylene	1.4	0.30		ppbV	1	3/20/2009 3:07:00 AM
Methyl Butyl Ketone	ND	0.30		ppbV	1	3/20/2009 3:07:00 AM
Methyl Ethyl Ketone	1.4	0,30		ppbV	1	3/20/2009 3:07:00 AM
Methyl Isobutyl Ketone	0.28	0.30	J	ppbV	1	3/20/2009 3:07:00 AM
Methyl tert-butyl ether	ND	0.15		ppbV	1	3/20/2009 3:07:00 AM
Methylene chloride	0.21	0.15		ppbV	1	3/20/2009 3:07:00 AM
o-Xylono	0.39	0.15		ppbV	1	3/20/2009 3:07:00 AM
Propylene	ND	0.15		ppbV	1	3/20/2009 3:07:00 AM
Styrene	0.94	0.15		ppbV	1	3/20/2009 3:07:00 AM
Tetrachloroethylene	0.70	0.15		ppbV	1	3/20/2009 3:07:00 AM
Tetrahydrofuran	1.1	0.15		ppbV	1	3/20/2009 3:07:00 AM
Toluene	3.6	1.5		Vdqq	10	3/19/2009 4:27:00 AM
trans-1,2-Dichloroethene	ND	0.15		ppbV	1	3/20/2009 3:07:00 AM
trans-1,3-Dichloropropene	ND	0.15		ppbV	1	3/20/2009 3:07:00 AM
Trichloroethene	0.17	0.15		ppbV	1	3/20/2009 3:07:00 AM
Vinyl acetate	ND	0.15		Vdqq	1	3/20/2009 3:07:00 AM
Vinyl Bromide	ND	0.15		ppbV	1	3/20/2009 3:07:00 AM
Vinyl chloride	ND	0.15		Vdqq	1	3/20/2009 3:07:00 AM
Surr: Bromofluorobenzene	127	70-130		%REC	1	3/20/2009 3:07:00 AM

+ 1	**	- 1	6.0	100	e ma
1)	ы.	м	44		1.0

Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

S Spike Recovery outside accepted recovery limits

^{**} Reporting Limit

E Value above quantitation range

J Analyte detected at or below quantitation limits

ND Not Detected at the Reporting Limit

Results reported are not blank corrected

Date: 25-Apr-09

CLIENT:

Adirondack Environmental Services, Inc.

Lab Order:

C0903021

Project: Lab ID: New Paltz, NY

C0903021-007A

Client Sample ID: SS-512-1

Tag Number: 129, 373

Collection Date: 3/10/2009

Matrix: AIR

Analyses	Result	**Limit Qual	Units		DF	Date Analyzed
FIELD PARAMETERS		FLD	10.44	10.0		Analyst:
Lab's Vacuum Reading	-2		"Hg			3/13/2009
TUG/M3 W/ 0.25UG/M3 CT-TCE-VC		TO-15				Analyst: RJP
1,1,1-Trichloroethane	ND	0.15	ppbV		1	3/20/2009 4:13:00 AM
1,1,2,2-Tetrachloroethane	ND	0.15	ppbV		1	3/20/2009 4:13:00 AM
1,1,2-Trichloroethane	ND	0.15	ppbV		1	3/20/2009 4:13:00 AM
1,1-Dichloroethane	ND	0.15	ppbV		1	3/20/2009 4:13:00 AM
1,1-Dichloroethene	ND	0.15	ppbV		1	3/20/2009 4:13:00 AM
1,2,4-Trichlorobenzene	ND	0.15	ppbV		1	3/20/2009 4:13:00 AM
1,2,4-Trimethylbenzene	0.81	0.15	ppbV		1	3/20/2009 4:13:00 AM
1,2-Dibromoethane	ND	0.15	ppbV		1	3/20/2009 4:13:00 AM
1,2-Dichlorobenzene	ND	0.15	ppbV		1	3/20/2009 4:13:00 AM
1.2-Dichloroethane	ND	0.15	ppbV		1	3/20/2009 4:13:00 AM
1,2-Dichloropropane	ND	0.15	ppbV		1	3/20/2009 4:13:00 AM
1,3,5-Trimethylbenzene	0.46	0.15	ppbV		1	3/20/2009 4:13:00 AM
1,3-butadiene	ND	0.15	ppbV		1	3/20/2009 4:13:00 AM
1,3-Dich/orobenzene	ND	0.15	ppbV		1	3/20/2009 4:13:00 AM
1.4-Dichlorobenzene	0.27	0.15	ppbV		1	3/20/2009 4:13:00 AM
1,4-Dioxane	ND	0.30	Vdqq		1	3/20/2009 4:13:00 AM
2,2,4-trimethylpentane	0.32	0.15	Vdqq		1	3/20/2009 4:13:00 AM
4-ethyltoluene	0.33	0.15	ppbV		1	3/20/2009 4:13:00 AM
Acetone	52	12	ppbV		40	3/20/2009 4:46:00 AM
Allyl chloride	ND	0.15	ppbV		1	3/20/2009 4:13:00 AM
Benzene	0.82	0.15	ppbV		1	3/20/2009 4:13:00 AM
Benzyl chloride	ND	0.15	ppbV	05	1	3/20/2009 4:13:00 AM
Bromodichloromethane	ND	0.15	ppbV		1	3/20/2009 4:13:00 AM
Bromoform	ND	0.15	ppbV		1	3/20/2009 4:13:00 AM
Bromomethane	ND	0.15	ppbV		1	3/20/2009 4:13:00 AM
Carbon disulfide	0.15	0.15	Vdqq		1	3/20/2009 4:13:00 AM
Carbon tetrachloride	ND	0.15	ppbV		1	3/20/2009 4:13:00 AM
Chlorobenzene	ND	0.15	ppbV		1	3/20/2009 4:13:00 AM
Chloroethane	ND	0.15	ppbV		1	3/20/2009 4:13:00 AM
Chloroform	ND	0.15	ppbV		1	3/20/2009 4:13:00 AM
Chloromethane	ND	0.15	ppbV		1	3/20/2009 4:13:00 AM
cis-1,2-Dichloroethene	ND	0.15	ppbV		1	3/20/2009 4:13:00 AM
cis-1,3-Dichloropropene	ND	0.15	ppbV		1	3/20/2009 4:13:00 AM
	ND	0.15	ppbV		1	3/20/2009 4:13:00 AM
Cyclohexane Dibromochloromethane	ND	0.15	ppbV		1	3/20/2009 4:13:00 AM
	1.2	0.25	ppbV		1	3/20/2009 4:13:00 AM
Ethyl acetate Ethylbenzene	0.58	0.15	ppbV		1	3/20/2009 4:13:00 AM

Qualifiers:

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- IN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- ** Reporting Limit

- Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit
 - . Results reported are not blank corrected

Page 13 of 42

Mt 9128/09

Date: 25-Apr-09

CLIENT:

Adirondack Environmental Services, Inc

Lab Order:

C0903021

Project:

New Paltz, NY

Lab ID:

C0903021-007A

Client Sample ID: SS-512-1

Tag Number: 129, 373

Collection Date: 3/10/2009

Matrix: AIR

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		то	-15	1.01-		Analyst: RJP
Freon 11	0.99	0.15		ppbV	1	3/20/2009 4:13:00 AM
Freon 113	ND	0.15		ppbV	1	3/20/2009 4:13:00 AM
Freon 114	ND	0.15		ppbV	1	3/20/2009 4:13:00 AM
Freon 12	48	6.0		ppbV	40	3/20/2009 4:46:00 AM
Hoptano	1.0	0.15		ppbV	1	3/20/2009 4:13:00 AM
Hexachloro-1,3-butadiene	ND	0.15		ppbV	1	3/20/2009 4:13:00 AM
Hexane	1.6	0.15		ppbV	1	3/20/2009 4:13:00 AM
Isopropyl alcohol	ND	0.15		ppbV	1	3/20/2009 4:13:00 AM
m&p-Xylene	2.0	0.30		ppbV	1	3/20/2009 4:13:00 AM
Methyl Butyl Ketone	ND	0.30		ppbV	1	3/20/2009 4:13:00 AM
Methyl Ethyl Kelone	1.5	0.30		ppbV	1	3/20/2009 4:13:00 AM
Methyl Isobutyl Ketone	0.91	0.30		ppbV	1	3/20/2009 4:13:00 AM
Methyl tert-butyl ether	ND	0.15		ppbV	1	3/20/2009 4:13:00 AM
Methylene chloride	0.23	0.15		ppbV	1	3/20/2009 4:13:00 AM
o-Xylene	0.61	0.15		ppbV	1	3/20/2009 4:13:00 AM
Propylene	ND	0.15		ppbV	1	3/20/2009 4:13:00 AM
Styrene	0.71	0.15		ppbV	1	3/20/2009 4:13:00 AM
Tetrachloroethylene	0.96	0.15		ppbV	1	3/20/2009 4:13:00 AM
Tetrahydrofuran	1.9	0.15		Vdqq	1	3/20/2009 4:13:00 AM
Toluene	-4.8	1.5		ppbV	10 -	-3/19/2009 4:59:00 AM
trans-1,2-Dichloroethene	ND	0.15		ppbV	1	3/20/2009 4:13:00 AM
trans-1,3-Dichloropropene	ND	0.15		ppbV	1	3/20/2009 4:13:00 AM
Trichloroethene	0.12	0.15	J	ppbV	1	3/20/2009 4:13:00 AM
Vinyl acetate	ND	0.15		ppbV	1	3/20/2009 4:13:00 AM
Vinyl Bromide	ND	0.15		ppbV	1	3/20/2009 4:13:00 AM
Vinyl chloride	ND	0.15		ppbV	1	3/20/2009 4:13:00 AM
		2.23		100000000000000000000000000000000000000		

70-130

124

0	-	-		m	-	- 4
C)	ш	a	ш	и	e	rs

- Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- Spike Recovery outside accepted recovery limits
- Reporting Limit

Surr: Bromofluorobenzene

Value above quantitation range

%REC

- Analyte detected at or below quantitation limits
- Not Detected at the Reporting Limit
 - Results reported are not blank corrected

Page 14 of 42

3/20/2009 4:13:00 AM

Date: 25-Apr-09

CLIENT: Adirondack Environmental Services, Inc

Lab Order: C0903021

Project: New Paltz, NY

Lab ID: C0903021-009A

Client Sample ID: SS-507-1

Tag Number: 328, 391

Collection Date: 3/10/2009

Matrix: AIR

Analyses	Result	**Limit Qua	I Units		DF	Date Analyzed
FIELD PARAMETERS		FLD				Analyst:
Lab's Vacuum Reading	-4		"Hg			3/13/2009
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		TO-15				Analyst: RJP
1,1,1-Trichloroethane	ND	0.15	ppbV		1	3/20/2009 5:20:00 AM
1,1,2,2-Tetrachloroethane	ND	0.15	ppbV		1	3/20/2009 5:20:00 AM
1,1,2-Trichloroethane	ND	0.15	ppbV		1	3/20/2009 5:20:00 AM
1,1-Dichloroethane	ND	0.15	ppbV		1	3/20/2009 5:20:00 AM
1,1-Dichloroethene	ND	0.15	ppbV		1	3/20/2009 5:20:00 AM
1,2,4-Trichlorobenzene	ND	0.15	ppbV		1	3/20/2009 5:20:00 AM
1,2,4-Trimethylbenzene	0.57	0.15	ppbV		1	3/20/2009 5:20:00 AM
1,2-Dibromoethane	ND	0.15	ppbV		1	3/20/2009 5:20:00 AM
1,2-Dichlorobenzene	ND	0.15	ppbV		1	3/20/2009 5:20:00 AM
1,2-Dichloroethane	ND	0.15	ppbV		1	3/20/2009 5:20:00 AM
1,2-Dichloropropane	ND	0.15	ppbV		1	3/20/2009 5:20:00 AM
1,3,5-Trimethylbenzene	0.31	0.15	ppbV		1	3/20/2009 5:20:00 AM
1,3-butadiene	ND	0.15	ppbV		1	3/20/2009 5:20:00 AM
1,3-Dichlorobenzene	ND	0.15	ppbV		1	3/20/2009 5:20:00 AM
1,4-Dichlorobenzene	0.27	0.15	ppbV		1	3/20/2009 5:20:00 AM
1,4-Dioxane	ND	0.30	ppbV		1	3/20/2009 5:20:00 AM
2,2,4-trimethylpentane	ND	0.15	ppbV		1	3/20/2009 5:20:00 AM
4-ethyltoluene	0.22	0.15	ppbV		1	3/20/2009 5:20:00 AM
Acetone	8.4	3.0	ppbV		10	3/19/2009 5:31:00 AM
Allyl chloride	ND	0.15	ppbV		1	3/20/2009 5:20:00 AM
Benzene	0.19	0.15	ppbV		1	3/20/2009 5:20:00 AM
Benzyl chloride	ND	0.15	ppbV	W	1	3/20/2009 5:20:00 AM
Bromodichloromethane	ND	0.15	ppbV		1	3/20/2009 5:20:00 AM
Bromoform	ND	0.15	Vdqq		1	3/20/2009 5:20:00 AM
Bromomethane	ND	0.15	Vdqq		1	3/20/2009 5:20:00 AM
Carbon disulfide	ND	0.15	ppbV		1	3/20/2009 5:20:00 AM
Carbon tetrachloride	0.11	0.15 J	ppbV		1	3/20/2009 5:20:00 AM
Chlorobenzene	ND	0.15	ppbV		1	3/20/2009 5:20:00 AM
Chloroethane	ND	0.15	ppbV		1	3/20/2009 5:20:00 AM
Chloroform	ND	0.15	ppbV		1	3/20/2009 5:20:00 AM
Chloromethane	ND	0.15	ppbV		1	3/20/2009 5:20:00 AM
cis-1,2-Dichloroethene	ND	0.15	ppbV		1	3/20/2009 5:20:00 AM
cis-1,3-Dichloropropene	ND	0.15	ppbV		1	3/20/2009 5:20:00 AM
Cyclohexane	ND	0.15	ppbV		1	3/20/2009 5:20:00 AM
Dibromochloromethane	ND	0.15	ppbV		1	3/20/2009 5:20:00 AM
Ethyl acetate	ND	0.25	ppbV		1	3/20/2009 5:20:00 AM
Ethylbenzene	0.33	0.15	ppbV		1	3/20/2009 5:20:00 AM

Qualiflers:

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- .. Reporting Limit

- Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit
 - Results reported are not blank corrected

Page 17 of 42

Date: 25-Apr-09

CLIENT:

Adirondack Environmental Services, Inc

Lab Order:

C0903021

Project:

New Paltz, NY

Lab ID:

C0903021-009A

Client Sample ID: SS-507-1

Tag Number: 328, 391

Collection Date: 3/10/2009

Matrix: AIR

Analyses	Result	**Limit (Qual Un	its	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		TO-1	5			Analyst: RJP
Freon 11	0.93	0.15	ppt	V	1	3/20/2009 5:20:00 AM
Freon 113	ND	0.15	ppt	V	1	3/20/2009 5:20:00 AM
Freon 114	ND	0.15	ppt	V	1	3/20/2009 5:20:00 AM
Freon 12	1.9	0.15	ppt	V	1	3/20/2009 5:20:00 AM
Heptane	0.49	0.15	ppt	Vo	1	3/20/2009 5:20:00 AM
Hexachloro-1,3-butadiene	ND	0.15	ppt	Vo	1	3/20/2009 5:20:00 AM
Hexane	ND	0.15	ppt	Vo	1	3/20/2009 5:20:00 AM
Isopropyl alcohol	1.6	0.15	ppt		1	3/20/2009 5:20:00 AM
m&p-Xylene	1.0	0.30	ppt	Vd	1	3/20/2009 5:20:00 AM
Methyl Butyl Ketone	ND	0.30	ppt	bV	1	3/20/2009 5:20:00 AM
Methyl Ethyl Ketone	1.1	0.30	ppt	bV	1	3/20/2009 5:20:00 AM
Mothyl Isobutyl Ketone	0.43	0.30	ppt	Vd	1	3/20/2009 5:20:00 AM
Methyl tert-butyl ether	ND	0.15	ppt	Vd	1	3/20/2009 5:20:00 AM
Methylene chloride	0.24	0.15	ppt	bV	1	3/20/2009 5:20:00 AM
o-Xylene	0.27	0.15	ppt	bV	1	3/20/2009 5:20:00 AM
Propylene	ND	0.15	ppt	bV	1	3/20/2009 5:20:00 AM
Styrene	0.77	0.15	ppt	bV	1	3/20/2009 5:20:00 AM
Tetrachloroethylene	0.98	0.15	ppl	bV	1	3/20/2009 5:20:00 AM
Tetrahydrofuran	1.0	0.15	ppl	bV	1	3/20/2009 5:20:00 AM
Toluene	2.9	1.5	ppl	bV	10	3/19/2009 5:31:00 AM
trans-1,2-Dichloroethene	ND	0.15	ppl	bV	1	3/20/2009 5:20:00 AM
trans-1,3-Dichloropropene	ND	0.15	ppl	bV	1	3/20/2009 5:20:00 AM
Trichloroethene	ND	0.15	ppl	bV	1	3/20/2009 5:20:00 AM
Vinyl acetate	ND	0.15	ppl	bV	1	3/20/2009 5:20:00 AM
Vinyl Bromide	ND	0.15	ppl	bV	1	3/20/2009 5:20:00 AM
Vinyl chloride	ND	0.15	ppi		1	3/20/2009 5:20:00 AM
Surr: Bromofluorobenzene	122	70-130		REC	1	3/20/2009 5:20:00 AM

	-
Oual	(Care
C rum	HILLE S

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- ** Reporting Limit

- E Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit
 - . Results reported are not blank corrected

Page 18 of 42

Date: 25-Apr-09

CLIENT:

Adirondack Environmental Services, Inc.

Lab Order:

C0903021

Project:

New Paltz, NY

Lab ID:

C0903021-011A

Client Sample ID: SS-503-1

Tag Number: 460, 345

Collection Date: 3/10/2009

			_
A cont	rix:	Λ1	ъ
vi ai	IIIX:	- CAI	.IN

Analyses	Result	**Limit	Qual	Units		DF	Date Analyzed
FIELD PARAMETERS		FI	.D				Analyst:
Lab's Vacuum Reading	-2			"Hg			3/13/2009
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		то	-15				Analyst: RJP
1,1,1-Trichloroethane	ND	0.15		ppbV		1	3/20/2009 5:54:00 AM
1,1,2,2-Tetrachloroethans	ND	0.15		ppbV		1	3/20/2009 5:54:00 AM
1,1,2-Trichloroethane	ND	0.15		ppbV		1	3/20/2009 5:54:00 AM
1,1-Dichioroethane	ND	0.15		ppbV		1	3/20/2009 5:54:00 AM
1,1-Dichloroethene	ND	0.15		ppbV		1	3/20/2009 5:54:00 AM
1,2,4-Trichlorobenzene	ND	0.15		ppbV		1	3/20/2009 5:54:00 AM
1,2,4-Trimothylbenzene	0.80	0.15		ppbV		1	3/20/2009 5:54:00 AM
1,2-Dibromoethane	ND	0.15		ppbV		1	3/20/2009 5:54:00 AM
1,2-Dichlorobenzene	ND	0.15		ppbV		1	3/20/2009 5:54:00 AM
1,2-Dichloroethane	ND	0.15		ppbV		1	3/20/2009 5:54:00 AM
1,2-Dichloropropane	ND	0.15		ppbV		1	3/20/2009 5:54:00 AM
1,3,5-Trimethylbenzene	0.40	0.15		ppbV		1	3/20/2009 5:54:00 AM
1.3-butadiene	ND	0.15		ppbV		1	3/20/2009 5:54:00 AM
1,3-Dichlorobenzene	ND	0.15		ppbV		1	3/20/2009 5:54:00 AM
1,4-Dichlorobenzene	0.29	0.15		Vdqq		1	3/20/2009 5:54:00 AM
1.4-Dloxane	ND	0.30		Vdqq		1	3/20/2009 5:54:00 AM
2,2,4-trimethylpentane	ND	0.15		Vdqq		1	3/20/2009 5:54:00 AM
4-ethyltoluene	0.29	0.15		ppbV		1	3/20/2009 5:54:00 AM
Acetone	66	12		ppbV		40	3/20/2009 6:26:00 AM
Allyl chloride	ND	0.15		ppbV		1	3/20/2009 5:54:00 AM
Benzene	ND	0.15		ppbV	-	1	3/20/2009 5:54:00 AM
Benzyl chloride	ND	0.15		ppbV	UJ	1	3/20/2009 5:54:00 AM
Bromodichloromethane	ND	0.15		ppbV	-	1	3/20/2009 5:54:00 AM
Bromoform	ND	0.15		ppbV		1	3/20/2009 5:54:00 AM
Bromomethane	ND	0.15		ppbV		1	3/20/2009 5:54:00 AM
Carbon disulfide	0.17	0.15		ppbV		1	3/20/2009 5:54:00 AM
Carbon tetrachloride	ND	0.15		ppbV		1	3/20/2009 5:54:00 AM
Chlorobenzene	ND	0.15		ppbV		1	3/20/2009 5:54:00 AM
Chloroethane	ND	0.15		Vdqq		1	3/20/2009 5:54:00 AM
Chloroform	ND	0.15		ppbV		1	3/20/2009 5:54:00 AM
Chloromethane	ND	0.15		ppbV		1	3/20/2009 5:54:00 AM
cis-1,2-Dichloroothene	ND	0.15		Vdqq		1	3/20/2009 5:54:00 AM
cis-1,3-Dichloropropene	ND	0.15		ppbV		1	3/20/2009 5:54:00 AM
Cyclohexane	ND	0.15		ppbV		1	3/20/2009 5:54:00 AM
Dibromochloromethane	ND	0.15		ppbV		1	3/20/2009 5:54:00 AM
Ethyl acetate	ND	0.15		ppbV		1	3/20/2009 5:54:00 AM
Ethylbenzene	0.38	0.15		ppbV		1	3/20/2009 5:54:00 AM

Qualifiers:

- Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded H
- Non-routine analyte. Quantitation estimated. JN
- Spike Recovery outside accepted recovery limits S
- Reporting Limit

- E Value above quantitation range
- Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit
 - Results reported are not blank corrected

Page 21 of 42

Date: 25-Apr-09

CLIENT: Adirondack Environmental Services, Inc

Lab Order:

C0903021

Project:

New Paltz, NY

Lab ID:

C0903021-011A

Client Sample ID: SS-503-1

Tag Number: 460, 345

Collection Date: 3/10/2009

Matrix: AIR

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		то	-15			Analyst: RJP
Freon 11	2.6	1.5		ppbV	10	3/19/2009 6:03:00 AM
Freon 113	ND	0.15		ppbV	1	3/20/2009 5:54:00 AM
Freon 114	ND	0.15		ppbV	1	3/20/2009 5:54:00 AM
Freon 12	17	1.5		ppbV	10	3/19/2009 6:03:00 AM
Heptane	1.7	0.15		ppbV	1	3/20/2009 5:54:00 AM
Hexachloro-1,3-butadiene	ND	0.15		ppbV	1.	3/20/2009 5:54:00 AM
Hexane	2.5	1.5		ppbV	10	3/19/2009 6:03:00 AM
Isopropyl alcohol	14	1.5		ppbV	10	3/19/2009 6:03:00 AM
m&p-Xylene	1.4	0.30		ppbV	1	3/20/2009 5:54:00 AM
Methyl Butyl Ketone	ND	0.30		ppbV	1	3/20/2009 5:54:00 AM
Methyl Ethyl Ketone	1.6	0.30		ppbV	1	3/20/2009 5:54:00 AM
Methyl Isobutyl Ketone	1.6	0.30		ppbV	1	3/20/2009 5:54:00 AM
Methyl tert-butyl ether	ND	0.15		ppbV	1	3/20/2009 5:54:00 AM
Methylene chloride	0.28	0.15		ppbV	1	3/20/2009 5:54:00 AM
o-Xylene	0.40	0.15		ppbV	1	3/20/2009 5:54:00 AM
Propylene	ND	0.15		ppbV	1	3/20/2009 5:54:00 AM
Styrene	0.89	0.15		ppbV	1	3/20/2009 5:54:00 AM
Tetrachloroethylene	0.78	0.15		PpbV	1	3/20/2009 5:54:00 AM
Tetrahydrofuran	1.7	0.15		ppbV	1	3/20/2009 5:54:00 AM
Toluene	3.4	1.5		ppbV	10	3/19/2009 6:03:00 AM
trans-1,2-Dichloroethene	ND	0.15		ppbV	1	3/20/2009 5:54:00 AM
trans-1,3-Dichloropropene	ND	0.15		ppbV	1	3/20/2009 5:54:00 AM
Trichloroethene	0.28	0.15		ppbV	1	3/20/2009 5:54:00 AM
Vinyl acetate	ND	0.15		ppbV	1	3/20/2009 5:54:00 AM
Vinyl Bromide	ND	0.15		ppbV	1	3/20/2009 5:54:00 AM
Vinyl chloride	ND	0.15		ppbV	1	3/20/2009 5:54:00 AM
Surr: Bromofluorobonzene	114	70-130		%REC	1	3/20/2009 5:54:00 AM

Ou	- 15	m.	441
v	шu	une	rs:

- Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- ** Reporting Limit

- Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit
 - Results reported are not blank corrected

Page 22 of 42

Date: 25-Apr-09

CLIENT:

Adirondack Environmental Services, Inc

Lab Order:

C0903021

Project:

New Paltz, NY

Lab ID:

C0903021-013A

Client Sample ID: SS-501-1

Tag Number: 108, 372

Collection Date: 3/10/2009

Matrix: AIR

Analyses	Result	**Limit	Qual	Units		DF	Date Analyzed
FIELD PARAMETERS		FL	D				Analyst:
Lab's Vacuum Reading	-3			"Hg			3/13/2009
1UG/M3 BY METHOD TO15		TO	-15				Analyst: RJF
1,1,1-Trichloroethane	ND	0.15		ppbV		1	3/20/2009 7:00:00 AM
1,1,2,2-Tetrachloroethane	ND	0.15		ppbV		1	3/20/2009 7:00:00 AM
1,1,2-Trichloroethane	ND	0.15		ppbV		1	3/20/2009 7:00:00 AM
1,1-Dichloroethane	ND	0.15		ppbV		1	3/20/2009 7:00:00 AM
1,1-Dichloroethene	ND	0.15		ppbV		1	3/20/2009 7:00:00 AM
1,2,4-Trichlorobenzene	ND	0.15		ppbV		1	3/20/2009 7:00:00 AM
1,2,4-Trimethylbenzene	0.36	0.15		ppbV		1	3/20/2009 7:00:00 AM
1,2-Dibromoethane	ND	0.15		ppbV		1	3/20/2009 7:00:00 AM
1,2-Dichlorobenzene	ND	0.15		ppbV		1	3/20/2009 7:00:00 AM
1,2-Dichloroothano	ND	0.15		ppbV		1	3/20/2009 7:00:00 AM
1,2-Dichloropropane	ND	0.15		ppbV		1	3/20/2009 7:00:00 AM
1,3,5-Trimethylbenzene	0.25	0.15		ppbV		1	3/20/2009 7:00:00 AM
1,3-butadlene	ND	0.15		ppbV		1	3/20/2009 7:00:00 AM
1,3-Dichlorobonzene	ND	0.15		ppbV		1	3/20/2009 7:00:00 AM
1.4-Dichlorobenzene	0.19	0.15		ppbV		1	3/20/2009 7:00:00 AM
1.4-Dioxane	ND	0.30		ppbV		1	3/20/2009 7:00:00 AM
2,2,4-trimethylpentane	ND	0.15		ppbV		1	3/20/2009 7:00:00 AM
4-ethyltoluene	0.19	0.15		ppbV		1	3/20/2009 7:00:00 AM
Acetone	7.2	3.0		ppbV		10	3/19/2009 6:34:00 AM
Allyl chloride	ND	0.15		ppbV		1	3/20/2009 7:00:00 AM
Benzene	0.11	0.15	J	ppbV		1	3/20/2009 7:00:00 AM
Benzyl chloride	ND	0.15		ppbV	UJ	1	3/20/2009 7:00:00 AM
Bromodichloromethane	ND	0.15		Vdqq		1	3/20/2009 7:00:00 AM
Bromoform	ND	0.15		ppbV		1	3/20/2009 7:00:00 AM
Bromomethane	ND	0.15		ppbV		1	3/20/2009 7:00:00 AM
Carbon disulfide	ND	0.15		ppbV		1	3/20/2009 7:00:00 AM
Carbon tetrachlorida	0.12	0.15	J	ppbV		1	3/20/2009 7:00:00 AM
Chlorobenzene	ND	0.15		ppbV		1	3/20/2009 7:00:00 AM
Chloroethane	ND	0.15		ppbV		1	3/20/2009 7:00:00 AM
Chloroform	ND	0.15		Vdqq		1	3/20/2009 7:00:00 AN
Chloromethane	ND	0.15		Vdqq		1	3/20/2009 7:00:00 AM
cis-1,2-Dichloroethene	ND	0.15		ppbV		1	3/20/2009 7:00:00 AM
cis-1,3-Dichloropropene	ND	0.15		ppbV		1	3/20/2009 7:00:00 AM
Cyclohexane	ND	0.15		ppbV		1	3/20/2009 7:00:00 AM
Dibromochloromethane	ND	0.15		ppbV		1	3/20/2009 7:00:00 AM
Ethyl acetato	ND	0.25		ppbV		1	3/20/2009 7:00:00 AN
Ethylbenzene	0.23	0.15		ppbV		1	3/20/2009 7:00:00 AM

Qualifiers:

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- ** Reporting Limit

- E Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit
 - . Results reported are not blank corrected

Page 25 of 42

11/28/09

Date: 25-Apr-09

CLIENT:

Adirondack Environmental Services, Inc.

Lab Order:

C0903021

Project:

New Paltz, NY

Lab ID:

C0903021-013A

Client Sample ID: SS-501-1

Tag Number: 108, 372

Collection Date: 3/10/2009

Matrix: AIR

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
1UG/M3 BY METHOD TO15		то	-15			Analyst: RJP
Freon 11	2.7	1.5		ppbV	10	3/19/2009 6:34:00 AM
Freon 113	ND	0.15		ppbV	1	3/20/2009 7:00:00 AM
Freon 114	ND	0.15		ppbV	1	3/20/2009 7:00:00 AM
Freon 12	13	1.5		ppbV	10	3/19/2009 6:34:00 AM
Heptane	0.31	0.15		ppbV	1	3/20/2009 7:00:00 AM
Hexachloro-1,3-butadiene	ND	0.15		ppbV	1	3/20/2009 7:00:00 AM
Hexane	ND	0.15		ppbV	1	3/20/2009 7:00:00 AM
Isopropyl alcohol	ND	0.15		ppbV	1	3/20/2009 7:00:00 AM
m&p-Xylene	0.73	0.30		ppbV	1	3/20/2009 7:00:00 AM
Methyl Butyl Ketone	ND	0.30		ppbV	1	3/20/2009 7:00:00 AM
Methyl Ethyl Ketone	0.94	0.30		ppbV	1	3/20/2009 7:00:00 AM
Methyl Isobutyl Ketone	0.28	0.30	J	ppbV	1	3/20/2009 7:00:00 AM
Methyl tort-butyl ether	ND	0.15		ppbV	1	3/20/2009 7:00:00 AM
Methylene chloride	0.20	0.15		ppbV	1	3/20/2009 7:00:00 AM
o-Xylene	0.25	0.15		ppbV	1	3/20/2009 7:00:00 AM
Propyleno	ND	0.15		ppbV	1	3/20/2009 7:00:00 AM
Styrene	0.48	0.15		ppbV	1	3/20/2009 7:00:00 AM
Tetrachloroethylene	0.46	0.15		ppbV	1	3/20/2009 7:00:00 AM
Tetrahydrofuran	0.86	0.15		ppbV	1	3/20/2009 7:00:00 AM
Toluene	2.4	1.5		ppbV	10	3/19/2009 6:34:00 AM
trans-1,2-Dichloroethene	ND	0.15		ppbV	1	3/20/2009 7:00:00 AM
trans-1,3-Dichloropropene	ND	0.15		ppbV	1	3/20/2009 7:00:00 AM
Trichloroethene	1.1	0.15		ppbV	1	3/20/2009 7:00:00 AM
Vinyl acetate	ND	0.15		ppbV	1	3/20/2009 7:00:00 AM
Vinyl Bromide	ND	0.15		ppbV	1	3/20/2009 7:00:00 AM
Vinyl chloride	ND	0.15		ppbV	1	3/20/2009 7:00:00 AM
Surr: Bromofluorobenzene	110	70-130		%REC	1	3/20/2009 7:00:00 AM

100		5-	
Oua	ш	T۸	20
Vua		me.	на

- Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- ** Reporting Limit

- E Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit
 - Results reported are not blank corrected

Page 26 of 42

Date: 25-Apr-09

CLIENT:

Adirondack Environmental Services, Inc.

Lab Order:

C0903021

Project:

New Paltz, NY

Lab ID:

C0903021-014A

Client Sample ID: IA-501-1

Tag Number: 225, 81

Collection Date: 3/10/2009

Matrix: AIR

Analyses	Result	**Limit Qu	al Units	DF	Date Analyzed
FIELD PARAMETERS		FLD			Analyst:
Lab's Vacuum Reading	-4		"Hg		3/13/2009
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		TO-15			Analyst: RJP
1,1,1-Trichloroethane	ND	0.15	ppbV	1	3/19/2009 12:08:00 AM
1,1,2,2-Tetrachloroethane	ND	0.15	ppbV	1	3/19/2009 12:08:00 AM
1.1.2-Trichloroethane	ND	0.15	ppbV	1	3/19/2009 12:08:00 AM
1,1-Dichloroethane	ND	0.15	ppbV	1	3/19/2009 12:08:00 AM
1.1-Dichloroethene	ND	0.15	ppbV	1	3/19/2009 12:08:00 AM
1,2,4-Trichlorobenzene	ND	0.15	ppbV	1	3/19/2009 12:08:00 AM
1,2,4-Trimethylbenzene	0.27	0.15	Vdqq	1	3/19/2009 12:08:00 AM
1,2-Dibromoethane	ND	0.15	ppbV	1	3/19/2009 12:08:00 AM
1,2-Dichlorobenzene	ND	0.15	ppbV	1	3/19/2009 12:08:00 AM
1,2-Dichloroethane	ND	0.15	ppbV	1	3/19/2009 12:08:00 AM
1,2-Dichloropropane	ND	0.15	ppbV	1	3/19/2009 12:08:00 AM
1,3,5-Trimethylbenzene	ND	0.15	ppbV	1	3/19/2009 12:08:00 AM
1,3-butadiene	ND	0.15	ppbV	1	3/19/2009 12:08:00 AM
1,3-Dichlorobenzene	ND	0.15	ppbV	1	3/19/2009 12:08:00 AM
1,4-Dichlorobenzene	ND	0.15	ppbV	1	3/19/2009 12:08:00 AM
1,4-Dioxane	ND	0.30	ppbV	1	3/19/2009 12:08:00 AM
2,2,4-trimethylpentane	ND	0.15	ppbV	1	3/19/2009 12:08:00 AM
4-ethyltoluene	ND	0.15	ppbV	1	3/19/2009 12:08:00 AM
Acetone	56	12	ppbV	40	3/19/2009 9:02:00 PM
Allyl chloride	ND	0.15	Vdqq	1	3/19/2009 12:08:00 AM
Benzeno	0.32	0.15	ppbV	_1	3/19/2009 12:08:00 AM
Benzyl chloride	ND	0.15	ppbV	1 60	3/19/2009 12:08:00 AM
Bromodichloromethane	ND	0.15	ppbV	1	3/19/2009 12:08:00 AM
Bromoform	ND	0.15	Vdqq	1	3/19/2009 12:08:00 AM
Bromomethane	ND	0.15	ppbV	1	3/19/2009 12:08:00 AM
Carbon disulfide	ND	0.15	ppbV	1	3/19/2009 12:08:00 AM
Carbon tetrachloride	ND	0.040	ppbV	1	3/19/2009 12:08:00 AM
Chlorobenzene	ND	0.15	ppbV	1	3/19/2009 12:08:00 AM
Chloroethane	ND	0.15	ppbV	1	3/19/2009 12:08:00 AM
Chloroform	0.34	0.15	ppbV	1	3/19/2009 12:08:00 AM
Chloromethane	0.69	0.15	ppbV	1	3/19/2009 12:08:00 AM
cis-1,2-Dichloroethene	ND	0.15	ppbV	1	3/19/2009 12:08:00 AM
cis-1,3-Dichloropropene	ND	0.15	ppbV	1	3/19/2009 12:08:00 AM
Cyclohexane	0.33	0.15	ppbV	1	3/19/2009 12:08:00 AN
Dibromochloromethane	ND	0.15	ppbV	1	3/19/2009 12:08:00 AM
Ethyl acetate	2.9	2.5	ppbV	10	3/19/2009 8:30:00 PM
Ethylbenzene	0.16	0.15	Vdqq	1	3/19/2009 12:08:00 AM

Qualifiers:

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- ** Reporting Limit

- Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit
 - Results reported are not blank corrected

Page 27 of 42

MA 9/28/09

Date: 25-Apr-09

CLIENT:

Adirondack Environmental Services, Inc

Lab Order:

C0903021

Project:

New Paltz, NY

Lab ID:

C0903021-014A

Client Sample ID: IA-501-1

Tag Number: 225, 81

Collection Date: 3/10/2009

Matrix: AIR

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		то-	15			Analyst: RJP
Freon 11	19	1.5		ppbV	10	3/19/2009 8:30:00 PM
Freon 113	ND	0.15		ppbV	1	3/19/2009 12:08:00 AM
Freon 114	ND	0.15		ppbV	1	3/19/2009 12:08:00 AM
Freon 12	1.0	0.15		ppbV	1	3/19/2009 12:08:00 AM
Heptane	0.43	0.15		ppbV	1	3/19/2009 12:08:00 AM
Hexachloro-1,3-butadiene	ND	0.15		ppbV	1	3/19/2009 12:08:00 AM
Hexane	ND	0.15		Vdqq	1	3/19/2009 12:08:00 AM
Isopropyl alcohol	60	6.0		Vdqq	40	3/19/2009 9:02:00 PM
m&p-Xylene	0.38	0.30		ppbV	1	3/19/2009 12:08:00 AM
Methyl Butyl Ketone	ND	0.30		ppbV	1	3/19/2009 12:08:00 AM
Methyl Ethyl Ketone	ND	0.30		ppbV	1	3/19/2009 12:08:00 AM
Methyl Isobutyl Ketone	0.41	0.30		ppbV	1	3/19/2009 12:08:00 AM
Methyl tert-butyl ether	ND	0.15		ppbV	1	3/19/2009 12:08:00 AM
Methylone chloride	0.17	0.15		ppbV	1	3/19/2009 12:08:00 AM
o-Xylene	0.17	0.15		ppbV	1	3/19/2009 12:08:00 AM
Propylene	ND	0.15		ppbV	1	3/19/2009 12:08:00 AM
Styrene	0.41	0.15		ppbV	1	3/19/2009 12:08:00 AM
Tetrachloroethylene	0.15	0.15		ppbV	1	3/19/2009 12:08:00 AM
Tetrahydrofuran	ND	0.15		ppbV	1	3/19/2009 12:08:00 AM
Toluene	2.1	1.5		ppbV	10	3/19/2009 8:30:00 PM
trans-1,2-Dichloroethene	ND	0.15		ppbV	1	3/19/2009 12:08:00 AM
trans-1,3-Dichloropropene	ND	0.15		ppbV	1	3/19/2009 12:08:00 AM
Trichloroethene	0.070	0.040		ppbV	1	3/19/2009 12:08:00 AM
Vinyl acetate	ND	0.15		ppbV	1	3/19/2009 12:08:00 AM
Vinyl Bromide	ND	0.15		ppbV	1	3/19/2009 12:08:00 AM
Vinyl chloride	ND	0.040		ppbV	1	3/19/2009 12:08:00 AM
Surr: Bromofluorobenzene	115	70-130		%REC	1	3/19/2009 12:08:00 AM

0	110	tte	200	-0

- Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- ** Reporting Limit

- E Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit
 - Results reported are not blank corrected

Page 28 of 42

Date: 25-Apr-09

CLIENT:

Adirondack Environmental Services, Inc.

Lab Order:

C0903021

Project:

New Paltz, NY

Lab ID:

C0903021-015A

Client Sample ID: SS-610-1

Tag Number: 327, 120

Collection Date: 3/10/2009

Matrix: AIR

Analyses	Result	**Limit	Qual	Units		DF	Date Analyzed
FIELD PARAMETERS		FI	.D				Analyst:
Lab's Vacuum Reading	-2			"Hg			3/13/2009
1UG/M3 BY METHOD TO15		то	-15				Analyst: RJP
1,1,1-Trichloroethane	ND	0.15		ppbV		1	3/20/2009 7:34:00 AM
1,1,2,2-Tetrachloroethane	ND	0.15		ppbV		1	3/20/2009 7:34:00 AM
1,1,2-Trichloroethane	ND	0.15		ppbV		1	3/20/2009 7:34:00 AM
1,1-Dichloroethane	ND	0.15		ppbV		1	3/20/2009 7:34:00 AM
1,1-Dichloroethene	ND	0.15		ppbV		1	3/20/2009 7:34:00 AM
1,2,4-Trichlorobenzene	ND	0.15		ppbV		1	3/20/2009 7:34:00 AM
1,2,4-Trimethylbenzene	0.36	0.15		ppbV		1	3/20/2009 7:34:00 AM
1,2-Dibromoethane	ND	0.15		ppbV		-1	3/20/2009 7:34:00 AM
1,2-Dichlorobenzene	ND	0.15		ppbV		1	3/20/2009 7:34:00 AM
1,2-Dichloroothane	ND	0.15		ppbV		1	3/20/2009 7:34:00 AM
1,2-Dichloropropane	ND	0.15		ppbV		1	3/20/2009 7:34:00 AM
1,3,5-Trimethylbenzene	0.28	0.15		ppbV		1	3/20/2009 7:34:00 AM
1,3-butadiene	ND	0.15		Vdqq		1	3/20/2009 7:34:00 AM
1,3-Dichlorobenzene	ND	0.15		ppbV		1	3/20/2009 7:34:00 AM
1,4-Dichlorobenzene	ND	0.15		ppbV		1	3/20/2009 7:34:00 AM
1,4-Dioxane	ND	0.30		ppbV		1	3/20/2009 7:34:00 AM
2,2,4-trimethylpentane	ND	0.15		ppbV		1	3/20/2009 7:34:00 AM
4-ethyltoluene	0.17	0.15		ppbV		1	3/20/2009 7:34:00 AM
Acetone	7.7	3.0		Vdqq		10	3/19/2009 7:06:00 AM
Allyl chloride	ND	0.15		ppbV		1	3/20/2009 7:34:00 AM
Benzene	0.14	0.15	J	ppbV		1	3/20/2009 7:34:00 AM
Benzyl chloride	ND	0.15		ppbV	UJ	1	3/20/2009 7:34:00 AM
Bromodichloromethane	ND	0.15		ppbV		1	3/20/2009 7:34:00 AM
Bromoform	ND	0.15		ppbV		1	3/20/2009 7:34:00 AM
Bromomethane	ND	0.15		ppbV		1	3/20/2009 7:34:00 AM
Carbon disulfide	ND	0.15		ppbV		1	3/20/2009 7:34:00 AM
Carbon tetrachloride	0.11	0.15	J	ppbV		1	3/20/2009 7:34:00 AM
Chlorobenzene	ND	0.15		ppbV		1	3/20/2009 7:34:00 AM
Chloroethane	ND	0.15		ppbV		1	3/20/2009 7:34:00 AM
Chloroform	ND	0.15		ppbV		1	3/20/2009 7:34:00 AM
Chloromethane	ND	0.15		ppbV		1	3/20/2009 7:34:00 AM
cis-1,2-Dichloroethene	ND	0.15		ppbV		1	3/20/2009 7:34:00 AM
cis-1,3-Dichloropropene	ND	0.15		ppbV		1	3/20/2009 7:34:00 AM
Cyclchexane	ND	0.15		ppbV		1	3/20/2009 7:34:00 AM
Dibromochloromethane	ND	0.15		ppbV		1	3/20/2009 7:34:00 AM
Ethyl acetate	ND	0.25		ppbV		1	3/20/2009 7:34:00 AM
Ethylbenzene	0.29	0.15		ppbV		1	3/20/2009 7:34:00 AM

Qualifiers:

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- ** Reporting Limit

- E Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit
 - . Results reported are not blank corrected

Page 29 of 42

Date: 25-Apr-09

CLIENT: Adirondack Environmental Services, Inc

Lab Order:

C0903021

Project:

New Paltz, NY

Lab ID:

C0903021-015A

Client Sample ID: SS-610-1

Tag Number: 327, 120

Collection Date: 3/10/2009

Matrix: AIR

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
1UG/M3 BY METHOD TO15		TO-	15			Analyst: RJP
Freon 11	0.37	0.15		ppbV	1	3/20/2009 7:34:00 AM
Freon 113	ND	0.15		ppbV	1	3/20/2009 7:34:00 AM
Freon 114	ND	0.15		ppbV	1	3/20/2009 7:34:00 AM
Freon 12	6.3	1.5		ppbV	10	3/19/2009 7:06:00 AM
Heptane	0.33	0.15		ppbV	1	3/20/2009 7:34:00 AM
Hexachloro-1,3-butadione	ND	0.15		ppbV	1	3/20/2009 7:34:00 AM
Hexane	ND	0.15		ppbV	1	3/20/2009 7:34:00 AM
Isopropyl alcohol	ND	0.15		ppbV	1	3/20/2009 7:34:00 AM
m&p-Xylene	0.93	0.30		ppbV	1	3/20/2009 7:34:00 AM
Methyl Butyl Ketone	ND	0.30		ppbV	1	3/20/2009 7:34:00 AM
Methyl Ethyl Ketone	1.0	0.30		ppbV	1	3/20/2009 7:34:00 AM
Methyl Isobutyl Ketone	0.31	0.30		Vdqq	1	3/20/2009 7:34:00 AM
Methyl tert-butyl ether	ND	0.15		ppbV	1	3/20/2009 7:34:00 AM
Methylena chloride	0.23	0.15		ppbV	1	3/20/2009 7:34:00 AM
o-Xylene	0.27	0.15		ppbV	1	3/20/2009 7:34:00 AM
Propylene	ND	0.15		ppbV	1	3/20/2009 7:34:00 AM
Styrene	0.72	0.15		ppbV	1	3/20/2009 7:34:00 AM
Tetrachloroethylene	0.85	0.15		ppbV	1	3/20/2009 7:34:00 AM
Tetrahydrofuran	0.99	0.15		ppbV	1	3/20/2009 7:34:00 AM
Toluene	2.6	1.5		Vdqq	10	3/19/2009 7:06:00 AM
trans-1,2-Dichloroethene	ND	0.15		PopoV	1	3/20/2009 7:34:00 AM
trans-1,3-Dichloropropene	ND	0.15		ppbV	1	3/20/2009 7:34:00 AM
Trichloroethene	0.12	0.15	J	ppbV	1	3/20/2009 7:34:00 AM
Vinyl acetate	ND	0.15		ppbV	1	3/20/2009 7:34:00 AM
Vinyl Bromide	ND	0.15		ppbV	1	3/20/2009 7:34:00 AM
Vinyl chloride	ND	0.15		ppbV	1	3/20/2009 7:34:00 AM
Surr: Bromofluorobenzene	113	70-130		%REC	1	3/20/2009 7:34:00 AM

Qualifiers	Q	ual	ii	ic	rs
------------	---	-----	----	----	----

- Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- ** Reporting Limit

- 3 Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit
 - Results reported are not blank corrected

Page 30 of 42

Date: 25-Apr-09

CLIENT:

Adirondack Environmental Services, Inc.

Lab Order:

C0903021

Project:

New Paltz, NY

Lab ID:

C0903021-016A

Client Sample ID: IA-610-1

Tag Number: 413, 292 Collection Date: 3/10/2009

Matrix:

Analyses	Result	**Limit	Qual	Units		DF	Date Analyzed
FIELD PARAMETERS		F	LD				Analyst:
Lab's Vacuum Reading	-4			*Hg			3/13/2009
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		TO	-15				Analyst: RJP
1,1,1-Trichloroethane	ND	0.15		ppbV		1	3/19/2009 12:40:00 AM
1,1,2,2-Tetrachloroethane	ND	0.15		ppbV		1	3/19/2009 12:40:00 AM
1,1,2-Trichloroethane	ND	0.15		ppbV		1	3/19/2009 12:40:00 AM
1,1-Dichloroethane	ND	0.15		ppbV		1	3/19/2009 12:40:00 AM
1,1-Dichloroethene	ND	0.15		ppbV		1	3/19/2009 12:40:00 AM
1,2,4-Trichlorobenzene	ND	0.15		ppbV		1	3/19/2009 12:40:00 AM
1,2,4-Trimethylbenzens	0.37	0.15		ppbV		1	3/19/2009 12:40:00 AM
1,2-Dibromoethane	ND	0.15		ppbV		1	3/19/2009 12:40:00 AM
1,2-Dichlorobenzene	ND	0.15		ppbV		1	3/19/2009 12:40:00 AM
1,2-Dichloroethane	ND	0.15		ppbV		1	3/19/2009 12:40:00 AM
1,2-Dichloropropane	ND	0.15		ppbV		1	3/19/2009 12:40:00 AM
1,3,5-Trimethylbenzene	0.18	0.15		ppbV		1	3/19/2009 12:40:00 AM
1,3-butadiene	ND	0.15		ppbV		1	3/19/2009 12:40:00 AM
1,3-Dichlorobenzene	ND	0.15		ppbV		1	3/19/2009 12:40:00 AM
1,4-Dichlorobenzene	ND	0.15		ppbV		1	3/19/2009 12:40:00 AM
1,4-Dioxane	ND	0.30		ppbV		1	3/19/2009 12:40:00 AM
2,2,4-trimethy/pentane	ND	0.15		ppbV		1	3/19/2009 12:40:00 AM
4-ethyltoluene	0.12	0.15	J	ppbV		1	3/19/2009 12:40:00 AM
Acetone	53	12		ppbV		40	3/19/2009 10:07:00 PM
Allyl chloride	ND	0.15		ppbV		1	3/19/2009 12:40:00 AM
Benzene	0.30	0.15		ppbV		1	3/19/2009 12:40:00 AM
Benzyl chloride	ND	0.15		ppbV	W	1	3/19/2009 12:40:00 AM
Bromodichloromethane	ND	0.15		ppbV		1	3/19/2009 12:40:00 AM
Bromoform	ND	0.15		ppbV		1	3/19/2009 12:40:00 AM
Bromomethane	ND	0.15		ppbV		1	3/19/2009 12:40:00 AM
Carbon disulfide	ND	0.15		ppbV		1	3/19/2009 12:40:00 AM
Carbon tetrachloride	0.070	0.040		ppbV		1	3/19/2009 12:40:00 AM
Chlorobenzene	ND	0.15		ppbV		1	3/19/2009 12:40:00 AM
Chloroethane	ND	0.15		ppbV		1	3/19/2009 12:40:00 AM
Chloroform	0.15	0.15		ppbV		1	3/19/2009 12:40:00 AM
Chloromethane	0.57	0.15		ppbV		1	3/19/2009 12:40:00 AM
cis-1,2-Dichloroethene	ND	0.15		ppbV		1	3/19/2009 12:40:00 AM
cis-1,3-Dichloropropene	ND	0,15		ppbV		1	3/19/2009 12:40:00 AM
Cyclohexane	0.18	0.15		ppbV		1	3/19/2009 12:40:00 AM
Dibromochloromethane	ND	0.15		ppbV		1	3/19/2009 12:40:00 AM
Ethyl acetate	8.8	2.5		ppbV		10	3/19/2009 9:34:00 PM
Ethylbenzene	0.16	0.15		ppbV		1	3/19/2009 12:40:00 AM

Qualifiers:

- Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- IN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Reporting Limit

- E Value above quantitation range
- Analyte detected at or below quantitation limits
- Not Detected at the Reporting Limit
 - Results reported are not blank corrected

Page 31 of 42

Date: 25-Apr-09

CLIENT:

Adirondack Environmental Services, Inc

Lab Order:

C0903021

C09030Z

Project: Lab ID: New Paltz, NY C0903021-016A Client Sample ID: IA-610-1

Tag Number: 413, 292

Collection Date: 3/10/2009

Matrix:

Analyses	Result	**Limit (Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		TO-	15			Analyst: RJP
Freon 11	5.2	1.5		ppbV	10	3/19/2009 9:34:00 PM
Freon 113	ND	0.15		ppbV	1	3/19/2009 12:40:00 AM
Freon 114	ND	0.15		ppbV	1	3/19/2009 12:40:00 AM
Freon 12	0.78	0.15		ppbV	1	3/19/2009 12:40:00 AM
Heptane	0.30	0.15		ppbV	1	3/19/2009 12:40:00 AM
Hexachloro-1,3-butadiene	ND	0.15		ppbV	1	3/19/2009 12:40:00 AM
Hexane	ND	0.15		ppbV	1	3/19/2009 12:40:00 AM
Isopropyl alcohol	9.5	1.5		ppbV	10	3/19/2009 9:34:00 PM
m&p-Xylene	0.52	0.30		ppbV	1	3/19/2009 12:40:00 AM
Methyl Butyl Ketone	ND	0.30		ppbV	1	3/19/2009 12:40:00 AM
Methyl Ethyl Ketone	0.76	0.30		ppbV	1	3/19/2009 12:40:00 AM
Methyl Isobutyl Ketone	ND	0.30		ppbV	1	3/19/2009 12:40:00 AM
Methyl tert-butyl ether	ND	0.15		Vdqq	1	3/19/2009 12:40:00 AM
Methylene chloride	0.16	0.15		ppbV	1	3/19/2009 12:40:00 AM
o-Xylene	0.20	0.15		ppbV	1	3/19/2009 12:40:00 AM
Propylene	ND	0.15		ppbV	1	3/19/2009 12:40:00 AM
Styrene	0.41	0.15		ppbV	1	3/19/2009 12:40:00 AM
Tetrachloroethylene	0.13	0.15	J	ppbV	1	3/19/2009 12:40:00 AM
Tetrahydrofuran	ND	0.15		ppbV	1	3/19/2009 12:40:00 AM
Toluene	2.5	1.5		ppbV	10	3/19/2009 9:34:00 PM
trans-1,2-Dichloroethene	ND	0.15		ppbV	1	3/19/2009 12:40:00 AM
trans-1,3-Dichloropropene	ND	0.15		ppbV	1	3/19/2009 12:40:00 Al
Trichloroethene	ND	0.040		ppbV	1	3/19/2009 12:40:00 AM
Vinyl acetate	ND	0.15		ppbV	1	3/19/2009 12:40:00 Af
Vinyl Bromide	ND	0.15		ppbV	1	3/19/2009 12:40:00 Al
Vinyl chloride	ND	0.040		ppbV	1	3/19/2009 12:40:00 Al
Surr: Bromofluorobenzene	114	70-130		%REC	1	3/19/2009 12:40:00 A

Qualific	r	s
----------	---	---

- Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- ** Reporting Limit

- E Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit
 - Results reported are not blank corrected

Page 32 of 42

Date: 25-Apr-09

CLIENT:

Adirondack Environmental Services, Inc.

Lab Order:

C0903021

Project:

New Paltz, NY

Lab ID:

C0903021-017A

Client Sample ID: SS-605-1

Tag Number: 224, 262

Collection Date: 3/10/2009

Matrix: AIR

Analyses	Result	**Limit	Qual	Units	I	F	Date Analyzed
FIELD PARAMETERS		FL	D				Analyst:
Lab's Vacuum Reading	-2			"Hg			3/13/2009
1UG/M3 BY METHOD TO15		то	-15				Analyst: RJP
1,1,1-Trichloroethane	ND	0.15		ppbV	1		3/20/2009 8:08:00 AM
1,1,2,2-Tetrachloroethane	ND	0.15		ppbV	1		3/20/2009 8:08:00 AM
1,1,2-Trichloroethane	ND	0.15		ppbV	1		3/20/2009 8:08:00 AM
1,1-Dichloroethane	ND	0.15		ppbV	1		3/20/2009 8:08:00 AM
1,1-Dichloroethene	ND	0.15		ppbV	1		3/20/2009 8:08:00 AM
1,2,4-Trichlorobenzene	ND	0.15		ppbV	1		3/20/2009 8:08:00 AM
1,2,4-Trimethylbenzene	0.41	0.15		ppbV	-1		3/20/2009 8:08:00 AM
1,2-Dibromoethane	ND	0.15		ppbV	1	1	3/20/2009 8:08:00 AM
1,2-Dichlorobenzene	ND	0.15		ppbV	1		3/20/2009 8:08:00 AM
1,2-Dichloroethane	ND	0.15		ppbV	1		3/20/2009 8:08:00 AM
1,2-Dichloropropane	ND	0.15		ppbV	1	1	3/20/2009 8:08:00 AM
1,3,5-Trimethylbenzene	0.41	0.15		ppbV	1		3/20/2009 8:08:00 AM
1,3-butadiene	ND	0.15		ppbV	1		3/20/2009 8:08:00 AM
1,3-Dichlorobenzene	ND	0.15		ppbV	3		3/20/2009 8:08:00 AM
1,4-Dichlorobenzene	0.28	0.15		Vdqq	1		3/20/2009 8:08:00 AM
1,4-Dioxane	ND	0.30		ppbV	1	1	3/20/2009 8:08:00 AM
2,2,4-trimethylpentane	ND	0.15		ppbV	1	1	3/20/2009 8:08:00 AM
4-ethyltoluene	0.22	0.15		ppbV	1	1	3/20/2009 8:08:00 AM
Acetone	19	3.0		ppbV	1	10	3/19/2009 7:39:00 AM
Allyl chloride	ND	0.15		ppbV	1	1	3/20/2009 8:08:00 AM
Benzene	0.25	0.15		ppbV	- 1	1	3/20/2009 8:08:00 AM
Benzyl chloride	ND	0.15		ppbV	05 1	1	3/20/2009 8:08:00 AM
Bromodichloromethane	ND	0.15		ppbV	1	1	3/20/2009 8:08:00 AM
Bromoform	ND	0.15		Vďqq	1	1	3/20/2009 8:08:00 AM
Bromomethane	ND	0.15		Vdqq	1	1	3/20/2009 8:08:00 AM
Carbon disulfide	ND	0.15		ppbV	- 1	1	3/20/2009 8:08:00 AM
Carbon tetrachloride	0.10	0.15	J	ppbV		1	3/20/2009 8:08:00 AM
Chlorobenzene	ND	0.15		ppbV	1	1	3/20/2009 8:08:00 AM
Chloroethane	ND	0.15		ppbV		1	3/20/2009 8:08:00 AM
Chloroform	ND	0.15		ppbV		1	3/20/2009 8:08:00 AM
Chloromethane	ND	0.15		ppbV		1	3/20/2009 8:08:00 AM
cis-1,2-Dichloroethene	ND	0.15		ppbV		1	3/20/2009 8:08:00 AM
cis-1,3-Dichloropropene	ND	0.15		ppbV		1	3/20/2009 8:08:00 AM
Cyclohexane	ND	0.15		ppbV		1	3/20/2009 8:08:00 AM
Dibromochloromethane	ND	0.15		ppbV		1	3/20/2009 8:08:00 AM
Ethyl acetale	4.9	2.5		ppbV		10	3/19/2009 7:39:00 AM
Ethylbenzene	0.34	0.15		ppbV		1	3/20/2009 8:08:00 AM

Qualifiers:

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- ** Reporting Limit

- E Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit
 - Results reported are not blank corrected

Page 33 of 42

Date: 25-Apr-09

CLIENT:

Adirondack Environmental Services, Inc.

Lab Order:

C0903021

Project:

New Paltz, NY

Lab ID:

C0903021-017A

Client Sample ID: SS-605-1

Tag Number: 224, 262 Collection Date: 3/10/2009

Matrix: AIR

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
1UG/M3 BY METHOD TO15		то	-15			Analyst: RJP
Freon 11	0.96	0.15		ppbV	1	3/20/2009 8:08:00 AM
Freon 113	ND	0.15		ppbV	1	3/20/2009 8:08:00 AM
Freon 114	ND	0.15		ppbV	1	3/20/2009 8:08:00 AM
Freon 12	16	1.5		ppbV	10	3/19/2009 7:39:00 AM
Heptane	0.53	0.15		ppbV	1	3/20/2009 8:08:00 AM
Hexachloro-1,3-butadiene	ND	0.15		ppbV	1	3/20/2009 8:08:00 AM
Hexane	ND	0.15		ppbV	1	3/20/2009 8:08:00 AM
Isopropyl alcohol	13	1.5		ppbV	10	3/19/2009 7:39:00 AM
m&p-Xylene	1,1	0.30		ppbV	1	3/20/2009 8:08:00 AM
Methyl Butyl Ketone	ND	0.30		ppbV	1	3/20/2009 8:08:00 AM
Methyl Ethyl Ketone	1.5	0.30		ppbV	1	3/20/2009 8:08:00 AM
Methyl Isobutyl Ketone	0.49	0.30		ppbV	1	3/20/2009 8:08:00 AM
Methyl tert-butyl ether	ND	0.15		Vdqq	1	3/20/2009 8:08:00 AM
Methylene chloride	2.1	0.15		ppbV	1	3/20/2009 8:08:00 AM
o-Xylene	0.30	0.15		ppbV	1	3/20/2009 8:08:00 AM
Propylene	ND	0.15		ppbV	1	3/20/2009 8:08:00 AM
Styrene	0.77	0.15		ppbV	1	3/20/2009 8:08:00 AM
Tetrachloroethylene	0.79	0.15		ppbV	1	3/20/2009 8:08:00 AM
Tetrahydrofuran	1.1	0.15		ppbV	1	3/20/2009 8:08:00 AM
Toluene	3.2	1.5		ppbV	10	3/19/2009 7:39:00 AM
trans-1.2-Dichloroethene	ND	0.15		ppbV	1	3/20/2009 8:08:00 AM
trans-1,3-Dichloropropene	ND	0.15		ppbV	1	3/20/2009 8:08:00 AM
Trichloroethene	0.14	0.15	J	ppbV	1	3/20/2009 8:08:00 AM
Vinyl acetate	ND	0.15		ppbV	1	3/20/2009 8:08:00 AM
Vinyl Bromide	ND	0.15		ppbV	1	3/20/2009 8:08:00 AM
Vinyl chloride	ND	0.15		ppbV	1	3/20/2009 8:08:00 AM
Surr: Bromofluorobenzene	120	70-130		%REC	1	3/20/2009 8:08:00 AM

-				100
.,	110	m	1e	rs

- Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded
- Non-routine analyte. Quantitation estimated.
- Spike Recovery outside accepted recovery limits
- Reporting Limit

- Value above quantitation range
- Analyte detected at or below quantitation limits
- Not Detected at the Reporting Limit ND
 - Results reported are not blank corrected

Page 34 of 42

Date: 25-Apr-09

CLIENT:

Adirondack Environmental Services, Inc

Lab Order:

C0903021

Project:

New Paltz, NY

Lab ID:

C0903021-018A

Client Sample ID: IA-605-1

Tag Number: 246, 255

Collection Date: 3/10/2009

Matrix:


Analyses	Result	**Limit	Qual	Units		DF	Date Analyzed
FIELD PARAMETERS		F	LD				Analyst:
Lab's Vacuum Reading	-2			"Hg			3/13/2009
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		TC	-15				Analyst: RJP
1,1,1-Trichloroethane	ND	0.15		ppbV		1	3/19/2009 1:13:00 AM
1,1,2,2-Tetrachloroethane	ND	0.15		ppbV		1	3/19/2009 1:13:00 AM
1.1.2-Trichloroethane	ND	0.15		ppbV		1	3/19/2009 1:13:00 AM
1,1-Dichloroethane	ND	0.15		ppbV		1	3/19/2009 1:13:00 AM
1.1-Dichlorgethene	ND	0.15		ppbV		1	3/19/2009 1:13:00 AM
1,2,4-Trichlorobenzene	ND	0.15		ppbV		1	3/19/2009 1:13:00 AM
1,2,4-Trimethylbenzene	0.39	0.15		ppbV		1	3/19/2009 1:13:00 AM
1,2-Dibromoethane	ND	0.15		ppbV		1	3/19/2009 1:13:00 AM
1,2-Dichlorobenzene	ND	0.15		ppbV		1	3/19/2009 1:13:00 AM
1,2-Dichloroethane	ND	0.15		ppbV		1	3/19/2009 1:13:00 AM
1,2-Dichloropropane	ND	0.15		ppbV		1	3/19/2009 1:13:00 AM
1,3,5-Trimethylbenzene	0.22	0.15		ppbV		1	3/19/2009 1:13:00 AM
1.3-butadiene	ND	0.15		ppbV		1	3/19/2009 1:13:00 AM
1,3-Dichlorobenzene	ND	0.15		Vdqq		1	3/19/2009 1:13:00 AM
1,4-Dichlorobenzene	ND	0.15		Vdqq		1	3/19/2009 1:13:00 AM
1,4-Dioxane	ND	0.30		ppbV		1	3/19/2009 1:13:00 AM
2,2,4-trimethylpentane	ND	0.15		ppbV		1	3/19/2009 1:13:00 AM
4-ethyltoluene	0.15	0.15		Vdqq		1	3/19/2009 1:13:00 AM
Acetone	54	12		ppbV		40	3/19/2009 10:24:00 AM
Allyl chloride	ND	0.15		ppbV		1	3/19/2009 1:13:00 AM
Benzene	0.97	0.15		ppbV		1	3/19/2009 1:13:00 AM
Benzyl chloride	ND	0.15		ppbV	WI	1	3/19/2009 1:13:00 AM
Bromodichloromethane	ND	0.15		ppbV		1	3/19/2009 1:13:00 AM
Bromoform	ND	0.15		ppbV		1	3/19/2009 1:13:00 AM
Bromomethane	ND	0.15		ppbV		1	3/19/2009 1:13:00 AM
Carbon disulfide	ND	0.15		ppbV		1	3/19/2009 1:13:00 AM
Carbon tetrachloride	0.080	0.040		ppbV		1	3/19/2009 1:13:00 AM
Chlorobenzene	ND	0.15		ppbV		1	3/19/2009 1:13:00 AM
Chloroethane	ND	0.15		ppbV		1	3/19/2009 1:13:00 AM
Chloroform	0.11	0.15		ppbV		1	3/19/2009 1:13:00 AM
Chloromethane	1.4	0.15		ppbV		1	3/19/2009 1:13:00 AM
cls-1,2-Dichloroethene	ND	0.15		ppbV		1	3/19/2009 1:13:00 AM
	ND	0.15		ppbV		1	3/19/2009 1:13:00 AM
cis-1,3-Dichloropropene	ND	0.15		ppbV		1	3/19/2009 1:13:00 AM
Cyclohexane	ND	0.15		ppbV		1	3/19/2009 1:13:00 AM
Dibromochloromethane	12	2.5		ppbV		10	3/19/2009 9:52:00 AM
Ethyl acetate Ethylbenzene	0.25	0.15		ppbV		1	3/19/2009 1:13:00 AM

Qualifiers:

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- IN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- ** Reporting Limit

- E Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit
 - Results reported are not blank corrected

Page 35 of 42

Date: 25-Apr-09

CLIENT:

Adirondack Environmental Services, Inc

Lab Order:

C0903021

Project: Lab ID: New Paltz, NY C0903021-018A

Client Sample ID: IA-605-1

Tag Number: 246, 255

Collection Date: 3/10/2009

Matrix:

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		то	-15			Analyst: RJP
Freon 11	5.7	1.5		ppbV	10	3/19/2009 9:52:00 AM
Freon 113	ND	0.15		ppbV	1	3/19/2009 1:13:00 AM
Freon 114	ND	0.15		ppbV	1	3/19/2009 1:13:00 AM
Freon 12	1.0	0.15		ppbV	1	3/19/2009 1:13:00 AM
Heptane	0.32	0.15		ppbV	1	3/19/2009 1:13:00 AM
Hexachloro-1,3-butadiene	ND	0.15		ppbV	1	3/19/2009 1:13:00 AM
Hexane	ND	0.15		ppbV	1	3/19/2009 1:13:00 AM
Isopropyl alcohol	190	14		ppbV	90	3/19/2009 10:40:00 PM
m&p-Xylene	0.80	0.30		ppbV	1	3/19/2009 1:13:00 AM
Methyl Butyl Ketone	ND	0.30		ppbV	1	3/19/2009 1:13:00 AM
Methyl Ethyl Ketone	1.6	0.30		ppbV	1	3/19/2009 1:13:00 AM
Methyl Isobutyl Ketone	0.30	0.30		ppbV	1	3/19/2009 1:13:00 AM
Methyl tert-butyl ether	ND	0.15		ppbV	1	3/19/2009 1:13:00 AM
Methylene chloride	0.20	0.15		ppbV	1	3/19/2009 1:13:00 AM
o-Xylene	0.24	0.15		ppbV	1	3/19/2009 1:13:00 AM
Propylene	ND	0.15		ppbV	1	3/19/2009 1:13:00 AM
Styrene	0.60	0.15		ppbV	1	3/19/2009 1:13:00 AM
Tetrachloroethylene	ND	0.15		ppbV	1	3/19/2009 1:13:00 AM
Tetrahydrofuran	0.71	0.15		ppbV	1	3/19/2009 1:13:00 AM
Toluene	4.7	1.5		ppbV	10	3/19/2009 9:52:00 AM
trans-1,2-Dichloroethene	ND	0.15		ppbV	1	3/19/2009 1:13:00 AM
trans-1,3-Dichloropropene	ND	0.15		ppbV	1	3/19/2009 1:13:00 AM
Trichloroethene	ND	0.040		ppbV	1	3/19/2009 1:13:00 AM
Vinyl acetate	ND	0.15		ppbV	1	3/19/2009 1:13:00 AM
Vinyl Bromlde	ND	0.15		ppbV	1	3/19/2009 1:13:00 AM
Vinyl chloride	ND	0.040		ppbV	1	3/19/2009 1:13:00 AM
Surr: Bromofluorobenzene	110	70-130		%REC	1	3/19/2009 1:13:00 AM

Qualiflers:

- Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN. Non-routine analyte. Quantitation estimated.
- Spike Recovery outside accepted recovery limits
- Reporting Limit

- Value above quantitation range E
- Analyte detected at or below quantitation limits
- Not Detected at the Reporting Limit ND
 - Results reported are not blank corrected

Page 36 of 42

Date: 25-Apr-09

CLIENT:

Adirondack Environmental Services, Inc

Lab Order:

C0903021

Project:

New Paltz, NY

Lab ID:

C0903021-019A

Client Sample ID: SS-603-1

Tag Number: 417, 187

Collection Date: 3/10/2009

Matrix: AIR

Analyses	Result	**Limit Qua	l Units		DF	Date Analyzed
FIELD PARAMETERS		FLD				Analyst:
Lab's Vacuum Reading	-3		"Hg			3/13/2009
IUG/M3 BY METHOD TO15		TO-15				Analyst: RJP
1,1,1-Trichloroethane	ND	0.15	ppbV		1	3/20/2009 8:42:00 AM
1,1,2,2-Tetrachloroethane	ND	0.15	ppbV		1	3/20/2009 8:42:00 AM
1,1,2-Trichloroethane	ND	0.15	ppbV		1	3/20/2009 8:42:00 AM
1,1-Dichloroethane	ND	0,15	ppbV		1	3/20/2009 8:42:00 AM
1,1-Dichloroethene	ND	0.15	ppbV		1	3/20/2009 8:42:00 AM
1,2,4-Trichlorobenzene	ND	0.15	ppbV		1	3/20/2009 8:42:00 AM
1,2,4-Trimethylbenzene	0.46	0.15	ppbV		1	3/20/2009 8:42:00 AM
1.2-Dibromoethane	ND	0.15	ppbV	-	1	3/20/2009 8:42:00 AM
1,2-Dichlorobenzene	ND	0.15	ppbV		1	3/20/2009 8:42:00 AM
1,2-Dichloroethane	ND	0.15	ppbV		1	3/20/2009 8:42:00 AM
1,2-Dichloropropane	ND	0.15	ppbV		1	3/20/2009 8:42:00 AM
1,3,5-Trimethylbenzene	0.29	0.15	ppbV		1	3/20/2009 8:42:00 AM
1,3-butadiene	ND	0.15	ppbV		1	3/20/2009 8:42:00 AM
1,3-Dichlorobenzene	ND	0.15	ppbV		1	3/20/2009 8:42:00 AM
1.4-Dichlorobenzene	0.29	0.15	ppbV		1	3/20/2009 8:42:00 AM
1,4-Dloxane	ND	0.30	ppbV		1	3/20/2009 8:42:00 AN
2,2,4-trimethylpentane	ND	0.15	ppbV		1	3/20/2009 8:42:00 AM
4-ethyltoluene	0.23	0.15	ppbV		1	3/20/2009 8:42:00 AM
Acetone	20	3.0	ppbV		10	3/19/2009 8:11:00 AM
Allyl chloride	ND	0.15	ppbV		1	3/20/2009 8:42:00 AM
Benzene	ND	0.15	ppbV	-	1	3/20/2009 8:42:00 AN
Benzyl chloride	ND	0.15	ppbV	W	1	3/20/2009 8:42:00 AM
Bromodichloromethane	ND	0.15	ppbV		1	3/20/2009 8:42:00 AM
Bromoform	ND	0.15	ppbV		1	3/20/2009 8:42:00 AM
Bromomethane	ND	0.15	ppbV		1	3/20/2009 8:42:00 AM
Carbon disultide	0.26	0.15	Vdqq		1	3/20/2009 8:42:00 AM
Carbon tetrachloride	ND	0.15	ppbV		1	3/20/2009 8:42:00 AM
Chlorobenzene	ND	0.15	ppbV		1	3/20/2009 8:42:00 AM
Chloroethane	ND	0.15	Vdqq		1	3/20/2009 8:42:00 AM
Chloroform	ND	0.15	Vdqq		1	3/20/2009 8:42:00 AM
Chloromethane	ND	0.15	Vdqq		1	3/20/2009 8:42:00 AM
cis-1,2-Dichloroethene	ND	0.15	ppbV		1	3/20/2009 8:42:00 AM
cis-1,3-Dichloropropene	ND	0.15	Vdqq		1	3/20/2009 8:42:00 AM
Cyclohexane	ND	0.15	ppbV		1	3/20/2009 8:42:00 AM
Dibromochloromethane	ND	0.15	ppbV		1	3/20/2009 8:42:00 Af
Ethyl acetate	ND	0.25	ppbV		1	3/20/2009 8:42:00 At
Ethylbenzene	0.48	0.15	ppbV		1	3/20/2009 8:42:00 At

Qualifiers:

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- ** Reporting Limit

- E Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit
 - Results reported are not blank corrected

Page 37 of 42

111 9/28/09

Date: 25-Apr-09

CLIENT:

Adirondack Environmental Services, Inc.

Lab Order:

C0903021

Project:

New Paltz, NY

Lab ID:

C0903021-019A

Client Sample ID: SS-603-1

Tag Number: 417, 187 Collection Date: 3/10/2009

Matrix: AIR

Analyses	Result	**Limit Qua	Units	DF	Date Analyzed
1UG/M3 BY METHOD TO15		TO-15			Analyst: RJP
Freon 11	0.34	0.15	ppbV	1	3/20/2009 8:42:00 AM
Freon 113	ND	0.15	ppbV	1	3/20/2009 8:42:00 AM
Freon 114	ND	0.15	ppbV	1	3/20/2009 8:42:00 AM
Freon 12	30	6.0	ppbV	40	3/20/2009 9:15:00 AM
Heptane	1.5	0.15	ppbV	1	3/20/2009 8:42:00 AM
Hexachloro-1,3-butadiene	ND	0.15	ppbV	1	3/20/2009 8:42:00 AM
Hexane	ND	0.15	ppbV	1	3/20/2009 8:42:00 AM
Isopropyl alcohol	3.5	1.5	ppbV	10	3/19/2009 8:11:00 AM
m&p-Xylene	1.1	0.30	ppbV	1	3/20/2009 8:42:00 AM
Methyl Butyl Ketone	ND	0.30	ppbV	1	3/20/2009 8:42:00 AM
Methyl Ethyl Ketone	1.4	0.30	ppbV	1	3/20/2009 8:42:00 AM
Methyl Isobutyl Ketone	1.3	0.30	ppbV	1	3/20/2009 8:42:00 AM
Methyl tert-butyl ether	ND	0.15	ppbV	1	3/20/2009 8:42:00 AM
Methylene chloride	0.19	0.15	ppbV	1	3/20/2009 8:42:00 AM
o-Xylene	0.33	0.15	ppbV	1	3/20/2009 8:42:00 AM
Propylene	ND	0.15	ppbV	1	3/20/2009 8:42:00 AM
Styrene	1.3	0.15	ppbV	1	3/20/2009 8:42:00 AM
Tetrachlorcethylene	0.73	0.15	ppbV	1	3/20/2009 8:42:00 AM
Tetrahydrofuran	1.3	0.15	ppbV	1	3/20/2009 8:42:00 AM
Toluene	4.4	1.5	ppbV	10	3/19/2009 8:11:00 AM
trans-1,2-Dichloroethene	ND	0.15	ppbV	1	3/20/2009 8:42:00 AM
trans-1,3-Dichloropropene	ND	0.15	ppbV	1	3/20/2009 8:42:00 AM
Trichloroethene	0.12	0.15 J	Vdqq	1	3/20/2009 8:42:00 AM
Vinyl acetate	ND	0.15	ppbV	1	3/20/2009 8:42:00 AM
Vinyl Bromide	ND	0.15	ppbV	1	3/20/2009 8:42:00 AM
Vinyl chloride	ND	0.15	ppbV	1	3/20/2009 8:42:00 AM
Surr: Bromofluorobenzene	115	70-130	%REC	1	3/20/2009 8:42:00 AM

Qualifiers:

- Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded H
- JN Non-routine analyte. Quantitation estimated.
- Spike Recovery outside accepted recovery limits
- Reporting Limit

- Value above quantitation range
- Analyte detected at or below quantitation limits
- Not Detected at the Reporting Limit ND
 - Results reported are not blank corrected

Page 38 of 42

Date: 25-Apr-09

CLIENT:

Adirondack Environmental Services, Inc.

Client Sample ID: IA-603-1

Lab Order:

C0903021

Tag Number: 421, 381

Project:

New Paltz, NY

Collection Date: 3/10/2009

Lab ID:

C0903021-020A

Matrix: AIR

Analyses	Result	**Limit	Qual	Units		DF	Date Analyzed
FIELD PARAMETERS		FI	LD				Analyst:
Lab's Vacuum Reading	-4			"Hg			3/13/2009
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		то	-15				Analyst: RJP
1.1.1-Trichloroethane	0.14	0.15	J	ppbV		1	3/19/2009 1:45:00 AM
1.1,2,2-Tetrachloroethane	ND	0.15		ppbV		1	3/19/2009 1:45:00 AM
1,1,2-Trichloroethane	ND	0.15		ppbV		1	3/19/2009 1:45:00 AM
1,1-Dichloroethane	ND	0.15		ppbV		1	3/19/2009 1:45:00 AM
1.1-Dichloroethene	ND	0.15		ppbV		1	3/19/2009 1:45:00 AM
1,2,4-Trichlorobenzeno	ND	0.15		ppbV		1	3/19/2009 1:45:00 AM
1,2,4-Trimethylbenzene	1.4	0.15		ppbV		1	3/19/2009 1:45:00 AM
1,2-Dibromoethane	- ND	0.15		ppbV		1	3/19/2009 1:45:00 AM
1,2-Dichlorobenzene	ND	0.15		ppbV		1	3/19/2009 1:45:00 AM
1,2-Dichlorcethane	ND	0.15		ppbV		1	3/19/2009 1:45:00 AM
1,2-Dichloropropane	ND	0.15		ppbV		1	3/19/2009 1:45:00 AM
1,3,5-Trimethylbenzene	0.39	0.15		ppbV		1	3/19/2009 1:45:00 AM
1,3-butadiene	ND	0.15		ppbV		1	3/19/2009 1:45:00 AM
1.3-Dichlorobenzene	ND	0.15		ppbV		1	3/19/2009 1:45:00 AM
1,4-Dichlorobenzene	0.23	0.15		ppbV		1	3/19/2009 1:45:00 AM
1.4-Dioxane	ND	0.30		ppbV		1	3/19/2009 1:45:00 AM
2,2,4-trimethylpentane	ND	0.15		ppbV		1	3/19/2009 1:45:00 AM
4-ethyltoluene	0.36	0.15		Vdqq		1	3/19/2009 1:45:00 AM
Acetone	19	3.0		ppbV		10	3/19/2009 11:13:00 PM
Allyl chloride	ND	0.15		ppbV		1	3/19/2009 1:45:00 AM
Benzene	0.33	0.15		ppbV		1	3/19/2009 1:45:00 AM
Benzyl chloride	ND	0.15		Vdqq	UJ	1	3/19/2009 1:45:00 AM
Bromodichloromethane	ND	0.15		ppbV		1	3/19/2009 1:45:00 AM
Bromoform	ND	0.15		ppbV		1	3/19/2009 1:45:00 AM
Bromomethane	ND	0.15		ppbV		1	3/19/2009 1:45:00 AM
Carbon disulfide	0.13	0.15		ppbV		1	3/19/2009 1:45:00 AM
Carbon tetrachloride	ND	0.040	-	ppbV		1	3/19/2009 1:45:00 AM
Chlorobenzene	ND	0.15		ppbV		1	3/19/2009 1:45:00 AM
Chloroethane	ND	0.15		ppbV		1	3/19/2009 1:45:00 AM
Chloroform	0.21	0.15		ppbV		1	3/19/2009 1:45:00 AM
Chloromethane	ND	0.15		Vdqq		1	3/19/2009 1:45:00 AM
cis-1,2-Dichloroethene	ND	0.15		ppbV		1	3/19/2009 1:45:00 AM
	ND	0.15		ppbV		1	3/19/2009 1:45:00 AM
cis-1,3-Dichloropropene	ND	0.15		ppbV		1	3/19/2009 1:45:00 AM
Cyclohexane	ND	0.15		Vdqq		1	3/19/2009 1:45:00 AM
Dibromochloromethane	3.3	2.5		Vdqq		10	3/19/2009 11:13:00 PM
Ethyl acetate Ethylbenzene	0.33	0.15		ppbV		1	3/19/2009 1:45:00 AM

Qualifiers:

- Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded H
- Non-routine analyte. Quantitation estimated. IN
- Spike Recovery outside accepted recovery limits
- Reporting Limit

- Value above quantitation range
- Analyte detected at or below quantitation limits
- Not Detected at the Reporting Limit
 - Results reported are not blank corrected

Page 39 of 42

Date: 25-Apr-09

CLIENT:

Adirondack Environmental Services, Inc.

Lab Order:

C0903021

Project:

New Paltz, NY

Lab ID:

C0903021-020A

Client Sample ID: IA-603-1

Tag Number: 421, 381

Collection Date: 3/10/2009

Matrix: AIR

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		то	-15		-	Analyst: RJP
Freon 11	4.1	1.5		ppbV	10	3/19/2009 11:13:00 PM
Froon 113	ND	0.15		ppbV	1	3/19/2009 1:45:00 AM
Freon 114	ND	0.15		ppbV	1	3/19/2009 1:45:00 AM
Freon 12	ND	0.15		ppbV	1	3/19/2009 1:45:00 AM
Heptane	0.40	0.15		ppbV	1	3/19/2009 1:45:00 AM
Hexachloro-1,3-butadiene	ND	0.15		ppbV	1	3/19/2009 1:45:00 AM
Hexane	ND	0.15		ppbV	1	3/19/2009 1:45:00 AM
Isopropyl alcohol	5.3	1.5		ppbV	10	3/19/2009 11:13:00 PM
m&p-Xylene	1.0	0.30		ppbV	1	3/19/2009 1:45:00 AM
Methyl Butyl Ketone	ND	0.30		ppbV	1	3/19/2009 1:45:00 AM
Mothyl Ethyl Ketone	1.5	0.30		ppbV	1	3/19/2009 1:45:00 AM
Methyl Isobutyl Ketone	ND	0.30		ppbV	1	3/19/2009 1:45:00 AM
Methyl tert-butyl ether	ND	0.15		ppbV	1	3/19/2009 1:45:00 AM
Methylene chloride	0.18	0.15		ppbV	1	3/19/2009 1:45:00 AM
o-Xylene	0.47	0.15		PpbV	1	3/19/2009 1:45:00 AM
Propylene	ND	0.15		ppbV	1	3/19/2009 1:45:00 AM
Styrene	1.0	0.15		ppbV	1	3/19/2009 1:45:00 AM
Tetrachloroethylene	0.10	0.15	J	ppbV	1	3/19/2009 1:45:00 AM
Tetrahydrofuran	1.2	0.15		ppbV	1	3/19/2009 1:45:00 AM
Toluene	2.8	1.5		ppbV	10	3/19/2009 11:13:00 PM
trans-1,2-Dichloroethene	ND	0.15		ppbV	1	3/19/2009 1:45:00 AM
trans-1,3-Dichloropropene	ND	0.15		ppbV	1	3/19/2009 1:45:00 AM
Trichloroethene	ND	0.040		ppbV	1	3/19/2009 1:45:00 AM
Vinyl acetate	ND	0.15		ppbV	1	3/19/2009 1:45:00 AM
Vinyl Bromide	ND	0.15		ppbV	1	3/19/2009 1:45:00 AM
Vinyl chloride	ND	0.040		ppbV	1	3/19/2009 1:45:00 AM
Surr: Bromolluorobenzene	122	70-130		%REC	1	3/19/2009 1:45:00 AM

~	- 44	P
OL	au	flers

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- ** Reporting Limit

- E Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit
 - Results reported are not blank corrected

Page 40 of 42

Date: 25-Apr-09

CLIENT:

Adirondack Environmental Services, Inc.

Lab Order:

C0903021

Project:

New Paltz, NY

Lab ID:

C0903021-021A

Client Sample ID: OA-1

Tag Number: 193, 394

Collection Date: 3/10/2009

Matrix: AIR

Analyses	Result	**Limit Qua	I Units	DF	Date Analyzed
FIELD PARAMETERS		FLD			Analyst:
Lab's Vacuum Reading	-5		*Hg		3/13/2009
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		TO-15			Analyst: RJP
1,1,1-Trichloroethane	ND	0.15	ppbV	1	3/19/2009 2:18:00 AM
1,1,2,2-Tetrachloroethane	ND	0.15	Vdqq	1	3/19/2009 2:18:00 AM
1,1,2-Trichloroethane	ND	0.15	ppbV	1	3/19/2009 2:18:00 AM
1,1-Dichloroethane	ND	0.15	ppbV	1	3/19/2009 2:18:00 AM
1,1-Dichloroethene	ND	0.15	ppbV	1	3/19/2009 2:18:00 AM
1,2,4-Trichlorobenzene	ND	0.15	ppbV	1	3/19/2009 2:18:00 AM
1,2,4-Trimethylbenzene	0.19	0.15	ppbV	1	3/19/2009 2:18:00 AM
1,2-Dibromoethane	ND -	0.15	ppbV	1	3/19/2009 2:18:00 AM
1,2-Dichlorobenzene	ND	0.15	ppbV	1	3/19/2009 2:18:00 AM
1,2-Dichloroethane	ND	0.15	ppbV	1	3/19/2009 2:18:00 AM
1,2-Dichloropropane	ND	0.15	ppbV	1	3/19/2009 2:18:00 AM
1,3,5-Trimethylbenzene	ND	0.15	ppbV	1	3/19/2009 2:18:00 AM
1,3-butadiene	ND	0.15	ppbV	1	3/19/2009 2:18:00 AM
1,3-Dichlorobenzene	ND	0.15	ppbV	1	3/19/2009 2:18:00 AM
1,4-Dichlorobenzene	ND	0.15	ppbV	1	3/19/2009 2:18:00 AM
1,4-Dioxane	ND	0.30	ppbV	1	3/19/2009 2:18:00 AM
2,2,4-trimethylpentane	ND	0.15	ppbV	1	3/19/2009 2:18:00 AM
4-ethyltoluene	ND	0.15	ppbV	1	3/19/2009 2:18:00 AM
Acetone	11	3.0	ppbV	10	3/19/2009 11:45:00 PM
Allyl chloride	ND	0.15	ppbV	1	3/19/2009 2:18:00 AM
Benzene	0.26	0.15	ppbV	1	3/19/2009 2:18:00 AM
Benzyl chloride	ND	0.15	ppbV	UJ 1	3/19/2009 2:18:00 AM
Bromodichioromethane	ND	0.15	Vdqq	1	3/19/2009 2:18:00 AM
Bromoform	ND	0.15	Vdqq	1	3/19/2009 2:18:00 AM
Bromomethane	ND	0.15	Vdqq	1	3/19/2009 2:18:00 AM
Carbon disulfide	ND	0.15	ppbV	1	3/19/2009 2:18:00 AM
Carbon tetrachloride	0.090	0.040	ppbV	1	3/19/2009 2:18:00 AM
Chlorobenzene	ND	0.15	ppbV	1	3/19/2009 2:18:00 AM
Chloroethane	ND	0.15	ppbV	1	3/19/2009 2:18:00 AM
Chloroform	ND	0.15	ppbV	1	3/19/2009 2:18:00 AM
Chloromethane	ND	0.15	ppbV	1	3/19/2009 2:18:00 AM
cis-1,2-Dichloroethene	ND	0.15	ppbV	.1	3/19/2009 2:18:00 AM
cis-1,3-Dichloropropene	ND	0.15	ppbV	1	3/19/2009 2:18:00 AM
Cyclohexane	ND	0.15	ppbV	1	3/19/2009 2:18:00 AM
Dibromochloromethane	ND	0.15	ppbV	1	3/19/2009 2:18:00 AM
Ethyl acetate	ND	0.25	ppbV	1	3/19/2009 2:18:00 AM
Ethylbenzene	ND	0.15	ppbV	1	3/19/2009 2:18:00 AM

Qualifiers:

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- ** Reporting Limit

- Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit
 - Results reported are not blank corrected

Page 41 of 42

Date: 25-Apr-09

CLIENT:

Adirondack Environmental Services, Inc

Lab Order:

C0903021

Project:

New Paltz, NY

Lab ID:

C0903021-021A

Client Sample ID: OA-1

Tag Number: 193, 394

Collection Date: 3/10/2009

Matrix: AIR

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		TO	-15	7		Analyst: RJF
Freon 11	0.25	0.15		ppbV	1	3/19/2009 2:18:00 AM
Freon 113	ND	0.15		ppbV	1	3/19/2009 2:18:00 AM
Freon 114	ND	0.15		ppbV	1	3/19/2009 2:18:00 AM
Freon 12	0.53	0.15		ppbV	1	3/19/2009 2:18:00 AM
Heptane	0.18	0.15		ppbV	1	3/19/2009 2:18:00 AM
Hexachloro-1,3-butadiene	ND	0.15		ppbV	1	3/19/2009 2:18:00 AM
Hexane	0.25	0.15		ppbV	1	3/19/2009 2:18:00 AM
Isopropyl alcohol	ND	0.15		ppbV	1	3/19/2009 2:18:00 AM
m&p-Xylene	0.24	0.30	J	ppbV	1	3/19/2009 2:18:00 AM
Methyl Butyl Ketone	ND	0.30		ppbV	1	3/19/2009 2:18:00 AM
Methyl Ethyl Ketone	0.57	0.30		ppbV	1	3/19/2009 2:18:00 AM
Mothyl Isobutyl Ketone	ND	0.30		ppbV	1	3/19/2009 2:18:00 AM
Methyl tert-butyl ether	ND	0.15		ppbV	1	3/19/2009 2:18:00 AM
Methylene chloride	ND	0.15		ppbV	1	3/19/2009 2:18:00 AM
o-Xylene	0.11	0.15	J	ppbV	1	3/19/2009 2:18:00 AM
Propylene	ND	0.15		ppbV	1	3/19/2009 2:18:00 AM
Styrene	0.18	0.15		ppbV	1	3/19/2009 2:18:00 AM
Tetrachloroethylene	0.13	0.15	J	ppbV	1	3/19/2009 2:18:00 AM
Tetrahydrofuran	ND	0.15		ppbV	1	3/19/2009 2:18:00 AM
Toluene	1.2	0.15		ppbV	1	3/19/2009 2:18:00 AM
trans-1,2-Dichloroethene	ND	0.15		ppbV	1	3/19/2009 2:18:00 AM
trans-1,3-Dichloropropene	ND	0.15		ppbV	1	3/19/2009 2:18:00 AM
Trichloroethene	0.070	0.040		ppbV	1	3/19/2009 2:18:00 AM
Vinyl acetate	ND	0.15		ppbV	1	3/19/2009 2:18:00 AM
Vinyl Bromide	ND	0.15		ppbV	1	3/19/2009 2:18:00 AM
Vinyl chloride	ND	0.040		ppbV	1	3/19/2009 2:18:00 AM
Surr: Bromofluorobenzene	108	70-130		%REC	1 2	3/19/2009 2:18:00 AM

0		al	L	10	200
•	ш	anı		и.	E a

- Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded
- Non-routine analyte. Quantitation estimated.
- Spike Recovery outside accepted recovery limits
- Reporting Limit

- Value above quantitation range
- 1 Analyte detected at or below quantitation limits
- Not Detected at the Reporting Limit
 - Results reported are not blank corrected

Page 42 of 42

APPENDIX B

DATA VALIDATION CHECKLISTS

Table of Contents

		Page
I.	Part A: VOA Analyses	2

No:	Parameter	YES	NO	N/A
1.0	Traffic Reports and Laboratory Narrative			
1.1	Are the traffic Report Forms present for all samples?	X		
1.2	Do the Traffic Reports or Lab Narrative indicate any problems with sample receipt, condition of samples, analytical problems or special circumstances affecting the quality of the data?		X	
2.0	Holding Times			
2.1	Have any VOA technical holding times, determined from date of collection to date of analysis, been exceeded?		X	
3.0	System Monitoring Compound (SMC) Recovery (Form II)			
3.1	Are the VOA SMC Recovery Summaries (FORM II) present for each of the following matrices:			
	a. Low Water	X		
	b. Low Soil			X
	c. Med Soil			X
3.2	Are all the VOA samples listed on the appropriate System Monitoring Compound Recovery Summary for each of the following matrices:			
	a. Low Water	X		
	b. Low Soil			X
	c. Med Soil			X
3.3	Were outliers marked correctly with an asterisk?	X		
3.4	Was one or more VOA system monitoring compound recovery outside of contract specifications for any sample or method blank?	X		
	If yes, were samples re-analyzed?		X	
	Were method blanks re-analyzed?			X
3.5	Are there any transcription/calculation errors between raw data and Form II?		X	
4.0	Matrix Spikes (Form III)			
4.1	Is the Matrix Spike/Matrix Spike Duplicate Recovery Form (Form III) present?	X		
4.2	Were matrix spikes analyzed at the required frequency for each of the following matrices?	X		
	a. Low Water	X		
	b. Low Soil			X
	c. Med Soil			X
4.3	How many VOA spike recoveries are outside QC limits?			
	Water1 out of 10 Soils 0 out of 10			
4.4	How many RPD's for matrix spike and matrix spike duplicate recoveries are outside QC limits?			
	Water <u>0</u> out of 5 Soils out of 5			
5.0	Blanks (Form IV)			

No:	Parameter	YES	NO	N/A
5.1	Is the Method Blank Summary (Form IV) present?	X		
5.2	Frequency of Analysis: for the analysis of VOA TCL compounds, has a reagent/method blank been analyzed for each SDG or every 20 samples of similar matrix (low water, low soil, medium soil), whichever is more frequent?	X		
5.3	Has a VOA method/instrument blank been analyzed at least once every twelve hours for each concentration level and GC/MS system used?	X		
5.4	Is the chromatographic performance (baseline stability) for each instrument acceptable for VOAs?	X		
6.0	<u>Contamination</u>			
6.1	Do any method/instrument/reagent blanks have positive results (TCL and/or TIC) for VOAs?		X	
6.2	Do any field/trip/rinse blanks have positive VOA results (TCL and/or TIC)?			X
6.3	Are there field/rinse/equipment blanks associated with every sample?		X	
7.0	GC/MS Instrument Performance Check (Form V)			
7.1	Are the GC/MS Instrument Performance Check Forms (Form V) present for Bromofluorobenzene (BFB)?	X		
7.2	Are the enhanced bar graph spectrum and mass/charge (m/z) listing for the BFB provided for each twelve hour shift?	X		
7.3	Has an instrument performance compound been analyzed for every twelve hours of sample analysis per instrument?		X	
7.4	Have the ion abundances been normalized to m/z 95?	X		
7.5	Have the ion abundance criteria been met for each instrument used?	X		
7.6	Are there any transcription/calculation errors between mass lists and Form V's?		X	
7.7	Have the appropriate number of significant figures (two) been reported?	X		
7.8	Are the spectra of the mass calibration compound acceptable?	X		

8.0	Target Compound List (TCL) Analytes			
8.1	Are the Organic Analysis Data Sheets (Form I VOA) present with required header information on each page, for each of the following:			
	a. Sample and/or fractions as appropriate?	X		
	b. Matrix spikes and matrix spike duplicates?	X		
	c. Blanks?	X		
8.2	Are the VOA Reconstructed Ion Chromatograms, the mass spectra for the identified compounds, and the data system printouts (Quant Reports) included in the sample package for each of the following?			
	a. Samples and/or fractions as appropriate?	X		
	b. Matrix spikes and matrix spike duplicates (Mass spectra not required)?	X		
	c. Blanks?	X		
8.3	Are the response factors shown in the Quant Report?	X		
8.4	Is the chromatographic performance acceptable with respect to:			
	Baseline stability?	X		
	Resolution?	X		
	Peak shape?	X		
	Full-scale graph (attenuation)?	X		
	Other:			
8.5	Are the lab-generated standard mass spectra of the identified VOA compounds present for each sample?	X		
8.6	Is the RRT of each reported compound within 0.06 RRT units of the standard RRT in the continuing calibration?	X		
8.7	Are all ions in the standard mass spectrum at a relative intensity greater than 10% also present in the sample mass spectrum?	X		
8.8	Do sample and standard relative ion intensities agree within 20%?	X		
9.0	Tentatively Identified Compounds (TIC)			
9.1	Are all Tentatively Identified Compound Forms (Form I Part B) present; and do listed TICs include scan number or retention time, estimated concentration and "JN" qualifier?		X	
9.2	Are the mass spectra for the tentatively identified compounds and associated "best match" spectra included in the sample package for each of the following:			
	a. Samples and/or fractions as appropriate?			X
	b. Blanks?			X
9.3	Are any TCL compounds (from any fraction) listed as TIC compounds?			X
9.4	Are all ions present in the reference mass spectrum with a relative intensity greater than 10% also present in the sample mass spectrum?			X
9.5	Do TIC and "best match" standard relative ion intensities agree within 20%?			X
10.0	Compound Quantitation and Reported Detection Limits			
10.1	Are there any transcription/calculation errors in Form I results?		X	

8.0	Target Compound List (TCL) Analytes			
10.2	Are the CRQLs adjusted to reflect sample dilutions and, for soils, sample moisture?	X		
11.0	Standards Data (GC/MS)			
11.1	Are the Reconstructed Ion Chromatograms, and data system printouts present for initial and continuing calibration?	X		
12.0	GC/MS Initial Calibration (Form VI)			
12.1	Are the Initial Calibration Forms (Form VI) present and complete for the volatile fraction at concentrations of 10, 20, 50, 100, 200 ug/L? Are there separate calibrations for low/med soils and low soil samples?	X		
12.2	Were all low level soil standards, blanks, and samples analyzed by heated purge?			X
12.3	Are the response factors stable for VOA's over the concentration range of the calibration (%Relative Standard Deviation (%RSD) <30%)		X	
12.4	Are the RRFs above 0.05?	X		
12.5	Are there any transcription/calculation errors in the reporting of average response factors (RRF) or %RSD?		X	
13.0	GC/MS Continuing Calibration (Form VII)			
13.1	Are the Continuing Calibration Forms (Form VII) present and complete for the volatile fraction?	X		
13.2	Has a continuing calibration standard been analyzed for every twelve hours of sample analysis per instrument?	X		
13.3	Do any volatile compounds have a %Difference (%D) between the initial and continuing RRF which exceeds the +/- 25% criteria?	X		
13.4	Do any volatile compounds have a RRF <0.05?		X	
13.5	Are there any transcription/calculation errors in the reporting of average response factor (RRF) or %difference (%D) between initial and continuing RRFs?		X	
14.0	Internal Standard (Form VIII)			
14.1	Are the internal standard areas (Form VIII) of every sample and blank within the upper and lower limits (-50% to \pm 100%) for each continuing calibration?	X		
14.2	Are the retention times of the internal standards within 30 seconds of the associated calibration standard?	X		
15.0	Field Duplicates			
15.1	Were any field duplicates submitted for VOA analysis?		X	