GROUNDWATER SAMPLING REPORT

OFFICE DEPOT SHOPPING CENTER ROUTE 9W & BOICES LANE KINGSTON, ULSTER COUNTY, NEW YORK

Submitted:

October 2010

Prepared for:

Ulster Realty Management Corp. 2001 Ulster Avenue P.O. Box 1598 Kingston, NY 12402-1598

Prepared by:

Table of Contents

Execu	tive Summary	1
1.0	Site History	1
1.1	Site Description	1
1.2	Geology	
1.3	Hydrogeology	2
1.4	Previous Environmental Investigations	2
2.0	August 2010 Sampling Event	3
2.1	Hydrogeology	5
2.2		
3.0	Recommendations	6
3.1	Interim Remedial Measures	6
4.0	Conclusion	7
5.0	References	8

Tables

Table 1: Groundwater Analytical and Elevation Data

Table 2: Off-Site Property Information

Figures

Figure 1: Site Location Figure 2: Site Plan

Figure 3: Water Table Elevation Contour Map, August 11, 2010

Figure 4: Tetrachloroethylene Concentration in Groundwater, August 11 & 12, 2010

Appendices

Appendix A: Low-Flow Groundwater Sampling Forms

Appendix B: Laboratory Analytical Reports – August 11 & 12, 2010 Appendix C: Microbial Bacteria Report – August 11 & 12, 2010

Executive Summary

The Palmerton Group, LLC (Palmerton Group) conducted a groundwater sampling event at the Office Depot Shopping Center on Boices Lane and Route 9W in Kingston, Ulster County, New York, the "Site", on August 11 and 12, 2010 for the purpose of comparing groundwater conditions with prior Site data. Twelve of fourteen pre-existing wells were sampled. Groundwater samples were submitted for laboratory analysis for the target compound list for volatile organic compounds by EPA Method 8260B.

The Site has been previously sampled three times before, once in 1999, a second time in 2005, and again in 2009. The 2009 sampling event was completed by Palmerton Group and was used for the establishment of Site groundwater conditions and compared with previous data. Results from the March 2009 sampling event indicated a relatively stable plume of dissolved tetrachloroethylene (PCE) in groundwater. This PCE plume is believed to have originated from activities of a former dry cleaner on the property. The August 2010 groundwater sampling event served dual purposes; first confirming plume spatial distribution and concentrations with previous Site data, and the second being whether or not the presence of *Dehalococcoides* (Dhc), microbial bacteria are naturally occurring in Site groundwater from an augmented natural attenuation program.

1.0 Site History

1.1 Site Description

The property ("Site") is situated on the southwest corner of Route 9 West and Boices Lane in Kingston, Ulster County, New York as depicted in the attached Figure 1, "Site Location." One slab-on-grade masonry block building consisting of a 33,000-square foot building and attached 11,400-square foot wing is located on site. Current occupants include Office Depot, occupying the large 33,000-square foot building, and Miron Liquors, H&R Block, AIG Insurance, and Empire Vision Center occupying the wing. A dry cleaning store was located where Miron Liquors currently is. The surrounding area is mostly commercial with a residential neighborhood approximately 500 feet west of the Site. Rail road tracks border the property to the west. Refer to Figure 2, "Site Plan."

The site topography is generally flat with a gentle slope towards the south. The elevation is approximately 180 to 190 feet above mean sea level.

Based on aerial photography, the Site was developed between 1956 and 1962. According to the Remedial Investigation Workplan (Chazen, 2007), the Site was not connected to the municipal sewer at that time and an on-site septic system was used for sewage disposal located adjacent to the northwest corner of the building. The Site has since been connected to the public sewer system.

The Palmerton Group has reviewed a lease between Airport Realty Company (landlord) and Pride South, Inc. (tenant) dated May 17, 1968. This lease was for the operation of a dry cleaning store at the shopping center from June 1, 1968 through June 1, 1983. According to the 1999 Phase II Environmental Investigation (IVI, 1999), the dry cleaner operated for only a two year period circa 1984. This is not likely, however, given accounts of Site personnel and prior reporting. This dry cleaner is believed to be the source of PCE in groundwater.

The exact location of the former dry cleaner is not known. However, the location can be approximated relative to surface features. MW-1 was reportedly installed 20 feet north of the front entrance of the dry cleaner while MW-4 was reportedly installed 15 feet south of the rear door. Additionally, a larger-than-normal electrical drop is mounted on the rear of the building in the same vicinity as MW-4. The dry cleaner would have likely needed a larger-than-usual electric service to run washing machines and dryers. There are also several air vents adjacent to the electric drop, likely dryer vents. Site personnel indicate the dry cleaner would have occupied a space of roughly 40 feet by 60 feet.

1.2 Geology

According to the *Hudson-Mohawk* Sheet of the *New York State Surficial Geologic Map of New York*, surface soils are lacustrine sand. The *Hudson-Mohawk Sheet* of the *Geologic Map of New York* (1995) indicates bedrock beneath the Site is limestone of the Devonian Age Onondaga Limestone Formation. Monitor well installation logs indicate the immediate subsurface is comprised of poorly sorted sand and silt to a depth of approximately 17 feet below grade surface (bgs), the maximum depth of the borings. Bedrock was not encountered.

1.3 Hydrogeology

The Remedial Investigation Workplan (Chazen, 2007) indicates a former creek, Bear Ghett Creek, borders the Site to the south. This creek has been filled-in over the years of local development. Northerly-flowing Esposus Creek is located approximately 0.8 miles west of the Site.

Groundwater has historically been measured between six and ten feet bgs.

Regional groundwater flow is westward towards Esposus Creek.

1.4 Previous Environmental Investigations

Phase I Environmental Site Assessments (ESAs) were conducted in 1996 and 1999 by The Chazen Companies (Chazen) and Property Solutions Inc. (PSI) respectively. During the 1999 ESA, it was revealed that a dry cleaner had occupied one of the store fronts approximately 15 years prior, part of the location now occupied by Miron Liquor. Based

on that information, it was recommended that a Phase II Subsurface Investigation (Phase II) be performed to evaluate the possibility of a release to the environment from the dry cleaner.

The Phase II investigation was completed in two stages during 1999 by PSI and IVI Environmental, Inc. (IVI). The first, limited sub-surface Phase II investigation consisted of the installation of eight soil borings, including two soil borings beneath the former dry cleaner. Three soil samples from beneath the former dry cleaner were collected. One sample, identified as SB-4A, reported a PCE concentration of 4,200 micrograms per kilogram (μ g/kg) approximately three feet below the concrete pad. This is the only soil sample in which PCE was reported at a concentration greater than the New York State Department of Environmental Conservation (NYSDEC) guidance value of 1,300 μ g/kg (6 NYCRR Part 375). The figures accompanying the Phase II report are not available. Therefore, based on available data, the exact location of the source area beneath the former dry cleaner cannot be pinpointed.

A subsequent Phase II investigation was completed in October 1999 by IVI. This investigation consisted of the installation of six groundwater monitoring wells (MW-1 through MW-6) and collection of groundwater samples. These samples were analyzed for the volatile organics in Table 9D of NYSDEC Part 5 drinking water regulations, the Principal Organic Chemicals.

Concentrations of PCE, trichloroethylene (TCE), 1,2-dichloroethylene, and trichlorofluoromethane were detected in the groundwater samples with the highest concentrations reported in groundwater collected immediately behind the former dry cleaner. These results indicated a release of dry cleaning chemicals to the environment. Results are summarized in Table 1.

Based on the results of the Phase I and Phase II investigations, an application was made to the NYSDEC to enroll in the voluntary cleanup program; however the application to enroll the Site was denied in 2000.

Eight additional groundwater monitoring wells (MW-7 through MW-14) were installed in March, 2005 and subsequently sampled. Groundwater analytical results indicated a groundwater plume of dissolved PCE extending south and west of the former dry cleaner location, including off site. Analytical results are summarized in Table 1.

2.0 August 2010 Sampling Event

Palmerton Group personnel visited the Site on August 11 and 12, 2010 to conduct a round of groundwater-level gauging and sampling of up to 14 wells. During initial reconnaissance on August 11, well MW-7 could not be located, and well MW-6 was missing its well cover and had an obstruction at 5ft beneath ground surface (BGS). All

other wells, MW-1 through MW-5 and MW-8 through MW-14 were gauged and sampled.

Static water levels were gauged in all accessible wells. Depth to water ranged from a minimum of 7.01 feet below top of casing (BTOC) in MW-12 to a maximum of 11.42 BTOC in MW-10. Liquid levels are summarized in the attached Table 1.

After the collection of static water levels, groundwater sampling was conducted. Palmerton Group personnel used low-flow groundwater sampling techniques for collecting the groundwater samples. This technique required the use of a peristaltic pump and a water quality meter; the intake of the tubing for the pump was placed one foot from the bottom of the well screen, water is withdrawn from the monitoring well at a slow pump rate in order to not create drawdown and/or stress the groundwater table, and water quality parameters were collected inline from the pump to establish in-situ conditions. This technique has been proven to establish reproducible results because the VOCs are not stripped away when purging a well as they would be with a bailer. An added benefit of this technique is that a lower volume of purged water is produced, thus disposal costs are reduced.

MW-9 and MW-10 were purged dry during the low-flow sample collection process, but they were allowed to recharge over a twelve hour period. After the wells had recharged, the water samples were collected using dedicated bailers associated with each well.

-A total of 12 monitoring wells were sampled. A field duplicate and trip blank were also submitted. All wells were sampled for volatile organic compounds under EPA Method 8260B. An additional four wells had biological samples collected concurrently for the purpose of determining applicability of bioremediation of groundwater. For each sampling event, the following protocols were followed:

- Dedicated and clean sampling equipment was used to collect each sample so that cross contamination could not take place;
- Each sample was given a unique identification code;
- Each sample was placed in clean glassware provided by the contract laboratory, then placed in a cooler and packed on ice;
- Samples were either shipped or hand delivered in respective coolers to the contract laboratory to undergo the respective analytical procedure; and
- All samples were collected and shipped using chain-of-custody protocols.

Paradigm Environmental Services, Inc. in Rochester, New York provided all analytical testing for VOCs in the groundwater samples. Site Recovery Management (SIREM) of Guelph, Ontario, Canada provided laboratory analytical tests for microbial bacteria.

2.1 Hydrogeology

As presented on the attached Figure 3, "Water Table Elevation for August 11, 2010", the water table gradient on that date was generally to the southwest across the Site with a gradient of approximately one foot per 110 feet (0.009) under the building. The gradient becomes steeper south of the building, still trending southwestwardly, with a magnitude of approximately one foot per 20 feet (0.05).

This gradient is consistent with historic gradients from two previous sampling events in 1999, 2005, and 2009. Table 1 presents current and historic groundwater elevation data.

2.2 Groundwater

Groundwater samples collected on August 11 and 12, 2010 and were submitted for laboratory analysis to Paradigm Environmental Services, Rochester, NY. The samples were analyzed for the volatile organics by EPA Method SW-846 8260B. Low-flow groundwater sampling field forms are attached in Appendix A. Laboratory analytical reports are attached as Appendix B.

Previous consultants had groundwater samples analyzed by EPA Method 8260, but compared analytical results with Table 9D of NYSDOH Part 5 regulations. This testing method is for organic contaminates as they pertain to drinking water. The Palmerton Group has continued having the groundwater samples analyzed using EPA method 8260 but have requested the addition of Target Compound List (TCL), a list of volatile organic compounds commonly detected and was derived from the EPA Priority Pollutant List. The Palmerton Group has also stopped the comparison of analytical results with Table 9D of NYSDOH Part 5 regulations, since all neighboring businesses and residential communities are on municipality supplied water and groundwater contamination and plume migration are not affecting public and private water wells. Results are now compared with NYSDEC TAGM 4046 guidance values.

As presented in Table 1, concentrations of PCE and TCE exceeded the applicable NYSDEC TAGM 4046 guidance value of 5 micrograms per liter (μ g/l). Specifically, PCE was reported at concentrations of 5.34 μ g/l in MW-5, 21.4 μ g/l in MW-3, 26.4 μ g/l in MW-9, 60.8 μ g/l in MW-8, 175 μ g/l in MW-11, 305 μ g/l in MW-2, 934 μ g/l and 955 μ g/l in the sample and duplicate sample respectively collected from MW-14, and 1,170 μ g/l in MW-4. Additionally, PCE was reported at a concentration of 1.02 μ g/l in MW-12 and 3.1 μ g/l in MW-6 below the NYSDEC guidance value. PCE concentrations in groundwater for August 11 and 12, 2010 are graphically depicted on the attached Figure 4.

TCE was reported at a concentration of 17.2 μ g/l in MW-11, 9.39 μ g/l in MW-8, exceeding the NYSDEC TAGM 4046 guidance value of 5 μ g/l. Additionally, TCE was

reported in MW-2 at 3.87 μ g/l and at a concentration of 2.11 μ g/l for MW-9, both of these were below the NYSDEC guidance value of 5 μ g/l.

Vinyl Chloride was detected at 3.16 μ g/l in MW-8, above the guidance value of 2 μ g/l. Cis-1,2-Dichloroethene was reported at 5.06 μ g/l in MW-8, just above the NYSDEC guidance values of 5 μ g/l while was MW-11 was below the established guidance value at 2.47 μ g/l. Vinyl chloride is a natural byproduct of the degradation of PCE and TCE.

The concentration of PCE in groundwater has fluctuated since the first sampling event in 1999 and the subsequent sampling events, while the distribution has remained relatively consistent. Results from the 2010 sampling event show groundwater concentrations have been reduced along the eastern and southern portions of the plume, while the western edge has seen a slight spike in concentration levels compared with past events. The PCE plume is oriented in an ENE-WSW direction. The most likely explanation of this is that the eastern edge comprises the tail area of the original contaminates location (source area) and that the western edge is the head of the contaminant plume. It is also quite possible that the PCE plume follows the direction of the old septic line for the leachate field. PCE concentrations have fluctuated slightly across the Site over time, however the concentration results from this past sampling event are most likely the result of different sampling techniques.

Groundwater was analyzed for the presence or absence and concentration of *Dehalococcoides* (Dhc), a bacteria that can be naturally occurring in the subsurface and is critical in the bioremediation process of chlorinated compounds. Select groundwater samples were collected at MW-1, MW-11, MW-3, and MW-14 for the analysis of Dhc. The results were non-detect for Dhc in all four samples and indicated that there was very limited DNA extractable in the samples. A low biomass can be attributed to the urban setting of the Site as well as to the site-specific geology. Microbial bacterial analysis was completed by SIREM Laboratories.

While collecting the groundwater samples, direct in-line water quality measurements were collected. Measurements of dissolved oxygen (D.O.) and oxidation reduction potential (ORP) showed a range of 0.00 to 3.45 milliSeimens/centimeter (mS/cm) and -53 to 233 milliVolts (mV), respectively. These findings correlate with the absence of Dhc, illustrating that the Site currently has an aerobic environment. This also suggests that the groundwater environment is low on organic carbon for creating reducing environments.

3.0 Recommendations

3.1 Interim Remedial Measures

The Palmerton Group recommends that the Site be remediated through the process of augmented natural attenuation (ANA) based upon the two previous sampling events. ANA remediation is a low cost and effective way of reducing or eliminating site contaminants as compared to other more intrusive remedial alternatives. The Palmerton

Group will develop a detailed work plan for Interim Remedial Measures (IRM) and select timelines for remedial actions and goals. The Palmerton Group will research various remedial approaches and costs and seek guidance from vendors in decision making and technical application regarding bioremediation.

ANA remediation would involve a few steps:

- 1. Another round of groundwater sampling would be completed after any additional investigative work was completed. Additional groundwater samples would be collected and analyzed for Total Organic Carbon (TOC). This data would create a baseline for the Site.
- 2. The next step would be to change the Site groundwater conditions from aerobic to anaerobic. This could be easily accomplished by the addition of an electron donor the site, a biostimulant. This would also involve subsequent groundwater monitoring events over a designated time period and the addition of extra sample analysis to ensure that site conditions are stable. Additional biostimulant may be added over time to keep conditions stable.
- 3. Once the Site groundwater conditions have changed to anaerobic, bacteria would be added to the subsurface. The bacteria would then be allowed to grow by colonization; this would then reduce all contaminants to dissolved gases. Additional groundwater sampling would be required for observation of and verification of remedial efficacy.

4.0 Conclusion

Results of the August 2010 sampling event indicate the PCE plume at the Site has changed very little in aerial extent and concentrations; however the plume extent is not characterized to the NYSDEC guidance value of 5 μ g/l to the south and west of the Site and it has apparently moved to off-site properties. An additional three off-site groundwater monitoring wells were proposed to complete characterization of groundwater and twelve soil borings, including four interior borings, were proposed to characterize the extent of a source area in the immediate vicinity of the former dry cleaner in the Project Status Update Report – July 2009. However, access to the two properties south of the Site needed to install two of the three groundwater wells and the eight exterior soil borings has not been granted to date. It is recommended that the work proceed; including interior soil borings.

Additionally, it is recommended that legal guidance be solicited to bring the Site under NYSDEC guidance, likely obtainable through a consent order. Past attempts to include the site in the voluntary cleanup program have not been successful.

Results of this onsite characterization will be used to assist in the development of an interim remedial measure plan using a monitored natural attenuation approach.

5.0 References

Lease between Airport Realty Company (landlord) and Pride South, Inc, (tenant), May 17, 1968;

The Chazen Companies (Chazen), February 16, 1996, Phase I Environmental Site Assessment;

Property Solutions, Inc. (PSI), September 9, 1999, Phase I Environmental Assessment;

PSI, September 9, 1999, Limited Phase II Subsurface Investigation (incomplete - without figures);

IVI Environmental, Inc. (IVI) December 10, 1999, Phase II Environmental Investigation;

Chazen, July 5, 2005, Well Installation and Assessment of PCE Impacted Groundwater;

Chazen, April 13, 2006, Order of Magnitude Cost Estimate;

Chazen, April 19, 2006, Voluntary Cleanup Program Application;

Chazen, December 5, 2006, ALTA/ACSM Land Title Survey, 1:30;

Chazen, March, 2007, Remedial Investigation Work Plan;.

Palmerton Group, 2009, Project Status Update Report – July 2009.

USGS (Department of Interior), Open File Report 2006-1338, Description, Properties and Degradation of Volatile Organic Compounds Detected in Groundwater – A Review of Selected Literature.

Table I - Groundwater Analytical and Elevation Data

Office Depot Shopping Plaza - Route 9 West and Boices Lane, Kingston, New York Page 1 of 8 (all values in μ g/l)

	TAGM 4046		MV	V-1			M\	W-2			M\	N-3	
	(1)	10/25/99	4/22/05	3/25/09	8/11/10	10/25/99	4/22/05	3/25/09	8/11/10	10/25/99	4/22/05	3/25/09	8/11/10
Depth to Water (feet)	N/A	7.94	7.20	7.35	7.81	7.28	6.35	6.62	7.17	9.42	8.32	8.51	7.41
Water Table Elevation (feet)	N/A	42.37	43.11	42.96	42.50	41.82	42.75	42.48	41.93	40.52	41.62	41.43	42.53
Acetone	50.00	NA	NA	NA	ND	NA	NA	NA	ND	NA	NA	NA	ND
Benzene	0.7	ND	ND	<1	ND	ND	ND	<1	ND	ND	ND	<1	ND
Bromobenzene	-	ND	ND	<1	NA	ND	ND	<1	NA	ND	ND	<1	NA
Bromochloromethane	-	ND	ND	<1	ND	ND	ND	<1	ND	ND	ND	<1	ND
Bromodichloromethane	-	ND	ND	<1	ND	ND	ND	<1	ND	ND	ND	<1	ND
Bromoform	-	ND	ND	<1	ND	ND	ND	<1	ND	ND	ND	<1	ND
Bromoethane	-	ND	ND	<1	ND	ND	ND	<1	ND	ND	ND	<1	ND
2-Butanone	50	NA	NA	NA	ND	NA	NA	NA	ND	NA	NA	NA	ND
n-Butylbenzene	-	ND	ND	<1	NA	ND	ND	<1	NA	ND	ND	<1	NA
sec-Butylbenzene	-	ND	ND	<1	NA	ND	ND	<1	NA	ND	ND	<1	NA
tert-Butylbenzene	-	ND	ND	<1	NA	ND	ND	<1	NA	ND	ND	<1	NA
Carbon disulfide	50	NA	NA	NA	ND	NA	NA	NA	ND	NA	NA	NA	ND
Carbon tetrachloride	5	ND	ND	<1	ND	ND	ND	<1	ND	ND	ND	<1	ND
Chlorobenzene	5	ND	ND	<1	ND	ND	ND	<1	ND	ND	ND	<1	ND
Chloroethane	50	ND	ND	<1	ND	ND	ND	<1	ND	ND	ND	<1	ND
Chloroform	7	ND	ND	<1	ND	ND	ND	<1	ND	ND	ND	<1	ND
1-Chlorohexane	-	ND	ND	not found	ND	ND	ND	not found	ND	ND	ND	not found	ND
Chloromethane	-	ND	ND	<1	ND	ND	ND	<1	ND	ND	ND	<1	ND
2-Chlorotoluene	-	ND	ND	<1	NA	ND	ND	<1	NA	ND	ND	<1	NA
4-Chlorotoluene	-	ND	ND	<1	NA	ND	ND	<1	NA	ND	ND	<1	NA
Dibromochloromethane	50	ND	ND	<1	ND	ND	ND	<1	ND	ND	ND	<1	ND
1,2-Dibromo-3-chloropropane	-	ND	ND	<2	ND	ND	ND	<2	ND	ND	ND	<2	ND
1,2-Dibromoethane (EDB)	-	ND	ND	<1	ND	ND	ND	<1	ND	ND	ND	<1	ND
Dibromomethane	-	ND	ND	<1	NA	ND	ND	<1	NA	ND	ND	<1	NA
1,2-Dichlorobenzene	4.7	ND	ND	<1	ND	ND	ND	<1	ND	ND	ND	<1	ND
1,3-Dichlorobenzene	5	ND	ND	<1	ND	ND	ND	<1	ND	ND	ND	<1	ND
1,4-Dichlorobenzene	5	ND	ND	<1	ND	ND	ND	<1	ND	ND	ND	<1	ND
Dichlorodifluoromethane	-	ND	ND	<1	ND	ND	ND	<1	ND	ND	ND	<1	ND
1,1-Dichloroethane	5	ND	ND	<1	ND	ND	ND	<1	ND	ND	ND	<1	ND
1,2-Dichloroethane	5	ND	ND	<1	ND	ND	ND	<1	ND	ND	ND	<1	ND
1,1-Dichloroethene	5	ND	ND	<1	ND	ND	ND	<1	ND	ND	ND	<1	ND
cis-1,2-Dichloroethene	5	NA	NA	NA	ND	NA	NA	NA	ND	NA	NA	NA	ND
trans-1,2-Dichloroethene	5	NA	NA	NA	ND	NA	NA	NA	ND	NA	NA	NA	ND
1,2-Dichloroethene, Total	5 (trans-)	ND	ND	<1	NA	6	ND	1.2	NA	2	ND	<1	NA
1,2-Dichloropropane	-	ND	ND	<1	ND	ND	ND	<1	ND	ND	ND	<1	ND
1,3-Dichloropropane	5	ND	ND	<1	ND	ND	ND	<1	ND	ND	ND	<1	ND
2,2-Dichloropropane	-	ND	ND	<1	ND	ND	ND	<1	ND	ND	ND	<1	ND

Table I - Groundwater Analytical and Elevation Data
Office Depot Shopping Plaza - Route 9 West and Boices Lane, Kingston, New York
Page 2 of 8 (all values in μ g/l)

	TAGM 4046		MV	V-1			M	N-2			M\	N-3	
	(1)	10/25/99	4/22/05	3/25/09	8/11/10	10/25/99	4/22/05	3/25/09	8/11/10	10/25/99	4/22/05	3/25/09	8/11/10
1,1-Dichloropropene	-	ND	ND	<1	ND	ND	ND	<1	ND	ND	ND	<1	ND
cis-1,3-Dichloropropene	-	ND	ND	<1	ND	ND	ND	<1	ND	ND	ND	<1	ND
trans-1,3-Dichloropropene	-	ND	ND	<1	ND	ND	ND	<1	ND	ND	ND	<1	ND
Ethyl benzene	5	ND	ND	<1	ND	ND	ND	<1	ND	ND	ND	<1	ND
2-Hexanone	-	NA	NA	NA	ND	NA	NA	NA	ND	NA	NA	NA	ND
Hexachlorobutadiene	-	ND	ND	<4	NA	ND	ND	<4	NA	ND	ND	<4	NA
Isopropylbenzene (Cumene)	-	ND	ND	<1	ND	ND	ND	<1	ND	ND	ND	<1	ND
4-Isopropyl toluene (Cymene)	-	ND	ND	<1	NA	ND	ND	<1	NA	ND	ND	<1	NA
Methyl acetate	-	NA	NA	NA	ND	NA	NA	NA	ND	NA	NA	NA	ND
Methylcyclohexane	-	NA	NA	NA	ND	NA	NA	NA	ND	NA	NA	NA	ND
Methylene chloride	5	ND	ND	<1	ND	ND	ND	<1	ND	ND	ND	<1	ND
MTBE	-	ND	ND	<1	ND	ND	ND	<1	ND	ND	ND	<1	ND
4-Methyl-2-pentanone	50	NA	NA	NA	ND	NA	NA	NA	ND	NA	NA	NA	ND
Naphthalene	-	ND	ND	<1	NA	ND	ND	<1	NA	ND	ND	<1	NA
n-Propylbenzene	-	ND	ND	<1	NA	ND	ND	<1	NA	ND	ND	<1	NA
Styrene	-	ND	ND	<1	ND	ND	ND	<1	ND	ND	ND	<1	ND
1,1,1,2-Tetrachloroethane	-	ND	ND	<1	ND	ND	ND	<1	ND	ND	ND	<1	ND
1,1,2,2-Tetrachloroethane	5	ND	ND	<1	NA	ND	ND	<1	NA	ND	ND	<1	NA
Tetrachloroethene	5	ND	ND	<1	ND	140	210	99	305	47	29	33	21
Toluene	5	ND	ND	<1	ND	ND	ND	<1	ND	ND	ND	<1	ND
1,2,3-Trichlorobenzene	-	ND	ND	<1	ND	ND	ND	<1	ND	ND	ND	<1	ND
1,2,4-Trichlorobenzene	5	ND	ND	<1	ND	ND	ND	<1	ND	ND	ND	<1	ND
1,1,1-Trichloroethane	5	ND	ND	<1	ND	ND	ND	<1	ND	ND	ND	<1	ND
1,1,2-Trichloroethane	-	ND	ND	<1	ND	ND	ND	<1	ND	ND	ND	<1	ND
Trichloroethene	5	ND	ND	<1	ND	ND	ND	8.2	3.87	ND	ND	<1	ND
Trichlorofluoromethane (Freon 11)	-	ND	ND	<1	ND	ND	ND	<1	ND	ND	ND	<1	ND
1,2,3-Trichloropropane	5	ND	ND	<1	NA	ND	ND	<1	NA	ND	ND	<1	NA
1,2,3-Trimethylbenzene	-	ND	ND	not found	NA	ND	ND	not found	NA	ND	ND	not found	NA
1,2,4-Trimethylbenzene	-	ND	ND	<1	NA	ND	ND	<1	NA	ND	ND	<1	NA
1,3,5-Trimethylbenzene	-	ND	ND	<1	NA	ND	ND	<1	NA	ND	ND	<1	NA
Vinyl chloride	2	ND	ND	<1	ND	ND	ND	<1	ND	ND	ND	<1	ND
o-Xylene	5 (total)	ND	ND	<1	ND	ND	ND	<1	ND	ND	ND	<1	ND
m- & p-xylenes	J (lotal)	ND	ND	<1	ND	ND	ND	<1	ND	ND	ND	<1	ND

Table I - Groundwater Analytical and Elevation Data

Office Depot Shopping Plaza - Route 9 West and Boices Lane, Kingston, New York Page 3 of 8 (all values in μ g/l)

	TAGM 4046		MV	V-4			M\	N-5			MW-6		M	W-7
	(1)	10/25/99	4/22/05	3/25/09	8/12/10	10/25/99	4/22/05	3/25/09	8/12/10	10/25/99	4/22/05	3/25/09	4/22/05	3/25/09
Depth to Water (feet)	N/A	7.86		7.30	7.71	8.56	8.00	8.18	8.49	8.38	7.42	7.61	6.60	
Water Table Elevation (feet)	N/A	42.31		42.87	42.46	42.30	42.86	42.68	42.37	41.18	42.14	41.95	42.95	1
Acetone	50.00	NA		NA	ND	NA	NA	NA	ND	NA	NA	NA	NA	1
Benzene	0.7	ND		<20	ND	ND	ND	<1	ND	ND	ND	<1	ND	
Bromobenzene	-	ND		<20	NA	ND	ND	<1	NA	ND	ND	<1	ND	
Bromochloromethane	-	ND		<20	ND	ND	ND	<1	ND	ND	ND	<1	ND	
Bromodichloromethane	-	ND		<20	ND	ND	ND	<1	ND	ND	ND	<1	ND	
Bromoform	-	ND		<20	ND	ND	ND	<1	ND	ND	ND	<1	ND	
Bromoethane	-	ND		<20	ND	ND	ND	<1	ND	ND	ND	<1	ND	
2-Butanone	50	NA		NA	ND	NA	NA	NA	ND	NA	NA	NA	NA	
n-Butylbenzene	-	ND		<20	NA	ND	ND	<1	NA	ND	ND	<1	ND	
sec-Butylbenzene	-	ND		<20	NA	ND	ND	<1	NA	ND	ND	<1	ND	
tert-Butylbenzene	-	ND		<20	NA	ND	ND	<1	NA	ND	ND	<1	ND	
Carbon disulfide	50	NA		NA	ND	NA	NA	NA	ND	NA	NA	NA	NA	
Carbon tetrachloride	5	ND		<20	ND	ND	ND	<1	ND	ND	ND	<1	ND	
Chlorobenzene	5	ND	-	<20	ND	ND	ND	<1	ND	ND	ND	<1	ND	
Chloroethane	50	ND	atec	<20	ND	ND	ND	<1	ND	ND	ND	<1	ND	atec
Chloroform	7	ND	00%	<20	ND	ND	ND	<1	ND	ND	ND	<1	ND	<u>00</u>
1-Chlorohexane	-	ND	well could not be located	not found	ND	ND	ND	not found	ND	ND	ND	not found	ND	well could not be located
Chloromethane	-	ND	not	<20	ND	ND	ND	<1	ND	ND	ND	<1	ND	od to
2-Chlorotoluene	-	ND	plr	<20	NA	ND	ND	<1	NA	ND	ND	<1	ND	밀
4-Chlorotoluene	-	ND	100	<20	NA	ND	ND	<1	NA	ND	ND	<1	ND	CO
Dibromochloromethane	50	ND	vell	<20	ND	ND	ND	<1	ND	ND	ND	<1	ND	ve.
1,2-Dibromo-3-chloropropane	-	ND	>	<50	ND	ND	ND	<1	ND	ND	ND	<1	ND	>
1,2-Dibromoethane (EDB)	-	ND		<20	ND	ND	ND	<1	ND	ND	ND	<1	ND	
Dibromomethane	-	ND		<20	NA	ND	ND	<1	NA	ND	ND	<1	ND	
1,2-Dichlorobenzene	4.7	ND		<20	ND	ND	ND	<1	ND	ND	ND	<1	ND	
1,3-Dichlorobenzene	5	ND		<20	ND	ND	ND	<1	ND	ND	ND	<1	ND	
1,4-Dichlorobenzene	5	ND		<20	ND	ND	ND	<1	ND	ND	ND	<1	ND	
Dichlorodifluoromethane	-	ND		<20	ND	ND	ND	<1	ND	ND	ND	<1	ND	
1,1-Dichloroethane	5	ND		<20	ND	ND	ND	<1	ND	ND	ND	<1	ND	
1,2-Dichloroethane	5	ND		<20	ND	ND	ND	<1	ND	ND	ND	<1	ND	
1,1-Dichloroethene	5	ND		<20	ND	ND	ND	<1	ND	ND	ND	<1	ND	
cis-1,2-Dichloroethene	5	NA		NA	ND	NA	NA	NA	ND	NA	NA	NA	NA	
trans-1,2-Dichloroethene	5	NA		NA	ND	NA	NA	NA	ND	NA	NA	NA	NA	
1,2-Dichloroethene, Total	5 (trans-)	ND		<20	NA	ND	ND	<1	NA	3	2 (cis-)	<1	ND	
1,2-Dichloropropane	-	ND		<20	ND	ND	ND	<1	ND	ND	ND	<1	ND	
1,3-Dichloropropane	5	ND		<20	ND	ND	ND	<1	ND	ND	ND	<1	ND	
2,2-Dichloropropane	-	ND		<20	ND	ND	ND	<1	ND	ND	ND	<1	ND	

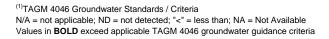


Table I - Groundwater Analytical and Elevation Data
Office Depot Shopping Plaza - Route 9 West and Boices Lane, Kingston, New York
Page 4 of 8 (all values in μ g/l)

	TAGM 4046		M\	N-4			M\	N-5			MW-6		M	N-7
	(1)	10/25/99	4/22/05	3/25/09	8/12/10	10/25/99	4/22/05	3/25/09	8/12/10	10/25/99	4/22/05	3/25/09	4/22/05	3/25/09
1,1-Dichloropropene	-	ND		<20	ND	ND	ND	<1	ND	ND	ND	<1	ND	
cis-1,3-Dichloropropene	-	ND		<20	ND	ND	ND	<1	ND	ND	ND	<1	ND	
trans-1,3-Dichloropropene	-	ND		<20	ND	ND	ND	<1	ND	ND	ND	<1	ND	
Ethyl benzene	5	ND		<20	ND	ND	ND	<1	ND	ND	ND	<1	ND	
2-Hexanone	-	NA		NA	ND	NA	NA	NA	ND	NA	NA	NA	NA	
Hexachlorobutadiene	-	ND		<100	NA	ND	ND	<4	NA	ND	ND	<4	ND	
Isopropylbenzene (Cumene)	-	ND		<20	ND	ND	ND	<1	ND	ND	ND	<1	ND	
4-Isopropyl toluene (Cymene)	-	ND		<20	NA	ND	ND	<1	NA	ND	ND	<1	ND	
Methyl acetate	-	NA		NA	ND	NA	NA	NA	ND	NA	NA	NA	NA	
Methylcyclohexane	-	NA		NA	ND	NA	NA	NA	ND	NA	NA	NA	NA	
Methylene chloride	5	ND		<20	ND	ND	ND	<1	ND	ND	ND	<1	ND	
MTBE	-	ND		<20	ND	ND	ND	<1	ND	ND	ND	<1	ND	
4-Methyl-2-pentanone	50	NA	-	NA	ND	NA	NA	NA	ND	NA	NA	NA	NA	_
Naphthalene	-	ND	well could not be located	<20	NA	ND	ND	<1	NA	ND	ND	<1	ND	well could not be located
n-Propylbenzene	-	ND	locs	<20	NA	ND	ND	<1	NA	ND	ND	<1	ND	30
Styrene	-	ND	pe	<20	ND	ND	ND	<1	ND	ND	ND	<1	ND	pe
1,1,1,2-Tetrachloroethane	-	ND	not	<20	ND	ND	ND	<1	ND	ND	ND	<1	ND	not
1,1,2,2-Tetrachloroethane	5	ND	pır	<20	NA	ND	ND	<1	NA	ND	ND	<1	ND	욕
Tetrachloroethene	5	160	100	1800	1170	6	2	7.5	5.34	50	41	3.1	610	8
Toluene	5	ND	vell	<20	ND	ND	ND	<1	ND	ND	ND	<1	ND	Nell Nell
1,2,3-Trichlorobenzene	-	ND	_	<20	ND	ND	ND	<1	ND	ND	ND	<1	ND	
1,2,4-Trichlorobenzene	5	ND		<20	ND	ND	ND	<1	ND	ND	ND	<1	ND	
1,1,1-Trichloroethane	5	ND		<20	ND	ND	ND	<1	ND	ND	ND	<1	ND	
1,1,2-Trichloroethane	-	ND		<20	ND	ND	ND	<1	ND	ND	ND	<1	ND	
Trichloroethene	5	ND		<20	ND	ND	ND	<1	ND	ND	1	<1	ND	
Trichlorofluoromethane (Freon 11)	-	1		<20	ND	ND	ND	<1	ND	ND	ND	<1	ND	
1,2,3-Trichloropropane	5	ND		<20	NA	ND	ND	<1	NA	ND	ND	<1	ND	
1,2,3-Trimethylbenzene	-	ND		not found	NA	ND	ND	not found	NA	ND	ND	not found	ND	
1,2,4-Trimethylbenzene	-	ND		<20	NA	ND	ND	<1	NA	ND	ND	<1	ND	
1,3,5-Trimethylbenzene	-	ND		<20	NA	ND	ND	<1	NA	ND	ND	<1	ND	
Vinyl chloride	2	ND		<20	ND	ND	ND	<1	ND	ND	ND	<1	ND	
o-Xylene	5 (total)	ND		<20	ND	ND	ND	<1	ND	ND	ND	<1	ND	
m- & p-xylenes	J (lotal)	ND		<20	ND	ND	ND	<1	ND	ND	ND	<1	ND	

Table I - Groundwater Analytical and Elevation Data

Office Depot Shopping Plaza - Route 9 West and Boices Lane, Kingston, New York Page 5 of 8 (all values in μ g/l)

	TAGM 4046		MW-8			MW-9			MW-10			MW-11	
	(1)	4/22/05	3/25/09	8/11/10	4/22/05	3/25/09	8/12/10	4/22/05	3/25/09	8/12/10	4/22/05	3/25/09	8/11/10
Depth to Water (feet)	N/A	8.00	8.01	9.04	8.85	8.50	9.78	8.82	9.46	11.42	6.60	6.85	7.37
Water Table Elevation (feet)	N/A	41.40	41.39	40.36	40.61	40.96	39.68	40.24	39.60	37.64	42.79	42.54	42.02
Acetone	50.00	NA	NA	ND	NA	NA	ND	NA	NA	ND	NA	NA	ND
Benzene	0.7	ND	<1	ND	ND	<1	ND	ND	<1	ND	ND	<1	ND
Bromobenzene	-	ND	<1	NA	ND	<1	NA	ND	<1	NA	ND	<1	NA
Bromochloromethane	-	ND	<1	ND	ND	<1	ND	ND	<1	ND	ND	<1	ND
Bromodichloromethane	-	ND	<1	ND	ND	<1	ND	ND	<1	ND	ND	<1	ND
Bromoform	-	ND	<1	ND	ND	<1	ND	ND	<1	ND	ND	<1	ND
Bromoethane	-	ND	<1	ND	ND	<1	ND	ND	<1	ND	ND	<1	ND
2-Butanone	50	NA	NA	ND	NA	NA	ND	NA	NA	ND	NA	NA	ND
n-Butylbenzene	-	ND	<1	NA	ND	<1	NA	ND	<1	NA	ND	<1	NA
sec-Butylbenzene	-	ND	<1	NA	ND	<1	NA	ND	<1	NA	ND	<1	NA
tert-Butylbenzene	-	ND	<1	NA	ND	<1	NA	ND	<1	NA	ND	<1	NA
Carbon disulfide	50	NA	NA	ND	NA	NA	ND	NA	NA	ND	NA	NA	ND
Carbon tetrachloride	5	ND	<1	ND	ND	<1	ND	ND	<1	ND	ND	<1	ND
Chlorobenzene	5	ND	<1	ND	ND	<1	ND	ND	<1	ND	ND	<1	ND
Chloroethane	50	ND	<1	ND	ND	<1	ND	ND	<1	ND	ND	<1	ND
Chloroform	7	ND	<1	ND	ND	<1	ND	ND	<1	ND	ND	<1	ND
1-Chlorohexane	-	ND	not found	ND	ND	not found	ND	ND	not found	ND	ND	not found	ND
Chloromethane	-	ND	<1	ND	ND	<1	ND	ND	<1	ND	ND	<1	ND
2-Chlorotoluene	-	ND	<1	NA	ND	<1	NA	ND	<1	NA	ND	<1	NA
4-Chlorotoluene	-	ND	<1	NA	ND	<1	NA	ND	<1	NA	ND	<1	NA
Dibromochloromethane	50	ND	<1	ND	ND	<1	ND	ND	<1	ND	ND	<1	ND
1,2-Dibromo-3-chloropropane	-	ND	<1	ND	ND	<1	ND	ND	<1	ND	ND	<1	ND
1,2-Dibromoethane (EDB)	-	ND	<1	ND	ND	<1	ND	ND	<1	ND	ND	<1	ND
Dibromomethane	-	ND	<1	NA	ND	<1	NA	ND	<1	NA	ND	<1	NA
1,2-Dichlorobenzene	4.7	ND	<1	ND	ND	<1	ND	ND	<1	ND	ND	<1	ND
1,3-Dichlorobenzene	5	ND	<1	ND	ND	<1	ND	ND	<1	ND	ND	<1	ND
1,4-Dichlorobenzene	5	ND	<1	ND	ND	<1	ND	ND	<1	ND	ND	<1	ND
Dichlorodifluoromethane	-	ND	<1	ND	ND	<1	ND	ND	<1	ND	ND	<1	ND
1,1-Dichloroethane	5	ND	<1	ND	ND	<1	ND	ND	<1	ND	ND	<1	ND
1,2-Dichloroethane	5	ND	<1	ND	ND	<1	ND	ND	<1	ND	ND	<1	ND
1,1-Dichloroethene	5	ND	<1	ND	ND	<1	ND	ND	<1	ND	ND	<1	ND
cis-1,2-Dichloroethene	5	NA	NA	5.06	NA	NA	ND	NA	NA	ND	NA	NA	2.47
trans-1,2-Dichloroethene	5	NA	NA	ND	NA	NA	ND	NA	NA	ND	NA	NA	ND
1,2-Dichloroethene, Total	5 (trans-)	3 (cis-)	<1	NA	2 (cis-)	1.5	NA	ND	<1	NA	ND	1.5	NA
1,2-Dichloropropane	-	ND	<1	ND	ND	<1	ND	ND	<1	ND	ND	<1	ND
1,3-Dichloropropane	5	ND	<1	ND	ND	<1	ND	ND	<1	ND	ND	<1	ND
2,2-Dichloropropane	-	ND	<1	ND	ND	<1	ND	ND	<1	ND	ND	<1	ND

Table I - Groundwater Analytical and Elevation Data
Office Depot Shopping Plaza - Route 9 West and Boices Lane, Kingston, New York
Page 6 of 8 (all values in μ g/l)

	TAGM 4046		MW-8			MW-9			MW-10			MW-11	
	(1)	4/22/05	3/25/09	8/11/10	4/22/05	3/25/09	8/12/10	4/22/05	3/25/09	8/12/10	4/22/05	3/25/09	8/11/10
1,1-Dichloropropene	-	ND	<1	ND									
cis-1,3-Dichloropropene	-	ND	<1	ND									
trans-1,3-Dichloropropene	-	ND	<1	ND									
Ethyl benzene	5	ND	<1	ND									
2-Hexanone	-	NA	NA	ND									
Hexachlorobutadiene	-	ND	<4	NA									
Isopropylbenzene (Cumene)	-	ND	<1	ND									
4-Isopropyl toluene (Cymene)	-	ND	<1	NA									
Methyl acetate	-	NA	NA	ND									
Methylcyclohexane	-	NA	NA	ND									
Methylene chloride	5	ND	<1	ND									
MTBE	-	ND	<1	ND									
4-Methyl-2-pentanone	50	NA	NA	ND									
Naphthalene	-	ND	<1	NA									
n-Propylbenzene	-	ND	<1	NA									
Styrene	-	ND	<1	ND									
1,1,1,2-Tetrachloroethane	-	ND	<1	ND									
1,1,2,2-Tetrachloroethane	5	ND	<1	NA									
Tetrachloroethene	5	31	4.8	61	69	84	26.4	ND	<1	ND	42	140	175
Toluene	5	ND	<1	ND									
1,2,3-Trichlorobenzene	-	ND	<1	ND									
1,2,4-Trichlorobenzene	5	ND	<1	ND									
1,1,1-Trichloroethane	5	ND	<1	ND									
1,1,2-Trichloroethane	-	ND	<1	ND									
Trichloroethene	5	7	<1	9.39	3	3.6	2.11	ND	<1	ND	3	10	17.2
Trichlorofluoromethane (Freon 11)	-	ND	<1	ND									
1,2,3-Trichloropropane	5	ND	<1	NA									
1,2,3-Trimethylbenzene	-	ND	not found	NA									
1,2,4-Trimethylbenzene	-	ND	<1	NA									
1,3,5-Trimethylbenzene	-	ND	<1	NA									
Vinyl chloride	2	1	<1	3.16	ND	<1	ND	ND	<1	ND	ND	<1	ND
o-Xylene	5 (total)	ND	<1	ND									
m- & p-xylenes	J (lotal)	ND	<1	ND									

Table I - Groundwater Analytical and Elevation Data

Office Depot Shopping Plaza - Route 9 West and Boices Lane, Kingston, New York Page 7 of 8 (all values in μ g/l)

	TAGM 4046		MW-12			MW-13			MW-14		MW-1	4 dup	Trip Blank
	(1)	4/22/05	3/25/09	8/11/10	4/22/05	3/25/09	8/12/10	4/22/05	3/25/09	8/12/10	3/25/09	8/11/10	8/13/10
Depth to Water (feet)	N/A	6.17	6.46	7.01	6.57	6.82	7.41	7.37	7.51	7.90	-	-	-
Water Table Elevation (feet)	N/A	43.02	42.73	42.18	43.27	43.02	42.43	42.94	42.80	42.41	-	-	-
Acetone	50.00	NA	NA	ND	NA	NA	ND	NA	NA	ND	NA	ND	ND
Benzene	0.7	ND	<1	ND	ND	<1	ND	ND	<20	ND	<20	ND	ND
Bromobenzene	-	ND	<1	NA	ND	<1	NA	ND	<20	NA	<20	NA	NA
Bromochloromethane	-	ND	<1	ND	ND	<1	ND	ND	<20	ND	<20	ND	ND
Bromodichloromethane	-	ND	<1	ND	ND	<1	ND	ND	<20	ND	<20	ND	ND
Bromoform	-	ND	<1	ND	ND	<1	ND	ND	<20	ND	<20	ND	ND
Bromoethane	-	ND	<1	ND	ND	<1	ND	ND	<20	ND	<20	ND	ND
2-Butanone	50	NA	NA	ND	NA	NA	ND	NA	NA	ND	NA	ND	ND
n-Butylbenzene	-	ND	<1	NA	ND	<1	NA	ND	<20	NA	<20	NA	NA
sec-Butylbenzene	-	ND	<1	NA	ND	<1	NA	ND	<20	NA	<20	NA	NA
tert-Butylbenzene	-	ND	<1	NA	ND	<1	NA	ND	<20	NA	х	NA	NA
Carbon disulfide	50	NA	NA	ND	NA	NA	ND	NA	NA	ND	NA	ND	ND
Carbon tetrachloride	5	ND	<1	ND	ND	<1	ND	ND	<20	ND	<20	ND	ND
Chlorobenzene	5	ND	<1	ND	ND	<1	ND	ND	<20	ND	<20	ND	ND
Chloroethane	50	ND	<1	ND	ND	<1	ND	ND	<20	ND	<20	ND	ND
Chloroform	7	ND	<1	ND	ND	<1	ND	ND	<20	ND	<20	ND	ND
1-Chlorohexane	-	ND	not found	ND	ND	not found	ND	ND	not found	ND	not found	ND	ND
Chloromethane	-	ND	<1	ND	ND	<1	ND	ND	<20	ND	<20	ND	ND
2-Chlorotoluene	-	ND	<1	NA	ND	<1	NA	ND	<20	NA	<20	NA	NA
4-Chlorotoluene	-	ND	<1	NA	ND	<1	NA	ND	<20	NA	<20	NA	NA
Dibromochloromethane	50	ND	<1	ND	ND	<1	ND	ND	<20	ND	<20	ND	ND
1,2-Dibromo-3-chloropropane	-	ND	<1	ND	ND	<1	ND	ND	<50	ND	<50	ND	ND
1,2-Dibromoethane (EDB)	-	ND	<1	ND	ND	<1	ND	ND	<20	ND	<20	ND	ND
Dibromomethane	-	ND	<1	NA	ND	<1	NA	ND	<20	NA	<20	NA	NA
1,2-Dichlorobenzene	4.7	ND	<1	ND	ND	<1	ND	ND	<20	ND	<20	ND	ND
1,3-Dichlorobenzene	5	ND	<1	ND	ND	<1	ND	ND	<20	ND	<20	ND	ND
1,4-Dichlorobenzene	5	ND	<1	ND	ND	<1	ND	ND	<20	ND	<20	ND	ND
Dichlorodifluoromethane	-	ND	<1	ND	ND	<1	ND	ND	<20	ND	<20	ND	ND
1,1-Dichloroethane	5	ND	<1	ND	ND	<1	ND	ND	<20	ND	<20	ND	ND
1,2-Dichloroethane	5	ND	<1	ND	ND	<1	ND	ND	<20	ND	<20	ND	ND
1,1-Dichloroethene	5	ND	<1	ND	ND	<1	ND	ND	<20	ND	<20	ND	ND
cis-1,2-Dichloroethene	5	NA	NA	ND	NA	NA	ND	NA	NA	ND	NA	ND	ND
trans-1,2-Dichloroethene	5	NA	NA	ND	NA	NA	ND	NA	NA	ND	NA	ND	ND
1,2-Dichloroethene, Total	5 (trans-)	ND	<1	NA	ND	<1	NA	ND	<20	NA	<20	NA	NA
1,2-Dichloropropane	-	ND	<1	ND	ND	<1	ND	ND	<20	ND	<20	ND	ND
1,3-Dichloropropane	5	ND	<1	ND	ND	<1	ND	ND	<20	ND	<20	ND	ND
2,2-Dichloropropane	-	ND	<1	ND	ND	<1	ND	ND	<20	ND	<20	ND	ND

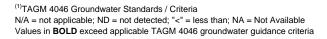
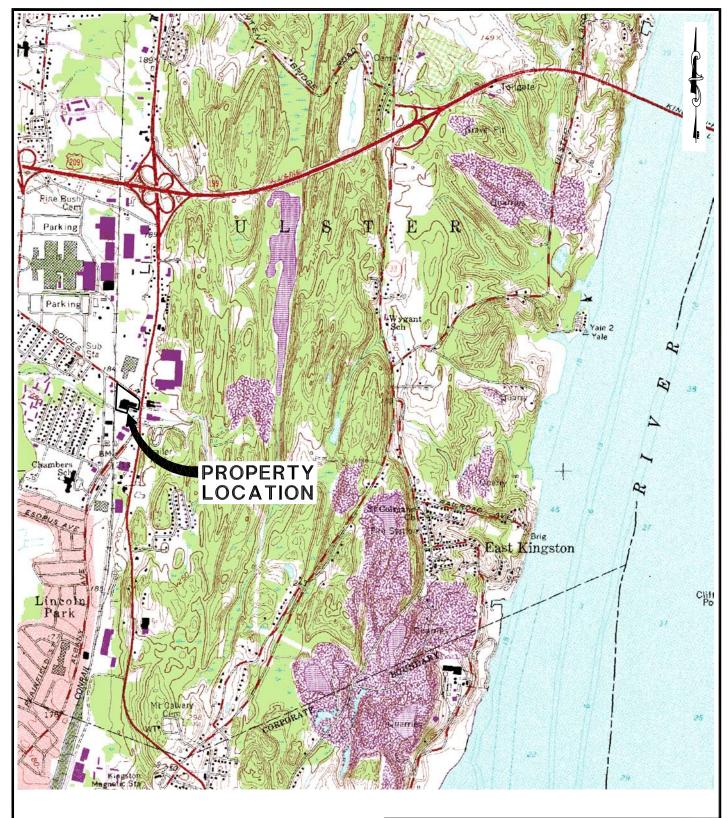
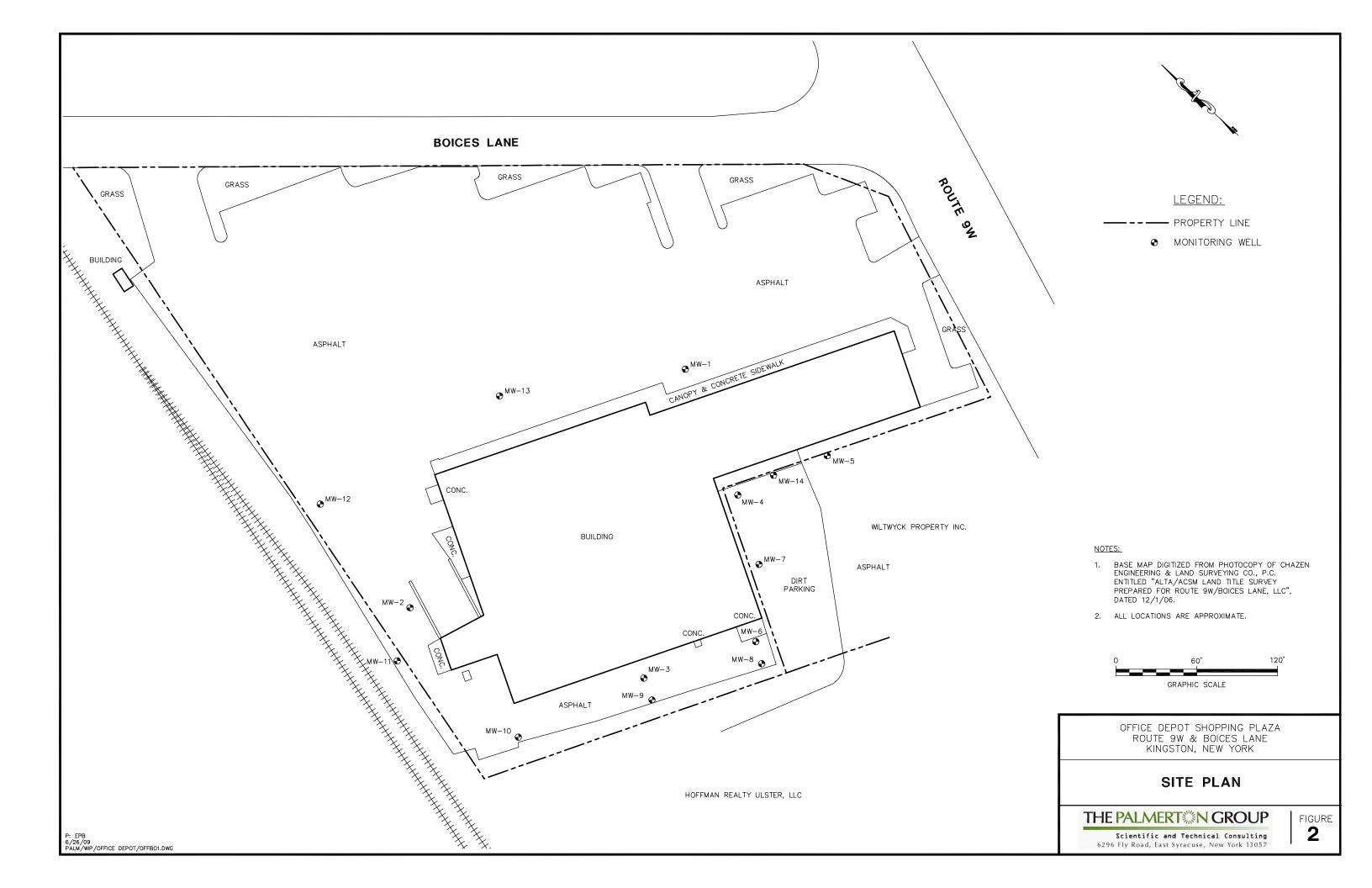



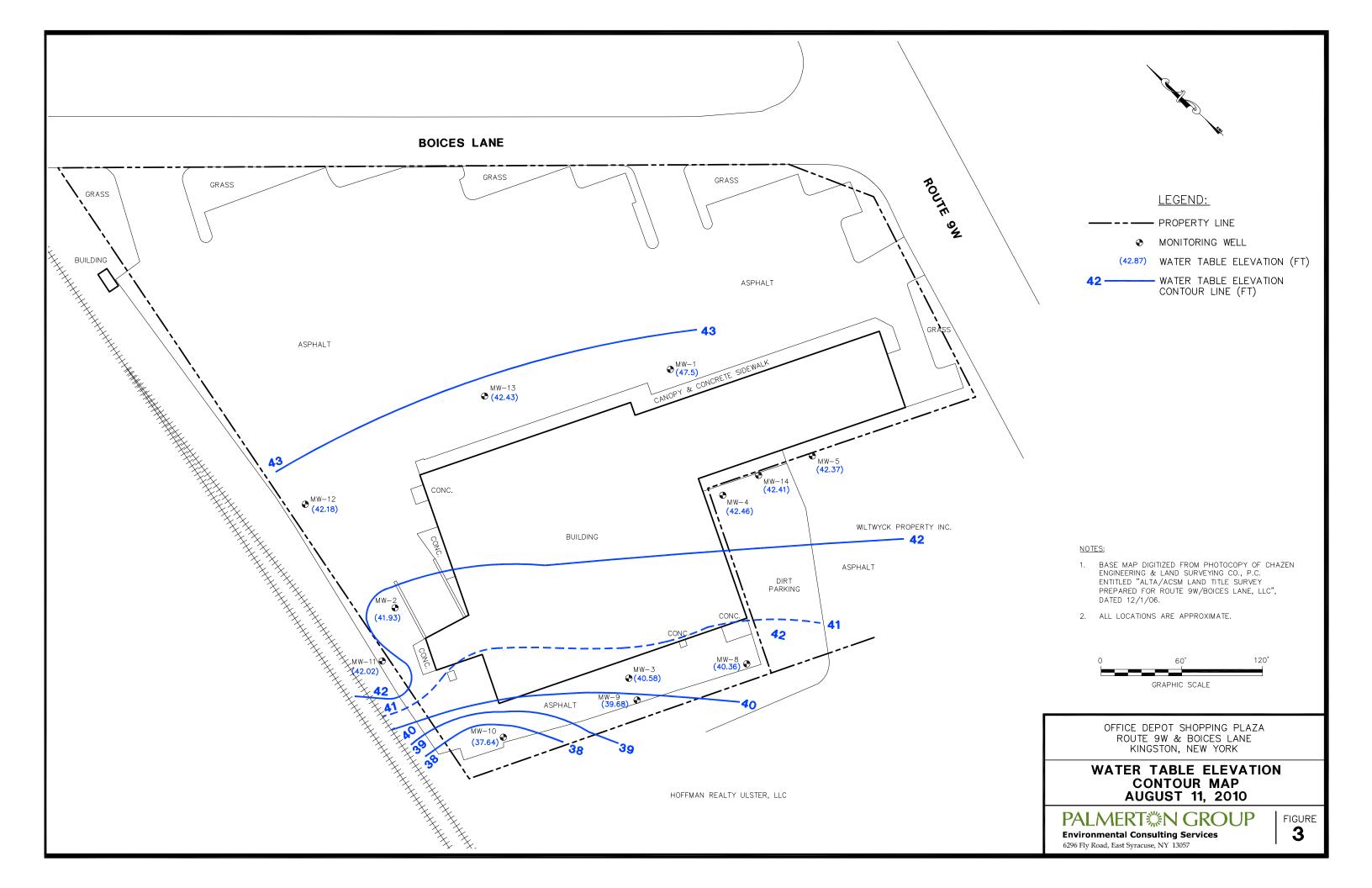
Table I - Groundwater Analytical and Elevation Data
Office Depot Shopping Plaza - Route 9 West and Boices Lane, Kingston, New York
Page 8 of 8 (all values in μ g/l)

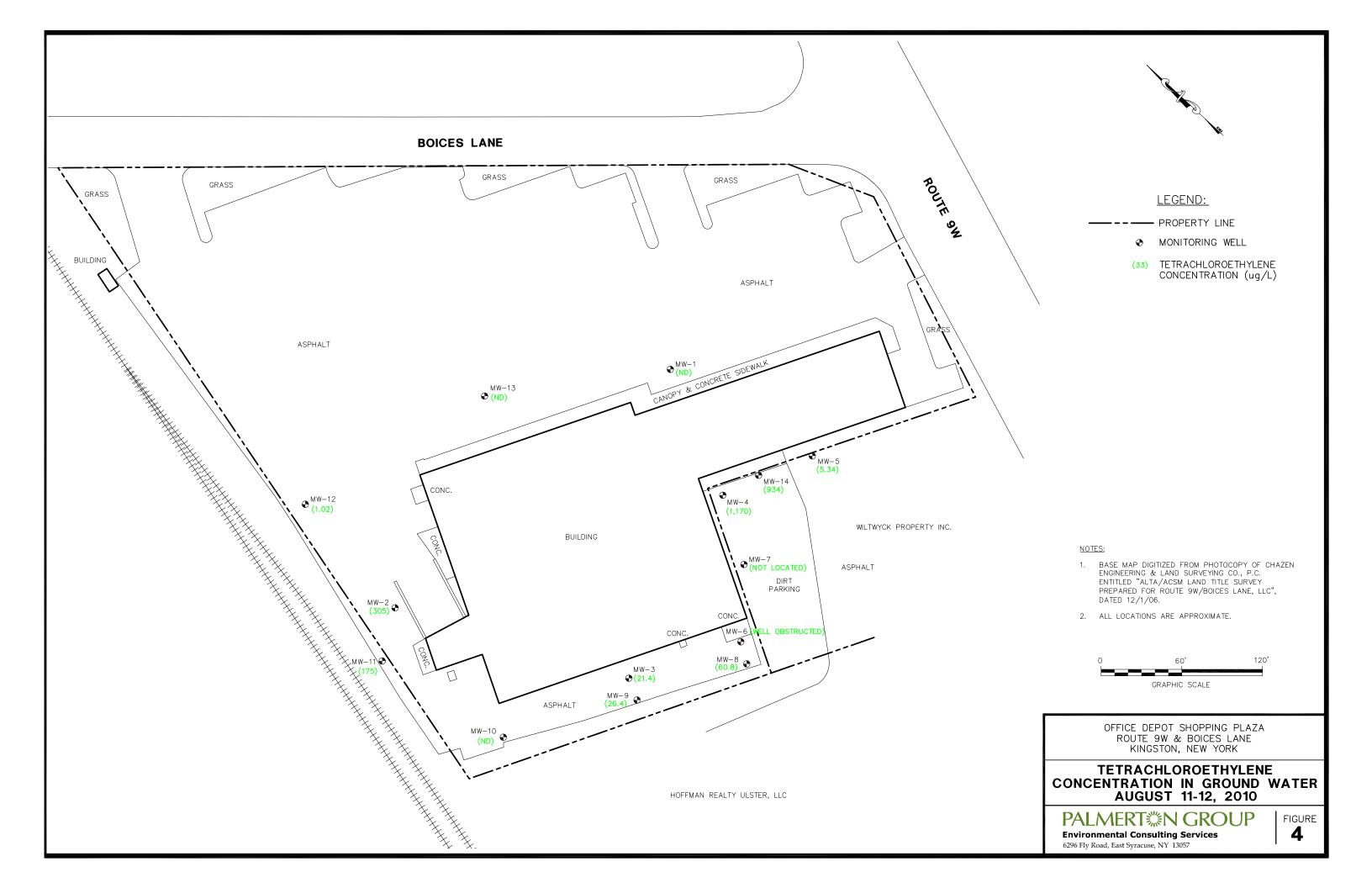
	TAGM 4046		MW-12			MW-13			MW-14		MW-1	4 dup	Trip Blank
	(1)	4/22/05	3/25/09	8/11/10	4/22/05	3/25/09	8/12/10	4/22/05	3/25/09	8/12/10	3/25/09	8/11/10	8/13/10
1,1-Dichloropropene	-	ND	<1	ND	ND	<1	ND	ND	<20	ND	<20	ND	ND
cis-1,3-Dichloropropene	-	ND	<1	ND	ND	<1	ND	ND	<20	ND	<20	ND	ND
trans-1,3-Dichloropropene	-	ND	<1	ND	ND	<1	ND	ND	<20	ND	<20	ND	ND
Ethyl benzene	5	ND	<1	ND	ND	<1	ND	ND	<20	ND	<20	ND	ND
2-Hexanone	-	NA	NA	ND	NA	NA	ND	NA	NA	ND	NA	ND	ND
Hexachlorobutadiene	-	ND	<4	NA	ND	<4	NA	ND	<100	NA	<100	NA	NA
Isopropylbenzene (Cumene)	-	ND	<1	ND	ND	<1	ND	ND	<20	ND	<20	ND	ND
4-Isopropyl toluene (Cymene)	-	ND	<1	NA	ND	<1	NA	ND	<20	NA	<20	NA	NA
Methyl acetate	-	NA	NA	ND	NA	NA	ND	NA	NA	ND	NA	ND	ND
Methylcyclohexane	-	NA	NA	ND	NA	NA	ND	NA	NA	ND	NA	ND	ND
Methylene chloride	5	ND	<1	ND	ND	<1	ND	ND	<20	ND	<20	ND	ND
MTBE	-	ND	<1	ND	ND	<1	ND	ND	<20	ND	<20	ND	ND
4-Methyl-2-pentanone	50	NA	NA	ND	NA	NA	ND	NA	NA	ND	NA	ND	ND
Naphthalene	-	ND	<1	NA	ND	<1	NA	ND	<20	NA	<20	NA	NA
n-Propylbenzene	-	ND	<1	NA	ND	<1	NA	ND	<20	NA	<20	NA	NA
Styrene	-	ND	<1	ND	ND	<1	ND	ND	<20	ND	<20	ND	ND
1,1,1,2-Tetrachloroethane	-	ND	<1	ND	ND	<1	ND	ND	<20	ND	<20	ND	ND
1,1,2,2-Tetrachloroethane	5	ND	<1	NA	ND	<1	NA	ND	<20	NA	<20	NA	NA
Tetrachloroethene	5	ND	<1	1.02 J	ND	<1	ND	1600	2100	934	1700	955	ND
Toluene	5	ND	<1	ND	ND	<1	ND	ND	<20	ND	<20	ND	ND
1,2,3-Trichlorobenzene	-	ND	<1	ND	ND	<1	ND	ND	<20	ND	<20	ND	ND
1,2,4-Trichlorobenzene	5	ND	<1	ND	ND	<1	ND	ND	<20	ND	<20	ND	ND
1,1,1-Trichloroethane	5	ND	<1	ND	ND	<1	ND	ND	<20	ND	<20	ND	ND
1,1,2-Trichloroethane	-	ND	<1	ND	ND	<1	ND	ND	<20	ND	<20	ND	ND
Trichloroethene	5	ND	<1	ND	ND	<1	ND	ND	<20	ND	<20	ND	ND
Trichlorofluoromethane (Freon 11)	-	ND	<1	ND	ND	<1	ND	ND	<20	ND	<20	ND	ND
1,2,3-Trichloropropane	5	ND	<1	NA	ND	<1	NA	ND	<20	NA	<20	NA	NA
1,2,3-Trimethylbenzene	-	ND	not found	NA	ND	not found	NA	ND	not found	NA	not found	NA	NA
1,2,4-Trimethylbenzene	-	ND	<1	NA	ND	<1	NA	ND	<20	NA	<20	NA	NA
1,3,5-Trimethylbenzene	-	ND	<1	NA	ND	<1	NA	ND	<20	NA	<20	NA	NA
Vinyl chloride	2	ND	<1	ND	ND	<1	ND	ND	<20	ND	<20	ND	ND
o-Xylene	5 (total)	ND	<1	ND	ND	<1	ND	ND	<20	ND	<20	ND	ND
m- & p-xylenes	J (lotal)	ND	<1	ND	ND	<1	ND	ND	<20	ND	<20	ND	ND

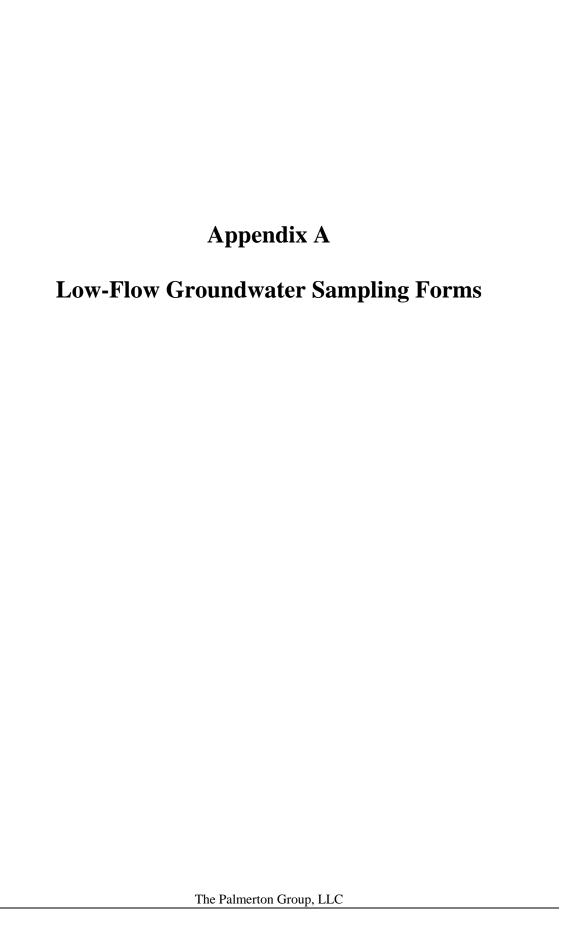
SOURCE: USGS 7.5 MIN. TOPOGRAPHIC QUADRANGLE - KINGSTON EAST, NEW YORK, 1963, PHOTOREVISED 1980.

GRAPHIC SCALE:
2000' 4000'


OFFICE DEPOT SHOPPING PLAZA ROUTE 9W & BOICES LANE KINGSTON, NEW YORK


SITE LOCATION MAP


THE PALMERT N GROUP


Scientific and Technical Consulting 6296 Fly Road, East Syracuse, New York 13057 FIGURE 1

P: EPB 6/29/09 PALM/WIP/OFFICE DEPOT/PPSL1.DWG

PALMERT®N GROUP GROUNDWATER SAMPLING REPORT **Environmental Consulting Services** Project Number Well ID: MWYI Monitoring Well Diameter (in): 7 Name (Printed): TOPO 6. BOWN Static Water Level (ft): 7.81 ocation (City, State): Total Well Depth (ft): All measurements are to be taken from the reference point/notch on the top of the well riser. Condition of Monitoring Well Volume of water in well = Linear feet of water in well * Gallons per foot of depth 1 Is surface seal good? No Well Diameter (ID) = Gallons per foot of depth: 1 = 0.044 2 = 0.163 4 = 0.653 6 = 1.469 8 = 2.611 10 = 4.080 Yes Is well cover intact? No Water Qaulity Meter (Manufacturer & Model) Is well cap present? (es) Waterra Tubing No Horiba 0-22 Purging and Sampling No Are bolts missing? Equipment Peristaltic Pump Bladder Pump (Check Applicable) 6 Whale Pump Is well locked? Initial Water Level (ft): 7. %1 Start Time: 1346 Flow Rate (ml/min): 400 Groundwater Stabilization Criteria: DO: + / - 10% mg/l Final Water Level (ft): 247 Stop Time: Volume Purged (gal): NA Temperature: + 3°C 1420 Notes: Sampling Depth (ft) 16.5 pH: + / - 0.1 unit ORP: + / - 10 mV SC: + / - 3% mS/cm Turdity: ± 10% nTu Gas Pressure (psi) DRAWDOWN (ft) **TEMPERATURE** CONDUCTIVITY TURBIDITY TIME **ELAPSED TIME** pH DO ORP 1349 D 7.83 6.05 3.75 21.2 6.76 127 133.7 1351 7.86 6.68 5.99 144 20.9 0.88 100.0 5.69 1356 9 7.86 21.0 6.71 0.89 163 86.2 1405 7.46 5.16 74.5 6.40 16 21.3 0.92 176 21 6.85 21.3 1410 7.47 4.89 1.98 183 63.6 7.87 55 1415 26 4.76 0.94 187 6.87 21.4 46 1420 7.87 21.4 4.71 18 6.88 0.98 140 Sampling Notes: Sample Analysis: 5260 B, God - Trok Sample Analytical Laboratory (Name and Location): Puradism Environmental (Rachester NY) SIREM Analytical (Carliph, Out CA) Chain of Custody Number:

	** + (** *** *** *** *** *** *** *** ***						ROUNE	OWATER	SAMPL	ING	RE	POR	T
Project Numb	per					Date (mm	ddyy): D&/11/10		Well ID: Mw-	12			
Client: ()	ter Te	ولجماء	Muse	cn	4.2	Name (Pr	inted): TODD G	. BOWN	Monitoring Well Diame				
Location (City	y, State): K	المحد	stou N	1			ter Level (ft): 6.6		Total Well Depth (ft):	13.	29		
Commission of the second of		_	from the refere		int/notch on t	he top of th	e well riser.		Cor	ndition of M	onitoring V	Vell	
Volume of wa	ater in well =	Linear fe	et of water in w	vell * G	allons per fo	ot of depth			Is surface seal good?		(Yes)		No
Well Diamete	er (ID) = Gallo	ons per f	oot of depth: 1	= 0.04	4 2 = 0.163	4 = 0.653	6 = 1.469 8 = 2.611 1	0 = 4.080	Is well cover intact?		(Pes)		No
		Bailer:			Waterra Tut	oing	Water Qaulity Mete	r (Manufacturer & Model)	Is well cap present?		Yes		No
Purging and Equip	ment	Perista	ltic Pump	/	Bladder Pur	np	HORIOG C	, ,,	Are bolts missing?		Yes		No
(Check Ap	pplicable)	Whale	Pump		Other				Is well locked?		Yes		No
Initial Water L	Level (ft):	97	Start Time:	151	OD	Flow Rate	(ml/min): 4DD		Ground	dwater Stat	ilization Co	riteria:	
Final Water L			Stop Time:	53	Silver -	Volume P	urged (gal): NA		Temperature: ± 3°C		DO: + / - 10	0% mg/l	
Sampling Dep		.5	Notes:	, - (,		pH: + / - 0.1 unit		ORP: +/-	10 mV	
Gas Pressure		A							SC: + / - 3% mS/cm		Turdity: ± 1	10% nTu	
TIME	ELAPSE	- MON 70***	DRAWDOWN	N (ft)	TEMPER	RATURE	рН	CONDUCTIVITY	DO	OF	RP.	TURBI	DITY
1506	0		6.98		25	7	6.71	3.45	3.54	194	1	850	77
1511	5		6.98		25		6.66	3.62	2.61	193		522	
1516	10		7.00		26		6.61	3.73	1.24	144		143	
1521	15		6.99		25:		6.62	3.59	1.32	144		49.	
-							6.63	3.51	1.40	194		34.5	
			- 125 JASO				6.64	3.52	1.46	199	_	31,	
Sampling Not	1526 20 6.99 25. 1530 24 7.00 25.												
Sample ID: Sample Analy Analytical Lab	MW- rsis: 6U poratory (Nam	に OB ne and L	ocation): R 50	٠	n Eur	Musin	Date & Time: 8/11	llo 15:30	Sampled By (Printed): Signature: Chain of Custody Numb	1000 (s. Bow	N V	

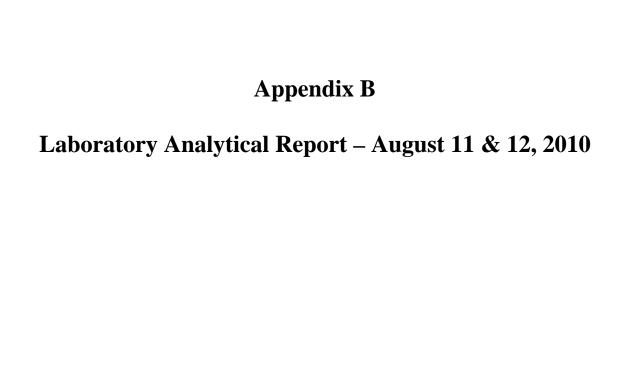
Project Numb	per				Date (mm	ddvv):l		Well ID: MI	1.3		
			1 14		_	0.0 1.0/10		Monitoring Well Diam	N - Z		
Location (Cit	ster K	culi	Stow, NY	encut	Ctotic M/o	tost and (file and	E ROWN		93.000	2	
			•			ter Level (ft): そ.い	2	Total Well Depth (ft):		. 38	¥11:
	310000000000000000000000000000000000000		from the reference po	000,640,000,000		e well riser.				Monitoring Wel	
31.00			eet of water in well * 0	70-1700-24Y11*03-25*0				Is surface seal good?	?	6	No
Well Diamete	er (ID) = Gallo	ns per f	oot of depth: 1 = 0.04	4 2 = 0.163	4 = 0.653	3 = 1.469 8 = 2.611 10		Is well cover intact?		Yes	™
Purging and	d Sampling	Bailer:		Waterra Ti	ubing	Water Gaulity Meter	(Manufacturer & Model)	Is well cap present?		6	No
Equip (Check A		Perista	Itic Pump V	Bladder Pu	imp			Are bolts missing?		(No
		Whale	Pump	Other				Is well locked?		Yes	(M)
Initial Water I	Level (ft): 7	13	Start Time: 16	05	Flow Rate	(ml/min): 400)	Grou	indwater St	tabilization Crite	eria:
Final Water L	evel (ft): 7	16		30	Volume P	urged (gal): NA		Temperature: ± 3°C		DO: +/- 10%	mg/l
Sampling De		-	Notes:			• 200		pH: + / - 0.1 unit		ORP: + / - 10	mV
Gas Pressure								SC: + / - 3% mS/cm		Turdity: ± 109	% nTu
TIME	ELAPSED		DRAWDOWN (ft)	ТЕМРЕ	RATURE	рН	CONDUCTIVITY	DO	(ORP	TURBIDITY
1667	ь		7.15	22	6	6.83	6.08	3.84	20	4	45.1
1612	6		7.16	22		6.50	5.92	2.29	20	271	65.1
1616	a		7.16	23		6.47	5.82	2.14	20	-	54
100000	13		716	22	92	6.45	5.89	2.26	19		59.6
1620				22		6.46	5.63	2.01			The state of the s
1625	18		7.16	22		6.46	5.66	2.05	19	5	61.1 50.2
Sampling Not	98:										
Sample ID:	MW-					Date & Time: 4/11		Sampled By (Printed):	T000	6. ROW	N

PALMERT®N GROUP GROUNDWATER SAMPLING REPORT **Environmental Consulting Services** Date (mmddyy): 08 11 10 Project Number MW-11 Name (Printed): TOPU G. BOWN Monitoring Well Diameter (in): Location (City, State): Ku Static Water Level (ft): 7.36 Total Well Depth (ft): 13.36 Condition of Monitoring Well Volume of water in well = Linear feet of water in well * Gallons per foot of depth Is surface seal good? Yes Well Diameter (ID) = Gallons per foot of depth: 1 = 0.044 2 = 0.163 4 = 0.653 6 = 1.469 8 = 2.611 10 = 4.080 Is well cover intact? Water Qaulity Meter (Manufacturer & Model) Waterra Tubing Is well cap present? No Horiba U-22 Purging and Sampling No Peristaltic Pump Bladder Pump Are bolts missing? Equipment (Check Applicable) No Whale Pump Other Is well locked? Yes Initial Water Level (ft): 7.36 Flow Rate (ml/min): Groundwater Stabilization Criteria: Start Time: 400 17:02 Final Water Level (ft): 7.3% DO: + / - 10% mg/l Volume Purged (gal): Temperature: ± 3°C Stop Time: 17:30 NA Notes: Sampling Depth (ft) pH: + / - 0.1 unit ORP: + / - 10 mV Gas Pressure (psi) SC: + / - 3% mS/cm Turdity: ± 10% nTu NA TIME ELAPSED TIME DRAWDOWN (ft) TEMPERATURE CONDUCTIVITY ORP TURBIDITY pH DO 3.55 145 7.34 23.5 1.01 1704 7.33 152 7.22 22.9 17-196 4 0.97 1.01 186 111 7.36 8 7.15 7.36 0.35 22.7 40.6 1712 185 1.04 7.13 15 7.36 22.6 1.08 17-19 0.02 181 21.8 15.6 1724 7.38 22.6 1111 0.00 176 20 7.13 7.38 175 15.8 1730 22.6 7.13 0.00 26 1.12 Sampling Notes: Sampled By (Printed): TODO & ROWN Signature: Sall & Rown Sample Analysis: 8260B, God-Trck Sample Analytical Laboratory (Name and Location): Pendism Eurinouncotal (Rochester, Nr) SIREM Aurlytical (Goelph, Out. Ch) Chain of Custody Number:

PALMERT®N GROUP GROUNDWATER SAMPLING REPORT **Environmental Consulting Services** Project Number Date (mmddyy): DS 1112 Well ID: MW-3 Client: Older Rabby Moungement Location (City, State): Kingston, NY Name (Printed): TOOD G. BOWN Monitoring Well Diameter (in): 2 Static Water Level (ft): 9.42 Total Well Depth (ft): 18.36 Condition of Monitoring Well Volume of water in well = Linear feet of water in well * Gallons per foot of depth Is surface seal good? Well Diameter (ID) = Gallons per foot of depth: 1 = 0.044 2 = 0.163 4 = 0.653 6 = 1.469 8 = 2.611 10 = 4.080 Is well cover intact? Water Qaulity Meter (Manufacturer & Model) Is well cap present? Yes Waterra Tubing No Purging and Sampling Horiba U-22 Peristaltic Pump Equipment Bladder Pump Are bolts missing? Yes (NO) (Check Applicable) Whale Pump Other Is well locked? (M) Yes Groundwater Stabilization Criteria: Initial Water Level (ft): 4.42 Start Time: 18:45 Flow Rate (ml/min): 400 DO: + / - 10% mg/l Temperature: ± 3°C Final Water Level (ft): [D.30 Stop Time: Volume Purged (gal): NA 14:05 Notes: ORP: + / - 10 mV pH: + / - 0.1 unit Sampling Depth (ft) SC: + / - 3% mS/cm Turdity: ± 10% nTu Gas Pressure (psi) TURBIDITY DRAWDOWN (ft) ORP TIME ELAPSED TIME **TEMPERATURE** CONDUCTIVITY DO pH 9.59 -55 7.40 163 1445 22.1 2.36 D 0.92 9.78 22.0 7.27 -69 169 10.0 1849 0.844 -71 22.3 1453 9.49 7.23 0.00 0.858 181 -68 1855 10 22.4 7.21 130.0 10.01 0.858 0.00 -40 154 1901 16 10.22 22.4 7.10 0.847 0.00 20 7.06 -35 1905 10.30 22.6 0.842 0.00 143 Sampling Notes Sampled By (Printed): TOOD 6. ROWN Signature: July 8 Too Sample Analysis: 6260 B, Gew-Trck Sample Analytical Laboratory (Name and Location): Purndign Environmental (Cochester, NY) SIREM Analytical (Guelph, Unt. CA)

PALMERTIN GROUP GROUNDWATER SAMPLING REPORT **Environmental Consulting Services** Date (mmddyy): 08/11/10 Project Number MW-8 Name (Printed): TODD G. BUND Reality Management Monitoring Well Diameter (in): Static Water Level (ft): 1.12 Total Well Depth (ft): 14.72 Condition of Monitoring Well Volume of water in well = Linear feet of water in well * Gallons per foot of depth Is surface seal good? Yes (No) Well Diameter (ID) = Gallons per foot of depth: 1 = 0.044 2 = 0.163 4 = 0.653 6 = 1.469 8 = 2.611 10 = 4.080 Is well cover intact? Yes Water Qaulity Meter (Manufacturer & Model) Is well cap present? Yes Waterra Tubing No Purging and Sampling Horiba U-ZZ Peristaltic Pump Are bolts missing? (Vae No Equipment Bladder Pump (Check Applicable) (No) Whale Pump Other Is well locked? Yes Initial Water Level (ft): 4.12 Flow Rate (ml/min): Groundwater Stabilization Criteria: Start Time: 1950 400 Final Water Level (ft): 13.30 Volume Purged (gal): DO: + / - 10% mg/l Temperature: ± 3°C Stop Time: 2015 NA Notes: Sampling Depth (ft) pH: + / - 0.1 unit ORP: + / - 10 mV Gas Pressure (psi) SC: + / - 3% mS/cm Turdity: ± 10% nTu TIME ELAPSED TIME DRAWDOWN (ft) TEMPERATURE CONDUCTIVITY DO ORP TURBIDITY pH 1453 21.8 60 86.0 0 10.91 6.72 1.20 1.21 1959 52 66.4 12.81 20.4 6.69 0.00 1.18 0.05 2005 12 6.70 13.28 1.18 192 19.8 チ 2009 16 6.67 0.45 144 13.30 19.9 1.146 9 20 6.69 125 20013 13.30 19.8 1.19 0.47 19.7 6.72 73.2 2005 22 13.30 1.19 0.06 Sampling Notes: Sampled By (Printed): TOVD 6. BOWN Date & Time: 4 11 10 20:15 Sample ID: Sample Analysis: 42603 Analytical Laboratory (Name and Location): Puradism Environmental (Rodicstor NY

Transfer of the Control			N GRO	UP	G	ROUNI	OWATER	SAMPL	ING	RE	POR	T
Project Num	ber				Date (mm	ddyy): De reli		Well ID: MW	-13			
Client: (1)	L. 7.	ط ام	/ Haragene	×-	Name (Pri		r. BOWN	Monitoring Well Diame		1		
Location (Cit	ty, State):	241	tow, MY		Static Wa	ter Level (ft): ス.	29	Total Well Depth (ft):	14	n/-		
		_	from the reference po	int/notch on t			3 1	Co		Monitoring V	Vell	
programment designs	24/4/1/2010/04/05/00		eet of water in well * G					Is surface seal good?		Yes		No
C7. 3288 U-8.21(U.)	scooth in thanding to	Company	SOLUTIO STATEMANTO OF LICENSED 164.	1. A. C.		S = 1.469 8 = 2.611 1	0 = 4 080	Is well cover intact?			Brokes	®
Troii Biamot	ior (ib) Gain	Bailer:	oot of doput. 1 o.o.	Waterra Tul	III JAMESTON	AL HERROGEN PLANSON TO	r (Manufacturer & Model)	1200000 MOTO SAMPLY COMMENTED		-	Clarife D	No
	nd Sampling	TARKET CONT	Itic Pump	000000000000		Horiba D	-22	Are bolts missing?		Yes		520000
	pment Applicable)			Bladder Pur	пр	-						No
		Whale	1	Other	1	***************************************		Is well locked?		Yes		®
	Level (ft): 7		Start Time: 0%	12	Flow Rate	700		Groun	dwater Sta	abilization C	riteria:	
Final Water	Level (ft): 7.	42	Stop Time: 08	db	Volume Po	urged (gal): NA	-	Temperature: ± 3°C		DO: +/-1	0% mg/l	
Sampling De	epth (ft) 13	0.6	Notes:					pH: + / - 0.1 unit		ORP: +/-	10 mV	
Gas Pressur	re (psi) N	+						SC: + / - 3% mS/cm		Turdity: ±	10% nTu	
TIME	ELAPSE	TIME	DRAWDOWN (ft)	TEMPE	RATURE	рН	CONDUCTIVITY	DO	o	RP	TURBII	OITY
0814	0		7.41	22	.D	6.20	3.66	1.38	21	9	-5(14)
5420	6		7.42	22	7	6.46	2.69	1.75	217		53	,
0625	11		7.41	23		6.50	2.66	0.75	211		171	
0832	18		7.42	22	112000	6.54	2.65	0.73	21		248	Z
0840	26		7.42	22		6.51	2.6%	D.72			-5(
UD-10	66	-	7.40	20	.	6.5	2.00	0.40	21	٩	-30	nj_
										V		
Sample ID: Sample Analy	MW ysis: 626	-13	S			Date & Time: \$ 12		Sampled By (Printed): Signature:	TOO)	stid		
Analytical Lal	boratory (Nam	e and Lo	ocation): Turado	yu Ev	NISONA	acutal (Roc	nester, NY)	Chain of Custody Numb	er:			


PALMERT®N GROUP GROUNDWATER SAMPLING REPORT **Environmental Consulting Services** Date (mmddyy): DR 1210 Project Number MW-4 Name (Printed): Todd G. Bouss Monitoring Well Diameter (in): 2 Client: Olater Reality Movingenest Static Water Level (ft): 7.78 Total Well Depth (ft): 19.42 All measurements are to be taken from the reference point/notch on the top of the well riser. Condition of Monitoring Well Volume of water in well = Linear feet of water in well * Gallons per foot of depth Yes Is surface seal good? Well Diameter (ID) = Gallons per foot of depth: 1 = 0.044 2 = 0.163 4 = 0.653 6 = 1.469 8 = 2.611 10 = 4.080 (Fes) Is well cover intact? No Water Qaulity Meter (Manufacturer & Model) (Ves Waterra Tubing Is well cap present? No Purging and Sampling Horiba U-22 (No) Equipment Peristaltic Pump Bladder Pump Are bolts missing? Yes (Check Applicable) ND) Is well locked? Whale Pump Other Yes Initial Water Level (ft): 7.74 Start Time: Flow Rate (ml/min): Groundwater Stabilization Criteria: 0108 400 Final Water Level (ft): 7.8 | Volume Purged (gal): DO: + / - 10% mg/l 1935 NA Notes: Sampling Depth (ft) 14.5 pH: + / - 0.1 unit ORP: + / - 10 mV Gas Pressure (psi) SC: + / - 3% mS/cm Turdity: ± 10% nTu TIME DRAWDOWN (ft) TEMPERATURE TURBIDITY **ELAPSED TIME** pH CONDUCTIVITY DO ORP 0910 7.81 -5(H) D 20.6 6.73 2.71 3.89 230 0915 7.51 6.70 20.1 439 3.89 1.74 221 0920 7.81 10 435 20.3 6.40 2.56 2.89 213 0976 16 7.81 20.4 2.45 3.27 6.83 211 412 0430 20 7.81 20.5 6.83 209 339 2.20 3.43 0935 25 7.81 20.7 2.16 3.45 315 6.85 208 Sampling Notes Sampled By (Printed): TODD 6. BOWN Sample ID: MW -4 Date & Time: 4/12/10 09:35 Analytical Laboratory (Name and Location): Pushdian Envisornestar (Rochester, NY) Chain of Custody Number

Total Commence			N GRC	UP	G	ROUND	WATER	SAMPL	ING	RE	PORT	
Project Number					Date (mn	nddyy): 08/12/10	Well ID: MW-5					
Client: Ulster Reality Management							: Bowo	Monitoring Well Diameter (in):				
Location (Cit	y, State): K	اعدد	Ston, MY		Static Wa	ater Level (ff): 8.4		Total Well Depth (ft): 19.33				
		_	from the reference po	oint/notch on	the top of th	e well riser.		Co		Monitoring V	Vell	
Volume of wa	ater in well =	Linear fe	eet of water in well * (Sallons per fo	ot of depth			Is surface seal good?		(Yes)	No	
Well Diamete	er (ID) = Galle	ons per f	oot of depth: 1 = 0.04	4 2 = 0.163	4 = 0.653	6 = 1.469 8 = 2.611 10	= 4.080	Is well cover intact?	Contraction of the Contraction		No	
Bailer: Waterra Tubing						Water Qaulity Meter	Is well cap present?			No		
Purging and Sampling Equipment Peristaltic P			Itic Pump	ic Pump Bladder Pum		Horiba U	æ	Are bolts missing?		(Yes)	No No	
(Check Applicable) Whale Pump Other							Is well locked? Yes		(No)			
Initial Water	Level (ft):	ча	Start Time: \00	4	Flow Rate	(ml/min): 400		Groun	ndwater St	abilization C	riteria:	
Final Water L		10000	Stop Time: 10 3	11.0	Volume P	rurged (gal): NA		Temperature: ± 3°C DO: + / - 10% mg/l			0% mg/l	
Sampling De		100	Notes:	3		IVA				ORP: +/-	ORP: + / - 10 mV	
Gas Pressure	Carrier Tolland							SC: + / - 3% mS/cm			10% nTu	
TIME	ELAPSEI		DRAWDOWN (ft)	TEMPE	RATURE	pН	CONDUCTIVITY	DO	c	RP	TURBIDITY	
1009	0		8.51	26	4	6.56	7.38	4.85	234		562	
1016	7		8.51	20.	8	6.45	7.40	0.40	232		274	
1021	12		8.51	21.	1	6.45	7.27	0.36	23	PARTITION	213	
1026	25	17-	8.51	21.	2	6.49	6.94	0.98	231		169	
1031	22	_	8.51	21.		6.49	6.40	1.31	23	3	155	
1035	26		8.51	21	7-	6.49	6.86	1.38	233		48.3	
Sampling Not	es:											
Sample ID:	Mw-					Date & Time: \$ 12	10 1035	Sampled By (Printed):	TOOD	6.BOV	UN	
Sample Analy Analytical Lab		60B ne and Lo	ocation): Paradica	n Evvi	roome.	stal (Roches	tec NY)	Sampled By (Printed): Signature: Chain of Custody Numb	er:	Zen		

PALMERT®N GROUP Environmental Consulting Services					ROUNE	WATER	SAMPL	ING	RE	PORT		
Project Numb	per			Date (mm	iddyy): 06 12 11	0	Well ID: MW-14					
Client: UL	ster Real	ity Mouas	encut	Name (Pr	inted): TODO 6	- Rowal	Monitoring Well Diameter (in):					
Location (City	, State): Kioc	Stop, NY		Static Wa	ter Level (ft): 7.9	4	Total Well Depth (ft): 13.99					
SCHOOL SERVICE THE		n from the reference po	oint/notch on ti				2	condition of I	Monitoring V	Vell		
Volume of wa	iter in well = Linear	feet of water in well * (Sallons per foo	ot of depth			Is surface seal good? Yes No					
Well Diamete	r (ID) = Gallons pe	r foot of depth: 1 = 0.04	4 2 = 0.163	4 = 0.653 6	6 = 1.469 8 = 2.611 10	Is well cover intact?	Yr	Yes	No			
Purging and	Baile	C.S.	Waterra Tub	ing		r (Manufacturer & Model)	Is well cap present? Yes			No		
Equip	ment Peris	taltic Pump	p / Bladder Pump		Horiba U	- 22	Are bolts missing?		Yes No			
(Check Applicable) Whale Pump Other						Is well locked? Yes		Yes	(NO)			
Initial Water L	evel (ft): 7.94	Start Time: (10	0	Flow Rate	(ml/min): 400		Groundwater Stabilization Criteria:					
	evel (ft): 7.96			Volume P	urged (gal): NA-		Temperature: ± 3°C DO: + / - 10% mg/l			0% mg/l		
Sampling Dep	No. Mark	Notes:			14.1		pH: + / - 0.1 unit ORP: +		ORP: + /-	10 mV		
Gas Pressure	A 10 10 10 10 10 10 10 10 10 10 10 10 10						SC: + / - 3% mS/cm Turdity: ±		Turdity: ± 1	± 10% nTu		
TIME	ELAPSED TIME	DRAWDOWN (ft)	TEMPER	RATURE	рН	CONDUCTIVITY	DO	0	RP	TURBIDITY		
1102	0	7.96	23	7.	6.63	4.83	4.76	23	니	-5(H)		
1109	7	7.96		22.6 6.47		4.95	3.30			605		
1114	12	7.96			22.5		6.45	5.12	3.02	234		475
1119	17	796			6.45	5.14	2.93			347		
1125	23	7.96	22		6.42	5.55	2.73	233 232		205		
1130	28	7.96	22		6.44	5.39	2.81	228		176		
Sampling Note	17-3	() Cate (ollec	ted								
Sample ID:	MW-14				Date & Time: 8 12	10 1130	Sampled By (Printed):	10111	6.B0	wn		
Sample Analys	sis: 4260 R	Gen-Tr	eK 54	مامس		1	Signature:	4/3	3 Bus	m		
Analytical Lab	oratory (Name and	Location): Pusad	ISM EN	שונטא	mostal /	Cochester NY)	Chain of Custody Num	nber:	11	2		
		SIREA	1 400	Lytic	al (Guel	Pochester, NY)						

Well Diameter (ID) = Gailtons per foot of depth: 1 = 0.044 2 = 0.183 4 = 0.833 6 = 1.400 8 = 2.611 10 = 4.000 Purpling and Sampling Equipment (Clored Application Purply Clored Application Purpling and Sampling Equipment (Clored Application Purple Clored Application Purple Clor		MERT		UP	G	ROUND	WATER	SAMPL	ING RE	PORT	
Clamet. Chart. State): Management of the control of	Project Numb	per			Date (mm	ddyy): Dalulu)	17/0-7			
Sampling Depth (1) 12.0	Client: U	Later Para	Lity Mapping	toniot	Name (Pri						
All measurements are to be taken from the reference positrotics on the top of the wall rise. Condition of Monter in well - Linear feet of water in well - Collosing per foot of depth Wide Clarifor (1) - Calairons per foot of depth - 10.04 2 = 0.103 4 = 0.853 6 = 1.469 8 = 2.611 10 = 4.000 Purping and Sampling Equipment Concert. Application Purping and Sampling Equipment Concert. Application Provided Clarifor Novel Purping and Sampling Equipment Concert. Application Provided Clarifor Novel Purping and Sampling Equipment Concert. Application Provided Clarifor Novel Provided Clarifor Novel Provided Clarifor Novel Port Mark Level (0): 12.00 Sampling Clarifor (1): 12.00 Sampling Clarifor	Location (City	, State): Vince	ston NY	5- 1-01	Static Wa			Total Well Depth (ff): 13.66			
Well Diameter (ID) = Galloons per foot of depth: 1 = 0.044 2 = 0.103 4 = 0.653 6 = 1.460 8 = 2.611 10 = 4.000 Purpling and Sampling (Check Applicable) Whater Purple (Check Ap				oint/notch on th	e top of the		E-	Con		Vell	
Purpling and Sampling Consequent State Pump Bladder Pump Bladd	Volume of wa	ter in well = Linear fe	et of water in well * 0	Gallons per foo	t of depth		.0	Is surface seal good?	Yes	No	
Purpling and Sampling Eastprend (Chock Applicable) Verball Allowed (Chock Applicable) Verball Allowe	Well Diamete	er (ID) = Gallons per f	oot of depth: 1 = 0.04	4 2 = 0.163 4	= 0.653 6	= 1.469 8 = 2.611 10	= 4.080	Is well cover intact?	Yes	No	
Engineer Check Applicable Purity What Purity Other Check Applicable Purity What Purity Other Check Applicable Purity What Purity Other Check (Pt. 9.40) Statutines: 1825 Frow Rate (malinis): 400 Geometric Statistical Collection Checkers (Pt. 9.40) Statutines: 1825 Frow Rate (malinis): 400 Geometric Statistical Collection Checkers (Pt. 9.40) Statutines: 1825 Frow Rate (malinis): 400 Geometric Statistical Collection Checkers (Pt. 9.40) Statutines: 1825 Frow Rate (malinis): 400 Freedrick (Pt. 9.40) From Rate (malinis): 400 Freedrick (Pt. 9.40) Freedrick			/	Waterra Tubi	ng	The Paris and read of the man into our deal.	file and file file for the contract of the contract of	Is well cap present?	©	No	
(United Augusteans) (Whater Pump (Whater Pum	Equip	ment Peristal	ltic Pump	Bladder Pum				Are bolts missing?			
Sumpling Notes Sump	(Check Ap		Pump	Other				Is well locked? Ye		(NO)	
Sumpling Notes Sump	Initial Water L	evel (ft): 9.80	Start Time: 14	25	Flow Rate	(ml/min): 400		Groundwater Stabilization Criteria:			
Sample 12.0 Sample 12.		Access Access Access	A STATE OF THE STA		Volume Po	and the second		Temperature: ± 3°C DO: + / - 10% mg/l			
Gas Pressure (psi) NA TIME ELAPSED TIME DRAWDOWN (1)) TEMPERATURE pH CONDUCTIVITY DO ORP TURBIDITY 1825 D 12.3 25.1 6.58 2.31 1.15 97 930. 1830 S 12.56 23.3 6.60 2.06 D.45 92 -5(H) Barriellon Modess MW-9 west dry while attempting low flows sampling technique. Allowed to Pachasce for Mins them scab sample with bailer. Sumple (D: MW-9) Date & Time: 8 12 10 12:10 Sample By (Printed): Took of Saws Signature: MW-7 and Casaws	Sampling Dep	manager (manager)	Notes:			147		pH: + / - 0.1 unit ORP: + / - 10 mV		10 mV	
TIME ELAPSED TIME DRAWDOWN (1) TEMPERATURE pH CONDUCTIVITY DO ORP TURBUTY 1825 D 12.3 25.1 6.58 2.31 1.15 97 930 1830 S 12.56 23.3 6.60 2.06 0.45 92 -5(H) Sampling Notes: MW-9 west dry while attempting low flow samples technique. Allowed to recharge for 12hrs then stab sample with bailer. Sur 9.78 ft ou flexio @ 1205 Sample Die MW-9 Date & Time: 8 12 [10 12:10 Sampled By (Printed): TOD C. 80000 Sample Die MW-9 Sample Die MW-9 Date & Time: 8 12 [10 12:10 Sampled By (Printed): TOD C. 80000 Sample Die MW-9 Sample Die MW-9 Sample Die MW-9 Sample Die MW-9 Date & Time: 8 12 [10 12:10 Sampled By (Printed): TOD C. 80000 Sample Die MW-9 Sample Die MW-8 Sample Die MW-8	Gas Pressure	54.55.53						SC: + / - 3% mS/cm	Turdity: ±	10% nTu	
Sampling Notes: MW-9 west dry white attempting low flow sampling technique. Allowed to recharge for 12 hrs then grab sample with banker. Sur 9.78 ft or 8/12/10 @ 1205 Sample Date & Time: 8/12/10 12:00 Sampled By (Printed): Terror & Sawa	TIME	ELAPSED TIME	DRAWDOWN (ft)	TEMPER	ATURE	IRE PH CONDUCTIVITY		DO	ORP	TURBIDITY	
Sampling Notes: MW-9 west dry white attempting low flow sampling technique. Allowed to recharge for 12 hrs then grab sample with banker. Sur 9.78 ft or 8/12/10 @ 1205 Sample Date & Time: 8/12/10 12:00 Sampled By (Printed): Terror & Sawa	1825	0	12.3	25.	. 1	6.58	2.31	1.15 97		930	
Sampling Notes: MW-9 west dry while attempting low flow sampling technique. Allowed to recharge for 12 hrs then grab sample with bailer. SWL 9.78ft ou 8/12/10 @ 1205 Sample Date & Time: 8/12/10 12:00 Sampled By (Printed): Took of Bawa Sample Analysis: 82608	- Company				.3	6.60	250		_2500	-5(H)	
MW-9 went dry while aftempting low flow sampling technique. Allowed to recharge for 12hrs then grab sample with bailer. SWL 9.78ft OU \$\line{12\line{10}} @ 1205 Sample ID: MW-9 Date & Time: 8\line{12\line{10}} 12:10 Sampled By (Printed): TOOD G. BOWN Sample Analysis: 8260B											
// · · · · · / / / / / / / / / / / / /	ALLo S Sample ID:	MW-0	8 ++ 00	s firl	12 L	> 1205		Sampled By (Printed):	TOOD G. BO	wu	
Analytical Laboratory (Name and Location): Paradyn Euriconnestal (Rochester, NY) Chain of Custody Number:	Analytical Lab		ocation): Para	disn E	SUIG	uncutal /	Pochester NY)	Chain of Custody Numb	er: 7/	0	

The second secon		Services	OUP	G	ROUNI	OWATER	SAMPL	ING R	EPORT		
Project Numb	per			Date (mmd	1dyy): 08 11 10		Well ID: MW ~ 10				
Client: OL	ster Rea	Lity Movace	neut	Name (Prir		r. Bown	Monitoring Well Diameter (in):				
Location (City	, State): Kin	Lity Movinge		Static Wate	er Level (ft):		Total Well Depth (ft): 168 9 10 10				
		aken from the reference p		top of the			Co	ondition of Monitoring	Well		
Volume of wa	ater in well = Lin	ear feet of water in well *	Gallons per foot	of depth			Is surface seal good?	Yes	No No		
Well Diamete	er (ID) = Gallons	per foot of depth: 1 = 0.0	44 2 = 0.163 4	= 0.653 6	= 1.469 8 = 2.611 1	0 = 4.080	Is well cover intact?	Yes) No		
D. and an ana		ailer:	Waterra Tubin	ng	The state of the s	er (Manufacturer & Model)	Is well cap present? No				
Purging and Sampling Equipment (Check Applicable) Peristaltic Pump Bladder Pump					Horiba	0-66	Are bolts missing? Yes				
(Crieck Ap		hale Pump	Other				Is well locked? Yes				
Initial Water L	_evel (ft):)(.3	Start Time: 17)3	Flow Rate	(ml/min): 400	ř.	Groundwater Stabilization Criteria:				
Final Water L		Ct	-	Volume Pu			Temperature: ± 3°C DO: + / - 10% mg/l				
Sampling Dep		- Notes			121/		pH: + / - 0.1 unit ORP: + / -		/ - 10 mV		
Gas Pressure							SC: + / - 3% mS/cm	Turdity:	Turdity: ± 10% nTu		
TIME	ELAPSED TI		TEMPERA	TURE	рН	CONDUCTIVITY	DO	ORP	TURBIDITY		
1706	0	13.2	20.7	-	7.0	0.749	1.96	-53	-5(H)		
				-							
						-					
						-					
						-					
						-					
									-		
						-					
Sampling Note	es:										
		diy while collarge			-	w sample	s techniq with bui	Dec.			
Sample ID:	MW-1)			Date & Time:	מחיבו חוף	Sampled By (Printed):	TONG C P	POLALA)		
	sis: 8260	2			- 1/10	710 16.00	Signature:	12 Ru			
		and Location): Purent	C	.5.2.2	10 /a	solars has MIX	mu		7		
		16100	SA CON	MOON	TENTAL (K	XMCSTCC NY	PRODUCTION OF THE PRODUCTION OF THE CONTROL OF THE	~			

Analytical Report Cover Page

The Palmerton Group

For Lab Project # 10-3320A Issued August 25, 2010 This report contains a total of 144 pages

The reported results relate only to the samples as they have been received by the laboratory.

Any noncompliant QC parameters having impact on the data are flagged or documented on the final report.

All soil/sludge samples have been reported on a dry weight basis, unless qualified "reported as received". Other solids are reported as received.

Each page of this document is part of a multipage report. This document may not be reproduced except in its entirety, without the prior consent of Paradigm Environmental Services, Inc.

The Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt. Sample condition requirements are defined under the 2003 NELAC Standard, sections 5.5.8.3.1 and 5.5.8.3.2.

NYSDOH ELAP does not certify for all parameters. Paradigm Environmental Services or the indicated subcontracted laboratory does hold certification for all analytes where certification is offered by ELAP unless otherwise specified.

Data qualifiers are used, when necessary, to provide additional information about the data. This information may be communicated as a flag or as text at the bottom of the report. Please refer to the following list of frequently used data flags and their meaning:

"ND" = analyzed for but not detected.

"E" = Result has been estimated, calibration limit exceeded.

"D" = Duplicate results outside QC limits. May indicate a non-homogenous matrix.

"M" = Matrix spike recoveries outside QC limits. Matrix bias indicated.

"B" = Method blank contained trace levels of analyte. Refer to included method blank report.

"V" = Sample concentration is >10 times the spike. No meaningful Spike Recovery can be calculated.

"J" = Any hits present between the Quantitation limit and half the Quantitation limit.

"Z" = Please refer to included Case Narrative for explanation.

LAB PROJECT NARRATIVE 10-3320A PROJECT NAME: Office Depot Plaza

SDG: 10896

CLIENT: The Palmerton Group

Thirteen water samples and one Trip Blank were collected by The Palmerton Group on 08/11/2010 and 08/12/2010 and received at the Paradigm laboratory on 08/13/2010. Container and holding times were acceptable at time of receipt; the samples were received at 3° Centigrade and were on ice. Samples were submitted with the Chains-of-Custody requesting VOCs by method 8260B. All analyses were performed using EPA SW-846 methods and holding times.

GENERAL NOTES

The initial and continuing calibration reports are only evaluated for compounds that are on the sample summary report.

Regarding results on QC summary forms versus included raw data, due to calculations made at the instrument where many significant figures may be used, there may be slight discrepancies between the summary report result and that recorded on the raw data. This does not affect data usability.

Regarding initial calibrations, it should be noted that the Quantitation Report concentrations supplied for the initial calibration reflect the calibration prior to updating. The response factors and areas are correct.

Regarding Quantitation Reports, it should be noted that the "#" symbol that appears on some of the Quantitation Reports is a software artifact and should be disregarded.

VOLATILES

Holding times were met for all samples.

Sample surrogate recoveries were within acceptance limits for all samples and QC.

Site specific QC was not requested on this SDG. All laboratory control samples recovered within acceptance limits.

The method blanks were free from contamination within the reportable range.

The instrument tunes passed all criteria.

The internal standards areas and retention times were within acceptance ranges.

All data for the initial calibrations was within acceptance limits. Compounds flagged with an "*" on the summary table have been calibrated using a non-average Response Factor calibration curve. The supporting curves are located after the initial calibration table. (see method 8000B, section 7.5.1.2.1).

All continuing calibration data was within acceptance limits.

(signed)_

Bruce Hoogesteger-Technical Director

(date) Bh / WU

SDG#: 10896

BATCH COMPLETE:

8/13/2010

LAB PROJECT #: 10-3320A CLIENT: The Palmerton Group PROJECT NAME: Office Depot Plaza

DATE: 8/18/2010 DATE DUE: 9/10/2010

PROTOCOL: SW846

LAB.SAMPLE#	FIELD ID	MATRIX	REQUESTED ANALYSIS	DATE	DATE
				SAMPLED	REC'D
10896	MW-1	Wäter	8260	8/11/2010	8/13/2010
10897	MW-12	Water	8260	8/11/2010	8/13/2010
10898	MW-2	Water	8260	8/11/2010	8/13/2010
10899	MW-11	Water	8260	8/11/2010	8/13/2010
10900	MW-3	Water	8260	8/11/2010	8/13/2010
10901	MW-8	Water	8260	8/11/2010	8/13/2010
10902	MW-13	Water	8260	8/12/2010	8/13/2010
10903	MW-4	Water	8260	8/12/2010	8/13/2010
10904	MW-5	Water	8260	8/12/2010	8/13/2010
10905	MW-14	Water	8260	8/12/2010	8/13/2010
	Field				
10906	Duplicate	Water	8260	8/12/2010	8/13/2010
10907	MW-10	Water	8260	8/12/2010	8/13/2010
10908	MW-9	Water	8260	8/12/2010	8/13/2010
10909	Trip Blank	Water	8260	8/11/2010	8/13/2010
			·		
		,			

- 5 -

CHAIN OF CUSTODY

Ten	Hole Comments:	Pre	Cont	Receipt Parameter NE	""LAB USE ONLY BELOW THIS LINE Sample Condition: Ber NEI ACIE! AB 210/24/1	10 1 113	5501 P 6	8 1 10435	7 8 12 10 D840	6 J 2015	5 W 1905	4 V 1750	3 1 1630	2 1 1530	1 8/11/10 1420	DATE TIME			PROJECT NAME/SITE NAME: $ORce Depo$				TARADIGM
Temperature: Ciced at 10 am	Holding Time:	Preservation:	Container Type:	Receipt Parameter	BELOW THIS IN	ブ	(V)	5	Ø	5	N	8	0	SD .	0		EAH 8/13 c		Depot Plaza				
£10a				41164616	E**	X	×	X	×	×	X	×	K	×	X	ธ≽ฆด		COMMENIO	\$ 1	PHONE:/	SALIC SALIC	ADDRESS:	COMPANY:
Ĭ 3 ≺	× × × × × × × × × × × × × × × × × × ×	Z D	z	NELAC Compliance		MW-H	- N-	JW-4	MW-13		MW-3.	MW - 11.	MW-2	MW-12	Mw-i	SAMPLE LOCATION/FIELD ID	EDH 8/13	ASPicat B	موصد	1 463-5300	• 1	629	The Palmerton
Received @ Lab By	Received By	Rethavished	Sampled By			~	(«	÷-	()	(-	٠ -	4 ~	E	⟨ −.	AG	× - 77 - 1 >	8/13 M	oackageneeded TH/JD 8113			· 45951		
100			Sh.	1		←	< X	<u>к</u>	X		χ	X	K X	K X	2 X	Д п ш Z С :	z z 0 n	•	ATTN:	PHONE:	спту:	ADDRESS:	COMPANY:
U. Honck		ud	me	J														REQUESTED ANALYSIS		71			Same
Date/Time		8/(3/10 Date/Time	Dațe/Tipe									-						NALYSIS		FAX:	STATE:		ame
1645		0900	0900	s'eals WIA	Ho lob	Cooler						401 1 84	mp/	2008	8260 TCL	·		Qu			ZIP: TUR	\ 	
	P.I.F.		Total Cost:	D)/A.		Cooler hand delivered					•	EAH 8/13	es, per	2008 for all	TCL ASP	REMARKS		Quotation # JH	1 2 3		TURNAROUND TIME: (WORKING DAYS)	10-3320A	LAB PROJECT #: CLI
				~		Ì	0 0		10902	10901	10900	10899	10898	10897	10896	PARADIGM LAB SAMPLE NUMBER		JH0080910		STD QTHER	KING DAYS)		CLIENT PROJECT #:
		L				05	<u> </u>	w	• -	-	<u> </u>	7	ער	7	V	<u> </u>			X	150 ,	۷_		

CHAIN OF CUSTODY

		REPORT TO:		W	INVOICE TO:			
CNVIRONALISTAN SERVICES, INC.	COMPANY	COMPANY:	сол	COMPANY: Same		LAB PROJECT #:	#: CLIENT PROJECT #:	
	ADDRESS		ADE	ADDRESS:		10-3320A	OA	
	CITY:	,, I	ZIP: 3057 CITY:	Υ:	STATE: Z	ZIP: TURNAROUND	TURNAROUND TIME: (WORKING DAYS)	ラー
	PHONE: /	S3W ^{FAX:}		ONE:	FAX:		STD	OTHE O'S
PROJECT NAME/SITE NAME:	CT.	b. bows@ochner dow	ATTN:	N:			3 5	X
Office Depot Plaza	COMMENTS	rs:	0			Quotation #)#	
			_	REQUI	-SIED ANALYSIS		_	
DATE TIME O	യ ≽ ౫ റ	SAMPLE LOCATION/FIELD ID	- 71 → S om oo 8 < 2	1 Z - > - Z O O		REMARKS	PARADIGM LAB SAMPLE NUMBER	LAB
m -i -	α		× -					
18/12/10	X	FIELD DOPULATE	AR	\ \ \			109	0
2 17200	X	1 1		- X				0/7
3 1/ 1210	×	MM-9	4	\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \			1/09	0 8
4 8/1770	X	TEIP BLANK	+	X			109	0
5 per Pavadism policy.		i	-					
6 EAHBIB								
7								
8								
9								
10								
LAB USE ONLY BELOW THIS LINE Sample Condition: Per NELAC/ELAP 210/241/242/243/244	INE** 241/242/2	243/244						
Receipt Parameter		NELAC Compliance	7	11/11				
Container Type: Comments:		v D	Sampled, By		1 8 13 Pate/Time	10 <i>0900</i>	Total Cost:	
Preservation:		× × × × × × × × × × × × × × × × × × ×			8/13/10	0900		
Holding Time:		Z D	Received By		8/3/10	Pape		
Temperature:	2. Z	× N D	Eliabeth	h a Honch	8/13/10	1645		
<u>(</u>	E1/8 ma01	8/13	Received (2) Lab by	sy	Date/IIme			

Lab Project # 10-3320 A

Client Palmerton

Internal Sample Sign-out Sheet-Refrigerator A, B, C, D, E)F

Sample #	Container code	<u>Initials</u>	Date/Time out	Date/Time in
10896	VI	M3	8/19/10 1403	8/19/10 15 30
	V2	.)	, , , ,	1////
10897	VI			
	V2			
10898 .	VI			
	V2			
10899	VI			
1	VZ			
10900	VI			
4	VZ			
10901	VI			
1				
10902	VI			
L	VZ			
10903	VI			
1	V2			
10904	VI			
4	V2			
10905	VI	·	· ·	
1	VZ			
10906	VI			
1	V2	·		
10907	VI			
4	VZ			
10908	VI	·		
1	V2			
10909		V		
		• //	1 / /	1/
10818	VZ	H/5	8/20/10 12	8/20/10 1410
10903			1	
10904			·	
10905				
10906	ļ		·	
10907	Ψ	4	-	
		<u> </u>		
		,		

¢ -	10.3324 10	+	(i)	+		10.3322 /				10-3321	4	-												40-3320A	Lab Project Number
10920	10919	81601	10917	10916	21601	11601	0410	10912 -	10911	10910	10909	80501	10907	10906	10905	10904	10903	10902	10901	10900	10899	8 6801	10897	10896	Lab Sample Number
				4			+ +				* Trip Blank	4 9	MW-10	Field Duplicate	· * II	5	I	13	8	3	11	Plaza 2	Depot 12	Group MW-1	Client/Project Name/Number
+	118118		8/16	+	+	100		\downarrow	+	8/13 /	\													8/13	Log in Date
1	1120 0	+	1025 0		8 E	\top		+		1700 s	+													1645	Log in Time
-	OIY EAH	4	AN EAH	-	-	Pt		brack	+	SOIL E	+													3	Matrix
+	± AA AA	+	I AS	+		EAH NA	+			EAH NA	<u></u>												<u> </u>	EAH M	Log in init.
1	Ω _A	+	ξ. (A)	4	_) 25°C	+	<u> </u>		26°C	←													yez 3°C	pH Temp
+	Client	*	Client	4	-	Client	+			Client	t													ed Client	Sample By
8/14	- 8/13	+	8/13	+	-	t 8/13	4	+		E 8/13	8/11	←			·		_	8/12	-					S	ple Sample Date & Time
											•	-												8260 TCL ASP 2008	Organic Analysis
+	ρь			+		Pb								The state of the s								- The state of the			Metal Analysis
		1	total				+			75,715															Rotation Tasks
4	`			2		6																			Sub-Out Analysis
	4	~	Z	+		PB	+			62	< *													V1, V2	Cont. Code

VOLATILE ORGANICS QC SUMMARY

2A WATER VOLATILE SYSTEM MONITORING COMPOUND RECOVERY

Lab Name: Paradigm Environmental Services Client Name: The Palmerton Group

Lab Project #: 10-3320A Client Project #: <u>N/A</u> SDG No.: <u>10896</u>

Client Project Name: Office Depot Plaza

	SMC1	SMC2	SMC3	SMC4	ТОТ
SAMPLE NO.	(PFB)	(DCE)	(TOL)	(BFB)	OUT
01 Water LRB 08/19/10	85.6	80.9	87.5	85.8	0
02 Water LRB 08/20/10	94.7	97.1	101	91.5	0
03 MW-1 10896	84.5	80.7	89.1	88.4	0
04 MW-12 10897	90.4	88.8	96.0	94.6	0
05 MW-2 10898	79.6	90.7	88.6	90.8	0
06 MW-11 10899	92.6	88.6	96.1	93.1	0
07 MW-3 10900	96.5	97.0	102	94.4	0
08 MW-8 10901	99.5	94.1	101	91.1	0
09 MW-13 10902	88.2	92.3	100	91.0	0
10 MW-4 10903	80.4	92.1	90.4	92.0	0
11 MW-5 10904	82.5	92.6	85.8	87.5	0
12 MW-14 10905	88.2	97.9	98.0	91.6	0
13 Field Duplicate 10906	78.6	92.6	87.3	84.6	0
14 MW-10 10907	90.6	100	95.3	93.0	0
15 MW-9 10908	84.7	92.5	91.7	91.4	0
16 Trip Blank 10909	87.5	99.9	96.4	92.7	0
17					
18					
19					
20					

		QC LIMITS
SMC1	Pentafluorobenzene	(70.1-123)
SMC2	1,2-Dichloroethane-d4	(70.7-106)
SMC3	Toluene-d8	(69.6-113)
SMC4	4-Bromofluorobenzene	(66.5-107)

^{*} Values outside of current required QC limits

D System Monitoring Compound diluted out FORM II VOA-1

Volatile Analysis Report for Non-potable Water

Client: The Palmerton Group

Client Job Site: Office Depot Plaza

Client Job Number:
Field Location:
Field ID Number:
Sample Type: Z Z Z

Water

Lab Project Number: 10-3320A Lab Sample Number: Water LCS 08/19/10

SDG#: 10896

Date Sampled: Date Received: Date Analyzed: 08/19/2010

Method: EPA 8260B	~				Data File: V77662.D		Data File: V77663.D	ELAP Number 10958
·	N/A	N/A	N/A	102	50.9	50.0	ND< 2.00	Chlorobenzene
	N/A	N/A	N/A	99.2	49.6	50.0	ND< 2.00	Toluene
N/A	NA	N/A	N/A	101	50.7	50.0	ND< 2.00	Trichloroethene
	NA	N/A	N/A	92.0	46.0	50.0	ND< 0.700	Benzene
N/A	N/A	N/A	N/A	92.0	46.0	50.0	ND< 2.00	1,1-Dichloroethene
% RPD	Recovery	in ug / L	in ug / L	Recovery	in ug / L	in ug / L	in ug / L	
MS / MSD	MSD Percent	MSD Results	MSD Spiked	LCS Percent	LCS Results	LCS Spiked	Blank Results	Spiked Compound

Volatile Analysis Report for Non-potable Water

Client: The Palmerton Group

Client Job Site:

Office Depot Plaza

Client Job Number:
Field Location:
Field ID Number:
Sample Type: Z Z Z

Lab Project Number: 10-3320A Lab Sample Number: Water LCS 08/20/10

SDG#: 10896

Date Sampled: Date Received: Date Analyzed: 08/20/2010

nzene ND< 2.00 50.0	_
ND< 2.00 50.0 ND< 2.00 50.0	Ν.
sthene ND< 2.00 50.0 ND< 2.00 50.0 ND< 2.00 50.0 50.0	10
ND< 0.700 50.0 ND< 2.00 50.0 ND< 2.00 50.0 ND< 2.00 50.0	
oroethene ND< 2.00 50.0 ND< 0.700 50.0 ND< 2.00 50.0 ND< 2.00 50.0 ND< 2.00 50.0 ND< 2.00 50.0	-
in ug/L in ug/	LCS Results

179 Lake Avenue Rochester, New York 14608 (585) 647 - 2530 FAX (585) 647 - 3311

Volatile Analysis QC Limits

Limits effective: Through:

Jul 01,2010 Sep 30,2010

Upper% Lower% Upper% Lower % Upper % 148 0 44.6 53.9 134 117 0 21.7 81.0 115 120 0 16.6 79.4 121 118 0 15.5 77.5 122 118 0 27.6 81.6 120	obited componie	Se 1100	Soll Spike Littles	301 %	001 % N. C LIII.		Take opine cilino	
roethene 55.1 148 0 44.6 53.9 134 84.5 117 0 21.7 81.0 115 githene 85.6 120 0 16.6 79.4 121 nzene 79.1 118 0 27.6 81.6 120 nzene 79.1 122		Lower %	Upper %	Lower %	Upper %	Lower %	Upper %	Lower %
84.5 117 0 21.7 81.0 115 85.6 120 0 16.6 79.4 121 83.4 118 0 15.5 77.5 122 nzene 79.1 118 0 27.6 81.6 120	Dichloroethene	55.1	148	0	44.6	53.9	134	0
### 85.6 120 0 16.6 79.4 83.4 118 0 15.5 77.5 77.5 77.5 81.6 81.6	zene	84.5	117	0	21.7	81.0	115	0
83.4 118 0 15.5 77.5 79.1 118 0 27.6 81.6	hloroethene	85.6	120	0	16.6	79.4	121	0
79.1 118 0 27.6 81.6	lene	83.4	118	0	15.5	77.5	122	0
79.1 118 0 27.6 81.6	20110) 	;)	>
	orobenzene	79.1	118	0	27.6	81.6	120	0
	•							
						. :		
	ELAP Number 10958							

4A VOLATILE METHOD BLANK SUMMARY

SAMPLE NO.

Water LRB 08/19/10

Lab Name:	Paradigm Envi	ronmental	Services	_	Client Name: The Pa	Ilmerton Group	
Lab Project #:	10-3320A			Cli	ient Project #: N/A	SDG No.:	10896
		Client Proj	ect Name	e: Office D	epot Plaza		
Lab File ID:	V77663.D				Lab Sample ID: V	Vater LRB 08/19/10	
Date Analyzed:	8/19/2010	<u>) </u>			Time Analyzed: <u>1</u>	6:02	
GC Column:	microbore	ID: _	0.53	_ (mm)	Heated Purge: (Y/N) Y	

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS AND MSD:

Instrument ID:

Instrument #1

CLIENT	LAB	LAB	TIME
SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED
01 N/A	Water LCS 08/19/10	V77662.D	15:38
02 MW-1	10896	V77671.D	19:11
03 MW-12	10897	V77672.D	19:34
04 MW-11	10899	V77674.D	20:21
05 MW-3	10900	V77675.D	20:45
06 MW-8	10901	V77676.D	21:09
07 MW-13	10902	V77677.D	21:32
08 MW-9	10908	V77683.D	23:53
09 Trip Blank	10909	V77684.D	00:17
10			
11			
12			
13			
14			
15			
16			
17			
18		•	
19		·	
20			

COMMENTS:			

4A VOLATILE METHOD BLANK SUMMARY

SAMPLE NO.

Water LRB 08/20/10

Lab Name:	Paradigm Environmental Services		Client Name: The Palmerton Group			ρ	
Lab Project #:	10-3320A			(Client Project #: N/A	SDG	No.: 10896
		Client Proj	ect Name	: Office D	Pepot Plaza	•	
Lab File ID:	V77688.D				Lab Sample ID:	Water LRB 08/	20/10
Date Analyzed	: 8/20/20	10			Time Analyzed:	12:45	
GC Column:	microbore	ID: _	0.53	_(mm)	Heated Purge:	(Y/N) Y	
Instrument ID:	Instrum	ent #1					

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS AND MSD:

	CLIENT	LAB	LAB	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED
01	N/A	Water LCS 08/20/10	V77687.D	12:22
02	MW-2	10898	V77706.D	19:50
03	MW-4	10903	V77707.D	20:14
04	MW-5	10904	V77708.D	20:38
05	MW-14	10905	V77709.D	21:01
06	Field Duplicate	10906	V77710.D	21:25
07	MW-10	10907	V77711.D	21:48
08	-			
09				
10				
11				
12				
13				
14				
15				
16	"			
17				
18				
19				
20			-	

			l
COMMENTS:			
COMMILITIO.			
	William Control of the Control of th	 	

5A **VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK** BROMOFLUOROBENZENE(BFB)

Lab Name: Paradigm Environmental Services Client Name: The Palmerton Group

Lab Project #:

Instrument ID: Instrument #1

10-2230A

Client Project #: N/A

SDG#: 10896

Client Project Name: Office Depot Plaza

Lab File ID:

V77406.D

BFB Injection Date: 8/11/2010

BFB Injection Time: 16:23

		% RELATIVE
m/e	ION ABUNDANCE CRITERIA	ABUNDANCE
50	15.0-40.0% of mass 95	15.2
75	30.0-60.0% of mass 95	45.9
95	Base peak, 100%relative abundance	100.0
96	5.0-9.0% of mass 95	6.6
173	Less then 2.0% of mass 174	0.2 (0.2)1
174	50.0-100.0% of mass 95	83.1
175	5.0-9.0% of mass 174	5.8 (7.0)1
176	95.0-101.0% of mass 174	82.0 (98.8)1
177	5.0-9.0% of mass176	5.4 (6.6)2

1-Value is % mass 174

2-Value is % mass 176

This check applies to the following Samples, MS, MSD, Blanks & Standards

	Client	Lab	Lab	Date	Time
	Sample #	Sample #	File ID	Analyzed	Analyzed
1	N/A	1ppb mega Cal	V77407.D	8/11/2010	16:46
2	N/A	2ppb mega Cal	V77408.D	8/11/2010	17:10
3	N/A	5ppb mega Cal	V77409.D	8/11/2010	17:33
4	N/A	10ppb mega Cal	V77410.D	8/11/2010	17:56
5	N/A	50ppb mega Cal	V77411.D	8/11/2010	18:20
6	N/A	100ppb mega Cal	V77412.D	8/11/2010	18:43
7	N/A	200ppb mega Cal	V77413.D	8/11/2010	19:06
8					
9					
10					
11					
12					
13					
14					
15					
16					
17					
18					

5A VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE(BFB)

Lab Name: Paradigm Environmental Services

Client Name: The Palmerton Group

Lab Project #:

10-3320A

Client Project #: N/A

SDG#: 10896

Client Project Name: Office Depot Plaza

Lab File ID:

V77660.D

BFB Injection Date: 8/19/2010

Instrument ID: Instrument #1

BFB Injection Time: 14:52

	1.0000.00000	% RELATIVE
m/e	ION ABUNDANCE CRITERIA	ABUNDANCE
50	15.0-40.0% of mass 95	15.0
75	30.0-60.0% of mass 95	50.8
95	Base peak, 100%relative abundance	100.0
96	5.0-9.0% of mass 95	6.1
173	Less then 2.0% of mass 174	0.0 (0.0)1
174	50.0-100.0% of mass 95	74.7
175	5.0-9.0% of mass 174	6.1 (8.2)1
176	95.0-101.0% of mass 174	74.9 (100.3)1
177	5.0-9.0% of mass176	4.6 (6.1)2

1-Value is % mass 174

2-Value is % mass 176

This check applies to the following Samples, MS, MSD, Blanks & Standards

1		-			
	Client	Lab	Lab	Date	Time
	Sample #	Sample #	File ID	Analyzed	Analyzed
1	N/A	50ppb mega CC	V77661.D	8/19/2010	15:15
2	N/A	Water LRB 08/19/10	V77663.D	8/19/2010	16:02
3	N/A	Water LCS 08/19/10	V77662.D	8/19/2010	15:38
4	MW-1	10896	V77671.D	8/19/2010	19:11
5	MW-12	10897	V77672.D	8/19/2010	19:34
6	MW-11	10899	V77674.D	8/19/2010	20:21
7	MW-3	10900	V77675.D	8/19/2010	20:45
8	MW-8	10901	V77676.D	8/19/2010	21:09
9	MW-13	10902	V77677.D	8/19/2010	21:32
10	MW-9	10908	V77683.D	8/19/2010	23:53
11	Trip Blank	10909	V77684.D	8/19/2010	00:17
12					
13					
14					
15					
16					
17					
18					

FORM V VOA

5A VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE(BFB)

Lab Name: Paradigm Environmental Services Client Name: The Palmerton Group

Lab Project #: 10-3320A Client Project #: N/A SDG#: 10896

Client Project Name: Office Depot Plaza

Lab File ID: V77685.D BFB Injection Date: 8/20/2010

Instrument ID: Instrument #1 BFB Injection Time: 11:35

		% RELATIVE
m/e	ION ABUNDANCE CRITERIA	ABUNDANCE
50	15.0-40.0% of mass 95	17.5
75	30.0-60.0% of mass 95	51.2
95	Base peak, 100%relative abundance	100.0
96	5.0-9.0% of mass 95	7.2
173	Less then 2.0% of mass 174	0.2 (0.2)1
174	50.0-100.0% of mass 95	97.3
175	5.0-9.0% of mass 174	5.9 (6.1)1
176	95.0-101.0% of mass 174	95.8 (98.5)1
177	5.0-9.0% of mass176	5.8 (6.0)2

1-Value is % mass 174

2-Value is % mass 176

This check applies to the following Samples, MS, MSD, Blanks & Standards

Client	Lab	Lab	Date	Time
Sample #	Sample #	File ID	Analyzed	Analyzed
1 N/A	50ppb mega CC	V77686.D	8/20/2010	11:58
2 N/A	Water LRB 08/20/10	V77688.D	8/20/2010	12:45
3 N/A	Water LCS 08/20/10	V77687.D	8/20/2010	12:22
4 MW-2	10898	V77706.D	8/20/2010	19:50
5 MW-4	10903	V77707.D	8/20/2010	20:14
6 MW-5	10904	V77708.D	8/20/2010	20:38
7 MW-14	10905	V77709.D	8/20/2010	21:01
8 Field Duplicate	10906	V77710.D	8/20/2010	21:25
9 MW-10	10907	V77711.D	8/20/2010	21:48
10				
11				
12				
13				
14				
15				
16				
17				
18				-

FORM V VOA

88 **VOLATILE INTERNAL STANDARD AREA AND RT SUMMARY**

Lab Name:

Paradigm Environmental Services

Client Name: The Palmerton Group

Lab Project #: 10-3320A

Client Project #: N/A

SDG#: 10896

Client Project Name: Office Depot Plaza

Lab File ID:

V77660.D

Instrument ID: Instrument #1

Date Analyzed: 8/19/2010 Time Analyzed: 14:52

Heated Purge: Y

	IS1	FB	IS2	СВ	IS3	1,4-DCB
	AREA	RT	AREA	RT	AREA	RT
12 HOUR STD	374492	5.08		8.02	160220	10.56
UPPER LIMIT	748984	5.58		8.52	320440	11.06
LOWER LIMIT	187246	4.58		7.52	80110	10.06
	10/240	4.56	146133	7.52	80110	10.00
LAB SAMPLE#						15.50
1 Water LRB 08/19/10	381611	5.08		8.02	167883	10.56
2 Water LCS 08/19/10	388947	5.07	278210	8.02	164501	10.56
3 10896	373525	5.08	273096	8.02	166140	10.56
4 10897	347097	5.08	251396	8.02	148671	10.56
5 10899	325495	5.08	244462	8.02	146612	10.56
6 10900	312528	5.08	252397	8.02	148548	10.56
7 10901	308957	5.08	257246	8.02	152827	10.56
8 10902	325954	5.07	260860	8.02	145582	10.56
9 10908	314235	5.08	220908	8.02	127928	10.56
10 10909	290137	5.07	202464	8.02	127966	10.56
11						
12		,				
13						
14		·				
15						
16						
17						:
18						
19						
20						
21						
22						

IS1=Fluorobenzene

IS2=Chlorobenzene-d5

IS3=1,4-Dichlorobenzene-d4

AREA UPPER LIMIT=+100% of internal standard area

AREA LOWER LIMIT=-50% of internal standard area

RT UPPER LIMIT=+.50 minutes of internal standard RT

RT LOWER LIMIT=-.50 minutes of internal standard RT

*Values outside of QC limits

FORM VIII VOA

8A VOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: Paradigm Environmental Services

Client Name: The Palmerton Group

Lab Project #: 10-3320A

Instrument ID: Instrument #1

320A Client Project #: N/A

SDG#: 10896

Client Project Name: Office Depot Plaza

Lab File ID: V

V77686.D

Date Analyzed: 8/20/2010

Time Analyzed: 11:58

Heated Purge: Y

					неа	ated Purge:	Υ
		IS1	FB	IS2	СВ	IS3	1,4-DCB
		AREA	RT	AREA	RT	AREA	RT
	12 HOUR STD	339542	5.07	245243	8.02	138321	10.56
	UPPER LIMIT	679084	5.57	490486	8.52	276642	11.06
	LOWER LIMIT	169771	4.57	122622	7.52	69161	10.06
	LAB SAMPLE#						
1	Water LRB 08/20/10	299065	5.08	225072	8.02	132254	10.56
2	Water LCS 08/20/10	337277	5.08	261545	8.02	141237	10.56
3	10898	309986	5.07	218537	8.02	126590	10.56
4	10903	296314	5.08	212544	8.02	118521	10.56
5	10904	294820	5.08	211882	8.02	119441	10.56
6	10905	268155	5.08	209071	8.02	117145	10.56
7	10906	289218	5.08	205668	8.02	113646	10.56
8	10907	264289	5.08	193338	8.02	113865	10.56
9						<u></u>	
10							141-111-111
11							
12		-					
13						·	
14							
15							
16							
17							
18							
19							
20							
21							
22							

IS1=Fluorobenzene

IS2=Chlorobenzene-d5

IS3=1,4-Dichlorobenzene-d4

AREA UPPER LIMIT=+100% of internal standard area

AREA LOWER LIMIT=-50% of internal standard area

RT UPPER LIMIT=+.50 minutes of internal standard RT

RT LOWER LIMIT=-.50 minutes of internal standard RT

*Values outside of QC limits

FORM VIII VOA

Instrument:
Matrix:
Date Run:
Target (in ppb)
* = Target (in ppb)

73 VOA Water 3/3/2010 & 3/17/2010 0.5 1.0

Dichlorodiffuoromethane 0.920 Chloromethane 0.545 Vinyl chloride 0.388		0.895 0.527	0.836	0.824	0.852	27.0 V	
ъ	0.575	0 227			-	0.845	0.0344
-		0.067	0.520			0.321	0.0836
_	0.384	0.323	0.415			0.396	0.0297
ਜ 	0.661	0.629	. 0.637		0.631	0.573	0.0297
	0.608	0.479	0.839		0.654	0.568	0.1235
omethane	1.436	0.980	1.035		1.176	1.252	0.1926
	0.476	0.438	0.448		0.478	0.402	0.0303
Freon 113 0.464	0.524	0.456	0.552		0.521	0.528	0.0357
1,1-Dichloroethene 0.464	0.457	0.454	0.492		0.444	0.463	0.0188
	5.066	5.606	5.007		5.915	6.683	0.6555
disulfide	0.380	0.373	0.405		0.427	0.397	0.0241
13 Methyl acetate 0.763	0.912	0.744	0.754		0.727	0.639	0.0809
Methylene chloride 3.404	4.207	0.814	1.560		3.107	3.614	1.2412
Acrylonitrile 0.524	0.385	0.381	0.445		0.507	0.481	0.0559
Methyl tert-butyl Ether 0.454	0.488	0.447	0.503	0.485	0.469	0.428	0.0262
thene	0.471	0.477	0.469	0.543	0.577	0.492	0.0410
19 1,1-Dichloroethane 0.448	0.467	0.442	0.470	0.478	0.519	0.466	0.0250
*20 Vinyl acetate 0.646	0.593	0.584	0.553		0.530	0.488	0.0550
propane	0.423	0.427	0.430	0.400	0.422	0.379	0.0199
	0.576	0.459	0.522	0.319	0.539	0.561	0.0914
0	0.478	0.432	0.431	0.422	0.447	0.408	0.0490
24 Bromochloromethane 0.474	0.497	0.452	0.502	0.475	0.481	0.516	0.0211
Chloroform 0.518	0.496	0.490	0.534		0.498	0.487	0.0225
1,1,1-Trichloroethane 0.568	0.491	0.450	0.487	0.471	0.447	0.414	0.0485
Carbon Tetrachloride 0.461	0.473	0.407	0.428		0.447	0.425	0.0293
Benzene 0.473	0.473	0.455	0.467	0.469	0.451	0.429	0.0159
ane	0.512	0.466	0.520	0.532	0.527	0.561	0.0298
*****	0.441	0.390	0.449	0.414	0.468	0.407	0.0330
	0.297	0.269	0.296	0.290	0.284	0.255	0.0181
1,2-Dichloropropane 0.459	0.476	0.497	0.474	0.435	0.471	0.440	0.0219
Dibromomethane 0.445	0.480	0.456	0.556		0.539	0.483	0.0419
Bromodichloromethane 0.445	0,435	0.409	0.464		0.418	0.404	0.0214
40 2-Chloroethyl vinyl Ether 0.078	0.072	0.088	0.114		0.066	0.077	0.0170
*42 1,1-Dichloropropene 0.989	0.893	0.904	0.890		0.928	0.911	0.0394
*43 cis-1,3-Dichloropropene 0.820	0.762	0.727	0.719		0.683	0.708	0.0484
44 4-Methyl-2-pentanone 0.401	0.409	0.362	0.216		0.242	0.307	0.0753
46 Toluene 0.453	0.473	0.431	0.432	0.416	0.417	0.389	0.0274

VOAWCOMB.XLS

86 C	85 N	84 H	83	82		79 1,	78 n-	77 1,	76 1,		73 se	72 1,	71 te	70 1,	69 4-	68 2-			65 B	63 1,	62 ls	61 B	60 S	59 o-	58 m	57 E		55 C	53 1,	52 D	51 2-	50 T.	49 1,	48 1,	47 tr.
86 Cyclohexane	Naphthalene	84 Hexachlorobutadiene	1,2,3-Trichlorobenzene	1,2,4-Trichlorobenzene	1,2-Dibromo-3-Chloropropa	1,2-Dichlorobenzene	n-Butylbenzene	1,4-Dichlorobenzene	1,3-Dichlorobenzene	p-isopropyitoluene	sec-Butylbenzene	1,2,4-Trimethylbenzene	tert-Butylbenzene	1,3,5-Trimethylbenzene	4-Chlorotoluene	2-Chlorotoluene	n-Propylbenzene	1,1,2,2-Tetrachloroethane	Bromobenzene	1,2,3-Trichloropropane	Isopropylbenzene	Bromoform	Styrene	59 o-Xylene	m,p-Xylene	Ethylbenzene	1,1,1,2-Tetrachloroethane	Chlorobenzene	53 1,2-Dibromoethane	52 Dibromochloromethane	51 2-Hexanone	50 Tetrachloroethene	49 1,3-Dichloropropane	48 1,1,2-Trichloroethane	47 trans-1,3-Dichloropropene
0.316	0.327	0.496	0.374	0.370	0.327	0.388	0.309	0.514	0.407	0.296	0.285	0.308	0.296	0.308	0.341	0.320	0.297	0.462	0.395	0.476	0.257	0.279	0.303	0.298	0.737	0.443	0.471	0.531	0.401	0.339	0.424	0.663	0.433	0.612	0.303
0.331	0.287	0.472	0.370	0.349	0.284	0.421	0.300	0.548	0.410	0.285	0.260	0.268	0.289	0.257	0.318	0.303	0.295	0.545	0.389	0.556	0.267		0.292	0.303	0.693	0.418	0.454	0.522	0.411	0.352	0.416	0.501	0.444	0.519	
0.293	0.277	0.452	0.367	0.302	0.267	0.403	0.248	0.508	0.361		0.223	0.246	0.252	0.249	0.306	0.292	0.288	0.495	0.367	0.454					0.687			0.478		0.300	0.361		0.420		
0.337	0.273		0.352	0.341				0.572			0.258	0.274			0.304	0.283	0.269	0.525										0.563	0.434	0.363	0.388		0.439		0.306
0.293	0.248		0.337		-							0.228				0.303	•	0.512										0.521		0.318					0.303
0.296	0.253		,		•																														0.304
0.305										0.230						0.250			2 0.317	·		0.300							,			****	9 0.410		4 0.256
										0.0234						0.0250																			6 0.0190
																																			0.0596
	<u> </u>	7			<u></u>		<u></u>	7	<u> </u>	7	<u></u>				12	J)	ω		<u> </u>	<u></u>	ω	2		9	<u> </u>	<u> </u>	<u> </u>	U 1	51	30	<u>ာ</u> ၊	<u> </u>	<u> </u>	<u>51</u>	<u>57</u>

VOLATILE ORGANICS SAMPLE DATA

Volatile Analysis Report for Non-potable Water

Client: The Palmerton Group

Client Job Site:

Office Depot Plaza

Lab Project Number: 10-3320A

Client Job Number:

N/A

Lab Sample Number: 10896

Field Location:

MW-1 N/A

Date Sampled: Date Received: 08/11/2010 08/13/2010

Field ID Number: Sample Type:

Water

Date Analyzed:

08/19/2010

Compound	Results in ug / L
Acetone .	ND< 10.0
Benzene	ND< 0.700
Bromochloromethane	ND< 5.00
Bromodichloromethane	ND< 2.00
Bromoform	ND< 5.00
Bromomethane	ND< 2.00
2-Butanone	ND< 10.0
Carbon disulfide	ND< 5.00
Carbon Tetrachloride	ND< 2.00
Chlorobenzene	ND< 2.00
Chloroethane	ND< 2.00
Chloroform	ND< 2.00
Chloromethane	ND< 2.00
Cyclohexane	ND< 10.0
Dibromochloromethane	ND< 2.00
1,2-Dibromo-3-Chloropropane	ND< 10.0
1,2-Dibromoethane	ND< 2.00
1,2-Dichlorobenzene	ND< 2.00
1,3-Dichlorobenzene	ND< 2.00
1,4-Dichlorobenzene	ND< 2.00
Dichlorodifluoromethane	ND< 5.00
1,1-Dichloroethane	ND< 2.00
1,2-Dichloroethane	ND< 2.00
1,1-Dichloroethene	ND< 2.00
cis-1,2-Dichloroethene	ND< 2.00
trans-1,2-Dichloroethene	ND< 2.00

Compound	Results in ug / L
1,2-Dichloropropane	ND< 2.00
cis-1,3-Dichloropropene	ND< 2.00
trans-1,3-Dichloropropene	ND< 2.00
Ethylbenzene	ND< 2.00
2-Hexanone	ND< 5.00
Isopropylbenzene	ND< 5.00
Methyl acetate	ND< 2.00
Methyl tert-butyl Ether	ND< 2.00
Methylcyclohexane	ND< 2.00
Methylene chloride	ND< 5.00
4-Methyl-2-pentanone	ND< 5.00
Styrene	ND< 5.00
1,1,2,2-Tetrachloroethane	ND< 2.00
Tetrachloroethene	ND< 2.00
Toluene	ND< 2.00
Freon 113	ND< 2.00
1,2,3-Trichlorobenzene	ND< 5.00
1,2,4-Trichlorobenzene	ND< 5.00
1,1,1-Trichloroethane	ND< 2.00
1,1,2-Trichloroethane	ND< 2.00
Trichloroethene	ND< 2.00
Trichlorofluoromethane	ND< 2.00
Vinyl chloride	ND< 2.00
m,p-Xylene	ND< 2.00
o-Xylene	ND< 2.00

ELAP Number 10958

Method: EPA 8260B

Data File: V77671.D

Comments: ND denotes Non Detect ug / L = microgram per Liter

Signature:

Bruce Hoogesteger Technical Director
This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition 103320V1.XLS requirements upon receipt.

Inst

8/20 m

Data File: C:\msdchem\1\DATA\081910\V77671.D

DataAcq Meth:8260RUN.M

Acq On : 19 Aug 2010 7:11 pm

: WATER #10896 Sample

Misc ALS Vial

5ml

Sample Multiplier: 1

Quant Time: Aug 20 07:04:35 2010

Quant Method : C:\msdchem\1\METHODS\081110.M

Quant Title : 8260/624 Analysis

QLast Update: Thu Aug 12 15:27:25 2010 Response via: Initial Calibration

Integrator: RTE

Operator: Bill Brew

: Instrument #1

Compound	R.T.	QIon	Response	Conc Units Dev	(Min)
Internal Standards 1) Fluorobenzene 54) Chlorobenzene-d5 75) 1,4-Dichlorobenzene-d4	5.076 8.022 10.562	117	373525 273096 166140	50.00 ug/L 50.00 ug/L 50.00 ug/L	0.00 0.00 0.00
System Monitoring Compounds 26) Pentafluorobenzene Spiked Amount 50.000 29) 1,2-Dichloroethane-d4 Spiked Amount 50.000 45) Toluene-D8 Spiked Amount 50.000 64) 4-Bromofluorobenzene Spiked Amount 50.000	4.500 Range 70 4.777 Range 71 6.560 Range 70 9.282	- 123 65	Recove 85124 Recove 301129 Recove 155169	40.36 ug/L ery = 80.72% 44.57 ug/L ery = 89.14% 44.20 ug/L	0.00
Target Compounds 11) Acetone 14) Methylene chloride 44) 4-Methyl-2-pentanone 50) Tetrachloroethene 86) Cyclohexane	2.653 3.006 6.560 7.174 4.500	84 43 166	3268 1148 1070 1706 2611	Ov. Below Cal 2.6 Below Cal 2.6 0.67 ug/L # 0.72 ug/L 2.82 ug/L #) L 1

(#) = qualifier out of range (m) = manual integration (+) = signals summed

Operator: Bill Brew

: Instrument #1

Inst

Data File: C:\msdchem\1\DATA\081910\V77671.D

DataAcq Meth:8260RUN.M

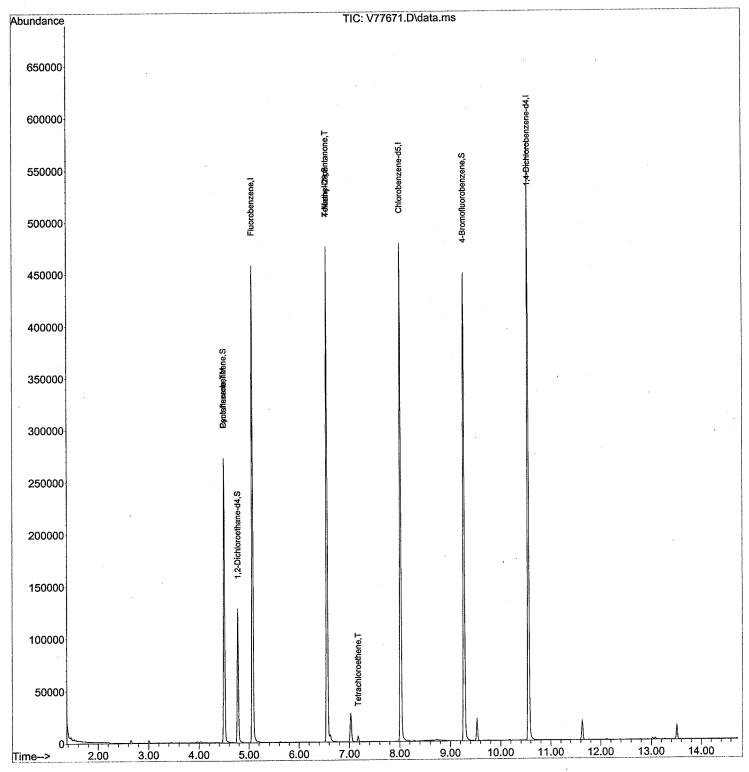
Acq On : 19 Aug 2010 7:11 pm

Sample : WATER #10896

Misc : 5ml

ALS Vial : 13 Sample Multiplier: 1

Quant Time: Aug 20 07:04:35 2010


Quant Method : C:\msdchem\1\METHODS\081110.M

Quant Title : 8260/624 Analysis

QLast Update : Thu Aug 12 15:27:25 2010

Response via : Initial Calibration

Integrator: RTE

Volatile Analysis Report for Non-potable Water

Client: The Palmerton Group

Client Job Site:

Office Depot Plaza

Lab Project Number: 10-3320A

Client Job Number:

N/A

Lab Sample Number: 10897

Field Location:

MW-12

Date Sampled: **Date Received:** 08/11/2010 08/13/2010

Field ID Number: Sample Type:

N/A Water

Date Analyzed:

08/19/2010

	-
Compound	Results in ug / L
Acetone	ND< 10.0
Benzene	ND< 0.700
Bromochloromethane	ND< 5.00
Bromodichloromethane	ND< 2.00
Bromoform	ND< 5.00
Bromomethane	ND< 2.00
2-Butanone	ND< 10.0
Carbon disulfide	ND< 5.00
Carbon Tetrachloride	ND< 2.00
Chlorobenzene	ND< 2.00
Chloroethane.	ND< 2.00
Chloroform	ND< 2.00
Chloromethane	ND< 2.00
Cyclohexane	ND< 10.0
Dibromochloromethane	ND< 2.00
1,2-Dibromo-3-Chloropropane	ND< 10.0
1,2-Dibromoethane	ND< 2.00
1,2-Dichlorobenzene	ND< 2.00
1,3-Dichlorobenzene	ND< 2.00
1,4-Dichlorobenzene	ND< 2.00
Dichlorodifluoromethane	ND< 5.00
1,1-Dichloroethane	ND< 2.00

Compound	Results in ug / L
1,2-Dichloropropane	ND< 2.00
cis-1,3-Dichloropropene	ND< 2.00
trans-1,3-Dichloropropene	ND< 2.00
Ethylbenzene	ND< 2.00
2-Hexanone	ND< 5.00
Isopropylbenzene	ND< 5.00
Methyl acetate	ND< 2.00
Methyl tert-butyl Ether	ND< 2.00
Methylcyclohexane	ND< 2.00
Methylene chloride	ND< 5.00
4-Methyl-2-pentanone	ND< 5.00
Styrene	ND< 5.00
1,1,2,2-Tetrachloroethane	ND< 2.00
Tetrachloroethene	J 1.02
Toluene	ND< 2.00
Freon 113	ND< 2.00
1,2,3-Trichlorobenzene	ND< 5.00
1,2,4-Trichlorobenzene	ND< 5.00
1,1,1-Trichloroethane	ND< 2.00
1,1,2-Trichloroethane	ND< 2.00
Trichloroethene	ND< 2.00
Trichlorofluoromethane	ND< 2.00
Vinyl chloride	ND< 2.00
m,p-Xylene	ND< 2.00
o-Xylene	ND< 2.00

ELAP Number 10958

1,2-Dichloroethane

1,1-Dichloroethene

cis-1,2-Dichloroethene

trans-1,2-Dichloroethene

Method: EPA 8260B

ND< 2.00

ND< 2.00

ND< 2.00

ND< 2.00

Data File: V77672.D

Comments: ND denotes Non Detect ug / L = microgram per Liter

Signature:

Bruce Hoogesteger: Technical Director

Inst

Operator: Bill Brew

: Instrument #1

Data File: C:\msdchem\1\DATA\081910\V77672.D

DataAcq Meth:8260RUN.M

: 19 Aug 2010 : WATER #10897 7:34 pm Acq On

Sample

Misc

ALS Vial

5ml

Sample Multiplier: 1

Quant Time: Aug 20 07:04:39 2010 Quant Method: C:\msdchem\1\METHODS\081110.M

Quant Title : 8260/624 Analysis QLast Update : Thu Aug 12 15:27:25 2010

Response via : Initial Calibration

Integrator: RTE

Compound	R.T.	QIon	Response	Conc Units Dev(M	lin)	
Internal Standards			2.45005	50 00 ···~/T	0.00	
 Fluorobenzene 	5.075		347097	~ · · · · · · · · · · · · · · · · · · ·		
54) Chlorobenzene-d5	8.016		251396		0.00	
75) 1,4-Dichlorobenzene-d4	10.556	152	148671	50.00 ug/L 0	0.00	
System Monitoring Compounds						
26) Pentafluorobenzene	4.504	168	158543	45.19 ug/F	0.00	
Spiked Amount 50.000	Range 70	- 123	Recove			
29) 1,2-Dichloroethane-d4		65		44.4ø ug/L 0	0.01	
Spiked Amount 50.000	Range 71	- 106	Recove	/	1	
45) Toluene-D8		98			00.	
Spiked Amount 50.000		- 113		1	/	
64) 4-Bromofluorobenzene		95		41.29 ug/L	0.00	
Spiked Amount 50.000	Range 67	- 107	Recove			
Target Compounds	ı			Qval	Lue	
11) Acetone	2.653	43	3367	Below Cal 210	87	
	3.010		1013	Below Cal 45	88	d
1 2 1	7.173	166	2264	1.02 kg/L	95	
(30) Tetrachloroethene	/.1/3	100	2204	(+:0:19/-		

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

Inst

Operator: Bill Brew

: Instrument #1

Data File: C:\msdchem\1\DATA\081910\V77672.D

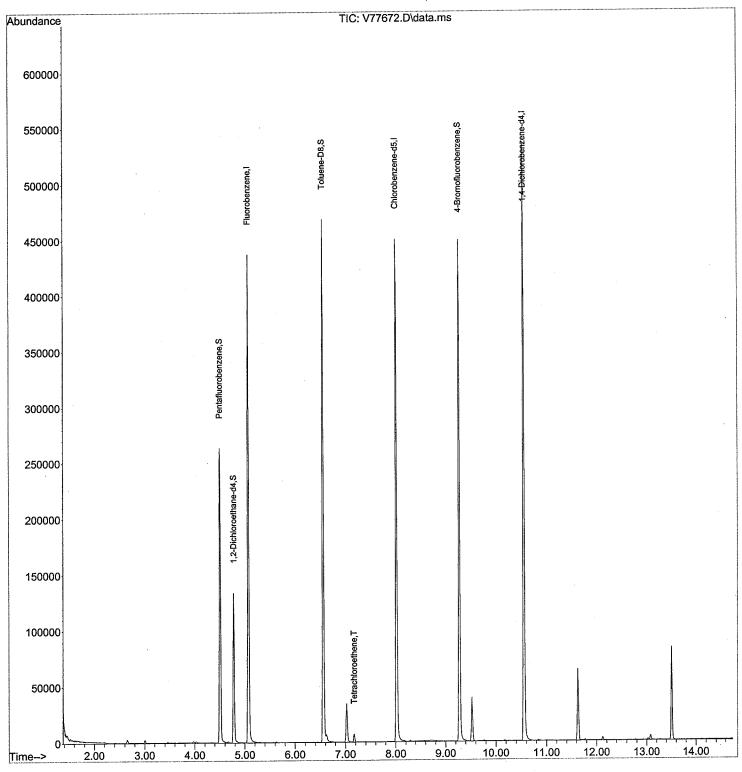
DataAcq Meth:8260RUN.M

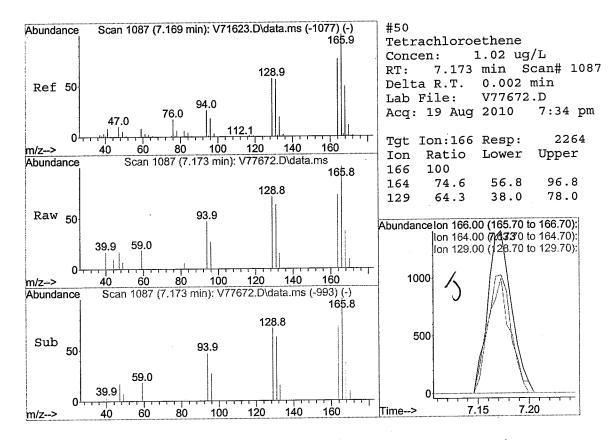
7:34 pm Acq On : 19 Aug 2010

: WATER #10897 Sample

: 5ml

Sample Multiplier: 1 ALS Vial: 14


Quant Time: Aug 20 07:04:39 2010 Quant Method : C:\msdchem\1\METHODS\081110.M


Quant Title : 8260/624 Analysis

QLast Update: Thu Aug 12 15:27:25 2010 Response via: Initial Calibration

Integrator: RTE

Misc

8/20 M

Volatile Analysis Report for Non-potable Water

Client: The Palmerton Group

Client Job Site:

Office Depot Plaza

Lab Project Number: 10-3320A

Client Job Number:

N/A

Lab Sample Number: 10898

Field Location:

MW-2

Date Sampled:

08/11/2010 08/13/2010

Field ID Number:

N/A

Date Received:

Sample Type:

Water

Date Analyzed:

08/20/2010

	/
Compound	Results in ug / L
Acetone	ND< 25.0
Benzene	ND< 1.75
Bromochloromethane	ND< 12.5
Bromodichloromethane	ND< 5.00
Bromoform	ND< 12.5
Bromomethane	ND< 5.00
2-Butanone	ND< 25.0
Carbon disulfide	ND< 12.5
Carbon Tetrachloride	ND< 5.00
Chlorobenzene	ND< 5.00
Chloroethane	ND< 5.00
Chloroform	ND< 5.00
Chloromethane	ND< 5.00
Cyclohexane	ND< 25.0
Dibromochloromethane	ND< 5.00
1,2-Dibromo-3-Chloropropane	ND< 25.0
1,2-Dibromoethane	ND< 5.00
1,2-Dichlorobenzene	ND< 5.00
1,3-Dichlorobenzene	ND< 5.00
1,4-Dichlorobenzene	ND< 5.00
Dichlorodifluoromethane	ND< 12.5
1,1-Dichloroethane	ND< 5.00
1,2-Dichloroethane	ND< 5.00
1,1-Dichloroethene	ND< 5.00
cis-1,2-Dichloroethene	ND< 5.00
trans-1,2-Dichloroethene	ND< 5.00

Compound	Results in ug / L
1,2-Dichloropropane	ND< 5.00
cis-1,3-Dichloropropene	ND< 5.00
trans-1,3-Dichloropropene	ND< 5.00
Ethylbenzene	ND< 5.00
2-Hexanone	ND< 12.5
Isopropylbenzene	ND< 12.5
Methyl acetate	ND< 5.00
Methyl tert-butyl Ether	ND< 5.00
Methylcyclohexane	ND< 5.00
Methylene chloride	ND< 12.5
4-Methyl-2-pentanone	ND< 12.5
Styrene	ND< 12.5
1,1,2,2-Tetrachloroethane	ND< 5.00
Tetrachloroethene	305
Toluene	ND< 5.00
Freon 113	ND< 5.00
1,2,3-Trichlorobenzene	ND< 12.5
1,2,4-Trichlorobenzene	ND< 12.5
1,1,1-Trichloroethane	ND< 5.00
1,1,2-Trichloroethane	ND< 5.00
Trichloroethene	J 3.87
Trichlorofluoromethane	ND< 5.00
Vinyl chloride	ND< 5.00
m,p-Xylene	ND< 5.00
o-Xylene	ND< 5.00

ELAP Number 10958

Method: EPA 8260B

Data File: V77706.D

Comments: ND denotes Non Detect ug / L = microgram per Liter

Signature:

Bruce Hoogesteger: Technical Director
This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition 103320V3.XLS requirements upon receipt.

AUMERGON 10 -5320-42-

8/23 m

Data File: C:\msdchem\1\DATA\082010\V77706.D

DataAcq Meth:8260RUN.M

Acq On : 20 Aug 2010 7:50 pm

WATER #10898 Sample

Compound

Internal Standards

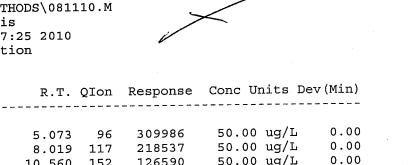
1) Fluorobenzene

54) Chlorobenzene-d5

Misc 2ml/

Sample Multiplier: 1 ALS Vial (: 22

Quant Time: Aug 23 07:19:08 2010


Quant Method : C:\msdchem\1\METHODS\081110.M

Quant Title : 8260/624 Analysis

QLast Update : Thu Aug 12 15:27:25 2010

Response via : Initial Calibration

Integrator: RTE

Operator: Bill Brew

Inst : Instrument #1

75) 1,4-Dichlorobe		10.560	152	126590	50.00 u	ıg/L	0.00
System Monitoring (26) Pentafluorober		4.508	168	124656	39.78∕0		٥٠.٥٥
Spiked Amount	50.000	Range 70	- 123	Recove	-1	19.56%	,),
29) 1,2-Dichloroe	thane-d4	4.775	65	79149		ıg/L	0.90
Spiked Amount	50.000	Range 71	- 106	Recove	- 4	90.66%	
45) Toluene-D8		6.557	98	248342	- /	-J/	0.90
Spiked Amount	50.000	Range 70	- 113	Recove		88.56%	./
64) 4-Bromofluoro	benzene	9.279	95	127589	4(5.41 u	ıg/L	Ø.00
Spiked Amount	50.000	Range 67	- 107	Recove	ry =	90.828	
Target Compounds					_	Qva	alue

5.073

8.019 117

96

Spiked Amount	50.000	Range	67 - 107	Recov	rery =	90.828
Target Compounds 11) Acetone 14) Methylene ch 33) Trichloroeth 44) 4-Methyl-2-p 48) 1,1,2-Trichl 50) Tetrachloroe 86) Cyclohexane	ene entanone oroethane	2.6 3.0 5.4 6.5 7.1 7.1 4.5	03 84 04 130 57 43 71 97 71 166	3503 1384 2497 832 1728 241580 2093	0.63 121 122.03	ug/L # 76 ug/L # 5 ug/L # 5
	•					

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

Operator: Bill Brew

Data File: C:\msdchem\1\DATA\082010\V77706.D

DataAcq Meth:8260RUN.M

: 20 Aug 2010 7:50 pm Acq On

: WATER #10898 Sample

: 22

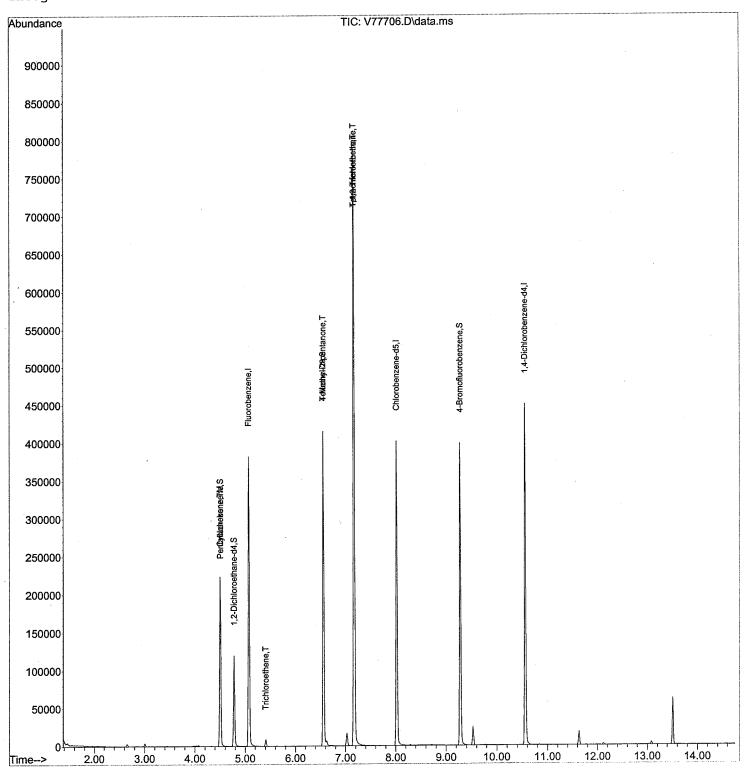
: 2ml

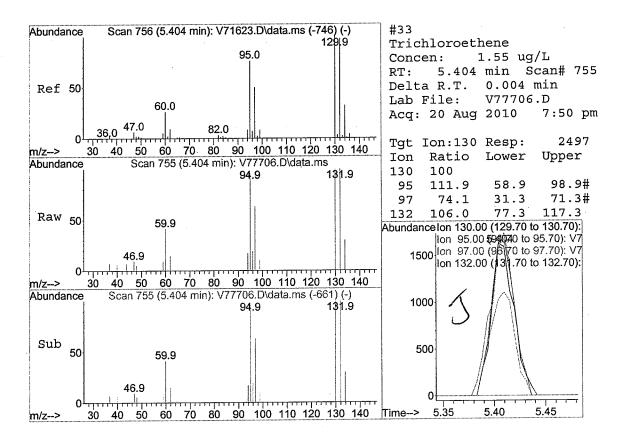
: Instrument #1 Inst

Quant Time: Aug 23 07:19:08 2010

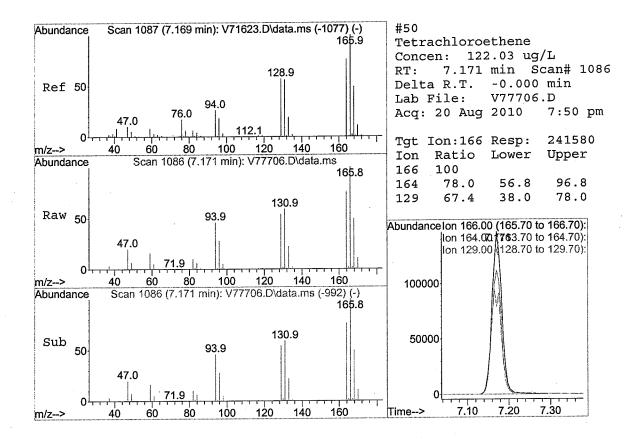
Quant Method : C:\msdchem\1\METHODS\081110.M

Sample Multiplier: 1


Quant Title : 8260/624 Analysis


QLast Update : Thu Aug 12 15:27:25 2010

Response via : Initial Calibration


Integrator: RTE

Misc ALS Vial

8/13 pm

8/23 m

Volatile Analysis Report for Non-potable Water

Client: The Palmerton Group

Client Job Site:

Office Depot Plaza

Lab Project Number: 10-3320A

Client Job Number:

N/A

Date Sampled:

Lab Sample Number: 10899

Field Location: Field ID Number: MW-11

Date Received:

08/11/2010 08/13/2010

Sample Type:

N/A Water

Date Analyzed:

08/19/2010

Compound	Results in ug / L
Acetone	ND< 10.0
Benzene	ND< 0.700
Bromochloromethane	ND< 5.00
Bromodichloromethane	ND< 2.00
Bromoform	ND< 5.00
Bromomethane	ND< 2.00
2-Butanone	ND< 10.0
Carbon disulfide	ND< 5.00
Carbon Tetrachloride	ND< 2.00
Chlorobenzene	ND< 2.00
Chloroethane	ND< 2.00
Chloroform	ND< 2.00
Chloromethane	ND< 2.00
Cyclohexane	ND< 10.0
Dibromochloromethane	ND< 2.00
1,2-Dibromo-3-Chloropropane	ND< 10.0
1,2-Dibromoethane	ND< 2.00
1,2-Dichlorobenzene	ND< 2.00
1,3-Dichlorobenzene	ND< 2.00
1,4-Dichlorobenzene	ND< 2.00
Dichlorodifluoromethane	ND< 5.00
1,1-Dichloroethane	ND< 2.00
1,2-Dichloroethane	ND< 2.00
1,1-Dichloroethene	ND< 2.00
cis-1,2-Dichloroethene	2.47

Compound	Results in ug / L
1,2-Dichloropropane	ND< 2.00
cis-1,3-Dichloropropene	ND< 2.00
trans-1,3-Dichloropropene	ND< 2.00
Ethylbenzene	ND< 2.00
2-Hexanone	ND< 5.00
Isopropylbenzene	ND< 5.00
Methyl acetate	ND< 2.00
Methyl tert-butyl Ether	ND< 2.00
Methylcyclohexane	ND< 2.00
Methylene chloride	ND< 5.00
4-Methyl-2-pentanone	ND< 5.00
Styrene	ND< 5.00
1,1,2,2-Tetrachloroethane	ND< 2.00
Tetrachloroethene	175
Toluene	ND< 2.00
Freon 113	ND< 2.00
1,2,3-Trichlorobenzene	ND< 5.00
1,2,4-Trichlorobenzene	ND< 5.00
1,1,1-Trichloroethane	ND< 2.00
1,1,2-Trichloroethane	ND< 2.00
Trichloroethene	17.2
Trichlorofluoromethane	ND< 2.00
Vinyl chloride	ND< 2.00
m,p-Xylene	ND< 2.00
o-Xylene	ND< 2.00

ELAP Number 10958

trans-1,2-Dichloroethene

Method: EPA 8260B

ND< 2.00

Data File: V77674.D

Comments: ND denotes Non Detect ug / L = microgram per Liter

Signature:

Operator: Bill Brew

Inst : Instrument #1

Data File: C:\msdchem\1\DATA\081910\V77674.D

DataAcq Meth:8260RUN.M

: 19 Aug 2010 8:21 pm Aca On

: WATER #10899 5ml Sample

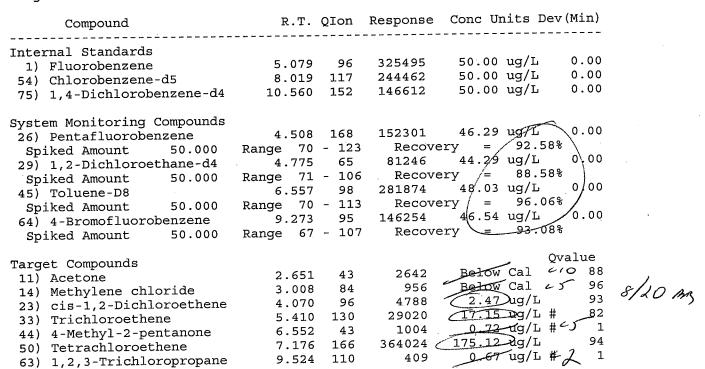
15

Misc ALS Vial

Sample Multiplier: 1

Quant Time: Aug 20 07:04:47 2010

Quant Method : C:\msdchem\1\METHODS\081110.M



Quant Title : 8260/624 Analysis

QLast Update : Thu Aug 12 15:27:25 2010

Response via : Initial Calibration

Integrator: RTE

(#) = qualifier out of range (m) = manual integration (+) = signals summed

Operator: Bill Brew

: Instrument #1

Data File: C:\msdchem\1\DATA\081910\V77674.D

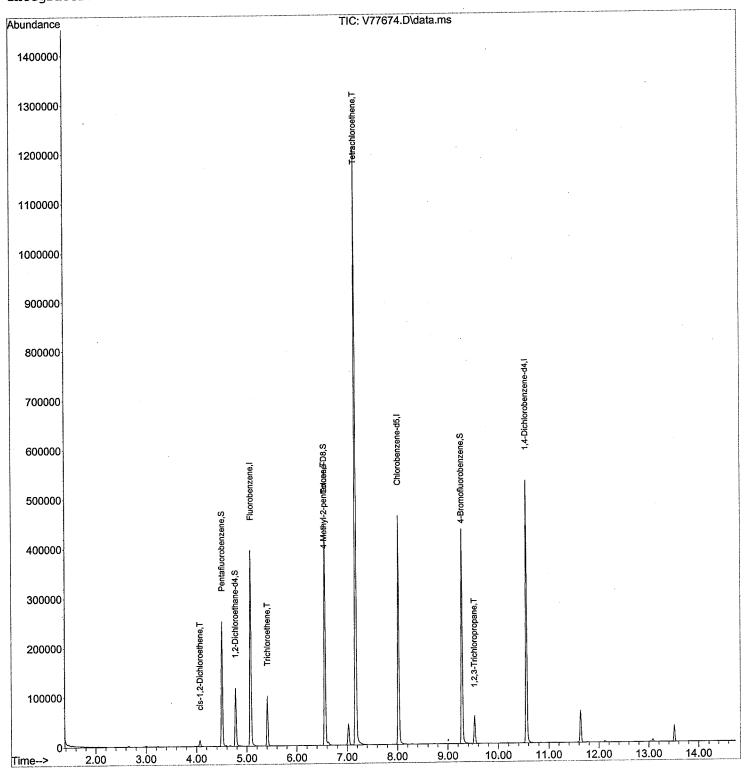
DataAcq Meth:8260RUN.M

Acq On : 19 Aug 2010 8:21 pm

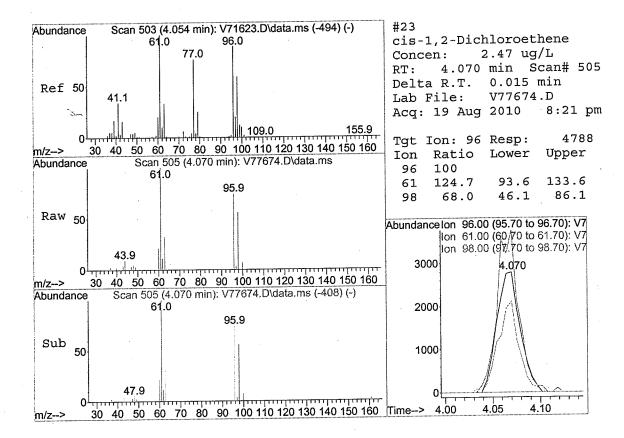
Sample : WATER #10899

Misc : 5ml

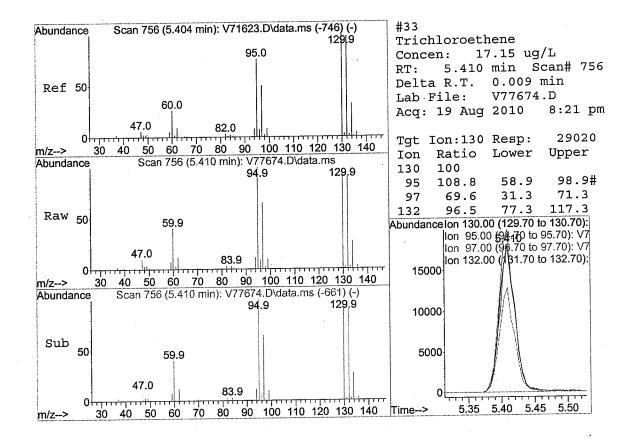
ALS Vial : 16 Sample Multiplier: 1

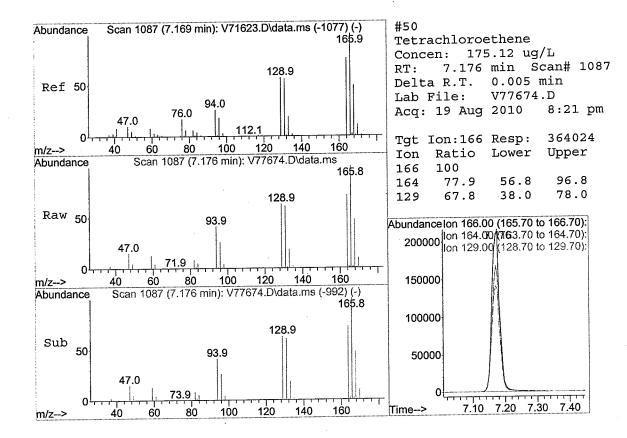

Quant Time: Aug 20 07:04:47 2010

Quant Method : C:\msdchem\1\METHODS\081110.M


Quant Title : 8260/624 Analysis

QLast Update : Thu Aug 12 15:27:25 2010


Response via : Initial Calibration


081110.M Fri Aug 20 07:04:48 2010 73VOAV2

8/20 m

8/20 m

8/20 M

Client: The Palmerton Group

Client Job Site:

Office Depot Plaza

Lab Project Number: 10-3320A

Client Job Number:

N/A

Lab Sample Number: 10900

Field Location:

MW-3

Date Sampled: **Date Received:** 08/11/2010 08/13/2010

Field ID Number:

N/A

08/19/2010

Sample Type:

Water

Date Analyzed:

Compound	Results in ug / L
Acetone	ND< 10.0
Benzene	ND< 0.700
Bromochloromethane	ND< 5.00
Bromodichloromethane	ND< 2.00
Bromoform	ND< 5.00
Bromomethane	ND< 2.00
2-Butanone	ND< 10.0
Carbon disulfide	ND< 5.00
Carbon Tetrachloride	ND< 2.00
Chlorobenzene	ND< 2.00
Chloroethane	ND< 2.00
Chloroform	ND< 2.00
Chloromethane	ND< 2.00
Cyclohexane	ND< 10.0
Dibromochloromethane	ND< 2.00
1,2-Dibromo-3-Chloropropane	ND< 10.0
1,2-Dibromoethane	ND< 2.00
1,2-Dichlorobenzene	ND< 2.00
1,3-Dichlorobenzene	ND< 2.00
1,4-Dichlorobenzene	ND< 2.00
Dichlorodifluoromethane	ND< 5.00
1,1-Dichloroethane	ND< 2.00
1,2-Dichloroethane	ND< 2.00
1,1-Dichloroethene	ND< 2.00
cis-1,2-Dichloroethene	ND< 2.00
trans-1,2-Dichloroethene	ND< 2.00
ELAD Number 10059	Metho

[a	Results in ug / L
Compound	ND< 2.00
1,2-Dichloropropane	,,,
cis-1,3-Dichloropropene	ND< 2.00
trans-1,3-Dichloropropene	ND< 2.00
Ethylbenzene	ND< 2.00
2-Hexanone	ND< 5.00
Isopropylbenzene	ND< 5.00
Methyl acetate	ND< 2.00
Methyl tert-butyl Ether	ND< 2.00
Methylcyclohexane	ND< 2.00
Methylene chloride	ND< 5.00
4-Methyl-2-pentanone	ND< 5.00
Styrene	ND< 5.00
1,1,2,2-Tetrachloroethane	ND< 2.00
Tetrachloroethene	21.4
Toluene	ND< 2.00
Freon 113	ND< 2.00
1,2,3-Trichlorobenzene	ND< 5.00
1,2,4-Trichlorobenzene	ND< 5.00
1,1,1-Trichloroethane	ND< 2.00
1,1,2-Trichloroethane	ND< 2.00
Trichloroethene	ND< 2.00
Trichlorofluoromethane	ND< 2.00
	ND< 2.00
Vinyl chloride	ND< 2.00
m,p-Xylene	ND< 2.00
o-Xylene	140 - 2.00

ELAP Number 10958

Method: EPA 8260B

Data File: V77675.D

Comments: ND denotes Non Detect ug / L = microgram per Liter

Signature:

Operator: Bill Brew

Inst : Instrument #1

Data File: C:\msdchem\1\DATA\081910\V77675.D

DataAcq Meth:8260RUN.M

: 19 Aug 2010 8:45 pm Acq On

: WATER #10900 Sample

5ml Misc

Sample Multiplier: 1 ALS Vial

Quant Time: Aug 20 07:04:51 2010

Quant Method : C:\msdchem\1\METHODS\081110.M

Quant Title : 8260/624 Analysis

QLast Update: Thu Aug 12 15:27:25 2010 Response via: Initial Calibration

Integrator: RTE

Compound	R.T.	QIon	Response	Conc Units De	ev(Min)
Internal Standards 1) Fluorobenzene 54) Chlorobenzene-d5 75) 1,4-Dichlorobenzene-d4	5.075 8.020 10.555	117	312528 252397 148548	50.00 ug/L 50.00 ug/L 50.00 ug/L	0.00 0.00 0.00
System Monitoring Compounds 26) Pentafluorobenzene Spiked Amount 50.000 29) 1,2-Dichloroethane-d4 Spiked Amount 50.000 45) Toluene-D8 Spiked Amount 50.000 64) 4-Bromofluorobenzene Spiked Amount 50.000	4.504 Range 70 4.776 Range 71 6.558 Range 70 9.280 Range 67	- 123 65 - 106 98 - 113 95	Recove 85247 Recove 287570 Recove 153119	48.50 ug/L ry = 97.0 51.19 ug/L ry = 102.3 47.19 ug/L	0% 00.00 8% 0.00
Target Compounds 11) Acetone 14) Methylene chloride 23) cis-1,2-Dichloroethene 33) Trichloroethene 44) 4-Methyl-2-pentanone 50) Tetrachloroethene	2.652 3.009 4.066 5.405 6.558 7.172	84 96 130 43	2385 896 992 1110 979 42701	Below Cal Below Cal 0.53 ug/L	# ∫ 80

(#) = qualifier out of range (m) = manual integration (+) = signals summed

Page: 1

8/20 mg

Operator: Bill Brew

: Instrument #1

Data File: C:\msdchem\1\DATA\081910\V77675.D

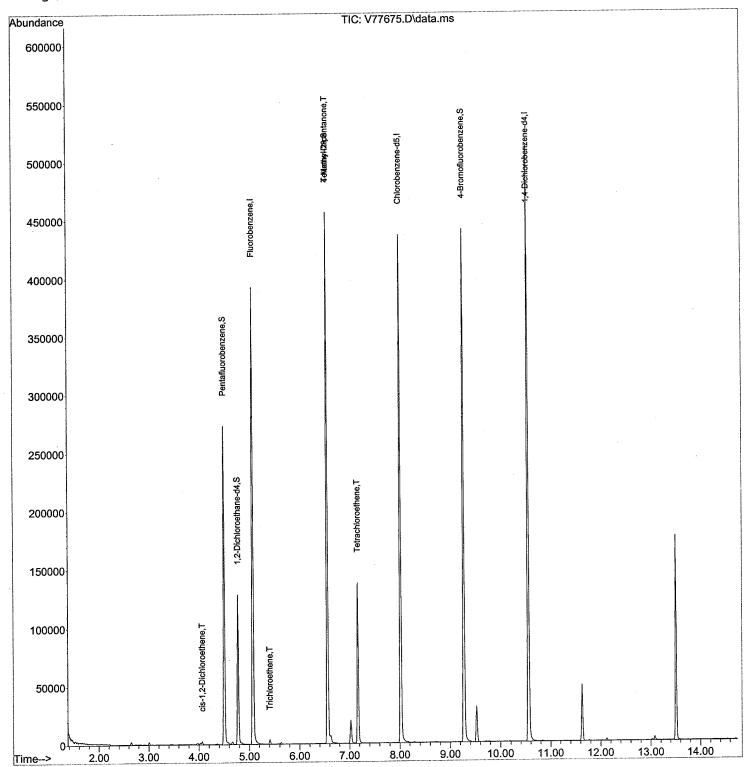
DataAcq Meth:8260RUN.M

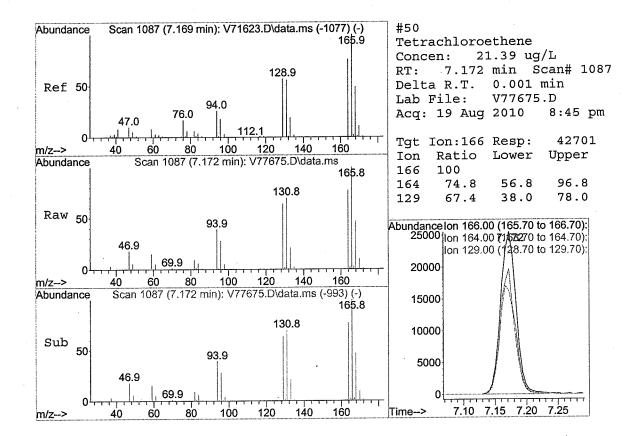
Acq On : 19 Aug 2010 8:45 pm

Sample : WATER #10900

Misc : 5ml

ALS Vial : 17 Sample Multiplier: 1


Quant Time: Aug 20 07:04:51 2010


Quant Method : C:\msdchem\1\METHODS\081110.M

Quant Title : 8260/624 Analysis

QLast Update : Thu Aug 12 15:27:25 2010

Response via : Initial Calibration

8/20 PB

Client: The Palmerton Group

Client Job Site:

Office Depot Plaza

Lab Project Number: 10-3320A

Client Job Number:

N/A

Date Sampled:

Lab Sample Number: 10901

Field Location:

MW-8 N/A

Date Received:

08/11/2010 08/13/2010

Field ID Number: Sample Type:

Water

08/19/2010

Date Analyzed:	
----------------	--

Compound	Results in ug / L
Acetone	ND< 10.0
Benzene	ND< 0.700
Bromochloromethane	ND< 5.00
Bromodichloromethane	ND< 2.00
Bromoform	ND< 5.00
Bromomethane	ND< 2.00
2-Butanone	ND< 10.0
Carbon disulfide	ND< 5.00
Carbon Tetrachloride	ND< 2.00
Chlorobenzene	ND< 2.00
Chloroethane	ND< 2.00
Chloroform	ND< 2.00
Chloromethane	ND< 2.00
Cyclohexane	ND< 10.0
Dibromochloromethane	ND< 2.00
1,2-Dibromo-3-Chloropropane	ND< 10.0
1,2-Dibromoethane	ND< 2.00
1,2-Dichlorobenzene	ND< 2.00
1,3-Dichlorobenzene	ND< 2.00
1,4-Dichlorobenzene	ND< 2.00
Dichlorodifluoromethane	ND< 5.00
1,1-Dichloroethane	ND< 2.00
1,2-Dichloroethane	ND< 2.00
1,1-Dichloroethene	ND< 2.00
cis-1,2-Dichloroethene	5.06
trans-1,2-Dichloroethene	ND< 2.00
ELAD Number 10059	Metho

Compound	Results in ug / L
1,2-Dichloropropane	ND< 2.00
cis-1,3-Dichloropropene	ND< 2.00
trans-1,3-Dichloropropene	ND< 2.00
Ethylbenzene	ND< 2.00
2-Hexanone	ND< 5.00
Isopropylbenzene	ND< 5.00
Methyl acetate	ND< 2.00
Methyl tert-butyl Ether	ND< 2.00
Methylcyclohexane	ND< 2.00
Methylene chloride	ND< 5.00
4-Methyl-2-pentanone	ND< 5.00
Styrene	ND< 5.00
1,1,2,2-Tetrachloroethane	ND< 2.00
Tetrachloroethene	60.8
Toluene	ND< 2.00
Freon 113	ND< 2.00
1,2,3-Trichlorobenzene	ND< 5.00
1,2,4-Trichlorobenzene	ND< 5.00
1,1,1-Trichloroethane	ND< 2.00
1,1,2-Trichloroethane	ND< 2.00
Trichloroethene	9.39
Trichlorofluoromethane	ND< 2.00
Vinyl chloride	3.16
m,p-Xylene	ND< 2.00
o-Xylene	ND< 2.00
1	

ELAP Number 10958

Method: EPA 8260B

Data File: V77676.D

Comments: ND denotes Non Detect ug / L = microgram per Liter

Signature:

Bruce Hoogesteger: Technical Director
This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition 103320V6.XLS requirements upon receipt.

Operator: Bill Brew

: Instrument #1

Data File: C:\msdchem\1\DATA\081910\V77676.D

DataAcq Meth:8260RUN.M

9:09 pm : 19 Aug 2010 Acq On

: MATER #10901 Sample

Misc ALS Vial 5ml

18 Sample Multiplier: 1

Quant Time: Aug 20 07:04:55 2010

Quant Method : C:\msdchem\1\METHODS\081110.M

Quant Title : 8260/624 Analysis QLast Update : Thu Aug 12 15:27:25 2010

Response via : Initial Calibration

Integrator: RTE

Compound	R.T.	QIon	Response	Conc Units De	v(Min)
Internal Standards 1) Fluorobenzene 54) Chlorobenzene-d5 75) 1,4-Dichlorobenzene-d4	5.075 8.015 10.561	96 117 152	308957 257246 152827	50.00 ug/L 50.00 ug/L 50.00 ug/L	0.00
System Monitoring Compounds 26) Pentafluorobenzene Spiked Amount 50.000 29) 1,2-Dichloroethane-d4 Spiked Amount 50.000 45) Toluene-D8 Spiked Amount 50.000 64) 4-Bromofluorobenzene Spiked Amount 50.000	4.504 Range 70 4.776 Range 71 6.558 Range 70 9.280 Range 67	65 - 106 98 - 113 95	Recove 81782 Recove 280496 Recove 150566	47.03 ug/L ry = 94.06 50.47 ug/L ry = 100.94 45.53 ug/L	0.01
Target Compounds 4) Vinyl chloride 7) Trichlorofluoromethane 11) Acetone 14) Methylene chloride 18) trans-1,2-Dichloroethene 23) cis-1,2-Dichloroethene 25) Chloroform 33) Trichloroethene 44) 4-Methyl-2-pentanone 50) Tetrachloroethene 63) 1,2,3-Trichloropropane	1.670 2.209 2.652 3.004 e 3.233 4.066 4.333 5.406 6.558 7.172 9.526	61 96 83 130 43	4878 1711 3193 1153 1022 9300 1770 15073 1109 119870 327	3.16 ug/L 0.67 ug/L Below Cal 0.64 ug/L 5.06 ug/L 0.39 ug/L 0.84 ug/L 0.75 ug/L 0.75 ug/L	94 2 81 93 97 84 1 94

(#) = qualifier out of range (m) = manual integration (+) = signals summed

8/10 BB

Operator: Bill Brew

: Instrument #1

Data File: C:\msdchem\1\DATA\081910\V77676.D

Quantitation Report

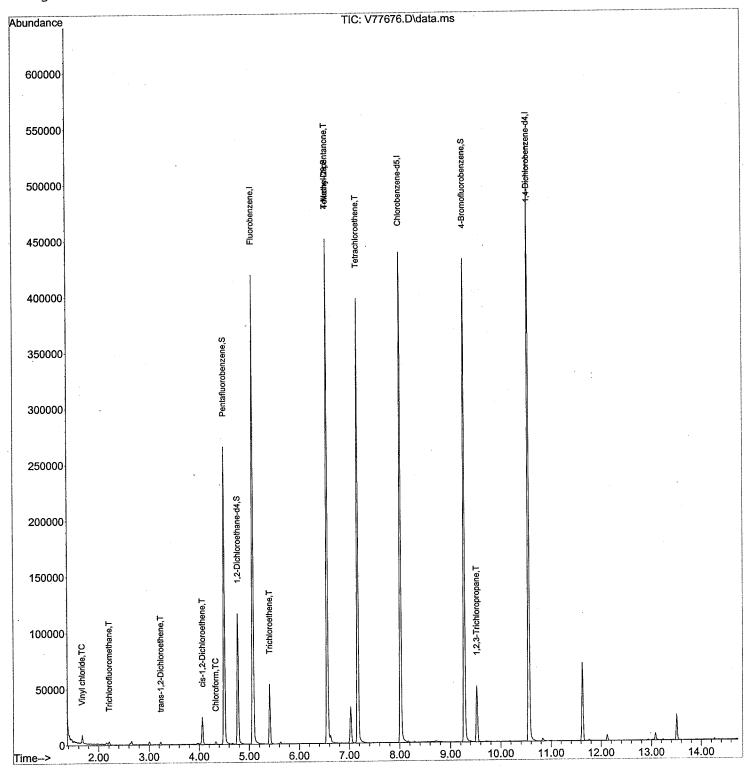
DataAcq Meth:8260RUN.M

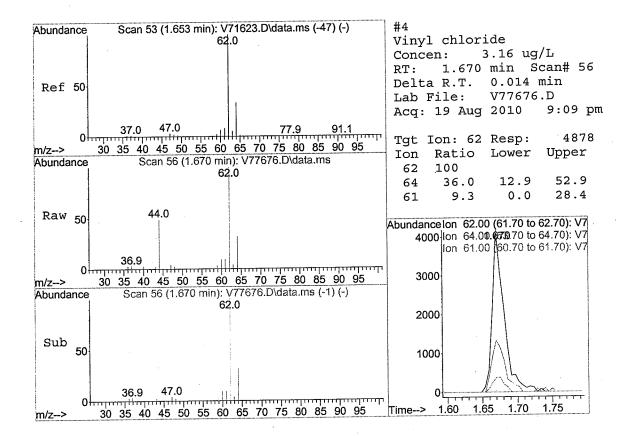
: 19 Aug 2010 9:09 pm Acq On

: WATER #10901 Sample

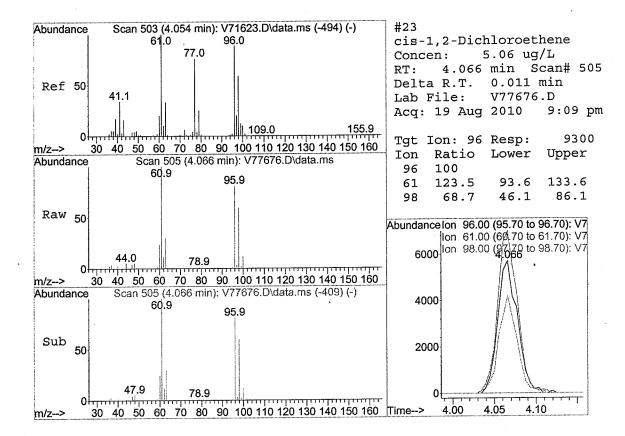
: 5ml Misc

Sample Multiplier: 1 ALS Vial : 18

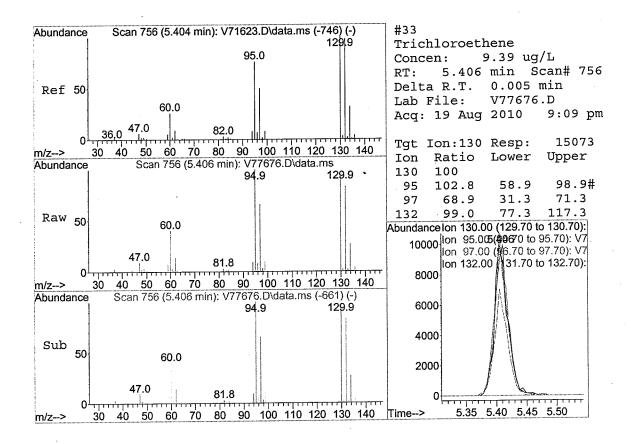

Quant Time: Aug 20 07:04:55 2010

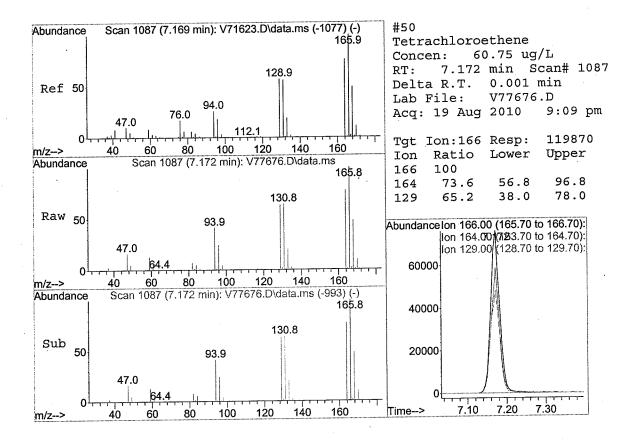

Quant Method : C:\msdchem\1\METHODS\081110.M

Quant Title : 8260/624 Analysis


QLast Update : Thu Aug 12 15:27:25 2010

Response via : Initial Calibration




5/20 MS

8/20 Ms

8/20 ms

8/20 mB

Client: The Palmerton Group

Client Job Site:

Office Depot Plaza

Lab Project Number: 10-3320A

Client Job Number:

N/A

Lab Sample Number: 10902

Field Location:

MW-13

Date Sampled: Date Received:

08/12/2010 08/13/2010

Field ID Number:

N/A

Sample Type:

Water

Date Analyzed:

08/19/2010

Compound Results in ug / L Acetone ND< 10.0 Benzene ND< 0.700 Bromochloromethane ND< 5.00 Bromodichloromethane ND< 2.00 Bromoform ND< 5.00 Bromomethane ND< 2.00 2-Butanone ND< 10.0 Carbon disulfide ND< 5.00 Carbon Tetrachloride ND< 2.00 Chlorobenzene ND< 2.00 Chlorobenzene ND< 2.00 Chloroform ND< 2.00 Chloroform ND< 2.00 Cyclohexane ND< 10.0 Dibromochloromethane ND< 2.00 1,2-Dibromo-3-Chloropropane ND< 10.0 1,2-Dichlorobenzene ND< 2.00 1,3-Dichlorobenzene ND< 2.00 1,4-Dichlorobenzene ND< 2.00 1,1-Dichloroethane ND< 2.00 1,2-Dichloroethane ND< 2.00 1,1-Dichloroethene ND< 2.00 1,1-Dichloroethene ND< 2.00 1,1-Dichloroethene ND< 2.00		
Benzene ND 0.700 Bromochloromethane ND< 5.00 Bromodichloromethane ND 2.00 Bromoform ND 5.00 Bromomethane ND 2.00 2-Butanone ND 10.0 Carbon disulfide ND 5.00 Carbon Tetrachloride ND 2.00 Chlorobenzene ND 2.00 Chlorobenzene ND 2.00 Chloroform ND 2.00 Chloroform ND 2.00 Chloromethane ND 2.00 Cyclohexane ND 10.0 Dibromochloromethane ND 2.00 1,2-Dibromoethane ND 2.00 1,2-Dichlorobenzene ND 2.00 1,4-Dichloroethane ND 2.00 1,1-Dichloroethane ND 2.00 1,1-Dichloroethene ND 2.00 1,1-Dichloroethene ND 2.00	Compound	Results in ug / L
Bromochloromethane ND 5.00 Bromodichloromethane ND 2.00 Bromoform ND 5.00 Bromomethane ND 2.00 2-Butanone ND 10.0 Carbon disulfide ND 5.00 Carbon Tetrachloride ND 2.00 Chlorobenzene ND 2.00 Chlorobenzene ND 2.00 Chloroform ND 2.00 Chloroform ND 2.00 Chloromethane ND 2.00 Cyclohexane ND 10.0 Dibromochloromethane ND 2.00 1,2-Dibromo-3-Chloropropane ND 10.0 1,2-Dichlorobenzene ND 2.00 1,3-Dichlorobenzene ND 2.00 1,4-Dichlorobenzene ND 2.00 1,1-Dichloroethane ND 2.00 1,2-Dichloroethane ND 2.00 1,1-Dichloroethene ND 2.00 1,1-Dichloroethene	Acetone	
Bromodichloromethane ND< 2.00 Bromoform ND< 5.00	Benzene	ND< 0.700
Bromoform ND< 5.00 Bromomethane ND< 2.00	Bromochloromethane	ND< 5.00
Bromomethane	Bromodichloromethane	ND< 2.00
2-Butanone ND< 10.0	Bromoform	ND< 5.00
Carbon disulfide ND< 5.00 Carbon Tetrachloride ND< 2.00	Bromomethane	ND< 2.00
Carbon Tetrachloride ND< 2.00 Chlorobenzene ND< 2.00	2-Butanone	ND< 10.0
Chlorobenzene ND 2.00 Chloroethane ND 2.00 Chloroform ND 2.00 Chloromethane ND 2.00 Cyclohexane ND 10.0 Dibromochloromethane ND 2.00 1,2-Dibromo-3-Chloropropane ND 10.0 1,2-Dibromoethane ND 2.00 1,2-Dichlorobenzene ND 2.00 1,3-Dichlorobenzene ND 2.00 1,4-Dichloroethane ND 5.00 1,1-Dichloroethane ND 2.00 1,2-Dichloroethane ND 2.00 1,1-Dichloroethene ND 2.00 cis-1,2-Dichloroethene ND 2.00	Carbon disulfide	ND< 5.00
Chloroethane ND 2.00 Chloroform ND 2.00 Chloromethane ND 2.00 Cyclohexane ND 10.0 Dibromochloromethane ND 2.00 1,2-Dibromo-3-Chloropropane ND 10.0 1,2-Dibromoethane ND 2.00 1,2-Dichlorobenzene ND 2.00 1,3-Dichlorobenzene ND 2.00 1,4-Dichlorobenzene ND 5.00 1,1-Dichloroethane ND 2.00 1,2-Dichloroethane ND 2.00 1,1-Dichloroethene ND 2.00 cis-1,2-Dichloroethene ND 2.00	Carbon Tetrachloride	ND< 2.00
Chloroform ND< 2.00 Chloromethane ND< 2.00	Chlorobenzene	ND< 2.00
Chloromethane Cyclohexane Dibromochloromethane 1,2-Dibromo-3-Chloropropane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Dichlorodifluoromethane 1,1-Dichloroethane 1,2-Dichloroethane ND< 2.00	Chloroethane	ND< 2.00
Cyclohexane Dibromochloromethane 1,2-Dibromo-3-Chloropropane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Dichlorodifluoromethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichloroethane ND< 2.00 1,1-Dichloroethane ND< 2.00 1,1-Dichloroethane ND< 2.00 1,1-Dichloroethane ND< 2.00 1,1-Dichloroethane ND< 2.00 Cis-1,2-Dichloroethane ND< 2.00	Chloroform	ND< 2.00
Dibromochloromethane ND< 2.00 1,2-Dibromo-3-Chloropropane ND< 10.0 1,2-Dibromoethane ND< 2.00 1,2-Dichlorobenzene ND< 2.00 1,3-Dichlorobenzene ND< 2.00 1,4-Dichlorobenzene ND< 2.00 Dichlorodifluoromethane ND< 5.00 1,1-Dichloroethane ND< 2.00 1,2-Dichloroethane ND< 2.00 1,1-Dichloroethane ND< 2.00 1,1-Dichloroethane ND< 2.00 1,1-Dichloroethene ND< 2.00 1,1-Dichloroethene ND< 2.00 1,1-Dichloroethene ND< 2.00	Chloromethane	ND< 2.00
1,2-Dibromo-3-Chloropropane 1,2-Dibromoethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Dichlorodifluoromethane 1,1-Dichloroethane 1,2-Dichloroethane 1,1-Dichloroethene ND< 2.00	Cyclohexane	ND< 10.0
1,2-DibromoethaneND2.001,2-DichlorobenzeneND2.001,3-DichlorobenzeneND2.001,4-DichlorobenzeneND2.00DichlorodifluoromethaneND5.001,1-DichloroethaneND2.001,2-DichloroetheneND2.001,1-DichloroetheneND2.00cis-1,2-DichloroetheneND2.00	Dibromochloromethane	ND< 2.00
1,2-DichlorobenzeneND< 2.00	1,2-Dibromo-3-Chloropropane	ND< 10.0
1,3-DichlorobenzeneND< 2.001,4-DichlorobenzeneND< 2.00	1,2-Dibromoethane	ND< 2.00
1,4-DichlorobenzeneND2.00DichlorodifluoromethaneND5.001,1-DichloroethaneND2.001,2-DichloroethaneND2.001,1-DichloroetheneND2.00cis-1,2-DichloroetheneND2.00	1,2-Dichlorobenzene	ND< 2.00
Dichlorodifluoromethane 1,1-Dichloroethane 1,2-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethene ND< 2.00 ND< 2.00 ND< 2.00 ND< 2.00 Cis-1,2-Dichloroethene ND< 2.00	1,3-Dichlorobenzene	ND< 2.00
1,1-Dichloroethane ND< 2.00 1,2-Dichloroethane ND< 2.00 1,1-Dichloroethene ND< 2.00 cis-1,2-Dichloroethene ND< 2.00	1,4-Dichlorobenzene	ND< 2.00
1,2-Dichloroethane ND< 2.00 1,1-Dichloroethene ND< 2.00 cis-1,2-Dichloroethene ND< 2.00	Dichlorodifluoromethane	ND< 5.00
1,1-Dichloroethene ND< 2.00 cis-1,2-Dichloroethene ND< 2.00	1,1-Dichloroethane	ND< 2.00
cis-1,2-Dichloroethene ND< 2.00	1,2-Dichloroethane	ND< 2.00
Cio 1,2 Diomorocarono	1,1-Dichloroethene	ND< 2.00
trans_1.2-Dichloroethene ND< 2.00	cis-1,2-Dichloroethene	ND< 2.00
trails-1,2-Dictriorocurone 145 Elec	trans-1,2-Dichloroethene	ND< 2.00

Compound	Results in ug / L
1,2-Dichloropropane	ND< 2.00
cis-1,3-Dichloropropene	ND< 2.00
trans-1,3-Dichloropropene	ND< 2.00
Ethylbenzene	ND< 2.00
2-Hexanone	ND< 5.00
Isopropylbenzene	ND< 5.00
Methyl acetate	ND< 2.00
Methyl tert-butyl Ether	ND< 2.00
Methylcyclohexane	ND< 2.00
Methylene chloride	ND< 5.00
4-Methyl-2-pentanone	ND< 5.00
Styrene	ND< 5.00
1,1,2,2-Tetrachloroethane	ND< 2.00
Tetrachloroethene	ND< 2.00
Toluene	ND< 2.00
Freon 113	ND< 2.00
1,2,3-Trichlorobenzene	ND< 5.00
1,2,4-Trichlorobenzene	ND< 5.00
1,1,1-Trichloroethane	ND< 2.00
1,1,2-Trichloroethane	ND< 2.00
Trichloroethene	ND< 2.00
Trichlorofluoromethane	ND< 2.00
Vinyl chloride	ND< 2.00
m,p-Xylene	ND< 2.00
o-Xylene	ND< 2.00

ELAP Number 10958

Method: EPA 8260B

Data File: V77677.D

Comments: ND denotes Non Detect ug / L = microgram per Liter

Signature:

Bruce Hoogesteger: Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition 103320V7.XLS requirements upon receipt.

Operator: Bill Brew

YBM

Inst : Instrument #1

Data File: C:\msdchem\1\DATA\081910\V77677.D

DataAcq Meth:8260RUN.M

: 19 Aug 2010 Acq On

WATER #10902

_5m1/ 19

Sample Multiplier: 1

9:32 pm

Quant Time: Aug 20 07:04:59 2010

Quant Method : C:\msdchem\1\METHODS\081110.M

Quant Title : 8260/624 Analysis QLast Update : Thu Aug 12 15:27:25 2010 Response via : Initial Calibration

Integrator: RTE

Sample

ALS Vial

Misc

Compound	R.T.	QIon	Response	Conc Units Dev(Min)
Internal Standards 1) Fluorobenzene 54) Chlorobenzene-d5 75) 1,4-Dichlorobenzene-d4	5.072 8.023 10.558	117		50.00 ug/L 0.00 50.00 ug/L 0.00 50.00 ug/L 0.00
System Monitoring Compounds 26) Pentafluorobenzene Spiked Amount 50.000 29) 1,2-Dichloroethane-d4 Spiked Amount 50.000 45) Toluene-D8 Spiked Amount 50.000 64) 4-Bromofluorobenzene Spiked Amount 50.000	6.561 Range 70 9.282	65 - 106 98 - 113 95	Recove 84694 Recove 293191 Recove	46.15 ug/L 0.01 ery = 92.30% 49.98 ug/L 0.00 ery = 99.96% 45.52 ug/L 0.00
Target Compounds 11) Acetone 14) Methylene chloride 44) 4-Methyl-2-pentanone 50) Tetrachloroethene 52) Dibromochloromethane 63) 1,2,3-Trichloropropane 86) Cyclohexane	2.649 3.006 6.555 7.169 7.174 9.517 4.501	84 43 166 129 110		Ovalue Below Cal -/ 85 Below Cal -/ 89 0.6% ug/L # 1 0.82 ug/L -/ 90 0.76 ug/L # 20 0.87 ug/L # 1 0.90 ug/L # 76

(#) = qualifier out of range (m) = manual integration (+) = signals summed

8/20 M

Operator: Bill Brew

: Instrument #1

Data File: C:\msdchem\1\DATA\081910\V77677.D

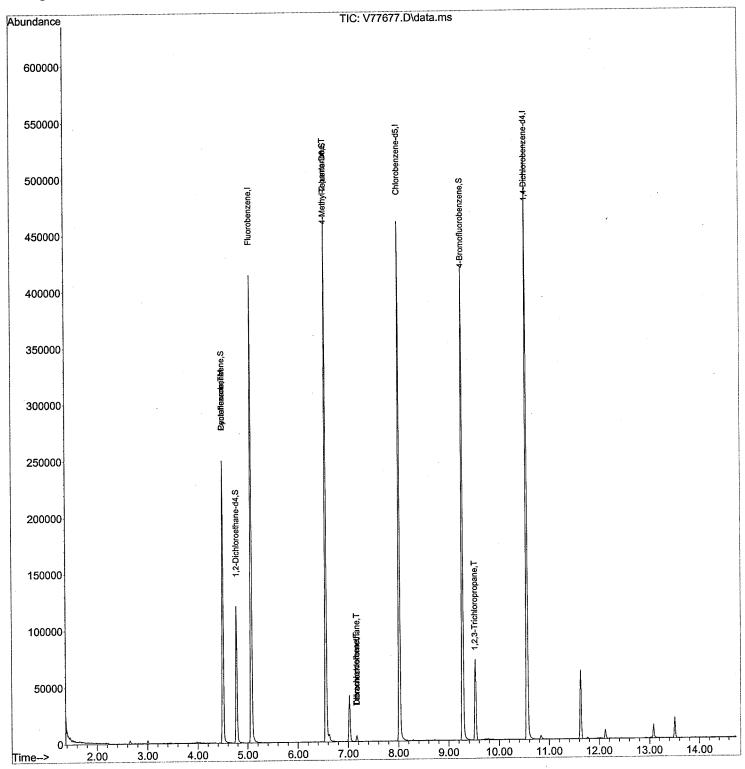
DataAcq Meth:8260RUN.M

Acq On : 19 Aug 2010 9:32 pm

Sample : WATER #10902

Misc : 5ml

ALS Vial : 19 Sample Multiplier: 1


Quant Time: Aug 20 07:04:59 2010

Quant Method : C:\msdchem\1\METHODS\081110.M

Quant Title : 8260/624 Analysis

QLast Update : Thu Aug 12 15:27:25 2010

Response via : Initial Calibration

Page: 2

Client: The Palmerton Group

Client Job Site:

Office Depot Plaza

Lab Project Number: 10-3320A

Lab Sample Number: 10903

Client Job Number:

N/A

Date Sampled:

Field Location: Field ID Number: MW-4 N/A

Date Received:

08/12/2010 08/13/2010

Water Sample Type:

Date Analyzed:

08/20/2010

Compound	Results in ug / L
Acetone	ND< 100

Acetone	ND< 100
Benzene	ND< 7.00
Bromochloromethane	ND< 50.0
Bromodichloromethane	ND< 20.0
Bromoform	ND< 50.0
Bromomethane	ND< 20.0
2-Butanone	ND< 100
Carbon disulfide	ND< 50.0
Carbon Tetrachloride	ND< 20.0
Chlorobenzene	ND< 20.0
Chloroethane	ND< 20.0
Chloroform	ND< 20.0
Chloromethane	ND< 20.0
Cyclohexane	ND< 100
Dibromochloromethane	ND< 20.0
1,2-Dibromo-3-Chloropropane	ND< 100
1,2-Dibromoethane	ND< 20.0
1,2-Dichlorobenzene	ND< 20.0
1,3-Dichlorobenzene	ND< 20.0
1,4-Dichlorobenzene	ND< 20.0
Dichlorodifluoromethane	ND< 50.0
1,1-Dichloroethane	ND< 20.0

Compound	Results in ug / L
1,2-Dichloropropane	ND< 20.0
cis-1,3-Dichloropropene	ND< 20.0
trans-1,3-Dichloropropene	ND< 20.0
Ethylbenzene	ND< 20.0
2-Hexanone	ND< 50.0
Isopropylbenzene	ND< 50.0
Methyl acetate	ND< 20.0
Methyl tert-butyl Ether	ND< 20.0
Methylcyclohexane	ND< 20.0
Methylene chloride	ND< 50.0
4-Methyl-2-pentanone	ND< 50.0
Styrene	ND< 50.0
1,1,2,2-Tetrachloroethane	ND< 20.0
Tetrachloroethene	1,170
Toluene	ND< 20.0
Freon 113	ND< 20.0
1,2,3-Trichlorobenzene	ND< 50.0
1,2,4-Trichlorobenzene	ND< 50.0
1,1,1-Trichloroethane	ND< 20.0
1,1,2-Trichloroethane	ND< 20.0
Trichloroethene	ND< 20.0
Trichlorofluoromethane	ND< 20.0
Vinyl chloride	ND< 20.0
m,p-Xylene	ND< 20.0
o-Xylene	ND< 20.0

ELAP Number 10958

cis-1,2-Dichloroethene trans-1,2-Dichloroethene

1,2-Dichloroethane 1,1-Dichloroethene

Method: EPA 8260B

ND< 20.0

ND< 20.0 ND< 20.0

ND< 20.0

Data File: V77707.D

Comments: ND denotes Non Detect ug / L = microgram per Liter

Signature:

Operator: Bill Brew

Inst : Instrument #1

Data File: C:\msdchem\1\DATA\082010\V77707.D

DataAcq Meth:8260RUN.M

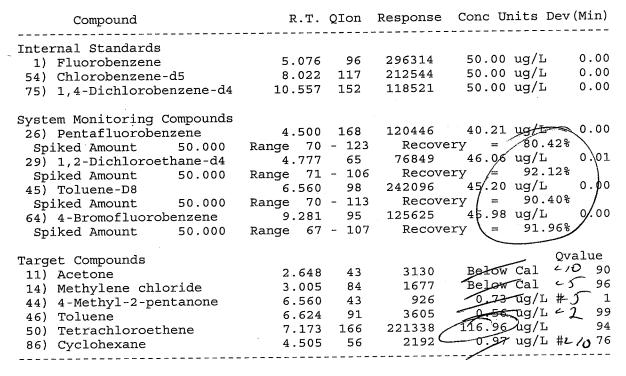
Acq On : 20 Aug 2010 8:14 pm

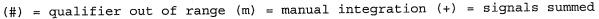
Sample WATER #10903

Misc : 500uL

ALS Vial : 23 Sample Multiplier: 1

Quant Time: Aug 23 07:19:12 2010


Quant Method : C:\msdchem\1\METHODS\081110.M


Quant Title : 8260/624 Analysis

QLast Update : Thu Aug 12 15:27:25 2010

Response via : Initial Calibration

Integrator: RTE

8/23 m

Operator: Bill Brew

: Instrument #1

Data File: C:\msdchem\1\DATA\082010\V77707.D

DataAcq Meth:8260RUN.M

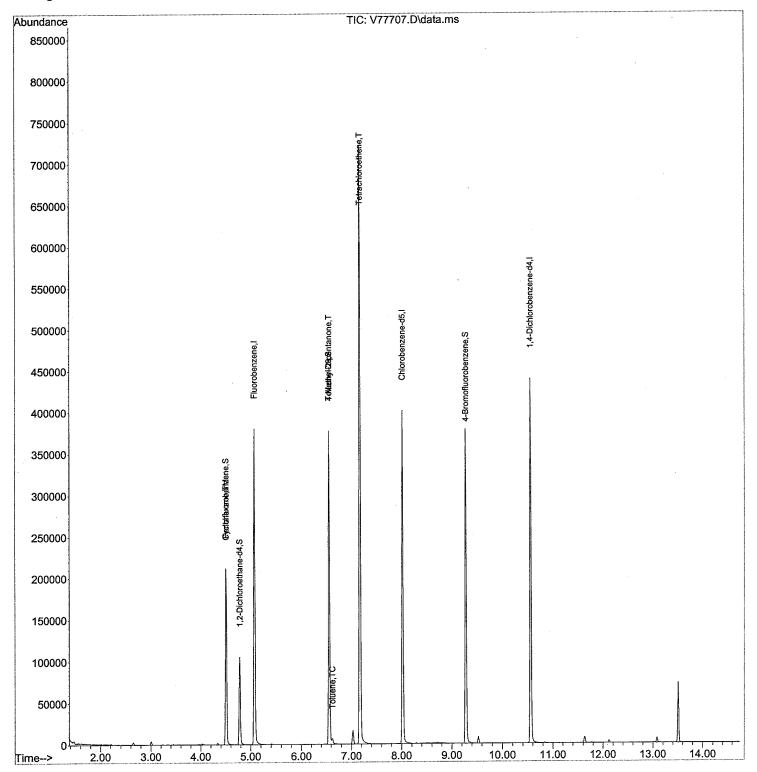
Acq On : 20 Aug 2010 8:14 pm

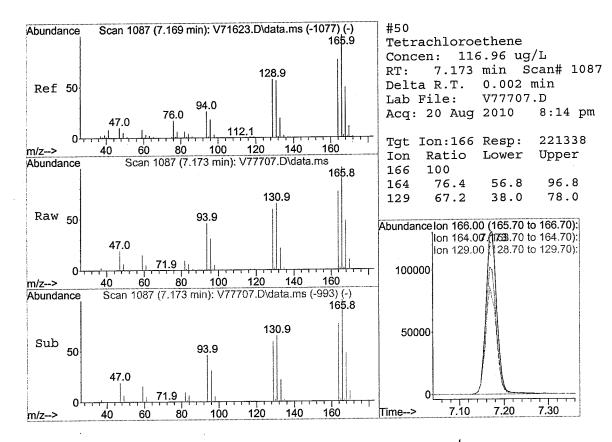
: WATER #10903

Misc : 500uL

Sample

ALS Vial : 23 Sample Multiplier: 1


Quant Time: Aug 23 07:19:12 2010


Quant Method : C:\msdchem\1\METHODS\081110.M

Quant Title : 8260/624 Analysis

QLast Update : Thu Aug 12 15:27:25 2010

Response via : Initial Calibration

8/23 pm

Client: The Palmerton Group

Client Job Site:

Office Depot Plaza

Lab Project Number: 10-3320A

Client Job Number:

N/A

Lab Sample Number: 10904

Field Location:

MW-5

Date Sampled: Date Received:

08/12/2010 08/13/2010

Field ID Number: Sample Type:

N/A Water

Date Analyzed:

08/20/2010

Compound	Results in ug / L
Acetone	ND< 10.0
Benzene	ND< 0.700
Bromochloromethane	ND< 5.00
Bromodichloromethane	ND< 2.00
Bromoform	ND< 5.00
Bromomethane	ND< 2.00
2-Butanone	ND< 10.0
Carbon disulfide	ND< 5.00
Carbon Tetrachloride	ND< 2.00
Chlorobenzene	ND< 2.00
Chloroethane	ND< 2.00
Chloroform	ND< 2.00
Chloromethane	ND< 2.00
Cyclohexane	ND< 10.0
Dibromochloromethane	ND< 2.00
1,2-Dibromo-3-Chloropropane	ND< 10.0
1,2-Dibromoethane	ND< 2.00
1,2-Dichlorobenzene	ND< 2.00
1,3-Dichlorobenzene	ND< 2.00
1,4-Dichlorobenzene	ND< 2.00

Compound	Results in ug / L
1,2-Dichloropropane	ND< 2.00
cis-1,3-Dichloropropene	ND< 2.00
trans-1,3-Dichloropropene	ND< 2.00
Ethylbenzene	ND< 2.00
2-Hexanone	ND< 5.00
Isopropylbenzene	ND< 5.00
Methyl acetate	ND< 2.00
Methyl tert-butyl Ether	ND< 2.00
Methylcyclohexane	ND< 2.00
Methylene chloride	ND< 5.00
4-Methyl-2-pentanone	ND< 5.00
Styrene	ND< 5.00
1,1,2,2-Tetrachloroethane	ND< 2.00
Tetrachloroethene	5.34
Toluene	ND< 2.00
Freon 113	ND< 2.00
1,2,3-Trichlorobenzene	ND< 5.00
1,2,4-Trichlorobenzene	ND< 5.00
1,1,1-Trichloroethane	ND< 2.00
1,1,2-Trichloroethane	ND< 2.00
Trichloroethene	ND< 2.00
Trichlorofluoromethane	ND< 2.00
Vinyl chloride	ND< 2.00
m,p-Xylene	ND< 2.00
o-Xylene	ND< 2.00
1	

ELAP Number 10958

1,1-Dichloroethane

1,2-Dichloroethane

1,1-Dichloroethene

cis-1,2-Dichloroethene trans-1,2-Dichloroethene

Dichlorodifluoromethane

Method: EPA 8260B

ND< 5.00

ND< 2.00

ND< 2.00 ND< 2.00

ND< 2.00

ND< 2.00

Data File: V77708.D

Comments: ND denotes Non Detect ug / L = microgram per Liter

Signature:

Bruce Hoogesteger: Technical Director
This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition 103320V9.XLS requirements upon receipt.

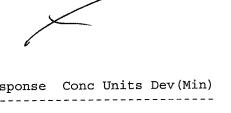
Data File: C:\msdchem\1\DATA\082010\V77708.D

DataAcq Meth:8260RUN.M

: 20 Aug 2010 8:38 pm Acq On

: WATER #10904 Sample

: 5ml Misc


Sample Multiplier: 1 ALS Vial -24

Quant Time: Aug 23 07:19:16 2010

Quant Method : C:\msdchem\1\METHODS\081110.M

Quant Title : 8260/624 Analysis QLast Update : Thu Aug 12 15:27:25 2010 Response via : Initial Calibration

Integrator: RTE

Operator: Bill Brew

Inst : Instrument #1

Compound	R.T. Q	Ion	Response	Conc Units Dev	(Min)	
Internal Standards						
1) Fluorobenzene	5.075	96	294820	$50.00~\mathrm{ug/L}$	0.00	
54) Chlorobenzene-d5		117	211882	50.00 ug/L	0.00	
75) 1,4-Dichlorobenzene-d4	10.561	152	119441	50.00 ug/L	0.00	
System Monitoring Compounds						
26) Pentafluorobenzene	4.504	168		41.26 ug/L	10.00	
Spiked Amount 50.000	Range 70 -	123	Recove	ry = 82.52%	•	
29) 1,2-Dichloroethane-d4	4.771	65	76849	46.20 ug/L	09.0	
Spiked Amount 50.000	Range 71 -	106	Recove	= 92.60%		
45) Toluene-D8			229010		0.00	
Spiked Amount 50.000		113	Recove	ery = 85.76%		
64) 4-Bromofluorobenzene				43.74 ug/L	٥٥.٠٥	
Spiked Amount 50.000	Range 67 -	107	Recove	= 87.48%		
Target Compounds				Qv	alue	
11) Acetone	2.647	43	2716	Below Cal	90	a/12 mm
14) Methylene chloride	3.004	84		Below Cal #	- 5 78	8/23 111)
44) 4-Methyl-2-pentanone	6.564	43		ug/L # •	-) <u>1</u>	
50) Tetrachloroethene	7.172	166		5.34 ug/L	97	
86) Cyclohexane	4.498	56	2233	0 98 ug/L #4	10 77	

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

Operator: Bill Brew

: Instrument #1

Data File: C:\msdchem\1\DATA\082010\V77708.D

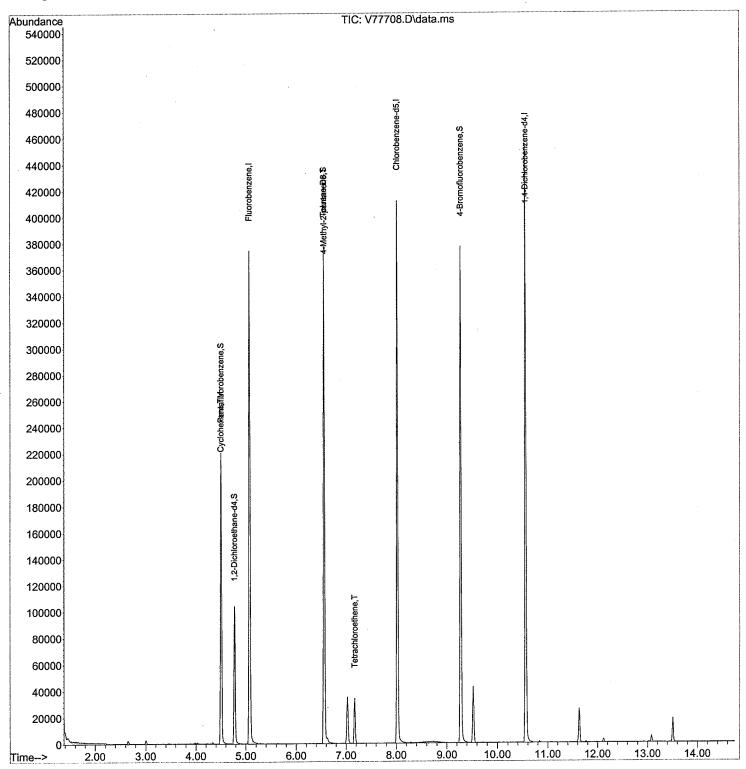
DataAcq Meth:8260RUN.M

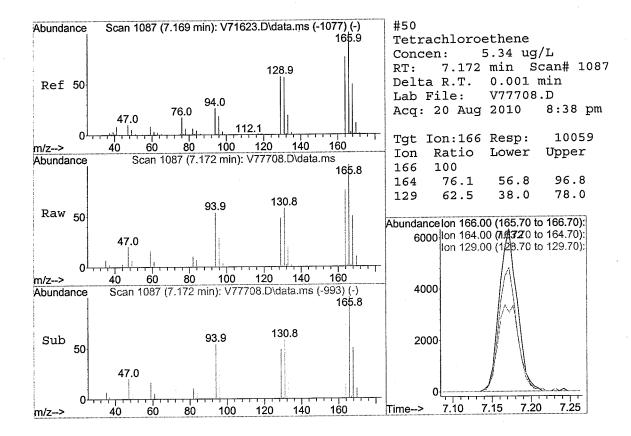
Acq On : 20 Aug 2010 8:38 pm

Sample : WATER #10904

Misc : 5ml

ALS Vial : 24 Sample Multiplier: 1


Quant Time: Aug 23 07:19:16 2010


Quant Method : C:\msdchem\1\METHODS\081110.M

Quant Title : 8260/624 Analysis

QLast Update : Thu Aug 12 15:27:25 2010

Response via : Initial Calibration

8/23 mg

Client: The Palmerton Group

Client Job Site:

Office Depot Plaza

Lab Project Number: 10-3320A

Client Job Number:

N/A

Lab Sample Number: 10905

Field Location:

Date Sampled: MW-14 **Date Received:** 08/12/2010 08/13/2010

Field ID Number: Sample Type:

N/A Water

Date Analyzed:

08/20/2010

Compound	Results in ug / L
Acetone	ND< 100
Benzene	ND< 7.00
Bromochloromethane	ND< 50.0
Bromodichloromethane	ND< 20.0
Bromoform	ND< 50.0
Bromomethane	ND< 20.0
2-Butanone	ND< 100
Carbon disulfide	ND< 50.0
Carbon Tetrachloride	ND< 20.0
Chlorobenzene	ND< 20.0
Chloroethane	ND< 20.0
Chloroform	ND< 20.0
Chloromethane	ND< 20.0
Cyclohexane	ND< 100
Dibromochloromethane	ND< 20.0
1,2-Dibromo-3-Chloropropane	ND< 100
1,2-Dibromoethane	ND< 20.0
1,2-Dichlorobenzene	ND< 20.0
1,3-Dichlorobenzene	ND< 20.0
1,4-Dichlorobenzene	ND< 20.0
Dichlorodifluoromethane	ND< 50.0
1,1-Dichloroethane	ND< 20.0

Compound	Results in ug / L
1,2-Dichloropropane	ND< 20.0
cis-1,3-Dichloropropene	ND< 20.0
trans-1,3-Dichloropropene	ND< 20.0
Ethylbenzene	ND< 20.0
2-Hexanone	ND< 50.0
Isopropylbenzene	ND< 50.0
Methyl acetate	ND< 20.0
Methyl tert-butyl Ether	ND< 20.0
Methylcyclohexane	ND< 20.0
Methylene chloride	ND< 50.0
4-Methyl-2-pentanone	ND< 50.0
Styrene	ND< 50.0
1,1,2,2-Tetrachloroethane	ND< 20.0
Tetrachloroethene	934
Toluene	ND< 20.0
Freon 113	ND< 20.0
1,2,3-Trichlorobenzene	ND< 50.0
1,2,4-Trichlorobenzene	ND< 50.0
1,1,1-Trichloroethane	ND< 20.0
1,1,2-Trichloroethane	ND< 20.0
Trichloroethene	ND< 20.0
Trichlorofluoromethane	ND< 20.0
Vinyl chloride	ND< 20.0
m,p-Xylene	ND< 20.0
o-Xylene	ND< 20.0
1 ,	

ELAP Number 10958

1,2-Dichloroethane

1,1-Dichloroethene

cis-1,2-Dichloroethene trans-1,2-Dichloroethene

Method: EPA 8260B

ND< 20.0 ND< 20.0

ND< 20.0

ND< 20.0

Data File: V77709.D

Comments: ND denotes Non Detect ug / L = microgram per Liter

Signature:

Bruce Hoogesteger: Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition 103320W1.XLS requirements upon receipt.

Operator: Bill Brew

Inst : Instrument #1

0-86 ug/L # 1

93.38 pg/L

0.63 ug/L -2 97

Data File: C:\msdchem\1\DATA\082010\V77709.D

DataAcq Meth:8260RUN.M

: 20 Aug 2010 9:01 pm Acq On

: WATER #10905 Sample

/: 500uL ✓

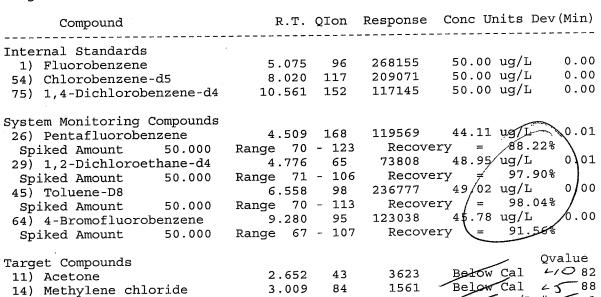
Misc 25---Sample Multiplier: 1 ALS Vial

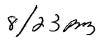
Quant Time: Aug 23 07:19:21 2010

Quant Method : C:\msdchem\1\METHODS\081110.M

Quant Title : 8260/624 Analysis

44) 4-Methyl-2-pentanone


50) Tetrachloroethene ______


46) Toluene

QLast Update : Thu Aug 12 15:27:25 2010

Response via : Initial Calibration

Integrator: RTE

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

7.172 166

6.558

6.622

43

91

988

3643

159919

Operator: Bill Brew

: Instrument #1

Data File: C:\msdchem\1\DATA\082010\V77709.D

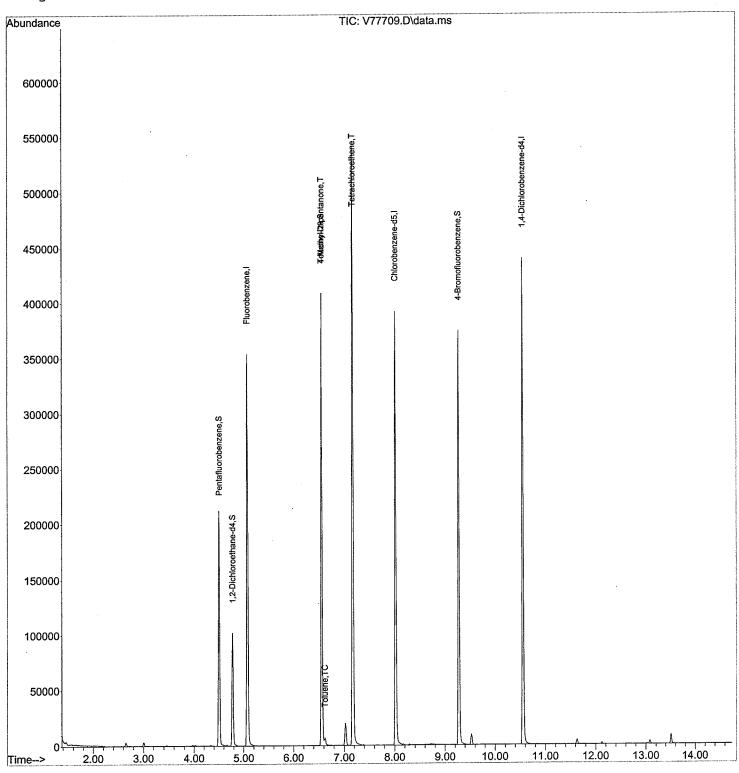
DataAcq Meth:8260RUN.M

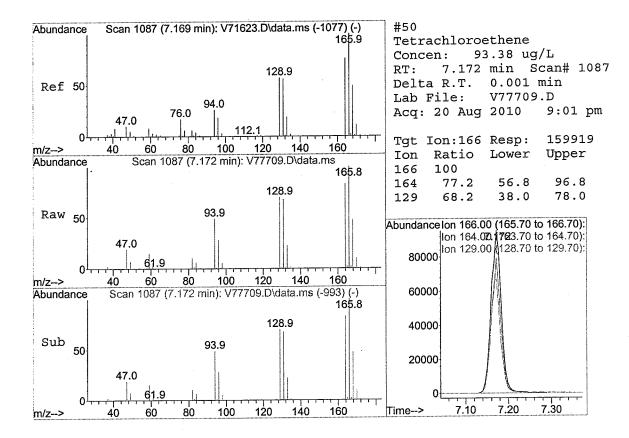
Acq On : 20 Aug 2010 9:01 pm

Sample : WATER #10905

Misc : 500uL

ALS Vial : 25 Sample Multiplier: 1


Quant Time: Aug 23 07:19:21 2010


Quant Method : C:\msdchem\1\METHODS\081110.M

Quant Title : 8260/624 Analysis

QLast Update : Thu Aug 12 15:27:25 2010

Response via : Initial Calibration

8/23 m

Client: The Palmerton Group

Client Job Site:

Office Depot Plaza

Lab Project Number: 10-3320A Lab Sample Number: 10906

Client Job Number:

N/A

Date Sampled:

08/12/2010

Field Location: Field ID Number: Sample Type:

Field Duplicate N/A Water

Date Received:

08/13/2010

Date Analyzed:

08/20/2010

Compound	Results in ug / L
Acetone	ND< 100
Benzene	ND< 7.00
Bromochloromethane	ND< 50.0
Bromodichloromethane	ND< 20.0
Bromoform	ND< 50.0
Bromomethane	ND< 20.0
2-Butanone	ND< 100
Carbon disulfide	ND< 50.0
Carbon Tetrachloride	ND< 20.0
Chlorobenzene	ND< 20.0
Chloroethane	ND< 20.0
Chloroform	ND< 20.0
Chloromethane	ND< 20.0
Cyclohexane	ND< 100
Dibromochloromethane	ND< 20.0
1,2-Dibromo-3-Chloropropane	ND< 100
1,2-Dibromoethane	ND< 20.0
1,2-Dichlorobenzene	ND< 20.0
1,3-Dichlorobenzene	ND< 20.0
1,4-Dichlorobenzene	ND< 20.0
Dichlorodifluoromethane	ND< 50.0
1,1-Dichloroethane	ND< 20.0
1,2-Dichloroethane	ND< 20.0
1,1-Dichloroethene	ND< 20.0
cis-1,2-Dichloroethene	ND< 20.0
trans-1,2-Dichloroethene	ND< 20.0

Compound	Results in ug / L
1,2-Dichloropropane	ND< 20.0
cis-1,3-Dichloropropene	ND< 20.0
trans-1,3-Dichloropropene	ND< 20.0
Ethylbenzene	ND< 20.0
2-Hexanone	ND< 50.0
Isopropylbenzene	ND< 50.0
Methyl acetate	ND< 20.0
Methyl tert-butyl Ether	ND< 20.0
Methylcyclohexane	ND< 20.0
Methylene chloride	ND< 50.0
4-Methyl-2-pentanone	ND< 50.0
Styrene	ND< 50.0
1,1,2,2-Tetrachloroethane	ND< 20.0
Tetrachloroethene	955
Toluene	ND< 20.0
Freon 113	ND< 20.0
1,2,3-Trichlorobenzene	ND< 50.0
1,2,4-Trichlorobenzene	ND< 50.0
1,1,1-Trichloroethane	ND< 20.0
1,1,2-Trichloroethane	ND< 20.0
Trichloroethene	ND< 20.0
Trichlorofluoromethane	ND< 20.0
Vinyl chloride	ND< 20.0
m,p-Xylene	ND< 20.0
o-Xylene	ND< 20.0

ELAP Number 10958

Method: EPA 8260B

Data File: V77710.D

Comments: ND denotes Non Detect ug / L = microgram per Liter

Signature:

Operator: Bill Brew

: Instrument #1

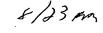
Data File: C:\msdchem\1\DATA\082010\V77710.D

DataAcq Meth:8260RUN.M

: 20 Aug 2010 9:25 pm Acq On

WATER #10906 Sample

໌: 500uI₄√ Misc ALS Vial


Sample Multiplier: 1 26

Quant Time: Aug 23 07:19:24 2010

Quant Method : C:\msdchem\1\METHODS\081110.M

Quant Title : 8260/624 Analysis QLast Update : Thu Aug 12 15:27:25 2010 Response via : Initial Calibration

Compound	R.T. Q	Ion :	Response	Conc Units Dev(Min)
Internal Standards 1) Fluorobenzene 54) Chlorobenzene-d5 75) 1,4-Dichlorobenzene-d4		96 117 152	289218 205668 113646	50.00 ug/L 0.00 50.00 ug/L 0.00 50.00 ug/L 0.00
System Monitoring Compounds 26) Pentafluorobenzene Spiked Amount 50.000 29) 1,2-Dichloroethane-d4 Spiked Amount 50.000 45) Toluene-D8 Spiked Amount 50.000 64) 4-Bromofluorobenzene Spiked Amount 50.000	Range 70 - 4.776	65 106 98 113 95	114948 Recove 75365 Recove 228525 Recove 111786 Recove	ry = 78.64% 46.28 ug/L 0 01 ry = 92.56% 43.65 ug/L 0.00 ry = 87.30% 42.28 ug/L 0.00
Target Compounds 11) Acetone 14) Methylene chloride 46) Toluene 48) 1,1,2-Trichloroethane 50) Tetrachloroethene 86) Cyclohexane	2.652 2.999 6.623 7.167 7.172 4.499	43 84 91 97 166 56	3395 1591 3502 1373 176484 2040	Qvalue Below Cal 20 87 Below Cal 25 92 0.56 ug/L 2 93 1.03 ug/L 22 95.55 ug/L 92 0.94 ug/L # 10 75

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

Operator: Bill Brew

: Instrument #1

Data File: C:\msdchem\1\DATA\082010\V77710.D

DataAcq Meth:8260RUN.M

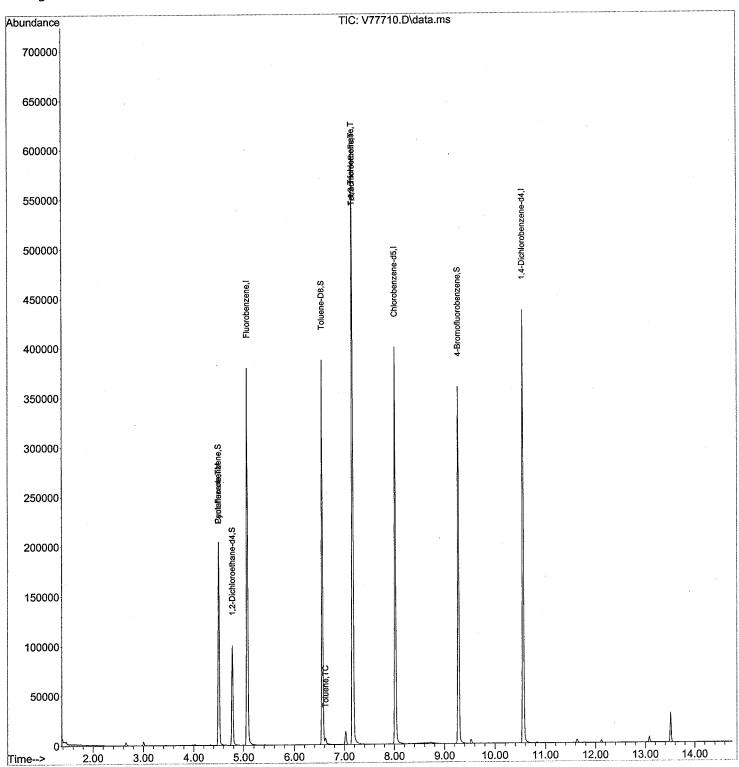
9:25 pm : 20 Aug 2010 Acq On

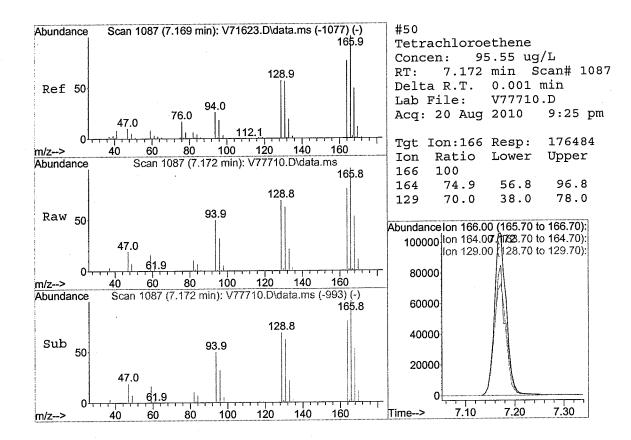
: WATER #10906 Sample

: 500uL

Sample Multiplier: 1 : 26 ALS Vial

Quant Time: Aug 23 07:19:24 2010
Quant Method: C:\msdchem\1\METHODS\081110.M


Quant Title : 8260/624 Analysis


QLast Update : Thu Aug 12 15:27:25 2010

Response via : Initial Calibration

Integrator: RTE

Misc

8/23 pm

Client: The Palmerton Group

Client Job Site:

Office Depot Plaza

Lab Project Number: 10-3320A

Client Job Number:

N/A

Lab Sample Number: 10907

Field Location:

MW-10

Date Sampled: **Date Received:** 08/12/2010 08/13/2010

Field ID Number: Sample Type:

N/A Water

Date Analyzed:

08/20/2010

Compound	Results in ug / L
Acetone	ND< 10.0
Benzene	ND< 0.700
Bromochloromethane	ND< 5.00
Bromodichloromethane	ND< 2.00
Bromoform .	ND< 5.00
Bromomethane	ND< 2.00
2-Butanone	ND< 10.0
Carbon disulfide	ND< 5.00
Carbon Tetrachloride	ND< 2.00
Chlorobenzene	ND< 2.00
Chloroethane	ND< 2.00
Chloroform	ND< 2.00
Chloromethane	ND< 2.00
Cyclohexane	ND< 10.0
Dibromochloromethane	ND< 2.00
1,2-Dibromo-3-Chloropropane	ND< 10.0
1,2-Dibromoethane	ND< 2.00
1,2-Dichlorobenzene	ND< 2.00
1,3-Dichlorobenzene	ND< 2.00
1,4-Dichlorobenzene	ND< 2.00
Dichlorodifluoromethane	ND< 5.00
1,1-Dichloroethane	ND< 2.00
1,2-Dichloroethane	ND< 2.00
1,1-Dichloroethene	ND< 2.00
cis-1,2-Dichloroethene	ND< 2.00

Compound	Results in ug / L
1,2-Dichloropropane	ND< 2.00
cis-1,3-Dichloropropene	ND< 2.00
trans-1,3-Dichloropropene	ND< 2.00
Ethylbenzene	ND< 2.00
2-Hexanone	ND< 5.00
Isopropylbenzene	ND< 5.00
Methyl acetate	ND< 2.00
Methyl tert-butyl Ether	ND< 2.00
Methylcyclohexane	ND< 2.00
Methylene chloride	ND< 5.00
4-Methyl-2-pentanone	ND< 5.00
Styrene	ND< 5.00
1,1,2,2-Tetrachloroethane	ND< 2.00
Tetrachloroethene	ND< 2.00
Toluene	ND< 2.00
Freon 113	ND< 2.00
1,2,3-Trichlorobenzene	ND< 5.00
1,2,4-Trichlorobenzene	ND< 5.00
1,1,1-Trichloroethane	ND< 2.00
1,1,2-Trichloroethane	ND< 2.00
Trichloroethene	ND< 2.00
Trichlorofluoromethane	ND< 2.00
Vinyl chloride	ND< 2.00
m,p-Xylene	ND< 2.00
o-Xylene	ND< 2.00

ELAP Number 10958

trans-1,2-Dichloroethene

Method: EPA 8260B

ND< 2.00

Data File: V77711.D

Comments: ND denotes Non Detect ug / L = microgram per Liter

Signature:

Bruce Hoogesteger: Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition 103320W3.XLS requirements upon receipt.

Operator: Bill Brew

: Instrument #1

Inst

Data File: C:\msdchem\1\DATA\082010\V77711.D

DataAcq Meth:8260RUN.M

Acq On : 20 Aug 2010 9:48 pm

WATER #10907 Sample

Misc 5ml

Sample Multiplier: 1 ALS Vial

Quant Time: Aug 23 07:19:28 2010 Quant Method : C:\msdchem\1\METHODS\081110.M

Quant Title : 8260/624 Analysis QLast Update : Thu Aug 12 15:27:25 2010

Response via : Initial Calibration

Integrator: RTE

Compound	R.T.	QIon	Response	Conc Units De	v(Min)
Internal Standards 1) Fluorobenzene 54) Chlorobenzene-d5 75) 1,4-Dichlorobenzene-d4	5.080 8.016 10.561	117	264289 193338 113865	50.00 ug/L 50.00 ug/L 50.00 ug/L	0.01 0.00 0.00
System Monitoring Compounds 26) Pentafluorobenzene Spiked Amount 50.000 29) 1,2-Dichloroethane-d4 Spiked Amount 50.000 45) Toluene-D8 Spiked Amount 50.000 64) 4-Bromofluorobenzene Spiked Amount 50.000	6.559	65 - 106 98 - 113 95	Recove 74343 Recove 227162 Recove 115558	ry = 90.62 50.06 ug/L ry = 100.12 47.66 ug/L ry = 95.32 6.49 ug/L	0.01
Target Compounds 11) Acetone 14) Methylene chloride 44) 4-Methyl-2-pentanone 50) Tetrachloroethene	2.657 3.004 6.553 7.172		3513 899 835 1465	Below Cal	

8/23 m

(#) = qualifier out of range (#) = manual integration (+) = signals summed

Operator: Bill Brew

: Instrument #1

Data File: C:\msdchem\1\DATA\082010\V77711.D

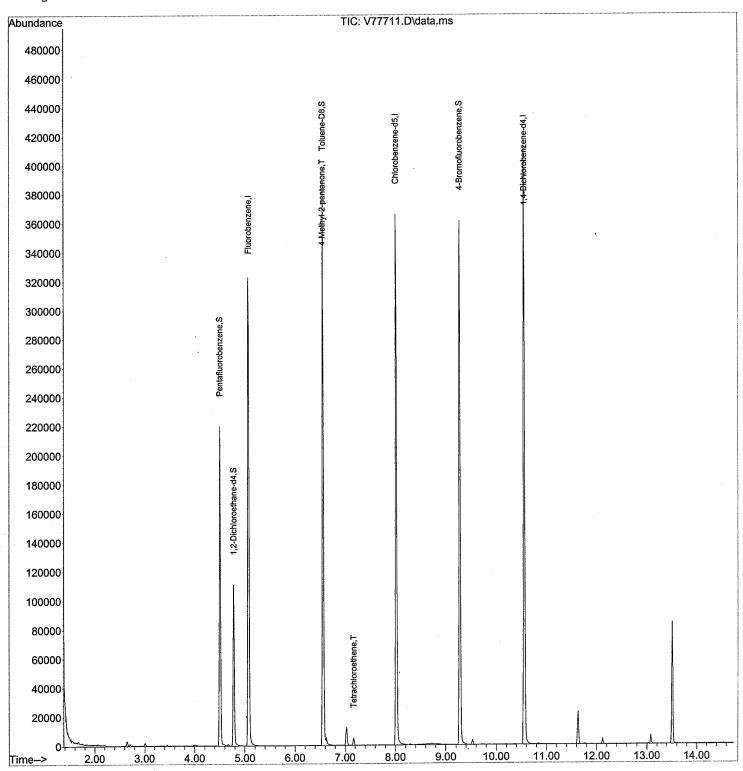
DataAcq Meth:8260RUN.M

Acq On : 20 Aug 2010 9:48 pm

Sample : WATER #10907

Misc : 5ml

ALS Vial : 27 Sample Multiplier: 1


Quant Time: Aug 23 07:19:28 2010

Quant Method : C:\msdchem\1\METHODS\081110.M

Quant Title : 8260/624 Analysis

QLast Update : Thu Aug 12 15:27:25 2010

Response via : Initial Calibration

Volatile Analysis Report for Non-potable Water

Client: The Palmerton Group

Client Job Site:

Office Depot Plaza

Lab Project Number: 10-3320A

Client Job Number:

N/A

Date Sampled:

Lab Sample Number: 10908

Field Location:

MW-9 N/A

Date Received:

08/12/2010

Field ID Number: Sample Type: Water

08/13/2010

Date Analyzed:

08/19/2010

Compound	Results in ug / L
Acetone	ND< 10.0
Benzene	ND< 0.700
Bromochloromethane	ND< 5.00
Bromodichloromethane	ND< 2.00
Bromoform	ND< 5.00
Bromomethane	ND< 2.00
2-Butanone	ND< 10.0
Carbon disulfide	ND< 5.00
Carbon Tetrachloride	ND< 2.00
Chlorobenzene	ND< 2.00
Chloroethane	ND< 2.00
Chloroform	ND< 2.00
Chloromethane	ND< 2.00
Cyclohexane	ND< 10.0
Dibromochloromethane	ND< 2.00
1,2-Dibromo-3-Chloropropane	ND< 10.0
1,2-Dibromoethane	ND< 2.00
1,2-Dichlorobenzene	ND< 2.00
1,3-Dichlorobenzene	ND< 2.00
1,4-Dichlorobenzene	ND< 2.00
Dichlorodifluoromethane	ND< 5.00
1,1-Dichloroethane	ND< 2.00
1,2-Dichloroethane	ND< 2.00
1,1-Dichloroethene	ND< 2.00
cis-1,2-Dichloroethene	ND< 2.00
trans-1,2-Dichloroethene	ND< 2.00

Compound	Results in ug / L
1,2-Dichloropropane	ND< 2.00
cis-1,3-Dichloropropene	ND< 2.00
trans-1,3-Dichloropropene	ND< 2.00
Ethylbenzene	ND< 2.00
2-Hexanone	ND< 5.00
Isopropylbenzene	ND< 5.00
Methyl acetate	ND< 2.00
Methyl tert-butyl Ether	ND< 2.00
Methylcyclohexane	ND< 2.00
Methylene chloride	ND< 5.00
4-Methyl-2-pentanone	ND< 5.00
Styrene	ND< 5.00
1,1,2,2-Tetrachloroethane	ND< 2.00
Tetrachloroethene	26.4
Toluene	ND< 2.00
Freon 113	ND< 2.00
1,2,3-Trichlorobenzene	ND< 5.00
1,2,4-Trichlorobenzene	ND< 5.00
1,1,1-Trichloroethane	ND< 2.00
1,1,2-Trichloroethane	ND< 2.00
Trichloroethene	2.11
Trichlorofluoromethane	ND< 2.00
Vinyl chloride	ND< 2.00
m,p-Xylene	ND< 2.00
o-Xylene	ND< 2.00

ELAP Number 10958

Method: EPA 8260B

Data File: V77683.D

Comments: ND denotes Non Detect ug / L = microgram per Liter

Signature:

Operator: Bill Brew

: Instrument #1

Data File: C:\msdchem\1\DATA\081910\V77683.D

DataAcq Meth:8260RUN.M

: 19 Aug 2010 11:53 pm Acq On

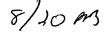
: WATER #10908 Sample

25

Misc

ALS Vial

´5ml_


Sample Multiplier: 1

Quant Time: Aug 20 07:05:23 2010

Quant Method : C:\msdchem\1\METHODS\081110.M

Quant Title : 8260/624 Analysis QLast Update : Thu Aug 12 15:27:25 2010 Response via : Initial Calibration

Compound	R.T.	QIon	Response	Conc Units Dev	/(Min)
Internal Standards 1) Fluorobenzene 54) Chlorobenzene-d5 75) 1,4-Dichlorobenzene-d4	5.076 8.022 10.562	117	314235 220908 127928	50.00 ug/L 50.00 ug/L 50.00 ug/L	0.00
System Monitoring Compounds 26) Pentafluorobenzene	4.505 Range 70	168		J	0.00
Spiked Amount 50.000 29) 1,2-Dichloroethane-d4 Spiked Amount 50.000	4.777 Range 71	65	81813	46.24 ug/L	0,01
45) Toluene-D8 Spiked Amount 50.000	6.559 Range 70	98 - 113	260235 Recove	45/.84 ug/L ery = 91.689	,
64) 4-Bromofluorobenzene Spiked Amount 50.000	9.281 Range 67		129782 Recove	45.70 ug/L ery = 91.409	0/00
Target Compounds 11) Acetone 14) Methylene chloride 23) cis-1,2-Dichloroethene 33) Trichloroethene 44) 4-Methyl-2-pentanone 50) Tetrachloroethene	2.648 3.005 4.072 5.407 6.559 7.173	43 84 96 130 43 166			2 82 —79

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

Operator: Bill Brew

: Instrument #1

Data File: C:\msdchem\1\DATA\081910\V77683.D

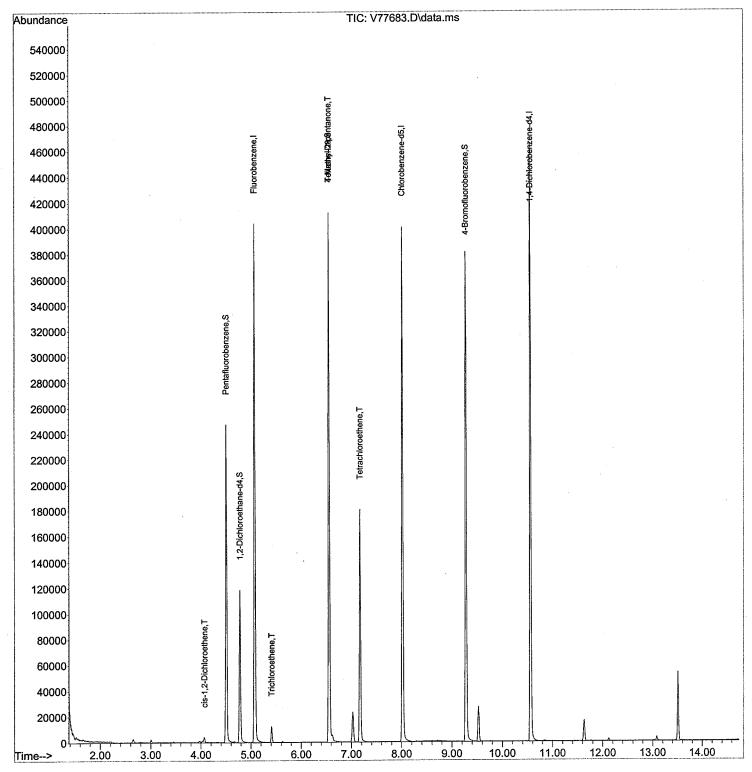
DataAcq Meth:8260RUN.M

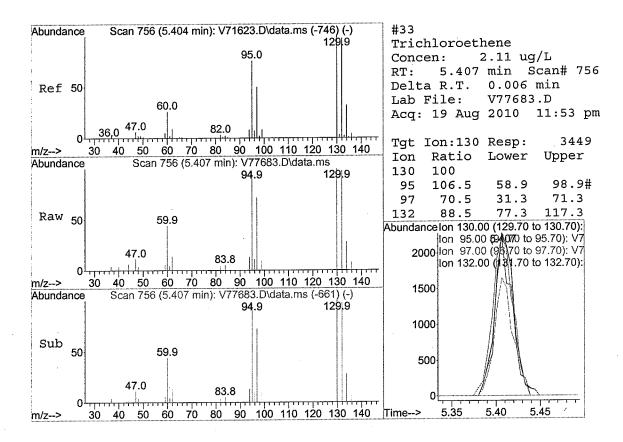
Acq On : 19 Aug 2010 11:53 pm

Sample : WATER #10908

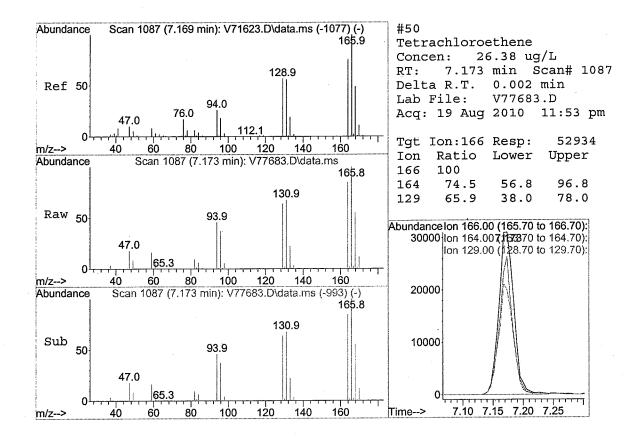
Misc : 5ml

ALS Vial : 25 Sample Multiplier: 1


Quant Time: Aug 20 07:05:23 2010


Quant Method : C:\msdchem\1\METHODS\081110.M

Quant Title : 8260/624 Analysis


QLast Update : Thu Aug 12 15:27:25 2010

Response via : Initial Calibration

8/20 MM

8/20 m

Volatile Analysis Report for Non-potable Water

Client: The Palmerton Group

Client Job Site:

Office Depot Plaza

Lab Project Number: 10-3320A

Client Job Number:

N/A

Lab Sample Number: 10909

Field Location:

Trip Blank

Date Sampled: **Date Received:** 08/11/2010 08/13/2010

Field ID Number: Sample Type:

N/A Water

Date Analyzed:

08/20/2010

Compound	Results in ug / L
Acetone	ND< 10.0
Benzene	ND< 0.700
Bromochloromethane	ND< 5.00
Bromodichloromethane	ND< 2.00
Bromoform	ND< 5.00
Bromomethane	ND< 2.00
2-Butanone	ND< 10.0
Carbon disulfide	ND< 5.00
Carbon Tetrachloride	ND< 2.00
Chlorobenzene	ND< 2.00
Chloroethane	ND< 2.00
Chloroform	ND< 2.00
Chloromethane	ND< 2.00
Cyclohexane	ND< 10.0
Dibromochloromethane	ND< 2.00
1,2-Dibromo-3-Chloropropane	ND< 10.0
1,2-Dibromoethane	ND< 2.00
1,2-Dichlorobenzene	ND< 2.00
1,3-Dichlorobenzene	ND< 2.00
1,4-Dichlorobenzene	ND< 2.00
Dichlorodifluoromethane	ND< 5.00
1,1-Dichloroethane	ND< 2.00
1,2-Dichloroethane	ND< 2.00
1,1-Dichloroethene	ND< 2.00
cis-1,2-Dichloroethene	ND< 2.00
trans-1,2-Dichloroethene	ND< 2.00
EL AD N 40050	Matha

,	
Compound	Results in ug / L
1,2-Dichloropropane	ND< 2.00
cis-1,3-Dichloropropene	ND< 2.00
trans-1,3-Dichloropropene	ND< 2.00
Ethylbenzene	ND< 2.00
2-Hexanone	ND< 5.00
Isopropylbenzene	ND< 5.00
Methyl acetate	ND< 2.00
Methyl tert-butyl Ether	ND< 2.00
Methylcyclohexane	ND< 2.00
Methylene chloride	ND< 5.00
4-Methyl-2-pentanone	ND< 5.00
Styrene	ND< 5.00
1,1,2,2-Tetrachloroethane	ND< 2.00
Tetrachloroethene	ND< 2.00
Toluene	ND< 2.00
Freon 113	ND< 2.00
1,2,3-Trichlorobenzene	ND< 5.00
1,2,4-Trichlorobenzene	ND< 5.00
1,1,1-Trichloroethane	ND< 2.00
1,1,2-Trichloroethane	ND< 2.00
Trichloroethene	ND< 2.00
Trichlorofluoromethane	ND< 2.00
Vinyl chloride	ND< 2.00
m,p-Xylene	ND< 2.00
o-Xylene	ND< 2.00
	*

ELAP Number 10958

Method: EPA 8260B

Data File: V77684.D

Comments: ND denotes Non Detect ug / L = microgram per Liter

Signature:

Bruce Hoogesteger: Technical Director

Operator: Bill Brew

Inst : Instrument #1

Data File: C:\msdchem\1\DATA\081910\V77684.D

DataAcq Meth:8260RUN.M

Acq On : 20 Aug 2010 12:17 am

Sample WATER #10909 Misc : 5ml

-26 ALS Vial

Sample Multiplier: 1

Quant Time: Aug 20 07:05:27 2010

Quant Method : C:\msdchem\1\METHODS\081110.M

Quant Title : 8260/624 Analysis

QLast Update : Thu Aug 12 15:27:25 2010

Response via : Initial Calibration

Integrator: RTE

Compound	R.T.	QIon	Response	Conc Units Dev(Min)
Internal Standards				
1) Fluorobenzene	5.070	96	290137	50.00 ug/L 0.00
54) Chlorobenzene-d5	8.021	117	202464	50.00 ug/L 0.00
75) 1,4-Dichlorobenzene-d4	10.561	152	127966	50.00 ug/L 0.00
System Monitoring Compounds				0.00
26) Pentafluorobenzene	4.504	168	128383	/T' o \
Spiked Amount 50.000	Range 70	- 123		- / . \
29) 1,2-Dichloroethane-d4	4.776	65	81175	49.7/8 ug/L 0\01
Spiked Amount 50.000	Range 71	- 106	Recove	- /
45) Toluene-D8	6.559	98	252149	48/.21 ug/L 0.00
Spiked Amount 50.000	Range 70	- 113	Recove	
64) 4-Bromofluorobenzene	9.275	95	120582	46.33 ug/L 9.00
Spiked Amount 50.000	Range 67	- 107	Recove	ery = 92.66%
Target Compounds				Qvalue
11) Acetone	2.652	43	5889	Below Cal 4/0 83
14) Methylene chloride	3.005	84	1558	Below Cal 25 89
44) 4-Methyl-2-pentanone	6.553	43	885	
63) 1,2,3-Trichloropropane	9.531	110	414	0 82 ug/L #/- 1

(#) = qualifier out of range (m) = manual integration (+) = signals summed

8/20 m

Operator: Bill Brew

: Instrument #1

Data File: C:\msdchem\1\DATA\081910\V77684.D

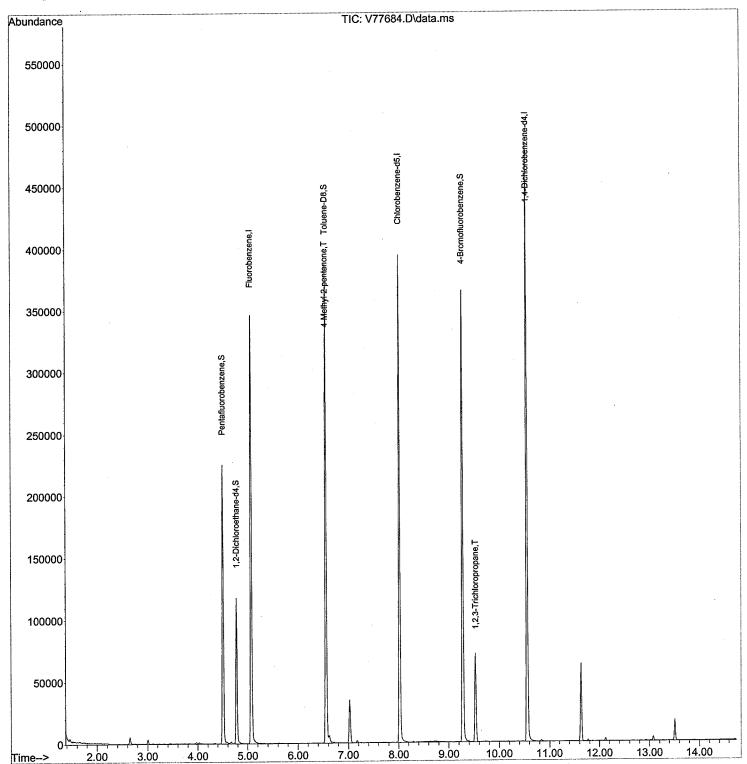
DataAcq Meth:8260RUN.M

Acq On : 20 Aug 2010 12:17 am

Sample : WATER #10909

Misc : 5ml

ALS Vial : 26 Sample Multiplier: 1


Quant Time: Aug 20 07:05:27 2010

Quant Method : C:\msdchem\1\METHODS\081110.M

Quant Title : 8260/624 Analysis

QLast Update : Thu Aug 12 15:27:25 2010

Response via : Initial Calibration

Page: 2

VOLATILE ORGANICS STANDARDS DATA

_			2010	
them\1\METHODS\	ж.	Analysis	ng 12 11:46:12	al Calibration
C:\msdche	081110.	8260/624	Thu And	Initia
		826	••	••
Path	File		date	e Via
Method]	Method]	Title	Last Upo	Respons

Calibration Files

	=	=V77407.D 2 =V77408.L	8.D 3	=V77	7409.D	4	=V7741	10.D 5	Λ=	=V77411.D	Λ= 9	V77412.D	7	=V77413.
	J	Compound	H		73	ന	4	ري ا	9	7 AV	ָּט	%RSD		
! !	 		 											
5	H E	Fluorobenzene	1 0	10	10	Η̈́C		1 6	10	٦	_			
3 6	α, E		0.277 0	. 258	0.258	22	0.257	0.268	0.241	0.255	6.53			
4	IC	de	.245	. 24	.24	. 24	0.25	.26	. 24	25	സ			
2	H		159	.12	.12	.12	0.13	.14	.11	13	9.0			
9	Ħ	Chloroethane	.185	.15	.13	.14	0.13	.14	.13	14	4			
7	H	or	.450	.40	.39	.40	0.42	.42	.39	41	φ		(\ \ \
8	EH		.165	.16	.15	.14	0.16	.16	.15	15	ω		Þ	(A)
6	H		.234	.21	.20	.19	0.22	.20	.20	21	4			
10)	$^{\mathrm{LC}}$	hloroet	44	.32	.32	. 29	0.32	.30	. 28	31	6.2	•		
11)	H		.188	.97	.46	. 22	0.09	.07	90.	28	-:	*		
12)	H	disulfide	.764	.65	.68	.67	0.71	.70	. 63	69	6.1			
13)	Н		.149	. 12	.11	.11	0.11	.11	.10	12	ω			
14)	Н	Methylene chlo	16	. 58	.35	.27	0.24	.21	.21	42	7.0	}		
15)	H	Acrylonitrile	99	90.	.05	90.	0.05	90.	90.	90	o,			
16)	Z,	tert-Butyl Alc								00	0			
17)	H	Methyl tert-bu	08	.62	.63	.63	.63	.65	.60	64	Н			
18)	H	trans-1,2-Dich	04	.25	.26	. 24	.25	.25	. 24	26	ω.			
19)	ΤÞ	1,1-Dichloroet	38	.38	.38	.36	.38	.38	.34	38	-			
20)	۲	Vinyl acetate	0.350 0	.324	0.322	0.293	0.332	0.338	0.301	32	П			
21)	Ħ	2,2-Dichloropr	93	.39	.35	.38	.41	.39	.37	38	4.6			
22)	H	2-Butanone	63	.03	.03	.02	.03	.02	. 02	0	ι.	¥		٠
23)	H	cis-1,2-Dichlo	48	.30	.27	. 29	. 29	. 27	. 28	2	цj			
24)	H	Bromochloromet	29	.12	. 12	.17	. 12	.11	.10	12	w.			
25)	ŢĊ,	Chloroform	20	.47	.47	.45	.47	.47	.41	4.	6.4			
26)	ß	Pentafluoroben	61	. 52	.49	.47	.48	.46	.43	.5			•	
27)	N N	Tetrahydrofuran								ŏ	7.0			
28)	H	1,1,1-Trichlor	23	.39	.39	0.39	42	.43	.39	.40	4.1	2		
29)	ß	1,2-Dichloroet	14	.33	.29	0.27	.28	.27	.26	ω.	Ψ.	*		
30)	Ħ	Carbon Tetrach	25	.29	.30	0:30	.34	.35	.34	3	ω.			
31)	H	Benzene	16	.04	96	1.01	.03	00.	.91	0	ω.			
32)	H	1,2-Dichloroet	0.364 (0.341	0.338	0.323	0.323	0.315	0.295	33	w			
33)	Н	Trichloroethene	79	. 25	.26	0.25	.26	.26	. 24	2				,
34)	H	Methylcyclohexane	46	.43	.43	0.44	.45	.48	.43	4.	٧.			
35)	NS	Ethyl acetate								ŏ	٧.			
36)	Ţ	1,2-Dichloropr	0.281 (0.250	0.252	0.229	0.232	0.246	0.215	5	۳.			
37)	Š	Isobutyl alcohol								ŏ.	٧.			
38)	H	Dibromomethane	0.157 (0.143	0.141	0.146	0.142	0.146	0.139	0.14	Π.			•

Initial Calibration Sunnay Table

* curve is not any, of response factors 081110.M Thu Aug 12 11:46:42 2010 73VOAV2

5.57 -1.00 -	6.61 7.82 7.82 6.92 142.23 145.23 3.95.69 6.94 6.94 7.56 10.01 8.14 8.14 8.14 9.95 5.95	9.77 11.98 5.58 13.32 -1.00 15.73 7.96 8.53
<pre>10.35chem\l\METHODS\ 10.M 10.M 110.M 110.M 110.M 110.M 110.128 0.128 0.135 0.149 0.149 0.139 0.136 110.00 110</pre>	e-d5	robenzen
Path: C:\msdch File: 081110.M Bromodichlorom. 2-Chloroethyl. Isopropyl aceta 1,1-Dichloropr. cis-1,3-Dichlo. 4-Methyl-2-pen. Toluene Toluene trans-1,3-Dichlor. 1,1,2-Trichlor. 1,3-Dichloropr. Tetrachloroethe 2-Hexanone Dibromochlorom.	Chlorobenzen 1,1,1,2-Tetr Ethylbenzene m,p-Xylene o-Xylene Styrene Bromcform Isopropylben 1,2,3-Trichl 4-Bromcbenzene 1,1,2,2-Tetr 1,1,2,2-Tetr 1,1,2,2-Tetr 1,1,2,2-Tetr 1,1,2,2-Tetr 1,1,2,2-Tetr 1,1,2,2-Tetr 1,2,4-Trimet 1,3,5-Trimet 1,2,4-Trimet 1,2,4-Trimet 1,2,4-Trimet 1,2,4-Trimet 1,2,4-Trimet	1,4-Dichloro 1,3-Dichloro 1,4-Dichloro n-Butylbenze 1,2-Dichloro Tetraethylle 1,2-Dibromo- 1,2,4-Trichl 1,2,3-Trichl
Method 39) T 40) T 40) T 41) UN 42) T 42) T 45) T 45) T 48) T 48) T 48) T 50) T	4 3 3 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	75) I 76) T 77) T 78) T 79) T 80) UN 81) T 82) T 83) T

Initial Calibration Summary Table

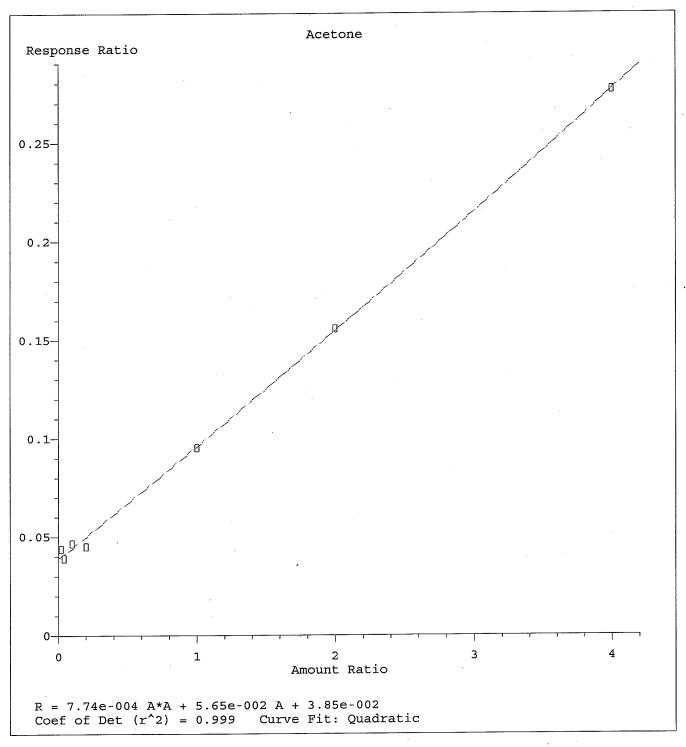
Page: 2 / 2

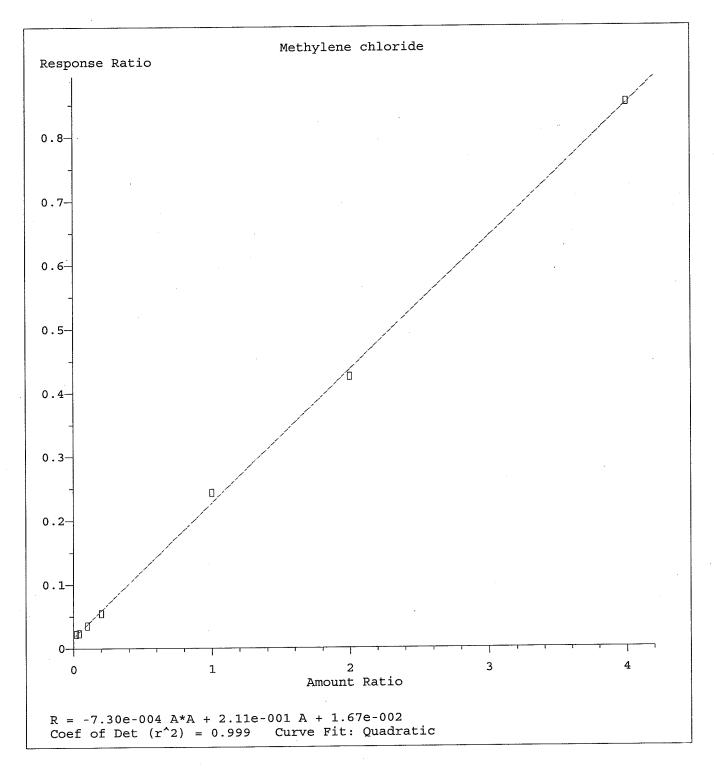
081110.M Thu Aug 12 11:46:42 2010 73VOAV2

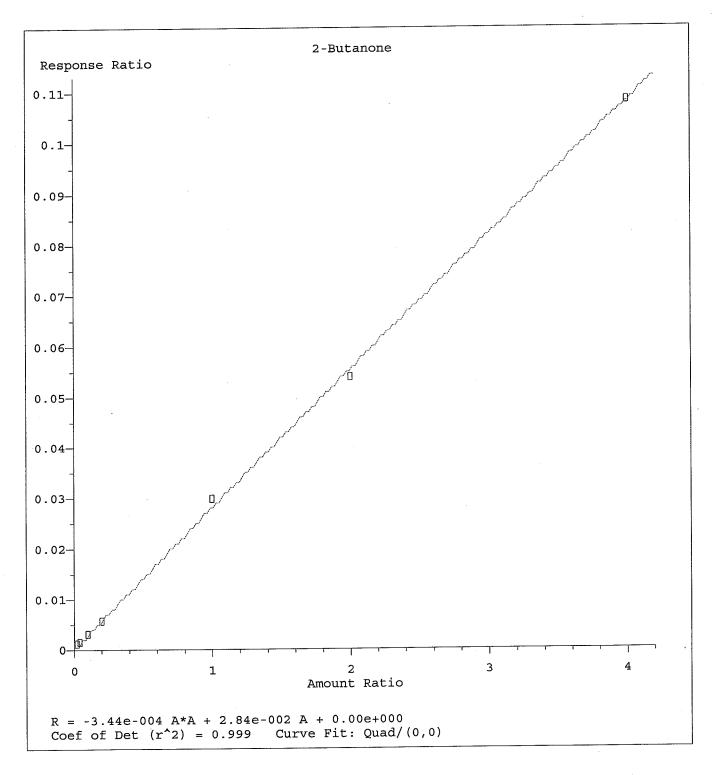
Calibration Gummary

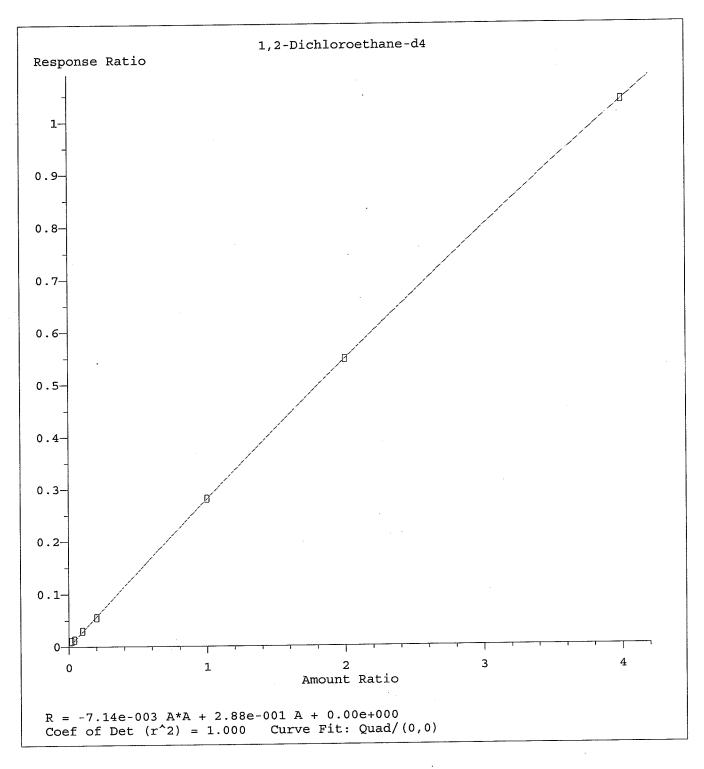
081110.M Thu Aug 12 11:46:42 2010 73VOAV2

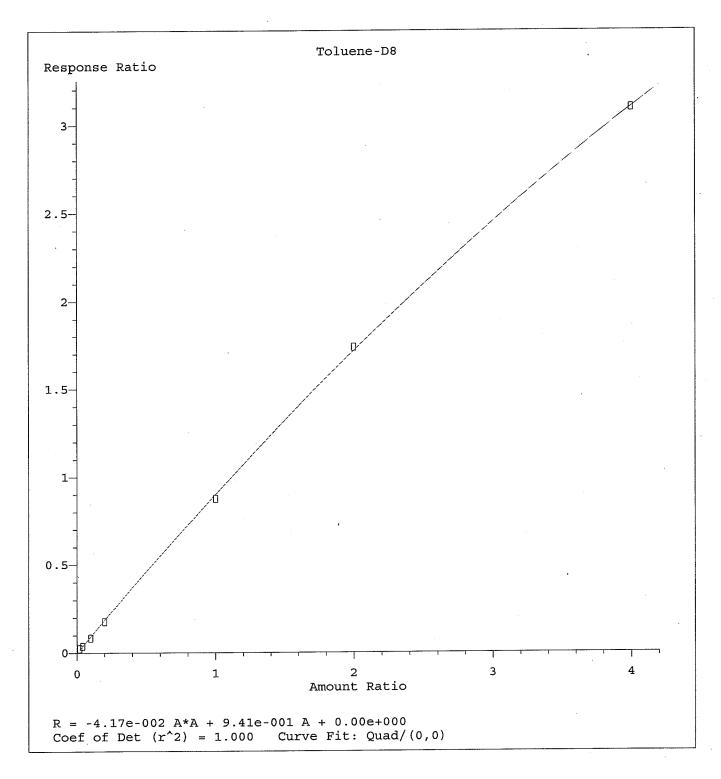
2.144 2.121 2.470 2.388 2.377 0.848 0.933 1.050 0.866 0.955 2.734

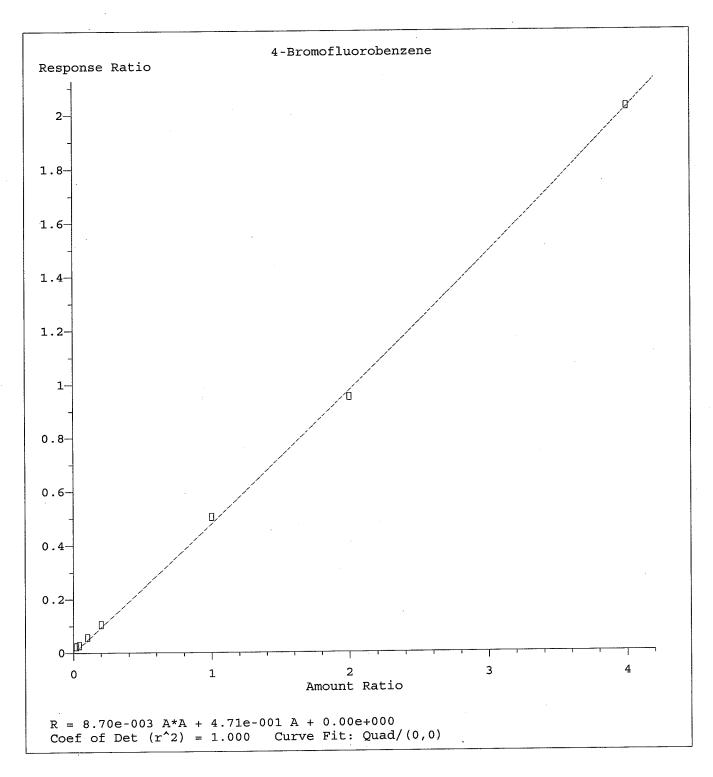

Method Path : C:\msdchem\1\METHODS\
Method File : 081110.M Naphthalene Cyclohexane 85) T 86) TM

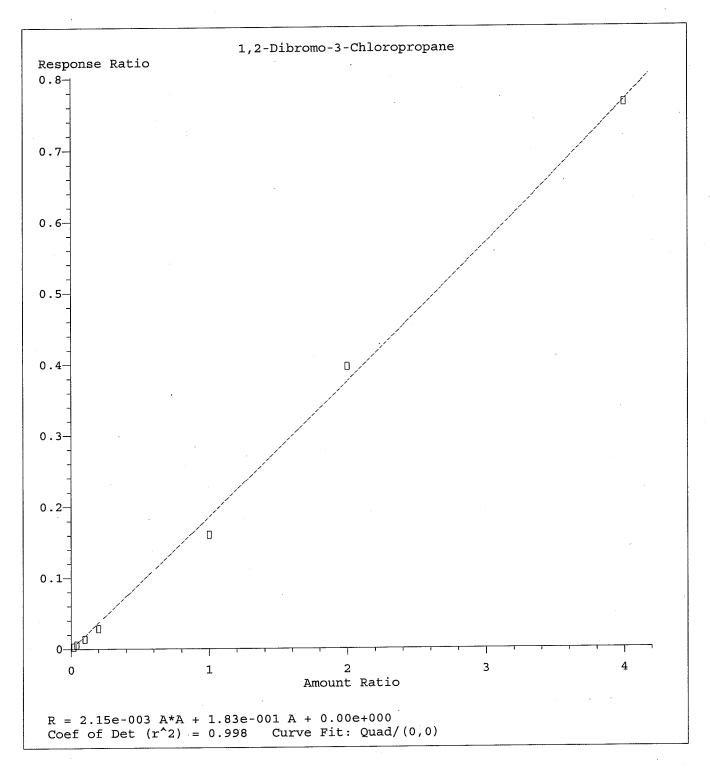

2.257 30.985 0 2.524


9.29


(#) = Out of Range


8/12 000





Operator: Bill Brew

Inst : Instrument #1

Data File: C:\msdchem\1\DATA\081110\V77407.D

DataAcq Meth:8260RUN.M

Acq On : 11 Aug 2010 Sample : 1ppb mega Cal 4:46 pm

Misc

ALS Vial : 3 Sample Multiplier: 1

Quant Time: Aug 12 11:50:42 2010

Quant Method : C:\msdchem\1\METHODS\081110.M

Quant Title : 8260/624 Analysis QLast Update : Thu Aug 12 11:46:12 2010 Response via : Initial Calibration

Integrator: RTE

Compound	R.T.	QIon	Response Conc Un	its Dev(Min)
Internal Standards	5.073	96	460148 50.00	ua/L 0.00
1) Fluorobenzene	8.024			37
54) Chlorobenzene-d5			176958 50.00	.
75) 1,4-Dichlorobenzene-d4	10.559	154	176956 50.00	ug/ ii 0.00
Greaten Monitoring Compounds				
System Monitoring Compounds 26) Pentafluorobenzene	4.502	168	6080 1.31	ug/L 0.00
Spiked Amount 50.000	Range 70		Recovery =	
29) 1,2-Dichloroethane-d4	4.769		4729 1.79	
Spiked Amount 50.000	Range 71		Recovery =	
45) Toluene-D8	6.556		11481 1.33	
	Range 70		Recovery =	
	9.278	95		ug/L 0.00
	Range 67		Recovery =	5.08%#
Spiriou imount	J		•	
Target Compounds				Qvalue
2) Dichlorodifluoromethane	1.438	85	3147 1.13	
3) Chloromethane	1.588	50	2547 1.08	
4) Vinyl chloride	1.663	62	2259 0.98	
5) Bromomethane	1.924	94	1464 1.19	
6) Chloroethane	1.993	64	1705 1.26	
7) Trichlorofluoromethane	2.202	101	4142 1.09	
8) Ethyl ether	2.420	59	1519 1.04	
9) Freon 113	2.607	101	2149 1.10	
10) 1,1-Dichloroethene	2.612	61	3167 1.10	
11) Acetone	2.645		20136 4.61	
12) Carbon disulfide	2.799	76	7033 1.11	
13) Methyl acetate	2.911	43	1375 1.24	
14) Methylene chloride	2.997		10266 1.34	
15) Acrylonitrile	3.194		607 1.07	
17) Methyl tert-butyl Ether	3.221		6516 1.10	
18) trans-1,2-Dichloroethene			2794 1.17	
19) 1,1-Dichloroethane	3.568		4034 1.14	
20) Vinyl acetate	3.605		3218 1.08	
21) 2,2-Dichloropropane	4.064		3613 1.01	
22) 2-Butanone	4.064			ug/L # 50
23) cis-1,2-Dichloroethene	4.059			
24) Bromochloromethane	4.267			ug/L # 72
25) Chloroform	4.331	83	4782 1.10	
28) 1,1,1-Trichloroethane	4.502	97	3891 1.03	
30) Carbon Tetrachloride	4.641	117	2990 1.00	
31) Benzene	4.827	78	10268 1.10	
32) 1,2-Dichloroethane	4.838	62	3352 1.11	
33) Trichloroethene	5.404	130		ug/L # 82
34) Methylcyclohexane	5.585	83	4104 1.00	
36) 1,2-Dichloropropane	5.612	63		ug/L # 68
38) Dibromomethane	5.724	93		ug/L # 71
39) Bromodichloromethane	5.863	· 83	3264 1.03	
40) 2-Chloroethyl vinyl Ethe		63	1115 0.89	
42) 1,1-Dichloropropene	4.646	75	3771 1.15	
43) cis-1,3-Dichloropropene	6.295	75	3495 0.93	ug/L 88

8/12 mg

Data File: C:\msdchem\1\DATA\081110\V77407.D

DataAcq Meth:8260RUN.M

Acq On : 11 Aug 2010 Sample : 1ppb mega Cal Operator: Bill Brew 4:46 pm Inst : Instrument #1

Misc

ALS Vial : 3 Sample Multiplier: 1

Quant Time: Aug 12 11:50:42 2010

Quant Method : C:\msdchem\1\METHODS\081110.M

Quant Title : 8260/624 Analysis QLast Update : Thu Aug 12 11:46:12 2010 Response via : Initial Calibration

Compound	R.T.	QIon	Response	Conc Units Dev(Min)
44) 4-Methyl-2-pentanone	6.444	43	2092m	1.06 ug/L	
46) Toluene	6.626	91	11877	1.20 ug/L	99
47) trans-1,3-Dichloropropene	6.834	75	3407	0.98 ug/L	92
48) 1,1,2-Trichloroethane	7.021	97	2505	1.18 ug/L	97
49) 1,3-Dichloropropane	7.186	76	4075	1.13 ug/L	96
50) Tetrachloroethene	7.170	166	3095	1.05 ug/L	90
51) 2-Hexanone	7.272	43	1402	1.05 ug/L #	38
52) Dibromochloromethane	7.421	129	2186	0.98 ug/L #	93
53) 1,2-Dibromoethane	7.533	107	2249	1.04 ug/L	93
55) Chlorobenzene	8.051	112	7135	$1.14~\mathrm{ug/L}~\mathrm{\#}$	47
56) 1,1,1,2-Tetrachloroethane	8.131		2282	1.03 ug/L #	70
57) Ethylbenzene	8.163	91	13111	1.16 ug/L	90
58) m,p-Xylene	8.291	106	9660	2.28 ug/L #	73
59) o-Xylene	8.712		5224	1.19 ug/L #	76
60) Styrene	8.728		9029	1.23 ug/L	91
61) Bromoform	8.926		1538	0.99 ug/L	92
62) Isopropylbenzene	9.113	105	12690	$1.07~\mathrm{ug/L}$	93
63) 1,2,3-Trichloropropane	9.486		921	1.09 ug/L #	64
65) Bromobenzene	9.444		3281	1.11 ug/L #	60
66) 1,1,2,2-Tetrachloroethane	9.438		3121	$1.14~{ m ug/L}$	93
67) n-Propylbenzene	9.566		15446	1.15 ug/L	86
68) 2-Chlorotoluene	9.657		3150	1.16 ug/L #	64
69) 4-Chlorotoluene	9.780		3346	1.21 ug/L #	49
70) 1,3,5-Trimethylbenzene	9.764		10644	1.07 ug/L	85
71) tert-Butylbenzene	10.127		2616	1.18 ug/L #	75
72) 1,2,4-Trimethylbenzene	10.180		10800	1.08 ug/L	84
73) sec-Butylbenzene	10.367		13265	1.03 ug/L	91
74) p-Isopropyltoluene	10.538		12287	1.12 ug/L	90
76) 1,3-Dichlorobenzene	10.490		6846	1.19 ug/L	95
77) 1,4-Dichlorobenzene	10.586		7192	1.24 ug/L #	65
78) n-Butylbenzene	11.002		11320	1.07 ug/L	93
79) 1,2-Dichlorobenzene	11.002		7002	1.26 ug/L	99
81) 1,2-Dibromo-3-Chloropr	11.888		504	0.78 ug/L #	64
82) 1,2,4-Trichlorobenzene	12.774		5422	1.17 ug/L	98
83) 1,2,3-Trichlorobenzene	13.265		4945	1.16 ug/L	95
84) Hexachlorobutadiene	12.955		3800	1.18 ug/L	97
85) Naphthalene	13.025		9677	1.15 ug/L	98
86) Cyclohexane	4.555	56	3564	1.05 ug/L	87

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

Operator: Bill Brew

: Instrument #1

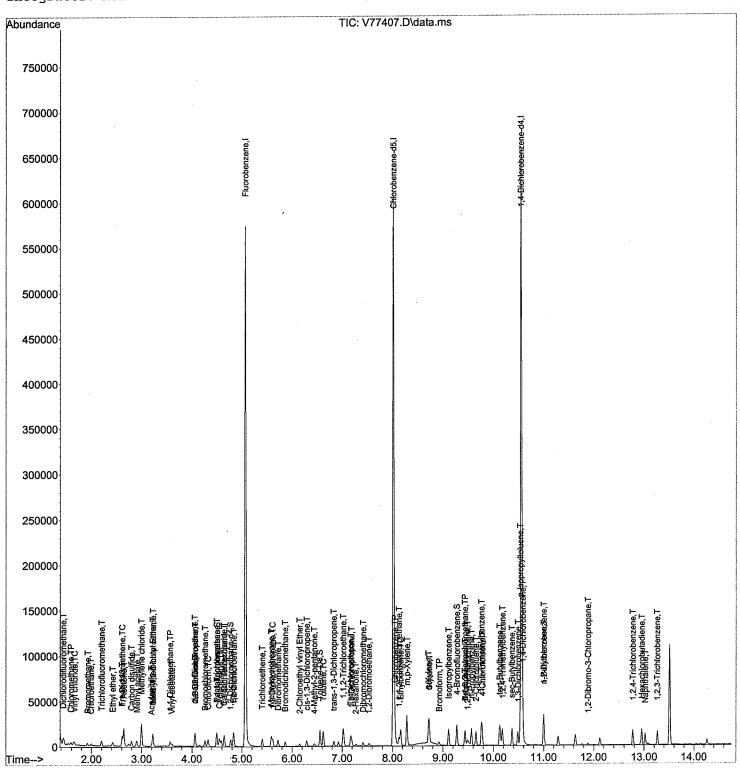
Data File: C:\msdchem\1\DATA\081110\V77407.D

DataAcq Meth:8260RUN.M

4:46 pm Acq On : 11 Aug 2010

Sample : 1ppb mega Cal

Misc


Sample Multiplier: 1 ALS Vial

Quant Time: Aug 12 11:50:42 2010
Quant Method: C:\msdchem\1\METHODS\081110.M

Quant Title : 8260/624 Analysis

QLast Update : Thu Aug 12 11:46:12 2010

Response via : Initial Calibration

Data File: C:\msdchem\1\DATA\081110\V77408.D

DataAcq Meth:8260RUN.M

Acq On : 11 Aug 2010 Sample : 2ppb mega Cal Operator: Bill Brew 5:10 pm Inst : Instrument #1

Misc :

ALS Vial : 4 Sample Multiplier: 1

Quant Time: Aug 12 11:51:57 2010
Quant Method: C:\msdchem\1\METHODS\081110.M

Quant Title : 8260/624 Analysis QLast Update : Thu Aug 12 11:46:12 2010

Response via : Initial Calibration

Integrator: RTE

Compound	R.T.	QIon	Response	Conc U	nits De	ev(Min)
Internal Standards						
1) Fluorobenzene	5.075	96	482923	50.00	ug/L	0.00
54) Chlorobenzene-d5	8.021	117	362514	50.00	ug/L	0.00
75) 1,4-Dichlorobenzene-d4	10.561		184642	50.00	ug/L	0.00
System Monitoring Compounds						
26) Pentafluorobenzene	4.498	168	10186	2.09	ug/L	0.00
Spiked Amount 50.000	Range 70	- 123	Recove	ry =	4.18	38#
29) 1,2-Dichloroethane-d4	4.771	65	6383	2.30	ug/L	0.00
Spiked Amount 50.000	Range 71	- 106	Recove	ry =	4.60)%#
45) Toluene-D8	6.558	98	17863	1.97	\mathtt{ug}/\mathtt{L}	0.00
Spiked Amount 50.000	Range 70	- 113	Recove	ry =	3.94	18#
64) 4-Bromofluorobenzene	9.280	95	10273	3.01	ug/L	0.00
Spiked Amount 50.000	Range 67	- 107	Recove	ry =	6.02	28#
Target Compounds					. (Qvalue
2) Dichlorodifluoromethane	1.446	85	5689	1.94	ug/L	95
3) Chloromethane	1.590		4993		ug/L	98
4) Vinyl chloride	1.665		4774		uq/L	92
5) Bromomethane	1.926		2440		ug/L	91
6) Chloroethane	2.001		2996		ug/L	93
7) Trichlorofluoromethane	2.204		7898		ug/L	98
8) Ethyl ether	2.422		3108		ug/L	100
9) Freon 113	2.620		4093		ug/L	94
10) 1,1-Dichloroethene	2.614		6179		ug/L	84
12) Carbon disulfide	2.807		12661		ug/L	99
13) Methyl acetate	2.908		2468		ug/L	90
14) Methylene chloride	2.999		11309		ug/L	95
15) Acrylonitrile	3.202		1247		ug/L	98
17) Methyl tert-butyl Ether	3.218		12125		ug/L	93
18) trans-1,2-Dichloroethene			4883		ug/L	88
19) 1,1-Dichloroethane	3.575		7523		ug/L	99
20) Vinyl acetate	3.607		6256		ug/L	92
21) 2,2-Dichloropropane	4.066		7580		ug/L	88
22) 2-Butanone	4.071		754		ug/L i	
23) cis-1,2-Dichloroethene	4.061		5925		ug/L i	
24) Bromochloromethane	4.269		2448		ug/L i	
25) Chloroform	4.333		9200		ug/L	99
28) 1,1,1-Trichloroethane	4.504		769 4		ug/L	98
30) Carbon Tetrachloride	4.653	117	5657		ug/L	98
		78	20239		ug/L	98
31) Benzene	4.829	62	6589		ug/L	98
32) 1,2-Dichloroethane	4.840				ug/L i	
33) Trichloroethene	5.406	130	4853		ug/L	92
34) Methylcyclohexane	5.592	83 63	8374		ug/L ug/L	92 98
36) 1,2-Dichloropropane	5.614	63	4822 2765		ug/L	
38) Dibromomethane	5.721	93			-	-
39) Bromodichloromethane	5.870	83	6376		ug/L	92
40) 2-Chloroethyl vinyl Ethe		63	2482		ug/L	88
42) 1,1-Dichloropropene	4.648	75	6910		ug/L	92
43) cis-1,3-Dichloropropene	6.292	75	7340		ug/L	93
44) 4-Methyl-2-pentanone	6.441	43	4271m	2.06	ug/L	

8/12 m

Data File: C:\msdchem\1\DATA\081110\V77408.D

DataAcq Meth:8260RUN.M

Acq On : 11 Aug 2010 Sample : 2ppb mega Cal Operator: Bill Brew 5:10 pm Inst : Instrument #1

Misc

Sample Multiplier: 1 ALS Vial : 4

Quant Time: Aug 12 11:51:57 2010

Quant Method : C:\msdchem\1\METHODS\081110.M

Quant Title : 8260/624 Analysis

QLast Update : Thu Aug 12 11:46:12 2010 Response via : Initial Calibration

46) Toluene 6.628 91 22875 2.20 ug/L 91 47) trans-1,3-Dichloropropene 6.836 75 6298 1.73 ug/L 91 48) 1,1,2-Trichloropethane 7.023 97 4767 2.14 ug/L 93 49) 1,3-Dichloropethane 7.193 76 7865 2.07 ug/L 95 50) Tetrachloropethane 7.193 76 7865 2.07 ug/L 95 51) 2-Hexanone 7.279 43 2734 1.95 ug/L 96 52) Dibromochloromethane 7.418 129 4357 1.86 ug/L 95 53) 1,2-Dibromochlane 7.540 107 4625 2.04 ug/L 95 55) Chlorobenzene 8.053 112 13548 2.02 ug/L #67 55) Ethylbenzene 8.138 131 4282 1.08 ug/L #67 59) o-Xylene 8.714 106 9527 2.02 ug/L #67	Compound	R.T.	QIon	Response	Conc Units Dev(M	lin)
47) trans-1,3-Dichloropropene 6.836 75 6298 1.73 ug/L 91 48) 1,1,2-Trichloropethane 7.023 97 4767 2.14 ug/L 93 49) 1,3-Dichloropropane 7.172 166 5650 1.83 ug/L 87 51) 2-Hexanone 7.279 43 2734 1.95 ug/L 95 52) Dibromochloromethane 7.418 129 4357 1.86 ug/L 95 53) 1,2-Dibromochloromethane 7.540 107 4625 2.04 ug/L 95 53) 1,2-Dibromochloromethane 8.053 112 13548 2.02 ug/L 96 56) 1,1,2-Tetrachloroethane 8.165 91 25231 2.08 ug/L 67 57) Ethylbenzene 8.287 106 17987 3.97 ug/L 66 59) o-Xylene 8.725 104 16929 2.16 ug/L	46) Toluene	6.628	91	22875	2.20 ug/L	91
## 1,1,2-Trichloroethane				6298	1.73 ug/L	91
49) 1,3-Dichloropropane 7.193 76 7865 2.07 ug/L 95 50) Tetrachloroethene 7.172 166 5650 1.83 ug/L 97 1712 166 5650 1.83 ug/L 97 1712 166 5650 1.83 ug/L 96 52) Dibromochloromethane 7.279 43 2734 1.95 ug/L 96 52) Dibromochloromethane 7.418 129 4357 1.86 ug/L 95 531 1,2-Dibromoethane 7.540 107 4625 2.04 ug/L 97 55) Chlorobenzene 8.053 112 13548 2.02 ug/L # 62 561 1,1,1,2-Tetrachloroethane 8.138 131 4282 1.80 ug/L # 67 57) Ethylbenzene 8.165 91 25231 2.08 ug/L 90 58) m,p-Xylene 8.287 106 17987 3.97 ug/L # 66 59) 0-Xylene 8.714 106 9527 2.02 ug/L # 71 60) Styrene 8.725 104 16929 2.16 ug/L 94 61) Bromoform 8.923 173 2822 1.69 ug/L 97 62) Isopropylbenzene 9.115 105 25372 2.01 ug/L 91 63) 1,2,3-Trichloropropane 9.488 110 1874 2.08 ug/L # 83 65) Bromobenzene 9.446 156 6585 2.09 ug/L 96 66) 1,1,2,2-Tetrachloroethane 9.440 83 6155 2.09 ug/L 96 67) n-Propylbenzene 9.568 91 28103 1.95 ug/L 87 68) 2-Chlorotoluene 9.654 126 5566 1.92 ug/L 87 68) 2-Chlorotoluene 9.776 126 5894 2.00 ug/L # 45 69 4-Chlorotoluene 9.776 126 5894 2.00 ug/L # 45 69 4-Chlorotoluene 9.776 126 5894 2.00 ug/L # 45 69 4-Chlorotoluene 10.123 134 4589 1.94 ug/L # 67 72) 1,2,4-Trimethylbenzene 10.123 134 4589 1.94 ug/L 88 73 pc-lburylbenzene 10.369 105 26444 1.92 ug/L 88 74) p-Isopropyltoluene 10.534 119 22788 1.95 ug/L 88 74) p-Isopropyltoluene 10.534 119 22788 1.95 ug/L 89 77 1,4-Dichlorobenzene 10.486 146 12344 2.05 ug/L 93 1,2-Dibromo-3-Chloropr. 11.884 157 1071 1.58 ug/L 93 1,2-Dibromo-3-Chloropr. 11.884 157 1071 1.58 ug/L 97 78 1,2-Dichlorobenzene 10.999 146 12345 2.13 ug/L 98 11,2-Dibromo-3-Chloropr. 11.884 157 1071 1.58 ug/L 97 78 1,2-Dichlorobenzene 12.776 180 10136 2.09 ug/L 94 85 1,2-Dibromo-3-Chloropr. 11.884 157 1071 1.58 ug/L 99 1,2-Dichlorobenzene 12.776 180 10136 2.09 ug/L 94 85 1,2-Dibromo-3-Chloropr. 11.884 157 1071 1.58 ug/L 99 1,2-Dichlorobenzene 13.267 180 9180 2.06 ug/L 94 85 1,2-Dibromo-3-Chloropr. 11.884 157 1071 1.58 ug/L 99 1,2-Dichlorobenzene 13.267 180 9180 2.06 ug/L 94 85 1,2-Dibromo-3-Chloropr. 11.884 157 1071 1.58 ug/L 99 180			97	4767	2.14 ug/L	93
Sol Tetrachloroethene 7.172 166 5650 1.83 ug/L 87 S11 2-Hexanone 7.279 43 2734 1.95 ug/L 96 S20 Dibromochloromethane 7.418 129 4357 1.86 ug/L 97 S51 1.2-Dibromocthane 7.540 107 4625 2.04 ug/L 97 S55 Chlorobenzene 8.053 112 13548 2.02 ug/L # 62 62 62 63 1.1,2-Tetrachloroethane 8.165 91 25231 2.08 ug/L # 67 57 Ethylbenzene 8.165 91 25231 2.08 ug/L # 66 57 Ethylbenzene 8.165 91 25231 2.08 ug/L # 66 59 0-Xylene 8.714 106 9527 2.02 ug/L # 71 66 59 0-Xylene 8.725 104 16929 2.16 ug/L 94 61 Bromoform 8.923 173 2822 1.69 ug/L 97 62 Isopropylbenzene 9.115 105 25372 2.01 ug/L 97 62 Isopropylbenzene 9.446 156 6585 2.08 ug/L 83 61 65 80 2.01 ug/L 96 66 1.1,2,2-Tetrachloroethane 9.440 83 6155 2.09 ug/L 96 66 1.1,2,2-Tetrachloroethane 9.440 83 6155 2.09 ug/L 96 67 n-Propylbenzene 9.568 91 28103 1.92 ug/L 87 68 2-Chlorotoluene 9.654 126 5566 1.92 ug/L 45 69 4-Chlorotoluene 9.654 126 5566 1.92 ug/L 46 67 1.3,5-Trimethylbenzene 10.123 134 4589 1.94 ug/L 88 73 sec-Butylbenzene 10.123 134 4589 1.94 ug/L 88 73 prichlorobenzene 10.486 146 12374 2.05 ug/L 88 77 1.4-Dichlorobenzene 10.582 146 12361 2.08 ug/L 93 77 1.4-Dichlorobenzene 10.999 91 22356 2.03 ug/L 98 1.2-Dichlorobenzene 10.999 146 12345 2.06 ug/L 98 1.2-Dichlorobenzene 10.999 146 12345 2.06 ug/L 98 1.2-Dichlorobenzene 10.999 146 12345 2.06 ug/L 98 1.2-Dichlorobenzene 12.776 180 10136 2.09 ug/L 94 1.2-Dichlorobenzene 12.776 180 10136 2.09 ug/L 94 1.2-Dichlorobenzene 12.776 180 10136 2.09 ug/L 94 1.2-Dichlorobenzene 13.267 180 9180 2.06 ug/L 99 180 12.2-Dichlorobenzene 13.267 180 9180 2.0				7865	2.07 ug/L	95
Simple		7.172	166	5650	1.83 ug/L	87
Dibromochloromethane 7.418 129 4357 1.86 ug/L 95 53 1,2-Dibromoethane 7.540 107 4625 2.04 ug/L 97 55 Chlorobenzene 8.053 112 13548 2.02 ug/L 62 62 61,1,1,2-Tetrachloroethane 8.138 131 4282 1.80 ug/L 67 67 67 Ethylbenzene 8.165 91 25231 2.08 ug/L 90 90 8 m,p-Xylene 8.287 106 17987 3.97 ug/L 66 65 65 65 65 65 7 2.02 ug/L 71 70 70 70 70 70 70 70			43	2734	1.95 ug/L	96
1,2-Dibromoethane		7.418	129	4357	1.86 ug/L	95
S5 Chlorobenzene S.053 112 13548 2.02 ug/L 62 62 1,1,1,2-Tetrachloroethane S.138 131 4282 1.80 ug/L 67 67 Ethylbenzene S.287 106 17987 3.97 ug/L 90 68 90 66 66 65 90 66 66 66 95 90 66 66 66 95 90 97 90 97 90 97 97 97	•	7.540	107	4625	2.04 ug/L	97
56) 1,1,1,2-Tetrachloroethane 8.138 131 4282 1.80 ug/L 67 57) Ethylbenzene 8.165 91 25231 2.08 ug/L 90 58) m,p-Xylene 8.287 106 17987 3.97 ug/L 66 59) o-Xylene 8.714 106 9527 2.02 ug/L 71 60) Styrene 8.725 104 16929 2.16 ug/L 94 61) Bromoform 8.923 173 2822 1.69 ug/L 97 62) Isopropylbenzene 9.115 105 25372 2.01 ug/L 91 63) 1,2,3-Trichloropropane 9.488 110 1874 2.08 ug/L 91 65) Bromobenzene 9.446 156 6585 2.08 ug/L 83 65) Bromobenzene 9.568 91 28103 1.95 ug/L 96 67) n-Propylbenzene 9.564 126 5566 1.92 ug/L 46		8.053	112	13548	2.02 ug/L #	62
57) Ethylbenzene 8.165 91 25231 2.08 ug/L 90 58) m,p-Xylene 8.287 106 17987 3.97 ug/L # 66 59) o-Xylene 8.714 106 9527 2.02 ug/L # 71 60) Styrene 8.725 104 16929 2.16 ug/L 94 61) Bromoform 8.923 173 2822 1.69 ug/L 97 62) Isopropylbenzene 9.115 105 25372 2.01 ug/L 91 63) 1,2,3-Trichloropropane 9.488 110 1874 2.08 ug/L # 83 65) Bromobenzene 9.446 156 6585 2.08 ug/L # 83 66) 1,1,2,2-Tetrachloroethane 9.446 156 6585 2.08 ug/L # 86 67) n-Propylbenzene 9.568 91 28103 1.95 ug/L 87 68) 2-Chlorotoluene 9.654 126 5566 1.92 ug/L # 45 69) 4-Chlorotoluene 9.760 105 21117 1.99 ug/L # 46 70) 1,3,5-Trimethylbenzene 10.123 134 4589 1.94 ug/L # <		8.138	131	4282	1.80 ug/L #	67
58) m,p-Xylene 8.287 106 17987 3.97 ug/L # 66 69 69 9527 2.02 ug/L # 71 60 59) o-Xylene 8.714 106 9527 2.02 ug/L # 71 71 60) Styrene 8.725 104 16929 2.16 ug/L 94 94 61) Bromoform 8.923 173 2822 1.69 ug/L 97 97 62) Isopropylbenzene 9.115 105 25372 2.01 ug/L 91 91 83 6155 2.08 ug/L # 83 83 65) Bromobenzene 9.446 156 6585 2.08 ug/L # 83 66 66) 1,1,2,2-Tetrachloroethane 9.440 83 6155 2.09 ug/L # 66 66 10,1,2,2-Tetrachloroethane 9.440 83 6155 2.09 ug/L # 66 66 10,1,2,2-Tetrachloroethane 9.440 83 6155 2.09 ug/L # 87 87 68 66 10,1,2,2-Tetrachloroethane 9.568 91 28103 1.95 ug/L # 50 87 88 109 1.94 1.94 1.94 1.94 1.94 1.94 1.94 1.94 1.94 1.94 1.94 1.94 1.94 1.94 1.94 1.94 1.94 1.9		8.165	91	25231	٥٠	
59) o-Xylene 8.714 106 9527 2.02 ug/L # 71 60) Styrene 8.725 104 16929 2.16 ug/L 94 61) Bromoform 8.923 173 2822 1.69 ug/L 97 62) Isopropylbenzene 9.115 105 25372 2.01 ug/L 91 63) 1,2,3-Trichloropropane 9.488 110 1874 2.08 ug/L # 83 65) Bromobenzene 9.446 156 6585 2.08 ug/L # 66 66) 1,1,2,2-Tetrachloroethane 9.440 83 6155 2.09 ug/L 96 67) n-Propylbenzene 9.568 91 28103 1.95 ug/L 87 68) 2-Chlorotoluene 9.654 126 5566 1.92 ug/L # 45 69) 4-Chlorotoluene 9.776 126 5894 2.00 ug/L # 45 69) 4-Chlorotoluene 9.760 105 21117 1.99 ug/L # 67 71) tert-Butylbenzene 10.123 134 4589 1.94 ug/L # 67 72) 1,2,4-Trimethylbenzene 10.369 105 20117 1.99 ug/L # 67 73) sec-Butylbenzene 10.369 105 26444 1.92 ug/L # 88 <t< td=""><td></td><td>8.287</td><td>106</td><td>17987</td><td></td><td></td></t<>		8.287	106	17987		
61) Bromoform		8.714	106	9527		
61) Bromoform	60) Styrene	8.725	104	16929		
63) 1,2,3-Trichloropropane 9.488 110 1874 2.08 ug/L # 66 65) Bromobenzene 9.446 156 6585 2.08 ug/L # 66 66) 1,1,2,2-Tetrachloroethane 9.440 83 6155 2.09 ug/L 96 67) n-Propylbenzene 9.568 91 28103 1.95 ug/L 87 68) 2-Chlorotoluene 9.654 126 5566 1.92 ug/L # 45 69) 4-Chlorotoluene 9.776 126 5894 2.00 ug/L # 45 70) 1,3,5-Trimethylbenzene 9.760 105 21117 1.99 ug/L 86 71) tert-Butylbenzene 10.123 134 4589 1.94 ug/L # 67 72) 1,2,4-Trimethylbenzene 10.177 105 20814 1.94 ug/L 88 73) sec-Butylbenzene 10.369 105 26444 1.92 ug/L 88 74) p-Isopropyltoluene 10.534 119 22788 1.95 ug/L 89 76) 1,3-Dichlorobenzene 10.486 146 12374 2.05 ug/L 89 76) 1,3-Dichlorobenzene 10.582 146 12561 2.08 ug/L 93 77) 1,4-Dichlorobenzene 10.582 146 12561 2.08 ug/L 93 78) n-Butylbenzene 10.999 91 22356 2.03 ug/L 87 79) 1,2-Dichlorobenzene 10.999 146 12345 2.13 ug/L 98 81) 1,2-Dibromo-3-Chloropr 11.884 157 1071 1.58 ug/L 98 81) 1,2,4-Trichlorobenzene 12.776 180 10136 2.09 ug/L 94 83) 1,2,3-Trichlorobenzene 13.267 180 9180 2.06 ug/L 95 84) Hexachlorobutadiene 12.957 225 6886 2.05 ug/L 99 85) Naphthalene 13.021 128 18642 2.12 ug/L		8.923	173	2822		
65) Bromobenzene 9.446 156 6585 2.08 ug/L # 66 66) 1,1,2,2-Tetrachloroethane 9.440 83 6155 2.09 ug/L 96 67) n-Propylbenzene 9.568 91 28103 1.95 ug/L 87 68) 2-Chlorotoluene 9.654 126 5566 1.92 ug/L # 45 69) 4-Chlorotoluene 9.776 126 5894 2.00 ug/L # 46 70) 1,3,5-Trimethylbenzene 9.760 105 21117 1.99 ug/L 86 71) tert-Butylbenzene 10.123 134 4589 1.94 ug/L # 67 72) 1,2,4-Trimethylbenzene 10.177 105 20814 1.94 ug/L 88 73) sec-Butylbenzene 10.369 105 26444 1.92 ug/L 88 74) p-Isopropyltoluene 10.534 119 22788 1.95 ug/L 89 76) 1,3-Dichlorobenzene 10.486 146 12374 2.05 ug/L 93 77) 1,4-Dichlorobenzene 10.582 146 12561 2.08 ug/L 93 78) n-Butylbenzene 10.999 91 22356 2.03 ug/L 87 79) 1,2-Dichlorobenzene 10.999 146 12345 2.13 ug/L 98 81) 1,2-Dibromo-3-Chloropr 11.884 157 1071 1.58 ug/L 98 81) 1,2,3-Trichlorobenzene 12.776 180 10136 2.09 ug/L 94 83) 1,2,3-Trichlorobenzene 13.267 180 9180 2.06 ug/L 95 84) Hexachlorobutadiene 12.957 225 6886 2.05 ug/L 99 85) Naphthalene 13.021 128 18642 2.12 ug/L	62) Isopropylbenzene	9.115	105	25372	-	
66) 1,1,2,2-Tetrachloroethane 9.440 83 6155 2.09 ug/L 96 67) n-Propylbenzene 9.568 91 28103 1.95 ug/L 87 68) 2-Chlorotoluene 9.654 126 5566 1.92 ug/L # 45 69) 4-Chlorotoluene 9.776 126 5894 2.00 ug/L # 46 70) 1,3,5-Trimethylbenzene 9.760 105 21117 1.99 ug/L 86 71) tert-Butylbenzene 10.123 134 4589 1.94 ug/L # 67 72) 1,2,4-Trimethylbenzene 10.177 105 20814 1.94 ug/L 88 73) sec-Butylbenzene 10.369 105 26444 1.92 ug/L 88 74) p-Isopropyltoluene 10.534 119 22788 1.95 ug/L 89 76) 1,3-Dichlorobenzene 10.486 146 12374 2.05 ug/L 93 77) 1,4-Dichlorobenzene 10.582 146 12561 2.08 ug/L # 79 78) n-Butylbenzene 10.999 91 22356 2.03 ug/L 87 79) 1,2-Dichlorobenzene 10.999 91 22356 2.03 ug/L 87 79) 1,2-Dichlorobenzene 10.999 146 12345 2.13 ug/L 98 81) 1,2-Dibromo-3-Chloropr 11.884 157 1071 1.58 ug/L # 77 82) 1,2,4-Trichlorobenzene 12.776 180 10136 2.09 ug/L 94 83) 1,2,3-Trichlorobenzene 13.267 180 9180 2.06 ug/L 95 84) Hexachlorobutadiene 12.957 225 6886 2.05 ug/L 99 85) Naphthalene 13.021 128 18642 2.12 ug/L 99	63) 1,2,3-Trichloropropane	9.488	110		— · · · · · · · · · · · · · · · · · · ·	
67) n-Propylbenzene 9.568 91 28103 1.95 ug/L 87 68) 2-Chlorotoluene 9.654 126 5566 1.92 ug/L # 45 69) 4-Chlorotoluene 9.776 126 5894 2.00 ug/L # 46 70) 1,3,5-Trimethylbenzene 9.760 105 21117 1.99 ug/L 86 71) tert-Butylbenzene 10.123 134 4589 1.94 ug/L # 67 72) 1,2,4-Trimethylbenzene 10.177 105 20814 1.94 ug/L 88 73) sec-Butylbenzene 10.369 105 26444 1.92 ug/L 88 74) p-Isopropyltoluene 10.534 119 22788 1.95 ug/L 89 76) 1,3-Dichlorobenzene 10.486 146 12374 2.05 ug/L 93 77) 1,4-Dichlorobenzene 10.582 146 12561 2.08 ug/L 93 77) 1,4-Dichlorobenzene 10.999 91 22356 2.03 ug/L 87 78) n-Butylbenzene 10.999 146 12345 2.13 ug/L 87 79) 1,2-Dichlorobenzene 10.999 146 12345 2.13 ug/L 98 81) 1,2-Dibromo-3-Chloropr 11.884 157 1071 1.58 ug/L # 77 82) 1,2,4-Trichlorobenzene 12.776 180 10136 2.09 ug/L 94 83) 1,2,3-Trichlorobenzene 13.267 180 9180 2.06 ug/L 95 84) Hexachlorobutadiene 12.957 225 6886 2.05 ug/L 99 85) Naphthalene 13.021 128 18642 2.12 ug/L		9.446				
68) 2-Chlorotoluene 9.654 126 5566 1.92 ug/L # 45 69) 4-Chlorotoluene 9.776 126 5894 2.00 ug/L # 46 70) 1,3,5-Trimethylbenzene 9.760 105 21117 1.99 ug/L 86 71) tert-Butylbenzene 10.123 134 4589 1.94 ug/L # 67 72) 1,2,4-Trimethylbenzene 10.177 105 20814 1.94 ug/L 88 73) sec-Butylbenzene 10.369 105 26444 1.92 ug/L 88 74) p-Isopropyltoluene 10.534 119 22788 1.95 ug/L 89 76) 1,3-Dichlorobenzene 10.486 146 12374 2.05 ug/L 93 77) 1,4-Dichlorobenzene 10.582 146 12561 2.08 ug/L 93 78) n-Butylbenzene 10.999 91 22356 2.03 ug/L 87 79) 1,2-Dichlorobenzene 10.999 146 12345 2.13 ug/L 88 81) 1,2-Dibromo-3-Chloropr 11.884 157 1071 1.58 ug/L 98 81) 1,2,4-Trichlorobenzene 12.776 180 10136 2.09 ug/L 94 83) 1,2,3-Trichlorobenzene 13.267 180 9180 2.06 ug/L 95 84) Hexachlorobutadiene 12.957 225 6886 2.05 ug/L 99 85) Naphthalene 13.021 128 18642 2.12 ug/L 99	66) 1,1,2,2-Tetrachloroethane					
69) 4-Chlorotoluene 9.776 126 5894 2.00 ug/L # 46 70) 1,3,5-Trimethylbenzene 9.760 105 21117 1.99 ug/L 86 71) tert-Butylbenzene 10.123 134 4589 1.94 ug/L # 67 72) 1,2,4-Trimethylbenzene 10.177 105 20814 1.94 ug/L 88 73) sec-Butylbenzene 10.369 105 26444 1.92 ug/L 88 74) p-Isopropyltoluene 10.534 119 22788 1.95 ug/L 89 76) 1,3-Dichlorobenzene 10.486 146 12374 2.05 ug/L 93 77) 1,4-Dichlorobenzene 10.582 146 12561 2.08 ug/L # 79 78) n-Butylbenzene 10.999 91 22356 2.03 ug/L 87 79) 1,2-Dichlorobenzene 10.999 146 12345 2.13 ug/L 98 81) 1,2-Dibromo-3-Chloropr 11.884 157 1071 1.58 ug/L # 77 82) 1,2,4-Trichlorobenzene 12.776 180 10136 2.09 ug/L 94 83) 1,2,3-Trichlorobenzene 13.267 180 9180 2.06 ug/L 95 84) Hexachlorobutadiene 12.957 225 6886 2.05 ug/L 99 85) Naphthalene 13.021 128 18642 2.12 ug/L 99	67) n-Propylbenzene				<u> </u>	
70) 1,3,5-Trimethylbenzene 9.760 105 21117 1.99 ug/L 86 71) tert-Butylbenzene 10.123 134 4589 1.94 ug/L # 67 72) 1,2,4-Trimethylbenzene 10.177 105 20814 1.94 ug/L 88 73) sec-Butylbenzene 10.369 105 26444 1.92 ug/L 88 74) p-Isopropyltoluene 10.534 119 22788 1.95 ug/L 89 76) 1,3-Dichlorobenzene 10.486 146 12374 2.05 ug/L 93 77) 1,4-Dichlorobenzene 10.582 146 12561 2.08 ug/L # 79 78) n-Butylbenzene 10.999 91 22356 2.03 ug/L 87 79) 1,2-Dichlorobenzene 10.999 146 12345 2.13 ug/L 98 81) 1,2-Dibromo-3-Chloropr 11.884 157 1071 1.58 ug/L # 77 82) 1,2,4-Trichlorobenzene 12.776 180 10136 2.09 ug/L 94 83) 1,2,3-Trichlorobenzene 13.267 180 9180 2.06 ug/L 95 84) Hexachlorobutadiene 12.957 225 6886 2.05 ug/L 99 85) Naphthalene 13.021 128 18642 2.12 ug/L 99	68) 2-Chlorotoluene					
71) tert-Butylbenzene 10.123 134 4589 1.94 ug/L # 67 72) 1,2,4-Trimethylbenzene 10.177 105 20814 1.94 ug/L 88 73) sec-Butylbenzene 10.369 105 26444 1.92 ug/L 88 74) p-Isopropyltoluene 10.534 119 22788 1.95 ug/L 89 76) 1,3-Dichlorobenzene 10.486 146 12374 2.05 ug/L 93 77) 1,4-Dichlorobenzene 10.582 146 12561 2.08 ug/L # 79 78) n-Butylbenzene 10.999 91 22356 2.03 ug/L 87 79) 1,2-Dichlorobenzene 10.999 146 12345 2.13 ug/L 98 81) 1,2-Dibromo-3-Chloropr 11.884 157 1071 1.58 ug/L # 77 82) 1,2,4-Trichlorobenzene 12.776 180 10136 2.09 ug/L 94 83) 1,2,3-Trichlorobenzene 13.267 180 9180 2.06 ug/L 95 84) Hexachlorobutadiene 12.957 225 6886 2.05 ug/L 99 85) Naphthalene 13.021 128 18642 2.12 ug/L 99	69) 4-Chlorotoluene					
72) 1,2,4-Trimethylbenzene 10.177 105 20814 1.94 ug/L 88 73) sec-Butylbenzene 10.369 105 26444 1.92 ug/L 88 74) p-Isopropyltoluene 10.534 119 22788 1.95 ug/L 89 76) 1,3-Dichlorobenzene 10.486 146 12374 2.05 ug/L 93 77) 1,4-Dichlorobenzene 10.582 146 12561 2.08 ug/L 79 78) n-Butylbenzene 10.999 91 22356 2.03 ug/L 87 79) 1,2-Dichlorobenzene 10.999 146 12345 2.13 ug/L 98 81) 1,2-Dibromo-3-Chloropr 11.884 157 1071 1.58 ug/L # 77 82) 1,2,4-Trichlorobenzene 12.776 180 10136 2.09 ug/L 94 83) 1,2,3-Trichlorobenzene 13.267 180 9180 2.06 ug/L 95 84) Hexachlorobutadiene 12.957 225 6886 2.05 ug/L 99 85) Naphthalene 13.021 128 18642 2.12 ug/L 99						
73) sec-Butylbenzene 10.369 105 26444 1.92 ug/L 88 74) p-Isopropyltoluene 10.534 119 22788 1.95 ug/L 89 76) 1,3-Dichlorobenzene 10.486 146 12374 2.05 ug/L 93 77) 1,4-Dichlorobenzene 10.582 146 12561 2.08 ug/L 79 78) n-Butylbenzene 10.999 91 22356 2.03 ug/L 87 79) 1,2-Dichlorobenzene 10.999 146 12345 2.13 ug/L 98 81) 1,2-Dibromo-3-Chloropr 11.884 157 1071 1.58 ug/L # 77 82) 1,2,4-Trichlorobenzene 12.776 180 10136 2.09 ug/L 94 83) 1,2,3-Trichlorobenzene 13.267 180 9180 2.06 ug/L 95 84) Hexachlorobutadiene 12.957 225 6886 2.05 ug/L 99 85) Naphthalene 13.021 128 18642 2.12 ug/L 99						
74) p-Isopropyltoluene 10.534 119 22788 1.95 ug/L 89 76) 1,3-Dichlorobenzene 10.486 146 12374 2.05 ug/L 93 77) 1,4-Dichlorobenzene 10.582 146 12561 2.08 ug/L 79 78) n-Butylbenzene 10.999 91 22356 2.03 ug/L 87 79) 1,2-Dichlorobenzene 10.999 146 12345 2.13 ug/L 98 81) 1,2-Dibromo-3-Chloropr 11.884 157 1071 1.58 ug/L # 77 82) 1,2,4-Trichlorobenzene 12.776 180 10136 2.09 ug/L 94 83) 1,2,3-Trichlorobenzene 13.267 180 9180 2.06 ug/L 95 84) Hexachlorobutadiene 12.957 225 6886 2.05 ug/L 99 85) Naphthalene 13.021 128 18642 2.12 ug/L 99						
76) 1,3-Dichlorobenzene 10.486 146 12374 2.05 ug/L 93 77) 1,4-Dichlorobenzene 10.582 146 12561 2.08 ug/L # 79 78) n-Butylbenzene 10.999 91 22356 2.03 ug/L 87 79) 1,2-Dichlorobenzene 10.999 146 12345 2.13 ug/L 98 81) 1,2-Dibromo-3-Chloropr 11.884 157 1071 1.58 ug/L # 77 82) 1,2,4-Trichlorobenzene 12.776 180 10136 2.09 ug/L 94 83) 1,2,3-Trichlorobenzene 13.267 180 9180 2.06 ug/L 95 84) Hexachlorobutadiene 12.957 225 6886 2.05 ug/L 99 85) Naphthalene 13.021 128 18642 2.12 ug/L 99					J.	
77) 1,4-Dichlorobenzene 10.582 146 12561 2.08 ug/L # 79 78) n-Butylbenzene 10.999 91 22356 2.03 ug/L 87 79) 1,2-Dichlorobenzene 10.999 146 12345 2.13 ug/L 98 81) 1,2-Dibromo-3-Chloropr 11.884 157 1071 1.58 ug/L # 77 82) 1,2,4-Trichlorobenzene 12.776 180 10136 2.09 ug/L 94 83) 1,2,3-Trichlorobenzene 13.267 180 9180 2.06 ug/L 95 84) Hexachlorobutadiene 12.957 225 6886 2.05 ug/L 99 85) Naphthalene 13.021 128 18642 2.12 ug/L 99						
78) n-Butylbenzene 10.999 91 22356 2.03 ug/L 87 79) 1,2-Dichlorobenzene 10.999 146 12345 2.13 ug/L 98 81) 1,2-Dibromo-3-Chloropr 11.884 157 1071 1.58 ug/L # 77 82) 1,2,4-Trichlorobenzene 12.776 180 10136 2.09 ug/L 94 83) 1,2,3-Trichlorobenzene 13.267 180 9180 2.06 ug/L 95 84) Hexachlorobutadiene 12.957 225 6886 2.05 ug/L 99 85) Naphthalene 13.021 128 18642 2.12 ug/L 99						
79) 1,2-Dichlorobenzene 10.999 146 12345 2.13 ug/L 98 81) 1,2-Dibromo-3-Chloropr 11.884 157 1071 1.58 ug/L # 77 82) 1,2,4-Trichlorobenzene 12.776 180 10136 2.09 ug/L 94 83) 1,2,3-Trichlorobenzene 13.267 180 9180 2.06 ug/L 95 84) Hexachlorobutadiene 12.957 225 6886 2.05 ug/L 99 85) Naphthalene 13.021 128 18642 2.12 ug/L 99	· · · · · · · · · · · · · · · · · · ·					
81) 1,2-Dibromo-3-Chloropr 11.884 157 1071 1.58 ug/L # 77 82) 1,2,4-Trichlorobenzene 12.776 180 10136 2.09 ug/L 94 83) 1,2,3-Trichlorobenzene 13.267 180 9180 2.06 ug/L 95 84) Hexachlorobutadiene 12.957 225 6886 2.05 ug/L 99 85) Naphthalene 13.021 128 18642 2.12 ug/L 99					- · .	
82) 1,2,4-Trichlorobenzene 12.776 180 10136 2.09 ug/L 94 83) 1,2,3-Trichlorobenzene 13.267 180 9180 2.06 ug/L 95 84) Hexachlorobutadiene 12.957 225 6886 2.05 ug/L 99 85) Naphthalene 13.021 128 18642 2.12 ug/L 99						
83) 1,2,3-Trichlorobenzene 13.267 180 9180 2.06 ug/L 95 84) Hexachlorobutadiene 12.957 225 6886 2.05 ug/L 99 85) Naphthalene 13.021 128 18642 2.12 ug/L 99					- -	
84) Hexachlorobutadiene 12.957 225 6886 2.05 ug/L 99 85) Naphthalene 13.021 128 18642 2.12 ug/L 99						
85) Naphthalene 13.021 128 18642 2.12 ug/L 99						
/						
86) Cyclohexane 4.557 56 7373 2.09 ug/L 86						
	86) Cyclohexane	4.557	56	1313	2.09 ug/L	00

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

Operator: Bill Brew

: Instrument #1

Data File: C:\msdchem\1\DATA\081110\V77408.D

DataAcq Meth:8260RUN.M

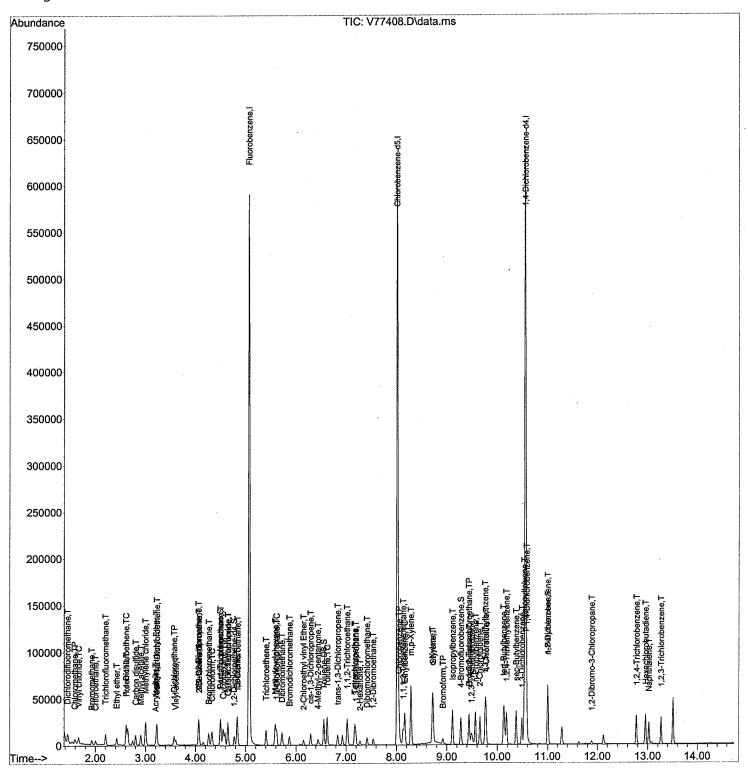
5:10 pm Acq On : 11 Aug 2010

: 2ppb mega Cal Sample

Misc

ALS Vial

Quant Time: Aug 12 11:51:57 2010


Quant Method : C:\msdchem\1\METHODS\081110.M

Sample Multiplier: 1

Quant Title : 8260/624 Analysis

QLast Update : Thu Aug 12 11:46:12 2010

Response via : Initial Calibration

Operator: Bill Brew

Inst : Instrument #1

Data File: C:\msdchem\1\DATA\081110\V77409.D

DataAcq Meth:8260RUN.M

Acq On : 11 Aug 2010 5:33 pm

Sample : 5ppb mega Cal

Misc

ALS Vial : 5 Sample Multiplier: 1

Quant Time: Aug 12 11:52:18 2010

Quant Method : C:\msdchem\1\METHODS\081110.M

Quant Title : 8260/624 Analysis

QLast Update : Thu Aug 12 11:46:12 2010

Response via : Initial Calibration

Integrator: RTE

_		0.7	D Cond	Inita Dev/Min	١
Compound		Oton	Response Cond	Units Dev(Min	. <i>j</i> -
Internal Standards					
1) Fluorobenzene	5.076	96	467204 50	.00 ug/L 0.0	0
54) Chlorobenzene-d5	8.022			.00 ug/L 0.0	0
75) 1,4-Dichlorobenzene-d4			182010 50	.00 ug/L 0.0	0.
/3/ 1,4 Dichiolopomeone as			•		
System Monitoring Compounds				/ - - 0 0	
26) Pentafluorobenzene	4.505	168		.91 ug/L 0.0	·U
Spiked Amount 50.000	Range 70		Recovery	= 9.82%#	
29) 1,2-Dichloroethane-d4	4.772			.19 ug/L 0.0	U
1	Range 71		Recovery		ın
45) Toluene-D8	6.565				·
Spiked Amount 50.000		- 113	Recovery	= 9.00%# .15 ug/L 0.0	10
64) 4-Bromofluorobenzene	9.276			11	
Spiked Amount 50.000	Range 67	- 107	Recovery	= 12.30%#	
m dome.oveda		•		Qvalue	<u> </u>
Target Compounds 2) Dichlorodifluoromethane	1.447	85	13813 4	-	9
3) Chloromethane	1.596				9
4) Vinyl chloride	1.666				96
5) Bromomethane	1.927				96
6) Chloroethane	2.002				98
7) Trichlorofluoromethane	2.205			.75 ug/L 9	9
8) Ethyl ether	2.429			.75 ug/L 10	0 (
9) Freon 113	2.610				95
10) 1,1-Dichloroethene	2.616			·	33
11) Acetone	2.648		21734 7	.05 ug/L 9	91
12) Carbon disulfide	2.802	76			98
13) Methyl acetate	2.914				96
14) Methylene chloride	3.000	84			96
15) Acrylonitrile	3.203				96
17) Methyl tert-butyl Ether	3.224	73			98.
18) trans-1,2-Dichloroethene	e 3.224	61			36
19) 1,1-Dichloroethane	3.576	63		· · J/ ·	99
20) Vinyl acetate	3.614	43		·	94
21) 2,2-Dichloropropane	4.067	77			91
22) 2-Butanone	4.072			- J.	70
23) cis-1,2-Dichloroethene	4.067			· · · · · · · · · · · · · · · · · · ·	83
24) Bromochloromethane	4.270			· - · · · J/ _ · · ·	78
25) Chloroform	4.334				00
28) 1,1,1-Trichloroethane	4.505			.00 45/ -	93
30) Carbon Tetrachloride	4.649			· · —	98
31) Benzene	4.830			<u> </u>	98
32) 1,2-Dichloroethane	4.841			·	96
33) Trichloroethene	5.407				84
34) Methylcyclohexane	5.593			· - · · · · · · · · · · · · · · · · · ·	89
36) 1,2-Dichloropropane	5.615			· · · · · · · · · · · · · · · · · · ·	98
38) Dibromomethane	5.722			· · · · · · · · · · · · · · · · · ·	73
39) Bromodichloromethane	5.871			· · · = · · · · · · · · · · · · · · · ·	97
40) 2-Chloroethyl vinyl Eth					93
42) 1,1-Dichloropropene	4.649			٠.	89 96
43) cis-1,3-Dichloropropene	6.293	75	18636 4	.87 ug/L	96

8/12 ms

Data File: C:\msdchem\1\DATA\081110\V77409.D

DataAcq Meth:8260RUN.M

Acq On : 11 Aug 2010 Sample : 5ppb mega Cal Operator: Bill Brew 5:33 pm Inst : Instrument #1

Misc

ALS Vial : 5 Sample Multiplier: 1

Quant Time: Aug 12 11:52:18 2010
Quant Method: C:\msdchem\1\METHODS\081110.M

Quant Title : 8260/624 Analysis QLast Update : Thu Aug 12 11:46:12 2010 Response via : Initial Calibration

	Compound	R.T.	QIon	Response	Conc Ui	nits I	ev	(Min)
44)	4-Methyl-2-pentanone	6.442	43	9458m	4.72	ug/L		
46)	<u> </u>	6.623	91	49148	4.88	ug/L		98
47)		6.837	75	16357	4.64	ug/L		96
48)		7.018	97	10665	4.94	ug/L		97
49)	• •	7.195	76.	18174	4.94	ug/L		98
50)		7.168	166	14676	4.92	ug/L		95
	2-Hexanone	7.275	43	6280	4.63	ug/L		92
	Dibromochloromethane	7.419	129	10279	4.54	ug/L		99
53)		7.541	107	10237	4.66	ug/L		98
	Chlorobenzene	8.048	112	30751	4.83	ug/L	#	74
56)		8.134	131	11173		ug/L		96
57)	Ethylbenzene	8.166	91	56086		ug/L		91
58)	m,p-Xylene	8.289	106	44080	10.25	ug/L	#	69
	o-Xylene	8.716	106	21636	4.84	ug/L	#	78
60)	Styrene	8.732	104	36711		ug/L		92
61)		8.924	173	6717		ug/L		96
62)	Isopropylbenzene	9.116	105	59273		ug/L		93
63)	1,2,3-Trichloropropane	9.484	110	3962		ug/L		84
65)	Bromobenzene	9.441	156	14594		ug/L	#	64
66)	1,1,2,2-Tetrachloroethane	9.436	83	13695		ug/L		95
67)	n-Propylbenzene	9.564		68481		ug/L		86
68)	2-Chlorotoluene	9.660	126	13454		ug/L		50
	4-Chlorotoluene	9.778		14207		ug/L	#	50
	1,3,5-Trimethylbenzene	9.762		49923		ug/L		88
	tert-Butylbenzene	10.124		10928		ug/L	#	62
72)	1,2,4-Trimethylbenzene	10.178		51809		ug/L		86
73)		10.370	105	65698		ug/L		88
74)	p-Isopropyltoluene	10.535		54875		ug/L		90
76)	1,3-Dichlorobenzene	10.487		28273		ug/L		93
77)		10.583		29474		ug/L	#	90
	n-Butylbenzene	10.994		53292		ug/L		91
79)	·	11.000		29264		ug/L		96
81)		11.880		2509		ug/L	#	78
82)		12.772		23363		ug/L		96
83)		13.268		21379		ug/L		96
	Hexachlorobutadiene	12.953		15681		ug/L		97
85)		13.022	128	41077		ug/L		99
	Cyclohexane	4.553	56 	17925	5.16	ug/L		83

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

Operator: Bill Brew

: Instrument #1

Data File: C:\msdchem\1\DATA\081110\V77409.D

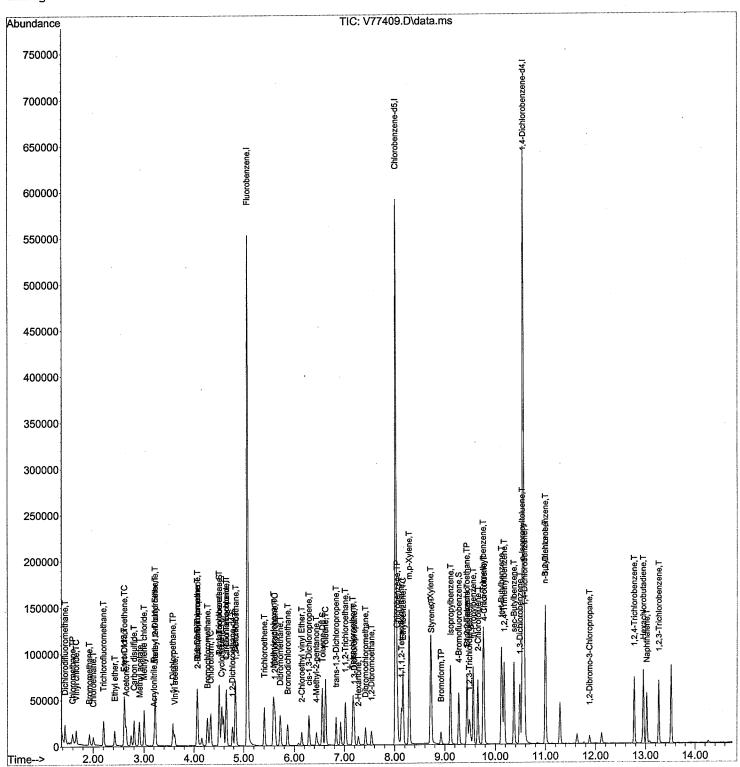
DataAcq Meth:8260RUN.M

Acq On : 11 Aug 2010 5:33 pm

Sample : 5ppb mega Cal

Misc

ALS Vial : 5 Sample Multiplier: 1


Quant Time: Aug 12 11:52:18 2010

Quant Method : C:\msdchem\1\METHODS\081110.M

Quant Title : 8260/624 Analysis

QLast Update : Thu Aug 12 11:46:12 2010

Response via : Initial Calibration

Operator: Bill Brew

: Instrument #1

Data File: C:\msdchem\1\DATA\081110\V77410.D

DataAcq Meth:8260RUN.M

Acq On : 11 Aug 2010 5:56 pm

Sample : 10ppb mega Cal

Misc

ALS Vial : 6 Sample Multiplier: 1

Quant Time: Aug 12 11:52:40 2010

Quant Method : C:\msdchem\1\METHODS\081110.M

Quant Title : 8260/624 Analysis

QLast Update : Thu Aug 12 11:46:12 2010

Response via : Initial Calibration

Integrator: RTE

Compound	R.T.	QIon	Response	Conc Ur	its I	ev(Min)
Internal Standards						
 Fluorobenzene 	5.072	96	471156	50.00		0.00
54) Chlorobenzene-d5	8.018	117	348114	50.00		0.00
75) 1,4-Dichlorobenzene-d4	10.558	152	192170	50.00	ug/L	0.00
System Monitoring Compounds						
26) Pentafluorobenzene	4.506	168	44575	9.36		0.00
Spiked Amount 50.000 I	Range 70	- 123	Recove:		18.7	
29) 1,2-Dichloroethane-d4	4.773	65	26065	9.65		0.00
Spiked Amount 50.000 I	Range 71	- 106	Recove:	ry =	19.3	
45) Toluene-D8	6.561	98	83967	9.55	ug/L	0.00
•	Range 70	- 113	Recove:	ry =	19.1	_0%#
64) 4-Bromofluorobenzene	9.277		36818	11.19	ug/L	0.00
•	Range 67	- 107	Recove:	ry =	22.3	88#
Target Compounds						Qvalue
2) Dichlorodifluoromethane	1.443	85	27457	9.59	ug/L	97
3) Chloromethane	1.592	50	21338	8.87	ug/L	99
4) Vinyl chloride	1.667		23443	9.96		99
5) Bromomethane	1.929		12035	9.52		92
6) Chloroethane	2.003		13256	9.57		97
7) Trichlorofluoromethane	2.206		37653	9.65		98
8) Ethyl ether	2.425		13851	9.27		100
9) Freon 113	2.612		18752	9.34		93
	2.617		28144	9.51		89
	2.649		21189	5.68		95
11) Acetone12) Carbon disulfide	2.799		63647	9.77		100
	2.916		10530	9.29		96
13) Methyl acetate	3.001		25802	9.02		91
14) Methylene chloride	3.199		5886	10.11		89
15) Acrylonitrile	3.199		59319	9.82		99
17) Methyl tert-butyl Ether			23089	9.43		87
18) trans-1,2-Dichloroethene	3.231		34667	9.53		100
19) 1,1-Dichloroethane	3.572			9.09		96
20) Vinyl acetate	3.610		27631	9.09		93
21) 2,2-Dichloropropane	4.069		36307	10.12		
22) 2-Butanone	4.074		2701	10.12		••
23) cis-1,2-Dichloroethene	4.063		28097			
24) Bromochloromethane	4.266		10558	9.36		.# /6 99
25) Chloroform	4.330		42940	9.67		99 96
28) 1,1,1-Trichloroethane	4.501	97	37090	9.63		
30) Carbon Tetrachloride	4.650	117	28320	9.26		98
31) Benzene	4.827	78	95462		ug/L	96
32) 1,2-Dichloroethane	4.837	62	30455		ug/L	97
33) Trichloroethene	5.403	130	24246		ug/L	
34) Methylcyclohexane	5.590	83	41771		ug/L	90
36) 1,2-Dichloropropane	5.616	63	21578		ug/L	
38) Dibromomethane	5.723	93	13732	10.05		
39) Bromodichloromethane	5.867	83	30298	9.31	ug/L	99
40) 2-Chloroethyl vinyl Ethe:		63	12698	9.94	ug/L	92
42) 1,1-Dichloropropene	4.645	75	33257	9.89	ug/L	88

8/12 mg

Operator: Bill Brew

Inst : Instrument #1

Data File: C:\msdchem\1\DATA\081110\V77410.D

DataAcq Meth:8260RUN.M

Acq On : 11 Aug 2010 5 Sample : 10ppb mega Cal 5:56 pm

Misc

ALS Vial : 6 Sample Multiplier: 1

Quant Time: Aug 12 11:52:40 2010

Quant Method: C:\msdchem\1\METHODS\081110.M Quant Title: 8260/624 Analysis QLast Update: Thu Aug 12 11:46:12 2010 Response via: Initial Calibration

Compound	R.T.	QIon	Response	Conc Units Dev	(Min)
44) 4-Methyl-2-pentanone	6.444	43	17831m	8.82 ug/L	
46) Toluene	6.620	91	100613	$9.91~\mathrm{ug/L}$	99
47) trans-1,3-Dichloropropene	6.839	75	34681	9.76 ug/L	97
48) 1,1,2-Trichloroethane	7.020	97	21477	9.86 ug/L	97
49) 1,3-Dichloropropane	7.191	76	36690	9.90 ug/L	95
50) Tetrachloroethene	7.169	166	29931	9.95 ug/L	94
51) 2-Hexanone	7.276	43	12056	8.80 ug/L	98
52) Dibromochloromethane	7.420	129	20170	$8.83~{ m ug/L}$	97
53) 1,2-Dibromoethane	7.538	107	21422	$9.67~\mathrm{ug/L}$	100
55) Chlorobenzene	8.050	112	64902	10.07 ug/L #	80
56) 1,1,1,2-Tetrachloroethane	8.135	131	21950	$9.61~\mathrm{ug/L}$	98
57) Ethylbenzene	8.167	91	115563	9.93 ug/L	92
58) m,p-Xylene	8.290	106	87320	20.06 ug/L #	- 76
59) o-Xylene	8.717	106	44598	9.86 ug/L #	83
60) Styrene	8.728	104	72002	9.59 ug/L	91
61) Bromoform	8.925	173	14366	8.98 ug/L	95
62) Isopropylbenzene	9.117	105	120634	9.95 ug/L	90
63) 1,2,3-Trichloropropane	9.486	110	8278	9.58 ug/L #	83
65) Bromobenzene	9.448	156	29734	9.77 ug/L #	67
66) 1,1,2,2-Tetrachloroethane	9.438	83	26566	$9.42~\mathrm{ug/L}$	96
67) n-Propylbenzene	9.566	91	136009	9.85 ug/L	85
68) 2-Chlorotoluene	9.656	126	26685	9.61 ug/L #	5.0
69) 4-Chlorotoluene	9.779	126	27478	9.70 ug/L #	40
70) 1,3,5-Trimethylbenzene	9.763	105	103361	10.17 ug/L	87
71) tert-Butylbenzene	10.121	134	21585	9.51 ug/L #	56
72) 1,2,4-Trimethylbenzene	10.174		104578	10.18 ug/L	86
73) sec-Butylbenzene	10.371		129069	9.78 ug/L	88
74) p-Isopropyltoluene	10.532		110042	9.80 ug/L	90
76) 1,3-Dichlorobenzene	10.484		56329	8.98 ug/L	94
77) 1,4-Dichlorobenzene	10.585		57701	9.18 ug/L	94
78) n-Butylbenzene	10.991		106246	9.26 ug/L	93
79) 1,2-Dichlorobenzene	11.001		56207	9.30 ug/L	96
81) 1,2-Dibromo-3-Chloropr	11.882	157	5452	7.72 ug/L #	82
82) 1,2,4-Trichlorobenzene	12.773	180	46041	9.13 ug/L	98
83) 1,2,3-Trichlorobenzene	13.264		43547	9.39 ug/L	94
84) Hexachlorobutadiene	12.955		32383	9.28 ug/L	98
85) Naphthalene	13.024		82413	9.02 ug/L	99
86) Cyclohexane	4.560	56	32980	$8.98~\mathrm{ug/L}$	92

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

Operator: Bill Brew

: Instrument #1

Data File: C:\msdchem\1\DATA\081110\V77410.D

DataAcq Meth:8260RUN.M

: 11 Aug 2010 5:56 pm Acq On

: 10ppb mega Cal Sample

Misc

: 6 Sample Multiplier: 1 ALS Vial

Quant Time: Aug 12 11:52:40 2010

Quant Method: C:\msdchem\1\METHODS\081110.M

Quant Title : 8260/624 Analysis

QLast Update: Thu Aug 12 11:46:12 2010 Response via: Initial Calibration

Operator: Bill Brew

Inst : Instrument #1

Data File: C:\msdchem\1\DATA\081110\V77411.D

DataAcq Meth:8260RUN.M

Acq On : 11 Aug 2010 6 Sample : 50ppb mega Cal 6:20 pm

Misc

ALS Vial : 7 Sample Multiplier: 1

Quant Time: Aug 12 11:53:02 2010
Quant Method: C:\msdchem\1\METHODS\081110.M

Quant Title : 8260/624 Analysis QLast Update : Thu Aug 12 11:46:12 2010 Response via : Initial Calibration

Integrator: RTE

Compound	R.T.	QIon	Response	Conc Ur	nits Dev	(Min)
Internal Standards						
1) Fluorobenzene	5.075	96	437134	50.00		0.00
54) Chlorobenzene-d5	8.021	117	341644	50.00		0.00
75) 1,4-Dichlorobenzene-d4	10.562	152	183049	50.00	ug/L	0.00
System Monitoring Compounds						
26) Pentafluorobenzene	4.504	168	211206	47.80		0.00
Spiked Amount 50.000	Range 70	- 123	Recove		95.60%	
29) 1,2-Dichloroethane-d4	4.776	65	123079	50.11		0.01
Spiked Amount 50.000	Range 71	- 106	Recove		100.22%	
45) Toluene-D8	6.564	98	382819	48.60	ug/L	0.00
Spiked Amount 50.000	Range 70	- 113	Recove	ry =	97.20%	;
64) 4-Bromofluorobenzene	9.275	95		52.70	ug/L	0.00
Spiked Amount 50.000		- 107	Recove		105.40%	
Target Compounds					Οv	alue
2) Dichlorodifluoromethane	1.446	85	127255	47.93	ua/L	97
3) Chloromethane	1.596		112476	50.41		98
4) Vinyl chloride	1.670		110391	50.55		99
5) Bromomethane	1.927		58367	49.75		95
	2.001		60450	47.04		99
6) Chloroethane	2.204		184917	51.08		97
7) Trichlorofluoromethane	2.428	59	69823	50.36		100
8) Ethyl ether	2.426		97444	52.34		97
9) Freon 113			141537	51.57		85
10) 1,1-Dichloroethene	2.615		41615	49.49		90
11) Acetone	2.647		313682	51.91		99
12) Carbon disulfide	2.802			49.26		95
13) Methyl acetate	2.914		51795	53.80		97
14) Methylene chloride	2.999		106289			95
15) Acrylonitrile	3.197		25580	47.37		100
17) Methyl tert-butyl Ether	3.229		276967	49.42		86
18) trans-1,2-Dichloroethene			113142	49.80		
<pre>19) 1,1-Dichloroethane</pre>	3.576		167190	49.53		99
20) Vinyl acetate	3.608		144937	51.37		94
21) 2,2-Dichloropropane	4.067		181332	53.55		89
22) 2-Butanone	4.072	72	13052		ug/L #	87
23) cis-1,2-Dichloroethene	4.061		129241		ug/L #	84
24) Bromochloromethane	4.269		54405		ug/L #	79
25) Chloroform	4.333		209539	50.86		99
28) 1,1,1-Trichloroethane	4.504	97	185895	52.02		94
30) Carbon Tetrachloride	4.654	117	151602	53.43		99
31) Benzene	4.830	78	453267	50.91		98
32) 1,2-Dichloroethane	4.846	62	141368	49.21		97
33) Trichloroethene	5.412	130	115189		ug/L #	83
34) Methylcyclohexane	5.593	83	198356	50.80	ug/L	90
36) 1,2-Dichloropropane	5.614	63	101370	47.62		88
38) Dibromomethane	5.726	93	62197	49.08	ug/L #	74
39) Bromodichloromethane	5.870	83	156925	51.96	ug/L	98
40) 2-Chloroethyl vinyl Ethe		63	65009	54.85	ug/L	91
42) 1,1-Dichloropropene	4.643	75	154367	49.47		92
43) cis-1,3-Dichloropropene	6.292	75	190942	53.33		94
13, CID 1/3 DICHIOLOPIOPCHO	0.272			_	٥.	

8/12 pm

Operator: Bill Brew

Inst : Instrument #1

Data File: C:\msdchem\1\DATA\081110\V77411.D

DataAcq Meth:8260RUN.M

Acq On : 11 Aug 2010 6 Sample : 50ppb mega Cal 6:20 pm

Misc

ALS Vial : 7 Sample Multiplier: 1

Quant Time: Aug 12 11:53:02 2010
Quant Method: C:\msdchem\1\METHODS\081110.M

Quant Title : 8260/624 Analysis QLast Update : Thu Aug 12 11:46:12 2010 Response via : Initial Calibration

Compound	R.T.	QIon	Response	Conc Units Dev(Min)
44) 4-Methyl-2-pentanone	6.447	43	101912m	54.35 ug/L	
46) Toluene	6.628	91	461760	49.00 ug/L	97
47) trans-1,3-Dichloropropene	6.831	75	180005	54.62 ug/L	96
48) 1,1,2-Trichloroethane	7.018	97	97372	48.19 ug/L	94
49) 1,3-Dichloropropane	7.194	76	172966	50.29 ug/L	99
50) Tetrachloroethene	7.173	166	149688	53.62 ug/L	93
51) 2-Hexanone	7.274	43	65116	51.26 ug/L	96
52) Dibromochloromethane	7.418	129	116269	54.84 ug/L	97
53) 1,2-Dibromoethane	7.541	107	103069	50.16 ug/L	98
55) Chlorobenzene	8.053	112	302074	47.77 ug/L	83
56) 1,1,1,2-Tetrachloroethane	8.139		111888	49.89 ug/L	97
57) Ethylbenzene	8.165	91	545894	47.80 ug/L	92
58) m,p-Xylene	8.293		399329	93.46 ug/L #	69
59) o-Xylene	8.710	106	207495	46.74 ug/L #	72
60) Styrene	8.726	104	345887	46.93 ug/L	92
61) Bromoform	8.923		82709	52.70 ug/L	98
62) Isopropylbenzene	9.115		584095	49.08 ug/L	91
63) 1,2,3-Trichloropropane	9.483		39835	46.97 ug/L #	67
65) Bromobenzene	9.441		145850	48.81 ug/L #	67
66) 1,1,2,2-Tetrachloroethane	9.435		130797	47.23 ug/L	96
67) n-Propylbenzene	9.569		645100	47.61 ug/L	90
68) 2-Chlorotoluene	9.660		136555	50.09 ug/L #	59
69) 4-Chlorotoluene	9.777		131263	47.23 ug/L #	44
70) 1,3,5-Trimethylbenzene	9.761		497449	49.85 ug/L	89
71) tert-Butylbenzene	10.124		109327	49.08 ug/L #	61
72) 1,2,4-Trimethylbenzene	10.177		503956	49.97 ug/L	89
73) sec-Butylbenzene	10.369		672990	51.98 ug/L	87
74) p-Isopropyltoluene	10.535		556098	50.47 ug/L	91
76) 1,3-Dichlorobenzene	10.487		286613	47.96 ug/L	94
77) 1,4-Dichlorobenzene	10.588		277359	46.33 ug/L	97 01
78) n-Butylbenzene	10.994		541265	49.55 ug/L	91
79) 1,2-Dichlorobenzene	11.004		262465	45.59 ug/L	99
81) 1,2-Dibromo-3-Chloropr	11.885		29360	43.29 ug/L #	79 98
82) 1,2,4-Trichlorobenzene	12.771		229239	47.71 ug/L	
83) 1,2,3-Trichlorobenzene	13.267		213811	48.38 ug/L	94 98
84) Hexachlorobutadiene	12.952		160106	48.16 ug/L	
85) Naphthalene	13.022		388194	44.61 ug/L	99 88
86) Cyclohexane	4.558	56 	170709	48.82 ug/L	

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

Operator: Bill Brew

: Instrument #1

Data File: C:\msdchem\1\DATA\081110\V77411.D

DataAcq Meth:8260RUN.M

Acq On : 11 Aug 2010 6:20 pm

Sample : 50ppb mega Cal

Misc

ALS Vial : 7 Sample Multiplier: 1

Quant Time: Aug 12 11:53:02 2010

Quant Method : C:\msdchem\1\METHODS\081110.M

Quant Title : 8260/624 Analysis

QLast Update : Thu Aug 12 11:46:12 2010

Response via : Initial Calibration

Operator: Bill Brew Inst : Instrument #1

_Data File: C:\msdchem\1\DATA\081110\V77412.D

DataAcq Meth:8260RUN.M

Acq On : 11 Aug 2010 6:43 pm

: 100ppb mega Cal Sample

Misc

Sample Multiplier: 1 ALS Vial : 8

Quant Time: Aug 12 11:53:25 2010
Quant Method: C:\msdchem\1\METHODS\081110.M

Quant Title : 8260/624 Analysis

QLast Update: Thu Aug 12 11:46:12 2010 Response via: Initial Calibration

Integrator: RTE

Compound		QIon	Response	Conc Ur	nits De	ev(Min)
Internal Standards	5 050	0.5	462075	50.00	υα/T.	0.00
1) Fluorobenzene	5.073	96	463975	50.00		0.00
54) Chlorobenzene-d5	8.019		355368	50.00		0.00
75) 1,4-Dichlorobenzene-d4	10.559	152	170476	50.00	ug/ L	0.00
System Monitoring Compounds				00 01	· /T	0.00
26) Pentafluorobenzene	4.497		431551		ug/L	
	Range 70					
29) 1,2-Dichloroethane-d4	4.774			99.94		0.00
Spiked Amount 50.000		- 106		_		
45) Toluene-D8	6.562	98				0.00
~F	_	- 113				
64) 4-Bromofluorobenzene	9.284			97.66		0.00
Spiked Amount 50.000	Range 67	- 107	Recove	ery =	195.3	28#
Target Compounds						Qvalue
2) Dichlorodifluoromethane	1.444	85	291386	103.39		. 99
Chloromethane	1.593	50	248492	104.92		99
4) Vinyl chloride	1.668	62	248015	107.00		98
5) Bromomethane	1.914	94	136804	109.86		98
6) Chloroethane	1.994	64	130718	95.83		99
7) Trichlorofluoromethane	2.202	101	394337	102.63		99
8) Ethyl ether	2.426	59	157026	106.70		100
9) Freon 113	2.607	101	193515	97.92	ug/L	96
10) 1,1-Dichloroethene	2.613	61	284936			89
11) Acetone	2.645	43	72251	100.95	ug/L	97
12) Carbon disulfide	2.800	76	656134	102.30	ug/L	100
13) Methyl acetate	2.912	43	104876	93.98	ug/L	99
14) Methylene chloride	3.002	84	197378	97.39		94
15) Acrylonitrile	3.195	53	58474			98
17) Methyl tert-butyl Ether	3.227	73	606598	101.98		99
18) trans-1,2-Dichloroethene	3.227	61	234221	97.14		88
19) 1,1-Dichloroethane	3.579	63	360886			99
20) Vinyl acetate	3.611	43	313345	104.64		95
21) 2,2-Dichloropropane	4.064	77	367182	102.15		90
22) 2-Butanone	4.070	72	25049	97.36	ug/L	92
23) cis-1,2-Dichloroethene	4.064	96	254883	92.37		
24) Bromochloromethane	4.273	128	108055		ug/L	
25) Chloroform	4.331	83	439992			99
28) 1,1,1-Trichloroethane	4.502	97	400523	105.60	ug/L	92
30) Carbon Tetrachloride	4.651	117	332961	110.57		100
31) Benzene	4.828	78	933316	98.76		96
32) 1,2-Dichloroethane	4.844	62	292167	95.83		98
33) Trichloroethene	5.409	130	244557	101.41	ug/L	# 83
34) Methylcyclohexane	5.591		448451	108.21		90
36) 1,2-Dichloropropane	5.617		228204	100.99	ug/L	94
38) Dibromomethane	5.724		135601	100.81	ug/L	# 70
39) Bromodichloromethane	5.868		345143	107.68		99
40) 2-Chloroethyl vinyl Ethe			138439	110.05		92
42) 1,1-Dichloropropene	4.646		318459	96.16		92
43) cis-1,3-Dichloropropene	6.295		412134	108.45		95

8/12 ms.

Data File: C:\msdchem\1\DATA\081110\V77412.D

DataAcq Meth:8260RUN.M

Acq On : 11 Aug 2010 6:43 pm Sample : 100ppb mega Cal

Misc

Operator: Bill Brew Inst : Instrument #1

ALS Vial : 8 Sample Multiplier: 1

Quant Time: Aug 12 11:53:25 2010

Quant Method : C:\msdchem\1\METHODS\081110.M

Quant Title : 8260/624 Analysis QLast Update : Thu Aug 12 11:46:12 2010

Response via: Initial Calibration

	Compound	R.T.	QIon	Response	Conc Units Dev	(Min)
44)	4-Methyl-2-pentanone	6.439	43	209128m	105.08 ug/L	
46)		6.626	91	912724	91.26 ug/L	98
47)		6.840	75	386140	110.39 ug/L	96
48)		7.021	97	205002	95.58 ug/L	95
	1,3-Dichloropropane	7.192	76	347761	95.27 ug/L	99
50)		7.170	166	310231	104.70 ug/L	97
51)		7.277	43	149693	111.02 ug/L	96
52)	Dibromochloromethane	7.421	129	254779	113.21 ug/L	99
53)	1,2-Dibromoethane	7.539	107	225787	103.52 ug/L	100
	Chlorobenzene	8.051	112	648908	98.67 ug/L	87
56)		8.131	131	242607	$104.00~\mathrm{ug/L}$	99
57)		8.163	91	1102365	$92.80~\mathrm{ug/L}$	91
58)		8.291	106	857436	192.92 ug/L #	78
59)		8.713	106	445306	96.43 ug/L #	78
	Styrene	8.729	104	710064	92.62 ug/L	92
61)	-	8.921	173	187312	$114.73~\mathrm{ug/L}$	97
62)		9.118	105	1213464	98.02 ug/L	91
63)		9.487	110	89051	100.94 ug/L #	76
	Bromobenzene	9.444	156	300261	96.60 ug/L #	68
66)		9.439	83	278517	96.70 ug/L	97
67)		9.567	91	1370550	97.25 ug/L	87
68)		9.657	126	266064	93.83 ug/L #	53
69)	4-Chlorotoluene	9.780	126	270951	93.73 ug/L #	48
70)		9.769	105	985263	94.92 ug/L	90
	tert-Butylbenzene	10.127	134	224935	97.08 ug/L #	58
72)	-	10.180	105	1013646	96.62 ug/L	87
73)		10.372	105	1371408	101.83 ug/L	89
74)	p-Isopropyltoluene	10.538	119	1134340	98.98 ug/L	91
	1,3-Dichlorobenzene	10.490	146	585606	$105.22~\mathrm{ug/L}$	95
77)		10.586	146	556896	99.87 ug/L	93
78)	n-Butylbenzene	10.997	91	1086825	106.83 ug/L	93
79)		11.002	146	514318	95.94 ug/L	98
81)	1,2-Dibromo-3-Chloropr	11.883	157	67583	105.46 ug/L #	81
82)		12.774	180	447474	100.00 ug/L	98
83)		13.265	180	417808	101.51 ug/L	96
	Hexachlorobutadiene	12.956	225	314206	$101.48~\mathrm{ug/L}$	97
85)		13.025	128	842203	103.92 ug/L	99
	Cyclohexane	4.555	56	358097	109.96 ug/L	89
					. 	

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

Inst

Operator: Bill Brew

: Instrument #1

Data File: C:\msdchem\1\DATA\081110\V77412.D

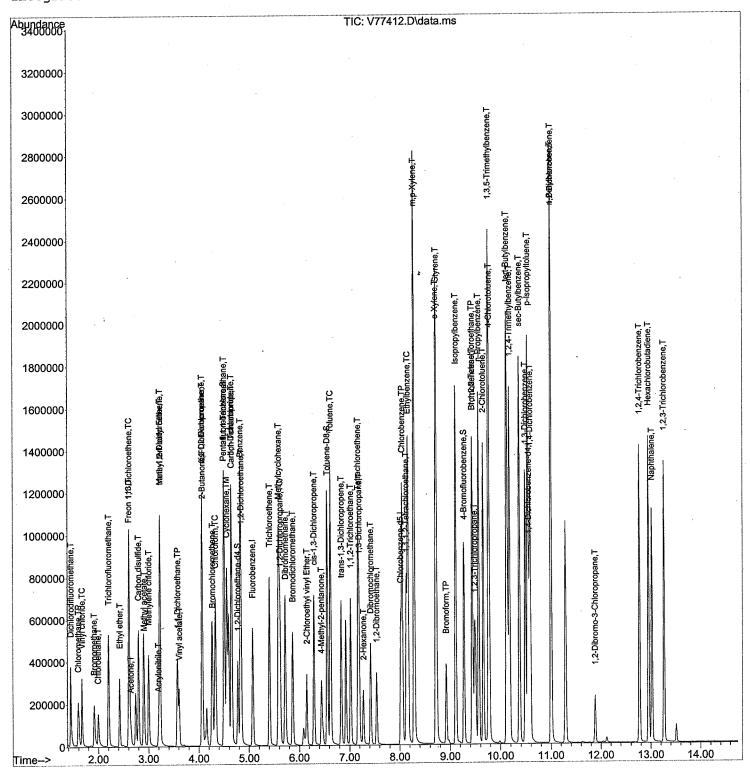
DataAcq Meth:8260RUN.M

Acq On : 11 Aug 2010 6:43 pm

Sample : 100ppb mega Cal

Misc

ALS Vial : 8 Sample Multiplier: 1


Quant Time: Aug 12 11:53:25 2010

Quant Method : C:\msdchem\1\METHODS\081110.M

Quant Title : 8260/624 Analysis

QLast Update : Thu Aug 12 11:46:12 2010

Response via : Initial Calibration

Operator: Bill Brew

Inst : Instrument #1

Data File: C:\msdchem\1\DATA\081110\V77413.D

DataAcq Meth:8260RUN.M

Acq On : 11 Aug 2010 7: Sample : 200ppb mega Cal 7:06 pm

Misc

Sample Multiplier: 1 ALS Vial : 9

Quant Time: Aug 12 11:53:45 2010
Quant Method: C:\msdchem\1\METHODS\081110.M

Quant Title : 8260/624 Analysis QLast Update : Thu Aug 12 11:46:12 2010 Response via : Initial Calibration

Compound	R.T.	QIon	Response	Conc Ur	its D	ev(Min)
Internal Standards						
 Fluorobenzene 	5.076	96	481332	50.00		0.00
54) Chlorobenzene-d5	8.017			50.00		0.00
75) 1,4-Dichlorobenzene-d4	10.563	152	174713	50.00	ug/L	.0.00
System Monitoring Compounds					•	
26) Pentafluorobenzene	4.505	168	832287	171.05		0.00
Spiked Amount 50.000		- 123			342.1	
29) 1,2-Dichloroethane-d4	4.772	65	499737	200.01		0.00
Spiked Amount 50.000	Range 71	- 106			400.0	
45) Toluene-D8	6.560	98	1490080	199.71		0.00
Spiked Amount 50.000	Range 70	- 113			399.4	
64) 4-Bromofluorobenzene	9.282	95		200.39		0.00
Spiked Amount 50.000	Range 67	- 107	Recove	ery =	400.7	'8%#
Target Compounds						Qvalue
2) Dichlorodifluoromethane	1.442	85	572458	195.80		99
3) Chloromethane	1.591	50	464653	189.12		99
4) Vinyl chloride	1.666	62	471094	195.91	ug/L	99
5) Bromomethane	1.906	94	226535	175.36	ug/L	97
6) Chloroethane	1.986	64	255535	180.57	ug/L	98
7) Trichlorofluoromethane	2.194		768098	192.69		99
8) Ethyl ether	2.424		303214	198.60	ug/L	100
9) Freon 113	2.605		396195	193.25	ug/L	96
10) 1,1-Dichloroethene	2.611	61	544967	180.34	ug/L	84
11) Acetone	2.648		133128	199.81	ug/L	93
12) Carbon disulfide	2.797		1227814	184.52	ug/L	100
13) Methyl acetate	2.915		209971	181.37	ug/L	96
14) Methylene chloride	3.000		410026	200.42	ug/L	97
15) Acrylonitrile	3.198		115366	194.04	ug/L	99
17) Methyl tert-butyl Ether	3.230		1163203	188.50	ug/L	100
18) trans-1,2-Dichloroethene			468395	187.25	ug/L	85
19) 1,1-Dichloroethane	3.571		669658	180.17	ug/L	99
20) Vinyl acetate	3.603		580056	186.71	ug/L	97
21) 2,2-Dichloropropane	4.062		717507	192.42	ug/L	. 89
22) 2-Butanone	4.073		52138	200.47	ug/L	# 86
23) cis-1,2-Dichloroethene	4.062	96	542100	189.38	ug/L	90
24) Bromochloromethane	4.270	128	206716	179.45	ug/L	# 79
25) Chloroform	4.329		804367	177.32		. 98
28) 1,1,1-Trichloroethane	4.500		755564	192.03		92
	4.649		658705	210.85		99
30) Carbon Tetrachloride 31) Benzene	4.831		1770151	180.55		97
32) 1,2-Dichloroethane	4.841		567974	179.57		98
33) Trichloroethene	5.407		464040	185.49		.# 83
34) Methylcyclohexane	5.589		831386	193.37		93
36) 1,2-Dichloropropane	5.621		414501	176.83		90
	5.722		268349	192.31		
38) Dibromomethane	5.866		682286	205.18		98
39) Bromodichloromethane			266966	204.57		95
40) 2-Chloroethyl vinyl Ethe			620247	180.52		91
42) 1,1-Dichloropropene	4.649		815162	206.77		95
43) cis-1,3-Dichloropropene	6.293	15	013102	200.77	~5/ 1	,,

Data File: C:\msdchem\1\DATA\081110\V77413.D

DataAcq Meth:8260RUN.M

Acq On : 11 Aug 2010 7: Sample : 200ppb mega Cal Operator: Bill Brew 7:06 pm Inst : Instrument #1

Misc

ALS Vial : 9 Sample Multiplier: 1

Quant Time: Aug 12 11:53:45 2010
Quant Method: C:\msdchem\1\METHODS\081110.M

Quant Title : 8260/624 Analysis QLast Update : Thu Aug 12 11:46:12 2010 Response via : Initial Calibration

44) 4-Methyl-2-pentanone 6.448 43 424312m 205.51 ug/L 95 46) Toluene 6.629 91 1752604 168.91 ug/L 95 47) trans-1,3-Dichloropropene 6.837 75 763358 210.35 ug/L 93 48) 1,1,2-Trichloroethane 7.024 97 383310 172.27 ug/L 93 49) 1,3-Dichloropropane 7.174 166 573620 186.61 ug/L 96 50) Tetrachloroethene 7.174 166 573620 186.61 ug/L 96 51) 2-Hexanone 7.275 43 290010 207.33 ug/L 95 52) Dibromochloromethane 7.419 129 500486 214.37 ug/L 98 53) 1,2-Dibromoethane 8.049 112 1177087 187.42 ug/L 98 55) Chlorobenzene 8.049 112 1177087 187.42		Compound	R.T.	QIon	Response	Conc Units Dev(Min)
46 Toluene 6.629 91 1752604 168.91 ug/L 95 47 trans-1,3-Dichloropropene 6.837 75 763358 210.35 ug/L 93 49 1,3-Dichloropropane 7.024 97 383310 172.27 ug/L 93 50 Tetrachloroethene 7.195 76 683248 180.43 ug/L 96 50 Tetrachloroethene 7.174 166 573620 186.61 ug/L 94 51 2-Hexanone 7.275 43 290010 207.33 ug/L 95 52 Dibromochloromethane 7.419 129 500486 214.37 ug/L 98 53 1,2-Dibromocthane 7.542 107 454230 200.75 ug/L 98 55 Chlorobenzene 8.049 112 1177087 187.42 ug/L 83 56 1,1,2-Tetrachloroethane 8.172 91 2152208 189.73 ug/L	44)	4-Methyl-2-pentanone	6.448	43	424312m	205.51 ug/L	
47) trans-1,3-Dichloropropene 6.837 75 763358 210.35 ug/L 97 48) 1,1,2-Trichloroethane 7.024 97 383310 172.27 ug/L 93 50) Tetrachloroethene 7.195 76 683248 180.43 ug/L 96 50) Tetrachloroethene 7.174 166 573620 186.61 ug/L 94 51) 2-Hexanone 7.275 43 290010 207.33 ug/L 98 52) Dibromochloromethane 7.542 107 454230 200.75 ug/L 98 53) 1,2-Dibromoethane 8.140 112 1177087 187.42 ug/L 88 56) 1,1,2-Tetrachloroethane 8.140 131 483995 217.27 ug/L 80 57) Ethylbenzene 8.300 106 1599202 376.80 ug/L 84 60) Styrene 8.727 104 1273637 173.97				91	1752604	168.91 ug/L	
488 1,1,2-Trichloroethane 7.024 97 383310 172.27 ug/L 93 49) 1,3-Dichloropropane 7.195 76 683248 180.43 ug/L 96 50 Tetrachloroethene 7.174 166 573620 186.61 ug/L 94 51 2-Hexanone 7.275 43 290010 207.33 ug/L 95 52 Dibromochloromethane 7.419 129 500486 214.37 ug/L 98 53 1,2-Dibromochlane 7.542 107 454230 200.75 ug/L 98 55 Chlorobenzene 8.049 112 1177087 187.42 ug/L 83 56 1,1,1,2-Tetrachloroethane 8.140 131 483995 217.27 ug/L 100 57 Ethylbenzene 8.716 106 837482 189.91 ug/L 82 58 m,p-Xylene 8.727 104 1273637 173.37 ug/L 90 60 Styrene 8.727 104 1273637 173					763358	210.35 ug/L	97
49) 1,3-Dichloropropane					383310	172.27 ug/L	93
Tetrachloroethene			7.195	76	683248	180.43 ug/L	96
51) 2-Hexanone 7.275 43 290010 207.33 ug/L 95 52) Dibromochloromethane 7.542 107 454230 200.75 ug/L 98 53) 1,2-Dibromoethane 8.049 112 1177087 187.42 ug/L 83 56) 1,1,1,2-Tetrachloroethane 8.140 131 483995 217.27 ug/L 100 57) Ethylbenzene 8.300 106 1599202 376.80 ug/L 82 58) n,P-Xylene 8.300 106 1599202 376.80 ug/L 82 59) o-Xylene 8.716 106 837482 189.91 ug/L 84 60) Styrene 8.727 104 1273637 173.97 ug/L 97 61) Bromobenzene 9.116 105 2304077 194.91 ug/L 93 63) 1,2,3-Tzichloropropane 9.490 110 173463 205.90 ug/L			7.174	166	573620		
Dibromochloromethane			7.275	43	290010	207.33 ug/L	
53 1,2-Dibromoethane		Dibromochloromethane	7.419	129			
S5 Chlorobenzene 8.049 112 1177087 187.42 ug/L 83 56 1,1,1,2-Tetrachloroethane 8.140 131 483995 217.27 ug/L 100 57 Ethylbenzene 8.172 91 2152208 189.73 ug/L 92 58 m,p-Xylene 8.300 106 1599202 376.80 ug/L 82 82 82 83 83 83 83 83			7.542	107	454230		
56) 1,1,1,2-Tetrachloroethane 8.140 131 483995 217.27 ug/L 100 57) Ethylbenzene 8.172 91 2152208 189.73 ug/L 92 58) m,p-Xylene 8.300 106 1599202 376.80 ug/L 82 59) o-Xylene 8.716 106 837482 189.91 ug/L 84 60) Styrene 8.727 104 1273637 173.97 ug/L 90 61) Bromoform 8.924 173 378964 243.07 ug/L 90 62) Isopropylbenzene 9.116 105 2304077 194.91 ug/L 93 63) 1,2,3-Trichloropropane 9.490 110 173463 205.90 ug/L 68 65) Bromobenzene 9.442 156 573498 193.21 ug/L 65 66) 1,1,2,2-Tetrachloroethane 9.570 91 2581634 191.83 ug/L 99 67) n-Propylbenzene 9.570 91 2581634 191.83 ug/L 99 68) 2-Chlorotoluene 9.570 91			8.049	112	1177087		
57) Ethylbenzene 8.172 91 2152208 189.73 ug/L 92 58) m,p-Xylene 8.300 106 1599202 376.80 ug/L # 82 59) o-Xylene 8.716 106 837482 189.91 ug/L # 84 60) Styrene 8.727 104 1273637 173.97 ug/L 90 61) Bromoform 8.924 173 378964 243.07 ug/L 97 62) Isopropylbenzene 9.116 105 2304077 194.91 ug/L 93 63) 1,2,3-Trichloroptopane 9.490 110 173463 205.90 ug/L # 68 65) Bromobenzene 9.442 156 573498 193.21 ug/L # 68 65) Homobenzene 9.570 91 2581634 191.83 ug/L # 489 66) 1,1,2,2-Tetrachloroethane 9.570 91 2581634 191.83 ug/L # 49 67) n-Propylbenzene 9.570 91 2581634 191.83 ug/L # 46			8.140	131	483995	2 :	
58) m,p-Xylene 8.300 106 1599202 376.80 ug/L # 82 59) o-Xylene 8.716 106 837482 189.91 ug/L # 84 60) Styrene 8.727 104 1273637 173.97 ug/L 90 61) Bromoform 8.924 173 378964 243.07 ug/L 97 62) Isopropylbenzene 9.116 105 2304077 194.91 ug/L 93 63) 1,2,3-Trichloropropane 9.490 110 173463 205.90 ug/L # 68 65) Bromobenzene 9.442 156 573498 193.21 ug/L # 65 66) 1,1,2,2-Tetrachloroethane 9.442 83 539537 196.16 ug/L # 65 67) n-Propylbenzene 9.570 91 2581634 191.83 ug/L # 60 69) 4-Chlorotoluene 9.661 126 537120 198.36 ug/L # 60 69) 4-Chlorotoluene 9.767 105 1924669 194.18 ug/L # 60 61) 1,3,5-Trimethylbenzene 10.130 134 428189 193.52 ug/L # 60 73) sec-Butylbenzene 10.370 105 <td>57)</td> <td></td> <td>8.172</td> <td>91</td> <td>2152208</td> <td></td> <td>-</td>	57)		8.172	91	2152208		-
60) Styrene	58)		8.300	106			
61) Bromoform			8.716	106		- .	
62) Isopropylbenzene 9.116 105 2304077 194.91 ug/L 93 63) 1,2,3-Trichloropropane 9.490 110 173463 205.90 ug/L # 68 65) Bromobenzene 9.442 156 573498 193.21 ug/L # 65 66) 1,1,2,2-Tetrachloroethane 9.442 83 539537 196.16 ug/L 97 67) n-Propylbenzene 9.570 91 2581634 191.83 ug/L 89 68) 2-Chlorotoluene 9.661 126 537120 198.36 ug/L # 60 69) 4-Chlorotoluene 9.783 126 507631 183.88 ug/L # 46 70) 1,3,5-Trimethylbenzene 9.767 105 1924669 194.18 ug/L 89 71) tert-Butylbenzene 10.130 134 428189 193.52 ug/L # 64 72) 1,2,4-Trimethylbenzene 10.184 105 1892095 188.87 ug/L 90 73) sec-Butylbenzene 10.370 105 2470952 192.13 ug/L 90 74) p-Isopropyltoluene 10.541 119 2041200 186.51 ug/L 91 76) 1,3-Dichlorobenzene 10.488 146 1058221 185.53 ug/L 93 77) 1,4-Dichlorobenzene 10.589 146 1010348 176.80 ug/L 93 79) 1,2-Dichlorobenzene 11.000 91 1974397 189.36 ug/L 93 79) 1,2-Dichlorobenzene 11.005 146 939421 170.98 ug/L 93 1,2,3-Trichlorobenzene 12.772 180 863714 188.35 ug/L 93 1,2,3-Trichlorobenzene 13.263 180 775253 183.78 ug/L 96 84) Hexachlorobutadiene 12.959 225 594356 187.30 ug/L 99 85) Naphthalene 13.023 128 1668815 200.93 ug/L 99	60)	Styrene	8.727	104			
63) 1,2,3-Trichloropropane 9.490 110 173463 205.90 ug/L # 68 65) Bromobenzene 9.442 156 573498 193.21 ug/L # 65 66) 1,1,2,2-Tetrachloroethane 9.442 83 539537 196.16 ug/L 97 67) n-Propylbenzene 9.570 91 2581634 191.83 ug/L 89 68) 2-Chlorotoluene 9.661 126 537120 198.36 ug/L # 60 69) 4-Chlorotoluene 9.783 126 507631 183.88 ug/L # 60 69) 4-Chlorotoluene 9.783 126 507631 183.88 ug/L # 89 71) tert-Butylbenzene 10.130 134 428189 193.52 ug/L # 89 72) 1,2,4-Trimethylbenzene 10.184 105 1892095 188.87 ug/L 90 73) sec-Butylbenzene 10.370 105 2470952 192.13 ug/L 90 74) p-Isopropyltoluene 10.541 119 2041200 186.51 ug/L 91 76) 1,3-Dichlorobenzene 10.488 146 1058221 185.53 ug/L 91 76) 1,3-Dichlorobenzene 10.589 146 1010348 176.80 ug/L 93 77) 1,4-Dichlorobenzene 10.589 146 1010348 176.80 ug/L 93 79) 1,2-Dichlorobenzene 11.000 91 1974397 189.36 ug/L 93 79) 1,2-Dichlorobenzene 11.005 146 939421 170.98 ug/L 97 81) 1,2-Dibromo-3-Chloropr 11.886 157 133560 199.09 ug/L # 81 82) 1,2,4-Trichlorobenzene 12.772 180 863714 188.35 ug/L 100 83) 1,2,3-Trichlorobenzene 13.263 180 775253 183.78 ug/L 96 84) Hexachlorobutadiene 12.959 225 594356 187.30 ug/L 99 85) Naphthalene 13.023 128 1668815 200.93 ug/L	61)	Bromoform	8.924				
65) Bromobenzene 9.442 156 573498 193.21 ug/L # 65 66) 1,1,2,2-Tetrachloroethane 9.442 83 539537 196.16 ug/L 97 67) n-Propylbenzene 9.570 91 2581634 191.83 ug/L 89 68) 2-Chlorotoluene 9.661 126 537120 198.36 ug/L # 60 69) 4-Chlorotoluene 9.783 126 507631 183.88 ug/L # 46 70) 1,3,5-Trimethylbenzene 9.767 105 1924669 194.18 ug/L 89 71) tert-Butylbenzene 10.130 134 428189 193.52 ug/L # 64 72) 1,2,4-Trimethylbenzene 10.184 105 1892095 188.87 ug/L 90 73) sec-Butylbenzene 10.370 105 2470952 192.13 ug/L 90 74) p-Isopropyltoluene 10.541 119 2041200 186.51 ug/L 91 76) 1,3-Dichlorobenzene 10.488 146 1058221 185.53 ug/L 93 77) 1,4-Dichlorobenzene 10.589 146 1010348 176.80 ug/L 93 78) n-Butylbenzene 11.000 91 1974397 189.36 ug/L 93 79) 1,2-Dichlorobenzene 11.005 146 939421 170.98 ug/L 93 79) 1,2-Dichlorobenzene 11.005 146 939421 170.98 ug/L 97 81) 1,2-Dibromo-3-Chloropr 11.886 157 133560 199.09 ug/L # 81 82) 1,2,4-Trichlorobenzene 12.772 180 863714 188.35 ug/L 100 83) 1,2,3-Trichlorobenzene 13.263 180 775253 183.78 ug/L 96 84) Hexachlorobutadiene 12.959 225 594356 187.30 ug/L 99 85) Naphthalene 13.023 128 1668815 200.93 ug/L	62)	Isopropylbenzene	9.116	105			
66) 1,1,2,2-Tetrachloroethane 9.442 83 539537 196.16 ug/L 97 n-Propylbenzene 9.570 91 2581634 191.83 ug/L 89 68) 2-Chlorotoluene 9.661 126 537120 198.36 ug/L # 60 69) 4-Chlorotoluene 9.783 126 507631 183.88 ug/L # 46 70) 1,3,5-Trimethylbenzene 9.767 105 1924669 194.18 ug/L 89 71) tert-Butylbenzene 10.130 134 428189 193.52 ug/L # 64 72) 1,2,4-Trimethylbenzene 10.184 105 1892095 188.87 ug/L 90 73) sec-Butylbenzene 10.370 105 2470952 192.13 ug/L 90 74) p-Isopropyltoluene 10.541 119 2041200 186.51 ug/L 91 76) 1,3-Dichlorobenzene 10.488 146 1058221 185.53 ug/L 93 77) 1,4-Dichlorobenzene 10.589 146 1010348 176.80 ug/L 96 78) n-Butylbenzene 11.000 91 1974397 189.36 ug/L 93 1,2-Dichlorobenzene 11.005 146 939421 170.98 ug/L 97 1,2-Dibromo-3-Chloropr 11.886 157 133560 199.09 ug/L # 81 1,2,4-Trichlorobenzene 12.772 180 863714 188.35 ug/L 90 1,2,3-Trichlorobenzene 13.263 180 775253 183.78 ug/L 96 149 149 149 149 149 149 149 149 149 149	63)	1,2,3-Trichloropropane	9.490	110			
67) n-Propylbenzene 9.570 91 2581634 191.83 ug/L 89 68) 2-Chlorotoluene 9.661 126 537120 198.36 ug/L # 60 69) 4-Chlorotoluene 9.783 126 507631 183.88 ug/L # 46 70) 1,3,5-Trimethylbenzene 9.767 105 1924669 194.18 ug/L 89 71) tert-Butylbenzene 10.130 134 428189 193.52 ug/L # 64 72) 1,2,4-Trimethylbenzene 10.184 105 1892095 188.87 ug/L 90 73) sec-Butylbenzene 10.370 105 2470952 192.13 ug/L 90 74) p-Isopropyltoluene 10.541 119 2041200 186.51 ug/L 91 76) 1,3-Dichlorobenzene 10.488 146 1058221 185.53 ug/L 93 77) 1,4-Dichlorobenzene 10.589 146 1010348 176.80 ug/L 96 78) n-Butylbenzene 11.000 91 1974397 189.36 ug/L 93 79) 1,2-Dichlorobenzene 11.005 146 939421 170.98 ug/L 97 81) 1,2-Dibromo-3-Chloropr 11.886 157 133560 199.09 ug/L # 81 82) 1,2,4-Trichlorobenzene 12.772 180 863714 188.35 ug/L 90 83) 1,2,3-Trichlorobenzene 13.263 180 775253 183.78 ug/L 96 84) Hexachlorobutadiene 12.959 225 594356 187.30 ug/L 99 85) Naphthalene 13.023 128 1668815 200.93 ug/L 99	65)	Bromobenzene	9.442				
68) 2-Chlorotoluene 9.661 126 537120 198.36 ug/L # 60 69) 4-Chlorotoluene 9.783 126 507631 183.88 ug/L # 46 70) 1,3,5-Trimethylbenzene 9.767 105 1924669 194.18 ug/L 89 71) tert-Butylbenzene 10.130 134 428189 193.52 ug/L # 64 72) 1,2,4-Trimethylbenzene 10.184 105 1892095 188.87 ug/L 90 73) sec-Butylbenzene 10.370 105 2470952 192.13 ug/L 90 74) p-Isopropyltoluene 10.541 119 2041200 186.51 ug/L 91 76) 1,3-Dichlorobenzene 10.488 146 1058221 185.53 ug/L 93 77) 1,4-Dichlorobenzene 10.589 146 1010348 176.80 ug/L 96 78) n-Butylbenzene 11.000 91 1974397 189.36 ug/L 93 79) 1,2-Dichlorobenzene 11.005 146 939421 170.98 ug/L 97 81) 1,2-Dibromo-3-Chloropr 11.886 157 133560 199.09 ug/L # 81 82) 1,2,4-Trichlorobenzene 12.772 180 863714 188.35 ug/L 100 83) 1,2,3-Trichlorobenzene 13.263 180 775253 183.78 ug/L 96 84) Hexachlorobutadiene 12.959 225 594356 187.30 ug/L 99 85) Naphthalene 13.023 128 1668815 200.93 ug/L 99	66)	1,1,2,2-Tetrachloroethane	9.442				
69) 4-Chlorotoluene 9.783 126 507631 183.88 ug/L # 46 70) 1,3,5-Trimethylbenzene 9.767 105 1924669 194.18 ug/L 89 71) tert-Butylbenzene 10.130 134 428189 193.52 ug/L # 64 72) 1,2,4-Trimethylbenzene 10.184 105 1892095 188.87 ug/L 90 73) sec-Butylbenzene 10.370 105 2470952 192.13 ug/L 90 74) p-Isopropyltoluene 10.541 119 2041200 186.51 ug/L 91 76) 1,3-Dichlorobenzene 10.488 146 1058221 185.53 ug/L 93 77) 1,4-Dichlorobenzene 10.589 146 1010348 176.80 ug/L 96 78) n-Butylbenzene 11.000 91 1974397 189.36 ug/L 93 79) 1,2-Dichlorobenzene 11.005 146 939421 170.98 ug/L 97 81) 1,2-Dibromo-3-Chloropr 11.886 157 133560 199.09 ug/L # 81 82) 1,2,4-Trichlorobenzene 12.772 180 863714 188.35 ug/L 100 83) 1,2,3-Trichlorobenzene 13.263 180 775253 183.78 ug/L 96 84) Hexachlorobutadiene 12.959 225 594356 187.30 ug/L 99 85) Naphthalene 13.023 128 1668815 200.93 ug/L 99	67)	n-Propylbenzene				- · .	
70) 1,3,5-Trimethylbenzene 9.767 105 1924669 194.18 ug/L 89 71) tert-Butylbenzene 10.130 134 428189 193.52 ug/L # 64 72) 1,2,4-Trimethylbenzene 10.184 105 1892095 188.87 ug/L 90 73) sec-Butylbenzene 10.370 105 2470952 192.13 ug/L 90 74) p-Isopropyltoluene 10.541 119 2041200 186.51 ug/L 91 76) 1,3-Dichlorobenzene 10.488 146 1058221 185.53 ug/L 93 77) 1,4-Dichlorobenzene 10.589 146 1010348 176.80 ug/L 96 78) n-Butylbenzene 11.000 91 1974397 189.36 ug/L 93 79) 1,2-Dichlorobenzene 11.005 146 939421 170.98 ug/L 97 81) 1,2-Dibromo-3-Chloropr 11.886 157 133560 199.09 ug/L # 81 82) 1,2,4-Trichlorobenzene 12.772 180 863714 188.35 ug/L 100 83) 1,2,3-Trichlorobenzene 13.263 180 775253 183.78 ug/L 96 84) Hexachlorobutadiene 12.959 225 594356 187.30 ug/L 99 85) Naphthalene 13.023 128 1668815 200.93 ug/L 99	68)	2-Chlorotoluene				- .	
71) tert-Butylbenzene 10.130 134 428189 193.52 ug/L # 64 72) 1,2,4-Trimethylbenzene 10.184 105 1892095 188.87 ug/L 90 73) sec-Butylbenzene 10.370 105 2470952 192.13 ug/L 90 74) p-Isopropyltoluene 10.541 119 2041200 186.51 ug/L 91 76) 1,3-Dichlorobenzene 10.488 146 1058221 185.53 ug/L 93 77) 1,4-Dichlorobenzene 10.589 146 1010348 176.80 ug/L 96 78) n-Butylbenzene 11.000 91 1974397 189.36 ug/L 93 79) 1,2-Dichlorobenzene 11.005 146 939421 170.98 ug/L 97 81) 1,2-Dibromo-3-Chloropr 11.886 157 133560 199.09 ug/L # 81 82) 1,2,4-Trichlorobenzene 12.772 180 863714 188.35 ug/L 100 83) 1,2,3-Trichlorobenzene 13.263 180 775253 183.78 ug/L 96 84) Hexachlorobutadiene 12.959 225 594356 187.30 ug/L 99 85) Naphthalene 13.023 128 1668815 200.93 ug/L 99							
72) 1,2,4-Trimethylbenzene 10.184 105 1892095 188.87 ug/L 90 73) sec-Butylbenzene 10.370 105 2470952 192.13 ug/L 90 74) p-Isopropyltoluene 10.541 119 2041200 186.51 ug/L 91 76) 1,3-Dichlorobenzene 10.488 146 1058221 185.53 ug/L 93 77) 1,4-Dichlorobenzene 10.589 146 1010348 176.80 ug/L 96 78) n-Butylbenzene 11.000 91 1974397 189.36 ug/L 93 79) 1,2-Dichlorobenzene 11.005 146 939421 170.98 ug/L 97 81) 1,2-Dibromo-3-Chloropr 11.886 157 133560 199.09 ug/L # 81 82) 1,2,4-Trichlorobenzene 12.772 180 863714 188.35 ug/L 100 83) 1,2,3-Trichlorobenzene 13.263 180 775253 183.78 ug/L 96 84) Hexachlorobutadiene 12.959 225 594356 187.30 ug/L 99 85) Naphthalene 13.023 128 1668815 200.93 ug/L 99							
73) sec-Butylbenzene 10.370 105 2470952 192.13 ug/L 90 74) p-Isopropyltoluene 10.541 119 2041200 186.51 ug/L 91 76) 1,3-Dichlorobenzene 10.488 146 1058221 185.53 ug/L 93 77) 1,4-Dichlorobenzene 10.589 146 1010348 176.80 ug/L 96 78) n-Butylbenzene 11.000 91 1974397 189.36 ug/L 93 79) 1,2-Dichlorobenzene 11.005 146 939421 170.98 ug/L 97 81) 1,2-Dibromo-3-Chloropr 11.886 157 133560 199.09 ug/L # 81 82) 1,2,4-Trichlorobenzene 12.772 180 863714 188.35 ug/L 100 83) 1,2,3-Trichlorobenzene 13.263 180 775253 183.78 ug/L 96 84) Hexachlorobutadiene 12.959 225 594356 187.30 ug/L 99 85) Naphthalene 13.023 128 1668815 200.93 ug/L 99							
74) p-Isopropyltoluene 10.541 119 2041200 186.51 ug/L 91 76) 1,3-Dichlorobenzene 10.488 146 1058221 185.53 ug/L 93 77) 1,4-Dichlorobenzene 10.589 146 1010348 176.80 ug/L 96 78) n-Butylbenzene 11.000 91 1974397 189.36 ug/L 93 79) 1,2-Dichlorobenzene 11.005 146 939421 170.98 ug/L 97 81) 1,2-Dibromo-3-Chloropr 11.886 157 133560 199.09 ug/L # 81 82) 1,2,4-Trichlorobenzene 12.772 180 863714 188.35 ug/L 100 83) 1,2,3-Trichlorobenzene 13.263 180 775253 183.78 ug/L 96 84) Hexachlorobutadiene 12.959 225 594356 187.30 ug/L 99 85) Naphthalene 13.023 128 1668815 200.93 ug/L 99	72)	1,2,4-Trimethylbenzene					
76) 1,3-Dichlorobenzene 10.488 146 1058221 185.53 ug/L 93 77) 1,4-Dichlorobenzene 10.589 146 1010348 176.80 ug/L 96 78) n-Butylbenzene 11.000 91 1974397 189.36 ug/L 93 79) 1,2-Dichlorobenzene 11.005 146 939421 170.98 ug/L 97 81) 1,2-Dibromo-3-Chloropr 11.886 157 133560 199.09 ug/L # 81 82) 1,2,4-Trichlorobenzene 12.772 180 863714 188.35 ug/L 100 83) 1,2,3-Trichlorobenzene 13.263 180 775253 183.78 ug/L 96 84) Hexachlorobutadiene 12.959 225 594356 187.30 ug/L 99 85) Naphthalene 13.023 128 1668815 200.93 ug/L 99	73)	sec-Butylbenzene					
77) 1,4-Dichlorobenzene 10.589 146 1010348 176.80 ug/L 96 78) n-Butylbenzene 11.000 91 1974397 189.36 ug/L 93 79) 1,2-Dichlorobenzene 11.005 146 939421 170.98 ug/L 97 81) 1,2-Dibromo-3-Chloropr 11.886 157 133560 199.09 ug/L # 81 82) 1,2,4-Trichlorobenzene 12.772 180 863714 188.35 ug/L 100 83) 1,2,3-Trichlorobenzene 13.263 180 775253 183.78 ug/L 96 84) Hexachlorobutadiene 12.959 225 594356 187.30 ug/L 100 85) Naphthalene 13.023 128 1668815 200.93 ug/L 99							-
78) n-Butylbenzene 11.000 91 1974397 189.36 ug/L 93 79) 1,2-Dichlorobenzene 11.005 146 939421 170.98 ug/L 97 81) 1,2-Dibromo-3-Chloropr 11.886 157 133560 199.09 ug/L # 81 82) 1,2,4-Trichlorobenzene 12.772 180 863714 188.35 ug/L 100 83) 1,2,3-Trichlorobenzene 13.263 180 775253 183.78 ug/L 96 84) Hexachlorobutadiene 12.959 225 594356 187.30 ug/L 100 85) Naphthalene 13.023 128 1668815 200.93 ug/L 99	76)						
79) 1,2-Dichlorobenzene 11.005 146 939421 170.98 ug/L 97 81) 1,2-Dibromo-3-Chloropr 11.886 157 133560 199.09 ug/L # 81 82) 1,2,4-Trichlorobenzene 12.772 180 863714 188.35 ug/L 100 83) 1,2,3-Trichlorobenzene 13.263 180 775253 183.78 ug/L 96 84) Hexachlorobutadiene 12.959 225 594356 187.30 ug/L 100 85) Naphthalene 13.023 128 1668815 200.93 ug/L 99	77)	1,4-Dichlorobenzene					
81) 1,2-Dibromo-3-Chloropr 11.886 157 133560 199.09 ug/L # 81 82) 1,2,4-Trichlorobenzene 12.772 180 863714 188.35 ug/L 100 83) 1,2,3-Trichlorobenzene 13.263 180 775253 183.78 ug/L 96 84) Hexachlorobutadiene 12.959 225 594356 187.30 ug/L 100 85) Naphthalene 13.023 128 1668815 200.93 ug/L 99	78)						
82) 1,2,4-Trichlorobenzene 12.772 180 863714 188.35 ug/L 100 83) 1,2,3-Trichlorobenzene 13.263 180 775253 183.78 ug/L 96 84) Hexachlorobutadiene 12.959 225 594356 187.30 ug/L 100 85) Naphthalene 13.023 128 1668815 200.93 ug/L 99	79)	1,2-Dichlorobenzene				— · · ·	
83) 1,2,3-Trichlorobenzene 13.263 180 775253 183.78 ug/L 96 84) Hexachlorobutadiene 12.959 225 594356 187.30 ug/L 100 85) Naphthalene 13.023 128 1668815 200.93 ug/L 99	81)					<u> </u>	
84) Hexachlorobutadiene 12.959 225 594356 187.30 ug/L 100 85) Naphthalene 13.023 128 1668815 200.93 ug/L 99	82)						
85) Naphthalene 13.023 128 1668815 200.93 ug/L 99	83)	1,2,3-Trichlorobenzene					
85) Naphcharene	84)						
86) Cyclohexane 4.553 56 604878 181.23 ug/L 95							
	86)	Cyclohexane	4.553	56	604878	181.23 ug/L	95

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

Inst

Operator: Bill Brew

: Instrument #1

Data File: C:\msdchem\1\DATA\081110\V77413.D

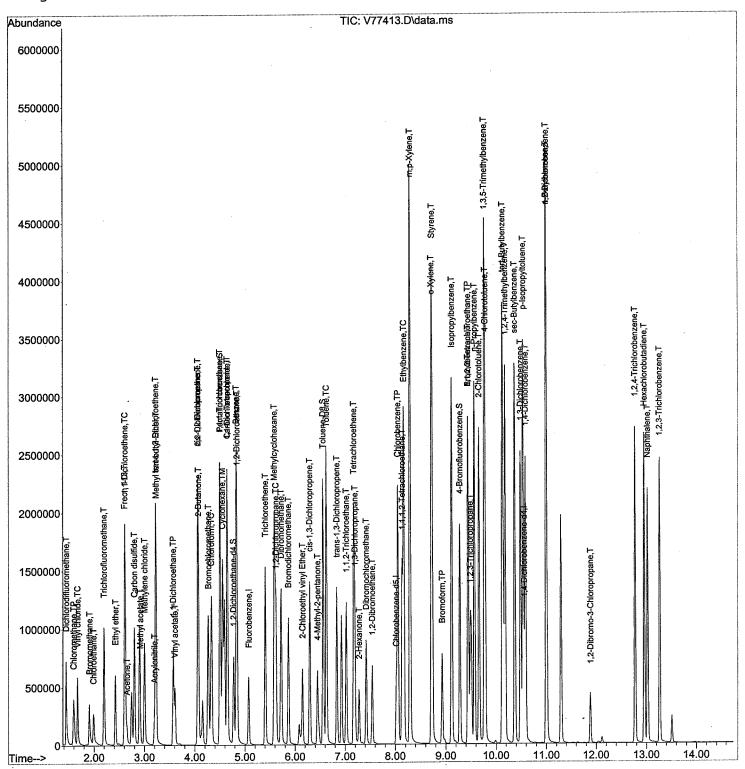
DataAcq Meth: 8260RUN.M

Acq On : 11 Aug 2010 7:06 pm

Sample : 200ppb mega Cal

Misc :

ALS Vial : 9 Sample Multiplier: 1


Quant Time: Aug 12 11:53:45 2010

Quant Method : C:\msdchem\1\METHODS\081110.M

Quant Title : 8260/624 Analysis

QLast Update : Thu Aug 12 11:46:12 2010

Response via : Initial Calibration

Operator: Bill Brew

Inst

: Instrument #1

Data File: C:\msdchem\1\DATA\081910\V77661.D

DataAcq Meth:8260RUN.M

Acq On : 19 Aug 2010 3:15 pm

Sample : 50ppb mega CC

Misc :

ALS Vial : 3 Sample Multiplier: 1

Quant Time: Aug 19 15:32:43 2010

Quant Method : C:\msdchem\1\METHODS\081110.M

Quant Title : 8260/624 Analysis

QLast Update : Thu Aug 12 15:27:25 2010

Response via: Initial Calibration

Integrator: RTE

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min

Max. RRF Dev : 20% Max. Rel. Area : 150%

		Compound	AvgRF	CCRF	%Dev Area% D	ev(min)
	I	Fluorobenzene	1.000	1.000	0.0 86	0.00
2	T	Dichlorodifluoromethane	0.304	0.328	-7.9 96	0.00
3	TP	Chloromethane	0.255	0.237	7_1 79	0.03
4	TC	Vinyl chloride	0.250	0.251	<u>-0.4</u> 85	0.00
5	T	Bromomethane	0.134	0.173	-29.1# 111	0.02
6	T	Chloroethane	0.147	0.157	-6.8 97	0.02
7	Ť	Trichlorofluoromethane	0.414	0.483	-16.7 98	0.02
8	T	Ethyl ether	0.159	0.162	-1.9 87	0.01
9	T	Freon 113	0.213	0.237	-1 <u>1.</u> 3 91	0.02
10	TC	1,1-Dichloroethene	0.314	0.332	-5.7 88	0.01
11		Acetone	0.585	0.072	87.7# 65	0.00
12	T	Carbon disulfide	0.691	0.702	-1.6 84	0.01
13	$\tilde{\mathbf{T}}$	Methyl acetate	0.120	0.103	14.2 75	0.00
14		Methylene chloride	0.428	0.228	46.7# 80	0.01
15		Acrylonitrile	0.062	0.055	11.3 81	0.00
	UN	tert-Butyl Alcohol	0.000	0.010	0.0 0#	0.01
17		Methyl tert-butyl Ether	0.641	0.617	3.7 83	0.00
18		trans-1,2-Dichloroethene	0.260	0.263	-1.2 87	0.01
	TP	1,1-Dichloroethane	0.386	0.410	-6.2 92	0.00
20		Vinyl acetate	0.323	0.325	-0.6 84	0.01
21		2,2-Dichloropropane	0.387	0.459	-18.6 95	0.00
22		2-Butanone	0.035	0.029	17.1 83	0.00
23	T	cis-1,2-Dichloroethene	0.297	0.324	-9.1 94	0.00
24		Bromochloromethane	0.120	0.132	<u>-10.0</u> 91	0.00
		Chloroform	0.471	0.533	95	0.00
26		Pentafluorobenzene	0.505	0.524	-3.8 93	0.00
	UN	Tetrahydrofuran	0.000	0.000		-5.07#
		1,1,1-Trichloroethane	0.409	0.500	-22.2# 101	0.00
29		1,2-Dichloroethane-d4	0.319	0.285	10.7 87	0.00
30		Carbon Tetrachloride	0.325	0.425	-30.8# 105	0.00
31		Benzene	1.018	1.069	-5.0 88	0.00
32	${f T}$	1,2-Dichloroethane	0.329	0.360	-9.4 95	0.00
33	T	Trichloroethene	0.260	0.287	-10.4 93	0.00
34	T	Methylcyclohexane	0.447	0.489	-9.4 92	0.00
35	UN	Ethyl acetate	0.000	1.327	0.0 0#	0.00
36	TC	1,2-Dichloropropane	0.244	0.247	(1.2) 91	0.00
37	UN	Isobutyl alcohol	0.000	0.253	0.0 0#	0.00
38	T	Dibromomethane	0.145	0.158	-9.0 95	0.00
39	T	Bromodichloromethane	0.345	0.398	-15.4 95	0.00
40	${f T}$	2-Chloroethyl vinyl Ether	0.136	0.140	-2.9 81	0.00
	UN	Isopropyl acetate	0.000	2.677	0.0 0#	0.00
42	${f T}$	1,1-Dichloropropene	0.357	0.397	-11.2 96	0.00
43	${f T}$	cis-1,3-Dichloropropene	0.410	0.475	-15.9 93	0.00
44		4-Methyl-2-pentanone	0.214	0.206	3.7 80	0.00
45		Toluene-D8	0.918	0.868	85	0.00
	TC	Toluene	1.078	1.167	-8.3 95	0.00
47	T	trans-1,3-Dichloropropene	0.377	0.417	-10.6 87	0.00

8/19 BB

Data File: C:\msdchem\1\DATA\081910\V77661.D

DataAcq Meth:8260RUN.M

Acq On : 19 Aug 2010 3:15 pm Operator: Bill Brew
Sample : 50ppb mega CC Inst : Instrument #1

Misc :

ALS Vial : 3 Sample Multiplier: 1

Quant Time: Aug 19 15:32:43 2010

Quant Method : C:\msdchem\1\METHODS\081110.M

Quant Title : 8260/624 Analysis

QLast Update : Thu Aug 12 15:27:25 2010

Response via: Initial Calibration

Integrator: RTE

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min

Max. RRF Dev : 20% Max. Rel. Area : 150%

	Compound	AvgRF	CCRF	%Dev Ar	ea% I	Dev(min)
48 T	1,1,2-Trichloroethane	0.231	0.227	1.7	87	0.00
49 T	1,3-Dichloropropane	0.393	0.392	0.3	85	0.00
50 T	Tetrachloroethene	0.319	0.358	-12.2	89	0.00
51 T	2-Hexanone	0.145	0.141	2.8	81	0.00
52 T	Dibromochloromethane	0.243	0.286	-17.7	92	0.00
53 T	1,2-Dibromoethane	0.235	0.256	-8.9	93	0.00
54 I	Chlorobenzene-d5	1.000	1.000	0.0	87	0.00
55 TP	Chlorobenzene	0.925	0.942	-1.8	92	0.00
56 T	1,1,1,2-Tetrachloroethane	0.328	0.364	-11-0	96	0.00
57 TC	Ethylbenzene	1.671	1.704	(-2.0#)	92	0.00
58 T	m,p-Xylene	0.625	0.637	-1.9	95	0.00
59 T	o-Xylene	0.650	0.656	-0.9	94	0.00
60 T	Styrene	1.079	1.066	1.2	91	0.00
61 TP	Bromoform	0.230	0.256	-11.3	92	0.00
62 T	Isopropylbenzene	1.742	1.853	-6.4	94	0.00
63 T	1,2,3-Trichloropropane	0.124	0.116	6.5	86	0.00
64 S	4-Bromofluorobenzene	0.643	0.514	20.1#	88	0.00
65 T	Bromobenzene	0.437	0-438	-0.2	89	0.00
66 TP	1,1,2,2-Tetrachloroethane	0.405	(0.375)	7.4	85	0.00
67 T	n-Propylbenzene	1.983	2.037	-2.7	94	0.00
68 T	2-Chlorotoluene	0.399	0.404	-1.3	88	0.00
69 T	4-Chlorotoluene	0.407	0.394	3.2	89	0.00
70 T	1,3,5-Trimethylbenzene	1.460	1.557	-6.6	93	0.00
71 T	tert-Butylbenzene	0.326	0.348	-6.7	94	0.00
72 T	1,2,4-Trimethylbenzene	1.476	1.575	-6.7	93	0.00
73 T	sec-Butylbenzene	1.895	2.026	-6.9	89	0.00
74 T	p-Isopropyltoluene	1.613	1.704	-5.6	91	0.00
75 I	1,4-Dichlorobenzene-d4	1.000	1.000	0.0	88	0.00
76 T	1,3-Dichlorobenzene	1.632	1.535	5.9	86	0.00
77 T	1,4-Dichlorobenzene	1.635	1.572	3.9	91	0.00
78 T	n-Butylbenzene	2.984	3.046	-2.1	90	0.00
79 T	1,2-Dichlorobenzene	1.572	1.499	4.6	92	0.00
80 UN	Tetraethyllead	0.000	0.000	0.0	0#	-12.52#
81 T	1,2-Dibromo-3-Chloropropane	0.160	0.160	0.0	87	0.00
82 T	1,2,4-Trichlorobenzene	1.312	1.258	4.1	88	0.00
83 T	1,2,3-Trichlorobenzene	1.207	1.077	10.8	81	0.00
84 T	Hexachlorobutadiene	0.908	0.862	5.1	86	0.00
85 T	Naphthalene	2.377	2.091	12.0	86	0.00
86 TM	Cyclohexane	0.955	0.909	4.8	85	0.00

^{(#) =} Out of Range

8/19 BB

SPCC's out = 0 CCC's out = 1

Data File: C:\msdchem\1\DATA\081910\V77661.D

DataAcq Meth:8260RUN.M

: 19 Aug 2010 3:15 pm Operator: Bill Brew Acq On Inst : Instrument #1 : 50ppb mega CC Sample

Misc

ALS Vial : 3 Sample Multiplier: 1

Quant Time: Aug 19 15:32:43 2010

Quant Method : C:\msdchem\1\METHODS\081110.M

Quant Title : 8260/624 Analysis QLast Update : Thu Aug 12 15:27:25 2010

Response via : Initial Calibration

	Compound	R.T.	QIon	Response	Conc Ui	nits Dev	(Min)
Inte	rnal Standards						
1)	Fluorobenzene	5.078		374492	50.00		0.00
54)	Chlorobenzene-d5	8.018	117	296318	50.00	ug/L	0.00
75)	1,4-Dichlorobenzene-d4	10.559	152	160220	50.00	ug/L	0.00
Syst	em Monitoring Compounds						
	Pentafluorobenzene	4.496		196298			0.00
	iked Amount 50.000	_	- 123		-		
	1,2-Dichloroethane-d4	4.773		106606		_	0.00
	iked Amount 50.000		- 106			101.34%	
	Toluene-D8	6.561				- '	0.00
_	iked Amount 50.000		- 113		-		
-	4-Bromofluorobenzene	9.278			39.97	_	0.00
Sp	iked Amount 50.000	Range 67	- 107	Recove	ery =	79.94%	
	et Compounds						alue
	Dichlorodifluoromethane	1.438	85	122784	53.98		99
- •	Chloromethane	1.598		88868	46.49		97
	Vinyl chloride	1.662		93849	50.16		98
•	Bromomethane	1.918		64919			96
	Chloroethane	1.993		58890	53.49		97
	Trichlorofluoromethane	2.201		180729		ug/L	98
	Ethyl ether	2.425		60671	51.08		100
-	Freon 113	2.612		88846			94
-	1,1-Dichloroethene	2.612		124264	52.85		86
-	Acetone	2.644		27132	29.78		91
-	Carbon disulfide	2.799		262988	50.80		100
	Methyl acetate	2.906		38736	43.01		99
	Methylene chloride	3.002		85415	50.21		98
	Acrylonitrile	3.194		20728	44.81		95
	Methyl tert-butyl Ether	3.220		231064	48.13	- '.	100
	trans-1,2-Dichloroethene		61	98450	50.59		87
	1,1-Dichloroethane	3.573	63	153481	53.07		98
	Vinyl acetate	3.610	43	121686	50.34		96
	2,2-Dichloropropane	4.064			59.29	•	90
22)		4.064		10864		ug/L #	82
	cis-1,2-Dichloroethene	4.058				ug/L #	85
	Bromochloromethane	4.272		49249		ug/L #	78
	Chloroform	4.330	83	199713	56.59		100
	1,1,1-Trichloroethane	4.501	97	187279	61.18		93
30)	Carbon Tetrachloride	4.645	117	159036	65.43	-	99
31)	Benzene	4.827	78	400238	52.47		97
32)	1,2-Dichloroethane	4.843	62	134667	54.72		97
33)	Trichloroethene	5.403	130	107653		ug/L #	79
	Methylcyclohexane	5.590	83	183229	54.77		91
	1,2-Dichloropropane	5.617	63	92483	50.71		93
	Dibromomethane	5.718	93	59132		ug/L #	72
	Bromodichloromethane	5.862	83	149205	57.67		99
	2-Chloroethyl vinyl Ethe	er 6.145	63	52561	51.77		95
	1,1-Dichloropropene	4.645	75	148603	55.59		89
43)	cis-1,3-Dichloropropene	6.289	75	177726	57.94	ug/L	96

Data File: C:\msdchem\1\DATA\081910\V77661.D

DataAcq Meth:8260RUN.M

Operator: Bill Brew 3:15 pm Acq On : 19 Aug 2010 : Instrument #1 Inst

: 50ppb mega CC Sample

Misc

Sample Multiplier: 1 ALS Vial : 3

Quant Time: Aug 19 15:32:43 2010

Quant Method : C:\msdchem\1\METHODS\081110.M

Quant Title : 8260/624 Analysis

QLast Update : Thu Aug 12 15:27:25 2010

Response via: Initial Calibration

	Compound	R.T.	QIon	Response	Conc Units Dev	(Min)
44)	4-Methyl-2-pentanone	6.444	43	77218m	48.07 ug/L	
46)	_	6.625	91	436999	54.13 ug/L	94
47)	trans-1,3-Dichloropropene	6.833	75	156190	55.32 ug/L	96
48)	1,1,2-Trichloroethane	7.020	97	85006	49.10 ug/L	97
49)		7.191		146933	49.87 ug/L	100
50)		7.170		133967	$56.01~\mathrm{ug/L}$	94
51)		7.276	43	52824	$48.54~\mathrm{ug/L}$	96
	Dibromochloromethane	7.420	129	107132	58.98 ug/L	97
53)		7.538	107	95845	$54.44~\mathrm{ug/L}$	99
55)	Chlorobenzene	8.045	112	279228	50.92 ug/L	84
56)	1,1,1,2-Tetrachloroethane	8.136	131	107836	55.44 ug/L	96
	Ethylbenzene	8.168	91	504788	50.96 ug/L	92
	m,p-Xylene	8.290	106	377654	101.90 ug/L #	70
59)		8.717	106	194471	50.50 ug/L #	75
60)		8.728		315885	49.41 ug/L	91
61)		8.925		75943	55.79 ug/L	96
62)	Isopropylbenzene	9.112		549116	53.20 ug/L	90
63)	1,2,3-Trichloropropane	9.486		34283	46.60 ug/L #	73
65)	Bromobenzene	9.438		.129691	50.04 ug/L #	67
66)	1,1,2,2-Tetrachloroethane	9.438		111020	46.22 ug/L	95
67)	n-Propylbenzene	9.561		603502	51.36 ug/L	87
68)	2-Chlorotoluene	9.657		119649	50.60 ug/L #	52
	4-Chlorotoluene	9.779		116617	48.38 ug/L #	41
	1,3,5-Trimethylbenzene	9.763		461418	53.31 ug/L	86
	tert-Butylbenzene	10.126		103100	53.36 ug/L #	64
72)		10.180		466801	53.36 ug/L	86
73)		10.366		600463	53.47 ug/L	88
74)		10.532		504826	52.83 ug/L	89 91
76)	•	10.484		245894	47.01 ug/L	91 97
77)		10.585		251815	48.05 ug/L	97 91
	n-Butylbenzene	10.996		488034	51.04 ug/L	91
79)		11.001		240179	47.67 ug/L	80
81)		11.882		25574	43.08 ug/L #	96
82)		12.768		201610	47.94 ug/L	96 97
83)	1,2,3-Trichlorobenzene	13.264		172480	44.59 ug/L	98
84)		12.955		138147	47.47 ug/L 43.98 ug/L	99
85)		13.019		334964 145585	47.56 ug/L	93
	Cyclohexane	4.549	56	140000	ug/u	

^(#) = qualifier out of range (m) = manual integration (+) = signals summed

Inst

Operator: Bill Brew

: Instrument #1

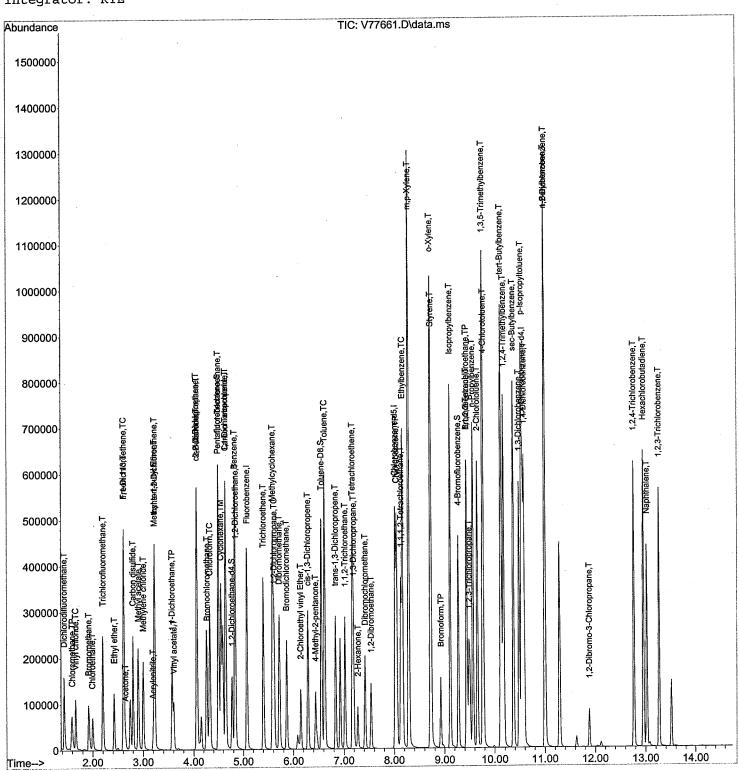
Data File: C:\msdchem\1\DATA\081910\V77661.D

DataAcq Meth:8260RUN.M

3:15 pm Acq On : 19 Aug 2010

: 50ppb mega CC Sample

Misc


: 3 Sample Multiplier: 1 ALS Vial

Quant Time: Aug 19 15:32:43 2010 Quant Method : C:\msdchem\1\METHODS\081110.M

: 8260/624 Analysis Quant Title

QLast Update : Thu Aug 12 15:27:25 2010

Response via : Initial Calibration

Data File: C:\msdchem\1\DATA\082010\V77686.D

DataAcq Meth:8260RUN.M

Acq On : 20 Aug 2010 11:58 am Sample : 50ppb mega CC Operator: Bill Brew Inst : Instrument #1

Misc :

Sample Multiplier: 1 ALS Vial : 2

Quant Time: Aug 20 12:37:33 2010
Quant Method: C:\msdchem\1\METHODS\081110.M

Quant Title : 8260/624 Analysis QLast Update : Thu Aug 12 15:27:25 2010 Response via : Initial Calibration

Integrator: RTE

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min Max. RRF Dev : 20% Max. Rel. Area : 150%

	Compound	AvgRF	CCRF	%Dev Area%	Dev(min)
1 I	Fluorobenzene	1.000	1.000	0.0 78	0.00
2 T	Dichlorodifluoromethane	0.304	0-317	-4.3 85	0.00
3 TP	Chloromethane	0.255	0.225	11.8 68	0.02
4 TC	Vinyl chloride	0.250	0.221	(11.6) 68	0.00
5 T	Bromomethane	0.134	0.167	-24.6# 97	0.03
6 T	Chloroethane	0.147	0.139	5.4 78	0.02
7 T	Trichlorofluoromethane	0.414	0.502	-21.3# 92	0.01
8 T	Ethyl ether	0.159	0.135	15.1 65	0.00
9 T	Freon 113	0.213	0.231	-8.5 80	0.01
10 TC	1,1-Dichloroethene	0.314	0.336	(-7.0) 81	0.00
11 T	Acetone	0.585	0.074	87.4# 60	0.00
12 T	Carbon disulfide	0.691	0.695	-0.6 75	0.00
13 T	Methyl acetate	0.120	0.106	11.7 69	0.00
14 T	Methylene chloride	0.428	0.223	47.9# 71	0.01
15 T	Acrylonitrile	0.062	0.054	12.9 71	0.00
16 UN	tert-Butyl Alcohol	0.000	0.012	0.0	
17 T	Methyl tert-butyl Ether	0.641	0.651	-1.6 80	0.00
18 T	trans-1,2-Dichloroethene	0.260	0.273	-5.0 82	0.00
19 TP	1,1-Dichloroethane	0.386	(0.403)	-4.4 82	0.00
20 T	Vinyl acetate	0.323	0.297	8.0 69	0.00
21 T	2,2-Dichloropropane	0.387	0.487	-25.8# 91	0.00
22 T	2-Butanone	0.035	0.026	25.7# 68	0.00
23 T	cis-1,2-Dichloroethene	0.297	0.291	2.0 76	0.00
24 T	Bromochloromethane	0.120	0.116	3.3 72	0.00
25 TC	Chloroform .	0.471	0.524	(-11.3) 85	0.00
26 S	Pentafluorobenzene	0.505	0.524	-3.8 84	0.00
27 UN	Tetrahydrofuran	0.000	0.000		# -5.07#
28 T	1,1,1-Trichloroethane	0.409	0.515	-25.9# 94	0.00
29 S	1,2-Dichloroethane-d4	0.319	0.307	3.8 85	
30 T	Carbon Tetrachloride	0.325	0.445	-36.9# 100	
31 T	Benzene	1.018	0.917	9.9 69	
32 T	1,2-Dichloroethane	0.329	0.362	-10.0 87	
33 T	Trichloroethene	0.260	0.253	2.7 75	
34 T	Methylcyclohexane	0.447	0.450	-0.7 77	
35 UN	Ethyl acetate	0.000	1.128		# 0.00
36 TC	1,2-Dichloropropane	0.244	0.222	(9.0) 74	
37 UN	Isobutyl alcohol	0.000	0.216		# 0.00
38 T	Dibromomethane	0.145	0.143	1.4 78	
39 T	Bromodichloromethane	0.345	0.401	-16.2 87	
40 T	2-Chloroethyl vinyl Ether	0.136	0.117	14.0 61	0.00
41 UN	Isopropyl acetate	0.000	2.434		# 0.00
42 T	1,1-Dichloropropene	0.357	0.396	-10.9 87	
43 T	cis-1,3-Dichloropropene	0.410	0.370	9.8 66	
44 T	4-Methyl-2-pentanone	0.214	0.216	-0.9 76	
45 S	Toluene-D8	0.918	0.777	15.4 69	
46 TC	Toluene	1.078	1.007	(6.6 / 74	
47 T	trans-1,3-Dichloropropene	0.377	0.380	0.8 72	0.00

8/20 pm

8/20m

Data File: C:\msdchem\1\DATA\082010\V77686.D

DataAcq Meth:8260RUN.M

Acq On : 20 Aug 2010 11:58 am Sample : 50ppb mega CC Operator: Bill Brew Inst : Instrument #1

Misc

Sample Multiplier: 1 ALS Vial : 2

Quant Time: Aug 20 12:37:33 2010

Quant Method : C:\msdchem\1\METHODS\081110.M

Quant Title : 8260/624 Analysis QLast Update : Thu Aug 12 15:27:25 2010 Response via : Initial Calibration

Integrator: RTE

0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min Min. RRF :

Max. RRF Dev : 20% Max. Rel. Area : 150%

	Compound	AvgRF	CCRF	%Dev Are	ea%	Dev(min)
48 T	1,1,2-Trichloroethane	0.231	0.200	13.4	70	0.00
49 T	1,3-Dichloropropane	0.393	0.351	10.7	69	0.00
50 T	Tetrachloroethene	0.319	0.314	1.6	71	0.00
50 T	2-Hexanone	0.145	0.132	9.0	69	0.00
52 T	Dibromochloromethane	0.243	0.265	-9.1	77	0.00
53 T	1,2-Dibromoethane	0.235	0.229	2.6	75	0.00
	·	4 000	1 000	0.0	72	0.00
54 I	Chlorobenzene-d5	1.000	1.000	-4.6	79	0.00
55 TP	Chlorobenzene	0.925	0.968		88	0.00
56 T	1,1,1,2-Tetrachloroethane	0.328	0.401	-22 <u>-3</u> # -5.6#	79	0.00
57 TC	Ethylbenzene	1.671	1.765			0.00
58 T	m,p-Xylene	0.625	0.654	-4.6	80	
59 T	o-Xylene	0.650	0.649	0.2	77	0.00
60 T	Styrene	1.079	1 057	2.0	75	
61 TP	Bromoform	0.230	0.270	-17.4	80	0.00
62 T	Isopropylbenzene	1.742	1.983	-13.8	83	0.00
63 T	1,2,3-Trichloropropane	0.124	0.131	-5.6	80	0.00
64 S	4-Bromofluorobenzene	0.643	0.534	17.0	76	0.00
65 T	Bromobenzene	0.437	0.478)	-9.4	80	0.00
66 TP	1,1,2,2-Tetrachloroethane	0.405	0.364	10.1	68	0.00
67 T	n-Propylbenzene	1.983	2.028	-2.3	77	0.00
68 T	2-Chlorotoluene	0.399	0.391	2.0	70	0.00
69 T	4-Chlorotoluene	0.407	0.402	1.2	75	0.00
70 T	1,3,5-Trimethylbenzene	1.460	1.685	-15.4	83	0.00
71 T	tert-Butylbenzene	0.326	0.358	-9.8	80	0.00
72 T	1,2,4-Trimethylbenzene	1.476	1.671	-13.2	81	0.00
73 T	sec-Butylbenzene	1.895	2.224	-17.4	81	0.00
74 T	p-Isopropyltoluene	1.613	1.895	-17.5	84	0.00
	1 4 Dishleyshopgone d4	1.000	1.000	0.0	76	0.00
75 I	1,4-Dichlorobenzene-d4	1.632	1.573	3.6	76	0.00
76 T	1,3-Dichlorobenzene	1.635	1.512	7.5	75	0.00
77 T	1,4-Dichlorobenzene	2.984	3.310	-10.9	85	0.00
78 T	n-Butylbenzene	1.572	1.524	3.1	80	0.00
79 T	1,2-Dichlorobenzene		0.000	0.0		# -12.52#
80 UN	Tetraethyllead	0.000		0.0	75	0.00
81 T	1,2-Dibromo-3-Chloropropane	0.160	0.160	3.5	76	0.00
82 T	1,2,4-Trichlorobenzene	1.312	1.266	5.5	74	0.00
83 T	1,2,3-Trichlorobenzene	1.207	1.141		81	0.00
84 T	Hexachlorobutadiene	0.908	0.938	-3.3		0.00
85 T	Naphthalene	2.377	2.087	12.2	74	
86 TM	Cyclohexane	0.955	0.887	7.1	72	0.00

(#) = Out of Range

SPCC's out = 0 CCC's out = 1

Data File: C:\msdchem\1\DATA\082010\V77686.D

DataAcq Meth:8260RUN.M

Acq On : 20 Aug 2010 11:58 am
Sample : 50ppb mega CC Operator: Bill Brew Inst : Instrument #1

Misc

ALS Vial : 2 Sample Multiplier: 1

Quant Time: Aug 20 12:37:33 2010

Quant Method : C:\msdchem\1\METHODS\081110.M

Quant Title : 8260/624 Analysis QLast Update : Thu Aug 12 15:27:25 2010 Response via : Initial Calibration

Integrator: RTE

Compound	R.T.	QIon	Response	Conc Ur	nits Dev	(Min)
Internal Standards	5.069	96	339542	50.00	na/T.	0.00
1) Fluorobenzene					ug/L	0.00
54) Chlorobenzene-d5	8.015					0.00
75) 1,4-Dichlorobenzene-d4	10.560	152	138321	50.00	ug/L	0.00
System Monitoring Compounds						
26) Pentafluorobenzene	4.498	168	178029		ug/L	
Spiked Amount 50.000	Range 70	- 123	Recove			i
29) 1,2-Dichloroethane-d4	4.770	65	104176	54.73	ug/L	0.00
	Range 71	- 106	Recove	ry =	109.46%	#
45) Toluene-D8	6.552	98	263991	42.92		0.00
	Range 70	- 113	Recove	ry =	85.84%	i
64) 4-Bromofluorobenzene	9.274			41.51	ug/L	0.00
Spiked Amount 50.000	Range 67				·	
					Oz.	alue
Target Compounds	1 440	0.5	107626	52.18		99
2) Dichlorodifluoromethane	1.440	85	76446			98
3) Chloromethane	1.589					98
4) Vinyl chloride	1.664		75172			94
5) Bromomethane	1.920	94		62.07		
6) Chloroethane	1.995	64	47030	47.11		97
Trichlorofluoromethane	2.198	101	170316			98
8) Ethyl ether	2.416	59	45687			100
9) Freon 113	2.609	101	78290	54.13		95
10) 1,1-Dichloroethene	2.609	61	113996	53.48		82
11) Acetone	2.641	43	25121	31.11		88
12) Carbon disulfide	2.795		236126			100
13) Methyl acetate	2.907		35951	44.02		97
14) Methylene chloride	2.998	84	75830	49.08		95
<pre>15) Acrylonitrile</pre>	3.190	53	18177	43.34		91
17) Methyl tert-butyl Ether	3.217		221072	50.79		99
18) trans-1,2-Dichloroethene	3.217		92629	52.49		86
19) 1,1-Dichloroethane	3.575	63	136856	52.20		99
20) Vinyl acetate	3.607		100711	45.95		98
21) 2,2-Dichloropropane	4.060		165384			88
22) 2-Butanone	4.065	72	8882	46.59	ug/L #	67
23) cis-1,2-Dichloroethene	4.055	96		48.92	ug/L #	81
24) Bromochloromethane	4.263	128			ug/L #	78
25) Chloroform	4.327	83	177922	55.60		99
28) 1,1,1-Trichloroethane	4.498	97	174930	63.02		90
30) Carbon Tetrachloride	4.647	117	151141	68.58		99
31) Benzene	4.829	78	311202	45.00		95
32) 1,2-Dichloroethane	4.839	62	122855	55.06		97
33) Trichloroethene	5.400	130	85927	48.69	ug/L #	76
34) Methylcyclohexane	5.586	83	152781	50.37		93
36) 1,2-Dichloropropane	5.608	63	75335	45.56	ug/L #	83
38) Dibromomethane	5.720	93	48633		ug/L #	71
39) Bromodichloromethane	5.864	83	136285	58.10	ug/L	98
40) 2-Chloroethyl vinyl Ethe		63	39871	43.31	ug/L	93
42) 1,1-Dichloropropene	4.642	75	134367	55.44		89
43) cis-1,3-Dichloropropene	6.296	75	125791	45.23		86
, -,					-	

8/20 M

Operator: Bill Brew Inst : Instrument #1

Data File: C:\msdchem\1\DATA\082010\V77686.D

DataAcq Meth:8260RUN.M

Acq On : 20 Aug 2010 11:58 am Sample : 50ppb mega CC

Misc

ALS Vial : 2 Sample Multiplier: 1

Quant Time: Aug 20 12:37:33 2010

Quant Method : C:\msdchem\1\METHODS\081110.M

Quant Title : 8260/624 Analysis QLast Update : Thu Aug 12 15:27:25 2010 Response via : Initial Calibration

Compound	R.T.	QIon	Response	Conc Units Dev(Min)
44) 4-Methyl-2-pentanone	6.440	43	73292	50.32 ug/L	94
46) Toluene	6.622	91	341820	46.70 ug/L	96
47) trans-1,3-Dichloropropene	6.835	75	128865	50.34 ug/L	93
48) 1,1,2-Trichloroethane	7.017	97	67800	43.20 ug/L	92
49) 1,3-Dichloropropane	7.193	76	119184	44.62 ug/L	99
50) Tetrachloroethene	7.166	166	106718	49.21 ug/L	92
51) 2-Hexanone	7.268	43	44908	$45.51~\mathrm{ug/L}$	97
52) Dibromochloromethane	7.417	129	89891	54.58 ug/L	95
53) 1,2-Dibromoethane	7.540	107	77677	48.67 ug/L	98
55) Chlorobenzene	8.052	112	237445	52.31 ug/L	83
56) 1,1,1,2-Tetrachloroethane	8.132		98385	61.11 ug/L	95
57) Ethylbenzene	8.164		432808	52.80 ug/L	90
58) m,p-Xylene	8.292		320868	104.61 ug/L #	62
59) o-Xylene	8.714		159221	49.96 ug/L #	66
60) Styrene	8.725		259226	49.00 ug/L	86
61) Bromoform	8.922		66244	58.80 ug/L	98
62) Isopropylbenzene	9.114		486405	56.94 ug/L	90
63) 1,2,3-Trichloropropane	9.488		32021	52.60 ug/L #	84
65) Bromobenzene	9.440		117210	54.64 ug/L #	69
66) 1,1,2,2-Tetrachloroethane	9.434		89161	44.86 ug/L	97
67) n-Propylbenzene	9.568		497318	51.14 ug/L	89
68) 2-Chlorotoluene	9.658		95869	48.99 ug/L #	45
69) 4-Chlorotoluene	9.776		98660	49.45 ug/L #	26
70) 1,3,5-Trimethylbenzene	9.765		413130	57.67 ug/L	84 49
71) tert-Butylbenzene	10.123		87760	54.88 ug/L #	84
72) 1,2,4-Trimethylbenzene	10.176		409859	56.61 ug/L 58.67 ug/L	87
73) sec-Butylbenzene	10.368		545319	58.67 ug/L 58.75 ug/L	89
74) p-Isopropyltoluene	10.534		464697 217609	48.19 ug/L	92
76) 1,3-Dichlorobenzene	10.491		209176	46.23 ug/L	97
77) 1,4-Dichlorobenzene	10.582		457887	55.47 ug/L	90
78) n-Butylbenzene	10.998		210819	48.47 ug/L	95
79) 1,2-Dichlorobenzene	11.003		22104	43.13 ug/L #	78
81) 1,2-Dibromo-3-Chloropr	11.879		175087	48.23 ug/L	98
82) 1,2,4-Trichlorobenzene	12.770		157820	47.26 ug/L	94
83) 1,2,3-Trichlorobenzene	13.266 12.957		129761	51.65 ug/L	98
84) Hexachlorobutadiene			288676	43.90 ug/L	99
85) Naphthalene	13.021 4.556		122721	46.44 ug/L	91
86) Cyclohexane	4.556		122121	10.11 05/11	

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

Operator: Bill Brew

: Instrument #1

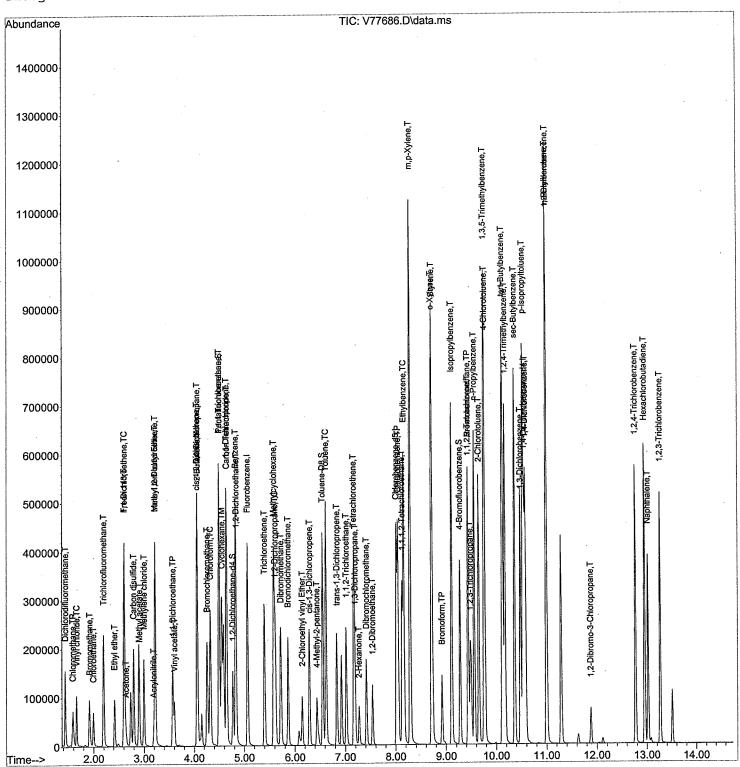
Inst

Data File: C:\msdchem\1\DATA\082010\V77686.D

DataAcq Meth:8260RUN.M

: 20 Aug 2010 11:58 am Acq On

Sample : 50ppb mega CC


Misc

: 2 Sample Multiplier: 1 ALS Vial

Quant Time: Aug 20 12:37:33 2010
Quant Method: C:\msdchem\1\METHODS\081110.M

Quant Title : 8260/624 Analysis

QLast Update : Thu Aug 12 15:27:25 2010 Response via : Initial Calibration

VOLATILE ORGANICS RAW QC DATA

Data Path : C:\msdchem\1\DATA\081110\

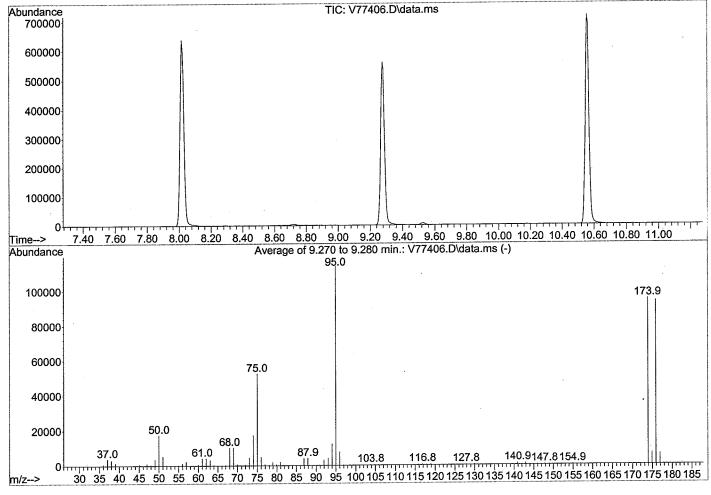
Data File : V77406.D

Acq On : 11 Aug 2010 4:23 pm

Operator : Bill Brew Sample : 50ng BFB

Misc :

ALS Vial : 2 Sample Multiplier: 1


Integration File: rteint.p

Method : C:\msdchem\1\METHODS\080410a.M

Title : 8260/624 Analysis

Last Update : Thu Aug 05 12:44:28 2010

8/11/8/3

AutoFind: Scans 1480, 1481, 1482; Background Corrected with Scan 1471

	Target Mass	Rel. to	Lower Limit%	Upper Limit%	Rel. Abn%	Raw Abn	Result Pass/Fail
	50 75	95 95	15 30	40 60	15.2	17330 52392	PASS PASS PASS
	95 96 173	95 95 174	100 5 0.00	100 9 2	100.0 6.6 0.2	114146 7583 162	PASS PASS PASS
	174 175	95 174	50 5	100 9	83.1	94853 6617	PASS PASS
	176 177	174 176	95 5	101 9	98.8	93704	PASS PASS

Data Path : C:\msdchem\1\DATA\081910\

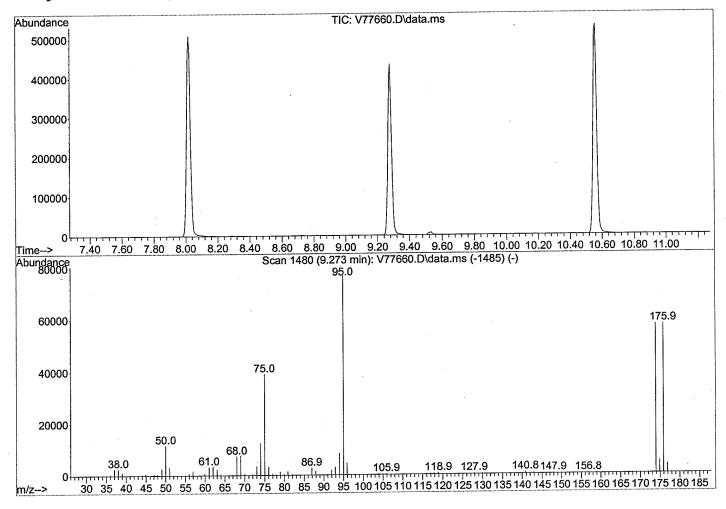
Data File: V77660.D

Acq On : 19 Aug 2010 2:52 pm

Operator : Bill Brew Sample : 50ng BFB

Misc

ALS Vial : 2 Sample Multiplier: 1


Integration File: rteint.p

Method : C:\msdchem\1\METHODS\081110.M

Title : 8260/624 Analysis

Last Update : Thu Aug 12 15:27:25 2010

8/19 36

Spectrum Information: Scan 1480

Target Mass	Rel. to Mass	Lower Limit%	Upper Limit%	Rel. Abn%	Raw Abn	Result Pass/Fail
 50 75 95 96 173 174 175	95 95 95 95 174 95 174	15 30 100 5 0.00 50 5	40 60 100 9 2 100 9	15.0 50.8 100.0 6.1 0.0 74.7 8.2 100.3	11537 38984 76733 4692 0 57324 4727 57471	PASS PASS PASS PASS PASS PASS PASS
177	176	5	9	6.1	3527	PASS

Data Path : C:\msdchem\1\DATA\082010\

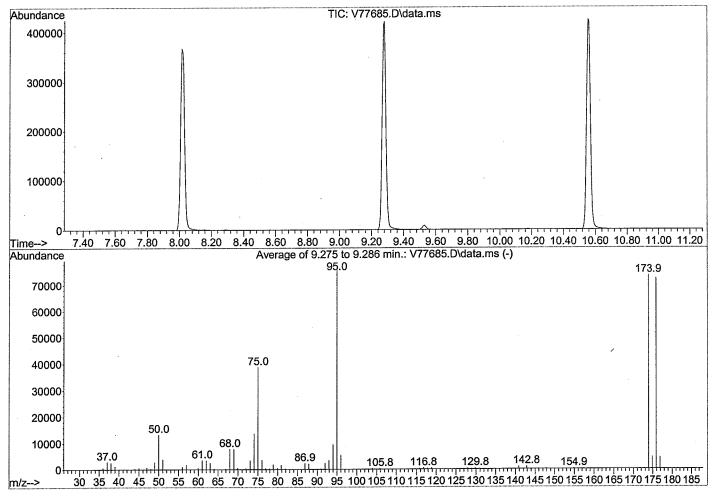
Data File: V77685.D

Acq On : 20 Aug 2010 11:35 am

Operator : Bill Brew Sample : 50ng BFB

Misc

ALS Vial : 1 Sample Multiplier: 1


Integration File: rteint.p

Method : C:\msdchem\1\METHODS\081110.M

Title : 8260/624 Analysis

Last Update : Thu Aug 12 15:27:25 2010

8/20 88

AutoFind: Scans 1481, 1482, 1483; Background Corrected with Scan 1472

	Target Mass	Rel. to Mass	Lower Limit%	Upper Limit%	Rel. Abn%	Raw Abn	Result Pass/Fail
1	50	95	15	40	17.5	13215	PASS
	75	95	30	6.0	51.2	38714	PASS
i	95	95	100	100	100.0	75618	PASS
İ	96	95	5	9	7.2	5408	PASS
İ	173	174	0.00	2	0.2	151	PASS
İ	174	95	50	100	97.3	73544	PASS
Ì	175	174	5	9	6.1	4493	PASS
i	176	174	95	101	98.5	72405	PASS
İ	177	176	· 5	9	6.0	4368	PASS
		_	· 				

Operator: Bill Brew

Inst : Instrument #1

Data File: C:\msdchem\1\DATA\081910\V77662.D

DataAcq Meth:8260RUN.M

Acq On : 19 Aug 2010 Sample : WATER LCS 3:38 pm

Misc

ALS Vial : 4 Sample Multiplier: 1

Quant Time: Aug 19 15:56:47 2010
Quant Method: C:\msdchem\1\METHODS\081110.M
Quant Title: 8260/624 Analysis
QLast Update: Thu Aug 12 15:27:25 2010
Response via: Initial Calibration

Integrator: RTE

Compound	R.T.	QIon	Response	Conc Units Dev	(Min)
Internal Standards					
1) Fluorobenzene	5.071	96	388947	50.00 ug/L	0.00
54) Chlorobenzene-d5	8.022	117	278210	50.00 ug/L	0.00
75) 1,4-Dichlorobenzene-d4	10.557	152	164501	50.00 ug/L	0.00
System Monitoring Compounds					
26) Pentafluorobenzene	4.500	168	170158	$43.28~\mathrm{ug/L}$	0.00
Spiked Amount 50.000	Range 70	- 123	Recove	ery = 86.56%	
29) 1,2-Dichloroethane-d4	4.777	65	89053	40.55 ug/L	0.01
Spiked Amount 50.000	Range 71	- 106	Recove	ery = 81.10%	
45) Toluene-D8	6.559	98	342630	48.90 ug/L	0.00
Spiked Amount 50.000	Range 70	- 113	Recove		
64) 4-Bromofluorobenzene	9.276	95	173391	$48.48~\mathrm{ug/L}$	0.00
Spiked Amount 50.000	Range 67	- 107	Recove	ery = 96.96%	
Target Compounds			•	Qv	alue
2) Dichlorodifluoromethane	1.447	85	125250	53.02 ug/L	99
3) Chloromethane	1.596	50	99007	49.87 ug/L	98
4) Vinyl chloride	1.671	62	100101	51.52 ug/L	98
5) Bromomethane	1.916	94	62746	60.11 ug/L	98
6) Chloroethane	2.002	64	56216	$49.16~\mathrm{ug/L}$	97
7) Trichlorofluoromethane	2.205	101	171254	53.17 ug/L	99
8) Ethyl ether	2.423	59	56753	46.00 ug/L	100
9) Freon 113	2.610	101	85223	51-44 ug/L	98
(10) 1,1-Dichloroethene	2.616	61	112240 (45.96 kg/L	88
11) Acetone	2.648	43	24823	22.24 ug/L	95
12) Carbon disulfide	2.802	76	222034	41.29 ug/L	100
14) Methylene chloride	3.005	84	86123	48.62 ug/L	96
15) Acrylonitrile	3.197	53	20332	42.32 ug/L	94
17) Methyl tert-butyl Ether	3.219	73	235338	$47.20~\mathrm{ug/L}$	99
18) trans-1,2-Dichloroethene		61	102473	50.70 ug/L	85
19) 1,1-Dichloroethane	3.571	63	139937	46.59 ug/L	99
20) Vinyl acetate	3.603	43	114834	45.74 ug/L	99
21) 2,2-Dichloropropane	4.067	77	152656	50.66 ug/L	88
22) 2-Butanone	4.073	72	9332	42.69 ug/L #	83
23) cis-1,2-Dichloroethene	4.067	96	96018	41.51 ug/L	89
24) Bromochloromethane	4.270	128	44260	47.55 ug/L #	85
25) Chloroform	4.334	83	178048	48.57 ug/L	97
28) 1,1,1-Trichloroethane	4.505	97	170790	53.72 ug/L	89
(30) Carbon Tetrachloride	4.649	117	146216	57.92 ug/L	99
31) Benzene	4.825	78	364144	45.90 ug/L	96
32) 1,2-Dichloroethane	4.841	62	129538	50-68 ug/L	96
33) Trichloroethene	5.407	130	102558	50.73 ug/L #	85
36) 1,2-Dichloropropane	5.615	63	84000	44.35 ug/L #	69
38) Dibromomethane	5.722	93	60197	53.39 ug/L #	74
39) Bromodichloromethane	5.866	83	139809	52.03 ug/L	97
40) 2-Chloroethyl vinyl Ethe		63	55583	52.71 ug/L	93
42) 1,1-Dichloropropene	4.644	75	136072	49.01 ug/L	91
43) cis-1,3-Dichloropropene	6.293	75	162570	51.03 ug/L	94
44)_4-Methyl-2-pentanone	6.447	43	71152	42.65 ug/L	85
467 Toluene	6.624	91	415789	49.59 ug/L	95
Toruche , let	0.024		112,05		

8/20 mg

Operator: Bill Brew

Inst : Instrument #1

Data File: C:\msdchem\1\DATA\081910\V77662.D

DataAcq Meth:8260RUN.M

Acq On : 19 Aug 2010 Sample : WATER LCS 3:38 pm

Misc :

Sample Multiplier: 1 ALS Vial : 4

Quant Time: Aug 19 15:56:47 2010

Quant Method : C:\msdchem\1\METHODS\081110.M

Quant Title : 8260/624 Analysis QLast Update : Thu Aug 12 15:27:25 2010 Response via : Initial Calibration

Compound	R.T.	QIon	Response	Conc Units Dev	(Min)
47) trans-1,3-Dichloropropene	6.837	75	152870	52.13 ug/L	97
48) 1,1,2-Trichloroethane	7.018	97	84405	46.94 ug/L	94
49) 1,3-Dichloropropane	7.189	76	149855	48.97 ug/L	99
50) Tetrachloroethene	7.168	166	129290	52.05 ug/L	95
51) 2-Hexanone	7.275	43	54424	48.15 ug/L	93
52) Dibromochloromethane	7.419	129	106792	56.61 ug/L	99
537)1,2-Dibromoethane	7.541	107	91637	50_12_ug/L	99
(55) Chlorobenzene	8.054	112	262316	50.95 Jg/L	85
56) 1,1,1,2-Tetrachloroethane	8.134	131	104261	57.09 ug/L	96
57) Ethylbenzene	8.166	91	486256	52.29 ug/L	90
58) m,p-Xylene	8.289		362931	104.31 ug/L #	81
59) o-Xylene	8.716	106	180052	49.80 ug/L #	77
60) Styrene	8.726		300078	50.00 ug/L	91
61) Bromoform	8.924		73867	57.79 ug/L	98
62) Isopropylbenzene	9.111		492298	50.80 ug/L	93
63) 1,2,3-Trichloropropane	9.484		37610	54.45 ug/L #	84
65) Bromobenzene	9.441		131220	53.92 ug/L #	71
66) 1,1,2,2-Tetrachloroethane	9.436		113211	50.21 ug/L	97
67) n-Propylbenzene	9.564		595474	53.97 ug/L	87
68) 2-Chlorotoluene	9.660		110620	49.83 ug/L #	55
69) 4-Chlorotoluene	9.778		115381	50.98 ug/L #	46
70) 1,3,5-Trimethylbenzene	9.762		437627	53.85 ug/L	84
71) tert-Butylbenzene	10.124		89598	49.39 ug/L #	43
72) 1,2,4-Trimethylbenzene	10.178		432380	52.65 ug/L	85 89
73) sec-Butylbenzene	10.370		546987	51.88 ug/L	91
74) p-Isopropyltoluene	10.535		502677	56.02 ug/L	95
76) 1,3-Dichlorobenzene	10.482		240898	44.86 ug/L 47.04 ug/L	97
77) 1,4-Dichlorobenzene	10.583		253100	_ · .	97 92
78) n-Butylbenzene	10.994		476096	48.50 ug/L	92 98
79) 1,2-Dichlorobenzene	11.005		234480	45.33 ug/L 47.30 ug/L #	96 84
81) 1,2-Dibromo-3-Chloropr	11.880		28861	3 .	100
82) 1,2,4-Trichlorobenzene	12.772		204908	47.46 ug/L 45.45 ug/L	98
83) 1,2,3-Trichlorobenzene	13.263		180511	45.45 ug/L 46.78 ug/L	98
84) Hexachlorobutadiene	12.953		139770 373930	46.76 ug/L 47.82 ug/L	99
85) Naphthalene	13.022	128	3/3330	ug/ u	
					

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

Inst

Operator: Bill Brew

: Instrument #1

Data File: C:\msdchem\1\DATA\081910\V77662.D

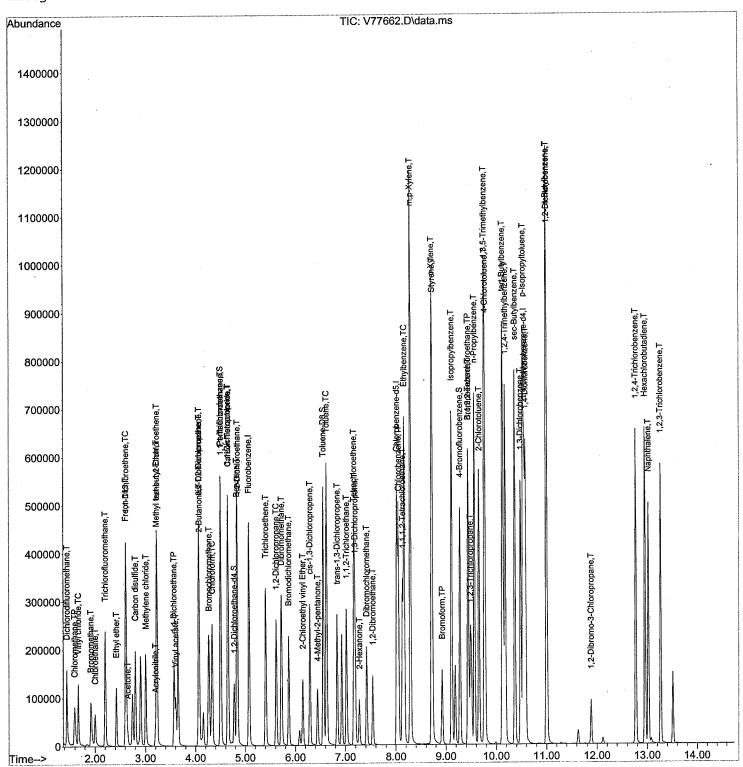
DataAcq Meth: 8260RUN.M

Acq On : 19 Aug 2010 3:38 pm

Sample : WATER LCS

Misc

ALS Vial : 4 Sample Multiplier: 1


Quant Time: Aug 19 15:56:47 2010

Quant Method : C:\msdchem\1\METHODS\081110.M

Quant Title : 8260/624 Analysis

QLast Update : Thu Aug 12 15:27:25 2010

Response via : Initial Calibration

Tata File: C:\msdchem\1\DATA\082010\V77687.D

DataAcq Meth:8260RUN.M

: 20 Aug 2010 12:22 pm

Sample : WATER LCS

Misc

ALS Vial : 3 Sample Multiplier: 1

Quant Time: Aug 20 12:39:33 2010

Quant Method : C:\msdchem\1\METHODS\081110.M

Quant Title : 8260/624 Analysis

QLast Update: Thu Aug 12 15:27:25 2010 Response via: Initial Calibration

Integrator: RTE

Operator: Bill Brew Inst : Instrument #1

Compound	R.T.	QIon	Response	Conc Ur	nits Dev	(Min)
Internal Standards						
1) Fluorobenzene	5.076	96	337277	50.00	11a/T	0.00
54) Chlorobenzene-d5	8.021	117	261545	50.00		0.00
75) 1,4-Dichlorobenzene-d4	10.562	152	141237	50.00		0.00
, 5, 1, 1 blentelebendene al	10.501				10	
System Monitoring Compounds						
26) Pentafluorobenzene	4.499	168	154408	45.29	ug/L	0.00
Spiked Amount 50.000	Range 70	- 123	Recove	ery =	90.589	·
29) 1,2-Dichloroethane-d4	4.771	65	85135	44.80		0.00
Spiked Amount 50.000	Range 71	- 106	Recove		89.609	\$
45) Toluene-D8	6.559	98	302308	49.80	ug/L	0.00
Spiked Amount 50.000	Range 70	- 113	Recove	ery =	99.609	\$
64) 4-Bromofluorobenzene	9.276	95	152866	45.46	ug/L	0.00
Spiked Amount 50.000	Range 67	- 107	Recove	ery =	90.929	5
					-	
Target Compounds						ralue
Dichlorodifluoromethane	1.436	85	125444	61.23		98
Chloromethane	1.585	50	84400	49.02	-	98
Vinyl chloride	1.660	62	82472	48.95		96
5) Bromomethane	1.916	94	57677	63.72	_	96
6) Chloroethane	1.996	64	49605	50.02		98
7) Trichlorofluoromethane	2.199	101	170690	61.11		100
8) Ethyl ether	2.418	59	55238	51.63		100
9 Freon 113	2.605	101	77697	54.09		95
(10) 1,1-Dichloroethene	2.610	61	108472			89 90
11) Acetone	2.642	43		21.48		100
12) Carbon disulfide	2.797	76	200255	42.95		96
14) Methylene chloride	2.994	84	73825	48.02 43.90		96
15) Acrylonitrile	3.186	53	18288 212915	49.24		98
17) Methyl tert-butyl Ether	3.218	73 61	101748	58.05		82
18) trans-1,2-Dichloroethene	3.224 3.571	63	123757	47.52		98
19) 1,1-Dichloroethane	3.608	43	99096	45.52		97
<pre>20) Vinyl acetate 21) 2,2-Dichloropropane</pre>	4.062	77	148910	56.99		90
22) 2-Butanone	4.067	72	8366		ug/L #	69
23) cis-1,2-Dichloroethene	4.056	96	82342		ug/L #	74
24) Bromochloromethane	4,270	128			ug/L #	80
25) Chloroform	4.328	83	172086	54.14	-	98
28) 1,1,1-Trichloroethane	4.499	97	159539	57.86		88
30) Carbon Tetrachloride	4.649	117	143459	65-54		100
31) Benzene	4.825	78	310388	45.18		95
32) 1,2-Dichloroethane	4.841	62	123414	55.68		97
(33) Trichloroethene	5.406	130	79154	45.15		77
36) 1,2-Dichloropropane	5.609	63	72227	43.97		75
38) Dibromomethane	5.721	93	52064		ug/L #	68
39) Bromodichloromethane	5.860	83	127223	54.60		99
40) 2-Chloroethyl vinyl Ethe		63	46544	50.90		91
42) 1,1-Dichloropropene	4.643	75	125314	52.05		89
43) cis-1,3-Dichloropropene	6.292	75	142601	51.62		91
44) 4-Methyl-2-pentanone	6.436	43	58718	40.59		88
(46) Toluene	6.623	91	349397	48.06	ug/L	96

8/23 pm

Pata File: C:\msdchem\1\DATA\082010\V77687.D

DataAcq Meth:8260RUN.M

: 20 Aug 2010 12:22 pm Operator: Bill Brew Acq On : WATER LCS Inst : Instrument #1 Sample

Misc

Sample Multiplier: 1 ALS Vial : 3

Quant Time: Aug 20 12:39:33 2010

Quant Method : C:\msdchem\1\METHODS\081110.M

Quant Title : 8260/624 Analysis QLast Update : Thu Aug 12 15:27:25 2010 Response via : Initial Calibration

Integrator: RTE

	Compound	R.T.	QIon	Response	Conc Units Dev(M	Min)
47)	trans-1,3-Dichloropropene	6.831	75	135494	53.28 ug/L	95
48)	1,1,2-Trichloroethane	7.023	97	69892	44.83 ug/L	95
49)	1,3-Dichloropropane	7.189	76	126048	47.50 ug/L	98
50)	Tetrachloroethene	7.168	166	111773	51.89 ug/L	93
51)	2-Hexanone	7.274	43	41991	42.84 ug/L	95
52)	Dibromochloromethane	7.413	129	88603	54.16 ug/L	98
53)	1,2-Dibromoethane	7.541	107	75802	47.81 ug/L	99
(55)	Chlorobenzene	8.048	112	232879	48.11 Jg/L	82
56)	1,1,1,2-Tetrachloroethane	8.134	131	91282	53.17 ug/L	96
57)	Ethylbenzene	8.166	91	427047	48.85 ug/L	89
58)	m,p-Xylene	8.294	106	309884	94.73 ug/L #	69
59)	o-Xylene	8.715	106	150569	44.30 ug/L #	68
60)	Styrene	8.726	104	248211	43.99 ug/L	86
61)	Bromoform	8.918	173	65051	54.14 ug/L	95
62)	Isopropylbenzene	9.116	105	438333	48.11 ug/L	91
63)	·	9.484	110	30267	46.62 ug/L #	80
65)	Bromobenzene	9.441	156	105903	46.29 ug/L #	63
66)	1,1,2,2-Tetrachloroethane	9.436	83	91903	43.35 ug/L	98
67)	n-Propylbenzene	9.564	91	522436	50.37 ug/L	88
68)	2-Chlorotoluene	9.655	126	99075	47.47 ug/L #	58
69)	4-Chlorotoluene	9.783	126	93450	43.92 ug/L #	18
70)	1,3,5-Trimethylbenzene	9.761	105	372976	48.82 ug/L	87
71)	tert-Butylbenzene	10.119	134	81420	47.74 ug/L #	49
72)	1,2,4-Trimethylbenzene	10.172	105	381673	49.43 ug/L	87
73)	sec-Butylbenzene	10.370	105	527936	53.26 ug/L	85
	p-Isopropyltoluene	10.535	119	439495	52.10 ug/L	88
76)		10.482	146	205975	44.67 ug/L	91
77)	1,4-Dichlorobenzene	10.588	146	215601	46.67 ug/L	95
78)	n-Butylbenzene	10.994	91	434190	51.51 ug/L	89
79)	1,2-Dichlorobenzene	11.005	146	197334	44.43 ug/L	97
81)	1,2-Dibromo-3-Chloropr	11.885	157	22646	43.27 ug/L #	79
82)	1,2,4-Trichlorobenzene	12.771	180	178627	48.19 ug/L	98
83)	1,2,3-Trichlorobenzene	13.268	180	153842	45.11 ug/L	95
84)	Hexachlorobutadiene	12.953	225	131576	51.29 ug/L	99
85)	Naphthalene	13.022	128	299176	44.56 ug/L	99

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

8/23m

Inst

Operator: Bill Brew

: Instrument #1

Data File: C:\msdchem\1\DATA\082010\V77687.D

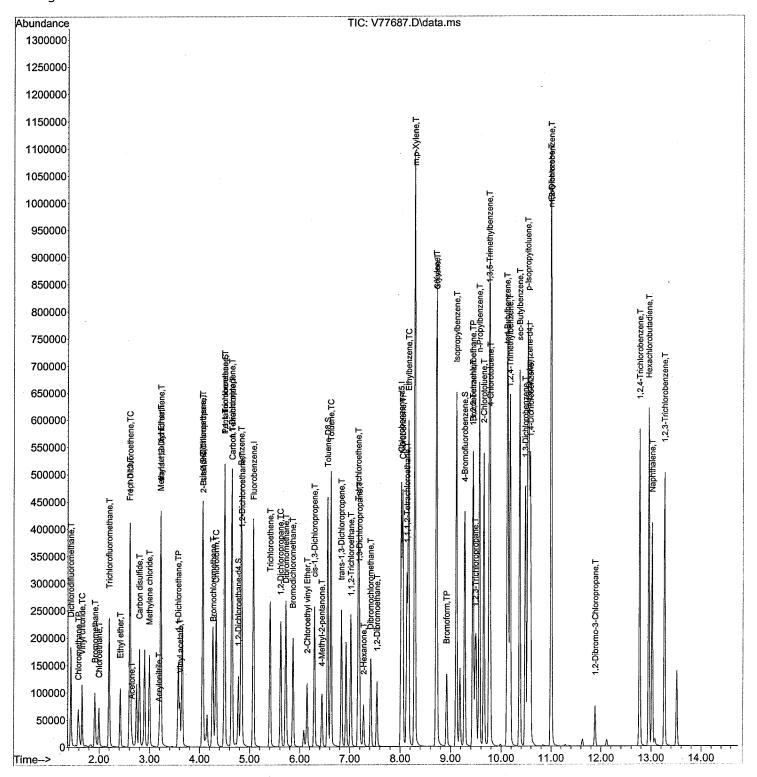
DataAcq Meth:8260RUN.M

: 20 Aug 2010 12:22 pm Acq On

WATER LCS Sample

Misc

Sample Multiplier: 1 ALS Vial : 3


Quant Time: Aug 20 12:39:33 2010

Quant Method : C:\msdchem\1\METHODS\081110.M

: 8260/624 Analysis Quant Title

QLast Update : Thu Aug 12 15:27:25 2010

Response via : Initial Calibration

Volatile Analysis Report for Non-potable Water

Client: The Palmerton Group

Client Job Site:

Office Depot Plaza

Lab Project Number: 10-3320A

Client Job Number: N/A

Field Location:

Date Sampled:

Field ID Number:

Date Received:

N/A N/A

Lab Sample Number: Water LRB 08/19/10

Sample Type:

N/A Water

N/A

Date Analyzed:

08/19/2010

Compound	Results in ug / L
Acetone	ND< 10.0
Benzene	ND< 0.700
Bromochloromethane	ND< 5.00
Bromodichloromethane	ND< 2.00
Bromoform	ND< 5.00
Bromomethane	ND< 2.00
2-Butanone	ND< 10.0
Carbon disulfide	ND< 5.00
Carbon Tetrachloride	ND< 2.00
Chlorobenzene	ND< 2.00
Chloroethane	ND< 2.00
Chloroform	ND< 2.00
Chloromethane	ND< 2.00
Cyclohexane	ND< 10.0
Dibromochloromethane	ND< 2.00
1,2-Dibromo-3-Chloropropane	ND< 10.0
1,2-Dibromoethane	ND< 2.00
1,2-Dichlorobenzene	ND< 2.00
1,3-Dichlorobenzene	ND< 2.00
1,4-Dichlorobenzene	ND< 2.00
Dichlorodifluoromethane	ND< 5.00
1,1-Dichloroethane	ND< 2.00
1,2-Dichloroethane	ND< 2.00
1,1-Dichloroethene	ND< 2.00
cis-1,2-Dichloroethene	ND< 2.00
trans-1,2-Dichloroethene	ND< 2.00

Compound	Results in ug / L
1,2-Dichloropropane	ND< 2.00
cis-1,3-Dichloropropene	ND< 2.00
trans-1,3-Dichloropropene	ND< 2.00
Ethylbenzene	ND< 2.00
2-Hexanone	ND< 5.00
Isopropylbenzene	ND< 5.00
Methyl acetate	ND< 2.00
Methyl tert-butyl Ether	ND< 2.00
Methylcyclohexane	ND< 2.00
Methylene chloride	ND< 5.00
4-Methyl-2-pentanone	ND< 5.00
Styrene	ND< 5.00
1,1,2,2-Tetrachloroethane	ND< 2.00
Tetrachloroethene	ND< 2.00
Toluene	ND< 2.00
Freon 113	ND< 2.00
1,2,3-Trichlorobenzene	ND< 5.00
1,2,4-Trichlorobenzene	ND< 5.00
1,1,1-Trichloroethane	ND< 2.00
1,1,2-Trichloroethane	ND< 2.00
Trichloroethene	ND< 2.00
Trichlorofluoromethane	ND< 2.00
Vinyl chloride	ND< 2.00
m,p-Xylene	ND< 2.00
o-Xylene	ND< 2.00
•	

ELAP Number 10958

Method: EPA 8260B

Data File: V77663.D

Comments: ND denotes Non Detect ug / L = microgram per Liter

Signature:

Bruce Hoogesteger. Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition 103320B1.XLS requirements upon receipt.

Inst

Operator: Bill Brew

: Instrument #1

Data File: C:\msdchem\1\DATA\081910\V77663.D

DataAcq Meth:8260RUN.M

: 19 Aug 2010 4:02 pm Acq On

: WATER LRB Sample

Misc

Sample Multiplier: 1 ALS Vial : 5

Quant Time: Aug 19 16:41:53 2010
Quant Method: C:\msdchem\1\METHODS\081110.M

Quant Title : 8260/624 Analysis QLast Update : Thu Aug 12 15:27:25 2010 Response via : Initial Calibration

Integrator: RTE

Compound	R.T.	QIon	Response	Conc Units Dev(Min)) -
Internal Standards 1) Fluorobenzene 54) Chlorobenzene-d5 75) 1,4-Dichlorobenzene-d4	5.076 8.022 10.557	117	381611 291382 167883	50.00 ug/L 0.00 50.00 ug/L 0.00 50.00 ug/L 0.00	0
System Monitoring Compounds 26) Pentafluorobenzene Spiked Amount 50.000 29) 1,2-Dichloroethane-d4 Spiked Amount 50.000 45) Toluene-D8 Spiked Amount 50.000 64) 4-Bromofluorobenzene Spiked Amount 50.000	6.554	65 - 106 98 - 113 95	Recove 87140 Recove 302313 Recove 160738	ery = 85.56% 40.44 ug/L 0.00 ery = 80.88% 43.77 ug/L 0.00 ery = 87.54% 42.91 ug/L 0.00	6
Target Compounds 11) Acetone 14) Methylene chloride 82) 1,2,4-Trichlorobenzene 83) 1,2,3-Trichlorobenzene 85) Naphthalene 86) Cyclohexane	2.653 3.005 12.777 13.268 13.022 4.499	43 84 180 180 128 56	6989 1965 2516 3834 10097 2539	Ovalue Below Cal 4/0 99 Below Cal 4/0 99 0.57 ug/L 99 0.95 ug/L 99 1.27 ug/L 5 9 0.79 ug/L # 1 69	5 6 5 7 8

(#) = qualifier out of range (m) = manual integration (+) = signals summed

8/20 pm

Inst

Operator: Bill Brew

: Instrument #1

Data File: C:\msdchem\1\DATA\081910\V77663.D

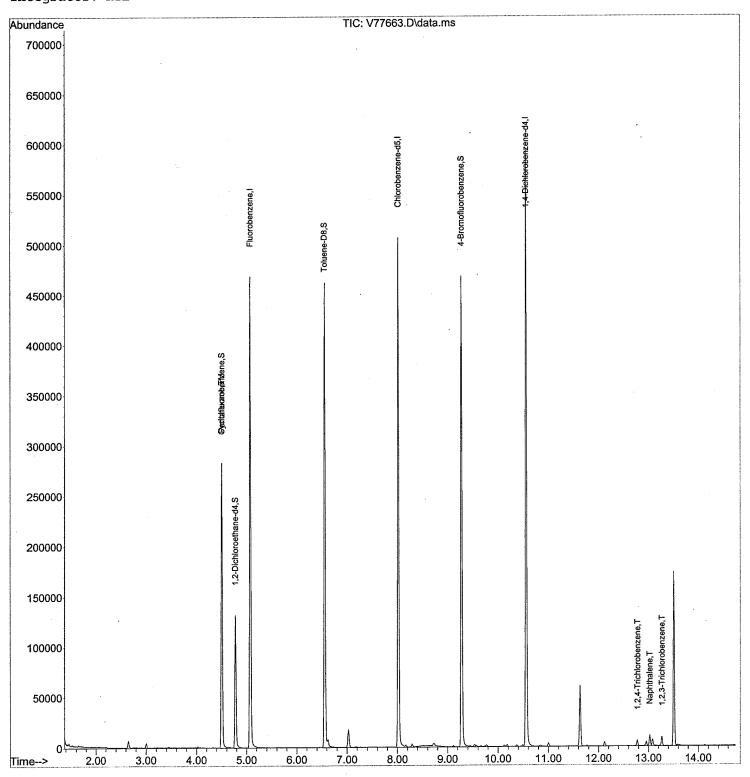
DataAcq Meth:8260RUN.M

Acq On : 19 Aug 2010 4:02 pm

Sample : WATER LRB

Misc

ALS Vial : 5 Sample Multiplier: 1


Quant Time: Aug 19 16:41:53 2010

Quant Method : C:\msdchem\1\METHODS\081110.M

Quant Title : 8260/624 Analysis

QLast Update : Thu Aug 12 15:27:25 2010

Response via : Initial Calibration

Volatile Analysis Report for Non-potable Water

Client: The Palmerton Group

Client Job Site:

Sample Type:

Office Depot Plaza

Lab Project Number: 10-3320A

Lab Sample Number: Water LRB 08/20/10

Client Job Number: Field Location:

N/A N/A

Field ID Number:

N/A Water Date Sampled:

N/A

Date Received:

N/A

Date Analyzed:

08/20/2010

Compound	Results in ug / L
Acetone	ND< 10.0
Benzene	ND< 0.700
Bromochloromethane	ND< 5.00
Bromodichloromethane	ND< 2.00
Bromoform	ND< 5.00
Bromomethane	ND< 2.00
2-Butanone	ND< 10.0
Carbon disulfide	ND< 5.00
Carbon Tetrachloride	ND< 2.00
Chlorobenzene	ND< 2.00
Chloroethane	ND< 2.00
Chloroform	ND< 2.00
Chloromethane	ND< 2.00
Cyclohexane	ND< 10.0
Dibromochloromethane	ND< 2.00
1,2-Dibromo-3-Chloropropane	ND< 10.0
1,2-Dibromoethane	ND< 2.00
1,2-Dichlorobenzene	ND< 2.00
1,3-Dichlorobenzene	ND< 2.00
1,4-Dichlorobenzene	ND< 2.00
Dichlorodifluoromethane	ND< 5.00
1,1-Dichloroethane	ND< 2.00
1,2-Dichloroethane	ND< 2.00
1,1-Dichloroethene	ND< 2.00
cis-1,2-Dichloroethene	ND< 2.00
trans-1,2-Dichloroethene	ND< 2.00

	Compound	Results in ug / L	
1	1,2-Dichloropropane	ND< 2.00	
	cis-1,3-Dichloropropene	ND< 2.00	
	trans-1,3-Dichloropropene	ND< 2.00	
	Ethylbenzene	ND< 2.00	
	2-Hexanone	ND< 5.00	
	Isopropylbenzene	ND< 5.00	
	Methyl acetate	ND< 2.00	
	Methyl tert-butyl Ether	ND< 2.00	
	Methylcyclohexane	ND< 2.00	
	Methylene chloride	ND< 5.00	
	4-Methyl-2-pentanone	ND< 5.00	
	Styrene	ND< 5.00	
	1,1,2,2-Tetrachloroethane	ND< 2.00	
	Tetrachloroethene	ND< 2.00	
	Toluene	ND< 2.00	
	Freon 113	ND< 2.00	
	1,2,3-Trichlorobenzene	ND< 5.00	
	1,2,4-Trichlorobenzene	ND< 5.00	
	1,1,1-Trichloroethane	ND< 2.00	
	1,1,2-Trichloroethane	ND< 2.00	
	Trichloroethene	ND< 2.00	
	Trichlorofluoromethane	ND< 2.00	
	Vinyl chloride	ND< 2.00	
	m,p-Xylene	ND< 2.00	
	o-Xylene	ND< 2.00	
	**		

ELAP Number 10958

Method: EPA 8260B

Data File: V77688.D

Comments: ND denotes Non Detect ug / L = microgram per Liter

Signature:

Bruce Hoogesteger Achnical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt.

Data File: C:\msdchem\1\DATA\082010\V77688.D

DataAcq Meth:8260RUN.M

Operator: Bill Brew Acq On : 20 Aug 2010 12:45 pm Inst : Instrument #1

: WATER LRB Sample

Misc

Sample Multiplier: 1 ALS Vial : 4

Quant Time: Aug 20 13:00:44 2010

Quant Method : C:\msdchem\1\METHODS\081110.M

Quant Title : 8260/624 Analysis

QLast Update : Thu Aug 12 15:27:25 2010

Response via : Initial Calibration

Integrator: RTE

Internal Standards 1) Fluorobenzene	Compound	R.T.	QIon	Response	Conc Units Dev(Mir	n)
54) Chlorobenzene-d5	Internal Standards					
75) 1,4-Dichlorobenzene-d4 10.556 152 132254 50.00 ug/L 0.00 System Monitoring Compounds 26) Pentafluorobenzene 4.499 168 143197 47.37 ug/L 0.00 Spiked Amount 50.000 Range 70 - 123 Recovery = 94.74% 29) 1,2-Dichloroethane-d4 4.771 65 81626 48.53 ug/L 0.00 Spiked Amount 50.000 Range 71 - 106 Recovery 97.06% 45) Toluene-D8 6.559 98 271466 50.46 ug/L 0.00 Spiked Amount 50.000 Range 70 - 113 Recovery = 100.92% 64) 4-Bromofluorobenzene 9.281 95 132418 45.76 ug/L 0.00 Spiked Amount 50.000 Range 67 - 107 Recovery = 91.52% Target Compounds 11) Acetone 2.642 43 5820 Below Cal 2.090 14) Methylene chloride 2.994 84 2196 Below Cal 2.092 14) Methylene chloride 2.994 84 2196 Below Cal 2.096 82) 1,2,4-Trichlorobenzene 12.771 180 2503 0.72 ug/L 96 83) 1,2,3-Trichlorobenzene 13.267 180 3855 1.21 ug/L 97 84) Hexachlorobutadiene 12.953 225 1309 0.54 ug/L 85 85) Naphthalene 13.022 128 7815 1.44 ug/L 96	 Fluorobenzene 	5.075	96	299065	50.00 ug/L 0.0	00
System Monitoring Compounds 26) Pentafluorobenzene	54) Chlorobenzene-d5	8.021	117	225072	50.00 ug/L 0.0	00
26) Pentafluorobenzene	75) 1,4-Dichlorobenzene-d4	10.556	152	132254	50.00 ug/L 0.0	00
Spiked Amount 50.000 Range 70 - 123 Recovery = 94.74% 29) 1,2-Dichloroethane-d4 4.771 65 81626 48.53 ug/L 0.00 Spiked Amount 50.000 Range 71 - 106 Recovery = 97.06% 45) Toluene-D8 6.559 98 271466 50.46 ug/L 0.00 Spiked Amount 50.000 Range 70 - 113 Recovery = 100.92% 64) 4-Bromofluorobenzene 9.281 95 132418 45.76 ug/L 0.00 Spiked Amount 50.000 Range 67 - 107 Recovery = 91.52% Target Compounds 11) Acetone 2.642 43 5820 Below Cal 0.00 Spiked Amount 50.000 Range 67 - 107 Recovery = 91.52% Target Compounds 2.642 43 5820 Below Cal 0.00 Spiked Amount 50.000 Range 67 - 107 Recovery = 91.52% Acetone 12.642 43 5820 Below Cal 0.00 Spiked Amount 50.000 Range 67 - 107 Recovery = 91.52% Acetone 12.642 43 5820 Below Cal 0.00 Spiked Amount 50.000 Range 67 - 107 Recovery = 91.52% Acetone 12.642 43 5820 Below Cal 0.00 Spiked Amount 50.000 Range 67 - 107 Recovery = 91.52% Acetone 12.642 43 5820 Below Cal 0.00 Acetone 12.642 43 5820 Below Ca	System Monitoring Compounds					
29) 1,2-Dichloroethane-d4	26) Pentafluorobenzene	4.499	168			00
Spiked Amount 50.000 Range 71 - 106 Recovery 97.06% 45) Toluene-D8 6.559 98 271466 50.46 ug/L 0.00 Spiked Amount 50.000 Range 70 - 113 Recovery = 100.92% 64) 4-Bromofluorobenzene 9.281 95 132418 45.76 ug/L 0.00 Spiked Amount 50.000 Range 67 - 107 Recovery = 91.52% Target Compounds 11) Acetone 2.642 43 5820 Below Cal -/O 92 14) Methylene chloride 2.994 84 2196 Below Cal -/O 92 14) Methylene chloride 12.771 180 2503 0.72 ug/L 96 82) 1,2,4-Trichlorobenzene 12.771 180 2503 0.72 ug/L 96 83) 1,2,3-Trichlorobenzene 13.267 180 3855 1.21 ug/L 97 84) Hexachlorobutadiene 12.953 225 1309 0.54 ug/L 85 85) Naphthalene 13.022 128 7815 1.24 ug/L 96	≠	Range 70			/	
45) Toluene-D8 6.559 98 271466 50.46 ug/L 0.00 Spiked Amount 50.000 Range 70 - 113 Recovery = 100.92% 64) 4-Bromofluorobenzene 9.281 95 132418 45.76 ug/L 0.00 Spiked Amount 50.000 Range 67 - 107 Recovery = 91.52% Ovalue 11) Acetone 2.642 43 5820 Below Cal -/O 92 14) Methylene chloride 2.994 84 2196 Below Cal -/O 92 14) Methylene chloride 2.994 84 2196 Below Cal -/O 96 82) 1,2,4-Trichlorobenzene 12.771 180 2503 0.72 ug/L 96 83) 1,2,3-Trichlorobenzene 13.267 180 3855 1.21 ug/L 97 84) Hexachlorobutadiene 12.953 225 1309 0.54 ug/L 85 85) Naphthalene 13.022 128 7815 1.24 ug/L 96	29) 1,2-Dichloroethane-d4				7 3.	0 9
Spiked Amount 50.000 Range 70 - 113 Recovery = 100.92% 64) 4-Bromofluorobenzene 9.281 95 132418 45.76 ug/L 0.00 Spiked Amount 50.000 Range 67 - 107 Recovery = 91.52% Target Compounds Qvalue 11) Acetone 2.642 43 5820 Below Cal 2.00 92 14) Methylene chloride 2.994 84 2196 Below Cal 2.00 92 14) Methylene chloride 12.771 180 2503 0.72 ug/L 96 96 98) 1,2,3-Trichlorobenzene 13.267 180 3855 1.21 ug/L 97 97 984) Hexachlorobutadiene 12.953 225 1309 0.54 ug/L 85 85) Naphthalene 13.022 128 7815 1.24 ug/L 96 96	Spiked Amount 50.000	Range 71			- -	
64) 4-Bromofluorobenzene 9.281 95 132418 45.76 ug/L 0.00 Spiked Amount 50.000 Range 67 - 107 Recovery = 91.52% Target Compounds 11) Acetone 2.642 43 5820 Below Cal /0 92 14) Methylene chloride 2.994 84 2196 Below Cal /0 92 82) 1,2,4-Trichlorobenzene 12.771 180 2503 0.72 ug/L 96 83) 1,2,3-Trichlorobenzene 13.267 180 3855 1.21 ug/L 97 84) Hexachlorobutadiene 12.953 225 1309 0.54 ug/L 85 85) Naphthalene 13.022 128 7815 1.24 ug/L 96						00
Spiked Amount 50.000 Range 67 - 107 Recovery = 91.52% Target Compounds 11) Acetone 2.642 43 5820 Below Cal 92 14) Methylene chloride 2.994 84 2196 Below Cal 96 82) 1,2,4-Trichlorobenzene 12.771 180 2503 0.72 ug/L 96 83) 1,2,3-Trichlorobenzene 13.267 180 3855 1.21 ug/L 97 84) Hexachlorobutadiene 12.953 225 1309 0.54 ug/L 85 85) Naphthalene 13.022 128 7815 1.24 ug/L 96	Spiked Amount 50.000	Range 70			-1 j	1
Target Compounds 11) Acetone 2.642 43 5820 Below Cal 70 92 14) Methylene chloride 2.994 84 2196 Below Cal 5 96 82) 1,2,4-Trichlorobenzene 12.771 180 2503 0.72 ug/L 96 83) 1,2,3-Trichlorobenzene 13.267 180 3855 1.21 ug/L 97 84) Hexachlorobutadiene 12.953 225 1309 0.54 ug/L 85 85) Naphthalene 13.022 128 7815 1.24 ug/L 96	64) 4-Bromofluorobenzene				,	øο
11) Acetone 2.642 43 5820 Below Cal 70 92 14) Methylene chloride 2.994 84 2196 Below Cal 70 96 82) 1,2,4-Trichlorobenzene 12.771 180 2503 0.72 ug/L 96 83) 1,2,3-Trichlorobenzene 13.267 180 3855 1.21 ug/L 97 84) Hexachlorobutadiene 12.953 225 1309 0.54 ug/L 85 85) Naphthalene 13.022 128 7815 1.24 ug/L 96	Spiked Amount 50.000	Range 67	- 107	Recove	ry = 91.52%	
11) Acetone 2.642 43 5820 Below Cal 70 92 14) Methylene chloride 2.994 84 2196 Below Cal 70 96 82) 1,2,4-Trichlorobenzene 12.771 180 2503 0.72 ug/L 96 83) 1,2,3-Trichlorobenzene 13.267 180 3855 1.21 ug/L 97 84) Hexachlorobutadiene 12.953 225 1309 0.54 ug/L 85 85) Naphthalene 13.022 128 7815 1.24 ug/L 96	The same to Company of a				Ovalue	a
14) Methylene chloride 2.994 84 2196 Below Cal 3 96 82) 1,2,4-Trichlorobenzene 12.771 180 2503 0.72 ug/L 96 83) 1,2,3-Trichlorobenzene 13.267 180 3855 1.21 ug/L 97 84) Hexachlorobutadiene 12.953 225 1309 0.54 ug/L 85 85) Naphthalene 13.022 128 7815 1.24 ug/L 96	. 3	2 642	13	5820		
82) 1,2,4-Trichlorobenzene 12.771 180 2503 0.72 ug/L 96 83) 1,2,3-Trichlorobenzene 13.267 180 3855 1.21 ug/L 97 84) Hexachlorobutadiene 12.953 225 1309 0.54 ug/L 85 85) Naphthalene 13.022 128 7815 1.24 ug/L 96	——•					
83) 1,2,3-Trichlorobenzene 13.267 180 3855 1.21 ug/L 97 84) Hexachlorobutadiene 12.953 225 1309 0.54 ug/L 85 85) Naphthalene 13.022 128 7815 1.24 ug/L 96						-
84) Hexachlorobutadiene 12.953 225 1309 0.54 ug/L 85 85) Naphthalene 13.022 128 7815 1.24 ug/L 96					<i>y</i>	-
85) Naphthalene 13.022 128 7815 1.24 ug/L 96						
13.022 120 1010 117 - 117 / 11						
	-				73/-///	_

(#) = qualifier out of range (m) = manual integration (+) = signals summed

8/23 mg

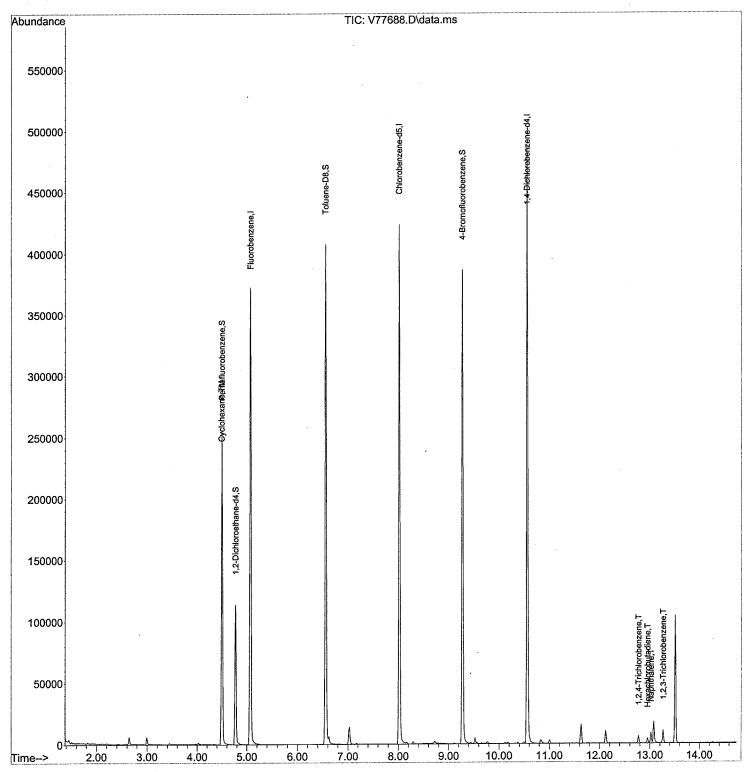
Data File: C:\msdchem\1\DATA\082010\V77688.D

DataAcq Meth:8260RUN.M

Acq On : 20 Aug 2010 12:45 pm Operator: Bill Brew
Sample : WATER LRB Inst : Instrument #1

Misc

ALS Vial : 4 Sample Multiplier: 1


Quant Time: Aug 20 13:00:44 2010

Quant Method : C:\msdchem\1\METHODS\081110.M

Quant Title : 8260/624 Analysis

QLast Update : Thu Aug 12 15:27:25 2010

Response via : Initial Calibration

*A = Accept R = Reject							7 / / / / / /		
	+		<u> </u>	√ √	2500 V		XLUCEU	νς /h	
		6RO 20106.M		ىر	/ooO		V7741	25	
		8/12/100			500		Jehela	32	
	W	Supplisted	16994	0.5	250 ppbGRO		5th LL 1 .	18	
	<u> </u>	+	-	4	10724	2	HILLA	Of	
					10723		647743	/9	
		A	VI	51	10722	water	viins	81	
				,	+ dup	+	48664		
				25	9667	Doil	V17420	16	
					9677	d.	114660	15	
					OC 1111-710		レリカイ18	1	
					1 dup		117417	13	
	·				mp-186		1774/6	7	
					LRB	_	V77415	1/	
	2		10223	2	605	water	414661	۵/	
	+		4	90 6	A COR		614161	9	
				0	100		414661	8	
				Λ	50		11xcc 1	7	
		081110, M			0		V))Y/O	6	
				0,5	ς		U77409	>	
		14/10		0,2	21 "		v)7408	h h	
		J. A.	10216	e. []	1 pob mayor al		v 72407	3	
3			+	4	10		477406	1 2	,
	3		1,009/	15	50 m BPB		BOHTTY	1 10000	
A R pH Res CI Comments Intials	Seq Intials	Test	Std#	Volume	Sample ID	Matrix	Data File	GC Method Vial #	Date
								Internal Standard: / Ud 10	4 4
Date of Intial Calibration: 8 111 10		7/59/3	stem böət	GC / MS VOA System 6890 / 59/3	GC / N			2116	
		, , HO43	7000	5 . 5 . 5 .)				

GC / MS VOA System 6890 / 5973

Date of Intial Calibration: % /// //O

Intials

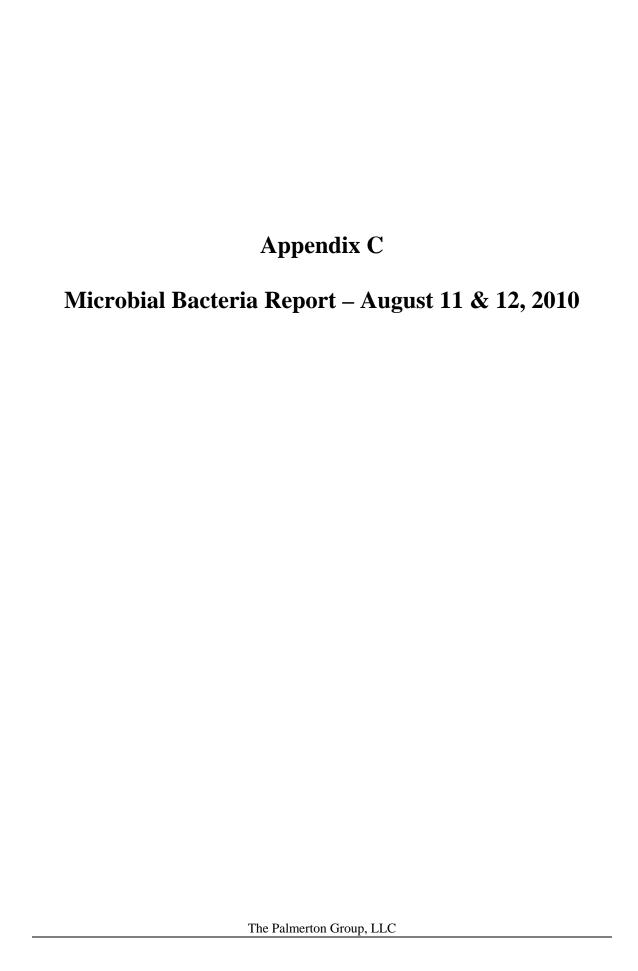
136

= Accept R = Reject	*A = Accept	*	4	<	<	/0807		133811	1 04		
R +	X		and a Common of the Common of			10906		07768/	23		
he see	X					10805		637680	م م		
he compound	X					10504		V77679	92 /		
h soot	X					10903		V17618	O.f		
A						10902		V77677	/9		
		·				10901		V77676	18		
						10 900		V17675	/7		
						10899		173674	1/		
Re 2ml	λ					10898		V77673	13		
						10897		レンルフよ	14		
			ASP	<u>~</u>	5	10896		01167/	13		
			TCL+*	V.)	<u>_</u>	11032		V17670	12		
Re 2.5 ml	X		TCL	<		11031		V77669			
				—		1 MSO		13668	10		
					5	11113 MS	water	17767	9		
7					500/	11009	TCLP	V)1666	8		
Rug	62		601/602	1//	5	11113	4	V77665	7		
,			GES-site	V2	500	10891		V77664	6		
					,	LRB	_	177663	5		
		-	دو	10223	5	222	water	v 77662	7		
			4	10216	12	50 pp my cc		V)7661	W		
				1	1	4		V77660	ا م		1
		3		10051	5	50 mg BFB		V77659	EJGORUN)	0]	8
Res Cl Comments	A R PH R	15	Test Seq	Std#	Volume	Sample ID	Matrix	Data File	GC Method Vial #	Date GC N	
1		}!							rd:/0400	internal Standard: / U / > 0	- 15

Intials /3/S

B

₹eject	Accept R = Reject	*A = Ac									•		
	-		<	2	4	4	4	//040	<	V77705	ند ا	~	
								11038		v 12704	20		
		À			TCC+\$	V	52	11036		νηηρό	19		-
					TCL	<	2.5	1/03 1		1777ph)x		
Refu	the for	X			601/601/KO15	<	4	16801		1017770/	73		
 								+ MSD		V17100	16		
							5	1082/25		レンンとうら	3		
	rd my	1			601/602	7)	251	10822	hater	V >>>68	٠,		
						-	\	10984	~	V1)657) }		
		X						10983		V77696	1		
		1						11/35	_	077655	=		
		1						11/34		V77694	<i>a</i>		
		1						11072		V77653	5		
5		Ż	<u> </u>					10650	·	469661	α (
								10592		V73691)		
						-		1059/		v17690	6		
lush						<u> </u>	Soci	10590	Tup	レソフしょう	1		
				+			,	LRB	-	18260	4		
		1	Ł	8		10223	5	105	hate	17687	S		
		1	<u></u>	7		10216	15	50 Mb my cc		V77696	2		, ,
		1	B	-		1005/	5/	50 mg 876		V77685		NNNO9EB	01/01/8
		1	5	9	4	<u></u>	J	10909		489111	06	Ų.	,
			ENS	2	ASP	\ <u>\</u> \'	5	10908	hate	V77683	25	3	8/19/10
Comments	pH Res CI	A R p	Intials	Seq Ir	Test	Std#	Volume	Sample ID	Matrix	Data File	d Vial#	GC Method	Date
ration: 8////	Date of Intial Calibration: 家	Date of I									8886	শুnternal Standard: /০১১ ১	1 Internal


GC / MS VOA System 6890 / 5973

Date of Intial Calibration: 8/11/10

Intials B

11180 11	\$ \(\begin{align*} \(\begin{align*} \begin{align*}	
1188 1188 1188 1188 11188	νητης ν	
11188 11188 11188 11188 11188 11188 11188 11188 11188 11188	\$\frac{\pi}{\pi} \frac{\pi}{\pi}	
11189 11	λητις ν γητις ν γ γ γ γ γ γ γ γ γ γ γ γ γ	
11188 11189 11189 11189 11189 11189 11189 11190 11193 11193 11193 11193	νητιςν διτειν διτ διτ διτειν διτειν διτειν διτειν διτειν διτειν διτειν διτ διτ διτ διτειν διτειν διτ διτ διτ διτ διτ διτ διτ διτ	
11188 11189 11189 11189 11189 50 pp majorce 51 10091 11193 11193 11193 11193	νητις γις γι	
11188 11189 ST 10091 11188 1188 1188 1188 1188 1188 1188 1188 1188 1188 1188 1188 1188 1188 1188 1188 1188 1188 11	νηη γητις γητ	
1189 11191 2 27 10091 1188 1189 2 10091 2 1188 1188 2 10091 2 1188 2 10091 2 1188 2 10091 2 1188 2 10091 2 10091	17660 176600 176600 176600 176600 176600 176600 176600 176600 1	
1188 1188 20 10001 2 1188 1188 1188 1188	\$11557 \$11557 \$11557 \$11557 \$11557 \$11557	
1188 1188 1188 1188 1188 1188 1188 118	\$11.50 \$10.00 \$10.00 \$10.00 \$10.00	
1180 / 5 Syll Syll Syll Syll Syll Syll Syll Sy	 	
1180 1 5 4 4 4 10091 1188 11188 11187 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	 	
1188 1188 1188 1188 1188 1188 1188 118		
11/87 11/87 1/88/11		
	ļ	
S. W 4		
Sit		-
102	27 V27711	
10906 5001		
10905 500	25 177709	
	34 077708	
(10903 500)	23	
10898	401114	\dashv
╬	GC Method Vial # Data File N	Date GC Metho

CM

130 Research Lane, Suite 2 Guelph, Ontario N1G 5G3 Phone (519) 822-2265 Fax (519) 822-3151

Certificate of Analysis: Quantitative Gene-Trac Dehalococcoides Assay

Customer: Todd Bown/ Ben Haith, Palmerton Group

SiREM Reference: S-1971

Project: Office Depot Plaza

Report Issued: 25-Aug-10

Customer Reference: Office Depot Plaza Data Files: MyiQ-DHC-QPCR-0654

DHC-QPCR-Check-gel-0464 MyiQ-DB-DHC-QPCR-0125

DHC-UP-0634

Table 1: Test Results

Customer Sample ID	SiREM Sample ID	Sample Collection Date	Sample Matrix	Percent Dhc ^A	<i>Dehalococcoides</i> Enumeration ^B
MW-1	DHC-6371	11-Aug-10	Field Filter	NA ⁽¹⁾	ND ^(2,3)
MW-11	DHC-6372	11-Aug-10	Field Filter	NA ⁽¹⁾	ND ^(2,3)
MW-3	DHC-6373	11-Aug-10	Field Filter	NA ⁽¹⁾	ND ⁽²⁾
MW-14	DHC-6374	12-Aug-10	Field Filter	NA ⁽¹⁾	ND ^(2,3)

Notes:

NA = not applicable ND = not detected

Julie Pring

Biotechnology Technologist

Approved:

Ximena Druar, B.Sc.

Molecular Biology Coordinator

^A Percent *Dehalococcoides* (Dhc) in microbial population. This value is calculated by dividing the number of Dhc 16S ribosomal ribonucleic acid (rRNA) gene copies by the total number of bacteria as estimated by the mass of DNA extracted from the sample. Range represents normal variation in Dhc enumeration.

^BBased on quantification of Dhc 16S rRNA gene copies. Dhc are generally reported to contain one 16S rRNA gene copy per cell; therefore, this number is often interpreted to represent the number of Dhc cells present in the sample.

¹Not applicable as *Dehalococcoides* not detected.

²Not detected. The sample specific quantitation limit was 2 x 10³/liter.

³Sample contained low concentrations of biomass based on low extracted DNA yield, or sample inhibited the test reaction based on inability to PCR amplify extracted DNA with universal primers.

Table 2: Detailed Test Parameters, Gene-Trac Test Reference S-1971

Customer Sample ID	MW-1	MW-11	MW-3	MW-14		
SiREM Sample ID	DHC-6371	DHC-6372	DHC-6373	DHC-6374		
Date Received	13-Aug-10	13-Aug-10	13-Aug-10	13-Aug-10		
Sample Temperature	24 °C	24 °C	24 °C	24 °C		
Filtration Date	11-Aug-10	11-Aug-10	11-Aug-10	12-Aug-10		
Volume Used for DNA Extraction	1000 mL	1000 mL	1000 mL	1000 mL		
DNA Extraction Date	17-Aug-10	17-Aug-10	17-Aug-10	17-Aug-10		
DNA Concentration in Sample (extractable)	866 ng/L	704 ng/L	825 ng/L	825 ng/L		
PCR Amplifiable DNA	ND	ND	Detected	ND		
qPCR Date Analyzed	18-Aug-10	18-Aug-10	18-Aug-10	18-Aug-10		
Laboratory Controls (see Table 3)	Passed	Passed	Passed	Passed		
Comments	II	Sample not tested for vcrA as sample was ND for Dhc.	Sample not tested for vcrA as sample was ND for Dhc.	Sample not tested for vcrA as sample was ND for Dhc.		

Notes:

Refer to Table 3 for detailed results of controls.

ND = not detected

°C = degrees Celsius

PCR = polymerase chain reaction qPCR = quantitative PCR

Dhc = Dehalococcoides

ng/L = nanograms per liter

mL = milliliters

DNA = Deoxyribonucleic acid

Table 3: Laboratory Controls, Gene-Trac Test Reference S-1971

Laboratory Control	Analysis Date	Control Description	Spiked Dhc 16S rRNA Gene Copies per Liter	Recovered Dhc 16S rRNA Gene Copies per Liter	Comments
Positive Control Low Concentration	18-Aug-10	qPCR with KB-1 genomic DNA (CSLD-0292)	4.3 x 10 ⁵	2.4 x 10 ⁵	
Positive Control High Concentration	18-Aug-10	qPCR with KB-1 genomic DNA (CSHD-0292)	3.3 x 10 ⁷	2.8 x 10 ⁷	
Negative Control	18-Aug-10	Tris Reagent Blank (TBD-0252)	0	ND	
DNA Extraction Blank	18-Aug-10	DNA extraction sterile water (FB-1248)	0	Inconclusive	See Note 1

Notes:

Dhc = Dehalococcoides

DNA = Deoxyribonucleic acid

ND = not detected

qPCR = quantitative PCR

16S rRNA = 16S ribosomal ribonucleic acid

¹Inconclusive results may indicate extremely low concentrations of *Dehalococcoides* DNA.

Chain-of-Custody Form

age 1 of 1 5-1971

	10000							1	18/10	34	1	and the	Analysis									
Project Name Office Depot Plaza Project Manager Todd Bown Bon Ha	Project #	e Deb	ot Pla	24							Ana	lysis										
Project Manager Toold Bowyl Box Ho	nithe				Prese	rvative	6	0			1											
Email Address to bows Epotacrtos	escan.	om				7	1	1	1	1	/	7	7	/	/	7	1	Preservative Key 0. None				
Company Palmerton Group	21		1			/	/	/	/	/		/	/	/		/		1. HCl				
Address	Ce- e 15 - 1	1Y 1	3057			/2/	1.	94	/	/	/	/ /	/ -	/	/	/ /	/	2. Other				
Phone #315) 463 - 5300 Fax#	12034	0/ 1	3037		1/	Traco	" ACK	"aco	/	/	/	/	/	/	/	/						
Sample Sample	r's Printed	1 7	. 1. 1		1	Gene. T.	Gene. F.	/	/	/	/	/	/	/	/	/						
Signature Name Name	Sam	C. Box		# of											-							
Customer Sample ID	Date	Time	Matrix	Containers	X	4											7	Other Information				
MW-1 (1L)	ships	1420	6W	2	X	X					7											
MW-11 (1L)	1	1730	1	V	X	×	-															
MW-Z (IL)	1	1905	V	V	X	X								1								
MW-14 (12)	8/12/10	1130	1	2	X	X																
5 1 W		1																				
* 1																						
Cooler Condition: Sample Receipt P.O. # Billing Information								d Time	Requ	ested			ab Use									
Cooler Temperature:	Bill To:								ormal	X					F	ie	ld	. Filter				
29°C								Re	ush				-		•							
Custody Seals: Yes No																						
										1				Prop	osal #:							
Relinquished By: Received	l By:		Relinquis	hed By:	T			Receive	ed By:	J. Minch				Relin	quish	ed By:		Received By:				
Signature Signature Will	in	Signature			9	Signature						Sign	ature					Signature				
Printed Name CODD ROWD Printed Name Name	Prins	Printed Name			PIN	rinted lame						Printe Name						Printed Name				
Palmorton Group Firm SiRe	7	Firm			Fi	irm	1					Firm						Firm				
Date/Time Sizio VS00 Date/Time 13Am	4	Date/Time			D	ate/Time						Date	Time	-			1	Date/Time				
Distribution: White - Return to Originator: Yellow - Lab Copy: Pink - Retained by Clien	nt				7	-	1						N. T				73711					