

Civil and Environmental Engineering

6 NYCRR PART 373 UPDATED CLOSURE REPORT

for the

CENTRAL HUDSON GAS AND ELECTRIC CORPORATION ELTINGS CORNERS FACILITY Route 299 and South Street Town of Lloyd, Ulster County, New York DEC Hazardous Waste Storage Permit: 3-5132-00032-2 EPA ID No. NYD000705905 Project No. 2023058

July 2024

INTRODUCTION

The Eltings Corners Facility operates as a vehicle and transformer maintenance facility and warehouse for Central Hudson Gas and Electric Corporation (CHGE). Site activities include vehicle maintenance, transformer repairs and storage, and warehouse distribution of major electrical components. The facility has been designated as the central hazardous storage facility for wastes generated by various Operating Divisions of CHGE and operates under the New York State Department of Environmental Conservation (DEC) permit referenced above. The facility's United States Environmental Protection Agency's (EPA's) ID number is NYD000705905. Permitted hazardous waste storage areas include the following:

- *Permitted Waste Storage Area*: A curbed 37-foot by 6-inch by 20-foot fully enclosed storage area, less a 6-foot by 6-inch by 4-inch section outside of the curb by the man-door.
- *6,000-Gallon Aboveground Storage Tank (AST)*: North half of a larger compartmentalized tank utilized for storage of polychlorinated biphenyls (PCB) -contaminated transformer oil.

- *Loading/Unloading Area*: Adjacent to the 6,000-gallon AST.
- *Steel Structure*: Supports the canopy over the loading/unloading area adjacent to the 6,000-gallon AST.
- *PCB Storage Area*: Designated area located in the Transformer Shop was used for the accumulation of small quantities of PCB debris (rags, absorbents, and test kits).
- *1,350-Gallon PCB Soaking AST*: Formerly used to soak removed natural gas distribution pipe potentially been contaminated with oil mists containing PCBs from natural gas compressor stations.

Hazardous wastes that have been stored at the facility include waste materials associated with transformer oils containing varying levels of PCBs as well as other materials associated with PCB transformers. The volume and frequency of these hazardous wastes have steadily declined over the years. As approved by the DEC, CHGE decided to close the hazardous waste storage permit and continue to operate as a hazardous waste generator.

During August and November 2023, the areas listed above were cleaned and closed in accordance with the approved April 2020 Closure Plan provided in Attachment 1. These activities were documented in a December 2023 report to the Department. DEC subsequently requested additional closure activities as documented in the April 2024 *Revised Work Plan for Proposed Follow-up Activities* provided in Attachment 2. This updated closure report documents the closure actions taken in 2023 and 2024.

CLEANUP CRITERIA/GUIDANCE

Wipe Samples

Per the approved closure plan, PCB wipe sample results were interpreted as follows:

PCB Concentration of Wipe Sample	Results
$<10 \ \mu g/100 \ cm^{2}$	Non-PCB (<50 ppm)
>10 but <100 µg/100 cm ²	PCB-Contaminated (50-499 ppm)
$\geq 100 \ \mu g/100 \ cm^2$	PCB (≥500 ppm)

 μg – micrograms / ppm – parts per million / 100 cm² - centimeters squared

While there are no published guidance values for interpreting wipe sample results for many of the metals, Section II, Chapter 2 of the Occupational Safety and Health Administration's (OSHA) Technical Manual (OTM) provides a method to estimate an acceptable value for surface contamination in work areas. This method uses the airborne exposure limit of a substance in μ g/m³ and the approximate area of a worker's hand (100 cm²) to calculate an acceptable value for surface contamination. This method was used to calculate guidance values to evaluate analytical results for metals from the wipe samples.

Wastewater and Rinsate Samples

Remaining water in the PCB soaking tank was sampled and characterized as non-hazardous. Results from the rinsate samples collected from the designated *Permitted Waste Storage Area*, *Loading/Unloading Area* and *Transformer Shop* were compared to *Water Quality Standards for Surface Waters and Groundwater* contained in 6 New York Codes, Rules and Regulations (NYCRR) Part 703-5(f). There was no remaining liquid after filling the sample bottles for the rinsate sample.

Soil Samples

Per the approved closure plan, Results from the soil samples were compared to Soil Cleanup Objectives (SCOs)¹ contained in DEC's *CP-51/Soil Cleanup Guidance* (CP-51)¹. For compounds not referenced in CP-51, *Unrestricted Use Soil Cleanup Objectives*² contained in 6 NYCRR Part 375-6.8(a) were applied.

¹DEC Commissioner Policy, CP-51/Soil Cleanup Guidance, Tables 2 and 3, issued October 21, 2010.

²New York Codes, Rules and Regulations, Title 6 (6 NYCRR), Part 375-6, *Remedial Program Soil Cleanup Objectives*, dated December 2006.

	С	leanup Criteria/Guidance	
Parameter/Media	Wipes ¹	Wastewater / Rinsate ²	Soil ³
Total PCBs	$10 \mu g / 100 cm^2$	50 mg/L	0.1 mg/kg
Arsenic	$100 \ \mu g/100 \ cm^2$	50 µg/L	13 mg/kg
Barium	$100,000 \mu g/100 \mathrm{cm}^2$	1,000 µg/L	350 mg/kg
Cadmium	$50 \mu g / 100 cm^2$	5 µg/L	2.5 mg/kg
Chromium	$5,000 \mu g/100 \mathrm{cm}^2$	50 µg/L	30 mg/kg
Lead	$500 \mu g/100 cm^2$	50 µg/L	63 mg/kg
Mercury	$500 \mu g/100 cm^2$	0.7 µg/L	0.18 mg/kg
Selenium	$2,000 \mu g/100 \mathrm{cm}^2$	10 µg/L	3.9 mg/kg
Silver	$100 \mu g/100 cm^2$	50 µg/L	2 mg/kg
SVOCs	(4)	(5)	(6)
VOCs	(4)	5 µg/L	(6)
Flashpoint	(4)	140°F	(4)

The following table presents the criteria used to assess the results from the closure samples:

mg/L - milligrams per liter / $\mu g/L - micrograms$ per liter / mg/kg - milligrams per kilogram VOCs - Volatile Organic Compounds / SVOCs - Semi-Volatile Organic Compounds

Notes:

1.	Wipes	a.	40 CFR 761.125(b)
		b.	OSHA Technical Manual (OTM) Section II: Chapter 2, IIIA
2.	Wastewater/Rinsate	a.	6 NYCRR 371.4(e)
		b.	6 NYCRR 703-5(f)
3.	Soils	a.	CP-51
		b.	6 NYCRR 375-6.8(a) Unrestricted Use SCOs
4.		No	ot Analyzed
5.		SV	OCs not detected in the rinsate samples
6.		VO	DCs and SVOCs not detected in the soil samples

2023 CLOSURE PROCEDURES

As noted in the approved closure plan, the following actions were implemented to close the hazardous waste storage permit:

- 1. A Notice of Intent to commence final closure on or after July 31, 2023 was submitted to the DEC on June 14, 2023.
- 2. Miller Environmental Group, Inc. (MEG) initiated closure activities on August 14, 2023. To control the spray of wash water, temporary absorbent booms were deployed around the area to be cleaned in the transformer shop PCB Storage Area. Temporary poly sheeting was deployed on the south side of the Permitted Waste Storage Area, as well as on the Steel Structure surrounding the Loading/ Unloading Area. Each designated area was emptied, cleaned and triple rinsed. Hazardous waste generated during closure activities was characterized and transported offsite to Veolia Technical Solutions, LLC (Veolia) in Flanders, New Jersey for disposal.
- MEG personnel followed confined space procedures to enter and clean the 6,000-gallon AST formerly containing PCB-contaminated dielectric fluids.
- 4. On August 25, 2023, confirmation samples of the cleaned areas were collected in accordance with the approved closure plan. With the exception of soil samples, confirmation samples were collected by MEG and submitted to Phoenix Environmental Laboratories, Inc. for analysis. Soil samples were collected by Adirondack Environmental Services, Inc.
- 5. Field sketches of sample locations are provided in Attachment 3, along with a photograph log provided in Attachment 4. Laboratory analytical results of the confirmation samples are included in Attachment 5 and discussed in the following section.
- 6. Analytical results for several initial wipe samples exceeded cleanup objectives. The *Permitted Waste Storage Area* and floor of the *PCB Storage Area* were re-cleaned and resampled on October 30 and November 15, 2023.

- 7. Laboratory results from confirmation sampling were compared to the criteria outlined in the previous section.
- Wastewater from cleaning activities was sampled and characterized before transport to MEG's Water Works in Newburgh, New York for treatment and disposal. Characterization data is included in Attachment 6.
- 9. Personal protective equipment (PPE), absorbent booms, and temporary poly sheeting generated during cleaning and sampling activities was bagged and characterized prior to disposal at Veolia. Characterization data is included in Attachment 6.

One box of PCB-impacted absorbent waste was present when closure activities commenced. This container, along with two totes of PCB-contaminated oil and rinse water generated during closure activities, were transported offsite by Veolia on August 30, 2023. The hazardous waste manifest and other disposal records are included in Attachment 6. There were no drums onsite that required cleaning or disposal. No other hazardous wastes were present onsite at the time of closure.

2023 CONFIRMATION SAMPLING AND LABORATORY ANALYSIS

Results of the post-closure confirmation sampling are as follows:

Designated Permitted Waste Storage Area

- Twelve wipe samples (WSA1-WSA12) collected from the decontaminated concrete floor.
- Three wipe samples (WSA13-WSA15) collected from the outside, top and inside of the concrete berm.

- Three wipe samples (WSA16-WSA18) collected from the north wall at 1-foot, 3-foot, and 6-foot heights.
- Three wipe samples (WSA19-WSA21) collected from the bay door at 1-foot, 3-foot, and 6-foot heights.
- One subsurface soil sample (WSA22) collected from below the concrete floor at the location of the former floor drain.
- One subsurface soil sample (WSA23) collected approximately 10-feet northwest of the northwest corner of the storage area.
- One rinsate sample (WSA24) collected from the cleaned concrete floor.

Wipe and soil samples were analyzed for PCBs and Resource Conservation and Recovery Act (RCRA) Metals. The rinsate sample was analyzed for PCBs, RCRA Metals, VOCs and SVOCs. Sample locations are shown on the field drawing included in Attachment 3. Analytical results for constituents detected above laboratory detection limits are summarized in Table 1. VOC and SVOC compounds were not detected in these confirmation samples.

As noted in Table 1, analytical results from the initial cleaning indicate cleanup objectives for PCBs were not achieved for nine of the 24 wipe samples. In addition, the samples were not analyzed for mercury, and the laboratory inadvertently analyzed the soil samples for TCLP metals instead of total metals. The area was recleaned on October 30, 2023, and additional samples collected. Three re-samples exceeded the cleanup goal of 10 μ g/100 cm². These areas were recleaned once more on November 15, 2023, and new samples confirmed cleanup goals for this area were achieved.

6,000-gallon AST

Three independent areas comprise the permitted area of the Eltings Corners facility:

Area 1: Tank

Confirmation samples in this tank included the following:

- Three wipe samples collected from the inside east wall at 1-foot, 3-foot and 6-foot intervals.
- Two wipe samples collected on the floor of the tank.

Area 2: Loading/Unloading Area

Confirmation samples in this area included the following:

- Twelve wipe samples (L/U1-L/U12) collected from the decontaminated concrete floor.
- Three wipe samples (L/U13-L/U15) collected from the outside, top and inside of the concrete berm.
- One wipe sample (L/U16) from the raised steel structure containing the fill port for the 6,000-gallon AST formerly containing PCB dielectric fluid.
- Three soil samples were collected outside the loading/unloading area: L/U17 between the loading/unloading area and the adjacent leach field, L/U18 near the entry to the loading/unloading area, L/U19 one in front of the 6,000-gallon.

Area 3: Structure

Confirmation samples in this area included the following:

• Three wipe samples (A3Struct1-A3Struct3) collected from the second steel support column from the front of the north side of the facility.

Wipe samples were analyzed for PCBs and RCRA Metals. Analytical results are summarized in Tables 2, 3 and 4. Cleanup objectives were achieved for all areas.

PCB Storage Area in Transformer Shop

Confirmation samples in this area included the following:

- One wipe sample (Tank Shop Floor 1) collected from the decontaminated concrete floor.
- Three wipe samples (Tank Shop Floor 2-Tank Shop Floor 4) collected from the rear wall of the area at 1-foot, 3-foot and 6-foot heights.

Wipe samples were analyzed for PCBs and RCRA Metals. Analytical results are summarized in Table 5. After the initial cleaning, results exceeded cleanup criteria. The floor was re-cleaned, and results met cleanup objectives in this area.

PCB Soaking Tank

Accumulated water in the former PCB soaking tank was characterized by having a sample analyzed for total PCBs with a result of $1.05 \ \mu g/L$. Water was removed and transported to Water Works for disposal. Confirmation samples in the tank included the following:

- Three wipe samples from each of the north, east and west tank walls.
- One wipe sample from the tank floor.

Samples were analyzed for PCBs and RCRA Metals. Analytical results are summarized in Table 6. Cleanup objectives were achieved.

FOLLOW-UP ACTIONS FOR PART 373 PERMIT CLOSURE

Following several discussions with the Department, DEC approved the *Revised Work Plan for Proposed Follow-up Actions* (refer to Attachment 2) and the work plan was implemented May 8, 2024. Results of the follow-up work are as follows:

Designated Permitted Waste Storage Area

New wipe samples were collected at WSA10 and WSA11. WSA10 was found to contain PCBs at $1.1 \,\mu g/100 \,\mathrm{cm}^2$ and WSA11 contained PCBs at $8.3 \,\mu g/100 \,\mathrm{cm}^2$. Both samples are below the Toxic Substances Control Act (TSCA) limit of $10 \,\mu g/100 \,\mathrm{cm}^2$.

In 2023, one rinsate sample was collected in the southeast section of the waste storage area. Per the approved supplemental work plan, an additional rinsate sample (WSA25) was collected in the northwest section of the area and submitted for analysis for SVOCs, VOCs, and TCLP metals. As shown in Table 1, these results were all below method detection limits.

6,000-gallon AST

Area 1: Tank

To address the Department's concerns for potential impacts to the interstitial space, deionized water was poured down the two sides of the internal tank and allowed to accumulate on the bottom of the outer tank. A sample of the accumulated water was then collected via a drain valve at the bottom of the tank and submitted for analysis of PCBs and RCRA metals. As shown on Table 2, PCBs were not detected above method detection limits. Chromium and lead were detected at 0.0512 and 0.0053 mg/L, respectively, well below the TCLP limit of 5 mg/L for these metals.

Area 2: Loading/Unloading Area

Per the approved *Revised Work Plan*, four additional rinsate samples were collected in the Loading/Unloading Area (Samples L/U 20 through L/U 23) and submitted for analysis of SVOCs, VOCs and TCLP metals. As shown on Table 3, one VOC, methyl tert butyl ether (MTBE), was detected in L/U 20 at a concentration of 1.2 μ g/L. MTBE was formerly used as an additive to gasoline but has not been used for several years. As such, the source of MTBE cannot be determined, but the very low concentration may represent a lab contaminant. There is no TCLP criteria for MTBE.

No SVOCs or RCRA metals were detected in the rinsate samples.

PCB Storage Area in Transformer Shop

Per the approved *Revised Work Plan*, one rinsate sample was collected in the former PCB Storage Area in the Transformer Shop and analyzed for VOCs, SVOCs and RCRA metals. As shown on Table 5, none of these constituents were detected in the rinsate sample.

CONCLUSIONS

As described and documented in this report, the closure plan for areas of the Eltings Corners Facility regulated as a central hazardous waste storage have been successfully implemented. As a result, Hazardous Waste Permit No. 3-5132-00032-2 can be terminated, allowing the facility to function as a generator of hazardous waste rather than as a treatment, storage, or disposal (TSD) facility.

A copy of this report should be retained at the facility as documentation of the closure activities.

CERTIFICATION

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision according to a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

fel

Signature

July 19, 2024

Date

David K. Meixell, P.E. Plumley Engineering, P.C. Professional Engineer Registration Number 075577 State of New York

lignature

July 19, 2024

Date

Stacey Renner VP Innovation and Sustainability Central Hudson Gas & Electric Corporation

TABLES

Samula	Motniv		Total	PCBs		Åa	Do	Cd	Cr	ԵՒ	IJa
Sample	νιαιτιχ	8/25/23	10/30/23	11/15/23	5/8/24	AS	Ба	Ca	Cr	PD	нg
WSA1	Wipe	470	32	0.69	-	< 0.50	1.9	0.48	0.54	2.2	< 0.01
WSA2	Wipe	92	30	< 0.5	-	< 0.50	3.69	0.61	0.71	4.4	< 0.01
WSA3	Wipe	28	0.83	-	-	< 0.50	3.15	0.45	1.12	4.5	< 0.01
WSA4	Wipe	18	0.97	-	-	< 0.50	9.93	0.70	0.87	4.4	< 0.01
WSA5	Wipe	14	50	1.2	-	< 0.50	4.55	1.22	1.55	13.7	< 0.01
WSA6	Wipe	19	2.1	-	-	< 0.50	2.81	0.40	0.56	2.6	< 0.01
WSA7	Wipe	20	< 0.50	-	-	< 0.50	4.19	0.39	0.82	5.0	< 0.01
WSA8	Wipe	4.3	-	-	-	< 0.50	3.69	0.81	1.07	4.2	< 0.01
WSA9	Wipe	9.2	-	-	-	< 0.50	4.20	0.27	0.93	3.5	< 0.01
WSA10	Wipe	13	-	-	1.1	< 0.50	23.5	0.60	2.29	98.6	< 0.01
WSA11	Wipe	33	-	-	8.3	0.56	9.86	0.65	1.95	7.5	< 0.01
WSA12	Wipe	28	2.3	-	-	< 0.50	6.22	0.45	1.19	8.2	< 0.01
WSA13	Wipe	0.74	-	-	-	0.57	7.50	0.48	4.12	7.9	< 0.01
WSA14	Wipe	18	2.4	-	-	0.58	9.71	0.77	2.58	7.1	< 0.01
WSA15	Wipe	2.4	-	-	-	0.52	8.96	0.47	2.89	6.1	< 0.01
WSA16	Wipe	5.2	-	-	-	< 0.60	20.8	0.29	8.17	17.0	< 0.01
WSA17	Wipe	2.8	-	-	-	< 0.60	5.51	0.17	3.21	12.6	< 0.01
WSA18	Wipe	1.1	-	-	-	< 0.60	5.59	0.36	2.73	9.2	< 0.01
WSA19	Wipe	0.57	-	-	-	< 0.60	3.21	0.15	0.70	4.7	< 0.01
WSA20	Wipe	< 0.50	-	-	-	< 0.60	1.40	< 0.25	0.27	1.9	< 0.01
WSA21	Wipe	< 0.50	-	-	-	< 0.60	1.04	< 0.25	< 0.25	1.4	< 0.01
WSA22	Soil	<38	-	-	-	4.3	33.7	<1.10	20.0	36.4	0.025
WSA23	Soil	<38	-	-	-	0.91	32.5	<1.10	21.8	13.9	0.031
WSA24	Rinsate	3.4	-	-	-	< 0.10	< 0.10	< 0.05	< 0.10	< 0.10	< 0.0002
WSA25	Rinsate	-	-	-		<2.8	<13	<1	<2	<1.8	< 0.095

TABLE 1 – ANALYTICAL RESULTS – DETECTIONS ONLY PERMITTED WASTE STORAGE AREA

<u>Units</u>

Wipes:	$\mu g/100 \text{ cm}^2$
Soils:	$\mu g/Kg - dry$ for PCBs, $\mu g/g$ (mg/Kg) for metals
Rinsate:	μ g/L for PCBs, mg/L for metals

TABLE 2 – ANALYTICAL RESULTS – DETECTIONS ONLY6,000-GALLON AST

Sample	Matri x	Total PCBs	As	Ba	Cd	Cr	Pb	Hg
PCB Tank Mid Wall (1')	Wipe	2.0	0.95	1.42	0.84	1.21	3.6	< 0.2
PCB Tank Mid Wall (3')	Wipe	1.7	0.92	1.45	0.34	1.57	2.7	< 0.1
PCB Tank Mid Wall (6')	Wipe	0.75	1.41	1.11	0.11	3.68	1.9	0.02
PCB Tank East Floor (1')	Wipe	< 0.60	1.85	1.54	2.17	6.47	5.3	0.01
PCB Tank West Floor (1')	Wipe	< 0.50	1.36	1.35	1.23	1.31	1.9	0.01
PCB Tank Interstitial	Water	< 0.23	<2.8	<13	<10	51.2	5.3	< 0.095

Units

Wipes: $\mu g/100 \text{ cm}^2$ Water: $\mu g/L$

Sample	Matrix	Total PCBs	MTBE	As	Ba	Cd	Cr	Pb	Hg
L/U 1	Wipe	1	ND	< 0.50	2.07	0.16	0.21	0.5	< 0.01
L/U 2	Wipe	< 0.50	ND	< 0.50	2.90	0.34	0.51	< 0.5	< 0.01
L/U 3	Wipe	< 0.50	ND	< 0.50	2.16	0.42	0.75	< 0.5	< 0.01
L/U 4	Wipe	0.75	ND	< 0.50	2.37	0.54	0.34	0.6	< 0.01
L/U 5	Wipe	< 0.50	ND	< 0.50	2.99	0.55	0.76	0.7	< 0.01
L/U 6	Wipe	< 0.50	ND	< 0.50	2.07	0.35	0.82	0.7	< 0.01
L/U 7	Wipe	< 0.50	ND	< 0.50	1.74	0.84	0.27	< 0.5	< 0.01
L/U 8	Wipe	< 0.50	ND	< 0.50	2.09	0.15	0.26	< 0.5	< 0.01
L/U 9	Wipe	< 0.50	ND	< 0.50	2.29	0.25	0.27	< 0.5	< 0.01
L/U 10	Wipe	< 0.50	ND	< 0.50	1.97	0.66	0.24	1.1	< 0.01
L/U 11	Wipe	< 0.50	ND	< 0.50	2.06	0.15	0.36	< 0.5	< 0.08
L/U 12	Wipe	< 0.50	ND	< 0.50	2.95	0.26	0.57	< 0.5	< 0.08
L/U 13	Wipe	< 0.50	ND	0.68	307	0.25	2.70	9.5	< 0.08
L/U 14	Wipe	< 0.50	ND	< 0.50	5.97	0.11	1.27	1.0	< 0.08
L/U 15	Wipe	< 0.50	ND	< 0.50	3.87	0.15	0.23	< 0.5	< 0.08
L/U 16	Wipe	1.4	ND	< 0.50	1.15	0.15	0.62	< 0.5	< 0.08
L/U 17	Soil	<38	ND	1.20	61.9	<1.10	16.4	36.4	0.025
L/U 18	Soil	<36	ND	1.96	44.0	<1.10	20.7	42.6	0.018
L/U 19	Soil	<36	ND	5.67	40.9	<1.10	15.5	21.4	0.019
L/U 20	Rinsate	-	1.2	<2.8	<13	<1.0	<2.0	<1.8	< 0.095
L/U 21	Rinsate	-	ND	<2.8	<13	<1.0	<2.0	<1.8	< 0.095
L/U 22	Rinsate	-	ND	<2.8	<13	<1.0	<2.0	<1.8	< 0.095
L/U 23	Rinsate	-	ND	<2.8	<13	<1.0	<2.0	<1.8	< 0.095

TABLE 3 – L/U ANALYTICAL RESULTS – DETECTIONS ONLY AREA 2: LOADING / UNLOADING AREA

<u>Units</u>

ND:	None Detected
Wipes:	$\mu g/100 \text{ cm}^2$
Soils:	$\mu g/Kg - dry$ for PCBs, $\mu g/g$ (mg/kg) for metals
Rinsates:	μg/L

TABLE 4 – ANALYTICAL RESULTS – DETECTIONS ONLY2A – AREA 3: STRUCTURE

Sample	Matrix	Total PCBs	As	Ba	Cd	Cr	Pb	Hg
A3 Structure 1 (1')	Wipe	< 0.50	0.64	18.9	< 0.25	1.66	1.4	< 0.08
A3 Structure 2 (3')	Wipe	< 0.50	0.73	8.88	< 0.25	1.34	1.5	< 0.08
A3 Structure 3 (6')	Wipe	< 0.50	0.87	30.3	0.15	2.34	3.0	< 0.08

Units

Wipes: $\mu g/100 \text{ cm}^2$

TABLE 5 – ANALYTICAL RESULTS – DETECTIONS ONLYDESIGNATED PCB STORAGE AREA IN TRANSFORMER SHOP

Samula	Matuin	Tota	PCBs	Da	Cd	Cr	որ	IJa
Sample	watrix	8/25/23	10/30/23	Ба	Ca	Cr	PD	пg
Trans. Shop Floor 1	Wipe	25	4.3	3.54	0.41	0.95	3.3	< 0.08
Trans. Shop Wall 2	Wipe	< 0.50	-	1.43	< 0.25	< 0.25	1.1	< 0.08
Trans. Shop Wall 3	Wipe	< 0.50	-	3.34	0.35	0.59	3.0	0.11
Trans. Shop Wall 4	Wipe	0.58	-	3.47	0.36	0.90	3.5	< 0.08
Trans. Shop Rinsate	Water	-	-	<13	<1.0	<2.0	<1.8	< 0.095

<u>Units</u>

Wipes: $\mu g/100 \text{ cm}^2$ Rinsate: $\mu g/L$

TABLE 6 – SUMMARY OF ANALYTICAL RESULTS – DETECTIONS ONLY PCB SOAKING TANK

Sample	Matrix	Total PCBs	As	Ba	Cd	Cr	Pb	Hg
Wastewater	Water	1.05	-	-	-	-	-	-
Soak Tank East Wall (2')	Wipe	< 0.50	< 0.60	11.8	0.25	0.25	64.5	< 0.08
Soak Tank North Wall (3')	Wipe	< 0.50	0.66	18.5	0.18	5.26	115	< 0.08
Soak Tank West Wall (4')	Wipe	< 0.50	< 0.60	4.74	0.13	2.21	21.9	< 0.08
Soak Tank Floor	Wipe	< 0.50	2.50	37.3	10.3	30.7	95.7	< 0.08

Units

Wastewater: $\mu g/L$ Wipes: $\mu g/100 \text{ cm}^2$

ATTACHMENT 1

APPROVED APRIL 2020 CLOSURE PLAN

April 13, 2020

Mr. Stephen G. Malsan New York State Department of Environmental Conservation Division of Material Management 625 Broadway Albany, NY 12233-7256 *via Electronic Mail*

Re: Central Hudson Gas & Electric Corporation Eltings Corners Facility: Route 299 & South Street, Highland, NY 12528 6NYCRR Part 373 – Updated Closure Plan NYS DEC Hazardous Waste Permit No. 3-5132-00032-2 EPA ID No. NYD000705905

Dear Mr. Malsan:

An updated Closure Plan for the Central Hudson Gas & Electric (CHGE) Eltings Corners Facility in Highland, NY is enclosed for review. The Closure Plan has been revised as discussed during a telephone conference call between New York State Department of Environmental Conservation (NYSDEC) and CHGE representatives on March 24, 2020. Additionally, the enclosed plan has been prepared in accordance with 6 NY-CRR 373-2.7.

A second topic discussed during this conference call was the infrequent generation of hazardous waste that is non-routine for the Facility. CHGE continually seeks to limit the generation of hazardous waste. As such, CHGE does not expect additional quantities of one-time wastes such as the D035 material to be generated and does not seek to incorporate them into the Permit at this time.

Finally, CHGE desires to continue operating the Facility under the existing Part 373 Permit and respectfully requests written approval of said Permit extension in accordance with the State Administrative Procedures Act (SAPA) as discused.

We sincerely appreciate the time you and others from the NYSDEC have dedicated to answering our questions with regard to the Permit and Closure Plan. If you have any questions or require any further information from CHGE, please feel free to contact me at (845) 486-5734.

Respectfully,

Eric K. Chastain, PE Environmental Coordinator

e-CC: Ms. Lynn Winterberger, NYSDEC Ms. Maryanne O'Connor, NYSDEC Mr. Wayne Mancroni, CHGE Mr. Mark McLean, CHGE Ms. Karen Lo, CHGE CHGE e-file

284 South Avenue Poughkeepsie, NY 12601 Phone: 845-486-5734 Fax: 845-486-5984 echastain@cenhud.com

Central Hudson Gas and Electric Corporation

Eltings Corners Facility Route 299 & South Street Highland, NY 12528

6 NY-CRR Part 373 Permit NYSDEC Hazardous Waste Permit: 3-5132-00032-2 EPA ID No. NYD000705905

Attachment VII Closure Plan and Financial Requirements

April 2020

Contents

VII-1. Introduction	
VII-2. General Facility Informat	ion3
A. Facility Operational Info	rmation
B. Facility Description	
VII-3. Maximum amount of Wa	ste Storage at the Time of Closure
A. Container Storage Area.	
B. Vehicle Maintenance Ga	rage and Transformer Repair Shop4
C. Transformer Oil Tank	
D. Waste Inventory	
VII-4. Closure Process	
A. Notification of Closure	
B. Certification of Closure.	
C. Closure Performance Sta	ndard4
D. Maximum Waste Invente	ory4
E. Inventory Removal	
F. Closure Plan Componen	s5
1. Closure of the designation	ted permitted waste storage area5
2. Closure of the aboveg	round 6,000-gallon steel oil storage tank
3. Closure of the designation	ted PCB storage area in the transformer shop7
4. Closure of the PCB So	aking Tank
VII-5. Sample Collection	
A. Sampling Protocol for R	nsate
B. Sampling Protocol for W	ipe Test
C. Sampling Protocol for So	oil Test11
C. Sampling Protocol for Se VII-6. Sample Analysis	oil Test
C. Sampling Protocol for SeVII-6. Sample AnalysisA. Sampling Parameters	oil Test
C. Sampling Protocol for SetVII-6. Sample AnalysisA. Sampling ParametersB. Target Detection Limits	bil Test
 C. Sampling Protocol for Set VII-6. Sample Analysis A. Sampling Parameters B. Target Detection Limits VII-7. Amendment of Closure P 	bil Test
 C. Sampling Protocol for Set VII-6. Sample Analysis A. Sampling Parameters B. Target Detection Limits VII-7. Amendment of Closure P VII-8. Assessment of Other Are 	bil Test
 C. Sampling Protocol for Set VII-6. Sample Analysis A. Sampling Parameters B. Target Detection Limits VII-7. Amendment of Closure P VII-8. Assessment of Other Are VII-9. Schedule of Closure 	bil Test
 C. Sampling Protocol for Set VII-6. Sample Analysis A. Sampling Parameters B. Target Detection Limits VII-7. Amendment of Closure P VII-8. Assessment of Other Are VII-9. Schedule of Closure VII-10. Future Use 	bil Test

Enclosed: Attachments VII-A1, VII-A2, VII-B1, VII-B2, VII-C1, VII-C2, VII-D

VII-1. Introduction

This section is submitted in accordance with the requirements of 6 NY-CRR 373-2.7(b) through (f) and 6 NY-CRR 373-2.8(c). This plan provides all steps required to close the facility at any time during its intended operating life. Post closure is not required as this is a storage facility and no disposal occurs at the site.

VII-2. General Facility Information

A. Facility Operational Information

Facility Name:	Eltings Corners (EPA ID No. NYD000705905)
Facility Address:	Route 299 & South Street, Highland, NY 12528
Owner/Operator:	Central Hudson Gas & Electric Corporation 284 South Avenue, Poughkeepsie, NY 12601
Facility Contact:	Christopher Capone Executive Vice President & CFO (845) 486-2000
Designated Site Coordinator:	Dan Casella; Operations Supervisor – Warehouse
Alternate Site Coordinator:	Rotating schedule of supervisors and foremen
Existing Permits:	NYSDEC Article 27 Part 364 Permit No. 3A-083 SPDES Permit No. NY0148849 USEPA HWSA Permit No. NYD000705905 NYSDEC PBS Permit No. 3-167052
Plot Plan:	Part 373 Attachment XII, Figure 1-1

B. Facility Description

Eltings Corners is a vehicle maintenance and warehouse facility for Central Hudson Gas & Electric Corporation (CHGE). Site activities include vehicle maintenance, transformer repair and storage, and warehouse distribution for major electrical components. As part of the warehouse operation, the facility has been designated as the central hazardous waste storage facility for wastes generated by the various Operating Divisions.

The hazardous waste storage facility consists of the following:

- a. Secure section of a 40 by 60 feet steel building. The fully enclosed storage area is 37' 6" by 20' 0", less a 6' 6" by 4' unbermed section with a net floor area of 724 square feet (ft²).
- b. One above ground 6,000-gallon steel tank used for storage of PCB contaminated transformer oil.
- c. Designated area in the Transformer Shop for the accumulation of small quantities of PCB debris (rags, absorbents and test kits).

VII-3. Maximum amount of Waste Storage at the Time of Closure

A. Container Storage Area

The maximum area available for waste storage in the contained area of the metal building is 37.5 feet by 20.0 feet by 4.0 feet or 724 ft². The hazardous waste may be stored in 55 or 85 gallon drums or wooden/cardboard fiber boxes. A total of 130 55-gallon drums of waste, stacked two high, could be stored in the area while maintaining a minimum aisle space of 30 inches for providing adequate access for inspection. This is equivalent to 7,150 gallons of hazardous waste (130x55).

B. Vehicle Maintenance Garage and Transformer Repair Shop

Ignitable solvents may be used for parts cleaning in the vehicle maintenance garage. Containers of ignitable solvents will be recycled by approved disposal vendors.

Polychlorinated biphenyls from electrical equipment may be generated at the Transformer Shop and will be placed in storage either in the container storage area or in the aboveground storage tank.

C. Transformer Oil Tank

The working capacity of the aboveground oil storage tank is 5,853 gallons.

D. Waste Inventory

The estimate of the maximum amount of wastes that can be stored in both the container storage area and bulk storage tank is 12,550 gallons or 102,910 pounds.

VII-4. Closure Process

A. Notification of Closure

CHGE will submit the Notice of Intent to Close to EPA and the Commissioner of the NYSDEC in accordance with 373-2.7(c)(4) and will close the facility within the time allowed by 373-2.7(d).

B. Certification of Closure

CHGE will maintain a copy of the approved closure plan and all approved revisions at the facility until the certificate of closure completeness has been submitted and accepted by the NYSDEC according to 373-2.7(f)(1). Within 60 days of completion of final closure, CHGE will submit to the commissioner of NYSDEC, by registered mail, a certification that the facility has been closed according to the approved plan. The certification will be signed by an officer of the company and a registered independent professional engineer registered in New York State with documentation supporting the certification.

C. Closure Performance Standard

This plan provides procedures to close the facility in such a manner as to require no maintenance and control beyond closure. The plan procedures are designed to control, minimize or eliminate threats to the human health or the environment and to the extent necessary avoid the release of hazardous waste and hazardous constituents to the soil, groundwater, surface water or the atmosphere.

D. Maximum Waste Inventory

The closure and financial plans assume that 130 55-gallon drums of PCB liquid waste (7,150 gallons) and 5,853 gallons of bulk PCB liquid waste in a storage tank will be on hand at the time of closure.

E. Inventory Removal

During closure, an activity schedule will be prepared for the final inventory to be shipped. A shipment schedule will also be prepared for anticipated shipments of all waste and equipment; future wastes will be removed and shipped off-site within 90 days of generation.

F. Closure Plan Components

The components of the closure plan include the systematic removal and disposal of hazardous waste and equipment. It is the intent to use an environmental spill response contractor, under the supervision of company personnel, for all closure operations, as the contractor has the personnel, training and equipment needed to perform all closure tasks.

Any contaminated soil or groundwater discovered will be removed and disposed of at an authorized facility. Additionally, all equipment used in closure process will be properly decontaminated and wastes will be disposed of appropriately.

Empty drums may result from the activities of bulking liquid waste for off site disposal. These drums will be verified as empty per 40CFR Part 261.7 and 6 NY-CRR 371.1(f). All empty drums will be sent to a drum reconditioner or will be disposed of at an authorized disposal facility. A few may be reused for containing decontamination residuals.

1. Closure of the designated permitted waste storage area

All wastes will be removed from the storage area and from the site by authorized vendor. The steps for the decontamination of the storage area will include:

- a. Scrubbing (and other applicable methods) using a 10% solution of cleaner, such as EnviroClean (or equivalent) will be used at a rate of 10% volume of the object to be cleaned.
- b. Scrubbing (and other applicable methods) using a 5% by weight solution of Trisodium phosphate (or alternate) cleaning agent. Scrub brushes will be used on all secondary containment, dikes and walls to a height of 6 feet and lower.
- c. Steam cleaning of the walls from a level of 6 feet and lower, all floors, docks and dikes.
- d. Collecting residuals from steam cleaning to be analyzed for disposal purposes.

In addition to the residuals being sampled for disposal purposes, samples will also be obtained to confirm that the area was properly cleaned and decontamination efforts were effective. Samples will be obtained from:

Sample Location(s)	Sample Type(s)	
Inside Building Wall	3 Wipe Samples (Ground, 3 feet, 6 feet)	
Inside Building- Berm	3 Wipe Samples (Outside, top, inside)	
Inside Building-Bay Door	3 Wipe Samples (Ground, 3 feet, 6 feet)	
Inside Building-Floor of Bermed Area	12 Wipe Samples	
Inside Building-Floor of Bermed Area	1 Rinsate Sample	
Inside Building-Underneath Floor of Bermed	1 Soil Sample (Around Plugged Drain in	
Area [Note: if contaminated material is	Floor within 1 foot of the surface)	
found to be beneath the floor additional		
samples will be obtained]		
Outside Building	1 Soil Sample (In front of bay door and	
	outside of small door entrance to area)	

Refer to **Attachment VII-A1** for a sampling map and **Attachment VII-A2** for photos of the sampling locations

2. Closure of the aboveground 6,000-gallon steel oil storage tank

If entry is required, Occupational Safety and Health Administration's (OSHA) Confined Space Entry Protocols will be followed. Non sparking tools and equipment will be used during cleanup and decontamination activities. Procedures will include provisions for no open flames, hot surfaces or smoking in and around the work area. The estimated surface area of the PCBcontaminated oil tank is approximately 523 ft². There are three independent areas that are adjacent and make up this permitted area of the Eltings Corners facility:

a. Area 1: Tank

The steps for the decontamination of the PCB-contaminated oil tank will include:

- i. 6,000-gallon PCB contaminated oil tank will be emptied by an authorized handler.
- ii. Interior will be triple-rinsed with a solution of EnviroClean (or alternate cleaning agent/method) and water in accordance with 40 CFR 761.
- A 10% solution of Enviroclean (or alternate cleaning agent) will be used at a rate of 10% volume of the object to be cleaned.
- iv. Interior of the tank will be rinsed with water and steam cleaned.
- v. Visual inspections will be conducted to confirm the decontamination was effective.
- vi. All rinsate will be pumped or vacuumed into an appropriate storage contained for disposal.
- vii. Any residuals from steam cleaning will be collected and analyzed for disposal purposes.

In addition to the rinsate being sampled for disposal purposes, samples will also be obtained to confirm that the area was properly cleaned and decontamination efforts were effective. Samples will be obtained from:

Sample Locations	Sample Type(s)
Inside Tank Walls	3 Wipe Samples (Ground, 3 feet, 6 feet)
Inside Tank Floor	2 Wipes

Refer to **Attachment VII-B1** for a sampling map and **Attachment VII-B2** for photos of the sampling locations

b. Area 2: Loading/Unloading Area

The steps for the decontamination of the loading/unloading secondary containment area (bermed area) will include:

- i. All equipment to be salvaged will be cleaned externally, and in the case of some equipment such as pumps and tanks, internally with a 5% by weight of trisodium phosphate solution (or alternate cleaning agent/method) by recirculation. Salvaged equipment will be cleaned to meet the standards of EPA's Debris Rule.
- ii. All operational areas will be scrubbed using a 10% solution of Enviroclean (or alternate cleaning agent) will be used at a rate of 10% volume of the object to be cleaned.
- iii. All operational areas will be scrubbed with a 5% by weight of trisodium phosphate solution (or alternate cleaning agent/method). Scrub brushes will be used on all secondary containment, dikes and walls to a height of 6 feet and lower.
- iv. Surfaces, such as walls from a level of 6 feet and lower, floors, docks and dikes will be steam cleaned.
- v. Visual inspections will be conducted to ensure decontamination methods were effective.
- vi. Any residuals after steam cleaning will be collected and analyzed for disposal purposes.

In addition to the residuals being sampled for disposal purposes, samples will also be obtained to confirm that the area was properly cleaned and decontamination efforts were effective. Samples will be obtained from:

Sample Locations	Sample Type(s)
Berm Wall	3 Wipe Samples (Outside, top, inside)
Floor of Bermed Area	12 Wipe Samples
Tank Input	1 Wipe Sample
Outside Unloading and Loading Area	3 Soil Samples (in front of PCB-contaminated oil tank, entry into the loading and unloading area, adjacent to the leach field)

Refer to **Attachment VII-B1** for a sampling map and **Attachment VII-B2** for photos of the sampling locations

c. Area 3: Structure

The steps for the decontamination of the structure covering the loading/unloading secondary containment area will include:

- i. Scrubbing (and other applicable methods) using a 10% solution of cleaner, such as EnviroClean (or equivalent) will be used at a rate of 10% volume of the object to be cleaned.
- ii. Scrubbing (and other applicable methods) using a 5% by weight solution of Trisodium phosphate (or alternate cleaning agent). Scrub brushes will be used on all secondary containment, dikes and walls to a height of 6 feet and lower.
- iii. Steam cleaning of the walls from a level of 6 feet and lower, all floors, docks and dikes.
- iv. Visual inspections will be conducted to ensure decontamination methods were effective.
- v. Any residuals after steam cleaning will be collected and analyzed for disposal purposes.

In addition to the residuals being samples for disposal purposes, samples will also be obtained to confirm that the area was properly cleaned and decontamination efforts were effective. Samples will be obtained from:

Sample Location	Sample Type
Steel Support	3 Wipe Samples (Bottom of Steel Support, 3
	feet, 6 feet)

Refer to **Attachment VII-B1** for a sampling map and **Attachment VII-B2** for photos of the sampling locations.

3. Closure of the designated PCB storage area in the transformer shop

An area in the transformer shop has been designated to accumulate small quantities of PCB debris. All wastes will be removed from the designated storage area and from the site by authorized vendor. The steps for the decontamination of the storage area will include:

- a. Scrubbing (and other applicable methods) using a cleaner, such as EnviroClean (or equivalent).
- b. Scrubbing (and other applicable methods) using a 5% by weight solution of Trisodium phosphate (or alternate cleaning agent). Scrub brushes will be used on all secondary containment, dikes and walls to a height of 6 feet and lower.
- c. Steam cleaning of the walls from a level of 6 feet and lower, all floors, docks and dikes.
- d. Any residuals from steam cleaning will be collected and analyzed for disposal purposes.

In addition to the residuals being samples for disposal purposes, samples will also be obtained to confirm that the area was properly cleaned and no contamination remains. Samples will be obtained from:

Sample Locations	Sample Type
Building Wall	3 Wipe Samples (Ground, 3 feet, 6 feet)
Floor Area In front of storage area	1 Wipe Sample

Refer to **Attachment VII-C1** for a sampling map and **Attachment VII-C2** for photos of the sampling locations.

4. Closure of the PCB Soaking Tank

The PCB soaking tank will be properly decommissioned. The steps for the decontamination of the soaking tank will include:

- a. The soaking tank solution will be drained and treated as non-hazardous. If the solution results indicate the PCB concentration is below 2ppm, the solution may be reused.
- b. Samples will be obtained to confirm the soaking tank solution is non-hazardous and the interior of the tank contains no contamination. Additionally, the sample results will determine the disposal methods.

Samples will be obtained nom.	
Sample Locations	Sample Type
PCB Soaking Tank Solution	1 Liquid Sample
Tank Wall	3 Wipe Samples
Tank Floor	1 Wipe Sample

Samples will be obtained from:

VII-5. Sample Collection

The Toxic Substances Control Act (TSCA) Subpart G-Polychlorinated Biphenyls (PCB) Spill Cleanup Policy (40 CFR 761.130) grid sampling method will be utilized to confirm the area was properly decontaminated. All analytical data will be reported in a Level "B" format and an electronic copy will be made available to the Department for review upon request.

A. Sampling Protocol for Rinsate

The *NYSDEC's Rinsate Sample Collection and Analysis protocol* will be used to obtain representative samples for analysis from concrete floors, secondary containment areas and sumps, including surfaces that have been coated. This procedure may also may also be suitable for use on other surfaces on a case-by-case basis.

- 1. Create an exclusion zone with colored (e.g., yellow) ribbon to keep extraneous personnel from entering area.
- 2. Sketch the area to be sampled. Sketches should include locations of building columns, walls, fixed equipment and the proposed rinsate sampling locations themselves (to accurately locate the rinsate sampling points within the buildings) for Department concurrence. The sample locations must be chosen to include any areas of staining, discoloration or other evidence of spills. The sample locations will be approved by a NYSDEC staff person usually on site on the day of sampling (unless NYSDEC chooses not to be present or state that such approval is not needed). Each sample location should be approximately 2,500 cm² (50 cm by 50 cm) or 400 in² (20 in by 20 in), but size may be adjusted to the extent necessary to accommodate field conditions with NYSDEC approval.
- 3. Assemble and clean all equipment necessary for sample collection. Equipment needs to be cleaned, if not already pre-cleaned by the laboratory.

- 4. Create a temporary containment area on the storage zone floor using an inert, clean or cleaned, flexible boom (e.g., water filled polyethylene tube, nonabsorbent spill containment berm), if necessary. If the floor is relatively level and water will puddle without flowing out of the sample location, a boom may not be necessary.
- 5. Label the sample containers with a unique sample code, information on the site, sample locations and the date and time samples were collected. Affix appropriate labels for test parameters on the sample containers. Put on a new pair of disposable nitrile gloves.
- 6. De-ionized water is to be used for this protocol. The de-ionized water may be provided by the laboratory. For each sampling location, start with two liters or 2-quarts of de-ionized water to allow for the collection of a sufficient sample size for all of parameters to be tested for, as specified by the laboratory, including Quality Control (QC) samples. If necessary, additional de-ionized water may be used, but no more than the minimum amount needed to provide a sufficient sample size. Record the temperature of the room and of the de-ionized water. At each sampling location, slowly pour the de-ionized water onto the surface to be sampled. A clean/cleaned wash bottle may be utilized to cover the area uniformly with the de-ionized water. If the individual area is sloped, start pouring at the highest elevation. Record the volume of de-ionized water used for each sample location.
- 7. Allow de-ionized water to collect and remain in the sample location for 10-minutes.
- 8. For each sampling location, collect the number and type of samples as specified by NYSDEC along with appropriate Quality Assurance (QA)/QC samples. Samples shall be collected using dedicated, sterile glass pipettes provided by the laboratory. The pipettes will be used to transfer the sample fluids into the appropriate bottles provided by the laboratory. Volatile sample bottles shall be filled first to minimize loss of volatiles. Record the volume of water collected for each sample for each sample location.
- 9. Samples must not be composited.
- 10. Cap the sample containers and place them in a laboratory cooler with ice to maintain a temperature of 4°C.
- 11. Measure the exact wetted area for each sampling location sampled using a tape measure or other suitable device. Place all measurements and the sketch of the area in the site field book. Measurements should include all appropriate or unusual conditions observed while collecting each sample (i.e., drainage patterns followed, stained areas present, condition of the storage zone floor, etc.).
- 12. Remove and discard the gloves. Place all disposable gloves into a plastic bag designated for proper disposal.
- 13. Enter information on procedures followed including details of samples and sampling in the field book. Photographs of the sample locations, wetted areas, equipment, and actual sampling events may be taken by the facility or Department staff and a list of the photographs shall be recorded in the field book.
- 14. Fill out chain-of-custody forms. Prepare the samples for storage and shipping in laboratory cooler with sufficient ice to maintain a temperature of 4°C. Ship overnight to the laboratory for analysis.
- 15. Follow chain-of custody procedures as detailed in the QA Program Plan identified by the selected authorized vendor.

B. Sampling Protocol for Wipe Test

Wipe samples results will be used to identify if nay contamination remains after the decontamination process has been completed. This procedure may also may also be suitable for use on other surfaces on a case-by-case basis. Wiping only gives an indication of surface contamination which can easily be removed. Components with a large amount of strongly entrained residuals might need to be scraped with a paint scraper and the scraping analyzed.

- 1. Assemble all equipment necessary for wipe sample collection
- 2. Create an exclusion zone with yellow ribbon in accordance with the project Health and Safety Plan to keep extraneous personnel from entering area.
- 3. A 10-centimeter by 10-centimeter area will be measured and marked off prior to sampling. Tape the template in place (the template should be made of, or coated with, an inert material such as Teflon). Layout sample grids on area of concern using tape measure and appropriate markers that will not contaminate the samples
- 4. Follow the wipe sample procedure at each sample location.
 - a. Put on a new pair of disposable gloves.
 - b. A 3-inch by 3-inch gauze pad will first be soaked with 5 to 10 milliliters of appropriate solvent/de-ionized water for metals. Alternatively, Whatman 40 ashless, Whatman "50" smear tabs, or equivalent can be used. The wipes and the liquid used to wet the wipes should be tested for residual metals before use in taking samples.
 - c. Open the sealed sample vial containing the pre-soaked gauze pad, and remove the pad with forceps.
 - d. Collect sample by applying pressure to the wipe pad and drawing it in straight, even strokes, moving from left to right in the area designated, and slightly overlapping adjacent strokes. Upon completion of wiping left to right, the wipe effort is repeated by evenly drawing the pad over the area from top to bottom starting in the upper left hand corner (this second wiping is at a 90° angle to the first wipes and should provide a thorough wiping of the entire area).
 - e. Let the gauze air dry.
 - f. Fold the dry gauze (samples side inward) and place it in the sample vial using the forceps.
 - g. At least one blank sample per sampling day must be prepared.
 - h. Cap the sample vial.
 - i. Label the sample vial with a unique sample code, information on the site, sample location and date/time sample was collected.
 - j. Mark on sample vials or appropriate label for other parameters and place sample vial in an ice chest. A sample temperature of approximately 4°C must be maintained.
 - k. Remove and discard the gloves. Place all disposable gloves and wiping clothes into a plastic bag designated for proper disposal.
 - 1. Fill out sampling details in field book
 - m. Clean the template thoroughly between samples by rinsing with solvent and wiping.
 - n. Fill out chain-of-custody forms and prepare the samples for storage and shipping by packing in laboratory cooler with ice to maintain a temperature of 4°C. Ship overnight or have a courier to the laboratory for analysis.
 - o. Follow chain-of-custody procedures as detailed in the QA Program Plan identified by the selected authorized vendor.

C. Sampling Protocol for Soil Test

- 1. Assemble all equipment necessary for wipe sample collection
- 2. Create an exclusion zone with yellow ribbon in accordance with the project Health and Safety Plan to keep extraneous personnel from entering area.
- 3. Assemble and clean all equipment necessary for sample collection. Equipment needs to be cleaned, if not already pre-cleaned by the laboratory. Stainless steel trowels and hand auger soil borings are to be used to collect samples (Sample collection will be performed by the designated laboratory and in accordance with the lab QA/QC protocols)
- 4. Using the trowel and hand auger, dig down to just above the water table
- 5. Obtain sample and place into specimen container
- 6. Cap the sample container
- 7. Label the sample vial with a unique sample code, information on the site, sample location and date/time sample was collected.
- 8. Mark on sample vials or appropriate label for other parameters and place sample vial in an ice chest. A sample temperature of approximately 4°C must be maintained.
- 9. Remove and discard the gloves. Place all disposable gloves and wiping clothes into a plastic bag designated for proper disposal.
- 10. Fill out sampling details in field book
- 11. Fill out chain-of-custody forms and prepare the samples for storage and shipping by packing in laboratory cooler with ice to maintain a temperature of 4°C. Ship overnight to the laboratory for analysis.
- 12. Follow chain-of-custody procedures as detailed in the QA Program Plan identified by the selected authorized vendor.

VII-6. Sample Analysis

All samples will be analyzed by a laboratory certified by New York State (NYS) Department of Health (DOH) Environmental Laboratory Approval Program (ELAP).

A. Sampling Parameters

Samples will be obtained after the completion of the decontamination processes will be used to ensure that:

- 1. Decontamination of area was effective.
- 2. If wastes were generated, waste classification for disposal purposes.

Laboratory analyses will include:

Analysis Parameter	Sample Matrix	Sample Methodology
Polychlorinated Biphenyls (PCBs)	Wipe/Liquid/Soil	EPA Method 8082
Semi Volatile Organic Compounds	Liquid	EPA Method 8270
(SVOCs)		
Volatile Organic Compounds (VOCs)	Liquid	EPA Method 8260
RCRA Metals	Wipe/Liquid/Soil	RCRA Metals (TCLP)
Flash Point	Liquid	SW 1010

All soil samples will be analyzed utilizing the Department's CP-51 Soil Cleanup Guidance. Sampling and analysis will be performed by a trained representative of a certified testing laboratory according to approved SW-846 procedures. Wipe sample results will be interpreted as follows:

Concentration of wipe sample	Results
$< 10 \ \mu g / 100 \ cm^2$	Non-PCB (<50 ppm)
>10 but <100 μ g/100 cm ²	PCB-Contaminated (50-499 ppm)
$\geq 100 \ \mu g/100 \ cm^2$	PCB (≥500 ppm)

B. Target Detection Limits and QA/QC

The target detection limits for Target Compound List (TCL) volatiles and TCL semi-volatiles are 5 microgram per liter (ug/L). The target detection limits for the metals are as per the table from the NYSDEC Analytical Services Protocol. The quality control results shall be submitted along with the sample results. This QC data shall include surrogate recoveries, Matrix Spike (MS)/Matrix Spike Duplicate (MSD) percent recoveries, internal standard area counts and retention times (as applicable), and blank results for the organics.

For the metals, submit Contract Required Detection Limits (CRDL) standard for Atomic Absorption (AA) and Inductively Coupled Plasma (ICP), spike sample recovery, duplicates, blanks, ICP interference check sample, post digestion spike sample recoveries (if applicable), laboratory control sample results, and ICP serial dilution results. The QC analysis should be performed on site-specific samples. The QA/QC requirements of SW-846 shall be met.

VII-7. Amendment of Closure Plan

The closure plan will be amended by the owner or operator whenever changes occur that would affect the closure plan. This plan will be amended when there is a change in the expected year of closure. At a minimum the Closure Plan will be reviewed annually and amended if needed. Revised or updated closure costs will be submitted to the NYSDEC for approval, in accordance with 6 NY-CRR 373-2.7(c)(1).

VII-8. Assessment of Other Areas

CHGE has conducted several site assessments to determine potential impacts to soil, groundwater, and stormwater, based on findings of a Phase I Environmental Site Assessment in 2007. Results of the Phase II Limited ESA were reported on October 22, 2007. Results of a Supplemental Phase II Investigation were reported on February 22, 2008.

Results of a RCRA Facility Investigation were reported on April 15, 2009. Each of the potential Areas of Concern identified in the 2007 Phase I ESA have been investigated; no further investigation has been warranted.

Additionally, a wetland investigation and subsequent remediation were completed by CHGE from 2009 through 2019. Monitoring of the remediated area remains the only outstanding concern. Based on these investigations, there is no evidence that additional soil testing is necessary.

VII-9. Schedule of Closure

CHGE will submit the Notice of Intend to Close to EPA and the Commissioner of the NYSDEC in accordance with 373-2.7(c)(4) and will close the facility within the time allowed by 373-2.7(d).

The independent Professional Engineer (PE) will witness all closure activities, and provide a certification to the owner and the NYSDEC that all drums, tanks and structures are clean and decontaminated. CHGE will also provide the following documentation to the NYSDEC upon completion of closure:

- A. Composite sampling results analyzed for PCBs;
- B. Wipe test results for the tank, drums (if any), piping, fittings, valves, and secondary containment structures;
- C. Test results of flush material;
- D. A copy of all manifests used for the disposal of hazardous wastes as part of the Closure process (these documents will include the name and location of an approved TSD facility for the disposal of hazardous waste, and the name of the licensed waste transporter);
- E. QA/QC records and data for all sampling and analysis. Analytical Data will be reported in a Level "B" format and an electronic copy made available to the Department for review upon request;
- F. A description of any additional barriers constructed as part of the decontamination activities; and
- G. The source and analysis of clean fill used to restore the facility following excavation if contamination is found.

VII-10. Future Use

The facility will continue to operate as a maintenance and warehouse facility for CHGE after closure. The tanks will be re-used for the storage of virgin transformer oils; the container storage area will be used to store equipment.

VII-11. Cost Estimate for Closure

Activity	Unit Cost	Total
	Inventory Disposal	
130 Drums (various		
waste streams)	Maximum of \$600/drum	\$ 78.000
Trips to various waste		+)
disposal facilities	Estimated four trips at a maximum	\$ 10.000
(dependent on waste	of \$2 500/trip	+ ,
stream)	01 \\$2,500/u1p	
Labor	2 Operators - \$500/day	\$ 1,000
Equipment	2 Operating Days – Loader - \$500/day	\$ 1,000
-1		Subtotal - \$ 90.000
	Decontamination Costs	
Laborer	2 men, 3 days - \$600/man/day	\$ 3.600
Engineer	1 man, 2 days - \$2200/man/day	\$ 4,400
Operator	1 man, 0.5days	· · · · · · · · · · · · · · · · · · ·
- P	-\$700/dav	\$ 350
	<i>t</i> ,	Subtotal - \$ 8.350
	Safety equipment - \$100/laborer/day	\$ 600
Fauinment	Loader - \$360/day	\$ 360
Equipment	Flush Cleaner (5 gallons) - \$25/gallon	\$ 125
	Disposable clean-up equipment - \$300	\$ 300
	Laborer for flush cleaner disposal (1	
	operator/day)- \$ 600day	\$ 600
	Steam Cleaner- 1 day at \$320/day	\$ 320
	Disposal of flush cleaner and water –	, <u> </u>
	100 gallons x \$9.75/gallon (Clean	\$ 975
	Harbors)	<i> </i>
	Disposal of debris/PPE (3 drums) -	
	\$600/drum	\$ 1,800
	Transportation to Clean Harbors, PA	+)
	1 trip * 7.900/trip	\$ 7,900
		Subtotal - \$ 12,980
	PCB wipe samples (26 samples) -	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	\$75/sample	\$ 2 250
Laboratory Analysis	2 Co-located samples \$75/sample	\$ 2,200
	2 Field blank samples \$75/sample	
	VOCs - 1 sample @ \$140	
	1 Field blank sample \$140/sample	\$280
	SVOCs - 1 sample @ \$225	
	1 Field blank sample \$225/sample	\$450
	Rinsate- 6 samples @ \$685	+
	1 Field blank sample \$685/sample	5

CONTAINER STORAGE AREA
Field Technician-	
\$645/day*3 days	\$ 1,935
	Subtotal - \$ 9,710

TOTAL CONTAINER STORAGE AREA CLOSURE COST - \$ 121,040

TANK STORAGE AREA					
Activity Unit Cost Tot					
Inventory Disposal					
6,000 gallons of oil	000 gallons of oil \$ 9.75/gallon				
Transportation to disposal facility	\$ 7,900				
Labor	1 man - \$ 600/day	\$ 600			
		Subtotal - \$ 11,589			
	Decontamination Costs				
Laborer	3 men, 3 days - \$ 600/man/day	\$ 5,400			
Engineer	1 man, 3 days, \$ 2,200/man/day	\$ 6,600			
	Safety equipment - \$ 100/laborer/day	\$ 900			
Equipment	Vacuum Truck, 3 days @ \$3,000/day	\$ 9,000			
1 1	Flush Cleaner (68 gallons) –				
	\$ 25/gallon	\$ 1,700			
	Disposable clean-up equipment	\$ 300			
	Disposal of flush cleaner and water –				
	1000 gallons x \$9.75/gallon (Clean	\$ 9,750			
	Harbors)				
	Transportation to Clean Harbors, PA				
	1 trip * 7,900/trip	\$ 7,900			
	Laborer for flush cleaner disposal (2				
	operator/day)- \$ 600/day	\$ 1,200			
	Pressure washer- 3 days at \$110/day	\$ 330			
	Steam Cleaner- 3 days at \$320/day	\$ 960			
		Subtotal - \$ 44,040			
	PCB wipe samples (13 samples) -				
Laboratory Analyzia	\$225/wipe	\$ 3,375			
Laboratory Analysis	1 Co-located sample \$225/sample				
	1 Field blank sample \$225/sample				
	Soil (PCBs) – 6 @ \$225/sample				
	1 Field blank sample \$225/sample	\$1,575			
	Rinsate - 5 samples @ \$685:				
	1 Field blank sample \$685/sample	\$ 1,350			

Health and Safety Plan Development	\$ 425
Field Technician- \$645/day*4 days	\$ 25,180
	Subtotal - \$ 31,905
TOTAL TANK STORAGE CLOS	URE COST - \$ 87,534

PCB Soaker Tank					
Activity	Total				
	Disposal				
400 gallons solution	Disposal of solution –				
_	400 gallons x \$9.75/gallon	\$ 660			
Laboratory Analysis	solution (PCB's)- 1 sample @ \$685	\$ 685			
TOTAL PCB SOAKER TANK SOLUTION DISPOSAL COST - \$ 1,345					

Soil Disposal (if needed)						
Activity	Total					
	Disposal					
40 yards of soil	\$ 225/yard (Veolia)	\$9,000				
Transportation to	Transportation to EQ Michigan					
disposal facility	\$ 5,000/trip (1 trip)	\$5,000				
Laboratory Analysis	Lump sum quote from contractor	\$1,500				
TOTAL SOIL DISPOSAL COST - \$ 15,500						

Total Closure Cost Estimate

Sum Closure Costs	\$ 225,419
Sum of Closure Costs plus fifteen (15)	
percent administrative cost	\$ 259,232
Twenty (20) percent contingency of new	
total	\$ 51,846
TOTAL CLOSURE COSTS	FOR FACILITY (2019 Dollars)- \$ 311,078

TOTAL CLOSURE COSTS FOR FACILITY: \$ 311,078

* This closure cost estimate equals or exceeds the cost at the point in the facility's operating life when the extent and manner of its operation would make closure the most expensive.

Proof of CHGE's financial assurance test is included as Attachment VII-D.

ATTACHMENT VII-A1 Eltings Corners Permitted Waste Storage Area Sampling Map

ATTACHMENT VII-A2 Photos of Eltings Corners Permitted Waste Storage Area Sample Locations

Permitted Storage Area- PHOTO 2

ATTACHMENT VII-B2

Photos of Permitted Aboveground 6,000-gallon Steel Tank storing PCB-Contaminated Transformer Oil and Loading and Unloading Sample Locations

PCB-Contaminated Oil Tank and Loading and Unloading Area-PHOTO 1

PCB-Contaminated Oil Tank and Loading and Unloading Area- Area-PHOTO 2

PCB-Contaminated Oil Tank and Loading and Unloading Area- Area-PHOTO 3

Page 020 of 030

ATTACHMENT VII-C1 Designated Area in Transformer Shop for Accumulations of Small Quantity of PCB Debris Sampling Map

Key Wipe Sample(s) Soil Sample(s) *Not to scale **Locations are approximate

ATTACHMENT VII-C2 Designated Area in Transformer Shop for Accumulations of Small Quantity of PCB Debris Sample Locations

Transformer Shop Small Quantity Storage Area-PHOTO 1

Key Wipe Sample(s)

Attachment VII-D

Financial Assurance

Deloitte.

Deloitte & Touche LLP City Place I, 33rd Floor 185 Asylum Street Hartford, CT 06103-3402 USA

Tel: +1 860 725 3000 Fax: +1 860 725 3500 www.deloitte.com

INDEPENDENT ACCOUNTANTS' REPORT ON APPLYING AGREED-UPON PROCEDURES

To the Management of Central Hudson Gas & Electric Corporation

We have performed the procedures as specified by Title 6 of the Codes, Rules, and Regulations of the State of New York, Sections 373-2.8 and 373-3.8, which were agreed to by the New York State Department of Environmental Conservation ("NYDEC"), and Central Hudson Gas & Electric Corporation (the "Company"), related to the Company's compliance with the financial test option as of December 31, 2018, included in the accompanying letter dated March 30, 2020, ("Exhibit A"), from Christopher Capone, Chief Financial Officer of the Company. The Company's management is responsible for its compliance with those requirements. The sufficiency of these procedures is solely the responsibility of those parties specified in this report. Consequently, we make no representations regarding the sufficiency of the procedures enumerated below either for the purpose for which this report has been requested or for any other purpose.

The procedures we performed and related findings are as follows:

- We confirm that we have audited the financial statements of the Company as of and for the year ended December 31, 2019 (the "Audited Financials") in accordance with the auditing standards of the Public Company Accounting Oversight Board (United States) and in accordance with generally accepted auditing standards as established by the American Institute of Certified Public Accountants and have issued our report dated February 12, 2020.
- 2. We agreed the amount appearing as "tangible net worth" (Item 7 on page 3 of Exhibit A) to a "D.E.C. Self Assurance Report" schedule prepared by the Company ("Exhibit B").
- 3. We determined that Exhibit B was mathematically correct. We make no comment as to the method or appropriateness of the calculation of "tangible net worth."
- 4. We determined that the amounts on Exhibit B were derived from financial records used to prepare the Audited Financials of the Company as of and for the year ended December 31, 2019.
- 5. We recalculated the Company's total assets located in the United States as of December 31, 2019 by subtracting the total assets located outside the U.S., as represented by management to be zero, from the total assets of the Company.
- 6. We compared the total assets of the Company to the financial statements of the Company as of December 31, 2019 and found such amounts to be in agreement.
- 7. We recalculated the percentage of total assets located in the United States by dividing total assets inside the U.S. as of December 31, 2019 by total assets as of December 31, 2019 and found it to be greater than 90%.

This agreed-upon procedures engagement was conducted in accordance with attestation standards established by the American Institute of Certified Public Accountants. We were not engaged to and did not conduct an examination or review, the objective of which would be the expression of an opinion or conclusion, respectively, on compliance with the financial test option in the accompanying letter dated March 30, 2020. Accordingly, we do not express such an opinion or conclusion. Had we performed additional procedures, other matters might have come to our attention that would have been reported to you.

This report is intended solely for the information and use of the management of the Company and the specified parties listed in the first paragraph and is not intended to be and should not be used by anyone other than these specified parties.

Deloitte # Touche LLP

March 30, 2020

Christopher M. Capone, CFA Executive Vice President & Chief Financial Officer

LETTER FROM CHIEF FINANCIAL OFFICER

March 30, 2020

Commissioner New York State Department of Environmental Conservation Division of Solid and Hazardous Materials 625 Broadway Albany NY 12233

Dear Commissioner:

I am the Executive Vice President and Chief Financial Officer of Central Hudson Gas & Electric Corporation, 284 South Avenue, Poughkeepsie, New York, 12601. This letter is in support of the use of the financial test to demonstrate financial responsibility for liability coverage, post-closure care and/or corrective action care, as specified in 6 NYCRR 373-2.8 and 373-3.8.

The firm identified above is the owner or operator of the following facilities for which liability coverage for sudden accidental occurrences is being demonstrated through the financial test specified in 6 NYCRR-373-2.8 and 373-3.8:

EPA I.D. Number - NYD000705905 Central Hudson Gas & Electric Corporation South Street Highland, NY 12528

1. The firm identified above guarantees, through the guarantee specified in 6 NYCRR 373-2.8 and 373-3.8, liability coverage for both sudden and non-sudden accidental occurrences at the following facilities owned or operated by the following: NONE. The firm identified above is: NONE.

For facilities not located in New York, this firm is demonstrating liability coverage for both sudden and non-sudden accidental occurrences at the following facilities through the use of a test equivalent or substantially equivalent to the test specified in Subpart H of 40 CFR Parts 264 and 265: NONE.

Facility	Closure Cost	Corrective Action Cost
EPA I.D. Number - NYD000705905 Central Hudson Gas & Electric Corp. South Street Highland, NY 12528	\$356,045	\$2,242,642

284 South Avenue Poughkeepsie, NY 12601

(845) 452-2000 Direct: (845) 486-5439 email: ccapone@cenhud.com www.CentralHudson.com 2. The firm identified above guarantees, through the guarantee specified in 6 NYCRR 373-2.8 and 373-3.8, the closure and post-closure care or liability coverage of the following facilities owned or operated by the guaranteed party. The current cost estimates for the closure or post-closure care so guaranteed are shown for each facility:

NONE

3. For facilities not located in New York, this firm is demonstrating financial assurance for the closure or post-closure care or liability coverage of the following facilities through the use of a test equivalent or substantially equivalent to the test specified in Subpart H of 40 CFR Parts 264 and 265. The current closure or post-closure cost estimates covered by such a test are shown for each facility:

NONE

4. The firm identified above owns or operates the following hazardous waste management facilities for which financial assurance for closure or, if a disposal facility, post-closure care, is not demonstrated either to EPA or New York or other states through the financial test or any other financial assurance mechanisms specified in Subpart H of 40 CFR Parts 264 and 265 or equivalent or substantially equivalent State mechanisms. The current closure and/or post-closure cost estimates not covered by such financial assurance are shown for each facility:

NONE

5. This firm is the owner or operator or guarantor of the following UIC facilities for which financial assurance for plugging and abandonment is required under 40 CFR Part 144 (see 6 NYCRR 370.1[e]) and is assured through a financial test. The current closure cost estimates as required by 40 CFR 144.62 are shown for each facility:

NONE

Fortis Inc. (Fortis), completed the transaction to acquire CH Energy Group, Inc. (CH Energy Group), the parent company of this firm on June 27, 2013. As a result, CH Energy Group deregistered from the Securities Exchange Commission (SEC) on July 11, 2013 and therefore, this firm is no longer required to file a Form 10K with the SEC beginning fiscal year 2013.

The fiscal year of this firm ends on December 31. The figures for the following items marked with an asterisk are derived from this firm's independently audited, year-end financial statements for the latest completed fiscal year.

New York State Department of Environmental Conservation

Part B. Closure, Post-Closure and/or Corrective Action Care and Liability Coverage

ALTERNATIVE II

1.	Sum of current closure, post-closure and/or corrective action cost estimates (total of all cost estimates listed above)	<u>\$2,598,68</u>	<u>7</u>
2.	Amount of annual aggregate liability coverage to be demonstrated	<u>\$ 2,000,00</u>	<u>)0</u>
3.	Sum of lines 1 and 2	<u>\$ 4,598,68</u>	<u>87</u>
4.	Current bond rating of most recent issuances and name of rating service	<u>A- (stable)</u>	by S&P
5.	Date of issuance of bonds	<u>October 2</u> October 2	<u>8, 2019</u> 8, 2019
6.	Date of maturity of bonds	<u>October 2</u> October 2	<u>8, 2049</u> 8, 2059
*7.	Tangible net worth (if any portion of the closure, post-closure, and/or corrective action cost estimates is included in "total liabilities" on your financial statements, you may add that portion to this line)	<u>\$710,048,</u>	<u>255</u>
*8.	Total assets in the U.S. (required only if less than 90% of assets are located in the U.S.)	N/A	
		YES	NO
9.	Is line 7 at least \$10 million?	<u>_X</u>	
10.	Is line 7 at least 6 times line 3?	<u> </u>	
*11.	Are at least 90% of assets located in the U.S.? If not, complete line 12.	<u> </u>	
12.	Is line 8 at least 6 times line 3?	N/A	٨

New York State Department of Environmental Conservation

March 30, 2020

I hereby certify that the wording of this letter is identical to the wording specified in 6 NYCRR 373-2.8(j)(9), except for the addition of 'and/or corrective action,' as such regulations were constituted on the date shown immediately below.

me ature)

Christopher M. Capone Executive Vice President and Chief Financial Officer

March 30, 2020

.

Page 029 of 030

Exhibit B

3/30/2020

Central Hudson Gas & Electric Corporation D. E. C. Self Assurance Report For 3/31/20 Filing Deadline

	12/31/2019	12/31/2018	12/31/2017	
Tangible Net Worth:				
Total Proprietory Capital		PY 1	PY	2
PSC Balance Sheet A/C 201-216	\$772,596,917	\$696,900,420	\$627,043,241	
Less: Intangible Plant (Per Intangibles Disclosure)	A7			
Common Plant	49,098,882	34,460,435	30,951,936	
Electric Plant	11,880,574	11,711,804	11,536,688	
Gas Plant	1,569,206	1,548,247	1,486,972	
Total Intangible Plant	62,548,662	47,720,486	43,975,596	
Tangible Net Worth	\$710,048,255	\$649,179,934	\$583,067,645	
Total Assets (PSC B/S): Less: Intangible Assets (from above)	\$2,445,867,963 A1 62,548,662	\$2,293,793,145 47,720,486	\$2,170,823,062 43,975,596	
	2,303,319,301	2,240,072,039	2,120,047,400	
Liabilities:				
Long Term Debt	746,950,000 A1	673,950,000	598,950,000	
Current & Accrued	101,530,100 A1	98,044,792	82,105,854	
Deferred Credits	816,620,722 A*	819,727,413	858,026,656	
Operating Reserves	8,170,224 A1	5,170,520	4,697,311	
Iotal	1,6/3,2/1,046	1,596,892,725	1,543,779,821	
Net Tangible Assets	\$710,048,255	\$649,179,934	\$583,067,645	
	0	0	0 Che	eck - S/B 0

FAS B/S

	818,238,894 A1
Asset Retirement Obligations (230.10)	634,527
	818,873,421
Accrued OPEB Liability - FAS 106 (253.18)	14,948,568 A2
Accrued Add'l OPEB Liability - SFAS 158 (253.19)	(27,462,407) A3
kecs - Retirement Benefit Restoration Plan (253.21)	20,792,214 A4
Accrued Additional Pension Liability (253.22)	9,990,424 A5
Accrued Add'l Pension Liab - FAS 87 (253.78)	(20,521,498) A6
	816,620,722 A*

ATTACHMENT 2 REVISED WORK PLAN

REVISED WORK PLAN

for

PROPOSED FOLLOW-UP ACTIONS FOR PART 373 PERMIT CLOSURE

CENTRAL HUDSON GAS AND ELECTRIC CORPORATION ELTINGS CORNERS FACILITY Route 299 and South Street Town of Lloyd, Ulster County, New York DEC Hazardous Waste Permit No. 3-5132-00032-2 EPA ID No. NYD000705905 Project No. 2023058

April 2024

Central Hudson Gas and Electric Corporation (CHGE) has operated a New York State Part 373 permitted hazardous waste storage facility at the above-referenced facility. The approved Closure Plan, dated April 2020, was implemented during 2023. On December 19, 2023, CHGE submitted a Closure Report to the New York State Department of Environmental Conservation (DEC) to finalize the closure of the Part 373 Permit. During a January 31, 2024 conference call and a follow-up February 2, 2024 email, the DEC requested additional work be performed. A Work Plan for proposed additional actions was submitted in February 2024 to address comments discussed during an April 4, 2024 conference call with DEC.

Once approved, CHGE proposes to perform the additional tasks outlined in this Work Plan and update the Closure Report for resubmission. The Department's concerns are stated below, along with proposed actions.

Comment 1: The closure report is missing the required certification language as per 6 NYCRR 373-1.4(a)(5)(iv) for the owner/operator and had different language for the PE certification. Here's the certification language from 373-1.4(a)(5)(iv) that all are required to use:

(iv) Certification

('a') Any person signing a document under subparagraph (i) or (ii) of this paragraph shall make the following certification:

"I certify under penalty of law that this document and all attachments were prepared under my direction or supervision according to a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations."

- *Response 1:* The correct certification will be utilized.
- **Comment 2:** Based on the analytical results, PCB concentrations for sampling points WSA10 and 11 were over 10 μ g/100 cm² on 8/25/2023 but were not resampled. At a minimum, the areas will need to be resampled. At this time, DEC is unsure if these areas need additional decontamination.
- *Response 2:* The WSA10 and WSA11 sample locations were recleaned, but inadvertently not resampled. New wipe samples for polychlorinated biphenyls (PCBs) will be collected at these locations.
- **Comment 3:** Photo 2 of the closure plan attachment VII-A2 shows multiple darkened areas that could be staining. Photos showing the WSA post-cleaning would help to verify that the darkened areas were only temporary wet spots and not permanent staining, thereby resolving these concerns. Otherwise, the stained areas would need to be specifically sampled as bias areas.
- **Response 3**: The referenced photograph is from the Closure Plan, prior to its implementation. The photographs below depict the area after cleaning, with sections of the concrete still damp with moisture. The dark spot located close to the center of the area is where the concrete was drilled to extract the underlying soil sample.

Comment 3A: Following submission of the initial Work Plan, DEC noted the following:

"In the first image under response 3, the dark lines at the bottom/bottom-left of the image resemble cracks. We would like to confirm that the concrete floor wasn't cracked.

- *Response 3A:* Hairline surficial cracks are present in these areas. We performed a test with a water-filled cylinder over the cracks and recorded no water loss. Please let us know if you require any further analysis here. [DEC approved this response in a March 28, 2024 email.]
- *Comment 4:* Unfortunately, wipe sampling may only be used as a screening test for metals. For RCRA analysis, TCLP is required, for which we recommend rinsate sampling or concrete core sampling. This applicable for all the sampled areas.
- **Response 4:** Based on the criteria in Comment 5 below, CHGE proposes to collect one additional rinsate sample at the Waste Storage Area (WSA), four rinsate samples at the Loading/Unloading (L/LU) area, and one rinsate sample on the floor of the transformer shop storage area (see further discussion in response to Comment 5). The original Closure Plan called for one rinsate sample collected via a laboratory pipette in the WSA area. Given that the collection of the single sample took several hours, we propose to utilize a manual vacuum pump to create a vacuum within an Erlenmeyer flask via a two-hole rubber stopper. A tube from the second hole would then draw the rinsate sample from the temporary containment area into the flask, which would then be poured into the sample bottles. [DEC approved this additional rinsate sampling in a March 28, 2024 email.]
- **Comment 5:** For clean closure analysis, at least one rinsate sample per 400 ft²area (typically 20 ft x 20 ft or any portion thereof) is required. The Waste Storage Area will need more samples (both metals and VOC/SVOC) and the Loading/Unloading area will need at least one sample (metals and VOC/SVOC) depending on its size.
- *Response 5:* The additional rinsate samples noted in the response to Comment 4 are based on the following dimensions:
 - 1. As indicated on the Site Plan included with the Part 373 permit, the WSA is 40 by 20 feet, or 800 square feet, which requires two rinsate samples. Since one rinsate

was collected, as required by the approved Closure Plan, in the south quadrant, a second rinsate sample will be collected in the north quadrant.

- 2. A plan drawing of the L/UL facility notes the structure as being 48 by 28 feet, or 1,344 square feet. Therefore, four rinsate samples (one in each quadrant) will be collected in this area.
- 3. While the storage area in the Transformer Shop is not specifically delineated, the area is well under 400 square feet. One rinsate sample will be collected in this area.
- 4. The rinsate samples will be analyzed for semi-volatile organic compounds (SVOCs), volatile organic compounds (VOCs) and Toxicity Characteristics Leaching Procedure (TCLP) metals. Criteria to evaluate the analytical results will be the TCLP regulatory levels in 6 New York Codes Rules and Regulations (NYCRR) Part 371.3(e).
- **Comment 6:** The tank secondary containment area needs to be sampled or there need to be clear demonstration that the tank never had a release in its history. Possible procedures for this were discussed on Wednesday, but please do not hesitate to reach out for further discussion if you determine that what was discussed will not work.
- *Response 6:* There has been no known release from this tank. To verify this information, a 24-hour hydrostatic test was proposed to document the tank's integrity. Based on DEC's concerns with the hydrostatic test, following sampling procedure are now proposed:
 - Five gallons of deionized (DI) water will be obtained from an environmental laboratory.
 - The drain plug at the bottom of the outer tank will be opened.
 - The DI water will be poured around the outside of the manway of the primary tank that was used to store PCB oils and allowed to drain down both sides of the exterior tank surface into the interstitial space and through the drain plug.

- When approximately two gallons of the rinse water has been collected in a clean container, a full-depth sample will be collected from the container and transferred to sample bottles supplied by the laboratory for analysis of PCBs and RCRA metals.
- *Comment 7:* What is the future use/planned disposition for the PCB soaking tank? The wipe samples taken indicate the presence of RCRA metals, so the tank may require a contained-in determination.
- *Response 7:* We plan to scrap the steel soaking tank. The presence of metals is not surprising considering the tank construction/composition. The tank was only used to clean sections of former natural gas distribution pipes that may have been exposed to PCBs. The residual water was sampled prior to its removal and was non-hazardous. The tank was then pressure-washed. Since the tank was dry when the wipe samples were collected, it meets the definition of being "RCRA-empty" and can be transported to a scrap metal recycler for recycling.

ATTACHMENT 3

SAMPLE LOCATION SKETCHES

PRODUCT 204-1 (Single Sheets) 205-1 (Padded)

ATTACHMENT 4 PHOTOGRAPH LOG

LOADING / UNLOADING AREA FOR 6,000-GALLON AST

CONFINED SPACE ENTRY INTO 6,000-GALLON AST

COLLECTING WIPE SAMPLES IN LOADING / UNLOADING AREA

COLLECTING SOIL SAMPLE L/U 17

COLLECTING RINSATE SAMPLE WSA 24

COLLECTING SOIL SAMPLE WSA 22

COLLECTING WIPE SAMPLE A3 STRUCTURE (1')

6,000-GALLON AST

COLLECTING TANK SHOP WALL 2 WIPE SAMPLE

INTERIOR OF PCB SOAKING TANK

ATTACHMENT 5

CONFIRMATION SAMPLE REPORTS

Experience is the solution 314 North Pearl Street

Albany, New York 12207 (800) 848-4983

(518) 434-4546

Fax (518) 434-0891

August 29, 2023

Eric Chastain Central Hudson Gas & Electric 284 South Avenue Poughkeepsie, NY 12601

Work Order No: 230818086 PO#: 37482

RE: Laboratory Analysis Eltings Corner Soil Sampling

TEL: (845) 486-5734

Adirondack Environmental Services, Inc received 5 samples on 8/18/2023 for the analyses presented in the following report.

Please see case narrative for specifics on analysis.

If you have any questions regarding these tests results, please feel free to call.

Sincerely,

Vara Daniel

Tara Daniels Laboratory Director

ELAP#: 10709

Adirondack Environmental Services, Inc

Central Hudson Gas & Electric

Analysis of Water

Eltings Corner Soil Sampling

CASE NARRATIVE

Date: 29-Aug-23

Lab WorkOrder: 230818086

The sampling was performed in accordance with the AES field sampling procedures and/or the client specified sampling procedures. Sample containers were supplied by Adirondack Environmental Services.

Definitions - RL: Reporting Limit DF: Dilution factor

Qualifiers:	ND : Not Detected at reporting limit	C: CCV below acceptable Limits
	J: Analyte detected below quantitation limit	C+: CCV above acceptable Limits
	B: Analyte detected in Blank	S: LCS Spike recovery is below acceptable limits
	X : Exceeds maximum contamination limit	S+: LCS Spike recovery is above acceptable limits
	H: Hold time exceeded	Z: Duplication outside acceptable limits
	N: Matrix Spike below acceptable limits	T : Tentatively Identified Compound-Estimated
	N+: Matrix Spike is above acceptable limits	E :Above quantitation range-Estimated

Note : All Results are reported as wet weight unless noted

The results relate only to the items tested. Information supplied by the client is assumed to be correct.

CLIENT: Project:	Central Hudson Gas & Analysis of Water Eltings Corner Soil Sa	z Electric mpling			LabWork PO#: 3748	Order: 23 32	0818086
Lab SampleII	D: 230818086-001			C	Collection Da	nte: 8/18/20	023 11:35:00 AM
Client Sample	e ID: L/U-17				Matu	rix: SOIL	
Analyses		Result	RL	Qual	Units	DF	Date Analyzed
POLYCHLOR	INATED BIPHENYLS - EP	A 8082A					Analyst: KF
(F	Prep: SW3545A - 8/22/20)23)					
Aroclor 1016	•	ND	38		µg/Kg-dry	1	8/22/2023 4:17:34 PM
Aroclor 1221		ND	38		µg/Kg-dry	1	8/22/2023 4:17:34 PM
Aroclor 1232		ND	38		µg/Kg-dry	1	8/22/2023 4:17:34 PM
Aroclor 1242		ND	38		µg/Kg-dry	1	8/22/2023 4:17:34 PM
Aroclor 1248		ND	38		µg/Kg-dry	1	8/22/2023 4:17:34 PM
Aroclor 1254		ND	38		µg/Kg-dry	1	8/22/2023 4:17:34 PM
Aroclor 1260		ND	38		µg/Kg-dry	1	8/22/2023 4:17:34 PM
Aroclor 1262		ND	38		µg/Kg-dry	1	8/22/2023 4:17:34 PM
Aroclor 1268		ND	38		µg/Kg-dry	1	8/22/2023 4:17:34 PM
Surr: Decad	chlorobiphenyl	59.0	48.1-152		%REC	1	8/22/2023 4:17:34 PM
	URY - SW1311/7470A	100 \					Analyst: AF
۲ Mercury-TCLF	o	ND	0.002		mg/L	1	8/25/2023 2:56:48 PM
TCLP METAL	S - SW1311/6010C						Analyst: KH
(Prep: SW1311 - 8/23/20)23)					
Arsenic-TCLP		ND	0.050		mg/L	1	8/25/2023 3:17:30 PM
Barium-TCLP		0.243	0.100		mg/L	1	8/25/2023 3:17:30 PM
Cadmium-TCL	_P	ND	0.050		mg/L	1	8/25/2023 3:17:30 PM
Chromium-TC	LP	ND	0.050		mg/L	1	8/25/2023 3:17:30 PM
Lead-TCLP		ND	0.050		mg/L	1	8/25/2023 3:17:30 PM
Selenium-TCL	P	ND	0.050		mg/L	1	8/25/2023 3:17:30 PM
Silver-TCLP		ND	0.100		mg/L	1	8/25/2023 3:17:30 PM
MOISTURE C	ONTENT-ASTM D2216 (N	OT ELAP CE	RTIFIED)				Analyst: KTT
Percent Moist	ure	12.9	0.1		wt%	1	8/28/2023

Adirondack Environmental Services, Inc

Date: 29-Aug-23
CLIENT: Project:	Central Hudson Gas & Analysis of Water Eltings Corner Soil Sa	Electric mpling		LabWork (PO#: 3748	Order: 23 32	80818086
Lab SampleII	D: 230818086-002			Collection Da	te: 8/18/20	023 11:50:00 AM
Client Sample	e ID: L/U-18			Matr	ix: SOIL	
Analyses		Result	RL Qual	Units	DF	Date Analyzed
POLYCHLOR	INATED BIPHENYLS - EP/ Prep: SW3545A - 8/22/20	A 8082A 23)				Analyst: KF
Aroclor 1016	•	ND	36	µg/Kg-dry	1	8/22/2023 4:31:44 PM
Aroclor 1221		ND	36	µg/Kg-dry	1	8/22/2023 4:31:44 PM
Aroclor 1232		ND	36	µg/Kg-dry	1	8/22/2023 4:31:44 PM
Aroclor 1242		ND	36	µg/Kg-dry	1	8/22/2023 4:31:44 PM
Aroclor 1248		ND	36	µg/Kg-dry	1	8/22/2023 4:31:44 PM
Aroclor 1254		ND	36	µg/Kg-dry	1	8/22/2023 4:31:44 PM
Aroclor 1260		ND	36	µg/Kg-dry	1	8/22/2023 4:31:44 PM
Aroclor 1262		ND	36	µg/Kg-dry	1	8/22/2023 4:31:44 PM
Aroclor 1268		ND	36	µg/Kg-dry	1	8/22/2023 4:31:44 PM
Surr: Decad	chlorobiphenyl	58.0	48.1-152	%REC	1	8/22/2023 4:31:44 PM
TCLP MERC	URY - SW1311/7470A Prep: SW7470A - 8/25/20	23)				Analyst: AF
Mercury-TCLF	0	ND	0.002	mg/L	1	8/25/2023 3:02:02 PM
TCLP METAL	S - SW1311/6010C					Analyst: KH
(Prep: SW1311 - 8/23/20	23)				
Arsenic-TCLP		ND	0.050	mg/L	1	8/25/2023 3:32:34 PM
Barium-TCLP		0.272	0.100	mg/L	1	8/25/2023 3:32:34 PM
Cadmium-TCI	LP	ND	0.050	mg/L	1	8/25/2023 3:32:34 PM
Chromium-TC	CLP	ND	0.050	mg/L	1	8/25/2023 3:32:34 PM
Lead-TCLP		ND	0.050	mg/L	1	8/25/2023 3:32:34 PM
Selenium-TCL	_P	ND	0.050	mg/L	1	8/25/2023 3:32:34 PM
Silver-TCLP		ND	0.100	mg/L	1	8/25/2023 3:32:34 PM
MOISTURE C	ONTENT-ASTM D2216 (NO	OT ELAP CE	RTIFIED)			Analyst: KTT
Percent Moist	ure	9.1	0.1	wt%	1	8/28/2023

CLIENT: Project:	Central Hudson Gas & Analysis of Water Eltings Corner Soil Sa	Electric		LabWork (PO#: 3748	Order: 23 32	80818086
Lab SampleI	D: 230818086-003			Collection Da	te: 8/18/20	023 12:05:00 PM
Client Sample	e ID: L/U-19			Matr	ix: SOIL	
Analyses		Result	RL Qual	Units	DF	Date Analyzed
POLYCHLOR	INATED BIPHENYLS - EP Prep: SW3545A - 8/22/20	A 8082A 023)				Analyst: KF
Aroclor 1016	•	NĎ	36	µg/Kg-dry	1	8/22/2023 4:45:48 PM
Aroclor 1221		ND	36	μg/Kg-dry	1	8/22/2023 4:45:48 PM
Aroclor 1232		ND	36	µg/Kg-dry	1	8/22/2023 4:45:48 PM
Aroclor 1242		ND	36	µg/Kg-dry	1	8/22/2023 4:45:48 PM
Aroclor 1248		ND	36	µg/Kg-dry	1	8/22/2023 4:45:48 PM
Aroclor 1254		ND	36	µg/Kg-dry	1	8/22/2023 4:45:48 PM
Aroclor 1260		ND	36	µg/Kg-dry	1	8/22/2023 4:45:48 PM
Aroclor 1262		ND	36	μg/Kg-dry	1	8/22/2023 4:45:48 PM
Aroclor 1268		ND	36	µg/Kg-dry	1	8/22/2023 4:45:48 PM
Surr: Deca	chlorobiphenyl	58.0	48.1-152	%REC	1	8/22/2023 4:45:48 PM
TCLP MERC	URY - SW1311/7470A Prep: SW7470A - 8/25/20)23)				Analyst: AF
Mercury-TCLF	כ	ND	0.002	mg/L	1	8/25/2023 3:07:17 PM
TCLP METAL	.S - SW1311/6010C					Analyst: KH
(Prep: SW1311 - 8/23/20)23)				
Arsenic-TCLP)	ND	0.050	mg/L	1	8/25/2023 3:45:57 PM
Barium-TCLP		0.229	0.100	mg/L	1	8/25/2023 3:45:57 PM
Cadmium-TCI	LP	ND	0.050	mg/L	1	8/25/2023 3:45:57 PM
Chromium-TC	CLP	ND	0.050	mg/L	1	8/25/2023 3:45:57 PM
Lead-TCLP		ND	0.050	mg/L	1	8/25/2023 3:45:57 PM
Selenium-TCI	_P	ND	0.050	mg/L	1	8/25/2023 3:45:57 PM
Silver-TCLP		ND	0.100	mg/L	1	8/25/2023 3:45:57 PM
MOISTURE C	ONTENT-ASTM D2216 (NO	OT ELAP CE	RTIFIED)			Analyst: KTT
Percent Moist	ure	8.2	0.1	wt%	1	8/28/2023

CLIENT: Project:	Central Hudson Gas & Analysis of Water Eltings Corner Soil Sa	Electric		LabWork (PO#: 3748	Order: 2 3	30818086
Lab SampleI	D: 230818086-004			Collection Da	te: 8/18/2	023 12:35:00 PM
Client Sample	e ID: W5A-22			Matr	ix: SOIL	
Analyses		Result	RL Qu	ual Units	DF	Date Analyzed
POLYCHLOR	INATED BIPHENYLS - EP/ Prep: SW3545A - 8/22/20	A 8082A 023)				Analyst: KF
Aroclor 1016	•	NĎ	38	μg/Kg-dry	1	8/22/2023 5:00:00 PM
Aroclor 1221		ND	38	µg/Kg-dry	1	8/22/2023 5:00:00 PM
Aroclor 1232		ND	38	µg/Kg-dry	1	8/22/2023 5:00:00 PM
Aroclor 1242		ND	38	µg/Kg-dry	1	8/22/2023 5:00:00 PM
Aroclor 1248		ND	38	µg/Kg-dry	1	8/22/2023 5:00:00 PM
Aroclor 1254		ND	38	µg/Kg-dry	1	8/22/2023 5:00:00 PM
Aroclor 1260		ND	38	µg/Kg-dry	1	8/22/2023 5:00:00 PM
Aroclor 1262		ND	38	µg/Kg-dry	1	8/22/2023 5:00:00 PM
Aroclor 1268		ND	38	µg/Kg-dry	1	8/22/2023 5:00:00 PM
Surr: Decad	chlorobiphenyl	66.0	48.1-152	%REC	1	8/22/2023 5:00:00 PM
TCLP MERC	URY - SW1311/7470A Prep: SW7470A - 8/25/20)23)				Analyst: AF
Mercury-TCLF	5	ND	0.002	mg/L	1	8/25/2023 3:09:03 PM
TCLP METAL	S - SW1311/6010C					Analyst: KH
(Prep: SW1311 - 8/23/20	123)	0.050			
Arsenic-TCLP	-	ND	0.050	mg/L	1	8/25/2023 3:50:50 PM
Barlum-ICLP		ND	0.100	mg/L	1	8/25/2023 3:50:50 PM
Caumum-TC		ND	0.050	mg/L	1	8/25/2023 3.50.50 PM
		ND	0.050	mg/L	1	8/25/2023 3.50.50 PM
	D		0.050	mg/L	1	0/20/20/20 3.00.00 PM
	LL		0.050	mg/L	1	0/20/20/20 3.00.00 PM
Silver-TGLP		ND	0.100	mg/∟	I	8/23/2023 3.30.30 PN
MOISTURE C	ONTENT-ASTM D2216 (NO	OT ELAP CE	RTIFIED)			Analyst: KTT
Percent Moist	ure	13.2	0.1	wt%	1	8/28/2023

CLIENT: Project:	Central Hudson Gas & Analysis of Water Eltings Corner Soil Sa	Electric		LabWork (PO#: 3748	Order: 23 32	80818086
Lab SampleII	D: 230818086-005			Collection Da	te: 8/18/20	023 1:05:00 PM
Client Sample	e ID: W5A-23			Matr	ix: SOIL	
Analyses		Result	RL Qual	Units	DF	Date Analyzed
POLYCHLOR	INATED BIPHENYLS - EP/ Prep: SW3545A - 8/22/20	A 8082A 023)				Analyst: KF
Aroclor 1016		ND	38	µg/Kg-dry	1	8/22/2023 5:14:08 PM
Aroclor 1221		ND	38	µg/Kg-dry	1	8/22/2023 5:14:08 PM
Aroclor 1232		ND	38	µg/Kg-dry	1	8/22/2023 5:14:08 PM
Aroclor 1242		ND	38	µg/Kg-dry	1	8/22/2023 5:14:08 PM
Aroclor 1248		ND	38	µg/Kg-dry	1	8/22/2023 5:14:08 PM
Aroclor 1254		ND	38	µg/Kg-dry	1	8/22/2023 5:14:08 PM
Aroclor 1260		ND	38	µg/Kg-dry	1	8/22/2023 5:14:08 PM
Aroclor 1262		ND	38	µg/Kg-dry	1	8/22/2023 5:14:08 PM
Aroclor 1268		ND	38	µg/Kg-dry	1	8/22/2023 5:14:08 PM
Surr: Decad	chlorobiphenyl	76.0	48.1-152	%REC	1	8/22/2023 5:14:08 PM
TCLP MERCI	URY - SW1311/7470A Prep: SW7470A - 8/25/20)23)				Analyst: AF
Mercury-TCLF	2	ND	0.002	mg/L	1	8/25/2023 3:10:48 PM
TCLP METAL	S - SW1311/6010C					Analyst: KH
(Prep: SW1311 - 8/23/20)23)				
Arsenic-TCLP		ND	0.050	mg/L	1	8/25/2023 3:55:48 PM
Barium-TCLP		ND	0.100	mg/L	1	8/25/2023 3:55:48 PM
Cadmium-TCI	LP	ND	0.050	mg/L	1	8/25/2023 3:55:48 PM
Chromium-TC	CLP	ND	0.050	mg/L	1	8/25/2023 3:55:48 PM
Lead-TCLP	_	ND	0.050	mg/L	1	8/25/2023 3:55:48 PM
Selenium-TCL	_P	ND	0.050	mg/L	1	8/25/2023 3:55:48 PM
Silver-TCLP		ND	0.100	mg/L	1	8/25/2023 3:55:48 PM
MOISTURE C	ONTENT-ASTM D2216 (NG	OT ELAP CE	RTIFIED)			Analyst: KTT
Percent Moist	ure	12.0	0.1	wt%	1	8/28/2023

CHAL	VOF CUSTODY RECORD
AES	Work Order#:
	230818086

EXPERIENCE IS THE SOLUTION

	A full service	analytical re:	search lab	orate	ry offering	g sol	utions	<u>s to enviro</u>	nmental co	ncerns	
Client Na	me:	Address:									
Centra	al Hudson Gas & Electric										
Send Rep	ort 10:	Project Narr	e (Location	ı):	10			Samplers	Samplers Name:		
Ciliant Err	Eric Chastain	Elting	Corne	r S	foil San	pliv	19	Dere	Derok Marker		
	chastain@cenbud.com	D () (
Client Fa:	x No:	PO #: 						Sampiers	Signature:	186nt	
AES Sample	Client Sample 1D:	Date	Time A=am		Sample	е Тур	e	# of		A notveis	
1D		Sampled	P=pm		<u>Matrix</u>	<u>C</u>	G	Cont s			
001	L14-17	8/18/23	11:35	P	Soil		X	1	PCB,	KCRATCLP Metals	
500	L/U-18	8/18/23	11:50	P P	Soil		X				
003	14-19	8/18/23	12:05	Ô	Soil		X	l			
004	W5A-22	8/18/23	12:35	P	Soil		X		*	//	
005	W5A-23	8/18/23	13:05	Ð	Soil		X	(2	11	
				A P							
N				A P							
		A P									
				A P							
				A							
				A							
				A							
Shinmen	t Arrived Via:		<u> </u>	P Spi	cial Instruc	tions	/Rema	urks:	1		
FedEx	UPS Client AES Oth	er:									
Turnar	aund Time Requested.	yan bar magalan sa ana ang da ang									
(4) 1 Da	(4) 3 Day (4) Normal										
Relinquis	hed by: (Signature)	Received	by: (Signa	ture)					Date	Time	
Relinauis	hed by: (Signature)	Received	by: (Signa	ture)					Date	Time	
			, , ,	,					/		
Relinquis	hed by: (Signature)	Received	for Labor	ator	y by:	$\int_{\mathcal{X}}$	n		Date 8/18/	7 Time 23 (6 - co	
	Sample Temperature Ambient Ohilled)		P	rope	ely Preserv	ed			/ Re	ceived Within Holding Times	
	Chilling Process begun		C	(N ((Y) N	
No	tes: 4 ' (Notes		~					Notes:		
			· · · · · · ·								

314 North Pearl Street * Albany, New York 12207 * (518) 434-4546 * Fax (518) 434-0891

TERMS, CONDITIONS & LIMITATIONS

All service rendered by the Adirondack Environmental Services, Inc. are undertaken and all rates are based upon the following terms:

- (a) Neither Adirondack Environmental Services, Inc., nor any of its employees, agents or sub-contractors shall be liable for any loss or damage arising out of Adirondack Environmental Services, Inc.'s performance or nonperformance, whether by way of negligence or breach of contract, or otherwise, in any amount greater than twice the amount billed to the customer for the work leading to the claim of the customer. Said remedy shall be the sole and exclusive remedy against Adirondack Environmental Services, Inc. arising out of its work.
- (b) All claims made must be in writing within forty-five (45) days after delivery of the **Adirondack Environmental Services, Inc.** report regarding said work or such claim shall be deemed or irrevocably waived.
- (c) Adirondack Environmental Services, Inc. reports are submitted in writing and are for our customers only. Our customers are considered to be only those entities being billed for our services. Acquisition of an Adirondack Environmental Services, Inc. report by other than our customer does not constitute a representation of Adirondack Environmental Services, Inc. as to the accuracy of the contents thereof.
- (d) In no event shall Adirondack Environmental Services, Inc., its employees, agents or sub-contractors be responsible for consequential or special damages of any kind or in any amount.
- (e) No deviation from the terms set forth herein shall bind Adirondack Environmental Services, Inc. unless in writing and signed by a Director of Adirondack Environmental Services, Inc.
- (f) Results pertain only to items analyzed. Information supplied by client is assumed to be correct. This information may be used on reports and in calculations and Adirondack Environmental Services, Inc. is not responsible for the accuracy of this information.
- (g) Payments by Credit Card/Purchase Cards are subject to a 3% additional charge.

Experience is the solution 314 North Pearl Street Albany, New York 12207 (800) 848-4983 (518) 434-4546 Fax (518) 434-0891

November 22, 2023

Eric Chastain Central Hudson Gas & Electric 284 South Avenue Poughkeepsie, NY 12601

TEL: (845) 486-5734

Work Order No: 231108093 PO#: 37482

RE: RCRA Sampling Elting Corner Soil Sampling

Dear Eric Chastain:

"I certify that this data package is in compliance with the terms and conditions of the protocol, both technically and for completeness, to the best of my knowledge, for other than the conditions detailed in the Case Narrative. Release of the data contained in this hardcopy data package has been authorized by the Laboratory Director or his designee, as verified by the following signature."

Jana Doniel

Tara Daniels Laboratory Director

Workorder Sample Summary

Client: Central Hudson Gas & Electric

Work Order: 231108093

ProjectName: RCRA Sampling

ProjLocation: Elting Corner Soil Sampling

5				
AES Sample No	ClientSampID	Matrix	CollectionDate	DateReceived
231108093-001	L/u-17	Soil	11/8/2023 12:35:00 PM	11/8/2023 4:00:00 PM
231108093-002	L/u-18	Soil	11/8/2023 12:40:00 PM	11/8/2023 4:00:00 PM
231108093-003	L/u-19	Soil	11/8/2023 12:50:00 PM	11/8/2023 4:00:00 PM
231108093-004	WSA-22	Soil	11/8/2023 1:05:00 PM	11/8/2023 4:00:00 PM
231108093-005	WSA-23	Soil	11/8/2023 1:35:00 PM	11/8/2023 4:00:00 PM

Experience is the Solution

314 North Pearl Street • Albany, New York 12207 • (518) 434-4546 • Fax (518) 434-0891 www.adirondackenvironmental.com

Case Narrative

Client: Central Hudson – Elting Corner Soil Sampling

Case: 231108093

SDG: L/u-17

Inorganics – Total Metals (Soil)

- 1) The samples were analyzed for Site Specific Metals as specified on the chain of custody.
- 2) The soil samples received on 11/8/23 had a temperature of 4 °C.
- 3) The recovery for Aluminum, Calcium, Iron and Magnesium in the ICSA and the ICSAB check standards may be outside the required limit. The required concentration for these analytes in the check standards is 500,000 ug/L, 500,000 ug/L, 200,000 ug/L and 500,000 ug/L, respectively. The linear range on this instrument for Aluminum, Calcium, Iron and Magnesium is 250,000 ug/L, 250,000 ug/L, 100,000 ug/L and 250,000 ug/L, respectively. At this level accurate recovery of Aluminum, Calcium, Iron and Magnesium in the check standards is not possible. No further action is required.
- 4) The digested spike recoveries for the elements Barium and Lead for sample L/u-17 (AES sample number 231108093-001) were outside the required 75-125 % limits. A post digestion spike was performed and the recoveries for Barium and Lead were within the acceptable limits. The result for the element Barium for sample L/u-17 (AES sample number 231108093-001) is flagged with an "N" to denote the low recovery. The element Lead for sample L/u-17 (AES sample number 231108093-001) had a recovery outside the specified limits. The recovery for Lead was outside the specified limits, but the sample concentration was greater than four (4) times the spike level. No further action is required.
- 5) Sample L/u-17 (AES sample number 231108093-001) was used as the duplicate sample. The recovery between sample L/u-17 (AES sample number 231108093-001) and the duplicate sample for the element Arsenic was outside the required limits for sample duplication. The element Arsenic for sample L/u-17 (AES sample number 231108093-001) is flagged with a "Z" to denote the recovery outside of acceptable limits.
- 6) The elements Chromium and Lead for sample L/u-17 (AES sample number 231108093-001) did not meet the serial dilution criteria of 10 %. This indicates a possible chemical or physical interference.

Experience is the Solution

314 North Pearl Street • Albany, New York 12207 • (518) 434-4546 • Fax (518) 434-0891 www.adirondackenvironmental.com

"I certify that this data package is in compliance with the terms and conditions of the protocol, both technically and for completeness, to the best of my knowledge, for other than the conditions detailed above. Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or his designee, as verified by the following signature."

Van Donil

Laboratory Director

Date: <u>11/22/2023</u>

314 North Pearl Street Albany, New York 12207 518-434-4546♦ Fax: 518-434-0891

CHAIN OF CUSTODY RECORD

AES Work Order#: 231108093

EXPERIENCE IS THE SOLUTION

	A full service	analytical re	search labo	orato	ry offerin	g sol	ution	s to enviro	nmental co	oncerns		
Client Na	ime:	Address:										
Centro	I Hudson Gasa Electric											
Send Rep	port to: Frie Chartain	Project Nan	ne (Location	ı):	10	ŧ.	-	Samplers	Name:			
Client Ph	one No:	Elting	Elting Corner Soil Sampling Derek Merker									
ect	nastain@cenhud.com	PO #:						Samplers	Signature:	NUM		
Chent Fa	x No:		Time						1	98 er-		
Sample ID	Client Sample ID:	Date Sampled	A=am P=pm		Sampl <u>Matrix</u>	\underline{C}	e <u>G</u>	# of Cont's		An	alysis	
001	L/U - 17	11/8/23	12:35	A (P)	Soil		X	l	Total	RCRAN	Yetals	
002	L/4-18	11/8/23	12:40	A	Soil		X		9		11	
003	1/4-19	11/8/23	17:SD	A Ø	Soil		X	l	0		17	
00 U	W5A-22	11/8/23	13:05	À	Soil		X		5		17	
005	W5A-23	11/8/23	13:35	P	Soil		X	1	2		11	
				A P								
			A									
	-			A P								
				A P								
				A P	94484°9							
				A								
				A							<u></u>	
Shipmen	t Arrived Via:			P Spe	cial Instru	L ctions	I /Rema	arks:				
FedEx	UPS Client (AES) Othe	er:										
 Turnar	ound Time Requested:											
Stand	ard											
Relinquis	shed by: (Signature)	Received	by: (Signat	ure)		· · ·			Date		Time	
Relinquis	hed by: (Signature)	Received	by: (Signat	ture)	Ą	e*).			Date		Time	
Relinquis	hed by: (Signature)	Received	l for Labor	ator	y by:	5 (X	Receptor Pro-	Date	es 16	Time	
Ch	Sample Temperature Ambient (Chilled		P	rope	dy Preserv	ed			Ŕ	eccived Within	Holding Times	
	Chilling Process begun		- (Y	N N				Y N			
No	tes:	Notes	:`	Margaret .					Notes:			
L	··· · ·	1		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				L				

Date: 22-Nov-23

CLIENT: Central Hudson Gas & Electric

Work Order:231108093Reference:RCRA Sampling / Elting Corner Soil Sampli

PO#: 37482

Client Sample ID: L/u-17 Collection Date: 11/8/2023 12:35:00 PM Lab Sample ID: 231108093-001 Matrix: SOIL

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
MERCURY - SW 7471B (Prep: SW7471B	- 11/15/2023)					Analyst: AF
Mercury	0.025	0.022		μg/g-dry	1	11/15/2023 12:38:34 PM
ICP METALS EPA 6010C						Analyst: KH
(Prep: SW3050B	- 11/15/2023)					
Arsenic	1.20	1.10	Ζ	µg/g-dry	1	11/21/2023 12:51:00 PM
Barium	61.9	2.20	Ν	μg/g-dry	1	11/21/2023 12:51:00 PM
Cadmium	ND	1.10		μg/g-dry	1	11/21/2023 12:51:00 PM
Chromium	16.4	1.10		µg/g-dry	1	11/21/2023 12:51:00 PM
Lead	36.4	1.10		µg/g-dry	1	11/21/2023 12:51:00 PM
Selenium	ND	1.10		µg/g-dry	1	11/21/2023 12:51:00 PM
Silver	ND	2.20		μg/g-dry	1	11/21/2023 12:51:00 PM
MOISTURE CONTENT-ASTM	D2216 (NOT ELAP CER	TIFIED)				Analyst: KTT
Percent Moisture	8.3	0.1		wt%	1	11/17/2023

Qualifiers:

ND - Not Detected at the Reporting Limit

- J Analyte detected below quanititation limits
- B Analyte detected in the associated Method Blank
- X Value exceeds Maximum Contaminant Level

- S LCS Spike below accepted limits (+ above)
- Z RPD outside accepted recovery limits
- N Matrix Spike below accepted limits (+ above)
- T Tentitively Identified Compound-Estimated Conc.

Date: 22-Nov-23

CLIENT: Central Hudson Gas & Electric

Work Order:231108093Reference:RCRA Sampling / Elting Corner Soil SampliPO#:37482

 Client Sample ID:
 L/u-18

 Collection Date:
 11/8/2023 12:40:00 PM

 Lab Sample ID:
 231108093-002

 Matrix:
 SOIL

Analyses	Result	RL (Qual	Units	DF	Date Analyzed
MERCURY - SW 7471B (Prep: SW7471B -	11/15/2023)					Analyst: AF
Mercury	0.018	0.022	JΙ	µg/g-dry	1	11/15/2023 12:43:38 PM
ICP METALS EPA 6010C						Analyst: KH
(Prep: SW3050B -	11/15/2023)					
Arsenic	1.96	1.10		µg/g-dry	1	11/21/2023 1:33:00 PM
Barium	44.0	2.20		µg/g-dry	1	11/21/2023 1:33:00 PM
Cadmium	ND	1.10		µg/g-dry	1	11/21/2023 1:33:00 PM
Chromium	20.7	1.10		µg/g-dry	1	11/21/2023 1:33:00 PM
Lead	42.6	1.10		µg/g-dry	1	11/21/2023 1:33:00 PM
Selenium	ND	1.10		µg/g-dry	1	11/21/2023 1:33:00 PM
Silver	ND	2.20	I	µg/g-dry	1	11/21/2023 1:33:00 PM
MOISTURE CONTENT-ASTM D	2216 (NOT ELAP CER	TIFIED)				Analyst: KTT
Percent Moisture	10.1	0.1	,	wt%	1	11/17/2023

Qualifiers:

ND - Not Detected at the Reporting Limit

- J Analyte detected below quanititation limits
- B Analyte detected in the associated Method Blank
- X Value exceeds Maximum Contaminant Level

- S LCS Spike below accepted limits (+ above)
- Z RPD outside accepted recovery limits
- N Matrix Spike below accepted limits (+ above)
- T Tentitively Identified Compound-Estimated Conc.

Date: 22-Nov-23

CLIENT: Central Hudson Gas & Electric

Work Order:231108093Reference:RCRA Sampling / Elting Corner Soil SampliPO#:37482

 Client Sample ID:
 L/u-19

 Collection Date:
 11/8/2023 12:50:00 PM

 Lab Sample ID:
 231108093-003

 Matrix:
 SOIL

Analyses	Result	RL Q	Qual Units	DF	Date Analyzed
MERCURY - SW 7471B (Prep: SW7471B -	11/15/2023)				Analyst: AF
Mercury	0.019	0.021	J μg/g-dry	/ 1	11/15/2023 12:45:13 PM
ICP METALS EPA 6010C					Analyst: KH
(Prep: SW3050B -	11/15/2023)				
Arsenic	5.67	1.10	µg/g-dry	/ 1	11/21/2023 1:48:00 PM
Barium	40.9	2.10	µg/g-dry	/ 1	11/21/2023 1:48:00 PM
Cadmium	ND	1.10	µg/g-dry	/ 1	11/21/2023 1:48:00 PM
Chromium	15.5	1.10	µg/g-dry	/ 1	11/21/2023 1:48:00 PM
Lead	21.4	1.10	µg/g-dry	/ 1	11/21/2023 1:48:00 PM
Selenium	ND	1.10	µg/g-dry	/ 1	11/21/2023 1:48:00 PM
Silver	ND	2.10	µg/g-dry	/ 1	11/21/2023 1:48:00 PM
MOISTURE CONTENT-ASTM D2	216 (NOT ELAP CER	TIFIED)			Analyst: KTT
Percent Moisture	5.8	0.1	wt%	1	11/17/2023

Qualifiers:

ND - Not Detected at the Reporting Limit

- J Analyte detected below quanititation limits
- B Analyte detected in the associated Method Blank
- X Value exceeds Maximum Contaminant Level

- S LCS Spike below accepted limits (+ above)
- Z RPD outside accepted recovery limits
- N Matrix Spike below accepted limits (+ above)
- T Tentitively Identified Compound-Estimated Conc.

Date: 22-Nov-23

CLIENT: Central Hudson Gas & Electric

Work Order:231108093Reference:RCRA Sampling / Elting Corner Soil SampliPO#:37482

 Client Sample ID:
 WSA-22

 Collection Date:
 11/8/2023 1:05:00 PM

 Lab Sample ID:
 231108093-004

 Matrix:
 SOIL

Analyses	Result	RL Q	ual Units	DF	Date Analyzed
MERCURY - SW 7471B	11/15/2022				Analyst: AF
Mercury	0.021	0.022	J μg/g-dry	1	11/15/2023 12:46:43 PM
ICP METALS EPA 6010C					Analyst: KH
(Prep: SW3050B -	11/15/2023)				
Arsenic	4.30	1.10	µg/g-dry	1	11/21/2023 1:52:00 PM
Barium	33.7	2.20	µg/g-dry	1	11/21/2023 1:52:00 PM
Cadmium	ND	1.10	µg/g-dry	1	11/21/2023 1:52:00 PM
Chromium	20.0	1.10	μg/g-dry	1	11/21/2023 1:52:00 PM
Lead	17.1	1.10	µg/g-dry	1	11/21/2023 1:52:00 PM
Selenium	ND	1.10	µg/g-dry	1	11/21/2023 1:52:00 PM
Silver	ND	2.20	μg/g-dry	1	11/21/2023 1:52:00 PM
MOISTURE CONTENT-ASTM D	2216 (NOT ELAP CER	TIFIED)			Analyst: KTT
Percent Moisture	9.1	0.1	wt%	1	11/17/2023

Qualifiers:

ND - Not Detected at the Reporting Limit

- J Analyte detected below quanititation limits
- B Analyte detected in the associated Method Blank
- X Value exceeds Maximum Contaminant Level

- S LCS Spike below accepted limits (+ above)
- Z RPD outside accepted recovery limits
- N Matrix Spike below accepted limits (+ above)
- T Tentitively Identified Compound-Estimated Conc.

Date: 22-Nov-23

CLIENT: Central Hudson Gas & Electric

Work Order:231108093Reference:RCRA Sampling / Elting Corner Soil SampliPO#:37482

 Client Sample ID:
 WSA-23

 Collection Date:
 11/8/2023 1:35:00 PM

 Lab Sample ID:
 231108093-005

 Matrix:
 SOIL

Analyses	Result	RL (Qual Units	DF	Date Analyzed
MERCURY - SW 7471B (Prep: SW7471B	- 11/15/2023)				Analyst: AF
Mercury	0.031	0.022	µg/g-dry	1	11/15/2023 12:48:18 PM
ICP METALS EPA 6010C					Analyst: KH
(Prep: SW3050B	- 11/15/2023)				
Arsenic	0.91	1.10	J μg/g-dry	1	11/21/2023 1:57:00 PM
Barium	32.5	2.20	µg/g-dry	1	11/21/2023 1:57:00 PM
Cadmium	ND	1.10	µg/g-dry	1	11/21/2023 1:57:00 PM
Chromium	21.8	1.10	µg/g-dry	1	11/21/2023 1:57:00 PM
Lead	13.9	1.10	µg/g-dry	1	11/21/2023 1:57:00 PM
Selenium	ND	1.10	µg/g-dry	1	11/21/2023 1:57:00 PM
Silver	ND	2.20	μg/g-dry	1	11/21/2023 1:57:00 PM
MOISTURE CONTENT-ASTM	D2216 (NOT ELAP CER	TIFIED)			Analyst: KTT
Percent Moisture	9.5	0.1	wt%	1	11/17/2023

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

X - Value exceeds Maximum Contaminant Level

E - Value above quantitation range-Estimate

S - LCS Spike below accepted limits (+ above)

Z - RPD outside accepted recovery limits

N - Matrix Spike below accepted limits (+ above)

T - Tentitively Identified Compound-Estimated Conc.

Date: 22-Nov-23

CLIENT: Central Hudson Gas & Electric

Work Order:231108093Reference:RCRA Sampling / Elting Corner Soil Sampli

PO#: 37482

Client Sample ID: L/u-17 Collection Date: 11/8/2023 12:35:00 PM Lab Sample ID: 231108093-001 Matrix: SOIL

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
MERCURY - SW 7471B (Prep: SW7471B	- 11/15/2023)					Analyst: AF
Mercury	0.025	0.022		μg/g-dry	1	11/15/2023 12:38:34 PM
ICP METALS EPA 6010C						Analyst: KH
(Prep: SW3050B	- 11/15/2023)					
Arsenic	1.20	1.10	Ζ	µg/g-dry	1	11/21/2023 12:51:00 PM
Barium	61.9	2.20	Ν	µg/g-dry	1	11/21/2023 12:51:00 PM
Cadmium	ND	1.10		µg/g-dry	1	11/21/2023 12:51:00 PM
Chromium	16.4	1.10		µg/g-dry	1	11/21/2023 12:51:00 PM
Lead	36.4	1.10		µg/g-dry	1	11/21/2023 12:51:00 PM
Selenium	ND	1.10		µg/g-dry	1	11/21/2023 12:51:00 PM
Silver	ND	2.20		μg/g-dry	1	11/21/2023 12:51:00 PM
MOISTURE CONTENT-ASTM	D2216 (NOT ELAP CER	TIFIED)				Analyst: KTT
Percent Moisture	8.3	0.1		wt%	1	11/17/2023

Qualifiers:

ND - Not Detected at the Reporting Limit

- J Analyte detected below quanititation limits
- B Analyte detected in the associated Method Blank
- X Value exceeds Maximum Contaminant Level

- S LCS Spike below accepted limits (+ above)
- Z RPD outside accepted recovery limits
- N Matrix Spike below accepted limits (+ above)
- T Tentitively Identified Compound-Estimated Conc.

Date: 22-Nov-23

CLIENT: Central Hudson Gas & Electric

Work Order:231108093Reference:RCRA Sampling / Elting Corner Soil SampliPO#:37482

 Client Sample ID:
 L/u-18

 Collection Date:
 11/8/2023 12:40:00 PM

 Lab Sample ID:
 231108093-002

 Matrix:
 SOIL

Analyses	Result	RL (Qual	Units	DF	Date Analyzed
MERCURY - SW 7471B (Prep: SW7471B -	11/15/2023)					Analyst: AF
Mercury	0.018	0.022	JΙ	µg/g-dry	1	11/15/2023 12:43:38 PM
ICP METALS EPA 6010C						Analyst: KH
(Prep: SW3050B -	11/15/2023)					
Arsenic	1.96	1.10		µg/g-dry	1	11/21/2023 1:33:00 PM
Barium	44.0	2.20		µg/g-dry	1	11/21/2023 1:33:00 PM
Cadmium	ND	1.10		µg/g-dry	1	11/21/2023 1:33:00 PM
Chromium	20.7	1.10		µg/g-dry	1	11/21/2023 1:33:00 PM
Lead	42.6	1.10		µg/g-dry	1	11/21/2023 1:33:00 PM
Selenium	ND	1.10		µg/g-dry	1	11/21/2023 1:33:00 PM
Silver	ND	2.20	I	µg/g-dry	1	11/21/2023 1:33:00 PM
MOISTURE CONTENT-ASTM D	2216 (NOT ELAP CER	TIFIED)				Analyst: KTT
Percent Moisture	10.1	0.1	,	wt%	1	11/17/2023

Qualifiers:

ND - Not Detected at the Reporting Limit

- J Analyte detected below quanititation limits
- B Analyte detected in the associated Method Blank
- X Value exceeds Maximum Contaminant Level

- S LCS Spike below accepted limits (+ above)
- Z RPD outside accepted recovery limits
- N Matrix Spike below accepted limits (+ above)
- T Tentitively Identified Compound-Estimated Conc.

Date: 22-Nov-23

CLIENT: Central Hudson Gas & Electric

Work Order:231108093Reference:RCRA Sampling / Elting Corner Soil SampliPO#:37482

 Client Sample ID:
 L/u-19

 Collection Date:
 11/8/2023 12:50:00 PM

 Lab Sample ID:
 231108093-003

 Matrix:
 SOIL

Analyses	Result	RL Q	Qual Units	DF	Date Analyzed
MERCURY - SW 7471B (Prep: SW7471B -	11/15/2023)				Analyst: AF
Mercury	0.019	0.021	J μg/g-dry	/ 1	11/15/2023 12:45:13 PM
ICP METALS EPA 6010C					Analyst: KH
(Prep: SW3050B -	11/15/2023)				
Arsenic	5.67	1.10	µg/g-dry	/ 1	11/21/2023 1:48:00 PM
Barium	40.9	2.10	µg/g-dry	/ 1	11/21/2023 1:48:00 PM
Cadmium	ND	1.10	µg/g-dry	/ 1	11/21/2023 1:48:00 PM
Chromium	15.5	1.10	µg/g-dry	/ 1	11/21/2023 1:48:00 PM
Lead	21.4	1.10	µg/g-dry	/ 1	11/21/2023 1:48:00 PM
Selenium	ND	1.10	µg/g-dry	/ 1	11/21/2023 1:48:00 PM
Silver	ND	2.10	µg/g-dry	/ 1	11/21/2023 1:48:00 PM
MOISTURE CONTENT-ASTM D2	216 (NOT ELAP CER	TIFIED)			Analyst: KTT
Percent Moisture	5.8	0.1	wt%	1	11/17/2023

Qualifiers:

ND - Not Detected at the Reporting Limit

- J Analyte detected below quanititation limits
- B Analyte detected in the associated Method Blank
- X Value exceeds Maximum Contaminant Level

- S LCS Spike below accepted limits (+ above)
- Z RPD outside accepted recovery limits
- N Matrix Spike below accepted limits (+ above)
- T Tentitively Identified Compound-Estimated Conc.

Date: 22-Nov-23

CLIENT: Central Hudson Gas & Electric

Work Order:231108093Reference:RCRA Sampling / Elting Corner Soil SampliPO#:37482

 Client Sample ID:
 WSA-22

 Collection Date:
 11/8/2023 1:05:00 PM

 Lab Sample ID:
 231108093-004

 Matrix:
 SOIL

Analyses	Result	RL Q	ual Units	DF	Date Analyzed
MERCURY - SW 7471B	11/15/2022				Analyst: AF
Mercury	0.021	0.022	J μg/g-dry	1	11/15/2023 12:46:43 PM
ICP METALS EPA 6010C					Analyst: KH
(Prep: SW3050B -	11/15/2023)				
Arsenic	4.30	1.10	µg/g-dry	1	11/21/2023 1:52:00 PM
Barium	33.7	2.20	µg/g-dry	1	11/21/2023 1:52:00 PM
Cadmium	ND	1.10	μg/g-dry	1	11/21/2023 1:52:00 PM
Chromium	20.0	1.10	μg/g-dry	1	11/21/2023 1:52:00 PM
Lead	17.1	1.10	µg/g-dry	1	11/21/2023 1:52:00 PM
Selenium	ND	1.10	µg/g-dry	1	11/21/2023 1:52:00 PM
Silver	ND	2.20	μg/g-dry	1	11/21/2023 1:52:00 PM
MOISTURE CONTENT-ASTM D	2216 (NOT ELAP CER	TIFIED)			Analyst: KTT
Percent Moisture	9.1	0.1	wt%	1	11/17/2023

Qualifiers:

ND - Not Detected at the Reporting Limit

- J Analyte detected below quanititation limits
- B Analyte detected in the associated Method Blank
- X Value exceeds Maximum Contaminant Level

- S LCS Spike below accepted limits (+ above)
- Z RPD outside accepted recovery limits
- N Matrix Spike below accepted limits (+ above)
- T Tentitively Identified Compound-Estimated Conc.

Date: 22-Nov-23

CLIENT: Central Hudson Gas & Electric

Work Order:231108093Reference:RCRA Sampling / Elting Corner Soil SampliPO#:37482

 Client Sample ID:
 WSA-23

 Collection Date:
 11/8/2023 1:35:00 PM

 Lab Sample ID:
 231108093-005

 Matrix:
 SOIL

Analyses	Result	RL (Qual Units	DF	Date Analyzed
MERCURY - SW 7471B (Prep: SW7471B	- 11/15/2023)				Analyst: AF
Mercury	0.031	0.022	µg/g-dry	1	11/15/2023 12:48:18 PM
ICP METALS EPA 6010C					Analyst: KH
(Prep: SW3050B	- 11/15/2023)				
Arsenic	0.91	1.10	J μg/g-dry	1	11/21/2023 1:57:00 PM
Barium	32.5	2.20	µg/g-dry	1	11/21/2023 1:57:00 PM
Cadmium	ND	1.10	µg/g-dry	1	11/21/2023 1:57:00 PM
Chromium	21.8	1.10	µg/g-dry	1	11/21/2023 1:57:00 PM
Lead	13.9	1.10	µg/g-dry	1	11/21/2023 1:57:00 PM
Selenium	ND	1.10	µg/g-dry	1	11/21/2023 1:57:00 PM
Silver	ND	2.20	μg/g-dry	1	11/21/2023 1:57:00 PM
MOISTURE CONTENT-ASTM	D2216 (NOT ELAP CER	TIFIED)			Analyst: KTT
Percent Moisture	9.5	0.1	wt%	1	11/17/2023

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

X - Value exceeds Maximum Contaminant Level

E - Value above quantitation range-Estimate

S - LCS Spike below accepted limits (+ above)

Z - RPD outside accepted recovery limits

N - Matrix Spike below accepted limits (+ above)

T - Tentitively Identified Compound-Estimated Conc.

CLIENT: Central Hudson Gas & Electric

Work Order: 231108093

Project: RCRA Sampling

Date: 22-Nov-23

ANALYTICAL QC SUMMARY REPORT

BatchID: 105006

PS	SeqNo: 3676873		PrepDate: ////=17) PrenRef:/SW3050B)				Tes	tNo: SW601	0C	RunNo: 227165		
	Samp ID: 231108093-001	(L/u-17)		Prepl	xef:(SW3050B)		Un	nts: µg/g-dry	y Ana	Analysis Date. 11/21/2023		
Analyte		Result	PQL	SPK value	SPK Ref Val	<u>%REC</u>	LowLimit	<u>HighLimit</u>	RPD Ref Val	<u>%RPD</u>	<u>RPDLimit</u>	<u>Qual</u>
Arsenic		18.56	1.10	17.45	1.202	99.5	75	125	0	0		
Barium		946.8	2.20	872.5	61.93	101	75	125	0	0		
Cadmium	ו	22.14	1.10	21.81	0	102	75	125	0	0		
Chromiu	n	111.3	1.10	87.25	16.38	109	75	125	0	0		
Lead		43.11	1.10	8.725	36.36	77.4	75	125	0	0		
Selenium	1	4.004	1.10	4.363	0	91.8	75	125	0	0		
Silver		20.3	2.20	21.81	0	93.1	75	125	0	0		
SD	SeqNo: 3676874			Prepl	Date:		Tes	tNo: SW601	0C	RunNo: 2	27165	
	Samp ID: 231108093-001	(L/u-17)		Prepl	Ref:(SW3050B)		Un	its: µg/g-dr y	y Ana	alysis Date: 1	1/21/2023	
Analyte		Result	PQL	SPK value	SPK Ref Val	<u>%REC</u>	LowLimit	<u>HighLimit</u>	RPD Ref Val	<u>%RPD</u>	RPDLimit	Qual
Arsenic		14.21	5.50	0	0	0	0	0	1.202	169	0	
Barium		61.66	11.0	0	0	0	0	0	61.93	0.447	0	
Cadmium	า	ND	5.50	0	0	0	0	0	0	0	0	
Chromiu	n	18.34	5.50	0	0	0	0	0	16.38	11.3	0	
Lead		40.83	5.50	0	0	0	0	0	36.36	11.6	0	
Selenium	1	ND	5.50	0	0	0	0	0	0	0	0	
Silver		ND	11.0	0	0	0	0	0	0	0	0	
MBLK	SeqNo: 3676868			Prepl	Date:11/15/2023		Tes	tNo: SW601	0C	RunNo: 2	27165	
	Samp ID: MB-105006			Prepl	Ref:(SW3050B)		Un	its: μg /g	Ana	alysis Date: 1	1/21/2023	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic		ND	1.00									
Barium		ND	2.00									
Cadmium	ı	ND	1.00									
Chromiu	n	0.6529	1.00									J
Lead		ND	1.00									
Selenium	1	ND	1.00									
Silver		ND	2.00									

Qualifiers:

ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

J - Analyte detected below quantitation limits

Central Hudson Gas & Electric **CLIENT:**

Work Order: 231108093 **Project:**

RCRA Sampling

ANALYTICAL QC SUMMARY REPORT

BatchID: 105006

LCS	SeqNo: 3676869	PrepDate:11/15/202			Date:11/15/2023		TestNo: SW6010C			RunNo: 2	27165	
	Samp ID: LCS-105006			Prepl	Ref:(SW3050B)		Un	its: µg/g	Ana	lysis Date: 1	1/21/2023	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	<u>%RPD</u>	RPDLimit	Qual
Arsenic		196.5	1.00	180	0	109	81.111111	119.44444	0	0		
Barium		391.6	2.00	354	0	111	81.638418	118.0791	0	0		
Cadmiun	า	119.2	1.00	105	0	114	82.761905	118.09524	0	0		
Chromiu	n	265.6	1.00	232	0	114	81.465517	118.53448	0	0		
Lead		161.3	1.00	145	0	111	82.068966	117.93103	0	0		
Selenium	1	103.6	1.00	96.3	0	108	78.816199	121.49533	0	0		
Silver		49.8	2.00	47.3	0	105	79.492600	120.5074	0	0		
MS	SeqNo: 3676872			Prepl	Date:11/15/2023		Tes	tNo: SW601	0C	RunNo: 2	27165	
	Samp ID: 231108093-001	(L/u-17)		Prepl	Ref:(SW3050B)		Un	its: µg/g-dry	Ana	lysis Date: 1	1/21/2023	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic		10.9	1.10	8.725	1.202	111	75	125	0	0		
Barium		334.3	2.20	436.3	61.93	62.4	75	125	0	0		S
Cadmiun	ı	8.806	1.10	10.91	0	80.7	75	125	0	0		
Chromiu	n	60.73	1.10	43.63	16.38	102	75	125	0	0		
Lead		42.92	1.10	4.363	36.36	150	75	125	0	0		S
Selenium	1	2.612	1.10	2.181	0	120	75	125	0	0		
Silver		10.1	2.20	10.91	0	92.6	75	125	0	0		
DUP	SeqNo: 3676871			Prepl	Date:11/15/2023		Tes	tNo: SW601	0C	RunNo: 2	27165	
	Samp ID: 231108093-001	(L/u-17)		Prepl	Ref:(SW3050B)		Un	its: µg/g-dry	Ana Ana	lysis Date: 1	1/21/2023	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	<u>HighLimit</u>	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic		2.765	1.10	0	0	0	0	0	1.202	78.8	22.3	Z
Barium		72.39	2.20	0	0	0	0	0	61.93	15.6	24.4	
Cadmiun	ı	ND	1.10	0	0	0	0	0	0	0	26.4	
Chromiu	n	17.82	1.10	0	0	0	0	0	16.38	8.40	25	
Lead		42.56	1.10	0	0	0	0	0	36.36	15.7	25	
Selenium	1	ND	1.10	0	0	0	0	0	0	0	20.2	
Silver		ND	2.20	0	0	0	0	0	0	0	10.4	

Qualifiers:

ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

J - Analyte detected below quantitation limits

Work Order:231Project:RC

r: 231108093 RCRA Sampling

ANALYTICAL QC SUMMARY REPORT

BatchID: 105006

ССВ	SeqNo: 3676867 Samp ID: CCB-1		PrepDate: PrepRef:				Tes Un	tNo: E200.7 its: μg/L	Analy	RunNo: 227165 Analysis Date: 11/21/2023		
Analyte		<u>Result</u>	PQL	SPK value	SPK Ref Val	<u>%REC</u>	LowLimit	<u>HighLimit</u>	RPD Ref Val	<u>%RPD</u> RPDLimit	Qual	
Aluminur	n	ND	200	0	0	0	0	0	0	0		
Antimony	/	0.4504	60.0	0	0	0	0	0	0	0		
Arsenic		ND	10.0	0	0	0	0	0	0	0		
Barium		0.3509	200	0	0	0	0	0	0	0		
Beryllium	1	ND	5.00	0	0	0	0	0	0	0		
Boron		ND	50.0	0	0	0	0	0	0	0		
Cadmiun	า	ND	5.00	0	0	0	0	0	0	0		
Calcium		ND	5000	0	0	0	0	0	0	0		
Chromiu	m	ND	10.0	0	0	0	0	0	0	0		
Cobalt		ND	50.0	0	0	0	0	0	0	0		
Copper		ND	25.0	0	0	0	0	0	0	0		
Iron		ND	100	0	0	0	0	0	0	0		
Lead		0.492	3.00	0	0	0	0	0	0	0		
Lithium		ND	100	0	0	0	0	0	0	0		
Magnesi	um	ND	5000	0	0	0	0	0	0	0		
Mangane	ese	ND	15.0	0	0	0	0	0	0	0		
Molybde	num	ND	50.0	0	0	0	0	0	0	0		
Nickel		ND	40.0	0	0	0	0	0	0	0		
Potassiu	m	ND	5000	0	0	0	0	0	0	0		
Selenium	1	ND	5.00	0	0	0	0	0	0	0		
Silver		ND	10.0	0	0	0	0	0	0	0		
Sodium		ND	5000	0	0	0	0	0	0	0		
Strontiun	า	0.5286	20.0	0	0	0	0	0	0	0		
Thallium		ND	10.0	0	0	0	0	0	0	0		
Tin		ND	50.0	0	0	0	0	0	0	0		
Titanium		0.6691	50.0	0	0	0	0	0	0	0		
Vanadiur	n	4.272	50.0	0	0	0	0	0	0	0		
Zinc		ND	20.0	0	0	0	0	0	0	0		
CCB	SeqNo: 3676877			Prepl	Date:		Tes	tNo: E200.7		RunNo: 227165		
	Samp ID: CCB-2			Prepl	Ref:		Un	its: µg /L	Analy	sis Date: 11/21/2023		
Analyte		<u>Result</u>	PQL	SPK value	SPK Ref Val	<u>%REC</u>	LowLimit	<u>HighLimit</u>	RPD Ref Val	<u>%RPD</u> RPDLimi	Qual	
				~ ~ ~								

Qualifiers:

ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method Blank

J - Analyte detected below quantitation limits

Work Order: 231108093 **Project:**

RCRA Sampling

ANALYTICAL QC SUMMARY REPORT

BatchID: 105006

CCB	SeqNo: 3676877		PrepDate:					tNo: E200.7	RunNo: 227165			
	Samp ID: CCB-2			PrepF	Ref:		Uni	ts: µg/L	Analys	sis Date: 11/21/2023		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	<u>%RPD</u> RPDLimit	Qual	
Aluminur	n	12.64	200	0	0	0	0	0	0	0		
Antimony	/	ND	60.0	0	0	0	0	0	0	0		
Arsenic		ND	10.0	0	0	0	0	0	0	0		
Barium		0.24	200	0	0	0	0	0	0	0		
Beryllium	1	ND	5.00	0	0	0	0	0	0	0		
Boron		ND	50.0	0	0	0	0	0	0	0		
Cadmiun	า	ND	5.00	0	0	0	0	0	0	0		
Calcium		ND	5000	0	0	0	0	0	0	0		
Chromiu	m	2.656	10.0	0	0	0	0	0	0	0		
Cobalt		ND	50.0	0	0	0	0	0	0	0		
Copper		0.455	25.0	0	0	0	0	0	0	0		
Iron		ND	100	0	0	0	0	0	0	0		
Lead		0.492	3.00	0	0	0	0	0	0	0		
Lithium		ND	100	0	0	0	0	0	0	0		
Magnesi	um	18.79	5000	0	0	0	0	0	0	0		
Mangane	ese	ND	15.0	0	0	0	0	0	0	0		
Molybde	num	ND	50.0	0	0	0	0	0	0	0		
Nickel		ND	40.0	0	0	0	0	0	0	0		
Potassiu	m	ND	5000	0	0	0	0	0	0	0		
Selenium	ו	ND	5.00	0	0	0	0	0	0	0		
Silver		ND	10.0	0	0	0	0	0	0	0		
Sodium		ND	5000	0	0	0	0	0	0	0		
Strontiun	า	ND	20.0	0	0	0	0	0	0	0		
Thallium		ND	10.0	0	0	0	0	0	0	0		
Tin		ND	50.0	0	0	0	0	0	0	0		
Titanium		1.582	50.0	0	0	0	0	0	0	0		
Vanadiur	n	ND	50.0	0	0	0	0	0	0	0		
Zinc		ND	20.0	0	0	0	0	0	0	0		
ССВ	SeqNo: 3676916		PrepDate:			Test	tNo: E200.7		RunNo: 227165			
	Samp ID: CCB-3			PrepF	Ref:		Uni	ts: μg/L	Analys	sis Date: 11/21/2023		
Analyte		<u>Result</u>	PQL	SPK value	SPK Ref Val	<u>%REC</u>	LowLimit	<u>HighLimit</u>	RPD Ref Val	<u>%RPD</u> <u>RPDLimit</u>	Qual	

Qualifiers:

ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method Blank

J - Analyte detected below quantitation limits

Work Order:2.Project:R

231108093 RCRA Sampling

ANALYTICAL QC SUMMARY REPORT

BatchID: 105006

ССВ	SeqNo: 3676916	PrepDate:					TestNo: E200.7			RunNo: 227165			
	Samp ID: CCB-3			PrepF	ket:		Un	its: µg/L	Anal	ysis Date: 11/21/2023			
<u>Analyte</u>		Result	PQL	SPK value	SPK Ref Val	<u>%REC</u>	LowLimit	<u>HighLimit</u>	RPD Ref Val	<u>%RPD</u> RPDLimit	Qual		
Aluminum		ND	200	0	0	0	0	0	0	0			
Antimony		ND	60.0	0	0	0	0	0	0	0			
Arsenic		2.087	10.0	0	0	0	0	0	0	0			
Barium		1.44	200	0	0	0	0	0	0	0			
Beryllium		ND	5.00	0	0	0	0	0	0	0			
Boron		ND	50.0	0	0	0	0	0	0	0			
Cadmium		ND	5.00	0	0	0	0	0	0	0			
Calcium		ND	5000	0	0	0	0	0	0	0			
Chromium		ND	10.0	0	0	0	0	0	0	0			
Cobalt		ND	50.0	0	0	0	0	0	0	0			
Copper		0.0923	25.0	0	0	0	0	0	0	0			
Iron		ND	100	0	0	0	0	0	0	0			
Lead		ND	3.00	0	0	0	0	0	0	0			
Litnium	~	ND	5000	0	0	0	0	0	0	0			
Manganas			15.0	0	0	0	0	0	0	0			
Molybdop			50.0	0	0	0	0	0	0	0			
Nickol			40.0	0	0	0	0	0	0	0			
Potassium			5000	0	0	0	0	0	0	0			
Selenium	I	ND	5 00	0	0	0	0	0	0	0			
Silver		ND	10.0	0	0	0	0	0	0	0			
Sodium		ND	5000	0	0	0	0	0	0	0			
Strontium		ND	20.0	0	0	0	0	0	0	0 0			
Thallium		ND	10.0	0	0	0	0	0	0	Õ			
Tin		ND	50.0	0	0 0	0	0	0	0	0 0			
Titanium		ND	50.0	0	0	0	0	0	0	0			
Vanadium		ND	50.0	0	0	0	0	0	0	0			
Zinc		ND	20.0	0	0	0	0	0	0	0			
ССВ	SeqNo: 3676926			PrepL	Date:		Tes	tNo: E200.7		RunNo: 227165			
	Samp ID: CCB-4			PrepF	Ref:		Un	its: µg/L	Anal	ysis Date: 11/21/2023			
Analyte		Result	PQL	SPK value	SPK Ref Val	<u>%REC</u>	<u>LowLimit</u>	<u>HighLimit</u>	RPD Ref Val	<u>%RPD</u> <u>RPDLimit</u>	Qual		
Analyte	SeqNo: 3676926 Samp ID: CCB-4	<u>Result</u>	PQL	PrepL PrepF <u>SPK value</u>	Ref: SPK Ref Val	<u>%REC</u>	Tes Un <u>LowLimit</u>	tNo: E200.7 its: μg/L <u>HighLimit</u>	Anal <u>y</u> RPD Ref Val	RunNo: 227 ysis Date: 11/2 <u>%RPD</u> <u>F</u>	21/2023 RPDLimit		

Qualifiers:

ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method Blank

J - Analyte detected below quantitation limits

R - RPD outside accepted recovery limits

Page 5 of 15

Work Order: 231108093 **Project:**

RCRA Sampling

ANALYTICAL QC SUMMARY REPORT

BatchID: 105006

ССВ	SeqNo: 3676926		PrepDate:					tNo: E200.7	RunNo: 227165			
	Samp ID: CCB-4			Prepl	Ref:		Un	its: µg/L	Analy	Analysis Date: 11/21/2023		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	<u>HighLimit</u>	RPD Ref Val	<u>%RPD</u> RPDLimit	Qual	
Aluminur	n	2.138	200	0	0	0	0	0	0	0		
Antimony	/	ND	60.0	0	0	0	0	0	0	0		
Arsenic		ND	10.0	0	0	0	0	0	0	0		
Barium		1.048	200	0	0	0	0	0	0	0		
Beryllium	1	ND	5.00	0	0	0	0	0	0	0		
Boron		0.1982	50.0	0	0	0	0	0	0	0		
Cadmiun	า	ND	5.00	0	0	0	0	0	0	0		
Calcium		ND	5000	0	0	0	0	0	0	0		
Chromiu	m	ND	10.0	0	0	0	0	0	0	0		
Cobalt		ND	50.0	0	0	0	0	0	0	0		
Copper		ND	25.0	0	0	0	0	0	0	0		
Iron		ND	100	0	0	0	0	0	0	0		
Lead		ND	3.00	0	0	0	0	0	0	0		
Lithium		ND	100	0	0	0	0	0	0	0		
Magnesi	um	13.16	5000	0	0	0	0	0	0	0		
Mangane	ese	ND	15.0	0	0	0	0	0	0	0		
Molybde	num	ND	50.0	0	0	0	0	0	0	0		
Nickel		ND	40.0	0	0	0	0	0	0	0		
Potassiu	m	ND	5000	0	0	0	0	0	0	0		
Selenium	ı	ND	5.00	0	0	0	0	0	0	0		
Silver		ND	10.0	0	0	0	0	0	0	0		
Sodium		ND	5000	0	0	0	0	0	0	0		
Strontiun	n	5.937	20.0	0	0	0	0	0	0	0		
Thallium		ND	10.0	0	0	0	0	0	0	0		
Tin		ND	50.0	0	0	0	0	0	0	0		
Titanium		2.069	50.0	0	0	0	0	0	0	0		
Vanadiur	n	ND	50.0	0	0	0	0	0	0	0		
Zinc		ND	20.0	0	0	0	0	0	0	0		
CCV	SeqNo: 3676866			Prepl	Date:		Tes	tNo: E200.7		RunNo: 227165		
	Samp ID: CCV-1			Prepl	Ref:		Un	its: µg/L	Analy	sis Date: 11/21/2023		
Analyte		Result	PQL	<u>SPK value</u>	SPK Ref Val	<u>%REC</u>	<u>LowLimit</u>	<u>HighLimit</u>	RPD Ref Val	<u>%RPD</u> <u>RPDLimit</u>	Qual	

Qualifiers:

ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method Blank

J - Analyte detected below quantitation limits

Work Order: Project:

er: 231108093 RCRA Sampling

ANALYTICAL QC SUMMARY REPORT

BatchID: 105006

CCV	SeqNo: 3676866			PrepL	Date:		Tes	tNo: E200.7		RunNo: 227165	
	Samp ID: CCV-1			PrepF	lef:		Un	its: µg/L	Analys	is Date: 11/21/2023	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD RPDLimit	Qual
Aluminun	n	1972	200	2000	0	98.6	90	110	0	0	
Antimony	1	1927	60.0	2000	0	96.4	90	110	0	0	
Arsenic		2055	10.0	2000	0	103	90	110	0	0	
Barium		2065	200	2000	0	103	90	110	0	0	
Beryllium		2016	5.00	2000	0	101	90	110	0	0	
Boron		1957	50.0	2000	0	97.8	90	110	0	0	
Cadmium	ו	2130	5.00	2000	0	106	90	110	0	0	
Calcium		2159	5000	2000	0	108	90	110	0	0	
Chromiur	n	2010	10.0	2000	0	100	90	110	0	0	
Cobalt		2004	50.0	2000	0	100	90	110	0	0	
Copper		2075	25.0	2000	0	104	90	110	0	0	
Iron		2139	100	2000	0	107	90	110	0	0	
Lead		2173	3.00	2000	0	109	90	110	0	0	
Lithium		1989	100	2000	0	99.4	90	110	0	0	
Magnesiu	ım	2035	5000	2000	0	102	90	110	0	0	
Mangane	se	1980	15.0	2000	0	99	90	110	0	0	
Molybder	num	1864	50.0	2000	0	93.2	90	110	0	0	
Nickel		2073	40.0	2000	0	104	90	110	0	0	
Potassiu	m	9192	5000	10000	0	91.9	90	110	0	0	
Selenium	1	2042	5.00	2000	0	102	90	110	0	0	
Silver		515.2	10.0	500	0	103	90	110	0	0	
Sodium		2016	5000	2000	0	101	90	110	0	0	
Strontium	ı	2088	20.0	2000	0	104	90	110	0	0	
Thallium		2174	10.0	2000	0	109	90	110	0	0	
Tin		2043	50.0	2000	0	102	90	110	0	0	
Titanium		ND	50.0	0	0	0	90	110	0	0	
Vanadiur	n	2033	50.0	2000	0	102	90	110	0	0	
Zinc		2106	20.0	2000	0	105	90	110	0	0	
CCV	SeqNo: 3676876			PrepL	Date:		Tes	tNo: E200.7		RunNo: 227165	
	Samp ID: CCV-2			PrepF	Ref:		Un	its: µg/L	Analys	is Date: 11/21/2023	
Analyte		<u>Result</u>	PQL	SPK value	SPK Ref Val	<u>%REC</u>	<u>LowLimit</u>	<u>HighLimit</u>	RPD Ref Val	<u>%RPD</u> <u>RPDLimit</u>	Qual

Qualifiers:

ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method Blank

J - Analyte detected below quantitation limits

Work Order: Project:

er: 231108093 RCRA Sampling

ANALYTICAL QC SUMMARY REPORT

BatchID: 105006

CCV SeqNo: 3676876				PrepL)ate:		TestNo: E200.7		RunNo: 227165		
	Samp ID: CCV-2			PrepF	lef:		Uni	ts: µg/L	Analysi	s Date: 11/21/2023	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	<u>%RPD</u> RPDLimit	Qual
Aluminur	n	2121	200	2000	0	106	90	110	0	0	
Antimony	1	2158	60.0	2000	0	108	90	110	0	0	
Arsenic		1997	10.0	2000	0	99.8	90	110	0	0	
Barium		1999	200	2000	0	100	90	110	0	0	
Beryllium	I	1972	5.00	2000	0	98.6	90	110	0	0	
Boron		2129	50.0	2000	0	106	90	110	0	0	
Cadmiun	ו	2084	5.00	2000	0	104	90	110	0	0	
Calcium		1976	5000	2000	0	98.8	90	110	0	0	
Chromiu	n	1898	10.0	2000	0	94.9	90	110	0	0	
Cobalt		1980	50.0	2000	0	99	90	110	0	0	
Copper		2003	25.0	2000	0	100	90	110	0	0	
Iron		2000	100	2000	0	100	90	110	0	0	
Lead		2138	3.00	2000	0	107	90	110	0	0	
Lithium		1883	100	2000	0	94.1	90	110	0	0	
Magnesi	um	1958	5000	2000	0	97.9	90	110	0	0	
Mangane	ese	1939	15.0	2000	0	97	90	110	0	0	
Molybde	num	1826	50.0	2000	0	91.3	90	110	0	0	
Nickel		2029	40.0	2000	0	101	90	110	0	0	
Potassiu	m	9393	5000	10000	0	93.9	90	110	0	0	
Selenium	1	1981	5.00	2000	0	99.1	90	110	0	0	
Silver		504.3	10.0	500	0	101	90	110	0	0	
Sodium		1866	5000	2000	0	93.3	90	110	0	0	
Strontiun	ו	2068	20.0	2000	0	103	90	110	0	0	
Thallium		2154	10.0	2000	0	108	90	110	0	0	
Tin		2017	50.0	2000	0	101	90	110	0	0	
Titanium		ND	50.0	0	0	0	90	110	0	0	
Vanadiur	n	1982	50.0	2000	0	99.1	90	110	0	0	
Zinc		2084	20.0	2000	0	104	90	110	0	0	
CCV	SeqNo: 3676915			PrepL)ate:		Tes	tNo: E200.7		RunNo: 227165	
	Samp ID: CCV-3			PrepF	Ref:		Uni	its: μg/L	Analysi	s Date: 11/21/2023	
Analyte		<u>Result</u>	PQL	SPK value	SPK Ref Val	<u>%REC</u>	LowLimit	<u>HighLimit</u>	RPD Ref Val	<u>%RPD</u> <u>RPDLimit</u>	Qual

Qualifiers:

ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method Blank

J - Analyte detected below quantitation limits

Work Order: Project:

: 231108093 RCRA Sampling

ANALYTICAL QC SUMMARY REPORT

BatchID: 105006

CCV	SeqNo: 3676915			PrepL	Date:		Tes	tNo: E200.7		RunNo: 227165		
	Samp ID: CCV-3			PrepF	Ref:		Un	its: µg/L	Analys	Analysis Date: 11/21/2023		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	<u>HighLimit</u>	RPD Ref Val	<u>%RPD</u> <u>RPDLimit</u>	Qual	
Aluminun	n	2108	200	2000	0	105	90	110	0	0		
Antimony	,	2160	60.0	2000	0	108	90	110	0	0		
Arsenic		2006	10.0	2000	0	100	90	110	0	0		
Barium		1997	200	2000	0	99.9	90	110	0	0		
Beryllium		1969	5.00	2000	0	98.5	90	110	0	0		
Boron		2130	50.0	2000	0	106	90	110	0	0		
Cadmium	1	2089	5.00	2000	0	104	90	110	0	0		
Calcium		1975	5000	2000	0	98.8	90	110	0	0		
Chromiur	n	1909	10.0	2000	0	95.4	90	110	0	0		
Cobalt		1991	50.0	2000	0	99.6	90	110	0	0		
Copper		2008	25.0	2000	0	100	90	110	0	0		
Iron		2004	100	2000	0	100	90	110	0	0		
Lead		2147	3.00	2000	0	107	90	110	0	0		
Lithium		1900	100	2000	0	95	90	110	0	0		
Magnesiu	ım	1948	5000	2000	0	97.4	90	110	0	0		
Mangane	se	1944	15.0	2000	0	97.2	90	110	0	0		
Molybder	num	1832	50.0	2000	0	91.6	90	110	0	0		
Nickel		2034	40.0	2000	0	102	90	110	0	0		
Potassiu	n	9409	5000	10000	0	94.1	90	110	0	0		
Selenium	l	1991	5.00	2000	0	99.6	90	110	0	0		
Silver		499.3	10.0	500	0	99.9	90	110	0	0		
Sodium		1897	5000	2000	0	94.9	90	110	0	0		
Strontium	1	2085	20.0	2000	0	104	90	110	0	0		
Thallium		2153	10.0	2000	0	108	90	110	0	0		
Tin		2023	50.0	2000	0	101	90	110	0	0		
Titanium		0.73	50.0	0	0	0	90	110	0	0		
Vanadiur	n	2005	50.0	2000	0	100	90	110	0	0		
Zinc		2092	20.0	2000	0	105	90	110	0	0		
CCV	SeqNo: 3676925			PrepL	Date:		Tes	tNo: E200.7		RunNo: 227165		
	Samp ID: CCV-4			PrepF	Ref:		Un	its: µg/L	Analys	is Date: 11/21/2023		
Analyte		<u>Result</u>	PQL	SPK value	SPK Ref Val	<u>%REC</u>	<u>LowLimit</u>	<u>HighLimit</u>	RPD Ref Val	<u>%RPD</u> <u>RPDLimit</u>	<u>Qual</u>	

Qualifiers:

ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method Blank

J - Analyte detected below quantitation limits

R - RPD outside accepted recovery limits

Page 9 of 15

Work Order: Project:

r: 231108093 RCRA Sampling

ANALYTICAL QC SUMMARY REPORT

BatchID: 105006

CCV	SeqNo: 3676925			PrepD)ate:		Tes	tNo: E200.7		RunNo: 227165	
	Samp ID: CCV-4			PrepR	Ref:		Un	its: µg/L	Analys	is Date: 11/21/2023	
<u>Analyte</u>		<u>Result</u>	PQL	SPK value	<u>SPK Ref Val</u>	<u>%REC</u>	LowLimit	<u>HighLimit</u>	RPD Ref Val	<u>%RPD</u> <u>RPDLimit</u>	<u>Qual</u>
Aluminun	n	2086	200	2000	0	104	90	110	0	0	
Antimony	/	2130	60.0	2000	0	106	90	110	0	0	
Arsenic		1969	10.0	2000	0	98.4	90	110	0	0	
Barium		1976	200	2000	0	98.8	90	110	0	0	
Beryllium	1	1942	5.00	2000	0	97.1	90	110	0	0	
Boron		2103	50.0	2000	0	105	90	110	0	0	
Cadmium	ו	2059	5.00	2000	0	103	90	110	0	0	
Calcium		1957	5000	2000	0	97.9	90	110	0	0	
Chromiur	n	1878	10.0	2000	0	93.9	90	110	0	0	
Cobalt		1960	50.0	2000	0	98	90	110	0	0	
Copper		1980	25.0	2000	0	99	90	110	0	0	
Iron		1982	100	2000	0	99.1	90	110	0	0	
Lead		2108	3.00	2000	0	105	90	110	0	0	
Lithium		1875	100	2000	0	93.7	90	110	0	0	
Magnesiu	um	1898	5000	2000	0	94.9	90	110	0	0	
Mangane	ese	1916	15.0	2000	0	95.8	90	110	0	0	
Molybder	num	2086	50.0	2000	0	104	90	110	0	0	
Nickel		1994	40.0	2000	0	99.7	90	110	0	0	
Potassiu	m	9921	5000	10000	0	99.2	90	110	0	0	
Selenium	1	1966	5.00	2000	0	98.3	90	110	0	0	
Silver		494.8	10.0	500	0	99	90	110	0	0	
Sodium		1863	5000	2000	0	93.2	90	110	0	0	
Strontium	ו	2047	20.0	2000	0	102	90	110	0	0	
Thallium		2119	10.0	2000	0	106	90	110	0	0	
Tin		1994	50.0	2000	0	99.7	90	110	0	0	
Titanium		ND	50.0	0	0	0	90	110	0	0	
Vanadiur	n	1972	50.0	2000	0	98.6	90	110	0	0	
Zinc		2056	20.0	2000	0	103	90	110	0	0	
CRI	SeqNo: 3676863			PrepD)ate:		Tes	tNo: E200.7		RunNo: 227165	
	Samp ID: CRI-1			PrepR	lef:		Un	its: µg/L	Analys	is Date: 11/21/2023	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	<u>%RPD</u> <u>RPDLimit</u>	Qual
				~ ~ .							

Qualifiers:

ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method Blank

J - Analyte detected below quantitation limits

Work Order:231108093Project:RCRA Sampling

ANALYTICAL QC SUMMARY REPORT

BatchID: 105006

CRI	SeqNo: 3676863			Prepl Prepl	Date: Ref:		Tes	tNo: E200.7	Anal	RunNo: 227165	
				Тер				μ <u>σ</u> , μ <u>σ</u> , μ	,		
Analyte		Result	PQL	SPK value	SPK Ref Val	<u>%REC</u>	<u>LowLimit</u>	<u>HighLimit</u>	RPD Ref Val	<u>%RPD</u> <u>RPDLimit</u>	<u>Qual</u>
Arsenic		16.69	10.0	20	0	83.5	50	150	0	0	
Barium		0.7683	200	0	0	0	50	150	0	0	
Cadmiun	1	10.19	5.00	10	0	102	50	150	0	0	
Chromiu	n	16.09	10.0	20	0	80.4	50	150	0	0	
Lead		6.742	3.00	6	0	112	50	150	0	0	
Selenium	1	10.68	5.00	10	0	107	50	150	0	0	
Silver		16.19	10.0	20	0	81	50	150	0	0	
CRI	SeqNo: 3676922			Prepl	Date:		Tes	tNo: E200.7		RunNo: 227165	
	Samp ID: CRI-2			Prepl	Ref:		Un	its: µg/L	Anal	ysis Date: 11/21/2023	
Analyte		Result	PQL	<u>SPK value</u>	SPK Ref Val	<u>%REC</u>	LowLimit	<u>HighLimit</u>	RPD Ref Val	<u>%RPD</u> RPDLimit	<u>Qual</u>
Arsenic		22.54	10.0	20	0	113	50	150	0	0	
Barium		0.9376	200	0	0	0	50	150	0	0	
Cadmium	ı	9.368	5.00	10	0	93.7	50	150	0	0	
Chromiu	n	23	10.0	20	0	115	50	150	0	0	
Lead		5.415	3.00	6	0	90.2	50	150	0	0	
Selenium	1	8.799	5.00	10	0	88	50	150	0	0	
Silver		22.87	10.0	20	0	114	50	150	0	0	
ICB	SeqNo: 3676862			Prepl	Date:		Tes	tNo: E200.7		RunNo: 227165	
	Samp ID: ICB-1			Prepl	Ref:		Un	its: µg/L	Anal	ysis Date: 11/21/2023	
Analyte		Result	PQL	<u>SPK value</u>	SPK Ref Val	<u>%REC</u>	<u>LowLimit</u>	<u>HighLimit</u>	RPD Ref Val	<u>%RPD</u> RPDLimit	Qual
Arsenic		ND	10.0	0	0	0	0	0	0	0	
Barium		0.702	200	0	0	0	0	0	0	0	
Cadmium	ı	0.7034	5.00	0	0	0	0	0	0	0	
Chromiu	n	ND	10.0	0	0	0	0	0	0	0	
Lead		1.007	3.00	0	0	0	0	0	0	0	
Selenium	1	ND	5.00	0	0	0	0	0	0	0	
Silver		0.3605	10.0	0	0	0	0	0	0	0	

Qualifiers: NI

ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

J - Analyte detected below quantitation limits

RCRA Sampling **Project:**

Work Order:

ANALYTICAL QC SUMMARY REPORT

BatchID: 105006

ICV	SeqNo: 3676861			PrepL	Date:		Tes	tNo: E200.7		RunNo: 227165	
	Samp ID: ICV-1			PrepF	Ref:		Un	its: µg/L	Anal	ysis Date: 11/21/2023	
Analyte		Result	PQL	SPK value	SPK Ref Val	<u>%REC</u>	LowLimit	<u>HighLimit</u>	RPD Ref Val	<u>%RPD</u> RPDLimit	<u>Qual</u>
Arsenic		2035	10.0	2000	0	102	90	110	0	0	
Barium		2061	200	2000	0	103	90	110	0	0	
Cadmium	ı	2095	5.00	2000	0	105	90	110	0	0	
Chromiur	n	2016	10.0	2000	0	101	90	110	0	0	
Lead		2061	3.00	2000	0	103	90	110	0	0	
Selenium		2035	5.00	2000	0	102	90	110	0	0	
Silver		516.8	10.0	500	0	103	90	110	0	0	
ICSA	SeqNo: 3676864			PrepL	Date:		Tes	tNo: E200.7		RunNo: 227165	
	Samp ID: ICSA-1			PrepF	Ref:		Un	its: µg/L	Anal	ysis Date: 11/21/2023	
Analyte		Result	PQL	SPK value	SPK Ref Val	<u>%REC</u>	<u>LowLimit</u>	<u>HighLimit</u>	RPD Ref Val	<u>%RPD</u> <u>RPDLimit</u>	<u>Qual</u>
Arsenic		ND	10.0	0	0	0	0	0	0	0	
Barium		0.398	200	0	0	0	0	0	0	0	
Cadmium	1	ND	5.00	0	0	0	0	0	0	0	
Chromiur	n	ND	10.0	0	0	0	0	0	0	0	
Lead		ND	3.00	0	0	0	0	0	0	0	
Selenium		ND	5.00	0	0	0	0	0	0	0	
Silver		ND	10.0	0	0	0	0	0	0	0	
ICSA	SeqNo: 3676923			PrepL	Date:		Tes	tNo: E200.7		RunNo: 227165	
	Samp ID: ICSA-2			PrepF	Ref:		Un	its: µg/L	Anal	ysis Date: 11/21/2023	
Analyte		Result	PQL	SPK value	SPK Ref Val	<u>%REC</u>	<u>LowLimit</u>	<u>HighLimit</u>	RPD Ref Val	<u>%RPD</u> <u>RPDLimit</u>	<u>Qual</u>
Arsenic		ND	10.0	0	0	0	0	0	0	0	
Barium		1.167	200	0	0	0	0	0	0	0	
Cadmium	1	ND	5.00	0	0	0	0	0	0	0	
Chromiur	n	ND	10.0	0	0	0	0	0	0	0	
Lead		ND	3.00	0	0	0	0	0	0	0	
Selenium		ND	5.00	0	0	0	0	0	0	0	
Silver		ND	10.0	0	0	0	0	0	0	0	

Qualifiers:

ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

J - Analyte detected below quantitation limits

Central Hudson Gas & Electric **CLIENT:**

Work Order: 231108093 **RCRA** Sampling

Project:

ANALYTICAL QC SUMMARY REPORT

BatchID: 105006

ICSAB	SeqNo: 3676865			PrepL	Date:		Tes	tNo: E200.7		RunNo: 2	27165	
	Samp ID: ICSAB-1			Prepł	Ref:		Un	its: µg/L	Anal	lysis Date: 11	1/21/2023	
Analyte		Result	PQL	<u>SPK value</u>	SPK Ref Val	<u>%REC</u>	<u>LowLimit</u>	<u>HighLimit</u>	RPD Ref Val	<u>%RPD</u>	<u>RPDLimit</u>	Qual
Arsenic		ND	10.0	0	0	0	0	0	0	0		
Barium		515.9	200	500	0	103	80	120	0	0		
Cadmiun	n	931.5	5.00	1000	0	93.2	80	120	0	0		
Chromiu	m	587.8	10.0	500	0	118	80	120	0	0		
Lead		892.1	3.00	1000	0	89.2	80	120	0	0		
Selenium	n	ND	5.00	0	0	0	0	0	0	0		
Silver		1070	10.0	1000	0	107	80	120	0	0		
ICSAB	SeqNo: 3676924			PrepL	Date:		Tes	tNo: E200.7		RunNo: 2	27165	
ICSAB	SeqNo: 3676924 Samp ID: ICSAB-2			Prep! Prep !	Date: Ref:		Tes Un	tNo: E200.7 its: μ g /L	Anal	RunNo: 22 lysis Date: 11	27165 1/21/2023	
ICSAB	SeqNo: 3676924 Samp ID: ICSAB-2	<u>Result</u>	PQL	Prepl Prepl SPK value	Date: Ref: <u>SPK Ref Val</u>	<u>%REC</u>	Tes Un <u>LowLimit</u>	tNo: E200.7 its: μg/L <u>HighLimit</u>	Anal <u>RPD Ref Val</u>	RunNo: 22 lysis Date: 11 <u>%RPD</u>	2 7165 I/21/2023 <u>RPDLimit</u>	Qual
ICSAB Analyte Arsenic	SeqNo: 3676924 Samp ID: ICSAB-2	<u>Result</u> ND	<u>PQL</u> 10.0	Prepl Prepl SPK value 0	Date: Ref: <u>SPK Ref Val</u> 0	<u>%REC</u> 0	Tes Un <u>LowLimit</u> 0	tNo: E200.7 its: μg/L <u>HighLimit</u> 0	Anal <u>RPD Ref Val</u> 0	RunNo: 22 lysis Date: 11 <u>%RPD</u> 0	2 7165 I/21/2023 <u>RPDLimit</u>	Qual
ICSAB Analyte Arsenic Barium	SeqNo: 3676924 Samp ID: ICSAB-2	<u>Result</u> ND 491.7	<u>PQL</u> 10.0 200	Prepl Prepl SPK value 0 500	Date: Ref: SPK Ref Val 0 0	<u>%REC</u> 0 98.3	Tes Un <u>LowLimit</u> 0 80	tNo: E200.7 its: μg/L <u>HighLimit</u> 0 120	Anal <u>RPD Ref Val</u> 0 0	RunNo: 22 lysis Date: 11 <u>%RPD</u> 0 0	2 7165 1/21/2023 <u>RPDLimit</u>	Qual
Analyte Arsenic Barium Cadmium	SeqNo: 3676924 Samp ID: ICSAB-2 n	<u>Result</u> ND 491.7 908	PQL 10.0 200 5.00	Prepl Prepl SPK value 0 500 1000	Date: Ref: <u>SPK Ref Val</u> 0 0 0	<u>%REC</u> 0 98.3 90.8	Tes Un <u>LowLimit</u> 0 80 80	tNo: E200.7 its: μg/L <u>HighLimit</u> 0 120 120	Anal <u>RPD Ref Val</u> 0 0 0	RunNo: 22 lysis Date: 11 <u>%RPD</u> 0 0 0 0	2 7165 1/21/2023 <u>RPDLimit</u>	Qual
Analyte Arsenic Barium Cadmiun Chromiun	SeqNo: 3676924 Samp ID: ICSAB-2 n m	<u>Result</u> ND 491.7 908 553.2	PQL 10.0 200 5.00 10.0	Prepl Prepl SPK value 0 500 1000 500	Date: Ref: <u>SPK Ref Val</u> 0 0 0 0	<u>%REC</u> 0 98.3 90.8 111	Tes Un <u>LowLimit</u> 0 80 80 80	tNo: E200.7 its: μg/L <u>HighLimit</u> 0 120 120 120	Anal <u>RPD Ref Val</u> 0 0 0 0 0 0	RunNo: 22 lysis Date: 11 <u>%RPD</u> 0 0 0 0 0 0	2 7165 1/21/2023 <u>RPDLimit</u>	Qual
Analyte Arsenic Barium Cadmium Chromiuu Lead	SeqNo: 3676924 Samp ID: ICSAB-2 n m	<u>Result</u> ND 491.7 908 553.2 879.3	PQL 10.0 200 5.00 10.0 3.00	Prepl Prepl SPK value 0 500 1000 500 1000	Date: Ref: SPK Ref Val 0 0 0 0 0	<u>%REC</u> 0 98.3 90.8 111 87.9	Tes Un <u>LowLimit</u> 0 80 80 80 80	tNo: E200.7 its: µg/L <u>HighLimit</u> 0 120 120 120 120 120	Anal <u>RPD Ref Val</u> 0 0 0 0 0 0 0	RunNo: 22 lysis Date: 11 <u>%RPD</u> 0 0 0 0 0 0 0 0 0	2 7165 1/21/2023 <u>RPDLimit</u>	Qual
Analyte Arsenic Barium Cadmiun Chromiun Lead Selenium	SeqNo: 3676924 Samp ID: ICSAB-2 n m	<u>Result</u> ND 491.7 908 553.2 879.3 ND	PQL 10.0 200 5.00 10.0 3.00 5.00	Prepl Prepl SPK value 0 500 1000 500 1000 0 0	Date: Ref: SPK Ref Val 0 0 0 0 0 0 0 0	<u>%REC</u> 0 98.3 90.8 111 87.9 0	Tes Un <u>LowLimit</u> 0 80 80 80 80 0	tNo: E200.7 its: µg/L <u>HighLimit</u> 0 120 120 120 120 0	Anal <u>RPD Ref Val</u> 0 0 0 0 0 0 0 0 0 0 0	RunNo: 22 lysis Date: 11 <u>%RPD</u> 0 0 0 0 0 0 0 0 0 0 0 0	27165 1/21/2023 <u>RPDLimit</u>	Qual

CLIENT: Central Hudson Gas & Electric Work Order: 231108093

Project: RCRA Sampling

ANALYTICAL QC SUMMARY REPORT

BatchID: 105007

mblk	SeqNo: 3671773			PrepDate:11/15/2023	TestNo: SW7471B RunNo: 226913
	Samp ID: MB-105007			PrepRef:(SW7471B)	Units: μg/g Analysis Date: 11/15/2023
Analyte		<u>Result</u>	PQL	SPK value SPK Ref Val	<u>%REC LowLimit HighLimit RPD Ref Val</u> %RPD RPDLimit Qua
Mercury		ND	0.0200		
lcs	SeqNo: 3671774			PrepDate:11/15/2023	TestNo: SW7471B RunNo: 226913
	Samp ID: LCS-105007			PrepRef:(SW7471B)	Units: µg/g Analysis Date: 11/15/2023
Analyte		<u>Result</u>	PQL	SPK value SPK Ref Val	<u>%REC</u> LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qua
Mercury		8.372	1.00	10.3 0	81.3 55 143.7 0 0
ms	SeqNo: 3671777			PrepDate:11/15/2023	TestNo: SW7471B RunNo: 226913
	Samp ID: 231108093-001	(L/u-17)		PrepRef:(SW7471B)	Units: µg/g-dry Analysis Date: 11/15/2023
Analyte		<u>Result</u>	PQL	SPK value SPK Ref Val	<u>%REC LowLimit HighLimit RPD Ref Val</u> <u>%RPD</u> <u>RPDLimit</u> Qua
Mercury		0.1135	0.0218	0.1091 0.02546	80.8 80 120 0 0
dup	SeqNo: 3671776			PrepDate:11/15/2023	TestNo: SW7471B RunNo: 226913
	Samp ID: 231108093-001	(L/u-17)		PrepRef:(SW7471B)	Units: µg/g-dry Analysis Date: 11/15/2023
Analyte		<u>Result</u>	<u>PQL</u>	SPK value SPK Ref Val	<u>%REC LowLimit HighLimit RPD Ref Val</u> %RPD RPDLimit Qua
Mercury		0.02069	0.0218	0 0	0 0 0 0.02546 0 20 J
ccb	SeqNo: 3671769			PrepDate:	TestNo: SW7471B RunNo: 226913
				DronDof	
	Samp ID: ICB			Prepkei:	$\frac{\mu g}{g} \qquad \qquad \text{Analysis Date. } 11/15/2023$
Analyte	Samp ID: ICB	Result	PQL	SPK value SPK Ref Val	<u>%REC LowLimit HighLimit RPD Ref Val</u> <u>%RPD RPDLimit Qua</u>
<u>Analyte</u> Mercury	Samp ID: ICB	<u>Result</u> -0.0000097	<u>PQL</u> 0.0200	<u>SPK value</u> <u>SPK Ref Val</u> 0 0	%REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Quad 0
Analyte Mercury	Samp ID: ICB SeqNo: 3671772	<u>Result</u> -0.0000097	<u>PQL</u> 0.0200	<u>SPK value</u> <u>SPK Ref Val</u> 0 0 PrepDate:	%REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qua 0 0 0 0 0 TestNo: SW7471B
Analyte Mercury	Samp ID: ICB SeqNo: 3671772 Samp ID: CCB	<u>Result</u> -0.0000097	<u>PQL</u> 0.0200	SPK value SPK Ref Val 0 0 PrepDate: PrepRef:	Stress Analysis Date. 11/15/2023 %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qua 0 0 0 0 0 0 0 TestNo: SW7471B RunNo: 226913 Units: µg/g Analysis Date: 11/15/2023
Analyte Mercury CCD Analyte	Samp ID: ICB SeqNo: 3671772 Samp ID: CCB	<u>Result</u> -0.0000097 <u>Result</u>	PQL 0.0200 PQL	SPK value SPK Ref Val 0 0 PrepDate: PrepRef: SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Quadratic 0 0 0 0 0 0 TestNo: SW7471B RunNo: 226913 Units: µg/g Analysis Date: 11/15/2023 %REC LowLimit HighLimit RPD Ref Val %RPD

Qualifiers: ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

J - Analyte detected below quantitation limits
CLIENT: Central Hudson Gas & Electric Work Order: 231108093

Project: RCRA Sampling

ANALYTICAL QC SUMMARY REPORT

BatchID: 105007

ccb	SeqNo: 3671783			PrepDate:		TestNo: SW7	471B	RunNo: 226913	
	Samp ID: CCB			PrepRef:		Units: µg/g	Ana	alysis Date: 11/15/2023	
Analyte		<u>Result</u>	PQL	SPK value SPK Ref	al <u>%REC</u>	LowLimit HighLimit	RPD Ref Val	<u>%RPD</u> <u>RPDLimit</u>	Qual
Mercury		0.0000184	0.0200	0	0 0	0	0 0	0	
CCV	SeqNo: 3671768			PrepDate:		TestNo: SW7	471B	RunNo: 226913	
	Samp ID: ICV			PrepRef:		Units: μg/g	Ana	alysis Date: 11/15/2023	
Analyte		<u>Result</u>	PQL	SPK value SPK Ref	al <u>%REC</u>	LowLimit HighLimit	RPD Ref Val	<u>%RPD</u> <u>RPDLimit</u>	<u>Qual</u>
Mercury		0.00199	0.0200	0.002	0 99.5	5 85 11	5 0	0	
ccv	SeqNo: 3671771			PrepDate:		TestNo: SW7	471B	RunNo: 226913	
	Samp ID: CCV			PrepRef:		Units: µg/g	Ana	alysis Date: 11/15/2023	
Analyte		<u>Result</u>	<u>PQL</u>	SPK value SPK Ref	/al <u>%REC</u>	LowLimit HighLimit	RPD Ref Val	<u>%RPD</u> <u>RPDLimit</u>	Qual
Mercury		0.001951	0.0200	0.002	0 97.6	85 11	5 0	0	
ccv	SeqNo: 3671782			PrepDate:		TestNo: SW7	471B	RunNo: 226913	
	Samp ID: CCV			PrepRef:		Units: µg/g	Ana	alysis Date: 11/15/2023	
Analyte		<u>Result</u>	PQL	SPK value SPK Ref	<u>/al %REC</u>	LowLimit HighLimit	RPD Ref Val	<u>%RPD</u> <u>RPDLimit</u>	<u>Qual</u>
Mercury		0.00194	0.0200	0.002	0 97	85 11	5 0	0	
cra	SeqNo: 3671770			PrepDate:		TestNo: SW7	471B	RunNo: 226913	
	Samp ID: 0.2ppb			PrepRef:		Units: µg/g	Ana	alysis Date: 11/15/2023	
Analyte		Result	PQL	SPK value SPK Ref	/al <u>%REC</u>	LowLimit HighLimit	RPD Ref Val	<u>%RPD</u> <u>RPDLimit</u>	Qual
Mercury		0.0001908	0.0200	0.0002	0 95.4	75 12	5 0	0	

Qualifiers:

Date: 31-May-23

0.02

Adirondack Environmental Services, Inc

Type Analyte			MDL	PQL
Matrix:	Soil	Units: μg/g	U	pdated: 31-May-23
Test Name:	Mercury			
Test Number:	SW7471B		REPORT	FING LIMITS
Test Code:	CLPHGS		METHOD	DETECTION /

0.00895

A Mercury

1 of 1

Date: 22-Nov-23

Adirondack Environmental Services, Inc

_

Test C	ode:	CLPS		METHOD	DETECTION /
Test N	umber:	SW6010C		REPORT	TING LIMITS
Test N	ame:	ICP Metals	s - EPA 6010 (solid)	0	
Matrix	K:	Soil	Units: µg/g	U	pdated: 31-Jan-23
Туре	Analyte			MDL	PQL
А	Aluminur	m		3.45	20
А	Antimony	у		1.33	6
Α	Arsenic			0.3	1
Α	Barium			0.15	2
Α	Berylliun	n		0.13	1
Α	Boron			1.74	10
Α	Cadmium	1		0.13	1
Α	Calcium			16	20
А	Chromiu	m		0.22	1
А	Cobalt			0.21	10
Α	Copper			0.36	1
Α	Iron			16	20
А	Lead			0.25	1
Α	Lithium			1.33	100
А	Magnesit	ım		3.52	10
А	Mangane	se		1.01	2
А	Molybde	num		0.19	2
А	Nickel			0.21	4
Α	Potassiun	n		1.57	10
А	Selenium	l		0.49	1
Α	Silver			0.32	2
А	Sodium			19.6	20
А	Strontium	1		0.22	10
А	Thallium			0.82	2
А	Tin			0.88	10
А	Titanium			0.12	10
Α	Vanadiur	n		0.11	10
А	Zinc			3.8	4

11/22/2023 10:33:54 AM 11-15-2023

Seq. No. Sample ID:	3 Blank	AS Lo	DC:	Date	e: 11/15/2	023		
Analyte	Conc (Calib)	Conc (Sample)	Corr. Absorbance	Pk Area	BG Area	Pk Ht	BG Ht	Time
Hg 253.7								
-	[0.00] μg/	L	0.0003	-0.0090		-0.0001		11:23:53AM
	[0.00] μg/	L	0.0003	-0.0082		-0.0001		11:24:23AM
Mean:	[0.00] μg/		0.0003	-0.0086		-0.0001		
SD:	0.00 μg/	L						
%RSD:	3.78							
Seq. No.	4	AS Lo	DC:	Date	e: 11/15/2	023		
Sample ID: Analyte	0.2ppb Conc (Calib)	Conc (Sample)	Corr. Absorbance	Pk Area	BG Area	Pk Ht	BG Ht	Time
		cono (campio)		i ki uou	207404		50.11	
Hg 253.7								
	[0.200] µg/	L	0.0020	0.0061		0.0019		11:25:29AM
	[0.200] µg/	L		$ \frac{0.0076}{}$		0.0021		11:25:59AM
Mean:	[0.200] µg/	L	0.0021	0.0069		0.0020		
SD: %RSD·	0.00 μg/ 5.29	L						
///////////////////////////////////////	0.20							
Seq. No.	5	AS Lo	DC:	Date	e: 11/15/2	023		
Sample ID:	0.5ppb	0 (0 1)		D 1 4	56.4	D I 11/	56.14	
Analyte	Conc (Calib)	Conc (Sample)	Corr. Absorbance	PK Area	BG Area	PKHt	BG Ht	Time
Hg 253.7								
	[0.500] μg/	L	0.0064	0.0357		0.0063		11:26:58AM
	[0.500] µg/	L	0.0062	0.0332		0.0062		11:27:28AM
Mean:	[0.500] μg/	L	0.0063	0.0344		0.0062		
SD:	0.00 μg/	L						
%RSD:	1.68							
Seq. No.	6	AS Lo	oc:	Date	e: 11/15/2	023		
Sample ID:	1.00ppb							
Analyte	Conc (Calib)	Conc (Sample)	Corr. Absorbance	Pk Area	BG Area	Pk Ht	BG Ht	Time
Hg 253.7								
	[1.000] μg/	L	0.0109	0.0511		0.0109		11:28:30AM
				0.0501		0.0100		11.00.50 AM
	[1.000] μg/	L	0.0108	0.0504		0.0108		11:28:39AM
Mean:	[1.000] μg/ [1.000] μg/	L	0.0108	$\frac{0.0504}{0.0508}$		0.0108		
Mean: SD:	[1.000] μg/ [1.000] μg/ 0.00 μg/	L L	0.0108 0.0109	$\frac{0.0504}{0.0508}$		0.0108		

Seq. No.	7	AS Lo	oc:	Date	11/15/2	.023		
Sample ID: Analyte	2.00ppb Conc (Calib)	Conc (Sample)	Corr. Absorbance	Pk Area	BG Area	Pk Ht	BG Ht	Time
Hg 253.7								
	[2.000] μg	j/L	0.0222	0.1062		0.0221		11:30:01AM
	[2.000] µg	j/L	0.0221	0.1049		0.0220		11:30:31AM
Mean:	[2.000] μg	;/L — — —	0.0221	0.1055		0.0221		
SD:	0.00 µg	j/L						
%RSD:	0.39							
Seq. No.	8	AS Lo	oc:	Date:	11/15/2	.023		
Sample ID:	5.00ppb		.			-		
Analyte	Conc (Calib)	Conc (Sample)	Corr. Absorbance	Pk Area	BG Area	Pk Ht	BG Ht	Time
Hg 253.7								
	[5.000] μg	j/L	0.0562	0.2828		0.0562		11:31:28AM
	[5.000] μg	;/L	0.0557	0.2828		0.0556		11:31:58AM
Mean:	[5.000] μg	;/L — — —	0.0560	0.2828		0.0559		
SD:	0.00 µg	j/L						
%RSD:	0.68							
Seg. No.	9	AS Lo	oc:	Date:	11/15/2	.023		
Sample ID:	10.00ppb							
Analyte	Conc (Calib)	Conc (Sample)	Corr. Absorbance	Pk Area	BG Area	Pk Ht	BG Ht	Time
Hg 253.7								
	[10.000] µg	;/L	0.1110	0.5682		0.1109		11:32:59AM
	[10.000] µg	;/L	0.1104	0.5618		0.1104		11:33:28AM
Mean:	[10.000] μg	;/L — — —	0.1107	0.5650		0.1106		
SD:	0.00 µg	j/L						
%RSD:	0.34							
Seq. No.	10	AS Lo	oc: 5	Date:	11/15/2	.023		
Sample ID:	ICV							
Analyte	Conc (Calib)	Conc (Sample)	Corr. Absorbance	Pk Area	BG Area	Pk Ht	BG Ht	Time
Hg 253.7		11/15/2023 11:35:	02AM All analyte(s)	passed QC.				
5	2.008 µg	/L 2.008 μg	g/L 0.0224	0.1065		0.0223		11:34:30AM
	1.972 μg	;/L 1.972 μg	g/L 0.0220	0.1049		0.0219		11:35:00AM
Mean:	1.990 µg	/L 1.990 µs	g/L 0.0222	0.1057	·	0.0221		
SD:	0.0250 µg	μ /L με	- g/L					
%RSD:	1.25							

11/15/2023 11:35:02AM QC value within limits for Hg 253.7 Recovery = 99.50%

Seq. No. Sample ID:	11 ICB	AS Loc:	1	Date	: 11/15/2	023		
Analyte	Conc (Calib)	Conc (Sample) Co	orr. Absorbance	Pk Area	BG Area	Pk Ht	BG Ht	Time
Hg 253.7	11/	15/2023 11:36:32A	M All analyte(s)	passed QC.				
	-0.0097 μg/L	-0.0097 μg/L	0.0000	-0.0036		0.0000		11:36:00AM
	-0.0097 μg/L	-0.0097 μg/L	0.0000	-0.0033		0.0000		11:36:29AM
Mean:	-0.0097 μg/L	-0.0097 μg/L	0.0000	-0.0034		0.0000		
SD:	0.00002 µg/L	μg/L						
%RSD:	0.26							

11/15/2023 11:36:32AM QC value within limits for Hg 253.7 Recovery = Not calculated

Seq. No.	12	AS Lo	oc:	Date	11/15/2	023		
Sample ID: Analyte	0.2ppb Conc (Calib)	Conc (Sample)	Corr. Absorbance	Pk Area	BG Area	Pk Ht	BG Ht	Time
Hg 253.7								
-	0.1924 μg/l	L 0.1924 μg	/L 0.0023	0.0082		0.0022		11:37:30AM
	0.1892 μg/l	L 0.1892 μg	/L 0.0022	0.0081		0.0022		11:37:59AM
Mean:	0.1908 μg/l	L 0.1908 µg	/L 0.0022	0.0081		0.0022		
SD: %RSD:	0.00223 μg/J 1.17	L 0.00223 µg	/L					
Seq. No.	13	AS Lo	oc:	Date	: 11/15/2	023		
Sample ID: Analyte	2.0ppb Conc (Calib)	Conc (Sample)	Corr. Absorbance	Pk Area	BG Area	Pk Ht	BG Ht	Time
Hg 253.7								
	1.972 μg/J	L 1.972 μg	/L 0.0220	0.1052		0.0219		11:38:57AM
	1.962 μg/l	L 1.962 μg	/L 0.0219	0.1049		0.0218		11:39:27AM
Mean:	<u>1.967_μg</u> /Ι	L <u>1.9</u> 67 μg	/L 0.0219	0.1051		0.0219		
SD: %RSD:	0.0070 μg/J 0.35	L 0.0070 µg	/L					
Seq. No.	22	AS Lo	bc: 5	Date	: 11/15/2	023		
Sample ID: Analyte	CCV Conc (Calib)	Conc (Sample)	Corr. Absorbance	Pk Area	BG Area	Pk Ht	BG Ht	Time
Hg 253.7	1	1/15/2023 11:53:1	15AM All analyte(s)) passed QC.				
_	1.990 μg/l	L 1.990 µg	/L 0.0222	0.1119		0.0221		11:52:43AM
	1.989 μg/l	L 1.989 μg	/L 0.0222	0.1104		0.0221		11:53:12AM
Mean: SD: %RSD:	1.990 μg/J 0.0007 μg/J 0.04	L 1.990 μg L μg	/L 0.0222	0.1111		0.0221		

11/15/2023 11:53:15AM QC value within limits for Hg 253.7 Recovery = 99.48%

Seq. No. Sample ID:	23 CCB	AS Loc	: 1	Date:	11/15/2	023		
Analyte	Conc (Calib)	Conc (Sample)	Corr. Absorbance	Pk Area	BG Area	Pk Ht	BG Ht	Time
Hg 253.7	11	1/15/2023 11:54:44	AM All analyte(s) passed QC.				
	-0.0022 μg/Ι	0.0022 μg/I	0.0001	-0.0009		0.0000		11:54:12AM
	-0.0050 μg/I	0.0050 μg/l	0.0001	-0.0013		0.0000		11:54:41AM
Mean:	-0.0036 µg/I	-0.0036 μg/I	0.0001	-0.0011		0.0000		
SD:	0.00197 μg/I	μg/I						
%RSD:	54.78							

11/15/2023 11:54:44AM QC value within limits for Hg 253.7 Recovery = Not calculated

Seq. No.	44 CCV	AS Loc:	5	Date	e: 11/15/2	.023		
Sample ID: Analyte	CONC (Calib)	Conc (Sample)	Corr. Absorbance	Pk Area	BG Area	Pk Ht	BG Ht	Time
Hg 253.7	11	/15/2023 12:31:56	PM All analyte(s) p	assed QC.				
	1.960 μg/L	. 1.960 μg/L	0.0218	0.1086		0.0218		12:31:24PM
	1.943 μg/L	. 1.943 μg/L	0.0217	0.1084		0.0216		12:31:53PM
Mean:	<u>1.951_μg/</u> Γ	1.9 <mark>51_μg/L</mark>	0.0217	0.1085		0.0217		
SD:	0.0120 μg/L	μg/L						
%RSD:	0.62							

11/15/2023 12:31:56PM QC value within limits for Hg 253.7 Recovery = 97.57%

Seq. No. Sample ID:	45 CCB	AS Loc:	1	Date	: 11/15/2	023		
Analyte	Conc (Calib)	Conc (Sample) C	orr. Absorbance	Pk Area	BG Area	Pk Ht	BG Ht	Time
Hg 253.7	11.	/15/2023 12:33:30P	M All analyte(s) p	assed QC.				
	0.0204 μg/L	0.0204 μg/L	0.0004	0.0014		0.0003		12:32:58PM
	0.0152 μg/L	0.0152 μg/L	0.0003	0.0012		0.0002		12:33:27PM
Mean:	0.0178 μg/L		0.0003	$\overline{0.0013}$		0.0003		
SD:	0.00365 µg/L	μg/L						
%RSD:	20.48							

11/15/2023 12:33:30PM QC value within limits for Hg 253.7 Recovery = Not calculated

Seq. No. Sample ID:	47 MB-105007	AS Loc	:	Date	e: 11/15/2	023		
Analyte	Conc (Calib)	Conc (Sample)	Corr. Absorbance	Pk Area	BG Area	Pk Ht	BG Ht	Time
Hg 253.7								
	0.1558 μg/L	0.1558 μg/I	0.0019	0.0083		0.0018		12:36:07PM
	0.1466 μg/L	0.1466 μg/I	0.0018	0.0080		0.0017		12:36:37PM
Mean: SD: %RSD:	0.1512 μg/L 0.00653 μg/L 4.32	0.1512 μg/Ι 0.00653 μg/Ι	0.0018	0.0081		0.0017		

Seq. No. Sample ID:	48 LCS-105007	AS Loc:	:	Date	e: 11/15/2	023		
Analyte	Conc (Calib)	Conc (Sample)	Corr. Absorbance	Pk Area	BG Area	Pk Ht	BG Ht	Time
Hg 253.7								
	3.328 μg/L	3.328 μg/L	0.0370	0.1782		0.0369		12:37:46PM
	3.370 μg/L	3.370 μg/L	0.0375	0.1798		0.0374		12:38:15PM
Mean:	3.349 μg/L	3.349_μg/L	0.0372	0.1790		0.0372		
SD:	0.0299 μg/L	0.0299 μg/L	<u>_</u>					
%RSD:	0.89							
Seq. No.	49	AS Loc:	:	Date	e: 11/15/2	023		
Sample ID:	231108093-001A	L						
Analyte	Conc (Calib)	Conc (Sample)	Corr. Absorbance	Pk Area	BG Area	Pk Ht	BG Ht	Time
Hg 253.7								
	0.4709 μg/L	0.4709 μg/L	0.0053	0.0250		0.0053		12:39:17PM
	0. 4628 μg/L	0.4628 μg/L	0.0053	0.0244		0.0052		12:39:47PM
Mean:	0.4668 μg/L	0.4668_μg/L	0.0053	0.0247		0.0052		
SD:	0.00572 μg/L	0.00572 μg/L	_					
%RSD:	1.23							
Sea. No.	50	AS Loc:		Date	e: 11/15/2	023		
Seq. No. Sample ID:	50 231108093-001A	AS Loc: DP	:	Date	e: 11/15/2	023		
Seq. No. Sample ID: Analyte	50 231108093-001A Conc (Calib)	AS Loc: DP Conc (Sample)	Corr. Absorbance	Date Pk Area	e: 11/15/2 BG Area	023 Pk Ht	BG Ht	Time
Seq. No. Sample ID: Analyte Hg 253.7	50 231108093-001A Conc (Calib)	AS Loc: .DP Conc (Sample)	Corr. Absorbance	Date Pk Area	e: 11/15/2 BG Area	023 Pk Ht	BG Ht	Time
Seq. No. Sample ID: Analyte Hg 253.7	50 231108093-001A Conc (Calib) 0.3822 μg/L	AS Loc: DP Conc (Sample) 0.3822 µg/L	Corr. Absorbance	Date Pk Area	e: 11/15/2 BG Area	023 Pk Ht 0.0043	BG Ht	Time 12:41:11PM
Seq. No. Sample ID: Analyte Hg 253.7	50 231108093-001A Conc (Calib) 0 0.3822 μg/L 0.3767 μg/L	AS Loc: DP Conc (Sample) 0.3822 μg/L 0.3767 μg/L	Corr. Absorbance	Date Pk Area 0.0202 0.0201	e: 11/15/2 BG Area	023 Pk Ht 0.0043 0.0042	BG Ht	Time 12:41:11PM 12:41:40PM
Seq. No. Sample ID: Analyte Hg 253.7 Mean:	50 231108093-001A Conc (Calib) 0.3822 μg/L 0.3767 μg/L 0.3795 μg/L	AS Loc: DP Conc (Sample) 0.3822 μg/L - 0.3767 μg/L 0.3795 μg/L	Corr. Absorbance	Date Pk Area 0.0202 0.0201 0.0201	e: 11/15/2 BG Area	023 Pk Ht 0.0043 0.0042 0.0043	BG Ht	Time 12:41:11PM 12:41:40PM
Seq. No. Sample ID: Analyte Hg 253.7 Mean: SD:	50 231108093-001A Conc (Calib) 0 0.3822 μg/L 0.3767 μg/L 0.3795 μg/L 0.00385 μg/L	AS Loc: DP Conc (Sample) 0.3822 μg/L 0.3767 μg/L 0.3795 μg/L 0.00385 μg/L	Corr. Absorbance	Date Pk Area 0.0202 0.0201 0.0201	e: 11/15/2 BG Area	023 Pk Ht 0.0043 0.0042 0.0043	BG Ht	Time 12:41:11PM 12:41:40PM
Seq. No. Sample ID: Analyte Hg 253.7 Mean: SD: %RSD:	50 231108093-001A Conc (Calib) 0.3822 μg/L 0.3767 μg/L 0.3795 μg/L 0.00385 μg/L 1.01	AS Loc: DP Conc (Sample) - 0.3822 μg/L 0.3767 μg/L 0.00385 μg/L	Corr. Absorbance	Date Pk Area 0.0202 0.0201 0.0201	e: 11/15/2 BG Area	023 Pk Ht 0.0043 0.0042 0.0043	BG Ht	Time 12:41:11PM 12:41:40PM
Seq. No. Sample ID: Analyte Hg 253.7 Mean: SD: %RSD: Seq. No.	50 231108093-001A Conc (Calib) 0.3822 μg/L 0.3767 μg/L 0.3795 μg/L 0.00385 μg/L 1.01	AS Loc: DP Conc (Sample) 0.3822 μg/L 0.3767 μg/L 0.3795 μg/L 0.00385 μg/L	Corr. Absorbance	Date Pk Area 0.0202 0.0201 0.0201 0.0201	e: 11/15/2 BG Area	023 Pk Ht 0.0043 0.0042 0.0043 0.0043 0.0043	BG Ht	Time 12:41:11PM 12:41:40PM
Seq. No. Sample ID: Analyte Hg 253.7 Mean: SD: %RSD: Seq. No. Sample ID:	50 231108093-001A Conc (Calib) 0.3822 μg/L 0.3767 μg/L 0.3795 μg/L 0.00385 μg/L 1.01 51 231108093-001A	AS Loc: DP Conc (Sample) 0.3822 μg/L 0.3767 μg/L 0.3795 μg/L 0.00385 μg/L AS Loc: MS	Corr. Absorbance	Date Pk Area 0.0202 0.0201 0.0201 Date	e: 11/15/2 BG Area 	023 Pk Ht 0.0043 0.0042 0.0043 0.0043 023	BG Ht	Time 12:41:11PM 12:41:40PM
Seq. No. Sample ID: Analyte Hg 253.7 Mean: SD: %RSD: Seq. No. Sample ID: Analyte	50 231108093-001A Conc (Calib) 0.3822 $\mu g/L$ 0.3767 $\mu g/L$ 0.3795 $\mu g/L$ 0.00385 $\mu g/L$ 1.01 51 231108093-001A Conc (Calib)	AS Loc: DP Conc (Sample) - 0.3822 μg/L 0.3767 μg/L 0.00385 μg/L 0.00385 μg/L AS Loc: MS Conc (Sample)	Corr. Absorbance	Date Pk Area 0.0202 0.0201 0.0201 Date Pk Area	e: 11/15/2 BG Area	023 Pk Ht 0.0043 0.0042 0.0043 0.0043 023 Pk Ht	BG Ht	Time 12:41:11PM 12:41:40PM Time
Seq. No. Sample ID: Analyte Hg 253.7 Mean: SD: %RSD: Seq. No. Sample ID: Analyte Hg 253.7	50 231108093-001A Conc (Calib) 0 0.3822 μg/L 0.3767 μg/L 0.3795 μg/L 0.00385 μg/L 1.01 51 231108093-001A Conc (Calib) 0	AS Loc: DP Conc (Sample) 0.3822 μg/L 0.3767 μg/L 0.00385 μg/L 0.00385 μg/L AS Loc: MS Conc (Sample)	Corr. Absorbance	Date Pk Area 0.0202 0.0201 0.0201 Date Pk Area	e: 11/15/2 BG Area 	023 Pk Ht 0.0043 0.0042 0.0043 0.0043 023 Pk Ht	BG Ht	Time 12:41:11PM 12:41:40PM
Seq. No. Sample ID: Analyte Hg 253.7 Mean: SD: %RSD: Seq. No. Sample ID: Analyte Hg 253.7	50 231108093-001A Conc (Calib) 0 0.3822 μg/L 0.3767 μg/L 0.3795 μg/L 0.00385 μg/L 1.01 51 231108093-001A Conc (Calib) 0 2.075 μg/L	AS Loc: DP Conc (Sample) - 0.3822 μg/L 0.3767 μg/L 0.3795 μg/L 0.00385 μg/L AS Loc: MS Conc (Sample) - 2.075 μg/L	Corr. Absorbance	Date Pk Area 0.0202 0.0201 0.0201 Date Pk Area 0.1104	e: 11/15/2 BG Area 	$023 \\ Pk Ht \\ 0.0043 \\ 0.0042 \\ 0.0043 \\ 0.0043 \\ 0.023 \\ Pk Ht \\ 0.0231 \\ 0.00231 \\$	BG Ht	Time 12:41:11PM 12:41:40PM Time 12:42:44PM
Seq. No. Sample ID: Analyte Hg 253.7 Mean: SD: %RSD: Seq. No. Sample ID: Analyte Hg 253.7	50 231108093-001A Conc (Calib) 0.3822 μg/L 0.3767 μg/L 0.03795 μg/L 0.00385 μg/L 1.01 51 231108093-001A Conc (Calib) 2.075 μg/L 2.088 μg/L	AS Loc: DP Conc (Sample) - 0.3822 μg/L 0.3767 μg/L 0.00385 μg/L 0.00385 μg/L AS Loc: MS Conc (Sample) 2.075 μg/L 2.088 μg/L	Corr. Absorbance	Date Pk Area 0.0202 0.0201 0.0201 Date Pk Area 0.1104 0.1110	2: 11/15/2 BG Area	023 Pk Ht 0.0043 0.0042 0.0043 023 Pk Ht 0.0231 0.0232	BG Ht	Time 12:41:11PM 12:41:40PM Time 12:42:44PM 12:43:13PM
Seq. No. Sample ID: Analyte Hg 253.7 Mean: SD: %RSD: Seq. No. Sample ID: Analyte Hg 253.7 Mean:	50 231108093-001A Conc (Calib) 0 0.3822 μg/L 0.3767 μg/L 0.3795 μg/L 0.00385 μg/L 1.01 51 231108093-001A Conc (Calib) 0 2.075 μg/L 2.088 μg/L 2.082 μg/L	AS Loc: DP Conc (Sample) - 0.3822 μg/L 0.3767 μg/L 0.00385 μg/L 0.00385 μg/L - 2.075 μg/L 2.088 μg/L 2.082 μg/L	Corr. Absorbance	Date Pk Area 0.0202 0.0201 0.0201 Date Pk Area 0.1104 0.1110 0.1107	e: 11/15/2 BG Area 	023 Pk Ht 0.0043 0.0042 0.0043 0.0043 0.0043 0.0043 0.0023 0.00231 0.00232 0.00231 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.00 0.	BG Ht BG Ht	Time 12:41:11PM 12:41:40PM Time 12:42:44PM 12:43:13PM
Seq. No. Sample ID: Analyte Hg 253.7 Mean: SD: %RSD: Seq. No. Sample ID: Analyte Hg 253.7 Hg 253.7 Mean: SD:	$\begin{array}{c} 50\\ 231108093-001A\\ \textbf{Conc (Calib)} \end{array} \\ \begin{array}{c} 0.3822 \mu g/L\\ 0.3767 \mu g/L\\ 0.3795 \mu g/L\\ 0.00385 \mu g/L\\ 1.01 \end{array} \\ \begin{array}{c} 51\\ 231108093-001A\\ \textbf{Conc (Calib)} \end{array} \\ \begin{array}{c} 51\\ 2.075 \mu g/L\\ \hline 2.082 \mu g/L\\ 0.0091 \mu g/L \end{array}$	AS Loc: DP Conc (Sample) - 0.3822 μg/L 0.3767 μg/L 0.3795 μg/L 0.00385 μg/L 0.00385 μg/L Conc (Sample) - 2.075 μg/L 2.088 μg/L 2.082 μg/L 0.0091 μg/L	Corr. Absorbance	Date Pk Area 0.0202 0.0201 0.0201 Date Pk Area 0.1104 0.1100 0.1107	e: 11/15/2 BG Area 	$ \begin{array}{r} 023 \\ $	BG Ht BG Ht	Time 12:41:11PM 12:41:40PM 12:41:40PM 12:42:44PM 12:43:13PM

Seq. No. Sample ID:	52 231108093-002A	AS Loc	:	Date	e: 11/15/2	023		
Analyte	Conc (Calib)	Conc (Sample)	Corr. Absorbance	Pk Area	BG Area	Pk Ht	BG Ht	Time
Hg 253.7								
	0.3217 μg/L	0.3217 μg/I	0.0037	0.0174		0.0036		12:44:21PM
	0.3209 μg/L	0.3209 μg/I	0.0037	0.0173		0.0036		12:44:50PM
Mean:	0.3213 μg/L	0.3213 μg/I	0.0037	0.0174		0.0036		
SD:	0.00056 μg/L	0.00056 μg/I						
%RSD:	0.17							
Seq. No.	53	AS Loc	:	Date	e: 11/15/2	023		
Sample ID:	231108093-003A							
Analyte	Conc (Calib) 0	Conc (Sample)	Corr. Absorbance	Pk Area	BG Area	Pk Ht	BG Ht	Time
Hg 253.7								
	0.3627 μg/L	0.3627 μg/I	0.0041	0.0200		0.0041		12:45:56PM
	0.3517 μg/L	0.3517 μg/I	0.0040	0.0191		0.0040		12:46:25PM
Mean:	0.3572 μg/L	0.3572_μg/Ι	0.0041	0.0195		0.0040		
SD:	0.00778 μg/L	0.00778 μg/I						
%RSD:	2.18							
Seq. No.	54	AS Loc	:	Date	e: 11/15/2	023		
Sample ID:	231108093-004A	L						
Analyte	Conc (Calib)	Conc (Sample)	Corr. Absorbance	Pk Area	BG Area	Pk Ht	BG Ht	Time
Hg 253.7								
	0.3864 μg/L	0.3864 μg/I	0.0044	0.0213		0.0043		12:47:26PM
	0.3831 μg/L	0.3831 μg/I	0.0044	0.0209		0.0043		12:47:56PM
Mean:	0.3847 μg/L	0.38 <mark>47_</mark> μg/Ι	0.0044	0.0211		0.0043		
SD:	0.00232 μg/L	0.00232 μg/I						
%RSD:	0.60							
Seq. No.	55	AS Loc	:	Date	e: 11/15/2	023		
Sample ID:	231108093-005A							
Analyte	A (A 191) (A 195)	Conc (Sample)	Corr. Absorbance	Pk Area	BG Area	Pk Ht	BG Ht	Time
	Conc (Calib)	,						-
Hg 253.7	Conc (Calib)	,						
Hg 253.7	0.5650 μg/L	0.5650 μg/I	_ 0.0064	0.0303		0.0063		12:49:01PM
Hg 253.7	0.5650 μg/L 0.5576 μg/L	0.5650 μg/I 0.5576 μg/I	2 0.0064 2 0.0063	0.0303 0.0300		0.0063 0.0062		12:49:01PM 12:49:30PM
Hg 253.7	0.5650 μg/L 0.5576 μg/L 0.5513 μg/L	0.5650 μg/I 0.5576 μg/I 0.5613 μg/I	0.0064 0.0063	$ \begin{array}{r} 0.0303 \\ 0.0300 \\ \hline 0.0301 \end{array} $		0.0063 0.0062 0.0063		12:49:01PM 12:49:30PM
Hg 253.7 Mean: SD:	0.5650 μg/L 0.5576 μg/L 0.5613 μg/L 0.00525 μg/L	0.5650 μg/I 0.5576 μg/I 0.5613 μg/I 0.00525 μg/I	2 0.0064 2 0.0063 2 0.0063	$ \begin{array}{c} 0.0303 \\ 0.0300 \\ \hline 0.0301 \end{array} $		0.0063 0.0062 0.0063		12:49:01PM 12:49:30PM

Seq. No. Sample ID:	56 CCV	AS Loc:	5	Date:	11/15/2	.023		
Analyte	Conc (Calib)	Conc (Sample)	Corr. Absorbance	Pk Area	BG Area	Pk Ht	BG Ht	Time
Hg 253.7	11	/15/2023 12:51:06	PM All analyte(s)	passed QC.				
	1.932 μg/L	. 1.932 μg/L	0.0215	0.1092		0.0215		12:50:34PM
	1.947 μg/L	. 1.947 μg/L	0.0217	0.1095		0.0216		12:51:03PM
Mean:	<u>1.940 μg</u> /L	1.940 μg/L	0.0216	0.1093		0.0216		
SD:	0.0106 µg/L	μg/L						
%RSD:	0.54							

11/15/2023 12:51:06PM QC value within limits for Hg 253.7 Recovery = 97.00%

Seq. No. Sample ID:	57 CCB	AS Loc	:: 1	Date:	11/15/2023			
Analyte	Conc (Calib)	Conc (Sample)	Corr. Absorbance	e Pk Area	BG Area I	Pk Ht	BG Ht	Time
Hg 253.7	1	1/15/2023 12:52:40	OPM All analyte(s	s) passed QC.				
	0.0239 μg/	L 0.0239 μg/	L 0.0004	0.0013		0.0003		12:52:08PM
	0.0129 μg/	L 0.0129 μg/	L 0.0003	0.0010		0.0002		12:52:37PM
Mean:	0.0184 μg/	L 0.0184 μg/	L 0.0003	0.0012		0.0003		
SD:	0.00773 μg/	L µg/	L					
%RSD:	42.02							

11/15/2023 12:52:40PM QC value within limits for Hg 253.7 Recovery = Not calculated

Sample Report

Report Author Printed: 11/22/2023 8:45 am

200.7-4

Acquire Date: 21-Nov	-2023 10:5	4 am	Sample Type	e: Calib. Std.			
Correction Factor:1.0000	SW: 1	.0000	NW: 1.0000	IV: 1.0000	FV: 1.0000	AF: 1.0000	
Elem	Avg	Units	Stddev	%RSD			
Мо	349.97	Cts/S	1.06	.30172			
Sb	75.401	Cts/S	.264	.35025			
Ti	227.93	Cts/S	1.55	.67848			

200.7-3

Acquire Date: 21-Nov-2023 10:58 am			Sample Type	e: Calib. Std.			
Correction Factor:1.0000	SW: 1	.0000	NW: 1.0000	IV: 1.0000	FV: 1.0000	AF: 1.0000	
Elem	Avg	Units	Stddev	%RSD			
B_	15.472	Cts/S	.028	.17894			
Cd	78.010	Cts/S	.154	.19762			
Pb	12.378	Cts/S	.007	.05787			
ТІ	4.0832	Cts/S	.0105	.25721			

200.7-2

Acquire Date: 21-Nov-2023 11:03 am			Sample Type	e: Calib. Std.		
Correction Factor:1.0000	SW: 1	.0000	NW: 1.0000	IV: 1.0000	FV: 1.0000	AF: 1.0000
Elem	Avg	Units	Stddev	%RSD		
Ва	734.82	Cts/S	.48	.06582		
Ве	377.28	Cts/S	.21	.05499		
Со	263.66	Cts/S	.64	.24148		
Cu	15.640	Cts/S	.041	.26502		
Fe	2329.4	Cts/S	6.3	.27202		
Mn	753.93	Cts/S	2.99	.39719		
Sr	51.397	Cts/S	.124	.24064		

200.7-1

Acquire Date: 21-Nov-2023 11:06 am		Sample Typ	e: Calib. Std.			
Correction Factor:1.00	00 SW: 1.	0000	NW: 1.0000	IV: 1.0000	FV: 1.0000	AF: 1.0000
Elem	Avg	Units	Stddev	%RSD		
2Na	1581.8	Cts/S	12.6	.79785		
AI	51.652	Cts/S	.037	.07193		
Са	37.983	Cts/S	.101	.26534		
К_	407.32	Cts/S	1.59	.39120		
Mg	36.864	Cts/S	.329	.89323		
Na	2352.6	Cts/S	16.6	.70642		
Ni	449.20	Cts/S	1.66	.36901		
Color Logondu	Daga/Lipabaaka	d Internel	Standard Chook	Eail Chook M	orp	

200.7-1

Acquire Date: 21-Nov-2023 11:06 am			Sample Typ	e: Calib. Std.			
Correction Factor:1.0000	SW: 1	.0000	NW: 1.0000	IV: 1.0000	FV: 1.0000	AF: 1.0000	
Elem	Avg	Units	Stddev	%RSD			
Zn	1102.3	Cts/S	3.2	.28908			

200.7-6

Acquire Date: 21-Nov-2023 11:10 am			Sample Type	e: Calib. Std.		
Correction Factor:1.0000	SW: 1	.0000	NW: 1.0000	IV: 1.0000	FV: 1.0000	AF: 1.0000
Elem	Avg	Units	Stddev	%RSD		
As	8.9252	Cts/S	.0131	.14678		
Cr	12.466	Cts/S	.033	.26127		
Li	60.869	Cts/S	.433	.71092		
Se	7.8782	Cts/S	.0318	.40422		
Si	14.270	Cts/S	.103	.72342		
Sn	19.217	Cts/S	.065	.34050		
V_	7.6989	Cts/S	.0067	.08681		

Ag - 1ppm

Acquire Date: 21-Nov-2023 11:15 am			Sample Type: Calib. Std.				
Correction Factor:1.0000	SW: 1	.0000	NW: 1.0000	IV: 1.0000	FV: 1.0000	AF: 1.0000	
Elem	Avg	Units	Stddev	%RSD			
Ag	11.554	Cts/S	.101	.87035			

Blank

Acquire Date: 21	-Nov-2023 11:19	9 am	Sample Ty	pe: Calib. Std.			
Correction Factor:1.00	000 SW: 1.	0000	NW: 1.0000	IV: 1.0000	FV: 1.0000	AF: 1.0000	
Elem	Avg	Units	Stdde	v %RSD			
2Na	7.4295	Cts/S	.452	6.0944			
Ag	01111	Cts/S	.0157	141.42			
Al	.14711	Cts/S	.0393	32 26.732			
As	.05123	Cts/S	.0218	42.598			
Au	.18330	Cts/S	.0253	13.807			
B_	.08460	Cts/S	.0128	15.239			
Ва	00119	Cts/S	.3776	31,730			
Be	1.4613	Cts/S	.016	69 1.1585			
Са	.08326	Cts/S	.0078	9.3781			
Cd	.12405	Cts/S	.0096	60 7.7381			
Со	.10924	Cts/S	.0094	8.6674			
Cr	08325	Cts/S	.0509	61.242			
Cu	.42583	Cts/S	.0058	32 1.3670			
Fe	1.1477	Cts/S	.056	63 4.9069			
К_	.55146	Cts/S	.0045	.81669			
Color Legend:	Pass/Unchecke	d Internal S	tandard Chec	k Fail Check W	/arn		

Sample Report

Blank

Acquire Date:	21-Nov-2023	11:19 am
---------------	-------------	----------

Sample Type: Calib. Std.

Correction Factor:1.0000	SW:	1.0000	NW: 1.0000	IV: 1.0000	FV: 1.0000	AF: 1.0000
Elem	Avg	Units	Stddev	%RSD		
Li	-23.515	Cts/S	.129	.54721		
Mg	04856	Cts/S	.04119	84.821		
Mn	.66471	Cts/S	.03667	5.5164		
Мо	.05802	Cts/S	.00611	10.530		
Na	-70.170	Cts/S	.359	.51198		
Ni	.19484	Cts/S	.00363	1.8622		
Pb	06438	Cts/S	.01571	24.403		
Pd	.03052	Cts/S	.02354	77.104		
Sb	.01728	Cts/S	.00087	5.0522		
Se	.04287	Cts/S	.01738	40.537		
Si	.25681	Cts/S	.08592	33.456		
Sn	02006	Cts/S	.00131	6.5285		
Sr	.11242	Cts/S	.04127	36.712		
Ti	.01388	Cts/S	.00393	28.332		
TI	03717	Cts/S	.00826	22.214		
V_	.10681	Cts/S	.05688	53.256		
Zn	.59307	Cts/S	.04916	8.2883		
Zr	05548	Cts/S	.11380	205.12		

ICV-1

Acquire Date: 21-	Nov-2023 11:28	5 am	am Sample Type: Unknown				
Correction Factor:1.000	00 SW: 1.	0000	NW: 1.0000 IV:	1.0000	FV: 1.0000	AF: 1.0000	
Elem	Avg	Units	Stddev	%RSD			
2Na	1959.3	ppb	14.5	.74224			
Ag	516.84	ppb	6.83	1.3211			
Al	2097.7	ppb	19.2	.91412			
As	2035.3	ppb	5.7	.28207			
Au	12.174	ppb	.349	2.8628			
B_	1938.4	ppb	5.6	.28691			
Ва	2061.2	ppb	15.1	.73135			
Be	2012.5	ppb	17.9	.88960			
Са	1974.5	ppb	12.7	.64427			
Cd	2095.4	ppb	7.9	.37806			
Со	1970.9	ppb	7.1	.36174			
Cr	2015.9	ppb	11.9	.58802			
Cu	2092.6	ppb	6.1	.29327			
Fe	2024.2	ppb	6.4	.31740			
К_	9577.3	ppb	49.9	.52105			
Li	2005.4	ppb	24.3	1.2130			
Mg	1972.8	ppb	8.2	.41658			
Color Legend:	Pass/Unchecke	d Internal	Standard Check Fail	Check Wa	arn		

ICV-1

Acquire Date: 21-Nov-2023 11:25 am				Sample Type	e: Unknown			
Correction Factor:	0000.	SW	: 1.0000	NW: 1.0000	IV: 1.0000	FV: 1.0000	AF: 1.0000	
Elem		Avg	Units	Stddev	%RSD			
Mn	19	52.8	ppb	5.1	.26141			
Мо	20	59.4	ppb	13.3	.64731			
Na	20	20.7	ppb	12.4	.61404			
Ni	20	41.9	ppb	5.0	.24455			
Pb	20	61.2	ppb	4.7	.22779			
Pd	<.00	0000	ppb	13.438	91.163			
Sb	20	18.8	ppb	6.2	.30945			
Se	20	35.4	ppb	8.7	.42635			
Si	50	05.6	ppb	57.1	1.1399			
Sn	20	15.0	ppb	5.2	.26054			
Sr	20	79.3	ppb	13.4	.64610			
Ti	<.00	0000	ppb	.8026	18.191			
ТІ	20	19.6	ppb	10.3	.51089			
V_	20	13.0	ppb	17.0	.84626			
Zn	20	69.7	ppb	4.8	.23117			
Zr	<.00	0000	ppb	.5220	31.360			

ICB-1

Acquire Date: 21-Nov-2023 11:34 am		Sample Type	: Unknown			
Correction Factor:1.000	00 SW: 1.	0000	NW: 1.0000	IV: 1.0000	FV: 1.0000	AF: 1.0000
Elem	Avg	Units	Stddev	%RSD		
2Na	14.426	ppb	2.184	15.140		
Ag	.36053	ppb	4.24081	1,176.3		
Al	5.9116	ppb	9.1405	154.62		
As	<.00000	ppb	3.3318	170.39		
Au	<.00000	ppb	.05720	12.581		
В_	2.9568	ppb	1.3646	46.151		
Ва	.70202	ppb	.77318	110.14		
Be	.54840	ppb	.34443	62.805		
Са	<.00000	ppb	29.5036	473.52		
Cd	.70338	ppb	.05342	7.5946		
Со	.42269	ppb	.14384	34.030		
Cr	<.00000	ppb	.2271	4.4169		
Cu	<.00000	ppb	.6442	12.622		
Fe	<.00000	ppb	.14943	64.756		
К_	<.00000	ppb	6.6779	175.80		
Li	<.00000	ppb	7.507	72.030		
Mg	7.1427	ppb	11.6918	163.69		
Mn	.57569	ppb	.05870	10.196		
Мо	2.1257	ppb	1.4598	68.672		
Color Legend:	Pass/Unchecke	d Internal	Standard Check F	ail Check W	arn	

ICB-1

Acquire Date: 21-Nov-2023 11:34 am			Sample Type	: Unknown			
Correction Factor:1.0000	SW: 1	1.0000	NW: 1.0000	IV: 1.0000	FV: 1.0000	AF: 1.0000	
Elem	Avg	Units	Stddev	%RSD			
Na	5.2064	ppb	.1027	1.9731			
Ni	<.00000	ppb	.24474	100.92			
Pb	1.0072	ppb	1.3271	131.76			
Pd	<.00000	ppb	1.3306	60.565			
Sb	1.8834	ppb	.2321	12.324			
Se	<.00000	ppb	.8092	35.101			
Si	<.00000	ppb	8.402	14.581			
Sn	<.00000	ppb	.5441	45.828			
Sr	<.00000	ppb	.0003	.00637			
Ti	2.3124	ppb	3.9593	171.22			
TI	<.00000	ppb	.05006	9.0412			
V_	<.00000	ppb	3.775	22.608			
Zn	<.00000	ppb	.05970	29.730			
Zr	<.00000	ppb	1.5581	115.70			

CRI-1

Acquire Date: 21-Nov-2023 11:38 am			Sample Typ	e: Unknown			
Correction Factor:1.000	00 SW:	1.0000	NW: 1.0000	IV: 1.0000	FV: 1.0000	AF: 1.0000	
Elem	Avg	Units	Stddev	%RSD			
2Na	<.00000	ppb	.82943	128.43			
Ag	16.193	ppb	8.990	55.516			
Al	.25525	ppb	11.04606	4,327.5			
As	16.691	ppb	1.786	10.703			
Au	<.00000	ppb	.30281	173.96			
В_	.80523	ppb	.20679	25.681			
Ва	.76827	ppb	.12351	16.076			
Be	9.5836	ppb	.2188	2.2836			
Са	<.00000	ppb	4.6580	66.896			
Cd	10.192	ppb	.400	3.9288			
Со	93.093	ppb	.680	.73052			
Cr	16.086	ppb	6.643	41.299			
Cu	50.835	ppb	.661	1.3000			
Fe	<.00000	ppb	.3163	16.660			
К_	<.00000	ppb	.2966	4.3019			
Li	<.00000	ppb	.59108	102.37			
Mg	<.00000	ppb	22.320	160.56			
Mn	28.036	ppb	.333	1.1864			
Мо	.27332	ppb	.46142	168.82			
Na	<.00000	ppb	2.599	23.949			
Ni	76.867	ppb	.355	.46216			
Color Legend	Pass/Uncheck	ed Internal	Standard Check	Fail Check W	arn		

Color Legend: Pass/Unchecked Internal Standard

CRI-1

Acquire Date:	21-Nov-20	023 11	:38 am	Sample Type	: Unknown		
Correction Factor:	1.0000	SW:	1.0000	NW: 1.0000	IV: 1.0000	FV: 1.0000	AF: 1.0000
Elem		Avg	Units	Stddev	%RSD		
Pb	6	6.7424	ppb	.9875	14.646		
Pd	<.(00000	ppb	.4435	4.8750		
Sb	1	31.16	ppb	.69	.52791		
Se	1	0.675	ppb	3.081	28.859		
Si	<.(00000	ppb	56.2067	1,013.3		
Sn	1	.1550	ppb	1.4973	129.63		
Sr	9	.1845	ppb	10.3268	112.44		
Ti	<.(00000	ppb	3.27065	537.17		
ТІ	1	6.923	ppb	1.430	8.4482		
V_	8	2.726	ppb	16.854	20.374		
Zn	3	8.890	ppb	.472	1.2132		
Zr	<.(00000	ppb	.4502	34.691		

ICSA-1

Acquire Date: 21-Nov-2023 11:43 am Sa		Sample Type	mple Type: Unknown				
Correction Factor:1.000	0 SW: -	1.0000	NW: 1.0000	IV: 1.0000	FV: 1.0000	AF: 1.0000	
Elem	Avg	Units	Stddev	%RSD			
2Na	105.22	ppb	16.05	15.250			
Ag	<.00000	ppb	3.1925	38.783			
AI	493510.	ppb	767	.15536			
As	<.00000	ppb	1.4553	17.473			
Au	68.130	ppb	.407	.59751			
В_	<.00000	ppb	.274	2.0631			
Ва	.39805	ppb	.03209	8.0607			
Ве	1.7183	ppb	.1198	6.9696			
Са	429940.	ppb	85	.01970			
Cd	<.00000	ppb	.0926	5.2452			
Со	.73814	ppb	.33911	45.941			
Cr	<.00000	ppb	1.866	12.831			
Cu	<.00000	ppb	.073	.55468			
Fe	121980.	ppb	358	.29310			
К_	1.5602	ppb	5.6433	361.69			
Li	<.00000	ppb	4.373	12.295			
Mg	508770.	ppb	1,682	.33062			
Mn	<.00000	ppb	.125	1.0235			
Мо	<.00000	ppb	.0008	.01055			
Na	121.54	ppb	14.57	11.991			
Ni	<.00000	ppb	.044	.30911			
Pb	<.00000	ppb	1.5618	19.585			
Pd	<.00000	ppb	.4433	20.176			
Color Logondu	Daga/Linghagk	ad Internal	Standard Chack		orn		

ICSA-1

Acquire Date: 21-Nov-2023 11:43 am			Sample Type	: Unknown			
Correction Factor:1	.0000 SW	/: 1.0000	NW: 1.0000	IV: 1.0000	FV: 1.0000	AF: 1.0000	
Elem	Avg	Units	Stddev	%RSD			
Sb	1.1049	ppb	3.8783	350.99			
Se	<.00000	ppb	8.58451	3,377.6			
Si	<.00000	ppb	42.637	73.400			
Sn	<.00000	ppb	.58951	183.80			
Sr	3.2337	ppb	14.1514	437.62			
Ti	<.00000	ppb	.171	.99786			
ТІ	<.00000	ppb	2.301	17.242			
V_	<.00000	ppb	15.368	65.229			
Zn	<.00000	ppb	.05681	13.989			
Zr	<.00000	ppb	.55403	601,840			

ICSAB-1

Acquire Date: 21-Nov-2023 11:47 am		Sample Type: Unknown				
Correction Factor:1.0000	SW:	1.0000	NW: 1.0000	IV: 1.0000	FV: 1.0000	AF: 1.0000
Elem	Avg	Units	Stddev	%RSD		
2Na	47.865	ppb	7.403	15.466		
Ag	1069.7	ppb	.7	.06227		
Al	503440.	ppb	2,073	.41172		
As	<.00000	ppb	6.719	17.083		
Au	71.668	ppb	.000	.00012		
В_	<.00000	ppb	.136	1.0001		
Ва	515.86	ppb	3.45	.66866		
Ве	481.86	ppb	.85	.17669		
Са	439170.	ppb	1,109	.25249		
Cd	931.51	ppb	5.51	.59144		
Со	402.82	ppb	2.73	.67808		
Cr	587.84	ppb	4.19	.71311		
Cu	576.81	ppb	.04	.00739		
Fe	123540.	ppb	454	.36774		
К_	<.00000	ppb	2.761	22.341		
Li	<.00000	ppb	1.112	2.1446		
Mg	520170.	ppb	675	.12974		
Mn	417.76	ppb	3.21	.76879		
Мо	<.00000	ppb	.8854	15.664		
Na	53.106	ppb	6.055	11.401		
Ni	823.20	ppb	6.78	.82333		
Pb	892.06	ppb	7.79	.87310		
Pd	<.00000	ppb	4.4321	54.358		
Sb	.65463	ppb	2.31544	353.70		
Se	<.00000	ppb	1.2338	13.853		

ICSAB-1

Acquire Date: 21-Nov-2023 11:47 am			Sample Type	e: Unknown			
Correction Factor:1.0000	SW: 1	1.0000	NW: 1.0000	IV: 1.0000	FV: 1.0000	AF: 1.0000	
Elem	Avg	Units	Stddev	%RSD			
Si	<.00000	ppb	8.5361	294.90			
Sn	<.00000	ppb	.40831	48.969			
Sr	<.00000	ppb	4.18872	741.26			
Ti	<.00000	ppb	1.820	10.280			
TI	<.00000	ppb	4.839	26.025			
V_	449.19	ppb	3.40	.75681			
Zn	877.15	ppb	6.11	.69634			
Zr	<.00000	ppb	.2786	22.774			

CCV-1

Acquire Date: 21-Nov-2023 11:52 am San			Sample Type:	Unknown		
Correction Factor:1.00	000 SW:	1.0000 N	W: 1.0000 IV	/: 1.0000	FV: 1.0000	AF: 1.0000
Elem	Avg	Units	Stddev	%RSD		
2Na	1968.0	ppb	16.7	.84703		
Ag	515.17	ppb	1.86	.36108		
Al	1972.2	ppb	36.4	1.8472		
As	2055.3	ppb	9.0	.43776		
Au	12.053	ppb	.113	.94141		
B_	1956.6	ppb	4.6	.23648		
Ва	2065.2	ppb	20.5	.99184		
Be	2016.0	ppb	7.5	.37378		
Са	2158.6	ppb	50.9	2.3576		
Cd	2129.9	ppb	12.7	.59598		
Со	2003.5	ppb	10.9	.54260		
Cr	2009.7	ppb	21.0	1.0449		
Cu	2075.0	ppb	14.4	.69437		
Fe	2138.8	ppb	13.5	.63318		
К_	9191.8	ppb	60.4	.65701		
Li	1988.7	ppb	10.3	.52031		
Mg	2035.4	ppb	56.0	2.7488		
Mn	1979.5	ppb	11.2	.56769		
Мо	1863.5	ppb	3.5	.18731		
Na	2015.6	ppb	19.0	.94309		
Ni	2073.1	ppb	10.8	.52178		
Pb	2173.4	ppb	15.1	.69591		
Pd	<.00000	ppb	11.547	52.568		
Sb	1927.1	ppb	2.3	.11768		
Se	2041.6	ppb	1.1	.05525		
Si	4932.1	ppb	91.9	1.8627		
Sn	2042.8	ppb	8.6	.42224		
Color Legend:	Pass/Uncheck	ced Internal Sta	andard Check Fa	il Check Wa	arn	

CCV-1

Acquire Date: 21-Nov-2023 11:52 am			Sample Type	e: Unknown		
Correction Factor:1.0000	SW: 1	1.0000	NW: 1.0000	IV: 1.0000	FV: 1.0000	AF: 1.0000
Elem	Avg	Units	Stddev	%RSD		
Sr	2088.0	ppb	22.4	1.0735		
Ti	<.00000	ppb	.2594	11.513		
TI	2174.1	ppb	14.2	.65147		
V_	2033.4	ppb	15.6	.76871		
Zn	2106.5	ppb	14.2	.67604		
Zr	<.00000	ppb	.1711	7.6755		

CCB-1

Acquire Date: 21-Nov-2023 11:58 am Sample Type: Unk			e: Unknown			
Correction Factor:1.00	00 SW: 1	.0000	NW: 1.0000	IV: 1.0000	FV: 1.0000	AF: 1.0000
Elem	Avg	Units	Stddev	%RSD		
2Na	.96726	ppb	6.06377	626.90		
Ag	<.00000	ppb	3.3930	48.778		
Al	<.00000	ppb	17.5212	324.44		
As	<.00000	ppb	5.0899	135.85		
Au	.40149	ppb	.13165	32.791		
B_	<.00000	ppb	.52343	2,147,400		
Ва	.35087	ppb	.24696	70.385		
Be	<.00000	ppb	.07328	10.370		
Са	<.00000	ppb	5.693	44.409		
Cd	<.00000	ppb	.00565	1.0182		
Со	<.00000	ppb	.05806	8.1519		
Cr	<.00000	ppb	4.13737	452.52		
Cu	<.00000	ppb	2.5067	250.04		
Fe	<.00000	ppb	.1447	10.320		
К_	<.00000	ppb	2.0324	32.468		
Li	<.00000	ppb	6.217	34.567		
Mg	<.00000	ppb	14.8785	188.63		
Mn	<.00000	ppb	.02138	3.6781		
Мо	<.00000	ppb	.4460	39.726		
Na	<.00000	ppb	3.073	17.118		
Ni	<.00000	ppb	.1414	8.7501		
Pb	.49200	ppb	1.47409	299.61		
Pd	<.00000	ppb	3.5481	40.397		
Sb	.45037	ppb	.05840	12.967		
Se	<.00000	ppb	1.8245	74.076		
Si	8.6121	ppb	18.0782	209.92		
Sn	<.00000	ppb	.6358	60.046		
Sr	.52862	ppb	11.09102	2,098.1		
Ti	.66907	ppb	1.97948	295.86		
Color Legend:	Pass/Uncheck	ed Internal	Standard Check	Fail Check W	arn	

Sample Report

CCB-1

Acquire Date: 21-Nov-2023 11:58 am			Sample Type	: Unknown			
Correction Factor:1.0000	SW: 1	.0000	NW: 1.0000	IV: 1.0000	FV: 1.0000	AF: 1.0000	
Elem	Avg	Units	Stddev	%RSD			
TI	<.00000	ppb	5.0859	474.32			
V_	4.2723	ppb	21.0276	492.18			
Zn	<.00000	ppb	.0331	2.0999			
Zr	<.00000	ppb	.5888	22.477			

MB-105006

Acquire Date: 21-Nov-2023 12:00		6 pm	Sample Type	Sample Type: Unknown			
Correction Factor:1.00	00 SW: 1	.0000	NW: 1.0000	IV: 1.0000	FV: 1.0000	AF: 1.0000	
Elem	Avg	Units	Stddev	%RSD			
2Na	64.409	ppb	5.807	9.0158			
Ag	<.00000	ppb	3.0531	74.881			
Al	<.00000	ppb	.001	.00649			
As	<.00000	ppb	4.1305	93.085			
Au	.16070	ppb	.09419	58.615			
B_	.14999	ppb	.11246	74.976			
Ва	.67391	ppb	.39265	58.264			
Ве	<.00000	ppb	.07319	11.566			
Са	7.3107	ppb	5.1770	70.813			
Cd	<.00000	ppb	.08122	17.154			
Со	<.00000	ppb	.01376	1.6973			
Cr	3.2644	ppb	10.2383	313.64			
Cu	<.00000	ppb	4.2723	106.17			
Fe	9.9917	ppb	.0915	.91590			
К_	24.043	ppb	1.846	7.6782			
Li	8.8901	ppb	15.6517	176.06			
Mg	<.00000	ppb	10.6293	134.74			
Mn	2.7847	ppb	.0322	1.1577			
Мо	<.00000	ppb	.1813	15.803			
Na	58.285	ppb	2.310	3.9639			
Ni	.97236	ppb	.35248	36.250			
Pb	<.00000	ppb	.1464	9.6128			
Pd	<.00000	ppb	.887	8.3163			
Sb	.85974	ppb	.63652	74.037			
Se	<.00000	ppb	1.7326	54.134			
Si	<.00000	ppb	9.0392	93.573			
Sn	9.2724	ppb	.8175	8.8162			
Sr	<.00000	ppb	1.52925	185.78			
Ti	1.8864	ppb	2.6682	141.45			
ТІ	<.00000	ppb	3.8117	80.486			
V_	<.00000	ppb	6.0672	210.98			
Colorlagond	Daga/Linghook	d Internal	Standard Chaok		orp		

MB-105006

Acquire Date: 21-No	v-2023 12:0	6 pm	Sample Type	e: Unknown			
Correction Factor:1.0000	SW: 1	.0000	NW: 1.0000	IV: 1.0000	FV: 1.0000	AF: 1.0000	
Elem	Avg	Units	Stddev	%RSD			
Zn	2.9182	ppb	.0509	1.7431			
Zr	<.00000	ppb	.90027	114.90			

LCS-105006

Acquire Date: 21	-Nov-2023 12:41	1 pm	Sample Type:	Unknown			
Correction Factor1.00	000 SW: 1.	0000	NW: 1.0000	V: 1.0000	FV: 1.0000	AF: 1.0000	
Elem	Avg	Units	Stddev	%RSD			
2Na	2810.5	ppb	36.6	1.3008			
Ag	249.02	ppb	4.41	1.7721			
Al	51341.	ppb	343	.66751			
As	982.44	ppb	6.70	.68187			
Au	33.205	ppb	.170	.51276			
B_	1485.4	ppb	12.1	.81388			
Ва	1957.8	ppb	10.5	.53727			
Be	849.57	ppb	5.57	.65531			
Са	26658.	ppb	252	.94372			
Cd	596.15	ppb	4.65	.78068			
Со	881.78	ppb	7.85	.88996			
Cr	1328.1	ppb	2.5	.18765			
Cu	606.91	ppb	6.93	1.1422			
Fe	45022.	ppb	427	.94903			
К_	9718.9	ppb	85.1	.87522			
Li	579.18	ppb	6.20	1.0699			
Mg	12031.	ppb	80	.66762			
Mn	2170.4	ppb	20.1	.92613			
Мо	297.41	ppb	2.66	.89599			
Na	2577.4	ppb	25.3	.98005			
Ni	589.38	ppb	4.90	.83140			
Pb	806.41	ppb	7.80	.96705			
Pd	<.00000	ppb	.44	.40904			
Sb	504.53	ppb	7.52	1.4915			
Se	517.76	ppb	2.00	.38718			
Si	18260.	ppb	184	1.0095			
Sn	910.34	ppb	6.71	.73753			
Sr	1155.0	ppb	.8	.07293			
Ti	2561.7	ppb	20.6	.80270			
ТІ	956.59	ppb	.29	.03071			
V_	685.22	ppb	12.81	1.8701			
Zn	2130.6	ppb	18.2	.85496			
Zr	17.775	ppb	.693	3.8968			
Color Logondu	Daga/Linghagka	d Internel	Standard Chaols Es		orn		

231108093-001A	L						
Acquire Date: 21-No	ov-2023 12:	51 pm	Sample Type	e: Unknown			
Correction Factor:1.0000	SW:	1.0000	NW: 1.0000 IV: 1.0000		FV: 1.0000	AF: 1.0000	
Elem	Avg	Units	Stddev	%RSD			
2Na	1557.9	ppb	26.0	1.6673			
Ag	<.00000	ppb	1.188	3.9144			
AI	47845.	ppb	679	1.4199			
As	5.5084	ppb	3.7914	68.830			
Au	52.617	ppb	.606	1.1510			
B_	<.00000	ppb	2.18	1.5643			
Ва	283.93	ppb	5.20	1.8317			
Ве	1.3785	ppb	.0784	5.6851			
Са	301820.	ppb	4,041	1.3389			
Cd	<.00000	ppb	.01681	11.779			
Со	31.065	ppb	.084	.27090			
Cr	75.100	ppb	16.246	21.632			
Cu	112.15	ppb	4.86	4.3376			
Fe	73715.	ppb	118	.16054			
К_	5709.5	ppb	84.8	1.4854			
Li	45.350	ppb	11.831	26.088			
Mg	186680.	ppb	2,224	1.1911			
Mn	2358.9	ppb	4.0	.17078			
Мо	<.00000	ppb	.19569	59.084			
Na	1583.9	ppb	26.4	1.6654			
Ni	68.302	ppb	.040	.05879			
Pb	166.68	ppb	2.36	1.4187			
Pd	<.00000	ppb	3.55	3.4506			
Sb	<.00000	ppb	.8104	11.927			
Se	<.00000	ppb	3.425	17.883			
Si	1544.1	ppb	35.5	2.2997			
Sn	6.9937	ppb	.7712	11.028			
Sr	232.58	ppb	.39	.16604			
Ti	200.04	ppb	4.05	2.0236			
TI	1.2107	ppb	3.9103	322.97			
V_	70.329	ppb	8.224	11.694			
Zn	703.41	ppb	1.52	.21632			
Zr	9.1805	ppb	.4500	4.9013			

231108093-001ADP

Elem	Avg	Units	Stddev	%RSD			
Correction Factor:1.0000	SW: 1	.0000	NW: 1.0000	IV: 1.0000	FV: 1.0000	AF: 1.0000	
Acquire Date: 21-Nov-2	023 12:5	5 pm	Sample Type	: Unknown			

231108093-001ADP

Acquire Date: 21-Nov-2023 12:55 pm		Sample Type	: Unknown				
Correction Factor:1.0000	SW:	1.0000	NW: 1.0000	IV: 1.0000	FV: 1.0000	AF: 1.0000	
Elem	Avg	Units	Stddev	%RSD			
2Na	1446.3	ppb	8.3	.57437			
Ag	<.00000	ppb	1.018	3.5648			
AI	51753.	ppb	19	.03699			
As	12.677	ppb	2.167	17.091			
Au	64.309	ppb	.078	.12174			
B_	<.00000	ppb	2.15	1.3387			
Ва	331.88	ppb	.43	.12824			
Be	1.7366	ppb	.1357	7.8129			
Са	152930.	ppb	195	.12748			
Cd	.13260	ppb	.02518	18.986			
Со	40.020	ppb	.081	.20248			
Cr	81.688	ppb	12.499	15.301			
Cu	141.48	ppb	.81	.57217			
Fe	84225.	ppb	143	.16977			
K_	6219.8	ppb	.8	.01235			
Li	72.913	ppb	4.304	5.9031			
Mg	66546.	ppb	143	.21427			
Mn	3063.0	ppb	5.2	.16997			
Мо	.56819	ppb	.06340	11.158			
Na	1482.9	ppb	8.3	.56145			
Ni	93.671	ppb	.057	.06137			
Pb	195.12	ppb	.25	.12841			
Pd	<.00000	ppb	12.42	10.311			
Sb	<.00000	ppb	1.0999	30.190			
Se	<.00000	ppb	.224	.54595			
Si	1622.7	ppb	21.3	1.3133			
Sn	11.260	ppb	2.359	20.948			
Sr	219.34	ppb	6.88	3.1384			
Ti	250.37	ppb	1.20	.48071			
ТІ	<.00000	ppb	3.0798	82.534			
V_	69.759	ppb	7.414	10.628			
Zn	896.52	ppb	.11	.01171			
Zr	10.943	ppb	.104	.94964			

231108093-001AMS

Acquire Date: 21-Nov-2023 12:58 pm			Sample Type	e: Unknown			
Correction Factor:1.0000	SW: 1	.0000	NW: 1.0000	IV: 1.0000	FV: 1.0000	AF: 1.0000	
Elem	Avg	Units	Stddev	%RSD			
2Na	1892.1	ppb	7.3	.38374			
Ag	46.302	ppb	5.089	10.991			

231108093-001AMS

Acquire Date: 21-Nov-2023 12:58 pm		Sample Type	: Unknown				
Correction Factor:1.0000	SW: 1.0000		NW: 1.0000	IV: 1.0000	FV: 1.0000	AF: 1.0000	
Elem	Avg	Units	Stddev	%RSD			
Al	60333.	ppb	273	.45286			
As	49.972	ppb	1.776	3.5538			
Au	60.991	ppb	.605	.99248			
B_	<.00000	ppb	.37	.28356			
Ва	1532.7	ppb	9.5	.61879			
Be	33.540	ppb	.313	.93406			
Са	231090.	ppb	761	.32949			
Cd	40.372	ppb	.134	.33288			
Со	314.68	ppb	.52	.16432			
Cr	278.41	ppb	20.63	7.4113			
Cu	322.49	ppb	.52	.16016			
Fe	83522.	ppb	76	.09077			
К_	9399.0	ppb	54.7	.58171			
Li	51.278	ppb	3.405	6.6411			
Mg	105540.	ppb	339	.32098			
Mn	2751.1	ppb	.8	.03007			
Мо	2.5095	ppb	.1151	4.5873			
Na	1923.1	ppb	4.6	.23676			
Ni	440.65	ppb	.35	.07956			
Pb	196.75	ppb	.98	.49896			
Pd	<.00000	ppb	15.97	14.382			
Sb	97.456	ppb	.174	.17836			
Se	11.977	ppb	3.007	25.109			
Si	2315.0	ppb	25.9	1.1167			
Sn	14.789	ppb	.091	.61339			
Sr	318.08	ppb	11.86	3.7278			
Ti	500.42	ppb	1.21	.24102			
TI	41.372	ppb	5.083	12.287			
V_	362.14	ppb	18.60	5.1372			
Zn	1234.4	ppb	1.2	.09891			
Zr	16.110	ppb	.277	1.7196			

231108093-001AA

Acquire Date: 21-Nov-2023 1:10 pm			Sample Type: Unknown					
Correction Factor:1.0000 SW: 1.0000		NW: 1.0000 IV: 1.0000		V: 1.0000	FV: 1.0000	AF: 1.0000		
Elem	Avg	Units	S	tddev	%RSD			
2Na	1542.3	ppb		5.5	.35463			
Ag	93.072	ppb		4.743	5.0957			
Al	51159.	ppb		45	.08736			
As	85.101	ppb		.270	.31740			
Color Legend:	Pass/Unchecked	<u>Internal</u>	Standard C	Check Fa	ail Check Wa	arn		

231108093-001AA

Acquire Date: 21-Nov-2023 1:10 pm

Sample Type: Unknown

•		•	1 51				
Correction Factor:1.0000	SW:	1.0000	NW: 1.0000	IV: 1.0000	FV: 1.0000	AF: 1.0000	
Elem	Avg	Units	Stddev	%RSD			
Au	56.698	ppb	.247	.43478			
B_	<.00000	ppb	.46	.35385			
Ва	4340.7	ppb	15.6	.35934			
Be	101.47	ppb	.09	.08514			
Са	298590.	ppb	652	.21831			
Cd	101.50	ppb	.07	.07267			
Со	927.84	ppb	1.34	.14421			
Cr	510.36	ppb	9.73	1.9064			
Cu	657.41	ppb	.86	.13075			
Fe	72751.	ppb	54	.07372			
К_	5582.6	ppb	2.6	.04643			
Li	4.3246	ppb	11.0302	255.06			
Mg	185270.	ppb	757	.40839			
Mn	3158.2	ppb	5.8	.18519			
Мо	1.3232	ppb	.2561	19.355			
Na	1556.6	ppb	3.4	.21637			
Ni	964.70	ppb	1.43	.14858			
Pb	197.63	ppb	.31	.15495			
Pd	<.00000	ppb	7.09	6.8500			
Sb	1068.4	ppb	3.3	.30793			
Se	18.357	ppb	4.010	21.842			
Si	1572.8	ppb	16.7	1.0600			
Sn	6.9295	ppb	.4990	7.2011			
Sr	222.03	ppb	2.28	1.0257			
Ti	196.20	ppb	2.22	1.1333			
TI	82.951	ppb	7.186	8.6628			
V_	1049.4	ppb	16.0	1.5212			
Zn	1666.7	ppb	3.5	.20854			
Zr	9.5475	ppb	.6226	6.5207			

231108093-001AL

Acquire Date: 21	-Nov-2023 1:10	6 pm	Samp	le Type:	Unknown			
Correction Factor:1.00	00 SW: 1	.0000	NW: 1.000)	IV: 1.0000	FV: 1.0000	AF: 1.0000	
Elem	Avg	Units	5	Stddev	%RSD			
2Na	222.68	ppb		1.64	.73635			
Ag	<.00000	ppb		1.526	9.7100			
AI	8945.6	ppb		5.9	.06570			
As	13.025	ppb		2.559	19.645			
Au	8.3744	ppb		.0943	1.1264			
B_	<.00000	ppb		.150	.48371			
Color Legend:	Pass/Uncheck	ed Internal	Standard	Check F	ail Check W	arn		

231108093-001AL

21-Nov-2023	1:16 pm	Sample Type	e: Unknown			
1.0000	SW: 1.0000	NW: 1.0000	IV: 1.0000	FV: 1.0000	AF: 1.0000	
Av	/g Units	Stddev	%RSD			
56.53	33 ppb	.988	1.7470			
<.0000	00 ppb	.21944	96.661			
6355	i3. ppb	140	.22032			
<.0000	00 ppb	.03641	7.2070			
6.428	88 ppb	.0735	1.1435			
16.8 ⁻	14 ppb	6.874	40.883			
21.39	97 ppb	4.276	19.984			
1846	3. ppb	77	.41540			
891.2	22 ppb	2.53	.28380			
<.0000	00 ppb	16.203	75.142			
3549	98. ppb	86	.24242			
519.9	93 ppb	3.20	.61546			
<.0000	00 ppb	.3540	20.763			
207.3	34 ppb	.31	.14988			
13.8	11 ppb	.181	1.3128			
37.44	41 ppb	.000	.00024			
<.0000	00 ppb	16.856	41.987			
<.0000	00 ppb	.4051	6.7327			
<.0000	00 ppb	1.144	4.8274			
306.9	92 ppb	34.21	11.147			
<.0000	00 ppb	.8619	51.677			
30.54	49 ppb	4.587	15.014			
41.50	65 ppb	.944	2.2715			
4.35	59 ppb	.6353	14.585			
4.652	28 ppb	9.4341	202.76			
152.2	27 ppb	1.12	.73497			
1.028	82 ppb	.6232	60.611			
	21-Nov-2023 1.0000 56.5 <.000 6.355 <.000 6.42 16.8 21.3 1846 891.3 <.000 3549 519.3 <.000 207.3 13.8 37.4 <.000 207.3 13.8 37.4 <.000 207.3 13.8 37.4 <.000 207.3 13.8 37.4 <.000 207.3 13.8 37.4 <.000 207.3 13.8 37.4 <.000 207.3 13.8 37.4 <.000 207.3 13.8 37.4 <.000 207.3 13.8 37.4 <.000 207.3 13.8 37.4 <.000 207.3 13.8 37.4 <.000 207.3 13.8 37.4 <.000 207.3 13.8 37.4 <.000 207.3 13.8 37.4 <.000 207.3 13.8 37.4 <.000 207.3 13.8 37.4 <.000 207.3 13.8 37.4 <.000 207.3 13.8 37.4 <.000 207.3 13.8 37.4 <.000 207.3 13.8 37.4 <.000 207.3 13.8 20.000 207.3 13.8 20.000 207.3 13.8 20.000 207.3 13.8 20.000 207.3 13.8 20.000 207.3 13.8 20.000 207.3 13.8 20.000 207.3 13.8 20.000 207.3 13.8 20.000 207.3 10.8 20.0000 20.00000 20.0000 20.00000 20.00000 20.00000 20.00000 20.00000 20.000000 20.000000000 20.0000000000	21-Nov-2023 1:16 pm Avg Units 56.533 ppb <.00000	21-Nov-2023 1:16 pm Sample Type Avg Units NW: 1.0000 Avg Units Stddev 56.533 ppb .988 <.00000	21-Nov-2023 1:16 pm Sample Type: Unknown 1.0000 SW: 1.0000 NW: 1.0000 IV: 1.0000 Avg Units Stddev %RSD 56.533 ppb .21944 96.661 63553. ppb 140 .22032 <.00000	21-Nov-2023 1:16 pm Sample Type: Unknown 1.0000 SW: 1.0000 NW: 1.0000 IV: 1.0000 FV: 1.0000 Avg Units Stddev %RSD 56.533 ppb .988 1.7470 <.00000	21-Nov-2023 1:16 pm Sample Type: Unknown 1.0000 SW: 1.0000 NW: 1.0000 IV: 1.0000 FV: 1.0000 AF: 1.0000 Avg Units Stddev %RSD 56.533 ppb .988 1.7470 <.00000

231108093-002A

Acquire Date: 21	-Nov-2023 1:33	3 pm	Sample Type	e: Unknown			
Correction Factor:1.00	000 SW: 1	.0000	NW: 1.0000	IV: 1.0000	FV: 1.0000	AF: 1.0000	
Elem	Avg	Units	Stddev	%RSD			
2Na	1264.8	ppb	3.9	.30809			
Ag	<.00000	ppb	6.102	30.288			
AI	38192.	ppb	99	.25840			
As	8.8033	ppb	4.0869	46.424			
Au	45.138	ppb	.512	1.1337			
В_	<.00000	ppb	1.17	1.0424			
Ва	197.86	ppb	.25	.12585			
Ве	1.2160	ppb	.0479	3.9378			
Color Legend:	Pass/Unchecke	ed Internal S	Standard Check	Fail Check W	arn		

Sample Report

231108093-002A

Acquire Date: 21-No	ov-2023 1:3	33 pm	Sample Type	e: Unknown			
Correction Factor:1.0000	SW:	1.0000	NW: 1.0000	IV: 1.0000	FV: 1.0000	AF: 1.0000	
Elem	Avg	Units	Stddev	%RSD			
Са	391570.	ppb	2,340	.59767			
Cd	<.00000	ppb	.01122	5.3393			
Со	24.661	ppb	.036	.14445			
Cr	93.031	ppb	6.582	7.0755			
Cu	74.220	ppb	.902	1.2157			
Fe	64832.	ppb	44	.06737			
К_	4332.3	ppb	13.3	.30742			
Li	16.568	ppb	2.468	14.896			
Mg	35898.	ppb	29	.08146			
Mn	2150.7	ppb	3.4	.15933			
Мо	<.00000	ppb	.14963	15.169			
Na	1281.0	ppb	6.9	.53920			
Ni	56.284	ppb	.436	.77494			
Pb	191.59	ppb	2.01	1.0493			
Pd	<.00000	ppb	1.318	1.7154			
Sb	<.00000	ppb	.8683	16.971			
Se	<.00000	ppb	5.011	9.9831			
Si	1359.9	ppb	13.2	.97035			
Sn	6.5124	ppb	.2723	4.1810			
Sr	764.84	ppb	18.88	2.4687			
Ti	285.42	ppb	3.22	1.1280			
TI	<.00000	ppb	.7822	61.224			
V_	59.841	ppb	6.859	11.462			
Zn	467.11	ppb	1.32	.28295			
Zr	11.555	ppb	1.106	9.5717			

CCV-2

Acquire Date: 21	-Nov-2023 1:3	7 pm	Sample	e Type: U	Inknown			
Correction Factor:1.00	000 SW: 1	.0000	NW: 1.0000	IV:	1.0000	FV: 1.0000	AF: 1.0000	
Elem	Avg	Units	St	ddev	%RSD			
2Na	1848.3	ppb		5.9	.32136			
Ag	504.34	ppb		1.88	.37277			
AI	2120.7	ppb		21.8	1.0265			
As	1996.8	ppb		8.5	.42496			
Au	13.057	ppb		.095	.72424			
В_	2128.6	ppb		5.5	.25970			
Ва	1999.4	ppb		4.0	.19996			
Ве	1972.4	ppb		3.3	.16797			
Са	1975.9	ppb		7.8	.39578			
Cd	2084.2	ppb		2.6	.12655			
Color Legend:	Pass/Uncheck	ed Internal	Standard C	heck Fail	Check Wa	arn		

CCV-2

Acquire Date: 21-Nov-2023 1:37 pm

Sample Type: Unknown

			1 71			
Correction Factor:1.0000	SW: 1	.0000	NW: 1.0000	IV: 1.0000	FV: 1.0000	AF: 1.0000
Elem	Avg	Units	Stddev	%RSD		
Со	1980.5	ppb	4.6	.23240		
Cr	1897.8	ppb	.1	.00281		
Cu	2002.8	ppb	2.3	.11690		
Fe	2000.5	ppb	3.3	.16337		
К_	9392.6	ppb	69.4	.73889		
Li	1882.7	ppb	14.6	.77401		
Mg	1957.7	ppb	15.4	.78437		
Mn	1939.1	ppb	2.4	.12329		
Мо	1826.0	ppb	6.9	.37567		
Na	1866.5	ppb	.3	.01607		
Ni	2028.6	ppb	2.3	.11584		
Pb	2138.1	ppb	.6	.02779		
Pd	<.00000	ppb	6.209	36.659		
Sb	2158.5	ppb	3.5	.16159		
Se	1981.4	ppb	10.5	.53075		
Si	4822.8	ppb	36.0	.74725		
Sn	2017.1	ppb	5.9	.29218		
Sr	2068.2	ppb	3.1	.15081		
Ti	<.00000	ppb	.0861	2.8881		
TI	2154.3	ppb	6.9	.32012		
V_	1982.2	ppb	14.4	.72478		
Zn	2083.8	ppb	5.3	.25532		
Zr	<.00000	ppb	.3463	22.101		

CCB-2

Acquire Date: 21	-Nov-2023 1:41	1 pm	Sample Type	e: Unknown			
Correction Factor:1.00	000 SW: 1	.0000	NW: 1.0000	IV: 1.0000	FV: 1.0000	AF: 1.0000	
Elem	Avg	Units	Stddev	%RSD			
2Na	<.00000	ppb	2.790	7.3916			
Ag	<.00000	ppb	2.0349	94.300			
Al	12.640	ppb	7.229	57.192			
As	<.00000	ppb	4.70987	659.73			
Au	.28119	ppb	.22735	80.854			
B_	<.00000	ppb	.17809	54.051			
Ва	.24002	ppb	.59394	247.46			
Ве	<.00000	ppb	.03184	4.2807			
Са	<.00000	ppb	12.420	80.745			
Cd	<.00000	ppb	.08684	16.057			
Со	<.00000	ppb	.00612	.81465			
Cr	2.6565	ppb	8.1296	306.03			
Color Legend:	Pass/Unchecke	ed Internal S	tandard Check	Fail Check W	arn		

CCB-2

Acquire Date: 21-Nov-2023 1:41 pm

Sample Type: Unknown

		•	1 21				
Correction Factor:1.0000	SW: 1	0000.	NW: 1.0000	IV: 1.0000	FV: 1.0000	AF: 1.0000	
Elem	Avg	Units	Stddev	%RSD			
Cu	.45495	ppb	1.62549	357.29			
Fe	<.00000	ppb	.0245	1.5122			
К_	<.00000	ppb	2.0746	27.334			
Li	<.00000	ppb	.254	.89426			
Mg	18.792	ppb	.532	2.8328			
Mn	<.00000	ppb	.01451	2.5941			
Мо	<.00000	ppb	1.0333	97.712			
Na	<.00000	ppb	.087	.13071			
Ni	<.00000	ppb	.2175	14.423			
Pb	.49203	ppb	.40444	82.197			
Pd	<.00000	ppb	5.3221	77.111			
Sb	<.00000	ppb	.28958	37.234			
Se	<.00000	ppb	.8106	18.995			
Si	<.00000	ppb	21.294	92.906			
Sn	<.00000	ppb	1.6332	59.884			
Sr	<.00000	ppb	9.564	92.949			
Ti	1.5818	ppb	1.7209	108.80			
ТΙ	<.00000	ppb	5.2301	236.38			
V_	<.00000	ppb	2.562	8.0906			
Zn	<.00000	ppb	.0063	.35916			
Zr	<.00000	ppb	.51951	303.05			

231108093-003A

Acquire Date: 21-	Nov-2023 1:48	3 pm	Sample Type:	Unknown		
Correction Factor:1.000	00 SW: 1	.0000 N	IW: 1.0000 IV	: 1.0000	FV: 1.0000	AF: 1.0000
Elem	Avg	Units	Stddev	%RSD		
2Na	4177.1	ppb	1.4	.03334		
Ag	<.00000	ppb	6.956	25.106		
AI	48607.	ppb	134	.27482		
As	26.725	ppb	.032	.11962		
Au	71.051	ppb	.720	1.0130		
B_	<.00000	ppb	3.30	2.8927		
Ва	192.84	ppb	2.18	1.1286		
Be	1.9584	ppb	.1041	5.3174		
Са	190720.	ppb	974	.51060		
Cd	<.00000	ppb	.06163	6.8523		
Со	43.103	ppb	.664	1.5413		
Cr	72.980	ppb	5.946	8.1479		
Cu	120.39	ppb	2.81	2.3311		
Fe	86976.	ppb	180	.20666		
Color Legend:	Pass/Unchecke	ed Internal Sta	andard Check Fa	il Check Wa	arn	

231108093-003A

Acquire Date: 21-	Nov-2023 1:48	8 pm	Sample Type	e: Unknown			
Correction Factor:1.000	0 SW: 1	.0000	NW: 1.0000	IV: 1.0000	FV: 1.0000	AF: 1.0000	
Elem	Avg	Units	Stddev	%RSD			
К_	5697.4	ppb	16.7	.29249			
Li	38.820	ppb	1.514	3.8991			
Mg	65635.	ppb	98	.14937			
Mn	3847.5	ppb	21.3	.55384			
Мо	.08592	ppb	.50363	586.14			
Na	4250.3	ppb	3.9	.09160			
Ni	88.293	ppb	.961	1.0886			
Pb	100.63	ppb	1.37	1.3647			
Pd	<.00000	ppb	5.33	5.0851			
Sb	<.00000	ppb	.9261	11.091			
Se	<.00000	ppb	2.228	16.169			
Si	1587.6	ppb	54.4	3.4236			
Sn	6.2557	ppb	.9073	14.503			
Sr	289.95	ppb	4.22	1.4560			
Ti	204.13	ppb	.87	.42614			
TI	<.00000	ppb	2.68837	3,957.7			
V_	65.952	ppb	6.880	10.431			
Zn	436.55	ppb	2.93	.67137			
Zr	13.368	ppb	.692	5.1762			

231108093-004A

Acquire Date: 2	I-Nov-2023 1:	52 pm	Sample Type	: Unknown			
Correction Factor:1.0	000 SW	: 1.0000	NW: 1.0000	IV: 1.0000	FV: 1.0000	AF: 1.0000	
Elem	Avg	Units	Stddev	%RSD			
2Na	1375.4	ppb	.0	.00313			
Ag	<.00000	ppb	1.868	5.3142			
Al	58859.	ppb	91	.15477			
As	19.535	ppb	.637	3.2613			
Au	83.495	ppb	.265	.31747			
B_	<.00000	ppb	1.22	.61192			
Ва	153.25	ppb	1.29	.84027			
Be	2.1871	ppb	.0624	2.8510			
Са	94022.	ppb	163	.17372			
Cd	<.00000	ppb	.0868	7.4426			
Со	72.932	ppb	.078	.10665			
Cr	91.073	ppb	8.100	8.8937			
Cu	154.61	ppb	.23	.14844			
Fe	101030.	ppb	600	.59380			
К_	6005.6	ppb	32.9	.54732			
Li	88.079	ppb	3.052	3.4649			
Color Legend:	Pass/Unchec	ked Internal	Standard Check F	ail Check W	arn		

231108093-004A

Acquire Date: 21-	Nov-2023 1:52	2 pm	Sample Type	: Unknown			
Correction Factor:1.000	00 SW: 1	.0000	NW: 1.0000	IV: 1.0000	FV: 1.0000	AF: 1.0000	
Elem	Avg	Units	Stddev	%RSD			
Mg	38060.	ppb	104	.27413			
Mn	4493.9	ppb	10.8	.24063			
Мо	.48277	ppb	.58707	121.60			
Na	1404.3	ppb	1.1	.08172			
Ni	107.17	ppb	.36	.33297			
Pb	77.747	ppb	1.144	1.4719			
Pd	<.00000	ppb	2.66	2.4623			
Sb	<.00000	ppb	3.1837	60.293			
Se	<.00000	ppb	1.337	10.416			
Si	1417.6	ppb	15.6	1.0991			
Sn	6.7691	ppb	2.2684	33.511			
Sr	220.97	ppb	6.11	2.7646			
Ti	181.12	ppb	1.04	.57490			
TI	<.00000	ppb	3.5681	258.28			
V_	75.578	ppb	11.868	15.703			
Zn	553.41	ppb	1.92	.34634			
Zr	20.345	ppb	.380	1.8676			

231108093-005A

Acquire Date: 21-	Nov-2023 1:57	7 pm	Sample Type	: Unknown			
Correction Factor:1.000	00 SW: 1	.0000	NW: 1.0000	IV: 1.0000	FV: 1.0000	AF: 1.0000	
Elem	Avg	Units	Stddev	%RSD			
2Na	1102.1	ppb	1.1	.09562			
Ag	<.00000	ppb	2.545	7.7717			
Al	66803.	ppb	62	.09247			
As	4.1324	ppb	3.4606	83.744			
Au	85.761	ppb	.224	.26107			
B_	<.00000	ppb	.53	.27880			
Ва	147.30	ppb	.28	.18678			
Be	2.7261	ppb	.1671	6.1301			
Са	26666.	ppb	27	.10207			
Cd	<.00000	ppb	.0336	2.4092			
Со	51.049	ppb	.132	.25815			
Cr	98.873	ppb	14.387	14.551			
Cu	135.50	ppb	1.48	1.0889			
Fe	103080.	ppb	113	.10925			
К_	5467.9	ppb	9.2	.16824			
Li	85.819	ppb	3.412	3.9755			
Mg	30584.	ppb	69	.22702			
Mn	4877.8	ppb	.5	.00983			
Color Legend:	Pass/Unchecke	ed Internal S	standard Check F	ail Check W	arn		

231108093-005A

cquire Date: 21-Nov-2023 1:57 pm			Sample Type: Unknown				
Correction Factor:1.0000	SW: 1	.0000	NW: 1.0000	IV: 1.0000	FV: 1.0000	AF: 1.0000	
Elem	Avg	Units	Stddev	%RSD			
Мо	<.00000	ppb	.1727	7.3248			
Na	1108.7	ppb	3.1	.28177			
Ni	104.94	ppb	.37	.34991			
Pb	63.068	ppb	1.345	2.1326			
Pd	<.00000	ppb	11.53	10.215			
Sb	<.00000	ppb	1.6211	38.822			
Se	<.00000	ppb	5.793	36.973			
Si	1470.2	ppb	.6	.04268			
Sn	6.9946	ppb	.1360	1.9437			
Sr	59.765	ppb	.764	1.2785			
Ti	166.27	ppb	.69	.41525			
TI	<.00000	ppb	.8796	65.206			
V_	65.855	ppb	26.694	40.534			
Zn	360.35	ppb	.00	.00108			
Zr	14.102	ppb	.693	4.9115			

CCV-3

Acquire Date: 21-	-Nov-2023 2:5	2 pm Sar	nple Type: L	Jnknown		
Correction Factor:1.00	00 SW: -	1.0000 NW: 1.00	000 IV:	1.0000	FV: 1.0000	AF: 1.0000
Elem	Avg	Units	Stddev	%RSD		
2Na	1868.3	ppb	19.5	1.0462		
Ag	499.33	ppb	3.58	.71643		
Al	2107.9	ppb	12.5	.59318		
As	2006.0	ppb	3.8	.18859		
Au	13.525	ppb	.265	1.9602		
B_	2129.9	ppb	2.3	.10826		
Ва	1997.4	ppb	15.2	.76154		
Be	1969.1	ppb	6.8	.34561		
Са	1975.3	ppb	7.7	.38998		
Cd	2088.8	ppb	7.1	.33930		
Со	1991.0	ppb	8.7	.43896		
Cr	1909.0	ppb	2.6	.13404		
Cu	2007.9	ppb	4.7	.23542		
Fe	2003.6	ppb	2.7	.13516		
К_	9408.7	ppb	56.7	.60273		
Li	1899.7	ppb	16.1	.85007		
Mg	1947.7	ppb	6.4	.33045		
Mn	1944.4	ppb	6.1	.31442		
Мо	1831.6	ppb	2.9	.15628		
Na	1897.3	ppb	15.1	.79375		
Color Legend:	Pass/Uncheck	ed Internal Standard	Check Fail	Check Wa	arn	

CCV-3

Acquire Date: 21-No	v-2023 2:5	2 pm	Sample Type	e: Unknown			
Correction Factor:1.0000	SW: 1	.0000	NW: 1.0000	IV: 1.0000	FV: 1.0000	AF: 1.0000	
Elem	Avg	Units	Stddev	%RSD			
Ni	2034.1	ppb	7.3	.36036			
Pb	2146.9	ppb	10.1	.47259			
Pd	<.00000	ppb	4.8790	57.605			
Sb	2159.9	ppb	10.4	.48019			
Se	1991.4	ppb	4.9	.24524			
Si	4857.9	ppb	37.3	.76826			
Sn	2023.0	ppb	4.7	.23011			
Sr	2085.1	ppb	4.5	.21707			
Ti	.73005	ppb	1.03289	141.48			
TI	2153.4	ppb	16.4	.76173			
V_	2004.9	ppb	2.4	.11740			
Zn	2091.9	ppb	12.1	.57869			
Zr	<.00000	ppb	.2769	8.5668			

CCB-3

Acquire Date: 21-I	Nov-2023 3:0	5 pm	Sample Type	e: Unknown		
Correction Factor:1.000	0 SW: 1	1.0000	NW: 1.0000	IV: 1.0000	FV: 1.0000	AF: 1.0000
Elem	Avg	Units	Stddev	%RSD		
2Na	<.00000	ppb	2.620	11.112		
Ag	<.00000	ppb	3.3919	50.504		
Al	<.00000	ppb	13.71404	102,900		
As	2.0868	ppb	2.7758	133.02		
Au	<.00000	ppb	.13280	248.19		
B_	<.00000	ppb	.13083	55.209		
Ва	1.4397	ppb	.2679	18.611		
Be	<.00000	ppb	.06815	10.010		
Са	<.00000	ppb	16.045	106.86		
Cd	<.00000	ppb	.01963	3.4772		
Со	<.00000	ppb	.12839	16.567		
Cr	<.00000	ppb	2.503	21.784		
Cu	.09230	ppb	.21850	236.73		
Fe	<.00000	ppb	.0663	4.4893		
К_	<.00000	ppb	2.2231	66.564		
Li	<.00000	ppb	6.984	19.364		
Mg	<.00000	ppb	6.374	24.584		
Mn	<.00000	ppb	.03363	6.2960		
Мо	<.00000	ppb	.7829	53.379		
Na	<.00000	ppb	1.468	3.2146		
Ni	<.00000	ppb	.1816	12.852		
Pb	<.00000	ppb	1.13276	707.03		
Color Logond:	Dass/I Inchack	od Internal	Standard Check	Eail Check W	arn	

CCB-3

Acquire Date:	21-Nov-2023	3:05 pm
---------------	-------------	---------

Sample Type: Unknown

Correction Factor:1.0000	SW: 1	.0000	NW: 1.0000	IV: 1.0000	FV: 1.0000	AF: 1.0000
Elem	Avg	Units	Stddev	%RSD		
Pd	.31244	ppb	8.42799	2,697.5		
Sb	<.00000	ppb	.6368	37.938		
Se	<.00000	ppb	1.0737	13.340		
Si	<.00000	ppb	26.5065	288.17		
Sn	<.00000	ppb	.2265	14.122		
Sr	<.00000	ppb	3.4415	35.303		
Ti	<.00000	ppb	3.7870	183.00		
TI	<.00000	ppb	1.6609	37.834		
V_	<.00000	ppb	6.201	28.139		
Zn	<.00000	ppb	.0110	.59685		
Zr	<.00000	ppb	.6583	17.573		

CRI-2

Acquire Date: 2	I-Nov-2023 4:1	l6 pm	Sample Type	: Unknown			
Correction Factor:1.0	000 SW:	1.0000	NW: 1.0000	IV: 1.0000	FV: 1.0000	AF: 1.0000	
Elem	Avg	Units	Stddev	%RSD			
2Na	<.00000	ppb	2.631	14.470			
Ag	22.870	ppb	2.485	10.868			
Al	<.00000	ppb	19.8022	731.04			
As	22.539	ppb	2.974	13.197			
Au	.57541	ppb	.07649	13.294			
B_	<.00000	ppb	.27749	29.978			
Ва	.93764	ppb	.66432	70.851			
Ве	8.9117	ppb	.0118	.13280			
Са	<.00000	ppb	11.3886	155.40			
Cd	9.3685	ppb	.0550	.58739			
Со	93.094	ppb	.459	.49279			
Cr	22.996	ppb	20.010	87.015			
Cu	47.187	ppb	1.686	3.5738			
Fe	<.00000	ppb	.0798	2.9152			
К_	<.00000	ppb	.4532	5.6602			
Li	<.00000	ppb	5.104	15.543			
Mg	6.0158	ppb	6.9078	114.83			
Mn	27.232	ppb	.078	.28598			
Мо	<.00000	ppb	.1266	9.6477			
Na	<.00000	ppb	.215	.52379			
Ni	75.642	ppb	.605	.80023			
Pb	5.4146	ppb	.6637	12.258			
Pd	<.00000	ppb	7.0965	113.10			
Sb	128.46	ppb	.79	.61294			

CRI-2

Acquire Date: 21-Nov-2023 4:16 pm			Sample Type	: Unknown		
Correction Factor:1.0000	SW: 1	1.0000	NW: 1.0000	IV: 1.0000	FV: 1.0000	AF: 1.0000
Elem	Avg	Units	Stddev	%RSD		
Se	8.7989	ppb	.8753	9.9479		
Si	<.00000	ppb	1.310	6.3513		
Sn	<.00000	ppb	.7267	39.733		
Sr	<.00000	ppb	11.47274	4,056.3		
Ti	<.00000	ppb	1.29105	302.88		
TI	19.219	ppb	.833	4.3334		
V_	94.735	ppb	3.653	3.8562		
Zn	38.503	ppb	.050	.13062		
Zr	<.00000	ppb	1.7654	68.676		

ICSA-2

Acquire Date: 2	21-Nov-2023 4	:25 pm	Sample Type	: Unknown			
Correction Factor:1.	0000 SW	/: 1.0000	NW: 1.0000	IV: 1.0000	FV: 1.0000	AF: 1.0000	
Elem	Avg	Units	Stddev	%RSD			
2Na	15.680	ppb	.656	4.1838			
Ag	<.00000	ppb	2.081	19.901			
Al	472080.	ppb	899	.19044			
As	<.00000	ppb	.7072	14.826			
Au	64.094	ppb	.087	.13537			
В_	<.00000	ppb	.372	2.0670			
Ва	1.1673	ppb	.7644	65.481			
Be	1.3787	ppb	.0996	7.2256			
Са	424110.	ppb	1,492	.35188			
Cd	<.00000	ppb	.2043	7.5774			
Со	.42699	ppb	.07657	17.933			
Cr	<.00000	ppb	17.512	143.95			
Cu	<.00000	ppb	3.832	21.556			
Fe	122480.	ppb	112	.09111			
К_	<.00000	ppb	2.4153	24.390			
Li	<.00000	ppb	11.017	14.810			
Mg	493710.	ppb	1,146	.23202			
Mn	<.00000	ppb	.065	.48108			
Мо	<.00000	ppb	.7431	12.176			
Na	.16119	ppb	3.95142	2,451.4			
Ni	<.00000	ppb	.257	1.7360			
Pb	<.00000	ppb	1.9660	100.45			
Pd	<.00000	ppb	3.5479	141.30			
Sb	<.00000	ppb	.98399	480.85			
Se	<.00000	ppb	.334	3.0293			
Si	<.00000	ppb	54.906	230.46			
Color Logond	Dace/Linchor	kod Intorna	Standard Chock		orn		

ICSA-2

Acquire Date: 21-Nov-2023 4:25 pm			Sample Type	e: Unknown			
Correction Factor:1.0000	SW: 1	.0000	NW: 1.0000	IV: 1.0000	FV: 1.0000	AF: 1.0000	
Elem	Avg	Units	Stddev	%RSD			
Sn	<.00000	ppb	.2726	24.274			
Sr	3.5047	ppb	5.3572	152.86			
Ti	<.00000	ppb	1.981	11.922			
TI	<.00000	ppb	.393	3.3976			
V_	<.00000	ppb	1.347	6.5694			
Zn	<.00000	ppb	.2473	10.705			
Zr	.56303	ppb	.24233	43.040			

ICSAB-2

Acquire Date: 21-Nov-2023 4:29 pm		Sample Type: Unknown					
Correction Factor:1.0	000 SW:	1.0000	NW: 1.0000 IV	: 1.0000	FV: 1.0000	AF: 1.0000	
Elem	Avg	Units	Stddev	%RSD			
2Na	2.0482	ppb	.4822	23.545			
Ag	1029.4	ppb	7.8	.75973			
Al	483230.	ppb	1,475	.30533			
As	<.00000	ppb	5.677	20.609			
Au	69.702	ppb	.170	.24410			
B_	<.00000	ppb	.715	4.1440			
Ва	491.68	ppb	.49	.09940			
Be	463.31	ppb	2.04	.44000			
Са	430910.	ppb	2,244	.52069			
Cd	908.02	ppb	3.92	.43200			
Со	431.78	ppb	2.56	.59378			
Cr	553.22	ppb	.61	.10958			
Cu	546.67	ppb	6.64	1.2148			
Fe	123000.	ppb	534	.43404			
К_	<.00000	ppb	1.925	8.5290			
Li	<.00000	ppb	5.101	5.4005			
Mg	507010.	ppb	1,397	.27549			
Mn	422.32	ppb	4.18	.99003			
Мо	<.00000	ppb	.5151	10.419			
Na	<.00000	ppb	.289	1.4060			
Ni	842.25	ppb	6.02	.71501			
Pb	879.27	ppb	4.00	.45442			
Pd	<.00000	ppb	4.4356	78.548			
Sb	<.00000	ppb	1.85236	565.24			
Se	<.00000	ppb	4.730	35.744			
Si	<.00000	ppb	32.305	34.471			
Sn	<.00000	ppb	1.54251	178.14			
Sr	4.3171	ppb	11.8578	274.67			
Coloriana	Dace/Linchael	od Internal	Standard Chock Eai		arn		
ICSAB-2

Acquire Date: 21-Nov-2023 4:29 pm			Sample Type	: Unknown			
Correction Factor:1.0000 SW		1.0000	NW: 1.0000	IV: 1.0000	FV: 1.0000	AF: 1.0000	
Elem	Avg	Units	Stddev	Stddev %RSD			
Ti	<.00000	ppb	2.927	17.174			
TI	<.00000	ppb	6.257	42.003			
V_	444.79	ppb	14.15	3.1807			
Zn	865.99	ppb	4.78	.55198			
Zr	<.00000	ppb	.27697	37.702			

CCV-4

Acquire Date: 21-Nov-2023 4:34 pm		Sample Type	: Unknown				
Correction Factor:1.00	00 SW: 1.	0000	NW: 1.0000	IV: 1.0000	FV: 1.0000	AF: 1.0000	
Elem	Avg	Units	Stddev	%RSD			
2Na	1841.1	ppb	17.8	.96662			
Ag	494.83	ppb	6.51	1.3149			
Al	2085.9	ppb	21.5	1.0318			
As	1968.7	ppb	5.3	.26779			
Au	13.284	ppb	.378	2.8489			
B_	2103.1	ppb	6.6	.31544			
Ва	1976.0	ppb	30.7	1.5538			
Be	1941.9	ppb	13.7	.70518			
Са	1957.2	ppb	6.3	.32054			
Cd	2058.6	ppb	5.3	.25902			
Со	1960.1	ppb	3.6	.18324			
Cr	1878.3	ppb	32.1	1.7114			
Cu	1980.0	ppb	10.7	.54032			
Fe	1981.6	ppb	1.5	.07427			
К_	9920.6	ppb	94.5	.95265			
Li	1874.8	ppb	2.6	.13822			
Mg	1898.4	ppb	18.6	.98192			
Mn	1916.2	ppb	2.5	.13293			
Мо	2086.1	ppb	.6	.02800			
Na	1863.2	ppb	13.5	.72335			
Ni	1994.1	ppb	5.4	.27099			
Pb	2107.8	ppb	2.2	.10490			
Pd	<.00000	ppb	10.187	59.085			
Sb	2129.7	ppb	2.1	.09663			
Se	1966.4	ppb	2.4	.12431			
Si	4788.6	ppb	4.3	.09041			
Sn	1994.3	ppb	1.5	.07704			
Sr	2046.8	ppb	6.3	.30959			
Ti	<.00000	ppb	1.2021	36.596			
TI	2118.9	ppb	3.3	.15656			
Color Legend:	Pass/Unchecke	d Internal	Standard Check F	ail Check W	arn		

Sample Report

CCV-4

Acquire Date: 21-Nov	-2023 4:3	4 pm	Sample Type	e: Unknown			
Correction Factor:1.0000	SW: 1.0000		NW: 1.0000	IV: 1.0000	FV: 1.0000	AF: 1.0000	
Elem	Avg	Units	Stddev	%RSD			
V_	1972.0	ppb	17.9	.90960			
Zn	2056.0	ppb	4.1	.20147			
Zr	.85610	ppb	1.90324	222.31			

CCB-4

Acquire Date: 21-Nov-2023 4:40 pm			Sample Type	e: Unknown		
Correction Factor:1.0000	SW:	1.0000	NW: 1.0000	IV: 1.0000	FV: 1.0000	AF: 1.0000
Elem	Avg	Units	Stddev	%RSD		
2Na	<.00000	ppb	.692	2.5684		
Ag	<.00000	ppb	4.0715	54.758		
Al	2.1383	ppb	3.0442	142.37		
As	<.00000	ppb	2.5623	76.700		
Au	<.00000	ppb	.07579	18.284		
B_	.19820	ppb	.66770	336.89		
Ва	1.0476	ppb	.8792	83.923		
Ве	<.00000	ppb	.03625	7.6433		
Са	<.00000	ppb	5.693	19.197		
Cd	<.00000	ppb	.02801	5.3159		
Co	<.00000	ppb	.03822	4.8704		
Cr	<.00000	ppb	.002	.01694		
Cu	<.00000	ppb	4.1971	331.97		
Fe	<.00000	ppb	.0371	2.2413		
К_	<.00000	ppb	7.3290	279.23		
Li	<.00000	ppb	1.849	6.8578		
Mg	13.155	ppb	5.314	40.395		
Mn	<.00000	ppb	.04173	7.4785		
Мо	<.00000	ppb	.17272	19.708		
Na	<.00000	ppb	3.177	6.6940		
Ni	<.00000	ppb	.0157	1.0554		
Pb	<.00000	ppb	.16174	16.812		
Pd	4.0754	ppb	11.9758	293.86		
Sb	<.00000	ppb	.7527	31.163		
Se	<.00000	ppb	.5164	8.1123		
Si	<.00000	ppb	20.6596	343.49		
Sn	<.00000	ppb	1.7698	76.602		
Sr	5.9370	ppb	5.7350	96.597		
Ti	2.0687	ppb	1.7211	83.195		
TI	<.00000	ppb	.2441	7.6742		
V_	<.00000	ppb	3.773	22.598		
Zn	<.00000	ppb	.0503	2.6315		

Color Legend: <u>Pass/Unchecked</u> Internal Standard <u>Check Fail</u> <u>Check Warn</u>

CCB-4							
Acquire Date: 21-Nov-2023 4:40 pm			Sample Type	e: Unknown			
Correction Factor:1.0000	SW: 1.0000		NW: 1.0000	IV: 1.0000	FV: 1.0000	AF: 1.0000	
Elem	Avg	Units	Stddev	%RSD			
Zr	<.00000	ppb	.4152	16.959			

Color Legend: <u>Pass/Unchecked Internal Standard</u> <u>Check Fail</u> <u>Check Warn</u>

Adirondack Environmental Services, Inc

PREP BATCH REPORT

Prep Start Date: Prep End Date:	11/15/2023 11/15/2023	3 10:31:4 3 11:31:0		Comments:	s: Temp: 95 Start time: 1031 End time: 1131					Prep Factor Units:	
Prep Batch 105	007 Prep	Code:	HG_PREP_S	Technician:	chnician: Anna Fonda						ıL/g
Sample ID	Matrix	pH Re	esCI SampAmt	Sol Added	Fin Vol	factor	PrepStart	PrepEnd	ExPos	TareWt	CleanUp
MB-105007			1	0	50	50.000	11/15/2023	11/15/2023		0	
LCS-105007			0.2	0	50	250.000	11/15/2023	11/15/2023		0	
231108093-001A	Soil		1	0	50	50.000	11/15/2023	11/15/2023		0	
231108093-001ADP	Soil		1	0	50	50.000	11/15/2023	11/15/2023		0	
231108093-001AMS	Soil		1	0	50	50.000	11/15/2023	11/15/2023		0	
231108093-002A	Soil		1	0	50	50.000	11/15/2023	11/15/2023		0	
231108093-003A	Soil		1	0	50	50.000	11/15/2023	11/15/2023		0	
231108093-004A	Soil		1	0	50	50.000	11/15/2023	11/15/2023		0	
231108093-005A	Soil		1	0	50	50.000	11/15/2023	11/15/2023		0	
Number	Reagent Na	me		Solutio	n ID	Sol	ution Name		SampType	AmtAdd	units
8418 Hydroch	noric Acid			8515	M-Me	tals in Soil 54	10	İ	. ,	1	0.2 g
8471 Hot Bloc	ck Digestion Ve	essels - 100	m	MR-HYDF	ROXYL Hydro	xlamine, 12%	<u>,</u>	i			3 ml
8474 M-Fllipm	nate 100, 0.7ur	n Filter		MR-KMN0	MR-KMNO4 5%- Potassium Permanganate					7.5 ml	
8490 Nitric Ac	cid, ACS			MSP-HG	0.1 PP 0.1 PI	PM Hg					2 ml

Adirondack Environmental Services, Inc

PREP BATCH REPORT

Prep Start Date: Prep End Date:	11/15/2023 11/15/2023	3 10:28:0 3 1:28:00	<u>!</u>	Comments: Te	ents: Temp: 95 Start time: 1028 End time: 1328					Page: 1 of 1 Prep Factor Units:	
Prep Batch 105	006 Prep	o Code: 30	50CLP	Technician:	chnician: Anna Fonda						_/g
Sample ID	Matrix	pH Res	CI SampAmt	Sol Added	Fin Vo	ol factor	PrepStart	PrepEnd	ExPos	TareWt	CleanUp
MB-105006			1	0	200	200.000	11/15/2023	11/15/2023		0	
LCS-105006			1	0	200	200.000	11/15/2023	11/15/2023		0	
231108093-001A	Soil		1	0	200	200.000	11/15/2023	11/15/2023		0	
231108093-002A	Soil		1	0	200	200.000	11/15/2023	11/15/2023		0	
231108093-003A	Soil		1	0	200	200.000	11/15/2023	11/15/2023		0	
231108093-004A	Soil		1	0	200	200.000	11/15/2023	11/15/2023		0	
231108093-005A	Soil		1	0	200	200.000	11/15/2023	11/15/2023		0	
231108093-001ADP	Soil		1	0	200	200.000	11/15/2023	11/15/2023		0	
231108093-001AMS	Soil		1	0	200	200.000	11/15/2023	11/15/2023		0	
Number	Reagent Na	ame		Solution	n ID	Sol	ution Name		SampType	AmtAdd	units
8406 Hydroge	en Peroxide		7	8095	M-I	ICP-SSWS-M					1 ml
8418 Hydroch	noric Acid		1	8515	M-I	Metals in Soil 54	40			().5 g
8470 Hot Blog	ck Digestion Ve	essels - 50mL	1		1			I			
8473 M-Flipm	ate 50, 0.7um	Filter	1								
8490 Nitric Ad	cid, ACS										

WorkSheet Report

Date: 11/22/2023

RunID: PMOIST_231117A

Run Start Date: 11/17/2023

Comments:

Analyst: Katie Traver

SeqNo SampID SmpType Analyte Units Tare Wt Final Wt %Recovery RPD(dups) Qual Tare+Sample FinalVal 231108093-001A 0.00% 0.00% 3673805 SAMP wt% 1.756 11.515 10.704 8.31 Percent Moisture 0.00% 0.00% 3673806 231108093-002A SAMP wt% 10.711 9.806 10.1 Percent Moisture 1.74 3673807 231108093-003A SAMP Percent Moisture wt% 1.755 11.575 11.007 5.78 0.00% 0.00% 0.00% 0.00% 3673808 231108093-004A SAMP Percent Moisture wt% 1.757 11.574 10.68 9.11 1.743 0.00% 0.00% 3673809 231108093-005A SAMP wt% 11.858 10.899 9.48 Percent Moisture 0.00% 0.00% 10.946 2.89 3673810 231113031-001A SAMP Percent Moisture wt% 1.739 11.22 4.702 0.00% 3673811 231114059-011A SAMP wt% 1.755 11.531 69.9 0.00% Percent Moisture 3673812 231116038-001A SAMP Percent Moisture wt% 1.761 11.547 10.833 7.3 0.00% 0.00% 0.00% 3673813 231116038-002A SAMP Percent Moisture wt% 1.745 11.962 11.033 9.09 0.00% 0.00% 0.00% 3673814 231116038-003A SAMP Percent Moisture wt% 1.745 10.612 10.114 5.62 3673815 231116038-004A SAMP Percent Moisture wt% 1.749 11.334 10.662 7.01 0.00% 0.00% 3673816 10.487 0.00% 0.00% 231116038-005A SAMP wt% 11.016 Percent Moisture 1.76 5.72 wt% 1.743 9.04 0.00% 0.00% 3673817 231116044-003A SAMP Percent Moisture 10.464 9.676

tio Trovor

314 North Pearl Street * Albany, New York 12207 * (518) 434-4546 * Fax (518) 434-0891

TERMS, CONDITIONS & LIMITATIONS

All service rendered by the Adirondack Environmental Services, Inc. are undertaken and all rates are based upon the following terms:

- (a) Neither Adirondack Environmental Services, Inc., nor any of its employees, agents or sub-contractors shall be liable for any loss or damage arising out of Adirondack Environmental Services, Inc.'s performance or nonperformance, whether by way of negligence or breach of contract, or otherwise, in any amount greater than twice the amount billed to the customer for the work leading to the claim of the customer. Said remedy shall be the sole and exclusive remedy against Adirondack Environmental Services, Inc. arising out of its work.
- (b) All claims made must be in writing within forty-five (45) days after delivery of the Adirondack Environmental Services, Inc. report regarding said work or such claim shall be deemed or irrevocably waived.
- (c) Adirondack Environmental Services, Inc. reports are submitted in writing and are for our customers only. Our customers are considered to be only those entities being billed for our services. Acquisition of an Adirondack Environmental Services, Inc. report by other than our customer does not constitute a representation of Adirondack Environmental Services, Inc. as to the accuracy of the contents thereof.
- (d) In no event shall Adirondack Environmental Services, Inc., its employees, agents or sub-contractors be responsible for consequential or special damages of any kind or in any amount.
- (e) No deviation from the terms set forth herein shall bind Adirondack Environmental Services, Inc. unless in writing and signed by a Director of Adirondack Environmental Services, Inc.
- (f) Results pertain only to items analyzed. Information supplied by client is assumed to be correct. This information may be used on reports and in calculations and Adirondack Environmental Services, Inc. is not responsible for the accuracy of this information.
- (g) Payments by Credit Card/Purchase Cards are subject to a 3% additional charge.

Monday, November 06, 2023

Attn: Miller Environmental Group, Inc. 169 Stone Castle Road Rock Tavern, NY 12575

 Project ID:
 NY03230367

 SDG ID:
 GCP38155

 Sample ID#s:
 CP38155 - CP38157

This laboratory is in compliance with the NELAC requirements of procedures used except where indicated.

This report contains results for the parameters tested, under the sampling conditions described on the Chain Of Custody, as received by the laboratory. This report is incomplete unless all pages indicated in the pagination at the bottom of the page are included.

A scanned version of the COC form accompanies the analytical report and is an exact duplicate of the original.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Sincerely yours,

XI-De

Phyllis/Shiller Laboratory Director

NELAC - #NY11301 CT Lab Registration #PH-0618 MA Lab Registration #M-CT007 ME Lab Registration #CT-007 NH Lab Registration #213693-A,B NJ Lab Registration #CT-003 NY Lab Registration #11301 PA Lab Registration #68-03530 RI Lab Registration #63 VT Lab Registration #VT11301

Sample Id Cross Reference

November 06, 2023

SDG I.D.: GCP38155

Project ID: NY03230367

Client Id	Lab Id	Matrix
A3 STRUCT 1 (1`)	CP38155	WIPE
A3 STRUCT 2 (3`)	CP38156	WIPE
A3 STRUCT 3 (6`)	CP38157	WIPE

Analysis _{Novem}	F	Attn: Miller 169 S Rock	ntal Group, Ir Road 12575	tal Group, Inc. Road 12575					
Sample Inform	nation		Custody Ir	nforma	<u>ition</u>		Dat	<u>e</u>	<u>Time</u>
Matrix:	WIPE		Collected by	y:			10/3	0/23	
Location Code:	MILLERRO	С	Received by	y:	LB		10/3	1/23	17:00
Rush Request:	5 Day		Analyzed by	y:	see	"By" below			
P.O.#:	.O.#: 28981			ory	Dat	<u>a</u>	S Phoe	DG IE enix IE	D: GCP38155 D: CP38155
Project ID:	NY03230367								
Client ID:	A3 STRUCT 1	(1`)							
Parameter		Result	RL/ PQL	Unit	S	Dilution	Date/Time	By	Reference
Mercury Wipe		< 0.08	0.08	ug		1	11/02/23	GW	SW7471B
Mercury Wipe Pre	ep	Completed					11/02/23	AL/HL	

1 = This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

Comments:

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director November 06, 2023 Reviewed and Released by: Rashmi Makol, Project Manager

Analysis _{Novem}		FC	Attn: Miller 169 S Rock	ntal Group, Ir Road 12575	ital Group, Inc. Road 12575				
Sample Inform	nation		Custody Inf	forma	<u>ition</u>		Dat	<u>e</u>	<u>Time</u>
Matrix:	WIPE		Collected by	:			10/3	0/23	
Location Code:	MILLERRO	С	Received by	:	LB		10/3	1/23	17:00
Rush Request:	5 Day		Analyzed by	:	see	"By" below			
P.O.#: 28981			Laborato	ory	Dat	<u>a</u>	S Phoe	DG ID enix ID	D: GCP38155 D: CP38156
Project ID:	NY03230367								
Client ID:	A3 STRUCT 2	(3`)							
Parameter		Result	RL/ PQL	Unit	s	Dilution	Date/Time	By	Reference
Mercury Wipe		< 0.08	0.08	ug		1	11/02/23	GW	SW7471B
Mercury Wipe Pre	ep	Completed					11/02/23	AL/HL	

1 = This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

Comments:

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director November 06, 2023 Reviewed and Released by: Rashmi Makol, Project Manager

Analysis _{Novem}	F	Attn: Miller I 169 St Rock T	ital Group, Inc. Road 12575						
Sample Inform	nation		Custody I	nforma	<u>ition</u>		Dat	Time	
Matrix:	WIPE		Collected I	oy:			10/3	0/23	
Location Code:	MILLERRO	С	Received I	d by: LB			10/3	17:00	
Rush Request:	5 Day		Analyzed by: see "By" below						
P.O.#:	28981		Laborat	ory	Data	<u>a</u>	S Phoe	DG IE enix IE): GCP38155): CP38157
Project ID:	NY03230367								
Client ID:	A3 STRUCT 3	(6`)							
Parameter		Result	RL/ PQL	Unit	s [Dilution	Date/Time	Ву	Reference
Mercury Wipe		< 0.08	0.08	ug		1	11/02/23	GW	SW7471B
Mercury Wipe Pre	ep	Completed					11/02/23	AL/HL	

1 = This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

Comments:

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director November 06, 2023 Reviewed and Released by: Rashmi Makol, Project Manager

QA/QC Report

November 06, 2023

QA/QC Data

SDG I.D.: GCP38155

Parameter	Blank	Blk RL	Sample Result	Dup Result	Dup RPD	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits	
QA/QC Batch 704676 (ug), Q	C Sample	No: C	P38144 (C	P38155	, CP38 ⁻	156, CF	P38157)							
Mercury	BRL	0.08				90.4	87.0	3.8						

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

RPD - Relative Percent Difference

LCS - Laboratory Control Sample

LCSD - Laboratory Control Sample Duplicate

MS - Matrix Spike

MS Dup - Matrix Spike Duplicate

NC - No Criteria

Intf - Interference

Phyllis/Shiller, Laboratory Director November 06, 2023

Monday, Nov	Monday, November 06, 2023			Sample Criteria Exceedances Report							
Criteria:	None		(
State: NY								RI	Analysis		
SampNo	Acode	Phoenix Analyte	Criteria	Re	esult	RL	Criteria	Criteria	Units		
*** No Data to Display ***											

Phoenix Laboratories does not assume responsibility for the data contained in this exceedance report. It is provided as an additional tool to identify requested criteria exceedences. All efforts are made to ensure the accuracy of the data (obtained from appropriate agencies). A lack of exceedence information does not necessarily suggest conformance to the criteria. It is ultimately the site professional's responsibility to determine appropriate compliance.

Analysis Comments

November 06, 2023

SDG I.D.: GCP38155

The following analysis comments are made regarding exceptions to criteria not already noted in the Analysis Report or QA/QC Report: None.

NY Temperature Narration

November 06, 2023

SDG I.D.: GCP38155

The samples in this delivery group were received at 1.7° C. (Note acceptance criteria for relevant matrices is above freezing up to 6° C)

					Coolant:	
PHOENIX 🗭	NY/NJ/PA 587 East Midd	CHAIN OF le Turnpike, P.O. I	CUSTODY	RECORD ter, CT 06040	Temp Phone: 845-	TC Pg of act Options: 509-1200
Environmental Laboratories, Inc.	Email: Makrina Nola	an, makrina@phoe l ient Services	enixlabs.com F (860) 645-110	⁵ ax (860) 645-0823 2		abonillerenv.cc.
Customer: MilleREnvirunner Address: 167 Stone Carler Rock Tavern N.Y. 1	tal Group.Inc 2017 1375	Project: Report to: Invoice to: QUOTE # :	NV032 NV0 labs hv0 labs	80367 ©Millerenu ©Millerenu	Project P.C COM COM Bottl	D:289&1 section MUST be ipleted with e Quantities.
Sampler's Signature Dient Schiple - Information - Identification Matrix Code: DW=Drinking Water GW=Ground Water SW=Surface Water WW= RW=Raw Water SE=Sediment SL=Sludge S=Soil SD=Solid W	Date: 10/30/23	analysis Request	, to a			Start Street
B=Bulk L=Liquid	Date Time	ER WOIVE ST				12011 122 1201 1201 100 100 100 100 100
SAMPLE # Customer Sample Identification Matrix 38155 A3StructIU	Sampled Sampled	X	\square		\$\$\\$\$\\$\\$\\$**\	
38156 A3Struct 2(31) W 38157 A3Struct 3(6) W						
Relinguished by: Accepted by Bau		Ime: D D:3 3 170	Turnaround: 1 Day* 2 Days* 3 Days* Days* 5 Days*	NJ Res. Criteria Non-Res. Criteria Impact to GW Soil Cleanup Criteria	NY □ TOGS GW □ CP-51 SOIL □ 375SCO ∪nrestricted Soil □ 375SCO	PA Clean Fill Limits PA-GW Reg Fill Limits
Comments, Special Requirements or Regulations:	Data Format: Phoenix Std Report	EQuIS NJ Hazsite EDD	Standard	Impact to GW soil screen Criteria	Residential Soil 375SCO Residential Restricted Soil 375SCO	PA Soil Restricted PA Soil non-restricted
MS/MSD are considered site samples and will be billed as such in accordance with the prices quoted.	PDF	NY EZ EDD (ASP) Other	Data Package:	Deliv. *	Commercial Soil 375SCO Industrial Soil Subpart 5 DW	State Samples Collected?

Monday, November 06, 2023

Attn: Miller Environmental Group, Inc. 169 Stone Castle Road Rock Tavern, NY 12575

 Project ID:
 NY03230367

 SDG ID:
 GCP38150

 Sample ID#s:
 CP38150 - CP38154

This laboratory is in compliance with the NELAC requirements of procedures used except where indicated.

This report contains results for the parameters tested, under the sampling conditions described on the Chain Of Custody, as received by the laboratory. This report is incomplete unless all pages indicated in the pagination at the bottom of the page are included.

A scanned version of the COC form accompanies the analytical report and is an exact duplicate of the original.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Sincerely yours,

XI-De

Phyllis/Shiller Laboratory Director

NELAC - #NY11301 CT Lab Registration #PH-0618 MA Lab Registration #M-CT007 ME Lab Registration #CT-007 NH Lab Registration #213693-A,B NJ Lab Registration #CT-003 NY Lab Registration #11301 PA Lab Registration #68-03530 RI Lab Registration #63 VT Lab Registration #VT11301

Sample Id Cross Reference

November 06, 2023

SDG I.D.: GCP38150

Project ID: NY03230367

Client Id	Lab Id	Matrix
TS/FLOOR (DI)	CP38150	WIPE
TS/FLOOR (PCB)	CP38151	WIPE
TS/FLOOR (DI) 0`	CP38152	WIPE
TS/FLOOR (DI) 3`	CP38153	WIPE
TS/FLOOR (DI) 6`	CP38154	WIPE

Analysis _{Novem}	Report ber 06, 2023		FC	DR:	Attn: Mille 169 Rock	ntal Group, Inc. Road 12575				
Sample Inform	nation		Custody In	forma	ation		Dat	e	Time	
Matrix:	WIPE		Collected by	y:			10/3	0/23		
Location Code:	MILLERROO	2	Received by	y:	LB		10/3	1/23	17:00	
Rush Request: 5 Day			Analyzed by	/:	see	"By" below				
P.O.#: 28981			Laborate	ory	Dat	<u>a</u>	S Phoe	DG IE enix IE): GCP38150): CP38150	
Project ID:	NY03230367									
Client ID:	TS/FLOOR (DI)								
Parameter		Result	RL/ PQL	Unit	S	Dilution	Date/Time	By	Reference	
Mercury Wipe		< 0.08	0.08	ug		1	11/02/23	GW	SW7471B	
Mercury Wipe Prep		Completed					11/02/23	AL/HL		

1 = This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

Comments:

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director November 06, 2023 Reviewed and Released by: Rashmi Makol, Project Manager

Analysis Report November 06, 2023	FOR:	Attn: Miller Environmental Group, Inc. 169 Stone Castle Road
		Rock Tavern, NY 12575

Sample Informa	ation	Custody Inform	nation	Date	<u>Time</u>
Matrix:	WIPE	Collected by:		10/30/23	
Location Code:	MILLERROC	Received by:	LB	10/31/23	17:00
Rush Request:	5 Day	Analyzed by:	see "By" below		
P.O.#:	28981	1 - 1			000204

Laboratory Data

SDG ID: GCP38150 Phoenix ID: CP38151

Parameter	Result	RL/ PQL	Units	Dilutior	n Date/Time	By	Reference	
PCB Wipe Extraction	Completed				11/01/23	J/RB	SW3540C	
Polychlorinated Bipł	nenyls							
PCB-1016	ND	25	ug	50	11/02/23	SC	SW8082A	1
PCB-1221	ND	25	ug	50	11/02/23	SC	SW8082A	1
PCB-1232	ND	25	ug	50	11/02/23	SC	SW8082A	1
PCB-1242	ND	25	ug	50	11/02/23	SC	SW8082A	1
PCB-1248	ND	25	ug	50	11/02/23	SC	SW8082A	1
PCB-1254	ND	25	ug	50	11/02/23	SC	SW8082A	1
PCB-1260	110	25	ug	50	11/02/23	SC	SW8082A	1
PCB-1262	ND	25	ug	50	11/02/23	SC	SW8082A	1
PCB-1268	ND	25	ug	50	11/02/23	SC	SW8082A	1
QA/QC Surrogates								
% DCBP	Diluted Out		%	50	11/02/23	SC	30 - 150 %	
% DCBP (Confirmation)	Diluted Out		%	50	11/02/23	SC	30 - 150 %	
% TCMX	Diluted Out		%	50	11/02/23	SC	30 - 150 %	
% TCMX (Confirmation)	Diluted Out		%	50	11/02/23	SC	30 - 150 %	

Project ID:

Client ID:

NY03230367 TS/FLOOR (PCB)

Project ID: NY03230367 Phoenix I.D.: CP38151 Client ID: TS/FLOOR (PCB) RL/ Parameter Result PQL Units Dilution Date/Time By Reference

1 = This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis, Shiller, Laboratory Director November 06, 2023 Reviewed and Released by: Rashmi Makol, Project Manager

Analysis _{Novem}	Report ber 06, 2023		F	FOR:	ntal Group, Ir Road 12575	up, Inc.			
Sample Inform	nation		Custody	Informa	<u>ition</u>		Dat	<u>e</u>	<u>Time</u>
Matrix:	WIPE		Collected	by:			10/3	0/23	
Location Code:	MILLERRO	С	Received	by:	LB		10/3	1/23	17:00
Rush Request: 5 Day			Analyzed I	by:	see '	"By" below			
P.O.#: 28981			Labora	tory	Data	<u>a</u>	S Phoe	DG IE enix IE): GCP38150): CP38152
Project ID:	NY03230367								
Client ID:	TS/FLOOR (D	I) 0`							
Parameter		Result	RL/ PQL	Unit	S	Dilution	Date/Time	Ву	Reference
Mercury Wipe		< 0.08	0.08	ug		1	11/02/23	GW	SW7471B
Mercury Wipe Prep		Completed					11/02/23	AL/HL	

1 = This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

Comments:

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director November 06, 2023 Reviewed and Released by: Rashmi Makol, Project Manager

Analysis _{Novem}	Report ber 06, 2023		F	Attn: Miller E 169 St Rock T	tal Group, Inc. Road 12575				
Sample Inform	nation		Custody I	nforma	<u>tion</u>		Dat	<u>e</u>	Time
Matrix:	WIPE		Collected b	by:			10/3	0/23	
Location Code:	MILLERRO	С	Received b	by:	LB		10/3	1/23	17:00
Rush Request: 5 Day			Analyzed b	y:	see "E	3y" below			
P.O.#: 28981			Laborat	ory I	Data	<u>l</u>	S Phoe	DG IE enix IE): GCP38150): CP38153
Project ID:	NY03230367								
Client ID:	TS/FLOOR (D	I) 3`							
Parameter		Result	RL/ PQL	Unit	s D	Dilution	Date/Time	Ву	Reference
Mercury Wipe		0.11	0.08	ug		1	11/02/23	GW	SW7471B
Mercury Wipe Prep		Completed					11/02/23	AL/HL	

1 = This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

Comments:

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director November 06, 2023 Reviewed and Released by: Rashmi Makol, Project Manager

Analysis _{Novem}	Report ber 06, 2023		I	Attn: Miller 169 S Rock	ital Group, Inc. Road 12575				
Sample Inform	nation		<u>Custody</u>	Informa	<u>ition</u>		Dat	<u>e</u>	<u>Time</u>
Matrix:	WIPE		Collected	by:			10/3	0/23	
Location Code:	MILLERRO	С	Received	by:	LB		10/3	1/23	17:00
Rush Request: 5 Day			Analyzed	by:	see '	"By" below			
P.O.#: 28981			<u>Labora</u>	tory	Data	<u>a</u>	S Phoe	DG IE enix IE	D: GCP38150 D: CP38154
Project ID:	NY03230367								
Client ID:	TS/FLOOR (D	I) 6`							
Parameter		Result	RL/ PQL	Unit	S	Dilution	Date/Time	By	Reference
Mercury Wipe		< 0.08	0.08	ug		1	11/02/23	GW	SW7471B
Mercury Wipe Prep		Completed					11/02/23	AL/HL	

1 = This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

Comments:

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director November 06, 2023 Reviewed and Released by: Rashmi Makol, Project Manager

OA/OC Report November 06, 2023

QA/QC Data

SDG I.D.: GCP38150

Parameter	Blank	Blk RL	Sample Result	Dup Result	Dup RPD	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits	
QA/QC Batch 704676 (ug), QC Sample No: CP38144 (CP38150, CP38152, CP38153, CP38154)														
Mercury	BRL	0.08				90.4	87.0	3.8						

QA/QC Report

November 06, 2023

QA/QC Data

SDG I.D.: GCP38150

Parameter	Blank	Blk RL	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits	
QA/QC Batch 704525 (ug), QC 5	Sample	No: CP34976 (CP38151)									
Polychlorinated Biphenyl											
PCB-1016	ND	0.50	89	102	13.6				40 - 140	30	
PCB-1221	ND	0.50							40 - 140	30	
PCB-1232	ND	0.50							40 - 140	30	
PCB-1242	ND	0.50							40 - 140	30	
PCB-1248	ND	0.50							40 - 140	30	
PCB-1254	ND	0.50							40 - 140	30	
PCB-1260	ND	0.50	83	91	9.2				40 - 140	30	
PCB-1262	ND	0.50							40 - 140	30	
PCB-1268	ND	0.50							40 - 140	30	
% DCBP (Surrogate Rec)	85	%	89	88	1.1				30 - 150	30	
% DCBP (Surrogate Rec) (Confirm	100	%	108	107	0.9				30 - 150	30	
% TCMX (Surrogate Rec)	78	%	81	78	3.8				30 - 150	30	
% TCMX (Surrogate Rec) (Confirm Comment:	83	%	85	84	1.2				30 - 150	30	

A LCS and LCS Duplicate were performed instead of a matrix spike and matrix spike duplicate.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

RPD - Relative Percent Difference

LCS - Laboratory Control Sample

LCSD - Laboratory Control Sample Duplicate

MS - Matrix Spike

MS Dup - Matrix Spike Duplicate

NC - No Criteria

Intf - Interference

Phyllis/Shiller, Laboratory Director November 06, 2023

Monday, November 06, 2023		Sample Crit	Sample Criteria Exceedances Report						
Criteria:	None		GC	P38150 - MILLERROC					
State: NY							RI	Analysis	
SampNo	Acode	Phoenix Analyte	Criteria	Result	RL	Criteria	Criteria	Units	
*** No Data to Display ***									

Phoenix Laboratories does not assume responsibility for the data contained in this exceedance report. It is provided as an additional tool to identify requested criteria exceedences. All efforts are made to ensure the accuracy of the data (obtained from appropriate agencies). A lack of exceedence information does not necessarily suggest conformance to the criteria. It is ultimately the site professional's responsibility to determine appropriate compliance.

Analysis Comments

November 06, 2023

SDG I.D.: GCP38150

The following analysis comments are made regarding exceptions to criteria not already noted in the Analysis Report or QA/QC Report: None.

NY Temperature Narration

November 06, 2023

SDG I.D.: GCP38150

The samples in this delivery group were received at 1.7° C. (Note acceptance criteria for relevant matrices is above freezing up to 6° C)

					Coolant	
	NY/NJ/PA	CHAIN OF	CUSTODY	RECORD	Tem	°C Pg of
PH()ENIX ST	587 East Middle Turnpike, P.O. Box 370, Manchester, CT 06040					-569-1200
Environmental Laboratories, Inc.	Email: Makrina Nola Cli	n, makrina@phoe ient Services	nixlabs.com F (860) 645-110	Fax (860) 645-0823 1 2		tobom ille contra
Customer: MilleR Fail Conner	te (Soultor	Project:	NU0322	30367	Proiect P.	0:28981
Address: 109 Stone Cartle Roa		Report to:	holab	Somillerenu	COM This	section MUST be
Kock Taven, N.Y.	2575	Invoice to:	hvulabs	QMilleren	Cum con	npleted with le Quantities
Sampler's Signature		nalysis equest	L. CHERNER			S. Lauri
Matrix Code: DW=Drinking Water GW=Ground Water SW=Surface Water WW=V	Vaste Water	a statistic	X / /			
RW=Raw Water SE=Sediment SL=Sludge S=Soil SD=Solid W= B=Bulk L=Liquid	Wipe OIL= Oil	USE DIMEDIE	*///			A STATION STATION STATION
PHOENIX USE ONLY Sample SAMPLE # Customer Sample Identification Matrix	Date Time Sampled Sampled		×///	C LITE S		V)) (1) (1) (1) (1) (1) (1) (1) (1) (1)
3815D TS Flour(DI), W	16 30 23				1	
3815 TS Floor (PCB)		X				
28152 75 Wall D10		<u> </u>				
281511 TS Wall DIG' V						
					• + + + + + + + + + + + + + + + + + + +	
				+ $+$ $+$ $+$ $+$		
				+ $+$ $+$ $+$ $+$		
				┼┼╌╂┼┼		
Relinguished by: Accepted by:	<u>Date</u> :	<u>Time</u> :	Turnaround:	NJ	NY	PA
- A A Bad	Q 10 3+2	3 2:35	1 Day*	Res. Criteria	CP-51 SOIL	
	J 15/3/1	15/10	0	Impact to GW Soil	375SCO Unrestricted Soil	Beg Fill Limits
Comments, Special Requirements or Regulations:	Data Format:	I	5 Days*	Impact to GW	375SCO Residential Soil	PA Soil Restricted
	Phoenix Std Report	EQuIS	* SURCHARGE APPLIES	soil screen Criteria	375SCO Residential	PA Soil non-restricted
in the second	Excel	NJ Hazsite EDD		GW Criteria	Restricted Soil	v 1/20
	PDF 🗌	NY EZ EDD (ASP)	Data Package:	Deliv. * 🗍 Other	375SCO	State Samples Collected?
*MS/MSD are considered site samples and will be billed as such in accordance with the prices quoted.	GIS/Key	Other	NY Enhanced	d (ASP B) *	Subpart 5 DW	
	Ale					

Wednesday, November 08, 2023

Attn: Miller Environmental Group, Inc. 169 Stone Castle Road Rock Tavern, NY 12575

 Project ID:
 NY03230367

 SDG ID:
 GCP38104

 Sample ID#s:
 CP38104 - CP38124

This laboratory is in compliance with the NELAC requirements of procedures used except where indicated.

This report contains results for the parameters tested, under the sampling conditions described on the Chain Of Custody, as received by the laboratory. This report is incomplete unless all pages indicated in the pagination at the bottom of the page are included.

A scanned version of the COC form accompanies the analytical report and is an exact duplicate of the original.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Sincerely yours,

XI-De

Phyllis/Shiller Laboratory Director

NELAC - #NY11301 CT Lab Registration #PH-0618 MA Lab Registration #M-CT007 ME Lab Registration #CT-007 NH Lab Registration #213693-A,B NJ Lab Registration #CT-003 NY Lab Registration #11301 PA Lab Registration #68-03530 RI Lab Registration #63 VT Lab Registration #VT11301

Sample Id Cross Reference

November 08, 2023

SDG I.D.: GCP38104

Project ID: NY03230367

Client Id	Lab Id	Matrix
WSA 1	CP38104	WIPE
WSA 2	CP38105	WIPE
WSA 3	CP38106	WIPE
WSA 4	CP38107	WIPE
WSA 5	CP38108	WIPE
WSA 6	CP38109	WIPE
WSA 7	CP38110	WIPE
WSA 8	CP38111	WIPE
WSA 9	CP38112	WIPE
WSA 10	CP38113	WIPE
WSA 11	CP38114	WIPE
WSA 12	CP38115	WIPE
WSA 13	CP38116	WIPE
WSA 14	CP38117	WIPE
WSA 15	CP38118	WIPE
WSA 16	CP38119	WIPE
WSA 17	CP38120	WIPE
WSA 18	CP38121	WIPE
WSA 19	CP38122	WIPE
WSA 20	CP38123	WIPE
WSA 21	CP38124	WIPE

Time

Analysis Report

November 08, 2023

FOR: Attn:

Miller Environmental Group, Inc. 169 Stone Castle Road Rock Tavern, NY 12575

Sample Information

Project ID: Client ID:

Matrix:	WIPE
Location Code:	MILLERROC
Rush Request:	5 Day
P.O.#:	28981

NY03230367

WSA 1

Collected by:	
Received by:	
Analyzed by:	

Custody Information

LB see "By" below 10/30/23 10/31/23 17:00

Date

<u>Laboratory Data</u>

SDG ID: GCP38104 Phoenix ID: CP38104

		RL/						
Parameter	Result	PQL	Units	Dilution	Date/Time	By	Reference	
Mercury Wipe	< 0.01	0.01	ug	0.1	11/02/23	PM	SW7471B	1
Mercury Wipe Prep	Completed				11/02/23	AL/AL		
PCB Wipe Extraction	Completed				11/01/23	J/RB	SW3540C	
Polychlorinated Biph	nenyls							
PCB-1016	ND	2.5	ug	5	11/06/23	SC	SW8082A	1
PCB-1221	ND	2.5	ug	5	11/06/23	SC	SW8082A	1
PCB-1232	ND	2.5	ug	5	11/06/23	SC	SW8082A	1
PCB-1242	ND	2.5	ug	5	11/06/23	SC	SW8082A	1
PCB-1248	ND	2.5	ug	5	11/06/23	SC	SW8082A	1
PCB-1254	*	* 2.5	ug	5	11/06/23	SC	SW8082A	1
PCB-1260	32	* 2.5	ug	5	11/06/23	SC	SW8082A	1
PCB-1262	ND	2.5	ug	5	11/06/23	SC	SW8082A	1
PCB-1268	ND	2.5	ug	5	11/06/23	SC	SW8082A	1
QA/QC Surrogates								
% DCBP	89		%	5	11/06/23	SC	30 - 150 %	
% DCBP (Confirmation)	102		%	5	11/06/23	SC	30 - 150 %	
% TCMX	76		%	5	11/06/23	SC	30 - 150 %	
% TCMX (Confirmation)	76		%	5	11/06/23	SC	30 - 150 %	

1 = This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

PCB Comment:

* For PCBs, as per section 11.9.3 of SW846 method 8082, when multiple Aroclor's of PCBs are present and the aroclor is no longer recognizable, quantitation may be performed by comparing the total area of the PCB pattern to that of the aroclor it mostly resembles. The PCB pattern did not resemble any of the standards, but most closely resembles a mixture of the Aroclors 1254 and 1260. The PCB is quantitated as a timed group and is reported as the Aroclor 1260.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis, Shiller, Laboratory Director November 08, 2023 Reviewed and Released by: Rashmi Makol, Project Manager

Time

17:00

Analysis Report

November 08, 2023

FOR: Attn:

Miller Environmental Group, Inc. 169 Stone Castle Road Rock Tavern, NY 12575

Sample Information

Project ID: Client ID:

Matrix:	WIPE
Location Code:	MILLERROC
Rush Request:	5 Day
P.O.#:	28981

NY03230367

WSA 2

Received by:	LB
Analyzed by:	see "By" below

Custody Information

Collected by:

Laboratory Data

SDG ID: GCP38104 Phoenix ID: CP38105

Date

10/30/23

10/31/23

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	By	Reference	
Mercury Wipe	< 0.01	0.01	ug	0.1	11/02/23	PM	SW7471B	1
Mercury Wipe Prep	Completed				11/02/23	AL/AL		
PCB Wipe Extraction	Completed				11/01/23	J/RB	SW3540C	
Polychlorinated Biph	enyls							
PCB-1016	ND	2.5	ug	5	11/02/23	SC	SW8082A	1
PCB-1221	ND	2.5	ug	5	11/02/23	SC	SW8082A	1
PCB-1232	ND	2.5	ug	5	11/02/23	SC	SW8082A	1
PCB-1242	ND	2.5	ug	5	11/02/23	SC	SW8082A	1
PCB-1248	*	* 2.5	ug	5	11/02/23	SC	SW8082A	1
PCB-1254	*	* 2.5	ug	5	11/02/23	SC	SW8082A	1
PCB-1260	30	* 2.5	ug	5	11/02/23	SC	SW8082A	1
PCB-1262	ND	2.5	ug	5	11/02/23	SC	SW8082A	1
PCB-1268	ND	2.5	ug	5	11/02/23	SC	SW8082A	1
QA/QC Surrogates								
% DCBP	107		%	5	11/02/23	SC	30 - 150 %	
% DCBP (Confirmation)	117		%	5	11/02/23	SC	30 - 150 %	
% TCMX	89		%	5	11/02/23	SC	30 - 150 %	
% TCMX (Confirmation)	89		%	5	11/02/23	SC	30 - 150 %	

1 = This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

PCB Comment:

* For PCBs, as per section 11.9.3 of SW846 method 8082, when multiple Aroclor's of PCBs are present and the aroclor is no longer recognizable, quantitation may be performed by comparing the total area of the PCB pattern to that of the aroclor it mostly resembles. The PCB pattern did not resemble any of the standards, but most closely resembles a mixture of the Aroclors 1248 and 1254 and 1260. The PCB is quantitated as a timed group and is reported as the Aroclor 1260.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director November 08, 2023 Reviewed and Released by: Rashmi Makol, Project Manager

Time

17:00

Analysis Report

November 08, 2023

FOR: Attn:

LB

Miller Environmental Group, Inc. 169 Stone Castle Road Rock Tavern, NY 12575

Sample Information

Project ID: Client ID:

Matrix:	WIPE
Location Code:	MILLERROC
Rush Request:	5 Day
P.O.#:	28981

NY03230367

WSA 3

_aboratorv	Data
Analyzed by:	see "B

Custody Information

Collected by:

Received by:

"By" below

Date

10/30/23

10/31/23

SDG ID: GCP38104 Phoenix ID: CP38106

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	By	Reference	
Mercury Wipe	< 0.01	0.01	ug	0.1	11/02/23	PM	SW7471B	1
Mercury Wipe Prep	Completed				11/02/23	AL/AL		
PCB Wipe Extraction	Completed				11/01/23	J/RB	SW3540C	
Polychlorinated Biph	nenyls							
PCB-1016	ND	0.50	ug	1	11/02/23	SC	SW8082A	1
PCB-1221	ND	0.50	ug	1	11/02/23	SC	SW8082A	1
PCB-1232	ND	0.50	ug	1	11/02/23	SC	SW8082A	1
PCB-1242	ND	0.50	ug	1	11/02/23	SC	SW8082A	1
PCB-1248	ND	0.50	ug	1	11/02/23	SC	SW8082A	1
PCB-1254	0.83	0.50	ug	1	11/02/23	SC	SW8082A	1
PCB-1260	ND	0.50	ug	1	11/02/23	SC	SW8082A	1
PCB-1262	ND	0.50	ug	1	11/02/23	SC	SW8082A	1
PCB-1268	ND	0.50	ug	1	11/02/23	SC	SW8082A	1
QA/QC Surrogates								
% DCBP	74		%	1	11/02/23	SC	30 - 150 %	
% DCBP (Confirmation)	79		%	1	11/02/23	SC	30 - 150 %	
% TCMX	69		%	1	11/02/23	SC	30 - 150 %	
% TCMX (Confirmation)	69		%	1	11/02/23	SC	30 - 150 %	

Project ID: NY03230367 Phoenix I.D.: CP38106 Client ID: WSA 3 RL/ Parameter Result PQL Units Dilution Date/Time By Reference

1 = This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis, Shiller, Laboratory Director November 08, 2023 Reviewed and Released by: Rashmi Makol, Project Manager

Time

Analysis Report

November 08, 2023

FOR: Attn:

Miller Environmental Group, Inc. 169 Stone Castle Road Rock Tavern, NY 12575

Sample Information

Matrix:	WIPE
Location Code:	MILLERROC
Rush Request:	5 Day
P.O.#:	28981

Received by:	LB
Analyzed by:	see

Custody Information

Collected by:

LB see "By" below 10/30/23 10/31/23 17:00

Date

Laboratory Data

SDG ID: GCP38104 Phoenix ID: CP38107

Project ID:	NY03230367
Client ID:	WSA 4

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	By	Reference	
Mercury Wipe	< 0.01	0.01	ug	0.1	11/02/23	PM	SW7471B	1
Mercury Wipe Prep	Completed				11/02/23	AL/AL		
PCB Wipe Extraction	Completed				11/01/23	J/RB	SW3540C	
Polychlorinated Biph	enyls							
PCB-1016	ND	0.50	ug	1	11/02/23	SC	SW8082A	1
PCB-1221	ND	0.50	ug	1	11/02/23	SC	SW8082A	1
PCB-1232	ND	0.50	ug	1	11/02/23	SC	SW8082A	1
PCB-1242	ND	0.50	ug	1	11/02/23	SC	SW8082A	1
PCB-1248	ND	0.50	ug	1	11/02/23	SC	SW8082A	1
PCB-1254	0.97	0.50	ug	1	11/02/23	SC	SW8082A	1
PCB-1260	ND	0.50	ug	1	11/02/23	SC	SW8082A	1
PCB-1262	ND	0.50	ug	1	11/02/23	SC	SW8082A	1
PCB-1268	ND	0.50	ug	1	11/02/23	SC	SW8082A	1
QA/QC Surrogates								
% DCBP	84		%	1	11/02/23	SC	30 - 150 %	
% DCBP (Confirmation)	89		%	1	11/02/23	SC	30 - 150 %	
% TCMX	74		%	1	11/02/23	SC	30 - 150 %	
% TCMX (Confirmation)	75		%	1	11/02/23	SC	30 - 150 %	

Project ID: NY03230367 Phoenix I.D.: CP38107 Client ID: WSA 4 RL/ Parameter Result PQL Units Dilution Date/Time By Reference

1 = This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis, Shiller, Laboratory Director November 08, 2023 Reviewed and Released by: Rashmi Makol, Project Manager

Time

17:00

Analysis Report

November 08, 2023

FOR: Attn:

Miller Environmental Group, Inc. 169 Stone Castle Road Rock Tavern, NY 12575

Sample Information

Project ID: Client ID:

Matrix:	WIPE
Location Code:	MILLERROC
Rush Request:	5 Day
P.O.#:	28981

NY03230367

WSA 5

Re	eceived	by:	LE	3
Ar	nalyzed	by:	se	e "By" below

Collected by:

Custody Information

Laboratory Data

SDG ID: GCP38104 Phoenix ID: CP38108

Date

10/30/23

10/31/23

Parameter	Result	RL/	l Inite	Dilution	Date/Time	Bv	Reference	
	Result		Onits	Dilution	Date/ Inne	Dy	Reference	
Mercury Wipe	< 0.01	0.01	ug	0.1	11/02/23	PM	SW7471B	1
Mercury Wine Pren	Completed				11/02/23	ΔΙ /ΔΙ		
DCR Wine Extraction	Completed				11/01/23		SW/2540C	
PCB wipe Extraction	Completed				11/01/23	J/KD	31133400	
Polychlorinated Biph	nenyls							
PCB-1016	ND	5.0	ug	10	11/02/23	SC	SW8082A	1
PCB-1221	ND	5.0	ug	10	11/02/23	SC	SW8082A	1
PCB-1232	ND	5.0	ug	10	11/02/23	SC	SW8082A	1
PCB-1242	ND	5.0	ug	10	11/02/23	SC	SW8082A	1
PCB-1248	ND	5.0	ug	10	11/02/23	SC	SW8082A	1
PCB-1254	ND	5.0	ug	10	11/02/23	SC	SW8082A	1
PCB-1260	50	5.0	ug	10	11/02/23	SC	SW8082A	1
PCB-1262	ND	5.0	ug	10	11/02/23	SC	SW8082A	1
PCB-1268	ND	5.0	ug	10	11/02/23	SC	SW8082A	1
QA/QC Surrogates								
% DCBP	106		%	10	11/02/23	SC	30 - 150 %	
% DCBP (Confirmation)	122		%	10	11/02/23	SC	30 - 150 %	
% TCMX	85		%	10	11/02/23	SC	30 - 150 %	
% TCMX (Confirmation)	86		%	10	11/02/23	SC	30 - 150 %	

Project ID: NY03230367 Phoenix I.D.: CP38108 Client ID: WSA 5 RL/ Parameter Result PQL Units Dilution Date/Time By Reference

1 = This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis, Shiller, Laboratory Director November 08, 2023 Reviewed and Released by: Rashmi Makol, Project Manager

Time

17:00

Analysis Report

November 08, 2023

NY03230367

WSA 6

FOR: Attn:

Miller Environmental Group, Inc. 169 Stone Castle Road Rock Tavern, NY 12575

Project ID: Client ID:

Sample Informa	ation	Custody Information					
Matrix:	WIPE	Collected by:					
Location Code:	MILLERROC	Received by:	LB				
Rush Request:	5 Day	Analyzed by:	see "By" below				
P.O.#:	28981	l oborotom (

Laboratory Data

SDG ID: GCP38104 Phoenix ID: CP38109

<u>Date</u>

10/30/23 10/31/23

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Bv	Reference	
Mercury Wipe	< 0.01	0.01	ug	0.1	11/02/23	PM	SW7471B	1
Mercury Wipe Prep	Completed				11/02/23	AL/AL		
PCB Wipe Extraction	Completed				11/01/23	J/RB	SW3540C	
Polychlorinated Bipl	nenyls							
PCB-1016	ND	0.50	ug	1	11/02/23	SC	SW8082A	1
PCB-1221	ND	0.50	ug	1	11/02/23	SC	SW8082A	1
PCB-1232	ND	0.50	ug	1	11/02/23	SC	SW8082A	1
PCB-1242	ND	0.50	ug	1	11/02/23	SC	SW8082A	1
PCB-1248	ND	0.50	ug	1	11/02/23	SC	SW8082A	1
PCB-1254	ND	0.50	ug	1	11/02/23	SC	SW8082A	1
PCB-1260	2.1	0.50	ug	1	11/02/23	SC	SW8082A	1
PCB-1262	ND	0.50	ug	1	11/02/23	SC	SW8082A	1
PCB-1268	ND	0.50	ug	1	11/02/23	SC	SW8082A	1
QA/QC Surrogates								
% DCBP	86		%	1	11/02/23	SC	30 - 150 %	
% DCBP (Confirmation)	91		%	1	11/02/23	SC	30 - 150 %	
% TCMX	79		%	1	11/02/23	SC	30 - 150 %	
% TCMX (Confirmation)	81		%	1	11/02/23	SC	30 - 150 %	

Project ID: NY03230367 Phoenix I.D.: CP38109 Client ID: WSA 6 RL/ Parameter Result PQL Units Dilution Date/Time By Reference

1 = This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis, Shiller, Laboratory Director November 08, 2023 Reviewed and Released by: Rashmi Makol, Project Manager

Time

17:00

Analysis Report

FOR: Attn:

LB

see "By" below

Miller Environmental Group, Inc. 169 Stone Castle Road Rock Tavern, NY 12575

Project ID: Client ID:

Sample Information						
Matrix:	WIPE					
Location Code:	MILLERROC					
Rush Request:	5 Day					
P.O.#:	28981					

NY03230367

WSA 7

November 08, 2023

	_			_
l a	hoi	rato	vn	Data

Custody Information

Collected by:

Received by:

Analyzed by:

SDG ID: GCP38104 Phoenix ID: CP38110

Date

10/30/23

10/31/23

		RL/						
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference	
Mercury Wipe	< 0.01	0.01	ug	0.1	11/02/23	PM	SW7471B	1
Mercury Wipe Prep	Completed				11/02/23	AL/AL		
PCB Wipe Extraction	Completed				11/01/23	J/RB	SW3540C	
Polychlorinated Bipl	<u>henyls</u>							
PCB-1016	ND	0.50	ug	1	11/02/23	SC	SW8082A	1
PCB-1221	ND	0.50	ug	1	11/02/23	SC	SW8082A	1
PCB-1232	ND	0.50	ug	1	11/02/23	SC	SW8082A	1
PCB-1242	ND	0.50	ug	1	11/02/23	SC	SW8082A	1
PCB-1248	ND	0.50	ug	1	11/02/23	SC	SW8082A	1
PCB-1254	ND	0.50	ug	1	11/02/23	SC	SW8082A	1
PCB-1260	ND	0.50	ug	1	11/02/23	SC	SW8082A	1
PCB-1262	ND	0.50	ug	1	11/02/23	SC	SW8082A	1
PCB-1268	ND	0.50	ug	1	11/02/23	SC	SW8082A	1
QA/QC Surrogates								
% DCBP	84		%	1	11/02/23	SC	30 - 150 %	
% DCBP (Confirmation)	88		%	1	11/02/23	SC	30 - 150 %	
% TCMX	70		%	1	11/02/23	SC	30 - 150 %	
% TCMX (Confirmation)	71		%	1	11/02/23	SC	30 - 150 %	

Project ID: NY03230367 Client ID: WSA 7 RL/ Parameter Result PQL Units Dilution Date/Time By Reference

1 = This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director November 08, 2023 Reviewed and Released by: Rashmi Makol, Project Manager

Analysis Novemi	Report ber 08, 2023		FC	OR:	Attn: Miller 169 S Rock	Environmer tone Castle Tavern, NY	ntal Group, Ir Road 12575	nc.	
Sample Inform	nation		Custody In	Iforma	<u>ition</u>		Dat	<u>e</u>	Time
Matrix:	WIPE		Collected by	y:			10/3	0/23	
Location Code:	MILLERRO	С	Received by	y:	LB		10/3	1/23	17:00
Rush Request:	5 Day		Analyzed by	/:	see "	By" below			
P.O.#:	28981		Laborate	ory	Data	<u>a</u>	S Phoe	DG IE enix IE): GCP38104): CP38111
Project ID:	NY03230367								
Client ID:	WSA 8								
Parameter		Result	RL/ PQL	Unit	s	Dilution	Date/Time	Ву	Reference
Mercury Wipe		< 0.01	0.01	ug		0.1	11/02/23	PM	SW7471B
Mercury Wipe Pre	p	Completed					11/02/23	AL/AL	

1 = This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

Comments:

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director November 08, 2023 Reviewed and Released by: Rashmi Makol, Project Manager

Analysis _{Novem}	Report ber 08, 2023			FOR:	Attn: Miller 169 S Rock	Environmer tone Castle Tavern, NY	ntal Group, Ir Road 12575	IC.	
Sample Inform	nation		<u>Custody</u>	Informa	ation		Dat	<u>e</u>	Time
Matrix:	WIPE		Collected	by:			10/3	0/23	
Location Code:	MILLERRO	С	Received	by:	LB		10/3	1/23	17:00
Rush Request:	5 Day		Analyzed	by:	see "	By" below			
P.O.#:	28981		Labora	tory	Data	<u>a</u>	S Phoe	DG ID enix ID): GCP38104): CP38112
Project ID:	NY03230367								
Client ID:	WSA 9								
Parameter		Result	RL/ PQL	Unit	s	Dilution	Date/Time	Ву	Reference
Mercury Wipe		< 0.01	0.01	ug		0.1	11/02/23	PM	SW7471B
Mercury Wipe Pre	ep	Completed					11/02/23	AL/AL	

1 = This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

Comments:

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director November 08, 2023 Reviewed and Released by: Rashmi Makol, Project Manager

Analysis Novem	Report ber 08, 2023			FOR:	Attn: Miller E 169 Ste Rock T	Environmer one Castle Favern, NY	ntal Group, Ir Road 12575	IC.	
Sample Inform	nation		<u>Custody</u>	Informa	ation		Date	<u>e</u>	Time
Matrix:	WIPE		Collected	by:			10/3	0/23	
Location Code:	MILLERRO	С	Received	by:	LB		10/3	1/23	17:00
Rush Request:	5 Day		Analyzed	by:	see "B	sy" below			
P.O.#:	28981		<u>Labora</u>	tory	Data	<u> </u>	S Phoe	DG ID enix ID): GCP38104): CP38113
Project ID:	NY03230367								
Client ID:	WSA 10								
Parameter		Result	RL/ PQL	Unit	ts D	Dilution	Date/Time	Ву	Reference
Mercury Wipe		< 0.01	0.01	ug		0.1	11/02/23	PM	SW7471B
Mercury Wipe Pre	p	Completed					11/02/23	AL/AL	

1 = This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

Comments:

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director November 08, 2023 Reviewed and Released by: Rashmi Makol, Project Manager

Analysis Novemb	Report Der 08, 2023		FC	OR:	Attn: Miller E 169 Sto Rock T	nvironmer one Castle avern, NY	ntal Group, Ir Road 12575	IC.	
Sample Inform	ation		Custody In	Iforma	<u>tion</u>		Date	<u>e</u>	Time
Matrix:	WIPE		Collected by	y:			10/3	0/23	
Location Code:	MILLERRO	С	Received by	y:	LB		10/3	1/23	17:00
Rush Request:	5 Day		Analyzed by	/:	see "B	y" below			
P.O.#:	28981		Laborate	ory I	Data		S Phoe	DG ID enix ID): GCP38104): CP38114
Project ID:	NY03230367								
Client ID:	WSA 11								
Parameter		Result	RL/ PQL	Unit	s D	vilution	Date/Time	Ву	Reference
Mercury Wipe		< 0.01	0.01	ug		0.1	11/02/23	PM	SW7471B
Mercury Wipe Pre	р	Completed					11/02/23	AL/AL	

1 = This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

Comments:

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director November 08, 2023 Reviewed and Released by: Rashmi Makol, Project Manager

Time

Analysis Report

November 08, 2023

FOR: Attn:

Miller Environmental Group, Inc. 169 Stone Castle Road Rock Tavern, NY 12575

Sample Information

Project ID: Client ID:

Matrix:	WIPE
Location Code:	MILLERROC
Rush Request:	5 Day
P.O.#:	28981

NY03230367

WSA 12

Received by:	LB
Analyzed by:	see "

Custody Information

Collected by:

LB see "By" below 10/30/23 10/31/23 17:00

Date

Laboratory Data

SDG ID: GCP38104 Phoenix ID: CP38115

Parameter	Result	RL/	Linite	Dilution	Date/Time	Bv	Reference	
	Result		Onits	Dilution	Date/Time	Dy	Reference	
Mercury Wipe	< 0.01	0.01	ug	0.1	11/02/23	PM	SW7471B	1
Mercury Wipe Prep	Completed				11/02/23	AL/AL		
PCB Wipe Extraction	Completed				11/01/23	J/RB	SW3540C	
Polychlorinated Bipl	nenvls							
PCB-1016	ND	0.50	ug	1	11/02/23	SC	SW8082A	1
PCB-1221	ND	0.50	ug	1	11/02/23	SC	SW8082A	1
PCB-1232	ND	0.50	ug	1	11/02/23	SC	SW8082A	1
PCB-1242	ND	0.50	ug	1	11/02/23	SC	SW8082A	1
PCB-1248	ND	0.50	ug	1	11/02/23	SC	SW8082A	1
PCB-1254	ND	0.50	ug	1	11/02/23	SC	SW8082A	1
PCB-1260	2.3	0.50	ug	1	11/02/23	SC	SW8082A	1
PCB-1262	ND	0.50	ug	1	11/02/23	SC	SW8082A	1
PCB-1268	ND	0.50	ug	1	11/02/23	SC	SW8082A	1
QA/QC Surrogates								
% DCBP	92		%	1	11/02/23	SC	30 - 150 %	
% DCBP (Confirmation)	97		%	1	11/02/23	SC	30 - 150 %	
% TCMX	83		%	1	11/02/23	SC	30 - 150 %	
% TCMX (Confirmation)	83		%	1	11/02/23	SC	30 - 150 %	

Project ID: NY03230367 Client ID: WSA 12 RL/ Parameter Result PQL Units Dilution Date/Time By Reference

1 = This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director November 08, 2023 Reviewed and Released by: Rashmi Makol, Project Manager

Analysis Novemb	Report per 08, 2023		FOR: Attn: Miller Environmental 169 Stone Castle Ro Rock Tavern, NY 125				tal Group, Inc. Road 12575		
Sample Inform	ation		Custody Ir	nforma	<u>tion</u>		Date	<u>e</u>	Time
Matrix:	WIPE		Collected b	y:			10/3	0/23	
Location Code:	MILLERRO	С	Received b	y:	LB		10/3	1/23	17:00
Rush Request:	5 Day		Analyzed b	y:	see "B	3y" below			
P.O.#:	28981		Laborat	ory	Data	<u>l</u>	S Phoe	DG ID enix ID): GCP38104): CP38116
Project ID:	NY03230367								
Client ID:	WSA 13								
Parameter		Result	RL/ PQL	Unit	s D	Dilution	Date/Time	Ву	Reference
Mercury Wipe		< 0.01	0.01	ug		0.1	11/02/23	PM	SW7471B
Mercury Wipe Pre	þ	Completed					11/02/23	AL/AL	

1 = This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

Comments:

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director November 08, 2023 Reviewed and Released by: Rashmi Makol, Project Manager

Time

17:00

Analysis Report

November 08, 2023

FOR: Attn:

Miller Environmental Group, Inc. 169 Stone Castle Road Rock Tavern, NY 12575

"By" below

Sample Information

Project ID: Client ID:

Matrix:	WIPE
Location Code:	MILLERROC
Rush Request:	5 Day
P.O.#:	28981

NY03230367

WSA 14

Collected by:	
Received by:	LB
Analyzed by:	see

Custody Information

Laboratory Data

SDG ID: GCP38104 Phoenix ID: CP38117

Date

10/30/23

10/31/23

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	By	Reference	
Mercury Wipe	< 0.01	0.01	ug	0.1	11/02/23	PM	SW7471B	1
Mercury Wipe Prep	Completed				11/02/23	AL/AL		
PCB Wipe Extraction	Completed				11/01/23	J/RB	SW3540C	
Polychlorinated Biph	nenyls							
PCB-1016	ND	0.50	ug	1	11/02/23	SC	SW8082A	1
PCB-1221	ND	0.50	ug	1	11/02/23	SC	SW8082A	1
PCB-1232	ND	0.50	ug	1	11/02/23	SC	SW8082A	1
PCB-1242	ND	0.50	ug	1	11/02/23	SC	SW8082A	1
PCB-1248	ND	0.50	ug	1	11/02/23	SC	SW8082A	1
PCB-1254	2.4	0.50	ug	1	11/02/23	SC	SW8082A	1
PCB-1260	ND	0.50	ug	1	11/02/23	SC	SW8082A	1
PCB-1262	ND	0.50	ug	1	11/02/23	SC	SW8082A	1
PCB-1268	ND	0.50	ug	1	11/02/23	SC	SW8082A	1
QA/QC Surrogates								
% DCBP	102		%	1	11/02/23	SC	30 - 150 %	
% DCBP (Confirmation)	108		%	1	11/02/23	SC	30 - 150 %	
% TCMX	82		%	1	11/02/23	SC	30 - 150 %	
% TCMX (Confirmation)	82		%	1	11/02/23	SC	30 - 150 %	

Project ID: NY03230367 Client ID: WSA 14 RL/ Parameter Result PQL Units Dilution Date/Time By Reference

1 = This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director November 08, 2023 Reviewed and Released by: Rashmi Makol, Project Manager

Analysis Noveml	Report ber 08, 2023		FOR: Attn: Miller Environmenta 169 Stone Castle R Rock Tavern, NY 1;				ntal Group, Inc. Road 12575		
Sample Inform	nation		<u>Custody</u>	Informa	<u>ition</u>		Dat	<u>e</u>	<u>Time</u>
Matrix:	WIPE		Collected	by:			10/3	0/23	
Location Code:	MILLERRO	С	Received	by:	LB		10/3	1/23	17:00
Rush Request:	5 Day		Analyzed	by:	see "B	y" below			
P.O.#:	28981		Labora	tory	<u>Data</u>		S Phoe	DG IE enix IE): GCP38104): CP38118
Project ID:	NY03230367								
Client ID:	WSA 15								
Parameter		Result	RL/ PQL	Unit	s D	ilution	Date/Time	Ву	Reference
Mercury Wipe		< 0.01	0.01	ug		0.1	11/02/23	PM	SW7471B
Mercury Wipe Pre	p	Completed					11/02/23	AL/AL	

1 = This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

Comments:

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director November 08, 2023 Reviewed and Released by: Rashmi Makol, Project Manager

Analysis Novem	Analysis Report November 08, 2023 Sample Information				FOR: Attn: Miller Environmenta 169 Stone Castle R Rock Tavern, NY 1				ntal Group, Inc. Road 12575		
Sample Inform	nation		<u>Custod</u>	ly Inform	ation		Dat	<u>e</u>	<u>Time</u>		
Matrix:	WIPE		Collecte	ed by:			10/3	0/23			
Location Code:	MILLERRO	С	Receive	ed by:	LB		10/3	1/23	17:00		
Rush Request:	5 Day		Analyze	ed by:	see	"By" below					
P.O.#:	28981		Labor	atory	Dat	a	S Phoe	DG ID enix ID): GCP38104): CP38119		
Project ID:	NY03230367										
Client ID:	WSA 16										
Parameter		Result	RL/ PQL	Uni	ts	Dilution	Date/Time	Ву	Reference		
Mercury Wipe		< 0.01	0.01	uç	I	0.1	11/02/23	PM	SW7471B		
Mercury Wipe Pre	p	Completed					11/02/23	AL/AL			

1 = This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

Comments:

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director November 08, 2023 Reviewed and Released by: Rashmi Makol, Project Manager

Analysis Novem	Analysis Report November 08, 2023 Sample Information				FOR: Attn: Miller Environmental 169 Stone Castle Ro Rock Tavern, NY 12				tal Group, Inc. Road 12575		
Sample Inform	nation		Custody	Informa	<u>ition</u>		Date	<u>e</u>	Time		
Matrix:	WIPE		Collected	by:			10/3	0/23			
Location Code:	MILLERRO	С	Received	by:	LB		10/3	1/23	17:00		
Rush Request:	5 Day		Analyzed I	by:	see "By	/" below					
P.O.#:	28981		Laborat	tory	<u>Data</u>		S Phoe	DG ID enix ID): GCP38104): CP38120		
Project ID:	NY03230367										
Client ID:	WSA 17										
Parameter		Result	RL/ PQL	Unit	s Di	lution	Date/Time	Ву	Reference		
Mercury Wipe		< 0.01	0.01	ug		0.1	11/02/23	PM	SW7471B		
Mercury Wipe Pre	p	Completed					11/02/23	AL/AL			

1 = This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

Comments:

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director November 08, 2023 Reviewed and Released by: Rashmi Makol, Project Manager

Analysis Novem	Analysis Report November 08, 2023 Sample Information				FOR: Attn: Miller Environmenta 169 Stone Castle R Rock Tavern, NY 12				ital Group, Inc. Road 12575		
Sample Inform	nation		<u>Custody</u>	/ Informa	ation		Dat	<u>e</u>	<u>Time</u>		
Matrix:	WIPE		Collected	d by:			10/3	0/23			
Location Code:	MILLERRO	С	Received	d by:	LB		10/3	1/23	17:00		
Rush Request:	5 Day		Analyzed	d by:	see "E	By" below					
P.O.#:	28981		Labora	atory	Data	<u>a</u>	S Phoe	DG IE enix IE): GCP38104): CP38121		
Project ID:	NY03230367										
Client ID:	WSA 18										
Parameter		Result	RL/ PQL	Uni	ts [Dilution	Date/Time	Ву	Reference		
Mercury Wipe		< 0.01	0.01	ug		0.1	11/02/23	PM	SW7471B		
Mercury Wipe Pre	p	Completed					11/02/23	AL/AL			

1 = This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

Comments:

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director November 08, 2023 Reviewed and Released by: Rashmi Makol, Project Manager

Analysis Noveml	Analysis keport November 08, 2023 Sample Information				FOR: Attn: Miller Environmental 169 Stone Castle Ro Rock Tavern, NY 12				tal Group, Inc. Road 12575		
Sample Inform	ation		Custody In	forma	<u>tion</u>		Dat	<u>e</u>	<u>Time</u>		
Matrix:	WIPE		Collected by	/:			10/3	0/23			
Location Code:	MILLERRO	С	Received by	/:	LB		10/3	1/23	17:00		
Rush Request:	5 Day		Analyzed by	<i>'</i> :	see "By"	below					
P.O.#:	28981		Laborate	ory	Data		S Phoe	DG ID enix ID): GCP38104): CP38122		
Project ID:	NY03230367										
Client ID:	WSA 19										
Parameter		Result	RL/ PQL	Unit	s Dilut	tion	Date/Time	Ву	Reference		
Mercury Wipe		< 0.01	0.01	ug	0.	1	11/02/23	PM	SW7471B		
Mercury Wipe Pre	p	Completed					11/02/23	AL/AL			

1 = This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

Comments:

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director November 08, 2023 Reviewed and Released by: Rashmi Makol, Project Manager

Analysis Novemi	Report ber 08, 2023		FOR: Attn: Miller Environmental 169 Stone Castle Roa Rock Tavern, NY 125				ntal Group, Ir Road 12575	IC.	
Sample Inform	nation		Custody Ir	nforma	<u>tion</u>		Date	<u>e</u>	Time
Matrix:	WIPE		Collected b	y:			10/3	0/23	
Location Code:	MILLERRO	С	Received b	y:	LB		10/3	1/23	17:00
Rush Request:	5 Day		Analyzed by	y:	see "B	y" below			
P.O.#:	28981		Laborat	ory	Data	-	S Phoe	DG ID enix ID): GCP38104): CP38123
Project ID:	NY03230367								
Client ID:	WSA 20								
Parameter		Result	RL/ PQL	Unit	s D	Vilution	Date/Time	Ву	Reference
Mercury Wipe		0.01	0.01	ug		0.1	11/02/23	PM	SW7471B
Mercury Wipe Pre	p	Completed					11/02/23	AL/AL	

1 = This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

Comments:

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director November 08, 2023 Reviewed and Released by: Rashmi Makol, Project Manager

Analysis Novemi	Analysis Report November 08, 2023 Sample Information				FOR: Attn: Miller Environmental 169 Stone Castle Ro Rock Tavern, NY 12				tal Group, Inc. Road 12575		
Sample Inform	nation		<u>Custod</u>	y Inform	ation		Dat	e	<u>Time</u>		
Matrix:	WIPE		Collecte	d by:			10/3	0/23			
Location Code:	MILLERRO	С	Receive	d by:	LB		10/3	1/23	17:00		
Rush Request:	5 Day		Analyze	d by:	see	"By" below					
P.O.#:	28981		Labora	atory	Dat	ta	S Phoe	DG ID enix ID): GCP38104): CP38124		
Project ID:	NY03230367										
Client ID:	WSA 21										
Parameter		Result	RL/ PQL	Un	its	Dilution	Date/Time	Ву	Reference		
Mercury Wipe		0.01	0.01	uį	9	0.1	11/02/23	PM	SW7471B		
Mercury Wipe Pre	p	Completed					11/02/23	AL/AL			

1 = This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

Comments:

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director November 08, 2023 Reviewed and Released by: Rashmi Makol, Project Manager

OA/OC Report November 08, 2023

QA/QC Data

SDG I.D.: GCP38104

Parameter	Blank	Blk RL	Sample Result	Dup Result	Dup RPD	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits
QA/QC Batch 704674 (ug), QC 5 CP38111, CP38112, CP38113, CP38123)	Sample CP3811	No: CP3 4, CP38	38104 (C 3115, CP	P38104, 38116, C	CP381 CP3811	05, CP 7, CP3	938106, 8118, C	CP3810 P38119)7, CP3 , CP38	38108, (3120, C	CP3810 P38127	09, CP3 I, CP38	38110, 3122,
Mercury	BRL	0.02				93.4	88.6	5.3					
QA/QC Batch 704675 (ug), QC 5	Sample	No: CP	38124 (C	P38124)									
Mercury	BRL	0.01				88.0	87.9	0.1					

QA/QC Report

November 08, 2023

QA/QC Data

SDG I.D.: GCP38104

Parameter	Blank	Blk RL	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits
QA/QC Batch 704525 (ug), QC 9	Sample	No: CP34976 (CP38104	4, CP38105, CI	P38106,	CP381	07, CP	38108,	CP381	09, CP3	88110,
Dolychloringtod Rinhonyl										
<u>Forychionnated Diprientyr</u>										
PCB-1016	ND	0.50	89	102	13.6				40 - 140	30
PCB-1221	ND	0.50							40 - 140	30
PCB-1232	ND	0.50							40 - 140	30
PCB-1242	ND	0.50							40 - 140	30
PCB-1248	ND	0.50							40 - 140	30
PCB-1254	ND	0.50							40 - 140	30
PCB-1260	ND	0.50	83	91	9.2				40 - 140	30
PCB-1262	ND	0.50							40 - 140	30
PCB-1268	ND	0.50							40 - 140	30
% DCBP (Surrogate Rec)	85	%	89	88	1.1				30 - 150	30
% DCBP (Surrogate Rec) (Confirm	100	%	108	107	0.9				30 - 150	30
% TCMX (Surrogate Rec)	78	%	81	78	3.8				30 - 150	30
% TCMX (Surrogate Rec) (Confirm	83	%	85	84	1.2				30 - 150	30
Comment:										

A LCS and LCS Duplicate were performed instead of a matrix spike and matrix spike duplicate.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

RPD - Relative Percent Difference

LCS - Laboratory Control Sample

LCSD - Laboratory Control Sample Duplicate

MS - Matrix Spike

MS Dup - Matrix Spike Duplicate

NC - No Criteria

Intf - Interference

Phyllis/Shiller, Laboratory Director November 08, 2023

Wednesday, November 08, 2023			Sample Criteria Exc	Sample Criteria Exceedances Report												
Criteria:	None		GCP38104 - M	GCP38104 - MILLERROC												
State:	NY						RL	Analysis								
SampNo	Acode	Phoenix Analyte	Criteria	Result	RL	Criteria	Criteria	Units								
*** No Data t	to Display ***															

Phoenix Laboratories does not assume responsibility for the data contained in this exceedance report. It is provided as an additional tool to identify requested criteria exceedences. All efforts are made to ensure the accuracy of the data (obtained from appropriate agencies). A lack of exceedence information does not necessarily suggest conformance to the criteria. It is ultimately the site professional's responsibility to determine appropriate compliance.

Analysis Comments

November 08, 2023

SDG I.D.: GCP38104

The following analysis comments are made regarding exceptions to criteria not already noted in the Analysis Report or QA/QC Report: None.

NY Temperature Narration

November 08, 2023

SDG I.D.: GCP38104

The samples in this delivery group were received at 1.7° C. (Note acceptance criteria for relevant matrices is above freezing up to 6° C)

														~	`oolont:	Cool	ler:			
	-	NY/NJ/P	A CH	AIN	OF	CUS ⁻	FODY	REC	COR	D					Tem	<u>.</u>	C F	⊃⊆ L_] ⊃g	of]
PHOENIX 🗺	_	587 East Midd	lle Turn	pike, F	P.O. B	Box 370,	Manche	ester, C	T 060	40			Phor	ne: 2	845	tact 0	ptions 99-1	120	2	
Environmental Laboratories, Inc.	Ema	ul: Makrina Nol C	an, mai lient S	krina@ Servic)phoe ces	nixlabs. (860)	com 645-11	Fax (8 02	60) 64	5-0823			Fax: Ema	ii: <u>Ż</u>	100	lab	SOM).7k		ion
Customer: Mille CENVironmer	Hey Gro	uf.Inc	Proj	ect:		NY	032	30	36	7			_	Proje	ect P.	0: ဥ	892	<u>F1</u>		
Kock Tavern NY	12575	<u> </u>	Invo	ice to): D:	hu	Slab	<u>50</u>	n'i	119	n.	0.0	$\mathcal{L}_{\mathcal{N}}$		This con	secti nplet	on M ed wi	UST b th		
	-		QUO	TE #	:								_ /		Bott	le Qu t	antiti ↓	es. Ļ		
Sampler's Signature	n 	30/23	Analysi	S	Jirit	, tole	\square	7	7			/	NA			7	8	1000mi	77	7
Matrix Code: DW=Drinking Water GW=Ground Water SW=Surface Water WW=	Waste Water		vednes		analysis -	S		/ /	/ /	/ /	/			X	St 1	JU ST	Jooni	1500ril	[]]	1
RW=Raw Water SE=Sediment SL=Sludge S=Soil SD=Solid W B=Bulk L=Liquid	=Wipe O	DIL=Oil	13	Dillague	hZu	×_/		/ /	/ /	/ /		WIT -	Treat				25000		WITHO SSIE	
PHOENIX USE ONLY SAMPLE # Customer Sample Identification	Date	Time	MSD MOT	Ŷ	ŶŶ			/ /	/ /		NOT NOT	SIDE CON	STIDI -S				NO X		othe to Bothe t	
38/15 WSA12 W	16 36 13		<u>т́х</u> і	x		f f	<u> </u>	\frown	\frown	$\int $	1		<u>% %</u>	<u> / </u>	<u>~~/~</u>	<u> </u>	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<u> </u>	\$°/	-
38116 WSA13 1				X							Ĭ									
38/17 WSA 14			X	X							<u>}</u>									
35(118 W3A 15				X							1	_								_
$\frac{30119}{28120}$ $\frac{103416}{115412}$	┼ ╴ ┦ ┼┤			<u>X</u>								-						_		-
38/21 115418	+			$\frac{\lambda}{}$					+		$-\frac{1}{1}$	+								-
38122 1115A19				Ŷ				+			1	+								-
38123 1159 20				Ϋ́				-			1				-			+		-
3824 WSA21 V				X							1]
																				4
Relinquished by: Accepted by:		Date:	53		e:	Turnare 1	ound: Day*		Ros	Critoria			TOGS	GW			Clean F	ill I imit	e	
the stand	λ	1021	3	19	Ś	2 3	Days' Days'		Non-l	Res. Cri	teria		CP-51	SOIL			PA-G	W	-	
- the former of the second sec		-42119		<u> </u>			Days'		Impa Clear	ct to GW	/ Soil eria		Unres	tricted	Soil		Reg I	Fill Limit	s	
Comments, Special Requirements or Regulations:	Data Format:						andard		Impa	ct to GW	ritoria		Resid	ential S	ioil		PA S	oil Rest	ricted	
·	Phoenix S	td Report	EQuIS	;		* SURC APP	HARGE LIES		3011 5	0.00110	aona		375S	ential	. 11		PA Soi	il non-re	stricted	ន្ត
	Excel		NJ Ha	zsite E	DD				GW (Criteria			375SC	Clea Sa CO	лI Soil					v 1/20
	PDF		NY EZ (ASP)	EDD		Data	Package Reduced	: Deliv. '	•		Other		375S(CO	501	Sta	te Sam	ples Col	lected?	1 Be
*MS/MSD are considered site samples and will be billed as such in accordance with the prices quoted.	GIS/Key		Other				Enhance	d (ASP	B) *				Subpa	art 5 DV	V			Ny	//	PEL-1

Page 39 of 39

Friday, November 03, 2023

Attn: Miller Environmental Group, Inc. 169 Stone Castle Road Rock Tavern, NY 12575

 Project ID:
 NY03230367

 SDG ID:
 GCP38125

 Sample ID#s:
 CP38125 - CP38133

This laboratory is in compliance with the NELAC requirements of procedures used except where indicated.

This report contains results for the parameters tested, under the sampling conditions described on the Chain Of Custody, as received by the laboratory. This report is incomplete unless all pages indicated in the pagination at the bottom of the page are included.

A scanned version of the COC form accompanies the analytical report and is an exact duplicate of the original.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Sincerely yours,

XI.lle

Phyllis/Shiller Laboratory Director

NELAC - #NY11301 CT Lab Registration #PH-0618 MA Lab Registration #M-CT007 ME Lab Registration #CT-007 NH Lab Registration #213693-A,B NJ Lab Registration #CT-003 NY Lab Registration #11301 PA Lab Registration #68-03530 RI Lab Registration #63 VT Lab Registration #VT11301

Sample Id Cross Reference

November 03, 2023

SDG I.D.: GCP38125

Project ID: NY03230367

Client Id	Lab Id	Matrix
TANK #1 MID 0` DI	CP38125	WIPE
TANK #1 MID 3` DI	CP38126	WIPE
TANK #1 MID 6` DI	CP38127	WIPE
TANK #1 EAST 0` DI	CP38128	WIPE
TANK #1 EAST 3` DI	CP38129	WIPE
TANK #1 EAST 6` DI	CP38130	WIPE
TANK #1 WEST 0` DI	CP38131	WIPE
TANK #1 WEST 3` DI	CP38132	WIPE
TANK #1 WEST 6` DI	CP38133	WIPE

Analysis Novem	Report ber 03, 2023		FOR: Attn: Miller Environment 169 Stone Castle I Rock Tavern, NY				ntal Group, Inc. Road 12575			
Sample Inform	nation		Custody I	nforma	<u>tion</u>		Date	<u>e</u>	Time	
Matrix:	WIPE		Collected b	oy:			10/3	0/23		
Location Code:	MILLERRO	С	Received b	oy:	LB		10/3	1/23	17:00	
Rush Request:	5 Day		Analyzed b	by:	see "B	y" below				
P.O.#:	28981		Laborat	tory I	Data		S Phoe	DG ID enix ID): GCP38125): CP38125	
Project ID:	NY03230367									
Client ID:	TANK #1 MID	0` DI								
Parameter		Result	RL/ PQL	Unit	s D	ilution	Date/Time	Ву	Reference	
Mercury Wipe		< 0.02	0.02	ug		0.2	11/02/23	PM	SW7471B	
Mercury Wipe Pre	p	Completed					11/02/23	AL/AL		

1 = This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

Comments:

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director November 03, 2023 Reviewed and Released by: Anil Makol, Project Manager

Analysis Noveml	Report ber 03, 2023		FOR: Attn: Miller Environmen 169 Stone Castle Rock Tavern, NY				ntal Group, Inc. Road 12575			
Sample Inform	ation		Custody I	nforma	<u>tion</u>		Date	<u>e</u>	Time	
Matrix:	WIPE		Collected I	by:			10/3	0/23		
Location Code:	MILLERRO	С	Received I	by:	LB		10/3	1/23	17:00	
Rush Request:	5 Day		Analyzed b	by:	see "E	By" below				
P.O.#:	28981		Laborat	tory I	Data	<u>a</u>	S Phoe	DG ID enix ID): GCP38125): CP38126	
Project ID:	NY03230367									
Client ID:	TANK #1 MID	3` DI								
Parameter		Result	RL/ PQL	Unit	s C	Dilution	Date/Time	Ву	Reference	
Mercury Wipe		< 0.01	0.01	ug		0.1	11/02/23	PM	SW7471B	
Mercury Wipe Pre	p	Completed					11/02/23	AL/AL		

1 = This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

Comments:

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director November 03, 2023 Reviewed and Released by: Anil Makol, Project Manager

Analysis Noveml	Report ber 03, 2023		FOR: Attn: Miller Environment 169 Stone Castle F Rock Tavern, NY 1				ntal Group, Inc. Road 12575			
Sample Inform	ation		Custody I	Informa	<u>tion</u>		Dat	<u>e</u>	Time	
Matrix:	WIPE		Collected I	by:			10/3	0/23		
Location Code:	MILLERRO	С	Received I	by:	LB		10/3	1/23	17:00	
Rush Request:	5 Day		Analyzed b	oy:	see "	By" below				
P.O.#:	28981		Laborat	tory l	Data	<u>a</u>	S Phoe	DG ID enix ID): GCP38125): CP38127	
Project ID:	NY03230367									
Client ID:	TANK #1 MID	6` DI								
Parameter		Result	RL/ PQL	Unit	s l	Dilution	Date/Time	Ву	Reference	
Mercury Wipe		0.02	0.01	ug		0.1	11/02/23	PM	SW7471B	
Mercury Wipe Pre	p	Completed					11/02/23	AL/AL		

1 = This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

Comments:

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director November 03, 2023 Reviewed and Released by: Anil Makol, Project Manager

Analysis Novemi	Analysis Report November 03, 2023 Sample Information			FOR: Attn: Miller Environmen 169 Stone Castle Rock Tavern, NY				ntal Group, Inc. ≩ Road ′ 12575			
Sample Inform	ation		<u>Custody</u>	Informa	tion		Date	<u>e</u>	Time		
Matrix:	WIPE		Collected	by:			10/3	0/23			
Location Code:	MILLERRO	C	Received	by:	LB		10/3	1/23	17:00		
Rush Request:	5 Day		Analyzed	by:	see "E	By" below					
P.O.#:	28981		<u>Labora</u>	tory	Data	<u>a</u>	S Phoe	DG ID enix ID): GCP38125): CP38128		
Project ID:	NY03230367										
Client ID:	TANK #1 EAS	T 0` DI									
Parameter		Result	RL/ PQL	Unit	s [Dilution	Date/Time	Ву	Reference		
Mercury Wipe		0.01	0.01	ug		0.1	11/02/23	PM	SW7471B		
Mercury Wipe Pre	р	Completed					11/02/23	AL/AL			

1 = This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

Comments:

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director November 03, 2023 Reviewed and Released by: Anil Makol, Project Manager

Analysis Novemi	Analysis Report November 03, 2023 Sample Information			FOR: Attn: Miller Environmen 169 Stone Castle Rock Tavern, NY				ntal Group, Inc. Road 12575			
Sample Inform	ation		<u>Custody</u>	Informa	<u>tion</u>		Date	<u>e</u>	Time		
Matrix:	WIPE		Collected	by:			10/3	0/23			
Location Code:	MILLERRO	С	Received	by:	LB		10/3	1/23	17:00		
Rush Request:	5 Day		Analyzed	by:	see "B	By" below					
P.O.#:	28981		<u>Labora</u>	tory	Data	<u>l</u>	S Phoe	DG ID enix ID): GCP38125): CP38129		
Project ID:	NY03230367										
Client ID:	TANK #1 EAS	T 3` DI									
Parameter		Result	RL/ PQL	Unit	s D	Dilution	Date/Time	Ву	Reference		
Mercury Wipe		0.12	0.01	ug		0.1	11/02/23	PM	SW7471B		
Mercury Wipe Pre	р	Completed					11/02/23	AL/AL			

1 = This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

Comments:

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director November 03, 2023 Reviewed and Released by: Anil Makol, Project Manager

Analysis Novemb	Analysis Report November 03, 2023			FOR: Attn: Miller Environmen 169 Stone Castle Rock Tavern, NY				ntal Group, Inc. Road 12575		
Sample Inform	ation		Custody	Informa	<u>tion</u>		Date	<u>e</u>	Time	
Matrix:	WIPE		Collected	by:			10/3	0/23		
Location Code:	MILLERRO	С	Received	by:	LB		10/3	1/23	17:00	
Rush Request:	5 Day		Analyzed	by:	see "E	By" below				
P.O.#:	28981		Labora	tory l	Data	<u>a</u>	S Phoe	DG ID enix ID): GCP38125): CP38130	
Project ID:	NY03230367									
Client ID:	TANK #1 EAS	T 6` DI								
Parameter		Result	RL/ PQL	Unit	s C	Dilution	Date/Time	Ву	Reference	
Mercury Wipe		0.02	0.01	ug		0.1	11/02/23	PM	SW7471B	
Mercury Wipe Pre	р	Completed					11/02/23	AL/AL		

1 = This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

Comments:

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director November 03, 2023 Reviewed and Released by: Anil Makol, Project Manager

Analysis Noveml	Report per 03, 2023		FOR: Attn: Miller Environmenta 169 Stone Castle R Rock Tavern, NY 12				tal Group, Inc. Road 12575			
Sample Inform	ation		Custody I	nforma	<u>tion</u>		Dat	<u>e</u>	<u>Time</u>	
Matrix:	WIPE		Collected b	y:			10/3	0/23		
Location Code:	MILLERRO	С	Received b	by:	LB		10/3	1/23	17:00	
Rush Request:	5 Day		Analyzed b	y:	see "By	/" below				
P.O.#:	28981		Laborat	ory l	<u>Data</u>		S Phoe	DG ID enix ID): GCP38125): CP38131	
Project ID:	NY03230367									
Client ID:	TANK #1 WES	ST 0` DI								
Parameter		Result	RL/ PQL	Unit	s Di	lution	Date/Time	Ву	Reference	
Mercury Wipe		0.02	0.01	ug		0.1	11/02/23	PM	SW7471B	
Mercury Wipe Pre	p	Completed					11/02/23	AL/AL		

1 = This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

Comments:

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director November 03, 2023 Reviewed and Released by: Anil Makol, Project Manager

Analysis Novemb	Report ber 03, 2023		FOR: Attn: Miller Environment 169 Stone Castle F Rock Tavern, NY 1				ital Group, Inc. Road 12575			
Sample Inform	ation		<u>Custody</u>	Informa	<u>ation</u>		Date	<u>e</u>	Time	
Matrix:	WIPE		Collected	l by:			10/3	0/23		
Location Code:	MILLERRO	С	Received	l by:	LB		10/3	1/23	17:00	
Rush Request:	5 Day		Analyzed	by:	see "	By" below				
P.O.#:	28981		Labora	atory	Data	<u>a</u>	S Phoe	DG ID enix ID): GCP38125): CP38132	
Project ID:	NY03230367									
Client ID:	TANK #1 WES	ST 3` DI								
Parameter		Result	RL/ PQL	Unit	s	Dilution	Date/Time	Ву	Reference	
Mercury Wipe		< 0.01	0.01	ug		0.1	11/02/23	PM	SW7471B	
Mercury Wipe Pre	р	Completed					11/02/23	AL/AL		

1 = This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

Comments:

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director November 03, 2023 Reviewed and Released by: Anil Makol, Project Manager

Analysis Noveml	Analysis Report November 03, 2023 Sample In <u>formation</u>			FOR: Attn: Miller Environmenta 169 Stone Castle R Rock Tavern, NY 1				ital Group, Inc. Road 12575		
Sample Inform	ation		Custody	Informa	<u>tion</u>		Date	<u>e</u>	Time	
Matrix:	WIPE		Collected	by:			10/3	0/23		
Location Code:	MILLERRO	С	Received	by:	LB		10/3	1/23	17:00	
Rush Request:	5 Day		Analyzed I	by:	see "E	By" below				
P.O.#:	28981		Laborat	tory	Data	<u>a</u>	S Phoe	DG ID enix ID): GCP38125): CP38133	
Project ID:	NY03230367									
Client ID:	TANK #1 WES	ST 6` DI								
Parameter		Result	RL/ PQL	Unit	s [Dilution	Date/Time	Ву	Reference	
Mercury Wipe		< 0.01	0.01	ug		0.1	11/02/23	PM	SW7471B	
Mercury Wipe Pre	p	Completed					11/02/23	AL/AL		

1 = This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

Comments:

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director November 03, 2023 Reviewed and Released by: Anil Makol, Project Manager

QA/QC Report November 03, 2023

QA/QC Data

SDG I.D.: GCP38125

												%	%	
		Blk	Sample	Dup	Dup	LCS	LCSD	LCS	MS	MSD	MS	Rec	RPD	
Parameter	Blank	RL	Result	Result	RPD	%	%	RPD	%	%	RPD	Limits	Limits	
														_

QA/QC Batch 704675 (ug), QC Sample No: CP38124 (CP38125, CP38126, CP38127, CP38128, CP38129, CP38130, CP38131, CP38132, CP38133) 0.01

BRL Mercury

88.0 87.9 0.1

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

RPD - Relative Percent Difference

LCS - Laboratory Control Sample

LCSD - Laboratory Control Sample Duplicate

MS - Matrix Spike

MS Dup - Matrix Spike Duplicate

NC - No Criteria

Intf - Interference

Phyllis/Shiller, Laboratory Director November 03, 2023

Friday, Nove	mber 03, 2023	Sample Criteria Exceedances Report							
Criteria:	None		GCF	238125 - MILLERROC					
State:	NY						RL	Analvsis	
SampNo	Acode	Phoenix Analyte	Criteria	Result	RL	Criteria	Criteria	Units	
*** No Data t	o Display ***								

Phoenix Laboratories does not assume responsibility for the data contained in this exceedance report. It is provided as an additional tool to identify requested criteria exceedences. All efforts are made to ensure the accuracy of the data (obtained from appropriate agencies). A lack of exceedence information does not necessarily suggest conformance to the criteria. It is ultimately the site professional's responsibility to determine appropriate compliance.

Analysis Comments

November 03, 2023

SDG I.D.: GCP38125

The following analysis comments are made regarding exceptions to criteria not already noted in the Analysis Report or QA/QC Report: None.

NY Temperature Narration

November 03, 2023

SDG I.D.: GCP38125

The samples in this delivery group were received at 1.7° C. (Note acceptance criteria for relevant matrices is above freezing up to 6° C)

						Cooler: Yes No
· · · · · · · · · · · · · · · · · · ·	NY/N I		CUSTODY	PECOPD	Coolan	
						htact Options:
TIOLINA	587 East Email: Makrina	Middle Turnpike, P.O. a Nolan, makrina@pho	Box 370, Manches enixlabs.com F	ter, CT 06040 Fax (860) 645-0823	Phone: 34	<u>5-569-1200</u>
Environmental Lavoratories, Inc.		Client Services	(860) 645-110	2		Dabsomillerenv com
Customer: <u>IIIIPREnvironma</u>	estal pour	Tine Project:	NY0323	0367	Project P	0.0:28981
RICK AURIA AL	12575	Invoice to:	hun lab	somillere somillere	$\frac{\partial V}{\partial h} = \frac{\partial V}{\partial h}$	section MUST be
		QUOTE # :			Bot	tie Quantities.
ClientrSamole - Information - Identification			110	////		
Sampler's	10312	3 Analysis				est and
Matrix Code:		Request . aralla	×× / /			
DW=Drinking Water GW=Ground Water SW=Surface Water WW= RW=Raw Water SE=Sediment SL=Sludge S=Soil SD=Solid W= B=Drivit L=L=Isruit SE SE	Waste Water Wipe OIL= Oil	Shape 2	V / / /	////	WI LEBER S S	
		THEY'S STOR		////	S - S - S - S - S - S - S - S - S - S -	
PHOENIX USE ONLY Sample SAMPLE # Customer Sample Identification D ¹ Matrix	Date Time Sampled Sampled	A CONSTRUCTION OF CONSTRUCT OF CONSTRUC		GI AND		2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -
38125 Tank #1 Mid DI W	10 3075	X				
38126 JanK#1 MID 3 DT W						
3812/ Tank+I MiD6DTW	机花					
58120 Jank#1 Eart 0. DI W				<u>} - </u>		
38127 Innet Easts DI W						
38130 IGHTITAJTO DI W		 X - -				
38137 TOARTIMESTO DI W						
28/33 (act 1/2/2+6') J				+		
Relinguished by: Accepted by	Date:		Turnaround:	NJ		PA
		× 03 10 3		Res. Criteria		
- DAMA - CA	-1Pl2	405 1100	Days*		Soil 375SCO Unrestricted Soil	Beg Fill Limits
Comments, Special Requirements or Regulations:	Data Format:	I	5 Days*	Impact to GW	^a 375SCO Residential Soil	
V	Phoenix Std Report	EQuIS	* SURCHARGE APPLIES	soil screen Crite	eria 🗌 375SCO Residential	PA Soil non-restricted
	Excel	NJ Hazsite EDD		GW Criteria	Restricted Soil	1/202
	PDF	NY EZ EDD	Data Package:		Commercial Soil	State Samples Collected?
*MS/MSD are considered site samples and will be billed as such in accordance with the prices quoted.	GIS/Key	Other	NJ Reduced D	Deliv. * Ott I (ASP B) *	ner Industrial Soil	

0 10 0

Monday, November 06, 2023

Attn: Miller Environmental Group, Inc. 169 Stone Castle Road Rock Tavern, NY 12575

 Project ID:
 NY03230367

 SDG ID:
 GCP38134

 Sample ID#s:
 CP38134 - CP38149

This laboratory is in compliance with the NELAC requirements of procedures used except where indicated.

This report contains results for the parameters tested, under the sampling conditions described on the Chain Of Custody, as received by the laboratory. This report is incomplete unless all pages indicated in the pagination at the bottom of the page are included.

A scanned version of the COC form accompanies the analytical report and is an exact duplicate of the original.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Sincerely yours,

XI-De

Phyllis/Shiller Laboratory Director

NELAC - #NY11301 CT Lab Registration #PH-0618 MA Lab Registration #M-CT007 ME Lab Registration #CT-007 NH Lab Registration #213693-A,B NJ Lab Registration #CT-003 NY Lab Registration #11301 PA Lab Registration #68-03530 RI Lab Registration #63 VT Lab Registration #VT11301

Sample Id Cross Reference

November 06, 2023

SDG I.D.: GCP38134

Project ID: NY03230367

Client Id	Lab Id	Matrix
L/U 1	CP38134	WIPE
L/U 2	CP38135	WIPE
L/U 3	CP38136	WIPE
L/U 4	CP38137	WIPE
L/U 5	CP38138	WIPE
L/U 6	CP38139	WIPE
L/U 7	CP38140	WIPE
L/U 8	CP38141	WIPE
L/U 9	CP38142	WIPE
L/U 10	CP38143	WIPE
L/U 11	CP38144	WIPE
L/U 12	CP38145	WIPE
L/U 13	CP38146	WIPE
L/U 14	CP38147	WIPE
L/U 15	CP38148	WIPE
L/U 16	CP38149	WIPE

Analysis Novem	Report ber 06, 2023	FOR: Attn: Miller Environmental Group, Ir 5, 2023 169 Stone Castle Road Rock Tavern, NY 12575					nc.		
Sample Inform	nation		Custody I	nforma	<u>ition</u>		Dat	<u>e</u>	Time
Matrix:	WIPE		Collected b	by:			10/3	0/23	
Location Code:	MILLERRO	С	Received b	by:	LB		10/3	1/23	17:00
Rush Request:	5 Day		Analyzed b	y:	see "E	By" below			
P.O.#:	28981		Laborat	ory	Data	<u>l</u>	S Phoe	DG IE enix IE): GCP38134): CP38134
Project ID:	NY03230367								
Client ID:	L/U 1								
Parameter		Result	RL/ PQL	Unit	s C	Dilution	Date/Time	Ву	Reference
Mercury Wipe		< 0.01	0.01	ug		0.1	11/02/23	PM	SW7471B
Mercury Wipe Pre	p	Completed					11/02/23	AL/AL	

1 = This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

Comments:

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director November 06, 2023 Reviewed and Released by: Rashmi Makol, Project Manager

Analysis Report November 06, 2023 Sample Information					ntal Group, Ir Road 12575	nC.			
Sample Inform	nation		Custody In	forma	<u>tion</u>		Dat	<u>e</u>	Time
Matrix:	WIPE		Collected by	/:			10/3	0/23	
Location Code:	MILLERRO	C	Received by	/:	LB		10/3	1/23	17:00
Rush Request:	5 Day		Analyzed by	' :	see "By'	' below			
P.O.#:	28981		Laborato	ory	Data		S Phoe	DG ID enix ID): GCP38134): CP38135
Project ID:	NY03230367								
Client ID:	L/U 2								
Parameter		Result	RL/ PQL	Unit	s Dilu	ution	Date/Time	Ву	Reference
Mercury Wipe		< 0.01	0.01	ug	().1	11/02/23	PM	SW7471B
Mercury Wipe Pre	p	Completed					11/02/23	AL/AL	

1 = This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

Comments:

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director November 06, 2023 Reviewed and Released by: Rashmi Makol, Project Manager

Analysis Novem	F	FOR: Attn: Miller Environmental Group, Inc. 169 Stone Castle Road Rock Tavern, NY 12575							
Sample Inform	nation		Custody I	nforma	<u>tion</u>		Date	<u>e</u>	Time
Matrix:	WIPE		Collected b	oy:			10/3	0/23	
Location Code:	MILLERRO	С	Received b	oy:	LB		10/3	1/23	17:00
Rush Request:	5 Day		Analyzed b	oy:	see "B	y" below			
P.O.#:	28981		Laborat	ory	Data		S Phoe	DG ID enix ID): GCP38134): CP38136
Project ID:	NY03230367								
Client ID:	L/U 3								
Parameter		Result	RL/ PQL	Unit	s D	ilution	Date/Time	Ву	Reference
Mercury Wipe		< 0.01	0.01	ug		0.1	11/02/23	PM	SW7471B
Mercury Wipe Pre	p	Completed					11/02/23	AL/AL	

1 = This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

Comments:

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director November 06, 2023 Reviewed and Released by: Rashmi Makol, Project Manager

Analysis Noveml	Report FOR: Attn: ber 06, 2023 Miller Environmental Group 169 Stone Castle Road Rock Tavern, NY 12575					ntal Group, Ir Road 12575	IC.		
Sample Inform	nation		Custody In	forma	<u>ition</u>		Dat	<u>e</u>	Time
Matrix:	WIPE		Collected by	y:			10/3	0/23	
Location Code:	MILLERRO	С	Received by	y:	LB		10/3	1/23	17:00
Rush Request:	5 Day		Analyzed by	/:	see "E	3y" below			
P.O.#:	28981		Laborate	ory	Data	<u>l</u>	S Phoe	DG ID enix ID): GCP38134): CP38137
Project ID:	NY03230367								
Client ID:	L/U 4								
Parameter		Result	RL/ PQL	Unit	s D	Dilution	Date/Time	Ву	Reference
Mercury Wipe		< 0.01	0.01	ug		0.1	11/02/23	PM	SW7471B
Mercury Wipe Pre	p	Completed					11/02/23	AL/AL	

1 = This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

Comments:

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director November 06, 2023 Reviewed and Released by: Rashmi Makol, Project Manager

Analysis Novem	Report per 06, 2023		FC	DR:	Attn: Miller E 169 Sto Rock T	nvironmer one Castle avern, NY	ntal Group, Ir Road 12575	nC.	
Sample Inform	nation		Custody In	forma	<u>ition</u>		Dat	<u>e</u>	Time
Matrix:	WIPE		Collected by	y:			10/3	0/23	
Location Code:	MILLERRO	С	Received by	y:	LB		10/3	1/23	17:00
Rush Request:	5 Day		Analyzed by	/:	see "B	y" below			
P.O.#:	28981		Laborate	ory	Data		S Phoe	DG ID enix ID): GCP38134): CP38138
Project ID:	NY03230367								
Client ID:	L/U 5								
Parameter		Result	RL/ PQL	Unit	s D	ilution	Date/Time	Ву	Reference
Mercury Wipe		< 0.01	0.01	ug		0.1	11/02/23	PM	SW7471B
Mercury Wipe Pre	p	Completed					11/02/23	AL/AL	

1 = This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

Comments:

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director November 06, 2023 Reviewed and Released by: Rashmi Makol, Project Manager

Analysis Noveml	Report ber 06, 2023		F	FOR: Attn: Miller Environmental Group, Inc. 169 Stone Castle Road Rock Tavern, NY 12575					
Sample Inform	nation		Custody I	nforma	<u>ition</u>		Dat	<u>e</u>	Time
Matrix:	WIPE		Collected b	oy:			10/3	0/23	
Location Code:	MILLERRO	C	Received b	oy:	LB		10/3	1/23	17:00
Rush Request:	5 Day		Analyzed b	by:	see "By	y" below			
P.O.#:	28981		Laborat	ory	Data		S Phoe	DG IE enix IE): GCP38134): CP38139
Project ID:	NY03230367								
Client ID:	L/U 6								
Parameter		Result	RL/ PQL	Unit	s Di	ilution	Date/Time	Ву	Reference
Mercury Wipe		< 0.01	0.01	ug		0.1	11/02/23	PM	SW7471B
Mercury Wipe Pre	p	Completed					11/02/23	AL/AL	

1 = This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

Comments:

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director November 06, 2023 Reviewed and Released by: Rashmi Makol, Project Manager

Analysis Report

November 06, 2023

NY03230367

L/U 7

FOR: Attn:

Miller Environmental Group, Inc. 169 Stone Castle Road Rock Tavern, NY 12575

Project ID:

Client ID:

Sample Information		Custody Inform	nation	Date	Time
Matrix:	WIPE	Collected by:		10/30/23	
Location Code:	MILLERROC	Received by:	LB	10/31/23	17:00
Rush Request:	5 Day	Analyzed by:	see "By" below		
P.O.#:	28981				000004

Laboratory Data

SDG ID: GCP38134 Phoenix ID: CP38140

		RL/						
Parameter	Result	PQL	Units	Dilution	Date/Time	By	Reference	
Mercury Wipe	< 0.01	0.01	ug	0.1	11/02/23	PM	SW7471B	1
Mercury Wipe Prep	Completed				11/02/23	AL/AL		
PCB Wipe Extraction	Completed				11/01/23	J/RB	SW3540C	
Polychlorinated Bipl	<u>nenyls</u>							
PCB-1016	ND	0.50	ug	1	11/02/23	SC	SW8082A	1
PCB-1221	ND	0.50	ug	1	11/02/23	SC	SW8082A	1
PCB-1232	ND	0.50	ug	1	11/02/23	SC	SW8082A	1
PCB-1242	ND	0.50	ug	1	11/02/23	SC	SW8082A	1
PCB-1248	ND	0.50	ug	1	11/02/23	SC	SW8082A	1
PCB-1254	ND	0.50	ug	1	11/02/23	SC	SW8082A	1
PCB-1260	ND	0.50	ug	1	11/02/23	SC	SW8082A	1
PCB-1262	ND	0.50	ug	1	11/02/23	SC	SW8082A	1
PCB-1268	ND	0.50	ug	1	11/02/23	SC	SW8082A	1
QA/QC Surrogates								
% DCBP	94		%	1	11/02/23	SC	30 - 150 %	
% DCBP (Confirmation)	93		%	1	11/02/23	SC	30 - 150 %	
% TCMX	76		%	1	11/02/23	SC	30 - 150 %	
% TCMX (Confirmation)	74		%	1	11/02/23	SC	30 - 150 %	

Project ID: NY03230367 Client ID: L/U 7 RL/ Parameter Result PQL Units Dilution Date/Time By Reference

1 = This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director November 06, 2023 Reviewed and Released by: Rashmi Makol, Project Manager

Analysis Report November 06, 2023 Sample Information			FOR: Attn: Miller Environmental G 169 Stone Castle Road Rock Tavern, NY 1257					IC.	
Sample Inform	ation		Custody In	nforma	<u>tion</u>		Date	<u>e</u>	Time
Matrix:	WIPE		Collected by	y:			10/3	0/23	
Location Code:	MILLERRO	С	Received by	y:	LB		10/3	1/23	17:00
Rush Request:	5 Day		Analyzed by	y:	see "B	sy" below			
P.O.#:	28981		Laborate	ory	Data	<u> </u>	S Phoe	DG ID enix ID): GCP38134): CP38141
Project ID:	NY03230367								
Client ID:	L/U 8								
Parameter		Result	RL/ PQL	Unit	s D	Dilution	Date/Time	Ву	Reference
Mercury Wipe		< 0.01	0.01	ug		0.1	11/02/23	PM	SW7471B
Mercury Wipe Pre	р	Completed					11/02/23	AL/AL	

1 = This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

Comments:

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director November 06, 2023 Reviewed and Released by: Rashmi Makol, Project Manager

Analysis Noveml	Report ber 06, 2023		F	tal Group, Inc. Road 12575					
Sample Inform	ation		Custody	Informa	<u>ition</u>		Date	<u>e</u>	Time
Matrix:	WIPE		Collected	by:			10/3	0/23	
Location Code:	MILLERRO	С	Received	by:	LB		10/3	1/23	17:00
Rush Request:	5 Day		Analyzed I	by:	see "E	By" below			
P.O.#:	28981		Laborat	tory	Data	<u>a</u>	S Phoe	DG ID enix ID): GCP38134): CP38142
Project ID:	NY03230367								
Client ID:	L/U 9								
Parameter		Result	RL/ PQL	Unit	s [Dilution	Date/Time	Ву	Reference
Mercury Wipe		< 0.01	0.01	ug		0.1	11/02/23	PM	SW7471B
Mercury Wipe Pre	p	Completed					11/02/23	AL/AL	

1 = This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

Comments:

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director November 06, 2023 Reviewed and Released by: Rashmi Makol, Project Manager

Analysis Novemi	FOR: Attn: Miller Environmen 169 Stone Castle Rock Tavern, NY				ntal Group, Inc. Road 12575				
Sample Inform	ation		Custo	dy Inform	ation		Dat	<u>e</u>	<u>Time</u>
Matrix:	WIPE		Collect	ed by:			10/3	0/23	
Location Code:	MILLERRO	С	Receive	ed by:	LB		10/3	1/23	17:00
Rush Request:	5 Day		Analyze	ed by:	see "l	By" below			
P.O.#:	28981		Labor	atory	<u>v Data</u>		SDG Phoenix): GCP38134): CP38143
Project ID:	NY03230367								
Client ID:	L/U 10								
Parameter		Result	RL/ PQL	Uni	ts [Dilution	Date/Time	Ву	Reference
Mercury Wipe		< 0.01	0.01	uç		0.1	11/02/23	PM	SW7471B
Mercury Wipe Pre	p	Completed					11/02/23	AL/AL	

1 = This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

Comments:

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director November 06, 2023 Reviewed and Released by: Rashmi Makol, Project Manager

Analysis Noveml	F	Attn: Miller E 169 Sto Rock T	ntal Group, Inc. Road 12575						
Sample Inform	nation		Custody I	nforma	<u>tion</u>		Date	<u>e</u>	Time
Matrix:	WIPE		Collected b	by:			10/3	0/23	
Location Code:	MILLERRO	С	Received b	by:	LB		10/3	1/23	17:00
Rush Request:	5 Day		Analyzed b	y:	see "B	y" below			
P.O.#:	28981		Laboratory Data				S Phoe	DG ID enix ID): GCP38134): CP38144
Project ID:	NY03230367								
Client ID:	L/U 11								
Parameter		Result	RL/ PQL	Unit	s D	ilution	Date/Time	Ву	Reference
Mercury Wipe		< 0.08	0.08	ug		1	11/02/23	GW	SW7471B
Mercury Wipe Pre	p	Completed					11/02/23	AL/HL	

1 = This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

Comments:

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director November 06, 2023 Reviewed and Released by: Rashmi Makol, Project Manager

Analysis Novemi		Attn: Miller E 169 Sto Rock T	ital Group, Inc. Road 12575						
Sample Inform	ation		<u>Custody</u>	Informa	<u>ition</u>		Date	<u>e</u>	Time
Matrix:	WIPE		Collected	by:			10/3	0/23	
Location Code:	MILLERRO	С	Received	by:	LB		10/3	1/23	17:00
Rush Request:	5 Day		Analyzed by: see "By" below						
P.O.#:	28981		Laboratory Data				S Phoe	DG ID enix ID): GCP38134): CP38145
Project ID:	NY03230367								
Client ID:	L/U 12								
Parameter		Result	RL/ PQL	Unit	s D	ilution	Date/Time	Ву	Reference
Mercury Wipe		< 0.08	0.08	ug		1	11/02/23	GW	SW7471B
Mercury Wipe Pre	p	Completed					11/02/23	AL/HL	

1 = This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

Comments:

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director November 06, 2023 Reviewed and Released by: Rashmi Makol, Project Manager

Analysis Novemi	F	Attn: Miller E 169 Sto Rock T	ital Group, Inc. Road 12575						
Sample Inform	nation		Custody I	nforma	<u>tion</u>		Date	<u>e</u>	Time
Matrix:	WIPE		Collected b	by:			10/3	0/23	
Location Code:	MILLERRO	С	Received b	by:	LB		10/3	1/23	17:00
Rush Request:	5 Day		Analyzed b	y:	see "B	y" below			
P.O.#:	28981		Laboratory Data				S Phoe	DG ID enix ID): GCP38134): CP38146
Project ID:	NY03230367								
Client ID:	L/U 13								
Parameter		Result	RL/ PQL	Unit	s D	ilution	Date/Time	Ву	Reference
Mercury Wipe		< 0.08	0.08	ug		1	11/02/23	GW	SW7471B
Mercury Wipe Pre	p	Completed					11/02/23	AL/HL	

1 = This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

Comments:

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director November 06, 2023 Reviewed and Released by: Rashmi Makol, Project Manager

Analysis Noveml	I	Attn: Miller E 169 St Rock T	ntal Group, Inc. Road 12575						
Sample Inform	nation		<u>Custody</u>	Informa	<u>tion</u>		Dat	<u>e</u>	Time
Matrix:	WIPE		Collected	by:			10/3	0/23	
Location Code:	MILLERRO	С	Received	by:	LB		10/3	1/23	17:00
Rush Request:	5 Day		Analyzed by: see "By" below						
P.O.#:	.O.#: 28981			Laboratory Data				DG IE enix IE): GCP38134): CP38147
Project ID:	NY03230367								
Client ID:	L/U 14								
Parameter		Result	RL/ PQL	Unit	s C	Dilution	Date/Time	Ву	Reference
Mercury Wipe		< 0.08	0.08	ug		1	11/02/23	GW	SW7471B
Mercury Wipe Pre	p	Completed					11/02/23	AL/HL	

1 = This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

Comments:

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director November 06, 2023 Reviewed and Released by: Rashmi Makol, Project Manager

Analysis Novemb	FC	Attn: Miller 169 S Rock	ital Group, Inc. Road 12575						
Sample Inform	ation		Custody In	tion	Dat	<u>e</u>	Time		
Matrix:	WIPE		Collected by	y:			10/3	0/23	
Location Code:	MILLERRO	С	Received by	y:	LB		10/3	1/23	17:00
Rush Request:	5 Day		Analyzed by	/:	see "	By" below			
P.O.#:	28981		Laboratory Data				S Phoe	DG IE enix IE): GCP38134): CP38148
Project ID:	NY03230367								
Client ID:	L/U 15								
Parameter		Result	RL/ PQL	Unit	s	Dilution	Date/Time	Ву	Reference
Mercury Wipe		< 0.08	0.08	ug		1	11/02/23	GW	SW7471B
Mercury Wipe Pre	p	Completed					11/02/23	AL/HL	

1 = This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

Comments:

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director November 06, 2023 Reviewed and Released by: Rashmi Makol, Project Manager

Analysis Novemb	FOR: Attn: Miller Environmen 169 Stone Castle Rock Tavern, NY				ntal Group, Inc. Road 12575				
Sample Inform	ation		<u>Custody</u>	Informa	<u>ition</u>		Date	<u>e</u>	Time
Matrix:	WIPE		Collected	by:			10/3	0/23	
Location Code:	MILLERRO	C	Received	by:	LB		10/3	1/23	17:00
Rush Request:	5 Day		Analyzed by: see "By" below						
P.O.#:	28981		Laboratory Data			<u>l</u>	S Phoe	DG ID enix ID): GCP38134): CP38149
Project ID:	NY03230367								
Client ID:	L/U 16								
Parameter		Result	RL/ PQL	Unit	s C	Dilution	Date/Time	Ву	Reference
Mercury Wipe		< 0.08	0.08	ug		1	11/02/23	GW	SW7471B
Mercury Wipe Pre	р	Completed					11/02/23	AL/HL	

1 = This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

Comments:

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director November 06, 2023 Reviewed and Released by: Rashmi Makol, Project Manager

QA/QC Report

November 06, 2023

QA/QC Data

SDG I.D.: GCP38134

Parameter	Blank	Blk RL	Sample Result	Dup Result	Dup RPD	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits
QA/QC Batch 704675 (ug), QC 3 CP38141, CP38142, CP38143)	Sample	No: CP	38124 (C	P38134,	CP381	35, CP	? 38136,	CP3813	37, CP	38138, (CP381	39, CP3	38140,
Mercury	BRL	0.01				88.0	87.9	0.1					
QA/QC Batch 704676 (ug), QC 3	Sample	No: CP	38144 (C	P38144,	CP381	45, CP	3 8146,	CP3814	47, CP	38148, (CP381	49)	
Mercury	BRL	0.08				90.4	87.0	3.8					

QA/QC Report

November 06, 2023

QA/QC Data

SDG I.D.: GCP38134

Parameter	Blank	Blk RL	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits	
QA/QC Batch 704525 (ug), QC S	ample	No: CP34976 (CP38140)									
Polychlorinated Biphenyl											
PCB-1016	ND	0.50	89	102	13.6				40 - 140	30	
PCB-1221	ND	0.50							40 - 140	30	
PCB-1232	ND	0.50							40 - 140	30	
PCB-1242	ND	0.50							40 - 140	30	
PCB-1248	ND	0.50							40 - 140	30	
PCB-1254	ND	0.50							40 - 140	30	
PCB-1260	ND	0.50	83	91	9.2				40 - 140	30	
PCB-1262	ND	0.50							40 - 140	30	
PCB-1268	ND	0.50							40 - 140	30	
% DCBP (Surrogate Rec)	85	%	89	88	1.1				30 - 150	30	
% DCBP (Surrogate Rec) (Confirm	100	%	108	107	0.9				30 - 150	30	
% TCMX (Surrogate Rec)	78	%	81	78	3.8				30 - 150	30	
% TCMX (Surrogate Rec) (Confirm Comment:	83	%	85	84	1.2				30 - 150	30	

A LCS and LCS Duplicate were performed instead of a matrix spike and matrix spike duplicate.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

RPD - Relative Percent Difference

LCS - Laboratory Control Sample

LCSD - Laboratory Control Sample Duplicate

MS - Matrix Spike

MS Dup - Matrix Spike Duplicate

NC - No Criteria

Intf - Interference

Phyllis/Shiller, Laboratory Director November 06, 2023
Monday, Nov	vember 06, 2023		Sample Criteria Exceedances Report					
Criteria:	None		Gampie ei	SCP38134 - MILLERROC				
State:	NY		-				RL	Analysis
SampNo	Acode	Phoenix Analyte	Criteria	Result	RL	Criteria	Criteria	Units
*** No Data t	o Display ***							

Phoenix Laboratories does not assume responsibility for the data contained in this exceedance report. It is provided as an additional tool to identify requested criteria exceedences. All efforts are made to ensure the accuracy of the data (obtained from appropriate agencies). A lack of exceedence information does not necessarily suggest conformance to the criteria. It is ultimately the site professional's responsibility to determine appropriate compliance.

Analysis Comments

November 06, 2023

SDG I.D.: GCP38134

The following analysis comments are made regarding exceptions to criteria not already noted in the Analysis Report or QA/QC Report: None.

NY Temperature Narration

November 06, 2023

SDG I.D.: GCP38134

The samples in this delivery group were received at 1.7° C. (Note acceptance criteria for relevant matrices is above freezing up to 6° C)

								(Coolant:	Cooler: Yes	
PHOENIX Environmental Laboratories Inc	NY/NJ/ 587 East M Email: Makrina I	PA CHAIN liddle Turnpike Nolan, makrina	, P.O. Bo	SUSTODY x 370, Manche ixlabs.com	ester, CT Fax (86	ORD 06040 0) 645-0823	Phone:	Temp (Contac 845	PC Pg Pg Pg Pg Pg Pg Pg Pg Pg Pg	of U
Customer: Miller Environme	entol Grapt	Client Ser	vices (8	360) 645-11 JY032	02 303	61	Email:	roject P.O	28981	- en U(on
Address: 105 Store Cartier	12575	Report Invoice QUOTE	to: <u>/</u> to: <u>/</u> # : _	nulab	<u>501</u> 501	n'llerenv.	<u>Com</u> COm	This se comp Bottle	ction MUST L leted with Quantities.	
Sampler's Client Sample- Information Identification	Date: 10/30/23	Analysis Request	100 UNIT	,®///			Instal		37 14 37 1450°	
Matrix Code: DW=Drinking Water GW=Ground Water SW=Surface Water WW=1 RW=Raw Water SE=Sediment SL=Sludge S=Soil SD=Solid W=1 B=Bulk L=Liquid	Waste Water Wipe OIL =Oil	No Do Hall	520	¥ / /			ANT TREAM	A A A A A	25 - 250rt - 500rt - 5	Hewith Base
PHOENIX USE ONLY SAMPLE # Customer Sample Identification Sample Matrix 38134 L U	Date Time Sampled Sampled	NEST CO				G LITE		0 4 10 15 10 1 0 10 10 10 10 10	201 20 HNO 2 H	addition to the second s
38135 L U d 38136 L U 3 38137 J U 4			<u>}</u>							
38138 LUS 38139 LUG		Y Y								
38141 LUS					_		¥			
38143 2410		<u> </u>								
Relinguished by: Accepted by:	Date: 103 103	1)23 17 1/23 17	ime: I シンフの[」 ひい	Image:		Res. Criteria Non-Res. Criteria Impact to GW Soil	NY □ TOGS G □ CP-51 S □ 375SCC □ Unrestrict	W OIL cted Soil	▶▲ ☐ Clean Fill Limit ☐ PA-GW ☐ Reg Fill Limi	s
Comments, Special Requirements or Regulations:	Data Format:	EQuIS		5 Days Standard • SURCHARGE APPLIES		Impact to GW soil screen Criteria GW Criteria	375SCC Residen 375SCC Residen Restricte	tial Soil tial ed Soil	PA Soil Rest	ricted stricted සැ
*MS/MSD are considered site samples and will be billed as such in accordance with the prices quoted.	GIS/Key	NY EZ ED (ASP)	D [Data Package	a: d Deliv. * ed (ASP E	Other 3) *	Comme 375SCC 375SCC Industria	rcial Soil I Soil 5 DW	State Samples Co	llected?

									Cool	Cool ant: IPK	ler: Yes	No No
PHOENIX	NY/N 587 Ea: Email: Makri	IJ/PA CH/ st Middle Turnf ina Nolan, mak	AIN OF	CUSTOD Box 370, Manc enixlabs.com	Y REC chester, C Fax (8	CORD T 06040	323	Pho E Fax		emp, 7° optact 0 15-5	PC Pg	of DO
Environmental Laboratories, Inc.		Client S	ervices	(860) 645-1	1102	,,		Em	ail: bu	065	comit	erenv ()
Customer: Address: RUCK Taver , N	estal Barks Pool 18575	Enc Proje Repo Invoi	ect: ort to: ice to: TE # :	NV03 hvð la hvo lai	230)36 mille ni/ler	renu enu	CCM COM	Project	P.O <u>: a</u> his secti complet ottle Qu	8981 on MUST ed with antities. ↓	be + +
Sampler's Signature Matrix Code: DW=Drinking Water GW=Ground Water SW=Surface Water W RW=Raw Water SE=Sediment SL=Sludge S=Soil SD=Solid B=Bulk L=Liquid	tion Date: 10302 W=Waste Water W=Wipe OIL=Oil	Analysis Reques	t states a states of				80	WH P Stars		1411 141 15 14 15 15 14 15 15 14 15 15 15 15 15 15 15 15 15 15 15 15 15	11 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	100 100 100 100 100 100 100 100 100 100
Comparison Sample SAMPLE # Customer Sample Identification Matter	ple Date Time ix Sampled Sampled	1	<u>}/</u>	\square			GL FIRE N		STING PROP	2 2 2 2 2 2 2	WOLL HIN SSLEET	a dole dole
38145 LIUIZ U 28146 LUIZ) 10/30/23						1 1					
38147 444		X										
38149 LUID		<u> </u> Ŷ					<u> </u>					
Relinguished by: Accepted by:	Dat	e:	<u>Time</u> :	Turnaround:	NJ			NY		<u>PA</u>		
Den Plant	t p	3123	D:30 1700	1 Day* 2 Days* 3 Days* 4 Days* 5 Days*		Res. Crite Non-Res Impact to Cleanup	eria Criteria GW Soil Criteria		3S GW 51 SOIL SCO estricted Soil		Clean Fill Lin PA-GW Reg Fill Lin	nits
omments, Special Requirements or Regulations:	Data Format: Phoenix Std Repo	rt 🗌 EQuIS	s zsite EDD	Standard		Impact to soil scree GW Crite	GW en Criteria ria		idential Soil SCO idential tricted Soil		PA Soil Re PA Soil non-	stricted
IS/MSD are considered site samples and will be billed as such in accordance		(ASP)	EDD	Data Packa	i ge: ced Deliv.	• [] Other	Con 375	nmercial Soil SCO ıstrial Soil	l Sta	ate Samples C	Collected?
ith the prices quoted.				NY Enha	nced (ASP	°B)*		L Sub	part 5 DW			7

Tuesday, November 21, 2023

Attn: Miller Environmental Group, Inc. 169 Stone Castle Road Rock Tavern, NY 12575

Project ID: NY03230367 CHGE WS SDG ID: GCP49482 Sample ID#s: CP49483 - CP49486

This laboratory is in compliance with the NELAC requirements of procedures used except where indicated.

This report contains results for the parameters tested, under the sampling conditions described on the Chain Of Custody, as received by the laboratory. This report is incomplete unless all pages indicated in the pagination at the bottom of the page are included.

A scanned version of the COC form accompanies the analytical report and is an exact duplicate of the original.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Sincerely yours,

XI-De

Phyllis/Shiller Laboratory Director

NELAC - #NY11301 CT Lab Registration #PH-0618 MA Lab Registration #M-CT007 ME Lab Registration #CT-007 NH Lab Registration #213693-A,B NJ Lab Registration #CT-003 NY Lab Registration #11301 PA Lab Registration #68-03530 RI Lab Registration #63 VT Lab Registration #VT11301

Sample Id Cross Reference

November 21, 2023

SDG I.D.: GCP49482

Project ID: NY03230367 CHGE WS

Client Id	Lab Id	Matrix
EAST WALL 2`	CP49483	WIPE
NORTH WALL 3`	CP49484	WIPE
WEST WALL 4`	CP49485	WIPE
FLOOR	CP49486	WIPE

Analysis _{Novem}	Report ber 21, 2023			FOR:	Attn: Miller E 169 St Rock 1	Environmer one Castle Favern, NY	ental Group, Inc. e Road Y 12575					
Sample Inform	nation		<u>Custody</u>	Informa	<u>ation</u>		Dat	<u>e</u>	<u>Time</u>			
Matrix:	WIPE		Collected	by:			11/1	5/23				
Location Code:	MILLERROO	2	Received	by:	CP		11/1	6/23	17:13			
Rush Request:	Standard		Analyzed	by:	see "E	By" below						
P.O.#:	29547		Labora	tory	Data	<u>l</u>	S Phoe	DG ID enix ID): GCP49482): CP49483			
Project ID:	NY03230367 C	HGEWS										
Client ID:	EAST WALL 2											
Parameter		Result	RL/ PQL	Unit	s C	Dilution	Date/Time	Ву	Reference			
Mercury Wipe		< 0.08	0.08	ug		1	11/20/23	PM	SW7471B			
Mercury Wipe Pre	ep	Completed					11/20/23	HL/HL				

1 = This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

Comments:

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director November 21, 2023 Reviewed and Released by: Rashmi Makol, Project Manager

Analysis _{Novem}	Report ber 21, 2023			FOR:	Attn: Miller 169 St Rock	ital Group, Inc. Road 12575				
Sample Inform	nation		<u>Custody</u>	Informa	<u>ation</u>		Dat	<u>e</u>	Time	
Matrix:	WIPE		Collected	by:			11/1	5/23		
Location Code:	MILLERRO	C	Received	by:	CP		11/1	6/23	17:13	
Rush Request:	Standard		Analyzed	by:	see "E	By" below				
P.O.#:	29547		Labora	tory	Data	<u>a</u>	S Phoe	DG ID enix ID): GCP49482): CP49484	
Project ID:	NY03230367 (CHGE WS								
Client ID:	NORTH WALL	. 3`								
Parameter		Result	RL/ PQL	Unit	s [Dilution	Date/Time	Ву	Reference	
Mercury Wipe		< 0.08	0.08	ug		1	11/20/23	PM	SW7471B	
Mercury Wipe Pre	ep.	Completed					11/20/23	HL/HL		

1 = This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

Comments:

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director November 21, 2023 Reviewed and Released by: Rashmi Makol, Project Manager

Analysis Novemb	Analysis Report November 21, 2023 Sample Information				Attn: Miller 169 S Rock	ital Group, Inc. Road 12575					
Sample Inform	ation		<u>Custody</u>	[,] Informa	ation		Dat	<u>e</u>	Time		
Matrix:	WIPE		Collected	l by:			11/1	5/23			
Location Code:	MILLERRO	С	Received	d by:	CP		11/1	6/23	17:13		
Rush Request:	Standard		Analyzed	l by:	see "	By" below					
P.O.#:	29547		Labora	atory	Data	<u>a</u>	S Phoe	DG ID enix ID): GCP49482): CP49485		
Project ID:	NY03230367 C	CHGE WS									
Client ID:	WEST WALL 4	4`									
Parameter		Result	RL/ PQL	Unit	S	Dilution	Date/Time	Ву	Reference		
Mercury Wipe		< 0.08	0.08	ug		1	11/20/23	PM	SW7471B		
Mercury Wipe Pre	р	Completed					11/20/23	HL/HL			

1 = This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

Comments:

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director November 21, 2023 Reviewed and Released by: Rashmi Makol, Project Manager

Analysis Novemb	Report per 21, 2023		F	Attn: Miller I 169 St Rock T	ntal Group, Ir Road 12575				
Sample Inform	ation		Custody I	nforma	<u>ition</u>		Dat	<u>e</u>	Time
Matrix:	WIPE		Collected b	oy:			11/1	5/23	
Location Code:	MILLERRO	С	Received b	oy:	СР		11/1	6/23	17:13
Rush Request:	Standard		Analyzed b	by:	see "E	By" below			
P.O.#:	29547		Laborat	ory	Data	<u>a</u>	S Phoe	DG IE enix IE): GCP49482): CP49486
Project ID:	NY03230367 C	CHGE WS							
Client ID:	FLOOR								
Parameter		Result	RL/ PQL	Unit	s E	Dilution	Date/Time	Ву	Reference
Mercury Wipe		< 0.08	0.08	ug		1	11/20/23	PM	SW7471B
Mercury Wipe Pre	р	Completed					11/20/23	HL/HL	

1 = This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

Comments:

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director November 21, 2023 Reviewed and Released by: Rashmi Makol, Project Manager

QA/QC Report

November 21, 2023

QA/QC Data

SDG I.D.: GCP49482

Parameter	Blank	Blk RL	Sample Result	Dup Result	Dup RPD	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits	
QA/QC Batch 707014 (ug),	QC Sample	No: (CP49483 (C	P49483	, CP494	484, CF	P49485,	CP494	86)					

97.1

89.1

8.6

Mercury BRL 0.08

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

RPD - Relative Percent Difference

LCS - Laboratory Control Sample

LCSD - Laboratory Control Sample Duplicate

MS - Matrix Spike

MS Dup - Matrix Spike Duplicate

NC - No Criteria

Intf - Interference

Phyllis/Shiller, Laboratory Director November 21, 2023

Tuesday, No	vember 21, 2023		Sample Criteria Exceedances Report						
Criteria:	None		GCP	49482 - MILLERROC					
State:	NY		•••					RL	Analysis
SampNo	Acode	Phoenix Analyte	Criteria		Result	RL	Criteria	Criteria	Units
*** No Data t	o Display ***								

Phoenix Laboratories does not assume responsibility for the data contained in this exceedance report. It is provided as an additional tool to identify requested criteria exceedences. All efforts are made to ensure the accuracy of the data (obtained from appropriate agencies). A lack of exceedence information does not necessarily suggest conformance to the criteria. It is ultimately the site professional's responsibility to determine appropriate compliance.

NY # 11301

Environmental Laboratories, Inc. 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Comments

November 21, 2023

SDG I.D.: GCP49482

The following analysis comments are made regarding exceptions to criteria not already noted in the Analysis Report or QA/QC Report: None.

NY Temperature Narration

November 21, 2023

SDG I.D.: GCP49482

The samples in this delivery group were received at 1.3° C. (Note acceptance criteria for relevant matrices is above freezing up to 6° C)

Δ		NJ/PA	CHA		FCU	STOD	Y RE	CORE)				Coolant: Temp		er: Z		No No No No
PHOENIX Environmental Laboratories, Inc.	587 Ea Email: Makı	ast Middl rina Nola Ci	le Tump an, mak lient S	oike, P.C rina@pt ervice). Box 3 coenixia s (860	70, Manci bs.com) 645-1	hester, Fax (1 102	CT 0604 (860) 645	0 -0823		Phoi Fax: Ema	ne: ail:	<u>Con</u>	act O	ptions	Li Ser-cen	- - #·Cam
Customer: <u>Mallen ENV Group</u> Address: <u>169 Stone Contine</u> Rol <u>Back truen</u>			Proje Repo Invoi QUO	ect: ort to: ce to: fE# :	Hvo Hvo	1032 10 Lab habs 9	3036 2016 2016 2016	NACEN	<u>CHGE</u> <u>V · Cor</u>		చిన 	Proj	iect P. This con Bott	ः <u>२</u> secti nplet le Qu	95° on M entiti	UST I UST I Ith Ies.	
Client Sample - Information - Identification Signature Matrix Code: DW-Drinking Water GW=Ground Water SW=Surface Water WW=V RW=Rew Water SE=Sediment SL=Sludge S=Sell SD=Selld W= B=Bulk L=Liquid	l <u>Date: パーパーズ・ス</u> Waste Water Wipe OIL=Oil	<u>3</u> Å	analysis Request	Sala a sala a	S. S. I. T. S.					Lung				LI IN IN	THE REAL	STATE STATE	
PHOENIX USE ONLY Sample SAMPLE # Customor Sample Identification Matrix	Date Time Sampled Sample	a	WERD THEY								5 5 5 5 8 8	\$ \$ \$ 8	45 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	No No	AND AL	RACE STREET	STON STON
49482 Sock tonk w 49483 East wall 2' 1 49484 North well 3'	11-25-23		1														
49486 Floor			(
																	<u>+</u>
Relinguished by: 	pe 11: ul	16 D [(0]]	3 3	<u>Time:</u> 133 171		around: 1 Day* 2 Days* 3 Days* 4 Days* 5 Days*		Res. C Non-R Impac Clean	riteria es. Criteria t to GW Soll up Criteria		TOG: CP-5 3758 Unres 3758	S GW 1 SOIL CO stricted	- 3 Soll		Clean I PA-G Reg	Fill Limit W Fill Limi	ls its
Didnot Receive Didnot Receive emailed chiert (D)	Data Format:		EQuiŞ NJ Haz	zsite EDC		Standard IRCHARGE APPLIES		Impac soilsc	t to GW reen Criteria riteria		Resid 375S Resid Restr 375S Comr	dential iCO dential ricted \$ iCO mercla	Soil Soil I Soil		PA S PA Sc	Soil Rest	ricted stricted
M&M&D are considered alle samples and will be billed as such in accordance with the prices quoted.	GIS/Key		(ASP) Other	200		ata Packaj NJ Reduci NY Enhan	ge: ed Deliv hoed (AS	с.* SPB)*	D Other		375S Indus Subp	CO strial So art 5 D	oil DW	Sta	ite Sam	nples Co ዞ거	llected?

. . . .

A

9CP 49482

Krystal Delgado

From:Krystal DelgadoSent:Thursday, November 16, 2023 6:45 PMTo:hvolabs@millerenv.comSubject:NY03230367Attachments:SKM_458e23111619120.pdf

Importance:

High

Good evening,

For the project above, we did not receive a sample for Soak Tank. I've attached the COC for reference.

Thank you

Krystal Delgado

Sample Receiving Phoenix Environmental Laboratories 587 East Middle Tpke. Manchester, CT 06040 krystald@phoenixlabs.com PH: 860-645-1102 ext:369 FX: 860-645-0823

9CP 49482

Krystal Delgado

From: Sent: To: Subject: Krystal Delgado Thursday, November 16, 2023 7:35 PM 'Ryan LeRoy'; HVO Labs RE: NY03230367

Thanks Ryan!

From: Ryan LeRoy <RLeroy@millerenv.com> Sent: Thursday, November 16, 2023 7:26 PM To: Krystal Delgado <KrystalD@phoenixlabs.com>; HVO Labs <hvolabs@millerenv.com> Subject: Re: NY03230367

Krystal,

Sorry for the confusion, the 4 samples are correct. The words soak tank are meant to be a header for the location of the samples.

Thanks, Ryan

Get Outlook for iOS

From: Krystal Delgado <<u>KrystalD@phoenixlabs.com</u>> Sent: Thursday, November 16, 2023 6:44:43 PM To: HVO Labs <<u>hvolabs@millerenv.com</u>> Subject: NY03230367

WARNING: This e-mail was sent from someone outside of MEG. Please exercise caution when clicking on anything in it or responding. If in doubt, contact MEG IT.

Good evening,

For the project above, we did not receive a sample for Soak Tank. I've attached the COC for reference.

Thank you

Krystal Delgado

Sample Receiving Phoenix Environmental Laboratories 587 East Middle Tpke. Manchester, CT 06040 <u>krystald@phoenixlabs.com</u> PH: 860-645-1102 ext:369 FX: 860-645-0823

Tuesday, November 21, 2023

Attn: Miller Environmental Group, Inc. 169 Stone Castle Road Rock Tavern, NY 12575

Project ID: NY03230367 CHGE WS SDG ID: GCP49478 Sample ID#s: CP49478 - CP49481

This laboratory is in compliance with the NELAC requirements of procedures used except where indicated.

This report contains results for the parameters tested, under the sampling conditions described on the Chain Of Custody, as received by the laboratory. This report is incomplete unless all pages indicated in the pagination at the bottom of the page are included.

A scanned version of the COC form accompanies the analytical report and is an exact duplicate of the original.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Sincerely yours,

XI-De

Phyllis/Shiller Laboratory Director

NELAC - #NY11301 CT Lab Registration #PH-0618 MA Lab Registration #M-CT007 ME Lab Registration #CT-007 NH Lab Registration #213693-A,B NJ Lab Registration #CT-003 NY Lab Registration #11301 PA Lab Registration #68-03530 RI Lab Registration #63 VT Lab Registration #VT11301

Sample Id Cross Reference

November 21, 2023

SDG I.D.: GCP49478

Project ID: NY03230367 CHGE WS

Client Id	Lab Id	Matrix
WSA 1	CP49478	WIPE
WSA 2	CP49479	WIPE
WSA 5	CP49480	WIPE
TRANS SHOP	CP49481	WIPE

Analysis Report November 21, 2023	FOR:	Attn: Miller Environmental Group, Inc. 169 Stone Castle Road Rock Tavern, NY 12575	
--------------------------------------	------	---	--

Sample Information		Custody Inforn	<u>Date</u>	<u>Time</u>	
Matrix:	WIPE	Collected by:		11/15/23	
Location Code:	MILLERROC	Received by:	СР	11/16/23	17:13
Rush Request:	Standard	Analyzed by:	see "By" below		
P.O.#:	29547	l ab avatam	Data		CCD404

Laboratory Data

SDG ID: GCP49478 Phoenix ID: CP49478

Project ID:	NY03230367 CHGE WS
Client ID:	WSA 1

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	By	Reference	
PCB Wipe Extraction	Completed				11/16/23	J/RB	SW3540C	
Polychlorinated Biph	enyls							
PCB-1016	ND	0.50	ug	1	11/17/23	SC	SW8082A	1
PCB-1221	ND	0.50	ug	1	11/17/23	SC	SW8082A	1
PCB-1232	ND	0.50	ug	1	11/17/23	SC	SW8082A	1
PCB-1242	ND	0.50	ug	1	11/17/23	SC	SW8082A	1
PCB-1248	ND	0.50	ug	1	11/17/23	SC	SW8082A	1
PCB-1254	0.69	0.50	ug	1	11/17/23	SC	SW8082A	1
PCB-1260	ND	0.50	ug	1	11/17/23	SC	SW8082A	1
PCB-1262	ND	0.50	ug	1	11/17/23	SC	SW8082A	1
PCB-1268	ND	0.50	ug	1	11/17/23	SC	SW8082A	1
QA/QC Surrogates								
% DCBP	89		%	1	11/17/23	SC	30 - 150 %	
% DCBP (Confirmation)	82		%	1	11/17/23	SC	30 - 150 %	
% TCMX	77		%	1	11/17/23	SC	30 - 150 %	
% TCMX (Confirmation)	75		%	1	11/17/23	SC	30 - 150 %	

Project ID: NY03230367 CHGE WS Client ID: WSA 1

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	By	Reference

1 = This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director November 21, 2023 Reviewed and Released by: Rashmi Makol, Project Manager

Analysis Report November 21, 2023	FOR:	Attn: Miller Environmental Group, Inc. 169 Stone Castle Road Rock Tavern, NY 12575	
--------------------------------------	------	---	--

Sample Information		Custody Inforn	<u>Date</u>	<u>Time</u>	
Matrix:	WIPE	Collected by:		11/15/23	
Location Code:	MILLERROC	Received by:	СР	11/16/23	17:13
Rush Request:	Standard	Analyzed by:	see "By" below		
P.O.#:	29547	l ab avatam	Data		CCD404

Laboratory Data

SDG ID: GCP49478 Phoenix ID: CP49479

Project ID:	NY03230367 CHGE WS	
Client ID:	WSA 2	
		RI/

Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference	
PCB Wipe Extraction	Completed				11/16/23	J/RB	SW3540C	
Polychlorinated Biphe	enyls							
PCB-1016	ND	0.50	ug	1	11/17/23	SC	SW8082A	1
PCB-1221	ND	0.50	ug	1	11/17/23	SC	SW8082A	1
PCB-1232	ND	0.50	ug	1	11/17/23	SC	SW8082A	1
PCB-1242	ND	0.50	ug	1	11/17/23	SC	SW8082A	1
PCB-1248	ND	0.50	ug	1	11/17/23	SC	SW8082A	1
PCB-1254	ND	0.50	ug	1	11/17/23	SC	SW8082A	1
PCB-1260	1.2	0.50	ug	1	11/17/23	SC	SW8082A	1
PCB-1262	ND	0.50	ug	1	11/17/23	SC	SW8082A	1
PCB-1268	ND	0.50	ug	1	11/17/23	SC	SW8082A	1
QA/QC Surrogates								
% DCBP	47		%	1	11/17/23	SC	30 - 150 %	
% DCBP (Confirmation)	44		%	1	11/17/23	SC	30 - 150 %	
% TCMX	41		%	1	11/17/23	SC	30 - 150 %	
% TCMX (Confirmation)	40		%	1	11/17/23	SC	30 - 150 %	

Project ID: NY03230367 CHGE WS Client ID: WSA 2

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	By	Reference

1 = This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director November 21, 2023 Reviewed and Released by: Rashmi Makol, Project Manager

Analysis Report November 21, 2023	FOR:	Attn: Miller Environmental Group, Inc. 169 Stone Castle Road Rock Tavern, NY 12575	
--------------------------------------	------	---	--

Sample Information		Custody Inforn	<u>Date</u>	<u>Time</u>	
Matrix:	WIPE	Collected by:		11/15/23	
Location Code:	MILLERROC	Received by:	СР	11/16/23	17:13
Rush Request:	Standard	Analyzed by:	see "By" below		
P.O.#:	29547	l ab avatam	Data		CCD404

Laboratory Data

SDG ID: GCP49478 Phoenix ID: CP49480

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
PCB Wipe Extraction	Completed				11/16/23	J/RB	SW3540C
Polychlorinated Biph	nenyls						
PCB-1016	ND	0.50	ug	1	11/17/23	SC	SW8082A
PCB-1221	ND	0.50	ug	1	11/17/23	SC	SW8082A
PCB-1232	ND	0.50	ug	1	11/17/23	SC	SW8082A
PCB-1242	ND	0.50	ug	1	11/17/23	SC	SW8082A
PCB-1248	ND	0.50	ug	1	11/17/23	SC	SW8082A
PCB-1254	ND	0.50	ug	1	11/17/23	SC	SW8082A
PCB-1260	1.2	0.50	ug	1	11/17/23	SC	SW8082A
PCB-1262	ND	0.50	ug	1	11/17/23	SC	SW8082A
PCB-1268	ND	0.50	ug	1	11/17/23	SC	SW8082A
QA/QC Surrogates							
% DCBP	149		%	1	11/17/23	SC	30 - 150 %
% DCBP (Confirmation)	Interference		%	1	11/17/23	SC	30 - 150 %
% TCMX	135		%	1	11/17/23	SC	30 - 150 %
% TCMX (Confirmation)	142		%	1	11/17/23	SC	30 - 150 %

Project ID:

Client ID:

NY03230367 CHGE WS

WSA 5

1

1

1

1

1

1

1

1

Project ID: NY03230367 CHGE WS Client ID: WSA 5

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference

1 = This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director November 21, 2023 Reviewed and Released by: Rashmi Makol, Project Manager

November 21, 2023Miller Environmental Group, IrNovember 21, 2023169 Stone Castle RoadRock Tavern, NY 12575	c.
--	----

Sample Information		Custody Inforn	Date	<u>Time</u>	
Matrix:	WIPE	Collected by:		11/15/23	
Location Code:	MILLERROC	Received by:	СР	11/16/23	17:13
Rush Request:	Standard	Analyzed by:	see "By" below		
P.O.#:	29547	l ek evetem	Data		CCP404

Laboratory Data

SDG ID: GCP49478 Phoenix ID: CP49481

Project ID:	NY03230367 CHGE WS
Client ID:	TRANS SHOP

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference	
PCB Wipe Extraction	Completed				11/16/23	J/RB	SW3540C	
Polychlorinated Biph	enyls							
PCB-1016	ND	0.50	ug	1	11/17/23	SC	SW8082A	1
PCB-1221	ND	0.50	ug	1	11/17/23	SC	SW8082A	1
PCB-1232	ND	0.50	ug	1	11/17/23	SC	SW8082A	1
PCB-1242	ND	0.50	ug	1	11/17/23	SC	SW8082A	1
PCB-1248	ND	0.50	ug	1	11/17/23	SC	SW8082A	1
PCB-1254	ND	0.50	ug	1	11/17/23	SC	SW8082A	1
PCB-1260	4.3	0.50	ug	1	11/17/23	SC	SW8082A	1
PCB-1262	ND	0.50	ug	1	11/17/23	SC	SW8082A	1
PCB-1268	ND	0.50	ug	1	11/17/23	SC	SW8082A	1
QA/QC Surrogates								
% DCBP	90		%	1	11/17/23	SC	30 - 150 %	
% DCBP (Confirmation)	85		%	1	11/17/23	SC	30 - 150 %	
% TCMX	78		%	1	11/17/23	SC	30 - 150 %	
% TCMX (Confirmation)	76		%	1	11/17/23	SC	30 - 150 %	

Project ID: NY03230367 CHGE WS Client ID: TRANS SHOP RL/ Parameter Result PQL Units Dilution Date/Time By Reference

1 = This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis, Shiller, Laboratory Director November 21, 2023 Reviewed and Released by: Rashmi Makol, Project Manager

QA/QC Report

November 21, 2023

QA/QC Data

SDG I.D.: GCP49478

Parameter	Blank	Blk RL	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits
QA/QC Batch 706679 (ug), QC S	Sample	No: CP49133 (CP494	78, CP49479, CF	P49480,	CP494	31)				
Polychlorinated Biphenyl										
PCB-1016	ND	0.50	47	48	2.1				40 - 140	30
PCB-1221	ND	0.50							40 - 140	30
PCB-1232	ND	0.50							40 - 140	30
PCB-1242	ND	0.50							40 - 140	30
PCB-1248	ND	0.50							40 - 140	30
PCB-1254	ND	0.50							40 - 140	30
PCB-1260	ND	0.50	47	48	2.1				40 - 140	30
PCB-1262	ND	0.50							40 - 140	30
PCB-1268	ND	0.50							40 - 140	30
% DCBP (Surrogate Rec)	92	%	91	89	2.2				30 - 150	30
% DCBP (Surrogate Rec) (Confirm	83	%	81	80	1.2				30 - 150	30
% TCMX (Surrogate Rec)	78	%	79	74	6.5				30 - 150	30
% TCMX (Surrogate Rec) (Confirm Comment:	75	%	77	73	5.3				30 - 150	30

A LCS and LCS Duplicate were performed instead of a matrix spike and matrix spike duplicate.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

RPD - Relative Percent Difference

LCS - Laboratory Control Sample

LCSD - Laboratory Control Sample Duplicate

MS - Matrix Spike

MS Dup - Matrix Spike Duplicate

NC - No Criteria

Intf - Interference

Phyllis/Shiller, Laboratory Director November 21, 2023

Tuesday, No	vember 21, 2023		Sample Cri	iteria Exceedances Report				
Criteria:	None		G	CP49478 - MILLERROC				
State:	NY		· · ·				RL	Analysis
SampNo	Acode	Phoenix Analyte	Criteria	Result	RL	Criteria	Criteria	Units
*** No Data t	o Display ***							

Phoenix Laboratories does not assume responsibility for the data contained in this exceedance report. It is provided as an additional tool to identify requested criteria exceedences. All efforts are made to ensure the accuracy of the data (obtained from appropriate agencies). A lack of exceedence information does not necessarily suggest conformance to the criteria. It is ultimately the site professional's responsibility to determine appropriate compliance.

NY # 11301

Environmental Laboratories, Inc. 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Comments

November 21, 2023

SDG I.D.: GCP49478

The following analysis comments are made regarding exceptions to criteria not already noted in the Analysis Report or QA/QC Report: None.

NY Temperature Narration

November 21, 2023

SDG I.D.: GCP49478

The samples in this delivery group were received at 1.3° C. (Note acceptance criteria for relevant matrices is above freezing up to 6° C)

PHO				En	NY/NJ 587 East nail: Makrina	/PA Middle	e Turn	AIN Ipike, f	OF P.O. B 2phoe	CUS lox 37 nixlab	TOE 0, Man s.com	DY F	REC er, CT ax (86	0604()) 645) -0823			Phor Fax:	10:	Coola Te <u>C</u> e	ant: emp onta	Cooler: IPK - Cr Cot		%§ ∑E }g ≟	No No No No Of
Customer: Address:	nuller Env 169 Stone Back tax	s, mc. <u>Creations</u> Srestant	P Rd VY			CI	Proj Rep Invo QUO	Servi ect: ort to bice to	ces):):):	(860) NYC HVC	645- 323 1-ab	1102 303 5 Q 5 Q	2 67 9 mar	<u>C</u> lerx	16-55 2007 -	دمر دمر	23	Ema	il: Pro	Hu pject	n h P.O Is s onn	Ction Ction		<u>1(ler</u> 4) UST 1: (h	Bru-Co #
Sampior's Signaturo Matrix Code: DW-Drinking Water RW-Raw Water SE 8-Bulk L-Liquid	Client Sample - ir GW-Ground Water Sediment BL=Sludg	Normation - Ide SW=Şurface W/ je S=Soil SD=:	ntification ater WW≖\ 30lid W¤	n Dątę <u>; ∰.</u> Waste Water Wipe	<u>· 15^{-,} 23</u> OIL≖Oii	A R	nalysi leque:	is st	STRANG WE	Koler Koler							A A A A A A A A A A A A A A A A A A A	LAND CONTRACT			and a series	No and Contraction of the second	To a contraction of the second	Solution (Section (Se	
MOENIX USE ONLY SAMPLE #	Customor Sample	Identification	Sample Matrix	Date Sampled	Time Sampled		ED Pro-	Ŋ	/	/			/						\$ \$ \$ 3					A A A A A A A A A A A A A A A A A A A	STEP SOUTH
19478	NSA 1		U.	11-15-23			۲ł	Í	ſ	<u> </u>						Ĩ				\bigcap			Ť	Ť	1
49479	WSA 2	Ĺ	ω	11-15-23			¥									1									1
494180	W5A 8	 5	 لى	11.15.23			¥									1									1
49481	Trans sha	5	ς.)	11-15-23			X									1							$\frac{1}{1}$		
															_	_							-	+	
									<u> </u>														+		†
														_											
Palinguishad bur		ocepted by			Data			TIT		Turne	round						NV				-+				
Bout		Ŕ	pod. /	~		\6 [.] 2 [1\0	35 115	12: 171	:30 113		1 Day* 2 Days 3 Days 4 Days* 5 Days*	; ; ;		Res. C Non-R Impac Clean	riteria es. Crit i to GW up Crite	əria Soli ria		TOGS CP-5 ⁺ 375S Unres 375S	S GW 1 SOI CO stricte CO	L d Soit		9 0 0	iean F PA-G1 Reg I	fill Limit W Fill Lími	.s Its
omments, Special I	Requirements or Reg	gulations:	V	Data Forma	t: Std Report		EQui: NJ Ha	S azsite E	EDD	* SUF * SUF	Standard ICHARGI IPLIES	j E		Impac soil sc GW C	to GW reen Cr titeria	iteria		Resid 3758 Resid Restr 3758	lential CO lential icted CO	l Soil I Soil			PA So PA So	oil R o st Il non-re	ricted :stricted
NS/MSD are considered Whithe prices quoted.	alta semplea end will be i	billed as such in ec	¢ordence		,		NY E (ASP) Other	z edd)			ta Pack IJ Redu IY Enha	age: Iced D anced	eliv. * (ASP E	.) •	c	ther		Comr 375S Indus Subp	nercia CO triai S ert 5 I	al Soil Soll DVV		State	; Sami	ples Co	ilected?

Wednesday, September 06, 2023

Attn: Miller Environmental Group, Inc. 169 Stone Castle Road Rock Tavern, NY 12575

Project ID:CHGF NY03230367SDG ID:GCO79186Sample ID#s: CO79186, CO79278

This laboratory is in compliance with the NELAC requirements of procedures used except where indicated.

This report contains results for the parameters tested, under the sampling conditions described on the Chain Of Custody, as received by the laboratory. This report is incomplete unless all pages indicated in the pagination at the bottom of the page are included.

A scanned version of the COC form accompanies the analytical report and is an exact duplicate of the original.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Sincerely yours,

XI-De

Phyllis/Shiller Laboratory Director

NELAC - #NY11301 CT Lab Registration #PH-0618 MA Lab Registration #M-CT007 ME Lab Registration #CT-007 NH Lab Registration #213693-A,B NJ Lab Registration #CT-003 NY Lab Registration #11301 PA Lab Registration #68-03530 RI Lab Registration #63 VT Lab Registration #VT11301

Sample Id Cross Reference

September 06, 2023

SDG I.D.: GCO79186

Project ID: CHGF NY03230367

Client Id	Lab Id	Matrix
RINSATE	CO79186	LIQUID
ТВ	CO79278	WATER

Analysis Report

September 06, 2023

FOR: Attn:

...

Miller Environmental Group, Inc. 169 Stone Castle Road Rock Tavern, NY 12575

.

Project ID:

Sample Informa	<u>ation</u>	Custody Inforn	nation	<u>Date</u>	Time	
Matrix:	LIQUID	Collected by:	WN	08/18/23	15:00	
Location Code:	MILLERROC	Received by:	SR1	08/21/23	16:42	
Rush Request:	Standard	Analyzed by:	see "By" below			
P.O.#:	26532				000704	

. . .

Laboratory Data

SDG ID: GCO79186 Phoenix ID: CO79186

Client ID:	RINSATE			
Parameter		Result	RL/ PQL	
TCLP Silver		< 0.10	0.10	
TCLP Arsenic		< 0.10	0.10	
TCLP Barium		< 0.10	0.10	
TCLP Cadmium	1	< 0.050	0.050	
TCLP Chromiur	n	< 0.10	0 10	

CHGF NY03230367

Parameter	Result	PQL	Units	Dilution	Date/Time	By	Reference	
TCLP Silver	< 0.10	0.10	mg/L	1	08/24/23	CPP	SW846 1311/6010	
TCLP Arsenic	< 0.10	0.10	mg/L	1	08/24/23	CPP	SW846 1311/6010	
TCLP Barium	< 0.10	0.10	mg/L	1	08/24/23	CPP	SW846 1311/6010	
TCLP Cadmium	< 0.050	0.050	mg/L	1	08/24/23	CPP	SW846 1311/6010	
TCLP Chromium	< 0.10	0.10	mg/L	1	08/24/23	CPP	SW846 1311/6010	
TCLP Mercury	< 0.0002	0.0002	mg/L	1	08/22/23	AL1	SW846 1311/7470	
TCLP Lead	< 0.10	0.10	mg/L	1	08/24/23	CPP	SW846 1311/6010	
TCLP Selenium	< 0.10	0.10	mg/L	1	08/24/23	CPP	SW846 1311/6010D	
TCLP Metals Digestion	Completed				08/22/23	ZT/ZT	SW3010A	
Flash Point	>200	200	Degree F	1	08/31/23	G	SW1010B	
Ignitability	Passed	140	degree F	1	08/31/23	G	SW846-Ignit	1
PCB Extraction	Completed				08/22/23	1/1	SW3510C	
Semi-Volatile Extraction	Completed				08/22/23	X/SB2	SW3520C	
TCLP Digestion Mercury	Completed				08/22/23	ZT/ZT	SW7470A	
TCLP Extraction for Metals	Completed				08/21/23	ZT	SW1311	
Polychlorinated Biphe	nyls							
PCB-1016	ND	0.50	ug/L	1	08/24/23	SC	SW8082A	
PCB-1221	ND	0.50	ug/L	1	08/24/23	SC	SW8082A	
PCB-1232	ND	0.50	ug/L	1	08/24/23	SC	SW8082A	
PCB-1242	ND	0.50	ug/L	1	08/24/23	SC	SW8082A	
PCB-1248	ND	0.50	ug/L	1	08/24/23	SC	SW8082A	
PCB-1254	3.4	0.50	ug/L	1	08/24/23	SC	SW8082A	
PCB-1260	ND	0.50	ug/L	1	08/24/23	SC	SW8082A	
PCB-1262	ND	0.50	ug/L	1	08/24/23	SC	SW8082A	
PCB-1268	ND	0.50	ug/L	1	08/24/23	SC	SW8082A	
QA/QC Surrogates								

Project ID: CHGF NY03230367 Client ID: RINSATE

Parameter Result PQL Units Dilution Date/Time By Reference % DCBP 30 % 1 082423 SC 30 - 160 % % DCBP (Confirmation) 30 % 1 082423 SC 30 - 160 % % TCMX (Confirmation) 62 % 1 0822423 SC 30 - 160 % WICMX (Confirmation) 65 ugL 1 082223 HM SW2260D 1,1,1-Trichtoroethane ND 5.0 ugL 1 082223 HM SW2260D 1,1,2-Trichtoroethane ND 5.0 ugL 1 082223 HM SW2260D 1,1,2-Trichtoroethane ND 5.0 ugL 1 082223 HM SW2260D 1,2.3-Trichtorobenzane ND 5.0 ugL 1 082223 HM SW2260D 1,2.3-Trichtorobenzane ND 5.0 ugL 1 082223 HM SW2260D 1,2.4-Trichtorobenzane ND			RL/					
% DEBP 30 % 1 08/24/23 SC 30 - 150 % % DCBP (Confirmation) 63 % 1 08/24/23 SC 30 - 150 % % TOMX (Confirmation) 63 % 1 08/24/23 SC 30 - 150 % YotAx (Confirmation) 63 % 1 08/24/23 SC 30 - 150 % YotAx (Confirmation) 63 % 1 08/22/23 HM SW220D 1,1,12-Transhoroethane ND 5.0 ugL 1 08/22/23 HM SW220D 1,1,2-Trinshoroethane ND 5.0 ugL 1 08/22/23 HM SW220D 1,1-Dichloroethane ND 5.0 ugL 1 08/22/23 HM SW220D 1,1-Dichloroethane ND 5.0 ugL 1 08/22/23 HM SW220D 1,2-Dichloropropane ND 5.0 ugL 1 08/22/23 HM SW220D 1,2-Dichloropropane ND <td< th=""><th>Parameter</th><th>Result</th><th>PQL</th><th>Units</th><th>Dilution</th><th>Date/Time</th><th>Ву</th><th>Reference</th></td<>	Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
% DCBP (Confirmation) 30 % 1 08/24/23 SC 30 - 159 % % TCMX (Confirmation) 63 % 1 08/24/23 SC 30 - 159 % % TCMX (Confirmation) 63 % 1 08/24/23 SC 30 - 159 % Volatiles	% DCBP	30		%	1	08/24/23	SC	30 - 150 %
% TCMX 62 % 1 08/24/23 SC 30 - 160 % % TCMX (Confirmation) 62 % 1 08/24/23 SC 30 - 150 % Volatiles	% DCBP (Confirmation)	30		%	1	08/24/23	SC	30 - 150 %
% TCMX (Confirmation) 63 % 1 08/24/23 SC 30 - 150 % Volatiles	% TCMX	62		%	1	08/24/23	SC	30 - 150 %
Volatiles ND 5.0 ug/L 1 08/22/3 HM SW8260D 1,1,1-Trichloroethane ND 5.0 ug/L 1 08/22/3 HM SW8260D 1,1,2-Trichloroethane ND 5.0 ug/L 1 08/22/3 HM SW8260D 1,1,2-Trichloroethane ND 5.0 ug/L 1 08/22/3 HM SW8260D 1,1-Dichloroethane ND 5.0 ug/L 1 08/22/3 HM SW8260D 1,1-Dichloroptopene ND 5.0 ug/L 1 08/22/3 HM SW8260D 1,2,3-Trichloroptopene ND 5.0 ug/L 1 08/22/3 HM SW8260D 1,2,4-Trichlorobenzene ND 5.0 ug/L 1 08/22/23 HM SW8260D 1,2-Dichloroethane ND 5.0 ug/L 1 08/22/23 HM SW8260D 1,2-Dichloroethane ND 5.0 ug/L 1 08/22/23 HM <td>% TCMX (Confirmation)</td> <td>63</td> <td></td> <td>%</td> <td>1</td> <td>08/24/23</td> <td>SC</td> <td>30 - 150 %</td>	% TCMX (Confirmation)	63		%	1	08/24/23	SC	30 - 150 %
1,1,2-Tritrachloroethane ND 5.0 ug/L 1 08/22/23 HM SW2260D 1,1,1-Tritrachloroethane ND 5.0 ug/L 1 08/22/23 HM SW2260D 1,1,2-Tritrachloroethane ND 5.0 ug/L 1 08/22/23 HM SW2260D 1,1-Dichloroethane ND 5.0 ug/L 1 08/22/23 HM SW2260D 1,1-Dichloroethane ND 5.0 ug/L 1 08/22/23 HM SW2260D 1,2,3-Trichlorobezene ND 5.0 ug/L 1 08/22/23 HM SW2260D 1,2,4-Trimethylbenzene ND 5.0 ug/L 1 08/22/23 HM SW2260D 1,2-Dichorobezene ND 5.0 ug/L 1 08/22/23 HM SW2260D 1,2-Dichoropropane ND 5.0 ug/L 1 08/22/23 HM SW2260D 1,2-Dichoropropane ND 5.0 ug/L 1 08/22/23<	Volatiles							
1,1-Trichlorosthane ND 5.0 ug/L 1 0.82223 HM SW8260D 1,1,2-Trichlorosthane ND 5.0 ug/L 1 0.82223 HM SW8260D 1,1-Dichlorosthane ND 5.0 ug/L 1 0.82223 HM SW8260D 1,1-Dichlorosthane ND 5.0 ug/L 1 0.82223 HM SW8260D 1,1-Dichloropopane ND 5.0 ug/L 1 0.82223 HM SW8260D 1,2,3-Trichlorobenzane ND 5.0 ug/L 1 0.82223 HM SW8260D 1,2,4-Trichlorobenzane ND 5.0 ug/L 1 0.82223 HM SW8260D 1,2-Dichlorostenzane ND 5.0 ug/L 1 0.82223 HM SW8260D 1,2-Dichlorostenzane ND 5.0 ug/L 1 0.82223 HM SW8260D 1,2-Dichlorostenzane ND 5.0 ug/L 1 0.82223 <td< td=""><td>1 1 1 2-Tetrachloroethane</td><td>ND</td><td>5.0</td><td>ua/L</td><td>1</td><td>08/22/23</td><td>нм</td><td>SW8260D</td></td<>	1 1 1 2-Tetrachloroethane	ND	5.0	ua/L	1	08/22/23	нм	SW8260D
1,2,2-Tertachloroethane ND 5.0 ugL 1 08/22/3 HM SW8260D 1,1,2-Trichloroethane ND 5.0 ugL 1 08/22/3 HM SW8260D 1,1-Dichloroethane ND 5.0 ugL 1 08/22/3 HM SW8260D 1,1-Dichloroethane ND 5.0 ugL 1 08/22/3 HM SW8260D 1,2,3-Trichloroptopane ND 5.0 ugL 1 08/22/3 HM SW8260D 1,2,4-Trichloroptopane ND 5.0 ugL 1 08/22/3 HM SW8260D 1,2,4-Trichloroptopane ND 5.0 ugL 1 08/22/3 HM SW8260D 1,2-Dichlorobenzene ND 5.0 ugL 1 08/22/3 HM SW8260D 1,2-Dichloroethane ND 5.0 ugL 1 08/22/3 HM SW8260D 1,2-Dichloroethane ND 5.0 ugL 1 08/22/3 HM <td>1 1 1-Trichloroethane</td> <td>ND</td> <td>5.0</td> <td>ug/L</td> <td>1</td> <td>08/22/23</td> <td>HM</td> <td>SW8260D</td>	1 1 1-Trichloroethane	ND	5.0	ug/L	1	08/22/23	HM	SW8260D
ND 5.0 ug/L 1 08/22/23 HM SW8260D 1,1-Dichloroethane ND 5.0 ug/L 1 08/22/23 HM SW8260D 1,1-Dichloroethene ND 5.0 ug/L 1 08/22/23 HM SW8260D 1,2,3-Trichloropenae ND 5.0 ug/L 1 08/22/23 HM SW8260D 1,2,3-Trichloropenae ND 5.0 ug/L 1 08/22/23 HM SW8260D 1,2,4-Trichlorobenzene ND 5.0 ug/L 1 08/22/23 HM SW8260D 1,2-Dichromesthane ND 5.0 ug/L 1 08/22/23 HM SW8260D 1,2-Dichrobenzene ND 5.0 ug/L 1 08/22/23 HM SW8260D 1,2-Dichrobenzene ND 5.0 ug/L 1 08/22/23 HM SW8260D 1,3-Dichloropropane ND 5.0 ug/L 1 08/22/23 HM SW8260D	1 1 2 2-Tetrachloroethane	ND	5.0	ug/L	1	08/22/23	НМ	SW8260D
I. Dicklorosethane ND 5.0 ug/L 1 08/22/23 HM SW8260D 1,1-Dichlorosethane ND 5.0 ug/L 1 08/22/23 HM SW8260D 1,2,3-Trichlorosenzane ND 5.0 ug/L 1 08/22/23 HM SW8260D 1,2,3-Trichlorosprane ND 5.0 ug/L 1 08/22/23 HM SW8260D 1,2,4-Trichlorosprane ND 5.0 ug/L 1 08/22/23 HM SW8260D 1,2,4-Trichlorosprane ND 5.0 ug/L 1 08/22/23 HM SW8260D 1,2-Dichorosenane ND 5.0 ug/L 1 08/22/23 HM SW8260D 1,2-Dichlorosenane ND 5.0 ug/L 1 08/22/23 HM SW8260D 1,2-Dichlorosorpane ND 5.0 ug/L 1 08/22/23 HM SW8260D 1,3-Dichlorosorpane ND 5.0 ug/L 1 08/22/23	1 1 2-Trichloroethane	ND	5.0	ug/L	1	08/22/23	НМ	SW8260D
n.t. n.b. 5.0 ug/L 1 08/22/23 HM SW8260D 1,1-Dichloropropene ND 5.0 ug/L 1 08/22/23 HM SW8260D 1,2,3-Trichloropropane ND 5.0 ug/L 1 08/22/23 HM SW8260D 1,2,3-Trichloropropane ND 5.0 ug/L 1 08/22/23 HM SW8260D 1,2,4-Trinethylbenzene ND 5.0 ug/L 1 08/22/23 HM SW8260D 1,2-Dichlorobenzene ND 5.0 ug/L 1 08/22/23 HM SW8260D 1,2-Dichlorobenzene ND 5.0 ug/L 1 08/22/23 HM SW8260D 1,2-Dichlorobenzene ND 5.0 ug/L 1 08/22/23 HM SW8260D 1,2-Dichloropropane ND 5.0 ug/L 1 08/22/23 HM SW8260D 1,3-Dichloropropane ND 5.0 ug/L 1 08/22/23 H	1 1-Dichloroethane	ND	5.0	ug/L	1	08/22/23	НМ	SW8260D
I. Dickloropropene ND 5.0 ug/L 1 08/22/23 HM SW8260D 1.2.3 -Trichloropropene ND 5.0 ug/L 1 08/22/23 HM SW8260D 1.2.4 -Trichlorobenzene ND 5.0 ug/L 1 08/22/23 HM SW8260D 1.2.4 -Trichlorobenzene ND 5.0 ug/L 1 08/22/23 HM SW8260D 1.2.4 -Trinethylbenzene ND 5.0 ug/L 1 08/22/23 HM SW8260D 1.2-Dichlorobenzene ND 5.0 ug/L 1 08/22/23 HM SW8260D 1.2-Dichlorobenzene ND 5.0 ug/L 1 08/22/23 HM SW8260D 1.3.5-Trimethylbenzene ND 5.0 ug/L 1 08/22/23 HM SW8260D 1.3.5-Trimethylbenzene ND 5.0 ug/L 1 08/22/23 HM SW8260D 1.3.5-Trimethylbenzene ND 5.0 ug/L 1 <td< td=""><td>1 1-Dichloroethene</td><td>ND</td><td>5.0</td><td>ug/L</td><td>1</td><td>08/22/23</td><td>HM</td><td>SW8260D</td></td<>	1 1-Dichloroethene	ND	5.0	ug/L	1	08/22/23	HM	SW8260D
1,2.3-Trichlorophone ND 5.0 ug/L 1 08/22/3 HM SW8260D 1,2.3-Trichlorophone ND 5.0 ug/L 1 08/22/3 HM SW8260D 1,2.4-Trinchlorobenzene ND 5.0 ug/L 1 08/22/3 HM SW8260D 1,2-Dibromo-3-chioropropane ND 5.0 ug/L 1 08/22/3 HM SW8260D 1,2-Dibromo-s-chioropropane ND 5.0 ug/L 1 08/22/3 HM SW8260D 1,2-Dichlorobenzene ND 5.0 ug/L 1 08/22/3 HM SW8260D 1,2-Dichlorophane ND 5.0 ug/L 1 08/22/3 HM SW8260D 1,3-Dichloropopane ND 5.0 ug/L 1 08/22/3 HM SW8260D 1,3-Dichloropopane ND 5.0 ug/L 1 08/22/3 HM SW8260D 2,2-Dichloropopane ND 5.0 ug/L 1 08/22/3	1 1-Dichloropropene	ND	5.0	ug/l	1	08/22/23	НМ	SW8260D
1.3Trichloropropane ND 5.0 ug/L 1 08/22/23 HM SW8260D 1.2.4-Trichloropropane ND 5.0 ug/L 1 08/22/23 HM SW8260D 1.2.4-Trichloropropane ND 5.0 ug/L 1 08/22/23 HM SW8260D 1.2-Dibtromo-3-chloropropane ND 5.0 ug/L 1 08/22/23 HM SW8260D 1.2-Dibtromo-3-chloropropane ND 5.0 ug/L 1 08/22/23 HM SW8260D 1.2-Dichtoropropane ND 5.0 ug/L 1 08/22/23 HM SW8260D 1.3-Dichtoropropane ND 5.0 ug/L 1 08/22/23 HM SW8260D 1.3-Dichtoropropane ND 5.0 ug/L 1 08/22/23 HM SW8260D 1.3-Dichtoropropane ND 5.0 ug/L 1 08/22/23 HM SW8260D 2-Dichtoropropane ND 5.0 ug/L 1 <td< td=""><td>1 2 3-Trichlorobenzene</td><td>ND</td><td>5.0</td><td>ug/L</td><td>1</td><td>08/22/23</td><td>HM</td><td>SW8260D</td></td<>	1 2 3-Trichlorobenzene	ND	5.0	ug/L	1	08/22/23	HM	SW8260D
Light Trichtorobenzene ND So ugL 1 08/22/23 HM SW8260D 1,2,4-Trichtorobenzene ND 5.0 ug/L 1 08/22/23 HM SW8260D 1,2-Dibromo-3-chloropropane ND 5.0 ug/L 1 08/22/23 HM SW8260D 1,2-Dibromoethane ND 5.0 ug/L 1 08/22/23 HM SW8260D 1,2-Dichoropropane ND 5.0 ug/L 1 08/22/23 HM SW8260D 1,3-Dichloropropane ND 5.0 ug/L 1 08/22/23 HM SW8260D 1,3-Dichloropropane ND 5.0 ug/L 1 08/22/23 HM SW8260D 1,3-Dichloropropane ND 5.0 ug/L 1 08/22/23 HM SW8260D 2,-Dichloropropane ND 5.0 ug/L 1 08/22/23 HM SW8260D 2,-Dichloropropane ND 5.0 ug/L 1 08/22/23	1.2.3-Trichloropropane	ND	5.0	ug/L	1	08/22/23	HM	SW8260D
1,2,4-Trimethylbenzene ND 5.0 ug/L 1 08/22/23 HM SW8260D 1,2-Dibromo-3-chloropropane ND 5.0 ug/L 1 08/22/23 HM SW8260D 1,2-Dibromo-s-chloropropane ND 5.0 ug/L 1 08/22/23 HM SW8260D 1,2-Dichrobonzene ND 5.0 ug/L 1 08/22/23 HM SW8260D 1,2-Dichrobonzene ND 5.0 ug/L 1 08/22/23 HM SW8260D 1,3-Dichloropropane ND 5.0 ug/L 1 08/22/23 HM SW8260D 1,3-Dichloropropane ND 5.0 ug/L 1 08/22/23 HM SW8260D 2,-Dichloropropane ND 5.0 ug/L 1 08/22/23 HM SW8260D 2-Stepropyltoluene ND 5.0 ug/L 1 08/22/23 HM SW8260D 2-lospropyltoluene ND 5.0 ug/L 1 08/22/23 <td>1 2 4-Trichlorobenzene</td> <td>ND</td> <td>5.0</td> <td>ug/L</td> <td>1</td> <td>08/22/23</td> <td>HM</td> <td>SW8260D</td>	1 2 4-Trichlorobenzene	ND	5.0	ug/L	1	08/22/23	HM	SW8260D
I.2.Dioromo-3-chloropropane ND 5.0 ug/L 1 08/22/3 HM SW8260D 1.2.Dioromoethane ND 5.0 ug/L 1 08/22/3 HM SW8260D 1.2.Dichorobenzene ND 5.0 ug/L 1 08/22/23 HM SW8260D 1.2.Dichorobenzene ND 5.0 ug/L 1 08/22/23 HM SW8260D 1.3.Dichlorobenzene ND 5.0 ug/L 1 08/22/23 HM SW8260D 1.3.Dichlorobenzene ND 5.0 ug/L 1 08/22/23 HM SW8260D 1.3.Dichlorobenzene ND 5.0 ug/L 1 08/22/23 HM SW8260D 2.Dichloropropane ND 5.0 ug/L 1 08/22/23 HM SW8260D 2.Dichloropropane ND 5.0 ug/L 1 08/22/23 HM SW8260D 2.Dischoropropane ND 5.0 ug/L 1 08/22/23 H	1 2 4-Trimethylbenzene	ND	5.0	ug/l	1	08/22/23	НМ	SW8260D
1,2:Ditromo 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 1 0 1 <th1< th=""> 1</th1<>	1.2-Dibromo-3-chloropropane	ND	5.0	ug/L	1	08/22/23	нм	SW8260D
1,2-Dichlorobenzene ND 5.0 ug/L 1 08/22/23 HM SW2260D 1,2-Dichlorobenzene ND 5.0 ug/L 1 08/22/23 HM SW3260D 1,2-Dichloropropane ND 5.0 ug/L 1 08/22/23 HM SW3260D 1,3-Dichloropropane ND 5.0 ug/L 1 08/22/23 HM SW3260D 1,3-Dichloropropane ND 5.0 ug/L 1 08/22/23 HM SW3260D 1,4-Dichlorobenzene ND 5.0 ug/L 1 08/22/23 HM SW3260D 2-Dichloropropane ND 5.0 ug/L 1 08/22/23 HM SW3260D 2-Dichloropropane ND 5.0 ug/L 1 08/22/23 HM SW3260D 2-Stopropyltoluene ND 5.0 ug/L 1 08/22/23 HM SW3260D 4-Methyl-2-pentanone ND 5.0 ug/L 1 08/22/23 H	1.2-Dibromoethane	ND	5.0	ug/l	1	08/22/23	нм	SW8260D
1,2-Dichlorosettane ND 5.0 ug/L 1 08/22/23 HM SW8260D 1,3-Dichloropropane ND 5.0 ug/L 1 08/22/23 HM SW8260D 1,3-Dichlorobenzene ND 5.0 ug/L 1 08/22/23 HM SW8260D 1,3-Dichlorobenzene ND 5.0 ug/L 1 08/22/23 HM SW8260D 1,4-Dichlorobenzene ND 5.0 ug/L 1 08/22/23 HM SW8260D 2,2-Dichloropropane ND 5.0 ug/L 1 08/22/23 HM SW8260D 2,-Chiorotoluene ND 5.0 ug/L 1 08/22/23 HM SW8260D 2-Chiorotoluene ND 5.0 ug/L 1 08/22/23 HM SW8260D 2-lexanone ND 5.0 ug/L 1 08/22/23 HM SW8260D 4-Chlorotoluene ND 5.0 ug/L 1 08/22/23 HM <	1.2-Dichlorobenzene	ND	5.0	ug/l	1	08/22/23	нм	SW8260D
1,2-Dickhoropropane ND 5.0 ug/L 1 08/22/23 HM SW8260D 1,3-Dichloropropane ND 5.0 ug/L 1 08/22/23 HM SW8260D 1,3-Dichlorobenzene ND 5.0 ug/L 1 08/22/23 HM SW8260D 1,4-Dichlorobenzene ND 5.0 ug/L 1 08/22/23 HM SW8260D 1,4-Dichlorobenzene ND 5.0 ug/L 1 08/22/23 HM SW8260D 2,2-Dichloropropane ND 5.0 ug/L 1 08/22/23 HM SW8260D 2,-Sorpoyltoluene ND 5.0 ug/L 1 08/22/23 HM SW8260D 2-lsopropyltoluene ND 5.0 ug/L 1 08/22/23 HM SW8260D 4-Chlorotoluene ND 5.0 ug/L 1 08/22/23 HM SW8260D 4-cetone ND 5.0 ug/L 1 08/22/23 HM	1.2-Dichloroethane	ND	5.0	ug/l	1	08/22/23	нм	SW8260D
1,2 Drinking ND 5.0 ug/L 1 08/2/2/3 HM SV8260D 1,3-Dichloropenzene ND 5.0 ug/L 1 08/2/2/3 HM SV8260D 1,3-Dichloropropane ND 5.0 ug/L 1 08/2/2/3 HM SV8260D 2,-Dichloropropane ND 5.0 ug/L 1 08/2/2/3 HM SV8260D 2,-Dichloropropane ND 5.0 ug/L 1 08/2/2/3 HM SV8260D 2,-Dicholopropane ND 5.0 ug/L 1 08/2/2/3 HM SV8260D 2,-Dichotoluene ND 5.0 ug/L 1 08/2/2/3 HM SV8260D 2-Hexanone ND 5.0 ug/L 1 08/2/2/3 HM SV8260D 4-Chlorotoluene ND 5.0 ug/L 1 08/2/2/3 HM SV8260D 4-Methyl-2-pentanone ND 5.0 ug/L 1 08/2/2/3 HM SV8260D Acryonitrile ND 5.0 ug/L 1 08/2/2/3 </td <td>1.2-Dichloropropage</td> <td>ND</td> <td>5.0</td> <td>ug/L</td> <td>1</td> <td>08/22/23</td> <td>нм</td> <td>SW8260D</td>	1.2-Dichloropropage	ND	5.0	ug/L	1	08/22/23	нм	SW8260D
ND ND S.0 ug/L 1 ORALLO HM SW8260D 1,3-Dichloropropane ND 5.0 ug/L 1 08/22/23 HM SW8260D 2,2-Dichloropropane ND 5.0 ug/L 1 08/22/23 HM SW8260D 2,2-Dichloropropane ND 5.0 ug/L 1 08/22/23 HM SW8260D 2-Chlorotoluene ND 5.0 ug/L 1 08/22/23 HM SW8260D 2-Hexanone ND 5.0 ug/L 1 08/22/23 HM SW8260D 2-Hexanone ND 5.0 ug/L 1 08/22/23 HM SW8260D 2-thorotoluene ND 5.0 ug/L 1 08/22/23 HM SW8260D 4-chlorotoluene ND 5.0 ug/L 1 08/22/23 HM SW8260D Accone ND 5.0 ug/L 1 08/22/23 HM SW8260D	1 3 5-Trimethylbenzene	ND	5.0	ug/L	1	08/22/23	нм	SW8260D
ND Sol Og/L Observe No Sol Observe No Sol Ug/L 1 Observe Sol Sol Sol Ug/L 1 Observe Sol S	1 3-Dichlorobenzene	ND	5.0	ug/L	1	08/22/23	нм	SW8260D
1,4-Dickhorspherzene ND 5.0 ug/L 1 08/22/3 HM SW8260D 2,2-Dichloropropane ND 5.0 ug/L 1 08/22/3 HM SW8260D 2,2-Dichloropropane ND 5.0 ug/L 1 08/22/3 HM SW8260D 2-Hexanone ND 5.0 ug/L 1 08/22/3 HM SW8260D 1 2-Isopropyltoluene ND 5.0 ug/L 1 08/22/3 HM SW8260D 1 4-Chlorotoluene ND 5.0 ug/L 1 08/22/3 HM SW8260D 1 4-Chlorotoluene ND 5.0 ug/L 1 08/22/3 HM SW8260D 4-Chlorotoluene ND 5.0 ug/L 1 08/22/3 HM SW8260D Acrylonitrile ND 5.0 ug/L 1 08/22/3 HM SW8260D Bromochloromethane ND 5.0 ug/L 1 08/22/3 HM SW8260D Bromochloromethane ND 5.0 u	1 3-Dichloropropage	ND	5.0	ug/L	1	08/22/23	нм	SW8260D
International of the second state of the se	1 4-Dichlorobenzene	ND	5.0	ug/L	1	08/22/23	нм	SW8260D
L.2 Exhibitologiopatic ND 5.0 ug/L 1 08/22/23 HM SW8260D 2-Hexanone ND 5.0 ug/L 1 08/22/23 HM SW8260D 2-Hexanone ND 5.0 ug/L 1 08/22/23 HM SW8260D 2-Isopropyltoluene ND 5.0 ug/L 1 08/22/23 HM SW8260D 4-Chlorotoluene ND 5.0 ug/L 1 08/22/23 HM SW8260D 4-Methyl-2-pentanone ND 5.0 ug/L 1 08/22/23 HM SW8260D Acetone ND 5.0 ug/L 1 08/22/23 HM SW8260D Benzene ND 5.0 ug/L 1 08/22/23 HM SW8260D Bromochloromethane ND 5.0 ug/L 1 08/22/23 HM SW8260D Bromochloromethane ND 5.0 ug/L 1 08/22/23 HM SW8260D	2 2-Dichloropropage	ND	5.0	ug/L	1	08/22/23	нм	SW8260D
2 - Hexanone ND 36 ug/L 1 08/22/23 HM SW8260D 2-Isopropyltoluene ND 5.0 ug/L 1 08/22/23 HM SW8260D 1 4-Chlorotoluene ND 5.0 ug/L 1 08/22/23 HM SW8260D 1 4-Methyl-2-pentanone ND 5.0 ug/L 1 08/22/23 HM SW8260D Acctone ND 50 ug/L 1 08/22/23 HM SW8260D Acctone ND 50 ug/L 1 08/22/23 HM SW8260D Benzene ND 5.0 ug/L 1 08/22/23 HM SW8260D Bromochloromethane ND 5.0 ug/L 1 08/22/23 HM SW8260D Bromochloromethane ND 5.0 ug/L 1 08/22/23 HM SW8260D Carbon Disulfide ND 5.0 ug/L 1 08/22/23 HM	2-Chlorotoluene	ND	5.0	ug/l	1	08/22/23	нм	SW8260D
2-Isopropyltoluene ND 5.0 ug/L 1 08/22/23 HM SW8260D 1 4-Chlorotoluene ND 5.0 ug/L 1 08/22/23 HM SW8260D 1 4-Methyl-2-pentanone ND 50 ug/L 1 08/22/23 HM SW8260D Acetone ND 50 ug/L 1 08/22/23 HM SW8260D Acetone ND 50 ug/L 1 08/22/23 HM SW8260D Benzene ND 5.0 ug/L 1 08/22/23 HM SW8260D Bromobenzene ND 5.0 ug/L 1 08/22/23 HM SW8260D Bromochloromethane ND 5.0 ug/L 1 08/22/23 HM SW8260D Bromochloromethane ND 5.0 ug/L 1 08/22/23 HM SW8260D Carbon Disulfide ND 5.0 ug/L 1 08/22/23 HM	2-Hexanone	ND	25	ug/l	1	08/22/23	нм	SW8260D
Locypop ND So ug/L 1 OBLECE NM SW2203 HM SW2200 4-Chlorotoluene ND 25 ug/L 1 08/22/23 HM SW2260D Acetone ND 50 ug/L 1 08/22/23 HM SW2260D Acetone ND 50 ug/L 1 08/22/23 HM SW2260D Benzene ND 5.0 ug/L 1 08/22/23 HM SW2260D Bromobenzene ND 5.0 ug/L 1 08/22/23 HM SW2260D Bromochloromethane ND 5.0 ug/L 1 08/22/23 HM SW2260D Bromochloromethane ND 5.0 ug/L 1 08/22/23 HM SW2260D Bromothrom ND 5.0 ug/L 1 08/22/23 HM SW2260D Carbon bisulfide ND 5.0 ug/L 1 08/22/23 HM SW2260D	2-Isopropyltoluene	ND	5.0	ug/l	1	08/22/23	нм	SW8260D 1
4-Methyl-2-pentanone ND 25 ug/L 1 08/22/23 HM SW8260D Acetone ND 50 ug/L 1 08/22/23 HM SW8260D Acetone ND 10 ug/L 1 08/22/23 HM SW8260D Benzene ND 5.0 ug/L 1 08/22/23 HM SW8260D Bromobenzene ND 5.0 ug/L 1 08/22/23 HM SW8260D Bromochloromethane ND 5.0 ug/L 1 08/22/23 HM SW8260D Bromochloromethane ND 5.0 ug/L 1 08/22/23 HM SW8260D Bromochloromethane ND 5.0 ug/L 1 08/22/23 HM SW8260D Bromothromethane ND 5.0 ug/L 1 08/22/23 HM SW8260D Carbon Disulfide ND 5.0 ug/L 1 08/22/23 HM SW8260D Chlorobenzene ND 5.0 ug/L 1 08/22/23 HM	4-Chlorotoluene	ND	5.0	ug/l	1	08/22/23	нм	SW8260D
Action ND 50 ug/L 1 08/22/23 HM SW8260D Accylonitrile ND 10 ug/L 1 08/22/23 HM SW8260D Benzene ND 5.0 ug/L 1 08/22/23 HM SW8260D Bromobenzene ND 5.0 ug/L 1 08/22/23 HM SW8260D Bromobenzene ND 5.0 ug/L 1 08/22/23 HM SW8260D Bromochloromethane ND 5.0 ug/L 1 08/22/23 HM SW8260D Bromochloromethane ND 5.0 ug/L 1 08/22/23 HM SW8260D Bromomethane ND 5.0 ug/L 1 08/22/23 HM SW8260D Carbon Disulfide ND 5.0 ug/L 1 08/22/23 HM SW8260D Chlorobenzene ND 5.0 ug/L 1 08/22/23 HM SW8260D <t< td=""><td>4-Methyl-2-pentanone</td><td>ND</td><td>25</td><td>ug/l</td><td>1</td><td>08/22/23</td><td>нм</td><td>SW8260D</td></t<>	4-Methyl-2-pentanone	ND	25	ug/l	1	08/22/23	нм	SW8260D
Acrylonitrile ND 10 ug/L 1 08/22/23 HM SW8260D Benzene ND 5.0 ug/L 1 08/22/23 HM SW8260D Bromobenzene ND 5.0 ug/L 1 08/22/23 HM SW8260D Bromochloromethane ND 5.0 ug/L 1 08/22/23 HM SW8260D Bromochloromethane ND 5.0 ug/L 1 08/22/23 HM SW8260D Bromochloromethane ND 5.0 ug/L 1 08/22/23 HM SW8260D Bromoform ND 5.0 ug/L 1 08/22/23 HM SW8260D Bromomethane ND 5.0 ug/L 1 08/22/23 HM SW8260D Carbon Disulfide ND 5.0 ug/L 1 08/22/23 HM SW8260D Chlorobenzene ND 5.0 ug/L 1 08/22/23 HM SW8260D Chloroothane ND 5.0 ug/L 1 08/22/23 HM	Acetone	ND	50	ug/L	1	08/22/23	HM	SW8260D
No. 10 ND 5.0 ug/L 1 08/22/23 HM SW8260D Benzene ND 5.0 ug/L 1 08/22/23 HM SW8260D Bromobenzene ND 5.0 ug/L 1 08/22/23 HM SW8260D Bromochloromethane ND 5.0 ug/L 1 08/22/23 HM SW8260D Bromodichloromethane ND 5.0 ug/L 1 08/22/23 HM SW8260D Bromoform ND 5.0 ug/L 1 08/22/23 HM SW8260D Bromomethane ND 5.0 ug/L 1 08/22/23 HM SW8260D Carbon Disulfide ND 5.0 ug/L 1 08/22/23 HM SW8260D Carbon tetrachloride ND 5.0 ug/L 1 08/22/23 HM SW8260D Chlorobenzene ND 5.0 ug/L 1 08/22/23 HM SW8260D Chloroothane ND 5.0 ug/L 1 08/22/23 HM <t< td=""><td>Acrylonitrile</td><td>ND</td><td>10</td><td>ug/l</td><td>1</td><td>08/22/23</td><td>нм</td><td>SW8260D</td></t<>	Acrylonitrile	ND	10	ug/l	1	08/22/23	нм	SW8260D
Bromobenzene ND 5.0 ug/L 1 08/22/23 HM SW8260D Bromochloromethane ND 5.0 ug/L 1 08/22/23 HM SW8260D Bromochloromethane ND 5.0 ug/L 1 08/22/23 HM SW8260D Bromodichloromethane ND 5.0 ug/L 1 08/22/23 HM SW8260D Bromoform ND 5.0 ug/L 1 08/22/23 HM SW8260D Bromothane ND 5.0 ug/L 1 08/22/23 HM SW8260D Carbon Disulfide ND 5.0 ug/L 1 08/22/23 HM SW8260D Carbon tetrachloride ND 5.0 ug/L 1 08/22/23 HM SW8260D Chlorobenzene ND 5.0 ug/L 1 08/22/23 HM SW8260D Chloroform ND 5.0 ug/L 1 08/22/23 HM SW8260D <td>Benzene</td> <td>ND</td> <td>5.0</td> <td>ug/l</td> <td>1</td> <td>08/22/23</td> <td>нм</td> <td>SW8260D</td>	Benzene	ND	5.0	ug/l	1	08/22/23	нм	SW8260D
Bromochloromethane ND 5.0 ug/L 1 08/22/23 HM SW8260D Bromodichloromethane ND 5.0 ug/L 1 08/22/23 HM SW8260D Bromodichloromethane ND 5.0 ug/L 1 08/22/23 HM SW8260D Bromoform ND 5.0 ug/L 1 08/22/23 HM SW8260D Bromomethane ND 5.0 ug/L 1 08/22/23 HM SW8260D Carbon Disulfide ND 5.0 ug/L 1 08/22/23 HM SW8260D Carbon tetrachloride ND 5.0 ug/L 1 08/22/23 HM SW8260D Chlorobenzene ND 5.0 ug/L 1 08/22/23 HM SW8260D Chloroform ND 5.0 ug/L 1 08/22/23 HM SW8260D Chloroform ND 5.0 ug/L 1 08/22/23 HM SW8260D </td <td>Bromobenzene</td> <td>ND</td> <td>5.0</td> <td>ug/L</td> <td>1</td> <td>08/22/23</td> <td>НМ</td> <td>SW8260D</td>	Bromobenzene	ND	5.0	ug/L	1	08/22/23	НМ	SW8260D
Bromodichloromethane ND 5.0 ug/L 1 08/22/23 HM SW8260D Bromoform ND 5.0 ug/L 1 08/22/23 HM SW8260D Bromomethane ND 5.0 ug/L 1 08/22/23 HM SW8260D Carbon Disulfide ND 5.0 ug/L 1 08/22/23 HM SW8260D Carbon Disulfide ND 5.0 ug/L 1 08/22/23 HM SW8260D Carbon tetrachloride ND 5.0 ug/L 1 08/22/23 HM SW8260D Chlorobenzene ND 5.0 ug/L 1 08/22/23 HM SW8260D Chlorothane ND 5.0 ug/L 1 08/22/23 HM SW8260D Chloromethane ND 5.0 ug/L 1 08/22/23 HM SW8260D cis-1,2-Dichloroethene ND 5.0 ug/L 1 08/22/23 HM SW8260D	Bromochloromethane	ND	5.0	ug/L	1	08/22/23	НМ	SW8260D
Bromoform ND 5.0 ug/L 1 08/22/23 HM SW8260D Bromomethane ND 5.0 ug/L 1 08/22/23 HM SW8260D Carbon Disulfide ND 5.0 ug/L 1 08/22/23 HM SW8260D Carbon Disulfide ND 5.0 ug/L 1 08/22/23 HM SW8260D Carbon tetrachloride ND 5.0 ug/L 1 08/22/23 HM SW8260D Chlorobenzene ND 5.0 ug/L 1 08/22/23 HM SW8260D Chlorobenzene ND 5.0 ug/L 1 08/22/23 HM SW8260D Chlorobenzene ND 5.0 ug/L 1 08/22/23 HM SW8260D Chloroform ND 5.0 ug/L 1 08/22/23 HM SW8260D Chloromethane ND 5.0 ug/L 1 08/22/23 HM SW8260D cis-1,3-Dichloropropene ND 5.0 ug/L 1 08/22/23 HM<	Bromodichloromethane	ND	5.0	ug/L	1	08/22/23	НМ	SW8260D
BromomethaneND5.0ug/L108/22/23HMSW8260DCarbon DisulfideND5.0ug/L108/22/23HMSW8260DCarbon tetrachlorideND5.0ug/L108/22/23HMSW8260DChlorobenzeneND5.0ug/L108/22/23HMSW8260DChloroethaneND5.0ug/L108/22/23HMSW8260DChloroformND5.0ug/L108/22/23HMSW8260DChloromethaneND5.0ug/L108/22/23HMSW8260DChloromethaneND5.0ug/L108/22/23HMSW8260Dcis-1,2-DichloroetheneND5.0ug/L108/22/23HMSW8260Dcis-1,3-DichloropropeneND5.0ug/L108/22/23HMSW8260DDibromochloromethaneND5.0ug/L108/22/23HMSW8260DDibromomethaneND5.0ug/L108/22/23HMSW8260DDibromomethaneND5.0ug/L108/22/23HMSW8260D	Bromoform	ND	5.0	ug/L	1	08/22/23	НМ	SW8260D
Carbon Disulfide ND 5.0 ug/L 1 08/22/23 HM SW8260D Carbon tetrachloride ND 5.0 ug/L 1 08/22/23 HM SW8260D Chlorobenzene ND 5.0 ug/L 1 08/22/23 HM SW8260D Chlorobenzene ND 5.0 ug/L 1 08/22/23 HM SW8260D Chloroethane ND 5.0 ug/L 1 08/22/23 HM SW8260D Chloroethane ND 5.0 ug/L 1 08/22/23 HM SW8260D Chloromethane ND 5.0 ug/L 1 08/22/23 HM SW8260D Cis-1,2-Dichloroethene ND 5.0 ug/L 1 08/22/23 HM SW8260D cis-1,3-Dichloropropene ND 5.0 ug/L 1 08/22/23 HM SW8260D Dibromochloromethane ND 5.0 ug/L 1 08/22/23 HM SW8	Bromomethane	ND	5.0	ug/L	1	08/22/23	НМ	SW8260D
Carbon tetrachloride ND 5.0 ug/L 1 08/22/23 HM SW8260D Chlorobenzene ND 5.0 ug/L 1 08/22/23 HM SW8260D Chlorobenzene ND 5.0 ug/L 1 08/22/23 HM SW8260D Chlorobenzene ND 5.0 ug/L 1 08/22/23 HM SW8260D Chloroform ND 5.0 ug/L 1 08/22/23 HM SW8260D Chloroform ND 5.0 ug/L 1 08/22/23 HM SW8260D Chloromethane ND 5.0 ug/L 1 08/22/23 HM SW8260D cis-1,2-Dichloroethene ND 5.0 ug/L 1 08/22/23 HM SW8260D cis-1,3-Dichloropropene ND 5.0 ug/L 1 08/22/23 HM SW8260D Dibromochloromethane ND 5.0 ug/L 1 08/22/23 HM SW8260D <td>Carbon Disulfide</td> <td>ND</td> <td>5.0</td> <td>ug/L</td> <td>1</td> <td>08/22/23</td> <td>НМ</td> <td>SW8260D</td>	Carbon Disulfide	ND	5.0	ug/L	1	08/22/23	НМ	SW8260D
Chlorobenzene ND 5.0 ug/L 1 08/22/23 HM SW8260D Chlorobentane ND 5.0 ug/L 1 08/22/23 HM SW8260D Chloroberthane ND 5.0 ug/L 1 08/22/23 HM SW8260D Chloroberthane ND 5.0 ug/L 1 08/22/23 HM SW8260D Chloromethane ND 5.0 ug/L 1 08/22/23 HM SW8260D Chloromethane ND 5.0 ug/L 1 08/22/23 HM SW8260D cis-1,2-Dichloroethene ND 5.0 ug/L 1 08/22/23 HM SW8260D cis-1,3-Dichloropropene ND 5.0 ug/L 1 08/22/23 HM SW8260D Dibromochloromethane ND 5.0 ug/L 1 08/22/23 HM SW8260D Dibromomethane ND 5.0 ug/L 1 08/22/23 HM SW8260D<	Carbon tetrachloride	ND	5.0	ug/L	1	08/22/23	НМ	SW8260D
Chloroethane ND 5.0 ug/L 1 08/22/23 HM SW8260D Chloroform ND 5.0 ug/L 1 08/22/23 HM SW8260D Chloromethane ND 5.0 ug/L 1 08/22/23 HM SW8260D Chloromethane ND 5.0 ug/L 1 08/22/23 HM SW8260D cis-1,2-Dichloroethene ND 5.0 ug/L 1 08/22/23 HM SW8260D cis-1,3-Dichloropropene ND 5.0 ug/L 1 08/22/23 HM SW8260D Dibromochloromethane ND 5.0 ug/L 1 08/22/23 HM SW8260D Dibromomethane ND 5.0 ug/L 1 08/22/23 HM SW8260D	Chlorobenzene	ND	5.0	ug/L	1	08/22/23	НМ	SW8260D
Chloroform ND 5.0 ug/L 1 08/22/23 HM SW8260D Chloromethane ND 5.0 ug/L 1 08/22/23 HM SW8260D cis-1,2-Dichloroethene ND 5.0 ug/L 1 08/22/23 HM SW8260D cis-1,2-Dichloroethene ND 5.0 ug/L 1 08/22/23 HM SW8260D cis-1,3-Dichloropropene ND 5.0 ug/L 1 08/22/23 HM SW8260D Dibromochloromethane ND 5.0 ug/L 1 08/22/23 HM SW8260D Dibromomethane ND 5.0 ug/L 1 08/22/23 HM SW8260D	Chloroethane	ND	5.0	ug/L	1	08/22/23	НМ	SW8260D
Chloromethane ND 5.0 ug/L 1 08/22/23 HM SW8260D cis-1,2-Dichloroethene ND 5.0 ug/L 1 08/22/23 HM SW8260D cis-1,3-Dichloropropene ND 5.0 ug/L 1 08/22/23 HM SW8260D Dibromochloromethane ND 5.0 ug/L 1 08/22/23 HM SW8260D Dibromomethane ND 5.0 ug/L 1 08/22/23 HM SW8260D	Chloroform	ND	5.0	ug/L	1	08/22/23	НМ	SW8260D
cis-1,2-Dichloropthene ND 5.0 ug/L 1 08/22/23 HM SW8260D cis-1,3-Dichloroptopene ND 5.0 ug/L 1 08/22/23 HM SW8260D Dibromochloromethane ND 5.0 ug/L 1 08/22/23 HM SW8260D Dibromomethane ND 5.0 ug/L 1 08/22/23 HM SW8260D	Chloromethane	ND	5.0	ua/L	1	08/22/23	НМ	SW8260D
List List <thlist< th=""> List List <thl< td=""><td>cis-1.2-Dichloroethene</td><td>ND</td><td>5.0</td><td>ua/L</td><td>1</td><td>08/22/23</td><td>НМ</td><td>SW8260D</td></thl<></thlist<>	cis-1.2-Dichloroethene	ND	5.0	ua/L	1	08/22/23	НМ	SW8260D
Dibromochloromethane ND 5.0 ug/L 1 08/22/23 HM SW8260D Dibromomethane ND 5.0 ug/L 1 08/22/23 HM SW8260D	cis-1.3-Dichloropropene	ND	5.0	ua/L	1	08/22/23	HM	SW8260D
Dibromomethane ND 5.0 ug/L 1 08/22/23 HM SW8260D	Dibromochloromethane	ND	5.0	ua/L	1	08/22/23	HM	SW8260D
	Dibromomethane	ND	5.0	ug/L	1	08/22/23	НМ	SW8260D

Project ID: CHGF NY03230367

Client ID: RINSATE

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	By	Reference	
Dichlorodifluoromethane	ND	5.0	ug/L	1	08/22/23	НМ	SW8260D	
Ethvlbenzene	ND	5.0	ug/L	1	08/22/23	НМ	SW8260D	
Hexachlorobutadiene	ND	5.0	ug/L	1	08/22/23	НМ	SW8260D	
Isopropylbenzene	ND	5.0	ug/L	1	08/22/23	НМ	SW8260D	
m&p-Xvlene	ND	5.0	ug/L	1	08/22/23	НМ	SW8260D	
Methyl Ethyl Ketone	ND	60	ug/L	1	08/22/23	НМ	SW8260D	
Methyl t-butyl ether (MTBE)	ND	10	ug/L	1	08/22/23	НМ	SW8260D	
Methylene chloride	ND	5.0	ug/L	1	08/22/23	НМ	SW8260D	
Naphthalene	ND	5.0	ug/L	1	08/22/23	НМ	SW8260D	
n-Butvlbenzene	ND	5.0	ug/L	1	08/22/23	НМ	SW8260D	
n-Propylbenzene	ND	5.0	ug/L	1	08/22/23	НМ	SW8260D	
o-Xvlene	ND	5.0	ug/L	1	08/22/23	НМ	SW8260D	
p-Isopropyltoluene	ND	5.0	ug/L	1	08/22/23	НМ	SW8260D	
sec-Butylbenzene	ND	5.0	ug/L	1	08/22/23	НМ	SW8260D	
Styrene	ND	5.0	ua/L	1	08/22/23	НМ	SW8260D	
tert-Butylbenzene	ND	5.0	ug/L	1	08/22/23	НМ	SW8260D	
Tetrachloroethene	ND	5.0	ug/L	1	08/22/23	НМ	SW8260D	
Tetrahydrofuran (THF)	ND	10	ug/L	1	08/22/23	НМ	SW8260D	1
Toluene	ND	5.0	ug/L	1	08/22/23	НМ	SW8260D	
Total Xylenes	ND	5.0	ug/L	1	08/22/23	НМ	SW8260D	
trans-1 2-Dichloroethene	ND	5.0	ug/L	1	08/22/23	НМ	SW8260D	
trans-1 3-Dichloropropene	ND	5.0	ug/L	1	08/22/23	НМ	SW8260D	
trans-1 4-dichloro-2-butene	ND	10	ug/l	1	08/22/23	нм	SW8260D	
Trichloroethene	ND	5.0	ug/l	1	08/22/23	нм	SW8260D	
Trichlorofluoromethane	ND	5.0	ug/L	1	08/22/23	НМ	SW8260D	
Trichlorotrifluoroethane	ND	5.0	ug/L	1	08/22/23	НМ	SW8260D	
	ND	5.0	ug/l	1	08/22/23	нм	SW8260D	
QA/QC Surrogates		0.0	~g, =	·	00,11,10		0	
% 1 2-dichlorobenzene-d4	98		%	1	08/22/23	НМ	70 - 130 %	
% Bromofluorobenzene	94		%	1	08/22/23	НМ	70 - 130 %	
% Dibromofluoromethane	97		%	1	08/22/23	НМ	70 - 130 %	
% Toluene-d8	95		%	1	08/22/23	НМ	70 - 130 %	
<u>Semivolatiles</u>								
1,2,4,5-Tetrachlorobenzene	ND	5.1	ug/L	1	08/25/23	AW	SW8270D	
1,2,4-Trichlorobenzene	ND	5.1	ug/L	1	08/25/23	AW	SW8270D	
1,2-Dichlorobenzene	ND	5.1	ug/L	1	08/25/23	AW	SW8270D	
1,2-Diphenylhydrazine	ND	5.1	ug/L	1	08/25/23	AW	SW8270D	
1,3-Dichlorobenzene	ND	5.1	ug/L	1	08/25/23	AW	SW8270D	
1,4-Dichlorobenzene	ND	5.1	ug/L	1	08/25/23	AW	SW8270D	
2,2'-Oxybis(1-Chloropropane)	ND	5.1	ug/L	1	08/25/23	AW	SW8270D	1
2,4,5-Trichlorophenol	ND	5.1	ug/L	1	08/25/23	AW	SW8270D	
2,4,6-Trichlorophenol	ND	5.1	ug/L	1	08/25/23	AW	SW8270D	
2,4-Dichlorophenol	ND	5.1	ug/L	1	08/25/23	AW	SW8270D	
2,4-Dimethylphenol	ND	5.1	ug/L	1	08/25/23	AW	SW8270D	
2,4-Dinitrophenol	ND	5.1	ug/L	1	08/25/23	AW	SW8270D	
2,4-Dinitrotoluene	ND	5.1	ug/L	1	08/25/23	AW	SW8270D	
2,6-Dinitrotoluene	ND	5.1	ug/L	1	08/25/23	AW	SW8270D	
2-Chloronaphthalene	ND	5.1	ug/L	1	08/25/23	AW	SW8270D	
2-Chlorophenol	ND	5.1	ug/L	1	08/25/23	AW	SW8270D	

Project ID: CHGF NY03230367

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	By	Reference
2-Methylnaphthalene	ND	5.1	ug/L	1	08/25/23	AW	SW8270D
2-Methylphenol (o-cresol)	ND	5.1	ug/L	1	08/25/23	AW	SW8270D
2-Nitroaniline	ND	5.1	ug/L	1	08/25/23	AW	SW8270D
2-Nitrophenol	ND	5.1	ug/L	1	08/25/23	AW	SW8270D
3&4-Methylphenol (m&p-cresol)	ND	5.1	ug/L	1	08/25/23	AW	SW8270D
3,3'-Dichlorobenzidine	ND	5.1	ug/L	1	08/25/23	AW	SW8270D
3-Nitroaniline	ND	5.1	ug/L	1	08/25/23	AW	SW8270D
4,6-Dinitro-2-methylphenol	ND	5.1	ug/L	1	08/25/23	AW	SW8270D
4-Bromophenyl phenyl ether	ND	5.1	ug/L	1	08/25/23	AW	SW8270D
4-Chloro-3-methylphenol	ND	5.1	ug/L	1	08/25/23	AW	SW8270D
4-Chloroaniline	ND	5.1	ug/L	1	08/25/23	AW	SW8270D
4-Chlorophenyl phenyl ether	ND	5.1	ug/L	1	08/25/23	AW	SW8270D
4-Nitroaniline	ND	5.1	ug/L	1	08/25/23	AW	SW8270D
4-Nitrophenol	ND	5.1	ug/L	1	08/25/23	AW	SW8270D
Acenaphthene	ND	5.1	ug/L	1	08/25/23	AW	SW8270D
Acenaphthylene	ND	5.1	ug/L	1	08/25/23	AW	SW8270D
Acetophenone	ND	5.1	ug/L	1	08/25/23	AW	SW8270D
Aniline	ND	10	ug/L	1	08/25/23	AW	SW8270D
Anthracene	ND	5.1	ug/L	1	08/25/23	AW	SW8270D
Benz(a)anthracene	ND	5.1	ug/L	1	08/25/23	AW	SW8270D
Benzidine	ND	5.1	ug/L	1	08/25/23	AW	SW8270D
Benzo(a)pyrene	ND	5.1	ug/L	1	08/25/23	AW	SW8270D
Benzo(b)fluoranthene	ND	5.1	ug/L	1	08/25/23	AW	SW8270D
Benzo(ghi)pervlene	ND	5.1	ug/L	1	08/25/23	AW	SW8270D
Benzo(k)fluoranthene	ND	5.1	ug/L	1	08/25/23	AW	SW8270D
Benzoic acid	ND	10	ug/L	1	08/25/23	AW	SW8270D
Benzvl butvl phthalate	ND	5.1	ug/L	1	08/25/23	AW	SW8270D
Bis(2-chloroethoxy)methane	ND	5.1	ug/L	1	08/25/23	AW	SW8270D
Bis(2-chloroethyl)ether	ND	5.1	ug/L	1	08/25/23	AW	SW8270D
Bis(2-ethylhexyl)phthalate	ND	5.1	ug/L	1	08/25/23	AW	SW8270D
Carbazole	ND	5.1	ug/L	1	08/25/23	AW	SW8270D
Chrvsene	ND	5.1	ug/L	1	08/25/23	AW	SW8270D
Dibenz(a,h)anthracene	ND	5.1	ug/L	1	08/25/23	AW	SW8270D
Dibenzofuran	ND	5.1	ug/L	1	08/25/23	AW	SW8270D
Diethyl phthalate	ND	5.1	ug/L	1	08/25/23	AW	SW8270D
Dimethylphthalate	ND	5.1	ug/L	1	08/25/23	AW	SW8270D
Di-n-butylphthalate	ND	5.1	ug/L	1	08/25/23	AW	SW8270D
Di-n-octylphthalate	ND	5.1	ug/L	1	08/25/23	AW	SW8270D
Fluoranthene	ND	5.1	ug/L	1	08/25/23	AW	SW8270D
Fluorene	ND	5.1	ug/L	1	08/25/23	AW	SW8270D
Hexachlorobenzene	ND	5.1	ug/L	1	08/25/23	AW	SW8270D
Hexachlorobutadiene	ND	5.1	ug/L	1	08/25/23	AW	SW8270D
Hexachlorocyclopentadiene	ND	5.1	ug/L	1	08/25/23	AW	SW8270D
Hexachloroethane	ND	5.1	ua/L	1	08/25/23	AW	SW8270D
Indeno(1.2.3-cd)pyrene	ND	5.1	ua/L	1	08/25/23	AW	SW8270D
Isophorone	ND	5.1	ua/l	1	08/25/23	AW	SW8270D
Naphthalene	ND	5.1	ug/L	1	08/25/23	AW	SW8270D
Nitrobenzene	ND	5.1	ug/L	1	08/25/23	AW	SW8270D
N-Nitrosodimethylamine	ND	5.1	ug/L	1	08/25/23	AW/	SW8270D
ra ranoooumouryidinine		0.1	ч <u>у</u> , г		00,20,20		0.102108

Project ID: CHGF NY03230367 Client ID: RINSATE

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	By	Reference
N-Nitrosodi-n-propylamine	ND	5.1	ug/L	1	08/25/23	AW	SW8270D
N-Nitrosodiphenylamine	ND	5.1	ug/L	1	08/25/23	AW	SW8270D
Pentachloronitrobenzene	ND	5.1	ug/L	1	08/25/23	AW	SW8270D
Pentachlorophenol	ND	5.1	ug/L	1	08/25/23	AW	SW8270D
Phenanthrene	ND	5.1	ug/L	1	08/25/23	AW	SW8270D
Phenol	ND	5.1	ug/L	1	08/25/23	AW	SW8270D
Pyrene	ND	5.1	ug/L	1	08/25/23	AW	SW8270D
Pyridine	ND	5.1	ug/L	1	08/25/23	AW	SW8270D
QA/QC Surrogates							
% 2,4,6-Tribromophenol	106		%	1	08/25/23	AW	15 - 110 %
% 2-Fluorobiphenyl	87		%	1	08/25/23	AW	30 - 130 %
% 2-Fluorophenol	59		%	1	08/25/23	AW	15 - 110 %
% Nitrobenzene-d5	78		%	1	08/25/23	AW	30 - 130 %
% Phenol-d5	69		%	1	08/25/23	AW	15 - 110 %
% Terphenyl-d14	78		%	1	08/25/23	AW	30 - 130 %

1 = This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Ignitability is based solely on the results of the closed cup flashpoint analysis performed above. Passed is >140 degree F.

Per 1.4.6 of EPA method 8270D, 1,2-Diphenylhydrazine is unstable and readily converts to Azobenzene. Azobenzene is used for the calibration of 1,2-Diphenylhydrazine.

Phyllis Shiller, Laboratory Director September 06, 2023 Reviewed and Released by: Phyllis Shiller, Laboratory Director

Analysis Report

FOR: Attn:

Miller Environmental Group, Inc. 169 Stone Castle Road Rock Tavern, NY 12575

September 06, 2023

Sample Information		Custody Inform	Custody Information		
Matrix:	WATER	Collected by:	WN	08/18/23	
Location Code:	MILLERROC	Received by:	SR1	08/21/23	16:42
Rush Request:	Standard	Analyzed by:	see "By" below		
P.O.#:	26532				000704

Laboratory Data

RL/

SDG ID: GCO79186 Phoenix ID: CO79278

Project ID:	CHGE NY03230367
Client ID:	ТВ

Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference	
Volatiles								
1,1,1,2-Tetrachloroethane	ND	5.0	ug/L	1	08/21/23	НМ	SW8260D	
1,1,1-Trichloroethane	ND	5.0	ug/L	1	08/21/23	НМ	SW8260D	
1,1,2,2-Tetrachloroethane	ND	5.0	ug/L	1	08/21/23	НМ	SW8260D	
1,1,2-Trichloroethane	ND	5.0	ug/L	1	08/21/23	НМ	SW8260D	
1,1-Dichloroethane	ND	5.0	ug/L	1	08/21/23	НМ	SW8260D	
1,1-Dichloroethene	ND	5.0	ug/L	1	08/21/23	НМ	SW8260D	
1,1-Dichloropropene	ND	5.0	ug/L	1	08/21/23	НМ	SW8260D	
1,2,3-Trichlorobenzene	ND	5.0	ug/L	1	08/21/23	НМ	SW8260D	
1,2,3-Trichloropropane	ND	5.0	ug/L	1	08/21/23	НМ	SW8260D	
1,2,4-Trichlorobenzene	ND	5.0	ug/L	1	08/21/23	НМ	SW8260D	
1,2,4-Trimethylbenzene	ND	5.0	ug/L	1	08/21/23	НМ	SW8260D	
1,2-Dibromo-3-chloropropane	ND	5.0	ug/L	1	08/21/23	НМ	SW8260D	
1,2-Dibromoethane	ND	5.0	ug/L	1	08/21/23	НМ	SW8260D	
1,2-Dichlorobenzene	ND	5.0	ug/L	1	08/21/23	HM	SW8260D	
1,2-Dichloroethane	ND	5.0	ug/L	1	08/21/23	HM	SW8260D	
1,2-Dichloropropane	ND	5.0	ug/L	1	08/21/23	HM	SW8260D	
1,3,5-Trimethylbenzene	ND	5.0	ug/L	1	08/21/23	HM	SW8260D	
1,3-Dichlorobenzene	ND	5.0	ug/L	1	08/21/23	HM	SW8260D	
1,3-Dichloropropane	ND	5.0	ug/L	1	08/21/23	HM	SW8260D	
1,4-Dichlorobenzene	ND	5.0	ug/L	1	08/21/23	HM	SW8260D	
2,2-Dichloropropane	ND	5.0	ug/L	1	08/21/23	HM	SW8260D	
2-Chlorotoluene	ND	5.0	ug/L	1	08/21/23	НМ	SW8260D	
2-Hexanone	ND	25	ug/L	1	08/21/23	HM	SW8260D	
2-Isopropyltoluene	ND	5.0	ug/L	1	08/21/23	HM	SW8260D	1
4-Chlorotoluene	ND	5.0	ug/L	1	08/21/23	HM	SW8260D	
4-Methyl-2-pentanone	ND	25	ug/L	1	08/21/23	HM	SW8260D	

Project ID: CHGE NY03230367

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Acetone	ND	50	ug/L	1	08/21/23	НМ	SW8260D
Acrylonitrile	ND	10	ug/L	1	08/21/23	HM	SW8260D
Benzene	ND	5.0	ug/L	1	08/21/23	HM	SW8260D
Bromobenzene	ND	5.0	ug/L	1	08/21/23	HM	SW8260D
Bromochloromethane	ND	5.0	ug/L	1	08/21/23	HM	SW8260D
Bromodichloromethane	ND	5.0	ug/L	1	08/21/23	HM	SW8260D
Bromoform	ND	5.0	ug/L	1	08/21/23	HM	SW8260D
Bromomethane	ND	5.0	ug/L	1	08/21/23	HM	SW8260D
Carbon Disulfide	ND	5.0	ug/L	1	08/21/23	HM	SW8260D
Carbon tetrachloride	ND	5.0	ug/L	1	08/21/23	HM	SW8260D
Chlorobenzene	ND	5.0	ug/L	1	08/21/23	HM	SW8260D
Chloroethane	ND	5.0	ug/L	1	08/21/23	HM	SW8260D
Chloroform	ND	5.0	ug/L	1	08/21/23	HM	SW8260D
Chloromethane	ND	5.0	ug/L	1	08/21/23	HM	SW8260D
cis-1,2-Dichloroethene	ND	5.0	ug/L	1	08/21/23	HM	SW8260D
cis-1,3-Dichloropropene	ND	5.0	ug/L	1	08/21/23	HM	SW8260D
Dibromochloromethane	ND	5.0	ug/L	1	08/21/23	HM	SW8260D
Dibromomethane	ND	5.0	ug/L	1	08/21/23	HM	SW8260D
Dichlorodifluoromethane	ND	5.0	ug/L	1	08/21/23	НМ	SW8260D
Ethylbenzene	ND	5.0	ug/L	1	08/21/23	НМ	SW8260D
Hexachlorobutadiene	ND	5.0	ug/L	1	08/21/23	НМ	SW8260D
Isopropylbenzene	ND	5.0	ug/L	1	08/21/23	НМ	SW8260D
m&p-Xylene	ND	5.0	ug/L	1	08/21/23	НМ	SW8260D
Methyl Ethyl Ketone	ND	60	ug/L	1	08/21/23	НМ	SW8260D
Methyl t-butyl ether (MTBE)	ND	10	ug/L	1	08/21/23	НМ	SW8260D
Methylene chloride	ND	5.0	ug/L	1	08/21/23	НМ	SW8260D
Naphthalene	ND	5.0	ug/L	1	08/21/23	НМ	SW8260D
n-Butylbenzene	ND	5.0	ug/L	1	08/21/23	НМ	SW8260D
n-Propylbenzene	ND	5.0	ug/L	1	08/21/23	НМ	SW8260D
o-Xylene	ND	5.0	ug/L	1	08/21/23	НМ	SW8260D
p-Isopropyltoluene	ND	5.0	ug/L	1	08/21/23	НМ	SW8260D
sec-Butylbenzene	ND	5.0	ug/L	1	08/21/23	НМ	SW8260D
Styrene	ND	5.0	ug/L	1	08/21/23	НМ	SW8260D
tert-Butylbenzene	ND	5.0	ug/L	1	08/21/23	НМ	SW8260D
Tetrachloroethene	ND	5.0	ug/L	1	08/21/23	НМ	SW8260D
Tetrahvdrofuran (THF)	ND	10	ug/L	1	08/21/23	НМ	SW8260D 1
Toluene	ND	5.0	ug/L	1	08/21/23	НМ	SW8260D
Total Xylenes	ND	5.0	ug/L	1	08/21/23	НМ	SW8260D
trans-1.2-Dichloroethene	ND	5.0	ug/L	1	08/21/23	НМ	SW8260D
trans-1.3-Dichloropropene	ND	5.0	ug/L	1	08/21/23	НМ	SW8260D
trans-1.4-dichloro-2-butene	ND	10	ug/L	1	08/21/23	НМ	SW8260D
Trichloroethene	ND	5.0	ug/L	1	08/21/23	НМ	SW8260D
Trichlorofluoromethane	ND	5.0	ug/L	1	08/21/23	НМ	SW8260D
Trichlorotrifluoroethane	ND	5.0	ug/L	1	08/21/23	НМ	SW8260D
Vinvl chloride	ND	5.0	ug/L	1	08/21/23	НМ	SW8260D
QA/QC Surrogates			5				
% 1,2-dichlorobenzene-d4	99		%	1	08/21/23	НМ	70 - 130 %
% Bromofluorobenzene	97		%	1	08/21/23	НМ	70 - 130 %
% Dibromofluoromethane	102		%	1	08/21/23	НМ	70 - 130 %

Project ID: CHGE NY03230367 Client ID: TB

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	By	Reference
% Toluene-d8	95		%	1	08/21/23	HM	70 - 130 %

1 = This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

TRIP BLANK INCLUDED.

Phyllis Shiller, Laboratory Director September 06, 2023 Reviewed and Released by: Phyllis Shiller, Laboratory Director

NY # 11301

Environmental Laboratories, Inc. 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102

QA/QC Report

September 06, 2023

QA/QC Data

SDG	I.D.:	GCO79186

Parameter	Blank	Blk RL	Sample Result	Dup Result	Dup RPD	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits	
QA/QC Batch 693492 (mg/L), C	C Sam	ole No: (CO78942	(CO791	86)									
Mercury - Water	BRL	0.0002	< 0.0002	<0.0002	NC	93.6			99.7			80 - 120	20	
Comment:														
Additional Mercury criteria: LCS a	cceptanc	e range f	or waters	is 80-120 ^o	% and fo	or soils is	s 70-1309	%. MS a	cceptan	ce range	is 75-1.	25%.		

QA/QC Batch 693490 (mg/L), QC Sample No: CO78744 (CO79186)

ICP Metals - TCLP Extraction

Arsenic	BRL	0.05	<0.05	<0.05	NC	108	109	0.9	111	80 - 120	20
Barium	BRL	0.01	0.30	0.30	0	103	103	0.0	107	80 - 120	20
Cadmium	BRL	0.005	<0.005	<0.005	NC	101	101	0.0	103	80 - 120	20
Chromium	BRL	0.010	<0.010	<0.010	NC	99.3	100	0.7	102	80 - 120	20
Lead	BRL	0.010	0.036	0.037	NC	102	103	1.0	105	80 - 120	20
Selenium	BRL	0.05	<0.05	<0.05	NC	111	110	0.9	112	80 - 120	20
Silver	BRL	0.010	<0.010	<0.010	NC	107	107	0.0	111	80 - 120	20
Comment:											

Additional Criteria: LCS acceptance range is 80-120% MS acceptance range 75-125%.

QA/QC Report September 06, 2023

QA/QC Data

SDG I.D.: GCO79186

Parameter	Blank	Blk RL	Sample Result	Dup Result	Dup RPD	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits
QA/QC Batch 695090 (Degree F), QC S	Sample N	lo: CO85	727 (CC	79186)								
Flash Point			>200	>200	NC	100						75 - 125	30
Comment:													

Additional criteria matrix spike acceptance range is 75-125%.

QA/QC Report

September 06, 2023

QA/QC Data

SDG I.D.: GCO79186

Parameter	Blank	Blk RL	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits	
QA/QC Batch 693552 (ug/L), QC	Samp	le No: CO79246 (CO79186)									
Polychlorinated Biphenyls	- Liqu	iid									
PCB-1016	ND	0.050	76	68	11.1				40 - 140	20	
PCB-1221	ND	0.050							40 - 140	20	
PCB-1232	ND	0.050							40 - 140	20	
PCB-1242	ND	0.050							40 - 140	20	
PCB-1248	ND	0.050							40 - 140	20	
PCB-1254	ND	0.050							40 - 140	20	
PCB-1260	ND	0.050	74	72	2.7				40 - 140	20	
PCB-1262	ND	0.050							40 - 140	20	
PCB-1268	ND	0.050							40 - 140	20	
% DCBP (Surrogate Rec)	89	%	61	55	10.3				30 - 150	20	
% DCBP (Surrogate Rec) (Confirm	99	%	69	62	10.7				30 - 150	20	
% TCMX (Surrogate Rec)	57	%	45	44	2.2				30 - 150	20	
% TCMX (Surrogate Rec) (Confirm Comment:	68	%	56	54	3.6				30 - 150	20	
A LCS and LCS Duplicate were pe	rformed	instead of a matrix snike and matrix	sniko di	unlicato							
			spike ut	aplicate.							
QA/QC Batch 693572 (ug/L), QC	Samp	ie No: CO79246 (CO79186)									
<u>Semivolatiles - Liquid</u>											
1,2,4,5-Tetrachlorobenzene	ND	3.5	92	99	7.3				40 - 140	20	
1,2,4-Trichlorobenzene	ND	3.5	75	77	2.6				40 - 140	20	
1,2-Dichlorobenzene	ND	1.0	76	80	5.1				40 - 140	20	
1,2-Diphenylhydrazine	ND	1.6	81	86	6.0				40 - 140	20	
1,3-Dichlorobenzene	ND	1.0	73	77	5.3				40 - 140	20	
1,4-Dichlorobenzene	ND	1.0	77	82	6.3				40 - 140	20	
2,2'-Oxybis(1-Chloropropane)	ND	1.0	73	78	6.6				40 - 140	20	
2,4,5-Trichlorophenol	ND	1.0	95	102	7.1				40 - 140	20	
2,4,6-Trichlorophenol	ND	1.0	99	105	5.9				30 - 130	20	
2,4-Dichlorophenol	ND	1.0	88	92	4.4				30 - 130	20	
2,4-Dimethylphenol	ND	1.0	82	83	1.2				30 - 130	20	
2,4-Dinitrophenol	ND	1.0	103	115	11.0				30 - 130	20	
2,4-Dinitrotoluene	ND	3.5	86	98	13.0				30 - 130	20	
2,6-Dinitrotoluene	ND	3.5	82	94	13.6				40 - 140	20	
2-Chloronaphthalene	ND	3.5	81	83	2.4				40 - 140	20	
2-Chlorophenol	ND	1.0	81	85	4.8				30 - 130	20	
2-Methylnaphthalene	ND	3.5	80	83	3.7				40 - 140	20	
2-Methylphenol (o-cresol)	ND	1.0	83	88	5.8				40 - 140	20	
2-Nitroaniline	ND	3.5	148	161	8.4				40 - 140	20	Т
2-Nitrophenol	ND	1.0	94	101	7.2				40 - 140	20	
3&4-Methylphenol (m&p-cresol)	ND	1.0	73	79	7.9				30 - 130	20	
3,3'-Dichlorobenzidine	ND	5.0	83	112	29.7				40 - 140	20	r
3-Nitroaniline	ND	5.0	99	116	15.8				40 - 140	20	

<u>QA/QC Data</u>

Parameter	Blank	Blk RL	LC %	S	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits
4,6-Dinitro-2-methylphenol	ND	1.0	10	2	117	13.7				30 - 130	20
4-Bromophenyl phenyl ether	ND	3.5	85	5	92	7.9				40 - 140	20
4-Chloro-3-methylphenol	ND	1.0	99)	107	7.8				30 - 130	20
4-Chloroaniline	ND	3.5	80)	90	11.8				40 - 140	20
4-Chlorophenyl phenyl ether	ND	1.0	88	3	95	7.7				40 - 140	20
4-Nitroaniline	ND	5.0	82	2	93	12.6				40 - 140	20
4-Nitrophenol	ND	1.0	96	5	107	10.8				30 - 130	20
Acenaphthene	ND	1.5	89)	92	3.3				30 - 130	20
Acenaphthylene	ND	3.5	78	3	82	5.0				40 - 140	20
Acetophenone	ND	3.5	78	3	84	7.4				40 - 140	20
Aniline	ND	3.5	60)	67	11.0				40 - 140	20
Anthracene	ND	1.5	81		84	3.6				40 - 140	20
Benz(a)anthracene	ND	1.5	83	3	89	7.0				40 - 140	20
Benzidine	ND	4.5	76	5	87	13.5				40 - 140	20
Benzo(a)pyrene	ND	1.5	92	2	97	5.3				40 - 140	20
Benzo(b)fluoranthene	ND	1.5	89)	94	5.5				40 - 140	20
Benzo(ghi)perylene	ND	1.5	94	ł	94	0.0				40 - 140	20
Benzo(k)fluoranthene	ND	1.5	81		85	4.8				40 - 140	20
Benzoic acid	ND	10	86	5	91	5.6				30 - 130	20
Benzyl butyl phthalate	ND	1.5	10	3	112	8.4				40 - 140	20
Bis(2-chloroethoxy)methane	ND	3.5	78	3	81	3.8				40 - 140	20
Bis(2-chloroethyl)ether	ND	1.0	71		75	5.5				40 - 140	20
Bis(2-ethylhexyl)phthalate	ND	1.5	10	7	115	7.2				40 - 140	20
Carbazole	ND	5.0	84	ļ	89	5.8				40 - 140	20
Chrysene	ND	1.5	90)	94	4.3				40 - 140	20
Dibenz(a,h)anthracene	ND	1.5	94	Ļ	96	2.1				40 - 140	20
Dibenzofuran	ND	3.5	84	Ļ	87	3.5				40 - 140	20
Diethyl phthalate	ND	1.5	94	ł	99	5.2				40 - 140	20
Dimethylphthalate	ND	1.5	90)	96	6.5				40 - 140	20
Di-n-butylphthalate	ND	1.5	92	2	99	7.3				40 - 140	20
Di-n-octylphthalate	ND	1.5	96	5	104	8.0				40 - 140	20
Fluoranthene	ND	1.5	84	ł	88	4.7				40 - 140	20
Fluorene	ND	1.5	85	5	90	5.7				40 - 140	20
Hexachlorobenzene	ND	3.5	80)	84	4.9				40 - 140	20
Hexachlorobutadiene	ND	3.5	82	2	85	3.6				40 - 140	20
Hexachlorocyclopentadiene	ND	3.5	35	5	36	2.8				40 - 140	20 i
Hexachloroethane	ND	3.5	74	ŀ	78	5.3				40 - 140	20
Indeno(1,2,3-cd)pyrene	ND	3.5	97	1	100	3.0				40 - 140	20
Isophorone	ND	3.5	76	ò	80	5.1				40 - 140	20
Naphthalene	ND	1.5	91		95	4.3				40 - 140	20
Nitrobenzene	ND	3.5	87	1	97	10.9				40 - 140	20
N-Nitrosodimethylamine	ND	1.0	82	2	83	1.2				40 - 140	20
N-Nitrosodi-n-propylamine	ND	3.5	89)	96	7.6				40 - 140	20
N-Nitrosodiphenylamine	ND	3.5	82	2	87	5.9				40 - 140	20
Pentachloronitrobenzene	ND	5.0	75	5	83	10.1				40 - 140	20
Pentachlorophenol	ND	3.5	10	4	108	3.8				30 - 130	20
Phenanthrene	ND	1.5	83	3	89	7.0				40 - 140	20
Phenol	ND	1.0	77	,	81	5.1				30 - 130	20
Pyrene	ND	1.5	79)	83	4.9				30 - 130	20
Pyridine	ND	5.0	61		62	1.6				40 - 140	20
% 2,4,6-Tribromophenol	76	%	92	2	94	2.2				15 - 110	20
% 2-Fluorobiphenyl	82	%	72	2	73	1.4				30 - 130	20
% 2-Fluorophenol	58	%	67	7	69	2.9				15 - 110	20

QA/QC Data

Parameter	Blank	Blk RL	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits
% Nitrobenzene-d5	57	%	72	80	10.5				30 - 130	20
% Phenol-d5	66	%	71	74	4.1				15 - 110	20
% Terphenyl-d14	86	%	75	82	8.9				30 - 130	20

Comment:

Additional 8270 criteria: 20% of compounds can be outside of acceptance criteria as long as recovery is at least 10%. (Acid surrogates acceptance range for aqueous samples: 15-110%, for soils 30-130%)

QA/QC Batch 693728 (ug/L), QC Sample No: CO78752 (CO79186)

Volatiles - Liquid

1,1,1,2-Tetrachloroethane	ND	5.0	110	107	2.8	101	97	4.0	70 - 130	30
1,1,1-Trichloroethane	ND	5.0	106	104	1.9	105	98	6.9	70 - 130	30
1,1,2,2-Tetrachloroethane	ND	5.0	91	88	3.4	86	82	4.8	70 - 130	30
1,1,2-Trichloroethane	ND	5.0	101	98	3.0	97	95	2.1	70 - 130	30
1,1-Dichloroethane	ND	5.0	96	94	2.1	98	94	4.2	70 - 130	30
1,1-Dichloroethene	ND	5.0	102	100	2.0	108	101	6.7	70 - 130	30
1,1-Dichloropropene	ND	5.0	99	97	2.0	100	93	7.3	70 - 130	30
1,2,3-Trichlorobenzene	ND	1.0	93	93	0.0	73	79	7.9	70 - 130	30
1,2,3-Trichloropropane	ND	5.0	96	90	6.5	89	84	5.8	70 - 130	30
1,2,4-Trichlorobenzene	ND	5.0	102	101	1.0	86	86	0.0	70 - 130	30
1,2,4-Trimethylbenzene	ND	1.0	103	101	2.0	94	86	8.9	70 - 130	30
1,2-Dibromo-3-chloropropane	ND	5.0	98	94	4.2	85	85	0.0	70 - 130	30
1,2-Dibromoethane	ND	5.0	103	101	2.0	98	94	4.2	70 - 130	30
1,2-Dichlorobenzene	ND	1.0	102	100	2.0	93	84	10.2	70 - 130	30
1,2-Dichloroethane	ND	0.60	106	104	1.9	104	100	3.9	70 - 130	30
1,2-Dichloropropane	ND	5.0	97	96	1.0	99	95	4.1	70 - 130	30
1,3,5-Trimethylbenzene	ND	1.0	102	98	4.0	93	85	9.0	70 - 130	30
1,3-Dichlorobenzene	ND	1.0	103	100	3.0	94	86	8.9	70 - 130	30
1,3-Dichloropropane	ND	5.0	100	96	4.1	96	94	2.1	70 - 130	30
1,4-Dichlorobenzene	ND	1.0	102	100	2.0	93	84	10.2	70 - 130	30
2,2-Dichloropropane	ND	5.0	107	104	2.8	102	99	3.0	70 - 130	30
2-Chlorotoluene	ND	5.0	99	95	4.1	92	84	9.1	70 - 130	30
2-Hexanone	ND	5.0	90	88	2.2	88	88	0.0	70 - 130	30
2-Isopropyltoluene	ND	5.0	104	100	3.9	93	88	5.5	70 - 130	30
4-Chlorotoluene	ND	5.0	100	97	3.0	93	83	11.4	70 - 130	30
4-Methyl-2-pentanone	ND	5.0	90	87	3.4	86	87	1.2	70 - 130	30
Acetone	ND	10	79	77	2.6	74	74	0.0	70 - 130	30
Acrylonitrile	ND	5.0	91	89	2.2	84	85	1.2	70 - 130	30
Benzene	ND	0.70	96	94	2.1	98	94	4.2	70 - 130	30
Bromobenzene	ND	5.0	100	97	3.0	97	87	10.9	70 - 130	30
Bromochloromethane	ND	5.0	97	99	2.0	98	95	3.1	70 - 130	30
Bromodichloromethane	ND	5.0	109	106	2.8	104	101	2.9	70 - 130	30
Bromoform	ND	5.0	113	110	2.7	96	96	0.0	70 - 130	30
Bromomethane	ND	5.0	107	107	0.0	74	91	20.6	70 - 130	30
Carbon Disulfide	ND	5.0	109	107	1.9	109	106	2.8	70 - 130	30
Carbon tetrachloride	ND	5.0	117	116	0.9	88	87	1.1	70 - 130	30
Chlorobenzene	ND	1.0	103	101	2.0	100	93	7.3	70 - 130	30
Chloroethane	ND	5.0	108	105	2.8	112	105	6.5	70 - 130	30
Chloroform	ND	5.0	99	98	1.0	100	96	4.1	70 - 130	30
Chloromethane	ND	5.0	97	95	2.1	93	93	0.0	70 - 130	30
cis-1,2-Dichloroethene	ND	5.0	93	93	0.0	96	93	3.2	70 - 130	30
cis-1,3-Dichloropropene	ND	5.0	106	103	2.9	101	100	1.0	70 - 130	30
Dibromochloromethane	ND	5.0	113	111	1.8	103	103	0.0	70 - 130	30
Dibromomethane	ND	5.0	99	96	3.1	96	93	3.2	70 - 130	30

QA/QC Data

SDG I.D.: GCO79186

Parameter	Blank	Blk RL	L	_CS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits
Dichlorodifluoromethane	ND	5.0		99	97	2.0	91	83	9.2	70 - 130	30
Ethylbenzene	ND	1.0	1	103	99	4.0	96	88	8.7	70 - 130	30
Hexachlorobutadiene	ND	5.0	1	112	111	0.9	95	100	5.1	70 - 130	30
Isopropylbenzene	ND	1.0		98	96	2.1	92	83	10.3	70 - 130	30
m&p-Xylene	ND	1.0	1	102	99	3.0	95	88	7.7	70 - 130	30
Methyl ethyl ketone	ND	5.0		86	84	2.4	78	80	2.5	70 - 130	30
Methyl t-butyl ether (MTBE)	ND	1.0		98	97	1.0	93	93	0.0	70 - 130	30
Methylene chloride	ND	5.0		94	93	1.1	97	95	2.1	70 - 130	30
Naphthalene	ND	1.0		93	91	2.2	75	78	3.9	70 - 130	30
n-Butylbenzene	ND	1.0	1	103	100	3.0	89	84	5.8	70 - 130	30
n-Propylbenzene	ND	1.0	1	100	97	3.0	91	82	10.4	70 - 130	30
o-Xylene	ND	1.0	1	104	100	3.9	97	90	7.5	70 - 130	30
p-Isopropyltoluene	ND	1.0	1	104	101	2.9	92	87	5.6	70 - 130	30
sec-Butylbenzene	ND	1.0	1	100	98	2.0	89	84	5.8	70 - 130	30
Styrene	ND	1.0	1	103	101	2.0	98	91	7.4	70 - 130	30
tert-Butylbenzene	ND	1.0	1	102	99	3.0	92	87	5.6	70 - 130	30
Tetrachloroethene	ND	1.0	1	108	106	1.9	102	91	11.4	70 - 130	30
Tetrahydrofuran (THF)	ND	5.0		85	83	2.4	77	78	1.3	70 - 130	30
Toluene	ND	1.0		99	96	3.1	96	92	4.3	70 - 130	30
trans-1,2-Dichloroethene	ND	5.0		97	95	2.1	99	96	3.1	70 - 130	30
trans-1,3-Dichloropropene	ND	5.0	1	108	108	0.0	103	101	2.0	70 - 130	30
trans-1,4-dichloro-2-butene	ND	5.0	1	101	97	4.0	88	88	0.0	70 - 130	30
Trichloroethene	ND	5.0	1	105	102	2.9	105	98	6.9	70 - 130	30
Trichlorofluoromethane	ND	5.0	1	111	108	2.7	109	101	7.6	70 - 130	30
Trichlorotrifluoroethane	ND	5.0	1	117	114	2.6	114	99	14.1	70 - 130	30
Vinyl chloride	ND	5.0		97	96	1.0	98	95	3.1	70 - 130	30
% 1,2-dichlorobenzene-d4	99	%		98	99	1.0	100	99	1.0	70 - 130	30
% Bromofluorobenzene	96	%	1	100	100	0.0	99	99	0.0	70 - 130	30
% Dibromofluoromethane	97	%		97	98	1.0	97	97	0.0	70 - 130	30
% Toluene-d8	95	%		97	97	0.0	97	97	0.0	70 - 130	30
Comment:											

Additional 8260 criteria: 10% of LCS/LCSD compounds can be outside of acceptance criteria as long as recovery is 40-160%, 25-160% for Chloroethane-HL and Trichlorofluoromethane-HL.

QA/QC Batch 693506 (ug/L), QC Sample No: CO79260 (CO79278)

Volatiles - Water

1,1,1,2-Tetrachloroethane	ND	5.0	106	5 104	1.9	70 - 130	30
1,1,1-Trichloroethane	ND	5.0	108	3 104	3.8	70 - 130	30
1,1,2,2-Tetrachloroethane	ND	5.0	94	92	2.2	70 - 130	30
1,1,2-Trichloroethane	ND	5.0	104	102	1.9	70 - 130	30
1,1-Dichloroethane	ND	5.0	101	97	4.0	70 - 130	30
1,1-Dichloroethene	ND	5.0	103	3 100	3.0	70 - 130	30
1,1-Dichloropropene	ND	5.0	100) 96	4.1	70 - 130	30
1,2,3-Trichlorobenzene	ND	1.0	101	98	3.0	70 - 130	30
1,2,3-Trichloropropane	ND	5.0	94	91	3.2	70 - 130	30
1,2,4-Trichlorobenzene	ND	5.0	103	3 100	3.0	70 - 130	30
1,2,4-Trimethylbenzene	ND	1.0	101	98	3.0	70 - 130	30
1,2-Dibromo-3-chloropropane	ND	5.0	103	3 101	2.0	70 - 130	30
1,2-Dibromoethane	ND	5.0	101	100	1.0	70 - 130	30
1,2-Dichlorobenzene	ND	1.0	100) 98	2.0	70 - 130	30
1,2-Dichloroethane	ND	0.60	106	5 104	1.9	70 - 130	30
1,2-Dichloropropane	ND	5.0	99	95	4.1	70 - 130	30
1,3,5-Trimethylbenzene	ND	1.0	99	96	3.1	70 - 130	30

<u>QA/QC Data</u>

Parameter	Blank	Blk RL	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits
1,3-Dichlorobenzene	ND	1.0	100	99	1.0				70 - 130	30
1,3-Dichloropropane	ND	5.0	98	96	2.1				70 - 130	30
1,4-Dichlorobenzene	ND	1.0	99	97	2.0				70 - 130	30
2,2-Dichloropropane	ND	5.0	109	103	5.7				70 - 130	30
2-Chlorotoluene	ND	5.0	96	93	3.2				70 - 130	30
2-Hexanone	ND	5.0	97	96	1.0				70 - 130	30
2-Isopropyltoluene	ND	5.0	100	98	2.0				70 - 130	30
4-Chlorotoluene	ND	5.0	97	94	3.1				70 - 130	30
4-Methyl-2-pentanone	ND	5.0	101	97	4.0				70 - 130	30
Acetone	ND	10	89	87	2.3				70 - 130	30
Acrylonitrile	ND	5.0	101	99	2.0				70 - 130	30
Benzene	ND	0.70	97	95	2.1				70 - 130	30
Bromobenzene	ND	5.0	96	95	1.0				70 - 130	30
Bromochloromethane	ND	5.0	104	102	1.9				70 - 130	30
Bromodichloromethane	ND	5.0	107	106	0.9				70 - 130	30
Bromoform	ND	5.0	110	109	0.9				70 - 130	30
Bromomethane	ND	5.0	101	100	1.0				70 - 130	30
Carbon Disulfide	ND	5.0	109	105	3.7				70 - 130	30
Carbon tetrachloride	ND	5.0	119	115	3.4				70 - 130	30
Chlorobenzene	ND	1.0	100	97	3.0				70 - 130	30
Chloroethane	ND	5.0	108	104	3.8				70 - 130	30
Chloroform	ND	5.0	104	100	3.9				70 - 130	30
Chloromethane	ND	5.0	96	94	2.1				70 - 130	30
cis-1,2-Dichloroethene	ND	5.0	98	96	2.1				70 - 130	30
cis-1,3-Dichloropropene	ND	5.0	106	104	1.9				70 - 130	30
Dibromochloromethane	ND	5.0	108	106	1.9				70 - 130	30
Dibromomethane	ND	5.0	100	99	1.0				70 - 130	30
Dichlorodifluoromethane	ND	5.0	90	87	3.4				70 - 130	30
Ethylbenzene	ND	1.0	99	97	2.0				70 - 130	30
Hexachlorobutadiene	ND	5.0	110	105	4.7				70 - 130	30
Isopropylbenzene	ND	1.0	94	94	0.0				70 - 130	30
m&p-Xylene	ND	1.0	100	96	4.1				70 - 130	30
Methyl ethyl ketone	ND	5.0	98	96	2.1				70 - 130	30
Methyl t-butyl ether (MTBE)	ND	1.0	105	103	1.9				70 - 130	30
Methylene chloride	ND	5.0	98	96	2.1				70 - 130	30
Naphthalene	ND	1.0	102	99	3.0				70 - 130	30
n-Butylbenzene	ND	1.0	99	96	3.1				70 - 130	30
n-Propylbenzene	ND	1.0	97	94	3.1				70 - 130	30
o-Xylene	ND	1.0	101	98	3.0				70 - 130	30
p-Isopropyltoluene	ND	1.0	101	99	2.0				70 - 130	30
sec-Butylbenzene	ND	1.0	97	94	3.1				70 - 130	30
Styrene	ND	1.0	102	99	3.0				70 - 130	30
tert-Butylbenzene	ND	1.0	99	97	2.0				70 - 130	30
Tetrachloroethene	ND	1.0	107	105	1.9				70 - 130	30
Tetrahydrofuran (THF)	ND	5.0	97	96	1.0				70 - 130	30
Toluene	ND	1.0	99	96	3.1				70 - 130	30
trans-1,2-Dichloroethene	ND	5.0	102	98	4.0				70 - 130	30
trans-1,3-Dichloropropene	ND	5.0	110	109	0.9				70 - 130	30
trans-1,4-dichloro-2-butene	ND	5.0	103	101	2.0				70 - 130	30
Trichloroethene	ND	5.0	105	102	2.9				70 - 130	30
Trichlorofluoromethane	ND	5.0	109	105	3.7				70 - 130	30
Trichlorotrifluoroethane	ND	5.0	116	113	2.6				70 - 130	30
Vinyl chloride	ND	5.0	97	95	2.1				70 - 130	30

QA/QC Data

SDG I.D.: GCO79186

Parameter	Blank	Blk RL	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits	
% 1,2-dichlorobenzene-d4	99	%	101	102	1.0				70 - 130	30	
% Bromofluorobenzene	97	%	103	102	1.0				70 - 130	30	
% Dibromofluoromethane	102	%	102	97	5.0				70 - 130	30	
% Toluene-d8	97	%	99	100	1.0				70 - 130	30	
Comment:											

A LCS and LCS Duplicate were performed instead of a matrix spike and matrix spike duplicate.

Additional 8260 criteria: 10% of LCS/LCSD compounds can be outside of acceptance criteria as long as recovery is 40-160%, 25-160% for Chloroethane-HL and Trichlorofluoromethane-HL.

I = This parameter is outside laboratory LCS/LCSD specified recovery limits. r = This parameter is outside laboratory RPD specified recovery limits.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

RPD - Relative Percent Difference

LCS - Laboratory Control Sample

LCSD - Laboratory Control Sample Duplicate

MS - Matrix Spike

MS Dup - Matrix Spike Duplicate

NC - No Criteria

Intf - Interference

Phyllis/Shiller, Laboratory Director September 06, 2023

Wednesday, September 06, 2023 Criteria: None			Sample Criteria E	Exceedances Report				
State:	NY		60079180				RL	Analysis
SampNo	Acode	Phoenix Analyte	Criteria	Result	RL	Criteria	Criteria	Units
*** No Data	to Display ***							

Phoenix Laboratories does not assume responsibility for the data contained in this exceedance report. It is provided as an additional tool to identify requested criteria exceedences. All efforts are made to ensure the accuracy of the data (obtained from appropriate agencies). A lack of exceedence information does not necessarily suggest conformance to the criteria. It is ultimately the site professional's responsibility to determine appropriate compliance.

Analysis Comments

September 06, 2023

SDG I.D.: GCO79186

The following analysis comments are made regarding exceptions to criteria not already noted in the Analysis Report or QA/QC Report:

SVOA Narration

CHEM19 08/24/23-1: CO79186

For 8270 full list, the DDT breakdown and pentachlorophenol & benzidine peak tailing were evaluated in the DFTPP tune and were found to be in control.

For 8270 BN list, benzidine peak tailing was evaluated in the DFTPP tune and was found to be in control.

The following Initial Calibration compounds did not meet RSD% criteria: Bis(2-ethylhexyl)phthalate 21% (20%), Fluorene 21% (20%), Pentachlorophenol 21% (20%)

The following Initial Calibration compounds did not meet maximum RSD% criteria: None.

The following Initial Calibration compounds did not meet recommended response factors: 2-Nitrophenol 0.042 (0.1), Hexachlorobenzene 0.095 (0.1)

The following Initial Calibration compounds did not meet minimum response factors: 2-Nitrophenol 0.042 (0.05)

The following Continuing Calibration compounds did not meet recommended response factors: 2-Nitrophenol 0.047 (0.1), Hexachlorobenzene 0.091 (0.1)

The following Continuing Calibration compounds did not meet minimum response factors: None.

Up to eight compounds can be outside of ICAL %RSD criteria and up to sixteen compounds can be outside of CCAL %Dev criteria if less than 40%.

NY Temperature Narration

September 06, 2023

SDG I.D.: GCO79186

The samples in this delivery group were received at 1.2° C. (Note acceptance criteria for relevant matrices is above freezing up to 6° C)

PHO	ENIX tal taboratori			En	NY/N. 587 Éast nail: Makrin	J/PA Middi a Nola	CH le Turr an, ma	AIN pike, l krina@	OF P.O. E	CUS Box 37 mixlab	5 TO 0, Mar s.com	DY F	REC ter, C ⁻ ax (86	ORE 1 0604) 0 0823			Phor Fax:	ne:	Coola Te <u>C</u>	3nt: 3mp [3mp [3mp [3mp [3mp]	Cooler: IPK ပြ , ဥ· င ct Opt	Ye ICE Pg ions:		
Customer: Address:	Miller En 169 Stone Reductor	v Group Castic Nern, Nº	14 7 12	575	Project: CHAE NY032 30367 Report to: HV01AB3@millerenv.co 175 Invoice to: AP@millerenv.com QUOTE # :					Project P.O.: 26532 This section MUST be completed with Bottle Quantities.															
Sampler's Signature Matrix Code: DW=Drinking Water Si RW=Raw Water Si B=Bulk L=Liquid PHOENIX USE ONLY	GW=Ground Wate Sediment SL=Siud	Information - Ider r SW=Surface Wa Ige S-Soil SD=S	ntification Inter WW= Solid Wa	Date: Z	01L=011	P A F	analys Reque	is st		A CONTRACTOR			A A A	/53 5 5 7 7 7		STATION OF THE STATE	WILL ST ST	THE REAL PROPERTY OF		Solution of the second	A BENER	CONTRACTOR OF	Contraction of the second	SSETT SSET	HILL BOOM STATE
FAIRLA	Kinsale	a dontification	Matrix	Sempled GISD3	Sampled		\checkmark	~	$\overline{\mathbf{V}}$		\checkmark	×/	\frown	\square		- <u></u>	37 3	5	ት	a		-	~~~	<u>*/ */</u>	
79187	WS		W	81803	1500																	\square	\square		
79278	-TB																								
											·														
																							\square		
Relinguished by:		Accepted by	anl ZZ	-ei	Pate 8'7 8	 2 2	3	 \`≥ /(<u>וייי</u> אן< עע		1 Day 1 Day 2 Days 3 Days 4 Days 5 Days] 1: 3 ⁺ 3 ⁺ 3 ⁺		Res. (Non-F Impac Clean	Criteria tes. Cr t to GV up Crit	iteria V Soll eria		TOG: CP-5 3755 Unres	s GW 1 SOI CO stricte	L d Soll			lean Fil PA-GW Reg Fi	Limits / Limits	
Comments, Special Der Phi New Coc 79187	Requirements or Re one call w Will be served ESTRE	egulations: DIChent, HEGY		Data Forma	nt: × Std Report		EQui NJ H NY E (ASP	S ezsite f Z EOD	EDD		Standa RCHARO PPLIES	rd GE kage:		Impac soil so GW C	t to GV reen C	V criteria 		Resid 3755 Resid Restr 3755 Comr 3755	lential CO lential Icted CO nercia	i Soil Soil al Soil		State	PA Sol PA Soil 2 Samp	il Restric non-rest /les Colle	cted rricted ected?
*M8/M8D are considered with the prices quoted.	f elte semples end will b	e billed es euch in acc	cordence	GIS/Ke	у		Othe	r			NJ Red NY Enh	anced	ASP	B) *				indus Subp	trial S art 5 1	Soil DW				NΎ	

Thursday, September 07, 2023

Attn: Miller Environmental Group, Inc. 169 Stone Castle Road Rock Tavern, NY 12575

Project ID: NY03230367 CHGE WS SDG ID: GCO80287 Sample ID#s: CO80287 - CO80339

This laboratory is in compliance with the NELAC requirements of procedures used except where indicated.

This report contains results for the parameters tested, under the sampling conditions described on the Chain Of Custody, as received by the laboratory. This report is incomplete unless all pages indicated in the pagination at the bottom of the page are included.

A scanned version of the COC form accompanies the analytical report and is an exact duplicate of the original.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Sincerely yours,

XI-De

Phyllis/Shiller Laboratory Director

NELAC - #NY11301 CT Lab Registration #PH-0618 MA Lab Registration #M-CT007 ME Lab Registration #CT-007 NH Lab Registration #213693-A,B NJ Lab Registration #CT-003 NY Lab Registration #11301 PA Lab Registration #68-03530 RI Lab Registration #63 VT Lab Registration #VT11301

SDG Comments

September 07, 2023

SDG I.D.: GCO80287

Barium RL set to lowest Blank reading

Sample Id Cross Reference

September 07, 2023

SDG I.D.: GCO80287

Project ID: NY03230367 CHGE WS

Client Id	Lab Id	Matrix
WSA 1	CO80287	WIPE
WSA 2	CO80288	WIPE
WSA 3	CO80289	WIPE
WSA 4	CO80290	WIPE
WSA 5	CO80291	WIPE
WSA 6	CO80292	WIPE
WSA 7	CO80293	WIPE
WSA 8	CO80294	WIPE
WSA 9	CO80295	WIPE
WSA 10	CO80296	WIPE
WSA 11	CO80297	WIPE
WSA 12	CO80298	WIPE
WSA 13	CO80299	WIPE
WSA 14	CO80300	WIPE
WSA 15	CO80301	WIPE
WSA 16	CO80302	WIPE
WSA 17	CO80303	WIPE
WSA 18	CO80304	WIPE
WSA 19	CO80305	WIPE
WSA 20	CO80306	WIPE
WSA 21	CO80307	WIPE
A3 STRUCT 1 (1`)	CO80308	WIPE
A3 STRUCT 2 (3`)	CO80309	WIPE
A3 STRUCT 3 (6`)	CO80310	WIPE
PCB TANK MID WALL 1`	CO80311	WIPE
PCB TANK MID WALL 3`	CO80312	WIPE
PCB TANK MID WALL 6`	CO80313	WIPE
PCB TANK EAST FLOOR 1`	CO80314	WIPE
PCB TANK WEST FLOOR 1`	CO80315	WIPE
SOAK TANK EAST WALL 2`	CO80316	WIPE

Sample Id Cross Reference

September 07, 2023

SDG I.D.: GCO80287

Project ID: NY03230367 CHGE WS

Client Id	Lab Id	Matrix
SOAK TANK NORTH WALL 3`	CO80317	WIPE
SOAK TANK WEST WALL 4`	CO80318	WIPE
SOAK TANK FLOOR	CO80319	WIPE
TANK SHOP FLOOR 1	CO80320	WIPE
TANK SHOP WALL 2	CO80321	WIPE
TANK SHOP WALL 3	CO80322	WIPE
TANK SHOP WALL 4	CO80323	WIPE
L/U 1	CO80324	WIPE
L/U 2	CO80325	WIPE
L/U 3	CO80326	WIPE
L/U 4	CO80327	WIPE
L/U 5	CO80328	WIPE
L/U 6	CO80329	WIPE
L/U 7	CO80330	WIPE
L/U 8	CO80331	WIPE
L/U 9	CO80332	WIPE
L/U 10	CO80333	WIPE
L/U 11	CO80334	WIPE
L/U 12	CO80335	WIPE
L/U 13	CO80336	WIPE
L/U 14	CO80337	WIPE
L/U 15	CO80338	WIPE
L/U 16	CO80339	WIPE

Time

16:42

Analysis Report

September 07, 2023

FOR: Attn:

SW

see "By" below

Miller Environmental Group, Inc. 169 Stone Castle Road Rock Tavern, NY 12575

Sample Information

Matrix:	WIPE	Collected by:
Location Code:	MILLERROC	Received by:
Rush Request:	Standard	Analyzed by:
P.O.#:	26532	l al anatan r

Laboratory Data

Custody Information

SDG ID: GCO80287 Phoenix ID: CO80287

<u>Date</u> 08/18/23

08/21/23

Project ID:	NY03230367 CHGE WS
Client ID:	WSA 1

		RL/						
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference	
Silver Wipe	< 0.5	0.5	ug	1	09/02/23	TH	SW6010D	1
Arsenic Wipe	< 0.50	0.50	ug	1	09/02/23	ΤН	SW6010D	1
Barium Wipe	1.90	1.00	ug	1	09/02/23	TH	SW6010D	1
Cadmium Wipe	0.48	0.25	ug	1	09/02/23	TH	SW6010D	1
Chromium Wipe	0.54	0.25	ug	1	09/02/23	TH	SW6010D	1
Lead Wipe	2.2	0.5	ug	1	09/02/23	TH	SW6010D	1
Selenium Wipe	< 1.0	1.0	ug	1	09/02/23	TH	SW6010D	1
PCB Wipe Extraction	Completed				08/23/23	Q/R/AC	1 SW3540C	
Total Metal Digestion	Completed				08/22/23	AG	SW846	
Polychlorinated Biph	enyls							
PCB-1016	ND	50	ug	100	08/24/23	SC	SW8082A	1
PCB-1221	ND	50	ug	100	08/24/23	SC	SW8082A	1
PCB-1232	ND	50	ug	100	08/24/23	SC	SW8082A	1
PCB-1242	ND	50	ug	100	08/24/23	SC	SW8082A	1
PCB-1248	ND	50	ug	100	08/24/23	SC	SW8082A	1
PCB-1254	ND	50	ug	100	08/24/23	SC	SW8082A	1
PCB-1260	470	50	ug	100	08/24/23	SC	SW8082A	1
PCB-1262	ND	50	ug	100	08/24/23	SC	SW8082A	1
PCB-1268	ND	50	ug	100	08/24/23	SC	SW8082A	1
QA/QC Surrogates								
% DCBP	Diluted Out		%	100	08/24/23	SC	30 - 150 %	
% DCBP (Confirmation)	Diluted Out		%	100	08/24/23	SC	30 - 150 %	
% TCMX	Diluted Out		%	100	08/24/23	SC	30 - 150 %	
% TCMX (Confirmation)	Diluted Out		%	100	08/24/23	SC	30 - 150 %	

Project ID: NY03230367 CHGE WS Client ID: WSA 1

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference

1 = This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Phyllis Shiller, Laboratory Director September 07, 2023 Reviewed and Released by: Anil Makol, Project Manager

Time

16:42

Analysis Report

September 07, 2023

FOR: Attn:

SW

see "By" below

Miller Environmental Group, Inc. 169 Stone Castle Road Rock Tavern, NY 12575

Sample Information

Matrix:	WIPE	Collected by:
Location Code:	MILLERROC	Received by:
Rush Request:	Standard	Analyzed by:
P.O.#:	26532	l ale anatam d

Laboratory Data

Custody Information

SDG ID: GCO80287 Phoenix ID: CO80288

<u>Date</u> 08/18/23

08/21/23

Project ID:	NY03230367 CHGE WS
Client ID:	WSA 2

		RL/						
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference	
Silver Wipe	< 0.5	0.5	ug	1	09/02/23	TH	SW6010D	1
Arsenic Wipe	< 0.50	0.50	ug	1	09/02/23	TH	SW6010D	1
Barium Wipe	3.69	1.00	ug	1	09/02/23	TH	SW6010D	1
Cadmium Wipe	0.61	0.25	ug	1	09/02/23	TH	SW6010D	1
Chromium Wipe	0.71	0.25	ug	1	09/02/23	TH	SW6010D	1
Lead Wipe	4.4	0.5	ug	1	09/02/23	TH	SW6010D	1
Selenium Wipe	< 1.0	1.0	ug	1	09/02/23	TH	SW6010D	1
PCB Wipe Extraction	Completed				08/23/23	Q/R/AC	1 SW3540C	
Total Metal Digestion	Completed				08/22/23	AG	SW846	
Polychlorinated Biph	<u>enyls</u>							
PCB-1016	ND	50	ug	100	08/24/23	SC	SW8082A	1
PCB-1221	ND	50	ug	100	08/24/23	SC	SW8082A	1
PCB-1232	ND	50	ug	100	08/24/23	SC	SW8082A	1
PCB-1242	ND	50	ug	100	08/24/23	SC	SW8082A	1
PCB-1248	ND	50	ug	100	08/24/23	SC	SW8082A	1
PCB-1254	92	50	ug	100	08/24/23	SC	SW8082A	1
PCB-1260	ND	50	ug	100	08/24/23	SC	SW8082A	1
PCB-1262	ND	50	ug	100	08/24/23	SC	SW8082A	1
PCB-1268	ND	50	ug	100	08/24/23	SC	SW8082A	1
QA/QC Surrogates								
% DCBP	Diluted Out		%	100	08/24/23	SC	30 - 150 %	
% DCBP (Confirmation)	Diluted Out		%	100	08/24/23	SC	30 - 150 %	
% TCMX	Diluted Out		%	100	08/24/23	SC	30 - 150 %	
% TCMX (Confirmation)	Diluted Out		%	100	08/24/23	SC	30 - 150 %	

Project ID: NY03230367 CHGE WS Client ID: WSA 2

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference

1 = This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Phyllis Shiller, Laboratory Director September 07, 2023 Reviewed and Released by: Anil Makol, Project Manager

Time

16:42

Analysis Report

September 07, 2023

FOR: Attn:

Miller Environmental Group, Inc. 169 Stone Castle Road Rock Tavern, NY 12575

Sample Information

Matrix:	WIPE	Collected by:	
Location Code:	MILLERROC	Received by:	SW
Rush Request:	Standard	Analyzed by:	see "By" below
P.O.#:	26532		

Laboratory Data

Custody Information

SDG ID: GCO80287 Phoenix ID: CO80289

<u>Date</u> 08/18/23

08/21/23

Project ID:	NY03230367 CHGE WS
Client ID:	WSA 3

		RL/						
Parameter	Result	PQL	Units	Dilution	Date/Time	By	Reference	
Silver Wipe	< 0.5	0.5	ug	1	09/02/23	TH	SW6010D	1
Arsenic Wipe	< 0.50	0.50	ug	1	09/02/23	TH	SW6010D	1
Barium Wipe	3.15	1.00	ug	1	09/02/23	TH	SW6010D	1
Cadmium Wipe	0.45	0.25	ug	1	09/02/23	TH	SW6010D	1
Chromium Wipe	1.12	0.25	ug	1	09/02/23	TH	SW6010D	1
Lead Wipe	4.5	0.5	ug	1	09/02/23	TH	SW6010D	1
Selenium Wipe	< 1.0	1.0	ug	1	09/02/23	TH	SW6010D	1
PCB Wipe Extraction	Completed				08/23/23	Q/R/AC	1 SW3540C	
Total Metal Digestion	Completed				08/22/23	AG	SW846	
Polychlorinated Biph	enyls							
PCB-1016	ND	25	ug	50	08/24/23	SC	SW8082A	1
PCB-1221	ND	25	ug	50	08/24/23	SC	SW8082A	1
PCB-1232	ND	25	ug	50	08/24/23	SC	SW8082A	1
PCB-1242	ND	25	ug	50	08/24/23	SC	SW8082A	1
PCB-1248	ND	25	ug	50	08/24/23	SC	SW8082A	1
PCB-1254	ND	25	ug	50	08/24/23	SC	SW8082A	1
PCB-1260	28	25	ug	50	08/24/23	SC	SW8082A	1
PCB-1262	ND	25	ug	50	08/24/23	SC	SW8082A	1
PCB-1268	ND	25	ug	50	08/24/23	SC	SW8082A	1
QA/QC Surrogates								
% DCBP	Diluted Out		%	50	08/24/23	SC	30 - 150 %	
% DCBP (Confirmation)	Diluted Out		%	50	08/24/23	SC	30 - 150 %	
% TCMX	Diluted Out		%	50	08/24/23	SC	30 - 150 %	
% TCMX (Confirmation)	Diluted Out		%	50	08/24/23	SC	30 - 150 %	

Project ID: NY03230367 CHGE WS Client ID: WSA 3

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference

1 = This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Phyllis, Shiller, Laboratory Director September 07, 2023 Reviewed and Released by: Anil Makol, Project Manager

Time

16:42

Analysis Report

September 07, 2023

FOR: Attn:

Miller Environmental Group, Inc. 169 Stone Castle Road Rock Tavern, NY 12575

Sample Information

Matrix:	WIPE	Collected by:	
Location Code:	MILLERROC	Received by:	SW
Rush Request:	Standard	Analyzed by:	see "By" below
P.O.#:	26532	1 - 1	

Laboratory Data

Custody Information

SDG ID: GCO80287 Phoenix ID: CO80290

<u>Date</u> 08/18/23 08/21/23

Project ID: NY03230367 CHGE WS Client ID: WSA 4

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference	
Silver Wipe	< 0.5	0.5	ug	1	09/02/23	TH	SW6010D	1
Arsenic Wipe	< 0.50	0.50	ug	1	09/02/23	TH	SW6010D	1
Barium Wipe	9.93	1.00	ug	1	09/02/23	TH	SW6010D	1
Cadmium Wipe	0.70	0.25	ug	1	09/02/23	TH	SW6010D	1
Chromium Wipe	0.87	0.25	ug	1	09/02/23	TH	SW6010D	1
Lead Wipe	4.4	0.5	ug	1	09/02/23	TH	SW6010D	1
Selenium Wipe	< 1.0	1.0	ug	1	09/02/23	TH	SW6010D	1
PCB Wipe Extraction	Completed				08/23/23	Q/R/AC	1 SW3540C	
Total Metal Digestion	Completed				08/22/23	AG	SW846	
Polychlorinated Biph	enyls							
PCB-1016	ND	2.5	ug	5	08/24/23	SC	SW8082A	1
PCB-1221	ND	2.5	ug	5	08/24/23	SC	SW8082A	1
PCB-1232	ND	2.5	ug	5	08/24/23	SC	SW8082A	1
PCB-1242	ND	2.5	ug	5	08/24/23	SC	SW8082A	1
PCB-1248	ND	2.5	ug	5	08/24/23	SC	SW8082A	1
PCB-1254	18	2.5	ug	5	08/24/23	SC	SW8082A	1
PCB-1260	ND	2.5	ug	5	08/24/23	SC	SW8082A	1
PCB-1262	ND	2.5	ug	5	08/24/23	SC	SW8082A	1
PCB-1268	ND	2.5	ug	5	08/24/23	SC	SW8082A	1
QA/QC Surrogates								
% DCBP	61		%	5	08/24/23	SC	30 - 150 %	
% DCBP (Confirmation)	61		%	5	08/24/23	SC	30 - 150 %	
% TCMX	74		%	5	08/24/23	SC	30 - 150 %	
% TCMX (Confirmation)	79		%	5	08/24/23	SC	30 - 150 %	

Project ID: NY03230367 CHGE WS Client ID: WSA 4

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	By	Reference

1 = This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Phyllis Shiller, Laboratory Director September 07, 2023 Reviewed and Released by: Anil Makol, Project Manager

Time

16:42

Analysis Report

September 07, 2023

FOR: Attn:

Miller Environmental Group, Inc. 169 Stone Castle Road Rock Tavern, NY 12575

Sample Information

Matrix:	WIPE	Collected by:	
Location Code:	MILLERROC	Received by:	SW
Rush Request:	Standard	Analyzed by:	see "By" below
P.O.#:	26532	1 - 1	

Laboratory Data

Custody Information

SDG ID: GCO80287 Phoenix ID: CO80291

<u>Date</u> 08/18/23 08/21/23

Project ID:	NY03230367 CHGE WS
Client ID:	WSA 5

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	By	Reference	
Silver Wipe	< 0.5	0.5	ua	1	09/02/23	тн	SW6010D	1
Arsenic Wipe	< 0.50	0.50	ug	1	09/02/23	ΤН	SW6010D	1
Barium Wipe	4.55	1.00	ug	1	09/02/23	ΤН	SW6010D	1
Cadmium Wipe	1.22	0.25	ug	1	09/02/23	ΤН	SW6010D	1
Chromium Wipe	1.55	0.25	ug	1	09/02/23	ΤН	SW6010D	1
Lead Wipe	13.7	0.5	ug	1	09/02/23	ΤН	SW6010D	1
Selenium Wipe	< 1.0	1.0	ug	1	09/02/23	TH	SW6010D	1
PCB Wipe Extraction	Completed				08/23/23	Q/R/AC	1 SW3540C	
Total Metal Digestion	Completed				08/22/23	AG	SW846	
Polychlorinated Bipl	henyls							
PCB-1016	ND	2.5	ug	5	08/26/23	SC	SW8082A	1
PCB-1221	ND	2.5	ug	5	08/26/23	SC	SW8082A	1
PCB-1232	ND	2.5	ug	5	08/26/23	SC	SW8082A	1
PCB-1242	ND	2.5	ug	5	08/26/23	SC	SW8082A	1
PCB-1248	ND	2.5	ug	5	08/26/23	SC	SW8082A	1
PCB-1254	*	* 2.5	ug	5	08/26/23	SC	SW8082A	1
PCB-1260	14	* 2.5	ug	5	08/26/23	SC	SW8082A	1
PCB-1262	ND	2.5	ug	5	08/26/23	SC	SW8082A	1
PCB-1268	ND	2.5	ug	5	08/26/23	SC	SW8082A	1
QA/QC Surrogates								
% DCBP	96		%	5	08/26/23	SC	30 - 150 %	
% DCBP (Confirmation)	97		%	5	08/26/23	SC	30 - 150 %	
% TCMX	94		%	5	08/26/23	SC	30 - 150 %	
% TCMX (Confirmation)	84		%	5	08/26/23	SC	30 - 150 %	

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	By	Reference

1 = This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

PCB Comment:

* For PCBs, as per section 11.9.3 of SW846 method 8082, when multiple Aroclor's of PCBs are present and the aroclor is no longer recognizable, quantitation may be performed by comparing the total area of the PCB pattern to that of the aroclor it mostly resembles. The PCB pattern did not resemble any of the standards, but most closely resembles a mixture of the Aroclors 1254 and 1260. The PCB is quantitated as a timed group and is reported as the Aroclor 1260.

Phyllis Shiller, Laboratory Director September 07, 2023 Reviewed and Released by: Anil Makol, Project Manager

Time

16:42

Analysis Report

September 07, 2023

FOR: Attn:

Miller Environmental Group, Inc. 169 Stone Castle Road Rock Tavern, NY 12575

Sample Information

Matrix:	WIPE	Collected by:	
Location Code:	MILLERROC	Received by:	SW
Rush Request:	Standard	Analyzed by:	see "By" below
P.O.#:	26532		

Laboratory Data

Custody Information

SDG ID: GCO80287 Phoenix ID: CO80292

<u>Date</u> 08/18/23 08/21/23

Project ID:	NY03230367 CHGE WS
Client ID:	WSA 6

Devenueter	Desult	RL/	l la la	Dilution	Dete/Time	D	Defenses	
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference	
Silver Wipe	< 0.5	0.5	ug	1	09/02/23	TH	SW6010D	1
Arsenic Wipe	< 0.50	0.50	ug	1	09/02/23	TH	SW6010D	1
Barium Wipe	2.81	1.00	ug	1	09/02/23	TH	SW6010D	1
Cadmium Wipe	0.40	0.25	ug	1	09/02/23	TH	SW6010D	1
Chromium Wipe	0.56	0.25	ug	1	09/02/23	TH	SW6010D	1
Lead Wipe	2.6	0.5	ug	1	09/02/23	TH	SW6010D	1
Selenium Wipe	< 1.0	1.0	ug	1	09/02/23	TH	SW6010D	1
PCB Wipe Extraction	Completed				08/23/23	Q/R/AC	1 SW3540C	
Total Metal Digestion	Completed				08/22/23	AG	SW846	
Polychlorinated Biph	<u>enyls</u>							
PCB-1016	ND	5.0	ug	10	08/25/23	SC	SW8082A	1
PCB-1221	ND	5.0	ug	10	08/25/23	SC	SW8082A	1
PCB-1232	ND	5.0	ug	10	08/25/23	SC	SW8082A	1
PCB-1242	ND	5.0	ug	10	08/25/23	SC	SW8082A	1
PCB-1248	ND	5.0	ug	10	08/25/23	SC	SW8082A	1
PCB-1254	ND	5.0	ug	10	08/25/23	SC	SW8082A	1
PCB-1260	19	5.0	ug	10	08/25/23	SC	SW8082A	1
PCB-1262	ND	5.0	ug	10	08/25/23	SC	SW8082A	1
PCB-1268	ND	5.0	ug	10	08/25/23	SC	SW8082A	1
QA/QC Surrogates								
% DCBP	94		%	10	08/25/23	SC	30 - 150 %	
% DCBP (Confirmation)	89		%	10	08/25/23	SC	30 - 150 %	
% TCMX	81		%	10	08/25/23	SC	30 - 150 %	
% TCMX (Confirmation)	79		%	10	08/25/23	SC	30 - 150 %	

Project ID: NY03230367 CHGE WS Client ID: WSA 6

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference

1 = This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Phyllis, Shiller, Laboratory Director September 07, 2023 Reviewed and Released by: Anil Makol, Project Manager

Time

16:42

Analysis Report

September 07, 2023

NY03230367 CHGE WS

FOR: Attn:

Miller Environmental Group, Inc. 169 Stone Castle Road Rock Tavern, NY 12575

Sample Information

Project ID:

Sample Information		Custody Inform	nation	<u>Date</u>
Matrix:	WIPE	Collected by:		08/18/23
Location Code:	MILLERROC	Received by:	SW	08/21/23
Rush Request:	Standard	Analyzed by:	see "By" below	
P.O.#:	26532			000

Laboratory Data

SDG ID: GCO80287 Phoenix ID: CO80293

Client ID: WSA 7								
Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	By	Reference	
Silver Wipe	< 0.5	0.5	ug	1	09/02/23	TH	SW6010D	1
Arsenic Wipe	< 0.50	0.50	ug	1	09/02/23	TH	SW6010D	1
Barium Wipe	4.19	1.00	ug	1	09/02/23	TH	SW6010D	1
Cadmium Wipe	0.39	0.25	ug	1	09/02/23	TH	SW6010D	1
Chromium Wipe	0.82	0.25	ug	1	09/02/23	ΤН	SW6010D	1
Lead Wipe	5.0	0.5	ug	1	09/02/23	TH	SW6010D	1
Selenium Wipe	< 1.0	1.0	ug	1	09/02/23	TH	SW6010D	1
PCB Wipe Extraction	Completed				08/23/23	Q/R/AC	1 SW3540C	
Total Metal Digestion	Completed				08/22/23	AG	SW846	
Polychlorinated Biph	enyls							
PCB-1016	ND	5.0	ug	10	08/24/23	SC	SW8082A	1
PCB-1221	ND	5.0	ug	10	08/24/23	SC	SW8082A	1
PCB-1232	ND	5.0	ug	10	08/24/23	SC	SW8082A	1
PCB-1242	ND	5.0	ug	10	08/24/23	SC	SW8082A	1
PCB-1248	ND	5.0	ug	10	08/24/23	SC	SW8082A	1
PCB-1254	ND	5.0	ug	10	08/24/23	SC	SW8082A	1
PCB-1260	20	5.0	ug	10	08/24/23	SC	SW8082A	1
PCB-1262	ND	5.0	ug	10	08/24/23	SC	SW8082A	1
PCB-1268	ND	5.0	ug	10	08/24/23	SC	SW8082A	1
QA/QC Surrogates								
% DCBP	105		%	10	08/24/23	SC	30 - 150 %	
% DCBP (Confirmation)	107		%	10	08/24/23	SC	30 - 150 %	
% TCMX	94		%	10	08/24/23	SC	30 - 150 %	
% TCMX (Confirmation)	97		%	10	08/24/23	SC	30 - 150 %	

Project ID: NY03230367 CHGE WS Client ID: WSA 7

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	By	Reference

1 = This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Phyllis, Shiller, Laboratory Director September 07, 2023 Reviewed and Released by: Anil Makol, Project Manager

Time

16:42

Analysis Report

September 07, 2023

FOR: Attn:

SW

see "By" below

Miller Environmental Group, Inc. 169 Stone Castle Road Rock Tavern, NY 12575

Sample Information

Matrix:	WIPE	Collected by:
Location Code:	MILLERROC	Received by:
Rush Request:	Standard	Analyzed by:
P.O.#:	26532	

Laboratory Data

Custody Information

SDG ID: GCO80287 Phoenix ID: CO80294

<u>Date</u> 08/18/23

08/21/23

Project ID: NY03230367 CHGE WS Client ID: WSA 8

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	By	Reference	
Silver Wipe	< 0.5	0.5	ug	1	09/02/23	TH	SW6010D	1
Arsenic Wipe	< 0.50	0.50	ug	1	09/02/23	TH	SW6010D	1
Barium Wipe	3.69	1.00	ug	1	09/02/23	TH	SW6010D	1
Cadmium Wipe	0.81	0.25	ug	1	09/02/23	TH	SW6010D	1
Chromium Wipe	1.07	0.25	ug	1	09/02/23	TH	SW6010D	1
Lead Wipe	4.2	0.5	ug	1	09/02/23	TH	SW6010D	1
Selenium Wipe	< 1.0	1.0	ug	1	09/02/23	TH	SW6010D	1
PCB Wipe Extraction	Completed				08/23/23	Q/R/AC	1 SW3540C	
Total Metal Digestion	Completed				08/22/23	AG	SW846	
Polychlorinated Biph	enyls							
PCB-1016	ND	0.50	ug	1	08/24/23	SC	SW8082A	1
PCB-1221	ND	0.50	ug	1	08/24/23	SC	SW8082A	1
PCB-1232	ND	0.50	ug	1	08/24/23	SC	SW8082A	1
PCB-1242	ND	0.50	ug	1	08/24/23	SC	SW8082A	1
PCB-1248	ND	0.50	ug	1	08/24/23	SC	SW8082A	1
PCB-1254	4.3	0.50	ug	1	08/24/23	SC	SW8082A	1
PCB-1260	ND	0.50	ug	1	08/24/23	SC	SW8082A	1
PCB-1262	ND	0.50	ug	1	08/24/23	SC	SW8082A	1
PCB-1268	ND	0.50	ug	1	08/24/23	SC	SW8082A	1
QA/QC Surrogates								
% DCBP	50		%	1	08/24/23	SC	30 - 150 %	
% DCBP (Confirmation)	51		%	1	08/24/23	SC	30 - 150 %	
% TCMX	58		%	1	08/24/23	SC	30 - 150 %	
% TCMX (Confirmation)	62		%	1	08/24/23	SC	30 - 150 %	

Project ID: NY03230367 CHGE WS Client ID: WSA 8

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference

1 = This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Phyllis, Shiller, Laboratory Director September 07, 2023 Reviewed and Released by: Anil Makol, Project Manager

Time

16:42

Analysis Report

September 07, 2023

FOR: Attn:

SW

see "By" below

Miller Environmental Group, Inc. 169 Stone Castle Road Rock Tavern, NY 12575

Sample Information

Matrix:	WIPE	Collected by:
Location Code:	MILLERROC	Received by:
Rush Request:	Standard	Analyzed by:
P.O.#:	26532	

Laboratory Data

DI /

Custody Information

SDG ID: GCO80287 Phoenix ID: CO80295

<u>Date</u> 08/18/23

08/21/23

Project ID:	NY03230367 CHGE WS
Client ID:	WSA 9

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference	
Silver Wipe	< 0.5	0.5	ug	1	09/02/23	TH	SW6010D	1
Arsenic Wipe	< 0.50	0.50	ug	1	09/02/23	TH	SW6010D	1
Barium Wipe	4.20	1.00	ug	1	09/02/23	TH	SW6010D	1
Cadmium Wipe	0.27	0.25	ug	1	09/02/23	TH	SW6010D	1
Chromium Wipe	0.93	0.25	ug	1	09/02/23	TH	SW6010D	1
Lead Wipe	3.5	0.5	ug	1	09/02/23	TH	SW6010D	1
Selenium Wipe	< 1.0	1.0	ug	1	09/02/23	TH	SW6010D	1
PCB Wipe Extraction	Completed				08/23/23	Q/R/AC	1 SW3540C	
Total Metal Digestion	Completed				08/22/23	AG	SW846	
Polychlorinated Bipl	<u>nenyls</u>							
PCB-1016	ND	2.5	ug	5	08/28/23	SC	SW8082A	1
PCB-1221	ND	2.5	ug	5	08/28/23	SC	SW8082A	1
PCB-1232	ND	2.5	ug	5	08/28/23	SC	SW8082A	1
PCB-1242	ND	2.5	ug	5	08/28/23	SC	SW8082A	1
PCB-1248	ND	2.5	ug	5	08/28/23	SC	SW8082A	1
PCB-1254	*	* 2.5	ug	5	08/28/23	SC	SW8082A	1
PCB-1260	9.2	* 2.5	ug	5	08/28/23	SC	SW8082A	1
PCB-1262	ND	2.5	ug	5	08/28/23	SC	SW8082A	1
PCB-1268	ND	2.5	ug	5	08/28/23	SC	SW8082A	1
QA/QC Surrogates								
% DCBP	89		%	5	08/28/23	SC	30 - 150 %	
% DCBP (Confirmation)	91		%	5	08/28/23	SC	30 - 150 %	
% TCMX	78		%	5	08/28/23	SC	30 - 150 %	
% TCMX (Confirmation)	75		%	5	08/28/23	SC	30 - 150 %	

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

PCB Comment:

* For PCBs, as per section 11.9.3 of SW846 method 8082, when multiple Aroclor's of PCBs are present and the aroclor is no longer recognizable, quantitation may be performed by comparing the total area of the PCB pattern to that of the aroclor it mostly resembles. The PCB pattern did not resemble any of the standards, but most closely resembles a mixture of the Aroclors 1254 and 1260. The PCB is quantitated as a timed group and is reported as the Aroclor 1260.

Phyllis Shiller, Laboratory Director September 07, 2023 Reviewed and Released by: Anil Makol, Project Manager

Time

16:42

Analysis Report

September 07, 2023

FOR: Attn:

Miller Environmental Group, Inc. 169 Stone Castle Road Rock Tavern, NY 12575

Sample Information

Matrix:	WIPE	Collected by:	
Location Code:	MILLERROC	Received by:	SW
Rush Request:	Standard	Analyzed by:	see "By" below
P.O.#:	26532		

Laboratory Data

Custody Information

SDG ID: GCO80287 Phoenix ID: CO80296

<u>Date</u> 08/18/23 08/21/23

Project ID:	NY03230367 CHGE WS
Client ID:	WSA 10

		RL/						
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference	
Silver Wipe	< 0.5	0.5	ug	1	09/02/23	TH	SW6010D	1
Arsenic Wipe	< 0.50	0.50	ug	1	09/02/23	TH	SW6010D	1
Barium Wipe	23.5	1.00	ug	1	09/02/23	TH	SW6010D	1
Cadmium Wipe	0.60	0.25	ug	1	09/02/23	TH	SW6010D	1
Chromium Wipe	2.29	0.25	ug	1	09/02/23	TH	SW6010D	1
Lead Wipe	98.6	0.5	ug	1	09/02/23	TH	SW6010D	1
Selenium Wipe	< 1.0	1.0	ug	1	09/02/23	TH	SW6010D	1
PCB Wipe Extraction	Completed				08/23/23	Q/R/AC	1 SW3540C	
Total Metal Digestion	Completed				08/22/23	AG	SW846	
Polychlorinated Biph	<u>enyls</u>							
PCB-1016	ND	2.5	ug	5	08/25/23	SC	SW8082A	1
PCB-1221	ND	2.5	ug	5	08/25/23	SC	SW8082A	1
PCB-1232	ND	2.5	ug	5	08/25/23	SC	SW8082A	1
PCB-1242	ND	2.5	ug	5	08/25/23	SC	SW8082A	1
PCB-1248	ND	2.5	ug	5	08/25/23	SC	SW8082A	1
PCB-1254	*	* 2.5	ug	5	08/25/23	SC	SW8082A	1
PCB-1260	13	* 2.5	ug	5	08/25/23	SC	SW8082A	1
PCB-1262	ND	2.5	ug	5	08/25/23	SC	SW8082A	1
PCB-1268	ND	2.5	ug	5	08/25/23	SC	SW8082A	1
QA/QC Surrogates								
% DCBP	91		%	5	08/25/23	SC	30 - 150 %	
% DCBP (Confirmation)	88		%	5	08/25/23	SC	30 - 150 %	
% TCMX	78		%	5	08/25/23	SC	30 - 150 %	
% TCMX (Confirmation)	77		%	5	08/25/23	SC	30 - 150 %	

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

PCB Comment:

* For PCBs, as per section 11.9.3 of SW846 method 8082, when multiple Aroclor's of PCBs are present and the aroclor is no longer recognizable, quantitation may be performed by comparing the total area of the PCB pattern to that of the aroclor it mostly resembles. The PCB pattern did not resemble any of the standards, but most closely resembles a mixture of the Aroclors 1254 and 1260. The PCB is quantitated as a timed group and is reported as the Aroclor 1260.

Phyllis Shiller, Laboratory Director September 07, 2023 Reviewed and Released by: Anil Makol, Project Manager

Time

16:42

Analysis Report

September 07, 2023

FOR: Attn:

Miller Environmental Group, Inc. 169 Stone Castle Road Rock Tavern, NY 12575

Sample Information

Matrix:	WIPE	Collected by:	
Location Code:	MILLERROC	Received by:	SW
Rush Request:	Standard	Analyzed by:	see "By" below
P.O.#:	26532	1	Data

Laboratory Data

Custody Information

SDG ID: GCO80287 Phoenix ID: CO80297

<u>Date</u> 08/18/23 08/21/23

Project ID: NY03230367 CHGE WS Client ID: WSA 11

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference	
Silver Wipe	< 0.5	0.5	ug	1	09/02/23	TH	SW6010D	1
Arsenic Wipe	0.56	0.50	ug	1	09/02/23	TH	SW6010D	1
Barium Wipe	9.86	1.00	ug	1	09/02/23	TH	SW6010D	1
Cadmium Wipe	0.65	0.25	ug	1	09/02/23	TH	SW6010D	1
Chromium Wipe	1.95	0.25	ug	1	09/02/23	TH	SW6010D	1
Lead Wipe	7.5	0.5	ug	1	09/02/23	TH	SW6010D	1
Selenium Wipe	< 1.0	1.0	ug	1	09/02/23	TH	SW6010D	1
PCB Wipe Extraction	Completed				08/23/23	Q/R/AC	1 SW3540C	
Total Metal Digestion	Completed				08/22/23	AG	SW846	
Polychlorinated Biph	<u>nenyls</u>							
PCB-1016	ND	5.0	ug	10	08/25/23	SC	SW8082A	1
PCB-1221	ND	5.0	ug	10	08/25/23	SC	SW8082A	1
PCB-1232	ND	5.0	ug	10	08/25/23	SC	SW8082A	1
PCB-1242	ND	5.0	ug	10	08/25/23	SC	SW8082A	1
PCB-1248	ND	5.0	ug	10	08/25/23	SC	SW8082A	1
PCB-1254	33	5.0	ug	10	08/25/23	SC	SW8082A	1
PCB-1260	ND	5.0	ug	10	08/25/23	SC	SW8082A	1
PCB-1262	ND	5.0	ug	10	08/25/23	SC	SW8082A	1
PCB-1268	ND	5.0	ug	10	08/25/23	SC	SW8082A	1
QA/QC Surrogates								
% DCBP	80		%	10	08/25/23	SC	30 - 150 %	
% DCBP (Confirmation)	110		%	10	08/25/23	SC	30 - 150 %	
% TCMX	81		%	10	08/25/23	SC	30 - 150 %	
% TCMX (Confirmation)	Interference		%	10	08/25/23	SC	30 - 150 %	

Project ID: NY03230367 CHGE WS Client ID: WSA 11

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	By	Reference

1 = This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Phyllis, Shiller, Laboratory Director September 07, 2023 Reviewed and Released by: Anil Makol, Project Manager

Time

16:42

Analysis Report

September 07, 2023

FOR: Attn:

Miller Environmental Group, Inc. 169 Stone Castle Road Rock Tavern, NY 12575

Sample Information

Matrix:	WIPE	Collected by:	
Location Code:	MILLERROC	Received by:	SW
Rush Request:	Standard	Analyzed by:	see "By" below
P.O.#:	26532		

Laboratory Data

Custody Information

SDG ID: GCO80287 Phoenix ID: CO80298

<u>Date</u> 08/18/23 08/21/23

Project ID:	NY03230367 CHGE WS
Client ID:	WSA 12

		RL/						
Parameter	Result	PQL	Units	Dilution	Date/Time	By	Reference	
Silver Wipe	< 0.5	0.5	ug	1	09/02/23	TH	SW6010D	1
Arsenic Wipe	< 0.50	0.50	ug	1	09/02/23	TH	SW6010D	1
Barium Wipe	6.22	1.00	ug	1	09/02/23	TH	SW6010D	1
Cadmium Wipe	0.45	0.25	ug	1	09/02/23	TH	SW6010D	1
Chromium Wipe	1.19	0.25	ug	1	09/02/23	TH	SW6010D	1
Lead Wipe	8.2	0.5	ug	1	09/02/23	TH	SW6010D	1
Selenium Wipe	< 1.0	1.0	ug	1	09/02/23	TH	SW6010D	1
PCB Wipe Extraction	Completed				08/23/23	Q/R/AC	1 SW3540C	
Total Metal Digestion	Completed				08/22/23	AG	SW846	
Polychlorinated Biph	enyls							
PCB-1016	ND	5.0	ug	10	08/24/23	SC	SW8082A	1
PCB-1221	ND	5.0	ug	10	08/24/23	SC	SW8082A	1
PCB-1232	ND	5.0	ug	10	08/24/23	SC	SW8082A	1
PCB-1242	ND	5.0	ug	10	08/24/23	SC	SW8082A	1
PCB-1248	ND	5.0	ug	10	08/24/23	SC	SW8082A	1
PCB-1254	ND	5.0	ug	10	08/24/23	SC	SW8082A	1
PCB-1260	28	5.0	ug	10	08/24/23	SC	SW8082A	1
PCB-1262	ND	5.0	ug	10	08/24/23	SC	SW8082A	1
PCB-1268	ND	5.0	ug	10	08/24/23	SC	SW8082A	1
QA/QC Surrogates								
% DCBP	103		%	10	08/24/23	SC	30 - 150 %	
% DCBP (Confirmation)	104		%	10	08/24/23	SC	30 - 150 %	
% TCMX	91		%	10	08/24/23	SC	30 - 150 %	
% TCMX (Confirmation)	86		%	10	08/24/23	SC	30 - 150 %	

Project ID: NY03230367 CHGE WS Client ID: WSA 12

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	By	Reference

1 = This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Phyllis, Shiller, Laboratory Director September 07, 2023 Reviewed and Released by: Anil Makol, Project Manager

Time

16:42

Analysis Report

September 07, 2023

FOR: Attn:

Miller Environmental Group, Inc. 169 Stone Castle Road Rock Tavern, NY 12575

Sample Information

Matrix:	WIPE	Collected by:		
Location Code:	MILLERROC	Received by:	SW	
Rush Request:	Standard	Analyzed by:	see "By" below	
P.O.#:	26532			

Laboratory Data

Custody Information

SDG ID: GCO80287 Phoenix ID: CO80299

<u>Date</u> 08/18/23 08/21/23

Project ID:	NY03230367 CHGE WS
Client ID:	WSA 13

		RL/						
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference	
Silver Wipe	< 0.5	0.5	ug	1	09/02/23	TH	SW6010D	1
Arsenic Wipe	0.57	0.50	ug	1	09/02/23	TH	SW6010D	1
Barium Wipe	7.50	1.00	ug	1	09/02/23	TH	SW6010D	1
Cadmium Wipe	0.48	0.25	ug	1	09/02/23	TH	SW6010D	1
Chromium Wipe	4.12	0.25	ug	1	09/02/23	TH	SW6010D	1
Lead Wipe	7.9	0.5	ug	1	09/02/23	TH	SW6010D	1
Selenium Wipe	< 1.0	1.0	ug	1	09/02/23	TH	SW6010D	1
PCB Wipe Extraction	Completed				08/23/23	Q/R/AC	1 SW3540C	
Total Metal Digestion	Completed				08/22/23	AG	SW846	
Polychlorinated Biph	enyls							
PCB-1016	ND	0.50	ug	1	08/24/23	SC	SW8082A	1
PCB-1221	ND	0.50	ug	1	08/24/23	SC	SW8082A	1
PCB-1232	ND	0.50	ug	1	08/24/23	SC	SW8082A	1
PCB-1242	ND	0.50	ug	1	08/24/23	SC	SW8082A	1
PCB-1248	ND	0.50	ug	1	08/24/23	SC	SW8082A	1
PCB-1254	ND	0.50	ug	1	08/24/23	SC	SW8082A	1
PCB-1260	0.74	0.50	ug	1	08/24/23	SC	SW8082A	1
PCB-1262	ND	0.50	ug	1	08/24/23	SC	SW8082A	1
PCB-1268	ND	0.50	ug	1	08/24/23	SC	SW8082A	1
QA/QC Surrogates								
% DCBP	78		%	1	08/24/23	SC	30 - 150 %	
% DCBP (Confirmation)	71		%	1	08/24/23	SC	30 - 150 %	
% TCMX	82		%	1	08/24/23	SC	30 - 150 %	
% TCMX (Confirmation)	77		%	1	08/24/23	SC	30 - 150 %	

Project ID: NY03230367 CHGE WS Client ID: WSA 13

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	By	Reference

1 = This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Phyllis Shiller, Laboratory Director September 07, 2023 Reviewed and Released by: Anil Makol, Project Manager

Time

16:42

Analysis Report

September 07, 2023

FOR: Attn:

Miller Environmental Group, Inc. 169 Stone Castle Road Rock Tavern, NY 12575

Sample Information

Sample Informa	ation	Custody Inform	nation	<u>Date</u>
Matrix:	WIPE	Collected by:		08/18/23
Location Code:	MILLERROC	Received by:	SW	08/21/23
Rush Request:	Standard	Analyzed by:	see "By" below	
P.O.#:	26532			200

Laboratory Data

Custody Information

SDG ID: GCO80287 Phoenix ID: CO80300

Project ID:	NY03230367 CHGE WS
Client ID:	WSA 14

		RL/						
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference	
Silver Wipe	< 0.5	0.5	ug	1	09/02/23	TH	SW6010D	1
Arsenic Wipe	0.58	0.50	ug	1	09/02/23	TH	SW6010D	1
Barium Wipe	9.71	1.00	ug	1	09/02/23	TH	SW6010D	1
Cadmium Wipe	0.77	0.25	ug	1	09/02/23	TH	SW6010D	1
Chromium Wipe	2.58	0.25	ug	1	09/02/23	TH	SW6010D	1
Lead Wipe	7.1	0.5	ug	1	09/02/23	TH	SW6010D	1
Selenium Wipe	< 1.0	1.0	ug	1	09/02/23	TH	SW6010D	1
PCB Wipe Extraction	Completed				08/23/23	Q/R/AC	1 SW3540C	
Total Metal Digestion	Completed				08/22/23	AG	SW846	
Polychlorinated Biph	<u>nenyls</u>							
PCB-1016	ND	2.5	ug	5	08/26/23	SC	SW8082A	1
PCB-1221	ND	2.5	ug	5	08/26/23	SC	SW8082A	1
PCB-1232	ND	2.5	ug	5	08/26/23	SC	SW8082A	1
PCB-1242	ND	2.5	ug	5	08/26/23	SC	SW8082A	1
PCB-1248	ND	2.5	ug	5	08/26/23	SC	SW8082A	1
PCB-1254	*	* 2.5	ug	5	08/26/23	SC	SW8082A	1
PCB-1260	18	* 2.5	ug	5	08/26/23	SC	SW8082A	1
PCB-1262	ND	2.5	ug	5	08/26/23	SC	SW8082A	1
PCB-1268	ND	2.5	ug	5	08/26/23	SC	SW8082A	1
QA/QC Surrogates								
% DCBP	85		%	5	08/26/23	SC	30 - 150 %	
% DCBP (Confirmation)	84		%	5	08/26/23	SC	30 - 150 %	
% TCMX	81		%	5	08/26/23	SC	30 - 150 %	
% TCMX (Confirmation)	77		%	5	08/26/23	SC	30 - 150 %	

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

PCB Comment:

* For PCBs, as per section 11.9.3 of SW846 method 8082, when multiple Aroclor's of PCBs are present and the aroclor is no longer recognizable, quantitation may be performed by comparing the total area of the PCB pattern to that of the aroclor it mostly resembles. The PCB pattern did not resemble any of the standards, but most closely resembles a mixture of the Aroclors 1254 and 1260. The PCB is quantitated as a timed group and is reported as the Aroclor 1260.

Phyllis Shiller, Laboratory Director September 07, 2023 Reviewed and Released by: Anil Makol, Project Manager

Time

16:42

Analysis Report

September 07, 2023

FOR: Attn:

Custody Information

Miller Environmental Group, Inc. 169 Stone Castle Road Rock Tavern, NY 12575

Sample Information

P.O.#:	26532	Laboratory Data
Rush Request:	Standard	Analyzed by: see "By" below
	0, 1, 1	
Location Code:	MILLERROC	Received by: SW
Matrix:	WIPE	Collected by:

SDG ID: GCO80287 Phoenix ID: CO80301

<u>Date</u> 08/18/23 08/21/23

Project ID: NY03230367 CHGE WS Client ID: WSA 15

-	D 1/	RL/				_	D (
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference	
Silver Wipe	< 0.5	0.5	ug	1	09/02/23	TH	SW6010D	1
Arsenic Wipe	0.52	0.50	ug	1	09/02/23	TH	SW6010D	1
Barium Wipe	8.96	1.00	ug	1	09/02/23	TH	SW6010D	1
Cadmium Wipe	0.47	0.25	ug	1	09/02/23	TH	SW6010D	1
Chromium Wipe	2.89	0.25	ug	1	09/02/23	TH	SW6010D	1
Lead Wipe	6.1	0.5	ug	1	09/02/23	TH	SW6010D	1
Selenium Wipe	< 1.0	1.0	ug	1	09/02/23	TH	SW6010D	1
PCB Wipe Extraction	Completed				08/23/23	Q/R/AC	1 SW3540C	
Total Metal Digestion	Completed				08/22/23	AG	SW846	
Polychlorinated Biph	enyls							
PCB-1016	ND	0.50	ug	1	08/26/23	SC	SW8082A	1
PCB-1221	ND	0.50	ug	1	08/26/23	SC	SW8082A	1
PCB-1232	ND	0.50	ug	1	08/26/23	SC	SW8082A	1
PCB-1242	ND	0.50	ug	1	08/26/23	SC	SW8082A	1
PCB-1248	ND	0.50	ug	1	08/26/23	SC	SW8082A	1
PCB-1254	*	* 0.50	ug	1	08/26/23	SC	SW8082A	1
PCB-1260	2.4	* 0.50	ug	1	08/26/23	SC	SW8082A	1
PCB-1262	ND	0.50	ug	1	08/26/23	SC	SW8082A	1
PCB-1268	ND	0.50	ug	1	08/26/23	SC	SW8082A	1
QA/QC Surrogates								
% DCBP	82		%	1	08/26/23	SC	30 - 150 %	
% DCBP (Confirmation)	80		%	1	08/26/23	SC	30 - 150 %	
% TCMX	71		%	1	08/26/23	SC	30 - 150 %	
% TCMX (Confirmation)	74		%	1	08/26/23	SC	30 - 150 %	

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

PCB Comment:

* For PCBs, as per section 11.9.3 of SW846 method 8082, when multiple Aroclor's of PCBs are present and the aroclor is no longer recognizable, quantitation may be performed by comparing the total area of the PCB pattern to that of the aroclor it mostly resembles. The PCB pattern did not resemble any of the standards, but most closely resembles a mixture of the Aroclors 1254 and 1260. The PCB is quantitated as a timed group and is reported as the Aroclor 1260.

Phyllis Shiller, Laboratory Director September 07, 2023 Reviewed and Released by: Anil Makol, Project Manager

Time

16:42

Analysis Report

September 07, 2023

FOR: Attn:

Miller Environmental Group, Inc. 169 Stone Castle Road Rock Tavern, NY 12575

Sample Information

Project ID: Client ID:

Matrix:	WIPE	Collected by:	
		Beceived by:	C) M /
	MILLERROC	Received by.	500
Rush Request:	Standard	Analyzed by:	see "By" below
P.O.#:	26532		

NY03230367 CHGE WS

WSA 16

Laboratory Data

Custody Information

SDG ID: GCO80287 Phoenix ID: CO80302

<u>Date</u> 08/18/23 08/21/23

		RL/						
Parameter	Result	PQL	Units	Dilution	Date/Time	By	Reference	
Silver Wipe	< 0.5	0.5	ug	1	09/02/23	TH	SW6010D	1
Arsenic Wipe	< 0.60	0.60	ug	1	09/02/23	TH	SW6010D	1
Barium Wipe	20.8	1.0	ug	1	09/02/23	TH	SW6010D	1
Cadmium Wipe	0.29	0.25	ug	1	09/02/23	TH	SW6010D	1
Chromium Wipe	8.17	0.25	ug	1	09/02/23	TH	SW6010D	1,B
Lead Wipe	17.0	0.5	ug	1	09/02/23	TH	SW6010D	1
Selenium Wipe	< 1.0	1.0	ug	1	09/02/23	TH	SW6010D	1
PCB Wipe Extraction	Completed				08/23/23	Q/R/AC	1 SW3540C	
Total Metal Digestion	Completed				08/26/23	AG	SW846	
Polychlorinated Biph	enyls							
PCB-1016	ND	0.50	ug	1	08/26/23	SC	SW8082A	1
PCB-1221	ND	0.50	ug	1	08/26/23	SC	SW8082A	1
PCB-1232	ND	0.50	ug	1	08/26/23	SC	SW8082A	1
PCB-1242	ND	0.50	ug	1	08/26/23	SC	SW8082A	1
PCB-1248	ND	0.50	ug	1	08/26/23	SC	SW8082A	1
PCB-1254	*	* 0.50	ug	1	08/26/23	SC	SW8082A	1
PCB-1260	5.2	* 0.50	ug	1	08/26/23	SC	SW8082A	1
PCB-1262	ND	0.50	ug	1	08/26/23	SC	SW8082A	1
PCB-1268	ND	0.50	ug	1	08/26/23	SC	SW8082A	1
QA/QC Surrogates								
% DCBP	87		%	1	08/26/23	SC	30 - 150 %	
% DCBP (Confirmation)	85		%	1	08/26/23	SC	30 - 150 %	
% TCMX	37		%	1	08/26/23	SC	30 - 150 %	
% TCMX (Confirmation)	40		%	1	08/26/23	SC	30 - 150 %	

Project ID: NY03230367 CHGE WS					PI	hoeni	x I.D.: CO8	0302
Client ID: WSA	16							
		RL/						
Parameter	Result	PQL	Units	Dilution	Date/Time	By	Reference	

B = Present in blank, no bias suspected.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

=

PCB Comment:

* For PCBs, as per section 11.9.3 of SW846 method 8082, when multiple Aroclor's of PCBs are present and the aroclor is no longer recognizable, quantitation may be performed by comparing the total area of the PCB pattern to that of the aroclor it mostly resembles. The PCB pattern did not resemble any of the standards, but most closely resembles a mixture of the Aroclors 1254 and 1260. The PCB is quantitated as a timed group and is reported as the Aroclor 1260.

Phyllis Shiller, Laboratory Director September 07, 2023 Reviewed and Released by: Anil Makol, Project Manager

Time

16:42

Analysis Report

September 07, 2023

FOR: Attn:

Miller Environmental Group, Inc. 169 Stone Castle Road Rock Tavern, NY 12575

Sample Information

Sample Information		Custody Inform	nation	<u>Date</u>	
Matrix:	WIPE	Collected by:		08/18/23	
Location Code:	MILLERROC	Received by:	SW	08/21/23	
Rush Request:	Standard	Analyzed by:	see "By" below		
P.O.#:	26532			000	

Laboratory Data

Custody Information

SDG ID: GCO80287 Phoenix ID: CO80303

Project ID:	NY03230367 CHGE WS
Client ID:	WSA 17

		RL/						
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference	
Silver Wipe	< 0.5	0.5	ug	1	09/02/23	TH	SW6010D	1
Arsenic Wipe	< 0.60	0.60	ug	1	09/02/23	TH	SW6010D	1
Barium Wipe	5.51	1.0	ug	1	09/02/23	TH	SW6010D	1
Cadmium Wipe	0.17	0.25	ug	1	09/02/23	TH	SW6010D	1
Chromium Wipe	3.21	0.25	ug	1	09/02/23	TH	SW6010D	1,B
Lead Wipe	12.6	0.5	ug	1	09/02/23	TH	SW6010D	1
Selenium Wipe	< 1.0	1.0	ug	1	09/02/23	TH	SW6010D	1
PCB Wipe Extraction	Completed				08/23/23	Q/R/AC	1 SW3540C	
Total Metal Digestion	Completed				08/26/23	AG	SW846	
Polychlorinated Biph	<u>enyls</u>							
PCB-1016	ND	0.50	ug	1	08/24/23	SC	SW8082A	1
PCB-1221	ND	0.50	ug	1	08/24/23	SC	SW8082A	1
PCB-1232	ND	0.50	ug	1	08/24/23	SC	SW8082A	1
PCB-1242	ND	0.50	ug	1	08/24/23	SC	SW8082A	1
PCB-1248	ND	0.50	ug	1	08/24/23	SC	SW8082A	1
PCB-1254	ND	0.50	ug	1	08/24/23	SC	SW8082A	1
PCB-1260	2.8	0.50	ug	1	08/24/23	SC	SW8082A	1
PCB-1262	ND	0.50	ug	1	08/24/23	SC	SW8082A	1
PCB-1268	ND	0.50	ug	1	08/24/23	SC	SW8082A	1
QA/QC Surrogates								
% DCBP	89		%	1	08/24/23	SC	30 - 150 %	
% DCBP (Confirmation)	88		%	1	08/24/23	SC	30 - 150 %	
% TCMX	72		%	1	08/24/23	SC	30 - 150 %	
% TCMX (Confirmation)	78		%	1	08/24/23	SC	30 - 150 %	

Project ID: NY03230367 CHGE WS					PI	hoeni	x I.D.: CO8	0303
Client ID: WSA 17								
		RL/						
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference	

B = Present in blank, no bias suspected.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Phyllis Shiller, Laboratory Director September 07, 2023 Reviewed and Released by: Anil Makol, Project Manager

Time

16:42

Analysis Report

September 07, 2023

FOR: Attn:

Miller Environmental Group, Inc. 169 Stone Castle Road Rock Tavern, NY 12575

Sample Information

Matrix:	WIPE	Collected by:	
Location Code:	MILLERROC	Received by:	SW
Rush Request:	Standard	Analyzed by:	see "By" below
P.O.#:	26532	1 - 1 (

Laboratory Data

Custody Information

SDG ID: GCO80287 Phoenix ID: CO80304

<u>Date</u> 08/18/23 08/21/23

Project ID:	NY03230367 CHGE WS
Client ID:	WSA 18

		RL/						
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference	
Silver Wipe	< 0.5	0.5	ug	1	09/02/23	TH	SW6010D	1
Arsenic Wipe	< 0.60	0.60	ug	1	09/02/23	TH	SW6010D	1
Barium Wipe	5.59	1.0	ug	1	09/02/23	TH	SW6010D	1
Cadmium Wipe	0.36	0.25	ug	1	09/02/23	TH	SW6010D	1
Chromium Wipe	2.73	0.25	ug	1	09/02/23	TH	SW6010D	1,B
Lead Wipe	9.2	0.5	ug	1	09/02/23	TH	SW6010D	1
Selenium Wipe	< 1.0	1.0	ug	1	09/02/23	TH	SW6010D	1
PCB Wipe Extraction	Completed				08/23/23	Q/R/AC	1 SW3540C	
Total Metal Digestion	Completed				08/26/23	AG	SW846	
Polychlorinated Biph	enyls							
PCB-1016	ND	0.50	ug	1	08/24/23	SC	SW8082A	1
PCB-1221	ND	0.50	ug	1	08/24/23	SC	SW8082A	1
PCB-1232	ND	0.50	ug	1	08/24/23	SC	SW8082A	1
PCB-1242	ND	0.50	ug	1	08/24/23	SC	SW8082A	1
PCB-1248	ND	0.50	ug	1	08/24/23	SC	SW8082A	1
PCB-1254	1.1	0.50	ug	1	08/24/23	SC	SW8082A	1
PCB-1260	ND	0.50	ug	1	08/24/23	SC	SW8082A	1
PCB-1262	ND	0.50	ug	1	08/24/23	SC	SW8082A	1
PCB-1268	ND	0.50	ug	1	08/24/23	SC	SW8082A	1
QA/QC Surrogates								
% DCBP	67		%	1	08/24/23	SC	30 - 150 %	
% DCBP (Confirmation)	69		%	1	08/24/23	SC	30 - 150 %	
% TCMX	10		%	1	08/24/23	SC	30 - 150 %	3
% TCMX (Confirmation)	10		%	1	08/24/23	SC	30 - 150 %	3

3 = This parameter exceeds laboratory specified limits.

B = Present in blank, no bias suspected.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

PCB comment:

The TCMX surrogate recovery was below acceptance criteria. A significant bias is not suspected because the DCBP recovery was within criteria.

PCB Comment:

Poor surrogate recovery was observed for PCBs. Insufficient sample for re-extraction.

Phyllis, Shiller, Laboratory Director September 07, 2023 Reviewed and Released by: Anil Makol, Project Manager

Time

16:42

Analysis Report

September 07, 2023

FOR: Attn:

Miller Environmental Group, Inc. 169 Stone Castle Road Rock Tavern, NY 12575

Sample Information

Matrix:	WIPE	Collected by:	
Location Code:	MILLERROC	Received by:	SW
Rush Request:	Standard	Analyzed by:	see "By" below
P.O.#:	26532	1 - 1 (

Laboratory Data

Custody Information

SDG ID: GCO80287 Phoenix ID: CO80305

<u>Date</u> 08/18/23 08/21/23

Project ID: NY03230367 CHGE WS Client ID: WSA 19

		RL/						
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference	
Silver Wipe	< 0.5	0.5	ug	1	09/02/23	TH	SW6010D	1
Arsenic Wipe	< 0.60	0.60	ug	1	09/02/23	TH	SW6010D	1
Barium Wipe	3.21	1.0	ug	1	09/02/23	TH	SW6010D	1
Cadmium Wipe	0.15	0.25	ug	1	09/02/23	TH	SW6010D	1
Chromium Wipe	0.70	0.25	ug	1	09/02/23	TH	SW6010D	,B*
Lead Wipe	4.7	0.5	ug	1	09/02/23	TH	SW6010D	1
Selenium Wipe	< 1.0	1.0	ug	1	09/02/23	TH	SW6010D	1
PCB Wipe Extraction	Completed				08/23/23	Q/R/AC	1 SW3540C	
Total Metal Digestion	Completed				08/26/23	AG	SW846	
Polychlorinated Biph	enyls							
PCB-1016	ND	0.50	ug	1	08/24/23	SC	SW8082A	1
PCB-1221	ND	0.50	ug	1	08/24/23	SC	SW8082A	1
PCB-1232	ND	0.50	ug	1	08/24/23	SC	SW8082A	1
PCB-1242	ND	0.50	ug	1	08/24/23	SC	SW8082A	1
PCB-1248	ND	0.50	ug	1	08/24/23	SC	SW8082A	1
PCB-1254	ND	0.50	ug	1	08/24/23	SC	SW8082A	1
PCB-1260	0.57	0.50	ug	1	08/24/23	SC	SW8082A	1
PCB-1262	ND	0.50	ug	1	08/24/23	SC	SW8082A	1
PCB-1268	ND	0.50	ug	1	08/24/23	SC	SW8082A	1
QA/QC Surrogates								
% DCBP	91		%	1	08/24/23	SC	30 - 150 %	
% DCBP (Confirmation)	91		%	1	08/24/23	SC	30 - 150 %	
% TCMX	74		%	1	08/24/23	SC	30 - 150 %	
% TCMX (Confirmation)	75		%	1	08/24/23	SC	30 - 150 %	

Project ID: NY0323036	7 CHGE WS				Pł	noeni	x I.D.: CO80)305
Client ID: WSA 19								
		RL/						
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference	

 B^* = Present in blank, a bias is possible.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Phyllis Shiller, Laboratory Director September 07, 2023 Reviewed and Released by: Anil Makol, Project Manager

Time

16:42

Analysis Report

September 07, 2023

FOR: Attn:

Miller Environmental Group, Inc. 169 Stone Castle Road Rock Tavern, NY 12575

Sample Information

Project ID:

Matrix:	WIPE	Collected by:	
Location Code:	MILLERROC	Received by:	SW
Rush Request:	Standard	Analyzed by:	see "By" below
P.O.#:	26532		

NY03230367 CHGE WS

Laboratory Data

Custody Information

SDG ID: GCO80287 Phoenix ID: CO80306

Date 08/18/23 08/21/23

Client ID: WSA 20								
Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference	
Silver Wipe	< 0.5	0.5	ug	1	09/02/23	TH	SW6010D	1
Arsenic Wipe	< 0.60	0.60	ug	1	09/02/23	TH	SW6010D	1
Barium Wipe	1.40	1.0	ug	1	09/02/23	TH	SW6010D	1
Cadmium Wipe	< 0.25	0.25	ug	1	09/02/23	TH	SW6010D	1
Chromium Wipe	0.27	0.25	ug	1	09/02/23	TH	SW6010D	,B*
Lead Wipe	1.9	0.5	ug	1	09/02/23	TH	SW6010D	1
Selenium Wipe	< 1.0	1.0	ug	1	09/02/23	ΤН	SW6010D	1
PCB Wipe Extraction	Completed				08/23/23	Q/R/AC	1 SW3540C	
Total Metal Digestion	Completed				08/26/23	AG	SW846	
Polychlorinated Biph	enyls							
PCB-1016	ND	0.50	ug	1	08/24/23	SC	SW8082A	1
PCB-1221	ND	0.50	ug	1	08/24/23	SC	SW8082A	1
PCB-1232	ND	0.50	ug	1	08/24/23	SC	SW8082A	1
PCB-1242	ND	0.50	ug	1	08/24/23	SC	SW8082A	1
PCB-1248	ND	0.50	ug	1	08/24/23	SC	SW8082A	1
PCB-1254	ND	0.50	ug	1	08/24/23	SC	SW8082A	1
PCB-1260	ND	0.50	ug	1	08/24/23	SC	SW8082A	1
PCB-1262	ND	0.50	ug	1	08/24/23	SC	SW8082A	1
PCB-1268	ND	0.50	ug	1	08/24/23	SC	SW8082A	1
QA/QC Surrogates								
% DCBP	84		%	1	08/24/23	SC	30 - 150 %	
% DCBP (Confirmation)	83		%	1	08/24/23	SC	30 - 150 %	
% TCMX	73		%	1	08/24/23	SC	30 - 150 %	
% TCMX (Confirmation)	79		%	1	08/24/23	SC	30 - 150 %	

Project ID: NY0323036	67 CHGE WS				Pł	noeni	x I.D.: CO80	0306
Client ID: WSA 20								
		RL/						
Parameter	Result	PQL	Units	Dilution	Date/Time	By	Reference	

 B^* = Present in blank, a bias is possible.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Phyllis Shiller, Laboratory Director September 07, 2023 Reviewed and Released by: Anil Makol, Project Manager

Time

16:42

Analysis Report

September 07, 2023

FOR: Attn:

Miller Environmental Group, Inc. 169 Stone Castle Road Rock Tavern, NY 12575

"By" below

Sample Information

Matrix:	WIPE	Collected by:				
Location Code:	MILLERROC	Received by:				
Rush Request:	Standard	Analyzed by:	see			
P.O.#:	26532					

Laboratory Data

DI /

Custody Information

SDG ID: GCO80287 Phoenix ID: CO80307

<u>Date</u> 08/18/23 08/21/23

Project ID:	NY03230367 CHGE WS
Client ID:	WSA 21

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference	
Silver Wipe	< 0.5	0.5	ug	1	09/02/23	TH	SW6010D	1
Arsenic Wipe	< 0.60	0.60	ug	1	09/02/23	TH	SW6010D	1
Barium Wipe	1.04	1.0	ug	1	09/02/23	TH	SW6010D	1
Cadmium Wipe	< 0.25	0.25	ug	1	09/02/23	TH	SW6010D	1
Chromium Wipe	< 0.25	0.25	ug	1	09/02/23	PS	SW6010D	1,B
Lead Wipe	1.4	0.5	ug	1	09/02/23	TH	SW6010D	1
Selenium Wipe	< 1.0	1.0	ug	1	09/02/23	TH	SW6010D	1
PCB Wipe Extraction	Completed				08/23/23	Q/R/AC	1 SW3540C	
Total Metal Digestion	Completed				08/26/23	AG	SW846	
Polychlorinated Biph	nenyls							
PCB-1016	ND	0.50	ug	1	08/24/23	SC	SW8082A	1
PCB-1221	ND	0.50	ug	1	08/24/23	SC	SW8082A	1
PCB-1232	ND	0.50	ug	1	08/24/23	SC	SW8082A	1
PCB-1242	ND	0.50	ug	1	08/24/23	SC	SW8082A	1
PCB-1248	ND	0.50	ug	1	08/24/23	SC	SW8082A	1
PCB-1254	ND	0.50	ug	1	08/24/23	SC	SW8082A	1
PCB-1260	ND	0.50	ug	1	08/24/23	SC	SW8082A	1
PCB-1262	ND	0.50	ug	1	08/24/23	SC	SW8082A	1
PCB-1268	ND	0.50	ug	1	08/24/23	SC	SW8082A	1
QA/QC Surrogates								
% DCBP	92		%	1	08/24/23	SC	30 - 150 %	
% DCBP (Confirmation)	87		%	1	08/24/23	SC	30 - 150 %	
% TCMX	75		%	1	08/24/23	SC	30 - 150 %	
% TCMX (Confirmation)	78		%	1	08/24/23	SC	30 - 150 %	

Project ID: NY032303	67 CHGE WS				Pł	noeni	x I.D.: CO80	307
Client ID: WSA 21								
		RL/						
Parameter	Result	PQL	Units	Dilution	Date/Time	By	Reference	

B = Present in blank, no bias suspected.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Phyllis Shiller, Laboratory Director September 07, 2023 Reviewed and Released by: Anil Makol, Project Manager

Analysis Report

September 07, 2023

NY03230367 CHGE WS

A3 STRUCT 1 (1`)

FOR: Attn:

..

Miller Environmental Group, Inc. 169 Stone Castle Road Rock Tavern, NY 12575

_

. . . •

Project ID: Client ID:

PCB-1268

% DCBP

Ver 1

QA/QC Surrogates

Sample Informa	ation	Custody Inform	nation	Date	<u>i ime</u>
Matrix:	WIPE	Collected by:		08/18/23	
Location Code:	MILLERROC	Received by:	SW	08/21/23	16:42
Rush Request:	Standard	Analyzed by:	see "By" below		
P.O.#:	26532		_		

. .

Laboratory Data

SDG ID: GCO80287 Phoenix ID: CO80308

	RL/					
Result	PQL	Units	Dilution	Date/Time	By	Reference
< 0.5	0.5	ug	1	09/02/23	TH	SW6010D
0.64	0.60	ug	1	09/02/23	TH	SW6010D
18.9	1.0	ug	1	09/02/23	TH	SW6010D
< 0.25	0.25	ug	1	09/02/23	TH	SW6010D
1.66	0.25	ug	1	09/02/23	TH	SW6010D
1.4	0.5	ug	1	09/02/23	TH	SW6010D
< 1.0	1.0	ug	1	09/02/23	TH	SW6010D
Completed				08/23/23	Q/R/AC	1 SW3540C
Completed				08/26/23	AG	SW846
<u>yls</u>						
ND	0.50	ug	1	08/25/23	SC	SW8082A
ND	0.50	ug	1	08/25/23	SC	SW8082A
ND	0.50	ug	1	08/25/23	SC	SW8082A
ND	0.50	ug	1	08/25/23	SC	SW8082A
ND	0.50	ug	1	08/25/23	SC	SW8082A
ND	0.50	ug	1	08/25/23	SC	SW8082A
ND	0.50	ug	1	08/25/23	SC	SW8082A
ND	0.50	ug	1	08/25/23	SC	SW8082A
	< 0.5	Result RL/ PQL < 0.5	Result PQL Units < 0.5	Result RL/ PQL Units Dilution < 0.5	Result PQL Units Dilution Date/Time < 0.5	Result PQL Units Dilution Date/Time By < 0.5

ND

67

0.50

ug

%

%

%

%

1

1

1

1

1

08/25/23

08/25/23

08/25/23

08/25/23

08/25/23

SC

SC

SC

SC

SC

SW8082A

30 - 150 %

30 - 150 %

30 - 150 %

30 - 150 %

1

1

1

1 1,B

1

1

1

1

1

1

1

1

1

1

1

Project ID: NY032303	67 CHGE WS				PI	hoeni	x I.D.: CO8	0308
Client ID: A3 STRUC	CT 1 (1`)							
		RL/						
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference	

B = Present in blank, no bias suspected.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Phyllis Shiller, Laboratory Director September 07, 2023 Reviewed and Released by: Anil Makol, Project Manager

Analysis Report

September 07, 2023

FOR: Attn:

Miller Environmental Group, Inc. 169 Stone Castle Road Rock Tavern, NY 12575

Samn	ا ما	nfo	rmo	tion
Jamp	10 1		11110	

Sample Information		Custody Inforn	<u>Date</u>	<u>Time</u>	
Matrix:	WIPE	Collected by:		08/18/23	
Location Code:	MILLERROC	Received by:	SW	08/21/23	16:42
Rush Request:	Standard	Analyzed by:	see "By" below		
P.O.#:	26532				000000

Laboratory Data

SDG ID: GCO80287 Phoenix ID: CO80309

Project ID:	NY03230367 CHGE WS
Client ID:	A3 STRUCT 2 (3`)

		RL/						
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference	
Silver Wipe	< 0.5	0.5	ug	1	09/02/23	TH	SW6010D	1
Arsenic Wipe	0.73	0.60	ug	1	09/02/23	TH	SW6010D	1
Barium Wipe	8.88	1.0	ug	1	09/02/23	TH	SW6010D	1
Cadmium Wipe	< 0.25	0.25	ug	1	09/02/23	TH	SW6010D	1
Chromium Wipe	1.34	0.25	ug	1	09/02/23	TH	SW6010D	1,B
Lead Wipe	1.5	0.5	ug	1	09/02/23	TH	SW6010D	1
Selenium Wipe	< 1.0	1.0	ug	1	09/02/23	TH	SW6010D	1
PCB Wipe Extraction	Completed				08/23/23	Q/R/AC	1 SW3540C	
Total Metal Digestion	Completed				08/26/23	AG	SW846	
Polychlorinated Biph	enyls							
PCB-1016	ND	0.50	ug	1	08/24/23	SC	SW8082A	1
PCB-1221	ND	0.50	ug	1	08/24/23	SC	SW8082A	1
PCB-1232	ND	0.50	ug	1	08/24/23	SC	SW8082A	1
PCB-1242	ND	0.50	ug	1	08/24/23	SC	SW8082A	1
PCB-1248	ND	0.50	ug	1	08/24/23	SC	SW8082A	1
PCB-1254	ND	0.50	ug	1	08/24/23	SC	SW8082A	1
PCB-1260	ND	0.50	ug	1	08/24/23	SC	SW8082A	1
PCB-1262	ND	0.50	ug	1	08/24/23	SC	SW8082A	1
PCB-1268	ND	0.50	ug	1	08/24/23	SC	SW8082A	1
QA/QC Surrogates								
% DCBP	90		%	1	08/24/23	SC	30 - 150 %	
% DCBP (Confirmation)	88		%	1	08/24/23	SC	30 - 150 %	
% TCMX	72		%	1	08/24/23	SC	30 - 150 %	
% TCMX (Confirmation)	75		%	1	08/24/23	SC	30 - 150 %	

Project ID: NY032303	367 CHGE WS				Pł	noeni	x I.D.: CO80	0309
Client ID: A3 STRU	CT 2 (3`)							
		RL/						
Parameter	Result	PQL	Units	Dilution	Date/Time	By	Reference	

B = Present in blank, no bias suspected.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Phyllis Shiller, Laboratory Director September 07, 2023 Reviewed and Released by: Anil Makol, Project Manager

Analysis Report

September 07, 2023

FOR: Attn:

...

Miller Environmental Group, Inc. 169 Stone Castle Road Rock Tavern, NY 12575

.

Sample Information Custody Information			nation	Date	lime
Matrix:	WIPE	Collected by:		08/18/23	
Location Code:	MILLERROC	Received by:	SW	08/21/23	16:42
Rush Request:	Standard	Analyzed by:	see "By" below		
P.O.#:	26532				CC0000

. . .

Laboratory Data

SDG ID: GCO80287 Phoenix ID: CO80310

Project ID:	NY03230367 CHGE WS
Client ID:	A3 STRUCT 3 (6`)

_		RL/				_		
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference	
Silver Wipe	< 0.5	0.5	ug	1	09/02/23	TH	SW6010D	1
Arsenic Wipe	0.87	0.60	ug	1	09/02/23	TH	SW6010D	1
Barium Wipe	30.3	1.0	ug	1	09/02/23	TH	SW6010D	1
Cadmium Wipe	0.15	0.25	ug	1	09/02/23	TH	SW6010D	1
Chromium Wipe	2.34	0.25	ug	1	09/02/23	TH	SW6010D	1,B
Lead Wipe	3.0	0.5	ug	1	09/02/23	TH	SW6010D	1
Selenium Wipe	< 1.0	1.0	ug	1	09/02/23	TH	SW6010D	1
PCB Wipe Extraction	Completed				08/23/23	Q/R/AC	1 SW3540C	
Total Metal Digestion	Completed				08/26/23	AG	SW846	
Polychlorinated Biph	<u>enyls</u>							
PCB-1016	ND	0.50	ug	1	08/25/23	SC	SW8082A	1
PCB-1221	ND	0.50	ug	1	08/25/23	SC	SW8082A	1
PCB-1232	ND	0.50	ug	1	08/25/23	SC	SW8082A	1
PCB-1242	ND	0.50	ug	1	08/25/23	SC	SW8082A	1
PCB-1248	ND	0.50	ug	1	08/25/23	SC	SW8082A	1
PCB-1254	ND	0.50	ug	1	08/25/23	SC	SW8082A	1
PCB-1260	ND	0.50	ug	1	08/25/23	SC	SW8082A	1
PCB-1262	ND	0.50	ug	1	08/25/23	SC	SW8082A	1
PCB-1268	ND	0.50	ug	1	08/25/23	SC	SW8082A	1
QA/QC Surrogates								
% DCBP	61		%	1	08/25/23	SC	30 - 150 %	
% DCBP (Confirmation)	64		%	1	08/25/23	SC	30 - 150 %	
% TCMX	68		%	1	08/25/23	SC	30 - 150 %	
% TCMX (Confirmation)	71		%	1	08/25/23	SC	30 - 150 %	

Project ID: NY03230367 CHGE WS					Phoenix I.D.: CO803)310
Client ID: A3 STRU	CT 3 (6`)							
		RL/						
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference	

B = Present in blank, no bias suspected.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Phyllis Shiller, Laboratory Director September 07, 2023 Reviewed and Released by: Anil Makol, Project Manager

Time

16:42

Analysis Report

September 07, 2023

FOR: Attn:

Miller Environmental Group, Inc. 169 Stone Castle Road Rock Tavern, NY 12575

Sam	ole	Information
oun		mornation

Matrix:	WIPE	Collected by:						
Location Code:	MILLERROC	Received by:	SW					
Rush Request:	Standard	Analyzed by:	see "By" below					
P.O.#:	26532							

Laboratory Data

Custody Information

SDG ID: GCO80287 Phoenix ID: CO80311

<u>Date</u> 08/18/23

08/21/23

Project ID:	NY03230367 CHGE WS
Client ID:	PCB TANK MID WALL 1`

		RL/						
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference	
Silver Wipe	< 0.5	0.5	ug	1	09/02/23	TH	SW6010D	1
Arsenic Wipe	0.95	0.60	ug	1	09/02/23	TH	SW6010D	1
Barium Wipe	1.42	1.0	ug	1	09/02/23	TH	SW6010D	1
Cadmium Wipe	0.84	0.25	ug	1	09/02/23	TH	SW6010D	1
Chromium Wipe	1.21	0.25	ug	1	09/02/23	TH	SW6010D	1,B
Lead Wipe	3.6	0.5	ug	1	09/02/23	TH	SW6010D	1
Selenium Wipe	< 1.0	1.0	ug	1	09/02/23	TH	SW6010D	1
PCB Wipe Extraction	Completed				08/23/23	Q/R/AC	1 SW3540C	
Total Metal Digestion	Completed				08/26/23	AG	SW846	
Polychlorinated Biph	<u>enyls</u>							
PCB-1016	ND	0.50	ug	1	08/24/23	SC	SW8082A	1
PCB-1221	ND	0.50	ug	1	08/24/23	SC	SW8082A	1
PCB-1232	ND	0.50	ug	1	08/24/23	SC	SW8082A	1
PCB-1242	ND	0.50	ug	1	08/24/23	SC	SW8082A	1
PCB-1248	ND	0.50	ug	1	08/24/23	SC	SW8082A	1
PCB-1254	ND	0.50	ug	1	08/24/23	SC	SW8082A	1
PCB-1260	2.0	0.50	ug	1	08/24/23	SC	SW8082A	1
PCB-1262	ND	0.50	ug	1	08/24/23	SC	SW8082A	1
PCB-1268	ND	0.50	ug	1	08/24/23	SC	SW8082A	1
QA/QC Surrogates								
% DCBP	70		%	1	08/24/23	SC	30 - 150 %	
% DCBP (Confirmation)	80		%	1	08/24/23	SC	30 - 150 %	
% TCMX	64		%	1	08/24/23	SC	30 - 150 %	
% TCMX (Confirmation)	68		%	1	08/24/23	SC	30 - 150 %	

Project ID: NY03230367 CHGE WS Client ID: PCB TANK MID WALL 1`					Pł	noenix	x I.D.: CO803	311
Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference	

B = Present in blank, no bias suspected.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Phyllis Shiller, Laboratory Director September 07, 2023 Reviewed and Released by: Anil Makol, Project Manager

Time

16:42

Analysis Report

September 07, 2023

FOR: Attn:

Custody Information

Laboratory Data

Miller Environmental Group, Inc. 169 Stone Castle Road Rock Tavern, NY 12575

Sample In	formation

Matrix:	WIPE	Collected by:	
Location Code:	MILLERROC	Received by:	SW
Rush Request:	Standard	Analyzed by:	see
P.O.#:	26532		

e "By" below

SDG ID: GCO80287 Phoenix ID: CO80312

Date 08/18/23

08/21/23

NY03230367 CHGE WS Project ID: Client ID: PCB TANK MID WALL 3`

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	By	Reference	
Silver Wipe	< 0.5	0.5	ug	1	09/02/23	TH	SW6010D	1
Arsenic Wipe	0.92	0.60	ug	1	09/02/23	ΤН	SW6010D	1
Barium Wipe	1.45	1.0	ug	1	09/02/23	TH	SW6010D	1
Cadmium Wipe	0.34	0.25	ug	1	09/02/23	TH	SW6010D	1
Chromium Wipe	1.57	0.25	ug	1	09/02/23	TH	SW6010D	1,B
Lead Wipe	2.7	0.5	ug	1	09/02/23	TH	SW6010D	1
Selenium Wipe	< 1.0	1.0	ug	1	09/02/23	тн	SW6010D	1
PCB Wipe Extraction	Completed				08/23/23	Q/R/AC	1 SW3540C	
Total Metal Digestion	Completed				08/26/23	AG	SW846	
Polychlorinated Biph	<u>nenyls</u>							
PCB-1016	ND	0.50	ug	1	08/24/23	SC	SW8082A	1
PCB-1221	ND	0.50	ug	1	08/24/23	SC	SW8082A	1
PCB-1232	ND	0.50	ug	1	08/24/23	SC	SW8082A	1
PCB-1242	ND	0.50	ug	1	08/24/23	SC	SW8082A	1
PCB-1248	ND	0.50	ug	1	08/24/23	SC	SW8082A	1
PCB-1254	ND	0.50	ug	1	08/24/23	SC	SW8082A	1
PCB-1260	1.7	0.50	ug	1	08/24/23	SC	SW8082A	1
PCB-1262	ND	0.50	ug	1	08/24/23	SC	SW8082A	1
PCB-1268	ND	0.50	ug	1	08/24/23	SC	SW8082A	1
QA/QC Surrogates								
% DCBP	62		%	1	08/24/23	SC	30 - 150 %	
% DCBP (Confirmation)	73		%	1	08/24/23	SC	30 - 150 %	
% TCMX	55		%	1	08/24/23	SC	30 - 150 %	
% TCMX (Confirmation)	60		%	1	08/24/23	SC	30 - 150 %	

Project ID: NY03230367 CHGE WS Client ID: PCB TANK MID WALL 3`					Pł	noeni	x I.D.: CO803	312
Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	By	Reference	

B = Present in blank, no bias suspected.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Phyllis Shiller, Laboratory Director September 07, 2023 Reviewed and Released by: Anil Makol, Project Manager

Time

16:42

Analysis Report

September 07, 2023

FOR: Attn:

Miller Environmental Group, Inc. 169 Stone Castle Road Rock Tavern, NY 12575

Sample	Information	

Sample Informa	ation	Custody Informati	on
Matrix:	WIPE	Collected by:	
Location Code:	MILLERROC	Received by:	SW
Rush Request:	Standard	Analyzed by:	see
P.O.#:	26532		

see "By" below Laboratory Data

SW

SDG ID: GCO80287 Phoenix ID: CO80313

<u>Date</u> 08/18/23

08/21/23

Project ID:	NY03230367 CHGE WS
Client ID:	PCB TANK MID WALL 6`

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference	
Silver Wipe	< 0.5	0.5	ug	1	09/02/23	TH	SW6010D	1
Arsenic Wipe	1.41	0.60	ug	1	09/02/23	TH	SW6010D	1
Barium Wipe	1.11	1.0	ug	1	09/02/23	TH	SW6010D	1
Cadmium Wipe	0.11	0.25	ug	1	09/02/23	TH	SW6010D	1
Chromium Wipe	3.68	0.25	ug	1	09/02/23	TH	SW6010D	1,B
Lead Wipe	1.9	0.5	ug	1	09/02/23	TH	SW6010D	1
Selenium Wipe	< 1.0	1.0	ug	1	09/02/23	TH	SW6010D	1
PCB Wipe Extraction	Completed				08/23/23	Q/R/AC	1 SW3540C	
Total Metal Digestion	Completed				08/26/23	AG	SW846	
Polychlorinated Biph	<u>enyls</u>							
PCB-1016	ND	0.50	ug	1	08/24/23	SC	SW8082A	1
PCB-1221	ND	0.50	ug	1	08/24/23	SC	SW8082A	1
PCB-1232	ND	0.50	ug	1	08/24/23	SC	SW8082A	1
PCB-1242	ND	0.50	ug	1	08/24/23	SC	SW8082A	1
PCB-1248	ND	0.50	ug	1	08/24/23	SC	SW8082A	1
PCB-1254	ND	0.50	ug	1	08/24/23	SC	SW8082A	1
PCB-1260	0.75	0.50	ug	1	08/24/23	SC	SW8082A	1
PCB-1262	ND	0.50	ug	1	08/24/23	SC	SW8082A	1
PCB-1268	ND	0.50	ug	1	08/24/23	SC	SW8082A	1
QA/QC Surrogates								
% DCBP	73		%	1	08/24/23	SC	30 - 150 %	
% DCBP (Confirmation)	70		%	1	08/24/23	SC	30 - 150 %	
% TCMX	55		%	1	08/24/23	SC	30 - 150 %	
% TCMX (Confirmation)	55		%	1	08/24/23	SC	30 - 150 %	

Project ID: NY032303	67 CHGE WS				Pł	noeni	x I.D.: CO80	313
Client ID: PCB TANK	K MID WALL 6`							
		RL/						
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference	

B = Present in blank, no bias suspected.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Phyllis Shiller, Laboratory Director September 07, 2023 Reviewed and Released by: Anil Makol, Project Manager

Time

16:42

Analysis Report

September 07, 2023

FOR: Attn:

SW

see "By" below

Miller Environmental Group, Inc. 169 Stone Castle Road Rock Tavern, NY 12575

Sample Information

Matrix:	WIPE
Location Code:	MILLERROC
Rush Request:	Standard
P.O.#:	26532

Laboratory Data

Custody Information

Collected by:

Received by:

Analyzed by:

SDG ID: GCO80287 Phoenix ID: CO80314

Date

08/18/23

08/21/23

Project ID: NY03230367 CHGE WS Client ID: PCB TANK EAST FLOOR 1`

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference	
Silver Wipe	< 0.5	0.5	ug	1	09/02/23	TH	SW6010D	1
Arsenic Wipe	1.85	0.60	ug	1	09/02/23	TH	SW6010D	1
Barium Wipe	1.54	1.0	ug	1	09/02/23	TH	SW6010D	1
Cadmium Wipe	2.17	0.25	ug	1	09/02/23	TH	SW6010D	1
Chromium Wipe	6.47	0.25	ug	1	09/02/23	TH	SW6010D	1,B
Lead Wipe	5.3	0.5	ug	1	09/02/23	TH	SW6010D	1
Selenium Wipe	< 1.0	1.0	ug	1	09/02/23	TH	SW6010D	1
PCB Wipe Extraction	Completed				08/23/23	Q/R/AC	1 SW3540C	
Total Metal Digestion	Completed				08/26/23	AG	SW846	
Polychlorinated Biph	enyls							
PCB-1016	ND	0.60	ug	1	08/24/23	PS	SW8082A	1
PCB-1221	ND	0.60	ug	1	08/24/23	PS	SW8082A	1
PCB-1232	ND	0.60	ug	1	08/24/23	PS	SW8082A	1
PCB-1242	ND	0.60	ug	1	08/24/23	PS	SW8082A	1
PCB-1248	ND	0.60	ug	1	08/24/23	PS	SW8082A	1
PCB-1254	ND	0.60	ug	1	08/24/23	PS	SW8082A	1
PCB-1260	ND	0.60	ug	1	08/24/23	PS	SW8082A	1
PCB-1262	ND	0.60	ug	1	08/24/23	PS	SW8082A	1
PCB-1268	ND	0.60	ug	1	08/24/23	PS	SW8082A	1
QA/QC Surrogates								
% DCBP	65		%	1	08/24/23	PS	30 - 150 %	
% DCBP (Confirmation)	66		%	1	08/24/23	PS	30 - 150 %	
% TCMX	33		%	1	08/24/23	PS	30 - 150 %	
% TCMX (Confirmation)	33		%	1	08/24/23	PS	30 - 150 %	

Project ID: NY03230367 CHGE WS

Client ID: PCB TANK EAST FLOOR 1`

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference

1 = This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

B = Present in blank, no bias suspected.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Phyllis Shiller, Laboratory Director September 07, 2023 Reviewed and Released by: Anil Makol, Project Manager

Time

16:42

Analysis Report

FOR: Attn:

SW

see "By" below

Miller Environmental Group, Inc. 169 Stone Castle Road Rock Tavern, NY 12575

Sample Information

Matrix:	WIPE
Location Code:	MILLERROC
Rush Request:	Standard
P.O.#:	26532

September 07, 2023

Laboratory Data

Custody Information

Collected by:

Received by:

Analyzed by:

SDG ID: GCO80287 Phoenix ID: CO80315

Date

08/18/23

08/21/23

Project ID: NY03230367 CHGE WS Client ID: PCB TANK WEST FLOOR 1`

		RL/						
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference	
Silver Wipe	< 0.5	0.5	ug	1	09/02/23	TH	SW6010D	1
Arsenic Wipe	1.36	0.60	ug	1	09/02/23	TH	SW6010D	1
Barium Wipe	1.35	1.0	ug	1	09/02/23	TH	SW6010D	1
Cadmium Wipe	1.23	0.25	ug	1	09/02/23	TH	SW6010D	1
Chromium Wipe	1.31	0.25	ug	1	09/02/23	TH	SW6010D	1,B
Lead Wipe	1.9	0.5	ug	1	09/02/23	TH	SW6010D	1
Selenium Wipe	< 1.0	1.0	ug	1	09/02/23	TH	SW6010D	1
PCB Wipe Extraction	Completed				08/23/23	Q/R/AC	1 SW3540C	
Total Metal Digestion	Completed				08/26/23	AG	SW846	
Polychlorinated Biph	<u>enyls</u>							
PCB-1016	ND	0.50	ug	1	08/24/23	SC	SW8082A	1
PCB-1221	ND	0.50	ug	1	08/24/23	SC	SW8082A	1
PCB-1232	ND	0.50	ug	1	08/24/23	SC	SW8082A	1
PCB-1242	ND	0.50	ug	1	08/24/23	SC	SW8082A	1
PCB-1248	ND	0.50	ug	1	08/24/23	SC	SW8082A	1
PCB-1254	ND	0.50	ug	1	08/24/23	SC	SW8082A	1
PCB-1260	ND	0.50	ug	1	08/24/23	SC	SW8082A	1
PCB-1262	ND	0.50	ug	1	08/24/23	SC	SW8082A	1
PCB-1268	ND	0.50	ug	1	08/24/23	SC	SW8082A	1
QA/QC Surrogates								
% DCBP	63		%	1	08/24/23	SC	30 - 150 %	
% DCBP (Confirmation)	65		%	1	08/24/23	SC	30 - 150 %	
% TCMX	65		%	1	08/24/23	SC	30 - 150 %	
% TCMX (Confirmation)	68		%	1	08/24/23	SC	30 - 150 %	

Project ID: NY03230367 CHGE WS Pho Client ID: PCB TANK WEST FLOOR 1` RL/ Parameter Result PQL Units Dilution Date/Time

1 = This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

B = Present in blank, no bias suspected.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director September 07, 2023 Reviewed and Released by: Anil Makol, Project Manager

Reference

By

Time

16:42

Analysis Report

FOR: Attn:

SW

see "By" below

Miller Environmental Group, Inc. 169 Stone Castle Road Rock Tavern, NY 12575

|--|

Matrix:	WIPE
Location Code:	MILLERROC
Rush Request:	Standard
P.O.#:	26532

September 07, 2023

		_
La	boratorv	/ Data

Custody Information

Collected by:

Received by:

Analyzed by:

SDG ID: GCO80287 Phoenix ID: CO80316

Date

08/18/23

08/21/23

Project ID: NY03230367 CHGE WS Client ID: SOAK TANK EAST WALL 2`

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	By	Reference	
Silver Wipe	< 0.5	0.5	ug	1	09/02/23	TH	SW6010D	1
Arsenic Wipe	< 0.60	0.60	ug	1	09/02/23	TH	SW6010D	1
Barium Wipe	11.8	1.0	ug	1	09/02/23	TH	SW6010D	1
Cadmium Wipe	0.16	0.25	ug	1	09/02/23	TH	SW6010D	1
Chromium Wipe	2.24	0.25	ug	1	09/02/23	TH	SW6010D	1,B
Lead Wipe	64.5	0.5	ug	1	09/02/23	TH	SW6010D	1
Selenium Wipe	< 1.0	1.0	ug	1	09/02/23	TH	SW6010D	1
PCB Wipe Extraction	Completed				08/23/23	Q/R/AC	1 SW3540C	
Total Metal Digestion	Completed				08/26/23	AG	SW846	
Polychlorinated Biph	<u>enyls</u>							
PCB-1016	ND	0.50	ug	1	08/24/23	SC	SW8082A	1
PCB-1221	ND	0.50	ug	1	08/24/23	SC	SW8082A	1
PCB-1232	ND	0.50	ug	1	08/24/23	SC	SW8082A	1
PCB-1242	ND	0.50	ug	1	08/24/23	SC	SW8082A	1
PCB-1248	ND	0.50	ug	1	08/24/23	SC	SW8082A	1
PCB-1254	ND	0.50	ug	1	08/24/23	SC	SW8082A	1
PCB-1260	ND	0.50	ug	1	08/24/23	SC	SW8082A	1
PCB-1262	ND	0.50	ug	1	08/24/23	SC	SW8082A	1
PCB-1268	ND	0.50	ug	1	08/24/23	SC	SW8082A	1
QA/QC Surrogates								
% DCBP	91		%	1	08/24/23	SC	30 - 150 %	
% DCBP (Confirmation)	89		%	1	08/24/23	SC	30 - 150 %	
% TCMX	79		%	1	08/24/23	SC	30 - 150 %	
% TCMX (Confirmation)	85		%	1	08/24/23	SC	30 - 150 %	

Project ID: NY03230367 CHGE WS

Client ID: SOAK TANK EAST WALL 2`

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference

1 = This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

B = Present in blank, no bias suspected.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Phyllis Shiller, Laboratory Director September 07, 2023 Reviewed and Released by: Anil Makol, Project Manager

Time

16:42

Analysis Report

FOR: Attn:

SW

see "By" below

Miller Environmental Group, Inc. 169 Stone Castle Road Rock Tavern, NY 12575

	Sample	Information
--	--------	-------------

Matrix:	WIPE
Location Code:	MILLERROC
Rush Request:	Standard
P.O.#:	26532

September 07, 2023

_	_	
La	boratory	Data

Custody Information

Collected by:

Received by:

Analyzed by:

SDG ID: GCO80287 Phoenix ID: CO80317

Date

08/18/23

08/21/23

Project ID: NY03230367 CHGE WS

Client ID: SOAK TANK NORTH WALL 3`

		RL/						
Parameter	Result	PQL	Units	Dilution	Date/Time	By	Reference	
Silver Wipe	< 0.5	0.5	ug	1	09/02/23	TH	SW6010D	1
Arsenic Wipe	0.66	0.60	ug	1	09/02/23	ΤН	SW6010D	1
Barium Wipe	18.5	1.0	ug	1	09/02/23	TH	SW6010D	1
Cadmium Wipe	0.18	0.25	ug	1	09/02/23	TH	SW6010D	1
Chromium Wipe	5.26	0.25	ug	1	09/02/23	TH	SW6010D	1,B
Lead Wipe	115	5.0	ug	10	09/06/23	TH	SW6010D	1
Selenium Wipe	< 1.0	1.0	ug	1	09/02/23	TH	SW6010D	1
PCB Wipe Extraction	Completed				08/23/23	Q/R/AC	1 SW3540C	
Total Metal Digestion	Completed				08/26/23	AG	SW846	
Polychlorinated Biph	<u>nenyls</u>							
PCB-1016	ND	0.50	ug	1	08/25/23	SC	SW8082A	1
PCB-1221	ND	0.50	ug	1	08/25/23	SC	SW8082A	1
PCB-1232	ND	0.50	ug	1	08/25/23	SC	SW8082A	1
PCB-1242	ND	0.50	ug	1	08/25/23	SC	SW8082A	1
PCB-1248	ND	0.50	ug	1	08/25/23	SC	SW8082A	1
PCB-1254	ND	0.50	ug	1	08/25/23	SC	SW8082A	1
PCB-1260	ND	0.50	ug	1	08/25/23	SC	SW8082A	1
PCB-1262	ND	0.50	ug	1	08/25/23	SC	SW8082A	1
PCB-1268	ND	0.50	ug	1	08/25/23	SC	SW8082A	1
QA/QC Surrogates								
% DCBP	70		%	1	08/25/23	SC	30 - 150 %	
% DCBP (Confirmation)	66		%	1	08/25/23	SC	30 - 150 %	
% TCMX	75		%	1	08/25/23	SC	30 - 150 %	
% TCMX (Confirmation)	77		%	1	08/25/23	SC	30 - 150 %	

Project ID: NY03230367 CHGE WS

Client ID: SOAK TANK NORTH WALL 3`

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference

1 = This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

B = Present in blank, no bias suspected.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Phyllis Shiller, Laboratory Director September 07, 2023 Reviewed and Released by: Anil Makol, Project Manager

Analysis Report

September 07, 2023

FOR: Attn:

Custody Information

Laboratory Data

Miller Environmental Group, Inc. 169 Stone Castle Road Rock Tavern, NY 12575

	Sam	ole	Informati	on
--	-----	-----	-----------	----

Matrix:

P.O.#:

Location Code:

Rush Request:

Collected by:
Received by:
Analyzed by:

SW

see "By" below

Time Date 08/18/23 08/21/23 16:42

SDG ID: GCO80287 Phoenix ID: CO80318

NY03230367 CHGE WS Project ID: Client ID:

WIPE

MILLERROC

Standard

26532

SOAK TANK WEST WALL 4`

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference	
Silver Wipe	< 0.5	0.5	ug	1	09/02/23	TH	SW6010D	1
Arsenic Wipe	< 0.60	0.60	ug	1	09/02/23	TH	SW6010D	1
Barium Wipe	4.74	1.0	ug	1	09/02/23	TH	SW6010D	1
Cadmium Wipe	0.13	0.25	ug	1	09/02/23	TH	SW6010D	1
Chromium Wipe	2.21	0.25	ug	1	09/02/23	TH	SW6010D	1,B
Lead Wipe	21.9	0.5	ug	1	09/02/23	TH	SW6010D	1
Selenium Wipe	< 1.0	1.0	ug	1	09/02/23	TH	SW6010D	1
PCB Wipe Extraction	Completed				08/23/23	Q/R/AC	1 SW3540C	
Total Metal Digestion	Completed				08/26/23	AG	SW846	
Polychlorinated Biph	<u>enyls</u>							
PCB-1016	ND	0.50	ug	1	08/24/23	SC	SW8082A	1
PCB-1221	ND	0.50	ug	1	08/24/23	SC	SW8082A	1
PCB-1232	ND	0.50	ug	1	08/24/23	SC	SW8082A	1
PCB-1242	ND	0.50	ug	1	08/24/23	SC	SW8082A	1
PCB-1248	ND	0.50	ug	1	08/24/23	SC	SW8082A	1
PCB-1254	ND	0.50	ug	1	08/24/23	SC	SW8082A	1
PCB-1260	ND	0.50	ug	1	08/24/23	SC	SW8082A	1
PCB-1262	ND	0.50	ug	1	08/24/23	SC	SW8082A	1
PCB-1268	ND	0.50	ug	1	08/24/23	SC	SW8082A	1
QA/QC Surrogates								
% DCBP	84		%	1	08/24/23	SC	30 - 150 %	
% DCBP (Confirmation)	81		%	1	08/24/23	SC	30 - 150 %	
% TCMX	68		%	1	08/24/23	SC	30 - 150 %	
% TCMX (Confirmation)	70		%	1	08/24/23	SC	30 - 150 %	

Project ID: NY03230367 CHGE WS Phoenix I.D.: CO80318 Client ID: SOAK TANK WEST WALL 4` RL/ Parameter Result PQL Units Dilution Date/Time By Reference

1 = This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

B = Present in blank, no bias suspected.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Phyllis Shiller, Laboratory Director September 07, 2023 Reviewed and Released by: Anil Makol, Project Manager

Time

16:42

Analysis Report

September 07, 2023

FOR: Attn:

Miller Environmental Group, Inc. 169 Stone Castle Road Rock Tavern, NY 12575

Samn	ا ما	nfor	mat	ion
Jamp		TIIOI	ma	

Matrix:

P.O.#:

Location Code:

Rush Request:

-		
WIPE	Collected by:	
MILLERROC	Received by:	SW
Standard	Analyzed by:	see "By" below

Laboratory Data

Custody Information

SDG ID: GCO80287 Phoenix ID: CO80319

Date

08/18/23

08/21/23

Project ID:NY03230367 CHGE WSClient ID:SOAK TANK FLOOR

26532

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference	
Silver Wipe	< 0.5	0.5	ug	1	09/02/23	TH	SW6010D	1
Arsenic Wipe	2.50	0.60	ug	1	09/02/23	TH	SW6010D	1
Barium Wipe	37.3	1.0	ug	1	09/02/23	TH	SW6010D	1
Cadmium Wipe	10.3	0.25	ug	1	09/02/23	TH	SW6010D	1
Chromium Wipe	30.7	0.25	ug	1	09/02/23	TH	SW6010D	1,B
Lead Wipe	95.7	0.5	ug	1	09/02/23	TH	SW6010D	1
Selenium Wipe	< 1.0	1.0	ug	1	09/02/23	TH	SW6010D	1
PCB Wipe Extraction	Completed				08/24/23	Q/R/AC	1 SW3540C	
Total Metal Digestion	Completed				08/26/23	AG	SW846	
Polychlorinated Biph	<u>enyls</u>							
PCB-1016	ND	0.50	ug	1	08/25/23	SC	SW8082A	1
PCB-1221	ND	0.50	ug	1	08/25/23	SC	SW8082A	1
PCB-1232	ND	0.50	ug	1	08/25/23	SC	SW8082A	1
PCB-1242	ND	0.50	ug	1	08/25/23	SC	SW8082A	1
PCB-1248	ND	0.50	ug	1	08/25/23	SC	SW8082A	1
PCB-1254	ND	0.50	ug	1	08/25/23	SC	SW8082A	1
PCB-1260	ND	0.50	ug	1	08/25/23	SC	SW8082A	1
PCB-1262	ND	0.50	ug	1	08/25/23	SC	SW8082A	1
PCB-1268	ND	0.50	ug	1	08/25/23	SC	SW8082A	1
QA/QC Surrogates								
% DCBP	86		%	1	08/25/23	SC	30 - 150 %	
% DCBP (Confirmation)	87		%	1	08/25/23	SC	30 - 150 %	
% TCMX	68		%	1	08/25/23	SC	30 - 150 %	
% TCMX (Confirmation)	65		%	1	08/25/23	SC	30 - 150 %	

Project ID: NY032303 Client ID: SOAK TAN	67 CHGE WS IK FLOOR				Pł	noeni	x I.D.: CO80319)
Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	By	Reference	

B = Present in blank, no bias suspected.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Phyllis Shiller, Laboratory Director September 07, 2023 Reviewed and Released by: Anil Makol, Project Manager

Time

Analysis Report

September 07, 2023

WIPE

MILLERROC

NY03230367 CHGE WS

TANK SHOP FLOOR 1

Standard

26532

FOR: Attn:

Miller Environmental Group, Inc. 169 Stone Castle Road Rock Tavern, NY 12575

Sample	Information

Matrix:

P.O.#:

Location Code:

Rush Request:

Project ID: Client ID: Custody Information Collected by: Received by: SW

Analyzed by:

SW see "By" below 08/18/23 08/21/23 16:42

Date

Laboratory Data

SDG ID: GCO80287 Phoenix ID: CO80320

		RL/						
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference	
Silver Wipe	< 0.5	0.5	ug	1	09/02/23	TH	SW6010D	1
Arsenic Wipe	< 0.60	0.60	ug	1	09/02/23	TH	SW6010D	1
Barium Wipe	3.54	1.0	ug	1	09/02/23	TH	SW6010D	1
Cadmium Wipe	0.41	0.25	ug	1	09/02/23	TH	SW6010D	1
Chromium Wipe	0.95	0.25	ug	1	09/02/23	TH	SW6010D	,B*
Lead Wipe	3.3	0.5	ug	1	09/02/23	TH	SW6010D	1
Selenium Wipe	< 1.0	1.0	ug	1	09/02/23	TH	SW6010D	1
PCB Wipe Extraction	Completed				08/24/23	Q/R/AC	1 SW3540C	
Total Metal Digestion	Completed				08/26/23	AG	SW846	
Polychlorinated Biphen	<u>yls</u>							
PCB-1016	ND	5.0	ug	10	08/25/23	SC	SW8082A	1
PCB-1221	ND	5.0	ug	10	08/25/23	SC	SW8082A	1
PCB-1232	ND	5.0	ug	10	08/25/23	SC	SW8082A	1
PCB-1242	ND	5.0	ug	10	08/25/23	SC	SW8082A	1
PCB-1248	ND	5.0	ug	10	08/25/23	SC	SW8082A	1
PCB-1254	ND	5.0	ug	10	08/25/23	SC	SW8082A	1
PCB-1260	25	5.0	ug	10	08/25/23	SC	SW8082A	1
PCB-1262	ND	5.0	ug	10	08/25/23	SC	SW8082A	1
PCB-1268	ND	5.0	ug	10	08/25/23	SC	SW8082A	1
QA/QC Surrogates								
% DCBP	108		%	10	08/25/23	SC	30 - 150 %	
% DCBP (Confirmation)	110		%	10	08/25/23	SC	30 - 150 %	
% TCMX	78		%	10	08/25/23	SC	30 - 150 %	
% TCMX (Confirmation)	81		%	10	08/25/23	SC	30 - 150 %	

Ver 1

Project ID: NY032303			Р	hoeni	x I.D.: CO80)320		
Client ID: TANK SHO	OP FLOOR 1							
		RL/						
Parameter	Result	PQL	Unit	s Dilution	Date/Time	Ву	Reference	

 B^* = Present in blank, a bias is possible.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Ξ

Phyllis, Shiller, Laboratory Director September 07, 2023 Reviewed and Released by: Anil Makol, Project Manager

Analysis Report

September 07, 2023

FOR: Attn:

Miller Environmental Group, Inc. 169 Stone Castle Road Rock Tavern, NY 12575

Sample	Information
Campio	monnation

Sample Information		Custody Inforn	nation	<u>Date</u>	<u>Time</u>
Matrix:	WIPE	Collected by:		08/18/23	
Location Code:	MILLERROC	Received by:	SW	08/21/23	16:42
Rush Request:	Standard	Analyzed by:	see "By" below		
P.O.#:	26532				000000

Laboratory Data

SDG ID: GCO80287 Phoenix ID: CO80321

Project ID:	NY03230367 CHGE WS
Client ID:	TANK SHOP WALL 2

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference	
Silver Wipe	< 0.5	0.5	ug	1	09/02/23	TH	SW6010D	1
Arsenic Wipe	< 0.60	0.60	ug	1	09/02/23	TH	SW6010D	1
Barium Wipe	1.43	1.0	ug	1	09/02/23	TH	SW6010D	1
Cadmium Wipe	< 0.25	0.25	ug	1	09/02/23	TH	SW6010D	1
Chromium Wipe	< 0.25	0.25	ug	1	09/02/23	PS	SW6010D	1,B
Lead Wipe	1.1	0.5	ug	1	09/02/23	TH	SW6010D	1
Selenium Wipe	< 1.0	1.0	ug	1	09/02/23	TH	SW6010D	1
PCB Wipe Extraction	Completed				08/24/23	Q/R/AC	1 SW3540C	
Total Metal Digestion	Completed				08/26/23	AG	SW846	
Polychlorinated Biph	<u>enyls</u>							
PCB-1016	ND	0.50	ug	1	08/26/23	SC	SW8082A	1
PCB-1221	ND	0.50	ug	1	08/26/23	SC	SW8082A	1
PCB-1232	ND	0.50	ug	1	08/26/23	SC	SW8082A	1
PCB-1242	ND	0.50	ug	1	08/26/23	SC	SW8082A	1
PCB-1248	ND	0.50	ug	1	08/26/23	SC	SW8082A	1
PCB-1254	ND	0.50	ug	1	08/26/23	SC	SW8082A	1
PCB-1260	ND	0.50	ug	1	08/26/23	SC	SW8082A	1
PCB-1262	ND	0.50	ug	1	08/26/23	SC	SW8082A	1
PCB-1268	ND	0.50	ug	1	08/26/23	SC	SW8082A	1
QA/QC Surrogates								
% DCBP	85		%	1	08/26/23	SC	30 - 150 %	
% DCBP (Confirmation)	89		%	1	08/26/23	SC	30 - 150 %	
% TCMX	75		%	1	08/26/23	SC	30 - 150 %	
% TCMX (Confirmation)	74		%	1	08/26/23	SC	30 - 150 %	

Project ID: NY03230 Client ID: TANK SH	367 CHGE WS IOP WALL 2				Pł	noenix	x I.D.: CO803	321
Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	By	Reference	

B = Present in blank, no bias suspected.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Phyllis Shiller, Laboratory Director September 07, 2023 Reviewed and Released by: Anil Makol, Project Manager

Analysis Report

September 07, 2023

NY03230367 CHGE WS

FOR: Attn:

Miller Environmental Group, Inc. 169 Stone Castle Road Rock Tavern, NY 12575

	Sample	Information
--	--------	-------------

Project ID:

Sample Informa	<u>ation</u>	Custody Inform	nation	<u>Date</u>	<u>Time</u>
Matrix:	WIPE	Collected by:		08/18/23	
Location Code:	MILLERROC	Received by:	SW	08/21/23	16:42
Rush Request:	Standard	Analyzed by:	see "By" below		
P.O.#:	26532				000000

Laboratory Data

SDG ID: GCO80287 Phoenix ID: CO80322

Client ID: TANK SH	IOP WALL 3							
Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference	
Silver Wipe	< 0.5	0.5	ug	1	09/03/23	CPP	SW6010D	1
Arsenic Wipe	< 0.50	0.50	ug	1	09/03/23	CPP	SW6010D	1
Barium Wipe	3.34	1.1	ug	1	09/03/23	CPP	SW6010D	1
Cadmium Wipe	0.35	0.10	ug	1	09/03/23	CPP	SW6010D	1
Chromium Wipe	0.59	0.10	ug	1	09/03/23	CPP	SW6010D	1
Lead Wipe	3.0	0.5	ug	1	09/03/23	CPP	SW6010D	1
Selenium Wipe	< 1.0	1.0	ug	1	09/03/23	CPP	SW6010D	1
PCB Wipe Extraction	Completed				08/24/23	Q/R/AC	1 SW3540C	
Total Metal Digestion	Completed				08/26/23	AG	SW846	
Polychlorinated Biph	<u>nenyls</u>							
PCB-1016	ND	0.50	ug	1	08/26/23	SC	SW8082A	1
PCB-1221	ND	0.50	ug	1	08/26/23	SC	SW8082A	1
PCB-1232	ND	0.50	ug	1	08/26/23	SC	SW8082A	1
PCB-1242	ND	0.50	ug	1	08/26/23	SC	SW8082A	1
PCB-1248	ND	0.50	ug	1	08/26/23	SC	SW8082A	1
PCB-1254	ND	0.50	ug	1	08/26/23	SC	SW8082A	1
PCB-1260	ND	0.50	ug	1	08/26/23	SC	SW8082A	1
PCB-1262	ND	0.50	ug	1	08/26/23	SC	SW8082A	1
PCB-1268	ND	0.50	ug	1	08/26/23	SC	SW8082A	1
QA/QC Surrogates								
% DCBP	75		%	1	08/26/23	SC	30 - 150 %	
% DCBP (Confirmation)	73		%	1	08/26/23	SC	30 - 150 %	
% TCMX	51		%	1	08/26/23	SC	30 - 150 %	
% TCMX (Confirmation)	51		%	1	08/26/23	SC	30 - 150 %	

Project ID: NY03230	367 CHGE WS				Pł	noeni	x I.D.: CO80)322
Client ID: TANK SH	IOP WALL 3							
		RL/						
Parameter	Result	PQL	Units	Dilution	Date/Time	By	Reference	

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

=

Phyllis Shiller, Laboratory Director September 07, 2023 Reviewed and Released by: Anil Makol, Project Manager

Analysis Report

September 07, 2023

FOR: Attn:

Miller Environmental Group, Inc. 169 Stone Castle Road Rock Tavern, NY 12575

Sample	Information
Campio	monnation

Sample Informa	<u>ation</u>	Custody Inforn	<u>nation</u>	<u>Date</u>	<u>Time</u>
Matrix:	WIPE	Collected by:		08/18/23	
Location Code:	MILLERROC	Received by:	SW	08/21/23	16:42
Rush Request:	Standard	Analyzed by:	see "By" below		
P.O.#:	26532				00000

Laboratory Data

SDG ID: GCO80287 Phoenix ID: CO80323

Project ID:	NY03230367 CHGE WS
Client ID:	TANK SHOP WALL 4

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference	
Silver Wipe	< 0.5	0.5	ug	1	09/03/23	CPP	SW6010D	1
Arsenic Wipe	< 0.50	0.50	ug	1	09/03/23	CPP	SW6010D	1
Barium Wipe	3.47	1.1	ug	1	09/03/23	CPP	SW6010D	1
Cadmium Wipe	0.36	0.10	ug	1	09/03/23	CPP	SW6010D	1
Chromium Wipe	0.90	0.10	ug	1	09/03/23	CPP	SW6010D	1
Lead Wipe	3.5	0.5	ug	1	09/03/23	CPP	SW6010D	1
Selenium Wipe	< 1.0	1.0	ug	1	09/03/23	CPP	SW6010D	1
PCB Wipe Extraction	Completed				08/24/23	Q/R/AC	1 SW3540C	
Total Metal Digestion	Completed				08/26/23	AG	SW846	
Polychlorinated Biph	<u>enyls</u>							
PCB-1016	ND	0.50	ug	1	08/26/23	SC	SW8082A	1
PCB-1221	ND	0.50	ug	1	08/26/23	SC	SW8082A	1
PCB-1232	ND	0.50	ug	1	08/26/23	SC	SW8082A	1
PCB-1242	ND	0.50	ug	1	08/26/23	SC	SW8082A	1
PCB-1248	ND	0.50	ug	1	08/26/23	SC	SW8082A	1
PCB-1254	ND	0.50	ug	1	08/26/23	SC	SW8082A	1
PCB-1260	0.58	0.50	ug	1	08/26/23	SC	SW8082A	1
PCB-1262	ND	0.50	ug	1	08/26/23	SC	SW8082A	1
PCB-1268	ND	0.50	ug	1	08/26/23	SC	SW8082A	1
QA/QC Surrogates								
% DCBP	104		%	1	08/26/23	SC	30 - 150 %	
% DCBP (Confirmation)	105		%	1	08/26/23	SC	30 - 150 %	
% TCMX	88		%	1	08/26/23	SC	30 - 150 %	
% TCMX (Confirmation)	86		%	1	08/26/23	SC	30 - 150 %	

Project ID: NY03230	367 CHGE WS				Phoenix I.D.: CO8032			
Client ID: TANK SH	HOP WALL 4							
		RL/						
arameter	Result	PQL	Units	Dilution	Date/Time	By	Reference	

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Ρ

Phyllis, Shiller, Laboratory Director September 07, 2023 Reviewed and Released by: Anil Makol, Project Manager

Time

16:42

Analysis Report

September 07, 2023

L/U 1

FOR: Attn:

SW

see "By" below

Miller Environmental Group, Inc. 169 Stone Castle Road Rock Tavern, NY 12575

Sample Information

Project ID: Client ID:

Matrix:	WIPE	Collected by:
Location Code:	MILLERROC	Received by:
Rush Request:	Standard	Analyzed by:
P.O.#:	26532	1 - 1

NY03230367 CHGE WS

Laboratory Data

Custody Information

SDG ID: GCO80287 Phoenix ID: CO80324

<u>Date</u> 08/18/23

08/21/23

		RL/						
Parameter	Result	PQL	Units	Dilution	Date/Time	By	Reference	
Silver Wipe	< 0.5	0.5	ug	1	09/03/23	CPP	SW6010D	1
Arsenic Wipe	< 0.50	0.50	ug	1	09/03/23	CPP	SW6010D	1
Barium Wipe	2.07	1.1	ug	1	09/03/23	CPP	SW6010D	1
Cadmium Wipe	0.16	0.10	ug	1	09/03/23	CPP	SW6010D	1
Chromium Wipe	0.21	0.10	ug	1	09/03/23	CPP	SW6010D	1
Lead Wipe	< 0.5	0.5	ug	1	09/03/23	CPP	SW6010D	1
Selenium Wipe	< 1.0	1.0	ug	1	09/03/23	CPP	SW6010D	1
PCB Wipe Extraction	Completed				08/24/23	Q/R/AC1	SW3540C	
Total Metal Digestion	Completed				08/26/23	AG	SW846	
Polychlorinated Biph	<u>enyls</u>							
PCB-1016	ND	0.50	ug	1	08/25/23	SC	SW8082A	1
PCB-1221	ND	0.50	ug	1	08/25/23	SC	SW8082A	1
PCB-1232	ND	0.50	ug	1	08/25/23	SC	SW8082A	1
PCB-1242	ND	0.50	ug	1	08/25/23	SC	SW8082A	1
PCB-1248	ND	0.50	ug	1	08/25/23	SC	SW8082A	1
PCB-1254	ND	0.50	ug	1	08/25/23	SC	SW8082A	1
PCB-1260	ND	0.50	ug	1	08/25/23	SC	SW8082A	1
PCB-1262	ND	0.50	ug	1	08/25/23	SC	SW8082A	1
PCB-1268	ND	0.50	ug	1	08/25/23	SC	SW8082A	1
QA/QC Surrogates								
% DCBP	85		%	1	08/25/23	SC	30 - 150 %	
% DCBP (Confirmation)	78		%	1	08/25/23	SC	30 - 150 %	
% TCMX	70		%	1	08/25/23	SC	30 - 150 %	
% TCMX (Confirmation)	67		%	1	08/25/23	SC	30 - 150 %	

Project ID: NY03230367 CHGE WS Client ID: L/U 1

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	By	Reference

1 = This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Phyllis Shiller, Laboratory Director September 07, 2023 Reviewed and Released by: Anil Makol, Project Manager

Time

16:42

Analysis Report

September 07, 2023

FOR: Attn:

Miller Environmental Group, Inc. 169 Stone Castle Road Rock Tavern, NY 12575

Sample Information

Matrix:	WIPE	Collected by:
Location Code:	MILLERROC	Received by:
Rush Request:	Standard	Analyzed by:
P.O.#:	26532	1 - 1 1

Laboratory Data

SW

see "By" below

Custody Information

SDG ID: GCO80287 Phoenix ID: CO80325

<u>Date</u> 08/18/23

08/21/23

Project ID: NY03230367 CHGE WS Client ID: L/U 2

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference	
Silver Wipe	< 0.5	0.5	ug	1	09/03/23	CPP	SW6010D	1
Arsenic Wipe	< 0.50	0.50	ug	1	09/03/23	CPP	SW6010D	1
Barium Wipe	2.90	1.1	ug	1	09/03/23	CPP	SW6010D	1
Cadmium Wipe	0.34	0.10	ug	1	09/03/23	CPP	SW6010D	1
Chromium Wipe	0.51	0.10	ug	1	09/03/23	CPP	SW6010D	1
Lead Wipe	< 0.5	0.5	ug	1	09/03/23	CPP	SW6010D	1
Selenium Wipe	< 1.0	1.0	ug	1	09/03/23	CPP	SW6010D	1
PCB Wipe Extraction	Completed				08/24/23	Q/R/AC	1 SW3540C	
Total Metal Digestion	Completed				08/26/23	AG	SW846	
Polychlorinated Biph	enyls							
PCB-1016	ND	0.50	ug	1	08/25/23	SC	SW8082A	1
PCB-1221	ND	0.50	ug	1	08/25/23	SC	SW8082A	1
PCB-1232	ND	0.50	ug	1	08/25/23	SC	SW8082A	1
PCB-1242	ND	0.50	ug	1	08/25/23	SC	SW8082A	1
PCB-1248	ND	0.50	ug	1	08/25/23	SC	SW8082A	1
PCB-1254	ND	0.50	ug	1	08/25/23	SC	SW8082A	1
PCB-1260	ND	0.50	ug	1	08/25/23	SC	SW8082A	1
PCB-1262	ND	0.50	ug	1	08/25/23	SC	SW8082A	1
PCB-1268	ND	0.50	ug	1	08/25/23	SC	SW8082A	1
QA/QC Surrogates								
% DCBP	97		%	1	08/25/23	SC	30 - 150 %	
% DCBP (Confirmation)	92		%	1	08/25/23	SC	30 - 150 %	
% TCMX	80		%	1	08/25/23	SC	30 - 150 %	
% TCMX (Confirmation)	78		%	1	08/25/23	SC	30 - 150 %	

Project ID: NY03230367 CHGE WS Client ID: L/U 2

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference

1 = This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Phyllis, Shiller, Laboratory Director September 07, 2023 Reviewed and Released by: Anil Makol, Project Manager

Time

16:42

Analysis Report

September 07, 2023

FOR: Attn:

SW

see "By" below

Miller Environmental Group, Inc. 169 Stone Castle Road Rock Tavern, NY 12575

Sample Information

Matrix:	WIPE	Collected by:
Location Code:	MILLERROC	Received by:
Rush Request:	Standard	Analyzed by:
P.O.#:	26532	

Laboratory Data

Custody Information

SDG ID: GCO80287 Phoenix ID: CO80326

<u>Date</u> 08/18/23

08/21/23

Project ID: NY03230367 CHGE WS Client ID: L/U 3

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference	
Silver Wipe	< 0.5	0.5	ug	1	09/03/23	CPP	SW6010D	1
Arsenic Wipe	< 0.50	0.50	ug	1	09/03/23	CPP	SW6010D	1
Barium Wipe	2.16	1.1	ug	1	09/03/23	CPP	SW6010D	1
Cadmium Wipe	0.42	0.10	ug	1	09/03/23	CPP	SW6010D	1
Chromium Wipe	0.75	0.10	ug	1	09/03/23	CPP	SW6010D	1
Lead Wipe	< 0.5	0.5	ug	1	09/03/23	CPP	SW6010D	1
Selenium Wipe	< 1.0	1.0	ug	1	09/03/23	CPP	SW6010D	1
PCB Wipe Extraction	Completed				08/24/23	Q/R/AC	1 SW3540C	
Total Metal Digestion	Completed				08/26/23	AG	SW846	
Polychlorinated Biph	<u>enyls</u>							
PCB-1016	ND	0.50	ug	1	08/25/23	SC	SW8082A	1
PCB-1221	ND	0.50	ug	1	08/25/23	SC	SW8082A	1
PCB-1232	ND	0.50	ug	1	08/25/23	SC	SW8082A	1
PCB-1242	ND	0.50	ug	1	08/25/23	SC	SW8082A	1
PCB-1248	ND	0.50	ug	1	08/25/23	SC	SW8082A	1
PCB-1254	ND	0.50	ug	1	08/25/23	SC	SW8082A	1
PCB-1260	ND	0.50	ug	1	08/25/23	SC	SW8082A	1
PCB-1262	ND	0.50	ug	1	08/25/23	SC	SW8082A	1
PCB-1268	ND	0.50	ug	1	08/25/23	SC	SW8082A	1
QA/QC Surrogates								
% DCBP	94		%	1	08/25/23	SC	30 - 150 %	
% DCBP (Confirmation)	96		%	1	08/25/23	SC	30 - 150 %	
% TCMX	82		%	1	08/25/23	SC	30 - 150 %	
% TCMX (Confirmation)	82		%	1	08/25/23	SC	30 - 150 %	

Project ID: NY03230367 CHGE WS Client ID: L/U 3

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	By	Reference

1 = This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Phyllis, Shiller, Laboratory Director September 07, 2023 Reviewed and Released by: Anil Makol, Project Manager

Time

16:42

Analysis Report

September 07, 2023

L/U 4

FOR: Attn:

SW

see "By" below

Miller Environmental Group, Inc. 169 Stone Castle Road Rock Tavern, NY 12575

Sample Information

Project ID: Client ID:

Matrix:	WIPE	Collected by:
Location Code:	MILLERROC	Received by:
Rush Request:	Standard	Analyzed by:
P.O.#:	26532	

NY03230367 CHGE WS

Laboratory Data

Custody Information

SDG ID: GCO80287 Phoenix ID: CO80327

<u>Date</u> 08/18/23

08/21/23

		RL/			_			
Parameter	Result	PQL	Units	Dilution	Date/Time	By	Reference	
Silver Wipe	< 0.5	0.5	ug	1	09/03/23	CPP	SW6010D	1
Arsenic Wipe	< 0.50	0.50	ug	1	09/03/23	CPP	SW6010D	1
Barium Wipe	2.37	1.1	ug	1	09/03/23	CPP	SW6010D	1
Cadmium Wipe	0.54	0.10	ug	1	09/03/23	CPP	SW6010D	1
Chromium Wipe	0.34	0.10	ug	1	09/03/23	CPP	SW6010D	1
Lead Wipe	0.6	0.5	ug	1	09/03/23	CPP	SW6010D	1
Selenium Wipe	< 1.0	1.0	ug	1	09/03/23	CPP	SW6010D	1
PCB Wipe Extraction	Completed				08/24/23	Q/R/AC1	1 SW3540C	
Total Metal Digestion	Completed				08/26/23	AG	SW846	
Polychlorinated Biph	enyls							
PCB-1016	ND	0.50	ug	1	08/25/23	SC	SW8082A	1
PCB-1221	ND	0.50	ug	1	08/25/23	SC	SW8082A	1
PCB-1232	ND	0.50	ug	1	08/25/23	SC	SW8082A	1
PCB-1242	ND	0.50	ug	1	08/25/23	SC	SW8082A	1
PCB-1248	ND	0.50	ug	1	08/25/23	SC	SW8082A	1
PCB-1254	ND	0.50	ug	1	08/25/23	SC	SW8082A	1
PCB-1260	0.75	0.50	ug	1	08/25/23	SC	SW8082A	1
PCB-1262	ND	0.50	ug	1	08/25/23	SC	SW8082A	1
PCB-1268	ND	0.50	ug	1	08/25/23	SC	SW8082A	1
QA/QC Surrogates								
% DCBP	65		%	1	08/25/23	SC	30 - 150 %	
% DCBP (Confirmation)	66		%	1	08/25/23	SC	30 - 150 %	
% TCMX	53		%	1	08/25/23	SC	30 - 150 %	
% TCMX (Confirmation)	53		%	1	08/25/23	SC	30 - 150 %	

Project ID: NY03230367 CHGE WS Client ID: L/U 4

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference

1 = This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Phyllis Shiller, Laboratory Director September 07, 2023 Reviewed and Released by: Anil Makol, Project Manager

Time

16:42

Analysis Report

September 07, 2023

FOR: Attn:

Miller Environmental Group, Inc. 169 Stone Castle Road Rock Tavern, NY 12575

Sample Information

Matrix:	WIPE	Collected by:	
Location Code:	MILLERROC	Received by:	SW
Rush Request:	Standard	Analyzed by:	see "By" below
P.O.#:	26532		

Laboratory Data

Custody Information

SDG ID: GCO80287 Phoenix ID: CO80328

<u>Date</u> 08/18/23

08/21/23

Project ID:	NY03230367 CHGE WS
Client ID:	L/U 5

		RL/						
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference	
Silver Wipe	< 0.5	0.5	ug	1	09/03/23	CPP	SW6010D	1
Arsenic Wipe	< 0.50	0.50	ug	1	09/03/23	CPP	SW6010D	1
Barium Wipe	2.99	1.1	ug	1	09/03/23	CPP	SW6010D	1
Cadmium Wipe	0.55	0.10	ug	1	09/03/23	CPP	SW6010D	1
Chromium Wipe	0.76	0.10	ug	1	09/03/23	CPP	SW6010D	1
Lead Wipe	0.7	0.5	ug	1	09/03/23	CPP	SW6010D	1
Selenium Wipe	< 1.0	1.0	ug	1	09/03/23	CPP	SW6010D	1
PCB Wipe Extraction	Completed				08/24/23	Q/R/AC	1 SW3540C	
Total Metal Digestion	Completed				08/26/23	AG	SW846	
Polychlorinated Biph	<u>enyls</u>							
PCB-1016	ND	0.50	ug	1	08/25/23	SC	SW8082A	1
PCB-1221	ND	0.50	ug	1	08/25/23	SC	SW8082A	1
PCB-1232	ND	0.50	ug	1	08/25/23	SC	SW8082A	1
PCB-1242	ND	0.50	ug	1	08/25/23	SC	SW8082A	1
PCB-1248	ND	0.50	ug	1	08/25/23	SC	SW8082A	1
PCB-1254	ND	0.50	ug	1	08/25/23	SC	SW8082A	1
PCB-1260	ND	0.50	ug	1	08/25/23	SC	SW8082A	1
PCB-1262	ND	0.50	ug	1	08/25/23	SC	SW8082A	1
PCB-1268	ND	0.50	ug	1	08/25/23	SC	SW8082A	1
QA/QC Surrogates								
% DCBP	91		%	1	08/25/23	SC	30 - 150 %	
% DCBP (Confirmation)	95		%	1	08/25/23	SC	30 - 150 %	
% TCMX	79		%	1	08/25/23	SC	30 - 150 %	
% TCMX (Confirmation)	80		%	1	08/25/23	SC	30 - 150 %	

Project ID: NY03230367 CHGE WS Client ID: L/U 5

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	By	Reference

1 = This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Phyllis Shiller, Laboratory Director September 07, 2023 Reviewed and Released by: Anil Makol, Project Manager

Time

16:42

Analysis Report

September 07, 2023

FOR: Attn:

Miller Environmental Group, Inc. 169 Stone Castle Road Rock Tavern, NY 12575

Sample Information

Matrix:	WIPE	Collected by:	
Location Code:	MILLERROC	Received by:	SW
Rush Request:	Standard	Analyzed by:	see "By" below
P.O.#:	26532	1 - 1	

Laboratory Data

DI /

Custody Information

SDG ID: GCO80287 Phoenix ID: CO80329

<u>Date</u> 08/18/23

08/21/23

Project ID:	NY03230367 CHGE WS
Client ID:	L/U 6

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference	
Silver Wipe	< 0.5	0.5	ug	1	09/03/23	CPP	SW6010D	1
Arsenic Wipe	< 0.50	0.50	ug	1	09/03/23	CPP	SW6010D	1
Barium Wipe	2.07	1.1	ug	1	09/03/23	CPP	SW6010D	1
Cadmium Wipe	0.35	0.10	ug	1	09/03/23	CPP	SW6010D	1
Chromium Wipe	0.82	0.10	ug	1	09/03/23	CPP	SW6010D	1
Lead Wipe	0.7	0.5	ug	1	09/03/23	CPP	SW6010D	1
Selenium Wipe	< 1.0	1.0	ug	1	09/03/23	CPP	SW6010D	1
PCB Wipe Extraction	Completed				08/24/23	Q/R/AC	1 SW3540C	
Total Metal Digestion	Completed				08/26/23	AG	SW846	
Polychlorinated Biph	enyls							
PCB-1016	ND	0.50	ug	1	08/25/23	SC	SW8082A	1
PCB-1221	ND	0.50	ug	1	08/25/23	SC	SW8082A	1
PCB-1232	ND	0.50	ug	1	08/25/23	SC	SW8082A	1
PCB-1242	ND	0.50	ug	1	08/25/23	SC	SW8082A	1
PCB-1248	ND	0.50	ug	1	08/25/23	SC	SW8082A	1
PCB-1254	ND	0.50	ug	1	08/25/23	SC	SW8082A	1
PCB-1260	ND	0.50	ug	1	08/25/23	SC	SW8082A	1
PCB-1262	ND	0.50	ug	1	08/25/23	SC	SW8082A	1
PCB-1268	ND	0.50	ug	1	08/25/23	SC	SW8082A	1
QA/QC Surrogates								
% DCBP	28		%	1	08/25/23	SC	30 - 150 %	3
% DCBP (Confirmation)	30		%	1	08/25/23	SC	30 - 150 %	
% TCMX	23		%	1	08/25/23	SC	30 - 150 %	3
% TCMX (Confirmation)	23		%	1	08/25/23	SC	30 - 150 %	3

Project ID: NY0323036		Phoenix I.D.: CO8				329		
Client ID: L/U 6								
		RL/						
Parameter	Result	PQL	Units	Dilution	Date/Time	By	Reference	

1 = This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

3 = This parameter exceeds laboratory specified limits.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

=

PCB Comment:

Poor surrogate recovery was observed for PCBs. Insufficient sample for re-extraction.

Phyllis Shiller, Laboratory Director September 07, 2023 Reviewed and Released by: Anil Makol, Project Manager

Analysis Report

September 07, 2023

FOR: Attn:

Miller Environmental Group, Inc. 169 Stone Castle Road Rock Tavern, NY 12575

Sample	Information	

Sample Information		Custody Inform	Date	<u>Time</u>	
Matrix:	WIPE	Collected by:		08/18/23	
Location Code:	MILLERROC	Received by:	SW	08/21/23	16:42
Rush Request:	Standard	Analyzed by:	see "By" below		
P.O.#:	26532	1	Data		CCORDO

Laboratory Data

SDG ID: GCO80287 Phoenix ID: CO80330

Project ID:	NY03230367 CHGE WS
Client ID:	L/U 7

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	By	Reference	
Silver Wipe	< 0.5	0.5	ug	1	09/03/23	CPP	SW6010D	1
Arsenic Wipe	< 0.50	0.50	ug	1	09/03/23	CPP	SW6010D	1
Barium Wipe	1.74	1.1	ug	1	09/03/23	CPP	SW6010D	1
Cadmium Wipe	0.84	0.10	ug	1	09/03/23	CPP	SW6010D	1
Chromium Wipe	0.27	0.10	ug	1	09/03/23	CPP	SW6010D	1
Lead Wipe	< 0.5	0.5	ug	1	09/03/23	CPP	SW6010D	1
Selenium Wipe	< 1.0	1.0	ug	1	09/03/23	CPP	SW6010D	1
Total Metal Digestion	Completed				08/26/23	AG	SW846	

1 = This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

Comments:

Phyllis Shiller, Laboratory Director September 07, 2023 Reviewed and Released by: Anil Makol, Project Manager

Time

16:42

Analysis Report

September 07, 2023

L/U 8

FOR: Attn:

SW

see "By" below

Miller Environmental Group, Inc. 169 Stone Castle Road Rock Tavern, NY 12575

Sample Information

Project ID: Client ID:

Matrix:		Collected by:
Matrix.		Collected by.
Location Code:	MILLERROC	Received by:
Rush Request:	Standard	Analyzed by:
P.O.#:	26532	

NY03230367 CHGE WS

Laboratory Data

Custody Information

SDG ID: GCO80287 Phoenix ID: CO80331

<u>Date</u> 08/18/23

08/21/23

		RL/						
Parameter	Result	PQL	Units	Dilution	Date/Time	By	Reference	
Silver Wipe	< 0.5	0.5	ug	1	09/03/23	CPP	SW6010D	1
Arsenic Wipe	< 0.50	0.50	ug	1	09/03/23	CPP	SW6010D	1
Barium Wipe	2.09	1.1	ug	1	09/03/23	CPP	SW6010D	1
Cadmium Wipe	0.15	0.10	ug	1	09/03/23	CPP	SW6010D	1
Chromium Wipe	0.26	0.10	ug	1	09/03/23	CPP	SW6010D	1
Lead Wipe	< 0.5	0.5	ug	1	09/03/23	CPP	SW6010D	1
Selenium Wipe	< 1.0	1.0	ug	1	09/03/23	CPP	SW6010D	1
PCB Wipe Extraction	Completed				08/24/23	Q/R/AC	1 SW3540C	
Total Metal Digestion	Completed				08/26/23	AG	SW846	
Polychlorinated Biph	<u>enyls</u>							
PCB-1016	ND	0.50	ug	1	08/25/23	SC	SW8082A	1
PCB-1221	ND	0.50	ug	1	08/25/23	SC	SW8082A	1
PCB-1232	ND	0.50	ug	1	08/25/23	SC	SW8082A	1
PCB-1242	ND	0.50	ug	1	08/25/23	SC	SW8082A	1
PCB-1248	ND	0.50	ug	1	08/25/23	SC	SW8082A	1
PCB-1254	ND	0.50	ug	1	08/25/23	SC	SW8082A	1
PCB-1260	ND	0.50	ug	1	08/25/23	SC	SW8082A	1
PCB-1262	ND	0.50	ug	1	08/25/23	SC	SW8082A	1
PCB-1268	ND	0.50	ug	1	08/25/23	SC	SW8082A	1
QA/QC Surrogates								
% DCBP	72		%	1	08/25/23	SC	30 - 150 %	
% DCBP (Confirmation)	75		%	1	08/25/23	SC	30 - 150 %	
% TCMX	64		%	1	08/25/23	SC	30 - 150 %	
% TCMX (Confirmation)	65		%	1	08/25/23	SC	30 - 150 %	

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	By	Reference

1 = This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Phyllis, Shiller, Laboratory Director September 07, 2023 Reviewed and Released by: Anil Makol, Project Manager

Time

16:42

Analysis Report

September 07, 2023

FOR: Attn:

SW

see "By" below

Miller Environmental Group, Inc. 169 Stone Castle Road Rock Tavern, NY 12575

Sample Information

Matrix:	WIPE	Collected by:
Location Code:	MILLERROC	Received by:
Rush Request:	Standard	Analyzed by:
P.O.#:	26532	

Laboratory Data

Custody Information

SDG ID: GCO80287 Phoenix ID: CO80332

<u>Date</u> 08/18/23

08/21/23

		RL/						
Parameter	Result	PQL	Units	Dilution	Date/Time	By	Reference	
Silver Wipe	< 0.5	0.5	ug	1	09/04/23	CPP	SW6010D	1
Arsenic Wipe	< 0.50	0.50	ug	1	09/04/23	CPP	SW6010D	1
Barium Wipe	2.29	1.1	ug	1	09/04/23	CPP	SW6010D	1
Cadmium Wipe	0.25	0.10	ug	1	09/04/23	CPP	SW6010D	1
Chromium Wipe	0.27	0.10	ug	1	09/04/23	CPP	SW6010D	1
Lead Wipe	< 0.5	0.5	ug	1	09/04/23	CPP	SW6010D	1
Selenium Wipe	< 1.0	1.0	ug	1	09/04/23	CPP	SW6010D	1
PCB Wipe Extraction	Completed				08/24/23	Q/R/AC	1 SW3540C	
Total Metal Digestion	Completed				08/26/23	AG	SW846	
Polychlorinated Biph	enyls							
PCB-1016	ND	0.50	ug	1	08/25/23	SC	SW8082A	1
PCB-1221	ND	0.50	ug	1	08/25/23	SC	SW8082A	1
PCB-1232	ND	0.50	ug	1	08/25/23	SC	SW8082A	1
PCB-1242	ND	0.50	ug	1	08/25/23	SC	SW8082A	1
PCB-1248	ND	0.50	ug	1	08/25/23	SC	SW8082A	1
PCB-1254	ND	0.50	ug	1	08/25/23	SC	SW8082A	1
PCB-1260	ND	0.50	ug	1	08/25/23	SC	SW8082A	1
PCB-1262	ND	0.50	ug	1	08/25/23	SC	SW8082A	1
PCB-1268	ND	0.50	ug	1	08/25/23	SC	SW8082A	1
QA/QC Surrogates								
% DCBP	103		%	1	08/25/23	SC	30 - 150 %	
% DCBP (Confirmation)	102		%	1	08/25/23	SC	30 - 150 %	
% TCMX	85		%	1	08/25/23	SC	30 - 150 %	
% TCMX (Confirmation)	86		%	1	08/25/23	SC	30 - 150 %	

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	By	Reference

1 = This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Phyllis, Shiller, Laboratory Director September 07, 2023 Reviewed and Released by: Anil Makol, Project Manager

Time

16:42

Analysis Report

September 07, 2023

FOR: Attn:

SW

see "By" below

Miller Environmental Group, Inc. 169 Stone Castle Road Rock Tavern, NY 12575

Sample Information

Matrix:	WIPE	Collected by:
Location Code:	MILLERROC	Received by:
Rush Request:	Standard	Analyzed by:
P.O.#:	26532	

Laboratory Data

Custody Information

SDG ID: GCO80287 Phoenix ID: CO80333

<u>Date</u> 08/18/23

08/21/23

		RL/						
Parameter	Result	PQL	Units	Dilution	Date/Time	By	Reference	
Silver Wipe	< 0.5	0.5	ug	1	09/04/23	CPP	SW6010D	1
Arsenic Wipe	< 0.50	0.50	ug	1	09/04/23	CPP	SW6010D	1
Barium Wipe	1.97	1.1	ug	1	09/04/23	CPP	SW6010D	1
Cadmium Wipe	0.66	0.10	ug	1	09/04/23	CPP	SW6010D	1
Chromium Wipe	0.24	0.10	ug	1	09/04/23	CPP	SW6010D	1
Lead Wipe	1.1	0.5	ug	1	09/04/23	CPP	SW6010D	1
Selenium Wipe	< 1.0	1.0	ug	1	09/04/23	CPP	SW6010D	1
PCB Wipe Extraction	Completed				08/24/23	Q/R/AC	1 SW3540C	
Total Metal Digestion	Completed				08/26/23	AG	SW846	
Polychlorinated Biph	enyls							
PCB-1016	ND	0.50	ug	1	08/25/23	SC	SW8082A	1
PCB-1221	ND	0.50	ug	1	08/25/23	SC	SW8082A	1
PCB-1232	ND	0.50	ug	1	08/25/23	SC	SW8082A	1
PCB-1242	ND	0.50	ug	1	08/25/23	SC	SW8082A	1
PCB-1248	ND	0.50	ug	1	08/25/23	SC	SW8082A	1
PCB-1254	ND	0.50	ug	1	08/25/23	SC	SW8082A	1
PCB-1260	ND	0.50	ug	1	08/25/23	SC	SW8082A	1
PCB-1262	ND	0.50	ug	1	08/25/23	SC	SW8082A	1
PCB-1268	ND	0.50	ug	1	08/25/23	SC	SW8082A	1
QA/QC Surrogates								
% DCBP	112		%	1	08/25/23	SC	30 - 150 %	
% DCBP (Confirmation)	124		%	1	08/25/23	SC	30 - 150 %	
% TCMX	76		%	1	08/25/23	SC	30 - 150 %	
% TCMX (Confirmation)	78		%	1	08/25/23	SC	30 - 150 %	

Project ID: NY03230367 CHGE WS Client ID: L/U 10

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	By	Reference

1 = This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Phyllis Shiller, Laboratory Director September 07, 2023 Reviewed and Released by: Anil Makol, Project Manager

Time

16:42

Analysis Report

September 07, 2023

FOR: Attn:

SW

see "By" below

Miller Environmental Group, Inc. 169 Stone Castle Road Rock Tavern, NY 12575

Sample Information

Matrix:	WIPE	Collected by:
Location Code:	MILLERROC	Received by:
Rush Request:	Standard	Analyzed by:
P.O.#:	26532	

Laboratory Data

Custody Information

SDG ID: GCO80287 Phoenix ID: CO80334

<u>Date</u> 08/18/23

08/21/23

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference	
Silver Wipe	< 0.5	0.5	ug	1	09/04/23	CPP	SW6010D	1
Arsenic Wipe	< 0.50	0.50	ug	1	09/04/23	CPP	SW6010D	1
Barium Wipe	2.06	1.1	ug	1	09/04/23	CPP	SW6010D	1
Cadmium Wipe	0.15	0.10	ug	1	09/04/23	CPP	SW6010D	1
Chromium Wipe	0.36	0.10	ug	1	09/04/23	CPP	SW6010D	1
Lead Wipe	< 0.5	0.5	ug	1	09/04/23	CPP	SW6010D	1
Selenium Wipe	< 1.0	1.0	ug	1	09/04/23	CPP	SW6010D	1
PCB Wipe Extraction	Completed				08/24/23	Q/R/AC	1 SW3540C	
Total Metal Digestion	Completed				08/26/23	AG	SW846	
Polychlorinated Biph	<u>enyls</u>							
PCB-1016	ND	0.50	ug	1	08/25/23	SC	SW8082A	1
PCB-1221	ND	0.50	ug	1	08/25/23	SC	SW8082A	1
PCB-1232	ND	0.50	ug	1	08/25/23	SC	SW8082A	1
PCB-1242	ND	0.50	ug	1	08/25/23	SC	SW8082A	1
PCB-1248	ND	0.50	ug	1	08/25/23	SC	SW8082A	1
PCB-1254	ND	0.50	ug	1	08/25/23	SC	SW8082A	1
PCB-1260	ND	0.50	ug	1	08/25/23	SC	SW8082A	1
PCB-1262	ND	0.50	ug	1	08/25/23	SC	SW8082A	1
PCB-1268	ND	0.50	ug	1	08/25/23	SC	SW8082A	1
QA/QC Surrogates								
% DCBP	62		%	1	08/25/23	SC	30 - 150 %	
% DCBP (Confirmation)	62		%	1	08/25/23	SC	30 - 150 %	
% TCMX	57		%	1	08/25/23	SC	30 - 150 %	
% TCMX (Confirmation)	56		%	1	08/25/23	SC	30 - 150 %	

Project ID: NY03230367 CHGE WS Client ID: L/U 11

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	By	Reference

1 = This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Phyllis Shiller, Laboratory Director September 07, 2023 Reviewed and Released by: Anil Makol, Project Manager

Time

16:42

Analysis Report

September 07, 2023

FOR: Attn:

SW

see "By" below

Miller Environmental Group, Inc. 169 Stone Castle Road Rock Tavern, NY 12575

Sample Information

Matrix:	WIPE	Collected by:
Location Code:	MILLERROC	Received by:
Rush Request:	Standard	Analyzed by:
P.O.#:	26532	

Laboratory Data

Custody Information

SDG ID: GCO80287 Phoenix ID: CO80335

<u>Date</u> 08/18/23

08/21/23

Project ID:	NY03230367 CHGE WS
Client ID:	L/U 12

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference	
Silver Wipe	< 0.5	0.5	ug	1	09/04/23	CPP	SW6010D	1
Arsenic Wipe	< 0.50	0.50	ug	1	09/04/23	CPP	SW6010D	1
Barium Wipe	2.95	1.1	ug	1	09/04/23	CPP	SW6010D	1
Cadmium Wipe	0.26	0.10	ug	1	09/04/23	CPP	SW6010D	1
Chromium Wipe	0.57	0.10	ug	1	09/04/23	CPP	SW6010D	1
Lead Wipe	< 0.5	0.5	ug	1	09/04/23	CPP	SW6010D	1
Selenium Wipe	< 1.0	1.0	ug	1	09/04/23	CPP	SW6010D	1
PCB Wipe Extraction	Completed				08/24/23	Q/R/AC	1 SW3540C	
Total Metal Digestion	Completed				08/26/23	AG	SW846	
Polychlorinated Bipl	henyls							
PCB-1016	ND	0.50	ug	1	08/25/23	SC	SW8082A	1
PCB-1221	ND	0.50	ug	1	08/25/23	SC	SW8082A	1
PCB-1232	ND	0.50	ug	1	08/25/23	SC	SW8082A	1
PCB-1242	ND	0.50	ug	1	08/25/23	SC	SW8082A	1
PCB-1248	ND	0.50	ug	1	08/25/23	SC	SW8082A	1
PCB-1254	ND	0.50	ug	1	08/25/23	SC	SW8082A	1
PCB-1260	ND	0.50	ug	1	08/25/23	SC	SW8082A	1
PCB-1262	ND	0.50	ug	1	08/25/23	SC	SW8082A	1
PCB-1268	ND	0.50	ug	1	08/25/23	SC	SW8082A	1
QA/QC Surrogates								
% DCBP	55		%	1	08/25/23	SC	30 - 150 %	
% DCBP (Confirmation)	57		%	1	08/25/23	SC	30 - 150 %	
% TCMX	52		%	1	08/25/23	SC	30 - 150 %	
% TCMX (Confirmation)	52		%	1	08/25/23	SC	30 - 150 %	

Project ID: NY03230367 CHGE WS Client ID: L/U 12

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference

1 = This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Phyllis Shiller, Laboratory Director September 07, 2023 Reviewed and Released by: Anil Makol, Project Manager

Time

16:42

Analysis Report

September 07, 2023

FOR: Attn:

SW

see "By" below

Miller Environmental Group, Inc. 169 Stone Castle Road Rock Tavern, NY 12575

Sample Information

Matrix:	WIPE	Collected by:
Location Code:	MILLERROC	Received by:
Rush Request:	Standard	Analyzed by:
P.O.#:	26532	

Laboratory Data

Custody Information

SDG ID: GCO80287 Phoenix ID: CO80336

<u>Date</u> 08/18/23

08/21/23

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference	
Silver Wipe	< 0.5	0.5	ug	1	09/04/23	CPP	SW6010D	1
Arsenic Wipe	0.68	0.50	ug	1	09/04/23	CPP	SW6010D	1
Barium Wipe	307	1.1	ug	1	09/04/23	CPP	SW6010D	1
Cadmium Wipe	0.25	0.10	ug	1	09/04/23	CPP	SW6010D	1
Chromium Wipe	2.70	0.10	ug	1	09/04/23	CPP	SW6010D	1
Lead Wipe	9.5	0.5	ug	1	09/04/23	CPP	SW6010D	1
Selenium Wipe	< 1.0	1.0	ug	1	09/04/23	CPP	SW6010D	1
PCB Wipe Extraction	Completed				08/24/23	Q/R/AC	1 SW3540C	
Total Metal Digestion	Completed				08/26/23	AG	SW846	
Polychlorinated Biph	enyls							
PCB-1016	ND	0.50	ug	1	08/25/23	SC	SW8082A	1
PCB-1221	ND	0.50	ug	1	08/25/23	SC	SW8082A	1
PCB-1232	ND	0.50	ug	1	08/25/23	SC	SW8082A	1
PCB-1242	ND	0.50	ug	1	08/25/23	SC	SW8082A	1
PCB-1248	ND	0.50	ug	1	08/25/23	SC	SW8082A	1
PCB-1254	ND	0.50	ug	1	08/25/23	SC	SW8082A	1
PCB-1260	ND	0.50	ug	1	08/25/23	SC	SW8082A	1
PCB-1262	ND	0.50	ug	1	08/25/23	SC	SW8082A	1
PCB-1268	ND	0.50	ug	1	08/25/23	SC	SW8082A	1
QA/QC Surrogates								
% DCBP	99		%	1	08/25/23	SC	30 - 150 %	
% DCBP (Confirmation)	100		%	1	08/25/23	SC	30 - 150 %	
% TCMX	81		%	1	08/25/23	SC	30 - 150 %	
% TCMX (Confirmation)	82		%	1	08/25/23	SC	30 - 150 %	

Project ID: NY03230367 CHGE WS Client ID: L/U 13

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference

1 = This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Phyllis Shiller, Laboratory Director September 07, 2023 Reviewed and Released by: Anil Makol, Project Manager

Time

16:42

Analysis Report

September 07, 2023

FOR: Attn:

SW

see "By" below

Miller Environmental Group, Inc. 169 Stone Castle Road Rock Tavern, NY 12575

Sample Information

Matrix:	WIPE	Collected by:
Location Code:	MILLERROC	Received by:
Rush Request:	Standard	Analyzed by:
P.O.#:	26532	1 - 1 (

Laboratory Data

Custody Information

SDG ID: GCO80287 Phoenix ID: CO80337

<u>Date</u> 08/18/23

08/21/23

		RL/						
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference	
Silver Wipe	< 0.5	0.5	ug	1	09/04/23	CPP	SW6010D	1
Arsenic Wipe	< 0.50	0.50	ug	1	09/04/23	CPP	SW6010D	1
Barium Wipe	5.97	1.1	ug	1	09/04/23	CPP	SW6010D	1
Cadmium Wipe	0.11	0.10	ug	1	09/04/23	CPP	SW6010D	1
Chromium Wipe	1.27	0.10	ug	1	09/04/23	CPP	SW6010D	1
Lead Wipe	1.0	0.5	ug	1	09/04/23	CPP	SW6010D	1
Selenium Wipe	< 1.0	1.0	ug	1	09/04/23	CPP	SW6010D	1
PCB Wipe Extraction	Completed				08/24/23	Q/R/AC	1 SW3540C	
Total Metal Digestion	Completed				08/26/23	AG	SW846	
Polychlorinated Biph	<u>enyls</u>							
PCB-1016	ND	0.50	ug	1	08/25/23	SC	SW8082A	1
PCB-1221	ND	0.50	ug	1	08/25/23	SC	SW8082A	1
PCB-1232	ND	0.50	ug	1	08/25/23	SC	SW8082A	1
PCB-1242	ND	0.50	ug	1	08/25/23	SC	SW8082A	1
PCB-1248	ND	0.50	ug	1	08/25/23	SC	SW8082A	1
PCB-1254	ND	0.50	ug	1	08/25/23	SC	SW8082A	1
PCB-1260	ND	0.50	ug	1	08/25/23	SC	SW8082A	1
PCB-1262	ND	0.50	ug	1	08/25/23	SC	SW8082A	1
PCB-1268	ND	0.50	ug	1	08/25/23	SC	SW8082A	1
QA/QC Surrogates								
% DCBP	176		%	1	08/25/23	SC	30 - 150 %	3
% DCBP (Confirmation)	176		%	1	08/25/23	SC	30 - 150 %	3
% TCMX	147		%	1	08/25/23	SC	30 - 150 %	
% TCMX (Confirmation)	148		%	1	08/25/23	SC	30 - 150 %	

1 = This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

3 = This parameter exceeds laboratory specified limits.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

PCB Comment:

For PCBs, Surrogate recoveries were >150%. Sample was non detect.

Phyllis Shiller, Laboratory Director September 07, 2023 Reviewed and Released by: Anil Makol, Project Manager

Time

16:42

Analysis Report

September 07, 2023

FOR: Attn:

SW

see "By" below

Miller Environmental Group, Inc. 169 Stone Castle Road Rock Tavern, NY 12575

Sample Information

Matrix:	WIPE	Collected by:
Location Code:	MILLERROC	Received by:
Rush Request:	Standard	Analyzed by:
P.O.#:	26532	

Laboratory Data

Custody Information

SDG ID: GCO80287 Phoenix ID: CO80338

<u>Date</u> 08/18/23

08/21/23

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference	
Silver Wipe	< 0.5	0.5	ug	1	09/04/23	CPP	SW6010D	1
Arsenic Wipe	< 0.50	0.50	ug	1	09/04/23	CPP	SW6010D	1
Barium Wipe	3.87	1.1	ug	1	09/04/23	CPP	SW6010D	1
Cadmium Wipe	0.15	0.10	ug	1	09/04/23	CPP	SW6010D	1
Chromium Wipe	0.23	0.10	ug	1	09/04/23	CPP	SW6010D	1
Lead Wipe	< 0.5	0.5	ug	1	09/04/23	CPP	SW6010D	1
Selenium Wipe	< 1.0	1.0	ug	1	09/04/23	CPP	SW6010D	1
PCB Wipe Extraction	Completed				08/24/23	Q/R/AC	1 SW3540C	
Total Metal Digestion	Completed				08/26/23	AG	SW846	
Polychlorinated Biph	enyls							
PCB-1016	ND	0.50	ug	1	08/26/23	SC	SW8082A	1
PCB-1221	ND	0.50	ug	1	08/26/23	SC	SW8082A	1
PCB-1232	ND	0.50	ug	1	08/26/23	SC	SW8082A	1
PCB-1242	ND	0.50	ug	1	08/26/23	SC	SW8082A	1
PCB-1248	ND	0.50	ug	1	08/26/23	SC	SW8082A	1
PCB-1254	ND	0.50	ug	1	08/26/23	SC	SW8082A	1
PCB-1260	ND	0.50	ug	1	08/26/23	SC	SW8082A	1
PCB-1262	ND	0.50	ug	1	08/26/23	SC	SW8082A	1
PCB-1268	ND	0.50	ug	1	08/26/23	SC	SW8082A	1
QA/QC Surrogates								
% DCBP	96		%	1	08/26/23	SC	30 - 150 %	
% DCBP (Confirmation)	99		%	1	08/26/23	SC	30 - 150 %	
% TCMX	62		%	1	08/26/23	SC	30 - 150 %	
% TCMX (Confirmation)	61		%	1	08/26/23	SC	30 - 150 %	

Project ID: NY03230367 CHGE WS Client ID: L/U 15

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference

1 = This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Phyllis Shiller, Laboratory Director September 07, 2023 Reviewed and Released by: Anil Makol, Project Manager

Time

16:42

Analysis Report

September 07, 2023

FOR: Attn:

SW

see "By" below

Miller Environmental Group, Inc. 169 Stone Castle Road Rock Tavern, NY 12575

Sample Information

Matrix:	WIPE	Collected by:
Location Code:	MILLERROC	Received by:
Rush Request:	Standard	Analyzed by:
P.O.#:	26532	

Laboratory Data

Custody Information

SDG ID: GCO80287 Phoenix ID: CO80339

<u>Date</u> 08/18/23

08/21/23

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference	
Silver Wipe	< 0.5	0.5	ug	1	09/04/23	CPP	SW6010D	1
Arsenic Wipe	< 0.50	0.50	ug	1	09/04/23	CPP	SW6010D	1
Barium Wipe	1.15	1.1	ug	1	09/04/23	CPP	SW6010D	1
Cadmium Wipe	0.15	0.10	ug	1	09/04/23	CPP	SW6010D	1
Chromium Wipe	0.62	0.10	ug	1	09/04/23	CPP	SW6010D	1
Lead Wipe	< 0.5	0.5	ug	1	09/04/23	CPP	SW6010D	1
Selenium Wipe	< 1.0	1.0	ug	1	09/04/23	CPP	SW6010D	1
PCB Wipe Extraction	Completed				08/24/23	Q/R/AC	1 SW3540C	
Total Metal Digestion	Completed				08/26/23	AG	SW846	
Polychlorinated Biph	enyls							
PCB-1016	ND	0.50	ug	1	08/26/23	SC	SW8082A	1
PCB-1221	ND	0.50	ug	1	08/26/23	SC	SW8082A	1
PCB-1232	ND	0.50	ug	1	08/26/23	SC	SW8082A	1
PCB-1242	ND	0.50	ug	1	08/26/23	SC	SW8082A	1
PCB-1248	ND	0.50	ug	1	08/26/23	SC	SW8082A	1
PCB-1254	ND	0.50	ug	1	08/26/23	SC	SW8082A	1
PCB-1260	1.4	0.50	ug	1	08/26/23	SC	SW8082A	1
PCB-1262	ND	0.50	ug	1	08/26/23	SC	SW8082A	1
PCB-1268	ND	0.50	ug	1	08/26/23	SC	SW8082A	1
QA/QC Surrogates								
% DCBP	82		%	1	08/26/23	SC	30 - 150 %	
% DCBP (Confirmation)	85		%	1	08/26/23	SC	30 - 150 %	
% TCMX	66		%	1	08/26/23	SC	30 - 150 %	
% TCMX (Confirmation)	67		%	1	08/26/23	SC	30 - 150 %	

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference

1 = This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Phyllis Shiller, Laboratory Director September 07, 2023 Reviewed and Released by: Anil Makol, Project Manager

NY # 11301

Environmental Laboratories, Inc. 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102

QA/QC Report

September 07, 2023

QA/QC Data

SDG I.D.: GCO80287

												%	%
		Blk	Sample	Dup	Dup	LCS	LCSD	LCS	MS	MSD	MS	Rec	RPD
Parameter	Blank	RL	Result	Result	RPD	%	%	RPD	%	%	RPD	Limits	Limits

QA/QC Batch 693614 (ug), QC Sample No: CO80287 (CO80287, CO80288, CO80289, CO80290, CO80291, CO80292, CO80293, CO80294, CO80295, CO80296, CO80297, CO80298, CO80299, CO80300, CO80301)

ICP Metals - Surface, Air Media

Arsenic	BRL	0.50	82.5	82.8	0.4	75 - 125	35
Barium	BRL	1.0	94.8	95.9	1.2	75 - 125	35
Cadmium	BRL	0.25	94.2	98.0	4.0	75 - 125	35
Chromium	BRL	0.10	97.1	98.2	1.1	75 - 125	35
Lead	BRL	0.50	95.8	97.8	2.1	75 - 125	35
Selenium	BRL	1.0	92.8	103	10.4	75 - 125	35
Silver	BRL	0.50	111	116	4.4	75 - 125	35

Comment:

Additional Criteria: LCS acceptance range is 80-120% MS acceptance range 75-125%.

QA/QC Batch 694320 (ug), QC Sample No: CO80302 (CO80302, CO80303, CO80304, CO80305, CO80306, CO80307, CO80308, CO80309, CO80310, CO80311, CO80312, CO80313, CO80314, CO80315, CO80316, CO80317, CO80318, CO80319, CO80320, CO80321)

ICP Metals - Surface, Air Media

Arsenic	BRL	0.60	95.2	95.0	0.2	75 - 125	35
Barium	BRL	1.0	105	104	1.0	75 - 125	35
Cadmium	BRL	0.25	99.2	98.8	0.4	75 - 125	35
Chromium	0.11	0.25	102	103	1.0	75 - 125	35
Lead	BRL	0.50	100	101	1.0	75 - 125	35
Selenium	BRL	1.0	82.5	81.4	1.3	75 - 125	35
Silver	BRL	0.50	119	119	0.0	75 - 125	35

Comment:

Additional Criteria: LCS acceptance range is 80-120% MS acceptance range 75-125%.

QA/QC Batch 694321 (ug), QC Sample No: CO80322 (CO80322, CO80323, CO80324, CO80325, CO80326, CO80327, CO80328, CO80329, CO80330, CO80331, CO80332, CO80333, CO80334, CO80335, CO80336, CO80337, CO80338, CO80339)

ICP Metals - Surface, Air Media

Arsenic	BRL	0.50	101	104	2.9	75 - 125	35
Barium	BRL	1.1	108	110	1.8	75 - 125	35
Cadmium	BRL	0.10	101	104	2.9	75 - 125	35
Chromium	BRL	0.10	103	106	2.9	75 - 125	35
Lead	BRL	0.50	106	108	1.9	75 - 125	35
Selenium	BRL	1.0	97.1	99.2	2.1	75 - 125	35
Silver	BRL	0.50	98.7	99.7	1.0	75 - 125	35
Comment:							

Additional Criteria: LCS acceptance range is 80-120% MS acceptance range 75-125%.

QA/QC Report

September 07, 2023

QA/QC Data

SDG I.D.: GCO80287

									%	%	
	E	Blk	LCS	LCSD	LCS	MS	MSD	MS	Rec	RPD	
Parameter	Blank I	RL	%	%	RPD	%	%	RPD	Limits	Limits	

QA/QC Batch 693741 (ug), QC Sample No: CO80289 (CO80287, CO80288, CO80289, CO80290, CO80291, CO80292, CO80293, CO80294, CO80295, CO80296, CO80297, CO80298)

Polychlorinated Biphenyl

PCB-1016	ND	0.50	90	90	0.0	40 - 140	30
PCB-1221	ND	0.50				40 - 140	30
PCB-1232	ND	0.50				40 - 140	30
PCB-1242	ND	0.50				40 - 140	30
PCB-1248	ND	0.50				40 - 140	30
PCB-1254	ND	0.50				40 - 140	30
PCB-1260	ND	0.50	93	90	3.3	40 - 140	30
PCB-1262	ND	0.50				40 - 140	30
PCB-1268	ND	0.50				40 - 140	30
% DCBP (Surrogate Rec)	96	%	97	86	12.0	30 - 150	30
% DCBP (Surrogate Rec) (Confirm	101	%	99	94	5.2	30 - 150	30
% TCMX (Surrogate Rec)	84	%	85	79	7.3	30 - 150	30
% TCMX (Surrogate Rec) (Confirm	87	%	88	83	5.8	30 - 150	30

Comment:

A LCS and LCS Duplicate were performed instead of a matrix spike and matrix spike duplicate.

QA/QC Batch 693764 (ug), QC Sample No: CO80299 (CO80299, CO80300, CO80301, CO80302, CO80303, CO80304, CO80305, CO80306, CO80307, CO80308, CO80309, CO80310, CO80311, CO80312, CO80313, CO80314, CO80315, CO80316, CO80317, CO80318)

Polychlorinated Biphenyl

PCB-1016	ND	0.50	81	80	1.2	40 - 140	30
PCB-1221	ND	0.50				40 - 140	30
PCB-1232	ND	0.50				40 - 140	30
PCB-1242	ND	0.50				40 - 140	30
PCB-1248	ND	0.50				40 - 140	30
PCB-1254	ND	0.50				40 - 140	30
PCB-1260	ND	0.50	83	73	12.8	40 - 140	30
PCB-1262	ND	0.50				40 - 140	30
PCB-1268	ND	0.50				40 - 140	30
% DCBP (Surrogate Rec)	86	%	80	86	7.2	30 - 150	30
% DCBP (Surrogate Rec) (Confirm	91	%	84	81	3.6	30 - 150	30
% TCMX (Surrogate Rec)	78	%	73	78	6.6	30 - 150	30
% TCMX (Surrogate Rec) (Confirm	82	%	76	76	0.0	30 - 150	30

Comment:

A LCS and LCS Duplicate were performed instead of a matrix spike and matrix spike duplicate.

QA/QC Batch 693966 (ug), QC Sample No: CO80319 (CO80319, CO80320, CO80321, CO80322, CO80323, CO80324, CO80325, CO80326, CO80327, CO80328, CO80329)

Polychlorinated Biphenyl

PCB-1016	ND	0.50	88	100	12.8	40 - 140	30
PCB-1221	ND	0.50				40 - 140	30

QA/QC Data

Parameter	Blank	Blk RL	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits	
PCB-1232	ND	0.50							40 - 140	30	
PCB-1242	ND	0.50							40 - 140	30	
PCB-1248	ND	0.50							40 - 140	30	
PCB-1254	ND	0.50							40 - 140	30	
PCB-1260	ND	0.50	90	102	12.5				40 - 140	30	
PCB-1262	ND	0.50							40 - 140	30	
PCB-1268	ND	0.50							40 - 140	30	
% DCBP (Surrogate Rec)	78	%	90	99	9.5				30 - 150	30	
% DCBP (Surrogate Rec) (Confirm	79	%	94	106	12.0				30 - 150	30	
% TCMX (Surrogate Rec)	70	%	79	88	10.8				30 - 150	30	
% TCMX (Surrogate Rec) (Confirm	72	%	83	94	12.4				30 - 150	30	
Comment:											

A LCS and LCS Duplicate were performed instead of a matrix spike and matrix spike duplicate.

QA/QC Batch 694002 (ug), QC Sample No: CO80331 (CO80331, CO80332, CO80333, CO80334, CO80335, CO80336, CO80337, CO80338, CO80339)

Polychlorinated Biphenyl

PCB-1016	ND	0.50	115	120	4.3	40 - 140	30
PCB-1221	ND	0.50				40 - 140	30
PCB-1232	ND	0.50				40 - 140	30
PCB-1242	ND	0.50				40 - 140	30
PCB-1248	ND	0.50				40 - 140	30
PCB-1254	ND	0.50				40 - 140	30
PCB-1260	ND	0.50	113	108	4.5	40 - 140	30
PCB-1262	ND	0.50				40 - 140	30
PCB-1268	ND	0.50				40 - 140	30
% DCBP (Surrogate Rec)	85	%	98	93	5.2	30 - 150	30
% DCBP (Surrogate Rec) (Confirm	93	%	90	88	2.2	30 - 150	30
% TCMX (Surrogate Rec)	79	%	88	87	1.1	30 - 150	30
% TCMX (Surrogate Rec) (Confirm	83	%	84	81	3.6	30 - 150	30
Comment:							

A LCS and LCS Duplicate were performed instead of a matrix spike and matrix spike duplicate.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

RPD - Relative Percent Difference

LCS - Laboratory Control Sample

LCSD - Laboratory Control Sample Duplicate

MS - Matrix Spike

MS Dup - Matrix Spike Duplicate

NC - No Criteria

Intf - Interference

Phyllis/Shiller, Laboratory Director September 07, 2023

Thursday, Se	eptember 07, 2023		Sample Crite	eria Exceedances Report				
Criteria:	None		GCC	080287 - MILLERROC				
State:	NY						RL	Analysis
SampNo	Acode	Phoenix Analyte	Criteria	Result	RL	Criteria	Criteria	Units
*** No Data t	o Display ***							

Phoenix Laboratories does not assume responsibility for the data contained in this exceedance report. It is provided as an additional tool to identify requested criteria exceedences. All efforts are made to ensure the accuracy of the data (obtained from appropriate agencies). A lack of exceedence information does not necessarily suggest conformance to the criteria. It is ultimately the site professional's responsibility to determine appropriate compliance.

Analysis Comments

September 07, 2023

SDG I.D.: GCO80287

The following analysis comments are made regarding exceptions to criteria not already noted in the Analysis Report or QA/QC Report:

PCB Narration

CO80291, CO80292, CO80296, CO80297, CO80300, CO80301, CO80302 AU-ECD24 08/25/23-1: The following Continuing Calibration compounds did not meet % deviation criteria: Samples: CO80292, CO80296, CO80297, CO80300, CO80301, CO80302 Preceding CC 825A035 - DCBP SURR 18%L (15%) Succeeding CC 825A048 - None. AU-ECD29 08/24/23-1: CO80290, CO80294, CO80299, CO80304, CO80308, CO80310, CO80311, CO80312, CO80314, CO80315, CO80317 The following Continuing Calibration compounds did not meet % deviation criteria: Samples: CO80308, CO80310, CO80317 Preceding CC 824A046 - DCBP SURR 20%L (15%), PCB 1260 18%L (%) Succeeding CC 824A054 - DCBP SURR 22%L (15%), PCB 1260 18%L (%) Samples: CO80294 Preceding CC 824B020 - DCBP SURR 23%L (15%) Succeeding CC 824B033 - DCBP SURR 16%L (15%) Samples: CO80290, CO80299, CO80304, CO80311, CO80312, CO80314, CO80315 Preceding CC 824B033 - DCBP SURR 16%L (15%) Succeeding CC 824B046 - DCBP SURR 22%L (15%) Samples: CO80308, CO80310, CO80317 Preceding CC 824B046 - DCBP SURR 22%L (15%) Succeeding CC 824B054 - DCBP SURR 22%L (15%), PCB 1260 17%L (%) Samples: CO80290, CO80299, CO80304, CO80311, CO80312, CO80314, CO80315 Preceding CC 824A033 - None. Succeeding CC 824A046 - DCBP SURR 20%L (15%), PCB 1260 18%L (%) Samples: CO80294 Preceding CC 824A020 - DCBP SURR 25%L (15%), PCB 1260 21%L (%) Succeeding CC 824A033 - None.

NY Temperature Narration

September 07, 2023

SDG I.D.: GCO80287

The samples in this delivery group were received at 1.2° C. (Note acceptance criteria for relevant matrices is above freezing up to 6° C)

																(Coolant	Co t: IPI	oler K	Yes 🗹	No[] No[
	٨			CT/	MA/RI	CHAIN	OF	CUS	TOD	Y RE	COF	RD					Tem	pl. 2)c	Pg	of		
PHO Environmen	ENIX	Inc.		587 E Err	ast Middle nail: makrii Cli	Turnpike, na@phoen ent Serv	P.O. E ixlabs. i ces	Box 370 .com (860)	, Mancl Fax (8 645-1	nester, 60) 64 102	CT 06 5-082:	040 3		1	□ Fax: □ Phor □ Ema	<u>Data</u> 	a Deliv	ery/C	ontact	Optio	<u>ns:</u> 		
Customer: Address:	Miller 9	envir	onn	krd	- Pro Re	oject: port to:		N	140.	323	03	67	CH	θĒ	<u>ws</u>		Projec	ct P.C his s): sectio	on Ml	UST b	e	
	Roy town	em			_ Inv _ Qu	oice to: ote #												co Bot	mple tle Q	ted v uanti	vith ities.		
								•	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	- 	/							n sçá	₩ ² des	t 👘	¥		
Sampler's Signature	Client Sample - Information	- Identificat	tion Date:				and	Lee L	×)		7		/			AND A	$\langle \rangle$	\square		27,00	sri /		
Matrix Code: DW=Drinking Water RW=Raw Water SE B=Bulk L=Liquid X:	GW=Ground Water SW=Sur =Sediment SL=Sludge S=So (Other)	face Water il SD =Solic	₩₩=Waste ₩=Wipe	Water DIL =Oil		A DING TO A		XO							ALL FEED			SOLUTION SE			and with		
PHOENIX USE ONLY SAMPLE #	Customer Sample Identification	Sample Matrix	Date Sampled	Time Sampled	-NSM50	Ì				//			GI PI			STR S	1 10 10 10 10 10 10 10 10 10 10 10 10 10		27 2		Bacteria Bo	18°	
80287	WSA I	W	81823	>	X	X								2									
80288	WSA 2	1	l r		X	\mathbf{X}								2									
80289	WSA3				X	X								2									
80290	WSAU			-	X	X								2									
80291	WSAS				X	\mathbf{X}								n									
80292	WSAL				X	X								J.									
80293	WSA7				X	メ								5									
80294	WSAB				X	X								∂									
80295	WSAG				X	X								3									
80296	WSA 10				X	X								3							e tp. 2. c		7 - " X
80297	WSA 11				X	X								2									
80298	WSA12	W	V		V									Ø									
Relinguished by:	Accepted by	<u>.</u>		Date:	Time:		R	<u></u>		ст		* -	MA			<u>1 - 1</u>	<u> </u>		Data	Forma	<u>t</u>		
Bran	D/mp h	\subseteq	$\hat{\gamma}$	8/21/2	316	UD.			DEC EC		RCP GWP SWP	Cert C		MCP Co GW-1 GW-2	ertificatio	RCS-1	I / RCG	W-1		Excel PDF GIS/K	ву		
	<u> </u>		\smile				r	GALA	achahilit					GW-3		RUS-2		3vV- ∠		EQuIS Other	5		
comments, Special	Requirements or Regulation	5.			d Time:	o			a ab c b P') GR P	MC		S-1					Data	Packa	ge		
Kensec	10 per Clien		A	2 Day	/s* □	Standard Other			wacnabilit W		SWP	C		S-2 S-3						ier II Cl full Data	necklist* a Packaç Sta	je*	
Sampus	recreved stalt	13 (0)	Creck		3tzt	23	- [GB -G	W] RES] I/C D	DEC EC		SW Pro	otection					Other	. 510		
*MS/MSD are consid accordance with the	lered site samples and will b prices quoted.	e billed as	such in	* SUR	CHARGES	IAY APPLY	C] Other		s	state w	/here s	ample	s were o	collecte	d:			* su	RCHAR	GE APPI	LIES	

Page 116 of 144

					Coo	Cooler: Yes ⊠ No ☐ lant: IPK 💭 ICE ☐ No ☐
PHOENIX Environmental Laboratories, Inc.	5	CT/MA/RI CHAIN OI 587 East Middle Turnpike, P.O Email: makrina@phoenixlab Client Services	F CUSTODY F . Box 370, Manchest Is.com Fax (860) 5 (860) 645-110	RECORD ter, CT 06040) 645-0823 2	T Data De Fax: Phone: Email:	Pemp 2 C Pg of elivery/Contact Options:
Address:	nental	Project: Report to: Invoice to: Quote #		<u>,</u>	Pro	oject P.O: This section MUST be completed with Bottle Quantities. ↓ ↓ ↓ ↓ ↓
Client Sample - Information - Identifica Signature	tion Date: WW=Waste Water d W=Wipe OIL=Oil					
3=Bulk L=Liquid X =(Other) 2HOENIX USE ONLY SAMPLE # Customer Sample Identification Sample Matrix 80299 WSA 13 W 80300 WSA 13 W 80300 WSA 13 W 80300 WSA 13 W 80300 WSA 14 1 80301 WSA 15 1 80302 WSA 15 1 80303 WSA 15 1 80304 WSA 18 1 80305 WSA 18 1 80306 WSA 20 1 80307 WSA 20 1	Date Sampled Sam	ime mpled version of the second secon				
Relinguished by: Briton D mp' UUS omments, Special Requirements or Regulations: REVISED COC PET CIFES anord on Recipical Optibility		: Time: around Time: 1 Day' □ Standard 2 Days' □ Other 4 Days' 0 Ther	RI RES DEC I/C DEC GA Leachability GB Leachability Objectives GB -GW	CT RCP Cert GWPC SWPC GA PMC GB PMC SWPC RES DEC VC DEC	MA MCP Certification GW-1 RCS-1 / R GW-2 RCS-2 / R GW-3	Data Format Excel PDF GIS/Key EQuIS Other Data Package Tier II Checklist* Full Data Package* Phoenix Std Other
MS/MSD are considered site samples and will be billed as a considered site samples and will be billed as	such in	SURCHARGES MAY APPLY	Objectives	State where sam	ples were collected:	* SURCHARGE APPLIES

Page 117 of 144

					Cool Coolant: IPK	ler:/ Yes X No□ X ICE □ No□
	CT/MA/RI CHAIN O	F CUSTODY F	RECORD		Temp I. Ə	C Pg of
PHOENIX Environmental Laboratories, Inc.	587 East Middle Turnpike, P.O Email: makrina@phoenixlab Client Services	. Box 370, Manchest s.com Fax (860) s (860) 645-110 .	ter, CT 06040 645-0823 2		a Delivery/Co	ntact Options:
Customer: Marley ENV. GIVUP	Project:				Project P.O:	
Address:	Report to:				This se	ection MUST be
- Know travery	Invoice to:		<u> </u>		cor Bott	npleted with
TACK ICHEN.		<u> </u>	, ` <i>`</i> ;		¥ ¥ ¥	· ↓ ↓ ↓
Oliant Sample Information Identification						
mpler's Date:					///	
It <mark>rix Code:</mark> It <mark>rix Code:</mark> V=Drinking Water GW=Ground Water SW=Surface Water WW=Waste V=Raw Water SE=Sediment SL=Sludge S=Soil SD=Solid W=Wipe (Bulk L=Liquid X =(Other)	Nater DIL=Oil				3 - 3 - 1 3 - 3 - 1 5 - 5 5	
OENIX USE ONLY Customer Sample Sample Date SAMPLE # Identification Matrix Sampled	Time Sampled				2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
60308 A3STUCT 1(1) 10 8/8/	B XX			2		
0309 A3Struct 2(3) W	XX			2		
50310 A3Struct 3(1) w V	XX			2		
inquished by: Accepted by:	Date: Time:	<u>RI</u>	ст	<u>MA</u>	ll.	Data Format
Bhan DImp Musp	8/21/23 16:42		RCP Cert GWPC SWPC	MCP Certification GW-1 RCS- GW-2 RCS- CW-2	1 / RCGW-1 2 / RCGW-2	Excel PDF GIS/Key EQuIS
nments, Special Requirements or Regulations:	Turnaround Time:	GA Leachability		□ S-1 □		Data Package
Raised Cor now client	☐ 1 Day* ☐ Standard ☐ 2 Days*	GB Leachability		□ S-2		Tier II Checklist*
TRVISED LUC PER CITERO	☐ 3 Days* ☐ Other	GA -GW Objectives		🗋 S-3		Phoenix Std
india reclared \$121/25 Samo	Dayst Ved 8172 1	GB-GW		SW Protection		C Other
MSD are considered site samples and will be billed as such in ordence with the prices guided	* SURCHARGES MAY APPLY		State where sam	ples were collected:		* SURCHARGE APPLIES

Page 118 of 144

													Cod	olant:	Coole	K K K K K K	es 🖌	No 🗌 No 🗌
DIIOENIIV	CT/M	A/RI	CHAIN	OF	CUS	TOD	YR	ECO	RD			D	ata D	Femp e liver	1.) y/Con	C P Itact C	g ptions	of ::
Environmental Laboratories, Inc.	587 Eas Emai	t Middle I: makrir Clio	Turnpike, na@phoer ent Serv	P.O. E iixlabs. ices	3ox 370 com (860)	, Manc Fax (645-	heste 860) 6 1102	r, CT 0 645-08:	6040 23			Fax: Phone: Email:						-
Customer: MILLEY ENV. (STRMP)		Pro	ject:										Pre	oject	P.O:			
Address:		Re	port to:											Thi	s se	ctior	MUS	STbe
		Inv	oice to:											ф.	com	plete	ed wi	th
Procetavern		Qu	ote #					-, j -						↓ L	soπι ↓	e Qu ↓	antiti ↓	es. ↓
Client Sample - Information - Identification					(de)	X	0 7	7	77	//				7	7	//		77
Sampler's Date: Date:						,]	/ /	/ /	///			(NAS	3		[5]	/ 3 °	1,50	
Matrix Code: DW=Drinking Water GW=Ground Water SW=Surface Water WW=Waster RW=Raw Water SE=Sediment SL=Sludge S=Soil SD=Solid W=Wipe B=Bulk L=Liquid X =(Other) (Other)	Water OIL =Oil		STATISTICS STATES	Ì							Jul 1	Contraction of the second	Rel Sta	AN IN		1 50 CT		He Mino as a
PHOENIX USE ONLY Customer Sample Sample Date SAMPLE # Identification Matrix Sampled	Time Sampled	·NSM5D	Ð				\square			5 4 5 ⁰		SOL NO L	No Art	\$/ <><	ŶŶ Ŷ	11 2 1	2011 - 10 2010 - 10 2010 - 10	2 ⁵
PCB Tank W 8181	B																_	
80311 Midwall		X								2	-							
80312 MICHWall 3'		X	\mathbf{X}							10)							
80313 Midwallo		X	X							0								
80314 545T Flore 1'		12	X							r								
80315 Mest Fluor		V	X				-			- 4	3							
NEST FIDDI					-													
						+		+	┽╌╂					1				
	-					+-			+									
				┝──┼╸		+			╌┼─╂								_	
																		+
														+				
Palinguidead by	Date: 1				<u>l</u>									1		Data E	ormat	
Keiniquished by. Accepted by.	Date.	une.			I Res	DEC	2		P Cert		P Certifi	cation					ixcel	
Brandles all MACK	drihz	1	7.0	7		DLU		GW	/PC	GV	V-1		:S-1/F	RCGW	-1	D P	DF	
- DITCHING MARCHING	-lok-1147	ł	0170		_ I/C D	EC		🗆 sw	PC	🗌 GV	√-2		CS-2/	RCGW	-2		SIS/Key	
Comments, Special Requirements or Regulations:	Turner 1	Time c		— [c	GAL	eachabili	ity	🗆 GA	PMC	🗍 GV	V-3	П					Other	
	1 Dav*	iime:	Standard	r	GBL	eachabili	itv	🗌 GB	PMC	□ s-		<u> </u>			-	Data P	ackage	: ckliet*
Kensed COC Der client	2 Days*		Other		- 64 6			🗌 sw	PC		2						I Data F	Package*
	3 Days	, u 		_ ^c	Dbjec	tives		RE	S DEC		/ Dector	lan				🗆 Ph	oenix S	td
Samples recieved 8/21/23 cocre	creved.	8/22	233	[GB -G Objec	SW ctives	Ļ	I/C	DEC		/ Protect	ion			_	0	her	
MS/MSD are considered site samples and will be billed as such in accordance with the prices quoted.	* SURCH	IARGES I	IAY APPLY	E] Other	r		State	where s	amples w	ere coll	ected:				* SUR	CHARG	E APPLIES

Page 119 of 144

																			Coola	ant:	Cooler IPK 🕻	Ye ICI		No 🗌 No 🗌		
				CT/	MA/	RI C	HAI	N O	F CL	JSTO	DYI	REC	ORD)					Te	emp '	1ide	Pç	g (of		
	ΕΛΠΥ			597 E	act M	ddle Ti	urnnik	. D(370 Ma	nchoe	tor C		n				Dat	a De	livery	/Cont	act O	ptions	<u>:</u>		
				En	nail: m	akrina	@pho	e, r.c enixla	bs.com	i Fax	(860) 645-	0823	0			⊡ ⊦a) ⊡ Phe	c: one:	<u></u>					-		
Environmen	ital Laboratories,	Inc.				Clier	t Sei	vice	s (86	0) 645	-110	2					🗆 Em	ail:						-		
Customer:	Miller En	V. (91	and			Proje	ect:												Proj	ject F	P.O:					
Address:		ľ	· ·		_	Repo	ort to:													This	s sec	tion	MUS	STbe	*	
	BADIC LEVIOU				-	Invoi	ce to	:													comp	olete	d wi	th		
	TUCILTUVEV	(\				Quot	е #					·								÷ D	ottie ↓	Qua	initi ↓	es. ↓		
	Client Sample - Information -	Identifica	tion						Je)		÷	77		7					7	<u> </u>				77		
Sampler's Signature	•		Date:		_				Se UNITE	X9			//	//					ş/		5		100000			
Matrix Code: DW=Drinking Water RW=Raw Water SE: B=Bulk L=Liquid X =	GW=Ground Water SW=Surf =Sediment SL=Sludge S=Soi =(Other)	ace Water I SD =Solid	WW=Waste	Water DIL =Oil			DE DIIEDE		Ż							3			SI SI	ASIA NOOM		SOUL ST	5001	-within as	*	
PHOENIX USE ONLY SAMPLE #	Customer Sample	Sample Matrix	Date Sampled	Time Sampled		SWED LINE	Ľ	Ý							GL AND			LOT NO	A AND			N 2 N	AND	Stie Dolle'		
	Scall tank	ω	XXX74	,	F		T	ſ	Í		ſ	Í		Ť	ſ		1	ſ	(Ť	Í		ſ		
80316	FASTINA117	1		1		XX	<u><</u>							-		2										
86317	Marthulau 3	2· 1				XV	$\frac{1}{2}$									2										
01218	Infast MIAIL U	1 + 1				$\frac{1}{x}$	χ́–								-	3	-					-				
80319	Floor		+ + +			Ż	\mathbf{r}	+			1			-1-		Ó									-	
000.1			· · · ·			\dashv	+							+		-										
																									-	
							+				+						-	-					+		-	
															-										-	
														:												
Relinguished by:	Accepted by	<u>:</u>		Date:	Time	:			RI			<u>ст</u>			MA						D	ata Fo	rmat			
	1 1 0.		$\sim -$			•		,		ES DEC		□ F	RCP Ce	rt		MCP C	ertifical	ion					cel			
Briand	Imp I	us	Δ	8212	3	16	.40	-		C DEC			GWPC			GW-1		RCS-	-1/R0	CGW-	1	G	Jr IS/Key			
	<u> </u>		<u> </u>										SWPC			GW-3	L	RCS	-2 / R	CGW-	2] E(QuIS			
Comments, Special	Requirements or Regulations	5:		Turnaroun	d Tim	:				A Leachal	Dility		ga pmc	;		S-1						O ata Pa	iner Ickage			
David	d Coo Der	- ch	ent	1 Day	√ vs*	🗆 si	andaro	ł	G G	B Leachal	oility			;		S-2] Tier	II Che	cklist*		
1 Devise	a cue per		mo	3 Day	/s*	0	ther			A -GW bjectives				~		S-3] Pho	enix S	ackage" td		
Samalia	manued shit	72 ~	- Charles		/s* /s \	77	72			B -GW			NES DEC	0		SW Pro	otection					□ Oth	her			
*MS/MSD are consid accordance with the	lered site samples and will be prices quoted.	e billed as	such in	* SUR	CHARG	ES MA	Y APPL	.Y	0 0	bjectives ther		Sta	ite whe	re sa	mples	were	collect	ed:] [·	SURC	HARGI	E APPLIES	s	

		Coolery Yes 🗹 No 🗌 Coolant: IPK 🗗 ICE 🔲 No 🗌
PHOENIX Environmental Laboratories, Inc.	CT/MA/RI CHAIN OF CUSTODY RECORD 587 East Middle Turnpike, P.O. Box 370, Manchester, CT 06040 Email: makrina@phoenixlabs.com Fax (860) 645-0823 Client Services (860) 645-1102	Temp 1.2°C Pg of Data Delivery/Contact Options: Fax: Phone: Email:
Customer: <u>Muller Env. Grau</u> Address: <u>Pocktawern</u>	Project: Report to: Invoice to: Quote #	Project P.O: This section MUST be completed with Bottle Quantities. ↓ ↓ ↓ ↓
Client Sample - Information - Identification Sampler's Date: Signature Date: Matrix Code: Dwelling DW=Drinking Water GW=Ground Water SW=Surface Water WW=Waste RW=Raw Water SE=Sediment SL=Sludge S=Soil SD=Solid W=Wipe B=Bulk L=Liquid X =(Other) (Other) Date Date PHOENIX USE ONLY Customer Sample Sample Date SAMPLE # Customer Sample Sample Date TONK Shop W Supple	Water OIL=Oil Time Sampled	
80320 Floor 1 80320 WALL 2 80322 WALL 2 80323 WALL 3 80323 WALL 4		
Relinquished by: Accepted by: BYIGNDI hp Image: Special Requirements or Regulations:	Date: Time: RI CT MA Image: Rest of the standard Image: R	Data Format CP Certification
Kensed COC per Chent Somples Verticel \$121 23 600 MS/MSD are considered site samples and will be billed as such in ccordance with the prices guoted.	2 Days* Other 3 Days* Other 4 Days* GA -GW • SURCHARGES MAY APPLY GB -GW • SURCHARGES MAY APPLY Other	2 THEF IT Checklist* 3 Full Data Package* 9 Phoenix Std 0 Other /ere collected: *SURCHARGE APPLIES

											Co Coolant: IF	olery Yes K IX ICE	⊠ No□ □ No□
PHO Environmer	ENIX Ital Laboratories,	Inc.	C 58	T/MA/RI CH 37 East Middle Turn Email: makrina@p Client S	AIN OI pike, P.O. hoenixlab Services	F CUSTO Box 370, Ma s.com Fax s (860) 645	DY F nchest < (860) 5-1102	RECORD er, CT 06040 645-0823 2		 □ Fax: □ Phone: □ Email:	Temp II ata Delivery/C	C Pg contact Opt	of
Customer: Address:	Nuller & Pocktave	nj. Gr vn	мр	Project Report Invoice Quote a	to: to: #						Project P.0 This cc Bo	D: section I ompleted ttle Quar ↓ ↓	MUST be I with ntities. ↓ ↓
Sampler's Signature Iatrix Code: W=Drinking Water :W=Raw Water SE =Bulk L=Liquid X E	Client Sample - Information - GW=Ground Water SW=Surf =Sediment SL=Sludge S=So = (Other)	- Identification Dat face Water WW=\ il SD =Solid W =	te: Naste Water Wipe OIL =Oil								2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		Serie Series
-BUIK L-LIQUID X- SAMPLE # 80324 80325 80327 80328 80329 80329 80329 80329 80330 80331 80335 80335	$\begin{array}{c} \hline \\ Customer Sample \\ Identification \\ \hline \\ $	Sample Matrix Sar							00000000000000000000000000000000000000				
Relinguished by: BAAAD omments, Special REVISE AS/MSD are consid coordance with the	Accepted by Accepted by Philip Accepted by Requirements or Regulations COC PER COC PER (CLEVECT 8/21) Intered site samples and will b prices guoted.	s: Clien Ta 23 COC e billed as such	Date: P 872 Turnar 0 1 2 0 3 0 4 1 0 3 0 4 1 0 3 0 4 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	Time: Days Stand Days Stand Days Othe Days Othe Days Stand Days Stand	iard 23 PPLY	RES DEC IC DEC GA Leachal GB Leachal GA -GW Objectives Objectives Other	bility bility	CT CRCP Cert GWPC SWPC GA PMC GB PMC GB PMC SWPC RES DEC VC DEC State where s	MA GW-1 GW-2 GW-3 GW-3 GW-3 S-1 S-2 S-3 SW Pr samples were	Certification	S-1 / RCGW-1 S-2 / RCGW-2	Data Forr Exc PDF GIS EQu Oth Data Pac Tier II Full D Phoee Othe	n <u>at</u> el : /Key uIS er Checklist* ata Package* nix Std r ARGE APPLIES
				Coc	Cooler: Yes 🛛 No olant: IPK 🗗 ICE 🗌 No								
--	---	--	--	---------------------------	--	-------------							
PHOENIX Environmental Laboratories, Inc.	CT/MA/RI CHAIN O 587 East Middle Turnpike, P.C Email: makrina@phoenixla Client Service	F CUSTODY F D. Box 370, Manchest Ds.com Fax (860) s (860) 645-110	RECORD ter, CT 06040 0 645-0823 2		Temp , JC Pg of elivery/Contact Options:								
Customer: Muber EN. 911 Address:	Project: Report to: Invoice to: Quote #		<u>N</u>	Pro	oject P.O: This section MUST completed with Bottle Quantities.	be ↓							
Client Sample - Information - Identification ampler's Date: <u>atrix Code:</u> W=Drinking Water GW=Ground Water SW=Surface Water WW=Waste W=Raw Water SE=Sediment SL=Sludge S=Soil SD=Solid W=Wipe =Bulk L=Liquid X =(Other)	Water olL=Oil					ATTO 55 S							
ioenix use only SAMPLE # Customer Sample Identification Sample Matrix Date Sampled 80.336 L U L3	Time Sampled X X X												
telinguished by: <u>Brian Ump</u> <u>Brian Ump</u>	Date: Time: B Cl Q I Day* Ic. I Day* Standard I Day* Other I Days* Other I Days* Other	RI RES DEC I/C DEC GA Leachability GB Leachability Objectives GB-GW Objectives	CT MA RCP Cert I GWPC I SWPC I GA PMC I GB PMC I SWPC I Image: RES DEC Image: RES DEC Image: Image: Image: RES DEC Image: RES DEC Image: Image: Image: Image: RES DEC Image: RES DEC	MCP Certification GW-1	Data Format Bata Format Excel PDF GIS/Key EQuIS Other Data Package Tier II Checklis Full Data Pack Phoenix Std Other	it* age*							
MS/MSD are considered site samples and will be billed as such in accordance with the prices quoted.	* SURCHARGES MAY APPLY	Objectives	State where samples	were collected:	* SURCHARGE AP	PLIES							

					(Couler Yes No
PHOENIX	587 Faat Emad Makan	I/PA CHAIN OF Middle Turnpike P O a Nolan, makrina@phi Client Services	Box 370, Manchestor enixlabs.com Fax 5 (860) 645-1102	ECÓRD r, CT 06040 x (860) 645-0823	Phone Fax M Email 1	Temp C Pg of Contact Options:
Custorner: Miller Environmenta Address: 109 Stone Castle Ed Rock Tavern, NM 125	1 Gri ~ p	Project: Report to: Invoice to: QUOTE # :	MOZZZO HVULANO APOMILLER	367 (<u>HGE</u>) Millerenuicon 20V Lem	يني Proj	ect P.O: みんちろス This section MUST be completed with Bottle Quartities.
Sampler's Signature Matrix Cocte: DW-Drinking Wate: CW-Circung Water SW-Surface Water WW- RW-Raw Wyater SE-Sedment SL-Studgo S-Soil SD-Soild W Break to English	n Date Waste Water =WipeDL=Chi 	Analysis Request			201 10 10 10 10 10 10 10 10 10 10 10 10 1	
PHOENIX UPET. ONLY Skample SAMPLEF# Customer Sample Klerithication Multix Multix Multix Multix	Dotu Taris Sampled Sampled	1000 000 000 000 000 000 000 000 000 00				
Relinguists will by Accupied by:		<u> </u>	Turnaround: N L.: 1 Day' 1 L.: 2 Days' 1 I.: 2 Days' 1	D I Res Criteria I Non-Res Criteria		PA Clean Fill timits PA-GW
Eommonts, Special Requirements or Regulations:	Data Format:	ΕΩυί8 Γ Νυ σαχεία ΕDD Γ Νχ 6 ζε DD	4 Days 5 Days 5 Days Standard Sunchange Applies	Impact to GW Soil Cleanup Criteria Impact to GW soil screen Criteria	Unrestricted Unrestricted 375SCO Residential f Residential Residential Residential S75SCO Commercial	Soll [] Reg Fill Limits Soll [] PA Soil Restricten [] PA Soil non-restricted Soil
NNNMTRE an ar cappelerst allo policific and only the hilled on such in secondaries with the price 4- gaster	рії і акідні 11 — Сісяльник, у 1	(A53)	E I N3 Ruduced Der	so (1) Other SPS (L 376500 stops 50 LStopsart 5 Cr	State Samples Collected?

																		Coo	lant	Coole	Y ve	es	No No
College Mile Chamber of Stationary		<i>(</i>		7 <u>228</u> 7888-4748-4728-444-4	NY/N.	IPA	CH.	AIN O	FCU	STO	DY	RECO	ORD					T	emp	0	C F	,a	of
PHO.	ENIX States	es, Inc.		En	587 East nail: Makrin	Midd a Noli C	le Turn an, mai lient S	pike. P (krina@pl Service) Box 3 hoenixla	70, Ma ibs com	nches n F 5-110	ter, CT ax (860 2	06040)) 645-(0823		Ph Fa	ione ix naii	hvu	Conta	ict O	m	ere	-
Customer	Doillar Fo	Su 6 m					Proi	ect:	<u> </u>	, JUR	220	2310	$\overline{)}$ (+	IGE		Ś	Pr	roiec	t P.C): a	653	3	
Address	Lug St	$\frac{10.000}{000}$	sin a	r d		-	Rep	ort to:		1010	55	mill	evon.	u. (ch	~~~	<u> </u>	• •	T	his s	ecti	an Mi	UST	be
Address.	ROCK TA	VEYN, M	1 13	575		-	Invo QUO	ice to: TE # :	Ar	Qm	ille	CEDV		<u>n</u>				E	com Bottle	plet Qu	ed-wi antiti ↓	th es.	 +
Sampler's Signature <u>Matrix Cocte:</u> DW=Drinking Water SEB=Buk L=Liquid	GW=Ground Wate	tnformation - Ide er SW=Surface W dge S=Soil SD=	entificatio /ater WW= =Solid W	n Date 5(Waste Water =Wipe	011=011	F	Analysi Reques	S St	100	A REAL	(m ²	¥ 			G ² IN		AND SCILL		ST IN THE REAL	THE ASSING	TT STAN	100000	and the second
HOENIX USE ONLY SAMPLE #	Customer Samp	le Identification	Sampie Matrix	Date Sampled	Time Sampled	-145	AND HILL	Ż	, T					GI PARTINE			earling and a	3 3 3 3 3 3 3 3			MOT F	S STAT	State State
	wsA.	ΠЪ	~	81,8/27	1500	1	X	Y	Í	- <u>f</u>	ſ	ſ	Í				1	1					Ī
. <u></u>	wsA	PCR	-	c/1/21		1	×	X			1							_	1				
	n-SA.	1)7	~	\$118/22		1	1	X		-	1		1						1				
	wsA	PCR	5	8/18/23		1	X	X					T						T				
	wsH.	DL	~	8/15/22		1	Iγ	Y		1			T						1				
	with	DrR	m	8/18/22		1	X	4		1	1								1				
	wsit 1	nT	~	8/18/27		1	X	\mathbf{x}		1													
	ws A	DUR	~	8/18/23		1	X	4			1		T					1	1				
	h.tA.	DI DI	~	8/18/21		1	X				1							-	1				
	WSH	PCB	~	8/18/23	7		¥	Y															
		decosted by:			Date	<u> </u>	L	Time	Tur	23504150		NI.								PA			
										1 Day 2 Day 3 Day 4 Day	<u>u.</u> 		Res Cri Non-Re Impact I Cleanup	iteria s Criteria to GW Sc o Criteria	a lic	П то СР З75 Ил	GS G -51 S SCO restric	W OIL ted So	ni		Clean I PA-G Reg	Fill Lim W Fill Lim	uts
omments, Special	Requirements or R	egulations:		Data Forma	t: Std Report		EQuis	3	×	Standa URCHAR	ard GE		Impact I soil scre	to GW een Criter	ria	37: Re: Re:	sident SSCO sident	ai Soil	I		PA S PA Sc	oil Res il non-r	tricted estricted
				Excel			NJ Ha NY EJ	ezsite EDI 2 EDD		ata Pac	kage:		GW Cri	teria		Re: 375 Co	stricte SSCO mmer	d Soii cial So		- Sta	ate Sarr	ples C	ollected?
1SiMSD are considered ith the prices quoted	site semples, and with p	be billed as such in a	ccordance	G-S/Ke	,		(ASP) Other			NU Rec	nuced (hanced	୦୫୦୦ (ASP ୨		🗍 Ohe	e/	L_2 375 500 L_2 Su	ustrial upurt i	i Sei 5 DW				ぞく	

						Cootant	Cooler Yes	No No
PHOENIX	NY/NJ 587 Fast (Email Makrice	IPA CHAIN OF Middle Tumpike, P.O. 1 Nolan, makinna@pho Client Services	CUSTODY R Box 370 Mancheste enixlabs.com Fa (860) 645-1102	ECORD er, CT 06040 x (860) 645-0823	□ Phone □ Fax IX Email	Temp Conta hvolab	C Py <u>ict Options:</u> <u>SOM: (1-ere</u>	of
Customer: Milley Couronmental Address: 169 Signe Castle Cit Keck Taylorn, ph 105	<u>Group</u>	Project: Report to: Invoice to: QUOTE # :	MU32302 HNO CLACH ARGMILLE	renvier	> P	roject P.C This s com Bottle	DAV532 ection MUST pleted with Quantities.	be ↓ ↓
Client Semple - Information - Identification Signature Matrix Cocts: DW-Drinking Wolur GW=Ground Water SW=Surface Water WW-u RW=Raw Water SF=Sourner SL-Sludge S=Soil SD-Solid Wa D=Bulk L=-Liquid <u>HOENIX USE ONLY</u> SAMPLE # Customer Sample Identification Matrix <u>SAMPLE #</u> USIOTHER Sample Identification Matrix <u>SAMPLE #</u> USIOTHER Sample Identification Matrix <u>SAMPLE #</u> USIOTHER Sample Identification Matrix <u>SAMPLE #</u> <u>SAMPLE </u>	Date S((\$123	Analysis Request Request Analysis Request Analysis Analysis Request Analysis Analysi			14			a server and a ser
/v.s.r/v.s.r			Turnenad			·····		• · · • · · · · · · · · · · · · · · · ·
Selinguistrue Dy Accepted by;	Lizta Format:		I Day Days Days Days Days J Days J Jays Standard SURCHARGE	Res Critena Non-Res Criteria Impact to GW Soil Clearup Criteria Impact to GW Soil screen Criteria	100 1000	SW 3OIL Olicted Soil Olicted Soil Olicted Soil Olicted	Clean Fill Lir PA-GW C Reg Fill Li PA-Soil Re C PA Soil Re C PA Soil Re	nits mits stricted
SINSCO and a support and sale supports, and with the industries support in an environment In the process support	Li Filopia Su Report Li Exce [] PDF [] Si%Key	 Figure Pools Nu Hazsite FI2D NV 17 FDD (ANS) Convent 	Data Package: (_] NJ Resuced D	[7] GW Cotena Gov (11) Other (656 Balt	Restrict Restrict Colore 2755CC 50.500	ed Soit Dimoval Soit Di 1 ^{du} N Dry	State Samples	

																			c	oolant	Co (P	oler K.[_]	Yes ICE		
an Talanda Salan Dudik (S. Ro-					NY/N.	J/PA	CH	AIN (OF	CUS	TOD	DY R	EC	ORD						Tem	o	°C	Pg	of	
PHA	FAITY				587 East	Middl	e Turr	nike P	о в	lox 37	0 Man	cheste	er. Cl	06040				Phon	P	Соп	tact	Option	<u>ns:</u>		
				En	nail: Makrin	a Nota	an, ma	krina@	phoe	nixlab	s.com	Fa	1× (8€	0) 645-	0823			Fax	• <u> </u>						
Encironmen	lal Laboratoru	es, inc.				C	lient	Servic	ces	(860)	645-	1102					Ď¢:	Emai	<u>n</u>	vole	205	<u>@</u> m	ville	reni	1. 100
Customer:	miller E	nvi hac	~p				Proj	ect:		M	032	1303	567	CH	SE V	2 هد		-	Proj	ect P	.0: {	<u>36</u>	53	<u>}</u>	
Address:	169 STON	e casn	e Rd			-	Rep	ort to	:	<u>H1</u>	10101		mi	IL RY	env	ر به ۱	<u> </u>	-		This	sec	tion l	MUS	ſ be	
	Rock Tax	ern. M	LIDS	15			invo	NCE to):	mp	@m	ille	XRV	u.c	4m			-		- coi Bot	mpie fle ()	teo v uant	vinn ities.		
	A						QUC	11E #	:									-		4		¥	¥	4	¥
	Cilent Sample -	Information - Io	entification	า	a maa aa iida a koo					Ζ	7	$\overline{\Lambda}$	7	7		<i></i>				77	7	7	7	77	
Sampler's	hurs			D 3	118123	A	nalys	is		(ale)	/	\sim	/	/					%.	/ /			37.5	×)	/ /
Matrix Code:	1.	··· ·		Daie =	<u></u>	. н	eque	si /	UNT ^{ROUND}	n	Ŋ	¥ /	<pre>/</pre>	/ /	//			Ż	Ý.		- R	Ň	$\langle \cdot \rangle_{s}$	x / ,	/ /
DW=Drinking Water	GW=Ground Wate	r SW=Surface V	Vater WW=	Waste Water	08 -01			AN AN	19	6/~	?)	/ /			/ /		ST.	air as a	\$		XŻ	×\$	<u>``</u>	/.	/ /
B=Bulk L=Liquid	-Sediment SL-Side	196 2-301 3D	-3010 44-	- wipe	012-01			R. W.	Ľ	, Y			/			ot)	YzY	Set 1	Set 1	s) si	î/st	X.29			se se
			Samole	Date	Time		so"/	/ 57	3.) }		/ /	/ /	/ /	/ /		3/3			37	NOS -	/6	s) or	in y	No Car	B.B.
SAMPLE #	Customer Sample	e Identification	Matrix	Sampled	Sampled	1363	×	ÝS	<u> </u>	\square				\square	/3/	3	<u>}⁄</u>	<u>Z</u> \$	<u>"</u>	<u>~</u> [׎	<u> ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</u>	<u>~</u>	<u>*/ 3*/</u>	
	WSAL	DI	8142:	strates	1700		$ \kappa$	Y																	
	wish	PCB	1	1			X	¥																	
	wsA.	DI	11			1	14	×															1		
	wsA?	PCB	TL		/	1	7	Y													Τ				
	v ==		-a			1	f -																		
			1	1		1	1										1				1	1			
			1	1		1	1														1	1		-	
	1					t	<u>†</u>							i i			+				+				
											- 1	-+					+					+	1		
											$\left \right $													-+	
			+		i 		 					+		$\left \right $			+				+-		+ +	-+-	
	L			l	: 	<u> </u>	1	<u></u>		T	<u> </u>						AIM							L	
Relinquished by:		Accepted by:			Date			1100	e:		1 Day*			Res C	ntena			TOGS	SGW			∃ Clea	in Fill L	imits	
								1			2 Days			Non-Re	es Crite	ena		CP-51	SOIL			ם ר PA	-GW		
								<u> </u>			3 Days 4 Days*	.		Impact	to GW	Soil		375SC Unres	CO tricted	Soil		ייי ב היינ		imite	
Commonte Cassial	Paquiromanta at P			Data Forma				i			5 Days*	.		Cleanu	p Criter	ia		375SC		Soul		ן הגפ רו	eg rin t		
Comments, Special	Requirements of Ri	eguiditviis.								sur	RCHARGI	E	\Box	soil scr	een Cri	teria		37550	00 00	JUII	L] PA	A Soil F	lestricte	ď
				Phoenø	x Std Report		EQui	S		A	PPLIES	ł	٦	CIM C+	toria			Residi Restri	entia! cted S	01		.] PA	Scil no	n-restric	ted
				Excel			NJ Hi	ezsite F	DD				لا ·				-IC (375SC		Sout					
				PDF			NY E (ASP	ZEDD		Da	ta Pack	age:			en o	the:		07530	20	300	5	itate Si	amples	Collect	ed?
MSIMSD are Considered	site semples and will be	e billed as such in	accordance	GIS'K.	У	()	Other			111) 111)	vu Kedu VY Enha	iced Lie anced (ASP	8:*	<i>ب</i> ن السر.	., 17 :		arce st Subor	inai Su 17 5 D	w.	i		N	M	

					Coolan	Cooler Yes No
PHOENIX	NY/N 587 Eas Email; Makur	J/PA CHAIN O t Middle Turnpike, P C tu Nolan, makrina@ph Client Service	F CUSTODY R Dex 370, Mancheste noenixlabs.com Fa s (860) 645-1102	er, CT 06040 ax (860) 645-0823	Ten Co Phono: Fax: Xa Email	abar Ani Merker
Customer: Miller Environmenta Address: 1109 Stone Custle & Pack Taken, NY 13	<u>600-</u> 1 375	Project: Report to: Invoice to: QUOTE # :	MU32303 HUU1265 AP@MILL2	1200 CHGE WS	Project F	P.O: $\lambda \psi S \Im \Im$ s section MUST be completed with the Quantities.
Samplor's Signature Matrix Codo: Matrix Codo: DW-Donking Water GW-Ground Water SW=Surfuce Water W RW=Raw Water SE-Sediment SL=Sludge S-Soil SD=Solid BHUIK L=Liquid HOENIX USE: ONLY SAMPLE # Customor Sample Identification Matri MATRIX Customor Sample Identification Matrix MATRIX Customor Sampl	N Wagte Water W=Wipe OIL-Oil plo Date 1imo x Sampted Sampled	Analysis Request Analysis Request Analysis Analy	STATES			
WSH(Bu)act 700 ~						
Rolinguish ed by: Accopted by:	Deta Format:		Turnaround: 1 Day* 2 Days* 3 Days* 4 Days* 5 Days* Standard * SURCHARGE APPLIES	Ny. Res. Critena Non-Res. Criteria Impact to GW Soil Cleanup Criteria Impact to GW soil screen Criteria	NY TOGS GW CP-51 SOIL Unrestricted Soil 375SCO Residential Soil 375SCO Residential	PA Clean Fill Limits PA-GW Keg Fill Limits PA Soil Restricted PA Soil non-restricted
MS/MSD was considered ate semples and will be billed as such in accordant with the prices quoted	[] Ехсоі [] РОР 	NJ Hazsite ED NY EZ EDD (ASP) Other	D Data Package: D NJ Reduced D D NY Enhanced	GW Critens	Restricted Soil 375SCO Commercial Soil 375SCO Industrial Soil Subpart 5 DW	State Samples Collected?

						Cool <u>ant ii</u>	poler Yes No
PHOENIX	NY/N. 587 East Email: Makun	J/PA CHAIN OF Middle Tumpike, PO B n Nolan, maknna@phoe Client Services	CUSTODY RE lox 370, Manchester, inixlabs.com Fax (860) 645-1102	CORD CT 06040 (860) 645-0823	Phone Fax	femp <u>Contact</u> hvelab	oc pg of Options:
Customer. <u>Milley Env. Granp</u> Address. <u>169 Stone Custle ed</u> <u>Rock Tayern, M</u> 125		Project: Report to: Invoice to: QUOTE # :	NY 0323036 HU012056m APOMILLERER	illererly com	Pro	bject P.O <u>.</u> This secomp Bottle (↓	AUS3A ction MUST be leted with Quantities 4 4 4
Sampler's Signature Matrix Code: DW-Dinking Weler GW-Ground Water SW-Surface Water WW W RW=Raw Water SE-Sediment SL: Studye S=Soil SD=Sold W= B-Hulk L= Liquid PHOENIX USE UNITY SAMPLL # Customer Somple Identification Matrix SAMPLL # Customer Somple Identification Matrix SAMPLL # Customer Somple Identification Matrix SAMPLL # Customer Somple Identification Matrix SAMPLL # SAMPLL # SAMPL	Dule 5(14 (33 Nosti-Water Wige DIL-Dil Dule Time Sampled Sampled	Analysis Request Analysis Request Analysis Analy					
Rollinguistrad by	Diste	// //Ime:/	Turnaround: N 1 Day: 1 2 Days" 1 3 Days" 1 4 Days" 1 5 Days" 1	M Carlo Res Critoria Carlo Non-Res Criteria Impact to OW Soil Cloanup Criteria	NY TOGS GV CP-51 SC 375SCO Unrestrict T 375SCO	V У ЭЦ. еа Sol	Clean Fill Limits PA-GW Clean Fill Limits Clean Fill Limits
Comments, Special Requirements of Regulations:	Data Format: (,) Propositi Std Repor (,) Excol (,) PDI	I L.J. FOUS D. Ny Hazsin FDD L.J. NY EZ LOD (ASP)	Standard	- Impact to GW soil screen Criteria	Residenti 375SCO Residenti Bostricted 375SCO Commerce 375SCO	ar Soll al # Son wat Son	PA Soil Restricted PA Soil non-restricted State Samples Collected?
MARAINED on a consideration to solidate a suid with by balled as suid, in second datast with the protect gradient	C GRATELY	1.1 Shrae	() NY Enhanced (A	S(- P - 1	Lis Satport t	50) 10/V	NM

			Co	Cooler Yes No
PHOENIX	NY/NJ/PA CHAIN OF 587 East Middle Tumpike, P O Einail: Makana Nolan, makrina@pho Client Services	CUSTODY RECORD Box 370, Manchester, CT 06040 enixlabs.com Fax (860) 645-0823 (860) 645-1102	Phone' Fax: C Emsil: by	Temp °C Pg of Contact Options:
Customer: Milley Env. One P Address: 169 Stone (45ty Rol Pock Taverning 125	Project: Report to Nvoice to: QUOTE # :	MUBDZOZO (HGE HVUKUS@MILLERAV.com AP@MILLEREAV.com	<u>x S</u> Projec	t P.O: 20532 This section MUST be completed with Bottle Quantities. ↓ ↓ ↓ ↓
Siamplur's Cleant Sample - Information - Identification Signature Matrix Code: DW=Drinking water GW-Ground Water SW-Surface Water WW=V RW=Raw Water SE-Sediment SL-Sludge S=Soil SD=Solid W= PHOENIX USE ONLY Sample Identification SAMPLE # Customer Sample Identification Matrix Tarle 1 wesh 0 PCB Tarle 1 wesh 0 PCB Tarle 1 wesh 0 PCB Tarle 1 wesh 0 PCB Tarle 1 wesh 0 PCB Tarle 1 wesh 0 DT Tarle 1 wesh 0 DT	Dure $\Delta II \Delta I \Delta 3$ Analysis Dure $\Delta II \Delta I \Delta 3$ Request Value OIL=()II $Aaalysis Value OIL=()II Aaalysis Value OIL=()II Aaalysis Value OIL=()II Aaalysis Value Time Aaalysis Sampled Sampled Aaalysis \delta I Aaalysis Aaalysis Aaalysis \delta I Aaaalysis Aaaalysis Aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$			
Relinguished by:	Uate: Time:	Turnaround: NJ 1 Day: Res Criteria 2 Days: Res Criteria 3 Days: Impact to GW Soil	NY TOGS GW CP-51 SOIL 375SCO Unrestricted S	PA ☐ Clean Fill Limits ☐ PA;GW
Commants, Special Requirements or Regulations;	Data Format: [1] Phoenix Std Report [2] Excel [1] Phoenix Std Report [2] Excel [1] Phoenix Std Report [2] Excel [1] Phoenix Std Report [2] Contract [3] Excel [4] Phoenix Std Report [4] Phoenix Std Report [5] Phoenix Std Report [6] Phoenix Std Report [7] Phoenix Std Report [8] Contract [9] Phoenix Std Report [1] Phoenix Std Report [1] Phoenix Std Report [1] Phoenix Std Report [1] Phoenix Std Report	S Days* Cleanup Critoria Standard SurchArGE APPLIES Data Package: NJ Reduced Deliv* Cleanup Critoria Impact to GW soil screen Critoria GW Criteria Other	375SCO Residential Sc 375SCO Residential 375SCO Commercial S 375SCO Industrial Sol	Jil PA Soil Restricted II PA Soil non-restricted II Soil Soil State Samples Collected?

																(Coolan	Co t IP	oler K	Yes ICE		10 10
فمحاذة فتعربت والمحببة بمكافقتهم متعاد	· 🙈 .			NY/NJ	/PA	CHA	IN OF	CUS	TOD	YF	RECO	RD	- Danis de Antoi				Tem	ıρ	°C	Pg	of	
DLIC	ΕΛΠΟ	3										00040			1 -		Col	ntact	Optio	ns:		
FII U		•	Em	587 East	Middle Nolari	Turnpi	ike, P.O. ina@nhc	Box 37	0, Mano s com	chest F:	er, CT ax (860	06040 \645-0	323) Pho	ne:						
Enviro nme	ntal Laboratories, Inc.				Clie	ent Se	ervices	(860)	645-	1102	?	,	20	٦.	Ema	ik J	NN O	1016	sQr	nille	crer	Nucon
Customer	MILLE EDV. 6	0		·····		Proje	ct:	M	03:23	63	ഹ	CHG	EW	5	·	Proj	ect F	.0:2	20	536	1	
Address:	LUCI STONE	(ashe	Rd		F	Repo	rt to:	HU	ciat	1 ^{Co}	Mill	Ever	W.Ler	n	_	ſ	This	s sec	tion	MUS	T be	
	Pock Taverr	N.M. IT	3575		<u> </u>	Invoid	ce to:	AR	Pmi	lley	env	. 100	`		_		co	mple	sted	with		
					(QUOT	Έ#:										BO	we u	uam ↓	uues.	¥	↓
	Tich Samala Informatio	n - Identificatio							7	5	7	77		7	7	7	77	7	7	7	Ż.	デフ
Sampler's	Charle Sample - Informatio	AI • IGenuncador		103	An	alysis		, rite		Ì	/ /			/ /		\$9/~				0/ A	<u>ŝ</u> r	$/\Lambda$
Signature	frus		Date: OTV	0185	Re	quest	THE	"s ^u	Ŋ	۶,	/ /	/ /		/ ,	\langle	\$)) ŝ	Ň		~~ /	//
Matrix Cocle: DW=Drinking Wa	ter GW=Ground Water SW=Surt	face Water WW =	Waste Water			,	AND AND	"X	ð.	/		/ /				ŶŶ	Å.	Ň	\$~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1.8)	//	//
RW=Raw Water B=Bulk L=Liquid	SE=Sediment SL=Sludge S=So	il SD=Solid W	=Wipe	OIL=Oil		A SA		ZV	/		/		/ /	Ý,	, Si ji	, st	<u>ک</u> ر کر		¥.s	STR.	, CTP	withe ast
				T		C. R. HOL	3/2	¥,	/ /	/ /	/ /	/ /		\$1. \$1.	Contra S	3 s	\$\$\$	$\langle \rangle_{c}$	> <u>/</u> 3	: /		BOR
SAMPLE #	<u>Y</u> Customer Sample Identifica	tion Matrix	Date Sampled	Sampled	185975	13	14	/					3 5 5 T	3	3/5	\$ ^{\$} /67	*/ 4 ³ /	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<u>}</u>	× 4	<u>\$ } } </u>	1
	Tonk 1 East O'i	12~	8/16/23			6	\sim															
	Trale 1 East 0 'P	CB ~	1			X	$\boldsymbol{4}$															
	Takley JJ'D	I w				X	\times															
	Tralez East J'PI	CB ~				X	\checkmark															
	Trolel Eart 6' 1	77 -				X	4															
	Tualel Gust 6' N	7 0~				5	×															
	Toni - Easi o I		1 1				·	-		_												
						+								+					1			
······			++										+	-†-				+		+	-+	
														+							$ \neg \uparrow$	
Dationula bad bu	toorooto			Date			Time:	Turo	round:		NJ	Ł.		NY	,	<u> </u>		P/	<u></u>			
Kennguisried by	<u>Accepted</u>	Uy.		Date.			Thire.		1 Day*			Res Crit	eria		ј тос	SGW			- Clea	an Fill L	_imits	
<u> </u>								님	2 Days* 3 Days*			Non-Res	Criteria) CP-5	1 SOIL	-		_ קרך	A-GW		
						- +			4 Days*			mpact to	GW Soil		Unre	stricted	t Soil		- R	ea Fill I	Limits	
Comments. Speci	al Requirements or Regulations	:	Data Format	l :	-			님쩍:	5 Days* Standard	t	_	mpact to	GW		3755 Resi	CO dential	Soil		 	4 -Soil 6	Restric	ted
	,		-1 o	Stal D	۔ س			• su	RCHARGE	Ξ		soil scree	en Criteria		375S	CO tential			ייי ו- יים ר	- 000 F	10-105*	ricted
				Sid Report			nto EDO		PLIES			GW Crite	eria		Rest	ricted \$	Soil			4 3011 AC	********	icieu
							5110 EDU	-	4					- -] 3755 Com	iCO mercia	I Soil		. .		<u>ب</u> م	
			PDF		(ASP)	200		ta Packa 13 Redu	age: Iced D)eliv *] Other		3759	CO	oil		State S	ample	Colle د	cted?
*MS/MSD are conside	red site samples and will be billed as su	uch in accordance	GIS/Key			Other			Y Enha	inced	(ASP E)• -	-	C] Subp	art 5 E	w w			I.N	\mathcal{N}	
man the prices quoled			1																	_		

														colant	Çoo :::::::::::::::::::::::::::::::::::	ier:	Yes ICE	No No	<u> </u>
	N	IY/NJ/PA	A CH	AIN C	DF C	UST	ODY	REC	ORD					Tem	p (°C	Pg	af	
PHOENIX	S€ Email:	97 East Midd Makrina Nol C	lie Turn an, mai lient \$	ipike, P. krina@p Servic	O. Box phoenil es (8	x 370, l xtabs.c	Manches com f 345-110	ster, C1 Fax (86 2	T 06040 60) 645-0	823	803 8	Phor Fax' Ema	не: _ it: <u> </u>	<u>Cor</u>	ntact_C	ption	1 <u>5:</u> 	<u>r</u> env	. um
Customer ON Mrs FOW 6 mm 0	1.		Proj	ect:	iN	210	20.70	034	S Ct	166 .	20		Proj	ect P	.0:2	62	33	λ	
Address: 109 Store Castle R ROCK Towern, NY 1	35.75		Rep Invo QUO	ort to: bice to: DTE # :		<u>1001</u> 1001	nille	emi.	N.ev.ev	ν γ	~	- - -		This co Bot	sect mple tie Q	tan J teid V (anti	uUST nth ₩es. ↓	be + +	,
Samplor's Signature Matrix Code: DW=Dinking Water GW=Ground Water SW=Surface Water WW=N RW=Raw Water SE=Sodimont SL=Sludge S=Soil SD=Soild W- B=Bulk L=Liquid	N Dale: <u>5((8)</u> Wasto Water Wipe OIL	on 53	Anatysi Reques	st	STR STR	e V V V		\ 			Land Land	CINE OF CONTRACT				Sare Sare	S SPI S		
PHOENIX USE ONLY Sampla	Date	Time	RAN PROP	S.	¥		//	/ /			*] »)	5/3°		5	X3	NA N		A STATISTICS	
SAMPLE # Customer Sample Identification Matrix	Sampled So	impled 7,4	$\overline{1_{\times}}$	रिस्टी		\neg	-(1-	ſſ	0/ 9/		<u>~</u>	7.97	37	<u> </u>	Ĩ	<u> </u>		
Tak I tak D'PLR			\	↓ ✓				1			+					+			
Two! 2m & TOT	<u>†</u> - <u>†</u> − −		Ý	X								1-							
Turk I mis 3' PCB ~			TY	4				1								ľ			
Tim12 2 Mi26' DI			Ý	γ															
Tenkizmiz6' PCB ~			4	F								ļ							
			\downarrow									-		_	_	ļ			
			- 		-+			_	<u> </u>		+					<u> </u>		_	
			<u> </u>						┼─╂				\square	_			$\left \right $	_	
· · · · · · · · · · · · · · · · · · ·			+				_	-					\square	_	_	+	+		
Relinquistud by Recented by		L Date:	1	Time	. 17	urnaro	und:	- NJ	Ļ		NY			l	РА				
)ays*)ays*)ays*)ays*)ays*		Res. Cri Non-Re Impact I Cleanup	teria s. Criteria o GW Soil o Criteria		TOG: CP-5 375S Unre: 375S	S GW 1 SOIL CO stricted CO	Soil		Clear PA- Re	n Fill Li -GW 19 Fill L	mits imits	
Comments, Special Regulrements or Regulations;	Data Format:	Report	EQui	s		Sta SURCH APPL	ndard IARGE JES		Impact I soil scre	o GW en Criteria		Resid 3755 Resid	tential CO tential	Soil] PA] PA	Soil R Soil nor	estricted	
	l Ì Excel		NJ Ha	azsile EC	∞∟				GW Crit	eria		Restr 375S	CO	000 00-3					
			NY E (ASP	2 EDD)	1	Data	Package: Reduced	Deliv *		🗂 Other		Comi 375S Indus	mercia CO strial Si	l Soii pit	51	tate Sa	amples	Collected:	2
'MS/MSD are considered are symples and will be dilled as such in accordance with the prices quoted.	GIS/Koy	با	Other	r ,	(<u> </u> NY	Enhanced	d (ASP	B) "			Şubp	art 5 D	w			L	<u> </u>	1

															Coolant	Coole IPK	er Ye	es 🔔	No No
			an a		NY/N.	I/PA CH	AIN OF	CUS	TODY	REC	ORD	<u></u>			Tem	° (C P	g 0	F
PHO	FNIX				587 East	Middle Tur	npike. P O	Box 37	0, Manches	ter, CT	06040			Phone	<u></u>	tact U	otions:		
Euctro nmer	ital Laborato	ories. Inc.		En	nail: Makrin	a Nolan, ma Client	krina@ph Services	oenixlab 5 (860)	s.com F 645-110	'ax (86 2	0) 645-08	23		Fax. Email	huol	3651	Omi	leve	nu cont
Customer:	miller	Env. Grou	0			Pro	ject:	MI	13230	36-	1 (4)6	EU	IS.	P	roject P	. <u>0:</u> A	657	6	
Address:	169 54	We Last	re red			Rep	port to:	エン	Dabse	mil	leven	ion			This	secti	on ML	IST be	3
	ROCK TO	avern N	4 19	515		_ Inv		AP	a mill	ever	NICON	<u>n</u>			Bot	mpiet tle Qu	ed wit antitie	n es.	
				.			JIL # .								+	+	*	+	+
Samplar's	Client Samp	ile - information - Ide	entification	ז		Applys	ic			Y,	/ /	//	/ /	6	//		//.	/~/	
Signature	1/1/2			Dare \$	18133	Reque	st	Ser Co	\bigwedge		/ /		/ /		}//	[a]		SS >	$//\lambda$
Matrix Cocle: DW=Drinking Wate	er GW=Ground V	Vater SW =Surface W	ater WW=	Waste Water			N B BOOM	62/0	Z /				/\$/	AND .	3/ G/	Ĭ,		(30 ² C)	
RW=Raw Water S B=Bulk L=Liquid	E=Sediment SL=	Sludge S=Soil SD=	Solid W	=Wipe	OIL=Oil		St Officer of	ZV	///	/ /								»/	APPR 13
			Sampla	Dete	Timo	as we	/ of e	¥,	///	/ /			Jun Cor		3 3	\		37 38	A TOTAL
SAMPLE #	Customer Sa	ample Identification	Matrix	Sampled	Sampled	. WESTER	¥2/			\square	\square	\$]\$]	3/3	3/ <u>s</u> */	8 8 8 T	2 2	*/~*/	37 3	500
	LAStruch	re O'DI	~	8/18/2		\mathcal{L}	4			ļ									L
	(r	O'PLB	1	1		Y	×			ļ									
	(r	JUE								ļ									L
	(r	J' PCD					$ \times $			ļ									
	11	6 PI					17												
	r	6'PLB	1			X	X												L
															_	_		_	
													1						L
<u> </u>										ļ									
							<u> </u>			ļ						-			L
Relinguished by:		Accepted by:			Date:	······································	Time:		round: 1 Day1	MЛ	Dee Cete			ogs g	w	PA	Class F	ill Limite	
									2 Days*		Non-Res	ia Criteria		P-51 S	OIL		PA.G	M _ M 101	
							 	-6	3 Days" 4 Days"		Impact to (GW Soil		75SCO	ted Soil		Page	Sill Lumite	
Comments, Specia	Requirements	or Regulations:		Data Forma	i		L		5 Days* Standard		Cleanup C Impact to I	interia GW		75SCO	hat Soil		ney r		
					Chal Do and S			· SUF	CHARGE		soil screer	Criteria		75SCO			PA So	n Kestri	tuctod
					sta keport	EQUI	is azsile EDD	AF	PLIES		GW Criten	а		Restricte	ed Soil		PA 501	non-res	UNCLEO
									a Packape	L				or 5SCO Commer	cial Soir		*** 5		octed)
						(AS)	2 1 00		U Reduced !	Peiv .		Other		75SCO	1 Son	514	rie sami		
MS/MSD are considered	id ute samples and w	vili be billed as such in a	ccordunce	j I GIS/Ke	y	i J. Oibe	1		Y Enhanced	ASP 5	3 ·		<u>K</u>] :	lubpart	5 DW		Ĺ	NM	<u>.</u>

			Coolant	Cooler Yes NU
PHOENIX S	NY/NJ/PA CHAIN OF CU 587 East Middle Turnpike, P O Box Email: Makrina Nolan, makrina@phoenixli Client Services (86	JSTODY RECORD 370, Manchester, CT 06040 abs.com Fax (860) 645-0823 30) 645-1102	Temp <u>Cont</u> Phone Fax <u>Cont</u> Email	°C Pg of act Options:
Customer: <u>Miller Env. Group</u> Address: <u>169 Stone custle Ro</u> Rock Tavern, NY 12	Project: M Report to: M	103236367 CHGE WS VClabs@millerchv.com Ramillerenv.com	Project P. This con Botti	D:&vS3Q section MUST be apleted with e Quantities.
Sampler's Signature Matrix Cocle: DW=Drinki ng Water GW=Ground Water SW=Surface Water WW=W RW=Raw VVater SE=Sediment SL=Sludge S=Soil SD=Solid W=V B=Bulk L=Liquid PHOENIX USE ONLY Sample Sample Customer Sample Identification Matrix	Date 8/16 (23 Analysis Request Request of the state of th			12
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				
CA Strocker				
Relinguished by Accepted by:	Date Time: Tur	maround: NJ 1 Day' Res Critena 2 Days' Non-Res Critena 3 Days' Impact to GW Soil 4 Days' Cleanup Criteria	NY TOGS GW CP-51 SOIL 375SCO Unrestricted Soil 375SCO	PA Clean Fill Limits PA-GW Reg Fill Limits
Comments, Special Requirements or Regulations:	ta Format: X Phoenix Std Report EQuIS Excel NJ mazsite EDD POF NY EZ EDD (ASP) C	Standard Impact to GW SURCHARGE Soil Screen Criteria APPLIES Impact to GW Data Package: GW Criteria NJ Reouced Delix Other	Residential Soil 375SCO Residential Restricted Soil 375SCO Commercial Soil 375SCO 100051031 Soil	PA Soil Restricted PA Soil non-restricted State Samples Collected?

		Cooler Yes No
DLIOFNIX C	NY/NJ/PA CHAIN OF CUSTODY RECORD	Temp °C Pg of Contact Options:
Encirconnental Euloviatories, Inc.	Client Services (860) 645-1102	D Fax B Email hypla bs@millercou.com
Customer Miller EAN Group Address: 169 Jonne (435715 CC) Rock Tanker, My 13575	Project: MU3230367 CHGE WS Report to: HUC 1965 COMILLEVENVICEM Invoice to: APRMILLEVENVICEM QUOTE # :	Project P.O: a (53) This section MUST be completed with Bottle Quantities.
Sampler's Signature Matrix Cocte: DW>Drinking Writer GW=Ground Water SW=Surface Water WW=Waste RW=Rew VValue SE=Sediment 5L=Studge S=Soid SD=Solid W=Wipe B Bulk L = Equid	Analysis Request Vinter OIL=Chi	
PHOENIX USE ON Y SAMPLE 9 Customer Sample Identification Matrix So	te Time Jed Sampled	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\frac{2}{48} \frac{9}{1}$		
$\begin{array}{c c} & & \\ & &$		
Bollinguistried by Accepted by:	Date Time: Turnaround: NJ □ 1 Oay' Res Criteria □ 2 Days' Non-Res Criteria □ 3 Oays' Impact to CVV Soil □ 5 Days' Cleanup Criteria • • •	NY PA []] TOGS GW []] Clean Fill Limits []] CP-51 SOIL []] PA-CW []] 375SCO []] PA-CW []] J75SCO []] Reg Fill Limits []] 375SCO []] Reg Fill Limits
MSIMSU way to the stated with company and the by third on such in accordance	Ioomis Std Ruport L. EQuits SURCHARGE APPLIES 1	Image: Second

NYNJAFA CHAIN OF CUSTODY RECORD tem						Cooler Yos No Coolant IPK FCE No
Costomor Di III V Enzitado Projecti Macabasi Constitución Projecti Macabasi Constitución Reporto Internetto Reporto Internetto Internetto Internetto Internetto Sensor Reporto Internetto Internetto Internetto Internetto Bandardo de la constitución Internetto Internetto Internetto Internetto Internetto de la constitución Internetto Internetto Internetto Internetto <td>PHOENIX Constant Contraction States</td> <td>NY/NJ 587 ⊟ast Emait, Makrina</td> <td>/PA CHAIN O Middle Turnpike, P C Nolon, makrima@ph Client Service:</td> <td>F CUSTODY RECORD Box 370 Manchester, CT 06040 ioenixlabs com Fax (860) 645-0823 s (860) 645-1102</td> <td>i⊡ Phone □ Fax I≫ Email</td> <td>Temp °C Pg of Contact Options: </td>	PHOENIX Constant Contraction States	NY/NJ 587 ⊟ast Emait, Makrina	/PA CHAIN O Middle Turnpike, P C Nolon, makrima@ph Client Service:	F CUSTODY RECORD Box 370 Manchester, CT 06040 ioenixlabs com Fax (860) 645-0823 s (860) 645-1102	i⊡ Phone □ Fax I≫ Email	Temp °C Pg of Contact Options:
Sompler: Juni Sungle Information - Identification Analysis	Customer <u>Miller Env. Graup</u> Address: 169 <u>Strine (asrle ed</u> Rock Tavern, M. 12	<u>م</u>	Project: Report to: Invoice to: QUOTE # :	MBZZOJOT CHOEWS HUOIAUSEMINERAN CCM Are Millerenv. com	Pro 	Iject P.O: <u>26532</u> This section MUST be completed with Bottle Quantities.
Rejinguish od by Accepted by: Date: Time: Turnaround: NJ NJ PA I Day: I Paper I Day: I PA: I PA: I PA: I Pae I Phoenx Stid Report (I EQUIS I Poi- <li< td=""><td>Sampler's Signature Meins Coctor DW-Drinking Water GW=Ground Water SW=Surface Water WWT RW=Rnw Whiter SE=Sediment SL=Sludge S=Soli SD=Solid WT B=Bulk LT Liquid PHOCNIX USEF ONLY SAMPLE # Custome: Sample Identification LA 1 DT LA 2 DT LA 3 PCB LA 4 DT LA 4 PCB LA 4 DT LA 5 DT LA 5 DT</td><td>Date S/18123 Waste Water Wipe OfL Oil Date Time Sampled S/(x/23)</td><td>Analysis Request www.www.www. Y Y Y Y Y Y Y Y Y Y Y Y Y</td><td></td><td></td><td></td></li<>	Sampler's Signature Meins Coctor DW-Drinking Water GW=Ground Water SW=Surface Water WWT RW=Rnw Whiter SE=Sediment SL=Sludge S=Soli SD=Solid WT B=Bulk LT Liquid PHOCNIX USEF ONLY SAMPLE # Custome: Sample Identification LA 1 DT LA 2 DT LA 3 PCB LA 4 DT LA 4 PCB LA 4 DT LA 5 DT LA 5 DT	Date S/18123 Waste Water Wipe OfL Oil Date Time Sampled S/(x/23)	Analysis Request www.www.www. Y Y Y Y Y Y Y Y Y Y Y Y Y			
Comments: Special Requirements or Regulations: Data Format: Data F			Time:	Turnaround: NJ 1 Day' () Res Criteria 2 Days' () Non-Res Criteria 3 Days' () Non-Res Criteria 4 Days' () Inpact to GW Soil 5 Days' Cleanup Criteria	NY [] 1065 GW [] CP-51 S01 [] 375SC0 Unrestricto □ 375SC0	PA [] Clean Fill Limits [] PA.GW d Solit [] Reg Fill Limits
	ommente, special requiroments or Regulations.	Data Pornat: [] Phoons Std Report [] Excel [] PDF	EQUIS	Cata Package:	Residential [i_375SCO Residential Residential Residential Residential Residential Residential Residential Residential Residential	Soil PA Soil Restricted PA Soil non-restricted Soil Soil State Samples Collected?

						Goolant	Cooler Yes No
PHOENIX S	687 East Email Makting	/PA CHAIN OF Midde Turnpike, P C) Nolan, makrina@pho Client Servi - 15	LCUSTODY F lox 370, Manchest perixtabs.com F 5 (860) 645-1102	RECORD (et., CT 06040 (860) 645-0823 2	Phone	femp <u>Cont</u> H V C Loc	AC Pg of act Options:
Customer: Miller Env. (1784.p Address: 169 Stone Custle Ref Bock Tavern, MM 125	<u></u>	Project. Report to: Invoice to: QUOTE # :	My 03230 HUOLOUSSED A HEMiller	DBUT CHOF (Milleren v. com Pravision	<u>いこ</u> F	roject P.C This s com Bottl	<u>ੇ: ਕੇ 65 ਤੋਡੋ</u> section MUST be apleted with e Quarititles.
Sampler's Signature Matrix Codin: DW=Dinking Writer GW=Ground Water SW=Surface Water WW=W/ RW=Raw Water SE-Solument SL-Sludge S Soil SD=Solid W-W B=Bulk L-Liquid PHOENIX USE ONLY SAMPLE # Customer Sample Identification Matex 1. 3' DT- 1. 4' 3' DT- 1. 4' 3' DT- 1. 4' 4' 4' 4' 4' 4' 4' 4' 4' 4' 4' 4' 4'	Dete Sumpled	Analysis Request May a subset Analysis					
Relingujotaed hy. <u>Accessing by:</u>	Jata Fornat: Phoenix Std Report 1 Ciscel		Turnaround: 2 Days 2 Days 3 Days 4 Days 5 Days Standard * SURCHARGE APPLIES	NU 	NY CP-51 S CP-51 S CH-51 S	W OH ted Son (a) Soil (a) Soil (a) Soil (c) Soil	PA Clean Fill Limits PA-GW Reg Fill Limits PA Soil Restricted (PA Soil non-restricted
l MSIMSD are cransidered alle surplins, and will be billed as spectra accordance with the price is guorad	T COSCHERV	(ASI) Dras	1 (] NJ Reiniceo D	ueo (°)⊂alas (ASP R=1	LLI 376300 incustra L 2 Satport	- - 509 5 (WV	

Monica Pellerin

From:Christopher Perry <CPerry@millerenv.com>Sent:Tuesday, August 22, 2023 4:07 PMTo:Monica Pellerin; Hayle Sharp; Raisa Petraitis; HVO LabsCc:Shannon WilhelmSubject:RE: GCO79187- wipes- COC TO BE SENT 8/22

Hi Monica,

What you wrote up should work out well. We apologize for the confusion and inconvenience regarding the COC.

Regarding the total metals with DI water, please run the same with total metals minus Hg.

Thank you.

Chris Perry Hudson Valley Operations Manager 169 Stone Castle Rd Rock Tavern, NY 12575 c: 516-903-0096 o: 845-569-1200 <u>millerenv.com</u> | <u>cperry@millerenv.com</u>

From: Monica Pellerin <monicap@phoenixlabs.com> Sent: Tuesday, August 22, 2023 2:20 PM To: Hayle Sharp <hsharp@millerenv.com>; Raisa Petraitis <raisa@phoenixlabs.com>; Christopher Perry <CPerry@millerenv.com>; HVO Labs <hvolabs@millerenv.com> Cc: Shannon Wilhelm <shannon@phoenixlabs.com> Subject: RE: GCO79187- wipes- COC TO BE SENT 8/22

WARNING: This e-mail was sent from someone outside of MEG. Please exercise caution when clicking on anything in it or responding. If in doubt, contact MEG IT.

Hayle,

Thank you for the COCs, however, they were still very confusing as they still did not match up with the jars. I hope you don't mind from the information I have received from you I wrote up COCs thinking this is what is trying to be accomplished.

Also, I spoke with the lab about these samples and for the total metals which is the wipe with DI water, we would require 2 jars per sample to run total metals we could either run Hg or run total metals minus Hg. The wipe with Hexane is for the PCB 8082 and 1 jar is sufficient for this.

Please review the attached and let me know.

Monica

Monica Pellerin

Client Service Representative/ Sample Receiving Phoenix Environmental Labs 587 Middle Turnpike East Manchester, CT 860-645-1102 Fax: 860-645-0823

This message and any attachments are solely for the intended recipient and may contain confidential or privileged information. If you are not the intended recipient, any disclosure, copying, use, or distribution of the information included in this message and any attachments is prohibited. If you have received this communication in error, please notify us by reply e-mail and immediately and permanently delete this message and any attachments.

From: Hayle Sharp <<u>hsharp@millerenv.com</u>>
Sent: Tuesday, August 22, 2023 12:23 PM
To: Monica Pellerin <<u>monicap@phoenixlabs.com</u>>; Raisa Petraitis <<u>raisa@phoenixlabs.com</u>>; Christopher Perry
<<u>CPerry@millerenv.com</u>>; HVO Labs <<u>hvolabs@millerenv.com</u>>
Cc: Shannon Wilhelm <<u>shannon@phoenixlabs.com</u>>; Emily Stokes <<u>emilys@phoenixlabs.com</u>>; Krystal Delgado
<<u>KrystalD@phoenixlabs.com</u>>
Subject: RE: GC079187- wipes- COC TO BE SENT 8/22

Hi all,

I was able to have our technician who performed the sampling create new COC's. Please see attached. He is currently on an emergency spill response so I am unable to have him verify against the photos at the moment. Tomorrow I will be able to do so.

Sorry for the confusion with this!! We appreciate your understanding and patience.

Hayle Sharp Administrative Assistant

169 Stone Castle Rd, Rock Tavern, NY 12575 p: 845-569-1200 ext 1259| c: 845-275-2212 <u>millerenv.com | hsharp@millerenv.com</u>

Click here to check out what's new at MEG!

This message is confidential. It may also be privileged or otherwise protected by work product immunity or other legal rules. If you have received it by mistake, please let us know by e-mail reply and delete it from your system; you may not copy this message or disclose its contents to anyone. The integrity and security of this message cannot be guaranteed on the Internet.

From: Monica Pellerin <<u>monicap@phoenixlabs.com</u>> Sent: Tuesday, August 22, 2023 11:31 AM To: Hayle Sharp <<u>hsharp@millerenv.com</u>>; Raisa Petraitis <<u>raisa@phoenixlabs.com</u>>; Christopher Perry <<u>CPerry@millerenv.com</u>>; HVO Labs <<u>hvolabs@millerenv.com</u>> Cc: Shannon Wilhelm <<u>shannon@phoenixlabs.com</u>>; Emily Stokes <<u>emilys@phoenixlabs.com</u>>; Krystal Delgado <<u>KrystalD@phoenixlabs.com</u>> Subject: RE: GCO79187- wipes- COC TO BE SENT 8/22 Importance: High

WARNING: This e-mail was sent from someone outside of MEG. Please exercise caution when clicking on anything in it or responding. If in doubt, contact MEG IT.

Good morning, Hayle.

I have attached a picture of the jars that we received as well as the COC that you forward to us and, unfortunately, we are unable to pair the jars with the sample IDs on the chain of custody. Please advise.

Monica

Monica Pellerin Client Service Representative/ Sample Receiving Phoenix Environmental Labs 587 Middle Turnpike East Manchester, CT 860-645-1102 Fax: 860-645-0823

This message and any attachments are solely for the intended recipient and may contain confidential or privileged information. If you are not the intended recipient, any disclosure, copying, use, or distribution of the information included in this message and any attachments is prohibited. If you have received this communication in error, please notify us by reply e-mail and immediately and permanently delete this message and any attachments.

From: Hayle Sharp <<u>hsharp@millerenv.com</u>> Sent: Tuesday, August 22, 2023 9:05 AM To: Raisa Petraitis <<u>raisa@phoenixlabs.com</u>>; Christopher Perry <<u>CPerry@millerenv.com</u>>; HVO Labs <<u>hvolabs@millerenv.com</u>> Cc: Shannon Wilhelm <<u>shannon@phoenixlabs.com</u>>; Emily Stokes <<u>emilys@phoenixlabs.com</u>>; Monica Pellerin <<u>monicap@phoenixlabs.com</u>>; Krystal Delgado <<u>KrystalD@phoenixlabs.com</u>> Subject: RE: GC079187- wipes- COC TO BE SENT 8/22

3

Hi Raisa,

Please see attached COC. If additional information is needed, feel free to reach out.

Thanks!

Hayle Sharp Administrative Assistant

169 Stone Castle Rd, Rock Tavern, NY 12575 p: 845-569-1200 ext 1259| c: 845-275-2212 <u>millerenv.com</u> <u>1 hsharp@millerenv.com</u>

Click here to check out what's new at MEG!

This message is confidential. It may also be privileged or otherwise protected by work product immunity or other legal rules. If you have received it by mistake, please let us know by e-mail reply and delete it from your system; you may not copy this message or disclose its contents to anyone. The integrity and security of this message cannot be guaranteed on the Internet.

From: Raisa Petraitis <<u>raisa@phoenixlabs.com</u>> Sent: Monday, August 21, 2023 5:06 PM To: Christopher Perry <<u>CPerry@millerenv.com</u>>; HVO Labs <<u>hvolabs@millerenv.com</u>> Cc: Shannon Wilhelm <<u>shannon@phoenixlabs.com</u>>; Emily Stokes <<u>emilys@phoenixlabs.com</u>>; Monica Pellerin <<u>monicap@phoenixlabs.com</u>>; Krystal Delgado <<u>KrystalD@phoenixlabs.com</u>> Subject: GCO79187- wipes- COC TO BE SENT 8/22 Importance: High

WARNING: This e-mail was sent from someone outside of MEG. Please exercise caution when clicking on anything in it or responding. If in doubt, contact MEG IT.

Good Evening Chris,

Per our phone conversation, please forward the finished COC for the 50+ wipe samples that were sent in with Brian to the emails in this thread. Thank you.

Kind Regards, Raisa Petraitis

Sample Receiving Client Services Phoenix Environmental Labs 587 Middle Turnpike East Manchester, CT Phone: 860-645-1102 ext 370 Website: <u>www.phoenixlabs.com</u>

Greg Lawrence

From: Sent: To: Subject: Attachments: Greg Lawrence Monday, August 28, 2023 10:12 AM <u>hvolabs@millerenv.com</u> Wipe Sample GCO80287-ChainofCustody-1.pdf

Good morning,

Due to an extraction issue sample ID L/U 7, Phoenix Lab ID CO80330 had no QC recovery and therefore no results can be reported for this sample location.

1

Gregory Lawrence

Assistant Laboratory Director Phoenix Environmental Laboratories, Inc. 587 East Middle Turnpike | Manchester, CT 06040 Direct Line: (860)-812-0812 www.phoenixlabs.com

Greg Lawrence

From: Sent: To: Subject: Greg Lawrence Monday, August 28, 2023 10:15 AM <u>hvolabs@millerenv.com</u> RE: Wipe Sample

I am sorry, I should have said no results can be reported for PCBs.

Gregory Lawrence Assistant Laboratory Director Phoenix Environmental Laboratories, Inc. 587 East Middle Turnpike | Manchester, CT 06040 Direct Line: (860)-812-0812 www.phoenixlabs.com

From: Greg Lawrence Sent: Monday, August 28, 2023 10:12 AM To: <u>hvolabs@millerenv.com</u> Subject: Wipe Sample

Good morning,

Due to an extraction issue sample ID L/U 7, Phoenix Lab ID CO80330 had no QC recovery and therefore no results can be reported for this sample location.

1

Gregory Lawrence Assistant Laboratory Director Phoenix Environmental Laboratories, Inc. 587 East Middle Turnpike | Manchester, CT 06040 Direct Line: (860)-812-0812 www.phoenixlabs.com

Dayton, NJ

The results set forth herein are provided by SGS North America Inc.

Technical Report for

Plumley Environmental Engineers

Central Hudson Gas & Electric, NY

2023058.006

SGS Job Number: JD88358

Sampling Date: 05/08/24

Report to:

Plumley Environmental Engineers 8232 Loop Road Baldwinsville, NY 13027 dhudson@plumleyeng.com

ATTN: Derk Hudson

Total number of pages in report: 40

David Chastain General Manager

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Program and/or state specific certification programs as applicable unless noted in the narrative, comments or footnotes.

Client Service contact: Kelly Ramos 732-329-0200 Certifications: NJ(12129),NY(10983),CA,CO,CT,FL,HI,IL,IN,KY,LA (120428),MA,MD,ME,MN,NC,NH,NV, AK (UST-103),AZ (AZ0786),PA(68-00408),RI,SC,TX (T104704234),UT,VA,WA,WV

This report shall not be reproduced, except in its entirety, without the written approval of SGS. Test results relate only to samples analyzed.

SGS North America Inc. • 2235 Route 130 • Dayton, NJ 08810 • tel: 732-329-0200 •

Please share your ideas about how we can serve you better at: EHS.US.CustomerCare@sgs.com

1 of 40

05/20/24

Automated Report

e-Hardcopy 2.0

Table of Contents

-1-

Section 1: Sample Summary	3
Section 2: Summary of Hits	4
Section 3: Sample Results	5
3.1: JD88358-1: WSA10	6
3.2: JD88358-2: WSA11	7
3.3: JD88358-3: WSA25 RINSATE	8
3.4: JD88358-4: PCB TANK INTERSITIAL	11
3.5: JD88358-5: L/U 20 RINSATE	13
3.6: JD88358-6: L/U 21 RINSATE	16
3.7: JD88358-7: L/U 22 RINSATE	19
3.8: JD88358-8: L/U 23 RINSATE	22
3.9: JD88358-9: TANK SHOP RINSATE	25
Section 4: Misc. Forms	28
4.1: Chain of Custody	29
4.2: Sample Tracking Chronicle	32
4.3: Internal Chain of Custody	34

Sample Summary

Plumley Environmental Engineers

Central Hudson Gas & Electric, NY Project No: 2023058.006

Sample Number	Collected Date	Time By	Received	Matr Code	ix Type	Client Sample ID					
This report contains results reported as ND = Not detected. The following applies:Organics ND= Not detected above the MDL											
JD88358-1	05/08/24	09:00 DKM	05/11/24	WIPE	E Wipe Sample	WSA10					
JD88358-2	05/08/24	09:05 DKM	05/11/24	WIPE	E Wipe Sample	WSA11					
JD88358-3	05/08/24	10:00 DKM	05/11/24	AQ	Surface Water	WSA25 RINSATE					
JD88358-4	05/08/24	11:30 DKM	05/11/24	AQ	Surface Water	PCB TANK INTERSITIAL					
JD88358-5	05/08/24	11:00 DKM	05/11/24	AQ	Surface Water	L/U 20 RINSATE					
JD88358-6	05/08/24	11:50 DKM	05/11/24	AQ	Surface Water	L/U 21 RINSATE					
JD88358-7	05/08/24	12:30 DKM	05/11/24	AQ	Surface Water	L/U 22 RINSATE					
JD88358-8	05/08/24	13:10 DKM	05/11/24	AQ	Surface Water	L/U 23 RINSATE					
JD88358-9	05/08/24	15:10 DKM	05/11/24	AQ	Surface Water	TANK SHOP RINSATE					

Job No:

JD88358

Summary of Hits

Job Number:	JD88358
Account:	Plumley Environmental Engineers
Project:	Central Hudson Gas & Electric, NY
Collected:	05/08/24

Lab Sample ID Analyte	Client Sample ID	Result/ Qual	RL	MDL	Units	Method
JD88358-1	WSA10					
Aroclor 1260		1.1	0.50	0.16	ug/wipe	SW846 8082A
JD88358-2	WSA11					
Aroclor 1260		8.3	0.50	0.16	ug/wipe	SW846 8082A
JD88358-3	WSA25 RINSATE					
No hits reported i	n this sample.					
JD88358-4	PCB TANK INTE	RSITIAL				
Chromium Lead		51.2 5.3	10 3.0	2.0 1.8	ug/l ug/l	SW846 6010D SW846 6010D
JD88358-5	L/U 20 RINSATE					
Methyl Tert Buty	l Ether	1.2	1.0	0.51	ug/l	SW846 8260D
JD88358-6	L/U 21 RINSATE					
No hits reported i	n this sample.					
JD88358-7	L/U 22 RINSATE					
No hits reported in this sample.						
JD88358-8	L/U 23 RINSATE					
No hits reported i	n this sample.					

JD88358-9 TANK SHOP RINSATE

No hits reported in this sample.

N

Dayton, NJ

ω Section 3

Sample Results

Report of Analysis

	Report of Analysis							
Client San Lab Samp Matrix: Method: Project:	nple ID: WSA10 le ID: JD8835 WIPE - SW846 Central	8-1 Wipe Sa 8082A Hudson	imple SW846 3580A Gas & Electric, NY		Date Sampled:05/08/24Date Received:05/11/24Percent Solids:n/a			
Run #1 Run #2	File ID XX2512676.D	DF 1	Analyzed 05/17/24 10:33	By CP	Prep Date 05/16/24 15:40	Prep Batch OP54662	Analytical Batch GXX8522	
Run #1 Run #2	Initial Weight 1.0 wipes	Final V 10.0 m	Volume 1					

PCB List

CAS No.	Compound	Result	RL	MDL	Units	Q
12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5 11100-14-4 37324-23-5	Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1254 Aroclor 1260 Aroclor 1268 Aroclor 1262	ND ND ND ND ND 1.1 ND ND	$\begin{array}{c} 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\end{array}$	0.20 0.20 0.13 0.080 0.29 0.12 0.16 0.074 0.038	ug/wipe ug/wipe ug/wipe ug/wipe ug/wipe ug/wipe ug/wipe ug/wipe	
CAS No. 877-09-8 877-09-8 2051-24-3 2051-24-3	Surrogate Recoveries Tetrachloro-m-xylene Tetrachloro-m-xylene Decachlorobiphenyl Decachlorobiphenyl	Run# 1 61% 60% 63% 67%	Run# 2	Limit 38-14 38-14 28-15 28-15	s 4% 4% 0% 0%	

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

SGS

			Report	nalysis		Page 1 of 1	
Client Sa Lab Sam Matrix: Method: Project:	mple ID: WSA11 ple ID: JD8835 WIPE - SW846 Central	8-2 Wipe Sa 8082A Hudson	mple SW846 3580A Gas & Electric, NY		Date Date Perc	05/08/24 05/11/24 n/a	
Run #1 Run #2	File ID XX2512677.D	DF 1	Analyzed 05/17/24 10:51	By CP	Prep Date 05/16/24 15:40	Prep Batch OP54662	Analytical Batch GXX8522
Run #1 Run #2	Initial Weight 1.0 wipes	Final 10.0 m	Volume 1				

PCB List

Aroclor 1016 Aroclor 1221 Aroclor 1232	ND ND	0.50 0.50	0.20	ug/wipe	
Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1268 Aroclor 1262	ND ND ND 8.3 ND ND	0.50 0.50 0.50 0.50 0.50 0.50 0.50	0.20 0.13 0.080 0.29 0.12 0.16 0.074 0.038	ug/wipe ug/wipe ug/wipe ug/wipe ug/wipe ug/wipe ug/wipe	
Surrogate Recoveries Fetrachloro-m-xylene Fetrachloro-m-xylene Decachlorobiphenyl	Run# 1 74% 74% 75%	Run# 2	Limit 38-14 38-14 28-15	s 4% 4% 0%	
An An An Fe Fe	roclor 1254 roclor 1260 roclor 1268 roclor 1262 nrrogate Recoveries etrachloro-m-xylene etrachloro-m-xylene ecachlorobiphenyl ecachlorobiphenyl	roclor 1254 ND roclor 1260 8.3 roclor 1268 ND roclor 1262 ND Irrogate Recoveries Run# 1 etrachloro-m-xylene 74% ecachlorobiphenyl 75% ecachlorobiphenyl 79%	roclor 1254 ND 0.50 roclor 1260 8.3 0.50 roclor 1268 ND 0.50 roclor 1262 ND 0.50 urrogate Recoveries Run# 1 Run# 2 etrachloro-m-xylene 74% etrachloro-m-xylene 74% ecachlorobiphenyl 75% ecachlorobiphenyl 79%	roclor 1254 ND 0.50 0.12 roclor 1260 8.3 0.50 0.16 roclor 1268 ND 0.50 0.074 roclor 1262 ND 0.50 0.038 urrogate Recoveries Run# 1 Run# 2 Limit etrachloro-m-xylene 74% 38-14 ecachlorobiphenyl 75% 28-15 ecachlorobiphenyl 79% 28-15	roclor 1254 ND 0.50 0.12 ug/wipe roclor 1260 8.3 0.50 0.16 ug/wipe roclor 1268 ND 0.50 0.074 ug/wipe roclor 1262 ND 0.50 0.074 ug/wipe urrogate Recoveries Run# 1 Run# 2 Limits etrachloro-m-xylene 74% 38-144% ecachlorobiphenyl 75% 28-150% ecachlorobiphenyl 79% 28-150%

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

ω

7 of 40

JD88358

			-				
Client San Lab Samj Matrix: Method: Project:	mple ID: W ple ID: JI A S' Co	'SA25 RINSA' 088358-3 Q - Surface Wa W846 8260D entral Hudson	TE ater Gas & Electric, NY		Da Da Pe	ate Sampled: 05 ate Received: 05 ercent Solids: n/a	5/08/24 5/11/24 a
Run #1 Run #2	File ID GA12731.	DF D 1	Analyzed 05/16/24 03:50	By ED	Prep Date n/a	Prep Batch n/a	Analytical Batch VGA353
Run #1 Run #2	Purge Vol 5.0 ml	ume				_	

Report of Analysis

VOA STARS List

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2	Benzene	ND	0.50	0.43	ug/l	
104-51-8	n-Butylbenzene	ND	2.0	0.52	ug/l	
135-98-8	sec-Butylbenzene	ND	2.0	0.62	ug/l	
98-06-6	tert-Butylbenzene	ND	2.0	0.69	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.60	ug/l	
98-82-8	Isopropylbenzene	ND	1.0	0.65	ug/l	
99-87-6	p-Isopropyltoluene	ND	2.0	0.66	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.51	ug/l	
91-20-3	Naphthalene	ND	5.0	4.4	ug/l	
103-65-1	n-Propylbenzene	ND	2.0	0.60	ug/l	
108-88-3	Toluene	ND	1.0	0.49	ug/l	
95-63-6	1,2,4-Trimethylbenzene	ND	2.0	1.0	ug/l	
108-67-8	1,3,5-Trimethylbenzene	ND	2.0	1.0	ug/l	
	m,p-Xylene	ND	1.0	0.78	ug/l	
95-47-6	o-Xylene	ND	1.0	0.59	ug/l	
1330-20-7	Xylene (total)	ND	1.0	0.59	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limit	ts	
1868-53-7	Dibromofluoromethane	107%		80-12	20%	
17060-07-0	1,2-Dichloroethane-D4	101%		80-12	20%	
2037-26-5	Toluene-D8	98%		80-12	20%	
460-00-4	4-Bromofluorobenzene	99%		82-11	4%	

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

ω

8 of 40 SGS

SGS North America Inc.

		Insport	VI 1 I	141,515		ruge r or r
nple ID: WSA25 ble ID: JD8835 AQ - Su	RINSAT 8-3 urface Wa	TE iter		Date Date	Sampled: 0. Received: 0.	5/08/24 5/11/24
Method: SW846 8270E SW846 3510C				Perc	ent Solids: n	/a
Central	Hudson (Gas & Electric, NY				
File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
F220119.D	1	05/16/24 16:18	КН	05/14/24 22:30	OP54673	EF9776
Initial Volume	Final V	olume				
	mple ID: WSA25 JDe ID: JD8835 AQ - Su SW846 Central File ID F220119.D Initial Volume	mple ID: WSA25 RINSAT ple ID: JD88358-3 AQ - Surface Wa SW846 8270E S Central Hudson O File ID DF F220119.D 1 Initial Volume Final V 1000 ml 1.0 ml	mple ID: WSA25 RINSATE ble ID: JD88358-3 AQ - Surface Water SW846 8270E SW846 3510C Central Hudson Gas & Electric, NY File ID DF Analyzed F220119.D 1 05/16/24 16:18 Initial Volume Final Volume	mple ID: WSA25 RINSATE ble ID: JD88358-3 AQ - Surface Water SW846 8270E SW846 3510C Central Hudson Gas & Electric, NY File ID DF Analyzed By F220119.D 1 05/16/24 16:18 KH Initial Volume Final Volume 1000 ml 1.0 ml	mple ID: WSA25 RINSATE ole ID: JD88358-3 Date AQ - Surface Water Date SW846 8270E SW846 3510C Perc Central Hudson Gas & Electric, NY Prep Date File ID DF Analyzed By Prep Date F220119.D 1 05/16/24 16:18 KH 05/14/24 22:30 Initial Volume Final Volume 1000 ml 1.0 ml	Initial Volume Final Volume Initial Volume Final Volume 1000 ml 1 0 ml

Report of Analysis

Run #2

BN PAH List

RL CAS No. Compound Result MDL Units 0 83-32-9 ND 1.0 0.19 Acenaphthene ug/l 208-96-8 Acenaphthylene ND 1.0 0.14 ug/l Anthracene 120-12-7 ND 1.0 0.21 ug/l 56-55-3 Benzo(a)anthracene ND 1.0 0.20 ug/l 50-32-8 Benzo(a)pyrene ND 1.0 0.21 ug/l 205-99-2 Benzo(b)fluoranthene ND 1.0 0.21 ug/l 191-24-2 Benzo(g,h,i)perylene ND 1.00.34 ug/l 207-08-9 Benzo(k)fluoranthene 1.0 ND 0.21 ug/l 218-01-9 Chrysene ND 1.0 0.18 ug/l 53-70-3 Dibenzo(a,h)anthracene ND 1.0 0.33 ug/l 206-44-0 Fluoranthene 0.17 ND 1.0 ug/l 86-73-7 Fluorene ND 1.0 0.17 ug/l 193-39-5 Indeno(1,2,3-cd)pyrene ND 1.0 0.33 ug/l 91-20-3 Naphthalene ND 1.0 0.23 ug/l Phenanthrene 85-01-8 ND 1.0 0.18 ug/l 129-00-0 Pyrene ND 1.0 0.22 ug/l CAS No. **Surrogate Recoveries** Run#1 **Run# 2** Limits 4165-60-0 Nitrobenzene-d5 98% 28-118% 321-60-8 2-Fluorobiphenyl 81% 34-116% 1718-51-0 Terphenyl-d14 39% 10-127%

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

ω ω

Client Sample ID:	WSA25 RINSATE		
Lab Sample ID:	JD88358-3	Date Sampled:	05/08/24
Matrix:	AQ - Surface Water	Date Received:	05/11/24
		Percent Solids:	n/a
Project:	Central Hudson Gas & Electric, NY		

Report of Analysis

Total Metals Analysis

Analyte	Result	RL	MDL	Units	DF	Prep	Analyzed l	By	Method	Prep Method
Arsenic	2.8 U	3.0	2.8	ug/l	1	05/14/24	05/16/24 H	KP	SW846 6010D ²	SW846 3010A ³
Barium	13 U	200	13	ug/l	1	05/14/24	05/16/24 H	KP	SW846 6010D ²	SW846 3010A ³
Cadmium	1.0 U	3.0	1.0	ug/l	1	05/14/24	05/16/24 H	KP	SW846 6010D ²	SW846 3010A ³
Chromium	2.0 U	10	2.0	ug/l	1	05/14/24	05/16/24 H	KP	SW846 6010D ²	SW846 3010A ³
Lead	1.8 U	3.0	1.8	ug/l	1	05/14/24	05/16/24 H	KP	SW846 6010D ²	SW846 3010A ³
Mercury	0.095 U	0.20	0.095	ug/l	1	05/14/24	05/15/24 M	MK	SW846 7470A ¹	SW846 7470A ⁴
Selenium	4.9 U	10	4.9	ug/l	1	05/14/24	05/16/24 H	KP	SW846 6010D ²	SW846 3010A ³
Silver	6.1 U	10	6.1	ug/l	1	05/14/24	05/16/24 H	KP	SW846 6010D ²	SW846 3010A ³

(1) Instrument QC Batch: MA56077

(2) Instrument QC Batch: MA56091

(3) Prep QC Batch: MP46616

(4) Prep QC Batch: MP46618

Page 1 of 1

ω

ယ ယ

11097-69-1 Aroclor 1254

11096-82-5

11100-14-4

37324-23-5

CAS No.

877-09-8

877-09-8

2051-24-3

2051-24-3

Aroclor 1260 a

Aroclor 1268

Aroclor 1262

Surrogate Recoveries

Tetrachloro-m-xylene

Tetrachloro-m-xylene

Decachlorobiphenyl

Decachlorobiphenyl

			Report	of An	alysis			Page 1 of 1
Client Sam Lab Sampl Matrix: Method: Project:	ple ID: PCB TA e ID: JD8835 AQ - Su SW846 Central	ANK INTE 8-4 11face Wate 8082A SV Hudson Ga	RSITIAL er W846 3510C as & Electric, NY			Date Date Perc	e Sampled: 0: e Received: 0: eent Solids: n/	5/08/24 5/11/24 ⁄a
Run #1 Run #2	File ID 3G141554.D	DF 1	Analyzed 05/17/24 21:13	By MLC	Prep D 05/16/2	ate 4 07:50	Prep Batch OP54687	Analytical Batch G3G5182
Run #1 Run #2	Initial Volume 1000 ml	Final Vo 5.0 ml	lume					
PCB List								
CAS No.	Compound		Result	RL	MDL	Units	Q	
12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6	Aroclor 1016 ^a Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248		ND ND ND ND ND	0.25 0.25 0.25 0.25 0.25	0.098 0.21 0.13 0.23 0.22	ug/l ug/l ug/l ug/l ug/l		

0.25

0.25

0.25

0.25

Run# 2

0.21

0.21

0.087

0.23

Limits

10-169%

10-169%

10-130%

10-130%

ug/l

ug/l

ug/l

ug/l

ND

ND

ND

ND

Run#1

37%

24%

25%

23%

(a) Associated CCV outside of control limits high, sample was ND.

- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound
 - 11 of 40 SGS

ω

3.4

Client Sample ID: PCB TANK INTERSITIAL Lab Sample ID: JD88358-4 **Date Sampled:** 05/08/24 Matrix: **Date Received:** 05/11/24 AQ - Surface Water Percent Solids: n/a **Project:** Central Hudson Gas & Electric, NY

Total Metals Analysis

Analyte	Result	RL	MDL	Units	DF	Prep	Analyzed 1	By	Method	Prep Method
Arsenic	2.8 U	3.0	2.8	ug/l	1	05/14/24	05/16/24	KP	SW846 6010D ²	SW846 3010A ³
Barium	13 U	200	13	ug/l	1	05/14/24	05/16/24	KP	SW846 6010D ²	SW846 3010A ³
Cadmium	1.0 U	3.0	1.0	ug/l	1	05/14/24	05/16/24	KP	SW846 6010D ²	SW846 3010A ³
Chromium	51.2	10	2.0	ug/l	1	05/14/24	05/16/24	KP	SW846 6010D ²	SW846 3010A ³
Lead	5.3	3.0	1.8	ug/l	1	05/14/24	05/16/24	KP	SW846 6010D ²	SW846 3010A ³
Mercury	0.095 U	0.20	0.095	ug/l	1	05/14/24	05/15/24	MK	SW846 7470A ¹	SW846 7470A ⁴
Selenium	4.9 U	10	4.9	ug/l	1	05/14/24	05/16/24	KP	SW846 6010D ²	SW846 3010A ³
Silver	6.1 U	10	6.1	ug/l	1	05/14/24	05/16/24	KP	SW846 6010D ²	SW846 3010A ³

(1) Instrument QC Batch: MA56077

(2) Instrument QC Batch: MA56091

(3) Prep QC Batch: MP46616

(4) Prep QC Batch: MP46618

Report of Analysis

Page 1 of 1

3.4

ω

U = Indicates a result < MDL

B = Indicates a result >= MDL but < RL

			Report	of A	nalysis		Page 1 of 1
Client Sa Lab Sam Matrix: Method: Project:	mple ID: L/U ple ID: JD8 AQ SW8 Cen	20 RINSAT 8358-5 - Surface Wa 846 8260D tral Hudson	E ater Gas & Electric, NY			Date Sampled: Date Received: Percent Solids:	05/08/24 05/11/24 n/a
Run #1 Run #2	File ID GB12732.D	DF 1	Analyzed 05/16/24 04:05	By ED	Prep Date n/a	Prep Batc n/a	h Analytical Batch VGB353
Run #1 Run #2	Purge Volur 5.0 ml	ne					

VOA STARS List

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2	Benzene	ND	0.50	0.43	ug/l	
104-51-8	n-Butylbenzene	ND	2.0	0.52	ug/l	
135-98-8	sec-Butylbenzene	ND	2.0	0.62	ug/l	
98-06-6	tert-Butylbenzene	ND	2.0	0.69	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.60	ug/l	
98-82-8	Isopropylbenzene	ND	1.0	0.65	ug/l	
99-87-6	p-Isopropyltoluene	ND	2.0	0.66	ug/l	
1634-04-4	Methyl Tert Butyl Ether	1.2	1.0	0.51	ug/l	
91-20-3	Naphthalene	ND	5.0	4.4	ug/l	
103-65-1	n-Propylbenzene	ND	2.0	0.60	ug/l	
108-88-3	Toluene	ND	1.0	0.49	ug/l	
95-63-6	1,2,4-Trimethylbenzene	ND	2.0	1.0	ug/l	
108-67-8	1,3,5-Trimethylbenzene	ND	2.0	1.0	ug/l	
	m,p-Xylene	ND	1.0	0.78	ug/l	
95-47-6	o-Xylene	ND	1.0	0.59	ug/l	
1330-20-7	Xylene (total)	ND	1.0	0.59	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1868-53-7	Dibromofluoromethane	104%		80-1	20%	
17060-07-0	1,2-Dichloroethane-D4	99%		80-1	20%	
2037-26-5	Toluene-D8	97%		80-1	20%	
460-00-4	4-Bromofluorobenzene	99%		82-1	14%	

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

13 of 40

JD88358

SGS North America Inc.

Report of Analysis Pag								
Client Sa Lab Sam Matrix: Method: Project:	mple ID: L/U 2 ple ID: JD88 AQ - SW8 Centr	20 RINSAT 358-5 Surface Wa 46 8270E ral Hudson (E iter SW846 3510C Gas & Electric, NY		Date Date Perc	e Sampled: 0: e Received: 0: ent Solids: n/	5/08/24 5/11/24 /a	
Run #1 Run #2	File ID F220120.D	DF 1	Analyzed 05/16/24 16:43	By KH	Prep Date 05/14/24 22:30	Prep Batch OP54673	Analytical Batch EF9776	
Run #1	Initial Volun 1000 ml	ne Final V	olume					

Run #2

BN PAH List

CAS No.	Compound	Result	RL	MDL	Units	Q
83-32-9	Acenaphthene	ND	1.0	0.19	ug/l	
208-96-8	Acenaphthylene	ND	1.0	0.14	ug/l	
120-12-7	Anthracene	ND	1.0	0.21	ug/l	
56-55-3	Benzo(a)anthracene	ND	1.0	0.20	ug/l	
50-32-8	Benzo(a)pyrene	ND	1.0	0.21	ug/l	
205-99-2	Benzo(b)fluoranthene	ND	1.0	0.21	ug/l	
191-24-2	Benzo(g,h,i)perylene	ND	1.0	0.34	ug/l	
207-08-9	Benzo(k)fluoranthene	ND	1.0	0.21	ug/l	
218-01-9	Chrysene	ND	1.0	0.18	ug/l	
53-70-3	Dibenzo(a,h)anthracene	ND	1.0	0.33	ug/l	
206-44-0	Fluoranthene	ND	1.0	0.17	ug/l	
86-73-7	Fluorene	ND	1.0	0.17	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	1.0	0.33	ug/l	
91-20-3	Naphthalene	ND	1.0	0.23	ug/l	
85-01-8	Phenanthrene	ND	1.0	0.18	ug/l	
129-00-0	Pyrene	ND	1.0	0.22	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
4165-60-0	Nitrobenzene-d5	99%		28-1	18%	
321-60-8	2-Fluorobiphenyl	84%		34-1	16%	
1718-51-0	Terphenyl-d14	54%		10-1	27%	

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

ω 5 ω

Client Sample ID: L/U 20 RINSATE Lab Sample ID: JD88358-5 **Date Sampled:** 05/08/24 **Date Received:** 05/11/24 Matrix: AQ - Surface Water Percent Solids: n/a **Project:** Central Hudson Gas & Electric, NY

Total Metals Analysis

Analyte	Result	RL	MDL	Units	DF	Prep	Analyzed 1	By	Method	Prep Method
Arsenic	2.8 U	3.0	2.8	ug/l	1	05/14/24	05/16/24	KP	SW846 6010D ²	SW846 3010A ³
Barium	13 U	200	13	ug/l	1	05/14/24	05/16/24	KP	SW846 6010D ²	SW846 3010A ³
Cadmium	1.0 U	3.0	1.0	ug/l	1	05/14/24	05/16/24	KP	SW846 6010D ²	SW846 3010A ³
Chromium	2.0 U	10	2.0	ug/l	1	05/14/24	05/16/24	KP	SW846 6010D ²	SW846 3010A ³
Lead	1.8 U	3.0	1.8	ug/l	1	05/14/24	05/16/24	KP	SW846 6010D ²	SW846 3010A ³
Mercury	0.095 U	0.20	0.095	ug/l	1	05/14/24	05/15/24	MK	SW846 7470A ¹	SW846 7470A ⁴
Selenium	4.9 U	10	4.9	ug/l	1	05/14/24	05/16/24	KP	SW846 6010D ²	SW846 3010A ³
Silver	6.1 U	10	6.1	ug/l	1	05/14/24	05/16/24	KP	SW846 6010D ²	SW846 3010A ³

(1) Instrument QC Batch: MA56077

(2) Instrument QC Batch: MA56091

(3) Prep QC Batch: MP46616

(4) Prep QC Batch: MP46618

Report of Analysis

Page 1 of 1

ω 5

ω

Client Sar Lab Samj Matrix: Method:	mple ID: I ple ID: J	/U 21 RINSA ID88358-6 AQ - Surface V SW846 8260D	Vater		D D P	ate Sampled: 05 vate Received: 05 ercent Solids: n/	5/08/24 5/11/24 a
Run #1 Run #2	File ID GA12733	Dentral Hudso DF 3.D 1	n Gas & Electric, NY Analyzed 05/16/24 04:19	By ED	Prep Date n/a	Prep Batch n/a	Analytical Batch VGA353
Run #1 Run #2	Purge Vo 5.0 ml	olume					

Report of Analysis

VOA STARS List

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2	Benzene	ND	0.50	0.43	ug/l	
104-51-8	n-Butylbenzene	ND	2.0	0.52	ug/l	
135-98-8	sec-Butylbenzene	ND	2.0	0.62	ug/l	
98-06-6	tert-Butylbenzene	ND	2.0	0.69	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.60	ug/l	
98-82-8	Isopropylbenzene	ND	1.0	0.65	ug/l	
99-87-6	p-Isopropyltoluene	ND	2.0	0.66	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.51	ug/l	
91-20-3	Naphthalene	ND	5.0	4.4	ug/l	
103-65-1	n-Propylbenzene	ND	2.0	0.60	ug/l	
108-88-3	Toluene	ND	1.0	0.49	ug/l	
95-63-6	1,2,4-Trimethylbenzene	ND	2.0	1.0	ug/l	
108-67-8	1,3,5-Trimethylbenzene	ND	2.0	1.0	ug/l	
	m,p-Xylene	ND	1.0	0.78	ug/l	
95-47-6	o-Xylene	ND	1.0	0.59	ug/l	
1330-20-7	Xylene (total)	ND	1.0	0.59	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7	Dibromofluoromethane	104%		80-12	20%	
17060-07-0	1,2-Dichloroethane-D4	103%		80-12	20%	
2037-26-5	Toluene-D8	99%	80-120%			
460-00-4	4-Bromofluorobenzene	98%		82-11	4%	

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

3.6

ω

16 of 40 SGS

			Report	of Ai	nalysis		Page 1 of 1
Client Sa Lab Sam Matrix: Method: Project:	mple ID: L/U 2 ple ID: JD883 AQ - SW84 Centr	1 RINSAT 358-6 Surface Wa 6 8270E S al Hudson C	E ter SW846 3510C Gas & Electric, NY		Date Date Perc	e Sampled: 0 e Received: 0 ent Solids: n	5/08/24 5/11/24 /a
Run #1 Run #2	File ID F220121.D	DF 1	Analyzed 05/16/24 17:08	By KH	Prep Date 05/14/24 22:30	Prep Batch OP54673	Analytical Batch EF9776
Run #1	Initial Volum 1000 ml	e Final V 1.0 ml	olume				

Run #1

1.0 ml

Run #2

BN PAH List

CAS No.	Compound	Result	RL	MDL	Units	Q		
83-32-9	Acenaphthene	ND	1.0	0.19	ug/l			
208-96-8	Acenaphthylene	ND	1.0	0.14	ug/l			
120-12-7	Anthracene	ND	1.0	0.21	ug/l			
56-55-3	Benzo(a)anthracene	ND	1.0	0.20	ug/l			
50-32-8	Benzo(a)pyrene	ND	1.0	0.21	ug/l			
205-99-2	Benzo(b)fluoranthene	ND	1.0	0.21	ug/l			
191-24-2	Benzo(g,h,i)perylene	ND	1.0	0.34	ug/l			
207-08-9	Benzo(k)fluoranthene	ND	1.0	0.21	ug/l			
218-01-9	Chrysene	ND	1.0	0.18	ug/l			
53-70-3	Dibenzo(a,h)anthracene	ND	1.0	0.33	ug/l			
206-44-0	Fluoranthene	ND	1.0	0.17	ug/l			
86-73-7	Fluorene	ND	1.0	0.17	ug/l			
193-39-5	Indeno(1,2,3-cd)pyrene	ND	1.0	0.33	ug/l			
91-20-3	Naphthalene	ND	1.0	0.23	ug/l			
85-01-8	Phenanthrene	ND	1.0	0.18	ug/l			
129-00-0	Pyrene	ND	1.0	0.22	ug/l			
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its			
4165-60-0	Nitrobenzene-d5	92%		28-1	18%			
321-60-8	2-Fluorobiphenyl	82%		34-116%				
1718-51-0	Terphenyl-d14	57%		10-127%				

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

3.6

ω

SGS

Client Sample ID: L/U 21 RINSATE Lab Sample ID: **Date Sampled:** 05/08/24 JD88358-6 **Date Received:** 05/11/24 Matrix: AQ - Surface Water Percent Solids: n/a **Project:** Central Hudson Gas & Electric, NY

Total Metals Analysis

Analyte	Result	RL	MDL	Units	DF	Prep	Analyzed 3	By	Method	Prep Method
Arsenic	2.8 U	3.0	2.8	ug/l	1	05/14/24	05/16/24	KP	SW846 6010D ²	SW846 3010A ³
Barium	13 U	200	13	ug/l	1	05/14/24	05/16/24	KP	SW846 6010D ²	SW846 3010A ³
Cadmium	1.0 U	3.0	1.0	ug/l	1	05/14/24	05/16/24	KP	SW846 6010D ²	SW846 3010A ³
Chromium	2.0 U	10	2.0	ug/l	1	05/14/24	05/16/24	KP	SW846 6010D ²	SW846 3010A ³
Lead	1.8 U	3.0	1.8	ug/l	1	05/14/24	05/16/24	KP	SW846 6010D ²	SW846 3010A ³
Mercury	0.095 U	0.20	0.095	ug/l	1	05/14/24	05/15/24	MK	SW846 7470A ¹	SW846 7470A ⁴
Selenium	4.9 U	10	4.9	ug/l	1	05/14/24	05/16/24	KP	SW846 6010D ²	SW846 3010A ³
Silver	6.1 U	10	6.1	ug/l	1	05/14/24	05/16/24	KP	SW846 6010D ²	SW846 3010A ³

(1) Instrument QC Batch: MA56077

(2) Instrument QC Batch: MA56091

(3) Prep QC Batch: MP46616

(4) Prep QC Batch: MP46618

Page 1 of 1

ω

3.6

			Report	of A	nalysis		Page 1 of 1	
Client Sa Lab Sam Matrix: Method: Project:	mple ID: L/U2 ple ID: JD88 AQ - SW8 Centi	22 RINSAT 358-7 Surface Wa 46 8260D ral Hudson (E ater Gas & Electric, NY			Date Sampled: Date Received: Percent Solids:	05/08/24 05/11/24 n/a	
	File ID	DF	Analyzed	By	Prep Date	Prep Batc	h Analytical Batch	
Run #1 Run #2	GB12734.D	1	05/16/24 04:34	ED	n/a	n/a	VGB353	
Run #1	Purge Volum 5.0 ml	ie						
Run #2								

VOA STARS List

CAS No.	Compound	Result	RL	MDL	Units	Q	
71-43-2	Benzene	ND	0.50	0.43	ug/l		
104-51-8	n-Butylbenzene	ND	2.0	0.52	ug/l		
135-98-8	sec-Butylbenzene	ND	2.0	0.62	ug/l		
98-06-6	tert-Butylbenzene	ND	2.0	0.69	ug/l		
100-41-4	Ethylbenzene	ND	1.0	0.60	ug/l		
98-82-8	Isopropylbenzene	ND	1.0	0.65	ug/l		
99-87-6	p-Isopropyltoluene	ND	2.0	0.66	ug/l		
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.51	ug/l		
91-20-3	Naphthalene	ND	5.0	4.4	ug/l		
103-65-1	n-Propylbenzene	ND	2.0	0.60	ug/l		
108-88-3	Toluene	ND	1.0	0.49	ug/l		
95-63-6	1,2,4-Trimethylbenzene	ND	2.0	1.0	ug/l		
108-67-8	1,3,5-Trimethylbenzene	ND	2.0	1.0	ug/l		
	m,p-Xylene	ND	1.0	0.78	ug/l		
95-47-6	o-Xylene	ND	1.0	0.59	ug/l		
1330-20-7	Xylene (total)	ND	1.0	0.59	ug/l		
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts		
1868-53-7	Dibromofluoromethane	103%		80-12	20%		
17060-07-0	1,2-Dichloroethane-D4	97%		80-12	20%		
2037-26-5	Toluene-D8	99%	80-120%				
460-00-4	4-Bromofluorobenzene	99%	82-114%				

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 1 of 1

19 of 40 SGS

			-1	-			8	
Client Sa Lab Sam Matrix: Method: Project:	mple ID: L/U 22 ple ID: JD8835 AQ - St SW846 Central	RINSAT 8-7 arface Wa 8270E Hudson (E ater SW846 3510C Gas & Electric, NY		Date Date Perc	Sampled: (Received: (ent Solids: 1	05/08/24 05/11/24 n/a	
Run #1 Run #2	File ID F220122.D	DF 1	Analyzed 05/16/24 17:32	By KH	Prep Date 05/14/24 22:30	Prep Batch OP54673	Analytical Batch EF9776	
Run #1	Initial Volume 1000 ml	Final V 1.0 ml	Volume					

Report of Analysis

Run #2

BN PAH List

CAS No.	Compound	Result	RL	MDL	Units	Q
83-32-9	Acenaphthene	ND	1.0	0.19	ug/l	
208-96-8	Acenaphthylene	ND	1.0	0.14	ug/l	
120-12-7	Anthracene	ND	1.0	0.21	ug/l	
56-55-3	Benzo(a)anthracene	ND	1.0	0.20	ug/l	
50-32-8	Benzo(a)pyrene	ND	1.0	0.21	ug/l	
205-99-2	Benzo(b)fluoranthene	ND	1.0	0.21	ug/l	
191-24-2	Benzo(g,h,i)perylene	ND	1.0	0.34	ug/l	
207-08-9	Benzo(k)fluoranthene	ND	1.0	0.21	ug/l	
218-01-9	Chrysene	ND	1.0	0.18	ug/l	
53-70-3	Dibenzo(a,h)anthracene	ND	1.0	0.33	ug/l	
206-44-0	Fluoranthene	ND	1.0	0.17	ug/l	
86-73-7	Fluorene	ND	1.0	0.17	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	1.0	0.33	ug/l	
91-20-3	Naphthalene	ND	1.0	0.23	ug/l	
85-01-8	Phenanthrene	ND	1.0	0.18	ug/l	
129-00-0	Pyrene	ND	1.0	0.22	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
4165-60-0	Nitrobenzene-d5	84%		28-1	18%	
321-60-8	2-Fluorobiphenyl	77%	34-116%			
1718-51-0	Terphenyl-d14	42%		27%		

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 1 of 1

ω

3.7

20 of 40 JD88358

SGS

Client Sample ID: L/U 22 RINSATE Lab Sample ID: **Date Sampled:** 05/08/24 JD88358-7 **Date Received:** 05/11/24 Matrix: AQ - Surface Water Percent Solids: n/a **Project:** Central Hudson Gas & Electric, NY

Total Metals Analysis

Analyte	Result	RL	MDL	Units	DF	Prep	Analyzed 1	By	Method	Prep Method
Arsenic	2.8 U	3.0	2.8	ug/l	1	05/14/24	05/16/24	KP	SW846 6010D ²	SW846 3010A ³
Barium	13 U	200	13	ug/l	1	05/14/24	05/16/24	KP	SW846 6010D ²	SW846 3010A ³
Cadmium	1.0 U	3.0	1.0	ug/l	1	05/14/24	05/16/24	KP	SW846 6010D ²	SW846 3010A ³
Chromium	2.0 U	10	2.0	ug/l	1	05/14/24	05/16/24	KP	SW846 6010D ²	SW846 3010A ³
Lead	1.8 U	3.0	1.8	ug/l	1	05/14/24	05/16/24	KP	SW846 6010D ²	SW846 3010A ³
Mercury	0.095 U	0.20	0.095	ug/l	1	05/14/24	05/15/24	MK	SW846 7470A ¹	SW846 7470A ⁴
Selenium	4.9 U	10	4.9	ug/l	1	05/14/24	05/16/24	KP	SW846 6010D ²	SW846 3010A ³
Silver	6.1 U	10	6.1	ug/l	1	05/14/24	05/16/24	KP	SW846 6010D ²	SW846 3010A ³

(1) Instrument QC Batch: MA56077

(2) Instrument QC Batch: MA56091

(3) Prep QC Batch: MP46616

(4) Prep QC Batch: MP46618

Report of Analysis

U = Indicates a result < MDL

B = Indicates a result >= MDL but < RL

ω

Page 1 of 1

			Report	of A	nalysis		Page 1 of 1
Client San Lab Samp Matrix: Method: Project:	nple ID: L/U le ID: JD3 AQ SW Cer	U 23 RINSAT 88358-8 9 - Surface Wa 7846 8260D ntral Hudson (E iter Gas & Electric, NY			Date Sampled: Date Received: Percent Solids:	05/08/24 05/11/24 n/a
Run #1 Run #2	File ID L365412.D	DF 1	Analyzed 05/16/24 20:37	By BK	Prep Date n/a	Prep Batc n/a	h Analytical Batch VL11162
Run #1 Run #2	Purge Volu 5.0 ml	me					

VOA STARS List

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2	Benzene	ND	0.50	0.43	ug/l	
104-51-8	n-Butylbenzene	ND	2.0	0.52	ug/l	
135-98-8	sec-Butylbenzene	ND	2.0	0.62	ug/l	
98-06-6	tert-Butylbenzene	ND	2.0	0.69	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.60	ug/l	
98-82-8	Isopropylbenzene	ND	1.0	0.65	ug/l	
99-87-6	p-Isopropyltoluene	ND	2.0	0.66	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.51	ug/l	
91-20-3	Naphthalene	ND	5.0	4.4	ug/l	
103-65-1	n-Propylbenzene	ND	2.0	0.60	ug/l	
108-88-3	Toluene	ND	1.0	0.49	ug/l	
95-63-6	1,2,4-Trimethylbenzene	ND	2.0	1.0	ug/l	
108-67-8	1,3,5-Trimethylbenzene	ND	2.0	1.0	ug/l	
	m,p-Xylene	ND	1.0	0.78	ug/l	
95-47-6	o-Xylene	ND	1.0	0.59	ug/l	
1330-20-7	Xylene (total)	ND	1.0	0.59	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limit	ts	
1868-53-7	Dibromofluoromethane	97%		80-12	20%	
17060-07-0	1,2-Dichloroethane-D4	112%		80-12	20%	
2037-26-5	Toluene-D8	100%		80-12	20%	
460-00-4	4-Bromofluorobenzene	91%		82-11	4%	

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

ω

3 8

			Report	of Ai	nalysis		Page 1 of 1
Client Sa Lab Sam Matrix: Method: Project:	mple ID: L/U 23 ple ID: JD883 AQ - S SW846 Centra	RINSAT 58-8 urface Wa 5 8270E S I Hudson G	E iter SW846 3510C Gas & Electric, NY		Date Date Perc	e Sampled: 0. e Received: 0. ent Solids: n.	5/08/24 5/11/24 /a
Run #1 Run #2	File ID F220123.D	DF 1	Analyzed 05/16/24 17:57	By KH	Prep Date 05/14/24 22:30	Prep Batch OP54673	Analytical Batch EF9776
Run #1	Initial Volume 1000 ml	Final V 1.0 ml	olume				

Run #2

BN PAH List

CAS No.	Compound	Result	RL	MDL	Units
83-32-9	Acenanhthene	ND	1.0	0 19	11 0 /1
208-96-8	Acenaphthylene	ND	1.0	0.12	ug/1 110/1
120-12-7	Anthracene	ND	1.0	0.21	110/l
56-55-3	Benzo(a)anthracene	ND	1.0	0.20	110/l
50-32-8	Benzo(a)pyrene	ND	1.0	0.20	110/l
205-99-2	Benzo(b)fluoranthene	ND	1.0	0.21	ug/1
191-24-2	Benzo(g h i) pervlene	ND	1.0	0.34	110/l
207-08-9	Benzo(k)fluoranthene	ND	1.0	0.21	ug/1
218-01-9	Chrysene	ND	1.0	0.18	ug/1
53-70-3	Dibenzo(a.h)anthracene	ND	1.0	0.33	ug/l
206-44-0	Fluoranthene	ND	1.0	0.17	ug/l
86-73-7	Fluorene	ND	1.0	0.17	ug/l
193-39-5	Indeno(1.2.3-cd)pyrene	ND	1.0	0.33	ug/l
91-20-3	Naphthalene	ND	1.0	0.23	ug/l
85-01-8	Phenanthrene	ND	1.0	0.18	ug/l
129-00-0	Pyrene	ND	1.0	0.22	ug/l
	5				0
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its
4165-60-0	Nitrobenzene-d5	71%		28-1	18%
321-60-8	2-Fluorobiphenyl	68%		34-1	16%
1718-51-0	Terphenyl-d14	41%		10-1	27%

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Q

Page 1 of 1

ω

ယ 8

JD88358

Client Sample ID: L/U 23 RINSATE Lab Sample ID: JD88358-8 **Date Sampled:** 05/08/24 **Date Received:** 05/11/24 Matrix: AQ - Surface Water Percent Solids: n/a **Project:** Central Hudson Gas & Electric, NY

Total Metals Analysis

Analyte	Result	RL	MDL	Units	DF	Prep	Analyzed	By	Method	Prep Method
Arsenic	2.8 U	3.0	2.8	ug/l	1	05/16/24	05/16/24	KP	SW846 6010D ²	SW846 3010A ³
Barium	13 U	200	13	ug/l	1	05/16/24	05/16/24	KP	SW846 6010D ²	SW846 3010A ³
Cadmium	1.0 U	3.0	1.0	ug/l	1	05/16/24	05/16/24	KP	SW846 6010D ²	SW846 3010A ³
Chromium	2.0 U	10	2.0	ug/l	1	05/16/24	05/16/24	KP	SW846 6010D ²	SW846 3010A ³
Lead	1.8 U	3.0	1.8	ug/l	1	05/16/24	05/16/24	KP	SW846 6010D ²	SW846 3010A ³
Mercury	0.095 U	0.20	0.095	ug/l	1	05/16/24	05/17/24	MK	SW846 7470A ¹	SW846 7470A ⁴
Selenium	4.9 U	10	4.9	ug/l	1	05/16/24	05/16/24	KP	SW846 6010D ²	SW846 3010A ³
Silver	6.1 U	10	6.1	ug/l	1	05/16/24	05/16/24	KP	SW846 6010D ²	SW846 3010A ³

(1) Instrument QC Batch: MA56099

(2) Instrument QC Batch: MA56106

(3) Prep QC Batch: MP46658

(4) Prep QC Batch: MP46689

ω

ယ 8

			-1		J		6
Client Sar Lab Samp Matrix: Method: Project:	mple ID: TAN ole ID: JD8 AQ SW3 Cen	NK SHOP RI 8358-9 - Surface Wa 846 8260D tral Hudson (INSATE ater Gas & Electric, NY			Date Sampled: Date Received: Percent Solids:	05/08/24 05/11/24 n/a
Run #1 Run #2	File ID GA12735.D	DF 1	Analyzed 05/16/24 04:49	By ED	Prep Date n/a	Prep Batcl n/a	Analytical Batch VGA353
Run #1 Run #2	Purge Volu 5.0 ml	ne					

Report of Analysis

VOA STARS List

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2	Benzene	ND	0.50	0.43	ug/l	
104-51-8	n-Butylbenzene	ND	2.0	0.52	ug/l	
135-98-8	sec-Butylbenzene	ND	2.0	0.62	ug/l	
98-06-6	tert-Butylbenzene	ND	2.0	0.69	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.60	ug/l	
98-82-8	Isopropylbenzene	ND	1.0	0.65	ug/l	
99-87-6	p-Isopropyltoluene	ND	2.0	0.66	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.51	ug/l	
91-20-3	Naphthalene	ND	5.0	4.4	ug/l	
103-65-1	n-Propylbenzene	ND	2.0	0.60	ug/l	
108-88-3	Toluene	ND	1.0	0.49	ug/l	
95-63-6	1,2,4-Trimethylbenzene	ND	2.0	1.0	ug/l	
108-67-8	1,3,5-Trimethylbenzene	ND	2.0	1.0	ug/l	
	m,p-Xylene	ND	1.0	0.78	ug/l	
95-47-6	o-Xylene	ND	1.0	0.59	ug/l	
1330-20-7	Xylene (total)	ND	1.0	0.59	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1868-53-7	Dibromofluoromethane	101%		80-1	20%	
17060-07-0	1,2-Dichloroethane-D4	98%		80-1	20%	
2037-26-5	Toluene-D8	99%		80-1	20%	
460-00-4	4-Bromofluorobenzene	98%		82-1	14%	

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 1 of 1

3.9

ω

25 of 40 SGS

JD88358

			Report	of Aı	nalysis		Page 1 of 1
Client Sa Lab Sam Matrix: Method: Project:	mple ID: TAN ple ID: JD88 AQ - SW8 Centi	K SHOP RI 358-9 Surface Wa 46 8270E ral Hudson (NSATE nter SW846 3510C Gas & Electric, NY		Date Date Perc	e Sampled: (e Received: (ent Solids: 1)5/08/24)5/11/24 h/a
Run #1 Run #2	File ID F220124.D	DF 1	Analyzed 05/16/24 18:22	By KH	Prep Date 05/14/24 22:30	Prep Batch OP54673	Analytical Batch EF9776
Run #1	Initial Volun 1000 ml	ne Final V 1.0 ml	olume				

Run #2

BN PAH List

CAS No.	Compound	Result	RL	MDL	Units	Q
83-32-9	Acenaphthene	ND	1.0	0.19	ug/l	
208-96-8	Acenaphthylene	ND	1.0	0.14	ug/l	
120-12-7	Anthracene	ND	1.0	0.21	ug/l	
56-55-3	Benzo(a)anthracene	ND	1.0	0.20	ug/l	
50-32-8	Benzo(a)pyrene	ND	1.0	0.21	ug/l	
205-99-2	Benzo(b)fluoranthene	ND	1.0	0.21	ug/l	
191-24-2	Benzo(g,h,i)perylene	ND	1.0	0.34	ug/l	
207-08-9	Benzo(k)fluoranthene	ND	1.0	0.21	ug/l	
218-01-9	Chrysene	ND	1.0	0.18	ug/l	
53-70-3	Dibenzo(a,h)anthracene	ND	1.0	0.33	ug/l	
206-44-0	Fluoranthene	ND	1.0	0.17	ug/l	
86-73-7	Fluorene	ND	1.0	0.17	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	1.0	0.33	ug/l	
91-20-3	Naphthalene	ND	1.0	0.23	ug/l	
85-01-8	Phenanthrene	ND	1.0	0.18	ug/l	
129-00-0	Pyrene	ND	1.0	0.22	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
4165-60-0	Nitrobenzene-d5	83%		28-1	18%	
321-60-8	2-Fluorobiphenyl	71%		34-1	16%	
1718-51-0	Terphenyl-d14	45%		10-1	27%	

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

3 9:0

ω

Client Sample ID:	TANK SHOP RINSATE		
Lab Sample ID:	JD88358-9	Date Sampled:	05/08/24
Matrix:	AQ - Surface Water	Date Received:	05/11/24
		Percent Solids:	n/a
Project:	Central Hudson Gas & Electric, NY		

Report of Analysis

Total Metals Analysis

Analyte	Result	RL	MDL	Units	DF	Prep	Analyzed B	By	Method	Prep Method
Arsenic	2.8 U	3.0	2.8	ug/l	1	05/14/24	05/16/24 к	КР	SW846 6010D ²	SW846 3010A ³
Barium	13 U	200	13	ug/l	1	05/14/24	05/16/24 к	КР	SW846 6010D ²	SW846 3010A ³
Cadmium	1.0 U	3.0	1.0	ug/l	1	05/14/24	05/16/24 к	KP	SW846 6010D ²	SW846 3010A ³
Chromium	2.0 U	10	2.0	ug/l	1	05/14/24	05/16/24 к	KP	SW846 6010D ²	SW846 3010A ³
Lead	1.8 U	3.0	1.8	ug/l	1	05/14/24	05/16/24 к	KP	SW846 6010D ²	SW846 3010A ³
Mercury	0.095 U	0.20	0.095	ug/l	1	05/14/24	05/15/24 N	ЛK	SW846 7470A ¹	SW846 7470A ⁴
Selenium	4.9 U	10	4.9	ug/l	1	05/14/24	05/16/24 к	КР	SW846 6010D ²	SW846 3010A ³
Silver	6.1 U	10	6.1	ug/l	1	05/14/24	05/16/24 к	KP	SW846 6010D ²	SW846 3010A ³

(1) Instrument QC Batch: MA56077

(2) Instrument QC Batch: MA56091

(3) Prep QC Batch: MP46616

(4) Prep QC Batch: MP46618

ω

3.9

Misc. Forms

Dayton, NJ

Custody Documents and Other Forms

Includes the following where applicable:

- Chain of Custody
- Sample Tracking Chronicle
- Internal Chain of Custody

	1		SW)		СПА	TNI	OF	CII		101	17			,		3	0	224	-8					~ ~	. Ph
	CCC				СНА	LIN SGS Acc	UF utest of	CU2 New End		ענ:	X				7	\mathcal{O}	20	504			PA	AGE		- 01	
	202	ACCU	TEST	50 D'Ang	lo Drive/495 Teo TEL. :	hnology (508-481- wy	Center We 6200 F	st, Buildin AX: 50 est.com	one, N 8-481-7	faribor 7753	ough,	MA 017	52	F	ED-EX T	racking f	1 1e #			Bottle SGS /	Accutest J	ob #	ł 29	24-	121
	Client / Reporting Informa	ition	1. A. 1963	Mar Street	Proj	ect Inf	ormatic	on 👘	i ou					è.e		Requ	ested	Analy	sis (se	TEST	CODE	sheet)			Matrix Codes
Pli	umley Engineerin	ng, PC	Project Name	HGE Ce	tral HU.	dson	Gr.	s ::)	Flee	Arin	~														DW - Drinking Water
Street / 823	ddress 2 Loop Road		Street: 284 S	South Ave			3illing in	formatio	n (Ifid	lifferer	nt fro	m Rep	ort to)											GW - Ground Water WW - Water SW - Surface Water
Bal	dwinsville, NY	^{Zip} 13027		keepsie		Comp	any Name								Ì										SU - Soll SL- Sludge SED-Sediment
Project	Contact Hudson dhudson@plum	E-mail leveng.com	Project#	2059 006		Street	Address							-											OI - Oll LIQ - Other Liquid
Phone #		Fax #	Client PO#	0000.000		City			s	tate		Zip		_											AIR - Air SOL - Other Solid
315-	638-8587	5 4						-	-							14									WP - Wipe FB-Field Blank
Dav	re Meixell 315-	-1010# 638-8587	Dav	/e Meixell		Atten	30 1 :		PU#							र									B- Equipment Blank RB- Rinse Blank
				Collection			[Number	of pres	served E	Bottles		BS	4	3	ŠČ							лантир вкалк
SGS Accused						Sempleri				5 8	ă y	Vater	E E	fate	2	C.R.	0	10							
Sample #	Field ID / Point of C	Collection	MEOH/DI Vial #	Date	Time	by	Matrix	# of bottic	포	ĮĬ	Š 1	à		Bi	_	æ		\sim							LAB USE ONLY
2	WSA10			5/8/24	0100	DKM	WP	1	++	++		++			<u>x</u>							+			
2	WSA11				0905		WP	1		++		+			<u>_x</u>										
<u> </u>	WSA25 Rinsate				1000		SW	6	++	┽╋	+	++		\vdash		X	x	x							
2	PCB Tank Interstitial				1100	\vdash	SW	2		++	+	┼┼	+	\vdash	<u>x</u>	x									
6	L/U 21 Rinsate				1100	\vdash	- <u>w</u>	6		++	+	++			_	$\frac{x}{v}$	÷	$\frac{1}{\sqrt{2}}$			+				
3	L/U 22 Rineate				1720		SW	6		++	+	++				$\frac{\Lambda}{v}$					+	+			
8	L/U 23 Rinsate				1210		sw	6		┼┼	+	++	-	\square		x	x	x		+	+	+			
9	Tank Shop Rinsate			v	1510	\mathbf{V}	sw	6		+	+	++	+			x	x	x			+				
	•				12.0	<u> </u>				++	╈									+	1	1			
										++	╈	+													
												$^{++}$								1		1			
				the second		- Steer	新水の色	Data	Deliv	erable	Info	rmatio	n.						Con	mente	Speci	al Inst	uction	8	
[Turnaround Time (Busines Std. 10 Business Days	is days)	Approved By (SGS	Accutest PM): / Date			Commerc	:lai"A" (l :lai"B" (l	evel 1).		E	_] NYA _] NYA	SP Ca SP Ca	itegor) itegorj	уА уВ										
[Std. 5 Business Days (By Cont	ract only)					FULLT1 (Level 3+	4)			Stet	e Forn	n a											
├ ──- ┟	3 Boy ENERGENCY				-		MAMOP	-					, rom	nat		=									
	2 Day EMERGENCY							Commo	mmerci vial *P*	al "A" =	Resu	its Only	men			┝									
10000	Emergency & Rush T/A data available	VIA Lablink						3011110																	
No	Relifigutehey by Sempler:	Date Time: /	Sar	Received B	ist be docum	ented b	BIOW BAC	ntimes フル	Reling	s chan uluju ji E	ige pi 3y:	055651	sion, i	nclud	ling co	ourler o	ieliver c	y. Iato Time	-	Receit	ved By:		ALC: N		
10	ruffee	5/10/0	14 1.11	1 10	- 211	000	<u>47.</u>	215	2	K	-	- 4	5/0	\mathcal{O}	10	4		15	<u>00</u>	12/	\mathcal{A}	11.			
Relinquis 3	ned by Sampler:	Date Time:		Received By:	D)	Ζ	•		Relinq	uished E	iy:	5	Đ	r)	0		9	ste Pime	by 14		The	Ø	nd	1_	
Relinquis	ned by:	Date Time:		Received By:					Custoc	iy Seal f	,					ntact P	reserved	d where a	pplicable		~ *	On la		Cooler 1	•mp. /
5	t to be the second			5					L						No	et intacl					·····	4	0	×,	200

44

4

JD88358: Chain of Custody Page 1 of 3

SGS Sample Receipt Summary

Job Number: jd88358	Client: PLUMLEY	Y ENVIRONMENTAL E	NGINEERS Project: C	ENTRAL HUDSON GAS & ELECTRIC	, NY
Date / Time Received: <u>5/11/2024 2</u>	Delivery	Method: FEI	DEX Airbill #'s:	:	
Cooler Temps (Raw Measured) °C: Cooler Temps (Corrected) °C:	Cooler : (0.1); Cooler 1: (Cooler : (0.5); Cooler 1: (0.8); 1.2);			
Cooler SecurityYor1. Custody Seals Present:Image: Custody Seals Intact:Image: Custody Seals Intact:	3. COC Present: 4. Smpl Dates/Time OK	Y or N Sa ✓ □ 1. ✓ □ 2.	mple Integrity - Documen Sample labels present on bot Container labeling complete:	ttation <u>Y or N</u> ttles: ☑ □	
Cooler Temperature Y 1. Temp criteria achieved: ✓ 2. Cooler temp verification: ✓ 3. Cooler media: III 4. No. Coolers: ✓	or N IR-50 (Bag) 1	3. <u>S</u> 1. 2. 3.	Sample container label / COC imple Integrity - Condition Sample recvd within HT: All containers accounted for: Condition of sample:	≥agree:	
Quality Control Preservation Y 1. Trip Blank present / cooler:	or N N/A ☑ □ □ □ □ □	<mark>S:</mark> 1 2 3 4 5	Imple Integrity - Instruction Analysis requested is clear: Bottles received for unspecifi Sufficient volume recvd for a Compositing instructions clear: Filtering instructions clear:	Y or N ied tests Imalysis: Imalysis: Imalysis: ar: Imalysis: Imalysis: Imalysis: Imalysis:	N/A V
Test Strip Lot #s: pH 1-12: Comments 1. Sample-1 & -2 Received w	231619	pH 12+:2031	thout the wipes.	(Specify)	

JD88358: Chain of Custody Page 2 of 3

4.1 **4** SM089-02 Rev. Date 12/1/16

Responded to by: Kelly R

Please proceed as noted

Response Date: 5/16/2024

JD88358: Chain of Custody Page 3 of 3

Internal Sample Tracking Chronicle

Plumley Environmental Engineers

Central Hudson Gas & Electric, NY Project No: 2023058.006

Sample Number	Method	Analyzed	By	Prepped	By	Test Codes
JD88358-1 WSA10	Collected: 08-MAY-24	09:00 By: DKM	Receiv	red: 11-MAY	-24 By	: KG
JD88358-1	SW846 8082A	17-MAY-24 10:33	СР	16-MAY-24	AB	P8082PCB11
JD88358-2 WSA11	Collected: 08-MAY-24	09:05 By: DKM	Receiv	red: 11-MAY	-24 By	: KG
JD88358-2	SW846 8082A	17-MAY-24 10:51	СР	16-MAY-24	AB	P8082PCB11
JD88358-3 WSA25 RIN	Collected: 08-MAY-24 NSATE	10:00 By: DKM	Receiv	ed: 11-MAY	-24 By	: KG
JD88358-3 JD88358-3 JD88358-3 JD88358-3	SW846 7470A SW846 6010D SW846 8260D SW846 8270E	15-MAY-24 11:58 16-MAY-24 00:11 16-MAY-24 03:50 16-MAY-24 16:18	MK KP ED KH	14-MAY-24 14-MAY-24 14-MAY-24	HMK BP ED	HG AG,AS,BA,CD,CR,PB,SE V8260CP51G B8270CP51FO
JD88358-4 PCB TANK	Collected: 08-MAY-24 INTERSITIAL	11:30 By: DKM	Receiv	ed: 11-MAY	-24 By	: KG
JD88358-4 JD88358-4 JD88358-4	SW846 7470A SW846 6010D SW846 8082A	15-MAY-24 12:00 16-MAY-24 01:47 17-MAY-24 21:13	MK KP MLC	14-MAY-24 14-MAY-24 16-MAY-24	HMK BP ED	HG AG,AS,BA,CD,CR,PB,SE P8082PCB11
JD88358-5 L/U 20 RIN	Collected: 08-MAY-24 SATE	11:00 By: DKM	Receiv	red: 11-MAY	-24 By	: KG
JD88358-5 JD88358-5 JD88358-5 JD88358-5	SW846 7470A SW846 6010D SW846 8260D SW846 8270E	15-MAY-24 12:01 16-MAY-24 01:52 16-MAY-24 04:05 16-MAY-24 16:43	MK KP ED KH	14-MAY-24 14-MAY-24 14-MAY-24	HMK BP ED	HG AG,AS,BA,CD,CR,PB,SE V8260CP51G B8270CP51FO
JD88358-6 L/U 21 RIN	Collected: 08-MAY-24 SATE	11:50 By: DKM	Receiv	ed: 11-MAY	-24 By	: KG
JD88358-6 JD88358-6 JD88358-6 JD88358-6	SW846 7470A SW846 6010D SW846 8260D SW846 8270E	15-MAY-24 12:02 16-MAY-24 01:57 16-MAY-24 04:19 16-MAY-24 17:08	MK KP ED KH	14-MAY-24 14-MAY-24 14-MAY-24	HMK BP ED	HG AG,AS,BA,CD,CR,PB,SE V8260CP51G B8270CP51FO

JD88358 Job No:

JD88358

Internal Sample Tracking Chronicle

Plumley Environmental Engineers

Central Hudson Gas & Electric, NY Project No: 2023058.006

Sample Number	Method	Analyzed	By	Prepped	By	Test Codes
1000250 7	C 11 / 1 00 MAX 24		р [.]	1 11 16437	24 D	VO
JD88338-7	Collected: U8-MAY-24	12:30 By: DKM	Receiv	red: 11-MAY	-24 Ву	: KG
L/U 22 KIN	SAIL					
JD88358-7	SW846 7470A	15-MAY-24 12:07	MK	14-MAY-24	MK	HG
JD88358-7	SW846 6010D	16-MAY-24 02:02	KP	14-MAY-24	BP	AG,AS,BA,CD,CR,PB,SE
JD88358-7	SW846 8260D	16-MAY-24 04:34	ED			V8260CP51G
JD88358-7	SW846 8270E	16-MAY-24 17:32	KH	14-MAY-24	ED	B8270CP51FO
TD 000 50 0	~ 11					
JD88358-8	Collected: 08-MAY-24	13:10 By: DKM	Receiv	ed: 11-MAY	-24 By	: KG
L/U 23 KIN	SATE					
JD88358-8	SW846 8270E	16-MAY-24 17:57	КН	14-MAY-24	ED	B8270CP51FO
JD88358-8	SW846 8260D	16-MAY-24 20:37	BK			V8260CP51G
JD88358-8	SW846 6010D	16-MAY-24 22:53	KP	16-MAY-24	SS	AG,AS,BA,CD,CR,PB,SE
JD88358-8	SW846 7470A	17-MAY-24 11:19	MK	16-MAY-24	MK	HG
JD88358-9	Collected: 08-MAY-24	15:10 By: DKM	Receiv	red: 11-MAY	-24 By	: KG
TANK SHC	P RINSATE					
JD88358-9	SW846 7470A	15-MAY-24 12:08	MK	14-MAY-24	MK	HG
JD88358-9	SW846 6010D	16-MAY-24 02:07	KP	14-MAY-24	BP	AG.AS.BA.CD.CR.PB.SE
JD88358-9	SW846 8260D	16-MAY-24 04:49	ED			V8260CP51G
JD88358-9	SW846 8270E	16-MAY-24 18:22	KH	14-MAY-24	ED	B8270CP51FO

JD88358

Job No:

Job Number:	JD88358
Account:	PLUMNYB Plumley Environmental Engineers
Project:	Central Hudson Gas & Electric, NY
Received:	05/11/24

Sample.Bottle Number	Transfer FROM	Transfer TO	Date/Time	Reason
JD88358-1.1	Epiphania Njoku	Secured Storage	05/13/24 19:08	Return to Storage
JD88358-1.1	Secured Storage	Joshua Reitan	05/15/24 22:13	Retrieve from Storage
JD88358-1.1	Joshua Reitan	Secured Staging Area	05/15/24 22:13	Return to Storage
JD88358-1.1	Secured Staging Area	Giovanni Lopezhernandez	05/16/24 03:30	Retrieve from Storage
JD88358-1.1	Giovanni Lopezhernandez	Secured Staging Area	05/16/24 04:23	Return to Storage
JD88358-1.1	Secured Staging Area	Lauren Halloran	05/16/24 07:44	Retrieve from Storage
JD88358-1.1	Lauren Halloran		05/16/24 16:03	Depleted
JD88358-1.1.1	Giovanni Lopezhernandez	Organics Prep	05/16/24 04:00	Extract from JD88358-1.1
JD88358-1.1.1	Organics Prep	Amin Bhavin	05/16/24 15:58	Extract from JD88358-1.1
JD88358-1.1.1	Amin Bhavin	Extract Storage	05/16/24 15:58	Return to Storage
JD88358-1.2	Epiphania Njoku	Secured Storage	05/13/24 19:08	Return to Storage
JD88358-1.2	Secured Storage	Joshua Reitan	05/15/24 22:13	Retrieve from Storage
JD88358-1.2	Joshua Reitan	Secured Staging Area	05/15/24 22:13	Return to Storage
JD88358-1.2	Secured Staging Area	Giovanni Lopezhernandez	05/16/24 03:30	Retrieve from Storage
JD88358-1.2	Giovanni Lopezhernandez	Secured Staging Area	05/16/24 04:23	Return to Storage
JD88358-1.2	Secured Staging Area	Lauren Halloran	05/16/24 07:44	Retrieve from Storage
JD88358-1.2	Lauren Halloran		05/16/24 16:03	Depleted
JD88358-1.2.1	Giovanni Lopezhernandez	Organics Prep	05/16/24 04:00	Extract from JD88358-1.2
JD88358-1.2.1	Organics Prep	Amin Bhavin	05/16/24 15:58	Extract from JD88358-1.2
JD88358-1.2.1	Amin Bhavin	Extract Storage	05/16/24 15:58	Return to Storage
JD88358-2.1	Epiphania Njoku	Secured Storage	05/13/24 19:08	Return to Storage
JD88358-2.1	Secured Storage	Joshua Reitan	05/15/24 22:13	Retrieve from Storage
JD88358-2.1	Joshua Reitan	Secured Staging Area	05/15/24 22:13	Return to Storage
JD88358-2.1	Secured Staging Area	Giovanni Lopezhernandez	05/16/24 03:30	Retrieve from Storage
JD88358-2.1	Giovanni Lopezhernandez	Secured Staging Area	05/16/24 04:23	Return to Storage
JD88358-2.1	Secured Staging Area	Lauren Halloran	05/16/24 07:44	Retrieve from Storage
JD88358-2.1	Lauren Halloran		05/16/24 16:03	Depleted
JD88358-2.1.1	Giovanni Lopezhernandez	Organics Prep	05/16/24 04:00	Extract from JD88358-2.1
JD88358-2.1.1	Organics Prep	Amin Bhavin	05/16/24 15:58	Extract from JD88358-2.1
JD88358-2.1.1	Amin Bhavin	Extract Storage	05/16/24 15:58	Return to Storage
JD88358-2.2	Epiphania Njoku	Secured Storage	05/13/24 19:08	Return to Storage
JD88358-2.2	Secured Storage	Joshua Reitan	05/15/24 22:13	Retrieve from Storage
JD88358-2.2	Joshua Reitan	Secured Staging Area	05/15/24 22:13	Return to Storage
JD88358-2.2	Secured Staging Area	Giovanni Lopezhernandez	05/16/24 03:30	Retrieve from Storage
JD88358-2.2	Giovanni Lopezhernandez	Secured Staging Area	05/16/24 04:23	Return to Storage
JD88358-2.2	Secured Staging Area	Lauren Halloran	05/16/24 07:44	Retrieve from Storage
JD88358-2.2	Lauren Halloran		05/16/24 16:03	Depleted

JD88358

JD88358
PLUMNYB Plumley Environmental Engineers
Central Hudson Gas & Electric, NY
05/11/24

Sample. Bottle Number	Transfer FROM	Transfer TO	Date/Time	Reason
JD88358-2.2.1	Giovanni Lopezhernandez	Organics Prep	05/16/24 04:00	Extract from JD88358-2.2
JD88358-2.2.1	Organics Prep	Amin Bhavin	05/16/24 15:58	Extract from JD88358-2.2
JD88358-2.2.1	Amin Bhavin	Extract Storage	05/16/24 15:58	Return to Storage
JD88358-3.1	Suresh Patel	Secured Storage	05/13/24 15:53	Return to Storage
JD88358-3.2	Suresh Patel	Secured Storage	05/13/24 15:53	Return to Storage
JD88358-3.2	Secured Storage	Aleandi Rodriguez	05/14/24 22:53	Retrieve from Storage
JD88358-3.2	Aleandi Rodriguez	Secured Staging Area	05/14/24 22:53	Return to Storage
JD88358-3.2	Secured Storage	Taylor Gorman	05/15/24 06:07	Retrieve from Storage
Analyst chain of c	ustody update error.			
JD88358-3.2	Taylor Gorman		05/20/24 08:34	Depleted
JD88358-3.2.1	Taylor Gorman	Organics Prep	05/15/24 06:17	Extract from JD88358-3.2
JD88358-3.2.1	Ellen Dondeo	Extract Storage	05/15/24 23:03	Return to Storage
JD88358-3.2.1	Organics Prep	Ellen Dondeo	05/15/24 23:03	Extract from JD88358-3.2
JD88358-3.3	Suresh Patel	Secured Storage	05/13/24 15:22	Return to Storage
JD88358-3.3	Secured Storage	Dave Hunkele	05/14/24 06:03	Retrieve from Storage
JD88358-3.3	Dave Hunkele	Secured Staging Area	05/14/24 06:03	Return to Storage
JD88358-3.3	Secured Staging Area	Marcin Kotowski	05/14/24 10:42	Retrieve from Storage
JD88358-3.3	Marcin Kotowski	Secured Storage	05/15/24 08:23	Return to Storage
JD88358-3.3	Secured Storage	Brianna Perez	05/15/24 13:01	Retrieve from Storage
JD88358-3.3	Secured Storage	Joshua Reitan	05/15/24 23:09	Retrieve from Storage
Analyst chain of c	ustody update error.			
JD88358-3.3	Joshua Reitan	Secured Staging Area	05/15/24 23:09	Return to Storage
JD88358-3.3	Secured Staging Area	Brianna Perez	05/16/24 06:12	Retrieve from Storage
JD88358-3.3	Brianna Perez	Secured Storage	05/16/24 09:59	Return to Storage
JD88358-3.3.1	Brianna Perez	Metals Digestion	05/15/24 13:02	Digestate from JD88358-3.3
JD88358-3.3.1	Metals Digestion	Brianna Perez	05/15/24 13:02	Digestate from JD88358-3.3
JD88358-3.3.1	Brianna Perez	Metals Digestate Storage	05/15/24 13:02	Return to Storage
JD88358-3.4	Suresh Patel	Secured Storage	05/13/24 12:15	Return to Storage
JD88358-3.5	Suresh Patel	Secured Storage	05/13/24 12:15	Return to Storage
JD88358-3.5	Secured Storage	Camille Fiumara	05/15/24 15:32	Retrieve from Storage
JD88358-3.5	Camille Fiumara	GCMSGA	05/15/24 15:32	Load on Instrument
JD88358-3.6	Suresh Patel	Secured Storage	05/13/24 12:15	Return to Storage
JD88358-4.1	Suresh Patel	Secured Storage	05/13/24 15:53	Return to Storage
JD88358-4.2	Suresh Patel	Secured Storage	05/13/24 15:53	Return to Storage

4.3 4

JD88358
PLUMNYB Plumley Environmental Engineers
Central Hudson Gas & Electric, NY
05/11/24

Sample.Bottle Number	Transfer FROM	Transfer TO	Date/Time	Reason
JD88358-4.2	Secured Storage	Joshua Reitan	05/15/24 20:41	Retrieve from Storage
JD88358-4.2	Joshua Reitan	Secured Staging Area	05/15/24 20:41	Return to Storage
JD88358-4.2	Secured Staging Area	Doaa Salem	05/16/24 09:45	Retrieve from Storage
JD88358-4.2.1	Doaa Salem	Organics Prep	05/16/24 09:48	Extract from JD88358-4.2
JD88358-4.2.1	Organics Prep	Ellen Dondeo	05/17/24 00:08	Extract from JD88358-4.2
JD88358-4.2.1	Ellen Dondeo	Extract Storage	05/17/24 00:08	Return to Storage
JD88358-4.3	Suresh Patel	Secured Storage	05/13/24 15:22	Return to Storage
JD88358-4.3	Secured Storage	Dave Hunkele	05/14/24 06:03	Retrieve from Storage
JD88358-4.3	Dave Hunkele	Secured Staging Area	05/14/24 06:03	Return to Storage
JD88358-4.3	Secured Staging Area	Marcin Kotowski	05/14/24 10:42	Retrieve from Storage
JD88358-4.3	Marcin Kotowski	Secured Storage	05/15/24 08:23	Return to Storage
JD88358-4.3	Secured Storage	Brianna Perez	05/15/24 13:01	Retrieve from Storage
JD88358-4.3	Brianna Perez	Secured Storage	05/16/24 09:59	Return to Storage
JD88358-4.3.1	Brianna Perez	Metals Digestion	05/15/24 13:02	Digestate from JD88358-4.3
JD88358-4.3.1	Metals Digestion	Brianna Perez	05/15/24 13:02	Digestate from JD88358-4.3
JD88358-4.3.1	Brianna Perez	Metals Digestate Storage	05/15/24 13:02	Return to Storage
JD88358-4.4	Suresh Patel	Secured Storage	05/13/24 12:15	Return to Storage
JD88358-4.5	Suresh Patel	Secured Storage	05/13/24 12:15	Return to Storage
JD88358-4.6	Suresh Patel	Secured Storage	05/13/24 12:15	Return to Storage
JD88358-5.1	Suresh Patel	Secured Storage	05/13/24 15:53	Return to Storage
JD88358-5.2	Suresh Patel	Secured Storage	05/13/24 15:53	Return to Storage
JD88358-5.2	Secured Storage	Aleandi Rodriguez	05/14/24 22:53	Retrieve from Storage
JD88358-5.2	Aleandi Rodriguez	Secured Staging Area	05/14/24 22:53	Return to Storage
JD88358-5.2	Secured Storage	Taylor Gorman	05/15/24 06:07	Retrieve from Storage
Analyst chain of c	custody update error.			
JD88358-5.2	Taylor Gorman		05/20/24 08:34	Depleted
JD88358-5.2.1	Taylor Gorman	Organics Prep	05/15/24 06:17	Extract from JD88358-5.2
JD88358-5.2.1	Organics Prep	Ellen Dondeo	05/15/24 23:03	Extract from JD88358-5.2
JD88358-5.2.1	Ellen Dondeo	Extract Storage	05/15/24 23:03	Return to Storage
JD88358-5.3	Suresh Patel	Secured Storage	05/13/24 15:22	Return to Storage
JD88358-5.3	Secured Storage	Dave Hunkele	05/14/24 06:03	Retrieve from Storage
JD88358-5.3	Dave Hunkele	Secured Staging Area	05/14/24 06:03	Return to Storage
JD88358-5.3	Secured Staging Area	Marcin Kotowski	05/14/24 10:42	Retrieve from Storage
JD88358-5.3	Marcin Kotowski	Secured Storage	05/15/24 08:23	Return to Storage

JD88358
PLUMNYB Plumley Environmental Engineers
Central Hudson Gas & Electric, NY
05/11/24

Sample. Bottle Number	Transfer FROM	Transfer TO	Date/Time	Reason
JD88358-5.3	Secured Storage	Brianna Perez	05/15/24 13:01	Retrieve from Storage
JD88358-5.3	Brianna Perez	Secured Storage	05/16/24 09:59	Return to Storage
JD88358-5.3.1	Brianna Perez	Metals Digestion	05/15/24 13:02	Digestate from JD88358-5.3
JD88358-5.3.1	Metals Digestion	Brianna Perez	05/15/24 13:02	Digestate from JD88358-5.3
JD88358-5.3.1	Brianna Perez	Metals Digestate Storage	05/15/24 13:02	Return to Storage
JD88358-5.4	Suresh Patel	Secured Storage	05/13/24 12:15	Return to Storage
JD88358-5.5	Suresh Patel	Secured Storage	05/13/24 12:15	Return to Storage
JD88358-5.5	Secured Storage	Camille Fiumara	05/15/24 15:32	Retrieve from Storage
JD88358-5.5	Camille Fiumara	GCMSGA	05/15/24 15:32	Load on Instrument
JD88358-5.6	Suresh Patel	Secured Storage	05/13/24 12:15	Return to Storage
JD88358-6.1	Suresh Patel	Secured Storage	05/13/24 15:53	Return to Storage
JD88358-6.1	Secured Storage	Aleandi Rodriguez	05/14/24 22:53	Retrieve from Storage
JD88358-6.1	Aleandi Rodriguez	Secured Staging Area	05/14/24 22:53	Return to Storage
JD88358-6.1	Secured Storage	Taylor Gorman	05/15/24 06:07	Retrieve from Storage
Analyst chain of c	custody update error.			c
JD88358-6.1	Taylor Gorman		05/20/24 08:34	Depleted
JD88358-6.1.1	Taylor Gorman	Organics Prep	05/15/24 06:17	Extract from JD88358-6.1
JD88358-6.1.1	Organics Prep	Ellen Dondeo	05/15/24 23:03	Extract from JD88358-6.1
JD88358-6.1.1	Ellen Dondeo	Extract Storage	05/15/24 23:03	Return to Storage
JD88358-6.2	Suresh Patel	Secured Storage	05/13/24 15:53	Return to Storage
JD88358-6.3	Suresh Patel	Secured Storage	05/13/24 15:22	Return to Storage
JD88358-6.3	Secured Storage	Dave Hunkele	05/14/24 06:03	Retrieve from Storage
JD88358-6.3	Dave Hunkele	Secured Staging Area	05/14/24 06:03	Return to Storage
JD88358-6.3	Secured Staging Area	Marcin Kotowski	05/14/24 10:42	Retrieve from Storage
JD88358-6.3	Marcin Kotowski	Secured Storage	05/15/24 08:23	Return to Storage
JD88358-6.3	Secured Storage	Brianna Perez	05/15/24 13:01	Retrieve from Storage
JD88358-6.3	Brianna Perez	Secured Storage	05/16/24 09:59	Return to Storage
JD88358-6.3.1	Brianna Perez	Metals Digestion	05/15/24 13:02	Digestate from JD88358-6.3
JD88358-6.3.1	Metals Digestion	Brianna Perez	05/15/24 13:02	Digestate from JD88358-6.3
JD88358-6.3.1	Brianna Perez	Metals Digestate Storage	05/15/24 13:02	Return to Storage
JD88358-6.4	Suresh Patel	Secured Storage	05/13/24 12:15	Return to Storage
JD88358-6.4	Secured Storage	Camille Fiumara	05/15/24 15:32	Retrieve from Storage
JD88358-6.4	Camille Fiumara	GCMSGA	05/15/24 15:32	Load on Instrument

JD88358

Job Number:	JD88358
Account:	PLUMNYB Plumley Environmental Engineers
Project:	Central Hudson Gas & Electric, NY
Received:	05/11/24

Sample.Bottle Number	Transfer FROM	Transfer TO	Date/Time	Reason
JD88358-6.5	Suresh Patel	Secured Storage	05/13/24 12:15	Return to Storage
JD88358-6.6	Suresh Patel	Secured Storage	05/13/24 12:15	Return to Storage
JD88358-7.1 JD88358-7.1 JD88358-7.1	Suresh Patel Secured Storage Aleandi Rodriguez	Secured Storage Aleandi Rodriguez Secured Staging Area	05/13/24 15:53 05/14/24 22:53 05/14/24 22:53	Return to Storage Retrieve from Storage Return to Storage
JD88358-7.1	Secured Storage	Taylor Gorman	05/15/24 06:07	Retrieve from Storage
Analyst chain of c	ustody update error.		05/20/24 08:24	Devleted
JD88358-7.1	Taylor Gorman		05/20/24 08:34	Depleted
JD88358-7.1.1 JD88358-7.1.1 JD88358-7.1.1	Taylor Gorman Organics Prep Ellen Dondeo	Organics Prep Ellen Dondeo Extract Storage	05/15/24 06:17 05/15/24 23:03 05/15/24 23:03	Extract from JD88358-7.1 Extract from JD88358-7.1 Return to Storage
JD88358-7.2	Suresh Patel	Secured Storage	05/13/24 15:53	Return to Storage
JD88358-7.3	Suresh Patel	Secured Storage	05/13/24 15:22	Return to Storage
JD88358-7.3	Secured Storage	Dave Hunkele	05/14/24 06:03	Retrieve from Storage
JD88338-7.3	Dave Hunkele	Secured Staging Area	05/14/24 06:03	Return to Storage
JD88338-7.3	Secured Staging Area	Marcin Kolowski	05/14/24 10:42	Retrieve from Storage
JD88338-7.3	Marcin Kolowski	Drianno Doroz	05/15/24 08:25	Return to Storage
JD00330-7.3	Drianna Daraz	Secured Storege	05/15/24 15:01	Retrieve from Storage
JD88338-7.5		Secured Storage	03/10/24 09.39	Return to Storage
JD88358-7.3.1	Brianna Perez	Metals Digestion	05/15/24 13:02	Digestate from JD88358-7.3
JD88358-7.3.1	Metals Digestion	Brianna Perez	05/15/24 13:02	Digestate from JD88358-7.3
JD88358-7.3.1	Brianna Perez	Metals Digestate Storage	05/15/24 13:02	Return to Storage
JD88358-7.4	Suresh Patel	Secured Storage	05/13/24 12:15	Return to Storage
JD88358-7.5	Suresh Patel	Secured Storage	05/13/24 12:15	Return to Storage
JD88358-7.5	Secured Storage	Camille Fiumara	05/15/24 15:32	Retrieve from Storage
JD88358-7.5	Camille Fiumara	GCMSGA	05/15/24 15:32	Load on Instrument
JD88358-7.6	Suresh Patel	Secured Storage	05/13/24 12:15	Return to Storage
JD88358-8.1	Suresh Patel	Secured Storage	05/13/24 15:53	Return to Storage
JD88358-8.2 JD88358-8.2 JD88358-8.2	Suresh Patel Secured Storage Taylor Gorman	Secured Storage Taylor Gorman	05/13/24 15:53 05/15/24 07:05 05/20/24 08:34	Return to Storage Retrieve from Storage Depleted
JD88358-8.2.1	Taylor Gorman	Organics Prep	05/15/24 07:06	Extract from JD88358-8.2

JD88358
PLUMNYB Plumley Environmental Engineers
Central Hudson Gas & Electric, NY
05/11/24

Sample.Bottle Number	Transfer FROM	Transfer TO	Date/Time	Reason
JD88358-8.2.1	Organics Prep	Ellen Dondeo	05/15/24 23:03	Extract from JD88358-8.2
JD88358-8.2.1	Ellen Dondeo	Extract Storage	05/15/24 23:03	Return to Storage
JD88358-8.3	Suresh Patel	Secured Storage	05/13/24 15:22	Return to Storage
JD88358-8.3	Secured Storage	Dave Hunkele	05/14/24 06:03	Retrieve from Storage
JD88358-8.3	Dave Hunkele	Secured Staging Area	05/14/24 06:03	Return to Storage
JD88358-8.3	Secured Staging Area	Marcin Kotowski	05/14/24 10:42	Retrieve from Storage
JD88358-8.3	Marcin Kotowski	Secured Storage	05/15/24 08:23	Return to Storage
JD88358-8.3	Secured Storage	Dave Hunkele	05/16/24 05:44	Retrieve from Storage
JD88358-8.3	Dave Hunkele	Secured Staging Area	05/16/24 05:44	Return to Storage
JD88358-8.3	Secured Staging Area	Marcin Kotowski	05/16/24 12:22	Retrieve from Storage
JD88358-8.3	Marcin Kotowski	Secured Storage	05/16/24 16:35	Return to Storage
JD88358-8.4	Suresh Patel	Secured Storage	05/13/24 12:15	Return to Storage
JD88358-8.4	Secured Storage	Brianna Perez	05/16/24 11:39	Retrieve from Storage
JD88358-8.4	Brianna Perez	Secured Storage	05/16/24 12:05	Return to Storage
JD88358-8.4.1	Brianna Perez	Metals Digestion	05/16/24 11:41	Digestate from JD88358-8.4
JD88358-8.4.1	Metals Digestion	Brianna Perez	05/16/24 11:41	Digestate from JD88358-8.4
JD88358-8.4.1	Brianna Perez	Metals Digestate Storage	05/16/24 11:41	Return to Storage
JD88358-8.5	Suresh Patel	Secured Storage	05/13/24 12:15	Return to Storage
JD88358-8.6	Suresh Patel	Secured Storage	05/13/24 12:15	Return to Storage
JD88358-9.1	Suresh Patel	Secured Storage	05/13/24 15:53	Return to Storage
JD88358-9.2	Suresh Patel	Secured Storage	05/13/24 15:53	Return to Storage
JD88358-9.2	Secured Storage	Aleandi Rodriguez	05/14/24 22:53	Retrieve from Storage
JD88358-9.2	Aleandi Rodriguez	Secured Staging Area	05/14/24 22:53	Return to Storage
JD88358-9.2	Secured Storage	Taylor Gorman	05/15/24 06:07	Retrieve from Storage
Analyst chain of c	ustody update error.			
JD88358-9.2	Taylor Gorman		05/20/24 08:34	Depleted
JD88358-9.2.1	Taylor Gorman	Organics Prep	05/15/24 06:17	Extract from JD88358-9.2
JD88358-9.2.1	Ellen Dondeo	Extract Storage	05/15/24 23:03	Return to Storage
JD88358-9.2.1	Organics Prep	Ellen Dondeo	05/15/24 23:03	Extract from JD88358-9.2
JD88358-9.3	Suresh Patel	Secured Storage	05/13/24 15:22	Return to Storage
JD88358-9.3	Secured Storage	Dave Hunkele	05/14/24 06:03	Retrieve from Storage
JD88358-9.3	Dave Hunkele	Secured Staging Area	05/14/24 06:03	Return to Storage
JD88358-9.3	Secured Staging Area	Marcin Kotowski	05/14/24 10:42	Retrieve from Storage
JD88358-9.3	Marcin Kotowski	Secured Storage	05/15/24 08:23	Return to Storage
JD88358-9.3	Secured Storage	Brianna Perez	05/15/24 13:01	Retrieve from Storage

4.3

4

Job Number:	JD88358
Account:	PLUMNYB Plumley Environmental Engineers
Project:	Central Hudson Gas & Electric, NY
Received:	05/11/24

Sample.Bottle Number	Transfer FROM	Transfer TO	Date/Time	Reason
JD88358-9.3	Brianna Perez	Secured Storage	05/16/24 09:59	Return to Storage
JD88358-9.3.1 JD88358-9.3.1 JD88358-9.3.1	Brianna Perez Metals Digestion Brianna Perez	Metals Digestion Brianna Perez Metals Digestate Storage	05/15/24 13:02 05/15/24 13:02 05/15/24 13:02	Digestate from JD88358-9.3 Digestate from JD88358-9.3 Return to Storage
JD88358-9.4 JD88358-9.4 JD88358-9.4	Suresh Patel Secured Storage Camille Fiumara	Secured Storage Camille Fiumara GCMSGA	05/13/24 12:15 05/15/24 15:32 05/15/24 15:32	Return to Storage Retrieve from Storage Load on Instrument
JD88358-9.5	Suresh Patel	Secured Storage	05/13/24 12:15	Return to Storage
JD88358-9.6	Suresh Patel	Secured Storage	05/13/24 12:15	Return to Storage

Page 7 of 7

4.3

4

ATTACHMENT 6

WASTE MANIFESTS AND CHARACTERIZATION RESULTS

														For	n Approved	OMB No. 2	2050-0039
ease (print	or type.	1 Generat	v IO Number				2. Page 1 o	3. Emer	ency Response	e Pho	me	4. Manifest	Tracking N	umber 1 A C		50
ມ	IFO	RM HAZARDOUS					ł	1	(177)	E16-00E7				21:	<u>514:</u>	<u>su vi</u>	<u>_</u>
	WAS	SIE MANIFEST	NYL Address		7033	143			Generato	r's Site Address	s (if di	ifferent th	an mailing addre	:55)			
	A D	RAL EXTRON G OUTH AVE FOUR HEREFERENCE, NY	AL & HI	EAN HCTHUC Ime Open 134	een laj Eliteng Leig	e coent		800	HT 294 HIGH	A SOUTH	1 #T 325	219.		Mumber			
6.	Trans	sporter 1 Company Nam	ж ж										U.S. CPAID				
v	ю		AL SOLI	TICNE										Number	0 0 3	<u> </u>	<u> </u>
7.	Tran	sporter 2 Company Nan	ne										1				
													U.S. EPA ID	Number			_
8	Desi	gnated Facility Name ar 's Phone: 1973 34	10 548 A001	VECLIA L.L.C.] EDEN FLÂND	i lânb Eri, Ni	ENICAL.	SCLUTIO	NTB					<u>1 [M] T</u>	2 9 8	<u>6 5 3</u>	6 5 5	3_
	a.	9b. U.S. DOT Descrip	tion (includia	ng Proper Ship	pping Name,	Hazard Clas	ss, ID Number,			10. Cont	ainen	S Turne	11. Total Quantity	12. Uni Wt.Nol	1	3. Waste Cod	es
	M	and Packing Group (if	any))						<u> </u>	NO.	╞	1900		+	19007	PCHI	
ž	X	III, RQ			7977 T 1972 S	Land R.A.M				1	H	i A	45	ĸ	Ľ		
駅		2								· · · ·	1				1002	1	1
	X	TIL DO /RCTD	YÇELÇÊ	INATEL	2011-1205(N) 3		1				L				The second	01	m.
īI.		3110 112 11 100									1	: Ľ	+ ***		17.206	<u>_0_</u>	
	~	3. 1372915 PTT		INATED	HPHEN	YLS, LEU	UTT, 9,]		1	t	HOCZ		
	X	IL BO PCH								1	1	C P	8 3 6	I.	PCB2	BT	~
11										ļ	- [<u>+</u> v	
		4.													l		
H		1											1	1		T	
	15.	GENERATOR'S/OFFE marked and labeled/pla Exporter, I certify that it	3) ERC ROM'S CER carded, and the contents minimization	TIFICATION: are in all responsion of this consigners	Thereby depects in prop ament conformentified in 40	clare that the rer condition m to the tem CFR 262.27	e contents of th for transport ac ns of the attack (a) (if I am a la	is consignation coording to a red EPA Action rge quantity	ent are full; pplicable ir nowledgma generator)	y and accurately itemational and at of Consent. or (b) (if I am a	/ desc nation smali	cribed ab nal gover i quantity	ove by the prope mmental regulati generator) is tru	er shipping n ons, if expor	ame, and are t shipment ar	dassified, pa ad I am the Pr	ickaged, imary
	Gene	ator's/Offeror's Printed	/Typed Nam	6				<u> </u>	Signature			<u> </u>	• •		,	Month D	ay Yea 1
		TESSE	64	10					$\mathbf{\lambda}$		Ŷ	///				054	0 2 3
<u>*</u>	10.1	ternational Shipments	<u> </u>				[Export fr	om U.S.	Porto	of ent	/exit: _					·
Ē	Tran	sporter signature (for e)	i (co ris oniv):		.5.		L			Date 1	eavin	g U.S.:					<u> </u>
틢	17. T	ransporter Acknowledge	nent of Rece	ipt of Material	s											Ideath F	Vor
E	Trans	sporter 1 Printed/Typed	Name						Signature	$\sim l$			_				a, ico
<u>Š</u>		CHAN	25	1L2	nis1	1. She	<u></u>		l(14	~		21			Month [Dav Yea
<u>S</u>	Tran	sporter 2 Printed/Typed	Name						Signature							[[1
2															. <u> </u>	<u> </u>	
<u>۴</u>	18. I	Discrepancy									_						
	18a.	Discrepancy Indication	Space	Quanti	ty		🗌 туре			Residue			Partia	I Rejection		L_1 Full	Rejection
	i											• i•					
1										Maniest Reter	rence	NUKITOBI	U.S. EP/	ID Number			
Ę	186	Alternate Facility (or G	en erstor)														
ō													ł		_		
E	Fac	ility's Phone:	English for (Concentry)												Month	Day Y
	180	. Signature of Alternate	i averi (vi (winnewi)													
IX.	 			ant blathad	adas li a	ndes for her	andous waste t	reatment. d	sposal, and	recycling syste	ms)	_					
1 Si	19.	Hazardous Waste Repo	nt Managen	HERIC MELNOG L	2.				3.	1 1 41			4				
固	1 ^{1.}	ĹЦ	1		- J	4[4]	1		1	144	:[
1	 _ _		<u>L</u>	nior Carliford	ion of receiving	t of hazardo	us materials co	vered by th	manifesin	rcept as noted i	in Iter	n 18a					
	20.	Designated Facility Ow	ner or Open	ator: Certificat	una or necerp	- OF HOLDING	44 manualo 40		Signytur	•1	_	r	$\overline{\mathbf{n}}$			Month	Day Ye
	10		\sim	\sim	$C \Delta \Delta$	ph-	erts		11	$ \nu$	20	21	1 lin	ne tot	'na.	<u>N</u> N 13	$O \mathbb{Z}$
1+			17) Prov	I.	are obsole	<u></u>	<u>→ ~</u>				DES	SIGNA	TED FACIL	ITY TO	EPA's e	MANIFE	ST SYS
	A T-	m 8// 11/ 1000 - 7		LAND		~~~	•								~ 1		

 1	 	

co print or time										1 0111	10010100		
UNIFORM HA	ZARDOUS	1. Generator I	D Number		2. Page 1	of 3. Emergency Res	ponse Pho	one	4. Manifest T	racking Nu	imber	0.1/	-0
WASTE MA	NIFEST	NYD	00705	905	1	(677) 616-000	17		00	<u>213</u>	143		5
5. Generator's Na CENTRAL H 284 KOUTH POLATHERED Generator's Phor	ame and Mailin IDSON G AVE FOLC FSIE, NY ne:	g Address AS & FILEX HEREPETI 12601-4834	KAREN LÖ TRIC ELTIN S OPER HQ) Gë Corner (STORE ROO	Generator's Site Adr RT 299 & SCA HIGHLAND, N	dress (if d JTH ST IV 123	ifferent th	an mailing addres:	s)			
6. Transporter 1 (Company Nam	e	31			1			U.S. EPA ID N	lumber			
VEOLIA ES 7. Transporter 2 0	THCHNICA Company Nam	e e	ONS					-	U.S. EPAID N	Q R (063	130	9
8. Designated Fa	acility Name and	d Site Address	edila es te .l.C. Eden lane Landers, n	ICEINICAL SOI	LUTIONS				U.S. EPAID N	lumber	053	6 5 5	3
Facility's Phone:	973 347 DOT Description	-7111 on (including Pr	oper Shipping Nam	e, Hazard Class, ID	Number.	10. 0	Containers	5	11. Total	12. Unit	43	Waste Cor	201
HM and Pack	king Group (if a	ny))	opor ompping ridin	0, 1142010 01400, 10		No.		Туре	Quantity	Wt./Vol.	10	, waste cou	105
X UNO	432, POLY	CHLORIN	ated Eiphen	YLS, SOLID,	9,			-		-	19007	PCH2	
							I B	A	4.2	h	Ŀ	-	-
X 2. UNX	313, POLY	CHLORIN	ATED EIPHEN	IVLS, LIQUID,	, 9,						HQQ2		
III.	nd feerby						1 T	P	886	K	PCHZ		
X 3. LINZ	315, POLY	CHLORIN	ATED RIPHEN	IYLS, LIQUID,	, 9,						H002		
Iti, B	iQ (PCB)						I T	P	886	K.	PCB2		
4.								1			1		
14. Special Hand Contract dditions DATB &	ling Instructions and by VBS 11 transports /16/2023 1 R'S/OFFEROF	s and Addition: TS + Con any con general B HRC:171 VS CERTIFIC	al Information stract retained retor's behalf OUT OF SEP ATION: 1 hereby de	ADD by generator o 	ENDUM ATTA onform agency (71 OUT OF BE V17/023	CERC) FOR ADD athority on initial EVICE DATE 7/0	tely descr	(AL TS arier in 2) E	CA INFORM add or subst R0:171 OLT	ATTON finite OF SER	- ER Ser VICE	vice classified, p	ackaged,
14. Special Hand Contract DATE & 15. GENERATO marked and Exporter, 1 cc I certify that I Generator's/Offerc	ling Instruction int by VES 1 transport 16/2023 R'S/OFFEROI artify that the ca the waste minim n's Printed/Typ	s and Additions TS + Co any on page 3) BRC:17. R'S CERTIFIC ded, and are in ontents of this mization statem ed Name 2 A 1	al Information Intrast rutained Intor's behalf I OUT OF BEI ATION: I hereby de consignment confor- nent identified in 40	ADD by generator c 1 1) ERG117 RVICE DATE a eclare that the conte ber condition for tran rm to the terms of th 0 CFR 262.27(a) (if 1	ENTITIENT ATTA ONLINE ATTA ONLINE ADDRESS I OUT OF SEI V17/023 ents of this consignm nsport according to a ne attached EPA Ack I am a large quantity	CHED FOR ADD attority on initial evice DATE 7/0 ent are fully and accura pplicable international a nowledgment of Conser generator) or (b) (if I an Signature	tely descr nd nation nt. n a small o	(AL TS artist to 2) IS ibed abo al govern quantity g	CA DIFCIENT add or subst R3:171 CUT we by the proper s mental regulations enerator) is true.	ATTON finite OF SER hipping names. If export	- ER Ser VICE me, and are shipment an	classified, p d I am the P Month I	ackaged, rrimary Day Yea
14. Special Hand Contract DATE & DATE & 15. GENERATO marked and Exporter, 1 or 1 certify that to Generator's/Offero Contract of States 16. International States	ling Instruction act by VEB I transport /16/2023 IR'S/OFFEROI labeled/placare ertify that the co the waste minin or's Printed/Typ SE hipments	s and Additions TS + Co any content b) ERC:17: rs certific ded, and are in ontents of this mization stater ed Name 2 ALL	al Information Etraot reteined ETROX: Thereby de ATION: I hereby de all respects in prop consignment conforment identified in 40 Outputs	ADD by generator o 	ENDUM ATTA CONTOP SED 71 OUT OF SED 71 OUT OF SED 717/023 ants of this consignm rsport according to a ne attached EPA Ack I am a large quantity Export for	CHED FOR ADD attentity on initial attentity on initial attentity on initial attentity on initial attentional attention policable international attention signature policable international attention policable internatio	ITELAN INTELAP Intely descr Itely descr It	(AL TS arter to 2) El ribed abo al govern quantity g	CA INFORM add or subst R0:171 OUT we by the proper s mental regulations enerator) is true.	Internet of the second	- ER Ser VICE me, and are shipment an	classified, p d I am the P Month I C S 3	ackaged, Irimary Day Yea
14. Special Hand Contract DATE & 15. GENERATO marked and Exporter, 1 or I certify that I Generator's/Offero Exporter, 1 or I certify that I Generator's/Offero Exporter signat	ling Instructions and by VES at transport /16/2023 Ins/S/OFFEROI labeled/placaru ertify that the o the waste minim or's Printed/Typ S S (hipments ture (for export	s and Addition: TS + Co any on part of part	al Information Intract rutained Interval behalf I OUT OF SEI ATION: I hereby de all respects in prop consignment confor- nent identified in 40 out to U.S.	ADD by generator o 	ENTITIENT ATTA ORIGINA ATTA ORIGINA ADDA I DUT OF SEI V17/023 ents of this consignm hsport according to a e attached EPA Ack am a large quantity am a large quantity	CHED FOR ADE attority or initial init	tely description of entry te leaving	ibed abo al govern quantity g exit:	CA DIFCIENT add or subst R3:171 CUT we by the proper s mental regulations enerator) is true.	ATTON finie OF SER hipping names. If export	- ER Ser VICE me, and are shipment an	vice classified, p d I am the P Month I C S 3	ackaged, rrimary Day Yea
14. Special Hand Contract DATE & DATE & 15. GENERATO marked and Exporter, 1 or 1 certify that I Generator's/Offero Contractor'	ling Instruction and by VES d transport /16/2023 Ins/S/OFFEROI labeled/placan ertify that the o the waste minimor's Printed/Typ S S (hipments ure (for export crowledgment	s and Addition: TS + Co FIN the phase 3) HRC:17: R'S CERTIFIC ded, and are in ontents of this mization statem ed Name 2 ALLO s only): of Receipt of N	al Information Attract rutained Atton: I hereby de all respects in prop- consignment confor- nent identified in 40 ort to U.S. laterials	ADD by generator o 	ENDUM ATTA CONTOR SECOND 21 OLT OF SEC V17/023 ants of this consignm nsport according to a ne attached EPA Ack I am a large quantity	CHED FOR ADD attority or initial attority or init	tely descrind nation the small of the second	AL TS artist in 2) Ed ribed abo al govern quantity g exit:	CA INFORM add or subst add or s	ATTON inte OF SER	- PR Ser VICE me, and are shipment an	classified, p d I am the P Month I D S S	ackaged, rimary Day Yea
14. Special Hand Contract Mathian DATE & 15. GENERATO marked and Exporter, I cont I certify that the Control of the Contract of the marked and Exporter, I cont Transporter signat 7. Transporter signat 7. Transporter 1 Print Control of the Transporter 2 Print	Iling Instructions and by VES I transport /16/2023 IR'S/OFFEROL labeled/placarn erify that the o the waste mini- or's Printed/Type SSC inipments ture (for exports knowledgment ed/Typed Nam ACC	s and Addition TS + Co and and are in ontents of this mization stater ied Name 2 A L U 1 Imposed s only): of Receipt of N e S e	al Information atract retained atract aterials aterials aterials	ADD by generator of 	ENDUM ATTA CONTOR Agency (71 OUT OF SEI W17/023 ants of this consignm hsport according to a ne attached EPA Ack am a large quantity Export from	CEED FOR ADD athority on Initial entare fully and accura poplicable international a invelogment of Conser generator) or (b) (iff an Signature Mul.S. Po Da Signature Signature Signature	tely description of entry te leaving	ibed abo al govern quantity g	CA INFORM edd or subst R0:171 OLT we by the proper s mental regulations enerator) is true.	ATTON inte OF SER hipping national s. If export	- ER Ser VICE me, and are shipment an	classified, p d I am the P Month I C S S Month I 1931 Month	ackaged, rrimary Day Yea Day Yea Day Yea
14. Special Hand Contract International Strategy IS. GENERATO marked and Exporter, 1 or I certify that I Generator's/Offero Exporter signat Transporter signat Transporter signat Transporter 1 Prints Transporter 2 Print 8. Discrepancy	Iling Instructions int by VES I transport /16/2023 : IR'S/OFFEROI labeled/placare erify that the c the waste minil or's Printed/Type SEC inipments ture (for export knowledgment ed/Typed Nam	s and Addition. TS + CO any on pairs any ony on pairs any ony on pairs any on pairs any on pai	al Information Intract rutained Interfer behalf I OUT OF SEI ATION: I hereby di all respects in proj consignment confo nent identified in 40 O to U.S. Interials Laterials	ADD by generator o 1-1) ERG-17 RVICE DATE a eclare that the conte per condition for tran m to the terms of th OCFR 262.27(a) (if I	PENTITIAN ATTA CONTENT ADJANEY 1 71 CUTT CHP SES W17/023 ants of this consignm hsport according to a the attached EPA Acki am a large quantity	CHED FOR ADE athority or initial initial and accura policable international a nowledgment of Consea generator) or (b) (if I an Signature MU.S. Po Da Signature Signature	tely description of entry te leaving	tibed aboal govern quantity g	CA INFORM add or subst add or s	ATTON trute OF SER hipping names. If export	- ER Ser VICE me, ard are shipment ar	classified, p d I am the P Month I 0 8 3 Month I 19 3 Month	ackaged, rrimary Day Yea Day Yea
14. Special Hand Contract additions DATE & 15. GENERATO marked and Exporter, I ca I certify that I Generator's/Offero Transporter signat 7. Transporter signat 7. Transporter a Print ransporter 2 Print 8. Discrepancy 8a. Discrepancy I	Iling Instruction.	s and Addition. TS + CO Environment S CERTIFIC ded, and are in ontents of this mization stater led Name 2 A L U of Receipt of N e S only): of Receipt of N e C A C A C A C A C A C A C A C A C A C A	al Information Intract rutained Interfect rutained	ADD by generator c 1-1) EMI-17 RVICE DATE a eclare that the conten- per condition for transmin to the terms of th CFR 262.27(a) (if 1)	PENIDUM ATTA CONTENT ADDRESS OF THE DIT CUT OF SET V17/023 ants of this consignm has attached EPA Acking and a large quantity Export for Export for	CHED FOR ADD athority on initial rules DATE 7/0 ent are fully and accura policable international a inviced gment of Conser generator) or (b) (if I an Signature MUS. Po Da Signature Signature Signature Resid	tely descrind nation nt. n a small of the leaving the	ibed abo al govern quantity g lexit: U.S.:	CA INFORM add or subst add or s	ATTON inite OF SER hipping name s. If export Rejection	- PR Sea VICE me, ard are shipment ar	classified, p d I am the P Month I C S S Month I I I D S Month I I I D S I I Ful	ackaged, rrimary Day Yea Day Yea Day Yea
14. Special Hand Contract definition DATE & 15. GENERATO marked and Exporter, I cc I certify that I Generator's/Offero Transporter signat 7. Transporter signat 7. Transporter signat 7. Transporter 1 Print C H ransporter 2 Print 8. Discrepancy 8a. Discrepancy I 8b. Alternate Faci	Iling Instruction Inter by VES International Int	s and Addition. TS + CQ FIL CHI INFO TS CERTIFIC ded, and are in ontents of this mization stater red Name S only): of Receipt of N e S only): of Receipt of N e C A C C tor)	al Information Introf rutained Interfect rutained Interfect rutained I OUT OF BEI ATION: I hereby de I all respects in proj consignment confo nent identified in 40 O Int to U.S. Interfals Luccid L Interfals Interf	ADD by generator c 1, 1) ERC127 RVICE DATE a eclare that the conte per condition for tran m to the terms of th 0 CFR 262.27(a) (if 1 0 CFR 262.27(a) (if 1) (i	PENDUM ATTA Conference agained to T1 DUT OF SET V17/023 ants of this consignm nsport according to a ne attached EPA Ack and a large quantity Export fro	CERED FOR ADD athority on initial extractional a towledgment of Conser- generator) or (b) (if I an Signature m U.S. Po Da Signature Signature Signature Carter Conser- Signature Manifest Resid	tely descrind nation at asmall of the leaving of of entry te leaving	AL TS artist in 2) Ed ibed abo al govern quantity g exit: U.S.: U.S.:	CA INFORM add or subst add:171 OUT we by the proper s mental regulations enerator) is true.	ATTON inte OF SER hipping names. If export s. If export Rejection D Number	- ER Ser VICE me, and are shipment an	classified, p d I am the P Month I 0 3 3 Month I 193 Month I Ful	ackaged, rrimary Day Yea Day Yea Day Yea
14. Special Hand Contract DATE & DATE & 15. GENERATO marked and Exporter, I ca I certify that I Generator's/Offero Carling that Generator's/Offero Carling that Generator's/Offero Carling that Generator's/Offero Carling that I certify that	Iling Instruction Inter by VES Internet by VES Interne	s and Addition. TS + Co FIN the phase 3) URC :17: R'S CERTIFIC ded, and are in ontents of this mization stater ued Name S ALL Impu s only): of Receipt of M e S and Addition.	al Information Intract retained Interval retain	ADD by generator of 	ENDUM ATTA onform agoney of 71 CUT OP SES V17/023 ents of this consignm nsport according to a the attached EPA Ackin am a large quantity Export from Type	CEED FOR ADE athority on this Purice DATE 7/0 ent are fully and accura poplicable international a nowledgment of Conse generator) or (b) (if I an Signature m U.S. Pro Da Signature Signature Signature Carter and Carter	tely descrind nation nt. n a small of wrt of enty te leaving	AL TS artist in a) ES ibed abo al govern quantity g wexit: U.S.: U.S.: Number:	CA INFORM edd or subst add or subst add:171 OLT we by the proper s mental regulations enerator) is true. Partial F U.S. EPA II	ATTON inte OF SER hipping names. If export s. If export Rejection D Number	- ER Ser VICE me, ard are shipment an	Classified, p d I am the P Month I C S S Month I 1931 Month I Ful	ackaged, rrimary Day Yea Day Yea Day Yea Day Yea I Rejection
14. Special Hand Contract DATE & DATE & 15. GENERATO marked and Exporter, I ca I certify that I Generator's/Offero Callong I certify that I Generator's/Offero I certify that I Generator's/Offero I certify that I Generator's/Offero I certify that I Generator's/Offero I certify that I I certi	Iling Instruction Inter by VES A transport 16/2023 : IR'S/OFFERO Iabeled/placan ertify that the c the waste mini- or's Printed/Type S S A inipments ture (for export knowledgment ed/Typed Nam AAAAAA Ited/Typed Nam Ited/Typed Nam Ited/Typed Nam Ited/Typed Nam Ited/Typed Nam	s and Addition. TS + Co FIN the prime TS CERTIFIC ded, and are in ontents of this mization stater wed Name S ALL Impr s only): of Receipt of M e S only: of Receipt of M e tor) (or Generato	al Information Intract rutained Interference I OUT OF SES ATION: I hereby de all respects in proj consignment confo nent identified in 40 ort to U.S. Interials Laterials Laterials Laterials ()	ADD by generator of 	ENTITIE ATTA CONSERVATION CONSERVATION Part of this consignment isport according to a ne attached EPA Ackin am a large quantity Export from Type	CEED FOR ADE attority or failed internity or failed international a nowledgment of Conser generator) or (b) (if I an Signature m U.S. Pro Da Signature Signature Signature Carter of the second Signature of the second Manifest R	tely descrind nation nt. n a small of wrt of enty te leaving	AL TS artist in 2) ES ibed abo al govern quantity g wexit:	CA INFORM edd or subst add or subst add or subst edd or subst enerator) is true. Partial F U.S. EPA II	ATTON inte OF SER hipping national s. If export Rejection D Number	- ER Ser VICE me, ard are shipment an	A classified, p d I am the P Month I C S S Month I I I I I I I I I I I I I I I I I I I	ackaged, rrimary Day Yea Day Yea Day Yea Day Yea I Rejection
14. Special Hand Contract JATE B 15. GENERATO marked and Exporter, 1 or I certify that I Generator's/Offero Carlow I Transporter signal 7. Transporter signal 7. Transporter signal 7. Transporter 2 Print 8. Discrepancy 8a. Discrepancy 8a. Discrepancy 8b. Alternate Faci acility's Phone: 3c. Signature of A 0. Hazardous Was	Iling Instruction int by VES A transport / 6/2023 : IR'S/OFFEROI labeled/placan ertify that the o the waste minii or's Printed/Type S C C ihipments ture (for export knowledgment ied/Typed Nam AAACC ied/Typed Nam Indication Space iity (or General Iternate Facility ite Report Man	s and Addition. TS + Co any on pairs TS -+ Co any on pairs TS -+ Co any on pairs TS	al Information Intract retained Interval transfer I OUT OF SEI ATION: I hereby di all respects in proj consignment confo nent identified in 40 O of to U.S. Interials Laterials Laterials Laterials I antity) od Codes (i.e., coor 12	ADD by generator o 	PENTICIPAL ATTA configment appointery of 71 CULT CHP SEE W17/023 ants of this consignem nsport according to a the attached EPA Acking the a	CHED FOR ADE attority or initial initial visits barts 7/0 ent are fully and accura powedgment of Consea generator) or (b) (if I an Signature MU.S. Po Da Signature Sig	tely descr ind nation nt. n a small of rt of enty te leaving ue eference	AL TS artist is 2) E ibed abo al govern quantity g hexit: U.S.: U.S.:	CA INFORM add or subst add or subst add:171 OUT we by the proper s mental regulations enerator) is true.	ATTOR inter OF SER hipping nauses. If export selection Rejection	- FR Ser VICB	Classified, p d I am the P Month I O S S Month I I D S S Month I Ful	ackaged, rrimary Day Yea Day Yea Day Yea I Rejection
14. Special Hand Contract JATE B 15. GENERATO marked and Exporter, 1 or I certify that I Generator's/Offero Carlow I International S Transporter signal 7. Transporter signal 7. Transporter signal 7. Transporter 2 Print 8. Discrepancy 8a. Discrepancy 8a. Discrepancy 8b. Alternate Faci acility's Phone: 3c. Signature of A 9. Hazardous Was	Iling Instruction int by VES A transport /ic/2023 : IR'S/OFFEROI labeled/placan ertify that the o the waste minii or's Printed/Type S C ihipments ture (for export knowledgment led/Typed Nam AAAC ied/Typed Nam Indication Space lifty (or General lifty (or General lifty (or General lifty (or General	s and Addition. TS + CO any on pairs TS -+ CO any on pairs TS -+ CO any on pairs THE CIT: TR'S CERTIFIC ded, and are in ontents of this mization stater red Name C C C TO	al Information Intract retained Intervent retained	ADD by generator o 1) ERE: 77 RVICE DATE a eclare that the conte per condition for tran m to the terms of th CFR 262.27(a) (if I 	PENTILIAL ATTA onform agoney i 71 CUTT CHP SES W17/023 ants of this consignm nsport according to a the attached EPA Acki the am a large quantity Export from Type waste treatment, dis	CHED FOR ADE attority or initial initial international a powedgment of Consea generator) or (b) (if I an Signature MU.S. Po Da Signature Signatur	tely descrind nation nt. n a small of rt of enty te leaving ue eference	AL TS artier in 2) Ed ibed abo al govern quantity g Nexit: U.S.: U.S.: Number:	CA INFORM add or subst add o	ATTOR inter OF SER hipping nauss. If export s. If export Rejection D Number	- ER Ser VICB	Classified, p d I am the P Month I C S S Month I I D S S Month I I D Ful	ackaged, rrimary Day Yea Day Yea Day Yea I Rejection
14. Special Hand Contract addition DATE & 15. GENERATO marked and Exporter, 1 or I certify that I Generator's/Offero Transporter signat 7. Transporter signat 7. Transporter a Print Ref. International S Transporter 1 Print C H Transporter 2 Print 8. Discrepancy 8a. Discrepancy I 8b. Alternate Faci acility's Phone: 3c. Signature of A 0. Hazardous Was	Iling Instruction Inter by VES International Int	s and Addition. TS + Co any on price TS CERTIFIC ded, and are in ontents of this mization stater ied Name CALL of Receipt of N ie CALL of Receipt of R	al Information Intract rutained Interact rutaine	ADD by generator o 1.1) EMI-17 RVICE DATE a eclare that the conten- per condition for transmin to the terms of the OFR 262.27(a) (if 1) CFR 262.27(a	ABONITION ATTAN CONTENT ADJONEY 1 71 DUTT OF SES W17/023 ants of this consignm hsport according to a ne attached EPA Acki t am a large quantity Export fro Export fro Export fro United Second Second Type	CHED FOR ADD athority on initial init	tely descrind nation tely descrind nation a small of televing televing ue eference stems) ed in Item	AL TS artist is a) B ibed abo al govern quantity g Number: Number:	CA INFORM add or subst did or subst did in subst we by the proper s mental regulations enerator) is true.	ATTON inte OF SER hipping names. If export s. If export Rejection D Number	- ER Şar	classified, p d I am the P Month I O S S Month I I D S Month I Ful	ackaged, rrimary Day Yea Day Yea Day Yea

EPA Form 8700-22 (Rev. 12-17) Previous editions are obsolete.

0021014000000

ACOCIN

VEOLIA

LDR NOTIFICATION OR CERTIFICATION FORM FOR NEW YORK STATE REGULATED PCB WASTE

0	1) GENERATOR NAME:	
COTIZALIZONES CU	JOAL HUDSON NY	2)
MANIFEST # 002131430125	3) VES APPROVAL #	
4138870		

4) Please check all boxes that apply.

NY PCB Waste Codes:

[] B001: Concentrated PCB OIL

[] B002: Oll/ Liquid 50-499 PPM PCB's [] B003: Oll/ Liquid 500 PPM or greater PCB's [] B004: Manufactured PCB Articles 50-499 ppm; [] transformers [] motors [] switches [] cable [] pumps [] pipe [] large capacitors []

bushings [] other (specify) :__

[] B005: Manufactured PCB Articles (other than transformers) 500 PPM or greater: [] motors [] switches [] cable [] pumps [] pipe [] large capacitors [] bushings [] other (specify):

[] B006: PCB Transformers 500 PPM or greater [X B007: Other PCB Wastes: [] soil [] sludge [] clothing [] rags [] wood [] other (specify):

5) Check ONE

box as appropriate:

Certification - Waste Meets Land Disposal Treatment Standards:

[] I am the generator of the waste as identified above, that is restricted under 6NYCRR. Parts 376. I have determined that this waste meets all applicable treatment standards set forth in 6NYCRR376 and, therefore, it can be land disposed without turther treatment. does not include solidified B002 material (Liquid with PCB'S 50-500 PPM).

I certify under penalty of law that I personally have examined and am familiar with the waste through analysis and testing or through knowledge of the waste to support this certification that waste complies with the treatment standards specified in Part 376, Section 376.4 and all applicable prohibitions set forth in subdivision 376.3(b) of Part 376 or RCRA Section 3004 (d). I believe that the information I submitted is true, accurate and complete. I am aware that there are significant penalties for submitting a false certification including the possibility of a fine or imprisonment.

Notification - Waste Does Not Meet Land Disposal Treatment

8) DATE: 5-30.23

Standards:

a waste restricted under 6 NYCRR Part 376 as identified above. I notify that I personally have examined and am familiar with the waste through analysis and testing or through knowledge of the waste to support this notification that the waste does not comply with the treatment standards specified in 6 NYCRR Part 376.4(f). This waste must be treated to the applicable standard set forth in

6 NYCRR Part 376.4(f) prior to land disposal,

6) SIGNATURE:

7) TITLE: ENV. (ODROLDANATOM

LDR NOTIFICATION OR CERTIFICATION FORM FOR NEW YORK STATE

1) GENERATOR NAME: <u>Central Hubson N7</u> MANIFEST # 002131430005 3) VES APPROVAL # 546787

NY PCB Waste Codes:

4) Please obeck all boxes that apply.

[] B001: Concentrated PCB OIL [] B002: Oil/ Liquid 50-499 PPM PCB's [] B003: Oil/ Liquid 500 PPM or greater PCB's [] B004: Manufactured PCB Articles 50-499 ppm; [] transformers [] motors [] switches [] cable [] pumps [] pipe [] large capacitors []

[] other (specify):

[] B006: PCB Transformers 500 PPM or greater [] B007: Other PCB Wastes: [] soil [] sludge [] clothing [] rags [] wood [] other (specify):

5) Check ONE

2)

box as appropriate:

Certification -- Waste Meets Land Disposal Treatment Standards:

[] I am the generator of the waste as identified above, that is restricted under 6NYCRR Parts 376. I have determined that this waste meets all applicable treatment standards set forth in 6NYCRR376 and, therefore, it can be land disposed without further treatment. Waste does not include solidified B002 material (Liquid with PCB'S 50-500 PPM).

I certify under penalty of law that I personally have examined and am familiar with the waste through analysis and testing or through knowledge of the waste to support this certification that waste complies with the treatment standards specified in Part 376, Section 376.4 and all applicable prohibitions set forth in subdivision 376.3(b) of Part 376 or RCRA Section 3004 (d). I believe that the information I submitted is true, accurate and complete. I am aware that there are significant penalties for submitting a false certification including the possibility of a fine or imprisonment.

Notification - Waste Does Not Meet Land Disposal Treatment

Standards:

[7] I am the generator of a waste restricted under 6 NYCRR Part 376 as identified above. I notify that I personally have examined and am familiar with the waste through analysis and testing or through knowledge of the waste to support this notification that the waste does not comply with the treatment standards specified in 6 NYCRR Part 376.4(f). This waste must be treated to the applicable standard set forth in 6 NYCRR Part 376.4(f) prjor to land disposal.

6) SIGNATURE:

7) TITLE:

ENU. LOORDDATOR

8) DATE: 8-30.73

PACKING SUMMARY

SL Accnt Id (Gen Num): 18695 (4161 CENTRAL HUDSON GAS & E RT 299 & SOUTH ST HIGHLAND, NY 12528 Attn: Eric Chastain EPA ID:NYD000705905	88) Lectric Eltings Corner Store	Manifest Number: Field System ID: Work Order Number Date Shipped:	002131430VES KA : 4320295999 08/30/2023
Container#: KA-4320295999-002	Weste Area:	Manifest	Page/Line: 01 / 1
WIP: 438870 DispossiCode:	EQD210037WDI PHY St	nte: S	
Data Accumulated: 08/30/2023		Gen Drum	ID: NA
Shipping Name: UN3432, POLYCHLOR	INATED BIPHENYLS, SOLID, 9, III, RQ		
No. of Commons: 01	Outer Container: CYD13H-B	A Inner Conte	iner:
Primary Weats Codes: 8007,L,PCB2	PCB Seriel #: KA4320	29599902010 0	OS Date: 07/05/2023
Total Cinna Wit: 45 BIC: 493	1 Source: G32 Form: W409	System: H132	Cuble Ft.: 27.00
Individual Common Weights: 1 @ 48	5 (KILOGRAMS)		
Units Container Size Net Weld	tht Chemicel Name		EPA/State Codes
1 CYDBOX	RAGS, DIRT, DEBRIS, PLASTIC >90 WITH PCB'S SHIP IN CUBIC YARD E ONLY (100%)	% ABSORBANTS <10% XXES AND DRUMS	8007, L, PC82
Containen# KA-4320295999-004	Waste Area:	Manifest	Paga/Line: 01 / 2
WIP: 540267 DisposelGode: Date Accumulated: 08/30/2023 Shipping Name: UN2315, POLYCHLOR	VNJPTAVES073 PHY St RINATED BIPHENYLS, LIQUID, 9, III, RQ (PC	ate: L Gen Drum B)	ID: N/A
No. of Commons: 01	Outer Container: TOT250-T	P Inner Cont	ainer:
Primary Waste Codes: B002.PCB2	PCB Seriel it KA432	0295999004010	003 Date: 08/16/2023
Total Crone Wt: 888 SIC: 493	31 Source: G11 Form: B297	System: H040	Gubic FL: 30.00
Individual Common Weights: 1 @ 86	BE (KILOGRAMS)		
Unita Conteiner Size Net Weld	ht Chemical Name		EPA/Stata Codea
1 TOT250	TRANSFORMER OIL (100%) POLYC BIPHENYLS (50-500M)	CHLORINATED	8002, PC82
Containent: KA-4320295999-003	Weste Area:	Manifes	t Page/Line: 01 / 3
WIP: 546287 DisposalCode:	VNJPTAVES073 PHY S	tentes: L	
Date Accumulated: 08/30/2023		Gen Dru	m ID: NA
Shipping Name: UN2315, POLYCHLOR	INATED BIPHENYLS, LIQUID, 9, III, RQ (PC	38)	
No. of Commons: 01	Outer Container: TOT250-	TP Inner Cor	tainer:
Primary Waste Codes: 8002 PCB2	PCB Seriel # KA43	0295999003010	OOS Date: 08/17/202
Total Crone Wt: 888 SIC: 493	31 Source: G11 Form: B297	System: H040	Gubic Ft.: 30.00
Individual Common Weights: 1 (2) B	8 (KILOGRAMS)		
Units Container Size Net Web	the Chemical Name	-	EPA/State Codes
	Work Order Number: 432020500	9	Page 1 of 2

4320295999

Work Order Number:

VEOLIA

TRANSFORMER OIL (100%) POLYCHLORINATED BIPHENYLS (50-500M)

Technical Report

prepared for:

Central Hudson Gas & Electric Corporation

284 South Avenue Poughkeepsie NY, 12601 Attention: Eric Chastain

Report Date: 07/20/2023 Client Project ID: ELTINGS CORNERS York Project (SDG) No.: 23G0997

CT Cert. No. PH-0723

New Jersey Cert. No. CT005 and NY037

New York Cert. Nos. 10854 and 12058

PA Cert. No. 68-04440

120 RESEARCH DRIVE www.YORKLAB.com STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418 ClientServices@yorklab.com

Report Date: 07/20/2023 Client Project ID: ELTINGS CORNERS York Project (SDG) No.: 23G0997

Central Hudson Gas & Electric Corporation

284 South Avenue Poughkeepsie NY, 12601 Attention: Eric Chastain

Purpose and Results

This report contains the analytical data for the sample(s) identified on the attached chain-of-custody received in our laboratory on July 19, 2023 and listed below. The project was identified as your project: ELTINGS CORNERS.

The analyses were conducted utilizing appropriate EPA, Standard Methods, and ASTM methods as detailed in the data summary tables.

All samples were received in proper condition meeting the customary acceptance requirements for environmental samples except those indicated under the Sample and Analysis Qualifiers section of this report.

All analyses met the method and laboratory standard operating procedure requirements except as indicated by any data flags, the meaning of which are explained in the Sample and Data Qualifiers Relating to This Work Order section of this report and case narrative if applicable.

The results of the analyses, which are all reported on dry weight basis (soils) unless otherwise noted, are detailed in the following pages.

Please contact Client Services at 203.325.1371 with any questions regarding this report.

York Sample ID	<u>Client Sample ID</u>	<u>Matrix</u>	Date Collected	Date Received
23G0997-01	PIPE SOAKER	Waste Water	07/19/2023	07/19/2023

General Notes for York Project (SDG) No.: 23G0997

- The RLs and MDLs (Reporting Limit and Method Detection Limit respectively) reported are adjusted for any dilution necessary due to 1. the levels of target and/or non-target analytes and matrix interference. The RL(REPORTING LIMIT) is based upon the lowest standard utilized for the calibration where applicable.
- Samples are retained for a period of thirty days after submittal of report, unless other arrangements are made. 2.
- York's liability for the above data is limited to the dollar value paid to York for the referenced project. 3.
- 4. This report shall not be reproduced without the written approval of York Analytical Laboratories, Inc.
- All analyses conducted met method or Laboratory SOP requirements. See the Sample and Data Qualifiers Section for further information. 5.
- It is noted that no analyses reported herein were subcontracted to another laboratory, unless noted in the report. 6.
- 7. This report reflects results that relate only to the samples submitted on the attached chain-of-custody form(s) received by York.
- 8. Analyses conducted at York Analytical Laboratories, Inc. Stratford, CT are indicated by NY Cert. No. 10854; those conducted at York Analytical Laboratories, Inc., Richmond Hill, NY are indicated by NY Cert. No. 12058.

Approved By: Och I Most

Cassie L. Mosher Laboratory Manager

Date: 07/20/2023

Sample Information

PIPE SOAKER Client Sample ID:

<u>Client Sample ID:</u>	PIPE SOAKER		<u>York Sample ID:</u>	23G0997-01
York Project (SDG) N	<u>Client Project ID</u>	Matrix	Collection Date/Time	Date Received
23G0997	ELTINGS CORNERS	Waste Water	July 19, 2023 8:15 am	07/19/2023

PCB (Po	lychlorinated Biphenyls)				<u>Log-in Notes:</u>		Sam	ple Note	<u>es:</u>		
Sample Prepa	red by Method: EPA SW846-3510C Low Le	vel									
CAS N	o. Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
12674-11-2	Aroclor 1016	ND		ug/L	0.100	1	EPA 608 Certifications:	CTDOH-PI	07/19/2023 08:36 H-0723,NELAC-NY10	07/20/2023 17:30 854,NJDEP,PADEP	BCJ
11104-28-2	Aroclor 1221	ND		ug/L	0.100	1	EPA 608 Certifications:	CTDOH-PI	07/19/2023 08:36 H-0723,NELAC-NY10	07/20/2023 17:30 854,NJDEP,PADEP	BCJ
11141-16-5	Aroclor 1232	0.929		ug/L	0.100	1	EPA 608 Certifications:	CTDOH-P	07/19/2023 08:36 PH-0723,NELAC-NY10	07/20/2023 17:30 0854,NJDEP,PADEP	BCJ
53469-21-9	Aroclor 1242	ND		ug/L	0.100	1	EPA 608 Certifications:	CTDOH-PI	07/19/2023 08:36 H-0723,NELAC-NY10	07/20/2023 17:30 854,NJDEP,PADEP	BCJ
12672-29-6	Aroclor 1248	ND		ug/L	0.100	1	EPA 608 Certifications:	CTDOH-PI	07/19/2023 08:36 H-0723,NELAC-NY10	07/20/2023 17:30 854,NJDEP,PADEP	BCJ
11097-69-1	Aroclor 1254	ND		ug/L	0.100	1	EPA 608 Certifications:	CTDOH-PI	07/19/2023 08:36 H-0723,NELAC-NY10	07/20/2023 17:30 854,NJDEP,PADEP	BCJ
11096-82-5	Aroclor 1260	0.118		ug/L	0.100	1	EPA 608 Certifications:	CTDOH-P	07/19/2023 08:36 PH-0723,NELAC-NY10	07/20/2023 17:30 0854,NJDEP,PADEP	BCJ
1336-36-3	* Total PCBs	1.05		ug/L	0.100	1	EPA 608 Certifications:	PADEP	07/19/2023 08:36	07/20/2023 17:30	BCJ
	Surrogate Recoveries	Result		Accept	ance Range						
877-09-8	Surrogate: Tetrachloro-m-xylene	4.50 %	S-08, S-09	ŝ	80-120						
2051-24-3	Surrogate: Decachlorobiphenyl	3.00 %	S-08,	ŝ	80-120						

S-09

Page 3 of 7

Sample and Data Qualifiers Relating to This Work Order

- S-09 The surrogate recovery for this sample is outside of established control limits due to a sample matrix effect confirmed by re-extraction and re-analysis of the sample. S-08 The recovery of this surrogate was outside of QC limits. **Definitions and Other Explanations** Analyte is not certified or the state of the samples origination does not offer certification for the Analyte. ND NOT DETECTED - the analyte is not detected at the Reported to level (LOQ/RL or LOD/MDL) RL. REPORTING LIMIT - the minimum reportable value based upon the lowest point in the analyte calibration curve. LOO LIMIT OF QUANTITATION - the minimum concentration of a target analyte that can be reported within a specified degree of confidence. This is the lowest point in an analyte calibration curve that has been subjected to all steps of the processing/analysis and verified to meet defined criteria. This is based upon current NELAC/TNI Standards and applies to all analyses. LOD LIMIT OF DETECTION - a verified estimate of the minimum concentration of a substance in a given matrix that an analytical process can reliably detect. This is based upon NELAC 2009 Standards and applies to all analyses conducted under the auspices of EPA SW-846. MDL METHOD DETECTION LIMIT - a statistically derived estimate of the minimum amount of a substance an analytical system can reliably detect with a 99% confidence that the concentration of the substance is greater than zero. This is based upon 40 CFR Part 136 Appendix B and applies only to EPA 600 and 200 series methods. This indicates that the data for a particular analysis is reported to either the LOD/MDL, or the LOQ/RL. In cases where the "Reported to" is located Reported to above the LOD/MDL, any value between this and the LOQ represents an estimated value which is "J" flagged accordingly. This applies to volatile and semi-volatile target compounds only. Not reported NR RPD Relative Percent Difference Wet The data has been reported on an as-received (wet weight) basis Low Bias Low Bias flag indicates that the recovery of the flagged analyte is below the laboratory or regulatory lower control limit. The data user should take note that this analyte may be biased low but should evaluate multiple lines of evidence including the LCS and site-specific MS/MSD data to draw bias conclusions. In cases where no site-specific MS/MSD was requested, only the LCS data can be used to evaluate such bias. High Bias High Bias flag indicates that the recovery of the flagged analyte is above the laboratory or regulatory upper control limit. The data user should take note that this analyte may be biased high but should evaluate multiple lines of evidence including the LCS and site-specific MS/MSD data to draw bias conclusions. In cases where no site-specific MS/MSD was requested, only the LCS data can be used to evaluate such bias.
- Non-Dir. Non-dir. flag (Non-Directional Bias) indicates that the Relative Percent Difference (RPD) (a measure of precision) among the MS and MSD data is outside the laboratory or regulatory control limit. This alerts the data user where the MS and MSD are from site-specific samples that the RPD is high due to either non-homogeneous distribution of target analyte between the MS/MSD or indicates poor reproducibility for other reasons.

If EPA SW-846 method 8270 is included herein it is noted that the target compound N-nitrosodiphenylamine (NDPA) decomposes in the gas chromatographic inlet and cannot be separated from diphenylamine (DPA). These results could actually represent 100% DPA, 100% NDPA or some combination of the two. For this reason, York reports the combined result for n-nitrosodiphenylamine and diphenylamine for either of these compounds as a combined concentration as Diphenylamine.

If Total PCBs are detected and the target aroclors reported are "Not detected", the Total PCB value is reported due to the presence of either or both Aroclors 1262 and 1268 which are non-target aroclors for some regulatory lists.

2-chloroethylvinyl ether readily breaks down under acidic conditions. Samples that are acid preserved, including standards will exhibit breakdown. The data user should take note.

Certification for pH is no longer offered by NYDOH ELAP.

Semi-Volatile and Volatile analyses are reported down to the LOD/MDL, with values between the LOD/MDL and the LOQ being "J" flagged as estimated results.

For analyses by EPA SW-846-8270D, the Limit of Quantitation (LOQ) reported for benzidine is based upon the lowest standard used for calibration and is not a verified LOQ due to this compound's propensity for oxidative losses during extraction/concentration procedures and non-reproducible chromatographic performance.

TOTA Information Two products and product on the product of the produ	YOUR Information	nuc 11115 UUC	ument serves as vour written authorization for vonus	isted on the back side of this document.	
Control Field Contro Field Control Field Control F		Report To:	Your signature binds you to YORK's Sta	v to proceed with the analyses requested below. Indard Terms & Conditions.	Page 1 of 1
Model South Mental Model South Me	pany: Central Hudson Gas & Electric Compa	any: Central Hudson Gas & Electric	Commenter Central Unders Co. 6 F1	YOUR Project Number	Turn-Around Time
(mail) (mail	ess: 284 South Avenue Addres Poughkeepsie, NY 12601	ss: 284 South Avenue Pounthkeensia NY 12501	Address: 284 South Avenue		RUSH - Next Day RUSH - Two Day
Constant Constant Constant Constant Constant Entries Central of an and and and and and and and and and	e. (845) 486-5734 Phone.	: (845) 486-5734	Poughkeepsie, NY 12601	YOUR Project Name	RUSH - Three Day
Finish enderstandigentuk com [evant and gave (evant and gave Standard (24 Day) Standard Gending [evant and gave (evant and gave Standard Evand (24 Day) Standard Evand [evant and gave (evant and gave (evant and gave Standard Evand (24 Day) Standard Evand [evant and gave (evant and gave (evant and gave (evant and gave (evant and gave Standard Evand [evant and gave (evant and gave <td< td=""><td>act: Eric Chastain Contac</td><td>* Eric Chastain</td><td>Contact aD@cenhild com</td><td>the traffec Cas wiede</td><td>RUSH - Four Day</td></td<>	act: Eric Chastain Contac	* Eric Chastain	Contact aD@cenhild com	the traffec Cas wiede	RUSH - Four Day
Matrix Codes Samples From Report Norvervor Norvervor Norvervor Samples from and neuronación actor will and that immension matrix and trick mension Norvervor Norvervor Norvervor Samples from and neuronación actor will and that immension matrix Norvervor Norvervor Norvervor Norvervor Samples from and neuronación actor will and that immension matrix Norvervor Norvervor Norvervor Norvervor Samples Collected by inniver On events Norvervor Norvervor Norvervor Norvervor Samples Collected by inniver On events Norvervor Norvervor Norvervor Norvervor Sample dentification Sample dentification Norvervor Norvervor Autrix Autrix Directed by innivervor Sample dentification Norvervor Norvervor Autrix Directed by innivervor Sample dentification Norvervor Autrix And State Norvervor Norvervor Autrix And State Norvervor Autrix Autrix	il: echastain@cenhud.com E-mail:	echastain@cenhud.com	E-mail: ap@cenhud.com	Volip port C-1 100	Standard (5-7 Day)
Degination ary YORK are meaved. Seal I solid New York Example Selection York Report Track Command Even Election Sample Collected by: gun/your area and and the following W gun/water New York New York Report Track Command Even Election Reputation(s): sues and single control of the following Sample Collected by: gun/your area and and the following W gun/water New York Report Track Command Even Election Reputation(s): sues and single control of the following Sample Collected by: gun/your area Sample Identification Sample Selection New York Report Command Even Report Amble Identification Sample Identification Sample Identification Sample Identification Sample Identification Autor and Sample Identification Autor and Sample Identification Autor and Sample Identification Amble Identification Sample Identification Sample Identification Sample Identification Autor and Sample Identification Autor and Sample Identification Amble Identification Sample Identification Sample Identification Sample Identification Autor and Sample Identification Autor and Sample Identification Autor and Sample Identification Amble Identification Sample Identification Sample Identification Mu/V Alf/7/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/	se print clearly and legibly. All information must bu ples will not be logged in and the turn-around time	e complete. Matrix Codes	Samples From Renot	t / EDD Tune (airele	
Samples Collected by: form: not store holds Own: setsener Own: Setsener Own: Setsener C T CCP DOADUE Coll Statiation Regulation(s); leave and under store holds Non-setsener WM: vastswater Pennsylvania NM: SSE Phackage NMDRCP Coll Statiation Regulation(s); leave and under store holds Non-vastswater Enastelian 0.01 Johner Density NASE Phackage NDDRCP Coll Statiation Regulation(s); leave and under store holds Regulation 0.01 Johner 0.01 Johner All X2 All X2 All X2 Regulation NDDRCP NDDRCP NDDRCP Onter All X2 All X2 All X2 Regulation NDDRCP NDDRCP NDDRCP Onter All X2 All X2 All X2 Regulation NDDRCP NDDRCP NDDRCP All X2 All X2 All X2 Regulation NDDRCP NDDRCP All X2 All X2 All X2 All X2 Regulation NDDRCP NDDRCP All X2 All X2 All X2 All X2 Regulation NDDRCP NDDRCP All X2 All X2 All X2 All X2 Regulation NDDRCP NDDRCP All X2 All X2 All	n until any questions by YORK are resolved.	S - soil / solid	New York x Summary Report		YORK Reg. Compared to the following
E Chastain own.seasement Pointer NY ASP B Package Deliverables NUDOP Other RRP HazSite Sample Identification Sample Identification Sample Identification Sample Identification Constance Point Autor	Samples Collected by: (print your name above and	1 sign below) DW - drinking wate	r Connecticut NY ASP A Packa	CT RCP DQA/DUE EQUIS (Standard) ge NJDEP Reduced NYSDEC EQUIS	Regulation(s): (please fill in)
PIPE Sorple Identification Sample Identification Sample Identification Continue Description Diff Sorple (dentification Ju/W 7//9/2.4? δrift Analysis Requested Continue Description Diff Sorple (dentification Ju/W 7//9/2.4? δrift Zig Zig Zig Diff Sorple (dentification Ju/W 7//9/2.4? δrift Zig Zig Zig Diff Sorple (dentification Ju/W 7//9/2.4? δrift Zig Zig Zig Diff Sorple (dentification Ju/W 7//9/2.4? δrift Zig Zig Zig Diff Sorple (dentification Line (dentification) Diff Line (dentification) Line (dentification) Diff Sorple (dentification Distribution Continuents: 2-DH Till Acoustion (deck all that apply) Special Instruction Sorple (dentification Distribution Distribution Distribution Distribution Liel OF Filter Sorple (dentification Distribution (deck all that apply) Freeservation: (deck all that apply) Special Instruction Sorple (dentification Distribution (deck all that apply) Distribution Distribution Liel OF Filter Sorple (dentification Distribution (deck all that apply) Distribution Distribution Liel OF Filter	E.Chastain	0 - Oil ; Other	Pennsylvania NY ASP B Packa Other	ge Deliverables NJDEP SRP HazSi N.InkOP	Ø
PIPE SOAKCK WW 7//7/2% PAIS Requested Container Description Pipe SOAKCK WW 7//7/2% PAIS Pise Analysis Requested Container Description Pipe Soart Hill Hill Hill Hill Hill Hill Hill Pipe Soart Hill Hill Hill Hill Hill Hill Hill Hill Soartee Hill Hill Hill Hill Hill Hill Hill Hill Hill Soartee Hill Soartee Hill Soartee Hill Soartee Hill Soartee Reserved by Company Hill Hill Hill Hill Hill Hill Hill Hill Hill Soartee Hill Hill Hill Hill H	Sample Identification	Sample Matrix	Date/Time Sampled	A · · · · Other	
Comments: 2-Dev 777 ACoCSTD, 1F 2051AC Comments Comments: 2-Dev 777 AcoCSTD, 1F 2051AC Comments Co	PIPE SOAKER	1.110	*1.91220 - 4.1 Dr.	Analysis Requested	Container Description
Standard Releved by Company Just Time Preservation: (check all that apply) Special instruction Comments: 2-D41 TREDACTION, IF POSSIBLE Preservation: (check all that apply) Special instruction Comments: 2-D41 TREDACTION, IF POSSIBLE Preservation: (check all that apply) Special instruction Standard Releved by Company Data Time Preservation: (check all that apply) Special instruction Standard Releved by Company Data Time 2. Simples Releved by Company Data Time Samples Releved by Company Data Time 3. Samples Releved by Company Data Time Samples Releveed by Company Data Time 3. Samples Releveed by Company Data Time Samples Releveed by Company Data Time 3. Samples Releveed by Company Data Time Samples Releveed by Company Data Time 3. Samples Releveed by Company Data Time Samples Releveed by Company Data Time 3. Samples Releveed by Company Data Time Samples Releveed by Company Data Time 3. Samples Releveed by Company Data Time Samples Releveed by Company Data Time 3. Samples Releveed by Company Data Time					1L ×2 Amore
Comments: 2-D+ TH たいらぶし、IF PoSsIAE Comments: 2-D+ TH たいらぶし、IF PoSsIAE Comments: 2-D+ TH たいらいの Comments: 2-D+ TH たいのの Comments: 2-D+ TH たいたいのの Comments: 2-D+ TH たいたいのの Comments: 2-D+ TH たいたいのの Comments: 2-D+ TH たいのの Comments: 2-D+ TH たいたいのの Comments: 2-D+ TH たいのの Comments: 2-D+ TH たいたいのの Comments: 2-D+ TH たいたいのの Comments: 2-D+ TH たいたいの Comments: 2-D+ TH たいたいの					
Comments: 2-Dot TMT MEOLES/ICD, IF Possible Samples Relinquished by Company IF Possible Preservation: Check all that apply) Samples Relinquished by Company Date/Time It. Samples Received by Company HCI MeOH HNO3 H3SO4 NaOH Samples Relinquished by Company Date/Time 1. Samples Received by Company Date/Time 2. Samples Relinquished by Company Date/Time Samples Received by Company Date/Time 3. Samples Relinquished by Company Date/Time 2. Samples Relinquished by Company Date/Time Samples Relinquished by Company Date/Time 3. Samples Relinquished by Company Date/Time 3. Samples Relinquished by Company Date/Time Samples Relinquished by Company Date/Time 3. Samples Relinquished by Company Date/Time 3. Samples Relinquished by Company Date/Time					
Comments Comments Competition Preservation: (check all that apply) Special Instruction Samples RefinueInts Value HCI MeOH HNO3 H2SO4 NaOH Field Filtered Samples RefinueInts Value Date/Time ZnAc Ascorbic Acid Other: Lab to Filter Samples RefinueInts Value Value Value Value Value Date/Time Lab to Filter Samples Received by / Company Date/Time 3. Samples Relinquished by / Company Date/Time 3. Samples Received by / Company Date/Time <td< td=""><td></td><td></td><td></td><td></td><td></td></td<>					
Samples Relinquished by / Company Date/Time 1. Samples Received by / Company Lab to Filter Samples Relinquished by / Company Date/Time 2. Samples Relinquished by / Company Lab to Filter Samples Relinquished by / Company Date/Time 3. Samples Relinquished by / Company Date/Time 2. Samples Relinquished by / Company Date/Time Samples Relinquished by / Company Date/Time 3. Samples Relinquished by / Company Date/Time 3. Samples Relinquished by / Company Date/Time Samples Relinquished by / Company Date/Time 3. Samples Received by / Company Date/Time Date/Time	mens: x-um in konesion, I	F POSSIBLE	HCI MEOH ZnAc Ascorbic Ac	ervation: (check all that apply) HN03H2SO4NaOH	Special Instruction Field Filtered
Jate/Time 3. Samples Relinquished by / Company Date/Time 3. Samples Received by / Company Date/Time Samples Relinquished by / Company Date/Time 4. Samples Received by / Company Date/Time Jun Diate/Time	ligs Reinfourthed by / Company DaterTim CHGE 7//5/ lies Received by / Commany	1. Ce OF 20 Autor Received by 1. C.	DaterTime	2. Samples Relinquished by / Company	Lab to Filter
Date/Time A. Samples Received by / Company Date/Time Samples Received in LAB by Date/Time Temp. Received at Lab	lac Balinniichad hu / Company	a 3. Samples Relinquished by	/ Company Date/Time	3. Samples Received by / Company	Date/Time
	was reminusion by Company Date/Time	4. Samples Received by / Co	mpany Date/Time	Samples Received in LAB by 7/14/23 Jun 2	Temp. Received at Lab

L

Thursday, August 24, 2023

Attn: Miller Environmental Group, Inc. 169 Stone Castle Road Rock Tavern, NY 12575

Project ID:CENTRAL HUDSON NY05230367SDG ID:GC077255Sample ID#s: C077255

This laboratory is in compliance with the NELAC requirements of procedures used except where indicated.

This report contains results for the parameters tested, under the sampling conditions described on the Chain Of Custody, as received by the laboratory. This report is incomplete unless all pages indicated in the pagination at the bottom of the page are included.

A scanned version of the COC form accompanies the analytical report and is an exact duplicate of the original.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Sincerely yours,

XI-De

Phyllis/Shiller Laboratory Director

NELAC - #NY11301 CT Lab Registration #PH-0618 MA Lab Registration #M-CT007 ME Lab Registration #CT-007 NH Lab Registration #213693-A,B NJ Lab Registration #CT-003 NY Lab Registration #11301 PA Lab Registration #68-03530 RI Lab Registration #63 VT Lab Registration #VT11301

Sample Id Cross Reference

August 24, 2023

SDG I.D.: GCO77255

Project ID: CENTRAL HUDSON NY05230367

Client Id	Lab Id	Matrix
DISPOSAL SAMPLE	CO77255	LIQUID

<u>Time</u>

14:30

Analysis F	Report
------------	--------

August 24, 2023

FOR: Attn:

Miller Environmental Group, Inc. 169 Stone Castle Road Rock Tavern, NY 12575

Sample	Information

Matrix:	LIQUID
Location Code:	MILLERROC
Rush Request:	5 Day
P.O.#:	26532

Custody Inform	<u>nation</u>
Collected by:	
Received by:	CP
Analyzed by:	see "By" below

08/17/23 16:42

<u>Date</u>

08/16/23

Laboratory Data

DI /

SDG ID: GCO77255 Phoenix ID: CO77255

Project ID: CENTRAL HUDSON NY05230367

Client ID: DISPOSAL SAMPLE

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
PCB Extraction	Completed				08/22/23	1/1	SW3510C
Delyableringted Binh	anda						
Polychiorinated Biph	enyis						
PCB-1016	ND	12	ug/L	1	08/22/23	PS	SW8082A
PCB-1221	ND	12	ug/L	1	08/22/23	PS	SW8082A
PCB-1232	ND	12	ug/L	1	08/22/23	PS	SW8082A
PCB-1242	ND	12	ug/L	1	08/22/23	PS	SW8082A
PCB-1248	ND	12	ug/L	1	08/22/23	PS	SW8082A
PCB-1254	ND	12	ug/L	1	08/22/23	PS	SW8082A
PCB-1260	32	12	ug/L	1	08/22/23	PS	SW8082A
PCB-1262	ND	12	ug/L	1	08/22/23	PS	SW8082A
PCB-1268	ND	12	ug/L	1	08/22/23	PS	SW8082A
QA/QC Surrogates							
% DCBP	31		%	1	08/22/23	PS	30 - 150 %
% DCBP (Confirmation)	30		%	1	08/22/23	PS	30 - 150 %
% TCMX	50		%	1	08/22/23	PS	30 - 150 %
% TCMX (Confirmation)	45		%	1	08/22/23	PS	30 - 150 %

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	By	Reference

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

PCB Extraction comment: Due to matrix and or sampling constraints, a subsample of the container provided was used. Any homogeneity issues may not be determined.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis, Shiller, Laboratory Director August 24, 2023 Reviewed and Released by: Anil Makol, Project Manager

QA/QC Report

August 24, 2023

QA/QC Data

SDG I.D.: GCO77255

Parameter BI	ank	Blk RL	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits	
QA/QC Batch 693372 (ug/L), QC Sa	ampl	e No: CO75856 (CO77255)									
Polychlorinated Biphenyls - L	_iqu	id									
PCB-1016	ID	0.25	85	98	14.2				40 - 140	20	
PCB-1221	ID	0.25							40 - 140	20	
PCB-1232	ID	0.25							40 - 140	20	
PCB-1242 N	ID	0.25							40 - 140	20	
PCB-1248 N	ID	0.25							40 - 140	20	
PCB-1254 N	ID	0.25							40 - 140	20	
PCB-1260 N	ID	0.25	97	104	7.0				40 - 140	20	
PCB-1262 N	ID	0.25							40 - 140	20	
PCB-1268 N	ID	0.25							40 - 140	20	
% DCBP (Surrogate Rec)	80	%	83	83	0.0				30 - 150	20	
% DCBP (Surrogate Rec) (Confirm 8	34	%	93	95	2.1				30 - 150	20	
% TCMX (Surrogate Rec) 7	4	%	59	74	22.6				30 - 150	20	r
% TCMX (Surrogate Rec) (Confirm 7	8	%	70	81	14.6				30 - 150	20	

A LCS and LCS Duplicate were performed instead of a matrix spike and matrix spike duplicate.

r = This parameter is outside laboratory RPD specified recovery limits.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

RPD - Relative Percent Difference

LCS - Laboratory Control Sample

LCSD - Laboratory Control Sample Duplicate

MS - Matrix Spike

MS Dup - Matrix Spike Duplicate

NC - No Criteria

Intf - Interference

Phyllis/Shiller, Laboratory Director August 24, 2023

Thursday, Au	August 24, 2023 Sample Criteria Exceedances Report								
Criteria: None GC077255 - MILLERROC									
State:	NY							RI	Analysis
SampNo	Acode	Phoenix Analyte	Criteria	Res	sult	RL	Criteria	Criteria	Units
*** No Data t	o Display ***								

Phoenix Laboratories does not assume responsibility for the data contained in this exceedance report. It is provided as an additional tool to identify requested criteria exceedences. All efforts are made to ensure the accuracy of the data (obtained from appropriate agencies). A lack of exceedence information does not necessarily suggest conformance to the criteria. It is ultimately the site professional's responsibility to determine appropriate compliance.

Analysis Comments

August 24, 2023

SDG I.D.: GCO77255

The following analysis comments are made regarding exceptions to criteria not already noted in the Analysis Report or QA/QC Report:

PCB Narration

AU-ECD24 08/22/23-1: CO77255

The following Continuing Calibration compounds did not meet % deviation criteria: Samples: CO77255 Preceding CC 822B003 - None. Succeeding CC 822B019 - PCB 1260 63%L (%)

NY Temperature Narration

August 24, 2023

SDG I.D.: GCO77255

The samples in this delivery group were received at 1.6° C. (Note acceptance criteria for relevant matrices is above freezing up to 6° C)

		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
Cooler Yes No IPK ICE No I (% Pg of D5.69 f.200	<u>୦: ନ ଜଟିଟିର</u> section MUST be npleted with le Quantifies.	4435 4435 4435 4435 4435 4435 4435 4435			PA Clean Fill Limits PA-GW Reg Fill Limits	PA Soil Restricted PA Soil non-restricte State Samples Collected
Coolant: Temp Phone: Coolant: Phone: Coolant: Fax: Email: H. Co	Project P				TOGS GW TOGS GW CP-51 SOIL 375SCO Unnestricted Soil 375SCO Descriental Soil	3755CO Residential Restricted Soil 3755CO Commercial Soil 3755CO Industrial Soil
DDY RECORD Ianchester, CT 06040 m Fax (860) 645-0823	1 Itudson/Nyusazozu hobo ee millar ewicom ato ee millaremir com				Ind: NJ Ind: NJ Ind: NJ Ind: NJ Ind: Res. Criteria Ind: Res. Criteria Ind: Non-Res. Criteria In	soil screen Criteria sol screen Criteria ackage: educad Deliv. * Other
PA CHAIN OF CUST Iddle Tumpike, P.O. Box 370, N Nolan, makrina@phoenixlabs.cc Client Services (860) 64	Project: Contro Report to: HVD Invoice to: HVDL QUOTE # :	Analysis Request Analysis			1000 1000	EQuIS EQUIS APPU NJ Hazsite EDD NY EZ EDD Data P (ASP) Other
NY/NJ/ 587 East M Email: Makrina I	1 1 2 7 2 7 5	on	le Date Time c Sampled Sampled			E Excel GIS/Kev
VIX Solution aboratories, Inc.	HIPP Env C- 0043 1 Jan- Cestle Ro EX, touler M NY	ient Sample - Information - Identificati - - -Ground Water SW=Surface Water WW ment SL=Sludge S=Soil SD=Soild V	stomer Sample Identification Matrix			ngentratus of rogunations. mp/es and will be billed as such in accordance
PHOE Environmental L	Customer: ML	Sampler's Cli Signature Mature Mature Cli Bathix Code: DW-EDrinking Water GW- RW-Raw Water SE-Sedii BEBulk L-Liquid			Relinquished by:	WSMSD are considered aite as

Thursday, August 31, 2023

Attn: Miller Environmental Group, Inc. 169 Stone Castle Road Rock Tavern, NY 12575

Project ID: CHGE NY032303G7T SDG ID: GCO79188 Sample ID#s: CO79188

This laboratory is in compliance with the NELAC requirements of procedures used except where indicated.

This report contains results for the parameters tested, under the sampling conditions described on the Chain Of Custody, as received by the laboratory. This report is incomplete unless all pages indicated in the pagination at the bottom of the page are included.

A scanned version of the COC form accompanies the analytical report and is an exact duplicate of the original.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Sincerely yours,

XI:lle

Phyllis/Shiller Laboratory Director

NELAC - #NY11301 CT Lab Registration #PH-0618 MA Lab Registration #M-CT007 ME Lab Registration #CT-007 NH Lab Registration #213693-A,B NJ Lab Registration #CT-003 NY Lab Registration #11301 PA Lab Registration #68-03530 RI Lab Registration #63 VT Lab Registration #VT11301

Sample Id Cross Reference

August 31, 2023

SDG I.D.: GCO79188

Project ID: CHGE NY032303G7T

Client Id	Lab Id	Matrix
DISPOSAL-LIQUIDS	CO79188	LIQUID

Analysis Report August 31, 2023

FOR: Attn:

...

Miller Environmental Group, Inc. 169 Stone Castle Road Rock Tavern, NY 12575

Sampla	Information	
Jannue	IIIIUIIIIauuui	

Sample Informa	ation	Custody Inform	Custody Information						
Matrix:	LIQUID	Collected by:		08/18/23	15:30				
Location Code:	MILLERROC	Received by:	SR1	08/21/23	16:42				
Rush Request:	Standard	Analyzed by:	see "By" below						
P.O.#:	26532				000704				

. . .

Laboratory Data

SDG ID: GCO79188 Phoenix ID: CO79188

Project ID:	CHGE NY032303G7T
Client ID:	DISPOSAL-LIQUIDS

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference	
TCLP Silver	< 0.10	0.10	mg/L	1	08/24/23	CPP	SW846 1311/6010	
TCLP Arsenic	< 0.50	0.50	mg/L	1	08/24/23	TH	SW846 1311/6010	
TCLP Barium	< 0.10	0.10	mg/L	1	08/24/23	CPP	SW846 1311/6010	
TCLP Cadmium	< 0.050	0.050	mg/L	1	08/24/23	CPP	SW846 1311/6010	
TCLP Chromium	< 0.10	0.10	mg/L	1	08/24/23	CPP	SW846 1311/6010	
TCLP Mercury	< 0.0009	0.0009	mg/L	1	08/22/23	PM	SW846 1311/7470	
TCLP Lead	0.14	0.10	mg/L	1	08/24/23	CPP	SW846 1311/6010	
TCLP Selenium	< 0.50	0.50	mg/L	1	08/24/23	TH	SW846 1311/6010D	
TCLP Metals Digestion	Completed				08/22/23	ZT/ZT	SW3010A	
Flash Point	>200	200	Degree F	1	08/22/23	G	SW1010B	
Ignitability	Passed	140	degree F	1	08/22/23	G	SW846-Ignit	1
Semi-Volatile Extraction	Completed				08/21/23	1/1	SW3510C	
TCLP Digestion Mercury	Completed				08/22/23	ZT/ZT	SW7470A	
TCLP Extraction for Metals	Completed				08/21/23	ZT	SW1311	
Volatile Prep	Completed				08/22/23	V	P.E.L.	1
<u>Volatiles</u>								
1,1,1,2-Tetrachloroethane	ND	5000	ug/L	1000	08/22/23	HM	SW8260D	
1,1,1-Trichloroethane	ND	5000	ug/L	1000	08/22/23	HM	SW8260D	
1,1,2,2-Tetrachloroethane	ND	5000	ug/L	1000	08/22/23	HM	SW8260D	
1,1,2-Trichloroethane	ND	5000	ug/L	1000	08/22/23	HM	SW8260D	
1,1-Dichloroethane	ND	5000	ug/L	1000	08/22/23	HM	SW8260D	
1,1-Dichloroethene	ND	5000	ug/L	1000	08/22/23	HM	SW8260D	
1,1-Dichloropropene	ND	5000	ug/L	1000	08/22/23	HM	SW8260D	
1,2,3-Trichlorobenzene	ND	5000	ug/L	1000	08/22/23	HM	SW8260D	
1,2,3-Trichloropropane	ND	5000	ug/L	1000	08/22/23	HM	SW8260D	
1,2,4-Trichlorobenzene	ND	5000	ug/L	1000	08/22/23	HM	SW8260D	

Project ID: CHGE NY032303G7T

Client ID: DISPOSAL-LIQUIDS

Parameter	Result	RL/ POI	Linits	Dilution	Date/Time	Bv	Reference
1.2.4 Trimethylbenzene	ND	F000		1000	08/22/22		SW(8260D
1,2,4-11methyldenzene		5000	ug/L	1000	08/22/23	ни	SW0200D
1,2-Dibromo-3-chloropropane		5000	ug/L	1000	08/22/23		SW8260D
		5000	ug/L	1000	08/22/23		SW8260D
1,2-Dichloroothana		5000	ug/L	1000	08/22/23		SW8260D
		5000	ug/L	1000	08/22/23		SW0200D
1,2-Dichloropropane		5000	ug/L	1000	08/22/23		SW0200D
		5000	ug/L	1000	08/22/23		SW0200D
1,3-Dichlorobenzene		5000	ug/L	1000	08/22/23		SW0200D
1,3-Dichloropropane		5000	ug/L	1000	08/22/23		SW0200D
		5000	ug/L	1000	08/22/23		SW0200D
2,2-Dichioropropane	ND	5000	ug/L	1000	08/22/23		SW0200D
2-Chlorotoluene	ND	5000	ug/L	1000	08/22/23	HIVI	SVV8260D
2-Hexanone	ND	25000	ug/L	1000	08/22/23	НМ	SW8260D
2-Isopropyltoluene	ND	5000	ug/L	1000	08/22/23	НМ	SW8260D
4-Chlorotoluene	ND	5000	ug/L	1000	08/22/23	HM	SW8260D
4-Methyl-2-pentanone	ND	25000	ug/L	1000	08/22/23	HM	SW8260D
Acetone	ND	50000	ug/L	1000	08/22/23	HM	SW8260D
Acrylonitrile	ND	10000	ug/L	1000	08/22/23	HM	SW8260D
Benzene	ND	5000	ug/L	1000	08/22/23	HM	SW8260D
Bromobenzene	ND	5000	ug/L	1000	08/22/23	HM	SW8260D
Bromochloromethane	ND	5000	ug/L	1000	08/22/23	HM	SW8260D
Bromodichloromethane	ND	5000	ug/L	1000	08/22/23	HM	SW8260D
Bromoform	ND	5000	ug/L	1000	08/22/23	HM	SW8260D
Bromomethane	ND	5000	ug/L	1000	08/22/23	HM	SW8260D
Carbon Disulfide	ND	5000	ug/L	1000	08/22/23	HM	SW8260D
Carbon tetrachloride	ND	5000	ug/L	1000	08/22/23	HM	SW8260D
Chlorobenzene	ND	5000	ug/L	1000	08/22/23	HM	SW8260D
Chloroethane	ND	5000	ug/L	1000	08/22/23	HM	SW8260D
Chloroform	ND	5000	ug/L	1000	08/22/23	HM	SW8260D
Chloromethane	ND	5000	ug/L	1000	08/22/23	HM	SW8260D
cis-1,2-Dichloroethene	ND	5000	ug/L	1000	08/22/23	HM	SW8260D
cis-1,3-Dichloropropene	ND	5000	ug/L	1000	08/22/23	HM	SW8260D
Dibromochloromethane	ND	5000	ug/L	1000	08/22/23	HM	SW8260D
Dibromomethane	ND	5000	ug/L	1000	08/22/23	HM	SW8260D
Dichlorodifluoromethane	ND	5000	ug/L	1000	08/22/23	HM	SW8260D
Ethylbenzene	ND	5000	ug/L	1000	08/22/23	HM	SW8260D
Hexachlorobutadiene	ND	5000	ug/L	1000	08/22/23	HM	SW8260D
Isopropylbenzene	ND	5000	ug/L	1000	08/22/23	HM	SW8260D
m&p-Xylene	ND	5000	ug/L	1000	08/22/23	HM	SW8260D
Methyl Ethyl Ketone	ND	60000	ug/L	1000	08/22/23	HM	SW8260D
Methyl t-butyl ether (MTBE)	ND	10000	ug/L	1000	08/22/23	HM	SW8260D
Methylene chloride	ND	5000	ug/L	1000	08/22/23	HM	SW8260D
Naphthalene	ND	5000	ug/L	1000	08/22/23	HM	SW8260D
n-Butylbenzene	ND	5000	ug/L	1000	08/22/23	HM	SW8260D
n-Propylbenzene	ND	5000	ug/L	1000	08/22/23	HM	SW8260D
o-Xylene	ND	5000	ug/L	1000	08/22/23	НМ	SW8260D
p-Isopropyltoluene	ND	5000	ug/L	1000	08/22/23	НМ	SW8260D
sec-Butylbenzene	ND	5000	ug/L	1000	08/22/23	НМ	SW8260D
Styrene	ND	5000	ug/L	1000	08/22/23	HM	SW8260D

Project ID: CHGE NY032303G7T Client ID: DISPOSAL-LIQUIDS

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	By	Reference	
tert-Butvlbenzene	ND	5000	ug/L	1000	08/22/23	НМ	SW8260D	
Tetrachloroethene	ND	5000	ug/L	1000	08/22/23	НМ	SW8260D	
Tetrahvdrofuran (THF)	ND	10000	ug/L	1000	08/22/23	НМ	SW8260D	1
Toluene	ND	5000	ug/L	1000	08/22/23	НМ	SW8260D	
Total Xylenes	ND	5000	ug/L	1000	08/22/23	НМ	SW8260D	
trans-1.2-Dichloroethene	ND	5000	ug/L	1000	08/22/23	НМ	SW8260D	
trans-1.3-Dichloropropene	ND	5000	ug/L	1000	08/22/23	НМ	SW8260D	
trans-1.4-dichloro-2-butene	ND	10000	ug/L	1000	08/22/23	НМ	SW8260D	
Trichloroethene	ND	5000	ug/L	1000	08/22/23	НМ	SW8260D	
Trichlorofluoromethane	ND	5000	ug/L	1000	08/22/23	НМ	SW8260D	
Trichlorotrifluoroethane	ND	5000	ug/L	1000	08/22/23	НМ	SW8260D	
Vinvl chloride	ND	5000	ug/L	1000	08/22/23	НМ	SW8260D	
QA/QC Surrogates			0					
% 1.2-dichlorobenzene-d4 (1000x)	97		%	1000	08/22/23	НМ	70 - 130 %	
% Bromofluorobenzene (1000x)	95		%	1000	08/22/23	НМ	70 - 130 %	
% Dibromofluoromethane (1000x)	95		%	1000	08/22/23	НМ	70 - 130 %	
% Toluene-d8 (1000x)	95		%	1000	08/22/23	НМ	70 - 130 %	
<u>Semivolatiles</u>		250	ug/l	10	08/22/22	DS	SW/8270D	
		250	ug/L	10	08/22/23	F3 DC	SW0270D	
1,2,4-Thenlorobenzene		250	ug/L	10	08/22/23	P3	SW8270D	
1,2-Dichlorobenzene		250	ug/L	10	08/22/23	P3	SW8270D	
1,2-Dipnenyinydrazine	ND	250	ug/L	10	08/22/23	P5	SVV8270D	
1,3-Dichlershansene	ND	250	ug/L	10	08/22/23	P5	SVV8270D	
1,4-Dichlorobenzene	ND	250	ug/L	10	08/22/23	P5	SVV8270D	1
2,2-Oxybis(1-Chloropropane)	ND	250	ug/L	10	08/22/23	P5	SVV8270D	I
	ND	250	ug/L	10	08/22/23	P5	SVV8270D	
2,4,6-1 richlorophenol	ND	250	ug/L	10	08/22/23	P5	SVV8270D	
	ND	250	ug/L	10	08/22/23	P5	SVV8270D	
	ND	250	ug/L	10	08/22/23	P5	SVV8270D	
	ND	250	ug/L	10	08/22/23	P5	SVV8270D	
2,4-Dinitrotoluene	ND	250	ug/L	10	08/22/23	P5	SVV8270D	
2,6-Dinitrotoluene	ND	250	ug/L	10	08/22/23	P5	SVV8270D	
2-Chloronaphthalene	ND	250	ug/L	10	08/22/23	P5	SVV8270D	
2-Chlorophenol	ND	250	ug/L	10	08/22/23	P5	SVV8270D	
	ND	250	ug/L	10	08/22/23	P5	SVV8270D	
		250	ug/L	10	08/22/23	P3	SW6270D	
2-Nitroaniline		250	ug/L	10	08/22/23	P3	SW8270D	
2-Nitrophenol		250	ug/L	10	08/22/23	P3	SW8270D	
	ND	300	ug/L	10	08/22/23	P5	SVV8270D	
	ND	250	ug/L	10	08/22/23	P5	SVV8270D	
	ND	250	ug/L	10	08/22/23	P5	SVV8270D	
4,6-Dinitro-2-methylphenol	ND	250	ug/L	10	08/22/23	P5	SVV8270D	
4-Bromopnenyl phenyl ether	ND	250	ug/L	10	08/22/23	PS	SVV82/UD	
4-Chioro-3-methylphenol		250	ug/L	10	08/22/23	P5	3008270D	
	ND	250	ug/L	10	08/22/23	PS	SVV82/UD	
4-Uniorophenyi phenyi ether		250	ug/L	10	08/22/23	P3	3008270D	
4-initroaniline		20U	ug/L	10	00/22/23	P3	SW0270D	
		200	ug/∟	10	00/22/23	гэ БС	SW0210D	
Acenaphinene	ND	230	ug/L	10	00/22/23	r3	3002/00	

Project ID: CHGE NY032303G7T Client ID: DISPOSAL-LIQUIDS

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Acenaphthylene	ND	250	ug/L	10	08/22/23	PS	SW8270D
Acetophenone	ND	250	ug/L	10	08/22/23	PS	SW8270D
Aniline	ND	500	ug/L	10	08/22/23	PS	SW8270D
Anthracene	ND	250	ug/L	10	08/22/23	PS	SW8270D
Benz(a)anthracene	ND	250	ug/L	10	08/22/23	PS	SW8270D
Benzidine	ND	250	ug/L	10	08/22/23	PS	SW8270D
Benzo(a)pyrene	ND	250	ug/L	10	08/22/23	PS	SW8270D
Benzo(b)fluoranthene	ND	250	ug/L	10	08/22/23	PS	SW8270D
Benzo(ghi)perylene	ND	250	ug/L	10	08/22/23	PS	SW8270D
Benzo(k)fluoranthene	ND	250	ug/L	10	08/22/23	PS	SW8270D
Benzoic acid	ND	500	ug/L	10	08/22/23	PS	SW8270D
Benzyl butyl phthalate	ND	250	ug/L	10	08/22/23	PS	SW8270D
Bis(2-chloroethoxy)methane	ND	250	ug/L	10	08/22/23	PS	SW8270D
Bis(2-chloroethyl)ether	ND	250	ug/L	10	08/22/23	PS	SW8270D
Bis(2-ethylhexyl)phthalate	ND	660	ug/L	10	08/22/23	PS	SW8270D
Carbazole	ND	250	ug/L	10	08/22/23	PS	SW8270D
Chrvsene	ND	250	ug/L	10	08/22/23	PS	SW8270D
Dibenz(a.h)anthracene	ND	250	ug/L	10	08/22/23	PS	SW8270D
Dibenzofuran	ND	250	ug/L	10	08/22/23	PS	SW8270D
Diethyl phthalate	ND	250	ug/L	10	08/22/23	PS	SW8270D
Dimethylphthalate	ND	250	ug/L	10	08/22/23	PS	SW8270D
Di-n-butylphthalate	ND	250	ug/L	10	08/22/23	PS	SW8270D
Di-n-octylphthalate	ND	250	ug/L	10	08/22/23	PS	SW8270D
Fluoranthene	ND	250	ug/L	10	08/22/23	PS	SW8270D
Fluorene	ND	250	ug/L	10	08/22/23	PS	SW8270D
Hexachlorobenzene	ND	250	ug/L	10	08/22/23	PS	SW8270D
Hexachlorobutadiene	ND	250	ug/L	10	08/22/23	PS	SW8270D
Hexachlorocyclopentadiene	ND	250	ug/L	10	08/22/23	PS	SW8270D
Hexachloroethane	ND	250	ug/L	10	08/22/23	PS	SW8270D
Indeno(1,2,3-cd)pyrene	ND	250	ug/L	10	08/22/23	PS	SW8270D
Isophorone	ND	250	ug/L	10	08/22/23	PS	SW8270D
Naphthalene	ND	250	ug/L	10	08/22/23	PS	SW8270D
Nitrobenzene	ND	250	ug/L	10	08/22/23	PS	SW8270D
N-Nitrosodimethylamine	ND	250	ug/L	10	08/22/23	PS	SW8270D
N-Nitrosodi-n-propylamine	ND	250	ug/L	10	08/22/23	PS	SW8270D
N-Nitrosodiphenvlamine	ND	250	ug/L	10	08/22/23	PS	SW8270D
Pentachloronitrobenzene	ND	250	ug/L	10	08/22/23	PS	SW8270D
Pentachlorophenol	ND	250	ug/L	10	08/22/23	PS	SW8270D
Phenanthrene	ND	250	ug/L	10	08/22/23	PS	SW8270D
Phenol	ND	250	ug/L	10	08/22/23	PS	SW8270D
Pyrene	ND	250	ug/L	10	08/22/23	PS	SW8270D
Pyridine	ND	250	ug/L	10	08/22/23	PS	SW8270D
QA/QC Surrogates							
% 2,4,6-Tribromophenol (10x)	95		%	10	08/22/23	PS	15 - 110 %
% 2-Fluorobiphenvl (10x)	61		%	10	08/22/23	PS	30 - 130 %
% 2-Fluorophenol (10x)	32		%	10	08/22/23	PS	15 - 110 %
% Nitrobenzene-d5 (10x)	74		%	10	08/22/23	PS	30 - 130 %
% Phenol-d5 (10x)	24		%	10	08/22/23	PS	15 - 110 %
% Terphenyl-d14 (10x)	60		%	10	08/22/23	PS	30 - 130 %

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	By	Reference

1 = This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Ignitability is based solely on the results of the closed cup flashpoint analysis performed above. Passed is >140 degree F.

Per 1.4.6 of EPA method 8270D, 1,2-Diphenylhydrazine is unstable and readily converts to Azobenzene. Azobenzene is used for the calibration of 1,2-Diphenylhydrazine.

This sample was not collected in accordance with EPA method 5030. NELAC requires the laboratory to qualify the volatile data as biased low.

CO79188 - The pH in the preserved volatile vial was greater than 2. A negative bias may have occurred.

Volatile Comment:

Elevated reporting limits for volatiles due to dilution for sample matrix. The sample was analyzed as a waste.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director August 31, 2023 Reviewed and Released by: Phyllis Shiller, Laboratory Director

QA/QC Report

August 31, 2023

QA/QC Data

Parameter	Blank	Blk RL	Sample Result	Dup Result	Dup RPD	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits
QA/QC Batch 693492 (mg/L), QC	: Samp	le No: C	078942	(CO7918	38)								
Mercury - Water	BRL	0.0002	< 0.0002	<0.0002	NC	93.6			99.7			80 - 120	20
Comment:													

Additional Mercury criteria: LCS acceptance range for waters is 80-120% and for soils is 70-130%. MS acceptance range is 75-125%.

QA/QC Batch 693490 (mg/L), QC Sample No: CO78744 (CO79188)

ICP Metals - TCLP Extraction

Arsenic	BRL	0.05	<0.05	<0.05	NC	108	109	0.9	111	80 - 120) 20
Barium	BRL	0.01	0.30	0.30	0	103	103	0.0	107	80 - 120) 20
Cadmium	BRL	0.005	<0.005	<0.005	NC	101	101	0.0	103	80 - 120) 20
Chromium	BRL	0.010	<0.010	<0.010	NC	99.3	100	0.7	102	80 - 120) 20
Lead	BRL	0.010	0.036	0.037	NC	102	103	1.0	105	80 - 120) 20
Selenium	BRL	0.05	<0.05	<0.05	NC	111	110	0.9	112	80 - 120) 20
Silver	BRL	0.010	<0.010	<0.010	NC	107	107	0.0	111	80 - 120) 20
Comment:											

Additional Criteria: LCS acceptance range is 80-120% MS acceptance range 75-125%.

QA/QC Report August 31, 2023

QA/QC Data

SDG I.D.: GCO79188

Parameter	Blank	Blk RL	Sample Result	Dup Result	Dup RPD	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits
QA/QC Batch 693549 (Degree F), QC S	ample N	lo: CO77	'949 (CC	79188)								
Flash Point			>200	>200	NC	100						75 - 125	30
Comment:													

Additional criteria matrix spike acceptance range is 75-125%.

QA/QC Report

August 31, 2023

QA/QC Data

SDG	I.D.:	GCO	791	88

Parameter	Blank	Blk RL		LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits	
QA/QC Batch 693416 (ug/L),	QC Samp	le No:	CO79188 (CO79188)									
Semivolatiles - Liquid												
1,2,4,5-Tetrachlorobenzene	ND	3.5		77	69	11.0				40 - 140	20	
1,2,4-Trichlorobenzene	ND	3.5		62	59	5.0				40 - 140	20	
1,2-Dichlorobenzene	ND	1.0		61	57	6.8				40 - 140	20	
1,2-Diphenylhydrazine	ND	1.6		92	86	6.7				40 - 140	20	
1,3-Dichlorobenzene	ND	1.0		59	56	5.2				40 - 140	20	
1,4-Dichlorobenzene	ND	1.0		64	59	8.1				40 - 140	20	
2,2'-Oxybis(1-Chloropropane)	ND	1.0		79	75	5.2				40 - 140	20	
2,4,5-Trichlorophenol	ND	1.0		104	96	8.0				40 - 140	20	
2,4,6-Trichlorophenol	ND	1.0		111	103	7.5				30 - 130	20	
2,4-Dichlorophenol	ND	1.0		90	84	6.9				30 - 130	20	
2,4-Dimethylphenol	ND	1.0		87	81	7.1				30 - 130	20	
2,4-Dinitrophenol	ND	1.0		114	116	1.7				30 - 130	20	
2,4-Dinitrotoluene	ND	3.5		136	127	6.8				30 - 130	20	I
2,6-Dinitrotoluene	ND	3.5		127	118	7.3				40 - 140	20	
2-Chloronaphthalene	ND	3.5		83	76	8.8				40 - 140	20	
2-Chlorophenol	ND	1.0		70	66	5.9				30 - 130	20	
2-Methylnaphthalene	ND	3.5		74	70	5.6				40 - 140	20	
2-Methylphenol (o-cresol)	ND	1.0		38	37	2.7				40 - 140	20	Т
2-Nitroaniline	ND	3.5		170	166	2.4				40 - 140	20	T
2-Nitrophenol	ND	1.0		112	108	3.6				40 - 140	20	
3&4-Methylphenol (m&p-cresol)	ND	1.0		65	61	6.3				30 - 130	20	
3,3'-Dichlorobenzidine	ND	5.0		125	119	4.9				40 - 140	20	
3-Nitroaniline	ND	5.0		126	125	0.8				40 - 140	20	
4,6-Dinitro-2-methylphenol	ND	1.0		126	118	6.6				30 - 130	20	
4-Bromophenyl phenyl ether	ND	3.5		89	82	8.2				40 - 140	20	
4-Chloro-3-methylphenol	ND	1.0		99	93	6.3				30 - 130	20	
4-Chloroaniline	ND	3.5		76	79	3.9				40 - 140	20	
4-Chlorophenyl phenyl ether	ND	1.0		94	86	8.9				40 - 140	20	
4-Nitroaniline	ND	5.0		128	121	5.6				40 - 140	20	
4-Nitrophenol	ND	1.0		51	47	8.2				30 - 130	20	
Acenaphthene	ND	1.5		92	84	9.1				30 - 130	20	
Acenaphthylene	ND	3.5		84	77	8.7				40 - 140	20	
Acetophenone	ND	3.5		74	71	4.1				40 - 140	20	
Aniline	ND	3.5		91	99	8.4				40 - 140	20	
Anthracene	ND	1.5		95	87	8.8				40 - 140	20	
Benz(a)anthracene	ND	1.5		90	84	6.9				40 - 140	20	
Benzidine	ND	4.5		29	<10	NC				40 - 140	20	I
Benzo(a)pyrene	ND	1.5		107	99	7.8				40 - 140	20	
Benzo(b)fluoranthene	ND	1.5		94	88	6.6				40 - 140	20	
Benzo(ghi)perylene	ND	1.5		88	84	4.7				40 - 140	20	
Benzo(k)fluoranthene	ND	1.5		92	88	4.4				40 - 140	20	

QA/QC Data

SDG I.D.: GCO79188

Parameter	Blank	Blk RL	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits	
Benzoic acid	ND	10	<10	<10	NC				30 - 130	20	
Benzyl butyl phthalate	ND	1.5	110	105	4.7				40 - 140	20	•
Bis(2-chloroethoxy)methane	ND	3.5	78	74	5.3				40 - 140	20	
Bis(2-chloroethyl)ether	ND	1.0	81	80	1.2				40 - 140	20	
Bis(2-ethylhexyl)phthalate	ND	1.5	131	120	8.8				40 - 140	20	
Carbazole	ND	5.0	95	91	4.3				40 - 140	20	
Chrysene	ND	1.5	104	96	8.0				40 - 140	20	
Dibenz(a,h)anthracene	ND	1.5	92	89	3.3				40 - 140	20	
Dibenzofuran	ND	3.5	91	83	9.2				40 - 140	20	
Diethyl phthalate	ND	1.5	99	92	7.3				40 - 140	20	
Dimethylphthalate	ND	1.5	96	89	7.6				40 - 140	20	
Di-n-butylphthalate	ND	1.5	100	95	5.1				40 - 140	20	
Di-n-octylphthalate	ND	1.5	102	95	7.1				40 - 140	20	
Fluoranthene	ND	1.5	83	81	2.4				40 - 140	20	
Fluorene	ND	1.5	93	86	7.8				40 - 140	20	
Hexachlorobenzene	ND	3.5	90	84	6.9				40 - 140	20	
Hexachlorobutadiene	ND	3.5	61	58	5.0				40 - 140	20	
Hexachlorocyclopentadiene	ND	3.5	45	42	6.9				40 - 140	20	
Hexachloroethane	ND	3.5	59	55	7.0				40 - 140	20	
Indeno(1,2,3-cd)pyrene	ND	3.5	24	86	112.7				40 - 140	20	l,r
Isophorone	ND	3.5	79	75	5.2				40 - 140	20	
Naphthalene	ND	1.5	81	72	11.8				40 - 140	20	
Nitrobenzene	ND	3.5	91	88	3.4				40 - 140	20	
N-Nitrosodimethylamine	ND	1.0	45	48	6.5				40 - 140	20	
N-Nitrosodi-n-propylamine	ND	3.5	89	85	4.6				40 - 140	20	
N-Nitrosodiphenylamine	ND	3.5	97	90	7.5				40 - 140	20	
Pentachloronitrobenzene	ND	5.0	107	99	7.8				40 - 140	20	
Pentachlorophenol	ND	3.5	112	102	9.3				30 - 130	20	
Phenanthrene	ND	1.5	96	88	8.7				40 - 140	20	
Phenol	ND	1.0	39	36	8.0				30 - 130	20	
Pyrene	ND	1.5	84	81	3.6				30 - 130	20	
Pyridine	ND	5.0	44	41	7.1				40 - 140	20	
% 2,4,6-Tribromophenol	85	%	119	101	16.4				15 - 110	20	T
% 2-Fluorobiphenyl	67	%	79	69	13.5				30 - 130	20	
% 2-Fluorophenol	32	%	41	36	13.0				15 - 110	20	
% Nitrobenzene-d5	66	%	86	78	9.8				30 - 130	20	
% Phenol-d5	25	%	30	26	14.3				15 - 110	20	
% Terphenyl-d14	69	%	80	75	6.5				30 - 130	20	
Comment:											

A LCS and LCS Duplicate were performed instead of a matrix spike and matrix spike duplicate.

Additional 8270 criteria: 20% of compounds can be outside of acceptance criteria as long as recovery is at least 10%. (Acid surrogates acceptance range for aqueous samples: 15-110%, for soils 30-130%)

QA/QC Batch 693728 (ug/L), QC Sample No: CO78752 (CO79188 (1000X))

Volatiles - Liquid										
1,1,1,2-Tetrachloroethane	ND	5.0	11	0 10	7 2.8	101	97	4.0	70 - 130	30
1,1,1-Trichloroethane	ND	5.0	10	6 10	4 1.9	105	98	6.9	70 - 130	30
1,1,2,2-Tetrachloroethane	ND	5.0	9	1 88	3 3.4	86	82	4.8	70 - 130	30
1,1,2-Trichloroethane	ND	5.0	10	1 98	3 3.0	97	95	2.1	70 - 130	30
1,1-Dichloroethane	ND	5.0	9	6 94	4 2.1	98	94	4.2	70 - 130	30
1,1-Dichloroethene	ND	5.0	10	2 10	0 2.0	108	101	6.7	70 - 130	30
1,1-Dichloropropene	ND	5.0	9	9 9	7 2.0	100	93	7.3	70 - 130	30
1,2,3-Trichlorobenzene	ND	1.0	9	3 93	3 0.0	73	79	7.9	70 - 130	30

<u>QA/QC Data</u>

SDG I.D.: GCO79188

Parameter	Blank	Blk RL	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits
1,2,3-Trichloropropane	ND	5.0	96	90	6.5	89	84	5.8	70 - 130	30
1,2,4-Trichlorobenzene	ND	5.0	102	101	1.0	86	86	0.0	70 - 130	30
1,2,4-Trimethylbenzene	ND	1.0	103	101	2.0	94	86	8.9	70 - 130	30
1,2-Dibromo-3-chloropropane	ND	5.0	98	94	4.2	85	85	0.0	70 - 130	30
1,2-Dibromoethane	ND	5.0	103	101	2.0	98	94	4.2	70 - 130	30
1,2-Dichlorobenzene	ND	1.0	102	100	2.0	93	84	10.2	70 - 130	30
1,2-Dichloroethane	ND	0.60	106	104	1.9	104	100	3.9	70 - 130	30
1,2-Dichloropropane	ND	5.0	97	96	1.0	99	95	4.1	70 - 130	30
1,3,5-Trimethylbenzene	ND	1.0	102	98	4.0	93	85	9.0	70 - 130	30
1,3-Dichlorobenzene	ND	1.0	103	100	3.0	94	86	8.9	70 - 130	30
1,3-Dichloropropane	ND	5.0	100	96	4.1	96	94	2.1	70 - 130	30
1,4-Dichlorobenzene	ND	1.0	102	100	2.0	93	84	10.2	70 - 130	30
2,2-Dichloropropane	ND	5.0	107	104	2.8	102	99	3.0	70 - 130	30
2-Chlorotoluene	ND	5.0	99	95	4.1	92	84	9.1	70 - 130	30
2-Hexanone	ND	5.0	90	88	2.2	88	88	0.0	70 - 130	30
2-Isopropyltoluene	ND	5.0	104	100	3.9	93	88	5.5	70 - 130	30
4-Chlorotoluene	ND	5.0	100	97	3.0	93	83	11.4	70 - 130	30
4-Methyl-2-pentanone	ND	5.0	90	87	3.4	86	87	1.2	70 - 130	30
Acetone	ND	10	79	77	2.6	74	74	0.0	70 - 130	30
Acrylonitrile	ND	5.0	91	89	2.2	84	85	1.2	70 - 130	30
Benzene	ND	0.70	96	94	2.1	98	94	4.2	70 - 130	30
Bromobenzene	ND	5.0	100	97	3.0	97	87	10.9	70 - 130	30
Bromochloromethane	ND	5.0	97	99	2.0	98	95	3.1	70 - 130	30
Bromodichloromethane	ND	5.0	109	106	2.8	104	101	2.9	70 - 130	30
Bromoform	ND	5.0	113	110	2.7	96	96	0.0	70 - 130	30
Bromomethane	ND	5.0	107	107	0.0	74	91	20.6	70 - 130	30
Carbon Disulfide	ND	5.0	109	107	1.9	109	106	2.8	70 - 130	30
Carbon tetrachloride	ND	5.0	117	116	0.9	88	87	1.1	70 - 130	30
Chlorobenzene	ND	1.0	103	101	2.0	100	93	7.3	70 - 130	30
Chloroethane	ND	5.0	108	105	2.8	112	105	6.5	70 - 130	30
Chloroform	ND	5.0	99	98	1.0	100	96	4.1	70 - 130	30
Chloromethane	ND	5.0	97	95	2.1	93	93	0.0	70 - 130	30
cis-1,2-Dichloroethene	ND	5.0	93	93	0.0	96	93	3.2	70 - 130	30
cis-1,3-Dichloropropene	ND	5.0	106	103	2.9	101	100	1.0	70 - 130	30
Dibromochloromethane	ND	5.0	113	111	1.8	103	103	0.0	70 - 130	30
Dibromomethane	ND	5.0	99	96	3.1	96	93	3.2	70 - 130	30
Dichlorodifluoromethane	ND	5.0	99	97	2.0	91	83	9.2	70 - 130	30
Ethylbenzene	ND	1.0	103	99	4.0	96	88	8.7	70 - 130	30
Hexachlorobutadiene	ND	5.0	112	111	0.9	95	100	5.1	70 - 130	30
Isopropylbenzene	ND	1.0	98	96	2.1	92	83	10.3	70 - 130	30
m&p-Xylene	ND	1.0	102	99	3.0	95	88	7.7	70 - 130	30
Methyl ethyl ketone	ND	5.0	86	84	2.4	78	80	2.5	70 - 130	30
Methyl t-butyl ether (MTBE)	ND	1.0	98	97	1.0	93	93	0.0	70 - 130	30
Methylene chloride	ND	5.0	94	93	1.1	97	95	2.1	70 - 130	30
Naphthalene	ND	1.0	93	91	2.2	75	78	3.9	70 - 130	30
n-Butylbenzene	ND	1.0	103	100	3.0	89	84	5.8	70 - 130	30
n-Propylbenzene	ND	1.0	100	97	3.0	91	82	10.4	70 - 130	30
o-Xylene	ND	1.0	104	100	3.9	97	90	7.5	70 - 130	30
p-Isopropyltoluene	ND	1.0	104	101	2.9	92	87	5.6	70 - 130	30
sec-Butylbenzene	ND	1.0	100	98	2.0	89	84	5.8	70 - 130	30
Styrene	ND	1.0	103	101	2.0	98	91	7.4	70 - 130	30
tert-Butylbenzene	ND	1.0	102	99	3.0	92	87	5.6	70 - 130	30
Tetrachloroethene	ND	1.0	108	106	1.9	102	91	11.4	70 - 130	30

QA/QC Data

Parameter	Blank	Blk RL	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits	
Tetrahydrofuran (THF)	ND	5.0	85	83	2.4	77	78	1.3	70 - 130	30	
Toluene	ND	1.0	99	96	3.1	96	92	4.3	70 - 130	30	
trans-1,2-Dichloroethene	ND	5.0	97	95	2.1	99	96	3.1	70 - 130	30	
trans-1,3-Dichloropropene	ND	5.0	108	108	0.0	103	101	2.0	70 - 130	30	
trans-1,4-dichloro-2-butene	ND	5.0	101	97	4.0	88	88	0.0	70 - 130	30	
Trichloroethene	ND	5.0	105	102	2.9	105	98	6.9	70 - 130	30	
Trichlorofluoromethane	ND	5.0	111	108	2.7	109	101	7.6	70 - 130	30	
Trichlorotrifluoroethane	ND	5.0	117	114	2.6	114	99	14.1	70 - 130	30	
Vinyl chloride	ND	5.0	97	96	1.0	98	95	3.1	70 - 130	30	
% 1,2-dichlorobenzene-d4	99	%	98	99	1.0	100	99	1.0	70 - 130	30	
% Bromofluorobenzene	96	%	100	100	0.0	99	99	0.0	70 - 130	30	
% Dibromofluoromethane	97	%	97	98	1.0	97	97	0.0	70 - 130	30	
% Toluene-d8	95	%	97	97	0.0	97	97	0.0	70 - 130	30	
Comment:											

Additional 8260 criteria: 10% of LCS/LCSD compounds can be outside of acceptance criteria as long as recovery is 40-160%, 25-160% for Chloroethane-HL and Trichlorofluoromethane-HL.

I = This parameter is outside laboratory LCS/LCSD specified recovery limits. r = This parameter is outside laboratory RPD specified recovery limits.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

RPD - Relative Percent Difference

LCS - Laboratory Control Sample

LCSD - Laboratory Control Sample Duplicate

MS - Matrix Spike

MS Dup - Matrix Spike Duplicate

NC - No Criteria

Intf - Interference

Phyllis/Shiller, Laboratory Director August 31, 2023

Thursday, Au	ugust 31, 2023		Sample Criteria Exceedances Report							
Criteria: I	None		GC079188 - MILLERROC							
State: I	NY						RI	Analysis		
SampNo	Acode	Phoenix Analyte	Criteria	Result	RL	Criteria	Criteria	Units		
*** No Data t	o Display ***									

Phoenix Laboratories does not assume responsibility for the data contained in this exceedance report. It is provided as an additional tool to identify requested criteria exceedences. All efforts are made to ensure the accuracy of the data (obtained from appropriate agencies). A lack of exceedence information does not necessarily suggest conformance to the criteria. It is ultimately the site professional's responsibility to determine appropriate compliance.

Analysis Comments

August 31, 2023

SDG I.D.: GCO79188

The following analysis comments are made regarding exceptions to criteria not already noted in the Analysis Report or QA/QC Report:

SVOA Narration

CHEM19 08/22/23-1: CO79188

For 8270 full list, the DDT breakdown and pentachlorophenol & benzidine peak tailing were evaluated in the DFTPP tune and were found to be in control.

For 8270 BN list, benzidine peak tailing was evaluated in the DFTPP tune and was found to be in control.

The following Initial Calibration compounds did not meet RSD% criteria: Bis(2-ethylhexyl)phthalate 21% (20%), Fluorene 21% (20%), Pentachlorophenol 21% (20%)

The following Initial Calibration compounds did not meet maximum RSD% criteria: None.

The following Initial Calibration compounds did not meet recommended response factors: 2-Nitrophenol 0.042 (0.1), Hexachlorobenzene 0.095 (0.1)

The following Initial Calibration compounds did not meet minimum response factors: 2-Nitrophenol 0.042 (0.05)

The following Continuing Calibration compounds did not meet recommended response factors: 2-Nitrophenol 0.044 (0.1), Hexachlorobenzene 0.092 (0.1)

The following Continuing Calibration compounds did not meet minimum response factors: None.

Up to eight compounds can be outside of ICAL %RSD criteria and up to sixteen compounds can be outside of CCAL %Dev criteria if less than 40%.

NY Temperature Narration

August 31, 2023

SDG I.D.: GCO79188

The samples in this delivery group were received at 1.2° C. (Note acceptance criteria for relevant matrices is above freezing up to 6° C)

I – 1 – – – – – – – – – – – – – – – – –		1 i				PEL-111 R#V 1/2023
nt IPK () ICE No np () C Pg of ntact Options:	al dos on marine row and	-:			PA Clean Fill Limits PA-GW Reg Fill Limits PA Soil Restricted	PA Soil non-restricted State Samples Collected?
Coolar Ter Co	Email: Hu	Project F			TOGS GW: CP-51 SOIL 375SCO Unrestricted Soil 375SCO Residential Soil	3755CO Residential Residential 3755CO Commercial Soil 3755CO Industrial Soil Subpart 5 DW
DY RECORD anchester, CT 06040	m Fax (860) 645-0823 ⊑ 5-1102	NY03230367T abr@millerenv.com Millerenv.com	ALCONTRACTOR		NU X X X X X X X X X X X X X	Rate and screen criteria a conscreen conscreen a consc
CHAIN OF CUSTC Tumpike, P.O. Box 370, M	makrina@phoenixlabs.co	Project: CH4-6 Report to: HVD I nvoice to: HYO auoTE # :	alysis quest area and a contraction of the contract		Time: Time: 1 0.15 1 2 3 2 3 2 3 2 3 <t< td=""><td>EGuIS • SURCHA APPLIE VJ Hazsite EDD • Data P: (ASP) • Data P: ASP) • NJ R: Dither • NY E:</td></t<>	EGuIS • SURCHA APPLIE VJ Hazsite EDD • Data P: (ASP) • Data P: ASP) • NJ R: Dither • NY E:
NY/NJ/PA	Email: Makrina Nolan Clit			e Time Sampled	Parte \$ 31.53 \$	oenix Std Report
	3	Srzer M	- Identification Date: ≫ Water WW=Waste W SD=Solid W=Wipe	Attity Sample Date Sample	Data F.	PIN Exc
	Laboratories, Inc.	iller Fron (Fron 69 Store (arth Back Jahum	ilent Sample - Information F=Ground Water SW≈Surfac	ustomer Sample Identificatio	Accepted by Accept	ampies and will be billed as such
PHOF	Environmental	Customer: Address:	Sampler's Signature Metrix Code: DW=Drinking Water GM RWmRaw Water SEeSec	PHOENK USE ONLY SAMPLE # C TAIRS	Relinquished by:	"MS/MSD are considered alle a

Experience is the solution 314 North Pearl Street

Albany, New York 12207 (800) 848-4983

(518) 434-4546

Fax (518) 434-0891

August 28, 2023

Katherine Landi Central Hudson Gas & Electric 284 South Avenue Poughkeepsie, NY 12601

TEL: (845) 486-5734

Work Order No: 230818083 PO#: 37482

RE: Laboratory Analysis Eltings Corner

Adirondack Environmental Services, Inc received 1 sample on 8/18/2023 for the analyses presented in the following report.

Please see case narrative for specifics on analysis.

If you have any questions regarding these tests results, please feel free to call.

Sincerely,

Vara Daniel

Tara Daniels Laboratory Director

ELAP#: 10709

Adirondack Environmental Services, Inc

Central Hudson Gas & Electric

Laboratory Analysis Eltings Corner **Date:** 28-Aug-23

Lab WorkOrder: 230818083

Sample containers were supplied by Adirondack Environmental Services.

This is a re-issued report to correct workorder reference. Rev01

Definitions - RL: Reporting Limit DF: Dilution factor

Qualifiers:	ND : Not Detected at reporting limit	C: CCV below acceptable Limits
	J: Analyte detected below quantitation limit	C+: CCV above acceptable Limits
	B: Analyte detected in Blank	S: LCS Spike recovery is below acceptable limits
	X : Exceeds maximum contamination limit	S+: LCS Spike recovery is above acceptable limits
	H: Hold time exceeded	Z: Duplication outside acceptable limits
	N: Matrix Spike below acceptable limits	T : Tentatively Identified Compound-Estimated
	N+: Matrix Spike is above acceptable limits	E :Above quantitation range-Estimated

Note : All Results are reported as wet weight unless noted

The results relate only to the items tested. Information supplied by the client is assumed to be correct.

CASE NARRATIVE
CLIENT: Project:	Central Hudson Gas & El Laboratory Analysis Eltings Corner	ectric	LabWork Order: 230818083 PO#: 37482							
Lab SampleID Client Sample	: 230818083-001 ID: Waste PPE, Plastic fro	m DECO		Colle	ction Date: 8/ Matrix: S	/18/2023 OLID	10:00:00 AM			
Analyses		Result	RL	Qual Uni	ts I	DF	Date Analyzed			
POLYCHLORIN (Pre	ATED BIPHENYLS - EPA 8 20: SW 3580A - 8/22/2023	082A)					Analyst: KF			
PCB, Total		NĎ	1.0	µg/g	1	8	8/22/2023 3:52:06 PM			
Surr: Decach	lorobiphenyl	96.0	51.3-143	%RE	EC 1	8	8/22/2023 3:52:06 PM			

Adirondack Environmental Services, Inc

Date: 28-Aug-23

314 North Pearl Street Albany, New York 12207 518-434-4546/434-0891 FAX **CHAIN OF CUSTODY RECORD** AES Work Order #

30818083

xperience is 1	the solution		A full	service a	nalytical r	esearch labo	ratory	/ offe	ering s	olutio	ns to en	vironmental concerns		
Client Name:			Ac	ldress:								an a		
CENTRAL	HUDSON	GAS + ET	ectric	2.84	JOUTH A	MG POUCH	KÆ	AST G	F. K	Y 1	2601			
end Report To:		Project Name (Location)						Sam	plers: (Names)				
ENV CENHUD.COM R ELTIN				kes Car	ES CORNERS				Gr.	ic CH	ASTAIN			
lient Phone No: Client Email:			PO Number:				Samplers: (Signature)							
345-486-	5734	7.34								Charles				
AES ample Number		Sample Ident	Client ification & L	ocation		Date Sampled	Tim A=a. P=p.	e m. m.	Samp Matrix	e Type di S	Number of Cont's	Analysis Required		
	LASTE	DOF DI	ACTIR	Farm	NECA	A+12-7.3	10	P	5	X	damanati.	PCB		
VVI	VV: 13 / C	110,10	70100	11000	we wa	/ / / / / //		A	~~~~					
								Р						
								A P						
								A						
								P						
								A						
								A						
								Р						
								A						
								A						
								P						
								A						
								A						
								Р						
								A						
								A						
								Р						
								A						
								A		+				
								Р						
hipment Arriv	red Via:				CC Report	To / Special Ins	tructio	ns/Re	marks:					
edEx UPS	Client (A	ES Other:												
		2												
urnaround Tim	e Request:	A												
∐ 1 Day □ 2 Day	∐ 3 Day	X NOP	mai		5									
Note: Samples re	eceived after 3:3	0 pm are conside	red next busi	ness day								+		
lelinquished by	y: (Signature)	1			Received I	by: (Signature)	~					Sugar Interne		
SKC	ZCE	international de la construcción de Estere			LB	W						0118/25/11.70		
elinquished by	y: (Signature)	•			Received 1	oy: (Signature)						Date/Time		
aling wighted by	w (Cignoluzo)				Bossived	or Laboratory b		1	,			Doto Timo		
Bark	y: (Signature)	•			Receiveu		y.	2	Ľ			8/18/23 (6-0		
	TEMPERA	ATURE	AES Bottle	es	PROP	ERLY PRESERVED)				RECEIVE	ED WITHIN HOLDING TIMES		
(A	mbient or	Chilled	Y/	N	TY	() N						Y N		
Notes:				Note	is:					Not	es:			
	WHIT	E - Lab Copy			YELLOW	 Sampler Copy 					NUU 0			
			Δa	ironda	nk Enui	reininniemin	n Sa	anulir	nac -			Demo		
			a vet	n sa Natat	anto La III VI		нт се л:		-toriol _e					
												230818083		

314 North Pearl Street * Albany, New York 12207 * (518) 434-4546 * Fax (518) 434-0891

TERMS, CONDITIONS & LIMITATIONS

All service rendered by the Adirondack Environmental Services, Inc. are undertaken and all rates are based upon the following terms:

- (a) Neither Adirondack Environmental Services, Inc., nor any of its employees, agents or sub-contractors shall be liable for any loss or damage arising out of Adirondack Environmental Services, Inc.'s performance or nonperformance, whether by way of negligence or breach of contract, or otherwise, in any amount greater than twice the amount billed to the customer for the work leading to the claim of the customer. Said remedy shall be the sole and exclusive remedy against Adirondack Environmental Services, Inc. arising out of its work.
- (b) All claims made must be in writing within forty-five (45) days after delivery of the **Adirondack Environmental Services, Inc.** report regarding said work or such claim shall be deemed or irrevocably waived.
- (c) Adirondack Environmental Services, Inc. reports are submitted in writing and are for our customers only. Our customers are considered to be only those entities being billed for our services. Acquisition of an Adirondack Environmental Services, Inc. report by other than our customer does not constitute a representation of Adirondack Environmental Services, Inc. as to the accuracy of the contents thereof.
- (d) In no event shall Adirondack Environmental Services, Inc., its employees, agents or sub-contractors be responsible for consequential or special damages of any kind or in any amount.
- (e) No deviation from the terms set forth herein shall bind Adirondack Environmental Services, Inc. unless in writing and signed by a Director of Adirondack Environmental Services, Inc.
- (f) Results pertain only to items analyzed. Information supplied by client is assumed to be correct. This information may be used on reports and in calculations and Adirondack Environmental Services, Inc. is not responsible for the accuracy of this information.
- (g) Payments by Credit Card/Purchase Cards are subject to a 3% additional charge.