EARTH ENVIRONMENT

Engineering and Geology P.C.

July 31, 2025

New York State Department of Environmental Conservation Division of Environmental Remediation Bureau of Program Management, 12th Floor 625 Broadway Albany, New York 12233-7012

Attention: Nakya Stewart, Project Manager

Subject: Response to Comments – 2024 Periodic Review Report

Mohonk Road Industrial Plant (MRIP) Site; Site Number 356023

Earth, Environment, Engineering, and Geology P.C.

Project # US-EI-7772210116

Dear Ms. Stewart:

Earth Environment Engineering and Geology, P.C. (EEEG) is submitting this Response to Comments (RTC) for the 2024 Periodic Review Report (PRR) comments received by the NYSDEC on April 14, 2025 and NYSDOH on February 5, 2025. Information discussed with the NYSDEC on May 21, 2025 regarding the PRR content and with the NYSDEC and NYSDOH on June 18, 2025 regarding the SSDS evaluation, has been incorporated into this RTC and PRR as applicable. The revised Final 2024 PRR is attached to this RTC letter.

TABLE OF CONTENTS

- 1. Figures:
 - a. Add graph showing VOCs removed each year and cost per pound of VOCs removed each year.

EEEG Response: Submittal updated as requested and GWETS Total VOCs in Extracted Groundwater figure added as Figure 2.0 illustrating Total VOCs extracted from groundwater

Earth Environment Engineering and Geology, P.C., Project No. US-EI-7772210116

between June 2022 and May 2024. Per discussions with the NYSDEC on May 21, 2025, costs per pound of VOCs removed each year will not be presented for June 2022 through May 2024 reporting period, as it was not collected per year for this period. However, going forward, PRR costs will be presented by year.

b. Add trend graphs for COCs in most contaminated wells.

EEEG Response: Submittal updated as requested and VOC concentration trend graphs added as Figures 2.4, 2.5, and 2.6 for ERT-4, MW-4, and MW-5B, respectively, illustrating VOC concentration trend plots for the primary detected VOC parameters (1,1,1-TCA, 1,1-DCA, 1,1-DCE and TCE) between November 2015 and May 2023.

2. Attachments

a. Attachment A2: Laboratory Groundwater Results – LTM 2023. Remove laboratory data from PRR. Lab data should not be included in any reports submitted to DER. Instead, the lab data should be submitted as an EDD.

EEEG Response: Submittal updated as requested and Attachment A2 removed. The 2023 groundwater sampling laboratory results have been provided to NYSDEC in electronic document delivery format and loaded into EQuIS.

3. Table 2.1 Site Management Requirements: Please include annual pressure differential testing in this table for future PRR submittals.

EEEG Response: Annual pressure differential testing was not completed during June 2022 through May 2024 reporting period as it was not previously part of the Site Management Requirements. However, going forward, annual pressure differential testing will be included as part of the Site Management Requirements and included within Table 2.1 under SSDS requirements for future PRR submittals.

EXECUTIVE SUMMARY

1. **Paragraph 3**: Please revise to include routine inspection of the Sub-Slab Depressurization System(s) (SSDS) as part of the current Site Management Requirements. I also request that inspection forms be included as an appendix to the PRR.

EEEG Response: Executive Summary paragraph 3 text revised to include SSDS site management information: "Current Site Management (SM) requirements for monitoring the performance and effectiveness of the remedial measures completed at the Site consist of operating the groundwater extraction and treatment system to maintain hydraulic control in the source area, routine inspection, sampling, and reporting, as well as the monthly operational inspection of the SSDS located within the onsite commercial building. The SM requirements are presented in Table 2.1." Monthly SSDS inspection forms are included within Attachment A2: Field Forms.

SECTION 1.0 INTRODUCTION

 Section 1.1: Site History and Description states that 70 POET systems were installed by NYSDEC between 1994 and 1998, and approximately 5 additional systems were installed by USEPA between 2000 and 2004. Section 1.3.2 Remedial Progress indicates that all POET systems were installed by USEPA. Please revise for accuracy and consistency.

EEEG Response: Section text has been revised as applicable to clarify the number of POET systems installed. Text information regarding POET systems installation in Sections 1.1 and 1.3.2 has been updated as "Approximately 70 POET systems were installed by the NYSDEC between 1994 to 1998 and an additional 5 POET systems were installed by the USEPA between 2000 and 2004 (USEPA, 2019).

SECTION 2.1 – INSTITUTIONAL CONTROLS/ENGINEERING CONTROLS

2. Section 2.1: Institutional Controls/Engineering Controls states "The ongoing SSDS monitoring consists of a visual inspection of the exterior blowers/fans and piping to confirm they are intact and operating. Blowers/fans deemed non-functioning are replaced." I request that going forward, monitoring of the SSDS include annual pressure differential testing to demonstrate that the system is effective at creating negative pressure across the extent of the building footprint. Please revise the PRR and Site Management Plan (SMP) accordingly.

EEEG Response: As reported in the PRR, routine SSDS inspections were completed in accordance with the Site Management requirements during the PRR reporting period of June 2022 through May 2024 to ensure that the SSDS fans were operational. Section 5 - Recommendations have been updated to recommend that "Future SSDS monitoring will

include annual pressure differential testing to demonstrate that the system is effective at creating a negative pressure across the extent of the building footprint." Upon the findings of the SSDS annual negative pressure differential testing and evaluation, additional activities, if required, will be implemented and added to the required Site Management Plan (SMP) requirements and reported within the next PRR as appropriate.

3. **Section 2.1.2 GWETS: Paragraph 3**: In regard to the statement "An estimated 10.22 pounds of total VOCs were removed", add graphs showing VOCs removed each year and cost per pound of VOCs removed each year.

EEEG Response: Refer to EEEG Response for comment #1 above.

SECTION 2.2 – OPERATION AND MAINTENANCE PLAN

1. **Section 2.2.1 GWETS**: Were there any issues with the P&T system? The discussion about exceedances of SPDES equivalent criteria in the conclusions seems more appropriate in this section.

EEEG Response: The GWETS was in operation during the PRR reporting period, with exception of the system downtimes discussed in Section 2.1.2 including the intentional system shutdown between September 2022 and November 2022 for RSO Pilot Test preparations and modifications.

Section text has been revised to include a discussion regarding GWETS operational issues during the PRR reporting period as well as transferring the SPDES exceedance text discussion to Section 2.2.1 from Section 4.2.

2. **Section 2.2.2 SSDS**: Evaluate whether the SSDS is operating effectively.

EEEG Response: As reported in the PRR, routine SSDS inspections were completed in accordance with the Site Management requirements during the PRR reporting period of June 2022 through May 2024 to ensure that the SSDS fans were operational. The ongoing SSDS monitoring consists of a visual inspection of the exterior blowers/fans and piping to

confirm they are intact and operating. Blowers/fans deemed non-functioning are replaced.

Monthly inspections of the SSDS confirmed and recorded vacuum pressure.

Section 5 Recommendations have been updated to recommend additional annual pressure differential testing and further evaluation of the SSDS performance and operation to be completed and reported in future PRR reporting periods. Upon the findings of the additional SSDS testing and evaluation, additional activities, if required, will be implemented and added to the required Site Management Plan (SMP) requirements and reported within the next PRR as appropriate.

SECTION 4.0 - CONCLUSIONS AND RECOMMENDATIONS

3. Section 4.1 Institutional/Engineering Controls: states that "the current IC/ECs are adequate to achieve the objectives for protection of human health and the environment based on current site use" and describes the effectiveness of the groundwater extraction and treatment system, but a similar statement regarding the effectiveness of the SSDS is not included. It is my understanding that the effectiveness of the SSDS cannot currently be demonstrated using the existing network of vacuum monitoring points, many of which are inaccessible due to current building operations. I request that this information be included in this section.

EEEG Response: The SSDS continues to operate as designed as verified by indoor air sampling results collected in 2009 for the SSDS commissioning which revealed acceptable indoor air concentrations within the commercial building. However, as discussed with NYSDEC and NYSDOH on June 18, 2025, at the request of the Agency, Section 5 Recommendations have been updated to include the recommendation of annual pressure differential testing completion and further evaluation of the SSDS performance and operation. The additional testing and evaluation will be completed as part of the SSDS monitoring. Upon the findings of the additional SSDS testing and evaluation, additional activities, if required, will be implemented and added to the required Site Management Plan (SMP) requirements and reported within the next PRR.,

4. **Section 4.4 SSDS Monitoring** notes that SSDS fans 1 and 7 were inoperable during inspections in January and May 2024. I understand that these fans have since been replaced

Earth Environment Engineering and Geology, P.C., Project No. US-EI-7772210116

following this reporting period, however further SSDS evaluation is needed to demonstrate effectiveness of the system. As requested in my comments provided on the SMP dated April 11, 2024, I request that a Corrective Measures Work Plan (CMWP) be submitted to evaluate and optimize effectiveness of the SSDS at mitigating potential exposures. The CMWP should include evaluation of the existing network of vacuum monitoring points, installation of new monitoring points in areas of the building that will remain accessible while also providing adequate spatial coverage, pressure-differential testing, and potential system upgrades that may be needed.

EEEG Response: As discussed with NYSDEC and NYSDOH on June 18, 2025, additional required activities will be implemented as part of the SSDS monitoring and will include an evaluation of the existing network of vacuum monitoring points, and installation of new monitoring points, as needed, in areas of the building that will remain accessible while also providing adequate spatial coverage, annual pressure-differential testing. These additional activities are included within Section 5 Recommendations. Upon the findings of the additional SSDS testing and evaluation, additional activities, if required, will be implemented and added to the required Site Management Plan (SMP) requirements and reported within the next PRR.

5. **Section 4.6 Recommendations** includes the following bullet: "Continued routine SSDS maintenance." As noted in my previous comments, non-routine maintenance of the SSDS is needed and I request that submittal of a CMWP be included in this section.

EEEG Response: As discussed with NYSDEC and NYSDOH on June 18, 2025, additional required activities will be implemented as part of the SSDS monitoring and Section 5 Recommendations have been updated to include the recommendation of annual pressure differential testing completion and further evaluation of the SSDS performance and operation. Upon the findings of the additional SSDS testing and evaluation, additional activities, if required, will be implemented and added to the required Site Management Plan (SMP) requirements and reported within the next PRR.

Sincerely,

Earth Environment Engineering and Geology, P.C.

Nicole Bonsteel, P.E.

lil M Bousted

Project Manager

Enclosures (1)

2024 PERIODIC REVIEW REPORT JUNE 2022 – MAY 2024 MOHONK ROAD INDUSTRIAL PLANT SITE NYSDEC SITE NO. 356023

WORK ASSIGNMENT NO. D009809-25

Prepared for:

New York State Department of Environmental Conservation Albany, New York

Prepared by:

Earth and Environment Engineering and Geology, P.C. Portland, Maine

EEEG: US-EI-7772210116

JULY 2025

2024 PERIODIC REVIEW REPORT JUNE 2022 – MAY 2024 MOHONK ROAD INDUSTRIAL PLANT SITE NYSDEC SITE NO. 356023

WORK ASSIGNMENT NO. D009809-25

Prepared for:

New York State Department of Environmental Conservation Albany, New York

Prepared by:

Earth and Environment Engineering and Geology, P.C. Portland, Maine

EEEG: US-EI-7772210116

JULY 2025

Submitted by:

Nicole Bonsteel, P.E.

al M Boustel

Project Manager

Approved by:

Mark Stelmack, P.E.

Environmental Engineer

TABLE OF CONTENTS

LIST (OF FIGU	JRES					I	
LIST (OF TAB	LES					II	
GLOS	SARY C	OF ACR	ONYMS A	AND ABBRE	VIATIONS		IV	
EXEC	UTIVE	SUMMA	ARY					
1.0	SITE (
	1.1	SITE I	HISTORY	AND DESCI	RIPTION		1-1	
	1.2							
	1.3	CLEA	NUP GOA	ALS AND RE	MEDIAL PROGRESS	S	1-8	
		1.3.1	Cleanup	Goals			1-8	
2.0	EVAL	UATIO:	N OF	REMEDY	PERFORMANCE,	EFFECTIVENESS,	AND	
	PROT							
	2.1	INSTI'				ONTROLS		
		2.1.1						
		2.1.2				em		
		2.1.3						
	2.2	OPER						
		2.2.1				em		
		2.2.2	SSDS				2-4	
	2.3							
	2.4	HYDR	RAULIC M	MONITORING	Ĵ		2-8	
3.0	COST	ST CONTROL SUMMARY						
4.0	CONCLUSIONS							
	4.1					ONTROLS		
	4.2	OPER.	ATION A	ND MAINTE	NANCE PLAN		4-1	
	4.3	LONG	-TERM N	MONITORING	Ĵ		4-2	
	4.4	SSDS	MONITO	RING			4-3	
	4.5 RSO PILOT TEST							
5.0	RECO	RECOMMENDATIONS						
6.0	REFEI	RENCE	S				6-1	

FIGURES

TABLES

ATTACHMENTS

Attachment A1: NYSDEC Engineering Controls – Standby Consultant/Contractor Certification Form

Attachment A2: Field Forms

A2-1 OM&M Monthly Field Forms – January – May 2024

A2-2 May 2023 Groundwater Field Sampling Forms

Attachment A3: Category A Review Report- LTM 2023

Attachment A4: SPDES Permit Equivalent – February 9, 2021

LIST OF FIGURES

Figure

1.1	Site Location Map
1.2	Site Monitoring Well Network
1.3	Site Layout
2.0	GWETS Total VOCs in Extracted Groundwater
2.1	Groundwater Elevation Contours – May 2023
2.2	Total VOCs Isoconcentrations in Groundwater - May 2023
2.3	1,4-Dioxane Isoconcentrations in Groundwater - May 2023
2.4	ERT-4 VOC Concentration Trends
2.5	MW-4 VOC Concentration Trends
2 6	MW-5B VOC Concentration Trends

LIST OF TABLES

Table

2.1	Site Management Requirements
2.2	Long-Term Monitoring and System Performance Sampling Matrix
2.3	Estimated Groundwater Extraction and Treatment System Downtime
2.4	Treatment Plant Monthly Throughput
2.5	Total VOCs in Extracted Groundwater (lbs)
2.6	System Performance Sampling Results
2.7	Long-Term Monitoring Groundwater Elevation Measurements and Field Parameters
2.8	Groundwater Monitoring Results Above New York State Standards – May 2023

GLOSSARY OF ACRONYMS AND ABBREVIATIONS

1,1-DCA1,1-dichloroethane1,1-DCE1,1-dichloroethene1,1,1-TCA1,1,1-trichloroethane1,2-DCE1,1-dichloroethene

bgs below ground surface

cis-1,2-DCE cis-1,2-dichloroethene
COC contaminant of concern

DIR Daily Investigation Report

EC engineering control(s)

EEEG Earth and Environment Engineering and Geology, P.C.

GAC granular activated carbon

gpm gallon(s) per minute

GWETS groundwater extraction and treatment system

HFWD High Falls Water District

IC institutional control(s)

lbs pounds

LTM long-term monitoring

MCLs maximum contaminants levels

μg/L microgram(s) per liter

μg/m³ microgram(s) per cubic meter

MNA monitored natural attenuation

GLOSSARY OF ACRONYMS AND ABBREVIATIONS (CONTINUED)

MPR Monthly Progress Report

MRIP Mohonk Road Industrial Plant

NPL National Priorities List

NTCRA Non-Time-Critical Removal Action

NYS New York State

NYSDEC New York State Department of Environmental Conservation

NYSDOH New York State Department of Health

O&M operation and maintenance

OM&M operation, maintenance, and monitoring

PCE tetrachloroethene

PRR periodic review report
POET point-of-entry treatment
PWS public water supply

RAO Remedial Action Objective

RI remedial investigation

ROD Record of Decision

RSO remedial systems optimization

Site Mohonk Road Industrial Plant site

SM Site Management

SMP Site Management Plan

SSDS sub-surface depressurization system(s)

SVE soil vapor extraction

GLOSSARY OF ACRONYMS AND ABBREVIATIONS (CONTINUED)

TCE trichloroethene

USEPA United States Environmental Protection Agency

VOC volatile organic compound

EXECUTIVE SUMMARY

The Mohonk Road Industrial Plant (MRIP) site (New York State Department of Environmental Conservation [NYSDEC] Site No. 356203, herein referred to as the Site, consists of approximately 14.5 acres and is in the Hamlet of High Falls within the Towns of Marbletown and Rosendale, Ulster County, New York. The Site has been remediated in accordance with the Record of Decision (ROD). The ROD divided the plume into two categories based on volatile organic compound (VOC) concentrations: the "near field" plume and the "far field" plume. The "near field" plume is defined as the area where total groundwater VOC concentrations are greater than 1,000 parts per billion (micrograms per liter [μ g/L]); the "far field" plume is defined at the area where total groundwater VOC concentrations are between 10 μ g/L and 1,000 μ g/L. Annual monitoring includes sampling of the background, on-site, mid-plume, and perimeter wells in accordance with the 2019 Field Activities Plan (MACTEC, 2019) which is based on the 2013 long-term monitoring (LTM) plan (AECOM, 2013). The Site includes an active groundwater extraction and treatment system (GWETS) and a sub-surface depressurization system (SSDS) within the site building.

Site contaminants of concern are VOCs including tetrachloroethene (PCE), trichloroethene (TCE), 1,1,1-trichloroethane (1,1,1-TCA), 1,2-dichloroethene (1,2-DCE), and vinyl chloride. Remedial goals outlined in the ROD are instituted to eliminate inhalation and ingestion of, and dermal contact with, contaminated groundwater associated with the Site that does not meet federal or state drinking water standards.

Current Site Management (SM) requirements for monitoring the performance and effectiveness of the remedial measures completed at the Site consist of operating the groundwater extraction and treatment system to maintain hydraulic control in the source area, routine inspection, sampling, and reporting, as well as the monthly operational inspection of the SSDS located within the on-site commercial building. The SM requirements are presented in Table 2.1.

The High Falls Water District (HFWD) acquired seven acres of the northern undeveloped portion of the MRIP site property in 2005 for the construction of the HFWD treatment facility. The treatment facility is used as the HFWD's public water supply (PWS) treatment plant and provides an alternative drinking water source for the properties located within the HFWD.

Three distinct water-bearing zones have been identified at the Site including an overburden (till) flow zone, a bedrock interface flow zone (at the shallow soil/bedrock interface), and a bedrock flow zone (the bedrock aquifer).

By focusing on hydraulic containment of the source area and by eliminating extraction of water from the deeper bedrock extraction well intervals, it is anticipated that the effectiveness of the GWETS will increase, operating costs will decrease, and the quality of groundwater will gradually improve with time through continued treatment; data obtained from ongoing monitoring activities will be used to continually evaluate migration pathways and potential receptors.

This Periodic Review Report (PRR) summarizes SM activities completed at the Site from June 2022 through May 2024. Based on activities completed from 2022 to 2024, the site use and activities are in compliance with the institutional controls/engineering controls (IC/ECs) remaining in-place. The NYSDEC Engineering Controls – Standby Consultant/Contractor Certification Form is included in Attachment A1.

At the request of the NYSDEC, a Remedial System Optimization (RSO) Pilot Test was conducted at the Site during this PRR reporting period from November 2022 through February 2024 to evaluate the potential optimization of the site extraction wells for the continued optimization and monitoring of system efficiency and hydraulic control of the source in the vicinity of the Site. The findings of the RSO Pilot Test have been reported to the NYSDEC under separate cover.

1.0 SITE OVERVIEW

1.1 SITE HISTORY AND DESCRIPTION

The original Mohonk Road Industrial Plant (MRIP) property, consisting of approximately 14.5 acres, had previously been used for industrial and commercial activities since the early 1960s. Hazardous waste disposal practices, especially those involving solvents, from one or more of the previous industrial operators in the MRIP building resulted in the area groundwater being contaminated with various volatile organic compounds (VOCs). Many of these wastes were disposed of in the on-site septic system. The various operators included manufacturers of plastic and metal store display fixtures, metal finishing, wet spray painting, card punch machines, and computer frames operations. Drums, paint sludge, and other wastes were also buried in several locations on the property.

The MRIP property is currently zoned for commercial/light industrial use. The Town of Marbletown has indicated that no zoning changes are planned for the MRIP property. The most reasonably anticipated future use for the MRIP property remains commercial and light industrial. The Site was added to the National Priorities List (NPL) by the United States Environmental Protection Agency (USEPA) on January 19, 1999.

In 1994, the New York State Department of Environmental Conservation (NYSDEC) began investigating the Site. Subsequently, NYSDEC installed point-of-entry treatment (POET) systems using granular activated carbon (GAC) filters at existing residences and businesses whose potable water supply exceeded the New York State (NYS) maximum contaminants levels (MCLs) of 5 micrograms per liter (µg/L) for individual VOCs.

In 1996, NYSDEC performed a remedial investigation (RI) at the Site which included collection of soil gas and subsurface soil samples, installation of groundwater monitoring wells, and collection of groundwater samples and water and sludge samples from the on-site septic tank located north of the MRIP building.

Based on the findings of the RI, cis-1,2-dichloroethene (cis-1,2-DCE), 1,1,1-trichloroethane (1,1,1-TCA), 1,1-dichloroethene (1,1-DCE) 1,1-dichloroethane (1,1-DCA), trichloroethene (TCE),

tetrachloroethane (PCE), ethylbenzene, and xylenes were identified as contaminants of concern (COCs) in site soils. The septic tank sludge contained elevated concentrations of 1,1,1-TCA and 1,1-DCE.

Analytical data for groundwater indicated that the dissolved-phase VOC-plume extends approximately one mile north-northeast from the MRIP property. 1,1,1-TCA was reported at a concentration of 82,000 μg/L in one monitoring well, MW-4. Further groundwater sampling in downgradient private wells resulted in reported 1,1,1-TCA concentrations ranging from non-detect to 880 μg/L and total VOC concentrations ranging from 1.6 to 1,077 μg/L. In addition, the groundwater in the bedrock aquifer beneath the MRIP property exhibited VOC concentrations above the USEPA removal action levels, federal and NYS MCLs, and New York State Department of Health (NYSDOH) Class GA Drinking Water Standards.

Results of the baseline risk assessment conducted during the RI indicated that the groundwater at the Site poses an unacceptable risk to human health. This assessment conservatively assumed that the POET systems, which were in operation at the time, would no longer be used. The assessment concluded that actual or threatened releases of hazardous substances from the Site, if not addressed by remedial actions or other active measures, present a current or potential threat to human health and the environment.

In response to a 1998 NYSDEC request, the USEPA conducted a non-time-critical removal action (NTCRA) involving the construction of a GWETS system designed to minimize the further migration of the most highly contaminated portion of the groundwater plume. In May 2000, the NTCRA GWET plant became operational.

In December 1999, as part of the ongoing NTCRA to construct a GWET facility, USEPA excavated and disposed of contaminated soil, paint waste, and debris from an area identified as Paint Waste Pit #1. All visible waste was removed from the pit; the soil on the sidewalls and floor were screened with field instrumentation and sampled for laboratory analysis. Sampling results showed that the USEPA soil action levels for the Site, identified in the 2000 Record of Decision (ROD), were not exceeded in any of the post-excavation samples. A total of 532 tons of soil and debris were excavated and disposed of off-site as nonhazardous waste. During October to December 2000, an additional approximately 2,036 tons of contaminated soil, paint waste and debris were excavated on the MRIP

property. This soil, as well as the previously stockpiled soil on the MRIP property, were disposed of off-site at permitted facilities. All excavated areas were backfilled with clean soil.

The ROD was signed in March 2000 (USEPA, 2000). The description of the selected remedy in the ROD as it pertains to contaminant reduction included:

- Extraction of contaminated groundwater in the near field and far field plume to restore the aquifer to its most beneficial use (as a potable water supply), treatment with an air stripper, and discharge of the treated water to the nearby Rondout Creek and Coxing Kill Creek. The "near field plume" refers to that portion of the groundwater plume with total VOC concentrations greater than 1,000 μg/L; the "far field plume" refers to the component of the groundwater plume with 10 μg/L to 1,000 μg/L total VOCs. The GWETS was designed and installed by the USEPA circa 2011.
- Construction of an alternative public water supply (PWS) to provide potable water to the residences and businesses in the Towns of Marbletown and Rosendale with impacted or threatened private supply wells. The primary water supply for the constructed PWS will be the Catskill Aqueduct, as managed by the New York City Department of Environmental Protection (NYCDEP). The individual POET granular activated carbon filtration systems will be operated until the new PWS is operational.
- Implementation of a groundwater monitoring program to evaluate the effectiveness of the remedy.
- Institutional controls (ICs) may be employed to prevent future use of the bedrock aquifer in the impacted or threatened area.
- Excavation of VOC-contaminated soils with concentrations above the cleanup criteria to prevent or minimize cross-media impacts from COCs in soil to groundwater.
- Off-site disposal of the contaminated soil at appropriately permitted facilities.

Approximately 70 POET systems were installed by the NYSDEC between 1994 to 1998 and an additional 5 POET systems were installed by the USEPA between 2000 and 2004 (USEPA, 2019)

Earth and Environment Engineering and Geology, P.C. – US-EI-7772210116

within residential and commercial wells down-gradient of the MRIP property that were determined to have VOC concentrations above NYS MCLs (5 μ g/L for individual VOCs).

Between February 2005 and January 2006, the USEPA initiated off-site investigations to determine whether subsurface contamination originating from the MRIP property poses a risk to residents via soil vapor intrusion. Sampling determined that the concentrations of VOCs at off-site sample locations were below the USEPA health-based screening level of less than 5 micrograms per cubic meter ($\mu g / m^3$) of TCE in sub-slab vapor. Therefore, no further evaluation and/or actions were deemed necessary to evaluate the soil vapor intrusion pathway at off-site residential locations (USEPA, 2008).

However, sub-slab soil vapor samples collected in February 2005 from the on-site MRIP building located at 186 Mohonk Road revealed a TCE concentration of 28 microgram(s) per cubic meter $(\mu g/m^3)$ exceeding the USEPA preset TCE sub-slab soil vapor concentration of 5.0 $\mu g/m^3$. The result was a determination that further investigation was required. (Lockhead Martin Technological Services, August 2005).

Additional indoor air and sub-slab vapor investigations conducted at the on-site commercial building during 2006 revealed indoor air and sub-slab vapor VOC detections of TCE, 1,1,1-TCA, and other VOCs including PCE, carbon tetrachloride and vinyl chloride.

Between January and February 2007, a Sub-Slab Depressurization System (SSDS) was installed by the USEPA within the MRIP commercial building location at 186 Mohonk Road. The SSDS included six sub-slab locations (SS-1 through SS-6) consisting of a blower vertically mounted to the outside of the building with a sample port located outside the building. The SSDS was expanded in June 2009 to include one additional sub-slab location (SS-7) (blower and sample port).

In September 2008, USEPA issued a ROD Amendment in which the far field treatment system component of the groundwater remedy was replaced by monitored natural attenuation (MNA) (USEPA, 2008). Based on activities completed, the description of the selected remedy in the 2008 ROD was amended to:

Earth and Environment Engineering and Geology, P.C. – US-EI-7772210116

• MNA within the far field plume to restore the aquifer to its most beneficial use (as a potable water supply) and continued GWET (air stripper and GAC adsorption) of contaminated groundwater in the near-field plume on the MRIP property. The treated water discharges to the Coxing Kill. As stated above, the near-field plume refers to that portion of the groundwater plume containing total VOC concentrations greater than 1,000 μg/L. The far-field plume was updated to refer to that portion of the groundwater plume containing concentrations of five to 1,000 μg/L total VOCs.

- Implementation of a groundwater monitoring program to evaluate groundwater conditions and the effectiveness of the components of the groundwater remedy.
- Institutional controls in the form of existing governmental controls to prevent future use of
 the aquifer as a drinking water source in the impacted or threatened area. The institutional
 controls would no longer be necessary following the restoration of the groundwater to
 beneficial use.
- Continued operation and maintenance of the Site's soil vapor extraction system would be continued, as required (anticipated to be shut down within three years of the date of ROD).

1.2 PHYSICAL SETTING

The Site, located at 186 Mohonk Road, is in the Hamlet of High Falls within the Town of Marbletown, Ulster County, New York (see Figure 1.1), and is identified as Section 70.3 Block 3, Lots 37.100 and 37.200 on the Ulster County Tax Map. The Site is an approximately 14.5-acre area and is bounded by commercial properties and/or undeveloped land to the north, residential properties and/or undeveloped land to the south and west, and by Mohonk Road and residential properties to the east (see Figures 1.2 and 1.3).

About 7 acres of the northern undeveloped portion of the Site was conveyed by the Kithkin Corporation, on August 15, 2005, to the HFWD. This northern portion of the site property is now the location of the HFWD Treatment Facility. The site monitoring wells locations and boundaries of the HFWD are included on Figure 1.2.

The Site has historically been used for industrial and commercial activities since the early 1960s. These activities included metal finishing, wet spray painting, and the manufacturing of store display fixtures, card punch machines, and computer frames. Wastes from these operations were typically discharged into the on-property septic system. The on-site commercial building is currently occupied by several commercial and light industrial businesses and is also utilized as artisan studios, workshops, and storage areas including woodworking, painters, sculptors, candle makers, and a bread distributor.

The MRIP and surrounding areas are located in the Shawangunk Mountains and are underlain by the Silurian Shawangunk Formation. Previous investigations at the Site have identified several hydrostratigraphic zones. These zones consist of an overburden flow zone, a bedrock interface zone, and a bedrock flow zone, as detailed below.

Overburden Flow Zone

The overburden flow zone is characterized by groundwater flow in thin deposits of unconsolidated glacial lodgment, ablation, and weathered till, sand lenses, and fill. Some thicker (up to 50 feet) deposits of unconsolidated materials exist in an area just north of the Site. The till is approximately 9 to nearly 30 feet thick on the MRIP. The flux of groundwater through this flow zone is dependent upon precipitation events and seasonal fluctuations in groundwater recharge. At certain times of the year, this overburden unit may be seasonally perched or fully saturated. The water table is typically found in this zone and responds quickly to precipitation events. Groundwater levels historically have fluctuated greatly (i.e., approximately 6-foot [ft] variations between sampling events in MW-4).

The principal direction of horizontal overburden groundwater flow is predominantly to the north. Based on visual inspection of soils, estimates of hydraulic conductivity developed during the RI indicated permeability of the overburden flow unit in the range of 1 x 10⁻⁶ to 0.1 ft/day. Average linear groundwater velocity was calculated to be approximately 1 x 10⁻⁴ ft/day (LMS, 1998a). Groundwater in this overburden flow zone also exhibits a downward component of flow into the bedrock interface and bedrock flow zones. Thus, waste disposed in this zone is anticipated to migrate downward through more conductive sand lenses or fractures within the glacial till unit.

Bedrock Interface Flow Zone

The transition from unconsolidated material to the underlying bedrock includes a bedrock interface zone consisting of sand, gravel, and weathered rock fragments. This zone appears to be in direct hydraulic connection with the underlying bedrock flow zone in certain areas of the Site, and it appears to be confined or partially confined by the overlying glacial till unit. This zone is anticipated to be more conductive than the overlying overburden. The vertical groundwater flow gradients for this zone are strongly downward, ranging from 0.14 to 0.46 ft/day indicating that the Site is located in a recharge zone of the deeper bedrock flow zone. Average linear groundwater velocity within this zone was estimated to be approximately 1.33 x 10-3 ft/day (LMS, 1998a).

Bedrock Flow Zone

The bedrock flow zone represents the principal source of drinking water for the High Falls area. The flow zone is encountered in highly competent orthoquartzites of the Upper Member of the Shawangunk Formation, and also in gray shale deposits (specifically north of the Site in the former septic system area). This unit has little to no remaining primary porosity but is cut by various fractures. Fracture orientation varies from near vertical to near horizontal. These fractures are the primary storage for groundwater and the anticipated pathways for contaminant transport.

The Site is located near a topographic high and serves as a recharge area for the fractured bedrock aquifer. Vertical gradients are primarily downward within the bedrock flow zone, and recharge to the bedrock aquifer predominantly occurs from the bedrock interface flow zone where permeable glacial overburden overlies the fractured bedrock interface zone. Estimates of hydraulic conductivity developed during the RI indicate permeability of the bedrock flow zone in the range of 0.24 to 0.46 ft/day. Based on the regional groundwater gradient and estimated porosity, the average linear groundwater velocity in bedrock was calculated to be approximately 0.26 ft/day (LMS, 1998a). The primary horizontal direction of bedrock groundwater flow emanating from the Site is to the north toward Rondout Creek, with minor components of lateral flow to the northeast and northwest.

1.3 CLEANUP GOALS AND REMEDIAL PROGRESS

1.3.1 Cleanup Goals

The ROD, signed in 2000 (USEPA, 2000) established the site cleanup goals as follows:

- Restoration of the near field and far field aquifer to its most beneficial use (as a potable water supply) through the operation of the selected GWETS remedy.
- The construction of an alternative public water supply system; use of individual granular activated carbon filtration POET systems until the new public water supply system is operational.
- Implementation of a groundwater monitoring program to evaluate the effectiveness of the remedy (see Figure 1.2 for site monitoring wells).
- ICs to prevent future use of the bedrock aquifer in the impacted or threatened area.
- Excavation and off-site disposal of VOC-contaminated soils with concentrations above the cleanup criteria.

In September 2008, the ROD Amendment (USEPA, 2008) established additional cleanup criteria as follows:

• Restoration of the far field aquifer to its most beneficial use (as a potable water supply) through the amended groundwater remedy of monitored natural attenuation.

1.3.2 Remedial Progress

In accordance with the site investigations and ROD(s), the following remedies were implemented to address the contamination originating from the MRIP Site.

 Installation of POET systems on residential wells. Approximately 70 POET systems were installed by the NYSDEC between 1994 to 1998 and an additional 5 POET systems were installed by the USEPA between 2000 and 2004 (USEPA, 2019). Earth and Environment Engineering and Geology, P.C. – US-EI-7772210116

- Installation of a near field GWETS, designed to minimize the further migration of the most highly contaminated portion of the groundwater plume, constructed west of the site building (Figure 1.3) became operational in May 2000 (USEPA, 2011). The GWETS included groundwater extraction from three bedrock wells (MW-5R, MW-7R, and ERT-1), treatment with an air stripper and carbon polishing of the effluent, vapor phase carbon treatment of the air releases, and discharge of the treated effluent to the Coxing Kill (USEPA, 2019).
- Excavation and disposal of contaminated soils in 1999 and 2000 as part of a USEPA NTCRA, and from October 2000 to March 2001 as a post ROD remedial action. In total approximately 2,568 tons of contaminated soil, paint waste, and debris were removed from the property and disposed in permitted facilities. Removal areas included the soil below the gravel parking area west of the MRIP building (AOC-A), paint waste debris layer north of the MRIP (AOC-B), paint waste and debris pit #2 (AOC-C), and soil contaminated from the MRIP septic tank area (AOC-D) (USEPA, 2008) referenced on Figure 1.3 Site Layout.
- Creation of the HFWD as an alternative water source for contaminated private wells within
 the towns of Marbletown and Rosendale, and construction of the HFWD Treatment Plant
 from September 2005 to May 2007 (USEPA, 2019).
- Connection of all residents located within the HFWD to the new potable water system and removal of all POET systems was completed by December 2007 (USEPA, 2019).
- Installation of a soil vapor extraction (SVE) system in the vicinity of the former septic tank and leach field (operational from December 2006 until June 2012, with multiple modifications). The system was terminated due to poor recovery during seasonally high water and poor connectivity; the originally installed 18 overburden SVE wells were abandoned, and five SVE wells installed into the bedrock in 2008 were left in place (Figure 1.3) (USEPA, 2019).
- Installation of a vapor intrusion mitigation system consisting of a total of seven individual SSDS installed at the MRIP building in February 2007 (SS-1 through SS-6) and June 2009 (SS-7) (USEPA, 2009).
- Implementation of ICs (Environmental Easement established in 2005 in the HFWD property deed [Ulster County, 2005] and amended in 2011 [Ulster County, 2011]).

• Operation, maintenance, and monitoring of the GWETS and SVE system (USEPA, 2019) (SVE system discontinued in 2012).

Post-ROD(s) investigation activities included a Data Gap Investigation and Pilot Study to further understand the contaminant distribution at the Site and associated conceptual site model, to address identified data gaps, and to provide additional data to evaluate the existing remedial measures. In 2015, a Data Gap Investigation was completed including bedrock borehole geophysics, packer groundwater sampling from extraction wells, direct push Membrane Interface Probe soil sampling, and test pitting, and site survey completion. Data Gap Investigation (MACTEC, 2016) findings include:

- Direct push sampling results indicated contamination remains bound in the soil (1,1,1-TCA and TCE) at concentrations greater than the Protection of Groundwater (PoG) SCO (0.68 and 0.47 mg/kg, respectively) within the former SVE area, primarily in the vicinity of the former septic tank. Detections of 1,1,1-TCA ranged from 0.082-11 mg/kg, above the PoG SCO of 0.68 mg/kg, and detections of TCE ranged from 0.085-1.9 mg/kg, compared to the PoG SCO of 0.47 mg/kg.
- Groundwater sampling of the shallow bedrock SVE wells (installed to approximately 55 ft below ground surface [bgs]) reveal that contaminants also appear to be bound up in the overburden/bedrock interface and shallow bedrock with maximum detected concentrations of 31,000 μg/L for 1,1,1-TCA (SVE-20).
- Bedrock packer testing results in the groundwater extraction wells indicated that contaminant concentrations in bedrock fractures decreased with depth, with the highest concentrations of 1,1,1-TCA (94 to 170 μg/L) detected at depths of 80 to 100 feet bgs.
- Downward vertical hydraulic gradients, coupled with denser-than-water COCs and extended pumping from bedrock extraction wells MW-5R, MW-7R, and ERT-1 appear to have resulted in the vertical migration of COCs through the overburden aquifer into the bedrock aquifer.
- The presence of 1,1,1-TCA in wells upgradient of the former septic system is likely attributed to historical pumping of the MRIP production wells (MRPW-1 and MRPW-2, see

Earth and Environment Engineering and Geology, P.C. – US-EI-7772210116

Figure 1.3 – Site Layout), the pumping of residential wells in the area, and the possible existence of fractures that extend from the area of the disposal/septic tank to these wells.

The pilot studies conducted in 2019 and reported in the Pilot Study Report (MACTEC, 2020) concluded:

- Although VOC concentrations in soil vapor in the existing SVE wells are elevated, reinstating the SVE system is not recommended due to poor air flow; however, periodic purging of groundwater that collects in the wells may be beneficial for contaminant mass removal.
- Modifying the extraction wells (e.g., raising pump intake elevation and replacing pumps with variable rate pumps) to pump from higher fractures may improve contaminant mass removal.
- Detection of 1,4-dioxane in groundwater (6.4 μg/L) will continue to be monitored as there is no corresponding limit established within the MRIP SPDES Permit Equivalent.

Between November 2022 and February 2024, an RSO Pilot Test Study was completed to further evaluate the performance of GWETS modifications to extract groundwater from locations coinciding with bedrock fracture zones containing the highest concentrations of 1,1,1-TCA (94 to 170 μ g/L) detected at depths of 80 to 100 feet bgs. The findings of the RSO Pilot Test (EEEG, May 2025) were reported to the NYSDEC under separate cover.

Monitoring of the migration, plume stability, and natural attenuation of the plume is accomplished with the LTM program and is further discussed in Section 2.0 of this report. Table 2.2 presents the sampling matrix currently utilized during the LTM and system performance monitoring.

2.0 EVALUATION OF REMEDY PERFORMANCE, EFFECTIVENESS, AND PROTECTIVENESS

The Third Five-Year Review Report (USEPA, 2024) for the Site includes an Institutional Controls/Engineering Controls (ICs/ECs) Plan, Operation and Maintenance (O&M) Plan, LTM Plan, and associated reporting (EEEG, 2023).

2.1 INSTITUTIONAL CONTROLS/ENGINEERING CONTROLS

ICs/ECs provide added protection measures for potentially exposed receptors over and above natural attenuation mechanisms and source area remedial measures. ICs for the Site include restrictions to soil excavation, groundwater use, and well installations, and an operations and monitoring plan. ECs consist of the GWETS, an alternate water supply (MACTEC, 2018a) and surrounding perimeter fence, and SSDS for the on-site commercial building.

Groundwater is captured by the GWETS to confine the plume extent and migration, and to recover contaminant mass. A perimeter fence prohibits unauthorized access to the HFWD's PWS treatment plant, and the plant building access locks restrict unauthorized access to the GWETS building. The perimeter fence and building access locks are inspected monthly to ensure access remains restricted. Monitoring wells (on- and off-site) are used for collecting groundwater samples and elevation measurements as part of the LTM program.

Operation, maintenance, and monitoring (OM&M) of the GWETS plant and the SSDS system are performed by the NYSDEC through their remedial contractor, Aztech (through December 2023) and through their environmental consultant EEEG (between January 2024 and May 2024). The ongoing GWETS operations consist of extraction of the contaminated groundwater, treatment through an air stripper, and discharge of the treated groundwater to the Coxing Kill. As part of monitoring program, the influent and effluent concentrations of the GWETS, as well as extraction wells ERT-1, MW-5R and MW-7R, are routinely sampled. The ongoing SSDS monitoring consists of a visual inspection of the exterior blowers/fans and piping to confirm they are intact and operating. Blowers/fans deemed non-functioning are replaced.

2.1.1 Site Controls and Evaluation

Requirements for site controls are presented in Table 2.1. Effectiveness of the groundwater remedial measures is directly related to maintenance and monitoring of treatment processes related to the GWETS. Progress of groundwater remediation is tracked through the performance of the GWETS, through the LTM program (Table 2.2), through the interpretation of plume extent, and through the evaluation of concentration trends over time (MACTEC, 2019). Effectiveness of the SSDS is related to the maintenance and monitoring of the system operation as designed. Observations regarding each of these components are discussed in the following subsections.

2.1.2 Groundwater Extraction and Treatment System

Operating parameters¹ for the GWETS include monitoring system downtime, flow volume treated in gallons per reporting period (approximately monthly), and total volatile organic compounds (VOCs) extracted from groundwater. These quantities are presented in Tables 2.3, 2.4, and 2.5, respectively.

During the two-year reporting period, approximately 21.2 million gallons of extracted groundwater were processed with an average flow rate of approximately 20.2 gallons per minute (gpm). While in operation, the flow rate through the GWETS system has ranged from 7.8 gpm to 32.4 gpm. Approximate system downtime for the GWETS fluctuated during 2022, 2023 and 2024, at 107 days, 15 days and 4 days, respectively (Table 2.3). During the three-month period from September 2022 through November 2022, the GWETS was shut down and was inoperable due to preparations and modifications required for the RSO Pilot Test; therefore, no analytical data was collected during this system shutdown time.

An estimated 10.22 pounds of total VOCs were extracted in groundwater (Table 2.5). The mass removal estimate is based on the system influent system performance samples collected and analyzed monthly for VOCs (Table 2.6). Refer to Figure 2.0 for yearly pounds of VOCs removed during the reporting period (June 2022 – May 2024).

2-2

¹ GWETS quantities over the previous two years were tabulated using information collected by Aztech (June 2022 through December 2023) and by EEEG (January 2024 through May 2024).

2.1.3 **SSDS**

The Site includes a SSDS within the on-site commercial building that was installed in January and February 2007 and upgraded in June 2009 by the USEPA to depressurize the building's concrete slab and mitigate the potential for contaminated vapors to enter the building. The SSDS is designed to run continuously and consists of seven sub-slab vent points (SS-1 to SS-7) installed beneath the concrete slab with each point connected by 3-inch PVC to RadonAway DynaVac HS Series blowers (identified as Fan #1 through Fan #7) vertically mounted to the outside of the building (USEPA, 2009).

2.2 OPERATION AND MAINTENANCE PLAN

Remedial measures in place require routine inspection, sampling, and maintenance to provide effective remediation and reduction of exposure to site-related contaminants. OM&M Monthly Field Forms (January – May 2024) are included in Attachment A2-1. The following subsections describe requirements and compliance with the O&M Plan with respect to the GWETS.

2.2.1 Groundwater Extraction and Treatment System

The GWETS is a groundwater recovery system with water treatment via air stripping. Groundwater is recovered through three extraction well (EW) pumps, located in wells MW-5R, MW-7R, and ERT-1. GWETS performance monitoring is completed through the monthly collection of influent extraction well samples from MW-5R, MW-7R, and ERT-1, Pre-Air Stripper Combined Influent sampling, and Air Stripper Effluent grab sampling for analytical analysis of VOCs, TDS, TSS, Iron, pH, and 1-4-Dioxane (Table 2.6). Groundwater samples were submitted to ConTest: East Longmeadow, MA Laboratory (through December 2023) and Alpha Analytical: Westborough, MA Laboratory (January 2024 through May 2024) for analysis. Treated remediation wastewater is discharged to the Coxing Kill and Tributaries through the SPDES Permit Equivalent for the MRIP Site.

The GWETS remained in operation during the PRR reporting period, with the exception of the downtime periods discussed in Section 2.1.2. Results of effluent compliance samples collected monthly between June 2022 and May 2024 were within the NYS Class GA standards and/or SPDES

permit equivalent limits, with the exception of monthly effluent sampling collected in May 2023 and January 2024.

The effluent sample collected on May 16, 2023 exceeded the SPDES permit equivalent daily maximum limit for 1,1,1-TCA ($10~\mu g/L$) at a concentration of 29 $\mu g/L$ and NYS Class GA standards for 1,1-DCE ($5~\mu g/L$) at and 7.35 $\mu g/L$. The laboratory reported near identical results for the May 16, 2023 Pre Air Stripper Combined Influent ($28.4~\mu g/L$ / $7.24~\mu g/L$) and Air Stripper Effluent ($29.0~\mu g/L$ / $7.35~\mu g/L$) sample results for 1,1,1-TCA and 1,1-DCE, respectively. The analytical data package and COCs were reviewed to confirm the reported results; the possibility of potential human and/or laboratory error or incorrect sample submittals cannot be verified. The air stripper was functioning normally; therefore, the plausible explanation for the similarity in results is that incorrect samples were submitted for analysis and it is likely that the sample results are not representative of treated groundwater effluent. This explanation is supported by subsequent sample results of the effluent collected after May 2023 that show reduced VOC concentrations well below the SPDES permit equivalent limits.

The effluent sample collected on January 10, 2024 slightly exceeded the NYS Class GA Standard for 1,1,1-TCA (5 μ g/L) at a concentration of 5.1 μ g/L but was well below the acceptable SPDES permit equivalent daily maximum limit for 1,1,1-TCA (10 μ g/L). Results of subsequent monthly effluent samples collected after January 2024 show VOC concentrations below the NYS Class GA Standards.

2.2.2 **SSDS**

Routine SSDS inspections were completed in accordance with the Site Management requirements during the PRR reporting period of June 2022 through May 2024 to ensure that the SSDS fans were operational. The ongoing SSDS monitoring consists of a visual inspection of the exterior blowers/fans and piping to confirm they are intact and operating. Blowers/fans deemed non-functioning are replaced. Monthly SSDS inspections confirmed and recorded vacuum pressure. Additionally, each fan exhaust was confirmed to extend at least 12 inches above the highest eave, and no new windows or other openings were observed within 10 feet of the exhausts.

2.3 LONG-TERM MONITORING

The LTM program has been designed to monitor the effects of the GWETS on contaminant levels in groundwater in the vicinity of the Site, to monitor long-term trends in concentrations of contaminants in groundwater, and to evaluate the effectiveness of the remedial actions (MACTEC, 2020). This is accomplished through groundwater sampling and analysis and through the collection of water level measurements from select wells to generate bedrock and overburden potentiometric surface maps. Since 2019, groundwater sampling events for the Site have been performed on a 15-month basis.

The ROD divided the plume into two categories based on volatile organic compound (VOC) concentrations: the "near field" plume and the "far field" plume. Annual monitoring includes sampling of the background, on-site, mid-plume, and perimeter wells in accordance with the 2019 Field Activities Plan (MACTEC, 2019) which was based on the 2013 LTM monitoring plan (AECOM, 2013). The following wells were sampled during the May 2023 LTM event:

- Fourteen conventional monitoring wells: ERT-4, MW-1B, MW-4, MW-5B, MW-6B, MW-8B, MW-9B, MW-10B, MW-11B, MW-11C, MW-12B, MW-14B, MW-15B, and MW-16
 - Monitoring well MW-13B was intended to be gauged and sampled; however, the well could not be accessed due to damage.
- Three extraction wells: ERT-1 MW-5R, and MW-7R
- Eight FLUTeTM well intervals: MW-17 (Ports 1-3), MW-21 (Ports 1, 2, 4, 5, and 6)
 - The FLUTe[™] wells not sampled included: MW-18 (Ports 1-3) [Damaged], MW-19 (Ports 1-3) [Not Found], MW-20 (Ports 1-3) [Not in MW Network], and MW-21 (Port 3) [Damaged]

On May 15, 2023, water levels were measured in fourteen monitoring wells, two FLUTeTM wells and three extraction wells (Table 2.7). Figure 1.2 depicts the well locations and Figure 2.1 depicts the groundwater contour elevations when the bedrock extraction wells are pumping, demonstrating that groundwater flow is toward the north-northeast.

The May 2023 LTM monitoring wells, sampled and analyzed for VOCs by USEPA Method 8260 and 1,4-dioxane by USEPA Method 8270E-SIM, are summarized on Table 2.2. Groundwater sampling forms are included in Attachment A2-2. Groundwater samples were submitted to ConTest: East Longmeadow, MA Laboratory for analysis. No samples were analyzed for MNA parameters during the May 2023 LTM event. At the request of the USEPA, MNA parameters will be analyzed during the next LTM event scheduled for August 2024. All samples were collected by EEEG personnel between May 16 through May 18, 2023, via either low-flow or grab sampling procedures, and were submitted to Pace Analytical. May 2023 LTM groundwater sample results were used to delineate the VOC and 1,4-Dioxane plumes depicted in Figures 2.2 and 2.3, respectively.

Table 2.8 summarizes May 2023 LTM results reported at concentrations exceeding NYS Class GA water quality standards. The principal compounds detected were TCE, 1,1,1-trichloroethane (TCA), 1,1-dichloroethan (DCA), 1,1-DCE, and cis-1,2-DCE. The highest concentrations of 1,1,1-TCA in groundwater were observed at ERT-4 (1,000 μ g/L), MW-5B (490 μ g/L) and MW-4 (400 μ g/L).

These results have been compared to groundwater sampling results presented in the 2022 Long-Term Monitoring Event Report (MACTEC, 2023). The 2023 groundwater sampling laboratory results were provided to NYSDEC in electronic document delivery format and loaded into EQuIS. The Category A Review Report for the 2023 results is provided in Attachment A3.

<u>VOCs</u>

Consistent with 2022 LTM (MACTEC, 2023), VOC concentrations in wells within the near field plume in 2023 continue to show a decreasing trend. The wells that tend to show the highest total VOC concentrations, MW-4, MW-5B and ERT-4 (refer to Figures 2.4 – 2.6), have decreased from 1089 µg/L to 750 µg/L, 777 µg/L to 593 µg/L and 1882 µg/L to 1290 µg/L, respectively with 1,1,1-TCA comprising of 400 µg/L and 490 µg/L of the exceedances in MW-4 and MW-5B, respectively. ERT-4 was the only well observed in 2023 to have a total VOCs concentration over 1,000 µg/L at 1290 µg/L with 1,1,1-TCA accounting for 1,000 µg/L of that exceedance. Total VOC concentrations in extraction wells ERT-1 and MW-5R also decreased by nearly half, from 93 µg/L to 54 µg/L and from 97 µg/L to 40 µg/L, respectively. Refer to Figures 2.4 through 2.6 which include Site

groundwater quality analytical data for VOCs collected under the Site groundwater monitoring plan² from November 2015 through May 2024 for source area monitoring wells ERT-4, MW-4 and MW-5B, respectively.

In far field wells, concentrations are consistent between the 2022 and 2023 sampling event; however, concentrations for total VOCs in MW-15B were observed to decrease by nearly half, and in MW-16 and MW-12B to decrease by more than half (Table 2.8).

The following is a summary of the results for 1,1,1-TCA, 1,1-DCA, TCE, and 1,1-DCE (target VOCs) for wells sampled in 2023:

- MW-1B, MW-8B, and MW-10B concentrations have remained non-detect for target VOCs, consistent with previous data results.
- MW-6B and MW-14B VOC concentrations have remained below NYS GA groundwater standards.
- MW-11B, MW-12B, and MW-16 VOC concentrations have decreased to below NYS GA groundwater standards.
- MW-7R and MW-9B concentrations of VOCs appear stable compared to previous results.
- ERT-1, ERT-4, MW-4, MW-5B, and MW-15B concentrations of VOCs have shown a decline compared to 2022 results.
- MW-5R concentrations of 1,1,1-TCA, 1,1-DCA, and 1,1-DCE have declined compared to 2022 results.
- FLUTeTM MW-17 (intake ports 1 3; 47 ft, 102 ft, and 124 ft bgs, respectively) was unable to be sampled in 2022 due to freezing temperatures and had the following results in 2023:
 - MW-17-1 had concentrations exceeding NYS GA groundwater standards of 1,1,1 TCA, and 1,1-DCE of 6 μg/L and 11 μg/L, respectively in 2023.

2-7

² Collected groundwater analytical data related to the RSO Pilot Test during this PRR reporting period is not included within the attached trends plots and is presented under previously submitted site reporting.

- MW-17-2 had concentrations exceeding NYS GA groundwater standards of 1,1,1-TCA, 1,1,1-DCA, and 1,1-DCE of 6 μg/L, 7 μg/L and 12 μg/L, respectively in 2023.
- \circ MW-17-3 had concentrations of 1,1,1-DCA and 1,1-DCE of, 8 μg/L, and 12 μg/L, respectively in 2023.
- FLUTe[™] MW-21 (intake ports 1 6; 42.75 ft, 67 ft, 75.5 ft, 121.5 ft, 142.5 ft, and 160.5 ft bgs, respectively) was unable to be sampled in 2022 due to freezing temperatures and had the following results in 2023:
 - MW-21-intake ports 1, 2, 4, 5 and 6 results ranged from non-detect to detectable concentrations below the applicable NYS GA groundwater standards.

The following is a summary of the results for 1,4-Dioxane for wells sampled in 2023:

1-4 Dioxane was detected in all monitoring wells sampled (with exception of MW-1B and MW-10B which were non-detect), at concentrations ranging from 0.29 μg/L (MW-16) to 10 μg/L (MW-9B).

2.4 HYDRAULIC MONITORING

A round of synoptic water level measurements was conducted on May 15, 2023. All LTM event wells were gauged with the exception of MW-13B which was located but could not be accessed due to the metallic well point being corroded shut.

As demonstrated in the calculated May 2023 water elevation contours (Table 2.7 and Figure 2.1), the GWETS maintained hydraulic control during the reporting period and system downtime (Table 2.3) does not appear to have had an adverse impact on hydraulic control.

While the system was operational during the reporting period, the following extraction well downtime was experienced:

• ERT-1 experienced a significant downtime between February 14, 2023 through March 1, 2023 due to an electrical short, as well as February 19, 2024 through the end of the reporting

period, May 31, 2024 due to a VFD and motor failure caused by an electrical surge and delays associated with getting replacement parts on backorder.

MW-5R experienced significant downtime between March 13, 2024 and May 29, 2024 due
to a VFD and motor failure caused by an electrical surge and delays associated with getting
replacement parts on backorder.

The primary objective of the existing GWETS is for hydraulic containment, for which it is effective. However, given the low concentrations in the extracted groundwater, and the poor connectivity between the source area and the extraction wells, this system alone would need to operate indefinitely to achieve clean-up objectives. In an effort to accelerate the rate of remediation, modifications of the GWETS were implemented during the RSO Pilot Test (completed between November 2022 and February 2024) to evaluate the potential to increase VOC mass removal through the optimization of the site extraction wells. The findings of the RSO Pilot Test (EEEG, May 2025) were reported to the NYSDEC under separate cover.

3.0 COST CONTROL SUMMARY

A cost summary for June 2022 through May 2024 is provided below by task. As shown, most of the SM costs were incurred for operation and maintenance of the treatment systems.

Task 1 (Scoping)	
Labor	\$ 13,953
Task 2 (Monitoring and Reporting)	
Labor	\$ 166,010
Lodging, Travel, and MI&E	\$ 2,204
ODC	\$ 3,703
	\$ 171,918
Task 3 (Remedial System Optimization)	
Labor	\$ 127,019
Lodging, Travel, and MI&E	\$ 3,145
ODC^1	\$ 21,465
	\$ 151,629
Task 3.01 (GWETS Operations and Maintenance) ²	
Labor	\$ 233,613
Lodging, Travel, and MI&E	\$ 5,686
ODC^3	\$ 108,707
	\$ 348,006
Task4 (Sustainable & Resilient Remediation) ⁴	
Labor	\$ 21,190
Lodging, Travel, and MI&E	\$ 872
ODC	\$ -
	\$ 22,062
Total:	\$ 707,566

Notes:

No Laboratory Services are included under Task 03.01 as Laboratory Services June 2023 through December 2023 were NYSDEC Direct Expenses, and no current costs under EEEG Standby Analytical Laboratory January 2024 through May 2024.

- 1. Task 3 ODC costs include Central Hudson Utility costs (~\$12,000) and costs associated with RSO Pilot Test field sampling events (i.e., rental equipment, consumables, etc.)
- 2. Presented Costes incurred for GWETS Operations and Maintenance compiled from NYSDEC Remedial Contractor (Aztech) June 2022 through December 2023 and NYSDEC Environmental Consultant (EEEG) January 2024 through May 2024.
- 3. Aztech Task 03.01 ODC costs include Equipment (~\$37,000), Subcontractors (~\$3,000), and Receipted Costs (~\$66,000), EEEG Task 03.01 ODC costs (~\$6,000) include Receipted Costs.
- 4. Task is associated with the current Work Assignment No. D009809-25.1.

Since the NYSDEC assumed responsibility for the Site, optimization measures to reduce the overall operating expenses have been and will continue to be implemented to provide further cost savings at the Site.

4.0 CONCLUSIONS

Based on information gathered during the 2016 RSO investigation, the RSO Pilot Test was designed for optimization of the GWETS to target bedrock fracture zones for recovery and removal of VOCs of concern from groundwater. The RSO Pilot Test (EEEG, May 2025) was conducted at the Site during this PRR reporting period between November 2002 through February 2024 to evaluate the potential optimization of the site extraction wells for the continued optimization and monitoring of system efficiency and hydraulic control of the contaminant source in the vicinity of the Site. The effectiveness of the GWETS optimization measures, with respect to achieving the Remedial Action Objective (RAO), was reported to the NYSDEC under separate cover. The GWETS is continuing to treat groundwater within the Site's source area to reduce contaminant mass.

4.1 INSTITUTIONAL CONTROLS/ENGINEERING CONTROLS

The current ICs/ECs are adequate to achieve the objectives for protection of human health and the environment based on current site use. ICs for the Site, including a restriction on soil excavation, groundwater use and well installations, and a monitoring plan remain in-place and adhered to.

ECs include the GWETS and an alternate water supply with surrounding perimeter fence, and the SSDS within the on-site commercial building. The GWETS remains effective at treating impacted groundwater and at preventing further migration of impacted groundwater as evidenced by the monthly effluent sampling data that shows compliance with surface water discharge criteria, and by LTM data collected from on- and off-site monitoring wells. The SPDES Permit Equivalent, which includes the site surface water discharge criteria, is included in Attachment A4. A perimeter fence prohibits unauthorized access to the HFWD's PWS treatment plant and the plant building access locks restrict unauthorized access to the GWETS building.

4.2 OPERATION AND MAINTENANCE PLAN

The remedial measures in place require routine inspection, sampling, and maintenance to provide effective remediation and reduction of exposure to site-related contaminants. O&M procedures and requirements are presented in the SMP (MACTEC, 2023). NYS Class GA standards and SPDES

Permit Equivalent guidance values are used for comparison to the quality of the treated groundwater being discharged. These numerical limits are applicable at the point of treated groundwater effluent discharge at the end of the force main which leads to the Coxing Kill (see Attachment A4).

Compliance with procedures and requirements in the SMP was maintained during the PRR reporting period, and site-related VOCs in effluent water samples did not exceed the NYS Class GA standards and/or SPDES permit equivalent discharge limits during the reporting period with exception of the May 2023 and January 2024 effluent system performance sampling results, as discussed within Section 2.2.1. MPRs prepared during the reporting period summarizing GWETS O&M activities will continue to be generated and submitted to the NYSDEC.

An estimated 10.22 pounds of total VOCs were extracted in groundwater (Table 2.5). The mass removal estimate is based on the system influent samples collected and analyzed monthly for VOCs (Table 2.6).

4.3 LONG-TERM MONITORING

Monitoring the migration and/or degradation of the plume is accomplished through the LTM of the groundwater. Sufficient historic data has been collected on an annual basis to assess the overall concentration trends in groundwater. LTM sampling currently occurs every 15 months to incorporate seasonality in the data. The LTM network of monitoring wells has been installed to monitor upgradient, on-site, and downgradient groundwater conditions at the Site through monitoring the overburden shallow source area, bedrock source area, and downgradient bedrock groundwater.

As part of the current groundwater long-term monitoring (Table 2.1), upgradient, on-site, and downgradient wells are sampled to evaluate the effectiveness of the GWETS remedial system. Groundwater at the Site flows from the overburden to the bedrock and then primarily to the north in bedrock, with minor components to the northeast and northwest. Table 2.7 summarizes the well identification numbers, location and depths of the wells, and calculated groundwater elevations and sampling field parameters from the 2023 LTM, and Figures 1.2 and 2.1 illustrate the site monitoring well locations and the May 2023 groundwater elevation contours. (Note: not all wells referenced in Tables 2.1 and 2.7 / Figures 1.2 and 2.1 are included as part of the long-term monitoring program).

The monitoring well network included in the LTM includes three sentinel wells that monitor downgradient plume migration. Sentinel wells are uncontaminated wells or have contaminant concentrations below applicable guidance values, and are located directly downgradient of the plume and upgradient of sensitive receptors. The monitoring well network for the Site includes the following sentinel wells: MW-8B, MW-10B, and MW-14B. These wells are located within the area serviced by the HFWD. Low detectable concentrations of VOC contaminants have historically been detected below applicable groundwater standards in these wells. If detected concentrations in these wells increase above applicable groundwater standards, the operation of the GWETS will be evaluated.

Changes in groundwater concentrations and plume movement will continue to be monitored during the 15-month LTM events.

4.4 SSDS MONITORING

OM&M of the on-site commercial building SSDS system is performed by the NYSDEC through their remedial contractor Aztech (through December 2023) and through their environmental consultant EEEG (between January 2024 and May 2024). The ongoing SSDS monitoring consists of a monthly visual inspection of the exterior blowers/fans and piping to confirm they are intact and operating. If any of the individual SSDS blowers/fans are found to be non-functioning, they can be replaced without removing other system components. SSDS blowers/fans determined to be inoperable during monthly site inspections are identified for further evaluation and replacement as required.

During the PRR reporting period SSDS Fans 1 and 7 components were identified as non-functional between January and May 2024 by EEEG. The NYSDEC and NYSDOH were notified of the non-functioning Fans 1 and 7 and through EEEG field Daily Investigation Reports (DIRs).

The on-site commercial building SSDS operation is not impacted by the non-functioning of SSDS Fans 1 and 7 components (located in the southwest corner of the on-site commercial building), and the remaining SSDS Fans components (2, 3, 4, 5, and 6) are documented as functioning during the monthly SSDS site inspections.

Through subsequent discussion with the NYSDEC and NYSDOH, additional evaluation and troubleshooting of the SSDS Fan electrical power source was determined to be necessary. Additional activities for the replacement of the SSDS Fans and/or required power source upgrade are ongoing and will be documented as completed within field DIRs and within the subsequent PRR.

4.5 RSO PILOT TEST

The RSO Pilot Test, which commenced at the Site on November 29, 2022, was implemented for fifteen months with the objective of optimizing the extraction of groundwater from the elevated VOC concentration water-bearing fracture(s) and increasing VOC mass removal from groundwater at the Site. Specifically, the RSO Pilot Test was designed for optimization by targeting select bedrock fracture zones for increased VOC mass removal from groundwater while restricting the deeper, less impacted, groundwater aquifer from extraction through the installation of packers at the extraction wells.

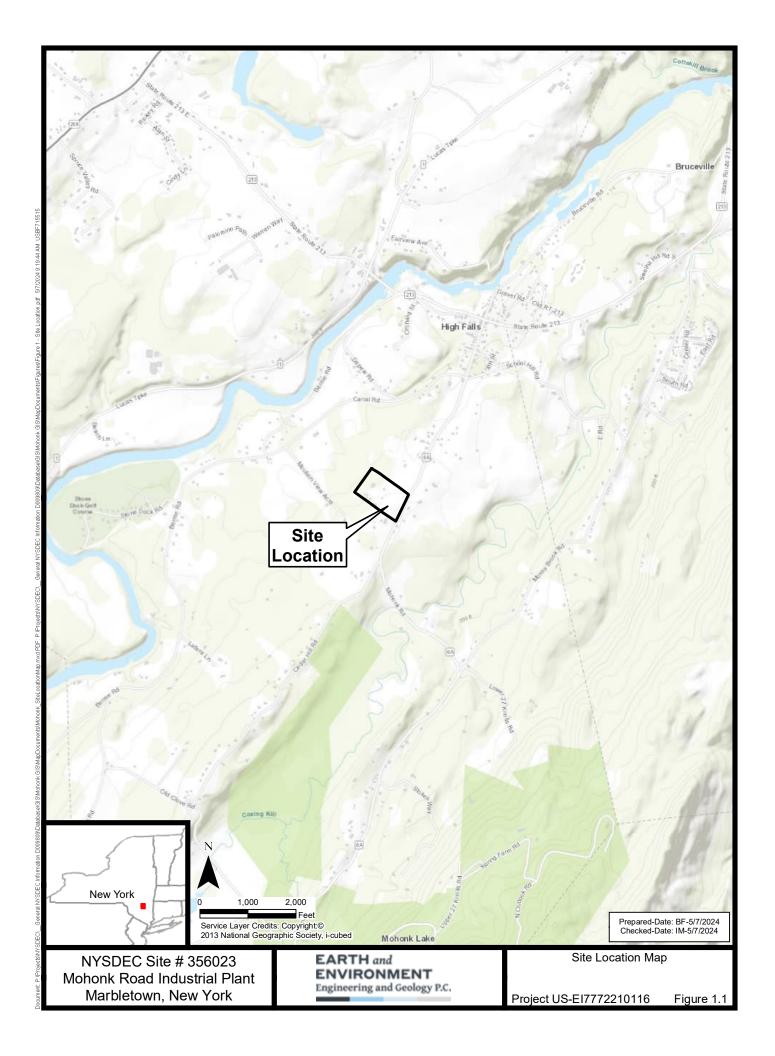
The RSO Pilot Test included the modification of GWETS extraction wells, monthly GWETS performance sampling, monthly groundwater purging of source area SVE points to evaluate their potential use for contaminant VOC mass removal, quarterly groundwater quality sampling at GWETS extraction monitoring wells and Pilot Test Monitoring Wells, and continuous water level readings.

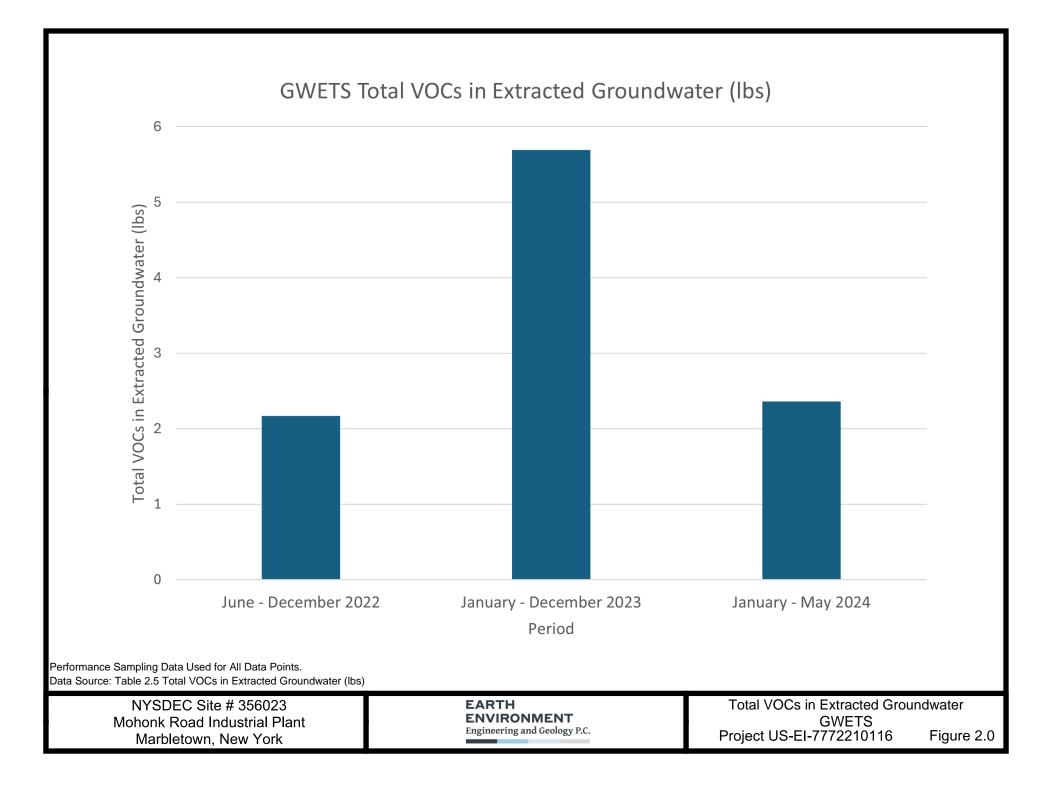
During the RSO Pilot test, completed between November 2022 and February 2024, EEEG collected quarterly groundwater samples for VOC and 1,4-Dioxane analyses from the six monitoring wells (MW-4, MW-5B, ERT-4, MW-11B, MW-12B, and MW-15B) that contain water level data loggers, and the three extraction wells (ERT-1, MW-5R, and MW-7R). Groundwater samples were submitted to ConTest: East Longmeadow, MA Laboratory (through December 2023) and Alpha Analytical: Westborough, MA Laboratory (January 2024 through May 2024) for analysis. Monitoring wells were sampled using low-flow sampling procedures. Field measurements for pH, temperature, specific conductivity, oxidation reduction potential, turbidity, and dissolved oxygen were collected from a flow-through cell within each monitoring well during pre-sample purging.

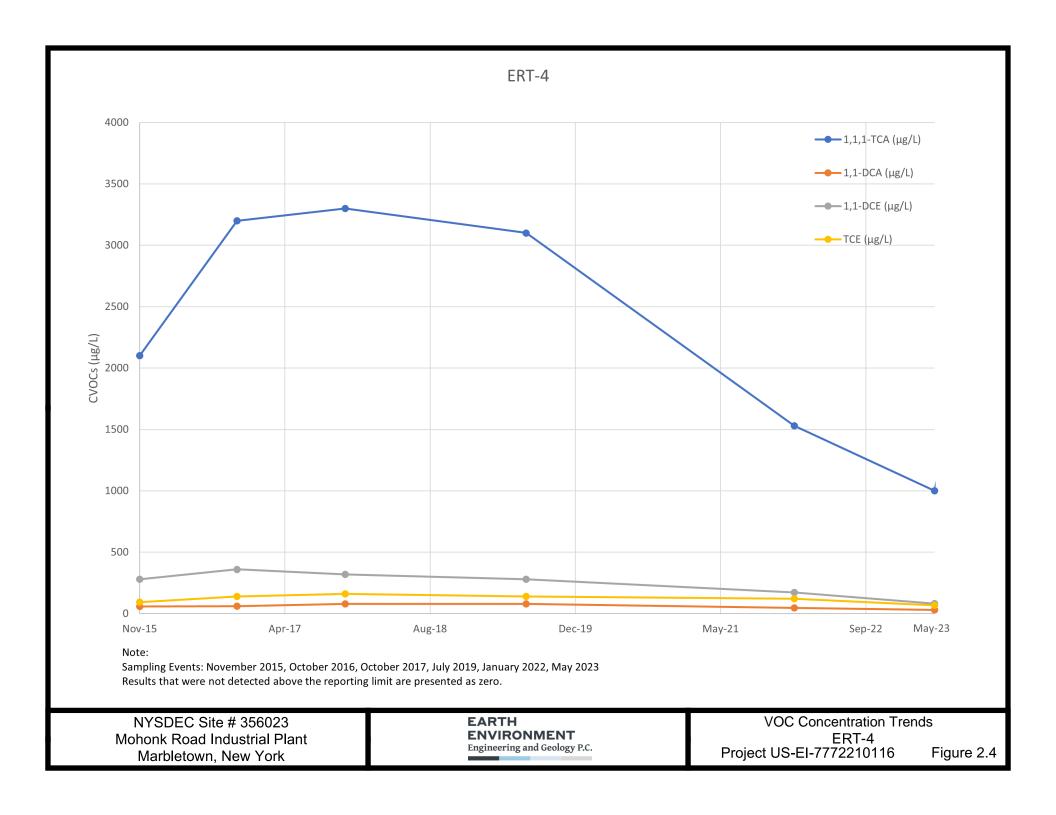
The findings of the RSO Pilot Test (EEEG, May 2025) including an evaluation of the RSO extraction well performance, groundwater quality monitoring, and impacts of the RSO Pilot Test on the groundwater plume size and contaminant concentrations were reported under separate cover.

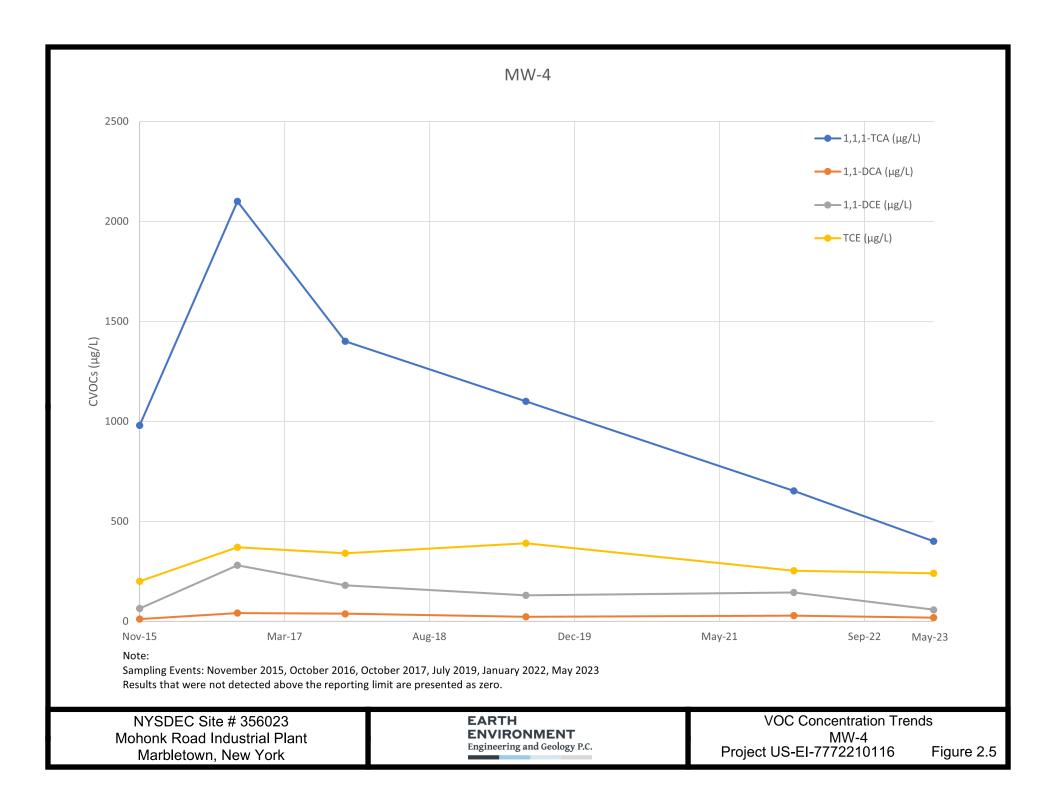
5.0 RECOMMENDATIONS

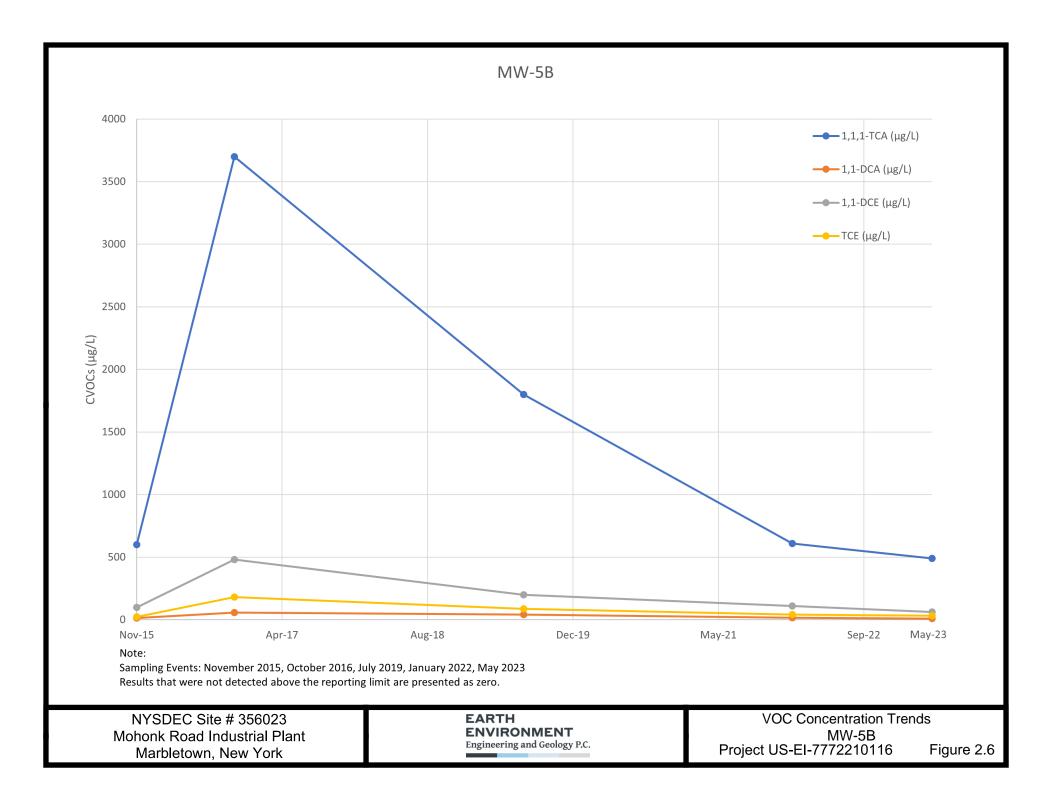
To continue optimizing system efficiency and remedial progress, and to provide further cost savings at the Site, the following are recommended:


- Continued implementation, review, and evaluation of the existing ICs/ECs, O&M Plan, and groundwater monitoring program, as applicable.
 - o Complete next 15-month LTM program sampling event.
- Future tracking of PRR costs by year incurred.
- Continued routine GWETS maintenance
 - o Monthly OM&M site visits conducted by EEEG
 - o Emergency OM&M site visits conducted as needed by EEEG
 - Annual inspection of building heaters
 - General housekeeping activities to improve work processes and eliminate general clutter
 - Troubleshoot extraction well components as needed to maintain normal system operation.
- Continued routine SSDS maintenance.
- SSDS Performance Evaluation Completion:
 - Identification of existing sub-slab vapor points and compilation of field design of proposed additional sub-slab vapor point locations.
 - Installation of additional sub-slab vapor point locations and collection of comprehensive building sub-slab vacuum measurements.
 - Completion of annual pressure differential testing, including existing and newly
 installed sub-slab vapor points, to demonstrate system effectiveness at creating
 negative pressure across the extent of the building footprint.
- Continued SSDS evaluation and modification, if necessary, based on annual pressure differential testing conclusions.


6.0 REFERENCES


- AECOM, 2013. Annual Monitoring Well Sampling Report, Mohonk Road Industrial Plant Superfund Site, Hamlet of High Falls, New York. November 2013.
- EEEG, 2025. 15-Month RSO Pilot Test Report Mohonk Road Industrial Plant Site, Site Number 356023. May 2025.
- Lawler, Matusky & Skelly Engineers [LMS], 1998. Remedial Investigation Report Volume 1. Mohonk Road Industrial Plant Site. Site No. 356023. Prepared for New York State Department of Environmental Conservation. September 1998.
- Lockhead Martin Technological Services, 2006. Mohonk Road Industrial Plant Superfund Site, High Falls, NY WA# 0-122 Trip Report. May 9, 2006.
- Lockhead Martin Technological Services, 2006. Mohonk Road Industrial Plant Superfund Site, High Falls, NY WA# 0-122 Trip Report Commercial Facility Sampling. June 27, 2006.
- Lockhead Martin Technological Services, 2007. Mohonk Road Industrial Plant Superfund Site, High Falls, NY WA# 0-122 Trip Report. September 21, 2007.
- MACTEC Engineering and Consulting, P.C. (MACTEC), 2015. Conceptual Site Model (CMS) and Data Gap Review, Mohonk Road Industrial Plant, NYSDEC, Site Number 356023. July 2015.
- MACTEC, 2016. Remedial System Optimization Report Mohonk Road Industrial Plant Site, Site Number 356023. June 2016.
- MACTEC, 2019. Field Activities Plan Mohonk Road Industrial Plant Site, Site Number 356023. August 2019.
- MACTEC, 2020. Long Term Monitoring Event 2019 Mohonk Road Industrial Plant Site, Site Number 356023. June 2020.
- MACTEC, 2023. 2022 Periodic Review Report Mohonk Road Industrial Plant Site, Site Number 356023. May 2023.


- Ulster County, 2005. Deed between Kithkin Corporation (Grantor) and town boards of Marbletown and Rosendale. August 19, 2006.
- Ulster County, 2011. Amended Environmental Protection Easement and Declaration of Restrictive Covenants. Document Number 2011-00014359. August 9, 2011
- United States Environmental Protection Agency (USEPA) Region 2, 2000. Record of Decision Amendment, Mohonk Road Industrial Plant Superfund Site, Hamlet of High Falls, Ulster County, New York. March 31, 2000.
- United States Environmental Protection Agency (USEPA) Region 2, 2008. Record of Decision Amendment, Mohonk Road Industrial Plant Superfund Site, Hamlet of High Falls, Ulster County, New York. September 2008.
- United States Environmental Protection Agency (USEPA), 2009. Trip Report. Commercial Sub Slab Depressurization System Installation, 186 Mohonk Road, High Falls, NY 12440. September 3, 2009.
- United States Environmental Protection Agency (USEPA), 2024. Third Five-Year Review Report, Mohonk Road Industrial Plant Superfund Site, Hamlet of High Falls, Ulster County, New York. May 2024
- WRS Infrastructure & Environment, Inc., 2007. Mohonk Industrial Road Plant Trip Report. Dated January 29 to February 1, 2007.


FIGURES

TABLES

Table 2.1: Site Management Requirements

Component	Action	Required Frequency	Comments/Recommendations
Groundwater Extraction and Treatment Sys	tem		
GWETS Operation Checklist	Inspection	Each O&M visit	Check groundwater treatment system operation: flow rates, meter readings, system components, Redux volume.
Extraction Wells	Inspection	Each O&M visit	Check extraction wells, housing, control panels.
Control Panel, Heaters	Inspection	Each O&M visit	Check function of control panel indicating lights.
Safety Equipment, Treatment Plant Lighting	Inspection	Monthly	Inspect safety equipment (ladders, eyewash, fire extinguishers, etc.). Inspect plant lighting for proper operation.
Site Security	Inspection	Monthly	Check treatment building door locks, fencing, and perimeter fence for defects.
Air Stripper	Inspection/ Maintenance	Annually	Perform cleaning of air stripper unit trays and sump, if necessary.
Treatment Plant Heaters	Inspection/ Maintenance	Annually	Annual inspection and cleaning of heaters; to be performed by a licensed subcontractor.
Groundwater Monitoring System	Inspection	15-Month	Visually inspect well pads/locks at site wells; repair as necessary to maintain integrity and security.
Sub-Slab Depressurization System			
SSDS	Inspection	Each O&M visit	Exterior operation check of SSDS fans.
System Performance Monitoring			
Influent Header	Plant influent water sampling	Monthly	Grab samples collected from each active extraction wells to monitor and evaluate GWETS performance.
Treatment Plant Discharge	Plant effluent water sampling	Monthly	Grab influent and effluent samples collected to monitor and evaluate GWETS performance.
Environmental Monitoring			
Groundwater Elevation Monitoring	Groundwater elevation measurements	15-Month	Collect groundwater elevation measurements for active extraction wells and select monitoring wells to monitor hydraulic control of the plume near the site.
Environmental Groundwater Sampling	Groundwater sampling of monitoring wells	15-Month sampling interval	Grab/low flow samples collected from monitoring wells, active bedrock and overburden extraction wells.

GWETS = Groundwater extraction and treatment system

O&M = Operation and maintenance SSDS = Sub-Slab Depressurization System

> Prepared by: IEM Checked by: NB Date: 9/25/2024

Page 1 of 1

 ${\bf Table~2.2:~Long\text{-}Term~Monitoring~and~System~Performance~Sampling~Matrix}$

Well ID/ Sampling Location	Water Level Measurements	VOCs	1, 4 Dioxane	System Performance Parameters ³	Sample Description
Monitoring Wells (15-Month LTM) ¹					
MW-1B	X	X	X		Low Flow Sampling
MW-4	X	X	X		Low Flow Sampling
MW-5B	X	X	X		Low Flow Sampling
MW-6B	X	X	X		Low Flow Sampling
MW-8B	X	X	X		Low Flow Sampling
MW-9B	X	X	X		Low Flow Sampling
MW-10B	X	X	X		Low Flow Sampling
MW-11B	X	X	X		Low Flow Sampling
MW-11C	X	X	X		Low Flow Sampling
MW-12B	X	X	X		Low Flow Sampling
MW-14B	X	X	X		Low Flow Sampling
MW-15B	X	X	X		Low Flow Sampling
MW-16	X	X	X		Low Flow Sampling
Active Extraction Wells (15-Month LTM) ¹					
ERT-1	X	X	X		Grab
ERT-4 ²	X	X	X		Low Flow Sampling
MW-5R	X	X	X		Grab
MW-7R	X	X	X		Grab
Flute Wells (15-Month LTM) ¹					
MW-17 - Ports 1, 2, 3	X	X	X		Nitrogen Purge
MW-21 - Ports 1, 2, 4, 5, 6	X	X	X		Nitrogen Purge
GWETS Performance (Monthly)					
MW-5R	NA	X	X	X	Grab
MW-7R	NA	X	X	X	Grab
ERT-1	NA	X	X	X	Grab
Pre Air Stripper Combined Influent	NA	X	X	X	Grab
Air Stripper Effluent	NA	X	X	X	Grab

Notes:

 $^{1} = 15$ -Month LTM occurred May 2023.

15-Month L1M occurred May 2023.

2 = ERT-4 Not currently active extraction well.

3 = TDS, TSS, Iron, and pH

GWETS = Groundwater extraction and treatment system

 $LTM \ = \ Long\text{-term monitoring}$ NA = Not applicable $TDS \ = \ Total \ Dissolved \ Solids$ TSS = Totals Suspended Solids

VOCs = Volatile Organic Compounds W-13B Last sampled in 2017. Monitoring well is sealed shut. MW-13B

MW-18 Last sampled in June 2019.

MW-19 Last sampled in 2017. Well not located in field.

> Prepared by: IEM Checked by: NB Date: 9/26/2024

Table 2.3: Estimated Groundwater Extraction and Treatment System Downtime

Year	Month	Estimated Downtime (days)	Reasoning
	June	0	
	July	1	Down due to XFRVFD for 1 day
	August	8	Down from 22nd on due to sysetm work
2022	September	29	Down due to system work
	October	31	System not operating, work for pilot test
	November	28	System not operating pilot test began Nov. 28th
	December	10	System down due to power fail on 13th, 16th and DSCVFD on 24th and wetfloor on 30th
Total fo	or 2022 Year	107	
	January	6	System down due to Wetfloor contined from DEC. 2022 system down on XFRVFD on 13th
	February	0	
	March	2	System down due to procontrol issue on 29th and discharge pump priming issue 14th
	April	0	
	May	0	System down for 6 hours due to power fail (remote reset)
2023	June	0.75	System down for 18 hours total due to remote alarms over three different days.
2023	July	0.50	System down for a total of 11 hours due to VFD power failure.
	August	0.58	System down for 14 hours due to weather related power outage.
	September	3	System down for 3 days, 2 hours due to weather related storm outage.
	October	1.5	System down for 1 day, 16 hours due to wet floor alarm and utility power falure.
	November	0	
	December	0.5	System down for 12 hours due to remote reboot of wells and power outage due to storm.
Total fo	or 2023 Year	15	
	January	0.5	System down for 12 hours due to Transfer Tank VFD.
	February	0	ERT-1 down on February 18th Through PRR Reporting Period
2024	March	0	ERT-1 down, MW-5R down on March 14th Through PRR Reporting Period
	April	3	System down for 3 days due to power surge, ERT-1 and MW-5R down
	May	0	ERT-1 and MW-5R down
Total fo	or 2024 Year	4	
Total fo	r Timeframe	126	

Reported timeframe June 2022 through May 2024

Prepared by: IEM Checked by: NB Date: 8/21/2024

Table 2.4: Treatment Plant Monthly Throughput

Calendar						Мо	nth						Total for Calendar	Cumulative Total
Year	January	February	March	April	May	June	July	August	September	October	November	December	Year (Gallons)	Throughput (Gallons)
2022						814,893	1,055,077	594,336	2,847	-	20,954	791,359	3,279,466	3,279,466
2023	819,503	856,744	1,110,861	1,245,846	1,281,645	1,054,030	1,171,435	1,218,335	1,056,628	1,269,606	1,268,984	1,265,580	13,619,197	16,898,663
2024	1,290,160	1,048,260	892,915	486,899	575,898								4,294,132	21,192,795

Monthly amounts reported in gallons.

Reported timeframe June 2022 through May 2024

Table 2.5: Total VOCs in Extracted Groundwater (lbs)

Month	2022	2023	2024
January	-	0.61	0.32
February	-	1.06	0.32
March	-	0.48	0.63
April	-	0.58	0.47
May	-	0.41	0.62
June	0.65	0.39	-
July	0.64	0.23	-
August	0*	0.40	-
September	0*	0.25	-
October	0*	0.45	-
November	0*	0.54	-
December	0.88	0.29	-
Total for Calendar Year (lbs)	2.17	5.69	2.36
Cumulative Total VOCs (lbs)	2.17	7.86	10.22

Reported timeframe June 2022 through May 2024

Data provided from Aztech June 2022 - December 2023, EEEG Jan 2024 - May 2024

Total VOCs in Extracted Groundwater equals GWETS influent total VOCs concentrations per month multiplied by the monthly system treated gallons.

lbs = Pounds

* = No Sample Data

VOCs = Volatile organic compounds

Prepared by: IEM Checked by: NMB Date: 8/21/2024

Table 2.6: System Performance Sampling Results

Sample Location	Sample Date	Parameter	1,1,1- Trichloroethane	1,1,2- Trichloroethane	1,1-Dichloroethane	1,1- Dichloroethylene	1,2-Dichloroethene	1,2-Dichloroethene Total	1,4-Dioxane	Acctone	Benzene	Carbon Tetrachloride	Chloroform	Methylene Chloride	Toluene	Trichloroethylene	Iron	pH	Total Dissolved Solids	Total Suspended Solids
		Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	SU	mg/L	mg/L
		NYS Class GA	5*	1	5*	5"	0.6			50	1	5	7	5*	5"	5*	300			
MW-5R	6/9/2022	SR.	61.4	ND	3.56	13.4	ND	NA	3.0	NA	ND	ND	ND	ND	ND	5.4	ND	7.1	510	ND
MW-5R	7/14/2022	SR.	57.3	ND	4.06	14.3	ND	NA	3.5	NA	ND	ND	ND	ND	ND	5.89	0.12	7	420	ND
MW-5R	Aug. 2022	System shut down - no s	amples collected.																	
MW-5R	Sept. 2022	System shut down - no s	amples collected.																	
MW-5R	Oct. 2022	System shut down - no s	amples collected.																	
MW-5R	Nov. 2022	System was activated fo	r pilot test on 11/19/20	22, but samples were	not collected until 12/1	/2022.														
MW-5R	12/1/2022	SR.	116	ND	8.04	32.4	NA	NA	4.7	NA	ND	ND	ND	ND	ND	6.56	ND	6.8	130	ND
MW-5R	12/21/2022	SR.	70.2	ND	4.65	9.93	NA	NA	3.6	NA	ND	ND	ND	ND	ND	4.65	ND	6.9	260	ND
MW-5R	1/19/2023	SR.	64.7	ND	4.75	14.8	NA	NA	4.1	NA	ND	ND	ND	ND	ND	4.63	ND	6.9	320	ND
MW-5R	2/22/2023	SR.	107	ND	7.21	27.2	NA	NA	5.5	NA	ND	ND	0.240 J	ND	ND	7.35	ND	7.0	430	ND
MW-5R	3/28/2023	SR.	40.6	ND	2.64	10.8	NA	NA	3.2	NA	ND	ND	ND	ND	ND	3.26	ND	6.8	330	ND
MW-5R	4/18/2023	SR.	40.6	ND	2.69	10.6	NA	NA	2.4	NA	ND	ND	ND	ND	ND	3.53	ND	6.6	330	ND
MW-5R	5/16/2023	SR.	1.10 J	ND	1.113	0.180 J	NA	NA	2.4	NA	ND	ND	ND	ND	ND	0.200 J	ND	7.9	430	ND
MW-5R	6/20/2023	SR.	34.6	ND	3.38	7.15	NA	NA	4.1	NA	ND	ND	ND	ND	ND	3.61	ND	7.0	400	ND
MW-5R	7/24/2023	SR.	17.2	ND	1.89 J	4.85	NA	NA	1.8	NA	ND	ND	ND	ND	ND	2.92	ND	6.9	370	ND
MW-5R	8/29/2023	SR.	24.9	ND	2.10	7.36	NA	NA	2.3	NA	ND	ND	ND	ND	ND	2.85	ND	6.9	300	ND
MW-5R	9/18/2023	SR.	18.9	ND	1.90 J	7.07	NA	NA	1.7	NA	ND	ND	ND	ND	ND	2.87	ND	6.9	400	ND
MW-5R	10/17/2023	SR.	31.5	ND	2.33	10.2	NA	NA	2.2	NA	ND	ND	ND	ND	ND	3.71	ND	72	380	ND
MW-5R	11/9/2023	SR.	22.1	ND	1.93	7.22	NA	NA	2.2	NA	ND	ND	ND	ND	ND	3.22	ND	7.0	210	ND
MW-5R	12/8/2023	SR.	15.2	ND	1.4	5.08	NA	NA	1.9	NA	ND	ND	ND	ND	ND	2.6	ND	7.0	360	2.9
MW-5R	1/10/2024	SR.	22	ND	1.9	7.4	NA	NA	2.1	ND	ND	ND	ND	ND	ND	3.1	16.9	7.4	410	ND
MW-5R	2/6/2024	SR.	27	ND	2.2	8.2	NA	NA	2.3	ND	ND	ND	ND	ND	ND	3	ND	7.1	410	ND
MW-5R	3/21/2024	Wellshut down - no sam	ples collected.																	
MW-5R	4/10/2024	Wellshut down - no sam	ples collected.																	
MW-5R	5/9/2024	Wellshut down - no sam	ples collected.																	

Table 2.6: System Performance Sampling Results

Sample Location	Sample Date	Parameter	1,1,1- Trichloroethane	1,1,2- Trichloroethane	1,1-Dichioroethane	1,1- Dichloroethylene	1,2-Dichioroethene	1,2-Dichloroethene Total	1,4-Dioxane	Acctone	Benzene	Carbon Tetrachloride	Chloroform	Methylene Chloride	Toluene	Trichloroethylene	Iron	pH	Total Dissolved Solids	Total Suspended Solids
	_	Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	SU	mg/L	mg/L
		NYS Class GA	5*	1	5*	5'	0.6			50	1	5	7	5*	5"	5*	300			
MW-7R	6/9/2022	7R	72.5	ND	36.9	8.17	ND	NA	2.6	NA	ND	ND	ND	ND	ND	1.44 J	ND	7.1	370	ND
MW-7R	7/14/2022	7R	73.9	ND	39.9	9.37	ND	NA	1.7	NA	ND	ND	ND	ND	ND	1.05	ND	6.9	250	ND
MW-7R	Aug. 2022	System shut down - no s																		
MW-7R		System shut down - no s																		
MW-7R		System shut down - no s																		
MW-7R	Nov. 2022	System was activated for																		
MW-7R	12/1/2022	7R	104	ND	54.6	13.5	NA	NA	4.4	NA	ND	ND	0.740 J	ND	ND	1.50 J	ND	6.8	280	1.6
MW-7R	12/21/2023	7R	74.2	ND	35.6	5.44	NA	NA	4.4	NA	ND	ND	0.170 J	ND	ND	1.45 J	ND	6.9	280	5.2
MW-7R	1/19/2023	7R	67.0	ND	33.6	8.08	NA	NA	3.7	NA	ND	ND	ND	ND	ND	1.36 J	ND	7.1	320	ND
MW-7R	2/22/2023	7R	77.2	ND	33.6	10.7	NA	NA	3.4	NA	ND	ND	0.290 J	ND	ND	1.77 J	ND	6.8	320	ND
MW-7R	3/28/2023	7R	66.2	ND	32.6	8.94	NA	NA	3.6	NA	ND	ND	0.190 J	ND	ND	1.45 J	ND	6.9	270	ND
MW-7R	4/18/2023	7R	81.9	ND	40.1	10.5	NA	NA	2.0	NA	ND	ND	0.170 J	ND	ND	1.21 J	ND	6.5	330	ND
MW-7R	5/16/2023	7R	57.7	ND	33.0	7.21	NA	NA	1.8	NA	ND	ND	0.160 J	ND	ND	0.850 J	0.14	7.2	370	ND
MW-7R	6/20/2023	7R	51.2	ND	32.8	6.05	NA	NA	1.2	NA	ND	ND	ND	ND	ND	0.390 J	ND	7.0	310	ND
MW-7R	7/24/2023	7R	39.3	ND	23.0	6.11	NA	NA	1.7	NA	ND	ND	0.260 J	ND	ND	0.880 J	ND	6.9	310	ND
MW-7R	8/29/2023	7R	50.7	ND	28.4	7.91	NA	NA	1.8	NA	ND	ND	0.210 J	ND	ND	0.720 J	ND	6.9	310	ND
MW-7R	9/18/2023	7R	48.2	ND	32.6	8.67	NA	NA	1.9	NA	ND	ND	ND	ND	ND	ND	ND	7.1	350	ND
MW-7R	10/1/2023	7R	61.4	ND	30.6	10.3	NA	NA	2.0	NA	ND	ND	0.290 J	ND	ND	0.890 J	ND	7.3	350	ND
MW-7R	11/9/2023	7R	47.3	ND	26.8	7.69	NA	NA	2.0	NA	ND	ND	0.220 J	ND	ND	0.790 J	ND	7.1	170	ND
MW-7R	12/8/2023	7R	40.2	ND	22.9	6.38	NA	NA	2.1	NA	ND	ND	0.150 J	ND	ND	0.690 J	ND	6.9	320	ND
MW-7R	1/10/2024	7R	60	ND	35	10	NA	NA	2.8	ND	ND	ND	ND	ND	ND	1.5	ND	7.28	370	ND
MW-7R	2/6/2024	7R	71	ND	38	10	NA	NA	2.8	ND	ND	ND	ND	ND	ND	1.6	ND	7.22	400	ND
MW-7R	3/21/2024	7R	52	ND	21	9	NA	NA	3.7	ND	ND	ND	ND	ND	ND	2.7	ND	7.35	350	ND
MW-7R	4/10/2024	7R	79	ND	20	14	NA	NA	5.8	ND	ND	ND	ND	ND	ND	3.7	ND	7.64	410	ND
MW-7R	5/9/2024	7R	98	ND	24	13	NA	NA	5.9	ND	ND	ND	ND	ND	ND	3.4	ND	7.09	400	ND

Table 2.6: System Performance Sampling Results

Sample Location	Sample Date	Parameter	1,1,1- Trichloroethane	1,1,2- Trichloroethane	1,1-Dichloroethane	1,1- Dichloroethylene	1,2-Dichloroethene	1,2-Dichloroethene Total	1,4-Dioxane	Acctone	Benzene	Carbon Tetrachloride	Chloroform	Methylene Chloride	Toluene	Trichloroethylene	Iron	pH	Total Dissolved Solids	Total Suspended Solids
		Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	SU	mg/L	mg/L
		NYS Class GA	5*	1	5*	5"	0.6			50	1	5	7	5*	5"	5*	300			
ERT-1	6/9/2022	ERT-I	62.2	ND	8.09	17.5	ND	NA	6.8	NA	ND	ND	ND	ND	ND	6	ND	7.1	400	ND
ERT-1	7/14/2022	ERT-1	43.4	ND	6.22	14.4	ND	NA	5.8	NA	ND	ND	ND	ND	ND	5.46	0.052	6.9	400	ND
ERT-1	Aug. 2022	System shut down - no s																		
ERT-1		System shut down - no s																		
ERT-1		System shut down - no s																		
ERT-1	Nov. 2022	System was activated for																		
ERT-1	12/1/2022	ERT-1	73.0	ND	13.4	23.3	NA	NA	8.3	NA	ND	ND	0.950 J	ND	ND	8.04	ND	6.8	280	2.0
ERT-1	12/21/2022	ERT-I	57.3	ND	9.58	9.16	NA	NA	7.7	NA	ND	ND	0.270 J	ND	ND	5.99	ND	6.8	330	8.4
ERT-1	1/19/2023	ERT-I	60.9	ND	8.79	16.6	NA	NA	8.2	NA	ND	ND	0.230 J	ND	ND	5.95	ND	6.9	370	ND
ERT-1		Wellshut down - no sam																		
ERT-1	3/28/2023	ERT-1	62.6	ND	7.98	18.6	NA	NA	9.0	NA	ND	ND	0.230 J	ND	ND	5.45	ND	6.8	350	2.0
ERT-1	4/18/2023	ERT-I	45.4	ND	5.95	14.2	NA	NA	5.5	NA	ND	ND	0.170 J	ND	ND	4.47	ND	6.5	290	ND
ERT-1	5/16/2023	ERT-1	38.2	ND	5.67	11.3	NA	NA	5.0	NA	ND	ND	0.190 J	ND	ND	3.61	ND	7.0	410	ND
ERT-1	6/20/2023	ERT-1	26.2	ND	5.46	7.32	NA	NA	4.6	NA	ND	ND	0.160 J	ND	ND	3.06	ND	6.9	370	ND
ERT-1	7/24/2023	ERT-I	32.3	ND	7.26	9.57	NA	NA	5.1	NA	ND	ND	0.270 J	ND	ND	4.07	ND	6.9	320	ND
ERT-1	8/29/2023	ERT-I	28.2	ND	5.67	10.6	NA	NA	4.4	NA	ND	ND	0.270 J	ND	ND	3.37	ND	6.9	310	ND
ERT-1	9/18/2023	ERT-1	28.4	ND	6.72	12.4	NA	NA	5.0	NA	ND	ND	ND	ND	ND	3.46	ND	6.9	360	ND
ERT-1	10/1/2023	ERT-1	40.2	ND	6.8	15.7	NA	NA	5.6	NA	ND	ND	0.280 J	ND	ND	4.57	ND	7.2	370	ND
ERT-1	11/9/2023	ERT-I	31.1	ND	5.84	12.6	NA	NA	5.1	NA	ND	ND	0.220 J	ND	ND	4.12	ND	7.1	210	ND
ERT-1	12/8/2023	ERT-I	26	ND	5.09	9.57	NA	NA	5.1	NA	ND	ND	0.180	ND	ND	3.55	ND	6.9	330	ND
ERT-1	1/10/2024	ERT-1	46	ND	7.5	16	NA	NA	6.2	ND	ND	ND	ND	ND	ND	5.2	ND	7.2	370	ND
ERT-1	2/6/2024	ERT-I	53	ND	7.6	18	NA	NA	5.52	ND	ND	ND	ND	ND	ND	5.1	ND	7.07	410	ND
ERT-1		Wellshut down - no sam																		
ERT-1		Wellshut down - no sam																		
ERT-1	5/9/2024	ERT-1	52	ND	4.6	10	NA	NA	5.78	ND	ND	ND	ND	ND	ND	3.2	ND	7.12	380	ND

Table 2.6: System Performance Sampling Results

Sample Location	Sample Date	Parameter	1,1,1- Trichloroethane	1,1,2- Trichloroethane	1,1-Dichloroethane	1,1- Dichloroethylene	1,2-Dichloroethene	1,2-Dichloroethene Total	1,4-Dioxane	Acctone	Benzene	Carbon Tetrachloride	Chloroform	Methylene Chloride	Toluene	Trichloroethylene	Iron	pH	Total Dissolved Solids	Total Suspended Solids
-	-	Units	ue/L	ue/L	ue/L	ue/L	uz/L	ug/L	us/L	ue/L	ue/L	ue/L	us/L	uz/L	ug/L	ne/L	uz/L	SU	mg/L	me/L
		NYS Class GA	5°	1	5*	5"	0.6			50	1	5	7	5°	5"	5*	300			
Pre Air Stripper Combined Influent	6/9/2022	Combined Influent	62.0	ND	15.9	12.6	ND	NA	3.7	NA	ND	ND	ND	ND	ND	4.03	ND	7	460	ND
Pre Air Stripper Combined Influent	7/14/2022	Combined Influent	46.3	ND	14	9.45	ND	NA	3.6	NA	ND	ND	ND	ND	ND	3.5	ND	7.1	370	ND
Pre Air Stripper Combined Influent	Aug. 2022	System shut down - no s	amples collected.																	
Pre Air Stripper Combined Influent	Sept. 2022	System shut down - no s	amples collected.																	
Pre Air Stripper Combined Influent	Oct. 2022	System shut down - no s	amples collected.																	
Pre Air Stripper Combined Influent	Nov. 2022	System was activated for	r pilot test on 11/19/20	22, but samples were	not collected until 12/1	/2022.														
Pre Air Stripper Combined Influent	12/1/2022	Combined Influent	87.4	ND	23.5	20.0	NA	NA	6.2	NA	ND	ND	0.570 J	ND	ND	5.40	ND	6.8	280	1.2
Pre Air Stripper Combined Influent	12/21/2022	Combined Influent	65.2	ND	4.38	8.74	NA	NA	4.1	NA	ND	ND	ND	ND	ND	4.28	0.094	6.9	260	8.0
Pre Air Stripper Combined Influent	1/19/2023	Combined Influent	64.2	ND	5.08	15.6	NA.	NA	4.0	NA	ND	ND	ND	ND	ND	4.81	ND	7.0	330	ND
Pre Air Stripper Combined Influent	2/22/2023	Combined Influent	113	0.220 J	7.59	27.5	NA	NA	6.0	NA	ND	ND	0.240 J	ND	ND	7.70	ND	7.0	420	ND
Pre Air Stripper Combined Influent	3/28/2023	Combined Influent	38.6	ND	2.47	9.84	NA	NA	3.0	NA	ND	ND	ND	ND	ND	2.99	ND	6.8	360	ND
Pre Air Stripper Combined Influent	4/18/2023	Combined Influent	41.3	ND	2.69	10.5	NA	NA	3.0	NA	ND	ND	ND	ND	ND	3.48	ND	6.8	360	ND
Pre Air Stripper Combined Influent	5/16/2023	Combined Influent	28.4	ND	2.04	7.24	NA	NA	2.4	NA	ND	ND	ND	ND	ND	2.53	ND	7.1	440	ND
Pre Air Stripper Combined Influent	6/20/2023	Combined Influent	31.2	ND	4.05	6.97	NA	NA	3.5	NA	ND	ND	ND	ND	ND	3.36	0.51	7.0	410	2.0
Pre Air Stripper Combined Influent	7/24/2023	Combined Influent	15.8	ND	1.67	4.16	NA	NA	1.8	NA	ND	ND	ND	ND	ND	2.60	0.070	7.0	450	2.0
Pre Air Stripper Combined Influent	8/29/2023	Combined Influent	27.0	ND	2.30	8.19	NA	NA	2.2	NA	ND	ND	ND	ND	ND	3.13	0.17	7.0	270	ND
Pre Air Stripper Combined Influent	9/18/2023	Combined Influent	18.5	ND	2.02	6.72	NA	NA	1.7	NA	ND	ND	ND	ND	ND	2.71	ND	6.9	390	ND
Pre Air Stripper Combined Influent	10/1/2023	Combined Influent	28.8	ND	2.35	9.29	NA	NA	2.2	NA	ND	ND	ND	ND	ND	ND	0.0021	7.3	370	18
Pre Air Stripper Combined Influent	11/1/2023	Combined Influent	31.2	ND	9.41	9.06	NA	NA	3.4	NA	ND	ND	0.170 J	ND	ND	2.92	ND	7.2	130	ND
Pre Air Stripper Combined Influent	12/8/2023	Combined Influent	17.7	ND	2.31	5.88	NA.	NA	4.3	NA	ND	ND	ND	ND	ND	2.77	ND	6.9	310	ND
Pre Air Stripper Combined Influent	1/10/2024	Combined Influent	19	ND	1.8	6.4	NA.	NA	2.1	ND	ND	ND	ND	ND	ND	2.9	19.2	7.17	400	ND
Pre Air Stripper Combined Influent	2/6/2024	Combined Influent	25	ND	2.2	7.2	NA	NA	2.2	ND	ND	ND	ND	ND	ND	2.9	ND	7.26	400	ND
Pre Air Stripper Combined Influent	3/21/2024	7R	52	ND	21	9	NA.	NA	3.7	ND	ND	ND	ND	ND	ND	2.7	ND	7.35	350	ND
Pre Air Stripper Combined Influent	4/10/2024	7R	79	ND	20	14	NA.	NA	5.8	ND	ND	ND	ND	ND	ND	3.7	ND	7.64	410	ND
Pre Air Stripper Combined Influent	5/9/2024	Combined Influent	92	ND	22	12	NA.	NA	6.58	ND	ND	ND	ND	ND	ND	3.2	0.184	7.16	390	18

Table 2.6: System Performance Sampling Results

Sample Location	Sample Date	Parameter	1,1,1- Trichloroethane	1,1,2- Trichloroethane	1,1-Dichloroethane	1,1- Dichloroethylene	1,2-Dichloroethene	1,2-Dichloroethene Total	1,4-Dioxane	Acctone	Benzene	Carbon Tetrachloride	Chloroform	Methylene Chloride	Toluene	Trichloroethylene	Iron	pH	Total Dissolved Solids	Total Suspended Solids
	1	Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	SU	mg/L	mg/L
		NYS Class GA	5*	1	5"	5"	0.6			50	1	5	7	5"	5"	5*	300		-	
Air Stripper Effluent	6/9/2022	Effluent	0.77 J	ND	0.640 J	ND	ND	NA	3.6	NA	ND	ND	ND	ND	ND	ND	ND	8.2	470	ND
Air Stripper Effluent	7/14/2022	Effluent	0.54 J	ND	0.56 J	ND	ND	NA	3.6	NA.	ND	ND	ND	ND	ND	ND	0.093	8	370	ND
Air Stripper Effluent	Aug. 2022	System shut down - no s																		
Air Stripper Effluent	Sept. 2022	System shut down - no s																		
Air Stripper Effluent	Oct. 2022	System shut down - no s	amples collected.																	
Air Stripper Effluent	Nov. 2022				not collected until 12/1.															
Air Stripper Effluent	12/1/2022	Effluent	0.430 J	ND	0.820 J	ND	NA	NA	5.9	NA.	ND	ND	3.77	ND	ND	ND	ND	7.8	380	5.4
Air Stripper Effluent	12/21/2022	Effluent	1.59 J	ND	0.800 J	ND	NA	NA	6.0	NA	ND	ND	ND	ND	ND	0.260 J	0.39	8.0	230	10
Air Stripper Effluent	1/19/2023	Effluent	0.800 J	ND	0.860 J	ND	NA	NA NA	5.1	NA	ND	ND	ND	ND	ND	ND	ND	8.1	340	ND
Air Stripper Effluent	2/22/2023	Effluent	1.02 J	ND	1.12 J	ND	NA	NA NA	4.5	NA	ND	ND	ND	ND	ND	ND	ND	7.8	420	2.4
Air Stripper Effluent	3/28/2023	Effluent	0.920 J	ND	0.890 J	ND	NA	NA	4.1	NA.	ND	ND	ND	ND	ND	ND	ND	7.9	330	1.4
Air Stripper Effluent	4/18/2023	Effluent	2.57	ND	0.940 J	0.210 J	NA	NA	4.8	NA	ND	ND	ND	ND	ND	0.300 J	ND	7.7	360	2.2
Air Stripper Effluent	5/16/2023	Effluent	29.0	ND	2.25	7.35	NA	NA NA	3.6	NA	ND	ND	ND	ND	ND	2.57	ND	7.1	440	ND
Air Stripper Effluent	6/20/2023	Effluent	2.10	ND	2.40	0.260 J	NA	NA	3.3	NA.	ND	ND	ND	ND	ND	0.240 J	ND	8.1	290	1.8
Air Stripper Effluent	7/24/2023	Effluent	1.61 J	ND	1.70 J	0.270 J	NA	NA	3.0	NA	ND	ND	ND	ND	ND	0.300 J	ND	8.1	310	8.6
Air Stripper Effluent	8/29/2023	Effluent	1.29 J	ND	1.90 J	0.380 J	NA	NA NA	3.1	NA	ND	ND	ND	ND	ND	0.330 J	ND	8.0	290	ND
Air Stripper Effluent	9/18/2023	Effluent	1.58 J	ND	1.55 J	ND	NA	NA	3.2	NA	ND	ND	ND	ND	ND	ND	ND	8.1	360	ND
Air Stripper Effluent	10/1/2023	Effluent	1.84	ND	1.57	0.3	NA	NA	3.3	NA.	ND	ND	ND	ND	ND	ND	ND	8.2	360	ND
Air Stripper Effluent	11/9/2023	Effluent	1.46 J	ND	1.36 J	0.230 J	NA	NA	3.4	NA	ND	ND	ND	ND	ND	0.240 J	ND	8.1	230	ND
Air Stripper Effluent	12/8/2023	Effluent	1.24	ND	1.14 J	0.170 J	NA	NA	3.4	NA	ND	ND	ND	ND	ND	0.200 J	ND	8	320	ND
Air Stripper Effluent	1/10/2024	Effluent	5.1	ND	2.7	0.8 J	NA	NA	4.03	ND	ND	ND	ND	ND	ND	0.62 J	ND	8.01	390	ND
Air Stripper Effluent	2/6/2024	Effluent	4.5	ND	2.4	0.67 J	NA	NA	3.72	ND	ND	ND	ND	ND	ND	0.52 J	ND	7.83	410	ND
Air Stripper Effluent	3/21/2024	Effluent	13	ND	13	ND	NA	NA NA	3.87	ND	ND	ND	ND	ND	ND	ND	ND	7.87	360	ND
Air Stripper Effluent	4/10/245	Effluent	1.7 J	ND	1.2 J	ND	NA	NA	7.31	ND	ND	ND	ND	ND	ND	ND	0.0252 J	8.26	400	ND
Air Stripper Effluent	5/9/2024	Effluent	7.2	ND	5.1	0.59 J	NA	NA	6.16	ND	ND	ND	ND	ND	ND	0.48 J	ND	7.88	370	ND

Reported installance Due 2021 through May 2024
NYS Class GA - New York State Class Ga Goundariant Standards
NYS Class GA - New York State Class Ga Goundariant Standards
- "- The principal engine communities attanded for goundariant of 5 sqsf. applies to this substrance.
- "- "- No Claritat

L = Liquid

The Class of Class Garden Standards

L = Liquid

NA = Red Analysis

J = Editated Value

J = Editated Value

L = Micrograms per Bar

- Editated Value Garden Low

Table 2.7: Long-Term Monitoring Groundwater Elevation Measurements and Field Parameters

		Groundwa	ter Elevation Me	asurements					Fiel	d Parameters			
Well ID / Sampling Location	X Coordinate	Y Coordinate	Screened Zone (ft bTOC)	Measure Point Elevation* (ft AMSL)	Depth to Water (ft bTOC) 5/15/2023	Groundwater Elevation (ft AMSL) 5/15/2023	May 2023 LTM Sampling Date	pH SI Units	ORP mV	Conductivit y mS/cm ³	Temp ∘C	DO mg/L	Turbidity NTU
ERT-1	571897.25	4629866	28-195	303.94	60.47	243.47	5/17/2023	7.02	229	0.546	14.52	6.9	0
ERT-4	571979.5	4629806.5	UNK-50	326.67	29.44	297.23	5/18/2023	7.52	202	0.737	14.67	8.18	180
MW-1B	571967.38	4629665	22-100	333.53	53.13	280.4	5/16/2023	6.82	166	0.717	15.08	2.6	28.6
MW-4	571971.06	4629799	11-21.5	329.21	6.04	323.17	5/18/2023	6.91	187	0.949	13.98	0	146
MW-5B	571981.81	4629825.5	19-36.2	325.3	27.88	297.42	5/16/2023	6.79	173	0.494	13.95	4.55	7.2
MW-5R	572003.06	4629852	13-125	313.63	72.49	241.14	5/17/2023	6.94	229	0.591	13.69	6.4	0
MW-6B	572042.38	4629780.5	39-100	323.95	78.31	245.64	5/18/2023	7.34	156	0.657	13.36	5.26	0
MW-7R	571790.75	4629797	28-180	314.3	77.69	236.61	5/17/2023	6.99	239	0.507	16.45	9.55	0
MW-8B	572249.41	4630989.19	48-100	159.68	30.31	129.37	5/16/2023	8.01	-204	0.44	15.63	1.22	34
MW-9B	572016.88	4630545	95-145	248.21	17.47	230.74	5/17/2023	7.78	-123	0.292	11.59	0.45	72.3
MW-10B	572734.6	4630604	24-100	225.64	23.22	202.42	5/16/2023	6.55	105	0.191	11.77	0.12	7.2
MW-11B	572126.19	4630011	49-181	281.72	34.81	246.91	5/18/2023	7.64	-77	0.495	13.18	0.81	77.2
MW-11C	572125	4630007	47-220	284.58	36.82	247.76	5/18/2023	7.11	111	0.701	13.16	0.2	11.9
MW-12B	572234.19	4630222.41	17-200	258.2	10.28	247.92	5/18/2023	7.02	152	0.413	12.71	1.34	9.5
MW-13B	571312.94	4630103	78-200	221.93	NM	NM	NS	NM	NM	NM	NM	NM	NM
MW-14B	572600.32	4630930.34	24-155	156.67	4.99	151.68	5/16/2023	7.09	-67	0.413	12.98	0.75	18.7
MW-15B	571701.56	4630172.5	38-150	244.89	11.20	233.69	5/17/2023	7.18	169	0.436	10.7	4.79	4.8
MW-16	572083.65	4630265.75	73-93	274.11	23.85	250.26	5/17/2023	6.43	191	0.128	11.64	3.54	195
MW-17-1			47-57	241.92	5	236.92	5/16/2023	7.13	65	0.434	12.49	1.73	0
MW-17-2	572545.72	4630421.63	102.5-110	241.92	10.45	231.47	5/16/2023	7.04	82	0.433	12.45	1.13	8
MW-17-3			124-129	241.92	10.45	231.47	5/16/2023	6.95	9	0.45	12.34	0.43	7.2
MW-21-1			42.75-48	233.59	0	233.59	5/17/2023	6.88	179	0.392	12.33	4.75	0
MW-21-2			67-69.5	233.59	0	233.59	5/17/2023	6.85	183	0.345	12.2	5.03	0
MW-21-4	572596	4630042	121.5-124	233.59	0	233.59	5/17/2023	6.87	184	0.356	12.57	6.42	0
MW-21-5]		142.5-145	233.59	0	233.59	5/17/2023	6.8	185	0.369	12.08	7.65	0
MW-21-6			160.5-163	233.59	0	233.59	5/17/2023	6.9	185	0.37	11.9	4.18	0

LTM: Long-Term Monitoring bTOC: Below top of casing

* Top of Well Casing (TOC)

AMSL: Above mean sea level

NM: Not Measured NS: Not Sampled

Field parameters collected at MW groundwater stabilization prior to groundwater sampling.

MW-13B - No Access to well. 1" metal cap seized to metal casing.

MW-17 and MW-21 Flute MWs sampled from ports -# as noted.

MW-21 Flute MW is Artesian.

Prepared by: IEM Checked by: NB Date: 9/25/2024

Table 2.8 - Groundwater Monitoring Results Above New York State Standards - May 2023

		Parameter	1,4-Dioxane	1,1,1- Trichloroethane	1,1- Dichloroethane	1,1- Dichloroethene	2-Butanone	Acetone	Chloroform	cis-1,2- Dichloroethene	Methylene chloride	Toluene	Trichloroethene
	ľ	NYS Class GA Standard	NS	5	5	5	50	50	7	5	5	5	5
Location	Sample Date	Sample ID	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
ERT-1	5/17/2023	356023-ERT1	5	35	5.2	10	20 U	50 U	2 U	0.24 J	5 U	1 U	3.5
ERT-4	5/18/2023	356023-ERT4	3.5	1000	29	82	60 J	45 J	40 U	6.8 J	100 U	20 U	67
MW-1B	5/16/2023	356023-MW1B	0.2 U	1 U	1 U	1 U	20 U	2.4 J	2 U	1 U	5 U	1 U	1 U
MW-4	5/18/2023	356023-MW4	3	400	19	58	10 J	11 J	10 U	12	25 U	5 U	240
MW-5B	5/16/2023	356023-MW5B	5.1	490	9.8 J	61	200 U	500 U	20 U	10 U	50 U	10 U	32
MW-5R	5/17/2023	356023-MW5R	2.4	28	2.1	7.3	20 U	50 U	2 U	1 U	5 U	1 U	2.5
MW-6B	5/18/2023	356023-DUP-02	0.99 J	4.3	0.16 J	0.94 J	20 U	2.5 J	2 U	1 U	5 U	1 U	1 U
MW-6B	5/18/2023	356023-MW6B	0.47 J	4.4	1 U	0.97 J	20 U	2.2 J	2 U	1 U	5 U	1 U	1 U
MW-7R	5/17/2023	356023-MW7R	1.9	55	32	7.1	20 U	50 U	0.16 J	0.97 J	5 U	1 U	0.87 J
MW-8B	5/16/2023	356023-MW8B	2.2	1 U	1 U	1 U	20 U	50 U	2 U	1 U	5 U	0.23 J	1 U
MW-9B	5/17/2023	356023-MW9B	10	0.22 J	0.74 J	1 U	20 U	50 U	2 U	1 U	5 U	1 U	1 U
MW-10B	5/16/2023	356023-DUP-01	0.2 U	1 U	1 U	1 U	20 U	50 U	2 U	1 U	5 U	1 U	1 U
MW-10B	5/16/2023	356023-MW10B	0.2 U	1 U	1 U	1 U	20 U	50 U	2 U	1 U	5 U	1 U	1 U
MW-11B	5/18/2023	356023-MW11B	2.2	0.58 J	1.5	2.5	20 U	50 U	2 U	1 U	5 U	1 U	0.52 J
MW-11C	5/18/2023	356023-MW11C	1.2	1.4	0.64 J	2.1	20 U	50 U	2 U	1 U	5 U	1 U	0.61 J
MW-12B	5/18/2023	356023-MW12B	1.5	3.7	1.7	3.5	20 U	50 U	2 U	1 U	5 U	1 U	1.2
MW-14B	5/16/2023	356023-MW14B	3.7	1 U	1.2	1.1	20 U	50 U	2 U	1 U	5 U	1 U	1 U
MW-15B	5/17/2023	356023-MW15B	4.9	9.8	5.8	9.8	20 U	50 U	2 U	1 U	0.2 J	1 U	1.2
MW-16	5/17/2023	356023-MW16	0.29	0.4 J	1 U	0.47 J	20 U	2.1 J	2 U	1 U	5 U	1 U	1 U
MW-17-1	5/16/2023	356023-MW17-1	5.8	6.1	5	11	20 U	50 U	2 U	1 U	5 U	1 U	2.5
MW-17-2	5/16/2023	356023-MW17-2	8.8	5.6	7.3	12	20 U	50 U	2 U	0.32 J	5 U	1 U	2
MW-17-3	5/16/2023	356023-MW17-3	9.1	1.4	8.2	12	20 U	50 U	2 U	1.6	0.22 J	0.39 J	0.28 J
MW-21-1	5/17/2023	356023-MW21-1	1.1	1.7	0.65 J	2.6	20 U	50 U	2 U	1 U	0.23 J	1 U	2.3
MW-21-2	5/17/2023	356023-MW21-2	0.68	0.89 J	0.38 J	1.5	20 U	50 U	2 U	1 U	0.24 J	1 U	1.5
MW-21-4	5/17/2023	356023-MW21-4	1.8	0.95 J	1.3	3	20 U	50 U	2 U	1 U	5 U	1 U	1.7
MW-21-5	5/17/2023	356023-MW21-5	2.1	1.1	1.4	3.2	20 U	50 U	2 U	1 U	5 U	1 U	2.1
MW-21-6	5/17/2023	356023-MW21-6	2.1	1	1.6	3.2	20 U	50 U	2 U	1 U	5 U	1 U	1.9

Notes: Dioxane by Method 8270E

Volatile Organic Compounds by Method 8260C

NYS Class GA = New York State Class GA Groundwater Standards

ug/L = micrograms per liter

Bold = Exceeds standard or guidance value

40 U = Method Detection Limit > NYS Class GA

U = Not Detected

J = Estimated Value

ATTACHMENT A1 NYSDEC ENGINEERING CONTROLS – STANDBY CONSULTANT /CONTRACTOR CERTIFICATION FORM

Enclosure 1 Engineering Controls - Standby Consultant/Contractor Certification Form

		Box 1
Site Details te No. 356023		DUX 1
te Name Mohonk Road Industrial Plant		
te Address: Mohonk Road (High Falls) Zip Code: 12440 ty/Town: Marbletown and Rosendale bunty: Ulster te Acreage: 14.5		
eporting Period: June 01, 2022 to May 31, 2024		
	YES	NO
Is the information above correct? - Corrections made above.		X
If NO, include handwritten above or on a separate sheet.		
To your knowledge has some or all of the site property been sold, subdivided, merged, or undergone a tax map amendment during this Reporting Period?		X
To your knowledge has there been any change of use at the site during this Reporting Period (see 6NYCRR 375-1.11(d))?		×
To your knowledge have any federal, state, and/or local permits (e.g., building, discharge) been issued for or at the property during this Reporting Period?		X
If you answered YES to questions 2 thru 4, include documentation or evid that documentation has been previously submitted with this certification f		
To your knowledge is the site currently undergoing development?		X
		Box 2
	YES	NO
Is the current site use consistent with the use(s) listed below? Industrial	×	
Are all ICs/ECs in place and functioning as designed?	X	
THE ANSWER TO EITHER QUESTION 6 OR 7 IS NO, sign and date below and cor EC PM regarding the development of a Corrective Measures Work Plan to addres		ues.
gnature of Standby Consultant/Contractor Date		

SITE NO. 356023 Box 3

Description of Institutional Controls

Parcel Owner

70.3-3-37.1 Craig's & #39;s Closet LLC

Institutional Control

Ground Water Use Restriction

Monitoring Plan
O&M Plan

IC/EC Plan

An environmental easement is in place that restricts the use of groundwater beneath the site and requires the site owner to provide access to the near-field pump and treat system.

An on site bedrock pump and treat system was installed in 2001 for the near field plume and is operational. Monthly performance sampling is completed to monitor the pump and treat system operation.

A groundwater monitoring program is in place to monitor the near plume and monitor natural attenuation in in the far-field plume.

A soil vapor extraction system and vapor mitigation system in the on-site building is are installed and operating.

A ordinance within the High Falls Water District prohibits residents from establishing or maintaining a source of drinking and domestic water separate from the public water supply.

Box 4

Description of Engineering Controls

Parcel <u>Engineering Control</u>

70.3-3-37.1

Groundwater Treatment System

Vapor Mitigation Alternate Water Supply

Engineering Controls in place include a groundwater extraction and treatment system ;; groundwater monitoring well network and a subslab depressurization system (for control of soil vapors)

Box	5
	J

	Periodic Review Report (PRR) Certification Statements
1.	I certify by checking "YES" below that:
	 a) the Periodic Review report and all attachments were prepared under the direction of, and reviewed by, the party making the certification, including data and material prepared by previous contractors for the current certifying period, if any;
	 b) to the best of my knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the site remedial program, and generally accepted engineering practices; and the information presented is accurate and compete.
	YES NO
	f X
2.	If this site has an IC/EC Plan (or equivalent as required in the Decision Document), for each Institutional or Engineering control listed in Boxes 3 and/or 4, I certify by checking "YES" below that all of the following statements are true:
	(a) the Institutional Control and/or Engineering Control(s) employed at this site is unchanged since the date that the Control was put in-place, or was last approved by the Department;
	(b) nothing has occurred that would impair the ability of such Control, to protect public health and the environment;
	(c) nothing has occurred that would constitute a failure to comply with the Site Management Plan,
	or equivalent if no Site Management Plan exists. YES NO
	$oldsymbol{ar{f X}}$
	IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and contact the DEC PM regarding the development of a Corrective Measures Work Plan to address these issues.
	Signature of Standby Consultant/Contractor Date

IC/EC CERTIFICATIONS

Qualified Environmental Professional Signature

I certify that all information in Boxes 2 through 5 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

1	Mark Stelmack, P.E.	at Earth & Environment Engineering and Geology, P.C.	
	print name		
		2 Monument Square, Suite 200 Portland, Maine, 04101	
		(print husiness address)	_,

am certifying as a Qualified Environmental Professional.

Signature of Qualified Environmental Professional

York Stomack

Stamp (Required for PE)

September 30, 2024 Date

ATTACHMENT A2-1 FIELD FORMS OM&M MONTHLY FIELD FORMS – JANUARY – MAY 2024

Date: 1/10/24

Personnel Onsite Initials: P

Input Name	Flow Rates (On Meter)	Totalizer (Procontrol)				
(ER1FLO)	12.6	6086871				
(W7RFLO)	7,4	3953311				
(W5RFLO)	9.7	4799735				
	checked and grounds reedwack, etc)	Ø / N				
Clean influer	nt flow meters	NA				
Adjust flow to set po below for	ints using valves (see set points)	Y/N				
Redux dru	Redux drum changed					
How many Redu	How many Redux drums remaining					
Redux remaining	Redux remaining (in. from bottom)					
Nitrogen Pre	essure (in PSI)	600 /644 Tur T				
Well Name	Well Name Set point (GPM)					
MW-5R	9.5	Tunk Ao Control				
MW-7R	7.5					
ERT-1	12					

Input Name	Water Level (Procontrol)	4
W5RLVL	-71.09	
W7RLVL	-77.65	
ER1LVL	-64.61	
Location/ Input name	Pressure (Procontrol)	,
Transfer Pump (PREBAG)	4.6	<i>y</i>
Air Stripper (AS_PRS)	17.06	
Discharge Pump (DSCPRS)	24.2	
Location	Temp (Procontrol)	
Room (RM_TMP)	522	-
Air Stripper (AS_TMP)	N/A Temp Sensor about	onel
Discharge Pump (H2OTMP)	50.5	
Location	рН	
Effluent (EFF_PH)	8.99	
Effluent (Measured)	7.00	

tion cach well on the ProControl	
Take the following steps to record the flow totalizer for each well on the ProControl	
- 1 (Decompord: FOS)	_
i. Login to Procontrol (rassword 2-1-" key until "FR1FLO" is on the display	
i. Login to ProControl (Password, 2007). ii. Once logged in, press the "I/O Up" key until "ER1FLO" is on the display iii. Once logged in, press the "I/O Up" key and record the value	
III. Press Set Hi/Lo" until "ER1FLO" is on the display	
iii. Press "Set Hi/Lo" key until "fotalize" to "seption" is on the display iv. Once value is recorded, press "Set Hi/Lo" until "ER1FLO" is on the display	
v. Repeat steps ii-iv for W7RFLO and W5RFLO	
V. Nepedi Star	

Notes: Air Stripper temperature was not on procontrol

screens, Temperature sensor in process room

is disconnected.

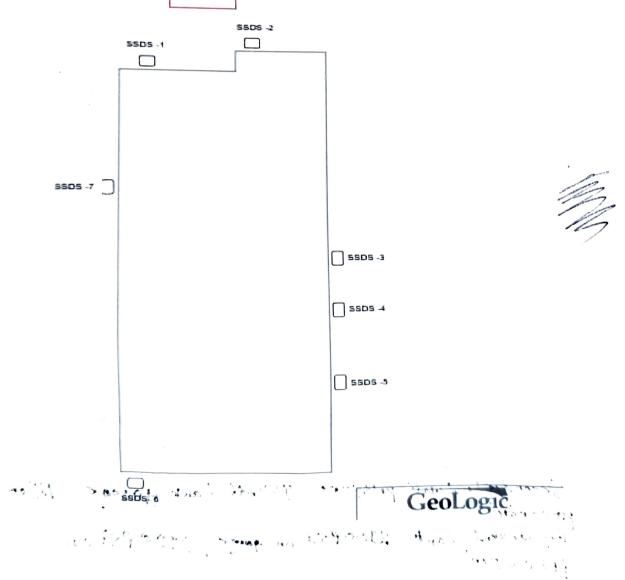
Secondary temperature 900 off tank garage 1967 on

procontrol

Replacement tank 2300 PST on garge 1 2320 PSi on

pro control

SSDS System Checklist


Date:

Fan	On/Off
1	100
2	- CH
3	y Joh
4	Von
5	V on
6	V X CM
7	1 00

Fire Safety (Exit Sign) Checklist

Location	Y/N
Front Door	4
Air Stripper Rm	Y
Back Door	Y

Treatment Plant

<u>Location</u>	Number of Bottles	Analysis Test
SVE-19	3 - HCL VOAs	8260 VOCs Full List
SVE-21	3 - HCL VOAs	8260 VOCs Full List
SVE-22	3 - HCL VOAs	8260 VOCs Full List

Data Logging and Well Gauging (Monthly): Completed by:

- Bring materials from shop and Treatment shed:
 - 1. Keys for MW-12B and MW-15B
 - 2. Interface probe
 - 3. iPad and Data logger
 - 4. Clipboard with Data table
 - 5. Map of the
 - 6. Flagging tape if needed
- Get data and well readings for each of the 6 wells: ERT-4, MW-4, MW5B, MW-11B, MW-12B, MW-15B.
- Check labels on each well and touch up.
- Starting with the cluster on the map of MW-4, MW-5B and ERT-4 take reading of depth to water using interface probe and record on table.
- Remove desiccant tube from transducer line and connect data logger to wire and power on.
- Open Vusitu on iPad (Passcode:001978) then connect data logger.
- Once connected download all data and save file to the iPad by creating a new folder and labeling it with collection date.
- Disconnect from the app and then remove the data logger and replace the desiccant tube back on the wire.
- Repeat this process for each well.
- Once back to the shop give iPad and data logger to NS and he will email files from the iPad to JG.

System Sampling (Monthly):

- Bring materials from shop:
- Large Cooler with Bottles and glassware
- Ice
- Count to make sure all bottles are there.
- Using gloves sample from each of the locations starting with effluent (cleanest) to Combined influent (dirtiest).
- Do not washout Acid from bottles.
- Contact Pace/ConTest Office 518-357-3250 if any questions or concerns on the sampling bottles.

Location	Number of Bottles	Analysis Test	Temp of ORP motor NOTO DO
7R	7	See COC	1041 6.91 166 0515 0.3 3.04
ERT-1	7	See COC	10,48 6,85 169 0,542 202 1152
5R	7	See COC	10.486.90 668 0.566 0,7 417
Combined Influent	7	See COC	11.72 7.07 207,520 00 410
Effluent	7	See COC	10,98 8,10145 0.534 0.0 7.21

SVE Purge Table	MW-19			MW-21			MW-22	
Well name:	<u>14144-13</u>			10100-21				
Time (minutes)	Depth to water	(ft)	Depth to water (ft)		Depth to water (ft)			
Initial (before purge)	26,42'	IEE5	DITORY	39,32	1010	Village .	33,73	0950
Depth to bottom Dry (after purge)	DTB 57.71 DTW 56,26	1045	DTB	55.91 54.70	(020	DTB	55,51 53,94	1005
30mins	56.25	MS	51	1,50	1050	5	2,99	1035
1 hour	56.14	1145	54	1,15	1120	51	.86	1105
1.5 hours	56.00	1215		3,82	1150		1.68	1135
2 hours	55.80	1250		155	1770	40	7.60	1205
2.5 hours	55.57	1315		3.18	1255	۲١.	8138	1235
3 hours	55.51	1345	5	2.87	1320	4	7,23	1305
3.5 hours	55.36	1415		2.54	1350	46	. 08	1335
4 hours	55.19	1445		2,26	1420	44	4,89	1405
Volume Purged using 5-gallon buckets	19,0			0.75		13	3,5	

MW-19 -> 11.25°C, 6.71pH, 25 orp, 0.890 ms/cm, 2.8 NTV, 3.86mg/2 MW-21 -> 12.06°C, 6.72pH, 177 ORP, 0.890 ms/cm, 18.2 NTV, 8.54mg/2 MW-22 -> 11.34°C, 6.76pH, 181 ORP, 1.07 ms/cm, 17.9 NTV, 7.94mg/LDO

Location Measured DTW BTOC ERT-4 25.741 MW-4 2.981 MW-5B 35.081 MW-11B 33.551 MW-12B 8.691 MW-15B - Access Flooded

Date: るしんしならより Personnel Onsite Initials:

Input Name	Flow Rates (On Meter)	Totalizer (Procontrol)		
(ER1FLO)	12.7	6578760		
(W7RFLO)	6.6	4210869		
(W5RFLO)	9.9	5179344		
Exterior of building commaintained (w		Y/N		
Clean influen	t flow meters	NA		
Adjust flow to set point below for s		Y/N		
Redux drui	Y/N			
How many Redux				
Redux remaining	29.5			
Nitrogen Pre	214/2100			
Well Name	Control Control			
MW-5R	MW-5R 9.5			
MW-7R	7.5			
ERT-1	12			

	Water Level
Input Name	(Procontrol)
W5RLVL	68.53
W7RLVL	72.84
ER1LVL	61.49
Location/ Input name	Pressure (Procontrol)
Transfer Pump (PREBAG)	4.7
Air Stripper (AS_PRS)	17.31
Discharge Pump (DSCPRS)	24.6
Location	Temp (Procontrol)
Room (RM_TMP)	48.1
Air Stripper (AS_TMP)	
Discharge Pump (H2OTMP)	50.7
Location	рН
Effluent (EFF_PH)	9.10
Effluent (Measured)	8.2

Take the following steps to record the flow totalizer for each well on the ProControl	
i. Login to ProControl (Password: EOS).	
ii. Once logged in, press the "I/O Up" key until "ER1FLO" is on the display	
iii. Press "Set Hi/Lo" key until "Totalizer" is displayed and record the value	
iv. Once value is recorded, press "Set Hi/Lo" until "ER1FLO" is on the display	
v. Reneat steps ii.iv for W7RFLO and W5RFLO	

otes:	

Date:

SSDS System Checklist 2/6/24

Fan	On/Off
1	OFF
2	on
3	<i>o</i> n
4	on
5	on
6	01
7	066

Fire Safety (Exit Sign) Check

Date:

Location	Y/N
Front Door	Y
Air Stripper Rm	Ü
Back Door	V

Treatment Plant

Notes/Vacuum in Ng SSDS-1 - \mathcal{O} SSDS -2 5SDS -1 □ 046 SSDS-2 - 7/. 3 SSDS-3 - -11,5 SSDS-4 - - 7,7 SSDS-5 - -5,3 SSDS-6 - - 6,4 SSDS-7 - O 5805-3 **■ 5505** -4 c. agas GeoLogic 8805-6

21612024

MIM

System Sampling Water Quality Parameter Readings						
	Temperature (°C)	рН	ORP mV	Sp. Cond. (mS/cm)	Turbidity (NTU)	DO mg/L
Eflluent (400	9.09	8,20	145	0,561	1,4	16.44
MW-7R 1415	9.59	7.34	172	0.532	0.0	6.58
ERT-1 1430	10,40	7.11	190	0.549	0.0	4.50
MW-5R (445	9.58	7.13	\ 83	0.572	0.0	9.60
Combined Influent	9.98	7.10	211	0,573	0.0	5.40

1505

		S	SVE Purge Table	73		
Date: 3/6/34	Data Collected By:	Sic		purses	H-10 TH 11	38
Well ID:	MV	V-19	M	N-21 /	(6)	W-22 /
	Time	DTW 📲	Time	DTW	Time	DTW
Initial (Before Purge)	1047	72.28	1045	44,82	1044	37.17
Depth to Bottom (Dry)	1115	57.16	1150	55.43	1135	55.13
30 min	1145	56.05	1420	54.86	1305	53,26
1 hour	1), 15	55.91	1250	54.79	1475	5 53.16
1.5 hour	1745	55.81	1340	54.75	1705	54.51
2 hours	1315	55.68	1350	\$ 54.70	1735	51.85
2.5 hours	1745	55.61	1470	54.65	1465	51 17
3 hours	1415	55,35	1450	54.61	1475	50.52
3.5 hours	1445	55,21	1510	54.56	1505	49.81
. 4 hours	1515	55,09	01550	54.53	1575	49.06
Volume purged	≈17591		11 27541	,	1112/25	
Samples Collected:	3 VOCS @	1055	7005	@ THE 1140	3 voc, (7 1/20
				G		

SVE Purge Water Quality Parameter Readings Sp. Cond. (mS/cm) Turbidity (NTU) Temperature (°C) DO mg/L ORP mV 6.73 59 176 187 9.59 9.8 1.08 MW-19 15.78 11.90 , 901 10.0 MW-21 30,7 873 1.20 11.77 7.11 MW-22

Level Logger Data Collection				
Well ID	Measured DTW	Time	Notes	
ERT-4 76,69	\$6.69	1310	0.5 170	
MW-4	3.98	1700	O. P. P. S.	
MW-5B	25.62	1390	0.0 (2)	
MW-11B	31,78	1430	0.0 P.T.	
MW-12B	8.79	14,20	0.011	
MW-15B	11.10%	1405	0.0 120	

76. + parse

1111

Date: 3/21/24 Personnel Onsite Initials: IM/RO) MF

Input Name	Flow Rates (On Meter)		talizer control)
(ER1FLO)	0.0		
(W7RFLO)	13.15		
(W5RFLO)	0,0		
	checked and grounds weedwack, etc)	(ŊN
Clean influe	nt flow meters		NA
,	oints using valves (see set points)	,	(1 <u>6</u>)
Redux dr	\		
How many Redu	100	um left m left	
Redux remainin	1 Da	m left	
Nitrogen Pro	1500 PSL	2543	
Well Name	Set point (GPM)		
MW-5R	9.5	1	
MW-7R	(Dog	obled w/	
ERT-1	12	1 ~	-1120H

Input Name	Water Level (Procontrol)
W5RLVL	-51,65
W7RLVL	-66,11
ER1LVL	-42,8%
Location/ Input name	Pressure (Procontrol)
Transfer Pump (PREBAG)	tar 36
Air Stripper (AS_PRS)	0,49
Discharge Pump (DSCPRS)	0,2
Location	Temp (Procontrol)
Room (RM_TMP)	51,8
Air Stripper (AS_TMP)	N/A
Discharge Pump (H2OTMP)	51,3
Location	рН
Effluent (EFF_PH)	9,42
Effluent (Measured)	7.25

Take the following steps to record the flow totalizer for each well on the ProControl
i. Login to ProControl (Password: EOS).
ii. Once logged in, press the "I/O Up" key until "ER1FLO" is on the display
iii. Press "Set Hi/Lo" key until "Totalizer" is displayed and record the value
iv. Once value is recorded, press "Set Hi/Lo" until "ER1FLO" is on the display
v. Repeat steps ii-iv for W7RFLO and W5RFLO
Notes: ERT-4 26.83 1140
M-4 4,50 1135
MW-SB 25.78 1155
MW-11B 22,11 1220
12B17.22 1230
MW-15B 9.93 1240
* GET RIV OF 5 Empty Dams

Date: SSDS System Checklist 3 21 24

SSDS -7

Fan	On/Off
1	DRF
2	01
3	20
4	00
5	60
6	0 1
7	OFE

5505 -1

38DS- 6

Fire Safety (Exit Sign) Checklist Date:

Location	Y/N
Front Door	Y
Air Stripper Rm	9
Back Door	4

Treatment Plant

55DS-2

Notes/Vacuum

SSDS-1 - OFF

SSDS-2- -, 0 99

SSDS-3- -. 787

ssds-4- --573

SSDS-5- - - 35)

SSDS-6- - .454 SSD5 -3

SSDS-7- OFF 5809 4

SSDS -5

GeoLogic

Site Name: NYSDEC - Mohonk Road Industrial Plant Project: 7772210116.03.01

Address:	186 N	Nohonk Road High Falls NY 12440	Door Code: 2-4-6-8
Site Owner/Contact:		y 518-402-9813	
Task Requested		Monthly O&M / Sampling Quarterly SVE Well Sampling	
Task To Be Completed By:	1 Foreman and 3 Tech – One 8 hr day. OT must		y. OT must be pre-approved

HAS Overview:

- 1. Review site specific health and safety sheet. Identify all typical and new potential hazards. Sign into site using sign in sheet in treatment room.
- 2. Conduct tailgate safety meeting. Make sure all contractors and sub-contractors onsite sign the daily health and safety form. This includes all over site personnel (i.e. DEC, Engineering Firms, Etc...) Return to PM, signed.
- 3. Wear all necessary PPE when performing tasks onsite. This shall include but not be limited to: gloves, eye protection, hearing protection, and fall protection when working at elevations great than 6'.
- 4. Bring a first aid kit. Take precautions to avoid poison ivy and ticks at this site, as they are prevalent in the area.

SVE Well Purge (Monthly): Completed by:

- Bring all need materials from treatment shed to SVE wells MW-19, MW-21, and MW-22:
 - 1. 3 dedicated whale pumps hanging in treatment room.
 - 2. 155-gallon drum
 - 3. 2 5-gallon buckets
 - 4. 3 marine batteries or 50ft lead cord for use of truck battery.
 - 5. Clipboard with Purge table
- Gauge each well using interface probe before beginning purge.
- Begin purging each well into a 5-gallon bucket record each full bucket then dump into 55-gallon drum until
 well is dry.
- Check to see if this event is for quarterly SVE sampling if yes, follow instructions below for sampling.
- Once well is dry record Depth to water using interface probe at 0 minutes, then every 30 minutes for 4 hours on the table provided for each individual well.
- Return the tabled data to Isaac Moser by end of day.

SVE Well Sampling and YSI readings (Quarterly): Completed by:

- Materials needed from shop:
 - 1. Small cooler with Glassware
 - 2. Horiba (calibrated)
 - 3. Ice
- Check to make sure Horiba has been calibrated.
- During purge of each SVE well pump well until dry, then using water pumped into the final 5 gallon bucket collect Horiba reading and samples (see sample list below and COC). (Make sure there is enough water.)
- Then record amount of water in the last bucket for final volume pumped before dumping into drum.
- · Repeat for each well.
- Send samples to Alpha Analytical. Lab Address: 8 Walkup Drive, Westborough, MA 01581

T	Location	Number of Bottles	Analysis Test
	SVE-19	3 - HCL VOAs	8260 VOCs Full List
	SVE-21	3 - HCL VOAs	8260 VOCs Full List
	SVE-22	3 - HCL VOAs	8260 VOCs Full List

Data Logging and Well Gauging (Monthly): Completed by:

- Bring materials from shop and Treatment shed:
 - 1. Keys for MW-12B and MW-15B
 - 2. Interface probe
 - 3. Data logger
 - 4. Clipboard with Data table
 - 5. Site Maps
 - 6. Flagging tape if needed
- Get data and physical water levels for each of the 6 wells: ERT-4, MW-4, MW5B, MW-11B, MW-12B, MW-15B.
- Check labels on each well and touch up.
- Starting with the cluster on the map of MW-4, MW-5B and ERT-4 take reading of depth to water using
 interface probe and record on table.
- Remove desiccant tube from transducer line and connect data logger to wire and power on.
- Open Vusitu on cell phone/device then connect data logger.
- Once connected download all data and save file by creating a new folder and labeling it with collection date.
- Disconnect from the app and then remove the data logger and replace the desiccant tube back on the wire.
- Repeat this process for each well.
- · Once back to the shop email files to IM.

System Sampling (Monthly):

- Bring materials:
- Large Cooler with Bottles and glassware
- Ice
- · Count to make sure all bottles are there.
- Using gloves sample from each of the locations starting with effluent (cleanest) to Combined influent (dirtiest).
- Do not washout Acid from bottles.

Contact Alpha Office 508-898-9220 if any questions or concerns on the sampling bottles.

Alpah PM is Nathalie Lewis.

Location	Number of Bottles	Analysis Test	
7R	7	See COC	e
ERT-1	7	See COC	N5
5R	7	See COC	N
Combined Influent	7	See COC	NS
Effluent	7	See COC	De la constant de la

System Check: (Bi-Weekly)

- Review site specific health and safety sheet. Identify all typical and new potential hazards. Sign into site using COVID-19 tracking sheet onsite. Please return any full sign in sheets and start a new one to leave onsite.
- · Shovel if needed.
- Check all system conditions and provide notes recorded on system check sheet.
- Take all system readings and readings from the ProControl and record on the system check sheet including nitrogen pressure.
- Shut down system via ProControl and breaker.
- Drain influent lines into a bucket via the sample ports. Treat water through system. Close influent valves
 on both sides of the flow meter and disconnect flow meters using the true-union connection. Run a long
 brush through the flow meter from both ends to remove any possible scaling as needed.
- Reconnect union fittings and open valves all the way.
- Restart system.
- Set wells to setpoints listed on the system check sheet.
- Sweep/vacuum all floors and surfaces that need it. Wipe down surfaces, especially those with rodent droppings. Clean up plant. Remove ALL food waste/trash from treatment building
- Check Effluent pH with strips onsite and record on the field log. Check with calibrated Horiba when possible.
- Walk the perimeter of the building that shares a parking lot with the plant and check the SSDS Fans. Fill out
 the SSDS Checklist on the back of the system log. Note any existing/potential issues.
- Test light on exit signs and mark on system check sheet. Check fire extinguishers.
- Check to make sure system is running before leaving and shut off all lights and lock door.

Tools / Equipment Required:

- Toolbox (to include at least: screwdrivers, pliers, hacksaw, hammer, flashlight, adjustable wrench, pipe wrenches, battery power tools etc.)
- Appropriate health and safety gear and H&S sheet/COVID-19 H&S log return signed copy to
- System O&M Checklist
- Gloves (if needed leave a box onsite)
- VuSitu Data logger and data collection device.
- Interface probe
- Horiba (quarterly)
- Snow Shovel (if necessary)
- Sample bottleware

Requestor: Please return notes to Isaac Moser

	Temperature (°C)	pН	ORP mV	Sp. Cond. (mS/cm)	Turbidity (NTU)	DO mg/L
Eflluent	10.15	8158	188	0,517	١٠٦	8/97
MW-7R	9,9,	7,42	210	0,542	46,0	5.79
ERT-1	Not	Rom	me			
MW-5R	Not R	Rum	ns of	4.0		
Combined Influent	120+	Tallen	oMu	TR R	many	

			SVE Purge Table		4	
Date:	Data Collected By:	end Purse	É	na funge	À	end Purge
Well ID:	MV	V-19 1630	MV	MW-21 1010		N-22 1030
	Time	DTW	Time	DTW	Time	DTW
Initial (Before Purge)	1015	25.30	09:55	41.92	1005	30-99
Depth to Bottom (Dry)	1020	57.11	10/41,93	55,42	1010	55.31
30 min	1120	56.12	1040	55.07	1100	55.2 2
1 hour	1156	86.02	1110	54.95	1130	53.53
1.5 hour	1220	36-00	1140	54.88	1200	63.24
2 hours	1256	50.93	1210	84.80	1230	52.72
2.5 hours	1720	55.79	12 40	54.71	1300	52.31
3 hours	1750	55.67	1310	54.64	1380	51.85
3.5 hours	1426	2223	1340	54.56	1400	51.38
4 hours	1450	68143	1410	54,49	1430	50.92
Volume purged	15-554		894	,	16591	•
Samples Collected:	NS		NS	÷ .,	NS	

SVE Purge Water Quality Parameter Readings							
	Temperature (°C) pH ORP mV Sp. Cond. (mS/cm) Turbidity (NTU) DO mg/L						
MW-19	11.03	7.49	103	.917	85.3	5.05	
MW-21	8,48	6.67	141	.860	142	7.6	
MW-22	9.62	7.19	125	1.14	115	11.31	

Level Logger Data Collection						
Well ID	Measured DTW	Time	Notes			
ERT-4	26,85	1140				
MW-4	4,50	1135				
MW-5B	75.78	1155				
MW-11B	72,11	1220				
MW-12B	7.22	1230	,			
MW-15B	9.95	1240	Collected duta back to Drumber			

4/10/24

Date:

Notes:

Personnel Onsite Initials:

Input Name	Flow Rates (On Meter)	Totalizer (Procontrol)
(ER1FLO)	O	6783008
(W7RFLO)	13.6	5232284
(W5RFLO)	0	5232278
	checked and grounds veedwack, etc)	Y/N
Clean influer	nt flow meters	NA
Adjust flow to set poi	Y/N	
Redux dru	Y/N	
How many Redux	0	
Redux remaining	(in. from bottom)	16.45
Nitrogen Pres	ssure (in PSI)	2614
Well Name	Set point (GPM)	
MW-5R	MW-5R 9.5	
MW-7R	7.5	
ERT-1	12	

Water Level (Procontrol)
-43.96
-59.15
-35.5
Pressure (Procontrol)
3.5
0.37
0.1
Temp (Procontrol)
60.8
® —
51.6
рН
8.25 K
8.10

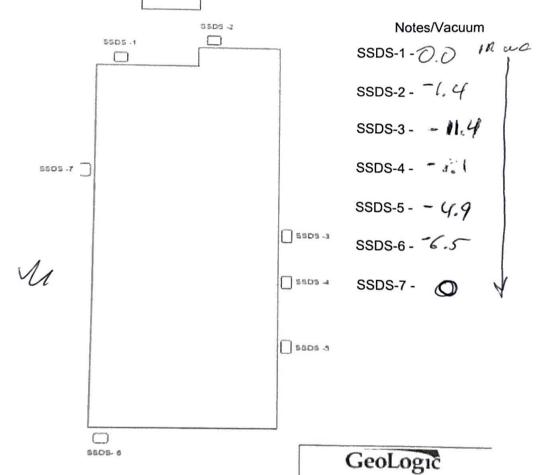
afterpting
to calibrate
the ph sensor
previously
957

Take the following steps to record the flow totalizer for each well on the ProControl	
i. Login to ProControl (Password: EOS).	
ii. Once logged in, press the "I/O Up" key until "ER1FLO" is on the display	
iii. Press "Set Hi/Lo" key until "Totalizer" is displayed and record the value	
iv. Once value is recorded, press "Set HI/Lo" until "ER1FLO" is on the display	
v. Repeat steps II-IV for W7RFLO and W5RFLO	

		4	4	
	0			

Date:

SSDS System Checklist


Fan	On/Off
1	0.4
2	00
3	DN
4	ON
5	ON
6	ON
7	066

Fire Safety (Exit Sign) Checklist

Date:

Location	Y/N
Front Door	4
Air Stripper Rm	. 4
Back Door	9 1

Treatment Plant

	Tomporture (°C)	2.000000	g Water Quality Param	Teter Readings		
	Temperature (°C)	pH	ORP mV	Sp. Cond. (mS/cm)	Turbidity (NTU)	DO mg/L
Eflluent	10.70	8-10	-54	1451	17-0	666
MW-7R	10.77	7.38	-18	1950	0.0	100
ERT-1			10	7 30	0.0	1.77
MW-5R			Tomas and			
Combined Influent			7			

			SVE Purge Table			
Date: Da	ta Collected By:					
Well ID:	MW	V-19	MV	V-21	MV	V-22
	Time	DTW	Time	DTW	Time	DTW
Initial (Before Purge)	N 100 0000 000 000000					
Depth to Bottom (Dry)						
30 min						
1 hour				4		
1.5 hour						
2 hours						
2.5 hours						
3 hours						
3.5 hours						
4 hours			¥			
Volume purged						
Samples Collected:						

		SVE Purge Wa	ter Quality Param	eter Readings		
	Temperature (°C)	pН	ORP mV	Sp. Cond. (mS/cm)	Turbidity (NTU)	DO mg/L
MW-19						
MW-21						
MW-22						

		Level Logg	er Data Collection
Well ID	Measured DTW	Time	Notes
ERT-4			
MW-4			
MW-5B			
MW-11B			
MW-12B			
MW-15B			

O

		System Sampling	Water Quality Para	meter Readings		
	Temperature (°C)	рН	ORP mV	Sp. Cond. (mS/cm)	Turbidity (NTU)	DO mg/L
Eflluent						
MW-7R						
ERT-1						
MW-5R					-	
Combined Influent						

		S	VE Purge Table			
Date:	Data Collected By:			1		
Well ID:	MW	1-19 57.30	MV	1-2155,30	MV	V-22 55,90
	Time	DTW	Time	DTW	Time	DTW
Initial (Before Purge)	1015	24.52	10025	25.61	日後に	25.48
Depth to Bottom (Dry)	1100	55.89	1135	54.53	1135	34.49
30 min	1130	54.89	1205	52.85	1225	53.90
1 hour	200	53,49	1235	51.16	1395	53.34
1.5 hour	1230	52.50	1305	49.73	1335	52.99
2 hours	1300	5 .69	1335	48.15	1355	52,50
2.5 hours	1330	50.86	1405	46.61	1425	52,06
3 hours	1400	50:05	1435	45.05	1955	51.61
3.5 hours	1430	49.28	1505	43.51	15 25	51.20
4 hours	1500	48.41	1535	42.01	1555	50.79
Volume purged	24	GAL	200	JAL		4GAL
Samples Collected:		NA	1	A	-N	A-

		SVE Purge Wate	er Quality Paramet	er Readings		
	Temperature (°C)	рН	ORP mV	Sp. Cond. (mS/cm)	Turbidity (NTU)	DO mg/L
MW-19	11.03	8,95	30	1.01	1.1	3.95
MW-21	10:00	7:01	213	1980	2 - [0
MW-22	10-48	7.72	208	0.940	31.6	8

		Level Lo	gger Data Collection		
Well ID	Measured DTW	Time		Notes	
ERT-4					
MW-4			1 11 11	-65	- ,
MW-5B			250		2 4
MW-118					
MW-12B				35	
MW-158				1	

Ballons MW-19 111/1+4 MW-21 11/1 MW-2-2 11+4

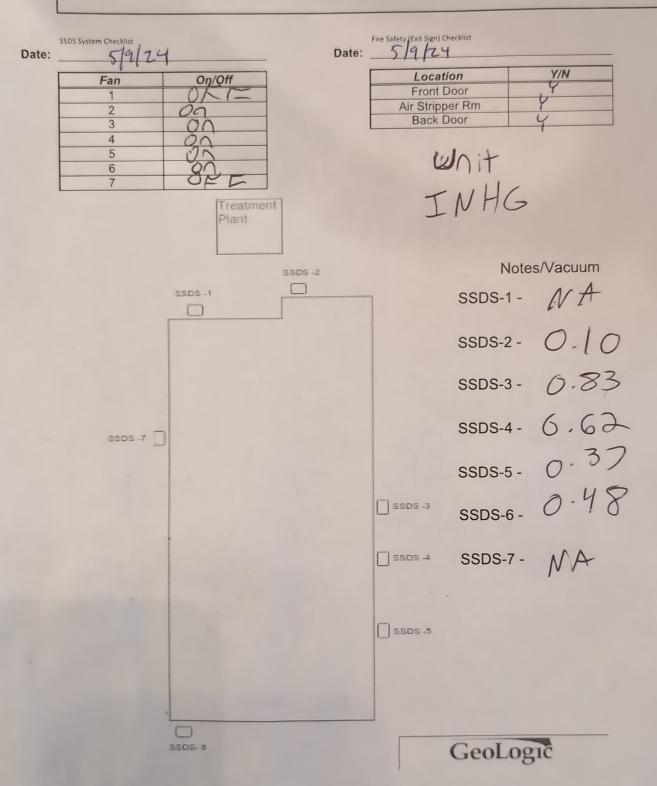
Date:	4/3	/2024				Straight I):II o	£ 1 ad					Page	1 of 1
				SHIPPER (ORIGIN	1	Straight E	olli O	Lad	ing	201	CIONE	B/L NO. 286		
Shippe Trailer Seal N	No.	.00Red	dux	GHI PER (ORIGIN				me: dress:		Mark Sei	long	E (DESTINATI	ON)	
Name: Addre		A Divi	sior	chnology n of Azure Water Servic gari Drive en, CT 06516	es, LLC		P.C	D. NO.	High F	Falls, NY	12440			
Name Addre	:	THIRD	PAF	RTY FREIGHT CHARG	ES BILL T	го	Shi, LIF	pTo Coi TGATE	ntact: M NEEDE	ED .	ong 609	Master E	Bill of Ladir	ng
Handling	9 1	IU Type	нм	Description of A	ticles, Spe	cial Marks and Exce	ptions	•		NMFC	Class	Weight Subj to Correction	Rate	Charge
3	+	Drum		Redux-390-475# Wate	er Treatme	ent Compound					60	1600 lbs		
			•	LIFTGATE Delivery on Thursday 4	1/11/24	2 2 2 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4			- C					-
-	1									,				
	•			One Pallet								-		
3	Т		_			Total	for Al	l Page	s (Wei	ight in	lbs)	1600 lbs		0.00
Chen	ntre			Il Emergency Cont	act:	Freight Tern ✓ Prepaid (PF ☐ Collect ☐ Third Party	18:			mour		Prepaid Collect Customer	Check Ac	ceptable
writing the	agreed	or declar	ed va	rate is dependent on value, shipp lue of the property as follows: he property is specifically stated in perper			The ca	arrier shall i	not make d	lelivery of th	nis shipmer	nt without payment of		other lawful
NOTE LI	abili	ty Limit	tatio	n for loss or damage in	this ship	ment may be app	licable.	See 49	U.S.C.	- 14706/	c)(1)(A)	and (B)		
RECEIVED established consigned, a shall be sub	subjection	ct to indivi camer an stined as : all bill of is	dually d are shown	determined rates or contracts th available to the shipper on reque a above, which said carner agree terms and conditions in the gove e said terms and conditions are t	at have been a est. The proper is to carry to do ming classification	agreed upon in writing be rty described above, in ag estination, if on its route, ation on the date of the si	etween the pparent go or other w hipment S	carrier and ood order, ones deliver Shipper her	d shipper, except as n to another	if applicable noted (conte carrier on	e, otherwise	e to the rates, classif	f packages unkr	nown), marked,
his is to cer epartment	rtify the of Tran	at the above	re nar	med materials are properly classi	fied, described	d, packaged, marked and	d labeled, a	and are in	proper con	dition for tra	ansportatio	n according to the ap	oplicable regulat	ions of the
Redux 1	000 100 100 E		ΥN	AME	CARRIE Redux	ER Technology					er Load		Counted	
HIPPER	SIG	SNATU	RE/	DATE	DRIVER	1		2	\supset		Shipper Driver	_	•	aid to contain

4-11-24

ADI SmartBOL Classic v12 3.1

Date: 5/9/24

Personnel Onsite Initials:


Input Name	Flow Rates (On Meter)	Totalizer
(ER1FLO)	0.0	(Procontrol) 6783012
(W7RFLO)	12.0	5676159
(W5RFLO)	0.0	5822757
Exterior of building ch maintained (we	necked and grounds	QIN
Clean influen	t flow meters	NA
Adjust flow to set point below for s	nts using valves (see set points)	YIM
Redux drui	m changed	Y 100
How many Redux	drums remaining	3.5
Redux remaining	(in. from bottom)	+ Drum
Nitrogen Pre	ssure (in PSI)	2626/60
Well Name	Set point (GPM)	
MW-5R	9.5	
MW-7R	7.5	
ERT-1	12	

Innut M	Water Level
Input Name	(Procontrol)
W5RLVL	-43.41
W7RLVL	-56,22
ER1LVL	-34,56
Location/ Input	Pressure
name	(Procontrol)
Transfer Pump (PREBAG)	4.5
Air Stripper (AS_PRS)	17.00
Discharge Pump (DSCPRS)	24.5
Location	Temp (Procontrol)
Room (RM_TMP)	64.7
Air Stripper (AS_TMP)	_
Discharge Pump (H2OTMP)	52.2
Location	рН
Effluent (EFF_PH)	5.38
Effluent (Measured)	6.5

Take the following steps to record the flow totalizer for each well on the ProControl

- i. Login to ProControl (Password: EOS).
- ii. Once logged in, press the "I/O Up" key until "ER1FL0" is on the display
- iii. Press "Set Hi/Lo" key until "Totalizer" is displayed and record the value
- iv. Once value is recorded, press "Set Hi/Lo" until "ER1FLO" is on the display
- v. Repeat steps ii-iv for W7RFLO and W5RFLO

N	П	O	ŧ	۵	c	ŕ
н	V	v	L	C	9	3

5/9/24

			System Sampling V	Nater Quality Parame	eter Readings		
		Temperature (°C)	рН	ORP mV	Sp. Cond. (mS/cm)	Turbidity (NTU)	DO mg/L
	Eflluent	1440	4.09	228	0.676	6.1	8.47
	MW-7R	13,72	6.96	714	0.704	(), 0	3.55
51617	The Cold Cold Cold	13,77	6.75	733	0.688	0.0	2.91
	MW-SR,			632			
	Combined Influent						

- Turned on Briefly N 40 gals

			SVE Purge Table			
Date:	Data Collected By:					
Well ID:	MW	-19	MW	/-21	MW	1-22
	Time	DTW	Time 0964	DTW	Time	DTW
Initial (Before Purge)	0930	30.80	44.03 A	41.03	1090	24.33
Depth to Bottom (Dry)	0950	57.05	1005	55.85	030	5549
30 min	1020	56.26	1035	54.4.5	1100	54.13
1 hour	1050	56.1%	1105	54.42	130	53.76
1.5 hour	1120	56.09	1135	54.24	1200	53.40
2 hours	11 30	56.00	1205	54.07	12.80	53.03
2.5 hours	1220	55.91	1235	53.90	1300	52.71
3 hours	1250	55.82	13 0 5	53.73	1230	52.37
3.5 hours	1320	55.74	1335	53.55	1400	51.96
4 hours	1350	55.65	14 05	63.39	1430	51.60
Volume purged	11+4= 14	GAL	+3=8		1171 = 11	GAL
Samples Collected:						

		SVE Purge Wat	er Quality Param	eter Readings		
	Temperature (°C)	рН	ORP mV	Sp. Cond. (mS/cm)	Turbidity (NTU)	DO mg/L
MW-19	13.90	6.18	254	1.17	0.0	361
MW-21	14.41	6.57	239	0.996	3.0	8.57
MW-22	THE STATE OF THE S	6038	218	1.38	3.2	1.55
	13.16				,,,,	. 38

		Level L	ogger Data Collection
Well ID	Measured DTW	Time	Notes
ERT-4	27.85	1120	
MW-4	4.34	1115	
MW-5B	26,87	1125	
MW-11B	15.47	1240	
MW-12B	5.49	1137	
MW-15B	9.05	1150	

5/9/24

		System Sampling	Water Quality Param	neter Readings		
	Temperature (°C)	рН	ORP mV	Sp. Cond. (mS/cm)	Turbidity (NTU)	DO mg/L
Eflluent	1440	7.09	228	0.676	6.1	8,47
MW-7R	13,72	6,96	714	0.704	0.0	3,55
T- COURS COMES PAR	13,77	6.75	733	0.688	0.0	2.91
MW-SR-						
Combined Influent						-

- Turnedon Briting N 40 gals

			SVE Purge Table			
Date:	Data Collected By:					
Well ID:	MW	-19	MW	V-21	MM	1-22
	Time	DTW	Time 0955	DTW	Time	DTW
Initial (Before Purge)	0930	30.80	44.03 A	41.03	1010	35.33
Depth to Bottom (Dry)	0950	67.05	1005	55.85	1030	55.49
30 min	1020	56.26	1035	54.60	1100	54.13
1 hour	1050	56.18	1105	54.43	130	53.76
1.5 hour	1120	56.09	1135	54.24	1200	53.40
2 hours	11 30	56.00	1205	54.07	1230	53.03
2.5 hours	1220	55.91	1235	53.90	1300	52.66
3 hours	1250	55.82	1305	53.73	1330	52.37
3.5 hours	1320	55.74	1335	53.55	1400	51.96
4 hours	1350	55.65	14 05	63.39	1430	51.60
Volume purged	11+4= 14	GAL	1+3=8	GAL	11+1=1	GAL
Samples Collected:				- 10		

		SVE Purge Wa	ter Quality Param	eter Readings		
	Temperature (°C)	рН	ORP mV	Sp. Cond. (mS/cm)	Turbidity (NTU)	DO mg/L
MW-19	13.90	6.18	254	1.17	0.0	3.61
MW-21	4.41	6.57	239	0.996	3.0	3.57
MW-22	# LT	6058	218	1.38	3.2	1.58
,	13.16		-	carry.		100

		Level I	Logger Data Collection
Well ID	Measured DTW	Time	Notes
ERT-4	27.85	1120	
MW-4	4.34	1115	
MW-5B	26,87	1125	
MW-11B	15.47	1240	
MW-12B	5.49	1137	
MW-15B	9.05	1150	

Site Name: NYSDEC - Mohonk Road Industrial Plant Project: 7772210116.03.01

Address:	186 Mohonk Road High Falls NY 12440	Door Code: 2-4-6-8
Site Owner/Contact:	NYSDEC - Charles Gregory	y 518-402-9813
Task Requested	Monthly O&M / Sampling Quarterly SVE Well Sampling	2024 g 2024
Task To Be Completed By:	1 Foreman and 3 Tech - One 8 hr day	y. OT must be pre-approved

HAS Overview:

- 1. Review site specific health and safety sheet. Identify all typical and new potential hazards. Sign into site using sign in sheet in treatment room.
- 2. Conduct tailgate safety meeting. Make sure all contractors and sub-contractors onsite sign the daily health and safety form. This includes all over site personnel (i.e. DEC, Engineering Firms, Etc...) Return to PM, signed.
- 3. Wear all necessary PPE when performing tasks onsite. This shall include but not be limited to: gloves, eye protection, hearing protection, and fall protection when working at elevations great than 6'.
- 4. Bring a first aid kit. Take precautions to avoid poison ivy and ticks at this site, as they are prevalent in the area.

SVE Well Purge (Monthly): Completed by:

- Bring all need materials from treatment shed to SVE wells MW-19, MW-21, and MW-22:
 - 3 dedicated whale pumps hanging in treatment room.
 - 2. 155-gallon drum
 - 3. 2 5-gallon buckets
 - 4. 3 marine batteries or 50ft lead cord for use of truck battery.
 - Clipboard with Purge table
- Gauge each well using interface probe before beginning purge.
- Begin purging each well into a 5-gallon bucket record each full bucket then dump into 55-gallon drum until well is dry.
- Check to see if this event is for quarterly SVE sampling if yes, follow instructions below for sampling.
- Once well is dry record Depth to water using interface probe at 0 minutes, then every 30 minutes for 4 hours on the table provided for each individual well.
- Return the tabled data to Isaac Moser by end of day.

SVE Well Sampling and YSI readings (Quarterly): Completed by:

- Materials needed from shop:
 - 1. Small cooler with Glassware
 - 2. Horiba (calibrated)
 - 3. Ice
- Check to make sure Horiba has been calibrated.
- During purge of each SVE well pump well until dry, then using water pumped into the final 5 gallon bucket collect Horiba reading and samples (see sample list below and COC). (Make sure there is enough water.)
- Then record amount of water in the last bucket for final volume pumped before dumping into drum.
- · Repeat for each well.
- Send samples to Alpha Analytical. Lab Address: 8 Walkup Drive, Westborough, MA 01581

Location	Number of Bottles	Analysis Test		
SVE-19	3 - HCL VOAs	8260 VOCs Full List		
SVE-21	3 - HCL VOAs	8260 VOCs Full List		
SVE-22	3 - HCL VOAs	8260 VOCs Full List		

Data Logging and Well Gauging (Monthly): Completed by:

- Bring materials from shop and Treatment shed:
 - Keys for MW-12B and MW-15B
 - 2. Interface probe
 - 3. Data logger
 - 4. Clipboard with Data table
 - 5. Site Maps
 - 6. Flagging tape if needed
- Get data and physical water levels for each of the 6 wells: ERT-4, MW-4, MW5B, MW-11B, MW-12B, MW-15B.
- Check labels on each well and touch up.
- Starting with the cluster on the map of MW-4, MW-5B and ERT-4 take reading of depth to water using interface probe and record on table.
- Remove desiccant tube from transducer line and connect data logger to wire and power on.
- Open Vusitu on cell phone/device then connect data logger.
- Once connected download all data and save file by creating a new folder and labeling it with collection date.
- Disconnect from the app and then remove the data logger and replace the desiccant tube back on the wire.
- Repeat this process for each well.
- Once back to the shop email files to IM.

System Sampling (Monthly):

- Bring materials:
- Large Cooler with Bottles and glassware
- Ice
- Count to make sure all bottles are there.
- Using gloves sample from each of the locations starting with effluent (cleanest) to Combined influent (dirtiest).
- Do not washout Acid from bottles.

Contact Alpha Office 508-898-9220 if any questions or concerns on the sampling bottles.

Alpah PM is Nathalie Lewis.

Location	Number of Bottles	Analysis Test
7R	7	See COC
ERT-1	7	See COC
5R	7	See COC
Combined Influent	7	See COC
Effluent	7	See COC

6/12/24 Date:

Personnel Onsite Initials:

Input Name	Flow Rates (On Meter)	Totalizer (Procontrol)				
(ER1FLO)	0	6783051				
(W7RFLO)	10.4	625886				
(W5RFLO)						
	checked and grounds weedwack, etc)	Y/N				
Clean influe	ent flow meters	NA				
	oints using valves (see r set points)	Y/N				
Redux dr	um changed	Y/N				
How many Redu	ux drums remaining	3				
Redux remainin	g (in. from bottom)	マ"				
Nitrogen Pro	essure (in PSI)	2585				
Well Name						
MW-5R						
MW-7R	1					
ERT-1	12	1				

Input Name	Water Level (Procontrol)
W5RLVL	73.26
W7RLVL	78.65
ER1LVL	60.25
Location/ Input name	Pressure (Procontrol)
Transfer Pump (PREBAG)	13.2 4.6
Air Stripper (AS_PRS)	16.82
Discharge Pump (DSCPRS)	245
Location	Temp (Procontrol)
Room (RM_TMP)	68.4
Air Stripper (AS_TMP)	
Discharge Pump (H2OTMP)	52.8
Location	pН
Effluent (EFF_PH)	5.65
Effluent (Measured)	8.79

Take the following steps to record the flow totalizer for each well on the ProControl	
i. Login to ProControl (Password: EOS).	
ii. Once logged in, press the "I/O Up" key until "ER1FLO" is on the display	
iii. Press "Set Hi/Lo" key until "Totalizer" is displayed and record the value	
iv. Once value is recorded, press "Set Hi/Lo" until "ER1FLO" is on the display	
v. Repeat steps ii-iv for W7RFLO and W5RFLO	

Notes:			

SSDS System Checklist

Date:

Fan	On/Off
1	Oft
2	ON
3	ON
4	ON
5	010
6	ON
7	OF

SSDS -7 7

35D5- 6

OFL displayed at

Fire Safety (Exit Sign) Checklist

Date:

Location	Y/N
Front Door	Y
Air Stripper Rm	7
Back Door	4

Treatment Plant

Notes

Vacuum (inter > m Hg)

2 1.353 - 0.077

3 8,881 > 0.653

47,239-0.532

5 4.787 20.352

DESDS-3 6 6.102 -> 0.448

Øssos 4 7 0 → 0

SSDS -5

GeoLogic

		System Samplin	g Water Quality Paran	neter Readings		
	Temperature (°C)	рН	ORP mV	Sp. Cond. (mS/cm)	Turbidity (NTU)	DO mg/L
Eflluent	16.08	8.79	248	0.685	0.0	12010
MW-7R	15.90	6.74	270	0.742	0.0	14.89
ERT-1	Offline	not me	asured			
MW-5R	19.58	6,64	190	0-450	0.0	5.13
Combined Influent	19.14	7.58	279	0.747	0.0	5.90

Well ID:	M	W-19		MW-21		VIW-22	
Well ID.	Time	DTW	Time	DTW			
Initial (Before Purge)	0244	3997	0940	51,47	0943	40 89	
Depth to Bottom (Dry)	1075	57.35	0950	No. 86.55.96	1020	54.82	
30 min	1050105	56.51	1000	55.63	1050	54.34	
1 hour	1135	56.49	1050	55.11	1/20	54.15	
1.5 hour	1205	56.47	1120	55.08	1150	54.06	
2 hours	1435	56.44	1150	55.06	1240	54.02	
2.5 hours	1205	56.43	1420	55.03	1450	53.94	
3 hours	1375	56.43	1420	55.02	1720	53.85	
3.5 hours	. 1405	56.47	1 740	55.00	1750	53.77	
4 hours	1475	56.42	1320	54.97	1420	53.68	
Volume purged	12 541		430	:1	9591		
Samples Collected:	(2			0	0		

SVE Purge Water Quality Parameter Readings								
	Temperature (°C)	pН	ORP mV	Sp. Cond. (mS/cm)	Turbidity (NTU)	DO mg/L		
MW-19	13.63	7.88	30	1.16	60-7	14.61		
MW-21	14.91	7.77	973	1.01	. 217	17.72		
MW-22	14.92	7.78	254	. 985	99	26.36		

Level Logger Data Collection							
Well ID	Measured DTW	Time	Notes				
ERT-4	35.58	1411					
MW-4	9.30	1401					
MW-5B	33.25	1418					
MW-11B	35.24	1430					
MW-12B	11.19	1438					
MW-15B	10.73	1452					

ATTACHMENT A2-2 FIELD FORMS MAY 2023 GROUNDWATER FIELD SAMPLING FORMS

1	200	ST OF	LOV	V FLOW GRO	UNDWATE	ER SAMI	PLING R	ECORD	14	化学系数数数数数数
#]	MAC 511 Congress: Suite 200 Portland, Maine	Street	777 SAMPLE	1 NUMBER TO A.	***	SAMPLET		START TIME [Z 3 STE NAME IN 3 5(6)	1	5/18/23 END TIME 1435 PAGE
TUBING ID	METER (IN.)]2	6	8 0	THER			CAP CASING LOCKE	D — — —
INITIAL	nan I		FINAL DIW	32.84		CASING	12'		TOC/TOR	
(BMP) WELL D		6	(BMP) SCREEN		PID STICK	UP (AGS)	NA.	FT	REFILL TIN	
(BMP) WATER	-16	, <u>1</u> m	DRAWDOWN	MA	FT AMBIE	ENT AIR		PPM	SETTING	SEC SEC
CALCUI	×	FT	VOLUME	OTW X well diam. square	GAL MOUTI ed X 0.041)		NA .	PPM	TIMER SET	TING NA SEC
	lumn X well diameter		PURGED (mL per minute X to	tal minutes X 0.00026 ga	GAL TOTAL	PURGED			TO PUMP	NA PSI
TIME	DTW (FT)	PURGE RATE (mL/min)	TEMP. (*C)	SP. CONDUCTANCE (mS/cm)	DISS, O ₂ (mg/L) ±10% or 3 values =0.5 mg/L	pH (units)	REDOX (mv)	TURBIDITY (ntu) =10% or <10 ntu	PUMP INTAKE DEPTH (ft)	COMMENTS
	BEGIN PUR	GING				-		-2202 1158	1 2 2 7 7 7 7 7	
1250	31.14	100	17,78	0.712	10.94	7.60	215	1000+	40	Accidentally
755	31,59	100	16,59	0.733	9,85	7.47	216	1000 +	,	water con 1900 by
1300	31.75	(00	16,58	0,737	8,67	7.40	214	1000+		Funp scotting off @ 100.
1305	32.00	125	15,09	0.752	8,75	7,40	212	230		Tuta up a listle b.
310	32.20	175	14,96	01741	8,26	7.40		208		
1315	53.45	125	14.95	0.739	8,30	7.42	206	193		
1320	32.57	175	14.98	0.733	8-15	7.45	205	178		
1325	22,73	125	14.65	0.738	8121	7.50	203	182		Temp = Flow cell usu
330	32.85	125	14,67	0,737	8,18	7.52	2009	180		
PERE SUBM	DOCUMENTATIO TYPE OF PUMP STALTIC HERSIBLE DOTER TERA	DI D	ECON FLUIDS USED LCONOX PEIONIZED WATER OTABLE WATER ITRIC ACID EXANE IETHANOL	SILICON THOPE TUBELDPE TUBELDPE TUBELDPE TUBELDPE TUBELDPE TUBELDPE TUBER	TUBING PUMPI UBING ING	BLADDER MAT S. STE PVC P	TERIALS EEL PUMP MATE ROBE SCREEN R R		COND.: 3 significant of the control	ex. 3.51 = 3.51 nearest touch (6.19 = 6.2, 101 = 101) 44, 101 = 100) FOUIPMENT USED TER TER METER
	PARAMETER: PARAMETE LUGC LUGC LUGC SSERVATIONS	S M	ETHOD NUMBER	ANALYTE L	JST FIL	υυ 	PRESERVAT METHOD LCI TCC TCC	2 X0 X	FILTER ME REQUIRED	oc corrected
PURGE WA CONTAINE NO-PURGE UTILIZED	TER YES		NUMBER OF GALLA GENERATED	ONS		(00)	M THE WORK		1446	pessible
Sampler Sign	nature		Priot Name:							
Checked By			Date:							DIV WWW

7.309	10000	ASSET.	LOW	FLOW GRO	UNDWATE	R SAMP	LING RE	CORD		A TO BE SEED.		
≝ N	AAC S11 Congress 5 Suite 200 Portland, Maine	Street	PROJECT PROJECT SAMPLE I	Mohonk P777	RJ I. 2210119	SAMPLETIN	ME	LOCATION ID MW- START TIME 15-30 SITE NAME IN 356		END TIME (G30 PAGE OF		
WELL DIAMETER (IN.) 1 2 4 6 8 TUBING ID (INCHES) 1/8 1/4 3/8 1/2 5/8 MEASUREMENT POINT (MP) TOP OF RISER (TOR) TOP OF CASING (TOC)						OTHER				VELL INTEGRITY YES NO NA CAP CASING Z LOCKED Z COLLAR		
(BMP)	53	, 18 FT	FINAL DTW (BMP)	56.10	FT STICK	CASING UP (AGS)	~2'	FT	TOC/TOR DIFFERENC REFILL TIM			
WELL DEPTH 100 FT			SCREEN UNK FT DRAWDOWN			AMBIENT AIR NA		PPM		NA SEC		
	aren X well diameter		TOTAL VOL. PURGED	TW X well diam. square	GAL TOTAL			PPM	PRESSURE TO PUMP	NA PSI		
TIME	DTW (FT)	PURGE RATE (mL/min)	TEMP. (°C)	SP. CONDUCTANCE (mS/cm) 43%	DISS. O ₂ (mg/L) ±10% or 3 values <0.5 mg/L	pH (units)	REDOX (mv) ±10 mv	TURBIDITY (ntu) =10% or <10 ntu	PUMP INTAKE DEPTH (ft)	COMMENTS		
	BEGIN PUR	GING										
545	53,93	200	18.64	0.1669	2.00	6.96	169	15.9	~95'			
550	54.30	200	1+152	0.677	1.44	6,92	140	11.8				
555	54,73	200	16.51	0,693	1.81	6.89	142	1518	1	4		
00	24,93	200	16:30	0.696	10.32	6187	144	15.5	+	Dump briefly incre		
005	55,55	200	15,72	0,714	2.58	6.86	152	17.9		power drawings		
010	55.78	200150	15.09	0.715	2.57	6.84	154	19.5		No odos		
615	55.93	200150	15,13	0,718	2,58	6183	164	2815				
620	56,08	200	15.05	0.715	2.60	6.83	165	28.3		**		
625	56,10	150	15.08	0,717	2.60	6.82	166	28.6		"		
	DOCUMENTATIO	DI DI	CON FLUIDS USED	IETERS (rounded to	TUBING PUMP	BLADDER MATI	ERIALS	DIA!	COND.: 3 significa pH: nearest tenth (DO: nearest tenth (TURB: 3 SF max, ORP: 2 SF (44.1 =	(ex. 1.51 - 3.5) nearest tenth (6.19 - 6.2, 101 - 101) 44, 191 - 190) EQUIPMENT USED		
PERISTALTIC SUBMERSIBLE SUBMERSIBLE BLADDER WATTERA OTHER					BING	S. STEEL PUMP MATERIAL PVC PUMP MATERIAL GEOPROBE SCREEN OTHER OTHER OTHER				PID WQ METER TURB. METER PUMP OTHER FILTERS NO. TYPE		
ANALYTIC	AL PARAMETER PARAMETE VO C 1,4 Dic		SUOB SIM	ANALYTE		HELD LTERED NO	PRESERVAT METHOL		ME REQUIRED	C COLLECTED VO		
PURGE OB PURGE WA CONTAINE NO-PURGE UTILIZED	RIZED _		NUMBER OF GALLO	SNS	NOT	ES	M THE WOR	K PLAN				
Sampler Sign Checked By:	nature: Jean 1	Ivn	Print Name: 1-9	weethose								

	ALC: NO		LOV	V FLOW GRO	UNDWATE	RSAMP	LING R	ECORD		STABLE OF THE STATE OF
#1	MAC S11 Congress Suite 200 Portland, Maine	Street	7777	INCHER SALE		SAMPLE TO	7.230.	START TIME O S O SITE NAME/IN		END TIME 202 PAGE OF
MEASUREM INITIAL (BMP) WELL D (BMP) WATER COLUMN CALCUL GALAYO (water col	DIW 7,c	O(2 FT O(3 FT GAL GAL	TOTAL VOL. PURGED	TOP OF CASING	SIGNOCION DE STICKI FT STICKI FT STICKI FT AMBIE GAL PID WE MOUTH GAL DRAWI GAL TOTAL	LL I	NA NA	PPM PPM	CAP CASING LOCKED COLLAR TOC/TOR DIFFERENCE REFILL TIME SETTING DISCHARGE TIMER SETTI PRESSURE TO PUMP	NA SEC
TIME	DTW (FT)	PURGE RATE (mL/min)	TEMP. (°C)	SP. CONDUCTANCE (mS/cm) ±3%	DISS, O ₂ (mg/L) +10% or 3 values <0.5 mg/L	pH (units)	REDOX (mv) ±10 mv	TURBIDITY (ntu) ±10% or <10 ntu	PUMP INTAKE DEPTH (ft)	COMMENTS
1100	# BEGIN PUR 7,07 8,93 9,62	100	13.82	0.941	4.18 0.00	709	180	421 326	16.5'	
1126	9,68 9,71 9,74 Samole	100	13.90 13.95 14.01 13.98	0,948	0,00	6.91	184 185 187	149		
	FI	INAL STABILI	ZED FIELD PARAM	4ETERS (rounded to	appropriate sign	ificant figure	s)		TEMP,: nearest degr COND,: 3 significan pH: nearest tenth (ex-	r figure max (ex. 1.686 = 1.69) c. 5.53 = 5.5)
PERIS	ERA R		DECON FLUIDS USED ALCONOX DEIONIZED WATER POTABLE WATER NITRIC ACID HEXANE METHANOL OTHER	SILICON T HOPE TUB LOPE TUB OTHER	ING	S. STE	EL PUMP MAT PUMP MATERIA ROBE SCREEN R	AL.	ORP: 2 SF (44.1 + 4	EQUIPMENT USED TER TER TER
ANALYTIC	TCL VOC	s	METHOD NUMBER 8 NG () 8 NZ O O STA	ANALYTEL	AST FI	FIELD LTERED	PRESERVA' METHOL	D VOLU	ME REQUIRED	OC COLLECTED
PURGE OB PURGE WA CONTAINLY NO-PURGE UTILIZED	RIZED 🔀		NUMBER OF GALLO GENERATED	ONS	NOTE	Well	Sefore		tuning	From 6' down
Samplet Sign Checked By	sture		Print Name:		J. L.	THO	THE WOR			

			LOW	FLOW GROU	UNDWATE	R SAMPL	ING RE	CORD			
≝N	MAC SI) Congress S Suite 200	treci	SAMPLE	ONK BO IN NUMBER HTZZION	W	SAMPLE TIM	1E	LOCATION ID MW - S START TIME L-LOU SITE NAME/INS	TALLATION	DATE 5 16 23 END TIME 15 10	
WELL DIAM FUBING ID (I MEASUREMI		MIGH I F IJS TOP-OF	12	6 102 10P OF CASING	8	IER		Mohank		WELL INTEGRITY YES NO N/A	
(BMP)	178	0011	FINAL DTW (BMP)	28,20 FT PROT. CASING STICKUP (AGS) 43.				3.6 FT TOCTOR DIFFERENCE		E NA FI	
(BMP) S6.50 FT INT		SCREEN INTERVAL DRAWDOWN	UNK	PID AMBIENT				REFILL TIME SETTING DISCHARGE	NA SEL		
	un X well diameter ²	GÁL X 0.041)	VOLUME (first) DTW- initial DT TOTAL VOL. PURGED (ml. per minute X total	W X well diam, squaree	GAL MOUTH IX 0.041) DRAWU GAL TOTAL		NA	PPM	PRESSURE TO PUMP	NA SEC	
TIME	DTW (FT)	PROGRAM STAI PURGE RATE (mL/min)	TEMP, (*C)	SP, CONDUCTANCE (mS/cm)	DISS, O ₂ (mg/L) +10% or 3 values -0.5 mg/L	pH (units)	REDOX (mv) +10 mv	TURBIDITY (atu) +10% or <10 ntu	PUMP INTAKE DEPTH (ft)	COMMENTS	
	BEGIN PUR	GING									
133	28,20	150	16.15	0.452	6,01	6,78	155	50.2	34	Us ador, No Co	
438	28,20	150	14.83	0,439	4.61	6,97-	155	19.5	34	**	
443	28,20	150	14,39	0,483	4,54	6,85	165	11.2			
448	28,20	150	14,06	0.490	4,60	685	168	7.2		->	
453	28.20	150	13,96	0,493	4,56	6.81	171	7.2		**	
503	28.20	150	13,97	0.494	4.55	6,80	172	7.3			
PERIST	DOCUMENTATIO YPL OF PUMP FACTIC RNINEL DLR		LED FIELD PARAM DECON ILUIDS USED ALCONOX DECONIZED WATER POTABLE WATER NITRIC ACID	SILICON THOPE TUBE	TUBING TUMP.	S STE PVC P	ERIALS EL PUMP MAT UMP MATERL ROBE SCREEN R	AL.	COND. 3 significate pH. incarest tenth ic BO. nearest tenth ic TURB: 3.58 max.; ORP. 2.50 (44.1 -	c. 3.51 – 1.51 central traff (6.19 – 6.2, 101 – 101) 44, (91 – 190) EQUIPMENT USED TER HECCES HECCES	
OTHLE		= B	HEXANE METHANOL OTHER	OTHER		OTHE			OTHER EILTER		
_	PARAMETER PARAMETE L VOCS	K M	SLUUB BLUUB	ASP DEC	TCL FI	HIG D LTERED Vo	PRESERVA METHO HLI ICE	8o	ME REQUIRED 1 L (2 WA) - (2 Aprix)		
PURGE OBS	SERVATIONS				NOT	ES					
PURGE WAS CONTAINES NO PURGES UTILIZED	METHOD YES	NO N	NUMBER OF GALLO GENERATED	saac Hose	DEV	IATIONS FRO	M THE WOI	RK PLAN			

Comparison Com		and pileton	100	LOW	FLOW GRO	UNDWATE	R SAMPI	ING RE	CORD	SE 18.	The State of the
TRINGE BINCHES 12 14 15 12 15 16 17 16 16 16 16 16 16		511 Congress S Suite 200 Portland, Maine	Street	PROJECT 777	Monank R. ; NUMBER 12 (0) 16 01.	K**	SAMPLE TIN	IE .	MW-C START TIME	TALLATION	S/18/Z3 END TIME 1040 PAGE
NATE 1 1 1 1 1 1 1 1 1	TUBING ID (MEASUREM INITIAL (BMP) WELL DE	(INCHES) MENT POINT (MP) DTW SQU.	33 FT	FRISER (TOR) [FINAL DTW (BMP)	42.00	5/8 OT (TOC) OT PROT. C STICKU	HER	2,35	т	CASING LOCKED COLLAR TOC/TOR DIFFERENCE	YES NO NA
TNE DTW (FT) (md, min) (ms)	WATER COLUMN CALCUL GALVOI (water colu	ATED Jumn X well diameter	GAL (CAL)	DRAWDOWN VOLUME (final DTW- initial DT TOTAL VOL. PURGED (ml. per minute X total	W X well diam. squared	PID WE MOUTH IX 0.041) DRAWII GAL TOTAL	LL OOWN/			DISCHARGE TIMER SETT PRESSURE	ING NA SEC
COLUMNY DOCUMENTATION TRIBUSE PIELD PARAMETERS (rounded to appropriate significant figures) COLUMNY TOCUMENTATION TRIBUSE PIELD PARAMETERS (rounded to appropriate significant figures) COLUMNY TOCUMENTATION TRIBUSE PIELD PARAMETERS (rounded to appropriate significant figures) COLUMNY TOCUMENTATION TRIBUSE PIELD PARAMETERS (rounded to appropriate significant figures) COLUMNY TOCUMENTATION TRIBUSE PIELD PARAMETERS (rounded to appropriate significant figures) COLUMNY TOCUMENTATION TRIBUSE PIELD PARAMETERS (rounded to appropriate significant figures) COLUMNY TOCUMENTATION TRIBUSE PIELD PARAMETERS (rounded to appropriate significant figures) COLUMNY TOCUMENTATION TRIBUSE PIELD PARAMETERS (rounded to appropriate significant figures) COLUMNY TOCUMENTATION TRIBUSE PIELD PARAMETERS (rounded to appropriate significant figures) COLUMNY TOCUMENTATION TRIBUSE PIELD PARAMETERS (rounded to appropriate significant figures) COLUMNY TOCUMENTATION TRIBUSE PIELD PARAMETERS (rounded to appropriate significant figures) COLUMNY TOCUMENTATION COLU	TIME	DTW (FT)			(mS/cm)	± 10% or 3 values		(mv)	(ntu)	INTAKE	COMMENTS
State Stat	/5GZ.	100000000000000000000000000000000000000		2 70		9	17.	74	,		
COUNTY C		0 02			0.653		(0,99			761	reduce flow read
13. 34	0940	-	1	1	TO THE STATE OF				0.1		
FINAL STABILIZED FIELD PARAMETERS (rounded to appropriate significant figures) FINAL STABILIZED FIELD PARAMETERS (rounded to appropriate significant figures) FINAL STABILIZED FIELD PARAMETERS (rounded to appropriate significant figures) FINAL STABILIZED FIELD PARAMETERS (rounded to appropriate significant figures) FINAL STABILIZED FIELD PARAMETERS (rounded to appropriate significant figures) FINAL STABILIZED FIELD PARAMETERS (rounded to appropriate significant figures) FINAL STABILIZED FIELD PARAMETERS (rounded to appropriate significant figures) FINAL STABILIZED FIELD PARAMETERS (rounded to appropriate significant figures) FINAL STABILIZED FIELD PARAMETERS (rounded to appropriate significant figures) FINAL STABILIZED FIELD PARAMETERS (rounded to appropriate significant figures) FIRED FIRE	0950	82.00	150	13.20							
FINAL STABILIZED FIELD PARAMETERS (rounded to appropriate significant figures) FINAL STABILIZED FIELD PARAMETERS (rounded to appropriate significant figures) FINAL STABILIZED FIELD PARAMETERS (rounded to appropriate significant figures) FINAL STABILIZED FIELD PARAMETERS (rounded to appropriate significant figures) FINAL STABILIZED FIELD PARAMETERS (rounded to appropriate significant figures) FINAL STABILIZED FIELD PARAMETERS (rounded to appropriate significant figures) FINAL STABILIZED FIELD PARAMETERS (rounded to appropriate significant figures) FIRED FIRE				1							
FINAL STABILIZED FIELD PARAMETERS (rounded to appropriate significant figures) COND. 3 significant figure may (re. 1286 - 1207) Iff. necessic rich (1.5.3 7.3 5.3) FIN. 120 (1.5.4 1.3 m.), record until (s. 18 * 0.2, 101 + 101) COULTMENT DOCUMENTATION TYPE OF PLADE PERISTALTIC SIGNORESHILE DISPOSITE PLANE PERISTALTIC SIGNORESHILE DISPOSITE PLANE PERISTALTIC SIGNORESHILE DISPOSITE PLANE POTABLE WATER NOTHER OTHER OTHE						, , ,					
PERSTALTIC SUBMERSIBLE BLADDER WATTERA	EQUIPMENT			ZED FIELD PARAM	IETERS (rounded to	appropriate sign	ificant figures)		COND.: 3 signification of the pH: nearest tenth (DO: nearest tenth (TURB: 3 SF max.	ant figure max (cs. 1.686 = 1.69) cs. 5.51 = 5.5) (cs. 2.51 = 3.5) nearest tenth (6.19 = 6.2, 101 = 101)
PARAMETER METHOD NUMBER ANALYTE LIST PIELD PRESERVATION METHOD SOLUTION PURGE OBSERVATIONS PURGE WATER VOLUME REQUIRED OC COLLECTED DOT MISTHOD NOTES PURGE WATER VOLUME REQUIRED OC COLLECTED NOTES PURGE OBSERVATIONS PURGE WATER VES NO CONTAINERIZED NO-PURGE METHOD VIEW SOLUTIONS FROM THE WORK PLAN DEVIATIONS FROM THE WORK PLAN	PERIS SUBM BLAD WATT	TYPE OF PUMP STALTIC MERSIBLE DDER TERA		ALCONOX DEIONIZED WATER POTABLE WATER NITRIC ACID HEXANE METHANOL	HDPE TUB LDPE TUB OTHER	UBING ING	S. STE	EL PUMP MATE UMP MATERIA ROBE SCREEN R		PID WQ MI TURB. PUMP OTHER	ETER ETER METER R
PURGE WATER YES NO NUMBER OF GALLONS CONTAINERIZED GENERATED NO-PURGE METHOD YES NO UTILIZED DEVIATIONS FROM THE WORK PLAN Sampler Signature: Print Name:	ANALYTIC	PARAMETI L. IOC.S	ER N	0.1.1	ANALYTE I	IST FI	10	_ ₩И	VOLU		DU? 45/457
Sampler Signature: Print Name:	PURGE WA CONTAINE NO-PURGE	ATER YES			ons						
I DECEMBER DE	Sampler Sig			Print Name:		DEVI	ATIONS FRO	M THE WOR	K PLAN		

	ALC: N	111	LOW	FLOW GRO	UNDWATE	R SAMP	LING RE	CORD	15 7 100	为他的 企业分享是
# N	MAC 511 Congress: Suite 200	Street	34	NCRI IN			ME			END TIME 17 15 PAGE
WELL DIAM	Portland, Maine		38 60A	3-Mn8B9	8 от	HER		356043	CAP CASING	
INITIAL	OTW 31.		FRISER (TOR)	TOP OF CASING	(TOC) OT	THER	Δ.		COLLAR TOC/TOR	Z = =
(BMP) WELL DE (BMP)			(BMP) SCREEN INTERVAL	UKronn	FT STICKU	IP (AGS)	O NA	FT	DIFFERENCE REFILL TIME	ER NA
WATER COLUMN	68.		DRAWDOWN VOLUME	1015	FT AMBIE! PID WE GAL MOUTH	LL	NA NA	PPM	DISCHARGE TIMER SETT	
GALA'OL		48 GAL	(final DTW- initial DTY TOTAL VOL. PURGED (ml. per minute X total	2.6	GAL TOTAL	OOWN/ PURGED			PRESSURE TO PUMP	NA PSI
			BILIZATION CRITER	: : : : : : : : : : : : : : : : : :	1					
TIME	DTW (FT)	PURGE RATE (mL/min)	TEMP. (°C)	ep. CONDUCTANCE (mS/cm) ±3%	DISS. O ₂ (mg/L) ±10% or 3 values <0.5 mg/L	pH (units)	REDOX (mv) ±10 mv	TURBIDITY (ntu) ±10% or <10 ntu	PUMP INTAKE DEPTH (ft)	COMMENTS
245	BEGIN PUR	GING								
150	31.98	200	14.77	.273	4.5%	8.05	-100	27.7	95	
155	31.28	70	13.88	.376	2.09	805	-174	72.9	1	
1300	31.97		15.28	416	(,4)	8.03	172	47.6		Sun convert from ?
1305	31.89		15.62	436	1.34	802	-189	44.0		
1710	71.00		15.28	.435	131	802	-195	41.1		
1315	32.00		15.46	.479	1.37	802	-189	37.1		
1320	31.99	1	15.63	.440	1.22	8.0	-764	34.0	1	
1725	Sauple									
	F	INAL STABILIZ	ZED FIELD PARAMI	ETERS (rounded to	appropriate signi	ificant figure	s)		pH: nearest tenth (DO: nearest tenth (ex. 3.51 = 3.5) nearest tenth (6.19 = 6.2, 101 = 101)
	ERA .		DECON FLUIDS USED ALCONOX DEIONIZED WATER POTABLE WATER NITRIC ACID HEXANE METHANOL OTHER	SILICON TO HDPE TUBE COTHER OTHER	ING	S. STE	EL PUMP MATE PUMP MATERIAI ROBE SCREEN R R		WL ME PID WQ ME TURB. PUMP OTHER EILTER	TER How by V-52 MINIER How by V-52 (TOST THE
ANALYTIC.	PARAMETER PARAMETI	PA 1	SALO B	ANALYTE L	ISI FIL	TERED	PRESERVAT METHOD	VOLU	ME REQUIRED	OC COLLECTED
	14 1/1/20		8270 O SIM					*		
PURGE OBS PURGE WAT CONTAINER NO-PURGE N UTILIZED	UZED X	NO NO	NUMBER OF GALLON GENERATED	NS \(\lambda\) .5	NOTE	ou,				
ampler Signa	sture:		Print Name:		DEVI	A HONS FRO	M THE WOR	K PLAN		

		THE	LOW	FLOW GRO	UNDWATE	R SAMP	LING RE	CORD	CATE OF	21 0 AL 1754
211 N	MAC	TEC	Motor	ERO TAL	to is float			LOCATION ID	ß	DATE 5/17123
	VIAC	IEC	PROJECT N	(0) 16.01. 00	loke			START TIME	/	END TIME
	511 Congress S Suite 200	Street	SAMPLE ID	243-MY	GR.	SAMPLE TI	ME_	SITE NAME/IN	STALLATION	PAGE
	Portland, Maine	04101	736		W	14	10	35604		OF J
WELL DIAN			2 4	× -		THER			CAP	YES NO N/A
MEASUREM	IENT POINT (MP)	Torot	1/4 2 3/8 RISER (TOR)	TOP OF CASING		TIER			CASING LOCKED	Z/ = =
INITIAL	-1-128,3	85	FINAL DTW	17 60/		CASING			COLLAR TOC/TOR	
(8MP)		O' FT	(BMP)	11-17		OP (AGS)		FT	DIFFERENCE	FT
(BMP)	14	FT FT	SCREEN INTERVAL		FT AMBIE	NT AIR	NA	PPM	REFILL TIMES SETTING	NA SEC
WATER	127	7.15	DRAWDOWN VOLUME		GAL PID WE		NA	PPM	DISCHARGE TIMER SETTIN	NG NA SEC
CALCUL		767	(final DTW- initial DTV TOTAL VOL.					1	PRESSURE	
GAL/VOL (water colu	ımı X well diameter	X 0.041)	PURGED (ml. per minute X total)		GAL TOTAL	PURGED			TO PUMP	NA PSI
FIELD PAR	CAMETERS WITH	PROGRAM STA	BILIZATION CRITER	IA						
TIME	DTW (FT)	PURGE RATE (mL/min)	TEMP. (°C)	P. CONDUCTANCE (mS/cm)	±10% or 3 values	pH (units)	REDOX (mv)	TURBIDITY (ntu)	PUMP INTAKE	COMMENTS
1770	BEGIN PUR	CINC		±3%	<0.5 mg/L		±10 mv	±10% or <10 ntu	DEPTH (ft)	
1335	18.00	350	1/.44	.75	5.18	11 00	-21	89.7	140	
1340	17.94	130	168	17	.84	9.00	-71	1	1 10	
1375	17.9/		1157	.353	.45	8.74	-1)7	92.1		
1350	17.93		11.53	.383	,75	7,96	-/28	91.3		
1355	17.90		11.54	187	.37	7.87	-136	93.3		
1400	17.93		11.56	. 189	.30	7.82	784	87.8		
1405	17.93		11.59	189	. 77	7.79	-144	79.5		<u>/</u>
1410	c . N.	1/	11/57	1767	.45	7.78	-/37	74.3	V	
1405	Souple									
	F	INAL STABILIZ	ED FIELD PARAME	TERS (rounded to	appropriate sign	ificant figures)		TEMP.: nearest degree COND.: 3 significant	r (ex. 10.1 = 10) figure mas (ex. 1.686 = 1.69)
-				•					pH: nearest tenth (ex. DO: nearest tenth (ex.	5.53 - 5.5)
QUIPMENT	DOCUMENTATIO		Commence with Approximate		POWER AS PARTY		Services.		ORP: 2 SF (44.1 = 44.	191 = 190)
PERIS	TYPE OF PUMP STALTIC SERSIBLE	X	ALCONOX DEIONIZED WATER	SILICON TO HDPE TUB	UBING		ERIALS EL PUMP MATE UMP MATERIAL		WL METE PID	R SOLIST MONE 10
BLAD	DER		POTABLE WATER NITRIC ACID	LDPE TUBI			ROBE SCREEN		WQ METE TURB, ME	
OTHE OTHE			HEXANE METHANOL	OTHER		OTHER			PUMP OTHER	stotal
ANALYTIC	CAL PARAMETER		OTHER			FIELD	paccess are		FILTERS	NO TYPE
₩	TO LACE	ER M	TALAK	ANALYTE L	ISI FI	LTERED	METHOD		ME REQUIRED	OC COLLECTED
\Diamond	hu lite	<u> </u>	BLTOD SIAN			20	HU			ns
	-1 -41 -						ye day			
H						_				
日										
PURGE OR	SERVATIONS			-	NOTE	ES				
PURGE WA	TER YES	NO	NUMBER OF GALLON GENERATED	s 3.6	_					
NO-PURGE UTILIZED		NO .								
11/	V	/	4	O- de	DEVI	ATIONS FROM	M THE WORK	PLAN		
Sampler Sign	nature:		Print Name: My Date: 5/17/4	هم محمالات						
Checked By:			Date: 6/17/4)		_				KEV, 3/29/2019

-			LOW	FLOW GRO	UNDWATE	R SAMPI	LING RE	CORD	De Taring	Two Plants and
≝ N	/IAC	TEC	100	NUMBER.	A Files	.,,	lor	LOCATION ID	LOB	DATE 5/16/33
	511 Congress 5	Street		1119679 7	772210			1º	120	1540
	Suite 200 Portland, Maine	0/101	3560	13- MW 19	35	15 30	ME.	356013	STALLATION	PAGE
WELL DIAME	ETER (IN.)		16013 - DAP	-01] « [] or	HER			W	VELL INTEGRITY YES NO N/A
TUBING ID (I	NCHES)		1/4 2 18	1/2] 5/8 OT	HER			CAP	¥
MEASUREME	NT POINT (MP)	TOP OF	RISER (TOR)	TOP OF CASING	(тос) от	HER.			COLLAR	
(BMP)	47.	12 ET	FINAL DTW (BMP)	37.79	PROT. C STICKU		~31	FT	TOC/TOR DIFFERENCE	Sty FT
(BMP)	(0	O FT	SCREEN INTERVAL	UNK	FT AMBIEN	T AIR	NA	PPM	REFILL TIMER SETTING	NA SEC
WATER COLUMN	76		DRAWDOWN VOLUME		GAL MOUTH		NA	РРМ	DISCHARGE TIMER SETTING	G NA SEC
GALCULA' GALVOL (water colum	TED [].	GAL GAL	TOTAL VOL. PURGED	TW X well diam. squared	GAL TOTAL				PRESSURE TO PUMP	NA PSI
FIELD PARA	METERS WITH		ILIZATION CRITE		1				,	
TIME	DTW (FT)	PURGE RATE (mU/min)	TEMP. (°C)	SP. CONDUCTANCE (mS/cm) +3%	DISS. O ₂ (mg/L) ±10% or 3 values <0.5 mg/L	pH (units) ±0.1	REDOX (mv) ±10 mv	TURBIDITY (ntu) ±10% or <10 ntu	PUMP INTAKE DEPTH (ft)	COMMENTS
1450	BEGIN PUR	GING								
1465	77.49	400	12-86	.1.63	3.05	6.82	101	2.4	95	
1500	77.59		12.18	(87	1.1/	6.58	w7	0.0		
1505	37.61		11.98	,191	.27	6.55	108	O. A		
1510	37.66		11.12	,192	.02	6.51	109	1.1		
1515	27.70		11.82	.193	.02	6.50	1.08	5.5		
1240	27.74		11-61	.191	. 09	6.55	107	9.8		
1575	27.79		11.77	- 141	.12	6.55	105	7.3		
1570	Sinple	V								
	F	INAL STABILIZ	ED FIELD PARAM	IETERS (rounded to	appropriate signi	ficant figures)		pH: nearest tenth (ex. 5 DO: nearest tenth (ex. 3 TURB: 3 SF max, neare	gare max (ex. 1.686 = 1.69) .53 = 5.5) .51 = 3.5) cst tenth (0.19 = 6.2, 101 = 101)
EQUIPMENT I	OCUMENTATIO								ORP: 2 SF (44.1 = 44,	(91 - 190)
PERIST		X	ALCONOX	SILICON T		S. STE	EL PUMP MATE		WL METER	OpperT
BLADE			DEIONIZED WATER POTABLE WATER SITRIC ACID	HDPE TUB LDPE TUB OTHER			UMP MATERIAI ROBE SCREEN		WQ METER	
OTHER			HEXANE METHANOL	OTHER		OTHE	R		WQ METER TURB ME PUMP G OTHER	
OTHER		$= \Box i$	OTHER					_	FILTERS	NO, TYPE
ANALYTICA	AL PARAMETER PARAMET		ETHOD NUMBER	ANALYTE I		TERED	PRESERVAT METHOD		ME REQUIRED	OC COLLECTED
	TCL VO	us 4	260 B			10	HU	_ 80	nL	DUP - MS/MSD
	44 Diex	ne 4	370D SI	м		20_	TLE	3	L _	DOS + MYMSD
H -										
-			-							
PURGE OBS	SERVATIONS			-	NOTE					
CONTAINER NO-PURGE	TER YE		NUMBER OF GALLS GENERATED	ONS	356	023-E	900	10-	colle	et le litere
UTILIZED	ature:	ا ا	Print Name:		DEVI	ATIONS FRO	M THE WORL	KPLAN	6011	
Sampler Sign	and the		Date:							

	LOW FLOW G	ROUNDWATER SAMP	LING RECORD	PERMIT	
MACTEO S11 Congress Street Suite 200 Portland, Maine 04101	PROJECT SAME Mobal(S) PROJECT SUMBER 77744(01/6.0) SAMPLE ID 356047-M	Indistrict Plant	START TIME STEENAMEN STORY		END TIME SOO PAGE OF
WELL DIAMETER (IN.) 1 [TUBING ID (INCHES) 1/8 [2 4 6 1/4 3/8 1/2 OF RISER (TOR) TOP OF CASE FINAL DTW (BMP) TOP OF CASE SCREEN INTERVAL DRAWDOWN VOLUME (final DTW-initial DTW X well diam. set TOTAL VOL. PURGED (ml. per minute X total minutes X 0.000)	PROT. CASING STICKUP (AGS) PID AMBIENT AIR PID WELL MOUTH GAL DRAWDOWN/ TOTAL PURGED	NA PPM	CAP CASING LOCKED COLLAR TOCHOR DIFFERENCE REFILL TIMER SETTING DISCHARGE TIMER SETTING PRESSURE TO PUMP	VA SEC NA SEC NA PSI
TIME DTW (FT) PURGE RAT (mL/min)	SP CONDUCTA	NCE DISS, O ₂ (mg/L) +10% or 3 values +0.5 mg/L pH (units) +0.1	REDOX TURBIDITY (mv) (ntu) +10 mv +10% or <10 m	INTAKE	COMMENTS
145 BEGIN PURGING 156 36.55 200 155 36.55 200 155 36.55	13.57 .485 12.27 .489 12.01 .496 13.27 .497 12.84 .497 13.06 .486 17.18 .485	1.31 7.45 1.18 7.49 1.44 7.49 1.86 7.49 1.86 7.49 1.81 7.49	-70 128 -73 1003 -74 79.1 -75 81.0 -76 83.7 -77 78.7 -77 77.2	175	
FINAL STABIL	IZED FIELD PARAMETERS (rounde	ed to appropriate significant figure	5)	pH: nearest tenth (ex. 5. DO: nearest tenth (ex. 3.	gare max (cx. 1 686 = 1.64) 53 = 5.5) 51 = 3.5) st tenth (6.19 = 6.2, 101 = 101)
PRIMENT DOCUMENTATION TYPE OF PUMP PERISTALTIC SUBMERSIBLE BLADDER WATTERA OTHER OTHER	DEIONIZED WATER HDPE	TUBING PVC P TUBING GEOP R OTHE	EL PUMP MATERIAL PUMP MATERIAL ROBE SCREEN R R	WL METER PID WQ METER TURB MET PUMP OTHER EILIERS	
PARAMETER PARAMETER VOUS LY DINANC	METHOD NUMBER ANALY RAZO D S D S	TE LIST FIELD FILTERED NO.	METHOD	UME REQUIRED	QC COLLECTED NO 10
URGE OBSERVATIONS URGE WATER YES NO ONTAINERIZED YES NO TILLZED YES NO TILLZED	NUMBER OF GALLONS Z, &	- 11 - 1 - 1	er reacts when ins, fack a	not to p	Parkind rive
ampler Signature	Print Name Pryon Organ Date: 5 (1814)	7-42-			

400	1000	S CAN'T	LOW	FLOW GRO	UNDWATE	R SAMP	LING RE	CORD	den	
21 N	ИAC	TEC	PROJECT	Brosk R.	Indus	tigl P.	9-15	MW-1	C	DATE 5718/3)
1	VIAC	ILC	PROJECT					176		END TIME 1445
	511 Congress St Suite 200	treet	SAMPLET	to HC	356047	SAMPLE TO		366027	STALLATION	PAGE OF
	Portland, Maine (14101	6	0. 110	130041-1	141 Wnc	U	10001)		WELL INTEGRITY
	ETER (IN.)]:			HER		-	CAP	YES NO NA
UBING ID (114 X 1X	1/2		HER			LOCKED	
INITIALD	ENT POINT (MP)		FINAL DTW	TOP OF CASING		HER	1 1		COLLAR TOC/TOR	
(BMP)	70)-6) FT	(BMP)	58.72	FT STICKU		1.9	FT	DIFFERENCE	NA H
WELL DE	pin 29	6 17	SCREEN INTERVAL	hale	FT AMBIES	NT AIR	NA	PPM	REFILL TIME SETTING	R NA SEC
WATER	181	.39	DRAWDOWN VOLUME		GAL PID WE		NA	PPM	DISCHARGE TIMER SETTI	NG NA SEC
CALCULA GALVOL		7.73	(final DTW- initial DT TOTAL VOL. PURGED	W X well diam squared	DRAWD	OWN/			PRESSURE TO PUMP	NA PSI
water colum	mn X well diameter2	2. 12.11	(ml. per minute X total	minutes X 0.00026 gal		PURGED			TOTUST	· · ·
IELD PAR	AMETERS WITH	PROGRAM STA	BILIZATION CRITER		l many			guinne en	PUMP	
TIME	DTW (FT)	PURGE RATE (mL/min)	TEMP. (*C)	SP, CONDUCTANCE (mS/cm) ±3%	DISS. O ₂ (mg/L) = 10% or 3 values = 0.5 mg/L	pH (units) ±0.1	(mv) ±10 mv	(ntu) ±10% or <10 ntu	INTAKE DEPTH (fr)	COMMENTS
170	BEGIN PURC	SING								
375	38,77	750	147)	.527	.64	7.27	67	12.3	180	
340	28.60		14.31	.611	,57'	7.17	79	1014		
345	28.67		18.57	.663	,44	710	90	13.6		
350	28.84		17,52	,684	,24	7.06	101	14.2		
155	38.85		13.72	.690	130	105	109	13.7		
400	38.87		13.17	.649	.16	707	lio	12.4		
205	28.86		17.16	1701	.20	7.11	111	11,9		
410	Sarple	V							V	
	FI	NAL STABILIZ	ED FIELD PARAM	ETERS (rounded to	appropriate signi	ficant figures			pH: nearest tenth (ex. DO: nearest tenth (ex.	figure mas (ex. 1.686 + 1.69) 5.53 = 5.5) 3.51 = 3.51 west tenth (6.19 = 6.2, 101 = 101)
	YPE OF PUMP		ECON FLUIDS USED		TUBING PUMP/E	SLADDER MATI	BIAL5		- 9	QUIPMENT USED
PERIST SUBME	RSIBLE	20 1	LCONOX DEIONIZED WATER	HDPE TUB	ING	PVC Pt	EL PUMP MATE JMP MATERIAI		WI METE	
WATTE	ERA	> 0	OTABLE WATER ITRIC ACID	OTHER	NG	OTHER			WQ MET	
OTHER			IEXANE METHANOL OTHER	OTHER		OTHER			PUMP OTHER	No.
ALYTIC/	AL PARAMETERS	(R)		S COL S SIMON A	1	TELD	PRESERVAT	ION	FILTERS	NO TYPE
	PARAMETER	BOB "	ETHOD NUMBER	ANALYTE L	FIL	TERED	METHOD		ME REQUIRED	OC COLLECTED
X	TCL VOC	2	260B			.0	ACI	800	1	no
X	1,4 Pio	cane 8	2701) SIM			<u> </u>	None	36		no
-				-		_				
							(T.)			
					Lyon	S A 7				2
RGE OBS RGE WAT ONT AINER O-PURGE M TILIZED	INED D		NUMBER OF GALLOI GENERATED	NS 3,5	h	me, n	et in di	niveway,	while w	re flook near
Aug		-	6.	. O. de	DEVL	ATIONS FROM	I THE WORK	K PLAN		
mpler Signa	iture:		Print Name:	en Onsker 143						
cked By:			Date: 5/18	143						

39. 11

	1AC	TEC	PROJECT N	UMBER	Industr	14) 0	ν	MW-		END TIME
	511 Congress S	treet	SAMPLE IS	10116-02.*	Tyn	SAMPLE TE	ME	SITE NAME/INS	100 STALLATION	PAGE)
	Suite 200 Portland, Maine		3560)	3-MW1	ND .	1010		3560		OF
WELL DIAME	ETER (IN.)		24	₩ .] R OT	HER				YES NO N/A
TUBING ID (I	NCHES)	1/8	1/4 🔀 3/8	1/2	5/8 01	HER			CAP CASING LOCKED	= =
MEASUREME	ENT POINT (MP)	TOP OF	RISER (TOR)	TOP OF CASING	(toc) or	HER			COLLAR	\angle = =
(BMP)	II. 1	9 FT	FINAL DTW (BMP)	11.17	PROT. C STICKU			FT	TOC/TOR DIFFERENCE	
WELL DEP	700) _{FT}	SCREEN INTERVAL		FT AMBIE	NT AIR	NA	PPM	REFILL TIMES SETTING	NA S
WATER	188	.81 FT	DRAWDOWN VOLUME		GAL MOUTE		NA	PPM	DISCHARGE TIMER SETTIN	NA S
CALCULA	TED 25	^	(final DTW- mitial DT' TOTAL VOL.	W X well diam. square					PRESSURE	
GALVOL	nn X well diameter	Y.68 GAL	PURGED (ml. per minute X total	minutes X 0.00026 ga	GAL TOTAL	PURGED			TO PUMP	NA
40,000	A SECTION OF THE PROPERTY AND ADDRESS OF THE PARTY AND ADDRESS OF THE P	- F - 1 - /2	BILIZATION CRITER		1			1		
TIME	DTW (FT)	PURGE RATE (mL/min)	TEMP. ("C)	SP. CONDUCTANCE (mS/cm) ±3%	DISS. O ₂ (mg/L) ±10% or 3 values <0.5 mg/L	pH (units)	REDOX (mv) ±10 mv	TURBIDITY (ntu) ±10% or <10 ntu	PUMP INTAKE DEPTH (ft)	COMMENTS
0436	BEGIN PUR	GING						- 65		
0935	11.21	200	12.22	.416	2.63	6.91	189	38.7	190	
0440	11.23		14.72	.414	2.09	6.47	179	14.2	1	
0945	11.33		14.43	.414	1.80	6.99	173	9.6		
0450	11.24		14.65	.414	1.60	7.00	166	9.0		
0 455	11.24		14.59	.413	1.48	7.01	160	9.7		
1000	11.74		12.66	.413	1.40	7.0)	156	4.9		
1005	11.75	1	12.71	.413	1.34	7.02	157	9.5		
There	54381	V'	1.5						-	
		INAL STABILIZ	ED FIELD PARAM	FTFRS (rounded to	n appropriate sign	ificant figures)		TEMP:: nearest degree	e (ex. 10.1 = 10) Igure max (ex. 1.686 = 1.69)
	****	INAL STABILIZ	M	ETERO (FORMACO)	- Philippine sign		,		pH: nearest tenth (ex.) DO: nearest tenth (ex.	5.33 = 5.5)
EQUIPMENT I	DOCUMENTATIO	ON .							ORP: 2 SF (44.1 = 44.	
Amount of	YPE OF PUMP.		ECON FLUIDS USED ALCONOX	SILICON		S. STE	EL PUMP MATE		WL METE	CIPMENT USED
BLADI			DEIONIZED WATER POTABLE WATER	LDPE TUE			UMP MATERIA ROBE SCREEN	L	WQ METE	
OTHE		_ 🗆 :	NITRIC ACID HEXANE METHANOL	OTHER		OTHE	1		WQ METE TURB, ME PUMP OTHER	TER
	AL PARAMETER		OTHER						FILTERS	NO TYPE
ANALITIC	PARAMET	ER M	METHOD NUMBER	ANALYTE		FIELD LTERED	PRESERVAT METHOL	VOLUE	ME REQUIRED	QC COLLECTED
X	TCL VO	(<u>S</u>	826013	_		10	HLL	}	SOML	10
~	1,41,00	ine	81 70 D SIM			No_	none		1	N•
Н.				-						
PURGE OB	SERVATIONS TER YE	S NO	NUMBER OF GALLO	NS 2.5	NOTE	ES				
CONTAINED NO-PURGE	RIZED Z		GENERATED	7//						
UTILIZED	METHOD I			onlasta 43						

No. of Lot			LOW	FLOW GRO	UNDWATE	R SAMP	LING RE	CORD	10 mm	SALE AND
21 N	MAC	TEC	PROJECT N	AME Micyc.	K RU I	ndustri	7/16h	LOCATION ID	148	DATE 5/16/23
	VIAC	ILC	PROJECT N			77221		START TIME	910	END TIME
	511 Congress Suite 200		SAMPLE ID	3-MVI	1.1	SAMPLE TO		SITE SAME IN	STALLATION	PAGE J OF J
	Portland, Maine		>000		112100	[045		100	7)	WELL INTEGRITY
WELL DIAN			24	X 6		HER			CAP	YES NO N/A
TUBING ID		1/8	1/4 🔀 3/8	1/2	5/8 01	X +00			LOCKED LOCKED	2 = =
	MENT POINT (MP)			TOP OF CASING					COLLAR TOC/TOR	
(BMP)	[7.3		(BMP)	5.60		P (AGS)		FT	DIFFERENCE	
(BMP)	155	п	SCREEN INTERVAL	UNKnow	AMBIE:	NT AIR	NA	PPM	SETTING	NA SEC
COLUMN	120	OA FT	DRAWDOWN VOLUME	,915	GAL PID WE		NA	PPM	DISCHARGE TIMER SETTI	NG NA SEC
CALCUL GALVOI		.43 GAL	(final DTW- initial DTV TOTAL VOL. PURGED	3.36	DRAWI	OOWN/ PURGED			PRESSURE TO PUMP	NA PSI
	umn X well diameter		(ml. per minute X total)		l/mL)					
FILLEFIX	CAMETERS WITH		s	P. CONDUCTANCE	DISS. O ₂ (mg/L)	1000	REDOX	TURBIDITY	PUMP	
TIME	DTW (FT)	PURGE RATE (mL/min)	TEMP. (°C)	(mS/cm) #3%	*10% or 3 values <0.5 mg/L	pH (units) ±0.1	(mv) ±10 mv	(ntu) ±10% or <10 ntu	INTAKE DEPTH (ft)	COMMENTS
0955	BEGIN PUR	GING								
1000	5.05	250	14.13	,437	3.03	6.84	34	98.4	100	
1005	2.13		13.29	446	2.17	7.05	-17	46.7	10	
1010	5.20		13.22	.412	1.83	7.07	-30	31.8		
1015	5.27		13.15	.414	1.63	7,07	-47	36.5		
1020	5.30		13.11	.412	402	7.07	-57	37.0		
1045	5.42		17.05	.412	0.93	7.09	-60	44.3		
1030	5,48	EP I	14.45	.413	0.89	7.09	-64	71.9		
675	5.51		14.97	413	0.80	7.08	-66	20.0		
640	5.54		14.98	.413	0.75	7.09	-67	18.7	V/	
W45	Simpli	, \								
									TEMP:: nearest degr	rejex 10.1 = 101
	F	INAL STABILIZ	ZED FIELD PARAME	TERS (rounded to	appropriate sign	ificant figures)		COND: 3 significan pH: nearest tenth (ex DO: nearest tenth (ex	t figure max (ex. 1,686 = 1.69) . 5.53 = 5.5)
4	11									arest tenth (6.19 = 6.2, 101 = 101)
A	DOCUMENTATION TYPE OF PUMP		DECON FLUIDS USED		TUBING/PUMP/	BLADDER MAT	ERIALS			OUPMENT USED 1
PERIS	STALTIC MERSIBLE	X	ALCONOX DEIONIZED WATER	SILICON T	BING	PVC PI	EL PUMP MATE UMP MATERIAI		WL MET PID	
BLAD			POTABLE WATER NITRIC ACID	OTHER	ING	OTHE			WQ MET	ETER Honby 4-13 3/37
ОТНЕ			HEXANE METHANOL	OTHER		OTHE			PUMP	(10) y 4/8 (
ANALYTIC	CAL PARAMETER		OTHER		A	erer o	BREEFRALL	1011	FILTERS	NO,TYPE
	PARAMET	ER N	METHOD NUMBER	ANALYTE	LIST	FIELD LTERED	METHOD		ME REQUIRED	QC COLLECTED
X	1,4 Vion	rnc	8270 SM			VO Y	HCI	- 4	0.1	no
1 47	ru vay		0140				1,01		170	_/\
Н										
H				-						
-1.700 - 17-9-3 (1.00)	BSERVATIONS		CONTRACT TO THE CONTRACT	3/)	NOTE	S				
PURGE WA		S NO	NUMBER OF GALLON GENERATED	1.0						
NO-PURGE UTILIZED	METHOD YE	S NO								
			Print Name:		DEVI	ATIONS FRO	M THE WOR	C PLAN		
Sampler Sig	mature.									
Checked By			Date:							

		0.00	LOW	FLOW GROU	UNDWATE	R SAMPI	LING RE	CORD	100	
≝ N	ИAC	TEC	PROJECT	NUMBER 234	Justinial/	long		START TIME	sB	END TIME 10/5
	511 Congress St	treet	SAMPLE	0 00 000	·-R	SAMPLE AL		SITE NAME/INST		PAGE 1
	Suite 200 Portland, Maine (04101	136	02) - MW	150	0	MY	356047		OF
WELL DIAMI	ETER (IN.)		24	M .	8 or	HER O	135			VES NO N/A
TUBING ID (I	(NCHES) [1/8	1/4 🔀 3/8	1/2	5/ROT	HER			CAP	
MEASUREME	ENT POINT (MP)	ТОРО	RISER (TOR)	TOP OF CASING	(тос) поп	HER			COLLAR	= = =
INITIAL D (BMP)	тw [1].	49 11	FINAL DTW (BMP)	11.75	PROT. C STICKU		7.4	FI	TOC/TOR DIFFERENCE	O FT
WELL DEI (BMP)	PTH 15	D FT	SCREEN INTERVAL	UNKou	PID AMBIEN	ST AIR	NA	PPM	REFILL TIME SETTING	R NA SEC
WATER COLUMN	13	8.51 FT	DRAWDOWN VOLUME	FW X well diam. squared	GAL MOUTH		NA	РРМ	DISCHARGE TIMER SETTI	NG NA SEC
CALCULA GALAVOL	mn X well diameter	1,44az	TOTAL VOL. PURGED		GAL DRAWD	OWN/ PURGED			PRESSURE TO PUMP	NA PSI
		at the same of the	BILIZATION CRITE		onia)					
TIME	DTW (FT)	PURGE RATE (mL/min)	TEMP. (°C)	SP. CONDUCTANCE (mS/cm) ±3%	DISS. O ₂ (mg/L) ±10% or 3 values <0.5 mg/L	pH (units) ±0.1	REDOX (mv) ±10 mv	TURBIDITY (ntu) ±10% or <10 ntu	PUMP INTAKE DEPTH (ft)	COMMENTS
(7850	BEGIN PUR	GING								
0855	11.61	200	10.95	.375	6.08	6.91	216	1.4	145	
0 400	11.68		10.75	.427	5.55	7.17	213	15-6		
0905	11.71		10-70	.430	5.18	7.18	206	31.6		
0410	11.74		10.71	434	5.13	7.18	195	17.2		
0915	11.76		10.73	.436	5-05	7.18	186	11.4		
0970	11.79		10.71	436	4.84	7.18	180	9.4		
0925	11.87		10.70	.476	4.81	718	175	2.5		
0930	11-85	,	W.70	.436	4.79	7.18	169	4.8		
0935	Sosple				1	7.00				
	FI	INAL STABILI	ZED FIELD PARAN	AETERS (rounded to	appropriate sign	ificant figure	s) -		pH: nearest tenth (c DO: nearest tenth (c	groc (ex., 10,1 = 10) nt figure max (ex. 1,686 = 1,64) x, 5,33 = 5,5] x, 3,31 = 3,5) exercis (mit 16,14 = 6,2,101 = (01)
FOLIPMENT	DOCUMENTATIO	N					1		ORP: 2 SF (44.) =	
PERIST	YPE OF PUMP TALTIC ERSIBLE DER ERA R		DECON FLUIDS USED ALCONOX DEIONIZED WATER POTABLE WATER NITRIC ACID HEXANE METHANOL OTHER	SILICON T HIDPE TUB LOPE TUB OTHER OTHER	IING	S. ST	EEL PUMP MAT PUMP MATERIA PROBE SCREEN ER ER	u.	WL ME PID WQ ME	TER
ANALYTIC	AL PARAMETER			I - 0.0	A. F. T.	FIELD	PRESERVA	TION		S NO TYPE
	PARAMETE		METHOD NUMBER	ANALYTE	LIST FI	LTERED	метно	D VOLU	ME REQUIRED	QC COLLECTED
H	ICL VOC		5260 B 82700 SD	u		Uc	- NC		OML	
	11-1 1/19		, , , , , , , , , , , , , , , , , , ,							
- -			-	-			-			
H ·										
PURGE OBS PURGE WAT CONTAINED NO-PURGE UTILIZED	RIZED		NUMBER OF GALL GENERATED	ONS	NOT					
Sampler Sign	atute.		Print Name		DEV	IATIONS FR	OM THE WO	CK PLAN		
Checked By			Date							

			LOW	FLOW GRO	UNDWATE	R SAMP	LING RE	CORD		
#IN	ИAC	TEC	PROJECT	non (110]	ndustris	Plent	L	LOCATION ID	6	5/17/33
-	11110	111	PROJECT 7773	MIMBER	€ * *			1530		1705
	511 Congress S Suite 200		SAMPLE II	3- MW(•	SAMPLE TO		7 5604	STALLATION	PAGE
	Portland, Maine	04101		X)-11-0(X		[640		13007		WELL INTEGRITY
WELL DIAM	ETER (IN.)	, \(\overline{\overline		6	R OT				CAP	YES NO N/A
TUBING ID (I	INCHES)		1/4 3/8		5/8 01	- 1. d			LOCKED	<u> </u>
0.00	ENT POINT (MP)	TOPO	,	TOP OF CASING		200002			COLLAR	<u> </u>
(BMP)	93.	0) FT	(BMP)	26.56	FI PROT. C			FT	TOC/TOR DIFFERENCE	н
(BMP)	PTH 94	·7 H	SCREEN INTERVAL		FI AMBIE!	NT AIR	NA	РРМ	REFILL TIME SETTING	NA SEC
WATER COLUMN		FT	DRAWDOWN VOLUME		GAL PID WE		NA	PPM	DISCHARGE TIMER SETTI	NG NA SEC
CALCULA			TOTAL VOL.	W X well diam, squared	DRAWE				PRESSURE	NA M
GAL/VOL (water colur	mn X well diameter ²	GAL X 0.041)	PURGED (mL per minute X tota	minutes X 0,00026 gal		PURGED			TO PUMP	PSI
FIELD PAR	AMETERS WITH	PROGRAM STA	BILIZATION CRITEI	RIA					1 1	
TIME	DTW (FT)	PURGE RATE (mL/min)	TEMP. (*C) 43%	SP. CONDUCTANCE (mS/cm) ±3%	DISS. O ₂ (mg/L) ±10% or 3 values <0.5 mg/L	pH (units)	REDOX (mv) ±10 mv	TURBIDITY (ntu) ±10% or <10 ntu	PUMP INTAKE DEPTH (ft)	COMMENTS
1555	BEGIN PUR	GING								
1600	25.71	200	11.65	.129	6.78	7.34	135	136	28	
1605	25.73		1154	.133	5.06	6.57	163	264	1	
166	25,77		11.61	125	4.82	6.49	170	219		
145	25.79		11.66	.126	4.44	6.46	175	209		
1640	15.81		11.68	.147	4.21	6.45	183	197		
1635	25.82		11.71	. 137	3.91	6.44	186	185	I SECTION	
1630	75-82		11.67	.128	3.73	644	188	192		
1630	25.83		11.64	.148	7.54	6.47	191	195	V	Annual Control
1640	Single									
10 10	20 11									
									TEMP, nearest degree	101 - 101
	FI	NAL STABILIZ	ZED FIELD PARAM	ETERS (rounded to	appropriate sign	ficant figures)		COND.: 3 significant pH: nearest tenth (ex.	figure max (ex. 1.686 = 1.69) 5.53 = 5.5)
	SEL ALA								DO: nearest tenth (ex TURB: 3 SF max, ne ORP, 2 SF (44.) = 44	arest lenth (6.19 = 6.2, 101 = 101)
A STATE OF THE STA	DOCUMENTATIO		DECON FLUIDS USED		TUBING/PUMP/I	U ADDER MATI	FRIALS		F	QUIPMENT USED
PERIST	YPE OF PUMP. FALTIC ERSIBLE	132	ALCONOX DEIONIZED WATER	SILICON TO	BING	S. STE	EL PUMP MATE		WL MET	
BLADE	DER		POTABLE WATER NITRIC ACID	LDPE TUBI			ROBE SCREEN		WQ MET TURB. M	
OTHER			HEXANE METHANOL	OTHER		OTHER			PUMP OTHER	
			OTHER			12. <u>12.</u> 1			EILTERS	NO TYPE
ANALYTICA	AL PARAMETERS PARAMETE		METHOD NUMBER	ANALYTE L		TERED	PRESERVAT		ME REQUIRED	QC COLLECTED
X	TU YOU		8260/3		/	LO	HC	&	١٦٢	no.
X	1,4/100	nc	8450 B STY			10	rome	h	(16
H-										
П.										
PURGE OBS	SERVATIONS			-	NOTE	S				
PURGE WAT	ER YES	NO	NUMBER OF GALLO GENERATED	NS						
CONTAINER NO-PURGE N		NO	- Artheritation							
UTILIZED			1		DEVI	ATIONS FROM	M THE WORK	CPLAN		
Sampler Signa	dure		Print Name:	renonder 63						
			571-1	.2						
Checked By.			Date: 17	4)						REV. 9/29/2019

Page \ of \

Project Name: Mohonk MRIP

Project No.: 77772101%

Sample Interval: 37-57

Well ID: MW - 17 -1

Date: 5 |14/23

Sample ID: 396023-14617-1

Sample Time: 727.5 Sampler: I MUSES

Well Depth (from TOPT): 57 Static Water Level (from TOPT): 5 60 Pump Type: Nitrogen Gas Purge

Purge Pressure (psi): 40 60 Sampling Pressure (psi): 34 50 Tag Tube DTW (from TOTT): 2.60

Pump Tube PID: 0.0 Sample Tube PID: 0.0

Instrument Type: Human-U-52 Serial Number: 71296

Purge Start Time	Purge End Time	Temp. ("F)	pH (SU)	Spec. Conduct (mS/m)	Turbidity (NTUs)	D.O. (mg/l)	ORP (mV)	Static Water Level	Color	Purge Volume (L)	Comments
002	1010	-					_	1.60	None	54	No sondings - Institut Prige
040	1044	13.48	6,57	04413	0.6	1,30	167	6.05	None	5L	8
115	1119		7,10	0,444		1,72	88	6.53	None	5L	
150	1154		7.13	0,434		1,73	65	6185	None	54	
1725	1230							6,89	None	5	No readings - Simple contected
							1				
							-				
_				1		-	-		-		
		-	_	-			-	1	-		
_		-			2.75				-		
	-	-					-		1		
	-										
					-		-				
							1				
300											

Page \ of \

Project Name: Mohonk MRIP

Project No.: 777 22 10116

Sample Interval: 95-116

Well ID: MW-17-2

Sample 10: 356033-4W17-2 Sample Time: 1230

Date: 5(14 (23

Sampler: I Mescr

Well Depth (from TOPT): 110 Static Water Level (from TOPT): 1045 Pump Type: Nitrogen Gas Purge

Purge Pressure (psi): 65 Sampling Pressure (psi): 55 Tag Tube DTW (from TOTT): 7. (90)

Pump Tube PID: () () Sample Tube PID: 0.3

Instrument Type: Hor.bx U-SL Serial Number: Z1ZGG

Purge Start Time	Purge End Time	Temp. (*F)	pH (SU)	Spec. Conduct (m5/m)	Turbidity (NTUs)	D.O. (mg/l)	ORP (mV)	Static Water Level	Color	Purge Volume (L)	Comments
1010	1014			3			-	\$10,45	None	4.3	No Readings - Initial Proge
The second second	1044	13,33	6.88	0,429	010	1.93	123	12,95	Nore	4.1	8
120	1124)	12.45	695	0.432	38.9	1,30	98	13.40	None	401	
155	1154	12.45	7,04	0.433	8,0	1.13	82	13.69	Done	4.00	
230	1235	-					-	13.57	None	4.0	Na Readings - Sample reliented
	-										
				-			1		1		
		_		-							
	1			-							
										4	
						1					

Page of

Project Name: Mohonk MRIP

Project No.: 7772210116

Sample Interval: 119 - 179 Sample ID: 356073 - MW17-3

Well ID: MW-17-3

Date: 5|10|73

Sample Time: 1735

Well Depth (from TOPT): 114

Sampler I Muses

Static Water Level (from TOPT): (3 45 Pump Type: Nitrogen Gas Purge

Purge Pressure (psi): 65
Sampling Pressure (psi): 55
Tag Tube DTW (from TOTT): 7,60

Pump Tube PID: O Sample Tube PID: 0 . 0

Instrument Type: Harian U-52 Serial Number: 21296

Purge Start Time	Purge End Time	Temp. (°F)	pH (SU)	Spec. Conduct (mS/m)	Turbidity (NTUs)	D.O. (mg/l)	ORP (mV)	Static Water Level	Color	Purge Volume (L)	Comments
1015	1019			1			_	10.45	None	4.2	No Readings - Tenting Page
1050	1054	1244	6.80	0,443	2.2	1.05	42	15-12	None		
1175	1129	12.35	6.91		3.6	1.69	-27	18.98	None	4.0	WEN borg for incursion
1200	1204	17.34	6.95	0,450	7.2	0.43	9	19.05	Done	400	
1255	1240	-					-	14,01	None	4.0	12 Kendings - Sample Collected
-											
	, F										
				1							
							1				

Page_1_of__

Project Name: Mohonk MRIP

Project No.:

Sample Interval: Unknown

Date: 5 17 23

Sample 10: 14-1-1 356023-111121-1

Sample Time: \330 Sampler: I Moses

Well ID: MW-21-1

Well Depth (from TOPT):

Purge Pressure (psl): GO Sampling Pressure (psi): 60

Pump Tube PID: O. O

Static Water Level (from TOPT): 0 , 0 Pump Type: Nitrogen Gas Purge

Tag Tube DTW (from TOTT): 0.0

Sample Tube PID: 0.0

Instrument Type: Hospital U-52 Serial Number:

Purge Start Time	Purge End Time	Temp. (*F)	pH (SU)	Spec. Conduct (mS/m)	Turbidity (NTUs)	D.O. (mg/l)	ORP (mV)	Static Water Level	Color	Purge Volume (L)	Comments
1135	1140	_					-	0,0	None	5	
1205	1210	1430	7.30	0.360	4,5	4.30	-41	0.0	None	5	
230	1235	11.95	6187	0,395	0.5	4,85	169	0.0	None	5	
1300	1305	12,33	6.88	0.392	0.0	4.75	179	0.0	Non		
1330	Samp							O'REAL			
								Y			
				70. 60							
			L. o-c								
								J. J.			
	1			1	1			-			

Page \ of \

Project Name: Mohonk MRIP

Project No.:

Well ID: MW-21-2

Date: 5/17/23

Sample Interval: UNK NOW N
Sample (D: 356023 - MWZ) - 7
Sample Time: 1335

Sampler I. Moser

Well Depth (from TOPT): Static Water Level (from TOPT): O . C Pump Type: Nitrogen Gas Purge

Purge Pressure (psi): 60 Sampling Pressure (psi): 60 Tag Tube DTW (from TOTT): O, O

Pump Tube PID: G. C Sample Tube PID: 0, 0

Instrument Type: Harring USZ Serial Number:

L

Page ____of

Project Name: Mohonk MRIP.

Project No:

Well 10: 10 w - 21 - 4

Date: 5/17/23

Sample interval United W Sample 10 350023-MWZI-4 Sample Time 1340 Sample: I Mosci

Well Depth (from TOPT) Static Water Level (from TOPT) 1.0

Purge Pressure (psi): 6 0 Tag Tube DTW (from TOTT): 0 0

Pump Tube PID: 0 0 Sample Tube PID: O C

Pump Type: Nitrogen Gas Purge Instrument Type: Herine USZ Serial Number:

Purge Start Time	Purge End Time	Temp. (*F)	pH (5U)	Spec. Conduct (mS/m)	Turbidity (NTUs)	D.O. (mg/l)	ORP (mV)	Static Water Level	Color	Purge Volume (L)	Comments
1145	1150	-					-	0.0	Near	56	
1215	1220	12.00	6. 45	0.371	0.0	5.00	146	0,0	Nanc	54	
1240	1245	12.00	6,79	0363	0.0	7,24	182	0.0	None	54	
1310	1315	17.57	6,87	0.356	0,0	6.42	184	0.0	Vera	SL	
1340	Sumple				1						
								7			
						-				-	
						4					

Page ____of___

Project Name: Mohonk MRIP

Project No.:

Well 10: 1460 - 21 - 5

Sample Interval: UNIOUN Sample 10: 356023 -MWZ1- 5 Sample Time: 1345 Sampler: I. Mosey

Date: 5/17/23

Well Depth (from TOPT) Static Water Level (from TOPT): 0. 0 Pump Type: Nitrogen Gas Purge

Purge Pressure (psi): 60 Sampling Pressure (psi): 60
Tag Tube DTW (from TOTT): 0,0

Pump Tube PID: U C
Sample Tube PID: U O

Instrument Type: ¡¡ur, b; u-52 Serial Number;

Purge Start Time	Purge End Time	Temp. (*F)	pH (SU)	Spec. Conduct (mS/m)	Turbidity (NTUs)	D.O. (mg/l)	ORP (mV)	Static Water Level	Color	Purge Volume (L)	Comments
1150	1155	~	_					Occ	Nane	5L	
1220	1225	12.10	6,50	0.365	0.5	8,20	162	0.0	None	5 L	
1245	1250	11.44	6,80	0.369	010	7,70	184	0.0	Vene	54	
315	1320	12.08	6.500	ONO	0.0	4.65	185	010	Vone		
	Sampi-								g-=		
				_ = = t							
_											
	1										
			-				2				
					-		-			1 - 17	
					-						

Page 1 of 1

Project Name: Mohonk MRIP

Project No.:

Sample Interval: Unknown Sample ID: 3560033- MW 21-6

Well ID: MW -21 - 6

Date: 5/17/23

Sample Time: 1350 Sampler: I Mosey

Well Depth (from TOPT): Static Water Level (from TOPT): O. O Pump Type: Nitrogen Gas Purge

Purge Pressure (psi): 60
Sampling Pressure (psi): 60
Tag Tube DTW (from TOTT): 000

Pump Tube PID: 🕜. 🛭 Sample Tube PID: O. O

Instrument Type: Hosisa USZ Serial Number:

Purge Start Time	Purge End Time	Temp. (*F)	pH (SU)	Spec. Conduct (mS/m)	Turbidity (NTUs)	D.O. (mg/l)	ORP (mV)	Static Water Level	Color	Purge Volume (L)	Comments
1155	1200	.~		-			-	0,0	None	SL	
1225	1230	13.22	6.78	0351	010	4.15	172	0,0	Non	SL	
1250	1255	12.12	6.82	0.365	0.0	7.43	187	0.0	were	54	
1320		11.90	6,90	0.370		4,18	185	0.0	Lane	54	
1350	Samy			L							
								F40	1		
							-	9			
		*									
		1					-				
		7								12.00	
			1								

PMENT DOCUMENTA TYPE OF PUMP PERISTALTIC SUBMERSIBLE BLADDER PDB HYDRASLEEVE OTHER ALYTICAL PARAMET PARAMET TAL VO	PURGE RATE (mL/min) INAL STABILIZE TION	15 2	TERIA (AS LISTED SP. CONDUCTANCE (mS/cm) ±37½ C) 1544	DISS. O ₂ (mg/L) ±10% or 3 values <0.5 mg/L	702	REDOX (mv) ±10 mv ZZG	TURBIDITY (ntu) ±10% and <10 ntu or 3 values <5 ntu	pH; nearest tenth (er DO: nearest tenth (er	nt figure (SF) max (ex. 1 686 - 1.69) c. 5.51 - 5.5) x. 3.51 = 3.5)
PMENT DOCUMENTA TYPE OF PUMP PERISTALTIC SUBMERSIBLE BLADDER PDB HYDRASLEEVE OTHER ALYTICAL PARAMET PARAME	TION D	ED FIELD PARAM						pH: nearest tenth (ex DO: nearest tenth (ex	nt figure (SF) max (ex. 1 686 - 1.69) c. 5.51 - 5.5) x. 3.51 = 3.5)
PMENT DOCUMENTA TYPE OF PUMP PERISTALTIC SUBMERSIBLE BLADDER PDB HYDRASLEEVE OTHER ALYTICAL PARAMET PARAME	TION D		METERS (rounded t	o appropriate sig	pificant figure	es)		pH: nearest tenth (ex DO: nearest tenth (ex	nt figure (SF) max (ex. 1 686 - 1.69) c. 5.51 - 5.5) x. 3.51 = 3.5)
PARAME		ALCONOX DEIONIZED WATER POTABLE WATER NITRIC ACID HEXANE METHANOL OTHER	SILICON : HDPE TUI LDPE TUI O'THER O'THER	BING	S. STE	EL PUMP MATI UMP MATERIA ROBE SCREEN R R		ORP. 2 SF (44.1 = 4	OUIPMENT USED FER TER METER
1,4 010	C 4	METHOD NUMBER 名人のひ る子でり SI	ANALYTE	LIST	FIELD LTERED Vis	PRESERVATI METHOD		E REQUIRED	OC COLLECTED
RGE OBSERVATIONS RGE WATER Y NTAINERIZED O-PURGE METHOD Y ILIZED	ES NO	NUMBER OF GALL GENERATED	LONS	NOT	ES:				

	THE THE		A POPULAR	GRAB SAM	PLING RE	CORD -	WATE	Series In	7 /cia (3)	WAR WINDS
≝ N	MAC 511 Congress Suite 200		PROJECT PROJECT SAMPLE	NUMBER IN				LOCATION ID JUM-5 START TIME SITE NAME TO	915	SITTIZS END TIME OP 20 PAGE
SAMPLE	Portland, Maine	: 04101	SURFACE WA	10 35607 ter []storn				PORE WATER	OTHER	(OF (
FIELD PAR	AMETERS WIT	TI PROCEAMET.	BULLZATION CR	TERIA (AS LISTED	IV THE COR					
TIME	DTW (FT)	PURGE RATE (mL/min)	TEMP: (°C) +3%	CONDUCTANCE. (mS/cm)	DISS. O ₂ (mg/L) +10% or 3 values -0.5 mg/L	pH (units)	REDOX (mv) +10 mv	furBiDITY (ntu) =10% and =10 ntu or 3 values =5 ntu	PUMP INTAKE DEPTH (ft)	COMMENTS
0919		-	13.69	0.591	6,40	694	229	0,0		
									TEMP permit from	(a. (b.) = 10.
	FI	NAL STABILIZE	D FIELD PARAN	IETERS (rounded)	o appropriate sig	nificant figur	res)		pH nearest tenth (cx.) DO nearest tenth (cx.)	1.5) - 1.5) rest (eath (6.19 = 6.2) (4) (= 10) (
PERIS SUBM BLAD PDB	ASLEEVE	DE A D D D D D D D D D D D D D D D D D D	CON FLUIDS USED LECONOX EIONIZED WATER OTABLE WATER ITRIC ACID EXANE IETHANOL THER	SILICON HOPE TU LOPE THE OTHER	BING	S. STE	EL PUMP MA UMP MATERI ROBE SCREET R R	AL.	WL METEL PID WO METEL TURB ME PUMP OTHER FILTERS	R.
	PARAMET	TER MI	STOR NUMBER	ANALYTE	LIST	TELD TERED	PRESERVA METHO	D VOLUM	E REQUIRED	OC COLLECTED
		exerc .		Λ		120	اند		L	No
H										
PURGE WA	RIZED		NUMBER OF GAL GENERATED	LONS	NOT	ES:				
NO-PURG UTILIZED	E METHOD YI	Ż			DEV	IATIONS FRO	M THE WO	RK PLAN:	_	
Sampler Sig	7	Mon		117/23	ch					

	TO BE SEE	W. 122.61	LES EN IS	GRAB SAM	PLING RE	CORD -	WATE		AL PORT	4.7
	S11 Congress Suite 20 Portland, Maine	0 e 04101	SAMPLE I	Mone		11 6 SAMPLE TI 0910	ME.	START TIME START TIME SITE NAME INS 3560	23	END TIME OF L
FIELD PA	RAMETERS WIT	H PROGRAM ST	ARII IZATION CRI	TERIA (AS LISTED	IN THE OPPS					
TIME	DTW (FT)	PURGE RATE (mL/min)	TEMP, (°C) ±3%	SP. CONDUCTANCE (mS/cm) ±3%	DISS, O ₂ (mg/L) +10% or 3 values <0.5 mg/_	pH (units) +0.1	(mv)	TURBIDITY (ntu) +10% and <10 otu or 3 values <5 ntu	PUMP INTAKE DEPTH (fr)	COMMENTS
अ०४		_	16.45	0.507	9,55	6,99	239	0,0		Gab Fram Sys
PERESUBN BLAI PDB HYDI OTHI	F DOCUMENTAT TYPE OF PUMP STALTIC MERSIBLE DDER_ RASLEEVE	TON	ECON FLUIDS USED ALCONOX DEIONIZED WATER POTABLE WATER NITRIC ACID HEXANE METHANOL OTHER	SILICON T HOPE TUE LDPE TUE OTHER OTHER	TUBING/PUMP/ TUBING BING	BLADDER MAT	ERIALS EL PUMP MA' UMP MATERI ROBE SCREEN R	AL.	COND 3 significable pill marrest tenth f DO mearest senth TURB 3 SP max. ORP 2 SF (44.1 =	(ex. 3.91 = 1.5) nearest (code) (6.19 = 8.2.(10) = 10) . EQUIPMENT USED ETER ETER METER
	TCL VO	TER M	ETHOD NUMBER	ANALYTE I		FIELD LTERED じ ソン	PRESERVA METHO		E REQUIRED	OC COLLECTED NO NO

ATTACHMENT A3 CATEGORY A REVIEW REPORT- LTM 2023

CATEGORY A REVIEW REPORT MAY 2023 GROUNDWATER SAMPLING MOHONK ROAD INDUSTRIAL PLANT HIGH FALLS, NEW YORK

1.0 INTRODUCTION

Groundwater samples were collected in May 2023 at Mohonk Road Industrial Plant in High Falls, New York, and analyzed by Pace Analytical Services located in East Longmeadow, Massachusetts. Samples were analyzed by one or more of the following United States Environmental Protection Agency (USEPA) methods:

- Volatile Organic Compounds (VOCs) by Method 8260D
- 1,4-Dioxane by Method 8270E-Selected Ion Monitoring (SIM)

Results were reported in the following sample delivery groups (SDGs):

- 23E2893
- 23E2901

Sample event information included in this chemistry review is presented in the following Tables:

- Table 1 Summary of Samples and Analytical Methods
- Table 2 Summary of Analytical Results
- Table 3 Summary of Qualification Actions

A summary of table notes applicable to Tables 1, 2, and 3 is presented just before Table 1.

Laboratory deliverables included:

 Category B deliverable as defined in the New York State Department of Environmental Conservation (NYSDEC) Analytical Services Protocols (NYSDEC, 2005).

The Category A review included the following evaluations. Data review checklists are provided as Attachment A.

- Lab Report Narrative Review
- Data Package Completeness and COC records (Table 1 verification)
- Sample Preservation and Holding Times
- QC Blanks
- Laboratory Control Samples (LCS)
- Matrix Spike and Matrix Spike Duplicate (MS/MSD) (as applicable)
- Field Duplicates (as applicable)
- Surrogates (as applicable)
- Reporting Limits
- Electronic Data Qualification and Verification

The following laboratory data qualifiers or data review qualifiers are used in the final data presentation:

Mohonk Road Industrial Plant NYSDEC – Site No. 356023 MACTEC Engineering & Geology, P.C.

U = Target analyte is not detected at or above the reporting limit UJ = Target analyte is not detected, value is estimated J = Result is estimated

Results are interpreted to be usable as reported by the laboratory or as qualified in the following section.

2.0 POTENTIAL DATA LIMITATIONS

Based on the Category A Review sample data are interpreted to meet the data quality objectives.

VOCs by Method 8260D

- The MS/MSD associated with sample 356023-ERT4 had percent recoveries that were less than project limits for a subset of VOCs. Affected VOC results in sample 356023-ERT4 were qualified estimated (J/UJ). Qualified results are listed in Table 3 with reason code MSL.
- The MS/MSD associated with sample 356023-MW6B had percent recoveries that
 were less than project limits for a subset of VOCs. Affected target analytes were
 not detected in the sample or associated field duplicate 356023-DUP-02, and
 reporting limits were qualified estimated (UJ). Qualified results are listed in Table
 3 with reason code MSL.
- The MS/MSD associated with sample 356023-MW10B had percent recoveries that were less than project limits for a subset of VOCs. Affected target analytes were not detected in the sample or associated field duplicate 356023-DUP-01, and reporting limits were qualified estimated (UJ). Qualified results are listed in Table 3 with reason code MSL.
- Reporting limits are elevated for a subset of samples due to dilutions required for target compound concentrations.

1,4-Dioxane by Method 8270E-SIM

- The MS/MSD associated with sample 356023-MW6B had a relative percent difference between MS and MSD recoveries that was greater than the project limit. Results for 1,4-dioxane in sample 356023-MW6B and associated field duplicate 356023-DUP-02 were qualified estimated (J). Qualified results are included in Table 3 with reason code MSRPD.
- Results for 1,4-dioxane in sample 356023-MW6B and field duplicate 356023-DUP-02 were qualified estimated (J) based on a relative percent difference (71) that was greater than the project limit. Qualified results are included in Table 3 with reason code FD.

Reference:

NYSDEC, 2005. "Analytical Services Protocols"; July 2005.

NYSDEC, 2010. "Technical Guidance for Site Investigation and Remediation-Appendix 2B"; DER-10; Division of Environmental Remediation; May 2010.

USEPA, 2014. "Validating Volatile Organic Compounds by Gas Chromatography/Mass Spectrometry SW-846 Method 8260B and 8260C"; HW-24, Revision 4; USEPA Region II Hazardous Waste Support Section; September 2014.

USEPA, 2010. "Validating Semivolatile Organic Compounds by Gas Chromatography/Mass Spectrometry SW-846 Method 8270D"; HW-22, Revision 5; USEPA Region II Hazardous Waste Support Branch; December 2010.

Data Validator: Julie Ricardi

Date: November 8, 2023

Reviewed by: Chris Ricardi, NRCC-EAC

November 12, 2023

Standard Table Notes:

ng/L – nanograms per liter

Sample Type (QC Code) Qualification Reason Codes

FS – field sample BL1 – method blank qualifier

FD – field duplicate BL2 – field or trip blank qualifier

TB – trip blank CCV – continuing calibration verification recovery outside limits

EB – equipment blank CCV%D – continuing calibration verification percent difference exceeds goal

FB – field blank CCVRRF – continuing calibration relative response factor low

CI – chromatographic interference present

Matrix DCPD – dual column percent difference exceeds limit

GW – ground water E – result exceeds calibration range

BW – blank water FD – field duplicate precision goal exceeded

TW – tap water FP – false positive interference

SV – soil vapor HT – holding time for prep or analysis exceeded

SED - sediment HTG – holding time for prep or analysis grossly exceeded

ICV – initial calibration verification recovery outside limit

<u>Units</u> ICVRRF – initial calibration verification relative response factor low

mg/L – milligrams per liter ICVRSD – initial calibration verification % relative standard deviation exceeds

goal

μg/L – micrograms per liter

ISL – internal standard response less than limit

mg/kg – milligrams per kilogram

LCSH – laboratory control sample recovery high

µg/kg – micrograms per kilogram

LCSL – laboratory control sample recovery low μg/m³ – micrograms per cubic meter

LCSRPD – laboratory control sample/duplicate relative % difference precision

goal exceeded

Qualifiers LD – lab duplicate precision goal exceeded

U – not detected above quantitation limit MSH – matrix spike and/or MS duplicate recovery high

J – estimated quantity

MSL – matrix spike and/or MS duplicate recovery low

J+ - estimated quantity, biased high MSRPD – matrix spike/duplicate relative % difference precision goal exceeded

J- - estimated quantity, biased low N – analyte identification is not certain

R – data unusable PEM – performance evaluation mixture exceeds limit

PM – sample percent moisture exceeds EPA guideline

<u>Fraction</u> SD – serial dilution result exceeds percent difference limit

T – total SP – sample preservation/collection does not meet method requirement

D – dissolved SSH – surrogate recovery high

N – normal SSL – surrogate recovery low

TD – dissolved concentration exceeds total

TABLE 1 - SUMMARY OF SAMPLES AND ANLYTICAL METHODS CATEGORY A REVIEW REPORT MAY 2023 GROUNDWATER SAMPLING MOHONK ROAD INDUSTRIAL PLANT HIGH FALLS, NEW YORK

					Lab Id	PACE	PACE
				Me	thod Class	VOCs	SVOCs
				Analys	is Method	SW8260	SW8270
					Fraction	N	N
Lab SDG	Media	Location	Field Sample ID	Sample Date	Qc Code	Parameters	Parameters
23E2893	GW	ERT-1	356023-ERT1	5/17/2023	FS	51	1
23E2893	GW	ERT-4	356023-ERT4	5/18/2023	FS	51	1
23E2893	GW	MW-10B	356023-DUP-01	5/16/2023	FD	51	1
23E2893	GW	MW-10B	356023-MW10B	5/16/2023	FS	51	1
23E2893	GW	MW-11B	356023-MW11B	5/18/2023	FS	51	1
23E2893	GW	MW-11C	356023-MW11C	5/18/2023	FS	51	1
23E2893	GW	MW-12B	356023-MW12B	5/18/2023	FS	51	1
23E2893	GW	MW-14B	356023-MW14B	5/16/2023	FS	51	1
23E2893	GW	MW-15B	356023-MW15B	5/17/2023	FS	51	1
23E2893	GW	MW-16	356023-MW16	5/17/2023	FS	51	1
23E2893	GW	MW-17-1	356023-MW17-1	5/16/2023	FS	51	1
23E2893	GW	MW-1B	356023-MW1B	5/16/2023	FS	51	1
23E2893	GW	MW-4	356023-MW4	5/18/2023	FS	51	1
23E2893	GW	MW-5B	356023-MW5B	5/16/2023	FS	51	1
23E2893	GW	MW-5R	356023-MW5R	5/17/2023	FS	51	1
23E2893	GW	MW-6B	356023-DUP-02	5/18/2023	FD	51	1
23E2893	GW	MW-6B	356023-MW6B	5/18/2023	FS	51	1
23E2893	GW	MW-7R	356023-MW7R	5/17/2023	FS	51	1
23E2893	GW	MW-8B	356023-MW8B	5/16/2023	FS	51	1
23E2893	GW	MW-9B	356023-MW9B	5/17/2023	FS	51	1
23E2901	GW	MW-17-2	356023-MW17-2	5/16/2023	FS	51	1
23E2901	GW	MW-17-3	356023-MW17-3	5/16/2023	FS	51	1
23E2901	GW	MW-21-1	356023-MW21-1	5/17/2023	FS	51	1
23E2901	GW	MW-21-2	356023-MW21-2	5/17/2023	FS	51	1
23E2901	GW	MW-21-4	356023-MW21-4	5/17/2023	FS	51	1
23E2901	GW	MW-21-5	356023-MW21-5	5/17/2023	FS	51	1
23E2901	GW	MW-21-6	356023-MW21-6	5/17/2023	FS	51	1
23E2901	BW	QC	Trip Blank	5/16/2023	TB	51	

TABLE 2 - SUMMARY OF ANALYTICAL RESULTS CATEGORY A REVIEW REPORT MAY 2023 GROUNDWATER SAMPLING MOHONK ROAD INDUSTRIAL PLANT HIGH FALLS, NEW YORK

							HIGH FALL	S, NEW YORK						
		Lab Sample	Delivery Group	23E2893	23E2893	23E2893	23E2893	23E2893	23E2893	23E2893	23E2893	23E2893	23E2893	23E2893
		·	Location	ERT-1	ERT-4	MW-10B	MW-10B	MW-11B	MW-11C	MW-12B	MW-14B	MW-15B	MW-16	MW-17-1
			Sample Date	5/17/2023	5/18/2023	5/16/2023	5/16/2023	5/18/2023	5/18/2023	5/18/2023	5/16/2023	5/17/2023	5/17/2023	5/16/2023
			Sample ID	356023-ERT1	356023-ERT4	356023-DUP-01	356023-MW10B	356023-MW11B	356023-MW11C	356023-MW12B	356023-MW14B	356023-MW15B	356023-MW16	356023-MW17-1
			Qc Code	FS	FS	FD	FS	FS	FS	FS	FS	FS	FS	FS
Method Clas	s Fraction	Parameter	Units	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual
SVOCs	N	1,4-Dioxane	UG/L	5	3.5	0.2 U	0.2 U	2.2	1.2	1.5	3.7	4.9	0.29	5.8
VOCs	N	1,1,1-Trichloroethane	UG/L	35	1000	1 U	1 U	0.58 J	1.4	3.7	1 U	9.8	0.4 J	6.1
VOCs	N	1,1,2,2-Tetrachloroethane	UG/L	0.5 U	10 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
		1,1,2-Trichloro-1,2,2-Trifluoro	ethane											
VOCs	N	(Freon 113)	UG/L	1 U	20 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
VOCs	N	1,1,2-Trichloroethane	UG/L	1 U	20 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
VOCs	N	1,1-Dichloroethane	UG/L	5.2	29	1 U	1 U	1.5	0.64 J	1.7	1.2	5.8	1 U	5
VOCs	N	1,1-Dichloroethene	UG/L	10	82	1 U	1 U	2.5	2.1	3.5	1.1	9.8	0.47 J	11
VOCs	N	1,2,3-Trichlorobenzene	UG/L	5 U	100 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
VOCs	N	1,2,4-Trichlorobenzene	UG/L	1 U	20 U 100 UJ	1 U 5 UJ	1 U	1 U 5 U	1 U	1 U 5 U	1 U	1 U 5 U	1 U	1 U 5 U
VOCs VOCs	N NI	1,2-Dibromo-3-chloropropane 1,2-Dibromoethane	e UG/L UG/L	5 U 0.5 U	100 U	0.5 U	5 UJ 0.5 U	0.5 U	5 U 0.5 U	0.5 U	5 U 0.5 U	0.5 U	5 U 0.5 U	0.5 U
VOCs	N	1,2-Dibromoethane 1,2-Dichlorobenzene	UG/L	1 U	20 U	0.5 U	0.5 U	1 U	1 U	0.5 U	1 U	1 U	1 U	0.5 U
VOCs	N	1,2-Dichloroethane	UG/L	1 U	20 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
VOCs	N	1,2-Dichloropropane	UG/L	1 U	20 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
VOCs	N	1,3-Dichlorobenzene	UG/L	1 U	20 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
VOCs	N	1,4-Dichlorobenzene	UG/L	1 U	20 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
VOCs	N	1,4-Dioxane	UG/L	50 U	1000 UJ	50 UJ	50 UJ	50 U						
VOCs	N	2-Butanone	UG/L	20 U	60 J	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U
VOCs	N	2-Hexanone	UG/L	10 U	200 UJ	10 UJ	10 UJ	10 U						
VOCs	N	4-Methyl-2-pentanone	UG/L	10 U	200 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
VOCs	N	Acetic acid, methyl ester	UG/L	1 U	20 UJ	1 UJ	1 UJ	1 U	1 U	1 U	1 U	1 U	1 U	1 U
VOCs	N	Acetone	UG/L	50 U	45 J	50 U	50 U	50 U	50 U	50 U	50 U	50 U	2.1 J	50 U
VOCs	N N	Benzene	UG/L	1 U	20 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
VOCs VOCs	N N	Bromochloromethane Bromodichloromethane	UG/L UG/L	1 U 0.5 U	20 U 10 U	1 U 0.5 U	1 U 0.5 U	1 U 0.5 U	1 U 0.5 U	1 U 0.5 U	1 U 0.5 U	1 U 0.5 U	1 U 0.5 U	1 U 0.5 U
VOCs	N N	Bromoform	UG/L	1 U	20 UJ	1 UJ	1 UJ	1 U	1 U	1 U	1 U	1 U	1 U	1 U
VOCs	N	Bromomethane	UG/L	2 U	40 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U
VOCs	N	Carbon disulfide	UG/L	5 U	100 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
VOCs	N	Carbon tetrachloride	UG/L	5 U	100 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
VOCs	N	Chlorobenzene	UG/L	1 U	20 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
VOCs	N	Chloroethane	UG/L	2 U	40 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U
VOCs	N	Chloroform	UG/L	2 U	40 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U
VOCs	N	Chloromethane	UG/L	2 U	40 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U
VOCs	N	cis-1,2-Dichloroethene	UG/L	0.24 J	6.8 J	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
VOCs	N	cis-1,3-Dichloropropene	UG/L	0.5 U	10 U	0.5 UJ	0.5 UJ	0.5 U						
VOCs	N	Cyclohexane	UG/L	5 U	100 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
VOCs	N	Dibromochloromethane Dishlorodifluoromethane	UG/L	0.5 U	10 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
VOCs VOCs	IN N	Dichlorodifluoromethane Ethylbenzene	UG/L UG/L	2 U	40 U 20 U	2 U 1 U	2 U 1 U	2 U 1 U	2 U 1 U	2 U 1 U	2 U	2 U 1 U	2 U 1 U	2 U 1 U
VOCs	N	Isopropylbenzene	UG/L	1 U 1 U	20 U	1 U	1 U	1 U	1 U	1 U	1 U 1 U	1 U	1 U	1 U
VOCs	N	Methyl cyclohexane	UG/L	1 U	20 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
VOCs	N	Methyl Tertbutyl Ether	UG/L	1 U	20 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
VOCs	N	Methylene chloride	UG/L	5 U	100 U	5 U	5 U	5 U	5 U	5 U	5 U	0.2 J	5 U	5 U
VOCs	N	Styrene	UG/L	1 U	20 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
VOCs	N	Tetrachloroethene	UG/L	1 U	20 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
VOCs	N	Toluene	UG/L	1 U	20 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
VOCs	N	trans-1,2-Dichloroethene	UG/L	1 U	20 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
VOCs	N	trans-1,3-Dichloropropene	UG/L	0.5 U	10 UJ	0.5 UJ	0.5 UJ	0.5 U						
VOCs	N	Trichloroethene	UG/L	3.5	67	1 U	1 U	0.52 J	0.61 J	1.2	1 U	1.2	1 U	2.5
VOCs	N	Trichlorofluoromethane	UG/L	2 U	40 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U
VOCs	N	Vilence Tatal	UG/L	2 U	40 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U
VOCs	N	Xylenes, Total	UG/L	1 U	20 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U

Page 1 of 3

Created by: KMS 11/9/2023
Checked by: JAR 11/12/2023

TABLE 2 - SUMMARY OF ANALYTICAL RESULTS CATEGORY A REVIEW REPORT MAY 2023 GROUNDWATER SAMPLING MOHONK ROAD INDUSTRIAL PLANT HIGH FALLS, NEW YORK

							HIGH FALL	S, NEW YORK						
		Lab Sample	Delivery Group	23E2893	23E2893	23E2893	23E2893	23E2893	23E2893	23E2893	23E2893	23E2893	23E2901	23E2901
			Location	MW-1B	MW-4	MW-5B	MW-5R	MW-6B	MW-6B	MW-7R	MW-8B	MW-9B	MW-17-2	MW-17-3
			Sample Date	5/16/2023	5/18/2023	5/16/2023	5/17/2023	5/18/2023	5/18/2023	5/17/2023	5/16/2023	5/17/2023	5/16/2023	5/16/2023
			Sample ID	356023-MW1B	356023-MW4	356023-MW5B	356023-MW5R	356023-DUP-02	356023-MW6B	356023-MW7R	356023-MW8B	356023-MW9B	356023-MW17-2	356023-MW17-3
			Qc Code	FS	FS	FS	FS	FD	FS	FS	FS	FS	FS	FS
Method Clas	s Fraction	Parameter	Units	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual				
SVOCs	N	1,4-Dioxane	UG/L	0.2 U	3	5.1	2.4	0.99 J	0.47 J	1.9	2.2	10	8.8	9.1
VOCs	N	1,1,1-Trichloroethane	UG/L	1 U	400	490	28	4.3	4.4	55	1 U	0.22 J	5.6	1.4
VOCs	N	1,1,2,2-Tetrachloroethane	UG/L	0.5 U	2.5 U	5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
		1,1,2-Trichloro-1,2,2-Trifluoro	ethane											
VOCs	N	(Freon 113)	UG/L	1 U	5 U	10 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
VOCs	N	1,1,2-Trichloroethane	UG/L	1 U	5 U	10 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
VOCs	N	1,1-Dichloroethane	UG/L	1 U	19	9.8 J	2.1	0.16 J	1 U	32	1 U	0.74 J	7.3	8.2
VOCs	N	1,1-Dichloroethene	UG/L	1 U	58	61	7.3	0.94 J	0.97 J	7.1	1 U	1 U	12	12
VOCs	N	1,2,3-Trichlorobenzene	UG/L	5 U	25 U	50 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
VOCs	N	1,2,4-Trichlorobenzene	UG/L	1 U	5 U	10 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
VOCs	N	1,2-Dibromo-3-chloropropane	·	5 U	25 U	50 U	5 U	5 UJ	5 UJ	5 U	5 U	5 U	5 U	5 U
VOCs	N	1,2-Dibromoethane	UG/L	0.5 U	2.5 U	5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
VOCs VOCs	IN NI	1,2-Dichlorobenzene 1,2-Dichloroethane	UG/L UG/L	1 U 1 U	5 U 5 U	10 U 10 U	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U
VOCs	N N	1,2-Dichloropropane	UG/L	1 U	5 U	10 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
VOCs	N	1,3-Dichlorobenzene	UG/L	1 U	5 U	10 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
VOCs	N	1,4-Dichlorobenzene	UG/L	1 U	5 U	10 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
VOCs	N	1,4-Dioxane	UG/L	50 U	250 U	500 U	50 U	50 UJ	50 UJ	50 U	50 U	50 U	50 U	50 U
VOCs	N	2-Butanone	UG/L	20 U	10 J	200 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U
VOCs	N	2-Hexanone	UG/L	10 U	50 U	100 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
VOCs	N	4-Methyl-2-pentanone	UG/L	10 U	50 U	100 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
VOCs	N	Acetic acid, methyl ester	UG/L	1 U	5 U	10 U	1 U	1 UJ	1 UJ	1 U	1 U	1 U	1 U	1 U
VOCs	N	Acetone	UG/L	2.4 J	11 J	500 U	50 U	2.5 J	2.2 J	50 U	50 U	50 U	50 U	50 U
VOCs	N	Benzene	UG/L	1 U	5 U	10 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
VOCs	N	Bromochloromethane	UG/L	1 U	5 U	10 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
VOCs	N	Bromodichloromethane	UG/L	0.5 U	2.5 U	5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
VOCs	N	Bromoform	UG/L	1 U	5 U	10 U	1 U	1 UJ	1 UJ	1 U	1 U	1 U	1 U	1 U
VOCs	N	Bromomethane	UG/L	2 U	10 U	20 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U
VOCs	N	Carbon disulfide	UG/L	5 U	25 U	50 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
VOCs	N	Carbon tetrachloride	UG/L	5 U	25 U	50 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
VOCs VOCs	N N	Chlorobenzene Chloroethane	UG/L UG/L	1 U 2 U	5 U 10 U	10 U 20 U	1 U 2 U	1 U 2 U	1 U 2 U	1 U 2 U	1 U 2 U	1 U 2 U	1 U 2 U	1 U 2 U
VOCs	N	Chloroform	UG/L	2 U	10 U	20 U	2 U	2 U	2 U	0.16 J	2 U	2 U	2 U	2 U
VOCs	N	Chloromethane	UG/L	2 U	10 U	20 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U
VOCs	N	cis-1,2-Dichloroethene	UG/L	1 U	12	10 U	1 U	1 U	1 U	0.97 J	1 U	1 U	1 U	1.6
VOCs	N	cis-1,3-Dichloropropene	UG/L	0.5 U	2.5 U	5 U	0.5 U	0.5 UJ	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
VOCs	N	Cyclohexane	UG/L	5 U	25 U	50 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
VOCs	N	Dibromochloromethane	UG/L	0.5 U	2.5 U	5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
VOCs	N	Dichlorodifluoromethane	UG/L	2 U	10 U	20 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U
VOCs	N	Ethylbenzene	UG/L	1 U	5 U	10 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
VOCs	N	Isopropylbenzene	UG/L	1 U	5 U	10 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
VOCs	N	Methyl cyclohexane	UG/L	1 U	5 U	10 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
VOCs	N	Methyl Tertbutyl Ether	UG/L	1 U	5 U	10 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
VOCs	N	Methylene chloride	UG/L	5 U	25 U	50 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
VOCs	N	Styrene	UG/L	1 U	5 U	10 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
VOCs	N	Tetrachloroethene	UG/L	1 U	5 U	10 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
VOCs	N	Toluene	UG/L	1 U	5 U	10 U	1 U	1 U	1 U	1 U	0.23 J	1 U	1 U	1 U
VOCs	N	trans-1,2-Dichloroethene	UG/L	1 U	5 U	10 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
VOCs VOCs	NI NI	trans-1,3-Dichloropropene Trichloroethene	UG/L UG/L	0.5 U 1 U	2.5 U 240	5 U 32	0.5 U 2.5	0.5 UJ 1 U	0.5 UJ 1 U	0.5 U 0.87 J	0.5 U 1 U	0.5 U 1 U	0.5 U 2	0.5 U 1 U
VOCs	N	Trichlorofluoromethane	UG/L	2 U	10 U	20 U	2.5 2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U
VOCs	N	Vinyl chloride	UG/L	2 U	10 U	20 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U
VOCs	N	Xylenes, Total	UG/L	1 U	5 U	10 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
V 0 C 3	1 14	Ayiches, Total	UU/L	1 0	1 30	1 10 0	1 0	1 10	1	1 0	1 10	1 10	1 10	1 10

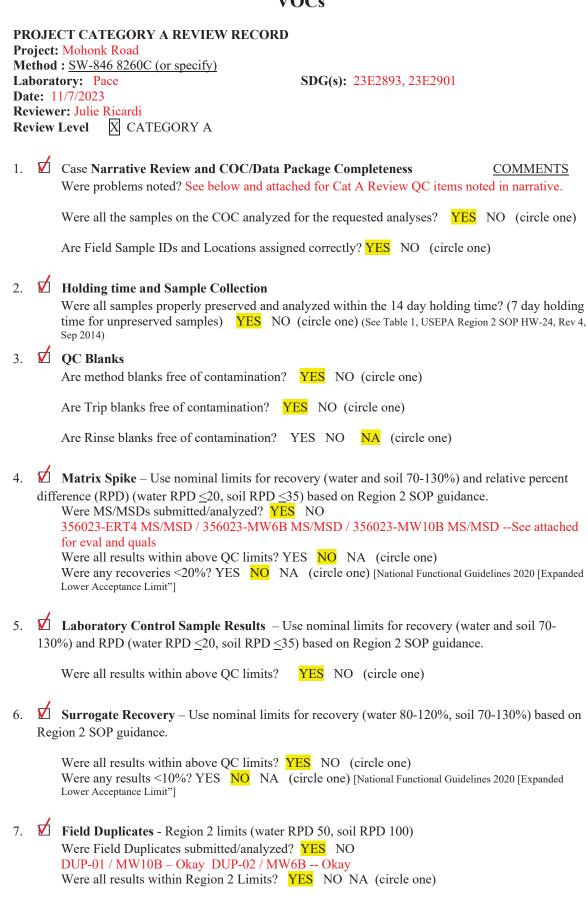
Created by: KMS 11/9/2023
Checked by: JAR 11/12/2023

TABLE 2 - SUMMARY OF ANALYTICAL RESULTS CATEGORY A REVIEW REPORT MAY 2023 GROUNDWATER SAMPLING MOHONK ROAD INDUSTRIAL PLANT HIGH FALLS, NEW YORK

				HIGH FALLS, NEW YORK								
		Lab Sample D	elivery Group	23E2901	23E2901	23E2901	23E2901	23E2901	23E2901			
Lab Sample		Location	MW-21-1	MW-21-2	MW-21-4	MW-21-5	MW-21-6	QC				
	Sal		Sample Date	5/16/2023	5/16/2023	5/16/2023	5/16/2023	5/16/2023	5/16/2023			
	3.		Sample ID	356023-MW21-1	356023-MW21-2	356023-MW21-4	356023-MW21-5	356023-MW21-6	Trip Blank			
			Qc Code	FS	FS	FS	FS	FS	TB			
Method Class	Eraction	Parameter	Units	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual			
SVOCs	N	1,4-Dioxane	UG/L	1.1	0.68	1.8	2.1	2.1	Nesuit Quai			
VOCs	N	1,1,1-Trichloroethane	UG/L	1.7	1 U	1.8 1 U	1.1	1	1 U			
VOCs	N	1,1,2,2-Tetrachloroethane	UG/L	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U			
VOCS	IN		· · · · · · · · · · · · · · · · · · ·	0.5 0	0.5 0	0.5 0	0.5 0	0.5 0	0.5 0			
\ (C)		1,1,2-Trichloro-1,2,2-Trifluoroet		4.11	4.11	4.11	4.11	4.11	4.11			
VOCs	N	(Freon 113)	UG/L	1 U	1 U	1 U	1 U	1 U	1 U			
VOCs	N	1,1,2-Trichloroethane	UG/L	1 U	1 U	1 U	1 U	1 U	1 U			
VOCs	N	1,1-Dichloroethane	UG/L	1 U	1 U	1.3	1.4	1.6	1 U			
VOCs	N	1,1-Dichloroethene	UG/L	2.6	1.5	3	3.2	3.2	1 U			
VOCs	N	1,2,3-Trichlorobenzene	UG/L	5 U	5 U	5 U	5 U	5 U	5 U			
VOCs	N	1,2,4-Trichlorobenzene	UG/L	1 U	1 U	1 U	1 U	1 U	1 U			
VOCs	N	1,2-Dibromo-3-chloropropane	UG/L	5 U	5 U	5 U	5 U	5 U	5 U			
VOCs	N	1,2-Dibromoethane	UG/L	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U			
VOCs	N	1,2-Dichlorobenzene	UG/L	1 U	1 U	1 U	1 U	1 U	1 U			
VOCs	N	1,2-Dichloroethane	UG/L	1 U	1 U	1 U	1 U	1 U	1 U			
VOCs	N	1,2-Dichloropropane	UG/L	1 U	1 U	1 U	1 U	1 U	1 U			
VOCs	N	1,3-Dichlorobenzene	UG/L	1 U	1 U	1 U	1 U	1 U	1 U			
VOCs	N	1,4-Dichlorobenzene	UG/L	1 U	1 U	1 U	1 U	1 U	1 U			
VOCs	N	1,4-Dioxane	UG/L	50 U	50 U	50 U	50 U	50 U	50 U			
VOCs	N	2-Butanone	UG/L	20 U	20 U	20 U	20 U	20 U	20 U			
VOCs	N	2-Hexanone	UG/L	10 U	10 U	10 U	10 U	10 U	10 U			
VOCs	N	4-Methyl-2-pentanone	UG/L	10 U	10 U	10 U	10 U	10 U	10 U			
VOCs	N	Acetic acid, methyl ester	UG/L	1 U	1 U	1 U	1 U	1 U	1 U			
VOCs	N	Acetone	UG/L	50 U	50 U	50 U	50 U	50 U	50 U			
VOCs	N	Benzene	UG/L	1 U	1 U	1 U	1 U	1 U	1 U			
VOCs	N	Bromochloromethane	UG/L	1 U	1 U	1 U	1 U	1 U	1 U			
VOCs	N	Bromodichloromethane	UG/L	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U			
VOCs	N	Bromoform	UG/L	1 U	1 U	1 U	1 U	1 U	1 U			
VOCs	N	Bromomethane	UG/L	2 U	2 U	2 U	2 U	2 U	2 U			
VOCs	N	Carbon disulfide	UG/L	5 U	5 U	5 U	5 U	5 U	5 U			
VOCs	N	Carbon tetrachloride	UG/L	5 U	5 U	5 U	5 U	5 U	5 U			
VOCs	N	Chlorobenzene	UG/L	1 U	1 U	1 U	1 U	1 U	1 U			
VOCs	N	Chloroethane	UG/L	2 U	2 U	2 U	2 U	2 U	2 U			
VOCs	N	Chloroform	UG/L	2 U	2 U	2 U	2 U	2 U	2 U			
VOCs	N	Chloromethane	UG/L	2 U	2 U	2 U	2 U	2 U	2 U			
VOCs	N	cis-1,2-Dichloroethene	UG/L	1 U	1 U	1 U	1 U	1 U	1 U			
VOCs	N	cis-1,3-Dichloropropene	UG/L	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U			
VOCs	N	Cyclohexane	UG/L	5 U	5 U	5 U	5 U	5 U	5 U			
VOCs	N	Dibromochloromethane	UG/L	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U			
VOCs	N	Dichlorodifluoromethane	UG/L	2 U	2 U	2 U	2 U	2 U	2 U			
VOCs	N	Ethylbenzene	UG/L	1 U	1 U	1 U	1 U	1 U	1 U			
VOCs	N	Isopropylbenzene	UG/L	1 U	1 U	1 U	1 U	1 U	1 U			
VOCs	N	Methyl Cyclohexane	UG/L	1 U	1 U	1 U	1 U	1 U	1 U			
VOCs	N	Methyl Tertbutyl Ether	UG/L	1 U 5 U	1 U	1 U	1 U	1 U	1 U			
VOCs	N	Methylene chloride	UG/L		5 U	5 U	5 U	5 U	5 U			
VOCs	N	Styrene Tetrachloroethene	UG/L	1 U	1 U	1 U	1 U	1 U	1 U			
VOCs	N		UG/L	1 U	1 U	1 U	1 U	1 U	1 U			
VOCs	N	Toluene	UG/L	1 U	1 U	1 U	1 U	1 U	1 U			
VOCs VOCs	N N	trans-1,2-Dichloroethene	UG/L	1 U	1 U	1 U	1 U	1 U	1 U 0.5 U			
		trans-1,3-Dichloropropene	UG/L	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U				
VOCs	N	Trichloroethene	UG/L	2.3	1.5	1.7	2.1	1.9	1 U			
VOCs	N	Trichlorofluoromethane	UG/L	2 U	2 U	2 U	2 U	2 U	2 U			
VOCs	N	Vinyl chloride	UG/L	2 U	2 U	2 U	2 U	2 U	2 U			
VOCs	N	Xylenes, Total	UG/L	1 U	1 U	1 U	1 U	1 U	1 U			

Page 3 of 3

Created by: KMS 11/9/2023
Checked by: JAR 11/12/2023


TABLE 3 - SUMMARY OF QUALIFICATION ACTIONS CATEGORY A REVIEW REPORT MAY 2023 GROUNDWATER SAMPLING MOHONK ROAD INDUSTRIAL PLANT HIGH FALLS, NEW YORK

							Lab	Lab	Final	Final	Val Reason		
Lab SDG	Location	Field Sample ID	Lab Sample ID	Method	Fraction	Parameter	Result	Qualifier	Result	Qualifier	Code	Units	Lab ID
23E2893	ERT-4	356023-ERT4	23E2893-02	SW8260	N	1,2-Dibromo-3-chloropropane	100	U	100	UJ	MSL	UG/L	PACE
23E2893	ERT-4	356023-ERT4	23E2893-02	SW8260	N	1,4-Dioxane	1000	U	1000	UJ	MSL	UG/L	PACE
23E2893	ERT-4	356023-ERT4	23E2893-02	SW8260	N	2-Hexanone	200	U	200	UJ	MSL	UG/L	PACE
23E2893	ERT-4	356023-ERT4	23E2893-02	SW8260	N	Acetic acid, methyl ester	20	U	20	UJ	MSL	UG/L	PACE
23E2893	ERT-4	356023-ERT4	23E2893-02	SW8260	N	Acetone	45	J	45	J	MSL	UG/L	PACE
23E2893	ERT-4	356023-ERT4	23E2893-02	SW8260	N	Bromoform	20	U	20	UJ	MSL	UG/L	PACE
23E2893	ERT-4	356023-ERT4	23E2893-02	SW8260	N	trans-1,3-Dichloropropene	10	U	10	UJ	MSL	UG/L	PACE
23E2893	MW-6B	356023-MW6B	23E2893-07	SW8260	N	1,2-Dibromo-3-chloropropane	5	U	5	UJ	MSL	UG/L	PACE
23E2893	MW-6B	356023-MW6B	23E2893-07	SW8260	N	1,4-Dioxane	50	U	50	UJ	MSL	UG/L	PACE
23E2893	MW-6B	356023-MW6B	23E2893-07	SW8260	N	Acetic acid, methyl ester	1	U	1	UJ	MSL	UG/L	PACE
23E2893	MW-6B	356023-MW6B	23E2893-07	SW8260	N	Bromoform	1	U	1	UJ	MSL	UG/L	PACE
23E2893	MW-6B	356023-MW6B	23E2893-07	SW8260	N	cis-1,3-Dichloropropene	0.5	U	0.5	UJ	MSL	UG/L	PACE
23E2893	MW-6B	356023-MW6B	23E2893-07	SW8260	N	trans-1,3-Dichloropropene	0.5	U	0.5	UJ	MSL	UG/L	PACE
23E2893	MW-6B	356023-MW6B	23E2893-07	SW8270	N	1,4-Dioxane	0.47		0.47	J	MSRPD, FD	UG/L	PACE
23E2893	MW-6B	356023-DUP-02	23E2893-08	SW8260	N	1,2-Dibromo-3-chloropropane	5	U	5	UJ	MSL	UG/L	PACE
23E2893	MW-6B	356023-DUP-02	23E2893-08	SW8260	N	1,4-Dioxane	50	U	50	UJ	MSL	UG/L	PACE
23E2893	MW-6B	356023-DUP-02	23E2893-08	SW8260	N	Acetic acid, methyl ester	1	U	1	UJ	MSL	UG/L	PACE
23E2893	MW-6B	356023-DUP-02	23E2893-08	SW8260	N	Bromoform	1	U	1	UJ	MSL	UG/L	PACE
23E2893	MW-6B	356023-DUP-02	23E2893-08	SW8260	N	cis-1,3-Dichloropropene	0.5	U	0.5	UJ	MSL	UG/L	PACE
23E2893	MW-6B	356023-DUP-02	23E2893-08	SW8260	N	trans-1,3-Dichloropropene	0.5	U	0.5	UJ	MSL	UG/L	PACE
23E2893	MW-6B	356023-DUP-02	23E2893-08	SW8270	N	1,4-Dioxane	0.99		0.99	J	MSRPD, FD	UG/L	PACE
23E2893	MW-10B	356023-MW10B	23E2893-12	SW8260	N	1,2-Dibromo-3-chloropropane	5	U	5	UJ	MSL	UG/L	PACE
23E2893	MW-10B	356023-MW10B	23E2893-12	SW8260	N	1,4-Dioxane	50	U	50	UJ	MSL	UG/L	PACE
23E2893	MW-10B	356023-MW10B	23E2893-12	SW8260	N	2-Hexanone	10	U	10	UJ	MSL	UG/L	PACE
23E2893	MW-10B	356023-MW10B	23E2893-12	SW8260	N	Acetic acid, methyl ester	1	U	1	UJ	MSL	UG/L	PACE
23E2893	MW-10B	356023-MW10B	23E2893-12	SW8260	N	Bromoform	1	U	1	UJ	MSL	UG/L	PACE
23E2893	MW-10B	356023-MW10B	23E2893-12	SW8260	N	cis-1,3-Dichloropropene	0.5	U	0.5	UJ	MSL	UG/L	PACE
23E2893	MW-10B	356023-MW10B	23E2893-12	SW8260	N	trans-1,3-Dichloropropene	0.5	U	0.5	UJ	MSL	-	PACE
23E2893	MW-10B	356023-DUP-01	23E2893-13	SW8260	N	1,2-Dibromo-3-chloropropane	5	U	5	UJ	MSL	UG/L	PACE
23E2893	MW-10B	356023-DUP-01	23E2893-13	SW8260	N	1,4-Dioxane	50	U	50	UJ	MSL	UG/L	PACE
23E2893	MW-10B	356023-DUP-01	23E2893-13	SW8260	N	2-Hexanone	10	U	10	UJ	MSL	UG/L	PACE
23E2893	MW-10B	356023-DUP-01	23E2893-13	SW8260	N	Acetic acid, methyl ester	1	U	1	UJ	MSL	UG/L	PACE
23E2893	MW-10B	356023-DUP-01	23E2893-13	SW8260	N	Bromoform	1	U	1	UJ	MSL	UG/L	PACE
23E2893	MW-10B	356023-DUP-01	23E2893-13	SW8260	N	cis-1,3-Dichloropropene	0.5	U	0.5	UJ	MSL	UG/L	PACE
23E2893	MW-10B	356023-DUP-01	23E2893-13	SW8260	N	trans-1,3-Dichloropropene	0.5	U	0.5	UJ	MSL	UG/L	PACE

CATEGORY A REVIEW REPORT MAY 2023 GROUNDWATER SAMPLING MOHONK ROAD INDUSTRIAL PLANT HIGH FALLS, NEW YORK

ATTACHMENT A

VOCs

NO (circle one)

Subset ND at 5X: 356023-MW4 Subset ND at 10X: 356023-MW5B Subset ND at 20X: 356023-ERT4

8. **V** Reporting Limits: Were samples analyzed at a dilution?

9. Lectronic Data Review and Edits

Does the EDD match the Form Is? YES NO (circle one)

10. **Table Review**

Table 1 (Samples and Analytical Methods)

 Table 2 (Analytical Results)

 Table 3 (Qualification Actions)

Were all tables produced and reviewed? YES NO (circle one)

 Table 4 (TICs)
 Did lab report TICs?
 YES
 NO
 (circle one)

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

QUALITY CONTROL

Volatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B341325 - SW-846 5030B										
.CS Dup (B341325-BSD1)				Prepared: 05	5/25/23 Analy	zed: 05/26	/23			
,1,2,2-Tetrachloroethane	9.59	0.50	μg/L	10.0		95.9	70-130	4.04	25	
etrachloroethylene	10.2	1.0	$\mu g/L$	10.0		102	70-130	1.07	25	
Coluene	10.7	1.0	μg/L	10.0		107	70-130	0.187	25	
,2,3-Trichlorobenzene	10.7	5.0	μg/L	10.0		107	70-130	2.66	25	
,2,4-Trichlorobenzene	10.4	1.0	μg/L	10.0		104	70-130	2.93	25	
,1,1-Trichloroethane	9.76	1.0	μg/L	10.0		97.6	70-130	0.411	25	
1,2-Trichloroethane	10.4	1.0	μg/L	10.0		104	70-130	0.577	25	
richloroethylene	10.4	1.0	μg/L	10.0		104	70-130	0.482	25	
richlorofluoromethane (Freon 11)	9.52	2.0	μg/L	10.0		95.2	70-130	2.49	25	
,1,2-Trichloro-1,2,2-trifluoroethane (Freon	9.73	1.0	μg/L	10.0		97.3	70-130	3.34	25	
'inyl Chloride	11.1	2.0	μg/L	10.0		111	40-160	0.724	25	
n+p Xylene	20.8	2.0	μg/L	20.0		104	70-130	0.0480	25	
-Xylene	10.4	1.0	μg/L	10.0		104	70-130	1.95	25	
(ylenes (total)	31.2	1.0	μg/L μg/L	30.0		104	0-200	0.675	20	
		1.0						0.073		
urrogate: 1,2-Dichloroethane-d4	24.2		μg/L	25.0		97.0	70-130			
urrogate: Toluene-d8	25.3		μg/L	25.0		101	70-130			
urrogate: 4-Bromofluorobenzene	24.4	356023-E	μg/L	25.0		97.4	70-130			
Iatrix Spike (B341325-MS1)	Sou	rce: 23E2893-			5/25/23 Analy	zed: 05/27	/23			
cetone		1000	μg/L	2000	44.6			UJ MSL Samp	le: detecte	d <mdms-24< td=""></mdms-24<>
enzene	1400	20	μg/L μg/L	2000			70-130	OJ WOL Samp	ie, delecte	u -WDB13-24
romochloromethane	179	20			ND					
romodichloromethane	189	10	μg/L	200	ND	94.6	70-130			
	161		μg/L	200	ND		70-130	III MCI Comm	do	160 074 170
romoform	121	20	μg/L	200	ND			UJ MSL Samp	ile	MS-07A, V-03
romomethane	163	40	μg/L	200	ND		70-130			
-Butanone (MEK)	1650	400	μg/L	2000	60.0		70-130			
arbon Disulfide	1570	100	μg/L	2000	ND		70-130			
arbon Tetrachloride	162	100	μg/L	200	ND	81.0	70-130			
hlorobenzene	176	20	μg/L	200	ND	88.1	70-130			
hlorodibromomethane	145	10	$\mu g/L$	200	ND	72.5	70-130			
hloroethane	166	40	μg/L	200	ND	82.8	70-130			
hloroform	169	40	$\mu g/L$	200	ND	84.6	70-130			
hloromethane	194	40	$\mu g/L$	200	ND	96.9	70-130			
yclohexane	184	100	$\mu g/L$	200	ND	91.8	70-130			
2-Dibromo-3-chloropropane (DBCP)	117	100	$\mu g/L$	200	ND	58.7	× 70-130	UJ MSL Sampl	e	MS-07A
2-Dibromoethane (EDB)	166	10	$\mu g/L$	200	ND	83.0	70-130	·		
2-Dichlorobenzene	166	20	$\mu g/L$	200	ND	82.8	70-130			
3-Dichlorobenzene	167	20	μg/L	200	ND		70-130			
4-Dichlorobenzene	161	20	μg/L	200	ND		70-130			
ichlorodifluoromethane (Freon 12)	194	40	μg/L	200	ND	96.9	70-130			
,1-Dichloroethane	198	20	μg/L	200	28.8		70-130			
,2-Dichloroethane	163	20	μg/L	200	ND		70-130			
1-Dichloroethylene	240	20	μg/L μg/L	200	82.0		70-130			
is-1,2-Dichloroethylene	162	20	μg/L μg/L	200	6.80		70-130			
ans-1,2-Dichloroethylene		20	μg/L μg/L	200		79.0	70-130			
2-Dichloropropane	158	20	μg/L μg/L		ND		70-130			
• •	179			200	ND					
s-1,3-Dichloropropene	148	10	μg/L	200	ND		70-130			3.50.21
rans-1,3-Dichloropropene	137	10	μg/L	200	ND			UJ MSL Sample		MS-24
4-Dioxane	1280	1000	μg/L	2000	ND			JJ MSL Sample		MS-24
thylbenzene	172	20	μg/L	200	ND		70-130			
-Hexanone (MBK)	1380	200	μg/L	2000	ND			JJ MSL Sample		MS-24
sopropylbenzene (Cumene)	165	20	μg/L	200	ND	82.4	70-130		_	Page 73 of

RPD

%REC

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

QUALITY CONTROL

Spike

Source

Volatile Organic Compounds by GC/MS - Quality Control

Reporting

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B341325 - SW-846 5030B		356023-ERT4	MS/MSD							
Matrix Spike (B341325-MS1)	Sou	rce: 23E2893-	Prepared: 05	5/25/23 Analyz	zed: 05/27/	23				
Methyl Acetate	123	20	$\mu g/L$	200	ND	61.3 *	70-130 UJ	MSL Sample		MS-07A, V-05
Methyl tert-Butyl Ether (MTBE)	146	20	$\mu g/L$	200	ND	73.1	70-130			
Methyl Cyclohexane	176	20	μg/L	200	ND	88.2	70-130			
Methylene Chloride	165	100	$\mu g/L$	200	ND	82.3	70-130			
4-Methyl-2-pentanone (MIBK)	1420	200	$\mu g/L$	2000	ND	70.9	70-130			
Styrene	168	20	$\mu g/L$	200	ND	84.0	70-130			
1,1,2,2-Tetrachloroethane	153	10	$\mu g/L$	200	ND	76.3	70-130			
Tetrachloroethylene	169	20	$\mu g/L$	200	ND	84.5	70-130			
Гoluene	177	20	$\mu g/L$	200	ND	88.3	70-130			
1,2,3-Trichlorobenzene	145	100	$\mu g/L$	200	ND	72.6	70-130			
1,2,4-Trichlorobenzene	142	20	$\mu g/L$	200	ND	71.1	70-130			
1,1,1-Trichloroethane	1190	20	$\mu g/L$	200	1020	82.6	70-130			
1,1,2-Trichloroethane	171	20	$\mu g/L$	200	ND	85.7	70-130			
Trichloroethylene	228	20	$\mu g/L$	200	66.8	80.4	70-130			
Trichlorofluoromethane (Freon 11)	167	40	$\mu g/L$	200	ND	83.7	70-130			
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	168	20	μg/L	200	ND	83.9	70-130			
Vinyl Chloride	190	40	$\mu g/L$	200	ND	95.0	70-130			
m+p Xylene	342	40	$\mu g/L$	400	ND	85.6	70-130			
o-Xylene	162	20	$\mu g/L$	200	ND	80.9	70-130			
Xylenes (total)	504	20	$\mu g/L$	600	ND	84.0	0-200			
Surrogate: 1,2-Dichloroethane-d4	23.6		μg/L	25.0		94.6	70-130			
Surrogate: Toluene-d8	25.8		μg/L	25.0		103	70-130			
Surrogate: 4-Bromofluorobenzene	24.2	356023-ERT4	$\mu g/L$	25.0		96.6	70-130			
Matrix Spike Dup (B341325-MSD1)	Sou	rce: <mark>23E2893</mark> -	02	Prepared: 05	5/25/23 Analyz	zed: 05/27/	23			
Acetone	1560	1000	$\mu g/L$	2000	44.6	75.8	70-130	10.8	30	
Benzene	196	20	$\mu g/L$	200	ND	97.9	70-130	8.85	30	
Bromochloromethane	198	20	$\mu g/L$	200	ND	99.2	70-130	4.75	30	
Bromodichloromethane	168	10	$\mu g/L$	200	ND	83.9	70-130	4.14	30	
Bromoform	134	20	$\mu g/L$	200	ND	66.8	70-130	9.57	30	V-05, MS-07A
Bromomethane	177	40	$\mu g/L$	200	ND	88.4	70-130	8.12	30	UJ MSL Sample
2-Butanone (MEK)	1830	400	$\mu g/L$	2000	60.0	88.3	70-130	10.4	30	
Carbon Disulfide	1720	100	$\mu g/L$	2000	ND	85.9	70-130	8.73	30	
Carbon Tetrachloride	178	100	$\mu g/L$	200	ND	89.2	70-130	9.64	30	
Chlorobenzene	185	20	$\mu g/L$	200	ND	92.7	70-130	5.09	30	
Chlorodibromomethane	155	10	$\mu g/L$	200	ND	77.3	70-130	6.41	30	
Chloroethane	180	40	μg/L	200	ND	90.1	70-130	8.44	30	
Chloroform	183	40	μg/L	200	ND	91.3	70-130	7.62	30	
Chloromethane	202	40	$\mu g/L$	200	ND	101	70-130	3.95	30	
Cyclohexane	191	100	$\mu g/L$	200	ND	95.6	70-130	4.06	30	
1,2-Dibromo-3-chloropropane (DBCP)	135	100	$\mu g/L$	200	ND	67.7	70-130	14.2	30	MS-07A UJ MSL Sample
1,2-Dibromoethane (EDB)	172	10	$\mu g/L$	200	ND	85.8	70-130	3.32	30	OU MOL Gample
1,2-Dichlorobenzene	182	20	$\mu g/L$	200	ND	90.9	70-130	9.33	30	
1,3-Dichlorobenzene	186	20	$\mu g/L$	200	ND	93.2	70-130	11.2	30	
1,4-Dichlorobenzene	175	20	$\mu g/L$	200	ND	87.6	70-130	8.70	30	
Dichlorodifluoromethane (Freon 12)	213	40	$\mu g/L$	200	ND	107	70-130	9.53	30	
1,1-Dichloroethane	218	20	$\mu g/L$	200	28.8	94.4	70-130	9.63	30	
1,2-Dichloroethane	172	20	$\mu g/L$	200	ND	85.9	70-130	5.01	30	
1,1-Dichloroethylene	265	20	$\mu g/L$	200	82.0	91.7	70-130	9.89	30	
cis-1,2-Dichloroethylene	175	20	$\mu g/L$	200	6.80	84.3	70-130	8.07	30	
trans-1,2-Dichloroethylene	173	20	$\mu g/L$	200	ND	86.3	70-130	8.83	30	
1,2-Dichloropropane	190	20	μg/L	200	ND	95.1	70-130	6.29	30	
						11/12	/202	3		Page 74 of

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

QUALITY CONTROL

Volatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
eatch B341325 - SW-846 5030B										
1atrix Spike Dup (B341325-MSD1)	Sou	356023-ERT4 rce: 23E2893-		Prepared: 05	5/25/23 Analyz	zed: 05/27/2	23			
is-1,3-Dichloropropene	153	10	μg/L	200	ND	76.3	70-130	3.33	30	
rans-1,3-Dichloropropene	148	10	$\mu g/L$	200	ND	74.0	70-130	7.72	30	
,4-Dioxane	1580	1000	μg/L	2000	ND	79.0	70-130	21.0	30	
thylbenzene	186	20	$\mu g/L$	200	ND	92.9	70-130	7.95	30	
-Hexanone (MBK)	1520	200	$\mu g/L$	2000	ND	75.8	70-130	9.43	30	
sopropylbenzene (Cumene)	178	20	$\mu g/L$	200	ND	89.1	70-130	7.81	30	
Iethyl Acetate	132	20	$\mu g/L$	200	ND	66.0 *	70-130	7.38	30	UV-051 MS-07/
Methyl tert-Butyl Ether (MTBE)	159	20	$\mu g/L$	200	ND	79.5	70-130	8.39	30	
Methyl Cyclohexane	190	20	$\mu g/L$	200	ND	95.1	70-130	7.53	30	
fethylene Chloride	177	100	$\mu g/L$	200	ND	88.7	70-130	7.49	30	
-Methyl-2-pentanone (MIBK)	1540	200	$\mu g/L$	2000	ND	77.1	70-130	8.38	30	
tyrene	180	20	$\mu g/L$	200	ND	90.1	70-130	7.01	30	
1,2,2-Tetrachloroethane	169	10	$\mu g/L$	200	ND	84.6	70-130	10.3	30	
etrachloroethylene	182	20	$\mu g/L$	200	ND	91.0	70-130	7.41	30	
oluene	187	20	$\mu g/L$	200	ND	93.6	70-130	5.83	30	
,2,3-Trichlorobenzene	163	100	$\mu g/L$	200	ND	81.4	70-130	11.4	30	
,2,4-Trichlorobenzene	164	20	$\mu g \! / \! L$	200	ND	82.1	70-130	14.4	30	
,1,1-Trichloroethane	1220	20	$\mu g/L$	200	1020	99.4	70-130	2.79	30	
1,2-Trichloroethane	180	20	$\mu g/L$	200	ND	90.1	70-130	5.01	30	
richloroethylene	235	20	$\mu g/L$	200	66.8	84.1	70-130	3.20	30	
richlorofluoromethane (Freon 11)	179	40	$\mu g/L$	200	ND	89.4	70-130	6.59	30	
,1,2-Trichloro-1,2,2-trifluoroethane (Freon	188	20	$\mu g/L$	200	ND	94.0	70-130	11.4	30	
13)			_							
inyl Chloride	211	40	μg/L	200	ND	106	70-130	10.6	30	
+p Xylene	367	40	μg/L	400	ND	91.8	70-130	6.94	20	
-Xylene	177	20	μg/L	200	ND	88.4	70-130	8.86	30	
ylenes (total)	544	20	μg/L	600	ND	90.6	0-200	7.56		
urrogate: 1,2-Dichloroethane-d4	24.8		$\mu g/L$	25.0		99.1	70-130			
urrogate: Toluene-d8	25.4		$\mu g/L$	25.0		102	70-130			
urrogate: 4-Bromofluorobenzene	24.1		μg/L	25.0		96.2	70-130			
eatch B341326 - SW-846 5030B										
lank (B341326-BLK1)				Prepared: 05	5/25/23 Analyz	zed: 05/27/2	23			
cetone	ND	50	μg/L							
enzene	ND	1.0	μg/L							
romochloromethane	ND	1.0	μg/L							
romodichloromethane	ND	0.50	μg/L							
romoform	ND	1.0	μg/L							
romomethane	ND	2.0	μg/L							
-Butanone (MEK)	ND	20	μg/L							
arbon Disulfide	ND	5.0	μg/L							
arbon Tetrachloride	ND	5.0	μg/L							
hlorobenzene	ND	1.0	μg/L							
hlorodibromomethane	ND	0.50	μg/L							
hloroethane	ND	2.0	μg/L							
hloroform	ND	2.0	μg/L							
hloromethane	ND	2.0	$\mu g/L$							
cyclohexane	ND	5.0	$\mu g/L$							
,2-Dibromo-3-chloropropane (DBCP)	ND	5.0	$\mu g/L$							
1 D'1 (FDD)	ND	0.50	$\mu g/L$							
,2-Dibromoethane (EDB)										
2-Dichlorobenzene	ND	1.0	$\mu g/L$							

QUALITY CONTROL

Volatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD Limit	Notes
Batch B341326 - SW-846 5030B	Kesun	Limit	Onits	PCACI	Result	/UKEC	Lillits	KI D LIIIII	TAOLES
LCS Dup (B341326-BSD1)				Prepared: 05	5/25/23 Analyz	zed: 05/27/	23		
o-Xylene	10.4	1.0	μg/L	10.0	0.20 / 11141 y /	104	70-130	0.867 25	
Xylenes (total)	31.9	1.0	μg/L	30.0		106	0-200	1.58	
Surrogate: 1,2-Dichloroethane-d4	25.3		μg/L	25.0		101	70-130		
Surrogate: Toluene-d8	25.5		μg/L μg/L	25.0		102	70-130		
Surrogate: 4-Bromofluorobenzene	24.1		μg/L μg/L	25.0		96.5	70-130		
Surregues - Etementariosemente	27.1	356023-MW6B (a				, 0.0	70 130		
Matrix Spike (B341326-MS1)	Sou	rce: 23E2893-	07	Prepared: 05	5/25/23 Analyz	zed: 05/27/	23		
Acetone	76.3	50	μg/L	100	2.23	74.0	70-130		
Benzene	9.71	1.0	μg/L	10.0	ND	97.1	70-130		
Bromochloromethane	9.61	1.0	μg/L	10.0	ND	96.1	70-130		
Bromodichloromethane	8.07	0.50	μg/L	10.0	ND	80.7	70-130		
Bromoform	6.21	1.0	μg/L	10.0	ND	62.1		J MSL Sample and FD	MS-07A
Bromomethane	10.6	2.0	μg/L	10.0	ND	106	70-130		
2-Butanone (MEK)	83.9	20	μg/L	100	ND	83.9	70-130		
Carbon Disulfide	79.3	5.0	μg/L	100	ND	79.3	70-130		
Carbon Tetrachloride	8.45	5.0	μg/L	10.0	ND	84.5	70-130		
Chlorobenzene Chlorodibromomethane	8.96	1.0	μg/L	10.0	ND	89.6	70-130		
Chloroethane	7.41	0.50	μg/L	10.0	ND	74.1	70-130		
Chloroform	8.95	2.0 2.0	μg/L	10.0	ND	89.5	70-130		
Chloromethane	8.75	2.0	μg/L	10.0	ND	87.5	70-130		
	9.46	5.0	μg/L	10.0	ND	94.6	70-130		
Cyclohexane 1.2 Dibromo 3 abloropropono (DPCP)	9.44	5.0	μg/L	10.0	ND	94.4	70-130	MSL Sample and FD	MS-07A
1,2-Dibromo-3-chloropropane (DBCP) 1,2-Dibromoethane (EDB)	6.20	0.50	μg/L μg/L	10.0 10.0	ND	62.0 * 82.7	70-130	MOL Campic and 1 D	MS-0/A
1,2-Dichlorobenzene	8.27	1.0	μg/L μg/L	10.0	ND	85.3	70-130		
1,3-Dichlorobenzene	8.53 8.27	1.0	μg/L μg/L	10.0	ND ND	82.7	70-130		
1,4-Dichlorobenzene	8.02	1.0	μg/L	10.0	ND ND	80.2	70-130		
Dichlorodifluoromethane (Freon 12)	9.89	2.0	μg/L	10.0	ND	98.9	70-130		
1,1-Dichloroethane	9.32	1.0	μg/L	10.0	ND	93.2	70-130		
1,2-Dichloroethane	8.30	1.0	μg/L	10.0	ND	83.0	70-130		
1,1-Dichloroethylene	9.69	1.0	μg/L	10.0	0.970	87.2	70-130		
cis-1,2-Dichloroethylene	8.15	1.0	μg/L	10.0	ND	81.5	70-130		
trans-1,2-Dichloroethylene	8.02	1.0	μg/L	10.0	ND	80.2	70-130		
1,2-Dichloropropane	8.92	1.0	μg/L	10.0	ND	89.2	70-130		
cis-1,3-Dichloropropene	6.82	0.50	μg/L	10.0	ND	68.2 *		JJ MSL Sample and FD	MS-24
trans-1,3-Dichloropropene	6.61	0.50	μg/L	10.0	ND	66.1 *		JJ MSL Sample and FD	MS-07A
1,4-Dioxane	61.8	50	μg/L	100	ND	61.8 *		J MSL Sample and FD	MS-07A
Ethylbenzene	8.75	1.0	μg/L	10.0	ND	87.5	70-130	•	
2-Hexanone (MBK)	72.7	10	μg/L	100	ND	72.7	70-130		
Isopropylbenzene (Cumene)	8.29	1.0	$\mu g/L$	10.0	ND	82.9	70-130		
Methyl Acetate	3.90	1.0	$\mu g/L$	10.0	ND	39.0 *	70-130 U	J MSL Sample and FD	MS-07A, V-05
Methyl tert-Butyl Ether (MTBE)	7.64	1.0	$\mu g/L$	10.0	ND	76.4	70-130		
Methyl Cyclohexane	8.57	1.0	$\mu g/L$	10.0	ND	85.7	70-130		
Methylene Chloride	8.61	5.0	$\mu g/L$	10.0	ND	86.1	70-130		
4-Methyl-2-pentanone (MIBK)	72.9	10	$\mu g/L$	100	ND	72.9	70-130		
Styrene	8.25	1.0	$\mu g/L$	10.0	ND	82.5	70-130		
1,1,2,2-Tetrachloroethane	7.93	0.50	$\mu g/L$	10.0	ND	79.3	70-130		
Tetrachloroethylene	8.49	1.0	$\mu g/L$	10.0	ND	84.9	70-130		
Toluene	8.94	1.0	$\mu g/L$	10.0	ND	89.4	70-130		
1,2,3-Trichlorobenzene	7.37	5.0	$\mu g/L$	10.0	ND	73.7	70-130		
1,2,4-Trichlorobenzene	7.55	1.0	μg/L	10.0	ND	75.5	70-130		
1,1,1-Trichloroethane	12.9	1.0	$\mu g/L$	10.0	4.35	85.7	70-130		

jar 11/12/2023

RPD

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

QUALITY CONTROL

Spike

Source

%REC

Volatile Organic Compounds by GC/MS - Quality Control

Reporting

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD Limit	Notes
Batch B341326 - SW-846 5030B									
Matrix Spike (B341326-MS1)		56023-MW6B (ace: 23E2893-			i/25/23 Analy:	zed: 05/27/	23		
1,1,2-Trichloroethane	8.69	1.0	μg/L	10.0	ND	86.9	70-130		
Frichloroethylene	8.50	1.0	μg/L	10.0	ND	85.0	70-130		
Frichlorofluoromethane (Freon 11)	8.68	2.0	μg/L	10.0	ND	86.8	70-130		
,1,2-Trichloro-1,2,2-trifluoroethane (Freon	8.60	1.0	μg/L	10.0	ND	86.0	70-130		
13)	0.00				ND		, ,		
Vinyl Chloride	10.1	2.0	$\mu g/L$	10.0	ND	101	70-130		
n+p Xylene	17.1	2.0	$\mu g/L$	20.0	ND	85.6	70-130		
o-Xylene	8.44	1.0	$\mu g/L$	10.0	ND	84.4	70-130		
Xylenes (total)	25.6	1.0	$\mu g/L$	30.0	ND	85.2	0-200		
Surrogate: 1,2-Dichloroethane-d4	24.2		μg/L	25.0		96.9	70-130		
urrogate: Toluene-d8	24.9		μg/L	25.0		99.7	70-130		
urrogate: 4-Bromofluorobenzene	23.9		μg/L	25.0		95.7	70-130		
_		6023-MW10B (a	associated w						
Iatrix Spike (B341326-MS2)		e: 23E2893-			7/25/23 Analy				
cetone	74.3	50	μg/L	100	ND	74.3	70-130		
enzene	9.69	1.0	μg/L	10.0	ND	96.9	70-130		
romochloromethane	9.78	1.0	μg/L	10.0	ND	97.8	70-130		
romodichloromethane	8.51	0.50	$\mu g/L$	10.0	ND	85.1	70-130		
Bromoform	6.24	1.0	$\mu g/L$	10.0	ND	62.4	70-130UJ	MSL Sample and FD	MS-07A
romomethane	10.3	2.0	$\mu g/L$	10.0	ND	103	70-130		
-Butanone (MEK)	84.4	20	$\mu g/L$	100	ND	84.4	70-130		
arbon Disulfide	81.5	5.0	$\mu g/L$	100	ND	81.5	70-130		
arbon Tetrachloride	8.68	5.0	$\mu g/L$	10.0	ND	86.8	70-130		
hlorobenzene	8.95	1.0	$\mu g/L$	10.0	ND	89.5	70-130		
hlorodibromomethane	7.83	0.50	$\mu g/L$	10.0	ND	78.3	70-130		
hloroethane	9.21	2.0	μg/L	10.0	ND	92.1	70-130		
hloroform	9.08	2.0	μg/L	10.0	ND	90.8	70-130		
hloromethane	9.63	2.0	μg/L	10.0	ND	96.3	70-130		
yclohexane	9.62	5.0	μg/L	10.0	ND	96.2	70-130		
,2-Dibromo-3-chloropropane (DBCP)	6.80	5.0	μg/L	10.0	ND	68.0		MSL Sample and FD	MS-07A
,2-Dibromoethane (EDB)	8.53	0.50	μg/L	10.0	ND	85.3	70-130		
,2-Dichlorobenzene	8.98	1.0	μg/L	10.0	ND	89.8	70-130		
,3-Dichlorobenzene	8.73	1.0	μg/L	10.0	ND	87.3	70-130		
,4-Dichlorobenzene	8.22	1.0	μg/L	10.0	ND	82.2	70-130		
pichlorodifluoromethane (Freon 12)	10.2	2.0	μg/L	10.0	ND	102	70-130		
1-Dichloroethane	9.27	1.0	μg/L	10.0	ND	92.7	70-130		
2-Dichloroethane	8.52	1.0	μg/L μg/L	10.0	ND ND	85.2	70-130		
1-Dichloroethylene	8.89	1.0	μg/L μg/L	10.0	ND ND	88.9	70-130		
is-1,2-Dichloroethylene	8.33	1.0	μg/L μg/L	10.0	ND ND	83.3	70-130		
ans-1,2-Dichloroethylene	8.33 8.27	1.0	μg/L μg/L	10.0	ND ND	82.7	70-130		
2-Dichloropropane	9.32	1.0	μg/L μg/L	10.0	ND ND	93.2	70-130		
is-1,3-Dichloropropene	9.32 7.17	0.50	μg/L μg/L	10.0	ND ND	71.7	70-130		
rans-1,3-Dichloropropene		0.50	μg/L μg/L	10.0		66.8 ×		MSL Sample and FD	MS-07A
A-Dioxane	6.68	50	μg/L μg/L	10.0	ND	71.4	70-13000		1V13-U/A
thylbenzene	71.4	1.0			ND				
	9.02	1.0	μg/L	10.0	ND	90.2	70-130	MOL 0 1 :=5	MOOTA
Hexanone (MBK) opropylbenzene (Cumene)	69.4		μg/L	100	ND	69.4		MSL Sample and FD	MS-07A
	8.62	1.0	μg/L	10.0	ND	86.2	70-130	IMSI Sample and ED	MC OT L TTO
lethyl Acetate	3.82	1.0	μg/L	10.0	ND	38.2		MSL Sample and FD	MS-07A, V-0
lethyl tert-Butyl Ether (MTBE)	7.75	1.0	μg/L	10.0	ND	77.5	70-130		
Methyl Cyclohexane	8.99	1.0	μg/L	10.0	ND	89.9	70-130		
fethylene Chloride	8.51	5.0	μg/L	10.0	ND	85.1	70-130		
-Methyl-2-pentanone (MIBK)	74.0	10	μg/L	100	ND	74.0	70-130		
tyrene	8.64	1.0	μg/L	10.0	ND	86.4	70-130	. —	
						ras.	11/12/	2023	Page 80 of
					/	100	1		

QUALITY CONTROL

Volatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B341326 - SW-846 5030B		358023-MW10E	3 (associate	d with DUP-01)						
Aatrix Spike (B341326-MS2)	Sou	rce: 23E2893-1			5/25/23 Analyz	zed: 05/27/	23			
,1,2,2-Tetrachloroethane	8.11	0.50	$\mu g/L$	10.0	ND	81.1	70-130			
etrachloroethylene	8.61	1.0	$\mu g/L$	10.0	ND	86.1	70-130			
oluene	9.24	1.0	$\mu g/L$	10.0	ND	92.4	70-130			
2,3-Trichlorobenzene	8.13	5.0	$\mu g/L$	10.0	ND	81.3	70-130			
2,4-Trichlorobenzene	7.87	1.0	$\mu g/L$	10.0	ND	78.7	70-130			
1,1-Trichloroethane	8.92	1.0	$\mu g/L$	10.0	ND	89.2	70-130			
1,2-Trichloroethane	8.86	1.0	μg/L	10.0	ND	88.6	70-130			
richloroethylene	8.68	1.0	μg/L	10.0	ND	86.8	70-130			
richlorofluoromethane (Freon 11)	8.94	2.0	μg/L	10.0	ND	89.4	70-130			
1,2-Trichloro-1,2,2-trifluoroethane (Freon	8.87	1.0	μg/L	10.0	ND	88.7	70-130			
(3)	0.07				112					
inyl Chloride	10.4	2.0	$\mu g/L$	10.0	ND	104	70-130			
+p Xylene	17.8	2.0	$\mu g/L$	20.0	ND	89.0	70-130			
Xylene	8.60	1.0	$\mu g/L$	10.0	ND	86.0	70-130			
ylenes (total)	26.4	1.0	μg/L	30.0	ND	88.0	0-200			
urrogate: 1,2-Dichloroethane-d4	24.2		μg/L	25.0		96.8	70-130			
urrogate: Toluene-d8	25.5		μg/L	25.0		102	70-130			
urrogate: 4-Bromofluorobenzene	23.7		μg/L	25.0		94.7	70-130			
arrogate. I Bromoriuorooenzene	23.7	356023-MW6		ed with DUP-02)	71.7	70 150			
latrix Spike Dup (B341326-MSD1)	Sou	rce: 23E2893-0	07	Prepared: 05	5/25/23 Analyz	zed: 05/27/	23			
cetone	73.0	50	$\mu g/L$	100	2.23	70.8	70-130	4.31	30	
enzene	9.58	1.0	$\mu g/L$	10.0	ND	95.8	70-130	1.35	30	
romochloromethane	9.74	1.0	$\mu g/L$	10.0	ND	97.4	70-130	1.34	30	
romodichloromethane	8.54	0.50	$\mu g/L$	10.0	ND	85.4	70-130	5.66	30	
romoform	6.16	1.0	μg/L	10.0	ND	61.6	70-130	0.808	30	UJ MSL Sample and F
romomethane	10.4	2.0	μg/L	10.0	ND	104	70-130	1.14	30	UJ MSL Sample and r
Butanone (MEK)	81.8	20	μg/L	100	ND	81.8	70-130	2.47	30	
arbon Disulfide	80.2	5.0	μg/L	100	ND	80.2	70-130	1.07	30	
arbon Tetrachloride	8.40	5.0	μg/L	10.0	ND	84.0	70-130	0.593	30	
hlorobenzene	9.04	1.0	μg/L	10.0	ND	90.4	70-130	0.889	30	
hlorodibromomethane	7.57	0.50	μg/L	10.0	ND	75.7	70-130	2.14	30	
hloroethane		2.0	μg/L	10.0	ND ND	90.2	70-130	0.779	30	
hloroform	9.02	2.0								
hloromethane	9.07	2.0	μg/L	10.0	ND	90.7	70-130	3.59	30	
	9.89		μg/L	10.0	ND	98.9	70-130	4.44	30	
yclohexane	9.21	5.0	μg/L	10.0	ND	92.1	70-130	2.47	30	
2-Dibromo-3-chloropropane (DBCP)	6.61	5.0	μg/L	10.0	ND	66.1		6.40	30	UJ MSE Sample and
2-Dibromoethane (EDB)	8.44	0.50	μg/L	10.0	ND	84.4	70-130	2.03	30	
2-Dichlorobenzene	9.05	1.0	μg/L	10.0	ND	90.5	70-130	5.92	30	
3-Dichlorobenzene	8.81	1.0	μg/L	10.0	ND	88.1	70-130	6.32	30	
4-Dichlorobenzene	8.40	1.0	μg/L	10.0	ND	84.0	70-130	4.63	30	
ichlorodifluoromethane (Freon 12)	9.81	2.0	$\mu g/L$	10.0	ND	98.1	70-130	0.812	30	
1-Dichloroethane	9.32	1.0	$\mu g/L$	10.0	ND	93.2	70-130	0.00	30	
2-Dichloroethane	8.43	1.0	$\mu g/L$	10.0	ND	84.3	70-130	1.55	30	
1-Dichloroethylene	9.54	1.0	$\mu g/L$	10.0	0.970	85.7	70-130	1.56	30	
s-1,2-Dichloroethylene	8.37	1.0	$\mu g/L$	10.0	ND	83.7	70-130	2.66	30	
nns-1,2-Dichloroethylene	8.28	1.0	$\mu g/L$	10.0	ND	82.8	70-130	3.19	30	
2-Dichloropropane	9.12	1.0	$\mu g/L$	10.0	ND	91.2	70-130	2.22	30	
s-1,3-Dichloropropene	7.06	0.50	μg/L	10.0	ND	70.6	70-130	3.46	30	11114010
ans-1,3-Dichloropropene	6.80	0.50	μg/L	10.0	ND	68.0		2.83	30	UJ MSL Sample at MS-07A
4-Dioxane	65.0	50	μg/L	100	ND	65.0 *		4.97	30	
hylbenzene	8.82	1.0	μg/L	10.0	ND	88.2	70-130	0.797	30	MS-07A UJ MSL Sample an
Hexanone (MBK)	72.4	10	μg/L	100	ND	72.4	70-130	0.414	30	
opropylbenzene (Cumene)	8.43	1.0	μg/L	10.0	ND ND	84.3	70-130	1.67	30	
·FF/emene (Camene)	0.43	1.0	rs/ -	10.0	שמ	07.5	/0-130	1.07	50	

QUALITY CONTROL

Volatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B341326 - SW-846 5030B		356023-MW6B (as	sociated wit	th DUD 02)						
Matrix Spike Dup (B341326-MSD1)		rce: 23E2893-0			/25/23 Analyz	zed: 05/27/23	3			
Methyl Acetate	3.85	1.0	μg/L	10.0	ND	38.5 *	70-130	1.29	30	MS-07A, V-05
Methyl tert-Butyl Ether (MTBE)	7.78	1.0	$\mu g/L$	10.0	ND	77.8	70-130	1.82	30	OU MOL Campic and 1 L
Methyl Cyclohexane	8.88	1.0	$\mu g/L$	10.0	ND	88.8	70-130	3.55	30	
Methylene Chloride	8.60	5.0	$\mu g/L$	10.0	ND	86.0	70-130	0.116	30	
-Methyl-2-pentanone (MIBK)	72.0	10	$\mu g/L$	100	ND	72.0	70-130	1.28	30	
tyrene	8.38	1.0	$\mu g/L$	10.0	ND	83.8	70-130	1.56	30	
,1,2,2-Tetrachloroethane	7.80	0.50	$\mu g/L$	10.0	ND	78.0	70-130	1.65	30	
etrachloroethylene	8.74	1.0	$\mu g/L$	10.0	ND	87.4	70-130	2.90	30	
oluene	9.24	1.0	$\mu g/L$	10.0	ND	92.4	70-130	3.30	30	
,2,3-Trichlorobenzene	7.94	5.0	$\mu g/L$	10.0	ND	79.4	70-130	7.45	30	
,2,4-Trichlorobenzene	7.78	1.0	$\mu g/L$	10.0	ND	77.8	70-130	3.00	30	
,1,1-Trichloroethane	13.0	1.0	$\mu g/L$	10.0	4.35	86.8	70-130	0.848	30	
,1,2-Trichloroethane	8.67	1.0	$\mu g/L$	10.0	ND	86.7	70-130	0.230	30	
richloroethylene	8.98	1.0	$\mu g/L$	10.0	ND	89.8	70-130	5.49	30	
Crichlorofluoromethane (Freon 11)	8.68	2.0	$\mu g/L$	10.0	ND	86.8	70-130	0.00	30	
,1,2-Trichloro-1,2,2-trifluoroethane (Freon 13)	8.71	1.0	μg/L	10.0	ND	87.1	70-130	1.27	30	
'inyl Chloride	10.1	2.0	μg/L	10.0	ND	101	70-130	0.199	30	
n+p Xylene	17.6	2.0	μg/L	20.0	ND	88.1	70-130	2.94	20	
-Xylene	8.43	1.0	μg/L	10.0	ND	84.3	70-130	0.119	30	
Zylenes (total)	26.0	1.0	$\mu g/L$	30.0	ND	86.8	0-200	1.94		
urrogate: 1,2-Dichloroethane-d4	24.5		μg/L	25.0		98.0	70-130			
surrogate: Toluene-d8	25.6		$\mu g/L$	25.0		103	70-130			
surrogate: 4-Bromofluorobenzene	23.7	356023-MW10E	μg/L	25.0		94.6	70-130			
Matrix Spike Dup (B341326-MSD2)	Sou	rce: 23E2893-	*		/25/23 Analyz	zed: 05/27/23	3			
acetone	76.3	50	$\mu g/L$	100	ND	76.3	70-130	2.67	30	
Benzene	9.37	1.0	$\mu g/L$	10.0	ND	93.7	70-130	3.36	30	
Bromochloromethane	9.45	1.0	$\mu g/L$	10.0	ND	94.5	70-130	3.43	30	
Bromodichloromethane	7.69	0.50	$\mu g/L$	10.0	ND	76.9	70-130	10.1	30	
Bromoform	6.16	1.0	$\mu g/L$	10.0	ND	61.6 *	70-130	1.29	30	MS-07A UJ MSL Sample and
romomethane	9.78	2.0	$\mu g/L$	10.0	ND	97.8	70-130	5.18	30	00 MOL Campic and
-Butanone (MEK)	85.2	20	$\mu g/L$	100	ND	85.2	70-130	0.837	30	
Carbon Disulfide	79.1	5.0	$\mu g/L$	100	ND	79.1	70-130	3.00	30	
arbon Tetrachloride	8.30	5.0	$\mu g/L$	10.0	ND	83.0	70-130	4.48	30	
Chlorobenzene	8.70	1.0	$\mu g/L$	10.0	ND	87.0	70-130	2.83	30	
Chlorodibromomethane	7.07	0.50	$\mu g/L$	10.0	ND	70.7	70-130	10.2	30	
Chloroethane	8.90	2.0	$\mu g/L$	10.0	ND	89.0	70-130	3.42	30	
Chloroform	8.63	2.0	$\mu g/L$	10.0	ND	86.3	70-130	5.08	30	
Chloromethane	9.26	2.0	μg/L	10.0	ND	92.6	70-130	3.92	30	
Cyclohexane	9.22	5.0	μg/L	10.0	ND	92.2	70-130	4.25	30	
,2-Dibromo-3-chloropropane (DBCP)	6.45	5.0	μg/L	10.0	ND	64.5 *	70-130	5.28	30	UJ MS-07A UJ MSL Sample and
,2-Dibromoethane (EDB)	8.11	0.50	$\mu g/L$	10.0	ND	81.1	70-130	5.05	30	
,2-Dichlorobenzene	8.80	1.0	$\mu g/L$	10.0	ND	88.0	70-130	2.02	30	
	0.46	1.0	$\mu g/L$	10.0	ND	84.6	70-130	3.14	30	
	8.46		∝/T	10.0	ND	83.1	70-130	1.09	30	
,4-Dichlorobenzene	8.46 8.31	1.0	μg/L						30	
,3-Dichlorobenzene ,4-Dichlorobenzene Dichlorodifluoromethane (Freon 12)		2.0	$\mu g/L$	10.0	ND	96.7	70-130	5.24		
,4-Dichlorobenzene Dichlorodifluoromethane (Freon 12) ,1-Dichloroethane	8.31				ND ND	96.7 88.5	70-130 70-130	5.24 4.64	30	
,4-Dichlorobenzene bichlorodifluoromethane (Freon 12)	8.31 9.67	2.0	$\mu g/L$	10.0						
,4-Dichlorobenzene bichlorodifluoromethane (Freon 12) ,1-Dichloroethane ,2-Dichloroethane	8.31 9.67 8.85	2.0 1.0	μg/L μg/L	10.0 10.0	ND	88.5	70-130	4.64	30	
,4-Dichlorobenzene bichlorodifluoromethane (Freon 12) ,1-Dichloroethane ,2-Dichloroethane ,1-Dichloroethylene	8.31 9.67 8.85 8.04	2.0 1.0 1.0	μg/L μg/L μg/L	10.0 10.0 10.0	ND ND	88.5 80.4	70-130 70-130	4.64 5.80	30 30	
,4-Dichlorobenzene ichlorodifluoromethane (Freon 12) ,1-Dichloroethane ,2-Dichloroethane ,1-Dichloroethylene is-1,2-Dichloroethylene ans-1,2-Dichloroethylene	8.31 9.67 8.85 8.04 8.23	2.0 1.0 1.0 1.0	μg/L μg/L μg/L μg/L	10.0 10.0 10.0 10.0	ND ND ND	88.5 80.4 82.3	70-130 70-130 70-130	4.64 5.80 7.71	30 30 30	
,4-Dichlorobenzene bichlorodifluoromethane (Freon 12) ,1-Dichloroethane	8.31 9.67 8.85 8.04 8.23 7.81	2.0 1.0 1.0 1.0	μg/L μg/L μg/L μg/L μg/L	10.0 10.0 10.0 10.0 10.0	ND ND ND ND ND	88.5 80.4 82.3 78.1	70-130 70-130 70-130 70-130 70-130 70-130	4.64 5.80 7.71 6.44 4.32 10.0	30 30 30 30	Page 82 of 93

RPD

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

QUALITY CONTROL

Spike

Source

%REC

Volatile Organic Compounds by GC/MS - Quality Control

Reporting

		Reporting		Spike	Source			%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%RE0	C	Limits	RPD	Limit	Notes
Batch B341326 - SW-846 5030B											
	~	356023-MW10			1/0.5/0.0 1 1	1.05/	25/2/				
Matrix Spike Dup (B341326-MSD2)	Sour	ce: 23E2893-			5/25/23 Analy	zed: 05/	27/23				
cis-1,3-Dichloropropene	6.72	0.50	μg/L	10.0	ND	67.2	*	70-130	6.48	30	UJ MSL Sample and FI
trans-1,3-Dichloropropene	6.26	0.50	μg/L	10.0	ND	62.6	*	70-130	6.49	30	UJ MSMSāmple and FD
1,4-Dioxane	64.4	50	μg/L	100	ND	64.4	*	70-130	10.3	30	MS-24 UJ MSL Sample and FD
Ethylbenzene	8.61	1.0	μg/L	10.0	ND	86.1		70-130	4.65	30	·
2-Hexanone (MBK)	68.7	10	$\mu g/L$	100	ND	68.7	*	70-130	0.985	30	MS-07A UJ MSL Sample and I
Isopropylbenzene (Cumene)	8.38	1.0	$\mu g/L$	10.0	ND	83.8		70-130	2.82	30	OJ MSL Sample and I
Methyl Acetate	3.43	1.0	$\mu g/L$	10.0	ND	34.3	*	70-130	10.8	30	UJMS275AmVI05and FD
Methyl tert-Butyl Ether (MTBE)	7.55	1.0	$\mu g/L$	10.0	ND	75.5		70-130	2.61	30	
Methyl Cyclohexane	8.46	1.0	$\mu g/L$	10.0	ND	84.6		70-130	6.07	30	
Methylene Chloride	8.32	5.0	$\mu g/L$	10.0	ND	83.2		70-130	2.26	30	
4-Methyl-2-pentanone (MIBK)	71.9	10	$\mu g/L$	100	ND	71.9		70-130	2.86	30	
Styrene	8.33	1.0	$\mu g/L$	10.0	ND	83.3		70-130	3.65	30	
1,1,2,2-Tetrachloroethane	8.00	0.50	$\mu g/L$	10.0	ND	80.0		70-130	1.37	30	
Tetrachloroethylene	8.32	1.0	$\mu g/L$	10.0	ND	83.2		70-130	3.43	30	
Toluene	8.75	1.0	μg/L	10.0	ND	87.5		70-130	5.45	30	
1,2,3-Trichlorobenzene	8.40	5.0	μg/L	10.0	ND	84.0		70-130	3.27	30	
1,2,4-Trichlorobenzene	7.80	1.0	μg/L	10.0	ND	78.0		70-130	0.893	30	
1,1,1-Trichloroethane	8.38	1.0	μg/L	10.0	ND	83.8		70-130	6.24	30	
1,1,2-Trichloroethane	8.35	1.0	μg/L	10.0	ND	83.5		70-130	5.93	30	
Trichloroethylene	8.39	1.0	μg/L	10.0	ND	83.9		70-130	3.40	30	
Trichlorofluoromethane (Freon 11)	8.58	2.0	μg/L	10.0	ND	85.8		70-130	4.11	30	
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon	8.63	1.0	μg/L	10.0	ND	86.3		70-130	2.74	30	
113)	0.05										
Vinyl Chloride	9.73	2.0	$\mu g/L$	10.0	ND	97.3		70-130	6.37	30	
m+p Xylene	17.0	2.0	$\mu g/L$	20.0	ND	84.9		70-130	4.77	20	
o-Xylene	8.24	1.0	$\mu g/L$	10.0	ND	82.4		70-130	4.28	30	
Xylenes (total)	25.2	1.0	$\mu g/L$	30.0	ND	84.1		0-200	4.61		
Surrogate: 1,2-Dichloroethane-d4	25.2		μg/L	25.0		101		70-130			
Surrogate: Toluene-d8	24.6		$\mu g/L$	25.0		98.6		70-130			
Surrogate: 4-Bromofluorobenzene	23.6		$\mu g/L$	25.0		94.4		70-130			

SVOC

NYSDEC PROJECT CATEGORY A REVIEW RECORD **Project: Mohonk Road** Method: SW-846 8270D (or specify) Laboratory and SDG(s): Pace **SDG**# 23E2893, 23E2901 Date: 11/7/2023 Reviewer: Julie Ricardi X CATEGORY A Review Level 1. Zase Narrative Review and Data Package Completeness **COMMENTS** Were problems noted? YES NO (circle one) Were all the samples on the COC analyzed for the requested analyses? YES NO (circle one) Are Field Sample IDs and Locations assigned correctly? YES NO (circle one) 2. Molding time and Sample Collection Were all water samples extracted within the 7 day holding time, and/or soil within 14 days? YES NO (circle one) Were extracts analyzed within 40 days of extraction? YES NO (circle one) 3. OC Blanks Are method blanks free of contamination? YES NO (circle one) Are field blanks free of contamination? YES NO NA (circle one) 4. Laboratory Control Sample Results (Nominal water&soil limits: Base/Neutral 50-140%, Acid 30-140%) Were all results within limits? YES NO (circle one) Lab Limits 5. Matrix Spike (Nominal water & soil limits: Base/neutral 50-140; Acid 30-140; RPD water = 20; RPD soil Were MS/MSDs submitted/analyzed? YES NO Were all results within limits? YES NO NA (circle one) See attached; J 1,4-D in MW6B / DUP-02 MSRPD 6. Surrogate Recovery (Nominal water and soil limits: Base/Neutral 50-140%, Acid 30-140%) Were all results within limits? YES NO (circle one) Were any recoveries < 10%? (Reject fraction compounds if ND and recoveries are < 10%) 7. **V** Field Duplicates (RPD limits = water:50, soil:100) Were Field Duplicates submitted/analyzed? YES NO Were RPDs within criteria. YES NO NA (circle one) MW6B / DUP-02: RPD = 71 J both results, FD 8. Z Reporting Limits: Were samples analyzed at a dilution? YES NO (circle one) 9. **Electronic Data Review and Edits**: Does the EDD match the Form Is? YES NO (circle one)

10. **Z** Table Review

 Table 1 (Samples and Analytical Methods)

Table 2 (Analytical Results)
Table 3 (Qualification Actions)

Were all tables produced and reviewed?

YES NO (circle one)

QUALITY CONTROL

1,4-Dioxane by isotope dilution GC/MS - Quality Control

		Reporting		Spike	Source		%REC		RPD					
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes				
Batch B341039 - SW-846 3510C														
Blank (B341039-BLK1)				Prepared: 05	5/23/23 Anal	yzed: 05/25/2	23							
1,4-Dioxane	ND	0.20	μg/L											
Surrogate: 1,4-Dioxane-d8	2.64		$\mu g/L$	10.0		26.4	15-110							
LCS (B341039-BS1)				Prepared: 05	5/23/23 Anal	yzed: 05/29/2	23							
1,4-Dioxane	10.3	0.20	μg/L	10.0		103	40-140							
Surrogate: 1,4-Dioxane-d8	3.26		μg/L	10.0		32.6	15-110							
LCS Dup (B341039-BSD1)				Prepared: 05	5/23/23 Anal	yzed: 05/25/2	23							
1,4-Dioxane	10.9	0.20	$\mu g/L$	10.0		109	40-140	5.31	30					
Surrogate: 1,4-Dioxane-d8	2.85		μg/L	10.0		28.5	15-110							
Matrix Spike (B341039-MS2)	Source	ee: 23E2893-	12	Prepared: 05	5/23/23 Anal	yzed: 06/02/2	23							
1,4-Dioxane	11.8	0.21	μg/L	10.5	NE	112	40-140							
Surrogate: 1,4-Dioxane-d8	3.52		$\mu g/L$	10.5		33.4	15-110							
Matrix Spike Dup (B341039-MSD2)	Source	ce: 23E2893-	12	Prepared: 05	5/23/23 Anal	yzed: 06/02/2	23							
1,4-Dioxane	10.8	0.20	μg/L	10.0	NE	108	40-140	8.40	20					
Surrogate: 1,4-Dioxane-d8	3.39		μg/L	10.0		33.9	15-110							
Batch B341193 - SW-846 3510C														
Blank (B341193-BLK1)				Prepared: 05	5/24/23 Anal	yzed: 05/29/2	23							
1,4-Dioxane	ND	0.20	μg/L											
Surrogate: 1,4-Dioxane-d8	3.03		μg/L	10.0		30.3	15-110							
LCS (B341193-BS1)				Prepared: 05	5/24/23 Anal	yzed: 05/29/2	23							
1,4-Dioxane	10.2	0.20	μg/L	10.0		102	40-140							
Surrogate: 1,4-Dioxane-d8	2.96		μg/L	10.0		29.6	15-110							
LCS Dup (B341193-BSD1)				Prepared: 05	5/24/23 Anal	yzed: 05/29/2	23							
1,4-Dioxane	10.8	0.20	μg/L	10.0		108	40-140	5.85	30					
Surrogate: 1,4-Dioxane-d8	3.22		μg/L	10.0		32.2	15-110							
Matrix Spike (B341193-MS3)	Sour	ce: 23E2893-	07	Prepared: 05	5/24/23 Anal	yzed: 05/29/2	23							
1,4-Dioxane	5.90	0.20	μg/L	10.0	0.467	54.3	40-140							
Surrogate: 1,4-Dioxane-d8	6.52		μg/L	10.0		65.2	15-110							
Matrix Spike Dup (B341193-MSD3)	Sour	ce: 23E2893-	07	Prepared: 05/24/23 Analyzed: 05/29/23										
1,4-Dioxane	11.6	0.20	μg/L	10.1	0.467	110	40-140	65.2	* 20	R-06				

ATTACHMENT A4 SPDES PERMIT EQUIVALENT - FEBRUARY 9, 2021

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

Division of Water, Bureau of Water Permits 625 Broadway, Albany, New York 12233 www.dec.ny.gov

M E M O R A N D U M SPDES Permit Equivalent

TO: Charles Gregory, DER

FROM: Alison Wasserbauer, Bureau of Water Permits, DOW

SUBJECT: SPDES Permit Equivalent: Mohonk Road Industrial Plant, DER Site ID#

3-56-023

DRAINAGE BASIN: 13 / 06

DATE: February 9, 2021

In response to your request dated September 29, 2020, attached please find the effluent limitations and monitoring requirements for the above noted remediation discharge.

The discharge consists of treated water from contaminated groundwater. The treatment system consists of a pump and treat system with bag filters and an air stripper.

The DOW does not have any regulatory authority over a discharge from a State, PRP, or Federal Superfund Site. DER will be responsible for ensuring compliance with the attached effluent limitations and monitoring requirements, and approval of all engineering submissions. The additional conditions identifies the appropriate DER contact person who will receive all effluent results, engineering submissions, and modification requests. The Regional Water Engineer should be kept appraised of the status of this discharge and, in accordance with the attached criteria, receive a copy of the effluent results for informational purposes.

If you have any questions, please call Alison Wasserbauer at 518-402-8126.

Attachment (Effluent Limitations and Monitoring Requirements)

cc: Region 3 Regional Water Engineer (via email, w/attach)
BWP Section Chief, DOW (via email, w/attach)

Site Name: Mohonk Road Industrial Plant

DER Site ID#: 3-56-023 Page 1 of 3 v1.0

EFFLUENT LIMITATIONS & MONITORING REQUIREMENTS

OUTFALL	DISCHARGE TYPE	LATITUDE/ LONGITUDE	RECEIVING WATER and CLASS	EFFECTIVE	EXPIRING
001	Treated Remediation Wastewater	41° 48' 56" N 74° 07' 33" W	Coxing Kill and Tribs, Class C(T)	2/9/2021	2/8/2026

The discharges from the treatment facility shall be limited and monitored by the operator as specified below:

Outfall and Parameters	CACNIC	Monthly	Daily	l lusita	Minimum Mo Requirem	•	FN
Outfall 001	CAS No.	Ave. Limits	Max Limits	Units	Measurement Frequency	Sample Type	FIN
Flow	NA	Monitor	72,000	GPD	Continuous	Recorder	
рН	NA	-	6.5 - 8.5	SU	Monthly	Grab	
Total Suspended Solids	NA	Monitor	20	mg/L	Monthly	Grab	
Total Dissolved Solids	NA	Monitor	Monitor	mg/L	Monthly	Grab	
Methylene Chloride	75-09-2	Monitor	10	μg/L	Monthly	Grab	
Acetone	67-64-1	Monitor	50	μg/L	Monthly	Grab	
1,1-Dichloroethylene	00075-35-4	Monitor	10	μg/L	Monthly	Grab	
1,1-Dichloroethane	75-34-3	Monitor	10	μg/L	Monthly	Grab	
1,1,1-Trichloroethane	00071-55-6	Monitor	10	μg/L	Monthly	Grab	
1,2-Dichloroethane	00107-06-2	Monitor	10	μg/L	Monthly	Grab	
Carbon Tetrachloride	00056-23-5	Monitor	10	μg/L	Monthly	Grab	
1,2-Dichloroethylene (Total)	540-59-0	Monitor	10	μg/L	Monthly	Grab	
Chloroform	00067-66-3	Monitor	10	μg/L	Monthly	Grab	
Trichloroethene	00079-01-6	Monitor	10	μg/L	Monthly	Grab	
1,4-Dioxane	00123-91-1	Monitor	Monitor	μg/L	Monthly	Grab	
1,1,2-Trichloroethane	00079-00-5	Monitor	10	μg/L	Monthly	Grab	
Benzene	00071-43-2	Monitor	5.0	μg/L	Monthly	Grab	1
Toluene	00108-88-3	Monitor	5.0	μg/L	Monthly	Grab	
Iron, Total	07439-89-6	Monitor	540	μg/L	Monthly	Grab	

Footnotes:

1. Benzene analyses must achieve an MDL of 0.2 μg/L and a PWL of 0.8 μg/L

Additional Conditions:

1. Discharge is not authorized until such time as an engineering submission showing the method of treatment is approved by the Department. The discharge rate may not exceed the effective or design treatment system capacity. All monitoring data, engineering submissions and modification requests must be submitted to:

Site Name: Mohonk Road Industrial Plant

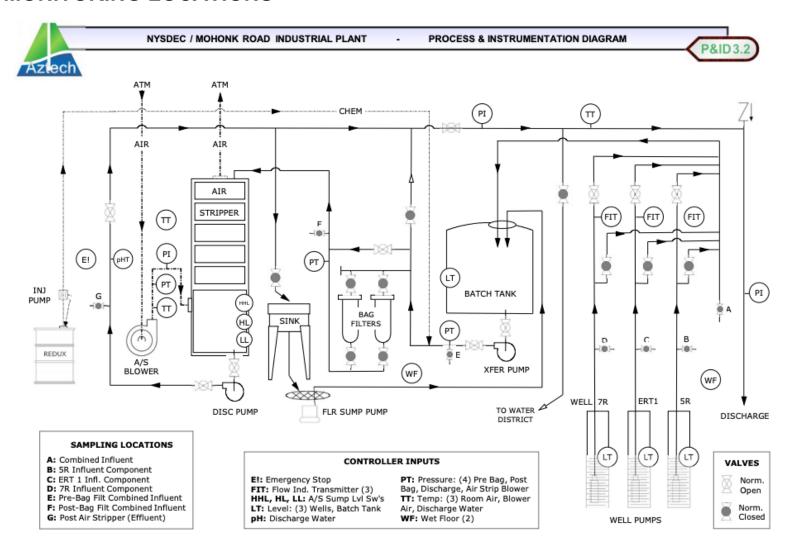
DER Site ID#: 3-56-023 Page 2 of 3 v1.0

Charles Gregory
Division of Environmental Remediation
NYSDEC, 625 Broadway, Albany, New York 12233- 7015,

Tel: 518-402-9819

With a copy sent to:

Regional Water Engineer, Region 3 100 Hillside Avenue, Suite 1W, White Plains, New York, 10603-2860 Phone: (914) 428-2505


- 2. Samples and measurements, to comply with the monitoring requirements specified above, must be taken from the effluent side of the final treatment unit prior to discharge to the receiving water body unless otherwise noted above.
- Only site generated wastewater is authorized for treatment and discharge.
- 4. Authorization to discharge is valid only for the period noted above but may be renewed if appropriate. A request for renewal must be received 6 months prior to the expiration date to allow for a review of monitoring data and reassessment of monitoring requirements.
- 5. Both concentration (mg/l or μg/l) and mass loadings (lbs/day) must be reported to the Department for all parameters except flow and pH.
- 6. Any use of corrosion/scale inhibitors, biocidal-type compounds, or other water treatment chemicals used in the treatment process must be approved by the department prior to use.
- 7. This discharge and administration of this discharge must comply with the substantive requirements of 6NYCRR Part 750.

Site Name: Mohonk Road Industrial Plant

DER Site ID#: 3-56-023 Page 3 of 3 v1.0

MONITORING LOCATIONS

