

Feasibility Study Report Millens Scrapyard Site (No. 356030) Kingston, New York Work Assignment D007624-17

Prepared for

New York State Department of Environmental Conservation Division of Environmental Remediation 625 Broadway Albany, New York 12233-7017

Prepared by

EA Engineering, P.C., and Its Affiliate EA Science and Technology 6712 Brooklawn Parkway, Suite 104 Syracuse, New York 13211-2158 (315) 431-4610

> July 2015 Version: FINAL EA Project No. 14907.17

Feasibility Study Report Millens Scrapyard Site (No. 356030) **Kingston**, New York Work Assignment D007624-17

Prepared for

New York State Department of Environmental Conservation Division of Environmental Remediation 625 Broadway Albany, New York 12233-7017

Prepared by

EA Engineering, P.C., and Its Affiliate EA Science and Technology 6712 Brooklawn Parkway, Suite 104 Syracuse, New York 13211-2158 (315) 431-4610

I, Donald F. Conan, certify that I am currently a NYS registered professional engineer as defined in 6 NYCRR Part 375 and that this Feasibility Study Report was prepared in accordance with all applicable statutes and regulations and in substantial conformance with the DER Technical Guidance for remedy selection and reporting (DER-10) and that all activities were performed in full accordance with the DER-approved work plan and any DER-approved modifications.

Donald F. Conan, PE Name

17 August 2015 Date

Oonall Signature

17 August 2015 Date

Donald F. Conan, P.E. Vice President

Christopher Schroer **Project Manager**

17 August 2015 Date

August 2015 Version: FINAL EA Project No. 14907.17

TABLE OF CONTENTS

Page

		JRES
		vi
		NONYMS AND ABBREVIATIONS
1.		DUCTION AND PROJECT OVERVIEW
	1.1	PURPOSE AND SCOPE
	1.2	REPORT ORGANIZATION1-1
	1.3	BACKGROUND 1-2
		1.3.1 Site Location
		1.3.2 Site History
		1.3.3 Current Site Features/Use
		1.3.4 Physiography1-3
		1.3.5 Site Geology1-3
		1.3.6Site Hydrology/Hydrogeology1-4
2.	SUMN	IARY OF REMEDIAL INVESTIGATION AND EXPOSURE ASSESSMENT2-1
	2.1	SUBSURFACE SOIL
	2.2	GROUNDWATER
3.	DEVE	LOPMENT OF REMEDIAL ACTION OBJECTIVES
5.	3.1	POTENTIALLY APPLICABLE OR RELEVANT AND APPROPRIATE
	5.1	REQUIREMENTS
		KEQUIKEWIEWIS
		3.1.1 Chemical-Specific Applicable or Relevant and Appropriate
		Requirements
		3.1.2 Action-Specific Applicable or Relevant and Appropriate Requirements 3-3
		3.1.3 Location-Specific Applicable or Relevant and Appropriate
		Requirements
	3.2	REMEDIAL ACTION OBJECTIVES
	3.3	VOLUME OF IMPACTED SOIL
4.	GENE	RAL RESPONSE ACTIONS
	4.1	GENERAL RESPONSE ACTIONS FOR SOIL
		4.1.1 No Action
		4.1.2 Site Management
		4.1.3 Containment
		4.1.4 Removal
		4.1.5 Treatment
		4.1.6 Disposal
	4.2	GENERAL RESPONSE ACTIONS FOR GROUNDWATER

		4.2.1 4.2.2 4.2.3 4.2.4	No Action 4 Site Management 4 Containment 4 Treatment 4	4-2 4-2
5.	IDENT 5.1		TION AND SCREENING OF TECHNOLOGIES	
		5.1.1 5.1.2 5.1.3	Effectiveness	5-1
	5.2	SCRE	ENING SUMMARY – SOIL5	5-1
		5.2.1 5.2.2	Soil Technologies Not Retained for Further Analysis	
	5.3	SCRE	ENING SUMMARY – GROUNDWATER5	5-2
		5.3.1 5.3.2	Groundwater Technologies Not Retained for Further Analysis	
6.	SCOP 6.1		ND DEVELOPMENT OF REMEDIAL ALTERNATIVES6 DIAL ALTERNATIVES6	
		6.1.1 6.1.2 6.1.3	Onsite Area Alternative 1: No Action	
		6.1.4	Controls	
7.	COST 7.1 7.2	COST	ND EVALUATION CRITERIA	7-1
8.	DETA 8.1		ANALYSIS OF ALTERNATIVES AND RECOMMENDATIONS	
		8.1.1 8.1.2 8.1.3 8.1.4 8.1.5	Overall Protectiveness of Public Health and the Environment	8-1 8-1 8-2

	8.1.6	Implementability	
		Cost-Effectiveness	
		Land Use	
	8.1.9	Community Acceptance	8-3
9.	REFERENC	CES	9-1
APPE	ENDIX A: F	REMEDIAL INVESTIGATION DATA TABLES AND FIGURES	

APPENDIX B:	TECHNOLOGY SCREENING LETTER
\mathbf{D}	

APPENDIX C: COSTS

LIST OF FIGURES

Title

1-1	Millens Scrapyard Site Location
1-2	Site Map
1-3	Millens Scrapyard Topographic Quadrangle Map
1-4	Groundwater Contours and Flow Direction
2-1	Remedial Investigation Summary of Soil Cleanup Objective Exceedances in Soil/Fill
3-1	Interpreted Horizontal Extent of Contaminated Soil/Fill
6-1	Alternative 3 Soil Cover, Monitored Natural Attenuation of Groundwater
6-2	Alternative 4 Hot Spot Excavation, Enhanced Aerobic Bioremediation for Groundwater

<u>Number</u>

LIST OF TABLES

Number

Title

- 5-1 Technology Screening Matrix
- 8-1 Alternative Evaluation Summary

LIST OF ACRONYMS AND ABBREVIATIONS

μg/L	Microgram(s) per liter			
ARAR	Appropriate or relevant and applicable requirement			
bgs	Below ground surface			
CERCLA CFR COC	Comprehensive Environmental Response, Compensation, and Liability Act Code of Federal Regulations Contaminant of concern			
DER	Division of Environmental Remediation			
EA EPA ESI	EA Engineering, P.C. and Its Affiliate EA Science and Technology United States Environmental Protection Agency Ecosystems Strategies, Inc.			
FS ft	Feasibility study Feet (foot)			
GRA	General response action			
in.	Inch(es)			
mi mg/kg	Mile(s) Milligram(s) per kilogram			
No. NYCRR NYSDEC	Number New York Code of Rules and Regulations New York State Department of Conservation			
ORC	Oxygen release compound			
RAO RCRA RI	Remedial action objective Resource Conservation and Recovery Act Remedial investigation			
SCG SCO SVOC	Standards, criteria, and guidance Soil cleanup objective Semivolatile organic compound			
VOC	Volatile organic compound			

1. INTRODUCTION AND PROJECT OVERVIEW

EA Engineering, P.C., and its affiliate EA Science and Technology (EA), under contract to the New York State Department of Environmental Conservation (NYSDEC) (Work Assignment No. D007624-17) were tasked to perform a remedial investigation (RI) and feasibility study (FS) at the Millens Scrapyard site (NYSDEC Site No. 356030) located in the city of Kingston, Ulster County, New York (Figure 1-1).

1.1 PURPOSE AND SCOPE

A limited RI/FS was conducted for the Millens Scrapyard site in September 2004 by Ecosystems Strategies, Inc. (ESI) (2004). In February 2010, EA was contracted by NYSDEC to prepare a Draft FS based on information presented in the 2004 RI/FS. While EA was producing the Draft FS, site owner B. Millens Sons, Inc. self-implemented a remedial action at the site from September 2009 through December 2010 without NYSDEC approval. As a result of the remedial action, the FS drafted by EA was never finalized. In 2012, EA was contracted by NYSDEC to conduct an RI/FS to evaluate current site conditions and the effectiveness of the remedial action performed by the property owner. The focus of the RI was to characterize the nature and extent of any liners or caps emplaced during the remedial action, evaluate the nature and extent of remaining impacts to onsite soil and groundwater. Additionally, an area of offsite surface soil was investigated.

This FS Report has been prepared to develop and evaluate alternatives for remedial action and to determine which alternative is the most appropriate, cost effective, and protective of public health and the environment for the Millens Scrapyard site based on the RI conducted by EA and the results of that investigation.

This FS has been conducted in accordance with the most recent versions of the 1988 United States Environmental Protection Agency (EPA) *Guidance for Conducting RIs and FSs under Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA)* (EPA 1988) and NYSDEC *Division of Environmental Remediation (DER)-10, Technical Guidance for Site Investigation and Remediation* (NYSDEC 2010), and focused on a limited number of remedial alternatives proven effective at addressing remediation of site contaminants of concern (COCs) identified during the RI (EA 2014).

1.2 REPORT ORGANIZATION

This FS Report is organized as follows:

- *Section 1*—Introduction and Project Overview
- Section 2—Summary of RI and Exposure Assessment
- Section 3—Development of Remedial Action Objectives (RAOs)
- *Section 4*—General Response Actions (GRAs)

- *Section 5*—Identification and Screening of Technologies
- *Section 6*—Scoping and Development of Remedial Alternatives
- *Section 7*—Costing and Evaluation Criteria
- Section 8—Detailed Analysis of Alternatives and Recommendations
- *Section 9*—References.

1.3 BACKGROUND

1.3.1 Site Location

The Millens Scrapyard site encompasses 74,528 square feet (ft) (1.7 acres) and is located at 230 East Strand Street, Kingston, New York in Ulster County at the confluence of Rondout Creek and the Hudson River (Figure 1-1). The site is situated in an industrialized area and is bordered on the east by North Street, on the north by East Strand Street, and on the south by a railroad right-of-way (Figure 1-2). The Millens Staging Area site (NYSDEC Site No. 356040) is located to the east of the scrapyard. Residential properties are located north and northwest of the site, and commercial property is located to the west. The property immediately west of the site historically operated as an oil storage facility consisting of storage tanks and a distribution depot (ESI 2004); the area is currently vacant. The former Kingston manufactured gas plant is located to the south, immediately opposite the railroad right-of-way. A natural gas transmission main is currently operated at the former manufactured gas plant. A 10-inch (in.) high pressure transmission line extends east from the manufactured gas plant site and generally along the railroad right-of-way. This transmission line angles northwest toward the Millens Staging Area.

1.3.2 Site History

For the past 50 plus years, the site has been used as a metal recycling and salvage yard. Scrap metal separation is the main activity conducted onsite. Over the years, various metals were stockpiled throughout the site. During the 1950s and into the early 1960s, electrical transformers were dismantled onsite (ESI 2004). A car crushing area was located in the northeast portion of the site. Before being crushed, vehicles were drained of fluids in the vehicle draining area located east of the car crusher. Once drained, vehicles were stored near the car crusher. Gasoline tanks were stored separately, southwest of the North Street gate (ESI 2004).

In 2009-2010, a remedial action was implemented and supervised by DT Consulting Services, Inc. Subsurface material was reportedly excavated from the site in a phased approach and disposed of offsite. The property was excavated in sections so that normal operations could continue at the site during remediation. After excavation activities were completed within each section, post-excavation soil samples were collected from the walls and floor of the excavated area, and submitted for laboratory analysis. Excavations were backfilled and a Claymax[®] LC Liner System was installed within each completed section. Concrete fragments, dust, and crushed stone were used for backfill at the site. No pre-characterization sampling and documentation was completed for backfill materials used to bring excavated areas to surface grade. An informal email to the NYSDEC from the property owner's attorney indicated that the remedial action was conducted in accordance with the Remedial Action Plan prepared by DT Consulting Services, Inc. in 2006 (DT Consulting Services, Inc. 2006); construction activities were completed in December 2010.

In 2012, the scrapyard operations were relocated to a new property purchased by B. Millens Sons, Inc., and remaining scrap and equipment were removed from the site.

1.3.3 Current Site Features/Use

The site has remained vacant since the relocation of the scrapyard operations in 2012. The site's main existing features include a brick building located in the northwestern portion of the site. There is currently a concrete slab foundation and sprung structure at the former vehicle crushing area located in the northeastern portion of the site. The remainder of the site is generally open space. Based on the city of Kingston records, the site appears to be connected to the central water and sewer system, as well as electrical and natural gas services. The main building located on the northwestern portion of the property has several floor drains with no known discharge. No groundwater supply wells are located onsite (ESI 2004).

1.3.4 Physiography

The subject site is located on the U.S. Geological Survey Kingston East Quadrangle, New York 7.5-minute series topographic map, dated 1980 (Figure 1-3). Topography at the site is generally flat. Elevation at the site is approximately 8 ft above mean sea level, with a predominant downward slope to the southeast toward Rondout Creek. The nearest surface water features, as noted on the topographic map, are Rondout Creek (located approximately 0.04 mile [mi] south) and the Hudson River (located approximately 0.4 mi east). Rondout Creek flows to the northeast into the south-flowing Hudson River.

1.3.5 Site Geology

The site is located in the Hudson-Mohawk Lowlands physiographic province. The Hudson lowlands are bounded by the Catskill Mountains to the west and the Taconic Mountains to the east. A review of the Bedrock Geologic Map of New York, Lower Hudson Sheet published by the University of the State of New York, the State Education Department (1970), indicates that bedrock in this area is made up of units of the Ordovician Austin Glen Formation, which includes sedimentary graywacke and shale units. The Surficial Geologic Map of New York Lower Hudson Sheet (1989) indicates that the soils in the vicinity of the site are either fill material or recent deposits. The recent deposits are typically confined to the flood plain areas within the valley. The soils tend to be oxidized, non-calcareous, fine sand and gravels occasionally overlain by silt.

Based on a description of well logs available from drilling conducted in support of the RI/FS (ESI 2004), the surficial and subsurface deposits at the site likely consist of various fill materials.

The subsurface materials encountered during the 2014 RI formed two distinct layers. The uppermost layer from 1 to 6 ft below ground surface (bgs) consisted of rocky fill material mixed with occasional sand and silt, brick, and crushed stone and concrete dependent on the location. The next deepest layer represented native material, which consisted of a wet sand and silt layer. Subsurface material below this layer was not investigated during the RI. The total depth and extents of excavations completed during previous remedial actions were not well documented; however, subsurface soil material at the site in the upper 6 ft of overburden consists largely of mixed fill materials. A demarcation layer was observed in some test pits and soil borings at depths ranging from approximately 0.3 to 1.3 ft bgs (4-16 in. bgs). The material used for the demarcation layer/cover material was not always consistent within the excavation cell or between cells. The areas where the demarcation area was observed corresponded roughly with areas reported to have been excavated; however, the liner/demarcation layer was not observed in all areas that were reportedly excavated (e.g., SB-16, SB-17, TP-07, etc.). Additionally, it is unclear as to the purpose of the demarcation layer/liner considering the shallow depth and inconsistent material and placement. The liner, as placed, does not protect all fill material from recontamination because it is not placed over the entire site.

1.3.6 Site Hydrology/Hydrogeology

The highest groundwater elevations have been observed at MW-1, located along the northern site boundary of the Millens Scrapyard site (6.80 ft above mean sea level in January 2013 and 5.69 ft above mean sea level in October 2013). The lowest groundwater elevations have been observed in MW-6, located just east of the southeast corner of the site (2.09 ft above mean sea level in January 2013 and 1.95 ft above mean sea level in October 2013).

Based on gauging results, shallow groundwater flow is generally to the south and southeast across the site toward Rondout Creek (Figure 1-4). The horizontal gradient across the site generally ranged from 0.01 to 0.02, with a steeper gradient of approximately 0.03 in the easternmost portion of the site between wells MW-10 and MW-11.

The site is located adjacent to a flood plain with surface water drainage and overland flow to the southeast following the slope toward Rondout Creek, located approximately 235 ft south/southeast. Rondout Creek discharges to the Hudson River, located approximately 1,000 ft to the east. The Hudson River flows south to the New York Harbor and Atlantic Ocean.

NYSDEC identifies Rondout Creek south of the site as a Class C water body, meaning its best usage is for fishing (NYSDEC 2010). The Hudson River is classified as a Class A water body, meaning it is used for a source of drinking water, swimming and other recreation, and fishing. The Port Ewen drinking water intake is located on the Hudson River approximately 2.3 mi downstream from the confluence of Rondout Creek and the Hudson River.

2. SUMMARY OF REMEDIAL INVESTIGATION AND EXPOSURE ASSESSMENT

The following sections briefly summarize the environmental impacts at the Millens Scrapyard site. Analytical results used in this FS were obtained from the RI (EA 2014).

This section is organized by media of potential concern. The impacts associated with the environmental media are based on analytical results and their comparison with the appropriate standards, criteria, and guidance (SCGs) based on site use:

- *Soil/Fill*—6 New York Code of Rules and Regulations (NYCRR) Part 375 Environmental Remediation Programs – Soil Cleanup Objectives (SCOs) (NYSDEC 2006) for Unrestricted Use.
- *Groundwater*—NYCRR Part 703.5 Surface Water and Groundwater Quality Standards and Groundwater Effluent Limitations, as presented in the Division of Water Technical and Operational Guidance Series 1.1.1, (NYSDEC 1998, as amended).

A full analysis of all data collected during the RI is included in the RI Report (EA 2014).

2.1 SUBSURFACE SOIL

The goal of the 2014 RI soil delineation efforts was to identify all contaminants exceeding unrestricted use SCOs. RI data were compared to SCOs to identify areas that may require remediation to meet unrestricted use.

Subsurface soil results from the 2014 RI indicate that site soil and fill materials contain several inorganic constituents, as well as semilvolatile organic compounds (SVOCs), volatile organic compounds (VOCs), and one polychlorinated biphenyl constituent exceeding unrestricted use SCOs (NYSDEC 2010). A summary of constituents that exceed SCOs is provided in the following table.

Constituents	6 NYCRR Part 375 Table 375-6.8(a) Unrestricted Use SCOs (mg/kg) Inorganic	No. of Exceedances/ No. of Samples	Concentration Range (mg/kg)
Arsenic		2/44	14.0.21.5
	13	_,	14.9-21.5
Barium	350	1/44	417
Cadmium	2.5	4/44	3.0-25.1
Chromium	30	1/44	41.8
Copper	50	7/44	73-624
Lead	63	12/44	68.8-2,500
Mercury	0.18	6/44	0.215-15.4
Nickel	30	3/44	35.3-80
Zinc	109	14/44	121-3,030

Constituents	6 NYCRR Part 375 Table 375-6.8(a) Unrestricted Use SCOs (mg/kg)	No. of Exceedances/ No. of Samples	Concentration Range (mg/kg)			
	VOCs					
Acetone	0.05	3/44	0.066-0.55			
Ethylbenzene	1	1/44	6.8			
Toluene	0.7	2/44	4.2-12			
Xylenes	0.26	5/44	0.75-39			
	SVOCs					
Benzo(a)anthracene	1	6/44	1.1-19			
Benzo(a)pyrene	1	6/44	1.2-17			
Benzo(b)fluoranthene	1	7/44	1.3-15			
Benzo(k)fluoranthene	0.8	7/44	1.3-12			
Chrysene	1	6/44	1.4-18			
Dibenzo(a,h)anthracene	0.33	2/44	0.52-2.9			
Indeno(1,2,3-cd)pyrene	0.5	7/44	0.77-9.6			
3+4 methylphenol	0.33	2/44	0.41-2.8			
Phenol	0.33	1/44	1.2			
Polychlorinated Biphenyls						
Aroclor	Aroclor 0.1 9/44 0.1-4.6					
NOTE: mg/kg = Milligra Table includes or one or more sam	nly those target analyte list metals	s that exceeded the standa	rd or guidance value in			

In general, the most elevated concentrations of COCs were observed in the center of the site, along the former site access roads; however, COCs were present at concentrations exceeding unrestricted use SCOs across much of the site (Figure 2-1). Soil/fill material concentrations that exceeded unrestricted use SCOs were generally observed at depths ranging from 3 to 8 ft bgs. RI data tables and figures are provided in Appendix A.

2.2 GROUNDWATER

The 2014 RI groundwater evaluation program included the installation of four new groundwater monitoring wells to supplement the existing monitoring well network followed by the completion of two rounds of groundwater sampling. For the January 2013 groundwater sampling event, samples were analyzed for total metals, dissolved metals, and VOCs. Due to the low concentrations of metals observed during the first event, October 2013 samples were only analyzed for VOCs. The table below provides a summary of the frequency of groundwater concentrations exceeding applicable groundwater quality standards.

The majority of the exceedances were detected in monitoring wells located in the southeast corner of the site (MW-12, MW-14, and MW-05). RI data tables and figures are provided in Appendix A.

EA Engineering, P.C., and Its Affiliate EA Science and Technology

	Groundwater Standards (s) and Guidance (g)	No. of Exceedances/	Concentration	Location of Maximum
Constituents	Values ^(a) (µg/L)	No. of Samples	Range (µg/L)	Concentration
		January 2013 Sam	pling Event	
		Total Meta		
Aluminum	100(s)	6/11	123-2,310	MW-12
Iron	300(s)	11/11	389-15,600	MW-13
Lead	25(s)	1/11	31	MW-12
Manganese	300(s)	9/11	577-6,840	MW-2
Sodium	20,000(s)	10/11	23,700-121,000	MW-14
		Dissolved M	letals	
Iron	300(s)	7/11	572-7,210	MW-6
Manganese	300(s)	9/11	585-4,220	MW-2
Sodium	20,000(s)	10/11	23,500-121,000	MW-14
		Volatile Organic (Compounds	
Acetone	50(g)	1/11	100	MW-14
Benzene	1(s)	3/11	1.2-46	MW-12
Ethylbenzene	5(s)	1/11	21	MW-12
Toluene	5(s)	2/11	12-120	MW-12
m,p-Xylene	5(s)	2/11	18-77	MW-12
o-Xylene	5(s)	2/11	13-46	MW-12
	S	Semivolatile Organi	c Compounds	
Phenol	1(s)	2/12	7.5-17	MW-12
		October 2013 Sam	pling Event	
Benzene	1(s)	4/11	2.6-64	MW-12
Ethylbenzene	5(s)	1/11	28	MW-12
Toluene	5(s)	1/11	140	MW-12
m,p-Xylene	5(s)	2/11	15-100	MW-12
o-Xylene	5(s)	2/11	8.1-55	MW-12
(a) NYSDEC 1998, as amended.(b) Inorganic constituents analyzed by EPA Method 6000/7000 series.				

NOTE: $\mu g/L =$ Micrograms per liter.

Table includes only those analytes that exceeded the standard or guidance value in one or more samples.

3. DEVELOPMENT OF REMEDIAL ACTION OBJECTIVES

Goals for the remedial program have been established through the remedy selection process stated in 6 NYCRR Part 375. The goal for all remedial actions is considered to be restoration of the site to the pre-disposal/pre-release conditions to the extent practicable and legal. RAOs are defined as the medium-specific or operable unit-specific cleanup objectives that provide protection of public health and the environment.

The media of concern at the Millens Scrapyard site are soil/fill material and groundwater. The COCs for soil/fill material and groundwater include inorganic and organic constituents. The full list of soil/fill COCs is provided in the table in Section 2.1. The full list of groundwater COCs is provided in the table in Section 2.2.

3.1 POTENTIALLY APPLICABLE OR RELEVANT AND APPROPRIATE REQUIREMENTS

Applicable or relevant and appropriate requirements (ARARs) are local, state, and federal regulations, including environmental laws and regulations that are used in the selection of remedial alternatives, as well as other non-environmental laws and regulations such as the Occupational Safety and Health Act. The development and evaluation of remedial alternatives include a comparison of alternative site remedies to ARARs. The recommended remedial action for the site must satisfy all ARARs unless specific waivers have been granted.

EPA defines "applicable" and "relevant and appropriate" in the revised National Contingency Plan, codified at 40 Code of Federal Regulations (CFR) 300.5 as follows:

- *Applicable Requirements*—Substantive environmental protection requirements, criteria, or limitations promulgated under federal or state law that specifically address a hazardous substance, pollutant, contaminant, remedial action, location, or other circumstances at a CERCLA site.
- *Relevant and Appropriate Requirements*—Standards of control that address problems or situations sufficiently similar to those encountered at a CERCLA site that their use is well suited to the particular site.

To determine whether a requirement is relevant and appropriate, characteristics of the remedial action, the hazardous substances present, and the physical characteristics of the site must be compared to those addressed in the statutory or regulatory requirement. In some cases, a requirement may be relevant, but not appropriate. In other cases, only part of a requirement will be considered relevant and appropriate. When it has been determined that a requirement is both relevant and appropriate, the requirement must be complied to the same degree as if it were applicable (EPA 1988).

ARARs for remedial action alternatives at the Millens Scrapyard site can be generally classified into one of the following three functional groups:

- *Chemical-Specific*—Health- or risk-based numerical values or methodologies that establish cleanup levels or discharge limits for particular contaminants. Typical examples of chemical-specific ARARs include those in NYSDEC regulations and in Resource Conservation and Recovery Act (RCRA) Toxicity Characteristic criteria.
- *Action-Specific*—Requirements that set controls or restrictions on the design, implementation, and performance levels of activities related to the management of hazardous substances, pollutants, or contaminants. Typical examples of action-specific ARARs include National Pollutant Discharge Elimination System requirements or Clean Air Act requirements.
- *Location-Specific*—Requirements that restrict remedial actions based on the characteristics of the site or its immediate environs. Typical examples of location-specific ARARs include federal/state wetlands protection guidelines.

To-be-considered materials (e.g., federal/state criteria, advisories, and guidance values) are nonpromulgated advisories or guidance issued by a federal or state government, which are not legally binding and, therefore, do not have the status of potential ARARs:

- Federal criteria, advisories, and guidance documents
- State of New York criteria, advisories, and guidance documents.

Federal and state guidance documents or criteria that are not generally enforceable, but are advisory, do not have the status of potential ARARs. Guidance documents or advisories to be considered in determining the necessary level of cleanup for protection of human health or the environment may be used where no specific ARARs exist for a chemical or situation, or where such ARARs are not sufficient to afford protection.

Federal and state requirements for soil, water, and air were considered to determine if they were ARARs, based on site characteristics, site location, and the alternatives considered. The following sections summarize the specific federal, state, and local ARARs for the remedial actions that may be taken at the Millens Scrapyard site, and for the types of technologies that will be developed into remedial alternatives. Each ARAR has been chosen for its potential applicability or relevance and appropriateness.

3.1.1 Chemical-Specific Applicable or Relevant and Appropriate Requirements

Chemical-specific requirements are established health- or risk-based numerical values or methodologies that establish cleanup levels or discharge limits in environmental media for specific substances or pollutants. Cleanup standards for impacted soil are defined in 6 NYCRR Part 375 Environmental Remediation Programs with SCOs specified for Unrestricted Use.

3.1.2 Action-Specific Applicable or Relevant and Appropriate Requirements

Action-specific ARARs set controls or restrictions on the design, implementation, and performance levels of activities related to the management of hazardous substances, pollutants, or contaminants. The potential action-specific ARARs include:

- *Occupational Safety and Health Act, 29 CFR 1910*—Site activities will be conducted under appropriate Occupational Safety and Health Act standards.
- Department of Transportation Rules for Hazardous Materials Transport, 49 CFR, Parts 107, 171.1-500—Addresses requirements for marking, manifesting, handling, and transport of hazardous materials; applicable if offsite treatment or disposal of wastes is required.
- *Solid Waste Management Facilities, 6 NYCRR Part 360*—Provides standards and regulations for permitting and operating solid waste management facilities.
- *Waste Transporter Permits, 6 NYCRR Part 364*—Provides standards and regulations for waste transporters.
- *Hazardous Waste Management System: General, 6 NYCRR Part 370*—Provides standards and regulations for the state hazardous waste management system.
- *Identification and Listing of Hazardous Wastes, 6 NYCRR Part 371*—Provides standards and regulations for the identification and listing of hazardous wastes.
- *Hazardous Waste Manifest System and Related Standards for Generators, Transporters, and Facilities, 6 NYCRR Part 372*—Provides standards, regulations, and guidelines for the manifest system, as well as additional standards for generators, transporters, and facilities.
- *RCRA Toxicity Characteristic Criteria, 40 CFR Part 261.24*—All waste generated during the removal alternative will be characterized and handled per RCRA regulations, as implemented by Washington Administrative Code 173-303.
- *Land Disposal Restrictions, 6 NYCRR Part 376*—Pertains to alternatives that require land disposal of hazardous wastes.

3.1.3 Location-Specific Applicable or Relevant and Appropriate Requirements

Location-specific ARARs must be considered when developing alternatives because these types of ARARs may affect or restrict remedial activities. Generally, location-specific requirements serve to protect the individual site characteristics, resources, and specific environmental features. The potential location-specific ARARs include:

• *Protection of Waters, 6 NYCRR Part 608*—Provides standards, regulations, and guidelines for the protection of waters within the state.

3.2 REMEDIAL ACTION OBJECTIVES

RAOs are developed to determine the level of contamination that the remedial action will address. The media cleanup goals are based on New York State SCGs, the site-specific risk assessment, COCs, site characteristics, and feasible actions. These goals can be achieved by either removing the soil/fill material contamination, or preventing impacts to human or ecological receptors via ingestion/direct contact with impacted soil.

RAOs for soil at the Millens Scrapyard site are:

Public Health Protection

- Prevent ingestion/direct contact with contaminated soil.
- Prevent inhalation of or exposure from contaminants volatilizing from contaminants in soil.

Environmental Protection

• Prevent migration of contaminants that would result in groundwater or surface water contamination.

RAOs for groundwater at the Millens Scrapyard site are:

For Public Health Protection

- Prevent ingestion of groundwater with contaminant levels exceeding drinking water standards.
- Prevent contact with, or inhalation of volatiles, from contaminated groundwater.

For Environmental Protection

- Restore ground water aquifer to pre-disposal/pre-release conditions, to the extent practicable.
- Prevent the discharge of contaminants to surface water.
- Remove the source of groundwater contamination.

3.3 VOLUME OF IMPACTED SOIL

Subsurface soil/fill material impacts identified during the 2014 RI were generally located along site roadways, though additional impacts were identified in the north-central part of the site by East Strand Street and along the southeast fence line. The extent of soil that exceeded SCOs was determined using a $10 - \times 10$ -ft grid (Figure 3-1). There is an estimated 3,700 cubic yards of contaminated soil at the site.

4. GENERAL RESPONSE ACTIONS

Remedial technologies fit into one or more category of GRAs. GRAs are generic, mediumspecific, remedial actions that will satisfy the RAOs discussed earlier. GRAs may include no action, institutional controls, containment, removal, treatment, disposal, monitoring, or a combination thereof (EPA 1988). The development of remedial alternatives for this FS begins with the identification of GRAs that can meet RAOs for both soil and groundwater. These GRAs are then screened based on their effectiveness, implementability, and cost; and developed into remedial alternatives to address impacted media at the site (i.e., soil and groundwater).

4.1 GENERAL RESPONSE ACTIONS FOR SOIL

GRAs for soil at the Millens Scrapyard site (including no action, site management, containment, removal, treatment, and disposal) are detailed in the following sections.

4.1.1 No Action

The no action alternative is included for use as the baseline alternative against which other remedial alternatives are compared.

4.1.2 Site Management

Site management (also known as institutional controls) involves the placement of a restriction on the use of property that limits human or environmental exposure, provides notice to any individual who might come in contact with the site, or prevents actions that would interfere with the effectiveness of a remedial program or with the effectiveness and/or integrity of site management activities at or pertaining to a site.

4.1.3 Containment

Soil and fill containment would be accomplished by installing either a soil cover or impermeable liner over the impacted soil to eliminate exposure and prevent transport through groundwater.

4.1.4 Removal

Physical removal of impacted fill would be conducted by excavation, using standard construction equipment (i.e., excavators) to remove material from the ground and load it into transport mechanisms (i.e., trucks) for offsite treatment or disposal.

4.1.5 Treatment

Treatment subjects contaminants to processes that alter their state, transforms them to innocuous forms, or immobilizes them. Potentially applicable treatment technologies for soil at this site include *in situ* biological treatment and *in situ* soil flushing.

Biological treatment involves the use of plants to treat the impacted media. This can be achieved through phytoextraction, which involves the physical removal of contaminants from the soil through plant.

Soil flushing is the use of water or other suitable aqueous solution to flush contaminants from soil. The fluid is then extracted *in situ*.

4.1.6 Disposal

Disposal involves transporting the soil to a landfill. The soil would either be placed in a lined landfill cell or used for daily cover, based on characterization results.

4.2 GENERAL RESPONSE ACTIONS FOR GROUNDWATER

GRAs for groundwater at the Millens Scrapyard site (including no action, site management, containment, and treatment) are detailed in the following sections.

4.2.1 No Action

The no action alternative is included for use as the baseline alternative against which other remedial alternatives are compared.

4.2.2 Site Management

Site management (also known as institutional controls) involves the placement of a restriction on the use of groundwater that limits human or environmental exposure, and prevents actions that would interfere with the effectiveness of a remedial program or with the effectiveness and/or integrity of site management activities at or pertaining to a site.

4.2.3 Containment

Groundwater containment would be accomplished by installing a slurry wall from the ground surface to the confining layer to either contain contaminated groundwater, or divert it away from drinking water intakes or toward a treatment system. Effectiveness is based on the ability to key the slurry wall into the confining layer, and cost is driven by the depth to this layer.

4.2.4 Treatment

Treatment subjects contaminants to processes that alter their state, transforms them to innocuous forms, or immobilizes them. Potentially applicable treatment technologies for groundwater at this site include *in situ* biological treatment including monitored natural attenuation and enhanced bioremediation, as well as *ex situ* physical/chemical treatment.

5. IDENTIFICATION AND SCREENING OF TECHNOLOGIES

The potentially applicable technologies identified earlier are screened using the process defined in DER-10, Technical Guidance for Site Investigation and Remediation (NYSDEC 2010). Three preliminary screening criteria (i.e., effectiveness, implementability, and cost) were used to screen the remedial technologies identified earlier for each media of concern. The results of the technology screening process were summarized in a letter dated 3 October 2014 from EA to NYSDEC; a copy of the letter is provided in Appendix B. The screening of alternatives was designed to provide a basis for an overall assessment of applicable technologies based on impacted media identified at the site and related areas during the RI.

5.1 SCREENING CRITERIA

5.1.1 Effectiveness

Effectiveness is a measure of the ability of an option to: (1) reduce toxicity, mobility, or volume of contamination, (2) minimize residual risks, (3) afford long-term protection, (4) comply with ARARs, (5) minimize short-term impacts, and (6) achieve protectiveness in a limited duration. Technologies that offer significantly less effectiveness than other proposed technologies may be eliminated from the alternative development process. Options that do not provide adequate protection of human health and the environment likewise may be eliminated from further consideration.

5.1.2 Implementability

Implementability is a measure of the technical feasibility and availability of the option and the administrative feasibility of implementing it (e.g., obtaining permits for offsite activities, right-of-ways, or construction). Options that are technically or administratively infeasible or that would require equipment, specialists, or facilities that are not available within a reasonable period may be eliminated from further consideration.

5.1.3 Cost

Qualitative relative costs for implementing the remedy are considered. Technologies that cost more to implement, but that offer no benefit in effectiveness or implementability over other technologies, may be excluded from the alternative development process.

5.2 SCREENING SUMMARY – SOIL

5.2.1 Soil Technologies Not Retained for Further Analysis

From the list of technologies potentially applicable for remediation of the COCs in soil at this site, a few technologies were excluded from further consideration because they were considered ineffective, not implementable at this site, or too costly relative to the other technologies under consideration (Table 5-1). The reasons for exclusion are presented in this section.

Enhanced bioremediation was not retained because it would require a long timeframe with limited effectiveness. Cold temperatures would slow the process. A treatability study would also need to be completed to determine the effectiveness of this application of the technology.

Ex situ biological treatment was not retained because it would require a large amount of space for staging of biopiles. A treatability study would also need to be completed to determine the effectiveness of this application of the technology.

Impermeable cover was not retained because it costs more than soil cover, which would adequately address the RAOs.

Soil flushing was not retained due to the high relative cost and unknown level of effectiveness.

Solidification was not retained because it would not be effective for VOC or SVOC contaminants in the soil.

Acid leaching was not retained due to difficulty of implementation. This technology also requires a long timeframe for implementation with a significantly higher cost than other screened technologies.

5.2.2 Soil Technologies Retained for Further Analysis

Technologies that will be retained for further evaluation are removal, disposal, and containment. Removal would be implemented through the excavation of impacted soil using an excavator. Disposal would be implemented through loading and transporting excavated soil to appropriate offsite disposal facilities. Soil would be characterized and accepted by the disposal facility prior to transport. Containment would be implemented through the placement of a 2-ft soil cover over remaining impacted soil.

5.3 SCREENING SUMMARY – GROUNDWATER

5.3.1 Groundwater Technologies Not Retained for Further Analysis

From the list of technologies potentially applicable for remediation of the COCs in groundwater at this site, a few technologies were excluded from further consideration because they were considered ineffective, not implementable at this site, or too costly relative to the other technologies under consideration (Table 5-1). The reasons for exclusion are detailed below.

The use of physical barriers was not retained. Groundwater sampling results indicated exceedances of SCGs in both onsite and offsite groundwater. These contaminants would not be contained by a barrier placed within the site boundary.

Filtration was not retained. This technology has moderately high startup costs, and would require long-term maintenance and monitoring, including replacement of filters, and disposal of spent filter materials.

5.3.2 Groundwater Technologies Retained for Further Analysis

Technologies that will be retained for further evaluation are monitored natural attenuation and enhanced bioremediation. Monitored natural attenuation would involve natural degradation processes that cause contaminants to break down over the long term. Groundwater would be monitored to track progress. Enhanced bioremediation would involve the addition of reagents to the contaminated groundwater that would augment the natural degradation processes. Long-term monitoring would be required; however, the breakdown process is expected to be much faster than monitored natural attenuation.

6. SCOPING AND DEVELOPMENT OF REMEDIAL ALTERNATIVES

Scoping for the FS was completed based on correspondence between EA and the NYSDEC. EA performed the alternative comparison in accordance with DER-10 (NYSDEC 2010) and the EPA publication *Guidance for Conducting RIs and FSs under CERCLA* (EPA 1540IG-891004) (EPA 1988).

The scoping and development of the technologies/alternatives selected during the previous step of the FS process and during discussions with NYSDEC are described below. Each alternative takes a comprehensive approach, involving remediation of both soil and groundwater.

6.1 **REMEDIAL ALTERNATIVES**

The extent and volume of soil requiring remediation was determined based on data collected during the RI (EA 2014) (Figure 3-1). This treatment area includes localized areas along site roadways, in the north-central part of the site by East Strand Street, and along the south-east fence line. Groundwater contamination was identified along the eastern and southern boundaries of the site. Four alternatives have been considered for this site, including a No Action alternative as Alternative 1.

6.1.1 Onsite Area Alternative 1: No Action

The no action alternative is evaluated as a procedural requirement and as a basis for comparison. This alternative would leave the area in its present condition.

6.1.2 Alternative 2: Site Management

Site management includes the placement of land/groundwater use restrictions, implementation of increased site security, and long-term groundwater monitoring. Land use restrictions may take the form of an environmental easement or deed restriction, which will restrict or limit the use of the land and/or groundwater. Site security would involve repairing/maintaining the site entrance controls (i.e., gates and locks) and the perimeter fence. Onsite and offsite groundwater monitoring wells would be sampled semiannually for the first 5 years, and be reduced to annually for the following 25 years to track any changes in site-related contaminant concentrations in groundwater.

6.1.3 Alternative 3: Capping of Contaminated Soil with a Soil Cover, Monitored Natural Attenuation of Groundwater, and Institutional Controls

Alternative 3 involves the placement of a soil cover over impacted areas. Erosion and sedimentation control measures would be installed to prevent sediment migration offsite during construction activities. Prior to placement of the soil cover, existing impacted soil would be re-graded slightly to accommodate smooth grades with the additional cover soil to be placed as well so as to promote positive surface drainage toward the southeast. A non-woven geotextile fabric would be placed over the area shown on Figure 6-1 to serve as a demarcation layer

indicating remaining impacts. Eighteen inches of common fill followed by 6 in. of topsoil would be placed over the geotextile. The soil cover would be seeded and mulched to promote vegetative growth.

Following the placement of the soil cover, site management activities discussed in Section 6.1.2 would be completed and site groundwater would be monitored for natural attenuation. Groundwater monitoring would be completed semiannually for the first 5 years and annually for the following 25 years. Onsite monitoring wells would need to be protected during the placement of the soil cover, but would not need to be replaced.

6.1.4 Alternative 4: Hot Spot Excavation, Enhanced Aerobic Bioremediation for Groundwater, and Institutional Controls

Under this alternative, soil that contains contaminants at concentrations exceeding unrestricted use SCOs would be excavated and disposed of offsite and groundwater would be treated using an oxygen release compound (ORC[®]). A pre-design assessment of groundwater microbial communities for selection of the ORC reagent would be completed prior to remediation. In addition, a pre-design characterization study would be completed to verify hazardous versus non-hazardous soil/fill quantities.

Prior to commencement of excavation activities, the following site preparation activities would take place:

- All existing site monitoring wells would be sampled to establish the baseline conditions.
- Erosion and sedimentation control measures would be installed to prevent sediment migration offsite during excavation activities.
- Monitoring wells MW-1, MW-7R, and MW-12 would be decommissioned.
- A surveyor would mark out the excavation limits.

Following site preparation, materials would be excavated and disposed of offsite at an approved disposal facility. Analytical soil/fill material data obtained during the RI were from total constituent analysis rather than Toxicity Characteristic Leaching Procedure extraction. Based on weight tickets obtained from the 2009-2010 remedial action, approximately 40 percent of material was disposed of as hazardous waste. Based on the RI results and the quantity from the previous remedial action, it is estimated that 35 percent of the soil would be disposed of as hazardous waste. The remaining 65 percent would be disposed of as non-hazardous waste. These quantities may change based on the pre-design characterization study.

Following excavation to depths shown on Figure 6-2, confirmation soil samples would be collected at a rate of one per 900 square ft on the excavation bottoms and one per 30 linear ft along excavation sidewalls. Following confirmation soil sampling, the excavated areas would be restored to smooth grades using clean fill and topsoil from offsite; however, an area in the

southeast corner of the site would be prepared for ORC reagent application before it is restored. A 20- \times 20-ft area shown on Figure 6-2 would be excavated an additional 5 ft to intersect the groundwater interface by 2 ft and facilitate effective reagent application. The ORC reagent would be deposited in the exposed groundwater to enhance degradation of VOC contaminants in groundwater. Following application, the additionally excavated soil (which had previously been confirmed to be clean) would be returned to the excavation and the remaining excavation would be restored to smooth grades using clean fill and topsoil from offsite. The following would be completed as part of site restoration:

- All fill materials would be placed and compacted in 1-ft lifts.
- Seed and mulch would be applied to all disturbed areas.
- Monitoring wells MW-1, MW-7R, and MW-12 would be replaced and developed.

Monitoring wells would be sampled quarterly for the first year and annually for an additional 29 years to monitor the effectiveness of the reagent application. Additional applications may be necessary and would be determined based on monitoring results.

7. COSTING AND EVALUATION CRITERIA

7.1 COST ASSUMPTIONS

Cost assumptions were prepared for each alternative using EPA's *Guide to Developing and Documenting Cost Estimates during the FS* (EPA 1996). Net present value of the project costs was estimated using an interest rate of 5 percent. The cost assumptions were calculated using the most common products and application methods available for a remedial alternative. The EPA guidance was used in conjunction with *DER-10 Technical Guidance for Site Investigation and Remediation* (NYSDEC 2010).

Cost estimates were prepared for each alternative based on the assumptions detailed in Chapter 6. Appendix C shows the detailed cost estimates developed. A summary of the costs for all alternatives is provided in this table.

Alternative	Net Present Value	Capital Cost	Annual Cost (Years 1-5)	Annual Cost (Years 6-30)				
Alternative 2								
Site Management	\$214,464	\$28,675	\$18,860	\$18,860				
	Alternati	ve 3						
Soil Cover, Monitored Natural Attenuation of Groundwater, and Institutional Controls	\$593,033	\$376,302	\$22,001	\$11,000				
	Alternati	ve 4						
Hot Spot Excavation, Enhanced Aerobic Bioremediation for Groundwater, and Institutional Controls	\$1,975,977	\$1,845,920	\$28,904	\$7,226				

7.2 CRITERIA USED FOR ANALYSIS OF ALTERNATIVES

The criteria to which potential remedial alternatives are compared (and used during this detailed analysis) are defined in 6 NYCRR Part 375 (NYSDEC 2006) and are listed below:

- Overall protectiveness of public health and the environment
- Conformance to SCGs
- Long-term effectiveness and permanence
- Reduction in toxicity, mobility, or volume of contamination through treatment
- Short-term impacts and effectiveness
- Implementability
- Cost effectiveness
- Land use
- Community acceptance.

A description of the criteria and how alternatives are evaluated against them follows.

Overall Protectiveness of Public Health and the Environment—This criterion is an overall evaluation of each alternative's ability to protect public health and the environment.

Conformance to SCGs—Compliance with SCGs addresses whether a remedy would meet environmental laws, regulations, and other standards and criteria. The SCGs were presented in Chapter 3.

Long-Term Effectiveness and Permanence—This criterion evaluates the long-term effectiveness of the remedial alternatives after implementation. If wastes or treated residuals remain onsite after the recommended remedy has been implemented, the following items are evaluated: (1) magnitude of the remaining risks, (2) adequacy of the engineering and/or institutional controls intended to limit the risk, and (3) reliability of these controls.

Reduction of Toxicity, Mobility, or Volume of Contamination through Treatment—The degree to which the alternative permanently reduces the toxicity, mobility, or volume of hazardous substances including the adequacy of the alternative in destroying the hazardous substances, reduction or elimination of hazardous substance releases and sources of releases, degree of irreversibility of waste treatment process, and characteristics and quantity of treatment residuals generated. Preference is given to alternatives that permanently and significantly reduce the toxicity, mobility, or volume of the wastes at the site.

Short-Term Impacts and Effectiveness—Evaluation of the short-term effectiveness for an alternative includes consideration of the risk to human health and the environment associated with the alternative during construction and implementation, and the effectiveness of measures that will be taken to manage such risks. Impacts from remedial action implementation include vehicle traffic; temporary relocation of residences/buildings; temporary closure of public facilities; odor; open excavations; and noise, dust, and safety concerns associated with extensive heavy equipment activity. The greatest short-term risk to human health is related to safety and general construction activity.

Implementability—The technical and administrative feasibility of implementing each alternative is evaluated. Technical feasibility includes the difficulties associated with construction of the remedy and the ability to monitor its effectiveness. For administrative feasibility, the availability of the necessary personnel and materials is evaluated along with potential difficulties in obtaining specific operating approvals, access for construction, institutional controls, and other potential implementation barriers.

Cost-Effectiveness—Capital costs and annual operation, maintenance, and monitoring costs are estimated for each alternative and compared on a present worth basis. Although cost-effectiveness is the last balancing criterion evaluated, where two or more alternatives have met the requirements of the other criteria, it can be used as the basis for the final decision.

Land Use—The current and anticipated future use of the site will be considered. Land use must comply with applicable zoning laws and maps.

Community Acceptance—Public comments will be considered after the close of the public comment period.

EA Project No. 14907.17

8. DETAILED ANALYSIS OF ALTERNATIVES AND RECOMMENDATIONS

The purpose of this FS was to develop, screen, and evaluate potential remedial alternatives for the Millens Scrapyard site. Remedies were identified and screened in accordance with EPA (1988, 1996) and NYSDEC (1998, 2006, 2010) guidance. The comparison of alternatives and recommendations are described below; and summarized in Table 8-1.

The following remedial alternatives are considered for this FS:

- *Alternative 1*—No Action.
- *Alternative 2*—Site Management.
- *Alternative 3*—Capping of Contaminated Soil with a Soil Cover, Monitored Natural Attenuation of Groundwater, and Institutional Controls.
- *Alternative* **4**—Hot Spot Excavation, Enhanced Aerobic Bioremediation for Groundwater, and Institutional Controls.

8.1 COMPARISON OF ALTERNATIVES

8.1.1 Overall Protectiveness of Public Health and the Environment

This criterion is an overall evaluation of each alternative's ability to protect public health and the environment.

Alternative 1 does not fulfill this criterion. Alternative 2 fulfills this criterion through the implementation of institutional controls. Through containment, Alternative 3 closes off the soil exposure pathway; in conjunction with the implementation of institutional controls, this criterion is fulfilled. Alternative 4 fulfills this criterion by removing the contaminants from the site.

8.1.2 Standards, Criteria, and Guidance

Compliance with SCGs addresses whether a remedy will meet environmental laws, regulations, and other standards and criteria.

Alternatives 1, 2, and 3 do not meet this criterion, as soil exceeding SCGs will remain onsite. Alternative 4 fulfills this criterion by removing soil and treating groundwater exceeding SCGs.

8.1.3 Long-Term Effectiveness and Permanence

This criterion evaluates the long-term effectiveness of the remedial alternatives after implementation. If fill or treated residuals remain onsite after the recommended remedy has been implemented, the following items are evaluated: (1) magnitude of the remaining risks, (2) adequacy of the engineering and/or institutional controls intended to limit the risk, and (3) reliability of these controls.

Alternatives 1 and 2 will not provide long-term effectiveness or permanence. Alternative 3 would moderately fulfill this criterion, as it involves leaving impacted soil/fill onsite and would require long-term monitoring. Alternative 4 would fulfill this criterion because contaminants would be removed from the site.

8.1.4 Reduction of Toxicity, Mobility, or Volume of Contamination through Treatment

Preference is given to alternatives that permanently and significantly reduce the toxicity, mobility, or volume of contamination through treatment at the site.

Alternatives 1 and 2 do not employ treatment and will not reduce the toxicity, mobility, or volume of contamination. Alternative 3 will not reduce the toxicity or volume of contamination, but will reduce the mobility of soil contaminants by containment. Alternative 4 will fulfill this criterion via removal (soil) and treatment (groundwater) of contamination.

8.1.5 Short-Term Impacts and Effectiveness

This criterion evaluates the potential short-term adverse impacts of the remedial action upon the community, the workers, and the environment during the construction and/or implementation. The length of time needed to achieve the remedial objectives is also estimated and compared against the other alternatives.

Alternatives 1 and 2 do not pose additional risk to the community, workers, or environment, as there are no construction activities involved. Alternatives 3 and 4 pose increased short-term risks to the public during grading and excavation, through the production of dust; these effects can be reduced through the implementation of standard dust mitigation construction practices. Workers can potentially be exposed to impacted media during grading and excavation activities involved in Alternatives 3 and 4. Risks can be minimized by implementing health and safety controls, including the use of appropriate personal protective equipment.

8.1.6 Implementability

This criterion evaluates the technical and administrative feasibility of implementing each alternative.

All alternatives are implementable and have been used nationally.

8.1.7 Cost-Effectiveness

This criterion evaluates estimated capital costs, as well as annual operation, maintenance, and monitoring costs on a present-worth basis.

Alternative 1 is the least expensive, but is also the least effective. Alternative 2 could be implemented at a relatively low cost; however, this alternative is not effective. Alternative 3 is moderately expensive, and is also moderately effective. This alternative would serve to protect

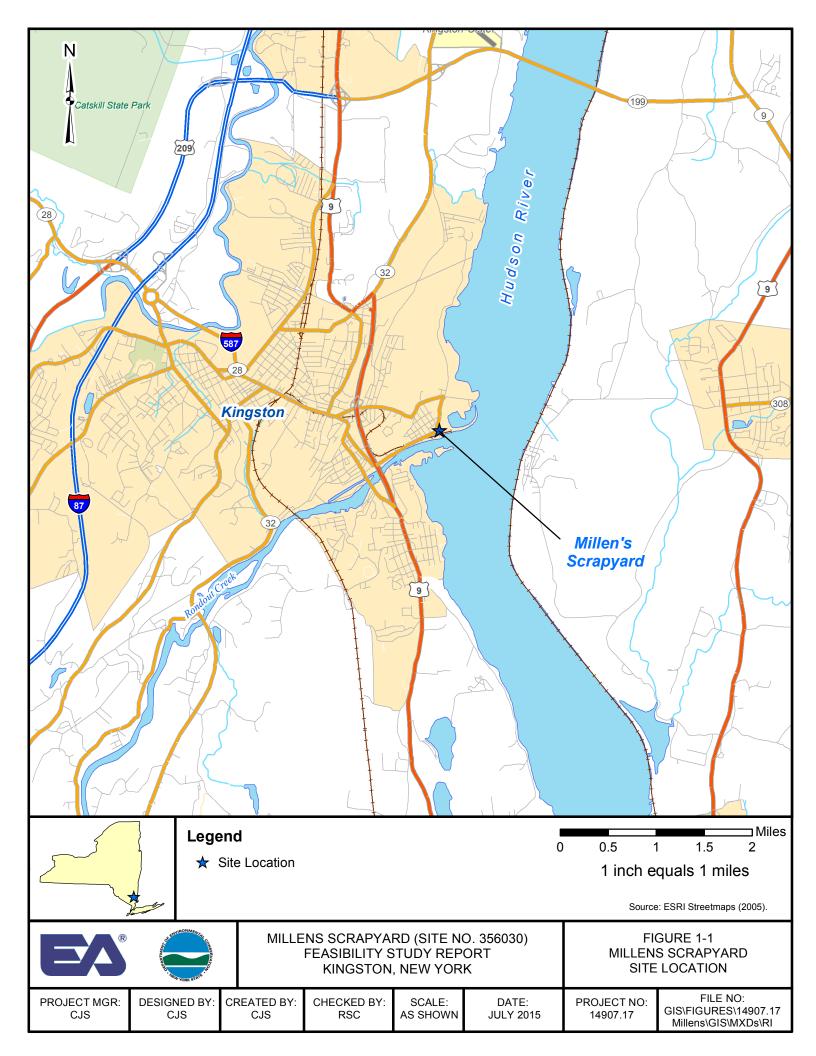
EA Project No. 14907.17

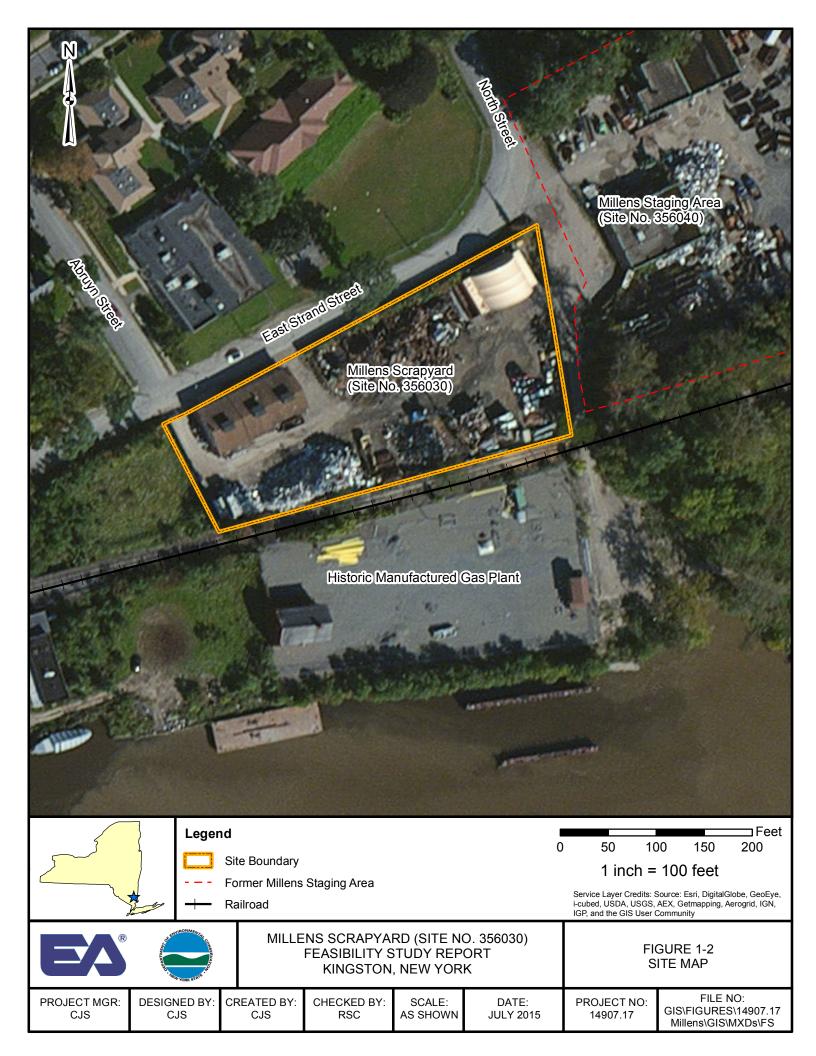
public health without removing the contaminants. Alternative 4 is the most expensive, but is also the most effective.

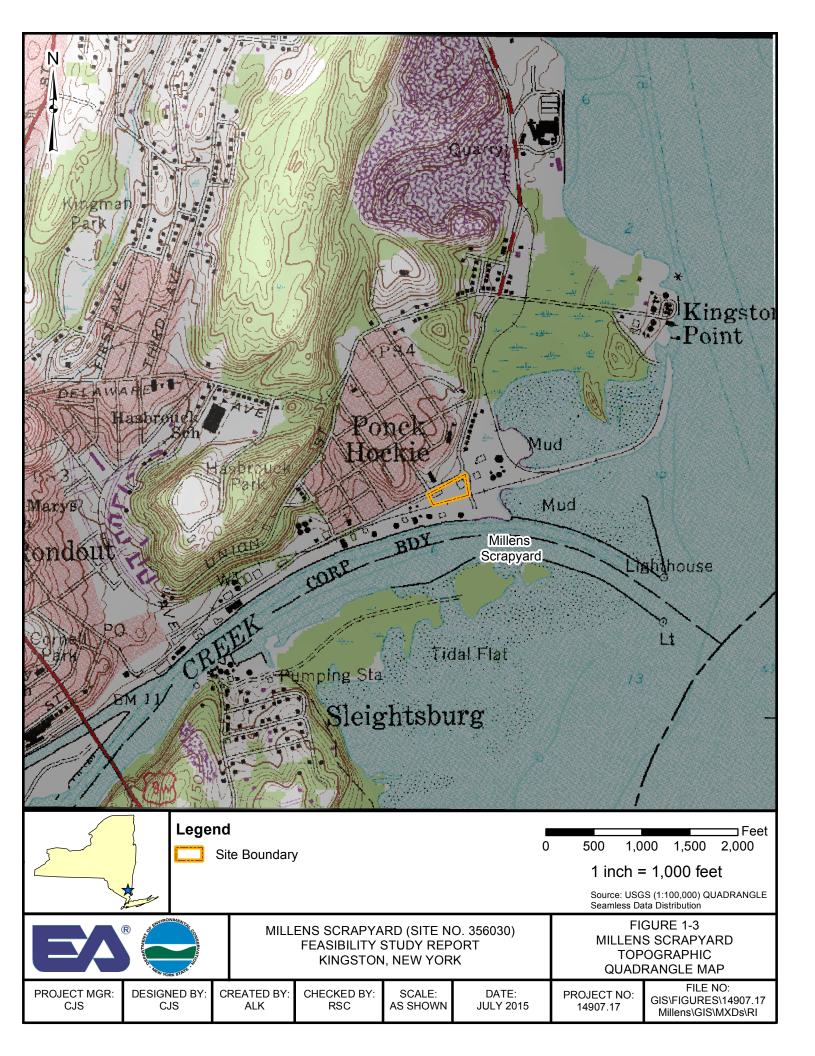
8.1.8 Land Use

Alternatives 1 and 2 would not affect the future use of the site since contamination would remain. Alternative 3 involves a soil cover, and land use would be limited. Alternative 4 involves the removal of fill with concentrations exceeding unrestricted use SCGs, which would result in less restricted land use.

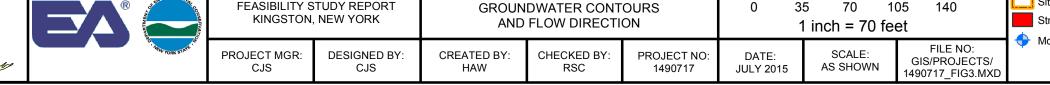
8.1.9 Community Acceptance


This criterion evaluates concerns of the community regarding the investigation and evaluation of alternatives. The Millens Scrapyard site has not been presented to the community for comment at this point.


Based on consideration of all of the above criteria, Alternative 3 is recommended because it is the lowest cost alternative that will effectively protect public health.


9. REFERENCES

- DT Consulting Services, Inc. 2006. Remedial Action Plan. March.
- EA Engineering, P.C., and Its Affiliate EA Science and Technology (EA). 2014. *Remedial Investigation Report, Millens Scrapyard Site (356030), City of Kingston, Ulster County, New York.* August.
- Ecosystems Strategies, Inc. (ESI). 1996. Liquid Management Plan and Spill Response Procedures-Vehicle Crushing Operations. August.
- ——. 2004. Remedial Investigation/Feasibility Study Performed on the B. Millens Sons, Inc. Property, 230 East Strand, Kingston, New York. September.
- New York State Department of Conservation (NYSDEC). 1998. NYSDEC Division of Water Technical and Operational Guidance Series (1.1.1) Ambient Water Quality Standards (Class GA). June.
 - ——. 2006. 6 New York Code of Rules and Regulations (NYCRR) Part 375 Environmental Remediation Programs Soil Cleanup Objectives. 14 December.
 - ——. 2010. DER-10 Technical Guidance for Site Investigation and Remediation. May.
- United States Environmental Protection Agency (EPA). 1988. Guidance for Conducting Remedial Investigations and Feasibility Studies under Comprehensive Environmental Response, Compensation, and Liability Act. EPA 1540IG-891004.
- ——. 1996. A Guide to Developing and Documenting Cost Estimates during the Feasibility Study. EPA 542-F-96-007. EPA Office of Solid Waste and Emergency Response. April.


Figures

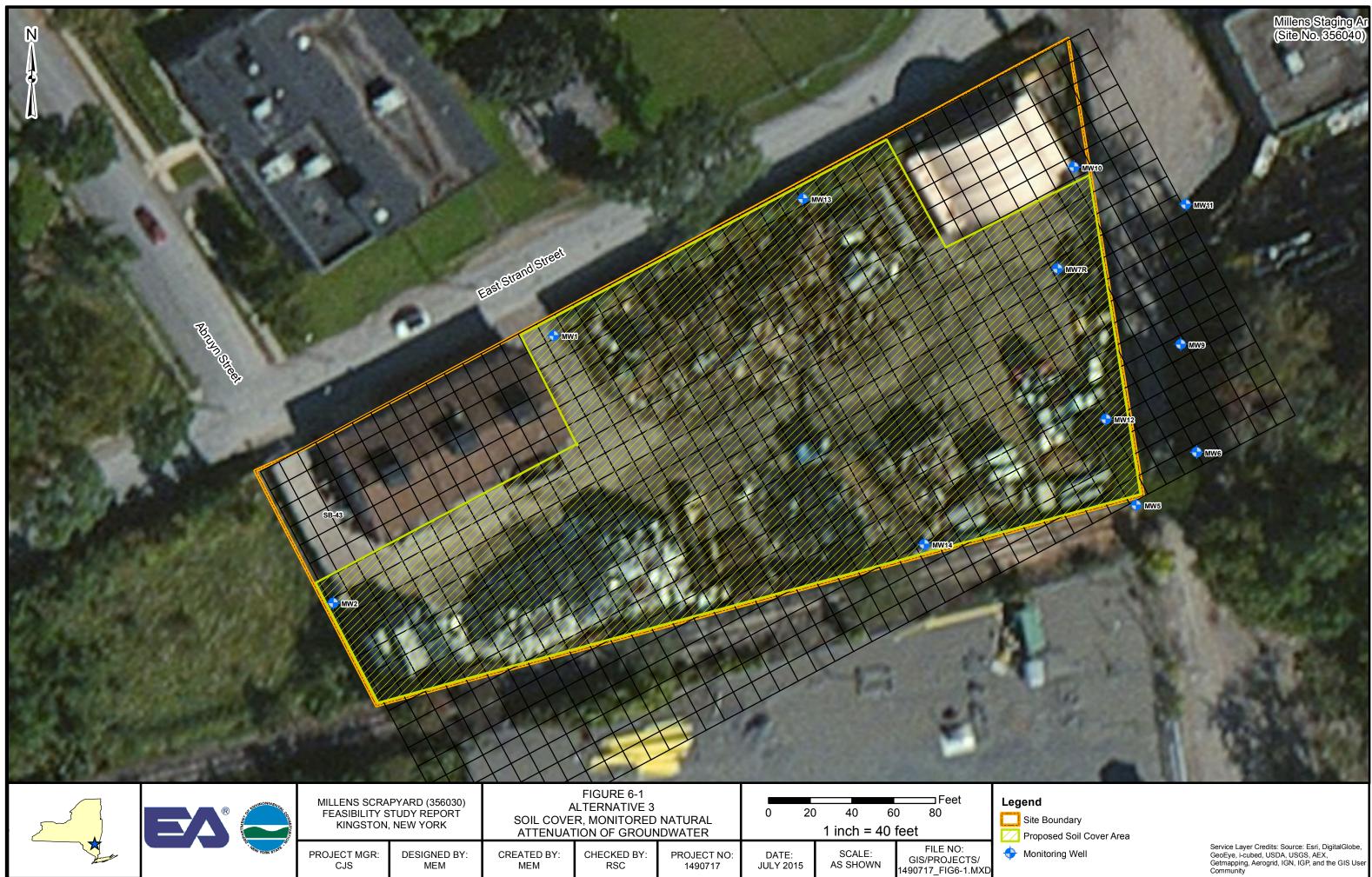


Structures

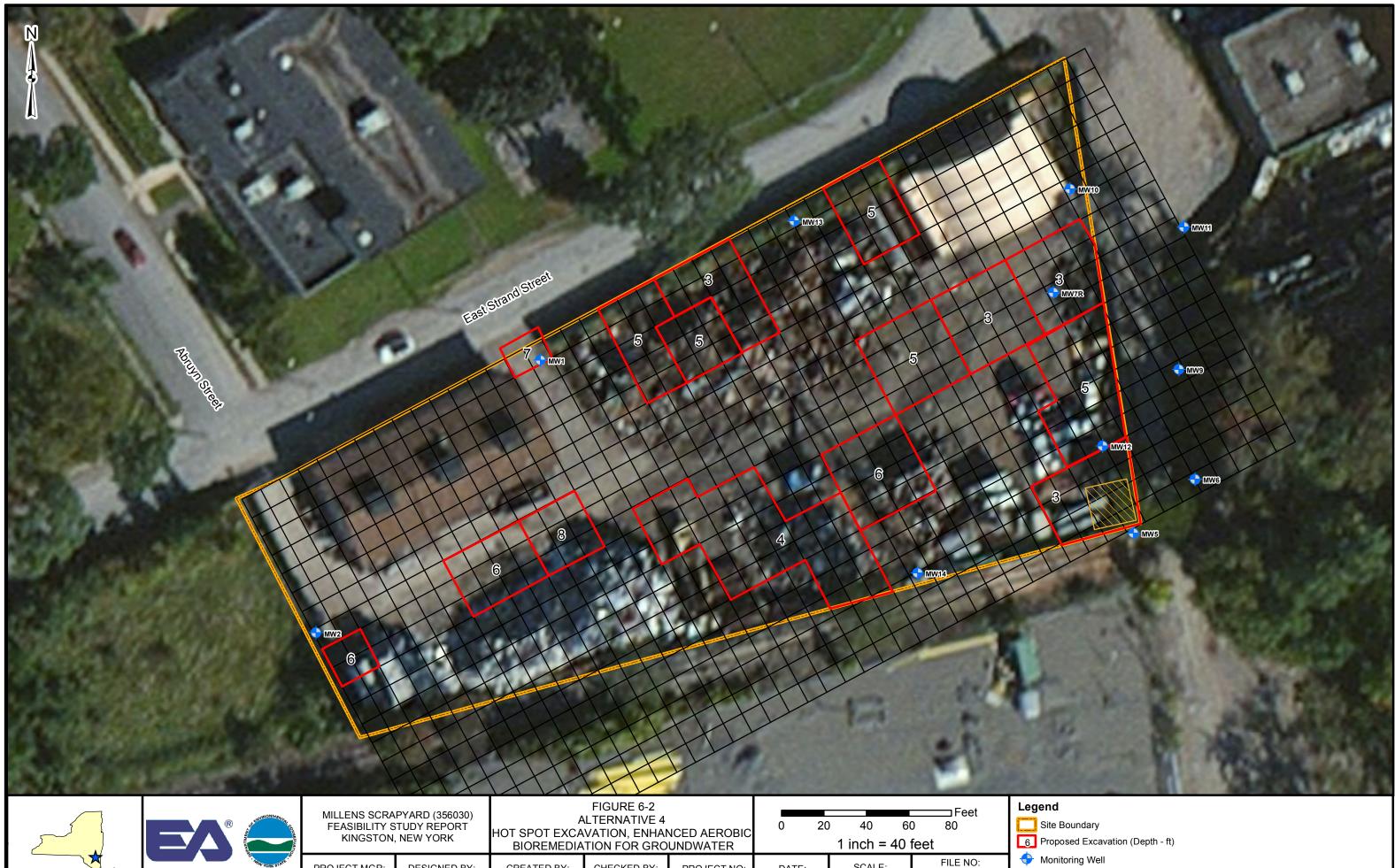
Monitoring Well

Elevation Contour 1 Foot Inferred Groundwater **Elevation Contour** Flow Direction

Service Layer Credits: Source: Esri, DigitalGlobe, GeoEye, I-cubed, USDA, USGS, AEX, Getmapping, Aerogrid, IGN, IGP, and the GIS User Community


	COMPANY CONTRACTOR	FEASIBILITY S	PYARD (356030) TUDY REPORT NEW YORK		FIGURE 2-1 SUMMARY OF SO DANCES IN SOI		0 20	40 6 1 inch = 40		
X	C. ARAL YORK STATE	PROJECT MGR: CJS	DESIGNED BY: MEM	CREATED BY: MEM	CHECKED BY: RSC	PROJECT NO: 1490717	DATE: JULY 2015	SCALE: AS SHOWN	FILE NO: GIS/PROJECTS/ 1490717_FIG2-1.MXD	,

- Site Boundary O Soil Borings
- VOCsPCBs SVOCs



- Site Boundary
- Interpreted Impacts
- O Soil Borings
- Metals VOCs PCBs SVOCs

Service Layer Credits: Source: Esri, DigitalGlobe, GeoEye, i-cubed, USDA, USGS, AEX, Getmapping, Aerogrid, IGN, IGP, and the GIS User Community

DESIGNED BY: MEM

PROJECT MGR:

CJS

Y

CREATED BY: MEM

CHECKED BY:

RSC

PROJECT NO:

1490717

DATE:

JULY 2015

SCALE: AS SHOWN

GIS/PROJECTS/ 1490717_FIG6-2.MXD

ORC Application Area

Service Layer Credits: Source: Esri, DigitalGlobe, GeoEye, i-cubed, USDA, USGS, AEX, Getmapping, Aerogrid, IGN, IGP, and the GIS User Community

Tables

IADLE 5-1 IECHNOLOGI SCREENING MAIRIA						
		Effectiveness in				
Technology	Process Options	Addressing RAOs	Implementability	Key Factors	Cost	Status
		SO	IL/FILL TECHNOLOGIES			
			Institutional Controls			
Institutional controls	Land use	Effective for human health	Easily implemented	Requires regulatory and public	Low	Retained for
	restrictions.	risk RAOs associated with		acceptance of restricted/		potential
		contact of fill		diminished resource use.		combination with
						other technologies.
		- Iı	<i>i Situ</i> Biological Treatment		-	
In Situ Biological	Enhanced	Effective for risk-based	Implementable; may require	Would not provide short-term risk	Moderate	Not retained.
Treatment	bioremediation.	RAOs and source control.	long timeframes, and	reduction and overall		
			effectiveness may be limited.	effectiveness may be limited;		
				more often used to remediate low		
				level residual contamination		
				following source removal; would		
				not remediate inorganic COCs.		
Ex Situ Biological	Remove the source	Effective for risk-based	Moderately difficult to	Space available onsite for staging	Moderate	Not retained.
Treatment	of impacts to	RAOs and source control.	implement; has large spatial	of biopiles is limiting factor;		
	groundwater.		requirements for treatment of	would require treatability study to		
			soil following excavation;	identify effectiveness of		
			would require treatability study;	amendment(s).		
			requires import and availability			
			of reagents.			

TABLE 5-1 TECHNOLOGY SCREENING MATRIX

EA Engineering, P.C. and Its Affiliate EA Science and Technology

		Effectiveness in	T 1 (110)	W. D. /	<i>a i</i>	di i			
Technology	Process Options	Addressing RAOs	Implementability	Key Factors	Cost	Status			
	Containment								
Covering	Soil cover.	Effectively addresses RAOs associated with contact with fill by placing barrier over impacted soil.	Easy to implement; requires import of soil for cover; monitoring of soil cover thickness; requires periodic maintenance and monitoring; requires development of a site management plan that is tied to an institutional control.	Effectively prevents contact of fill; would require long-term groundwater monitoring.	Moderate	Retain for consideration.			
	Impermeable cover (i.e., clay, asphalt, plastic, etc.).	Effectively addresses RAOs associated with contact with fill by placing impermeable barrier over impacted soil.	Moderately easy to implement; requires import of impermeable material for cover; may require installation by experienced professionals (i.e., asphalt, plastic); requires periodic maintenance and monitoring; requires development of a site management plan that is tied to an institutional control.	Effectively prevents contact of fill; would require long-term groundwater monitoring.	Moderate	Retain for consideration.			
			u Physical/Chemical Treatment	1	T	r			
Soil Flushing	Extraction of contaminants from soil with water or other suitable aqueous solutions; soil flushing process includes injection or infiltration process of extraction fluid through soil <i>in situ</i> .	Effectively addresses RAOs.	Considered an emerging technology, has not been widely implemented; moderately difficult to implement; addition of environmentally compatible solvents may be used to increase effective solubility of some COCs; however, flushing solution may alter the physical/ chemical properties of the soil system; technology offers the potential for recovery of metals and can mobilize a wide range of organic and inorganic contaminants from coarse- grained soils.	Capture of groundwater and flushing fluids with desorbed contaminants may need treatment to meet appropriate discharge standards prior to release to local, publicly owned wastewater treatment works or receiving streams; separation of solvents from recovered flushing fluid, for reuse in the process, is a major factor in the cost of soil flushing. Treatment of the recovered fluids results in process sludges and residual solids, i.e., spent carbon and spent ion exchange resin, which must be appropriately treated before disposal. Residual flushing additives in soil may be a concern.	High	Not retained.			

EA Engineering, P.C. and Its Affiliate EA Science and Technology

		Effectiveness in					
Technology	Process Options	Addressing RAOs	Implementability	Key Factors	Cost	Status	
Removal							
Excavation	Mechanical excavation used to remove soil/fill material.	Will address relevant RAOs, assuming use of handling treatment/ disposal options discussed below.	Easy to implement.	Site is moderately sized, and impacts are shallow; would achieve RAOs relatively quickly.	Low, Moderate	Retain for consideration.	
	-	Ex Sit	u Physical/Chemical Treatment	-	-	-	
Solidification or Stabilization	Amendments added to modify physical and chemical properties of material to facilitate handling and disposal.	Effective at immobilizing inorganics within fill; however, is not effective for VOCs or SVOCs in soil.	Relatively easy to implement; can be performed on small batches as material is staged for transport; requires import and addition of amendments; result is decreased water content and toxicity and mobility of contaminants.	Requires use of amendments to achieve stabilization.	Moderate	Not retained.	
<i>Ex Situ</i> chemical treatment	Acid leaching used to remove inorganics from soil/fill.	Effective at removing inorganics within fill; however, is not effective for VOCs or SVOCs in soil.	Difficult to implement; requires establishment of a designated treatment facility using potentially hazardous chemicals to remove inorganics from fill.	Requires long-term use of facilities for soil/fill treatment and disposal or recycling of leached fluids; rate of treatment may limit rate of excavation and disposal; requires use and maintenance of specialized equipment and chemicals.	High	Not retained.	
			Disposal				
Offsite Disposal	Offsite commercial landfill.	Required for excavation options to meet RAOs.	Low degree of difficulty to implement; requires identification of landfills capable of accepting material; landfill capacity and permitting may limit excavation and disposal rates.	Long range transport may be required dependent on landfill capacity/location; extensive site work and earthwork to accommodate transportation of material.	Moderate	Retain for consideration.	

		Effectiveness in							
Technology	Process Options	Addressing RAOs	Implementability	Key Factors	Cost	Status			
	GROUNDWATER TECHNOLOGIES								
	Institutional controls								
Institutional Controls	Groundwater use restrictions; and long-term monitoring program.	Effective for human health risk RAOs.	Easily implemented.	Requires regulatory and public acceptance of restricted/diminished resource use.	Low	Retained for use with other technologies.			
		In	<i>i Situ</i> Biological Treatment						
Monitored Natural Attenuation	Biodegradation.	Potentially effective over the long term; groundwater will be monitored to evaluate effectiveness.	Easily implemented.	Dependent on existing conditions; i.e., contaminant concentrations, oxygen content, and microbes; intermediate degradation products may be more mobile and more toxic than the original contaminant; long-term monitoring will be required.	Low	Retained for use with other technologies.			
Enhanced Bioremediation	Enhanced aerobic bioremediation.	Effective for all RAOs.	Moderately easy to implement; would require treatability study and pilot test to determine appropriate reagents and application rates.	Dependent on existing conditions; i.e., contaminant concentrations, oxygen content, and hydraulic conductivity; long-term monitoring will be required.	Moderate	Retained for use with other technologies.			
	-		Containment		-				
Physical Barriers	A slurry wall is installed from the ground surface to a confining layer; contains contaminated groundwater, may also divert contaminated groundwater from drinking water intakes or toward a treatment system.	Effective for prevention of contaminant migration, thereby effective for all RAOs.	Easily implementable; requires design/construction of an engineered slurry wall or other type of physical barrier.	Most effective when barrier is able to be keyed into a low permeability layer; cost increases greatly when installed deeper than 100 feet.	Low	Not retained.			

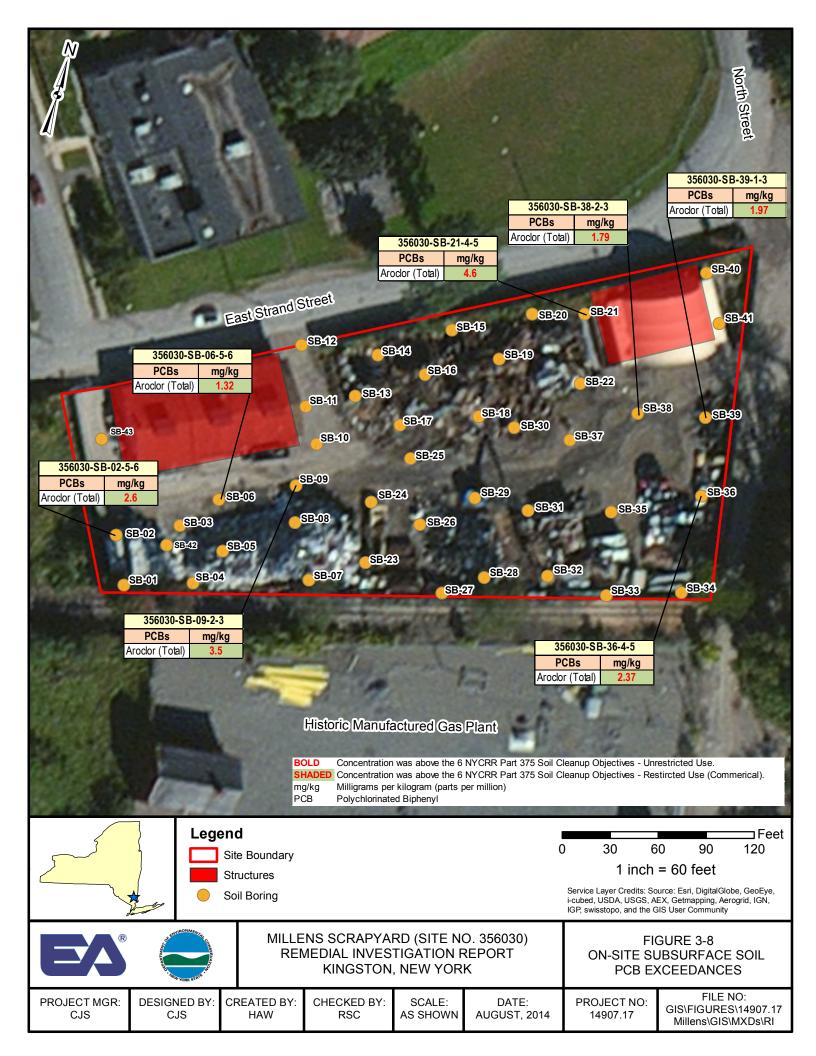
EA Engineering, P.C. and Its Affiliate EA Science and Technology

Technology	Process Options	Effectiveness in Addressing RAOs	Implementability	Key Factors	Cost	Status			
	Ex Situ Physical/Chemical Treatment								
Filtration (Adsorption/Absorption)	Isolates solid particles by running a fluid stream through a porous medium; utilizes gravity or a pressure differential across the filtration medium; chemicals are not destroyed; they are merely concentrated, making reclamation possible.	Effective for all RAOs.	Moderate difficulty for implementation; would require design/construction of treatment process and facility; treatment times are extensive; requires long-term operation and maintenance; hydrogeological data would be needed to determine flows rates and treatment process parameters.	High concentrations of contaminants would require frequent replacement of adsorbent unit; chemicals are not destroyed, thereby requiring proper treatment, disposal, or reclamation.	Moderate to High	Not retained.			
RAO = Rem SVOC = Semi	NOTE: COC = Contaminant of concern. RAO = Remedial action objective. SVOC = Semivolatile organic compound.								

	TABLE 8-1	TERNATIVE EVALU	JATION SUMMARY	
	Alternative 1	Alternative 2	Alternative 3	Alternative 4
(1) Overall Protectiveness of Pt	No Action	Site Management	Soil Cover, Monitored Natural Attenuation of Groundwater, and Institutional Controls	Hot Spot Excavation, Enhanced Aerobic Bioremediation for Groundwater, and Institutional Controls
(1) Overall Protectiveness of P	· · · · · · · · · · · · · · · · · · ·	r		
	There is no reduction of risk with this alternative. The soil contaminant migration pathways would continue to pose unacceptable risk to all receptors.	Prevents human contact through the implementation of institutional controls.	Prevents human contact and reduces potential migration of contaminants to groundwater and surface water.	Prevents human contact and reduces potential migration of contaminants to groundwater and surface water.
(2) Standards, Criteria, and G	uidance			
	Does not meet SCG criteria.	Does not meet SCG criteria.	Does not meet SCG criteria.	Will meet SCG criteria.
(3) Long-Term Effectiveness an	nd Permanence		2	
	This alternative will not provide long-term effectiveness or permanence. This alternative offers no controls.	This alternative will not provide long-term effectiveness or permanence.	When designed and implemented properly, effectively eliminates exposure and prevents transport; however, requires long-term monitoring/maintenance.	When designed and implemented properly, effectively eliminates exposure and prevents transport; however, requires long-term monitoring/maintenance.
(4) Reduction of Toxicity, Mob	ility, or Volume of Contaminat	tion		
Amount of Hazardous Materials Destroyed, Treated, or Removed	None.	None.	None.	Will reduce the volume and mobility of contamination via soil removal.
Degree of Expected Reductions in Toxicity, Mobility, or Volume	None.	None.	Contaminated soil will be contained using a soil cover, thereby reducing contaminant mobility. Toxicity and volume of contaminants will not be reduced.	Contaminated soil will be disposed of in permitted facilities that use measures to reduce or eliminate the risk of toxic mobility.
Irreversible Treatment?	No.	No.	Reversible. Contaminated fill could be uncovered.	Yes.
Residuals Remaining After Treatment	Yes.	Contaminants will remain onsite.	Residuals will remain under cover.	No.

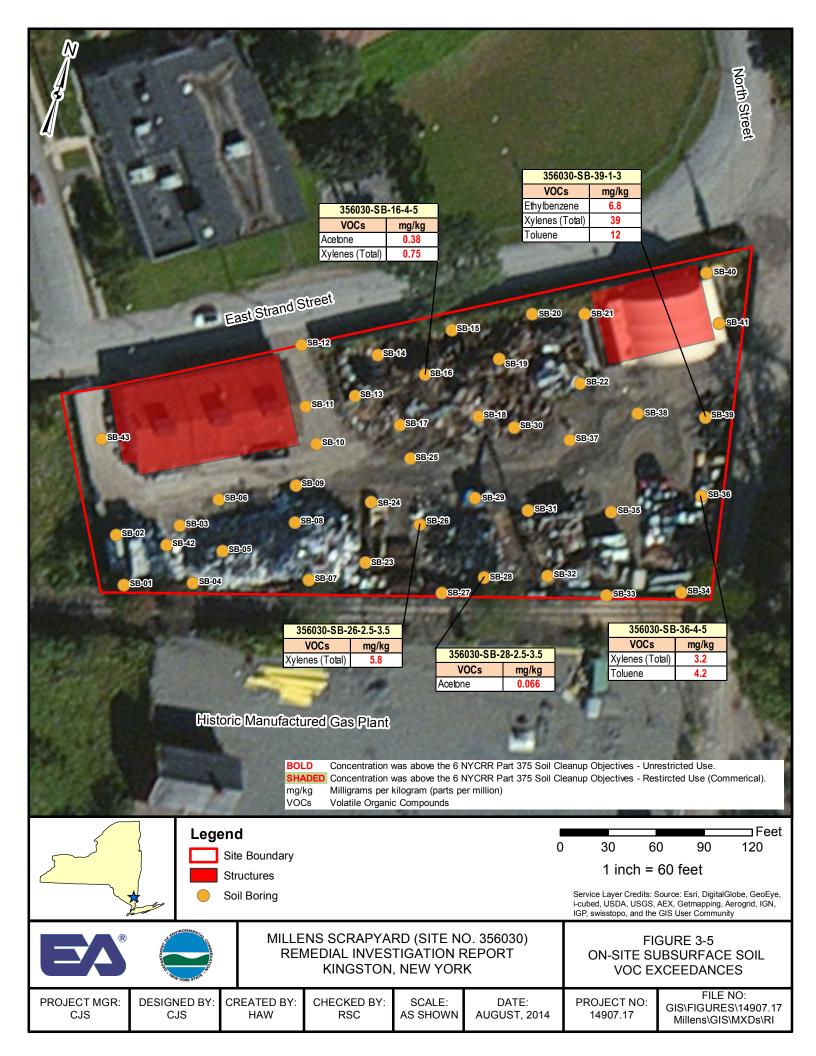
TABLE 8.1 AT TEDNATIVE EVALUATION SUMMADY

	Alternative 1	Alternative 2	Alternative 3	Alternative 4
	No Action	Site Management	Soil Cover, Monitored Natural Attenuation of Groundwater, and Institutional Controls	Hot Spot Excavation, Enhanced Aerobic Bioremediation for Groundwater, and Institutional Controls
(5) Short-Term Impact and E	ffectiveness			
Community Protection	There is no action and, therefore, no additional risk to the community.	No additional risk to the community.	Increased short-term risks to the public during grading activities. Dust may be produced during grading activities. These can be mitigated through standard construction practices.	Increased short-term risks to the public during excavation activities and transport of equipment and materials to and from site. Dust may be produced during excavation and backfill activities. These can be mitigated through standard construction practices.
Worker Protection	There is no action and, therefore, no workers will be present on site.	Workers can potentially be minimally exposed to contaminated media during fence repair activities. Risks can be minimized by implementing health and safety controls.	Workers can potentially be exposed to contaminated media during grading activities. Work around heavy equipment carries potential risk to workers. Risks can be minimized by implementing controls.	Workers can potentially be exposed to contaminated media during excavation activities. Work around heavy equipment carries potential risk to workers. Risks can be minimized by implementing health and safety controls.
Environmental Impacts	There are no short-term impacts associated with this alternative.	Wastes produced will include contaminated personal protective equipment. Wastes will be managed in compliance with ARARs.	Wastes produced will include contaminated personal protective equipment. Wastes will be managed in compliance with ARARs.	Wastes produced will include contaminated personal protective equipment. Wastes will be managed in compliance with ARARs.
Time Until Action Complete (Field Construction Time)	No action taken.	Approximately 2 days (for initial fence repairs)	Approximately 3 months.	Approximately 3 months.


	Alternative 1	Alternative 2	Alternative 3	Alternative 4
			Soil Cover, Monitored Natural Attenuation of Groundwater,	Hot Spot Excavation, Enhanced Aerobic Bioremediation for Groundwater, and Institutional
(6) Implementability	No Action	Site Management	and Institutional Controls	Controls
(6) Implementability	Net evelophia	Encounting diseased	Encounting diseased descelition	Encounting discount downliting
Ability to Construct and Operate	Not applicable.	Excavation, disposal, demolition, and containment alternatives can be implemented, and have been used nationally.	Excavation, disposal, demolition, and containment alternatives can be implemented, and have been used nationally.	Excavation, disposal, demolition, and containment alternatives can be implemented, and have been used nationally.
Monitoring Requirements	Not applicable.	Groundwater sampling will be completed to monitor potential contaminant migration.	Groundwater sampling will be completed for monitored natural attenuation.	Soil will be sampled and analyzed to confirm removal of impacted area; groundwater sampling will be completed to monitor effectiveness of treatment.
Availability of Equipment and Specialists	Not applicable.	Equipment and speciali	sts are available for the implementation	on of all of these technologies.
Ability to Obtain Approvals and Coordinate with Other Agencies	Not applicable.	Ability to obtain app	rovals and coordinate with other agen	cies assumed to be possible.
(7) Cost Effectiveness				
Cost	\$0	\$214,464	\$593,033	\$1,975,977
(8) Land Use				
	Not applicable.	Restricted	Restricted	Unrestricted.
(9) Community Acceptance				-
	To be determined.	To be determined.	To be determined.	To be determined.
	or relevant and appropriate requ criteria, and guidance.	irement.		

Appendixes

Appendix A


Remedial Investigation Data Tables and Figures

	Be Me m,r To To	MW-14 Jan-13 MW-14 Jan-13 NOCE NOCE None 100 Izzene 13 Nyl tert-Bulyl Efter -Viene 18 yene 13 uene 12 SVOCs NOCS nol 7.5 J	TAL Metals	J 1 25 25 MW-12 Jan-13 vOCs 46 zene 21 nne 77 nrt-Bulyl Ether 46 120 SVOCs 17 vCCs 46 120 5VOCs 17 45 17 17 enzene 17 enzene 17	64 1 28 5 100 5 700 10 55 5 140 5 1 1 1 1 	MUV7R Metryl tert Bu CIUCO CIUCO	
<u></u>	Legend Site Boundary Monitoring Well	BOLD = Concent J = Compot U = Not dete VOC = Volatile SVOC = Semivol	ograms per liter (parts per billion) ration was above the NYSDEC Ambient W nd reported at an estimated concentration cted above the associated method detectio Organic Compound atile Organic Compound nalyte List upled	below the sample quantitation limit	L		Feet 60 90 120 inch = 60 feet its: Source: Esri, DigitalGlobe, GeoEye, i-cubed, , Getmapping, Aerogrid, IGN, IGP, swisstopo, community
EA®	A CONTRACTOR OF A CONTRACTOR O		REMEDIAL INVE	ARD (SITE NO. 35603 STIGATION REPORT IN, NEW YORK	0)		FIGURE 3-12 TER SAMPLING RESULTS
PROJECT MGR: CJS	DESIGNED BY: ALK	CREATED BY: ALK	CHECKED BY: RSC	SCALE: AS SHOWN	DATE: AUGUST, 2014	PROJECT NO: 14907.17	FILE NO: GIS\FIGURES\RI\1490717 _Millens_Figure_X.MXD

00		10184	14	1	and and	Sec. O				1000	10
Ŵ		-	11	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	640	356030-SE	3-21-4-5			ाष	1900
	1000					TAL Metals	mg/kg			1000	Z
4	1.08.2			1000		Cadmium	4			356030-SB	3-39-1-3
			C 100 P	-0.375		Copper	104			TAL Metals	mg/kg
				356030-S	3-37-4-5	Lead	507			Cadmium	5.2
Ą		356030-SE	3-15-2-3	TAL Metals	mg/kg	Mercury	2.4 J	356030-S	B-38-2-3	Copper	158 J
356030-S		TAL Metals	mg/kg	Lead	347	Nickel	35.3 J	TAL Metals	mg/kg	Lead	925 J
TAL Metals	mg/kg	Arsenic	14.9 J	Zinc	168 J	Zinc	956 J	Zinc	142	Zinc	1270
Lead	170				100		0.550		Sec.	Contraction of the second	
Zinc	650				100				100	20.00	
356030-SE	3-14-4-5		325			and the second			1000	114	1000
TAL Metals	mg/kg		and the second					R P			
Zinc	209										
356030-SE	3-12-6-7					from	6.100			SB-	00
TAL Metals	mg/kg				tStrandS	Silleur	100			SB-	40
Lead	142			Eas					A COL		
Station of the	1000	-					VIII C	SB-20 🔥 SE	3-21		1 6.000
356030-SE	3-06-5-6			-		SB-1	5		1000	SB-41	1 Barrow
TAL Metals	mg/kg			SB-12		100 C			120		
Copper	81.1			9	B-14		949	100			
Lead	192			1-5-14		SB-10		SB-	22		Sec. 1
Mercury	0.379				SB-13	S 10 11			C.		1. 10
Zinc	133			SB-11	10100		SB-18	A	SB	¹³³ / 5354	30
				8 3	27 A 🕐	SB-17	SB	-30			59
356030-S	B-09-2-3			SB-10		222.5		SB-37			
TAL Metals	mg/kg		- A MARK			SB-25	1200			100	1
Arsenic	21.5 J		-	The states			R. Same	200		1 A 1	10 C
Barium	417		SB-06	SB-09	SB-24		SB-29			SB3	Э
Codmium	25.1	Contraction of the second of the					SB-29		and the second se		9
Cadmium		and the second second					_	SB31	SB-35		
Chromium	41.8	SB-03		SB-08		GB-23	1	SB-31	SB-35	-	
Chromium Copper	41.8 624	SB-03		SE-08		SE-23		SB-31	SB-35		
Chromium Copper Lead	41.8 624 2,500	SE-03	SB-05			SB-23		SE41	SB-35		
Chromium Copper Lead Nickel	41.8 624 2,500 53.8	SB-42	SB-05	SB-2	3	SE-23	SB-28		SB-35		
Chromium Copper Lead	41.8 624 2,500 53.8 3,030		SB:05		3			SE-31		SP-91	
Chromium Copper Lead Nickel Zinc	41.8 624 2,500 53.8 3,030	SB-42	SB-05	SB-2	3	SB-23			SB-35	68:34	
Chromium Copper Lead Nickel Zinc 356030-SE	41.8 624 2,500 53.8 3,030 3-09-6-8	SB-42	SB-05	SB-2	3					68-84	
Chromium Copper Lead Nickel Zinc 356030-SE TAL Metals	41.8 624 2,500 53.8 3,030 3-09-6-8 mg/kg	SB-42	SB-05	SB-2	3					55-34	
Chromium Copper Lead Nickel Zinc 356030-SE TAL Metals Lead Zinc	41.8 624 2,500 53.8 3,030 3-09-6-8 mg/kg 178 176	SB-42 SB-04		SB-2 SB-07		SB-27	58-23	SB-32	53-53		
Chromium Copper Lead Nickel Zinc 356030-SE TAL Metals Lead Zinc 356030-SE	41.8 624 2,500 53.8 3,030 3-09-6-8 mg/kg 178 176 3-24-3-4	SB-42 SB-04 356030-SB-	26-2.5-3.5	SB-27 SB-07 356030-SB-	28-2.5-3.5	SE-27 356030-SE	SB-28	SE-32 356030-S	SB-33 B-34-2-3	356030-SE	
Chromium Copper Lead Nickel Zinc 356030-SE TAL Metals Lead Zinc 356030-SE TAL Metals	41.8 624 2,500 53.8 3,030 3-09-6-8 mg/kg 178 176 3-24-3-4 mg/kg	SB-42 SB-04	26-2.5-3.5 mg/kg	SB-27 SB-07 356030-SB- TAL Metals	28-2.5-3.5 mg/kg	SE-27 356030-SE TAL Metals	SB-28 SB-28 3-31-5-6 mg/kg	SE-32 356030-SI TAL Metals	SB-33	356030-SE TAL Metals	mg/kg
Chromium Copper Lead Nickel Zinc 356030-SE TAL Metals Lead Zinc 356030-SE	41.8 624 2,500 53.8 3,030 3-09-6-8 mg/kg 178 176 3-24-3-4	SB-42 SB-04 356030-SB-	26-2.5-3.5	SB-27 SB-07 356030-SB-	28-2.5-3.5	SE-27 356030-SE TAL Metals Lead	SB-28 S-31-5-6 mg/kg 210 J	SB-32 356030-SI TAL Metals Cadmium	SB-33 B-34-2-3 mg/kg 3	356030-SE TAL Metals Copper	mg/kg 72.6
Chromium Copper Lead Nickel Zinc 356030-SE TAL Metals Lead Zinc 356030-SE TAL Metals	41.8 624 2,500 53.8 3,030 3-09-6-8 mg/kg 178 176 3-24-3-4 mg/kg	SB-42 SB-04	26-2.5-3.5 mg/kg	SB-27 SB-07 356030-SB- TAL Metals	28-2.5-3.5 mg/kg	SE-27 356030-SE TAL Metals Lead Mercury	SE-28 3-31-5-6 mg/kg 210 J 15.4 J	SB-32 SB-32 356030-SI TAL Metals Cadmium Copper	SB-33 B-34-2-3 mg/kg 3 86.3 J	356030-SE TAL Metals Copper Lead	mg/kg 72.6 343
Chromium Copper Lead Nickel Zinc 356030-SE TAL Metals Lead Zinc 356030-SE TAL Metals	41.8 624 2,500 53.8 3,030 3-09-6-8 mg/kg 178 176 3-24-3-4 mg/kg	SB-42 SB-04	26-2.5-3.5 mg/kg	SB-27 SB-07 356030-SB- TAL Metals	28-2.5-3.5 mg/kg	SE-27 356030-SE TAL Metals Lead	SB-28 S-31-5-6 mg/kg 210 J	SB-32 SB-32	SB-33 SB-33-2-3 mg/kg 3 86.3 J 182 J	356030-SE TAL Metals Copper	mg/kg 72.6
Chromium Copper Lead Nickel Zinc 356030-SE TAL Metals Lead Zinc 356030-SE TAL Metals Mercury	41.8 624 2,500 53.8 3,030 3-09-6-8 mg/kg 178 176 3-24-3-4 mg/kg 0.215 J	SB-42 SB-04	26-2.5-3.5 mg/kg 121 J	SB-07 SB-07 356030-SB- TAL Metals Zinc	28-2.5-3.5 mg/kg 131	SB:27 356030-SE TAL Metals Lead Mercury Zinc	SE-28 3-31-5-6 mg/kg 210 J 15.4 J	SE-32 356030-S TAL Metals Cadmium Copper Lead Mercury	SB-33 B-34-2-3 mg/kg 3 86.3 J	356030-SE TAL Metals Copper Lead	mg/kg 72.6 343
Chromium Copper Lead Nickel Zinc 356030-SE TAL Metals Lead Zinc 356030-SE TAL Metals Mercury	41.8 624 2,500 53.8 3,030 3-09-6-8 mg/kg 178 176 3-24-3-4 mg/kg 0.215 J	SB-42 SB-04	26-2.5-3.5 mg/kg 121 J CRR Part 375	SB-07 SB-07 356030-SB- TAL Metals Zinc Soil Cleanup Obj	28-2.5-3.5 mg/kg 131 ectives - Unre	SB:27 356030-SE TAL Metals Lead Mercury Zinc	SE-28 S-31-5-6 mg/kg 210 J 15.4 J 200	SB-32 SB-32	SB-33 SB-33-2-3 mg/kg 3 86.3 J 182 J 1.1 J	356030-SE TAL Metals Copper Lead	mg/kg 72.6 343
Chromium Copper Lead Nickel Zinc 356030-SE TAL Metals Lead Zinc 356030-SE TAL Metals Mercury BOLD Conc SHADED Conc J Com	41.8 624 2,500 53.8 3,030 3-09-6-8 mg/kg 178 176 3-24-3-4 mg/kg 0.215 J	SB-42 SB-04	26-2.5-3.5 mg/kg 121 J CRR Part 375 CRR Part 375 d concentration	SB-27 SB-07	28-2.5-3.5 mg/kg 131 ectives - Unre ectives - Rest	SE:27 356030-SE TAL Metals Lead Mercury Zinc estricted Use. tircted Use.	SE-28 S-31-5-6 mg/kg 210 J 15.4 J 200	SE-32 356030-S TAL Metals Cadmium Copper Lead Mercury	SB-33 SB-33-2-3 mg/kg 3 86.3 J 182 J 1.1 J	356030-SE TAL Metals Copper Lead	mg/kg 72.6 343
Chromium Copper Lead Nickel Zinc 356030-SE TAL Metals Lead Zinc 356030-SE TAL Metals Mercury BOLD Conc SHADED Conc J Com mg/kg Millig	41.8 624 2,500 53.8 3,030 3-09-6-8 mg/kg 178 176 3-24-3-4 mg/kg 0.215 J	SB-42 SB-04	26-2.5-3.5 mg/kg 121 J CRR Part 375 CRR Part 375 d concentration	SB-27 SB-07	28-2.5-3.5 mg/kg 131 ectives - Unre ectives - Rest	SE:27 356030-SE TAL Metals Lead Mercury Zinc estricted Use. tircted Use.	SE-28 S-31-5-6 mg/kg 210 J 15.4 J 200	SE-32 356030-S TAL Metals Cadmium Copper Lead Mercury	SB-33 SB-33-2-3 mg/kg 3 86.3 J 182 J 1.1 J	356030-SE TAL Metals Copper Lead	mg/kg 72.6 343
Chromium Copper Lead Nickel Zinc 356030-SE TAL Metals Lead Zinc 356030-SE TAL Metals Mercury BOLD Conc SHADED Conc SHADED Conc SHADED Conc SHADED Conc SHADED Conc SHADED Conc	41.8 624 2,500 53.8 3,030 3-09-6-8 mg/kg 178 176 3-24-3-4 mg/kg 0.215 J	SB-42 SB-04	26-2.5-3.5 mg/kg 121 J CRR Part 375 CRR Part 375 d concentration	SB-27 SB-07	28-2.5-3.5 mg/kg 131 ectives - Unre ectives - Rest	SE:27 356030-SE TAL Metals Lead Mercury Zinc estricted Use. tircted Use.	SE-28 S-31-5-6 mg/kg 210 J 15.4 J 200	SE-32 356030-S TAL Metals Cadmium Copper Lead Mercury	SB-33 SB-33-2-3 mg/kg 3 86.3 J 182 J 1.1 J	356030-SE TAL Metals Copper Lead	mg/kg 72.6 343
Chromium Copper Lead Nickel Zinc 356030-SE TAL Metals Lead Zinc 356030-SE TAL Metals Mercury BOLD Conc SHADED Conc J Com mg/kg Millig	41.8 624 2,500 53.8 3,030 3-09-6-8 mg/kg 178 176 3-24-3-4 mg/kg 0.215 J	SB-42 SB-04	26-2.5-3.5 mg/kg 121 J CRR Part 375 CRR Part 375 d concentration iillion)	SB-27 SB-07	28-2.5-3.5 mg/kg 131 ectives - Unre ectives - Rest	SE:27 356030-SE TAL Metals Lead Mercury Zinc estricted Use. tircted Use.	SE-28 S-31-5-6 mg/kg 210 J 15.4 J 200	SE-32 356030-S TAL Metals Cadmium Copper Lead Mercury	SB-33 SB-33-2-3 mg/kg 3 86.3 J 182 J 1.1 J	356030-SE TAL Metals Copper Lead	mg/kg 72.6 343 195 J
Chromium Copper Lead Nickel Zinc 356030-SE TAL Metals Lead Zinc 356030-SE TAL Metals Mercury BOLD Conc SHADED Conc J Com mg/kg Millig	41.8 624 2,500 53.8 3,030 3-09-6-8 mg/kg 178 176 3-24-3-4 mg/kg 0.215 J	SB-42 SB-04	26-2.5-3.5 mg/kg 121 J CRR Part 375 CRR Part 375 d concentration hillion)	Soil Cleanup Obj Soil Cleanup Obj Soil Cleanup Obj	28-2.5-3.5 mg/kg 131 ectives - Unre ectives - Rest	SE:27 356030-SE TAL Metals Lead Mercury Zinc estricted Use. tircted Use.	SE-28 S-31-5-6 mg/kg 210 J 15.4 J 200	SB-32 SB-32	SB-33 B-34-2-3 mg/kg 3 86.3 J 182 J 1.1 J 668	356030-SE TAL Metals Copper Lead Zinc	mg/kg 72.6 343 195 J
Chromium Copper Lead Nickel Zinc 356030-SE TAL Metals Lead Zinc 356030-SE TAL Metals Mercury BOLD Conc SHADED Conc J Com mg/kg Millig	41.8 624 2,500 53.8 3,030 3-09-6-8 mg/kg 178 176 3-24-3-4 mg/kg 0.215 J	SB-42 SB-04	26-2.5-3.5 mg/kg 121 J CRR Part 375 CRR Part 375 d concentration iillion)	Soil Cleanup Obj Soil Cleanup Obj Soil Cleanup Obj	28-2.5-3.5 mg/kg 131 ectives - Unre ectives - Rest	SE:27 356030-SE TAL Metals Lead Mercury Zinc estricted Use. tircted Use.	SE-28 S-31-5-6 mg/kg 210 J 15.4 J 200	SB-32 SB-32	SB-33 B-34-2-3 mg/kg 3 86.3 J 182 J 1.1 J 668 30 6	356030-SE TAL Metals Copper Lead Zinc	mg/kg 72.6 343 195 J
Chromium Copper Lead Nickel Zinc 356030-SE TAL Metals Lead Zinc 356030-SE TAL Metals Mercury BOLD Conc SHADED Conc J Com mg/kg Millig	41.8 624 2,500 53.8 3,030 3-09-6-8 mg/kg 178 176 3-24-3-4 mg/kg 0.215 J	s above the 6 NYC s above the 6 NYC s above the 6 NYC d at an estimated organ (parts per m t	26-2.5-3.5 mg/kg 121 J CRR Part 375 CRR Part 375 d concentration hillion)	Soil Cleanup Obj Soil Cleanup Obj Soil Cleanup Obj	28-2.5-3.5 mg/kg 131 ectives - Unre ectives - Rest	SE:27 356030-SE TAL Metals Lead Mercury Zinc estricted Use. tircted Use.	SE-28 S-31-5-6 mg/kg 210 J 15.4 J 200	SB-32 SB-32	SB-33 B-34-2-3 mg/kg 3 86.3 J 182 J 1.1 J 668 30 6	356030-SE TAL Metals Copper Lead Zinc	mg/kg 72.6 343 195 J
Chromium Copper Lead Nickel Zinc 356030-SE TAL Metals Lead Zinc 356030-SE TAL Metals Mercury BOLD Conc SHADED Conc J Com mg/kg Millig	41.8 624 2,500 53.8 3,030 3-09-6-8 mg/kg 178 176 3-24-3-4 mg/kg 0.215 J	s above the 6 NYC above the 7	26-2.5-3.5 mg/kg 121 J CRR Part 375 CRR Part 375 d concentration hillion) CRR Part 375 d concentration hillion)	Soil Cleanup Obj Soil Cleanup Obj Soil Cleanup Obj	28-2.5-3.5 mg/kg 131 ectives - Unre ectives - Rest	SE:27 356030-SE TAL Metals Lead Mercury Zinc estricted Use. tircted Use.	SE-28 S-31-5-6 mg/kg 210 J 15.4 J 200	SB-32 SB-32 SB-32 SB-32 SEB-32 SEB-32 SEB-32 SEB-32 SEB-32 SEF-32	SB-33 SB-33 B-34-2-3 mg/kg 3 86.3 J 182 J 1.1 J 668 668 30 6 1 inch wer Credits: So	356030-SE TAL Metals Copper Lead Zinc Zinc 0 90 = 60 feet urce: Esri, DigitalGloi	mg/kg 72.6 343 195 J Feet 120
Chromium Copper Lead Nickel Zinc 356030-SE TAL Metals Lead Zinc 356030-SE TAL Metals Mercury BOLD Conc SHADED Conc J Com mg/kg Millig	41.8 624 2,500 53.8 3,030 3-09-6-8 mg/kg 178 176 3-24-3-4 mg/kg 0.215 J	s above the 6 NYC above the 7	26-2.5-3.5 mg/kg 121 J CRR Part 375 CRR Part 375 d concentration hillion)	Soil Cleanup Obj Soil Cleanup Obj Soil Cleanup Obj	28-2.5-3.5 mg/kg 131 ectives - Unre ectives - Rest	SE:27 356030-SE TAL Metals Lead Mercury Zinc estricted Use. tircted Use.	SE-28 S-31-5-6 mg/kg 210 J 15.4 J 200	SE-32 SE-32 SE-32 SE-32 SE-32 SECON	SB-33 B-34-2-3 mg/kg 3 86.3 J 182 J 1.1 J 668 30 6 1 inch vyer Credits: Soo SDA, USCS, AE	356030-SE TAL Metals Copper Lead Zinc Zinc 0 90 = 60 feet urce: Esri, DigitalGiol Z, Getmapping, Aer	mg/kg 72.6 343 195 J Feet 120
Chromium Copper Lead Nickel Zinc 356030-SE TAL Metals Lead Zinc 356030-SE TAL Metals Mercury BOLD Conc SHADED Conc J Com mg/kg Millig	41.8 624 2,500 53.8 3,030 3-09-6-8 mg/kg 178 176 3-24-3-4 mg/kg 0.215 J	s above the 6 NYC above the 7	26-2.5-3.5 mg/kg 121 J CRR Part 375 CRR Part 375 d concentration hillion) CRR Part 375 d concentration hillion)	Soil Cleanup Obj Soil Cleanup Obj Soil Cleanup Obj	28-2.5-3.5 mg/kg 131 ectives - Unre ectives - Rest	SE:27 356030-SE TAL Metals Lead Mercury Zinc estricted Use. tircted Use.	SE-28 S-31-5-6 mg/kg 210 J 15.4 J 200	SE-32 SE-32 SE-32 SE-32 SE-32 SECON	SB-33 B-34-2-3 mg/kg 3 86.3 J 182 J 1.1 J 668 30 6 1 inch vyer Credits: Soo SDA, USCS, AE	356030-SE TAL Metals Copper Lead Zinc Zinc 0 90 = 60 feet urce: Esri, DigitalGloi	mg/kg 72.6 343 195 J Feet 120
Chromium Copper Lead Nickel Zinc 356030-SE TAL Metals Lead Zinc 356030-SE TAL Metals Mercury BOLD Conc SHADED Conc J Com mg/kg Millig	41.8 624 2,500 53.8 3,030 3-09-6-8 mg/kg 178 176 3-24-3-4 mg/kg 0.215 J	s above the 6 NYC above the 7	26-2.5-3.5 mg/kg 121 J CRR Part 375 CRR Part 375 d concentration hillion) nd Site Bounda Soil Boring Structures MII	Seil Cleanup Obj Soil C	28-2.5-3.5 mg/kg 131 ectives - Unre ectives - Rest ole quantitatio	SE:27 356030-SE TAL Metals Lead Mercury Zinc estricted Use. tircted Use (Common imit.	SB-28 3-31-5-6 mg/kg 210 J 15.4 J 200 herical).	SE-32 SE-32 SE-32 SE-32 SE-32 SECON	SB-33 SB-33 B-34-2-3 mg/kg 3 86.3 J 182 J 1.1 J 182 J 1.1 J 668 668 30 6 1 inch score and the G	356030-SE TAL Metals Copper Lead Zinc Zinc 0 90 = 60 feet urce: Esri, DigitalGiol Z, Getmapping, Aer	mg/kg 72.6 343 195 J Feet 120
Chromium Copper Lead Nickel Zinc 356030-SE TAL Metals Lead Zinc 356030-SE TAL Metals Mercury BOLD Conc SHADED Conc J Com mg/kg Millig	41.8 624 2,500 53.8 3,030 3-09-6-8 mg/kg 178 176 3-24-3-4 mg/kg 0.215 J	s above the 6 NYC above the 7	26-2.5-3.5 mg/kg 121 J CRR Part 375 CRR Part 375 d concentration hillion) nd Site Bounda Soil Boring Structures MII	Seil Cleanup Obj Soil C	28-2.5-3.5 mg/kg 131 ectives - Unre ectives - Rest ole quantitatio	SE-27 356030-SE TAL Metals Lead Mercury Zinc estricted Use. tircted Use (Common imit.	SB-28 3-31-5-6 mg/kg 210 J 15.4 J 200 herical).	SB-32 SB	SB-33 SB-33 B-34-2-3 mg/kg 3 86.3 J 182 J 1.1 J 182 J 1.1 J 668 668 30 6 1 inch score and the Graph and the G	356030-SE TAL Metals Copper Lead Zinc Zinc 0 90 = 60 feet urce: Esri, DigitalGlot EX, Getmapping, Aer IS User Community	mg/kg 72.6 343 195 J Feet 120 be, GeoEye, ogrid, IGN,
Chromium Copper Lead Nickel Zinc 356030-SE TAL Metals Lead Zinc 356030-SE TAL Metals Mercury BOLD Conc SHADED Conc J Com mg/kg Millig	41.8 624 2,500 53.8 3,030 3-09-6-8 mg/kg 178 176 3-24-3-4 mg/kg 0.215 J	s above the 6 NYC above the 7	26-2.5-3.5 mg/kg 121 J CRR Part 375 CRR Part 375 d concentration hillion) nd Site Bounda Soil Boring Structures MII	SB-27 SB-07	28-2.5-3.5 mg/kg 131 ectives - Unre ectives - Rest ble quantitatio	SE:27 356030-SE TAL Metals Lead Mercury Zinc estricted Use. tircted Use (Common imit.	SB-28 3-31-5-6 mg/kg 210 J 15.4 J 200 herical).	SB-32 SB	58-33 6-34-2-3 mg/kg 3 86.3 J 182 J 1.1 J 668 30 6 1 inch ver Credits: So SDA, USGS, AR topo, and the G FIC J-SITE SU	356030-SE TAL Metals Copper Lead Zinc Zinc 0 90 = 60 feet urce: Esri, DigitalGlot EX, Getmapping, Aer IS User Community GURE 3-7	mg/kg 72.6 343 195 J Feet 120 be, GeoEye, ogrid, IGN, SOIL
Chromium Copper Lead Nickel Zinc 356030-SE TAL Metals Lead Zinc 356030-SE TAL Metals Mercury BOLD Conc SHADED Conc J Com mg/kg Millig	41.8 624 2,500 53.8 3,030 3-09-6-8 mg/kg 178 176 3-24-3-4 mg/kg 0.215 J	s above the 6 NYC above the 7	26-2.5-3.5 mg/kg 121 J CRR Part 375 CRR Part 375 d concentration hillion) nd Site Bounda Soil Boring Structures MII	SB-27 SB-07	28-2.5-3.5 mg/kg 131 ectives - Unre ectives - Rest ble quantitatio	SB:27 356030-SE TAL Metals Lead Mercury Zinc estricted Use. tircted Use (Common in limit.	SB-28 3-31-5-6 mg/kg 210 J 15.4 J 200 herical).	SB-32 SB	58-33 6-34-2-3 mg/kg 3 86.3 J 182 J 1.1 J 668 30 6 1 inch ver Credits: So SDA, USGS, AR topo, and the G FIC J-SITE SU	356030-SE TAL Metals Copper Lead Zinc Zinc 0 90 = 60 feet urce: Esri, DigitalGloi EX, Getmapping, Aer IS User Community GURE 3-7 JBSURFACE EXCEEDANC	mg/kg 72.6 343 195 J Feet 120 be, GeoEye, ogrid, IGN,
Chromium Copper Lead Nickel Zinc 356030-SE TAL Metals Lead Zinc 356030-SE TAL Metals Mercury BOLD Conc SHADED Conc J Com J Com Mg/kg Millig TAL Targe	41.8 624 2,500 53.8 3,030 3-09-6-8 mg/kg 178 176 3-24-3-4 mg/kg 0.215 J scentration was pound reporte grams per kilo et Analyte Lis (R)	SB-04 SB-05 SB-05 SB-05 SB-05 SB-05 SB-05 SB-05 SB-05 SB-05 SB-05	26-2.5-3.5 mg/kg 121 J CRR Part 375 CRR Part 375 d concentration billion) md Site Bounda Soil Boring Structures MII f CREATED E	SB-07 SD-07 SD-07	28-2.5-3.5 mg/kg 131 ectives - Unre ectives - Rest ole quantitatio	SB:27 356030-SE TAL Metals Lead Mercury Zinc estricted Use. tircted Use (Common in limit. O (SITE NO. 3 GATION REF JEW YORK SCALE:	SE-23 3-31-5-6 mg/kg 210 J 15.4 J 200 nerical). as 56030) PORT DATE:	SB-32 SB	SB-33 B-34-2-3 mg/kg 3 86.3 J 182 J 1.1 J 668 30 6 1 inch spc Credits: So SDA, USGS, AF topo, and the G FIC J-SITE SU METAL E ECT NO:	356030-SE TAL Metals Copper Lead Zinc Zinc 0 90 = 60 feet urce: Esri, DigitalGlot EX, Getmapping, Aer IS User Community GURE 3-7 JBSURFACE EXCEEDANC	mg/kg 72.6 343 195 J Feet 120 be, GeoEye, ogrid, IGN, SOIL ES NO:
Chromium Copper Lead Nickel Zinc 356030-SE TAL Metals Lead Zinc 356030-SE TAL Metals Mercury BOLD Conc J Com Mercury	41.8 624 2,500 53.8 3,030 3-09-6-8 mg/kg 178 176 3-24-3-4 mg/kg 0.215 J scentration was pound reporte grams per kilo et Analyte Lis (R)	s above the 6 NYC above the 6	26-2.5-3.5 mg/kg 121 J CRR Part 375 CRR Part 375 d concentration hillion) nd Site Bounda Soil Boring Structures	SB-07 SB-07 SB-07 SB-07 Soil Cleanup Obj Soil Cleanup Obj	28-2.5-3.5 mg/kg 131 ectives - Unre ectives - Rest ole quantitatio	SB:27 356030-SE TAL Metals Lead Mercury Zinc estricted Use. tircted Use (Common in limit. O (SITE NO. 3 GATION REF JEW YORK SCALE:	SE-23 3-31-5-6 mg/kg 210 J 15.4 J 200 herical). 356030) PORT	SB-32 SB	SB-33 B-34-2-3 mg/kg 3 86.3 J 182 J 1.1 J 668 30 6 1 inch ver Credits: So SDA, USGS, AF topo, and the G FIC J-SITE SU METAL E	356030-SE TAL Metals Copper Lead Zinc Zinc 0 90 = 60 feet urce: Esri, DigitalGloi EX, Getmapping, Aer IS User Community GURE 3-7 JBSURFACE EXCEEDANC	mg/kg 72.6 343 195 J Feet 120 be, GeoEye, ogrid, IGN, SOIL ES NO: S\14907.17

5E-3 (5E-2)	SV Benzo[a]an Benzo[a]ay Benzo[b]fu Benzo[k]fu Chrysene Dibenzo[a,] Indeno[1,2, SB-03 SB-0	rene 3.0 J soranthene 2.4 J branthene 2.3 J branthene 2.3 J a.3 J njanthracene 0.52 J 3-cd]pyrene 1.4 J SB43	enol 2.8 J 1.2 J 5.2 J 5.2 J 5.2 J 5.2 J 5.2 J 5.3 J 5.5
Legend	mg/kg Milligrams p SVOCs Semivolatile	eported at an estimated concentration b er kilogram (parts per million) Organic Compounds	0 30 60 90 120
Str	uctures bsurface Soil		1 inch = 60 feet Service Layer Credits: Source: Esri, DigitalGlobe, GeoEye, i-cubed, USDA, USGS, AEX, Getmapping, Aerogrid, IGN, IGP, swisstopo, and the GIS User Community
R Constant of the second secon	REMEDIAL INVES	RD (SITE NO. 356030) FIGATION REPORT NEW YORK	FIGURE 3-6 ON-SITE SUBSURFACE SOIL SVOC EXCEEDANCES
PROJECT MGR: DESIGNED BY: CF CJS CJS CJS	REATED BY: CHECKED BY: HAW RSC	SCALE: DATE: AS SHOWN AUGUST, 2014	PROJECT NO: 14907.17 FILE NO: GIS\FIGURES\14907.17 Millens\GIS\MXDs\RI

		r				1		1							
	Sample ID	356030-SB-01-	4-6	356030-SB-02-	5-6	356030-SB-03	-5-6	356030-SB-04	-5-6	356030-SB-05	-5-6	356030-SB-06-	5-6		
	Lab ID	R1208700-00		R1208700-00		R1208700-00		R1208700-00	04	R1208700-00		R1208700-00		6 NYCRR Part 375	6 NYCRR Part 375
	Lao ID	R1200700-00	/1	R1200700-00	2	R1200700-00	05	R1200700-00	0-	R1200700-00	15	R1200700-00	0	Soil Cleanup Objectives -	Soil Cleanup Objectives - Restircted
Parameter List	Sample Type	Subsurface So	oil	Subsurface So	oil	Subsurface So	oil	Subsurface Se	oil	Subsurface S	oil	Subsurface So	oil	Unrestricted Use	Use - Commercial
EPA Method 8260B	Sample Date	12/19/2012		12/19/2012		12/19/2012	2	12/19/2012	2	12/19/2012		12/19/2012		(mg/kg)	(mg/kg)
2-Butanone (MEK)	(mg/kg)	(<0.0027)	U	(<0.0026)	U	(<0.0026)	U	(<0.0028)	U	(<0.0026)	U	0.0036	J	0.12	500
2-Hexanone	(mg/kg)	(<0.0015)	U	(<0.0014)	U	(<0.0014)	U	(<0.0015)	U	(<0.0014)	U	(<0.0015)	U		
4-Methyl-2-pentanone	(mg/kg)	(<0.0012)	U	(<0.0011)	U	(<0.0011)	U	(<0.0012)	U	(<0.0012)	U	(<0.0012)	U		
Acetone	(mg/kg)	(<0.0033)	U	(<0.0031)	U	(<0.0031)	U	(<0.0035)	U	(<0.0032)	U	0.019		0.05	500
Benzene	(mg/kg)	(<0.00034)	U	(<0.00032)	U	(<0.00032)	U	(<0.00036)	U	(<0.00033)	U	(<0.00034)	U	0.06	44
Carbon Disulfide	(mg/kg)	(<0.0015)	U	(<0.0014)	U	(<0.0014)	U	(<0.0016)	U	(<0.0015)	U	(<0.0015)	U		
Dichloromethane	(mg/kg)	0.0069		0.012		0.0067		0.0058	U	0.018		0.039			
Ethylbenzene	(mg/kg)	(<0.00027)	U	(<0.00026)	U	(<0.00026)	U	(<0.00028)	U	(<0.00026)	U	(<0.00027)	U	1	390
m,p-Xylenes	(mg/kg)	(<0.0013)	U	(<0.0012)	U	(<0.0013)	U	(<0.0014)	U	(<0.0013)	U	(<0.0013)	U		
o-Xylene	(mg/kg)	(<0.00057)	U	(<0.00053)	U	(<0.00053)	U	(<0.00059)	U	(<0.00055)	U	(<0.00057)	U		
Xylenes (Total)	(mg/kg)	Not Detected	ł	Not Detected	1	Not Detecte	d	Not Detecte	ed	Not Detecte	d	Not Detected	i	0.26	500
Toluene	(mg/kg)	(<0.00079)	U	(<0.00074)	U	(<0.00074)	U	(<0.00082)	U	(<0.00076)	U	(<0.00079)	U	0.7	500
													-		
	Sample ID	356030-SB-07-	4-6	356030-SB-08-	5-6	356030-SB-09	-2-3	356030-SB-09	-6-8	356030-SB-10	-5-6	356030-SB-11-	5-6	CHUCODD D . 1955	CHUCODD D . 1955
	Lab ID	R1208700-00	17	R1208700-00	0	R1208700-01	10	R1208700-0	11	R1208700-01	2	R1208700-01	3	6 NYCRR Part 375 Soil Cleanup	6 NYCRR Part 375 Soil Cleanup
														Objectives -	Objectives - Restircted
Parameter List	Sample Type	Subsurface So	oil	Subsurface So		Subsurface S		Subsurface S		Subsurface S		Subsurface So		Unrestricted Use	Use - Commercial
EPA Method 8260B	Sample Date	12/19/2012		12/19/2012		12/19/2012		12/19/2012		12/19/2012		12/19/2012		(mg/kg)	(mg/kg)
2-Butanone (MEK)	(mg/kg)	(<0.0027)	U	(<0.0027)	U	(<0.23)	U	(<0.0028)	U	0.004	J	(<0.0031)	U	0.12	500
2-Hexanone	(mg/kg)	(<0.0015)	U	(<0.0014)	U	(<0.087)	U	(<0.0015)	U	(<0.0014)	U	(<0.0017)	U		
4-Methyl-2-pentanone	(mg/kg)	(<0.0012)	U	(<0.0012)	U	(<0.075)	U	(<0.0012)	U	(<0.0012)	U	(<0.0014)	U		
Acetone	(mg/kg)	0.016		0.0048	J	0.55	J	0.02		(<0.035)	U	(<0.013)	U	0.05	500
Benzene	(mg/kg)	(<0.00034)	U	(<0.00034)	U	(<0.041)	U	(<0.00036)	U	(<0.00033)	U	(<0.0004)	U	0.06	44
Carbon Disulfide	(mg/kg)	(<0.0015)	U	(<0.0015)	U	(<0.045)	U	(<0.0016)	U	(<0.0015)	U	(<0.0017)	U		
Dichloromethane	(mg/kg)	0.025		0.015		0.1	J	0.049		0.023		0.019			
Ethylbenzene	(mg/kg)	(<0.00027)	U	(<0.00027)	U	(<0.047)	U	0.00038	J	(<0.00027)	U	(<0.00032)	U	1	390
m,p-Xylenes	(mg/kg)	(<0.0013)	U	(<0.0013)	U	(<0.081)	U	(<0.0014)	U	(<0.0013)	U	(<0.0015)	U		
o-Xylene	(mg/kg)	(<0.00056)	U	(<0.00056)	U	(<0.044)	U	(<0.00059)	U	(<0.00055)	U	(<0.00065)	U		
Xylenes (Total)	(mg/kg)	Not Detected	ł	Not Detected	1	Not Detecte	d	Not Detecte	ed	Not Detecte	d	Not Detected	ł	0.26	500
Toluene	(mg/kg)	(<0.00079)	U	(<0.00078)	U	(<0.051)	U	(<0.00082)	U	(<0.00076)	U	(<0.00091)	U	0.7	500
NOTE: EPA	= U.S. Enivronmenta	al Protection Agency													
ID	= Identification														
NYCRR	= New York Code o	•	on												
mg/kg	= milligrams per kild	•	1.1.7. 2												
U	= Non-detect, detecti = The associated nur														
, 	= No standard.	nerical value is allu e	sumate	u qualitity.											
Data provided by (Columbia Analytical Se	ervices, Inc. Only ana	alytes th	at were detected in a	t least o	one sample are shown	n. Data	validation completed	l by Env	ironmental Data Serv	vices, In	c.			

Parameter List	Sample ID Lab ID Sample Type	356030-SB-12- R1208700-01 Subsurface So	4 pil	356030-SB-13- R1208700-01 Subsurface So	l5 pil	356030-SB-14- R1208700-01 Subsurface So	6 Dil	356030-SB-15- R1208700-01 Subsurface Sc 12/19/2012	7	356030-SB-16- R1208700-01 Subsurface Sc	8	356030-SB-17- R1208700-01 Subsurface Sc	9 oil	6 NYCRR Part 375 Soil Cleanup Objectives - Unrestricted Use	6 NYCRR Part 375 Soil Cleanup Objectives - Restircted Use - Commercial
EPA Method 8260B 2-Butanone (MEK)	Sample Date	12/19/2012 (<0.0028)	U	12/19/2012 (<0.0026)	U	12/19/2012 (<0.0031)	U	(<0.0031)	U	12/19/2012 0.089		12/19/2012 0.006	1	(mg/kg) 0.12	(mg/kg) 500
2-Butanone	(mg/kg)	(<0.0028)	U	(<0.0026)	U	(<0.0031)	U	(<0.0031)	U	(<0.0075)	U	(<0.0015)	U	0.12	500
4-Methyl-2-pentanone	(mg/kg) (mg/kg)	(<0.0013)	U	(<0.0014)	U	(<0.0017)	U	(<0.0018)	U	(<0.0073)	U	(<0.0013)	U		
Acetone		(<0.0012)	U	(<0.0011)	U	(<0.013)	U	(<0.0013)	U	0.38	U	(<0.0012)	U	0.05	500
	(mg/kg)	. ,	U	. ,	U	. ,	U	. ,	U	0.0033	J	. ,	U	0.05	44
Benzene Carbon Disulfide	(mg/kg)	(<0.00035) (<0.0015)	U	(<0.00033) (<0.0014)	U	(<0.00039) (<0.0017)	U	(<0.00039) (<0.0017)	U	0.0033	J	(<0.00034) (<0.0015)	U		
Dichloromethane	(mg/kg)	0.069	0	0.036	0	(<0.0017)	0	0.01	U	0.035	J	0.018	U		
Ethylbenzene	(mg/kg)	(<0.00028)	U	(<0.00026)	U	(<0.00031)	U	(<0.00031)	U	0.055		(<0.0027)	U		390
m,p-Xylenes	(mg/kg)	(<0.0013)	U	(<0.00026)	U	(<0.00031)	U	(<0.00031)	U	0.034		(<0.00027)	U	1	
o-Xylene	(mg/kg)	. ,	U		U	. ,	U	. ,	U	0.38		. ,	U		
Xvlenes (Total)	(mg/kg)	(<0.00057) Not Detected	-	(<0.00054) Not Detected	-	(<0.00064) Not Detected	-	(<0.00064) Not Detected	-	0.37		(<0.00057) Not Detected	-		
,,	(mg/kg)		U		U		U		U				U	0.26	500
Toluene	(mg/kg)	(<0.0008)		(<0.00075)		(<0.00089)		(<0.00089)	U	0.0053	J	(<0.00079)	U	0.7	500
	Sample ID Lab ID	356030-SB-18- R1208700-02		356030-SB-19- R1208700-02		356030-SB-20- R1208700-02	-	356030-SB-21- R1208700-02	-	356030-SB-22- R1208700-02		356030-SB-23- R1208700-02	-	6 NYCRR Part 375 Soil Cleanup	6 NYCRR Part 375 Soil Cleanup
	Lab ID	K1208700-02	0			K1208700-02	2	R1208700-02	3	K1208700-02	4	K1208700-02	.7	Objectives -	Objectives - Restircted
Parameter List	Sample Type	Subsurface So	vil	Subsurface So	oil	Subsurface So	vil	Subsurface Sc	oil	Subsurface So	oil	Subsurface So	oil	Unrestricted Use	Use - Commercial
EPA Method 8260B	Sample Date	12/19/2012		12/19/2012						12/19/2012					<i>(</i> , ,)
2-Butanone (MEK)	(7)					12/19/2012		12/19/2012		12/19/2012		12/19/2012		(mg/kg)	(mg/kg)
	(mg/kg)	(<0.0027)	U	(<0.0028)	U	12/19/2012 (<0.0029)	U	12/19/2012 0.009		(<0.0028)	U	0.0037	J	(mg/kg) 0.12	(mg/kg) 500
2-Hexanone	(mg/kg) (mg/kg)	(<0.0027) (<0.0014)	U U	(<0.0028) (<0.0015)					J		U U		J U		
. ,		. ,	-		U	(<0.0029)	U	0.009	J J	(<0.0028)	-	0.0037	-	0.12	500
2-Hexanone	(mg/kg)	(<0.0014)	U	(<0.0015)	U U	(<0.0029) (<0.0015)	U U	0.009 0.0014	-	(<0.0028) (<0.0015)	U	0.0037 (<0.0014)	U	0.12	500
2-Hexanone 4-Methyl-2-pentanone	(mg/kg) (mg/kg)	(<0.0014) (<0.0012)	U	(<0.0015) (<0.0012)	U U U	(<0.0029) (<0.0015) (<0.0013)	U U U	0.009 0.0014 0.0012	-	(<0.0028) (<0.0015) (<0.0012)	U U	0.0037 (<0.0014) (<0.0012)	U	0.12	500
2-Hexanone 4-Methyl-2-pentanone Acetone	(mg/kg) (mg/kg) (mg/kg)	(<0.0014) (<0.0012) 0.016	U U	(<0.0015) (<0.0012) (<0.02)	U U U U	(<0.0029) (<0.0015) (<0.0013) (<0.0067)	U U U U	0.009 0.0014 0.0012 0.031	J	(<0.0028) (<0.0015) (<0.0012) (<0.014)	U U U	0.0037 (<0.0014) (<0.0012) 0.029	U U	0.12	500 500
2-Hexanone 4-Methyl-2-pentanone Acetone Benzene	(mg/kg) (mg/kg) (mg/kg) (mg/kg)	(<0.0014) (<0.0012) 0.016 (<0.00034)	U U U	(<0.0015) (<0.0012) (<0.02) (<0.00035)	U U U U U	(<0.0029) (<0.0015) (<0.0013) (<0.0067) (<0.00036)	U U U U U	0.009 0.0014 0.0012 0.031 0.0027	J	(<0.0028) (<0.0015) (<0.0012) (<0.014) (<0.00035)	U U U U	0.0037 (<0.0014) (<0.0012) 0.029 0.00064	U U J	0.12 0.05 0.06	500 500 44
2-Hexanone 4-Methyl-2-pentanone Acetone Benzene Carbon Disulfide	(mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg)	(<0.0014)	U U U U U	(<0.0015) (<0.0012) (<0.02) (<0.00035) (<0.0015)	U U U U U	(<0.0029) (<0.0015) (<0.0013) (<0.0067) (<0.00036) (<0.0016)	U U U U U	0.009 0.0014 0.0012 0.031 0.0027 (<0.0014)	J	(<0.0028) (<0.0015) (<0.0012) (<0.014) (<0.00035) (<0.0015)	U U U U	0.0037 (<0.0014) (<0.0012) 0.029 0.00064 0.0023	U U J	0.12	500 500 44
2-Hexanone 4-Methyl-2-pentanone Acetone Benzene Carbon Disulfide Dichloromethane	(mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg)	(<0.0014) (<0.0012) 0.016 (<0.00034) (<0.0015) 0.0049	U U U U J	(<0.0015)	U U U U U U	(<0.0029) (<0.0015) (<0.0013) (<0.0067) (<0.00036) (<0.0016) 0.02	U U U U U U	0.009 0.0014 0.0012 0.031 0.0027 (<0.0014) 0.011	J J U	(<0.0028) (<0.0015) (<0.0012) (<0.014) (<0.00035) (<0.0015) 0.034	U U U U U	0.0037 (<0.0014) (<0.0012) 0.029 0.00064 0.0023 0.0056	U U J J	0.12	500 500 44
2-Hexanone 4-Methyl-2-pentanone Acetone Benzene Carbon Disulfide Dichloromethane Ethylbenzene	(mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg)	(<0.0014) (<0.0012) 0.016 (<0.00034) (<0.0015) 0.0049 (<0.00027)	U U U U J U	(<0.0015) (<0.0012) (<0.02) (<0.00035) (<0.0015) 0.029 (<0.00028)	U U U U U U U U	(<0.0029) (<0.0015) (<0.0013) (<0.0067) (<0.00036) (<0.0016) 0.02 (<0.00029)	U U U U U U U U	0.009 0.0014 0.0012 0.031 0.0027 (<0.0014) 0.011 0.0038	J J U	(<0.0028) (<0.0015) (<0.0012) (<0.014) (<0.00035) (<0.0015) 0.034 (<0.00028)	U U U U U U	0.0037 (<0.0014) (<0.0012) 0.029 0.00064 0.0023 0.0056 0.0021	U U J J J	0.12 0.05 0.06 1	500 500 44 390
2-Hexanone 4-Methyl-2-pentanone Acetone Benzene Carbon Disulfide Dichloromethane Ethylbenzene m.p-Xylenes	(mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg)	(<0.0014)	U U U U U U U U U U U U	(<0.0015)	U U U U U U U U U U U	(<0.0029) (<0.0015) (<0.0013) (<0.0067) (<0.00036) (<0.0016) 0.02 (<0.00029) (<0.0014)	U U U U U U U U U U U U	0.009 0.0014 0.0012 0.031 0.0027 (<0.0014) 0.011 0.0038 0.049	J J J	(<0.0028)	U U U U U U U U U U	0.0037 (<0.0014) (<0.0012) 0.029 0.00064 0.0023 0.0056 0.0021 (<0.0013)	U U J J U U U	0.12 0.05 0.06 1 	500 500 44 390
2-Hexanone 4-Methyl-2-pentanone Acetone Benzene Carbon Disulfide Dichloromethane Ethylbenzene m.p-Xylenes o-Xylene	(mg/kg) (mg/kg)	(<0.0014)	U U U U U U U U U U U U	(<0.0015)	U U U U U U U U U U U	(<0.0029)	U U U U U U U U U U U U	0.009 0.0014 0.0012 0.031 0.0027 (<0.0014) 0.011 0.0038 0.049 0.0061	J J J	(<0.0028)	U U U U U U U U U U	0.0037 (<0.0014) (<0.0012) 0.029 0.00064 0.0023 0.0056 0.0021 (<0.0013) (<0.00055)	U U J J U U U	0.12 0.05 0.06 1 	500 500 44 390

Parameter List	Sample ID Lab ID Sample Type	356030-SB-24- R1208700-02 Subsurface Sc	8	356030-SB-25- R1208700-02 Subsurface So	29	356030-SB-26-2. R1208700-03 Subsurface So	80	356030-SB-27- R1208700-03 Subsurface So	1	356030-SB-28-2. R1208700-03 Subsurface So	32	356030-SB-29- R1208700-03 Subsurface Sc	4	6 NYCRR Part 375 Soil Cleanup Objectives - Unrestricted Use	6 NYCRR Part 375 Soil Cleanup Objectives - Restircted Use - Commercial
EPA Method 8260B	Sample Date	12/19/2012		12/20/2012		12/20/2012		12/20/2012		12/20/2012		12/20/2012		(mg/kg)	(mg/kg)
2-Butanone (MEK)	(mg/kg)	0.012	í T	(<0.0027)	U	(<0.23)	U	0.0065		0.013		0.0032	J	0.12	500
2-Hexanone	(mg/kg)	(<0.0014)	U	(<0.0014)	U	(<0.085)	U	(<0.0015)	U	(<0.0014)	U	(<0.0015)	U		
4-Methyl-2-pentanone	(mg/kg)	(<0.0012)	U	(<0.0012)	U	(<0.074)	U	(<0.0012)	U	0.0052	J	(<0.0012)	U		
Acetone	(mg/kg)	0.099	1	0.014		(<0.16)	UJ	0.05		0.066		0.025		0.05	500
Benzene	(mg/kg)	(<0.00034)	U	(<0.00034)	U	(<0.04)	U	(<0.00034)	U	0.0005	J	(<0.00034)	U	0.06	44
Carbon Disulfide	(mg/kg)	(<0.0015)	U	0.0016	J	(<0.044)	U	(<0.0015)	U	(<0.0014)	U	(<0.0015)	U		
Dichloromethane	(mg/kg)	0.0071		0.0045	J	(<0.068)	U	0.0073		0.0011	J	0.0088			
Ethylbenzene	(mg/kg)	(<0.00027)	U	(<0.00027)	U	0.45	J	(<0.00027)	U	(<0.00026)	U	(<0.00027)	U	1	390
m,p-Xylenes	(mg/kg)	(<0.0013)	U	(<0.0013)	U	3.9	\square	(<0.0013)	U	(<0.0013)	U	(<0.0013)	U		
o-Xylene	(mg/kg)	(<0.00055)	U	(<0.00056)	U	1.9		(<0.00056)	U	(<0.00054)	U	(<0.00056)	U		
Xylenes (Total)	(mg/kg)	Not Detected	i i	Not Detected	1	5.8		Not Detected	1	Not Detected	i	Not Detected	1	0.26	500
Toluene	(mg/kg)	(<0.00077)	U	(<0.00078)	U	0.27	J	(<0.00078)	U	(<0.00075)	U	(<0.00079)	U	0.7	500
Parameter List EPA Method 8260B	Sample ID Lab ID Sample Type Sample Date	356030-SB-30- R1208700-03 Subsurface Sc 12/20/2012	5 oil	356030-SB-31- R1208700-03 Subsurface So 12/20/2012	36 bil	356030-SB-32- R1208700-03 Subsurface So 12/20/2012	37 pil	356030-SB-33- R1208700-03 Subsurface So 12/20/2012	8 oil	356030-SB-34- R1208700-03 Subsurface So 12/20/2012	89 bil	356030-SB-35- R1208700-04 Subsurface So 12/20/2012	0 oil	6 NYCRR Part 375 Soil Cleanup Objectives - Unrestricted Use	6 NYCRR Part 375 Soil Cleanup Objectives - Restircted Use - Commercial (mg/kg)
2-Butanone (MEK)	(mg/kg)	(<0.0027)	U	0.11	_									(mg/kg)	
			0	0.11		0.2		0.0074		0.0047	J	0.0036	J	(mg/kg) 0.12	500
2-Hexanone	(mg/kg)	(<0.0014)	U	(<0.002)	U	0.2 (<0.0015)	U		U	0.0047 (<0.0015)	J U		-		
2-Hexanone 4-Methyl-2-pentanone	(mg/kg) (mg/kg)	. ,	-		U U		U	0.0074				0.0036	J	0.12	500
		(<0.0014)	U	(<0.002)	-	(<0.0015)	U	0.0074 (<0.0014)	U	(<0.0015)	U	0.0036 (<0.0014)	J U	0.12	500
4-Methyl-2-pentanone	(mg/kg)	(<0.0014) (<0.0012)	U	(<0.002) (<0.0016)	-	(<0.0015) 0.012	U	0.0074 (<0.0014) 0.0016	U	(<0.0015) (<0.0013)	U	0.0036 (<0.0014) (<0.0012)	J U	0.12	500
4-Methyl-2-pentanone Acetone	(mg/kg) (mg/kg)	(<0.0014) (<0.0012) 0.014	U U	(<0.002) (<0.0016) 1.8	U	(<0.0015) 0.012 1.8		0.0074 (<0.0014) 0.0016 0.03	U J	(<0.0015) (<0.0013) 0.014	U U	0.0036 (<0.0014) (<0.0012) 0.02	J U U	0.12	500 500
4-Methyl-2-pentanone Acetone Benzene	(mg/kg) (mg/kg) (mg/kg)	(<0.0014) (<0.0012) 0.014 (<0.00034)	U U U	(<0.002) (<0.0016) 1.8 (<0.00046)	U	(<0.0015) 0.012 1.8 0.00093		0.0074 (<0.0014) 0.0016 0.03 0.0014	U J J	(<0.0015) (<0.0013) 0.014 0.0041	U U J	0.0036 (<0.0014) (<0.0012) 0.02 0.00087	J U U J	0.12 0.05 0.06	500 500 44
4-Methyl-2-pentanone Acetone Benzene Carbon Disulfide	(mg/kg) (mg/kg) (mg/kg) (mg/kg)	(<0.0014)	U U U U	(<0.002) (<0.0016) 1.8 (<0.00046) 0.01	U	(<0.0015) 0.012 1.8 0.00093 0.0066	J	0.0074 (<0.0014) 0.0016 0.03 0.0014 0.0023	U J J J	(<0.0015) (<0.0013) 0.014 0.0041 (<0.0016)	U U J U	0.0036 (<0.0014) (<0.0012) 0.02 0.00087 (<0.0015)	J U J U	0.12	500 500 44
4-Methyl-2-pentanone Acetone Benzene Carbon Disulfide Dichloromethane	(mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg)	(<0.0014) (<0.0012) 0.014 (<0.00034) (<0.0015) 0.0021	U U U U J	(<0.002) (<0.0016) 1.8 (<0.00046) 0.01 0.024	U U	(<0.0015) 0.012 1.8 0.00093 0.0066 0.002	J	0.0074 (<0.0014) 0.0016 0.03 0.0014 0.0023 0.0047	U J J J J	(<0.0015) (<0.0013) 0.014 0.0041 (<0.0016) (<0.00071)	U U J U U	0.0036 (<0.0014) (<0.0012) 0.02 0.00087 (<0.0015) (<0.00065)	J U J U U	0.12	500 500 44
4-Methyl-2-pentanone Acetone Benzene Carbon Disulfide Dichloromethane Ethylbenzene	(mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg)	(<0.0014) (<0.0012) 0.014 (<0.00034) (<0.0015) 0.0021 (<0.00027)	U U U U J U	(<0.002) (<0.0016) 1.8 (<0.00046) 0.01 0.024 (<0.00037)	U U U	(<0.0015) 0.012 1.8 0.00093 0.0066 0.002 0.0011	1 1 1	0.0074 (<0.0014) 0.0016 0.03 0.0014 0.0023 0.0047 0.0028	U J J J J	(<0.0015) (<0.0013) 0.014 0.0041 (<0.0016) (<0.00071) 0.00031	U U J U J J	0.0036 (<0.0014) (<0.0012) 0.02 0.00087 (<0.0015) (<0.00065) (<0.00027)	J U J U U U	0.12 0.05 0.06 1	500 500 44 390
4-Methyl-2-pentanone Acetone Benzene Carbon Disulfide Dichloromethane Ethylbenzene m,p-Xylenes	(mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg)	(<0.0014)	U U U U J U U U U U	(<0.002) (<0.0016) 1.8 (<0.00046) 0.01 0.024 (<0.00037) (<0.0018)	U U U U U	(<0.0015) 0.012 1.8 0.00093 0.0066 0.002 0.0011 0.0046	1 1 1	0.0074 (<0.0014) 0.0016 0.03 0.0014 0.0023 0.0047 0.0028 0.013	U J J J J	(<0.0015) (<0.0013) 0.014 0.0041 (<0.0016) (<0.00071) 0.00031 (<0.0014)	U U J U U J U U U	0.0036 (<0.0014) (<0.0012) 0.02 (<0.00087 (<0.0005) (<0.00065) (<0.00027) (<0.0013)	J U U U U U U U U	0.12 0.05 0.06 1 	500 500 44 390
4-Methyl-2-pentanone Acetone Benzene Carbon Disulfide Dichloromethane Ethylbenzene m,p-Xylenes o-Xylene	(mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg)	(<0.0014)	U U U U J U U U U U	(<0.002) (<0.0016) 1.8 (<0.00046) 0.01 0.024 (<0.00037) (<0.0018) 0.0012	U U U U U	(<0.0015) 0.012 1.8 0.00093 0.0066 0.002 0.0011 0.0046 0.0039	1 1 1	0.0074 (<0.0014) 0.0016 0.03 0.0014 0.0023 0.0047 0.0028 0.013 0.0066	U J J J J	(<0.0015)	U U J U U J U U U	0.0036 (<0.0014) (<0.0012) 0.02 (<0.00087 (<0.00055) (<0.00027) (<0.0013) (<0.00055)	J U U U U U U U U	0.12 0.05 0.06 1 	500 500 44 390

Ir	1														
	Sample ID	356030-SB-36-	-4-5	356030-SB-37-	-4-5	356030-SB-38-	-2-3	356030-SB-39-	-1-3	356030-SB-40-	6-7	356030-SB-41-	6-7		
	Lab ID	R1208700-04	41	R1208700-04	12	R1208700-04	43	R1208700-04	44	R1208700-04	15	R1208700-04	6	6 NYCRR Part 375 S	6 NYCRR Part 375 oil Soil Cleanup
														Cleanup Objectives	
Parameter List	Sample Type	Subsurface So		Subsurface So		Subsurface So		Subsurface So		Subsurface So		Subsurface So	oil	Unrestricted Use	Use - Commercial
EPA Method 8260B	Sample Date	12/20/2012		12/20/2012		12/20/2012		12/20/2012		12/20/2012		12/20/2012		(mg/kg)	(mg/kg)
2-Butanone (MEK)	(mg/kg)	(<0.28)	U	0.0038	J	0.0056	J	(<0.21)	U	(<0.0028)	U	(<0.0028)	U	0.12	500
2-Hexanone	(mg/kg)	(<0.11)	U	(<0.0014)	U	(<0.0015)	UJ	(<0.079)	U	(<0.0015)	U	(<0.0015)	U		
4-Methyl-2-pentanone	(mg/kg)	(<0.089)	U	(<0.0011)	U	(<0.0012)	UJ	(<0.068)	U	(<0.0012)	U	(<0.0012)	U		
Acetone	(mg/kg)	(<0.2)	UJ	0.021		0.035	J	(<0.15)	UJ	0.0052	J	0.0061		0.05	500
Benzene	(mg/kg)	0.36	J	(<0.00032)	U	0.0028	J	0.9		0.0022	J	0.0049	J	0.06	44
Carbon Disulfide	(mg/kg)	(<0.054)	U	(<0.0014)	U	0.0031	J	(<0.041)	U	(<0.0015)	U	0.0026	J		
Dichloromethane	(mg/kg)	(<0.082)	U	0.006		0.00069	J	(<0.063)	U	(<0.00069)	U	(<0.00068)	U		
Ethylbenzene	(mg/kg)	0.34	J	(<0.00026)	U	0.025	J	6.8		0.001	J	0.018		1	390
m,p-Xylenes	(mg/kg)	1.8	J	(<0.0013)	U	0.038	J	28		0.0019	J	0.051			
o-Xylene	(mg/kg)	1.4		(<0.00053)	U	0.015	J	11		0.0014	J	0.019			
Xylenes (Total)	(mg/kg)	3.2		Not Detected	d	Not Detected	d	39		0.0033		0.07		0.26	500
Toluene	(mg/kg)	4.2		(<0.00074)	U	0.014	J	12		(<0.0025)	U	(<0.0032)	U	0.7	500
	Sample ID	356030-SB-42-	-5-6	356030-SB-43-	-5-6	356030-SB-DU	P 1 ^(a)	356030-SB-DU	P 2 ^(a)	356030-SB-DU	P 3 ^(a)	356030-RB1	(b)	356030-RB2 ^(b)	
	Lab ID	R1208700-04	48	R1208700-04	19	R1208700-00)8	R1208700-03	33	R1208700-04		R1208700-02		R1208700-050	
	Sample Type	Subsurface So	vil	Subsurface So	nil	QA/QC		QA/QC		QA/QC		QA/QC		QA/QC	
Parameter List EPA Method 8260B	Sample Date	12/20/2012		12/20/2012		12/19/2012		12/20/2012	,	12/20/2012		12/20/2012		12/20/2012	_
2-Butanone (MEK)	(mg/kg)	(<0.0029)	UJ	(<0.0026)	U	(<0.0026)	U	0.0036	J	(<0.0026)	U	(<0.81)	U		J
2-Hexanone	(mg/kg)	(<0.0015)	UJ	(<0.0014)	U	(<0.0014)	U	(<0.0014)	U	(<0.0014)	U	(<1.7)	UJ	(J
4-Methyl-2-pentanone	(mg/kg)	(<0.0013)	UJ	(<0.0011)	U	(<0.0012)	U	0.0013	J	(<0.0011)	U	(<0.67)	U	(J
Acetone	(mg/kg)	0.0073	J	(<0.0031)	U	0.0085		0.04		(<0.0031)	U	(<1.3)	UJ	(J
Benzene	(mg/kg)	0.0039	J	0.00058	J	(<0.00033)	U	0.0012	J	0.00068	J	(<0.2)	U	(<0.2)	
Carbon Disulfide	(mg/kg)	(<0.0016)	UJ	(<0.0014)	U	(<0.0015)	U	(<0.0014)	U	(<0.0014)	U	(<0.22)	U		
Dichloromethane	(mg/kg)	0.0013	J	(<0.00063)	U	0.028	-	0.0082	-	(<0.00063)	U	(<0.32)	U		J
Ethylbenzene	(mg/kg)	0.00041	J	(<0.00026)	U	(<0.00027)	U	(<0.00026)	U	(<0.00026)	U	(<0.2)	U	(=)	J
m,p-Xylenes	(mg/kg)	(<0.0014)	UJ	(<0.0013)	U	(<0.0013)	U	(<0.0013)	U	(<0.0012)	U	(<0.33)	U	. ,	J
o-Xylene	(mg/kg)	(<0.00059)	UJ	(<0.00053)	Ū	(<0.00055)	Ū	(<0.00054)	Ū	(<0.00053)	Ū	(<0.2)	Ŭ	(J
Xylenes (Total)	(mg/kg)	Not Detected	d	Not Detected	d	Not Detected	d	Not Detected	d	Not Detected	1	Not Detected	i	Not Detected	
Toluene	(mg/kg)	(<0.0058)	U	(<0.00074)	U	(<0.00076)	U	(<0.00075)	U	(<0.0014)	U	(<0.2)	U		r
(a) 356030-SB-DUP 1 collected at 3		. ,		· /				· · · · · ·						<u> </u>	
(b) Rinsate blanks are aqueous samp	ples, units are in µg/L														
NOTE: QA/QC	= Quality Control/Q	mality Assurance													

	Sample ID	356030-SB-01-	4-6	356030-SB-02-	5-6	356030-SB-03-	5-6	356030-SB-04-	5-6	356030-SB-05-	5-6	356030-SB-06-	5-6		6 NYCRR Part 375
	Lab ID	R1208700-00	1	R1208700-00	2	R1208700-00)3	R1208700-00	4	R1208700-00)5	R1208700-00	6	6 NYCRR Part 375 Soil	Soil Cleanup
														Cleanup Objectives -	Objectives - Restricted
Parameter List	Sample Type	Subsurface So	il	Subsurface So		Subsurface So	oil	Subsurface So	il	Subsurface So	oil	Subsurface So	oil	Unrestricted Use	Use - Commercial
EPA Method 8270C	Sample Date	12/19/2012		12/19/2012		12/19/2012		12/19/2012		12/19/2012		12/19/2012		(mg/kg)	(mg/kg)
2,4-Dimethylphenol	(mg/kg)	(<0.043)	U	(<0.041)	U	(<0.041)	U	(<0.045)	U	(<0.042)	U	(<0.043)	U		
2-Methylnaphthalene	(mg/kg)	(<0.039)	UJ	(<0.037)	UJ	(<0.037)	UJ	(<0.041)	UJ	(<0.038)	UJ	(<0.039)	UJ		
3&4-Methylphenol	(mg/kg)	(<0.059)	U	(<0.055)	U	(<0.055)	U	(<0.061)	U	(<0.057)	U	(<0.059)	U	0.33	500
Acenaphthene	(mg/kg)	(<0.056)	UJ	(<0.052)	UJ	(<0.052)	UJ	(<0.058)	UJ	(<0.054)	UJ	(<0.056)	UJ	20	500
Acenaphthylene	(mg/kg)	(<0.052)	UJ	(<0.049)	UJ	(<0.049)	UJ	(<0.054)	UJ	(<0.05)	UJ	(<0.052)	UJ	100	500
Anthracene	(mg/kg)	(<0.061)	UJ	(<0.057)	UJ	(<0.057)	UJ	(<0.063)	UJ	(<0.059)	UJ	0.075	J	100	500
Benzo[a]anthracene	(mg/kg)	(<0.06)	UJ	(<0.056)	UJ	(<0.056)	UJ	(<0.062)	UJ	(<0.058)	UJ	0.21	J	1	5.6
Benzo[a]pyrene	(mg/kg)	(<0.065)	U	(<0.061)	U	(<0.061)	U	(<0.067)	U	(<0.063)	U	0.23	J	1	1
Benzo[b]fluoranthene	(mg/kg)	(<0.094)	U	(<0.088)	U	(<0.088)	U	(<0.098)	U	(<0.091)	U	0.18	J	1	5.6
Benzo[g,h,i]perylene	(mg/kg)	(<0.073)	U	(<0.069)	U	(<0.069)	U	(<0.076)	U	(<0.071)	U	0.21	J	100	500
Benzo[k]fluoranthene	(mg/kg)	(<0.07)	U	(<0.065)	U	(<0.065)	U	(<0.072)	U	(<0.067)	U	0.18	J	0.8	56
Benzyl Alcohol	(mg/kg)	0.11	J	0.094	J	0.085	J	0.097	J	0.077	J	0.092	J		
bis(2-Ethylhexyl)phthalate	(mg/kg)	(<0.054)	U	0.094	J	(<0.051)	U	(<0.056)	U	0.054	J	0.37	J		
Butyl Benzyl Phthalate	(mg/kg)	(<0.059)	U	(<0.056)	U	(<0.056)	U	(<0.062)	U	(<0.057)	U	(<0.059)	U		
Carbazole	(mg/kg)	(<0.054)	U	(<0.051)	U	(<0.051)	U	(<0.056)	U	(<0.052)	U	(<0.054)	U		
Chrysene	(mg/kg)	(<0.054)	U	(<0.051)	U	(<0.051)	U	(<0.057)	U	(<0.053)	U	0.24	J	1	56
Dibenzo[a,h]anthracene	(mg/kg)	(<0.11)	UJ	(<0.098)	UJ	(<0.098)	UJ	(<0.11)	UJ	(<0.11)	UJ	(<0.11)	UJ	0.33	0.56
Dibenzofuran	(mg/kg)	(<0.043)	UJ	(<0.04)	UJ	(<0.04)	UJ	(<0.044)	UJ	(<0.041)	UJ	(<0.043)	UJ	7	350
Diethyl Phthalate	(mg/kg)	(<0.05)	U	(<0.047)	U	(<0.048)	U	(<0.052)	U	(<0.049)	U	(<0.05)	U		
Di-n-butyl Phthalate	(mg/kg)	(<0.11)	U	(<0.1)	U	(<0.1)	U	(<0.12)	U	(<0.11)	U	(<0.11)	U		
Di-n-octyl Phthalate	(mg/kg)	(<0.075)	U	(<0.07)	U	(<0.07)	Ū	(<0.077)	Ū	(<0.072)	Ū	(<0.075)	Ū		
Fluoranthene	(mg/kg)	(<0.062)	U	(<0.058)	U	(<0.058)	U	(<0.064)	U	(<0.06)	U	0.46		100	100
Fluorene	(mg/kg)	(<0.049)	UJ	(<0.046)	UJ	(<0.046)	UJ	(<0.051)	ŪJ	(<0.047)	UJ	(<0.049)	UJ	30	500
Indeno[1,2,3-cd]pyrene	(mg/kg)	(<0.064)	UJ	(<0.06)	UJ	(<0.06)	UJ	(<0.067)	UJ	(<0.062)	UJ	0.15	J	0.5	5.6
Naphthalene	(mg/kg)	(<0.039)	UJ	(<0.037)	UJ	(<0.037)	UJ	(<0.041)	UJ	(<0.038)	UJ	(<0.039)	UJ	12	500
Phenanthrene	(mg/kg)	(<0.052)	UJ	(<0.049)	UJ	(<0.049)	UJ	(<0.054)	UJ	(<0.051)	UJ	0.4	J	100	500
Phenol	(mg/kg)	(<0.043)	U	(<0.04)	U	(<0.04)	U	(<0.045)	U	(<0.041)	U	(<0.043)	U	0.33	500
Pyrene	(mg/kg)	(<0.075)	U	(<0.071)	U	(<0.071)	U	(<0.078)	U	(<0.073)	U	0.53		100	500
NOTE: EPA	= U.S. Enivronmenta		U	(<0.071)	U	((0.071)	U	((0.070)	U	((0.075)	U	0.55		100	500
NYCRR		of Rules and Regulatio	n												
mg/kg	= milligrams per kilo														
U		ion below the method	detection	n limit.											
	= No standard.														
UJ		alyzed for, but not dete			n limit is	s an estimated quantity	y due to	variance from quality	control l	imits.					
J		nerical value is and es vices, Inc. Only analy				l l D									

	Sample ID	356030-SB-07-4	4-6	356030-SB-08-	5-6	356030-SB-09-2	2-3	356030-SB-09-6	5-8	356030-SB-10-	5-6	356030-SB-11-5	5-6		
	Lab ID	R1208700-00	7	R1208700-00)9	R1208700-010	0	R1208700-01	1	R1208700-01	2	R1208700-013	3	6 NYCRR Part 375 Soil	6 NYCRR Part 375 Soil Cleanup
Parameter List	Sample Type	Subsurface So	il	Subsurface So	oil	Subsurface So	il	Subsurface So	il	Subsurface So	1	Subsurface So	il	Cleanup Objectives - Unrestricted Use	Objectives - Restricted Use - Commercial
EPA Method 8270C	Sample Date	12/19/2012		12/19/2012		12/19/2012		12/19/2012		12/19/2012		12/19/2012		(mg/kg)	(mg/kg)
2,4-Dimethylphenol	(mg/kg)	(<0.043)	U	(<0.043)	U	(<0.21)	U	(<0.045)	U	(<0.042)	U	(<0.05)	U		
2-Methylnaphthalene	(mg/kg)	(<0.039)	UJ	(<0.039)	UJ	1.8	J	(<0.041)	UJ	(<0.038)	UJ	(<0.045)	UJ		
3&4-Methylphenol	(mg/kg)	(<0.059)	U	(<0.058)	U	(<0.29)	U	(<0.061)	U	(<0.057)	U	(<0.068)	U	0.33	500
Acenaphthene	(mg/kg)	(<0.055)	UJ	(<0.055)	UJ	0.56	J	(<0.058)	UJ	(<0.054)	UJ	(<0.064)	UJ	20	500
Acenaphthylene	(mg/kg)	(<0.052)	UJ	(<0.051)	UJ	(<0.26)	UJ	(<0.054)	UJ	(<0.05)	UJ	(<0.06)	UJ	100	500
Anthracene	(mg/kg)	(<0.061)	UJ	(<0.06)	UJ	0.6	J	(<0.063)	UJ	(<0.059)	UJ	(<0.07)	UJ	100	500
Benzo[a]anthracene	(mg/kg)	0.073	J	(<0.059)	UJ	1.1	J	0.079	J	(<0.058)	UJ	(<0.069)	UJ	1	5.6
Benzo[a]pyrene	(mg/kg)	0.071	J	(<0.064)	U	1.2	J	0.081	J	(<0.063)	U	(<0.075)	U	1	1
Benzo[b]fluoranthene	(mg/kg)	(<0.094)	U	(<0.093)	U	1.3	J	(<0.098)	U	(<0.091)	U	(<0.11)	U	1	5.6
Benzo[g,h,i]perylene	(mg/kg)	(<0.073)	U	(<0.072)	U	1.5	J	(<0.076)	U	(<0.071)	U	(<0.085)	U	100	500
Benzo[k]fluoranthene	(mg/kg)	(<0.069)	U	(<0.069)	U	1.1	J	(<0.072)	U	(<0.067)	U	(<0.08)	U	0.8	56
Benzyl Alcohol	(mg/kg)	0.1	J	0.097	J	(<0.38)	U	0.099	J	0.099	J	0.12	J		
bis(2-Ethylhexyl)phthalate	(mg/kg)	0.061	J	0.07	J	1.9		0.9		0.062	J	(<0.062)	U		
Butyl Benzyl Phthalate	(mg/kg)	(<0.059)	U	(<0.059)	U	(<0.29)	U	(<0.062)	U	(<0.058)	U	(<0.069)	U		
Carbazole	(mg/kg)	(<0.054)	U	(<0.053)	U	(<0.26)	U	(<0.056)	U	(<0.052)	U	(<0.062)	U		
Chrysene	(mg/kg)	0.087	J	(<0.054)	U	1.4	J	0.08	J	(<0.053)	U	(<0.063)	U	1	56
Dibenzo[a,h]anthracene	(mg/kg)	(<0.11)	UJ	(<0.11)	UJ	(<0.51)	UJ	(<0.11)	UJ	(<0.11)	UJ	(<0.13)	UJ	0.33	0.56
Dibenzofuran	(mg/kg)	(<0.043)	UJ	(<0.042)	UJ	(<0.21)	UJ	(<0.044)	UJ	(<0.041)	UJ	(<0.049)	UJ	7	350
Diethyl Phthalate	(mg/kg)	(<0.05)	U	(<0.05)	U	(<0.25)	U	(<0.053)	U	(<0.049)	U	(<0.058)	U		
Di-n-butyl Phthalate	(mg/kg)	(<0.11)	U	(<0.11)	U	(<0.52)	U	(<0.12)	U	(<0.11)	U	(<0.13)	U		
Di-n-octyl Phthalate	(mg/kg)	(<0.074)	U	(<0.073)	U	(<0.36)	U	(<0.077)	U	(<0.072)	U	(<0.086)	U		
Fluoranthene	(mg/kg)	0.088	J	(<0.061)	U	2.1		0.13	J	(<0.06)	U	(<0.072)	U	100	100
Fluorene	(mg/kg)	(<0.049)	UJ	(<0.048)	UJ	1.1	J	(<0.051)	UJ	(<0.047)	UJ	(<0.057)	UJ	30	500
Indeno[1,2,3-cd]pyrene	(mg/kg)	(<0.064)	UJ	(<0.063)	UJ	1.1	J	(<0.067)	UJ	(<0.062)	UJ	(<0.074)	UJ	0.5	5.6
Naphthalene	(mg/kg)	(<0.039)	UJ	(<0.039)	UJ	0.66	J	(<0.041)	UJ	(<0.038)	UJ	(<0.045)	UJ	12	500
Phenanthrene	(mg/kg)	0.1	J	(<0.052)	UJ	2.7	J	0.15	J	(<0.051)	UJ	(<0.06)	UJ	100	500
Phenol	(mg/kg)	(<0.043)	U	(<0.042)	U	(<0.21)	U	(<0.045)	U	(<0.042)	U	(<0.049)	U	0.33	500
Pyrene	(mg/kg)	0.14	J	(<0.074)	U	2.6		0.14	J	(<0.073)	U	(<0.087)	U	100	500

	Sample ID	356030-SB-12-	6-7	356030-SB-13-	4-5	356030-SB-14-4	1-5	356030-SB-15-2	2-3	356030-SB-16-	4-5	356030-SB-17-5	5-6		CARGED D . 175
	Lab ID	R1208700-01	4	R1208700-01	5	R1208700-010	5	R1208700-017	7	R1208700-01	8	R1208700-01	9	6 NYCRR Part 375 Soil	6 NYCRR Part 375 Soil Cleanup
Parameter List	Sample Type	Subsurface So	oil	Subsurface So	oil	Subsurface So	il	Subsurface Soi	il	Subsurface So	oil	Subsurface Soi	il	Cleanup Objectives - Unrestricted Use	Objectives - Restricted Use - Commercial
EPA Method 8270C	Sample Date	12/19/2012		12/19/2012		12/19/2012		12/19/2012		12/19/2012		12/19/2012		(mg/kg)	(mg/kg)
2,4-Dimethylphenol	(mg/kg)	(<0.043)	U	(<0.041)	U	(<0.049)	U	(<0.049)	U	(<0.046)	U	(<0.043)	U		
2-Methylnaphthalene	(mg/kg)	0.039	J	(<0.037)	UJ	0.05	J	(<0.044)	U	0.085	J	(<0.039)	U		
3&4-Methylphenol	(mg/kg)	(<0.059)	U	(<0.056)	U	(<0.067)	U	(<0.066)	U	(<0.062)	U	(<0.059)	U	0.33	500
Acenaphthene	(mg/kg)	0.057	J	(<0.053)	UJ	(<0.063)	U	(<0.063)	U	(<0.059)	U	(<0.056)	U	20	500
Acenaphthylene	(mg/kg)	(<0.052)	UJ	(<0.049)	UJ	(<0.059)	U	(<0.059)	U	(<0.055)	U	(<0.052)	U	100	500
Anthracene	(mg/kg)	0.17	J	(<0.058)	UJ	(<0.069)	U	(<0.069)	U	0.087	J	(<0.061)	U	100	500
Benzo[a]anthracene	(mg/kg)	0.52	J	(<0.057)	UJ	0.076	J	0.094	J	0.16	J	(<0.06)	U	1	5.6
Benzo[a]pyrene	(mg/kg)	0.48		(<0.061)	U	0.077	J	0.094	J	0.14	J	(<0.065)	U	1	1
Benzo[b]fluoranthene	(mg/kg)	0.39	J	(<0.089)	U	(<0.11)	U	(<0.11)	U	(<0.099)	U	(<0.094)	U	1	5.6
Benzo[g,h,i]perylene	(mg/kg)	0.32	J	(<0.069)	U	(<0.083)	U	0.088	J	0.11	J	(<0.073)	U	100	500
Benzo[k]fluoranthene	(mg/kg)	0.41		(<0.066)	U	0.085	J	0.088	J	0.14	J	(<0.07)	U	0.8	56
Benzyl Alcohol	(mg/kg)	0.089	J	0.088	J	0.1	J	0.09	J	0.1	J	0.11	J		
bis(2-Ethylhexyl)phthalate	(mg/kg)	(<0.054)	U	0.081	J	0.23	J	0.15	J	(<0.057)	U	0.16	J		
Butyl Benzyl Phthalate	(mg/kg)	(<0.06)	U	(<0.056)	U	(<0.067)	U	(<0.067)	U	(<0.063)	U	(<0.059)	U		
Carbazole	(mg/kg)	(<0.054)	U	(<0.051)	U	(<0.061)	U	(<0.061)	U	(<0.057)	U	(<0.054)	U		
Chrysene	(mg/kg)	0.51		(<0.051)	U	0.1	J	0.11	J	0.2	J	(<0.054)	U	1	56
Dibenzo[a,h]anthracene	(mg/kg)	(<0.11)	UJ	(<0.099)	UJ	(<0.12)	U	(<0.12)	U	(<0.11)	U	(<0.11)	U	0.33	0.56
Dibenzofuran	(mg/kg)	0.049	J	(<0.04)	UJ	(<0.048)	U	(<0.048)	U	(<0.045)	U	(<0.043)	U	7	350
Diethyl Phthalate	(mg/kg)	(<0.051)	U	(<0.048)	U	(<0.057)	U	(<0.057)	U	(<0.053)	U	(<0.05)	U		
Di-n-butyl Phthalate	(mg/kg)	(<0.11)	U	(<0.11)	U	(<0.13)	U	(<0.12)	U	0.15	J	(<0.11)	U		
Di-n-octyl Phthalate	(mg/kg)	(<0.075)	U	(<0.07)	U	(<0.084)	U	(<0.084)	U	(<0.079)	U	(<0.075)	U		
Fluoranthene	(mg/kg)	1.1		(<0.059)	U	0.18	J	0.19	J	0.35	J	(<0.062)	U	100	100
Fluorene	(mg/kg)	0.057	J	(<0.046)	UJ	(<0.055)	U	(<0.055)	U	(<0.052)	U	(<0.049)	U	30	500
Indeno[1,2,3-cd]pyrene	(mg/kg)	0.25	J	(<0.061)	UJ	(<0.073)	U	0.081	J	0.097	J	(<0.064)	U	0.5	5.6
Naphthalene	(mg/kg)	0.08	J	(<0.037)	UJ	0.047	J	(<0.044)	U	0.059	J	(<0.039)	U	12	500
Phenanthrene	(mg/kg)	0.71	J	(<0.05)	UJ	0.12	J	0.12	J	0.23	J	(<0.052)	U	100	500
Phenol	(mg/kg)	(<0.043)	U	(<0.041)	U	(<0.049)	U	(<0.048)	U	(<0.045)	U	(<0.043)	U	0.33	500
Pyrene	(mg/kg)	1		(<0.071)	U	0.16	J	0.19	J	0.32	J	(<0.075)	U	100	500

I		1												I	1
	Sample ID	356030-SB-18	-5-6	356030-SB-19-	5-6	356030-SB-20-3	8-4	356030-SB-21-4	-5	356030-SB-22-5	5-6	356030-SB-23-3	-4		
	Lab ID	R1208700-0	20	R1208700-02	1	R1208700-022	2	R1208700-023	3	R1208700-024	1	R1208700-027	7	6 NYCRR Part 375 Soil	6 NYCRR Part 375 Soil Cleanup
Parameter List	Sample Type	Subsurface S	oil	Subsurface So	oil	Subsurface Soi	1	Subsurface Soi	1	Subsurface So	il	Subsurface Soi	1	Cleanup Objectives - Unrestricted Use	Objectives - Restricted Use - Commercial
EPA Method 8270C	Sample Date	12/19/2012	2	12/19/2012		12/19/2012		12/19/2012		12/19/2012		12/19/2012		(mg/kg)	(mg/kg)
2,4-Dimethylphenol	(mg/kg)	(<0.042)	U	(<0.044)	U	(<0.045)	U	(<0.25)	U	(<0.043)	U	(<0.042)	U		
2-Methylnaphthalene	(mg/kg)	(<0.038)	U	(<0.04)	U	(<0.041)	U	3.1		(<0.039)	U	0.045	J		
3&4-Methylphenol	(mg/kg)	(<0.057)	U	(<0.059)	U	(<0.062)	U	(<0.34)	U	(<0.059)	U	(<0.057)	U	0.33	500
Acenaphthene	(mg/kg)	(<0.054)	U	(<0.056)	U	(<0.058)	U	0.45	J	(<0.056)	U	(<0.054)	U	20	500
Acenaphthylene	(mg/kg)	(<0.051)	U	(<0.053)	U	(<0.055)	U	(<0.3)	U	(<0.052)	U	(<0.05)	U	100	500
Anthracene	(mg/kg)	(<0.059)	U	(<0.061)	U	(<0.064)	U	0.56	J	(<0.061)	U	0.12	J	100	500
Benzo[a]anthracene	(mg/kg)	(<0.058)	U	(<0.061)	U	0.088	J	0.69	J	(<0.06)	U	0.18	J	1	5.6
Benzo[a]pyrene	(mg/kg)	(<0.063)	U	(<0.065)	U	0.088	J	0.54	J	(<0.065)	U	0.2	J	1	1
Benzo[b]fluoranthene	(mg/kg)	(<0.091)	U	(<0.095)	U	(<0.099)	U	(<0.54)	U	(<0.095)	U	0.14	J	1	5.6
Benzo[g,h,i]perylene	(mg/kg)	(<0.071)	U	(<0.074)	U	(<0.077)	U	(<0.42)	U	(<0.074)	U	0.2	J	100	500
Benzo[k]fluoranthene	(mg/kg)	(<0.068)	U	(<0.07)	U	0.073	J	0.45	J	(<0.07)	U	0.18	J	0.8	56
Benzyl Alcohol	(mg/kg)	0.12	J	0.13	J	0.13	J	(<0.45)	U	0.11	J	0.092	J		
bis(2-Ethylhexyl)phthalate	(mg/kg)	0.13	J	0.11	J	(<0.056)	U	35		0.23	J	0.15	J		
Butyl Benzyl Phthalate	(mg/kg)	(<0.058)	U	(<0.06)	U	(<0.062)	U	0.86	J	(<0.06)	U	(<0.057)	U		
Carbazole	(mg/kg)	(<0.052)	U	(<0.054)	U	(<0.057)	U	(<0.31)	U	(<0.054)	U	(<0.052)	U		
Chrysene	(mg/kg)	(<0.053)	U	0.065	J	0.1	J	0.82	J	(<0.055)	U	0.21	J	1	56
Dibenzo[a,h]anthracene	(mg/kg)	(<0.11)	U	(<0.11)	U	(<0.11)	U	(<0.6)	U	(<0.11)	U	(<0.11)	U	0.33	0.56
Dibenzofuran	(mg/kg)	(<0.042)	U	(<0.043)	U	(<0.045)	U	0.3	J	(<0.043)	U	0.044	J	7	350
Diethyl Phthalate	(mg/kg)	0.083	J	(<0.051)	U	(<0.053)	U	(<0.29)	U	(<0.051)	U	(<0.049)	U		
Di-n-butyl Phthalate	(mg/kg)	(<0.11)	U	(<0.11)	U	(<0.12)	U	(<0.61)	U	(<0.11)	U	(<0.11)	U		
Di-n-octyl Phthalate	(mg/kg)	(<0.073)	U	(<0.075)	U	(<0.078)	U	(<0.43)	U	(<0.075)	U	(<0.072)	U		
Fluoranthene	(mg/kg)	(<0.06)	U	0.1	J	0.21	J	1.8	J	(<0.063)	U	0.41		100	100
Fluorene	(mg/kg)	(<0.048)	U	(<0.049)	U	(<0.051)	U	0.7	J	(<0.049)	U	0.055	J	30	500
Indeno[1,2,3-cd]pyrene	(mg/kg)	(<0.063)	U	(<0.065)	U	(<0.067)	U	(<0.37)	U	(<0.065)	U	0.16	J	0.5	5.6
Naphthalene	(mg/kg)	(<0.038)	U	(<0.04)	U	(<0.041)	U	2	J	(<0.039)	U	0.094	J	12	500
Phenanthrene	(mg/kg)	(<0.051)	U	0.073	J	0.19	J	2.4		(<0.053)	U	0.39		100	500
Phenol	(mg/kg)	(<0.042)	U	(<0.043)	U	(<0.045)	U	(<0.25)	U	(<0.043)	U	(<0.041)	U	0.33	500
Pyrene	(mg/kg)	(<0.073)	U	0.11	J	0.2	J	1.7	J	(<0.076)	U	0.31	J	100	500

	Sample ID	356030-SB-24-3	3-4	356030-SB-25-4	4-5	356030-SB-26-2.5	5-3.5	356030-SB-27-3	3-4	356030-SB-28-2	.5-3.5	356030-SB-29-	5-6		CHRODE D 1975
	Lab ID	R1208700-02	8	R1208700-02	9	R1208700-030	0	R1208700-03	1	R1208700-03	32	R1208700-03	34	6 NYCRR Part 375 Soil	6 NYCRR Part 375 Soil Cleanup
Parameter List	Sample Type	Subsurface Soi	1	Subsurface So	il	Subsurface So	il	Subsurface Soi	1	Subsurface S	oil	Subsurface So	oil	Cleanup Objectives - Unrestricted Use	Objectives - Restricted Use - Commercial
EPA Method 8270C	Sample Date	12/19/2012		12/20/2012		12/20/2012		12/20/2012		12/20/2012		12/20/2012		(mg/kg)	(mg/kg)
2,4-Dimethylphenol	(mg/kg)	(<0.042)	U	(<0.043)	U	(<0.13)	U	(<0.043)	U	(<0.041)	U	(<0.043)	U		
2-Methylnaphthalene	(mg/kg)	(<0.038)	U	(<0.039)	U	0.52	J	(<0.039)	U	(<0.037)	U	(<0.039)	U		
3&4-Methylphenol	(mg/kg)	(<0.058)	U	(<0.058)	U	(<0.17)	U	(<0.059)	U	(<0.056)	U	(<0.059)	U	0.33	500
Acenaphthene	(mg/kg)	(<0.054)	U	(<0.055)	U	(<0.16)	U	(<0.055)	U	(<0.053)	U	(<0.055)	U	20	500
Acenaphthylene	(mg/kg)	(<0.051)	U	(<0.051)	U	(<0.15)	U	(<0.052)	U	(<0.05)	U	(<0.052)	U	100	500
Anthracene	(mg/kg)	(<0.06)	U	(<0.06)	U	0.24	J	(<0.061)	U	0.096	J	(<0.061)	U	100	500
Benzo[a]anthracene	(mg/kg)	0.16	J	(<0.059)	U	1.5		(<0.06)	U	0.37		(<0.06)	U	1	5.6
Benzo[a]pyrene	(mg/kg)	0.15	J	(<0.064)	U	1.3		(<0.064)	U	0.33	J	(<0.064)	U	1	1
Benzo[b]fluoranthene	(mg/kg)	0.13	J	(<0.093)	U	1.3		(<0.093)	U	0.25	J	(<0.094)	U	1	5.6
Benzo[g,h,i]perylene	(mg/kg)	0.13	J	(<0.072)	U	0.86	J	(<0.073)	U	0.23	J	(<0.073)	U	100	500
Benzo[k]fluoranthene	(mg/kg)	0.15	J	(<0.069)	U	1.1	J	(<0.069)	U	0.23	J	(<0.069)	U	0.8	56
Benzyl Alcohol	(mg/kg)	0.12	J	0.12	J	(<0.23)	U	0.12	J	0.17	J	0.099	J		
bis(2-Ethylhexyl)phthalate	(mg/kg)	(<0.052)	U	(<0.053)	U	0.58	J	0.083	J	0.25	J	0.059	J		
Butyl Benzyl Phthalate	(mg/kg)	(<0.058)	U	(<0.059)	U	(<0.17)	U	(<0.059)	U	(<0.057)	U	(<0.059)	U		
Carbazole	(mg/kg)	(<0.053)	U	(<0.053)	U	(<0.16)	U	(<0.054)	U	(<0.051)	U	(<0.054)	U		
Chrysene	(mg/kg)	0.2	J	(<0.054)	U	1.6		(<0.054)	U	0.41		(<0.054)	U	1	56
Dibenzo[a,h]anthracene	(mg/kg)	(<0.11)	U	(<0.11)	U	(<0.3)	U	(<0.11)	U	(<0.1)	U	(<0.11)	U	0.33	0.56
Dibenzofuran	(mg/kg)	(<0.042)	U	(<0.042)	U	(<0.13)	U	(<0.042)	U	(<0.041)	U	(<0.043)	U	7	350
Diethyl Phthalate	(mg/kg)	(<0.049)	U	(<0.05)	U	(<0.15)	U	(<0.05)	U	(<0.048)	U	(<0.05)	U		
Di-n-butyl Phthalate	(mg/kg)	(<0.11)	U	(<0.11)	U	(<0.31)	U	(<0.11)	U	(<0.11)	U	(<0.11)	U		
Di-n-octyl Phthalate	(mg/kg)	(<0.073)	U	(<0.073)	U	(<0.22)	U	(<0.074)	U	(<0.071)	U	(<0.074)	U		
Fluoranthene	(mg/kg)	0.43		(<0.061)	U	3.2		(<0.062)	U	0.9	J	(<0.062)	U	100	100
Fluorene	(mg/kg)	(<0.048)	U	(<0.048)	U	(<0.14)	U	(<0.049)	U	(<0.047)	U	(<0.049)	U	30	500
Indeno[1,2,3-cd]pyrene	(mg/kg)	0.11	J	(<0.063)	U	0.77	J	(<0.064)	U	0.2	J	(<0.064)	U	0.5	5.6
Naphthalene	(mg/kg)	(<0.038)	U	(<0.039)	U	0.44	J	(<0.039)	U	(<0.037)	U	(<0.039)	U	12	500
Phenanthrene	(mg/kg)	0.34	J	(<0.052)	U	1.2		(<0.052)	U	0.34	J	(<0.052)	U	100	500
Phenol	(mg/kg)	(<0.042)	U	(<0.042)	U	(<0.13)	U	(<0.043)	U	(<0.041)	U	(<0.043)	U	0.33	500
Pyrene	(mg/kg)	0.34	J	(<0.074)	U	2.0	1	(<0.075)	U	0.7	I	(<0.075)	U	100	500

	Sample ID	356030-SB-30-5	-6	356030-SB-31-	5-6	356030-SB-32-	4-5	356030-SB-33-4	4-5	356030-SB-34-	2-3	356030-SB-35-	7-8		
	Lab ID	R1208700-035	i	R1208700-03	6	R1208700-03	7	R1208700-03	8	R1208700-03	19	R1208700-04	0	6 NYCRR Part 375 Soil	6 NYCRR Part 375 Soil Cleanup
Parameter List	Sample Type	Subsurface Soi	I	Subsurface So	il	Subsurface So	il	Subsurface So	il	Subsurface So	oil	Subsurface So	il	Cleanup Objectives - Unrestricted Use	Objectives - Restricted Use - Commercial
EPA Method 8270C	Sample Date	12/20/2012		12/20/2012		12/20/2012		12/20/2012		12/20/2012		12/20/2012		(mg/kg)	(mg/kg)
2,4-Dimethylphenol	(mg/kg)	(<0.042)	U	(<0.058)	U	(<0.043)	U	(<0.042)	R	(<0.45)	UJ	(<0.042)	U		
2-Methylnaphthalene	(mg/kg)	(<0.038)	U	0.054	J	(<0.039)	UJ	(<0.038)	UJ	2.2	J	(<0.038)	UJ		
3&4-Methylphenol	(mg/kg)	(<0.058)	U	0.41	J	(<0.059)	UJ	(<0.057)	R	(<0.62)	UJ	(<0.057)	UJ	0.33	500
Acenaphthene	(mg/kg)	(<0.055)	U	(<0.075)	U	(<0.056)	UJ	(<0.054)	UJ	2.2	J	(<0.054)	UJ	20	500
Acenaphthylene	(mg/kg)	(<0.051)	U	(<0.07)	U	(<0.052)	UJ	(<0.05)	UJ	1.6	J	(<0.051)	UJ	100	500
Anthracene	(mg/kg)	(<0.06)	U	(<0.082)	U	(<0.061)	UJ	(<0.059)	UJ	10	J	0.07	J	100	500
Benzo[a]anthracene	(mg/kg)	(<0.059)	U	0.17	J	(<0.06)	UJ	(<0.058)	UJ	19	J	0.18	J	1	5.6
Benzo[a]pyrene	(mg/kg)	(<0.064)	U	0.18	J	(<0.065)	UJ	(<0.063)	UJ	17	J	0.2	J	1	1
Benzo[b]fluoranthene	(mg/kg)	(<0.092)	U	0.14	J	(<0.094)	UJ	(<0.091)	UJ	15	J	0.2	J	1	5.6
Benzo[g,h,i]perylene	(mg/kg)	(<0.072)	U	0.14	J	(<0.074)	UJ	(<0.071)	UJ	12	J	0.15	J	100	500
Benzo[k]fluoranthene	(mg/kg)	(<0.068)	U	0.13	J	(<0.07)	UJ	(<0.067)	UJ	12	J	0.18	J	0.8	56
Benzyl Alcohol	(mg/kg)	0.12	J	0.14	J	0.12	J	0.098	J	(<0.82)	UJ	0.098	J		
bis(2-Ethylhexyl)phthalate	(mg/kg)	0.18	J	0.12	J	0.064	J	0.24	J	(<0.56)	UJ	0.31	J		
Butyl Benzyl Phthalate	(mg/kg)	(<0.058)	U	(<0.08)	U	(<0.06)	UJ	0.08	J	(<0.62)	UJ	(<0.058)	UJ		
Carbazole	(mg/kg)	(<0.053)	U	(<0.072)	U	(<0.054)	UJ	(<0.052)	UJ	3.7	J	(<0.052)	UJ		
Chrysene	(mg/kg)	(<0.053)	U	0.19	J	(<0.055)	UJ	(<0.053)	UJ	18	J	0.23	J	1	56
Dibenzo[a,h]anthracene	(mg/kg)	(<0.11)	U	(<0.14)	U	(<0.11)	UJ	(<0.11)	UJ	2.9	J	(<0.11)	UJ	0.33	0.56
Dibenzofuran	(mg/kg)	(<0.042)	U	(<0.057)	U	(<0.043)	UJ	(<0.041)	UJ	4.2	J	(<0.042)	UJ	7	350
Diethyl Phthalate	(mg/kg)	(<0.05)	U	(<0.068)	U	(<0.051)	UJ	(<0.049)	UJ	(<0.53)	UJ	(<0.049)	UJ		
Di-n-butyl Phthalate	(mg/kg)	(<0.11)	U	(<0.15)	U	(<0.11)	UJ	(<0.11)	UJ	(<1.2)	UJ	(<0.11)	UJ		
Di-n-octyl Phthalate	(mg/kg)	(<0.073)	U	(<0.1)	U	(<0.075)	U	(<0.072)	U	(<0.78)	UJ	(<0.072)	U		
Fluoranthene	(mg/kg)	(<0.061)	U	0.37	J	(<0.062)	UJ	(<0.06)	UJ	48	J	0.45	J	100	100
Fluorene	(mg/kg)	(<0.048)	U	(<0.066)	U	(<0.049)	UJ	(<0.047)	UJ	3.6	J	(<0.048)	UJ	30	500
Indeno[1,2,3-cd]pyrene	(mg/kg)	(<0.063)	U	0.12	J	(<0.064)	UJ	(<0.062)	UJ	9.6	J	0.13	J	0.5	5.6
Naphthalene	(mg/kg)	(<0.038)	U	(<0.052)	U	(<0.039)	UJ	(<0.038)	UJ	6.5	J	0.041	J	12	500
Phenanthrene	(mg/kg)	(<0.051)	U	0.22	J	(<0.052)	UJ	(<0.051)	UJ	49	J	0.31	J	100	500
Phenol	(mg/kg)	(<0.042)	U	(<0.058)	U	(<0.043)	UJ	(<0.042)	R	(<0.45)	UJ	(<0.042)	UJ	0.33	500
Pyrene	(mg/kg)	(<0.074)	U	0.26	J	(<0.075)	UJ	(<0.073)	UJ	40	J	0.32	J	100	500

	Sample ID Lab ID	356030-SB-36 R1208700-04	-	356030-SB-37-4 R1208700-04		356030-SB-38-2 R1208700-043	-	356030-SB-39-1 R1208700-044	-	356030-SB-40- R1208700-04		356030-SB-41-6 R1208700-046		6 NYCRR Part 375 Soil	6 NYCRR Part 375 Soil Cleanup Objectives -
	Sample Type	Subsurface S	oil	Subsurface Soi	il	Subsurface Soil (Fill)	Subsurface Soi	1	Subsurface So	i1	Subsurface Soi	1	Cleanup Objectives -	Restricted Use -
Parameter List EPA Method 8270C	Sample Date	12/20/2012		12/20/2012		12/20/2012		12/20/2012		12/20/2012		12/20/2012		Unrestricted Use (mg/kg)	Commercial (mg/kg)
2,4-Dimethylphenol	(mg/kg)	(<0.48)	U	0.048	J	(<0.043)	R	(<0.99)	UJ	(<0.044)	U	(<0.043)	UJ		
2-Methylnaphthalene	(mg/kg)	(<0.43)	UJ	0.72	J	0.35	J	100	J	(<0.04)	UJ	0.095	J		
3&4-Methylphenol	(mg/kg)	(<0.65)	UJ	0.085	J	(<0.059)	R	2.8	J	(<0.061)	UJ	(<0.059)	UJ	0.33	500
Acenaphthene	(mg/kg)	(<0.62)	UJ	1.3	J	0.063	J	(<1.3)	UJ	(<0.057)	UJ	(<0.056)	UJ	20	500
Acenaphthylene	(mg/kg)	(<0.57)	UJ	0.34	J	(<0.052)	UJ	(<1.2)	UJ	(<0.054)	UJ	(<0.052)	UJ	100	500
Anthracene	(mg/kg)	(<0.67)	UJ	2.0	J	0.085	J	(<1.4)	UJ	0.16	J	0.13	J	100	500
Benzo[a]anthracene	(mg/kg)	(<0.66)	UJ	3.2	J	0.22	J	(<1.4)	UJ	0.5	J	0.32	J	1	5.6
Benzo[a]pyrene	(mg/kg)	(<0.72)	UJ	3.0	J	0.22	J	(<1.5)	UJ	0.55	J	0.29	J	1	1
Benzo[b]fluoranthene	(mg/kg)	(<1.1)	UJ	2.4	J	0.2	J	(<2.2)	UJ	0.38	J	0.22	J	1	5.6
Benzo[g,h,i]perylene	(mg/kg)	(<0.81)	UJ	1.7	J	0.15	J	(<1.7)	UJ	0.33	J	0.18	J	100	500
Benzo[k]fluoranthene	(mg/kg)	(<0.77)	UJ	2.3	J	0.16	J	(<1.6)	UJ	0.48	J	0.22	J	0.8	56
Benzyl Alcohol	(mg/kg)	(<0.86)	UJ	0.12	J	0.086	J	(<1.8)	UJ	(<0.08)	UJ	(<0.078)	UJ		
bis(2-Ethylhexyl)phthalate	(mg/kg)	(<0.59)	UJ	0.095	J	1.9	J	120	J	0.13	J	0.073	J		
Butyl Benzyl Phthalate	(mg/kg)	(<0.66)	UJ	(<0.056)	UJ	0.25	J	5.6	J	(<0.061)	UJ	(<0.06)	UJ		
Carbazole	(mg/kg)	(<0.6)	UJ	0.95	J	(<0.054)	UJ	(<1.3)	UJ	(<0.056)	UJ	0.073	J		
Chrysene	(mg/kg)	(<0.6)	UJ	3.3	J	0.24	J	(<1.3)	UJ	0.49	J	0.33	J	1	56
Dibenzo[a,h]anthracene	(mg/kg)	(<1.2)	UJ	0.52	J	(<0.11)	UJ	(<2.5)	UJ	(<0.11)	UJ	(<0.11)	UJ	0.33	0.56
Dibenzofuran	(mg/kg)	(<0.47)	UJ	1.1	J	(<0.043)	UJ	(<0.98)	UJ	(<0.044)	UJ	(<0.043)	UJ	7	350
Diethyl Phthalate	(mg/kg)	(<0.56)	UJ	(<0.048)	UJ	(<0.05)	UJ	(<1.2)	UJ	(<0.052)	UJ	(<0.051)	UJ		
Di-n-butyl Phthalate	(mg/kg)	(<1.2)	UJ	(<0.1)	UJ	(<0.11)	UJ	(<2.5)	UJ	(<0.11)	UJ	0.11	J		
Di-n-octyl Phthalate	(mg/kg)	(<0.82)	U	(<0.07)	U	(<0.074)	U	9.3	J	(<0.077)	U	(<0.075)	UJ		
Fluoranthene	(mg/kg)	(<0.69)	U	8.4	J	0.57	J	1.6	J	1.0	J	0.58	J	100	100
Fluorene	(mg/kg)	(<0.54)	UJ	1.3	J	0.064	J	1.8	J	0.072	J	0.058	J	30	500
Indeno[1,2,3-cd]pyrene	(mg/kg)	(<0.71)	UJ	1.4	J	0.12	J	(<1.5)	UJ	0.28	J	0.15	J	0.5	5.6
Naphthalene	(mg/kg)	(<0.43)	UJ	1.8	J	0.12	J	89	J	0.087	J	0.21	J	12	500
Phenanthrene	(mg/kg)	(<0.58)	UJ	9.9	J	0.49	J	4.3	J	0.57	J	0.51	J	100	500
Phenol	(mg/kg)	(<0.47)	UJ	(<0.04)	UJ	(<0.043)	R	1.2	J	(<0.044)	UJ	(<0.043)	UJ	0.33	500
Pyrene	(mg/kg)	(<0.83)	UJ	7.7	J	0.44	J	2.2	J	0.84	J	0.55	J	100	500

	Sample ID	356030-SB-42	-5-6	356030-SB-43-	-5-6	356030-SB-DUF	P 1 ^(a)	356030-SB-DUI	P 2 ^(a)	356030-SB-DU	P 3 ^(a)	356030-RI	B1	356030-RI	B2		6 NYCRR Part 375
	Lab ID	R1208700-0	48	R1208700-04	49	R1208700-00	8	R1208700-03	3	R1208700-04	47	R1208700-	026	R1208700-	050	6 NYCRR Part 375 Soil	Soil Cleanup
D (I')	Sample Type	Subsurface S	oil	Subsurface Se	oil	OA/OC		OA/OC		QA/QC		OA/OC		QA/QC		Cleanup Objectives - Unrestricted Use	Objectives - Restricted Use - Commercial
Parameter List EPA Method 8270C	Sample Date	12/20/2012	1	12/20/2012		12/19/2012		12/20/2012		12/20/2012		12/20/201	12	12/20/201	2	(mg/kg)	(mg/kg)
2,4-Dimethylphenol	(mg/kg)	(<0.045)	U	(<0.041)	U	(<0.042)	U	(<0.041)	U	(<0.04)	U	(<1.4)	U	(<1.5)	U		
2-Methylnaphthalene	(mg/kg)	(<0.041)	UJ	(<0.037)	UJ	(<0.038)	UJ	(<0.037)	U	(<0.037)	UJ	(<1)	U	(<1.1)	U		
3&4-Methylphenol	(mg/kg)	(<0.062)	UJ	(<0.055)	UJ	(<0.057)	U	(<0.056)	U	(<0.055)	UJ	(<1.3)	U	(<1.4)	U	0.33	500
Acenaphthene	(mg/kg)	(<0.058)	UJ	(<0.052)	UJ	(<0.054)	UJ	(<0.053)	U	(<0.052)	UJ	(<1)	U	(<1.1)	U	20	500
Acenaphthylene	(mg/kg)	(<0.055)	UJ	(<0.049)	UJ	(<0.05)	UJ	(<0.049)	U	(<0.049)	UJ	(<1)	U	(<1.1)	U	100	500
Anthracene	(mg/kg)	(<0.064)	UJ	(<0.057)	UJ	(<0.059)	UJ	(<0.058)	U	(<0.057)	UJ	(<1)	U	(<1.1)	U	100	500
Benzo[a]anthracene	(mg/kg)	(<0.063)	UJ	(<0.056)	UJ	(<0.058)	UJ	0.071	J	(<0.056)	UJ	(<1.1)	U	(<1.1)	U	1	5.6
Benzo[a]pyrene	(mg/kg)	(<0.068)	UJ	(<0.061)	UJ	(<0.063)	U	0.078	J	(<0.061)	UJ	(<1)	U	(<1.1)	U	1	1
Benzo[b]fluoranthene	(mg/kg)	(<0.099)	UJ	(<0.088)	UJ	(<0.091)	U	(<0.089)	U	(<0.088)	UJ	(<1.6)	U	(<1.7)	U	1	5.6
Benzo[g,h,i]perylene	(mg/kg)	(<0.077)	UJ	(<0.069)	UJ	(<0.071)	U	0.086	J	(<0.069)	UJ	(<1.2)	U	(<1.2)	U	100	500
Benzo[k]fluoranthene	(mg/kg)	(<0.073)	UJ	(<0.065)	UJ	(<0.067)	U	(<0.066)	U	(<0.065)	UJ	(<1.2)	U	(<1.2)	U	0.8	56
Benzyl Alcohol	(mg/kg)	(<0.081)	UJ	(<0.073)	UJ	0.084	J	0.14	J	(<0.073)	UJ	(<1.1)	U	(<1.1)	U		
bis(2-Ethylhexyl)phthalate	(mg/kg)	(<0.056)	UJ	(<0.051)	UJ	0.053	J	0.48		(<0.05)	UJ	(<1.2)	U	(<1.3)	U		
Butyl Benzyl Phthalate	(mg/kg)	(<0.062)	UJ	(<0.056)	UJ	(<0.057)	U	(<0.057)	U	(<0.056)	UJ	(<1.1)	U	(<1.2)	U		
Carbazole	(mg/kg)	(<0.057)	UJ	(<0.051)	UJ	(<0.052)	U	(<0.051)	U	(<0.051)	UJ	(<1)	U	(<1.1)	U		
Chrysene	(mg/kg)	(<0.057)	UJ	(<0.051)	UJ	(<0.053)	U	0.087	J	(<0.051)	UJ	(<1)	U	(<1.1)	U	1	56
Dibenzo[a,h]anthracene	(mg/kg)	(<0.11)	UJ	(<0.098)	UJ	(<0.11)	UJ	(<0.099)	U	(<0.098)	UJ	(<1)	U	(<1.1)	U	0.33	0.56
Dibenzofuran	(mg/kg)	(<0.045)	UJ	(<0.04)	UJ	(<0.041)	UJ	(<0.041)	U	(<0.04)	UJ	(<1.3)	U	(<1.4)	U	7	350
Diethyl Phthalate	(mg/kg)	(<0.053)	UJ	(<0.048)	UJ	(<0.049)	U	(<0.048)	U	(<0.047)	UJ	(<1)	U	(<1.1)	U		
Di-n-butyl Phthalate	(mg/kg)	(<0.12)	UJ	(<0.1)	UJ	(<0.11)	U	(<0.11)	U	(<0.1)	UJ	(<1)	U	(<1.1)	U		
Di-n-octyl Phthalate	(mg/kg)	(<0.078)	U	(<0.07)	U	(<0.072)	U	(<0.071)	U	(<0.07)	U	(<1)	U	(<1.1)	U		
Fluoranthene	(mg/kg)	(<0.065)	UJ	(<0.058)	UJ	0.065	J	0.18	J	(<0.058)	UJ	(<1)	U	(<1.1)	U	100	100
Fluorene	(mg/kg)	(<0.051)	UJ	(<0.046)	UJ	(<0.047)	UJ	(<0.047)	U	(<0.046)	UJ	(<1)	U	(<1.1)	U	30	500
Indeno[1,2,3-cd]pyrene	(mg/kg)	(<0.067)	UJ	(<0.06)	UJ	(<0.062)	UJ	0.067	J	(<0.06)	UJ	(<1)	U	(<1.1)	U	0.5	5.6
Naphthalene	(mg/kg)	(<0.041)	UJ	(<0.037)	UJ	(<0.038)	UJ	(<0.037)	U	(<0.037)	UJ	(<1)	U	(<1.1)	U	12	500
Phenanthrene	(mg/kg)	(<0.055)	UJ	(<0.049)	UJ	0.1	J	0.15	J	(<0.049)	UJ	(<1)	U	(<1.1)	U	100	500
Phenol	(mg/kg)	(<0.045)	UJ	(<0.04)	UJ	(<0.041)	U	(<0.041)	U	(<0.04)	UJ	(<1)	U	(<1.1)	U	0.33	500
Pyrene	(mg/kg)	(<0.079)	UJ	(<0.071)	UJ	0.1	J	0.14	J	(<0.071)	UJ	(<1.1)	U	(<1.1)	U	100	500

		Sample ID	356030-SB-01-4	-6	356030-SB-02-5	-6	356030-SB-03-5	5-6	356030-SB-04-5	5-6	356030-SB-05-5	5-6	356030-SB-06-5	5-6	6 NYCRR Part 375	6 NYCRR Part 375
		Lab ID	R1208700-001		R1208700-002		R1208700-003	3	R1208700-004	ļ .	R1208700-005	5	R1208700-006	5	Soil Cleanup	Soil Cleanup
Parameter L	ist	Sample Type	Subsurface Soil	l	Subsurface Soil		Subsurface Soi	1	Subsurface Soil	1	Subsurface Soi	1	Subsurface Soi	1	Objectives - Unrestricted Use	Objectives - Restricted Use - Commercial
EPA Method 6010		Sample Date	12/19/2012		12/19/2012		12/19/2012		12/19/2012		12/19/2012		12/19/2012		(mg/kg)	(mg/kg)
Aluminum		(mg/kg)	9,000		9,670		8,690		10,500		8,070		7,500			
Antimony		(mg/kg)	(<0.131)	U	(<0.122)	U	(<0.12)	U	(<0.135)	U	(<0.124)	U	(<0.127)	U		
Arsenic		(mg/kg)	4.2	J	5.1	J	4	J	4.7	J	4.7	J	3.1	J	13	16
Barium		(mg/kg)	58.2		59.5		47.1		62.9		54		58.5		350	400
Beryllium		(mg/kg)	0.432	J	0.516	J	0.405	J	0.424	J	0.417	J	0.375	J	7.2	590
Cadmium		(mg/kg)	0.2	J	0.152	J	0.119	J	0.073	J	0.165	J	0.625		2.5	9.3
Calcium		(mg/kg)	1,820	J	11,800	J	1,970	J	2,540	J	3,020	J	5,220	J		
Chromium		(mg/kg)	20.3		13.7		11.7		11.9		11.2		12.6		30	1,500
Cobalt		(mg/kg)	7.4		9.7		7.1		7.5		7.5		7.2			
Copper		(mg/kg)	20		20		16		19		19		81		50	270
Iron		(mg/kg)	21,900		23,600		19,600		21,000		19,700		19,000			
Lead		(mg/kg)	9.2		17		8.2		8.7		14.8		192		63	1,000
Magnesium		(mg/kg)	3,490		5,190		3,180		3,240		2,910		3,140			
Manganese		(mg/kg)	621		600		634		512		506		698		1,600	10,000
Mercury		(mg/kg)	0.021	J	0.02	J	0.017	J	0.038		0.036		0.379		0.18	2.8
Nickel		(mg/kg)	21		22.9		19.6		16.4		19.8		21		30	310
Potassium		(mg/kg)	966		1840		951		948		1010		1010			
Selenium		(mg/kg)	(<0.323)	U	0.587	J	(<0.295)	U	(<0.333)	U	(<0.306)	U	(<0.314)	U	3.9	1,500
Silver		(mg/kg)	0.294	J	0.124	J	0.186	J	(<0.105)	U	0.108	J	0.125	J	2	1,500
Sodium		(mg/kg)	(<4.5)	U	(<4.2)	U	(<4.1)	U	(<4.7)	U	(<4.3)	U	(<4.4)	U		
Thallium		(mg/kg)	(<0.246)	U	(<0.229)	U	(<0.225)	U	(<0.253)	U	(<0.233)	U	(<0.239)	U		
Vanadium		(mg/kg)	13		14.7		12.8		16.2		12.7		11.1			
Zinc		(mg/kg)	61		59		51		62		58		133		109	10,000
NOTE: EPA		= U.S. Enivronmenta	al Protection Agency					-			•				•	
ID		= Identification														
NYC			of Rules and Regulation													
mg/k	-	= milligrams per kild	ogram													
 U		= No standard.	ion below the method de	tection	limit											
т Т			nerical value is and estir													
Data					that were detected in at l	east on	e sample are shown. Da	ta valid	ation completed by Env	vironme	ntal Data Services. Inc.					

TABLE 3-4 TARGET ANALYTE LIST METALS DETECTED IN ON-SITE SUBSURFACE SOIL

Data provided by Columbia Analytical Services, Inc. Only analytes that were detected in at least one sample are shown. Data validation completed by Environmental Data Services, Inc. Concentration values in **bold** indicate the concentration was above the 6 NYCRR Part 375 Soil Cleanup Objectives - Unrestricted Use.

EA Project No: 14907.17 Version: FINAL Table 3-4, Page 2 August 2014

	Sample ID	356030-SB-07-4	4-6	356030-SB-08-5	5-6	356030-SB-09-2	-3	356030-SB-09-6	i-8	356030-SB-10-5	5-6	356030-SB-11-	5-6		
	Lab ID	R1208700-007	7	R1208700-009	9	R1208700-010)	R1208700-011		R1208700-012	2	R1208700-01	3	6 NYCRR Part 375	6 NYCRR Part 375 Soil Cleanup Objectives
														Soil Cleanup Objective	1 5
Parameter List	Sample Type	Subsurface Soi	il	Subsurface Soi	il	Subsurface Soi	1	Subsurface Soi	1	Subsurface So	1	Subsurface So	il	- Unrestricted Use	Commercial
EPA Method 6010B/7471A	Sample Date	12/19/2012		12/19/2012		12/19/2012		12/19/2012		12/19/2012		12/19/2012		(mg/kg)	(mg/kg)
Aluminum	(mg/kg)	8,820		1,650		6,140		7,530		9,170		1,170			
Antimony	(mg/kg)	(<0.132)	U	(<0.13)	U	33.3		10.3		(<0.122)	U	(<0.15)	U		
Arsenic	(mg/kg)	5	J	0.813	J	21.5	J	4.8	J	4.8	J	1.6	J	13	16
Barium	(mg/kg)	60.6		12.6		417		75.6		71.5		8.5		350	400
Beryllium	(mg/kg)	0.451	J	0.097	J	0.706	J	0.409	J	0.481	J	0.092	J	7.2	590
Cadmium	(mg/kg)	0.138	J	(<0.016)	U	25.1		0.897		0.141	J	(<0.018)	U	2.5	9.3
Calcium	(mg/kg)	2,160	J	444	J	32,500	J	7,970	J	5,410	J	242	J		
Chromium	(mg/kg)	11.5		2		41.8		15.1		11.9		3.3		30	1,500
Cobalt	(mg/kg)	8		1.3	J	11.2		7.4		8.9		1.4	J		
Copper	(mg/kg)	17.8		3		624		47.1		18		5.9		50	270
Iron	(mg/kg)	19,700		3,310		86,900		21,900		20,600		6,970			
Lead	(mg/kg)	15		2	J	2,500		178		26		7	J	63	1,000
Magnesium	(mg/kg)	3,260		559		3,960		3,340		3,610		466			
Manganese	(mg/kg)	476		88.7		656		589		485		42.5		1,600	10,000
Mercury	(mg/kg)	0.035	J	0.031	J	0.003	J	0.041		0.076		0.029	J	0.18	2.8
Nickel	(mg/kg)	19.8		3.1	J	53.8		21.4		19		3	J	30	310
Potassium	(mg/kg)	1,170		293		985		1,030		1,170		207	J		
Selenium	(mg/kg)	(<0.325)	U	(<0.322)	U	(<1.5)	U	(<0.336)	U	(<0.301)	U	0.47	J	3.9	1,500
Silver	(mg/kg)	(<0.102)	U	(<0.101)	U	(<0.096)	U	0.154	J	(<0.095)	U	(<0.116)	U	2	1,500
Sodium	(mg/kg)	(<4.6)	U	(<4.5)	U	228		(<4.7)	U	(<4.2)	U	(<5.2)	U		
Thallium	(mg/kg)	(<0.247)	U	(<0.245)	U	(<0.232)	U	(<0.256)	U	(<0.229)	U	(<0.281)	U		
Vanadium	(mg/kg)	13.3		2.5	J	11.5		11.6		14.4		4	J		
Zinc	(mg/kg)	95		12		3,030		176		59		10		109	10,000
NOTE: Concentration va	lues in bold and hig	hlighted indicate the co	oncentra	tion was above the 6 N	VYCRR	Part 375 Soil Cleanup	Object	ives - Restricted Use (C	Comme	rcial).					

	Sample ID Lab ID	356030-SB-12-6- R1208700-014	-7	356030-SB-13-4 R1208700-015		356030-SB-14-4 R1208700-016	-	356030-SB-15-2 R1208700-017		356030-SB-16-4 R1208700-018	-	356030-SB-17-5 R1208700-019		6 NYCRR Part 375 Soil Cleanup	6 NYCRR Part 375 Soil Cleanup
Parameter List	Sample Type	Subsurface Soil		Subsurface Soi	1	Subsurface Soil		Subsurface So	il	Subsurface Soi	1	Subsurface Soi	1	Objectives - Unrestricted Use	Objectives - Restricted Use - Commercial
EPA Method 6010B/7471A	Sample Date	12/19/2012		12/19/2012		12/19/2012		12/19/2012		12/19/2012		12/19/2012		(mg/kg)	(mg/kg)
Aluminum	(mg/kg)	7,000		8,970		1,530		7,820		6,400		8,470			
Antimony	(mg/kg)	(<0.128)	U	(<0.123)	U	(<0.144)	U	(<0.148)	U	(<0.136)	U	(<0.132)	U		
Arsenic	(mg/kg)	7.9	J	5.5	J	1.9	J	14.9	J	6.1	J	4.7	J	13	16
Barium	(mg/kg)	59.5		61.2		16.8		73.7		92.9		47.4		350	400
Beryllium	(mg/kg)	0.366	J	0.452	J	0.108	J	0.402	J	0.382	J	0.446	J	7.2	590
Cadmium	(mg/kg)	0.185	J	0.302	J	0.192	J	0.154	J	1.4		0.151	J	2.5	9.3
Calcium	(mg/kg)	15,900	J	11,500	J	2,090	J	2,180	J	5,230	J	1,710	J		
Chromium	(mg/kg)	10.5		12		3.4		11		10.8		10.5		30	1,500
Cobalt	(mg/kg)	7.9		9.1		2.5	J	7.5		6.1		8.3			
Copper	(mg/kg)	35.9		18.5		8.5		32.1		20.5		17.6		50	270
Iron	(mg/kg)	19,900		23,600		8,440		17,300		18,200		18,500			
Lead	(mg/kg)	142		15		19		38		170		16		63	1,000
Magnesium	(mg/kg)	4,060		3,800		658		3,470		2,500		2,870			
Manganese	(mg/kg)	624		671		119		735		197		254		1,600	10,000
Mercury	(mg/kg)	0.15		0.074		(<0.002)	U	1.2		(<0.002)	U	0.021	J	0.18	2.8
Nickel	(mg/kg)	17.7		23.3		4.1	J	17.3		14.2		17.8		30	310
Potassium	(mg/kg)	1060		1040		247	J	786		883		1120			
Selenium	(mg/kg)	0.447	J	(<0.303)	U	0.577	J	(<0.365)	U	0.452	J	(<0.327)	U	3.9	1,500
Silver	(mg/kg)	(<0.1)	U	(<0.095)	U	(<0.112)	U	(<0.115)	U	(<0.105)	U	(<0.103)	U	2	1,500
Sodium	(mg/kg)	(<4.4)	U	(<4.2)	U	(<5.0)	U	(<5.1)	U	(<4.7)	U	(<4.6)	U		
Thallium	(mg/kg)	(<0.241)	U	(<0.23)	U	(<0.27)	U	(<0.277)	U	(<0.255)	U	(<0.248)	U		
Vanadium	(mg/kg)	12.9		13		3.6	J	13.4		11.1		14.3			
Zinc	(mg/kg)	105		80		209		61		650		107		109	10,000

EA Project No: 14907.17 Version: FINAL Table 3-4, Page 4 August 2014

	Sample ID	356030-SB-18-	5-6	356030-SB-19-5	5-6	356030-SB-20-	3-4	356030-SB-21-4	-5	356030-SB-22-	5-6	356030-SB-23-3	3-4		
	Lab ID	R1208700-02	20	R1208700-02	l	R1208700-02	2	R1208700-023		R1208700-02	4	R1208700-02	7	6 NYCRR Part 375	6 NYCRR Part 375 Soil Cleanup Objective
Parameter List EPA Method 6010B/7471A	Sample Type Sample Date	Subsurface So 12/19/2012		Subsurface Soi 12/19/2012	1	Subsurface So 12/19/2012	il	Subsurface Soi 12/19/2012	1	Subsurface So 12/19/2012	il	Subsurface Soi 12/19/2012	il	Soil Cleanup Objectives - Unrestricted Use	- Restricted Use - Commercial
Aluminum	(mg/kg)	9,190		9,190		5,450		8,790	[10,200	1	5,750		(mg/kg)	(mg/kg)
Antimony	(mg/kg)	(<0.129)	U	(<0.176)	U	0.419	J	3.9	т	(<0.179)	U	0.447	т		
Arsenic	(mg/kg)	4.7	I	5.7	U	2.6	J	8.1	J	6.7	0	3.2	J	13	16
Barium	(mg/kg)	65.8	J	79.5	т	34.6	J	123	T	49.8	T	40.2	T	350	400
Beryllium	(mg/kg)	0.458	T	0.515	J	(<0.02)	U	0.48	J	0.503	J	(<0.018)	U	7.2	590
Cadmium	(mg/kg)	(<0.015)	U	0.186	J	(<0.014)	U	4.0	,	0.149	J	0.065	I	2.5	9.3
Calcium	(mg/kg)	8,530	I	5,790	3	2,260	0	18,500		33,200	3	2,540	,		
Chromium	(mg/kg)	10.4	,	13.2		9.5		30		15.1		8.8		30	1,500
Cobalt	(mg/kg)	6.6		9	Т	5.4	J	8.8	T	8.1	T	5.4	T		
Copper	(mg/kg)	18		18	5	11	3	104	,	22	,	14	,	50	270
Iron	(mg/kg)	23,200		22,400		13,900		38,900		27,200		16,300			
Lead	(mg/kg)	7		14		16		507		12		30		63	1,000
Magnesium	(mg/kg)	3,510		3,940		2,300		4,140		5,540		2,190			
Manganese	(mg/kg)	403		404		181		674		633		161		1,600	10,000
Mercury	(mg/kg)	0.018	J	(<0.002)	U	(<0.002)	U	2.4	J	(<0.002)	U	0.075	J	0.18	2.8
Nickel	(mg/kg)	16		21.8	J	13.3	J	35.3	J	21.5	J	14.2	J	30	310
Potassium	(mg/kg)	1,160		1,040		707		1,060		1,110		668			
Selenium	(mg/kg)	(<0.318)	U	0.42	J	0.539	J	(<0.264)	U	(<0.271)	U	0.351	J	3.9	1,500
Silver	(mg/kg)	(<0.1)	U	(<0.045)	U	(<0.049)	U	(<0.045)	U	(<0.046)	U	(<0.043)	U	2	1,500
Sodium	(mg/kg)	(<4.5)	U	(<2.2)	U	(<2.4)	U	(<2.2)	U	(<2.2)	U	38.5	J		
Thallium	(mg/kg)	(<0.242)	U	(<0.18)	U	(<0.195)	U	(<1.8)	U	(<1.8)	U	(<0.172)	U		
Vanadium	(mg/kg)	15.1		15.4		8		16.2		15.6		9.1			
Zinc	(mg/kg)	55		66	J	47	J	956	J	81	J	76	J	109	10,000

EA Project No: 14907.17 Version: FINAL Table 3-4, Page 5 August 2014

										biil bebben					
	Sample ID	356030-SB-24-3	3-4	356030-SB-25-4	5	356030-SB-26-2.	5-3.5	356030-SB-27-3	3-4	356030-SB-28-2.	5-3.5	356030-SB-29-5	-6		
	Lab ID	R1208700-02	8	R1208700-029)	R1208700-03	0	R1208700-031	l	R1208700-03	2	R1208700-034		6 NYCRR Part 375	6 NYCRR Part 375 Soil Cleanup Objectives
Parameter List EPA Method 6010B/7471A	Sample Type Sample Date	Subsurface So 12/19/2012	il	Subsurface Soi 12/20/2012	1	Subsurface So 12/20/2012	il	Subsurface Soi 12/20/2012	1	Subsurface So 12/20/2012	il	Subsurface Soi 12/20/2012	1	Soil Cleanup Objectives - Unrestricted Use (mg/kg)	
Aluminum	(mg/kg)	5,980		8,290		7,890		9,080		7,910		8,370			
Antimony	(mg/kg)	0.458	J	(<0.175)	U	0.533	J	0.358	J	0.894	J	0.293	J		
Arsenic	(mg/kg)	10.8		4		5.6		4.8		3.8	J	4.3		13	16
Barium	(mg/kg)	80.5	J	51.1	J	60.2	J	64.6	J	70.4		57.7	J	350	400
Beryllium	(mg/kg)	(<0.018)	U	0.443	J	0.439	J	0.73		0.44	J	0.429	J	7.2	590
Cadmium	(mg/kg)	0.052	J	0.073	J	0.056	J	0.281	J	0.224	J	0.138	J	2.5	9.3
Calcium	(mg/kg)	8,980		2,970		26,300		1,690		3,560	J	9,340			
Chromium	(mg/kg)	9.7		11.7		12.4		11.3		13		11.7		30	1,500
Cobalt	(mg/kg)	5.7	J	8.1	J	8.5	J	13.7	J	8.4	J	7.8	J		
Copper	(mg/kg)	19		16		25		28		21	J	16		50	270
Iron	(mg/kg)	16,200		19,400		19,900		18,700		19,200		19,100			
Lead	(mg/kg)	46		9		28		11		25	J	11		63	1,000
Magnesium	(mg/kg)	3,070		2,970		3,910		2,830		3,230	J	4,210			
Manganese	(mg/kg)	282		521		371		345		323		480		1,600	10,000
Mercury	(mg/kg)	0.215	J	(<0.002)	U	0.049	J	(<0.002)	U	0.042	J	(<0.002)	U	0.18	2.8
Nickel	(mg/kg)	15	J	18.2	J	20.5	J	26	J	22.4	J	19	J	30	310
Potassium	(mg/kg)	896		910		1,100		865		863	J	928			
Selenium	(mg/kg)	0.594	J	0.465	J	0.29	J	0.417	J	0.904	J	0.575	J	3.9	1,500
Silver	(mg/kg)	(<0.044)	U	(<0.045)	U	(<0.045)	U	(<0.044)	U	(<0.044)	U	(<0.046)	U	2	1,500
Sodium	(mg/kg)	114	1	49.5	J	112	J	62	J	81.5	J	58.5	J		
Thallium	(mg/kg)	(<0.174)	U	(<1.8)	U	(<0.18)	U	(<0.177)	U	(<1.8)	U	(<1.9)	U		
Vanadium	(mg/kg)	13.8		14.2		12.6		13.9		11.6		13.5			
Zinc	(mg/kg)	54	J	51	J	121	J	87	J	131		57	J	109	10,000

EA Project No: 14907.17 Version: FINAL Table 3-4, Page 6 August 2014

	Sample ID	356030-SB-30-5	5-6	356030-SB-31-5	-6	356030-SB-32-4	4-5	356030-SB-33-4	5	356030-SB-34-	2-3	356030-SB-35-7	7-8		
	Lab ID	R1208700-035	5	R1208700-036	5	R1208700-03		R1208700-038	;	R1208700-03		R1208700-040)	6 NYCRR Part 375	6 NYCRR Part 375 Soil Cleanup Objectives
Parameter List EPA Method 6010B/7471A	Sample Type Sample Date	Subsurface Soi 12/20/2012	il	Subsurface Soi 12/20/2012		Subsurface So 12/20/2012	il	Subsurface Soi 12/20/2012	1	Subsurface So 12/20/2012	oil	Subsurface Soi 12/20/2012	1	Soil Cleanup Objectives - Unrestricted Use (mg/kg)	
Aluminum	(mg/kg)	8,340		3,150		6,200		5,590		4,310		6,560			
Antimony	(mg/kg)	0.347	J	0.724	J	0.272	J	0.337	J	2.8	J	0.285	J		
Arsenic	(mg/kg)	4.2		3.2	J	3	J	2.8		8.6	J	2.9	J	13	16
Barium	(mg/kg)	65.7	J	149		47.8		49.9		113		45.6		350	400
Beryllium	(mg/kg)	0.457	J	(<0.025)	U	(<0.019)	U	(<0.019)	U	(<0.02)	U	(<0.018)	U	7.2	590
Cadmium	(mg/kg)	0.121	J	0.23	J	0.064	J	(<0.014)	U	3.0		0.154	J	2.5	9.3
Calcium	(mg/kg)	4,100		10,000		2,720		7,860		2,080		5,700			
Chromium	(mg/kg)	11.1		7.5		8.8		7.8		10.4		9.8		30	1,500
Cobalt	(mg/kg)	8	J	3.4	J	6.3	J	5.8	J	7.7	J	6.8	J		
Copper	(mg/kg)	16		34	J	13	J	14		86	J	21	J	50	270
Iron	(mg/kg)	20,300		10,300		15,800		13,900		31,700		18,500			
Lead	(mg/kg)	8		210	J	10	J	10		182	J	21	J	63	1,000
Magnesium	(mg/kg)	2,990		2,140	J	2,750	J	2,580		1,610	J	3,050	J		
Manganese	(mg/kg)	473		407		165		212		226		903		1,600	10,000
Mercury	(mg/kg)	(<0.002)	U	15.4	J	0.04	J	(<0.002)	U	1.1	J	0.035	J	0.18	2.8
Nickel	(mg/kg)	19.2	J	10.3	J	17.4	J	14.7	J	26	J	16.3	J	30	310
Potassium	(mg/kg)	842		579	J	1,280	J	896		715	J	707	J		
Selenium	(mg/kg)	0.734	J	1.5		0.76	J	0.458	J	1.3		0.699	J	3.9	1,500
Silver	(mg/kg)	(<0.044)	U	0.498	J	(<0.045)	U	(<0.045)	U	(<0.049)	U	(<0.044)	U	2	1,500
Sodium	(mg/kg)	37.5	J	242	J	115	J	68.2	J	58.5	J	45.5	J		
Thallium	(mg/kg)	(<1.8)	U	(<0.24)	U	(<0.181)	U	(<0.182)	U	(<0.195)	U	(<1.8)	U		
Vanadium	(mg/kg)	13.5		7.1	J	9.6		8.7		10.5		9.9			
Zinc	(mg/kg)	57	J	200		86		48	J	668		62		109	10,000

EA Project No: 14907.17 Version: FINAL Table 3-4, Page 7 August 2014

							5111			5112 502501		Soll			
	Sample ID	356030-SB-36-4	4-5	356030-SB-37-4	5	356030-SB-38-2	2-3	356030-SB-39-1	1-3	356030-SB-40-	6-7	356030-SB-41-6	5-7		
	Lab ID	R1208700-04	1	R1208700-042	!	R1208700-043	3	R1208700-044	1	R1208700-04	5	R1208700-046	5	6 NYCRR Part 375	6 NYCRR Part 375 Soil Cleanup Objectives
Parameter List EPA Method 6010B/7471A	Sample Type Sample Date	Subsurface So 12/20/2012	il	Subsurface Soi 12/20/2012	1	Subsurface So 12/20/2012	il	Subsurface Soi 12/20/2012	1	Subsurface So 12/20/2012	oil	Subsurface Soi 12/20/2012	1	Soil Cleanup Objectives - Unrestricted Use (mg/kg)	
Aluminum	(mg/kg)	4,380		7,720		7,990		7,490		5,950		7,380			
Antimony	(mg/kg)	3	J	0.739	J	1.6	J	8.1		(<0.184)	U	(<0.18)	U		
Arsenic	(mg/kg)	6.2		4.8		7	J	6.8	J	2.5	J	3.7	J	13	16
Barium	(mg/kg)	137		251		59.1		137		36.1		43.8		350	400
Beryllium	(mg/kg)	1.2		0.439	J	0.361	J	0.482	J	0.306	J	0.387	J	7.2	590
Cadmium	(mg/kg)	0.335	J	0.156	J	0.143	J	5.2		0.032	J	0.082	J	2.5	9.3
Calcium	(mg/kg)	10,700		3,620		69,200		49,600		2,940		2,870			
Chromium	(mg/kg)	10.4		11.1		16.9		29.7		8.7		10.8		30	1,500
Cobalt	(mg/kg)	6.5	J	7.1	J	6.1	J	9.4	J	5.5	J	7.7	J		
Copper	(mg/kg)	73		19		22	J	158	J	13	J	15	J	50	270
Iron	(mg/kg)	10,700		18,200		19,900		73,000		16,800		18,100			
Lead	(mg/kg)	343		347		60	J	925	J	35	J	32	J	63	1,000
Magnesium	(mg/kg)	1,600		2,840		9,600	J	20,600	J	2,700	J	3,000	J		
Manganese	(mg/kg)	361		436		308		586		204		243		1,600	10,000
Mercury	(mg/kg)	(<0.002)	U	(<0.002)	U	(<0.002)	U	0.439	J	(<0.002)	U	0.024	J	0.18	2.8
Nickel	(mg/kg)	14.5	J	18.9	J	16.3	J	80.2	J	14	J	19.8	J	30	310
Potassium	(mg/kg)	1,010		923		1,240	J	988	J	642	J	1,220	J		
Selenium	(mg/kg)	0.884	J	0.311	J	0.27	J	(<0.254)	U	0.429	J	1.9		3.9	1,500
Silver	(mg/kg)	0.069	J	(<0.042)	U	0.18	J	0.644	J	(<0.047)	U	(<0.046)	U	2	1,500
Sodium	(mg/kg)	432		71.2	J	326	J	730	J	36.8	J	107	J		
Thallium	(mg/kg)	(<0.203)	U	(<1.7)	U	(<0.178)	U	(<1.7)	U	(<0.189)	U	(<0.185)	U		
Vanadium	(mg/kg)	20.1		13.1		14.4		11.4		8.7		11.9			
Zinc	(mg/kg)	195	J	168	J	142		1,270		75		65		109	10,000

TABLE 3-4 TARGET ANALYTE LIST METALS DETECTED IN ON-SITE SUBSURFACE SOIL

TABLE 3-4 TARGET ANALYTE LIST METALS DETECTED IN ON-SITE SUBSURFAC	E SOIL
--	--------

	Sample ID	356030-SB-42-5	i-6	356030-SB-43-5	i-6	356030-SB-DUP	1 ^(a)	356030-SB-DU	P 2 ^(a)	356030-SB-DUF	• 3 ^(a)	356030-RI	31	356030-R	B2	6 NYCRR Part 375	6 NYCRR Part 375
	Lab ID	R1208700-048	3	R1208700-049)	R1208700-008	3	R1208700-03	33	R1208700-04	7	R1208700-)26	R1208700-	050	Soil Cleanup	Soil Cleanup
Parameter List	Sample Type	Subsurface Soi	1	Subsurface Soi	1	QA/QC		QA/QC		QA/QC		QA/QC		QA/QC		Objectives - Unrestricted Use	Objectives - Restricted Use - Commercial
EPA Method 6010B/7471A	Sample Date	12/20/2012		12/20/2012		12/19/2012		12/20/2012		12/20/2012		12/20/201	2	12/20/201	12	(mg/kg)	(mg/kg)
Aluminum	(mg/kg)	9,750		6,130		7,570		7,170		7,700		(<7.8)	U	(<7.8)	U		
Antimony	(mg/kg)	(<0.186)	U	(<0.164)	U	(<0.125)	U	1.4	J	(<0.165)	U	2.2	J	(<1.1)	U		
Arsenic	(mg/kg)	4.9	J	4.3	J	3.8	J	3.8		4.3	J	(<1.5)	U	(<1.5)	U	13	16
Barium	(mg/kg)	63.2		55.2		45.8		73.5	J	53.2		1.7	J	1.0	J	350	400
Beryllium	(mg/kg)	0.487	J	0.325	J	0.384	J	0.397	J	0.389	J	(<0.153)	U	(<0.153)	U	7.2	590
Cadmium	(mg/kg)	0.148	J	0.015	J	0.09	J	0.549		0.102	J	(<0.168)	U	(<0.168)	U	2.5	9.3
Calcium	(mg/kg)	6,690		10,600		6,660	J	10,800	J	3,660		(<176)	U	(<176)	U		
Chromium	(mg/kg)	13.8		8.4		10		32.1		11.2		(<0.884)	U	(<0.884)	U	30	1,500
Cobalt	(mg/kg)	10.9	J	5.8	J	7.4		8.3	J	8.6	J	(<0.217)	U	0.232	J		
Copper	(mg/kg)	20.7	J	58	J	14.7		84.6	J	18.2	J	(<1.5)	U	(<1.5)	U	50	270
Iron	(mg/kg)	24,400		15,900		18,200		18,800		19,200		11	J	26	J		
Lead	(mg/kg)	11	J	68.8	J	12.9		53.1		9	J	(<0.625)	U	(<0.625)	U	63	1,000
Magnesium	(mg/kg)	3,840	J	4,830	J	3,060		3,660		2,950	J	13	J	7	J		
Manganese	(mg/kg)	923		540		376		291		783		0.87	J	0.78	J	1,600	10,000
Mercury	(mg/kg)	0.028	J	0.116	J	0.027	J	0.057	J	0.019	J	(<0.026)	U	(<0.026)	U	0.18	2.8
Nickel	(mg/kg)	25.1	J	14.7	J	17.5		34.8	J	21.1	J	(<2.1)	U	(<2.1)	U	30	310
Potassium	(mg/kg)	1390	J	626	J	964		893		1,030	J	(<70.4)	U	(<70.4)	U		
Selenium	(mg/kg)	0.921	J	0.927	J	(<0.31)	U	0.385	J	0.756	J	(<3.8)	U	(<3.8)	U	3.9	1,500
Silver	(mg/kg)	(<0.048)	U	(<0.042)	U	(<0.097)	U	(<0.043)	U	(<0.042)	U	(<0.54)	U	(<0.54)	U	2	1,500
Sodium	(mg/kg)	158	J	62.2	J	(<4.3)	U	92.7	J	106	J	212	J	(<34.8)	U		
Thallium	(mg/kg)	(<1.9)	U	(<1.7)	U	(<0.235)	U	(<0.173)	U	(<1.7)	U	1.4	J	(<1.4)	U		
Vanadium	(mg/kg)	14.6		10.2		10.9		13.1		12.4		0.353	J	(<0.283)	U		
Zinc	(mg/kg)	65		47.3		72.3		333	J	50.9		2	J	2	J	109	10,000
(a) 356030-SB-DUP 1 collected a(b) Rinsate blanks are aqueous sa		,	llected a	at 356230-SB-28-2.5-3.	.5 ; and	356030-SB-DUP 3 co	llected	at 356030-SB-41-6-	7.								
· / *	= Quality Assurance	0															

TABLE 3-5 POLYCHLORINATED BIPHENYLS DETECTED IN ON-SITE SUBSURFACE SOIL

	Sample ID	356030-SB-01-4	1-6	356030-SB-02-5	i-6	356030-SB-03-	5-6	356030-SB-04-5	5-6	356030-SB-05-5	5-6	356030-SB-06-5	5-6		
	Lab ID	R1208700-001	l	R1208700-002	2	R1208700-00	3	R1208700-004	1	R1208700-003	5	R1208700-00	6	6 NYCRR Part 375 Soil	6 NYCRR Part 375 Soil Cleanup Objectives -
	Sample Type	Subsurface So	il	Subsurface Soi	1	Subsurface So	il	Subsurface Soi	1	Subsurface Soi	il	Subsurface Soi	1	Cleanup Objectives -	Restricted Use -
Parameter List EPA Method 8082	Sample Date	12/19/2012		12/19/2012	•	12/19/2012		12/19/2012		12/19/2012		12/19/2012		Unrestricted Use (mg/kg)	Commercial (mg/kg)
Aroclor-1242	(mg/kg)	(<0.020)	U	(<0.19)	U	(<0.019)	U	(<0.021)	U	(<0.020)	U	0.97			
Aroclor-1248	(mg/kg)	(<0.020)	U	1.0		(<0.019)	U	(<0.021)	U	(<0.020)	U	(<0.10)	U		
Aroclor-1254	(mg/kg)	(<0.020)	U	1.6		(<0.021)	U	(<0.024)	U	(<0.022)	U	0.35	J		
Aroclor-1260	(mg/kg)	(<0.020)	U	(<0.19)	U	(<0.019)	U	(<0.021)	U	(<0.020)	U	(<0.10)	U		
Aroclor (Total)	(mg/kg)	(<0.020)	U	2.6		(<0.021)	U	(<0.024)	U	(<0.022)	U	1.32		0.1	1
	Sample ID	356030-SB-07-4	1-6	356030-SB-08-5	i-6	356030-SB-09-	2-3	356030-SB-09-6	5-8	356030-SB-10-5	5-6	356030-SB-11-	5-6		
	Lab ID	R1208700-007	7	R1208700-009)	R1208700-01	0	R1208700-011	l	R1208700-012	2	R1208700-011	3	6 NYCRR Part 375 Soil	6 NYCRR Part 375 Soil Cleanup Objectives -
Parameter List	Sample Type	Subsurface Soi	1	Subsurface Soi	1	Subsurface Sc	oil	Subsurface Soi	1	Subsurface Soi	il	Subsurface So		Cleanup Objectives - Unrestricted Use	Restricted Use - Commercial
EPA Method 8082	Sample Date	12/19/2012		12/19/2012		12/19/2012		12/19/2012		12/19/2012		12/19/2012		(mg/kg)	(mg/kg)
Aroclor-1242	(mg/kg)	(<0.020)	U	(<0.020)	U	(<0.20)	U	(<0.021)	U	(<0.020)	U	(<0.024)	U		
Aroclor-1248	(mg/kg)	(<0.020)	U	(<0.020)	U	2.2	J	0.3		(<0.020)	U	(<0.024)	U		
Aroclor-1254	(mg/kg)	(<0.023)	U	(<0.022)	U	1.3	J	0.16		(<0.022)	U	(<0.026)	U		
Aroclor-1260	(mg/kg)	(<0.020)	U	(<0.020)	U	0.86		0.076	J	(<0.020)	U	(<0.024)	U		
Aroclor (Total)	(mg/kg)	(<0.023)	U	(<0.022)	U	4.36		0.536		(<0.022)	U	(<0.026)	U	0.1	1
	Sample ID	356030-SB-12-6	5.7	356030-SB-13-4	5	356030-SB-14-	4.5	356030-SB-15-2	2	356030-SB-16-4	15	356030-SB-17-	5.6		
	Lab ID	R1208700-014		R1208700-01		R1208700-01		R1208700-017		R1208700-018		R1208700-01		6 NYCRR Part 375 Soil	6 NYCRR Part 375 Soil Cleanup Objectives -
	Sample Type	Subsurface Soi		Subsurface Soi		Subsurface So		Subsurface Soi		Subsurface Soi		Subsurface Soi		Cleanup Objectives -	Restricted Use -
Parameter List EPA Method 8082	Sample Date	12/19/2012		12/19/2012		12/19/2012		12/19/2012		12/19/2012		12/19/2012		Unrestricted Use (mg/kg)	Commercial (mg/kg)
Aroclor-1242	(mg/kg)	(<0.021)	U	(<0.019)	U	(<0.023)	U	(<0.023)	U	(<0.022)	U	(<0.020)	U		
Aroclor-1248	(mg/kg)	(<0.021)	U	(<0.019)	U	(<0.023)	U	(<0.023)	U	(<0.022)	U	(<0.020)	U		
Aroclor-1254	(mg/kg)	(<0.023)	U	(<0.022)	U	0.062	J	(<0.026)	U	(<0.024)	U	(<0.023)	U		
Aroclor-1260	(mg/kg)	(<0.021)	U	(<0.019)	U	(<0.023)	U	(<0.023)	U	(<0.022)	U	(<0.020)	U		
Aroclor (Total)	(mg/kg)	(<0.023)	U	(<0.022)	U	0.062	J	(<0.026)	U	(<0.024)	U	(<0.023)	U	0.1	1
NOTE: EPA	= U.S. Enivronmental Pr	rotection Agency													
ID	= Identification														
NYCRR mg/kg	= New York Code of R	-													
шg/кg Ц	= milligrams per kilogra	m below the method detectio	n limit												
	= Non-detect, detection = No standard.	octow the method delectio	a IIIII.												
1		cal value is and estimated	quantity												
Data provided by Colu					e shown	Data validation complete	d by Envi	ronmental Data Services, In	ıc.						
Concentration values	in bold indicate the concen	tration was above the 6 N	YCRR Pa	rt 375 Soil Cleanup Object	ives - Ur		-								

TABLE 3-5 POLYCHLORINATED BIPHENYLS DETECTED IN ON-SITE SUBSURFACE SOIL

	Sample ID	356030-SB-18-5	5-6	356030-SB-19-5	-6	356030-SB-20-3	-4	356030-SB-21-4	-5	356030-SB-22-5	-6	356030-SB-23-3	-4		
	Lab ID	R1208700-020)	R1208700-021		R1208700-022		R1208700-023		R1208700-024		R1208700-027	,	6 NYCRR Part 375 Soil	6 NYCRR Part 375 Soil Cleanup Objectives -
	Sample Type	Subsurface Soi		Subsurface Soi		Subsurface Soil		Subsurface Soil		Subsurface Soil		Subsurface Soi		Cleanup Objectives -	Restricted Use -
Parameter List EPA Method 8082	Sample Date	12/19/2012	-	12/19/2012	-	12/19/2012		12/19/2012		12/19/2012		12/19/2012	-	Unrestricted Use (mg/kg)	Commercial (mg/kg)
Aroclor-1242	(mg/kg)	(<0.020)	U	(<0.021)	U	(<0.021)	U	(<0.19)	U	(<0.021)	U	(<0.020)	U		
Aroclor-1248	(mg/kg)	(<0.020)	U	(<0.021)	U	(<0.021)	U	2.8		(<0.021)	U	(<0.020)	U		
Aroclor-1254	(mg/kg)	(<0.022)	U	(<0.023)	U	(<0.024)	U	1.8		(<0.023)	U	(<0.022)	U		
Aroclor-1260	(mg/kg)	(<0.020)	U	(<0.021)	U	(<0.021)	U	(<0.19)	U	(<0.021)	U	(<0.020)	U		
Aroclor (Total)	(mg/kg)	(<0.022)	U	(<0.023)	U	(<0.024)	U	4.6		(<0.023)	U	(<0.022)	U	0.1	1
	Sample ID	356030-SB-24-3	3-4	356030-SB-25-4	-5	356030-SB-26-2.5	-3.5	356030-SB-27-3	-4	356030-SB-28-2.5	-3.5	356030-SB-29-5	i-6		
	Lab ID	R1208700-028	3	R1208700-029)	R1208700-030		R1208700-031		R1208700-032		R1208700-034	Ļ	6 NYCRR Part 375 Soil	6 NYCRR Part 375 Soil Cleanup Objectives -
Parameter List	Sample Type	Subsurface Soi	1	Subsurface Soi	1	Subsurface Soil	l	Subsurface Soil		Subsurface Soil	1	Subsurface Soi	1	Cleanup Objectives - Unrestricted Use	Restricted Use - Commercial
EPA Method 8082	Sample Date	12/19/2012		12/20/2012		12/20/2012		12/20/2012		12/20/2012		12/20/2012		(mg/kg)	(mg/kg)
Aroclor-1242	(mg/kg)	(<0.020)	U	(<0.020)	U	(<0.020)	U	(<0.020)	U	(<0.019)	U	(<0.020)	U		
Aroclor-1248	(mg/kg)	(<0.020)	U	(<0.020)	U	0.14	J	(<0.020)	U	(<0.019)	U	(<0.020)	U		
Aroclor-1254	(mg/kg)	(<0.022)	U	(<0.022)	U	0.045		(<0.023)	U	0.1		(<0.023)	U		
Aroclor-1260	(mg/kg)	(<0.020)	U	(<0.020)	U	(<0.020)	U	(<0.020)	U	(<0.019)	U	(<0.020)	U		
Aroclor (Total)	(mg/kg)	(<0.022)	U	(<0.022)	U	0.185		(<0.023)	U	0.1		(<0.023)	U	0.1	1
	Sample ID	356030-SB-30-5	5-6	356030-SB-31-5	-6	356030-SB-32-4	-5	356030-SB-33-4	-5	356030-SB-34-2	-3	356030-SB-35-7	-8		
	Lab ID	R1208700-035	5	R1208700-036	5	R1208700-037		R1208700-038		R1208700-039		R1208700-040)	6 NYCRR Part 375 Soil	6 NYCRR Part 375 Soil Cleanup Objectives -
D	Sample Type	Subsurface Soi	1	Subsurface Soi	1	Subsurface Soil	l	Subsurface Soil	l	Subsurface Soil		Subsurface Soi	1	Cleanup Objectives -	Restricted Use -
Parameter List EPA Method 8082	Sample Date	12/20/2012		12/20/2012		12/20/2012		12/20/2012		12/20/2012		12/20/2012		Unrestricted Use (mg/kg)	Commercial (mg/kg)
Aroclor-1242	(mg/kg)	(<0.020)	U	(<0.027)	U	(<0.020)	U	(<0.020)	U	(<0.021)	U	(<0.020)	U		
Aroclor-1248	(mg/kg)	(<0.020)	U	(<0.027)	U	(<0.020)	U	0.051		(<0.021)	U	0.089			
Aroclor-1254	(mg/kg)	(<0.022)	U	(<0.030)	U	(<0.023)	U	(<0.022)	U	(<0.024)	U	(<0.022)	U		
Aroclor-1260	(mg/kg)	(<0.020)	U	(<0.027)	U	(<0.020)	U	(<0.020)	U	0.051		(<0.020)	U		
Aroclor (Total)	(mg/kg)	(<0.022)	U	(<0.030)	U	(<0.023)	U	0.051		0.051		0.089		0.1	1

TABLE 3-5 POLYCHLORINATED BIPHENYLS DETECTED IN ON-SITE SUBSURFACE SOIL

	Sample ID	356030-SB-36-4	-5	356030-SB-37-4	-5	356030-SB-38-2	-3	356030-SB-39-1	-3	356030-SB-40-6	5-7	356030-SB-41-6	5-7		6 NYCRR Part 375 Soil
	Lab ID	R1208700-041		R1208700-042	2	R1208700-043		R1208700-044		R1208700-045	5	R1208700-040	6	6 NYCRR Part 375 Soil	Cleanup Objectives -
Demonstern Lint	Sample Type	Subsurface Soi	1	Subsurface Soi	1	Subsurface Soil		Subsurface Soi	1	Subsurface Soi	1	Subsurface Soi	1	Cleanup Objectives - Unrestricted Use	Restricted Use - Commercial
Parameter List EPA Method 8082	Sample Date	12/20/2012		12/20/2012		12/20/2012		12/20/2012		12/20/2012		12/20/2012		(mg/kg)	(mg/kg)
Aroclor-1242	(mg/kg)	0.99		(<0.019)	U	1.4		0.98		(<0.021)	U	(<0.021)	U		
Aroclor-1248	(mg/kg)	(<0.12)	U	(<0.019)	U	(<0.20)	U	(<0.092)	U	(<0.021)	U	(<0.021)	U		
Aroclor-1254	(mg/kg)	0.46		(<0.021)	U	0.39		0.74		(<0.023)	U	(<0.023)	U		
Aroclor-1260	(mg/kg)	0.92		(<0.019)	U	(<0.20)	U	0.25	J	(<0.021)	U	(<0.021)	U		
Aroclor (Total)	(mg/kg)	2.37		(<0.021)	U	1.79		1.97		(<0.023)	U	(<0.023)	U	0.1	1
	Sample ID	356030-SB-42-5	-6	356030-SB-43-5	i-6	356030-SB-DUP	1 ^(a)	356030-SB-DUP	2 ^(a)	356030-SB-DUP	3 ^(a)	356030-SB-RB	1		
	Lab ID	R1208700-048		R1208700-049)	R1208700-008		R1208700-033		R1208700-047	7	R1208700-020	5	6 NYCRR Part 375 Soil	6 NYCRR Part 375 Soil Cleanup Objectives -
	Sample Type	Subsurface Soil		Subsurface Soi	1	QA/QC		QA/QC		QA/QC		QA/QC		Cleanup Objectives -	Restricted Use -
Parameter List EPA Method 8082	Sample Date	12/20/2012		12/20/2012		12/19/2012		12/20/2012		12/20/2012		12/20/2012		Unrestricted Use (mg/kg)	Commercial
Aroclor-1242	(mg/kg)	(<0.021)	U	(<0.019)	U	(<0.020)	U	(<0.019)	U	(<0.019)	U	(<0.0005)	U	(mg/kg)	(mg/kg)
Aroclor-1248	(mg/kg)	(<0.021)	U	(<0.019)	U	(<0.020)	U	0.14	0	(<0.019)	U	(<0.0005)	U		
Aroclor-1254	(mg/kg)	(<0.024)	U	(<0.021)	U	(<0.022)	U	0.12		(<0.01))	U	(<0.0005)	U		
Aroclor-1260	(mg/kg)	(<0.021)	U	(<0.019)	U	(<0.020)	U	(<0.019)	U	(<0.019)	U	(<0.0005)	U		
Aroclor (Total)	(mg/kg)	(<0.024)	U	(<0.021)	U	(<0.022)	U	0.26	Ũ	(<0.021)	U	(<0.0005)	U	0.1	1
						· · · ·				· · · ·					
	Sample ID	356030-RB2 ^(b)													6 NYCRR Part 375 Soil
	Lab ID	R1208700-050												6 NYCRR Part 375 Soil	Cleanup Objectives -
	Sample Type	QA/QC												Cleanup Objectives -	Restricted Use -
Parameter List EPA Method 8082	Sample Date	12/20/2012												Unrestricted Use (mg/kg)	Commercial (mg/kg)
Aroclor-1242	(mg/kg)	(<0.0005)	U												
Aroclor-1248	(mg/kg)	(<0.0005)	U												
Aroclor-1254	(mg/kg)	(<0.0005)	U												
Aroclor-1260	(mg/kg)	(<0.0005)	U												
Aroclor (Total)	(mg/kg)	(<0.0005)	U											0.1	1
(a) 356030-SB-DUP 1 collected at 3562		-DUP 2 collected at 356230)-SB-28	-2.5-3.5 ; and 356030-SB-I	OUP 3 co	llected at 356030-SB-41-6-7	7.								
(b) Rinsate blanks are aqueous samples,	units are in µg/L.														

TABLE A 11 HOL ATH E ODG AND GOLDON	O DETECTED DI CDOLDIDUL TED
TABLE 3-11 VOLATILE ORGANIC COMPOUND	S DETECTED IN GROUNDWATER

	Well ID		M	W-1			M	W-2			M١	W-5			M	W-6		NYSDEC Ambient
	Sample ID	356030-MW-1-0	113	356030-MW-1-101	3	356030-MW-2-0	113	356030-MW-2-10	013	356030-MW-5-0	113	356030-MW-5-101	3	356030-MW-6-0	113	356030-MW-6-	1013	Water Quality Standard
Parameter List	Lab ID	R1300618-001	l	R1307323-007	7	R1300618-00	6	R1307323-00)6	R1300618-009	9	R1307323-009)	R1300618-01	1	R1307323-0	10	Class GA
EPA Method 8260B	Sample Date	1/28/2013		10/1/2013		1/28/2013		10/1/2013		1/29/2013		10/2/2013		1/29/2013		10/2/2013		(µg/L)
2-Butanone	(µg/L)	(<0.81)	U	(<0.81)	U	(<0.81)	U	(<0.81)	U	(<0.81)	U	1.9	J	(<0.81)	U	(<0.81)	U	50 (g)
4-Methyl-2-pentanone	(µg/L)	(<0.67)	U	(<0.67)	U	(<0.67)	U	(<0.67)	U	(<0.67)	U	1.0	J	(<0.67)	U	(<0.67)	U	
Acetone	(µg/L)	1.6	J	2.2	J	(<1.3)	U	(<1.3)	U	7.7	J	11		13		12		50 (s)
Benzene	(µg/L)	(<0.2)	U	(<0.2)	U	(<0.2)	U	(<0.2)	U	(<0.2)	U	2.6	J	(<0.2)	U	(<0.2)	U	1 (s)
Carbon disulfide	(µg/L)	(<0.22)	UJ	0.26	J	(<0.22)	U	0.24	J	0.22	J	0.68	J	(<0.22)	U	0.82	J	
Chloroethane	(µg/L)	(<0.24)	U	(<0.24)	U	(<0.24)	U	(<0.24)	U	(<0.24)	U	(<0.24)	U	0.41	J	(<0.24)	U	5 (s)
Chloromethane	(µg/L)	(<0.21)	U	(<0.21)	U	(<0.21)	U	(<0.21)	U	0.21	J	(<0.21)	U	0.31	J	(<0.21)	U	
cis-1,3-Dichloropropene	(µg/L)	(<0.24)	U	(<0.24)	U	(<0.24)	U	(<0.24)	U	5	U	(<0.24)	U	5	U	(<0.24)	U	0.4 (s)
Dibromochloromethane	(µg/L)	(<0.31)	U	(<0.31)	UJ	(<0.31)	U	(<0.31)	U	5	U	(<0.31)	UJ	5	U	(<0.31)	UJ	50 (g)
Dichloromethane	(µg/L)	(<0.32)	U	(<0.32)	U	(<0.32)	U	(<0.32)	U	(<0.32)	U	(<0.32)	U	(<0.32)	U	(<0.32)	U	
Ethylbenzene	(µg/L)	(<0.2)	U	(<0.2)	U	(<0.2)	U	(<0.2)	U	(<0.2)	U	0.31	J	(<0.2)	U	(<0.2)	U	5 (s)
m,p-Xylene	(µg/L)	(<0.33)	U	(<0.33)	U	(<0.33)	U	(<0.33)	U	(<0.33)	U	1.5	J	(<0.33)	U	(<0.33)	U	5 (s)
Methyl tert-Butyl Ether	(µg/L)			(<0.29)	U			0.94	J			14				4.6	J	10
o-Xylene	(µg/L)	(<0.2)	U	(<0.2)	U	(<0.2)	U	(<0.2)	U	(<0.2)	U	3.0	J	(<0.2)	U	(<0.2)	U	5 (s)
Tetrachloroethene	(µg/L)	(<0.3)	U	(<0.3)	U	(<0.3)	U	(<0.3)	U	(<0.3)	U	(<0.3)	U	(<0.3)	U	(<0.3)	U	5 (s)
Toluene	(µg/L)	(<0.2)	U	(<0.2)	U	(<0.2)	U	(<0.2)	U	(<0.2)	U	4.6	J	(<0.2)	U	(<0.2)	U	5 (s)
trans-1,2-Dichloroethene	(µg/L)	(<0.33)	U	(<0.33)	U	(<0.33)	U	(<0.33)	U	(<0.33)	U	(<0.33)	U	(<0.33)	U	(<0.33)	U	5 (s)
trans-1,3-Dichloropropene	(µg/L)	(<0.2)	U	(<0.2)	U	(<0.2)	U	(<0.2)	U	(<0.2)	U	(<0.2)	U	(<0.2)	U	(<0.2)	U	0.4 (s)
Total BTEX	(µg/L)	Not Detected		Not Detected		Not Detected		0		Not Detected		12.01		Not Detected		0		
Total VOCs	(µg/L)	1.6		2.46		Not Detected		6.18		18.13		40.59		23.72		22.42		
	EPA	= U.S. Enivronmer		0,0														
	NYSDEC			rtment of Environm		Conservation												
	µg/L			= parts per billion (p														
	U	= Non-detect, dete = Estimated value.		below the method d	etecti	on limit												
	J 	= Estimated value. = No standard																
	BTEX	= Benzene, toluene	e, eth	vlene, and xylene														
	VOC	= Volatile organic																
		0	-		lytes t	hat were detected i	n at le	ast one sample are	shown	. Data validation co	mplet	ed by Environmenta	l Dat	a Services, Inc.				
	Concentration va	lues in bold indicate	e that	analyte was detecet	d abov	e the NYSDEC A	WQS.	S = Standard. G =	Guida	nce.	•	•		,				

	Well ID		MW	/-7R			M١	W-9			MV	V-10				MW-11				NYSDEC Ambient
	Sample ID	356030-MW-7R-0	0113	356030-MW-7R-1	1013	356030-MW-9-01	13	356030-MW-9-1	013	356030-MW-10-0	113	356030-MW-10-1	013	356030-MW-11-0	113	356030-DUP-0	113	356030-MW-11-10	013	Water Quality Standard
Parameter List	Lab ID	R1300618-004	1	R1307323-003	3	R1300618-007		R1307323-01	1	R1300618-003	3	R1307323-002		R1300618-013		R1300618-02	2	R1307323-012		Class GA
EPA Method 8260B	Sample Date	1/29/2013		10/1/2013		1/29/2013		10/2/2013		1/28/2013		10/1/2013		1/29/2013		1/29/2013		10/2/2013		(µg/L)
2-Butanone	(µg/L)	(<0.81)	U	(<0.81)	U	(<0.81)	U	(<0.81)	U	1.2	J	(<0.81)	U	(<0.81)	U	(<0.81)	U	(<0.81)	U	50 (g)
4-Methyl-2-pentanone	(µg/L)	(<0.67)	U	(<0.67)	U	(<0.67)	U	(<0.67)	U	(<0.67)	U	(<0.67)	U	(<0.67)	U	(<0.67)	U	(<0.67)	U	
Acetone	(µg/L)	(<1.3)	U	(<1.3)	U	6.2	J	5.2	J	16		3.2	J	5.7	J	6.1	J	3.0	J	50 (s)
Benzene	(µg/L)	(<0.2)	U	(<0.2)	U	0.61	J	(<0.2)	U	1.2	J	2.6	J	(<0.2)	U	(<0.2)	U	(<0.2)	U	1 (s)
Carbon disulfide	(µg/L)	(<0.22)	U	0.4	J	0.26	J	0.84	J	(<0.22)	UJ	0.66	J	(<0.22)	U	(<0.22)	U	(<0.22)	U	
Chloroethane	(µg/L)	(<0.24)	U	(<0.24)	U	(<0.24)	U	(<0.24)	U	0.72	J	(<0.24)	U	(<0.24)	U	(<0.24)	U	(<0.24)	U	5 (s)
Chloromethane	(µg/L)	(<0.21)	U	(<0.21)	U	0.23	J	(<0.21)	U	0.46	J	(<0.21)	U	(<0.21)	U	(<0.21)	U	(<0.21)	U	
cis-1,3-Dichloropropene	(µg/L)	(<0.24)	U	(<0.24)	U	(<0.24)	U	(<0.24)	U	(<5)	U	(<0.24)	U	(<0.24)	U	(<0.24)	U	(<0.24)	U	0.4 (s)
Dibromochloromethane	(µg/L)	(<0.31)	U	(<0.31)	UJ	(<0.31)	U	(<0.31)	U	(<5)	U	(<0.31)	UJ	(<0.31)	U	(<0.31)	U	(<0.31)	$\mathbf{U}\mathbf{J}$	50 (g)
Dichloromethane	(µg/L)	(<0.32)	U	(<0.32)	U	(<0.32)	U	(<0.32)	U	(<5)	U	(<0.32)	U	(<0.32)	U	(<0.32)	U	(<0.32)	U	
Ethylbenzene	(µg/L)	(<0.2)	U	(<0.2)	U	(<0.2)	U	(<0.2)	U	0.63	J	1.4	J	(<0.2)	U	(<0.2)	U	(<0.2)	U	5 (s)
m,p-Xylene	(µg/L)	(<0.33)	U	(<0.33)	U	(<0.33)	U	(<0.33)	U	0.89	J	2.2	J	(<0.33)	U	(<0.33)	U	(<0.33)	U	5 (s)
Methyl tert-Butyl Ether	(µg/L)			1.4	J			170				1.5	J					3.6	J	10
o-Xylene	(µg/L)	(<0.2)	U	(<0.2)	U	(<0.2)	U	(<0.2)	U	0.55	J	1.1	J	(<0.2)	U	(<0.2)	U	(<0.2)	U	5 (s)
Tetrachloroethene	(µg/L)	(<0.3)	U	(<0.3)	U	(<0.3)	U	(<0.3)	U	(<5)	U	(<0.3)	U	(<0.3)	U	(<0.3)	U	(<0.3)	U	5 (s)
Toluene	(µg/L)	(<0.2)	U	(<0.2)	U	(<0.2)	U	(<0.2)	U	0.25	J	(<0.2)	U	(<0.2)	U	(<0.2)	U	(<0.2)	U	5 (s)
trans-1,2-Dichloroethene	(µg/L)	(<0.33)	U	(<0.33)	U	(<0.33)	U	(<0.33)	U	(<5)	U	(<0.33)	U	(<0.33)	U	(<0.33)	U	(<0.33)	U	5 (s)
trans-1,3-Dichloropropene	(µg/L)	(<0.2)	U	(<0.2)	U	(<0.2)	U	(<0.2)	U	(<5)	U	(<0.2)	U	(<0.2)	U	(<0.2)	U	(<0.2)	U	0.4 (s)
Total BTEX	(µg/L)	Not Detected		0		0.61		0		3.52		7.3		Not Detected		Not Detected	1	0		
Total VOCs	(µg/L)	Not Detected		6.8		7.3		181.04		21.9		13.24		5.7		6.1		21.6		

	Well ID			MW	-12				MV	V-13			М	W-14		NYSDEC Ambient
	Sample ID	356030-MW-12-0	0113	356030-MW-12-	1013	356030-MW-DUPLICATE-10	13	356030-MW-13	-0113	356030-MW-13-10	13	356030-MW-14-	0113	356030-MW-14-10)13	Water Quality Standard
Parameter List	Lab ID	R1300618-01	5	R1307323-004	4	R1307323-008		R1300618-0	16	R1307323-00	1	R1300618-01	8	R1307323-0	05	Class GA
EPA Method 8260B	Sample Date	1/28/2013		10/1/2013		10/1/2013		1/28/2013		10/1/2013		1/29/2013		10/1/2013		(µg/L)
2-Butanone	(µg/L)	3.7	J	2.1	J	2.1	J	(<0.81)	U	(<0.81)	U	24		0.94	J	50 (g)
4-Methyl-2-pentanone	(µg/L)	1.6	J	0.98	J	0.88	J	(<0.67)	U	(<0.67)	U	5.2	J	0.86	J	
Acetone	(µg/L)	28		22		22		(<1.3)	U	1.4	J	100		7.6	J	50 (s)
Benzene	(µg/L)	46		64		53		(<0.2)	U	(<0.2)	U	13		5.8		1 (s)
Carbon disulfide	(µg/L)	2.6	J	16		4.7	J	(<0.22)	U	(<0.22)	U	0.41	J	1.9	J	
Chloroethane	(µg/L)	(<0.24)	U	(<0.24)	U	(<0.24)	U	(<0.24)	U	(<0.24)	U	0.41	J	(<0.24)	U	5 (s)
Chloromethane	(µg/L)	0.28	J	(<0.21)	U	(<0.21)	U	(<0.21)	U	(<0.21)	U	0.32	J	(<0.21)	U	
cis-1,3-Dichloropropene	(µg/L)	(<0.24)	U	(<0.24)	U	(<0.24)	U	(<0.24)	U	(<0.24)	U	(<0.24)	U	(<0.24)	U	0.4 (s)
Dibromochloromethane	(µg/L)	(<0.31)	U	(<0.31)	UJ	(<0.31)	UJ	(<0.31)	U	(<0.31)	UJ	(<0.31)	U	(<0.31)	UJ	50 (g)
Dichloromethane	(µg/L)	2.8	J	1.5	J	1.4	J	(<0.32)	U	(<0.32)	U	0.81	J	(<0.32)	U	
Ethylbenzene	(µg/L)	21		28		22		(<0.2)	U	(<0.2)	U	4.6	J	4.4	J	5 (s)
m,p-Xylene	(µg/L)	77		100		83		(<0.33)	U	(<0.33)	U	18		15		5 (s)
Methyl tert-Butyl Ether	(µg/L)			700		760				(<0.29)	U			15		10
o-Xylene	(µg/L)	46		55		43		(<0.2)	U	(<0.2)	U	13		8.1		5 (s)
Tetrachloroethene	(µg/L)	0.52	J	(<0.3)	U	0.59	J	(<0.3)	U	(<0.3)	U	(<0.3)		(<0.3)	U	5 (s)
Toluene	(µg/L)	120		140		120		(<0.2)	U	(<0.2)	U	12	U	(<0.2)	U	5 (s)
trans-1,2-Dichloroethene	(µg/L)	(<0.33)	U	(<0.33)	U	(<0.33)	U	(<0.33)	U	(<0.33)	U	(<0.33)	U	(<0.33)	U	5 (s)
trans-1,3-Dichloropropene	(µg/L)	(<0.20)	U	(<0.2)	U	(<0.2)	U	(<0.2)	U	(<0.2)	U	(<0.2)	U	(<0.2)	U	0.4 (s)
Total BTEX	(µg/L)	310		387		321		Not Detecte		Not Detected		60.6		33.3		
Total VOCs	(µg/L)	349.5		1,130.62		1,112.67		Not Detecte	d	1.4		191.75		66.5		

TABLE 3-11 VOLATILE ORGANIC COMPOUNDS DETECTED IN GROUNDWATER

TABLE 3-12 SEMIVOLATILE ORGANIC COMPOUNDS DETECTED IN GROUNDWATER

D	Sample ID Lab ID	356030-MW-1-011 R1300618-001	3	356030-MW-2-01 R1300618-006	13	356030-MW-5-01 R1300618-009		356030-MW-6-01 R1300618-011	13	356030-MW-7R-0 R1300618-004		356030-MW-9-01 R1300618-007		NYSDEC Ambient Water Quality Standard
Parameter List EPA Method 8270C	Sample Date	1/28/2013		1/28/2013		1/29/2013		1/29/2013		1/29/2013		1/29/2013		Class GA (µg/L)
2,4-Dimethylphenol	(µg/L)	(<1.4)	U	(<1.4)	U	(<1.4)	U	(<1.4)	U	(<1.4)	U	(<1.4)	U	50 (g)
2-Methylphenol	(µg/L)	(<1.5)	U	(<1.5)	U	(<1.5)	U	(<1.5)	U	(<1.5)	U	(<1.5)	U	
3- and 4-Methylphenol Coelution	(µg/L)	(<1.3)	U	(<1.3)	U	(<1.3)	U	(<1.3)	U	(<1.3)	U	(<1.3)	U	
Benzyl Alcohol	(µg/L)	(<1.1)	U	(<1.1)	U	(<1.1)	U	(<1.1)	U	(<1.1)	U	(<1.1)	U	
Naphthalene	(µg/L)	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.1)	U	(<1.0)	U	10 (g)
Phenol	(µg/L)	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.1)	U	(<1.0)	U	1 (s)
	Sample ID	356030-MW-10-011	3	356030-MW-11-01	13	356030-DUP-011	3 ^(a)	356030-MW-12-0	113	356030-MW-13-0	113	356030-MW-14-0	113	NYSDEC Ambient Water Quality
	Lab ID	R1300618-003		R1300618-013		R1300618-022		R1300618-015		R1300618-016		R1300618-018		Standard
Parameter List EPA Method 8270C	Sample Date	1/28/2013		1/29/2013		1/29/2013		1/28/2013		1/28/2013		1/29/2013		Class GA (µg/L)
2,4-Dimethylphenol	(µg/L)	(<1.4)	U	(<1.4)	U	(<1.4)	U	2.2	J	(<1.4)	U	(<1.4)	U	50 (g)
2-Methylphenol	(µg/L)	(<1.5)	U	(<1.5)	U	(<1.5)	U	2	J	(<1.5)	U	(<1.5)	U	
3- and 4-Methylphenol Coelution	(µg/L)	(<1.3)	U	(<1.3)	U	(<1.3)	U	3.8	J	(<1.3)	U	4.3	J	
Benzyl Alcohol	(µg/L)	(<1.1)	U	(<1.1)	U	(<1.1)	U	2.5	J	(<1.1)	U	(<1.1)	U	
Naphthalene	(µg/L)	(<1.0)	U	(<1.0)	U	(<1.0)	U	2.1	J	(<1.0)	U	(<1.0)	U	10 (g)
Phenol	(µg/L)	(<1.0)	U	(<1.0)	U	(<1.0)	U	17		(<1.0)	U	7.5	J	1 (s)
ID = Identification NYSDEC = New York State I µg/L = micrograms per L	tal Protection Agency Department of Environm iter = parts per billion (p ection below the method nalytical Services, Inc. C	pb) l detection limit Dnly analytes that were detecto				× ,	nvironr	nental Data Services, Inc.						

TABLE 3-13A TARGET ANALYTE LIST METALS DETECTED IN GROUNDWATER

	Sample ID	356030-MW-1-0	113	356030-MW-2-01	13	356030-MW-5-01	13	356030-MW-6-01	13	356030-MW-7R-0	113	356030-MW-9-01	13	NYSDEC Ambient Water Quality
	Lab ID	R1300618-001		R1300618-006		R1300618-009		R1300618-011		R1300618-004		R1300618-007		Standard
Parameter List EPA Method 6010B/7470A	Sample Date	1/28/2013		1/28/2013		1/29/2013		1/29/2013		1/29/2013		1/29/2013		Class GA (ug/L)
Aluminum	(µg/L)	19.4	J	1,630		22.7	J	15.8	J	(<7.8)	U	123		100 (s)
Arsenic	(µg/L)	9.6	J	4.8	J		(<1.5) U		U	(<1.5)	U	(<1.5)	U	25 (s)
Barium	(µg/L)	260	5	157		38.5	0	(<1.5) 139	Ū	99.5	Ū	119	Ū	1,000 (s)
Calcium	(µg/L)	117,000		103,000		24,800		104.000		90,700		98,100		
Chromium	(µg/L)	(<0.884)	U	4.1	J	(<0.884)	U	(<0.884)	U	(<0.884)	U	(<0.884)	U	50 (s)
Cobalt	(µg/L)	(<0.217)	Ū	0.456	T	(<0.217)	U	(<0.217)	Ū	(<0.217)	Ŭ	(<0.217)	Ū	5 (s)
Iron	(µg/L)	8,140	0	4,920		4,400	0	7,280	Ū	754	Ū	2,120	Ū	300 (s)
Lead	(µg/L)	0.872	I	6.8	T	1.7	T	0.778	T	0.768	T	4.4	T	25 (s)
Magnesium	(µg/L)	30,500	5	19,200		3,380	5	13,700	5	11,000	5	8,210		35,000 (g)
Manganese	(µg/L)	839		6,840		577		873		585		1,230		300 (s)
Potassium	(µg/L)	9,200		6,480		54,500		14,900		14,800		14,500		
Selenium	(µg/L)	(<3.8)	U	(<3.8)	U	(<3.8)	U	(<3.8)	U	4.2	J	(<3.8)	U	10 (s)
Silver	(µg/L)	(<0.54)	Ū	1.8	J	1.1	J	1.2	J	(<0.54)	U	1.2	J	50 (s)
Sodium	(µg/L)	17,500	-	66.000		53,700		45,700	-	27,300	-	43,400		20,000 (s)
Vanadium	(µg/L)	(<0.42)	U	(<2.4)	U	(<0.394)	U	(<0.665)	U	(<0.283)	U	(<0.416)	U	
Zinc	(µg/L)	1.1	J	11.1	J	2.8	J	1.7	J	3.2	J	7.7	J	2,000 (s)
					-									
	Sample ID	356030-MW-10-0	113	356030-MW-11-01	13	356030-DUP-011	3 ^(a)	356030-MW-12-01	13	356030-MW-13-01	13	356030-MW-14-0	113	NYSDEC Ambient Water Quality
Parameter List	Lab ID	R1300618-003		R1300618-013		R1300618-022		R1300618-015		R1300618-016		R1300618-018		Standard
EPA Method 6010B/7470A	Sample Date	1/28/2013		1/29/2013		1/29/2013		1/28/2013		1/28/2013		1/29/2013		Class GA (µg/L)
Aluminum	(µg/L)	556		(<7.8)	U	28	J	2,310		257		210		100 (s)
Arsenic	(µg/L)	5.8	J	(<1.5)	U	(<1.5)	U	4.4	J	(<1.5)	U	13.7		25 (s)
Barium	(µg/L)	245		125		123		228		72.6		203		1,000 (s)
Calcium	(µg/L)	149,000		112,000		109,000		158,000		143,000		59,600		
Chromium	(µg/L)	1.3	J	(<0.884)	U	(<0.884)	U	2.2	J	(<0.884)	U	(<0.884)	U	50 (s)
Cobalt	(µg/L)	0.252	J	(<0.217)	U	(<0.217)	U	0.728	J	0.408	J	(<0.217)	U	5 (s)
Iron	(µg/L)	15,600		1,190		1,180		1,850		389		2,050		300 (s)
Lead	(µg/L)	6.6	J	1.2	J	1.6	J	31	J	0.949	J	2.5	J	25 (s)
Magnesium	(µg/L)	13,600		15,300		15,200		637	J	13,900		8,230		35,000 (g)
Manganese	(µg/L)	1,710		1,070		1,050		101		62		852		300 (s)
Potassium	(µg/L)	11,100		14,300		15,000		49,500		3,910		116,000		
Selenium	(µg/L)	3.9	J	(<3.8)	U	(<3.8)	U	(<3.8)	U	6.5	J	(<3.8)	U	10 (s)
Silver	(µg/L)	1.0	J	1.2	J	2.0	J	1.5	J	1.6	J	1.4	J	50 (s)
Sodium	(µg/L)	23,700		38,400		39,200		72,100		23,900		121,000		20,000 (s)
Vanadium	(µg/L)	(<2.7)	U	(<0.283)	U	(<0.283)	U	4.8	J	(<0.63)	U	(<0.797)	U	
Zinc	(µg/L)	9.6	J	(<1.1)	U	1.3	J	13.9	J	2.8	J	4.3	J	2,000 (s)
(a) Duplicate sample collected at 35603 NOTE: EPA = U.S. Enivronn ID = Identification NYSDEC = New York Stat µg/L = micrograms pe J = Estimated va	80-MW-11-0113 nental Protection Agenc te Department of Enviro r Liter = parts per billior	y nmental Conservation 1 (ppb)	<u> </u>		-									

U = NON-detect, detection verou us income detected in at least one sample are shown. Data validation completed by Environmental Data Services, Inc. Concentration values in **bold** indicate that analyte was detected above the NYSDEC AWQS. G = Guidance Value, S = Standard.

TABLE 3-13B TARGET ANALYTE LIST DISSOLVED METALS DETECTED IN GROUNDWAT	FR
TABLE 5-15B TARGET ARALI TE LIST DISSOLVED METALS DETECTED IN OROUND WAT	

	Sample ID					356030-MW-5-01	13	356030-MW-6-0	113	356030-MW-7R-0	113	356030-MW-9-01	13	NYSDEC Ambient Water Quality
Parameter List	Lab ID	R1300618-002	2	R1300618-027		R1300618-010		R1300618-01	2	R1300618-005		R1300618-008		Standard
EPA Method 6010B/7470A	Sample Date	1/28/2013		1/28/2013		1/29/2013		1/29/2013		1/29/2013		1/29/2013		Class GA (µg/L)
Aluminum	(µg/L)	(<7.8)	U	28	J	25	J	10	J	7.8	U	15.5	J	100 (s)
Arsenic	(µg/L)	9.8	J	2.3	J	(<1.5)	U	(<1.5)	U	(<1.5)	U	(<1.5)	U	25 (s)
Barium	(µg/L)	245		59	J	39.3	J	137		96.6		123		1,000 (s)
Calcium	(µg/L)	113.000		104.000		24.800		104.000		91,400		103.000		
Cobalt	(µg/L)	(<0.217)	U	(<0.217)	U	(<0.217)	U	(<0.217)	U	(<0.217)	U	(<0.217)	U	5 (s)
Iron	(µg/L)	6,640		(<12.9)	U	4.200		7,210		572		2.000		300 (s)
Lead	(µg/L)	1.5	J	(<1.7)	U	(<1.6)	U	1.5	J	1.1	J	0.9	J	25 (s)
Magnesium	(µg/L)	29,700		19,600		3,410		13,700		11,100		8,520		35,000 (g)
Manganese	(µg/L)	834		4,220		585		867		600		1,290		300 (s)
Nickel	(µg/L)	(<2.1)	U	(<2.1)	U	(<2.1)	U	(<2.1)	U	(<2.1)	U	(<2.1)	П	100 (s)
Potassium	(µg/L)	9,110	Ū	6.320	I	57.200	I	14,800	0	15100		15000		
Selenium	(µg/L)	3.8	T	4.9	J	(<3.8	U	(<3.8)	U	(<3.8)	U	(<3.8)	U	10 (s)
Silver	(µg/L)	0.701	J	1.8	J	0.812	J	1.1	J	0.963	J	0.828	J	50 (s)
Sodium	(µg/L)	17,500	,	67,000	,	53,000	,	44,700	,	28,000	,	46,100	,	20,000 (s)
Zinc	(µg/L)	1,500	J	(<1.1)	U	(<1.1)	U	1.5	J	2.6	J	2.0	J	2,000 (s)
Zinc	(μg/L)		,	(()	Ü	(()	U	110	5	2.0	,	2.0	5	2,000 (0)
	Sample ID	356030-MW-10-0	113	356030-MW-11-0	113	356030-DUP-0112	3 ^(a)	356030-MW-12-	0113	356030-MW-13-0	113	356030-MW-14-0	113	NYSDEC Ambient Water Ouality
Parameter List EPA Method	Lab ID	R1300618-020	5	R1300618-014		R1300618-023		R1300618-02	8	R1300618-017		R1300618-019	Standard Class GA	
6010B/7470A	Sample Date	1/28/2013		1/29/2013		1/29/2013		1/28/2013		1/28/2013		1/29/2013		(ug/L)
Aluminum	(µg/L)	(<7.8)	U	(<7.8)	U	11	J	740		(<7.8)	U	27.4	J	100 (s)
Arsenic	(µg/L)	(<1.5)	U	(<1.5)	U	(<1.5)	U	1.5	J	(<1.5	U	11.1		25 (s)
Barium	(µg/L)	146	J	123		126		236	J	67.5		206		1,000 (s)
				109,000		112,000		165,000		138.000		61,300		
Calcium	(µg/L)	133,000												
Calcium Cobalt	(μg/L) (μg/L)	(<0.217)	U	(<0.217)	U	(<0.217)	U	0.318	J	(<0.217)	U	(<0.217)	U	5 (s)
Cobalt		(<0.217)	U U		U	(<0.217) 1.200	U	0.318	J	(<0.217)	U	(<0.217) 1.890	U	5 (s) 300 (s)
Cobalt Iron	(μg/L) (μg/L)	(<0.217) (<24.4)	_	(<0.217) 1,270	U	1,200	U	0.318 (<35.9)	-	(<2.9)	-	1,890	U	
Cobalt Iron Lead	(μg/L) (μg/L) (μg/L)	(<0.217) (<24.4) (<0.656)	U	(<0.217) 1,270 0.851		1,200 1.6		0.318 (<35.9) (<1.2)	U U	(<2.9)	U	1,890 2.6		300 (s)
Cobalt Iron Lead Magnesium	(μg/L) (μg/L) (μg/L) (μg/L)	(<0.217) (<24.4) (<0.656) 14,800	U	(<0.217) 1,270 0.851 15,000		1,200 1.6 15,600		0.318 (<35.9) (<1.2) 71	U U J	(<2.9) 1.2 13,300	U	1,890 2.6 8,450		300 (s) 25 (s) 35,000 (g)
Cobalt Iron Lead Magnesium Manganese	(μg/L) (μg/L) (μg/L) (μg/L) (μg/L)	(<0.217) (<24.4) (<0.656) 14,800 1,040	U U	(<0.217) 1,270 0.851 15,000 1,040	J	1,200 1.6 15,600 1,080	J	0.318 (<35.9) (<1.2) 71 6	U U J J	(<2.9) 1.2 13,300 14.9	U J	1,890 2.6 8,450 901	J	300 (s) 25 (s) 35,000 (g) 300 (s)
Cobalt Iron Lead Magnesium Manganese Nickel	(µg/L) (µg/L) (µg/L) (µg/L) (µg/L) (µg/L)	(<0.217) (<24.4) (<0.656) 14,800 1,040 (<2.1)	U U U	(<0.217) 1,270 0.851 15,000 1,040 (<2.1)		1,200 1.6 15,600 1,080 (<2.1)		0.318 (<35.9) (<1.2) 71 6 10.1	U U J J J	(<2.9) 1.2 13,300 14.9 (<2.1)	U	1,890 2.6 8,450 901 2.3		300 (s) 25 (s) 35,000 (g)
Cobalt Iron Lead Magnesium Manganese Nickel Potassium	(μg/L) (μg/L) (μg/L) (μg/L) (μg/L) (μg/L) (μg/L)	(<0.217) (<24.4) (<0.656) 14,800 1,040 (<2.1) 7,640	U U U J	(<0.217) 1,270 0.851 15,000 1,040 (<2.1) 14,700	J	1,200 1.6 15,600 1,080 (<2.1) 14,600	J	0.318 (<35.9) (<1.2) 71 6 10.1 52,200	U U U J J J J	(<2.9) 1.2 13,300 14.9 (<2.1) 3,760	U J U	1,890 2.6 8,450 901 2.3 112,000	J	300 (s) 25 (s) 35,000 (g) 300 (s) 100 (s)
Cobalt Iron Lead Magnesium Manganese Nickel Potassium Selenium	(µg/L) (µg/L) (µg/L) (µg/L) (µg/L) (µg/L) (µg/L)	(<0.217) (<24.4) (<0.656) 14,800 1,040 (<2.1) 7,640 5.5	U U U J J	(<0.217) 1,270 0.851 15,000 1,040 (<2.1) 14,700 (<3.8)	J U U	1,200 1.6 15,600 1,080 (<2.1) 14,600 (<3.8)	J U U	0.318 (<35.9) (<1.2) 71 6 10.1 52,200 4.7	1 1 1 1 1 1 1	(<2.9) 1.2 13,300 14.9 (<2.1) 3,760 4.8	1 1 1	1,890 2.6 8,450 901 2.3 112,000 (<3.8)	1 1 1	300 (s) 25 (s) 35,000 (g) 300 (s) 100 (s) 10 (s)
Cobalt Iron Lead Magnesium Manganese Nickel Potassium	(μg/L) (μg/L) (μg/L) (μg/L) (μg/L) (μg/L) (μg/L)	(<0.217) (<24.4) (<0.656) 14,800 1,040 (<2.1) 7,640	U U U J	(<0.217) 1,270 0.851 15,000 1,040 (<2.1) 14,700	J	1,200 1.6 15,600 1,080 (<2.1) 14,600	J	0.318 (<35.9) (<1.2) 71 6 10.1 52,200	U U U J J J J	(<2.9) 1.2 13,300 14.9 (<2.1) 3,760	U J U	1,890 2.6 8,450 901 2.3 112,000	J	300 (s) 25 (s) 35,000 (g) 300 (s) 100 (s)

Appendix B

Technology Screening Letter

October 3, 2014

Mr. James Candiloro New York State Department of Environmental Conservation Division of Environmental Remediation 625 Broadway, 12th Floor Albany, New York 12233-7017

RE: Contract/Work Assignment No: D007624-17 Site/Spill No/Pin: Millens Scrapyard Site (356030) Remedial Action Objectives and Feasibility Study Technology Screening

Dear Mr. Candiloro:

EA Engineering, P.C., and its affiliate EA Science and Technology (EA) is providing the Department with this technology screening review letter to facilitate development of the feasibility study (FS) being prepared for the Millens Scrapyard site (356030), located in Kingston, New York. The FS is being completed in accordance with the New York State Department of Environmental Conservation (NYSDEC) Division of Environmental Remediation (DER) *Technical Guidance for Site Investigation and Remediation* (2010)¹.

INTRODUCTION

The Millens Scrapyard site is 74,528 ft² (1.7 acres), and is located at 230 East Strand Street, Kingston, New York in Ulster County at the confluence of Rondout Creek and the Hudson River. The site is situated in an industrialized area and is bordered on the east by North Street, on the north by East Strand Street, and on the south by and a railroad right-of-way (Figure 1). The Millens Staging Area site (NYSDEC Site No. 356040) is located to the east of the Millens Scrapyard site. Residential properties are located north and northwest of the site, and commercial property is located to the west. The property immediately west of the site historically operated as an oil storage facility consisting of storage tanks and a distribution depot (Ecosystems Strategies, Inc. [ESI] 2004)²; the area is currently vacant. The former Kingston manufactured gas plant (MGP) is located to the south, immediately opposite the railroad right-of-way. A natural gas transmission main is currently operated at the former MGP. A 10-in. high pressure transmission line extends east from the MGP site and generally along the railroad right-of-way. This transmission line angles northwest towards the Millens Staging Area.

The site's main features include a brick building located in the northwestern portion of the site. There is currently a concrete slab foundation and sprung structure at the former vehicle crushing

¹ NYSDEC. 2010. DER-10 / Technical Guidance for Site Investigation and Remediation. May 3.

² Ecosystems Strategies, Inc. (ESI), 2004. Remedial Investigation / Feasibility Study Performed on the B. Millens Sons, Inc. Property, 230 East Strand, Kingston, New York. September.

area located in the northeastern portion of the site. The remainder of the site is generally open space. Based on the City of Kingston records, the site appears to be connected to the central water and sewer system, as well as electrical and natural gas services. The main building located on the western half of the property has several floor drains with no known discharge. No groundwater supply wells are located on-site (ESI 2004).

The remedial goal for all remedial actions is considered to be the restoration of the site to the pre-disposal/pre-release conditions to the extent practicable. Remedial action objectives (RAOs) are defined as the medium-specific or area-specific cleanup objectives to provide protection of public health and the environment. The RAOs are based on contaminant-specific standards, criteria, and guidance (SCGs) for impacted media as defined in the remedial investigation (RI). The RI results were compared to medium-specific SCGs. The SCGs were selected based on the current and reasonably ascertainable future land use and potential human and ecological receptors. The SCGs used to evaluate the RI data included:

- NYSDEC Class GA groundwater standards and guidance values, as presented in the Division of Water Technical and Operational Guidance Series 1.1.1, 1998, as amended.
- 6 New York Code of Rules and Regulations (NYCRR) Part 375 Environmental Remediation Programs Soil Cleanup Objectives (SCOs).

REMEDIAL INVESTIGATION SUMMARY

The objectives of the RI were to evaluate the effectiveness of RAs conducted by others; characterize remaining impacts to subsurface soil, fill material, and groundwater; and identify the potential for impacts to offsite soil as a result of discharges of untreated groundwater during a RA. The RI field activities included the following elements:

- On-site subsurface soil evaluation program (test pitting, direct-push soil borings, and subsurface soil sampling)—December 2012
- Monitoring well installation and development—December 2012
- Monitoring well gauging and groundwater sampling—January and October 2013.
- Offsite soil investigation (surface soil sampling and shallow subsurface soil sampling) December 2012 and October 2013.

The findings of the RI were based on all applicable and relevant SCGs associated with RIs conducted under the DER-10 (NYSDEC 2010)¹.

Onsite Subsurface Soil

- Fill consisting of rocky material with occasional sand and silt, brick, and crushed stone and concrete was encountered at depths of 1–6 ft. Native soil encountered beneath the fill material consisted of a sand and silt layer.
- A demarcation layer consisting of geosynthetic clay liner and/or polyvinyl sheeting was observed in test pits and soil borings at depths ranging from approximately 0.3 to 1.3 ft below ground surface (4 to 16 in. below ground surface).
- Subsurface soil is impacted with VOCs (specifically benzene, toluene, ethylene, and xylene [BTEX] constituents), SVOCs (specifically, polycyclic aromatic hydrocarbons [PAHs]), metals (particularly copper, cadmium, lead, mercury, and zinc), and polychlorinated biphenyls (PCBs) at concentrations that exceeded applicable SCGs.

Onsite soil concentrations exceeding Commercial SCOs are summarized in the following table.

Constituent	Range of Detections (ppm)	SCG (ppm)	Frequency of Exceeding SCG						
VOLAT	FILE ORGANIC	COMPOUNDS	NDS						
Acetone	ND-0.38	0.05	3/44						
Toluene	ND-12	0.7	3/44						
Total Xylenes	ND-39	0.26	5/44						
SEMIVOI	ATILE ORGAN	IC COMPOUN	DS						
Benzo(a)anthracene	ND-19	1	6/44						
Benzo(a)pyrene	ND-17	1	6/44						
Benzo(b)fluoranthene	ND-15	1	7/44						
Benzo(k)fluoranthene	ND-12	0.8	7/44						
Chrysene	ND-18	1	6/44						
Indeno(1,2,3-cd)pyrene	ND-9.6	0.5	7/44						
TARG	ET ANALYTE I	LIST METALS							
Cadmium	0.015-25.1	2.5	4/44						
Copper	3-624	50	7/44						
Lead	2-2,500	63	9/44						
Mercury	0.003-15.4	0.18	6/44						
Nickel	3-80	30	3/44						
Zinc	10-3,030	109	14/44						
POLY	CHLORINATEI) BIPHENYLS							
Aroclor (Total)	ND-4.6	0.1	9/44						
Notes: ND – Non Detect SCG – Standards, Criteria and Guidance ppm – parts per million (milligrams per kilogram)									

Groundwater

- Groundwater in the southeastern portion of the site is impacted with BTEX compounds and Phenol at concentrations that exceed the applicable SCGs.
- Additionally, groundwater is impacted with metals (predominantly iron, manganese, and sodium), both total and dissolved, at concentrations that exceed the applicable SCGs.
- Groundwater in the northeastern corner of the site contained benzene and lead at concentrations that exceed the applicable SCGs.

The groundwater concentrations exceeding NYSDEC GA groundwater standards are summarized in the following table.

Constituent	Range of Detections (ppb)	SCG (ppb)	Frequency of Exceeding SCG
VOLA	FILE ORGANIC	COMPOUNDS	
Benzene	ND-64	1	8/24
Ethylbenzene	ND-21	5	3/24
m&p-Xylene	ND-77	5	5/24
o-Xylene	ND-46	5	5/24
Toluene	ND-120	5	4/24
MTBE	ND-760	10	5/12
SEMIVOI	LATILE ORGAN	IC COMPOUN	DS
Phenol	ND-17	1	2/12
	TOTAL MET	TALS	
Aluminum	ND-2,310	100	7/12
Iron	389-15,600	300	12/12
Lead	ND-31	25	1/12
Manganese	62-1,710	300	10/12
Sodium	17,500-	20,000	11/12
	121,000		
	DISSOLVED M	ETALS	
Aluminum	ND-740	100	1/12
Iron	ND-6,640	300	8/12
Manganese	6-4,220	300	10/12
Sodium	17,500-	20,000	11/12
	121,000		
Notes: ND – Non Detect SCG – Standards, Criter ppb – parts per billion (1		er)	

Offsite Surface Soil

SVOCs (primarily PAHs) and PCBs were also detected in offsite surface soil, and metals were detected in surface soil at concentrations that exceeded SCGs in the area where untreated groundwater was discharged. The impacts to offsite surface soil are not addressed under this technology evaluation.

FEASIBILITY STUDY

The criteria and initial screening to be used to develop the FS Report are summarized below:

- Pursuant to DER-10 (NYSDEC 2010)¹, remedial goals for the site are defined by the applicable regulations for New York State Inactive Hazardous Waste Disposal Site Remedial Program (State Superfund Program or SSF), as defined by Environmental Conservation Law (ECL), Article 27, Title 13.
- RAOs are medium-specific objectives for the protection of public health and the environment, and are developed based on contaminant-specific SCGs to address contamination identified at a site. NYSDEC has developed generic RAOs for various media that will be used during the development of the FS and remedy selection process.

Media	Remedial Action Objective
Soil/Fill	 Prevent ingestion/direct contact with contaminated soil. Prevent migration of contaminants that would result in groundwater or surface water contamination.
Groundwater	 Prevent ingestion of groundwater with contaminant levels exceeding drinking water standards.

The RAOs for impacted media identified at the site are listed below.

EA completed the technology screening in accordance with DER-10 (NYSDEC 2010)¹ and the 1988 U.S. Environmental Protection Agency (EPA) publication *Guidance for Conducting Remedial Investigations and Feasibility Studies Under CERCLA* (EPA 1540IG-891004) (EPA 1988)³. The screening was designed to evaluate applicable technologies based on impacted media identified at the site during the RI.

³ EPA. 1988. Guidance for Conducting Remedial Investigations and Feasibility Studies Under CERCLA (EPA 15401G-891004). October.

TECHNOLOGY SCREENING

The technology screening process assessed applicable technologies based on area-specific media and contaminants, as well as with consideration of the following five categories:

- Compliance with RAO
- Effectiveness
- Implementability
- Reduction of toxicity, mobility, and volume
- Cost.

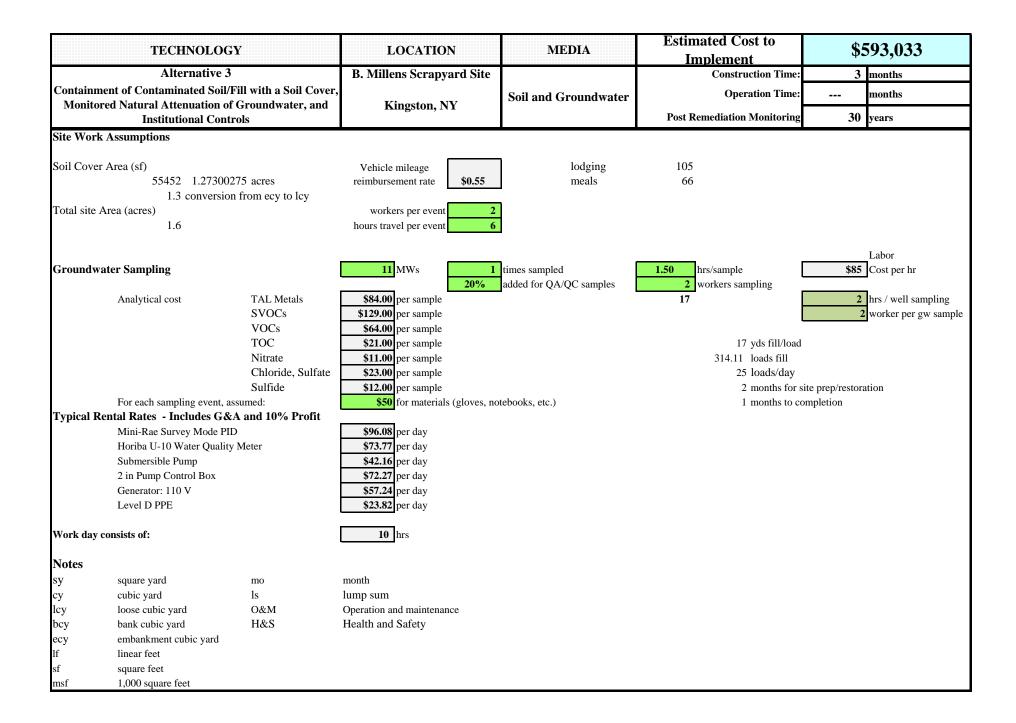
The technology screening table (Table 1) attached to this letter provides a review of each technology screened for potentially addressing surface and subsurface soil/fill material based upon the above listed criteria. EA has evaluated multiple technologies known to be effective in the remediation of organic and/or inorganic contaminants in soil/fill and groundwater. Based on the screening matrix, EA proposes to develop the FS evaluating the remedial alternatives presented in Table 2 (attached).

If you have any questions, please do not hesitate to contact me at (315) 431-4610, extension 1868.

Sincerely,

EA SCIENCE AND TECHNOLOGY

Christopher Schroer Project Manager


Appendix C

Costs

TECHNOLOGY	I		MEDIA					Estimated Cost to Implement						\$214	1,464			
Alternative 2 Site Management			ens Scrapy Lingston, N		Site		Soi Groui	l and					mpleme	ntatio	n Time: n Time:			months months
Site management		n	ingston, r	11			31 Uu	luwa	liter		Po	st Rer	nediatio					years
		Qua	ntities					Cost	Breakd	lown	(if availal	ble)					ombined nit Costs	
Description	Quantity Amount	Quantity Unit	Mate Unit			terial Il Cost		abor it Cost		Labor otal Cost		ipment it Cost		ipment al Cost		nit Cost	Option Total Cost	
REMEDIAL ACTION	(Means ¹ or Other)		CAPITAI	<u> </u>	<u> </u>	100		0.1				0.1		10				\$28,675
			ounded to			ousa	nd)			1				T		T		φ =0,0 7
ite Management Activities																		\$25,60
urveyor- ALTA Survey and monument	Recent quote from																	<i><i><i>q</i>20,0</i></i>
nstallation	MJ Engineering	1	ls	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	7,000	\$7,0
Legal		1	ls	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	10,000	\$10,0
Fence, chain link, 9 ga. Wire, in concrete, 5' H		300	lf	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	21.29	\$6,3
Fence, chain link overhead slide gate, 6' H 18'	W <i>323113203100</i>	18	lf	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	123.10	\$2,2
																		\$3.0
Professional/Technical Services 6% Project Manage	mant					-				-							\$25,603	\$3,0 \$1,536
3% Remedial Desi																	\$25,005	\$768
3% Construction M																		\$768
ONG TERM ANNUAL MONITOR	•	TENANCI	£	•						•		ANI	NUAL	LTN	I COS	Γ (Y]	RS 1-5)	\$18,80
												ANI	NUAL	LTN	I COS	Γ (Y)	RS 6-30)	\$9,43
												LIF	ETIM	E LT	'M (NP	V)		\$185,78
Aonitoring and Maintenance						-												
Site Monitoring																		\$9,4
Mobilization/Demobilization of Inspector		1	event	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	1,240.00	\$1,2
Site Monitoring																	,	
Groundwater sampling for 1 ev		11	well	\$	-	\$	-	\$	255	\$	2,805	\$	66	\$	731	\$	-	\$3,5
Materials	Engineer's Estimate	1	event	\$ 5	50.00	\$	50	\$	-	\$	-	\$	-	\$	-	\$	-	\$
Laboratory analysis Metals VOCs, SVOCs, plus 209	6 Life Science																	
QA/QC		13	ea	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	277	\$3,6
Sample shipping		3	ea	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	75	\$2
Reporting		6	hr	\$	-	\$	-	\$	85	\$	510.00	\$	-	\$	-	\$	-	\$5
Maintenance- Fence Maintenance Fence, chain link, 9 ga. Wire, in concrete, 5' H	323113202100	10	16	\$		\$		\$		\$		\$		\$		\$	21.20	¢2
ifetime Long Term Monitoring (Net		10	11	¢	-	φ	-	¢	-	Ŷ	-	φ	-	φ	-	φ	21.29	\$2
25 Years of Annua																		
	or (per NYSDEC)																	
Source Contract Contr	CHNOLOGY C	COST (C	Capital +	Life	time	08	XM)											\$214,464
Labor Cost per hr Vehicle mileag reimbursemen rate				for m	aterial			-	er event oks, etc.)		6 \$50							
Groundwater Sampling		11	MWs	20			s sampl d for Q		samples		1.50 2		ample ærs samp	oling				
Analytical cost	TAL Metals SVOCs VOCs TOC Nitrate Chloride, Sulfate Sulfide	\$129.00 \$64.00 \$21.00 \$11.00 \$23.00	per sample per sample per sample per sample per sample per sample per sample					-	_		17	-		mont	2 hs for pr	work e-desi te prej	well sampli er per gw s gn characte o/restoration on	rization
For each sampling event, assum Sypical Rental Rates - Includes G&A an Mini-Rae Survey Mode PID Horiba U-10 Water Quality Me	d 10% Profit	\$50 \$96.08	for material per day		es, not	tebool	ks, etc.)										

TECHNOLOGY	I	LOCATION MEDIA							F		nated nplem				\$	593,033	
Alternative 3		B. Mille	ens Scrapy	ard	Site									ction '	Time:	3	months
Containment of Contaminated Soil/Fill	with a Soil Cover,					Soil a	and Cu	roun	dwater			0	pera	ation '	Time:		months
Monitored Natural Attenuation of G		K	ingston, N	ŊΥ		5011 a	illu Gi	oun	uwater	т	lagt D	amadia	• • • • •	Moni	lonin a	30	
Institutional Control	S			1						I	OST K	emedia	ion	WOUL	oring	50 Combined	years
		Quar	ntities				Co	ost Bı	eakdown	(if avail	able)					Unit Costs	
Description	Data Source	Quantity	Quantity	Ma	aterial	Mate	erial		Labor	Lab	or	Equipm	ent	Equip	pment		Option
	(Means ¹ or Other)	Amount	Unit	Un	it Cost	Total	Cost	U	nit Cost	Total	Cost	Unit C	ost	Tota	l Cost	Unit Cost	Total Cost
REMEDIAL ACTION			CAPITAL ounded to			ousand	I)	1									\$376,302
Construction Activities																	\$298,336
Site Preparation																	
Survey/Boundaries & Markers	17123131100		day	\$	-	\$	-	¢		\$	-	¢		\$	-	\$ 1,243	\$1,243
Topographic Survey Utility Locator (based on recent bids)	22113090020 recent quote	1.6	acre	\$ \$	-	\$ \$	-	\$ \$	-	\$ \$	-	\$ · \$ ·		\$ \$	-	\$ 617 \$ 2,465	\$988 \$2,465
Work Plan Preparation (Including QAPP, F	1		ls	۰ ۶	-	\$	-	ֆ \$	-	\$	-	\$. \$.		۰ ۶	-	\$ 2,403 \$ 15,000	\$15,000
Erosion & Sediment Control Plan	· · · · · · · · · · · · · · · · · · ·	1	ls	\$	-	\$	-	\$	-	\$	-	\$.		\$	-	\$ 15,000	\$15,000
Silt Fence	312514161000	725	lf	\$	-	\$	-	\$	-	\$	-	\$ ·		\$	-	\$ 0.97	\$703
Capping																	
Community Air Monitoring (Dust)	recent quote - Pine Environmental			¢		¢		¢	10,000	ф 10	600	¢ 0.	20	<i>•</i>		¢	¢17.000
Dust Control, Light	<i>31 23 23.20 2500</i>		mo day	\$ \$	-	\$ \$	-	\$ \$	- 13,600	\$ 13 \$,600	\$ 3,4 \$ ·		\$. \$	3,420	\$ - \$ 1,121.19	\$17,020 \$11,212
Fine grading, small irregular areas	31 23 23.20 2500 312216101050	6,161	-	\$ \$	-	\$ \$	-	\$ \$	-	\$ \$	-	\$ ·		\$ \$	-	\$ 1,121.19 \$ 3.05	\$11,212 \$18,792
Geotextile (Non woven)	313219161550	6,161	-	\$	-	\$	-	\$	-	\$	-	\$.		\$	-	\$ 2.21	\$13,617
Supply and Transportation of NYS Certified	Recent quote-	,	·														
Clean Back Fill Material	Carver	4,005	lcy	\$	-	\$	-	\$	-	\$	-	\$ ·		\$	-	\$ 20.90	\$83,702
Backfill 300HP Dozer, 150' haul	312323145220	4,005	lcy	\$	-	\$	-	\$	-	\$	-	\$		\$	-	\$ 1.47	\$5,887
Compacting backfill, 6" lift, 2 passes w/ drum		3,081	ecy	\$	-	\$	-	\$	-	\$	-	\$ ·		\$	-	\$ 0.45	\$1,386
Topographic Survey Site Restoration	22113090020	1.6	acre	\$	-	\$	-	\$	-	\$	-	\$ ·		\$	-	\$ 617	\$988
Site Restoration	Recent quote-																
Topsoil	Carver	1,335	lcy	\$	-	\$	-	\$	-	\$	-	\$ ·		\$	-	\$ 46	\$61,408
Fine grading, small irregular areas	312216101050	6,161	sy	\$	-	\$	-	\$	-	\$	-	\$		\$	-	\$ 3.05	\$18,792
Utility mix, 7#/M.S.F., Hydro or air seeding	g 32 92 19.14 5400	55	msf	\$	-	\$	-	\$	-	\$	-	\$ ·		\$	-	\$ 92.32	\$5,119
Monitoring Well Repair	Engineer's Estimate	1	ea	\$	-	\$	-	\$	_	\$	_	\$ -		\$	-	\$ 600	\$600
Topographic Survey	02 21 23 09 0020		acre		20.94	\$	34	\$	597.77	\$	956		23	\$	37	φ 000	\$1,027
Fence, chain link, 9 ga. Wire, in concrete, 5	323113202100	300	lf	\$	-	\$	-	\$	-	\$	-			\$	-	\$ 21.29	\$6,387
Environmental Easement																	
Legal		1	ls			\$	-			\$	-			\$	-	\$ 10,000	\$10,000
Surveyor- ALTA Survey and monument installation	Recent quote from MJ Engineering	1	ls	\$	-	\$	-	\$	-	\$	_	\$ -		\$	_	\$ 7,000	\$7,000
Mobilization and Demobilization	MJ Engineering	1	15	Ψ		Ψ		Ψ		ψ		φ		Ψ		φ 7,000	\$14,917
5% of Total Costs	of Site Work															\$298,336	\$14,916.81
Contingonou																	\$12,332
Contingency of Total Const	ruction Activities															\$246,640	
Professional/Technical Services														-			\$50,717
Frotessional/Technical Services 5% Project Manag	rement			╞												\$298,336	
6% Remedial Des				+												φ270,330	\$17,900.18
6% Construction I	U																\$17,900.18
LONG TERM MONITORING				<u> </u>		I		•		ANNU	JAL	LTM (COS	ST ()	RS 1	-5)	\$22,001
										ANNU							\$11,000
										LIFE							\$216,731
Monitoring, Sampling, Testing and	Analysis (Per Eve	ent)		Τ				[. (1 1	- •)			<i><i><i>q</i>=10,701</i></i>
Site Monitoring																	\$11,000
Site Monitoring Inspection of soil cover		1	hr	\$	-	\$	-	\$	85.00	\$	85	\$ -		\$	_	\$ -	\$85
Groundwater sampling for 1 e	vent - Includes collect		well	\$	-	\$	-	\$	255.00		,805		66	\$	731	\$ -	\$3,536
Materials	Engineer's Estimate	1	event	\$	50.00	\$	50	\$	-	\$	-			\$	-	\$-	\$50
Mobilization/Demobilization	of Field Sampling Crev		event	\$	-	\$	-	\$	-	\$	-	\$		\$	-	\$ 1,714	\$1,714
Reporting		10	hr	\$	85.00	\$	850	\$	-	\$	-	\$ ·		\$	-	\$ -	\$850
Laboratory analysis Metals VOCs, SVOCs, MNA,	Life Science			_													
plus 20% QA/QC	Laboratories	13	ea	\$	-	\$	-	\$	-	\$	-	\$ ·		\$	-	\$ 344	\$4,541
Sample shipping		3	ea	\$	-	\$	-	\$	-	\$	-	\$ ·		\$	-	\$ 75	\$225
Lifetime Long Term Monitoring (N				<u> </u>													
	Annual Monitoring al Monitoring			_													
42 Years of Annu	COLUMN THE REPORT OF THE PARTY		-														

	25 5%	Discount Factor (per NYSDEC)								
TOTAL I	ESTIMATI	ED NPV TECHNOLOGY	COST ((Capital +	+ Post Re	emediation	ı Monitoriı	ng)		\$593,033

TECHNOLOGY		L	OCATIO	N			1	MEDIA	Estimated Cost	to I	mple	emei	nt	\$1	,975,977
Alternative 4			ens Scrapy		ite			Soil		С	Time:	3	months		
Hot Spot Excavation, Enhanced Aerobic Bior	emediation	К	ingston, N	NY							Oper	ration	Time:	-	months
for Groundwater and Institutional Con				-					Post l	Remed	liation	Mon	itoring		years
		÷	ntities					Cost Breakdown (if				1		Combined Unit Costs	
1	ta Source as ¹ or Other)	Quantity Amount	Quantity Unit	Mate Unit		Material Total Cost		Labor Unit Cost	Labor Total Cost	-	pment t Cost		ipment al Cost	Unit Cost	Option Total Cost
REMEDIAL ACTION			CAPITAL			ousand)									\$1,845,920
Construction Activities															\$1,409,440
Pre-Design Characterization Study															<i><i></i></i>
Mobilization/Demobilization recent i Geolog		1	ls											\$ 1,500	\$1,500
Driller- 1 day Laboratory Analysis- TCLP			day each											\$ 1,200 \$ 620	
Groundwater Assessment		0	each											\$ 620	\$3,720
	Microbial , 3% per														
year inf Groundwater sampling for 1 event - Includes colle	lation	4	well	\$	-	\$-	\$	-	\$ -	\$	-	\$	-	\$ 753.53	\$3,014
parameters	cubil of field	4	well	\$	-	\$-	\$	255.00	\$ 1,020	\$	183	\$	731	\$ -	\$1,75
Analytical- MNA parameters		4	well							-				\$ 131.00	\$524
Site Preparation Survey/Boundaries & Markers 171231	31100	1	day	\$	-	\$-			\$-			\$	-	\$ 1,243.38	\$1,243
Topographic Survey221130Utility Locator (based on recent bids)recent of			acre dav	\$ \$	-	\$ - \$ -	\$ \$	-	\$ - \$ -	\$ \$	-	\$ \$	-	\$ 617.32 \$ 2.465	
Utility Locator (based on recent bids) recent of Work Plan Preparation (Including QAPP, FAP and H		1.0 1.0		-	-	\$ - \$ -	\$ \$	-	<u>\$</u> - \$-	\$ \$	-	\$ \$	-	\$ 2,465 \$ 15,000	
Erosion & Sediment Control Plan		1		\$	-	\$ -	\$	-	\$ -	\$	-	\$	-	\$ 15,000	
Monitoring Well Abandonment recent of Enviro1	<i>`rac</i>	39			-	\$ -	\$	-	\$ -	\$	-	\$	-	\$ 22	
Silt Fence 312514 Stocknile and Staging Area 100 x 100- liner recent Q	161000 wote- The	725	If	\$	-	\$ -	\$	-	\$-	\$	-	\$	-	\$ 0.97	\$703
Stockpile and Staging Area 100 x 100- liner and sand	mental	10,000	SF	\$	-	\$-	\$	-	\$ -	\$	-	\$	-	\$ 1.56	\$15,600
recent q	uote- The	0,000				<u></u>	Ť							1.50	\$10,000
Decontamination Pad 50 x 100 Environ Service	Group	- ,	SF	\$	-	\$ -	\$	-	\$ -	\$	-	\$	-	\$ 1.56	
Temporary road, gravel fill, 4" depth, excl su Excavation	15523500050	556	SY	\$	-	\$-	\$	-	\$ -	\$	-	\$	-	\$ 9.27	\$5,150
recent	uote - Pine														
Community Air Monitoring (Dust)	mental	1	mo	\$	-	\$-	\$	1,700.00	\$ 1,700	\$	3,420	\$	3,420	\$-	\$5,120
Hauling, light, dust control 312323 Soil-Excavator, hydraulic, crawler mtd. 3.5 (312316)			day bcy	\$	-	\$ - \$ -	\$ \$	-	\$ - \$	\$ \$	-	\$ \$	-	\$ 1,121.19 \$ 1.49	
34CY off-road 20min. Wait 2,000ft cycle 312323		,	lcy	\$	-	\$ -	\$	-	\$ -	\$	-	\$	-	\$ 4.19	. ,
Maintain Stockpile, 700HP Dozer, 50ft Haul 312316			bcy	\$ \$	-	\$ - \$ -	\$	-	\$ - \$ -	\$	-	\$	-	\$ 2.04 \$ 1.71	
Excavator Loadout, add 15% for loading312316Topographic Survey221130		3,689 0.50	bcy acre	\$ \$	-	\$ - \$ -	\$ \$	-	\$ - \$ -	\$ \$	-	\$ \$	-	\$ 1.71 \$ 617.32	
Confirmation Sampling		100	1.	<i>•</i>		é	0.0	21.25	¢ 2.205	¢		¢		¢	#2.2.4
Grab Samples- 1 per 900 square feet, 1 per 30 lf alon Lab Analyses - TAL Metals, VOCs, SVOCs, <i>Life Sci</i>	1	108	sample	\$	-	\$ 5	0 \$	21.25	\$ 2,295	\$	-	\$	-	\$ -	\$2,343
and PCBs Laboration Water Samples	ories		sample sample	+	-	\$ - \$ -	\$	-	<u>\$</u> - \$-	\$ \$	- 50	\$ \$	- 500	\$336.0	0 \$36,288 \$500
Decon Water Lab Analyses - Metals, VOCs, Life Sci			sample	Ψ		-	φ		т	-			500	Ψ	
SVOCs Labora. Hazardous Soil Disposal	ories		1	\$	-	\$ -			\$ -	\$	-	\$	-	\$336.0	9 \$3,360
Life Sci Soil Characterization Sampling (1 sample pe laborate		3	sample	\$	-	\$ -	\$	-	\$ -	\$	-	\$	-	\$62	0 \$1,860
Recent															
includes labor and equipment inflation	A P	2,066	ton	\$	-	\$-	\$	-	\$-	\$	-	\$	-	\$ 309.53	\$639,412
Non-Hazardous Soil Disposal Life Sci															
Soil Characterization Sampling (1 sample pe laborate Recent		5	sample	\$	-	\$ -	\$	-	\$ -	\$	-	\$	-	\$6	5 \$323
	3% per year	3,836	top	\$	-	\$-	\$	-	\$	\$	_	\$	_	\$ 105.49	\$404,722
ORC Reagent Application				Ŧ	1		\$	-	Ψ -		-		-		
Additional Excavation for application- 20'x2 312316 ORC Reagent- includes tax and shipping Recent		74	bcy	\$	-	\$ -	\$	-	\$ -	\$	-	\$	-	\$ 1.49	\$110
(15%) Regene.		330	lb	\$	-	\$-	\$	-	\$ -	\$	-	\$	-	\$ 10.45	\$3,450
Site Restoration Supply and Transportation of NYS Certified Recent	quote-	4.969	lev				+			-		-			1
Clean Back Fill Material Carver	12323145220	4,268 4,268		\$ \$	-	\$- \$-	\$ \$	-	\$ - \$ -	\$ \$	-	\$ \$	-	\$ 20.90 \$ 1.47	. ,
Fine grading, small irregular areas 3	12216101050	2,433	sy	\$	-	\$ -	\$	-	\$ - \$	\$	-	\$	-	\$ 3.05	\$7,422
Compacting backfill, 12" lift, 2 passes w/ drt 3 Recent	12323235060 wote-	3,283	ecy	\$	-	\$ -	\$	-	\$ -	\$	-	\$	-	\$ 0.45	\$1,477
Topsoil Carver		528	lcy	\$	-	\$ -	\$	-	\$ -	\$	-	\$	-	\$ 46	
	12216101050 29219145400	,	sy	\$	-	\$ -	\$	-	\$-	\$	-	\$	-	\$ 3.05	\$7,422
Utility mix, 7#/M.S.F., Hydro or air seeding,	29219145400 21123230100	53.85 17		\$	-	\$ - \$ -	\$	-	\$ - \$ -	\$	-	\$ \$	-	\$ 92.32 \$ 8.33	
Monitoring Well Installation recent Q	uote-	39		-			+		Ŷ	-			-		
Envirol recent (\$	-	\$ -	\$	-	\$ -	\$	-	\$	-	\$ 94	
Monitoring Well Development Pohatee			hour acre	+	- 0.94	\$ - \$ 5:	\$ 2 \$	- 597.77	\$ - \$ 1,494	\$ \$	- 23	\$ \$	- 58	\$ 200	\$1,800
Environmental Easement	, 0020			Ψ 2		÷ J.	-	571.11	- 1,+94	Ψ	23	Ŷ	50		¢1,00.
Legal Surveyor Monument Installation		1					+			+				\$ 15,000 \$ 10,000	
Surveyor - Monument Installation Mobilization and Demobilization			15			<u> </u>				1				\$ 10,000	\$10,000 \$69,887
5% of Total Costs of Site W	/ork						-							\$1,397,73	
Contingency					_										\$128,979
10% of Total Construction A	ctivities						-							\$1,289,79	
Professional/Technical Services				-						+					\$237,614
5% Project Management														\$1,397,73	1 \$69,886.50
6% Remedial Design			1	1			1			1		1			\$83,863.87

		HNOLOGY			LOCATIO	-		MEDIA		Estimated Co					,	975,977
	Alt	ernative 4		В. М	Iillens Scrap			Soil			C		ction Tir			months
Hat Spat	Execution En	hanced Acre	bic Bioremediati	ion	Kingston,	NY						Oper	ation Tir	ne:	-	months
-	Groundwater			lon						Po	st Remee	diation	Monitor	ing	30	years
LONG T	ERM MONIT	ORING					-			ANNUAL LTM CO	DST (Y	R 1)				\$28,904
										ANNUAL LTM CO LIFETIME LTM (RS 2-	30)			\$7,226 \$130,057
Monitoriı	ng, Sampling, '	Festing and	Analysis (Per E	Event)												\$7,22
	Site Monitori	0					-									
	Groundwater s Materials	ampling for 1 e	event - Includes col Engineer's Estima		11 well 1 event	\$ - \$ 50.00	\$ - \$ 5	\$ 0 \$	-	\$ - \$ -	-	- 66	\$ 7 \$ -	31 \$ \$	-	\$7:
	Mobilization/I	Demobilization	of Field Sampling O	Crew	1 event	\$ -	\$-	\$	-	\$ -	Ψ	-	\$ -	\$	1,714	\$1,7
	Reporting Laboratory a	nalvsis			10 hr	\$ 85.00	\$ 85	0 \$	-	\$ -	\$	-	\$ -	\$	-	\$8.
	Metals VOCs,		Life Science		13 ea		<u>_</u>	<u>_</u>		<u>^</u>	*		<u>_</u>	<u>_</u>		
	20% QA/QC Sample shippi	19	Laboratories		3 ea	\$ - \$ -	\$ - \$ -	\$ \$	-	\$ - \$ -	\$ \$	-	\$ - \$ -	Ŧ	277 75	\$3,65
		Ŭ.				Ψ	÷	Ψ		Ψ	Ψ		Ψ	Ψ	10	φ_
Lifetime l		-	et Present Valu	le)												
	1 29	-	terly Monitoring ual Monitoring										-			
	5%		or (per NYSDEC)													
τοται	FSTIMATI	T NPV T	FCHNOLOG	EV COST	. (Canital	+ Lifetim	e O&M + 1	Post Remediation	on Monite	oring)						\$1,975,977
			ECHIOLOU		Capital	1 Liiciiii		ost Kenteulati		(iiig)						φ1,975,977
Assumpti							add for QA/QC	samples								
Character	ization Samplin	g														
	Analytical cos	t	TCLP	\$	620 each											
Estimated	number of conf	irmation san	ples		24 bottom san		20%				30					
					65 sidewall sa	imples		Total confirmatio	n camples	108.00	78					
								Total commatio	in samples	108.00						
	Confirmation		Table A (per CW		3.48 per sample						.				40 .	Labor
	Analytical cos	t	TAL Metals+Hg VOCs	\$84	4.00 per sample					0.25	hrs/s	ample er sam	pling		\$85	Cost per hr
			SVOCs	\$129									r8			
	For each samp	ling event, assu	PCBs umed:	\$59	9.00 \$50 for materia	ıls (gloves, no	tebooks, etc.)									
Decon Wa	ter Samples				<u> </u>											
Decon wa	ter Samples		Metals	\$84	4.00											
			VOCs		4.00											
			SVOCs PCBs	\$129	9.00 9.00											
			1003	φυ												
Disposal							1.	6 tons per CY				22	tons per	load		
			Vol Haz (CY)		,291		2,06	6 tons soil for haz d				94	loads for	haz dispo		
			Vol Non Haz (CY Total excavation		,398 ,689		3,83	6 tons soil for non-ha	ız disposal			174	loads for	non-haz c	disposal	
Excavatio	n Assumptions (Refer to figu		3,	,009		5,90	2				10	hrs			
Non-Haz	D 1 (0)	A (05)			(0)											
Ex ID EX-1	Depth (ft)	Area (SF) 40	Volume (CY)	erimeter 89	80	Site Resto	ration		loose				loads per working	r day days per r	month	
EX-2	4	450	0	667	380	Clean Fill	32		4268	LCY			-			
EX-3	3			178	50 120	Topsoil Sood*)6 50 SE	528	LCY			-	er workin		
EX-4 EX-5	5				120 110	Seed* *Assume m	538: lost of site will b	50 SF e disturbed						or site pre or disposa	-	ЮП
EX-6	6	120	0	267	110							1		robu		
EX-7	8			267	90 70		C 1	G								
EX-8 EX-9	7			78 356	70 140		Groundwate	r Sampling						11 MWs		
EX-10	5			167	80			Analytical cost		TAL Metals		\$84.00	per samp	ole		
EX-11	5				170					SVOCs	\$	6129.00	per samp	ole		
EX-12 EX-13	5			222 161	140 80					VOCs TOC			per samp per samp			
EX-13 EX-14	5				200					Nitrate			per samp			
EX-15	3		0		120					Chloride, Sulfate		\$23.00	per samp	ole		
		2190	0 7	3689				For each and the		Sulfide			per samp	ole rials (glov	ac not 1	oks etc.)
		2190	u 3	007			Typical Rent	For each sampling al Rates - Includes				\$5U	for mate	iais (glov	es, notebo	UKS, CIC.)
							-	Mini-Rae Survey M	Iode PID				per day			
*Haz velu-	ne estimated							Horiba U-10 Water		er			per day per day			
· naz volur	ne esumated							Submersible Pump 2 in Pump Control					per day per day			
								Generator: 110 V					per day			
Notes			mo	month				Level D PPE					per day			
sy	square yard															
су	cubic yard	-d	ls O&M	lump su		nce					ont		1			
sy			ls O&M H&S	Operatio	um on and maintena and Safety	ance				workers per ev hours travel per ev		2				
sy cy lcy	cubic yard loose cubic ya		O&M	Operatio	on and maintena	ance				-]			

sf	square feet
msf	1,000 square feet