

SPILL CLOSURE REPORT

DAILY FREEMAN 79 Hurley Ave Kingston, NY 12401

September 1, 2017 PAC Project Number: 17242956

Prepared for: **Twenty Lake Holdings** 885 Third Ave., 19th Fl New York, New York 10022

TABLE OF CONTENTS

1.	INTRODUCTION	1
1.1.	. Site Description	1
1.2.		1
1.3.		4
2.	QUALITY ASSURANCE/QUALITY CONTROL	5
3.	SITE INVESTIGATION ACTIVITIES	5
3.1.		5
3	3.2. Phase III Investigation/Delineation	7
4.	VAPOR INTRUSION INVESTIGATION	9
5.	IN-SITU REMEDIATION	9
6.	SPILL/RELEASE REPORTING	
7.	FINDINGS	
8.	CONCLUSIONS AND RECOMMENDATIONS	

ATTACHMENTS

FIGURES

Figure 1 – Site Location Map

Figure 2 – Topographic Map

Figure 3 – Sample Location Map

TABLES

Table 1 – Soil Sample Results

Table 2 – Groundwater Sample Results

Table 2A – Groundwater Sample Results After Treatment

Table 3 – Soil Gas Sample Results

APPENDICES

Appendix A–Borings Logs

Appendix B- Phase II ESA

Appendix C- Laboratory Reports

Appendix D- Monitoring Well Construction Logs

1. INTRODUCTION

Partner Assessment Corporation (Partner), on behalf of Twenty Lake Holdings, has prepared this Spill Closure Report for the New York State Department of Environmental Conservation (NYSDEC) in regards to groundwater contamination detected at the property located at 79 Hurley Avenue, Kingston, Ulster County, New York (herein referred to as the Site). The Site location is depicted on **Figures 1 and 2.**

1.1. Site Description

Based on the information reviewed and the Site reconnaissance, the Site consists of one parcel of land (Block 2 Lot 11) totaling approximately 2.9 acres located on the north side of Hurley Avenue, between Tayler Street and Quarry Street, within a mixed commercial and residential area of Ulster County, New York. The Site is currently occupied by the Daily Freeman for commercial/office use. On-site operations consist of general newspaper production administrative/office activities as well as warehousing and distribution. There is a single-story structure that is situated within the central portion of the site, containing office spaces, warehouse spaces, a mezzanine level, as well as a basement level beneath the original portion of the facility. The basement level does not extend beneath the warehouse portion of the subject property building, which is currently leased to PCF, a newspaper distribution company. No newspaper printing operations are currently conducted onsite. Former printing operations reportedly ceased at the subject property in 2010. In addition to the current structure, the subject property is improved with asphalt-paved parking areas, naturally vegetated land, and a freshwater pond that is located within the rear portion of the site.

Refer to **Figure 1** for a map of the Site location and the surrounding properties.

1.2. Project History

Partner completed a Phase I Environmental Site Assessment (Phase I) Report, dated April 21, 2016, prepared on behalf of Twenty Lake Holdings. Based on the information reviewed, previous reports cited, and the site reconnaissance, the subject property consists of one parcel located on the north side of Hurley Avenue, east of the New York State Thruway and west of Washington Avenue, within a mixed commercial and residential area of Ulster County. One building sits on the 2.9 acres of land and consists of one floor with mezzanine and basement levels. The property is also improved with an asphalt parking lot. A wooded area with a pond is north of the building. The building is occupied by the Daily Freeman newspaper, though printing operations ended in 2010. The Phase I report found the following recognized environmental conditions (RECs):

• The subject property has been occupied by The Daily Freeman from as early as 1974. Newspaper printing operations were conducted on-site from the start of tenancy until approximately 2010. Printing presses were located in what is now a mostly vacant warehouse area within the eastern portion of the subject property building. Newspaper printing operations also included a photo development dark room and a pre-press area, which was utilized to convert images to a plate or film prior to the newspaper printing process. Floor drains were observed in the pre-press area, and what appeared to be a long trench drain was observed within the former printing area. According to the key site manager, the discharge points for these features are expected to be the municipal sanitary sewer system. Staining was observed on the floor in the immediate vicinity of the floor

drains in the pre-press area, and significant ink staining was observed on the walls surrounding a wash sink in the former printing area. These drains may act as pathways to the subsurface and have the potential to impact the subsurface, should they become compromised. According to the regulatory database report, the subject property has been identified as a Resource Conservation and Recovery Act-Non Generator (RCRA-NonGen/NLR) since at least 2006, prior to which it had operated as a Resource Conservation and Recovery Act-Small Quantity Generator (RCRA-SQG) since 1988. Hazardous wastes previously generated on-site have included "solvent washes and sludges, caustic washes and sludges, or water washes and sludges from cleaning tubs and equipment used in the formulation of ink from pigments, driers, soaps, and stabilizers containing chromium and lead". Although two compliance evaluation inspections were conducted onsite in 1999 and 2013, during which no violations were identified, Partner was unable to verify proper handling and/or disposal practices during the remaining years, in which printing operations were performed. Based on the duration of former hazardous materials activities, including the generation of solvent wastes, as well as the nature of the

aforementioned hazardous substances used, stored, and/or generated on-site, the former

printing operations are considered a recognized environmental condition.

• According to information obtained from the regulatory database report and from a partial records request response from the New York State Department of Environmental Conservation (NYSDEC), the subject property was historically equipped with four underground storage tanks (USTs), which were registered under Facility ID Number 3-411086. They included a 2,000-gallon steel UST that was installed in 1974, a 1,000-gallon steel UST that was installed in 1979, and a 6,000-gallon fiberglass UST that was installed in 1994. All four tanks were previously utilized for the storage of gasoline, to support newspaper delivery fleet refueling activities, and are currently listed as "closed-removed". Closure dates are provided for the 10,000-gallon UST (May 1994) and 6,000-gallon UST (January 2012). However, Partner was only provided with documentation verifying the location and closure of the former 6,000-gallon UST, as discussed further below. No information pertaining to the exact location, removal dates, or any post-closure subsurface sampling of the remaining three tanks was available for review during the course of this assessment.

It should also be noted that two gasoline releases were reported in connection with the aforementioned USTs. The first release (Spill Number 9002411) was reported on June 1, 1990, during a tank pull. An available Spill Report Form does not indicate from which tank the release occurred. However, based on the incident date, the release likely pertains to the former 1,000-gallon tank or 2,000-gallon tank (or both). The Spill Report Form notes that approximately 15 to 18 cubic yards of contaminated soil were stockpiled and disposed of off-site. The release case was issued regulatory closure on June 15, 1990, and was noted to have met applicable cleanup standards. However, the analytical results of post-excavation soil sampling were not provided for review. The second release (Spill Number 9402470) was reported on May 19, 1994, during a tank tightness test, which was performed in preparation for the closure of a UST. Given the incident date, the release likely pertains to the former 10,000-gallon UST. The spill report indicates that the tank was emptied, and

Page | 3

the release case was issued regulatory closure on June 9, 1994. However, cleanup was noted to have not met applicable standards. Further, the analytical results of post-excavation soil sampling were not provided for review. As such, the potential exists for residual contamination to remain in place at the subject property. Partner has requested copies of full UST and spill closure reports (with analytical data) from the NYSDEC, and copies have not been provided for review as of the issuance of this report. Based on the lack of information available, Partner was unable to determine the locations of the former 2,000-gallon UST, 1,000-gallon UST, and 10,000-gallon UST, whether or not said USTs were closed and removed in accordance with applicable standards, and whether or not the subsurface has been impacted beyond what was visually observed and reported for the two release cases. Therefore, the three, former USTs and associated release cases are considered a recognized environmental condition.

The report also found the following historical recognized environmental condition (HREC), which refers to a past release on the property that has been addressed to the satisfaction of the regulatory authority:

The subject property was formerly equipped with a 6,000-gallon gasoline UST that was utilized for fleet refueling operations. According to the NYSDEC, this UST was registered under Facility ID Number 3-411086 as Tank 4. This UST, which was of double-walled, fiberglass-reinforced plastic construction, was installed in 1994 and was subsequently closed and removed on January 25, 2012. According to on-site personnel, this tank was situated at the northeast corner of the subject property, immediately adjacent to vegetated land and the eastern property boundary. This area was noted as having an uneven asphalt patch, indicative of tank removal, during Partner's field reconnaissance. In addition, Partner was provided with a copy of tank removal documentation, which indicated that tank removal was conducted under a permit by a NYSDEC-approved contractor. Postexcavation soil samples were collected and analyzed, and no reportable levels of contamination were identified. As such, proper documentation was submitted to the NYSDEC, and the tank status was changed from "Active" to "Closed-Removed", with no requirements for additional investigation. It should be noted that the City of Kingston also issued a permit for the removal of the 6,000-gallon UST. However, the permit remains open, as a closure report was never submitted to the City. Nonetheless, based on the removal of the former UST, analytical results of post-excavation sampling, and issuance of regulatory closure by the NYSDEC, the former 6,000 gallon gasoline UST is considered a historical recognized environmental condition.

Partner also completed a Phase II Environmental Site Assessment (Phase II) Report, dated October 14, 2016. The Phase II consisted of a limited sub-surface investigation consisting of eight (8) soil borings installed, with the collection of eight (8) soil samples and four (4) groundwater samples. Volatile organic compounds (VOCs) were found in one soil sample from B4, that was in the presumed area of the former 6,000-gallon tank which had exceedances of 1,2,4 trimethylbenzene, benzene, ethylbenzene, and total xylenes above the New York State (NYS) Unrestricted Soil Cleanup Objective (SCO) and the Protection of Groundwater standard, but below the Residential and Commercial SCO. In addition, samples from B7 and B8 exceeded the NYS Unrestricted SCO for total chromium, but were below the Protection of Groundwater, Residential and Commercial

SCOs. The sampling locations were located in the eastern-most warehouse and former press location areas.

Groundwater was encountered during the investigation between 12-ft and 19-ft onsite. Of the four (4) groundwater samples collected, the groundwater sample from boring B4 had multiple VOC exceedances of the NYS Ambient Water Quality Standard (NYAWQS). The groundwater sample from boring B6, which was west of B4, had exceedances of the NYAWQS for benzene, n-propylbenzene, and p/m-xylene. The groundwater sample from boring B7, within the warehouse area of the building, had an exceedance of the NYAWQS for cis-1,2-dichloroethylene.

The report, which is attached as **Appendix B**, recommended further investigation.

1.3. Geology and Hydrogeology

Review of the United States Geological Survey (USGS) Kingston West, New York Quadrangle topographic map indicates the Site is situated at an elevation approximately 174 feet above mean sea level, and the local topography is sloping gently to the north-northeast. Please see **Figure 2** for a topographic map of the Site vicinity.

The Site is situated within the Hudson Valley section of the Valley and Ridge physiographic province of the State of New York. According to the USGS, the uppermost geologic formation underlying the soils at the subject property is the Lower to Middle Devonian Onondaga Limestone formation. The Onondaga Limestone formation comprises the underlying stratigraphy and consists mostly of broad, carbonate platform facies that were deposited during early to middle Eifelian time. Carbonates are characterized by calcarenitic to cherty to argillaceous limestones and minor shales deposited in a shallow epicontinental sea. The Onondaga Limestone formation consists of gray or grayish-blue, compact, crystalline limestone, as well as overlies the Oriskany sandstone and underlies the Seneca limestone. Thickness ranges from 100 to 500 feet.

Information obtained from the United States Department of Agriculture (USDA) – Natural Resources Conservation Service (NRCS) Web Soil Survey online database shows the subject property is mapped as Riverhead fine sandy loam. The Riverhead series consists of very deep, well-drained soils that formed in glacial outwash deposits, which are primarily derived from granitic materials. This type of soil occurs on outwash plains, valley trains, beaches, and water-sorted moraine landforms. Slopes range from 0 to 15 percent.

The nearest body of surface water in the vicinity of the subject property is a designated freshwater pond, which is located within the northern portion of the subject property. No additional settling ponds, lagoons, surface impoundments, or natural catch basins were observed on the subject property during this assessment.

Borings advanced during this investigation determined the underlying subsurface consists predominantly of tan, tan/gray or gray clayey silt, tan, gray or tan/red clay, or tan medium sand with varying amounts of medium pebbles from the ground surface to approximately 20 feet below ground surface (bgs). Backfill material consisting of gray medium pebbles was encountered within the area of the excavation to a depth of approximately nine to 13.5 feet bgs.

Refer to **Appendix A** for boring logs from this investigation.

Groundwater was encountered during this investigation between 7 and 15 feet bgs.

2. QUALITY ASSURANCE/QUALITY CONTROL

Soil and groundwater samples were transported under proper chain-of-custody protocol to SGS Accutest Laboratories, a state-certified laboratory [National Environmental Laboratory Accreditation Program (NELAP) certificate number 10983], located in Dayton, New Jersey for analysis. Soil gas samples were transported under proper chain-of-custody protocol to Alpha Analytical Laboratories, a state-certified laboratory [National Environmental Laboratory Accreditation Program (NELAP) certificate number 11627], located in Mahwah, New Jersey for analysis. The laboratory analyzed surrogate samples and method blanks as part of its QA/QC program to ensure the results were within the acceptable parameters and the equipment was operating within the required criterion. QA/QC data were within acceptable limits and/or did not affect the data interpretation.

A trip blank was transported with the samples and analyzed to confirm that volatile organic compounds (VOCs) did not migrate between samples during transport.

3. SITE INVESTIGATION ACTIVITIES

3.1. Phase II

Partner conducted a Phase II Subsurface Investigation at the subject property to identify the location of on-site USTs and/or former tankhold systems, evaluate the floor drain system, and to investigate the potential impact of VOCs, SVOCs, and/or metals to soil and groundwater as a consequence of a release or releases from the former printing operations and gasoline USTs. The scope of the Phase II Subsurface Investigation included a geophysical survey and the advancement of eight borings (B1 through B8) for the collection of representative soil and/or groundwater samples. Eight soil samples were analyzed for VOCs, two soil samples were analyzed for SVOCs and priority pollutant metals, four groundwater samples were analyzed for VOCs, and three groundwater samples were analyzed for SVOCs.

A geophysical survey, conducted by Delta, identified an anomalous area, identified as a potential soil disturbance, to the northeast of the building. The area was identified by ground penetrating radar (GPR) transects which imaged a disturbance that represents a potential indicator of an excavation, and measured approximately 40 feet by 20 feet. Delta further traced two electric lines and three unknown utility lines to the area of the soil disturbance. Onsite personnel confirmed the former USTs were located where the soil disturbance was observed, and further mentioned the location of the former dispenser island. Partner did not observe any evidence of a former dispenser island, but an electric line was traced from the building to this location, ultimately terminating above the area of soil disturbance. GPR transects over this feature were limited due to dense vegetation. No additional signs of abandoned USTs or disturbed soil resembling backfilled tankholds were identified.

Investigation of the trench observed in the warehouse area determined the trench was not a drainage feature, but rather a conduit for ink and drain lines. The trench was cut out of the concrete slab after it was poured, and was lined with concrete on all sides. Upon further inspection, a drain line from a wash sink along with two copper ink lines ran through the trench. Delta further traced the ink and drain lines with the RD7000 and through visual inspection. The ink lines were traced

towards the location of the former aboveground ink storage tank. The floor trench was traced through the wall to a large metal plate. According to onsite personnel, the metal plate covered a junction box. Another trench, originating at the location for the former aboveground ink storage tank, was also traced to the metal plate, and a drain line was also observed within the second trench. Partner and Delta were not permitted to open the metal plate to avoid disturbing the tenant leasing this portion of the warehouse. Visual inspection through gaps in the metal plate indicated that the apparent sump appeared to contain ink sludges and waste from former printing operations. Furthermore, the interior of the wash sink was heavily stained, likely from the disposal of printing wastes. The sump was located in a portion of the building that was not underlain with a basement.

Borings advanced during this investigation determined the underlying subsurface consists predominantly of tan, tan/gray or gray clayey silt, tan, gray or tan/red clay, or tan medium sand with varying amounts of medium pebbles from the ground surface to approximately 20 feet bgs. Backfill material consisting of gray medium pebbles was encountered within the area of the excavation to a depth of approximately nine to 13.5 feet bgs.

Groundwater was encountered during this investigation between 12 and 19 feet bgs.

REC 1 – Former Printing Operations

VOCs, SVOCs, and priority pollutant metals were detected at concentrations above the laboratory RLs but below the Unrestricted Use Criteria in the soil samples collected from borings B7 and B8, located within the warehouse area.

Cis-1,2-dichloroethene was detected at a concentration above the AWQS in the groundwater sample collected from boring B7.

Total chromium was detected at concentrations above the Unrestricted Use Criteria for hexavalent chromium in the soil samples collected from borings B7 (12 mg/kg) and B8 (12 mg/kg), but below the Groundwater Criteria and the Residential Criteria. Because chromium was detected beneath the building there is no pathway to ecological resources and contingent analysis for hexavalent chromium is not required.

REC 2 – Former Gasoline USTs

- 1,2,4-trimethylbenzene, benzene, ethylbenzene, and total xylenes were detected at concentrations above both the Unrestricted Use Criteria and the Groundwater Criteria, but below the Residential and Commercial criteria in the soil sample collected from boring B4.
- 1,2,4,5-tetramethylbenzene, 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, benzene, ethylbenzene, isopropylbenzene, n-butylbenzene, n-propylbenzene, naphthalene, o-xylene, p/m-xylene, and toluene were detected at concentrations above the AWQS in the groundwater sample collected from boring B4; benzene, n-propylbenzene, and p/m-xylene were detected at concentrations above the AWQS in the groundwater sample collected from boring B6; and cis-1,2-dichloroethene was detected at a concentration above the AWQS in the groundwater sample collected from boring B7.

Naphthalene was detected at a concentration above the AWQS in the groundwater sample collected from boring B4.

The Phase II report recommended further investigation and delineation of the observed impacts to soil and groundwater.

3.2. Phase III Investigation/Delineation

On May 12 and 15, 2016, Partner subcontracted with Cascade to provide and operate drilling equipment. Cascade, under the direction of Partner, advanced borings B-9 through B-15 with a track-mounted GeoProbe direct push rig. Sampling equipment was decontaminated between sample intervals and boring locations to prevent cross-contamination.

Borings B-11 and B-12 were advanced northwest and northeast of former boring B4 respectively. Boring B-13 was advanced west of former boring B6. Boring B-10 was advanced north of the warehouse and former borings B-7 and B-8. Boring B-9 was advanced east of the warehouse. Boring B-14 and B-15 were advanced in the interior of the eastern portion of the warehouse. Refer to **Figure 3** for a map depicting boring locations.

Borings B-9 through B-13 were overlain by asphalt, which was penetrated directly by the core barrel. Borings B-14 and B-15 were overlain by concrete, which was cored with an electric hammer drill equipped with a three-inch diameter carbide tipped concrete core bit prior to the direct push rig advancing the core barrel. Borings B-9 through B-11 were terminated at 15-ft bgs. Borings B-12 and B-14 were terminated at refusal on limestone bedrock at 18-ft and 18.5-ft bgs, respectively. Borings B-13 and B-15 were terminated at 20-ft bgs.

Soil samples were collected using a five-foot long by 2.25-inch diameter MacroCore sampler with a five-foot long acetate liner, which was advanced by the direct-push drill rig using five-foot long by 2.25-inch diameter casing sections. The sampler was driven into the subsurface to allow undisturbed soil to enter the open MacroCore barrel and retrieved in five-foot intervals to recover the soil-filled liners.

A lengthwise section of each acetate liner was removed with a splitting tool to expose the soil. The soil column was visually inspected for discoloration, monitored for odors, and classified in accordance with the Unified Soil Classification System (USCS). Select intervals were placed in sealable plastic bags and field-screened with a photo-ionization detector (PID) calibrated to isobutylene. Elevated PID readings up to 16 parts per million (ppm) and petroleum-like odors were detected in the soils recovered from boring location B-12. Please refer to the boring logs in **Appendix A** for specific borings and depths where odor and/or elevated PID readings were observed.

Soil samples were collected from the groundwater interface from borings B-9 at 9.5-ft to 10-ft bgs; B-10 at 6.5-ft to 7-ft bgs; B-11 at 12-ft to 1.5-ft bgs; and B-13 through B-15 at 14.5-ft to 15-ft. A soil sample was collected from boring B-12 at 6.-ft to 6.5-ft bgs at the location of highest PID readings. Groundwater was not encountered in boring B-12 at the initial intended depth of 15-ft bgs, and was advanced an additional 3-ft to 18-ft bgs wherein refusal at limestone bedrock was reached. Groundwater was not encountered to terminal depth. A second sample was collected from the bottom of boring B-12 as B-12A from 17.5-ft to 18-ft bgs.

One soil sample was collected directly from the liner of each boring with Encore samplers for analysis via EPA Method 8260 for volatile organic compounds (VOCs). Soil was also collected directly from the liner of each boring and transferred into into a laboratory-supplied, four-ounce, wide-mouth, unpreserved glass jar, which was sealed with a threaded, Teflon-lined lid for submittal for EPA Method 8270 analysis for semi-volatile organic compounds (SVOCs). Jars were

Page | 8

filled to capacity to minimize headspace. A total of eight (8) soil samples were collected and submitted for analysis.

After soil sampling to the terminal depth, all borings, with the exception of boring B-12 were converted to temporary groundwater monitoring points by withdrawing the drill rods from the subsurface and installing one-inch diameter temporary groundwater sampling points within the open boreholes. No groundwater was encountered in boring B-12 to terminal depth. Each temporary groundwater sampling point consisted of a ten-foot long, 0.010-inch factory-slotted polyvinyl chloride (PVC) screen at the terminal end and blank PVC risers from the top of the screen interval to the ground surface.

Groundwater samples were retrieved from each temporary groundwater sampling point using new TeflonTM tubing via peristaltic pumps and conveyed into three hydrochloric acid-preserved VOA vials for submittal of samples for EPA Method 8260 analysis. Groundwater samples were also conveyed into two unpreserved one-liter amber glass jars for submittal of samples for EPA Method 8270 analysis.

In addition, MW-11 was found onsite east of former boring B-4 at the boundary with the Super 8 Motel property. The monitoring well was completed as a stick-up well and had a locking gripper plug. Partner collected samples from the well using low-flow groundwater sampling techniques and submitted them for analysis per EPA Method 8260 and 8270.

A total of seven (7) groundwater samples were collected and submitted for analysis.

Core barrels and temporary groundwater sampling points were removed from the subsurface and the boreholes were backfilled with hydrated bentonite chips following sampling activities. Boreholes advanced in improved areas were capped with concrete or asphalt patch to match existing ground cover after being backfilled. No significant amounts of derived wastes were generated during this investigation.

Soils

VOCs were detected at concentrations above the laboratory RLs but below the Unrestricted Use Criteria in the soil samples collected from boring B-9, B-10, B-11, B-12, B-13, B-14 and B-15. Acetone was detected at concentrations above the Unrestricted Use Criteria in soil sample B-12A, however, that is generally regarded as a laboratory contaminant. No other exceedances of NY SCOs were observed in any of the samples analyzed.

SVOCs were detected at concentrations above the laboratory RLs but below the Unrestricted Use Criteria in the soil samples collected from boring B-9, B-10, B-11, B-12, B-12A, B-13, B-14 and B-15. The unpreserved jars for SVOC analysis for borings B-11 and B-12A were broken during transport to the laboratory and could not be analyzed. However, no indication of SVOC impacts above NYSDEC regulations were observed in any of the samples collected and analyzed.

Groundwater

Methyl tert Butyl Ether [1270 micrograms per liter (µg/l)] was detected at a concentration above the AWQS in the groundwater sample collected from boring B-11GW. No other exceedances were observed in groundwater in any of the samples collected and analyzed.

Full laboratory results can be found in **Appendix C**.

4. VAPOR INTRUSION INVESTIGATION

Some of the compounds detected in the groundwater in boring B4 exceeded the Environmental Protection Agency (EPA) commercial Vapor Intrusion Screening Levels (VISL). In order to determine if a vapor issue existed onsite, Partner conducted a vapor intrusion investigation in the warehouse building on 5/12/17. Three (3) sub-slab soil gas points were installed directly below the concrete slab and samples were collected over an 8-hour period per the recommendations of the NYS Department of Health (DOH) Guidance for Evaluating Soil Vapor Intrusion in the State of New York, published October 2006.

Samples were collected using a ¼-inch Teflon-lined tubing, which was manually inserted into a ½-inch diameter hole drilled into the concrete building slab using a rotary hammer drill. The hole was drilled to a depth of six inches bgs. Sand was poured into the annulus to form a sand pack around the tubing. The annulus was backfilled with approximately two inches of hydrated bentonite to the ground surface to form a seal.

Prior to sample collection, Partner performed leak tests with a helium shroud over each sampling point to confirm sampling points were sealed from ambient air. No helium was detected during any of the leak tests confirming the integrity of the bentonite seals.

Sub-slab soil gas samples were collected using 2.7-liter, stainless-steel, cylindrical SUMMA canisters. The sampling containers were provided by Alpha Analytical Laboratories in Westborough, Massachusetts, a state-certified laboratory [New York Laboratory Accreditation Program (NELAP) certificate number 11627], which subjected each canister to a rigorous cleaning process using a combination of dilution, heat, and high vacuum. After cleaning, the canisters were batch certified to be free of target contaminants to a specified reporting limit via gas chromatography/mass spectroscopy prior to delivery.

Partner received the SUMMA canisters evacuated to approximately -30 inches of mercury. The SUMMA canisters were fitted with stainless-steel flow controllers, which Alpha calibrated to maintain constant flow for approximately 8 hours of sampling time.

Each sub-slab point was allowed to equilibrate for a minimum of 10 minutes after installation prior to sampling.

Final vacuum was between -9.4 and -14.92 inches of mercury. No exceedances of the EPA VISL were observed in any of the three samples collected.

Full laboratory results can be found in **Appendix C**.

5. IN-SITU REMEDIATION

To remediate the concentration of MTBE found in the groundwater, Partner installed two (2) groundwater monitoring wells on July 10th and July 11th of 2017. Monitoring well MW-2 was installed in the area of former boring B4 and monitoring well MW-3 was installed in the area of former boring B11 as noted on the attached **Figure 3**. Well construction logs are included in **Appendix D**. Once the wells were thoroughly developed, two (2) 4-inch diameter ORC-Advanced-filled socks, each 1-ft long, were tied together and installed in each of the wells

Page | 10

approximately 1-ft below the top of the water table. The socks were allowed to remain in the wells for four (4) weeks. On August 8th 2017, the socks were removed and stored and sealed in their original container onsite.

Partner returned to sample the wells on August 16th 2017, one week after the removal of the ORC-Advanced socks. The groundwater samples were analyzed for TCL VOCs and SVOCs. Only two compounds exhibited exceedances above the AWQS. MTBE was found in MW-2 and MW-3 at 57.4 ug/l and 45.6 ug/l respectively. In addition, xylene was detected at a concentration of 8.9 ug/l in MW-2. The concentration of MTBE has significantly decreased from the previous B11GW sample, which had a concentration of 1,270 ug/l prior to the ORC-sock treatment, to the current MW-3 results.

Most of the impacts observed during the Phase II investigation in the B4-GW sample were not observed after the treatment with the ORC-Advances socks in MW-2. While the B4-GW sample had 12 exceedances of the AWQS, including triple digit concentrations for 1,2,4-trimethylbenzene, ethylbenzene, and p/m xylene, currently there is only a slight exceedance for xylene and MTBE in MW-2. This indicates that the ORC-Advanced socks were successful in remediating the original groundwater contamination. **Table 2A** provides the summary results of the post-ORC-treatment groundwater sampling.

6. SPILL/RELEASE REPORTING

Per the requirements of the NYSDEC, Partner reported the impacts to the NYSDEC Spill Hotline on 5/18/17 and received the case number of 1701624 for the release. As previously indicated, there have been two (2) previous spills/releases at the Site which were addressed and closed with the NYSDEC. They are Spill #: 9002411, and 9402470. The current release is believed to be related to the previous spills and not a new release.

7. FINDINGS

Partner conducted a subsurface investigation in order to delineate impacts to soil and groundwater observed during a Phase II investigation at the Site. No additional soil impacts above NYSDEC SCOs were observed beyond the VOC exceedances observed in boring B4 during the Phase II investigation, which exceeded the Unrestricted SCOs but not the Residential or Commercial SCOs.

An exceedance of MTBE in groundwater was observed in boring B-11, northwest of boring B4. No other exceedances of the groundwater or soil standards were observed in any of the samples analyzed.

Groundwater remediation using ORC-Advanced socks installed within two monitoring wells in the approximate locations of former borings B4 and B11 significantly remediated the previously affected areas. Most of the previously observed constituents in former B4-GW were not observed in MW-2, which was installed in the same approximate location. The exceedances in that groundwater sample decreased from 12 observed exceedances in the B4-GW sample, with several in the triple digit concentrations, to two slight exceedances for xylene and MTBE. In addition the MTBE concentration of 1,270 ug/l observed in previous B11GW sample has decreased by over 20

Page | 11

times in the MW-3 sample which was installed in the same approximate location as former boring B11.

Results indicate that impacts to soil and/or groundwater are isolated to the areas sampled during the Phase II investigation and are stable onsite and not migrating offsite. In addition, the concentrations have been significantly decreased to minimal exceedances of the AWQS.

A vapor intrusion investigation conducted within the warehouse buildings did not indicate that soil vapor contamination exists onsite.

8. CONCLUSIONS AND RECOMMENDATIONS

Remaining subsurface impacts seem to be residual contamination from previous spills which were properly reported and closed out with the NYSDEC.

Soil impacts do not exceed the Residential or Commercial SCOs, and no soil source appears to exist onsite. The groundwater impacts appear to be isolated to specific onsite areas and are stable onsite and not migrating offsite. Currently, only two (2) compounds remain in excess of the NYSDEC AWQS and they are in a very limited area onsite.

The site is commercial/industrial in nature and is capped with an asphalt parking lot in addition to the building slab, thus direct contact to soil and/or groundwater is restricted. In addition, groundwater is not a potable source in this area, because potable water is provided by the Kingston Water Department.

Therefore, Partner recommends closure of spill case #: 1701624 without the Site having to meet the state standards.

Site Location Map

Kingston, Ulster County, New York

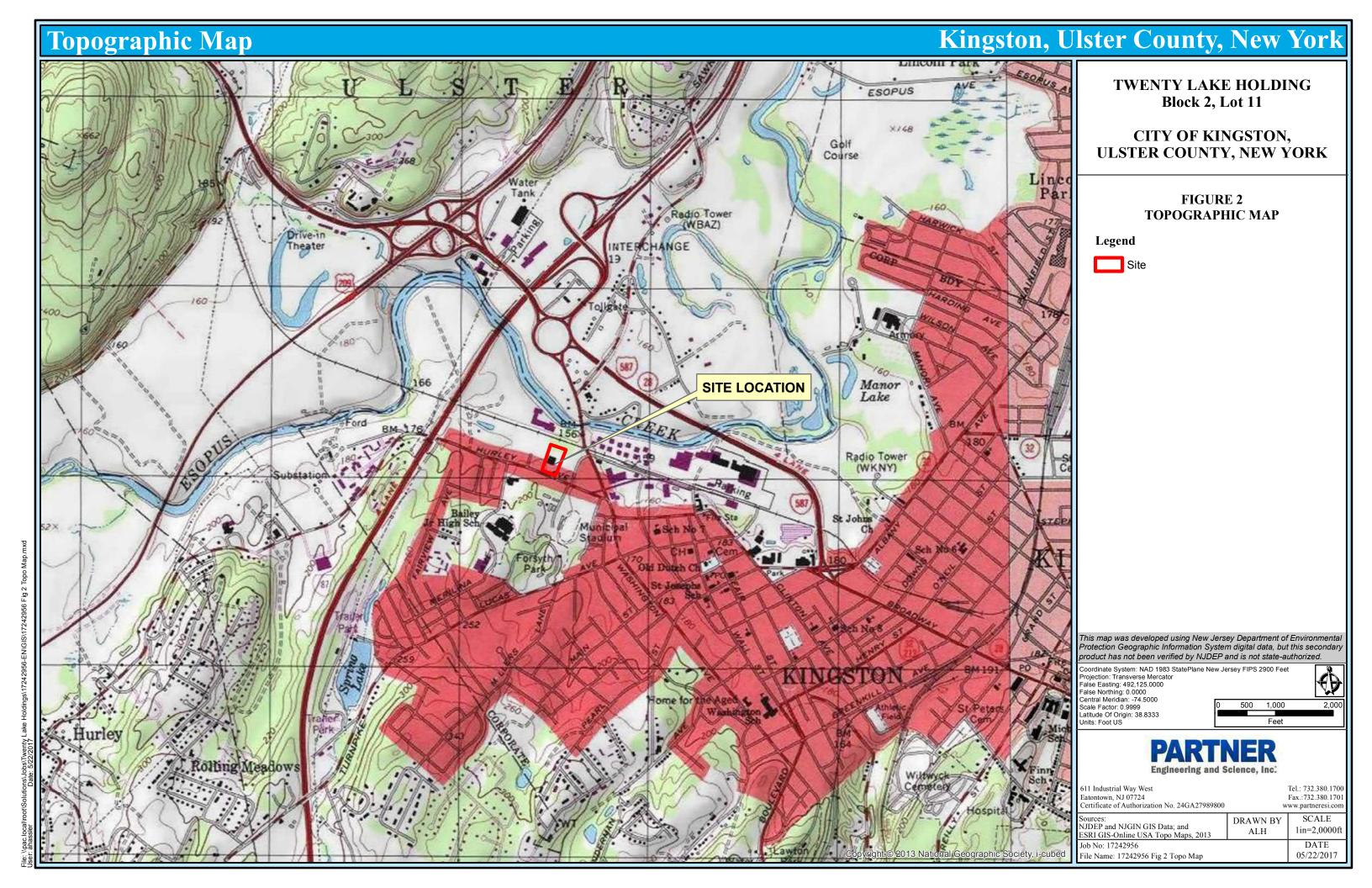
TWENTY LAKE HOLDING Block 2, Lot 11

CITY OF KINGSTON, **ULSTER COUNTY, NEW YORK**

> FIGURE 1 SITE LOCATION MAP

Legend

Site


This map was developed using New Jersey Department of Environmental Protection Geographic Information System digital data, but this secondary product has not been verified by NJDEP and is not state-authorized.

Coordinate System: NAD 1983 S Projection: Transverse Mercator False Easting: 492,125.0000 False Northing: 0.0000 Central Meridian: -74.5000 Scale Factor: 0.9999 Latitude Of Origin: 38.8333 Units: Foot US

611 Industrial Way West Eatontown, NJ 07724 Certificate of Authorization No. 24GA27989800

Tel.: 732.380.1700 Fax.:732.380.1701 www.partneresi.com

Sources: NJDEP and NJGIN GIS Data SCALE DRAWN BY 1in=200ft DATE 05/22/2017 Job No: 17242956 File Name: 17242956 Fig 1 Site Location Map

Sample Location Map Kingston, Ulster County, New York TWENTY LAKE HOLDING Block 2, Lot 11 CITY OF KINGSTON, **ULSTER COUNTY, NEW YORK** B6-GW □ ■6 FIGURE 3 B-12 **SAMPLE LOCATION MAP** MW-3 Legend B4-GW MW-2 -Site MW-1 Monitoring Well Soil Boring (October 2016) Soil Boring (May 1017) Temporary Well Point (Oct 2016) Temporary Well Point (May 2017) △ Sub Slab Soil-Gas (May 2017) B-15 B-15 B7-GW This map was developed using New Jersey Department of Environmental Protection Geographic Information System digital data, but this secondary product has not been verified by NJDEP and is not state-authorized. Coordinate System: NAD 1983 StatePlane New York East FIPS 3101 Feet Projection: Transverse Mercator False Easting: 492,125.0000 False Northing: 0.0000 Central Meridian: -74.5000 Scale Factor: 0.9999 Latitude Of Origin: 38.8333 Units: Foot US B-14 D B-14 Tel.: 732.380.1700 Fax.:732.380.1701 611 Industrial Way West Eatontown, NJ 07724 Certificate of Authorization No. 24GA27989800 Sources: NJDEP and NJGIN GIS Data SCALE DRAWN BY 1 in = 20 ftSource: Esrl, Digital Globe, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AEX, Getmapping, Aerogrid, IGN, IGP, swisstopo, and the GIS User Community DATE Job No: 17242956 05/22/2017 File Name: 17242956 Fig 3 Sample Location Map

Table 1: Soil Analytical Results 79 Hurley Ave, Kingston, NY Proj#: 17242956

Client Sample ID:		NY SCO - Unrestricted Use (6	NY SCO - Commercial w/CP-51 (10/10) (6	NY SCO - Protection of Groundwater w/CP-51	B-9 JC43253-1	B-10 JC43253-2	B-11 JC43253-3	B-12 JC43253-4	B-12A JC43253-5	B-13 JC43253-6	B-14 JC43407-1	B-15 JC43407-2
Date Sampled:		NYCRR375-6	NYCRR 375-	(10/10) (6	5/12/2017	5/12/2017	5/12/2017	5/12/2017	5/12/2017	5/12/2017	5/15/2017	5/15/2017
Matrix:		12/06)	612/06)	NYCRR 375-	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
GC/MS Volatiles (SW846 8260C)												
Acetone	mg/kg	0.05	500	0.05	0.0107	0.0069 J	ND (0.011)	0.0077 J	0.0939	ND (0.011)	ND (0.010)	0.0224
Benzene	mg/kg	0.06	44	0.06	ND (0.00048)	ND (0.00046)	ND (0.00055)	0.0011	ND (0.00056)	ND (0.00054)	ND (0.00051)	ND (0.00049)
Chlorobenzene	mg/kg	1.1	500	1.1	ND (0.0019)	ND (0.0018)	ND (0.0022)	0.00028 J	ND (0.0022)	ND (0.0021)	ND (0.0020)	ND (0.0020)
Cyclohexane	mg/kg	-	-	-	ND (0.0019)	ND (0.0018)	ND (0.0022)	0.0026	ND (0.0022)	ND (0.0021)	ND (0.0020)	ND (0.0020)
Ethylbenzene	mg/kg	1	390	1	ND (0.00096)	ND (0.00092)	ND (0.0011)	0.0095	ND (0.0011)	ND (0.0011)	ND (0.0010)	ND (0.00098)
2-Hexanone	mg/kg	-	-	-	ND (0.0048)	ND (0.0046)	ND (0.0055)	0.0149	ND (0.0056)	ND (0.0054)	ND (0.0051)	ND (0.0049)
Isopropylbenzene	mg/kg	-		2.3	ND (0.0019)	0.00019 J	ND (0.0022)	0.0024	ND (0.0022)	ND (0.0021)	ND (0.0020)	ND (0.0020)
Methylcyclohexane	mg/kg	-	-	-	ND (0.0019)	ND (0.0018)	ND (0.0022)	0.0052	ND (0.0022)	ND (0.0021)	ND (0.0020)	ND (0.0020)
Methyl Tert Butyl Ether	mg/kg	0.93	500	0.93	ND (0.00096)	0.00031 J	0.793	ND (0.0011)	0.00089 J	ND (0.0011)	ND (0.0010)	ND (0.00098)
4-Methyl-2-pentanone(MIBK)	mg/kg	-		1	ND (0.0048)	ND (0.0046)	ND (0.0055)	ND (0.0056)	ND (0.0056)	ND (0.0054)	ND (0.0051)	ND (0.0049)
Methylene chloride	mg/kg	0.05	500	0.05	ND (0.0048)	ND (0.0046)	ND (0.0055)	0.0014 J	ND (0.0056)	ND (0.0054)	ND (0.0051)	ND (0.0049)
m,p-Xylene	mg/kg	0.26	500	1.6	0.00043 J	ND (0.00092)	0.00044 J	0.0033	0.00046 J	0.00034 J	ND (0.0010)	ND (0.00098)
o-Xylene	mg/kg	0.26	500	1.6	ND (0.00096)	ND (0.00092)	ND (0.0011)	0.00054 J	ND (0.0011)	ND (0.0011)	ND (0.0010)	ND (0.00098)
Xylene (total)	mg/kg	0.26	500	1.6	0.00043 J	ND (0.00092)	0.00044 J	0.0038	0.00046 J	0.00034 J	ND (0.0010)	ND (0.00098)
Total (SW846 8260C)	mg/kg	-	-	-	0.01113	0.0074	0.79344	0.04888	0.09525	0.00034	0	0.0224
		•										
GC/MS Volatile TIC								•		•	•	
Total TIC, Volatile	mg/kg	-	-	-	0	0	0	1.06 J	0.031 J	0	0	0
		•										
GC/MS Semi-volatiles (SW846 8270D)								•	•	•		
1,1'-Biphenyl	mg/kg	-			ND (0.081)	ND (0.081)	-	0.0182 J	-	ND (0.085)	ND (0.081)	ND (0.080)
2-Methylnaphthalene	mg/kg	-		36.4	ND (0.081)	ND (0.081)	-	0.926	-	ND (0.085)	ND (0.081)	ND (0.080)
Naphthalene	mg/kg	12	500	12	ND (0.040)	ND (0.041)	-	0.249	-	ND (0.043)	ND (0.040)	ND (0.040)
Total (SW846 8270D)	mg/kg	-	-	-	`o	0		1.1932		0	Ò ,	O O
		•				İ	İ	İ	İ			
GC/MS Semi-volatile TIC						•	•	•	•	•		
Total TIC, Semi-Volatile	mg/kg	-	-	-	0.68 J	0	-	27.41 J	-	0	1.54 J	0.23 J
General Chemistry							'	•				·
Solids, Percent	%	-	-	-	81.5	81.2	-	73.5	-	77.6	79.1	81.3
N-4				•								

Notes:

ug/L - Microgram per liter
ND - Not detected above laboratory reporting limits
J - Laboratory estimated value between reporting limit and method dection limit

1.0
Values above laboratory limit but below NYSDEC Standards.
Values above NYSDEC Standards

Table 1A: Soil Analytical Results Compared to CP-51 79 Hurley Ave, Kingston, NY Proj#: 17242956

Client Sample ID:		NY CP-51 3-Fuel Oil Contaminated	B-9	B-10	B-11	B-12	B-12A	B-13	B-14	B-15
Lab Sample ID:		Soil (NYSDEC CP-	JC43253-1	JC43253-2	JC43253-3	JC43253-4	JC43253-5	JC43253-6	JC43407-1	JC43407-2
Date Sampled:		51 10/10)	5/12/2017	5/12/2017	5/12/2017	5/12/2017	5/12/2017	5/12/2017	5/15/2017	5/15/2017
Matrix:			Soil							
GC/MS Volatiles (SW846 8260C)		•			•					•
Acetone	mg/kg	-	0.0107	0.0069 J	ND (0.0055)	0.0077 J	0.0939	ND (0.0054)	ND (0.010)	0.0224
Benzene	mg/kg	0.06	ND (0.00012)	ND (0.00011)	ND (0.00013)	0.0011	ND (0.00013)	ND (0.00013)	ND (0.00051)	ND (0.00049)
Chlorobenzene	mg/kg	-	ND (0.00016)	ND (0.00015)	ND (0.00018)	0.00028 J	ND (0.00018)	ND (0.00017)	ND (0.0020)	ND (0.0020)
Cyclohexane	mg/kg	-	ND (0.00052)	ND (0.00050)	ND (0.00060)	0.0026	ND (0.00061)	ND (0.00059)	ND (0.0020)	ND (0.0020)
Ethylbenzene	mg/kg	1	ND (0.00014)	ND (0.00014)	ND (0.00016)	0.0095	ND (0.00017)	ND (0.00016)	ND (0.0010)	ND (0.00098)
2-Hexanone	mg/kg	-	ND (0.0013)	ND (0.0013)	ND (0.0015)	0.0149	ND (0.0016)	ND (0.0015)	ND (0.0051)	ND (0.0049)
Isopropylbenzene	mg/kg	2.3	ND (0.00015)	0.00019 J	ND (0.00017)	0.0024	ND (0.00017)	ND (0.00017)	ND (0.0020)	ND (0.0020)
Methylcyclohexane	mg/kg	-	ND (0.00048)	ND (0.00046)	ND (0.00055)	0.0052	ND (0.00056)	ND (0.00054)	ND (0.0020)	ND (0.0020)
Methyl Tert Butyl Ether	mg/kg	-	ND (0.00025)	0.00031 J	0.793	ND (0.00030)	0.00089 J	ND (0.00028)	ND (0.0010)	ND (0.00098)
4-Methyl-2-pentanone(MIBK)	mg/kg	-	ND (0.00081)	ND (0.00078)	ND (0.00093)	ND (0.00095)	ND (0.00095)	ND (0.00091)	ND (0.0051)	ND (0.0049)
Methylene chloride	mg/kg	-	ND (0.00096)	ND (0.00092)	ND (0.0011)	0.0014 J	ND (0.0011)	ND (0.0011)	ND (0.0051)	ND (0.0049)
m,p-Xylene	mg/kg	0.26	0.00043 J	ND (0.00020)	0.00044 J	0.0033	0.00046 J	0.00034 J	ND (0.0010)	ND (0.00098)
o-Xylene	mg/kg	0.26	ND (0.00019)	ND (0.00019)	ND (0.00022)	0.00054 J	ND (0.00023)	ND (0.00022)	ND (0.0010)	ND (0.00098)
Xylene (total)	mg/kg	0.26	0.00043 J	ND (0.00019)	0.00044 J	0.0038	0.00046 J	0.00034 J	ND (0.0010)	ND (0.00098)
Total (SW846 8260C)	mg/kg	-	0.01113	0.0074	0.79344	0.04888	0.09525	0.00034	0	0.0224
	•									
GC/MS Volatile TIC		L.		1			I.	l.		
Total TIC, Volatile	mg/kg	-	0	0	0	1.06 J	0.031 J	0	0	0
GC/MS Semi-volatiles (SW846 8270D)										
1,1'-Biphenyl	mg/kg	-	ND (0.0055)	ND (0.0055)	-	0.0182 J	-	ND (0.0058)	ND (0.081)	ND (0.080)
2-Methylnaphthalene	mg/kg	-	ND (0.0092)	ND (0.0092)	-	0.926	-	ND (0.0096)	ND (0.081)	ND (0.080)
Naphthalene	mg/kg	12	ND (0.011)	ND (0.011)	-	0.249	-	ND (0.012)	ND (0.040)	ND (0.040)
Total (SW846 8270D)	mg/kg	-	0	0		1.1932		0	0	0
GC/MS Semi-volatile TIC					L	I				L
Total TIC, Semi-Volatile	mg/kg	-	0.68 J	0	-	27.41 J	-	0	1.54 J	0.23 J
	, , ,	1		1						
General Chemistry				1	1	1				-
Solids, Percent	%	-	81.5	81.2	-	73.5	-	77.6	79.1	81.3

Notes:

ug/L - Microgram per liter
ND - Not detected above laboratory reporting limits
J - Laboratory estimated value between reporting limit and method dection limit

1.0 Values above laboratory limit but below NYSDEC Standards.

Values above NYSDEC Standards

Table 2: Groundwater Analytical Summary 79 Hurley Ave, Kingston, NY

Client Sample ID:			B-9GW	B-10GW	B-11GW	B-13GW	ТВ	B-14 GW	B-15 GW	MW-1
Lab Sample ID:		GW Standards		JC43253-9	JC43253-10	JC43253-11	JC43407-3	JC43407-4	JC43407-5	
Date Sampled:		(NYSDEC 6/2004)1	5/12/2017	5/12/2017 Ground Water	5/12/2017	5/12/2017	5/12/2017 Trip Blank	5/15/2017	5/15/2017	5/15/2017
Matrix:			Ground Water		Ground Water	Ground Water		Ground Water	Ground Water	Ground Water
GC/MS Volatiles (SW846 82	60C)									
Acetone	ug/l	•	ND (10)	5.6 J	ND (25)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
Benzene	ug/l	1	ND (0.50)	ND (0.50)	0.48 J	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)
cis-1,2-Dichloroethene	ug/l	5	ND (1.0)	ND (1.0)	ND (2.5)	ND (1.0)	ND (1.0)	0.38 J	0.57 J	ND (1.0)
Methyl Tert Butyl Ether	ug/l	10	ND (1.0)	2.1	1270	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	0.51 J
Total (SW846 8260C)	ug/l	-	0	7.7	1270.48	0	0	0.38	0.57	0.51
GC/MS Volatile TIC										
Total TIC, Volatile	ug/l	-	0	0	0	0	0	0	0	0
GC/MS Semi-volatiles (SW8	46 8270	DD)								
Total (SW846 8270D)	ug/l	-	0	0	0	0		0	0	0
GC/MS Semi-volatile TIC										
Total TIC, Semi-Volatile	ug/l	-	0	7.7 J	21.1 J	6.8 J	_	0	5.2 J	0

Notes:

ug/L - Microgram per liter

ND - Not detected above laboratory reporting limits

J - Laboratory estimated value between reporting limit and method dection limit

1.0 Values above laboratory limit but below NYSDEC Standards.

1.0 Values above NYSDEC Standards

Table 2A: Groundwater Analytical Summary After ORC-Sock In-Situ Treatmemt 79 Hurley Ave, Kingston, NY

Client Sample ID: Lab Sample ID: Date Sampled:		NY TOGS Class GA GW Standards (NYSDEC 6/2004)1	MW-1 JC49133-1 8/16/2017	MW-2 JC49133-2 8/16/2017	MW-3 JC49133-3 8/16/2017	TB JC49133-4 8/16/2017
Matrix:			Ground Water	Ground Water	Ground Water	Trip Blank
GC/MS Volatiles (SW846 82	60C)					
Benzene	ug/l	1	ND (0.17)	0.93	ND (0.17)	ND (0.17)
Ethylbenzene	ug/l	5	ND (0.22)	4.8	ND (0.22)	ND (0.22)
Methyl Tert Butyl Ether	ug/l	10	ND (0.25)	57.4	45.6	ND (0.25)
Toluene	ug/l	5	ND (0.25)	0.51 J	ND (0.25)	ND (0.25)
m,p-Xylene	ug/l	-	ND (0.43)	8.1	ND (0.43)	ND (0.43)
o-Xylene	ug/l	5	ND (0.22)	0.75 J	ND (0.22)	ND (0.22)
Xylene (total)	ug/l	5	ND (0.22)	8.9	ND (0.22)	ND (0.22)
Total (SW 846 8260C)	ug/l	-	0	80.13	45.6	0
GC/MS Semi-volatiles (SW8	46 827	0D)				
Naphthalene	ug/l	-	ND (0.23)	0.40 J	ND (0.23)	-
Total (SW 846 8270D)	ug/l	_	0	0.40 J	0	

Notes:

ug/L - Microgram per liter

ND - Not detected above laboratory reporting limits

J - Laboratory estimated value between reporting limit and method dection limit

1.0 Values above laboratory limit but below NYSDEC Standards.

1.0 Values above NYSDEC Standards

Table 3: Soil Gas Analytical Results 79 Hurley Ave, Kingston, NY

SAMPLE ID:		so	3-1	so	3-2	SG-3			
LAB ID:				1	695-01		695-02	L1715	
COLLECTION DATE:				5/12/	2017	5/12/	2017	5/12/2017	
SAMPLE DEPTH:									
SAMPLE MATRIX:				Sub-Slab	Soil Gas	Sub-Slab	Soil Gas	Sub-Slab	Soil Gas
		EPA-VISL-COM	EPA-VISL-RES			_			
ANALYTE	CAS		(ug/m3)	Conc	RL	Conc	RL	Conc	RL
VOLATILE ORGANICS IN AIR 1,1,1-Trichloroethane	71-55-6	730000	170000	4.83	1.09	1.29	1.09	ND	43.9
1,1,2,2-Tetrachloroethane	79-34-5	730000	1.6	ND	1.09	ND	1.09	ND	55.3
1,1,2-Trichloroethane	79-00-5	26	5.8	ND	1.09	ND	1.09	ND	43.9
1,1-Dichloroethane	75-34-3	260	58	ND	0.809	ND	0.809	ND	32.6
1,1-Dichloroethene	75-35-4	29000	7000	ND	0.793	ND	0.793	ND	31.9
1,2,4-Trichlorobenzene	120-82-1	290	70	ND	1.48	ND	1.48	ND	59.8
1,2,4-Trimethylbenzene	95-63-6	1000	240	2.26	0.983	1.12	0.983	ND	39.6
1,2-Dibromoethane	106-93-4	0.68	0.16	ND	1.54	ND	1.54	ND	61.9
1,2-Dichlorobenzene	95-50-1	29000	7000	ND	1.2	ND	1.2	ND	48.4
1,2-Dichloroethane	107-06-2	16	3.6	ND ND	0.809	ND	0.809	ND	32.6
1,2-Dichloropropane	78-87-5	41 NA	9.4 NA	ND 1.09	0.924	ND ND	0.924	ND ND	37.2 39.6
1,3,5-Trimethylbenzene 1,3-Butadiene	108-67-8 106-99-0	NA 14	3.1	ND	0.983 0.442	ND ND	0.983 0.442	ND ND	17.8
1,3-butadiene 1,3-Dichlorobenzene	541-73-1	NA	NA	ND ND	1.2	ND ND	1.2	ND ND	48.4
1,4-Dichlorobenzene	106-46-7	37	8.5	ND	1.2	ND	1.2	ND	48.4
1,4-Dioxane	123-91-1	82	19	ND	0.721	ND	0.721	ND	29
2,2,4-Trimethylpentane	540-84-1	NA	NA	ND	0.934	ND	0.934	ND	37.6
2-Butanone	78-93-3	NA	170000	1.88	1.47	1.69	1.47	ND	59.3
2-Hexanone	591-78-6	4400	1000	ND	0.82	ND	0.82	ND	33
3-Chloropropene	107-05-1	NA	16	ND	0.626	ND	0.626	ND	25.2
4-Ethyltoluene	622-96-8	NA	NA NA	ND	0.983	ND	0.983	ND	39.6
4-Methyl-2-pentanone	108-10-1	NA 4500000	100000	ND	2.05	ND 10.1	2.05	ND	82.4
Acetone	67-64-1	4500000	1100000	39.7	2.38	49.4	2.38	ND	95.7
Benzel ebleride	71-43-2	52 8.3	12 1.9	7.09 ND	0.639 1.04	7.03 ND	0.639 1.04	ND ND	25.7 41.7
Benzyl chloride Bromodichloromethane	75-27-4	11	2.5	ND ND	1.34	ND	1.34	ND ND	53.9
Bromoform	75-25-2	370	85	ND	2.07	ND	2.07	ND	83.2
Bromomethane	74-83-9	730	170	ND	0.777	ND	0.777	ND	31.3
Carbon disulfide	75-15-0	100000	24000	2.45	0.623	4.3	0.623	ND	25.1
Carbon tetrachloride	56-23-5	68	16	ND	1.26	ND	1.26	ND	50.6
Chlorobenzene	108-90-7	7300	1700	ND	0.921	ND	0.921	ND	37.1
Chloroethane	75-00-3	NA	350000	ND	0.528	ND	0.528	ND	21.2
Chloroform	67-66-3	18	4.1	ND	0.977	ND	0.977	ND	39.3
Chloromethane	74-87-3	13000	3100	1.09	0.413	0.483	0.413	ND ND	16.6
cis-1,2-Dichloroethene cis-1,3-Dichloropropene	156-59-2 10061-01-5	NA NA	NA 23	ND ND	0.793	ND ND	0.793	ND ND	31.9 36.5
Cyclohexane	110-82-7	880000	210000	5.58	0.688	4.03	0.688	ND ND	27.7
Dibromochloromethane	124-48-1	NA NA	3.5	ND	1.7	ND	1.7	ND	68.6
Dichlorodifluoromethane	75-71-8	15000	3500	75.2	0.989	11.8	0.989	12500	39.8
Ethanol	64-17-5	NA	NA	10.1	9.42	10.2	9.42	518	379
Ethyl Acetate	141-78-6	10000	2400	ND	1.8	ND	1.8	ND	72.4
Ethylbenzene	100-41-4	160	37	4	0.869	1.79	0.869	ND	35
Freon-113	76-13-1	NA	1000000	ND	1.53	ND	1.53	ND	61.7
Freon-114	76-14-2	NA NA	NA NA	ND	1.4	ND	1.4	ND	56.3
Heptane	142-82-5	NA 10	NA 4.0	ND ND	0.82	ND	0.82	ND	33
Hexachlorobutadiene Isopropanol	87-68-3 67-63-0	19 29000	4.3 7000	ND 3.98	2.13	ND 5.01	2.13	ND ND	85.9 49.4
Isopropanol Methyl tert butyl ether	67-63-0 1634-04-4	1600	360	3.96 ND	1.23 0.721	ND	1.23 0.721	ND ND	29
Methylene chloride	75-09-2	41000	3400	ND	1.74	ND	1.74	ND	69.8
n-Hexane	110-54-3	100000	24000	1.82	0.705	2.02	0.705	ND	28.4
o-Xylene	95-47-6	15000	3500	5.21	0.869	2.2	0.869	ND	35
p/m-Xylene	179601-23-1	15000	3500	12.8	1.74	6.08	1.74	ND	69.9
Styrene	100-42-5	150000	35000	ND	0.852	ND	0.852	ND	34.3
Tertiary butyl Alcohol	75-65-0	NA 4000	NA aaa	1.85	1.52	2.21	1.52	ND	60.9
Tetrachloroethene	127-18-4	1600	360	ND ND	1.36	ND	1.36	ND ND	54.6
Tetrahydrofuran	109-99-9	290000	70000	ND 7.61	1.47	ND E o	1.47	ND ND	59.3
Toluene trans-1,2-Dichloroethene	108-88-3 156-60-5	730000 NA	170000 NA	7.61 ND	0.754 0.793	5.8 ND	0.754 0.793	ND ND	30.3 31.9
trans-1,3-Dichloroetnene trans-1,3-Dichloropropene	10061-02-6	NA NA	23	ND ND	0.793	ND ND	0.793	ND ND	36.5
Trichloroethene	79-01-6	100	16	ND	1.07	ND	1.07	ND	43.3
Trichlorofluoromethane	75-69-4	NA NA	24000	2.55	1.12	2.92	1.12	ND	45.2
Vinyl bromide	593-60-2	13	2.9	ND	0.874	ND	0.874	ND	35.2
	75-01-4	93	5.6	ND	0.511	ND	0.511	ND	20.6

Notes:
EPA-VISL-RES: EPA VISL Default Residential Target Sub-Slab & Exterior Soil Gas Concentrations Criteria per VISL Calculator, Version 3.4, June 2015 RSLs. E-PA-VISL-RES: EPA VISL Default Residential Target Sub-Slab & Exterior Soil Gas Concentrations Criteria per VISL Cal
EPA-VISL-COM EPA VISL Default Commercial Target Sub-Slab & Exterior Soil Gas Concentrations Criteria per VISL | *
12500 = Exceeds Residential VISL Concentrations but not Commercial
RL exceeds standard
RL = Laboratory Reporting Limit
NA = Not Applicable
ND = Non Detect

Appendix A:

BORING LOGS

Table 3: Soil Gas Analytical Results 79 Hurley Ave, Kingston, NY

SAMPLE ID:		so	3-1	so	3-2	SG-3			
LAB ID:				1	695-01		695-02	L1715	
COLLECTION DATE:				5/12/	2017	5/12/	2017	5/12/2017	
SAMPLE DEPTH:									
SAMPLE MATRIX:				Sub-Slab	Soil Gas	Sub-Slab	Soil Gas	Sub-Slab	Soil Gas
		EPA-VISL-COM	EPA-VISL-RES	-		_			
ANALYTE	CAS		(ug/m3)	Conc	RL	Conc	RL	Conc	RL
VOLATILE ORGANICS IN AIR 1,1,1-Trichloroethane	71-55-6	730000	170000	4.83	1.09	1.29	1.09	ND	43.9
1,1,2,2-Tetrachloroethane	79-34-5	730000	1.6	ND	1.09	ND	1.09	ND	55.3
1,1,2-Trichloroethane	79-00-5	26	5.8	ND	1.09	ND	1.09	ND	43.9
1,1-Dichloroethane	75-34-3	260	58	ND	0.809	ND	0.809	ND	32.6
1,1-Dichloroethene	75-35-4	29000	7000	ND	0.793	ND	0.793	ND	31.9
1,2,4-Trichlorobenzene	120-82-1	290	70	ND	1.48	ND	1.48	ND	59.8
1,2,4-Trimethylbenzene	95-63-6	1000	240	2.26	0.983	1.12	0.983	ND	39.6
1,2-Dibromoethane	106-93-4	0.68	0.16	ND	1.54	ND	1.54	ND	61.9
1,2-Dichlorobenzene	95-50-1	29000	7000	ND	1.2	ND	1.2	ND	48.4
1,2-Dichloroethane	107-06-2	16	3.6	ND ND	0.809	ND	0.809	ND	32.6
1,2-Dichloropropane	78-87-5	41 NA	9.4 NA	ND 1.09	0.924	ND ND	0.924	ND ND	37.2 39.6
1,3,5-Trimethylbenzene 1,3-Butadiene	108-67-8 106-99-0	NA 14	3.1	ND	0.983 0.442	ND ND	0.983 0.442	ND ND	17.8
1,3-butadiene 1,3-Dichlorobenzene	541-73-1	NA	NA	ND ND	1.2	ND ND	1.2	ND ND	48.4
1,4-Dichlorobenzene	106-46-7	37	8.5	ND	1.2	ND	1.2	ND	48.4
1,4-Dioxane	123-91-1	82	19	ND	0.721	ND	0.721	ND	29
2,2,4-Trimethylpentane	540-84-1	NA	NA	ND	0.934	ND	0.934	ND	37.6
2-Butanone	78-93-3	NA	170000	1.88	1.47	1.69	1.47	ND	59.3
2-Hexanone	591-78-6	4400	1000	ND	0.82	ND	0.82	ND	33
3-Chloropropene	107-05-1	NA	16	ND	0.626	ND	0.626	ND	25.2
4-Ethyltoluene	622-96-8	NA	NA NA	ND	0.983	ND	0.983	ND	39.6
4-Methyl-2-pentanone	108-10-1	NA 4500000	100000	ND	2.05	ND 10.1	2.05	ND	82.4
Acetone	67-64-1	4500000	1100000	39.7	2.38	49.4	2.38	ND	95.7
Benzel ebleride	71-43-2	52 8.3	12 1.9	7.09 ND	0.639 1.04	7.03 ND	0.639 1.04	ND ND	25.7 41.7
Benzyl chloride Bromodichloromethane	75-27-4	11	2.5	ND ND	1.34	ND	1.34	ND ND	53.9
Bromoform	75-25-2	370	85	ND	2.07	ND	2.07	ND	83.2
Bromomethane	74-83-9	730	170	ND	0.777	ND	0.777	ND	31.3
Carbon disulfide	75-15-0	100000	24000	2.45	0.623	4.3	0.623	ND	25.1
Carbon tetrachloride	56-23-5	68	16	ND	1.26	ND	1.26	ND	50.6
Chlorobenzene	108-90-7	7300	1700	ND	0.921	ND	0.921	ND	37.1
Chloroethane	75-00-3	NA	350000	ND	0.528	ND	0.528	ND	21.2
Chloroform	67-66-3	18	4.1	ND	0.977	ND	0.977	ND	39.3
Chloromethane	74-87-3	13000	3100	1.09	0.413	0.483	0.413	ND ND	16.6
cis-1,2-Dichloroethene cis-1,3-Dichloropropene	156-59-2 10061-01-5	NA NA	NA 23	ND ND	0.793	ND ND	0.793	ND ND	31.9 36.5
Cyclohexane	110-82-7	880000	210000	5.58	0.688	4.03	0.688	ND ND	27.7
Dibromochloromethane	124-48-1	NA NA	3.5	ND	1.7	ND	1.7	ND	68.6
Dichlorodifluoromethane	75-71-8	15000	3500	75.2	0.989	11.8	0.989	12500	39.8
Ethanol	64-17-5	NA	NA	10.1	9.42	10.2	9.42	518	379
Ethyl Acetate	141-78-6	10000	2400	ND	1.8	ND	1.8	ND	72.4
Ethylbenzene	100-41-4	160	37	4	0.869	1.79	0.869	ND	35
Freon-113	76-13-1	NA	1000000	ND	1.53	ND	1.53	ND	61.7
Freon-114	76-14-2	NA NA	NA NA	ND	1.4	ND	1.4	ND	56.3
Heptane	142-82-5	NA 10	NA 4.0	ND ND	0.82	ND	0.82	ND	33
Hexachlorobutadiene Isopropanol	87-68-3 67-63-0	19 29000	4.3 7000	ND 3.98	2.13	ND 5.01	2.13	ND ND	85.9 49.4
Isopropanol Methyl tert butyl ether	67-63-0 1634-04-4	1600	360	3.96 ND	1.23 0.721	ND	1.23 0.721	ND ND	29
Methylene chloride	75-09-2	41000	3400	ND	1.74	ND	1.74	ND	69.8
n-Hexane	110-54-3	100000	24000	1.82	0.705	2.02	0.705	ND	28.4
o-Xylene	95-47-6	15000	3500	5.21	0.869	2.2	0.869	ND	35
p/m-Xylene	179601-23-1	15000	3500	12.8	1.74	6.08	1.74	ND	69.9
Styrene	100-42-5	150000	35000	ND	0.852	ND	0.852	ND	34.3
Tertiary butyl Alcohol	75-65-0	NA 4000	NA 000	1.85	1.52	2.21	1.52	ND	60.9
Tetrachloroethene	127-18-4	1600	360	ND ND	1.36	ND	1.36	ND ND	54.6
Tetrahydrofuran	109-99-9	290000	70000	ND 7.61	1.47	ND E o	1.47	ND ND	59.3
Toluene trans-1,2-Dichloroethene	108-88-3 156-60-5	730000 NA	170000 NA	7.61 ND	0.754 0.793	5.8 ND	0.754 0.793	ND ND	30.3 31.9
trans-1,3-Dichloroetnene trans-1,3-Dichloropropene	10061-02-6	NA NA	23	ND ND	0.793	ND ND	0.793	ND ND	36.5
Trichloroethene	79-01-6	100	16	ND	1.07	ND	1.07	ND	43.3
Trichlorofluoromethane	75-69-4	NA NA	24000	2.55	1.12	2.92	1.12	ND	45.2
Vinyl bromide	593-60-2	13	2.9	ND	0.874	ND	0.874	ND	35.2
	75-01-4	93	5.6	ND	0.511	ND	0.511	ND	20.6

Notes:
EPA-VISL-RES: EPA VISL Default Residential Target Sub-Slab & Exterior Soil Gas Concentrations Criteria per VISL Calculator, Version 3.4, June 2015 RSLs. E-PA-VISL-RES: EPA VISL Default Residential Target Sub-Slab & Exterior Soil Gas Concentrations Criteria per VISL Cal
EPA-VISL-COM EPA VISL Default Commercial Target Sub-Slab & Exterior Soil Gas Concentrations Criteria per VISL | *
12500 = Exceeds Residential VISL Concentrations but not Commercial
RL exceeds standard
RL = Laboratory Reporting Limit
NA = Not Applicable
ND = Non Detect

Boring N	lumber:	B-9				Page 1 of 1	
Location					Date Started:	5/12/2017	
Site Add	rocci		ley Ave		Date Completed:	5/12/2017	
				v York 12401	Depth to Groundwater:	10.0 ft. bgs	
	Number:		956-EN		Field Technician:	АН	
Drill Rig				c-mounted GeoProbe	Partner Engineering and S		
		5 ft. M		ore	611 Industrial Way		
	Diameter:	2 inche			Eatontown, NJ 07	724	
Depth	Sample	PID	USCS	Description	Notes		
1					Boring overlain by asph	ait	
3		N/A	N/A	Hand-cleared to 5.0 ft. bgs	N/A		
4							
5		0.0					
6		0.0 0.0					
7 8		0.0 0.0 0.0 0.0 0.0		Brown clayey silt; slightly moist	4.0 ft. recovery; no odors or staining observed		
9			ML				
10	B-9	0.0 0.0			Soil sample B-9 was collected at 9	.5-10.0 ft. bgs	
11		0.0 0.0 0.0		Brown clayey silt; wet			
12 13		0.0 0.0 0.0			5.0 ft. recovery; no odors or stain	ing observed	
14		0.0	CL	Brown silty clay; wet			
15		0.0 0.0					
16				Boring terminated at 15.0 ft. bgs	Boring B-9 was converted into a tempo screened from 5.0-15.0 ft		
17							
18 19							
20							
21							
22							
23							
24							
25							

Boring N	lumber:	B-10				Page 1 of 1
Location					Date Started:	5/12/2017
Site Add	rocci	79 Hur			Date Completed:	5/12/2017
				v York 12401	Depth to Groundwater:	7.0 ft. bgs
Project N			956-EN		Field Technician:	АН
Drill Rig				-mounted GeoProbe	Partner Engineering and S	
		5 ft. M		ore	611 Industrial Way \	
	Diameter:	2 inche			Eatontown, NJ 07	724
Depth	Sample	PID	USCS	Description	Notes	
1 2					Boring overlain by asph	ait
3		N/A	N/A	Hand-cleared to 5.0 ft. bgs	N/A	
4						
5 6		0.0 0.0 0.0		Brown silty clay; slightly moist	4.0 ft. recovery; no odors or staini	ing observed
7	B-10	0.0 0.0			Soil sample B-10 was collected at (6.5-7.0 ft. bgs
9		0.0 0.0 0.0		Brown silty clay; wet		
10		0.0 0.0 0.0	CL	Drown sitty day, wet		
11 12		0.0 0.0 0.0				
13		0.0 0.0 0.0 0.0		Brown clay with trace silt; wet	4.5 ft. recovery; no odors or staini	ing observed
14 15		0.0 0.0 0.0 0.0				
16		0.0		Boring terminated at 15.0 ft. bgs	Boring B-10 was converted into a tempo screened from 5.0-15.0 ft	
17						
18 19						
20						
21						
22						
23						
25						

Boring N	lumber:	B-11				Page 1 of 1
Location					Date Started:	5/12/2017
Site Add	rocci		ley Ave		Date Completed:	5/12/2017
				v York 12401	Depth to Groundwater:	12.5 ft. bgs
Project N			956-EN		Field Technician:	АН
Drill Rig				c-mounted GeoProbe	Partner Engineering and S	
		5 ft. M		ore	611 Industrial Way	
	Diameter:	2 inche			Eatontown, NJ 07	724
Depth	Sample	PID	USCS	Description	Notes	
1					Boring overlain by asph	ait
2		N/A	N/A	Hand-cleared to 5.0 ft. bgs		
3					N/A	
5						
6		0.0				
7		0.0 0.0				
8		0.0		Brown silty clay; moist	3.0 ft. recovery; no odors or stain	ing observed
9		0.0 0.0 0.0				
10		0.0	CL			
11		0.0 0.0		Brown/tan dense clay; dry	5.0 ft. recovery; no odors or stain	ing observed
12	B-11	0.0			Soil sample B-11 was collected at 1	2.0-12.5 ft. bgs
13		0.0		Brown silty clay; wet		
14 15		0.0				
16		0.0		Boring terminated at 15.0 ft. bgs	Boring B-11 was converted into a tempo	
17					screened from 10.0-15.0 f	t. bgs
18						
19						
20						
21						
22						
23						
24						
25						

Boring N	lumber:	B-12				Page 1 of 1		
Location					Date Started:	5/12/2017		
Site Add	rocci		ley Ave		Date Completed:	5/12/2017		
				v York 12401	Depth to Groundwater:	N/A		
Project N			956-EN		Field Technician:	AH		
Drill Rig				-mounted GeoProbe	Partner Engineering and Science, Inc.			
		5 ft. M		ore	611 Industrial Way West			
	Diameter:	2 inche			Eatontown, NJ 07	724		
Depth	Sample	PID	USCS	Description	Notes			
1					Boring overlain by asph	ait		
2								
3		N/A	N/A	Hand-cleared to 5.0 ft. bgs	N/A			
4								
5		0.0						
6	B-12	0.0	SM	Brown silty fine sand; slightly moist	3.5 ft. recovery; petroleum odor	rs observed		
7	D-12	14.0 6.0	SIVI	brown sirty fine same, slightly moist	Soil sample B-12 was collected at	6.0-6.5 ft. bgs		
8		5.0 3.0			-			
9		3.0		Brown silty clay; dry				
		2.0						
10		2.0						
11		0.0						
		0.0						
12		0.0						
13		0.0	CL		2.5 ft. recovery; no odors or stain	ing observed		
13		0.0	CL					
14		0.0		Brown dense silty clay; dry				
4.5		0.0		brown dense sitty day, dry				
15		0.0						
16		0.0			100			
		0.0			1.0 ft. recovery; no odors or stain	ing observed		
17		0.0						
18	B-12A	0.0			Soil sample B-12A was collected at 1	7.5-18.0 ft. bgs		
19				Refusal at 18.0 ft. bgs on limestone (bedrock)	No groundwater encount	ered		
20								
21								
22								
23								
24								
25								

Boring N	lumber:	B-13				Page 1 of 1		
Location					Date Started:	5/12/2017		
Site Add	racc		ley Ave		Date Completed:	5/12/2017		
		_		v York 12401	Depth to Groundwater:	15.0 ft. bgs		
	Number:		956-EN		Field Technician:	AH		
Drill Rig				c-mounted GeoProbe	Partner Engineering and Science, Inc.			
		5 ft. M		ore	611 Industrial Way West			
	Diameter:	2 inche			Eatontown, NJ 07	724		
Depth	Sample	PID	USCS	Description	Notes	a l k		
1					Boring overlain by asph	dit		
2		N/A	N/A	Hand-cleared to 5.0 ft. bgs				
3				, and the second	N/A			
4								
5								
6		0.0						
7		0.0						
8		0.0		Brown silty clay; slightly moist	3.5 ft. recovery; no odors or stain	ing observed		
9		0.0 0.0						
		0.0						
10		0.0						
11		0.0						
12		0.0		Light brown clay; slightly moist	4.E. ft. recovery, no odore or ctain	ing observed		
13		0.0	CL		4.5 ft. recovery; no odors or stain	ing observed		
14		0.0						
	D 40	0.0		Brown silty clay; moist	Soil sample B-13 was collected at 1	4.5-15.0 ft. bgs		
15	B-13	0.0						
16		0.0						
17		0.0						
18		0.0		Brown silty clay; wet	5.0 ft. recovery; no odors or stain	ing observed		
19		0.0						
20		0.0						
21				Boring terminated at 20.0 ft. bgs	Boring B-13 was converted into a tempo screened from 10.0-20.0 f			
22					35. 66.164 110111 10.0 20.01			
23								
24								
25								

Boring Number:		B-14				Page 1 of 1
Location:					Date Started:	5/15/2017
Site Address:		79 Hurley Avenue			Date Completed:	5/15/2017
		_		v York 12401	Depth to Groundwater:	15.0 ft. bgs
Project Number:			956-EN		Field Technician:	AH
Drill Rig Type:				-mounted GeoProbe	Partner Engineering and Science, Inc.	
		5 ft. M		ore	611 Industrial Way West	
	Diameter:	2 inche			Eatontown, NJ 07724	
Depth	Sample	PID	USCS	Description	Notes	
1					Boring overlain by concrete (8-	TO IN SIAD)
2		N/A	N/A	Hand-cleared to 5.0 ft. bgs		
3		IV/A	IV/A	Hand-sicarca to 3.0 H. bys	N/A	
4						
5						
6		0.0 0.0 0.0				
7		0.0				
8		0.0			4.5 ft. recovery; no odors or stain	ing observed
9		0.0	ML	Brown silt with minor clay; slightly moist		
10		0.0				
11		0.0				
12		0.0			5.0 ft. recovery; no odors or stain	ing observed
13		0.0				
14		0.0 0.0 0.0		Brown/tan clay; dry		
15	B-14	0.0	CL		Soil sample B-14 was collected at 1	4.5-15.0 ft. bgs
16		0.0	OL			
17		0.0		Brown dense clay; wet	5.0 ft. recovery; no odors or stain	ing observed
18		0.0				
19		0.0		Refusal at 18.5 ft. bgs on limestone (bedrock)		
20					Boring B-14 was converted into a temporal screened from 13.5-18.5 f	
21						
22						
23						
24						
25						

Boring Number:		B-15				Page 1 of 1
Location:					Date Started:	5/15/2017
Site Address:		79 Hurley Avenue			Date Completed:	5/15/2017
		Kingston, New York 12401			Depth to Groundwater:	15.0 ft. bgs
Project Number:			956-EN		Field Technician: AH	
Drill Rig Type:				-mounted GeoProbe	Partner Engineering and Science, Inc.	
		5 ft. M		ore	611 Industrial Way West	
	Diameter:	2 inche			Eatontown, NJ 07724	
Depth	Sample	PID	USCS	Description	Notes Boring overlain by concrete (8-10 in slab)	
1					Borning overlain by concrete (s-	TO ITT SIAD)
2		N/A	N/A	Hand-cleared to 5.0 ft. bgs		
3				J	N/A	
4						
5						
6		0.0 0.0 0.0				
7		0.0				
8		0.0	ML	Brown silt with trace clays; slightly moist	3.0 ft. recovery; no odors or stain	ing observed
9		0.0				
10		0.0				
		0.0				
11		0.0				
12		0.0 0.0			4.5 ft. recovery; no odors or stain	ing observed
13		0.0		Brown dense silty clay; slightly moist		
14		0.0				
15	B-15	0.0	CL		Soil sample B-15 was collected at 1	4.5-15.0 ft. bgs
16		0.0	02			
17		0.0				
18		0.0 0.0		Brown dense clay; wet	5.0 ft. recovery; no odors or stain	ing observed
19		0.0 0.0				
20		0.0				
21				Boring terminated at 20.0 ft. bgs	Boring B-15 was converted into a tempo	orary well point and
22					screened from 15.0-20.0 f	
23						
24						
25						

Appendix B:

PHASE II ESA

PHASE II SUBSURFACE INVESTIGATION REPORT

The Daily Freeman 79 Hurley Avenue Kingston, New York 12401

October 14, 2016 Partner Project Number: 16-162670.6

Prepared for:

Twenty Lake Holdings

885 Third Avenue, Suite 1940 New York, New York 10022

October 14, 2016

Mr. Peter Robdau Twenty Lake Holdings 885 Third Avenue, Suite 1940 New York, New York 10022

Subject: Phase II Subsurface Investigation Report

The Daily Freeman 79 Hurley Avenue

Kingston, New York 12401

Partner Project Number: 16-162670.6

Dear Mr. Robdau:

Partner Assessment Corporation (Partner) is pleased to provide the results of the assessment performed on the above-referenced property. The following report describes the field activities, methods, and findings of the Phase II Subsurface Investigation conducted at the above-referenced property.

This assessment was performed utilizing methods and procedures consistent with good commercial or customary practices designed to conform to acceptable industry standards. The independent conclusions represent Partner's best professional judgment based upon existing conditions and the information and data available to us during the course of this assignment.

We appreciate the opportunity to provide these services. If you have any questions concerning this report, or if we can assist you in any other matter, please contact Summer Gell at (214) 666-6800.

Sincerely,

Partner Assessment Corporation

Chris Niedzwiecki Project Scientist Andres Simonson

Regional Manager – Subsurface Investigation

Summer D. Gell Relationship Manager

800-419-4923 www.PARTNEResi.com

TABLE OF CONTENTS

1.0	Introduction	1
1.1	Purpose	1
1.2	Limitations	1
1.3	User Reliance	1
2.0	Site Background	2
2.1	Site Description	2
2.2	Site History	2
2.3	Geology and Hydrogeology	4
3.0	Field Activities	5
3.1	Preparatory Activities	5
3.	1.1 Utility Clearance	5
3.	1.2 Health and Safety Plan	5
3.2	Geophysical Survey	5
3.3	Drilling Equipment	6
3.4	Boring Locations	6
3.5	Soil Sampling	
3.6	Groundwater Sampling	
3.7	Post-Sampling Activities	
4.0	Laboratory Analysis	
4.1	Laboratory Analysis	9
4.2	Laboratory Analytical Results	9
4	2.1 Soil Sample Analytical Results	
4	2.2 Groundwater Sample Analytical Results	
5.0	Discussion and Conclusions	
5.1	Regulatory Agency Guidance	10
5.2	Discussion	10
5	2.1 REC 1 – Former Printing Operations	10
5	2.2 REC 2 – Former Gasoline USTs	11
5.3	Summary and Conclusions	

ATTACHMENTS

Tables 1. Summary of Investigation Scope

2. Soil Sample Laboratory Results Summary

3. Groundwater Sample Laboratory Results Summary

Figures 1. Site Vicinity Map

2. Topographic Map

3. Sample Location Map

Appendices A. Boring Logs

B. Geophysical Survey Report and Map

C. Laboratory Analytical Report

1.0 INTRODUCTION

1.1 Purpose

The purpose of the investigation was to identify the location of on-site underground storage tanks (USTs) and/or former tankhold systems, evaluate the floor drain system, and to investigate the potential impact of volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs), and/or metals to soil and groundwater as a consequence of a release or releases from the former printing operations and gasoline USTs. Twenty Lake Holdings provided project authorization of Partner Proposal Number P16-159311.2.

1.2 Limitations

This report presents a summary of work conducted by Partner. The work includes observations of site conditions encountered and the analytical results provided by an independent third party laboratory of samples collected during the course of the project. The number and location of samples were selected to provide the required information. However, it cannot be assumed that the limited available data are representative of subsurface conditions in areas not sampled.

Conclusions and/or recommendations are based on the observations, laboratory analyses, and the governing regulations. Conclusions and/or recommendations beyond those stated and reported herein should not be inferred from this document.

Partner warrants that the environmental consulting services contained herein were accomplished in accordance with generally-accepted practices in the environmental engineering, geology, and hydrogeology fields that existed at the time and location of work. No other warranties are implied or expressed.

1.3 User Reliance

Partner was engaged by Twenty Lake Holdings (the Addressee), or their authorized representative, to perform this investigation. The engagement agreement specifically states the scope and purpose of the investigation, as well as the contractual obligations and limitations of both parties. This report and the information therein, are for the exclusive use of the Addressee. This report has no other purpose and may not be relied upon, or used, by any other person or entity without the written consent of Partner. Third parties that obtain this report, or the information therein, shall have no rights of recourse or recovery against Partner, its officers, employees, vendors, successors or assigns. Any such unauthorized user shall be responsible to protect, indemnify and hold Partner, the Addressee and their respective officers, employees, vendors, successors and assigns harmless from any and all claims, damages, losses, liabilities, expenses (including reasonable attorneys' fees) and costs attributable to such use. Unauthorized use of this report shall constitute acceptance of, and commitment to, these responsibilities, which shall be irrevocable and shall apply regardless of the cause of action or legal theory pled or asserted.

This report has been completed under specific Terms and Conditions relating to scope, relying parties, limitations of liability, indemnification, dispute resolution, and other factors relevant to any reliance on this report. Any parties relying on this report do so having accepted the Terms and Conditions for which this report was completed.

2.0 SITE BACKGROUND

2.1 Site Description

The subject property consists of one parcel of land comprising approximately 2.9 acres located on the north side of Hurley Avenue, between Taylor Street and Quarry Street, within a mixed commercial and residential area of Ulster County, New York. The subject property is currently occupied by The Daily Freeman for commercial/office use. On-site operations consist of general newspaper production administrative/office activities as well as warehousing and distribution activities.

The subject property is developed with a single-story structure that is situated within the central portion of the site, containing office spaces, warehouse spaces, a mezzanine level, as well as a basement level beneath the original portion of the facility. The basement level does not extend beneath the warehouse portion of the subject property building, which is currently leased to PCF, a newspaper distribution company. No newspaper printing operations are currently conducted on-site. Former printing operations reportedly ceased at the subject property in 2010. In addition to the current structure, the subject property is improved with asphalt-paved parking areas, naturally vegetated land, and a freshwater pond that is located within the rear portion of the site.

The subject property is bound by a Best Western to the north across vegetated land and railroad tracks, a Super 8 Motel and an office building to the east, single-family residences and an office building to the south across Hurley Avenue, and an office building with associated paved parking areas to the west. Refer to Figure 1 for a site vicinity map showing site features and surrounding properties.

2.2 Site History

Partner completed a draft *Phase I Environmental Site Assessment* (Phase I) Report, dated April 21, 2016, prepared on behalf of Twenty Lake Holdings. Based on the information reviewed and the site reconnaissance, the subject property was previously developed with a potential residence within the southern portion of the site, from as early as 1901 to circa 1924. Thereafter, the subject property appears to have remained mostly vacant land through at least 1943. The subject property was subsequently redeveloped with a portion of the current structure circa 1963, which was later improved with an addition in 1984. Tenants on the subject property have included, but are not limited to, The Great Atlantic and Pacific Tea Company (A&P Supermarket, c. 1963-c. 1970) and The Daily Freeman (c. 1974-present).

The Phase I identified the following recognized environmental conditions (RECs):

1. The subject property has been occupied by The Daily Freeman from as early as 1974. Newspaper printing operations were conducted on-site from the start of tenancy until approximately 2010. Printing presses were located in what is now a mostly vacant warehouse area within the eastern portion of the subject property building. Newspaper printing operations also included a photo development dark room and a pre-press area, which was utilized to convert images to a plate or film prior to the newspaper printing process. Floor drains were observed in the pre-press area, and an apparent long trench drain was observed within the former printing area. According to the key site manager, these features are expected to discharge to the municipal sanitary sewer system. Staining was observed on the floor in the immediate vicinity of the floor drains in the pre-press

area and significant ink staining was observed on the walls surrounding a wash sink in the former printing area. These drains may act as pathways to the subsurface and have the potential to impact the subsurface, should they become compromised. According to the regulatory database report, the subject property was identified as a Resource Conservation and Recovery Act-Non Generator (RCRA-NonGen/NLR) since at least 2006, and was a Resource Conservation and Recovery Act-Small Quantity Generator (RCRA-SQG) since 1988. Hazardous wastes previously generated on-site include "solvent washes and sludges, caustic washes and sludges, or water washes and sludges from cleaning tubs and equipment used in the formulation of ink from pigments, driers, soaps, and stabilizers containing chromium and lead." Although two compliance evaluation inspections were conducted on-site in 1999 and 2013, during which no violations were identified, Partner was unable to verify proper handling and/or disposal practices during the remaining years in which printing operations were performed. Based on the duration of former hazardous materials activities, including the generation of solvent wastes, as well as the nature of the aforementioned hazardous substances used, stored, and/or generated on-site, the former printing operations are considered a REC.

2. According to information obtained from the regulatory database report and from a records request response from the New York State Department of Environmental Conservation (NYSDEC), the subject property was historically equipped with four USTs, which were registered under Facility ID Number 3-411086. The USTs included a 2,000-gallon steel UST that was installed in 1974, a 1,000-gallon steel UST that was installed in 1979, a 10,000-gallon steel UST that was installed in 1979, and a 6,000-gallon fiberglass UST that was installed in 1994. All four tanks were previously utilized for the gasoline storage to support newspaper delivery fleet refueling activities, and are currently listed as "closed-removed." Closure dates were provided for the 10,000-gallon UST (May 1994) and 6,000-gallon UST (January 2012). However, Partner was only provided with documentation verifying the location and closure of the former 6,000-gallon UST. No information pertaining to the exact location, removal dates, or any post-closure subsurface sampling of the remaining three tanks was available for review during the course of the Phase I.

Two gasoline releases were reported in connection with the aforementioned USTs. The first release (Spill Number 9002411) was reported on June 1, 1990, during a tank pull. An available Spill Report Form does not indicate from which tank the release occurred. However, based on the incident date, the release likely pertains to the former 1,000-gallon tank or 2,000-gallon tank (or both). The Spill Report Form notes that approximately 15 to 18 cubic yards of contaminated soil were stockpiled and disposed of off-site. The release case was issued regulatory closure on June 15, 1990 and was noted to have met applicable cleanup standards. However, the analytical results of post-excavation soil sampling were not provided for review. The second release (Spill Number 9402470) was reported on May 19, 1994, during a tank tightness test, which was performed in preparation for the closure of a UST. Given the incident date, the release likely pertains to the former 10,000-gallon UST. The spill report indicates that the tank was emptied and the release case was issued regulatory closure on June 9, 1994. However, cleanup was noted to have not met applicable standards. Further, the analytical results of post-excavation soil sampling were not provided for review. As such, the potential exists for residual impacts to remain in place at the subject property. Partner requested copies of full UST and spill closure reports (with analytical data) from the NYSDEC;

however, no further information was provided by the NYSDEC to date. Based on the lack of available information, Partner was unable to determine the locations of the former 2,000-gallon UST, 1,000-gallon UST, and 10,000-gallon UST, whether or not said USTs were closed and removed in accordance with applicable standards, or whether or not the subsurface has been impacted beyond what was visually observed and reported for the two release cases. Therefore, the three former USTs and associated release cases are considered a REC.

2.3 Geology and Hydrogeology

Review of the United States Geological Survey (USGS) *Kingston West, New York* Quadrangle topographic map indicates the subject property is situated at an elevation approximately 174 feet above mean sea level, and the local topography is sloping gently to the north-northeast. Refer to Figure 2 for a topographic map of the site vicinity.

The subject property is situated within the Hudson Valley section of the Valley and Ridge physiographic province of the State of New York. According to the USGS, the uppermost geologic formation underlying the soils at the subject property is the Lower to Middle Devonian Onondaga Limestone formation. The Onondaga Limestone formation comprises the underlying stratigraphy and consists mostly of broad, carbonate platform facies that were deposited during early to middle Eifelian time. Carbonates are characterized by calcarenitic to cherty to argillaceous limestones and minor shales deposited in a shallow epicontinental sea. The Onondaga Limestone formation consists of gray or grayish-blue, compact, crystalline limestone, as well as overlies the Oriskany sandstone and underlies the Seneca limestone. Thickness ranges from 100 to 500 feet.

Information obtained from the United States Department of Agriculture (USDA) – Natural Resources Conservation Service (NRCS) Web Soil Survey online database shows the subject property is mapped as Riverhead fine sandy loam. The Riverhead series consists of very deep, well-drained soils that formed in glacial outwash deposits, which are primarily derived from granitic materials. This type of soil occurs on outwash plains, valley trains, beaches, and water-sorted moraine landforms. Slopes range from 0 to 15 percent.

The nearest body of surface water in the vicinity of the subject property is a designated freshwater pond, which is located within the northern portion of the subject property. No additional settling ponds, lagoons, surface impoundments, or natural catch basins were observed on the subject property during this assessment.

Borings advanced during this investigation determined the underlying subsurface consists predominantly of tan, tan/gray or gray clayey silt, tan, gray or tan/red clay, or tan medium sand with varying amounts of medium pebbles from the ground surface to approximately 20 feet below ground surface (bgs). Backfill material consisting of gray medium pebbles was encountered within the area of the excavation to a depth of approximately nine to 13.5 feet bgs. Refer to Appendix A for boring logs from this investigation.

Groundwater was encountered during this investigation between 12 and 19 feet bgs.

3.0 FIELD ACTIVITIES

Refer to Table 1 for a summary of the borings, sampling schedule and laboratory analyses for this investigation. The scope of the Phase II Subsurface Investigation included a geophysical survey and the advancement of eight borings (B1 through B8) for the collection of representative soil and/or groundwater samples.

3.1 Preparatory Activities

Prior to the initiation of fieldwork, Partner completed the following activities.

3.1.1 Utility Clearance

Hawk Drilling, Inc. (Hawk) of Hampton, New Jersey notified Dig Safely New York (Dig Safely) to clear public utility lines as required by law at least 48 hours prior to drilling activities. Dig Safely issued ticket number 09276-900-024 for the project.

3.1.2 Health and Safety Plan

Partner reviewed the site-specific Health and Safety Plan with on-site personnel involved in the project prior to the commencement of drilling activities.

3.2 Geophysical Survey

On October 1, 2016, Delta Geophysics (Delta) of Catasauqua, Pennsylvania conducted a geophysical survey under the supervision of Partner. The purpose of the geophysical survey was to (a) identify the location of former on-site tankholds and/or existing USTs, piping, and/or associated features, to (b) evaluate the floor drain configuration and discharge location, and to (c) additionally clear boring locations of utilities. The geophysical survey was conducted with a GSSI-SIR-3000 cart mounted ground penetrating radar (GPR) unit along with the GSSI-400 MHz antenna, a Radiodetection RD7000 precision utility locator, and/or a Fisher M-Scope TW-6 pipe and cable locator.

Delta systematically free-traversed the entire exterior with the aforementioned equipment. The equipment data were interpreted in real time and compiled as necessary in order to identify subsurface anomalies consistent with USTs, disturbed soil resembling backfilled tankholds, piping trenches, utility lines, and/or other subsurface conduits/features.

The geophysical survey identified an anomalous area, identified as a potential soil disturbance, to the northeast of the building. The area was identified by GPR transects which imaged a disturbance that represents a potential indicator of an excavation, and measured approximately 40 feet by 20 feet. Delta further traced two electric lines and three unknown utility lines to the area of the soil disturbance. Onsite personnel confirmed the former USTs were located where the soil disturbance was observed, and further mentioned the location of the former dispenser island. Partner did not observe any evidence of a former dispenser island, but an electric line was traced from the building to this location, ultimately terminating above the area of soil disturbance. GPR transects over this feature were limited due to dense vegetation. No additional signs of abandoned USTs or disturbed soil resembling backfilled tankholds were identified.

Investigation of the trench observed in the warehouse area determined the trench was not a drainage feature, but rather a conduit for ink and drain lines. The trench was cut out of the concrete slab after it was poured, and was lined with concrete on all sides. Upon further inspection, a drain line from a wash sink along with two copper ink lines ran through the trench. Delta further traced the ink and drain lines with the RD7000 and through visual inspection. The ink lines were traced towards the location of the former aboveground ink storage tank. The floor trench was traced through the wall to a large metal plate. According to onsite personnel, the metal plate covered a junction box. Another trench, originating at the location for the former aboveground ink storage tank, was also traced to the metal plate, and a drain line was also observed within the second trench. Partner and Delta were not permitted to open the metal plate to avoid disturbing the tenant leasing this portion of the warehouse. Visual inspection through gaps in the metal plate indicated that the apparent sump appeared to contain ink sludges and waste from former printing operations. Furthermore, the interior of the wash sink was heavily stained, likely from the disposal of printing wastes. The sump was located in a portion of the building that was not underlain with a basement.

Refer to Appendix B for a copy of the geophysical survey report and map, which provides additional details regarding the geophysical survey equipment and methodology along with the locations of the abovementioned features.

3.3 Drilling Equipment

On October 1, 2016, Partner subcontracted with Hawk to provide and operate drilling equipment. Hawk, under the direction of Partner, advanced borings B1 through B8 with a track-mounted AMS Power Probe 9500 VTR direct push rig. Sampling equipment was decontaminated between sample intervals and boring locations to prevent cross-contamination.

3.4 Boring Locations

Boring B1 was advanced south of the excavation; boring B2 was advanced in the southern portion of the excavation; boring B3 was advanced in the center of the excavation; boring B4 was advanced in the northern portion of the excavation; boring B5 was advanced to the west of the excavation, to the east of the former dispenser location; and boring B6 was advanced at the location of the former dispenser. Boring B7 and B8 were advanced interior of the eastern portion of the warehouse. B7 was advanced at the former printing press location, along the ink line trench, and B8 was advanced to the east of the sump pit, along the ink line trench. Boring placement was limited/modified due to utility conflicts. According to onsite maintenance personnel, Partner was not permitted to drill in the assumed down-gradient direction of the sump pit location, as this portion of the building is leased by a newspaper distributor. Refer to Figure 3 for a map indicating boring locations.

3.5 Soil Sampling

Boring B1 was overlain by asphalt, which was penetrated directly by the core barrel. Borings B2 through B6 were overlain by gravel, which was penetrated directly by the core barrel. Borings B7 and B8 were overlain by concrete, which was cored with an electric hammer drill equipped with a three-inch diameter carbide tipped concrete core bit prior to the direct push rig advancing the core barrel. Boring B1 was advanced to 15 feet bgs; borings B3 and B4 were advanced to 17 feet bgs;

borings B5, B7, and B8 were advanced to 20 feet bgs; and boring B6 was advanced to 18 feet bgs. Drilling refusal was encountered at boring locations B2, B3, B4, and B6.

Soil samples were collected using a five-foot long by 2.25-inch diameter MacroCore sampler with a five-foot long acetate liner, which was advanced by the direct-push drill rig using five-foot long by 2.25-inch diameter casing sections. The sampler was driven into the subsurface to allow undisturbed soil to enter the open MacroCore barrel and retrieved in five-foot intervals to recover the soil-filled liners.

A lengthwise section of each acetate liner was removed with a splitting tool to expose the soil. The soil column was visually inspected for discoloration, monitored for odors, and classified in accordance with the Unified Soil Classification System (USCS). Select intervals were placed in sealable plastic bags and field-screened with a photo-ionization detector (PID) calibrated to isobutylene. Elevated PID readings up to 538 parts per million (ppm) and a strong petroleum-like odor were detected in the soils recovered from boring location B4. Low level PID readings, less than 10 ppm, were detected in the soils recovered from boring locations B3 and B6, and a slight petroleum-like odor was detected in the soils recovered from boring location B3. Please refer to the boring logs in Appendix A for specific borings and depths where odor and/or elevated PID readings were observed.

Soils selected for laboratory analysis in borings B1 through B8 (RECs 1 and 2) were sampled directly from the liners using a disposable plastic syringe and retained in one methanol-preserved volatile organics analysis (VOA) vial and two unpreserved VOA vials containing deionized water in accordance with United States Environmental Protection Agency (EPA) Method 5035 sampling protocol for submittal of samples for EPA Method 8260 analysis. An additional sample at boring locations B7 and B8 (REC 1) was collected directly from the liners by transferring soil into a laboratory-supplied, four-ounce, wide-mouth, unpreserved glass jar, which was sealed with a threaded, Teflon-lined lid for submittal for EPA Method 8270 analysis, and into a laboratory-supplied, two-ounce, wide-mouth, unpreserved glass jar, which was sealed with a threaded, Teflon-lined lid for submittal for EPA Method 6010/7471 analysis. The jars were filled with soil to capacity to minimize headspace and reduce the potential for volatilization, and the jars and vials were labeled for identification and stored in an iced-cooler.

Soil samples were collected either from the location of highest observed PID readings or from directly above the groundwater interface (in lieu of elevated PID readings) in borings B1 through B6 (REC 2). Soil samples were collected from near the surface in the borings B7 and B8, which were advanced within the building (REC 1). Soil samples were collected from 12.5 to 13.0 feet bgs in boring B1; from 13.0 to 13.5 feet bgs in boring B2; from 12.0 to 12.5 feet bgs in boring B3; from 10.5 to 10.0 feet bgs in boring B4; from 15.5 to 16.0 feet bgs in boring B5; from 7.0 to 7.5 feet bgs in boring B6; and from 3.0 to 3.5 feet bgs in borings B7 and B8.

3.6 Groundwater Sampling

After soil sampling to the terminal depth, groundwater samples were collected from boring locations B2 (REC 2), B4 (REC 2), B6 (REC 2), and B7 (REC 1) by withdrawing the drill rods from the subsurface and installing one-inch diameter temporary groundwater sampling points within the open boreholes. Each temporary groundwater sampling point consisted of a ten-foot long, 0.010-inch factory-slotted polyvinyl chloride (PVC) screen at the terminal end and blank PVC risers from the top of the screen interval to the ground surface. Partner attempted to collect a groundwater sample from boring location B8 due to its

close proximity to the sump pit; however, due to poor recharge resulting from tight clay layers, a groundwater sample was alternatively collected from boring B7.

Groundwater samples were retrieved from each temporary groundwater sampling point using a new Teflon™ bailer and conveyed into three hydrochloric acid-preserved VOA vials for submittal of samples for EPA Method 8260 analysis. An additional groundwater sample was collected from boring locations B2, B4, and B6 using a new Teflon™ bailer and conveyed into two unpreserved one-liter amber glass jars for submittal of samples for EPA Method 8270 select ion monitoring (SIM) analysis. Each vial and jar was filled with no observable headspace or air bubbles to minimize the potential for volatilization, labeled for identification, and stored in an iced cooler.

3.7 Post-Sampling Activities

Core barrels and temporary groundwater sampling points were removed from the subsurface and the boreholes were backfilled with hydrated bentonite chips following sampling activities. Boreholes advanced in improved areas were capped with concrete or asphalt patch to match existing ground cover after being backfilled.

No significant amounts of derived wastes were generated during this investigation.

4.0 LABORATORY ANALYSIS

4.1 Laboratory Analysis

Partner collected eight soil samples and four groundwater samples on October 1, 2016, which were transported on October 3, 2016 in an iced cooler under proper chain-of-custody protocol to Alpha Analytical (Alpha), a state-certified laboratory [Environmental Laboratory Accreditation Program (ELAP) certificate number 11148] in the City of Westborough, Massachusetts, for analysis. One soil sample from boring locations B1 through B6 (six soil samples total) was analyzed for VOCs in accordance with EPA Method 8260, and one soil sample from boring locations B7 and B8 (two soil samples total) was analyzed for VOCs in accordance with EPA Method 8260, for SVOCs in accordance with EPA Method 8270, and for priority pollutant metals in accordance with EPA Method 6010/7471. One groundwater sample from boring locations B2, B4, and B6 (three groundwater samples total) was analyzed for VOCs in accordance with EPA Method 8260 and for SVOCs in accordance with EPA Method 8270, and the groundwater sample from boring location B7 was analyzed for VOCs in accordance with EPA Method 8260.

4.2 Laboratory Analytical Results

Laboratory analytical results are included in Appendix C and discussed below.

4.2.1 Soil Sample Analytical Results

As shown in Table 2, VOCs were detected at concentrations above the laboratory reporting limits (RLs) in the soil samples collected from borings B1 through B6 and B8. VOCs were not detected at concentrations above the laboratory RLs in the soil sample collected from boring B7.

SVOCs were not detected at concentrations above the laboratory RLs in the soil sample collected from borings B7 and B8.

Priority pollutant metals were detected at concentrations above the laboratory RLs in the soil sample collected from borings B7 and B8.

4.2.2 Groundwater Sample Analytical Results

As shown in Table 3, VOCs were detected at concentrations above the laboratory RLs in the groundwater samples collected from borings B2, B4, B6, and B7.

SVOCs were detected at concentrations above the laboratory RLs in the groundwater samples collected from borings B4 and B6. SVOCs were not detected at concentrations above the laboratory RLs in the groundwater sample collected from boring B2.

5.0 DISCUSSION AND CONCLUSIONS

5.1 Regulatory Agency Guidance

The soil analytical results were compared to:

- NYSDEC New York Unrestricted Use Criteria, which represents the most stringent NYSDEC criteria
- NYSDEC Groundwater Criteria, New York Restricted Use, which is the screening level for potential soil to groundwater leaching concerns
- NYSDEC Residential Criteria, New York Restricted Use, which is the soil to human direct contact criteria applicable to residential use
- NYSDEC Commercial Criteria, New York Restricted Use, which is the soil to human direct contact criteria applicable to commercial use and to the current subject property use
- NYSDEC Industrial Criteria, New York Restricted Use, which is the soil to human direct contact criteria applicable to industrial use

The groundwater analytical results were compared to:

 NYSDEC New York Technical & Operational Guidance Series (TOGS) 1.1.1 Ambient Water Quality Standards (AWQS)

5.2 Discussion

5.2.1 REC 1 – Former Printing Operations

Soils

VOCs were detected at concentrations above the laboratory RLs but below the Unrestricted Use Criteria in the soil sample collected from boring B8. VOCs were not detected at concentrations above the laboratory RLs in the soil sample collected from boring B7.

SVOCs were not detected at concentrations above the laboratory RLs in the soil sample collected from borings B7 and B8.

Priority pollutant metals were detected at concentrations above the laboratory RLs in the soil sample collected from borings B7 and B8. Total chromium was detected at concentrations above the Unrestricted Use Criteria for hexavalent chromium in the soil samples collected from borings B7 (12 mg/kg) and B8 (12 mg/kg). Total chromium was detected at a concentration above the Protection of Ecological Resources Criteria but below the Groundwater Criteria and the Residential Criteria; however, because chromium was detected beneath the building there is no pathway to ecological resources and contingent analysis for hexavalent chromium is not required. The remaining priority pollutant metals were not detected at concentrations above the most stringent Unrestricted Use Criteria in the soil samples collected from borings B7 and B8.

Groundwater

VOCs were detected at concentrations above the laboratory RLs in the groundwater samples collected from boring B7. Cis-1,2-dichloroethene [11 micrograms per liter (μ g/l)] was detected at a concentration above the AWQS in the groundwater sample collected from boring B7.

5.2.2 REC 2 - Former Gasoline USTs

Soils

VOCs were detected at concentrations above the laboratory RLs in the soil samples collected from borings B1 through B6. 1,2,4-trimethylbenzene [17 milligrams per kilogram (mg/kg)], benzene (1 mg/kg), ethylbenzene (6.1 mg/kg), and total xylenes (5.3 mg/kg) were detected at concentrations above both the Unrestricted Use Criteria and the Groundwater Criteria in the soil sample collected from boring B4. The remaining VOCs were not detected in borings B1 through B6 at concentrations above the most stringent Unrestricted Use Criteria.

Groundwater

Various VOCs were detected at concentrations above the laboratory RLs in the groundwater samples collected from borings B2, B4, and B6. 1,2,4,5-tetramethylbenzene (77 μ g/l), 1,2,4-trimethylbenzene (720 μ g/l), 1,3,5-trimethylbenzene (18 μ g/l), benzene (43 μ g/l), ethylbenzene (340 μ g/l), isopropylbenzene (30 μ g/l), n-butylbenzene (21 μ g/l), n-propylbenzene (87 μ g/l), naphthalene (61 μ g/l), o-xylene (20 μ g/l), p/m-xylene (280 μ g/l), and toluene (8.9 μ g/l) were detected at concentrations above the AWQS in the groundwater sample collected from boring B4; benzene (1.3 μ g/l), n-propylbenzene (9.7 μ g/l), and p/m-xylene (5.6 μ g/l) were detected at concentrations above the AWQS in the groundwater sample collected from boring B6; and cis-1,2-dichloroethene (11 μ g/l) was detected at a concentration above the AWQS in the groundwater sample collected from boring B7. Several compounds from the soil samples corresponding to the groundwater samples (from the same borings), exceeded their respective soil to groundwater impact criteria indicating a probable on-site source for the groundwater impact.

Various SVOCs were detected at concentrations above the laboratory RLs in the groundwater samples collected from borings B4 and B6. Naphthalene (70 µg/l) was detected at a concentration above the AWQS in the groundwater sample collected from boring B4. The remaining SVOCs were not detected at concentrations above the AWQS in groundwater samples collected from borings B2, B4, and B6.

5.3 Summary and Conclusions

Partner conducted a Phase II Subsurface Investigation at the subject property to identify the location of onsite USTs and/or former tankhold systems, evaluate the floor drain system, and to investigate the potential impact of VOCs, SVOCs, and/or metals to soil and groundwater as a consequence of a release or releases from the former printing operations and gasoline USTs. The scope of the Phase II Subsurface Investigation included a geophysical survey and the advancement of eight borings (B1 through B8) for the collection of representative soil and/or groundwater samples. Eight soil samples were analyzed for VOCs, two soil samples were analyzed for SVOCs and priority pollutant metals, four groundwater samples were analyzed for VOCs, and three groundwater samples were analyzed for SVOCs.

The geophysical survey identified an anomalous area, identified as a potential soil disturbance, to the northeast of the building. The area was identified by GPR transects which imaged a disturbance that represents a potential indicator of an excavation, and measured approximately 40 feet by 20 feet. Delta further traced two electric lines and three unknown utility lines to the area of the soil disturbance. Onsite personnel confirmed the former USTs were located where the soil disturbance was observed, and further mentioned the location of the former dispenser island. Partner did not observe any evidence of a former

dispenser island, but an electric line was traced from the building to this location, ultimately terminating above the area of soil disturbance. GPR transects over this feature were limited due to dense vegetation. No additional signs of abandoned USTs or disturbed soil resembling backfilled tankholds were identified.

Investigation of the trench observed in the warehouse area determined the trench was not a drainage feature, but rather a conduit for ink and drain lines. The trench was cut out of the concrete slab after it was poured, and was lined with concrete on all sides. Upon further inspection, a drain line from a wash sink along with two copper ink lines ran through the trench. Delta further traced the ink and drain lines with the RD7000 and through visual inspection. The ink lines were traced towards the location of the former aboveground ink storage tank. The floor trench was traced through the wall to a large metal plate. According to onsite personnel, the metal plate covered a junction box. Another trench, originating at the location for the former aboveground ink storage tank, was also traced to the metal plate, and a drain line was also observed within the second trench. Partner and Delta were not permitted to open the metal plate to avoid disturbing the tenant leasing this portion of the warehouse. Visual inspection through gaps in the metal plate indicated that the apparent sump appeared to contain ink sludges and waste from former printing operations. Furthermore, the interior of the wash sink was heavily stained, likely from the disposal of printing wastes. The sump was located in a portion of the building that was not underlain with a basement.

Borings advanced during this investigation determined the underlying subsurface consists predominantly of tan, tan/gray or gray clayey silt, tan, gray or tan/red clay, or tan medium sand with varying amounts of medium pebbles from the ground surface to approximately 20 feet bgs. Backfill material consisting of gray medium pebbles was encountered within the area of the excavation to a depth of approximately nine to 13.5 feet bgs.

Groundwater was encountered during this investigation between 12 and 19 feet bgs.

REC 1 – Former Printing Operations

VOCs, SVOCs, and priority pollutant metals were detected at concentrations above the laboratory RLs but below the Unrestricted Use Criteria in the soil samples collected from borings B7 and B8.

Cis-1,2-dichloroethene was detected at a concentration above the AWQS in the groundwater sample collected from boring B7.

Total chromium was detected at concentrations above the Unrestricted Use Criteria for hexavalent chromium in the soil samples collected from borings B7 (12 mg/kg) and B8 (12 mg/kg). Total chromium was detected at a concentration above the Protection of Ecological Resources Criteria but below the Groundwater Criteria and the Residential Criteria; however, because chromium was detected beneath the building there is no pathway to ecological resources and contingent analysis for hexavalent chromium is not required.

REC 2 - Former Gasoline USTs

1,2,4-trimethylbenzene, benzene, ethylbenzene, and total xylenes were detected at concentrations above both the Unrestricted Use Criteria and the Groundwater Criteria in the soil sample collected from boring B4.

1,2,4,5-tetramethylbenzene, 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, benzene, ethylbenzene, isopropylbenzene, n-butylbenzene, n-propylbenzene, naphthalene, o-xylene, p/m-xylene, and toluene were detected at concentrations above the AWQS in the groundwater sample collected from boring B4; benzene, n-propylbenzene, and p/m-xylene were detected at concentrations above the AWQS in the groundwater sample collected from boring B6; and cis-1,2-dichloroethene was detected at a concentration above the AWQS in the groundwater sample collected from boring B7.

Naphthalene was detected at a concentration above the AWQS in the groundwater sample collected from boring B4.

Based on the Phase II Subsurface Investigation, there is evidence of a release of gasoline from the former onsite USTs to soil and groundwater beneath the subject property, and there is potential evidence of a release of hazardous materials from the former printing operations to groundwater beneath the subject property. Partner recommends further investigation and delineation of the soil and groundwater impacts observed in the area of the former USTs; further investigation of cis-1,2-dichloroethene detected in groundwater beneath the former printing operations; and further investigation of the sump observed within the former printing areas to determine if the sump has impacted soil and groundwater beneath the subject property.

TABLES

Table 1: Summary of Investigation Scope 79 Hurley Avenue Kingston, New York 12401 Partner Project Number 16-162670.6 October 1, 2016

Boring Identification	Location	Terminal Depth (feet bgs)	Matrix Sampled	Sampling Depths (feet bgs)	Target Analytes
B1	South of the excavation	15.0	Soil	12.5 - 13.0	VOCs
B2	Southern portion of the	15.5	Soil	13.0 - 13.5	VOCs
B 2	excavation	15.5	Groundwater	Screened 5.5 to 15.5	VOCs and SVOCs
В3	Center of the excavation	17.0	Soil	12.0 - 12.5	VOCs
В4	Northern portion of the	17.0	Soil	10.5 - 11.0	VOCs
В4	excavation	17.0	Groundwater	Screened 7.0 to 17.0	VOCs and SVOCs
В5	West of the excavation, to the east of the former dispenser location	20.0	Soil	15.5 to 16.0	VOCs
В6	At the location of the former	18.0	Soil	7.0 - 7.5	VOCs
ьо	dispenser	18.0	Groundwater	Screened 8.0 to 18.0	VOCs and SVOCs
B7	Former location of the printing press in the eastern	20.0	Soil	3.0 to 3.5	VOCs, SVOCs, Priority Pollutant Metals
57	portion of the warehouse, along the ink line trench	20.0	Groundwater	Screened 10.0 to 20.0	VOCs
В8	East of the sump pit, along the ink line trench	20.0	Soil	3.0 to 3.5	VOCs, SVOCs, Priority Pollutant Metals

Notes:

bgs = below ground surface

VOCs = volatile organic compounds via United States Environmental Protection Agency (EPA) Method 8260

SVOCs = semivolatile organic compounds via EPA Method 8270

Priority Pollutant Metals via EPA Method 6010/7471

Table 2: Soil Sample Laboratory Results Summary 79 Hurley Avenue Kingston, New York 12401 Partner Project Number 16-162670.6 October 1, 2016

Analyte	NY-UNRES	NY-RESGW	NY-RESR	NY-RESC	NY-RESI	B1	В2	В3	R4	B5	В6	В7	B8
Analyte	THE OTTICES	III III.	Ter Resid	TTT RESC		A Method 8260						<u> </u>	50
1,1,1-Trichloroethane	0.68	0.68	100	500	1000	< 0.00093	< 0.00093	< 0.00099	< 1.4	< 0.00093	< 0.00088	< 0.00088	< 0.00084
1,1,2,2-Tetrachloroethane	NE	0.6	35	NE	NE	< 0.00093	< 0.00093	< 0.00099	< 1.4	< 0.00093	< 0.00088	< 0.00088	< 0.00084
1.1-Dichloroethane	0.27	0.27	19	240	480	< 0.0014	< 0.0014	< 0.0015	< 2.1	< 0.0014	< 0.0013	< 0.0013	< 0.00034
1.1-Dichloroethene	0.33	0.33	100	500	1000	< 0.00014	< 0.00093	< 0.00099	< 1.4	< 0.00093	< 0.0013	< 0.00013	< 0.00013
1,2,3-Trichloropropane	NE	0.34	80	NE	NE	< 0.0093	< 0.0093	< 0.0099	< 1.4	< 0.0093	< 0.0088	< 0.0088	< 0.0084
1,2,4,5-Tetramethylbenzene	NE	NE	NE	NE	NE	< 0.0033	< 0.0037	0.025	5.2 J	< 0.0037	< 0.0035	< 0.0035	< 0.0084
1,2,4-Trichlorobenzene	NE	3.4	NE	NE	NE	< 0.0037	< 0.0037	< 0.005	< 7	< 0.0037	< 0.0044	< 0.0044	< 0.0034
1,2,4-Trimethylbenzene	3.6	3.6	47	190	380	< 0.0046	< 0.0046	0.012	17	< 0.0047	< 0.0044	< 0.0044	< 0.0042
1,2-Dichlorobenzene	1.1	1.1	100	500	1000	< 0.0046	< 0.0046	< 0.005	< 7	< 0.0047	< 0.0044	< 0.0044	< 0.0042
1,2-Dichloroethane	0.02	0.02	2.3	30	60	< 0.00093	< 0.00093	< 0.0009	< 1.4	< 0.00093	< 0.00088	< 0.00088	< 0.00042
1,3,5-Trimethylbenzene	8.4	8.4	47	190	380	< 0.0046	< 0.0046	0.027	0.43 J	< 0.0047	< 0.0044	< 0.0044	< 0.0042
1,3-Dichlorobenzene	2.4	2.4	17	280	560	< 0.0046	< 0.0046	< 0.005	< 7	< 0.0047	< 0.0044	< 0.0044	< 0.0042
1,3-Dichloropropane	NE	0.3	NE	NE	NE	< 0.0046	< 0.0046	< 0.005	< 7	< 0.0047	< 0.0044	< 0.0044	< 0.0042
1.4-Dichlorobenzene	1.8	1.8	9.8	130	250	< 0.0046	< 0.0046	< 0.005	< 7	< 0.0047	< 0.0044	< 0.0044	< 0.0042
1.4-Dioxane	0.1	0.1	9.8	130	250	< 0.093	< 0.0040	< 0.003	< 140	- 0.0047	< 0.0044	< 0.088	< 0.084
2-Butanone	0.12	0.12	100	500	1000	< 0.0093	< 0.0093	< 0.0099	< 14	< 0.0093	< 0.0088	< 0.0088	0.0033 J
4-Methyl-2-pentanone	NE	1	NE	NE	NE	< 0.0093	< 0.0093	< 0.0099	< 14	< 0.0093	< 0.0088	< 0.0088	< 0.0084
Acetone	0.05	0.05	100	500	1000	< 0.0093	< 0.0093	0.019	< 14	< 0.0093	0.019	< 0.0088	0.021
Benzene	0.06	0.06	2.9	44	89	< 0.00093	< 0.00093	0.001	1 J	< 0.00093	< 0.00088	< 0.00088	< 0.00084
Carbon disulfide	NE	2.7	100	NE NE	NE	< 0.0093	< 0.0093	< 0.0099	< 14	< 0.0093	< 0.0088	< 0.0088	< 0.0084
Carbon tetrachloride	0.76	0.76	1.4	22	44	< 0.00093	< 0.00093	< 0.00099	< 1.4	< 0.00093	< 0.00088	< 0.00088	< 0.00084
Chlorobenzene	1.1	1.1	100	500	1000	< 0.00093	< 0.00093	< 0.00099	< 1.4	< 0.00093	< 0.00088	< 0.00088	< 0.00084
Chloroethane	NE	1.9	NE	NE	NE	< 0.0018	< 0.0018	< 0.002	< 2.8	< 0.0019	< 0.0018	< 0.0018	< 0.0017
Chloroform	0.37	0.37	10	350	700	< 0.0014	< 0.0014	< 0.0015	< 2.1	< 0.0014	< 0.0013	< 0.0013	< 0.0013
cis-1.2-Dichloroethene	0.25	0.25	59	500	1000	< 0.00093	< 0.00093	< 0.00099	< 1.4	< 0.00093	< 0.00088	< 0.00088	< 0.00084
Ethyl ether	NE	NE	NE	NE	NE	< 0.0046	< 0.0046	< 0.005	< 7	0.0013 J	< 0.0044	< 0.0044	< 0.0042
Ethylbenzene	1	1	30	390	780	< 0.00093	< 0.00093	0.079	6.1	0.00016 J	< 0.00088	< 0.00088	< 0.00084
Isopropylbenzene	NE	2.3	100	NE	NE	< 0.00093	< 0.00093	0.01	0.83 J	< 0.00093	< 0.00088	< 0.00088	< 0.00084
Methyl tert butyl ether	0.93	0.93	62	500	1000	0.0038	0.0015 J	0.0028	< 2.8	0.00061 J	< 0.0018	< 0.0018	< 0.0017
Methylene chloride	0.05	0.05	51	500	1000	< 0.0093	< 0.0093	< 0.0099	< 14	< 0.0093	< 0.0088	< 0.0088	< 0.0084
n-Butylbenzene	12	12	100	500	1000	< 0.00093	< 0.00093	0.0066	2.2	< 0.00093	< 0.00088	< 0.00088	< 0.00084
n-Propylbenzene	3.9	3.9	100	500	1000	< 0.00093	< 0.00093	0.032	3	< 0.00093	< 0.00088	< 0.00088	< 0.00084
NEphthalene	12	12	100	500	1000	< 0.0046	< 0.0046	0.079	1.9 J	0.00061 J	< 0.0044	< 0.0044	< 0.0042
o-Xylene	NE	NE	NE	NE	NE	< 0.0018	< 0.0018	0.00081 J	0.54 J	< 0.0019	< 0.0018	< 0.0018	< 0.0017
p-Diethylbenzene	NE	NE	NE	NE	NE	< 0.0037	< 0.0037	0.0054	3 J	< 0.0037	< 0.0035	< 0.0035	< 0.0034
p-Ethyltoluene	NE	NE	NE	NE	NE	< 0.0037	< 0.0037	0.017	6.2	< 0.0037	< 0.0035	< 0.0035	< 0.0034
p-Isopropyltoluene	NE	10	NE	NE	NE	< 0.00093	< 0.00093	0.00099	0.45 J	< 0.00093	< 0.00088	< 0.00088	< 0.00084
p/m-Xylene	NE	NE	NE	NE	NE	< 0.0018	< 0.0018	0.0099	4.8	< 0.0019	< 0.0018	< 0.0018	< 0.0017
sec-Butylbenzene	11	11	100	500	1000	< 0.00093	< 0.00093	0.0024	0.57 J	< 0.00093	< 0.00088	< 0.00088	< 0.00084
tert-Butylbenzene	5.9	5.9	100	500	1000	< 0.0046	< 0.0046	< 0.005	< 7	< 0.0047	< 0.0044	< 0.0044	< 0.0042
Tetrachloroethene	1.3	1.3	5.5	150	300	< 0.00093	< 0.00093	< 0.00099	< 1.4	< 0.00093	< 0.00088	< 0.00088	< 0.00084
Toluene	0.7	0.7	100	500	1000	< 0.0014	< 0.0014	0.00019 J	0.4 J	< 0.0014	< 0.0013	< 0.0013	< 0.0013
trans-1,2-Dichloroethene	0.19	0.19	100	500	1000	< 0.0014	< 0.0014	< 0.0015	< 2.1	< 0.0014	< 0.0013	< 0.0013	< 0.0013
Trichloroethene	0.47	0.47	10	200	400	< 0.00093	< 0.00093	< 0.00099	< 1.4	< 0.00093	< 0.00088	< 0.00088	< 0.00084
Vinyl chloride	0.02	0.02	0.21	13	27	< 0.0018	< 0.0018	< 0.002	< 2.8	< 0.0019	< 0.0018	< 0.0018	< 0.0017
Xylenes, Total	0.26	1.6	100	500	1000	< 0.0018	< 0.0018	0.011 J	5.3 J	< 0.0019	< 0.0018	< 0.0018	< 0.0017

Table 2: Soil Sample Laboratory Results Summary 79 Hurley Avenue Kingston, New York 12401 Partner Project Number 16-162670.6 October 1, 2016

Analyte	NY-UNRES	NY-RESGW	NY-RESR	NY-RESC	NY-RESI	B1	B2	В3	B4	B5	В6	В7	B8
	SVOCs via EPA Method 8270 (mg/kg)												
2,4,5-Trichlorophenol	NE	0.1	100	NE	NE	-	-	-	-	-	-	< 0.19	< 0.19
2,4-Dinitrophenol	NE	0.2	100	NE	NE	-	-	-	-	-	-	< 0.93	< 0.92
2,6-Dinitrotoluene	NE	0.17	1.03	NE	NE	-	-	-	-	-	-	< 0.19	< 0.19
2-Nitrophenol	NE	0.3	NE	NE	NE	-	-	-	-	-	-	< 0.42	< 0.41
4-Nitrophenol	NE	0.1	NE	NE	NE	-	-	-	-	-	-	< 0.27	< 0.27
Nitrobenzene	NE	0.17	3.7	69	140	-	-	-	-	-	-	< 0.17	< 0.17
				Prio	ority Pollutant I	Metals via 6010	/7471 (mg/kg)						
Arsenic, Total	13	16	16	16	16	-	-	-	-	-	-	6	6.2
Beryllium, Total	7.2	47	14	590	2700	-	-	-	-	-	-	0.29	0.29
Chromium, Total*	1	19	22	400	800	-	-	-	-	-	-	12	12
Copper, Total	50	1720	270	270	10000	-	-	-	-	-	-	16	16
Lead, Total	63	450	400	1000	3900	-	-	-	-	-	-	9	9.9
Mercury, Total	0.18	0.73	0.81	2.8	5.7	-	-	-	-	-	-	0.02 J	0.03 J
Nickel, Total	30	130	140	310	10000	-	-	-	-	-	-	18	18
Zinc, Total	109	2480	2200	10000	10000	-	-	-	-	-	-	44	44

Notes:

VOCs = volatile organic compounds

SVOCs = semivolatile organic compounds

EPA = United States Environmental Protection Agency

mg/kg = milligrams per kilogram

< = not detected above indicated laboratory Reporting Limit (RL)

J = detected below laboratory RLs

NE = not established

Values in **bold** exceed one or more regulatory guidelines RL exceeds one or more regulatory guidelines

NY-UNRES: New York Unrestricted use Criteria current as of 5/2007

NY-RESGW: Groundwater Criteria, New York Restricted use current as of 5/2007

NY-RESR: Residential Criteria, New York Restricted use current as of 5/2007

NY-RESC: Commercial Criteria, New York Restricted use current as of 5/2007

NY-RESI: Industrial Criteria, New York Restricted use current as of 5/2007

Table 3: Groundwater Sample Laboratory Results Summary 79 Hurley Avenue Kingston, New York 12401

Partner Project Number 16-162670.6 October 1, 2016

Analyte	NY-AWQS	B2-GW	B4-GW	B6-GW	B7-GW
	VOCs via EPA N	1ethod 8260 (μ	g/l)		
1,1,1,2-Tetrachloroethane	5	< 2.5	< 25	< 2.5	< 2.5
1,1,1-Trichloroethane	5	< 2.5	< 25	< 2.5	< 2.5
1,1,2,2-Tetrachloroethane	5	< 0.5	< 5	< 0.5	< 0.5
1,1,2-Trichloroethane	1 -	< 1.5	< 15	< 1.5	< 1.5
1,1-Dichloroethane	5	< 2.5	< 25	< 2.5	< 2.5
1,1-Dichloroethene	5 5	< 0.5 < 2.5	< 5 < 25	< 0.5 < 2.5	< 0.5 < 2.5
1,1-Dichloropropene 1,2,3-Trichlorobenzene	5	< 2.5	< 25	< 2.5	< 2.5
1,2,3-Trichloropropane	0.04	< 2.5	< 25	< 2.5	< 2.5
1,2,4,5-Tetramethylbenzene	5	< 2	77	1.7 J	0.58 J
1,2,4-Trichlorobenzene	5	< 2.5	< 25	< 2.5	< 2.5
1,2,4-Trimethylbenzene	5	< 2.5	720	3	< 2.5
1,2-Dibromo-3-chloropropane	0.04	< 2.5	< 25	< 2.5	< 2.5
1,2-Dibromoethane	0.0006	< 2	< 20	< 2	< 2
1,2-Dichlorobenzene	3	< 2.5	< 25	< 2.5	< 2.5
1,2-Dichloroethane	0.6	< 0.5	< 5	< 0.5	< 0.5
1,2-Dichloroethene, Total	NE	< 2.5	< 25	< 2.5	12 J
1,2-Dichloropropane	1	< 1	< 10	< 1	< 1
1,3,5-Trimethylbenzene	5	< 2.5	18 J	2 J	< 2.5
1,3-Dichlorobenzene	3	< 2.5	< 25	< 2.5	< 2.5
1,3-Dichloropropane	5	< 2.5	< 25	< 2.5	< 2.5
1,4-Dichlorobenzene	3	< 2.5	< 25	< 2.5	< 2.5
2,2-Dichloropropane	5	< 2.5	< 25	< 2.5	< 2.5
2-Butanone	50	< 5	< 50	< 5	< 5
2-Hexanone	50	< 5 < 5	< 50	< 5 7.1	< 5 2.3 J
Acetone Acrylonitrile	50 5	< 5	< 50 < 50	< 5	< 5
Benzene	1	< 0.5	43	1.3	0.19 J
Bromobenzene	5	< 2.5	< 25	< 2.5	< 2.5
Bromochloromethane	5	< 2.5	< 25	< 2.5	< 2.5
Bromomethane	5	< 2.5	< 25	< 2.5	< 2.5
Carbon tetrachloride	5	< 0.5	< 5	< 0.5	< 0.5
Chlorobenzene	5	< 2.5	< 25	< 2.5	< 2.5
Chloroethane	5	< 2.5	< 25	< 2.5	< 2.5
Chloroform	7	< 2.5	< 25	< 2.5	< 2.5
cis-1,2-Dichloroethene	5	< 2.5	< 25	< 2.5	11
cis-1,3-Dichloropropene	0.4	< 0.5	< 5	< 0.5	< 0.5
Dibromomethane	5	< 5	< 50	< 5	< 5
Dichlorodifluoromethane	5	< 5	< 50	< 5	< 5
Ethylbenzene	5	< 2.5	340	< 2.5	< 2.5
Hexachlorobutadiene	0.5	< 2.5	< 25	< 2.5	< 2.5
Isopropylbenzene Methyl tert butyl ether	5 10	< 2.5 3	30 < 25	<u>4</u> 8.8	< 2.5 < 2.5
Methylene chloride	5	< 2.5	< 25	< 2.5	< 2.5
n-Butylbenzene	5	< 2.5	21 J	< 2.5	< 2.5
n-Propylbenzene	5	< 2.5	87	9.7	< 2.5
Naphthalene	10	< 2.5	61	6.4	1.2 J
o-Chlorotoluene	5	< 2.5	< 25	< 2.5	< 2.5
o-Xylene	5	< 2.5	20 J	2.8	< 2.5
p-Chlorotoluene	5	< 2.5	< 25	< 2.5	< 2.5
p-Diethylbenzene	NE	< 2	24	1.3 J	< 2
p-Ethyltoluene	NE	< 2	230	< 2	< 2
p-Isopropyltoluene	5	< 2.5	< 25	< 2.5	< 2.5
p/m-Xylene	5	< 2.5	280	5.6	< 2.5
sec-Butylbenzene	5	< 2.5	< 25	< 2.5	< 2.5
Styrene Styrene	5	< 2.5	< 25	< 2.5	< 2.5
tert-Butylbenzene	5	< 2.5	< 25	< 2.5	< 2.5
Tetrachloroethene Toluene	5 5	< 0.5	< 5	< 0.5	< 0.5
Toluene trans-1,2-Dichloroethene	5	< 2.5 < 2.5	8.9 J < 25	1 J < 2.5	< 2.5 1.2 J
trans-1,2-Dichloroethene trans-1,3-Dichloropropene	0.4	< 0.5	< 5	< 0.5	< 0.5
trans-1,3-Dichloropropene trans-1,4-Dichloro-2-butene	5	< 2.5	< 25	< 2.5	< 2.5
Trichloroethene	5	< 0.5	< 5	< 0.5	< 0.5
Trichlorofluoromethane	5	< 2.5	< 25	< 2.5	< 2.5
Vinyl chloride	2	< 1	< 10	< 1	0.27 J
Xylenes, Total	NE	< 2.5	300 J	8.4	< 2.5
			3007	J	. 2.3

Table 3: Groundwater Sample Laboratory Results Summary 79 Hurley Avenue Kingston, New York 12401 Partner Project Number 16-162670.6

October 1, 2016

Analyte	NY-AWQS	B2-GW	B4-GW	B6-GW	B7-GW
	SVOCs via EPA I	Method 8270 (μ	g/l)		
1,2,4,5-Tetrachlorobenzene	5	< 10	< 10	< 10	-
1,2,4-Trichlorobenzene	5	< 5	< 5	< 5	-
2,4-Dichlorophenol	1	< 5	< 5	< 5	-
2,4-Dinitrophenol	10	< 20	< 20	< 20	-
2,4-Dinitrotoluene	5	< 5	< 5	< 5	-
2,6-Dinitrotoluene	5	< 5	< 5	< 5	-
2-Nitroaniline	5	< 5	< 5	< 5	
3,3'-Dichlorobenzidine	5	< 5	< 5	< 5	-
3-Nitroaniline	5	< 5	< 5	< 5	-
4-Chloroaniline	5	< 5	< 5	< 5	
4-Nitroaniline	5	< 5	< 5	< 5	-
Bis(2-chloroethoxy)methane	5	< 5	< 5	< 5	-
Bis(2-chloroethyl)ether	1	< 2	< 2	< 2	-
Carbazole	NE	< 2	1.9 J	< 2	-
Hexachlorocyclopentadiene	5	< 20	< 20	< 20	-
Nitrobenzene	0.4	< 2	< 2	< 2	-
Phenol	1	< 5	< 5	< 5	
	SVOCs via EPA Me	thod 8270 SIM	(μg/l)		
2-Methylnaphthalene	NE	< 0.2	30	0.49	-
Acenaphthene	20	< 0.1	0.64 J	< 0.1	-
Anthracene	50	< 0.2	0.49 J	< 0.2	-
Benzo(a)anthracene	NE	< 0.2	0.38 J	< 0.2	-
Benzo(a)pyrene	0.002	< 0.2	< 2	< 0.2	-
Benzo(b)fluoranthene	0.002	< 0.2	< 2	< 0.2	-
Benzo(k)fluoranthene	0.002	< 0.2	< 2	< 0.2	-
Chrysene	0.002	< 0.2	< 2	< 0.2	ı
Fluoranthene	50	< 0.2	1.5 J	< 0.2	-
Fluorene	50	< 0.2	0.92 J	< 0.2	-
Hexachlorobenzene	0.04	< 0.8	< 8	< 0.8	-
Hexachlorobutadiene	0.5	< 0.5	< 5	< 0.5	-
Hexachloroethane	5	< 0.8	< 8	< 0.8	•
Indeno(1,2,3-cd)pyrene	0.002	< 0.2	< 2	< 0.2	ī
Naphthalene	10	< 0.2	70	6.9	
Pentachlorophenol	1	< 0.8	< 8	< 0.8	-
Phenanthrene	50	< 0.2	2.4	< 0.2	
Pyrene	50	< 0.2	1 J	< 0.2	-

VOCs = volatile organic compounds SVOCs = semivolatile organic compounds

J = detected below laboratory PQLs

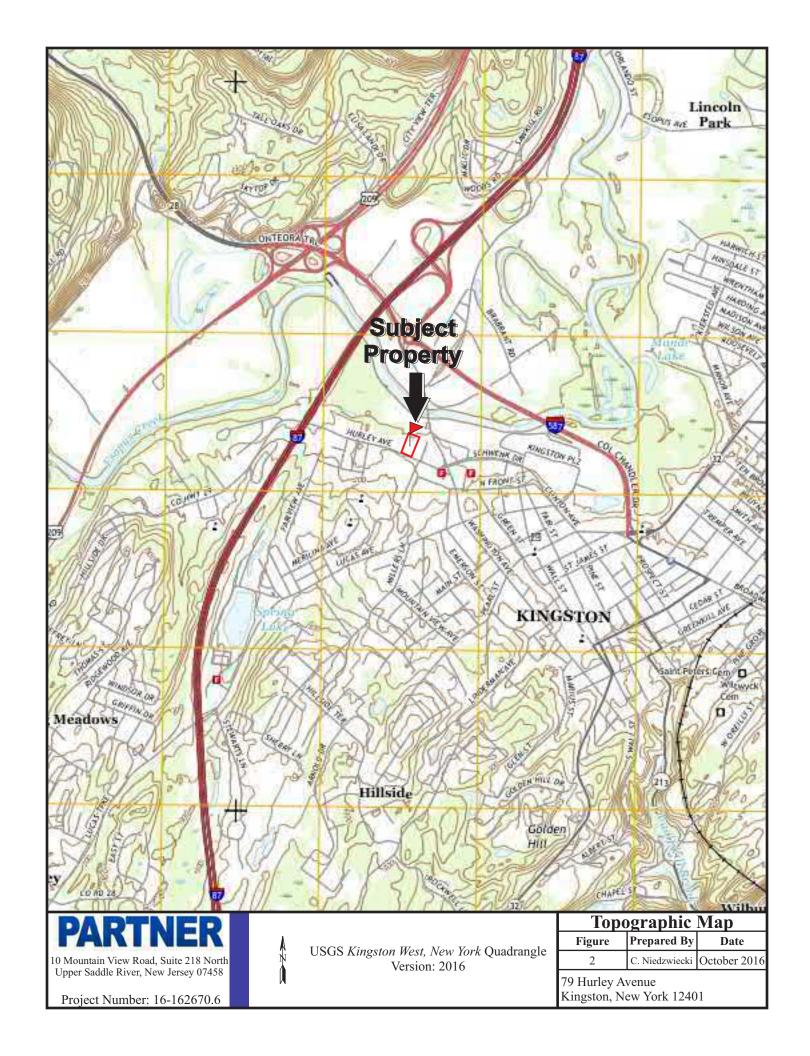
< = not detected above indicated laboratory Reporting Limit (RL)

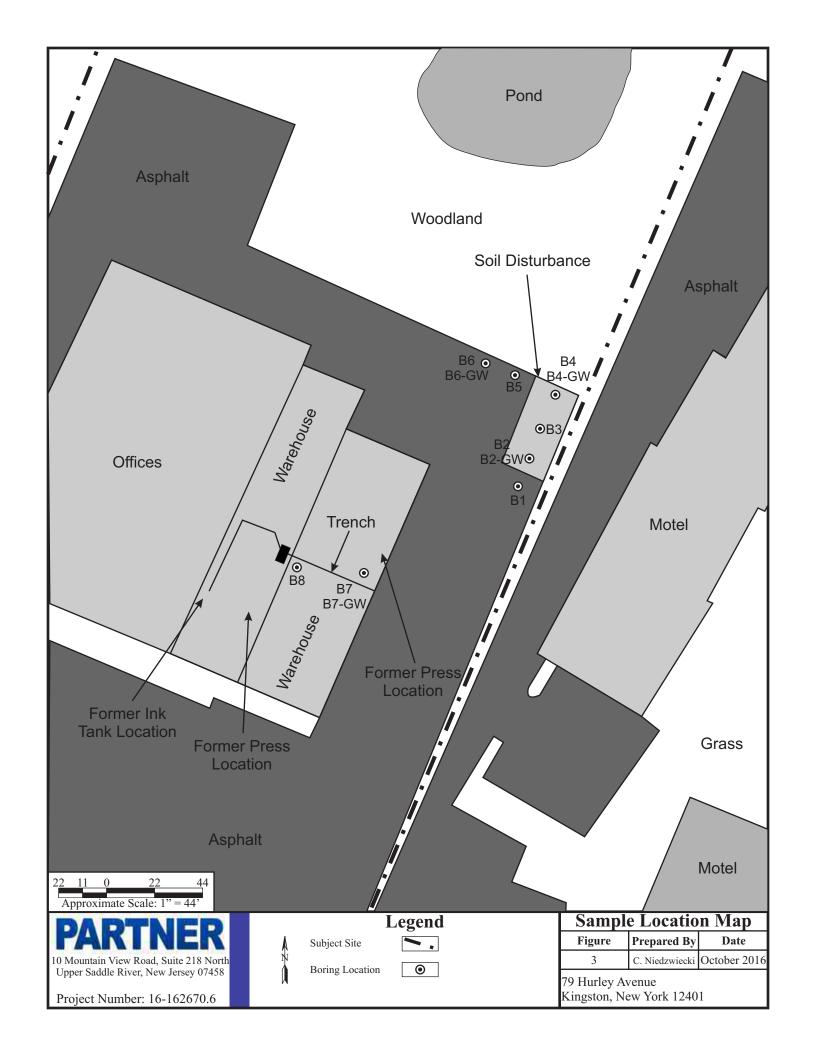
NE = not established

Values in **bold** exceed AWQS RL exceeds AWQS

EPA = United States Environmental Protection Agency

Values in bode


µg/l = micrograms per liter


NY-AWQS: New York TOGS 111 Ambient Water Quality Standards criteria reflects all addendum to criteria through June 2004.

FIGURES

APPENDIX A: BORING LOGS

Boring N	lumber:	B1				Page 1 of 1
Location		South	of the e	excavation	Date Started:	10/1/2016
		1	ley Ave		Date Completed:	10/1/2016
Site Add	ress:			v York 12401	Depth to Groundwater:	13
	Number:	16-162			Field Technician:	Chris Niedzwiecki
Drill Rig				obe 9500 VTR	Partner Assessment Corporation	
	• •	5.0 foc		oCore	10 Mountain View Road, Su	
	Diameter:	2.25 in			Upper Saddle River, New J	ersey 07458
Depth	Sample	PID	USCS	Description	Notes Boring was overlain by as	la la
1		0.0			Boring was overlain by as	pnait
2		0.0				
3		0.0			2.0 feet recovery; no odor/s	staining
4		0.0				
5		0.0		Gray medium pebbles; dry		
6		0.0	N/A			
7		0.0				
8		0.0			2.0 feet recovery; no odor/s	staining
9		0.0				
10		0.0				
11		0.0		Gray medium pebbles; very moist		
12		0.0			Soil sample B1 was collected from 12.5 to 3	12.0 foot has at 921 for
13	B1	0.0		Tan/gray clayey silt; very moist	VOC analysis	13.0 feet bgs at 921 for
14		0.0	ML	Tan/gray clayey silt; wet	3.0 feet recovery; no odor/s	staining
15		0.0		. 10 . 1 1	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	····· · · ·
13				Boring was terminated at 15.0 feet bgs		
16						
17						
18						
19						
20						
21						
22						
23						
24						
25						

Boring N	lumber:	B2				Page 1 of 1	
Location		Southe	rn por	tion of the excavation	Date Started:	10/1/2016	
			ley Ave		Date Completed:	10/1/2016	
Site Add	lress:		_	v York 12401	Depth to Groundwater:	13.5	
Project	Number:	16-162	2670.6		Field Technician:	Chris Niedzwiecki	
Drill Rig	Туре:	AMS P	owerpr	obe 9500 VTR	Partner Assessment Cor	poration	
Sampling	g Equipment:	5.0 foc	t Macr	oCore	10 Mountain View Road, Suite 218 North		
Borehole	Diameter:	2.25 in	ch		Upper Saddle River, New J	ersey 07458	
Depth	Sample	PID	USCS	Description	Notes		
1		0.0			Boring was overlain by g	ravel	
2		0.0					
3		0.0			2.0 feet recovery; no odor/s	staining	
4		0.0					
5		0.0					
6		0.0					
7		0.0	N/A	Gray medium pebbles; dry			
8		0.0			2.0 feet recovery; no odor/s	staining	
9		0.0					
10		0.0					
11		0.0					
12		0.0			3.0 feet recovery; no odor/s	staining	
13	B2	0.0			Soil sample B2 was collected from 13.0 to 1	3.5 feet has at 9/13 for	
14		0.0			VOC analysis	13.3 Teet bg3 at 343 for	
15		0.0	ML	Tan clayey silt; wet			
16		0.0		Refusal encountered at 15.5 feet bgs	0.5 feet recovery; no odor/s	staining	
17				Netusal effcountered at 13.3 feet ugs	A temporary groundwater sampling point, 15.5 feet bgs was installed in boing B2. Gro GW was collected at 1109 for VOC an	oundwater sample B2-	
18					GW was concered at 1105 for VOC an	ia 3voc analysis	
19							
20							
21							
22							
23							
24							
25							

Boring N	lumber:	В3				Page 1 of 1
Location		Center	of the	excavation	Date Started:	10/1/2016
C': A		79 Hur	ley Ave	enue	Date Completed:	10/1/2016
Site Add	ress:			v York 12401	Depth to Groundwater:	13
Project I	Number:	16-162	670.6		Field Technician: Chris Niedzwiecki	
Drill Rig	Туре:	AMS P	owerpr	obe 9500 VTR	Partner Assessment Corporation	
			.0 foot MacroCore		10 Mountain View Road, Su	
Borehole	Diameter:	2.25 in			Upper Saddle River, New J	ersey 07458
Depth	Sample	PID	USCS	Description	Notes	
1		0.0			Boring was overlain by as	phalt
2		0.0				
3		0.0			2.0 feet recovery; no odor/	staining
4		0.0				
5		0.0		Gray medium pebbles; dry		
6		0.0	N/A			
7		0.0	.,,,,			
8		0.0			1.0 feet recovery; no odor/	staining
9		0.0				
10		0.0				
11		0.0		Gray medium pebbles; very moist		
12		9.2				
13	В3	6.4	CL	Tan clay; moist	Soil sample B3 was collected from 12.0 to for VOC analysis	12.5 feet bgs at 1000
14		1.2			3.0 feet recovery; mild petroleum-like odo	r observed from 12-14
15		0.0	ML	Tan clayey silt; wet	feet bgs	
16		0.0			1.0 feet recovery; no odor/	staining
17		0.0				
18				Refusal encountered at 17.0 feet bgs		
19						
20						
21						
22						
23						
24						
25						

Boring N	lumber:	В4				Page 1 of 1
Location		Northe	rn por	tion of the excavation	Date Started:	10/1/2016
Site Add	rocci	79 Hur	ley Ave	enue	Date Completed:	10/1/2016
Site Add	1633.	Kingsto	on, Nev	v York 12401	Depth to Groundwater:	13
Project I		16-162			Field Technician:	Chris Niedzwiecki
Drill Rig				obe 9500 VTR	Partner Assessment Cor	
		5.0 foc		oCore	10 Mountain View Road, Su	
Borehole	Diameter:	2.25 in	_		Upper Saddle River, New J	ersey 07458
Depth	Sample	PID	USCS	Description	Notes	
1		0.0			Boring was overlain by gr	ravel
2		0.0				
3		0.0			3.0 feet recovery; no odor/s	staining
4		0.0				
5		0.0	N/A	Gray medium pebbles; dry		
6		7.1	.,,,,	Gray mediani pessies, ary		
7		7.4			3.0 feet recovery; slight petroleum-like odc	or from 5.0 to 10.0 foot
8		8.9			bgs	or from 5.0 to 10.0 feet
9		6.5				
10		6.1				
11	В4	538.0			Soil sample B4 was collected from 10.5 to for VOC analysis	11.0 feet bgs at 1117
12		16.5		Tan/red clay; moist		
13		34.7			3.0 feet recovery; strong petroleum-like o feet bgs	dor from 10.0 to 14.0
14		5.7	СН			
15		0.5		Tan/red clay; wet		
16		0.1			1.5 feet recovery; no odor/s	staining
17		0.0				
18				Refusal encountered at 17.0 feet bgs	A temporary groundwater sampling point, 17.0 feet bgs was installed in boing B4. Gro	
19					GW was collected at 1117 for VOC ar	nd SVOC analysis
20						
21						
22						
23						
24						
25						

Boring N	lumber:	B5				Page 1 of 1
Location		West of	the exca	vation, to the east of the former dispenser location	Date Started:	10/1/2016
C': A 1 1		79 Hur	ley Ave	enue	Date Completed:	10/1/2016
Site Add	ress:			v York 12401	Depth to Groundwater:	16
Project N	Number:	16-162	670.6		Field Technician: Chris Niedzwieck	
Drill Rig			MS Powerprobe 9500 VTR		Partner Assessment Co	
			foot MacroCore		10 Mountain View Road, Su	
Borehole	Diameter:	2.25 in	_		Upper Saddle River, New J	ersey 07458
Depth	Sample	PID	USCS	Description	Notes	
1		0.0			Boring was overlain by g	ravel
2		0.0	SM	Brown sandy silt with concrete and medium pebbles; dry		
3		0.0		,	3.5 feet recovery; no odor/	staining
4		0.0				
5		0.0				
6		0.0				
7		0.0				
8		0.0			1.75 feet recovery; no odor,	staining/
9		0.0				
10		0.0		Tan clay; moist		
11		0.0				
12		0.0	СН			
13		0.0			2.0 feet recovery; no odor/	staining
14		0.0				
15		0.0			Soil sample B5 was collected from 15.5 to	16 0 feet hgs at 1029
16	B5	0.0			for VOC analysis	10.0 1001 1025
17		0.0				
18		0.0		Tan clay; wet	0.75 feet recovery; no odor,	staining/
19		0.0				
20		0.0				
21				Boring was terminated at 20.0 feet bgs		
22						
23						
24						
25						

Boring N	lumber:	В6				Page 1 of 1	
Location		At the	locatio	n of the former dispenser	Date Started:	10/1/2016	
Site Add	rocc:	79 Hur	ley Ave	enue	Date Completed:	10/1/2016	
Site Add	1633.	Kingsto	on, Nev	v York 12401	Depth to Groundwater:	12	
Project I		16-162			Field Technician: Chris Niedzwiecki		
Drill Rig				obe 9500 VTR	Partner Assessment Corporation		
		5.0 foc		oCore	10 Mountain View Road, Suite 218 North		
	Diameter:	2.25 in			Upper Saddle River, New Jersey 07458		
Depth	Sample	PID	USCS	Description	Notes		
1		0.0	ML	Gray silt; moist	Boring was overlain by g	ravel	
2		0.0					
3		0.0	SW	Tan medium sand; slightly moist	3.75 feet recovery; no odor/	staining	
4		0.0					
5		0.0					
6		0.0					
7		0.9					
8	В6	3.2		Tan clay; moist	Soil sample B6 was collected from 7.0 to 7 VOC analysis	.5 feet bgs at 1058 for	
9		0.0		.a. 687680	3.75 feet recovery; no odor/	'staining	
10		0.0			5.75 (2001-000)	g	
11		0.0	СН				
12		0.0	J				
13		0.0			5.0 feet recovery; no odor/s	staining	
14		0.0					
15		0.0		Tan clay; wet			
16		0.0					
17		0.0			3.0 feet recovery; no odor/s	staining	
18		0.0					
19				Boring was terminated at 18.0 feet bgs	A temporary groundwater sampling point, 18.0 feet bgs was installed in boing B6. Gr		
20					GW was collected at 1137 for VOC at		
21							
22							
23							
24							
25							

Boring N	lumber:	В7				Page 1 of 1
Location		Former loca	tion of the p	ress in the eastern portion of the warehouse, along the ink line trench	Date Started:	10/1/2016
C'L - A d d		79 Hur	ley Ave	enue	Date Completed:	10/1/2016
Site Add	ress:	Kingsto	on, Nev	v York 12401	Depth to Groundwater:	13
Project I	Number:	16-162	670.6		Field Technician:	Chris Niedzwiecki
Drill Rig	Туре:	AMS P	owerpr	obe 9500 VTR	Partner Assessment Co	poration
Sampling	Equipment:	5.0 foc	t Macr	oCore	10 Mountain View Road, Su	ite 218 North
Borehole	Diameter:	2.25 in	ch		Upper Saddle River, New J	ersey 07458
Depth	Sample	PID	USCS	Description	Notes	
1					Boring was overlain by co	ncrete
3					3.75 feet recovery; no odor,	'staining
4	В7		ML	Tan clayey silt; dry	Soil sample B7 was collected from 3.0 to 3 VOC, SVOC, and primary pollutant	
5						
6						
7					4.25 feet recovery; no odor,	⁷ staining
8					inzo recerrecevery, no outry	3.00
9						
10				Tan clay; moist		
11						
12						
13					2.25 feet recovery; no odor,	staining/
14			СН	Tan clay; wet		
15						
16						
17				Gray clay; wet	255	ntaining.
18					2.5 feet recovery; no odor/	oranınığ
19				Tan clay; wet		
20	1			Boring was terminated at 20.0 feet bgs	A A	
21					A temporary groundwater sampling point, 20.0 feet bgs was installed in boing B7. Gr GW was collected at 1250 for V	oundwater sample B7-
22						·
23						
25						

Boring Number:		B8				Page 1 of 1
Location:		East of the sump pit, along the trench drain system			Date Started:	10/1/2016
Site Address:		79 Hurley Avenue			Date Completed:	10/1/2016
		Kingston, New York 12401			Depth to Groundwater:	19
Project Number:		16-162670.6			Field Technician:	Chris Niedzwiecki
Drill Rig Type:		AMS Powerprobe 9500 VTR			Partner Assessment Corporation	
Sampling Equipment:		5.0 foot MacroCore			10 Mountain View Road, Suite 218 North	
Borehole Diameter:		2.25 inch			Upper Saddle River, New Jersey 07458	
Depth Sample		PID	USCS	Description	Notes	
1		0.0			Boring was overlain by cor	ncrete
2		0.0		Tan clayey silt; dry	3.0 feet recovery; no odor/staining	
3		0.0			Soil sample B8 was collected from 3.0 to 3.5 feet bgs at 1241 for VOC, SVOC, and primary pollutant metals analysis	
4	В8	0.0				
5		0.0				
6		0.0	ML		4.5 feet recovery; no odor/staining 4.25 feet recovery; no odor/staining 4.5 feet recovery; no odor/staining	
7		0.0				
8		0.0				
9		0.0				
10		0.0				
11		0.0				
12		0.0	СН	Tan/red clay; slightly moist		
13		0.0				
14		0.0				
15		0.0				
16		0.0				
17		0.0				
18		0.0		Tan clay; very moist		
19		0.0		Tan clay with modium pobbless wet		
20		0.0		Tan clay with medium pebbles; wet		
21				Boring was terminated at 20.0 feet bgs	Due to poor recharge, a groundwater so collected from boring	
22						
23						
24						
25						

APPENDIX B: GEOPHYSICAL SURVEY REPORT AND MAP

GEOPHYSICAL INVESTIGATION REPORT

SITE LOCATION:

79 Hurley Avenue, Kingston, New York

PREPARED FOR:

Partner Engineering and Science 100 Deerfield Lane, Suite 200 Malvern, Pennsylvania 19355

PREPARED BY:

Joshua Hess Delta Geophysics Inc. 738 Front Street Catasauqua, PA 18032

October 1, 2016

Delta Geophysics, Inc. (Delta) is pleased to provide the results of the geophysical survey conducted at 79 Hurley Avenue, Kingston, New York.

1.0 INTRODUCTION

On October 1st, 2016 Delta Geophysics personnel performed a limited geophysical investigation at 79 Hurley Avenue, Kingston, New York. Multiple areas throughout the site were to be surveyed. Subsurface conditions were unknown at the time of survey. Surface conditions consisted of asphalt and concrete.

2.0 SCOPE OF WORK

The survey was conducted to investigate the subsurface for anomalies consistent with underground storage tanks (USTs) and/or soil disturbances that could be a potential indicator of a past UST excavation. A secondary objective was to locate and mark detectable underground utilities throughout the survey areas.

3.0 METHODOLOGY

Selection of survey equipment is dependent site conditions and project objectives. For this project the technician utilized the following equipment to survey the area of concern:

- Geophysical Survey Systems Inc. SIR-3000 cart-mounted Ground Penetrating Radar (GPR) unit with a 400 Mhz antenna.
- Geophysical Survey Systems Inc. SIR-3000 cart-mounted GPR unit with a 2.0 GHz antenna
- Radiodetection RD7000 precision utility locator.
- Fisher M-Scope TW-6 pipe and cable locator.

Ground penetrating radar (commonly called GPR) is a geophysical method that has been developed over the past thirty years for shallow, high-resolution, subsurface investigations of the earth. GPR uses high frequency pulsed electromagnetic waves (generally 10 MHz to 1,000 MHz) to acquire subsurface information. Energy is propagated downward into the ground and is reflected back to the surface from boundaries at which there are electrical property contrasts. GPR is a method that is commonly used for environmental, engineering, archeological, and other shallow investigations.

The GSSI SIR-3000 GPR can accept a wide variety of antennas which provide various depths of penetration and levels of resolution. The 400 MHz antenna can achieve depths of penetration up to about 20 feet, but this depth may be greatly reduced due to site-

specific conditions. Signal penetration decreases with increased soil conductivity. Conductive materials attenuate or absorb the GPR signal. As depth increases the return signal becomes weaker. Penetration is the greatest in unsaturated sands and fine gravels. Clayey, highly saline or saturated soils, areas covered by steel reinforced concrete, foundry slag, or other highly conductive materials significantly reduces GPR depth of penetration.

The 400 MHz antenna was configured to transmit to a depth of approximately 10 feet below the subsurface, but actual signal penetration was limited to approximately 1-4 feet below ground surface (bgs). The limiting factors were signal attenuation from near surface soils and reinforced concrete.

Additionally, the 2.0 GHz antenna was utilized. The 2.0 GHz antenna can achieve depths of penetration up to about 12 inches, but this depth may be greatly reduced due to site-specific conditions. Signal penetration decreases with increased subsurface conductivity. Conductive materials attenuate or absorb the GPR signal. As depth increases the return signal becomes weaker. Penetration is the greatest in older well cured concrete. Newly poured cement, or cements with some admixtures can greatly reduce the depth of penetration.

The 2.0 GHz antenna was configured to transmit to a depth of approximately 12 inches below the subsurface, but actual signal penetration was approximately 10 inches. The limiting factor was signal attenuation from the concrete present at the site.

The RD7000 precision utility locator uses radio emission to trace the location of metal bearing utilities. This radio emission can be active or passive. Active tracing requires the attachment of a radio transmitter to the utility, passive tracing uses radio emissions that are present on the utility. Underground electrical utilities typically emit radio signals that this device can detect.

The TW-6 is designed to find pipes, cables and other metallic objects such as underground storage tanks. One surveyor can carry both the transmitter and receiver together, making it ideally suited for exploration type searches of ferrous metal masses. Metal detectors of this type operate by generating a magnetic field at the transmitter which causes metallic objects in the subsurface to generate a secondary magnetic field. The induced secondary field is detected by the receiver, which generates an audible tone equal to the strength of the secondary field.

4.0 SURVEY FINDINGS

All accessible areas within the survey areas were examined during this investigation. All areas were examined with the RD7000 for potential subsurface utilities then surveyed with GPR and TW-6 for other potential anomalies. Based on the data gathered, one soil disturbance was detected throughout the survey areas.

Soil Disturbance

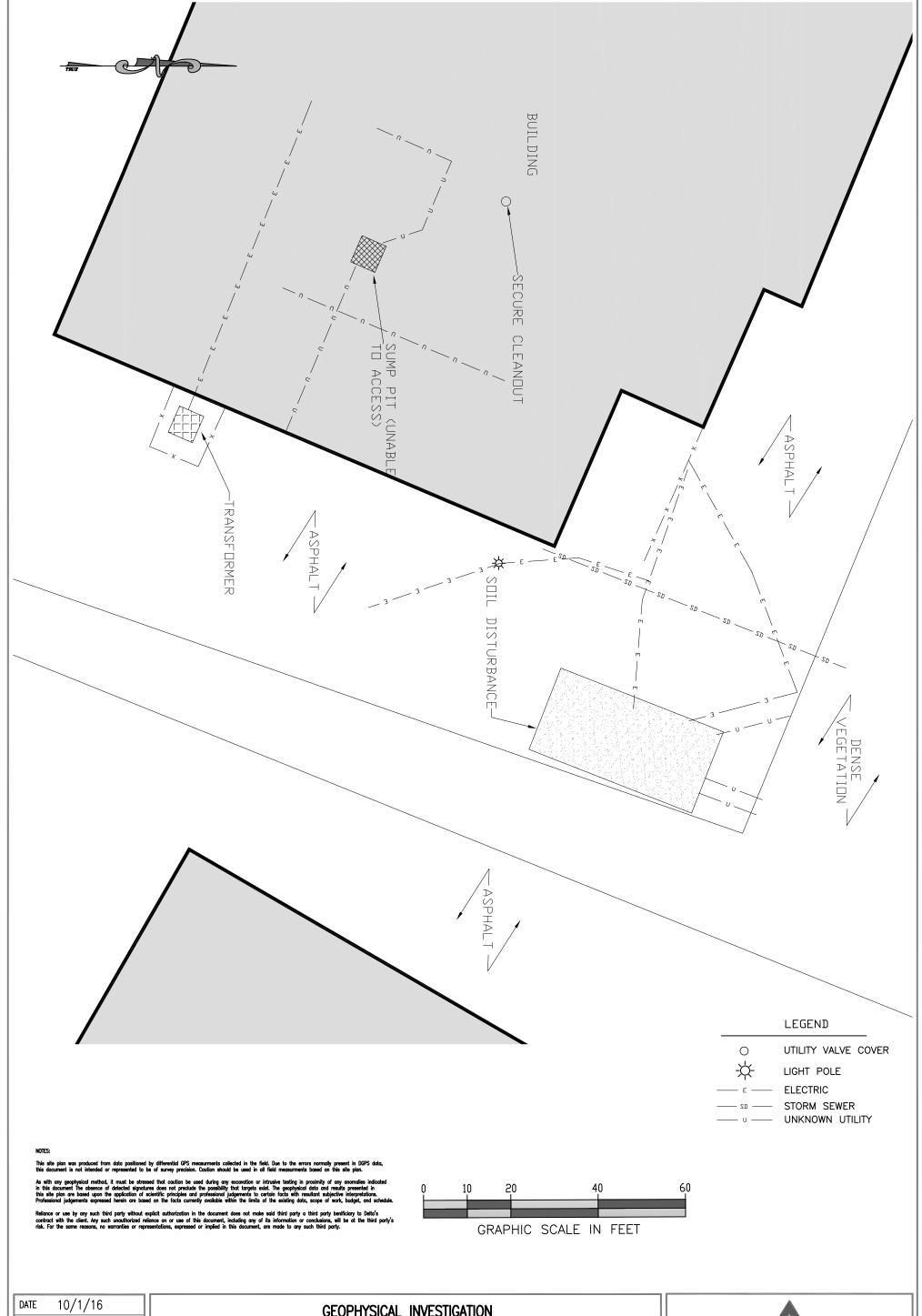
Soil Disturbance was located with GPR. The anomaly measures approximately 40 feet by 20 feet. It is located northeast of Building. GPR transects imaged a disturbance that could be a potential indicator of a former excavation. Additionally, two electric lines and three unknown lines were traced from the anomaly. Dense vegetation limited GPR transects and TW-6 usage over portions of the anomaly.

Utility Survey

Delta performed a utility survey at 79 Hurley Avenue throughout the survey areas. The following utilities were detected: electric and storm sewer. All detectable utilities were marked onsite with appropriate colors. Anomalous features and unknown utilities were marked onsite in pink paint. Site map (100116) is included with all located subsurface features.

5.0 SURVEY LIMITATIONS

GPR (equipped with the 400 MHz antenna) depth of penetration was limited to approximately 1-4 feet bgs. The limiting factor was due to conductive soils and reinforced concrete. GPR (equipped with the 2.0 GHz antenna) depth of penetration was limited to approximately 10 to 11 inches below ground surface. Building walls and dense vegetation limited GPR transects and TW-6 usage over portions of the survey areas. Delta did not have access to buildings located adjacent to the property. Interior access may aid Delta in detecting unknown utilities or utilities otherwise not detectable without a direct connection to the pipe or conduit.


6.0 WARRANTIES AND DISCLAIMER

As with any geophysical method, it must be stressed that caution be used during any excavation or intrusive testing in proximity to any anomalies indicated in this report. In addition, the absence of detected signatures does not preclude the possibility that targets may exist. To the extent the client desires more definitive conclusions than are warranted by the currently available facts; it is specifically Delta's intent that the conclusions stated herein will be intended as guidance.

This report is based upon the application of scientific principles and professional judgment to certain facts with resultant subjective interpretations. Professional judgments expressed herein are based on the facts currently available within the limit or scope of work, budget and schedule. Delta represents that the services were performed in a manner consistent with currently accepted professional practices employed by geophysical/geological consultants under similar circumstances. No other representations to Client, express or implied, and no warranty or guarantee is included or intended in this agreement, or in any report, document, or otherwise.

This report was prepared pursuant to the contract Delta has with the Client. That contractual relationship included an exchange of information about the property that was unique and between Delta and its client and serves as the basis upon which this report was prepared. Because of the importance of the understandings between Delta and its client, reliance or any use of this report by anyone other than the Client, for whom it was prepared, is prohibited and therefore not foreseeable to Delta.

Reliance or use by any such third party without explicit authorization in the report does not make said third party a third party beneficiary to Delta's contract with the Client. Any such unauthorized reliance on or use of this report, including any of its information or conclusions, will be at the third party's risk. For the same reasons, no warranties or representations, expressed or implied in this report, are made to any such third party.

DATE	10/1/16
SCALE	1'' = 20'
DWG NO.	100116
SHT NO.	1 OF 1
PROJECT.	

GEOPHYSICAL INVESTIGATION
79 HURLEY AVENUE, KINGSTON, NEW YORK
FOR
PARTNER ENGINEERING AND SCIENCE

738 Front Street, Catasauqua, PA 18032 Phone: (610) 231-73012

APPENDIX C: LABORATORY ANALYTICAL REPORT

ANALYTICAL REPORT

Lab Number: L1631369

Client: Partner Engineering and Science, Inc.

611 Industrial Way West Eatontown, NJ 07724

ATTN: Andres Simonson Phone: (732) 380-1700

Project Name: THE DAILY FREEMAN

Project Number: 16-159311.2 Report Date: 10/07/16

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NY (11148), CT (PH-0574), NH (2003), NJ NELAP (MA935), RI (LAO00065), ME (MA00086), PA (68-03671), VA (460195), MD (348), IL (200077), NC (666), TX (T104704476), DOD (L2217), USDA (Permit #P-330-11-00240).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: THE DAILY FREEMAN

Project Number: 16-159311.2

Lab Number: L1631369 **Report Date:** 10/07/16

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1631369-01	B1	SOIL	79 HURLEY AVENUE, KINGSTON, NY 12401	10/01/16 09:21	10/01/16
L1631369-02	B2	SOIL	79 HURLEY AVENUE, KINGSTON, NY 12401	10/01/16 09:43	10/01/16
L1631369-03	В3	SOIL	79 HURLEY AVENUE, KINGSTON, NY 12401	10/01/16 10:00	10/01/16
L1631369-04	B4	SOIL	79 HURLEY AVENUE, KINGSTON, NY 12401	10/01/16 10:12	10/01/16
L1631369-05	B5	SOIL	79 HURLEY AVENUE, KINGSTON, NY 12401	10/01/16 10:29	10/01/16
L1631369-06	B6	SOIL	79 HURLEY AVENUE, KINGSTON, NY 12401	10/01/16 10:58	10/01/16
L1631369-07	В7	SOIL	79 HURLEY AVENUE, KINGSTON, NY 12401	10/01/16 12:29	10/01/16
L1631369-08	B8	SOIL	79 HURLEY AVENUE, KINGSTON, NY 12401	10/01/16 12:41	10/01/16
L1631369-09	B2-GW	WATER	79 HURLEY AVENUE, KINGSTON, NY 12401	10/01/16 11:09	10/01/16
L1631369-10	B4-GW	WATER	79 HURLEY AVENUE, KINGSTON, NY 12401	10/01/16 11:17	10/01/16
L1631369-11	B6-GW	WATER	79 HURLEY AVENUE, KINGSTON, NY 12401	10/01/16 11:37	10/01/16
L1631369-12	B7-GW	WATER	79 HURLEY AVENUE, KINGSTON, NY 12401	10/01/16 12:50	10/01/16

Project Name: THE DAILY FREEMAN Lab Number: L1631369

Project Number: 16-159311.2 **Report Date:** 10/07/16

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please conta	act Client Services	s at 800-624-9220	with any questions.

Project Name: THE DAILY FREEMAN Lab Number: L1631369

Project Number: 16-159311.2 **Report Date:** 10/07/16

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Volatile Organics

L1631369-04: The sample has elevated detection limits due to the dilution required by the elevated concentrations of non-target compounds in the sample.

Semivolatile Organics

The WG938816-2/-3 LCS/LCSD recoveries, associated with L1631369-09 through -11, are below the acceptance criteria for benzoic acid (0%/0%); however, it has been identified as a "difficult" analyte. The results of the associated samples are reported.

Semivolatile Organics by SIM

L1631369-10: The sample has elevated detection limits due to the dilution required by the sample matrix.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Wichelle M. Morris

Authorized Signature:

Title: Technical Director/Representative

Date: 10/07/16

ORGANICS

VOLATILES

Project Name: THE DAILY FREEMAN

Project Number: 16-159311.2

SAMPLE RESULTS

Lab Number: L1631369

Report Date: 10/07/16

Lab ID: L1631369-01

Client ID: B1

Sample Location: 79 HURLEY AVENUE, KINGSTON, NY 12401

Matrix: Analytical Method:

1,8260C

Analytical Date: 10/07/16 12:47

Analyst: BD83% Percent Solids:

Date Collected:	10/01/16 09:21
Date Received:	10/01/16
Field Prep:	Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by 8260/5035 - N	Westborough Lab					
Methylene chloride	ND		ug/kg	9.3	1.0	1
1,1-Dichloroethane	ND		ug/kg	1.4	0.08	1
Chloroform	ND		ug/kg	1.4	0.34	1
Carbon tetrachloride	ND		ug/kg	0.93	0.20	1
1,2-Dichloropropane	ND		ug/kg	3.2	0.21	1
Dibromochloromethane	ND		ug/kg	0.93	0.14	1
1,1,2-Trichloroethane	ND		ug/kg	1.4	0.28	1
Tetrachloroethene	ND		ug/kg	0.93	0.13	1
Chlorobenzene	ND		ug/kg	0.93	0.32	1
Trichlorofluoromethane	ND		ug/kg	4.6	0.36	1
1,2-Dichloroethane	ND		ug/kg	0.93	0.10	1
1,1,1-Trichloroethane	ND		ug/kg	0.93	0.10	1
Bromodichloromethane	ND		ug/kg	0.93	0.16	1
trans-1,3-Dichloropropene	ND		ug/kg	0.93	0.11	1
cis-1,3-Dichloropropene	ND		ug/kg	0.93	0.11	1
1,3-Dichloropropene, Total	ND		ug/kg	0.93	0.11	1
1,1-Dichloropropene	ND		ug/kg	4.6	0.13	1
Bromoform	ND		ug/kg	3.7	0.22	1
1,1,2,2-Tetrachloroethane	ND		ug/kg	0.93	0.09	1
Benzene	ND		ug/kg	0.93	0.11	1
Toluene	ND		ug/kg	1.4	0.18	1
Ethylbenzene	ND		ug/kg	0.93	0.12	1
Chloromethane	ND		ug/kg	4.6	0.27	1
Bromomethane	ND		ug/kg	1.8	0.31	1
Vinyl chloride	ND		ug/kg	1.8	0.11	1
Chloroethane	ND		ug/kg	1.8	0.29	1
1,1-Dichloroethene	ND		ug/kg	0.93	0.24	1
trans-1,2-Dichloroethene	ND		ug/kg	1.4	0.20	1
Trichloroethene	ND		ug/kg	0.93	0.12	1
1,2-Dichlorobenzene	ND		ug/kg	4.6	0.14	1

Project Name: THE DAILY FREEMAN Lab Number: L1631369

Project Number: 16-159311.2 **Report Date:** 10/07/16

SAMPLE RESULTS

Lab ID: Date Collected: 10/01/16 09:21

Client ID: B1 Date Received: 10/01/16
Sample Location: 79 HURLEY AVENUE, KINGSTON, NY 12401 Field Prep: Not Specified

Sample Location:	79 HURLEY AVENUE, KINGST	ON, NY 12401	Field	Prep:	Not Specified	
Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor	
Volatile Organics b	y 8260/5035 - Westborough Lab					
1,3-Dichlorobenzene	ND	ug/kg	4.6	0.12	1	
1,4-Dichlorobenzene	ND	ug/kg	4.6	0.13	1	
Methyl tert butyl ether	3.8	ug/kg	1.8	0.08	1	
p/m-Xylene	ND	ug/kg	1.8	0.33	1	
o-Xylene	ND	ug/kg	1.8	0.31	1	
Xylenes, Total	ND	ug/kg	1.8	0.31	1	
cis-1,2-Dichloroethene	ND	ug/kg	0.93	0.13	1	
1,2-Dichloroethene, Total	ND	ug/kg	0.93	0.13	1	
Dibromomethane	ND	ug/kg	9.3	0.15	1	
Styrene	ND	ug/kg	1.8	0.37	1	
Dichlorodifluoromethane	ND	ug/kg	9.3	0.18	1	
Acetone	ND	ug/kg	9.3	0.96	1	
Carbon disulfide	ND	ug/kg	9.3	1.0	1	
2-Butanone	ND	ug/kg	9.3	0.25	1	
Vinyl acetate	ND	ug/kg	9.3	0.12	1	
4-Methyl-2-pentanone	ND	ug/kg	9.3	0.23	1	
1,2,3-Trichloropropane	ND	ug/kg	9.3	0.15	1	
2-Hexanone	ND	ug/kg	9.3	0.62	1	
Bromochloromethane	ND	ug/kg	4.6	0.26	1	
2,2-Dichloropropane	ND	ug/kg	4.6	0.21	1	
1,2-Dibromoethane	ND	ug/kg	3.7	0.16	1	
1,3-Dichloropropane	ND	ug/kg	4.6	0.13	1	
1,1,1,2-Tetrachloroethane	ND ND	ug/kg	0.93	0.30	1	
Bromobenzene	ND	ug/kg	4.6	0.19	1	
n-Butylbenzene	ND	ug/kg	0.93	0.11	1	
sec-Butylbenzene	ND	ug/kg	0.93	0.11	1	
tert-Butylbenzene	ND	ug/kg	4.6	0.12	1	
o-Chlorotoluene	ND	ug/kg	4.6	0.15	1	
p-Chlorotoluene	ND	ug/kg	4.6	0.12	1	
1,2-Dibromo-3-chloroprop	ane ND	ug/kg	4.6	0.37	1	
Hexachlorobutadiene	ND	ug/kg	4.6	0.21	1	
Isopropylbenzene	ND	ug/kg	0.93	0.10	1	
p-Isopropyltoluene	ND	ug/kg	0.93	0.12	1	
Naphthalene	ND	ug/kg	4.6	0.13	1	
Acrylonitrile	ND	ug/kg	9.3	0.48	1	
n-Propylbenzene	ND	ug/kg	0.93	0.10	1	
1,2,3-Trichlorobenzene	ND	ug/kg	4.6	0.14	1	
1,2,4-Trichlorobenzene	ND	ug/kg	4.6	0.17	1	
1,3,5-Trimethylbenzene	ND	ug/kg	4.6	0.13	1	

Project Name: THE DAILY FREEMAN Lab Number: L1631369

Project Number: 16-159311.2 **Report Date:** 10/07/16

SAMPLE RESULTS

Lab ID: L1631369-01 Date Collected: 10/01/16 09:21

Client ID: B1 Date Received: 10/01/16
Sample Location: 79 HURLEY AVENUE, KINGSTON, NY 12401 Field Prep: Not Specified

Parameter Qualifier Units RLMDL **Dilution Factor** Volatile Organics by 8260/5035 - Westborough Lab 1,2,4-Trimethylbenzene ND 0.13 4.6 1 ug/kg ND 1 1,4-Dioxane ug/kg 93 13. ND 1 p-Diethylbenzene 3.7 0.15 ug/kg p-Ethyltoluene ND 3.7 0.12 1 ug/kg 1,2,4,5-Tetramethylbenzene ND ug/kg 3.7 0.12 1 ND 0.24 Ethyl ether 4.6 1 ug/kg trans-1,4-Dichloro-2-butene ND 4.6 0.36 1 ug/kg

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	101		70-130	
Toluene-d8	103		70-130	
4-Bromofluorobenzene	101		70-130	
Dibromofluoromethane	99		70-130	

L1631369

Project Name: THE DAILY FREEMAN

Project Number: 16-159311.2

SAMPLE RESULTS

Report Date: 10/07/16

Lab ID: L1631369-02

Client ID: B2

Sample Location: 79 HURLEY AVENUE, KINGSTON, NY 12401

Matrix: Soil

1,8260C

Analytical Method: Analytical Date: 10/07/16 13:13

Analyst: BD83% Percent Solids:

Date Collected: 10/01/16 09:43

Date Received: 10/01/16

Lab Number:

Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by 8260/5035 -	Westborough Lab					
Methylene chloride	ND		ug/kg	9.3	1.0	1
1,1-Dichloroethane	ND		ug/kg	1.4	0.08	1
Chloroform	ND		ug/kg	1.4	0.34	1
Carbon tetrachloride	ND		ug/kg	0.93	0.19	1
1,2-Dichloropropane	ND		ug/kg	3.2	0.21	1
Dibromochloromethane	ND		ug/kg	0.93	0.14	1
1,1,2-Trichloroethane	ND		ug/kg	1.4	0.28	1
Tetrachloroethene	ND		ug/kg	0.93	0.13	1
Chlorobenzene	ND		ug/kg	0.93	0.32	1
Trichlorofluoromethane	ND		ug/kg	4.6	0.36	1
1,2-Dichloroethane	ND		ug/kg	0.93	0.10	1
1,1,1-Trichloroethane	ND		ug/kg	0.93	0.10	1
Bromodichloromethane	ND		ug/kg	0.93	0.16	1
trans-1,3-Dichloropropene	ND		ug/kg	0.93	0.11	1
cis-1,3-Dichloropropene	ND		ug/kg	0.93	0.11	1
1,3-Dichloropropene, Total	ND		ug/kg	0.93	0.11	1
1,1-Dichloropropene	ND		ug/kg	4.6	0.13	1
Bromoform	ND		ug/kg	3.7	0.22	1
1,1,2,2-Tetrachloroethane	ND		ug/kg	0.93	0.09	1
Benzene	ND		ug/kg	0.93	0.11	1
Toluene	ND		ug/kg	1.4	0.18	1
Ethylbenzene	ND		ug/kg	0.93	0.12	1
Chloromethane	ND		ug/kg	4.6	0.27	1
Bromomethane	ND		ug/kg	1.8	0.31	1
Vinyl chloride	ND		ug/kg	1.8	0.11	1
Chloroethane	ND		ug/kg	1.8	0.29	1
1,1-Dichloroethene	ND		ug/kg	0.93	0.24	1
trans-1,2-Dichloroethene	ND		ug/kg	1.4	0.20	1
Trichloroethene	ND		ug/kg	0.93	0.12	1
1,2-Dichlorobenzene	ND		ug/kg	4.6	0.14	1

Project Name: THE DAILY FREEMAN Lab Number: L1631369

Project Number: 16-159311.2 **Report Date:** 10/07/16

SAMPLE RESULTS

Lab ID: Date Collected: 10/01/16 09:43

Client ID: B2 Date Received: 10/01/16
Sample Location: 79 HURLEY AVENUE, KINGSTON, NY 12401 Field Prep: Not Specified

bample Location. 19 HONLL I	AVENUE, KINGOTO	14, 141 12401		i icia i ic	-p.	Not Specified
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by 8260/5035 - V	Vestborough Lab					
1,3-Dichlorobenzene	ND		ug/kg	4.6	0.12	1
1,4-Dichlorobenzene	ND		ug/kg	4.6	0.13	1
Methyl tert butyl ether	1.5	J	ug/kg	1.8	0.08	1
o/m-Xylene	ND		ug/kg	1.8	0.32	1
o-Xylene	ND		ug/kg	1.8	0.31	1
Kylenes, Total	ND		ug/kg	1.8	0.31	1
cis-1,2-Dichloroethene	ND		ug/kg	0.93	0.13	1
1,2-Dichloroethene, Total	ND		ug/kg	0.93	0.13	1
Dibromomethane	ND		ug/kg	9.3	0.15	1
Styrene	ND		ug/kg	1.8	0.37	1
Dichlorodifluoromethane	ND		ug/kg	9.3	0.18	1
Acetone	ND		ug/kg	9.3	0.96	1
Carbon disulfide	ND		ug/kg	9.3	1.0	1
2-Butanone	ND		ug/kg	9.3	0.25	1
/inyl acetate	ND		ug/kg	9.3	0.12	1
4-Methyl-2-pentanone	ND		ug/kg	9.3	0.23	1
1,2,3-Trichloropropane	ND		ug/kg	9.3	0.15	1
2-Hexanone	ND		ug/kg	9.3	0.62	1
Bromochloromethane	ND		ug/kg	4.6	0.26	1
2,2-Dichloropropane	ND		ug/kg	4.6	0.21	1
1,2-Dibromoethane	ND		ug/kg	3.7	0.16	1
1,3-Dichloropropane	ND		ug/kg	4.6	0.13	1
1,1,1,2-Tetrachloroethane	ND		ug/kg	0.93	0.29	1
Bromobenzene	ND		ug/kg	4.6	0.19	1
n-Butylbenzene	ND		ug/kg	0.93	0.11	1
sec-Butylbenzene	ND		ug/kg	0.93	0.11	1
ert-Butylbenzene	ND		ug/kg	4.6	0.12	1
o-Chlorotoluene	ND		ug/kg	4.6	0.15	1
o-Chlorotoluene	ND		ug/kg	4.6	0.12	1
1,2-Dibromo-3-chloropropane	ND		ug/kg	4.6	0.37	1
Hexachlorobutadiene	ND		ug/kg	4.6	0.21	1
sopropylbenzene	ND		ug/kg	0.93	0.10	1
p-Isopropyltoluene	ND		ug/kg	0.93	0.12	1
Naphthalene	ND		ug/kg	4.6	0.13	1
Acrylonitrile	ND		ug/kg	9.3	0.48	1
n-Propylbenzene	ND		ug/kg	0.93	0.10	1
1,2,3-Trichlorobenzene	ND		ug/kg	4.6	0.14	1
1,2,4-Trichlorobenzene	ND		ug/kg	4.6	0.17	1
1,3,5-Trimethylbenzene	ND		ug/kg	4.6	0.13	1

Project Name: THE DAILY FREEMAN Lab Number: L1631369

Project Number: 16-159311.2 **Report Date:** 10/07/16

SAMPLE RESULTS

Lab ID: L1631369-02 Date Collected: 10/01/16 09:43

Client ID: B2 Date Received: 10/01/16
Sample Location: 79 HURLEY AVENUE, KINGSTON, NY 12401 Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by 8260/5035 - Westbo	rough Lab						
1,2,4-Trimethylbenzene	ND		ug/kg	4.6	0.13	1	
1,4-Dioxane	ND		ug/kg	93	13.	1	
p-Diethylbenzene	ND		ug/kg	3.7	0.15	1	
p-Ethyltoluene	ND		ug/kg	3.7	0.11	1	
1,2,4,5-Tetramethylbenzene	ND		ug/kg	3.7	0.12	1	
Ethyl ether	ND		ug/kg	4.6	0.24	1	
trans-1,4-Dichloro-2-butene	ND		ug/kg	4.6	0.36	1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	104		70-130	
Toluene-d8	101		70-130	
4-Bromofluorobenzene	100		70-130	
Dibromofluoromethane	100		70-130	

Project Name: THE DAILY FREEMAN

Project Number: 16-159311.2

SAMPLE RESULTS

Lab Number: L1631369

Report Date: 10/07/16

Qualifier

Result

Units

RL

Lab ID: L1631369-03

Client ID: В3

Sample Location: 79 HURLEY AVENUE, KINGSTON, NY 12401

Matrix:

Analytical Method: 1,8260C

Analytical Date: 10/07/16 13:39

Analyst: BD76% Percent Solids:

Parameter

Date Collected:	10/01/16 10:00
Date Received:	10/01/16
Field Prep:	Not Specified

MDL

Dilution Factor

Volatile Organics by 8260/5035 - \	Westborough Lab						
Methylene chloride	ND		ug/kg	9.9	1.1	1	
1,1-Dichloroethane	ND		ug/kg	1.5	0.09	1	
Chloroform	ND		ug/kg	1.5	0.37	1	
Carbon tetrachloride	ND		ug/kg	0.99	0.21	1	
1,2-Dichloropropane	ND		ug/kg	3.5	0.23	1	
Dibromochloromethane	ND		ug/kg	0.99	0.15	1	
1,1,2-Trichloroethane	ND		ug/kg	1.5	0.30	1	
Tetrachloroethene	ND		ug/kg	0.99	0.14	1	
Chlorobenzene	ND		ug/kg	0.99	0.34	1	
Trichlorofluoromethane	ND		ug/kg	5.0	0.38	1	
1,2-Dichloroethane	ND		ug/kg	0.99	0.11	1	
1,1,1-Trichloroethane	ND		ug/kg	0.99	0.11	1	
Bromodichloromethane	ND		ug/kg	0.99	0.17	1	
trans-1,3-Dichloropropene	ND		ug/kg	0.99	0.12	1	
cis-1,3-Dichloropropene	ND		ug/kg	0.99	0.12	1	
1,3-Dichloropropene, Total	ND		ug/kg	0.99	0.12	1	
1,1-Dichloropropene	ND		ug/kg	5.0	0.14	1	
Bromoform	ND		ug/kg	4.0	0.23	1	
1,1,2,2-Tetrachloroethane	ND		ug/kg	0.99	0.10	1	
Benzene	1.0		ug/kg	0.99	0.12	1	
Toluene	0.19	J	ug/kg	1.5	0.19	1	
Ethylbenzene	79		ug/kg	0.99	0.13	1	
Chloromethane	ND		ug/kg	5.0	0.29	1	
Bromomethane	ND		ug/kg	2.0	0.34	1	
Vinyl chloride	ND		ug/kg	2.0	0.12	1	
Chloroethane	ND		ug/kg	2.0	0.31	1	
1,1-Dichloroethene	ND		ug/kg	0.99	0.26	1	
trans-1,2-Dichloroethene	ND		ug/kg	1.5	0.21	1	
Trichloroethene	ND		ug/kg	0.99	0.12	1	
1,2-Dichlorobenzene	ND		ug/kg	5.0	0.15	1	

Project Name: THE DAILY FREEMAN Lab Number: L1631369

Project Number: 16-159311.2 **Report Date:** 10/07/16

SAMPLE RESULTS

Lab ID: L1631369-03 Date Collected: 10/01/16 10:00

Client ID: B3 Date Received: 10/01/16
Sample Location: 79 HURLEY AVENUE, KINGSTON, NY 12401 Field Prep: Not Specified

Sample Location:	79 HURLEY AVENUE, KING	STON, NY 12	2401	Field Pre	ep:	Not Specified
Parameter	Resu	ılt Qualifi	er Units	RL	MDL	Dilution Factor
Volatile Organics by	y 8260/5035 - Westborough Lat)				
1,3-Dichlorobenzene	NE)	ug/kg	5.0	0.13	1
1,4-Dichlorobenzene	NE)	ug/kg	5.0	0.14	1
Methyl tert butyl ether	2.8		ug/kg	2.0	0.08	1
p/m-Xylene	9.9		ug/kg	2.0	0.35	1
o-Xylene	0.8	1 J	ug/kg	2.0	0.34	1
Xylenes, Total	11	J	ug/kg	2.0	0.34	1
cis-1,2-Dichloroethene	NE)	ug/kg	0.99	0.14	1
1,2-Dichloroethene, Total	NE)	ug/kg	0.99	0.14	1
Dibromomethane	NE)	ug/kg	9.9	0.16	1
Styrene	NE)	ug/kg	2.0	0.40	1
Dichlorodifluoromethane	NE)	ug/kg	9.9	0.19	1
Acetone	19		ug/kg	9.9	1.0	1
Carbon disulfide	NE)	ug/kg	9.9	1.1	1
2-Butanone	NE)	ug/kg	9.9	0.27	1
Vinyl acetate	NE		ug/kg	9.9	0.13	1
4-Methyl-2-pentanone	NE)	ug/kg	9.9	0.24	1
1,2,3-Trichloropropane	NE)	ug/kg	9.9	0.16	1
2-Hexanone	NE)	ug/kg	9.9	0.66	1
Bromochloromethane	NE)	ug/kg	5.0	0.27	1
2,2-Dichloropropane	NE)	ug/kg	5.0	0.22	1
1,2-Dibromoethane	NE)	ug/kg	4.0	0.17	1
1,3-Dichloropropane	NE	•	ug/kg	5.0	0.14	1
1,1,1,2-Tetrachloroethane	NE)	ug/kg	0.99	0.32	1
Bromobenzene	NE)	ug/kg	5.0	0.21	1
n-Butylbenzene	6.6	;	ug/kg	0.99	0.11	1
sec-Butylbenzene	2.4		ug/kg	0.99	0.12	1
tert-Butylbenzene	NE)	ug/kg	5.0	0.13	1
o-Chlorotoluene	NE)	ug/kg	5.0	0.16	1
p-Chlorotoluene	NE)	ug/kg	5.0	0.13	1
1,2-Dibromo-3-chloroprop	ane NE)	ug/kg	5.0	0.39	1
Hexachlorobutadiene	NE)	ug/kg	5.0	0.23	1
Isopropylbenzene	10		ug/kg	0.99	0.10	1
p-Isopropyltoluene	0.9	9	ug/kg	0.99	0.12	1
Naphthalene	79		ug/kg	5.0	0.14	1
Acrylonitrile	NE)	ug/kg	9.9	0.51	1
n-Propylbenzene	32		ug/kg	0.99	0.11	1
1,2,3-Trichlorobenzene	NE)	ug/kg	5.0	0.15	1
1,2,4-Trichlorobenzene	NE)	ug/kg	5.0	0.18	1
1,3,5-Trimethylbenzene	27		ug/kg	5.0	0.14	1
•			5 5			

Project Name: THE DAILY FREEMAN Lab Number: L1631369

Project Number: 16-159311.2 **Report Date:** 10/07/16

SAMPLE RESULTS

Lab ID: Date Collected: 10/01/16 10:00

Client ID: B3 Date Received: 10/01/16
Sample Location: 79 HURLEY AVENUE, KINGSTON, NY 12401 Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by 8260/5035 - W	estborough Lab						
1,2,4-Trimethylbenzene	12		ug/kg	5.0	0.14	1	
1,4-Dioxane	ND		ug/kg	99	14.	1	
p-Diethylbenzene	5.4		ug/kg	4.0	0.16	1	
p-Ethyltoluene	17		ug/kg	4.0	0.12	1	
1,2,4,5-Tetramethylbenzene	25		ug/kg	4.0	0.13	1	
Ethyl ether	ND		ug/kg	5.0	0.26	1	
trans-1,4-Dichloro-2-butene	ND		ug/kg	5.0	0.39	1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	113		70-130	
Toluene-d8	102		70-130	
4-Bromofluorobenzene	102		70-130	
Dibromofluoromethane	85		70-130	

Project Name: THE DAILY FREEMAN

Project Number: 16-159311.2

SAMPLE RESULTS

L1631369

Lab Number:

Report Date: 10/07/16

Lab ID: L1631369-04 D

Client ID: B4

Sample Location: 79 HURLEY AVENUE, KINGSTON, NY 12401

Matrix: Analytical Method: 1,8260C

Analytical Date: 10/07/16 14:06

Analyst: JC 76% Percent Solids:

Date Collected: 10/01/16 10:12

Date Received: 10/01/16 Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by 8260/5035 - V	Westborough Lab					
Methylene chloride	ND		ug/kg	14000	1500	20
1,1-Dichloroethane	ND		ug/kg	2100	120	20
Chloroform	ND		ug/kg	2100	520	20
Carbon tetrachloride	ND		ug/kg	1400	290	20
1,2-Dichloropropane	ND		ug/kg	4900	320	20
Dibromochloromethane	ND		ug/kg	1400	210	20
1,1,2-Trichloroethane	ND		ug/kg	2100	420	20
Tetrachloroethene	ND		ug/kg	1400	200	20
Chlorobenzene	ND		ug/kg	1400	480	20
Trichlorofluoromethane	ND		ug/kg	7000	540	20
1,2-Dichloroethane	ND		ug/kg	1400	160	20
1,1,1-Trichloroethane	ND		ug/kg	1400	150	20
Bromodichloromethane	ND		ug/kg	1400	240	20
trans-1,3-Dichloropropene	ND		ug/kg	1400	170	20
cis-1,3-Dichloropropene	ND		ug/kg	1400	160	20
1,3-Dichloropropene, Total	ND		ug/kg	1400	160	20
1,1-Dichloropropene	ND		ug/kg	7000	200	20
Bromoform	ND		ug/kg	5600	330	20
1,1,2,2-Tetrachloroethane	ND		ug/kg	1400	140	20
Benzene	1000	J	ug/kg	1400	160	20
Toluene	400	J	ug/kg	2100	270	20
Ethylbenzene	6100		ug/kg	1400	180	20
Chloromethane	ND		ug/kg	7000	410	20
Bromomethane	ND		ug/kg	2800	470	20
Vinyl chloride	ND		ug/kg	2800	160	20
Chloroethane	ND		ug/kg	2800	440	20
1,1-Dichloroethene	ND		ug/kg	1400	360	20
trans-1,2-Dichloroethene	ND		ug/kg	2100	300	20
Trichloroethene	ND		ug/kg	1400	170	20
1,2-Dichlorobenzene	ND		ug/kg	7000	210	20

Project Name: THE DAILY FREEMAN Lab Number: L1631369

Project Number: 16-159311.2 **Report Date:** 10/07/16

SAMPLE RESULTS

Lab ID: L1631369-04 D Date Collected: 10/01/16 10:12

Client ID: B4 Date Received: 10/01/16
Sample Location: 79 HURLEY AVENUE, KINGSTON, NY 12401 Field Prep: Not Specified

Sample Location. 19 HoreL I	AVENUE, KINGSTO	IN, INI 12401		riela riep.		Not Specified
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by 8260/5035 -	Westborough Lab					
1,3-Dichlorobenzene	ND		ug/kg	7000	190	20
1,4-Dichlorobenzene	ND		ug/kg	7000	190	20
Methyl tert butyl ether	ND		ug/kg	2800	120	20
p/m-Xylene	4800		ug/kg	2800	490	20
o-Xylene	540	J	ug/kg	2800	470	20
Xylenes, Total	5300	J	ug/kg	2800	470	20
cis-1,2-Dichloroethene	ND		ug/kg	1400	200	20
1,2-Dichloroethene, Total	ND		ug/kg	1400	200	20
Dibromomethane	ND		ug/kg	14000	230	20
Styrene	ND		ug/kg	2800	560	20
Dichlorodifluoromethane	ND		ug/kg	14000	270	20
Acetone	ND		ug/kg	14000	1400	20
Carbon disulfide	ND		ug/kg	14000	1500	20
2-Butanone	ND		ug/kg	14000	380	20
Vinyl acetate	ND		ug/kg	14000	180	20
4-Methyl-2-pentanone	ND		ug/kg	14000	340	20
1,2,3-Trichloropropane	ND		ug/kg	14000	230	20
2-Hexanone	ND		ug/kg	14000	930	20
Bromochloromethane	ND		ug/kg	7000	380	20
2,2-Dichloropropane	ND		ug/kg	7000	320	20
1,2-Dibromoethane	ND		ug/kg	5600	240	20
1,3-Dichloropropane	ND		ug/kg	7000	200	20
1,1,1,2-Tetrachloroethane	ND		ug/kg	1400	440	20
Bromobenzene	ND		ug/kg	7000	290	20
n-Butylbenzene	2200		ug/kg	1400	160	20
sec-Butylbenzene	570	J	ug/kg	1400	170	20
tert-Butylbenzene	ND		ug/kg	7000	190	20
o-Chlorotoluene	ND		ug/kg	7000	220	20
p-Chlorotoluene	ND		ug/kg	7000	180	20
1,2-Dibromo-3-chloropropane	ND		ug/kg	7000	550	20
Hexachlorobutadiene	ND		ug/kg	7000	320	20
Isopropylbenzene	830	J	ug/kg	1400	140	20
p-Isopropyltoluene	450	J	ug/kg	1400	170	20
Naphthalene	1900	J	ug/kg	7000	190	20
Acrylonitrile	ND		ug/kg	14000	720	20
n-Propylbenzene	3000		ug/kg	1400	150	20
1,2,3-Trichlorobenzene	ND		ug/kg	7000	200	20
1,2,4-Trichlorobenzene	ND		ug/kg	7000	250	20
1,3,5-Trimethylbenzene	430	J	ug/kg	7000	200	20

10/01/16 10:12

Project Name: THE DAILY FREEMAN Lab Number: L1631369

Project Number: 16-159311.2 **Report Date:** 10/07/16

SAMPLE RESULTS

Lab ID: L1631369-04 D Date Collected:

Client ID: B4 Date Received: 10/01/16
Sample Location: 79 HURLEY AVENUE, KINGSTON, NY 12401 Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by 8260/5035 - V	Vestborough Lab						
1,2,4-Trimethylbenzene	17000		ug/kg	7000	200	20	
1,4-Dioxane	ND		ug/kg	140000	20000	20	
p-Diethylbenzene	3000	J	ug/kg	5600	220	20	
p-Ethyltoluene	6200		ug/kg	5600	170	20	
1,2,4,5-Tetramethylbenzene	5200	J	ug/kg	5600	180	20	
Ethyl ether	ND		ug/kg	7000	360	20	
trans-1,4-Dichloro-2-butene	ND		ug/kg	7000	550	20	

	Acceptance					
Surrogate	% Recovery	Qualifier	Criteria			
1,2-Dichloroethane-d4	88		70-130			
Toluene-d8	93		70-130			
4-Bromofluorobenzene	90		70-130			
Dibromofluoromethane	101		70-130			

L1631369

Project Name: THE DAILY FREEMAN

Project Number: 16-159311.2

SAMPLE RESULTS

Lab Number:

Report Date: 10/07/16

Lab ID: L1631369-05

Client ID: **B**5

Sample Location: 79 HURLEY AVENUE, KINGSTON, NY 12401

Matrix: Soil

Analytical Method: 1,8260C

Analytical Date: 10/07/16 14:05

Analyst: BD80% Percent Solids:

Date Collected: 10/01/16 10:29

Date Received: 10/01/16

Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by 8260/5035 - V	Vestborough Lab					
Methylene chloride	ND		ug/kg	9.3	1.0	1
1,1-Dichloroethane	ND		ug/kg	1.4	0.08	1
Chloroform	ND		ug/kg	1.4	0.34	1
Carbon tetrachloride	ND		ug/kg	0.93	0.20	1
1,2-Dichloropropane	ND		ug/kg	3.3	0.21	1
Dibromochloromethane	ND		ug/kg	0.93	0.14	1
1,1,2-Trichloroethane	ND		ug/kg	1.4	0.28	1
Tetrachloroethene	ND		ug/kg	0.93	0.13	1
Chlorobenzene	ND		ug/kg	0.93	0.32	1
Trichlorofluoromethane	ND		ug/kg	4.7	0.36	1
1,2-Dichloroethane	ND		ug/kg	0.93	0.10	1
1,1,1-Trichloroethane	ND		ug/kg	0.93	0.10	1
Bromodichloromethane	ND		ug/kg	0.93	0.16	1
trans-1,3-Dichloropropene	ND		ug/kg	0.93	0.11	1
cis-1,3-Dichloropropene	ND		ug/kg	0.93	0.11	1
1,3-Dichloropropene, Total	ND		ug/kg	0.93	0.11	1
1,1-Dichloropropene	ND		ug/kg	4.7	0.13	1
Bromoform	ND		ug/kg	3.7	0.22	1
1,1,2,2-Tetrachloroethane	ND		ug/kg	0.93	0.09	1
Benzene	ND		ug/kg	0.93	0.11	1
Toluene	ND		ug/kg	1.4	0.18	1
Ethylbenzene	0.16	J	ug/kg	0.93	0.12	1
Chloromethane	ND		ug/kg	4.7	0.27	1
Bromomethane	ND		ug/kg	1.9	0.32	1
Vinyl chloride	ND		ug/kg	1.9	0.11	1
Chloroethane	ND		ug/kg	1.9	0.29	1
1,1-Dichloroethene	ND		ug/kg	0.93	0.24	1
trans-1,2-Dichloroethene	ND		ug/kg	1.4	0.20	1
Trichloroethene	ND		ug/kg	0.93	0.12	1
1,2-Dichlorobenzene	ND		ug/kg	4.7	0.14	1

Project Name: THE DAILY FREEMAN Lab Number: L1631369

Project Number: 16-159311.2 **Report Date:** 10/07/16

SAMPLE RESULTS

Lab ID: L1631369-05 Date Collected: 10/01/16 10:29

Client ID: B5 Date Received: 10/01/16
Sample Location: 79 HURLEY AVENUE, KINGSTON, NY 12401 Field Prep: Not Specified

Sample Location.	19 HUKLET	AVENUE, KINGSTON	N, INT 1240	I	Fleid Pie	₽p.	Not Specified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by	8260/5035 - W	/estborough Lab					
1,3-Dichlorobenzene		ND		ug/kg	4.7	0.12	1
1,4-Dichlorobenzene		ND		ug/kg	4.7	0.13	1
Methyl tert butyl ether		130		ug/kg	1.9	0.08	1
p/m-Xylene		ND		ug/kg	1.9	0.33	1
o-Xylene		ND		ug/kg	1.9	0.32	1
Xylenes, Total		ND		ug/kg	1.9	0.32	1
cis-1,2-Dichloroethene		ND		ug/kg	0.93	0.13	1
1,2-Dichloroethene, Total		ND		ug/kg	0.93	0.13	1
Dibromomethane		ND		ug/kg	9.3	0.15	1
Styrene		ND		ug/kg	1.9	0.38	1
Dichlorodifluoromethane		ND		ug/kg	9.3	0.18	1
Acetone		ND		ug/kg	9.3	0.97	1
Carbon disulfide		ND		ug/kg	9.3	1.0	1
2-Butanone		ND		ug/kg	9.3	0.25	1
Vinyl acetate		ND		ug/kg	9.3	0.12	1
4-Methyl-2-pentanone		ND		ug/kg	9.3	0.23	1
1,2,3-Trichloropropane		ND		ug/kg	9.3	0.15	1
2-Hexanone		ND		ug/kg	9.3	0.62	1
Bromochloromethane		ND		ug/kg	4.7	0.26	1
2,2-Dichloropropane		ND		ug/kg	4.7	0.21	1
1,2-Dibromoethane		ND		ug/kg	3.7	0.16	1
1,3-Dichloropropane		ND		ug/kg	4.7	0.14	1
1,1,1,2-Tetrachloroethane		ND		ug/kg	0.93	0.30	1
Bromobenzene		ND		ug/kg	4.7	0.19	1
n-Butylbenzene		ND		ug/kg	0.93	0.11	1
sec-Butylbenzene		ND		ug/kg	0.93	0.11	1
tert-Butylbenzene		ND		ug/kg	4.7	0.13	1
o-Chlorotoluene		ND		ug/kg	4.7	0.15	1
p-Chlorotoluene		ND		ug/kg	4.7	0.12	1
1,2-Dibromo-3-chloropropar	ne	ND		ug/kg	4.7	0.37	1
Hexachlorobutadiene		ND		ug/kg	4.7	0.21	1
Isopropylbenzene		ND		ug/kg	0.93	0.10	1
p-Isopropyltoluene		ND		ug/kg	0.93	0.12	1
Naphthalene		0.61	J	ug/kg	4.7	0.13	1
Acrylonitrile		ND		ug/kg	9.3	0.48	1
n-Propylbenzene		ND		ug/kg	0.93	0.10	1
		110					
		ND		ug/kg	4.7	0.14	1
1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene					4.7 4.7	0.14 0.17	1

Project Name: THE DAILY FREEMAN Lab Number: L1631369

Project Number: 16-159311.2 **Report Date:** 10/07/16

SAMPLE RESULTS

Lab ID: L1631369-05 Date Collected: 10/01/16 10:29

Client ID: B5 Date Received: 10/01/16
Sample Location: 79 HURLEY AVENUE, KINGSTON, NY 12401 Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by 8260/5035 - Wes	tborough Lab						
1,2,4-Trimethylbenzene	ND		ug/kg	4.7	0.13	1	
p-Diethylbenzene	ND		ug/kg	3.7	0.15	1	
p-Ethyltoluene	ND		ug/kg	3.7	0.12	1	
1,2,4,5-Tetramethylbenzene	ND		ug/kg	3.7	0.12	1	
Ethyl ether	1.3	J	ug/kg	4.7	0.24	1	
trans-1,4-Dichloro-2-butene	ND		ug/kg	4.7	0.36	1	

		Acceptance					
Surrogate	% Recovery	Qualifier	Criteria				
1,2-Dichloroethane-d4	102		70-130				
Toluene-d8	104		70-130				
4-Bromofluorobenzene	102		70-130				
Dibromofluoromethane	99		70-130				

L1631369

Project Name: THE DAILY FREEMAN

Project Number: 16-159311.2

SAMPLE RESULTS

Report Date: 10/07/16

Lab Number:

Lab ID: L1631369-06

Client ID: B6

Sample Location: 79 HURLEY AVENUE, KINGSTON, NY 12401

Matrix:

Analytical Method: 1,8260C

Analytical Date: 10/07/16 16:15

Analyst: BD85% Percent Solids:

Date Collected:	10/01/16 10:58
Date Received:	10/01/16
Field Prep:	Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by 8260/5035 - W	estborough Lab					
Methylene chloride	ND		ug/kg	8.8	0.97	1
1,1-Dichloroethane	ND		ug/kg	1.3	0.08	1
Chloroform	ND		ug/kg	1.3	0.33	1
Carbon tetrachloride	ND		ug/kg	0.88	0.18	1
1,2-Dichloropropane	ND		ug/kg	3.1	0.20	1
Dibromochloromethane	ND		ug/kg	0.88	0.14	1
1,1,2-Trichloroethane	ND		ug/kg	1.3	0.27	1
Tetrachloroethene	ND		ug/kg	0.88	0.12	1
Chlorobenzene	ND		ug/kg	0.88	0.31	1
Trichlorofluoromethane	ND		ug/kg	4.4	0.34	1
1,2-Dichloroethane	ND		ug/kg	0.88	0.10	1
1,1,1-Trichloroethane	ND		ug/kg	0.88	0.10	1
Bromodichloromethane	ND		ug/kg	0.88	0.15	1
trans-1,3-Dichloropropene	ND		ug/kg	0.88	0.11	1
cis-1,3-Dichloropropene	ND		ug/kg	0.88	0.10	1
1,3-Dichloropropene, Total	ND		ug/kg	0.88	0.10	1
1,1-Dichloropropene	ND		ug/kg	4.4	0.12	1
Bromoform	ND		ug/kg	3.5	0.21	1
1,1,2,2-Tetrachloroethane	ND		ug/kg	0.88	0.09	1
Benzene	ND		ug/kg	0.88	0.10	1
Toluene	ND		ug/kg	1.3	0.17	1
Ethylbenzene	ND		ug/kg	0.88	0.11	1
Chloromethane	ND		ug/kg	4.4	0.26	1
Bromomethane	ND		ug/kg	1.8	0.30	1
Vinyl chloride	ND		ug/kg	1.8	0.10	1
Chloroethane	ND		ug/kg	1.8	0.28	1
1,1-Dichloroethene	ND		ug/kg	0.88	0.23	1
trans-1,2-Dichloroethene	ND		ug/kg	1.3	0.19	1
Trichloroethene	ND		ug/kg	0.88	0.11	1
1,2-Dichlorobenzene	ND		ug/kg	4.4	0.14	1

Project Name: THE DAILY FREEMAN Lab Number: L1631369

Project Number: 16-159311.2 **Report Date:** 10/07/16

SAMPLE RESULTS

Lab ID: Date Collected: 10/01/16 10:58

Client ID: B6 Date Received: 10/01/16
Sample Location: 79 HURLEY AVENUE, KINGSTON, NY 12401 Field Prep: Not Specified

					-
Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor
Volatile Organics by 8	3260/5035 - Westborough Lab				
1,3-Dichlorobenzene	ND	ug/kg	4.4	0.12	1
1,4-Dichlorobenzene	ND	ug/kg	4.4	0.12	1
Methyl tert butyl ether	ND	ug/kg	1.8	0.07	1
p/m-Xylene	ND	ug/kg	1.8	0.31	1
o-Xylene	ND	ug/kg	1.8	0.30	1
Xylenes, Total	ND	ug/kg	1.8	0.30	1
cis-1,2-Dichloroethene	ND	ug/kg	0.88	0.12	1
1,2-Dichloroethene, Total	ND	ug/kg	0.88	0.12	1
Dibromomethane	ND	ug/kg	8.8	0.14	1
Styrene	ND	ug/kg	1.8	0.35	1
Dichlorodifluoromethane	ND	ug/kg	8.8	0.17	1
Acetone	19	ug/kg	8.8	0.91	1
Carbon disulfide	ND	ug/kg	8.8	0.97	1
2-Butanone	ND	ug/kg	8.8	0.24	1
Vinyl acetate	ND	ug/kg	8.8	0.12	1
4-Methyl-2-pentanone	ND	ug/kg	8.8	0.22	1
1,2,3-Trichloropropane	ND	ug/kg	8.8	0.14	1
2-Hexanone	ND	ug/kg	8.8	0.59	1
Bromochloromethane	ND	ug/kg	4.4	0.24	1
2,2-Dichloropropane	ND	ug/kg	4.4	0.20	1
1,2-Dibromoethane	ND	ug/kg	3.5	0.15	1
1,3-Dichloropropane	ND	ug/kg	4.4	0.13	1
1,1,1,2-Tetrachloroethane	ND	ug/kg	0.88	0.28	1
Bromobenzene	ND	ug/kg	4.4	0.18	1
n-Butylbenzene	ND	ug/kg	0.88	0.10	1
sec-Butylbenzene	ND	ug/kg	0.88	0.11	1
tert-Butylbenzene	ND	ug/kg	4.4	0.12	1
o-Chlorotoluene	ND	ug/kg	4.4	0.14	1
p-Chlorotoluene	ND	ug/kg	4.4	0.12	1
1,2-Dibromo-3-chloropropane	e ND	ug/kg	4.4	0.35	1
Hexachlorobutadiene	ND	ug/kg	4.4	0.20	1
Isopropylbenzene	ND	ug/kg	0.88	0.09	1
p-Isopropyltoluene	ND	ug/kg	0.88	0.11	1
Naphthalene	ND	ug/kg	4.4	0.12	1
Acrylonitrile	ND	ug/kg	8.8	0.45	1
n-Propylbenzene	ND	ug/kg	0.88	0.10	1
			4.4	0.13	1
	ND	ug/kg	4.4	0.13	ı
1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene	ND ND	ug/kg ug/kg	4.4	0.13	1

Project Name: THE DAILY FREEMAN Lab Number: L1631369

Project Number: 16-159311.2 **Report Date:** 10/07/16

SAMPLE RESULTS

Lab ID: L1631369-06 Date Collected: 10/01/16 10:58

Client ID: B6 Date Received: 10/01/16
Sample Location: 79 HURLEY AVENUE, KINGSTON, NY 12401 Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by 8260/5035 - W	estborough Lab						
1,2,4-Trimethylbenzene	ND		ug/kg	4.4	0.12	1	
1,4-Dioxane	ND		ug/kg	88	13.	1	
p-Diethylbenzene	ND		ug/kg	3.5	0.14	1	
p-Ethyltoluene	ND		ug/kg	3.5	0.11	1	
1,2,4,5-Tetramethylbenzene	ND		ug/kg	3.5	0.11	1	
Ethyl ether	ND		ug/kg	4.4	0.23	1	
trans-1,4-Dichloro-2-butene	ND		ug/kg	4.4	0.34	1	

Surrogate	% Recovery	Qualifier	Acceptance Qualifier Criteria			
1,2-Dichloroethane-d4	110		70-130			
Toluene-d8	101		70-130			
4-Bromofluorobenzene	101		70-130			
Dibromofluoromethane	100		70-130			

L1631369

Project Name: THE DAILY FREEMAN

Project Number: 16-159311.2

SAMPLE RESULTS

Lab Number:

Report Date: 10/07/16

Lab ID: L1631369-07

Client ID: B7

Sample Location: 79 HURLEY AVENUE, KINGSTON, NY 12401

Matrix:

Analytical Method: 1,8260C

Analytical Date: 10/07/16 14:57

Analyst: BD84% Percent Solids:

Date Collected:	10/01/16 12:29

Date Received: 10/01/16 Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by 8260/5035 -	Westborough Lab						
Methylene chloride	ND		ug/kg	8.8	0.98	1	
1,1-Dichloroethane	ND		ug/kg	1.3	0.08	1	
Chloroform	ND		ug/kg	1.3	0.33	1	
Carbon tetrachloride	ND		ug/kg	0.88	0.18	1	
1,2-Dichloropropane	ND		ug/kg	3.1	0.20	1	
Dibromochloromethane	ND		ug/kg	0.88	0.14	1	
1,1,2-Trichloroethane	ND		ug/kg	1.3	0.27	1	
Tetrachloroethene	ND		ug/kg	0.88	0.12	1	
Chlorobenzene	ND		ug/kg	0.88	0.31	1	
Trichlorofluoromethane	ND		ug/kg	4.4	0.34	1	
1,2-Dichloroethane	ND		ug/kg	0.88	0.10	1	
1,1,1-Trichloroethane	ND		ug/kg	0.88	0.10	1	
Bromodichloromethane	ND		ug/kg	0.88	0.15	1	
trans-1,3-Dichloropropene	ND		ug/kg	0.88	0.11	1	
cis-1,3-Dichloropropene	ND		ug/kg	0.88	0.10	1	
1,3-Dichloropropene, Total	ND		ug/kg	0.88	0.10	1	
1,1-Dichloropropene	ND		ug/kg	4.4	0.12	1	
Bromoform	ND		ug/kg	3.5	0.21	1	
1,1,2,2-Tetrachloroethane	ND		ug/kg	0.88	0.09	1	
Benzene	ND		ug/kg	0.88	0.10	1	
Toluene	ND		ug/kg	1.3	0.17	1	
Ethylbenzene	ND		ug/kg	0.88	0.11	1	
Chloromethane	ND		ug/kg	4.4	0.26	1	
Bromomethane	ND		ug/kg	1.8	0.30	1	
Vinyl chloride	ND		ug/kg	1.8	0.10	1	
Chloroethane	ND		ug/kg	1.8	0.28	1	
1,1-Dichloroethene	ND		ug/kg	0.88	0.23	1	
trans-1,2-Dichloroethene	ND		ug/kg	1.3	0.19	1	
Trichloroethene	ND		ug/kg	0.88	0.11	1	
1,2-Dichlorobenzene	ND		ug/kg	4.4	0.14	1	
						7	

Project Name: THE DAILY FREEMAN Lab Number: L1631369

Project Number: 16-159311.2 **Report Date:** 10/07/16

SAMPLE RESULTS

Lab ID: L1631369-07 Date Collected: 10/01/16 12:29

Client ID: B7 Date Received: 10/01/16
Sample Location: 79 HURLEY AVENUE, KINGSTON, NY 12401 Field Prep: Not Specified

Sample Location:	79 HURLEY AVENUE, KINGS	79 HURLEY AVENUE, KINGSTON, NY 12401			ep:	Not Specified	
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics b	y 8260/5035 - Westborough Lab						
1,3-Dichlorobenzene	ND		ug/kg	4.4	0.12	1	
1,4-Dichlorobenzene	ND		ug/kg	4.4	0.12	1	
Methyl tert butyl ether	ND		ug/kg	1.8	0.08	1	
p/m-Xylene	ND		ug/kg	1.8	0.31	1	
o-Xylene	ND		ug/kg	1.8	0.30	1	
Xylenes, Total	ND		ug/kg	1.8	0.30	1	
cis-1,2-Dichloroethene	ND		ug/kg	0.88	0.13	1	
1,2-Dichloroethene, Total	ND		ug/kg	0.88	0.13	1	
Dibromomethane	ND		ug/kg	8.8	0.14	1	
Styrene	ND		ug/kg	1.8	0.36	1	
Dichlorodifluoromethane	ND		ug/kg	8.8	0.17	1	
Acetone	ND		ug/kg	8.8	0.92	1	
Carbon disulfide	ND		ug/kg	8.8	0.97	1	
2-Butanone	ND		ug/kg	8.8	0.24	1	
Vinyl acetate	ND		ug/kg	8.8	0.12	1	
4-Methyl-2-pentanone	ND		ug/kg	8.8	0.22	1	
1,2,3-Trichloropropane	ND		ug/kg	8.8	0.14	1	
2-Hexanone	ND		ug/kg	8.8	0.59	1	
Bromochloromethane	ND		ug/kg	4.4	0.24	1	
2,2-Dichloropropane	ND		ug/kg	4.4	0.20	1	
1,2-Dibromoethane	ND		ug/kg	3.5	0.15	1	
1,3-Dichloropropane	ND		ug/kg	4.4	0.13	1	
1,1,1,2-Tetrachloroethane	e ND		ug/kg	0.88	0.28	1	
Bromobenzene	ND		ug/kg	4.4	0.18	1	
n-Butylbenzene	ND		ug/kg	0.88	0.10	1	
sec-Butylbenzene	ND		ug/kg	0.88	0.11	1	
tert-Butylbenzene	ND		ug/kg	4.4	0.12	1	
o-Chlorotoluene	ND		ug/kg	4.4	0.14	1	
p-Chlorotoluene	ND		ug/kg	4.4	0.12	1	
1,2-Dibromo-3-chloroprop	ane ND		ug/kg	4.4	0.35	1	
Hexachlorobutadiene	ND		ug/kg	4.4	0.20	1	
Isopropylbenzene	ND		ug/kg	0.88	0.09	1	
p-Isopropyltoluene	ND		ug/kg	0.88	0.11	1	
Naphthalene	ND		ug/kg	4.4	0.12	1	
Acrylonitrile	ND		ug/kg	8.8	0.45	1	
n-Propylbenzene	ND		ug/kg	0.88	0.10	1	
1,2,3-Trichlorobenzene	ND		ug/kg	4.4	0.13	1	
1,2,4-Trichlorobenzene	ND		ug/kg	4.4	0.16	1	
1,3,5-Trimethylbenzene	ND		ug/kg	4.4	0.13	1	
			-				

Project Name: THE DAILY FREEMAN Lab Number: L1631369

Project Number: 16-159311.2 **Report Date:** 10/07/16

SAMPLE RESULTS

Lab ID: L1631369-07 Date Collected: 10/01/16 12:29

Client ID: B7 Date Received: 10/01/16
Sample Location: 79 HURLEY AVENUE, KINGSTON, NY 12401 Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by 8260/5035 - W	estborough Lab						
1,2,4-Trimethylbenzene	ND		ug/kg	4.4	0.12	1	
1,4-Dioxane	ND		ug/kg	88	13.	1	
p-Diethylbenzene	ND		ug/kg	3.5	0.14	1	
p-Ethyltoluene	ND		ug/kg	3.5	0.11	1	
1,2,4,5-Tetramethylbenzene	ND		ug/kg	3.5	0.12	1	
Ethyl ether	ND		ug/kg	4.4	0.23	1	
trans-1,4-Dichloro-2-butene	ND		ug/kg	4.4	0.35	1	

	Acceptance					
Surrogate	% Recovery	Qualifier	Criteria			
1,2-Dichloroethane-d4	101		70-130			
Toluene-d8	103		70-130			
4-Bromofluorobenzene	101		70-130			
Dibromofluoromethane	98		70-130			

Project Name: THE DAILY FREEMAN

Project Number: 16-159311.2

SAMPLE RESULTS

Lab Number: L1631369

Report Date: 10/07/16

Lab ID: L1631369-08

Client ID: B8

Sample Location: 79 HURLEY AVENUE, KINGSTON, NY 12401

Matrix: Soil

Analytical Method: 1,8260C

Analytical Date: 10/07/16 15:23

Analyst: PP Percent Solids: 85%

Date Collected:	10/01/16 12:41
Date Received:	10/01/16
Field Prep:	Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by 8260/5035 - We	stborough Lab					
Methylene chloride	ND		ug/kg	8.4	0.93	1
1,1-Dichloroethane	ND		ug/kg	1.3	0.07	1
Chloroform	ND		ug/kg	1.3	0.31	1
Carbon tetrachloride	ND		ug/kg	0.84	0.18	1
1,2-Dichloropropane	ND		ug/kg	3.0	0.19	1
Dibromochloromethane	ND		ug/kg	0.84	0.13	1
1,1,2-Trichloroethane	ND		ug/kg	1.3	0.26	1
Tetrachloroethene	ND		ug/kg	0.84	0.12	1
Chlorobenzene	ND		ug/kg	0.84	0.29	1
Trichlorofluoromethane	ND		ug/kg	4.2	0.33	1
1,2-Dichloroethane	ND		ug/kg	0.84	0.10	1
1,1,1-Trichloroethane	ND		ug/kg	0.84	0.09	1
Bromodichloromethane	ND		ug/kg	0.84	0.15	1
trans-1,3-Dichloropropene	ND		ug/kg	0.84	0.10	1
cis-1,3-Dichloropropene	ND		ug/kg	0.84	0.10	1
1,3-Dichloropropene, Total	ND		ug/kg	0.84	0.10	1
1,1-Dichloropropene	ND		ug/kg	4.2	0.12	1
Bromoform	ND		ug/kg	3.4	0.20	1
1,1,2,2-Tetrachloroethane	ND		ug/kg	0.84	0.09	1
Benzene	ND		ug/kg	0.84	0.10	1
Toluene	ND		ug/kg	1.3	0.16	1
Ethylbenzene	ND		ug/kg	0.84	0.11	1
Chloromethane	ND		ug/kg	4.2	0.25	1
Bromomethane	ND		ug/kg	1.7	0.28	1
Vinyl chloride	ND		ug/kg	1.7	0.10	1
Chloroethane	ND		ug/kg	1.7	0.27	1
1,1-Dichloroethene	ND		ug/kg	0.84	0.22	1
trans-1,2-Dichloroethene	ND		ug/kg	1.3	0.18	1
Trichloroethene	ND		ug/kg	0.84	0.10	1
1,2-Dichlorobenzene	ND		ug/kg	4.2	0.13	1

Project Name: THE DAILY FREEMAN Lab Number: L1631369

Project Number: 16-159311.2 **Report Date:** 10/07/16

SAMPLE RESULTS

Lab ID: Date Collected: 10/01/16 12:41

Client ID: B8 Date Received: 10/01/16
Sample Location: 79 HURLEY AVENUE, KINGSTON, NY 12401 Field Prep: Not Specified

Sample Location.	79 HURLET AVENUE, KINGSTON, NT 12401			rieid Pie	, ρ.	Not Specified
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by	8260/5035 - Westborough Lab					
1,3-Dichlorobenzene	ND		ug/kg	4.2	0.11	1
1,4-Dichlorobenzene	ND		ug/kg	4.2	0.12	 1
Methyl tert butyl ether	ND		ug/kg	1.7	0.07	 1
p/m-Xylene	ND		ug/kg	1.7	0.30	 1
o-Xylene	ND		ug/kg	1.7	0.28	1
Xylenes, Total	ND		ug/kg	1.7	0.28	1
cis-1,2-Dichloroethene	ND		ug/kg	0.84	0.12	1
1,2-Dichloroethene, Total	ND		ug/kg	0.84	0.12	1
Dibromomethane	ND		ug/kg	8.4	0.14	1
Styrene	ND		ug/kg	1.7	0.34	1
Dichlorodifluoromethane	ND		ug/kg	8.4	0.16	1
Acetone	21		ug/kg	8.4	0.87	1
Carbon disulfide	ND		ug/kg	8.4	0.93	1
2-Butanone	3.3	J	ug/kg	8.4	0.23	1
Vinyl acetate	ND		ug/kg	8.4	0.11	1
4-Methyl-2-pentanone	ND		ug/kg	8.4	0.21	1
1,2,3-Trichloropropane	ND		ug/kg	8.4	0.14	1
2-Hexanone	ND		ug/kg	8.4	0.56	1
Bromochloromethane	ND		ug/kg	4.2	0.23	1
2,2-Dichloropropane	ND		ug/kg	4.2	0.19	1
1,2-Dibromoethane	ND		ug/kg	3.4	0.15	1
1,3-Dichloropropane	ND		ug/kg	4.2	0.12	1
1,1,1,2-Tetrachloroethane	ND		ug/kg	0.84	0.27	1
Bromobenzene	ND		ug/kg	4.2	0.18	1
n-Butylbenzene	ND		ug/kg	0.84	0.10	1
sec-Butylbenzene	ND		ug/kg	0.84	0.10	1
tert-Butylbenzene	ND		ug/kg	4.2	0.11	1
o-Chlorotoluene	ND		ug/kg	4.2	0.13	1
p-Chlorotoluene	ND		ug/kg	4.2	0.11	1
1,2-Dibromo-3-chloropropan	e ND		ug/kg	4.2	0.33	1
Hexachlorobutadiene	ND		ug/kg	4.2	0.19	1
Isopropylbenzene	ND		ug/kg	0.84	0.09	1
p-Isopropyltoluene	ND		ug/kg	0.84	0.10	1
Naphthalene	ND		ug/kg	4.2	0.12	1
Acrylonitrile	ND		ug/kg	8.4	0.43	1
n-Propylbenzene	ND		ug/kg	0.84	0.09	1
1,2,3-Trichlorobenzene	ND		ug/kg	4.2	0.12	1
1,2,4-Trichlorobenzene	ND		ug/kg	4.2	0.15	1
1,3,5-Trimethylbenzene	ND		ug/kg	4.2	0.12	1

Project Name: THE DAILY FREEMAN Lab Number: L1631369

Project Number: 16-159311.2 **Report Date:** 10/07/16

SAMPLE RESULTS

Lab ID: Date Collected: 10/01/16 12:41

Client ID: B8 Date Received: 10/01/16
Sample Location: 79 HURLEY AVENUE, KINGSTON, NY 12401 Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by 8260/5035 - W	estborough Lab						
1,2,4-Trimethylbenzene	ND		ug/kg	4.2	0.12	1	
1,4-Dioxane	ND		ug/kg	84	12.	1	
p-Diethylbenzene	ND		ug/kg	3.4	0.13	1	
p-Ethyltoluene	ND		ug/kg	3.4	0.10	1	
1,2,4,5-Tetramethylbenzene	ND		ug/kg	3.4	0.11	1	
Ethyl ether	ND		ug/kg	4.2	0.22	1	
trans-1,4-Dichloro-2-butene	ND		ug/kg	4.2	0.33	1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	103		70-130	
Toluene-d8	102		70-130	
4-Bromofluorobenzene	102		70-130	
Dibromofluoromethane	99		70-130	

L1631369

10/07/16

10/01/16

Not Specified

Project Name: THE DAILY FREEMAN

Project Number: 16-159311.2

SAMPLE RESULTS

Date Collected: 10/01/16 11:09

Lab Number:

Report Date:

Date Received:

Field Prep:

Lab ID: L1631369-09

Client ID: B2-GW

Sample Location: 79 HURLEY AVENUE, KINGSTON, NY 12401

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 10/05/16 18:34

Analyst: PD

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	ıh Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: THE DAILY FREEMAN Lab Number: L1631369

Project Number: 16-159311.2 **Report Date:** 10/07/16

SAMPLE RESULTS

Lab ID: Date Collected: 10/01/16 11:09

Client ID: B2-GW Date Received: 10/01/16
Sample Location: 79 HURLEY AVENUE, KINGSTON, NY 12401 Field Prep: Not Specified

		rieid Přep.		Not Specified	
Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor
Volatile Organics by C	GC/MS - Westborough Lab				
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70	1
Methyl tert butyl ether	3.1	ug/l	2.5	0.70	1
p/m-Xylene	ND	ug/l	2.5	0.70	1
o-Xylene	ND	ug/l	2.5	0.70	1
Xylenes, Total	ND	ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	ND	ug/l	2.5	0.70	1
Dibromomethane	ND	ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND	ug/l	2.5	0.70	1
Acrylonitrile	ND	ug/l	5.0	1.5	1
Styrene	ND	ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND	ug/l	5.0	1.0	1
Acetone	ND	ug/l	5.0	1.5	1
Carbon disulfide	ND	ug/l	5.0	1.0	1
2-Butanone	ND	ug/l	5.0	1.9	1
Vinyl acetate	ND	ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0	1
2-Hexanone	ND	ug/l	5.0	1.0	1
Bromochloromethane	ND	ug/l	2.5	0.70	1
2,2-Dichloropropane	ND	ug/l	2.5	0.70	1
1,2-Dibromoethane	ND	ug/l	2.0	0.65	1
1,3-Dichloropropane	ND	ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND	ug/l	2.5	0.70	1
Bromobenzene	ND	ug/l	2.5	0.70	1
n-Butylbenzene	ND	ug/l	2.5	0.70	1
sec-Butylbenzene	ND	ug/l	2.5	0.70	1
tert-Butylbenzene	ND	ug/l	2.5	0.70	1
o-Chlorotoluene	ND	ug/l	2.5	0.70	1
p-Chlorotoluene	ND	ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70	1
Hexachlorobutadiene	ND	ug/l	2.5	0.70	1
Isopropylbenzene	ND	ug/l	2.5	0.70	1
p-Isopropyltoluene	ND	ug/l	2.5	0.70	1
Naphthalene	ND	ug/l	2.5	0.70	1
n-Propylbenzene	ND	ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND	ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70	1

Project Name: THE DAILY FREEMAN Lab Number: L1631369

Project Number: 16-159311.2 **Report Date:** 10/07/16

SAMPLE RESULTS

Lab ID: Date Collected: 10/01/16 11:09

Client ID: B2-GW Date Received: 10/01/16
Sample Location: 79 HURLEY AVENUE, KINGSTON, NY 12401 Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - West	borough Lab						
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
p-Diethylbenzene	ND		ug/l	2.0	0.70	1	
p-Ethyltoluene	ND		ug/l	2.0	0.70	1	
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1	
Ethyl ether	ND		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	105		70-130	
Toluene-d8	98		70-130	
4-Bromofluorobenzene	109		70-130	
Dibromofluoromethane	101		70-130	

10/01/16 11:17

Not Specified

10/01/16

Project Name: THE DAILY FREEMAN

Project Number: 16-159311.2

SAMPLE RESULTS

Lab Number: L1631369

Report Date: 10/07/16

Date Collected:

Date Received:

Field Prep:

Lab ID: D L1631369-10

Client ID: B4-GW

Sample Location: 79 HURLEY AVENUE, KINGSTON, NY 12401

Matrix: Water Analytical Method: 1,8260C Analytical Date: 10/06/16 14:02

Analyst: PD

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
Methylene chloride	ND		ug/l	25	7.0	10
1,1-Dichloroethane	ND		ug/l	25	7.0	10
Chloroform	ND		ug/l	25	7.0	10
Carbon tetrachloride	ND		ug/l	5.0	1.3	10
1,2-Dichloropropane	ND		ug/l	10	1.4	10
Dibromochloromethane	ND		ug/l	5.0	1.5	10
1,1,2-Trichloroethane	ND		ug/l	15	5.0	10
Tetrachloroethene	ND		ug/l	5.0	1.8	10
Chlorobenzene	ND		ug/l	25	7.0	10
Trichlorofluoromethane	ND		ug/l	25	7.0	10
1,2-Dichloroethane	ND		ug/l	5.0	1.3	10
1,1,1-Trichloroethane	ND		ug/l	25	7.0	10
Bromodichloromethane	ND		ug/l	5.0	1.9	10
trans-1,3-Dichloropropene	ND		ug/l	5.0	1.6	10
cis-1,3-Dichloropropene	ND		ug/l	5.0	1.4	10
1,3-Dichloropropene, Total	ND		ug/l	5.0	1.4	10
1,1-Dichloropropene	ND		ug/l	25	7.0	10
Bromoform	ND		ug/l	20	6.5	10
1,1,2,2-Tetrachloroethane	ND		ug/l	5.0	1.7	10
Benzene	43		ug/l	5.0	1.6	10
Toluene	8.9	J	ug/l	25	7.0	10
Ethylbenzene	340		ug/l	25	7.0	10
Chloromethane	ND		ug/l	25	7.0	10
Bromomethane	ND		ug/l	25	7.0	10
Vinyl chloride	ND		ug/l	10	0.71	10
Chloroethane	ND		ug/l	25	7.0	10
1,1-Dichloroethene	ND		ug/l	5.0	1.7	10
trans-1,2-Dichloroethene	ND		ug/l	25	7.0	10
Trichloroethene	ND		ug/l	5.0	1.8	10

ug/l

ND

10

7.0

25

1,2-Dichlorobenzene

Project Name: THE DAILY FREEMAN Lab Number: L1631369

Project Number: 16-159311.2 **Report Date:** 10/07/16

SAMPLE RESULTS

Lab ID: L1631369-10 D Date Collected: 10/01/16 11:17

Client ID: B4-GW Date Received: 10/01/16
Sample Location: 79 HURLEY AVENUE, KINGSTON, NY 12401 Field Prep: Not Specified

Dample Location. 19 HONLL 1	AVENUE, KINGOTO	14, 141 12401		i icia i i	-p.	Not Specified
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
1,3-Dichlorobenzene	ND		ug/l	25	7.0	10
1,4-Dichlorobenzene	ND		ug/l	25	7.0	10
Methyl tert butyl ether	ND		ug/l	25	7.0	10
p/m-Xylene	280		ug/l	25	7.0	10
o-Xylene	20	J	ug/l	25	7.0	10
Kylenes, Total	300	J	ug/l	25	7.0	10
cis-1,2-Dichloroethene	ND		ug/l	25	7.0	10
1,2-Dichloroethene, Total	ND		ug/l	25	7.0	10
Dibromomethane	ND		ug/l	50	10.	10
1,2,3-Trichloropropane	ND		ug/l	25	7.0	10
Acrylonitrile	ND		ug/l	50	15.	10
Styrene	ND		ug/l	25	7.0	10
Dichlorodifluoromethane	ND		ug/l	50	10.	10
Acetone	ND		ug/l	50	15.	10
Carbon disulfide	ND		ug/l	50	10.	10
2-Butanone	ND		ug/l	50	19.	10
/inyl acetate	ND		ug/l	50	10.	10
l-Methyl-2-pentanone	ND		ug/l	50	10.	10
2-Hexanone	ND		ug/l	50	10.	10
Bromochloromethane	ND		ug/l	25	7.0	10
2,2-Dichloropropane	ND		ug/l	25	7.0	10
,2-Dibromoethane	ND		ug/l	20	6.5	10
1,3-Dichloropropane	ND		ug/l	25	7.0	10
,1,1,2-Tetrachloroethane	ND		ug/l	25	7.0	10
Bromobenzene	ND		ug/l	25	7.0	10
n-Butylbenzene	21	J	ug/l	25	7.0	10
sec-Butylbenzene	ND		ug/l	25	7.0	10
ert-Butylbenzene	ND		ug/l	25	7.0	10
o-Chlorotoluene	ND		ug/l	25	7.0	10
o-Chlorotoluene	ND		ug/l	25	7.0	10
1,2-Dibromo-3-chloropropane	ND		ug/l	25	7.0	10
Hexachlorobutadiene	ND		ug/l	25	7.0	10
sopropylbenzene	30		ug/l	25	7.0	10
o-Isopropyltoluene	ND		ug/l	25	7.0	10
Naphthalene	61		ug/l	25	7.0	10
n-Propylbenzene	87		ug/l	25	7.0	10
1,2,3-Trichlorobenzene	ND		ug/l	25	7.0	10
,2,4-Trichlorobenzene	ND		ug/l	25	7.0	10
1,3,5-Trimethylbenzene	18	J	ug/l	25	7.0	10

Project Name: THE DAILY FREEMAN Lab Number: L1631369

Project Number: 16-159311.2 **Report Date:** 10/07/16

SAMPLE RESULTS

Lab ID: L1631369-10 D Date Collected: 10/01/16 11:17

Client ID: B4-GW Date Received: 10/01/16
Sample Location: 79 HURLEY AVENUE, KINGSTON, NY 12401 Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Wes	stborough Lab						
1,2,4-Trimethylbenzene	720		ug/l	25	7.0	10	
1,4-Dioxane	ND		ug/l	2500	610	10	
p-Diethylbenzene	24		ug/l	20	7.0	10	
p-Ethyltoluene	230		ug/l	20	7.0	10	
1,2,4,5-Tetramethylbenzene	77		ug/l	20	5.4	10	
Ethyl ether	ND		ug/l	25	7.0	10	
trans-1,4-Dichloro-2-butene	ND		ug/l	25	7.0	10	

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	94		70-130	
Toluene-d8	102		70-130	
4-Bromofluorobenzene	102		70-130	
Dibromofluoromethane	84		70-130	

Project Name: THE DAILY FREEMAN

Project Number: 16-159311.2

SAMPLE RESULTS

L1631369

Lab Number:

Report Date: 10/07/16

Qualifier

Units

RL

Result

Lab ID: L1631369-11

Client ID: B6-GW

Sample Location: 79 HURLEY AVENUE, KINGSTON, NY 12401

Matrix: Water Analytical Method: 1,8260C Analytical Date: 10/05/16 21:08

Analyst: PD

Parameter

Date Collected:	10/01/16 11:37
Date Received:	10/01/16
Field Prep:	Not Specified

MDL

Dilution Factor

· didilioto.					Z.:
Volatile Organics by GC/MS - Wes	stborough Lab				
Methylene chloride	ND	ug/l	2.5	0.70	1
1,1-Dichloroethane	ND	ug/l	2.5	0.70	1
Chloroform	ND	ug/l	2.5	0.70	1
Carbon tetrachloride	ND	ug/l	0.50	0.13	1
1,2-Dichloropropane	ND	ug/l	1.0	0.14	1
Dibromochloromethane	ND	ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50	1
Tetrachloroethene	ND	ug/l	0.50	0.18	1
Chlorobenzene	ND	ug/l	2.5	0.70	1
Trichlorofluoromethane	ND	ug/l	2.5	0.70	1
1,2-Dichloroethane	ND	ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70	1
Bromodichloromethane	ND	ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND	ug/l	0.50	0.14	1
1,1-Dichloropropene	ND	ug/l	2.5	0.70	1
Bromoform	ND	ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17	1
Benzene	1.3	ug/l	0.50	0.16	1
Toluene	1.0 J	ug/l	2.5	0.70	1
Ethylbenzene	ND	ug/l	2.5	0.70	1
Chloromethane	ND	ug/l	2.5	0.70	1
Bromomethane	ND	ug/l	2.5	0.70	1
Vinyl chloride	ND	ug/l	1.0	0.07	1
Chloroethane	ND	ug/l	2.5	0.70	1
1,1-Dichloroethene	ND	ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70	1
Trichloroethene	ND	ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70	1

Project Name: THE DAILY FREEMAN Lab Number: L1631369

Project Number: 16-159311.2 **Report Date:** 10/07/16

SAMPLE RESULTS

Lab ID: Date Collected: 10/01/16 11:37

Client ID: B6-GW Date Received: 10/01/16
Sample Location: 79 HURLEY AVENUE, KINGSTON, NY 12401 Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor Volatile Organics by GC/MS - Westborough Lab 1,3-Dichlorobenzene ND ug/l 2.5 0.70 1 1,4-Dichlorobenzene ND ug/l 2.5 0.70 1 Methyl tert butyl ether 8.8 ug/l 2.5 0.70 1 p/m-Xylene 5.6 ug/l 2.5 0.70 1 vylene 2.8 ug/l 2.5 0.70 1 Xylenes, Total 8.4 ug/l 2.5 0.70 1 1,2-Dichloroethene, Total ND ug/l 2.5 0.70 1 1,2-Dichloroethene, Total ND ug/l 2.5 0.70 1 1,2-Dichloroethene, Total ND ug/l 2.5 0.70 1 Accyloritifle ND ug/l 5.0 1.0 1 Syrene ND ug/l 5.0 1.0 1 Accione <th></th>	
1,3-Dichlorobenzene ND ug/l 2.5 0.70 1 1,4-Dichlorobenzene ND ug/l 2.5 0.70 1 Methyl tert butyl ether 8.8 ug/l 2.5 0.70 1 p/m-Xylene 5.6 ug/l 2.5 0.70 1 o-Xylene 2.8 ug/l 2.5 0.70 1 Xylenes, Total 8.4 ug/l 2.5 0.70 1 Xylenes, Total ND ug/l 2.5 0.70 1 1,2-Dichloroethene, Total ND ug/l 2.5 0.70 1 1,2-Dichloroethene, Total ND ug/l 5.0 1.0 1 1,2-Dichloroethene, Total ND ug/l 5.0 1.0 1 1,2-Dichloroethene, Total ND ug/l 5.0 1.0 1 Acrylonitrile ND ug/l 5.0 1.0 1 Agrylonitrile ND ug/l 5.0 1.0	
1.4-Dichlorobenzene ND	
1,4-Dichlorobenzene ND ug/l 2.5 0.70 1 Methyl tert butyl ether 8.8 ug/l 2.5 0.70 1 p/m-Xylene 5.6 ug/l 2.5 0.70 1 o-Xylenes, Total 8.4 ug/l 2.5 0.70 1 Xylenes, Total ND ug/l 2.5 0.70 1 cis-1,2-Dichloroethene ND ug/l 2.5 0.70 1 1,2-Dichloroethene, Total ND ug/l 2.5 0.70 1 Dibromomethane ND ug/l 5.0 1.0 1 Acylonitrile ND ug/l 5.0 1.0 1 Acylonitrile ND ug/l 5.0 1.5 1 Styrene ND ug/l 5.0 1.5 1 Dichlorodifluoromethane ND ug/l 5.0 1.0 1 Acetone 7.1 ug/l 5.0 1.0 1 Carbon disulfide ND ug/l 5.0 1.0 1	
Methyl tert butyl ether 8.8 ug/l 2.5 0.70 1 p/m-Xylene 5.6 ug/l 2.5 0.70 1 o-Xylene 2.8 ug/l 2.5 0.70 1 Xylenes, Total 8.4 ug/l 2.5 0.70 1 cis-1,2-Dichloroethene ND ug/l 2.5 0.70 1 1,2-Dichloroethene, Total ND ug/l 2.5 0.70 1 Dibromomethane ND ug/l 5.0 1.0 1 1,2-3-Trichloropropane ND ug/l 5.0 1.0 1 Acrylonitrile ND ug/l 5.0 1.5 1 Styrene ND ug/l 5.0 1.5 1 Dichlorodiffluoromethane ND ug/l 5.0 1.0 1 Acetone 7.1 ug/l 5.0 1.0 1 Carbon disulfide ND ug/l 5.0 1.0 1	
p/m-Xylene 5.6 ug/l 2.5 0.70 1 o-Xylene 2.8 ug/l 2.5 0.70 1 Xylenes, Total 8.4 ug/l 2.5 0.70 1 cis-1,2-Dichloroethene ND ug/l 2.5 0.70 1 1,2-Dichloroethene, Total ND ug/l 2.5 0.70 1 Dibromomethane ND ug/l 5.0 1.0 1 1,2,3-Trichloropropane ND ug/l 5.0 1.0 1 Acrylonitrile ND ug/l 5.0 1.5 1 Styrene ND ug/l 5.0 1.5 1 Dichlorodifluoromethane ND ug/l 5.0 1.0 1 Acetone 7.1 ug/l 5.0 1.0 1 Carbon disulfide ND ug/l 5.0 1.0 1 Vinyl acetate ND ug/l 5.0 1.0 1	
co-Xylene 2.8 ug/l 2.5 0.70 1 Xylenes, Total 8.4 ug/l 2.5 0.70 1 cis-1,2-Dichloroethene ND ug/l 2.5 0.70 1 1,2-Dichloroethene, Total ND ug/l 2.5 0.70 1 Dibromomethane ND ug/l 5.0 1.0 1 1,2,3-Trichloropropane ND ug/l 2.5 0.70 1 Acylonitrile ND ug/l 5.0 1.5 1 Styrene ND ug/l 5.0 1.5 1 Dichlorodifluoromethane ND ug/l 5.0 1.0 1 Acetone 7.1 ug/l 5.0 1.0 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 Vinyl acetate ND ug/l 5.0 1.0 1 2	
Xylenes, Total 8.4 ug/l 2.5 0.70 1 cis-1,2-Dichloroethene ND ug/l 2.5 0.70 1 1,2-Dichloroethene, Total ND ug/l 2.5 0.70 1 Dibromomethane ND ug/l 5.0 1.0 1 1,2,3-Trichloropropane ND ug/l 5.0 1.5 1 Acrylonitrile ND ug/l 5.0 1.5 1 Styrene ND ug/l 5.0 1.0 1 Dichlorodifluoromethane ND ug/l 5.0 1.0 1 Acetone 7.1 ug/l 5.0 1.5 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 Vinyl acetate ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1	
1,2-Dichloroethene, Total ND ug/l 2.5 0.70 1 Dibromomethane ND ug/l 5.0 1.0 1 1,2,3-Trichloropropane ND ug/l 2.5 0.70 1 Acrylonitrile ND ug/l 5.0 1.5 1 Styrene ND ug/l 2.5 0.70 1 Dichlorodifluoromethane ND ug/l 5.0 1.0 1 Acetone 7.1 ug/l 5.0 1.5 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 Vinyl acetate ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 Bromochloromethane ND ug/l 2.5 0.70 1 2,2-Dichloropropane ND ug/l 2.5 0.70 1	
Dibromomethane ND ug/l 5.0 1.0 1 1,2,3-Trichloropropane ND ug/l 2.5 0.70 1 Acrylonitrile ND ug/l 5.0 1.5 1 Styrene ND ug/l 2.5 0.70 1 Dichlorodifluoromethane ND ug/l 5.0 1.0 1 Acetone 7.1 ug/l 5.0 1.5 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 Vinyl acetate ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 Bromochloromethane ND ug/l 2.5 0.70 1 2,2-Dichloroprop	
1,2,3-Trichloropropane ND ug/l 2.5 0.70 1 Acrylonitrile ND ug/l 5.0 1.5 1 Styrene ND ug/l 2.5 0.70 1 Dichlorodifluoromethane ND ug/l 5.0 1.0 1 Acetone 7.1 ug/l 5.0 1.5 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.9 1 Vinyl acetate ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 Bromochloromethane ND ug/l 2.5 0.70 1 2,2-Dichloropropane ND ug/l 2.5 0.70 1 1,2-Dibromoethane ND ug/l 2.0 0.65 1	
Acrylonitrile ND ug/l 5.0 1.5 1 Styrene ND ug/l 2.5 0.70 1 Dichlorodifluoromethane ND ug/l 5.0 1.0 1 Acetone 7.1 ug/l 5.0 1.5 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.9 1 Vinyl acetate ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 Bromochloromethane ND ug/l 2.5 0.70 1 2,2-Dichloropropane ND ug/l 2.5 0.70 1 1,2-Dibromoethane ND ug/l 2.0 0.65 1	
Styrene ND ug/l 2.5 0.70 1 Dichlorodifluoromethane ND ug/l 5.0 1.0 1 Acetone 7.1 ug/l 5.0 1.5 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.9 1 Vinyl acetate ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 Bromochloromethane ND ug/l 2.5 0.70 1 2,2-Dichloropropane ND ug/l 2.5 0.70 1 1,2-Dibromoethane ND ug/l 2.0 0.65 1	
Dichlorodifluoromethane ND ug/l 5.0 1.0 1 Acetone 7.1 ug/l 5.0 1.5 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.9 1 Vinyl acetate ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 Bromochloromethane ND ug/l 2.5 0.70 1 2,2-Dichloropropane ND ug/l 2.5 0.70 1 1,2-Dibromoethane ND ug/l 2.0 0.65 1	
Acetone 7.1 ug/l 5.0 1.5 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.9 1 Vinyl acetate ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 Bromochloromethane ND ug/l 2.5 0.70 1 2,2-Dichloropropane ND ug/l 2.5 0.70 1 1,2-Dibromoethane ND ug/l 2.0 0.65 1	
Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.9 1 Vinyl acetate ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 Bromochloromethane ND ug/l 2.5 0.70 1 2,2-Dichloropropane ND ug/l 2.5 0.70 1 1,2-Dibromoethane ND ug/l 2.0 0.65 1	
2-Butanone ND ug/l 5.0 1.9 1 Vinyl acetate ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 Bromochloromethane ND ug/l 5.0 1.0 1 2,2-Dichloropropane ND ug/l 2.5 0.70 1 1,2-Dibromoethane ND ug/l 2.5 0.70 1 1,2-Dibromoethane ND ug/l 2.5 0.70 1	
Vinyl acetate ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 Bromochloromethane ND ug/l 2.5 0.70 1 2,2-Dichloropropane ND ug/l 2.5 0.70 1 1,2-Dibromoethane ND ug/l 2.0 0.65 1	
4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 Bromochloromethane ND ug/l 2.5 0.70 1 2,2-Dichloropropane ND ug/l 2.5 0.70 1 1,2-Dibromoethane ND ug/l 2.0 0.65 1	
2-Hexanone ND ug/l 5.0 1.0 1 Bromochloromethane ND ug/l 2.5 0.70 1 2,2-Dichloropropane ND ug/l 2.5 0.70 1 1,2-Dibromoethane ND ug/l 2.0 0.65 1	
Bromochloromethane ND ug/l 2.5 0.70 1 2,2-Dichloropropane ND ug/l 2.5 0.70 1 1,2-Dibromoethane ND ug/l 2.0 0.65 1	
2,2-Dichloropropane ND ug/l 2.5 0.70 1 1,2-Dibromoethane ND ug/l 2.0 0.65 1	
1,2-Dibromoethane ND ug/l 2.0 0.65 1	
1,3-Dichloropropane ND ug/l 2.5 0.70 1	
1,1,1,2-Tetrachloroethane ND ug/l 2.5 0.70 1	
Bromobenzene ND ug/l 2.5 0.70 1	
n-Butylbenzene ND ug/l 2.5 0.70 1	
sec-Butylbenzene ND ug/l 2.5 0.70 1	
tert-Butylbenzene ND ug/l 2.5 0.70 1	
o-Chlorotoluene ND ug/l 2.5 0.70 1	
p-Chlorotoluene ND ug/l 2.5 0.70 1	
1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1	
Hexachlorobutadiene ND ug/l 2.5 0.70 1	
Isopropylbenzene 4.0 ug/l 2.5 0.70 1	
p-Isopropyltoluene ND ug/l 2.5 0.70 1	
Naphthalene 6.4 ug/l 2.5 0.70 1	
n-Propylbenzene 9.7 ug/l 2.5 0.70 1	
1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1	
1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1	
1,3,5-Trimethylbenzene 2.0 J ug/l 2.5 0.70 1	

Project Name: THE DAILY FREEMAN Lab Number: L1631369

Project Number: 16-159311.2 **Report Date:** 10/07/16

SAMPLE RESULTS

Lab ID: L1631369-11 Date Collected: 10/01/16 11:37

Client ID: B6-GW Date Received: 10/01/16
Sample Location: 79 HURLEY AVENUE, KINGSTON, NY 12401 Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Wes	stborough Lab						
1,2,4-Trimethylbenzene	3.0		ug/l	2.5	0.70	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
p-Diethylbenzene	1.3	J	ug/l	2.0	0.70	1	
p-Ethyltoluene	ND		ug/l	2.0	0.70	1	
1,2,4,5-Tetramethylbenzene	1.7	J	ug/l	2.0	0.54	1	
Ethyl ether	ND		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	102		70-130	
Toluene-d8	100		70-130	
4-Bromofluorobenzene	110		70-130	
Dibromofluoromethane	95		70-130	

L1631369

Project Name: THE DAILY FREEMAN

Project Number: 16-159311.2

SAMPLE RESULTS

Report Date: 10/07/16

Lab Number:

Lab ID: L1631369-12

Client ID: B7-GW

Sample Location: 79 HURLEY AVENUE, KINGSTON, NY 12401

Matrix: Water Analytical Method: 1,8260C Analytical Date: 10/06/16 14:30

Date Collected:	10/01/16 12:50
Date Received:	10/01/16
Field Prep:	Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	0.19	J	ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	0.27	J	ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	1.2	J	ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: THE DAILY FREEMAN Lab Number: L1631369

Project Number: 16-159311.2 **Report Date:** 10/07/16

SAMPLE RESULTS

Lab ID: Date Collected: 10/01/16 12:50

Client ID: B7-GW Date Received: 10/01/16
Sample Location: 79 HURLEY AVENUE, KINGSTON, NY 12401 Field Prep: Not Specified

Dample Location. 19 HONLL I	AVENUE, KINGOTO	14, 141 12-101		i icia i i	- ρ.	Not Specified
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
o/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
(ylenes, Total	ND		ug/l	2.5	0.70	1
sis-1,2-Dichloroethene	11		ug/l	2.5	0.70	1
,2-Dichloroethene, Total	12	J	ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND		ug/l	5.0	1.5	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	2.3	J	ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
/inyl acetate	ND		ug/l	5.0	1.0	1
l-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
ert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
sopropylbenzene	ND		ug/l	2.5	0.70	1
o-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	1.2	J	ug/l	2.5	0.70	1
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1

Project Name: THE DAILY FREEMAN Lab Number: L1631369

Project Number: 16-159311.2 **Report Date:** 10/07/16

SAMPLE RESULTS

Lab ID: Date Collected: 10/01/16 12:50

Client ID: B7-GW Date Received: 10/01/16
Sample Location: 79 HURLEY AVENUE, KINGSTON, NY 12401 Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westboro	ugh Lab						
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
p-Diethylbenzene	ND		ug/l	2.0	0.70	1	
p-Ethyltoluene	ND		ug/l	2.0	0.70	1	
1,2,4,5-Tetramethylbenzene	0.58	J	ug/l	2.0	0.54	1	
Ethyl ether	ND		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	92		70-130	
Toluene-d8	101		70-130	
4-Bromofluorobenzene	107		70-130	
Dibromofluoromethane	96		70-130	

Project Name: THE DAILY FREEMAN Lab Number:

Project Number: 16-159311.2 **Report Date:** 10/07/16

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 1,8260C 10/05/16 11:42

Parameter	Result	Qualifier Units	RL	MDL	
Volatile Organics by GC/MS	- Westborough Lab	for sample(s):	09,11 Batch:	WG939274-5	
Methylene chloride	ND	ug/l	2.5	0.70	
1,1-Dichloroethane	ND	ug/l	2.5	0.70	
Chloroform	ND	ug/l	2.5	0.70	
Carbon tetrachloride	ND	ug/l	0.50	0.13	
1,2-Dichloropropane	ND	ug/l	1.0	0.14	
Dibromochloromethane	ND	ug/l	0.50	0.15	
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50	
Tetrachloroethene	ND	ug/l	0.50	0.18	
Chlorobenzene	ND	ug/l	2.5	0.70	
Trichlorofluoromethane	ND	ug/l	2.5	0.70	
1,2-Dichloroethane	ND	ug/l	0.50	0.13	
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70	
Bromodichloromethane	ND	ug/l	0.50	0.19	
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16	
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14	
1,3-Dichloropropene, Total	ND	ug/l	0.50	0.14	
1,1-Dichloropropene	ND	ug/l	2.5	0.70	
Bromoform	ND	ug/l	2.0	0.65	
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17	
Benzene	ND	ug/l	0.50	0.16	
Toluene	ND	ug/l	2.5	0.70	
Ethylbenzene	ND	ug/l	2.5	0.70	
Chloromethane	ND	ug/l	2.5	0.70	
Bromomethane	ND	ug/l	2.5	0.70	
Vinyl chloride	ND	ug/l	1.0	0.07	
Chloroethane	ND	ug/l	2.5	0.70	
1,1-Dichloroethene	ND	ug/l	0.50	0.17	
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70	
Trichloroethene	ND	ug/l	0.50	0.18	

Project Name: THE DAILY FREEMAN Lab Number:

Project Number: 16-159311.2 **Report Date:** 10/07/16

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 1,8260C 10/05/16 11:42

Parameter	Result	Qualifier Units	s RL	MDL	
olatile Organics by GC/MS	- Westborough La	b for sample(s):	09,11 Batch:	WG939274-5	
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70	
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70	
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70	
Methyl tert butyl ether	ND	ug/l	1 2.5	0.70	
p/m-Xylene	ND	ug/l	2.5	0.70	
o-Xylene	ND	ug/l	2.5	0.70	
Xylenes, Total	ND	ug/l	2.5	0.70	
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70	
1,2-Dichloroethene, Total	ND	ug/l	2.5	0.70	
Dibromomethane	ND	ug/l	5.0	1.0	
1,2,3-Trichloropropane	ND	ug/l	2.5	0.70	
Acrylonitrile	ND	ug/l	5.0	1.5	
Styrene	ND	ug/l	2.5	0.70	
Dichlorodifluoromethane	ND	ug/l	5.0	1.0	
Acetone	ND	ug/l	5.0	1.5	
Carbon disulfide	ND	ug/l	5.0	1.0	
2-Butanone	ND	ug/l	5.0	1.9	
Vinyl acetate	ND	ug/l	5.0	1.0	
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0	
2-Hexanone	ND	ug/l	5.0	1.0	
Bromochloromethane	ND	ug/l	2.5	0.70	
2,2-Dichloropropane	ND	ug/l	2.5	0.70	
1,2-Dibromoethane	ND	ug/l	2.0	0.65	
1,3-Dichloropropane	ND	ug/l	2.5	0.70	
1,1,1,2-Tetrachloroethane	ND	ug/l	2.5	0.70	
Bromobenzene	ND	ug/l	2.5	0.70	
n-Butylbenzene	ND	ug/l	2.5	0.70	
sec-Butylbenzene	ND	ug/l	2.5	0.70	
tert-Butylbenzene	ND	ug/l	2.5	0.70	

Project Name: THE DAILY FREEMAN Lab Number:

Project Number: 16-159311.2 **Report Date:** 10/07/16

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 1,8260C 10/05/16 11:42

Parameter	Result	Qualifier Units	s RL	MDL	
Volatile Organics by GC/MS	- Westborough Lab	for sample(s):	09,11 Batch:	WG939274-5	
o-Chlorotoluene	ND	ug/l	2.5	0.70	
p-Chlorotoluene	ND	ug/l	2.5	0.70	
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70	
Hexachlorobutadiene	ND	ug/l	2.5	0.70	
Isopropylbenzene	ND	ug/l	2.5	0.70	
p-Isopropyltoluene	ND	ug/l	2.5	0.70	
Naphthalene	ND	ug/l	2.5	0.70	
n-Propylbenzene	ND	ug/l	2.5	0.70	
1,2,3-Trichlorobenzene	ND	ug/l	2.5	0.70	
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70	
1,3,5-Trimethylbenzene	ND	ug/l	2.5	0.70	
1,2,4-Trimethylbenzene	ND	ug/l	2.5	0.70	
1,4-Dioxane	ND	ug/l	250	61.	
p-Diethylbenzene	ND	ug/l	2.0	0.70	
p-Ethyltoluene	ND	ug/l	2.0	0.70	
1,2,4,5-Tetramethylbenzene	ND	ug/l	2.0	0.54	
Ethyl ether	ND	ug/l	2.5	0.70	
trans-1,4-Dichloro-2-butene	ND	ug/l	2.5	0.70	

		Acceptance			
Surrogate	%Recovery	Qualifier	Criteria		
1,2-Dichloroethane-d4	103		70-130		
Toluene-d8	99		70-130		
4-Bromofluorobenzene	111		70-130		
Dibromofluoromethane	101		70-130		

Project Name: THE DAILY FREEMAN Lab Number:

Project Number: 16-159311.2 **Report Date:** 10/07/16

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 1,8260C 10/06/16 10:57

Parameter	Result	Qualifier	Units	RL	MDL	
Volatile Organics by GC/MS -	· Westborough La	ab for sampl	e(s): 10,	12 Batch:	WG939573-5	
Methylene chloride	ND		ug/l	2.5	0.70	
1,1-Dichloroethane	ND		ug/l	2.5	0.70	
Chloroform	ND		ug/l	2.5	0.70	
Carbon tetrachloride	ND		ug/l	0.50	0.13	
1,2-Dichloropropane	ND		ug/l	1.0	0.14	
Dibromochloromethane	ND		ug/l	0.50	0.15	
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	
Tetrachloroethene	ND		ug/l	0.50	0.18	
Chlorobenzene	ND		ug/l	2.5	0.70	
Trichlorofluoromethane	ND		ug/l	2.5	0.70	
1,2-Dichloroethane	ND		ug/l	0.50	0.13	
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	
Bromodichloromethane	ND		ug/l	0.50	0.19	
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	
1,1-Dichloropropene	ND		ug/l	2.5	0.70	
Bromoform	ND		ug/l	2.0	0.65	
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	
Benzene	ND		ug/l	0.50	0.16	
Toluene	ND		ug/l	2.5	0.70	
Ethylbenzene	ND		ug/l	2.5	0.70	
Chloromethane	ND		ug/l	2.5	0.70	
Bromomethane	1.0	J	ug/l	2.5	0.70	
Vinyl chloride	ND		ug/l	1.0	0.07	
Chloroethane	ND		ug/l	2.5	0.70	
1,1-Dichloroethene	ND		ug/l	0.50	0.17	
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	
Trichloroethene	ND		ug/l	0.50	0.18	

Project Name: THE DAILY FREEMAN Lab Number: L1631369

Project Number: 16-159311.2 **Report Date:** 10/07/16

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 1,8260C 10/06/16 10:57

Parameter	Result	Qualifier Units	s RL	MDL	
/olatile Organics by GC/MS	- Westborough La	b for sample(s):	10,12 Batch:	WG939573-5	
1,2-Dichlorobenzene	ND	ug/	2.5	0.70	
1,3-Dichlorobenzene	ND	ug/	2.5	0.70	
1,4-Dichlorobenzene	ND	ug/	2.5	0.70	
Methyl tert butyl ether	ND	ug/	2.5	0.70	
p/m-Xylene	ND	ug/	2.5	0.70	
o-Xylene	ND	ug/	2.5	0.70	
Xylenes, Total	ND	ug/	2.5	0.70	
cis-1,2-Dichloroethene	ND	ug/	2.5	0.70	
1,2-Dichloroethene, Total	ND	ug/	2.5	0.70	
Dibromomethane	ND	ug/	5.0	1.0	
1,2,3-Trichloropropane	ND	ug/	2.5	0.70	
Acrylonitrile	ND	ug/	5.0	1.5	
Styrene	ND	ug/	2.5	0.70	
Dichlorodifluoromethane	ND	ug/	5.0	1.0	
Acetone	ND	ug/	5.0	1.5	
Carbon disulfide	ND	ug/	5.0	1.0	
2-Butanone	ND	ug/	5.0	1.9	
Vinyl acetate	ND	ug/	5.0	1.0	
4-Methyl-2-pentanone	ND	ug/	5.0	1.0	
2-Hexanone	ND	ug/	5.0	1.0	
Bromochloromethane	ND	ug/	2.5	0.70	
2,2-Dichloropropane	ND	ug/	2.5	0.70	
1,2-Dibromoethane	ND	ug/	2.0	0.65	
1,3-Dichloropropane	ND	ug/	2.5	0.70	
1,1,1,2-Tetrachloroethane	ND	ug/	2.5	0.70	
Bromobenzene	ND	ug/	2.5	0.70	
n-Butylbenzene	ND	ug/	2.5	0.70	
sec-Butylbenzene	ND	ug/	2.5	0.70	
tert-Butylbenzene	ND	ug/	2.5	0.70	

Project Name: THE DAILY FREEMAN Lab Number:

Project Number: 16-159311.2 **Report Date:** 10/07/16

Method Blank Analysis Batch Quality Control

Batch Quality Control

1,8260C

10/06/16 10:57

Analyst: PD

Analytical Method:

Analytical Date:

Parameter	Result	Qualifier Units	RL RL	MDL	
Volatile Organics by GC/MS	- Westborough Lab	for sample(s):	10,12 Batch:	WG939573-5	
o-Chlorotoluene	ND	ug/l	2.5	0.70	
p-Chlorotoluene	ND	ug/l	2.5	0.70	
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70	
Hexachlorobutadiene	ND	ug/l	2.5	0.70	
Isopropylbenzene	ND	ug/l	2.5	0.70	
p-Isopropyltoluene	ND	ug/l	2.5	0.70	
Naphthalene	ND	ug/l	2.5	0.70	
n-Propylbenzene	ND	ug/l	2.5	0.70	
1,2,3-Trichlorobenzene	ND	ug/l	2.5	0.70	
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70	
1,3,5-Trimethylbenzene	ND	ug/l	2.5	0.70	
1,2,4-Trimethylbenzene	ND	ug/l	2.5	0.70	
1,4-Dioxane	ND	ug/l	250	61.	
p-Diethylbenzene	ND	ug/l	2.0	0.70	
p-Ethyltoluene	ND	ug/l	2.0	0.70	
1,2,4,5-Tetramethylbenzene	ND	ug/l	2.0	0.54	
Ethyl ether	ND	ug/l	2.5	0.70	
trans-1,4-Dichloro-2-butene	ND	ug/l	2.5	0.70	

		Acceptance			
Surrogate	%Recovery	Qualifier	Criteria		
1,2-Dichloroethane-d4	90		70-130		
Toluene-d8	99		70-130		
4-Bromofluorobenzene	117		70-130		
Dibromofluoromethane	96		70-130		

Project Name: THE DAILY FREEMAN Lab Number: L1631369

Project Number: 16-159311.2 **Report Date:** 10/07/16

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 1,8260C 10/07/16 12:21

Volatile Organics by 8260/5035 - Westborough Lab for sample(s): 01-03,05-08 Batch: WG939994 Methylene chloride ND ug/kg 10 1.1 1,1-Dichloroethane ND ug/kg 1.5 0.09 Chloroform ND ug/kg 1.5 0.37 Carbon tetrachloride ND ug/kg 1.0 0.21 1,2-Dichloropropane ND ug/kg 1.0 0.21 1,2-Dichloropropane ND ug/kg 1.0 0.15 1,1,2-Trichloroethane ND ug/kg 1.0 0.15 1,1,2-Trichloroethane ND ug/kg 1.0 0.35 Trichlorofluoromethane ND ug/kg 5.0 0.39 1,2-Dichloroethane ND ug/kg 5.0 0.39 1,2-Dichloroethane ND ug/kg 1.0 0.11 1,1-1-Trichloroethane ND ug/kg 1.0 0.11 Bromodichloromethane ND ug/kg 1.0 0.12 ci	Parameter	Result	Qualifier	Units	RL	MDL	
1,1-Dichloroethane	Volatile Organics by 8260/5035 -	Westborough	Lab for sa	mple(s):	01-03,05-08	Batch: WG939	994-5
Chloroform ND ug/kg 1.5 0.37 Carbon tetrachloride ND ug/kg 1.0 0.21 1,2-Dichloropropane ND ug/kg 3.5 0.23 Dibromochloromethane ND ug/kg 1.0 0.15 1,1,2-Trichloroethane ND ug/kg 1.5 0.30 Tetrachloroethane ND ug/kg 1.0 0.14 Chlorobenzene ND ug/kg 1.0 0.35 Trichlorofluoromethane ND ug/kg 1.0 0.35 Trichloroethane ND ug/kg 1.0 0.11 1,1-Trichloroethane ND ug/kg 1.0 0.11 Bromodichloromethane ND ug/kg 1.0 0.17 trans-1,3-Dichloropropene ND ug/kg 1.0 0.12 cis-1,3-Dichloropropene ND ug/kg 1.0 0.12 1,3-Dichloropropene, Total ND ug/kg 1.0 0.12 1,1-Dichloropropene	Methylene chloride	ND		ug/kg	10	1.1	
Carbon tetrachloride ND ug/kg 1.0 0.21 1,2-Dichloropropane ND ug/kg 3.5 0.23 Dibromochloromethane ND ug/kg 1.0 0.15 1,1,2-Trichloroethane ND ug/kg 1.5 0.30 Tetrachloroethane ND ug/kg 1.0 0.14 Chlorobenzene ND ug/kg 1.0 0.35 Trichlorofluoromethane ND ug/kg 5.0 0.39 1,2-Dichloroethane ND ug/kg 1.0 0.11 1,1,1-Trichloroethane ND ug/kg 1.0 0.11 Bromodichloromethane ND ug/kg 1.0 0.17 trans-1,3-Dichloropropene ND ug/kg 1.0 0.12 cis-1,3-Dichloropropene ND ug/kg 1.0 0.12 1,3-Dichloropropene, Total ND ug/kg 5.0 0.14 Bromoform ND ug/kg 5.0 0.14 Bromoform	1,1-Dichloroethane	ND		ug/kg	1.5	0.09	
1,2-Dichloropropane ND	Chloroform	ND		ug/kg	1.5	0.37	
Dibromochloromethane ND ug/kg 1.0 0.15 1,1,2-Trichloroethane ND ug/kg 1.5 0.30 Tetrachloroethane ND ug/kg 1.0 0.14 Chlorobenzene ND ug/kg 1.0 0.35 Trichlorofluoromethane ND ug/kg 5.0 0.39 1,2-Dichloroethane ND ug/kg 1.0 0.11 1,1,1-Trichloroethane ND ug/kg 1.0 0.11 Bromodichloromethane ND ug/kg 1.0 0.17 trans-1,3-Dichloropropene ND ug/kg 1.0 0.12 cis-1,3-Dichloropropene ND ug/kg 1.0 0.12 1,3-Dichloropropene ND ug/kg 1.0 0.12 1,1-Dichloropropene ND ug/kg 5.0 0.14 Bromoform ND ug/kg 4.0 0.24 1,1,2,2-Tetrachloroethane ND ug/kg 1.0 0.10 Benzene 0.14	Carbon tetrachloride	ND		ug/kg	1.0	0.21	
1,1,2-Trichloroethane ND ug/kg 1.5 0.30 Tetrachloroethene ND ug/kg 1.0 0.14 Chlorobenzene ND ug/kg 1.0 0.35 Trichlorofluoromethane ND ug/kg 1.0 0.39 1,2-Dichloroethane ND ug/kg 1.0 0.11 1,1,1-Trichloroethane ND ug/kg 1.0 0.11 Bromodichloromethane ND ug/kg 1.0 0.17 trans-1,3-Dichloropropene ND ug/kg 1.0 0.12 trans-1,3-Dichloropropene ND ug/kg 1.0 0.12 1,3-Dichloropropene, Total ND ug/kg 1.0 0.12 1,1-Dichloropropene ND ug/kg 5.0 0.14 Bromoform ND ug/kg 4.0 0.24 1,1,2,2-Tetrachloroethane ND ug/kg 1.0 0.10 Benzene 0.14 J ug/kg 1.5 0.19 Ethylbenzene	1,2-Dichloropropane	ND		ug/kg	3.5	0.23	
Tetrachloroethene ND ug/kg 1.0 0.14 Chlorobenzene ND ug/kg 1.0 0.35 Trichlorofluoromethane ND ug/kg 5.0 0.39 1,2-Dichloroethane ND ug/kg 1.0 0.11 1,1,1-Trichloroethane ND ug/kg 1.0 0.11 Bromodichloromethane ND ug/kg 1.0 0.17 trans-1,3-Dichloropropene ND ug/kg 1.0 0.12 cis-1,3-Dichloropropene ND ug/kg 1.0 0.12 1,3-Dichloropropene, Total ND ug/kg 1.0 0.12 1,1-Dichloropropene ND ug/kg 5.0 0.14 Bromoform ND ug/kg 4.0 0.24 1,1,2,2-Tetrachloroethane ND ug/kg 1.0 0.10 Benzene 0.14 J ug/kg 1.5 0.19 Ethylbenzene ND ug/kg 1.0 0.13 Chloromethane	Dibromochloromethane	ND		ug/kg	1.0	0.15	
Chlorobenzene ND ug/kg 1.0 0.35 Trichlorofluoromethane ND ug/kg 5.0 0.39 1,2-Dichloroethane ND ug/kg 1.0 0.11 1,1,1-Trichloroethane ND ug/kg 1.0 0.11 Bromodichloromethane ND ug/kg 1.0 0.17 trans-1,3-Dichloropropene ND ug/kg 1.0 0.12 cis-1,3-Dichloropropene ND ug/kg 1.0 0.12 1,3-Dichloropropene, Total ND ug/kg 1.0 0.12 1,1-Dichloropropene ND ug/kg 5.0 0.14 Bromoform ND ug/kg 5.0 0.14 Bromoform ND ug/kg 1.0 0.12 1,1,2,2-Tetrachloroethane ND ug/kg 1.0 0.10 Benzene 0.14 J ug/kg 1.0 0.12 Toluene 0.23 J ug/kg 1.5 0.19 Ethylbenzene <td>1,1,2-Trichloroethane</td> <td>ND</td> <td></td> <td>ug/kg</td> <td>1.5</td> <td>0.30</td> <td></td>	1,1,2-Trichloroethane	ND		ug/kg	1.5	0.30	
Trichlorofluoromethane ND ug/kg 5.0 0.39 1,2-Dichloroethane ND ug/kg 1.0 0.11 1,1,1-Trichloroethane ND ug/kg 1.0 0.11 Bromodichloromethane ND ug/kg 1.0 0.17 trans-1,3-Dichloropropene ND ug/kg 1.0 0.12 cis-1,3-Dichloropropene ND ug/kg 1.0 0.12 1,3-Dichloropropene, Total ND ug/kg 1.0 0.12 1,1-Dichloropropene ND ug/kg 5.0 0.14 Bromoform ND ug/kg 4.0 0.24 1,1,2,2-Tetrachloroethane ND ug/kg 1.0 0.10 Benzene 0.14 J ug/kg 1.0 0.12 Toluene 0.23 J ug/kg 1.5 0.19 Ethylbenzene ND ug/kg 5.0 0.29 Bromomethane ND ug/kg 2.0 0.34 Vinyl chlorid	Tetrachloroethene	ND		ug/kg	1.0	0.14	
1,2-Dichloroethane ND ug/kg 1.0 0.11 1,1,1-Trichloroethane ND ug/kg 1.0 0.11 Bromodichloromethane ND ug/kg 1.0 0.17 trans-1,3-Dichloropropene ND ug/kg 1.0 0.12 cis-1,3-Dichloropropene ND ug/kg 1.0 0.12 1,3-Dichloropropene, Total ND ug/kg 1.0 0.12 1,1-Dichloropropene ND ug/kg 5.0 0.14 Bromoform ND ug/kg 4.0 0.24 1,1,2,2-Tetrachloroethane ND ug/kg 1.0 0.10 Benzene 0.14 J ug/kg 1.0 0.12 Toluene 0.23 J ug/kg 1.5 0.19 Ethylbenzene ND ug/kg 1.0 0.13 Chloromethane ND ug/kg 2.0 0.34 Vinyl chloride ND ug/kg 2.0 0.12 Chloroethane	Chlorobenzene	ND		ug/kg	1.0	0.35	
1,1,1-Trichloroethane ND ug/kg 1.0 0.11 Bromodichloromethane ND ug/kg 1.0 0.17 trans-1,3-Dichloropropene ND ug/kg 1.0 0.12 cis-1,3-Dichloropropene ND ug/kg 1.0 0.12 1,3-Dichloropropene, Total ND ug/kg 1.0 0.12 1,1-Dichloropropene ND ug/kg 5.0 0.14 Bromoform ND ug/kg 4.0 0.24 1,1,2,2-Tetrachloroethane ND ug/kg 1.0 0.10 Benzene 0.14 J ug/kg 1.0 0.12 Toluene 0.23 J ug/kg 1.5 0.19 Ethylbenzene ND ug/kg 1.0 0.13 Chloromethane ND ug/kg 2.0 0.34 Vinyl chloride ND ug/kg 2.0 0.32 Chloroethane ND ug/kg 2.0 0.32 1,1-Dichloroethene	Trichlorofluoromethane	ND		ug/kg	5.0	0.39	
Bromodichloromethane ND ug/kg 1.0 0.17 trans-1,3-Dichloropropene ND ug/kg 1.0 0.12 cis-1,3-Dichloropropene ND ug/kg 1.0 0.12 1,3-Dichloropropene, Total ND ug/kg 1.0 0.12 1,1-Dichloropropene ND ug/kg 5.0 0.14 Bromoform ND ug/kg 4.0 0.24 1,1,2,2-Tetrachloroethane ND ug/kg 1.0 0.10 Benzene 0.14 J ug/kg 1.0 0.12 Toluene 0.23 J ug/kg 1.5 0.19 Ethylbenzene ND ug/kg 1.0 0.13 Chloromethane ND ug/kg 2.0 0.34 Vinyl chloride ND ug/kg 2.0 0.34 Vinyl chloride ND ug/kg 2.0 0.32 1,1-Dichloroethene ND ug/kg 1.0 0.26	1,2-Dichloroethane	ND		ug/kg	1.0	0.11	
trans-1,3-Dichloropropene ND ug/kg 1.0 0.12 cis-1,3-Dichloropropene ND ug/kg 1.0 0.12 1,3-Dichloropropene, Total ND ug/kg 1.0 0.12 1,1-Dichloropropene ND ug/kg 5.0 0.14 Bromoform ND ug/kg 4.0 0.24 1,1,2,2-Tetrachloroethane ND ug/kg 1.0 0.10 Benzene 0.14 J ug/kg 1.0 0.12 Toluene 0.23 J ug/kg 1.5 0.19 Ethylbenzene ND ug/kg 1.0 0.13 Chloromethane ND ug/kg 5.0 0.29 Bromomethane ND ug/kg 2.0 0.34 Vinyl chloride ND ug/kg 2.0 0.12 Chloroethane ND ug/kg 2.0 0.32 1,1-Dichloroethene ND ug/kg 1.0 0.26	1,1,1-Trichloroethane	ND		ug/kg	1.0	0.11	
cis-1,3-Dichloropropene ND ug/kg 1.0 0.12 1,3-Dichloropropene, Total ND ug/kg 1.0 0.12 1,1-Dichloropropene ND ug/kg 5.0 0.14 Bromoform ND ug/kg 4.0 0.24 1,1,2,2-Tetrachloroethane ND ug/kg 1.0 0.10 Benzene 0.14 J ug/kg 1.0 0.12 Toluene 0.23 J ug/kg 1.5 0.19 Ethylbenzene ND ug/kg 1.0 0.13 Chloromethane ND ug/kg 5.0 0.29 Bromomethane ND ug/kg 2.0 0.34 Vinyl chloride ND ug/kg 2.0 0.12 Chloroethane ND ug/kg 2.0 0.32 1,1-Dichloroethene ND ug/kg 1.0 0.26	Bromodichloromethane	ND		ug/kg	1.0	0.17	
1,3-Dichloropropene, Total ND ug/kg 1.0 0.12 1,1-Dichloropropene ND ug/kg 5.0 0.14 Bromoform ND ug/kg 4.0 0.24 1,1,2,2-Tetrachloroethane ND ug/kg 1.0 0.10 Benzene 0.14 J ug/kg 1.0 0.12 Toluene 0.23 J ug/kg 1.5 0.19 Ethylbenzene ND ug/kg 1.0 0.13 Chloromethane ND ug/kg 5.0 0.29 Bromomethane ND ug/kg 2.0 0.34 Vinyl chloride ND ug/kg 2.0 0.12 Chloroethane ND ug/kg 2.0 0.32 1,1-Dichloroethene ND ug/kg 1.0 0.26	trans-1,3-Dichloropropene	ND		ug/kg	1.0	0.12	
1,1-Dichloropropene ND ug/kg 5.0 0.14 Bromoform ND ug/kg 4.0 0.24 1,1,2,2-Tetrachloroethane ND ug/kg 1.0 0.10 Benzene 0.14 J ug/kg 1.0 0.12 Toluene 0.23 J ug/kg 1.5 0.19 Ethylbenzene ND ug/kg 1.0 0.13 Chloromethane ND ug/kg 5.0 0.29 Bromomethane ND ug/kg 2.0 0.34 Vinyl chloride ND ug/kg 2.0 0.12 Chloroethane ND ug/kg 2.0 0.32 1,1-Dichloroethene ND ug/kg 1.0 0.26	cis-1,3-Dichloropropene	ND		ug/kg	1.0	0.12	
Bromoform ND ug/kg 4.0 0.24 1,1,2,2-Tetrachloroethane ND ug/kg 1.0 0.10 Benzene 0.14 J ug/kg 1.0 0.12 Toluene 0.23 J ug/kg 1.5 0.19 Ethylbenzene ND ug/kg 1.0 0.13 Chloromethane ND ug/kg 5.0 0.29 Bromomethane ND ug/kg 2.0 0.34 Vinyl chloride ND ug/kg 2.0 0.12 Chloroethane ND ug/kg 2.0 0.32 1,1-Dichloroethene ND ug/kg 1.0 0.26	1,3-Dichloropropene, Total	ND		ug/kg	1.0	0.12	
1,1,2,2-Tetrachloroethane ND ug/kg 1.0 0.10 Benzene 0.14 J ug/kg 1.0 0.12 Toluene 0.23 J ug/kg 1.5 0.19 Ethylbenzene ND ug/kg 1.0 0.13 Chloromethane ND ug/kg 5.0 0.29 Bromomethane ND ug/kg 2.0 0.34 Vinyl chloride ND ug/kg 2.0 0.12 Chloroethane ND ug/kg 2.0 0.32 1,1-Dichloroethene ND ug/kg 1.0 0.26	1,1-Dichloropropene	ND		ug/kg	5.0	0.14	
Benzene 0.14 J ug/kg 1.0 0.12 Toluene 0.23 J ug/kg 1.5 0.19 Ethylbenzene ND ug/kg 1.0 0.13 Chloromethane ND ug/kg 5.0 0.29 Bromomethane ND ug/kg 2.0 0.34 Vinyl chloride ND ug/kg 2.0 0.12 Chloroethane ND ug/kg 2.0 0.32 1,1-Dichloroethene ND ug/kg 1.0 0.26	Bromoform	ND		ug/kg	4.0	0.24	
Toluene 0.23 J ug/kg 1.5 0.19 Ethylbenzene ND ug/kg 1.0 0.13 Chloromethane ND ug/kg 5.0 0.29 Bromomethane ND ug/kg 2.0 0.34 Vinyl chloride ND ug/kg 2.0 0.12 Chloroethane ND ug/kg 2.0 0.32 1,1-Dichloroethene ND ug/kg 1.0 0.26	1,1,2,2-Tetrachloroethane	ND		ug/kg	1.0	0.10	
Ethylbenzene ND ug/kg 1.0 0.13 Chloromethane ND ug/kg 5.0 0.29 Bromomethane ND ug/kg 2.0 0.34 Vinyl chloride ND ug/kg 2.0 0.12 Chloroethane ND ug/kg 2.0 0.32 1,1-Dichloroethene ND ug/kg 1.0 0.26	Benzene	0.14	J	ug/kg	1.0	0.12	
Chloromethane ND ug/kg 5.0 0.29 Bromomethane ND ug/kg 2.0 0.34 Vinyl chloride ND ug/kg 2.0 0.12 Chloroethane ND ug/kg 2.0 0.32 1,1-Dichloroethene ND ug/kg 1.0 0.26	Toluene	0.23	J	ug/kg	1.5	0.19	
Bromomethane ND ug/kg 2.0 0.34 Vinyl chloride ND ug/kg 2.0 0.12 Chloroethane ND ug/kg 2.0 0.32 1,1-Dichloroethene ND ug/kg 1.0 0.26	Ethylbenzene	ND		ug/kg	1.0	0.13	
Vinyl chloride ND ug/kg 2.0 0.12 Chloroethane ND ug/kg 2.0 0.32 1,1-Dichloroethene ND ug/kg 1.0 0.26	Chloromethane	ND		ug/kg	5.0	0.29	
Chloroethane ND ug/kg 2.0 0.32 1,1-Dichloroethene ND ug/kg 1.0 0.26	Bromomethane	ND		ug/kg	2.0	0.34	
1,1-Dichloroethene ND ug/kg 1.0 0.26	Vinyl chloride	ND		ug/kg	2.0	0.12	
	Chloroethane	ND		ug/kg	2.0	0.32	
	1,1-Dichloroethene	ND		ug/kg	1.0	0.26	
trans-1,2-Dichloroethene ND ug/kg 1.5 0.21	trans-1,2-Dichloroethene	ND		ug/kg	1.5	0.21	
Trichloroethene ND ug/kg 1.0 0.12	Trichloroethene	ND		ug/kg	1.0	0.12	

Project Name: THE DAILY FREEMAN Lab Number: L1631369

Project Number: 16-159311.2 **Report Date:** 10/07/16

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 10/07/16 12:21

Parameter	Result	Qualifier	Units	RL	MDL	
Volatile Organics by 8260/5035 -	Westborough	Lab for sa	mple(s):	01-03,05-08	Batch: WG939	9994-5
1,2-Dichlorobenzene	ND		ug/kg	5.0	0.15	
1,3-Dichlorobenzene	ND		ug/kg	5.0	0.14	
1,4-Dichlorobenzene	ND		ug/kg	5.0	0.14	
Methyl tert butyl ether	ND		ug/kg	2.0	0.08	
p/m-Xylene	ND		ug/kg	2.0	0.35	
o-Xylene	ND		ug/kg	2.0	0.34	
Xylenes, Total	ND		ug/kg	2.0	0.34	
cis-1,2-Dichloroethene	ND		ug/kg	1.0	0.14	
1,2-Dichloroethene, Total	ND		ug/kg	1.0	0.14	
Dibromomethane	ND		ug/kg	10	0.16	
Styrene	ND		ug/kg	2.0	0.40	
Dichlorodifluoromethane	ND		ug/kg	10	0.19	
Acetone	ND		ug/kg	10	1.0	
Carbon disulfide	ND		ug/kg	10	1.1	
2-Butanone	ND		ug/kg	10	0.27	
Vinyl acetate	ND		ug/kg	10	0.13	
4-Methyl-2-pentanone	ND		ug/kg	10	0.24	
1,2,3-Trichloropropane	ND		ug/kg	10	0.16	
2-Hexanone	ND		ug/kg	10	0.67	
Bromochloromethane	ND		ug/kg	5.0	0.28	
2,2-Dichloropropane	ND		ug/kg	5.0	0.23	
1,2-Dibromoethane	ND		ug/kg	4.0	0.17	
1,3-Dichloropropane	ND		ug/kg	5.0	0.14	
1,1,1,2-Tetrachloroethane	ND		ug/kg	1.0	0.32	
Bromobenzene	ND		ug/kg	5.0	0.21	
n-Butylbenzene	ND		ug/kg	1.0	0.11	
sec-Butylbenzene	ND		ug/kg	1.0	0.12	
tert-Butylbenzene	ND		ug/kg	5.0	0.14	
o-Chlorotoluene	ND		ug/kg	5.0	0.16	

Project Name: THE DAILY FREEMAN Lab Number:

Project Number: 16-159311.2 **Report Date:** 10/07/16

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 10/07/16 12:21

Result	Qualifier	Units	RL	MDL	
Westborough	Lab for sa	mple(s):	01-03,05-08	Batch: V	VG939994-5
ND		ug/kg	5.0	0.13	
ND		ug/kg	5.0	0.40	
ND		ug/kg	5.0	0.23	
ND		ug/kg	1.0	0.10	
ND		ug/kg	1.0	0.12	
ND		ug/kg	5.0	0.14	
ND		ug/kg	10	0.51	
ND		ug/kg	1.0	0.11	
ND		ug/kg	5.0	0.15	
ND		ug/kg	5.0	0.18	
ND		ug/kg	5.0	0.14	
ND		ug/kg	5.0	0.14	
ND		ug/kg	100	14.	
ND		ug/kg	4.0	0.16	
ND		ug/kg	4.0	0.12	
ND		ug/kg	4.0	0.13	
ND		ug/kg	5.0	0.26	
ND		ug/kg	5.0	0.39	
	Westborough ND ND ND ND ND ND ND ND ND N	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND ug/kg ND ug/kg	ND ug/kg 5.0 ND ug/kg 5.0 ND ug/kg 5.0 ND ug/kg 5.0 ND ug/kg 1.0 ND ug/kg 1.0 ND ug/kg 5.0 ND ug/kg 4.0 ND ug/kg 5.0	ND ug/kg 5.0 0.13 ND ug/kg 5.0 0.40 ND ug/kg 5.0 0.40 ND ug/kg 5.0 0.23 ND ug/kg 1.0 0.10 ND ug/kg 1.0 0.12 ND ug/kg 5.0 0.14 ND ug/kg 1.0 0.51 ND ug/kg 1.0 0.11 ND ug/kg 5.0 0.15 ND ug/kg 5.0 0.18 ND ug/kg 5.0 0.14 ND ug/kg 5.0 0.14 ND ug/kg 1.0 0.14 ND ug/kg 5.0 0.14 ND ug/kg 4.0 0.16 ND ug/kg 4.0 0.12 ND ug/kg 4.0 0.13 ND ug/kg 4.0 0.13 ND ug/kg

	Acceptance						
Surrogate	%Recovery	Qualifier	Criteria				
1,2-Dichloroethane-d4	105		70-130				
Toluene-d8	103		70-130				
4-Bromofluorobenzene	99		70-130				
Dibromofluoromethane	100		70-130				

Project Name: THE DAILY FREEMAN Lab Number: L1631369

Project Number: 16-159311.2 **Report Date:** 10/07/16

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 10/07/16 11:29

Analyst: MV

Parameter	Result	Qualifier	Units	RL		MDL
Volatile Organics by EPA 5035 High	n - Westbor	ough Lab fo	or sample(s):	04	Batch:	WG940021-5
Methylene chloride	ND		ug/kg	500		55.
1,1-Dichloroethane	ND		ug/kg	75		4.3
Chloroform	ND		ug/kg	75		18.
Carbon tetrachloride	ND		ug/kg	50		10.
1,2-Dichloropropane	ND		ug/kg	180		11.
Dibromochloromethane	ND		ug/kg	50		7.7
1,1,2-Trichloroethane	ND		ug/kg	75		15.
Tetrachloroethene	ND		ug/kg	50		7.0
Chlorobenzene	ND		ug/kg	50		17.
Trichlorofluoromethane	ND		ug/kg	250		19.
1,2-Dichloroethane	ND		ug/kg	50		5.7
1,1,1-Trichloroethane	ND		ug/kg	50		5.5
Bromodichloromethane	ND		ug/kg	50		8.7
trans-1,3-Dichloropropene	ND		ug/kg	50		6.0
cis-1,3-Dichloropropene	ND		ug/kg	50		5.9
1,3-Dichloropropene, Total	ND		ug/kg	50		5.9
1,1-Dichloropropene	ND		ug/kg	250		7.1
Bromoform	ND		ug/kg	200		12.
1,1,2,2-Tetrachloroethane	ND		ug/kg	50		5.0
Benzene	7.2	J	ug/kg	50		5.9
Toluene	24	J	ug/kg	75		9.7
Ethylbenzene	ND		ug/kg	50		6.4
Chloromethane	15	J	ug/kg	250		15.
Bromomethane	22	J	ug/kg	100		17.
Vinyl chloride	ND		ug/kg	100		5.9
Chloroethane	ND		ug/kg	100		16.
1,1-Dichloroethene	ND		ug/kg	50		13.
trans-1,2-Dichloroethene	ND		ug/kg	75		11.
Trichloroethene	ND		ug/kg	50		6.2

Project Name: THE DAILY FREEMAN Lab Number: L1631369

Project Number: 16-159311.2 **Report Date:** 10/07/16

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 10/07/16 11:29

Analyst: MV

Parameter	Result	Qualifier	Units	RL		MDL
olatile Organics by EPA 5035 H	ligh - Westbor	ough Lab fo	or sample(s):	04	Batch:	WG940021-5
1,2-Dichlorobenzene	ND		ug/kg	250		7.7
1,3-Dichlorobenzene	ND		ug/kg	250		6.8
1,4-Dichlorobenzene	ND		ug/kg	250		6.9
Methyl tert butyl ether	ND		ug/kg	100		4.2
p/m-Xylene	ND		ug/kg	100		18.
o-Xylene	ND		ug/kg	100		17.
Xylenes, Total	ND		ug/kg	100		17.
cis-1,2-Dichloroethene	ND		ug/kg	50		7.1
1,2-Dichloroethene, Total	ND		ug/kg	50		7.1
Dibromomethane	ND		ug/kg	500		8.2
Styrene	ND		ug/kg	100		20.
Dichlorodifluoromethane	ND		ug/kg	500		9.5
Acetone	59	J	ug/kg	500		52.
Carbon disulfide	ND		ug/kg	500		55.
2-Butanone	ND		ug/kg	500		14.
Vinyl acetate	ND		ug/kg	500		6.6
4-Methyl-2-pentanone	ND		ug/kg	500		12.
1,2,3-Trichloropropane	ND		ug/kg	500		8.1
2-Hexanone	ND		ug/kg	500		33.
Bromochloromethane	ND		ug/kg	250		14.
2,2-Dichloropropane	ND		ug/kg	250		11.
1,2-Dibromoethane	ND		ug/kg	200		8.7
1,3-Dichloropropane	ND		ug/kg	250		7.3
1,1,1,2-Tetrachloroethane	ND		ug/kg	50		16.
Bromobenzene	ND		ug/kg	250		10.
n-Butylbenzene	ND		ug/kg	50		5.7
sec-Butylbenzene	ND		ug/kg	50		6.1
tert-Butylbenzene	ND		ug/kg	250		6.8
o-Chlorotoluene	ND		ug/kg	250		8.0

Project Name: THE DAILY FREEMAN Lab Number:

Project Number: 16-159311.2 **Report Date:** 10/07/16

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 10/07/16 11:29

Analyst: MV

arameter		Qualifier	Units	RL		MDL	
platile Organics by EPA 5035 Hig	h - Westbor	ough Lab fo	or sample(s):	04	Batch:	WG940021-5	
p-Chlorotoluene	ND		ug/kg	250		6.6	
1,2-Dibromo-3-chloropropane	ND		ug/kg	250		20.	
Hexachlorobutadiene	ND		ug/kg	250		11.	
Isopropylbenzene	ND		ug/kg	50		5.2	
p-Isopropyltoluene	ND		ug/kg	50		6.2	
Naphthalene	ND		ug/kg	250		6.9	
Acrylonitrile	ND		ug/kg	500		26.	
n-Propylbenzene	ND		ug/kg	50		5.5	
1,2,3-Trichlorobenzene	ND		ug/kg	250		7.4	
1,2,4-Trichlorobenzene	ND		ug/kg	250		9.1	
1,3,5-Trimethylbenzene	ND		ug/kg	250		7.2	
1,2,4-Trimethylbenzene	ND		ug/kg	250		7.1	
1,4-Dioxane	ND		ug/kg	5000		720	
p-Diethylbenzene	ND		ug/kg	200		8.0	
p-Ethyltoluene	ND		ug/kg	200		6.2	
1,2,4,5-Tetramethylbenzene	ND		ug/kg	200		6.5	
Ethyl ether	ND		ug/kg	250		13.	
trans-1,4-Dichloro-2-butene	ND		ug/kg	250		20.	

			Acceptance				
Surrogate	%Recovery	Qualifier	Criteria				
1,2-Dichloroethane-d4	84		70-130				
Toluene-d8	93		70-130				
4-Bromofluorobenzene	86		70-130				
Dibromofluoromethane	99		70-130				

Project Name: THE DAILY FREEMAN

Project Number: 16-159311.2

Lab Number: L1631369

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	09,11 Batch:	WG939274-3	WG939274-4			
Methylene chloride	93		100		70-130	7	20	
1,1-Dichloroethane	100		110		70-130	10	20	
Chloroform	100		110		70-130	10	20	
2-Chloroethylvinyl ether	90		90		70-130	0	20	
Carbon tetrachloride	110		120		63-132	9	20	
1,2-Dichloropropane	97		100		70-130	3	20	
Dibromochloromethane	81		87		63-130	7	20	
1,1,2-Trichloroethane	89		96		70-130	8	20	
Tetrachloroethene	92		98		70-130	6	20	
Chlorobenzene	94		100		75-130	6	20	
Trichlorofluoromethane	85		94		62-150	10	20	
1,2-Dichloroethane	97		110		70-130	13	20	
1,1,1-Trichloroethane	100		110		67-130	10	20	
Bromodichloromethane	100		110		67-130	10	20	
trans-1,3-Dichloropropene	84		90		70-130	7	20	
cis-1,3-Dichloropropene	100		110		70-130	10	20	
1,1-Dichloropropene	98		100		70-130	2	20	
Bromoform	79		82		54-136	4	20	
1,1,2,2-Tetrachloroethane	90		97		67-130	7	20	
Benzene	100		110		70-130	10	20	
Toluene	97		100		70-130	3	20	

Project Name: THE DAILY FREEMAN

Project Number: 16-159311.2

Lab Number: L1631369

arameter	LCS %Recovery	Qual	LCSD %Recovery	' Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	09,11 Batch:	WG939274-3	WG939274-4			
Ethylbenzene	99		100		70-130	1		20
Chloromethane	85		90		64-130	6		20
Bromomethane	110		130		39-139	17		20
Vinyl chloride	100		110		55-140	10		20
Chloroethane	99		110		55-138	11		20
1,1-Dichloroethene	88		94		61-145	7		20
trans-1,2-Dichloroethene	99		110		70-130	11		20
Trichloroethene	100		110		70-130	10		20
1,2-Dichlorobenzene	87		94		70-130	8		20
1,3-Dichlorobenzene	93		99		70-130	6		20
1,4-Dichlorobenzene	92		98		70-130	6		20
Methyl tert butyl ether	94		100		63-130	6		20
p/m-Xylene	95		100		70-130	5		20
o-Xylene	95		100		70-130	5		20
cis-1,2-Dichloroethene	100		110		70-130	10		20
Dibromomethane	96		100		70-130	4		20
1,2,3-Trichloropropane	89		98		64-130	10		20
Acrylonitrile	82		88		70-130	7		20
Isopropyl Ether	96		100		70-130	4		20
tert-Butyl Alcohol	84		102		70-130	19		20
Styrene	100		110		70-130	10		20

Project Name: THE DAILY FREEMAN

Project Number: 16-159311.2

Lab Number: L1631369

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	09,11 Batch:	WG939274-3	WG939274-4			
Dichlorodifluoromethane	83		90		36-147	8	20	
Acetone	76		70		58-148	8	20	
Carbon disulfide	84		90		51-130	7	20	
2-Butanone	83		86		63-138	4	20	
Vinyl acetate	87		96		70-130	10	20	
4-Methyl-2-pentanone	70		74		59-130	6	20	
2-Hexanone	66		72		57-130	9	20	
Acrolein	70		83		40-160	17	20	
Bromochloromethane	98		110		70-130	12	20	
2,2-Dichloropropane	120		140	Q	63-133	15	20	
1,2-Dibromoethane	90		96		70-130	6	20	
1,3-Dichloropropane	90		96		70-130	6	20	
1,1,1,2-Tetrachloroethane	94		100		64-130	6	20	
Bromobenzene	100		100		70-130	0	20	
n-Butylbenzene	94		98		53-136	4	20	
sec-Butylbenzene	97		100		70-130	3	20	
tert-Butylbenzene	98		100		70-130	2	20	
o-Chlorotoluene	100		100		70-130	0	20	
p-Chlorotoluene	100		110		70-130	10	20	
1,2-Dibromo-3-chloropropane	70		71		41-144	1	20	
Hexachlorobutadiene	78		81		63-130	4	20	

Project Name: THE DAILY FREEMAN

Project Number: 16-159311.2

Lab Number: L1631369

Parameter	LCS %Recovery	Qual	LCSD %Recovery	' Qual	%Recovery Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	09,11 Batch:	WG939274-3	WG939274-4		
Isopropylbenzene	110		110		70-130	0	20
p-Isopropyltoluene	97		100		70-130	3	20
Naphthalene	53	Q	63	Q	70-130	17	20
n-Propylbenzene	110		110		69-130	0	20
1,2,3-Trichlorobenzene	45	Q	54	Q	70-130	18	20
1,2,4-Trichlorobenzene	62	Q	68	Q	70-130	9	20
1,3,5-Trimethylbenzene	100		110		64-130	10	20
1,2,4-Trimethylbenzene	100		110		70-130	10	20
Methyl Acetate	80		92		70-130	14	20
Ethyl Acetate	81		91		70-130	12	20
Cyclohexane	86		90		70-130	5	20
Ethyl-Tert-Butyl-Ether	99		110		70-130	11	20
Tertiary-Amyl Methyl Ether	93		100		66-130	7	20
1,4-Dioxane	94		106		56-162	12	20
1,1,2-Trichloro-1,2,2-Trifluoroethane	86		91		70-130	6	20
p-Diethylbenzene	95		100		70-130	5	20
p-Ethyltoluene	110		110		70-130	0	20
1,2,4,5-Tetramethylbenzene	89		95		70-130	7	20
Tetrahydrofuran	72		81		58-130	12	20
Ethyl ether	91		100		59-134	9	20
trans-1,4-Dichloro-2-butene	92		93		70-130	1	20

Project Name: THE DAILY FREEMAN

Project Number: 16-159311.2

Lab Number:

L1631369

Report Date:

10/07/16

Parameter	LCS %Recovery	Qual	LCSD %Recove	ry Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westboroug	gh Lab Associated	sample(s):	09,11 Batch	: WG939274-3	WG939274-4				
Iodomethane	96		100		70-130	4		20	
Methyl cyclohexane	83		89		70-130	7		20	

	LCS		LCSD		Acceptance
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria
1,2-Dichloroethane-d4	101		100		70-130
Toluene-d8	100		100		70-130
4-Bromofluorobenzene	115		113		70-130
Dibromofluoromethane	100		101		70-130

Project Name: THE DAILY FREEMAN

Project Number: 16-159311.2

Lab Number: L1631369

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	10,12 Batch: \	WG939573-3	WG939573-4			
Methylene chloride	99		95		70-130	4	20	
1,1-Dichloroethane	98		98		70-130	0	20	
Chloroform	100		100		70-130	0	20	
Carbon tetrachloride	98		98		63-132	0	20	
1,2-Dichloropropane	93		93		70-130	0	20	
Dibromochloromethane	97		100		63-130	3	20	
1,1,2-Trichloroethane	100		100		70-130	0	20	
Tetrachloroethene	98		95		70-130	3	20	
Chlorobenzene	98		98		75-130	0	20	
Trichlorofluoromethane	100		99		62-150	1	20	
1,2-Dichloroethane	93		96		70-130	3	20	
1,1,1-Trichloroethane	100		100		67-130	0	20	
Bromodichloromethane	98		99		67-130	1	20	
trans-1,3-Dichloropropene	92		97		70-130	5	20	
cis-1,3-Dichloropropene	85		88		70-130	3	20	
1,1-Dichloropropene	96		95		70-130	1	20	
Bromoform	100		100		54-136	0	20	
1,1,2,2-Tetrachloroethane	100		110		67-130	10	20	
Benzene	98		99		70-130	1	20	
Toluene	100		100		70-130	0	20	
Ethylbenzene	100		100		70-130	0	20	

Project Name: THE DAILY FREEMAN

Project Number: 16-159311.2

Lab Number: L1631369

Parameter	LCS %Recovery	Qual	LCSD %Recovery	' Qual	%Recovery Limits	RPD	RPD Qual Limits	
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	10,12 Batch:	WG939573-3	WG939573-4			
Chloromethane	96		98		64-130	2	20	
Bromomethane	84		87		39-139	4	20	
Vinyl chloride	87		86		55-140	1	20	
Chloroethane	96		93		55-138	3	20	
1,1-Dichloroethene	95		96		61-145	1	20	
trans-1,2-Dichloroethene	100		100		70-130	0	20	
Trichloroethene	100		99		70-130	1	20	
1,2-Dichlorobenzene	96		97		70-130	1	20	
1,3-Dichlorobenzene	98		98		70-130	0	20	
1,4-Dichlorobenzene	95		95		70-130	0	20	
Methyl tert butyl ether	92		99		63-130	7	20	
p/m-Xylene	100		100		70-130	0	20	
o-Xylene	100		100		70-130	0	20	
cis-1,2-Dichloroethene	99		100		70-130	1	20	
Dibromomethane	93		98		70-130	5	20	
1,2,3-Trichloropropane	110		110		64-130	0	20	
Acrylonitrile	88		98		70-130	11	20	
Isopropyl Ether	97		100		70-130	3	20	
tert-Butyl Alcohol	88		92		70-130	4	20	
Styrene	100		105		70-130	5	20	
Dichlorodifluoromethane	98		95		36-147	3	20	

Project Name: THE DAILY FREEMAN

Project Number: 16-159311.2

Lab Number: L1631369

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough I	_ab Associated	sample(s):	10,12 Batch:	WG939573-3	WG939573-4			
Acetone	98		100		58-148	2		20
Carbon disulfide	94		93		51-130	1		20
2-Butanone	95		100		63-138	5		20
Vinyl acetate	98		100		70-130	2		20
4-Methyl-2-pentanone	74		73		59-130	1		20
2-Hexanone	69		75		57-130	8		20
Acrolein	74		74		40-160	0		20
Bromochloromethane	94		96		70-130	2		20
2,2-Dichloropropane	100		100		63-133	0		20
1,2-Dibromoethane	96		100		70-130	4		20
1,3-Dichloropropane	96		99		70-130	3		20
1,1,1,2-Tetrachloroethane	97		97		64-130	0		20
Bromobenzene	100		100		70-130	0		20
n-Butylbenzene	85		82		53-136	4		20
sec-Butylbenzene	96		92		70-130	4		20
tert-Butylbenzene	86		82		70-130	5		20
o-Chlorotoluene	110		110		70-130	0		20
p-Chlorotoluene	110		110		70-130	0		20
1,2-Dibromo-3-chloropropane	84		88		41-144	5		20
Hexachlorobutadiene	100		97		63-130	3		20
Isopropylbenzene	100		100		70-130	0		20

Project Name: THE DAILY FREEMAN

Project Number: 16-159311.2

Lab Number: L1631369

Pisopropytholuene	Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
Naphthalene 58 Q 59 Q 70-130 2 20 n-Propylbenzene 110 100 69-130 10 20 1,2,3-Trichlorobenzene 68 Q 68 Q 70-130 0 20 1,2,4-Trichlorobenzene 65 Q 66 Q 70-130 2 20 1,3,5-Trimethylbenzene 100 100 64-130 0 20 1,2,4-Trimethylbenzene 100 100 70-130 0 20 Methyl Acetate 98 100 70-130 2 20 Ethyl Acetate 87 96 70-130 1 20 Cyclohexane 92 91 70-130 1 20 Ethyl-Tetr-Butyl-Ether 91 96 70-130 5 20 Tetriany-Amyl Methyl Ether 88 92 66-130 4 20 1,4-Dioxane 90 90 70-130 0 20 p-Diethylb	olatile Organics by GC/MS - Westboroug	gh Lab Associated	sample(s):	10,12 Batch:	WG939573-3	WG939573-4		
n-Propylbenzene 110 100 69-130 10 20 1,2,3-Trichlorobenzene 68 Q 68 Q 70-130 0 20 1,2,4-Trichlorobenzene 65 Q 66 Q 70-130 2 20 1,3,5-Trimethylbenzene 100 100 64-130 0 20 1,2,4-Trimethylbenzene 100 100 70-130 0 20 Methyl Acetate 98 100 70-130 2 20 Ethyl Acetate 87 96 70-130 10 20 Cyclohexane 92 91 70-130 1 20 Ethyl-Tert-Butyl-Ether 91 96 70-130 1 20 Ethyl-Tert-Butyl-Ether 91 96 70-130 4 20 Tertaisry-Amyl Methyl Ether 88 92 66-130 4 20 1,2-Trichloro-1,2,2-Trifluoroethane 90 92 56-162 2 20 p-Diethylbe	p-Isopropyltoluene	94		91		70-130	3	20
1,2,3-Trichlorobenzene 68 Q 68 Q 70-130 0 20 1,2,4-Trichlorobenzene 65 Q 66 Q 70-130 2 20 1,3,5-Trimethylbenzene 100 100 64-130 0 20 1,2,4-Trimethylbenzene 100 100 70-130 0 20 Methyl Acetate 98 100 70-130 2 20 Ethyl Acetate 87 96 70-130 10 20 Cyclohexane 92 91 70-130 1 20 Ethyl-Tert-Butyl-Ether 91 96 70-130 1 20 Tertiary-Amyl Methyl Ether 88 92 66-130 4 20 1,4-Dioxane 90 92 56-162 2 20 1,1,2-Trichloro-1,2,2-Trifluoroethane 90 90 70-130 0 20 p-Diethylbenzene 84 81 70-130 4 20 p-Ethyltoluene	Naphthalene	58	Q	59	Q	70-130	2	20
1,2,4-Trichlorobenzene 65 Q 66 Q 70-130 2 20 1,3,5-Trimethylbenzene 100 100 64-130 0 20 1,2,4-Trimethylbenzene 100 100 70-130 0 20 Methyl Acetate 98 100 70-130 2 20 Ethyl Acetate 87 96 70-130 10 20 Cyclohexane 92 91 70-130 1 20 Ethyl-Tet-Butyl-Ether 91 96 70-130 5 20 Tertiary-Amyl Methyl Ether 88 92 66-130 4 20 1,4-Dioxane 90 92 56-162 2 20 1,1,2-Trichloro-1,2,2-Trifluoroethane 90 90 70-130 0 20 p-Eithyltoluene 110 100 70-130 4 20 p-Eithyltoluene 110 100 70-130 2 20 Tetranydrofuran 85 91	n-Propylbenzene	110		100		69-130	10	20
1,3,5-Trimethylbenzene 100 100 64-130 0 20 1,2,4-Trimethylbenzene 100 100 70-130 0 20 Methyl Acetate 98 100 70-130 2 20 Ethyl Acetate 87 96 70-130 10 20 Cyclohexane 92 91 70-130 1 20 Ethyl-Tert-Butyl-Ether 91 96 70-130 5 20 Tertiary-Amyl Methyl Ether 88 92 66-130 4 20 1,4-Dioxane 90 92 56-162 2 20 1,1,2-Trichloro-1,2,2-Trifluoroethane 90 90 70-130 0 20 p-Diethylbenzene 84 81 70-130 4 20 p-Ethyltoluene 110 100 70-130 10 20 1,2,4,5-Tetramethylbenzene 86 84 70-130 2 20 Tetrahydrofuran 85 91 58-130 7 20 Ethyl ether 81 87 59-134 7	1,2,3-Trichlorobenzene	68	Q	68	Q	70-130	0	20
1,2,4-Trimethylbenzene 100 100 70-130 0 20 Methyl Acetate 98 100 70-130 2 20 Ethyl Acetate 87 96 70-130 10 20 Cyclohexane 92 91 70-130 1 20 Ethyl-Tert-Butyl-Ether 91 96 70-130 5 20 Tertiary-Amyl Methyl Ether 88 92 66-130 4 20 1,4-Dioxane 90 92 56-162 2 20 1,1,2-Trichloro-1,2,2-Trifluoroethane 90 90 70-130 0 20 p-Diethylbenzene 84 81 70-130 4 20 p-Ethyltoluene 110 100 70-130 10 20 1,2,4,5-Tetramethylbenzene 86 84 70-130 2 20 Tetrahydrofuran 85 91 58-130 7 20 Ethyl ether 81 87 59-134 7 20 trans-1,4-Dichloro-2-butene 100 100 70-130 0 </td <td>1,2,4-Trichlorobenzene</td> <td>65</td> <td>Q</td> <td>66</td> <td>Q</td> <td>70-130</td> <td>2</td> <td>20</td>	1,2,4-Trichlorobenzene	65	Q	66	Q	70-130	2	20
Methyl Acetate 98 100 70-130 2 20 Ethyl Acetate 87 96 70-130 10 20 Cyclohexane 92 91 70-130 1 20 Ethyl-Tert-Butyl-Ether 91 96 70-130 5 20 Tertiary-Amyl Methyl Ether 88 92 66-130 4 20 1,4-Dioxane 90 92 56-162 2 20 1,1,2-Trichloro-1,2,2-Triffluoroethane 90 90 70-130 0 20 p-Diethylbenzene 84 81 70-130 4 20 p-Ethyltoluene 110 100 70-130 10 20 1,2,4,5-Tetramethylbenzene 86 84 70-130 2 20 Tetrahydrofuran 85 91 58-130 7 20 Ethyl ether 81 87 59-134 7 20 trans-1,4-Dichloro-2-butene 100 100 70-130 0	1,3,5-Trimethylbenzene	100		100		64-130	0	20
Ethyl Acetate 87 96 70-130 10 20 Cyclohexane 92 91 70-130 1 20 Ethyl-Tert-Butyl-Ether 91 96 70-130 5 20 Tertiary-Amyl Methyl Ether 88 92 66-130 4 20 1,4-Dioxane 90 92 56-162 2 20 1,1,2-Trichloro-1,2,2-Trifluoroethane 90 90 70-130 0 20 p-Diethylbenzene 84 81 70-130 4 20 p-Ethyltoluene 110 100 70-130 10 20 1,2,4,5-Tetramethylbenzene 86 84 70-130 2 20 Tetrahydrofuran 85 91 58-130 7 20 Ethyl ether 81 87 59-134 7 20 trans-1,4-Dichloro-2-butene 100 100 70-130 0 20	1,2,4-Trimethylbenzene	100		100		70-130	0	20
Cyclohexane 92 91 70-130 1 20 Ethyl-Tert-Butyl-Ether 91 96 70-130 5 20 Tertiary-Amyl Methyl Ether 88 92 66-130 4 20 1,4-Dioxane 90 92 56-162 2 20 1,1,2-Trichloro-1,2,2-Trifluoroethane 90 90 70-130 0 20 p-Diethylbenzene 84 81 70-130 4 20 p-Ethyltoluene 110 100 70-130 10 20 1,2,4,5-Tetramethylbenzene 86 84 70-130 2 20 Tetrahydrofuran 85 91 58-130 7 20 Ethyl ether 81 87 59-134 7 20 trans-1,4-Dichloro-2-butene 100 100 70-130 0 20	Methyl Acetate	98		100		70-130	2	20
Ethyl-Tert-Butyl-Ether 91 96 70-130 5 20 Tertiary-Amyl Methyl Ether 88 92 66-130 4 20 1,4-Dioxane 90 92 56-162 2 20 1,1,2-Trichloro-1,2,2-Trifluoroethane 90 90 70-130 0 20 p-Diethylbenzene 84 81 70-130 4 20 p-Ethyltoluene 110 100 70-130 10 20 1,2,4,5-Tetramethylbenzene 86 84 70-130 2 20 Tetrahydrofuran 85 91 58-130 7 20 Ethyl ether 81 87 59-134 7 20 trans-1,4-Dichloro-2-butene 100 100 70-130 0 20	Ethyl Acetate	87		96		70-130	10	20
Tertiary-Amyl Methyl Ether 88 92 66-130 4 20 1,4-Dioxane 90 92 56-162 2 20 1,1,2-Trichloro-1,2,2-Trifluoroethane 90 90 70-130 0 20 p-Diethylbenzene 84 81 70-130 4 20 p-Ethyltoluene 110 100 70-130 10 20 1,2,4,5-Tetramethylbenzene 86 84 70-130 2 20 Tetrahydrofuran 85 91 58-130 7 20 Ethyl ether 81 87 59-134 7 20 trans-1,4-Dichloro-2-butene 100 100 70-130 0 20	Cyclohexane	92		91		70-130	1	20
1,4-Dioxane 90 92 56-162 2 20 1,1,2-Trichloro-1,2,2-Trifluoroethane 90 90 70-130 0 20 p-Diethylbenzene 84 81 70-130 4 20 p-Ethyltoluene 110 100 70-130 10 20 1,2,4,5-Tetramethylbenzene 86 84 70-130 2 20 Tetrahydrofuran 85 91 58-130 7 20 Ethyl ether 81 87 59-134 7 20 trans-1,4-Dichloro-2-butene 100 100 70-130 0 20	Ethyl-Tert-Butyl-Ether	91		96		70-130	5	20
1,1,2-Trichloro-1,2,2-Trifluoroethane 90 90 70-130 0 20 p-Diethylbenzene 84 81 70-130 4 20 p-Ethyltoluene 110 100 70-130 10 20 1,2,4,5-Tetramethylbenzene 86 84 70-130 2 20 Tetrahydrofuran 85 91 58-130 7 20 Ethyl ether 81 87 59-134 7 20 trans-1,4-Dichloro-2-butene 100 100 70-130 0 20	Tertiary-Amyl Methyl Ether	88		92		66-130	4	20
p-Diethylbenzene 84 81 70-130 4 20 p-Ethyltoluene 110 100 70-130 10 20 1,2,4,5-Tetramethylbenzene 86 84 70-130 2 20 Tetrahydrofuran 85 91 58-130 7 20 Ethyl ether 81 87 59-134 7 20 trans-1,4-Dichloro-2-butene 100 100 70-130 0 20	1,4-Dioxane	90		92		56-162	2	20
p-Ethyltoluene 110 100 70-130 10 20 1,2,4,5-Tetramethylbenzene 86 84 70-130 2 20 Tetrahydrofuran 85 91 58-130 7 20 Ethyl ether 81 87 59-134 7 20 trans-1,4-Dichloro-2-butene 100 100 70-130 0 20	1,1,2-Trichloro-1,2,2-Trifluoroethane	90		90		70-130	0	20
1,2,4,5-Tetramethylbenzene 86 84 70-130 2 20 Tetrahydrofuran 85 91 58-130 7 20 Ethyl ether 81 87 59-134 7 20 trans-1,4-Dichloro-2-butene 100 100 70-130 0 20	p-Diethylbenzene	84		81		70-130	4	20
Tetrahydrofuran 85 91 58-130 7 20 Ethyl ether 81 87 59-134 7 20 trans-1,4-Dichloro-2-butene 100 100 70-130 0 20	p-Ethyltoluene	110		100		70-130	10	20
Ethyl ether 81 87 59-134 7 20 trans-1,4-Dichloro-2-butene 100 100 70-130 0 20	1,2,4,5-Tetramethylbenzene	86		84		70-130	2	20
trans-1,4-Dichloro-2-butene 100 100 70-130 0 20	Tetrahydrofuran	85		91		58-130	7	20
	Ethyl ether	81		87		59-134	7	20
lodomethane 66 Q 66 Q 70-130 0 20	trans-1,4-Dichloro-2-butene	100		100		70-130	0	20
	lodomethane	66	Q	66	Q	70-130	0	20

Project Name: THE DAILY FREEMAN

Project Number: 16-159311.2

Lab Number:

L1631369

Report Date:

10/07/16

Parameter	LCS %Recovery	Qual		.CSD ecovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	10,12	Batch:	WG939573-3	WG939573-4				
Methyl cyclohexane	85			83		70-130	2		20	

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	
1,2-Dichloroethane-d4	85		87		70-130	
Toluene-d8	102		103		70-130	
4-Bromofluorobenzene	104		104		70-130	
Dibromofluoromethane	92		91		70-130	

Project Name: THE DAILY FREEMAN

Project Number: 16-159311.2

Lab Number: L1631369

arameter	LCS %Recovery Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
olatile Organics by 8260/5035 - W	estborough Lab Associated sample	(s): 01-03,05-08 B	atch: WG939994-3 WG93	39994-4	
Methylene chloride	90	87	70-130	3	30
1,1-Dichloroethane	116	114	70-130	2	30
Chloroform	105	103	70-130	2	30
Carbon tetrachloride	108	106	70-130	2	30
1,2-Dichloropropane	112	111	70-130	1	30
Dibromochloromethane	98	96	70-130	2	30
2-Chloroethylvinyl ether	91	82	70-130	10	30
1,1,2-Trichloroethane	102	101	70-130	1	30
Tetrachloroethene	108	107	70-130	1	30
Chlorobenzene	106	103	70-130	3	30
Trichlorofluoromethane	130	127	70-139	2	30
1,2-Dichloroethane	107	105	70-130	2	30
1,1,1-Trichloroethane	110	110	70-130	0	30
Bromodichloromethane	100	99	70-130	1	30
trans-1,3-Dichloropropene	100	96	70-130	4	30
cis-1,3-Dichloropropene	100	99	70-130	1	30
1,1-Dichloropropene	113	110	70-130	3	30
Bromoform	90	85	70-130	6	30
1,1,2,2-Tetrachloroethane	95	93	70-130	2	30
Benzene	106	104	70-130	2	30
Toluene	109	108	70-130	1	30

Project Name: THE DAILY FREEMAN

Project Number: 16-159311.2

Lab Number: L1631369

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Volatile Organics by 8260/5035 - Westborou	gh Lab Associa	ted sample(s):	01-03,05-08	Batch: WG939994-3 WG93	39994-4	
Ethylbenzene	111		110	70-130	1	30
Chloromethane	126		121	52-130	4	30
Bromomethane	114		115	57-147	1	30
Vinyl chloride	134	Q	130	67-130	3	30
Chloroethane	147		143	50-151	3	30
1,1-Dichloroethene	130		127	65-135	2	30
trans-1,2-Dichloroethene	109		109	70-130	0	30
Trichloroethene	112		110	70-130	2	30
1,2-Dichlorobenzene	102		100	70-130	2	30
1,3-Dichlorobenzene	106		104	70-130	2	30
1,4-Dichlorobenzene	106		103	70-130	3	30
Methyl tert butyl ether	103		99	66-130	4	30
p/m-Xylene	109		108	70-130	1	30
o-Xylene	107		106	70-130	1	30
cis-1,2-Dichloroethene	106		106	70-130	0	30
Dibromomethane	104		100	70-130	4	30
Styrene	108		106	70-130	2	30
Dichlorodifluoromethane	107		104	30-146	3	30
Acetone	137		136	54-140	1	30
Carbon disulfide	114		114	59-130	0	30
2-Butanone	114		107	70-130	6	30

Project Name: THE DAILY FREEMAN

Project Number: 16-159311.2

Lab Number: L1631369

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recove	•	Qual	RPD Limits	
platile Organics by 8260/5035 - Westbord	ough Lab Associat	ed sample(s):	01-03,05-08	Batch:	WG939994-3	WG939994-4			
Vinyl acetate	103		101		70-130	2		30	
4-Methyl-2-pentanone	114		111		70-130	3		30	
1,2,3-Trichloropropane	98		96		68-130	2		30	
2-Hexanone	114		106		70-130	7		30	
Bromochloromethane	107		106		70-130	1		30	
2,2-Dichloropropane	109		107		70-130	2		30	
1,2-Dibromoethane	99		98		70-130	1		30	
1,3-Dichloropropane	102		100		69-130	2		30	
1,1,1,2-Tetrachloroethane	103		101		70-130	2		30	
Bromobenzene	100		99		70-130	1		30	
n-Butylbenzene	120		117		70-130	3		30	
sec-Butylbenzene	108		105		70-130	3		30	
tert-Butylbenzene	105		104		70-130	1		30	
o-Chlorotoluene	106		104		70-130	2		30	
p-Chlorotoluene	106		103		70-130	3		30	
1,2-Dibromo-3-chloropropane	90		86		68-130	5		30	
Hexachlorobutadiene	91		90		67-130	1		30	
Isopropylbenzene	104		103		70-130	1		30	
p-Isopropyltoluene	109		106		70-130	3		30	
Naphthalene	93		90		70-130	3		30	
Acrylonitrile	119		112		70-130	6		30	

Project Name: THE DAILY FREEMAN

Project Number: 16-159311.2

Lab Number: L1631369

rameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recove Limits	ery RPD	RPD Limits
platile Organics by 8260/5035 - Westbor	ough Lab Associa	ted sample(s):	01-03,05-08	Batch: W	/G939994-3	WG939994-4	
Isopropyl Ether	117		114		66-130	3	30
tert-Butyl Alcohol	101		95		70-130	6	30
n-Propylbenzene	111		109		70-130	2	30
1,2,3-Trichlorobenzene	95		92		70-130	3	30
1,2,4-Trichlorobenzene	99		98		70-130	1	30
1,3,5-Trimethylbenzene	104		101		70-130	3	30
1,2,4-Trimethylbenzene	104		103		70-130	1	30
Methyl Acetate	114		108		51-146	5	30
Ethyl Acetate	101		99		70-130	2	30
Acrolein	132	Q	145	Q	70-130	9	30
Cyclohexane	132		129		59-142	2	30
1,4-Dioxane	86		84		65-136	2	30
1,1,2-Trichloro-1,2,2-Trifluoroethane	122		117		50-139	4	30
p-Diethylbenzene	110		107		70-130	3	30
p-Ethyltoluene	104		102		70-130	2	30
1,2,4,5-Tetramethylbenzene	102		99		70-130	3	30
Tetrahydrofuran	110		107		66-130	3	30
Ethyl ether	120		117		67-130	3	30
trans-1,4-Dichloro-2-butene	88		80		70-130	10	30
Methyl cyclohexane	118		116		70-130	2	30
Ethyl-Tert-Butyl-Ether	113		111		70-130	2	30

Project Name: THE DAILY FREEMAN

Project Number: 16-159311.2

Lab Number:

L1631369

Report Date:

10/07/16

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by 8260/5035 - Westboroug	h Lab Associate	d sample(s):	01-03,05-08	Batch: V	WG939994-3 WG93	9994-4			
Tertiary-Amyl Methyl Ether	101		97		70-130	4		30	

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	
1,2-Dichloroethane-d4	102		101		70-130	
Toluene-d8	103		104		70-130	
4-Bromofluorobenzene	100		100		70-130	
Dibromofluoromethane	99		100		70-130	

Project Name: THE DAILY FREEMAN

Project Number: 16-159311.2

Lab Number: L1631369

Parameter	LCS %Recovery	LC Qual %Rec		%Recov Qual Limit		RP Qual Lim	
Volatile Organics by EPA 5035 High - West	tborough Lab Ass	ociated sample(s): 04	Batch	n: WG940021-3 WG	940021-4		
Methylene chloride	116	1	4	70-130	2	30	1
1,1-Dichloroethane	108	1)8	70-130	0	30	
Chloroform	100	ę	8	70-130	2	30	
Carbon tetrachloride	100	9	9	70-130	1	30	
1,2-Dichloropropane	116	1	5	70-130	1	30	
Dibromochloromethane	96	9	7	70-130	1	30	
2-Chloroethylvinyl ether	124	1.	24	70-130	0	30	
1,1,2-Trichloroethane	101	1)2	70-130	1	30	1
Tetrachloroethene	104	1)7	70-130	3	30	1
Chlorobenzene	101	1)2	70-130	1	30	1
Trichlorofluoromethane	99	9	9	70-139	0	30	1
1,2-Dichloroethane	84	3	4	70-130	0	30	1
1,1,1-Trichloroethane	92	9	2	70-130	0	30	1
Bromodichloromethane	93	9	3	70-130	0	30	1
trans-1,3-Dichloropropene	90	9	2	70-130	2	30)
cis-1,3-Dichloropropene	101	1)4	70-130	3	30	1
1,1-Dichloropropene	103	1)2	70-130	1	30	1
Bromoform	98	9	9	70-130	1	30	1
1,1,2,2-Tetrachloroethane	96	9	9	70-130	3	30	1
Benzene	106	1)5	70-130	1	30	1
Toluene	95	9	8	70-130	3	30	1

Project Name: THE DAILY FREEMAN

Project Number: 16-159311.2

Lab Number: L1631369

arameter	LCS %Recovery	Qual	LCSD %Recovery	/ Qual	%Recovery Limits	RPD	RPD Qual Limits
olatile Organics by EPA 5035 High - Westb	orough Lab As	sociated sample	(s): 04 Ba	atch: WG9400	021-3 WG940021-	4	
Ethylbenzene	94		96		70-130	2	30
Chloromethane	117		116		52-130	1	30
Bromomethane	118		115		57-147	3	30
Vinyl chloride	134	Q	134	Q	67-130	0	30
Chloroethane	134		134		50-151	0	30
1,1-Dichloroethene	120		120		65-135	0	30
trans-1,2-Dichloroethene	113		114		70-130	1	30
Trichloroethene	102		104		70-130	2	30
1,2-Dichlorobenzene	97		98		70-130	1	30
1,3-Dichlorobenzene	99		100		70-130	1	30
1,4-Dichlorobenzene	99		100		70-130	1	30
Methyl tert butyl ether	100		98		66-130	2	30
p/m-Xylene	99		101		70-130	2	30
o-Xylene	99		99		70-130	0	30
cis-1,2-Dichloroethene	110		110		70-130	0	30
Dibromomethane	99		101		70-130	2	30
Styrene	95		96		70-130	1	30
Dichlorodifluoromethane	92		91		30-146	1	30
Acetone	122		110		54-140	10	30
Carbon disulfide	112		125		59-130	11	30
2-Butanone	106		105		70-130	1	30

Project Name: THE DAILY FREEMAN

Project Number: 16-159311.2

Lab Number: L1631369

arameter	LCS %Recovery	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
platile Organics by EPA 5035 High - We	stborough Lab Ass	ociated sample(s): 04 Bat	ch: WG940021-3 WG940021-	-4	
Vinyl acetate	105	104	70-130	1	30
4-Methyl-2-pentanone	99	100	70-130	1	30
1,2,3-Trichloropropane	86	88	68-130	2	30
2-Hexanone	85	87	70-130	2	30
Bromochloromethane	117	115	70-130	2	30
2,2-Dichloropropane	95	95	70-130	0	30
1,2-Dibromoethane	98	99	70-130	1	30
1,3-Dichloropropane	95	95	69-130	0	30
1,1,1,2-Tetrachloroethane	96	99	70-130	3	30
Bromobenzene	100	101	70-130	1	30
n-Butylbenzene	95	94	70-130	1	30
sec-Butylbenzene	93	95	70-130	2	30
tert-Butylbenzene	92	94	70-130	2	30
o-Chlorotoluene	90	90	70-130	0	30
p-Chlorotoluene	90	90	70-130	0	30
1,2-Dibromo-3-chloropropane	94	93	68-130	1	30
Hexachlorobutadiene	95	97	67-130	2	30
Isopropylbenzene	94	95	70-130	1	30
p-Isopropyltoluene	93	94	70-130	1	30
Naphthalene	95	95	70-130	0	30
Acrylonitrile	116	115	70-130	1	30

Project Name: THE DAILY FREEMAN

Project Number: 16-159311.2

Lab Number: L1631369

Parameter	LCS %Recovery	LCSI Qual %Recov		%Recovery Limits	RPD	RPD Qual Limits	
Volatile Organics by EPA 5035 High - Wes	stborough Lab Ass	ociated sample(s): 04	Batch: WG940	0021-3 WG940021	-4		
Isopropyl Ether	114	114		66-130	0	30	
tert-Butyl Alcohol	105	101		70-130	4	30	
n-Propylbenzene	93	94		70-130	1	30	
1,2,3-Trichlorobenzene	99	98		70-130	1	30	
1,2,4-Trichlorobenzene	102	100		70-130	2	30	
1,3,5-Trimethylbenzene	90	92		70-130	2	30	
1,2,4-Trimethylbenzene	89	91		70-130	2	30	
Methyl Acetate	115	114		51-146	1	30	
Ethyl Acetate	101	102		70-130	1	30	
Acrolein	127	140	Q	70-130	10	30	
Cyclohexane	116	116		59-142	0	30	
1,4-Dioxane	93	89		65-136	4	30	
1,1,2-Trichloro-1,2,2-Trifluoroethane	119	117		50-139	2	30	
p-Diethylbenzene	98	96		70-130	2	30	
p-Ethyltoluene	95	96		70-130	1	30	
1,2,4,5-Tetramethylbenzene	92	92		70-130	0	30	
Tetrahydrofuran	109	103		66-130	6	30	
Ethyl ether	120	119		67-130	1	30	
trans-1,4-Dichloro-2-butene	77	79		70-130	3	30	
Methyl cyclohexane	108	109		70-130	1	30	
Ethyl-Tert-Butyl-Ether	106	105		70-130	1	30	

Project Name: THE DAILY FREEMAN

Project Number: 16-159311.2

Lab Number:

L1631369

Report Date:

10/07/16

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD .imits
Volatile Organics by EPA 5035 High - Westk	oorough Lab Assoc	ciated sample	e(s): 04 Batch:	WG9400	21-3 WG940021-4		
Tertiary-Amyl Methyl Ether	102		100		70-130	2	30

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	
1,2-Dichloroethane-d4	78		78		70-130	
Toluene-d8	95		95		70-130	
4-Bromofluorobenzene	88		91		70-130	
Dibromofluoromethane	102		99		70-130	

SEMIVOLATILES

L1631369

10/07/16

Project Name: THE DAILY FREEMAN

Project Number: 16-159311.2

SAMPLE RESULTS

Date Collected: 10/01/16 12:29

Lab Number:

Report Date:

Lab ID: L1631369-07

Client ID: B7

Sample Location: 79 HURLEY AVENUE, KINGSTON, NY 12401

Matrix: Soil Analytical Method: 1,8270D

Analytical Date: 10/07/16 12:18

Analyst: RC Percent Solids: 84%

Date Collected: 10/01/16 12:29

Date Received: 10/01/16

Field Prep: Not Specified

Extraction Method: EPA 3546

Extraction Date: 10/04/16 08:07

borough Lab					
ND					
		ug/kg	160	20.	1
ND		ug/kg	190	22.	1
ND			120	22.	1
ND			170	26.	1
ND		ug/kg	190	19.	1
ND		ug/kg	190	35.	1
ND		ug/kg	190	33.	1
ND		ug/kg	190	34.	1
ND		ug/kg	190	52.	1
ND		ug/kg	190	39.	1
ND		ug/kg	190	33.	1
ND		ug/kg	120	22.	1
ND		ug/kg	190	21.	1
ND		ug/kg	190	30.	1
ND		ug/kg	230	33.	1
ND		ug/kg	210	19.	1
ND		ug/kg	190	28.	1
ND		ug/kg	550	180	1
ND		ug/kg	160	31.	1
ND		ug/kg	170	25.	1
ND		ug/kg	190	24.	1
ND		ug/kg	170	29.	1
ND		ug/kg	160	22.	1
ND		ug/kg	190	30.	1
ND		ug/kg	190	67.	1
ND		ug/kg	190	49.	1
ND		ug/kg	190	37.	1
ND		ug/kg	190	66.	1
ND		ug/kg	190	18.	1
ND		ug/kg	190	41.	1
	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND ug/kg ND ug/kg	ND ug/kg 120 ND ug/kg 170 ND ug/kg 190 ND ug/kg 230 ND ug/kg 210 ND ug/kg 190 ND ug/kg 190 ND ug/kg 170 ND ug/kg 190 ND	ND ug/kg 120 22. ND ug/kg 170 26. ND ug/kg 190 19. ND ug/kg 190 35. ND ug/kg 190 33. ND ug/kg 190 34. ND ug/kg 190 34. ND ug/kg 190 35. ND ug/kg 190 34. ND ug/kg 190 34. ND ug/kg 190 39. ND ug/kg 190 39. ND ug/kg 190 33. ND ug/kg 190 21. ND ug/kg 190 30. ND ug/kg 230 33. ND ug/kg 230 33. ND ug/kg 190 28. ND ug/kg 190 28. ND ug/kg 160<

Project Name: THE DAILY FREEMAN Lab Number: L1631369

Project Number: 16-159311.2 **Report Date:** 10/07/16

SAMPLE RESULTS

Lab ID: Date Collected: 10/01/16 12:29

Client ID: B7 Date Received: 10/01/16
Sample Location: 79 HURLEY AVENUE, KINGSTON, NY 12401 Field Prep: Not Specified

ample Location. 79 Horce FAVENOE, KINGGTON, INT 12401 Held Flep.					Not Specified	
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - '	Westborough Lab					
Benzo(a)anthracene	ND		ug/kg	120	22.	1
Benzo(a)pyrene	ND		ug/kg	160	47.	1
Benzo(b)fluoranthene	ND		ug/kg	120	33.	1
Benzo(k)fluoranthene	ND		ug/kg	120	31.	1
Chrysene	ND		ug/kg	120	20.	1
Acenaphthylene	ND		ug/kg	160	30.	1
Anthracene	ND		ug/kg	120	38.	1
Benzo(ghi)perylene	ND		ug/kg	160	23.	1
Fluorene	ND		ug/kg	190	19.	1
Phenanthrene	ND		ug/kg	120	24.	1
Dibenzo(a,h)anthracene	ND		ug/kg	120	22.	1
ndeno(1,2,3-cd)pyrene	ND		ug/kg	160	27.	1
Pyrene	ND		ug/kg	120	19.	1
Biphenyl	ND		ug/kg	440	45.	1
4-Chloroaniline	ND		ug/kg	190	35.	1
2-Nitroaniline	ND		ug/kg	190	37.	1
3-Nitroaniline	ND		ug/kg	190	36.	1
4-Nitroaniline	ND		ug/kg	190	80.	1
Dibenzofuran	ND		ug/kg	190	18.	1
2-Methylnaphthalene	ND		ug/kg	230	23.	1
1,2,4,5-Tetrachlorobenzene	ND		ug/kg	190	20.	1
Acetophenone	ND		ug/kg	190	24.	1
2,4,6-Trichlorophenol	ND		ug/kg	120	37.	1
o-Chloro-m-cresol	ND		ug/kg	190	29.	1
2-Chlorophenol	ND		ug/kg	190	23.	1
2,4-Dichlorophenol	ND		ug/kg	170	31.	1
2,4-Dimethylphenol	ND		ug/kg	190	64.	1
2-Nitrophenol	ND		ug/kg	420	73.	1
4-Nitrophenol	ND		ug/kg	270	79.	1
2,4-Dinitrophenol	ND		ug/kg	930	90.	1
4,6-Dinitro-o-cresol	ND		ug/kg	500	93.	1
Pentachlorophenol	ND		ug/kg	160	43.	1
Phenol	ND		ug/kg	190	29.	1
2-Methylphenol	ND		ug/kg	190	30.	1
3-Methylphenol/4-Methylphenol	ND		ug/kg	280	30.	1
2,4,5-Trichlorophenol	ND		ug/kg	190	37.	1
Benzoic Acid	ND		ug/kg	630	200	1
Benzyl Alcohol	ND		ug/kg	190	59.	1
Carbazole	ND		ug/kg	190	19.	1
			- 33			

Project Name: THE DAILY FREEMAN Lab Number: L1631369

Project Number: 16-159311.2 **Report Date:** 10/07/16

SAMPLE RESULTS

Lab ID: Date Collected: 10/01/16 12:29

Client ID: B7 Date Received: 10/01/16
Sample Location: 79 HURLEY AVENUE, KINGSTON, NY 12401 Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

Semivolatile Organics by GC/MS - Westborough Lab

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
2-Fluorophenol	66		25-120	
Phenol-d6	62		10-120	
Nitrobenzene-d5	69		23-120	
2-Fluorobiphenyl	74		30-120	
2,4,6-Tribromophenol	92		10-136	
4-Terphenyl-d14	52		18-120	

L1631369

10/07/16

Project Name: THE DAILY FREEMAN

Project Number: 16-159311.2

SAMPLE RESULTS

Date Collected: 10/01/16 12:41

Lab Number:

Report Date:

Lab ID: L1631369-08

Client ID: B8

Sample Location: 79 HURLEY AVENUE, KINGSTON, NY 12401

Matrix: Analytical Method: 1,8270D

Analytical Date: 10/06/16 16:49

Analyst: K۷ 85% Percent Solids:

Date Received: 10/01/16 Field Prep: Not Specified Extraction Method: EPA 3546 Extraction Date: 10/04/16 08:07

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS -	Westborough Lab					
Acenaphthene	ND		ug/kg	150	20.	1
1,2,4-Trichlorobenzene	ND		ug/kg	190	22.	1
Hexachlorobenzene	ND		ug/kg	110	21.	1
Bis(2-chloroethyl)ether	ND		ug/kg	170	26.	1
2-Chloronaphthalene	ND		ug/kg	190	19.	1
1,2-Dichlorobenzene	ND		ug/kg	190	34.	1
1,3-Dichlorobenzene	ND		ug/kg	190	33.	1
1,4-Dichlorobenzene	ND		ug/kg	190	33.	1
3,3'-Dichlorobenzidine	ND		ug/kg	190	51.	1
2,4-Dinitrotoluene	ND		ug/kg	190	38.	1
2,6-Dinitrotoluene	ND		ug/kg	190	33.	1
Fluoranthene	ND		ug/kg	110	22.	1
4-Chlorophenyl phenyl ether	ND		ug/kg	190	20.	1
4-Bromophenyl phenyl ether	ND		ug/kg	190	29.	1
Bis(2-chloroisopropyl)ether	ND		ug/kg	230	33.	1
Bis(2-chloroethoxy)methane	ND		ug/kg	210	19.	1
Hexachlorobutadiene	ND		ug/kg	190	28.	1
Hexachlorocyclopentadiene	ND		ug/kg	550	170	1
Hexachloroethane	ND		ug/kg	150	31.	1
Isophorone	ND		ug/kg	170	25.	1
Naphthalene	ND		ug/kg	190	23.	1
Nitrobenzene	ND		ug/kg	170	28.	1
NDPA/DPA	ND		ug/kg	150	22.	1
n-Nitrosodi-n-propylamine	ND		ug/kg	190	30.	1
Bis(2-ethylhexyl)phthalate	ND		ug/kg	190	66.	1
Butyl benzyl phthalate	ND		ug/kg	190	48.	1
Di-n-butylphthalate	ND		ug/kg	190	36.	1
Di-n-octylphthalate	ND		ug/kg	190	65.	1
Diethyl phthalate	ND		ug/kg	190	18.	1
Dimethyl phthalate	ND		ug/kg	190	40.	1
	110		ag/kg	100	10.	

Project Name: THE DAILY FREEMAN Lab Number: L1631369

Project Number: 16-159311.2 **Report Date:** 10/07/16

SAMPLE RESULTS

Lab ID: Date Collected: 10/01/16 12:41

Client ID: B8 Date Received: 10/01/16
Sample Location: 79 HURLEY AVENUE, KINGSTON, NY 12401 Field Prep: Not Specified

Sample Location. 19 HONLL 11	AVENUE, KINGOTO	IN, INI 12401		i icia i ic	·ρ.	Not Specified
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS -	Westborough Lab					
Benzo(a)anthracene	ND		ug/kg	110	22.	1
Benzo(a)pyrene	ND		ug/kg	150	47.	1
Benzo(b)fluoranthene	ND		ug/kg	110	32.	1
Benzo(k)fluoranthene	ND		ug/kg	110	31.	1
Chrysene	ND		ug/kg	110	20.	1
Acenaphthylene	ND		ug/kg	150	30.	1
Anthracene	ND		ug/kg	110	37.	1
Benzo(ghi)perylene	ND		ug/kg	150	22.	1
Fluorene	ND		ug/kg	190	19.	1
Phenanthrene	ND		ug/kg	110	23.	1
Dibenzo(a,h)anthracene	ND		ug/kg	110	22.	1
Indeno(1,2,3-cd)pyrene	ND		ug/kg	150	27.	1
Pyrene	ND		ug/kg	110	19.	1
Biphenyl	ND		ug/kg	440	44.	1
4-Chloroaniline	ND		ug/kg	190	35.	1
2-Nitroaniline	ND		ug/kg	190	37.	1
3-Nitroaniline	ND		ug/kg	190	36.	1
4-Nitroaniline	ND		ug/kg	190	79.	1
Dibenzofuran	ND		ug/kg	190	18.	1
2-Methylnaphthalene	ND		ug/kg	230	23.	1
1,2,4,5-Tetrachlorobenzene	ND		ug/kg	190	20.	1
Acetophenone	ND		ug/kg	190	24.	1
2,4,6-Trichlorophenol	ND		ug/kg	110	36.	1
p-Chloro-m-cresol	ND		ug/kg	190	28.	1
2-Chlorophenol	ND		ug/kg	190	23.	1
2,4-Dichlorophenol	ND		ug/kg	170	31.	1
2,4-Dimethylphenol	ND		ug/kg	190	63.	1
2-Nitrophenol	ND		ug/kg	410	72.	1
4-Nitrophenol	ND		ug/kg	270	78.	1
2,4-Dinitrophenol	ND		ug/kg	920	89.	1
4,6-Dinitro-o-cresol	ND		ug/kg	500	92.	1
Pentachlorophenol	ND		ug/kg	150	42.	1
Phenol	ND		ug/kg	190	29.	1
2-Methylphenol	ND		ug/kg	190	30.	1
3-Methylphenol/4-Methylphenol	ND		ug/kg	280	30.	1
2,4,5-Trichlorophenol	ND		ug/kg	190	37.	1
Benzoic Acid	ND		ug/kg	620	190	1
Benzyl Alcohol	ND		ug/kg	190	59.	1
Carbazole	ND		ug/kg	190	19.	1

Project Name: THE DAILY FREEMAN Lab Number: L1631369

Project Number: 16-159311.2 **Report Date:** 10/07/16

SAMPLE RESULTS

Lab ID: L1631369-08 Date Collected: 10/01/16 12:41

Client ID: B8 Date Received: 10/01/16
Sample Location: 79 HURLEY AVENUE, KINGSTON, NY 12401 Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

Semivolatile Organics by GC/MS - Westborough Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	76	25-120
Phenol-d6	79	10-120
Nitrobenzene-d5	89	23-120
2-Fluorobiphenyl	77	30-120
2,4,6-Tribromophenol	82	10-136
4-Terphenyl-d14	71	18-120

L1631369

10/07/16

Project Name: THE DAILY FREEMAN

Project Number: 16-159311.2

SAMPLE RESULTS

Date Collected: 10/01/16 11:09

Lab Number:

Report Date:

Lab ID: L1631369-09

Client ID: B2-GW

Sample Location: 79 HURLEY AVENUE, KINGSTON, NY 12401

Matrix: Water Analytical Method: 1,8270D

Analytical Date: 10/06/16 18:07

Analyst: RC

Date Collected: 10/01/16 11:09

Date Received: 10/01/16

Field Prep: Not Specified

Extraction Method: EPA 3510C

Extraction Date: 10/04/16 20:23

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS	- Westborough Lab						
1,2,4-Trichlorobenzene	ND		ug/l	5.0	0.66	1	
Bis(2-chloroethyl)ether	ND		ug/l	2.0	0.67	1	
1,2-Dichlorobenzene	ND		ug/l	2.0	0.73	1	
1,3-Dichlorobenzene	ND		ug/l	2.0	0.73	1	
1,4-Dichlorobenzene	ND		ug/l	2.0	0.71	1	
3,3'-Dichlorobenzidine	ND		ug/l	5.0	1.4	1	
2,4-Dinitrotoluene	ND		ug/l	5.0	0.84	1	
2,6-Dinitrotoluene	ND		ug/l	5.0	1.1	1	
4-Chlorophenyl phenyl ether	ND		ug/l	2.0	0.62	1	
4-Bromophenyl phenyl ether	ND		ug/l	2.0	0.73	1	
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0	0.70	1	
Bis(2-chloroethoxy)methane	ND		ug/l	5.0	0.63	1	
Hexachlorocyclopentadiene	ND		ug/l	20	7.8	1	
Isophorone	ND		ug/l	5.0	0.60	1	
Nitrobenzene	ND		ug/l	2.0	0.75	1	
NDPA/DPA	ND		ug/l	2.0	0.64	1	
n-Nitrosodi-n-propylamine	ND		ug/l	5.0	0.70	1	
Bis(2-ethylhexyl)phthalate	ND		ug/l	3.0	0.91	1	
Butyl benzyl phthalate	ND		ug/l	5.0	1.3	1	
Di-n-butylphthalate	ND		ug/l	5.0	0.69	1	
Di-n-octylphthalate	ND		ug/l	5.0	1.1	1	
Diethyl phthalate	ND		ug/l	5.0	0.63	1	
Dimethyl phthalate	ND		ug/l	5.0	0.65	1	
Biphenyl	ND		ug/l	2.0	0.76	1	
4-Chloroaniline	ND		ug/l	5.0	0.63	1	
2-Nitroaniline	ND		ug/l	5.0	1.1	1	
3-Nitroaniline	ND		ug/l	5.0	1.1	1	
4-Nitroaniline	ND		ug/l	5.0	1.3	1	
Dibenzofuran	ND		ug/l	2.0	0.66	1	
1,2,4,5-Tetrachlorobenzene	ND		ug/l	10	0.67	1	
						791	

Project Name: THE DAILY FREEMAN Lab Number: L1631369

Project Number: 16-159311.2 **Report Date:** 10/07/16

SAMPLE RESULTS

Lab ID: L1631369-09 Date Collected: 10/01/16 11:09

Client ID: B2-GW Date Received: 10/01/16
Sample Location: 79 HURLEY AVENUE, KINGSTON, NY 12401 Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - We	estborough Lab						
Acetophenone	ND		ug/l	5.0	0.85	1	
2,4,6-Trichlorophenol	ND		ug/l	5.0	0.68	1	
p-Chloro-m-cresol	ND		ug/l	2.0	0.62	1	
2-Chlorophenol	ND		ug/l	2.0	0.63	1	
2,4-Dichlorophenol	ND		ug/l	5.0	0.77	1	
2,4-Dimethylphenol	ND		ug/l	5.0	1.6	1	
2-Nitrophenol	ND		ug/l	10	1.5	1	
4-Nitrophenol	ND		ug/l	10	1.8	1	
2,4-Dinitrophenol	ND		ug/l	20	5.5	1	
4,6-Dinitro-o-cresol	ND		ug/l	10	2.1	1	
Phenol	ND		ug/l	5.0	1.9	1	
2-Methylphenol	ND		ug/l	5.0	1.0	1	
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0	1.1	1	
2,4,5-Trichlorophenol	ND		ug/l	5.0	0.72	1	
Benzoic Acid	ND		ug/l	50	13.	1	
Benzyl Alcohol	ND		ug/l	2.0	0.72	1	
Carbazole	ND		ug/l	2.0	0.63	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	21	21-120
Phenol-d6	17	10-120
Nitrobenzene-d5	62	23-120
2-Fluorobiphenyl	70	15-120
2,4,6-Tribromophenol	91	10-120
4-Terphenyl-d14	66	41-149

L1631369

Project Name: Lab Number: THE DAILY FREEMAN

Project Number: Report Date: 16-159311.2

10/07/16

SAMPLE RESULTS

Lab ID: Date Collected: 10/01/16 11:09 L1631369-09

Date Received: Client ID: 10/01/16 B2-GW

Sample Location: 79 HURLEY AVENUE, KINGSTON, NY 12401 Field Prep: Not Specified Extraction Method: EPA 3510C Matrix:

Analytical Method: 1,8270D-SIM Extraction Date: 10/04/16 20:22

Analytical Date: 10/06/16 20:39

Analyst: YW

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS-S	IM - Westborough La	b					
Acenaphthene	ND		ug/l	0.10	0.04	1	
2-Chloronaphthalene	ND		ug/l	0.20	0.04	1	
Fluoranthene	ND		ug/l	0.20	0.04	1	
Hexachlorobutadiene	ND		ug/l	0.50	0.04	1	
Naphthalene	ND		ug/l	0.20	0.04	1	
Benzo(a)anthracene	ND		ug/l	0.20	0.02	1	
Benzo(a)pyrene	ND		ug/l	0.20	0.04	1	
Benzo(b)fluoranthene	ND		ug/l	0.20	0.02	1	
Benzo(k)fluoranthene	ND		ug/l	0.20	0.04	1	
Chrysene	ND		ug/l	0.20	0.04	1	
Acenaphthylene	ND		ug/l	0.20	0.04	1	
Anthracene	ND		ug/l	0.20	0.04	1	
Benzo(ghi)perylene	ND		ug/l	0.20	0.04	1	
Fluorene	ND		ug/l	0.20	0.04	1	
Phenanthrene	ND		ug/l	0.20	0.02	1	
Dibenzo(a,h)anthracene	ND		ug/l	0.20	0.04	1	
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.20	0.04	1	
Pyrene	ND		ug/l	0.20	0.04	1	
2-Methylnaphthalene	ND		ug/l	0.20	0.05	1	
Pentachlorophenol	ND		ug/l	0.80	0.22	1	
Hexachlorobenzene	ND		ug/l	0.80	0.03	1	
Hexachloroethane	ND		ug/l	0.80	0.03	1	

Project Name: THE DAILY FREEMAN Lab Number: L1631369

Project Number: 16-159311.2 **Report Date:** 10/07/16

SAMPLE RESULTS

Lab ID: L1631369-09 Date Collected: 10/01/16 11:09

Client ID: B2-GW Date Received: 10/01/16
Sample Location: 79 HURLEY AVENUE, KINGSTON, NY 12401 Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

Semivolatile Organics by GC/MS-SIM - Westborough Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria	
2-Fluorophenol	35	21-120	
Phenol-d6	23	10-120	
Nitrobenzene-d5	65	23-120	
2-Fluorobiphenyl	96	15-120	
2,4,6-Tribromophenol	92	10-120	
4-Terphenyl-d14	85	41-149	

L1631369

10/07/16

Project Name: THE DAILY FREEMAN

Project Number: 16-159311.2

SAMPLE RESULTS

Date Collected: 10/01/16 11:17

Lab Number:

Report Date:

Lab ID: L1631369-10 Client ID: B4-GW

Sample Location:

79 HURLEY AVENUE, KINGSTON, NY 12401 Matrix:

Analytical Method: 1,8270D Analytical Date: 10/06/16 18:32

Analyst: RC Date Received: 10/01/16 Field Prep: Not Specified Extraction Method: EPA 3510C Extraction Date: 10/04/16 20:23

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS -	Westborough Lab						
1,2,4-Trichlorobenzene	ND		ug/l	5.0	0.66	1	
Bis(2-chloroethyl)ether	ND		ug/l	2.0	0.67	1	
1,2-Dichlorobenzene	ND		ug/l	2.0	0.73	1	
1,3-Dichlorobenzene	ND		ug/l	2.0	0.73	1	
1,4-Dichlorobenzene	ND		ug/l	2.0	0.71	1	
3,3'-Dichlorobenzidine	ND		ug/l	5.0	1.4	1	
2,4-Dinitrotoluene	ND		ug/l	5.0	0.84	1	
2,6-Dinitrotoluene	ND		ug/l	5.0	1.1	1	
4-Chlorophenyl phenyl ether	ND		ug/l	2.0	0.62	1	
4-Bromophenyl phenyl ether	ND		ug/l	2.0	0.73	1	
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0	0.70	1	
Bis(2-chloroethoxy)methane	ND		ug/l	5.0	0.63	1	
Hexachlorocyclopentadiene	ND		ug/l	20	7.8	1	
Isophorone	ND		ug/l	5.0	0.60	1	
Nitrobenzene	ND		ug/l	2.0	0.75	1	
NDPA/DPA	ND		ug/l	2.0	0.64	1	
n-Nitrosodi-n-propylamine	ND		ug/l	5.0	0.70	1	
Bis(2-ethylhexyl)phthalate	ND		ug/l	3.0	0.91	1	
Butyl benzyl phthalate	ND		ug/l	5.0	1.3	1	
Di-n-butylphthalate	ND		ug/l	5.0	0.69	1	
Di-n-octylphthalate	ND		ug/l	5.0	1.1	1	
Diethyl phthalate	ND		ug/l	5.0	0.63	1	
Dimethyl phthalate	ND		ug/l	5.0	0.65	1	
Biphenyl	ND		ug/l	2.0	0.76	1	
4-Chloroaniline	ND		ug/l	5.0	0.63	1	
2-Nitroaniline	ND		ug/l	5.0	1.1	1	
3-Nitroaniline	ND		ug/l	5.0	1.1	1	
4-Nitroaniline	ND		ug/l	5.0	1.3	1	
Dibenzofuran	ND		ug/l	2.0	0.66	1	
1,2,4,5-Tetrachlorobenzene	ND		ug/l	10	0.67	1	
						TIN.	

Project Name: THE DAILY FREEMAN Lab Number: L1631369

Project Number: 16-159311.2 **Report Date:** 10/07/16

SAMPLE RESULTS

Lab ID: Date Collected: 10/01/16 11:17

Client ID: B4-GW Date Received: 10/01/16
Sample Location: 79 HURLEY AVENUE, KINGSTON, NY 12401 Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - W	estborough Lab						
Acetophenone	ND		ug/l	5.0	0.85	1	
2,4,6-Trichlorophenol	ND		ug/l	5.0	0.68	1	
p-Chloro-m-cresol	ND		ug/l	2.0	0.62	1	
2-Chlorophenol	ND		ug/l	2.0	0.63	1	
2,4-Dichlorophenol	ND		ug/l	5.0	0.77	1	
2,4-Dimethylphenol	ND		ug/l	5.0	1.6	1	
2-Nitrophenol	ND		ug/l	10	1.5	1	
4-Nitrophenol	ND		ug/l	10	1.8	1	
2,4-Dinitrophenol	ND		ug/l	20	5.5	1	
4,6-Dinitro-o-cresol	ND		ug/l	10	2.1	1	
Phenol	ND		ug/l	5.0	1.9	1	
2-Methylphenol	ND		ug/l	5.0	1.0	1	
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0	1.1	1	
2,4,5-Trichlorophenol	ND		ug/l	5.0	0.72	1	
Benzoic Acid	ND		ug/l	50	13.	1	
Benzyl Alcohol	ND		ug/l	2.0	0.72	1	
Carbazole	1.9	J	ug/l	2.0	0.63	1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
2-Fluorophenol	23		21-120	
Phenol-d6	19		10-120	
Nitrobenzene-d5	100		23-120	
2-Fluorobiphenyl	73		15-120	
2,4,6-Tribromophenol	79		10-120	
4-Terphenyl-d14	59		41-149	

Project Name: THE DAILY FREEMAN Lab Number: L1631369

Project Number: 16-159311.2 **Report Date:** 10/07/16

SAMPLE RESULTS

Lab ID: L1631369-10 D

Client ID: B4-GW

Sample Location: 79 HURLEY AVENUE, KINGSTON, NY 12401

Matrix: Water

Analytical Method: 1,8270D-SIM Analytical Date: 1,8270D-SIM

Analyst: YW

.... LE 11200210

Date Collected: 10/01/16 11:17

Date Received: 10/01/16
Field Prep: Not Specified

Extraction Method: EPA 3510C
Extraction Date: 10/04/16 20:22

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS-SIM	- Westborough La	ab					
Acenaphthene	0.64	J	ug/l	1.0	0.35	10	
2-Chloronaphthalene	ND		ug/l	2.0	0.35	10	
Fluoranthene	1.5	J	ug/l	2.0	0.38	10	
Hexachlorobutadiene	ND		ug/l	5.0	0.36	10	
Naphthalene	70		ug/l	2.0	0.43	10	
Benzo(a)anthracene	0.38	J	ug/l	2.0	0.16	10	
Benzo(a)pyrene	ND		ug/l	2.0	0.39	10	
Benzo(b)fluoranthene	ND		ug/l	2.0	0.16	10	
Benzo(k)fluoranthene	ND		ug/l	2.0	0.42	10	
Chrysene	ND		ug/l	2.0	0.38	10	
Acenaphthylene	ND		ug/l	2.0	0.35	10	
Anthracene	0.49	J	ug/l	2.0	0.35	10	
Benzo(ghi)perylene	ND		ug/l	2.0	0.42	10	
Fluorene	0.92	J	ug/l	2.0	0.37	10	
Phenanthrene	2.4		ug/l	2.0	0.15	10	
Dibenzo(a,h)anthracene	ND		ug/l	2.0	0.39	10	
Indeno(1,2,3-cd)pyrene	ND		ug/l	2.0	0.40	10	
Pyrene	1.0	J	ug/l	2.0	0.40	10	
2-Methylnaphthalene	30		ug/l	2.0	0.45	10	
Pentachlorophenol	ND		ug/l	8.0	2.2	10	
Hexachlorobenzene	ND		ug/l	8.0	0.32	10	
Hexachloroethane	ND		ug/l	8.0	0.30	10	

Project Name: THE DAILY FREEMAN Lab Number: L1631369

Project Number: 16-159311.2 **Report Date:** 10/07/16

SAMPLE RESULTS

Lab ID: L1631369-10 D Date Collected: 10/01/16 11:17

Client ID: B4-GW Date Received: 10/01/16
Sample Location: 79 HURLEY AVENUE, KINGSTON, NY 12401 Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

Semivolatile Organics by GC/MS-SIM - Westborough Lab

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
2-Fluorophenol	29		21-120	
Phenol-d6	23		10-120	
Nitrobenzene-d5	93		23-120	
2-Fluorobiphenyl	113		15-120	
2,4,6-Tribromophenol	107		10-120	
4-Terphenyl-d14	92		41-149	

L1631369

10/07/16

10/01/16

Not Specified

Project Name: THE DAILY FREEMAN

Project Number: 16-159311.2

SAMPLE RESULTS

Date Collected: 10/01/16 11:37

Lab Number:

Report Date:

Date Received:

Field Prep:

Lab ID: L1631369-11

Client ID: B6-GW

Sample Location: 79 HURLEY AVENUE, KINGSTON, NY 12401

Matrix: Analytical Method: 1,8270D

Analytical Date: 10/06/16 18:56

Analyst: RC Extraction Method: EPA 3510C Extraction Date: 10/04/16 20:23

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - W	estborough Lab						
1,2,4-Trichlorobenzene	ND		ug/l	5.0	0.66	1	
Bis(2-chloroethyl)ether	ND		ug/l	2.0	0.67	1	
1,2-Dichlorobenzene	ND		ug/l	2.0	0.73	1	
1,3-Dichlorobenzene	ND		ug/l	2.0	0.73	1	
1,4-Dichlorobenzene	ND		ug/l	2.0	0.71	1	
3,3'-Dichlorobenzidine	ND		ug/l	5.0	1.4	1	
2,4-Dinitrotoluene	ND		ug/l	5.0	0.84	1	
2,6-Dinitrotoluene	ND		ug/l	5.0	1.1	1	
4-Chlorophenyl phenyl ether	ND		ug/l	2.0	0.62	1	
4-Bromophenyl phenyl ether	ND		ug/l	2.0	0.73	1	
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0	0.70	1	
Bis(2-chloroethoxy)methane	ND		ug/l	5.0	0.63	1	
Hexachlorocyclopentadiene	ND		ug/l	20	7.8	1	
Isophorone	ND		ug/l	5.0	0.60	1	
Nitrobenzene	ND		ug/l	2.0	0.75	1	
NDPA/DPA	ND		ug/l	2.0	0.64	1	
n-Nitrosodi-n-propylamine	ND		ug/l	5.0	0.70	1	
Bis(2-ethylhexyl)phthalate	ND		ug/l	3.0	0.91	1	
Butyl benzyl phthalate	ND		ug/l	5.0	1.3	1	
Di-n-butylphthalate	ND		ug/l	5.0	0.69	1	
Di-n-octylphthalate	ND		ug/l	5.0	1.1	1	
Diethyl phthalate	ND		ug/l	5.0	0.63	1	
Dimethyl phthalate	ND		ug/l	5.0	0.65	1	
Biphenyl	ND		ug/l	2.0	0.76	1	
4-Chloroaniline	ND		ug/l	5.0	0.63	1	
2-Nitroaniline	ND		ug/l	5.0	1.1	1	
3-Nitroaniline	ND		ug/l	5.0	1.1	1	
4-Nitroaniline	ND		ug/l	5.0	1.3	1	
Dibenzofuran	ND		ug/l	2.0	0.66	1	
1,2,4,5-Tetrachlorobenzene	ND		ug/l	10	0.67	1	
						144	

Project Name: THE DAILY FREEMAN Lab Number: L1631369

Project Number: 16-159311.2 **Report Date:** 10/07/16

SAMPLE RESULTS

Lab ID: Date Collected: 10/01/16 11:37

Client ID: B6-GW Date Received: 10/01/16
Sample Location: 79 HURLEY AVENUE, KINGSTON, NY 12401 Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - V	Vestborough Lab						
Acetophenone	ND		ug/l	5.0	0.85	1	
2,4,6-Trichlorophenol	ND		ug/l	5.0	0.68	1	
p-Chloro-m-cresol	ND		ug/l	2.0	0.62	1	
2-Chlorophenol	ND		ug/l	2.0	0.63	1	
2,4-Dichlorophenol	ND		ug/l	5.0	0.77	1	
2,4-Dimethylphenol	ND		ug/l	5.0	1.6	1	
2-Nitrophenol	ND		ug/l	10	1.5	1	
4-Nitrophenol	ND		ug/l	10	1.8	1	
2,4-Dinitrophenol	ND		ug/l	20	5.5	1	
4,6-Dinitro-o-cresol	ND		ug/l	10	2.1	1	
Phenol	ND		ug/l	5.0	1.9	1	
2-Methylphenol	ND		ug/l	5.0	1.0	1	
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0	1.1	1	
2,4,5-Trichlorophenol	ND		ug/l	5.0	0.72	1	
Benzoic Acid	ND		ug/l	50	13.	1	
Benzyl Alcohol	ND		ug/l	2.0	0.72	1	
Carbazole	ND		ug/l	2.0	0.63	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
2-Fluorophenol	25	21-120	
Phenol-d6	10	10-120	
Nitrobenzene-d5	67	23-120	
2-Fluorobiphenyl	74	15-120	
2,4,6-Tribromophenol	86	10-120	
4-Terphenyl-d14	64	41-149	

Project Name: THE DAILY FREEMAN Lab Number: L1631369

Project Number: 16-159311.2 **Report Date:** 10/07/16

SAMPLE RESULTS

Lab ID: L1631369-11 Date Collected: 10/01/16 11:37

Client ID: B6-GW Date Received: 10/01/16

Sample Location: 79 HURLEY AVENUE, KINGSTON, NY 12401 Field Prep: Not Specified Matrix: Extraction Method: EPA 3510C

Analytical Method: 1,8270D-SIM Extraction Date: 10/04/16 20:22

Analytical Date: 10/06/16 19:09
Analyst: YW

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS-S	IM - Westborough La	ab					
Acenaphthene	ND		ug/l	0.10	0.04	1	
2-Chloronaphthalene	ND		ug/l	0.20	0.04	1	
Fluoranthene	ND		ug/l	0.20	0.04	1	
Hexachlorobutadiene	ND		ug/l	0.50	0.04	1	
Naphthalene	6.9		ug/l	0.20	0.04	1	
Benzo(a)anthracene	ND		ug/l	0.20	0.02	1	
Benzo(a)pyrene	ND		ug/l	0.20	0.04	1	
Benzo(b)fluoranthene	ND		ug/l	0.20	0.02	1	
Benzo(k)fluoranthene	ND		ug/l	0.20	0.04	1	
Chrysene	ND		ug/l	0.20	0.04	1	
Acenaphthylene	ND		ug/l	0.20	0.04	1	
Anthracene	ND		ug/l	0.20	0.04	1	
Benzo(ghi)perylene	ND		ug/l	0.20	0.04	1	
Fluorene	ND		ug/l	0.20	0.04	1	
Phenanthrene	ND		ug/l	0.20	0.02	1	
Dibenzo(a,h)anthracene	ND		ug/l	0.20	0.04	1	
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.20	0.04	1	
Pyrene	ND		ug/l	0.20	0.04	1	
2-Methylnaphthalene	0.49		ug/l	0.20	0.05	1	
Pentachlorophenol	ND		ug/l	0.80	0.22	1	
Hexachlorobenzene	ND		ug/l	0.80	0.03	1	
Hexachloroethane	ND		ug/l	0.80	0.03	1	

Project Name: THE DAILY FREEMAN Lab Number: L1631369

Project Number: 16-159311.2 **Report Date:** 10/07/16

SAMPLE RESULTS

Lab ID: Date Collected: 10/01/16 11:37

Client ID: B6-GW Date Received: 10/01/16
Sample Location: 79 HURLEY AVENUE, KINGSTON, NY 12401 Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

Semivolatile Organics by GC/MS-SIM - Westborough Lab

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
2-Fluorophenol	41		21-120	
Phenol-d6	28		10-120	
Nitrobenzene-d5	75		23-120	
2-Fluorobiphenyl	109		15-120	
2,4,6-Tribromophenol	96		10-120	
4-Terphenyl-d14	89		41-149	

Project Name: THE DAILY FREEMAN

Project Number: 16-159311.2

Lab Number: L1631369 **Report Date:** 10/07/16

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Analytical Date: 10/06/16 13:03

Analyst: KV

Extraction Method: EPA 3546 Extraction Date: 10/04/16 07:32

Parameter	Result	Qualifier	Units	RL		MDL
Semivolatile Organics by GC/MS	- Westborough	Lab for s	ample(s):	07-08	Batch:	WG938488-1
Acenaphthene	ND		ug/kg	130		17.
1,2,4-Trichlorobenzene	ND		ug/kg	160		18.
Hexachlorobenzene	ND		ug/kg	97		18.
Bis(2-chloroethyl)ether	ND		ug/kg	150		22.
2-Chloronaphthalene	ND		ug/kg	160		16.
1,2-Dichlorobenzene	ND		ug/kg	160		29.
1,3-Dichlorobenzene	ND		ug/kg	160		28.
1,4-Dichlorobenzene	ND		ug/kg	160		28.
3,3'-Dichlorobenzidine	ND		ug/kg	160		43.
2,4-Dinitrotoluene	ND		ug/kg	160		32.
2,6-Dinitrotoluene	ND		ug/kg	160		28.
Fluoranthene	ND		ug/kg	97		19.
4-Chlorophenyl phenyl ether	ND		ug/kg	160		17.
4-Bromophenyl phenyl ether	ND		ug/kg	160		25.
Bis(2-chloroisopropyl)ether	ND		ug/kg	190		28.
Bis(2-chloroethoxy)methane	ND		ug/kg	180		16.
Hexachlorobutadiene	ND		ug/kg	160		24.
Hexachlorocyclopentadiene	ND		ug/kg	460		150
Hexachloroethane	ND		ug/kg	130		26.
Isophorone	ND		ug/kg	150		21.
Naphthalene	ND		ug/kg	160		20.
Nitrobenzene	ND		ug/kg	150		24.
NDPA/DPA	ND		ug/kg	130		18.
n-Nitrosodi-n-propylamine	ND		ug/kg	160		25.
Bis(2-ethylhexyl)phthalate	ND		ug/kg	160		56.
Butyl benzyl phthalate	ND		ug/kg	160		41.
Di-n-butylphthalate	ND		ug/kg	160		31.
Di-n-octylphthalate	ND		ug/kg	160		55.
Diethyl phthalate	ND		ug/kg	160		15.

Project Name: THE DAILY FREEMAN

Project Number: 16-159311.2

Lab Number: L1631369

Report Date: 10/07/16

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Analytical Date: 10/06/16 13:03

Analyst: KV

Extraction Method: EPA 3546 Extraction Date: 10/04/16 07:32

arameter	Result	Qualifier	Units	RL		MDL
emivolatile Organics by GC/MS	S - Westborough	Lab for s	ample(s):	07-08	Batch:	WG938488-1
Dimethyl phthalate	ND		ug/kg	160		34.
Benzo(a)anthracene	ND		ug/kg	97		18.
Benzo(a)pyrene	ND		ug/kg	130		40.
Benzo(b)fluoranthene	ND		ug/kg	97		27.
Benzo(k)fluoranthene	ND		ug/kg	97		26.
Chrysene	ND		ug/kg	97		17.
Acenaphthylene	ND		ug/kg	130		25.
Anthracene	ND		ug/kg	97		32.
Benzo(ghi)perylene	ND		ug/kg	130		19.
Fluorene	ND		ug/kg	160		16.
Phenanthrene	ND		ug/kg	97		20.
Dibenzo(a,h)anthracene	ND		ug/kg	97		19.
Indeno(1,2,3-cd)pyrene	ND		ug/kg	130		23.
Pyrene	ND		ug/kg	97		16.
Biphenyl	ND		ug/kg	370		38.
4-Chloroaniline	ND		ug/kg	160		30.
2-Nitroaniline	ND		ug/kg	160		31.
3-Nitroaniline	ND		ug/kg	160		31.
4-Nitroaniline	ND		ug/kg	160		67.
Dibenzofuran	ND		ug/kg	160		15.
2-Methylnaphthalene	ND		ug/kg	190		20.
1,2,4,5-Tetrachlorobenzene	ND		ug/kg	160		17.
Acetophenone	ND		ug/kg	160		20.
2,4,6-Trichlorophenol	ND		ug/kg	97		31.
p-Chloro-m-cresol	ND		ug/kg	160		24.
2-Chlorophenol	ND		ug/kg	160		19.
2,4-Dichlorophenol	ND		ug/kg	150		26.
2,4-Dimethylphenol	ND		ug/kg	160		54.
2-Nitrophenol	ND		ug/kg	350		61.

Project Name: THE DAILY FREEMAN

Project Number: 16-159311.2

Lab Number:

Report Date:

L1631369 10/07/16

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Analytical Date: 10/06/16 13:03

Analyst: KV

Extraction Method: EPA 3546 Extraction Date: 10/04/16 07:32

Parameter	Result	Qualifier	Units	RL		MDL
Semivolatile Organics by GC/MS	S - Westborough	n Lab for s	ample(s):	07-08	Batch:	WG938488-1
4-Nitrophenol	ND		ug/kg	230		66.
2,4-Dinitrophenol	ND		ug/kg	780		76.
4,6-Dinitro-o-cresol	ND		ug/kg	420		78.
Pentachlorophenol	ND		ug/kg	130		36.
Phenol	ND		ug/kg	160		24.
2-Methylphenol	ND		ug/kg	160		25.
3-Methylphenol/4-Methylphenol	ND		ug/kg	230		25.
2,4,5-Trichlorophenol	ND		ug/kg	160		31.
Benzoic Acid	ND		ug/kg	530		160
Benzyl Alcohol	ND		ug/kg	160		50.
Carbazole	ND		ug/kg	160		16.

		Acceptance
Surrogate	%Recovery	Qualifier Criteria
2-Fluorophenol	50	25-120
Phenol-d6	52	10-120
Nitrobenzene-d5	59	23-120
2-Fluorobiphenyl	54	30-120
2,4,6-Tribromophenol	47	10-136
4-Terphenyl-d14	54	18-120

Project Name: THE DAILY FREEMAN

Project Number: 16-159311.2

Lab Number: L1631369

Report Date: 10/07/16

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Analytical Date: 1,006/16 12:32

Analyst: RC

Extraction Method: EPA 3510C Extraction Date: 10/04/16 20:23

Semivolatile Organics by GC/MS - Westborough Lab for sample(s): 09-11 Batch: WG938816-1 Acenaphthene ND ug/l 2.0 0.59 1,2,4-Trichlorobenzene ND ug/l 5.0 0.66 Hexachlorobenzene ND ug/l 2.0 0.58 Bis(2-chloroethyl)ether ND ug/l 2.0 0.67 2-Chloronaphthalene ND ug/l 2.0 0.64 1,2-Dichlorobenzene ND ug/l 2.0 0.73 1,3-Dichlorobenzene ND ug/l 2.0 0.73 1,4-Dichlorobenzene ND ug/l 2.0 0.73 1,4-Dichlorobenzene ND ug/l 2.0 0.73 1,4-Dichlorobenzene ND ug/l 2.0 0.71 3,3-Dichlorobenzidine ND ug/l 5.0 1.4 2,4-Dinitrotoluene ND ug/l 5.0 0.84 2,6-Dinitrotoluene ND ug/l 5.0 0.62 4-Bromophenyl phen	arameter	Result	Qualifier	Units	RL		MDL
1,2,4-Trichlorobenzene	emivolatile Organics by GC/MS -	Westborough	Lab for s	ample(s):	09-11	Batch:	WG938816-1
Hexachlorobenzene ND	Acenaphthene	ND		ug/l	2.0		0.59
Bis(2-chloroethyl)ether ND ug/l 2.0 0.67 2-Chloronaphthalene ND ug/l 2.0 0.64 1,2-Dichlorobenzene ND ug/l 2.0 0.73 1,3-Dichlorobenzene ND ug/l 2.0 0.73 1,4-Dichlorobenzene ND ug/l 2.0 0.71 3,3'-Dichlorobenzidine ND ug/l 5.0 1.4 2,4-Dinitrotoluene ND ug/l 5.0 0.84 2,6-Dinitrotoluene ND ug/l 5.0 1.1 Fluoranthene ND ug/l 2.0 0.57 4-Chlorophenyl phenyl ether ND ug/l 2.0 0.62 4-Bromophenyl phenyl ether ND ug/l 2.0 0.73 Bis(2-chloroisopropyl)ether ND ug/l 2.0 0.70 Bis(2-chloroisopropyl)ether ND ug/l 2.0 0.70 Bis(2-chloroisopropyl)ether ND ug/l 2.0 0.63 Hexachlorobuta	1,2,4-Trichlorobenzene	ND		ug/l	5.0		0.66
2-Chloronaphthalene ND ug/l 2.0 0.64 1,2-Dichlorobenzene ND ug/l 2.0 0.73 1,3-Dichlorobenzene ND ug/l 2.0 0.73 1,4-Dichlorobenzene ND ug/l 2.0 0.71 3,3'-Dichlorobenzidine ND ug/l 5.0 1.4 2,4-Dinitrotoluene ND ug/l 5.0 0.84 2,6-Dinitrotoluene ND ug/l 5.0 0.84 2,6-Dinitrotoluene ND ug/l 2.0 0.57 4-Chloritrotoluene ND ug/l 2.0 0.57 4-Chlorophenyl phenyl ether ND ug/l 2.0 0.62 4-Bromophenyl phenyl ether ND ug/l 2.0 0.73 Bis(2-chloroisopropyl)ether ND ug/l 2.0 0.70 Bis(2-chloroethoxy)methane ND ug/l 2.0 0.63 Hexachloroethoxylmethane ND ug/l 2.0 0.68 Hexachloroethane	Hexachlorobenzene	ND		ug/l	2.0		0.58
1,2-Dichlorobenzene ND ug/l 2.0 0.73 1,3-Dichlorobenzene ND ug/l 2.0 0.73 1,4-Dichlorobenzene ND ug/l 2.0 0.71 3,3-Dichlorobenzidine ND ug/l 5.0 1.4 2,4-Dinitrotoluene ND ug/l 5.0 0.84 2,6-Dinitrotoluene ND ug/l 5.0 1.1 Fluoranthene ND ug/l 2.0 0.57 4-Chlorophenyl phenyl ether ND ug/l 2.0 0.62 4-Bromophenyl phenyl ether ND ug/l 2.0 0.73 Bis(2-chloroisopropyl)ether ND ug/l 2.0 0.73 Bis(2-chloroethoxy)methane ND ug/l 2.0 0.70 Bis(2-chloroethoxy)methane ND ug/l 2.0 0.68 Hexachlorocyclopentadiene ND ug/l 2.0 0.68 Hexachloroethane ND ug/l 2.0 0.68 Isophorone	Bis(2-chloroethyl)ether	ND		ug/l	2.0		0.67
1,3-Dichlorobenzene ND ug/l 2.0 0.73 1,4-Dichlorobenzene ND ug/l 2.0 0.71 3,3'-Dichlorobenzidine ND ug/l 5.0 1.4 2,4-Dinitrotoluene ND ug/l 5.0 0.84 2,6-Dinitrotoluene ND ug/l 5.0 1.1 Fluoranthene ND ug/l 2.0 0.57 4-Chlorophenyl phenyl ether ND ug/l 2.0 0.62 4-Bromophenyl phenyl ether ND ug/l 2.0 0.73 Bis(2-chloroisopropyl)ether ND ug/l 2.0 0.70 Bis(2-chloroethoxy)methane ND ug/l 5.0 0.63 Hexachlorobutadiene ND ug/l 2.0 0.66 Hexachlorocyclopentadiene ND ug/l 2.0 0.68 Isophorone ND ug/l 2.0 0.68 Isophorone ND ug/l 2.0 0.68 Nitrobenzene ND	2-Chloronaphthalene	ND		ug/l	2.0		0.64
1,4-Dichlorobenzene ND ug/l 2.0 0.71 3,3'-Dichlorobenzidine ND ug/l 5.0 1.4 2,4-Dinitrotoluene ND ug/l 5.0 0.84 2,6-Dinitrotoluene ND ug/l 5.0 1.1 Fluoranthene ND ug/l 2.0 0.57 4-Chlorophenyl phenyl ether ND ug/l 2.0 0.62 4-Bromophenyl phenyl ether ND ug/l 2.0 0.73 Bis(2-chloroisopropyl)ether ND ug/l 2.0 0.70 Bis(2-chloroethoxy)methane ND ug/l 5.0 0.63 Hexachlorobutadiene ND ug/l 2.0 0.66 Hexachlorocyclopentadiene ND ug/l 2.0 0.68 Isophorone ND ug/l 2.0 0.68 Isophorone ND ug/l 2.0 0.68 Nitrobenzene ND ug/l 2.0 0.68 Nitrobenzene ND	1,2-Dichlorobenzene	ND		ug/l	2.0		0.73
3,3'-Dichlorobenzidine ND ug/l 5.0 1.4 2,4-Dinitrotoluene ND ug/l 5.0 0.84 2,6-Dinitrotoluene ND ug/l 5.0 1.1 Fluoranthene ND ug/l 2.0 0.57 4-Chlorophenyl phenyl ether ND ug/l 2.0 0.62 4-Bromophenyl phenyl ether ND ug/l 2.0 0.73 Bis(2-chloroisopropyl)ether ND ug/l 2.0 0.70 Bis(2-chloroethoxy)methane ND ug/l 5.0 0.63 Hexachlorobutadiene ND ug/l 2.0 0.66 Hexachlorocyclopentadiene ND ug/l 2.0 0.68 Hexachloroethane ND ug/l 2.0 0.68 Isophorone ND ug/l 2.0 0.68 Naphthalene ND ug/l 2.0 0.68 Nitrobenzene ND ug/l 2.0 0.64 NDA/DPA ND ug/	1,3-Dichlorobenzene	ND		ug/l	2.0		0.73
2,4-Dinitrotoluene ND ug/l 5.0 0.84 2,6-Dinitrotoluene ND ug/l 5.0 1.1 Fluoranthene ND ug/l 2.0 0.57 4-Chlorophenyl phenyl ether ND ug/l 2.0 0.62 4-Bromophenyl phenyl ether ND ug/l 2.0 0.73 Bis(2-chloroisopropyl)ether ND ug/l 2.0 0.70 Bis(2-chloroethoxy)methane ND ug/l 5.0 0.63 Hexachlorobutadiene ND ug/l 2.0 0.66 Hexachlorocyclopentadiene ND ug/l 2.0 0.68 Hexachloroethane ND ug/l 2.0 0.68 Isophorone ND ug/l 5.0 0.60 Naphthalene ND ug/l 2.0 0.68 Nitrobenzene ND ug/l 2.0 0.75 NDPA/DPA ND ug/l 2.0 0.64 n-Nitrosodi-n-propylamine ND <t< td=""><td>1,4-Dichlorobenzene</td><td>ND</td><td></td><td>ug/l</td><td>2.0</td><td></td><td>0.71</td></t<>	1,4-Dichlorobenzene	ND		ug/l	2.0		0.71
2,6-Dinitrotoluene ND ug/l 5.0 1.1 Fluoranthene ND ug/l 2.0 0.57 4-Chlorophenyl phenyl ether ND ug/l 2.0 0.62 4-Bromophenyl phenyl ether ND ug/l 2.0 0.73 Bis(2-chloroisopropyl)ether ND ug/l 2.0 0.70 Bis(2-chloroethoxy)methane ND ug/l 5.0 0.63 Hexachloroethoxy)methane ND ug/l 2.0 0.63 Hexachlorobutadiene ND ug/l 2.0 0.63 Hexachlorocyclopentadiene ND ug/l 2.0 0.68 Isophorone ND ug/l 2.0 0.68 Isophorone ND ug/l 2.0 0.68 Nitrobenzene ND ug/l 2.0 0.75 NDPA/DPA ND ug/l 2.0 0.64 n-Nitrosodi-n-propylamine ND ug/l 3.0 0.91 Butyl benzyl phthalate ND	3,3'-Dichlorobenzidine	ND		ug/l	5.0		1.4
Fluoranthene	2,4-Dinitrotoluene	ND		ug/l	5.0		0.84
4-Chlorophenyl phenyl ether ND ug/l 2.0 0.62 4-Bromophenyl phenyl ether ND ug/l 2.0 0.73 Bis(2-chloroisopropyl)ether ND ug/l 2.0 0.70 Bis(2-chloroethoxy)methane ND ug/l 5.0 0.63 Hexachlorobutadiene ND ug/l 2.0 0.66 Hexachlorocyclopentadiene ND ug/l 20 7.8 Hexachloroethane ND ug/l 2.0 0.68 Isophorone ND ug/l 5.0 0.60 Naphthalene ND ug/l 2.0 0.68 Nitrobenzene ND ug/l 2.0 0.75 NDPA/DPA ND ug/l 2.0 0.64 n-Nitrosodi-n-propylamine ND ug/l 5.0 0.70 Bis(2-ethylhexyl)phthalate ND ug/l 5.0 1.3	2,6-Dinitrotoluene	ND		ug/l	5.0		1.1
4-Bromophenyl phenyl ether ND ug/l 2.0 0.73 Bis(2-chloroisopropyl)ether ND ug/l 2.0 0.70 Bis(2-chloroethoxy)methane ND ug/l 5.0 0.63 Hexachlorobutadiene ND ug/l 2.0 0.66 Hexachlorocyclopentadiene ND ug/l 20 7.8 Hexachloroethane ND ug/l 2.0 0.68 Isophorone ND ug/l 5.0 0.60 Naphthalene ND ug/l 2.0 0.68 Nitrobenzene ND ug/l 2.0 0.75 NDPA/DPA ND ug/l 2.0 0.64 n-Nitrosodi-n-propylamine ND ug/l 5.0 0.70 Bis(2-ethylhexyl)phthalate ND ug/l 5.0 0.91 Butyl benzyl phthalate ND ug/l 5.0 1.3	Fluoranthene	ND		ug/l	2.0		0.57
Bis(2-chloroisopropyl)ether ND ug/l 2.0 0.70 Bis(2-chloroethoxy)methane ND ug/l 5.0 0.63 Hexachlorobutadiene ND ug/l 2.0 0.66 Hexachlorocyclopentadiene ND ug/l 20 7.8 Hexachloroethane ND ug/l 2.0 0.68 Isophorone ND ug/l 5.0 0.60 Naphthalene ND ug/l 2.0 0.68 Nitrobenzene ND ug/l 2.0 0.75 NDPA/DPA ND ug/l 2.0 0.64 n-Nitrosodi-n-propylamine ND ug/l 5.0 0.70 Bis(2-ethylhexyl)phthalate ND ug/l 3.0 0.91 Butyl benzyl phthalate ND ug/l 5.0 1.3	4-Chlorophenyl phenyl ether	ND		ug/l	2.0		0.62
Bis(2-chloroethoxy)methane ND ug/l 5.0 0.63 Hexachlorobutadiene ND ug/l 2.0 0.66 Hexachlorocyclopentadiene ND ug/l 20 7.8 Hexachloroethane ND ug/l 2.0 0.68 Isophorone ND ug/l 5.0 0.60 Naphthalene ND ug/l 2.0 0.68 Nitrobenzene ND ug/l 2.0 0.75 NDPA/DPA ND ug/l 2.0 0.64 n-Nitrosodi-n-propylamine ND ug/l 5.0 0.70 Bis(2-ethylhexyl)phthalate ND ug/l 3.0 0.91 Butyl benzyl phthalate ND ug/l 5.0 1.3	4-Bromophenyl phenyl ether	ND		ug/l	2.0		0.73
Hexachlorobutadiene ND ug/l 2.0 0.66 Hexachlorocyclopentadiene ND ug/l 20 7.8 Hexachloroethane ND ug/l 2.0 0.68 Isophorone ND ug/l 5.0 0.60 Naphthalene ND ug/l 2.0 0.68 Nitrobenzene ND ug/l 2.0 0.75 NDPA/DPA ND ug/l 2.0 0.64 n-Nitrosodi-n-propylamine ND ug/l 5.0 0.70 Bis(2-ethylhexyl)phthalate ND ug/l 3.0 0.91 Butyl benzyl phthalate ND ug/l 5.0 1.3	Bis(2-chloroisopropyl)ether	ND		ug/l	2.0		0.70
Hexachlorocyclopentadiene ND ug/l 20 7.8 Hexachloroethane ND ug/l 2.0 0.68 Isophorone ND ug/l 5.0 0.60 Naphthalene ND ug/l 2.0 0.68 Nitrobenzene ND ug/l 2.0 0.75 NDPA/DPA ND ug/l 2.0 0.64 n-Nitrosodi-n-propylamine ND ug/l 5.0 0.70 Bis(2-ethylhexyl)phthalate ND ug/l 3.0 0.91 Butyl benzyl phthalate ND ug/l 5.0 1.3	Bis(2-chloroethoxy)methane	ND		ug/l	5.0		0.63
Hexachloroethane ND ug/l 2.0 0.68 Isophorone ND ug/l 5.0 0.60 Naphthalene ND ug/l 2.0 0.68 Nitrobenzene ND ug/l 2.0 0.75 NDPA/DPA ND ug/l 2.0 0.64 n-Nitrosodi-n-propylamine ND ug/l 5.0 0.70 Bis(2-ethylhexyl)phthalate ND ug/l 3.0 0.91 Butyl benzyl phthalate ND ug/l 5.0 1.3	Hexachlorobutadiene	ND		ug/l	2.0		0.66
Sophorone ND ug/l 5.0 0.60	Hexachlorocyclopentadiene	ND		ug/l	20		7.8
Naphthalene ND ug/l 2.0 0.68 Nitrobenzene ND ug/l 2.0 0.75 NDPA/DPA ND ug/l 2.0 0.64 n-Nitrosodi-n-propylamine ND ug/l 5.0 0.70 Bis(2-ethylhexyl)phthalate ND ug/l 3.0 0.91 Butyl benzyl phthalate ND ug/l 5.0 1.3	Hexachloroethane	ND		ug/l	2.0		0.68
Nitrobenzene ND ug/l 2.0 0.75 NDPA/DPA ND ug/l 2.0 0.64 n-Nitrosodi-n-propylamine ND ug/l 5.0 0.70 Bis(2-ethylhexyl)phthalate ND ug/l 3.0 0.91 Butyl benzyl phthalate ND ug/l 5.0 1.3	Isophorone	ND		ug/l	5.0		0.60
NDPA/DPA ND ug/l 2.0 0.64 n-Nitrosodi-n-propylamine ND ug/l 5.0 0.70 Bis(2-ethylhexyl)phthalate ND ug/l 3.0 0.91 Butyl benzyl phthalate ND ug/l 5.0 1.3	Naphthalene	ND		ug/l	2.0		0.68
n-Nitrosodi-n-propylamine ND ug/l 5.0 0.70 Bis(2-ethylhexyl)phthalate ND ug/l 3.0 0.91 Butyl benzyl phthalate ND ug/l 5.0 1.3	Nitrobenzene	ND		ug/l	2.0		0.75
Bis(2-ethylhexyl)phthalate ND ug/l 3.0 0.91 Butyl benzyl phthalate ND ug/l 5.0 1.3	NDPA/DPA	ND		ug/l	2.0		0.64
Butyl benzyl phthalate ND ug/l 5.0 1.3	n-Nitrosodi-n-propylamine	ND		ug/l	5.0		0.70
	Bis(2-ethylhexyl)phthalate	ND		ug/l	3.0		0.91
Di-n-butylphthalate ND ug/l 5.0 0.69	Butyl benzyl phthalate	ND		ug/l	5.0		1.3
	Di-n-butylphthalate	ND		ug/l	5.0		0.69
Di-n-octylphthalate ND ug/l 5.0 1.1	Di-n-octylphthalate	ND		ug/l	5.0		1.1
Diethyl phthalate ND ug/l 5.0 0.63	Diethyl phthalate	ND		ug/l	5.0		0.63

Project Name: THE DAILY FREEMAN

Project Number: 16-159311.2

Lab Number: L1631369 **Report Date:** 10/07/16

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Analytical Date: 10/06/16 12:32

Analyst: RC

Extraction Method:	EPA 3510C
Extraction Date:	10/04/16 20:23

arameter	Result	Qualifier	Units	RL		MDL
emivolatile Organics by GC/M	S - Westborough	Lab for s	ample(s):	09-11	Batch:	WG938816-1
Dimethyl phthalate	ND		ug/l	5.0		0.65
Benzo(a)anthracene	ND		ug/l	2.0		0.61
Benzo(a)pyrene	ND		ug/l	2.0		0.54
Benzo(b)fluoranthene	ND		ug/l	2.0		0.64
Benzo(k)fluoranthene	ND		ug/l	2.0		0.60
Chrysene	ND		ug/l	2.0		0.54
Acenaphthylene	ND		ug/l	2.0		0.66
Anthracene	ND		ug/l	2.0		0.64
Benzo(ghi)perylene	ND		ug/l	2.0		0.61
Fluorene	ND		ug/l	2.0		0.62
Phenanthrene	ND		ug/l	2.0		0.61
Dibenzo(a,h)anthracene	ND		ug/l	2.0		0.55
Indeno(1,2,3-cd)pyrene	ND		ug/l	2.0		0.71
Pyrene	ND		ug/l	2.0		0.57
Biphenyl	ND		ug/l	2.0		0.76
4-Chloroaniline	ND		ug/l	5.0		0.63
2-Nitroaniline	ND		ug/l	5.0		1.1
3-Nitroaniline	ND		ug/l	5.0		1.1
4-Nitroaniline	ND		ug/l	5.0		1.3
Dibenzofuran	ND		ug/l	2.0		0.66
2-Methylnaphthalene	ND		ug/l	2.0		0.72
1,2,4,5-Tetrachlorobenzene	ND		ug/l	10		0.67
Acetophenone	ND		ug/l	5.0		0.85
2,4,6-Trichlorophenol	ND		ug/l	5.0		0.68
p-Chloro-m-cresol	ND		ug/l	2.0		0.62
2-Chlorophenol	ND		ug/l	2.0		0.63
2,4-Dichlorophenol	ND		ug/l	5.0		0.77
2,4-Dimethylphenol	ND		ug/l	5.0		1.6
2-Nitrophenol	ND		ug/l	10		1.5

Project Name: THE DAILY FREEMAN

Project Number: 16-159311.2 Lab Number: L1631369

Report Date: 10/07/16

Method Blank Analysis Batch Quality Control

Analytical Method: Analytical Date:

1,8270D

Analyst:

10/06/16 12:32 RC

Extraction Method: EPA 3510C

10/04/16 20:23 Extraction Date:

Result	Qualifier	Units	RL		MDL
Westborough	Lab for sa	ample(s):	09-11	Batch:	WG938816-1
ND		ug/l	10		1.8
ND		ug/l	20		5.5
ND		ug/l	10		2.1
ND		ug/l	10		3.4
ND		ug/l	5.0		1.9
ND		ug/l	5.0		1.0
ND		ug/l	5.0		1.1
ND		ug/l	5.0		0.72
ND		ug/l	50		13.
ND		ug/l	2.0		0.72
ND		ug/l	2.0		0.63
	Westborough ND ND ND ND ND ND ND ND ND N	Westborough Lab for sa ND ND ND ND ND ND ND ND ND N	ND ug/l ND ug/l ND ug/l ND ug/l ND ug/l ND ug/l ND ug/l ND ug/l ND ug/l ND ug/l ND ug/l ND ug/l ND ug/l ND ug/l ND ug/l ND ug/l ND ug/l ND ug/l	ND ug/l 10 ND ug/l 20 ND ug/l 10 ND ug/l 10 ND ug/l 10 ND ug/l 5.0 ND ug/l 50 ND ug/l 50 ND ug/l 2.0	ND ug/l 10 ND ug/l 20 ND ug/l 10 ND ug/l 10 ND ug/l 10 ND ug/l 5.0 ND ug/l 2.0

		Acceptance
Surrogate	%Recovery	Qualifier Criteria
2 Fluorenhand	26	24.420
2-Fluorophenol	26	21-120
Phenol-d6	10	10-120
Nitrobenzene-d5	65	23-120
2-Fluorobiphenyl	70	15-120
2,4,6-Tribromophenol	81	10-120
4-Terphenyl-d14	72	41-149

Project Name: THE DAILY FREEMAN

Project Number: 16-159311.2

Lab Number: L1631369

Report Date: 10/07/16

Extraction Method: EPA 3510C

10/04/16 20:22

Extraction Date:

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8270D-SIM Analytical Date: 10/05/16 22:30

Benzo(ghi)perylene

Dibenzo(a,h)anthracene

Indeno(1,2,3-cd)pyrene

2-Methylnaphthalene

Pentachlorophenol

Hexachlorobenzene

Hexachloroethane

Fluorene

Pyrene

Phenanthrene

Analyst: KL

Parameter	Result	Qualifier	Units	RL	MDL	
Semivolatile Organics by GC/MS	-SIM - Westbo	orough Lab	for sampl	e(s): 09-11	Batch: WG	938817-1
Acenaphthene	ND		ug/l	0.10	0.04	
2-Chloronaphthalene	ND		ug/l	0.20	0.04	
Fluoranthene	ND		ug/l	0.20	0.04	
Hexachlorobutadiene	ND		ug/l	0.50	0.04	
Naphthalene	ND		ug/l	0.20	0.04	
Benzo(a)anthracene	ND		ug/l	0.20	0.02	
Benzo(a)pyrene	ND		ug/l	0.20	0.04	
Benzo(b)fluoranthene	ND		ug/l	0.20	0.02	
Benzo(k)fluoranthene	ND		ug/l	0.20	0.04	
Chrysene	ND		ug/l	0.20	0.04	
Acenaphthylene	ND		ug/l	0.20	0.04	
Anthracene	ND		ug/l	0.20	0.04	

ug/l

ug/l

ug/l

ug/l

ug/l

ug/l

ug/l

ug/l

ug/l

ug/l

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.80

0.80

0.80

0.04

0.04

0.02

0.04

0.04

0.04

0.05

0.22

0.03

0.03

ND

ND

ND

ND

ND

ND

ND

ND

ND

ND

Project Name: THE DAILY FREEMAN

Project Number: 16-159311.2

Lab Number:

L1631369

Report Date:

10/07/16

Method Blank Analysis
Batch Quality Control

Analytical Method: Analytical Date: 1,8270D-SIM

Analyst:

10/05/16 22:30

KL

Extraction Method: EPA 3510C

Extraction Date: 10/04/16 20:22

ParameterResultQualifierUnitsRLMDLSemivolatile Organics by GC/MS-SIM - Westborough Lab for sample(s):09-11Batch: WG938817-1

		Α	Acceptance	
Surrogate	%Recovery	Qualifier	Criteria	
•				
2-Fluorophenol	37		21-120	
Phenol-d6	25		10-120	
Nitrobenzene-d5	94		23-120	
2-Fluorobiphenyl	95		15-120	
2,4,6-Tribromophenol	94		10-120	
4-Terphenyl-d14	91		41-149	

Project Name: THE DAILY FREEMAN

Project Number: 16-159311.2

Lab Number: L1631369

Parameter	LCS %Recovery	Qual	LCSD %Recov		Qual	%Recovery Limits	RPD	Qual	RPD Limits
Semivolatile Organics by GC/MS - Westb	oorough Lab Associ	ated sample(s):	07-08	Batch:	WG938488	-2 WG938488	3-3		
Acenaphthene	62		63			31-137	2		50
Benzidine	26		22			10-66	17		50
1,2,4-Trichlorobenzene	64		65			38-107	2		50
Hexachlorobenzene	67		70			40-140	4		50
Bis(2-chloroethyl)ether	59		60			40-140	2		50
2-Chloronaphthalene	63		65			40-140	3		50
1,2-Dichlorobenzene	62		61			40-140	2		50
1,3-Dichlorobenzene	61		59			40-140	3		50
1,4-Dichlorobenzene	61		60			28-104	2		50
3,3'-Dichlorobenzidine	40		40			40-140	0		50
2,4-Dinitrotoluene	80		82			28-89	2		50
2,6-Dinitrotoluene	73		77			40-140	5		50
Azobenzene	62		63			40-140	2		50
Fluoranthene	67		69			40-140	3		50
4-Chlorophenyl phenyl ether	67		69			40-140	3		50
4-Bromophenyl phenyl ether	69		70			40-140	1		50
Bis(2-chloroisopropyl)ether	50		49			40-140	2		50
Bis(2-chloroethoxy)methane	60		62			40-117	3		50
Hexachlorobutadiene	71		71			40-140	0		50
Hexachlorocyclopentadiene	83		87			40-140	5		50
Hexachloroethane	64		63			40-140	2		50

Project Name: THE DAILY FREEMAN

Project Number: 16-159311.2

Lab Number: L1631369

Parameter	LCS %Recovery	Qual	LCSE %Recov		Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Semivolatile Organics by GC/MS - Westb	orough Lab Associ	ated sample(s):	07-08	Batch:	WG938488	3-2 WG938488	-3			
Isophorone	59		61			40-140	3		50	
Naphthalene	61		63			40-140	3		50	
Nitrobenzene	74		74			40-140	0		50	
NitrosoDiPhenylAmine(NDPA)/DPA	66		67			36-157	2		50	
n-Nitrosodi-n-propylamine	60		62			32-121	3		50	
Bis(2-Ethylhexyl)phthalate	57		59			40-140	3		50	
Butyl benzyl phthalate	64		66			40-140	3		50	
Di-n-butylphthalate	63		65			40-140	3		50	
Di-n-octylphthalate	56		57			40-140	2		50	
Diethyl phthalate	64		66			40-140	3		50	
Dimethyl phthalate	64		67			40-140	5		50	
Benzo(a)anthracene	64		67			40-140	5		50	
Benzo(a)pyrene	68		70			40-140	3		50	
Benzo(b)fluoranthene	68		68			40-140	0		50	
Benzo(k)fluoranthene	63		68			40-140	8		50	
Chrysene	61		64			40-140	5		50	
Acenaphthylene	63		66			40-140	5		50	
Anthracene	64		66			40-140	3		50	
Benzo(ghi)perylene	68		69			40-140	1		50	
Fluorene	65		66			40-140	2		50	
Phenanthrene	62		63			40-140	2		50	

Project Name: THE DAILY FREEMAN

Project Number: 16-159311.2

Lab Number: L1631369

Parameter	LCS %Recovery	Qual	LCSI %Recov		9 Qual	%Recovery Limits	RPD	Qual	RPD Limits
Semivolatile Organics by GC/MS - Westboro	ough Lab Assoc	iated sample(s):	07-08	Batch:	WG938488	-2 WG938488-	-3		
Dibenzo(a,h)anthracene	68		70			40-140	3		50
Indeno(1,2,3-cd)Pyrene	68		70			40-140	3		50
Pyrene	65		67			35-142	3		50
Biphenyl	68		70			54-104	3		50
Aniline	42		40			40-140	5		50
4-Chloroaniline	50		41			40-140	20		50
1-Methylnaphthalene	61		63			26-130	3		50
2-Nitroaniline	73		77			47-134	5		50
3-Nitroaniline	57		56			26-129	2		50
4-Nitroaniline	68		70			41-125	3		50
Dibenzofuran	64		65			40-140	2		50
2-Methylnaphthalene	61		63			40-140	3		50
1,2,4,5-Tetrachlorobenzene	74		76			40-117	3		50
Acetophenone	67		70			14-144	4		50
n-Nitrosodimethylamine	58		57			22-100	2		50
2,4,6-Trichlorophenol	73		77			30-130	5		50
P-Chloro-M-Cresol	70		71			26-103	1		50
2-Chlorophenol	66		67			25-102	2		50
2,4-Dichlorophenol	70		71			30-130	1		50
2,4-Dimethylphenol	70		70			30-130	0		50
2-Nitrophenol	80		80			30-130	0		50

Project Name: THE DAILY FREEMAN

Project Number: 16-159311.2

Lab Number: L1631369

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Semivolatile Organics by GC/MS - Westb	orough Lab Associa	ated sample(s):	07-08 Bate	ch: WG938488-2 WG938488	-3	
4-Nitrophenol	68		70	11-114	3	50
2,4-Dinitrophenol	98		96	4-130	2	50
4,6-Dinitro-o-cresol	94		100	10-130	6	50
Pentachlorophenol	69		70	17-109	1	50
Phenol	62		63	26-90	2	50
2-Methylphenol	63		66	30-130.	5	50
3-Methylphenol/4-Methylphenol	65		66	30-130	2	50
2,4,5-Trichlorophenol	72		77	30-130	7	50
Benzoic Acid	46		40	10-110	14	50
Benzyl Alcohol	64		66	40-140	3	50
Carbazole	63		65	54-128	3	50
Pyridine	51		49	10-93	4	50
Parathion, ethyl	116		121	40-140	4	50
Atrazine	78		81	40-140	4	50
Benzaldehyde	50		50	40-140	0	50
Caprolactam	64		67	15-130	5	50
2,3,4,6-Tetrachlorophenol	72		75	40-140	4	50

Project Name: THE DAILY FREEMAN

Project Number: 16-159311.2

Lab Number:

L1631369

Report Date:

10/07/16

	LCS		LCSD		%Recovery			RPD
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits

Semivolatile Organics by GC/MS - Westborough Lab Associated sample(s): 07-08 Batch: WG938488-2 WG938488-3

LCS		LCSD		Acceptance	
%Recovery	Qual	%Recovery	Qual	Criteria	
63		63		25-120	
65		66		10-120	
76		77		23-120	
64		66		30-120	
68		70		10-136	
65		67		18-120	
	%Recovery 63 65 76 64 68	%Recovery Qual 63 65 76 64 68	%Recovery Qual %Recovery 63 63 65 65 66 77 64 66 66 68 70	%Recovery Qual %Recovery Qual 63 63 65 66 76 77 64 66 68 70 70	%Recovery Qual %Recovery Qual Criteria 63 63 25-120 65 66 10-120 76 77 23-120 64 66 30-120 68 70 10-136

Project Name: THE DAILY FREEMAN

Project Number: 16-159311.2

Lab Number: L1631369

Parameter	LCS %Recovery	Qual	LCSI %Recov		Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Semivolatile Organics by GC/MS - Westboro	ugh Lab Assoc	iated sample(s):	09-11	Batch:	WG9388	16-2 WG938816	-3			
Acenaphthene	67		59			37-111	13		30	
Benzidine	5	Q	9		Q	10-75	51	Q	30	
1,2,4-Trichlorobenzene	60		50			39-98	18		30	
Hexachlorobenzene	81		80			40-140	1		30	
Bis(2-chloroethyl)ether	60		52			40-140	14		30	
2-Chloronaphthalene	64		56			40-140	13		30	
1,2-Dichlorobenzene	55		47			40-140	16		30	
1,3-Dichlorobenzene	50		45			40-140	11		30	
1,4-Dichlorobenzene	54		44			36-97	20		30	
3,3'-Dichlorobenzidine	50		51			40-140	2		30	
2,4-Dinitrotoluene	73		72			24-96	1		30	
2,6-Dinitrotoluene	74		75			40-140	1		30	
Azobenzene	83		81			40-140	2		30	
Fluoranthene	73		74			40-140	1		30	
4-Chlorophenyl phenyl ether	66		62			40-140	6		30	
4-Bromophenyl phenyl ether	72		70			40-140	3		30	
Bis(2-chloroisopropyl)ether	37	Q	34		Q	40-140	8		30	
Bis(2-chloroethoxy)methane	71		64			40-140	10		30	
Hexachlorobutadiene	55		50			40-140	10		30	
Hexachlorocyclopentadiene	35	Q	29		Q	40-140	19		30	
Hexachloroethane	57		49			40-140	15		30	

Project Name: THE DAILY FREEMAN

Project Number: 16-159311.2

Lab Number: L1631369

Parameter	LCS %Recovery	Qual	LCSE %Recov		%Recovery Qual Limits	RPD	Qual	RPD Limits
Semivolatile Organics by GC/MS - Westboro	ough Lab Associ	ated sample(s):	09-11	Batch:	WG938816-2 WG938816-	3		
Isophorone	74		69		40-140	7		30
Naphthalene	58		52		40-140	11		30
Nitrobenzene	71		67		40-140	6		30
NDPA/DPA	70		70		40-140	0		30
n-Nitrosodi-n-propylamine	71		60		29-132	17		30
Bis(2-ethylhexyl)phthalate	74		76		40-140	3		30
Butyl benzyl phthalate	75		76		40-140	1		30
Di-n-butylphthalate	72		74		40-140	3		30
Di-n-octylphthalate	76		78		40-140	3		30
Diethyl phthalate	74		76		40-140	3		30
Dimethyl phthalate	73		72		40-140	1		30
Benzo(a)anthracene	66		66		40-140	0		30
Benzo(a)pyrene	71		72		40-140	1		30
Benzo(b)fluoranthene	72		72		40-140	0		30
Benzo(k)fluoranthene	76		76		40-140	0		30
Chrysene	70		70		40-140	0		30
Acenaphthylene	69		61		45-123	12		30
Anthracene	71		69		40-140	3		30
Benzo(ghi)perylene	70		71		40-140	1		30
Fluorene	70		66		40-140	6		30
Phenanthrene	68		67		40-140	1		30

Project Name: THE DAILY FREEMAN

Project Number: 16-159311.2

Lab Number: L163

L1631369

Parameter	LCS %Recovery	Qual	LCSE %Recov		Qual	%Recovery Limits	RPD	Qual	RPD Limits
Semivolatile Organics by GC/MS - Westborou	ugh Lab Assoc	iated sample(s):	09-11	Batch:	WG938816	6-2 WG938816-3			
Dibenzo(a,h)anthracene	68		68			40-140	0		30
Indeno(1,2,3-cd)pyrene	69		69			40-140	0		30
Pyrene	73		72			26-127	1		30
Biphenyl	68		59			40-140	14		30
Aniline	22	Q	21		Q	40-140	5		30
4-Chloroaniline	54		45			40-140	18		30
1-Methylnaphthalene	70		61			41-103	14		30
2-Nitroaniline	71		68			52-143	4		30
3-Nitroaniline	46		44			25-145	4		30
4-Nitroaniline	49	Q	55			51-143	12		30
Dibenzofuran	67		61			40-140	9		30
2-Methylnaphthalene	61		52			40-140	16		30
1,2,4,5-Tetrachlorobenzene	65		56			2-134	15		30
Acetophenone	82		68			39-129	19		30
n-Nitrosodimethylamine	24		24			22-74	0		30
2,4,6-Trichlorophenol	59		56			30-130	5		30
p-Chloro-m-cresol	64		61			23-97	5		30
2-Chlorophenol	53		47			27-123	12		30
2,4-Dichlorophenol	70		64			30-130	9		30
2,4-Dimethylphenol	71		62			30-130	14		30
2-Nitrophenol	78		66			30-130	17		30

Project Name: THE DAILY FREEMAN

Project Number: 16-159311.2

Lab Number: L1631369

Parameter	LCS %Recovery	Qual	LCSD %Recovery	y	9 Qual	%Recovery Limits	RPD	Qual	RPD Limits
Semivolatile Organics by GC/MS - Westborou	ıgh Lab Assoc	iated sample(s):	09-11 Ba	atch:	WG938816	-2 WG938816-3			
4-Nitrophenol	28		23			10-80	20		30
2,4-Dinitrophenol	55		52			20-130	6		30
4,6-Dinitro-o-cresol	66		67			20-164	2		30
Pentachlorophenol	62		64			9-103	3		30
Phenol	13		20			12-110	42	Q	30
2-Methylphenol	46		40			30-130	14		30
3-Methylphenol/4-Methylphenol	38		36			30-130	5		30
2,4,5-Trichlorophenol	82		77			30-130	6		30
Benzoic Acid	0	Q	0		Q	10-164	NC		30
Benzyl Alcohol	46		37			26-116	22		30
Carbazole	68		67			55-144	1		30
Pyridine	16		18			10-66	12		30
Parathion, ethyl	83		84			40-140	1		30
Atrazine	75		77			40-140	3		30
Benzaldehyde	52		44			40-140	17		30
Caprolactam	10		10			10-130	0		30
2,3,4,6-Tetrachlorophenol	81		80			40-140	1		30

Project Name: THE DAILY FREEMAN

Project Number: 16-159311.2

Lab Number:

L1631369

Report Date:

10/07/16

	LCS		LCSD		%Recovery			RPD
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits

Semivolatile Organics by GC/MS - Westborough Lab Associated sample(s): 09-11 Batch: WG938816-2 WG938816-3

LCS		LCSD		Acceptance	
%Recovery	Qual	%Recovery	Qual	Criteria	
25		22		21-120	
16		15		10-120	
74		67		23-120	
71		67		15-120	
85		90		10-120	
69		71		41-149	
	%Recovery 25 16 74 71 85	%Recovery Qual 25 16 74 71 85	%Recovery Qual %Recovery 25 22 16 15 74 67 71 67 85 90	%Recovery Qual %Recovery Qual 25 22 16 15 74 67 71 67 85 90	%Recovery Qual %Recovery Qual Criteria 25 22 21-120 16 15 10-120 74 67 23-120 71 67 15-120 85 90 10-120

Project Name: THE DAILY FREEMAN

Project Number: 16-159311.2

Lab Number: L1631369

Parameter	LCS %Recovery	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Semivolatile Organics by GC/MS-SIM -	Westborough Lab Ass	sociated sample(s): 09-11	Batch: WG938817-2 WG9	38817-3	
Acenaphthene	88	88	37-111	0	40
2-Chloronaphthalene	89	87	40-140	2	40
Fluoranthene	90	94	40-140	4	40
Hexachlorobutadiene	76	74	40-140	3	40
Naphthalene	81	80	40-140	1	40
Benzo(a)anthracene	94	98	40-140	4	40
Benzo(a)pyrene	81	84	40-140	4	40
Benzo(b)fluoranthene	86	89	40-140	3	40
Benzo(k)fluoranthene	83	84	40-140	1	40
Chrysene	85	89	40-140	5	40
Acenaphthylene	100	100	40-140	0	40
Anthracene	92	97	40-140	5	40
Benzo(ghi)perylene	87	89	40-140	2	40
Fluorene	98	97	40-140	1	40
Phenanthrene	87	90	40-140	3	40
Dibenzo(a,h)anthracene	89	89	40-140	0	40
Indeno(1,2,3-cd)pyrene	90	91	40-140	1	40
Pyrene	83	87	26-127	5	40
1-Methylnaphthalene	87	87	40-140	0	40
2-Methylnaphthalene	91	91	40-140	0	40
Pentachlorophenol	74	73	9-103	1	40

Project Name: THE DAILY FREEMAN

Project Number: 16-159311.2

Lab Number:

L1631369

Report Date:

10/07/16

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Semivolatile Organics by GC/MS-SIM - We			le(s): 09-11					
Hexachlorobenzene	88		91		40-140	3		40
Hexachloroethane	83		83		40-140	0		40

	LCS		LCSD		Acceptance
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria
2-Fluorophenol	41		41		21-120
Phenol-d6	26		27		10-120
Nitrobenzene-d5	90		90		23-120
2-Fluorobiphenyl	92		92		15-120
2,4,6-Tribromophenol	104		107		10-120
4-Terphenyl-d14	89		93		41-149

METALS

Project Name: THE DAILY FREEMAN Lab Number: L1631369

Project Number: 16-159311.2 **Report Date:** 10/07/16

SAMPLE RESULTS

Lab ID: L1631369-07 Date Collected: 10/01/16 12:29

Client ID: B7 Date Received: 10/01/16
Sample Location: 79 HURLEY AVENUE, KINGSTON, NY Field Prep: Not Specified

Matrix: Soil

84% Percent Solids: Dilution Date Date Prep **Analytical** Method Prepared Method Factor **Analyzed** Result Qualifier RL MDL **Parameter** Units **Analyst** Total Metals - Mansfield Lab Antimony, Total ND mg/kg 2.4 0.38 1 10/05/16 07:25 10/06/16 02:41 EPA 3050B 1,6010C FΒ 6.0 1 1,6010C Arsenic, Total mg/kg 0.47 0.16 10/05/16 07:25 10/06/16 02:41 EPA 3050B FΒ 1 1,6010C Beryllium, Total 0.29 0.24 0.05 10/05/16 07:25 10/06/16 02:41 EPA 3050B FΒ mg/kg Cadmium, Total ND mg/kg 0.47 0.03 1 10/05/16 07:25 10/06/16 02:41 EPA 3050B 1,6010C FΒ 12 0.47 0.08 1 10/05/16 07:25 10/06/16 02:41 EPA 3050B 1,6010C Chromium, Total mg/kg FΒ 16 0.47 0.09 1 10/05/16 07:25 10/06/16 02:41 EPA 3050B 1,6010C FΒ Copper, Total mg/kg Lead, Total 9.0 2.4 0.10 1 10/05/16 07:25 10/06/16 02:41 EPA 3050B 1,6010C FΒ mg/kg Mercury, Total 0.02 J mg/kg 0.08 0.02 1 10/05/16 09:00 10/06/16 15:02 EPA 7471B 1,7471B ΒV 18 1 1,6010C FΒ Nickel, Total mg/kg 1.2 0.19 10/05/16 07:25 10/06/16 02:41 EPA 3050B Selenium, Total ND mg/kg 0.94 0.13 1 10/05/16 07:25 10/06/16 02:41 EPA 3050B 1,6010C FΒ Silver, Total ND 0.47 0.09 1 10/05/16 07:25 10/06/16 02:41 EPA 3050B 1,6010C FΒ mg/kg Thallium, Total ND 0.94 0.15 1 10/05/16 07:25 10/06/16 02:41 EPA 3050B 1,6010C FΒ mg/kg Zinc, Total 44 mg/kg 2.4 0.33 1 10/05/16 07:25 10/06/16 02:41 EPA 3050B 1,6010C FΒ

Project Name: THE DAILY FREEMAN **Lab Number:** L1631369

Project Number: 16-159311.2 **Report Date:** 10/07/16

SAMPLE RESULTS

Lab ID: L1631369-08 Date Collected: 10/01/16 12:41

Client ID: B8 Date Received: 10/01/16
Sample Location: 79 HURLEY AVENUE, KINGSTON, NY Field Prep: Not Specified

Matrix: Soil

Percent Solids: 85%

Dilution Date Date Prep Analytical

Factor Prepared Analyzed Method Method

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Man	sfield Lab										
Antimony, Total	ND		mg/kg	2.3	0.37	1	10/05/16 07:2	5 10/06/16 02:45	EPA 3050B	1,6010C	FB
Arsenic, Total	6.2		mg/kg	0.46	0.15	1	10/05/16 07:2	5 10/06/16 02:45	EPA 3050B	1,6010C	FB
Beryllium, Total	0.29		mg/kg	0.23	0.05	1	10/05/16 07:2	5 10/06/16 02:45	EPA 3050B	1,6010C	FB
Cadmium, Total	ND		mg/kg	0.46	0.03	1	10/05/16 07:2	5 10/06/16 02:45	EPA 3050B	1,6010C	FB
Chromium, Total	12		mg/kg	0.46	0.08	1	10/05/16 07:2	5 10/06/16 02:45	EPA 3050B	1,6010C	FB
Copper, Total	16		mg/kg	0.46	0.08	1	10/05/16 07:2	5 10/06/16 02:45	EPA 3050B	1,6010C	FB
Lead, Total	9.9		mg/kg	2.3	0.10	1	10/05/16 07:2	5 10/06/16 02:45	EPA 3050B	1,6010C	FB
Mercury, Total	0.03	J	mg/kg	0.07	0.02	1	10/05/16 09:0	0 10/06/16 15:04	EPA 7471B	1,7471B	BV
Nickel, Total	18		mg/kg	1.2	0.18	1	10/05/16 07:2	5 10/06/16 02:45	EPA 3050B	1,6010C	FB
Selenium, Total	ND		mg/kg	0.92	0.12	1	10/05/16 07:2	5 10/06/16 02:45	EPA 3050B	1,6010C	FB
Silver, Total	ND		mg/kg	0.46	0.09	1	10/05/16 07:2	5 10/06/16 02:45	EPA 3050B	1,6010C	FB
Thallium, Total	ND		mg/kg	0.92	0.15	1	10/05/16 07:2	5 10/06/16 02:45	EPA 3050B	1,6010C	FB
Zinc, Total	44		mg/kg	2.3	0.32	1	10/05/16 07:2	5 10/06/16 02:45	EPA 3050B	1,6010C	FB

Project Name: THE DAILY FREEMAN

Project Number: 16-159311.2

Lab Number: L1631369

Report Date:

10/07/16

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared		Analytica Method	
Total Metals - Mansfie	ld Lab for sample(s):	07-08 B	atch: W	G93890	9-1				
Mercury, Total	ND	mg/kg	0.08	0.02	1	10/05/16 09:00	10/06/16 11:36	1,7471B	BV

Prep Information

Digestion Method: EPA 7471B

Parameter	Result C	ualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mans	field Lab for sa	ımple(s):	07-08 B	atch: W	G93893	1-1				,
Antimony, Total	ND		mg/kg	2.0	0.32	1	10/05/16 07:25	10/06/16 00:48	1,6010C	FB
Arsenic, Total	ND		mg/kg	0.40	0.13	1	10/05/16 07:25	10/06/16 00:48	1,6010C	FB
Beryllium, Total	ND		mg/kg	0.20	0.04	1	10/05/16 07:25	10/06/16 00:48	1,6010C	FB
Cadmium, Total	ND		mg/kg	0.40	0.03	1	10/05/16 07:25	10/06/16 00:48	1,6010C	FB
Chromium, Total	0.36	J	mg/kg	0.40	0.07	1	10/05/16 07:25	10/06/16 00:48	1,6010C	FB
Copper, Total	ND		mg/kg	0.40	0.07	1	10/05/16 07:25	10/06/16 03:33	1,6010C	FB
Lead, Total	ND		mg/kg	2.0	0.09	1	10/05/16 07:25	10/06/16 00:48	1,6010C	FB
Nickel, Total	ND		mg/kg	1.0	0.16	1	10/05/16 07:25	10/06/16 00:48	1,6010C	FB
Selenium, Total	ND		mg/kg	0.80	0.11	1	10/05/16 07:25	10/06/16 00:48	1,6010C	FB
Silver, Total	ND		mg/kg	0.40	0.08	1	10/05/16 07:25	10/06/16 00:48	1,6010C	FB
Thallium, Total	ND		mg/kg	0.80	0.13	1	10/05/16 07:25	10/06/16 00:48	1,6010C	FB
Zinc, Total	0.37	J	mg/kg	2.0	0.28	1	10/05/16 07:25	10/06/16 00:48	1,6010C	FB

Prep Information

Digestion Method: EPA 3050B

Project Name: THE DAILY FREEMAN

Project Number: 16-159311.2

Lab Number:

L1631369

Report Date:

10/07/16

Parameter	LCS %Recovery		LCSD Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample	(s): 07-08 Bat	ch: WG938909-2	2 SRM Lot	Number: D	091-540			
Mercury, Total	89		-		72-128	-		
Total Metals - Mansfield Lab Associated sample	(s): 07-08 Bat	ch: WG938931-2	2 SRM Lot	Number: D	091-540			
Antimony, Total	163		-		1-200	-		
Arsenic, Total	110		-		80-121	-		
Beryllium, Total	103		-		83-117	-		
Cadmium, Total	108		-		83-117	-		
Chromium, Total	105		-		80-119	-		
Copper, Total	104		-		82-117	-		
Lead, Total	103		-		82-118	-		
Nickel, Total	108		-		83-117	-		
Selenium, Total	101		-		79-121	-		
Silver, Total	102		-		75-124	-		
Thallium, Total	106		-		80-121	-		
Zinc, Total	103		-		82-118	-		

Matrix Spike Analysis Batch Quality Control

Project Name: THE DAILY FREEMAN

Project Number: 16-159311.2

Lab Number: L1631369

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery Q	Recovery ual Limits	RPD Qual	RPD Limits
Total Metals - Mansfield La	ab Associated sam	nple(s): 07-08	QC Bat	ch ID: WG938	909-4	QC Samp	ole: L1631434-01	Client ID: MS	Sample	
Mercury, Total	0.25	0.16	0.37	75	Q	-	-	80-120	-	20
Total Metals - Mansfield La	ab Associated sam	nple(s): 07-08	QC Bat	ch ID: WG938	931-4	QC Samp	ole: L1631502-01	Client ID: MS	Sample	
Antimony, Total	160	43.5	460	690	Q	-	-	75-125	-	20
Arsenic, Total	41.	10.4	48	67	Q	-	-	75-125	-	20
Beryllium, Total	0.45	4.35	3.5	70	Q	-	-	75-125	-	20
Cadmium, Total	2.3	4.44	5.1	63	Q	-	-	75-125	-	20
Chromium, Total	27.	17.4	40	75		-	-	75-125	-	20
Copper, Total	440	21.8	260	0	Q	-	-	75-125	-	20
Lead, Total	1300	44.4	2800	3380	Q	-	-	75-125	-	20
Nickel, Total	31.	43.5	54	53	Q	-	-	75-125	-	20
Selenium, Total	0.89	10.4	9.8	85		-	-	75-125	-	20
Silver, Total	0.62	26.1	24	90		-	-	75-125	-	20
Thallium, Total	ND	10.4	5.6	54	Q	-	-	75-125	-	20
Zinc, Total	510	43.5	480	0	Q	-	-	75-125	-	20

Lab Duplicate Analysis Batch Quality Control

Project Name: THE DAILY FREEMAN

Project Number: 16-159311.2

Lab Number:

L1631369

Report Date:

10/07/16

Parameter		Native Sample D		Duplicate Sample		RPD	Qual	RPD Limits
Total Metals - Mansfield Lab	Associated sample(s): 07-08	QC Batch ID:	WG938909-3	QC Sample:	L1631434-01	Client ID:	DUP Sample	Э
Mercury, Total		0.25		0.94	mg/kg	116	Q	20
Total Metals - Mansfield Lab	Associated sample(s): 07-08	QC Batch ID:	WG938931-3	QC Sample:	L1631502-01	Client ID:	DUP Sample	Э
Arsenic, Total		41.		31	mg/kg	28	Q	20
Lead, Total		1300		1000	mg/kg	26	Q	20

INORGANICS & MISCELLANEOUS

Project Name: THE DAILY FREEMAN Lab Number: L1631369

Project Number: 16-159311.2 **Report Date:** 10/07/16

SAMPLE RESULTS

Lab ID: L1631369-01 Date Collected: 10/01/16 09:21

Client ID: Date Received: 10/01/16

Sample Location: 79 HURLEY AVENUE, KINGSTON, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - \	Westborough Lab)								
Solids, Total	82.8		%	0.100	NA	1	-	10/04/16 11:55	121,2540G	RI

Project Name: THE DAILY FREEMAN Lab Number: L1631369

Project Number: 16-159311.2 **Report Date:** 10/07/16

SAMPLE RESULTS

Lab ID: L1631369-02 Date Collected: 10/01/16 09:43

Client ID: B2 Date Received: 10/01/16

Sample Location: 79 HURLEY AVENUE, KINGSTON, NY Field Prep: Not Specified

Parameter	Result Q	ualifier l	Jnits	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab									
Solids, Total	83.0		%	0.100	NA	1	-	10/04/16 11:55	121,2540G	RI

Project Name: THE DAILY FREEMAN Lab Number: L1631369

Project Number: 16-159311.2 **Report Date:** 10/07/16

SAMPLE RESULTS

Lab ID: L1631369-03 Date Collected: 10/01/16 10:00

Client ID: B3 Date Received: 10/01/16

Sample Location: 79 HURLEY AVENUE, KINGSTON, NY Field Prep: Not Specified

Parameter	Result Qua	alifier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab								
Solids, Total	76.3	%	0.100	NA	1	-	10/04/16 11:55	121,2540G	RI

Project Name: THE DAILY FREEMAN Lab Number: L1631369

Project Number: 16-159311.2 **Report Date:** 10/07/16

SAMPLE RESULTS

Lab ID: L1631369-04 Date Collected: 10/01/16 10:12

Client ID: B4 Date Received: 10/01/16

Sample Location: 79 HURLEY AVENUE, KINGSTON, NY Field Prep: Not Specified

Parameter	Result C	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	- Westborough Lab									
Solids, Total	76.0		%	0.100	NA	1	-	10/04/16 11:55	121,2540G	RI

Project Name: THE DAILY FREEMAN Lab Number: L1631369

Project Number: 16-159311.2 **Report Date:** 10/07/16

SAMPLE RESULTS

Lab ID: L1631369-05 Date Collected: 10/01/16 10:29

Client ID: B5 Date Received: 10/01/16

Sample Location: 79 HURLEY AVENUE, KINGSTON, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab)								
Solids, Total	80.0		%	0.100	NA	1	-	10/04/16 11:55	121,2540G	RI

Project Name: THE DAILY FREEMAN Lab Number: L1631369

Project Number: 16-159311.2 **Report Date:** 10/07/16

SAMPLE RESULTS

Lab ID: L1631369-06 Date Collected: 10/01/16 10:58

Client ID: B6 Date Received: 10/01/16

Sample Location: 79 HURLEY AVENUE, KINGSTON, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	· Westborough Lab)								
Solids, Total	84.6		%	0.100	NA	1	-	10/04/16 11:55	121,2540G	RI

Project Name: THE DAILY FREEMAN Lab Number: L1631369

Project Number: 16-159311.2 **Report Date:** 10/07/16

SAMPLE RESULTS

Lab ID: L1631369-07 Date Collected: 10/01/16 12:29

Client ID: B7 Date Received: 10/01/16

Sample Location: 79 HURLEY AVENUE, KINGSTON, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	- Westborough Lab									
Solids, Total	84.4		%	0.100	NA	1	-	10/04/16 11:55	121,2540G	RI

Project Name: THE DAILY FREEMAN Lab Number: L1631369

Project Number: 16-159311.2 **Report Date:** 10/07/16

SAMPLE RESULTS

Lab ID: L1631369-08

Client ID: B8

Sample Location: 79 HURLEY AVENUE, KINGSTON, NY

Matrix: Soil

Date Collected: 10/01/16 12:41

Date Received: 10/01/16
Field Prep: Not Specified

Analytical Method **Dilution** Date Date Factor Prepared Result Qualifier Units Analyzed RL MDL **Parameter Analyst** General Chemistry - Westborough Lab Solids, Total 84.6 % 0.100 NA 1 10/04/16 11:55 121,2540G RΙ

Lab Duplicate Analysis
Batch Quality Control

Lab Number: L1631369

10/07/16 **Project Number:** 16-159311.2 Report Date:

Parameter	Native Sample	e Duplicate Sampl	e Units	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab Assoc	iated sample(s): 01-08 Q	QC Batch ID: WG938614-1	QC Sample: L16	31369-01	Client ID: B	1
Solids, Total	82.8	82.6	%	0		20

Project Name:

THE DAILY FREEMAN

Lab Number: L1631369

Project Name: THE DAILY FREEMAN

Project Number: 16-159311.2 **Report Date:** 10/07/16

Sample Receipt and Container Information

Were project specific reporting limits specified?

Reagent H2O Preserved Vials Frozen on: 10/01/2016 16:55

Cooler Information Custody Seal

Cooler

A Absent

Container Info	ormation			Temp			
Container ID	Container Type	Cooler	рН	deg C	Pres	Seal	Analysis(*)
L1631369-01A	Vial MeOH preserved	Α	N/A	2.9	Υ	Absent	NYTCL-8260HLW(14)
L1631369-01B	Vial water preserved	Α	N/A	2.9	Υ	Absent	NYTCL-8260HLW(14)
L1631369-01C	Vial water preserved	Α	N/A	2.9	Υ	Absent	NYTCL-8260HLW(14)
L1631369-01D	Plastic 2oz unpreserved for TS	Α	N/A	2.9	Υ	Absent	TS(7)
L1631369-02A	Vial MeOH preserved	Α	N/A	2.9	Υ	Absent	NYTCL-8260HLW(14)
L1631369-02B	Vial water preserved	Α	N/A	2.9	Υ	Absent	NYTCL-8260HLW(14)
L1631369-02C	Vial water preserved	Α	N/A	2.9	Υ	Absent	NYTCL-8260HLW(14)
L1631369-02D	Plastic 2oz unpreserved for TS	Α	N/A	2.9	Υ	Absent	TS(7)
L1631369-03A	Vial MeOH preserved	Α	N/A	2.9	Υ	Absent	NYTCL-8260HLW(14)
L1631369-03B	Vial water preserved	Α	N/A	2.9	Υ	Absent	NYTCL-8260HLW(14)
L1631369-03C	Vial water preserved	Α	N/A	2.9	Υ	Absent	NYTCL-8260HLW(14)
L1631369-03D	Plastic 2oz unpreserved for TS	Α	N/A	2.9	Υ	Absent	TS(7)
L1631369-04A	Vial MeOH preserved	Α	N/A	2.9	Υ	Absent	NYTCL-8260HLW(14)
L1631369-04B	Vial water preserved	Α	N/A	2.9	Υ	Absent	NYTCL-8260HLW(14)
L1631369-04C	Vial water preserved	Α	N/A	2.9	Υ	Absent	NYTCL-8260HLW(14)
L1631369-04D	Plastic 2oz unpreserved for TS	Α	N/A	2.9	Υ	Absent	TS(7)
L1631369-05A	Vial MeOH preserved	Α	N/A	2.9	Υ	Absent	NYTCL-8260HLW(14)
L1631369-05B	Vial water preserved	Α	N/A	2.9	Υ	Absent	NYTCL-8260HLW(14)
L1631369-05C	Vial water preserved	Α	N/A	2.9	Υ	Absent	NYTCL-8260HLW(14)
L1631369-05D	Plastic 2oz unpreserved for TS	Α	N/A	2.9	Υ	Absent	TS(7)
L1631369-06A	Vial MeOH preserved	Α	N/A	2.9	Υ	Absent	NYTCL-8260HLW(14)
L1631369-06B	Vial water preserved	Α	N/A	2.9	Υ	Absent	NYTCL-8260HLW(14)
L1631369-06C	Vial water preserved	Α	N/A	2.9	Υ	Absent	NYTCL-8260HLW(14)
L1631369-06D	Plastic 2oz unpreserved for TS	Α	N/A	2.9	Υ	Absent	TS(7)
L1631369-07A	Vial MeOH preserved	Α	N/A	2.9	Υ	Absent	NYTCL-8260HLW(14)
L1631369-07B	Vial water preserved	Α	N/A	2.9	Υ	Absent	NYTCL-8260HLW(14)
L1631369-07C	Vial water preserved	Α	N/A	2.9	Υ	Absent	NYTCL-8260HLW(14)

Project Name: THE DAILY FREEMAN

Project Number: 16-159311.2

Lab Number: L1631369 **Report Date:** 10/07/16

Container Info	ormation	Temp					
Container ID	Container Type	Cooler	рН	deg C	Pres	Seal	Analysis(*)
L1631369-07D	Plastic 2oz unpreserved for TS	Α	N/A	2.9	Υ	Absent	TS(7)
L1631369-07E	Metals Only - Glass 60mL/2oz unp	Α	N/A	2.9	Y	Absent	BE-TI(180),AS-TI(180),AG- TI(180),CR-TI(180),NI- TI(180),TL-TI(180),CU- TI(180),PB-TI(180),SB- TI(180),SE-TI(180),ZN- TI(180),HG-T(28),CD-TI(180)
L1631369-07F	Glass 120ml/4oz unpreserved	Α	N/A	2.9	Υ	Absent	NYTCL-8270(14)
L1631369-08A	Vial MeOH preserved	Α	N/A	2.9	Υ	Absent	NYTCL-8260HLW(14)
L1631369-08B	Vial water preserved	Α	N/A	2.9	Υ	Absent	NYTCL-8260HLW(14)
L1631369-08C	Vial water preserved	Α	N/A	2.9	Υ	Absent	NYTCL-8260HLW(14)
L1631369-08D	Plastic 2oz unpreserved for TS	Α	N/A	2.9	Υ	Absent	TS(7)
L1631369-08E	Metals Only - Glass 60mL/2oz unp	Α	N/A	2.9	Y	Absent	BE-TI(180),AS-TI(180),AG- TI(180),CR-TI(180),NI- TI(180),TL-TI(180),CU- TI(180),PB-TI(180),SB- TI(180),SE-TI(180),ZN- TI(180),HG-T(28),CD-TI(180)
L1631369-08F	Glass 120ml/4oz unpreserved	Α	N/A	2.9	Υ	Absent	NYTCL-8270(14)
L1631369-09A	Vial HCI preserved	Α	N/A	2.9	Υ	Absent	NYTCL-8260(14)
L1631369-09B	Vial HCI preserved	Α	N/A	2.9	Υ	Absent	NYTCL-8260(14)
L1631369-09C	Vial HCl preserved	Α	N/A	2.9	Υ	Absent	NYTCL-8260(14)
L1631369-09D	Amber 1000ml unpreserved	Α	N/A	2.9	Υ	Absent	NYTCL-8270(7),NYTCL-8270- SIM(7)
L1631369-09E	Amber 1000ml unpreserved	Α	N/A	2.9	Υ	Absent	NYTCL-8270(7),NYTCL-8270- SIM(7)
L1631369-10A	Vial HCl preserved	Α	N/A	2.9	Υ	Absent	NYTCL-8260(14)
L1631369-10B	Vial HCl preserved	Α	N/A	2.9	Υ	Absent	NYTCL-8260(14)
L1631369-10C	Vial HCl preserved	Α	N/A	2.9	Υ	Absent	NYTCL-8260(14)
L1631369-10D	Amber 1000ml unpreserved	Α	N/A	2.9	Υ	Absent	NYTCL-8270(7),NYTCL-8270- SIM(7)
L1631369-10E	Amber 1000ml unpreserved	Α	N/A	2.9	Υ	Absent	NYTCL-8270(7),NYTCL-8270- SIM(7)
L1631369-11A	Vial HCl preserved	Α	N/A	2.9	Υ	Absent	NYTCL-8260(14)
L1631369-11B	Vial HCl preserved	Α	N/A	2.9	Υ	Absent	NYTCL-8260(14)
L1631369-11C	Vial HCl preserved	Α	N/A	2.9	Υ	Absent	NYTCL-8260(14)
L1631369-11D	Amber 1000ml unpreserved	Α	N/A	2.9	Υ	Absent	NYTCL-8270(7),NYTCL-8270- SIM(7)
L1631369-11E	Amber 1000ml unpreserved	Α	N/A	2.9	Υ	Absent	NYTCL-8270(7),NYTCL-8270- SIM(7)
L1631369-12A	Vial HCl preserved	Α	N/A	2.9	Υ	Absent	NYTCL-8260(14)
L1631369-12B	Vial HCl preserved	Α	N/A	2.9	Υ	Absent	NYTCL-8260(14)
L1631369-12C	Vial HCl preserved	Α	N/A	2.9	Y	Absent	NYTCL-8260(14)

Project Name:THE DAILY FREEMANLab Number:L1631369Project Number:16-159311.2Report Date:10/07/16

GLOSSARY

Acronyms

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated

values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for

which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less

than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a "Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

A - Spectra identified as "Aldol Condensation Product".

-The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the

Report Format: DU Report with 'J' Qualifiers

Project Name:THE DAILY FREEMANLab Number:L1631369Project Number:16-159311.2Report Date:10/07/16

Data Qualifiers

- reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.

Report Format: DU Report with 'J' Qualifiers

Project Name: THE DAILY FREEMAN Lab Number: L1631369
Project Number: 16-159311.2 Report Date: 10/07/16

REFERENCES

1 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.

121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

Revision 7

Published Date: 8/5/2016 11:25:56 AM

ID No.:17873

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624: m/p-xylene, o-xylene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-

Tetramethylbenzene: 4-Ethyltoluene.

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 300: DW: Bromide

EPA 6860: NPW and SCM: Perchlorate

EPA 9010: NPW and SCM: Amenable Cyanide Distillation

EPA 9012B: NPW: Total Cyanide EPA 9050A: NPW: Specific Conductance

SM3500: NPW: Ferrous Iron

SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3.

SM5310C: DW: Dissolved Organic Carbon

Mansfield Facility

SM 2540D: TSS EPA 3005A NPW

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F, EPA 353.2: Nitrate-N, EPA 351.1, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D.

EPA 624: Volatile Halocarbons & Aromatics,

EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9222D-MF.

Mansfield Facility:

Drinking Water

EPA 200.7: Ba, Be, Cd, Cr, Cu, Ni, Na, Ca. EPA 200.8: Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Ni, Se, TL. EPA 245.1 Hg.

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn.

EPA 245.1 Hg.

SM2340B

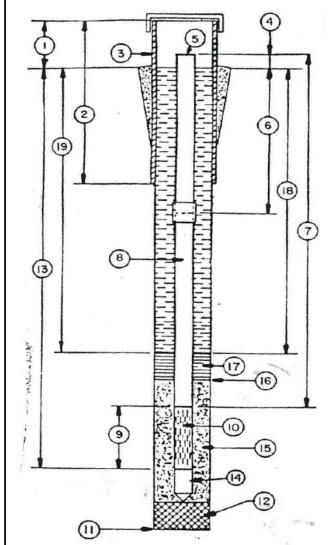
For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

EPA Method 5035A Transfer Log MAHWAH, NJ

Alpha Analytical, Inc. 35 Whitney Road, Suite 5 Mahwah, NJ 07430

Xfer to MAHF				Collection/Storage Device				Xfer to MOBILE FREEZER		Trip Temp		Xfer to Labora	tory Freezer
	INITIALS	CLIENT NAME	SAMPLE IDs				INITIALS	Min (°C)			INITIALS		
10/1/6 1655	SAW	Partner	BI	E / (F)	10	0/3/16 14:32	SAW	160	190	G31 231	1 TIAT		
			B2	E / 🕏									
			B 3	E / (b)	L								
			15 4	E / (D)	L						- water		
	NAME OF THE PERSON OF THE PERS		B 5	E / ①	L								
			13 6	E / D						4 (2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-			
	1/	1	B 7	E / Ø		1	\bigvee						
V	V	W	BB	E / Ø		V	V				1900		
			8. 10-2 00-4	E / T	L			A 00-0000000					
				E / T									
				E / T									
				E / T									
				E / T									
				E / T									
				E / T							180800 9001		
			THE RESIDENCE OF THE PARTY OF T	E / T							HILL SOUTH TO		
			10-3	E / T	11								
				E / T									
				E / T									
		700		E / T									
				E / T									


Westborough, MA 01581 8 Walkup Dr. TEL: 508-898-9220 FAX: 508-898-9193	NEW YORK CHAIN OF CUSTODY Mansfield, MA 02048 320 Forbes Blvd TEL: 508-822-9300 FAX: 508-822-3288	Mahwah, NJ 07430: 35 Whitney Albany, NY 12205: 14 Walker W Tonawanda, NY 14150: 275 Con Project Information Project Name:	Vay oper Ave, Suite	vo man		4 5	Deliv			10/	3/10 ASP-		ALPHA Job # L_16_31366 Billing Information Same as Client Info	
	1700.300-022-3200	Project Location: /9	urley Ave	nue, King	ston, wy	10461		EQui	S (1 File)	(c	PO#			
Client Information	10	Project # [\(\phi - \ \S \q \S \)	1,2		<u> </u>			Othe						
Client Of INS Ass	Pismentcorp	(Use Project name as Project name)	6						Require	nent			Disposal Site Information	
Address: OII Thous	Kich Way WPST	Project Manager: ∠nd	ines Sir	nouson							NY Pa		Please identify below location of	ie U
Extentoin, NJ	07/27	ALPHAQuote #:							Standards		NY CP	- 51	applicable disposal facilities.	
Phone: 731 38 Fax: 731 38	0 (700	Turn-Around Time	M						estricted U		Other		Disposal Facility:	
Fax: /31 38 Email: Chledius	o clos	Standard Rush (only if pre approved)		Due Date:			1		restricted				NJ NA	
				# of Days:			the Personal Property lies		Sewer Disc	harge			Other:	Vinia Catava
	been previously analyze c requirements/comm	AND PROPERTY AND ADDRESS OF THE PROPERTY ADDRESS OF THE PROPERTY ADDRESS OF THE PROPERTY ADDRESS OF THE PROPERTY ADDRESS OF THE PROPERTY ADDRESS OF THE PROPERTY ADDRESS OF THE PROPERTY ADDRESS OF THE PROPERTY ADDRESS OF THE PROPERTY ADDRESS OF THE PROPERTY ADDRESS OF THE PROPERTY ADDRESS OF THE PROPERTY ADDRESS OF THE PROPERTY ADDRESS OF THE PROPERTY ADDRESS OF THE PROPERTY ADDRESS OF THE PROPERTY ADDRESS OF THE PROPER					ANAI	LYSIS					Sample Filtration	Т
Please specify Metal		ents:					8260	8270	Pilutent Irrichalog S				☐ Done ☐ Lab to do Preservation ☐ Lab to do	t a I B
						200 STORES	S	5	0,5				(0)	0
ALPHA Lab ID		V. 200	Coll	ection	Comple	Complete	00	76	7.9				(Please Specify below)	t
(Lab Use Only)	Sa	mple ID	Date	Time	Sample Matrix	Sampler's Initials	$ \rangle$	30	Priority Materi				Committee Commit	Î
31309-01	B		10//	921	5	CN	V	V)		-	\vdash		Sample Specific Comments	е
0,2	1 62			943	1	1070	1		-					
03	83	3		1000			1							\vdash
99	Bit			10/2			X						PID readings	
eX,	0.5	Š		1029			X						17 Diemeings	\vdash
0%	81	Q	V	1058	1	W	X							\vdash
07	B-	7		1229			X	X	X			1.70,1		\vdash
08	0.3	Š	V	1241	V	1	X	X	*					
								/ \	1					\vdash
														=
Preservative Code: A = None B = HCI C = HNO ₃ D = H ₂ SO ₄ E = NaOH	P = Plastic	Westboro: Certification No Mansfield: Certification No				tainer Type	V	A	A A				Please print clearly, legibly and completely. Samples on not be logged in and turnaround time clock will r	oan not
F = MeOH G = NaHSO ₄ H = Na ₂ S ₂ O ₃ VE = Zn Ac/NaOH O = Other Form No: 01-25 HC (rev. 30	C = Cube O = Other E = Encore D = BOD Bottle	Relinquished By Company Town Town		Date/1	ime 133 1800 23/()	Scott		ed By:	AAL	10/1	- /1 /	ime 33 / 1633 / 1800	start until any ambiguities a resolved. BY EXECUTING THIS COC, THE CLIENT HAS READ AND AGREES TO BE BOUND BY ALPHA TERMS & CONDITIONS. (See reverse side.)	

Eaton town, NT (Phone: 731380) Fax: 731380	relling West 07724 700	Project Location: 7914 Project # 16 - 159 (Use Project name as Project Manager: ALPHAQuote #: Turn-Around Time Standard	per Ave, Suite 105 OCALLY FREWMAN VILLE STREET LANG SILVER SUN Due Date	55 ten, NY	12	Deliving Regularity States Sta	erable ASP- EQuI Other latory NY TC AWQ NY Re	A S (1 File) · Requirer	nent		-B IS (4 File art 375 P-51))	ALPHA Job # LG3 3 6 Billing Information Same as Client Info PO # Disposal Site Information Please identify below location of applicable disposal facilities. Disposal Facility: NJ NY Other:
These samples have been	n previously analyze	d by Alpha				ANAL	YSIS					T	Sample Filtration
Other project specific re		ents:				5260	658270						Done Lab to do Preservation Lab to do (Please Specify below)
ALPHA Lab ID	Sar	mple ID	Collection	Sample	Sampler's	100	500					L	t
(Lab Use Only)	226		Date Time	Matrix	Initials		S						Sample Specific Comments e
31369-69 10 11 12	B2-1 B4-1 B6-6 B7-6	クル 5 い	10/1 1109	ςω Ψ	C,N	7777	* * *						Sheen
A = None P = B = HCI A = C = HNO ₃ V = D = H ₂ SO ₄ G = E = NaOH B =	Flastic Amber Glass Vial Glass Bacteria Cup	Westboro: Certification No Mansfield: Certification No			ainer Type	V B	A A						Please print clearly, legibly and completely. Samples can not be logged in and turnaround time clock will not start until any ambiguities are
$F = MeOH$ $C = G = NaHSO_4$ $O = H = Na_2S_2O_3$ $E = C$	Cube Other Encore BOD Bottle	Relinquished By Clary Villa Coff Light / March	13 17	Time [(033, /8/() 23/()	Scott Tom July	Receive	ed By:	(AA)	10/1	Pate/ /16 3)[{	Time (63)	70	resolved. BY EXECUTING THIS COC, THE CLIENT HAS READ AND AGREES TO BE BOUND BY ALPHA'S TERMS & CONDITIONS. (See reverse side.)

Appendix C: LABORATORY REPORTS

Appendix D: MONITORING WELL LOGS

Monitoring Well ID:	MW-2
Location:	Former B-4
Date of Installation:	7/11/2017
Ground Surface Elevation:	
Logger:	RR

	Job No.:	1724	2956
Time Start:		745	
Drilling Firm:		Summit	
Signature:			
of Protective Ca	sing Above Gr	ound.	flush

Signature: _			
1: Height of Protective Cas	flush		
2: Total Length of Protectiv	8 inches		
3: Type of Protective Casin	ıg: _	pl	astic
4: Height of Well Standpip	4 inhces		
5: Type of Standing Pipe Ca	gripp	er plug	
6: Depth of First Joint:			
Interval:			
7: Total Length of Blank Pi	pe: _	3	feet
8: Type of Blank Pipe:		4 inch schedul	e 40 PVC
9: Length of Screen:		17 fee	t
10: Type of Screen:		10 slo	i .
11: Total Depth of Boring:		20 f€	eet
12: Type of Material:		Fill/CL	
13: Depth to Bottom of Sci	reen:		20
14: Well Point Length:	_	3 inches (cap)
15: Type of Screen Filter Pa	ack: s	sand	
Quantity Used:	_	16 b	ags

1.5 feet

bentonite

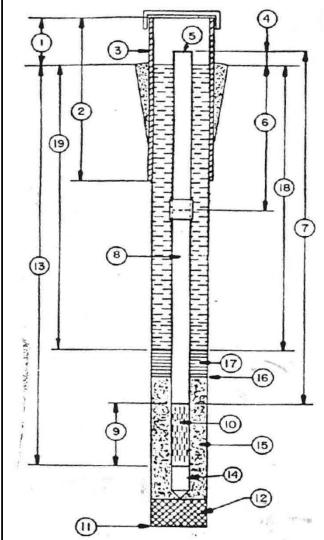
6 inches

6 inches

portland

16: Depth to Top of Filter Pack:

Quantity Used:


Type of Grout Mixture:

17: Type of Screen Seal:

18: Depth to Top of Seal:

19: Depth of Concrete Grout:

Monitoring Well ID:	MW-3		
Location:	Former B-11		
Date of Installation:	7/10/2017		
Ground Surface Elevation:			
Logger:	RR		

Job	No.:	No.: 17242956			
ime Start:		1300			
Orilling Firm:		Sumr	mit		
ignature:					
Time Start: Orilling Firm:	No.:	1300			

Time Start:		130	00		
Drilling Firm:		Summit			
Signature:					
1: Height of Protective Ca	sing Abo	ove Ground:	8 inches (mound)		
2: Total Length of Protect	ive Casir	ng:	8 inches		
3: Type of Protective Casin	ng:		plastic		
4: Height of Well Standpip	oe Abov	e Ground:	6 inches		
5: Type of Standing Pipe C	сар:	gri	pper plug		
6: Depth of First Joint:	3 feet				
Interval:					
7: Total Length of Blank P	ipe:		3 feet		
8: Type of Blank Pipe:		4 inch sched	ule 40 PVC		
9: Length of Screen:		17 fe	eet		
10: Type of Screen:		10 s	lot		
11: Total Depth of Boring:	:	20) feet		
12: Type of Material:		fill/	'cl		
13: Depth to Bottom of So	reen:		20 feet		
14: Well Point Length:		3 inches			
	lo alc	_	- ()		
15: Type of Screen Filter P		sand			
Quantity Used	:	16	bags		
16: Depth to Top of Filter	Pack:		1.5 feet		
17: Type of Screen Seal:		bento	nite		
Quantity Used	:				
18: Depth to Top of Seal:		6 iı	nches		

6 inches

portland

19: Depth of Concrete Grout:

Type of Grout Mixture:

Appendix C: LABORATORY RESULTS

Dayton, NJ 02/09/18

The results set forth herein are provided by SGS North America Inc.

e-Hardcopy 2.0
Automated Report

Partner Engineering & Science

79 Hurley Avenue, Kingston, NY

17242956-EN

SGS Job Number: JC43253

Sampling Date: 05/12/17

Report to:

Partner Engineering & Science

channa@partneresi.com

ATTN: Cilien Hanna

Total number of pages in report: 57

TNI TABORATORY

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Program and/or state specific certification programs as applicable.

Maney - Cole
Nancy Cole
Laboratory Director

Client Service contact: Kelly Patterson 732-329-0200

Certifications: NJ(12129), NY(10983), CA, CT, FL, IL, IN, KS, KY, LA, MA, MD, ME, MN, NC, OH VAP (CL0056), AK (UST-103), AZ (AZ0786), PA, RI, SC, TX, UT, VA, WV, DoD ELAP (L-A-B L2248)

This report shall not be reproduced, except in its entirety, without the written approval of SGS. Test results relate only to samples analyzed.

SGS North America Inc. • 2235 Route 130 • Dayton, NJ 08810 • tel: 732-329-0200 • fax: 732-329-3499

Sections:

_

-1-

Table of Contents

Section 1: Sample Summary	3
Section 2: Summary of Hits	4
Section 3: Sample Results	6
3.1: JC43253-1: B-9	7
3.2: JC43253-2: B-10	12
3.3: JC43253-3: B-11	17
3.4: JC43253-4: B-12	
3.5: JC43253-5: B-12A	25
3.6: JC43253-6: B-13	27
3.7: JC43253-7: B-9GW	32
3.8: JC43253-8: B-10GW	37
3.9: JC43253-9: B-11GW	
3.10: JC43253-10: B-13GW	47
3.11: JC43253-11: TB	52
Section 4: Misc. Forms	54
4.1: Chain of Custody	55

Sample Summary

Job No:

JC43253

Partner Engineering & Science

79 Hurley Avenue, Kingston, NY Project No: 17242956-EN

Sample Number	Collected Date	Time By	Received	Matr Code		Client Sample ID
JC43253-1	05/12/17	09:00 AH	05/13/17	so	Soil	B-9
JC43253-2	05/12/17	09:45 AH	05/13/17	so	Soil	B-10
JC43253-3	05/12/17	10:30 AH	05/13/17	so	Soil	B-11
JC43253-4	05/12/17	11:50 AH	05/13/17	so	Soil	B-12
JC43253-5	05/12/17	12:05 AH	05/13/17	so	Soil	B-12A
JC43253-6	05/12/17	13:15 AH	05/13/17	so	Soil	B-13
JC43253-7	05/12/17	09:30 AH	05/13/17	AQ	Ground Water	B-9GW
JC43253-8	05/12/17	12:00 AH	05/13/17	AQ	Ground Water	B-10GW
JC43253-9	05/12/17	11:45 AH	05/13/17	AQ	Ground Water	B-11GW
JC43253-10	05/12/17	13:35 AH	05/13/17	AQ	Ground Water	B-13GW
JC43253-11	05/12/17	13:35 AH	05/13/17	AQ	Trip Blank Water	ТВ

Soil samples reported on a dry weight basis unless otherwise indicated on result page.

Summary of Hits Job Number: JC43253

Partner Engineering & Science 79 Hurley Avenue, Kingston, NY 05/12/17 Account: **Project:**

Collected:

Lab Sample ID Client Sample ID Analyte	Result/ Qual	RL	MDL	Units	Method
JC43253-1 B-9					
Acetone	0.0107	0.0096	0.0048	mg/kg	SW846 8260C
m,p-Xylene	0.00043 J	0.00096	0.00021	mg/kg	SW846 8260C
Xylene (total)	0.00043 J	0.00096	0.00019	mg/kg	SW846 8260C
Total TIC, Semi-Volatile	0.68 J			mg/kg	
JC43253-2 B-10					
Acetone	0.0069 J	0.0092	0.0046	mg/kg	SW846 8260C
Isopropylbenzene	0.00019 J	0.0018	0.00014	mg/kg	SW846 8260C
Methyl Tert Butyl Ether	0.00031 J	0.00092	0.00024	mg/kg	SW846 8260C
JC43253-3 B-11					
Methyl Tert Butyl Ether	0.793	0.072	0.019	mg/kg	SW846 8260C
m,p-Xylene	0.00044 J	0.0011	0.00024	mg/kg	SW846 8260C
Xylene (total)	0.00044 J	0.0011	0.00022	mg/kg	SW846 8260C
JC43253-4 B-12					
Acetone	0.0077 J	0.011	0.0056	mg/kg	SW846 8260C
Benzene	0.0011	0.00056	0.00013	mg/kg	SW846 8260C
Chlorobenzene	0.00028 J	0.0022	0.00018	mg/kg	SW846 8260C
Cyclohexane	0.0026	0.0022	0.00061	mg/kg	SW846 8260C
Ethylbenzene	0.0095	0.0011	0.00017	mg/kg	SW846 8260C
2-Hexanone	0.0149	0.0056	0.0016	mg/kg	SW846 8260C
Isopropylbenzene	0.0024	0.0022	0.00017	mg/kg	SW846 8260C
Methylcyclohexane	0.0052	0.0022	0.00056	mg/kg	SW846 8260C
Methylene chloride	0.0014 J	0.0056	0.0011	mg/kg	SW846 8260C
m,p-Xylene	0.0033	0.0011	0.00024	mg/kg	SW846 8260C
o-Xylene	0.00054 J	0.0011	0.00023	mg/kg	SW846 8260C
Xylene (total)	0.0038	0.0011	0.00023	mg/kg	SW846 8260C
Total TIC, Volatile	1.06 J	0.000	0.0000	mg/kg	CINO 40 OOGOD
1,1'-Biphenyl	0.0182 J	0.090	0.0062	mg/kg	SW846 8270D
2-Methylnaphthalene	0.926	0.090	0.010	mg/kg	SW846 8270D
Naphthalene Total TIC, Semi-Volatile	0.249 27.41 J	0.045	0.013	mg/kg mg/kg	SW846 8270D
JC43253-5 B-12A				0 0	
Acetone	0.0939	0.011	0.0056	mg/kg	SW846 8260C
Methyl Tert Butyl Ether	0.00089 J	0.011	0.0030	mg/kg mg/kg	SW846 8260C SW846 8260C
· ·		0.0011 0.0011		mg/kg	SW846 8260C SW846 8260C
m,p-Xylene Xylene (total)	0.00046 J 0.00046 J	0.0011	$0.00024 \\ 0.00023$	mg/kg	SW846 8260C SW846 8260C
Ayiche (total)	U.UUU40 J	0.0011	0.00023	mg/kg	377040 0200C

Summary of Hits Job Number: JC43253

Partner Engineering & Science 79 Hurley Avenue, Kingston, NY 05/12/17 Account: **Project:**

Collected:

No hits reported in this sample.

Lab Sample ID Client Sample ID Analyte	Result/ Qual	RL	MDL	Units	Method
Total TIC, Volatile	0.031 J			mg/kg	
JC43253-6 B-13					
m,p-Xylene Xylene (total)	0.00034 J 0.00034 J	0.0011 0.0011	0.00024 0.00022	mg/kg mg/kg	SW846 8260C SW846 8260C
JC43253-7 B-9GW					
No hits reported in this sample.					
JC43253-8 B-10GW					
Acetone Methyl Tert Butyl Ether Total TIC, Semi-Volatile	5.6 J 2.1 7.7 J	10 1.0	5.0 0.34	ug/l ug/l ug/l	SW846 8260C SW846 8260C
JC43253-9 B-11GW					
Benzene Methyl Tert Butyl Ether Total TIC, Semi-Volatile	0.48 J 1270 21.1 J	1.3 10	0.35 3.4	ug/l ug/l ug/l	SW846 8260C SW846 8260C
JC43253-10 B-13GW					
Total TIC, Semi-Volatile	6.8 J			ug/l	
JC43253-11 TB					

Dayton, NJ

Sample Results		
Report of Analysis		

Page 1 of 2

Report of Analysis

Client Sample ID: B-9

 Lab Sample ID:
 JC43253-1
 Date Sampled:
 05/12/17

 Matrix:
 SO - Soil
 Date Received:
 05/13/17

 Method:
 SW846 8260C
 SW846 5035
 Percent Solids:
 81.5

Project: 79 Hurley Avenue, Kingston, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 3C137254.D 1 05/16/17 12:18 PS 05/13/17 15:00 n/a V3C6232

Run #2

Initial Weight

Run #1 6.4 g

Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	0.0107	0.0096	0.0048	mg/kg	
71-43-2	Benzene	ND	0.00048	0.00012		
74-97-5	Bromochloromethane	ND	0.0048	0.00031		
75-27-4	Bromodichloromethane	ND	0.0019	0.00015		
75-25-2	Bromoform	ND	0.0048	0.00025		
74-83-9	Bromomethane	ND	0.0048	0.00046		
78-93-3	2-Butanone (MEK)	ND	0.0096	0.0017	mg/kg	
75-15-0	Carbon disulfide	ND	0.0019	0.00016		
56-23-5	Carbon tetrachloride	ND	0.0019	0.00016		
108-90-7	Chlorobenzene	ND	0.0019	0.00016		
75-00-3	Chloroethane	ND	0.0048	0.00041		
67-66-3	Chloroform	ND	0.0019	0.00023	mg/kg	
74-87-3	Chloromethane	ND	0.0048	0.00020		
110-82-7	Cyclohexane	ND	0.0019	0.00052	mg/kg	
96-12-8	1,2-Dibromo-3-chloropropane	ND	0.0019	0.00046	mg/kg	
124-48-1	Dibromochloromethane	ND	0.0019	0.00014	mg/kg	
106-93-4	1,2-Dibromoethane	ND	0.00096	0.00023	mg/kg	
95-50-1	1,2-Dichlorobenzene	ND	0.00096	0.00016	mg/kg	
541-73-1	1,3-Dichlorobenzene	ND	0.00096	0.00013	mg/kg	
106-46-7	1,4-Dichlorobenzene	ND	0.00096	0.00015	mg/kg	
75-71-8	Dichlorodifluoromethane	ND	0.0048	0.00052	mg/kg	
75-34-3	1,1-Dichloroethane	ND	0.00096	0.00018	mg/kg	
107-06-2	1,2-Dichloroethane	ND	0.00096	0.00016	mg/kg	
75-35-4	1,1-Dichloroethene	ND	0.00096	0.00015	mg/kg	
156-59-2	cis-1,2-Dichloroethene	ND	0.00096	0.00042	mg/kg	
156-60-5	trans-1,2-Dichloroethene	ND	0.00096	0.00015	mg/kg	
78-87-5	1,2-Dichloropropane	ND	0.0019	0.00030	mg/kg	
10061-01-5	cis-1,3-Dichloropropene	ND	0.0019	0.00019	mg/kg	
10061-02-6	trans-1,3-Dichloropropene	ND	0.0019	0.00021		
100-41-4	Ethylbenzene	ND	0.00096	0.00014	mg/kg	
76-13-1	Freon 113	ND	0.0048	0.00046		
591-78-6	2-Hexanone	ND	0.0048	0.0013	mg/kg	

ND = Not detected MDL =

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 2

Client Sample ID: B-9

 Lab Sample ID:
 JC43253-1
 Date Sampled:
 05/12/17

 Matrix:
 SO - Soil
 Date Received:
 05/13/17

 Method:
 SW846 8260C
 SW846 5035
 Percent Solids:
 81.5

Project: 79 Hurley Avenue, Kingston, NY

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q	
98-82-8	Isopropylbenzene	ND	0.0019	0.00015	mg/kg	.	
79-20-9	Methyl Acetate	ND	0.0048	0.0019	mg/kg		
108-87-2	Methylcyclohexane	ND	0.0019	0.00048			
1634-04-4	Methyl Tert Butyl Ether	ND	0.00096	0.00025			
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	0.0048	0.00081			
75-09-2	Methylene chloride	ND	0.0048	0.00096			
100-42-5	Styrene	ND	0.0019	0.00014			
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.0019	0.00023			
127-18-4	Tetrachloroethene	ND	0.0019	0.00027			
108-88-3	Toluene	ND	0.00096	0.00012			
87-61-6	1,2,3-Trichlorobenzene	ND	0.0048	0.00048			
120-82-1	1,2,4-Trichlorobenzene	ND	0.0048	0.00048			
71-55-6	1,1,1-Trichloroethane	ND	0.0019	0.00016	0 0	,	
79-00-5	1,1,2-Trichloroethane	ND	0.0019	0.00031			
79-01-6	Trichloroethene	ND	0.00096	0.00018			
75-69-4	Trichlorofluoromethane	ND	0.0048	0.00060			
75-01-4	Vinyl chloride	ND	0.0019	0.00019			
	m,p-Xylene	0.00043		0.00021			
95-47-6	o-Xylene	ND		0.00019			
1330-20-7	Xylene (total)	0.00043		0.00019			
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts		
1868-53-7	Dibromofluoromethane	102%		70-12	22%		
17060-07-0	1,2-Dichloroethane-D4	101%		68-12	24%		
2037-26-5	Toluene-D8	94%		77-12	25%		
460-00-4	4-Bromofluorobenzene	102%		72-13	80%		
CAS No.	Tentatively Identified Compo	ounds	R.T.	Est.	Conc.	Units	Q
	Total TIC, Volatile			0		mg/kg	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: B-9

 Lab Sample ID:
 JC43253-1
 Date Sampled:
 05/12/17

 Matrix:
 SO - Soil
 Date Received:
 05/13/17

 Method:
 SW846 8270D
 SW846 3546
 Percent Solids:
 81.5

Project: 79 Hurley Avenue, Kingston, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 P114069.D 1 05/22/17 13:09 RL 05/16/17 OP2859 EP5091

Run #2

Initial Weight Final Volume Run #1 30.3 g 1.0 ml

Run #2

ABN TCL List (SOM0 2.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
95-57-8	2-Chlorophenol	ND	0.081	0.020	mg/kg	
59-50-7	4-Chloro-3-methyl phenol	ND	0.20	0.025	mg/kg	
120-83-2	2,4-Dichlorophenol	ND	0.20	0.035	mg/kg	
105-67-9	2,4-Dimethylphenol	ND	0.20	0.072	mg/kg	
51-28-5	2,4-Dinitrophenol	ND	0.20	0.15	mg/kg	
534-52-1	4,6-Dinitro-o-cresol	ND	0.20	0.043	mg/kg	
95-48-7	2-Methylphenol	ND	0.081	0.026	mg/kg	
	3&4-Methylphenol	ND	0.081	0.033	mg/kg	
88-75-5	2-Nitrophenol	ND	0.20	0.027	mg/kg	
100-02-7	4-Nitrophenol	ND	0.40	0.11	mg/kg	
87-86-5	Pentachlorophenol	ND	0.16	0.038	mg/kg	
108-95-2	Phenol	ND	0.081	0.021	mg/kg	
58-90-2	2,3,4,6-Tetrachlorophenol	ND	0.20	0.027	mg/kg	
95-95-4	2,4,5-Trichlorophenol	ND	0.20	0.030	mg/kg	
88-06-2	2,4,6-Trichlorophenol	ND	0.20	0.024	mg/kg	
83-32-9	Acenaphthene	ND	0.040	0.014	mg/kg	
208-96-8	Acenaphthylene	ND	0.040	0.021	mg/kg	
98-86-2	Acetophenone	ND	0.20	0.0087	mg/kg	
120-12-7	Anthracene	ND	0.040	0.025	mg/kg	
1912-24-9	Atrazine	ND	0.081	0.017	mg/kg	
56-55-3	Benzo(a)anthracene	ND	0.040	0.011	mg/kg	
50-32-8	Benzo(a)pyrene	ND	0.040	0.018	mg/kg	
205-99-2	Benzo(b)fluoranthene	ND	0.040	0.018	mg/kg	
191-24-2	Benzo(g,h,i)perylene	ND	0.040	0.020	mg/kg	
207-08-9	Benzo(k)fluoranthene	ND	0.040	0.019	mg/kg	
101-55-3	4-Bromophenyl phenyl ether	ND	0.081	0.016	mg/kg	
85-68-7	Butyl benzyl phthalate	ND	0.081	0.0099	mg/kg	
92-52-4	1,1'-Biphenyl	ND	0.081	0.0055	mg/kg	
100-52-7	Benzaldehyde	ND	0.20	0.010	mg/kg	
91-58-7	2-Chloronaphthalene	ND	0.081	0.0096	mg/kg	
106-47-8	4-Chloroaniline	ND	0.20	0.015	mg/kg	
86-74-8	Carbazole	ND	0.081	0.0059	mg/kg	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 3

Report of Analysis

Client Sample ID: B-9

Lab Sample ID: JC43253-1 **Date Sampled: 05/12/17** Matrix: SO - Soil Date Received: 05/13/17 Method: SW846 8270D SW846 3546 **Percent Solids:** 81.5

79 Hurley Avenue, Kingston, NY **Project:**

ABN TCL List (SOM0 2.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
105-60-2	Caprolactam	ND	0.081	0.016	mg/kg	
218-01-9	Chrysene	ND	0.040	0.013	mg/kg	
111-91-1	bis(2-Chloroethoxy)methane	ND	0.081	0.0087	mg/kg	
111-44-4	bis(2-Chloroethyl)ether	ND	0.081	0.017	mg/kg	
108-60-1	bis(2-Chloroisopropyl)ether	ND	0.081	0.015	mg/kg	
7005-72-3	4-Chlorophenyl phenyl ether	ND	0.081	0.013	mg/kg	
121-14-2	2,4-Dinitrotoluene	ND	0.040	0.013	mg/kg	
606-20-2	2,6-Dinitrotoluene	ND	0.040	0.020	mg/kg	
91-94-1	3,3'-Dichlorobenzidine	ND	0.081	0.034	mg/kg	
123-91-1	1,4-Dioxane	ND	0.040	0.027	mg/kg	
53-70-3	Dibenzo(a,h)anthracene	ND	0.040	0.018	mg/kg	
132-64-9	Dibenzofuran	ND	0.081	0.016	mg/kg	
84-74-2	Di-n-butyl phthalate	ND	0.081	0.0066	mg/kg	
117-84-0	Di-n-octyl phthalate	ND	0.081	0.010	mg/kg	
84-66-2	Diethyl phthalate	ND	0.081	0.0086	mg/kg	
131-11-3	Dimethyl phthalate	ND	0.081	0.0072	mg/kg	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	0.081	0.0095	mg/kg	
206-44-0	Fluoranthene	ND	0.040	0.018	mg/kg	
86-73-7	Fluorene	ND	0.040	0.019	mg/kg	
118-74-1	Hexachlorobenzene	ND	0.081	0.010	mg/kg	
87-68-3	Hexachlorobutadiene	ND	0.040	0.016	mg/kg	
77-47-4	Hexachlorocyclopentadiene	ND	0.40	0.016	mg/kg	
67-72-1	Hexachloroethane	ND	0.20	0.020	mg/kg	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	0.040	0.019	mg/kg	
78-59-1	Isophorone	ND	0.081	0.0087	mg/kg	
91-57-6	2-Methylnaphthalene	ND	0.081	0.0092	mg/kg	
88-74-4	2-Nitroaniline	ND	0.20	0.0096	mg/kg	
99-09-2	3-Nitroaniline	ND	0.20	0.010	mg/kg	
100-01-6	4-Nitroaniline	ND	0.20	0.010	mg/kg	
91-20-3	Naphthalene	ND	0.040	0.011	mg/kg	
98-95-3	Nitrobenzene	ND	0.081	0.016	mg/kg	
621-64-7	N-Nitroso-di-n-propylamine	ND	0.081	0.012	mg/kg	
86-30-6	N-Nitrosodiphenylamine	ND	0.20	0.015	mg/kg	
85-01-8	Phenanthrene	ND	0.040	0.014	mg/kg	
129-00-0	Pyrene	ND	0.040	0.013	mg/kg	
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	0.20	0.010	mg/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
367-12-4	2-Fluorophenol	67%		23-1	15%	

ND = Not detectedMDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 3 of 3

Client Sample ID: B-9

 Lab Sample ID:
 JC43253-1
 Date Sampled: 05/12/17

 Matrix:
 SO - Soil
 Date Received: 05/13/17

 Method:
 SW846 8270D
 SW846 3546
 Percent Solids: 81.5

Project: 79 Hurley Avenue, Kingston, NY

ABN TCL List (SOM0 2.0)

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits	
4165-62-2	Phenol-d5	69%		27-114%	
118-79-6	2,4,6-Tribromophenol	88%		19-152%	
4165-60-0	Nitrobenzene-d5	65 %		26-134 %	
321-60-8	2-Fluorobiphenyl	78 %		39-124%	
1718-51-0	Terphenyl-d14	87%		36-134%	
CAS No.	Tentatively Identified Compo	ounds	R.T.	Est. Conc.	Units Q
	system artifact/aldol-condensat	ion	3.65	1.1	mg/kg J
	unknown		17.05	.3	mg/kg J
	unknown		17.51	.18	mg/kg J
	unknown		18.40	.2	mg/kg J
	Total TIC, Semi-Volatile			.68	mg/kg J

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

3.2

Client Sample ID: B-10

 Lab Sample ID:
 JC43253-2
 Date Sampled:
 05/12/17

 Matrix:
 SO - Soil
 Date Received:
 05/13/17

 Method:
 SW846 8260C
 SW846 5035
 Percent Solids:
 81.2

Project: 79 Hurley Avenue, Kingston, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 3C137255.D 1 05/16/17 12:46 PS 05/13/17 15:00 n/a V3C6232

Run #2

Initial Weight

Run #1 6.7 g

Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	0.0069	0.0092	0.0046	mg/kg	J
71-43-2	Benzene	ND	0.00046	0.00011	mg/kg	
74-97-5	Bromochloromethane	ND	0.0046	0.00029		
75-27-4	Bromodichloromethane	ND	0.0018	0.00014	mg/kg	
75-25-2	Bromoform	ND	0.0046	0.00024		
74-83-9	Bromomethane	ND	0.0046	0.00045	mg/kg	
78-93-3	2-Butanone (MEK)	ND	0.0092	0.0016	mg/kg	
75-15-0	Carbon disulfide	ND	0.0018	0.00016	mg/kg	
56-23-5	Carbon tetrachloride	ND	0.0018	0.00015	mg/kg	
108-90-7	Chlorobenzene	ND	0.0018	0.00015	mg/kg	
75-00-3	Chloroethane	ND	0.0046	0.00039	mg/kg	
67-66-3	Chloroform	ND	0.0018	0.00022	mg/kg	
74-87-3	Chloromethane	ND	0.0046	0.00019	mg/kg	
110-82-7	Cyclohexane	ND	0.0018	0.00050		
96-12-8	1,2-Dibromo-3-chloropropane	ND	0.0018	0.00044	mg/kg	
124-48-1	Dibromochloromethane	ND	0.0018	0.00014		
106-93-4	1,2-Dibromoethane	ND	0.00092	0.00022	mg/kg	
95-50-1	1,2-Dichlorobenzene	ND		0.00016		
541-73-1	1,3-Dichlorobenzene	ND	0.00092	0.00013	mg/kg	
106-46-7	1,4-Dichlorobenzene	ND	0.00092	0.00014	mg/kg	
75-71-8	Dichlorodifluoromethane	ND	0.0046	0.00050		
75-34-3	1,1-Dichloroethane	ND		0.00017		
107-06-2	1,2-Dichloroethane	ND	0.00092	0.00016	mg/kg	
75-35-4	1,1-Dichloroethene	ND		0.00014		
156-59-2	cis-1,2-Dichloroethene	ND		0.00040		
156-60-5	trans-1,2-Dichloroethene	ND	0.00092	0.00015	mg/kg	
78-87-5	1,2-Dichloropropane	ND	0.0018	0.00028		
10061-01-5	cis-1,3-Dichloropropene	ND	0.0018	0.00018	mg/kg	
10061-02-6	trans-1,3-Dichloropropene	ND	0.0018	0.00020	mg/kg	
100-41-4	Ethylbenzene	ND	0.00092	0.00014	mg/kg	
76-13-1	Freon 113	ND	0.0046	0.00044	mg/kg	
591-78-6	2-Hexanone	ND	0.0046	0.0013	mg/kg	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 2

Client Sample ID: B-10

 Lab Sample ID:
 JC43253-2
 Date Sampled: 05/12/17

 Matrix:
 SO - Soil
 Date Received: 05/13/17

 Method:
 SW846 8260C
 SW846 5035
 Percent Solids: 81.2

Project: 79 Hurley Avenue, Kingston, NY

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
98-82-8	Isopropylbenzene	0.00019	0.0018	0.00014	mg/k	g J
79-20-9	Methyl Acetate	ND	0.0046	0.0019	mg/k	
108-87-2	Methylcyclohexane	ND	0.0018	0.00046		
1634-04-4	Methyl Tert Butyl Ether	0.00031	0.00092	0.00024	mg/k	g J
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	0.0046	0.00078	mg/k	g
75-09-2	Methylene chloride	ND	0.0046	0.00092		
100-42-5	Styrene	ND	0.0018	0.00013		
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.0018	0.00022		
127-18-4	Tetrachloroethene	ND	0.0018	0.00026		
108-88-3	Toluene	ND	0.00092	0.00011		
87-61-6	1,2,3-Trichlorobenzene	ND	0.0046	0.00046	mg/k	g
120-82-1	1,2,4-Trichlorobenzene	ND	0.0046	0.00046	mg/k	g
71-55-6	1,1,1-Trichloroethane	ND	0.0018	0.00015		
79-00-5	1,1,2-Trichloroethane	ND	0.0018	0.00030	mg/k	g
79-01-6	Trichloroethene	ND	0.00092	0.00017		
75-69-4	Trichlorofluoromethane	ND	0.0046	0.00058		
75-01-4	Vinyl chloride	ND	0.0018	0.00019		
	m,p-Xylene	ND	0.00092	0.00020		•
95-47-6	o-Xylene	ND	0.00092	0.00019	mg/k	g
1330-20-7	Xylene (total)	ND	0.00092	0.00019	mg/k	g
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7	Dibromofluoromethane	101%		70-12	22%	
17060-07-0	1,2-Dichloroethane-D4	99%		68-12	24%	
2037-26-5	Toluene-D8	96%		77-12	25%	
460-00-4	4-Bromofluorobenzene	100%		72-13	80%	
CAS No.	Tentatively Identified Compo	ounds	R.T.	Est.	Conc.	Units Q
	Total TIC, Volatile			0		mg/kg

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Date Sampled:

05/12/17

05/13/17

81.2

Client Sample ID: B-10

Lab Sample ID: JC43253-2 Matrix: SO - Soil

Matrix:SO - SoilDate Received:Method:SW846 8270DSW846 3546Percent Solids:

Project: 79 Hurley Avenue, Kingston, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 P114070.D 1 05/22/17 14:08 RL 05/16/17 OP2859 EP5091

Run #2

Initial Weight Final Volume

Run #1 30.4 g 1.0 ml

Run #2

ABN TCL List (SOM0 2.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
95-57-8	2-Chlorophenol	ND	0.081	0.020	mg/kg	
59-50-7	4-Chloro-3-methyl phenol	ND	0.20	0.025	mg/kg	
120-83-2	2,4-Dichlorophenol	ND	0.20	0.035	mg/kg	
105-67-9	2,4-Dimethylphenol	ND	0.20	0.072	mg/kg	
51-28-5	2,4-Dinitrophenol	ND	0.20	0.15	mg/kg	
534-52-1	4,6-Dinitro-o-cresol	ND	0.20	0.043	mg/kg	
95-48-7	2-Methylphenol	ND	0.081	0.026	mg/kg	
	3&4-Methylphenol	ND	0.081	0.033	mg/kg	
88-75-5	2-Nitrophenol	ND	0.20	0.027	mg/kg	
100-02-7	4-Nitrophenol	ND	0.41	0.11	mg/kg	
87-86-5	Pentachlorophenol	ND	0.16	0.038	mg/kg	
108-95-2	Phenol	ND	0.081	0.021	mg/kg	
58-90-2	2,3,4,6-Tetrachlorophenol	ND	0.20	0.027	mg/kg	
95-95-4	2,4,5-Trichlorophenol	ND	0.20	0.030	mg/kg	
88-06-2	2,4,6-Trichlorophenol	ND	0.20	0.024	mg/kg	
83-32-9	Acenaphthene	ND	0.041	0.014	mg/kg	
208-96-8	Acenaphthylene	ND	0.041	0.021	mg/kg	
98-86-2	Acetophenone	ND	0.20	0.0087	mg/kg	
120-12-7	Anthracene	ND	0.041	0.025	mg/kg	
1912-24-9	Atrazine	ND	0.081	0.017	mg/kg	
56-55-3	Benzo(a)anthracene	ND	0.041	0.011	mg/kg	
50-32-8	Benzo(a)pyrene	ND	0.041	0.018	mg/kg	
205-99-2	Benzo(b)fluoranthene	ND	0.041	0.018	mg/kg	
191-24-2	Benzo(g,h,i)perylene	ND	0.041	0.020	mg/kg	
207-08-9	Benzo(k)fluoranthene	ND	0.041	0.019	mg/kg	
101-55-3	4-Bromophenyl phenyl ether	ND	0.081	0.016	mg/kg	
85-68-7	Butyl benzyl phthalate	ND	0.081	0.0099	mg/kg	
92-52-4	1,1'-Biphenyl	ND	0.081	0.0055	mg/kg	
100-52-7	Benzaldehyde	ND	0.20	0.010	mg/kg	
91-58-7	2-Chloronaphthalene	ND	0.081	0.0096	mg/kg	
106-47-8	4-Chloroaniline	ND	0.20	0.015	mg/kg	
86-74-8	Carbazole	ND	0.081	0.0059	mg/kg	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: B-10

Lab Sample ID: JC43253-2 **Date Sampled: 05/12/17** Matrix: SO - Soil Date Received: 05/13/17 Method: SW846 8270D SW846 3546 **Percent Solids:** 81.2

79 Hurley Avenue, Kingston, NY **Project:**

ABN TCL List (SOM0 2.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
105-60-2	Caprolactam	ND	0.081	0.016	mg/kg	
218-01-9	Chrysene	ND	0.041	0.013	mg/kg	
111-91-1	bis(2-Chloroethoxy)methane	ND	0.081	0.0087	mg/kg	
111-44-4	bis(2-Chloroethyl)ether	ND	0.081	0.017	mg/kg	
108-60-1	bis(2-Chloroisopropyl)ether	ND	0.081	0.015	mg/kg	
7005-72-3	4-Chlorophenyl phenyl ether	ND	0.081	0.013	mg/kg	
121-14-2	2,4-Dinitrotoluene	ND	0.041	0.013	mg/kg	
606-20-2	2,6-Dinitrotoluene	ND	0.041	0.020	mg/kg	
91-94-1	3,3'-Dichlorobenzidine	ND	0.081	0.034	mg/kg	
123-91-1	1,4-Dioxane	ND	0.041	0.027	mg/kg	
53-70-3	Dibenzo(a,h)anthracene	ND	0.041	0.018	mg/kg	
132-64-9	Dibenzofuran	ND	0.081	0.016	mg/kg	
84-74-2	Di-n-butyl phthalate	ND	0.081	0.0066	mg/kg	
117-84-0	Di-n-octyl phthalate	ND	0.081	0.010	mg/kg	
84-66-2	Diethyl phthalate	ND	0.081	0.0086	mg/kg	
131-11-3	Dimethyl phthalate	ND	0.081	0.0072	mg/kg	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	0.081	0.0095	mg/kg	
206-44-0	Fluoranthene	ND	0.041	0.018	mg/kg	
86-73-7	Fluorene	ND	0.041	0.019	mg/kg	
118-74-1	Hexachlorobenzene	ND	0.081	0.010	mg/kg	
87-68-3	Hexachlorobutadiene	ND	0.041	0.016	mg/kg	
77-47-4	Hexachlorocyclopentadiene	ND	0.41	0.016	mg/kg	
67-72-1	Hexachloroethane	ND	0.20	0.020	mg/kg	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	0.041	0.019	mg/kg	
78-59-1	Isophorone	ND	0.081	0.0087	mg/kg	
91-57-6	2-Methylnaphthalene	ND	0.081	0.0092	mg/kg	
88-74-4	2-Nitroaniline	ND	0.20	0.0096	mg/kg	
99-09-2	3-Nitroaniline	ND	0.20	0.010	mg/kg	
100-01-6	4-Nitroaniline	ND	0.20	0.010	mg/kg	
91-20-3	Naphthalene	ND	0.041	0.011	mg/kg	
98-95-3	Nitrobenzene	ND	0.081	0.016	mg/kg	
621-64-7	N-Nitroso-di-n-propylamine	ND	0.081	0.012	mg/kg	
86-30-6	N-Nitrosodiphenylamine	ND	0.20	0.015	mg/kg	
85-01-8	Phenanthrene	ND	0.041	0.014	mg/kg	
129-00-0	Pyrene	ND	0.041	0.013	mg/kg	
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	0.20	0.010	mg/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
367-12-4	2-Fluorophenol	71%	23-115%			

ND = Not detectedMDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 3 of 3

Client Sample ID: B-10

 Lab Sample ID:
 JC43253-2
 Date Sampled: 05/12/17

 Matrix:
 SO - Soil
 Date Received: 05/13/17

 Method:
 SW846 8270D
 SW846 3546
 Percent Solids: 81.2

Project: 79 Hurley Avenue, Kingston, NY

ABN TCL List (SOM0 2.0)

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits		
4165-62-2 118-79-6	Phenol-d5 2,4,6-Tribromophenol	71% 83%		27-114% 19-152%		
4165-60-0 321-60-8	Nitrobenzene-d5 2-Fluorobiphenyl	74% 79%		26-134% 39-124%		
1718-51-0	Terphenyl-d14	88%		36-134%		
CAS No.	Tentatively Identified Compo	ounds	R.T.	Est. Conc.	Units Q)
	system artifact/aldol-condensation Total TIC, Semi-Volatile		3.65	1.9 0	mg/kg J mg/kg	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: B-11

 Lab Sample ID:
 JC43253-3
 Date Sampled:
 05/12/17

 Matrix:
 SO - Soil
 Date Received:
 05/13/17

 Method:
 SW846 8260C
 SW846 5035
 Percent Solids:
 73.5

Project: 79 Hurley Avenue, Kingston, NY

DF **Analytical Batch** File ID Analyzed $\mathbf{B}\mathbf{y}$ **Prep Date Prep Batch** V3C6232 Run #1 3C137260.D 1 05/16/17 15:07 PS 05/13/17 15:00 n/a Run #2 05/17/17 11:48 XC VD10081 D249754.D 1 05/13/17 15:00 n/a

Initial Weight Final Volume Methanol Aliquot
Run #1 6.2 g
Run #2 6.3 g 5.0 ml 100 ul

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	0.011	0.0055	mg/kg	
71-43-2	Benzene	ND	0.00055	0.00013		
74-97-5	Bromochloromethane	ND	0.0055	0.00035		
75-27-4	Bromodichloromethane	ND	0.0022	0.00017		
75-25-2	Bromoform	ND	0.0055	0.00029		
74-83-9	Bromomethane	ND	0.0055	0.00053	mg/kg	
78-93-3	2-Butanone (MEK)	ND	0.011	0.0019	mg/kg	
75-15-0	Carbon disulfide	ND	0.0022	0.00019	mg/kg	
56-23-5	Carbon tetrachloride	ND	0.0022	0.00018	mg/kg	
108-90-7	Chlorobenzene	ND	0.0022	0.00018	mg/kg	
75-00-3	Chloroethane	ND	0.0055	0.00047	mg/kg	
67-66-3	Chloroform	ND	0.0022	0.00026	mg/kg	
74-87-3	Chloromethane	ND	0.0055	0.00023	mg/kg	
110-82-7	Cyclohexane	ND	0.0022	0.00060		
96-12-8	1,2-Dibromo-3-chloropropane	ND	0.0022	0.00053	mg/kg	
124-48-1	Dibromochloromethane	ND	0.0022	0.00016	mg/kg	
106-93-4	1,2-Dibromoethane	ND	0.0011	0.00027	mg/kg	
95-50-1	1,2-Dichlorobenzene	ND	0.0011	0.00019	mg/kg	
541-73-1	1,3-Dichlorobenzene	ND	0.0011	0.00015	mg/kg	
106-46-7	1,4-Dichlorobenzene	ND	0.0011	0.00017	mg/kg	
75-71-8	Dichlorodifluoromethane	ND	0.0055	0.00060		
75-34-3	1,1-Dichloroethane	ND	0.0011	0.00021		
107-06-2	1,2-Dichloroethane	ND	0.0011	0.00019	mg/kg	
75-35-4	1,1-Dichloroethene	ND	0.0011	0.00017	mg/kg	
156-59-2	cis-1,2-Dichloroethene	ND	0.0011	0.00048		
156-60-5	trans-1,2-Dichloroethene	ND	0.0011	0.00017		
78-87-5	1,2-Dichloropropane	ND	0.0022	0.00034	mg/kg	
10061-01-5	cis-1,3-Dichloropropene	ND	0.0022	0.00022	mg/kg	
10061-02-6	trans-1,3-Dichloropropene	ND	0.0022	0.00024		
100-41-4	Ethylbenzene	ND	0.0011	0.00016		
76-13-1	Freon 113	ND	0.0055	0.00053	mg/kg	
591-78-6	2-Hexanone	ND	0.0055	0.0015	mg/kg	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

Page 2 of 2

Client Sample ID: B-11

 Lab Sample ID:
 JC43253-3
 Date Sampled: 05/12/17

 Matrix:
 SO - Soil
 Date Received: 05/13/17

 Method:
 SW846 8260C
 SW846 5035
 Percent Solids: 73.5

Project: 79 Hurley Avenue, Kingston, NY

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
98-82-8	Isopropylbenzene	ND	0.0022	0.00017	mg/kg	į
79-20-9	Methyl Acetate	ND	0.0055	0.0022	mg/kg	
108-87-2	Methylcyclohexane	ND	0.0022	0.00055		
1634-04-4	Methyl Tert Butyl Ether	0.793 a	0.072	0.019	mg/kg	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	0.0055	0.00093		
75-09-2	Methylene chloride	ND	0.0055	0.0011	mg/kg	
100-42-5	Styrene	ND	0.0022	0.00016		
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.0022	0.00026		
127-18-4	Tetrachloroethene	ND	0.0022	0.00031		
108-88-3	Toluene	ND	0.0011	0.00014		
87-61-6	1,2,3-Trichlorobenzene	ND	0.0055	0.00055		
120-82-1	1,2,4-Trichlorobenzene	ND	0.0055	0.00055	mg/kg	(
71-55-6	1,1,1-Trichloroethane	ND	0.0022	0.00018		
79-00-5	1,1,2-Trichloroethane	ND	0.0022	0.00035		
79-01-6	Trichloroethene	ND	0.0011	0.00021		
75-69-4	Trichlorofluoromethane	ND	0.0055	0.00069		
75-01-4	Vinyl chloride	ND	0.0022	0.00022	mg/kg	(
	m, p-Xylene	0.00044	0.0011	0.00024		
95-47-6	o-Xylene	ND	0.0011	0.00022	mg/kg	(
1330-20-7	Xylene (total)	0.00044	0.0011	0.00022	mg/kg	J
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7	Dibromofluoromethane	101%	103%	70-12	22 %	
17060-07-0	1,2-Dichloroethane-D4	96%	104%	68-12	24%	
2037-26-5	Toluene-D8	96%	102%	77-12	25%	
460-00-4	4-Bromofluorobenzene	103%	105%	72-13	80%	
CAS No.	Tentatively Identified Compo	unds	R.T.	Est.	Conc.	Units Q
	Total TIC, Volatile			0		mg/kg

(a) Result is from Run# 2

ND = Not detected MDL = Method

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: B-12

Lab Sample ID: JC43253-4 **Date Sampled: 05/12/17** Matrix: SO - Soil Date Received: 05/13/17 Method: SW846 8260C SW846 5035 **Percent Solids:** 73.5

79 Hurley Avenue, Kingston, NY **Project:**

File ID DF **Prep Batch Analytical Batch** Analyzed By **Prep Date** 05/13/17 15:00 V3C6232 Run #1 3C137259.D 1 05/16/17 14:39 PS n/a

Run #2

Initial Weight

Run #1 6.1 g

Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	0.0077	0.011	0.0056	mg/kg	J
71-43-2	Benzene	0.0011	0.00056	0.00013		
74-97-5	Bromochloromethane	ND	0.0056	0.00036		
75-27-4	Bromodichloromethane	ND	0.0022	0.00017		
75-25-2	Bromoform	ND	0.0056	0.00030		
74-83-9	Bromomethane	ND	0.0056	0.00054	mg/kg	
78-93-3	2-Butanone (MEK)	ND	0.011	0.0020	mg/kg	
75-15-0	Carbon disulfide	ND	0.0022	0.00019		
56-23-5	Carbon tetrachloride	ND	0.0022	0.00019		
108-90-7	Chlorobenzene	0.00028	0.0022	0.00018		J
75-00-3	Chloroethane	ND	0.0056	0.00048	mg/kg	
67-66-3	Chloroform	ND	0.0022	0.00027	mg/kg	
74-87-3	Chloromethane	ND	0.0056	0.00024		
110-82-7	Cyclohexane	0.0026	0.0022	0.00061	mg/kg	
96-12-8	1,2-Dibromo-3-chloropropane	ND	0.0022	0.00054	mg/kg	
124-48-1	Dibromochloromethane	ND	0.0022	0.00017		
106-93-4	1,2-Dibromoethane	ND	0.0011	0.00027		
95-50-1	1,2-Dichlorobenzene	ND	0.0011	0.00019		
541-73-1	1,3-Dichlorobenzene	ND	0.0011	0.00015		
106-46-7	1,4-Dichlorobenzene	ND	0.0011	0.00017	mg/kg	
75-71-8	Dichlorodifluoromethane	ND	0.0056	0.00061	mg/kg	
75-34-3	1,1-Dichloroethane	ND	0.0011	0.00021	mg/kg	
107-06-2	1,2-Dichloroethane	ND	0.0011	0.00019		
75-35-4	1,1-Dichloroethene	ND	0.0011	0.00017		
156-59-2	cis-1,2-Dichloroethene	ND	0.0011	0.00049	mg/kg	
156-60-5	trans-1,2-Dichloroethene	ND	0.0011	0.00018		
78-87-5	1,2-Dichloropropane	ND	0.0022	0.00034		
10061-01-5	cis-1,3-Dichloropropene	ND	0.0022	0.00022		
10061-02-6	trans-1,3-Dichloropropene	ND	0.0022	0.00025		
100-41-4	Ethylbenzene	0.0095	0.0011	0.00017		
76-13-1	Freon 113	ND	0.0056	0.00054		
591-78-6	2-Hexanone	0.0149	0.0056	0.0016	mg/kg	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 3

Client Sample ID: B-12

Lab Sample ID: JC43253-4 **Date Sampled: 05/12/17** Matrix: SO - Soil **Date Received:** 05/13/17 **Percent Solids:** 73.5

Method: SW846 8260C SW846 5035 79 Hurley Avenue, Kingston, NY **Project:**

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q	
98-82-8	Isopropylbenzene	0.0024	0.0022	0.00017	mg/k	ø	
79-20-9	Methyl Acetate	ND	0.0056	0.0023	mg/k		
108-87-2	Methylcyclohexane	0.0052	0.0022	0.00056			
1634-04-4	Methyl Tert Butyl Ether	ND	0.0011	0.00030		•	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	0.0056	0.00095			
75-09-2	Methylene chloride	0.0014	0.0056	0.0011	mg/k		
100-42-5	Styrene	ND	0.0022	0.00016			
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.0022	0.00027			
127-18-4	Tetrachloroethene	ND	0.0022	0.00031			
108-88-3	Toluene	ND	0.0011	0.00014			
87-61-6	1,2,3-Trichlorobenzene	ND	0.0056	0.00056			
120-82-1	1,2,4-Trichlorobenzene	ND	0.0056	0.00056			
71-55-6	1,1,1-Trichloroethane	ND	0.0022	0.00019			
79-00-5	1,1,2-Trichloroethane	ND	0.0022	0.00036			
79-01-6	Trichloroethene	ND	0.0011	0.00021			
75-69-4	Trichlorofluoromethane	ND	0.0056	0.00070			
75-01-4	Vinyl chloride	ND	0.0022	0.00023			
	m,p-Xylene	0.0033	0.0011	0.00024			
95-47-6	o-Xylene	0.00054	0.0011	0.00023			
1330-20-7	Xylene (total)	0.0038	0.0011	0.00023			
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts		
1868-53-7	Dibromofluoromethane	101%		70-12	22%		
17060-07-0	1,2-Dichloroethane-D4	100%		68-12	24%		
2037-26-5	Toluene-D8	101%		77-12	25%		
460-00-4	4-Bromofluorobenzene	106%		72-13	80%		
CAS No.	Tentatively Identified Compo	unds	R.T.	Est.	Conc.	Units	Q
	alkane		11.44	.084		mg/kg	J
	alkane		11.60	.17		mg/kg	
	alkane		11.76	.073		mg/kg	
	alkane		13.22	.056		mg/kg	
	alkane		13.34	.045		mg/kg	
95-63-6	Benzene, 1,2,4-trimethyl-		15.52	.052		mg/kg	
	C4 alkyl benzene		16.18	.056		mg/kg	
	C4 alkyl benzene		16.56	.052		mg/kg	
	C5 alkyl benzene		17.35	.098		mg/kg	
	C5 alkyl benzene		17.51	.1		mg/kg	
	•						

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 3 of 3

Client Sample ID: B-12

 Lab Sample ID:
 JC43253-4
 Date Sampled:
 05/12/17

 Matrix:
 SO - Soil
 Date Received:
 05/13/17

 Method:
 SW846 8260C
 SW846 5035
 Percent Solids:
 73.5

Project: 79 Hurley Avenue, Kingston, NY

VOA TCL List

CAS No.	Tentatively Identified Compounds	R.T.	Est. Conc.	Units Q
	C5 alkyl benzene	17.79	.1	mg/kg J
	C5 alkyl benzene	17.91	.044	mg/kg J
	1H-indene-dihydro-dimethyl- isomer	17.96	.043	mg/kg J
	Naphthalene, tetrahydro-dimethyl- isomer	18.11	.042	mg/kg J
	1H-indene-dihydro-dimethyl- isomer	18.51	.045	mg/kg J
	Total TIC. Volatile		1.06	mø/kø J

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: B-12

 Lab Sample ID:
 JC43253-4
 Date Sampled:
 05/12/17

 Matrix:
 SO - Soil
 Date Received:
 05/13/17

 Method:
 SW846 8270D
 SW846 3546
 Percent Solids:
 73.5

Project: 79 Hurley Avenue, Kingston, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 P114071.D 1 05/22/17 14:37 RL 05/16/17 OP2859 EP5091

Run #2

Initial Weight Final Volume

Run #1 30.1 g 1.0 ml

Run #2

ABN TCL List (SOM0 2.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
95-57-8	2-Chlorophenol	ND	0.090	0.022	mg/kg	
59-50-7	4-Chloro-3-methyl phenol	ND	0.23	0.028	mg/kg	
120-83-2	2,4-Dichlorophenol	ND	0.23	0.039	mg/kg	
105-67-9	2,4-Dimethylphenol	ND	0.23	0.080	mg/kg	
51-28-5	2,4-Dinitrophenol	ND	0.23	0.17	mg/kg	
534-52-1	4,6-Dinitro-o-cresol	ND	0.23	0.048	mg/kg	
95-48-7	2-Methylphenol	ND	0.090	0.029	mg/kg	
	3&4-Methylphenol	ND	0.090	0.037	mg/kg	
88-75-5	2-Nitrophenol	ND	0.23	0.030	mg/kg	
100-02-7	4-Nitrophenol	ND	0.45	0.12	mg/kg	
87-86-5	Pentachlorophenol	ND	0.18	0.042	mg/kg	
108-95-2	Phenol	ND	0.090	0.024	mg/kg	
58-90-2	2,3,4,6-Tetrachlorophenol	ND	0.23	0.030	mg/kg	
95-95-4	2,4,5-Trichlorophenol	ND	0.23	0.034	mg/kg	
88-06-2	2,4,6-Trichlorophenol	ND	0.23	0.027	mg/kg	
83-32-9	Acenaphthene	ND	0.045	0.016	mg/kg	
208-96-8	Acenaphthylene	ND	0.045	0.023	mg/kg	
98-86-2	Acetophenone	ND	0.23	0.0097	mg/kg	
120-12-7	Anthracene	ND	0.045	0.028	mg/kg	
1912-24-9	Atrazine	ND	0.090	0.019	mg/kg	
56-55-3	Benzo(a)anthracene	ND	0.045	0.013	mg/kg	
50-32-8	Benzo(a)pyrene	ND	0.045	0.021	mg/kg	
205-99-2	Benzo(b)fluoranthene	ND	0.045	0.020	mg/kg	
191-24-2	Benzo(g,h,i)perylene	ND	0.045	0.023	mg/kg	
207-08-9	Benzo(k)fluoranthene	ND	0.045	0.021	mg/kg	
101-55-3	4-Bromophenyl phenyl ether	ND	0.090	0.017	mg/kg	
85-68-7	Butyl benzyl phthalate	ND	0.090	0.011	mg/kg	
92-52-4	1,1'-Biphenyl	0.0182	0.090	0.0062	mg/kg	J
100-52-7	Benzaldehyde	ND	0.23	0.011	mg/kg	
91-58-7	2-Chloronaphthalene	ND	0.090	0.011	mg/kg	
106-47-8	4-Chloroaniline	ND	0.23	0.016	mg/kg	
86-74-8	Carbazole	ND	0.090	0.0066	mg/kg	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

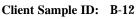
Client Sample ID: B-12

Lab Sample ID: JC43253-4 **Date Sampled: 05/12/17** Matrix: SO - Soil Date Received: 05/13/17 Method: SW846 8270D SW846 3546 **Percent Solids:** 73.5

79 Hurley Avenue, Kingston, NY **Project:**

ABN TCL List (SOM0 2.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
105-60-2	Caprolactam	ND	0.090	0.018	mg/kg	
218-01-9	Chrysene	ND	0.045	0.014	mg/kg	
111-91-1	bis(2-Chloroethoxy)methane	ND	0.090	0.0097	mg/kg	
111-44-4	bis(2-Chloroethyl)ether	ND	0.090	0.019	mg/kg	
108-60-1	bis(2-Chloroisopropyl)ether	ND	0.090	0.016	mg/kg	
7005-72-3	4-Chlorophenyl phenyl ether	ND	0.090	0.015	mg/kg	
121-14-2	2,4-Dinitrotoluene	ND	0.045	0.014	mg/kg	
606-20-2	2,6-Dinitrotoluene	ND	0.045	0.023	mg/kg	
91-94-1	3,3'-Dichlorobenzidine	ND	0.090	0.038	mg/kg	
123-91-1	1,4-Dioxane	ND	0.045	0.030	mg/kg	
53-70-3	Dibenzo(a,h)anthracene	ND	0.045	0.020	mg/kg	
132-64-9	Dibenzofuran	ND	0.090	0.018	mg/kg	
84-74-2	Di-n-butyl phthalate	ND	0.090	0.0074	mg/kg	
117-84-0	Di-n-octyl phthalate	ND	0.090	0.011	mg/kg	
84-66-2	Diethyl phthalate	ND	0.090	0.0096	mg/kg	
131-11-3	Dimethyl phthalate	ND	0.090	0.0080	mg/kg	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	0.090	0.011	mg/kg	
206-44-0	Fluoranthene	ND	0.045	0.020	mg/kg	
86-73-7	Fluorene	ND	0.045	0.021	mg/kg	
118-74-1	Hexachlorobenzene	ND	0.090	0.011	mg/kg	
87-68-3	Hexachlorobutadiene	ND	0.045	0.018	mg/kg	
77-47-4	Hexachlorocyclopentadiene	ND	0.45	0.018	mg/kg	
67-72-1	Hexachloroethane	ND	0.23	0.022	mg/kg	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	0.045	0.021	mg/kg	
78-59-1	Isophorone	ND	0.090	0.0097	mg/kg	
91-57-6	2-Methylnaphthalene	0.926	0.090	0.010	mg/kg	
88-74-4	2-Nitroaniline	ND	0.23	0.011	mg/kg	
99-09-2	3-Nitroaniline	ND	0.23	0.011	mg/kg	
100-01-6	4-Nitroaniline	ND	0.23	0.012	mg/kg	
91-20-3	Naphthalene	0.249	0.045	0.013	mg/kg	
98-95-3	Nitrobenzene	ND	0.090	0.017	mg/kg	
621-64-7	N-Nitroso-di-n-propylamine	ND	0.090	0.013	mg/kg	
86-30-6	N-Nitrosodiphenylamine	ND	0.23	0.017	mg/kg	
85-01-8	Phenanthrene	ND	0.045	0.015	mg/kg	
129-00-0	Pyrene	ND	0.045	0.014	mg/kg	
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	0.23	0.011	mg/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
367-12-4	2-Fluorophenol	70 %	23-115%			


ND = Not detectedMDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

 Lab Sample ID:
 JC43253-4
 Date Sampled:
 05/12/17

 Matrix:
 SO - Soil
 Date Received:
 05/13/17

 Method:
 SW846 8270D
 SW846 3546
 Percent Solids:
 73.5

Project: 79 Hurley Avenue, Kingston, NY

ABN TCL List (SOM0 2.0)

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits	
4165-62-2	Phenol-d5	69%		27-114%	
118-79-6	2,4,6-Tribromophenol	79 %		19-152%	
4165-60-0	Nitrobenzene-d5	73%		26-134%	
321-60-8	2-Fluorobiphenyl	74%		39-124%	
1718-51-0	Terphenyl-d14	86%		36-134%	
CAS No.	Tentatively Identified Compo	ounds	R.T.	Est. Conc.	Units Q
	system artifact		3.61	.5	mg/kg J
	system artifact/aldol-condensa	tion	3.66	4.2	mg/kg J
	unknown		3.80	.45	mg/kg J
	alkane		3.85	1.1	mg/kg J
	alkane		4.11	1.2	mg/kg J
	alkane		4.35	1	mg/kg J
unknown		4.48	.51	mg/kg J	
	alkane		4.53	1.6	mg/kg J
	unknown		4.55	.84	mg/kg J
	C3 alkyl benzene		4.57	.81	mg/kg J
	alkane		4.59	1.3	mg/kg J
	unknown		4.74	.82	mg/kg J
	C3 alkyl benzene		4.76	2.8	mg/kg J
	unknown		4.98	1.1	mg/kg J
496-11-7	Indane		5.02	.51	mg/kg JN
	C4 alkyl benzene		5.06	1.3	mg/kg J
	C4 alkyl benzene		5.08	1.2	mg/kg J
	C4 alkyl benzene		5.11	2.9	mg/kg J
	C4 alkyl benzene		5.17	1.1	mg/kg J
	C4 alkyl benzene		5.21	1.6	mg/kg J
	C4 alkyl benzene		5.23	1.2	mg/kg J
	unknown		5.34	.59	mg/kg J
	C4 alkyl benzene		5.43	.53	mg/kg J
	C4 alkyl benzene		5.46	.56	mg/kg J
	1H-indene-dihydro-methyl		5.57	.67	mg/kg J
	1H-Indene-dihydro-dimethyl		5.62	1.2	mg/kg J
	unknown		6.00	.52	mg/kg J
	Total TIC, Semi-Volatile			27.41	mg/kg J

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

3.5

Report of Analysis

Client Sample ID: B-12A

 Lab Sample ID:
 JC43253-5
 Date Sampled:
 05/12/17

 Matrix:
 SO - Soil
 Date Received:
 05/13/17

 Method:
 SW846 8260C
 SW846 5035
 Percent Solids:
 73.5

Project: 79 Hurley Avenue, Kingston, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 3C137258.D 1 05/16/17 14:11 PS 05/13/17 15:00 n/a V3C6232

Run #2

Initial Weight

Run #1 6.1 g

Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	0.0939	0.011	0.0056	mg/kg	
71-43-2	Benzene	ND	0.00056	0.00013		
74-97-5	Bromochloromethane	ND	0.0056	0.00036		
75-27-4	Bromodichloromethane	ND	0.0022	0.00017	mg/kg	
75-25-2	Bromoform	ND	0.0056	0.00030	mg/kg	
74-83-9	Bromomethane	ND	0.0056	0.00054	mg/kg	
78-93-3	2-Butanone (MEK)	ND	0.011	0.0020	mg/kg	
75-15-0	Carbon disulfide	ND	0.0022	0.00019		
56-23-5	Carbon tetrachloride	ND	0.0022	0.00019	mg/kg	
108-90-7	Chlorobenzene	ND	0.0022	0.00018	mg/kg	
75-00-3	Chloroethane	ND	0.0056	0.00048	mg/kg	
67-66-3	Chloroform	ND	0.0022	0.00027	mg/kg	
74-87-3	Chloromethane	ND	0.0056	0.00024	mg/kg	
110-82-7	Cyclohexane	ND	0.0022	0.00061	mg/kg	
96-12-8	1,2-Dibromo-3-chloropropane	ND	0.0022	0.00054	mg/kg	
124-48-1	Dibromochloromethane	ND	0.0022	0.00017	mg/kg	
106-93-4	1,2-Dibromoethane	ND	0.0011	0.00027	mg/kg	
95-50-1	1,2-Dichlorobenzene	ND	0.0011	0.00019	mg/kg	
541-73-1	1,3-Dichlorobenzene	ND	0.0011	0.00015	mg/kg	
106-46-7	1,4-Dichlorobenzene	ND	0.0011	0.00017	mg/kg	
75-71-8	Dichlorodifluoromethane	ND	0.0056	0.00061	mg/kg	
75-34-3	1,1-Dichloroethane	ND	0.0011	0.00021	mg/kg	
107-06-2	1,2-Dichloroethane	ND	0.0011	0.00019	mg/kg	
75-35-4	1,1-Dichloroethene	ND	0.0011	0.00017	mg/kg	
156-59-2	cis-1,2-Dichloroethene	ND	0.0011	0.00049	mg/kg	
156-60-5	trans-1,2-Dichloroethene	ND	0.0011	0.00018	mg/kg	
78-87-5	1,2-Dichloropropane	ND	0.0022	0.00034	mg/kg	
10061-01-5	cis-1,3-Dichloropropene	ND	0.0022	0.00022	mg/kg	
10061-02-6	trans-1,3-Dichloropropene	ND	0.0022	0.00025	mg/kg	
100-41-4	Ethylbenzene	ND	0.0011	0.00017		
76-13-1	Freon 113	ND	0.0056	0.00054	mg/kg	
591-78-6	2-Hexanone	ND	0.0056	0.0016	mg/kg	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 2

Client Sample ID: B-12A

 Lab Sample ID:
 JC43253-5
 Date Sampled:
 05/12/17

 Matrix:
 SO - Soil
 Date Received:
 05/13/17

 Method:
 SW846 8260C
 SW846 5035
 Percent Solids:
 73.5

Project: 79 Hurley Avenue, Kingston, NY

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q	
98-82-8	Isopropylbenzene	ND	0.0022	0.00017	mg/kg	g	
79-20-9	Methyl Acetate	ND	0.0056	0.0023	mg/kg		
108-87-2	Methylcyclohexane	ND	0.0022	0.00056			
1634-04-4	Methyl Tert Butyl Ether	0.00089	0.0011	0.00030	mg/kg	g J	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	0.0056	0.00095			
75-09-2	Methylene chloride	ND	0.0056	0.0011	mg/kg		
100-42-5	Styrene	ND	0.0022	0.00016	mg/kg	ğ	
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.0022	0.00027			
127-18-4	Tetrachloroethene	ND	0.0022	0.00031			
108-88-3	Toluene	ND	0.0011	0.00014	mg/kg	ğ	
87-61-6	1,2,3-Trichlorobenzene	ND	0.0056	0.00056	mg/kg	ğ	
120-82-1	1,2,4-Trichlorobenzene	ND	0.0056	0.00056	mg/kg	ğ	
71-55-6	1,1,1-Trichloroethane	ND	0.0022	0.00019	mg/kg	9	
79-00-5	1,1,2-Trichloroethane	ND	0.0022	0.00036	mg/kg	9	
79-01-6	Trichloroethene	ND	0.0011	0.00021	mg/kg	g	
75-69-4	Trichlorofluoromethane	ND	0.0056	0.00070	mg/kg	ğ	
75-01-4	Vinyl chloride	ND	0.0022	0.00023	mg/kg	ğ	
	m,p-Xylene	0.00046	0.0011	0.00024	mg/kg	g J	
95-47-6	o-Xylene	ND	0.0011	0.00023	mg/kg	ğ	
1330-20-7	Xylene (total)	0.00046	0.0011	0.00023	mg/kg	g J	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts		
1868-53-7	Dibromofluoromethane	103%		70-12	22%		
17060-07-0	1,2-Dichloroethane-D4	100%		68-12	24%		
2037-26-5	Toluene-D8	94%		77-12	25%		
460-00-4	4-Bromofluorobenzene	102%		72-13	30 %		
CAS No.	Tentatively Identified Compo	ounds	R.T.	Est.	Conc.	Units	Q
75-65-0	2-Propanol, 2-methyl-		7.47	.031		mg/kg	JN
	Total TIC, Volatile			.031		mg/kg	J

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

3.6

Report of Analysis

Page 1 of 2

Client Sample ID: B-13

 Lab Sample ID:
 JC43253-6
 Date Sampled:
 05/12/17

 Matrix:
 SO - Soil
 Date Received:
 05/13/17

 Method:
 SW846 8260C
 SW846 5035
 Percent Solids:
 77.6

Project: 79 Hurley Avenue, Kingston, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 3C137256.D 1 05/16/17 13:15 PS 05/13/17 15:00 n/a V3C6232

Run #2

Initial Weight

Run #1 6.0 g

Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	0.011	0.0054	mg/kg	
71-43-2	Benzene	ND	0.00054	0.00013		
74-97-5	Bromochloromethane	ND	0.0054	0.00034		
75-27-4	Bromodichloromethane	ND	0.0021	0.00016	mg/kg	
75-25-2	Bromoform	ND	0.0054	0.00029	mg/kg	
74-83-9	Bromomethane	ND	0.0054	0.00052		
78-93-3	2-Butanone (MEK)	ND	0.011	0.0019	mg/kg	
75-15-0	Carbon disulfide	ND	0.0021	0.00018		
56-23-5	Carbon tetrachloride	ND	0.0021	0.00018		
108-90-7	Chlorobenzene	ND	0.0021	0.00017		
75-00-3	Chloroethane	ND	0.0054	0.00046	mg/kg	
67-66-3	Chloroform	ND	0.0021	0.00026		
74-87-3	Chloromethane	ND	0.0054	0.00023	mg/kg	
110-82-7	Cyclohexane	ND	0.0021	0.00059	mg/kg	
96-12-8	1,2-Dibromo-3-chloropropane	ND	0.0021	0.00052		
124-48-1	Dibromochloromethane	ND	0.0021	0.00016	mg/kg	
106-93-4	1,2-Dibromoethane	ND	0.0011	0.00026		
95-50-1	1,2-Dichlorobenzene	ND	0.0011	0.00018		
541-73-1	1,3-Dichlorobenzene	ND	0.0011	0.00015	mg/kg	
106-46-7	1,4-Dichlorobenzene	ND	0.0011	0.00016	mg/kg	
75-71-8	Dichlorodifluoromethane	ND	0.0054	0.00059	mg/kg	
75-34-3	1,1-Dichloroethane	ND	0.0011	0.00020	mg/kg	
107-06-2	1,2-Dichloroethane	ND	0.0011	0.00018	mg/kg	
75-35-4	1,1-Dichloroethene	ND	0.0011	0.00016	mg/kg	
156-59-2	cis-1,2-Dichloroethene	ND	0.0011	0.00047	mg/kg	
156-60-5	trans-1,2-Dichloroethene	ND	0.0011	0.00017	mg/kg	
78-87-5	1,2-Dichloropropane	ND	0.0021	0.00033	mg/kg	
10061-01-5	cis-1,3-Dichloropropene	ND	0.0021	0.00021	mg/kg	
10061-02-6	trans-1,3-Dichloropropene	ND	0.0021	0.00024	mg/kg	
100-41-4	Ethylbenzene	ND	0.0011	0.00016		
76-13-1	Freon 113	ND	0.0054	0.00052	mg/kg	
591-78-6	2-Hexanone	ND	0.0054	0.0015	mg/kg	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

3.6

Page 2 of 2

Report of Analysis

Client Sample ID: B-13 Lab Sample ID: JC43253-6

Matrix: SO - Soil
Method: SW846 8260C SW846 5035

Project: 79 Hurley Avenue, Kingston, NY

Date Sampled: 05/12/17 Date Received: 05/13/17 Percent Solids: 77.6

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q	
98-82-8	Isopropylbenzene	ND	0.0021	0.00017	mg/kg	g	
79-20-9	Methyl Acetate	ND	0.0054	0.0022	mg/kg		
108-87-2	Methylcyclohexane	ND	0.0021	0.00054			
1634-04-4	Methyl Tert Butyl Ether	ND	0.0011	0.00028	mg/kg	g	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	0.0054	0.00091	mg/kg	g	
75-09-2	Methylene chloride	ND	0.0054	0.0011	mg/kg	g	
100-42-5	Styrene	ND	0.0021	0.00016	mg/kg	g	
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.0021	0.00026	mg/kg	g	
127-18-4	Tetrachloroethene	ND	0.0021	0.00030	mg/kg	g	
108-88-3	Toluene	ND	0.0011	0.00013	mg/kg	g	
87-61-6	1,2,3-Trichlorobenzene	ND	0.0054	0.00054	mg/kg	g	
120-82-1	1,2,4-Trichlorobenzene	ND	0.0054	0.00054	mg/kg	g	
71-55-6	1,1,1-Trichloroethane	ND	0.0021	0.00018	mg/kg	g	
79-00-5	1,1,2-Trichloroethane	ND	0.0021	0.00035	mg/kg	g	
79-01-6	Trichloroethene	ND	0.0011	0.00020	mg/kg	g	
75-69-4	Trichlorofluoromethane	ND	0.0054	0.00068	mg/kg	g	
75-01-4	Vinyl chloride	ND	0.0021	0.00022	mg/kg	g	
	m,p-Xylene	0.00034	0.0011	0.00024			
95-47-6	o-Xylene	ND	0.0011	0.00022	mg/kg	g	
1330-20-7	Xylene (total)	0.00034	0.0011	0.00022	mg/kg	g J	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts		
1868-53-7	Dibromofluoromethane	103%		70-12	22%		
17060-07-0	1,2-Dichloroethane-D4	100%		68-12	24%		
2037-26-5	Toluene-D8	95%		77-12	25%		
460-00-4	4-Bromofluorobenzene	101%		72-13	80%		
CAS No.	Tentatively Identified Compo	ounds	R.T.	Est.	Conc.	Units	Q
	Total TIC, Volatile			0		mg/kg	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: B-13

 Lab Sample ID:
 JC43253-6
 Date Sampled:
 05/12/17

 Matrix:
 SO - Soil
 Date Received:
 05/13/17

 Method:
 SW846 8270D
 SW846 3546
 Percent Solids:
 77.6

Project: 79 Hurley Avenue, Kingston, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 P114072.D 1 05/22/17 15:06 RL 05/16/17 OP2859 EP5091

Run #2

Initial Weight Final Volume

Run #1 30.2 g 1.0 ml

Run #2

ABN TCL List (SOM0 2.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
95-57-8	2-Chlorophenol	ND	0.085	0.021	mg/kg	
59-50-7	4-Chloro-3-methyl phenol	ND	0.21	0.026	mg/kg	
120-83-2	2,4-Dichlorophenol	ND	0.21	0.036	mg/kg	
105-67-9	2,4-Dimethylphenol	ND	0.21	0.076	mg/kg	
51-28-5	2,4-Dinitrophenol	ND	0.21	0.16	mg/kg	
534-52-1	4,6-Dinitro-o-cresol	ND	0.21	0.046	mg/kg	
95-48-7	2-Methylphenol	ND	0.085	0.027	mg/kg	
	3&4-Methylphenol	ND	0.085	0.035	mg/kg	
88-75-5	2-Nitrophenol	ND	0.21	0.028	mg/kg	
100-02-7	4-Nitrophenol	ND	0.43	0.11	mg/kg	
87-86-5	Pentachlorophenol	ND	0.17	0.040	mg/kg	
108-95-2	Phenol	ND	0.085	0.022	mg/kg	
58-90-2	2,3,4,6-Tetrachlorophenol	ND	0.21	0.028	mg/kg	
95-95-4	2,4,5-Trichlorophenol	ND	0.21	0.032	mg/kg	
88-06-2	2,4,6-Trichlorophenol	ND	0.21	0.025	mg/kg	
83-32-9	Acenaphthene	ND	0.043	0.015	mg/kg	
208-96-8	Acenaphthylene	ND	0.043	0.022	mg/kg	
98-86-2	Acetophenone	ND	0.21	0.0092	mg/kg	
120-12-7	Anthracene	ND	0.043	0.026	mg/kg	
1912-24-9	Atrazine	ND	0.085	0.018	mg/kg	
56-55-3	Benzo(a)anthracene	ND	0.043	0.012	mg/kg	
50-32-8	Benzo(a)pyrene	ND	0.043	0.019	mg/kg	
205-99-2	Benzo(b)fluoranthene	ND	0.043	0.019	mg/kg	
191-24-2	Benzo(g,h,i)perylene	ND	0.043	0.021	mg/kg	
207-08-9	Benzo(k)fluoranthene	ND	0.043	0.020	mg/kg	
101-55-3	4-Bromophenyl phenyl ether	ND	0.085	0.016	mg/kg	
85-68-7	Butyl benzyl phthalate	ND	0.085	0.010	mg/kg	
92-52-4	1,1'-Biphenyl	ND	0.085	0.0058	mg/kg	
100-52-7	Benzaldehyde	ND	0.21	0.011	mg/kg	
91-58-7	2-Chloronaphthalene	ND	0.085	0.010	mg/kg	
106-47-8	4-Chloroaniline	ND	0.21	0.015	mg/kg	
86-74-8	Carbazole	ND	0.085	0.0062	mg/kg	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

3.6

Date Sampled: 05/12/17

05/13/17

77.6

Date Received:

Percent Solids:

Report of Analysis

Client Sample ID: B-13 Lab Sample ID:

JC43253-6 Matrix: SO - Soil

Method: SW846 8270D SW846 3546

79 Hurley Avenue, Kingston, NY **Project:**

ABN TCL List (SOM0 2.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
105-60-2	Caprolactam	ND	0.085	0.017	mg/kg	
218-01-9	Chrysene	ND	0.043	0.013	mg/kg	
111-91-1	bis(2-Chloroethoxy)methane	ND	0.085	0.0091	mg/kg	
111-44-4	bis(2-Chloroethyl)ether	ND	0.085	0.018	mg/kg	
108-60-1	bis(2-Chloroisopropyl)ether	ND	0.085	0.015	mg/kg	
7005-72-3	4-Chlorophenyl phenyl ether	ND	0.085	0.014	mg/kg	
121-14-2	2,4-Dinitrotoluene	ND	0.043	0.013	mg/kg	
606-20-2	2,6-Dinitrotoluene	ND	0.043	0.021	mg/kg	
91-94-1	3,3'-Dichlorobenzidine	ND	0.085	0.036	mg/kg	
123-91-1	1,4-Dioxane	ND	0.043	0.028	mg/kg	
53-70-3	Dibenzo(a,h)anthracene	ND	0.043	0.019	mg/kg	
132-64-9	Dibenzofuran	ND	0.085	0.017	mg/kg	
84-74-2	Di-n-butyl phthalate	ND	0.085	0.0070	mg/kg	
117-84-0	Di-n-octyl phthalate	ND	0.085	0.011	mg/kg	
84-66-2	Diethyl phthalate	ND	0.085	0.0091	mg/kg	
131-11-3	Dimethyl phthalate	ND	0.085	0.0076	mg/kg	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	0.085	0.010	mg/kg	
206-44-0	Fluoranthene	ND	0.043	0.019	mg/kg	
86-73-7	Fluorene	ND	0.043	0.020	mg/kg	
118-74-1	Hexachlorobenzene	ND	0.085	0.011	mg/kg	
87-68-3	Hexachlorobutadiene	ND	0.043	0.017	mg/kg	
77-47-4	Hexachlorocyclopentadiene	ND	0.43	0.017	mg/kg	
67-72-1	Hexachloroethane	ND	0.21	0.021	mg/kg	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	0.043	0.020	mg/kg	
78-59-1	Isophorone	ND	0.085	0.0091	mg/kg	
91-57-6	2-Methylnaphthalene	ND	0.085	0.0096	mg/kg	
88-74-4	2-Nitroaniline	ND	0.21	0.010	mg/kg	
99-09-2	3-Nitroaniline	ND	0.21	0.011	mg/kg	
100-01-6	4-Nitroaniline	ND	0.21	0.011	mg/kg	
91-20-3	Naphthalene	ND	0.043	0.012	mg/kg	
98-95-3	Nitrobenzene	ND	0.085	0.016	mg/kg	
621-64-7	N-Nitroso-di-n-propylamine	ND	0.085	0.012	mg/kg	
86-30-6	N-Nitrosodiphenylamine	ND	0.21	0.016	mg/kg	
85-01-8	Phenanthrene	ND	0.043	0.014	mg/kg	
129-00-0	Pyrene	ND	0.043	0.014	mg/kg	
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	0.21	0.011	mg/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
367-12-4	2-Fluorophenol	65%		23-1	15%	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

3.6

Report of Analysis

Page 3 of 3

Client Sample ID: B-13

 Lab Sample ID:
 JC43253-6
 Date Sampled: 05/12/17

 Matrix:
 SO - Soil
 Date Received: 05/13/17

 Method:
 SW846 8270D
 SW846 3546
 Percent Solids: 77.6

Project: 79 Hurley Avenue, Kingston, NY

ABN TCL List (SOM0 2.0)

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits	
4165-62-2 118-79-6 4165-60-0 321-60-8 1718-51-0	Phenol-d5 2,4,6-Tribromophenol Nitrobenzene-d5 2-Fluorobiphenyl Terphenyl-d14	66% 71% 72% 76% 79%		27-114% 19-152% 26-134% 39-124% 36-134%	
CAS No.	Tentatively Identified Compounds system artifact system artifact/aldol-condensation		R.T. 3.20 3.65	Est. Conc.	Units Q mg/kg J mg/kg J
	Total TIC, Semi-Volatile			0	mg/kg

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

SGS

Report of Analysis Page 1 of 2

Client Sample ID: B-9GW

Lab Sample ID:JC43253-7Date Sampled:05/12/17Matrix:AQ - Ground WaterDate Received:05/13/17Method:SW846 8260CPercent Solids:n/a

Project: 79 Hurley Avenue, Kingston, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 2C149626.D 1 05/17/17 15:43 HT n/a n/a V2C6642

Run #2

Purge Volume

Run #1 5.0 ml

Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	10	5.0	ug/l	
71-43-2	Benzene	ND	0.50	0.14	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.46	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.55	ug/l	
75-25-2	Bromoform	ND	1.0	0.34	ug/l	
74-83-9	Bromomethane	ND	2.0	0.46	ug/l	
78-93-3	2-Butanone (MEK)	ND	10	1.9	ug/l	
75-15-0	Carbon disulfide	ND	2.0	0.33	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.54	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.17	ug/l	
75-00-3	Chloroethane	ND	1.0	0.44	ug/l	
67-66-3	Chloroform	ND	1.0	0.23	ug/l	
74-87-3	Chloromethane	ND	1.0	0.96	ug/l	
110-82-7	Cyclohexane	ND	5.0	0.73	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.0	0.69	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.23	ug/l	
106-93-4	1,2-Dibromoethane	ND	1.0	0.22	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.23	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.19	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.21	ug/l	
75-71-8	Dichlorodifluoromethane	ND	2.0	0.70	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.21	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.39	ug/l	
75-35-4	1,1-Dichloroethene	ND	1.0	0.20	ug/l	
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.31	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.36	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.33	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.19	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.26	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.20	ug/l	
76-13-1	Freon 113	ND	5.0	1.2	ug/l	
591-78-6	2-Hexanone	ND	5.0	1.5	ug/l	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 2

Client Sample ID: B-9GW

Lab Sample ID:JC43253-7Date Sampled:05/12/17Matrix:AQ - Ground WaterDate Received:05/13/17Method:SW846 8260CPercent Solids:n/a

Project: 79 Hurley Avenue, Kingston, NY

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q	
98-82-8	Isopropylbenzene	ND	1.0	0.16	ug/l		
79-20-9	Methyl Acetate	ND	5.0	1.5	ug/l		
108-87-2	Methylcyclohexane	ND	5.0	0.78	ug/l		
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.34	ug/l		
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.0	1.2	ug/l		
75-09-2	Methylene chloride	ND	2.0	1.0	ug/l		
100-42-5	Styrene	ND	1.0	0.27	ug/l		
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.39	ug/l		
127-18-4	Tetrachloroethene	ND	1.0	0.23	ug/l		
108-88-3	Toluene	ND	1.0	0.23	ug/l		
87-61-6	1,2,3-Trichlorobenzene	ND	1.0	0.50	ug/l		
120-82-1	1,2,4-Trichlorobenzene	ND	1.0	0.50	ug/l		
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.22	ug/l		
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.28	ug/l		
79-01-6	Trichloroethene	ND	1.0	0.26	ug/l		
75-69-4	Trichlorofluoromethane	ND	2.0	0.58	ug/l		
75-01-4	Vinyl chloride	ND	1.0	0.33	ug/l		
	m,p-Xylene	ND	1.0	0.42	ug/l		
95-47-6	o-Xylene	ND	1.0	0.21	ug/l		
1330-20-7	Xylene (total)	ND	1.0	0.21	ug/l		
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its		
1868-53-7	Dibromofluoromethane	102%		76-1	20%		
17060-07-0	1,2-Dichloroethane-D4	107%		73-1	22 %		
2037-26-5	Toluene-D8	98%		84-1	19 %		
460-00-4	4-Bromofluorobenzene	96%		78-1	17%		
CAS No.	Tentatively Identified Compo	ounds	R.T.	Est.	Conc.	Units	Q
	Total TIC, Volatile			0		ug/l	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 3

Client Sample ID: B-9GW

Lab Sample ID:JC43253-7Date Sampled:05/12/17Matrix:AQ - Ground WaterDate Received:05/13/17Method:SW846 8270DSW846 3510CPercent Solids:n/a

Project: 79 Hurley Avenue, Kingston, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 Z121870.D 1 05/19/17 13:35 AC 05/18/17 OP2948 EZ6044

Run #2

Initial Volume Final Volume

Run #1 1040 ml 1.0 ml

Run #2

ABN TCL List (SOM0 2.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
95-57-8	2-Chlorophenol	ND	4.8	0.79	ug/l	
59-50-7	4-Chloro-3-methyl phenol	ND	4.8	0.86	ug/l	
120-83-2	2,4-Dichlorophenol	ND	1.9	1.2	ug/l	
105-67-9	2,4-Dimethylphenol	ND	4.8	2.3	ug/l	
51-28-5	2,4-Dinitrophenol	ND	9.6	1.5	ug/l	
534-52-1	4,6-Dinitro-o-cresol	ND	4.8	1.2	ug/l	
95-48-7	2-Methylphenol	ND	1.9	0.85	ug/l	
	3&4-Methylphenol	ND	1.9	0.85	ug/l	
88-75-5	2-Nitrophenol	ND	4.8	0.92	ug/l	
100-02-7	4-Nitrophenol	ND	9.6	1.1	ug/l	
87-86-5	Pentachlorophenol	ND	3.8	1.3	ug/l	
108-95-2	Phenol	ND	1.9	0.38	ug/l	
58-90-2	2,3,4,6-Tetrachlorophenol	ND	4.8	1.4	ug/l	
95-95-4	2,4,5-Trichlorophenol	ND	4.8	1.3	ug/l	
88-06-2	2,4,6-Trichlorophenol	ND	4.8	0.89	ug/l	
83-32-9	Acenaphthene	ND	0.96	0.18	ug/l	
208-96-8	Acenaphthylene	ND	0.96	0.13	ug/l	
98-86-2	Acetophenone	ND	1.9	0.20	ug/l	
120-12-7	Anthracene	ND	0.96	0.20	ug/l	
1912-24-9	Atrazine	ND	1.9	0.43	ug/l	
100-52-7	Benzaldehyde	ND	4.8	0.28	ug/l	
56-55-3	Benzo(a)anthracene	ND	0.96	0.20	ug/l	
50-32-8	Benzo(a)pyrene	ND	0.96	0.20	ug/l	
205-99-2	Benzo(b)fluoranthene	ND	0.96	0.20	ug/l	
191-24-2	Benzo(g,h,i)perylene	ND	0.96	0.33	ug/l	
207-08-9	Benzo(k)fluoranthene	ND	0.96	0.20	ug/l	
101-55-3	4-Bromophenyl phenyl ether	ND	1.9	0.39	ug/l	
85-68-7	Butyl benzyl phthalate	ND	1.9	0.44	ug/l	
92-52-4	1,1'-Biphenyl	ND	0.96	0.20	ug/l	
91-58-7	2-Chloronaphthalene	ND	1.9	0.23	ug/l	
106-47-8	4-Chloroaniline	ND	4.8	0.33	ug/l	
86-74-8	Carbazole	ND	0.96	0.22	ug/l	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 3

Client Sample ID: B-9GW

Lab Sample ID:JC43253-7Date Sampled:05/12/17Matrix:AQ - Ground WaterDate Received:05/13/17Method:SW846 8270DSW846 3510CPercent Solids:n/a

Project: 79 Hurley Avenue, Kingston, NY

ABN TCL List (SOM0 2.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
105-60-2	Caprolactam	ND	1.9	0.62	ug/l	
218-01-9	Chrysene	ND	0.96	0.17	ug/l	
111-91-1	bis(2-Chloroethoxy)methane	ND	1.9	0.27	ug/l	
111-44-4	bis(2-Chloroethyl)ether	ND	1.9	0.24	ug/l	
108-60-1	bis(2-Chloroisopropyl)ether	ND	1.9	0.39	ug/l	
7005-72-3	4-Chlorophenyl phenyl ether	ND	1.9	0.35	ug/l	
121-14-2	2,4-Dinitrotoluene	ND	0.96	0.53	ug/l	
606-20-2	2,6-Dinitrotoluene	ND	0.96	0.46	ug/l	
91-94-1	3,3'-Dichlorobenzidine	ND	1.9	0.49	ug/l	
123-91-1	1,4-Dioxane	ND	0.96	0.63	ug/l	
53-70-3	Dibenzo(a,h)anthracene	ND	0.96	0.32	ug/l	
132-64-9	Dibenzofuran	ND	4.8	0.21	ug/l	
84-74-2	Di-n-butyl phthalate	ND	1.9	0.48	ug/l	
117-84-0	Di-n-octyl phthalate	ND	1.9	0.22	ug/l	
84-66-2	Diethyl phthalate	ND	1.9	0.25	ug/l	
131-11-3	Dimethyl phthalate	ND	1.9	0.21	ug/l	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	1.9	1.6	ug/l	
206-44-0	Fluoranthene	ND	0.96	0.16	ug/l	
86-73-7	Fluorene	ND	0.96	0.16	ug/l	
118-74-1	Hexachlorobenzene	ND	0.96	0.31	ug/l	
87-68-3	Hexachlorobutadiene	ND	0.96	0.47	ug/l	
77-47-4	Hexachlorocyclopentadiene	ND	9.6	2.7	ug/l	
67-72-1	Hexachloroethane	ND	1.9	0.37	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	0.96	0.32	ug/l	
78-59-1	Isophorone	ND	1.9	0.27	ug/l	
91-57-6	2-Methylnaphthalene	ND	0.96	0.20	ug/l	
88-74-4	2-Nitroaniline	ND	4.8	0.27	ug/l	
99-09-2	3-Nitroaniline	ND	4.8	0.37	ug/l	
100-01-6	4-Nitroaniline	ND	4.8	0.42	ug/l	
91-20-3	Naphthalene	ND	0.96	0.22	ug/l	
98-95-3	Nitrobenzene	ND	1.9	0.62	ug/l	
621-64-7	N-Nitroso-di-n-propylamine	ND	1.9	0.46	ug/l	
86-30-6	N-Nitrosodiphenylamine	ND	4.8	0.21	ug/l	
85-01-8	Phenanthrene	ND	0.96	0.17	ug/l	
129-00-0	Pyrene	ND	0.96	0.21	ug/l	
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	1.9	0.36	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
367-12-4	2-Fluorophenol	45%		10-1	10%	

367-12-4 2-Fluorophenol 45% 10-110%

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 3 of 3

Client Sample ID: B-9GW

Lab Sample ID:JC43253-7Date Sampled:05/12/17Matrix:AQ - Ground WaterDate Received:05/13/17Method:SW846 8270DSW846 3510CPercent Solids:n/a

Project: 79 Hurley Avenue, Kingston, NY

ABN TCL List (SOM0 2.0)

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits		
4165-62-2	Phenol-d5	31%		10-110%		
118-79-6	2,4,6-Tribromophenol	92%		36-151%		
4165-60-0	Nitrobenzene-d5	77%		34-128%		
321-60-8	2-Fluorobiphenyl	77%		38-119 %		
1718-51-0	Terphenyl-d14	84%		26-129%		
CAS No.	Tentatively Identified Compounds		R.T.	Est. Conc.	Units	Q
	Total TIC, Semi-Volatile		0	ug/l		

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

Client Sample ID: B-10GW

Lab Sample ID:JC43253-8Date Sampled:05/12/17Matrix:AQ - Ground WaterDate Received:05/13/17Method:SW846 8260CPercent Solids:n/a

Project: 79 Hurley Avenue, Kingston, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 2A178749.D 1 05/19/17 21:50 JC n/a n/a V2A7563

Run #2

Purge Volume

Run #1 5.0 ml

Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	5.6	10	5.0	ug/l	J
71-43-2	Benzene	ND	0.50	0.14	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.46	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.55	ug/l	
75-25-2	Bromoform	ND	1.0	0.34	ug/l	
74-83-9	Bromomethane	ND	2.0	0.46	ug/l	
78-93-3	2-Butanone (MEK)	ND	10	1.9	ug/l	
75-15-0	Carbon disulfide	ND	2.0	0.33	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.54	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.17	ug/l	
75-00-3	Chloroethane	ND	1.0	0.44	ug/l	
67-66-3	Chloroform	ND	1.0	0.23	ug/l	
74-87-3	Chloromethane	ND	1.0	0.96	ug/l	
110-82-7	Cyclohexane	ND	5.0	0.73	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.0	0.69	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.23	ug/l	
106-93-4	1,2-Dibromoethane	ND	1.0	0.22	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.23	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.19	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.21	ug/l	
75-71-8	Dichlorodifluoromethane	ND	2.0	0.70	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.21	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.39	ug/l	
75-35-4	1,1-Dichloroethene	ND	1.0	0.20	ug/l	
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.31	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.36	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.33	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.19	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.26	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.20	ug/l	
76-13-1	Freon 113	ND	5.0	1.2	ug/l	
591-78-6	2-Hexanone	ND	5.0	1.5	ug/l	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 2

Report of Analysis

Client Sample ID: B-10GW

Lab Sample ID:JC43253-8Date Sampled:05/12/17Matrix:AQ - Ground WaterDate Received:05/13/17Method:SW846 8260CPercent Solids:n/a

Project: 79 Hurley Avenue, Kingston, NY

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q	
98-82-8	Isopropylbenzene	ND	1.0	0.16	ug/l		
79-20-9	Methyl Acetate	ND	5.0	1.5	ug/l		
108-87-2	Methylcyclohexane	ND	5.0	0.78	ug/l		
1634-04-4	Methyl Tert Butyl Ether	2.1	1.0	0.34	ug/l		
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.0	1.2	ug/l		
75-09-2	Methylene chloride	ND	2.0	1.0	ug/l		
100-42-5	Styrene	ND	1.0	0.27	ug/l		
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.39	ug/l		
127-18-4	Tetrachloroethene	ND	1.0	0.23	ug/l		
108-88-3	Toluene	ND	1.0	0.23	ug/l		
87-61-6	1,2,3-Trichlorobenzene	ND	1.0	0.50	ug/l		
120-82-1	1,2,4-Trichlorobenzene	ND	1.0	0.50	ug/l		
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.22	ug/l		
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.28	ug/l		
79-01-6	Trichloroethene	ND	1.0	0.26	ug/l		
75-69-4	Trichlorofluoromethane	ND	2.0	0.58	ug/l		
75-01-4	Vinyl chloride	ND	1.0	0.33	ug/l		
	m,p-Xylene	ND	1.0	0.42	ug/l		
95-47-6	o-Xylene	ND	1.0	0.21	ug/l		
1330-20-7	Xylene (total)	ND	1.0	0.21	ug/l		
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts		
1868-53-7	Dibromofluoromethane	104%		76-12	20%		
17060-07-0	1,2-Dichloroethane-D4	96%		73-12	22%		
2037-26-5	Toluene-D8	102%		84-1	19%		
460-00-4	4-Bromofluorobenzene	104%		78-1 1	17%		
CAS No.	Tentatively Identified Compo	ounds	R.T.	Est.	Conc.	Units	Q
	Total TIC, Volatile		0		ug/l		

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: B-10GW

Lab Sample ID:JC43253-8Date Sampled:05/12/17Matrix:AQ - Ground WaterDate Received:05/13/17Method:SW846 8270D SW846 3510CPercent Solids:n/a

Project: 79 Hurley Avenue, Kingston, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 Z121871.D 1 05/19/17 14:02 AC 05/18/17 OP2948 EZ6044

Run #2

Initial Volume Final Volume

Run #1 1040 ml 1.0 ml

Run #2

ABN TCL List (SOM0 2.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
95-57-8	2-Chlorophenol	ND	4.8	0.79	ug/l	
59-50-7	4-Chloro-3-methyl phenol	ND	4.8	0.86	ug/l	
120-83-2	2,4-Dichlorophenol	ND	1.9	1.2	ug/l	
105-67-9	2,4-Dimethylphenol	ND	4.8	2.3	ug/l	
51-28-5	2,4-Dinitrophenol	ND	9.6	1.5	ug/l	
534-52-1	4,6-Dinitro-o-cresol	ND	4.8	1.2	ug/l	
95-48-7	2-Methylphenol	ND	1.9	0.85	ug/l	
	3&4-Methylphenol	ND	1.9	0.85	ug/l	
88-75-5	2-Nitrophenol	ND	4.8	0.92	ug/l	
100-02-7	4-Nitrophenol	ND	9.6	1.1	ug/l	
87-86-5	Pentachlorophenol	ND	3.8	1.3	ug/l	
108-95-2	Phenol	ND	1.9	0.38	ug/l	
58-90-2	2,3,4,6-Tetrachlorophenol	ND	4.8	1.4	ug/l	
95-95-4	2,4,5-Trichlorophenol	ND	4.8	1.3	ug/l	
88-06-2	2,4,6-Trichlorophenol	ND	4.8	0.89	ug/l	
83-32-9	Acenaphthene	ND	0.96	0.18	ug/l	
208-96-8	Acenaphthylene	ND	0.96	0.13	ug/l	
98-86-2	Acetophenone	ND	1.9	0.20	ug/l	
120-12-7	Anthracene	ND	0.96	0.20	ug/l	
1912-24-9	Atrazine	ND	1.9	0.43	ug/l	
100-52-7	Benzaldehyde	ND	4.8	0.28	ug/l	
56-55-3	Benzo(a)anthracene	ND	0.96	0.20	ug/l	
50-32-8	Benzo(a)pyrene	ND	0.96	0.20	ug/l	
205-99-2	Benzo(b)fluoranthene	ND	0.96	0.20	ug/l	
191-24-2	Benzo(g,h,i)perylene	ND	0.96	0.33	ug/l	
207-08-9	Benzo(k)fluoranthene	ND	0.96	0.20	ug/l	
101-55-3	4-Bromophenyl phenyl ether	ND	1.9	0.39	ug/l	
85-68-7	Butyl benzyl phthalate	ND	1.9	0.44	ug/l	
92-52-4	1,1'-Biphenyl	ND	0.96	0.20	ug/l	
91-58-7	2-Chloronaphthalene	ND	1.9	0.23	ug/l	
106-47-8	4-Chloroaniline	ND	4.8	0.33	ug/l	
86-74-8	Carbazole	ND	0.96	0.22	ug/l	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: B-10GW

Lab Sample ID: JC43253-8 **Date Sampled: 05/12/17** AQ - Ground Water Matrix: Date Received: 05/13/17 Method: SW846 8270D SW846 3510C Percent Solids: n/a

79 Hurley Avenue, Kingston, NY **Project:**

ABN TCL List (SOM0 2.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
105-60-2	Caprolactam	ND	1.9	0.62	ug/l	
218-01-9	Chrysene	ND	0.96	0.17	ug/l	
111-91-1	bis(2-Chloroethoxy)methane	ND	1.9	0.27	ug/l	
111-44-4	bis(2-Chloroethyl)ether	ND	1.9	0.24	ug/l	
108-60-1	bis(2-Chloroisopropyl)ether	ND	1.9	0.39	ug/l	
7005-72-3	4-Chlorophenyl phenyl ether	ND	1.9	0.35	ug/l	
121-14-2	2,4-Dinitrotoluene	ND	0.96	0.53	ug/l	
606-20-2	2,6-Dinitrotoluene	ND	0.96	0.46	ug/l	
91-94-1	3,3'-Dichlorobenzidine	ND	1.9	0.49	ug/l	
123-91-1	1,4-Dioxane	ND	0.96	0.63	ug/l	
53-70-3	Dibenzo(a,h)anthracene	ND	0.96	0.32	ug/l	
132-64-9	Dibenzofuran	ND	4.8	0.21	ug/l	
84-74-2	Di-n-butyl phthalate	ND	1.9	0.48	ug/l	
117-84-0	Di-n-octyl phthalate	ND	1.9	0.22	ug/l	
84-66-2	Diethyl phthalate	ND	1.9	0.25	ug/l	
131-11-3	Dimethyl phthalate	ND	1.9	0.21	ug/l	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	1.9	1.6	ug/l	
206-44-0	Fluoranthene	ND	0.96	0.16	ug/l	
86-73-7	Fluorene	ND	0.96	0.16	ug/l	
118-74-1	Hexachlorobenzene	ND	0.96	0.31	ug/l	
87-68-3	Hexachlorobutadiene	ND	0.96	0.47	ug/l	
77-47-4	Hexachlorocyclopentadiene	ND	9.6	2.7	ug/l	
67-72-1	Hexachloroethane	ND	1.9	0.37	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	0.96	0.32	ug/l	
78-59-1	Isophorone	ND	1.9	0.27	ug/l	
91-57-6	2-Methylnaphthalene	ND	0.96	0.20	ug/l	
88-74-4	2-Nitroaniline	ND	4.8	0.27	ug/l	
99-09-2	3-Nitroaniline	ND	4.8	0.37	ug/l	
100-01-6	4-Nitroaniline	ND	4.8	0.42	ug/l	
91-20-3	Naphthalene	ND	0.96	0.22	ug/l	
98-95-3	Nitrobenzene	ND	1.9	0.62	ug/l	
621-64-7	N-Nitroso-di-n-propylamine	ND	1.9	0.46	ug/l	
86-30-6	N-Nitrosodiphenylamine	ND	4.8	0.21	ug/l	
85-01-8	Phenanthrene	ND	0.96	0.17	ug/l	
129-00-0	Pyrene	ND	0.96	0.21	ug/l	
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	1.9	0.36	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
367-12-4	2-Fluorophenol	47%		10-1	10%	

367-12-4 2-Fluorophenol 10-110% 47%

ND = Not detectedMDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: B-10GW

Lab Sample ID:JC43253-8Date Sampled:05/12/17Matrix:AQ - Ground WaterDate Received:05/13/17Method:SW846 8270D SW846 3510CPercent Solids:n/a

Project: 79 Hurley Avenue, Kingston, NY

ABN TCL List (SOM0 2.0)

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits		
4165-62-2 118-79-6 4165-60-0	Phenol-d5 2,4,6-Tribromophenol Nitrobenzene-d5	32% 103% 85%		10-110% 36-151% 34-128%		
321-60-8 1718-51-0	2-Fluorobiphenyl Terphenyl-d14	82% 94%		38-119% 26-129%		
CAS No.	Tentatively Identified Compounds		R.T.	Est. Conc.	Units	Q
10544-50-0	Cyclic octaatomic sulfur Total TIC, Semi-Volatile		9.52	7.7 7.7	ug/l ug/l	JN J

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

3.9

Page 1 of 2

Report of Analysis

Client Sample ID: B-11GW

Lab Sample ID:JC43253-9Date Sampled:05/12/17Matrix:AQ - Ground WaterDate Received:05/13/17Method:SW846 8260CPercent Solids:n/a

Project: 79 Hurley Avenue, Kingston, NY

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	2A178750.D	2.5	05/19/17 22:18	JC	n/a	n/a	V2A7563
Run #2	2A178739.D	10	05/19/17 16:33	JC	n/a	n/a	V2A7563

	Purge Volume	
Run #1	5.0 ml	
Run #2	5.0 ml	

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	25	13	ug/l	
71-43-2	Benzene	0.48	1.3	0.35	ug/l	J
74-97-5	Bromochloromethane	ND	2.5	1.2	ug/l	
75-27-4	Bromodichloromethane	ND	2.5	1.4	ug/l	
75-25-2	Bromoform	ND	2.5	0.85	ug/l	
74-83-9	Bromomethane	ND	5.0	1.2	ug/l	
78-93-3	2-Butanone (MEK)	ND	25	4.7	ug/l	
75-15-0	Carbon disulfide	ND	5.0	0.83	ug/l	
56-23-5	Carbon tetrachloride	ND	2.5	1.3	ug/l	
108-90-7	Chlorobenzene	ND	2.5	0.44	ug/l	
75-00-3	Chloroethane	ND	2.5	1.1	ug/l	
67-66-3	Chloroform	ND	2.5	0.57	ug/l	
74-87-3	Chloromethane	ND	2.5	2.4	ug/l	
110-82-7	Cyclohexane	ND	13	1.8	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	5.0	1.7	ug/l	
124-48-1	Dibromochloromethane	ND	2.5	0.57	ug/l	
106-93-4	1,2-Dibromoethane	ND	2.5	0.56	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	2.5	0.58	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	2.5	0.48	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	2.5	0.53	ug/l	
75-71-8	Dichlorodifluoromethane	ND	5.0	1.8	ug/l	
75-34-3	1,1-Dichloroethane	ND	2.5	0.51	ug/l	
107-06-2	1,2-Dichloroethane	ND	2.5	0.98	ug/l	
75-35-4	1,1-Dichloroethene	ND	2.5	0.51	ug/l	
156-59-2	cis-1,2-Dichloroethene	ND	2.5	0.77	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	2.5	0.89	ug/l	
78-87-5	1,2-Dichloropropane	ND	2.5	0.82	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	2.5	0.46	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	2.5	0.65	ug/l	
100-41-4	Ethylbenzene	ND	2.5	0.49	ug/l	
76-13-1	Freon 113	ND	13	2.9	ug/l	
591-78-6	2-Hexanone	ND	13	3.8	ug/l	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 2

Report of Analysis

Client Sample ID: B-11GW

Lab Sample ID:JC43253-9Date Sampled:05/12/17Matrix:AQ - Ground WaterDate Received:05/13/17Method:SW846 8260CPercent Solids:n/a

Project: 79 Hurley Avenue, Kingston, NY

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q	
98-82-8	Isopropylbenzene	ND	2.5	0.39	ug/l		
79-20-9	Methyl Acetate	ND	13	3.9	ug/l		
108-87-2	Methylcyclohexane	ND	13	2.0	ug/l		
1634-04-4	Methyl Tert Butyl Ether	1270 a	10	3.4	ug/l		
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	13	3.0	ug/l		
75-09-2	Methylene chloride	ND	5.0	2.5	ug/l		
100-42-5	Styrene	ND	2.5	0.68	ug/l		
79-34-5	1,1,2,2-Tetrachloroethane	ND	2.5	0.98	ug/l		
127-18-4	Tetrachloroethene	ND	2.5	0.58	ug/l		
108-88-3	Toluene	ND	2.5	0.57	ug/l		
87-61-6	1,2,3-Trichlorobenzene	ND	2.5	1.3	ug/l		
120-82-1	1,2,4-Trichlorobenzene	ND	2.5	1.3	ug/l		
71-55-6	1,1,1-Trichloroethane	ND	2.5	0.54	ug/l		
79-00-5	1,1,2-Trichloroethane	ND	2.5	0.69	ug/l		
79-01-6	Trichloroethene	ND	2.5	0.64	ug/l		
75-69-4	Trichlorofluoromethane	ND	5.0	1.5	ug/l		
75-01-4	Vinyl chloride	ND	2.5	0.81	ug/l		
	m,p-Xylene	ND	2.5	1.1	ug/l		
95-47-6	o-Xylene	ND	2.5	0.51	ug/l		
1330-20-7	Xylene (total)	ND	2.5	0.51	ug/l		
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its		
1868-53-7	Dibromofluoromethane	103%	104%	76-1	20%		
17060-07-0	1,2-Dichloroethane-D4	98%	97%	73-1	22%		
2037-26-5	Toluene-D8	102%	102%	84-1	19%		
460-00-4	4-Bromofluorobenzene	104%	104%	78-1	17%		
CAS No.	Tentatively Identified Compo	ounds	R.T.	Est.	Conc.	Units	Q
	Total TIC, Volatile			0		ug/l	

(a) Result is from Run# 2

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: B-11GW

Lab Sample ID:JC43253-9Date Sampled:05/12/17Matrix:AQ - Ground WaterDate Received:05/13/17Method:SW846 8270D SW846 3510CPercent Solids:n/a

Project: 79 Hurley Avenue, Kingston, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 Z121872.D 1 05/19/17 14:29 AC 05/18/17 OP2948 EZ6044

Run #2

Initial Volume Final Volume Run #1 1000 ml 1.0 ml

Run #2

ABN TCL List (SOM0 2.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
95-57-8	2-Chlorophenol	ND	5.0	0.82	ug/l	
59-50-7	4-Chloro-3-methyl phenol	ND	5.0	0.89	ug/l	
120-83-2	2,4-Dichlorophenol	ND	2.0	1.3	ug/l	
105-67-9	2,4-Dimethylphenol	ND	5.0	2.4	ug/l	
51-28-5	2,4-Dinitrophenol	ND	10	1.6	ug/l	
534-52-1	4,6-Dinitro-o-cresol	ND	5.0	1.3	ug/l	
95-48-7	2-Methylphenol	ND	2.0	0.89	ug/l	
	3&4-Methylphenol	ND	2.0	0.88	ug/l	
88-75-5	2-Nitrophenol	ND	5.0	0.96	ug/l	
100-02-7	4-Nitrophenol	ND	10	1.2	ug/l	
87-86-5	Pentachlorophenol	ND	4.0	1.4	ug/l	
108-95-2	Phenol	ND	2.0	0.39	ug/l	
58-90-2	2,3,4,6-Tetrachlorophenol	ND	5.0	1.5	ug/l	
95-95-4	2,4,5-Trichlorophenol	ND	5.0	1.3	ug/l	
88-06-2	2,4,6-Trichlorophenol	ND	5.0	0.92	ug/l	
83-32-9	Acenaphthene	ND	1.0	0.19	ug/l	
208-96-8	Acenaphthylene	ND	1.0	0.14	ug/l	
98-86-2	Acetophenone	ND	2.0	0.21	ug/l	
120-12-7	Anthracene	ND	1.0	0.21	ug/l	
1912-24-9	Atrazine	ND	2.0	0.45	ug/l	
100-52-7	Benzaldehyde	ND	5.0	0.29	ug/l	
56-55-3	Benzo(a)anthracene	ND	1.0	0.20	ug/l	
50-32-8	Benzo(a)pyrene	ND	1.0	0.21	ug/l	
205-99-2	Benzo(b)fluoranthene	ND	1.0	0.21	ug/l	
191-24-2	Benzo(g,h,i)perylene	ND	1.0	0.34	ug/l	
207-08-9	Benzo(k)fluoranthene	ND	1.0	0.21	ug/l	
101-55-3	4-Bromophenyl phenyl ether	ND	2.0	0.40	ug/l	
85-68-7	Butyl benzyl phthalate	ND	2.0	0.46	ug/l	
92-52-4	1,1'-Biphenyl	ND	1.0	0.21	ug/l	
91-58-7	2-Chloronaphthalene	ND	2.0	0.24	ug/l	
106-47-8	4-Chloroaniline	ND	5.0	0.34	ug/l	
86-74-8	Carbazole	ND	1.0	0.23	ug/l	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 3

Client Sample ID: B-11GW

Lab Sample ID: JC43253-9 **Date Sampled: 05/12/17** Matrix: AQ - Ground Water Date Received: 05/13/17

Method: SW846 8270D SW846 3510C Percent Solids: n/a 79 Hurley Avenue, Kingston, NY **Project:**

ABN TCL List (SOM0 2.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
105-60-2	Caprolactam	ND	2.0	0.65	ug/l	
218-01-9	Chrysene	ND	1.0	0.18	ug/l	
111-91-1	bis(2-Chloroethoxy)methane	ND	2.0	0.28	ug/l	
111-44-4	bis(2-Chloroethyl)ether	ND	2.0	0.25	ug/l	
108-60-1	bis(2-Chloroisopropyl)ether	ND	2.0	0.40	ug/l	
7005-72-3	4-Chlorophenyl phenyl ether	ND	2.0	0.37	ug/l	
121-14-2	2,4-Dinitrotoluene	ND	1.0	0.55	ug/l	
606-20-2	2,6-Dinitrotoluene	ND	1.0	0.48	ug/l	
91-94-1	3,3'-Dichlorobenzidine	ND	2.0	0.51	ug/l	
123-91-1	1,4-Dioxane	ND	1.0	0.66	ug/l	
53-70-3	Dibenzo(a,h)anthracene	ND	1.0	0.33	ug/l	
132-64-9	Dibenzofuran	ND	5.0	0.22	ug/l	
84-74-2	Di-n-butyl phthalate	ND	2.0	0.50	ug/l	
117-84-0	Di-n-octyl phthalate	ND	2.0	0.23	ug/l	
84-66-2	Diethyl phthalate	ND	2.0	0.26	ug/l	
131-11-3	Dimethyl phthalate	ND	2.0	0.22	ug/l	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	2.0	1.7	ug/l	
206-44-0	Fluoranthene	ND	1.0	0.17	ug/l	
86-73-7	Fluorene	ND	1.0	0.17	ug/l	
118-74-1	Hexachlorobenzene	ND	1.0	0.33	ug/l	
87-68-3	Hexachlorobutadiene	ND	1.0	0.49	ug/l	
77-47-4	Hexachlorocyclopentadiene	ND	10	2.8	ug/l	
67-72-1	Hexachloroethane	ND	2.0	0.39	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	1.0	0.33	ug/l	
78-59-1	Isophorone	ND	2.0	0.28	ug/l	
91-57-6	2-Methylnaphthalene	ND	1.0	0.21	ug/l	
88-74-4	2-Nitroaniline	ND	5.0	0.28	ug/l	
99-09-2	3-Nitroaniline	ND	5.0	0.39	ug/l	
100-01-6	4-Nitroaniline	ND	5.0	0.44	ug/l	
91-20-3	Naphthalene	ND	1.0	0.23	ug/l	
98-95-3	Nitrobenzene	ND	2.0	0.64	ug/l	
621-64-7	N-Nitroso-di-n-propylamine	ND	2.0	0.48	ug/l	
86-30-6	N-Nitrosodiphenylamine	ND	5.0	0.22	ug/l	
85-01-8	Phenanthrene	ND	1.0	0.18	ug/l	
129-00-0	Pyrene	ND	1.0	0.22	ug/l	
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	2.0	0.37	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
367-12-4	2-Fluorophenol	45%		10-1	10%	

ND = Not detectedMDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 3 of 3

Client Sample ID: B-11GW

Lab Sample ID:JC43253-9Date Sampled:05/12/17Matrix:AQ - Ground WaterDate Received:05/13/17Method:SW846 8270D SW846 3510CPercent Solids:n/a

Project: 79 Hurley Avenue, Kingston, NY

ABN TCL List (SOM0 2.0)

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits		
4165-62-2 118-79-6 4165-60-0 321-60-8 1718-51-0	Phenol-d5 2,4,6-Tribromophenol Nitrobenzene-d5 2-Fluorobiphenyl Terphenyl-d14	31% 95% 77% 75% 93%		10-110% 36-151% 34-128% 38-119% 26-129%		
CAS No.	Tentatively Identified Compo	ounds	R.T.	Est. Conc.	Units	Q
10544-50-0	unknown unknown Cyclic octaatomic sulfur Total TIC, Semi-Volatile		4.50 4.83 9.52	8.4 5.9 6.8 21.1	ug/l ug/l ug/l ug/l	J J JN J

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: B-13GW

Lab Sample ID:JC43253-10Date Sampled:05/12/17Matrix:AQ - Ground WaterDate Received:05/13/17Method:SW846 8260CPercent Solids:n/a

Project: 79 Hurley Avenue, Kingston, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 3B137429.D 1 05/20/17 11:55 VC n/a n/a V3B6093

Run #2

Purge Volume

Run #1 5.0 ml

Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	10	5.0	ug/l	
71-43-2	Benzene	ND	0.50	0.14	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.46	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.55	ug/l	
75-25-2	Bromoform	ND	1.0	0.34	ug/l	
74-83-9	Bromomethane	ND	2.0	0.46	ug/l	
78-93-3	2-Butanone (MEK)	ND	10	1.9	ug/l	
75-15-0	Carbon disulfide	ND	2.0	0.33	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.54	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.17	ug/l	
75-00-3	Chloroethane	ND	1.0	0.44	ug/l	
67-66-3	Chloroform	ND	1.0	0.23	ug/l	
74-87-3	Chloromethane	ND	1.0	0.96	ug/l	
110-82-7	Cyclohexane	ND	5.0	0.73	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.0	0.69	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.23	ug/l	
106-93-4	1,2-Dibromoethane	ND	1.0	0.22	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.23	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.19	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.21	ug/l	
75-71-8	Dichlorodifluoromethane	ND	2.0	0.70	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.21	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.39	ug/l	
75-35-4	1,1-Dichloroethene	ND	1.0	0.20	ug/l	
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.31	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.36	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.33	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.19	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.26	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.20	ug/l	
76-13-1	Freon 113	ND	5.0	1.2	ug/l	
591-78-6	2-Hexanone	ND	5.0	1.5	ug/l	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 2

Report of Analysis

Client Sample ID: B-13GW

Lab Sample ID:JC43253-10Date Sampled:05/12/17Matrix:AQ - Ground WaterDate Received:05/13/17Method:SW846 8260CPercent Solids:n/a

Project: 79 Hurley Avenue, Kingston, NY

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q	
98-82-8	Isopropylbenzene	ND	1.0	0.16	ug/l		
79-20-9	Methyl Acetate	ND	5.0	1.5	ug/l		
108-87-2	Methylcyclohexane	ND	5.0	0.78	ug/l		
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.34	ug/l		
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.0	1.2	ug/l		
75-09-2	Methylene chloride	ND	2.0	1.0	ug/l		
100-42-5	Styrene	ND	1.0	0.27	ug/l		
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.39	ug/l		
127-18-4	Tetrachloroethene	ND	1.0	0.23	ug/l		
108-88-3	Toluene	ND	1.0	0.23	ug/l		
87-61-6	1,2,3-Trichlorobenzene	ND	1.0	0.50	ug/l		
120-82-1	1,2,4-Trichlorobenzene	ND	1.0	0.50	ug/l		
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.22	ug/l		
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.28	ug/l		
79-01-6	Trichloroethene	ND	1.0	0.26	ug/l		
75-69-4	Trichlorofluoromethane	ND	2.0	0.58	ug/l		
75-01-4	Vinyl chloride	ND	1.0	0.33	ug/l		
	m,p-Xylene	ND	1.0	0.42	ug/l		
95-47-6	o-Xylene	ND	1.0	0.21	ug/l		
1330-20-7	Xylene (total)	ND	1.0	0.21	ug/l		
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its		
1868-53-7	Dibromofluoromethane	112%		76-1	20%		
17060-07-0	1,2-Dichloroethane-D4	115%		73-1	22 %		
2037-26-5	Toluene-D8	95%		84-1	19%		
460-00-4	4-Bromofluorobenzene	97%		78-1	17%		
CAS No.	Tentatively Identified Compo	ounds	R.T.	Est.	Conc.	Units	Q
	Total TIC, Volatile			0		ug/l	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: B-13GW

Lab Sample ID:JC43253-10Date Sampled:05/12/17Matrix:AQ - Ground WaterDate Received:05/13/17Method:SW846 8270DSW846 3510CPercent Solids:n/a

Project: 79 Hurley Avenue, Kingston, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 Z121869.D 1 05/19/17 12:40 AC 05/18/17 OP2948 EZ6044

Run #2

Initial Volume Final Volume

Run #1 1050 ml 1.0 ml

Run #2

ABN TCL List (SOM0 2.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
95-57-8	2-Chlorophenol	ND	4.8	0.78	ug/l	
59-50-7	4-Chloro-3-methyl phenol	ND	4.8	0.85	ug/l	
120-83-2	2,4-Dichlorophenol	ND	1.9	1.2	ug/l	
105-67-9	2,4-Dimethylphenol	ND	4.8	2.3	ug/l	
51-28-5	2,4-Dinitrophenol	ND	9.5	1.5	ug/l	
534-52-1	4,6-Dinitro-o-cresol	ND	4.8	1.2	ug/l	
95-48-7	2-Methylphenol	ND	1.9	0.85	ug/l	
	3&4-Methylphenol	ND	1.9	0.84	ug/l	
88-75-5	2-Nitrophenol	ND	4.8	0.91	ug/l	
100-02-7	4-Nitrophenol	ND	9.5	1.1	ug/l	
87-86-5	Pentachlorophenol	ND	3.8	1.3	ug/l	
108-95-2	Phenol	ND	1.9	0.37	ug/l	
58-90-2	2,3,4,6-Tetrachlorophenol	ND	4.8	1.4	ug/l	
95-95-4	2,4,5-Trichlorophenol	ND	4.8	1.3	ug/l	
88-06-2	2,4,6-Trichlorophenol	ND	4.8	0.88	ug/l	
83-32-9	Acenaphthene	ND	0.95	0.18	ug/l	
208-96-8	Acenaphthylene	ND	0.95	0.13	ug/l	
98-86-2	Acetophenone	ND	1.9	0.20	ug/l	
120-12-7	Anthracene	ND	0.95	0.20	ug/l	
1912-24-9	Atrazine	ND	1.9	0.43	ug/l	
100-52-7	Benzaldehyde	ND	4.8	0.28	ug/l	
56-55-3	Benzo(a)anthracene	ND	0.95	0.19	ug/l	
50-32-8	Benzo(a)pyrene	ND	0.95	0.20	ug/l	
205-99-2	Benzo(b)fluoranthene	ND	0.95	0.20	ug/l	
191-24-2	Benzo(g,h,i)perylene	ND	0.95	0.32	ug/l	
207-08-9	Benzo(k)fluoranthene	ND	0.95	0.20	ug/l	
101-55-3	4-Bromophenyl phenyl ether	ND	1.9	0.38	ug/l	
85-68-7	Butyl benzyl phthalate	ND	1.9	0.44	ug/l	
92-52-4	1,1'-Biphenyl	ND	0.95	0.20	ug/l	
91-58-7	2-Chloronaphthalene	ND	1.9	0.22	ug/l	
106-47-8	4-Chloroaniline	ND	4.8	0.32	ug/l	
86-74-8	Carbazole	ND	0.95	0.22	ug/l	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 3

Client Sample ID: B-13GW

Lab Sample ID:JC43253-10Date Sampled:05/12/17Matrix:AQ - Ground WaterDate Received:05/13/17Method:SW846 8270D SW846 3510CPercent Solids:n/a

Project: 79 Hurley Avenue, Kingston, NY

ABN TCL List (SOM0 2.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
105-60-2	Caprolactam	ND	1.9	0.62	ug/l	
218-01-9	Chrysene	ND	0.95	0.17	ug/l	
111-91-1	bis(2-Chloroethoxy)methane	ND	1.9	0.26	ug/l	
111-44-4	bis(2-Chloroethyl)ether	ND	1.9	0.24	ug/l	
108-60-1	bis(2-Chloroisopropyl)ether	ND	1.9	0.38	ug/l	
7005-72-3	4-Chlorophenyl phenyl ether	ND	1.9	0.35	ug/l	
121-14-2	2,4-Dinitrotoluene	ND	0.95	0.53	ug/l	
606-20-2	2,6-Dinitrotoluene	ND	0.95	0.45	ug/l	
91-94-1	3,3'-Dichlorobenzidine	ND	1.9	0.48	ug/l	
123-91-1	1,4-Dioxane	ND	0.95	0.63	ug/l	
53-70-3	Dibenzo(a,h)anthracene	ND	0.95	0.32	ug/l	
132-64-9	Dibenzofuran	ND	4.8	0.21	ug/l	
84-74-2	Di-n-butyl phthalate	ND	1.9	0.47	ug/l	
117-84-0	Di-n-octyl phthalate	ND	1.9	0.22	ug/l	
84-66-2	Diethyl phthalate	ND	1.9	0.25	ug/l	
131-11-3	Dimethyl phthalate	ND	1.9	0.21	ug/l	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	1.9	1.6	ug/l	
206-44-0	Fluoranthene	ND	0.95	0.16	ug/l	
86-73-7	Fluorene	ND	0.95	0.16	ug/l	
118-74-1	Hexachlorobenzene	ND	0.95	0.31	ug/l	
87-68-3	Hexachlorobutadiene	ND	0.95	0.47	ug/l	
77-47-4	Hexachlorocyclopentadiene	ND	9.5	2.6	ug/l	
67-72-1	Hexachloroethane	ND	1.9	0.37	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	0.95	0.32	ug/l	
78-59-1	Isophorone	ND	1.9	0.26	ug/l	
91-57-6	2-Methylnaphthalene	ND	0.95	0.20	ug/l	
88-74-4	2-Nitroaniline	ND	4.8	0.26	ug/l	
99-09-2	3-Nitroaniline	ND	4.8	0.37	ug/l	
100-01-6	4-Nitroaniline	ND	4.8	0.42	ug/l	
91-20-3	Naphthalene	ND	0.95	0.22	ug/l	
98-95-3	Nitrobenzene	ND	1.9	0.61	ug/l	
621-64-7	N-Nitroso-di-n-propylamine	ND	1.9	0.46	ug/l	
86-30-6	N-Nitrosodiphenylamine	ND	4.8	0.21	ug/l	
85-01-8	Phenanthrene	ND	0.95	0.17	ug/l	
129-00-0	Pyrene	ND	0.95	0.21	ug/l	
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	1.9	0.35	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
367-12-4	2-Fluorophenol	42%	10-110%			

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 3 of 3

Client Sample ID: B-13GW

Lab Sample ID:JC43253-10Date Sampled:05/12/17Matrix:AQ - Ground WaterDate Received:05/13/17Method:SW846 8270DSW846 3510CPercent Solids:n/a

Project: 79 Hurley Avenue, Kingston, NY

ABN TCL List (SOM0 2.0)

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits		
4165-62-2	Phenol-d5	30%		10-110%		
118-79-6 4165-60-0	2,4,6-Tribromophenol Nitrobenzene-d5	87% 77%		36-151% 34-128%		
321-60-8	2-Fluorobiphenyl	74%		38-119%		
1718-51-0	Terphenyl-d14	70 %		26-129%		
CAS No.	Tentatively Identified Compo	ounds	R.T.	Est. Conc.	Units	Q
10544-50-0	Cyclic octaatomic sulfur		9.52	6.8	ug/l	JN
	Total TIC, Semi-Volatile			6.8	ug/l	J

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

Client Sample ID: TB

Lab Sample ID:JC43253-11Date Sampled:05/12/17Matrix:AQ - Trip Blank WaterDate Received:05/13/17Method:SW846 8260CPercent Solids:n/a

Project: 79 Hurley Avenue, Kingston, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 2C149625.D 1 05/17/17 15:14 HT n/a n/a V2C6642

Run #2

Purge Volume

Run #1 5.0 ml

Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	10	5.0	ug/l	
71-43-2	Benzene	ND	0.50	0.14	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.46	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.55	ug/l	
75-25-2	Bromoform	ND	1.0	0.34	ug/l	
74-83-9	Bromomethane	ND	2.0	0.46	ug/l	
78-93-3	2-Butanone (MEK)	ND	10	1.9	ug/l	
75-15-0	Carbon disulfide	ND	2.0	0.33	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.54	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.17	ug/l	
75-00-3	Chloroethane	ND	1.0	0.44	ug/l	
67-66-3	Chloroform	ND	1.0	0.23	ug/l	
74-87-3	Chloromethane	ND	1.0	0.96	ug/l	
110-82-7	Cyclohexane	ND	5.0	0.73	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.0	0.69	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.23	ug/l	
106-93-4	1,2-Dibromoethane	ND	1.0	0.22	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.23	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.19	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.21	ug/l	
75-71-8	Dichlorodifluoromethane	ND	2.0	0.70	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.21	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.39	ug/l	
75-35-4	1,1-Dichloroethene	ND	1.0	0.20	ug/l	
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.31	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.36	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.33	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.19	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.26	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.20	ug/l	
76-13-1	Freon 113	ND	5.0	1.2	ug/l	
591-78-6	2-Hexanone	ND	5.0	1.5	ug/l	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 2

Report of Analysis

Client Sample ID: TB

Lab Sample ID:JC43253-11Date Sampled:05/12/17Matrix:AQ - Trip Blank WaterDate Received:05/13/17Method:SW846 8260CPercent Solids:n/a

Project: 79 Hurley Avenue, Kingston, NY

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q	
98-82-8	Isopropylbenzene	ND	1.0	0.16	ug/l		
79-20-9	Methyl Acetate	ND	5.0	1.5	ug/l		
108-87-2	Methylcyclohexane	ND	5.0	0.78	ug/l		
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.34	ug/l		
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.0	1.2	ug/l		
75-09-2	Methylene chloride	ND	2.0	1.0	ug/l		
100-42-5	Styrene	ND	1.0	0.27	ug/l		
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.39	ug/l		
127-18-4	Tetrachloroethene	ND	1.0	0.23	ug/l		
108-88-3	Toluene	ND	1.0	0.23	ug/l		
87-61-6	1,2,3-Trichlorobenzene	ND	1.0	0.50	ug/l		
120-82-1	1,2,4-Trichlorobenzene	ND	1.0	0.50	ug/l		
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.22	ug/l		
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.28	ug/l		
79-01-6	Trichloroethene	ND	1.0	0.26	ug/l		
75-69-4	Trichlorofluoromethane	ND	2.0	0.58	ug/l		
75-01-4	Vinyl chloride	ND	1.0	0.33	ug/l		
	m,p-Xylene	ND	1.0	0.42	ug/l		
95-47-6	o-Xylene	ND	1.0	0.21	ug/l		
1330-20-7	Xylene (total)	ND	1.0	0.21	ug/l		
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its		
1868-53-7	Dibromofluoromethane	101%		76-1	20%		
17060-07-0	1,2-Dichloroethane-D4	104%		73-1	22 %		
2037-26-5	Toluene-D8	99%		84-1	19%		
460-00-4	4-Bromofluorobenzene	97%		78-1	17%		
CAS No.	Tentatively Identified Compo	ounds	R.T.	Est.	Conc.	Units	Q
	Total TIC, Volatile			0		ug/l	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

	_
Misc.	Forms
VIIV.	FARING

Dayton, NJ

Custody Documents and Other Forms

Includes the following where applicable:

• Chain of Custody

4.
4

C-36	50 مال	CHAIN OF CUST	ODY		PAGEOF
000 A	COUTEST OF A	8 33 Accords - Fays on 2215 Pyran (30, (Aryani N1 08)		9858°1999 5753	Probatic betitioned a
· · · · · · · · · · · · · · · · · · ·	~\name{\lambda}_{J_{1},\script{\lambda}}	TEL. 331-309-999) FAX: 770-709-7 www.addtod.com	20(0°1400) e	CO sonice Class #	1000 houseast 5043453
Substitution is infrared		South to the first		Protection of the	equipe to the second of the se
STATINER STATISTICS TO THE	/ GENEL - 6	156-EN	<u>TYTE THE UNION OF DAYS.</u>		Ditter Chinking Water (Did Concert Whiter (PW Water (DW 9 An has Weeter
	West 17 Honey A 724 "Kingston, A	Saling bisannelsen (tratitie Visit a Constant, Name	da.	3 -	50 - 501 0. At 359 350 Section (
Carried County	Errer Procest	S.M. Bearlines ()	\$	28	CK - ON Ext - Cens laged Adit At
France Confidence Conf	Task Chief Patriage Code V	[] [] [] [] [] [] [] [] [] []	Han Sp		SCL - Corp. Soft. WP - Mice
732-380 1260	Physica Project Manager	- deleterate	· *	=======================================	Ph Fold Blank RD Ogggenere Disak RD-Flatter Joseph
H. P. C. 2718 R	<u>, С. Чалли</u>	Stocks ,	(Anthory Cropping Pages	ğK	- YB-Tro Bans
eno Ascion		Someted	= 5 2 6 8 5 5	양치 !!!	
Field .D / Point of Collect	2000 Meaning Vall 1 100-	1 5 0 694 5 / Le	1 }	X X	Deliacono
tal Boot		145 84 5 46		Ř Z	IIIII (Shiace
7 (0.1)	5-12	1030 AH 5 112	+ -		I I I I MBB
9 5 6-12 5 2-12A	15-12	1050 BH 5 HE			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
5 12A 6 1 8 13	A 15-13-	11315 JAN 3 115		 	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
7 B-98W	4-12	920 04 91 9		X X	
8-10 G1		11142 BH GW 4		XX	
9 8-1161 10 5-1301	V	135 AT 62 4	والإستان والمراجع والأراج والمراجع والمراجع	Ŷ <u>\$</u>	
il TB	<u> </u>	62 a	N I I I I I I I I I I I I I I I I I I I		
Santanan di Tres Rossos	2.5i				omnautie (Special Institutions 1965) (1967)
Sect to Suplanea Days	Approved by (MGH, Aprilled) (MG) (Gode Universe station (Aug Godennie station 15 11 41 5		10 xt 732 00	Hed to 5147
COM NUMBER	CONTRACTOR SHEW 36	Ditty - Alkans (Invested)) State Forms (FED Script		Engages D6 9/04/7
2 Ctay 66:564	Wattoner J	Commercial "L"	🙄 — кактог. Эменчи Риссиони Берен Феу	<i>,</i>	
Fave tables			ия, боспация "Эта Намир, « ПС Учата» Випили « Рипис Яво ских		rentlaci uppo recollytia, too Eaboratory
Greengery & See: T.A data accepted VA Let	Signiple Custorly need	So doorstemen besee each time sam		g rosejar dalkors.	N/ 8570 P. PONGES ESTABLISHED (1997)
Recording to Magnetor	Lore Times: Sanctived By: 3 June 3 Sanctived By: 5 June 3 Sanctived By: 5	. FX	Rediringuation By	Sing Times. 12 19 19 19 19 19 19 19 19 19 19 19 19 19	President Dy Propiete Dy 14
Retriguished by Sangilers	Sale time. Structured by:		Ticholosy General III no	ner Prosessed wheel continuities	State On Whening S

3M088-010 Rev. Date: 9/13/16

JC43253: Chain of Custody Page 1 of 3

SGS Accutest Sample Receipt Summary

Job Number:	JC43253	Client: Part	tner	Proje	ct: 17242956-EN			
Date / Time Received:	5/13/2017 12:00:00	PM Del	livery Method:	FedEx Airb	ill #'s: 725069295983			
Cooler Temps (Raw Mea	,							
Cooler Security	Y or N		<u>Y or N</u>	Sample Integrity - Doo	umentation	Υ α	or N	
Custody Seals Present: Custody Seals Intact:	☑	3. COC Preser Smpl Dates/Tin		Sample labels present Container labeling com	on bottles:	V V		
Cooler Temperature	Y or N			Sample container labe	17 COC agree:	✓		
Temp criteria achieved: Cooler temp verification: Cooler media: No. Coolers: Quality Control_Preserv: Trip Blank present / coole Trip Blank listed on COC Samples preserved prop VOCs headspace free:	er: 🔽 🗌			Sample Integrity - Co 1. Sample recvd within H 2. All containers accounts 3. Condition of sample: Sample Integrity - Ins 1. Analysis requested is 2. Bottles received for ur 3. Sufficient volume recv 4. Compositing instruction 5. Filtering instructions of	T: ed for: tructions clear: nspecified tests of for analysis: ons clear:	✓ ✓ Broken	/ Leaking Dr N U U U U U U U U U	
-5 Received 1-8 -8 and -9 Recei -10 Received 2	Boz soil jar broken. N Boz soil jar broken. N ved 1-40mL HCL via -40mL HCL vials bro ved were not bubble	o additional int l broken. ken.						

SM089-02 Rev. Date 12/1/16

JC43253: Chain of Custody Page 2 of 3 Sample -3 & -5: Please run for VOCs. Log in SUBSOL and use value from sample -4. Sample -8, -9, -10: OK to proceed with limited volume for VOCs

JC43253: Chain of Custody Page 3 of 3

Dayton, NJ 02/09/18

The results set forth herein are provided by SGS North America Inc.

e-Hardcopy 2.0
Automated Report

Partner Engineering & Science

79 Hurley Avenue, Kingston, NY

17242956-EN

SGS Job Number: JC43407

Sampling Date: 05/15/17

Report to:

Partner Engineering & Science

channa@partneresi.com

ATTN: Cilien Hanna

Total number of pages in report: 34

TNI TABORATORY

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Program and/or state specific certification programs as applicable.

Maney - Cole
Nancy Cole
Laboratory Director

Client Service contact: Kelly Patterson 732-329-0200

Certifications: NJ(12129), NY(10983), CA, CT, FL, IL, IN, KS, KY, LA, MA, MD, ME, MN, NC, OH VAP (CL0056), AK (UST-103), AZ (AZ0786), PA, RI, SC, TX, UT, VA, WV, DoD ELAP (L-A-B L2248)

This report shall not be reproduced, except in its entirety, without the written approval of SGS. Test results relate only to samples analyzed.

SGS North America Inc. • 2235 Route 130 • Dayton, NJ 08810 • tel: 732-329-0200 • fax: 732-329-3499

Sections:

-1-

Table of Contents

Section 1: Sample Summary	3
Section 2: Summary of Hits	4
Section 3: Sample Results	5
3.1: JC43407-1: B-14	6
3.2: JC43407-2: B-15	11
3.3: JC43407-3: B-14 GW	16
3.4: JC43407-4: B-15 GW	21
3.5: JC43407-5: MW-1	26
Section 4: Misc. Forms	31
4.1: Chain of Custody	32

Sample Summary

Job No:

JC43407

Partner Engineering & Science

79 Hurley Avenue, Kingston, NY Project No: 17242956-EN

Sample	Collected			Matr	rix	Client
Number	Date	Time By	Received	Code	Type	Sample ID
JC43407-1	05/15/17	08:20 AH	05/16/17	so	Soil	B-14
JC43407-2	05/15/17	09:30 AH	05/16/17	so	Soil	B-15
JC43407-3	05/15/17	08:50 AH	05/16/17	AQ	Ground Water	B-14 GW
JC43407-4	05/15/17	10:00 AH	05/16/17	AQ	Ground Water	B-15 GW
JC43407-5	05/15/17	10:45 AH	05/16/17	\mathbf{AQ}	Ground Water	MW-1

Soil samples reported on a dry weight basis unless otherwise indicated on result page.

Summary of Hits
Job Number: JC43407
Account: Partner Engineering & Science
Project: 79 Hurley Avenue, Kingston, NY
Collected: 05/15/17

Lab Sample ID Client Sample ID Analyte	Result/ Qual	RL	MDL	Units	Method
JC43407-1 B-14					
Total TIC, Semi-Volatile	1.54 J			mg/kg	
JC43407-2 B-15					
Acetone Total TIC, Semi-Volatile	0.0224 0.23 J	0.0098	0.0049	mg/kg mg/kg	SW846 8260C
JC43407-3 B-14 GW					
cis-1,2-Dichloroethene	0.38 J	1.0	0.31	ug/l	SW846 8260C
JC43407-4 B-15 GW					
cis-1,2-Dichloroethene Total TIC, Semi-Volatile	0.57 J 5.2 J	1.0	0.31	ug/l ug/l	SW846 8260C
JC43407-5 MW-1					
Methyl Tert Butyl Ether	0.51 J	1.0	0.34	ug/l	SW846 8260C

Dayton, NJ

Sample Results	
Report of Analysis	

Client Sample ID: B-14

 Lab Sample ID:
 JC43407-1
 Date Sampled: 05/15/17

 Matrix:
 SO - Soil
 Date Received: 05/16/17

 Method:
 SW846 8260C
 SW846 5035
 Percent Solids: 79.1

Project: 79 Hurley Avenue, Kingston, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 Y172520.D 1 05/19/17 11:00 PS 05/17/17 08:00 n/a VY7461

Run #2

Initial Weight

Run #1 6.2 g

Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	0.010	0.0051	mg/kg	
71-43-2	Benzene	ND	0.00051	0.00012		
74-97-5	Bromochloromethane	ND	0.0051	0.00033		
75-27-4	Bromodichloromethane	ND	0.0020	0.00015		
75-25-2	Bromoform	ND	0.0051	0.00027	mg/kg	
74-83-9	Bromomethane	ND	0.0051	0.00049	mg/kg	
78-93-3	2-Butanone (MEK)	ND	0.010	0.0018	mg/kg	
75-15-0	Carbon disulfide	ND	0.0020	0.00017	mg/kg	
56-23-5	Carbon tetrachloride	ND	0.0020	0.00017	mg/kg	
108-90-7	Chlorobenzene	ND	0.0020	0.00017	mg/kg	
75-00-3	Chloroethane	ND	0.0051	0.00044	mg/kg	
67-66-3	Chloroform	ND	0.0020	0.00024	mg/kg	
74-87-3	Chloromethane	ND	0.0051	0.00022	mg/kg	
110-82-7	Cyclohexane	ND	0.0020	0.00056	mg/kg	
96-12-8	1,2-Dibromo-3-chloropropane	ND	0.0020	0.00049	mg/kg	
124-48-1	Dibromochloromethane	ND	0.0020	0.00015	mg/kg	
106-93-4	1,2-Dibromoethane	ND	0.0010	0.00025	mg/kg	
95-50-1	1,2-Dichlorobenzene	ND	0.0010	0.00017	mg/kg	
541-73-1	1,3-Dichlorobenzene	ND	0.0010	0.00014	mg/kg	
106-46-7	1,4-Dichlorobenzene	ND	0.0010	0.00016	mg/kg	
75-71-8	Dichlorodifluoromethane	ND	0.0051	0.00056	mg/kg	
75-34-3	1,1-Dichloroethane	ND	0.0010	0.00019	mg/kg	
107-06-2	1,2-Dichloroethane	ND	0.0010	0.00017	mg/kg	
75-35-4	1,1-Dichloroethene	ND	0.0010	0.00016	mg/kg	
156-59-2	cis-1,2-Dichloroethene	ND	0.0010	0.00045	mg/kg	
156-60-5	trans-1,2-Dichloroethene	ND	0.0010	0.00016	mg/kg	
78-87-5	1,2-Dichloropropane	ND	0.0020	0.00032	mg/kg	
10061-01-5	cis-1,3-Dichloropropene	ND	0.0020	0.00020	mg/kg	
10061-02-6	trans-1,3-Dichloropropene	ND	0.0020	0.00023	mg/kg	
100-41-4	Ethylbenzene	ND	0.0010	0.00015	mg/kg	
76-13-1	Freon 113	ND	0.0051	0.00049	mg/kg	
591-78-6	2-Hexanone	ND	0.0051	0.0014	mg/kg	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 2

79.1

Report of Analysis

Client Sample ID: B-14 Lab Sample ID: JC43407-1

Date Sampled: 05/15/17 Date Received: 05/16/17 Matrix: SO - Soil Method: SW846 8260C SW846 5035 **Percent Solids:**

79 Hurley Avenue, Kingston, NY **Project:**

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q	
98-82-8	Isopropylbenzene	ND	0.0020	0.00016	mg/k	g	
79-20-9	Methyl Acetate	ND	0.0051	0.0021	mg/k		
108-87-2	Methylcyclohexane	ND	0.0020	0.00051			
1634-04-4	Methyl Tert Butyl Ether	ND	0.0010	0.00027			
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	0.0051	0.00087			
75-09-2	Methylene chloride	ND	0.0051	0.0010	mg/k	g	
100-42-5	Styrene	ND	0.0020	0.00015			
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.0020	0.00024			
127-18-4	Tetrachloroethene	ND	0.0020	0.00029			
108-88-3	Toluene	ND	0.0010	0.00013			
87-61-6	1,2,3-Trichlorobenzene	ND	0.0051	0.00051			
120-82-1	1,2,4-Trichlorobenzene	ND	0.0051	0.00051			
71-55-6	1,1,1-Trichloroethane	ND	0.0020	0.00017			
79-00-5	1,1,2-Trichloroethane	ND	0.0020	0.00033			
79-01-6	Trichloroethene	ND	0.0010	0.00019			
75-69-4	Trichlorofluoromethane	ND	0.0051	0.00064			
75-01-4	Vinyl chloride	ND	0.0020	0.00021			
	m,p-Xylene	ND	0.0010	0.00022			
95-47-6	o-Xylene	ND	0.0010	0.00021			
1330-20-7	Xylene (total)	ND	0.0010	0.00021			
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts		
1868-53-7	Dibromofluoromethane	106%		72-12	29%		
17060-07-0	1,2-Dichloroethane-D4	97%		73-13	32 %		
2037-26-5	Toluene-D8	101%		80-12	20%		
460-00-4	4-Bromofluorobenzene	105%		77-12	25%		
CAS No.	Tentatively Identified Compo	ounds	R.T.	Est.	Conc.	Units	Q
	Total TIC, Volatile			0		mg/kg	Į

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 3

Report of Analysis

Client Sample ID: B-14

 Lab Sample ID:
 JC43407-1
 Date Sampled: 05/15/17

 Matrix:
 SO - Soil
 Date Received: 05/16/17

 Method:
 SW846 8270D
 SW846 3546
 Percent Solids: 79.1

Project: 79 Hurley Avenue, Kingston, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 M134302.D 1 05/22/17 11:55 AN 05/20/17 OP2987 EM5760

Run #2

Initial Weight Final Volume

Run #1 31.3 g 1.0 ml

Run #2

ABN TCL List (SOM0 2.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
95-57-8	2-Chlorophenol	ND	0.081	0.020	mg/kg	
59-50-7	4-Chloro-3-methyl phenol	ND	0.20	0.025	mg/kg	
120-83-2	2,4-Dichlorophenol	ND	0.20	0.034	mg/kg	
105-67-9	2,4-Dimethylphenol	ND	0.20	0.072	mg/kg	
51-28-5	2,4-Dinitrophenol	ND	0.20	0.15	mg/kg	
534-52-1	4,6-Dinitro-o-cresol	ND	0.20	0.043	mg/kg	
95-48-7	2-Methylphenol	ND	0.081	0.026	mg/kg	
	3&4-Methylphenol	ND	0.081	0.033	mg/kg	
88-75-5	2-Nitrophenol	ND	0.20	0.027	mg/kg	
100-02-7	4-Nitrophenol	ND	0.40	0.11	mg/kg	
87-86-5	Pentachlorophenol	ND	0.16	0.038	mg/kg	
108-95-2	Phenol	ND	0.081	0.021	mg/kg	
58-90-2	2,3,4,6-Tetrachlorophenol	ND	0.20	0.027	mg/kg	
95-95-4	2,4,5-Trichlorophenol	ND	0.20	0.030	mg/kg	
88-06-2	2,4,6-Trichlorophenol	ND	0.20	0.024	mg/kg	
83-32-9	Acenaphthene	ND	0.040	0.014	mg/kg	
208-96-8	Acenaphthylene	ND	0.040	0.021	mg/kg	
98-86-2	Acetophenone	ND	0.20	0.0087	mg/kg	
120-12-7	Anthracene	ND	0.040	0.025	mg/kg	
1912-24-9	Atrazine	ND	0.081	0.017	mg/kg	
56-55-3	Benzo(a)anthracene	ND	0.040	0.011	mg/kg	
50-32-8	Benzo(a)pyrene	ND	0.040	0.018	mg/kg	
205-99-2	Benzo(b)fluoranthene	ND	0.040	0.018	mg/kg	
191-24-2	Benzo(g,h,i)perylene	ND	0.040	0.020	mg/kg	
207-08-9	Benzo(k)fluoranthene	ND	0.040	0.019	mg/kg	
101-55-3	4-Bromophenyl phenyl ether	ND	0.081	0.016	mg/kg	
85-68-7	Butyl benzyl phthalate	ND	0.081	0.0099	mg/kg	
92-52-4	1,1'-Biphenyl	ND	0.081	0.0055	mg/kg	
100-52-7	Benzaldehyde	ND	0.20	0.010	mg/kg	
91-58-7	2-Chloronaphthalene	ND	0.081	0.0096	mg/kg	
106-47-8	4-Chloroaniline	ND	0.20	0.015	mg/kg	
86-74-8	Carbazole	ND	0.081	0.0059	mg/kg	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 3

05/16/17

79.1

Client Sample ID: B-14

Lab Sample ID: JC43407-1 **Date Sampled: 05/15/17** Matrix: SO - Soil Date Received:

Method: SW846 8270D SW846 3546 **Percent Solids:**

79 Hurley Avenue, Kingston, NY **Project:**

ABN TCL List (SOM0 2.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
105-60-2	Caprolactam	ND	0.081	0.016	mg/kg	
218-01-9	Chrysene	ND	0.040	0.013	mg/kg	
111-91-1	bis(2-Chloroethoxy)methane	ND	0.081	0.0086	mg/kg	
111-44-4	bis(2-Chloroethyl)ether	ND	0.081	0.017	mg/kg	
108-60-1	bis(2-Chloroisopropyl)ether	ND	0.081	0.015	mg/kg	
7005-72-3	4-Chlorophenyl phenyl ether	ND	0.081	0.013	mg/kg	
121-14-2	2,4-Dinitrotoluene	ND	0.040	0.013	mg/kg	
606-20-2	2,6-Dinitrotoluene	ND	0.040	0.020	mg/kg	
91-94-1	3,3'-Dichlorobenzidine	ND	0.010	0.034	mg/kg	
123-91-1	1,4-Dioxane	ND	0.040	0.027	mg/kg	
53-70-3	Dibenzo(a,h)anthracene	ND	0.040	0.018	mg/kg	
132-64-9	Dibenzofuran	ND	0.081	0.016	mg/kg	
84-74-2	Di-n-butyl phthalate	ND	0.081	0.0066	mg/kg	
117-84-0	Di-n-octyl phthalate	ND	0.081	0.010	mg/kg	
84-66-2	Diethyl phthalate	ND	0.081	0.0086	mg/kg	
131-11-3	Dimethyl phthalate	ND	0.081	0.0072	mg/kg	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	0.081	0.0095	mg/kg	
206-44-0	Fluoranthene	ND	0.040	0.018	mg/kg	
86-73-7	Fluorene	ND	0.040	0.019	mg/kg	
118-74-1	Hexachlorobenzene	ND	0.081	0.010	mg/kg	
87-68-3	Hexachlorobutadiene	ND	0.040	0.016	mg/kg	
77-47-4	Hexachlorocyclopentadiene	ND	0.40	0.016	mg/kg	
67-72-1	Hexachloroethane	ND	0.20	0.020	mg/kg	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	0.040	0.019	mg/kg	
78-59-1	Isophorone	ND	0.081	0.0086	mg/kg	
91-57-6	2-Methylnaphthalene	ND	0.081	0.0091	mg/kg	
88-74-4	2-Nitroaniline	ND	0.20	0.0095	mg/kg	
99-09-2	3-Nitroaniline	ND	0.20	0.010	mg/kg	
100-01-6	4-Nitroaniline	ND	0.20	0.010	mg/kg	
91-20-3	Naphthalene	ND	0.040	0.011	mg/kg	
98-95-3	Nitrobenzene	ND	0.081	0.016	mg/kg	
621-64-7	N-Nitroso-di-n-propylamine	ND	0.081	0.012	mg/kg	
86-30-6	N-Nitrosodiphenylamine	ND	0.20	0.015	mg/kg	
85-01-8	Phenanthrene	ND	0.040	0.014	mg/kg	
129-00-0	Pyrene	ND	0.040	0.013	mg/kg	
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	0.20	0.010	mg/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
367-12-4	2-Fluorophenol	60%		23-1	15%	

2-Fluorophenol 367-12-4 **60**% 23-115%

ND = Not detectedMDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: B-14

 Lab Sample ID:
 JC43407-1
 Date Sampled: 05/15/17

 Matrix:
 SO - Soil
 Date Received: 05/16/17

 Method:
 SW846 8270D
 SW846 3546
 Percent Solids: 79.1

Project: 79 Hurley Avenue, Kingston, NY

ABN TCL List (SOM0 2.0)

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits	
4165-62-2	Phenol-d5	66%		27-114%	
118-79-6	2,4,6-Tribromophenol	82%		19-152%	
4165-60-0	Nitrobenzene-d5	80%		26-134%	
321-60-8	2-Fluorobiphenyl	71%		39-124%	
1718-51-0	Terphenyl-d14	87%		36-134%	
CAS No.	Tentatively Identified Compounds		R.T.	Est. Conc.	Units Q
	system artifact		2.19	.46	mg/kg J
	system artifact		2.58	.19	mg/kg J
	system artifact		3.10	3	mg/kg J
	system artifact		3.20	1.8	mg/kg J
	system artifact		3.31	.22	mg/kg J
	system artifact		3.43	.22	mg/kg J
	system artifact/aldol-condensa	tion	3.60	23	mg/kg J
	Hexanedione		4.20	1.3	mg/kg J
	unknown		4.98	.24	mg/kg J
	Total TIC, Semi-Volatile			1.54	mg/kg J

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

3.2

Report of Analysis

Client Sample ID: B-15

 Lab Sample ID:
 JC43407-2
 Date Sampled: 05/15/17

 Matrix:
 SO - Soil
 Date Received: 05/16/17

 Method:
 SW846 8260C
 SW846 5035
 Percent Solids: 81.3

Project: 79 Hurley Avenue, Kingston, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 Y172521.D 1 05/19/17 11:28 PS 05/17/17 08:00 n/a VY7461

Run #2

Initial Weight

Run #1 6.3 g

Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	0.0224	0.0098	0.0049	mg/kg	
71-43-2	Benzene	ND	0.00049	0.00012		
74-97-5	Bromochloromethane	ND	0.0049	0.00031		
75-27-4	Bromodichloromethane	ND	0.0020	0.00015		
75-25-2	Bromoform	ND	0.0049	0.00026		
74-83-9	Bromomethane	ND	0.0049	0.00047	mg/kg	
78-93-3	2-Butanone (MEK)	ND	0.0098	0.0017	mg/kg	
75-15-0	Carbon disulfide	ND	0.0020	0.00017	mg/kg	
56-23-5	Carbon tetrachloride	ND	0.0020	0.00016	mg/kg	
108-90-7	Chlorobenzene	ND	0.0020	0.00016	mg/kg	
75-00-3	Chloroethane	ND	0.0049	0.00042	mg/kg	
67-66-3	Chloroform	ND	0.0020	0.00023	mg/kg	
74-87-3	Chloromethane	ND	0.0049	0.00021	mg/kg	
110-82-7	Cyclohexane	ND	0.0020	0.00053		
96-12-8	1,2-Dibromo-3-chloropropane	ND	0.0020	0.00047	mg/kg	
124-48-1	Dibromochloromethane	ND	0.0020	0.00015		
106-93-4	1,2-Dibromoethane	ND	0.00098	0.00024	mg/kg	
95-50-1	1,2-Dichlorobenzene	ND		0.00017		
541-73-1	1,3-Dichlorobenzene	ND		0.00013		
106-46-7	1,4-Dichlorobenzene	ND	0.00098	0.00015	mg/kg	
75-71-8	Dichlorodifluoromethane	ND	0.0049	0.00053		
75-34-3	1,1-Dichloroethane	ND	0.00098	0.00018	mg/kg	
107-06-2	1,2-Dichloroethane	ND	0.00098	0.00017	mg/kg	
75-35-4	1,1-Dichloroethene	ND	0.00098	0.00015	mg/kg	
156-59-2	cis-1,2-Dichloroethene	ND		0.00043		
156-60-5	trans-1,2-Dichloroethene	ND	0.00098	0.00015		
78-87-5	1,2-Dichloropropane	ND	0.0020	0.00030	mg/kg	
10061-01-5	cis-1,3-Dichloropropene	ND	0.0020	0.00019	mg/kg	
10061-02-6	trans-1,3-Dichloropropene	ND	0.0020	0.00022	mg/kg	
100-41-4	Ethylbenzene	ND	0.00098			
76-13-1	Freon 113	ND	0.0049	0.00047	mg/kg	
591-78-6	2-Hexanone	ND	0.0049	0.0014	mg/kg	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 2

Client Sample ID: B-15

 Lab Sample ID:
 JC43407-2
 Date Sampled:
 05/15/17

 Matrix:
 SO - Soil
 Date Received:
 05/16/17

 Method:
 SW846 8260C
 SW846 5035
 Percent Solids:
 81.3

Project: 79 Hurley Avenue, Kingston, NY

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q	
98-82-8	Isopropylbenzene	ND	0.0020	0.00015	mg/kg	g	
79-20-9	Methyl Acetate	ND	0.0049	0.0020	mg/kg		
108-87-2	Methylcyclohexane	ND	0.0020	0.00049			
1634-04-4	Methyl Tert Butyl Ether	ND	0.00098	0.00026			
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	0.0049	0.00083			
75-09-2	Methylene chloride	ND	0.0049	0.00098	mg/kg	g	
100-42-5	Styrene	ND	0.0020	0.00014			
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.0020	0.00023			
127-18-4	Tetrachloroethene	ND	0.0020	0.00027			
108-88-3	Toluene	ND	0.00098	0.00012			
87-61-6	1,2,3-Trichlorobenzene	ND	0.0049	0.00049			
120-82-1	1,2,4-Trichlorobenzene	ND	0.0049	0.00049	mg/kg	g	
71-55-6	1,1,1-Trichloroethane	ND	0.0020	0.00016	mg/kg	g	
79-00-5	1,1,2-Trichloroethane	ND	0.0020	0.00032	mg/kg	g	
79-01-6	Trichloroethene	ND	0.00098	0.00019			
75-69-4	Trichlorofluoromethane	ND	0.0049	0.00061	mg/kg	g	
75-01-4	Vinyl chloride	ND	0.0020	0.00020			
	m,p-Xylene	ND	0.00098	0.00021	mg/kg	g	
95-47-6	o-Xylene	ND		0.00020			
1330-20-7	Xylene (total)	ND	0.00098	0.00020	mg/kg	g	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts		
1868-53-7	Dibromofluoromethane	104%		72-12	29%		
17060-07-0	1,2-Dichloroethane-D4	97%		73-13	32 %		
2037-26-5	Toluene-D8	100%		80-12	20%		
460-00-4	4-Bromofluorobenzene	107%		77-12	25%		
CAS No.	Tentatively Identified Compo	ounds	R.T.	Est.	Conc.	Units	Q
	Total TIC, Volatile			0		mg/kg	Į

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

3.2

Report of Analysis

Page 1 of 3

Client Sample ID: B-15 Lab Sample ID: JC43407-2 Matrix:

Date Sampled: 05/15/17 SO - Soil **Date Received:** 05/16/17 SW846 8270D SW846 3546 **Percent Solids:** 81.3

79 Hurley Avenue, Kingston, NY **Project:**

File ID DF **Prep Date Prep Batch Analytical Batch** Analyzed By 05/20/17 **OP2987** EM5760 Run #1 M134303.D 1 05/22/17 12:25 AN

Run #2

Method:

Initial Weight Final Volume

Run #1 30.9 g1.0 ml

Run #2

ABN TCL List (SOM0 2.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
95-57-8	2-Chlorophenol	ND	0.080	0.020	mg/kg	
59-50-7	4-Chloro-3-methyl phenol	ND	0.20	0.024	mg/kg	
120-83-2	2,4-Dichlorophenol	ND	0.20	0.034	mg/kg	
105-67-9	2,4-Dimethylphenol	ND	0.20	0.071	mg/kg	
51-28-5	2,4-Dinitrophenol	ND	0.20	0.15	mg/kg	
534-52-1	4,6-Dinitro-o-cresol	ND	0.20	0.043	mg/kg	
95-48-7	2-Methylphenol	ND	0.080	0.025	mg/kg	
	3&4-Methylphenol	ND	0.080	0.033	mg/kg	
88-75-5	2-Nitrophenol	ND	0.20	0.026	mg/kg	
100-02-7	4-Nitrophenol	ND	0.40	0.11	mg/kg	
87-86-5	Pentachlorophenol	ND	0.16	0.037	mg/kg	
108-95-2	Phenol	ND	0.080	0.021	mg/kg	
58-90-2	2,3,4,6-Tetrachlorophenol	ND	0.20	0.026	mg/kg	
95-95-4	2,4,5-Trichlorophenol	ND	0.20	0.030	mg/kg	
88-06-2	2,4,6-Trichlorophenol	ND	0.20	0.024	mg/kg	
83-32-9	Acenaphthene	ND	0.040	0.014	mg/kg	
208-96-8	Acenaphthylene	ND	0.040	0.020	mg/kg	
98-86-2	Acetophenone	ND	0.20	0.0086	mg/kg	
120-12-7	Anthracene	ND	0.040	0.024	mg/kg	
1912-24-9	Atrazine	ND	0.080	0.017	mg/kg	
56-55-3	Benzo(a)anthracene	ND	0.040	0.011	mg/kg	
50-32-8	Benzo(a)pyrene	ND	0.040	0.018	mg/kg	
205-99-2	Benzo(b)fluoranthene	ND	0.040	0.018	mg/kg	
191-24-2	Benzo(g,h,i)perylene	ND	0.040	0.020	mg/kg	
207-08-9	Benzo(k)fluoranthene	ND	0.040	0.019	mg/kg	
101-55-3	4-Bromophenyl phenyl ether	ND	0.080	0.015	mg/kg	
85-68-7	Butyl benzyl phthalate	ND	0.080	0.0097	mg/kg	
92-52-4	1,1'-Biphenyl	ND	0.080	0.0055	mg/kg	
100-52-7	Benzaldehyde	ND	0.20	0.0099	mg/kg	
91-58-7	2-Chloronaphthalene	ND	0.080	0.0095	mg/kg	
106-47-8	4-Chloroaniline	ND	0.20	0.014	mg/kg	
86-74-8	Carbazole	ND	0.080	0.0058	mg/kg	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 3

Client Sample ID: B-15

 Lab Sample ID:
 JC43407-2
 Date Sampled: 05/15/17

 Matrix:
 SO - Soil
 Date Received: 05/16/17

 Method:
 SW846 8270D
 SW846 3546
 Percent Solids: 81.3

Project: 79 Hurley Avenue, Kingston, NY

ABN TCL List (SOM0 2.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
105-60-2	Caprolactam	ND	0.080	0.016	mg/kg	
218-01-9	Chrysene	ND	0.040	0.013	mg/kg	
111-91-1	bis(2-Chloroethoxy)methane	ND	0.080	0.0085	mg/kg	
111-44-4	bis(2-Chloroethyl)ether	ND	0.080	0.017	mg/kg	
108-60-1	bis(2-Chloroisopropyl)ether	ND	0.080	0.014	mg/kg	
7005-72-3	4-Chlorophenyl phenyl ether	ND	0.080	0.013	mg/kg	
121-14-2	2,4-Dinitrotoluene	ND	0.040	0.012	mg/kg	
606-20-2	2,6-Dinitrotoluene	ND	0.040	0.020	mg/kg	
91-94-1	3,3'-Dichlorobenzidine	ND	0.080	0.033	mg/kg	
123-91-1	1,4-Dioxane	ND	0.040	0.026	mg/kg	
53-70-3	Dibenzo(a,h)anthracene	ND	0.040	0.018	mg/kg	
132-64-9	Dibenzofuran	ND	0.080	0.016	mg/kg	
84-74-2	Di-n-butyl phthalate	ND	0.080	0.0065	mg/kg	
117-84-0	Di-n-octyl phthalate	ND	0.080	0.0099	mg/kg	
84-66-2	Diethyl phthalate	ND	0.080	0.0085	mg/kg	
131-11-3	Dimethyl phthalate	ND	0.080	0.0071	mg/kg	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	0.080	0.0093	mg/kg	
206-44-0	Fluoranthene	ND	0.040	0.018	mg/kg	
86-73-7	Fluorene	ND	0.040	0.018	mg/kg	
118-74-1	Hexachlorobenzene	ND	0.080	0.010	mg/kg	
87-68-3	Hexachlorobutadiene	ND	0.040	0.016	mg/kg	
77-47-4	Hexachlorocyclopentadiene	ND	0.40	0.016	mg/kg	
67-72-1	Hexachloroethane	ND	0.20	0.020	mg/kg	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	0.040	0.019	mg/kg	
78-59-1	Isophorone	ND	0.080	0.0085	mg/kg	
91-57-6	2-Methylnaphthalene	ND	0.080	0.0090	mg/kg	
88-74-4	2-Nitroaniline	ND	0.20	0.0094	mg/kg	
99-09-2	3-Nitroaniline	ND	0.20	0.010	mg/kg	
100-01-6	4-Nitroaniline	ND	0.20	0.010	mg/kg	
91-20-3	Naphthalene	ND	0.040	0.011	mg/kg	
98-95-3	Nitrobenzene	ND	0.080	0.015	mg/kg	
621-64-7	N-Nitroso-di-n-propylamine	ND	0.080	0.012	mg/kg	
86-30-6	N-Nitrosodiphenylamine	ND	0.20	0.015	mg/kg	
85-01-8	Phenanthrene	ND	0.040	0.013	mg/kg	
129-00-0	Pyrene	ND	0.040	0.013	mg/kg	
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	0.20	0.010	mg/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
267 19 4	9 Eluorophonol	600/		92 1	150/	

367-12-4 2-Fluorophenol 69% 23-115%

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 3 of 3

Client Sample ID: B-15 Lab Sample ID: JC434

 Lab Sample ID:
 JC43407-2
 Date Sampled: 05/15/17

 Matrix:
 SO - Soil
 Date Received: 05/16/17

 Method:
 SW846 8270D
 SW846 3546
 Percent Solids: 81.3

Project: 79 Hurley Avenue, Kingston, NY

ABN TCL List (SOM0 2.0)

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits		
4165-62-2 118-79-6 4165-60-0	Phenol-d5 2,4,6-Tribromophenol Nitrobenzene-d5	74% 92% 78%		27-114% 19-152% 26-134%		
321-60-8 1718-51-0	2-Fluorobiphenyl Terphenyl-d14	75% 90%		39-124% 36-134%		
CAS No.	Tentatively Identified Compounds		R.T.	Est. Conc.	Units	Q
10544-50-0	system artifact system artifact system artifact/aldol-condensa Cyclic octaatomic sulfur Total TIC, Semi-Volatile	tion	3.10 3.20 3.58 13.33	.39 .19 11 .23 .23	mg/kg mg/kg mg/kg mg/kg mg/kg	J J JN

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: B-14 GW

Lab Sample ID:JC43407-3Date Sampled:05/15/17Matrix:AQ - Ground WaterDate Received:05/16/17Method:SW846 8260CPercent Solids:n/a

Project: 79 Hurley Avenue, Kingston, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 2D166844.D 1 05/20/17 01:19 EC n/a n/a V2D6996

Run #2

Purge Volume

Run #1 5.0 ml

Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	10	5.0	ug/l	
71-43-2	Benzene	ND	0.50	0.14	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.46	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.55	ug/l	
75-25-2	Bromoform	ND	1.0	0.34	ug/l	
74-83-9	Bromomethane	ND	2.0	0.46	ug/l	
78-93-3	2-Butanone (MEK)	ND	10	1.9	ug/l	
75-15-0	Carbon disulfide	ND	2.0	0.33	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.54	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.17	ug/l	
75-00-3	Chloroethane	ND	1.0	0.44	ug/l	
67-66-3	Chloroform	ND	1.0	0.23	ug/l	
74-87-3	Chloromethane	ND	1.0	0.96	ug/l	
110-82-7	Cyclohexane	ND	5.0	0.73	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.0	0.69	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.23	ug/l	
106-93-4	1,2-Dibromoethane	ND	1.0	0.22	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.23	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.19	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.21	ug/l	
75-71-8	Dichlorodifluoromethane	ND	2.0	0.70	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.21	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.39	ug/l	
75-35-4	1,1-Dichloroethene	ND	1.0	0.20	ug/l	
156-59-2	cis-1,2-Dichloroethene	0.38	1.0	0.31	ug/l	J
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.36	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.33	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.19	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.26	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.20	ug/l	
76-13-1	Freon 113	ND	5.0	1.2	ug/l	
591-78-6	2-Hexanone	ND	5.0	1.5	ug/l	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 2

Client Sample ID: B-14 GW

Lab Sample ID:JC43407-3Date Sampled:05/15/17Matrix:AQ - Ground WaterDate Received:05/16/17Method:SW846 8260CPercent Solids:n/a

Project: 79 Hurley Avenue, Kingston, NY

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q	
98-82-8	Isopropylbenzene	ND	1.0	0.16	ug/l		
79-20-9	Methyl Acetate	ND	5.0	1.5	ug/l		
108-87-2	Methylcyclohexane	ND	5.0	0.78	ug/l		
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.34	ug/l		
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.0	1.2	ug/l		
75-09-2	Methylene chloride	ND	2.0	1.0	ug/l		
100-42-5	Styrene	ND	1.0	0.27	ug/l		
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.39	ug/l		
127-18-4	Tetrachloroethene	ND	1.0	0.23	ug/l		
108-88-3	Toluene	ND	1.0	0.23	ug/l		
87-61-6	1,2,3-Trichlorobenzene	ND	1.0	0.50	ug/l		
120-82-1	1,2,4-Trichlorobenzene	ND	1.0	0.50	ug/l		
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.22	ug/l		
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.28	ug/l		
79-01-6	Trichloroethene	ND	1.0	0.26	ug/l		
75-69-4	Trichlorofluoromethane	ND	2.0	0.58	ug/l		
75-01-4	Vinyl chloride	ND	1.0	0.33	ug/l		
	m,p-Xylene	ND	1.0	0.42	ug/l		
95-47-6	o-Xylene	ND	1.0	0.21	ug/l		
1330-20-7	Xylene (total)	ND	1.0	0.21	ug/l		
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its		
1868-53-7	Dibromofluoromethane	100%		76-1	20%		
17060-07-0	1,2-Dichloroethane-D4	106%		73-1	22%		
2037-26-5	Toluene-D8	98%		84-1	19%		
460-00-4	4-Bromofluorobenzene	107%		78-1	17%		
CAS No.	Tentatively Identified Compo	ounds	R.T.	Est.	Conc.	Units	Q
	system artifact		3.43	390		ug/l	J
	Total TIC, Volatile			0		ug/l	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: B-14 GW

Lab Sample ID:JC43407-3Date Sampled:05/15/17Matrix:AQ - Ground WaterDate Received:05/16/17Method:SW846 8270DSW846 3510CPercent Solids:n/a

Project: 79 Hurley Avenue, Kingston, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 P114095.D 1 05/23/17 05:31 JJ 05/21/17 OP3013 EP5092

Run #2

Initial Volume Final Volume Run #1 1000 ml 1.0 ml

Run #2

ABN TCL List (SOM0 2.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
95-57-8	2-Chlorophenol	ND	5.0	0.82	ug/l	
59-50-7	4-Chloro-3-methyl phenol	ND	5.0	0.89	ug/l	
120-83-2	2,4-Dichlorophenol	ND	2.0	1.3	ug/l	
105-67-9	2,4-Dimethylphenol	ND	5.0	2.4	ug/l	
51-28-5	2,4-Dinitrophenol	ND	10	1.6	ug/l	
534-52-1	4,6-Dinitro-o-cresol	ND	5.0	1.3	ug/l	
95-48-7	2-Methylphenol	ND	2.0	0.89	ug/l	
	3&4-Methylphenol	ND	2.0	0.88	ug/l	
88-75-5	2-Nitrophenol	ND	5.0	0.96	ug/l	
100-02-7	4-Nitrophenol	ND	10	1.2	ug/l	
87-86-5	Pentachlorophenol	ND	4.0	1.4	ug/l	
108-95-2	Phenol	ND	2.0	0.39	ug/l	
58-90-2	2,3,4,6-Tetrachlorophenol	ND	5.0	1.5	ug/l	
95-95-4	2,4,5-Trichlorophenol	ND	5.0	1.3	ug/l	
88-06-2	2,4,6-Trichlorophenol	ND	5.0	0.92	ug/l	
83-32-9	Acenaphthene	ND	1.0	0.19	ug/l	
208-96-8	Acenaphthylene	ND	1.0	0.14	ug/l	
98-86-2	Acetophenone	ND	2.0	0.21	ug/l	
120-12-7	Anthracene	ND	1.0	0.21	ug/l	
1912-24-9	Atrazine	ND	2.0	0.45	ug/l	
100-52-7	Benzaldehyde	ND	5.0	0.29	ug/l	
56-55-3	Benzo(a)anthracene	ND	1.0	0.20	ug/l	
50-32-8	Benzo(a)pyrene	ND	1.0	0.21	ug/l	
205-99-2	Benzo(b)fluoranthene	ND	1.0	0.21	ug/l	
191-24-2	Benzo(g,h,i)perylene	ND	1.0	0.34	ug/l	
207-08-9	Benzo(k)fluoranthene	ND	1.0	0.21	ug/l	
101-55-3	4-Bromophenyl phenyl ether	ND	2.0	0.40	ug/l	
85-68-7	Butyl benzyl phthalate	ND	2.0	0.46	ug/l	
92-52-4	1,1'-Biphenyl	ND	1.0	0.21	ug/l	
91-58-7	2-Chloronaphthalene	ND	2.0	0.24	ug/l	
106-47-8	4-Chloroaniline	ND	5.0	0.34	ug/l	
86-74-8	Carbazole	ND	1.0	0.23	ug/l	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: B-14 GW

Lab Sample ID: JC43407-3 **Date Sampled: 05/15/17** Matrix: AQ - Ground Water Date Received: 05/16/17 Method: SW846 8270D SW846 3510C **Percent Solids:** n/a

79 Hurley Avenue, Kingston, NY **Project:**

ABN TCL List (SOM0 2.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
105-60-2	Caprolactam	ND	2.0	0.65	ug/l	
218-01-9	Chrysene	ND	1.0	0.18	ug/l	
111-91-1	bis(2-Chloroethoxy)methane	ND	2.0	0.28	ug/l	
111-44-4	bis(2-Chloroethyl)ether	ND	2.0	0.25	ug/l	
108-60-1	bis(2-Chloroisopropyl)ether	ND	2.0	0.40	ug/l	
7005-72-3	4-Chlorophenyl phenyl ether	ND	2.0	0.37	ug/l	
121-14-2	2,4-Dinitrotoluene	ND	1.0	0.55	ug/l	
606-20-2	2,6-Dinitrotoluene	ND	1.0	0.48	ug/l	
91-94-1	3,3'-Dichlorobenzidine	ND	2.0	0.51	ug/l	
123-91-1	1,4-Dioxane	ND	1.0	0.66	ug/l	
53-70-3	Dibenzo(a,h)anthracene	ND	1.0	0.33	ug/l	
132-64-9	Dibenzofuran	ND	5.0	0.22	ug/l	
84-74-2	Di-n-butyl phthalate	ND	2.0	0.50	ug/l	
117-84-0	Di-n-octyl phthalate	ND	2.0	0.23	ug/l	
84-66-2	Diethyl phthalate	ND	2.0	0.26	ug/l	
131-11-3	Dimethyl phthalate	ND	2.0	0.22	ug/l	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	2.0	1.7	ug/l	
206-44-0	Fluoranthene	ND	1.0	0.17	ug/l	
86-73-7	Fluorene	ND	1.0	0.17	ug/l	
118-74-1	Hexachlorobenzene	ND	1.0	0.33	ug/l	
87-68-3	Hexachlorobutadiene	ND	1.0	0.49	ug/l	
77-47-4	Hexachlorocyclopentadiene	ND	10	2.8	ug/l	
67-72-1	Hexachloroethane	ND	2.0	0.39	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	1.0	0.33	ug/l	
78-59-1	Isophorone	ND	2.0	0.28	ug/l	
91-57-6	2-Methylnaphthalene	ND	1.0	0.21	ug/l	
88-74-4	2-Nitroaniline	ND	5.0	0.28	ug/l	
99-09-2	3-Nitroaniline	ND	5.0	0.39	ug/l	
100-01-6	4-Nitroaniline	ND	5.0	0.44	ug/l	
91-20-3	Naphthalene	ND	1.0	0.23	ug/l	
98-95-3	Nitrobenzene	ND	2.0	0.64	ug/l	
621-64-7	N-Nitroso-di-n-propylamine	ND	2.0	0.48	ug/l	
86-30-6	N-Nitrosodiphenylamine	ND	5.0	0.22	ug/l	
85-01-8	Phenanthrene	ND	1.0	0.18	ug/l	
129-00-0	Pyrene	ND	1.0	0.22	ug/l	
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	2.0	0.37	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
367-12-4	2-Fluorophenol	39 %				

ND = Not detectedMDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 3 of 3

Client Sample ID: B-14 GW

Lab Sample ID:JC43407-3Date Sampled:05/15/17Matrix:AQ - Ground WaterDate Received:05/16/17Method:SW846 8270D SW846 3510CPercent Solids:n/a

Project: 79 Hurley Avenue, Kingston, NY

ABN TCL List (SOM0 2.0)

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits		
4165-62-2	Phenol-d5	27%		10-110%		
118-79-6	2,4,6-Tribromophenol	88%		36-151 %		
4165-60-0	Nitrobenzene-d5	68%		34-128%		
321-60-8	2-Fluorobiphenyl	74 %		38-119%		
1718-51-0	Terphenyl-d14	58 %		26-129%		
CAS No.	Tentatively Identified Compounds		R.T.	Est. Conc.	Units	Q
	Total TIC, Semi-Volatile			0	ug/l	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

Page 1 of 2

Client Sample ID: B-15 GW

Lab Sample ID:JC43407-4Date Sampled:05/15/17Matrix:AQ - Ground WaterDate Received:05/16/17Method:SW846 8260CPercent Solids:n/a

Project: 79 Hurley Avenue, Kingston, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 2D166845.D 1 05/20/17 01:49 EC n/a n/a V2D6996

Run #2

Purge Volume

Run #1 5.0 ml

Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	10	5.0	ug/l	
71-43-2	Benzene	ND	0.50	0.14	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.46	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.55	ug/l	
75-25-2	Bromoform	ND	1.0	0.34	ug/l	
74-83-9	Bromomethane	ND	2.0	0.46	ug/l	
78-93-3	2-Butanone (MEK)	ND	10	1.9	ug/l	
75-15-0	Carbon disulfide	ND	2.0	0.33	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.54	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.17	ug/l	
75-00-3	Chloroethane	ND	1.0	0.44	ug/l	
67-66-3	Chloroform	ND	1.0	0.23	ug/l	
74-87-3	Chloromethane	ND	1.0	0.96	ug/l	
110-82-7	Cyclohexane	ND	5.0	0.73	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.0	0.69	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.23	ug/l	
106-93-4	1,2-Dibromoethane	ND	1.0	0.22	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.23	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.19	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.21	ug/l	
75-71-8	Dichlorodifluoromethane	ND	2.0	0.70	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.21	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.39	ug/l	
75-35-4	1,1-Dichloroethene	ND	1.0	0.20	ug/l	
156-59-2	cis-1,2-Dichloroethene	0.57	1.0	0.31	ug/l	J
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.36	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.33	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.19	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.26	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.20	ug/l	
76-13-1	Freon 113	ND	5.0	1.2	ug/l	
591-78-6	2-Hexanone	ND	5.0	1.5	ug/l	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: B-15 GW

Lab Sample ID:JC43407-4Date Sampled:05/15/17Matrix:AQ - Ground WaterDate Received:05/16/17Method:SW846 8260CPercent Solids:n/a

Project: 79 Hurley Avenue, Kingston, NY

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q	
98-82-8	Isopropylbenzene	ND	1.0	0.16	ug/l		
79-20-9	Methyl Acetate	ND	5.0	1.5	ug/l		
108-87-2	Methylcyclohexane	ND	5.0	0.78	ug/l		
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.34	ug/l		
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.0	1.2	ug/l		
75-09-2	Methylene chloride	ND	2.0	1.0	ug/l		
100-42-5	Styrene	ND	1.0	0.27	ug/l		
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.39	ug/l		
127-18-4	Tetrachloroethene	ND	1.0	0.23	ug/l		
108-88-3	Toluene	ND	1.0	0.23	ug/l		
87-61-6	1,2,3-Trichlorobenzene	ND	1.0	0.50	ug/l		
120-82-1	1,2,4-Trichlorobenzene	ND	1.0	0.50	ug/l		
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.22	ug/l		
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.28	ug/l		
79-01-6	Trichloroethene	ND	1.0	0.26	ug/l		
75-69-4	Trichlorofluoromethane	ND	2.0	0.58	ug/l		
75-01-4	Vinyl chloride	ND	1.0	0.33	ug/l		
	m,p-Xylene	ND	1.0	0.42	ug/l		
95-47-6	o-Xylene	ND	1.0	0.21	ug/l		
1330-20-7	Xylene (total)	ND	1.0	0.21	ug/l		
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its		
1868-53-7	Dibromofluoromethane	100%		76-1	20%		
17060-07-0	1,2-Dichloroethane-D4	107%		73-1	22%		
2037-26-5	Toluene-D8	98%		84-1	19%		
460-00-4	4-Bromofluorobenzene	107%		78-1	17%		
CAS No.	Tentatively Identified Compo	ounds	R.T.	Est.	Conc.	Units	Q
	system artifact		3.44	420		ug/l	J
	Total TIC, Volatile			0		ug/l	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 3

Client Sample ID: B-15 GW

Lab Sample ID:JC43407-4Date Sampled:05/15/17Matrix:AQ - Ground WaterDate Received:05/16/17Method:SW846 8270DSW846 3510CPercent Solids:n/a

Project: 79 Hurley Avenue, Kingston, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 P114096.D 1 05/23/17 06:00 JJ 05/21/17 OP3013 EP5092

Run #2

Initial Volume Final Volume

Run #1 1000 ml 1.0 ml

Run #2

ABN TCL List (SOM0 2.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
95-57-8	2-Chlorophenol	ND	5.0	0.82	ug/l	
59-50-7	4-Chloro-3-methyl phenol	ND	5.0	0.89	ug/l	
120-83-2	2,4-Dichlorophenol	ND	2.0	1.3	ug/l	
105-67-9	2,4-Dimethylphenol	ND	5.0	2.4	ug/l	
51-28-5	2,4-Dinitrophenol	ND	10	1.6	ug/l	
534-52-1	4,6-Dinitro-o-cresol	ND	5.0	1.3	ug/l	
95-48-7	2-Methylphenol	ND	2.0	0.89	ug/l	
	3&4-Methylphenol	ND	2.0	0.88	ug/l	
88-75-5	2-Nitrophenol	ND	5.0	0.96	ug/l	
100-02-7	4-Nitrophenol	ND	10	1.2	ug/l	
87-86-5	Pentachlorophenol	ND	4.0	1.4	ug/l	
108-95-2	Phenol	ND	2.0	0.39	ug/l	
58-90-2	2,3,4,6-Tetrachlorophenol	ND	5.0	1.5	ug/l	
95-95-4	2,4,5-Trichlorophenol	ND	5.0	1.3	ug/l	
88-06-2	2,4,6-Trichlorophenol	ND	5.0	0.92	ug/l	
83-32-9	Acenaphthene	ND	1.0	0.19	ug/l	
208-96-8	Acenaphthylene	ND	1.0	0.14	ug/l	
98-86-2	Acetophenone	ND	2.0	0.21	ug/l	
120-12-7	Anthracene	ND	1.0	0.21	ug/l	
1912-24-9	Atrazine	ND	2.0	0.45	ug/l	
100-52-7	Benzaldehyde	ND	5.0	0.29	ug/l	
56-55-3	Benzo(a)anthracene	ND	1.0	0.20	ug/l	
50-32-8	Benzo(a)pyrene	ND	1.0	0.21	ug/l	
205-99-2	Benzo(b)fluoranthene	ND	1.0	0.21	ug/l	
191-24-2	Benzo(g,h,i)perylene	ND	1.0	0.34	ug/l	
207-08-9	Benzo(k)fluoranthene	ND	1.0	0.21	ug/l	
101-55-3	4-Bromophenyl phenyl ether	ND	2.0	0.40	ug/l	
85-68-7	Butyl benzyl phthalate	ND	2.0	0.46	ug/l	
92-52-4	1,1'-Biphenyl	ND	1.0	0.21	ug/l	
91-58-7	2-Chloronaphthalene	ND	2.0	0.24	ug/l	
106-47-8	4-Chloroaniline	ND	5.0	0.34	ug/l	
86-74-8	Carbazole	ND	1.0	0.23	ug/l	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: B-15 GW

Lab Sample ID:JC43407-4Date Sampled:05/15/17Matrix:AQ - Ground WaterDate Received:05/16/17Method:SW846 8270D SW846 3510CPercent Solids:n/a

Project: 79 Hurley Avenue, Kingston, NY

ABN TCL List (SOM0 2.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
105-60-2	Caprolactam	ND	2.0	0.65	ug/l	
218-01-9	Chrysene	ND	1.0	0.18	ug/l	
111-91-1	bis(2-Chloroethoxy)methane	ND	2.0	0.28	ug/l	
111-44-4	bis(2-Chloroethyl)ether	ND	2.0	0.25	ug/l	
108-60-1	bis(2-Chloroisopropyl)ether	ND	2.0	0.40	ug/l	
7005-72-3	4-Chlorophenyl phenyl ether	ND	2.0	0.37	ug/l	
121-14-2	2,4-Dinitrotoluene	ND	1.0	0.55	ug/l	
606-20-2	2,6-Dinitrotoluene	ND	1.0	0.48	ug/l	
91-94-1	3,3'-Dichlorobenzidine	ND	2.0	0.51	ug/l	
123-91-1	1,4-Dioxane	ND	1.0	0.66	ug/l	
53-70-3	Dibenzo(a,h)anthracene	ND	1.0	0.33	ug/l	
132-64-9	Dibenzofuran	ND	5.0	0.22	ug/l	
84-74-2	Di-n-butyl phthalate	ND	2.0	0.50	ug/l	
117-84-0	Di-n-octyl phthalate	ND	2.0	0.23	ug/l	
84-66-2	Diethyl phthalate	ND	2.0	0.26	ug/l	
131-11-3	Dimethyl phthalate	ND	2.0	0.22	ug/l	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	2.0	1.7	ug/l	
206-44-0	Fluoranthene	ND	1.0	0.17	ug/l	
86-73-7	Fluorene	ND	1.0	0.17	ug/l	
118-74-1	Hexachlorobenzene	ND	1.0	0.33	ug/l	
87-68-3	Hexachlorobutadiene	ND	1.0	0.49	ug/l	
77-47-4	Hexachlorocyclopentadiene	ND	10	2.8	ug/l	
67-72-1	Hexachloroethane	ND	2.0	0.39	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	1.0	0.33	ug/l	
78-59-1	Isophorone	ND	2.0	0.28	ug/l	
91-57-6	2-Methylnaphthalene	ND	1.0	0.21	ug/l	
88-74-4	2-Nitroaniline	ND	5.0	0.28	ug/l	
99-09-2	3-Nitroaniline	ND	5.0	0.39	ug/l	
100-01-6	4-Nitroaniline	ND	5.0	0.44	ug/l	
91-20-3	Naphthalene	ND	1.0	0.23	ug/l	
98-95-3	Nitrobenzene	ND	2.0	0.64	ug/l	
621-64-7	N-Nitroso-di-n-propylamine	ND	2.0	0.48	ug/l	
86-30-6	N-Nitrosodiphenylamine	ND	5.0	0.22	ug/l	
85-01-8	Phenanthrene	ND	1.0	0.18	ug/l	
129-00-0	Pyrene	ND	1.0	0.22	ug/l	
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	2.0	0.37	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
267_19_4	9 Eluorophonol	110/		10 1	100/	

367-12-4 2-Fluorophenol 44% 10-110%

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 3 of 3

Client Sample ID: B-15 GW

Lab Sample ID:JC43407-4Date Sampled:05/15/17Matrix:AQ - Ground WaterDate Received:05/16/17Method:SW846 8270DSW846 3510CPercent Solids:n/a

Project: 79 Hurley Avenue, Kingston, NY

ABN TCL List (SOM0 2.0)

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits		
4165-62-2 118-79-6 4165-60-0 321-60-8 1718-51-0	Phenol-d5 2,4,6-Tribromophenol Nitrobenzene-d5 2-Fluorobiphenyl Terphenyl-d14	31% 100% 73% 79% 66%		10-110% 36-151% 34-128% 38-119% 26-129%		
CAS No.	Tentatively Identified Compounds		R.T.	Est. Conc.	Units	Q
10544-50-0	Cyclic octaatomic sulfur Total TIC, Semi-Volatile		11.42	5.2 5.2	ug/l ug/l	JN J

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

3.5

Report of Analysis

Client Sample ID: MW-1

Lab Sample ID:JC43407-5Date Sampled:05/15/17Matrix:AQ - Ground WaterDate Received:05/16/17Method:SW846 8260CPercent Solids:n/a

Project: 79 Hurley Avenue, Kingston, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 2D166846.D 1 05/20/17 02:19 EC n/a n/a V2D6996

Run #2

Purge Volume

Run #1 5.0 ml

Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	10	5.0	ug/l	
71-43-2	Benzene	ND	0.50	0.14	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.46	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.55	ug/l	
75-25-2	Bromoform	ND	1.0	0.34	ug/l	
74-83-9	Bromomethane	ND	2.0	0.46	ug/l	
78-93-3	2-Butanone (MEK)	ND	10	1.9	ug/l	
75-15-0	Carbon disulfide	ND	2.0	0.33	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.54	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.17	ug/l	
75-00-3	Chloroethane	ND	1.0	0.44	ug/l	
67-66-3	Chloroform	ND	1.0	0.23	ug/l	
74-87-3	Chloromethane	ND	1.0	0.96	ug/l	
110-82-7	Cyclohexane	ND	5.0	0.73	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.0	0.69	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.23	ug/l	
106-93-4	1,2-Dibromoethane	ND	1.0	0.22	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.23	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.19	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.21	ug/l	
75-71-8	Dichlorodifluoromethane	ND	2.0	0.70	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.21	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.39	ug/l	
75-35-4	1,1-Dichloroethene	ND	1.0	0.20	ug/l	
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.31	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.36	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.33	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.19	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.26	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.20	ug/l	
76-13-1	Freon 113	ND	5.0	1.2	ug/l	
591-78-6	2-Hexanone	ND	5.0	1.5	ug/l	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 2

Report of Analysis

Client Sample ID: MW-1

Lab Sample ID:JC43407-5Date Sampled:05/15/17Matrix:AQ - Ground WaterDate Received:05/16/17Method:SW846 8260CPercent Solids:n/a

Project: 79 Hurley Avenue, Kingston, NY

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q	
98-82-8	Isopropylbenzene	ND	1.0	0.16	ug/l		
79-20-9	Methyl Acetate	ND	5.0	1.5	ug/l		
108-87-2	Methylcyclohexane	ND	5.0	0.78	ug/l		
1634-04-4	Methyl Tert Butyl Ether	0.51	1.0	0.34	ug/l	J	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.0	1.2	ug/l		
75-09-2	Methylene chloride	ND	2.0	1.0	ug/l		
100-42-5	Styrene	ND	1.0	0.27	ug/l		
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.39	ug/l		
127-18-4	Tetrachloroethene	ND	1.0	0.23	ug/l		
108-88-3	Toluene	ND	1.0	0.23	ug/l		
87-61-6	1,2,3-Trichlorobenzene	ND	1.0	0.50	ug/l		
120-82-1	1,2,4-Trichlorobenzene	ND	1.0	0.50	ug/l		
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.22	ug/l		
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.28	ug/l		
79-01-6	Trichloroethene	ND	1.0	0.26	ug/l		
75-69-4	Trichlorofluoromethane	ND	2.0	0.58	ug/l		
75-01-4	Vinyl chloride	ND	1.0	0.33	ug/l		
	m,p-Xylene	ND	1.0	0.42	ug/l		
95-47-6	o-Xylene	ND	1.0	0.21	ug/l		
1330-20-7	Xylene (total)	ND	1.0	0.21	ug/l		
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its		
1868-53-7	Dibromofluoromethane	101%		76-1	20%		
17060-07-0	1,2-Dichloroethane-D4	106%		73-1	22 %		
2037-26-5	Toluene-D8	98%		84-1	19%		
460-00-4	4-Bromofluorobenzene	106%		78-1	17%		
CAS No.	Tentatively Identified Compo	ounds	R.T.	Est.	Conc.	Units	Q
	system artifact		3.43	310		ug/l	J
	Total TIC, Volatile			0		ug/l	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

3.5

Page 1 of 3

Report of Analysis

Client Sample ID: MW-1

Lab Sample ID:JC43407-5Date Sampled:05/15/17Matrix:AQ - Ground WaterDate Received:05/16/17Method:SW846 8270DSW846 3510CPercent Solids:n/a

Project: 79 Hurley Avenue, Kingston, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 P114097.D 1 05/23/17 06:29 JJ 05/21/17 OP3013 EP5092

Run #2

Initial Volume Final Volume

Run #1 1000 ml 1.0 ml

Run #2

ABN TCL List (SOM0 2.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
95-57-8	2-Chlorophenol	ND	5.0	0.82	ug/l	
59-50-7	4-Chloro-3-methyl phenol	ND	5.0	0.89	ug/l	
120-83-2	2,4-Dichlorophenol	ND	2.0	1.3	ug/l	
105-67-9	2,4-Dimethylphenol	ND	5.0	2.4	ug/l	
51-28-5	2,4-Dinitrophenol	ND	10	1.6	ug/l	
534-52-1	4,6-Dinitro-o-cresol	ND	5.0	1.3	ug/l	
95-48-7	2-Methylphenol	ND	2.0	0.89	ug/l	
	3&4-Methylphenol	ND	2.0	0.88	ug/l	
88-75-5	2-Nitrophenol	ND	5.0	0.96	ug/l	
100-02-7	4-Nitrophenol	ND	10	1.2	ug/l	
87-86-5	Pentachlorophenol	ND	4.0	1.4	ug/l	
108-95-2	Phenol	ND	2.0	0.39	ug/l	
58-90-2	2,3,4,6-Tetrachlorophenol	ND	5.0	1.5	ug/l	
95-95-4	2,4,5-Trichlorophenol	ND	5.0	1.3	ug/l	
88-06-2	2,4,6-Trichlorophenol	ND	5.0	0.92	ug/l	
83-32-9	Acenaphthene	ND	1.0	0.19	ug/l	
208-96-8	Acenaphthylene	ND	1.0	0.14	ug/l	
98-86-2	Acetophenone	ND	2.0	0.21	ug/l	
120-12-7	Anthracene	ND	1.0	0.21	ug/l	
1912-24-9	Atrazine	ND	2.0	0.45	ug/l	
100-52-7	Benzaldehyde	ND	5.0	0.29	ug/l	
56-55-3	Benzo(a)anthracene	ND	1.0	0.20	ug/l	
50-32-8	Benzo(a)pyrene	ND	1.0	0.21	ug/l	
205-99-2	Benzo(b)fluoranthene	ND	1.0	0.21	ug/l	
191-24-2	Benzo(g,h,i)perylene	ND	1.0	0.34	ug/l	
207-08-9	Benzo(k)fluoranthene	ND	1.0	0.21	ug/l	
101-55-3	4-Bromophenyl phenyl ether	ND	2.0	0.40	ug/l	
85-68-7	Butyl benzyl phthalate	ND	2.0	0.46	ug/l	
92-52-4	1,1'-Biphenyl	ND	1.0	0.21	ug/l	
91-58-7	2-Chloronaphthalene	ND	2.0	0.24	ug/l	
106-47-8	4-Chloroaniline	ND	5.0	0.34	ug/l	
86-74-8	Carbazole	ND	1.0	0.23	ug/l	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 3

Client Sample ID: MW-1

Lab Sample ID: JC43407-5 Date Sampled: 05/15/17 Matrix: AQ - Ground Water Date Received: 05/16/17

Method: SW846 8270D SW846 3510C Percent Solids: n/a

Project: 79 Hurley Avenue, Kingston, NY

ABN TCL List (SOM0 2.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
105-60-2	Caprolactam	ND	2.0	0.65	ug/l	
218-01-9	Chrysene	ND	1.0	0.18	ug/l	
111-91-1	bis(2-Chloroethoxy)methane	ND	2.0	0.28	ug/l	
111-44-4	bis(2-Chloroethyl)ether	ND	2.0	0.25	ug/l	
108-60-1	bis(2-Chloroisopropyl)ether	ND	2.0	0.40	ug/l	
7005-72-3	4-Chlorophenyl phenyl ether	ND	2.0	0.37	ug/l	
121-14-2	2,4-Dinitrotoluene	ND	1.0	0.55	ug/l	
606-20-2	2,6-Dinitrotoluene	ND	1.0	0.48	ug/l	
91-94-1	3,3'-Dichlorobenzidine	ND	2.0	0.51	ug/l	
123-91-1	1,4-Dioxane	ND	1.0	0.66	ug/l	
53-70-3	Dibenzo(a,h)anthracene	ND	1.0	0.33	ug/l	
132-64-9	Dibenzofuran	ND	5.0	0.22	ug/l	
84-74-2	Di-n-butyl phthalate	ND	2.0	0.50	ug/l	
117-84-0	Di-n-octyl phthalate	ND	2.0	0.23	ug/l	
84-66-2	Diethyl phthalate	ND	2.0	0.26	ug/l	
131-11-3	Dimethyl phthalate	ND	2.0	0.22	ug/l	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	2.0	1.7	ug/l	
206-44-0	Fluoranthene	ND	1.0	0.17	ug/l	
86-73-7	Fluorene	ND	1.0	0.17	ug/l	
118-74-1	Hexachlorobenzene	ND	1.0	0.33	ug/l	
87-68-3	Hexachlorobutadiene	ND	1.0	0.49	ug/l	
77-47-4	Hexachlorocyclopentadiene	ND	10	2.8	ug/l	
67-72-1	Hexachloroethane	ND	2.0	0.39	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	1.0	0.33	ug/l	
78-59-1	Isophorone	ND	2.0	0.28	ug/l	
91-57-6	2-Methylnaphthalene	ND	1.0	0.21	ug/l	
88-74-4	2-Nitroaniline	ND	5.0	0.28	ug/l	
99-09-2	3-Nitroaniline	ND	5.0	0.39	ug/l	
100-01-6	4-Nitroaniline	ND	5.0	0.44	ug/l	
91-20-3	Naphthalene	ND	1.0	0.23	ug/l	
98-95-3	Nitrobenzene	ND	2.0	0.64	ug/l	
621-64-7	N-Nitroso-di-n-propylamine	ND	2.0	0.48	ug/l	
86-30-6	N-Nitrosodiphenylamine	ND	5.0	0.22	ug/l	
85-01-8	Phenanthrene	ND	1.0	0.18	ug/l	
129-00-0	Pyrene	ND	1.0	0.22	ug/l	
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	2.0	0.37	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
367-12-4	2-Fluorophenol	45%		10-1	10%	

367-12-4 2-Fluorophenol 45% 10-110%

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 3 of 3

Client Sample ID: MW-1

Lab Sample ID:JC43407-5Date Sampled:05/15/17Matrix:AQ - Ground WaterDate Received:05/16/17Method:SW846 8270D SW846 3510CPercent Solids:n/a

Project: 79 Hurley Avenue, Kingston, NY

ABN TCL List (SOM0 2.0)

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits		
4165-62-2	Phenol-d5	29%		10-110%		
118-79-6	2,4,6-Tribromophenol	96%		36-151%		
4165-60-0	Nitrobenzene-d5	78 %		34-128%		
321-60-8	2-Fluorobiphenyl	84%		38-119%		
1718-51-0	Terphenyl-d14	80 %		26-129%		
CAS No.	Tentatively Identified Compounds		R.T.	Est. Conc.	Units	Q
	Total TIC, Semi-Volatile			0	ug/l	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

Section 4

Misc. Forms

Custody Documents and Other Forms

Includes the following where applicable:

• Chain of Custody

3M088-010 Rev. Date: 9/49/16

JC43407: Chain of Custody

Page 1 of 3

075

SGS Accutest Sample Receipt Summary

Date / Time Received: 5/16/2017 2:15:00 PM Delivery Method: Accutest Courier Airbill #'s: Cooler Temps (Raw Measured) *C: Cooler 1: (3.5); Cooler Temps (Corrected) *C: Cooler 1: (4.9); Cooler Security Y or N Sample Integrity - Documentation Y or N 1. Sample labels present on bottles: 2. Container labeling complete: 2. Container labeling complete: 2. Container labeling complete: 2. Container labeling complete: 2. Container labeling complete: 3. Sample container label / COC agree: 3. Sample container label / COC agree: 3. Sample Integrity - Documentation Y or N 1. Sample rabeling complete: 2. Container labeling complete: 3. Sample container labeling complete: 4. No. Cooler temp verification: IR Gun 1. Sample Integrity - Documentation Y or N 1. Sample rabeling complete: 2. Container labeling complete: 3. Sample Integrity - Documentation Y or N 2. Sample Integrity - Documentation Y or N 2. Sample Integrity - Documentation Y or N 2. Sample Integrity - Documentation Y or N 2. Sample Integrity - Documentation Y or N 1. Sample rabeling complete: 3. Sample Integrity - Documentation Y or N 2. Sample Integrity - Documentation Y or N 2. Sample Integrity - Documentation Y or N 3. Sample Integrity - Documentation Y or N 3. Sample Integrity - Instructions Y or N 1. Analysis requested is clear: 2. Bottles received for unspecified tests 2. Southers received for unspecified tests 3. Samples preserved properly: 4. Compositing instructions clear: 5. Filtering instructions clear	
Cooler Temps (Corrected) °C: Cooler 1: (4.9); Cooler Security Y or N Y or N 1. Custody Seals Present:	
Cooler Security	
1. Custody Seals Present:	
1. Sample labels present on bottles: 2. Custody Seals Intact: 2. Custody Seals Intact: 3. Sample labels present on bottles: 2. Container labeling complete: 3. Sample container label / COC agree: 3. Sample Integrity - Condition 4. No. Coolers: 4. No. Coolers: 5. All containers accounted for: 6. Container labeling complete: 7. Container labeling complete: 8. Sample Integrity - Condition 9. Container labeling container labeling container labeling container labeling container labeling container labeling container labeling container labeling container labeling container labeling container labeling container labeling container labeling container labeling container labeling container labeling container labeling container labeling container labeling container labe	
Cooler Temperature	
1. Temp criteria achieved: 2. Cooler temp verification: 3. Cooler media: 4. No. Coolers: 1	
2. Cooler temp verification: IR Gun 3. Cooler media: Ice (Bag) 4. No. Coolers: 1 Quality Control Preservation 1. Trip Blank present / cooler:	
3. Cooler media: Ice (Bag) 2. All containers accounted for: 2. All containers accounted for: 3. Condition of sample: Intact Quality Control Preservation Y or N N/A Sample Integrity - Instructions Y or N 1. Trip Blank present / cooler: V 1. Analysis requested is clear: V 2. Trip Blank listed on COC: V 2. Bottles received for unspecified tests V 3. Samples preserved properly: V	
4. No. Coolers: 1	
3. Condition of sample: Intact	
1. Trip Blank present / cooler: 2. Trip Blank listed on COC: 3. Samples preserved properly: 4. VOCs headspace free: 2. Trip Blank listed on COC: 3. Samples preserved properly: 4. Filtering instructions clear: 5. Filtering instructions clear:	
1. Trip Blank present / cooler: 2. Trip Blank listed on COC: 2. Bottles received for unspecified tests 3. Samples preserved properly: 4. VOCs headspace free: 4. Compositing instructions clear: 5. Filtering instructions clear:	N/A
2. Trip Blank listed on COC: 3. Samples preserved properly: 4. VOCs headspace free: 4. Compositing instructions clear: 5. Filtering instructions clear:	
4. VOCs headspace free: 4. Compositing instructions clear: 5. Filtering instructions clear:	
4. VOCs headspace free: 4. Compositing instructions clear: 5. Filtering instructions clear: □ □	
	~
Comments -3 & -4 VOC vials rec'd without individual labels on vials. 1 label was present on outside of bag. Samples set up accordingly.	✓
SM089-02	

JC43407: Chain of Custody

Page 2 of 3

Response:

Response: Proceed with analysis

JC43407: Chain of Custody Page 3 of 3

Dayton, NJ 02/09/18

The results set forth herein are provided by SGS North America Inc.

e-Hardcopy 2.0
Automated Report

Partner Engineering & Science

Daily Freeman, 73 Hurley Avenue, Kingston, NY

17242956

SGS Job Number: JC49133

Sampling Date: 08/16/17

Partner Engineering & Science

channa@partneresi.com

ATTN: Cilien Hanna

Total number of pages in report: 25

TNI TABORATORA

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Program and/or state specific certification programs as applicable.

Maney - Cole
Nancy Cole
Laboratory Director

Client Service contact: Kelly Patterson 732-329-0200

Certifications: NJ(12129), NY(10983), CA, CT, FL, IL, IN, KS, KY, LA, MA, MD, ME, MN, NC, OH VAP (CL0056), AK (UST-103), AZ (AZ0786), PA, RI, SC, TX, UT, VA, WV, DoD ELAP (L-A-B L2248)

This report shall not be reproduced, except in its entirety, without the written approval of SGS. Test results relate only to samples analyzed.

SGS North America Inc. • 2235 Route 130 • Dayton, NJ 08810 • tel: 732-329-0200 • fax: 732-329-3499

Sections:

-1-

Table of Contents

Section 1: Sample Summary	3
Section 2: Summary of Hits	4
Section 3: Sample Results	
3.1: JC49133-1: MW-1	6
3.2: JC49133-2: MW-2	11
3.3: JC49133-3: MW-3	16
3.4: JC49133-4: TB	21
Section 4: Misc. Forms	23
4.1: Chain of Custody	24

Sample Summary

Partner Engineering & Science

JC49133 Job No:

Daily Freeman, 73 Hurley Avenue, Kingston, NY Project No: 17242956

Sample Number	Collected Date	Time By	Received	Matr		Client Sample ID
Number	Date	Time by	Received	Coue	Туре	Sample 1D
JC49133-1	08/16/17	10:15 RR	08/17/17	\mathbf{AQ}	Ground Water	MW-1
JC49133-2	08/16/17	12:20 RR	08/17/17	AQ	Ground Water	MW-2
JC49133-3	08/16/17	11:15 RR	08/17/17	AQ	Ground Water	MW-3
				·		
JC49133-4	08/16/17	12:20 RR	08/17/17	\mathbf{AQ}	Trip Blank Water	TB

Summary of Hits Job Number: JC49133

JC49133

Account:

Partner Engineering & Science Daily Freeman, 73 Hurley Avenue, Kingston, NY **Project:**

08/16/17 **Collected:**

Lab Sample ID Analyte	Client Sample ID	Result/ Qual	RL	MDL	Units	Method
JC49133-1	MW-1					
No hits reported	in this sample.					
JC49133-2	MW-2					
Benzene		0.93	0.50	0.17	ug/l	SW846 8260C
Ethylbenzene		4.8	1.0	0.22	ug/l	SW846 8260C
Methyl Tert Buty	l Ether	57.4	1.0	0.25	ug/l	SW846 8260C
Toluene		0.51 J	1.0	0.25	ug/l	SW846 8260C
m,p-Xylene		8.1	1.0	0.43	ug/l	SW846 8260C
o-Xylene		0.75 J	1.0	0.22	ug/l	SW846 8260C
Xylene (total)		8.9	1.0	0.22	ug/l	SW846 8260C
Naphthalene		0.40 J	1.0	0.23	ug/l	SW846 8270D
JC49133-3	MW-3					
Methyl Tert Buty	yl Ether	45.6	1.0	0.25	ug/l	SW846 8260C

JC49133-4 TB

No hits reported in this sample.

Dayton, NJ

Sample Results		
Report of Analysis		

Client Sample ID: MW-1

Lab Sample ID:JC49133-1Date Sampled:08/16/17Matrix:AQ - Ground WaterDate Received:08/17/17Method:SW846 8260CPercent Solids:n/a

Project: Daily Freeman, 73 Hurley Avenue, Kingston, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 L293776.D 1 08/19/17 14:18 JC n/a n/a VL8257

Run #2

Purge Volume

Run #1 5.0 ml

Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	10	5.0	ug/l	
71-43-2	Benzene	ND	0.50	0.17	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.38	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.22	ug/l	
75-25-2	Bromoform	ND	1.0	0.42	ug/l	
74-83-9	Bromomethane	ND	2.0	1.4	ug/l	
78-93-3	2-Butanone (MEK)	ND	10	4.8	ug/l	
75-15-0	Carbon disulfide	ND	2.0	0.23	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.34	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.24	ug/l	
75-00-3	Chloroethane	ND	1.0	0.59	ug/l	
67-66-3	Chloroform	ND	1.0	0.29	ug/l	
74-87-3	Chloromethane	ND	1.0	0.53	ug/l	
110-82-7	Cyclohexane	ND	5.0	0.63	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.0	0.69	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.16	ug/l	
106-93-4	1,2-Dibromoethane	ND	1.0	0.21	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.50	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.50	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.50	ug/l	
75-71-8	Dichlorodifluoromethane	ND	2.0	1.9	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.21	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.20	ug/l	
75-35-4	1,1-Dichloroethene	ND	1.0	0.47	ug/l	
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.50	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.40	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.24	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.25	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.22	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.22	ug/l	
76-13-1	Freon 113	ND	5.0	1.2	ug/l	
591-78-6	2-Hexanone	ND	5.0	3.3	ug/l	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 2

Client Sample ID: MW-1

Lab Sample ID:JC49133-1Date Sampled:08/16/17Matrix:AQ - Ground WaterDate Received:08/17/17Method:SW846 8260CPercent Solids:n/a

Project: Daily Freeman, 73 Hurley Avenue, Kingston, NY

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
98-82-8	Isopropylbenzene	ND	1.0	0.25	ug/l	
79-20-9	Methyl Acetate	ND	5.0	3.1	ug/l	
108-87-2	Methylcyclohexane	ND	5.0	1.8	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.25	ug/l	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.0	3.0	ug/l	
75-09-2	Methylene chloride	ND	2.0	1.0	ug/l	
100-42-5	Styrene	ND	1.0	0.24	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.17	ug/l	
127-18-4	Tetrachloroethene	ND	1.0	0.50	ug/l	
108-88-3	Toluene	ND	1.0	0.25	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	1.0	0.50	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	1.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.25	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.24	ug/l	
79-01-6	Trichloroethene	ND	1.0	0.27	ug/l	
75-69-4	Trichlorofluoromethane	ND	2.0	0.60	ug/l	
75-01-4	Vinyl chloride	ND	1.0	0.62	ug/l	
	m,p-Xylene	ND	1.0	0.43	ug/l	
95-47-6	o-Xylene	ND	1.0	0.22	ug/l	
1330-20-7	Xylene (total)	ND	1.0	0.22	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1868-53-7	Dibromofluoromethane	99%		80-1	20%	
17060-07-0	1,2-Dichloroethane-D4	108%		81-1	24%	
2037-26-5	Toluene-D8	98%		80-1	20%	
460-00-4	4-Bromofluorobenzene	98%		80-1	20%	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: MW-1

Lab Sample ID:JC49133-1Date Sampled:08/16/17Matrix:AQ - Ground WaterDate Received:08/17/17Method:SW846 8270D SW846 3510CPercent Solids:n/a

Project: Daily Freeman, 73 Hurley Avenue, Kingston, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 2M97266.D 1 08/21/17 00:59 CS 08/18/17 15:45 OP5457 E2M4324

Run #2

Initial Volume Final Volume Run #1 1000 ml 1.0 ml

Run #2

ABN TCL List (SOM0 2.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
95-57-8	2-Chlorophenol	ND	5.0	0.82	ug/l	
59-50-7	4-Chloro-3-methyl phenol	ND	5.0	0.89	ug/l	
120-83-2	2,4-Dichlorophenol	ND	2.0	1.3	ug/l	
105-67-9	2,4-Dimethylphenol	ND	5.0	2.4	ug/l	
51-28-5	2,4-Dinitrophenol	ND	10	1.6	ug/l	
534-52-1	4,6-Dinitro-o-cresol	ND	5.0	1.3	ug/l	
95-48-7	2-Methylphenol	ND	2.0	0.89	ug/l	
	3&4-Methylphenol	ND	2.0	0.88	ug/l	
88-75-5	2-Nitrophenol	ND	5.0	0.96	ug/l	
100-02-7	4-Nitrophenol	ND	10	1.2	ug/l	
87-86-5	Pentachlorophenol	ND	4.0	1.4	ug/l	
108-95-2	Phenol	ND	2.0	0.39	ug/l	
58-90-2	2,3,4,6-Tetrachlorophenol	ND	5.0	1.5	ug/l	
95-95-4	2,4,5-Trichlorophenol	ND	5.0	1.3	ug/l	
88-06-2	2,4,6-Trichlorophenol	ND	5.0	0.92	ug/l	
83-32-9	Acenaphthene	ND	1.0	0.19	ug/l	
208-96-8	Acenaphthylene	ND	1.0	0.14	ug/l	
98-86-2	Acetophenone	ND	2.0	0.21	ug/l	
120-12-7	Anthracene	ND	1.0	0.21	ug/l	
1912-24-9	Atrazine	ND	2.0	0.45	ug/l	
100-52-7	Benzaldehyde	ND	5.0	0.29	ug/l	
56-55-3	Benzo(a)anthracene	ND	1.0	0.20	ug/l	
50-32-8	Benzo(a)pyrene	ND	1.0	0.21	ug/l	
205-99-2	Benzo(b)fluoranthene	ND	1.0	0.21	ug/l	
191-24-2	Benzo(g,h,i)perylene	ND	1.0	0.34	ug/l	
207-08-9	Benzo(k)fluoranthene	ND	1.0	0.21	ug/l	
101-55-3	4-Bromophenyl phenyl ether	ND	2.0	0.40	ug/l	
85-68-7	Butyl benzyl phthalate	ND	2.0	0.46	ug/l	
92-52-4	1,1'-Biphenyl	ND	1.0	0.21	ug/l	
91-58-7	2-Chloronaphthalene	ND	2.0	0.24	ug/l	
106-47-8	4-Chloroaniline	ND	5.0	0.34	ug/l	
86-74-8	Carbazole	ND	1.0	0.23	ug/l	

ND = Not detected MDL =

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 3

Client Sample ID: MW-1

Lab Sample ID:JC49133-1Date Sampled:08/16/17Matrix:AQ - Ground WaterDate Received:08/17/17Method:SW846 8270D SW846 3510CPercent Solids:n/a

Project: Daily Freeman, 73 Hurley Avenue, Kingston, NY

ABN TCL List (SOM0 2.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
105-60-2	Caprolactam	ND	2.0	0.65	ug/l	
218-01-9	Chrysene	ND	1.0	0.18	ug/l	
111-91-1	bis(2-Chloroethoxy)methane	ND	2.0	0.28	ug/l	
111-44-4	bis(2-Chloroethyl)ether	ND	2.0	0.25	ug/l	
108-60-1	bis(2-Chloroisopropyl)ether	ND	2.0	0.40	ug/l	
7005-72-3	4-Chlorophenyl phenyl ether	ND	2.0	0.37	ug/l	
121-14-2	2,4-Dinitrotoluene	ND	1.0	0.55	ug/l	
606-20-2	2,6-Dinitrotoluene	ND	1.0	0.48	ug/l	
91-94-1	3,3'-Dichlorobenzidine	ND	2.0	0.51	ug/l	
123-91-1	1,4-Dioxane	ND	1.0	0.66	ug/l	
53-70-3	Dibenzo(a, h)anthracene	ND	1.0	0.33	ug/l	
132-64-9	Dibenzofuran	ND	5.0	0.22	ug/l	
84-74-2	Di-n-butyl phthalate	ND	2.0	0.50	ug/l	
117-84-0	Di-n-octyl phthalate	ND	2.0	0.23	ug/l	
84-66-2	Diethyl phthalate	ND	2.0	0.26	ug/l	
131-11-3	Dimethyl phthalate	ND	2.0	0.22	ug/l	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	2.0	1.7	ug/l	
206-44-0	Fluoranthene	ND	1.0	0.17	ug/l	
86-73-7	Fluorene	ND	1.0	0.17	ug/l	
118-74-1	Hexachlorobenzene	ND	1.0	0.33	ug/l	
87-68-3	Hexachlorobutadiene	ND	1.0	0.49	ug/l	
77-47-4	Hexachlorocyclopentadiene	ND	10	2.8	ug/l	
67-72-1	Hexachloroethane	ND	2.0	0.39	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	1.0	0.33	ug/l	
78-59-1	Isophorone	ND	2.0	0.28	ug/l	
91-57-6	2-Methylnaphthalene	ND	1.0	0.21	ug/l	
88-74-4	2-Nitroaniline	ND	5.0	0.28	ug/l	
99-09-2	3-Nitroaniline	ND	5.0	0.39	ug/l	
100-01-6	4-Nitroaniline	ND	5.0	0.44	ug/l	
91-20-3	Naphthalene	ND	1.0	0.23	ug/l	
98-95-3	Nitrobenzene	ND	2.0	0.64	ug/l	
621-64-7	N-Nitroso-di-n-propylamine	ND	2.0	0.48	ug/l	
86-30-6	N-Nitrosodiphenylamine	ND	5.0	0.22	ug/l	
85-01-8	Phenanthrene	ND	1.0	0.18	ug/l	
129-00-0	Pyrene	ND	1.0	0.22	ug/l	
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	2.0	0.37	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
367-12-4	2-Fluorophenol	41%		10-1	10%	

367-12-4 2-Fluorophenol 41% 10-110%

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 3 of 3

Client Sample ID: MW-1

Date Sampled: 08/16/17 Lab Sample ID: JC49133-1 Matrix: AQ - Ground Water Date Received: 08/17/17 Method: SW846 8270D SW846 3510C Percent Solids: n/a

Daily Freeman, 73 Hurley Avenue, Kingston, NY **Project:**

ABN TCL List (SOM0 2.0)

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
4165-62-2	Phenol-d5	27%		10-110%
118-79-6	2,4,6-Tribromophenol	93%		36-151%
4165-60-0	Nitrobenzene-d5	70 %		34-128%
321-60-8	2-Fluorobiphenyl	74%		38-119%
1718-51-0	Terphenyl-d14	82%		26-129%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

3.2

Report of Analysis

Page 1 of 2

Client Sample ID: MW-2

Lab Sample ID:JC49133-2Date Sampled:08/16/17Matrix:AQ - Ground WaterDate Received:08/17/17Method:SW846 8260CPercent Solids:n/a

Project: Daily Freeman, 73 Hurley Avenue, Kingston, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 L293777.D 1 08/19/17 14:45 JC n/a n/a VL8257

Run #2

Purge Volume

Run #1 5.0 ml

Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	10	5.0	ug/l	
71-43-2	Benzene	0.93	0.50	0.17	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.38	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.22	ug/l	
75-25-2	Bromoform	ND	1.0	0.42	ug/l	
74-83-9	Bromomethane	ND	2.0	1.4	ug/l	
78-93-3	2-Butanone (MEK)	ND	10	4.8	ug/l	
75-15-0	Carbon disulfide	ND	2.0	0.23	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.34	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.24	ug/l	
75-00-3	Chloroethane	ND	1.0	0.59	ug/l	
67-66-3	Chloroform	ND	1.0	0.29	ug/l	
74-87-3	Chloromethane	ND	1.0	0.53	ug/l	
110-82-7	Cyclohexane	ND	5.0	0.63	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.0	0.69	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.16	ug/l	
106-93-4	1,2-Dibromoethane	ND	1.0	0.21	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.50	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.50	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.50	ug/l	
75-71-8	Dichlorodifluoromethane	ND	2.0	1.9	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.21	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.20	ug/l	
75-35-4	1,1-Dichloroethene	ND	1.0	0.47	ug/l	
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.50	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.40	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.24	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.25	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.22	ug/l	
100-41-4	Ethylbenzene	4.8	1.0	0.22	ug/l	
76-13-1	Freon 113	ND	5.0	1.2	ug/l	
591-78-6	2-Hexanone	ND	5.0	3.3	ug/l	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 2

Client Sample ID: MW-2

Lab Sample ID:JC49133-2Date Sampled:08/16/17Matrix:AQ - Ground WaterDate Received:08/17/17Method:SW846 8260CPercent Solids:n/a

Project: Daily Freeman, 73 Hurley Avenue, Kingston, NY

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
98-82-8	Isopropylbenzene	ND	1.0	0.25	ug/l	
79-20-9	Methyl Acetate	ND	5.0	3.1	ug/l	
108-87-2	Methylcyclohexane	ND	5.0	1.8	ug/l	
1634-04-4	Methyl Tert Butyl Ether	57.4	1.0	0.25	ug/l	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.0	3.0	ug/l	
75-09-2	Methylene chloride	ND	2.0	1.0	ug/l	
100-42-5	Styrene	ND	1.0	0.24	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.17	ug/l	
127-18-4	Tetrachloroethene	ND	1.0	0.50	ug/l	
108-88-3	Toluene	0.51	1.0	0.25	ug/l	J
87-61-6	1,2,3-Trichlorobenzene	ND	1.0	0.50	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	1.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.25	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.24	ug/l	
79-01-6	Trichloroethene	ND	1.0	0.27	ug/l	
75-69-4	Trichlorofluoromethane	ND	2.0	0.60	ug/l	
75-01-4	Vinyl chloride	ND	1.0	0.62	ug/l	
	m, p-Xylene	8.1	1.0	0.43	ug/l	
95-47-6	o-Xylene	0.75	1.0	0.22	ug/l	J
1330-20-7	Xylene (total)	8.9	1.0	0.22	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7	Dibromofluoromethane	102%		80-12	20%	
17060-07-0	1,2-Dichloroethane-D4	110%		81-13	24%	
2037-26-5	Toluene-D8	98%		80-12	20%	
460-00-4	4-Bromofluorobenzene	97%	80-120%			

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: MW-2

Lab Sample ID:JC49133-2Date Sampled:08/16/17Matrix:AQ - Ground WaterDate Received:08/17/17Method:SW846 8270DSW846 3510CPercent Solids:n/a

Project: Daily Freeman, 73 Hurley Avenue, Kingston, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 2M97267.D 1 08/21/17 01:27 CS 08/18/17 15:45 OP5457 E2M4324

Run #2

Initial Volume Final Volume Run #1 1000 ml 1.0 ml

Run #2

ABN TCL List (SOM0 2.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
95-57-8	2-Chlorophenol	ND	5.0	0.82	ug/l	
59-50-7	4-Chloro-3-methyl phenol	ND	5.0	0.89	ug/l	
120-83-2	2,4-Dichlorophenol	ND	2.0	1.3	ug/l	
105-67-9	2,4-Dimethylphenol	ND	5.0	2.4	ug/l	
51-28-5	2,4-Dinitrophenol	ND	10	1.6	ug/l	
534-52-1	4,6-Dinitro-o-cresol	ND	5.0	1.3	ug/l	
95-48-7	2-Methylphenol	ND	2.0	0.89	ug/l	
	3&4-Methylphenol	ND	2.0	0.88	ug/l	
88-75-5	2-Nitrophenol	ND	5.0	0.96	ug/l	
100-02-7	4-Nitrophenol	ND	10	1.2	ug/l	
87-86-5	Pentachlorophenol	ND	4.0	1.4	ug/l	
108-95-2	Phenol	ND	2.0	0.39	ug/l	
58-90-2	2,3,4,6-Tetrachlorophenol	ND	5.0	1.5	ug/l	
95-95-4	2,4,5-Trichlorophenol	ND	5.0	1.3	ug/l	
88-06-2	2,4,6-Trichlorophenol	ND	5.0	0.92	ug/l	
83-32-9	Acenaphthene	ND	1.0	0.19	ug/l	
208-96-8	Acenaphthylene	ND	1.0	0.14	ug/l	
98-86-2	Acetophenone	ND	2.0	0.21	ug/l	
120-12-7	Anthracene	ND	1.0	0.21	ug/l	
1912-24-9	Atrazine	ND	2.0	0.45	ug/l	
100-52-7	Benzaldehyde	ND	5.0	0.29	ug/l	
56-55-3	Benzo(a)anthracene	ND	1.0	0.20	ug/l	
50-32-8	Benzo(a)pyrene	ND	1.0	0.21	ug/l	
205-99-2	Benzo(b)fluoranthene	ND	1.0	0.21	ug/l	
191-24-2	Benzo(g,h,i)perylene	ND	1.0	0.34	ug/l	
207-08-9	Benzo(k)fluoranthene	ND	1.0	0.21	ug/l	
101-55-3	4-Bromophenyl phenyl ether	ND	2.0	0.40	ug/l	
85-68-7	Butyl benzyl phthalate	ND	2.0	0.46	ug/l	
92-52-4	1,1'-Biphenyl	ND	1.0	0.21	ug/l	
91-58-7	2-Chloronaphthalene	ND	2.0	0.24	ug/l	
106-47-8	4-Chloroaniline	ND	5.0	0.34	ug/l	
86-74-8	Carbazole	ND	1.0	0.23	ug/l	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 3

Client Sample ID: MW-2

Lab Sample ID:JC49133-2Date Sampled:08/16/17Matrix:AQ - Ground WaterDate Received:08/17/17Method:SW846 8270D SW846 3510CPercent Solids:n/a

Project: Daily Freeman, 73 Hurley Avenue, Kingston, NY

ABN TCL List (SOM0 2.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
105-60-2	Caprolactam	ND	2.0	0.65	ug/l	
218-01-9	Chrysene	ND	1.0	0.18	ug/l	
111-91-1	bis(2-Chloroethoxy)methane	ND	2.0	0.28	ug/l	
111-44-4	bis(2-Chloroethyl)ether	ND	2.0	0.25	ug/l	
108-60-1	bis(2-Chloroisopropyl)ether	ND	2.0	0.40	ug/l	
7005-72-3	4-Chlorophenyl phenyl ether	ND	2.0	0.37	ug/l	
121-14-2	2,4-Dinitrotoluene	ND	1.0	0.55	ug/l	
606-20-2	2,6-Dinitrotoluene	ND	1.0	0.48	ug/l	
91-94-1	3,3'-Dichlorobenzidine	ND	2.0	0.51	ug/l	
123-91-1	1,4-Dioxane	ND	1.0	0.66	ug/l	
53-70-3	Dibenzo(a,h)anthracene	ND	1.0	0.33	ug/l	
132-64-9	Dibenzofuran	ND	5.0	0.22	ug/l	
84-74-2	Di-n-butyl phthalate	ND	2.0	0.50	ug/l	
117-84-0	Di-n-octyl phthalate	ND	2.0	0.23	ug/l	
84-66-2	Diethyl phthalate	ND	2.0	0.26	ug/l	
131-11-3	Dimethyl phthalate	ND	2.0	0.22	ug/l	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	2.0	1.7	ug/l	
206-44-0	Fluoranthene	ND	1.0	0.17	ug/l	
86-73-7	Fluorene	ND	1.0	0.17	ug/l	
118-74-1	Hexachlorobenzene	ND	1.0	0.33	ug/l	
87-68-3	Hexachlorobutadiene	ND	1.0	0.49	ug/l	
77-47-4	Hexachlorocyclopentadiene	ND	10	2.8	ug/l	
67-72-1	Hexachloroethane	ND	2.0	0.39	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	1.0	0.33	ug/l	
78-59-1	Isophorone	ND	2.0	0.28	ug/l	
91-57-6	2-Methylnaphthalene	ND	1.0	0.21	ug/l	
88-74-4	2-Nitroaniline	ND	5.0	0.28	ug/l	
99-09-2	3-Nitroaniline	ND	5.0	0.39	ug/l	
100-01-6	4-Nitroaniline	ND	5.0	0.44	ug/l	
91-20-3	Naphthalene	0.40	1.0	0.23	ug/l	J
98-95-3	Nitrobenzene	ND	2.0	0.64	ug/l	
621-64-7	N-Nitroso-di-n-propylamine	ND	2.0	0.48	ug/l	
86-30-6	N-Nitrosodiphenylamine	ND	5.0	0.22	ug/l	
85-01-8	Phenanthrene	ND	1.0	0.18	ug/l	
129-00-0	Pyrene	ND	1.0	0.22	ug/l	
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	2.0	0.37	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
267 19 4	9 Eluoronhanol	200/		10 1	100/	

367-12-4 2-Fluorophenol 38% 10-110%

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 3 of 3

Client Sample ID: MW-2

Lab Sample ID:JC49133-2Date Sampled:08/16/17Matrix:AQ - Ground WaterDate Received:08/17/17Method:SW846 8270D SW846 3510CPercent Solids:n/a

Project: Daily Freeman, 73 Hurley Avenue, Kingston, NY

ABN TCL List (SOM0 2.0)

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
4165-62-2	Phenol-d5	24%		10-110%
118-79-6	2,4,6-Tribromophenol	92%		36-151%
4165-60-0	Nitrobenzene-d5	65%		34-128%
321-60-8	2-Fluorobiphenyl	71%		38-119%
1718-51-0	Terphenyl-d14	72%		26-129%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: MW-3

Lab Sample ID:JC49133-3Date Sampled:08/16/17Matrix:AQ - Ground WaterDate Received:08/17/17Method:SW846 8260CPercent Solids:n/a

Project: Daily Freeman, 73 Hurley Avenue, Kingston, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 L293778.D 1 08/19/17 15:11 JC n/a n/a VL8257

Run #2

Purge Volume

Run #1 5.0 ml

Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	10	5.0	ug/l	
71-43-2	Benzene	ND	0.50	0.17	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.38	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.22	ug/l	
75-25-2	Bromoform	ND	1.0	0.42	ug/l	
74-83-9	Bromomethane	ND	2.0	1.4	ug/l	
78-93-3	2-Butanone (MEK)	ND	10	4.8	ug/l	
75-15-0	Carbon disulfide	ND	2.0	0.23	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.34	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.24	ug/l	
75-00-3	Chloroethane	ND	1.0	0.59	ug/l	
67-66-3	Chloroform	ND	1.0	0.29	ug/l	
74-87-3	Chloromethane	ND	1.0	0.53	ug/l	
110-82-7	Cyclohexane	ND	5.0	0.63	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.0	0.69	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.16	ug/l	
106-93-4	1,2-Dibromoethane	ND	1.0	0.21	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.50	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.50	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.50	ug/l	
75-71-8	Dichlorodifluoromethane	ND	2.0	1.9	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.21	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.20	ug/l	
75-35-4	1,1-Dichloroethene	ND	1.0	0.47	ug/l	
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.50	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.40	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.24	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.25	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.22	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.22	ug/l	
76-13-1	Freon 113	ND	5.0	1.2	ug/l	
591-78-6	2-Hexanone	ND	5.0	3.3	ug/l	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 2

Report of Analysis

Client Sample ID: MW-3

Lab Sample ID:JC49133-3Date Sampled:08/16/17Matrix:AQ - Ground WaterDate Received:08/17/17Method:SW846 8260CPercent Solids:n/a

Project: Daily Freeman, 73 Hurley Avenue, Kingston, NY

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
98-82-8	Isopropylbenzene	ND	1.0	0.25	ug/l	
79-20-9	Methyl Acetate	ND	5.0	3.1	ug/l	
108-87-2	Methylcyclohexane	ND	5.0	1.8	ug/l	
1634-04-4	Methyl Tert Butyl Ether	45.6	1.0	0.25	ug/l	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.0	3.0	ug/l	
75-09-2	Methylene chloride	ND	2.0	1.0	ug/l	
100-42-5	Styrene	ND	1.0	0.24	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.17	ug/l	
127-18-4	Tetrachloroethene	ND	1.0	0.50	ug/l	
108-88-3	Toluene	ND	1.0	0.25	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	1.0	0.50	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	1.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.25	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.24	ug/l	
79-01-6	Trichloroethene	ND	1.0	0.27	ug/l	
75-69-4	Trichlorofluoromethane	ND	2.0	0.60	ug/l	
75-01-4	Vinyl chloride	ND	1.0	0.62	ug/l	
	m,p-Xylene	ND	1.0	0.43	ug/l	
95-47-6	o-Xylene	ND	1.0	0.22	ug/l	
1330-20-7	Xylene (total)	ND	1.0	0.22	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7	Dibromofluoromethane	99%		80-12	20%	
17060-07-0	1,2-Dichloroethane-D4	110%		81-12	24%	
2037-26-5	Toluene-D8	98%		80-12	20 %	
460-00-4	4-Bromofluorobenzene	97%		80-12	20%	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: MW-3

Lab Sample ID:JC49133-3Date Sampled:08/16/17Matrix:AQ - Ground WaterDate Received:08/17/17Method:SW846 8270D SW846 3510CPercent Solids:n/a

Project: Daily Freeman, 73 Hurley Avenue, Kingston, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 2M97268.D 1 08/21/17 01:55 CS 08/18/17 15:45 OP5457 E2M4324

Run #2

Initial Volume Final Volume Run #1 1000 ml 1.0 ml

Run #2

ABN TCL List (SOM0 2.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
95-57-8	2-Chlorophenol	ND	5.0	0.82	ug/l	
59-50-7	4-Chloro-3-methyl phenol	ND	5.0	0.89	ug/l	
120-83-2	2,4-Dichlorophenol	ND	2.0	1.3	ug/l	
105-67-9	2,4-Dimethylphenol	ND	5.0	2.4	ug/l	
51-28-5	2,4-Dinitrophenol	ND	10	1.6	ug/l	
534-52-1	4,6-Dinitro-o-cresol	ND	5.0	1.3	ug/l	
95-48-7	2-Methylphenol	ND	2.0	0.89	ug/l	
	3&4-Methylphenol	ND	2.0	0.88	ug/l	
88-75-5	2-Nitrophenol	ND	5.0	0.96	ug/l	
100-02-7	4-Nitrophenol	ND	10	1.2	ug/l	
87-86-5	Pentachlorophenol	ND	4.0	1.4	ug/l	
108-95-2	Phenol	ND	2.0	0.39	ug/l	
58-90-2	2,3,4,6-Tetrachlorophenol	ND	5.0	1.5	ug/l	
95-95-4	2,4,5-Trichlorophenol	ND	5.0	1.3	ug/l	
88-06-2	2,4,6-Trichlorophenol	ND	5.0	0.92	ug/l	
83-32-9	Acenaphthene	ND	1.0	0.19	ug/l	
208-96-8	Acenaphthylene	ND	1.0	0.14	ug/l	
98-86-2	Acetophenone	ND	2.0	0.21	ug/l	
120-12-7	Anthracene	ND	1.0	0.21	ug/l	
1912-24-9	Atrazine	ND	2.0	0.45	ug/l	
100-52-7	Benzaldehyde	ND	5.0	0.29	ug/l	
56-55-3	Benzo(a)anthracene	ND	1.0	0.20	ug/l	
50-32-8	Benzo(a)pyrene	ND	1.0	0.21	ug/l	
205-99-2	Benzo(b)fluoranthene	ND	1.0	0.21	ug/l	
191-24-2	Benzo(g,h,i)perylene	ND	1.0	0.34	ug/l	
207-08-9	Benzo(k)fluoranthene	ND	1.0	0.21	ug/l	
101-55-3	4-Bromophenyl phenyl ether	ND	2.0	0.40	ug/l	
85-68-7	Butyl benzyl phthalate	ND	2.0	0.46	ug/l	
92-52-4	1,1'-Biphenyl	ND	1.0	0.21	ug/l	
91-58-7	2-Chloronaphthalene	ND	2.0	0.24	ug/l	
106-47-8	4-Chloroaniline	ND	5.0	0.34	ug/l	
86-74-8	Carbazole	ND	1.0	0.23	ug/l	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: MW-3

Lab Sample ID:JC49133-3Date Sampled:08/16/17Matrix:AQ - Ground WaterDate Received:08/17/17Method:SW846 8270D SW846 3510CPercent Solids:n/a

Project: Daily Freeman, 73 Hurley Avenue, Kingston, NY

ABN TCL List (SOM0 2.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
105-60-2	Caprolactam	ND	2.0	0.65	ug/l	
218-01-9	Chrysene	ND	1.0	0.18	ug/l	
111-91-1	bis(2-Chloroethoxy)methane	ND	2.0	0.28	ug/l	
111-44-4	bis(2-Chloroethyl)ether	ND	2.0	0.25	ug/l	
108-60-1	bis(2-Chloroisopropyl)ether	ND	2.0	0.40	ug/l	
7005-72-3	4-Chlorophenyl phenyl ether	ND	2.0	0.37	ug/l	
121-14-2	2,4-Dinitrotoluene	ND	1.0	0.55	ug/l	
606-20-2	2,6-Dinitrotoluene	ND	1.0	0.48	ug/l	
91-94-1	3,3'-Dichlorobenzidine	ND	2.0	0.51	ug/l	
123-91-1	1,4-Dioxane	ND	1.0	0.66	ug/l	
53-70-3	Dibenzo(a,h)anthracene	ND	1.0	0.33	ug/l	
132-64-9	Dibenzofuran	ND	5.0	0.22	ug/l	
84-74-2	Di-n-butyl phthalate	ND	2.0	0.50	ug/l	
117-84-0	Di-n-octyl phthalate	ND	2.0	0.23	ug/l	
84-66-2	Diethyl phthalate	ND	2.0	0.26	ug/l	
131-11-3	Dimethyl phthalate	ND	2.0	0.22	ug/l	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	2.0	1.7	ug/l	
206-44-0	Fluoranthene	ND	1.0	0.17	ug/l	
86-73-7	Fluorene	ND	1.0	0.17	ug/l	
118-74-1	Hexachlorobenzene	ND	1.0	0.33	ug/l	
87-68-3	Hexachlorobutadiene	ND	1.0	0.49	ug/l	
77-47-4	Hexachlorocyclopentadiene	ND	10	2.8	ug/l	
67-72-1	Hexachloroethane	ND	2.0	0.39	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	1.0	0.33	ug/l	
78-59-1	Isophorone	ND	2.0	0.28	ug/l	
91-57-6	2-Methylnaphthalene	ND	1.0	0.21	ug/l	
88-74-4	2-Nitroaniline	ND	5.0	0.28	ug/l	
99-09-2	3-Nitroaniline	ND	5.0	0.39	ug/l	
100-01-6	4-Nitroaniline	ND	5.0	0.44	ug/l	
91-20-3	Naphthalene	ND	1.0	0.23	ug/l	
98-95-3	Nitrobenzene	ND	2.0	0.64	ug/l	
621-64-7	N-Nitroso-di-n-propylamine	ND	2.0	0.48	ug/l	
86-30-6	N-Nitrosodiphenylamine	ND	5.0	0.22	ug/l	
85-01-8	Phenanthrene	ND	1.0	0.18	ug/l	
129-00-0	Pyrene	ND	1.0	0.22	ug/l	
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	2.0	0.37	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
267 19 4	9 Eluorophonol	990/		10 1	100/	

367-12-4 2-Fluorophenol 22% 10-110%

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 3 of 3

Client Sample ID: MW-3

Lab Sample ID:JC49133-3Date Sampled:08/16/17Matrix:AQ - Ground WaterDate Received:08/17/17Method:SW846 8270D SW846 3510CPercent Solids:n/a

Project: Daily Freeman, 73 Hurley Avenue, Kingston, NY

ABN TCL List (SOM0 2.0)

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
4165-62-2	Phenol-d5	13%		10-110%
118-79-6	2,4,6-Tribromophenol	52 %		36-151%
4165-60-0	Nitrobenzene-d5	37 %		34-128%
321-60-8	2-Fluorobiphenyl	39 %		38-119%
1718-51-0	Terphenyl-d14	38%		26-129%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: TB

Lab Sample ID:JC49133-4Date Sampled:08/16/17Matrix:AQ - Trip Blank WaterDate Received:08/17/17Method:SW846 8260CPercent Solids:n/a

Project: Daily Freeman, 73 Hurley Avenue, Kingston, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 L293784.D 1 08/19/17 17:51 JC n/a n/a VL8257

Run #2

Purge Volume

Run #1 5.0 ml

Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	10	5.0	ug/l	
71-43-2	Benzene	ND	0.50	0.17	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.38	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.22	ug/l	
75-25-2	Bromoform	ND	1.0	0.42	ug/l	
74-83-9	Bromomethane	ND	2.0	1.4	ug/l	
78-93-3	2-Butanone (MEK)	ND	10	4.8	ug/l	
75-15-0	Carbon disulfide	ND	2.0	0.23	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.34	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.24	ug/l	
75-00-3	Chloroethane	ND	1.0	0.59	ug/l	
67-66-3	Chloroform	ND	1.0	0.29	ug/l	
74-87-3	Chloromethane	ND	1.0	0.53	ug/l	
110-82-7	Cyclohexane	ND	5.0	0.63	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.0	0.69	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.16	ug/l	
106-93-4	1,2-Dibromoethane	ND	1.0	0.21	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.50	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.50	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.50	ug/l	
75-71-8	Dichlorodifluoromethane	ND	2.0	1.9	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.21	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.20	ug/l	
75-35-4	1,1-Dichloroethene	ND	1.0	0.47	ug/l	
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.50	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.40	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.24	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.25	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.22	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.22	ug/l	
76-13-1	Freon 113	ND	5.0	1.2	ug/l	
591-78-6	2-Hexanone	ND	5.0	3.3	ug/l	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

C

Report of Analysis

Client Sample ID: TB

Lab Sample ID:JC49133-4Date Sampled:08/16/17Matrix:AQ - Trip Blank WaterDate Received:08/17/17Method:SW846 8260CPercent Solids:n/a

Project: Daily Freeman, 73 Hurley Avenue, Kingston, NY

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
98-82-8	Isopropylbenzene	ND	1.0	0.25	ug/l	
79-20-9	Methyl Acetate	ND	5.0	3.1	ug/l	
108-87-2	Methylcyclohexane	ND	5.0	1.8	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.25	ug/l	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.0	3.0	ug/l	
75-09-2	Methylene chloride	ND	2.0	1.0	ug/l	
100-42-5	Styrene	ND	1.0	0.24	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.17	ug/l	
127-18-4	Tetrachloroethene	ND	1.0	0.50	ug/l	
108-88-3	Toluene	ND	1.0	0.25	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	1.0	0.50	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	1.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.25	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.24	ug/l	
79-01-6	Trichloroethene	ND	1.0	0.27	ug/l	
75-69-4	Trichlorofluoromethane	ND	2.0	0.60	ug/l	
75-01-4	Vinyl chloride	ND	1.0	0.62	ug/l	
	m,p-Xylene	ND	1.0	0.43	ug/l	
95-47-6	o-Xylene	ND	1.0	0.22	ug/l	
1330-20-7	Xylene (total)	ND	1.0	0.22	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7	Dibromofluoromethane	102%		80-12	20%	
17060-07-0	1,2-Dichloroethane-D4	112%		81-12	24%	
2037-26-5	Toluene-D8	97%		80-12	20%	
460-00-4	4-Bromofluorobenzene	98%		80-12	20%	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

Section 4

Dayton, NJ

Misc. Forms

Custody Documents and Other Forms

Includes the following where applicable:

• Chain of Custody

		$\mathcal{L}^{(s)}$	CHAI				100	b.*								يرد	GE.	10	ike j
	courest	J76	2235	- SGS / la Roman (el	Osyto	as. NJ 1998	ear ear			\$100 \$100	X 3-004	20	—		(S.Ja	arder Con			
i		•	7EI (32-)		Sikitiki (Kitotati		-1767/Rt)			1000	iocones (S	C. 67 8'			İ	screinst .V		364	9133
est fillway separation of the	821 2 5 25 85 862 18 11	TO SEE	n nest	useyling.	13:0	75.75		SET E	Just 18	TAC.	100	2.3 Ser	Anale	k4719:				12.70 S	Metric Codes
SECTION EST	Project his ra	τ							47.32.48.424.244		- A-1-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-	7	T	***********************	<u> </u>	5(5) 9 - 2-1 E	ingentija.	AND LA CHARLE	* manacionea
Single Andrease 1		1 Treem	<u> </u>	TEN MAKE T	SANCO CO	er er e		en a section when		[Ì	1 1	ĺ		İ	į l			OV: Didn'ing Wese SW - Ground Wase
Specification Un	似对 陽茄	ler An	er literar	1						i už					1				WWW. Weeks: RW - Surface Weeks
Ector our NJ		<u> </u>	35-	Carcyon /)	<u>rant Aury (</u>	Zabast tal		1				i					90 - 500 90 - 600ge 850 Gertenung
KSEYNES OPOCTE		グラクベ		Sübet , K) 	ĺ		- !	İ				01 Gr 110 Opertique
		er i carrier	··- ···· ·- —··	107	æ :		Eleli:			- _v			1						ArR - Apr GBT - Chhief Bold
#37-380-1200				<u> </u>								[[j	1	i		. !	İ	W. 4 - Wape His moto Power In the common control
Sagare des Homers. Ryry 10 yrs. 15 70	1-937-546	* KP		Altométic						3	VТ			i					ED & gravnisa 21 ark FRI kones 20s ak Tak opt Otens
j j	!		Critis regi	-1		i ———	547		vod Bod es	T > {	1					1 1	İ	ĺ	
1 363 Security Charles (1931) included Colleges	i Nazwede zaka	Cala	1 1152	Stape :	Make.	detain.	i de la		# 7 H	7	12		!	!					
[[MW-]		8/1/10	;		600	+	31-+-		1	TX	 								LAB (ISS ONLY
2 MW-2	-		1270	22	1	1	ji	†- -		· · · · · · · · · · · · · · · · · · ·	1	 }				<u> </u>			673
3 M W-3	^	 -;	1115	RR	I	7年—				 -	1		:¦~	+	<u>.</u>	} 		-+-	V56K.
17 TB	i	Jariet.	1630	22	73	-Z	21			 بد:	,	i i			+	<u> </u>			
				1		†		tit	+++								{		!
		1	ſ.	† 'j		Î		fit	-	Ť		المسالة			' †				
·			!					†**- -	-1-			· · · · · ·							i
ļļ	<u></u>	- d	<u>i</u>					171		1		+				††			
<u> </u>		ļ	<u>.i</u>				Ti				,	j			1	T			
ļ		. 	! -L <u></u>	i l						7	[Ī		7	1-1			
		- 	<u> </u>	<u> </u>	!				ŢŢ,	1			Ī		†	 			\
(2017) Torramana (non) Rediversion	on graver	i Protestal	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	 3 ×	·	Let B	Detkerolik	L. L. L.		1.80	7 ¹	ESICO?	10.5	, , , ,			Instruction		Karana marangan Marangan marangan
pro 66 Rusinosa Days	Apprend 55 (93	id Amodest (1891) (1991)		1		salitati (ke	ora tj	[]	NV.NEP COSA	egory A.	ا نست	<u> </u>	\$,	`	<u>opscar</u>	10 CO 100	<u>r Kurer</u>	<u> </u>
B beganne						Saliffe" (it.a Leveta+#			SYASP Care Star Follow				<u> </u>	– <i>?</i>	$\sum_{i=1}^{n}$) —	_ <u>1. }-</u>	<u> '' </u>	
TI DESCRIPTION OF THE PROPERTY				Ľ∑ N	J Resuss			Ξŝ	sen Formal									13_	
Throny Ruse					oeimiri≃ 87.56æ		Ouarity Fro	د (] دومور های کار	erkej					-47 (5 Kg)	N WEST	14-12 (\$1 _{8.}	14 s	Autologij 	K
				Constitute	8 'A" + 7	Burollo Ced	, Commen	85 "B" = R	os ta i udis	Smanery	Ì						,	3.7.	
TAMES TO SEE THE SECOND OF THE SECOND	7574	ample Custony p	Spirit Junior	i işli Kartı. Ja ntac i hal	ord - Nes ord ores	<u>uds i 00 (</u> 5 čens zac	Suggrees Suggrees	Park Ro.	ndeja sanlaer fool	eallen e	oueini a	Serripi Samuel	e insequ	<u>ačeny je, v</u>	rerified Emilia	dipen n	ace,poin	the Laborator	orasony James (Internal)
11 11 44 P SECONDES	Date Copy (1) -E / / (1) -E /	not of the	100	10 E	~~-	/	kuci di rigea	1,0	10	2		9	N. T. Way			1.7000-2005 1.7553		ر <u>انگالخاند</u> الان دومیسی	. <u> </u>
2 Restuding Self- Challesia.	Plaja Hept.	Heerington Vir	7			i		20 C	7			<u></u> ''	an inc	-1-2-	3+44-42		ومليدات مد		
Resequence (se S	surfer tre:	Serve or a Page					Coloraty Stol		्राज्यम् स	P Total		*PPRIVES	yette is equ	مورون شار	<u>i4</u>		م <u>د</u> رف	1,2%65	Totala j
								<i></i>	iJ_	- V 150-0	:	-	<u></u>				T,	تيت رمر	J- 477
FormStr006 ARCHov (haterbrish)	i																ζ	ه نعر ممس	سموم ساد.

JC49133: Chain of Custody Page 1 of 2

SGS Accutest Sample Receipt Summary

Job Number: JC491	33 Client:		Project:	
Date / Time Received: 8/17/20	017 3:30:00 PM	Delivery Method:	Airbill #'s:	
Cooler Temps (Raw Measured) Cooler Temps (Corrected)				
Cooler Security 1. Custody Seals Present: 2. Custody Seals Intact: Cooler Temperature 1. Temp criteria achieved: 2. Cooler temp verification: 3. Cooler media: 4. No. Coolers:	or N	1. S s/Time OK	ample Integrity - Documentation ample labels present on bottles: ontainer labeling complete: ample container label / COC agree: nple Integrity - Condition ample recvd within HT: Il containers accounted for: ondition of sample:	Y or N □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □
Quality Control Preservation 1. Trip Blank present / cooler: 2. Trip Blank listed on COC: 3. Samples preserved properly: 4. VOCs headspace free:	Y or N N/A ✓ □ □ □ ✓ □ □ □ ✓ □ □ □	1. A 2. E 3. S 4. C	nple Integrity - Instructions Analysis requested is clear: Bottles received for unspecified tests Sufficient volume recvd for analysis: Compositing instructions clear: Filtering instructions clear:	Y or N N/A V
Comments		·		

SM089-02 Rev. Date 12/1/16

JC49133: Chain of Custody

Page 2 of 2

Dayton, NJ

The results set forth herein are provided by SGS North America Inc.

e-Hardcopy 2.0
Automated Report

Partner Engineering & Science

79 Hurley Avenue, Kingston, NY

17242956-EN

SGS Job Number: JC57335

Sampling Date: 12/13/17

Report to:

channa@partneresi.com ahassler@partneresi.com

ATTN: Distribution4

Total number of pages in report: 21

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Program and/or state specific certification programs as applicable.

Maney +. Cole
Nancy Cole
Laboratory Director

Client Service contact: Kelly Patterson 732-329-0200

Certifications: NJ(12129), NY(10983), CA, CT, FL, IL, IN, KS, KY, LA, MA, MD, ME, MN, NC, OH VAP (CL0056), AK (UST-103), AZ (AZ0786), PA, RI, SC, TX, UT, VA, WV, DoD ELAP (L-A-B L2248)

This report shall not be reproduced, except in its entirety, without the written approval of SGS. Test results relate only to samples analyzed.

SGS North America Inc. • 2235 Route 130 • Dayton, NJ 08810 • tel: 732-329-0200 • fax: 732-329-3499

Sample Summary

Partner Engineering & Science

79 Hurley Avenue, Kingston, NY Project No: 17242956-EN

Sample	Collected			Matr	rix	Client
Number	Date	Time By	Received	Code	Туре	Sample ID
JC57335-1	12/13/17	09:15 AH	12/14/17	AQ	Ground Water	MW-1
JC57335-2	12/13/17	11:30 AH	12/14/17	AQ	Ground Water	MW-2
JC57335-3	12/13/17	10:35 AH	12/14/17	AQ	Ground Water	MW-3
JC57335-4	12/13/17	11:30 AH	12/14/17	AQ	Trip Blank Water	TRIP BLANK

JC57335

Job No:

Client Sample ID: MW-1

Lab Sample ID:JC57335-1Date Sampled:12/13/17Matrix:AQ - Ground WaterDate Received:12/14/17Method:SW846 8260CPercent Solids:n/a

Project: 79 Hurley Avenue, Kingston, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 2B156805.D 1 12/20/17 03:46 EH n/a n/a V2B6975

Run #2

Purge Volume

Run #1 5.0 ml

Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	10	5.0	ug/l	
71-43-2	Benzene	ND	0.50	0.17	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.38	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.22	ug/l	
75-25-2	Bromoform	ND	1.0	0.42	ug/l	
74-83-9	Bromomethane ^a	ND	2.0	1.4	ug/l	
78-93-3	2-Butanone (MEK)	ND	10	4.8	ug/l	
75-15-0	Carbon disulfide	ND	2.0	0.50	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.34	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.24	ug/l	
75-00-3	Chloroethane ^a	ND	1.0	0.59	ug/l	
67-66-3	Chloroform	ND	1.0	0.29	ug/l	
74-87-3	Chloromethane ^a	ND	1.0	0.53	ug/l	
110-82-7	Cyclohexane	ND	5.0	0.63	ug/l	
96-12-8	1,2-Dibromo-3-chloropropan a	ND	2.0	0.69	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.16	ug/l	
106-93-4	1,2-Dibromoethane	ND	1.0	0.21	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.50	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.50	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.50	ug/l	
75-71-8	Dichlorodifluoromethane b	ND	2.0	1.9	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.21	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.20	ug/l	
75-35-4	1,1-Dichloroethene	ND	1.0	0.47	ug/l	
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.50	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.40	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.24	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.25	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.22	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.22	ug/l	
76-13-1	Freon 113	ND	5.0	1.2	ug/l	
591-78-6	2-Hexanone	ND	5.0	3.3	ug/l	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: MW-1

Lab Sample ID:JC57335-1Date Sampled:12/13/17Matrix:AQ - Ground WaterDate Received:12/14/17Method:SW846 8260CPercent Solids:n/a

Project: 79 Hurley Avenue, Kingston, NY

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q	
98-82-8	Isopropylbenzene	ND	1.0	0.25	ug/l		
79-20-9	Methyl Acetate	ND	5.0	3.1	ug/l		
108-87-2	Methylcyclohexane	ND	5.0	1.8	ug/l		
1634-04-4	Methyl Tert Butyl Ether	4.7	1.0	0.25	ug/l		
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.0	3.0	ug/l		
75-09-2	Methylene chloride	ND	2.0	1.0	ug/l		
100-42-5	Styrene	ND	1.0	0.24	ug/l		
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.17	ug/l		
127-18-4	Tetrachloroethene	ND	1.0	0.50	ug/l		
108-88-3	Toluene	ND	1.0	0.25	ug/l		
87-61-6	1,2,3-Trichlorobenzene ^a	ND	1.0	0.50	ug/l		
120-82-1	1,2,4-Trichlorobenzene ^a	ND	1.0	0.50	ug/l		
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.25	ug/l		
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.24	ug/l		
79-01-6	Trichloroethene	ND	1.0	0.27	ug/l		
75-69-4	Trichlorofluoromethane ^a	ND	2.0	0.60	ug/l		
75-01-4	Vinyl chloride ^a	ND	1.0	0.62	ug/l		
	m,p-Xylene	ND	1.0	0.43	ug/l		
95-47-6	o-Xylene	ND	1.0	0.22	ug/l		
1330-20-7	Xylene (total)	ND	1.0	0.22	ug/l		
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts		
1868-53-7	Dibromofluoromethane	104%		80-12	20%		
17060-07-0	1,2-Dichloroethane-D4	111%		81-12	24%		
2037-26-5	Toluene-D8	99%		80-12	20%		
460-00-4	4-Bromofluorobenzene	99%		80-12	20%		
CAS No.	Tentatively Identified Compo	ounds	R.T.	Est.	Conc.	Units	Q
	Total TIC, Volatile			0		ug/l	

⁽a) Associated CCV outside of control limits high, sample was ND.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

⁽b) This compound in BS is outside in house QC limits bias high. Associated CCV outside of control limits high, sample was ND. Associated CCV outside of control limits high, sample was ND.

Client Sample ID: MW-1

Lab Sample ID:JC57335-1Date Sampled:12/13/17Matrix:AQ - Ground WaterDate Received:12/14/17Method:SW846 8270DSW846 3510CPercent Solids:n/a

Project: 79 Hurley Avenue, Kingston, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 3E100356.D 1 12/29/17 17:19 SB 12/16/17 17:00 OP8724 E3E4432

Run #2

Initial Volume Final Volume Run #1 1000 ml 1.0 ml

Run #2

ABN TCL List (SOM0 2.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
95-57-8	2-Chlorophenol	ND	5.0	0.82	ug/l	
59-50-7	4-Chloro-3-methyl phenol	ND	5.0	0.89	ug/l	
120-83-2	2,4-Dichlorophenol	ND	2.0	1.3	ug/l	
105-67-9	2,4-Dimethylphenol	ND	5.0	2.4	ug/l	
51-28-5	2,4-Dinitrophenol	ND	5.0	1.6	ug/l	
534-52-1	4,6-Dinitro-o-cresol	ND	5.0	1.3	ug/l	
95-48-7	2-Methylphenol	ND	2.0	0.89	ug/l	
	3&4-Methylphenol	ND	2.0	0.88	ug/l	
88-75-5	2-Nitrophenol	ND	5.0	0.96	ug/l	
100-02-7	4-Nitrophenol	ND	10	1.2	ug/l	
87-86-5	Pentachlorophenol	ND	4.0	1.4	ug/l	
108-95-2	Phenol	ND	2.0	0.39	ug/l	
58-90-2	2,3,4,6-Tetrachlorophenol	ND	5.0	1.5	ug/l	
95-95-4	2,4,5-Trichlorophenol	ND	5.0	1.3	ug/l	
88-06-2	2,4,6-Trichlorophenol	ND	5.0	0.92	ug/l	
83-32-9	Acenaphthene	ND	1.0	0.19	ug/l	
208-96-8	Acenaphthylene	ND	1.0	0.14	ug/l	
98-86-2	Acetophenone	ND	2.0	0.21	ug/l	
120-12-7	Anthracene	ND	1.0	0.21	ug/l	
1912-24-9	Atrazine	ND	2.0	0.45	ug/l	
100-52-7	Benzaldehyde ^a	ND	5.0	0.29	ug/l	
56-55-3	Benzo(a)anthracene	ND	1.0	0.20	ug/l	
50-32-8	Benzo(a)pyrene	ND	1.0	0.21	ug/l	
205-99-2	Benzo(b)fluoranthene	ND	1.0	0.21	ug/l	
191-24-2	Benzo(g,h,i)perylene	ND	1.0	0.34	ug/l	
207-08-9	Benzo(k)fluoranthene	ND	1.0	0.21	ug/l	
101-55-3	4-Bromophenyl phenyl ether	ND	2.0	0.40	ug/l	
85-68-7	Butyl benzyl phthalate	ND	2.0	0.46	ug/l	
92-52-4	1,1'-Biphenyl	ND	1.0	0.21	ug/l	
91-58-7	2-Chloronaphthalene	ND	2.0	0.24	ug/l	
106-47-8	4-Chloroaniline	ND	5.0	0.34	ug/l	
86-74-8	Carbazole	ND	1.0	0.23	ug/l	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: MW-1

Lab Sample ID: JC57335-1 **Date Sampled: 12/13/17 Matrix:** AQ - Ground Water Date Received: 12/14/17 Method: SW846 8270D SW846 3510C Percent Solids: n/a

Project: 79 Hurley Avenue, Kingston, NY

ABN TCL List (SOM0 2.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
105-60-2	Caprolactam	ND	2.0	0.65	ug/l	
218-01-9	Chrysene	ND	1.0	0.18	ug/l	
111-91-1	bis(2-Chloroethoxy)methane	ND	2.0	0.28	ug/l	
111-44-4	bis(2-Chloroethyl)ether	ND	2.0	0.25	ug/l	
108-60-1	bis(2-Chloroisopropyl)ether	ND	2.0	0.40	ug/l	
7005-72-3	4-Chlorophenyl phenyl ether	ND	2.0	0.37	ug/l	
121-14-2	2,4-Dinitrotoluene	ND	1.0	0.55	ug/l	
606-20-2	2,6-Dinitrotoluene	ND	1.0	0.48	ug/l	
91-94-1	3,3'-Dichlorobenzidine	ND	2.0	0.51	ug/l	
123-91-1	1,4-Dioxane	ND	1.0	0.66	ug/l	
53-70-3	Dibenzo(a,h)anthracene	ND	1.0	0.33	ug/l	
132-64-9	Dibenzofuran	ND	5.0	0.22	ug/l	
84-74-2	Di-n-butyl phthalate	ND	2.0	0.50	ug/l	
117-84-0	Di-n-octyl phthalate	ND	2.0	0.23	ug/l	
84-66-2	Diethyl phthalate	ND	2.0	0.26	ug/l	
131-11-3	Dimethyl phthalate	ND	2.0	0.22	ug/l	
117-81-7	bis(2-Ethylhexyl)phthalate a	ND	2.0	1.7	ug/l	
206-44-0	Fluoranthene	ND	1.0	0.17	ug/l	
86-73-7	Fluorene	ND	1.0	0.17	ug/l	
118-74-1	Hexachlorobenzene	ND	1.0	0.33	ug/l	
87-68-3	Hexachlorobutadiene	ND	1.0	0.49	ug/l	
77-47-4	Hexachlorocyclopentadiene	ND	10	2.8	ug/l	
67-72-1	Hexachloroethane	ND	2.0	0.39	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	1.0	0.33	ug/l	
78-59-1	Isophorone	ND	2.0	0.28	ug/l	
91-57-6	2-Methylnaphthalene	ND	1.0	0.21	ug/l	
88-74-4	2-Nitroaniline	ND	5.0	0.28	ug/l	
99-09-2	3-Nitroaniline	ND	5.0	0.39	ug/l	
100-01-6	4-Nitroaniline	ND	5.0	0.44	ug/l	
91-20-3	Naphthalene	ND	1.0	0.23	ug/l	
98-95-3	Nitrobenzene	ND	2.0	0.64	ug/l	
621-64-7	N-Nitroso-di-n-propylamine	ND	2.0	0.48	ug/l	
86-30-6	N-Nitrosodiphenylamine	ND	5.0	0.22	ug/l	
85-01-8	Phenanthrene	ND	1.0	0.18	ug/l	
129-00-0	Pyrene	ND	1.0	0.22	ug/l	
95-94-3	1,2,4,5-Tetrachlorobenzene b	ND	2.0	0.37	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
367-12-4	2-Fluorophenol	43%		10-11	10%	

ND = Not detectedMDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 3 of 3

Client Sample ID: MW-1

Lab Sample ID:JC57335-1Date Sampled:12/13/17Matrix:AQ - Ground WaterDate Received:12/14/17Method:SW846 8270D SW846 3510CPercent Solids:n/a

Project: 79 Hurley Avenue, Kingston, NY

ABN TCL List (SOM0 2.0)

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits		
4165-62-2	Phenol-d5	26%		10-110%		
118-79-6	2,4,6-Tribromophenol	95%		36-151%		
4165-60-0	Nitrobenzene-d5	72 %		34-128%		
321-60-8	2-Fluorobiphenyl	74%		38-119%		
1718-51-0	Terphenyl-d14	97%	26-129%			
CAS No.	Tentatively Identified Compounds		R.T.	Est. Conc.	Units	Q
	Total TIC, Semi-Volatile		0	ug/l		

⁽a) Associated CCV outside of control limits high, sample was ND.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

⁽b) Associated CCV outside of control limits low.

Page 1 of 2

Client Sample ID: MW-2

Lab Sample ID:JC57335-2Date Sampled:12/13/17Matrix:AQ - Ground WaterDate Received:12/14/17Method:SW846 8260CPercent Solids:n/a

Project: 79 Hurley Avenue, Kingston, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 2B156806.D 1 12/20/17 04:18 EH n/a n/a V2B6975

Run #2

Purge Volume

Run #1 5.0 ml

Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	10	5.0	ug/l	
71-43-2	Benzene	ND	0.50	0.17	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.38	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.22	ug/l	
75-25-2	Bromoform	ND	1.0	0.42	ug/l	
74-83-9	Bromomethane ^a	ND	2.0	1.4	ug/l	
78-93-3	2-Butanone (MEK)	ND	10	4.8	ug/l	
75-15-0	Carbon disulfide	ND	2.0	0.50	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.34	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.24	ug/l	
75-00-3	Chloroethane ^a	ND	1.0	0.59	ug/l	
67-66-3	Chloroform	ND	1.0	0.29	ug/l	
74-87-3	Chloromethane ^a	ND	1.0	0.53	ug/l	
110-82-7	Cyclohexane	ND	5.0	0.63	ug/l	
96-12-8	1,2-Dibromo-3-chloropropan a	ND	2.0	0.69	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.16	ug/l	
106-93-4	1,2-Dibromoethane	ND	1.0	0.21	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.50	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.50	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.50	ug/l	
75-71-8	Dichlorodifluoromethane b	ND	2.0	1.9	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.21	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.20	ug/l	
75-35-4	1,1-Dichloroethene	ND	1.0	0.47	ug/l	
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.50	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.40	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.24	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.25	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.22	ug/l	
100-41-4	Ethylbenzene	0.62	1.0	0.22	ug/l	J
76-13-1	Freon 113	ND	5.0	1.2	ug/l	
591-78-6	2-Hexanone	ND	5.0	3.3	ug/l	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: MW-2

Lab Sample ID:JC57335-2Date Sampled:12/13/17Matrix:AQ - Ground WaterDate Received:12/14/17Method:SW846 8260CPercent Solids:n/a

Project: 79 Hurley Avenue, Kingston, NY

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q	
98-82-8	Isopropylbenzene	ND	1.0	0.25	ug/l		
79-20-9	Methyl Acetate	ND	5.0	3.1	ug/l		
108-87-2	Methylcyclohexane	ND	5.0	1.8	ug/l		
1634-04-4	Methyl Tert Butyl Ether	1.7	1.0	0.25	ug/l		
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.0	3.0	ug/l		
75-09-2	Methylene chloride	ND	2.0	1.0	ug/l		
100-42-5	Styrene	ND	1.0	0.24	ug/l		
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.17	ug/l		
127-18-4	Tetrachloroethene	ND	1.0	0.50	ug/l		
108-88-3	Toluene	ND	1.0	0.25	ug/l		
87-61-6	1,2,3-Trichlorobenzene a	ND	1.0	0.50	ug/l		
120-82-1	1,2,4-Trichlorobenzene a	ND	1.0	0.50	ug/l		
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.25	ug/l		
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.24	ug/l		
79-01-6	Trichloroethene	ND	1.0	0.27	ug/l		
75-69-4	Trichlorofluoromethane a	ND	2.0	0.60	ug/l		
75-01-4	Vinyl chloride ^a	ND	1.0	0.62	ug/l		
	m,p-Xylene	1.1	1.0	0.43	ug/l		
95-47-6	o-Xylene	ND	1.0	0.22	ug/l		
1330-20-7	Xylene (total)	1.1	1.0	0.22	ug/l		
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its		
1868-53-7	Dibromofluoromethane	103%		80-1	20%		
17060-07-0	1,2-Dichloroethane-D4	110%		81-1	24%		
2037-26-5	Toluene-D8	100%		80-1	20%		
460-00-4	4-Bromofluorobenzene	98%		80-1	20%		
CAS No.	Tentatively Identified Compo	ounds	R.T.	Est.	Conc.	Units	Q
	Total TIC, Volatile			0		ug/l	

⁽a) Associated CCV outside of control limits high, sample was ND.

ND = Not detected

MDL = Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

E = Indicates value exceeds calibration range

 $B = \mbox{ Indicates analyte found in associated method blank } \\ N = \mbox{ Indicates presumptive evidence of a compound}$

9 of 21

⁽b) This compound in BS is outside in house QC limits bias high. Associated CCV outside of control limits high, sample was ND. Associated CCV outside of control limits high, sample was ND.

Client Sample ID: MW-2

Lab Sample ID:JC57335-2Date Sampled:12/13/17Matrix:AQ - Ground WaterDate Received:12/14/17Method:SW846 8270DSW846 3510CPercent Solids:n/a

Project: 79 Hurley Avenue, Kingston, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 3E100357.D 1 12/29/17 17:46 SB 12/16/17 17:00 OP8724 E3E4432

Run #2

Initial Volume Final Volume Run #1 1000 ml 1.0 ml

Run #2

ABN TCL List (SOM0 2.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
95-57-8	2-Chlorophenol	ND	5.0	0.82	ug/l	
59-50-7	4-Chloro-3-methyl phenol	ND	5.0	0.89	ug/l	
120-83-2	2,4-Dichlorophenol	ND	2.0	1.3	ug/l	
105-67-9	2,4-Dimethylphenol	ND	5.0	2.4	ug/l	
51-28-5	2,4-Dinitrophenol	ND	5.0	1.6	ug/l	
534-52-1	4,6-Dinitro-o-cresol	ND	5.0	1.3	ug/l	
95-48-7	2-Methylphenol	ND	2.0	0.89	ug/l	
	3&4-Methylphenol	ND	2.0	0.88	ug/l	
88-75-5	2-Nitrophenol	ND	5.0	0.96	ug/l	
100-02-7	4-Nitrophenol	ND	10	1.2	ug/l	
87-86-5	Pentachlorophenol	ND	4.0	1.4	ug/l	
108-95-2	Phenol	ND	2.0	0.39	ug/l	
58-90-2	2,3,4,6-Tetrachlorophenol	ND	5.0	1.5	ug/l	
95-95-4	2,4,5-Trichlorophenol	ND	5.0	1.3	ug/l	
88-06-2	2,4,6-Trichlorophenol	ND	5.0	0.92	ug/l	
83-32-9	Acenaphthene	ND	1.0	0.19	ug/l	
208-96-8	Acenaphthylene	ND	1.0	0.14	ug/l	
98-86-2	Acetophenone	ND	2.0	0.21	ug/l	
120-12-7	Anthracene	ND	1.0	0.21	ug/l	
1912-24-9	Atrazine	ND	2.0	0.45	ug/l	
100-52-7	Benzaldehyde ^a	ND	5.0	0.29	ug/l	
56-55-3	Benzo(a)anthracene	ND	1.0	0.20	ug/l	
50-32-8	Benzo(a)pyrene	ND	1.0	0.21	ug/l	
205-99-2	Benzo(b)fluoranthene	ND	1.0	0.21	ug/l	
191-24-2	Benzo(g,h,i)perylene	ND	1.0	0.34	ug/l	
207-08-9	Benzo(k)fluoranthene	ND	1.0	0.21	ug/l	
101-55-3	4-Bromophenyl phenyl ether	ND	2.0	0.40	ug/l	
85-68-7	Butyl benzyl phthalate	ND	2.0	0.46	ug/l	
92-52-4	1,1'-Biphenyl	ND	1.0	0.21	ug/l	
91-58-7	2-Chloronaphthalene	ND	2.0	0.24	ug/l	
106-47-8	4-Chloroaniline	ND	5.0	0.34	ug/l	
86-74-8	Carbazole	ND	1.0	0.23	ug/l	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: MW-2

Lab Sample ID: JC57335-2 **Date Sampled:** 12/13/17 Matrix: AQ - Ground Water Date Received: 12/14/17 Method: SW846 8270D SW846 3510C Percent Solids: n/a

Project: 79 Hurley Avenue, Kingston, NY

ABN TCL List (SOM0 2.0)

Compound	Result	RL	MDL	Units	Q
Caprolactam	ND	2.0	0.65	บฮ/ไ	
				-	
				_	
Dibenzofuran				_	
Di-n-butyl phthalate				_	
		2.0			
		2.0			
	ND	2.0	1.7		
	ND	1.0	0.17	_	
Fluorene	ND	1.0			
Hexachlorobenzene	ND	1.0	0.33		
Hexachlorobutadiene	ND	1.0	0.49		
Hexachlorocyclopentadiene	ND	10	2.8	_	
Hexachloroethane	ND	2.0	0.39		
Indeno(1,2,3-cd)pyrene	ND	1.0			
	ND	2.0	0.28		
	ND	1.0	0.21		
2-Nitroaniline	ND	5.0	0.28		
3-Nitroaniline	ND	5.0	0.39		
4-Nitroaniline	ND	5.0	0.44		
Naphthalene	ND	1.0	0.23		
Nitrobenzene	ND	2.0	0.64		
N-Nitroso-di-n-propylamine	ND	2.0	0.48		
N-Nitrosodiphenylamine	ND	5.0	0.22	_	
Phenanthrene	ND	1.0	0.18	ug/l	
Pyrene	ND	1.0	0.22		
1,2,4,5-Tetrachlorobenzene b	ND	2.0	0.37	ug/l	
Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
2-Fluorophenol	50%		10-1	10%	
	Caprolactam Chrysene bis(2-Chloroethoxy)methane bis(2-Chloroisopropyl)ether 4-Chlorophenyl phenyl ether 2,4-Dinitrotoluene 2,6-Dinitrotoluene 3,3'-Dichlorobenzidine 1,4-Dioxane Dibenzo(a,h)anthracene Dibenzofuran Di-n-butyl phthalate Di-n-octyl phthalate Diethyl phthalate Dimethyl phthalate Dimethyl phthalate bis(2-Ethylhexyl)phthalate Fluoranthene Fluorene Hexachlorobenzene Hexachlorobenzene Hexachlorocyclopentadiene Hexachlorocyclopentadiene Hexachlorocethane Indeno(1,2,3-cd)pyrene Isophorone 2-Methylnaphthalene 2-Nitroaniline 3-Nitroaniline Naphthalene Nitrobenzene N-Nitroso-di-n-propylamine N-Nitroso-di-n-propylamine N-Nitrosodiphenylamine Phenanthrene Pyrene 1,2,4,5-Tetrachlorobenzene b Surrogate Recoveries	Caprolactam Chrysene bis(2-Chloroethoxy)methane bis(2-Chloroethyl)ether bis(2-Chloroethyl)ether A-Chlorophenyl phenyl ether 2,4-Dinitrotoluene 2,6-Dinitrotoluene 3,3'-Dichlorobenzidine 1,4-Dioxane Dibenzo(a,h)anthracene Dibenzofuran ND Di-n-butyl phthalate ND Di-n-octyl phthalate ND Dimethyl phthalate ND Dimethyl phthalate bis(2-Ethylhexyl)phthalate A Fluoranthene ND Hexachlorobenzene Hexachlorobenzene Hexachlorocyclopentadiene ND Hexachlorocyclopentadiene ND Indeno(1,2,3-cd)pyrene Isophorone 2-Methylnaphthalene ND No Nitroaniline ND Naphthalene ND Nitrosodi-n-propylamine ND No N-Nitrosodiphenylamine ND No N-Nitrosodiphenylamine ND No N-Nitrosodiphenylamine ND No N-Nitrosodiphenylamine ND No N-Nitrosodiphenylamine ND N-Nitrosodie Recoveries Run# 1	Caprolactam Chrysene bis(2-Chloroethoxy)methane bis(2-Chloroethyl)ether bis(2-Chloroisopropyl)ether 4-Chlorophenyl phenyl ether 2,4-Dinitrotoluene 2,4-Dinitrotoluene 3,3'-Dichlorobenzidine ND 1.0 1,4-Dioxane ND 1.0 ND 1.0 ND 1.0 ND NI-n-butyl phthalate ND ND ND ND ND ND ND ND ND ND ND ND ND	Caprolactam	Caprolactam

ND = Not detectedMDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 3 of 3

Client Sample ID: MW-2

Lab Sample ID:JC57335-2Date Sampled:12/13/17Matrix:AQ - Ground WaterDate Received:12/14/17Method:SW846 8270DSW846 3510CPercent Solids:n/a

Project: 79 Hurley Avenue, Kingston, NY

ABN TCL List (SOM0 2.0)

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits		
4165-62-2	Phenol-d5	33%		10-110%		
118-79-6	2,4,6-Tribromophenol	109%		36-151%		
4165-60-0	Nitrobenzene-d5	85%		34-128%		
321-60-8	2-Fluorobiphenyl	89%		38-119%		
1718-51-0	Terphenyl-d14	83%		26-129%		
CAS No.	Tentatively Identified Compounds		R.T.	Est. Conc.	Units	Q
	Total TIC, Semi-Volatile		0	ug/l		

⁽a) Associated CCV outside of control limits high, sample was ND.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

⁽b) Associated CCV outside of control limits low.

Client Sample ID: MW-3

Lab Sample ID:JC57335-3Date Sampled:12/13/17Matrix:AQ - Ground WaterDate Received:12/14/17Method:SW846 8260CPercent Solids:n/a

Project: 79 Hurley Avenue, Kingston, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 2B156807.D 1 12/20/17 04:50 EH n/a n/a V2B6975

Run #2

Purge Volume

Run #1 5.0 ml

Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	10	5.0	ug/l	
71-43-2	Benzene	ND	0.50	0.17	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.38	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.22	ug/l	
75-25-2	Bromoform	ND	1.0	0.42	ug/l	
74-83-9	Bromomethane ^a	ND	2.0	1.4	ug/l	
78-93-3	2-Butanone (MEK)	ND	10	4.8	ug/l	
75-15-0	Carbon disulfide	ND	2.0	0.50	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.34	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.24	ug/l	
75-00-3	Chloroethane ^a	ND	1.0	0.59	ug/l	
67-66-3	Chloroform	ND	1.0	0.29	ug/l	
74-87-3	Chloromethane ^a	ND	1.0	0.53	ug/l	
110-82-7	Cyclohexane	ND	5.0	0.63	ug/l	
96-12-8	1,2-Dibromo-3-chloropropan a		2.0	0.69	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.16	ug/l	
106-93-4	1,2-Dibromoethane	ND	1.0	0.21	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.50	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.50	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.50	ug/l	
75-71-8	Dichlorodifluoromethane b	ND	2.0	1.9	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.21	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.20	ug/l	
75-35-4	1,1-Dichloroethene	ND	1.0	0.47	ug/l	
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.50	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.40	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.24	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.25	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.22	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.22	ug/l	
76-13-1	Freon 113	ND	5.0	1.2	ug/l	
591-78-6	2-Hexanone	ND	5.0	3.3	ug/l	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: MW-3

Lab Sample ID: JC57335-3 **Date Sampled:** 12/13/17 Matrix: AQ - Ground Water Date Received: 12/14/17 Method: SW846 8260C Percent Solids: n/a

Project: 79 Hurley Avenue, Kingston, NY

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q	
98-82-8	Isopropylbenzene	ND	1.0	0.25	ug/l		
79-20-9	Methyl Acetate	ND	5.0	3.1	ug/l		
108-87-2	Methylcyclohexane	ND	5.0	1.8	ug/l		
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.25	ug/l		
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.0	3.0	ug/l		
75-09-2	Methylene chloride	ND	2.0	1.0	ug/l		
100-42-5	Styrene	ND	1.0	0.24	ug/l		
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.17	ug/l		
127-18-4	Tetrachloroethene	ND	1.0	0.50	ug/l		
108-88-3	Toluene	ND	1.0	0.25	ug/l		
87-61-6	1,2,3-Trichlorobenzene ^a	ND	1.0	0.50	ug/l		
120-82-1	1,2,4-Trichlorobenzene ^a	ND	1.0	0.50	ug/l		
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.25	ug/l		
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.24	ug/l		
79-01-6	Trichloroethene	ND	1.0	0.27	ug/l		
75-69-4	Trichlorofluoromethane ^a	ND	2.0	0.60	ug/l		
75-01-4	Vinyl chloride ^a	ND	1.0	0.62	ug/l		
	m,p-Xylene	ND	1.0	0.43	ug/l		
95-47-6	o-Xylene	ND	1.0	0.22	ug/l		
1330-20-7	Xylene (total)	ND	1.0	0.22	ug/l		
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its		
1868-53-7	Dibromofluoromethane	103%		80-1	20%		
17060-07-0	1,2-Dichloroethane-D4	111%		81-1	24%		
2037-26-5	Toluene-D8	101%		80-1	20%		
460-00-4	4-Bromofluorobenzene	98%		80-1	20%		
CAS No.	Tentatively Identified Compo	ounds	R.T.	Est.	Conc.	Units	Q
	Total TIC, Volatile			0		ug/l	

⁽a) Associated CCV outside of control limits high, sample was ND.

ND = Not detected

MDL = Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

E = Indicates value exceeds calibration range

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

14 of 21

⁽b) This compound in BS is outside in house QC limits bias high. Associated CCV outside of control limits high, sample was ND.

Client Sample ID: MW-3

Lab Sample ID:JC57335-3Date Sampled:12/13/17Matrix:AQ - Ground WaterDate Received:12/14/17Method:SW846 8270D SW846 3510CPercent Solids:n/a

Project: 79 Hurley Avenue, Kingston, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 3E100358.D 1 12/29/17 18:13 SB 12/16/17 17:00 OP8724 E3E4432

Run #2

Initial Volume Final Volume Run #1 900 ml 1.0 ml

Run #2

ABN TCL List (SOM0 2.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
95-57-8	2-Chlorophenol	ND	5.6	0.91	ug/l	
59-50-7	4-Chloro-3-methyl phenol	ND	5.6	0.99	ug/l	
120-83-2	2,4-Dichlorophenol	ND	2.2	1.4	ug/l	
105-67-9	2,4-Dimethylphenol	ND	5.6	2.7	ug/l	
51-28-5	2,4-Dinitrophenol	ND	5.6	1.7	ug/l	
534-52-1	4,6-Dinitro-o-cresol	ND	5.6	1.4	ug/l	
95-48-7	2-Methylphenol	ND	2.2	0.99	ug/l	
	3&4-Methylphenol	ND	2.2	0.98	ug/l	
88-75-5	2-Nitrophenol	ND	5.6	1.1	ug/l	
100-02-7	4-Nitrophenol	ND	11	1.3	ug/l	
87-86-5	Pentachlorophenol	ND	4.4	1.5	ug/l	
108-95-2	Phenol	ND	2.2	0.44	ug/l	
58-90-2	2,3,4,6-Tetrachlorophenol	ND	5.6	1.6	ug/l	
95-95-4	2,4,5-Trichlorophenol	ND	5.6	1.5	ug/l	
88-06-2	2,4,6-Trichlorophenol	ND	5.6	1.0	ug/l	
83-32-9	Acenaphthene	ND	1.1	0.21	ug/l	
208-96-8	Acenaphthylene	ND	1.1	0.15	ug/l	
98-86-2	Acetophenone	ND	2.2	0.23	ug/l	
120-12-7	Anthracene	ND	1.1	0.23	ug/l	
1912-24-9	Atrazine	ND	2.2	0.50	ug/l	
100-52-7	Benzaldehyde ^a	ND	5.6	0.32	ug/l	
56-55-3	Benzo(a)anthracene	ND	1.1	0.23	ug/l	
50-32-8	Benzo(a)pyrene	ND	1.1	0.24	ug/l	
205-99-2	Benzo(b)fluoranthene	ND	1.1	0.23	ug/l	
191-24-2	Benzo(g,h,i)perylene	ND	1.1	0.38	ug/l	
207-08-9	Benzo(k)fluoranthene	ND	1.1	0.23	ug/l	
101-55-3	4-Bromophenyl phenyl ether	ND	2.2	0.45	ug/l	
85-68-7	Butyl benzyl phthalate	ND	2.2	0.51	ug/l	
92-52-4	1,1'-Biphenyl	ND	1.1	0.24	ug/l	
91-58-7	2-Chloronaphthalene	ND	2.2	0.26	ug/l	
106-47-8	4-Chloroaniline	ND	5.6	0.38	ug/l	
86-74-8	Carbazole	ND	1.1	0.25	ug/l	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: MW-3

Lab Sample ID:JC57335-3Date Sampled:12/13/17Matrix:AQ - Ground WaterDate Received:12/14/17Method:SW846 8270D SW846 3510CPercent Solids:n/a

Project: 79 Hurley Avenue, Kingston, NY

ABN TCL List (SOM0 2.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
105-60-2	Caprolactam	ND	2.2	0.72	ug/l	
218-01-9	Chrysene	ND	1.1	0.20	ug/l	
111-91-1	bis(2-Chloroethoxy)methane	ND	2.2	0.31	ug/l	
111-44-4	bis(2-Chloroethyl)ether	ND	2.2	0.28	ug/l	
108-60-1	bis(2-Chloroisopropyl)ether	ND	2.2	0.45	ug/l	
7005-72-3	4-Chlorophenyl phenyl ether	ND	2.2	0.41	ug/l	
121-14-2	2,4-Dinitrotoluene	ND	1.1	0.61	ug/l	
606-20-2	2,6-Dinitrotoluene	ND	1.1	0.53	ug/l	
91-94-1	3,3'-Dichlorobenzidine	ND	2.2	0.56	ug/l	
123-91-1	1,4-Dioxane	ND	1.1	0.73	ug/l	
53-70-3	Dibenzo(a,h)anthracene	ND	1.1	0.37	ug/l	
132-64-9	Dibenzofuran	ND	5.6	0.24	ug/l	
84-74-2	Di-n-butyl phthalate	ND	2.2	0.55	ug/l	
117-84-0	Di-n-octyl phthalate	ND	2.2	0.26	ug/l	
84-66-2	Diethyl phthalate	ND	2.2	0.29	ug/l	
131-11-3	Dimethyl phthalate	ND	2.2	0.24	ug/l	
117-81-7	bis(2-Ethylhexyl)phthalate ^a	ND	2.2	1.8	ug/l	
206-44-0	Fluoranthene	ND	1.1	0.19	ug/l	
86-73-7	Fluorene	ND	1.1	0.19	ug/l	
118-74-1	Hexachlorobenzene	ND	1.1	0.36	ug/l	
87-68-3	Hexachlorobutadiene	ND	1.1	0.55	ug/l	
77-47-4	Hexachlorocyclopentadiene	ND	11	3.1	ug/l	
67-72-1	Hexachloroethane	ND	2.2	0.43	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	1.1	0.43	ug/l	
78-59-1	Isophorone	ND	2.2	0.31	ug/l	
91-57-6	2-Methylnaphthalene	ND	1.1	0.23	ug/l	
88-74-4	2-Nitroaniline	ND	5.6	0.23	ug/l	
99-09-2	3-Nitroaniline	ND	5.6	0.43	ug/l	
100-01-6	4-Nitroaniline	ND	5.6	0.49	ug/l	
91-20-3	Naphthalene	ND	1.1	0.26	ug/l	
98-95-3	Nitrobenzene	ND	2.2	0.20	ug/l	
621-64-7	N-Nitroso-di-n-propylamine	ND	2.2	0.71	ug/l	
86-30-6	N-Nitrosodiphenylamine	ND	5.6	0.35	ug/l	
85-01-8	Phenanthrene	ND	1.1	0.23	ug/l	
129-00-0	Pyrene	ND	1.1	0.13	ug/l ug/l	
95-94-3	1,2,4,5-Tetrachlorobenzene b	ND	2.2	0.24		
90-94-3	1,2,4,5-1 etracinorobenzene	ND	۵.۵	0.41	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
367-12-4	2-Fluorophenol	54%		10-1	10%	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 3 of 3

Client Sample ID: MW-3

Lab Sample ID:JC57335-3Date Sampled:12/13/17Matrix:AQ - Ground WaterDate Received:12/14/17Method:SW846 8270D SW846 3510CPercent Solids:n/a

Project: 79 Hurley Avenue, Kingston, NY

ABN TCL List (SOM0 2.0)

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits		
4165-62-2	Phenol-d5	35%		10-110%		
118-79-6	2,4,6-Tribromophenol	108%		36-151 %		
4165-60-0	Nitrobenzene-d5	81%		34-128%		
321-60-8	2-Fluorobiphenyl	88%		38-119 %		
1718-51-0	Terphenyl-d14	108%		26-129 %		
CAS No.	Tentatively Identified Comp	oounds	R.T.	Est. Conc.	Units	Q
	Total TIC, Semi-Volatile			0	ug/l	

⁽a) Associated CCV outside of control limits high, sample was ND.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

⁽b) Associated CCV outside of control limits low.

Client Sample ID: TRIP BLANK

Lab Sample ID:JC57335-4Date Sampled:12/13/17Matrix:AQ - Trip Blank WaterDate Received:12/14/17Method:SW846 8260CPercent Solids:n/a

Project: 79 Hurley Avenue, Kingston, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 2B156804.D 1 12/20/17 03:15 EH n/a n/a V2B6975

Run #2

Purge Volume

Run #1 5.0 ml

Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	10	5.0	ug/l	
71-43-2	Benzene	ND	0.50	0.17	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.38	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.22	ug/l	
75-25-2	Bromoform	ND	1.0	0.42	ug/l	
74-83-9	Bromomethane ^a	ND	2.0	1.4	ug/l	
78-93-3	2-Butanone (MEK)	ND	10	4.8	ug/l	
75-15-0	Carbon disulfide	ND	2.0	0.50	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.34	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.24	ug/l	
75-00-3	Chloroethane ^a	ND	1.0	0.59	ug/l	
67-66-3	Chloroform	ND	1.0	0.29	ug/l	
74-87-3	Chloromethane ^a	ND	1.0	0.53	ug/l	
110-82-7	Cyclohexane	ND	5.0	0.63	ug/l	
96-12-8	1,2-Dibromo-3-chloropropan a	ND	2.0	0.69	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.16	ug/l	
106-93-4	1,2-Dibromoethane	ND	1.0	0.21	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.50	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.50	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.50	ug/l	
75-71-8	Dichlorodifluoromethane b	ND	2.0	1.9	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.21	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.20	ug/l	
75-35-4	1,1-Dichloroethene	ND	1.0	0.47	ug/l	
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.50	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.40	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.24	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.25	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.22	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.22	ug/l	
76-13-1	Freon 113	ND	5.0	1.2	ug/l	
591-78-6	2-Hexanone	ND	5.0	3.3	ug/l	
					_	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: TRIP BLANK

Lab Sample ID:JC57335-4Date Sampled:12/13/17Matrix:AQ - Trip Blank WaterDate Received:12/14/17Method:SW846 8260CPercent Solids:n/a

Project: 79 Hurley Avenue, Kingston, NY

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q	
98-82-8	Isopropylbenzene	ND	1.0	0.25	ug/l		
79-20-9	Methyl Acetate	ND	5.0	3.1	ug/l		
108-87-2	Methylcyclohexane	ND	5.0	1.8	ug/l		
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.25	ug/l		
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.0	3.0	ug/l		
75-09-2	Methylene chloride	ND	2.0	1.0	ug/l		
100-42-5	Styrene	ND	1.0	0.24	ug/l		
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.17	ug/l		
127-18-4	Tetrachloroethene	ND	1.0	0.50	ug/l		
108-88-3	Toluene	ND	1.0	0.25	ug/l		
87-61-6	1,2,3-Trichlorobenzene ^a	ND	1.0	0.50	ug/l		
120-82-1	1,2,4-Trichlorobenzene ^a	ND	1.0	0.50	ug/l		
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.25	ug/l		
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.24	ug/l		
79-01-6	Trichloroethene	ND	1.0	0.27	ug/l		
75-69-4	Trichlorofluoromethane ^a	ND	2.0	0.60	ug/l		
75-01-4	Vinyl chloride ^a	ND	1.0	0.62	ug/l		
	m,p-Xylene	ND	1.0	0.43	ug/l		
95-47-6	o-Xylene	ND	1.0	0.22	ug/l		
1330-20-7	Xylene (total)	ND	1.0	0.22	ug/l		
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its		
1868-53-7	Dibromofluoromethane	101%		80-1	20%		
17060-07-0	1,2-Dichloroethane-D4	109%		81-1	24%		
2037-26-5	Toluene-D8	100%		80-1	20 %		
460-00-4	4-Bromofluorobenzene	99%		80-1	20%		
CAS No.	Tentatively Identified Compo	ounds	R.T.	Est.	Conc.	Units	Q
	Total TIC, Volatile			0		ug/l	

⁽a) Associated CCV outside of control limits high, sample was ND.

ND = Not detected

MDL = Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

E = Indicates value exceeds calibration range

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

⁽b) This compound in BS is outside in house QC limits bias high. Associated CCV outside of control limits high, sample was ND. Associated CCV outside of control limits high, sample was ND.

909	6	JAB .	CHAI				ľOľ	DY										P	AGE	: 1	OF	: 1
SGS ACCUTE	EST ∨	J-1 -	2235 F		, Dayto	, NJ 088						FED-EX	Tracking	#			Во	ttle Order	Control #			
· · · · · · · · · · · · · · · · · · ·			TEL. 732-32		FAX: 7 accutest.c		199/34	80					cutest Qu				L	S Accutes		50		335
Chen Megarificularmation	Project Name:		Project	akler	tion.	£ .		4. 2	11.				-	Series.	Arialy	78 (t	ae ts:	3 10 02) West		Matrix Codes
COMPANY PARTNER	Klu	gston,	ич																			DW - Drinking Water GW - Ground Water
Street Address 611 Industrial Way West	HUV/e	y Ave	/ State		nformatio	on (if diffe					222-8											WW - Water SW - Surface Water SO - Soil SL- Sludge
City State Zip Eatantown, NJ U724 Project Contact E-mail	Kings-	90 ' N.	1 Glato	Street Ac		Λ	₽					(a)					ŀ					SED-Sediment OI - Oil LIQ - Other Liquid
CHanne partnerest. com		2956		City	Julesa	H	1) late		Zip		250	673		-							AIR - Air SOL - Other Solid WP - Wice
732-380-1700						A 1		unio .		Zip		J	3		- {			j	ļ			FB-Field Blank EB-Equipment Blank
Sampler(s) Nama(s) Phone #	Project Manager		Collection	Attention								ڙ∟	0 ر		1							RB- Rinse Blank TB-Trip Blank
Scale Accusted Sample # Field ID / Point of Collection	MEOH/DI Vial #	Date	Time	Sampled by	Matrix	# of bottles	Т	ПТ	NON E		#	 	200									LAB USE ONLY
1-MM-1		12-13	915	\$7 H	GW	5	X	П	×			X	Х									
3 MW-2		12-13	1130	STH	an	5	X	П	¥		П	X	X					\neg		T^{T}		
3 MW-3	_	19-13	1035		GW	5	У.	\prod	7.			X	X									
4 Trip Blank		12-11	630	9	GN	7	٧	П				X							1			1629
							\sqcup	44	\perp	4	1	٠.			4	_	_	_	\bot	+		V479)
	<u></u>			ļ			Н.	\dashv	+	-	\vdash	-			_		_	_	+-	\perp	\dashv	\leftarrow
	·			_			Н	+	$+$ \downarrow	+	H	 			\dashv	\dashv		+	+-	+-	-	
	-						₩	╁╁	+	+	\vdash	1		\dashv		\dashv				++		
							H	+	+	_	\vdash	-			_		\dashv	+	+	1		
							İΤ	11	\top	7	\top	\top				\neg	_		\top	\top		
Turnaround Time (Business days)								Щ				.89488005	a removable		ALVESTICATION OF	de 200		The Co			211215 3.35	
Std. 10 Business Days		Accutest PMj: / Date:				ial "A" (L ial "B" (L	evel 1)		nforma	NYAS		gory A gory B			70		NOC		SCIBITIFSE	rucuons p		THE STATE OF THE S
5 Day RUSH INITIAL	ASESSMEN	139 D			FULLT1 (NJ Reduc	Level 3+4 ed	1)				Forms Forma			_\	To	۽ ڄا	.00	ري	/			
2 Day RUSH 1 Day RUSH LABEL V	ERIFICATION		~~~	巨	Commerc	ial "C" of Known	Qualit	lu Prot		Other						-						
	THICATION	V		Commer		Results On						Summary				ŧ	_					
Emergency & Rush T/A data available VIA Lablink	Sa	mple Custody m	ust be docum			suits + QC h time sa						ludina d		deliver	٧.		4)[2	fied up	on rece			oratory
		Received By:	M			:40				T				Ţ	DateiTim		レント	celved B				and the second second second

Intact
Not intact

Form:SM088-01CRev.Date:9/13/16

JC57335: Chain of Custody Page 1 of 2

Cooler Temp.

SGS Accutest Sample Receipt Summary

Job Number:	JC57335	Client:		Project:			
Date / Time Received:	12/14/2017 12	2:31:00 PM	Delivery Method:	Airbill #'s:			
Cooler Temps (Raw Me	,	, ,,					
Cooler Security 1. Custody Seals Present: 2. Custody Seals Intact: Cooler Temperature	<u>Y or N</u> ✓ □ ✓ □ ✓ □	3. COC P 4. Smpl Date r N		Sample Integrity - Documentation 1. Sample labels present on bottles: 2. Container labeling complete: 3. Sample container label / COC agree:	Y V V	or N	
Temp criteria achieved: Cooler temp verification Cooler media: No. Coolers:	: <u>IR</u>	Gun (Bag)		Sample Integrity - Condition 1. Sample recvd within HT: 2. All containers accounted for: 3. Condition of sample:	<u>Y</u>	or N	
Quality Control Present 1. Trip Blank present / coc 2. Trip Blank listed on COc 3. Samples preserved pro 4. VOCs headspace free:	eller:	or N N/A		Sample Integrity - Instructions 1. Analysis requested is clear: 2. Bottles received for unspecified tests 3. Sufficient volume recvd for analysis: 4. Compositing instructions clear: 5. Filtering instructions clear:	Y	or N	N/A ✓
Test Strip Lot #s:	pH 1-12:	216017	pH 12+: _	208717 Other: (Specify)		_	
Comments							

SM089-03 Rev. Date 12/7/17

JC57335: Chain of Custody

Page 2 of 2

ANALYTICAL REPORT

Lab Number: L1715695

Client: Partner Engineering and Science, Inc.

611 Industrial Way W. Eatontown, NJ 07724

ATTN: Cilien Hanna
Phone: (732) 380-1700

Project Name: TWENTY LAKE HOLDINGS

Project Number: 1724956

Report Date: 05/19/17

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA030), NH NELAP (2062), NJ NELAP (MA015), CT (PH-0141), FL (E87814), IL (200081), LA (85084), ME (MA00030), MD (350), NY (11627), NC (685), OH (CL106), PA (68-02089), RI (LAO00299), TX (T104704419), VT (VT-0015), VA (460194), WA (C954), US Army Corps of Engineers, USDA (Permit #P330-13-00067), USFWS (Permit #LE2069641).

320 Forbes Boulevard, Mansfield, MA 02048-1806 508-822-9300 (Fax) 508-822-3288 800-624-9220 - www.alphalab.com

Project Name: TWENTY LAKE HOLDINGS

Project Number: 1724956

Lab Number: L1715695 **Report Date:** 05/19/17

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1715695-01	SG-1	SOIL_VAPOR	73 HARLEY AVE	05/12/17 15:51	05/12/17
L1715695-02	SG-2	SOIL_VAPOR	73 HARLEY AVE	05/12/17 15:54	05/12/17
L1715695-03	SG-3	SOIL_VAPOR	73 HARLEY AVE	05/12/17 15:35	05/12/17

Project Name: TWENTY LAKE HOLDINGS Lab Number: L1715695

Project Number: 1724956 **Report Date:** 05/19/17

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

Project Name: TWENTY LAKE HOLDINGS Lab Number: L1715695
Project Number: 1724956 Report Date: 05/19/17

Case Narrative (continued)

Volatile Organics in Air

Canisters were released from the laboratory on May 11, 2017. The canister certification results are provided as an addendum.

Sample L1715695-01 and -02 results for Acetone should be considered estimated due to co-elution with a non-target peak.

Sample L1715695-03: The sample has elevated detection limits due to the dilution required by the elevated concentrations of target compounds in the sample.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 05/19/17

Christopher J. Anderson

ALPHA

AIR

Date Collected:

Date Received:

Field Prep:

L1715695

05/12/17 15:51

Not Specified

05/12/17

Project Name: TWENTY LAKE HOLDINGS Lab Number:

Project Number: 1724956 **Report Date:** 05/19/17

SAMPLE RESULTS

Lab ID: L1715695-01

Client ID: SG-1

Sample Location: 73 HARLEY AVE

Matrix: Soil_Vapor Anaytical Method: 48,TO-15 Analytical Date: 05/19/17 01:16

Analyst: MB

·								
		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mar	nsfield Lab							
Dichlorodifluoromethane	15.2	0.200		75.2	0.989			1
Chloromethane	0.528	0.200		1.09	0.413			1
Freon-114	ND	0.200		ND	1.40			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	5.35	5.00		10.1	9.42			1
/inyl bromide	ND	0.200		ND	0.874			1
Acetone	16.7	1.00		39.7	2.38			1
Trichlorofluoromethane	0.453	0.200		2.55	1.12			1
sopropanol	1.62	0.500		3.98	1.23			1
1,1-Dichloroethene	ND	0.200		ND	0.793			1
Tertiary butyl Alcohol	0.609	0.500		1.85	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	0.786	0.200		2.45	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	0.638	0.500		1.88	1.47			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1
Ethyl Acetate	ND	0.500		ND	1.80			1

Project Number: 1724956

Lab Number:

L1715695

Report Date:

05/19/17

SAMPLE RESULTS

Lab ID: L1715695-01

Client ID: SG-1

Sample Location: 73 HARLEY AVE

Date Collected:

05/12/17 15:51

Date Received: Field Prep:

05/12/17 Not Specified

•		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Man	sfield Lab							
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	0.516	0.200		1.82	0.705			1
1,1,1-Trichloroethane	0.885	0.200		4.83	1.09			1
Benzene	2.22	0.200		7.09	0.639			1
Carbon tetrachloride	ND	0.200		ND	1.26			1
Cyclohexane	1.62	0.200		5.58	0.688			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
,4-Dioxane	ND	0.200		ND	0.721			1
richloroethene	ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
rans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	2.02	0.200		7.61	0.754			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Tetrachloroethene	ND	0.200		ND	1.36			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	0.921	0.200		4.00	0.869			1
o/m-Xylene	2.94	0.400		12.8	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1

Project Number: 1724956 Lab Number:

L1715695

Report Date: 05/19/17

SAMPLE RESULTS

Lab ID: L1715695-01

SG-1

Client ID: Sample Location: 73 HARLEY AVE Date Collected:

05/12/17 15:51

Date Received:

05/12/17

Field Prep:

Not Specified

s RL				ug/m3		
3 116	MDL	Results	RL	MDL	Qualifier	Factor
0.200		ND	1.37			1
0.200		5.21	0.869			1
0.200		ND	0.983			1
1 0.200		1.09	0.983			1
9 0.200		2.26	0.983			1
0.200		ND	1.04			1
0.200		ND	1.20			1
0.200		ND	1.20			1
0.200		ND	1.20			1
0.200		ND	1.48			1
0.200		ND	2.13			1
	0.200 0.200 0.200 1 0.200 9 0.200 0.200 0.200 0.200 0.200	0.200 0.200 0.200 1 0.200 9 0.200 0.200 0.200 0.200 0.200 0.200 0.200	0.200 ND 0.200 ND 1 0.200 ND 1 0.200 1.09 9 0.200 ND 0.200 ND 0.200 ND 0.200 ND 0.200 ND 0.200 ND 0.200 ND	0.200 ND 1.37 0.200 ND 0.869 0.200 ND 0.983 1 0.200 1.09 0.983 9 0.200 2.26 0.983 0.200 ND 1.04 0.200 ND 1.20 0.200 ND 1.20 0.200 ND 1.20 0.200 ND 1.20	0.200 ND 1.37 0.200 5.21 0.869 0.200 ND 0.983 1 0.200 1.09 0.983 9 0.200 2.26 0.983 0.200 ND 1.04 0.200 ND 1.20 0.200 ND 1.20 0.200 ND 1.20 0.200 ND 1.20 0.200 ND 1.20	0.200 ND 1.37 0.200 5.21 0.869 0.200 ND 0.983 1 0.200 1.09 0.983 9 0.200 2.26 0.983 0.200 ND 1.04 0.200 ND 1.20 0.200 ND 1.20 0.200 ND 1.20 0.200 ND 1.20 0.200 ND 1.20 0.200 ND 1.20 0.200 ND 1.20

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	73		60-140
Bromochloromethane	78		60-140
chlorobenzene-d5	74		60-140

Project Number: 1724956

Lab Number:

Date Collected:

Date Received:

Field Prep:

L1715695

Report Date: 05

05/19/17

05/12/17 15:54

Not Specified

05/12/17

SAMPLE RESULTS

Lab ID: L1715695-02

Client ID: SG-2

Sample Location: 73 HARLEY AVE

Matrix: Soil_Vapor Anaytical Method: 48,TO-15 Analytical Date: 05/19/17 01:51

Analyst: MB

Parameter Volatile Organics in Air - Mansfie	Results ld Lab	ppbV RL	MDL	Results	ug/m3			Dilution
Volatile Organics in Air - Mansfie	ld Lab			RESUITS	RL	MDL	Qualifier	
Dichlorodifluoromethane	2.39	0.200		11.8	0.989			1
Chloromethane	0.234	0.200		0.483	0.413			1
Freon-114	ND	0.200		ND	1.40			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	5.43	5.00		10.2	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	20.8	1.00		49.4	2.38			1
Trichlorofluoromethane	0.519	0.200		2.92	1.12			1
sopropanol	2.04	0.500		5.01	1.23			1
1,1-Dichloroethene	ND	0.200		ND	0.793			1
Tertiary butyl Alcohol	0.730	0.500		2.21	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	1.38	0.200		4.30	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	0.572	0.500		1.69	1.47			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1
Ethyl Acetate	ND	0.500		ND	1.80			1

Project Number: 1724956

Lab Number:

L1715695

Report Date:

05/19/17

SAMPLE RESULTS

Lab ID: L1715695-02

Client ID: SG-2

Sample Location: 73 HARLEY AVE

Date Collected:

05/12/17 15:54

Date Received: Field Prep:

05/12/17 Not Specified

Parameter Results RL MDL Results RL MDL Qualifier Parameter Parameter Results RL MDL Qualifier Parameter Parameter Results RL MDL Qualifier Parameter Parameter RL RL RL RL RL RL RL R		,,	ppbV			ug/m3	ug/m3		Burthe
Volatile Organics in Air - Mansfield Lab Chloroform ND 0.200 ND 0.977 1	Parameter	Results		MDL	Results		MDL	Qualifier	Dilution Factor
Telephydrofuran ND	Volatile Organics in Air - Mans								
1,2-Dichloroethane	Chloroform	ND	0.200		ND	0.977			1
1,1,1-Trichloroethane	Tetrahydrofuran	ND	0.500		ND	1.47			1
1,1,1-Trichloroethane	1,2-Dichloroethane	ND	0.200		ND	0.809			1
2.20	n-Hexane	0.572	0.200		2.02	0.705			1
Carbon tetrachloride ND 0.200 ND 1.26 1 Cyclohexane 1.17 0.200 4.03 0.688 1 1,2-Dichloropropane ND 0.200 ND 0.924 1 Bromodichloromethane ND 0.200 ND 1.34 1 1,4-Dioxane ND 0.200 ND 0.721 1 1,4-Dioxane ND 0.200 ND 0.721 1 1,4-Dioxane ND 0.200 ND 0.721 1 1,4-Dioxane ND 0.200 ND 0.934 1 1,4-Dioxane ND 0.200 ND 0.934 1 1-etptane ND 0.200 ND 0.928 1 1-tetptane ND 0.200	1,1,1-Trichloroethane	0.237	0.200		1.29	1.09			1
1.17 0.200 4.03 0.688 1 1.2-Dichloropropane ND 0.200 ND 0.924 1 3-dichloropropane ND 0.200 ND 0.924 1 3-dichloropropane ND 0.200 ND 1.34 1 4.4-Dioxane ND 0.200 ND 0.721 1 5.2-4-Trimethylpentane ND 0.200 ND 0.934 1 4-deptane ND 0.200 ND 0.934 1 4-deptane ND 0.200 ND 0.934 1 4-deptane ND 0.200 ND 0.908 1 4-dethyl-2-pentanone ND 0.200 ND 0.908 1 4-dethyl-2-pentanone ND 0.500 ND 0.908 1 5-deptane ND 0.200 ND 0.908 1 5-deptane ND 0.200 ND 0.908 1 5-deptane ND 0.200 ND 0.908 1 5-deptane ND 0.200 ND 0.908 1 5-deptane ND 0.200 ND 0.908 1 5-deptane ND 0.200 ND 0.908 1 5-deptane ND 0.200 ND 0.908 1 5-deptane ND 0.200 ND 0.820 1 5-deptane ND 0.200 ND 0.820 1 5-deptane ND 0.200 ND 0.820 1 5-deptane ND 0.200 ND 0.921 1 5-deptane ND 0.200 ND 0.921 1 5-deptane ND 0.200 ND 0.921 1 5-deptane ND 0.200 ND 0.921 1 5-deptane ND 0.200 ND 0.921 1 5-deptane 0.413 0.200 ND 0.921 1 5-deptane 0.413 0.200 ND 0.921 1 5-deptane 0.413 0.200 ND 0.921 1 5-deptane 0.413 0.200 ND 0.921 1 5-deptane 0.413 0.200 ND 0.921 1 5-deptane 0.413 0.200 ND 0.921 1 5-deptane 0.413 0.200 ND 0.921 1 5-deptane 0.413 0.200 ND 0.921 1 5-deptane 0.413 0.200 ND 0.207 1	Benzene	2.20	0.200		7.03	0.639			1
1.2-Dichloropropane ND 0.200 ND 0.924 1	Carbon tetrachloride	ND	0.200		ND	1.26			1
ND 0.200 ND 1.34 1	Cyclohexane	1.17	0.200		4.03	0.688			1
ND 0.200 ND 0.721 1	1,2-Dichloropropane	ND	0.200		ND	0.924			1
Trichloroethene	Bromodichloromethane	ND	0.200		ND	1.34			1
2,2,4-Trimethylpentane	1,4-Dioxane	ND	0.200		ND	0.721			1
Pertane ND 0.200 ND 0.820 1	Trichloroethene	ND	0.200		ND	1.07			1
ND 0.200 ND 0.908 1	2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
A-Methyl-2-pentanone ND 0.500 ND 2.05 1 trans-1,3-Dichloropropene ND 0.200 ND 0.908 1 1,1,2-Trichloroethane ND 0.200 ND 1.09 1 Toluene 1.54 0.200 5.80 0.754 1 2-Hexanone ND 0.200 ND 0.820 1 Dibromochloromethane ND 0.200 ND 1.70 1 1,2-Dibromoethane ND 0.200 ND 1.54 1 Tetrachloroethene ND 0.200 ND 1.36 1 Tetrachloroethene ND 0.200 ND 0.921 1 Ethylbenzene 0.413 0.200 ND 0.921 1 Ethylbenzene 1.40 0.400 6.08 1.74 1 Bromoform ND 0.200 ND 2.07 1	Heptane	ND	0.200		ND	0.820			1
rans-1,3-Dichloropropene ND 0.200 ND 0.908 1 1,1,2-Trichloroethane ND 0.200 ND 1.09 1 1,1,2-Trichloroethane 1.54 0.200 ND 0.754 1 1,2-Hexanone ND 0.200 ND 0.820 1 Dibromochloromethane ND 0.200 ND 1.70 1 1,2-Dibromoethane ND 0.200 ND 1.54 1 Tetrachloroethene ND 0.200 ND 1.36 1 Chlorobenzene ND 0.200 ND 0.921 1 Ethylbenzene 0.413 0.200 1.79 0.869 1 D/m-Xylene 1.40 0.400 6.08 1.74 1 Bromoform ND<	cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
Toluene	trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
2-Hexanone ND 0.200 ND 0.820 1 Dibromochloromethane ND 0.200 ND 1.70 1 1,2-Dibromoethane ND 0.200 ND 1.54 1 Tetrachloroethane ND 0.200 ND 1.36 1 Chlorobenzene ND 0.200 ND 0.921 1 Ethylbenzene 0.413 0.200 1.79 0.869 1 D/m-Xylene 1.40 0.400 6.08 1.74 1 Bromoform ND 0.200 ND 2.07 1	1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Dibromochloromethane ND 0.200 ND 1.70 1 1,2-Dibromoethane ND 0.200 ND 1.54 1 Tetrachloroethane ND 0.200 ND 1.36 1 Chlorobenzene ND 0.200 ND 0.921 1 Ethylbenzene 0.413 0.200 1.79 0.869 1 D/m-Xylene 1.40 0.400 6.08 1.74 1 Bromoform ND 0.200 ND 2.07 1	Toluene	1.54	0.200		5.80	0.754			1
Include the control of the c	2-Hexanone	ND	0.200		ND	0.820			1
Tetrachloroethene ND 0.200 ND 1.36 1 Chlorobenzene ND 0.200 ND 0.921 1 Ethylbenzene 0.413 0.200 1.79 0.869 1 Do/m-Xylene 1.40 0.400 6.08 1.74 1 Bromoform ND 0.200 ND 2.07 1	Dibromochloromethane	ND	0.200		ND	1.70			1
Chlorobenzene ND 0.200 ND 0.921 1 Ethylbenzene 0.413 0.200 1.79 0.869 1 D/m-Xylene 1.40 0.400 6.08 1.74 1 Bromoform ND 0.200 ND 2.07 1	1,2-Dibromoethane	ND	0.200		ND	1.54			1
Ethylbenzene 0.413 0.200 1.79 0.869 1 p/m-Xylene 1.40 0.400 6.08 1.74 1 Bromoform ND 0.200 ND 2.07 1	Tetrachloroethene	ND	0.200		ND	1.36			1
D/m-Xylene 1.40 0.400 6.08 1.74 1 Bromoform ND 0.200 ND 2.07 1	Chlorobenzene	ND	0.200		ND	0.921			1
Bromoform ND 0.200 ND 2.07 1	Ethylbenzene	0.413	0.200		1.79	0.869			1
1.5 0.200 1.5 2.01	o/m-Xylene	1.40	0.400		6.08	1.74			1
Styrene ND 0.200 ND 0.852 1	Bromoform	ND	0.200		ND	2.07			1
	Styrene	ND	0.200		ND	0.852			1

Project Number: 1724956

Lab Number:

L1715695

Report Date:

05/19/17

SAMPLE RESULTS

Lab ID: L1715695-02

Client ID: SG-2

Sample Location: 73 HARLEY AVE

Date Collected:

05/12/17 15:54

Date Received:

05/12/17

Field Prep:

Not Specified

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mans	sfield Lab							
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	0.506	0.200		2.20	0.869			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1
1,2,4-Trimethylbenzene	0.228	0.200		1.12	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	71		60-140
Bromochloromethane	76		60-140
chlorobenzene-d5	75		60-140

Date Collected:

Date Received:

Field Prep:

L1715695

05/12/17 15:35

Not Specified

05/12/17

Project Name: Lab Number: TWENTY LAKE HOLDINGS

Project Number: 1724956 Report Date: 05/19/17

SAMPLE RESULTS

Lab ID: L1715695-03 D

Client ID: SG-3

Sample Location: 73 HARLEY AVE

Soil_Vapor Matrix: 48,TO-15 Anaytical Method: Analytical Date: 05/19/17 02:26

Analyst: MB

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Ma	nsfield Lab							
Dichlorodifluoromethane	2520	8.05		12500	39.8			40.26
Chloromethane	ND	8.05		ND	16.6			40.26
Freon-114	ND	8.05		ND	56.3			40.26
Vinyl chloride	ND	8.05		ND	20.6			40.26
1,3-Butadiene	ND	8.05		ND	17.8			40.26
Bromomethane	ND	8.05		ND	31.3			40.26
Chloroethane	ND	8.05		ND	21.2			40.26
Ethanol	275	201		518	379			40.26
Vinyl bromide	ND	8.05		ND	35.2			40.26
Acetone	ND	40.3		ND	95.7			40.26
Trichlorofluoromethane	ND	8.05		ND	45.2			40.26
Isopropanol	ND	20.1		ND	49.4			40.26
1,1-Dichloroethene	ND	8.05		ND	31.9			40.26
Tertiary butyl Alcohol	ND	20.1		ND	60.9			40.26
Methylene chloride	ND	20.1		ND	69.8			40.26
3-Chloropropene	ND	8.05		ND	25.2			40.26
Carbon disulfide	ND	8.05		ND	25.1			40.26
Freon-113	ND	8.05		ND	61.7			40.26
trans-1,2-Dichloroethene	ND	8.05		ND	31.9			40.26
1,1-Dichloroethane	ND	8.05		ND	32.6			40.26
Methyl tert butyl ether	ND	8.05		ND	29.0			40.26
2-Butanone	ND	20.1		ND	59.3			40.26
cis-1,2-Dichloroethene	ND	8.05		ND	31.9			40.26
Ethyl Acetate	ND	20.1		ND	72.4			40.26

Project Number: 1724956

Lab Number:

L1715695

Report Date:

05/19/17

SAMPLE RESULTS

Lab ID: L1715695-03 D

Client ID: SG-3

Sample Location: 73 HARLEY AVE

Date Collected: 05/12/17 15:35

Date Received: 05/12/17

Field Prep: Not Specified

Campic Location. 75 TIARLE 17				ricia ricp.			140t Opcome	
Parameter	Poculto	ppbV	MDI	Results	ug/m3 RL	MDL	Qualifier	Dilution Factor
Parameter Volatile Organics in Air - Mansfield	Results	RL	MDL	RESUITS	KL.	INIDL	Qualifier	
Chloroform	ND	8.05		ND	39.3			40.26
Tetrahydrofuran	ND	20.1		ND	59.3			40.26
1,2-Dichloroethane	ND	8.05		ND	32.6			40.26
n-Hexane	ND	8.05		ND	28.4			40.26
1,1,1-Trichloroethane	ND	8.05		ND	43.9			40.26
Benzene	ND	8.05		ND	25.7			40.26
Carbon tetrachloride	ND	8.05		ND	50.6			40.26
Cyclohexane	ND	8.05		ND	27.7			40.26
1,2-Dichloropropane	ND	8.05		ND	37.2			40.26
Bromodichloromethane	ND	8.05		ND	53.9			40.26
1,4-Dioxane	ND	8.05		ND	29.0			40.26
Trichloroethene	ND	8.05		ND	43.3			40.26
2,2,4-Trimethylpentane	ND	8.05		ND	37.6			40.26
Heptane	ND	8.05		ND	33.0			40.26
cis-1,3-Dichloropropene	ND	8.05		ND	36.5			40.26
4-Methyl-2-pentanone	ND	20.1		ND	82.4			40.26
trans-1,3-Dichloropropene	ND	8.05		ND	36.5			40.26
1,1,2-Trichloroethane	ND	8.05		ND	43.9			40.26
Toluene	ND	8.05		ND	30.3			40.26
2-Hexanone	ND	8.05		ND	33.0			40.26
Dibromochloromethane	ND	8.05		ND	68.6			40.26
1,2-Dibromoethane	ND	8.05		ND	61.9			40.26
Tetrachloroethene	ND	8.05		ND	54.6			40.26
Chlorobenzene	ND	8.05		ND	37.1			40.26
Ethylbenzene	ND	8.05		ND	35.0			40.26
p/m-Xylene	ND	16.1		ND	69.9			40.26
Bromoform	ND	8.05		ND	83.2			40.26
Styrene	ND	8.05		ND	34.3			40.26

L1715695

Lab Number:

Project Name: TWENTY LAKE HOLDINGS

Project Number: Report Date: 1724956

05/19/17

SAMPLE RESULTS

Lab ID: L1715695-03 D

Client ID: SG-3

Sample Location: 73 HARLEY AVE Date Collected: 05/12/17 15:35

Date Received: 05/12/17 Field Prep: Not Specified

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansf	ield Lab							
1,1,2,2-Tetrachloroethane	ND	8.05		ND	55.3			40.26
o-Xylene	ND	8.05		ND	35.0			40.26
4-Ethyltoluene	ND	8.05		ND	39.6			40.26
1,3,5-Trimethylbenzene	ND	8.05		ND	39.6			40.26
1,2,4-Trimethylbenzene	ND	8.05		ND	39.6			40.26
Benzyl chloride	ND	8.05		ND	41.7			40.26
1,3-Dichlorobenzene	ND	8.05		ND	48.4			40.26
1,4-Dichlorobenzene	ND	8.05		ND	48.4			40.26
1,2-Dichlorobenzene	ND	8.05		ND	48.4			40.26
1,2,4-Trichlorobenzene	ND	8.05		ND	59.8			40.26
Hexachlorobutadiene	ND	8.05		ND	85.9			40.26

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	76		60-140
Bromochloromethane	81		60-140
chlorobenzene-d5	78		60-140

Project Name: TWENTY LAKE HOLDINGS Lab Number: L1715695

Project Number: 1724956 Report Date: 05/19/17

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 05/18/17 15:57

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield	d Lab for samp	ole(s): 01	-03 Batch	: WG10048	353-4			
Propylene	ND	0.500		ND	0.861			1
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.200		ND	1.40			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	ND	5.00		ND	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	ND	1.00		ND	2.38			1
Trichlorofluoromethane	ND	0.200		ND	1.12			1
Isopropanol	ND	0.500		ND	1.23			1
1,1-Dichloroethene	ND	0.200		ND	0.793			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
Vinyl acetate	ND	1.00		ND	3.52			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1

Project Name: TWENTY LAKE HOLDINGS Lab Number: L1715695

Project Number: 1724956 Report Date: 05/19/17

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 05/18/17 15:57

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mans	field Lab for samp	ole(s): 01	-03 Batch	n: WG10048	353-4			
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
Benzene	ND	0.200		ND	0.639			1
Carbon tetrachloride	ND	0.200		ND	1.26			1
Cyclohexane	ND	0.200		ND	0.688			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
Trichloroethene	ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	ND	0.200		ND	0.754			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Tetrachloroethene	ND	0.200		ND	1.36			1
Chlorobenzene	ND	0.200		ND	0.921			1

Project Name: TWENTY LAKE HOLDINGS Lab Number: L1715695

Project Number: 1724956 Report Date: 05/19/17

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 05/18/17 15:57

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfie	eld Lab for samp	ole(s): 01-	-03 Batch	n: WG10048	53-4			
Ethylbenzene	ND	0.200		ND	0.869			1
p/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	ND	0.200		ND	0.869			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Project Name: TWENTY LAKE HOLDINGS

Project Number: 1724956

Lab Number: L1715695

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics in Air - Mansfield Lab A	Associated sample(s):	01-03	Batch: WG100485	53-3				
Chlorodifluoromethane	93		-		70-130	-		
Propylene	102		-		70-130	-		
Propane	70		-		70-130	-		
Dichlorodifluoromethane	118		-		70-130	-		
Chloromethane	109		-		70-130	-		
1,2-Dichloro-1,1,2,2-tetrafluoroethane	123		-		70-130	-		
Methanol	82		-		70-130	-		
Vinyl chloride	112		-		70-130	-		
1,3-Butadiene	111		-		70-130	-		
Butane	90		-		70-130	-		
Bromomethane	118		-		70-130	-		
Chloroethane	113		-		70-130	-		
Ethyl Alcohol	83		-		70-130	-		
Dichlorofluoromethane	97		-		70-130	-		
Vinyl bromide	108		-		70-130	-		
Acrolein	91		-		70-130	-		
Acetone	113		-		70-130	-		
Acetonitrile	96		-		70-130	-		
Trichlorofluoromethane	112		-		70-130	-		
iso-Propyl Alcohol	94		-		70-130	-		
Acrylonitrile	98		-		70-130	-		
Pentane	87		-		70-130	-		
Ethyl ether	78		-		70-130	-		

Project Name: TWENTY LAKE HOLDINGS

Project Number: 1724956

Lab Number: L1715695

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
/olatile Organics in Air - Mansfield Lab	Associated sample(s):	01-03	Batch: WG100485	3-3				
1,1-Dichloroethene	116		-		70-130	-		
tert-Butyl Alcohol	92		-		70-130	-		
Methylene chloride	118		-		70-130	-		
3-Chloropropene	104		-		70-130	-		
Carbon disulfide	112		-		70-130	-		
1,1,2-Trichloro-1,2,2-Trifluoroethane	119		-		70-130	-		
trans-1,2-Dichloroethene	99		-		70-130	-		
1,1-Dichloroethane	100		-		70-130	-		
Methyl tert butyl ether	94		-		70-130	-		
Vinyl acetate	112		-		70-130	-		
2-Butanone	87		-		70-130	-		
cis-1,2-Dichloroethene	100		-		70-130	-		
Ethyl Acetate	105		-		70-130	-		
Chloroform	106		-		70-130	-		
Tetrahydrofuran	85		-		70-130	-		
2,2-Dichloropropane	89		-		70-130	-		
1,2-Dichloroethane	99		-		70-130	-		
n-Hexane	93		-		70-130	-		
Isopropyl Ether	87		-		70-130	-		
Ethyl-Tert-Butyl-Ether	82		-		70-130	-		
1,1,1-Trichloroethane	98		-		70-130	-		
1,1-Dichloropropene	91		-		70-130	-		
Benzene	95		-		70-130	-		

Project Name: TWENTY LAKE HOLDINGS

Project Number: 1724956

Lab Number: L1715695

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics in Air - Mansfield Lab	Associated sample(s):	01-03	Batch: WG100485	3-3				
Carbon tetrachloride	99		-		70-130	-		
Cyclohexane	90		-		70-130	-		
Tertiary-Amyl Methyl Ether	79		-		70-130	-		
Dibromomethane	95		-		70-130	-		
1,2-Dichloropropane	98		-		70-130	-		
Bromodichloromethane	101		-		70-130	-		
1,4-Dioxane	99		-		70-130	-		
Trichloroethene	103		-		70-130	-		
2,2,4-Trimethylpentane	95		-		70-130	-		
Methyl Methacrylate	93		-		70-130	-		
Heptane	86		-		70-130	-		
cis-1,3-Dichloropropene	101		-		70-130	-		
4-Methyl-2-pentanone	89		-		70-130	-		
trans-1,3-Dichloropropene	88		-		70-130	-		
1,1,2-Trichloroethane	105		-		70-130	-		
Toluene	101		-		70-130	-		
1,3-Dichloropropane	95		-		70-130	-		
2-Hexanone	93		-		70-130	-		
Dibromochloromethane	108		-		70-130	-		
1,2-Dibromoethane	110		-		70-130	-		
Butyl Acetate	92		-		70-130	-		
Octane	92		-		70-130	-		
Tetrachloroethene	106		-		70-130	-		

Project Name: TWENTY LAKE HOLDINGS

Project Number: 1724956

Lab Number: L1715695

1,1,1,2-Tetrachloroethane	arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Chlorobenzene 105 - 70-130 - Ethylbenzene 103 - 70-130 - p/m-Xylene 102 - 70-130 - Bromoform 112 - 70-130 - Styrene 102 - 70-130 - Styrene 110 - 70-130 - o-Xylene 104 - 70-130 - 1,2,2-Trichloropropane 94 - 70-130 - Nonane (C9) 82 - 70-130 - Isopropylbenzene 97 - 70-130 - Bromobenzene 94 - 70-130 - e-Chlorotoluene 112 - 70-130 - n-Propylbenzene 81 - 70-130 - e-Ethyltoluene 102 - 70-130 - 4-Ethyltoluene 102 - 70-130 - 1,2,4-Trimethylbenzene 97	olatile Organics in Air - Mansfield Lab	Associated sample(s):	01-03	Batch: WG100485	3-3				
Ethylbenzene 103 - 70-130 - p/m-Xylene 102 - 70-130	1,1,1,2-Tetrachloroethane	96		-		70-130	-		
p/m-Xylene 102 70-130 - Bromoform 112 - 70-130 - Styrene 102 - 70-130 - 1,1,2,2-Tetrachloroethane 110 - 70-130 - o-Xylene 104 - 70-130 - 1,2,3-Trichloropropane 94 - 70-130 - Nonane (C9) 82 - 70-130 - Bromobenzene 97 - 70-130 - Bromobenzene 94 - 70-130 - o-Chlorotoluene 112 - 70-130 - n-Propylbenzene 81 - 70-130 - n-Propylbenzene 92 - 70-130 - 4-Ethyltoluene 102 - 70-130 - 4-Ethyltoluene 102 - 70-130 - 1,3,5-Trimethylbenzene 107 - 70-130 - 1,2,4-Trimethylbenzene <	Chlorobenzene	105		-		70-130	-		
Bromoform 112 70-130 - Styrene 102 70-130 - 1,1,2,2-Tetrachloroethane 110 70-130 - o-Xylene 104 70-130 - 1,2,3-Trichloropropane 94 70-130 - Nonane (C9) 82 70-130 - Isopropylbenzene 97 70-130 - Bromobenzene 94 70-130 - O-Chiorotoluene 112 70-130 - n-Propylbenzene 81 70-130 - n-Propylbenzene 81 70-130 - p-Chiorotoluene 92 70-130 - 4-Ethytoluene 102 70-130 - 4-Ethytoluene 102 70-130 - 1,3-Frimethylbenzene 97 70-130 - 1,2-4-Trimethylbenzene 107 70-130 - Decane (C10) 90 70-130 - 1,3-Dichlorobenzene 107 70-130<	Ethylbenzene	103		-		70-130	-		
Styrene 102 70-130 - 1,1,2,2-Tetrachloroethane 110 70-130 - o-Xylene 104 70-130 - 1,2,3-Trichloropropane 94 70-130 - Nonane (C9) 82 70-130 - Isopropylbenzene 97 70-130 - Bromobenzene 94 70-130 - o-Chlorotoluene 112 70-130 - n-Propylbenzene 81 70-130 - p-Chlorotoluene 92 70-130 - 4-Ethyltoluene 102 70-130 - 4-Ethyltoluene 102 70-130 - 1,3,5-Trimethylbenzene 102 70-130 - 1,2,4-Trimethylbenzene 107 70-130 - Decane (C10) 90 70-130 - Benzyl chloride 100 70-130 - 1,3-Dichlorobenzene 107 70-130 -	p/m-Xylene	102		-		70-130	-		
1,1,2,2-Tetrachloroethane 110 - 70-130 - o-Xylene 104 - 70-130 - 1,2,3-Trichloropropane 94 - 70-130 - Nonane (C9) 82 - 70-130 - Isopropylbenzene 97 - 70-130 - Bromobenzene 94 - 70-130 - o-Chlorotoluene 112 - 70-130 - n-Propylbenzene 81 - 70-130 - p-Chlorotoluene 92 - 70-130 - 4-Ethyltoluene 102 - 70-130 - 1,3,5-Trimethylbenzene 102 - 70-130 - tert-Butylbenzene 97 - 70-130 - 1,2,4-Trimethylbenzene 107 - 70-130 - Decane (C10) 90 - 70-130 - Benzyl chloride 100 - 70-130 - 1,3-Dichlorobenzene 107 - 70-130 -	Bromoform	112		-		70-130	-		
o-Xylene 104 - 70-130 - 1,2,3-Trichloropropane 94 - 70-130 - Nonane (C9) 82 - 70-130 - Isopropylbenzene 97 - 70-130 - Bromobenzene 94 - 70-130 - o-Chlorotoluene 112 - 70-130 - n-Propylbenzene 81 - 70-130 - p-Chlorotoluene 92 - 70-130 - 4-Ethyltoluene 102 - 70-130 - 1,3,5-Trimethylbenzene 102 - 70-130 - tert-Butylbenzene 97 - 70-130 - 1,2,4-Trimethylbenzene 107 - 70-130 - Decane (C10) 90 - 70-130 - Benzyl chloride 100 - 70-130 - 1,3-Dichlorobenzene 107 - 70-130 -	Styrene	102		-		70-130	-		
1,2,3-Trichloropropane	1,1,2,2-Tetrachloroethane	110		-		70-130	-		
Nonane (C9) 82 - 70-130 - Isopropylbenzene 97 - 70-130 - Bromobenzene 94 - 70-130 - o-Chlorotoluene 112 - 70-130 - n-Propylbenzene 81 - 70-130 - p-Chlorotoluene 92 - 70-130 - 4-Ethyltoluene 102 - 70-130 - 1,3,5-Trimethylbenzene 102 - 70-130 - tert-Butylbenzene 97 - 70-130 - 1,2,4-Trimethylbenzene 107 - 70-130 - Decane (C10) 90 - 70-130 - Benzyl chloride 100 - 70-130 - 1,3-Dichlorobenzene 107 - 70-130 -	o-Xylene	104		-		70-130	-		
Isopropylbenzene 97 - 70-130 - Bromobenzene 94 - 70-130 - o-Chlorotoluene 112 - 70-130 - n-Propylbenzene 81 - 70-130 - p-Chlorotoluene 92 - 70-130 - 4-Ethyltoluene 102 - 70-130 - 1,3,5-Trimethylbenzene 102 - 70-130 - tert-Butylbenzene 97 - 70-130 - 1,2,4-Trimethylbenzene 107 - 70-130 - Decane (C10) 90 - 70-130 - Benzyl chloride 100 - 70-130 - 1,3-Dichlorobenzene 107 - 70-130 -	1,2,3-Trichloropropane	94		-		70-130	-		
Bromobenzene 94 - 70-130 - o-Chlorotoluene 112 - 70-130 - n-Propylbenzene 81 - 70-130 - p-Chlorotoluene 92 - 70-130 - 4-Ethyltoluene 102 - 70-130 - 1,3,5-Trimethylbenzene 102 - 70-130 - tert-Butylbenzene 97 - 70-130 - 1,2,4-Trimethylbenzene 107 - 70-130 - Decane (C10) 90 - 70-130 - Benzyl chloride 100 - 70-130 - 1,3-Dichlorobenzene 107 - 70-130 -	Nonane (C9)	82		-		70-130	-		
o-Chlorotoluene 112 - 70-130 - n-Propylbenzene 81 - 70-130 - p-Chlorotoluene 92 - 70-130 - 4-Ethyltoluene 102 - 70-130 - 1,3,5-Trimethylbenzene 102 - 70-130 - tert-Butylbenzene 97 - 70-130 - 1,2,4-Trimethylbenzene 107 - 70-130 - Decane (C10) 90 - 70-130 - Benzyl chloride 100 - 70-130 - 1,3-Dichlorobenzene 107 - 70-130 -	Isopropylbenzene	97		-		70-130	-		
n-Propylbenzene 81 - 70-130 - p-Chlorotoluene 92 - 70-130 - 4-Ethyltoluene 102 - 70-130 - 1,3,5-Trimethylbenzene 102 - 70-130 - tert-Butylbenzene 97 - 70-130 - 1,2,4-Trimethylbenzene 107 - 70-130 - Decane (C10) 90 - 70-130 - Benzyl chloride 100 - 70-130 - 1,3-Dichlorobenzene 107 - 70-130 -	Bromobenzene	94		-		70-130	-		
p-Chlorotoluene 92 - 70-130 - 4-Ethyltoluene 102 - 70-130 - 1,3,5-Trimethylbenzene 102 - 70-130 - tert-Butylbenzene 97 - 70-130 - 1,2,4-Trimethylbenzene 107 - 70-130 - Decane (C10) 90 - 70-130 - Benzyl chloride 100 - 70-130 - 1,3-Dichlorobenzene 107 - 70-130 -	o-Chlorotoluene	112		-		70-130	-		
4-Ethyltoluene 102 - 70-130 - 1,3,5-Trimethylbenzene 102 - 70-130 - tert-Butylbenzene 97 - 70-130 - 1,2,4-Trimethylbenzene 107 - 70-130 - Decane (C10) 90 - 70-130 - Benzyl chloride 100 - 70-130 - 1,3-Dichlorobenzene 107 - 70-130 -	n-Propylbenzene	81		-		70-130	-		
1,3,5-Trimethylbenzene 102 - 70-130 - tert-Butylbenzene 97 - 70-130 - 1,2,4-Trimethylbenzene 107 - 70-130 - Decane (C10) 90 - 70-130 - Benzyl chloride 100 - 70-130 - 1,3-Dichlorobenzene 107 - 70-130 -	p-Chlorotoluene	92		-		70-130	-		
tert-Butylbenzene 97 - 70-130 - 1,2,4-Trimethylbenzene 107 - 70-130 - Decane (C10) 90 - 70-130 - Benzyl chloride 100 - 70-130 - 1,3-Dichlorobenzene 107 - 70-130 -	4-Ethyltoluene	102		-		70-130	-		
1,2,4-Trimethylbenzene 107 - 70-130 - Decane (C10) 90 - 70-130 - Benzyl chloride 100 - 70-130 - 1,3-Dichlorobenzene 107 - 70-130 -	1,3,5-Trimethylbenzene	102		-		70-130	-		
Decane (C10) 90 - 70-130 - Benzyl chloride 100 - 70-130 - 1,3-Dichlorobenzene 107 - 70-130 -	tert-Butylbenzene	97		-		70-130	-		
Benzyl chloride 100 - 70-130 - 1,3-Dichlorobenzene 107 - 70-130 -	1,2,4-Trimethylbenzene	107		-		70-130	-		
1,3-Dichlorobenzene 107 - 70-130 -	Decane (C10)	90		-		70-130	-		
·	Benzyl chloride	100		-		70-130	-		
1,4-Dichlorobenzene 108 - 70-130 -	1,3-Dichlorobenzene	107		-		70-130	-		
	1,4-Dichlorobenzene	108		-		70-130	-		

Project Name: TWENTY LAKE HOLDINGS

Project Number: 1724956

Lab Number:

L1715695

Report Date:

05/19/17

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics in Air - Mansfield Lab Asso	ociated sample(s):	01-03	Batch: WG100485	3-3				
sec-Butylbenzene	96		-		70-130	-		
p-Isopropyltoluene	90		-		70-130	-		
1,2-Dichlorobenzene	108		-		70-130	-		
n-Butylbenzene	101		-		70-130	-		
1,2-Dibromo-3-chloropropane	95		-		70-130	-		
Undecane	94		-		70-130	-		
Dodecane (C12)	106		-		70-130	-		
1,2,4-Trichlorobenzene	121		-		70-130	-		
Naphthalene	103		-		70-130	-		
1,2,3-Trichlorobenzene	106		-		70-130	-		
Hexachlorobutadiene	112		-		70-130	-		

Lab Duplicate Analysis Batch Quality Control

Project Name: TWENTY LAKE HOLDINGS

Project Number: 1724956

Lab Number: L1715695

Parameter	Native Sample	Duplicate Sample	Units	RPD	RPD Qual Limits	
Volatile Organics in Air - Mansfield Lab	Associated sample(s): 01-03		QC Sample:	L1716153-0	2 Client ID: DUP Sa	mple
Dichlorodifluoromethane	0.452	0.408	ppbV	10	25	
Chloromethane	0.813	0.804	ppbV	1	25	
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	ND	ppbV	NC	25	
1,3-Butadiene	ND	ND	ppbV	NC	25	
Bromomethane	ND	ND	ppbV	NC	25	
Chloroethane	ND	ND	ppbV	NC	25	
Ethyl Alcohol	163	165	ppbV	1	25	
Vinyl bromide	ND	ND	ppbV	NC	25	
Acetone	15.2	15.3	ppbV	1	25	
Trichlorofluoromethane	0.353	0.334	ppbV	6	25	
iso-Propyl Alcohol	4.26	4.12	ppbV	3	25	
tert-Butyl Alcohol	ND	ND	ppbV	NC	25	
Methylene chloride	ND	ND	ppbV	NC	25	
3-Chloropropene	ND	ND	ppbV	NC	25	
Carbon disulfide	ND	ND	ppbV	NC	25	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	ND	ppbV	NC	25	
trans-1,2-Dichloroethene	ND	ND	ppbV	NC	25	
1,1-Dichloroethane	ND	ND	ppbV	NC	25	
Methyl tert butyl ether	ND	ND	ppbV	NC	25	
2-Butanone	0.751	0.760	ppbV	1	25	
Ethyl Acetate	23.8	23.5	ppbV	1	25	

Lab Duplicate Analysis Batch Quality Control

Project Name: TWENTY LAKE HOLDINGS

Project Number: 1724956

Lab Number: L1715695

Parameter	Native Sample	Duplicate Sample	Units	RPD		PD mits
Volatile Organics in Air - Mansfield Lab	Associated sample(s): 01-03	QC Batch ID: WG1004853-5	QC Sample:	L1716153-0	02 Client ID: [OUP Sample
Chloroform	0.531	0.522	ppbV	2		25
Tetrahydrofuran	ND	ND	ppbV	NC		25
1,2-Dichloroethane	ND	ND	ppbV	NC		25
n-Hexane	0.523	0.553	ppbV	6		25
Benzene	0.465	0.453	ppbV	3		25
Cyclohexane	ND	ND	ppbV	NC		25
1,2-Dichloropropane	ND	ND	ppbV	NC		25
Bromodichloromethane	ND	ND	ppbV	NC		25
1,4-Dioxane	ND	ND	ppbV	NC		25
2,2,4-Trimethylpentane	1.52	1.51	ppbV	1		25
Heptane	0.547	0.534	ppbV	2		25
cis-1,3-Dichloropropene	ND	ND	ppbV	NC		25
4-Methyl-2-pentanone	ND	ND	ppbV	NC		25
trans-1,3-Dichloropropene	ND	ND	ppbV	NC		25
1,1,2-Trichloroethane	ND	ND	ppbV	NC		25
Toluene	1.80	1.82	ppbV	1		25
2-Hexanone	ND	ND	ppbV	NC		25
Dibromochloromethane	ND	ND	ppbV	NC		25
1,2-Dibromoethane	ND	ND	ppbV	NC		25
Chlorobenzene	ND	ND	ppbV	NC		25
Ethylbenzene	ND	ND	ppbV	NC		25

L1715695

Lab Duplicate Analysis Batch Quality Control

Project Name: TWENTY LAKE HOLDINGS

Project Number: 1724956

ty Control Lab Number:

	Native Sample	Duplicate Sample	Units	RPD	Qual	RPD Limits
latile Organics in Air - Mansfield Lab	Associated sample(s): 01-03	QC Batch ID: WG1004853-5	QC Sample:	L1716153-	02 Client ID:	: DUP Sample
p/m-Xylene	0.652	0.678	ppbV	4		25
Bromoform	ND	ND	ppbV	NC		25
Styrene	ND	ND	ppbV	NC		25
1,1,2,2-Tetrachloroethane	ND	ND	ppbV	NC		25
o-Xylene	0.331	0.339	ppbV	2		25
4-Ethyltoluene	0.386	0.390	ppbV	1		25
1,3,5-Trimethylbenzene	0.409	0.412	ppbV	1		25
1,2,4-Trimethylbenzene	1.17	1.18	ppbV	1		25
Benzyl chloride	ND	ND	ppbV	NC		25
1,3-Dichlorobenzene	ND	ND	ppbV	NC		25
1,4-Dichlorobenzene	ND	ND	ppbV	NC		25
1,2-Dichlorobenzene	ND	ND	ppbV	NC		25
1,2,4-Trichlorobenzene	ND	ND	ppbV	NC		25
Hexachlorobutadiene	ND	ND	ppbV	NC		25

TWENTY LAKE HOLDINGS Lab Number: L1715695

Project Number: 1724956 Report Date: 05/19/17

Canister and Flow Controller Information

								Initial	Pressure	Flow			
Samplenum	Client ID	Media ID	Media Type	Date Prepared	Bottle Order	Cleaning Batch ID	Can Leak Check	Pressure (in. Hg)	on Receipt (in. Hg)	Controler Leak Chk	Flow Out mL/min	Flow In mL/min	% RPD
L1715695-01	SG-1	0586	Flow 5	05/11/17	241749		-	-	-	Pass	4.5	1.6	95
L1715695-01	SG-1	388	2.7L Can	05/11/17	241749	L1714850-01	Pass	-30.0	-15.0	-	-	-	-
L1715695-02	SG-2	0620	Flow 2	05/11/17	241749		-	-	-	Pass	4.4	3.8	15
L1715695-02	SG-2	178	2.7L Can	05/11/17	241749	L1714850-01	Pass	-30.0	-10.9	-	-	-	-
L1715695-03	SG-3	0784	Flow 5	05/11/17	241749		-	-	-	Pass	4.4	4.4	0
L1715695-03	SG-3	254	2.7L Can	05/11/17	241749	L1714850-01	Pass	-30.0	-9.0	-	-	-	-

Project Name:

L1714850

Not Specified

Lab Number:

Field Prep:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT **Report Date:** 05/19/17

Air Canister Certification Results

Lab ID: L1714850-01

Date Collected: 05/08/17 16:00 Client ID: Date Received: 05/09/17 CAN 2030 SHELF 7

Sample Location:

Matrix: Air

Anaytical Method: 48,TO-15 Analytical Date: 05/09/17 16:11

Analyst: MB

		ppbV			ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansf	field Lab							
Chlorodifluoromethane	ND	0.200		ND	0.707			1
Propylene	ND	0.500		ND	0.861			1
Propane	ND	0.500		ND	0.902			1
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.200		ND	1.40			1
Methanol	ND	5.00		ND	6.55			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Butane	ND	0.200 0.200		ND	0.475			1
Bromomethane	ND			ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	ND	5.00		ND	9.42			1
Dichlorofluoromethane	ND	0.200		ND	0.842			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acrolein	ND	0.500		ND	1.15			1
Acetone	ND	1.00		ND	2.38			1
Acetonitrile	ND	0.200		ND	0.336			1
Trichlorofluoromethane	ND	0.200		ND	1.12			1
Isopropanol	ND	0.500		ND	1.23			1
Acrylonitrile	ND	0.500		ND	1.09			1
Pentane	ND	0.200		ND	0.590			1
Ethyl ether N		0.200		ND	0.606			1
1,1-Dichloroethene	ND	0.200		ND	0.793			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1

L1714850

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT **Report Date:** 05/19/17

Air Canister Certification Results

Lab ID: L1714850-01

Date Collected: 05/08/17 16:00 Client ID: CAN 2030 SHELF 7 Date Received: 05/09/17

Sample Location:

Field Prep: Not Specified

•						- 1		
Parameter	Results	ppbV RL	MDL	Results	ug/m3 RL	MDL	Qualifier	Dilution Factor
Volatile Organics in Air - Mansfiel		NE .	IVIDE	resuits	112	MIDE	Qualifier	
Methylene chloride	ND	0.500	<u></u>	ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
rans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
/inyl acetate	ND	1.00		ND	3.52			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1
2,2-Dichloropropane	ND	0.200		ND	0.924			1
,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
Diisopropyl ether	ND	0.200		ND	0.836			1
ert-Butyl Ethyl Ether	ND	0.200		ND	0.836			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
1,1-Dichloropropene	ND	0.200		ND	0.908			1
Benzene	ND	0.200		ND	0.639			1
Carbon tetrachloride	ND	0.200		ND	1.26			1
Cyclohexane	ND	0.200		ND	0.688			1
ert-Amyl Methyl Ether	ND	0.200		ND	0.836			1
Dibromomethane	ND	0.200		ND	1.42			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1

L1714850

05/08/17 16:00

Lab Number:

Date Collected:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT Report Date: 05/19/17

Air Canister Certification Results

Lab ID: L1714850-01

Client ID: CAN 2030 SHELF 7 Date Received: 05/09/17

Sample Location:

Field Prep: Not Specified

		ppbV			ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfie	eld Lab							
Trichloroethene	ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Methyl Methacrylate	ND	0.500		ND	2.05			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
rans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND			ND	1.09			1
Toluene	ND	0.200		ND	0.754			1
1,3-Dichloropropane	ND	0.200		ND	0.924			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
,2-Dibromoethane	ND	0.200		ND	1.54			1
Butyl acetate	ND	0.500		ND	2.38			1
Octane	ND	0.200		ND	0.934			1
Tetrachloroethene	ND	0.200		ND	1.36			1
1,1,1,2-Tetrachloroethane	ND	0.200		ND	1.37			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
o/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	ND	0.200		ND	0.869			1
1,2,3-Trichloropropane	ND	0.200		ND	1.21			1
Nonane	ND	0.200		ND	1.05			1
sopropylbenzene	ND	0.200		ND	0.983			1
Bromobenzene	ND	0.200		ND	0.793			1

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT

Lab Number:

L1714850

Report Date: 05/19/17

Air Canister Certification Results

Lab ID: L1714850-01

Client ID: CAN 2030 SHELF 7

Sample Location:

Date Collected:

05/08/17 16:00

Date Received:

05/09/17

Field Prep:

Not Specified

		ppbV			ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield La	ab							
2-Chlorotoluene	ND	0.200		ND	1.04			1
n-Propylbenzene	ND	0.200		ND	0.983			1
4-Chlorotoluene	ND	0.200		ND	1.04			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1
tert-Butylbenzene	ND	0.200		ND	1.10			1
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Decane	ND	0.200		ND	1.16			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
sec-Butylbenzene	ND	0.200		ND	1.10			1
p-Isopropyltoluene	ND	0.200		ND	1.10			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
n-Butylbenzene	ND	0.200		ND	1.10			1
1,2-Dibromo-3-chloropropane	ND	0.200		ND	1.93			1
Undecane	ND	0.200		ND	1.28			1
Dodecane	ND	0.200		ND	1.39			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Naphthalene	ND	0.200		ND	1.05			1
1,2,3-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

	Results	Qualifier	Units	RDL	Dilution Factor
Tentatively Identified Compounds					

No Tentatively Identified Compounds

Project Name: BATCH CANISTER CERTIFICATION Lab Number: L1714850

Project Number: CANISTER QC BAT Report Date: 05/19/17

Air Canister Certification Results

Lab ID: L1714850-01 Date Collected: 05/08/17 16:00

Client ID: CAN 2030 SHELF 7 Date Received: 05/09/17

Sample Location: Field Prep: Not Specified

Parameter Results RL MDL Results RL MDL Qualifier Factor

Volatile Organics in Air - Mansfield Lab

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	98		60-140
Bromochloromethane	94		60-140
chlorobenzene-d5	98		60-140

L1714850

Not Specified

Lab Number:

Field Prep:

ua/m3

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT **Report Date:** 05/19/17

Air Canister Certification Results

Lab ID: L1714850-01

Date Collected: 05/08/17 16:00 Client ID: Date Received: 05/09/17 CAN 2030 SHELF 7

nnhV

Sample Location:

Matrix: Air

Anaytical Method: 48,TO-15-SIM Analytical Date: 05/09/17 16:11

Analyst: MB

		ppbV			ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM	- Mansfield Lab							
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.050		ND	0.349			1
Vinyl chloride	ND	0.020		ND	0.051			1
1,3-Butadiene	ND	0.020		ND	0.044			1
Bromomethane	ND	0.020		ND	0.078			1
Chloroethane	ND	0.020		ND	0.053			1
Acetone	ND	1.00		ND	2.38			1
Trichlorofluoromethane	ND	0.050		ND	0.281			1
Acrylonitrile	ND	0.500		ND	1.09			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
Methylene chloride	ND	0.500		ND	1.74			1
Freon-113	ND	0.050		ND	0.383			1
Halothane	ND	0.050		ND	0.404			1
trans-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1-Dichloroethane	ND	0.020		ND	0.081			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
Chloroform	ND	0.020		ND	0.098			1
1,2-Dichloroethane	ND	0.020		ND	0.081			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Benzene	ND	0.100		ND	0.319			1
Carbon tetrachloride	ND	0.020		ND	0.126			1
1,2-Dichloropropane	ND	0.020		ND	0.092			1

L1714850

05/08/17 16:00

Lab Number:

Date Collected:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT Report Date: 05/19/17

Air Canister Certification Results

Lab ID: L1714850-01

Client ID: CAN 2030 SHELF 7 Date Received: 05/09/17

Sample Location:

Field Prep: Not Specified

		ppbV			ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM -	- Mansfield Lab							
Bromodichloromethane	ND	0.020		ND	0.134			1
1,4-Dioxane	ND	0.100		ND	0.360			1
Trichloroethene	ND	0.020		ND	0.107			1
cis-1,3-Dichloropropene	oropropene ND			ND	0.091			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.020		ND	0.091			1
1,1,2-Trichloroethane	ane ND ND			ND	0.109			1
Toluene				ND	0.188			1
Dibromochloromethane	ND	0.020		ND	0.170			1
1,2-Dibromoethane	ND	0.020		ND	0.154			1
Tetrachloroethene	ND	0.020		ND	0.136			1
1,1,1,2-Tetrachloroethane	ND	0.020		ND	0.137			1
Chlorobenzene	ND	0.100		ND	0.461			1
Ethylbenzene	ND	0.020		ND	0.087			1
p/m-Xylene	ND	0.040		ND	0.174			1
Bromoform	ND	0.020		ND	0.207			1
Styrene	ND	0.020		ND	0.085			1
1,1,2,2-Tetrachloroethane	ND	0.020		ND	0.137			1
o-Xylene	ND	0.020		ND	0.087			1
Isopropylbenzene	ND	0.200		ND	0.983			1
4-Ethyltoluene	ND	0.020		ND	0.098			1
1,3,5-Trimethybenzene	ND	0.020		ND	0.098			1
1,2,4-Trimethylbenzene	ND	0.020		ND	0.098			1
1,3-Dichlorobenzene	ND	0.020		ND	0.120			1
1,4-Dichlorobenzene	ND	0.020		ND	0.120			1
sec-Butylbenzene	ND	0.200		ND	1.10			1
p-Isopropyltoluene	ND	0.200		ND	1.10			1
1,2-Dichlorobenzene	ND	0.020		ND	0.120			1

L1714850

Project Name: BATCH CANISTER CERTIFICATION

Lab Number:

Project Number: CANISTER QC BAT **Report Date:** 05/19/17

Air Canister Certification Results

Lab ID: L1714850-01

Date Collected: 05/08/17 16:00 Client ID: CAN 2030 SHELF 7 Date Received: 05/09/17

Field Prep: Sample Location: Not Specified

	ppbV				ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM - Mansfi	eld Lab							
n-Butylbenzene	ND	0.200		ND	1.10			1
1,2,4-Trichlorobenzene	ND	0.050		ND	0.371			1
Naphthalene	ND	0.050		ND	0.262			1
1,2,3-Trichlorobenzene	ND	0.050		ND	0.371			1
Hexachlorobutadiene	ND	0.050		ND	0.533			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	97		60-140
bromochloromethane	97		60-140
chlorobenzene-d5	97		60-140

Project Name: TWENTY LAKE HOLDINGS Lab Number: L1715695

Project Number: 1724956 Report Date: 05/19/17

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information Custody Seal

Cooler

N/A Present/Intact

Container Info	ormation			Temp			
Container ID	Container Type	Cooler	рН	deg C	Pres	Seal	Analysis(*)
L1715695-01A	Canister - 2.7 Liter	N/A	N/A	N/A	Υ	Absent	TO15-LL(30)
L1715695-02A	Canister - 2.7 Liter	N/A	N/A	N/A	Υ	Absent	TO15-LL(30)
L1715695-03A	Canister - 2.7 Liter	N/A	N/A	N/A	Υ	Absent	TO15-LL(30)

Project Name: Lab Number: TWENTY LAKE HOLDINGS L1715695 **Project Number:** 1724956 **Report Date:** 05/19/17

GLOSSARY

Acronvms

EDL

- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

- Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of LFB

analytes or a material containing known and verified amounts of analytes.

MDI. - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for

which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less

than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

- Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound TIC

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

A - Spectra identified as "Aldol Condensation Product".

В - The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the

Report Format: Data Usability Report

Project Name:TWENTY LAKE HOLDINGSLab Number:L1715695Project Number:1724956Report Date:05/19/17

Data Qualifiers

- reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- R Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- **ND** Not detected at the reporting limit (RL) for the sample.

Report Format: Data Usability Report

Project Name: TWENTY LAKE HOLDINGS Lab Number: L1715695

Project Number: 1724956 Report Date: 05/19/17

REFERENCES

Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air. Second Edition. EPA/625/R-96/010b, January 1999.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc.
Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:**17873** Revision 10

Published Date: 1/16/2017 11:00:05 AM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624: m/p-xylene, o-xylene

EPA 8260C: <u>NPW</u>: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; <u>SCM</u>: Iodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 300: DW: Bromide

EPA 6860: NPW and SCM: Perchlorate

EPA 9010: NPW and SCM: Amenable Cyanide Distillation

EPA 9012B: NPW: Total Cyanide
EPA 9050A: NPW: Specific Conductance

SM3500: NPW: Ferrous Iron

SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3.

SM5310C: DW: Dissolved Organic Carbon

Mansfield Facility

SM 2540D: TSS **EPA 3005A** NPW

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F, EPA 353.2: Nitrate-N, EPA 351.1, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D.

EPA 624: Volatile Halocarbons & Aromatics,

EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E.

Mansfield Facility:

Drinking Water

EPA 200.7: Ba, Be, Cd, Cr, Cu, Ni, Na, Ca. EPA 200.8: Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Ni, Se, TL. EPA 245.1 Hg.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form Pre-Qualtrax Document ID: 08-113

	AIRA	IANA	YSIS								1				Criai_	_140.001017	10.00
ALPH	CHAIN OF CUSTOD		1010		PAGE	OF	Date	Rec'd in	Lab: S	113/	17			ALPI	IA Jo	b#:) [715695
320 Forbes Blvd,	Mansfield, MA 02048		ct Inform	ation			Rep	ort Infor	mation	- Data	Delive	rable				ormation	
The second secon	00 FAX: 508-822-3288	Project	Name: Tu	senty L	Ke Ho	ldings	O F					April 2018 of Shah	- 18 L		\$ E	en communication of the	O #:
Client Informat	ion	Project	Location:	73 Hm	- lov	AND	≱ A	DEx									
Client: Part	er EST.	Project	#: 177	4956	19 1	1100		Criteria C		gulatory (Criteria India	eated)	- -				
Address: 6	Industrial Way h	11	16	(11-	- 0.0		cat e	Other For	mats:			uicuy		Same Court See	4.50		
Eatonton	UN. WT 07774	The second second	Quote #:	े नव	nno			MAIL (star dditional D	idard pd eliverab	f report les:)			Regu State/F			ents/Report Limi
Phone: 732	380 1700	Turn-	Around T	ime	1 1 1 1 T	Rango		ort to: (if differ			r)		_ -`	state/F	ea	Program	Res / Comr
Fax: 732								HATTA THE MANUAL PROPERTY OF THE PARTY OF TH		- manage							
	INA o Partneres: co	Stand	ard	RUSH (on	y confirmed if pre-	-approved!)											4
☐ These samples h	ave been previously analyzed by Alpha	Date Du	s Da	ay TA	Time:								1		ANAL	YSIS	
Other Project	Specific Requirements/Com	ments:		,	11116.								/	//		25///	
Project-Specific	Target Compound List:												/	/ /maj)H	0/4	
													//	ton-petro	Potans	1///	
ALPHA Lab ID	A	II Co	lumn	s Be	low I	Must	Be	Fille	d O	ut	No. of Street,		Mis	ubtract A	Merc		
(Lab Use Only)	Sample ID		CO	LLECTIC	IA			Sampler's		ID	I D - Flo	101 A	70-15 SIM	FIXED GAS	Sulfides & Mercaplans	/	
5695-01	5C-1	5/12				Taylor and the same of the sam	Matrix*		Size	Can 388	Controlle	100	70/4	14/	3	Sample 0	Comments (i.e. PID
-01	56-2						-	RR	2.7			11			44		
-03	56-3		7,37	13:54	30.08	10.95	SV	RR	6.+	178	0620	X					
	00-3	5/12	8:11	1535	30.11	7.40	SV	RR	7.7	254	0784	14					
												$\dagger \dagger$					
															++		
															1		
*SAMPLE	MATRIX CODES SV	A = Ambient V = Soil Vapo	Air (Indoor	Outdoor)								20			-		
		her = Please	Specify					Co	ontainer	Туре	(22				completely. S	clearly, legibly and Samples can not be
		Relinquisl	hed By:		Date	/Time	0	Receiv	ed By:	446		[Date/T	ime:		logged in and	turnaround time start until any ambi-
	On Kygor	Medin	2000		5/12/17	2 17:30	four	Joseph	My	1 H	AC.	5/12	1	,178	30	guities are re- submitted are	solved. All samples subject to Alpha's
orm No: 101-02 Rev: (25-S	ep-15)	- Hours	1/2		5/12/17	1800	NO S		1	1	Get !	3//	11/	724	151	Terms and Co See reverse s	onditions.
Page 40 of 40					11121	/Up	- 20	W.	Look	+		115	1110	500	1		