

PHASE II SUBSURFACE INVESTIGATION REPORT

The Daily Freeman 79 Hurley Avenue Kingston, New York 12401

October 14, 2016 Partner Project Number: 16-162670.6

Prepared for:

Twenty Lake Holdings

885 Third Avenue, Suite 1940 New York, New York 10022

October 14, 2016

Mr. Peter Robdau Twenty Lake Holdings 885 Third Avenue, Suite 1940 New York, New York 10022

Phase II Subsurface Investigation Report Subject:

> The Daily Freeman 79 Hurley Avenue

Kingston, New York 12401

Partner Project Number: 16-162670.6

Dear Mr. Robdau:

Partner Assessment Corporation (Partner) is pleased to provide the results of the assessment performed on the above-referenced property. The following report describes the field activities, methods, and findings of the Phase II Subsurface Investigation conducted at the above-referenced property.

This assessment was performed utilizing methods and procedures consistent with good commercial or customary practices designed to conform to acceptable industry standards. The independent conclusions represent Partner's best professional judgment based upon existing conditions and the information and data available to us during the course of this assignment.

We appreciate the opportunity to provide these services. If you have any questions concerning this report, or if we can assist you in any other matter, please contact Summer Gell at (214) 666-6800.

Sincerely,

Partner Assessment Corporation

Chris Niedzwiecki

Project Scientist

Andres Simonson

Regional Manager - Subsurface Investigation

Summer D. Gell Relationship Manager

800-419-4923 www.PARTNEResi.com

TABLE OF CONTENTS

1.0	Introduction	1
1.1	Purpose	1
1.2	Limitations	1
1.3	User Reliance	1
2.0	Site Background	2
2.1	Site Description	2
2.2	Site History	2
2.3	Geology and Hydrogeology	4
3.0	Field Activities	5
3.1	Preparatory Activities	5
3.	1.1 Utility Clearance	5
3.	1.2 Health and Safety Plan	5
3.2	Geophysical Survey	5
3.3	Drilling Equipment	6
3.4	Boring Locations	6
3.5	Soil Sampling	6
3.6	Groundwater Sampling	7
3.7	Post-Sampling Activities	8
4.0	Laboratory Analysis	
4.1	Laboratory Analysis	9
4.2	Laboratory Analytical Results	9
4.	2.1 Soil Sample Analytical Results	9
4	2.2 Groundwater Sample Analytical Results	9
5.0	Discussion and Conclusions	10
5.1	Regulatory Agency Guidance	10
5.2	Discussion	10
5	2.1 REC 1 – Former Printing Operations	10
5	2.2 REC 2 – Former Gasoline USTs	11
5.3	Summary and Conclusions	11

ATTACHMENTS

Tables 1. Summary of Investigation Scope

2. Soil Sample Laboratory Results Summary

3. Groundwater Sample Laboratory Results Summary

Figures 1. Site Vicinity Map

2. Topographic Map

3. Sample Location Map

Appendices A. Boring Logs

B. Geophysical Survey Report and Map

C. Laboratory Analytical Report

1.0 INTRODUCTION

1.1 Purpose

The purpose of the investigation was to identify the location of on-site underground storage tanks (USTs) and/or former tankhold systems, evaluate the floor drain system, and to investigate the potential impact of volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs), and/or metals to soil and groundwater as a consequence of a release or releases from the former printing operations and gasoline USTs. Twenty Lake Holdings provided project authorization of Partner Proposal Number P16-159311.2.

1.2 Limitations

This report presents a summary of work conducted by Partner. The work includes observations of site conditions encountered and the analytical results provided by an independent third party laboratory of samples collected during the course of the project. The number and location of samples were selected to provide the required information. However, it cannot be assumed that the limited available data are representative of subsurface conditions in areas not sampled.

Conclusions and/or recommendations are based on the observations, laboratory analyses, and the governing regulations. Conclusions and/or recommendations beyond those stated and reported herein should not be inferred from this document.

Partner warrants that the environmental consulting services contained herein were accomplished in accordance with generally-accepted practices in the environmental engineering, geology, and hydrogeology fields that existed at the time and location of work. No other warranties are implied or expressed.

1.3 User Reliance

Partner was engaged by Twenty Lake Holdings (the Addressee), or their authorized representative, to perform this investigation. The engagement agreement specifically states the scope and purpose of the investigation, as well as the contractual obligations and limitations of both parties. This report and the information therein, are for the exclusive use of the Addressee. This report has no other purpose and may not be relied upon, or used, by any other person or entity without the written consent of Partner. Third parties that obtain this report, or the information therein, shall have no rights of recourse or recovery against Partner, its officers, employees, vendors, successors or assigns. Any such unauthorized user shall be responsible to protect, indemnify and hold Partner, the Addressee and their respective officers, employees, vendors, successors and assigns harmless from any and all claims, damages, losses, liabilities, expenses (including reasonable attorneys' fees) and costs attributable to such use. Unauthorized use of this report shall constitute acceptance of, and commitment to, these responsibilities, which shall be irrevocable and shall apply regardless of the cause of action or legal theory pled or asserted.

This report has been completed under specific Terms and Conditions relating to scope, relying parties, limitations of liability, indemnification, dispute resolution, and other factors relevant to any reliance on this report. Any parties relying on this report do so having accepted the Terms and Conditions for which this report was completed.

2.0 SITE BACKGROUND

2.1 Site Description

The subject property consists of one parcel of land comprising approximately 2.9 acres located on the north side of Hurley Avenue, between Taylor Street and Quarry Street, within a mixed commercial and residential area of Ulster County, New York. The subject property is currently occupied by The Daily Freeman for commercial/office use. On-site operations consist of general newspaper production administrative/office activities as well as warehousing and distribution activities.

The subject property is developed with a single-story structure that is situated within the central portion of the site, containing office spaces, warehouse spaces, a mezzanine level, as well as a basement level beneath the original portion of the facility. The basement level does not extend beneath the warehouse portion of the subject property building, which is currently leased to PCF, a newspaper distribution company. No newspaper printing operations are currently conducted on-site. Former printing operations reportedly ceased at the subject property in 2010. In addition to the current structure, the subject property is improved with asphalt-paved parking areas, naturally vegetated land, and a freshwater pond that is located within the rear portion of the site.

The subject property is bound by a Best Western to the north across vegetated land and railroad tracks, a Super 8 Motel and an office building to the east, single-family residences and an office building to the south across Hurley Avenue, and an office building with associated paved parking areas to the west. Refer to Figure 1 for a site vicinity map showing site features and surrounding properties.

2.2 Site History

Partner completed a draft *Phase I Environmental Site Assessment* (Phase I) Report, dated April 21, 2016, prepared on behalf of Twenty Lake Holdings. Based on the information reviewed and the site reconnaissance, the subject property was previously developed with a potential residence within the southern portion of the site, from as early as 1901 to circa 1924. Thereafter, the subject property appears to have remained mostly vacant land through at least 1943. The subject property was subsequently redeveloped with a portion of the current structure circa 1963, which was later improved with an addition in 1984. Tenants on the subject property have included, but are not limited to, The Great Atlantic and Pacific Tea Company (A&P Supermarket, c. 1963-c. 1970) and The Daily Freeman (c. 1974-present).

The Phase I identified the following recognized environmental conditions (RECs):

1. The subject property has been occupied by The Daily Freeman from as early as 1974. Newspaper printing operations were conducted on-site from the start of tenancy until approximately 2010. Printing presses were located in what is now a mostly vacant warehouse area within the eastern portion of the subject property building. Newspaper printing operations also included a photo development dark room and a pre-press area, which was utilized to convert images to a plate or film prior to the newspaper printing process. Floor drains were observed in the pre-press area, and an apparent long trench drain was observed within the former printing area. According to the key site manager, these features are expected to discharge to the municipal sanitary sewer system. Staining was observed on the floor in the immediate vicinity of the floor drains in the pre-press

area and significant ink staining was observed on the walls surrounding a wash sink in the former printing area. These drains may act as pathways to the subsurface and have the potential to impact the subsurface, should they become compromised. According to the regulatory database report, the subject property was identified as a Resource Conservation and Recovery Act-Non Generator (RCRA-NonGen/NLR) since at least 2006, and was a Resource Conservation and Recovery Act-Small Quantity Generator (RCRA-SQG) since 1988. Hazardous wastes previously generated on-site include "solvent washes and sludges, caustic washes and sludges, or water washes and sludges from cleaning tubs and equipment used in the formulation of ink from pigments, driers, soaps, and stabilizers containing chromium and lead." Although two compliance evaluation inspections were conducted on-site in 1999 and 2013, during which no violations were identified, Partner was unable to verify proper handling and/or disposal practices during the remaining years in which printing operations were performed. Based on the duration of former hazardous materials activities, including the generation of solvent wastes, as well as the nature of the aforementioned hazardous substances used, stored, and/or generated on-site, the former printing operations are considered a REC.

2. According to information obtained from the regulatory database report and from a records request response from the New York State Department of Environmental Conservation (NYSDEC), the subject property was historically equipped with four USTs, which were registered under Facility ID Number 3-411086. The USTs included a 2,000-gallon steel UST that was installed in 1974, a 1,000-gallon steel UST that was installed in 1979, a 10,000-gallon steel UST that was installed in 1979, and a 6,000-gallon fiberglass UST that was installed in 1994. All four tanks were previously utilized for the gasoline storage to support newspaper delivery fleet refueling activities, and are currently listed as "closed-removed." Closure dates were provided for the 10,000-gallon UST (May 1994) and 6,000-gallon UST (January 2012). However, Partner was only provided with documentation verifying the location and closure of the former 6,000-gallon UST. No information pertaining to the exact location, removal dates, or any post-closure subsurface sampling of the remaining three tanks was available for review during the course of the Phase I.

Two gasoline releases were reported in connection with the aforementioned USTs. The first release (Spill Number 9002411) was reported on June 1, 1990, during a tank pull. An available Spill Report Form does not indicate from which tank the release occurred. However, based on the incident date, the release likely pertains to the former 1,000-gallon tank or 2,000-gallon tank (or both). The Spill Report Form notes that approximately 15 to 18 cubic yards of contaminated soil were stockpiled and disposed of off-site. The release case was issued regulatory closure on June 15, 1990 and was noted to have met applicable cleanup standards. However, the analytical results of post-excavation soil sampling were not provided for review. The second release (Spill Number 9402470) was reported on May 19, 1994, during a tank tightness test, which was performed in preparation for the closure of a UST. Given the incident date, the release likely pertains to the former 10,000-gallon UST. The spill report indicates that the tank was emptied and the release case was issued regulatory closure on June 9, 1994. However, cleanup was noted to have not met applicable standards. Further, the analytical results of post-excavation soil sampling were not provided for review. As such, the potential exists for residual impacts to remain in place at the subject property. Partner requested copies of full UST and spill closure reports (with analytical data) from the NYSDEC;

however, no further information was provided by the NYSDEC to date. Based on the lack of available information, Partner was unable to determine the locations of the former 2,000-gallon UST, 1,000-gallon UST, and 10,000-gallon UST, whether or not said USTs were closed and removed in accordance with applicable standards, or whether or not the subsurface has been impacted beyond what was visually observed and reported for the two release cases. Therefore, the three former USTs and associated release cases are considered a REC.

2.3 Geology and Hydrogeology

Review of the United States Geological Survey (USGS) *Kingston West, New York* Quadrangle topographic map indicates the subject property is situated at an elevation approximately 174 feet above mean sea level, and the local topography is sloping gently to the north-northeast. Refer to Figure 2 for a topographic map of the site vicinity.

The subject property is situated within the Hudson Valley section of the Valley and Ridge physiographic province of the State of New York. According to the USGS, the uppermost geologic formation underlying the soils at the subject property is the Lower to Middle Devonian Onondaga Limestone formation. The Onondaga Limestone formation comprises the underlying stratigraphy and consists mostly of broad, carbonate platform facies that were deposited during early to middle Eifelian time. Carbonates are characterized by calcarenitic to cherty to argillaceous limestones and minor shales deposited in a shallow epicontinental sea. The Onondaga Limestone formation consists of gray or grayish-blue, compact, crystalline limestone, as well as overlies the Oriskany sandstone and underlies the Seneca limestone. Thickness ranges from 100 to 500 feet.

Information obtained from the United States Department of Agriculture (USDA) – Natural Resources Conservation Service (NRCS) Web Soil Survey online database shows the subject property is mapped as Riverhead fine sandy loam. The Riverhead series consists of very deep, well-drained soils that formed in glacial outwash deposits, which are primarily derived from granitic materials. This type of soil occurs on outwash plains, valley trains, beaches, and water-sorted moraine landforms. Slopes range from 0 to 15 percent.

The nearest body of surface water in the vicinity of the subject property is a designated freshwater pond, which is located within the northern portion of the subject property. No additional settling ponds, lagoons, surface impoundments, or natural catch basins were observed on the subject property during this assessment.

Borings advanced during this investigation determined the underlying subsurface consists predominantly of tan, tan/gray or gray clayey silt, tan, gray or tan/red clay, or tan medium sand with varying amounts of medium pebbles from the ground surface to approximately 20 feet below ground surface (bgs). Backfill material consisting of gray medium pebbles was encountered within the area of the excavation to a depth of approximately nine to 13.5 feet bgs. Refer to Appendix A for boring logs from this investigation.

Groundwater was encountered during this investigation between 12 and 19 feet bgs.

3.0 FIELD ACTIVITIES

Refer to Table 1 for a summary of the borings, sampling schedule and laboratory analyses for this investigation. The scope of the Phase II Subsurface Investigation included a geophysical survey and the advancement of eight borings (B1 through B8) for the collection of representative soil and/or groundwater samples.

3.1 Preparatory Activities

Prior to the initiation of fieldwork, Partner completed the following activities.

3.1.1 Utility Clearance

Hawk Drilling, Inc. (Hawk) of Hampton, New Jersey notified Dig Safely New York (Dig Safely) to clear public utility lines as required by law at least 48 hours prior to drilling activities. Dig Safely issued ticket number 09276-900-024 for the project.

3.1.2 Health and Safety Plan

Partner reviewed the site-specific Health and Safety Plan with on-site personnel involved in the project prior to the commencement of drilling activities.

3.2 Geophysical Survey

On October 1, 2016, Delta Geophysics (Delta) of Catasauqua, Pennsylvania conducted a geophysical survey under the supervision of Partner. The purpose of the geophysical survey was to (a) identify the location of former on-site tankholds and/or existing USTs, piping, and/or associated features, to (b) evaluate the floor drain configuration and discharge location, and to (c) additionally clear boring locations of utilities. The geophysical survey was conducted with a GSSI-SIR-3000 cart mounted ground penetrating radar (GPR) unit along with the GSSI-400 MHz antenna, a Radiodetection RD7000 precision utility locator, and/or a Fisher M-Scope TW-6 pipe and cable locator.

Delta systematically free-traversed the entire exterior with the aforementioned equipment. The equipment data were interpreted in real time and compiled as necessary in order to identify subsurface anomalies consistent with USTs, disturbed soil resembling backfilled tankholds, piping trenches, utility lines, and/or other subsurface conduits/features.

The geophysical survey identified an anomalous area, identified as a potential soil disturbance, to the northeast of the building. The area was identified by GPR transects which imaged a disturbance that represents a potential indicator of an excavation, and measured approximately 40 feet by 20 feet. Delta further traced two electric lines and three unknown utility lines to the area of the soil disturbance. Onsite personnel confirmed the former USTs were located where the soil disturbance was observed, and further mentioned the location of the former dispenser island. Partner did not observe any evidence of a former dispenser island, but an electric line was traced from the building to this location, ultimately terminating above the area of soil disturbance. GPR transects over this feature were limited due to dense vegetation. No additional signs of abandoned USTs or disturbed soil resembling backfilled tankholds were identified.

Investigation of the trench observed in the warehouse area determined the trench was not a drainage feature, but rather a conduit for ink and drain lines. The trench was cut out of the concrete slab after it was poured, and was lined with concrete on all sides. Upon further inspection, a drain line from a wash sink along with two copper ink lines ran through the trench. Delta further traced the ink and drain lines with the RD7000 and through visual inspection. The ink lines were traced towards the location of the former aboveground ink storage tank. The floor trench was traced through the wall to a large metal plate. According to onsite personnel, the metal plate covered a junction box. Another trench, originating at the location for the former aboveground ink storage tank, was also traced to the metal plate, and a drain line was also observed within the second trench. Partner and Delta were not permitted to open the metal plate to avoid disturbing the tenant leasing this portion of the warehouse. Visual inspection through gaps in the metal plate indicated that the apparent sump appeared to contain ink sludges and waste from former printing operations. Furthermore, the interior of the wash sink was heavily stained, likely from the disposal of printing wastes. The sump was located in a portion of the building that was not underlain with a basement.

Refer to Appendix B for a copy of the geophysical survey report and map, which provides additional details regarding the geophysical survey equipment and methodology along with the locations of the abovementioned features.

3.3 Drilling Equipment

On October 1, 2016, Partner subcontracted with Hawk to provide and operate drilling equipment. Hawk, under the direction of Partner, advanced borings B1 through B8 with a track-mounted AMS Power Probe 9500 VTR direct push rig. Sampling equipment was decontaminated between sample intervals and boring locations to prevent cross-contamination.

3.4 Boring Locations

Boring B1 was advanced south of the excavation; boring B2 was advanced in the southern portion of the excavation; boring B3 was advanced in the center of the excavation; boring B4 was advanced in the northern portion of the excavation; boring B5 was advanced to the west of the excavation, to the east of the former dispenser location; and boring B6 was advanced at the location of the former dispenser. Boring B7 and B8 were advanced interior of the eastern portion of the warehouse. B7 was advanced at the former printing press location, along the ink line trench, and B8 was advanced to the east of the sump pit, along the ink line trench. Boring placement was limited/modified due to utility conflicts. According to onsite maintenance personnel, Partner was not permitted to drill in the assumed down-gradient direction of the sump pit location, as this portion of the building is leased by a newspaper distributor. Refer to Figure 3 for a map indicating boring locations.

3.5 Soil Sampling

Boring B1 was overlain by asphalt, which was penetrated directly by the core barrel. Borings B2 through B6 were overlain by gravel, which was penetrated directly by the core barrel. Borings B7 and B8 were overlain by concrete, which was cored with an electric hammer drill equipped with a three-inch diameter carbide tipped concrete core bit prior to the direct push rig advancing the core barrel. Boring B1 was advanced to 15 feet bgs; borings B3 and B4 were advanced to 17 feet bgs;

borings B5, B7, and B8 were advanced to 20 feet bgs; and boring B6 was advanced to 18 feet bgs. Drilling refusal was encountered at boring locations B2, B3, B4, and B6.

Soil samples were collected using a five-foot long by 2.25-inch diameter MacroCore sampler with a five-foot long acetate liner, which was advanced by the direct-push drill rig using five-foot long by 2.25-inch diameter casing sections. The sampler was driven into the subsurface to allow undisturbed soil to enter the open MacroCore barrel and retrieved in five-foot intervals to recover the soil-filled liners.

A lengthwise section of each acetate liner was removed with a splitting tool to expose the soil. The soil column was visually inspected for discoloration, monitored for odors, and classified in accordance with the Unified Soil Classification System (USCS). Select intervals were placed in sealable plastic bags and field-screened with a photo-ionization detector (PID) calibrated to isobutylene. Elevated PID readings up to 538 parts per million (ppm) and a strong petroleum-like odor were detected in the soils recovered from boring location B4. Low level PID readings, less than 10 ppm, were detected in the soils recovered from boring locations B3 and B6, and a slight petroleum-like odor was detected in the soils recovered from boring location B3. Please refer to the boring logs in Appendix A for specific borings and depths where odor and/or elevated PID readings were observed.

Soils selected for laboratory analysis in borings B1 through B8 (RECs 1 and 2) were sampled directly from the liners using a disposable plastic syringe and retained in one methanol-preserved volatile organics analysis (VOA) vial and two unpreserved VOA vials containing deionized water in accordance with United States Environmental Protection Agency (EPA) Method 5035 sampling protocol for submittal of samples for EPA Method 8260 analysis. An additional sample at boring locations B7 and B8 (REC 1) was collected directly from the liners by transferring soil into a laboratory-supplied, four-ounce, wide-mouth, unpreserved glass jar, which was sealed with a threaded, Teflon-lined lid for submittal for EPA Method 8270 analysis, and into a laboratory-supplied, two-ounce, wide-mouth, unpreserved glass jar, which was sealed with a threaded, Teflon-lined lid for submittal for EPA Method 6010/7471 analysis. The jars were filled with soil to capacity to minimize headspace and reduce the potential for volatilization, and the jars and vials were labeled for identification and stored in an iced-cooler.

Soil samples were collected either from the location of highest observed PID readings or from directly above the groundwater interface (in lieu of elevated PID readings) in borings B1 through B6 (REC 2). Soil samples were collected from near the surface in the borings B7 and B8, which were advanced within the building (REC 1). Soil samples were collected from 12.5 to 13.0 feet bgs in boring B1; from 13.0 to 13.5 feet bgs in boring B2; from 12.0 to 12.5 feet bgs in boring B3; from 10.5 to 10.0 feet bgs in boring B4; from 15.5 to 16.0 feet bgs in boring B5; from 7.0 to 7.5 feet bgs in boring B6; and from 3.0 to 3.5 feet bgs in borings B7 and B8.

3.6 Groundwater Sampling

After soil sampling to the terminal depth, groundwater samples were collected from boring locations B2 (REC 2), B4 (REC 2), B6 (REC 2), and B7 (REC 1) by withdrawing the drill rods from the subsurface and installing one-inch diameter temporary groundwater sampling points within the open boreholes. Each temporary groundwater sampling point consisted of a ten-foot long, 0.010-inch factory-slotted polyvinyl chloride (PVC) screen at the terminal end and blank PVC risers from the top of the screen interval to the ground surface. Partner attempted to collect a groundwater sample from boring location B8 due to its

close proximity to the sump pit; however, due to poor recharge resulting from tight clay layers, a groundwater sample was alternatively collected from boring B7.

Groundwater samples were retrieved from each temporary groundwater sampling point using a new Teflon™ bailer and conveyed into three hydrochloric acid-preserved VOA vials for submittal of samples for EPA Method 8260 analysis. An additional groundwater sample was collected from boring locations B2, B4, and B6 using a new Teflon™ bailer and conveyed into two unpreserved one-liter amber glass jars for submittal of samples for EPA Method 8270 select ion monitoring (SIM) analysis. Each vial and jar was filled with no observable headspace or air bubbles to minimize the potential for volatilization, labeled for identification, and stored in an iced cooler.

3.7 Post-Sampling Activities

Core barrels and temporary groundwater sampling points were removed from the subsurface and the boreholes were backfilled with hydrated bentonite chips following sampling activities. Boreholes advanced in improved areas were capped with concrete or asphalt patch to match existing ground cover after being backfilled.

No significant amounts of derived wastes were generated during this investigation.

4.0 LABORATORY ANALYSIS

4.1 Laboratory Analysis

Partner collected eight soil samples and four groundwater samples on October 1, 2016, which were transported on October 3, 2016 in an iced cooler under proper chain-of-custody protocol to Alpha Analytical (Alpha), a state-certified laboratory [Environmental Laboratory Accreditation Program (ELAP) certificate number 11148] in the City of Westborough, Massachusetts, for analysis. One soil sample from boring locations B1 through B6 (six soil samples total) was analyzed for VOCs in accordance with EPA Method 8260, and one soil sample from boring locations B7 and B8 (two soil samples total) was analyzed for VOCs in accordance with EPA Method 8260, for SVOCs in accordance with EPA Method 8270, and for priority pollutant metals in accordance with EPA Method 6010/7471. One groundwater sample from boring locations B2, B4, and B6 (three groundwater samples total) was analyzed for VOCs in accordance with EPA Method 8260 and for SVOCs in accordance with EPA Method 8270, and the groundwater sample from boring location B7 was analyzed for VOCs in accordance with EPA Method 8260.

4.2 Laboratory Analytical Results

Laboratory analytical results are included in Appendix C and discussed below.

4.2.1 Soil Sample Analytical Results

As shown in Table 2, VOCs were detected at concentrations above the laboratory reporting limits (RLs) in the soil samples collected from borings B1 through B6 and B8. VOCs were not detected at concentrations above the laboratory RLs in the soil sample collected from boring B7.

SVOCs were not detected at concentrations above the laboratory RLs in the soil sample collected from borings B7 and B8.

Priority pollutant metals were detected at concentrations above the laboratory RLs in the soil sample collected from borings B7 and B8.

4.2.2 Groundwater Sample Analytical Results

As shown in Table 3, VOCs were detected at concentrations above the laboratory RLs in the groundwater samples collected from borings B2, B4, B6, and B7.

SVOCs were detected at concentrations above the laboratory RLs in the groundwater samples collected from borings B4 and B6. SVOCs were not detected at concentrations above the laboratory RLs in the groundwater sample collected from boring B2.

5.0 DISCUSSION AND CONCLUSIONS

5.1 Regulatory Agency Guidance

The soil analytical results were compared to:

- NYSDEC New York Unrestricted Use Criteria, which represents the most stringent NYSDEC criteria
- NYSDEC Groundwater Criteria, New York Restricted Use, which is the screening level for potential soil to groundwater leaching concerns
- NYSDEC Residential Criteria, New York Restricted Use, which is the soil to human direct contact criteria applicable to residential use
- NYSDEC Commercial Criteria, New York Restricted Use, which is the soil to human direct contact criteria applicable to commercial use and to the current subject property use
- NYSDEC Industrial Criteria, New York Restricted Use, which is the soil to human direct contact criteria applicable to industrial use

The groundwater analytical results were compared to:

 NYSDEC New York Technical & Operational Guidance Series (TOGS) 1.1.1 Ambient Water Quality Standards (AWQS)

5.2 Discussion

5.2.1 REC 1 – Former Printing Operations

Soils

VOCs were detected at concentrations above the laboratory RLs but below the Unrestricted Use Criteria in the soil sample collected from boring B8. VOCs were not detected at concentrations above the laboratory RLs in the soil sample collected from boring B7.

SVOCs were not detected at concentrations above the laboratory RLs in the soil sample collected from borings B7 and B8.

Priority pollutant metals were detected at concentrations above the laboratory RLs in the soil sample collected from borings B7 and B8. Total chromium was detected at concentrations above the Unrestricted Use Criteria for hexavalent chromium in the soil samples collected from borings B7 (12 mg/kg) and B8 (12 mg/kg). Total chromium was detected at a concentration above the Protection of Ecological Resources Criteria but below the Groundwater Criteria and the Residential Criteria; however, because chromium was detected beneath the building there is no pathway to ecological resources and contingent analysis for hexavalent chromium is not required. The remaining priority pollutant metals were not detected at concentrations above the most stringent Unrestricted Use Criteria in the soil samples collected from borings B7 and B8.

Groundwater

VOCs were detected at concentrations above the laboratory RLs in the groundwater samples collected from boring B7. Cis-1,2-dichloroethene [11 micrograms per liter (μ g/l)] was detected at a concentration above the AWQS in the groundwater sample collected from boring B7.

5.2.2 REC 2 - Former Gasoline USTs

Soils

VOCs were detected at concentrations above the laboratory RLs in the soil samples collected from borings B1 through B6. 1,2,4-trimethylbenzene [17 milligrams per kilogram (mg/kg)], benzene (1 mg/kg), ethylbenzene (6.1 mg/kg), and total xylenes (5.3 mg/kg) were detected at concentrations above both the Unrestricted Use Criteria and the Groundwater Criteria in the soil sample collected from boring B4. The remaining VOCs were not detected in borings B1 through B6 at concentrations above the most stringent Unrestricted Use Criteria.

Groundwater

Various VOCs were detected at concentrations above the laboratory RLs in the groundwater samples collected from borings B2, B4, and B6. 1,2,4,5-tetramethylbenzene (77 μ g/l), 1,2,4-trimethylbenzene (720 μ g/l), 1,3,5-trimethylbenzene (18 μ g/l), benzene (43 μ g/l), ethylbenzene (340 μ g/l), isopropylbenzene (30 μ g/l), n-butylbenzene (21 μ g/l), n-propylbenzene (87 μ g/l), naphthalene (61 μ g/l), o-xylene (20 μ g/l), p/m-xylene (280 μ g/l), and toluene (8.9 μ g/l) were detected at concentrations above the AWQS in the groundwater sample collected from boring B4; benzene (1.3 μ g/l), n-propylbenzene (9.7 μ g/l), and p/m-xylene (5.6 μ g/l) were detected at concentrations above the AWQS in the groundwater sample collected from boring B6; and cis-1,2-dichloroethene (11 μ g/l) was detected at a concentration above the AWQS in the groundwater sample collected from boring B7. Several compounds from the soil samples corresponding to the groundwater samples (from the same borings), exceeded their respective soil to groundwater impact criteria indicating a probable on-site source for the groundwater impact.

Various SVOCs were detected at concentrations above the laboratory RLs in the groundwater samples collected from borings B4 and B6. Naphthalene (70 µg/l) was detected at a concentration above the AWQS in the groundwater sample collected from boring B4. The remaining SVOCs were not detected at concentrations above the AWQS in groundwater samples collected from borings B2, B4, and B6.

5.3 Summary and Conclusions

Partner conducted a Phase II Subsurface Investigation at the subject property to identify the location of onsite USTs and/or former tankhold systems, evaluate the floor drain system, and to investigate the potential impact of VOCs, SVOCs, and/or metals to soil and groundwater as a consequence of a release or releases from the former printing operations and gasoline USTs. The scope of the Phase II Subsurface Investigation included a geophysical survey and the advancement of eight borings (B1 through B8) for the collection of representative soil and/or groundwater samples. Eight soil samples were analyzed for VOCs, two soil samples were analyzed for SVOCs and priority pollutant metals, four groundwater samples were analyzed for VOCs, and three groundwater samples were analyzed for SVOCs.

The geophysical survey identified an anomalous area, identified as a potential soil disturbance, to the northeast of the building. The area was identified by GPR transects which imaged a disturbance that represents a potential indicator of an excavation, and measured approximately 40 feet by 20 feet. Delta further traced two electric lines and three unknown utility lines to the area of the soil disturbance. Onsite personnel confirmed the former USTs were located where the soil disturbance was observed, and further mentioned the location of the former dispenser island. Partner did not observe any evidence of a former

dispenser island, but an electric line was traced from the building to this location, ultimately terminating above the area of soil disturbance. GPR transects over this feature were limited due to dense vegetation. No additional signs of abandoned USTs or disturbed soil resembling backfilled tankholds were identified.

Investigation of the trench observed in the warehouse area determined the trench was not a drainage feature, but rather a conduit for ink and drain lines. The trench was cut out of the concrete slab after it was poured, and was lined with concrete on all sides. Upon further inspection, a drain line from a wash sink along with two copper ink lines ran through the trench. Delta further traced the ink and drain lines with the RD7000 and through visual inspection. The ink lines were traced towards the location of the former aboveground ink storage tank. The floor trench was traced through the wall to a large metal plate. According to onsite personnel, the metal plate covered a junction box. Another trench, originating at the location for the former aboveground ink storage tank, was also traced to the metal plate, and a drain line was also observed within the second trench. Partner and Delta were not permitted to open the metal plate to avoid disturbing the tenant leasing this portion of the warehouse. Visual inspection through gaps in the metal plate indicated that the apparent sump appeared to contain ink sludges and waste from former printing operations. Furthermore, the interior of the wash sink was heavily stained, likely from the disposal of printing wastes. The sump was located in a portion of the building that was not underlain with a basement.

Borings advanced during this investigation determined the underlying subsurface consists predominantly of tan, tan/gray or gray clayey silt, tan, gray or tan/red clay, or tan medium sand with varying amounts of medium pebbles from the ground surface to approximately 20 feet bgs. Backfill material consisting of gray medium pebbles was encountered within the area of the excavation to a depth of approximately nine to 13.5 feet bgs.

Groundwater was encountered during this investigation between 12 and 19 feet bgs.

REC 1 – Former Printing Operations

VOCs, SVOCs, and priority pollutant metals were detected at concentrations above the laboratory RLs but below the Unrestricted Use Criteria in the soil samples collected from borings B7 and B8.

Cis-1,2-dichloroethene was detected at a concentration above the AWQS in the groundwater sample collected from boring B7.

Total chromium was detected at concentrations above the Unrestricted Use Criteria for hexavalent chromium in the soil samples collected from borings B7 (12 mg/kg) and B8 (12 mg/kg). Total chromium was detected at a concentration above the Protection of Ecological Resources Criteria but below the Groundwater Criteria and the Residential Criteria; however, because chromium was detected beneath the building there is no pathway to ecological resources and contingent analysis for hexavalent chromium is not required.

REC 2 – Former Gasoline USTs

1,2,4-trimethylbenzene, benzene, ethylbenzene, and total xylenes were detected at concentrations above both the Unrestricted Use Criteria and the Groundwater Criteria in the soil sample collected from boring B4.

1,2,4,5-tetramethylbenzene, 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, benzene, ethylbenzene, isopropylbenzene, n-butylbenzene, n-propylbenzene, naphthalene, o-xylene, p/m-xylene, and toluene were detected at concentrations above the AWQS in the groundwater sample collected from boring B4; benzene, n-propylbenzene, and p/m-xylene were detected at concentrations above the AWQS in the groundwater sample collected from boring B6; and cis-1,2-dichloroethene was detected at a concentration above the AWQS in the groundwater sample collected from boring B7.

Naphthalene was detected at a concentration above the AWQS in the groundwater sample collected from boring B4.

Based on the Phase II Subsurface Investigation, there is evidence of a release of gasoline from the former onsite USTs to soil and groundwater beneath the subject property, and there is potential evidence of a release of hazardous materials from the former printing operations to groundwater beneath the subject property. Partner recommends further investigation and delineation of the soil and groundwater impacts observed in the area of the former USTs; further investigation of cis-1,2-dichloroethene detected in groundwater beneath the former printing operations; and further investigation of the sump observed within the former printing areas to determine if the sump has impacted soil and groundwater beneath the subject property.

TABLES

Table 1: Summary of Investigation Scope 79 Hurley Avenue Kingston, New York 12401 Partner Project Number 16-162670.6 October 1, 2016

Boring Identification	Location	Terminal Depth (feet bgs)	Matrix Sampled	Sampling Depths (feet bgs)	Target Analytes
B1	South of the excavation	15.0	Soil	12.5 - 13.0	VOCs
В2	Southern portion of the	15.5	Soil	13.0 - 13.5	VOCs
	excavation	15.5	Groundwater	Screened 5.5 to 15.5	VOCs and SVOCs
В3	Center of the excavation	17.0	Soil	12.0 - 12.5	VOCs
В4	Northern portion of the	17.0	Soil	10.5 - 11.0	VOCs
В4	excavation	17.0	Groundwater	Screened 7.0 to 17.0	VOCs and SVOCs
В5	West of the excavation, to the east of the former dispenser location	20.0	Soil	15.5 to 16.0	VOCs
В6	At the location of the former	18.0	Soil	7.0 - 7.5	VOCs
ьо	dispenser	18.0	Groundwater	Screened 8.0 to 18.0	VOCs and SVOCs
B7	Former location of the printing press in the eastern	20.0	Soil	3.0 to 3.5	VOCs, SVOCs, Priority Pollutant Metals
B/	portion of the warehouse, along the ink line trench	20.0	Groundwater	Screened 10.0 to 20.0	VOCs
В8	East of the sump pit, along the ink line trench	20.0	Soil	3.0 to 3.5	VOCs, SVOCs, Priority Pollutant Metals

Notes:

bgs = below ground surface

VOCs = volatile organic compounds via United States Environmental Protection Agency (EPA) Method 8260

SVOCs = semivolatile organic compounds via EPA Method 8270

Priority Pollutant Metals via EPA Method 6010/7471

Table 2: Soil Sample Laboratory Results Summary 79 Hurley Avenue Kingston, New York 12401 Partner Project Number 16-162670.6 October 1, 2016

Analyte	NY-UNRES	NY-RESGW	NY-RESR	NY-RESC	NY-RESI	B1	В2	В3	R4	B5	В6	В7	B8
Analyte	THE OTTICES	III III.	Ter Resid	TTT RESC		A Method 8260						<u> </u>	50
1,1,1-Trichloroethane	0.68	0.68	100	500	1000	< 0.00093	< 0.00093	< 0.00099	< 1.4	< 0.00093	< 0.00088	< 0.00088	< 0.00084
1,1,2,2-Tetrachloroethane	NE	0.6	35	NE NE	NE	< 0.00093	< 0.00093	< 0.00099	< 1.4	< 0.00093	< 0.00088	< 0.00088	< 0.00084
1.1-Dichloroethane	0.27	0.27	19	240	480	< 0.0014	< 0.0014	< 0.0015	< 2.1	< 0.0014	< 0.0013	< 0.0013	< 0.00034
1.1-Dichloroethene	0.33	0.33	100	500	1000	< 0.00014	< 0.00093	< 0.00099	< 1.4	< 0.00093	< 0.0013	< 0.00013	< 0.00013
1,2,3-Trichloropropane	NE	0.34	80	NE	NE	< 0.0093	< 0.0093	< 0.0099	< 1.4	< 0.0093	< 0.0088	< 0.0088	< 0.0084
1,2,4,5-Tetramethylbenzene	NE	NE	NE	NE	NE	< 0.0033	< 0.0037	0.025	5.2 J	< 0.0037	< 0.0035	< 0.0035	< 0.0084
1,2,4-Trichlorobenzene	NE	3.4	NE	NE	NE	< 0.0037	< 0.0037	< 0.005	< 7	< 0.0037	< 0.0044	< 0.0044	< 0.0034
1,2,4-Trimethylbenzene	3.6	3.6	47	190	380	< 0.0046	< 0.0046	0.012	17	< 0.0047	< 0.0044	< 0.0044	< 0.0042
1,2-Dichlorobenzene	1.1	1.1	100	500	1000	< 0.0046	< 0.0046	< 0.005	< 7	< 0.0047	< 0.0044	< 0.0044	< 0.0042
1,2-Dichloroethane	0.02	0.02	2.3	30	60	< 0.00093	< 0.00093	< 0.0009	< 1.4	< 0.00093	< 0.00088	< 0.00088	< 0.00042
1,3,5-Trimethylbenzene	8.4	8.4	47	190	380	< 0.0046	< 0.0046	0.027	0.43 J	< 0.0047	< 0.0044	< 0.0044	< 0.0042
1,3-Dichlorobenzene	2.4	2.4	17	280	560	< 0.0046	< 0.0046	< 0.005	< 7	< 0.0047	< 0.0044	< 0.0044	< 0.0042
1,3-Dichloropropane	NE	0.3	NE	NE	NE	< 0.0046	< 0.0046	< 0.005	< 7	< 0.0047	< 0.0044	< 0.0044	< 0.0042
1.4-Dichlorobenzene	1.8	1.8	9.8	130	250	< 0.0046	< 0.0046	< 0.005	< 7	< 0.0047	< 0.0044	< 0.0044	< 0.0042
1.4-Dioxane	0.1	0.1	9.8	130	250	< 0.093	< 0.0040	< 0.003	< 140	- 0.0047	< 0.0044	< 0.088	< 0.084
2-Butanone	0.12	0.12	100	500	1000	< 0.0093	< 0.0093	< 0.0099	< 14	< 0.0093	< 0.0088	< 0.0088	0.0033 J
4-Methyl-2-pentanone	NE	1	NE	NE	NE	< 0.0093	< 0.0093	< 0.0099	< 14	< 0.0093	< 0.0088	< 0.0088	< 0.0084
Acetone	0.05	0.05	100	500	1000	< 0.0093	< 0.0093	0.019	< 14	< 0.0093	0.019	< 0.0088	0.021
Benzene	0.06	0.06	2.9	44	89	< 0.00093	< 0.00093	0.001	1 J	< 0.00093	< 0.00088	< 0.00088	< 0.00084
Carbon disulfide	NE	2.7	100	NE NE	NE	< 0.0093	< 0.0093	< 0.0099	< 14	< 0.0093	< 0.0088	< 0.0088	< 0.0084
Carbon tetrachloride	0.76	0.76	1.4	22	44	< 0.00093	< 0.00093	< 0.00099	< 1.4	< 0.00093	< 0.00088	< 0.00088	< 0.00084
Chlorobenzene	1.1	1.1	100	500	1000	< 0.00093	< 0.00093	< 0.00099	< 1.4	< 0.00093	< 0.00088	< 0.00088	< 0.00084
Chloroethane	NE	1.9	NE	NE	NE	< 0.0018	< 0.0018	< 0.002	< 2.8	< 0.0019	< 0.0018	< 0.0018	< 0.0017
Chloroform	0.37	0.37	10	350	700	< 0.0014	< 0.0014	< 0.0015	< 2.1	< 0.0014	< 0.0013	< 0.0013	< 0.0013
cis-1.2-Dichloroethene	0.25	0.25	59	500	1000	< 0.00093	< 0.00093	< 0.00099	< 1.4	< 0.00093	< 0.00088	< 0.00088	< 0.00084
Ethyl ether	NE	NE	NE	NE	NE	< 0.0046	< 0.0046	< 0.005	< 7	0.0013 J	< 0.0044	< 0.0044	< 0.0042
Ethylbenzene	1	1	30	390	780	< 0.00093	< 0.00093	0.079	6.1	0.00016 J	< 0.00088	< 0.00088	< 0.00084
Isopropylbenzene	NE	2.3	100	NE	NE	< 0.00093	< 0.00093	0.01	0.83 J	< 0.00093	< 0.00088	< 0.00088	< 0.00084
Methyl tert butyl ether	0.93	0.93	62	500	1000	0.0038	0.0015 J	0.0028	< 2.8	0.00061 J	< 0.0018	< 0.0018	< 0.0017
Methylene chloride	0.05	0.05	51	500	1000	< 0.0093	< 0.0093	< 0.0099	< 14	< 0.0093	< 0.0088	< 0.0088	< 0.0084
n-Butylbenzene	12	12	100	500	1000	< 0.00093	< 0.00093	0.0066	2.2	< 0.00093	< 0.00088	< 0.00088	< 0.00084
n-Propylbenzene	3.9	3.9	100	500	1000	< 0.00093	< 0.00093	0.032	3	< 0.00093	< 0.00088	< 0.00088	< 0.00084
NEphthalene	12	12	100	500	1000	< 0.0046	< 0.0046	0.079	1.9 J	0.00061 J	< 0.0044	< 0.0044	< 0.0042
o-Xylene	NE	NE	NE	NE	NE	< 0.0018	< 0.0018	0.00081 J	0.54 J	< 0.0019	< 0.0018	< 0.0018	< 0.0017
p-Diethylbenzene	NE	NE	NE	NE	NE	< 0.0037	< 0.0037	0.0054	3 J	< 0.0037	< 0.0035	< 0.0035	< 0.0034
p-Ethyltoluene	NE	NE	NE	NE	NE	< 0.0037	< 0.0037	0.017	6.2	< 0.0037	< 0.0035	< 0.0035	< 0.0034
p-Isopropyltoluene	NE	10	NE	NE	NE	< 0.00093	< 0.00093	0.00099	0.45 J	< 0.00093	< 0.00088	< 0.00088	< 0.00084
p/m-Xylene	NE	NE	NE	NE	NE	< 0.0018	< 0.0018	0.0099	4.8	< 0.0019	< 0.0018	< 0.0018	< 0.0017
sec-Butylbenzene	11	11	100	500	1000	< 0.00093	< 0.00093	0.0024	0.57 J	< 0.00093	< 0.00088	< 0.00088	< 0.00084
tert-Butylbenzene	5.9	5.9	100	500	1000	< 0.0046	< 0.0046	< 0.005	< 7	< 0.0047	< 0.0044	< 0.0044	< 0.0042
Tetrachloroethene	1.3	1.3	5.5	150	300	< 0.00093	< 0.00093	< 0.00099	< 1.4	< 0.00093	< 0.00088	< 0.00088	< 0.00084
Toluene	0.7	0.7	100	500	1000	< 0.0014	< 0.0014	0.00019 J	0.4 J	< 0.0014	< 0.0013	< 0.0013	< 0.0013
trans-1,2-Dichloroethene	0.19	0.19	100	500	1000	< 0.0014	< 0.0014	< 0.0015	< 2.1	< 0.0014	< 0.0013	< 0.0013	< 0.0013
Trichloroethene	0.47	0.47	10	200	400	< 0.00093	< 0.00093	< 0.00099	< 1.4	< 0.00093	< 0.00088	< 0.00088	< 0.00084
Vinyl chloride	0.02	0.02	0.21	13	27	< 0.0018	< 0.0018	< 0.002	< 2.8	< 0.0019	< 0.0018	< 0.0018	< 0.0017
Xylenes, Total	0.26	1.6	100	500	1000	< 0.0018	< 0.0018	0.011 J	5.3 J	< 0.0019	< 0.0018	< 0.0018	< 0.0017

Table 2: Soil Sample Laboratory Results Summary 79 Hurley Avenue Kingston, New York 12401 Partner Project Number 16-162670.6 October 1, 2016

Analyte	NY-UNRES	NY-RESGW	NY-RESR	NY-RESC	NY-RESI	B1	B2	В3	B4	B5	В6	В7	B8
	SVOCs via EPA Method 8270 (mg/kg)												
2,4,5-Trichlorophenol	NE	0.1	100	NE	NE	-	-	-	-	-	-	< 0.19	< 0.19
2,4-Dinitrophenol	NE	0.2	100	NE	NE	-	-	-	-	-	-	< 0.93	< 0.92
2,6-Dinitrotoluene	NE	0.17	1.03	NE	NE	-	-	-	-	-	-	< 0.19	< 0.19
2-Nitrophenol	NE	0.3	NE	NE	NE	-	-	-	-	-	-	< 0.42	< 0.41
4-Nitrophenol	NE	0.1	NE	NE	NE	-	-	-	-	-	-	< 0.27	< 0.27
Nitrobenzene	NE	0.17	3.7	69	140	-	-	-	-	-	-	< 0.17	< 0.17
				Prio	ority Pollutant I	Metals via 6010	/7471 (mg/kg)						
Arsenic, Total	13	16	16	16	16	-	-	-	-	-	-	6	6.2
Beryllium, Total	7.2	47	14	590	2700	-	-	-	-	-	-	0.29	0.29
Chromium, Total*	1	19	22	400	800	-	-	-	-	-	-	12	12
Copper, Total	50	1720	270	270	10000	-	-	-	-	-	-	16	16
Lead, Total	63	450	400	1000	3900	-	-	-	-	-	-	9	9.9
Mercury, Total	0.18	0.73	0.81	2.8	5.7	-	-	-	-	-	-	0.02 J	0.03 J
Nickel, Total	30	130	140	310	10000	-	-	-	-	-	-	18	18
Zinc, Total	109	2480	2200	10000	10000	-	-	-	-	-	-	44	44

Notes:

VOCs = volatile organic compounds

SVOCs = semivolatile organic compounds

EPA = United States Environmental Protection Agency

mg/kg = milligrams per kilogram

< = not detected above indicated laboratory Reporting Limit (RL)

J = detected below laboratory RLs

NE = not established

Values in **bold** exceed one or more regulatory guidelines RL exceeds one or more regulatory guidelines

NY-UNRES: New York Unrestricted use Criteria current as of 5/2007

NY-RESGW: Groundwater Criteria, New York Restricted use current as of 5/2007

NY-RESR: Residential Criteria, New York Restricted use current as of 5/2007

NY-RESC: Commercial Criteria, New York Restricted use current as of 5/2007

NY-RESI: Industrial Criteria, New York Restricted use current as of 5/2007

Table 3: Groundwater Sample Laboratory Results Summary 79 Hurley Avenue Kingston, New York 12401

Partner Project Number 16-162670.6 October 1, 2016

Analyte	NY-AWQS	B2-GW	B4-GW	B6-GW	B7-GW
	VOCs via EPA N	1ethod 8260 (μ	g/l)		
1,1,1,2-Tetrachloroethane	5	< 2.5	< 25	< 2.5	< 2.5
1,1,1-Trichloroethane	5	< 2.5	< 25	< 2.5	< 2.5
1,1,2,2-Tetrachloroethane	5	< 0.5	< 5	< 0.5	< 0.5
1,1,2-Trichloroethane	1 -	< 1.5	< 15	< 1.5	< 1.5
1,1-Dichloroethane	5	< 2.5	< 25	< 2.5	< 2.5
1,1-Dichloroethene	5 5	< 0.5 < 2.5	< 5 < 25	< 0.5 < 2.5	< 0.5 < 2.5
1,1-Dichloropropene 1,2,3-Trichlorobenzene	5	< 2.5	< 25	< 2.5	< 2.5
1,2,3-Trichloropropane	0.04	< 2.5	< 25	< 2.5	< 2.5
1,2,4,5-Tetramethylbenzene	5	< 2	77	1.7 J	0.58 J
1,2,4-Trichlorobenzene	5	< 2.5	< 25	< 2.5	< 2.5
1,2,4-Trimethylbenzene	5	< 2.5	720	3	< 2.5
1,2-Dibromo-3-chloropropane	0.04	< 2.5	< 25	< 2.5	< 2.5
1,2-Dibromoethane	0.0006	< 2	< 20	< 2	< 2
1,2-Dichlorobenzene	3	< 2.5	< 25	< 2.5	< 2.5
1,2-Dichloroethane	0.6	< 0.5	< 5	< 0.5	< 0.5
1,2-Dichloroethene, Total	NE	< 2.5	< 25	< 2.5	12 J
1,2-Dichloropropane	1	< 1	< 10	< 1	< 1
1,3,5-Trimethylbenzene	5	< 2.5	18 J	2 J	< 2.5
1,3-Dichlorobenzene	3	< 2.5	< 25	< 2.5	< 2.5
1,3-Dichloropropane	5	< 2.5	< 25	< 2.5	< 2.5
1,4-Dichlorobenzene	3	< 2.5	< 25	< 2.5	< 2.5
2,2-Dichloropropane	5	< 2.5	< 25	< 2.5	< 2.5
2-Butanone	50	< 5	< 50	< 5	< 5
2-Hexanone	50	< 5 < 5	< 50	< 5 7.1	< 5 2.3 J
Acetone Acrylonitrile	50 5	< 5	< 50 < 50	< 5	< 5
Benzene	1	< 0.5	43	1.3	0.19 J
Bromobenzene	5	< 2.5	< 25	< 2.5	< 2.5
Bromochloromethane	5	< 2.5	< 25	< 2.5	< 2.5
Bromomethane	5	< 2.5	< 25	< 2.5	< 2.5
Carbon tetrachloride	5	< 0.5	< 5	< 0.5	< 0.5
Chlorobenzene	5	< 2.5	< 25	< 2.5	< 2.5
Chloroethane	5	< 2.5	< 25	< 2.5	< 2.5
Chloroform	7	< 2.5	< 25	< 2.5	< 2.5
cis-1,2-Dichloroethene	5	< 2.5	< 25	< 2.5	11
cis-1,3-Dichloropropene	0.4	< 0.5	< 5	< 0.5	< 0.5
Dibromomethane	5	< 5	< 50	< 5	< 5
Dichlorodifluoromethane	5	< 5	< 50	< 5	< 5
Ethylbenzene	5	< 2.5	340	< 2.5	< 2.5
Hexachlorobutadiene	0.5	< 2.5	< 25	< 2.5	< 2.5
Isopropylbenzene Methyl tert butyl ether	5 10	< 2.5 3	30 < 25	<u>4</u> 8.8	< 2.5 < 2.5
Methylene chloride	5	< 2.5	< 25	< 2.5	< 2.5
n-Butylbenzene	5	< 2.5	21 J	< 2.5	< 2.5
n-Propylbenzene	5	< 2.5	87	9.7	< 2.5
Naphthalene	10	< 2.5	61	6.4	1.2 J
o-Chlorotoluene	5	< 2.5	< 25	< 2.5	< 2.5
o-Xylene	5	< 2.5	20 J	2.8	< 2.5
p-Chlorotoluene	5	< 2.5	< 25	< 2.5	< 2.5
p-Diethylbenzene	NE	< 2	24	1.3 J	< 2
p-Ethyltoluene	NE	< 2	230	< 2	< 2
p-Isopropyltoluene	5	< 2.5	< 25	< 2.5	< 2.5
p/m-Xylene	5	< 2.5	280	5.6	< 2.5
sec-Butylbenzene	5	< 2.5	< 25	< 2.5	< 2.5
Styrene Styrene	5	< 2.5	< 25	< 2.5	< 2.5
tert-Butylbenzene	5	< 2.5	< 25	< 2.5	< 2.5
Tetrachloroethene Toluene	5 5	< 0.5	< 5	< 0.5	< 0.5
Toluene trans-1,2-Dichloroethene	5	< 2.5 < 2.5	8.9 J < 25	1 J < 2.5	< 2.5 1.2 J
trans-1,2-Dichloroethene trans-1,3-Dichloropropene	0.4	< 0.5	< 5	< 0.5	< 0.5
trans-1,3-Dichloropropene trans-1,4-Dichloro-2-butene	5	< 2.5	< 25	< 2.5	< 2.5
Trichloroethene	5	< 0.5	< 5	< 0.5	< 0.5
Trichlorofluoromethane	5	< 2.5	< 25	< 2.5	< 2.5
Vinyl chloride	2	< 1	< 10	< 1	0.27 J
Xylenes, Total	NE	< 2.5	300 J	8.4	< 2.5
			3007	J	. 2.3

Table 3: Groundwater Sample Laboratory Results Summary 79 Hurley Avenue Kingston, New York 12401 Partner Project Number 16-162670.6

October 1, 2016

Analyte	NY-AWQS	B2-GW	B4-GW	B6-GW	B7-GW
	SVOCs via EPA	Method 8270 (μ	g/l)		
1,2,4,5-Tetrachlorobenzene	5	< 10	< 10	< 10	-
1,2,4-Trichlorobenzene	5	< 5	< 5	< 5	-
2,4-Dichlorophenol	1	< 5	< 5	< 5	-
2,4-Dinitrophenol	10	< 20	< 20	< 20	-
2,4-Dinitrotoluene	5	< 5	< 5	< 5	-
2,6-Dinitrotoluene	5	< 5	< 5	< 5	-
2-Nitroaniline	5	< 5	< 5	< 5	-
3,3'-Dichlorobenzidine	5	< 5	< 5	< 5	-
3-Nitroaniline	5	< 5	< 5	< 5	-
4-Chloroaniline	5	< 5	< 5	< 5	-
4-Nitroaniline	5	< 5	< 5	< 5	-
Bis(2-chloroethoxy)methane	5	< 5	< 5	< 5	-
Bis(2-chloroethyl)ether	1	< 2	< 2	< 2	-
Carbazole	NE	< 2	1.9 J	< 2	-
Hexachlorocyclopentadiene	5	< 20	< 20	< 20	-
Nitrobenzene	0.4	< 2	< 2	< 2	-
Phenol	1	< 5	< 5	< 5	-
:	SVOCs via EPA Me	thod 8270 SIM	(μg/l)		
2-Methylnaphthalene	NE	< 0.2	30	0.49	ı
Acenaphthene	20	< 0.1	0.64 J	< 0.1	-
Anthracene	50	< 0.2	0.49 J	< 0.2	1
Benzo(a)anthracene	NE	< 0.2	0.38 J	< 0.2	Ť
Benzo(a)pyrene	0.002	< 0.2	< 2	< 0.2	1
Benzo(b)fluoranthene	0.002	< 0.2	< 2	< 0.2	1
Benzo(k)fluoranthene	0.002	< 0.2	< 2	< 0.2	Ť
Chrysene	0.002	< 0.2	< 2	< 0.2	1
Fluoranthene	50	< 0.2	1.5 J	< 0.2	-
Fluorene	50	< 0.2	0.92 J	< 0.2	1
Hexachlorobenzene	0.04	< 0.8	< 8	< 0.8	1
Hexachlorobutadiene	0.5	< 0.5	< 5	< 0.5	1
Hexachloroethane	5	< 0.8	< 8	< 0.8	1
Indeno(1,2,3-cd)pyrene	0.002	< 0.2	< 2	< 0.2	-
Naphthalene	10	< 0.2	70	6.9	1
Pentachlorophenol	1	< 0.8	< 8	< 0.8	1
Phenanthrene	50	< 0.2	2.4	< 0.2	-
Pyrene	50	< 0.2	1 J	< 0.2	_

VOCs = volatile organic compounds SVOCs = semivolatile organic compounds

< = not detected above indicated laboratory Reporting Limit (RL)

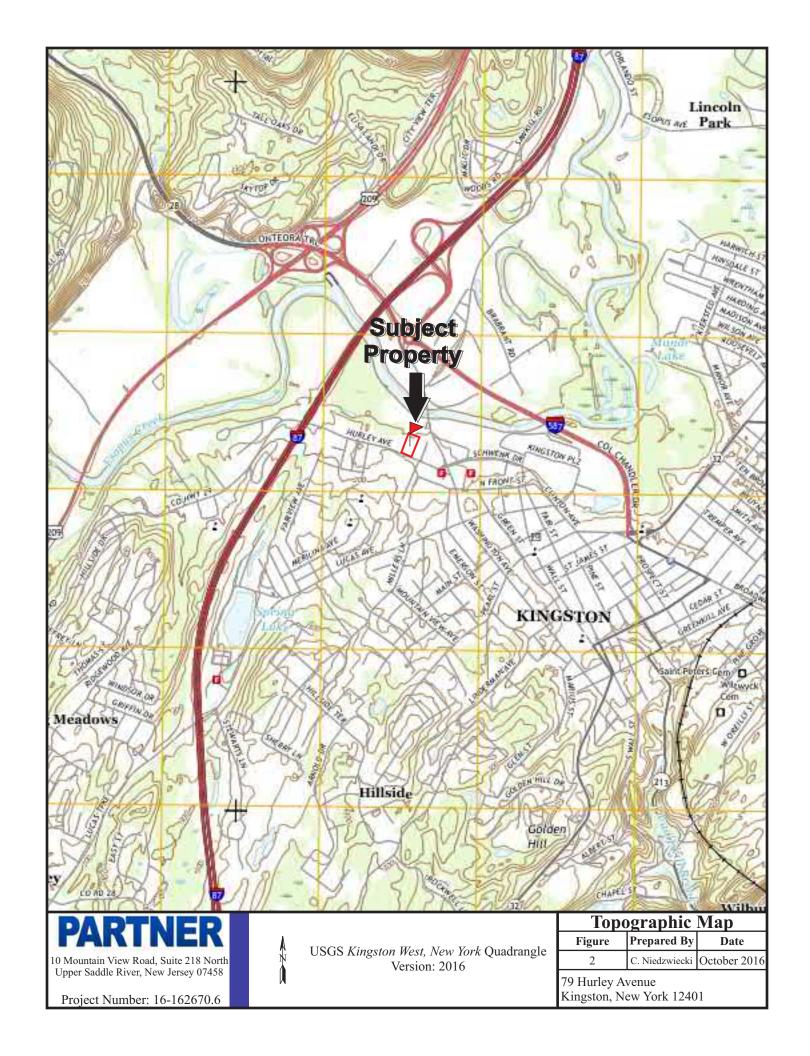
J = detected below laboratory PQLs

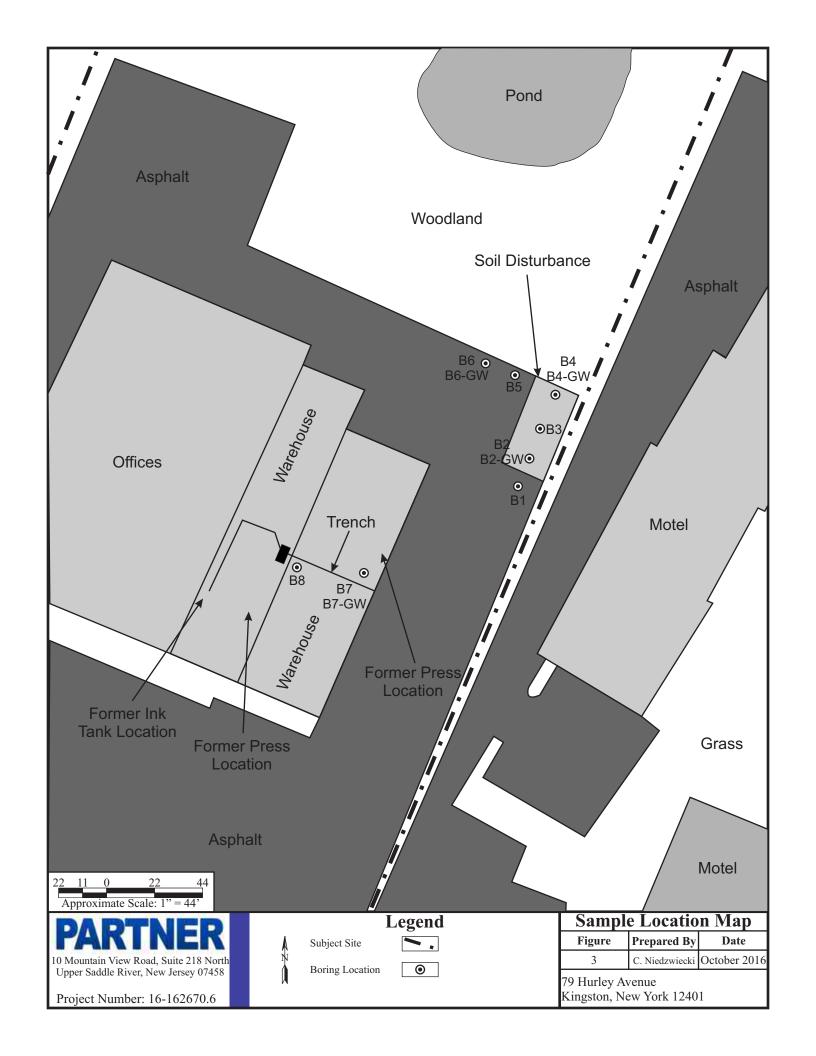
NE = not established

Values in **bold** exceed AWQS RL exceeds AWQS

EPA = United States Environmental Protection Agency

Values in bode


µg/l = micrograms per liter


NY-AWQS: New York TOGS 111 Ambient Water Quality Standards criteria reflects all addendum to criteria through June 2004.

FIGURES

APPENDIX A: BORING LOGS

Boring N	lumber:	B1				Page 1 of 1	
Location		South	of the e	excavation	Date Started:	10/1/2016	
S		79 Hur	ley Ave	enue	Date Completed:	10/1/2016	
Site Add	ress:			v York 12401	Depth to Groundwater:	13	
Project I	Number:	16-162			Field Technician:	Chris Niedzwiecki	
Drill Rig				obe 9500 VTR	Partner Assessment Corporation		
	• •	5.0 foc		oCore	10 Mountain View Road, Su		
	Diameter:	2.25 in			Upper Saddle River, New J	ersey 07458	
Depth	Sample	PID	USCS	Description	Notes		
1		0.0			Boring was overlain by as	phalt	
2		0.0					
3		0.0			2.0 feet recovery; no odor/s	staining	
4		0.0					
5		0.0		Gray medium pebbles; dry			
6		0.0	N/A				
7		0.0					
8		0.0			2.0 feet recovery; no odor/s	staining	
9		0.0					
10		0.0					
11		0.0		Gray medium pebbles; very moist			
12		0.0			Soil sample B1 was collected from 12.5 to 3	13.0 feet bgs at 921 for	
13	B1	0.0		Tan/gray clayey silt; very moist	VOC analysis		
14		0.0	ML	Tan/gray clayey silt; wet	3.0 feet recovery; no odor/s	staining	
15		0.0		, g,, .,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
				Boring was terminated at 15.0 feet bgs			
16							
17							
18							
19							
20							
21							
22							
23							
24							
25							

Boring N	lumber:	B2				Page 1 of 1	
Location		Southe	rn por	tion of the excavation	Date Started:	10/1/2016	
			ley Ave		Date Completed:	10/1/2016	
Site Add	lress:		_	v York 12401	Depth to Groundwater:	13.5	
Project	Number:	16-162	2670.6		Field Technician:	Chris Niedzwiecki	
Drill Rig	Туре:	AMS P	owerpr	obe 9500 VTR	Partner Assessment Corporation		
Sampling	g Equipment:	5.0 foc	t Macr	oCore	10 Mountain View Road, Su	ite 218 North	
Borehole	Diameter:	2.25 in	ch		Upper Saddle River, New J	ersey 07458	
Depth	Sample	PID	USCS	Description	Notes		
1		0.0			Boring was overlain by g	ravel	
2		0.0					
3		0.0			2.0 feet recovery; no odor/s	staining	
4		0.0					
5		0.0					
6		0.0					
7		0.0	N/A	Gray medium pebbles; dry			
8		0.0			2.0 feet recovery; no odor/s	staining	
9		0.0					
10		0.0					
11		0.0					
12		0.0			3.0 feet recovery; no odor/s	staining	
13	B2	0.0			Soil sample B2 was collected from 13.0 to 1	3.5 feet has at 9/13 for	
14		0.0			VOC analysis	13.3 Teet bg3 at 343 for	
15		0.0	ML	Tan clayey silt; wet			
16		0.0		Refusal encountered at 15.5 feet bgs	0.5 feet recovery; no odor/s	staining	
17				Netusal effcountered at 13.3 feet ugs	A temporary groundwater sampling point, 15.5 feet bgs was installed in boing B2. Gro GW was collected at 1109 for VOC an	oundwater sample B2-	
18					GW was concered at 1105 for VOC an	ia 3voc analysis	
19							
20							
21							
22							
23							
24							
25							

Boring Number:		В3				Page 1 of 1
Location		Center	of the	excavation	Date Started:	10/1/2016
C': A		79 Hur	ley Ave	enue	Date Completed:	10/1/2016
Site Add	ress:			v York 12401	Depth to Groundwater:	13
Project I	Number:	16-162	2670.6		Field Technician:	Chris Niedzwiecki
Drill Rig	Туре:	AMS P	owerpr	obe 9500 VTR	Partner Assessment Co	rporation
		5.0 foc		oCore	10 Mountain View Road, Su	
Borehole	Diameter:	2.25 in	_		Upper Saddle River, New J	ersey 07458
Depth	Sample	PID	USCS	Description	Notes	
1		0.0			Boring was overlain by as	sphalt
2		0.0				
3		0.0			2.0 feet recovery; no odor/	staining
4		0.0				
5		0.0		Gray medium pebbles; dry		
6		0.0	N/A			
7		0.0	,			
8		0.0			1.0 feet recovery; no odor/	staining
9		0.0				
10		0.0				
11		0.0		Gray medium pebbles; very moist		
12		9.2				
13	В3	6.4	CL	Tan clay; moist	Soil sample B3 was collected from 12.0 to for VOC analysis	12.5 feet bgs at 1000
14		1.2			3.0 feet recovery; mild petroleum-like odd	or observed from 12-14
15		0.0	ML	Tan clayey silt; wet	feet bgs	
16		0.0			1.0 feet recovery; no odor/	staining
17		0.0				
18				Refusal encountered at 17.0 feet bgs		
19						
20						
21						
22						
23						
24						
25						

Boring Number:		В4				Page 1 of 1
Location		Northe	rn por	tion of the excavation	Date Started:	10/1/2016
Site Add	rocci	79 Hur	ley Ave	enue	Date Completed:	10/1/2016
Site Add	1633.	Kingsto	on, Nev	v York 12401	Depth to Groundwater:	13
Project I		16-162			Field Technician:	Chris Niedzwiecki
Drill Rig				obe 9500 VTR	Partner Assessment Cor	
		5.0 foc		oCore	10 Mountain View Road, Su	
Borehole	Diameter:	2.25 in	_		Upper Saddle River, New J	ersey 07458
Depth	Sample	PID	USCS	Description	Notes	
1		0.0			Boring was overlain by gr	ravel
2		0.0				
3		0.0			3.0 feet recovery; no odor/s	staining
4		0.0				
5		0.0	N/A	Gray medium pebbles; dry		
6		7.1	.,,,,	Gray mediani pessies, ary		
7		7.4			3.0 feet recovery; slight petroleum-like odc	or from 5.0 to 10.0 foot
8		8.9			bgs	or from 5.0 to 10.0 feet
9		6.5				
10		6.1				
11	В4	538.0			Soil sample B4 was collected from 10.5 to for VOC analysis	11.0 feet bgs at 1117
12		16.5		Tan/red clay; moist		
13		34.7			3.0 feet recovery; strong petroleum-like o feet bgs	dor from 10.0 to 14.0
14		5.7	СН			
15		0.5		Tan/red clay; wet		
16		0.1			1.5 feet recovery; no odor/s	staining
17		0.0				
18				Refusal encountered at 17.0 feet bgs	A temporary groundwater sampling point, 17.0 feet bgs was installed in boing B4. Gro	
19					GW was collected at 1117 for VOC ar	nd SVOC analysis
20						
21						
22						
23						
24						
25						

		B5				Page 1 of 1
Location		West of	the exca	vation, to the east of the former dispenser location	Date Started:	10/1/2016
C': A 1 1		79 Hur	ley Ave	enue	Date Completed:	10/1/2016
Site Add	ress:			v York 12401	Depth to Groundwater:	16
Project N	Number:	16-162	670.6		Field Technician:	Chris Niedzwiecki
Drill Rig				obe 9500 VTR	Partner Assessment Corporation	
		5.0 foc		oCore	10 Mountain View Road, Su	
Borehole	Diameter:	2.25 in	_		Upper Saddle River, New J	ersey 07458
Depth	Sample	PID	USCS	Description	Notes	
1		0.0			Boring was overlain by g	ravel
2		0.0	SM	Brown sandy silt with concrete and medium pebbles; dry		
3		0.0		,	3.5 feet recovery; no odor/	staining
4		0.0				
5		0.0				
6		0.0				
7		0.0				
8		0.0			1.75 feet recovery; no odor,	staining/
9		0.0				
10		0.0		Tan clay; moist		
11		0.0				
12		0.0	СН			
13		0.0			2.0 feet recovery; no odor/	staining
14		0.0				
15		0.0			Soil sample B5 was collected from 15.5 to	16 0 feet hgs at 1029
16	B5	0.0			for VOC analysis	10.0 1001 1025
17		0.0				
18		0.0		Tan clay; wet	0.75 feet recovery; no odor,	staining/
19		0.0				
20		0.0				
21				Boring was terminated at 20.0 feet bgs		
22						
23						
24						
25						

Boring Number: B6						Page 1 of 1		
Location		At the	locatio	n of the former dispenser	Date Started:	10/1/2016		
Site Add	rocc:	79 Hur	ley Ave	enue	Date Completed:	10/1/2016		
Site Add	1633.	Kingsto	on, Nev	v York 12401	Depth to Groundwater:	12		
Project I		16-162			Field Technician:	Chris Niedzwiecki		
Drill Rig				obe 9500 VTR	Partner Assessment Cor	•		
		5.0 foc		oCore	10 Mountain View Road, Suite 218 North			
	Diameter:	2.25 in			Upper Saddle River, New J	ersey 07458		
Depth	Sample	PID	USCS	Description	Notes			
1		0.0	ML	Gray silt; moist	Boring was overlain by g	ravel		
2		0.0						
3		0.0	SW	Tan medium sand; slightly moist	3.75 feet recovery; no odor/	staining		
4		0.0						
5		0.0						
6		0.0						
7		0.9						
8	В6	3.2		Tan clay; moist	Soil sample B6 was collected from 7.0 to 7 VOC analysis	.5 feet bgs at 1058 for		
9		0.0		.a. 687680	3.75 feet recovery; no odor/	'staining		
10		0.0			5.75 (2001-000)	g		
11		0.0	СН					
12		0.0	J					
13		0.0			5.0 feet recovery; no odor/staining			
14		0.0						
15		0.0		Tan clay; wet				
16		0.0						
17		0.0			3.0 feet recovery; no odor/s	staining		
18		0.0						
19				Boring was terminated at 18.0 feet bgs	A temporary groundwater sampling point, 18.0 feet bgs was installed in boing B6. Gr			
20					GW was collected at 1137 for VOC at			
21								
22								
23								
24								
25								

Boring Number:		В7				Page 1 of 1
Location:		Former loca	tion of the p	ress in the eastern portion of the warehouse, along the ink line trench	Date Started:	10/1/2016
		79 Hurley Avenue			Date Completed:	10/1/2016
Site Address:		Kingston, New York 12401			Depth to Groundwater:	13
Project Number:		16-162670.6			Field Technician:	Chris Niedzwiecki
Drill Rig Type:		AMS P	owerpr	obe 9500 VTR	Partner Assessment Corporation	
Sampling Equipment:		5.0 foot MacroCore			10 Mountain View Road, Suite 218 North	
Borehole Diameter:		2.25 inch			Upper Saddle River, New Jersey 07458	
Depth	Depth Sample		PID USCS Description		Notes	
1					Boring was overlain by concrete 3.75 feet recovery; no odor/staining	
3						
4	В7		ML	Tan clayey silt; dry	Soil sample B7 was collected from 3.0 to 3 VOC, SVOC, and primary pollutant	
5						
6					4.25 feet recovery; no odor/staining 2.25 feet recovery; no odor/staining	
7						
8						
9			СН	Tan clay; moist		
10						
11						
12						
13						
14				Tan clay; wet		
15						
16						
17				Gray clay; wet	2.5 foot roccuery, no -d/	staining
18					2.5 feet recovery; no odor/ -	əranınık
19				Tan clay; wet		
20	+			Boring was terminated at 20.0 feet bgs	A.	announced from 10 0 c
21					A temporary groundwater sampling point, 20.0 feet bgs was installed in boing B7. Gr GW was collected at 1250 for V	oundwater sample B7-
22						·
23						
25						

Boring Number:		B8				Page 1 of 1
Location:		East of the sump pit, along the trench drain system			Date Started:	10/1/2016
Site Address:		79 Hurley Avenue			Date Completed:	10/1/2016
		Kingston, New York 12401			Depth to Groundwater:	19
Project Number:		16-162670.6			Field Technician:	Chris Niedzwiecki
Drill Rig Type:		AMS Powerprobe 9500 VTR			Partner Assessment Corporation	
Sampling Equipment:		5.0 foot MacroCore			10 Mountain View Road, Suite 218 North	
Borehole Diameter:		2.25 inch			Upper Saddle River, New Jersey 07458	
Depth	Depth Sample		PID USCS Description		Notes	
1		0.0			Boring was overlain by cor	ncrete
2		0.0		Tan clayey silt; dry	3.0 feet recovery; no odor/staining	
3		0.0			Soil sample B8 was collected from 3.0 to 3.5 feet bgs at 1241 for VOC, SVOC, and primary pollutant metals analysis	
4	B8	0.0				
5		0.0				
6		0.0	ML		4.5 feet recovery; no odor/staining 4.25 feet recovery; no odor/staining 4.5 feet recovery; no odor/staining	
7		0.0				
8		0.0				
9		0.0				
10		0.0				
11		0.0				
12		0.0	СН			
13		0.0				
14		0.0		Tan/red clay; slightly moist		
15		0.0				
16		0.0				
17		0.0				
18		0.0		Tan clay; very moist		
19		0.0		Tan clay with modium pobbless wet		
20		0.0		Tan clay with medium pebbles; wet		
21				Boring was terminated at 20.0 feet bgs	Due to poor recharge, a groundwater so collected from boring	
22						
23						
24						
25						

APPENDIX B: GEOPHYSICAL SURVEY REPORT AND MAP

GEOPHYSICAL INVESTIGATION REPORT

SITE LOCATION:

79 Hurley Avenue, Kingston, New York

PREPARED FOR:

Partner Engineering and Science 100 Deerfield Lane, Suite 200 Malvern, Pennsylvania 19355

PREPARED BY:

Joshua Hess Delta Geophysics Inc. 738 Front Street Catasauqua, PA 18032

October 1, 2016

Delta Geophysics, Inc. (Delta) is pleased to provide the results of the geophysical survey conducted at 79 Hurley Avenue, Kingston, New York.

1.0 INTRODUCTION

On October 1st, 2016 Delta Geophysics personnel performed a limited geophysical investigation at 79 Hurley Avenue, Kingston, New York. Multiple areas throughout the site were to be surveyed. Subsurface conditions were unknown at the time of survey. Surface conditions consisted of asphalt and concrete.

2.0 SCOPE OF WORK

The survey was conducted to investigate the subsurface for anomalies consistent with underground storage tanks (USTs) and/or soil disturbances that could be a potential indicator of a past UST excavation. A secondary objective was to locate and mark detectable underground utilities throughout the survey areas.

3.0 METHODOLOGY

Selection of survey equipment is dependent site conditions and project objectives. For this project the technician utilized the following equipment to survey the area of concern:

- Geophysical Survey Systems Inc. SIR-3000 cart-mounted Ground Penetrating Radar (GPR) unit with a 400 Mhz antenna.
- Geophysical Survey Systems Inc. SIR-3000 cart-mounted GPR unit with a 2.0 GHz antenna
- Radiodetection RD7000 precision utility locator.
- Fisher M-Scope TW-6 pipe and cable locator.

Ground penetrating radar (commonly called GPR) is a geophysical method that has been developed over the past thirty years for shallow, high-resolution, subsurface investigations of the earth. GPR uses high frequency pulsed electromagnetic waves (generally 10 MHz to 1,000 MHz) to acquire subsurface information. Energy is propagated downward into the ground and is reflected back to the surface from boundaries at which there are electrical property contrasts. GPR is a method that is commonly used for environmental, engineering, archeological, and other shallow investigations.

The GSSI SIR-3000 GPR can accept a wide variety of antennas which provide various depths of penetration and levels of resolution. The 400 MHz antenna can achieve depths of penetration up to about 20 feet, but this depth may be greatly reduced due to site-

specific conditions. Signal penetration decreases with increased soil conductivity. Conductive materials attenuate or absorb the GPR signal. As depth increases the return signal becomes weaker. Penetration is the greatest in unsaturated sands and fine gravels. Clayey, highly saline or saturated soils, areas covered by steel reinforced concrete, foundry slag, or other highly conductive materials significantly reduces GPR depth of penetration.

The 400 MHz antenna was configured to transmit to a depth of approximately 10 feet below the subsurface, but actual signal penetration was limited to approximately 1-4 feet below ground surface (bgs). The limiting factors were signal attenuation from near surface soils and reinforced concrete.

Additionally, the 2.0 GHz antenna was utilized. The 2.0 GHz antenna can achieve depths of penetration up to about 12 inches, but this depth may be greatly reduced due to site-specific conditions. Signal penetration decreases with increased subsurface conductivity. Conductive materials attenuate or absorb the GPR signal. As depth increases the return signal becomes weaker. Penetration is the greatest in older well cured concrete. Newly poured cement, or cements with some admixtures can greatly reduce the depth of penetration.

The 2.0 GHz antenna was configured to transmit to a depth of approximately 12 inches below the subsurface, but actual signal penetration was approximately 10 inches. The limiting factor was signal attenuation from the concrete present at the site.

The RD7000 precision utility locator uses radio emission to trace the location of metal bearing utilities. This radio emission can be active or passive. Active tracing requires the attachment of a radio transmitter to the utility, passive tracing uses radio emissions that are present on the utility. Underground electrical utilities typically emit radio signals that this device can detect.

The TW-6 is designed to find pipes, cables and other metallic objects such as underground storage tanks. One surveyor can carry both the transmitter and receiver together, making it ideally suited for exploration type searches of ferrous metal masses. Metal detectors of this type operate by generating a magnetic field at the transmitter which causes metallic objects in the subsurface to generate a secondary magnetic field. The induced secondary field is detected by the receiver, which generates an audible tone equal to the strength of the secondary field.

4.0 SURVEY FINDINGS

All accessible areas within the survey areas were examined during this investigation. All areas were examined with the RD7000 for potential subsurface utilities then surveyed with GPR and TW-6 for other potential anomalies. Based on the data gathered, one soil disturbance was detected throughout the survey areas.

Soil Disturbance

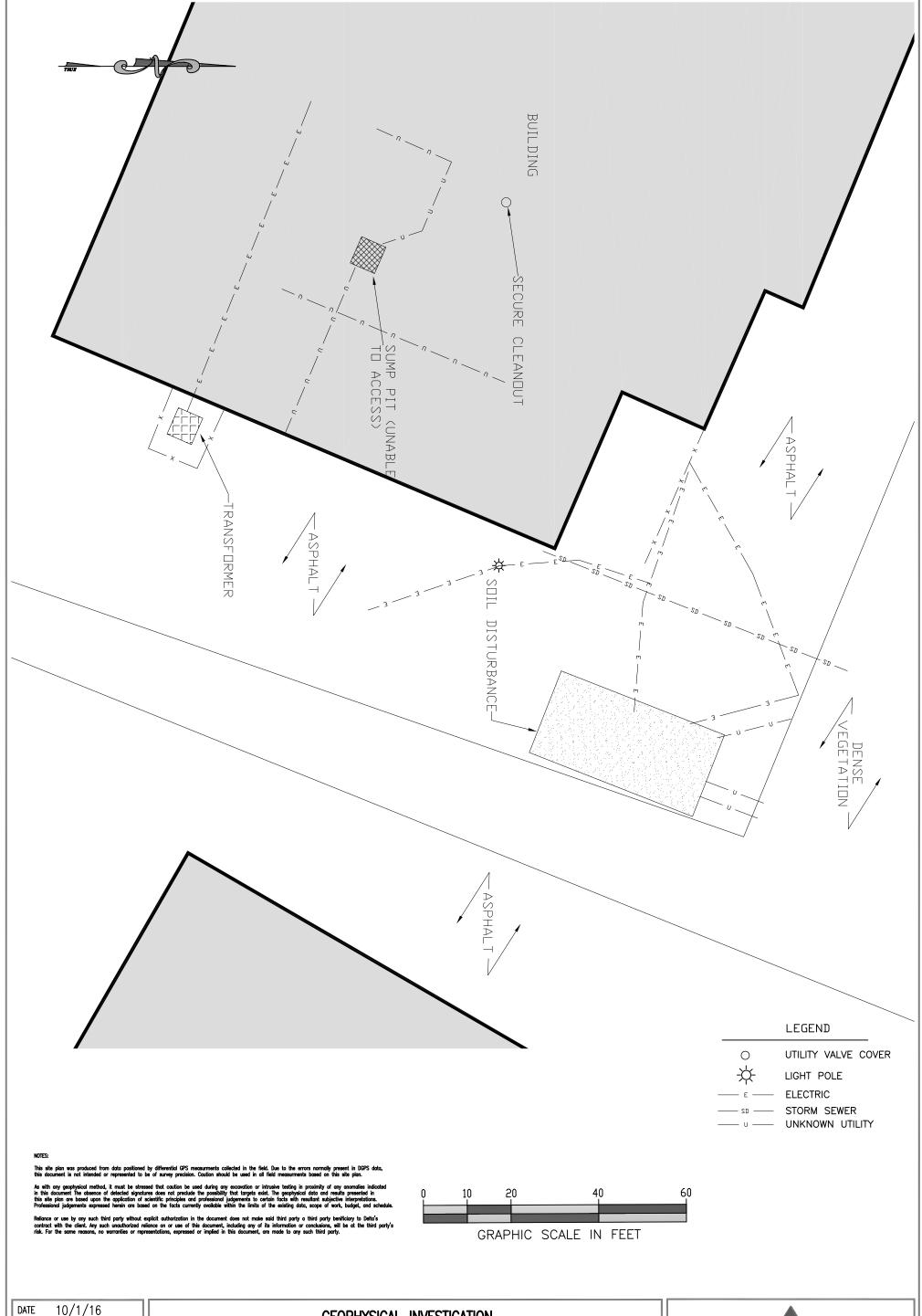
Soil Disturbance was located with GPR. The anomaly measures approximately 40 feet by 20 feet. It is located northeast of Building. GPR transects imaged a disturbance that could be a potential indicator of a former excavation. Additionally, two electric lines and three unknown lines were traced from the anomaly. Dense vegetation limited GPR transects and TW-6 usage over portions of the anomaly.

Utility Survey

Delta performed a utility survey at 79 Hurley Avenue throughout the survey areas. The following utilities were detected: electric and storm sewer. All detectable utilities were marked onsite with appropriate colors. Anomalous features and unknown utilities were marked onsite in pink paint. Site map (100116) is included with all located subsurface features.

5.0 SURVEY LIMITATIONS

GPR (equipped with the 400 MHz antenna) depth of penetration was limited to approximately 1-4 feet bgs. The limiting factor was due to conductive soils and reinforced concrete. GPR (equipped with the 2.0 GHz antenna) depth of penetration was limited to approximately 10 to 11 inches below ground surface. Building walls and dense vegetation limited GPR transects and TW-6 usage over portions of the survey areas. Delta did not have access to buildings located adjacent to the property. Interior access may aid Delta in detecting unknown utilities or utilities otherwise not detectable without a direct connection to the pipe or conduit.


6.0 WARRANTIES AND DISCLAIMER

As with any geophysical method, it must be stressed that caution be used during any excavation or intrusive testing in proximity to any anomalies indicated in this report. In addition, the absence of detected signatures does not preclude the possibility that targets may exist. To the extent the client desires more definitive conclusions than are warranted by the currently available facts; it is specifically Delta's intent that the conclusions stated herein will be intended as guidance.

This report is based upon the application of scientific principles and professional judgment to certain facts with resultant subjective interpretations. Professional judgments expressed herein are based on the facts currently available within the limit or scope of work, budget and schedule. Delta represents that the services were performed in a manner consistent with currently accepted professional practices employed by geophysical/geological consultants under similar circumstances. No other representations to Client, express or implied, and no warranty or guarantee is included or intended in this agreement, or in any report, document, or otherwise.

This report was prepared pursuant to the contract Delta has with the Client. That contractual relationship included an exchange of information about the property that was unique and between Delta and its client and serves as the basis upon which this report was prepared. Because of the importance of the understandings between Delta and its client, reliance or any use of this report by anyone other than the Client, for whom it was prepared, is prohibited and therefore not foreseeable to Delta.

Reliance or use by any such third party without explicit authorization in the report does not make said third party a third party beneficiary to Delta's contract with the Client. Any such unauthorized reliance on or use of this report, including any of its information or conclusions, will be at the third party's risk. For the same reasons, no warranties or representations, expressed or implied in this report, are made to any such third party.

DATE	10/1/16
SCALE	1'' = 20'
DWG NO.	100116
SHT NO.	1 OF 1
PROJECT.	

GEOPHYSICAL INVESTIGATION
79 HURLEY AVENUE, KINGSTON, NEW YORK
FOR
PARTNER ENGINEERING AND SCIENCE

APPENDIX C: LABORATORY ANALYTICAL REPORT

ANALYTICAL REPORT

Lab Number: L1631369

Client: Partner Engineering and Science, Inc.

611 Industrial Way West Eatontown, NJ 07724

ATTN: Andres Simonson Phone: (732) 380-1700

Project Name: THE DAILY FREEMAN

Project Number: 16-159311.2 Report Date: 10/07/16

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NY (11148), CT (PH-0574), NH (2003), NJ NELAP (MA935), RI (LAO00065), ME (MA00086), PA (68-03671), VA (460195), MD (348), IL (200077), NC (666), TX (T104704476), DOD (L2217), USDA (Permit #P-330-11-00240).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: THE DAILY FREEMAN

Project Number: 16-159311.2

Lab Number: L1631369 **Report Date:** 10/07/16

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1631369-01	B1	SOIL	79 HURLEY AVENUE, KINGSTON, NY 12401	10/01/16 09:21	10/01/16
L1631369-02	B2	SOIL	79 HURLEY AVENUE, KINGSTON, NY 12401	10/01/16 09:43	10/01/16
L1631369-03	В3	SOIL	79 HURLEY AVENUE, KINGSTON, NY 12401	10/01/16 10:00	10/01/16
L1631369-04	B4	SOIL	79 HURLEY AVENUE, KINGSTON, NY 12401	10/01/16 10:12	10/01/16
L1631369-05	B5	SOIL	79 HURLEY AVENUE, KINGSTON, NY 12401	10/01/16 10:29	10/01/16
L1631369-06	B6	SOIL	79 HURLEY AVENUE, KINGSTON, NY 12401	10/01/16 10:58	10/01/16
L1631369-07	В7	SOIL	79 HURLEY AVENUE, KINGSTON, NY 12401	10/01/16 12:29	10/01/16
L1631369-08	B8	SOIL	79 HURLEY AVENUE, KINGSTON, NY 12401	10/01/16 12:41	10/01/16
L1631369-09	B2-GW	WATER	79 HURLEY AVENUE, KINGSTON, NY 12401	10/01/16 11:09	10/01/16
L1631369-10	B4-GW	WATER	79 HURLEY AVENUE, KINGSTON, NY 12401	10/01/16 11:17	10/01/16
L1631369-11	B6-GW	WATER	79 HURLEY AVENUE, KINGSTON, NY 12401	10/01/16 11:37	10/01/16
L1631369-12	B7-GW	WATER	79 HURLEY AVENUE, KINGSTON, NY 12401	10/01/16 12:50	10/01/16

Project Name: THE DAILY FREEMAN Lab Number: L1631369

Project Number: 16-159311.2 **Report Date:** 10/07/16

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please	contact	Client	Services	at 80	0-624	-9220	with	any	question	ıs.

Project Name: THE DAILY FREEMAN Lab Number: L1631369

Project Number: 16-159311.2 **Report Date:** 10/07/16

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Volatile Organics

L1631369-04: The sample has elevated detection limits due to the dilution required by the elevated concentrations of non-target compounds in the sample.

Semivolatile Organics

The WG938816-2/-3 LCS/LCSD recoveries, associated with L1631369-09 through -11, are below the acceptance criteria for benzoic acid (0%/0%); however, it has been identified as a "difficult" analyte. The results of the associated samples are reported.

Semivolatile Organics by SIM

L1631369-10: The sample has elevated detection limits due to the dilution required by the sample matrix.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Wille M. Morris

Authorized Signature:

Title: Technical Director/Representative

Date: 10/07/16

ORGANICS

VOLATILES

L1631369

Project Name: THE DAILY FREEMAN

Project Number: 16-159311.2

SAMPLE RESULTS

Lab Number:

Report Date: 10/07/16

Lab ID: L1631369-01

Client ID: B1

Sample Location: 79 HURLEY AVENUE, KINGSTON, NY 12401

Matrix:

Analytical Method: 1,8260C

Analytical Date: 10/07/16 12:47

Analyst: BD83% Percent Solids:

Date Collected:	10/01/16 09:21
Date Received:	10/01/16
Field Prep:	Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by 8260/5035 -	Westborough Lab					
Methylene chloride	ND		ug/kg	9.3	1.0	1
1,1-Dichloroethane	ND		ug/kg	1.4	0.08	1
Chloroform	ND		ug/kg	1.4	0.34	1
Carbon tetrachloride	ND		ug/kg	0.93	0.20	1
1,2-Dichloropropane	ND		ug/kg	3.2	0.21	1
Dibromochloromethane	ND		ug/kg	0.93	0.14	1
1,1,2-Trichloroethane	ND		ug/kg	1.4	0.28	1
Tetrachloroethene	ND		ug/kg	0.93	0.13	1
Chlorobenzene	ND		ug/kg	0.93	0.32	1
Trichlorofluoromethane	ND		ug/kg	4.6	0.36	1
1,2-Dichloroethane	ND		ug/kg	0.93	0.10	1
1,1,1-Trichloroethane	ND		ug/kg	0.93	0.10	1
Bromodichloromethane	ND		ug/kg	0.93	0.16	1
trans-1,3-Dichloropropene	ND		ug/kg	0.93	0.11	1
cis-1,3-Dichloropropene	ND		ug/kg	0.93	0.11	1
1,3-Dichloropropene, Total	ND		ug/kg	0.93	0.11	1
1,1-Dichloropropene	ND		ug/kg	4.6	0.13	1
Bromoform	ND		ug/kg	3.7	0.22	1
1,1,2,2-Tetrachloroethane	ND		ug/kg	0.93	0.09	1
Benzene	ND		ug/kg	0.93	0.11	1
Toluene	ND		ug/kg	1.4	0.18	1
Ethylbenzene	ND		ug/kg	0.93	0.12	1
Chloromethane	ND		ug/kg	4.6	0.27	1
Bromomethane	ND		ug/kg	1.8	0.31	1
Vinyl chloride	ND		ug/kg	1.8	0.11	1
Chloroethane	ND		ug/kg	1.8	0.29	1
1,1-Dichloroethene	ND		ug/kg	0.93	0.24	1
trans-1,2-Dichloroethene	ND		ug/kg	1.4	0.20	1
Trichloroethene	ND		ug/kg	0.93	0.12	1
1,2-Dichlorobenzene	ND		ug/kg	4.6	0.14	1

Project Name: THE DAILY FREEMAN Lab Number: L1631369

Project Number: 16-159311.2 **Report Date:** 10/07/16

SAMPLE RESULTS

Lab ID: Date Collected: 10/01/16 09:21

Client ID: B1 Date Received: 10/01/16
Sample Location: 79 HURLEY AVENUE, KINGSTON, NY 12401 Field Prep: Not Specified

Sample Location:	79 HURLEY AVENUE, KINGST	ON, NY 12401	Field	Prep:	Not Specified	
Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor	
Volatile Organics by	y 8260/5035 - Westborough Lab					
1,3-Dichlorobenzene	ND	ug/kg	4.6	0.12	1	
1,4-Dichlorobenzene	ND	ug/kg	4.6	0.13	1	
Methyl tert butyl ether	3.8	ug/kg	1.8	0.08	1	
p/m-Xylene	ND	ug/kg	1.8	0.33	1	
o-Xylene	ND	ug/kg	1.8	0.31	1	
Xylenes, Total	ND	ug/kg	1.8	0.31	1	
cis-1,2-Dichloroethene	ND	ug/kg	0.93	0.13	1	
1,2-Dichloroethene, Total	ND	ug/kg	0.93	0.13	1	
Dibromomethane	ND	ug/kg	9.3	0.15	1	
Styrene	ND	ug/kg	1.8	0.37	1	
Dichlorodifluoromethane	ND	ug/kg	9.3	0.18	1	
Acetone	ND	ug/kg	9.3	0.96	1	
Carbon disulfide	ND	ug/kg	9.3	1.0	1	
2-Butanone	ND	ug/kg	9.3	0.25	1	
Vinyl acetate	ND	ug/kg	9.3	0.12	1	
4-Methyl-2-pentanone	ND	ug/kg	9.3	0.23	1	
1,2,3-Trichloropropane	ND	ug/kg	9.3	0.15	1	
2-Hexanone	ND	ug/kg	9.3	0.62	1	
Bromochloromethane	ND	ug/kg	4.6	0.26	1	
2,2-Dichloropropane	ND	ug/kg	4.6	0.21	1	
1,2-Dibromoethane	ND	ug/kg	3.7	0.16	1	
1,3-Dichloropropane	ND	ug/kg	4.6	0.13	1	
1,1,1,2-Tetrachloroethane	ND	ug/kg	0.93	0.30	1	
Bromobenzene	ND	ug/kg	4.6	0.19	1	
n-Butylbenzene	ND	ug/kg	0.93	0.11	1	
sec-Butylbenzene	ND	ug/kg	0.93	0.11	1	
tert-Butylbenzene	ND	ug/kg	4.6	0.12	1	
o-Chlorotoluene	ND	ug/kg	4.6	0.15	1	
p-Chlorotoluene	ND	ug/kg	4.6	0.12	1	
1,2-Dibromo-3-chloroprop	ane ND	ug/kg	4.6	0.37	1	
Hexachlorobutadiene	ND	ug/kg	4.6	0.21	1	
Isopropylbenzene	ND	ug/kg	0.93	0.10	1	
p-Isopropyltoluene	ND	ug/kg	0.93	0.12	1	
Naphthalene	ND	ug/kg	4.6	0.13	1	
Acrylonitrile	ND	ug/kg	9.3	0.48	1	
n-Propylbenzene	ND	ug/kg	0.93	0.10	1	
1,2,3-Trichlorobenzene	ND	ug/kg	4.6	0.14	1	
1,2,4-Trichlorobenzene	ND	ug/kg	4.6	0.17	1	
1,3,5-Trimethylbenzene	ND	ug/kg	4.6	0.13	1	

Project Name: THE DAILY FREEMAN Lab Number: L1631369

Project Number: 16-159311.2 **Report Date:** 10/07/16

SAMPLE RESULTS

Lab ID: Date Collected: 10/01/16 09:21

Client ID: B1 Date Received: 10/01/16
Sample Location: 79 HURLEY AVENUE, KINGSTON, NY 12401 Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by 8260/5035 - W	estborough Lab						
1,2,4-Trimethylbenzene	ND		ug/kg	4.6	0.13	1	
1,4-Dioxane	ND		ug/kg	93	13.	1	
p-Diethylbenzene	ND		ug/kg	3.7	0.15	1	
p-Ethyltoluene	ND		ug/kg	3.7	0.12	1	
1,2,4,5-Tetramethylbenzene	ND		ug/kg	3.7	0.12	1	
Ethyl ether	ND		ug/kg	4.6	0.24	1	
trans-1,4-Dichloro-2-butene	ND		ug/kg	4.6	0.36	1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	101		70-130	
Toluene-d8	103		70-130	
4-Bromofluorobenzene	101		70-130	
Dibromofluoromethane	99		70-130	

L1631369

Project Name: THE DAILY FREEMAN

Project Number: 16-159311.2

SAMPLE RESULTS

Report Date: 10/07/16

Lab Number:

Lab ID: L1631369-02

Client ID: B2

Sample Location: 79 HURLEY AVENUE, KINGSTON, NY 12401

Matrix: Soil

Analytical Method: 1,8260C

Analytical Date: 10/07/16 13:13

Analyst: BD Percent Solids: 83%

Date Collected:	10/01/16 09:43
Date Received:	10/01/16
Field Prep:	Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by 8260/5035 - V	Westborough Lab					
Methylene chloride	ND		ug/kg	9.3	1.0	1
1,1-Dichloroethane	ND		ug/kg	1.4	0.08	1
Chloroform	ND		ug/kg	1.4	0.34	1
Carbon tetrachloride	ND		ug/kg	0.93	0.19	1
1,2-Dichloropropane	ND		ug/kg	3.2	0.21	1
Dibromochloromethane	ND		ug/kg	0.93	0.14	1
1,1,2-Trichloroethane	ND		ug/kg	1.4	0.28	1
Tetrachloroethene	ND		ug/kg	0.93	0.13	1
Chlorobenzene	ND		ug/kg	0.93	0.32	1
Trichlorofluoromethane	ND		ug/kg	4.6	0.36	1
1,2-Dichloroethane	ND		ug/kg	0.93	0.10	1
1,1,1-Trichloroethane	ND		ug/kg	0.93	0.10	1
Bromodichloromethane	ND		ug/kg	0.93	0.16	1
trans-1,3-Dichloropropene	ND		ug/kg	0.93	0.11	1
cis-1,3-Dichloropropene	ND		ug/kg	0.93	0.11	1
1,3-Dichloropropene, Total	ND		ug/kg	0.93	0.11	1
1,1-Dichloropropene	ND		ug/kg	4.6	0.13	1
Bromoform	ND		ug/kg	3.7	0.22	1
1,1,2,2-Tetrachloroethane	ND		ug/kg	0.93	0.09	1
Benzene	ND		ug/kg	0.93	0.11	1
Toluene	ND		ug/kg	1.4	0.18	1
Ethylbenzene	ND		ug/kg	0.93	0.12	1
Chloromethane	ND		ug/kg	4.6	0.27	1
Bromomethane	ND		ug/kg	1.8	0.31	1
Vinyl chloride	ND		ug/kg	1.8	0.11	1
Chloroethane	ND		ug/kg	1.8	0.29	1
1,1-Dichloroethene	ND		ug/kg	0.93	0.24	1
trans-1,2-Dichloroethene	ND		ug/kg	1.4	0.20	1
Trichloroethene	ND		ug/kg	0.93	0.12	1
1,2-Dichlorobenzene	ND		ug/kg	4.6	0.14	1

Project Name: THE DAILY FREEMAN Lab Number: L1631369

Project Number: 16-159311.2 **Report Date:** 10/07/16

SAMPLE RESULTS

Lab ID: L1631369-02 Date Collected: 10/01/16 09:43

Client ID: B2 Date Received: 10/01/16
Sample Location: 79 HURLEY AVENUE, KINGSTON, NY 12401 Field Prep: Not Specified

bample Location. 19 HoreLT	AVENUE, KINGOTO	14, 141 12401		i icia i ic	-p.	Not Specified
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by 8260/5035 - V	Vestborough Lab					
1,3-Dichlorobenzene	ND		ug/kg	4.6	0.12	1
1,4-Dichlorobenzene	ND		ug/kg	4.6	0.13	1
Methyl tert butyl ether	1.5	J	ug/kg	1.8	0.08	1
o/m-Xylene	ND		ug/kg	1.8	0.32	1
o-Xylene	ND		ug/kg	1.8	0.31	1
Kylenes, Total	ND		ug/kg	1.8	0.31	1
cis-1,2-Dichloroethene	ND		ug/kg	0.93	0.13	1
1,2-Dichloroethene, Total	ND		ug/kg	0.93	0.13	1
Dibromomethane	ND		ug/kg	9.3	0.15	1
Styrene	ND		ug/kg	1.8	0.37	1
Dichlorodifluoromethane	ND		ug/kg	9.3	0.18	1
Acetone	ND		ug/kg	9.3	0.96	1
Carbon disulfide	ND		ug/kg	9.3	1.0	1
2-Butanone	ND		ug/kg	9.3	0.25	1
/inyl acetate	ND		ug/kg	9.3	0.12	1
1-Methyl-2-pentanone	ND		ug/kg	9.3	0.23	1
1,2,3-Trichloropropane	ND		ug/kg	9.3	0.15	1
2-Hexanone	ND		ug/kg	9.3	0.62	1
Bromochloromethane	ND		ug/kg	4.6	0.26	1
2,2-Dichloropropane	ND		ug/kg	4.6	0.21	1
1,2-Dibromoethane	ND		ug/kg	3.7	0.16	1
1,3-Dichloropropane	ND		ug/kg	4.6	0.13	1
1,1,1,2-Tetrachloroethane	ND		ug/kg	0.93	0.29	1
Bromobenzene	ND		ug/kg	4.6	0.19	1
n-Butylbenzene	ND		ug/kg	0.93	0.11	1
sec-Butylbenzene	ND		ug/kg	0.93	0.11	1
ert-Butylbenzene	ND		ug/kg	4.6	0.12	1
o-Chlorotoluene	ND		ug/kg	4.6	0.15	1
o-Chlorotoluene	ND		ug/kg	4.6	0.12	1
1,2-Dibromo-3-chloropropane	ND		ug/kg	4.6	0.37	1
Hexachlorobutadiene	ND		ug/kg	4.6	0.21	1
sopropylbenzene	ND		ug/kg	0.93	0.10	1
p-Isopropyltoluene	ND		ug/kg	0.93	0.12	1
Naphthalene	ND		ug/kg	4.6	0.13	1
Acrylonitrile	ND		ug/kg	9.3	0.48	1
n-Propylbenzene	ND		ug/kg	0.93	0.10	1
1,2,3-Trichlorobenzene	ND		ug/kg	4.6	0.14	1
1,2,4-Trichlorobenzene	ND		ug/kg	4.6	0.17	1
1,3,5-Trimethylbenzene	ND		ug/kg	4.6	0.13	1

Project Name: THE DAILY FREEMAN Lab Number: L1631369

Project Number: 16-159311.2 **Report Date:** 10/07/16

SAMPLE RESULTS

Lab ID: L1631369-02 Date Collected: 10/01/16 09:43

Client ID: B2 Date Received: 10/01/16
Sample Location: 79 HURLEY AVENUE, KINGSTON, NY 12401 Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by 8260/5035 - Westbo	rough Lab						
1,2,4-Trimethylbenzene	ND		ug/kg	4.6	0.13	1	
1,4-Dioxane	ND		ug/kg	93	13.	1	
p-Diethylbenzene	ND		ug/kg	3.7	0.15	1	
p-Ethyltoluene	ND		ug/kg	3.7	0.11	1	
1,2,4,5-Tetramethylbenzene	ND		ug/kg	3.7	0.12	1	
Ethyl ether	ND		ug/kg	4.6	0.24	1	
trans-1,4-Dichloro-2-butene	ND		ug/kg	4.6	0.36	1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	104		70-130	
Toluene-d8	101		70-130	
4-Bromofluorobenzene	100		70-130	
Dibromofluoromethane	100		70-130	

Project Name: THE DAILY FREEMAN

Project Number: 16-159311.2

SAMPLE RESULTS

L1631369

Report Date: 10/07/16

Lab ID: L1631369-03

Client ID: В3

Sample Location: 79 HURLEY AVENUE, KINGSTON, NY 12401

Matrix:

Analytical Method: 1,8260C

Analytical Date: 10/07/16 13:39

Analyst: BD76% Percent Solids:

Date Collected:	10/01/16 10:00

Lab Number:

Date Received: 10/01/16 Field Prep: Not Specified

					Dilution Factor
stborough Lab					
ND		ug/kg	9.9	1.1	1
ND			1.5	0.09	1
ND			1.5	0.37	1
ND			0.99	0.21	1
ND		ug/kg	3.5	0.23	1
ND		ug/kg	0.99	0.15	1
ND		ug/kg	1.5	0.30	1
ND		ug/kg	0.99	0.14	1
ND		ug/kg	0.99	0.34	1
ND		ug/kg	5.0	0.38	1
ND		ug/kg	0.99	0.11	1
ND		ug/kg	0.99	0.11	1
ND		ug/kg	0.99	0.17	1
ND		ug/kg	0.99	0.12	1
ND		ug/kg	0.99	0.12	1
ND		ug/kg	0.99	0.12	1
ND		ug/kg	5.0	0.14	1
ND		ug/kg	4.0	0.23	1
ND		ug/kg	0.99	0.10	1
1.0		ug/kg	0.99	0.12	1
0.19	J	ug/kg	1.5	0.19	1
79		ug/kg	0.99	0.13	1
ND		ug/kg	5.0	0.29	1
ND		ug/kg	2.0	0.34	1
ND		ug/kg	2.0	0.12	1
ND		ug/kg	2.0	0.31	1
ND		ug/kg	0.99	0.26	1
ND		ug/kg	1.5	0.21	1
ND		ug/kg	0.99	0.12	1
ND		ug/kg	5.0	0.15	1
	ND N	ND N	ND	ND ug/kg 1.5 ND ug/kg 0.99 ND ug/kg 2.0 ND ug/kg 2.0 ND ug/kg 0.99 ND ug/kg 0.99 ND ug/kg 0.99 ND ug/kg 0.99	ND ug/kg 1.5 0.09 ND ug/kg 1.5 0.37 ND ug/kg 0.99 0.21 ND ug/kg 3.5 0.23 ND ug/kg 0.99 0.15 ND ug/kg 0.99 0.14 ND ug/kg 0.99 0.34 ND ug/kg 0.99 0.34 ND ug/kg 0.99 0.11 ND ug/kg 0.99 0.11 ND ug/kg 0.99 0.11 ND ug/kg 0.99 0.11 ND ug/kg 0.99 0.12 ND ug/kg 0.0 0.14 ND ug/kg 0.99 0.10 ug/kg

Project Name: THE DAILY FREEMAN Lab Number: L1631369

Project Number: 16-159311.2 **Report Date:** 10/07/16

SAMPLE RESULTS

Lab ID: L1631369-03 Date Collected: 10/01/16 10:00

Client ID: B3 Date Received: 10/01/16
Sample Location: 79 HURLEY AVENUE, KINGSTON, NY 12401 Field Prep: Not Specified

Dample Location. 19 HONLL I	AVENUE, KINGSTO	IN, INI 12401	riela riep. Not Specifica			
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by 8260/5035 - V	Vestborough Lab					
1,3-Dichlorobenzene	ND		ug/kg	5.0	0.13	1
1,4-Dichlorobenzene	ND		ug/kg	5.0	0.14	1
Methyl tert butyl ether	2.8		ug/kg	2.0	0.08	1
o/m-Xylene	9.9		ug/kg	2.0	0.35	1
o-Xylene	0.81	J	ug/kg	2.0	0.34	1
Kylenes, Total	11	J	ug/kg	2.0	0.34	1
cis-1,2-Dichloroethene	ND		ug/kg	0.99	0.14	1
1,2-Dichloroethene, Total	ND		ug/kg	0.99	0.14	1
Dibromomethane	ND		ug/kg	9.9	0.16	1
Styrene	ND		ug/kg	2.0	0.40	1
Dichlorodifluoromethane	ND		ug/kg	9.9	0.19	1
Acetone	19		ug/kg	9.9	1.0	1
Carbon disulfide	ND		ug/kg	9.9	1.1	1
2-Butanone	ND		ug/kg	9.9	0.27	1
/inyl acetate	ND		ug/kg	9.9	0.13	1
1-Methyl-2-pentanone	ND		ug/kg	9.9	0.24	1
1,2,3-Trichloropropane	ND		ug/kg	9.9	0.16	1
2-Hexanone	ND		ug/kg	9.9	0.66	1
Bromochloromethane	ND		ug/kg	5.0	0.27	1
2,2-Dichloropropane	ND		ug/kg	5.0	0.22	1
1,2-Dibromoethane	ND		ug/kg	4.0	0.17	1
1,3-Dichloropropane	ND		ug/kg	5.0	0.14	1
1,1,1,2-Tetrachloroethane	ND		ug/kg	0.99	0.32	1
Bromobenzene	ND		ug/kg	5.0	0.21	1
n-Butylbenzene	6.6		ug/kg	0.99	0.11	1
sec-Butylbenzene	2.4		ug/kg	0.99	0.12	1
ert-Butylbenzene	ND		ug/kg	5.0	0.13	1
o-Chlorotoluene	ND		ug/kg	5.0	0.16	1
o-Chlorotoluene	ND		ug/kg	5.0	0.13	1
1,2-Dibromo-3-chloropropane	ND		ug/kg	5.0	0.39	1
Hexachlorobutadiene	ND		ug/kg	5.0	0.23	1
sopropylbenzene	10		ug/kg	0.99	0.10	1
o-Isopropyltoluene	0.99		ug/kg	0.99	0.12	1
Naphthalene	79		ug/kg	5.0	0.14	1
Acrylonitrile	ND		ug/kg	9.9	0.51	1
n-Propylbenzene	32		ug/kg	0.99	0.11	1
1,2,3-Trichlorobenzene	ND		ug/kg	5.0	0.15	1
1,2,4-Trichlorobenzene	ND		ug/kg	5.0	0.18	1
1,3,5-Trimethylbenzene	27		ug/kg	5.0	0.14	1

Project Name: THE DAILY FREEMAN Lab Number: L1631369

Project Number: 16-159311.2 **Report Date:** 10/07/16

SAMPLE RESULTS

Lab ID: L1631369-03 Date Collected: 10/01/16 10:00

Client ID: B3 Date Received: 10/01/16
Sample Location: 79 HURLEY AVENUE, KINGSTON, NY 12401 Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by 8260/5035 - West	borough Lab						
1,2,4-Trimethylbenzene	12		ug/kg	5.0	0.14	1	
1,4-Dioxane	ND		ug/kg	99	14.	1	
p-Diethylbenzene	5.4		ug/kg	4.0	0.16	1	
p-Ethyltoluene	17		ug/kg	4.0	0.12	1	
1,2,4,5-Tetramethylbenzene	25		ug/kg	4.0	0.13	1	
Ethyl ether	ND		ug/kg	5.0	0.26	1	
trans-1,4-Dichloro-2-butene	ND		ug/kg	5.0	0.39	1	

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	113		70-130	
Toluene-d8	102		70-130	
4-Bromofluorobenzene	102		70-130	
Dibromofluoromethane	85		70-130	

Project Name: THE DAILY FREEMAN

Project Number: 16-159311.2

SAMPLE RESULTS

Lab Number: L1631369

Report Date: 10/07/16

Lab ID: L1631369-04 D

Client ID: B4

Sample Location: 79 HURLEY AVENUE, KINGSTON, NY 12401

Matrix: Analytical Method:

1,8260C

Analytical Date: 10/07/16 14:06

JC Analyst: 76% Percent Solids:

Date Collected: 10/01/16 10:12

Date Received: 10/01/16

Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by 8260/5035 - V	Vestborough Lab						
Methylene chloride	ND		ug/kg	14000	1500	20	
1,1-Dichloroethane	ND		ug/kg	2100	120	20	
Chloroform	ND		ug/kg	2100	520	20	
Carbon tetrachloride	ND		ug/kg	1400	290	20	
1,2-Dichloropropane	ND		ug/kg	4900	320	20	
Dibromochloromethane	ND		ug/kg	1400	210	20	
1,1,2-Trichloroethane	ND		ug/kg	2100	420	20	
Tetrachloroethene	ND		ug/kg	1400	200	20	
Chlorobenzene	ND		ug/kg	1400	480	20	
Trichlorofluoromethane	ND		ug/kg	7000	540	20	
1,2-Dichloroethane	ND		ug/kg	1400	160	20	
1,1,1-Trichloroethane	ND		ug/kg	1400	150	20	
Bromodichloromethane	ND		ug/kg	1400	240	20	
trans-1,3-Dichloropropene	ND		ug/kg	1400	170	20	
cis-1,3-Dichloropropene	ND		ug/kg	1400	160	20	
1,3-Dichloropropene, Total	ND		ug/kg	1400	160	20	
1,1-Dichloropropene	ND		ug/kg	7000	200	20	
Bromoform	ND		ug/kg	5600	330	20	
1,1,2,2-Tetrachloroethane	ND		ug/kg	1400	140	20	
Benzene	1000	J	ug/kg	1400	160	20	
Toluene	400	J	ug/kg	2100	270	20	
Ethylbenzene	6100		ug/kg	1400	180	20	
Chloromethane	ND		ug/kg	7000	410	20	
Bromomethane	ND		ug/kg	2800	470	20	
Vinyl chloride	ND		ug/kg	2800	160	20	
Chloroethane	ND		ug/kg	2800	440	20	
1,1-Dichloroethene	ND		ug/kg	1400	360	20	
trans-1,2-Dichloroethene	ND		ug/kg	2100	300	20	
Trichloroethene	ND		ug/kg	1400	170	20	
1,2-Dichlorobenzene	ND		ug/kg	7000	210	20	

Project Name: THE DAILY FREEMAN Lab Number: L1631369

Project Number: 16-159311.2 **Report Date:** 10/07/16

SAMPLE RESULTS

Lab ID: L1631369-04 D Date Collected: 10/01/16 10:12

Client ID: B4 Date Received: 10/01/16
Sample Location: 79 HURLEY AVENUE, KINGSTON, NY 12401 Field Prep: Not Specified

Parameter Volatile Organics by 1,3-Dichlorobenzene 1,4-Dichlorobenzene Methyl tert butyl ether p/m-Xylene o-Xylene Xylenes, Total	y 8260/5035 - Westboro	Result ugh Lab ND ND ND	Qualifier	Units ug/kg	RL 7000	MDL	Dilution Factor
1,3-Dichlorobenzene 1,4-Dichlorobenzene Methyl tert butyl ether p/m-Xylene o-Xylene	y 8260/5035 - Westboro	ND ND		ug/kg	7000		
1,4-Dichlorobenzene Methyl tert butyl ether p/m-Xylene o-Xylene		ND		ug/kg	7000		
Methyl tert butyl ether p/m-Xylene o-Xylene						190	20
p/m-Xylene o-Xylene		ND		ug/kg	7000	190	20
o-Xylene				ug/kg	2800	120	20
-		4800		ug/kg	2800	490	20
Xylenes, Total		540	J	ug/kg	2800	470	20
		5300	J	ug/kg	2800	470	20
cis-1,2-Dichloroethene		ND		ug/kg	1400	200	20
1,2-Dichloroethene, Total		ND		ug/kg	1400	200	20
Dibromomethane		ND		ug/kg	14000	230	20
Styrene		ND		ug/kg	2800	560	20
Dichlorodifluoromethane		ND		ug/kg	14000	270	20
Acetone		ND		ug/kg	14000	1400	20
Carbon disulfide		ND		ug/kg	14000	1500	20
2-Butanone		ND		ug/kg	14000	380	20
/inyl acetate		ND		ug/kg	14000	180	20
1-Methyl-2-pentanone		ND		ug/kg	14000	340	20
1,2,3-Trichloropropane		ND		ug/kg	14000	230	20
2-Hexanone		ND		ug/kg	14000	930	20
Bromochloromethane		ND		ug/kg	7000	380	20
2,2-Dichloropropane		ND		ug/kg	7000	320	20
1,2-Dibromoethane		ND		ug/kg	5600	240	20
1,3-Dichloropropane		ND		ug/kg	7000	200	20
1,1,1,2-Tetrachloroethane		ND		ug/kg	1400	440	20
Bromobenzene		ND		ug/kg	7000	290	20
n-Butylbenzene		2200		ug/kg	1400	160	20
sec-Butylbenzene		570	J	ug/kg	1400	170	20
ert-Butylbenzene		ND		ug/kg	7000	190	20
o-Chlorotoluene		ND		ug/kg	7000	220	20
o-Chlorotoluene		ND		ug/kg	7000	180	20
1,2-Dibromo-3-chloroprop	ane	ND		ug/kg	7000	550	20
Hexachlorobutadiene		ND		ug/kg	7000	320	20
sopropylbenzene		830	J	ug/kg	1400	140	20
o-Isopropyltoluene		450	J	ug/kg	1400	170	20
Naphthalene		1900	J	ug/kg	7000	190	20
Acrylonitrile		ND		ug/kg	14000	720	20
n-Propylbenzene		3000		ug/kg	1400	150	20
1,2,3-Trichlorobenzene		ND		ug/kg	7000	200	20
1,2,4-Trichlorobenzene		ND		ug/kg	7000	250	20
1,3,5-Trimethylbenzene		430	J	ug/kg	7000	200	20

10/01/16 10:12

Date Collected:

Project Name: THE DAILY FREEMAN Lab Number: L1631369

Project Number: 16-159311.2 **Report Date:** 10/07/16

SAMPLE RESULTS

Lab ID: L1631369-04 D

Client ID: B4 Date Received: 10/01/16
Sample Location: 79 HURLEY AVENUE, KINGSTON, NY 12401 Field Prep: Not Specified

Parameter Qualifier Units RLMDL **Dilution Factor** Volatile Organics by 8260/5035 - Westborough Lab 1,2,4-Trimethylbenzene 17000 7000 200 20 ug/kg ND 20000 20 1,4-Dioxane ug/kg 140000 J 3000 5600 220 20 p-Diethylbenzene ug/kg p-Ethyltoluene 6200 5600 170 20 ug/kg 1,2,4,5-Tetramethylbenzene 5200 J ug/kg 5600 180 20 ND 7000 20 Ethyl ether 360 ug/kg trans-1,4-Dichloro-2-butene ND 7000 550 20 ug/kg

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	88		70-130	
Toluene-d8	93		70-130	
4-Bromofluorobenzene	90		70-130	
Dibromofluoromethane	101		70-130	

L1631369

Project Name: THE DAILY FREEMAN

Project Number: 16-159311.2

SAMPLE RESULTS

Lab Number:

Report Date: 10/07/16

Lab ID: L1631369-05

Client ID: **B**5

Sample Location: 79 HURLEY AVENUE, KINGSTON, NY 12401

Matrix:

Analytical Method: 1,8260C

Analytical Date: 10/07/16 14:05

Analyst: BD80% Percent Solids:

Date Collected:	10/01/16 10:29

Date Received: 10/01/16 Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by 8260/5035 - W	estborough Lab					
Methylene chloride	ND		ug/kg	9.3	1.0	1
1,1-Dichloroethane	ND		ug/kg	1.4	0.08	1
Chloroform	ND		ug/kg	1.4	0.34	1
Carbon tetrachloride	ND		ug/kg	0.93	0.20	1
1,2-Dichloropropane	ND		ug/kg	3.3	0.21	1
Dibromochloromethane	ND		ug/kg	0.93	0.14	1
1,1,2-Trichloroethane	ND		ug/kg	1.4	0.28	1
Tetrachloroethene	ND		ug/kg	0.93	0.13	1
Chlorobenzene	ND		ug/kg	0.93	0.32	1
Trichlorofluoromethane	ND		ug/kg	4.7	0.36	1
1,2-Dichloroethane	ND		ug/kg	0.93	0.10	1
1,1,1-Trichloroethane	ND		ug/kg	0.93	0.10	1
Bromodichloromethane	ND		ug/kg	0.93	0.16	1
trans-1,3-Dichloropropene	ND		ug/kg	0.93	0.11	1
cis-1,3-Dichloropropene	ND		ug/kg	0.93	0.11	1
1,3-Dichloropropene, Total	ND		ug/kg	0.93	0.11	1
1,1-Dichloropropene	ND		ug/kg	4.7	0.13	1
Bromoform	ND		ug/kg	3.7	0.22	1
1,1,2,2-Tetrachloroethane	ND		ug/kg	0.93	0.09	1
Benzene	ND		ug/kg	0.93	0.11	1
Toluene	ND		ug/kg	1.4	0.18	1
Ethylbenzene	0.16	J	ug/kg	0.93	0.12	1
Chloromethane	ND		ug/kg	4.7	0.27	1
Bromomethane	ND		ug/kg	1.9	0.32	1
Vinyl chloride	ND		ug/kg	1.9	0.11	1
Chloroethane	ND		ug/kg	1.9	0.29	1
1,1-Dichloroethene	ND		ug/kg	0.93	0.24	1
trans-1,2-Dichloroethene	ND		ug/kg	1.4	0.20	1
Trichloroethene	ND		ug/kg	0.93	0.12	1
1,2-Dichlorobenzene	ND		ug/kg	4.7	0.14	1

Project Name: THE DAILY FREEMAN Lab Number: L1631369

Project Number: 16-159311.2 **Report Date:** 10/07/16

SAMPLE RESULTS

Lab ID: Date Collected: 10/01/16 10:29

Client ID: B5 Date Received: 10/01/16 Sample Location: 79 HURLEY AVENUE, KINGSTON, NY 12401 Field Prep: Not Specified

Dample Location. 19 HONLL I	AVENUE, KINGSTOI	IN, INI 12401	i iciu i ic	Not Specified		
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by 8260/5035 - V	Westborough Lab					
1,3-Dichlorobenzene	ND		ug/kg	4.7	0.12	1
1,4-Dichlorobenzene	ND		ug/kg	4.7	0.13	1
Methyl tert butyl ether	130		ug/kg	1.9	0.08	1
o/m-Xylene	ND		ug/kg	1.9	0.33	1
o-Xylene	ND		ug/kg	1.9	0.32	1
Kylenes, Total	ND		ug/kg	1.9	0.32	1
cis-1,2-Dichloroethene	ND		ug/kg	0.93	0.13	1
1,2-Dichloroethene, Total	ND		ug/kg	0.93	0.13	1
Dibromomethane	ND		ug/kg	9.3	0.15	1
Styrene	ND		ug/kg	1.9	0.38	1
Dichlorodifluoromethane	ND		ug/kg	9.3	0.18	1
Acetone	ND		ug/kg	9.3	0.97	1
Carbon disulfide	ND		ug/kg	9.3	1.0	1
2-Butanone	ND		ug/kg	9.3	0.25	1
/inyl acetate	ND		ug/kg	9.3	0.12	1
1-Methyl-2-pentanone	ND		ug/kg	9.3	0.23	1
1,2,3-Trichloropropane	ND		ug/kg	9.3	0.15	1
2-Hexanone	ND		ug/kg	9.3	0.62	1
Bromochloromethane	ND		ug/kg	4.7	0.26	1
2,2-Dichloropropane	ND		ug/kg	4.7	0.21	1
1,2-Dibromoethane	ND		ug/kg	3.7	0.16	1
,3-Dichloropropane	ND		ug/kg	4.7	0.14	1
1,1,1,2-Tetrachloroethane	ND		ug/kg	0.93	0.30	1
Bromobenzene	ND		ug/kg	4.7	0.19	1
n-Butylbenzene	ND		ug/kg	0.93	0.11	1
sec-Butylbenzene	ND		ug/kg	0.93	0.11	1
ert-Butylbenzene	ND		ug/kg	4.7	0.13	1
o-Chlorotoluene	ND		ug/kg	4.7	0.15	1
o-Chlorotoluene	ND		ug/kg	4.7	0.12	1
1,2-Dibromo-3-chloropropane	ND		ug/kg	4.7	0.37	1
Hexachlorobutadiene	ND		ug/kg	4.7	0.21	1
sopropylbenzene	ND		ug/kg	0.93	0.10	1
o-Isopropyltoluene	ND		ug/kg	0.93	0.12	1
Naphthalene	0.61	J	ug/kg	4.7	0.13	1
Acrylonitrile	ND		ug/kg	9.3	0.48	1
n-Propylbenzene	ND		ug/kg	0.93	0.10	1
1,2,3-Trichlorobenzene	ND		ug/kg	4.7	0.14	1
,2,4-Trichlorobenzene	ND		ug/kg	4.7	0.17	1
1,3,5-Trimethylbenzene	ND		ug/kg	4.7	0.13	1

Project Name: THE DAILY FREEMAN Lab Number: L1631369

Project Number: 16-159311.2 **Report Date:** 10/07/16

SAMPLE RESULTS

Lab ID: L1631369-05 Date Collected: 10/01/16 10:29

Client ID: B5 Date Received: 10/01/16
Sample Location: 79 HURLEY AVENUE, KINGSTON, NY 12401 Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by 8260/5035 - Wes	tborough Lab						
1,2,4-Trimethylbenzene	ND		ug/kg	4.7	0.13	1	
p-Diethylbenzene	ND		ug/kg	3.7	0.15	1	
p-Ethyltoluene	ND		ug/kg	3.7	0.12	1	
1,2,4,5-Tetramethylbenzene	ND		ug/kg	3.7	0.12	1	
Ethyl ether	1.3	J	ug/kg	4.7	0.24	1	
trans-1,4-Dichloro-2-butene	ND		ug/kg	4.7	0.36	1	

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	102		70-130	
Toluene-d8	104		70-130	
4-Bromofluorobenzene	102		70-130	
Dibromofluoromethane	99		70-130	

L1631369

Project Name: THE DAILY FREEMAN

Project Number: 16-159311.2

SAMPLE RESULTS

Bonort Date: 40/07/40

Lab Number:

Report Date: 10/07/16

. ._

Lab ID: L1631369-06 Client ID: B6

Sample Location: 79 HURLEY AVENUE, KINGSTON, NY 12401

Matrix: Soil

Analytical Method: 1,8260C

Analytical Date: 10/07/16 16:15

Analyst: BD Percent Solids: 85%

Date Collected:	10/01/16 10:58
Date Received:	10/01/16
Field Prep:	Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by 8260/5035 - We	stborough Lab					
Methylene chloride	ND		ug/kg	8.8	0.97	1
1,1-Dichloroethane	ND		ug/kg	1.3	0.08	1
Chloroform	ND		ug/kg	1.3	0.33	1
Carbon tetrachloride	ND		ug/kg	0.88	0.18	1
1,2-Dichloropropane	ND		ug/kg	3.1	0.20	1
Dibromochloromethane	ND		ug/kg	0.88	0.14	1
1,1,2-Trichloroethane	ND		ug/kg	1.3	0.27	1
Tetrachloroethene	ND		ug/kg	0.88	0.12	1
Chlorobenzene	ND		ug/kg	0.88	0.31	1
Trichlorofluoromethane	ND		ug/kg	4.4	0.34	1
1,2-Dichloroethane	ND		ug/kg	0.88	0.10	1
1,1,1-Trichloroethane	ND		ug/kg	0.88	0.10	1
Bromodichloromethane	ND		ug/kg	0.88	0.15	1
trans-1,3-Dichloropropene	ND		ug/kg	0.88	0.11	1
cis-1,3-Dichloropropene	ND		ug/kg	0.88	0.10	1
1,3-Dichloropropene, Total	ND		ug/kg	0.88	0.10	1
1,1-Dichloropropene	ND		ug/kg	4.4	0.12	1
Bromoform	ND		ug/kg	3.5	0.21	1
1,1,2,2-Tetrachloroethane	ND		ug/kg	0.88	0.09	1
Benzene	ND		ug/kg	0.88	0.10	1
Toluene	ND		ug/kg	1.3	0.17	1
Ethylbenzene	ND		ug/kg	0.88	0.11	1
Chloromethane	ND		ug/kg	4.4	0.26	1
Bromomethane	ND		ug/kg	1.8	0.30	1
Vinyl chloride	ND		ug/kg	1.8	0.10	1
Chloroethane	ND		ug/kg	1.8	0.28	1
1,1-Dichloroethene	ND		ug/kg	0.88	0.23	1
trans-1,2-Dichloroethene	ND		ug/kg	1.3	0.19	1
Trichloroethene	ND		ug/kg	0.88	0.11	1
1,2-Dichlorobenzene	ND		ug/kg	4.4	0.14	1

Project Name: THE DAILY FREEMAN Lab Number: L1631369

Project Number: 16-159311.2 **Report Date:** 10/07/16

SAMPLE RESULTS

Lab ID: L1631369-06 Date Collected: 10/01/16 10:58

Client ID: B6 Date Received: 10/01/16
Sample Location: 79 HURLEY AVENUE, KINGSTON, NY 12401 Field Prep: Not Specified

Parameter	sample Location.	19 HURLET AVENUE, KI	NGS I ON	N, INT 12401		rieid Pie	ρ.	Not Specified
1,3-Dichlorobenzane ND ug/kg 4.4 0.12 1 1.4-Dichlorobenzane ND ug/kg 4.4 0.12 1 1.4-Dichlorobenzane ND ug/kg 1.8 0.07 1 1.5-Dichlorobenzane ND ug/kg 1.8 0.07 1 1.5-Dichlorobenzane ND ug/kg 1.8 0.31 1 0-Xylene ND ug/kg 1.8 0.30 1 0-Xylene, Total ND ug/kg 0.88 0.12 1 0-Xylene, Total ND ug/kg 0.88 0.14 1 0-Xylene, Total ND ug/kg 0.88 0.17 1 0-Xylene, Total ND ug/kg 0.88 0.10 1 0-Xylene, Total ND ug/kg 0.88 0.11 1 0-Xylene, Total ND ug/kg 0.88 0.11 1	Parameter	F	Result	Qualifier	Units	RL	MDL	Dilution Factor
1,4-Dichlorobenzene	Volatile Organics by	8260/5035 - Westborough	Lab					
1.4.Dichlorobenzene ND ug/kg 4.4 0.12 1 Methyl ter buyl ether ND ug/kg 1.8 0.07 1 p/m-Xylene ND ug/kg 1.8 0.31 1 xylenes, Total ND ug/kg 1.8 0.30 1 xylenes, Total ND ug/kg 1.8 0.30 1 1.2-Dichlorosthene ND ug/kg 0.88 0.12 1 1.2-Dichlorosthene, Total ND ug/kg 0.88 0.12 1 Syrene ND ug/kg 8.8 0.17 1 2-Dichlorosthene ND ug/kg 8.8	1.3-Dichlorobenzene		ND		ua/ka	4.4	0.12	1
Methyl tert butyl ether ND ug/kg 1.8 0.07 1 p/m-Xylene ND ug/kg 1.8 0.31 1 o-Xylene ND ug/kg 1.8 0.30 1 xylenes, Total ND ug/kg 0.88 0.12 1 1,2-Dichloroethene ND ug/kg 0.88 0.12 1 1,2-Dichloroethene, Total ND ug/kg 8.8 0.12 1 Dibromomethane ND ug/kg 8.8 0.14 1 Styrene ND ug/kg 8.8 0.14 1 Dichlorodifluoromethane ND ug/kg 8.8 0.17 1 Carbon disulfide ND ug/kg 8.8 0.97 1 Carbon disulfide ND ug/kg 8.8 0.24 1 Carbon disulfide ND ug/kg 8.8 0.22 1 Viryl acetate ND ug/kg 8.8 0.12 1								
p/m-Xylene ND ug/kg 1.8 0.31 1 o-Xylene ND ug/kg 1.8 0.30 1 Xylenes, Total ND ug/kg 1.8 0.30 1 Xylenes, Total ND ug/kg 0.88 0.12 1 1.2-Dichloroethene, Total ND ug/kg 8.8 0.12 1 Dibrioroffilhoromethane ND ug/kg 8.8 0.14 1 Styrene ND ug/kg 8.8 0.17 1 Obchloroffilhoromethane ND ug/kg 8.8 0.17 1 Acetone 19 ug/kg 8.8 0.97 1 Carbon disulfide ND ug/kg 8.8 0.91 1 Carbon disulfide ND ug/kg 8.8 0.24 1 Carbon disulfide ND ug/kg 8.8 0.24 1 Carbon disulfide ND ug/kg 8.8 0.12 1								
o-Xylene ND ug/kg 1.8 0.30 1 Xylenes, Total ND ug/kg 1.8 0.30 1 icis-1,2-Dichloroethene ND ug/kg 0.88 0.12 1 1,2-Dichloroethene, Total ND ug/kg 0.88 0.12 1 Dichlorodifluoromethane ND ug/kg 1.8 0.35 1 Dichlorodifluoromethane ND ug/kg 1.8 0.35 1 Acatone 19 ug/kg 8.8 0.91 1 Carbon disulfide ND ug/kg 8.8 0.91 1 Carbon disulfide ND ug/kg 8.8 0.97 1 2-Butanone ND ug/kg 8.8 0.12 1 Viryl acatale ND ug/kg 8.8 0.12 1 4-Methyl-2-pentanone ND ug/kg 8.8 0.12 1 4-Methyl-2-pentanone ND ug/kg 8.8 0.14								
Xylenes, Total ND ug/kg 1.8 0.30 1 cis-1,2-Dichloroethene ND ug/kg 0.88 0.12 1 1,2-Dichloroethene, Total ND ug/kg 0.88 0.12 1 Dibromethane ND ug/kg 8.8 0.14 1 Styrene ND ug/kg 8.8 0.17 1 Dichlorodifluoromethane ND ug/kg 8.8 0.17 1 Acetone 19 ug/kg 8.8 0.91 1 Carbon disulfide ND ug/kg 8.8 0.91 1 Carbon disulfide ND ug/kg 8.8 0.97 1 2-Butanone ND ug/kg 8.8 0.12 1 Viryl acetate ND ug/kg 8.8 0.12 1 4-Methryl-2-pentanone ND ug/kg 8.8 0.12 1 1-2-Hexanone ND ug/kg 8.8 0.59 1 <td><u> </u></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	<u> </u>							
ND								
1,2-Dichloroethene, Total ND ug/kg 0.88 0.12 1 Dibromomethane ND ug/kg 8.8 0.14 1 Styrene ND ug/kg 1.8 0.35 1 Dichlorodiffuoromethane ND ug/kg 8.8 0.17 1 Acetone 19 ug/kg 8.8 0.91 1 Carbon disulfide ND ug/kg 8.8 0.97 1 2-Butanone ND ug/kg 8.8 0.97 1 Viryl acetate ND ug/kg 8.8 0.12 1 4-Methyl-2-pentanone ND ug/kg 8.8 0.12 1 4-Methyl-2-pentanone ND ug/kg 8.8 0.12 1 1,2,3-Trichloropropane ND ug/kg 8.8 0.12 1 2-Hexanone ND ug/kg 4.4 0.24 1 Bromochloromethane ND ug/kg 4.4 0.24 1								
Dibromomethane ND ug/kg 8.8 0.14 1 Styrene ND ug/kg 1.8 0.35 1 Dichlorodiffuoromethane ND ug/kg 8.8 0.17 1 Acetone 19 ug/kg 8.8 0.91 1 Carbon disulfide ND ug/kg 8.8 0.97 1 Carbon disulfide ND ug/kg 8.8 0.97 1 Sbutanone ND ug/kg 8.8 0.22 1 Vinyl acetate ND ug/kg 8.8 0.12 1 4-Methyl-2-pentanone ND ug/kg 8.8 0.12 1 4-Methyl-2-pentanone ND ug/kg 8.8 0.12 1 1,2-3-Trichloropropane ND ug/kg 8.8 0.14 1 2-Hexanone ND ug/kg 4.4 0.24 1 2-C-Dichloropropane ND ug/kg 4.4 0.20 1								
Styrene ND ug/kg 1.8 0.35 1 Dichlorodifluoromethane ND ug/kg 8.8 0.17 1 Acetone 19 ug/kg 8.8 0.91 1 Carbon disulfide ND ug/kg 8.8 0.97 1 2-Butanone ND ug/kg 8.8 0.24 1 Vinyl acetate ND ug/kg 8.8 0.12 1 4-Methyl-2-pentanone ND ug/kg 8.8 0.22 1 4-Methyl-2-pentanone ND ug/kg 8.8 0.22 1 4-Methyl-2-pentanone ND ug/kg 8.8 0.59 1 2-2-Hexanone ND ug/kg 8.8 0.59 1 Bromochloromethane ND ug/kg 8.8 0.59 1 1-2-Dibromoethane ND ug/kg 4.4 0.24 1 1,3-Dichloropropane ND ug/kg 4.4 0.13 1 </td <td>Dibromomethane</td> <td></td> <td>ND</td> <td></td> <td></td> <td>8.8</td> <td>0.14</td> <td>1</td>	Dibromomethane		ND			8.8	0.14	1
Dichlorodifluoromethane ND	Styrene		ND			1.8	0.35	1
Acetone 19 ug/kg 8.8 0.91 1 Carbon disulfide ND ug/kg 8.8 0.97 1 2-Butanone ND ug/kg 8.8 0.24 1 Vinyl acetate ND ug/kg 8.8 0.12 1 4-Methyl-2-pentanone ND ug/kg 8.8 0.22 1 4-Methyl-2-pentanone ND ug/kg 8.8 0.14 1 1,2,3-Trichloropropane ND ug/kg 8.8 0.14 1 2-Hexanone ND ug/kg 8.8 0.59 1 Bromochloromethane ND ug/kg 4.4 0.24 1 1,2-Dibromoethane ND ug/kg 4.4 0.20 1 1,3-Dichloropropane ND ug/kg 4.4 0.13 1 1,1,1,2-Tetrachloroethane ND ug/kg 0.88 0.28 1 Bromobenzene ND ug/kg 0.88 0.10 1 <td></td> <td></td> <td>ND</td> <td></td> <td></td> <td></td> <td></td> <td>1</td>			ND					1
Carbon disulfide ND ug/kg 8.8 0.97 1 2-Butanone ND ug/kg 8.8 0.24 1 Vinyl acetate ND ug/kg 8.8 0.12 1 4-Methyl-2-pentanone ND ug/kg 8.8 0.22 1 1,2,3-Trichloropropane ND ug/kg 8.8 0.14 1 2-Hexanone ND ug/kg 8.8 0.59 1 Bromochloromethane ND ug/kg 4.4 0.24 1 2,2-Dichloropropane ND ug/kg 4.4 0.20 1 1,2-Dibromoethane ND ug/kg 3.5 0.15 1 1,3-Dichloropropane ND ug/kg 4.4 0.13 1 1,1,1,2-Tetrachloroethane ND ug/kg 0.88 0.28 1 Bromobenzene ND ug/kg 0.88 0.10 1 n-Butylbenzene ND ug/kg 0.88 0.11 <	Acetone		19					
2-Butanone ND ug/kg 8.8 0.24 1 Vinyl acetate ND ug/kg 8.8 0.12 1 4-Methyl-2-pentanone ND ug/kg 8.8 0.22 1 1,2,3-Trichloropropane ND ug/kg 8.8 0.14 1 2-Hexanone ND ug/kg 8.8 0.59 1 Bromochloromethane ND ug/kg 4.4 0.24 1 2,2-Dichloropropane ND ug/kg 4.4 0.20 1 1,2-Dibromoethane ND ug/kg 4.4 0.20 1 1,2-Dibromopropane ND ug/kg 4.4 0.13 1 1,3-Dichloropropane ND ug/kg 4.4 0.13 1 1,1,1,2-Tetrachloroethane ND ug/kg 0.88 0.28 1 Bromobenzene ND ug/kg 0.88 0.10 1 n-Butylbenzene ND ug/kg 0.88 0.11 1 tert-Butylbenzene ND ug/kg 4.4 0.12	Carbon disulfide		ND			8.8	0.97	1
Vinyl acetate ND ug/kg 8.8 0.12 1 4-Methyl-2-pentanone ND ug/kg 8.8 0.22 1 1,2,3-Trichloropropane ND ug/kg 8.8 0.14 1 2-Hexanone ND ug/kg 8.8 0.59 1 Bromochloromethane ND ug/kg 4.4 0.24 1 2,2-Dichloropropane ND ug/kg 4.4 0.20 1 1,2-Dibromoethane ND ug/kg 4.4 0.20 1 1,3-Dichloropropane ND ug/kg 4.4 0.13 1 1,1,1,2-Tetrachloroethane ND ug/kg 0.88 0.28 1 Bromobenzene ND ug/kg 4.4 0.18 1 n-Butylbenzene ND ug/kg 0.88 0.10 1 sec-Butylbenzene ND ug/kg 4.4 0.12 1 tetr-Butylbenzene ND ug/kg 4.4 0.12	2-Butanone		ND			8.8	0.24	1
4-Methyl-2-pentanone ND ug/kg 8.8 0.22 1 1,2,3-Trichloropropane ND ug/kg 8.8 0.14 1 2-Hexanone ND ug/kg 8.8 0.59 1 Bromochloromethane ND ug/kg 4.4 0.24 1 2,2-Dichloropropane ND ug/kg 4.4 0.20 1 1,2-Dibromoethane ND ug/kg 3.5 0.15 1 1,3-Dichloropropane ND ug/kg 4.4 0.13 1 1,1,1,2-Tetrachloroethane ND ug/kg 0.88 0.28 1 Bromobenzene ND ug/kg 4.4 0.18 1 n-Butylbenzene ND ug/kg 0.88 0.10 1 sec-Butylbenzene ND ug/kg 0.88 0.11 1 tetr-Butylbenzene ND ug/kg 4.4 0.12 1 o-Chlorotoluene ND ug/kg 4.4 0.12	Vinyl acetate		ND			8.8	0.12	1
1,2,3-Trichloropropane ND ug/kg 8.8 0.14 1 2-Hexanone ND ug/kg 8.8 0.59 1 Bromochloromethane ND ug/kg 4.4 0.24 1 2,2-Dichloropropane ND ug/kg 4.4 0.20 1 1,2-Dibromoethane ND ug/kg 3.5 0.15 1 1,3-Dichloropropane ND ug/kg 4.4 0.13 1 1,1,1,2-Tetrachloroethane ND ug/kg 0.88 0.28 1 Bromobenzene ND ug/kg 4.4 0.18 1 n-Butylbenzene ND ug/kg 0.88 0.10 1 sec-Butylbenzene ND ug/kg 0.88 0.11 1 tert-Butylbenzene ND ug/kg 4.4 0.12 1 o-Chlorotoluene ND ug/kg 4.4 0.12 1 o-Chlorotoluene ND ug/kg 4.4 0.12 1 1,2-Dibromo-3-chloropropane ND ug/kg 4.4 0.	4-Methyl-2-pentanone		ND			8.8	0.22	1
2-Hexanone ND ug/kg 8.8 0.59 1 Bromochloromethane ND ug/kg 4.4 0.24 1 2,2-Dichloropropane ND ug/kg 4.4 0.20 1 1,2-Dibromoethane ND ug/kg 3.5 0.15 1 1,3-Dichloropropane ND ug/kg 4.4 0.13 1 1,1,1,2-Tetrachloroethane ND ug/kg 0.88 0.28 1 Bromobenzene ND ug/kg 4.4 0.18 1 n-Butylbenzene ND ug/kg 0.88 0.10 1 sec-Butylbenzene ND ug/kg 0.88 0.11 1 tert-Butylbenzene ND ug/kg 4.4 0.12 1 o-Chlorotoluene ND ug/kg 4.4 0.12 1 o-Chlorotoluene ND ug/kg 4.4 0.12 1 1,2-Dibromo-3-chloropropane ND ug/kg 4.4 0.35 1 Hexachlorobutadiene ND ug/kg 0.88 0.09	1,2,3-Trichloropropane		ND			8.8	0.14	1
Bromochloromethane ND ug/kg 4.4 0.24 1 2,2-Dichloropropane ND ug/kg 4.4 0.20 1 1,2-Dibromoethane ND ug/kg 3.5 0.15 1 1,3-Dichloropropane ND ug/kg 4.4 0.13 1 1,1,1,2-Tetrachloroethane ND ug/kg 0.88 0.28 1 Bromobenzene ND ug/kg 4.4 0.18 1 n-Butylbenzene ND ug/kg 0.88 0.10 1 sec-Butylbenzene ND ug/kg 0.88 0.11 1 tert-Butylbenzene ND ug/kg 4.4 0.12 1 o-Chlorotoluene ND ug/kg 4.4 0.12 1 o-Chlorotoluene ND ug/kg 4.4 0.12 1 1,2-Dibromo-3-chloropropane ND ug/kg 4.4 0.35 1 Hexachlorobutadiene ND ug/kg 0.88	2-Hexanone		ND			8.8	0.59	1
2,2-Dichloropropane ND ug/kg 4.4 0.20 1 1,2-Dibromoethane ND ug/kg 3.5 0.15 1 1,3-Dichloropropane ND ug/kg 4.4 0.13 1 1,1,1,2-Tetrachloroethane ND ug/kg 0.88 0.28 1 Bromobenzene ND ug/kg 4.4 0.18 1 n-Butylbenzene ND ug/kg 0.88 0.10 1 sec-Butylbenzene ND ug/kg 0.88 0.11 1 tert-Butylbenzene ND ug/kg 4.4 0.12 1 o-Chlorotoluene ND ug/kg 4.4 0.12 1 o-Chlorotoluene ND ug/kg 4.4 0.12 1 1,2-Dibromo-3-chloropropane ND ug/kg 4.4 0.35 1 Hexachlorobutadiene ND ug/kg 0.88 0.09 1 Isopropylbenzene ND ug/kg 0.88 0.11 1	Bromochloromethane		ND			4.4	0.24	1
1,2-Dibromoethane ND ug/kg 3.5 0.15 1 1,3-Dichloropropane ND ug/kg 4.4 0.13 1 1,1,1,2-Tetrachloroethane ND ug/kg 0.88 0.28 1 Bromobenzene ND ug/kg 4.4 0.18 1 n-Butylbenzene ND ug/kg 0.88 0.10 1 sec-Butylbenzene ND ug/kg 0.88 0.11 1 tert-Butylbenzene ND ug/kg 4.4 0.12 1 o-Chlorotoluene ND ug/kg 4.4 0.12 1 o-Chlorotoluene ND ug/kg 4.4 0.12 1 1,2-Dibromo-3-chloropropane ND ug/kg 4.4 0.35 1 Hexachlorobutadiene ND ug/kg 4.4 0.20 1 Isopropylteluene ND ug/kg 0.88 0.09 1 p-Isopropyltoluene ND ug/kg 0.88 0.11 1	2,2-Dichloropropane		ND			4.4	0.20	1
1,3-Dichloropropane ND ug/kg 4.4 0.13 1 1,1,1,2-Tetrachloroethane ND ug/kg 0.88 0.28 1 Bromobenzene ND ug/kg 4.4 0.18 1 n-Butylbenzene ND ug/kg 0.88 0.10 1 sec-Butylbenzene ND ug/kg 0.88 0.11 1 tert-Butylbenzene ND ug/kg 4.4 0.12 1 o-Chlorotoluene ND ug/kg 4.4 0.12 1 p-Chlorotoluene ND ug/kg 4.4 0.12 1 1,2-Dibromo-3-chloropropane ND ug/kg 4.4 0.35 1 Hexachlorobutadiene ND ug/kg 4.4 0.20 1 Isopropylbenzene ND ug/kg 0.88 0.09 1 p-Isopropyltoluene ND ug/kg 0.88 0.11 1	1,2-Dibromoethane		ND			3.5	0.15	1
1,1,1,2-Tetrachloroethane ND ug/kg 0.88 0.28 1 Bromobenzene ND ug/kg 4.4 0.18 1 n-Butylbenzene ND ug/kg 0.88 0.10 1 sec-Butylbenzene ND ug/kg 0.88 0.11 1 tert-Butylbenzene ND ug/kg 4.4 0.12 1 o-Chlorotoluene ND ug/kg 4.4 0.14 1 p-Chlorotoluene ND ug/kg 4.4 0.12 1 1,2-Dibromo-3-chloropropane ND ug/kg 4.4 0.35 1 Hexachlorobutadiene ND ug/kg 4.4 0.20 1 Isopropylbenzene ND ug/kg 0.88 0.09 1 p-Isopropyltoluene ND ug/kg 0.88 0.11 1	1,3-Dichloropropane		ND			4.4	0.13	1
n-Butylbenzene ND ug/kg 0.88 0.10 1 sec-Butylbenzene ND ug/kg 0.88 0.11 1 tert-Butylbenzene ND ug/kg 4.4 0.12 1 o-Chlorotoluene ND ug/kg 4.4 0.14 1 p-Chlorotoluene ND ug/kg 4.4 0.12 1 1,2-Dibromo-3-chloropropane ND ug/kg 4.4 0.35 1 Hexachlorobutadiene ND ug/kg 4.4 0.20 1 Isopropylbenzene ND ug/kg 0.88 0.09 1 p-Isopropyltoluene ND ug/kg 0.88 0.11 1	1,1,1,2-Tetrachloroethane		ND			0.88	0.28	1
n-Butylbenzene ND ug/kg 0.88 0.10 1 sec-Butylbenzene ND ug/kg 0.88 0.11 1 tert-Butylbenzene ND ug/kg 4.4 0.12 1 o-Chlorotoluene ND ug/kg 4.4 0.14 1 p-Chlorotoluene ND ug/kg 4.4 0.12 1 1,2-Dibromo-3-chloropropane ND ug/kg 4.4 0.35 1 Hexachlorobutadiene ND ug/kg 4.4 0.20 1 Isopropylbenzene ND ug/kg 0.88 0.09 1 p-Isopropyltoluene ND ug/kg 0.88 0.11 1	Bromobenzene		ND			4.4	0.18	1
tert-Butylbenzene ND ug/kg 4.4 0.12 1 o-Chlorotoluene ND ug/kg 4.4 0.14 1 p-Chlorotoluene ND ug/kg 4.4 0.12 1 1,2-Dibromo-3-chloropropane ND ug/kg 4.4 0.35 1 Hexachlorobutadiene ND ug/kg 4.4 0.20 1 Isopropylbenzene ND ug/kg 0.88 0.09 1 p-Isopropyltoluene ND ug/kg 0.88 0.11 1	n-Butylbenzene		ND			0.88	0.10	1
o-Chlorotoluene ND ug/kg 4.4 0.14 1 p-Chlorotoluene ND ug/kg 4.4 0.12 1 1,2-Dibromo-3-chloropropane ND ug/kg 4.4 0.35 1 Hexachlorobutadiene ND ug/kg 4.4 0.20 1 Isopropylbenzene ND ug/kg 0.88 0.09 1 p-Isopropyltoluene ND ug/kg 0.88 0.11 1	sec-Butylbenzene		ND		ug/kg	0.88	0.11	1
p-Chlorotoluene ND ug/kg 4.4 0.12 1 1,2-Dibromo-3-chloropropane ND ug/kg 4.4 0.35 1 Hexachlorobutadiene ND ug/kg 4.4 0.20 1 Isopropylbenzene ND ug/kg 0.88 0.09 1 p-Isopropyltoluene ND ug/kg 0.88 0.11 1	tert-Butylbenzene		ND		ug/kg	4.4	0.12	1
1,2-Dibromo-3-chloropropane ND ug/kg 4.4 0.35 1 Hexachlorobutadiene ND ug/kg 4.4 0.20 1 Isopropylbenzene ND ug/kg 0.88 0.09 1 p-Isopropyltoluene ND ug/kg 0.88 0.11 1	o-Chlorotoluene		ND		ug/kg	4.4	0.14	1
Hexachlorobutadiene ND ug/kg 4.4 0.20 1 Isopropylbenzene ND ug/kg 0.88 0.09 1 p-Isopropyltoluene ND ug/kg 0.88 0.11 1	p-Chlorotoluene		ND		ug/kg	4.4	0.12	1
Isopropylbenzene	1,2-Dibromo-3-chloropropa	ine	ND		ug/kg	4.4	0.35	1
p-Isopropyltoluene ND ug/kg 0.88 0.11 1	Hexachlorobutadiene		ND		ug/kg	4.4	0.20	1
	Isopropylbenzene		ND		ug/kg	0.88	0.09	1
Naphthalene ND ug/kg 4.4 0.12 1	p-Isopropyltoluene		ND		ug/kg	0.88	0.11	1
	Naphthalene		ND		ug/kg	4.4	0.12	1
Acrylonitrile ND ug/kg 8.8 0.45 1	Acrylonitrile		ND		ug/kg	8.8	0.45	1
n-Propylbenzene ND ug/kg 0.88 0.10 1	n-Propylbenzene		ND			0.88	0.10	1
1,2,3-Trichlorobenzene ND ug/kg 4.4 0.13 1	1,2,3-Trichlorobenzene		ND			4.4	0.13	1
1,2,4-Trichlorobenzene ND ug/kg 4.4 0.16 1	1,2,4-Trichlorobenzene		ND		ug/kg	4.4	0.16	1
1,3,5-Trimethylbenzene ND ug/kg 4.4 0.13 1	1,3,5-Trimethylbenzene		ND			4.4	0.13	1

Project Name: THE DAILY FREEMAN Lab Number: L1631369

Project Number: 16-159311.2 **Report Date:** 10/07/16

SAMPLE RESULTS

Lab ID: L1631369-06 Date Collected: 10/01/16 10:58

Client ID: B6 Date Received: 10/01/16
Sample Location: 79 HURLEY AVENUE, KINGSTON, NY 12401 Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by 8260/5035 - Westbe	orough Lab						
1,2,4-Trimethylbenzene	ND		ug/kg	4.4	0.12	1	
1,4-Dioxane	ND		ug/kg	88	13.	1	
p-Diethylbenzene	ND		ug/kg	3.5	0.14	1	
p-Ethyltoluene	ND		ug/kg	3.5	0.11	1	
1,2,4,5-Tetramethylbenzene	ND		ug/kg	3.5	0.11	1	
Ethyl ether	ND		ug/kg	4.4	0.23	1	
trans-1,4-Dichloro-2-butene	ND		ug/kg	4.4	0.34	1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	110		70-130	
Toluene-d8	101		70-130	
4-Bromofluorobenzene	101		70-130	
Dibromofluoromethane	100		70-130	

L1631369

Project Name: THE DAILY FREEMAN

Project Number: 16-159311.2

SAMPLE RESULTS

Report Date: 10/07/16

Lab ID:

L1631369-07

Client ID: B7

Sample Location: 79 HURLEY AVENUE, KINGSTON, NY 12401

Matrix:

Analytical Method: 1,8260C

Analytical Date: 10/07/16 14:57

Analyst: BD84% Percent Solids:

Date Collected: 10/01/16 12:29

Lab Number:

Date Received: 10/01/16

Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by 8260/5035 - W	estborough Lab					
Methylene chloride	ND		ug/kg	8.8	0.98	1
1,1-Dichloroethane	ND		ug/kg	1.3	0.08	1
Chloroform	ND		ug/kg	1.3	0.33	1
Carbon tetrachloride	ND		ug/kg	0.88	0.18	1
1,2-Dichloropropane	ND		ug/kg	3.1	0.20	1
Dibromochloromethane	ND		ug/kg	0.88	0.14	1
1,1,2-Trichloroethane	ND		ug/kg	1.3	0.27	1
Tetrachloroethene	ND		ug/kg	0.88	0.12	1
Chlorobenzene	ND		ug/kg	0.88	0.31	1
Trichlorofluoromethane	ND		ug/kg	4.4	0.34	1
1,2-Dichloroethane	ND		ug/kg	0.88	0.10	1
1,1,1-Trichloroethane	ND		ug/kg	0.88	0.10	1
Bromodichloromethane	ND		ug/kg	0.88	0.15	1
trans-1,3-Dichloropropene	ND		ug/kg	0.88	0.11	1
cis-1,3-Dichloropropene	ND		ug/kg	0.88	0.10	1
1,3-Dichloropropene, Total	ND		ug/kg	0.88	0.10	1
1,1-Dichloropropene	ND		ug/kg	4.4	0.12	1
Bromoform	ND		ug/kg	3.5	0.21	1
1,1,2,2-Tetrachloroethane	ND		ug/kg	0.88	0.09	1
Benzene	ND		ug/kg	0.88	0.10	1
Toluene	ND		ug/kg	1.3	0.17	1
Ethylbenzene	ND		ug/kg	0.88	0.11	1
Chloromethane	ND		ug/kg	4.4	0.26	1
Bromomethane	ND		ug/kg	1.8	0.30	1
Vinyl chloride	ND		ug/kg	1.8	0.10	1
Chloroethane	ND		ug/kg	1.8	0.28	1
1,1-Dichloroethene	ND		ug/kg	0.88	0.23	1
trans-1,2-Dichloroethene	ND		ug/kg	1.3	0.19	1
Trichloroethene	ND		ug/kg	0.88	0.11	1
1,2-Dichlorobenzene	ND		ug/kg	4.4	0.14	1
I,Z-DICNIOFODENZENE	NU		ug/kg	4.4	0.14	1

Project Name: THE DAILY FREEMAN Lab Number: L1631369

Project Number: 16-159311.2 **Report Date:** 10/07/16

SAMPLE RESULTS

Lab ID: Date Collected: 10/01/16 12:29

Client ID: B7 Date Received: 10/01/16
Sample Location: 79 HURLEY AVENUE, KINGSTON, NY 12401 Field Prep: Not Specified

Sample Location.	19 HURLET AVENUE, KINGSTO	71N, INT 12401		rieid Prep	•	Not Specified
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by	8260/5035 - Westborough Lab					
1,3-Dichlorobenzene	ND		ug/kg	4.4	0.12	1
1,4-Dichlorobenzene	ND		ug/kg	4.4	0.12	 1
Methyl tert butyl ether	ND		ug/kg	1.8	0.08	1
p/m-Xylene	ND		ug/kg	1.8	0.31	1
o-Xylene	ND		ug/kg	1.8	0.30	1
Xylenes, Total	ND		ug/kg	1.8	0.30	1
cis-1,2-Dichloroethene	ND		ug/kg	0.88	0.13	1
1,2-Dichloroethene, Total	ND		ug/kg	0.88	0.13	1
Dibromomethane	ND		ug/kg	8.8	0.14	1
Styrene	ND		ug/kg	1.8	0.36	1
Dichlorodifluoromethane	ND		ug/kg	8.8	0.17	1
Acetone	ND		ug/kg	8.8	0.92	 1
Carbon disulfide	ND		ug/kg	8.8	0.97	1
2-Butanone	ND		ug/kg	8.8	0.24	1
Vinyl acetate	ND		ug/kg	8.8	0.12	1
4-Methyl-2-pentanone	ND		ug/kg	8.8	0.22	1
1,2,3-Trichloropropane	ND		ug/kg	8.8	0.14	1
2-Hexanone	ND		ug/kg	8.8	0.59	1
Bromochloromethane	ND		ug/kg	4.4	0.24	1
2,2-Dichloropropane	ND		ug/kg	4.4	0.20	1
1,2-Dibromoethane	ND		ug/kg	3.5	0.15	1
1,3-Dichloropropane	ND		ug/kg	4.4	0.13	1
1,1,1,2-Tetrachloroethane	ND		ug/kg	0.88	0.28	1
Bromobenzene	ND		ug/kg	4.4	0.18	1
n-Butylbenzene	ND		ug/kg	0.88	0.10	1
sec-Butylbenzene	ND		ug/kg	0.88	0.11	1
tert-Butylbenzene	ND		ug/kg	4.4	0.12	1
o-Chlorotoluene	ND		ug/kg	4.4	0.14	1
p-Chlorotoluene	ND		ug/kg	4.4	0.12	1
1,2-Dibromo-3-chloropropar	ne ND		ug/kg	4.4	0.35	1
Hexachlorobutadiene	ND		ug/kg	4.4	0.20	1
Isopropylbenzene	ND		ug/kg	0.88	0.09	1
p-Isopropyltoluene	ND		ug/kg	0.88	0.11	1
Naphthalene	ND		ug/kg	4.4	0.12	1
Acrylonitrile	ND		ug/kg	8.8	0.45	1
n-Propylbenzene	ND		ug/kg	0.88	0.10	1
1,2,3-Trichlorobenzene	ND		ug/kg	4.4	0.13	1
1,2,4-Trichlorobenzene	ND		ug/kg	4.4	0.16	1
1,3,5-Trimethylbenzene	ND		ug/kg	4.4	0.13	1
, ,yzz	2		~9,1.9	***		•

Project Name: THE DAILY FREEMAN Lab Number: L1631369

Project Number: 16-159311.2 **Report Date:** 10/07/16

SAMPLE RESULTS

Lab ID: L1631369-07 Date Collected: 10/01/16 12:29

Client ID: B7 Date Received: 10/01/16
Sample Location: 79 HURLEY AVENUE, KINGSTON, NY 12401 Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by 8260/5035 - Westl	oorough Lab						
1,2,4-Trimethylbenzene	ND		ug/kg	4.4	0.12	1	
1,4-Dioxane	ND		ug/kg	88	13.	1	
p-Diethylbenzene	ND		ug/kg	3.5	0.14	1	
p-Ethyltoluene	ND		ug/kg	3.5	0.11	1	
1,2,4,5-Tetramethylbenzene	ND		ug/kg	3.5	0.12	1	
Ethyl ether	ND		ug/kg	4.4	0.23	1	
trans-1,4-Dichloro-2-butene	ND		ug/kg	4.4	0.35	1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
	101		70-130	
1,2-Dichloroethane-d4 Toluene-d8	101		70-130 70-130	
4-Bromofluorobenzene	101		70-130	
Dibromofluoromethane	98		70-130	

Project Name: THE DAILY FREEMAN

Project Number: 16-159311.2

SAMPLE RESULTS

L1631369

Lab Number:

Report Date: 10/07/16

Lab ID: L1631369-08

Client ID: B8

Sample Location: 79 HURLEY AVENUE, KINGSTON, NY 12401

Matrix: Analytical Method: 1,8260C

Analytical Date: 10/07/16 15:23

PΡ Analyst: 85% Percent Solids:

Date Collected: 10/01/16 12:41 Date Received: 10/01/16

Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by 8260/5035 - V	estborough Lab					
Methylene chloride	ND		ug/kg	8.4	0.93	1
1,1-Dichloroethane	ND		ug/kg	1.3	0.07	1
Chloroform	ND		ug/kg	1.3	0.31	1
Carbon tetrachloride	ND		ug/kg	0.84	0.18	1
1,2-Dichloropropane	ND		ug/kg	3.0	0.19	1
Dibromochloromethane	ND		ug/kg	0.84	0.13	1
1,1,2-Trichloroethane	ND		ug/kg	1.3	0.26	1
Tetrachloroethene	ND		ug/kg	0.84	0.12	1
Chlorobenzene	ND		ug/kg	0.84	0.29	1
Trichlorofluoromethane	ND		ug/kg	4.2	0.33	1
1,2-Dichloroethane	ND		ug/kg	0.84	0.10	1
1,1,1-Trichloroethane	ND		ug/kg	0.84	0.09	1
Bromodichloromethane	ND		ug/kg	0.84	0.15	1
trans-1,3-Dichloropropene	ND		ug/kg	0.84	0.10	1
cis-1,3-Dichloropropene	ND		ug/kg	0.84	0.10	1
1,3-Dichloropropene, Total	ND		ug/kg	0.84	0.10	1
1,1-Dichloropropene	ND		ug/kg	4.2	0.12	1
Bromoform	ND		ug/kg	3.4	0.20	1
1,1,2,2-Tetrachloroethane	ND		ug/kg	0.84	0.09	1
Benzene	ND		ug/kg	0.84	0.10	1
Toluene	ND		ug/kg	1.3	0.16	1
Ethylbenzene	ND		ug/kg	0.84	0.11	1
Chloromethane	ND		ug/kg	4.2	0.25	1
Bromomethane	ND		ug/kg	1.7	0.28	1
Vinyl chloride	ND		ug/kg	1.7	0.10	1
Chloroethane	ND		ug/kg	1.7	0.27	1
1,1-Dichloroethene	ND		ug/kg	0.84	0.22	1
trans-1,2-Dichloroethene	ND		ug/kg	1.3	0.18	1
Trichloroethene	ND		ug/kg	0.84	0.10	1
1,2-Dichlorobenzene	ND		ug/kg	4.2	0.13	1

Project Name: THE DAILY FREEMAN Lab Number: L1631369

Project Number: 16-159311.2 **Report Date:** 10/07/16

SAMPLE RESULTS

Lab ID: Date Collected: 10/01/16 12:41

Client ID: B8 Date Received: 10/01/16
Sample Location: 79 HURLEY AVENUE, KINGSTON, NY 12401 Field Prep: Not Specified

bampie Location. 19 HoreLT	TREET AVENUE, KINGOTON, INT 12401			r leid r rep.		Not Specified
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by 8260/5035 - \	Westborough Lab					
1,3-Dichlorobenzene	ND		ug/kg	4.2	0.11	1
1,4-Dichlorobenzene	ND		ug/kg	4.2	0.12	1
Methyl tert butyl ether	ND		ug/kg	1.7	0.07	1
p/m-Xylene	ND		ug/kg	1.7	0.30	1
o-Xylene	ND		ug/kg	1.7	0.28	1
Xylenes, Total	ND		ug/kg	1.7	0.28	1
cis-1,2-Dichloroethene	ND		ug/kg	0.84	0.12	1
1,2-Dichloroethene, Total	ND		ug/kg	0.84	0.12	1
Dibromomethane	ND		ug/kg	8.4	0.14	1
Styrene	ND		ug/kg	1.7	0.34	1
Dichlorodifluoromethane	ND		ug/kg	8.4	0.16	1
Acetone	21		ug/kg	8.4	0.87	1
Carbon disulfide	ND		ug/kg	8.4	0.93	1
2-Butanone	3.3	J	ug/kg	8.4	0.23	1
Vinyl acetate	ND		ug/kg	8.4	0.11	1
4-Methyl-2-pentanone	ND		ug/kg	8.4	0.21	1
1,2,3-Trichloropropane	ND		ug/kg	8.4	0.14	1
2-Hexanone	ND		ug/kg	8.4	0.56	1
Bromochloromethane	ND		ug/kg	4.2	0.23	1
2,2-Dichloropropane	ND		ug/kg	4.2	0.19	1
1,2-Dibromoethane	ND		ug/kg	3.4	0.15	1
1,3-Dichloropropane	ND		ug/kg	4.2	0.12	1
1,1,1,2-Tetrachloroethane	ND		ug/kg	0.84	0.27	1
Bromobenzene	ND		ug/kg	4.2	0.18	1
n-Butylbenzene	ND		ug/kg	0.84	0.10	1
sec-Butylbenzene	ND		ug/kg	0.84	0.10	1
tert-Butylbenzene	ND		ug/kg	4.2	0.11	1
o-Chlorotoluene	ND		ug/kg	4.2	0.13	1
p-Chlorotoluene	ND		ug/kg	4.2	0.11	1
1,2-Dibromo-3-chloropropane	ND		ug/kg	4.2	0.33	1
Hexachlorobutadiene	ND		ug/kg	4.2	0.19	1
Isopropylbenzene	ND		ug/kg	0.84	0.09	1
p-Isopropyltoluene	ND		ug/kg	0.84	0.10	1
Naphthalene	ND		ug/kg	4.2	0.12	1
Acrylonitrile	ND		ug/kg	8.4	0.43	1
n-Propylbenzene	ND		ug/kg	0.84	0.09	1
1,2,3-Trichlorobenzene	ND		ug/kg	4.2	0.12	1
1,2,4-Trichlorobenzene	ND		ug/kg	4.2	0.15	1
1,3,5-Trimethylbenzene	ND		ug/kg	4.2	0.12	1
•						

Project Name: THE DAILY FREEMAN Lab Number: L1631369

Project Number: 16-159311.2 **Report Date:** 10/07/16

SAMPLE RESULTS

Lab ID: Date Collected: 10/01/16 12:41

Client ID: B8 Date Received: 10/01/16
Sample Location: 79 HURLEY AVENUE, KINGSTON, NY 12401 Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by 8260/5035 - V	Vestborough Lab						
1,2,4-Trimethylbenzene	ND		ug/kg	4.2	0.12	1	
1,4-Dioxane	ND		ug/kg	84	12.	1	
p-Diethylbenzene	ND		ug/kg	3.4	0.13	1	
p-Ethyltoluene	ND		ug/kg	3.4	0.10	1	
1,2,4,5-Tetramethylbenzene	ND		ug/kg	3.4	0.11	1	
Ethyl ether	ND		ug/kg	4.2	0.22	1	
trans-1,4-Dichloro-2-butene	ND		ug/kg	4.2	0.33	1	

_			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	103		70-130	
Toluene-d8	102		70-130	
4-Bromofluorobenzene	102		70-130	
Dibromofluoromethane	99		70-130	

L1631369

10/01/16 11:09

Not Specified

10/01/16

Project Name: THE DAILY FREEMAN

Project Number: 16-159311.2

SAMPLE RESULTS

Lab Number:

Date Collected:

Date Received:

Field Prep:

Report Date: 10/07/16

Lab ID: L1631369-09

Client ID: B2-GW

Sample Location: 79 HURLEY AVENUE, KINGSTON, NY 12401

Matrix: Analytical Method: 1,8260C Analytical Date: 10/05/16 18:34

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westboro	ugh Lab						
Methylene chloride	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1	
Chloroform	ND		ug/l	2.5	0.70	1	
Carbon tetrachloride	ND		ug/l	0.50	0.13	1	
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1	
Dibromochloromethane	ND		ug/l	0.50	0.15	1	
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1	
Tetrachloroethene	ND		ug/l	0.50	0.18	1	
Chlorobenzene	ND		ug/l	2.5	0.70	1	
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1	
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1	
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1	
Bromodichloromethane	ND		ug/l	0.50	0.19	1	
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1	
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1	
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1	
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1	
Bromoform	ND		ug/l	2.0	0.65	1	
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1	
Benzene	ND		ug/l	0.50	0.16	1	
Toluene	ND		ug/l	2.5	0.70	1	
Ethylbenzene	ND		ug/l	2.5	0.70	1	
Chloromethane	ND		ug/l	2.5	0.70	1	
Bromomethane	ND		ug/l	2.5	0.70	1	
Vinyl chloride	ND		ug/l	1.0	0.07	1	
Chloroethane	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1	
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1	
Trichloroethene	ND		ug/l	0.50	0.18	1	
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1	

Project Name: THE DAILY FREEMAN Lab Number: L1631369

Project Number: 16-159311.2 **Report Date:** 10/07/16

SAMPLE RESULTS

Lab ID: Date Collected: 10/01/16 11:09

Client ID: B2-GW Date Received: 10/01/16
Sample Location: 79 HURLEY AVENUE, KINGSTON, NY 12401 Field Prep: Not Specified

Sample Location:	79 HURLEY AVENUE, KINGS	TON, NY 1240	1	Field Pre	ep:	Not Specified
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	y GC/MS - Westborough Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	3.1		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Xylenes, Total	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	ND		ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND		ug/l	5.0	1.5	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
Vinyl acetate	ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloroprop	ane ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1

Project Name: THE DAILY FREEMAN Lab Number: L1631369

Project Number: 16-159311.2 **Report Date:** 10/07/16

SAMPLE RESULTS

Lab ID: Date Collected: 10/01/16 11:09

Client ID: B2-GW Date Received: 10/01/16
Sample Location: 79 HURLEY AVENUE, KINGSTON, NY 12401 Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westboro	ugh Lab						
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
p-Diethylbenzene	ND		ug/l	2.0	0.70	1	
p-Ethyltoluene	ND		ug/l	2.0	0.70	1	
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1	
Ethyl ether	ND		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	105		70-130	
Toluene-d8	98		70-130	
4-Bromofluorobenzene	109		70-130	
Dibromofluoromethane	101		70-130	

10/01/16 11:17

Not Specified

10/01/16

Project Name: THE DAILY FREEMAN

Project Number: 16-159311.2

SAMPLE RESULTS

L1631369

Lab Number:

Date Collected:

Date Received:

Field Prep:

Report Date: 10/07/16

Lab ID: D L1631369-10

Client ID: B4-GW

Sample Location: 79 HURLEY AVENUE, KINGSTON, NY 12401

Matrix: Analytical Method: 1,8260C Analytical Date: 10/06/16 14:02

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborou	gh Lab					
Methylene chloride	ND		ug/l	25	7.0	10
1,1-Dichloroethane	ND		ug/l	25	7.0	10
Chloroform	ND		ug/l	25	7.0	10
Carbon tetrachloride	ND		ug/l	5.0	1.3	10
1,2-Dichloropropane	ND		ug/l	10	1.4	10
Dibromochloromethane	ND		ug/l	5.0	1.5	10
1,1,2-Trichloroethane	ND		ug/l	15	5.0	10
Tetrachloroethene	ND		ug/l	5.0	1.8	10
Chlorobenzene	ND		ug/l	25	7.0	10
Trichlorofluoromethane	ND		ug/l	25	7.0	10
1,2-Dichloroethane	ND		ug/l	5.0	1.3	10
1,1,1-Trichloroethane	ND		ug/l	25	7.0	10
Bromodichloromethane	ND		ug/l	5.0	1.9	10
trans-1,3-Dichloropropene	ND		ug/l	5.0	1.6	10
cis-1,3-Dichloropropene	ND		ug/l	5.0	1.4	10
1,3-Dichloropropene, Total	ND		ug/l	5.0	1.4	10
1,1-Dichloropropene	ND		ug/l	25	7.0	10
Bromoform	ND		ug/l	20	6.5	10
1,1,2,2-Tetrachloroethane	ND		ug/l	5.0	1.7	10
Benzene	43		ug/l	5.0	1.6	10
Toluene	8.9	J	ug/l	25	7.0	10
Ethylbenzene	340		ug/l	25	7.0	10
Chloromethane	ND		ug/l	25	7.0	10
Bromomethane	ND		ug/l	25	7.0	10
Vinyl chloride	ND		ug/l	10	0.71	10
Chloroethane	ND		ug/l	25	7.0	10
1,1-Dichloroethene	ND		ug/l	5.0	1.7	10
trans-1,2-Dichloroethene	ND		ug/l	25	7.0	10
Trichloroethene	ND		ug/l	5.0	1.8	10
1,2-Dichlorobenzene	ND		ug/l	25	7.0	10

Project Name: THE DAILY FREEMAN Lab Number: L1631369

Project Number: 16-159311.2 **Report Date:** 10/07/16

SAMPLE RESULTS

Lab ID: L1631369-10 D Date Collected: 10/01/16 11:17

Client ID: B4-GW Date Received: 10/01/16
Sample Location: 79 HURLEY AVENUE, KINGSTON, NY 12401 Field Prep: Not Specified

bample Location. 19 HoreLT	AVENUE, KINGOTO	14, 141 12-101		i icia i i	- -ρ.	Not Specified
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
1,3-Dichlorobenzene	ND		ug/l	25	7.0	10
1,4-Dichlorobenzene	ND		ug/l	25	7.0	10
Methyl tert butyl ether	ND		ug/l	25	7.0	10
o/m-Xylene	280		ug/l	25	7.0	10
o-Xylene	20	J	ug/l	25	7.0	10
Xylenes, Total	300	J	ug/l	25	7.0	10
cis-1,2-Dichloroethene	ND		ug/l	25	7.0	10
1,2-Dichloroethene, Total	ND		ug/l	25	7.0	10
Dibromomethane	ND		ug/l	50	10.	10
1,2,3-Trichloropropane	ND		ug/l	25	7.0	10
Acrylonitrile	ND		ug/l	50	15.	10
Styrene	ND		ug/l	25	7.0	10
Dichlorodifluoromethane	ND		ug/l	50	10.	10
Acetone	ND		ug/l	50	15.	10
Carbon disulfide	ND		ug/l	50	10.	10
2-Butanone	ND		ug/l	50	19.	10
/inyl acetate	ND		ug/l	50	10.	10
1-Methyl-2-pentanone	ND		ug/l	50	10.	10
2-Hexanone	ND		ug/l	50	10.	10
Bromochloromethane	ND		ug/l	25	7.0	10
2,2-Dichloropropane	ND		ug/l	25	7.0	10
,2-Dibromoethane	ND		ug/l	20	6.5	10
,3-Dichloropropane	ND		ug/l	25	7.0	10
,1,1,2-Tetrachloroethane	ND		ug/l	25	7.0	10
Bromobenzene	ND		ug/l	25	7.0	10
n-Butylbenzene	21	J	ug/l	25	7.0	10
sec-Butylbenzene	ND		ug/l	25	7.0	10
ert-Butylbenzene	ND		ug/l	25	7.0	10
o-Chlorotoluene	ND		ug/l	25	7.0	10
o-Chlorotoluene	ND		ug/l	25	7.0	10
,2-Dibromo-3-chloropropane	ND		ug/l	25	7.0	10
Hexachlorobutadiene	ND		ug/l	25	7.0	10
sopropylbenzene	30		ug/l	25	7.0	10
o-Isopropyltoluene	ND		ug/l	25	7.0	10
Naphthalene	61		ug/l	25	7.0	10
n-Propylbenzene	87		ug/l	25	7.0	10
1,2,3-Trichlorobenzene	ND		ug/l	25	7.0	10
,2,4-Trichlorobenzene	ND		ug/l	25	7.0	10
1,3,5-Trimethylbenzene	18	J	ug/l	25	7.0	10

Project Name: THE DAILY FREEMAN Lab Number: L1631369

Project Number: 16-159311.2 **Report Date:** 10/07/16

SAMPLE RESULTS

Lab ID: L1631369-10 D Date Collected: 10/01/16 11:17

Client ID: B4-GW Date Received: 10/01/16
Sample Location: 79 HURLEY AVENUE, KINGSTON, NY 12401 Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Wes	tborough Lab						
1,2,4-Trimethylbenzene	720		ug/l	25	7.0	10	
1,4-Dioxane	ND		ug/l	2500	610	10	
p-Diethylbenzene	24		ug/l	20	7.0	10	
p-Ethyltoluene	230		ug/l	20	7.0	10	
1,2,4,5-Tetramethylbenzene	77		ug/l	20	5.4	10	
Ethyl ether	ND		ug/l	25	7.0	10	
trans-1,4-Dichloro-2-butene	ND		ug/l	25	7.0	10	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	94		70-130	
Toluene-d8	102		70-130	
4-Bromofluorobenzene	102		70-130	
Dibromofluoromethane	84		70-130	

L1631369

Dilution Factor

Project Name: THE DAILY FREEMAN

Project Number: 16-159311.2

SAMPLE RESULTS

Qualifier

Result

Units

RL

Report Date:

Lab Number:

10/07/16

Lab ID: L1631369-11

Client ID: B6-GW

Sample Location: 79 HURLEY AVENUE, KINGSTON, NY 12401

Matrix: Water Analytical Method: 1,8260C Analytical Date: 10/05/16 21:08

Analyst: PD

Parameter

Date Collected:	10/01/16 11:37
Date Received:	10/01/16
Field Prep:	Not Specified

MDL

Volatile Organics by GC/MS - We	stborough Lab						
Methylene chloride	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1	
Chloroform	ND		ug/l	2.5	0.70	1	
Carbon tetrachloride	ND		ug/l	0.50	0.13	1	
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1	
Dibromochloromethane	ND		ug/l	0.50	0.15	1	
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1	
Tetrachloroethene	ND		ug/l	0.50	0.18	1	
Chlorobenzene	ND		ug/l	2.5	0.70	1	
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1	
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1	
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1	
Bromodichloromethane	ND		ug/l	0.50	0.19	1	
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1	
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1	
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1	
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1	
Bromoform	ND		ug/l	2.0	0.65	1	
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1	
Benzene	1.3		ug/l	0.50	0.16	1	
Toluene	1.0	J	ug/l	2.5	0.70	1	
Ethylbenzene	ND		ug/l	2.5	0.70	1	
Chloromethane	ND		ug/l	2.5	0.70	1	
Bromomethane	ND		ug/l	2.5	0.70	1	
Vinyl chloride	ND		ug/l	1.0	0.07	1	
Chloroethane	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1	
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1	
Trichloroethene	ND		ug/l	0.50	0.18	1	
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1	

Project Name: THE DAILY FREEMAN Lab Number: L1631369

Project Number: 16-159311.2 **Report Date:** 10/07/16

SAMPLE RESULTS

Lab ID: Date Collected: 10/01/16 11:37

Client ID: B6-GW Date Received: 10/01/16
Sample Location: 79 HURLEY AVENUE, KINGSTON, NY 12401 Field Prep: Not Specified

bample Location. 19 HoreLT	AVENUE, KINGSTO	11, 111 12-101		i icia i i	- ρ.	Not Specified
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	8.8		ug/l	2.5	0.70	1
o/m-Xylene	5.6		ug/l	2.5	0.70	1
o-Xylene	2.8		ug/l	2.5	0.70	1
(ylenes, Total	8.4		ug/l	2.5	0.70	1
sis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
,2-Dichloroethene, Total	ND		ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND		ug/l	5.0	1.5	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	7.1		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
/inyl acetate	ND		ug/l	5.0	1.0	1
l-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
ert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
sopropylbenzene	4.0		ug/l	2.5	0.70	1
o-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	6.4		ug/l	2.5	0.70	1
n-Propylbenzene	9.7		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	2.0	J	ug/l	2.5	0.70	1

Project Name: THE DAILY FREEMAN Lab Number: L1631369

Project Number: 16-159311.2 **Report Date:** 10/07/16

SAMPLE RESULTS

Lab ID: Date Collected: 10/01/16 11:37

Client ID: B6-GW Date Received: 10/01/16
Sample Location: 79 HURLEY AVENUE, KINGSTON, NY 12401 Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Wes	tborough Lab						
1,2,4-Trimethylbenzene	3.0		ug/l	2.5	0.70	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
p-Diethylbenzene	1.3	J	ug/l	2.0	0.70	1	
p-Ethyltoluene	ND		ug/l	2.0	0.70	1	
1,2,4,5-Tetramethylbenzene	1.7	J	ug/l	2.0	0.54	1	
Ethyl ether	ND		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1.2-Dichloroethane-d4	102		70-130	
Toluene-d8	100		70-130	
4-Bromofluorobenzene	110		70-130	
Dibromofluoromethane	95		70-130	

L1631369

10/01/16 12:50

Not Specified

10/01/16

Project Name: THE DAILY FREEMAN

Project Number: 16-159311.2

.

Report Date: 10/07/16

Lab Number:

Date Collected:

Date Received:

Field Prep:

SAMPLE RESULTS

Lab ID: L1631369-12

Client ID: B7-GW

Sample Location: 79 HURLEY AVENUE, KINGSTON, NY 12401

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 10/06/16 14:30

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboro	ugh Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	0.19	J	ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	0.27	J	ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	1.2	J	ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: THE DAILY FREEMAN Lab Number: L1631369

Project Number: 16-159311.2 **Report Date:** 10/07/16

SAMPLE RESULTS

Lab ID: Date Collected: 10/01/16 12:50

Client ID: B7-GW Date Received: 10/01/16
Sample Location: 79 HURLEY AVENUE, KINGSTON, NY 12401 Field Prep: Not Specified

Dample Location. 19 HONLL I	AVENUE, KINGOTO	14, 141 12-101		i icia i i	- ρ.	Not Specified
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
o/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
(ylenes, Total	ND		ug/l	2.5	0.70	1
sis-1,2-Dichloroethene	11		ug/l	2.5	0.70	1
,2-Dichloroethene, Total	12	J	ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND		ug/l	5.0	1.5	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	2.3	J	ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
/inyl acetate	ND		ug/l	5.0	1.0	1
l-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
ert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
sopropylbenzene	ND		ug/l	2.5	0.70	1
o-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	1.2	J	ug/l	2.5	0.70	1
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1

Project Name: THE DAILY FREEMAN Lab Number: L1631369

Project Number: 16-159311.2 **Report Date:** 10/07/16

SAMPLE RESULTS

Lab ID: Date Collected: 10/01/16 12:50

Client ID: B7-GW Date Received: 10/01/16
Sample Location: 79 HURLEY AVENUE, KINGSTON, NY 12401 Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westbord	ough Lab						
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
p-Diethylbenzene	ND		ug/l	2.0	0.70	1	
p-Ethyltoluene	ND		ug/l	2.0	0.70	1	
1,2,4,5-Tetramethylbenzene	0.58	J	ug/l	2.0	0.54	1	
Ethyl ether	ND		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	92		70-130	
Toluene-d8	101		70-130	
4-Bromofluorobenzene	107		70-130	
Dibromofluoromethane	96		70-130	

Project Name: THE DAILY FREEMAN Lab Number: L1631369

Project Number: 16-159311.2 **Report Date:** 10/07/16

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 1,8260C 10/05/16 11:42

Parameter	Result	Qualifier Units	s RL	MDL	
/olatile Organics by GC/MS	- Westborough Lal	o for sample(s):	09,11 Batch:	WG939274-5	
Methylene chloride	ND	ug/	2.5	0.70	
1,1-Dichloroethane	ND	ug/	2.5	0.70	
Chloroform	ND	ug/	2.5	0.70	
Carbon tetrachloride	ND	ug/	0.50	0.13	
1,2-Dichloropropane	ND	ug/	1.0	0.14	
Dibromochloromethane	ND	ug/	0.50	0.15	
1,1,2-Trichloroethane	ND	ug/	1.5	0.50	
Tetrachloroethene	ND	ug/	0.50	0.18	
Chlorobenzene	ND	ug/	2.5	0.70	
Trichlorofluoromethane	ND	ug/	2.5	0.70	
1,2-Dichloroethane	ND	ug/	0.50	0.13	
1,1,1-Trichloroethane	ND	ug/	2.5	0.70	
Bromodichloromethane	ND	ug/	0.50	0.19	
trans-1,3-Dichloropropene	ND	ug/	0.50	0.16	
cis-1,3-Dichloropropene	ND	ug/	0.50	0.14	
1,3-Dichloropropene, Total	ND	ug/	0.50	0.14	
1,1-Dichloropropene	ND	ug/	2.5	0.70	
Bromoform	ND	ug/	2.0	0.65	
1,1,2,2-Tetrachloroethane	ND	ug/	0.50	0.17	
Benzene	ND	ug/	0.50	0.16	
Toluene	ND	ug/	2.5	0.70	
Ethylbenzene	ND	ug/	2.5	0.70	
Chloromethane	ND	ug/	2.5	0.70	
Bromomethane	ND	ug/	2.5	0.70	
Vinyl chloride	ND	ug/	1.0	0.07	
Chloroethane	ND	ug/	2.5	0.70	
1,1-Dichloroethene	ND	ug/	0.50	0.17	
trans-1,2-Dichloroethene	ND	ug/	2.5	0.70	
Trichloroethene	ND	ug/	0.50	0.18	

Project Name: THE DAILY FREEMAN Lab Number:

Project Number: 16-159311.2 **Report Date:** 10/07/16

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 1,8260C 10/05/16 11:42

Parameter	Result	Qualifier Units	s RL	MDL	
olatile Organics by GC/MS	- Westborough La	b for sample(s):	09,11 Batch:	WG939274-5	
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70	
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70	
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70	
Methyl tert butyl ether	ND	ug/l	1 2.5	0.70	
p/m-Xylene	ND	ug/l	2.5	0.70	
o-Xylene	ND	ug/l	2.5	0.70	
Xylenes, Total	ND	ug/l	2.5	0.70	
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70	
1,2-Dichloroethene, Total	ND	ug/l	2.5	0.70	
Dibromomethane	ND	ug/l	5.0	1.0	
1,2,3-Trichloropropane	ND	ug/l	2.5	0.70	
Acrylonitrile	ND	ug/l	5.0	1.5	
Styrene	ND	ug/l	2.5	0.70	
Dichlorodifluoromethane	ND	ug/l	5.0	1.0	
Acetone	ND	ug/l	5.0	1.5	
Carbon disulfide	ND	ug/l	5.0	1.0	
2-Butanone	ND	ug/l	5.0	1.9	
Vinyl acetate	ND	ug/l	5.0	1.0	
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0	
2-Hexanone	ND	ug/l	5.0	1.0	
Bromochloromethane	ND	ug/l	2.5	0.70	
2,2-Dichloropropane	ND	ug/l	2.5	0.70	
1,2-Dibromoethane	ND	ug/l	2.0	0.65	
1,3-Dichloropropane	ND	ug/l	2.5	0.70	
1,1,1,2-Tetrachloroethane	ND	ug/l	2.5	0.70	
Bromobenzene	ND	ug/l	2.5	0.70	
n-Butylbenzene	ND	ug/l	2.5	0.70	
sec-Butylbenzene	ND	ug/l	2.5	0.70	
tert-Butylbenzene	ND	ug/l	2.5	0.70	

Project Name: THE DAILY FREEMAN Lab Number:

Project Number: 16-159311.2 **Report Date:** 10/07/16

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 1,8260C 10/05/16 11:42

Parameter	Result	Qualifier Units	s RL	MDL
Volatile Organics by GC/MS -	Westborough Lab	for sample(s):	09,11 Batch:	WG939274-5
o-Chlorotoluene	ND	ug/l	2.5	0.70
p-Chlorotoluene	ND	ug/l	2.5	0.70
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70
Hexachlorobutadiene	ND	ug/l	2.5	0.70
Isopropylbenzene	ND	ug/l	2.5	0.70
p-Isopropyltoluene	ND	ug/l	2.5	0.70
Naphthalene	ND	ug/l	2.5	0.70
n-Propylbenzene	ND	ug/l	2.5	0.70
1,2,3-Trichlorobenzene	ND	ug/l	2.5	0.70
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70
1,3,5-Trimethylbenzene	ND	ug/l	2.5	0.70
1,2,4-Trimethylbenzene	ND	ug/l	2.5	0.70
1,4-Dioxane	ND	ug/l	250	61.
p-Diethylbenzene	ND	ug/l	2.0	0.70
p-Ethyltoluene	ND	ug/l	2.0	0.70
1,2,4,5-Tetramethylbenzene	ND	ug/l	2.0	0.54
Ethyl ether	ND	ug/l	2.5	0.70
trans-1,4-Dichloro-2-butene	ND	ug/l	2.5	0.70

		Acceptance				
Surrogate	%Recovery	Qualifier	Criteria			
1,2-Dichloroethane-d4	103		70-130			
Toluene-d8	99		70-130			
4-Bromofluorobenzene	111		70-130			
Dibromofluoromethane	101		70-130			

Project Name: THE DAILY FREEMAN Lab Number:

Project Number: 16-159311.2 **Report Date:** 10/07/16

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 1,8260C 10/06/16 10:57

Parameter	Result	Qualifier	Units	RL	MDL	
olatile Organics by GC/MS -	· Westborough La	b for samp	e(s): 10,	12 Batch:	WG939573-5	
Methylene chloride	ND		ug/l	2.5	0.70	
1,1-Dichloroethane	ND		ug/l	2.5	0.70	
Chloroform	ND		ug/l	2.5	0.70	
Carbon tetrachloride	ND		ug/l	0.50	0.13	
1,2-Dichloropropane	ND		ug/l	1.0	0.14	
Dibromochloromethane	ND		ug/l	0.50	0.15	
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	
Tetrachloroethene	ND		ug/l	0.50	0.18	
Chlorobenzene	ND		ug/l	2.5	0.70	
Trichlorofluoromethane	ND		ug/l	2.5	0.70	
1,2-Dichloroethane	ND		ug/l	0.50	0.13	
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	
Bromodichloromethane	ND		ug/l	0.50	0.19	
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	
1,1-Dichloropropene	ND		ug/l	2.5	0.70	
Bromoform	ND		ug/l	2.0	0.65	
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	
Benzene	ND		ug/l	0.50	0.16	
Toluene	ND		ug/l	2.5	0.70	
Ethylbenzene	ND		ug/l	2.5	0.70	
Chloromethane	ND		ug/l	2.5	0.70	
Bromomethane	1.0	J	ug/l	2.5	0.70	
Vinyl chloride	ND		ug/l	1.0	0.07	
Chloroethane	ND		ug/l	2.5	0.70	
1,1-Dichloroethene	ND		ug/l	0.50	0.17	
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	
Trichloroethene	ND		ug/l	0.50	0.18	

Project Name: THE DAILY FREEMAN Lab Number: L1631369

Project Number: 16-159311.2 **Report Date:** 10/07/16

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 10/06/16 10:57

Parameter	Result	Qualifier Units	s RL	MDL	
/olatile Organics by GC/MS	- Westborough La	b for sample(s):	10,12 Batch:	WG939573-5	
1,2-Dichlorobenzene	ND	ug/	2.5	0.70	
1,3-Dichlorobenzene	ND	ug/	2.5	0.70	
1,4-Dichlorobenzene	ND	ug/	2.5	0.70	
Methyl tert butyl ether	ND	ug/	2.5	0.70	
p/m-Xylene	ND	ug/	2.5	0.70	
o-Xylene	ND	ug/	2.5	0.70	
Xylenes, Total	ND	ug/	2.5	0.70	
cis-1,2-Dichloroethene	ND	ug/	2.5	0.70	
1,2-Dichloroethene, Total	ND	ug/	2.5	0.70	
Dibromomethane	ND	ug/	5.0	1.0	
1,2,3-Trichloropropane	ND	ug/	2.5	0.70	
Acrylonitrile	ND	ug/	5.0	1.5	
Styrene	ND	ug/	2.5	0.70	
Dichlorodifluoromethane	ND	ug/	5.0	1.0	
Acetone	ND	ug/	5.0	1.5	
Carbon disulfide	ND	ug/	5.0	1.0	
2-Butanone	ND	ug/	5.0	1.9	
Vinyl acetate	ND	ug/	5.0	1.0	
4-Methyl-2-pentanone	ND	ug/	5.0	1.0	
2-Hexanone	ND	ug/	5.0	1.0	
Bromochloromethane	ND	ug/	2.5	0.70	
2,2-Dichloropropane	ND	ug/	2.5	0.70	
1,2-Dibromoethane	ND	ug/	2.0	0.65	
1,3-Dichloropropane	ND	ug/	2.5	0.70	
1,1,1,2-Tetrachloroethane	ND	ug/	2.5	0.70	
Bromobenzene	ND	ug/	2.5	0.70	
n-Butylbenzene	ND	ug/	2.5	0.70	
sec-Butylbenzene	ND	ug/	2.5	0.70	
tert-Butylbenzene	ND	ug/	2.5	0.70	

Lab Number:

Project Name: THE DAILY FREEMAN

Project Number: 16-159311.2 **Report Date:** 10/07/16

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 10/06/16 10:57

Parameter	Result	Qualifier Units	s RL	MDL	
Volatile Organics by GC/MS -	· Westborough Lab	for sample(s):	10,12 Batch:	WG939573-5	
o-Chlorotoluene	ND	ug/l	2.5	0.70	
p-Chlorotoluene	ND	ug/l	2.5	0.70	
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70	
Hexachlorobutadiene	ND	ug/l	2.5	0.70	
Isopropylbenzene	ND	ug/l	2.5	0.70	
p-Isopropyltoluene	ND	ug/l	2.5	0.70	
Naphthalene	ND	ug/l	2.5	0.70	
n-Propylbenzene	ND	ug/l	2.5	0.70	
1,2,3-Trichlorobenzene	ND	ug/l	2.5	0.70	
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70	
1,3,5-Trimethylbenzene	ND	ug/l	2.5	0.70	
1,2,4-Trimethylbenzene	ND	ug/l	2.5	0.70	
1,4-Dioxane	ND	ug/l	250	61.	
p-Diethylbenzene	ND	ug/l	2.0	0.70	
p-Ethyltoluene	ND	ug/l	2.0	0.70	
1,2,4,5-Tetramethylbenzene	ND	ug/l	2.0	0.54	
Ethyl ether	ND	ug/l	2.5	0.70	
trans-1,4-Dichloro-2-butene	ND	ug/l	2.5	0.70	

		1	Acceptance	
Surrogate	%Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	90		70-130	
Toluene-d8	99		70-130	
4-Bromofluorobenzene	117		70-130	
Dibromofluoromethane	96		70-130	

Project Name: THE DAILY FREEMAN Lab Number: L1631369

Project Number: 16-159311.2 **Report Date:** 10/07/16

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 10/07/16 12:21

Volatile Organics by 8260/5035 - Westborough Lab for sample(s): 01-03,05-08 Batch: WG939994 Methylene chloride ND ug/kg 10 1.1 1,1-Dichloroethane ND ug/kg 1.5 0.09 Chloroform ND ug/kg 1.5 0.37 Carbon tetrachloride ND ug/kg 1.0 0.21 1,2-Dichloropropane ND ug/kg 1.0 0.21 1,2-Dichloropropane ND ug/kg 1.0 0.15 1,1,2-Trichloroethane ND ug/kg 1.0 0.15 1,1,2-Trichloroethane ND ug/kg 1.0 0.35 Trichlorofluoromethane ND ug/kg 5.0 0.39 1,2-Dichloroethane ND ug/kg 5.0 0.39 1,2-Dichloroethane ND ug/kg 1.0 0.11 1,1-1-Trichloroethane ND ug/kg 1.0 0.11 Bromodichloromethane ND ug/kg 1.0 0.12 ci	Parameter	Result	Qualifier	Units	RL	MDL	
1,1-Dichloroethane	Volatile Organics by 8260/5035 -	Westborough	Lab for sa	mple(s):	01-03,05-08	Batch: WG939	994-5
Chloroform ND ug/kg 1.5 0.37 Carbon tetrachloride ND ug/kg 1.0 0.21 1,2-Dichloropropane ND ug/kg 3.5 0.23 Dibromochloromethane ND ug/kg 1.0 0.15 1,1,2-Trichloroethane ND ug/kg 1.5 0.30 Tetrachloroethane ND ug/kg 1.0 0.14 Chlorobenzene ND ug/kg 1.0 0.35 Trichlorofluoromethane ND ug/kg 1.0 0.35 Trichloroethane ND ug/kg 1.0 0.11 1,1-Trichloroethane ND ug/kg 1.0 0.11 Bromodichloromethane ND ug/kg 1.0 0.17 trans-1,3-Dichloropropene ND ug/kg 1.0 0.12 cis-1,3-Dichloropropene ND ug/kg 1.0 0.12 1,3-Dichloropropene, Total ND ug/kg 1.0 0.12 1,1-Dichloropropene	Methylene chloride	ND		ug/kg	10	1.1	
Carbon tetrachloride ND ug/kg 1.0 0.21 1,2-Dichloropropane ND ug/kg 3.5 0.23 Dibromochloromethane ND ug/kg 1.0 0.15 1,1,2-Trichloroethane ND ug/kg 1.5 0.30 Tetrachloroethane ND ug/kg 1.0 0.14 Chlorobenzene ND ug/kg 1.0 0.35 Trichlorofluoromethane ND ug/kg 5.0 0.39 1,2-Dichloroethane ND ug/kg 1.0 0.11 1,1,1-Trichloroethane ND ug/kg 1.0 0.11 Bromodichloromethane ND ug/kg 1.0 0.17 trans-1,3-Dichloropropene ND ug/kg 1.0 0.12 cis-1,3-Dichloropropene ND ug/kg 1.0 0.12 1,3-Dichloropropene, Total ND ug/kg 5.0 0.14 Bromoform ND ug/kg 5.0 0.14 Bromoform	1,1-Dichloroethane	ND		ug/kg	1.5	0.09	
1,2-Dichloropropane ND	Chloroform	ND		ug/kg	1.5	0.37	
Dibromochloromethane ND ug/kg 1.0 0.15 1,1,2-Trichloroethane ND ug/kg 1.5 0.30 Tetrachloroethane ND ug/kg 1.0 0.14 Chlorobenzene ND ug/kg 1.0 0.35 Trichlorofluoromethane ND ug/kg 5.0 0.39 1,2-Dichloroethane ND ug/kg 1.0 0.11 1,1,1-Trichloroethane ND ug/kg 1.0 0.11 Bromodichloromethane ND ug/kg 1.0 0.17 trans-1,3-Dichloropropene ND ug/kg 1.0 0.12 cis-1,3-Dichloropropene ND ug/kg 1.0 0.12 1,3-Dichloropropene ND ug/kg 1.0 0.12 1,1-Dichloropropene ND ug/kg 5.0 0.14 Bromoform ND ug/kg 4.0 0.24 1,1,2,2-Tetrachloroethane ND ug/kg 1.0 0.10 Benzene 0.14	Carbon tetrachloride	ND		ug/kg	1.0	0.21	
1,1,2-Trichloroethane ND ug/kg 1.5 0.30 Tetrachloroethene ND ug/kg 1.0 0.14 Chlorobenzene ND ug/kg 1.0 0.35 Trichlorofluoromethane ND ug/kg 1.0 0.39 1,2-Dichloroethane ND ug/kg 1.0 0.11 1,1,1-Trichloroethane ND ug/kg 1.0 0.11 Bromodichloromethane ND ug/kg 1.0 0.17 trans-1,3-Dichloropropene ND ug/kg 1.0 0.12 trans-1,3-Dichloropropene ND ug/kg 1.0 0.12 1,3-Dichloropropene, Total ND ug/kg 1.0 0.12 1,1-Dichloropropene ND ug/kg 5.0 0.14 Bromoform ND ug/kg 4.0 0.24 1,1,2,2-Tetrachloroethane ND ug/kg 1.0 0.10 Benzene 0.14 J ug/kg 1.5 0.19 Ethylbenzene	1,2-Dichloropropane	ND		ug/kg	3.5	0.23	
Tetrachloroethene ND ug/kg 1.0 0.14 Chlorobenzene ND ug/kg 1.0 0.35 Trichlorofluoromethane ND ug/kg 5.0 0.39 1,2-Dichloroethane ND ug/kg 1.0 0.11 1,1,1-Trichloroethane ND ug/kg 1.0 0.11 Bromodichloromethane ND ug/kg 1.0 0.17 trans-1,3-Dichloropropene ND ug/kg 1.0 0.12 cis-1,3-Dichloropropene ND ug/kg 1.0 0.12 1,3-Dichloropropene, Total ND ug/kg 1.0 0.12 1,1-Dichloropropene ND ug/kg 5.0 0.14 Bromoform ND ug/kg 4.0 0.24 1,1,2,2-Tetrachloroethane ND ug/kg 1.0 0.10 Benzene 0.14 J ug/kg 1.5 0.19 Ethylbenzene ND ug/kg 1.0 0.13 Chloromethane	Dibromochloromethane	ND		ug/kg	1.0	0.15	
Chlorobenzene ND ug/kg 1.0 0.35 Trichlorofluoromethane ND ug/kg 5.0 0.39 1,2-Dichloroethane ND ug/kg 1.0 0.11 1,1,1-Trichloroethane ND ug/kg 1.0 0.11 Bromodichloromethane ND ug/kg 1.0 0.17 trans-1,3-Dichloropropene ND ug/kg 1.0 0.12 cis-1,3-Dichloropropene ND ug/kg 1.0 0.12 1,3-Dichloropropene, Total ND ug/kg 1.0 0.12 1,1-Dichloropropene ND ug/kg 5.0 0.14 Bromoform ND ug/kg 5.0 0.14 Bromoform ND ug/kg 1.0 0.12 1,1,2,2-Tetrachloroethane ND ug/kg 1.0 0.10 Benzene 0.14 J ug/kg 1.0 0.12 Toluene 0.23 J ug/kg 1.5 0.19 Ethylbenzene <td>1,1,2-Trichloroethane</td> <td>ND</td> <td></td> <td>ug/kg</td> <td>1.5</td> <td>0.30</td> <td></td>	1,1,2-Trichloroethane	ND		ug/kg	1.5	0.30	
Trichlorofluoromethane ND ug/kg 5.0 0.39 1,2-Dichloroethane ND ug/kg 1.0 0.11 1,1,1-Trichloroethane ND ug/kg 1.0 0.11 Bromodichloromethane ND ug/kg 1.0 0.17 trans-1,3-Dichloropropene ND ug/kg 1.0 0.12 cis-1,3-Dichloropropene ND ug/kg 1.0 0.12 1,3-Dichloropropene, Total ND ug/kg 1.0 0.12 1,1-Dichloropropene ND ug/kg 5.0 0.14 Bromoform ND ug/kg 4.0 0.24 1,1,2,2-Tetrachloroethane ND ug/kg 1.0 0.10 Benzene 0.14 J ug/kg 1.0 0.12 Toluene 0.23 J ug/kg 1.5 0.19 Ethylbenzene ND ug/kg 5.0 0.29 Bromomethane ND ug/kg 2.0 0.34 Vinyl chlorid	Tetrachloroethene	ND		ug/kg	1.0	0.14	
1,2-Dichloroethane ND ug/kg 1.0 0.11 1,1,1-Trichloroethane ND ug/kg 1.0 0.11 Bromodichloromethane ND ug/kg 1.0 0.17 trans-1,3-Dichloropropene ND ug/kg 1.0 0.12 cis-1,3-Dichloropropene ND ug/kg 1.0 0.12 1,3-Dichloropropene, Total ND ug/kg 1.0 0.12 1,1-Dichloropropene ND ug/kg 5.0 0.14 Bromoform ND ug/kg 4.0 0.24 1,1,2,2-Tetrachloroethane ND ug/kg 1.0 0.10 Benzene 0.14 J ug/kg 1.0 0.12 Toluene 0.23 J ug/kg 1.5 0.19 Ethylbenzene ND ug/kg 1.0 0.13 Chloromethane ND ug/kg 2.0 0.34 Vinyl chloride ND ug/kg 2.0 0.12 Chloroethane	Chlorobenzene	ND		ug/kg	1.0	0.35	
1,1,1-Trichloroethane ND ug/kg 1.0 0.11 Bromodichloromethane ND ug/kg 1.0 0.17 trans-1,3-Dichloropropene ND ug/kg 1.0 0.12 cis-1,3-Dichloropropene ND ug/kg 1.0 0.12 1,3-Dichloropropene, Total ND ug/kg 1.0 0.12 1,1-Dichloropropene ND ug/kg 5.0 0.14 Bromoform ND ug/kg 4.0 0.24 1,1,2,2-Tetrachloroethane ND ug/kg 1.0 0.10 Benzene 0.14 J ug/kg 1.0 0.12 Toluene 0.23 J ug/kg 1.5 0.19 Ethylbenzene ND ug/kg 1.0 0.13 Chloromethane ND ug/kg 2.0 0.34 Vinyl chloride ND ug/kg 2.0 0.32 Chloroethane ND ug/kg 2.0 0.32 1,1-Dichloroethene	Trichlorofluoromethane	ND		ug/kg	5.0	0.39	
Bromodichloromethane ND ug/kg 1.0 0.17 trans-1,3-Dichloropropene ND ug/kg 1.0 0.12 cis-1,3-Dichloropropene ND ug/kg 1.0 0.12 1,3-Dichloropropene, Total ND ug/kg 1.0 0.12 1,1-Dichloropropene ND ug/kg 5.0 0.14 Bromoform ND ug/kg 4.0 0.24 1,1,2,2-Tetrachloroethane ND ug/kg 1.0 0.10 Benzene 0.14 J ug/kg 1.0 0.12 Toluene 0.23 J ug/kg 1.5 0.19 Ethylbenzene ND ug/kg 1.0 0.13 Chloromethane ND ug/kg 2.0 0.34 Vinyl chloride ND ug/kg 2.0 0.34 Vinyl chloride ND ug/kg 2.0 0.32 1,1-Dichloroethene ND ug/kg 1.0 0.26	1,2-Dichloroethane	ND		ug/kg	1.0	0.11	
trans-1,3-Dichloropropene ND ug/kg 1.0 0.12 cis-1,3-Dichloropropene ND ug/kg 1.0 0.12 1,3-Dichloropropene, Total ND ug/kg 1.0 0.12 1,1-Dichloropropene ND ug/kg 5.0 0.14 Bromoform ND ug/kg 4.0 0.24 1,1,2,2-Tetrachloroethane ND ug/kg 1.0 0.10 Benzene 0.14 J ug/kg 1.0 0.12 Toluene 0.23 J ug/kg 1.5 0.19 Ethylbenzene ND ug/kg 1.0 0.13 Chloromethane ND ug/kg 5.0 0.29 Bromomethane ND ug/kg 2.0 0.34 Vinyl chloride ND ug/kg 2.0 0.12 Chloroethane ND ug/kg 2.0 0.32 1,1-Dichloroethene ND ug/kg 1.0 0.26	1,1,1-Trichloroethane	ND		ug/kg	1.0	0.11	
cis-1,3-Dichloropropene ND ug/kg 1.0 0.12 1,3-Dichloropropene, Total ND ug/kg 1.0 0.12 1,1-Dichloropropene ND ug/kg 5.0 0.14 Bromoform ND ug/kg 4.0 0.24 1,1,2,2-Tetrachloroethane ND ug/kg 1.0 0.10 Benzene 0.14 J ug/kg 1.0 0.12 Toluene 0.23 J ug/kg 1.5 0.19 Ethylbenzene ND ug/kg 1.0 0.13 Chloromethane ND ug/kg 5.0 0.29 Bromomethane ND ug/kg 2.0 0.34 Vinyl chloride ND ug/kg 2.0 0.12 Chloroethane ND ug/kg 2.0 0.32 1,1-Dichloroethene ND ug/kg 1.0 0.26	Bromodichloromethane	ND		ug/kg	1.0	0.17	
1,3-Dichloropropene, Total ND ug/kg 1.0 0.12 1,1-Dichloropropene ND ug/kg 5.0 0.14 Bromoform ND ug/kg 4.0 0.24 1,1,2,2-Tetrachloroethane ND ug/kg 1.0 0.10 Benzene 0.14 J ug/kg 1.0 0.12 Toluene 0.23 J ug/kg 1.5 0.19 Ethylbenzene ND ug/kg 1.0 0.13 Chloromethane ND ug/kg 5.0 0.29 Bromomethane ND ug/kg 2.0 0.34 Vinyl chloride ND ug/kg 2.0 0.12 Chloroethane ND ug/kg 2.0 0.32 1,1-Dichloroethene ND ug/kg 1.0 0.26	trans-1,3-Dichloropropene	ND		ug/kg	1.0	0.12	
1,1-Dichloropropene ND ug/kg 5.0 0.14 Bromoform ND ug/kg 4.0 0.24 1,1,2,2-Tetrachloroethane ND ug/kg 1.0 0.10 Benzene 0.14 J ug/kg 1.0 0.12 Toluene 0.23 J ug/kg 1.5 0.19 Ethylbenzene ND ug/kg 1.0 0.13 Chloromethane ND ug/kg 5.0 0.29 Bromomethane ND ug/kg 2.0 0.34 Vinyl chloride ND ug/kg 2.0 0.12 Chloroethane ND ug/kg 2.0 0.32 1,1-Dichloroethene ND ug/kg 1.0 0.26	cis-1,3-Dichloropropene	ND		ug/kg	1.0	0.12	
Bromoform ND ug/kg 4.0 0.24 1,1,2,2-Tetrachloroethane ND ug/kg 1.0 0.10 Benzene 0.14 J ug/kg 1.0 0.12 Toluene 0.23 J ug/kg 1.5 0.19 Ethylbenzene ND ug/kg 1.0 0.13 Chloromethane ND ug/kg 5.0 0.29 Bromomethane ND ug/kg 2.0 0.34 Vinyl chloride ND ug/kg 2.0 0.12 Chloroethane ND ug/kg 2.0 0.32 1,1-Dichloroethene ND ug/kg 1.0 0.26	1,3-Dichloropropene, Total	ND		ug/kg	1.0	0.12	
1,1,2,2-Tetrachloroethane ND ug/kg 1.0 0.10 Benzene 0.14 J ug/kg 1.0 0.12 Toluene 0.23 J ug/kg 1.5 0.19 Ethylbenzene ND ug/kg 1.0 0.13 Chloromethane ND ug/kg 5.0 0.29 Bromomethane ND ug/kg 2.0 0.34 Vinyl chloride ND ug/kg 2.0 0.12 Chloroethane ND ug/kg 2.0 0.32 1,1-Dichloroethene ND ug/kg 1.0 0.26	1,1-Dichloropropene	ND		ug/kg	5.0	0.14	
Benzene 0.14 J ug/kg 1.0 0.12 Toluene 0.23 J ug/kg 1.5 0.19 Ethylbenzene ND ug/kg 1.0 0.13 Chloromethane ND ug/kg 5.0 0.29 Bromomethane ND ug/kg 2.0 0.34 Vinyl chloride ND ug/kg 2.0 0.12 Chloroethane ND ug/kg 2.0 0.32 1,1-Dichloroethene ND ug/kg 1.0 0.26	Bromoform	ND		ug/kg	4.0	0.24	
Toluene 0.23 J ug/kg 1.5 0.19 Ethylbenzene ND ug/kg 1.0 0.13 Chloromethane ND ug/kg 5.0 0.29 Bromomethane ND ug/kg 2.0 0.34 Vinyl chloride ND ug/kg 2.0 0.12 Chloroethane ND ug/kg 2.0 0.32 1,1-Dichloroethene ND ug/kg 1.0 0.26	1,1,2,2-Tetrachloroethane	ND		ug/kg	1.0	0.10	
Ethylbenzene ND ug/kg 1.0 0.13 Chloromethane ND ug/kg 5.0 0.29 Bromomethane ND ug/kg 2.0 0.34 Vinyl chloride ND ug/kg 2.0 0.12 Chloroethane ND ug/kg 2.0 0.32 1,1-Dichloroethene ND ug/kg 1.0 0.26	Benzene	0.14	J	ug/kg	1.0	0.12	
Chloromethane ND ug/kg 5.0 0.29 Bromomethane ND ug/kg 2.0 0.34 Vinyl chloride ND ug/kg 2.0 0.12 Chloroethane ND ug/kg 2.0 0.32 1,1-Dichloroethene ND ug/kg 1.0 0.26	Toluene	0.23	J	ug/kg	1.5	0.19	
Bromomethane ND ug/kg 2.0 0.34 Vinyl chloride ND ug/kg 2.0 0.12 Chloroethane ND ug/kg 2.0 0.32 1,1-Dichloroethene ND ug/kg 1.0 0.26	Ethylbenzene	ND		ug/kg	1.0	0.13	
Vinyl chloride ND ug/kg 2.0 0.12 Chloroethane ND ug/kg 2.0 0.32 1,1-Dichloroethene ND ug/kg 1.0 0.26	Chloromethane	ND		ug/kg	5.0	0.29	
Chloroethane ND ug/kg 2.0 0.32 1,1-Dichloroethene ND ug/kg 1.0 0.26	Bromomethane	ND		ug/kg	2.0	0.34	
1,1-Dichloroethene ND ug/kg 1.0 0.26	Vinyl chloride	ND		ug/kg	2.0	0.12	
	Chloroethane	ND		ug/kg	2.0	0.32	
	1,1-Dichloroethene	ND		ug/kg	1.0	0.26	
trans-1,2-Dichloroethene ND ug/kg 1.5 0.21	trans-1,2-Dichloroethene	ND		ug/kg	1.5	0.21	
Trichloroethene ND ug/kg 1.0 0.12	Trichloroethene	ND		ug/kg	1.0	0.12	

Project Name: THE DAILY FREEMAN Lab Number: L1631369

Project Number: 16-159311.2 **Report Date:** 10/07/16

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 10/07/16 12:21

Parameter	Result	Qualifier	Units	RL	MDL
Volatile Organics by 8260/5035 -	Westborough	Lab for sa	mple(s):	01-03,05-08	Batch: WG939994-5
1,2-Dichlorobenzene	ND		ug/kg	5.0	0.15
1,3-Dichlorobenzene	ND		ug/kg	5.0	0.14
1,4-Dichlorobenzene	ND		ug/kg	5.0	0.14
Methyl tert butyl ether	ND		ug/kg	2.0	0.08
p/m-Xylene	ND		ug/kg	2.0	0.35
o-Xylene	ND		ug/kg	2.0	0.34
Xylenes, Total	ND		ug/kg	2.0	0.34
cis-1,2-Dichloroethene	ND		ug/kg	1.0	0.14
1,2-Dichloroethene, Total	ND		ug/kg	1.0	0.14
Dibromomethane	ND		ug/kg	10	0.16
Styrene	ND		ug/kg	2.0	0.40
Dichlorodifluoromethane	ND		ug/kg	10	0.19
Acetone	ND		ug/kg	10	1.0
Carbon disulfide	ND		ug/kg	10	1.1
2-Butanone	ND		ug/kg	10	0.27
Vinyl acetate	ND		ug/kg	10	0.13
4-Methyl-2-pentanone	ND		ug/kg	10	0.24
1,2,3-Trichloropropane	ND		ug/kg	10	0.16
2-Hexanone	ND		ug/kg	10	0.67
Bromochloromethane	ND		ug/kg	5.0	0.28
2,2-Dichloropropane	ND		ug/kg	5.0	0.23
1,2-Dibromoethane	ND		ug/kg	4.0	0.17
1,3-Dichloropropane	ND		ug/kg	5.0	0.14
1,1,1,2-Tetrachloroethane	ND		ug/kg	1.0	0.32
Bromobenzene	ND		ug/kg	5.0	0.21
n-Butylbenzene	ND		ug/kg	1.0	0.11
sec-Butylbenzene	ND		ug/kg	1.0	0.12
tert-Butylbenzene	ND		ug/kg	5.0	0.14
o-Chlorotoluene	ND		ug/kg	5.0	0.16

Project Name: THE DAILY FREEMAN Lab Number:

Project Number: 16-159311.2 **Report Date:** 10/07/16

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 10/07/16 12:21

Parameter	Result	Qualifier	Units	RL	MDL	
/olatile Organics by 8260/5035	- Westborough	Lab for sai	mple(s):	01-03,05-08	Batch:	WG939994-5
p-Chlorotoluene	ND		ug/kg	5.0	0.13	
1,2-Dibromo-3-chloropropane	ND		ug/kg	5.0	0.40	
Hexachlorobutadiene	ND		ug/kg	5.0	0.23	
Isopropylbenzene	ND		ug/kg	1.0	0.10	
p-Isopropyltoluene	ND		ug/kg	1.0	0.12	
Naphthalene	ND		ug/kg	5.0	0.14	
Acrylonitrile	ND		ug/kg	10	0.51	
n-Propylbenzene	ND		ug/kg	1.0	0.11	
1,2,3-Trichlorobenzene	ND		ug/kg	5.0	0.15	
1,2,4-Trichlorobenzene	ND		ug/kg	5.0	0.18	
1,3,5-Trimethylbenzene	ND		ug/kg	5.0	0.14	
1,2,4-Trimethylbenzene	ND		ug/kg	5.0	0.14	
1,4-Dioxane	ND		ug/kg	100	14.	
p-Diethylbenzene	ND		ug/kg	4.0	0.16	
p-Ethyltoluene	ND		ug/kg	4.0	0.12	
1,2,4,5-Tetramethylbenzene	ND		ug/kg	4.0	0.13	
Ethyl ether	ND		ug/kg	5.0	0.26	
trans-1,4-Dichloro-2-butene	ND		ug/kg	5.0	0.39	

		1	Acceptance	
Surrogate	%Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	105		70-130	
Toluene-d8	103		70-130	
4-Bromofluorobenzene	99		70-130	
Dibromofluoromethane	100		70-130	

Project Name: THE DAILY FREEMAN Lab Number: L1631369

Project Number: 16-159311.2 **Report Date:** 10/07/16

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 10/07/16 11:29

Analyst: MV

Parameter	Result	Qualifier	Units	RL		MDL
Volatile Organics by EPA 5035 High	n - Westbor	ough Lab fo	or sample(s):	04	Batch:	WG940021-5
Methylene chloride	ND		ug/kg	500		55.
1,1-Dichloroethane	ND		ug/kg	75		4.3
Chloroform	ND		ug/kg	75		18.
Carbon tetrachloride	ND		ug/kg	50		10.
1,2-Dichloropropane	ND		ug/kg	180		11.
Dibromochloromethane	ND		ug/kg	50		7.7
1,1,2-Trichloroethane	ND		ug/kg	75		15.
Tetrachloroethene	ND		ug/kg	50		7.0
Chlorobenzene	ND		ug/kg	50		17.
Trichlorofluoromethane	ND		ug/kg	250		19.
1,2-Dichloroethane	ND		ug/kg	50		5.7
1,1,1-Trichloroethane	ND		ug/kg	50		5.5
Bromodichloromethane	ND		ug/kg	50		8.7
trans-1,3-Dichloropropene	ND		ug/kg	50		6.0
cis-1,3-Dichloropropene	ND		ug/kg	50		5.9
1,3-Dichloropropene, Total	ND		ug/kg	50		5.9
1,1-Dichloropropene	ND		ug/kg	250		7.1
Bromoform	ND		ug/kg	200		12.
1,1,2,2-Tetrachloroethane	ND		ug/kg	50		5.0
Benzene	7.2	J	ug/kg	50		5.9
Toluene	24	J	ug/kg	75		9.7
Ethylbenzene	ND		ug/kg	50		6.4
Chloromethane	15	J	ug/kg	250		15.
Bromomethane	22	J	ug/kg	100		17.
Vinyl chloride	ND		ug/kg	100		5.9
Chloroethane	ND		ug/kg	100		16.
1,1-Dichloroethene	ND		ug/kg	50		13.
trans-1,2-Dichloroethene	ND		ug/kg	75		11.
Trichloroethene	ND		ug/kg	50		6.2

Project Name: THE DAILY FREEMAN Lab Number: L1631369

Project Number: 16-159311.2 **Report Date:** 10/07/16

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 10/07/16 11:29

Analyst: MV

Parameter	Result	Qualifier	Units	RL		MDL
olatile Organics by EPA 5035 H	ligh - Westbor	ough Lab fo	or sample(s):	04	Batch:	WG940021-5
1,2-Dichlorobenzene	ND		ug/kg	250		7.7
1,3-Dichlorobenzene	ND		ug/kg	250		6.8
1,4-Dichlorobenzene	ND		ug/kg	250		6.9
Methyl tert butyl ether	ND		ug/kg	100		4.2
p/m-Xylene	ND		ug/kg	100		18.
o-Xylene	ND		ug/kg	100		17.
Xylenes, Total	ND		ug/kg	100		17.
cis-1,2-Dichloroethene	ND		ug/kg	50		7.1
1,2-Dichloroethene, Total	ND		ug/kg	50		7.1
Dibromomethane	ND		ug/kg	500		8.2
Styrene	ND		ug/kg	100		20.
Dichlorodifluoromethane	ND		ug/kg	500		9.5
Acetone	59	J	ug/kg	500		52.
Carbon disulfide	ND		ug/kg	500		55.
2-Butanone	ND		ug/kg	500		14.
Vinyl acetate	ND		ug/kg	500		6.6
4-Methyl-2-pentanone	ND		ug/kg	500		12.
1,2,3-Trichloropropane	ND		ug/kg	500		8.1
2-Hexanone	ND		ug/kg	500		33.
Bromochloromethane	ND		ug/kg	250		14.
2,2-Dichloropropane	ND		ug/kg	250		11.
1,2-Dibromoethane	ND		ug/kg	200		8.7
1,3-Dichloropropane	ND		ug/kg	250		7.3
1,1,1,2-Tetrachloroethane	ND		ug/kg	50		16.
Bromobenzene	ND		ug/kg	250		10.
n-Butylbenzene	ND		ug/kg	50		5.7
sec-Butylbenzene	ND		ug/kg	50		6.1
tert-Butylbenzene	ND		ug/kg	250		6.8
o-Chlorotoluene	ND		ug/kg	250		8.0

Project Name: THE DAILY FREEMAN Lab Number:

Project Number: 16-159311.2 **Report Date:** 10/07/16

Method Blank Analysis Batch Quality Control

Batch Quality Con

1,8260C

10/07/16 11:29

Analyst: MV

Analytical Method:

Analytical Date:

Parameter	Result	Qualifier	Units	RL		MDL
Volatile Organics by EPA 5035 High	- Westbore	ough Lab fo	or sample(s):	04	Batch:	WG940021-5
p-Chlorotoluene	ND		ug/kg	250		6.6
1,2-Dibromo-3-chloropropane	ND		ug/kg	250		20.
Hexachlorobutadiene	ND		ug/kg	250		11.
Isopropylbenzene	ND		ug/kg	50		5.2
p-Isopropyltoluene	ND		ug/kg	50		6.2
Naphthalene	ND		ug/kg	250		6.9
Acrylonitrile	ND		ug/kg	500		26.
n-Propylbenzene	ND		ug/kg	50		5.5
1,2,3-Trichlorobenzene	ND		ug/kg	250		7.4
1,2,4-Trichlorobenzene	ND		ug/kg	250		9.1
1,3,5-Trimethylbenzene	ND		ug/kg	250		7.2
1,2,4-Trimethylbenzene	ND		ug/kg	250		7.1
1,4-Dioxane	ND		ug/kg	5000		720
p-Diethylbenzene	ND		ug/kg	200		8.0
p-Ethyltoluene	ND		ug/kg	200		6.2
1,2,4,5-Tetramethylbenzene	ND		ug/kg	200		6.5
Ethyl ether	ND		ug/kg	250		13.
trans-1,4-Dichloro-2-butene	ND		ug/kg	250		20.

			Acceptance	
Surrogate	%Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	84		70-130	
Toluene-d8	93		70-130	
4-Bromofluorobenzene	86		70-130	
Dibromofluoromethane	99		70-130	

Project Name: THE DAILY FREEMAN

Project Number: 16-159311.2

Lab Number: L1631369

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limit	
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	09,11 Batch:	WG939274-3	WG939274-4			
Methylene chloride	93		100		70-130	7	20	
1,1-Dichloroethane	100		110		70-130	10	20	
Chloroform	100		110		70-130	10	20	
2-Chloroethylvinyl ether	90		90		70-130	0	20	
Carbon tetrachloride	110		120		63-132	9	20	
1,2-Dichloropropane	97		100		70-130	3	20	
Dibromochloromethane	81		87		63-130	7	20	
1,1,2-Trichloroethane	89		96		70-130	8	20	
Tetrachloroethene	92		98		70-130	6	20	
Chlorobenzene	94		100		75-130	6	20	
Trichlorofluoromethane	85		94		62-150	10	20	
1,2-Dichloroethane	97		110		70-130	13	20	
1,1,1-Trichloroethane	100		110		67-130	10	20	
Bromodichloromethane	100		110		67-130	10	20	
trans-1,3-Dichloropropene	84		90		70-130	7	20	
cis-1,3-Dichloropropene	100		110		70-130	10	20	
1,1-Dichloropropene	98		100		70-130	2	20	
Bromoform	79		82		54-136	4	20	
1,1,2,2-Tetrachloroethane	90		97		67-130	7	20	
Benzene	100		110		70-130	10	20	
Toluene	97		100		70-130	3	20	

Project Name: THE DAILY FREEMAN

Project Number: 16-159311.2

Lab Number: L1631369

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	09,11 Batch:	WG939274-3	WG939274-4		
Ethylbenzene	99		100		70-130	1	20
Chloromethane	85		90		64-130	6	20
Bromomethane	110		130		39-139	17	20
Vinyl chloride	100		110		55-140	10	20
Chloroethane	99		110		55-138	11	20
1,1-Dichloroethene	88		94		61-145	7	20
trans-1,2-Dichloroethene	99		110		70-130	11	20
Trichloroethene	100		110		70-130	10	20
1,2-Dichlorobenzene	87		94		70-130	8	20
1,3-Dichlorobenzene	93		99		70-130	6	20
1,4-Dichlorobenzene	92		98		70-130	6	20
Methyl tert butyl ether	94		100		63-130	6	20
p/m-Xylene	95		100		70-130	5	20
o-Xylene	95		100		70-130	5	20
cis-1,2-Dichloroethene	100		110		70-130	10	20
Dibromomethane	96		100		70-130	4	20
1,2,3-Trichloropropane	89		98		64-130	10	20
Acrylonitrile	82		88		70-130	7	20
Isopropyl Ether	96		100		70-130	4	20
tert-Butyl Alcohol	84		102		70-130	19	20
Styrene	100		110		70-130	10	20

Project Name: THE DAILY FREEMAN

Project Number: 16-159311.2

Lab Number: L1631369

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	09,11 Batch:	WG939274-3	WG939274-4			
Dichlorodifluoromethane	83		90		36-147	8		20
Acetone	76		70		58-148	8		20
Carbon disulfide	84		90		51-130	7		20
2-Butanone	83		86		63-138	4		20
Vinyl acetate	87		96		70-130	10		20
4-Methyl-2-pentanone	70		74		59-130	6		20
2-Hexanone	66		72		57-130	9		20
Acrolein	70		83		40-160	17		20
Bromochloromethane	98		110		70-130	12		20
2,2-Dichloropropane	120		140	Q	63-133	15		20
1,2-Dibromoethane	90		96		70-130	6		20
1,3-Dichloropropane	90		96		70-130	6		20
1,1,1,2-Tetrachloroethane	94		100		64-130	6		20
Bromobenzene	100		100		70-130	0		20
n-Butylbenzene	94		98		53-136	4		20
sec-Butylbenzene	97		100		70-130	3		20
tert-Butylbenzene	98		100		70-130	2		20
o-Chlorotoluene	100		100		70-130	0		20
p-Chlorotoluene	100		110		70-130	10		20
1,2-Dibromo-3-chloropropane	70		71		41-144	1		20
Hexachlorobutadiene	78		81		63-130	4		20

Project Name: THE DAILY FREEMAN

Project Number: 16-159311.2

Lab Number: L1631369

Parameter	LCS %Recovery	Qual	LCSD %Recovery	' Qual	%Recovery Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	09,11 Batch:	WG939274-3	WG939274-4		
Isopropylbenzene	110		110		70-130	0	20
p-Isopropyltoluene	97		100		70-130	3	20
Naphthalene	53	Q	63	Q	70-130	17	20
n-Propylbenzene	110		110		69-130	0	20
1,2,3-Trichlorobenzene	45	Q	54	Q	70-130	18	20
1,2,4-Trichlorobenzene	62	Q	68	Q	70-130	9	20
1,3,5-Trimethylbenzene	100		110		64-130	10	20
1,2,4-Trimethylbenzene	100		110		70-130	10	20
Methyl Acetate	80		92		70-130	14	20
Ethyl Acetate	81		91		70-130	12	20
Cyclohexane	86		90		70-130	5	20
Ethyl-Tert-Butyl-Ether	99		110		70-130	11	20
Tertiary-Amyl Methyl Ether	93		100		66-130	7	20
1,4-Dioxane	94		106		56-162	12	20
1,1,2-Trichloro-1,2,2-Trifluoroethane	86		91		70-130	6	20
p-Diethylbenzene	95		100		70-130	5	20
p-Ethyltoluene	110		110		70-130	0	20
1,2,4,5-Tetramethylbenzene	89		95		70-130	7	20
Tetrahydrofuran	72		81		58-130	12	20
Ethyl ether	91		100		59-134	9	20
trans-1,4-Dichloro-2-butene	92		93		70-130	1	20

Project Name: THE DAILY FREEMAN

Project Number: 16-159311.2

Lab Number:

L1631369

Report Date:

10/07/16

Parameter	LCS %Recovery	Qual	LCSD %Recove	ry Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westboroug	gh Lab Associated	sample(s):	09,11 Batch	: WG939274-3	WG939274-4				
Iodomethane	96		100		70-130	4		20	
Methyl cyclohexane	83		89		70-130	7		20	

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	
1,2-Dichloroethane-d4	101		100		70-130	
Toluene-d8	100		100		70-130	
4-Bromofluorobenzene	115		113		70-130	
Dibromofluoromethane	100		101		70-130	

Project Name: THE DAILY FREEMAN

Project Number: 16-159311.2

Lab Number: L1631369

Parameter	LCS %Recovery	Qual	LCSD %Recovery	' Qual	%Recovery Limits	RPD	RPD Qual Limits	
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	10,12 Batch:	WG939573-3	WG939573-4			
Methylene chloride	99		95		70-130	4	20	
1,1-Dichloroethane	98		98		70-130	0	20	
Chloroform	100		100		70-130	0	20	
Carbon tetrachloride	98		98		63-132	0	20	
1,2-Dichloropropane	93		93		70-130	0	20	
Dibromochloromethane	97		100		63-130	3	20	
1,1,2-Trichloroethane	100		100		70-130	0	20	
Tetrachloroethene	98		95		70-130	3	20	
Chlorobenzene	98		98		75-130	0	20	
Trichlorofluoromethane	100		99		62-150	1	20	
1,2-Dichloroethane	93		96		70-130	3	20	
1,1,1-Trichloroethane	100		100		67-130	0	20	
Bromodichloromethane	98		99		67-130	1	20	
trans-1,3-Dichloropropene	92		97		70-130	5	20	
cis-1,3-Dichloropropene	85		88		70-130	3	20	
1,1-Dichloropropene	96		95		70-130	1	20	
Bromoform	100		100		54-136	0	20	
1,1,2,2-Tetrachloroethane	100		110		67-130	10	20	
Benzene	98		99		70-130	1	20	
Toluene	100		100		70-130	0	20	
Ethylbenzene	100		100		70-130	0	20	

Project Name: THE DAILY FREEMAN

Project Number: 16-159311.2

Lab Number: L1631369

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	10,12 Batch:	WG939573-3	WG939573-4		
Chloromethane	96		98		64-130	2	20
Bromomethane	84		87		39-139	4	20
Vinyl chloride	87		86		55-140	1	20
Chloroethane	96		93		55-138	3	20
1,1-Dichloroethene	95		96		61-145	1	20
trans-1,2-Dichloroethene	100		100		70-130	0	20
Trichloroethene	100		99		70-130	1	20
1,2-Dichlorobenzene	96		97		70-130	1	20
1,3-Dichlorobenzene	98		98		70-130	0	20
1,4-Dichlorobenzene	95		95		70-130	0	20
Methyl tert butyl ether	92		99		63-130	7	20
p/m-Xylene	100		100		70-130	0	20
o-Xylene	100		100		70-130	0	20
cis-1,2-Dichloroethene	99		100		70-130	1	20
Dibromomethane	93		98		70-130	5	20
1,2,3-Trichloropropane	110		110		64-130	0	20
Acrylonitrile	88		98		70-130	11	20
Isopropyl Ether	97		100		70-130	3	20
tert-Butyl Alcohol	88		92		70-130	4	20
Styrene	100		105		70-130	5	20
Dichlorodifluoromethane	98		95		36-147	3	20

Project Name: THE DAILY FREEMAN

Project Number: 16-159311.2

Lab Number: L1631369

rameter	LCS %Recovery	Qual	LCSD %Recover	y Qual	%Recovery Limits	RPD	Qual	RPD Limits	
platile Organics by GC/MS - Westboroug	gh Lab Associated	sample(s):	10,12 Batch:	WG939573-3	WG939573-4				
Acetone	98		100		58-148	2		20	
Carbon disulfide	94		93		51-130	1		20	
2-Butanone	95		100		63-138	5		20	
Vinyl acetate	98		100		70-130	2		20	
4-Methyl-2-pentanone	74		73		59-130	1		20	
2-Hexanone	69		75		57-130	8		20	
Acrolein	74		74		40-160	0		20	
Bromochloromethane	94		96		70-130	2		20	
2,2-Dichloropropane	100		100		63-133	0		20	
1,2-Dibromoethane	96		100		70-130	4		20	
1,3-Dichloropropane	96		99		70-130	3		20	
1,1,1,2-Tetrachloroethane	97		97		64-130	0		20	
Bromobenzene	100		100		70-130	0		20	
n-Butylbenzene	85		82		53-136	4		20	
sec-Butylbenzene	96		92		70-130	4		20	
tert-Butylbenzene	86		82		70-130	5		20	
o-Chlorotoluene	110		110		70-130	0		20	
p-Chlorotoluene	110		110		70-130	0		20	
1,2-Dibromo-3-chloropropane	84		88		41-144	5		20	
Hexachlorobutadiene	100		97		63-130	3		20	
Isopropylbenzene	100		100		70-130	0		20	

Project Name: THE DAILY FREEMAN

Project Number: 16-159311.2

Lab Number: L1631369

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
olatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	10,12 Batch:	WG939573-3	WG939573-4		
p-Isopropyltoluene	94		91		70-130	3	20
Naphthalene	58	Q	59	Q	70-130	2	20
n-Propylbenzene	110		100		69-130	10	20
1,2,3-Trichlorobenzene	68	Q	68	Q	70-130	0	20
1,2,4-Trichlorobenzene	65	Q	66	Q	70-130	2	20
1,3,5-Trimethylbenzene	100		100		64-130	0	20
1,2,4-Trimethylbenzene	100		100		70-130	0	20
Methyl Acetate	98		100		70-130	2	20
Ethyl Acetate	87		96		70-130	10	20
Cyclohexane	92		91		70-130	1	20
Ethyl-Tert-Butyl-Ether	91		96		70-130	5	20
Tertiary-Amyl Methyl Ether	88		92		66-130	4	20
1,4-Dioxane	90		92		56-162	2	20
1,1,2-Trichloro-1,2,2-Trifluoroethane	90		90		70-130	0	20
p-Diethylbenzene	84		81		70-130	4	20
p-Ethyltoluene	110		100		70-130	10	20
1,2,4,5-Tetramethylbenzene	86		84		70-130	2	20
Tetrahydrofuran	85		91		58-130	7	20
Ethyl ether	81		87		59-134	7	20
trans-1,4-Dichloro-2-butene	100		100		70-130	0	20
Iodomethane	66	Q	66	Q	70-130	0	20

Project Name: THE DAILY FREEMAN

Project Number: 16-159311.2

Lab Number:

L1631369

Report Date:

10/07/16

Parameter	LCS %Recovery	Qual		LCSD Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough I	_ab Associated	sample(s):	10,12	Batch:	WG939573-3	WG939573-4				
Methyl cyclohexane	85			83		70-130	2		20	

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	
1,2-Dichloroethane-d4	85		87		70-130	
Toluene-d8	102		103		70-130	
4-Bromofluorobenzene	104		104		70-130	
Dibromofluoromethane	92		91		70-130	

Project Name: THE DAILY FREEMAN

Project Number: 16-159311.2

Lab Number: L1631369

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recov Qual Limits	-	RPD Qual Limits
Volatile Organics by 8260/5035 - Westborou	gh Lab Associa	ted sample(s):	01-03,05-08	Batch: WG939994-3	WG939994-4	
Methylene chloride	90		87	70-130	3	30
1,1-Dichloroethane	116		114	70-130	2	30
Chloroform	105		103	70-130	2	30
Carbon tetrachloride	108		106	70-130	2	30
1,2-Dichloropropane	112		111	70-130	1	30
Dibromochloromethane	98		96	70-130	2	30
2-Chloroethylvinyl ether	91		82	70-130	10	30
1,1,2-Trichloroethane	102		101	70-130	1	30
Tetrachloroethene	108		107	70-130	1	30
Chlorobenzene	106		103	70-130	3	30
Trichlorofluoromethane	130		127	70-139	2	30
1,2-Dichloroethane	107		105	70-130	2	30
1,1,1-Trichloroethane	110		110	70-130	0	30
Bromodichloromethane	100		99	70-130	1	30
trans-1,3-Dichloropropene	100		96	70-130	4	30
cis-1,3-Dichloropropene	100		99	70-130	1	30
1,1-Dichloropropene	113		110	70-130	3	30
Bromoform	90		85	70-130	6	30
1,1,2,2-Tetrachloroethane	95		93	70-130	2	30
Benzene	106		104	70-130	2	30
Toluene	109		108	70-130	1	30

Project Name: THE DAILY FREEMAN

Project Number: 16-159311.2

Lab Number: L1631369

arameter	LCS %Recovery	Qual	LCSD %Recovery	Quai	%Recover Limits		RPD	Qual	RPD Limits	
olatile Organics by 8260/5035 - Westbo	orough Lab Associate	ed sample(s):	01-03,05-08	Batch:	WG939994-3	WG93999	94-4			
Ethylbenzene	111		110		70-130		1		30	
Chloromethane	126		121		52-130		4		30	
Bromomethane	114		115		57-147		1		30	
Vinyl chloride	134	Q	130		67-130		3		30	
Chloroethane	147		143		50-151		3		30	
1,1-Dichloroethene	130		127		65-135		2		30	
trans-1,2-Dichloroethene	109		109		70-130		0		30	
Trichloroethene	112		110		70-130		2		30	
1,2-Dichlorobenzene	102		100		70-130		2		30	
1,3-Dichlorobenzene	106		104		70-130		2		30	
1,4-Dichlorobenzene	106		103		70-130		3		30	
Methyl tert butyl ether	103		99		66-130		4		30	
p/m-Xylene	109		108		70-130		1		30	
o-Xylene	107		106		70-130		1		30	
cis-1,2-Dichloroethene	106		106		70-130		0		30	
Dibromomethane	104		100		70-130		4		30	
Styrene	108		106		70-130		2		30	
Dichlorodifluoromethane	107		104		30-146		3		30	
Acetone	137		136		54-140		1		30	
Carbon disulfide	114		114		59-130		0		30	
2-Butanone	114		107		70-130		6		30	

Project Name: THE DAILY FREEMAN

Project Number: 16-159311.2

Lab Number: L1631369

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recove	•	Qual	RPD Limits	
platile Organics by 8260/5035 - Westbord	ough Lab Associat	ed sample(s):	01-03,05-08	Batch:	WG939994-3	WG939994-4			
Vinyl acetate	103		101		70-130	2		30	
4-Methyl-2-pentanone	114		111		70-130	3		30	
1,2,3-Trichloropropane	98		96		68-130	2		30	
2-Hexanone	114		106		70-130	7		30	
Bromochloromethane	107		106		70-130	1		30	
2,2-Dichloropropane	109		107		70-130	2		30	
1,2-Dibromoethane	99		98		70-130	1		30	
1,3-Dichloropropane	102		100		69-130	2		30	
1,1,1,2-Tetrachloroethane	103		101		70-130	2		30	
Bromobenzene	100		99		70-130	1		30	
n-Butylbenzene	120		117		70-130	3		30	
sec-Butylbenzene	108		105		70-130	3		30	
tert-Butylbenzene	105		104		70-130	1		30	
o-Chlorotoluene	106		104		70-130	2		30	
p-Chlorotoluene	106		103		70-130	3		30	
1,2-Dibromo-3-chloropropane	90		86		68-130	5		30	
Hexachlorobutadiene	91		90		67-130	1		30	
Isopropylbenzene	104		103		70-130	1		30	
p-Isopropyltoluene	109		106		70-130	3		30	
Naphthalene	93		90		70-130	3		30	
Acrylonitrile	119		112		70-130	6		30	

Project Name: THE DAILY FREEMAN

Project Number: 16-159311.2

Lab Number: L1631369

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
Volatile Organics by 8260/5035 - Westboro	ugh Lab Associa	ted sample(s):	01-03,05-08	Batch: WO	939994-3 WG93	9994-4	
Isopropyl Ether	117		114		66-130	3	30
tert-Butyl Alcohol	101		95		70-130	6	30
n-Propylbenzene	111		109		70-130	2	30
1,2,3-Trichlorobenzene	95		92		70-130	3	30
1,2,4-Trichlorobenzene	99		98		70-130	1	30
1,3,5-Trimethylbenzene	104		101		70-130	3	30
1,2,4-Trimethylbenzene	104		103		70-130	1	30
Methyl Acetate	114		108		51-146	5	30
Ethyl Acetate	101		99		70-130	2	30
Acrolein	132	Q	145	Q	70-130	9	30
Cyclohexane	132		129		59-142	2	30
1,4-Dioxane	86		84		65-136	2	30
1,1,2-Trichloro-1,2,2-Trifluoroethane	122		117		50-139	4	30
p-Diethylbenzene	110		107		70-130	3	30
p-Ethyltoluene	104		102		70-130	2	30
1,2,4,5-Tetramethylbenzene	102		99		70-130	3	30
Tetrahydrofuran	110		107		66-130	3	30
Ethyl ether	120		117		67-130	3	30
trans-1,4-Dichloro-2-butene	88		80		70-130	10	30
Methyl cyclohexane	118		116		70-130	2	30
Ethyl-Tert-Butyl-Ether	113		111		70-130	2	30

Project Name: THE DAILY FREEMAN

Project Number: 16-159311.2

Lab Number:

L1631369

Report Date:

10/07/16

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by 8260/5035 - Westboroug	gh Lab Associate	d sample(s):	01-03,05-08	Batch: V	WG939994-3 WG939	9994-4			
Tertiary-Amyl Methyl Ether	101		97		70-130	4		30	

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	
1,2-Dichloroethane-d4	102		101		70-130	
Toluene-d8	103		104		70-130	
4-Bromofluorobenzene	100		100		70-130	
Dibromofluoromethane	99		100		70-130	

Project Name: THE DAILY FREEMAN

Project Number: 16-159311.2

Lab Number: L1631369

arameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
olatile Organics by EPA 5035 High - West	borough Lab Ass	ociated sample	(s): 04 Batch	: WG940021-3 WG940021-4		
Methylene chloride	116		114	70-130	2	30
1,1-Dichloroethane	108		108	70-130	0	30
Chloroform	100		98	70-130	2	30
Carbon tetrachloride	100		99	70-130	1	30
1,2-Dichloropropane	116		115	70-130	1	30
Dibromochloromethane	96		97	70-130	1	30
2-Chloroethylvinyl ether	124		124	70-130	0	30
1,1,2-Trichloroethane	101		102	70-130	1	30
Tetrachloroethene	104		107	70-130	3	30
Chlorobenzene	101		102	70-130	1	30
Trichlorofluoromethane	99		99	70-139	0	30
1,2-Dichloroethane	84		84	70-130	0	30
1,1,1-Trichloroethane	92		92	70-130	0	30
Bromodichloromethane	93		93	70-130	0	30
trans-1,3-Dichloropropene	90		92	70-130	2	30
cis-1,3-Dichloropropene	101		104	70-130	3	30
1,1-Dichloropropene	103		102	70-130	1	30
Bromoform	98		99	70-130	1	30
1,1,2,2-Tetrachloroethane	96		99	70-130	3	30
Benzene	106		105	70-130	1	30
Toluene	95		98	70-130	3	30

Project Name: THE DAILY FREEMAN

Project Number: 16-159311.2

Lab Number: L1631369

rameter	LCS %Recovery	Qual	LCSD %Recover	y Qual	%Recovery Limits	RPD	RPD Qual Limits
olatile Organics by EPA 5035 High - Westb	orough Lab As	sociated sample	(s): 04 B	atch: WG940	021-3 WG940021	-4	
Ethylbenzene	94		96		70-130	2	30
Chloromethane	117		116		52-130	1	30
Bromomethane	118		115		57-147	3	30
Vinyl chloride	134	Q	134	Q	67-130	0	30
Chloroethane	134		134		50-151	0	30
1,1-Dichloroethene	120		120		65-135	0	30
trans-1,2-Dichloroethene	113		114		70-130	1	30
Trichloroethene	102		104		70-130	2	30
1,2-Dichlorobenzene	97		98		70-130	1	30
1,3-Dichlorobenzene	99		100		70-130	1	30
1,4-Dichlorobenzene	99		100		70-130	1	30
Methyl tert butyl ether	100		98		66-130	2	30
p/m-Xylene	99		101		70-130	2	30
o-Xylene	99		99		70-130	0	30
cis-1,2-Dichloroethene	110		110		70-130	0	30
Dibromomethane	99		101		70-130	2	30
Styrene	95		96		70-130	1	30
Dichlorodifluoromethane	92		91		30-146	1	30
Acetone	122		110		54-140	10	30
Carbon disulfide	112		125		59-130	11	30
2-Butanone	106		105		70-130	1	30

Project Name: THE DAILY FREEMAN

Project Number: 16-159311.2

Lab Number: L1631369

Parameter	LCS %Recovery		CSD covery	%Recovery Qual Limits	RPD	Qual	RPD Limits
Volatile Organics by EPA 5035 High - Westbo	orough Lab Ass	sociated sample(s):	04 Batch:	WG940021-3 WG940021-4			
Vinyl acetate	105		104	70-130	1		30
4-Methyl-2-pentanone	99		100	70-130	1		30
1,2,3-Trichloropropane	86		88	68-130	2		30
2-Hexanone	85		87	70-130	2		30
Bromochloromethane	117		115	70-130	2		30
2,2-Dichloropropane	95		95	70-130	0		30
1,2-Dibromoethane	98		99	70-130	1		30
1,3-Dichloropropane	95		95	69-130	0		30
1,1,1,2-Tetrachloroethane	96		99	70-130	3		30
Bromobenzene	100		101	70-130	1		30
n-Butylbenzene	95		94	70-130	1		30
sec-Butylbenzene	93		95	70-130	2		30
tert-Butylbenzene	92		94	70-130	2		30
o-Chlorotoluene	90		90	70-130	0		30
p-Chlorotoluene	90		90	70-130	0		30
1,2-Dibromo-3-chloropropane	94		93	68-130	1		30
Hexachlorobutadiene	95		97	67-130	2		30
Isopropylbenzene	94		95	70-130	1		30
p-Isopropyltoluene	93		94	70-130	1		30
Naphthalene	95		95	70-130	0		30
Acrylonitrile	116		115	70-130	1		30

Project Name: THE DAILY FREEMAN

Project Number: 16-159311.2

Lab Number: L1631369

Parameter	LCS %Recovery	LCSI Qual %Recov		%Recovery Limits	RPD	RPD Qual Limits	
Volatile Organics by EPA 5035 High - Wes	stborough Lab Ass	ociated sample(s): 04	Batch: WG940	0021-3 WG940021	-4		
Isopropyl Ether	114	114		66-130	0	30	
tert-Butyl Alcohol	105	101		70-130	4	30	
n-Propylbenzene	93	94		70-130	1	30	
1,2,3-Trichlorobenzene	99	98		70-130	1	30	
1,2,4-Trichlorobenzene	102	100		70-130	2	30	
1,3,5-Trimethylbenzene	90	92		70-130	2	30	
1,2,4-Trimethylbenzene	89	91		70-130	2	30	
Methyl Acetate	115	114		51-146	1	30	
Ethyl Acetate	101	102		70-130	1	30	
Acrolein	127	140	Q	70-130	10	30	
Cyclohexane	116	116		59-142	0	30	
1,4-Dioxane	93	89		65-136	4	30	
1,1,2-Trichloro-1,2,2-Trifluoroethane	119	117		50-139	2	30	
p-Diethylbenzene	98	96		70-130	2	30	
p-Ethyltoluene	95	96		70-130	1	30	
1,2,4,5-Tetramethylbenzene	92	92		70-130	0	30	
Tetrahydrofuran	109	103		66-130	6	30	
Ethyl ether	120	119		67-130	1	30	
trans-1,4-Dichloro-2-butene	77	79		70-130	3	30	
Methyl cyclohexane	108	109		70-130	1	30	
Ethyl-Tert-Butyl-Ether	106	105		70-130	1	30	

Project Name: THE DAILY FREEMAN

Project Number: 16-159311.2

Lab Number:

L1631369

Report Date:

10/07/16

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Qual Limits		RPD .imits
Volatile Organics by EPA 5035 High - Westk	oorough Lab Assoc	ciated sample	e(s): 04 Batch:	WG9400	21-3 WG940021-4		
Tertiary-Amyl Methyl Ether	102		100		70-130	2	30

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	
1,2-Dichloroethane-d4	78		78		70-130	
Toluene-d8	95		95		70-130	
4-Bromofluorobenzene	88		91		70-130	
Dibromofluoromethane	102		99		70-130	

SEMIVOLATILES

L1631369

10/07/16

Project Name: THE DAILY FREEMAN

Project Number: 16-159311.2

SAMPLE RESULTS

Date Collected: 10/01/16 12:29

Lab Number:

Report Date:

Date Received: 10/01/16 Field Prep: Not Specified Extraction Method: EPA 3546

10/04/16 08:07 Extraction Date:

Lab ID: L1631369-07

Client ID: B7

Sample Location: 79 HURLEY AVENUE, KINGSTON, NY 12401

Matrix: Analytical Method: 1,8270D Analytical Date: 10/07/16 12:18

Analyst: RC 84% Percent Solids:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - V	Vestborough Lab						
Acenaphthene	ND		ug/kg	160	20.	1	
1,2,4-Trichlorobenzene	ND		ug/kg	190	22.	1	
Hexachlorobenzene	ND		ug/kg	120	22.	1	
Bis(2-chloroethyl)ether	ND		ug/kg	170	26.	1	
2-Chloronaphthalene	ND		ug/kg	190	19.	1	
1,2-Dichlorobenzene	ND		ug/kg	190	35.	1	
1,3-Dichlorobenzene	ND		ug/kg	190	33.	1	
1,4-Dichlorobenzene	ND		ug/kg	190	34.	1	
3,3'-Dichlorobenzidine	ND		ug/kg	190	52.	1	
2,4-Dinitrotoluene	ND		ug/kg	190	39.	1	
2,6-Dinitrotoluene	ND		ug/kg	190	33.	1	
Fluoranthene	ND		ug/kg	120	22.	1	
4-Chlorophenyl phenyl ether	ND		ug/kg	190	21.	1	
4-Bromophenyl phenyl ether	ND		ug/kg	190	30.	1	
Bis(2-chloroisopropyl)ether	ND		ug/kg	230	33.	1	
Bis(2-chloroethoxy)methane	ND		ug/kg	210	19.	1	
Hexachlorobutadiene	ND		ug/kg	190	28.	1	
Hexachlorocyclopentadiene	ND		ug/kg	550	180	1	
Hexachloroethane	ND		ug/kg	160	31.	1	
Isophorone	ND		ug/kg	170	25.	1	
Naphthalene	ND		ug/kg	190	24.	1	
Nitrobenzene	ND		ug/kg	170	29.	1	
NDPA/DPA	ND		ug/kg	160	22.	1	
n-Nitrosodi-n-propylamine	ND		ug/kg	190	30.	1	
Bis(2-ethylhexyl)phthalate	ND		ug/kg	190	67.	1	
Butyl benzyl phthalate	ND		ug/kg	190	49.	1	
Di-n-butylphthalate	ND		ug/kg	190	37.	1	
Di-n-octylphthalate	ND		ug/kg	190	66.	1	
Diethyl phthalate	ND		ug/kg	190	18.	1	
Dimethyl phthalate	ND		ug/kg	190	41.	1	

Project Name: THE DAILY FREEMAN Lab Number: L1631369

Project Number: 16-159311.2 **Report Date:** 10/07/16

SAMPLE RESULTS

Lab ID: Date Collected: 10/01/16 12:29

Client ID: B7 Date Received: 10/01/16
Sample Location: 79 HURLEY AVENUE, KINGSTON, NY 12401 Field Prep: Not Specified

Parameter Result Qualifier Units RIC Distribution Planics by GC/NS - Vesitivo Fulbrance Benzo(algianthracene ND ugkq 120 22 1 Benzo(algianthracene ND ugkq 120 22 1 Benzo(algianthracene ND ugkq 120 33 1 Benzo(algianthracene ND ugkq 120 33 1 Benzo(algianthracene ND ugkq 120 20 1 Benzo(algianthracene ND ugkq 120 20 1 Benzo(algianthracene ND ugkq 120 20 1 Actinacene ND ugkq 120 23 1 Actinacene ND ugkq 120 24 1 Pluorene ND ugkq 120 24 1 Pluorene ND ugkq 120 24 1 Pluorene ND ugkq 120 24	Sample Location:	79 HURLEY AVENUE	, KINGSTO	N, NY 12401	1	Field Pre	ep:	Not Specified
Benze(s)ambracene	Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Baracol(a)pyrene ND ug/kg 160 47. 1 Baracol(b)troranthene ND ug/kg 120 33. 1 Benzol(b)troranthene ND ug/kg 120 31. 1 Benzol(b)troranthene ND ug/kg 160 30. 1 Chrysene ND ug/kg 160 30. 1 Acenaphthylene ND ug/kg 160 30. 1 Anthracene ND ug/kg 180 18. 1 Fluorene ND ug/kg 120 24. 1 Phenanthrene ND ug/kg 120 22. 1 Diberze(a, h)arthracene ND ug/kg 160 27. 1 Diberze(a, h)arthracene ND ug/kg 160 27. 1 Eyrace ND ug/kg 160 27. 1 Eyrace ND ug/kg 190 35. 1 Eyr	Semivolatile Organ	ics by GC/MS - Westbord	ough Lab					
Benzo(f)Ituoranthene ND ug/kg 120 33. 1 Benzo(f)Ituoranthene ND ug/kg 120 31. 1 Chrysene ND ug/kg 120 30. 1 Anthracone ND ug/kg 120 38. 1 Anthracone ND ug/kg 120 38. 1 Benzo(g/i)perylene ND ug/kg 120 38. 1 Flourene ND ug/kg 120 23. 1 Phonanthrene ND ug/kg 120 24. 1 Diberzo(a) Aparthracene ND ug/kg 120 22. 1 Indenot (1,23-dS)pyrene ND ug/kg 120 22. 1 Pyrene ND ug/kg 120 25. 1 Bjhenyl ND ug/kg 120 35. 1 4-Chloronniline ND ug/kg 190 36. 1 4-Khiroani	Benzo(a)anthracene		ND		ug/kg	120	22.	1
Bottool(Nituoranthane) ND ug/kg 120 31. 1 Chrysene ND ug/kg 120 20. 1 Acenaphthylene ND ug/kg 160 30. 1 Acenaphthylene ND ug/kg 120 38. 1 Benzol(phi)perylene ND ug/kg 180 23. 1 Fluorene ND ug/kg 180 19. 1 Phenanthracene ND ug/kg 120 24. 1 Dibenzo(a, h)anthracene ND ug/kg 120 22. 1 Indenot(1,2,3-cx)pyrene ND ug/kg 180 27. 1 Pyrena ND ug/kg 180 27. 1 4-Chioroaniline ND ug/kg 190 35. 1 4-Chioroaniline ND ug/kg 190 36. 1 4-Nitroaniline ND ug/kg 190 36. 1	Benzo(a)pyrene		ND		ug/kg	160	47.	1
Chrysene ND ug/kg 120 20. 1 Acenaphtylene ND ug/kg 160 30. 1 Anthracene ND ug/kg 120 38. 1 Bancoghiylepylene ND ug/kg 180 23. 1 Fluorene ND ug/kg 190 19. 1 Pheranthrene ND ug/kg 120 24. 1 Dibenzo(a, h)anthracen ND ug/kg 120 22. 1 Indexnot (2,3-cd)pyrene ND ug/kg 160 27. 1 Pyrene ND ug/kg 120 19. 1 Pyrene ND ug/kg 190 35. 1 4-Chroraniline ND ug/kg 190 35. 1 4-Nitroaniline ND ug/kg 190 36. 1 4-Nitroaniline ND ug/kg 190 36. 1 2-Nitroaniline	Benzo(b)fluoranthene		ND		ug/kg	120	33.	1
Aconaphtrylene ND ug/kg 160 30. 1 Anthracene ND ug/kg 120 38. 1 Benzolghijberylene ND ug/kg 160 23. 1 Fluorene ND ug/kg 190 19. 1 Phenanthrene ND ug/kg 120 24. 1 Diberac(a) Ajanthracene ND ug/kg 160 27. 1 Indenot (1,2,3-di)pyrene ND ug/kg 160 27. 1 Pyrene ND ug/kg 140 45. 1 Biphenyl ND ug/kg 190 35. 1 4-Chioroanline ND ug/kg 190 35. 1 4-Nitroaniline ND ug/kg 190 36. 1 4-Nitroaniline ND ug/kg 190 36. 1 4-Nitroaniline ND ug/kg 190 36. 1 4-Nitroanil	Benzo(k)fluoranthene		ND		ug/kg	120	31.	1
Anthracene ND ug/kg 120 38. 1 Benzo(ghi)porylene ND ug/kg 160 23. 1 Fluorene ND ug/kg 190 19. 1 Phenanthrene ND ug/kg 120 22. 1 Dibenzo(a,h)anthracene ND ug/kg 160 27. 1 Indeno(1,2,3-od)pyrene ND ug/kg 120 22. 1 Pyrene ND ug/kg 160 27. 1 Biphenyl ND ug/kg 190 35. 1 4-Nitroaniline ND ug/kg 190 35. 1 2-Nitroaniline ND ug/kg 190 36. 1 4-Nitroaniline	Chrysene		ND		ug/kg	120	20.	1
Benzo(ghilperylene ND ug/kg 160 23 1 Fluorene ND ug/kg 190 19 1 Phenanthrene ND ug/kg 120 24 1 Dibenzo(a,h)anthracene ND ug/kg 160 27 1 Pyrene ND ug/kg 120 19 1 Pyrene ND ug/kg 120 19 1 Biphenyl ND ug/kg 190 35 1 4-Chioraniline ND ug/kg 190 35 1 4-Nitroaniline ND ug/kg 190 36 1 4-Nitroaniline ND	Acenaphthylene		ND		ug/kg	160	30.	1
Fluorene ND	Anthracene		ND		ug/kg	120	38.	1
Phenanthrene ND ug/kg 120 24 1 Dibenzo(a,h)anthracene ND ug/kg 120 22 1 Indeno(12,3-cd)pyrene ND ug/kg 160 27 1 Pyrene ND ug/kg 120 19 1 Biphenyl ND ug/kg 190 35 1 4-Chloroaniline ND ug/kg 190 35 1 2-Nitroaniline ND ug/kg 190 36 1 3-Nitroaniline ND ug/kg 190 36 1 4-Nitroaniline	Benzo(ghi)perylene		ND		ug/kg	160	23.	1
Dibenzo(a,h)anthracene ND ug/kg 120 22. 1 Indeno(1,2,3-cd)pyrene ND ug/kg 160 27. 1 Pyrene ND ug/kg 120 19. 1 Biphenyl ND ug/kg 190 35. 1 4-Chloroaniline ND ug/kg 190 35. 1 2-Nitroaniline ND ug/kg 190 36. 1 4-Nitroaniline ND ug/kg 190 80. 1 2-Met	Fluorene		ND		ug/kg	190	19.	1
Indeno(1,2,3-cd)pyrene ND ug/kg 160 27. 1 Pyrene ND ug/kg 120 19. 1 Biphenyl ND ug/kg 440 45. 1 4-Chloroaniline ND ug/kg 190 35. 1 2-Nitroaniline ND ug/kg 190 36. 1 3-Nitroaniline ND ug/kg 190 36. 1 4-Nitroaniline ND ug/kg 190 30. 1 2-Muthynaphthalene ND ug/kg 190 20. 1 2-Ketptra	Phenanthrene		ND		ug/kg	120	24.	1
Pyrene ND ug/kg 120 19. 1 Biphenyl ND ug/kg 440 45. 1 4-Chloroaniline ND ug/kg 190 35. 1 2-Nitroaniline ND ug/kg 190 36. 1 3-Nitroaniline ND ug/kg 190 36. 1 4-Nitroaniline ND ug/kg 190 20. 1 2-Methylnaphral ND ug/kg 190 29. 1 1,2,4,5-Trichlorophe	Dibenzo(a,h)anthracene		ND		ug/kg	120	22.	1
Biphenyl	Indeno(1,2,3-cd)pyrene		ND		ug/kg	160	27.	1
4-Chloroaniline ND ug/kg 190 35. 1 2-Nitroaniline ND ug/kg 190 37. 1 3-Nitroaniline ND ug/kg 190 36. 1 4-Nitroaniline ND ug/kg 190 80. 1 2-Methylnaphthalene ND ug/kg 190 20. 1 2-Methylnaphthalene ND ug/kg 190 24. 1 1,2,4.5-Trichlorophenol ND ug/kg 190 24. 1 2,4.6-Trichlorophenol ND ug/kg 190 23. 1	Pyrene		ND		ug/kg	120	19.	1
2-Nitroaniline ND ug/kg 190 37. 1 3-Nitroaniline ND ug/kg 190 36. 1 3-Nitroaniline ND ug/kg 190 80. 1 4-Nitroaniline ND ug/kg 190 18. 1 2-Methylnaphthalene ND ug/kg 230 23. 1 1,2,4,5-Tetrachlorobenzene ND ug/kg 190 20. 1 Acetophenone ND ug/kg 190 24. 1 2,4,6-Trichlorophenol ND ug/kg 190 24. 1 2,4,6-Trichlorophenol ND ug/kg 190 29. 1 2,4-Chirichlorophenol ND ug/kg 190 23. 1 2,4-Diniethylphenol ND ug/kg 190 64. 1 2,4-Diniethylphenol ND ug/kg 190 64. 1 4-Nitrophenol ND ug/kg 930 90. 1	Biphenyl		ND		ug/kg	440	45.	1
3-Nitroaniline ND ug/kg 190 36. 1 4-Nitroaniline ND ug/kg 190 80. 1 Dibenzofuran ND ug/kg 190 18. 1 2-Methylnaphthalene ND ug/kg 230 23. 1 1,2,4,5-Tetrachlorobenzene ND ug/kg 190 20. 1 Acetophenone ND ug/kg 190 24. 1 2,4,6-Trichlorophenol ND ug/kg 190 24. 1 2,4,6-Trichlorophenol ND ug/kg 190 29. 1 2,4,6-Trichlorophenol ND ug/kg 190 29. 1 2,4-Gritchlorophenol ND ug/kg 190 23. 1 2,4-Dintrophenol ND ug/kg 190 64. 1 2,4-Dintrophenol ND ug/kg 190 64. 1 4-Nitrophenol ND ug/kg 90 1 1	4-Chloroaniline		ND		ug/kg	190	35.	1
4-Nitroaniline ND ug/kg 190 80. 1 Dibenzofuran ND ug/kg 190 18. 1 2-Methylnaphthalene ND ug/kg 230 23. 1 1,2,4,5-Tetrachlorobenzene ND ug/kg 190 20. 1 Acetophenone ND ug/kg 190 24. 1 2,4,6-Trichlorophenol ND ug/kg 190 24. 1 2,4,6-Trichlorophenol ND ug/kg 190 29. 1 2,-Chlorophenol ND ug/kg 190 29. 1 2-Chlorophenol ND ug/kg 190 23. 1 2,4-Dichlorophenol ND ug/kg 190 23. 1 2,4-Dinterbylphenol ND ug/kg 190 64. 1 2-Nitrophenol ND ug/kg 270 73. 1 4-Nitrophenol ND ug/kg 300 90. 1 4-Pinitrophenol ND ug/kg 500 93. 1 </td <td>2-Nitroaniline</td> <td></td> <td>ND</td> <td></td> <td>ug/kg</td> <td>190</td> <td>37.</td> <td>1</td>	2-Nitroaniline		ND		ug/kg	190	37.	1
Dibenzofuran ND ug/kg 190 18. 1 2-Methylnaphthalene ND ug/kg 230 23. 1 1,2,4,5-Tetrachlorobenzene ND ug/kg 190 20. 1 Acetophenone ND ug/kg 190 24. 1 2,4,6-Trichlorophenol ND ug/kg 190 24. 1 2,4,6-Trichlorophenol ND ug/kg 190 29. 1 2-Chlorophenol ND ug/kg 190 29. 1 2-Chlorophenol ND ug/kg 190 23. 1 2,4-Dinitrophenol ND ug/kg 170 31. 1 2,4-Dinitrophenol ND ug/kg 190 64. 1 2-Nitrophenol ND ug/kg 270 79. 1 4-Nitrophenol ND ug/kg 930 90. 1 4,6-Dinitro-o-cresol ND ug/kg 160 43. 1	3-Nitroaniline		ND		ug/kg	190	36.	1
2-Methylnaphthalene ND ug/kg 230 23. 1 1,2,4,5-Tetrachlorobenzene ND ug/kg 190 20. 1 Acetophenone ND ug/kg 190 24. 1 2,4,6-Trichlorophenol ND ug/kg 120 37. 1 p-Chloro-m-cresol ND ug/kg 190 29. 1 2-Chlorophenol ND ug/kg 190 29. 1 2-Chlorophenol ND ug/kg 190 23. 1 2-A-Dinitrophenol ND ug/kg 170 31. 1 2-A-Dinitrophenol ND ug/kg 190 64. 1 2-Nitrophenol ND ug/kg 270 79. 1 4-Nitrophenol ND ug/kg 930 90. 1 4-G-Dinitro-o-cresol ND ug/kg 500 93. 1 Pentachlorophenol ND ug/kg 190 29. 1	4-Nitroaniline		ND		ug/kg	190	80.	1
1,2,4,5-Tetrachlorobenzene ND ug/kg 190 20. 1 Acetophenone ND ug/kg 190 24. 1 2,4,6-Trichlorophenol ND ug/kg 120 37. 1 p-Chloro-m-cresol ND ug/kg 190 29. 1 2-Chlorophenol ND ug/kg 190 23. 1 2,4-Dichlorophenol ND ug/kg 170 31. 1 2,4-Dinethylphenol ND ug/kg 190 64. 1 2,4-Dinethylphenol ND ug/kg 420 73. 1 4-Nitrophenol ND ug/kg 270 79. 1 4-Nitrophenol ND ug/kg 930 90. 1 4,6-Dinitro-o-cresol ND ug/kg 500 93. 1 Pentachlorophenol ND ug/kg 190 30. 1 2-Methylphenol ND ug/kg 190 30. 1	Dibenzofuran		ND		ug/kg	190	18.	1
Acetophenone ND ug/kg 190 24. 1 2,4,6-Trichlorophenol ND ug/kg 120 37. 1 p-Chloro-m-cresol ND ug/kg 190 29. 1 2-Chlorophenol ND ug/kg 190 23. 1 2,4-Dichlorophenol ND ug/kg 170 31. 1 2,4-Dimethylphenol ND ug/kg 190 64. 1 2,4-Dimethylphenol ND ug/kg 420 73. 1 2-Nitrophenol ND ug/kg 270 79. 1 4-Nitrophenol ND ug/kg 930 90. 1 4,6-Dinitro-o-cresol ND ug/kg 500 93. 1 Pentachlorophenol ND ug/kg 190 29. 1 2-Methylphenol ND ug/kg 190 30. 1 2-Methylphenol/4-Methylphenol ND ug/kg 190 37. 1 <td>2-Methylnaphthalene</td> <td></td> <td>ND</td> <td></td> <td>ug/kg</td> <td>230</td> <td>23.</td> <td>1</td>	2-Methylnaphthalene		ND		ug/kg	230	23.	1
2,4,6-Trichlorophenol ND ug/kg 120 37. 1 p-Chloro-m-cresol ND ug/kg 190 29. 1 2-Chlorophenol ND ug/kg 190 23. 1 2,4-Dichlorophenol ND ug/kg 170 31. 1 2,4-Dimethylphenol ND ug/kg 190 64. 1 2-Nitrophenol ND ug/kg 420 73. 1 4-Nitrophenol ND ug/kg 270 79. 1 4-Nitrophenol ND ug/kg 930 90. 1 4,6-Dinitro-o-cresol ND ug/kg 500 93. 1 Pentachlorophenol ND ug/kg 160 43. 1 Phenol ND ug/kg 190 29. 1 2-Methylphenol/4-Methylphenol ND ug/kg 190 30. 1 3-Methylphenol/4-Methylphenol ND ug/kg 190 37. 1 Benzoic Acid ND ug/kg 630 200 1 <td>1,2,4,5-Tetrachlorobenzer</td> <td>ne</td> <td>ND</td> <td></td> <td>ug/kg</td> <td>190</td> <td>20.</td> <td>1</td>	1,2,4,5-Tetrachlorobenzer	ne	ND		ug/kg	190	20.	1
p-Chloro-m-cresol ND ug/kg 190 29. 1 2-Chlorophenol ND ug/kg 190 23. 1 2,4-Dichlorophenol ND ug/kg 170 31. 1 2,4-Dichlorophenol ND ug/kg 190 64. 1 2-Nitrophenol ND ug/kg 420 73. 1 4-Nitrophenol ND ug/kg 270 79. 1 2,4-Dinitrophenol ND ug/kg 930 90. 1 4,6-Dinitro-o-cresol ND ug/kg 500 93. 1 Pentachlorophenol ND ug/kg 160 43. 1 Phenol ND ug/kg 190 29. 1 2-Methylphenol/4-Methylphenol ND ug/kg 190 30. 1 2,4,5-Trichlorophenol ND ug/kg 190 37. 1 Benzoic Acid ND ug/kg 630 200 1 </td <td>Acetophenone</td> <td></td> <td>ND</td> <td></td> <td>ug/kg</td> <td>190</td> <td>24.</td> <td>1</td>	Acetophenone		ND		ug/kg	190	24.	1
2-Chlorophenol ND ug/kg 190 23. 1 2,4-Dichlorophenol ND ug/kg 170 31. 1 2,4-Dimethylphenol ND ug/kg 190 64. 1 2-Nitrophenol ND ug/kg 420 73. 1 4-Nitrophenol ND ug/kg 270 79. 1 2,4-Dinitrophenol ND ug/kg 930 90. 1 2,4-Dinitrophenol ND ug/kg 930 90. 1 4,6-Dinitro-o-cresol ND ug/kg 930 90. 1 Pentachlorophenol ND ug/kg 500 93. 1 Pentachlorophenol ND ug/kg 160 43. 1 Phenol ND ug/kg 190 29. 1 2-Methylphenol ND ug/kg 190 30. 1 3-Methylphenol/4-Methylphenol ND ug/kg 190 30. 1 3-Methylphenol/4-Methylphenol ND ug/kg 190 37. 1 Benzoic Acid ND ug/kg 190 37. 1 Benzoic Acid ND ug/kg 190 59. 1	2,4,6-Trichlorophenol		ND		ug/kg	120	37.	1
2,4-Dichlorophenol ND ug/kg 170 31. 1 2,4-Dimethylphenol ND ug/kg 190 64. 1 2-Nitrophenol ND ug/kg 420 73. 1 4-Nitrophenol ND ug/kg 270 79. 1 2,4-Dinitrophenol ND ug/kg 930 90. 1 4,6-Dinitro-o-cresol ND ug/kg 500 93. 1 Pentachlorophenol ND ug/kg 160 43. 1 Phenol ND ug/kg 190 29. 1 2-Methylphenol ND ug/kg 190 30. 1 3-Methylphenol/4-Methylphenol ND ug/kg 280 30. 1 2,4,5-Trichlorophenol ND ug/kg 190 37. 1 Benzoic Acid ND ug/kg 630 200 1 Benzoli Acidol ND ug/kg 190 59. 1	p-Chloro-m-cresol		ND		ug/kg	190	29.	1
2,4-Dimethylphenol ND ug/kg 190 64. 1 2-Nitrophenol ND ug/kg 420 73. 1 4-Nitrophenol ND ug/kg 270 79. 1 4-Nitrophenol ND ug/kg 930 90. 1 2,4-Dinitrophenol ND ug/kg 500 93. 1 4,6-Dinitro-o-cresol ND ug/kg 160 43. 1 Pentachlorophenol ND ug/kg 190 29. 1 Phenol ND ug/kg 190 30. 1 2-Methylphenol/4-Methylphenol ND ug/kg 280 30. 1 2,4,5-Trichlorophenol ND ug/kg 190 37. 1 Benzoic Acid ND ug/kg 630 200 1 Benzyl Alcohol ND ug/kg 190 59. 1	2-Chlorophenol		ND		ug/kg	190	23.	1
2-Nitrophenol ND ug/kg 420 73. 1 4-Nitrophenol ND ug/kg 270 79. 1 2,4-Dinitrophenol ND ug/kg 930 90. 1 4,6-Dinitro-o-cresol ND ug/kg 500 93. 1 Pentachlorophenol ND ug/kg 160 43. 1 Phenol ND ug/kg 190 29. 1 2-Methylphenol ND ug/kg 190 30. 1 3-Methylphenol/4-Methylphenol ND ug/kg 280 30. 1 2,4,5-Trichlorophenol ND ug/kg 190 37. 1 Benzoic Acid ND ug/kg 630 200 1 Benzyl Alcohol ND ug/kg 190 59. 1	2,4-Dichlorophenol		ND		ug/kg	170	31.	1
4-Nitrophenol ND ug/kg 270 79. 1 2,4-Dinitrophenol ND ug/kg 930 90. 1 4,6-Dinitro-o-cresol ND ug/kg 500 93. 1 Pentachlorophenol ND ug/kg 160 43. 1 Phenol ND ug/kg 190 29. 1 2-Methylphenol ND ug/kg 190 30. 1 3-Methylphenol ND ug/kg 190 30. 1 2,4,5-Trichlorophenol ND ug/kg 190 37. 1 Benzoic Acid ND ug/kg 190 37. 1 Benzolc Acid ND ug/kg 190 59. 1	2,4-Dimethylphenol		ND		ug/kg	190	64.	1
2,4-Dinitrophenol ND ug/kg 930 90. 1 4,6-Dinitro-o-cresol ND ug/kg 500 93. 1 Pentachlorophenol ND ug/kg 160 43. 1 Phenol ND ug/kg 190 29. 1 2-Methylphenol ND ug/kg 190 30. 1 3-Methylphenol/4-Methylphenol ND ug/kg 280 30. 1 2,4,5-Trichlorophenol ND ug/kg 190 37. 1 Benzoic Acid ND ug/kg 630 200 1 Benzyl Alcohol ND ug/kg 190 59. 1	2-Nitrophenol		ND		ug/kg	420	73.	1
4,6-Dinitro-o-cresol ND ug/kg 500 93. 1 Pentachlorophenol ND ug/kg 160 43. 1 Phenol ND ug/kg 190 29. 1 2-Methylphenol ND ug/kg 190 30. 1 3-Methylphenol/4-Methylphenol ND ug/kg 280 30. 1 2,4,5-Trichlorophenol ND ug/kg 190 37. 1 Benzoic Acid ND ug/kg 630 200 1 Benzyl Alcohol ND ug/kg 190 59. 1	4-Nitrophenol		ND		ug/kg	270	79.	1
Pentachlorophenol ND ug/kg 160 43. 1 Phenol ND ug/kg 190 29. 1 2-Methylphenol ND ug/kg 190 30. 1 3-Methylphenol/4-Methylphenol ND ug/kg 280 30. 1 2,4,5-Trichlorophenol ND ug/kg 190 37. 1 Benzoic Acid ND ug/kg 630 200 1 Benzyl Alcohol ND ug/kg 190 59. 1	2,4-Dinitrophenol		ND		ug/kg	930	90.	1
Phenol ND ug/kg 190 29. 1 2-Methylphenol ND ug/kg 190 30. 1 3-Methylphenol/4-Methylphenol ND ug/kg 280 30. 1 2,4,5-Trichlorophenol ND ug/kg 190 37. 1 Benzoic Acid ND ug/kg 630 200 1 Benzyl Alcohol ND ug/kg 190 59. 1	4,6-Dinitro-o-cresol		ND		ug/kg	500	93.	1
2-Methylphenol ND ug/kg 190 30. 1 3-Methylphenol/4-Methylphenol ND ug/kg 280 30. 1 2,4,5-Trichlorophenol ND ug/kg 190 37. 1 Benzoic Acid ND ug/kg 630 200 1 Benzyl Alcohol ND ug/kg 190 59. 1	Pentachlorophenol		ND		ug/kg	160	43.	1
3-Methylphenol/4-Methylphenol ND ug/kg 280 30. 1 2,4,5-Trichlorophenol ND ug/kg 190 37. 1 Benzoic Acid ND ug/kg 630 200 1 Benzyl Alcohol ND ug/kg 190 59. 1	Phenol		ND		ug/kg	190	29.	1
2,4,5-Trichlorophenol ND ug/kg 190 37. 1 Benzoic Acid ND ug/kg 630 200 1 Benzyl Alcohol ND ug/kg 190 59. 1	2-Methylphenol		ND		ug/kg	190	30.	1
Benzoic Acid ND ug/kg 630 200 1 Benzyl Alcohol ND ug/kg 190 59. 1	3-Methylphenol/4-Methylp	henol	ND		ug/kg	280	30.	1
Benzyl Alcohol ND ug/kg 190 59. 1	2,4,5-Trichlorophenol		ND		ug/kg	190	37.	1
	Benzoic Acid		ND		ug/kg	630	200	1
Carbazole ND ug/kg 190 19. 1	Benzyl Alcohol		ND		ug/kg	190	59.	1
	Carbazole		ND		ug/kg	190	19.	1

Project Name: THE DAILY FREEMAN Lab Number: L1631369

Project Number: 16-159311.2 **Report Date:** 10/07/16

SAMPLE RESULTS

Lab ID: Date Collected: 10/01/16 12:29

Client ID: B7 Date Received: 10/01/16
Sample Location: 79 HURLEY AVENUE, KINGSTON, NY 12401 Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

Semivolatile Organics by GC/MS - Westborough Lab

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
2-Fluorophenol	66		25-120	
Phenol-d6	62		10-120	
Nitrobenzene-d5	69		23-120	
2-Fluorobiphenyl	74		30-120	
2,4,6-Tribromophenol	92		10-136	
4-Terphenyl-d14	52		18-120	

L1631369

Project Name: THE DAILY FREEMAN

Project Number: 16-159311.2

SAMPLE RESULTS

Report Date: 10/07/16

Lab Number:

Lab ID: L1631369-08

Client ID: B8

Sample Location: 79 HURLEY AVENUE, KINGSTON, NY 12401

Matrix: Analytical Method: 1,8270D

Analytical Date: 10/06/16 16:49

Analyst: K۷ Percent Solids: 85%

Date Collected:	10/01/16 12:41
Date Received:	10/01/16
Field Prep:	Not Specified
Extraction Method	d:EPA 3546
Extraction Date:	10/04/16 08:07

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS	· Westborough Lab					
Acenaphthene	ND		ug/kg	150	20.	1
1,2,4-Trichlorobenzene	ND		ug/kg	190	22.	1
Hexachlorobenzene	ND		ug/kg	110	21.	1
Bis(2-chloroethyl)ether	ND		ug/kg	170	26.	1
2-Chloronaphthalene	ND		ug/kg	190	19.	1
1,2-Dichlorobenzene	ND		ug/kg	190	34.	1
1,3-Dichlorobenzene	ND		ug/kg	190	33.	1
1,4-Dichlorobenzene	ND		ug/kg	190	33.	1
3,3'-Dichlorobenzidine	ND		ug/kg	190	51.	1
2,4-Dinitrotoluene	ND		ug/kg	190	38.	1
2,6-Dinitrotoluene	ND		ug/kg	190	33.	1
Fluoranthene	ND		ug/kg	110	22.	1
4-Chlorophenyl phenyl ether	ND		ug/kg	190	20.	1
4-Bromophenyl phenyl ether	ND		ug/kg	190	29.	1
Bis(2-chloroisopropyl)ether	ND		ug/kg	230	33.	1
Bis(2-chloroethoxy)methane	ND		ug/kg	210	19.	1
Hexachlorobutadiene	ND		ug/kg	190	28.	1
Hexachlorocyclopentadiene	ND		ug/kg	550	170	1
Hexachloroethane	ND		ug/kg	150	31.	1
Isophorone	ND		ug/kg	170	25.	1
Naphthalene	ND		ug/kg	190	23.	1
Nitrobenzene	ND		ug/kg	170	28.	1
NDPA/DPA	ND		ug/kg	150	22.	1
n-Nitrosodi-n-propylamine	ND		ug/kg	190	30.	1
Bis(2-ethylhexyl)phthalate	ND		ug/kg	190	66.	1
Butyl benzyl phthalate	ND		ug/kg	190	48.	1
Di-n-butylphthalate	ND		ug/kg	190	36.	1
Di-n-octylphthalate	ND		ug/kg	190	65.	1
Diethyl phthalate	ND		ug/kg	190	18.	1
Dimethyl phthalate	ND		ug/kg	190	40.	1

Project Name: THE DAILY FREEMAN Lab Number: L1631369

Project Number: 16-159311.2 **Report Date:** 10/07/16

SAMPLE RESULTS

Lab ID: Date Collected: 10/01/16 12:41

Client ID: B8 Date Received: 10/01/16
Sample Location: 79 HURLEY AVENUE, KINGSTON, NY 12401 Field Prep: Not Specified

Sample Location.	19 HURLET AVENUE, KINGST	JIN, INT 12401		riela Prep.		Not Specified
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics	by GC/MS - Westborough Lab					
Benzo(a)anthracene	ND		ug/kg	110	22.	1
Benzo(a)pyrene	ND		ug/kg	150	47.	1
Benzo(b)fluoranthene	ND		ug/kg	110	32.	1
Benzo(k)fluoranthene	ND		ug/kg	110	31.	1
Chrysene	ND		ug/kg	110	20.	1
Acenaphthylene	ND		ug/kg	150	30.	1
Anthracene	ND		ug/kg	110	37.	1
Benzo(ghi)perylene	ND		ug/kg	150	22.	1
Fluorene	ND		ug/kg	190	19.	1
Phenanthrene	ND		ug/kg	110	23.	1
Dibenzo(a,h)anthracene	ND		ug/kg	110	22.	1
Indeno(1,2,3-cd)pyrene	ND		ug/kg	150	27.	1
Pyrene	ND		ug/kg	110	19.	1
Biphenyl	ND		ug/kg	440	44.	1
4-Chloroaniline	ND		ug/kg	190	35.	1
2-Nitroaniline	ND		ug/kg	190	37.	1
3-Nitroaniline	ND		ug/kg	190	36.	1
4-Nitroaniline	ND		ug/kg	190	79.	1
Dibenzofuran	ND		ug/kg	190	18.	1
2-Methylnaphthalene	ND		ug/kg	230	23.	1
1,2,4,5-Tetrachlorobenzene	ND		ug/kg	190	20.	1
Acetophenone	ND		ug/kg	190	24.	1
2,4,6-Trichlorophenol	ND		ug/kg	110	36.	1
p-Chloro-m-cresol	ND		ug/kg	190	28.	1
2-Chlorophenol	ND		ug/kg	190	23.	1
2,4-Dichlorophenol	ND		ug/kg	170	31.	1
2,4-Dimethylphenol	ND		ug/kg	190	63.	1
2-Nitrophenol	ND		ug/kg	410	72.	1
4-Nitrophenol	ND		ug/kg	270	78.	1
2,4-Dinitrophenol	ND		ug/kg	920	89.	1
4,6-Dinitro-o-cresol	ND		ug/kg	500	92.	1
Pentachlorophenol	ND		ug/kg	150	42.	1
Phenol	ND		ug/kg	190	29.	1
2-Methylphenol	ND		ug/kg	190	30.	1
3-Methylphenol/4-Methylphen	ol ND		ug/kg	280	30.	1
2,4,5-Trichlorophenol	ND		ug/kg	190	37.	1
Benzoic Acid	ND		ug/kg	620	190	1
Benzyl Alcohol	ND		ug/kg	190	59.	1
Carbazole	ND		ug/kg	190	19.	1

Project Name: THE DAILY FREEMAN Lab Number: L1631369

Project Number: 16-159311.2 **Report Date:** 10/07/16

SAMPLE RESULTS

Lab ID: L1631369-08 Date Collected: 10/01/16 12:41

Client ID: B8 Date Received: 10/01/16
Sample Location: 79 HURLEY AVENUE, KINGSTON, NY 12401 Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

Semivolatile Organics by GC/MS - Westborough Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	76	25-120
Phenol-d6	79	10-120
Nitrobenzene-d5	89	23-120
2-Fluorobiphenyl	77	30-120
2,4,6-Tribromophenol	82	10-136
4-Terphenyl-d14	71	18-120

L1631369

10/07/16

Project Name: THE DAILY FREEMAN

Project Number: 16-159311.2

SAMPLE RESULTS

Data Collected 10/01/16 11:00

Lab Number:

Report Date:

Lab ID: L1631369-09

Client ID: B2-GW

Sample Location: 79 HURLEY AVENUE, KINGSTON, NY 12401 Matrix:

Water Analytical Method: 1,8270D

Analytical Date: 10/06/16 18:07

Analyst: RC

Date Collected:	10/01/16 11:09
Date Received:	10/01/16
Field Prep:	Not Specified
Extraction Method	:EPA 3510C
Extraction Date:	10/04/16 20:23

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS -	Westborough Lab					
1,2,4-Trichlorobenzene	ND		ug/l	5.0	0.66	1
Bis(2-chloroethyl)ether	ND		ug/l	2.0	0.67	1
1,2-Dichlorobenzene	ND		ug/l	2.0	0.73	1
1,3-Dichlorobenzene	ND		ug/l	2.0	0.73	1
1,4-Dichlorobenzene	ND		ug/l	2.0	0.71	1
3,3'-Dichlorobenzidine	ND		ug/l	5.0	1.4	1
2,4-Dinitrotoluene	ND		ug/l	5.0	0.84	1
2,6-Dinitrotoluene	ND		ug/l	5.0	1.1	1
4-Chlorophenyl phenyl ether	ND		ug/l	2.0	0.62	1
4-Bromophenyl phenyl ether	ND		ug/l	2.0	0.73	1
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0	0.70	1
Bis(2-chloroethoxy)methane	ND		ug/l	5.0	0.63	1
Hexachlorocyclopentadiene	ND		ug/l	20	7.8	1
Isophorone	ND		ug/l	5.0	0.60	1
Nitrobenzene	ND		ug/l	2.0	0.75	1
NDPA/DPA	ND		ug/l	2.0	0.64	1
n-Nitrosodi-n-propylamine	ND		ug/l	5.0	0.70	1
Bis(2-ethylhexyl)phthalate	ND		ug/l	3.0	0.91	1
Butyl benzyl phthalate	ND		ug/l	5.0	1.3	1
Di-n-butylphthalate	ND		ug/l	5.0	0.69	1
Di-n-octylphthalate	ND		ug/l	5.0	1.1	1
Diethyl phthalate	ND		ug/l	5.0	0.63	1
Dimethyl phthalate	ND		ug/l	5.0	0.65	1
Biphenyl	ND		ug/l	2.0	0.76	1
4-Chloroaniline	ND		ug/l	5.0	0.63	1
2-Nitroaniline	ND		ug/l	5.0	1.1	1
3-Nitroaniline	ND		ug/l	5.0	1.1	1
4-Nitroaniline	ND		ug/l	5.0	1.3	1
Dibenzofuran	ND		ug/l	2.0	0.66	1
1,2,4,5-Tetrachlorobenzene	ND		ug/l	10	0.67	1

Project Name: THE DAILY FREEMAN Lab Number: L1631369

Project Number: 16-159311.2 **Report Date:** 10/07/16

SAMPLE RESULTS

Lab ID: L1631369-09 Date Collected: 10/01/16 11:09

Client ID: B2-GW Date Received: 10/01/16
Sample Location: 79 HURLEY AVENUE, KINGSTON, NY 12401 Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - W	estborough Lab						
Acetophenone	ND		ug/l	5.0	0.85	1	
2,4,6-Trichlorophenol	ND		ug/l	5.0	0.68	1	
p-Chloro-m-cresol	ND		ug/l	2.0	0.62	1	
2-Chlorophenol	ND		ug/l	2.0	0.63	1	
2,4-Dichlorophenol	ND		ug/l	5.0	0.77	1	
2,4-Dimethylphenol	ND		ug/l	5.0	1.6	1	
2-Nitrophenol	ND		ug/l	10	1.5	1	
4-Nitrophenol	ND		ug/l	10	1.8	1	
2,4-Dinitrophenol	ND		ug/l	20	5.5	1	
4,6-Dinitro-o-cresol	ND		ug/l	10	2.1	1	
Phenol	ND		ug/l	5.0	1.9	1	
2-Methylphenol	ND		ug/l	5.0	1.0	1	
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0	1.1	1	
2,4,5-Trichlorophenol	ND		ug/l	5.0	0.72	1	
Benzoic Acid	ND		ug/l	50	13.	1	
Benzyl Alcohol	ND		ug/l	2.0	0.72	1	
Carbazole	ND		ug/l	2.0	0.63	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	21	21-120
Phenol-d6	17	10-120
Nitrobenzene-d5	62	23-120
2-Fluorobiphenyl	70	15-120
2,4,6-Tribromophenol	91	10-120
4-Terphenyl-d14	66	41-149

L1631369

Project Name: Lab Number: THE DAILY FREEMAN

Project Number: Report Date: 16-159311.2 10/07/16

SAMPLE RESULTS

Lab ID: Date Collected: 10/01/16 11:09 L1631369-09 10/01/16

Client ID: Date Received: B2-GW

Sample Location: 79 HURLEY AVENUE, KINGSTON, NY 12401 Field Prep: Not Specified

Matrix: Extraction Method: EPA 3510C 10/04/16 20:22 Analytical Method: 1,8270D-SIM Extraction Date:

Analytical Date: 10/06/16 20:39

YW Analyst:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS-SI	M - Westborough La	ab					
Acenaphthene	ND		ug/l	0.10	0.04	1	
2-Chloronaphthalene	ND		ug/l	0.20	0.04	1	
Fluoranthene	ND		ug/l	0.20	0.04	1	
Hexachlorobutadiene	ND		ug/l	0.50	0.04	1	
Naphthalene	ND		ug/l	0.20	0.04	1	
Benzo(a)anthracene	ND		ug/l	0.20	0.02	1	
Benzo(a)pyrene	ND		ug/l	0.20	0.04	1	
Benzo(b)fluoranthene	ND		ug/l	0.20	0.02	1	
Benzo(k)fluoranthene	ND		ug/l	0.20	0.04	1	
Chrysene	ND		ug/l	0.20	0.04	1	
Acenaphthylene	ND		ug/l	0.20	0.04	1	
Anthracene	ND		ug/l	0.20	0.04	1	
Benzo(ghi)perylene	ND		ug/l	0.20	0.04	1	
Fluorene	ND		ug/l	0.20	0.04	1	
Phenanthrene	ND		ug/l	0.20	0.02	1	
Dibenzo(a,h)anthracene	ND		ug/l	0.20	0.04	1	
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.20	0.04	1	
Pyrene	ND		ug/l	0.20	0.04	1	
2-Methylnaphthalene	ND		ug/l	0.20	0.05	1	
Pentachlorophenol	ND		ug/l	0.80	0.22	1	
Hexachlorobenzene	ND		ug/l	0.80	0.03	1	
Hexachloroethane	ND		ug/l	0.80	0.03	1	

Project Name: THE DAILY FREEMAN Lab Number: L1631369

Project Number: 16-159311.2 **Report Date:** 10/07/16

SAMPLE RESULTS

Lab ID: Date Collected: 10/01/16 11:09

Client ID: B2-GW Date Received: 10/01/16
Sample Location: 79 HURLEY AVENUE, KINGSTON, NY 12401 Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

Semivolatile Organics by GC/MS-SIM - Westborough Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria	
2-Fluorophenol	35	21-120	
Phenol-d6	23	10-120	
Nitrobenzene-d5	65	23-120	
2-Fluorobiphenyl	96	15-120	
2,4,6-Tribromophenol	92	10-120	
4-Terphenyl-d14	85	41-149	

L1631369

10/07/16

Project Name: THE DAILY FREEMAN

Project Number: 16-159311.2

SAMPLE RESULTS

Date Collected: 10/01/16 11:17

Lab Number:

Report Date:

Lab ID: L1631369-10

Client ID: B4-GW

Sample Location: 79 HURLEY AVENUE, KINGSTON, NY 12401

Matrix: Water Analytical Method: 1,8270D

Analytical Date: 10/06/16 18:32

Analyst: RC

Date Collected.	10/01/16 11.17					
Date Received:	10/01/16					
Field Prep:	Not Specified					
Extraction Metho	d:EPA 3510C					
Extraction Date:	10/04/16 20:23					

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS -	Westborough Lab					
1,2,4-Trichlorobenzene	ND		ug/l	5.0	0.66	1
Bis(2-chloroethyl)ether	ND		ug/l	2.0	0.67	1
1,2-Dichlorobenzene	ND		ug/l	2.0	0.73	1
1,3-Dichlorobenzene	ND		ug/l	2.0	0.73	1
1,4-Dichlorobenzene	ND		ug/l	2.0	0.71	1
3,3'-Dichlorobenzidine	ND		ug/l	5.0	1.4	1
2,4-Dinitrotoluene	ND		ug/l	5.0	0.84	1
2,6-Dinitrotoluene	ND		ug/l	5.0	1.1	1
4-Chlorophenyl phenyl ether	ND		ug/l	2.0	0.62	1
4-Bromophenyl phenyl ether	ND		ug/l	2.0	0.73	1
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0	0.70	1
Bis(2-chloroethoxy)methane	ND		ug/l	5.0	0.63	1
Hexachlorocyclopentadiene	ND		ug/l	20	7.8	1
Isophorone	ND		ug/l	5.0	0.60	1
Nitrobenzene	ND		ug/l	2.0	0.75	1
NDPA/DPA	ND		ug/l	2.0	0.64	1
n-Nitrosodi-n-propylamine	ND		ug/l	5.0	0.70	1
Bis(2-ethylhexyl)phthalate	ND		ug/l	3.0	0.91	1
Butyl benzyl phthalate	ND		ug/l	5.0	1.3	1
Di-n-butylphthalate	ND		ug/l	5.0	0.69	1
Di-n-octylphthalate	ND		ug/l	5.0	1.1	1
Diethyl phthalate	ND		ug/l	5.0	0.63	1
Dimethyl phthalate	ND		ug/l	5.0	0.65	1
Biphenyl	ND		ug/l	2.0	0.76	1
4-Chloroaniline	ND		ug/l	5.0	0.63	1
2-Nitroaniline	ND		ug/l	5.0	1.1	1
3-Nitroaniline	ND		ug/l	5.0	1.1	1
4-Nitroaniline	ND		ug/l	5.0	1.3	1
Dibenzofuran	ND		ug/l	2.0	0.66	1
1,2,4,5-Tetrachlorobenzene	ND		ug/l	10	0.67	1

Project Name: THE DAILY FREEMAN Lab Number: L1631369

Project Number: 16-159311.2 **Report Date:** 10/07/16

SAMPLE RESULTS

Lab ID: Date Collected: 10/01/16 11:17

Client ID: B4-GW Date Received: 10/01/16
Sample Location: 79 HURLEY AVENUE, KINGSTON, NY 12401 Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - We	estborough Lab						
Acetophenone	ND		ug/l	5.0	0.85	1	
2,4,6-Trichlorophenol	ND		ug/l	5.0	0.68	1	
p-Chloro-m-cresol	ND		ug/l	2.0	0.62	1	
2-Chlorophenol	ND		ug/l	2.0	0.63	1	
2,4-Dichlorophenol	ND		ug/l	5.0	0.77	1	
2,4-Dimethylphenol	ND		ug/l	5.0	1.6	1	
2-Nitrophenol	ND		ug/l	10	1.5	1	
4-Nitrophenol	ND		ug/l	10	1.8	1	
2,4-Dinitrophenol	ND		ug/l	20	5.5	1	
4,6-Dinitro-o-cresol	ND		ug/l	10	2.1	1	
Phenol	ND		ug/l	5.0	1.9	1	
2-Methylphenol	ND		ug/l	5.0	1.0	1	
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0	1.1	1	
2,4,5-Trichlorophenol	ND		ug/l	5.0	0.72	1	
Benzoic Acid	ND		ug/l	50	13.	1	
Benzyl Alcohol	ND		ug/l	2.0	0.72	1	
Carbazole	1.9	J	ug/l	2.0	0.63	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
2-Fluorophenol	23	21-120	
Phenol-d6	19	10-120	
Nitrobenzene-d5	100	23-120	
2-Fluorobiphenyl	73	15-120	
2,4,6-Tribromophenol	79	10-120	
4-Terphenyl-d14	59	41-149	

Project Name: THE DAILY FREEMAN Lab Number: L1631369

Project Number: 16-159311.2 **Report Date:** 10/07/16

SAMPLE RESULTS

Lab ID: L1631369-10 D

Client ID: B4-GW

Sample Location: 79 HURLEY AVENUE, KINGSTON, NY 12401

Matrix: Water

Analytical Method: 1,8270D-SIM Analytical Date: 10/06/16 21:09

Analyst: YW

Date Collected: 10/01/16 11:17

Date Received: 10/01/16
Field Prep: Not Specified
Extraction Method:EPA 3510C

Extraction Date: 10/04/16 20:22

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS-SIM -	Westborough La	ab				
Acenaphthene	0.64	J	ua/l	1.0	0.35	10
· · · · · · · · · · · · · · · · · · ·		J	ug/l			
2-Chloronaphthalene	ND		ug/l	2.0	0.35	10
Fluoranthene	1.5	J	ug/l	2.0	0.38	10
Hexachlorobutadiene	ND		ug/l	5.0	0.36	10
Naphthalene	70		ug/l	2.0	0.43	10
Benzo(a)anthracene	0.38	J	ug/l	2.0	0.16	10
Benzo(a)pyrene	ND		ug/l	2.0	0.39	10
Benzo(b)fluoranthene	ND		ug/l	2.0	0.16	10
Benzo(k)fluoranthene	ND		ug/l	2.0	0.42	10
Chrysene	ND		ug/l	2.0	0.38	10
Acenaphthylene	ND		ug/l	2.0	0.35	10
Anthracene	0.49	J	ug/l	2.0	0.35	10
Benzo(ghi)perylene	ND		ug/l	2.0	0.42	10
Fluorene	0.92	J	ug/l	2.0	0.37	10
Phenanthrene	2.4		ug/l	2.0	0.15	10
Dibenzo(a,h)anthracene	ND		ug/l	2.0	0.39	10
Indeno(1,2,3-cd)pyrene	ND		ug/l	2.0	0.40	10
Pyrene	1.0	J	ug/l	2.0	0.40	10
2-Methylnaphthalene	30		ug/l	2.0	0.45	10
Pentachlorophenol	ND		ug/l	8.0	2.2	10
Hexachlorobenzene	ND		ug/l	8.0	0.32	10
Hexachloroethane	ND		ug/l	8.0	0.30	10

Dilution Factor

MDL

RL

Project Name: THE DAILY FREEMAN Lab Number: L1631369

Project Number: 16-159311.2 **Report Date:** 10/07/16

SAMPLE RESULTS

Lab ID: L1631369-10 D Date Collected: 10/01/16 11:17

Client ID: B4-GW Date Received: 10/01/16
Sample Location: 79 HURLEY AVENUE, KINGSTON, NY 12401 Field Prep: Not Specified

Qualifier

Units

Semivolatile Organics by GC/MS-SIM - Westborough Lab

Parameter

Surrogate	% Recovery	Qualifier	Acceptance Criteria
2-Fluorophenol	29		21-120
Phenol-d6	23		10-120
Nitrobenzene-d5	93		23-120
2-Fluorobiphenyl	113		15-120
2,4,6-Tribromophenol	107		10-120
4-Terphenyl-d14	92		41-149

L1631369

10/07/16

Project Name: THE DAILY FREEMAN

Project Number: 16-159311.2

SAMPLE RESULTS

Date Collected: 10/01/16 11:37

Lab Number:

Report Date:

Lab ID: L1631369-11

Client ID: B6-GW

Sample Location: 79 HURLEY AVENUE, KINGSTON, NY 12401

Matrix: Water Analytical Method: 1,8270D

Analytical Date: 10/06/16 18:56

Analyst: RC

Date Collected: 10/01/16 11:37

Date Received: 10/01/16

Field Prep: Not Specified

Extraction Method: EPA 3510C

Extraction Date: 10/04/16 20:23

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - W	estborough Lab						
1,2,4-Trichlorobenzene	ND		ug/l	5.0	0.66	1	
Bis(2-chloroethyl)ether	ND		ug/l	2.0	0.67	1	
1,2-Dichlorobenzene	ND		ug/l	2.0	0.73	1	
1,3-Dichlorobenzene	ND		ug/l	2.0	0.73	1	
1,4-Dichlorobenzene	ND		ug/l	2.0	0.71	1	
3,3'-Dichlorobenzidine	ND		ug/l	5.0	1.4	1	
2,4-Dinitrotoluene	ND		ug/l	5.0	0.84	1	
2,6-Dinitrotoluene	ND		ug/l	5.0	1.1	1	
4-Chlorophenyl phenyl ether	ND		ug/l	2.0	0.62	1	
4-Bromophenyl phenyl ether	ND		ug/l	2.0	0.73	1	
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0	0.70	1	
Bis(2-chloroethoxy)methane	ND		ug/l	5.0	0.63	1	
Hexachlorocyclopentadiene	ND		ug/l	20	7.8	1	
Isophorone	ND		ug/l	5.0	0.60	1	
Nitrobenzene	ND		ug/l	2.0	0.75	1	
NDPA/DPA	ND		ug/l	2.0	0.64	1	
n-Nitrosodi-n-propylamine	ND		ug/l	5.0	0.70	1	
Bis(2-ethylhexyl)phthalate	ND		ug/l	3.0	0.91	1	
Butyl benzyl phthalate	ND		ug/l	5.0	1.3	1	
Di-n-butylphthalate	ND		ug/l	5.0	0.69	1	
Di-n-octylphthalate	ND		ug/l	5.0	1.1	1	
Diethyl phthalate	ND		ug/l	5.0	0.63	1	
Dimethyl phthalate	ND		ug/l	5.0	0.65	1	
Biphenyl	ND		ug/l	2.0	0.76	1	
4-Chloroaniline	ND		ug/l	5.0	0.63	1	
2-Nitroaniline	ND		ug/l	5.0	1.1	1	
3-Nitroaniline	ND		ug/l	5.0	1.1	1	
4-Nitroaniline	ND		ug/l	5.0	1.3	1	
Dibenzofuran	ND		ug/l	2.0	0.66	1	
1,2,4,5-Tetrachlorobenzene	ND		ug/l	10	0.67	1	
						1-1	

Project Name: THE DAILY FREEMAN Lab Number: L1631369

Project Number: 16-159311.2 **Report Date:** 10/07/16

SAMPLE RESULTS

Lab ID: Date Collected: 10/01/16 11:37

Client ID: B6-GW Date Received: 10/01/16
Sample Location: 79 HURLEY AVENUE, KINGSTON, NY 12401 Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - V	Vestborough Lab						
Acetophenone	ND		ug/l	5.0	0.85	1	
2,4,6-Trichlorophenol	ND		ug/l	5.0	0.68	1	
p-Chloro-m-cresol	ND		ug/l	2.0	0.62	1	
2-Chlorophenol	ND		ug/l	2.0	0.63	1	
2,4-Dichlorophenol	ND		ug/l	5.0	0.77	1	
2,4-Dimethylphenol	ND		ug/l	5.0	1.6	1	
2-Nitrophenol	ND		ug/l	10	1.5	1	
4-Nitrophenol	ND		ug/l	10	1.8	1	
2,4-Dinitrophenol	ND		ug/l	20	5.5	1	
4,6-Dinitro-o-cresol	ND		ug/l	10	2.1	1	
Phenol	ND		ug/l	5.0	1.9	1	
2-Methylphenol	ND		ug/l	5.0	1.0	1	
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0	1.1	1	
2,4,5-Trichlorophenol	ND		ug/l	5.0	0.72	1	
Benzoic Acid	ND		ug/l	50	13.	1	
Benzyl Alcohol	ND		ug/l	2.0	0.72	1	
Carbazole	ND		ug/l	2.0	0.63	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
2-Fluorophenol	25	21-120	
Phenol-d6	10	10-120	
Nitrobenzene-d5	67	23-120	
2-Fluorobiphenyl	74	15-120	
2,4,6-Tribromophenol	86	10-120	
4-Terphenyl-d14	64	41-149	

Project Name: Lab Number: THE DAILY FREEMAN L1631369

Project Number: Report Date: 16-159311.2 10/07/16

SAMPLE RESULTS

Lab ID: Date Collected: 10/01/16 11:37 L1631369-11

Date Received: Client ID: 10/01/16 B6-GW

Sample Location: 79 HURLEY AVENUE, KINGSTON, NY 12401 Field Prep: Not Specified Extraction Method: EPA 3510C Matrix:

Analytical Method: 1,8270D-SIM Extraction Date: 10/04/16 20:22

Analytical Date: 10/06/16 19:09 YW Analyst:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS-SIM -	Westborough La	ab				
Aganaphthana	ND		//	0.10	0.04	1
Acenaphthene			ug/l			
2-Chloronaphthalene	ND		ug/l	0.20	0.04	1
Fluoranthene	ND		ug/l	0.20	0.04	1
Hexachlorobutadiene	ND		ug/l	0.50	0.04	1
Naphthalene	6.9		ug/l	0.20	0.04	1
Benzo(a)anthracene	ND		ug/l	0.20	0.02	1
Benzo(a)pyrene	ND		ug/l	0.20	0.04	1
Benzo(b)fluoranthene	ND		ug/l	0.20	0.02	1
Benzo(k)fluoranthene	ND		ug/l	0.20	0.04	1
Chrysene	ND		ug/l	0.20	0.04	1
Acenaphthylene	ND		ug/l	0.20	0.04	1
Anthracene	ND		ug/l	0.20	0.04	1
Benzo(ghi)perylene	ND		ug/l	0.20	0.04	1
Fluorene	ND		ug/l	0.20	0.04	1
Phenanthrene	ND		ug/l	0.20	0.02	1
Dibenzo(a,h)anthracene	ND		ug/l	0.20	0.04	1
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.20	0.04	1
Pyrene	ND		ug/l	0.20	0.04	1
2-Methylnaphthalene	0.49		ug/l	0.20	0.05	1
Pentachlorophenol	ND		ug/l	0.80	0.22	1
Hexachlorobenzene	ND		ug/l	0.80	0.03	1
Hexachloroethane	ND		ug/l	0.80	0.03	1

Project Name: THE DAILY FREEMAN Lab Number: L1631369

Project Number: 16-159311.2 **Report Date:** 10/07/16

SAMPLE RESULTS

Lab ID: Date Collected: 10/01/16 11:37

Client ID: B6-GW Date Received: 10/01/16
Sample Location: 79 HURLEY AVENUE, KINGSTON, NY 12401 Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

Semivolatile Organics by GC/MS-SIM - Westborough Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	41	21-120
Phenol-d6	28	10-120
Nitrobenzene-d5	75	23-120
2-Fluorobiphenyl	109	15-120
2,4,6-Tribromophenol	96	10-120
4-Terphenyl-d14	89	41-149

Project Name: THE DAILY FREEMAN

Project Number: 16-159311.2

Lab Number: L1631369

Report Date: 10/07/16

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Analytical Date: 10/06/16 13:03

Analyst: KV

Extraction Method: EPA 3546
Extraction Date: 10/04/16 07:32

Parameter	Result	Qualifier	Units	RL		MDL
Semivolatile Organics by GC/MS	- Westborough	Lab for s	ample(s):	07-08	Batch:	WG938488-1
Acenaphthene	ND		ug/kg	130		17.
1,2,4-Trichlorobenzene	ND		ug/kg	160		18.
Hexachlorobenzene	ND		ug/kg	97		18.
Bis(2-chloroethyl)ether	ND		ug/kg	150		22.
2-Chloronaphthalene	ND		ug/kg	160		16.
1,2-Dichlorobenzene	ND		ug/kg	160		29.
1,3-Dichlorobenzene	ND		ug/kg	160		28.
1,4-Dichlorobenzene	ND		ug/kg	160		28.
3,3'-Dichlorobenzidine	ND		ug/kg	160		43.
2,4-Dinitrotoluene	ND		ug/kg	160		32.
2,6-Dinitrotoluene	ND		ug/kg	160		28.
Fluoranthene	ND		ug/kg	97		19.
4-Chlorophenyl phenyl ether	ND		ug/kg	160		17.
4-Bromophenyl phenyl ether	ND		ug/kg	160		25.
Bis(2-chloroisopropyl)ether	ND		ug/kg	190		28.
Bis(2-chloroethoxy)methane	ND		ug/kg	180		16.
Hexachlorobutadiene	ND		ug/kg	160		24.
Hexachlorocyclopentadiene	ND		ug/kg	460		150
Hexachloroethane	ND		ug/kg	130		26.
Isophorone	ND		ug/kg	150		21.
Naphthalene	ND		ug/kg	160		20.
Nitrobenzene	ND		ug/kg	150		24.
NDPA/DPA	ND		ug/kg	130		18.
n-Nitrosodi-n-propylamine	ND		ug/kg	160		25.
Bis(2-ethylhexyl)phthalate	ND		ug/kg	160		56.
Butyl benzyl phthalate	ND		ug/kg	160		41.
Di-n-butylphthalate	ND		ug/kg	160		31.
Di-n-octylphthalate	ND		ug/kg	160		55.
Diethyl phthalate	ND		ug/kg	160		15.

Project Name: THE DAILY FREEMAN

Project Number: 16-159311.2

Lab Number: L1631369

Report Date: 10/07/16

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Analytical Date: 10/06/16 13:03

Analyst: KV

Extraction Method: EPA 3546 Extraction Date: 10/04/16 07:32

arameter	Result	Qualifier	Units	RL		MDL
emivolatile Organics by GC/N	IS - Westborough	Lab for s	sample(s):	07-08	Batch:	WG938488-1
Dimethyl phthalate	ND		ug/kg	160		34.
Benzo(a)anthracene	ND		ug/kg	97		18.
Benzo(a)pyrene	ND		ug/kg	130		40.
Benzo(b)fluoranthene	ND		ug/kg	97		27.
Benzo(k)fluoranthene	ND		ug/kg	97		26.
Chrysene	ND		ug/kg	97		17.
Acenaphthylene	ND		ug/kg	130		25.
Anthracene	ND		ug/kg	97		32.
Benzo(ghi)perylene	ND		ug/kg	130		19.
Fluorene	ND		ug/kg	160		16.
Phenanthrene	ND		ug/kg	97		20.
Dibenzo(a,h)anthracene	ND		ug/kg	97		19.
Indeno(1,2,3-cd)pyrene	ND		ug/kg	130		23.
Pyrene	ND		ug/kg	97		16.
Biphenyl	ND		ug/kg	370		38.
4-Chloroaniline	ND		ug/kg	160		30.
2-Nitroaniline	ND		ug/kg	160		31.
3-Nitroaniline	ND		ug/kg	160		31.
4-Nitroaniline	ND		ug/kg	160		67.
Dibenzofuran	ND		ug/kg	160		15.
2-Methylnaphthalene	ND		ug/kg	190		20.
1,2,4,5-Tetrachlorobenzene	ND		ug/kg	160		17.
Acetophenone	ND		ug/kg	160		20.
2,4,6-Trichlorophenol	ND		ug/kg	97		31.
p-Chloro-m-cresol	ND		ug/kg	160		24.
2-Chlorophenol	ND		ug/kg	160		19.
2,4-Dichlorophenol	ND		ug/kg	150		26.
2,4-Dimethylphenol	ND		ug/kg	160		54.
2-Nitrophenol	ND		ug/kg	350		61.

Project Name: THE DAILY FREEMAN

Project Number: 16-159311.2 Lab Number:

L1631369

10/07/16 Report Date:

Method Blank Analysis Batch Quality Control

Analytical Method: Analytical Date:

1,8270D

10/06/16 13:03

Analyst:

K۷

Extraction Method: EPA 3546 10/04/16 07:32 Extraction Date:

Parameter	Result	Qualifier	Units	RL		MDL
Semivolatile Organics by GC/MS -	Westborougl	h Lab for s	ample(s):	07-08	Batch:	WG938488-1
4-Nitrophenol	ND		ug/kg	230		66.
2,4-Dinitrophenol	ND		ug/kg	780		76.
4,6-Dinitro-o-cresol	ND		ug/kg	420		78.
Pentachlorophenol	ND		ug/kg	130		36.
Phenol	ND		ug/kg	160		24.
2-Methylphenol	ND		ug/kg	160		25.
3-Methylphenol/4-Methylphenol	ND		ug/kg	230		25.
2,4,5-Trichlorophenol	ND		ug/kg	160		31.
Benzoic Acid	ND		ug/kg	530		160
Benzyl Alcohol	ND		ug/kg	160		50.
Carbazole	ND		ug/kg	160		16.

		Acceptance
Surrogate	%Recovery	Qualifier Criteria
2-Fluorophenol	50	25-120
Phenol-d6	52	10-120
Nitrobenzene-d5	59	23-120
2-Fluorobiphenyl	54	30-120
2,4,6-Tribromophenol	47	10-136
4-Terphenyl-d14	54	18-120

Project Name: THE DAILY FREEMAN

Project Number: 16-159311.2

Lab Number: L1631369

Report Date: 10/07/16

Extraction Method: EPA 3510C

Extraction Date:

10/04/16 20:23

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Analytical Date: 10/06/16 12:32

Analyst: RC

Parameter	Result	Qualifier	Units	RL		MDL
Semivolatile Organics by GC/MS	- Westboroug	h Lab for s	ample(s):	09-11	Batch:	WG938816-1
Acenaphthene	ND		ug/l	2.0		0.59
1,2,4-Trichlorobenzene	ND		ug/l	5.0		0.66
Hexachlorobenzene	ND		ug/l	2.0		0.58
Bis(2-chloroethyl)ether	ND		ug/l	2.0		0.67
2-Chloronaphthalene	ND		ug/l	2.0		0.64
1,2-Dichlorobenzene	ND		ug/l	2.0		0.73
1,3-Dichlorobenzene	ND		ug/l	2.0		0.73
1,4-Dichlorobenzene	ND		ug/l	2.0		0.71
3,3'-Dichlorobenzidine	ND		ug/l	5.0		1.4
2,4-Dinitrotoluene	ND		ug/l	5.0		0.84
2,6-Dinitrotoluene	ND		ug/l	5.0		1.1
Fluoranthene	ND		ug/l	2.0		0.57
4-Chlorophenyl phenyl ether	ND		ug/l	2.0		0.62
4-Bromophenyl phenyl ether	ND		ug/l	2.0		0.73
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0		0.70
Bis(2-chloroethoxy)methane	ND		ug/l	5.0		0.63
Hexachlorobutadiene	ND		ug/l	2.0		0.66
Hexachlorocyclopentadiene	ND		ug/l	20		7.8
Hexachloroethane	ND		ug/l	2.0		0.68
Isophorone	ND		ug/l	5.0		0.60
Naphthalene	ND		ug/l	2.0		0.68
Nitrobenzene	ND		ug/l	2.0		0.75
NDPA/DPA	ND		ug/l	2.0		0.64
n-Nitrosodi-n-propylamine	ND		ug/l	5.0		0.70
Bis(2-ethylhexyl)phthalate	ND		ug/l	3.0		0.91
Butyl benzyl phthalate	ND		ug/l	5.0		1.3
Di-n-butylphthalate	ND		ug/l	5.0		0.69
Di-n-octylphthalate	ND		ug/l	5.0		1.1
Diethyl phthalate	ND		ug/l	5.0		0.63

Project Name: THE DAILY FREEMAN

Project Number: 16-159311.2 Lab Number: L1631369 Report Date:

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Analytical Date: 10/06/16 12:32

Analyst: RC Extraction Method: EPA 3510C 10/04/16 20:23 Extraction Date:

10/07/16

Parameter	Result	Qualifier	Units	RL		MDL
Semivolatile Organics by GC/MS	- Westborough	Lab for s	ample(s):	09-11	Batch:	WG938816-1
Dimethyl phthalate	ND		ug/l	5.0		0.65
Benzo(a)anthracene	ND		ug/l	2.0		0.61
Benzo(a)pyrene	ND		ug/l	2.0		0.54
Benzo(b)fluoranthene	ND		ug/l	2.0		0.64
Benzo(k)fluoranthene	ND		ug/l	2.0		0.60
Chrysene	ND		ug/l	2.0		0.54
Acenaphthylene	ND		ug/l	2.0		0.66
Anthracene	ND		ug/l	2.0		0.64
Benzo(ghi)perylene	ND		ug/l	2.0		0.61
Fluorene	ND		ug/l	2.0		0.62
Phenanthrene	ND		ug/l	2.0		0.61
Dibenzo(a,h)anthracene	ND		ug/l	2.0		0.55
Indeno(1,2,3-cd)pyrene	ND		ug/l	2.0		0.71
Pyrene	ND		ug/l	2.0		0.57
Biphenyl	ND		ug/l	2.0		0.76
4-Chloroaniline	ND		ug/l	5.0		0.63
2-Nitroaniline	ND		ug/l	5.0		1.1
3-Nitroaniline	ND		ug/l	5.0		1.1
4-Nitroaniline	ND		ug/l	5.0		1.3
Dibenzofuran	ND		ug/l	2.0		0.66
2-Methylnaphthalene	ND		ug/l	2.0		0.72
1,2,4,5-Tetrachlorobenzene	ND		ug/l	10		0.67
Acetophenone	ND		ug/l	5.0		0.85
2,4,6-Trichlorophenol	ND		ug/l	5.0		0.68
p-Chloro-m-cresol	ND		ug/l	2.0		0.62
2-Chlorophenol	ND		ug/l	2.0		0.63
2,4-Dichlorophenol	ND		ug/l	5.0		0.77
2,4-Dimethylphenol	ND		ug/l	5.0		1.6
2-Nitrophenol	ND		ug/l	10		1.5

Project Name: THE DAILY FREEMAN

Project Number: 16-159311.2

Lab Number: L1631369

Report Date: 10/07/16

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Analytical Date: 1,006/16 12:32

Analyst: RC

Extraction Method: EPA 3510C Extraction Date: 10/04/16 20:23

Parameter	Result	Qualifier	Units	RL		MDL
Semivolatile Organics by GC/MS -	Westboroug	h Lab for s	ample(s):	09-11	Batch:	WG938816-1
4-Nitrophenol	ND		ug/l	10		1.8
2,4-Dinitrophenol	ND		ug/l	20		5.5
4,6-Dinitro-o-cresol	ND		ug/l	10		2.1
Pentachlorophenol	ND		ug/l	10		3.4
Phenol	ND		ug/l	5.0		1.9
2-Methylphenol	ND		ug/l	5.0		1.0
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0		1.1
2,4,5-Trichlorophenol	ND		ug/l	5.0		0.72
Benzoic Acid	ND		ug/l	50		13.
Benzyl Alcohol	ND		ug/l	2.0		0.72
Carbazole	ND		ug/l	2.0		0.63

		Acceptance
Surrogate	%Recovery	Qualifier Criteria
2-Fluorophenol	26	21-120
Phenol-d6	10	10-120
Nitrobenzene-d5	65	23-120
2-Fluorobiphenyl	70	15-120
2,4,6-Tribromophenol	81	10-120
4-Terphenyl-d14	72	41-149

Project Name: THE DAILY FREEMAN

Project Number: 16-159311.2

Lab Number: L1631369

Report Date: 10/07/16

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8270D-SIM Analytical Date: 10/05/16 22:30

Analyst: KL

Extraction Date: 10/04/16 20:22

Extraction Method: EPA 3510C

arameter	Result	Qualifier	Units	RL	MDL
emivolatile Organics by GC/MS-	SIM - Westbo	rough Lab	for sample(s)	09-11	Batch: WG938817-1
Acenaphthene	ND		ug/l	0.10	0.04
2-Chloronaphthalene	ND		ug/l	0.20	0.04
Fluoranthene	ND		ug/l	0.20	0.04
Hexachlorobutadiene	ND		ug/l	0.50	0.04
Naphthalene	ND		ug/l	0.20	0.04
Benzo(a)anthracene	ND		ug/l	0.20	0.02
Benzo(a)pyrene	ND		ug/l	0.20	0.04
Benzo(b)fluoranthene	ND		ug/l	0.20	0.02
Benzo(k)fluoranthene	ND		ug/l	0.20	0.04
Chrysene	ND		ug/l	0.20	0.04
Acenaphthylene	ND		ug/l	0.20	0.04
Anthracene	ND		ug/l	0.20	0.04
Benzo(ghi)perylene	ND		ug/l	0.20	0.04
Fluorene	ND		ug/l	0.20	0.04
Phenanthrene	ND		ug/l	0.20	0.02
Dibenzo(a,h)anthracene	ND		ug/l	0.20	0.04
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.20	0.04
Pyrene	ND		ug/l	0.20	0.04
2-Methylnaphthalene	ND		ug/l	0.20	0.05
Pentachlorophenol	ND		ug/l	0.80	0.22
Hexachlorobenzene	ND		ug/l	0.80	0.03
Hexachloroethane	ND		ug/l	0.80	0.03

Project Name: THE DAILY FREEMAN

Project Number: 16-159311.2 Lab Number:

L1631369

Report Date:

10/07/16

Method Blank Analysis Batch Quality Control

Analytical Method: Analytical Date:

1,8270D-SIM 10/05/16 22:30

Analyst:

KL

Extraction Method: EPA 3510C

Extraction Date:

10/04/16 20:22

Parameter	Result	Qualifier	Units	RL	MDL
Semivolatile Organics by GC/MS-S	IM - Westbo	rough Lab	for sample(s):	09-11	Batch: WG938817-1

		Acceptance						
Surrogate	%Recovery	Qualifier	Criteria					
2-Fluorophenol	37		21-120					
Phenol-d6	25		10-120					
Nitrobenzene-d5	94		23-120					
2-Fluorobiphenyl	95		15-120					
2,4,6-Tribromophenol	94		10-120					
4-Terphenyl-d14	91		41-149					

Project Name: THE DAILY FREEMAN

Project Number: 16-159311.2

Lab Number: L1631369

Parameter	LCS %Recovery	Qual	LCSI %Recov			ecovery imits	RPD	Qual	RPD Limits
Semivolatile Organics by GC/MS - Westboro	ugh Lab Assoc	iated sample(s):	07-08	Batch:	WG938488-2	WG938488-3			
Acenaphthene	62		63		3	1-137	2		50
Benzidine	26		22		1	10-66	17		50
1,2,4-Trichlorobenzene	64		65		3	8-107	2		50
Hexachlorobenzene	67		70		4	0-140	4		50
Bis(2-chloroethyl)ether	59		60		4	0-140	2		50
2-Chloronaphthalene	63		65		4	0-140	3		50
1,2-Dichlorobenzene	62		61		4	0-140	2		50
1,3-Dichlorobenzene	61		59		4	0-140	3		50
1,4-Dichlorobenzene	61		60		2	8-104	2		50
3,3'-Dichlorobenzidine	40		40		4	0-140	0		50
2,4-Dinitrotoluene	80		82		2	28-89	2		50
2,6-Dinitrotoluene	73		77		4	0-140	5		50
Azobenzene	62		63		4	0-140	2		50
Fluoranthene	67		69		4	0-140	3		50
4-Chlorophenyl phenyl ether	67		69		4	0-140	3		50
4-Bromophenyl phenyl ether	69		70		4	0-140	1		50
Bis(2-chloroisopropyl)ether	50		49		4	0-140	2		50
Bis(2-chloroethoxy)methane	60		62		4	0-117	3		50
Hexachlorobutadiene	71		71		4	0-140	0		50
Hexachlorocyclopentadiene	83		87		4	0-140	5		50
Hexachloroethane	64		63		4	0-140	2		50

Project Name: THE DAILY FREEMAN

Project Number: 16-159311.2

Lab Number: L1631369

Parameter	LCS %Recovery	Qual	LCSE %Recov			Recovery Limits	RPD	Qual	RPD Limits
Semivolatile Organics by GC/MS - Westbo	rough Lab Associ	ated sample(s):	07-08	Batch:	WG938488-2	WG938488-3	3		
Isophorone	59		61			40-140	3		50
Naphthalene	61		63			40-140	3		50
Nitrobenzene	74		74			40-140	0		50
NitrosoDiPhenylAmine(NDPA)/DPA	66		67			36-157	2		50
n-Nitrosodi-n-propylamine	60		62			32-121	3		50
Bis(2-Ethylhexyl)phthalate	57		59			40-140	3		50
Butyl benzyl phthalate	64		66			40-140	3		50
Di-n-butylphthalate	63		65			40-140	3		50
Di-n-octylphthalate	56		57			40-140	2		50
Diethyl phthalate	64		66			40-140	3		50
Dimethyl phthalate	64		67			40-140	5		50
Benzo(a)anthracene	64		67			40-140	5		50
Benzo(a)pyrene	68		70			40-140	3		50
Benzo(b)fluoranthene	68		68			40-140	0		50
Benzo(k)fluoranthene	63		68			40-140	8		50
Chrysene	61		64			40-140	5		50
Acenaphthylene	63		66			40-140	5		50
Anthracene	64		66			40-140	3		50
Benzo(ghi)perylene	68		69			40-140	1		50
Fluorene	65		66			40-140	2		50
Phenanthrene	62		63			40-140	2		50

Project Name: THE DAILY FREEMAN

Project Number: 16-159311.2

Lab Number: L1631369

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Reco Qual Lim		RPD Qual Limits
Semivolatile Organics by GC/MS - Wes	tborough Lab Associ	ated sample(s):	07-08 Bat	ch: WG938488-2 W	G938488-3	
Dibenzo(a,h)anthracene	68		70	40-1	40 3	50
Indeno(1,2,3-cd)Pyrene	68		70	40-1	40 3	50
Pyrene	65		67	35-1	42 3	50
Biphenyl	68		70	54-1	04 3	50
Aniline	42		40	40-1	40 5	50
4-Chloroaniline	50		41	40-1	40 20	50
1-Methylnaphthalene	61		63	26-1	30 3	50
2-Nitroaniline	73		77	47-1	34 5	50
3-Nitroaniline	57		56	26-1	29 2	50
4-Nitroaniline	68		70	41-1	25 3	50
Dibenzofuran	64		65	40-1	40 2	50
2-Methylnaphthalene	61		63	40-1	40 3	50
1,2,4,5-Tetrachlorobenzene	74		76	40-1	17 3	50
Acetophenone	67		70	14-1	44 4	50
n-Nitrosodimethylamine	58		57	22-1	00 2	50
2,4,6-Trichlorophenol	73		77	30-1	30 5	50
P-Chloro-M-Cresol	70		71	26-1	03 1	50
2-Chlorophenol	66		67	25-1	02 2	50
2,4-Dichlorophenol	70		71	30-1	30 1	50
2,4-Dimethylphenol	70		70	30-1	30 0	50
2-Nitrophenol	80		80	30-1	30 0	50

Project Name: THE DAILY FREEMAN

Project Number: 16-159311.2

Lab Number: L1631369

Parameter	LCS %Recovery	Qual	LCSD %Recover	y	% Qual	Recovery Limits	RPD	Qual	RPD Limits
Semivolatile Organics by GC/MS - Westborou	igh Lab Assoc	ated sample(s):	07-08 B	Batch:	WG938488-	2 WG938488-3			
4-Nitrophenol	68		70			11-114	3		50
2,4-Dinitrophenol	98		96			4-130	2		50
4,6-Dinitro-o-cresol	94		100			10-130	6		50
Pentachlorophenol	69		70			17-109	1		50
Phenol	62		63			26-90	2		50
2-Methylphenol	63		66			30-130.	5		50
3-Methylphenol/4-Methylphenol	65		66			30-130	2		50
2,4,5-Trichlorophenol	72		77			30-130	7		50
Benzoic Acid	46		40			10-110	14		50
Benzyl Alcohol	64		66			40-140	3		50
Carbazole	63		65			54-128	3		50
Pyridine	51		49			10-93	4		50
Parathion, ethyl	116		121			40-140	4		50
Atrazine	78		81			40-140	4		50
Benzaldehyde	50		50			40-140	0		50
Caprolactam	64		67			15-130	5		50
2,3,4,6-Tetrachlorophenol	72		75			40-140	4		50

Project Name: THE DAILY FREEMAN

Project Number: 16-159311.2

Lab Number:

L1631369

Report Date:

10/07/16

	LCS		LCSD		%Recovery			RPD
<u>Parameter</u>	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits

Semivolatile Organics by GC/MS - Westborough Lab Associated sample(s): 07-08 Batch: WG938488-2 WG938488-3

LCS	LCSD	Acceptance
%Recovery G	Qual %Recovery Qual	Criteria
63	63	25-120
65	66	10-120
76	77	23-120
64	66	30-120
68	70	10-136
65	67	18-120
	%Recovery 6 63 65 76 64 68	%Recovery Qual %Recovery Qual 63 63 65 66 76 77 64 66 68 70 70

Project Name: THE DAILY FREEMAN

Project Number: 16-159311.2

Lab Number: L1631369

Parameter	LCS %Recovery	Qual	LCSI %Recov		Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Semivolatile Organics by GC/MS - Westboro	ugh Lab Assoc	iated sample(s):	09-11	Batch:	WG9388	316-2 WG938816	-3			
Acenaphthene	67		59			37-111	13		30	
Benzidine	5	Q	9		Q	10-75	51	Q	30	
1,2,4-Trichlorobenzene	60		50			39-98	18		30	
Hexachlorobenzene	81		80			40-140	1		30	
Bis(2-chloroethyl)ether	60		52			40-140	14		30	
2-Chloronaphthalene	64		56			40-140	13		30	
1,2-Dichlorobenzene	55		47			40-140	16		30	
1,3-Dichlorobenzene	50		45			40-140	11		30	
1,4-Dichlorobenzene	54		44			36-97	20		30	
3,3'-Dichlorobenzidine	50		51			40-140	2		30	
2,4-Dinitrotoluene	73		72			24-96	1		30	
2,6-Dinitrotoluene	74		75			40-140	1		30	
Azobenzene	83		81			40-140	2		30	
Fluoranthene	73		74			40-140	1		30	
4-Chlorophenyl phenyl ether	66		62			40-140	6		30	
4-Bromophenyl phenyl ether	72		70			40-140	3		30	
Bis(2-chloroisopropyl)ether	37	Q	34		Q	40-140	8		30	
Bis(2-chloroethoxy)methane	71		64			40-140	10		30	
Hexachlorobutadiene	55		50			40-140	10		30	
Hexachlorocyclopentadiene	35	Q	29		Q	40-140	19		30	
Hexachloroethane	57		49			40-140	15		30	

Project Name: THE DAILY FREEMAN

Project Number: 16-159311.2

Lab Number: L1631369

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Semivolatile Organics by GC/MS - Westbo	rough Lab Assoc	iated sample(s):	09-11 Bate	ch: WG938816-2 WG93881	6-3	
Isophorone	74		69	40-140	7	30
Naphthalene	58		52	40-140	11	30
Nitrobenzene	71		67	40-140	6	30
NDPA/DPA	70		70	40-140	0	30
n-Nitrosodi-n-propylamine	71		60	29-132	17	30
Bis(2-ethylhexyl)phthalate	74		76	40-140	3	30
Butyl benzyl phthalate	75		76	40-140	1	30
Di-n-butylphthalate	72		74	40-140	3	30
Di-n-octylphthalate	76		78	40-140	3	30
Diethyl phthalate	74		76	40-140	3	30
Dimethyl phthalate	73		72	40-140	1	30
Benzo(a)anthracene	66		66	40-140	0	30
Benzo(a)pyrene	71		72	40-140	1	30
Benzo(b)fluoranthene	72		72	40-140	0	30
Benzo(k)fluoranthene	76		76	40-140	0	30
Chrysene	70		70	40-140	0	30
Acenaphthylene	69		61	45-123	12	30
Anthracene	71		69	40-140	3	30
Benzo(ghi)perylene	70		71	40-140	1	30
Fluorene	70		66	40-140	6	30
Phenanthrene	68		67	40-140	1	30

Project Name: THE DAILY FREEMAN

Project Number: 16-159311.2

Lab Number: L1631369

rameter	LCS %Recovery	Qual	LCSE %Recov		Qual	%Recovery Limits	RPD	Qual	RPD Limits
emivolatile Organics by GC/MS - Westbor	ough Lab Associ	iated sample(s):	09-11	Batch:	WG9388	316-2 WG938816	6-3		
Dibenzo(a,h)anthracene	68		68			40-140	0		30
Indeno(1,2,3-cd)pyrene	69		69			40-140	0		30
Pyrene	73		72			26-127	1		30
Biphenyl	68		59			40-140	14		30
Aniline	22	Q	21		Q	40-140	5		30
4-Chloroaniline	54		45			40-140	18		30
1-Methylnaphthalene	70		61			41-103	14		30
2-Nitroaniline	71		68			52-143	4		30
3-Nitroaniline	46		44			25-145	4		30
4-Nitroaniline	49	Q	55			51-143	12		30
Dibenzofuran	67		61			40-140	9		30
2-Methylnaphthalene	61		52			40-140	16		30
1,2,4,5-Tetrachlorobenzene	65		56			2-134	15		30
Acetophenone	82		68			39-129	19		30
n-Nitrosodimethylamine	24		24			22-74	0		30
2,4,6-Trichlorophenol	59		56			30-130	5		30
p-Chloro-m-cresol	64		61			23-97	5		30
2-Chlorophenol	53		47			27-123	12		30
2,4-Dichlorophenol	70		64			30-130	9		30
2,4-Dimethylphenol	71		62			30-130	14		30
2-Nitrophenol	78		66			30-130	17		30

Project Name: THE DAILY FREEMAN

Project Number: 16-159311.2

Lab Number: L1631369

Parameter	LCS %Recovery	Qual	LCSD %Recove		Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Semivolatile Organics by GC/MS - Westboro	ugh Lab Assoc	iated sample(s):	09-11	Batch:	WG9388	16-2 WG938816-	3			
4-Nitrophenol	28		23			10-80	20		30	
2,4-Dinitrophenol	55		52			20-130	6		30	
4,6-Dinitro-o-cresol	66		67			20-164	2		30	
Pentachlorophenol	62		64			9-103	3		30	
Phenol	13		20			12-110	42	Q	30	
2-Methylphenol	46		40			30-130	14		30	
3-Methylphenol/4-Methylphenol	38		36			30-130	5		30	
2,4,5-Trichlorophenol	82		77			30-130	6		30	
Benzoic Acid	0	Q	0		Q	10-164	NC		30	
Benzyl Alcohol	46		37			26-116	22		30	
Carbazole	68		67			55-144	1		30	
Pyridine	16		18			10-66	12		30	
Parathion, ethyl	83		84			40-140	1		30	
Atrazine	75		77			40-140	3		30	
Benzaldehyde	52		44			40-140	17		30	
Caprolactam	10		10			10-130	0		30	
2,3,4,6-Tetrachlorophenol	81		80			40-140	1		30	

Project Name: THE DAILY FREEMAN

Project Number: 16-159311.2

Lab Number:

L1631369

Report Date:

10/07/16

	LCS		LCSD		%Recovery			RPD
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits

Semivolatile Organics by GC/MS - Westborough Lab Associated sample(s): 09-11 Batch: WG938816-2 WG938816-3

LCS		LCSD		Acceptance	
%Recovery	Qual	%Recovery	Qual	Criteria	
25		22		21-120	
16		15		10-120	
74		67		23-120	
71		67		15-120	
85		90		10-120	
69		71		41-149	
	%Recovery 25 16 74 71 85	%Recovery Qual 25 16 74 71 85	%Recovery Qual %Recovery 25 22 16 15 74 67 71 67 85 90	%Recovery Qual %Recovery Qual 25 22 16 15 74 67 71 67 85 90	%Recovery Qual %Recovery Qual Criteria 25 22 21-120 16 15 10-120 74 67 23-120 71 67 15-120 85 90 10-120

Project Name: THE DAILY FREEMAN

Project Number: 16-159311.2

Lab Number: L1631369

Parameter	LCS %Recovery	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Semivolatile Organics by GC/MS-SIM -	Westborough Lab Ass	sociated sample(s): 09-11	Batch: WG938817-2 WG9	38817-3	
Acenaphthene	88	88	37-111	0	40
2-Chloronaphthalene	89	87	40-140	2	40
Fluoranthene	90	94	40-140	4	40
Hexachlorobutadiene	76	74	40-140	3	40
Naphthalene	81	80	40-140	1	40
Benzo(a)anthracene	94	98	40-140	4	40
Benzo(a)pyrene	81	84	40-140	4	40
Benzo(b)fluoranthene	86	89	40-140	3	40
Benzo(k)fluoranthene	83	84	40-140	1	40
Chrysene	85	89	40-140	5	40
Acenaphthylene	100	100	40-140	0	40
Anthracene	92	97	40-140	5	40
Benzo(ghi)perylene	87	89	40-140	2	40
Fluorene	98	97	40-140	1	40
Phenanthrene	87	90	40-140	3	40
Dibenzo(a,h)anthracene	89	89	40-140	0	40
Indeno(1,2,3-cd)pyrene	90	91	40-140	1	40
Pyrene	83	87	26-127	5	40
1-Methylnaphthalene	87	87	40-140	0	40
2-Methylnaphthalene	91	91	40-140	0	40
Pentachlorophenol	74	73	9-103	1	40

Project Name: THE DAILY FREEMAN

Project Number: 16-159311.2

Lab Number:

L1631369

Report Date:

10/07/16

Parameter	LCS %Recovery	LCSI Qual %Recov		%Recovery Limits	RPD	Qual	RPD Limits
Semivolatile Organics by GC/MS-SIM -	Westborough Lab Assoc	ciated sample(s): 09	·11 Batch: V	VG938817-2 WG93	8817-3		
Hexachlorobenzene	88	91		40-140	3		40
Hexachloroethane	83	83		40-140	0		40

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	
2-Fluorophenol	41		41		21-120	
Phenol-d6	26		27		10-120	
Nitrobenzene-d5	90		90		23-120	
2-Fluorobiphenyl	92		92		15-120	
2,4,6-Tribromophenol	104		107		10-120	
4-Terphenyl-d14	89		93		41-149	

METALS

Project Name: THE DAILY FREEMAN Lab Number: L1631369

Project Number: 16-159311.2 **Report Date:** 10/07/16

SAMPLE RESULTS

Lab ID: L1631369-07 Date Collected: 10/01/16 12:29

Client ID: B7 Date Received: 10/01/16
Sample Location: 79 HURLEY AVENUE, KINGSTON, NY Field Prep: Not Specified

Matrix: Soil

84% Percent Solids: Dilution Date Date Prep **Analytical** Method Prepared Method Factor **Analyzed** Result Qualifier RL MDL **Parameter** Units **Analyst** Total Metals - Mansfield Lab Antimony, Total ND mg/kg 2.4 0.38 1 10/05/16 07:25 10/06/16 02:41 EPA 3050B 1,6010C FΒ 6.0 1 1,6010C Arsenic, Total mg/kg 0.47 0.16 10/05/16 07:25 10/06/16 02:41 EPA 3050B FΒ 1 1,6010C Beryllium, Total 0.29 0.24 0.05 10/05/16 07:25 10/06/16 02:41 EPA 3050B FΒ mg/kg Cadmium, Total ND mg/kg 0.47 0.03 1 10/05/16 07:25 10/06/16 02:41 EPA 3050B 1,6010C FΒ 12 0.47 0.08 1 10/05/16 07:25 10/06/16 02:41 EPA 3050B 1,6010C Chromium, Total mg/kg FΒ 16 0.47 0.09 1 10/05/16 07:25 10/06/16 02:41 EPA 3050B 1,6010C FΒ Copper, Total mg/kg Lead, Total 9.0 2.4 0.10 1 10/05/16 07:25 10/06/16 02:41 EPA 3050B 1,6010C FΒ mg/kg Mercury, Total 0.02 J mg/kg 0.08 0.02 1 10/05/16 09:00 10/06/16 15:02 EPA 7471B 1,7471B ΒV 18 1 1,6010C FΒ Nickel, Total mg/kg 1.2 0.19 10/05/16 07:25 10/06/16 02:41 EPA 3050B Selenium, Total ND mg/kg 0.94 0.13 1 10/05/16 07:25 10/06/16 02:41 EPA 3050B 1,6010C FΒ Silver, Total ND 0.47 0.09 1 10/05/16 07:25 10/06/16 02:41 EPA 3050B 1,6010C FΒ mg/kg Thallium, Total ND 0.94 0.15 1 10/05/16 07:25 10/06/16 02:41 EPA 3050B 1,6010C FΒ mg/kg Zinc, Total 44 mg/kg 2.4 0.33 1 10/05/16 07:25 10/06/16 02:41 EPA 3050B 1,6010C FΒ

Project Name: THE DAILY FREEMAN **Lab Number:** L1631369

Project Number: 16-159311.2 **Report Date:** 10/07/16

SAMPLE RESULTS

Lab ID: L1631369-08 Date Collected: 10/01/16 12:41

Client ID: B8 Date Received: 10/01/16
Sample Location: 79 HURLEY AVENUE, KINGSTON, NY Field Prep: Not Specified

Matrix: Soil

Percent Solids: 85%

Dilution Date Date Prep Analytical

Factor Prepared Analyzed Method Method

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Man	sfield Lab										
Antimony, Total	ND		mg/kg	2.3	0.37	1	10/05/16 07:2	5 10/06/16 02:45	EPA 3050B	1,6010C	FB
Arsenic, Total	6.2		mg/kg	0.46	0.15	1	10/05/16 07:2	5 10/06/16 02:45	EPA 3050B	1,6010C	FB
Beryllium, Total	0.29		mg/kg	0.23	0.05	1	10/05/16 07:2	5 10/06/16 02:45	EPA 3050B	1,6010C	FB
Cadmium, Total	ND		mg/kg	0.46	0.03	1	10/05/16 07:2	5 10/06/16 02:45	EPA 3050B	1,6010C	FB
Chromium, Total	12		mg/kg	0.46	0.08	1	10/05/16 07:2	5 10/06/16 02:45	EPA 3050B	1,6010C	FB
Copper, Total	16		mg/kg	0.46	0.08	1	10/05/16 07:2	5 10/06/16 02:45	EPA 3050B	1,6010C	FB
Lead, Total	9.9		mg/kg	2.3	0.10	1	10/05/16 07:2	5 10/06/16 02:45	EPA 3050B	1,6010C	FB
Mercury, Total	0.03	J	mg/kg	0.07	0.02	1	10/05/16 09:0	0 10/06/16 15:04	EPA 7471B	1,7471B	BV
Nickel, Total	18		mg/kg	1.2	0.18	1	10/05/16 07:2	5 10/06/16 02:45	EPA 3050B	1,6010C	FB
Selenium, Total	ND		mg/kg	0.92	0.12	1	10/05/16 07:2	5 10/06/16 02:45	EPA 3050B	1,6010C	FB
Silver, Total	ND		mg/kg	0.46	0.09	1	10/05/16 07:2	5 10/06/16 02:45	EPA 3050B	1,6010C	FB
Thallium, Total	ND		mg/kg	0.92	0.15	1	10/05/16 07:2	5 10/06/16 02:45	EPA 3050B	1,6010C	FB
Zinc, Total	44		mg/kg	2.3	0.32	1	10/05/16 07:2	5 10/06/16 02:45	EPA 3050B	1,6010C	FB

Project Name: THE DAILY FREEMAN

Project Number: 16-159311.2

Lab Number:

L1631369

Report Date:

10/07/16

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytica Method	
Total Metals - Mansfield	d Lab for sample(s):	07-08 B	Batch: W	G93890	9-1				
Mercury, Total	ND	mg/kg	0.08	0.02	1	10/05/16 09:00	10/06/16 11:36	1,7471B	BV

Prep Information

Digestion Method: EPA 7471B

Parameter	Result Q	ualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	l Analyst
Total Metals - Mans	field Lab for sa	mple(s):	07-08 E	atch: W	G93893	1-1				
Antimony, Total	ND		mg/kg	2.0	0.32	1	10/05/16 07:25	10/06/16 00:48	3 1,6010C	FB
Arsenic, Total	ND		mg/kg	0.40	0.13	1	10/05/16 07:25	10/06/16 00:48	1,6010C	FB
Beryllium, Total	ND		mg/kg	0.20	0.04	1	10/05/16 07:25	10/06/16 00:48	1,6010C	FB
Cadmium, Total	ND		mg/kg	0.40	0.03	1	10/05/16 07:25	10/06/16 00:48	1,6010C	FB
Chromium, Total	0.36	J	mg/kg	0.40	0.07	1	10/05/16 07:25	10/06/16 00:48	1,6010C	FB
Copper, Total	ND		mg/kg	0.40	0.07	1	10/05/16 07:25	10/06/16 03:33	1,6010C	FB
Lead, Total	ND		mg/kg	2.0	0.09	1	10/05/16 07:25	10/06/16 00:48	1,6010C	FB
Nickel, Total	ND		mg/kg	1.0	0.16	1	10/05/16 07:25	10/06/16 00:48	1,6010C	FB
Selenium, Total	ND		mg/kg	0.80	0.11	1	10/05/16 07:25	10/06/16 00:48	1,6010C	FB
Silver, Total	ND		mg/kg	0.40	0.08	1	10/05/16 07:25	10/06/16 00:48	1,6010C	FB
Thallium, Total	ND		mg/kg	0.80	0.13	1	10/05/16 07:25	10/06/16 00:48	1,6010C	FB
Zinc, Total	0.37	J	mg/kg	2.0	0.28	1	10/05/16 07:25	10/06/16 00:48	3 1,6010C	FB

Prep Information

Digestion Method: EPA 3050B

Project Name: THE DAILY FREEMAN

Project Number: 16-159311.2

Lab Number:

L1631369

Report Date:

10/07/16

Parameter	LCS %Recover	y Qual	LCSD %Recov		%Recovery Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample((s): 07-08 E	Batch: WG938	3909-2 SR	M Lot Number:	D091-540			
Mercury, Total	89		-		72-128	-		
Total Metals - Mansfield Lab Associated sample((s): 07-08 E	Batch: WG938	3931-2 SR	M Lot Number:	D091-540			
Antimony, Total	163		-		1-200	-		
Arsenic, Total	110		-		80-121	-		
Beryllium, Total	103		-		83-117	-		
Cadmium, Total	108		-		83-117	-		
Chromium, Total	105		-		80-119	-		
Copper, Total	104		-		82-117	-		
Lead, Total	103		-		82-118	-		
Nickel, Total	108		-		83-117	-		
Selenium, Total	101		-		79-121	-		
Silver, Total	102		-		75-124	-		
Thallium, Total	106		-		80-121	-		
Zinc, Total	103		-		82-118	-		

Matrix Spike Analysis Batch Quality Control

Project Name: THE DAILY FREEMAN

Project Number: 16-159311.2

Lab Number: L1631369

arameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery Q	Recovery tual Limits	RPD Qua	RPD Limits
Γotal Metals - Mansfield L	Lab Associated san	nple(s): 07-08	QC Bat	ch ID: WG938	909-4	QC Samp	ole: L1631434-01	Client ID: MS	Sample	
Mercury, Total	0.25	0.16	0.37	75	Q	-	-	80-120	-	20
otal Metals - Mansfield I	Lab Associated san	nple(s): 07-08	QC Bat	ch ID: WG938	931-4	QC Samp	ole: L1631502-01	Client ID: MS	Sample	
Antimony, Total	160	43.5	460	690	Q	-	-	75-125	-	20
Arsenic, Total	41.	10.4	48	67	Q	-	-	75-125	-	20
Beryllium, Total	0.45	4.35	3.5	70	Q	-	-	75-125	-	20
Cadmium, Total	2.3	4.44	5.1	63	Q	-	-	75-125	-	20
Chromium, Total	27.	17.4	40	75		-	-	75-125	-	20
Copper, Total	440	21.8	260	0	Q	-	-	75-125	-	20
Lead, Total	1300	44.4	2800	3380	Q	-	-	75-125	-	20
Nickel, Total	31.	43.5	54	53	Q	-	-	75-125	-	20
Selenium, Total	0.89	10.4	9.8	85		-	-	75-125	-	20
Silver, Total	0.62	26.1	24	90		-	-	75-125	-	20
Thallium, Total	ND	10.4	5.6	54	Q	-	-	75-125	-	20
Zinc, Total	510	43.5	480	0	Q	-	-	75-125	-	20

Lab Duplicate Analysis Batch Quality Control

Project Name: THE DAILY FREEMAN

Project Number: 16-159311.2

Lab Number:

L1631369

Report Date:

10/07/16

Parameter		Native Sample		Duplio	Duplicate Sample		RPD	Qual	RPD Limits
Total Metals - Mansfield Lab	Associated sample(s):	07-08	QC Batch ID:	WG938909-3	QC Sample:	L1631434-01	Client ID:	DUP Sampl	е
Mercury, Total			0.25		0.94	mg/kg	116	Q	20
Total Metals - Mansfield Lab	Associated sample(s):	07-08	QC Batch ID:	WG938931-3	QC Sample:	L1631502-01	Client ID:	DUP Sampl	е
Arsenic, Total			41.		31	mg/kg	28	Q	20
Lead, Total			1300		1000	mg/kg	26	Q	20

INORGANICS & MISCELLANEOUS

Project Name: THE DAILY FREEMAN Lab Number: L1631369

Project Number: 16-159311.2 **Report Date:** 10/07/16

SAMPLE RESULTS

Lab ID: L1631369-01 Date Collected: 10/01/16 09:21

Client ID: Date Received: 10/01/16

Sample Location: 79 HURLEY AVENUE, KINGSTON, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - \	Westborough Lab)								
Solids, Total	82.8		%	0.100	NA	1	-	10/04/16 11:55	121,2540G	RI

Project Name: THE DAILY FREEMAN Lab Number: L1631369

Project Number: 16-159311.2 **Report Date:** 10/07/16

SAMPLE RESULTS

Lab ID: L1631369-02 Date Collected: 10/01/16 09:43

Client ID: B2 Date Received: 10/01/16

Sample Location: 79 HURLEY AVENUE, KINGSTON, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab)								
Solids, Total	83.0		%	0.100	NA	1	-	10/04/16 11:55	121,2540G	RI

Project Name: THE DAILY FREEMAN Lab Number: L1631369

Project Number: 16-159311.2 **Report Date:** 10/07/16

SAMPLE RESULTS

Lab ID: L1631369-03 Date Collected: 10/01/16 10:00

Client ID: B3 Date Received: 10/01/16

Sample Location: 79 HURLEY AVENUE, KINGSTON, NY Field Prep: Not Specified

Parameter	Result Qua	alifier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab								
Solids, Total	76.3	%	0.100	NA	1	-	10/04/16 11:55	121,2540G	RI

Project Name: THE DAILY FREEMAN Lab Number: L1631369

Project Number: 16-159311.2 **Report Date:** 10/07/16

SAMPLE RESULTS

Lab ID: L1631369-04 Date Collected: 10/01/16 10:12

Client ID: B4 Date Received: 10/01/16

Sample Location: 79 HURLEY AVENUE, KINGSTON, NY Field Prep: Not Specified

Parameter	Result C	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	- Westborough Lab									
Solids, Total	76.0		%	0.100	NA	1	-	10/04/16 11:55	121,2540G	RI

Project Name: THE DAILY FREEMAN Lab Number: L1631369

Project Number: 16-159311.2 **Report Date:** 10/07/16

SAMPLE RESULTS

Lab ID: L1631369-05 Date Collected: 10/01/16 10:29

Client ID: B5 Date Received: 10/01/16

Sample Location: 79 HURLEY AVENUE, KINGSTON, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - \	Westborough Lab)								
Solids, Total	80.0		%	0.100	NA	1	-	10/04/16 11:55	121,2540G	RI

Project Name: THE DAILY FREEMAN Lab Number: L1631369

Project Number: 16-159311.2 **Report Date:** 10/07/16

SAMPLE RESULTS

Lab ID: L1631369-06 Date Collected: 10/01/16 10:58

Client ID: B6 Date Received: 10/01/16

Sample Location: 79 HURLEY AVENUE, KINGSTON, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab									
Solids, Total	84.6		%	0.100	NA	1	-	10/04/16 11:55	121,2540G	RI

Project Name: THE DAILY FREEMAN Lab Number: L1631369

Project Number: 16-159311.2 **Report Date:** 10/07/16

SAMPLE RESULTS

Lab ID: L1631369-07 Date Collected: 10/01/16 12:29

Client ID: B7 Date Received: 10/01/16

Sample Location: 79 HURLEY AVENUE, KINGSTON, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	- Westborough Lab									
Solids, Total	84.4		%	0.100	NA	1	-	10/04/16 11:55	121,2540G	RI

10/01/16 12:41

Date Collected:

Project Name: THE DAILY FREEMAN Lab Number: L1631369

Project Number: 16-159311.2 **Report Date:** 10/07/16

SAMPLE RESULTS

Lab ID: L1631369-08

Client ID: B8 Date Received: 10/01/16

Sample Location: 79 HURLEY AVENUE, KINGSTON, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab									
Solids, Total	84.6		%	0.100	NA	1	-	10/04/16 11:55	121,2540G	RI

Lab Duplicate Analysis
Batch Quality Control

Batch Quality Control Lab Number: L1631369

Project Number: 16-159311.2 **Report Date:** 10/07/16

Parameter	Native Sam	ple Duplicate Samp	ole Units	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab A	Associated sample(s): 01-08	QC Batch ID: WG938614-1	QC Sample: L163	31369-01	Client ID: B	1
Solids, Total	82.8	82.6	%	0		20

Project Name:

THE DAILY FREEMAN

Lab Number: L1631369

Project Name: THE DAILY FREEMAN

Project Number: 16-159311.2 **Report Date:** 10/07/16

Sample Receipt and Container Information

Were project specific reporting limits specified?

Reagent H2O Preserved Vials Frozen on: 10/01/2016 16:55

Cooler Information Custody Seal

Cooler

A Absent

Container Info	ormation			Temp			
Container ID	Container Type	Cooler	рН	deg C	Pres	Seal	Analysis(*)
L1631369-01A	Vial MeOH preserved	Α	N/A	2.9	Υ	Absent	NYTCL-8260HLW(14)
L1631369-01B	Vial water preserved	Α	N/A	2.9	Υ	Absent	NYTCL-8260HLW(14)
L1631369-01C	Vial water preserved	Α	N/A	2.9	Υ	Absent	NYTCL-8260HLW(14)
L1631369-01D	Plastic 2oz unpreserved for TS	Α	N/A	2.9	Υ	Absent	TS(7)
L1631369-02A	Vial MeOH preserved	Α	N/A	2.9	Υ	Absent	NYTCL-8260HLW(14)
L1631369-02B	Vial water preserved	Α	N/A	2.9	Υ	Absent	NYTCL-8260HLW(14)
L1631369-02C	Vial water preserved	Α	N/A	2.9	Υ	Absent	NYTCL-8260HLW(14)
L1631369-02D	Plastic 2oz unpreserved for TS	Α	N/A	2.9	Υ	Absent	TS(7)
L1631369-03A	Vial MeOH preserved	Α	N/A	2.9	Υ	Absent	NYTCL-8260HLW(14)
L1631369-03B	Vial water preserved	Α	N/A	2.9	Υ	Absent	NYTCL-8260HLW(14)
L1631369-03C	Vial water preserved	Α	N/A	2.9	Υ	Absent	NYTCL-8260HLW(14)
L1631369-03D	Plastic 2oz unpreserved for TS	Α	N/A	2.9	Υ	Absent	TS(7)
L1631369-04A	Vial MeOH preserved	Α	N/A	2.9	Υ	Absent	NYTCL-8260HLW(14)
L1631369-04B	Vial water preserved	Α	N/A	2.9	Υ	Absent	NYTCL-8260HLW(14)
L1631369-04C	Vial water preserved	Α	N/A	2.9	Υ	Absent	NYTCL-8260HLW(14)
L1631369-04D	Plastic 2oz unpreserved for TS	Α	N/A	2.9	Υ	Absent	TS(7)
L1631369-05A	Vial MeOH preserved	Α	N/A	2.9	Υ	Absent	NYTCL-8260HLW(14)
L1631369-05B	Vial water preserved	Α	N/A	2.9	Υ	Absent	NYTCL-8260HLW(14)
L1631369-05C	Vial water preserved	Α	N/A	2.9	Υ	Absent	NYTCL-8260HLW(14)
L1631369-05D	Plastic 2oz unpreserved for TS	Α	N/A	2.9	Υ	Absent	TS(7)
L1631369-06A	Vial MeOH preserved	Α	N/A	2.9	Υ	Absent	NYTCL-8260HLW(14)
L1631369-06B	Vial water preserved	Α	N/A	2.9	Υ	Absent	NYTCL-8260HLW(14)
L1631369-06C	Vial water preserved	Α	N/A	2.9	Υ	Absent	NYTCL-8260HLW(14)
L1631369-06D	Plastic 2oz unpreserved for TS	Α	N/A	2.9	Υ	Absent	TS(7)
L1631369-07A	Vial MeOH preserved	Α	N/A	2.9	Υ	Absent	NYTCL-8260HLW(14)
L1631369-07B	Vial water preserved	Α	N/A	2.9	Υ	Absent	NYTCL-8260HLW(14)
L1631369-07C	Vial water preserved	Α	N/A	2.9	Υ	Absent	NYTCL-8260HLW(14)

Project Name: THE DAILY FREEMAN

Project Number: 16-159311.2

Lab Number: L1631369 **Report Date:** 10/07/16

Container Info	ormation			Temp			
Container ID	Container Type	Cooler	рΗ	deg C	Pres	Seal	Analysis(*)
L1631369-07D	Plastic 2oz unpreserved for TS	Α	N/A	2.9	Υ	Absent	TS(7)
L1631369-07E	Metals Only - Glass 60mL/2oz unp	Α	N/A	2.9	Y	Absent	BE-TI(180),AS-TI(180),AG- TI(180),CR-TI(180),NI- TI(180),TL-TI(180),CU- TI(180),PB-TI(180),SB- TI(180),SE-TI(180),ZN- TI(180),HG-T(28),CD-TI(180)
L1631369-07F	Glass 120ml/4oz unpreserved	Α	N/A	2.9	Υ	Absent	NYTCL-8270(14)
L1631369-08A	Vial MeOH preserved	Α	N/A	2.9	Υ	Absent	NYTCL-8260HLW(14)
L1631369-08B	Vial water preserved	Α	N/A	2.9	Υ	Absent	NYTCL-8260HLW(14)
L1631369-08C	Vial water preserved	Α	N/A	2.9	Υ	Absent	NYTCL-8260HLW(14)
L1631369-08D	Plastic 2oz unpreserved for TS	Α	N/A	2.9	Υ	Absent	TS(7)
L1631369-08E	Metals Only - Glass 60mL/2oz unp	A	N/A	2.9	Y	Absent	BE-TI(180),AS-TI(180),AG- TI(180),CR-TI(180),NI- TI(180),TL-TI(180),CU- TI(180),PB-TI(180),SB- TI(180),SE-TI(180),ZN- TI(180),HG-T(28),CD-TI(180)
L1631369-08F	Glass 120ml/4oz unpreserved	Α	N/A	2.9	Υ	Absent	NYTCL-8270(14)
L1631369-09A	Vial HCI preserved	Α	N/A	2.9	Υ	Absent	NYTCL-8260(14)
L1631369-09B	Vial HCI preserved	Α	N/A	2.9	Υ	Absent	NYTCL-8260(14)
L1631369-09C	Vial HCI preserved	Α	N/A	2.9	Υ	Absent	NYTCL-8260(14)
L1631369-09D	Amber 1000ml unpreserved	Α	N/A	2.9	Υ	Absent	NYTCL-8270(7),NYTCL-8270- SIM(7)
L1631369-09E	Amber 1000ml unpreserved	Α	N/A	2.9	Y	Absent	NYTCL-8270(7),NYTCL-8270- SIM(7)
L1631369-10A	Vial HCl preserved	Α	N/A	2.9	Υ	Absent	NYTCL-8260(14)
L1631369-10B	Vial HCl preserved	Α	N/A	2.9	Υ	Absent	NYTCL-8260(14)
L1631369-10C	Vial HCl preserved	Α	N/A	2.9	Υ	Absent	NYTCL-8260(14)
L1631369-10D	Amber 1000ml unpreserved	Α	N/A	2.9	Υ	Absent	NYTCL-8270(7),NYTCL-8270- SIM(7)
L1631369-10E	Amber 1000ml unpreserved	Α	N/A	2.9	Υ	Absent	NYTCL-8270(7),NYTCL-8270- SIM(7)
L1631369-11A	Vial HCl preserved	Α	N/A	2.9	Υ	Absent	NYTCL-8260(14)
L1631369-11B	Vial HCl preserved	Α	N/A	2.9	Υ	Absent	NYTCL-8260(14)
L1631369-11C	Vial HCI preserved	Α	N/A	2.9	Υ	Absent	NYTCL-8260(14)
L1631369-11D	Amber 1000ml unpreserved	Α	N/A	2.9	Υ	Absent	NYTCL-8270(7),NYTCL-8270- SIM(7)
L1631369-11E	Amber 1000ml unpreserved	Α	N/A	2.9	Υ	Absent	NYTCL-8270(7),NYTCL-8270- SIM(7)
L1631369-12A	Vial HCI preserved	Α	N/A	2.9	Υ	Absent	NYTCL-8260(14)
L1631369-12B	Vial HCI preserved	Α	N/A	2.9	Υ	Absent	NYTCL-8260(14)
L1631369-12C	Vial HCl preserved	Α	N/A	2.9	Υ	Absent	NYTCL-8260(14)

Project Name:THE DAILY FREEMANLab Number:L1631369Project Number:16-159311.2Report Date:10/07/16

GLOSSARY

Acronyms

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated

values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for

which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less

than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a "Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

A - Spectra identified as "Aldol Condensation Product".

-The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the

Report Format: DU Report with 'J' Qualifiers

Project Name:THE DAILY FREEMANLab Number:L1631369Project Number:16-159311.2Report Date:10/07/16

Data Qualifiers

- reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- R Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.

Report Format: DU Report with 'J' Qualifiers

Project Name: THE DAILY FREEMAN Lab Number: L1631369
Project Number: 16-159311.2 Report Date: 10/07/16

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.

121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

Serial_No:10071620:19

ID No.:17873 Revision 7

Published Date: 8/5/2016 11:25:56 AM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624: m/p-xylene, o-xylene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-

Tetramethylbenzene: 4-Ethyltoluene.

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 300: DW: Bromide

EPA 6860: NPW and SCM: Perchlorate

EPA 9010: NPW and SCM: Amenable Cyanide Distillation

EPA 9012B: NPW: Total Cyanide EPA 9050A: NPW: Specific Conductance

SM3500: NPW: Ferrous Iron

SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3.

SM5310C: DW: Dissolved Organic Carbon

Mansfield Facility **SM 2540D:** TSS

EPA 3005A NPW

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F, EPA 353.2: Nitrate-N, EPA 351.1, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D.

EPA 624: Volatile Halocarbons & Aromatics,

EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9222D-MF.

Mansfield Facility:

Drinking Water

EPA 200.7: Ba, Be, Cd, Cr, Cu, Ni, Na, Ca. EPA 200.8: Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Ni, Se, TL. EPA 245.1 Hg.

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

EPA Method 5035A Transfer Log MAHWAH, NJ

Alpha Analytical, Inc. 35 Whitney Road, Suite 5 Mahwah, NJ 07430

Xfer to MAHF				Collection/Storage Device	X	fer to MOBILE	FREEZER	Trip Temperature		Xfer to Labora	tory Freezer	
DATE/TIME	INITIALS		SAMPLE IDs	ENCOR(E) or TERRACORE (T)			INITIALS	Min (°C)	COLUMN TWO IS NOT THE OWNER.		INITIALS	
10/1/16 1655	SAW	Partner	BI	E / (T)	1	0/3/16 14:32	SAW	160	190	431K 231	1 TIAT	
			B2	E / 🗇								
			B 3	E / (f)	L							
			15 4	E / (D)	L							
			B 5	E / ①	L							
—			15 6	E / Ø	_					4 200000		
	1/	1	B 7	E / Ø	L	1	\bigvee	377-5				
	V	¥	BB	E / Ø	L	V	V	2006-02				
				E / T	L		2	0 0/00000				
				E / T								
				E / T		1300-200						
				E / T								
				E / T								
				E / T								
				E / T								
	- 1	12.00		E / T								
				E / T								
				E / T								
				E / T								
			17.2	E / T								
				E / T								

Westborough, MA 01581 8 Walkup Dr. TEL: 508-898-9220	NEW YORK CHAIN OF CUSTODY Mansfield, MA 02048 320 Forbes Blvd TEL: 508-822-9300	Mahwah, NJ 07430: 35 Whitney Albany, NY 12205: 14 Walker W Tonawanda, NY 14150: 275 Con	Vay oper Ave, Suite		Pag	e f Z		in erable		10/			ALPHA Job # L_1(_3/36C) Billing Information		
FAX: 508-898-9193	FAX: 508-822-3288	Project Name: The O	laily to	elman	1	. 15 11	4 📙	ASP-			ASP-		Heart s	Same as Client Info	
		Project Location: 79 H	urley Ave	inve, King	stan, a	112401	- 닏		S (1 File))] EQuI	IS (4 File)	PO #		
Client Information	10	Project # [6-1593]			<u> </u>			Othe		- A - C - C - C - C - C - C - C - C - C					
Client Of two Ass	BUSINEUTLORP	(Use Project name as Project name)							Require	nent			Disposal Site Inform	nation	
Address: OU Indus	tral Way W Pot	Project Manager: And	ives 2'n	nouson							NY Pa	irt 375	Please identify below location of		
Ectorton, NJ	07724	ALPHAQuote #:		6041					Standards		NY CF	² -51	applicable disposal fac	ilities.	
Phone: 731 38	0 (700	Turn-Around Time							stricted U		Other		Disposal Facility:		******
Fax: 731 38	0 1701	Standard		Due Date:			X	NY Ur	restricted	Use			□ NJ □	NY	
Email: Olsimen	son @ Devlurosi. Lon	Rush (only if pre approved)		# of Days:				NYC S	Sewer Disc	harge	Other:				
	been previously analyze	AND THE PROPERTY OF THE PROPER	lpha										Sample Filtration		T
Other project specifi	ic requirements/comm	nents:	upna 🔲										Done Lab to do		o t a
							8260	20	tent ile/sur				Preservation	- 1	1
Please specify Metal	s or TAL.						\$	3	Pilutent S Goior				Lab to do		В
						ALCOHOL:	S		52				/Planca Chaoife ha	(mus)	0
ALPHA Lab ID		¥ 200	Coll	ection	Sample	Complete	00	70	1.5				(Please Specify bei	(W)	t
(Lab Use Only)	Sa	mple ID	Date	Time	Matrix	Sampler's Initials	1	3	Prior H				0 10 10 0		i
31309-01	B		10//	921	5	-	V	V)					Sample Specific Comr	nents	е
02	100		10/1	943	1	CN	1				-				
03	83			1000			1		-+						
04	BA			1000		-		-	-+		-		1000		_
37	85			10 (2			X						PID readin	265	
3/2	8			1029		201					\vdash				
	8		<u> </u>	1058	V	7	1								
97				1229			X	X	*						
56	83	9	V	1241	Ψ	1	X	X	*						
									1905						
Preservative Code:	Container Code														
A = None	P = Plastic	Westboro: Certification No	: MA935		Con	tainer Type	1/	٨	٨				Please print clearly	v. legibly	
B = HCI		Mansfield: Certification No	: MA015					A	A				and completely. Sa	amples ca	an
C = HNO ₃ D = H ₂ SO ₄	V = Vial G = Glass		D	reservative	T	A	A				not be logged in ar				
E = NaOH	B = Bacteria Cup		i coci vative	1	! 1					turnaround time clo					
F = MeOH G = NaHSO₄	C = Cube O = Other	Relinquished B	اي س	Receive	ed By:	Project.		Date/1	Time _	resolved. BY EXEC					
$H = Na_2S_2O_3$	E = Encore	1 Christen	Scott	- Inle	BK	AAL	1 /0/1	16	1635	THIS COC, THE C	LIENT				
VE = Zn Ac/NaOH	D = BOD Bottle						100 100 1 153-16 18V				1811	HAS READ AND A			
O = Other		TomTALL							7	101		22:17	TO BE BOUND BY TERMS & CONDIT		5
Form No: 01-25 HC (rev. 3)	0-Sept-2013)		V			Mille		WV	 	- 7/	AIV	- 7' W	(See reverse side.)		
													N1		

Westborough, MA 01581 8 Walkup Dr.	NEW YORK CHAIN OF CUSTODY Mansfield, MA 02048 320 Forbes Blyd	Service Centers Mahwah, NJ 07430: 35 Whitney Albany, NY 12205: 14 Walker W Tonawanda, NY 14150: 275 Cod Project Information	/ay	105	Page 2 o				Rec'd Lab	CC)(3	116		ALPHA Job # LIG31369 Billing Information	
TEL: 508-898-9220	TEL: 508-822-9300	Project Name: The (Jalu F	revivan		The second second		ASP-	·A			ASP-B		Same as Client Info	
FAX: 508-898-9193	FAX: 508-822-3288			net Kins	stan M	1)401	1 1		S (1 Fi	le)	-	EQuIS (4 File)	PO#	
Client Information	A S. C. S.	Project # 16-159.	3113	10 1, 1 -113	3 100 1, 101	100 101	1 1	Othe	305	· ·			, ,		
Client: Part Ass	Epsemana (coo	(Use Project name as Pro				10 A) (1) (1)	Regu			rement				Disposal Site Information	
	istrict Nan West	Project Manager: An	Λ Λ	non son		2000 - 2000		NY TO		to see that the see that the see		V Part 3	375	Please identify below location o	•
Eaton town, N		ALPHAQuote #:	(19) 510	MACA			1 =		Standar	ds		IY CP-5		applicable disposal facilities.)I
Phone: 73 1 386	1700	Turn-Around Time					120	NY Re	estricted	Use		Other		Disposal Facility:	······
Fax: 732 38	01701	Standard	N	Due Date:			100		restricte	ed Use				□ NJ □ NY	
Email: (1) d2 wie	San a partneres icov			# of Days:			1 7			ischarge	Э			Other:	
These samples have b	The second secon	100°-								-				Sample Filtration	T
Other project specific			приа 🗆									T	T	Done	0
Please specify Metals	s or TAL.				26.7		8260	5 8270						Lab to do Preservation Lab to do (Please Specify below)	a I B o
ALPHA Lab ID		Modeshare and	Coll	ection	Sample	Sampler's	20	3						, , ,	t
(Lab Use Only)	Sa	mple ID	Date	Time	Matrix	Initials	>	5						Sample Specific Comments	- I
31369-69	R2-	GW	10/1	1109	GW	CN	X	X						December 15 or sold Annual supports to the control and the support	
ان		6W		1117	1		4	X			\neg			Sheen	
11	B6-1	6 W		1137			X	×			\top			5 · ce()/	
R	B7-(V	1250	V		X				_	_			+
	1											\neg		71.00	+
								j.							\top
		AC (A. C.													\top
	Jan Am Heaten														
			A F3												П
	2														П
Preservative Code: A = None B = HCI C = HNO ₃ D = H ₂ SO ₄	Container Code P = Plastic A = Amber Glass V = Vial G = Glass B = Bacteria Cup	Westboro: Certification No Mansfield: Certification No			tainer Type	V B	A A						Please print clearly, legibl and completely. Samples not be logged in and turnaround time clock will	can	
E = NaOH F = MeOH	C = Cube	Relinquished By: Date/Time					Poor!:	nd Di				\oto/T		start until any ambiguities resolved. BY EXECUTING	
G = NaHSO ₄	O = Other	171 11					Receive	ed By		, \	-11	ate/Tin	ne // / /	THIS COC, THE CLIENT	
$H = Na_2S_2O_3$ K/E = Zn Ac/NaOH	E = Encore D = BOD Bottle					Jan	Scott Light (Aft) 10/1/16 1635				10 tha	HAS READ AND AGREES	s		
O = Other		10/3/16 18/11 -					W Comment			13/16/23/1			13 11	TO BE BOUND BY ALPH. TERMS & CONDITIONS.	
Form No: 01-25 HC (rev. 30	0-Sept-2013)	1011 NOW	10m 10h / 19-3-16, 2310.						4	-	14 3	100	x7/10	(See reverse side.)	
O 140. 01 20 110 (18V. 30	0 00pt-2010)		the state of the s										N N		