SITE CHARACTERIZATION/INTERIM REMEDIAL MEASURE WORKPLAN FOR 77 CORNELL STREET, KINGSTON, NY

STATE SUPERFUND PROGRAM SITE NUMBER 356061

March 11, 2022

CERTIFICATION STATEMENT

I, Daniel Bellucci, P.E., certify that I am currently a NYS registered professional engineer and that this Site Characterization – Interim Remedial Measure Work Plan was prepared in accordance with all applicable statutes and regulations and in substantial conformance with the DER Technical Guidance for Site Investigation and Remediation (DER-10).

<u>099 470</u> NYS Professional Engineer # 03 11 2022

TABLE OF CONTENTS

1.0	INTRODUCTION	I
2.0	SITE INFORMATION/PREVIOUS ENVIRONMENTAL REPORTING	2
3.0	OBJECTIVES	
4.0	SITE CHARACTERIZATION STAGE – PROPOSED METHODS	7
5.0	IRM - SSDS5.1 SSDS Pilot Testing5.2 Extraction Well and Vacuum Monitoring Point Installation	12
	5.3 Pilot/ Diagnostic Testing	13 14
6.0	PILOT/ DIAGNOSTIC TEST RESULTS 6.1 Sub-Slab Soil Gas and Indoor Air Sampling	15 16 16 16
7.0	PROPOSED SYSTEM DESIGN 7.1 Scope of Work 7.2 Vacuum Monitoring Point, Centrifugal Fan and Piping Installation 7.3 Electrical 7.4 System Startup 7.5 Analytical Testing 7.6 Reporting	19 20 22 22
8.0	QUALITY ASSURANCE PROJECT PLAN	23
	SC-IRM CONSTRUCTION COMPLETION REPORTS & SITE MANAGEMENT PLA	

FIGURES

Figure I – Site Location Plan

Figure 2 – Proposed Sample Location Plan

Figure 3 – Proposed SSDS Installation – Plan View

Figure 4 - SSDS Process Flow Diagram - Ground Floor View

Figure 5 - SSDS Process Flow Diagram - Sidewall View

Figure 6 - SSDS Installation Details

TABLES

Table I – Sub-slab Soil Gas & Indoor Air Comparisons (NYSDOH Matrices)

Table 2 – SSDS Pilot Test Extraction Well System Data

Table 3 – SSDS Vacuum Monitoring Point Data

Table 4 - SSDS Mass Removal Calculations

ATTACHMENTS

Attachment A – Environmental Health & Safety Plan

Attachment B - Community Air Monitoring Plan

Attachment C - Laboratory Analytical Reports

Attachment D – SSDS Equipment Specifications

Attachment E – Previous Reports

1.0 INTRODUCTION AND PURPOSE

This Site Characterization (SC) - Interim Remedial Measure (IRM) Work Plan has been prepared to satisfy the investigation requirement of the New York State Department of Environmental Conservation (NYSDEC or Department). The Subject Property, located at 77 Cornell Street in the City of Kingston, Ulster County, New York (heretofore referenced as the Site or Subject Property). Refer to Figure 1 for a Site Location Map. The Site is not currently listed in the Registry of Inactive Hazardous Waste Disposal Sites in New York State, but is instead identified as a "P" or potential Site with a NYSDEC Site Number of 356061.

Upon the completion of field studies described herein, the implementation of an IRM and preparation of a Site Management Plan, the Department will issue a Satisfactory Completion/No Further Action Letter and remove the P-Site designation. All SC/IRM work will be performed in accordance with the executed NYSDEC Order on Consent under Index Number CO 3-20210222-26. As such, an approved SC-IRM Work Plan is required prior to initiating any remaining investigation/remedial action activities.

The purpose of this work is to provide documentation of the soil and soil gas quality along the perimeter of the Site's property boundaries, to document local groundwater quality conditions via sampling of proposed groundwater wells, to define groundwater flow and to determine if there are any off-Site impacts which have the potential to migrate onto the Site. Pilot testing for a Sub-slab Depressurization System (SSDS) was performed in October 2020 to document the effectiveness of a SSDS as a vapor intrusion mitigation system for the building. A SSDS, based upon current data, is the preferred IRM for the Site and will be installed as part of this SC-IRM effort. The proposed SSDS installation details are included in this SC-IRM Work Plan.

This SC-IRM work plan has been prepared to focus upon and address specific source areas of environmental conditions at the above referenced Site. As more fully described in Sections 2 - 4 of this document, chlorinated volatile organic compounds (cVOCs) have been detected in the subsurface of the property as a result of historical Site use (i.e., dry cleaning establishment). The presence of cVOCs in subsurface materials has resulted in a potential threat to human health associated with the exposure to cVOC soil vapor via vapor intrusion.

2.0 SITE INFORMATION/ PREVIOUS ENVIRONMENTAL REPORTING

The Subject Property contains a regular shaped lot which encompasses an area of approximately 0.88 acres along the southwest corner of the intersection of Smith Avenue and Cornell Street. The Site, also known as the Shirt Factory, is improved with 4-story building occupied by 62 tenant spaces for commercial and residential use. On-Site operations consist of artist loft/studios, professional offices and storage activities, and associated property maintenance. A partial basement is located along the southern portion of the Site structure. Areas surrounding the building include asphalt paved parking surfaces, concrete walkways and landscape spaces. Land-use surrounding the Subject Property is primarily characterized by residential and commercial development. The following table lists the abutting properties:

Location	Occupant		
North	Smith Avenue & Residences		
South	Cornell Street & Tremper Avenue. USPS (90 Cornell		
	Street to the Southeast)		
East	Cornell Street & USPS (90 Cornell Street)		
West	Residences along Ardsley Street & Smith Avenue		

Site topography is relatively flat, and at grade with the surrounding roadways. Electric and gas services is supplied by Central Hudson Gas & Electric, while potable water and sanitary services are supplied by The City of Kingston (Municipal). No groundwater supply wells were observed on the Site by representatives of this office during Site inspections and no groundwater supply wells are known to be present or used on adjoining or nearby properties. Surface water runoff enters catch basins located throughout the property which appear to discharge into the municipal storm sewer system.

A Phase I Environmental Site Assessment (ESA) performed by Partner Engineering & Science (Partner) was performed in November 2018. As summarized in a January 2019 Phase II Subsurface Investigation Report prepared by Partner, the following areas of potential environmental concern and/or "recognized environmental conditions (REC)" were identified and are associated with the Subject Property:

- The Subject Property identified as Gant Shirt Makers at 77 Cornell Street is identified on the New York Drycleaners database under Facility ID 3-5108-00012. Based on a review of historical sources, this tenant operated onsite roughly between 1968 and 1979, a time of limited to no regulatory oversight. Additionally, former tenants including Not Fade Away Tie Die and QDP Electronics, utilized hazardous wastes, including benzene, ignitable wastes tetrachloroethylene (PCE) on Site from at least 1982 through 1999 +/-. Dry cleaning operations typically use chlorinated solvents, particularly PCE, during the dry-cleaning process. These solvents, even when properly stored and disposed of, can be released from these facilities in small, frequent releases through floor drains, cracked concrete and sewer systems. Chlorinated solvents are highly mobile chemicals that can easily accumulate in the soil and migrate to the groundwater beneath a facility. Based on the confirmed use of chlorinated solvents, including PCE, at the Site for approximately 30 years, the historical use of the subject property is considered a REC.
- Partner observed a suspected vent pipe along the eastern façade of the subject property building along Cornell Street. Its location does not correspond with the reported location of the heating oil UST formerly located in the parking lot. Given the absence of aboveground storage tanks (ASTs) in the basement, the suspect vent pipe is considered a REC.

The Phase I identified the following historical recognized environmental condition (HREC) associated with the subject property:

The Subject Property was formerly equipped with one 5,000-gallon No. 2 fuel oil UST located to the south of the current building. The tank failed a tightness test due to small ullage leak and Spill Number 1000041 was reported to the New York State Department of Environmental Conservation (NYSDEC) in April 2010. Partner was provided with a Tank Removal & Closure Report prepared by Enviro Clean Services, LLC (ECS) in August 2010. According to the ECS report, the tank was re-tested and failed again on June 9, 2010. The tank was cut open, pumped out and cleaned. The tank was excavated and removed from the tank pit, with no significant pitting and/or "rush

through" perforations observed by ECS. According to ECS, petroleum-contaminated soils (PCS) were not visually observed in the tank pit, and photoionization detector (PID) readings did not indicate the presence of PCS in the excavation. Four grab samples were collected from the pit walls and one two-point composite sample was collected from the bottom of the excavation. These samples were analyzed for VOCs and semi-VOCs (SVOCs). The soil samples from the north and south pit walls exhibited concentrations of the VOCs 1,2,4-trimethylbenzene and naphthalene [2.2 to 2.7 micrograms per kilogram (ug/kg) and 12.0 to 29.0 ug/kg, respectively]. No other VOCs were detected in the soil samples. The east pit wall exhibited low levels of five SVOCs, ranging from 0.30 to 1.10 parts per million (ppm). ECS stated that as the site is served by municipal water and sewer and no sensitive receptors are located in the vicinity, no further excavation of the remaining impacted soils would be necessary. ECS requested a letter of No Further Action (NFA) from the NYSDEC for Spill Number 1000041, and the case was granted regulatory closure in October 2010. Based on the removal of the tank and regulatory closure, this former UST and associated spill case are considered an HREC for which no further action is necessary.

1. <u>Phase II Subsurface Investigation Report</u>, January 3, 2019. Partner Engineering & Science

The Partner subsurface investigation entailed performing a geophysical survey to pre-clear borings, scan for potential USTs, and collection of soil sub-slab soil gas samples from beneath the slab of the Site structure. Pertinent findings documented in the Partner's field study included the following:

- The results of the geophysical survey did not indicate the presence of USTs in the areas of the property that were scanned. Due to the presence of subsurface utilities in the location of the former 5,000-gallon fuel oil UST, exterior soil borings could not be advanced in this location.
- A total of three sub-slab soil gas sample were collected from beneath the building. Two samples were collected from the southern portion of the building and one sample was collected from the northern portion of the building. The soil gas samples were submitted for VOC analysis by EPA Method TO-15. Trichloroethylene (TCE) was detected in soil vapor sample SVP-3 (northern portion of the building) at 88.1 micrograms per

cubic meter ($\mu g/m^3$). This concentration exceeds the New York State Department of Health (NYSDOH) Matrix A concentration of 60 $\mu g/m^3$, with the resulting recommendation of mitigation. TCE was detected in SVP-1 at a concentration of 15.2 $\mu g/m^3$, which corresponds to a NYSDOH recommendation of no further action, monitor and mitigate, depending on the indoor air concentration.

2. <u>Vapor Sampling Results Report</u>, January 18, 2019. PSG Engineering, D.P.C. (PSG)

Based on the findings of the Phase II Subsurface Investigation, Partner recommended further investigation to assess soil gas and indoor air. PSG completed the additional investigation work as summarized in a Vapor Sampling Results Summary Report dated January 18, 2019. Pertinent findings from the report include the following:

- One sub-slab soil vapor sample was collected from the central portion of the building. TCE was detected at a concentration of 115 μg/m³ in the soil gas sample designated SSSG-MIDSTAIR, above the NYSDOH Matrix A concentration of 60 μg/m³, with the resulting recommendation of mitigation.
- A total of four indoor air and one ambient air sample were collected from the Subject Property. Of note, TCE was detected in one of the five samples collected at a concentration of 2.57 μg/m³. This sample, designated "Unit 109", was collected from the central portion of the building. The concentration is above the NYSDOH guideline which requires additional investigation or mitigation but is below the immediate action level of 20 μg/m³. TCE was not detected in the remaining indoor and ambient air samples.

Based on the results of the investigation, PSG recommended that a mitigation system, such as a SSDS, be installed to address the vapor intrusion concerns at the Site.

3. <u>Subsurface Investigation Report</u>, January 5, 2021. DT Consulting Services, Inc. (DTCS)

with regulatory review.

DTCS submitted all environmental reporting generated on the Subject Property to Mr. Michael Kilmer of the NYSDEC for review and comment on November 6, 2020. Mr. Kilmer responded to the submittal, also on November 6, 2020, requesting that soil and groundwater data be collected on-Site prior to proceeding

- A total of six soil borings were advanced throughout the property using a direct push drill rig. Three soil borings were converted into temporary monitoring wells for groundwater sampling. A total of six soil and three groundwater samples were collected from the Site for laboratory analysis of VOCs by EPA Method 8260.
- Upon review of analytical testing results, DTCS concluded that all soil boring locations were returned with either non-detectable concentrations of VOCs or with reported values which met unrestricted soil cleanup objectives (SCOs) as defined in NYSDEC 6 NYCRR Part 375 Environmental Remediation Programs; Subpart 375-6.
- Analysis of groundwater collected from the temporary Site wells constructed in Soil Borings SB-3, SB-4 and SB-5 revealed detectable levels of Chloroform, PCE, and TCE which only slightly exceed NYSDEC TOGS 1.1.1., Class GA groundwater quality standards. The remaining VOCs were returned with either non-detectable sample concentrations or with reported concentrations below guidance.

3.0 OBJECTIVES

The purpose of the SC/IRM is to further define soil and groundwater quality through the installation of new borings and conversion of same into permanent monitoring wells, confirm that there are no potential off-Site soil vapor impacts, and install a SSDS to mitigate any intrusion beneath a portion of the Site structure where historic sampling data has indicated a vapor intrusion concern.

3.1 Data Assessment and Needs

Based upon the results of previous investigations, subsurface impacts (attributed to the historic chlorinated solvent use) have been identified on the Subject Property. Furthermore, the concentrations of detected contaminants within the soil vapor appear to warrant mitigation. Existing soil, soil vapor, ambient air and groundwater data (as documented above) has defined the principal contaminant source area around the Site building. Additional investigative activities including installation of perimeter permanent monitoring wells and soil gas points are necessary to fully characterize the extent of contamination. As the proposed IRM includes the installation of a SSDS beneath the entire Site structure, the potential

for vapor migration off of the Site is minimal. Existing soil vapor concentrations underlying the facility building will be mitigated during the implementation of the IRM because the remediation plan for the Site will include sub-slab ventilation to mitigate any residual vapor intrusion. To assist in determining the potential for off-Site contaminant migration onto the Site and/or cVOC migrating from the Site to adjacent properties, a subsurface soil and soil vapor study along the periphery of the Subject Property boundaries will be conducted as part of the proposed SC.

4.0 SITE CHARACTERIZATION STAGE – PROPOSED METHODS

The scope of the soil, soil gas and groundwater sampling program is directed at providing sufficient information that will complete data gaps in historical Site surveys. The SC objectives and methods have been developed in accordance with the relevant provisions of Department of Environmental Remediation (DER)-10 Technical Guidance for Site Investigation and Remediation, May 2010 and NYSDEC's Part 375 Remedial Programs, Sampling, Analysis, And Assessment of Per- And Polyfluoroalkyl Substances (PFAS), June 2021. contaminant specific Health and Safety Plan or HASP and a Community Air Monitoring Plan or CAMP have been prepared for the Site and have been placed in Attachments A & B respectively. Each of these documents will be employed during all Site activities. Although the scope of work as described herein provides specific locations for soil, groundwater (if encountered), soil vapor and indoor air sampling locations, additional testing locations may be added or their proposed locations may be otherwise adjusted during the course of work, as warranted to define the limits of impact. Figure 2 shows the proposed, soil, soil gas and groundwater sampling locations for this SC-IRM work plan.

Soil Sampling and Analysis

A total of seven soil borings are proposed for Site characterization along the property boundaries (see Figure 2 for proposed locations). Based on the presence of subsurface utilities along the eastern portion of the building, adjacent to Cornell Street, installation of soil borings in this portion of the property is not feasible. A qualified environmental driller will advance the proposed investigative borings. The on-Site geologist/engineer will screen the soil samples for environmental impacts and collect environmental samples for laboratory analysis. Site work will comply with the safety guidelines outlined in the HASP and CAMP (Attachments A & B, respectively). The investigative borings will be advanced to the depth of approximately 30 feet below grade surface using a

direct-push drilling method. Soil will be collected continuously to the boring termination depth with a Geoprobe macro core sampler in four or five-foot increments using disposable acetate sleeves. Each sample will be screened for organic vapors with a photo-ionization detector (PID) and evaluated for visual and olfactory indications of environmental impacts. Soil descriptions will be recorded in a field log. A total of one soil sample will be collected from zero to two feet below grade and one soil sample will be collected from the groundwater interface or locations that exhibit evidence of impact (a total of two samples per boring location). Samples will not be composite samples but will be discrete grab samples. The proposed sampling rationale is provided in Table 1. Each collected soil sample will be analyzed for VOCs and 1, 4-Dioxane, Semi-volatile organic compounds (SVOCs), Target Analyte List (TAL) Metals, Pesticides, Polychlorinated Biphenyl's or PCBs, and Per- And Polyfluoroalkyl Substances or PFAs, and Cyanide via USEPA test methods 8260, 8270 6010/7470/7471, 8081, 8082,537 and 9016, respectively. Field quality control measures including trip and field blanks will be collected and submitted to the chemical laboratory for analysis. These control measures are described in Section 8 of this report. All laboratory reporting will be provided in an EQuIS-ready format.

Sampling Summary Table

Sample Matrix	Sample Depth (Feet	Number of	Sample Location	Rationale
	below grade)	Samples		
Soil	0-2'	7	All seven (7) soil	Evaluate potential for surficial
			boring locations.	spills, poor quality urban fill.
			Property boundary	
			and central portion of	
			site	
Soil	Groundwater	7	All seven (7) soil	Evaluate presence of soil
	interface or		boring locations.	contamination at groundwater
	depth where		Property boundary	interface or depth where field
	field		and central portion of	screening indicates potential
	screening		site	surficial impacted soil
	indicates			
	contamination			

Groundwater Well Installation

Upon completion of soil sampling activities, each boring location will be converted to a permanent 1-inch PVC groundwater monitoring well. The wells

will be constructed of 10 to 15-feet of 0.01 slot schedule 40 PVC well screen and completed to grade with solid schedule PVC riser pipe. The annulus around the well screen will be backfilled with No. 2 filter sand to 2-feet above the top of screen and sealed with a 1-2 foot bentonite layer. The wells will be finished at the surface with steel flush-mount road boxes set in a 2'x2' concrete pad.

Following installation, each well will be developed by rapidly pumping the wells to remove entrained silt and sediment from the sand pack and well screen and ensure connectivity with the surrounding shallow groundwater table. A minimum of three to five well volumes will be removed from each well during development.

Relative Groundwater Elevation Survey

Water level measurements will be recorded to the nearest 0.01 foot after well development and prior to ground water sampling. The horizontal and vertical location of the monitoring wells will be surveyed relative to an arbitrary site datum. The monitoring well elevations and water level measurements will be used to calculate relative ground water elevations and determine ground water flow direction that will be shown on a scaled base map.

Groundwater Monitoring/Analysis

Each of the newly installed groundwater wells will be sampled as a part of this SC. Groundwater samples will be collected using a peristaltic pump and dedicated polyethylene tubing, employing low-flow methodology. One round of groundwater samples will be collected from the monitoring wells and will be analyzed for VOCs and 1, 4-Dioxane, SVOCs, TAL Metals, Pesticides, PCBs, PFAs, and Cyanide, via USEPA test methods 8260, 8270 6010/7470/7471, 8081, 8082,537 and 9016, respectively. Field quality control measures including trip and field blanks will be collected and submitted to the chemical laboratory for analysis. These control measures are described in Section 8 of this report. All laboratory reporting will be provided in an EQuIS-ready format.

Groundwater Sampling Summary Table

Sample Matrix	Number of	Sample Location	Rationale
	Samples		
Groundwater	7	All seven (7) soil boring/ proposed monitoring locations. Property boundary and central portion of site	Evaluate current groundwater conditions to complete the Conceptual Site Model.

Soil Gas and Indoor Air Sampling Analysis

A total of five exterior soil gas sampling points will be installed along the property boundaries (see Figure 2 for proposed locations) during SC activities. Based on the presence of subsurface utilities along the eastern portion of the building, adjacent to Cornell Street, installation of soil gas points in this portion of the property is not feasible. In addition to sampling soil gas along the periphery of the Site, co-located sub-slab vapor and indoor air samples will be obtained during the heating season at existing vapor/vacuum monitoring points VP-1 through VP-5. Additionally, two interior indoor air samples will well be collected from Unit #102 and the unknown unit to the north to further evaluate potential vapor intrusion in the southwestern portion of the building . (See Figure 2 for locations).

The exterior perimeter soil gas points will be installed by advancing 1.25-inch solid stem direct push sample rods to a depth of 5-feet below ground surface (bgs). A dedicated soil vapor implant will be installed at the base of the borehole and connected to the surface with dedicated high density polyethylene tubing. The annulus around the vapor implant will be filled with No. 2 filter sand to approximately 3-feet bgs. The remaining annulus will be sealed with hydrated bentonite to the surface. The existing interior vacuum/vapor monitoring points (VP-1 through VP-5) previously installed at the Site along with the four proposed vacuum/ vapor monitoring points will be utilized for interior sub-slab soil gas sampling. Co-located interior ambient air sampling will be performed simultaneously in the locations of VP-1 through VP-5, with two additional interior air samples collected from Unit # 102 and within the unknown unit # to the north of #102.

A Mini-Rae photoionization detector (which registers airflow below 0.2 liters per minute) will be attached to the high density polyethylene tubing and a minimum of three sample volumes will purged from each point. Total VOC readings will be recorded for each soil gas point and used as a basis for comparison with laboratory analytical data.

The soil gas and indoor air samples will be collected for analysis in batch clean SUMMA canisters equipped with a laboratory calibrated flow control device to facilitate the collection of the samples for a 24-hour sample duration time. As a quality assurance/quality control measure, an inert tracer gas (helium) test will be completed before and after sampling to document that the soil vapor sampling points were properly sealed preventing subsurface infiltration of ambient air into the sample chain. Following sampling, the pressure of the SUMMA canister will be recorded, and each exterior soil gas point will be removed from the ground, plugged with bentonite chips and sealed at the surface with concrete or asphalt, as appropriate. The interior vacuum/vapor monitoring points will be capped and sealed with the flush mounted recessed protective caps. A sample log sheet will be maintained summarizing sample identification, date and time of sample collection, sampling depth, identity of samplers, sampling methods and devices, soil vapor purge volumes, volume of the soil vapor extracted, vacuum of canisters before and after the samples are collected, and chain of custody protocols.

The soil gas and indoor air samples will be submitted to a NYSDOH-approved laboratory for analysis of VOCs by EPA Method TO-15. Sample collection and analysis will be in accordance with the methods described in the Quality Assurance/Quality Control (QA/QC) Plan as described in Section 6 of this report. All laboratory reporting will be provided in an EQuIS-ready format.

Soil Vapor and Indoor Air Sampling Summary Table

Sample Number Matrix of Samples		Sample Location	Rationale
Call Vanan	5	Exterior, property perimeter	Evaluate potential for offsite migration of VOCs to abutting residences and commercial properties
Soil Vapor	9	Interior at five existing and four proposed vacuum/vapor monitoring points	Evaluate sub-slab soil gas VOC concentrations for vapor intrusion assessment. Provide basis for mitigation design decisions.

Indoor Air	9	Co-located with existing	Evaluate indoor air VOC
		sub-slab soil vapor/	concentrations for vapor intrusion
		vacuum points and within	assessment. Provide basis for
		Unit # 102 and unknown	mitigation design decisions.
		unit north of #102	

Waste Handling

All investigation-derived waste (IDW) will be contained on-Site in a secure area for appropriate characterization and disposal by DTCS. Soil cuttings, personal protective equipment, and spent disposable sampling materials will be segregated by waste type and placed in DOT-approved 55-gallon steel drums. All decontamination water, purged groundwater, and drilling water will be stored in 55-gallon drums as necessary. Field staff will maintain an inventory of all waste storage vessels. All storage vessels will be appropriately labeled with the contents, generator, location, and date.

5.0 INTERM REMEDIAL MEASURE - SUB-SLAB DEPRESSURIZATION SYSTEM

5.1 SSDS Pilot Testing

Pilot/diagnostic testing for the design of an SSDS was previously conducted at the Site in October 2020. The purpose of the pilot test was to evaluate the effectiveness of SSDS as a potential mitigation measure for cVOCs in soil vapor previously identified beneath the building. Field activities were conducted on October 6 and 7, 2020. Tables summarizing observations and data collected during the pilot test are included for reference. A description of the SSDS extraction well installation, vacuum monitoring point installation and other pilot/diagnostic test work is presented in the following sections.

5.2 Extraction Well and Vacuum Monitoring Point Installation

A total of four extraction wells were installed throughout the basement. The wells were installed by first core drilling a 3 and 5/8-inch diameter core through the existing concrete slab. In several locations, the slab was overlain by tile and/or wood flooring. The slab thickness varied in each location ranging from 4 to 8-inches.

Soils were removed from the extraction well and the cavity was backfilled with 1 to 1.5-inch diameter gravel. The sub-slab soils generally consisted of fine silty sands. The SSDS extraction wells were constructed with a 3-inch PVC coupler sealed in the cored hole and connected to 3-inch schedule 40 PVC riser pipe. The space between the cored slab and 3-inch PVC coupler was sealed with RadonAway® Pro PGS joint sealant.

A total of five permanent Vapor Pin® vacuum monitoring points (VP-1 to VP-5) were installed within ground floor space in accessible locations. The vacuum monitoring points were installed by drilling a 5/8-inch hole inside of a 1.5-inch hole (~2-inches deep). The 5/8" hole was drilled completely through the slab. Each point was recessed below the top of the slab and covered with a threaded 1.5-inch stainless steel flush-mount protective cover (See Detail 2, Figure 6).

Attached for review as Figure 3, Proposed SSDS Installation – Plan View, are the extraction well and vacuum monitoring point locations used during pilot/diagnostic testing. All extraction wells and vacuum monitoring point locations were selected in consultation with building management.

5.3 SSDS Pilot/Diagnostic Testing

SSDS pilot/diagnostic testing was conducted on October 7, 2020. The tests consisted of "pumping" or removing vapor from each of the four extraction wells with an Obar® GBR76 SOE high suction fan while utilizing the vacuum monitoring points VP-1 through VP-5 as observation wells.

Pumped sub-slab vapors were routed through a 30-gallon activated carbon drum for VOC removal. The photo below depicts the pilot testing equipment during testing of EX-4.

Equipment specifications for the Obar® GBR76 SOE fan are included in Attachment B.

5.4 Equipment and Monitoring

During the pilot test, a number of parameters were monitored to evaluate performance-related measurements. Velocity measured in feet per minute (FPM) and temperature (Degrees Fahrenheit) were measured using a Dwyer® Air Velocity Meter. The velocity was converted to a flow rate in cubic feet per minute (CFM) using inner area of a 2-inch schedule 40 PVC pipe. Extracted vapor vacuum readings were collected in inches of water (in-H₂O) using a Dwyer Magnehelic® differential pressure gage and converted to inches of mercury (in-Hg). Sub-slab vacuum readings were collected in in-H₂O using an Infiltec® DM1 micromanometer. In summary, the following performance indicators were monitored during the pilot test:

Monitored Parameter	Unit of Measure	
Velocity/ Flow rate	FPM/ CFM	
Temperature of air removed	Degrees Fahrenheit	
from pumping well		
Vacuum measurements at	Inches of Water/Inches of Mercury	
extraction wells		
Vacuum measurements at	Inches of Water	
vacuum monitoring points		

5.5 Analytical Testing

Analytical testing was performed to establish projected effluent concentrations and mass removal.

One effluent sample was collected from EX-4 well during Test #2. EX-4 was located closest to the reported location of the former dry cleaner. The soil gas sample was collected for analysis in a batch clean SUMMA canister with a regulator set to allow the canister to fill at a rate of approximately 200 mL/min.

Upon collection, the vapor sample was submitted to York Analytical Laboratories, Inc. for cVOC analysis using EPA Test Method TO-15.

6.0 PILOT/ DIAGNOSTIC TEST RESULTS

The findings of the October 2020 pilot/diagnostic test are presented in the following sections.

6.1 Sub-Slab Soil Gas and Indoor Air Sampling

Sub-slab soil gas sample results collected during this investigation and prior investigations, along with indoor air results from prior investigations conducted in 2018 and 2019 are included in Table 1. Table 1 compares sub-slab soil gas and indoor air results to New York State Department of Health (NYSDOH) Decision Matrices for vapor intrusion.

SVP-1 and SVP-2 soil gas samples were collected from the partial basement of the building. Concentrations of TCE were detected in sub-slab soil gas between 5.9 and 15.2 $\mu g/m^3$. An indoor air sample, designated "Office (IA)," was collected from the office space located directly above the basement. TCE was not detected in the office space above laboratory detection limits. Low concentrations of PCE detected in sub-slab soil gas in the basement samples were not detected in indoor air. Addiitonal assessment of soil vapor beneath the baseent and the indoor air in occupied units above the basement is proposed in the Site Characterization.

Concentrations of TCE were detected in the slab on grade portion of the building at concentrations ranging from 88.1 to 455 μ g/m³. TCE was not detected in indoor air samples collected from the office, Units 112 or 124. However, TCE was detected in the indoor air sample collected from Unit 109 at a concentration of 2.57 μ g/m³. The highest sub-slab soil gas TCE concentration (455 μ g/m³) was detected in Unit 109, the same location where TCE was detected in indoor air. Concentrations of PCE were detected in the slab on grade portion of the building at concentrations ranging from 12.6 to 154 μ g/m³. PCE was not detected in indoor air samples collected from the Office, Units 109, 112 or 124. Low concentrations of DCE, carbon tetrachloride, 1,1,1-trichloroethane and methylene chloride were detected in sub-slab soil gas from the slab-on-grade portion of the building. Of those compounds, only methylene chloride was detected in indoor air at concentrations ranging from 0.886 to 1.26 μ g/m³.

The sub-slab soil gas and indoor air results collected to date indicate vapor intrusion mitigation is necessary in the slab-on-grade portion of the building. More specifically, the concentration of TCE in the indoor sample collected from Unit 109 along with the sub-slab soil gas concentrations of TCE at SVP-3, SSSG MID STAIR, VP-2, VP-3 and VP-5 require mitigation based on evaluation of NYSDOH Matrix A.

6.2 Vapor Removal

A vacuum was applied to each of the four extraction wells during diagnostic testing procedures. The wells not being tested were capped to minimize vacuum loss. A sampling/monitoring port installed in the temporary extraction piping before the carbon drum and fan allowed for collection of the system flow, vacuum and temperature during each test. These diagnostic results are summarized in Table 2. The system removed soil vapor at flow rates ranging from 34.9 to 116.6 CFM (as measured in a 2-inch pipe). Vacuum readings varied at each location, ranging from 6.5 to 16.0 in-H₂O. Temperature readings ranged from 67.3 to 70.4 degrees Fahrenheit.

6.3 Vacuum Response

Vacuum response data for the vacuum monitoring points is summarized on Table 3. The vacuum readings were collected approximately every 10 minutes during each test (two readings per test). The readings were used to calculate an average vacuum created at each point during testing. Updated U.S. EPA guidance for vapor intrusion assessment and mitigation was released on June 15, 2015. The U.S. EPA has not issued a definite value for SSDS design; however, achieving a pressure differential of -0.004 in-H₂O across the slab is generally considered sufficient to mitigate vapor intrusion based on available industry guidance.

The average vacuum readings range from 0.000 to -0.043 in-H₂O. During at least one of the four tests, vacuum greater than -0.004 in-H₂O was demonstrated at VP-1, VP-2, VP-4 and VP-5. Vacuum was not observed at VP-3 during any of the tests. Sub-grade piping, footings or other unknown sub-slab obstructions may be present proximal to VP-3. The presence of such obstructions can cause "short-circuiting" of the radius of influence.

6.4 Extraction Well Laboratory Testing Results

A vapor sample was collected from the extracted vapors during Test #2 (EX-4). The effluent laboratory sample results are summarized below:

- PCE was detected in the sample at a concentration of 4 ppb.
- TCE was detected in the sample at a concentration of 68 ppb.

Low concentrations of additional cVOCs including 1,1,1-TCA, carbon tetrachloride, chloroform, chloromethane, DCE and dichlorodifluoromethane were also detected in the effluent sample.

The complete laboratory analytical report including the chain of custody is included in Attachment A.

6.5 Mass Removal

Table 4 presents the data and calculations used to calculate the mass of cVOCs removed from the vapor phase during Test #2. The mass removed from soil vapor was calculated using the laboratory analytical data (Table 4). The mass removed during the analytical test was calculated using the following equation:

Volume of extracted gas was corrected for pressure and temperature using the following equation:

V=nRT/p

Where: V = volume of the gas

P = pressure of the gas

n = 1 lb-mole

R = ideal gas constant = 0.7302

T = absolute temperature (°F + 460)

The corrected volume of gas was used to calculate the mass removal using the following equation:

Mass Removed = $[(1 \ / \ Volume\ of\ gas\ corrected)\ x\ (time\ elapsed)\ x\ (Flow)\ x\ (Concentration\ CVOC)\ x\ (molecular\ weight\ CVOC)]\ /\ Ix10^6$

Empirically:

 $lbs = [(1 / V (ft^3 / lb-mole)) x (minutes) x (ft^3 / minute) x (CVOCppm) x (165.83PCE g / mole)] / 1 x 10^6$

where:

lbs = pounds ppm = parts per million time elapsed = minutes molecular weight PCE = 165.83 g/mole molecular weight TCE = 131.39 g/mole

The results of the mass removal calculations using the laboratory analytical data indicated a total of $0.000141~(1.41^{-4})$ pounds of total mass (PCE and TCE). The anticipated average removal rate for PCE and TCE was calculated as $0.00254~(2.54x10^{-3})$ pounds per day.

6.6 Emissions Compliance Evaluation

Air emissions associated with PCE and TCE are regulated by the NYSDEC. Per 6 NYCRR 201-9, Table 1¹, emissions rates greater than 1,000 pounds per year of PCE or TCE are considered a "Significant Discharge." Based on the conservative emissions estimate of 0.000141 pounds per day, the system is anticipated to generate a maximum of 0.05 pounds per year of PCE and TCE emissions. The emissions rate is well below the 1,000-pound/ year threshold that NYSDEC considers a "Significant Discharge." Therefore, it does not appear that the system requires an air permit to operate.

¹ See, OFFICIAL COMPILATION OF CODES, RULES AND REGULATIONS OF THE STATE OF NEW YORK TITLE 6. DEPARTMENT OF ENVIRONMENTAL CONSERVATION CHAPTER III. AIR RESOURCES SUBCHAPTER A. PREVENTION AND CONTROL OF AIR CONTAMINATION AND AIR POLLUTION PART 201. PERMITS AND REGISTRATIONS SUBPART 201-9. TABLES

7.0 PROPOSED SSDS DESIGN & INSTALLATION

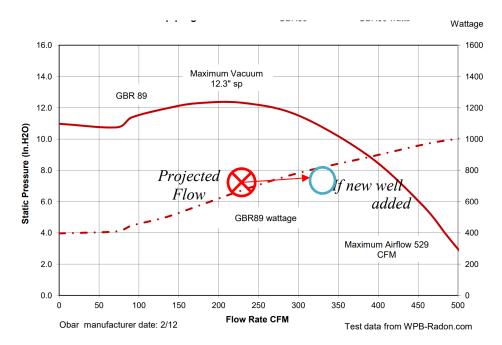
7.1 Proposed SSDS Installation Summary

The following tasks will be performed as part of the system installation startup at the Site:

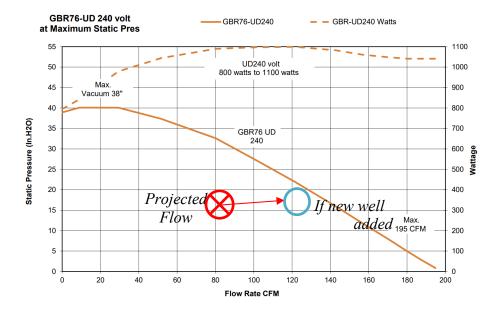
- Bellucci Engineering, DTCS and/or is subcontractor will obtain a commercial building permit through the City of Kingston.
- Remove and seal VP-3. Install four new permanent vacuum monitoring points where pilot testing could not confirm the presence of sub-slab vacuum (See Figure 3 Proposed SSDS Installation Plan View).
- If sub-slab vacuum is not demonstrated in the southwestern or eastern portions of the building, install up to three new extraction wells. (See Figure 3 Proposed SSDS Installation Plan View).
- Over-drill EX-1 and EX-4 with a 4 & 5/8" wet core drill. Install vertical 4-inch schedule 40 PVC riser pipes, sample ports, and Dwyer Magnehelic® differential pressure gage on EX-1 and EX-4. Combine pipe runs into one 4-inch PVC pipe above EX-1 and route to exterior portion of the building. Install one audible alarm on the combined system effluent prior to the fan.
- Install vertical 3-inch schedule 40 PVC riser pipes, sample ports, and Dwyer Magnehelic® differential pressure gage on EX-2 and EX-3. Combine pipe runs into one 3-inch PVC pipe above EX-1 and route to exterior portion of the building. Install one audible alarm on the combined system effluent prior to the fan
- Connect 4-inch piping from EX-1 and EX-4 to an Obar GBR 89HA high suction fan mounted to exterior brick façade wall at least 10-feet above grade. Connect 3-inch piping from EX-2 and EX-3 to an Obar GBR 76UD high suction fan mounted to exterior brick façade wall at least 10-feet above grade. Route exhaust piping to the roof along the western portion of the building. Support vertical and horizontal pipe run every 6-8-feet.

Final SSDS design/ installation will include an evaluation of all former and proposed sub-slab vapor samples. The number and locations of extraction wells and fan(s) will be finalized once all SC data has been gathered and evaluated.

- Terminate fan exhaust pipe minimum 2-feet above roofline, at least 10-feet above grade and at least 10-feet from any window, door operable roof window, air intake or adjacent building. All exterior system piping should consist of Schedule 40 PVC, with solvent-welded connections consistent with manufacturer specifications. Primer and cements used in solvent-welded connections will have low VOC content and low toxicity.
- Retain a licensed electrician to hard wire the SSDS fans and audible alarms to the house panel.
- Conduct startup testing of the completely installed system including the collection of flow rate, vacuum, temperature and PID measurements. Startup testing will also include pressure field extension testing.
- Collect two extracted vapor samples for cVOC analysis by EPA Method TO-15 from sampling ports prior to SSDS fans.


7.2 Vacuum Monitoring Point, Centrifugal Fan and Piping Installation

Process flow diagrams depicting the proposed equipment and generalized piping layout are provided in Figures 4 and 5, attached.


A total of two new vacuum monitoring points will be installed in the southwestern and eastern portions of the building, as shown on Figure 3. The purpose of the new points is to determine whether the existing well configuration can provide vacuum in these locations were the radius of influence did not appear to extend to, based on pilot testing data.

EX-1 and EX-4 will be over drilled with a 4 & 5/8" wet core drill to accommodate the 4-inch PVC pipe requirement. Three and four- inch schedule 40 PVC pipe will be used to connect the extraction wells within in the building. One Obar® GBR 89HA fan will service the combined effluent from EX-1 and EX-4 (and an additional well, if required). Based on anticipated combined flow of 200 CFM from EX-1 and EX-4 (max anticipated flow 300 CFM if an additional

well is required), a GBR 89HA will be able to handle the anticipated flow generated from these wells. See GBR 89HA fan curve below.

One Obar® GBR 76UD fan will service the combined effluent from EX-2 and EX-3 (and an additional well, if required). Based on anticipated combined flow of 75 CFM from EX-2 and EX-3 (max anticipated flow 110 CFM if an additional well is required), a GBR 76UD will be able to handle the anticipated flow generated from these wells. See GBR 76UD fan curve below.

Additional fans may be installed pending the results of additional site characterization. The fans will be mounted a minimum of 10-feet above grade to the brick facade (See Figure 5). Sample ports to allow for the collection of flow measurements, PID readings, vacuum measurements and laboratory samples will be installed on each extraction well vertical riser and at a location prior to fan but after the manifold for each extraction well pipe. Dedicated differential pressure gauges and nylon ball valves will be installed on each riser pipe. Gate or ball valves may be installed on each vertical riser for system balancing.

See Figures 3 through 6 for proposed system design and details. Equipment specifications for the SSDS fans and differential pressure manometer are included in Attachment B.

7.3 Electrical

A licensed electrician to wire the SSDS fans and audible/visual alarms to the house panel.

7.4 System Startup

Following system installation, diagnostic and laboratory testing of the SSDS will be conducted. Velocity measured in FPM and converted to flow rate, measured in CFM, and temperature (degrees Fahrenheit) will be measured at each sample port using a Dwyer® Air Velocity meter. Extracted vapor vacuum readings will be collected in inches of water (in-H₂O) using a Dwyer Magnehelic® differential pressure gage and converted to inches of mercury (in-Hg). Vacuum measurements will be collected from each of the five vacuum monitoring points and the sample ports using an Infiltec® DMI Micro manometer and recorded in in-H₂O.

In summary, the following performance indicators will be monitored during the system startup:

Parameter to be Monitored	Unit of Measure	
Velocity/ Flow rate	FPM/ CFM	
Temperature of air removed	Degrees Fahrenheit	
from pumping well		
Vacuum measurements at	Inches of Water/ Inches of	

extraction well risers	Mercury
Vacuum measurements at	Inches of Water
vacuum monitoring	
points	

7.5 Analytical Testing

Two samples will be collected from the combined piping runs from the extraction wells. The effluent and indoor air samples will be collected in summa canisters and analyzed for cVOC analysis using EPA Method TO-15.

7.6 Reporting

The system installation, testing and sampling results will be included in an IRM Construction Completion Report and certified by a NYS Licensed Professional Engineer. Long term operation and maintenance requirements for the SSDS will be included in a Site Management Plan.

8.0 QUALITY ASSURANCE PROJECT PLAN

As stated previously, the goals of this SC-IRM Work Plan are to provide documentation of soil and soil gas quality along the perimeter of the Site's property boundaries, to document local groundwater quality conditions via sampling of proposed groundwater wells, to define groundwater flow and determine if any off-Site impacts which have the potential to migrate onto the Site exist and to install an SSDS to mitigate the current vapor intrusion condition in the building. Therefore, this Quality Assurance Project Plan (QAPP) has been developed to establish the procedures and protocols for collection and laboratory analysis of samples associated with the completion of the SC/IRM element on-Site. Project management/organizational responsibilities will be performed under the direction of Deborah J. Thompson, Senior Geologist and Daniel Bellucci, P.E.

8.1 Quality Assurance/Quality Control (QA/QC) Objectives

The NYSDEC Analytical Services Protocol (ASP) provides levels of quality for laboratory testing as they apply to remedial investigation and construction activities. As such, the NYSDEC ASP will be followed during the course of Site investigation/remediation on the Subject Property. In addition, Category B deliverables will be obtained for each sample collected. The overall data quality objectives of the project are:

- To ensure that samples collected are representative;
- To provide detection limits for the selected analytical methods, which are below the established cleanup objective or regulatory standards;
- To measure and document precision and accuracy using procedures established by the laboratories, the NYSDOH Environmental Laboratory Approval Program (ELAP) and U.S. Environmental Protection Agency (EPA) approved analytical methods;
- To ensure that a NYSDOH ELAP and NYSDOH ELAP CLP certified laboratory will conduct all soil, soil vapor and groundwater analyses.

8.2 Analytical Methods/Quality Assurance Summary

- Matrix type:
 Soil, soil vapor and groundwater
- Number or frequency of samples to be collected per matrix: Variable, pending field conditions
- *Number of field and trip blanks per matrix:* Soil, groundwater 1
- Analytical parameters to be measured per matrix:
 Soil Gas VOCs
 Soil/Groundwater VOCs, SVOCs, TAL Metals, Pesticides, PCBs, PFAs, cyanide, and 1, 4-dioxane
- Analytical methods to be used per matrix:
 EPA Test Method TO-15 (soil gas)
 EPA Test Methods 8260, 8270, 6010/7470/7471, 8081, 8082, 537/537.1 (soil/groundwater)
- The number/type of matrix spiked, duplicate and blank samples to be collected:

Dependent upon the total number of samples of each matrix to be analyzed but, there will be at least one split per matrix.

8.3 Field Quality Control Samples

Field quality controls for laboratory confirmation samples include the collection and analysis of field duplicate and equipment rinsate samples. The frequency of collection for the specified QC field samples is as follows:

- ✓ A trip blank will be prepared before the sample bottles are sent by the laboratory. A trip blank will be included with each shipment of samples where sampling and analysis for VOC is planned (water matrix only).
- ✓ One field blank per day for PFA sampling.
- ✓ One field duplicate sample per groundwater monitoring event.

8.4 Field Sampling Procedures

Sampling/Analytical procedures are described in detail in the SC-IRM Work Plan as outlined above and will not be reiterated in this QAPP. The Work Plan also includes Site maps and sampling diagrams as well as details for sampling implementation, decontamination, and waste management.

.

Sample Containerization

Analysis	Bottle Type	Preservative	Holding Time				
	Soil Vapor & Ambient Air						
VOCs GC/MS	1L or 6L Summa canister	None	7 days (until extraction, 40 days extracted)				
Soil Samples			, ,				
VOCs	40 ml with septum cap	DI, MeOH	14 days				
SVOCs	4 oz, glass	None	7 days (until extraction, 40 days extracted)				
TAL Metals	4 oz. glass	None	6 months Mercury, 26 days				
Pesticides	4 oz. glass	None	7 days (until extraction, 40 days extracted)				
PCBs	4 oz. glass	None	7 days (until extraction, 40 days extracted)				
PFAs	250 mL Polypropylene	None	14 days				
Groundwater Sai	mples						
VOCs	40 ml with septum cap	HC1	14 days				
SVOCs	1 L glass	None	7 days (until extraction, 40 days extracted)				
TAL Metals	1 L plastic	Nitric acid to pH <2	6 months Mercury, 26 days				
Pesticides	Wide mouth glass	None	7 days (until extraction, 40 days extracted)				
PCBs	1 L glass	None	7 days (until extraction, 40 days extracted)				
PFAs	125 mL Polypropylene	None	14 days				

As all bottles will contain the necessary preservatives as shown above, they need only be filled. Each VOC 40ml vial must be filled to the brim with no air bubbles. The other sample jars should be filled to within an inch from the top for liquids, and to the brim for soils and sediment. All samples will be preserved with ice during collection and shipment.

Sample Preservation

The samples collected for analysis will require preservation prior to shipment (as described above). Preservation of the sample ensures sample integrity and prevents or minimizes degradation or transformation of the constituents to be analyzed. Specific preservation requirements include proper handling, packaging in laboratory-supplied sample containers, and chilled to 4° Celsius (°C) for shipping to the contract analytical laboratory.

Documenting Field Samples

The DTCS Field Team will use field logbooks or specific field forms to record pertinent information regarding subsurface characteristics, field screening results, and confirmatory sampling activities. Field staff will record the project name and number, date, sampling personnel on Site, other personnel present, weather conditions, and other relevant events to sampling activity in a chronological order. The field log book and/or analysis forms will be maintained in the project file.

8.5 Sample Custody

Chain-of-Custody Forms

Each sample will be recorded onto a chain-of-custody (COC) form. The form will include the project name and number, names of the field sampling personnel, the sample number, date and time the sample was collected, whether the sample is a composite or grab sample, sample location, number of containers per sample number, constituents to be analyzed, and pertinent comments. The form will document the date, time, and signature of person(s) relinquishing and receiving custody of the samples.

Sample Transportation to the Laboratory

Samples will be shipped for analysis to the laboratory either the day the samples are collected or within 24 hours following collection, except in the case of samples that are collected on Saturday. Samples will be transported by a laboratory supplied carrier service. If samples are collected on a Saturday, they will be stored by field personnel during the weekend and then readied for transport on Monday. The contract analytical laboratory will be required to perform the analyses on the samples within the allowable holding time proscribed for the analyses.

Laboratory Sample Custody

Upon arrival at the analytical laboratory, samples will be checked in by the sample custodian. The sample custodian will:

- Sign the COC form documenting receipt of the samples from the carrier;
- Verify that the number of samples received in the shipment agrees with the number listed on the COC form;
- Verify that the information on each bottle agrees with the information documented on the COC form; and
- Document on the COC form the integrity/condition (bottle intact, temperature, etc.) of all received samples.

In the event of any discrepancy or problems associated with the shipment of samples for chemical analysis, the analytical laboratory project manager will immediately notify the field personnel. A unique laboratory sample number will be assigned to each sample. Pertinent information from the COC form and/or sample label (e.g., sample identification, sampling location, sampling date and time, sample description, and requested analyses) together with the date of sample receipt will be entered into the analytical laboratory's data management system which will be used to record the status of samples, their storage locations, and the analytical results. The analytical laboratory will have in-house COC procedures to ensure proper security of all samples.

Laboratory Selection

The laboratory chosen for the project must be certified, and maintain certification, under the NYSDOH ELAP and NYSDOH ELAP CLP for analyses of solid and hazardous waste. DTCS has contracted with York Analytical Laboratories, Inc. located in Stratford, CT to perform laboratory services for this Work Plan whom are certified for the required emerging contaminants analysis.

8.6 Data Reduction, Verification and Reporting

Verification of data obtained from sampling will be performed by the Project Manager who will determine the validity of the data by comparing the actual procedures used for field measurements, sampling, and custody, as documented on forms and in the field log book, with those prescribed in the work plan and/or approved by the Project Manager.

8.7 Data Usability Summary Report

As part of this SC-IRM, a Data Usability Summary Report or DUSR will be prepared to summarize the soil and groundwater sampling and analytical results for the Site. The primary objective of the DUSR is to determine whether the analytical data meets Site specific objectives for data quality and data use.

The DUSR will be prepared following the guidelines provided in DER-10 Technical Guidance for Site Investigation and Remediation, May 2010, Guidance for the Development of Data Usability Summary Reports. The complete validated analytical results and Form 1s will be provided in the DUSR during reporting of the remedial investigation.

8.8 Electronic Data Deliverables

The SC-IRM Report and IRM Construction Completion Report will be provided to NYSDEC and DOH will be submitted in the Department's most current electronic data deliverable (EDD) format upon completion of the field investigation. All analytical data will be summarized in data tables compared to applicable regulatory standards, along with complete laboratory analytical reports. Scaled Site plans will also be included in the SC-IRM and IRM Construction Completion Reports.

9.0 SC-IRM & IRM CONSTRUCTION COMPLETION REPORTS & SITE MANAGEMENT PLAN

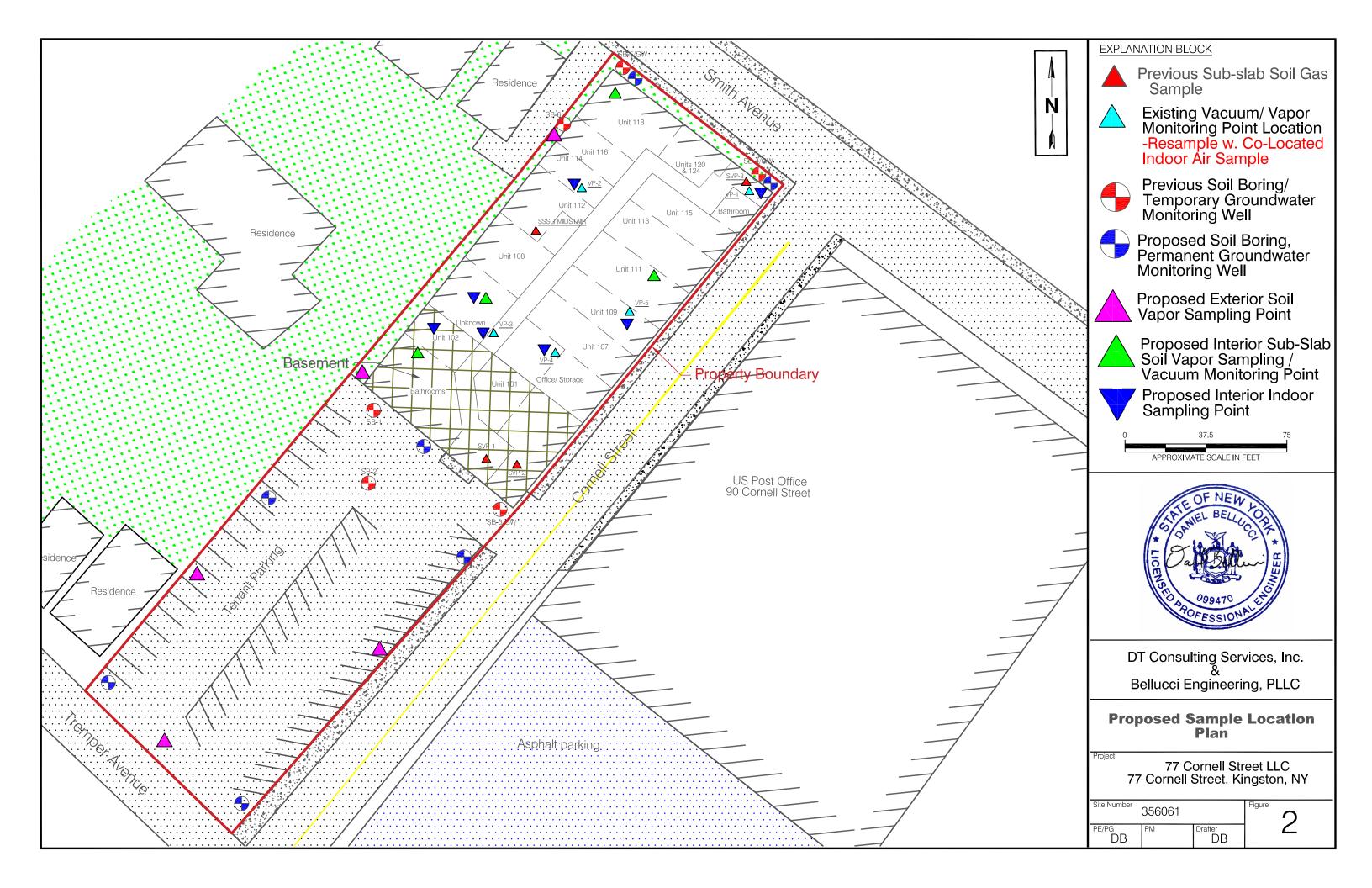
Following the completion of the proposed sampling, analysis, data evaluation and SSDS installation, a SC-IRM Report and an IRM Construction Completion Report will be prepared that presents the findings of the investigation and details the installation of the SSDS as an IRM for the Site. A Site Management Plan will also be prepared to document long term operation and maintenance of SSDS. The following information will be included in the Reports.

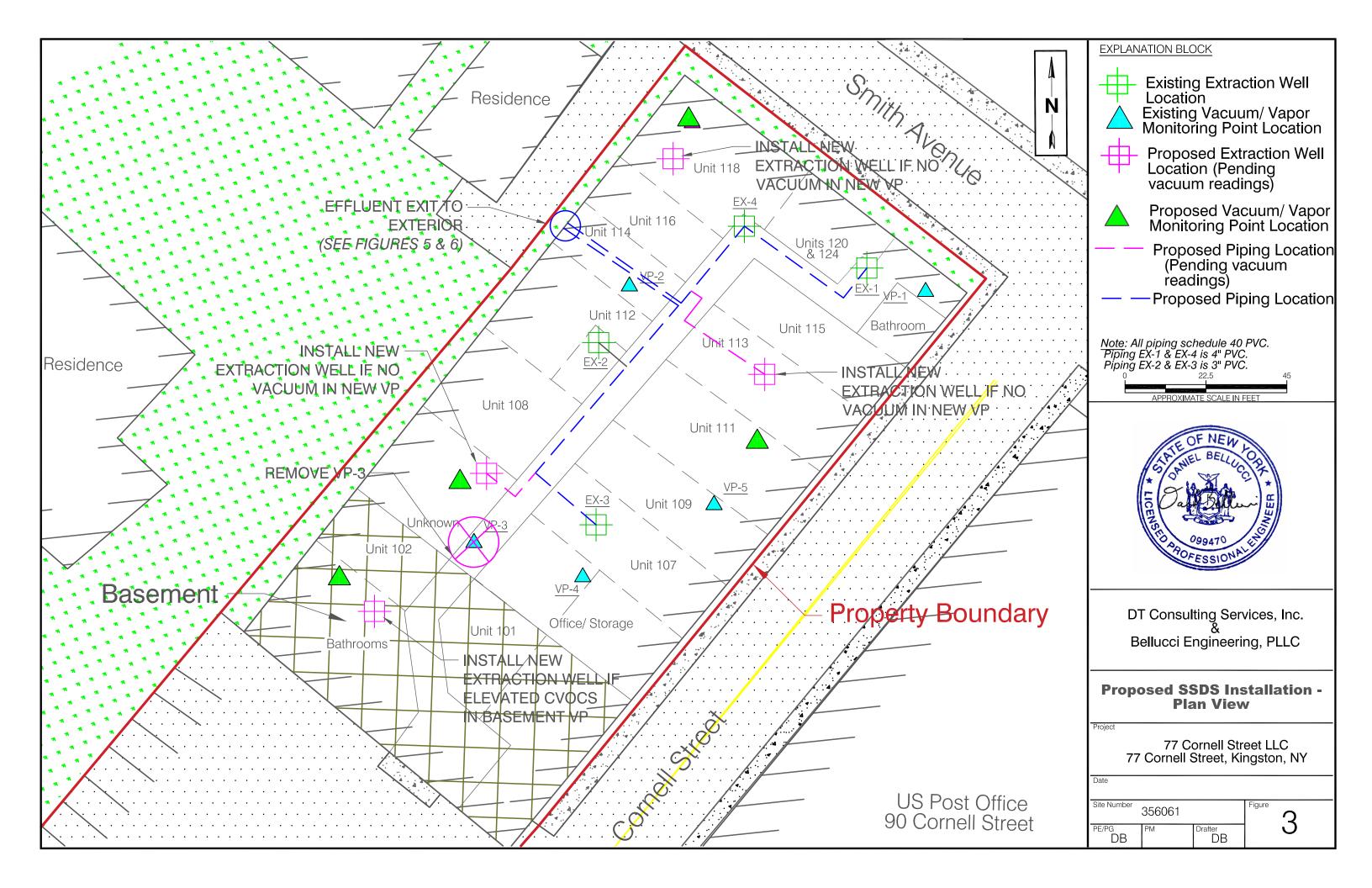
- 1. A narrative discussion of methods and results. Work completed under the approved SC-IRM Work Plan will be described, including the methods employed for sample collection and laboratory analysis.
- 2. To assist in determining the potential for off-Site contaminant migration onto the Site and/or cVOC migrating from the Site to adjacent properties, this remedial investigation will sample soil, groundwater and soil gas along the Site's property boundaries to ensure the absence of targeted contaminants. Maps displaying soil, groundwater and soil gas analytical results, with text boxes depicting contaminant concentrations at each monitoring point will be produced as part of this report.
- 3. Hydrogeological Data. Hydrogeological factors and their influence on the migration and distribution of contaminants will be discussed. Supporting data including groundwater elevation data and maps displaying groundwater analytical results, with text boxes depicting contaminant concentrations at each monitoring point will be prepared for the inclusion in the final SC-IRM Report.
- 4. Standards and guidance that pertain to the sampled Site media will be identified and listed in summary tables along with the analytical results for each medium. Any exceedances encountered above regulatory standards will be indicated on the tables and discussed in the technical overview.
- 5. Conclusions/Recommendations. The results of the final SC-IRM study will be summarized in a written document which will identify source area(s) and potential exposure pathways in relation to human and environmental receptors.

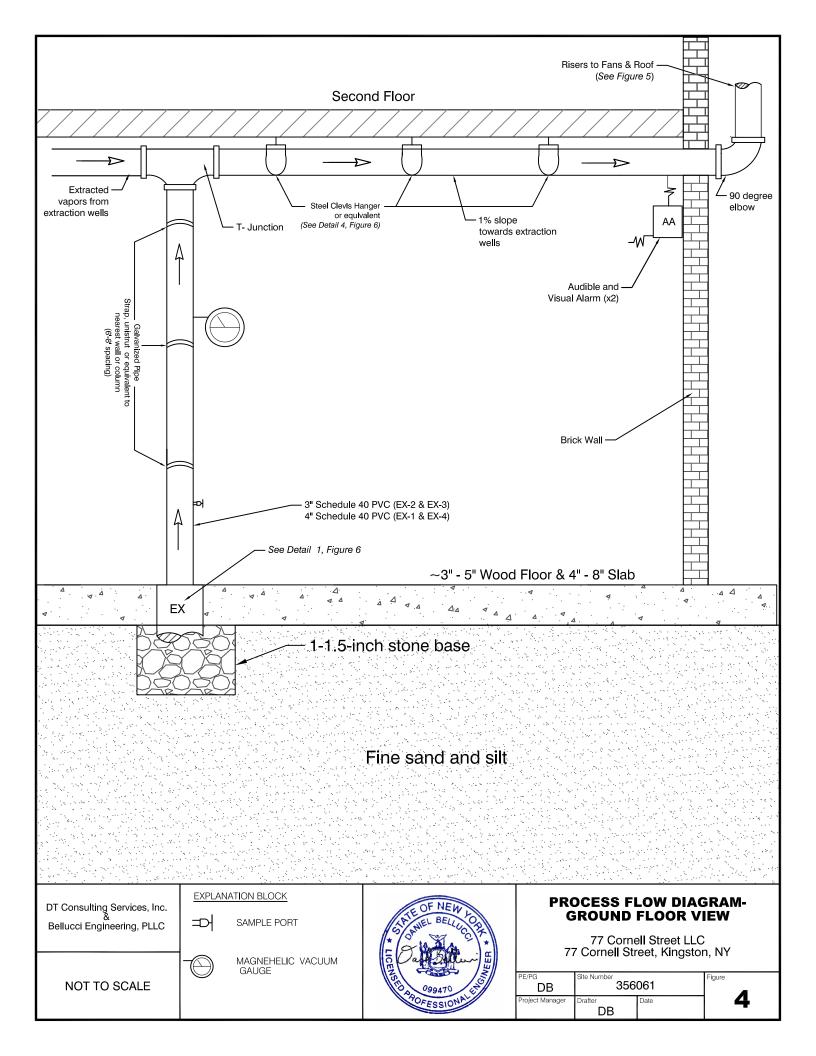
- 6. The IRM Construction Completion Report will provide engineering details specifications SSDS design.
- 7. The Site Management Plan will detail long term operation and maintenance procedures for the SSDS.
- 8. Supporting Information. To support the Site data collected during the implementation of the described work plan, the following items will be appended to the SC-IRM Report:
 - Site photographs;
 - Site maps, including text box figures depicting analytical results;
 - Laboratory analysis;

10.0 PROJECT SCHEDULE

The SC-IRM sampling and analysis program proposed herein will be implemented following NYSDEC and NYSDOH approval. The field sampling can be scheduled within 2 weeks of authorization to proceed. The SSDS installation can be scheduled to begin within sixty days of approval of the IRM portion of this Work Plan, following receipt and evaluation of the Site Characterization Data. DTCS estimates that the SC-IRM field work will require three - five days to complete, and laboratory analysis within two weeks of the conclusion of field work on-Site. The SSDS installation is estimated to take 5-7 days to complete. The Site Characterization – Interim Remedial Measure Report and IRM Construction Completion Report will be submitted for NYSDEC and NYSDOH review and approval within two months of field work completion.


FIGURES




Client: 77 Corne	77 Cornell Street LLC							
Site: 77 Cornell St	Site: 77 Cornell Street, Kingston, New York							
Site No.: Drawn by: Scale: Graphic								

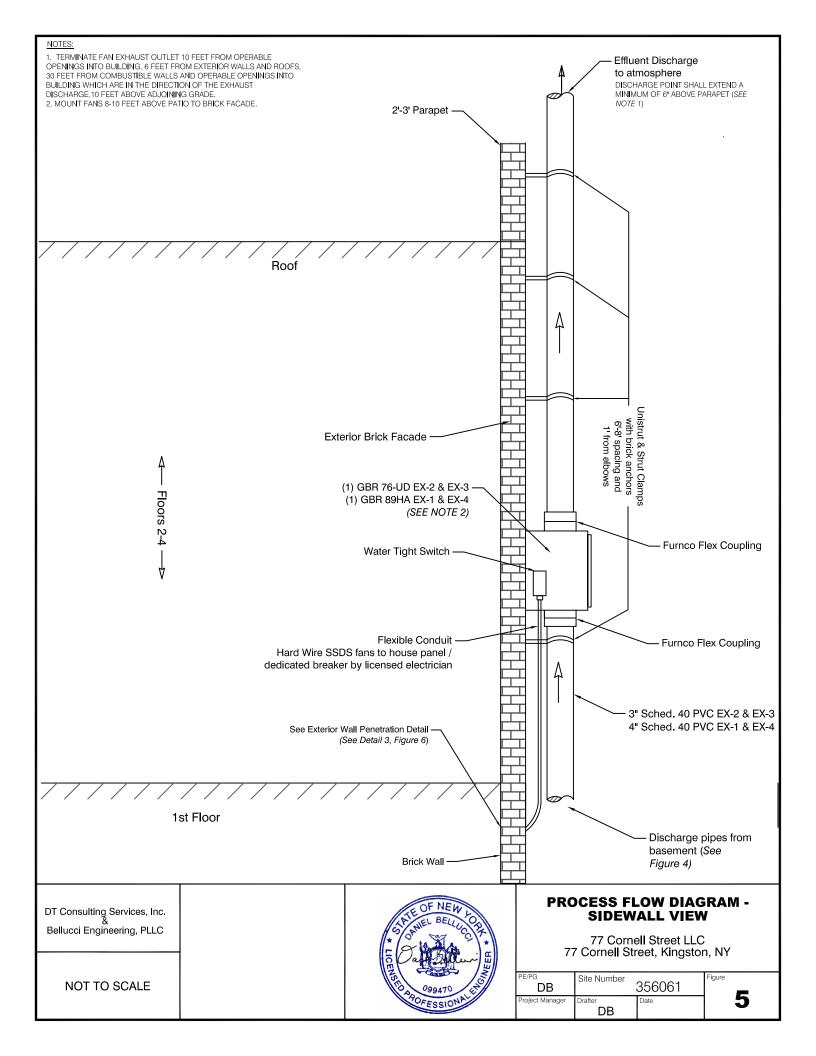
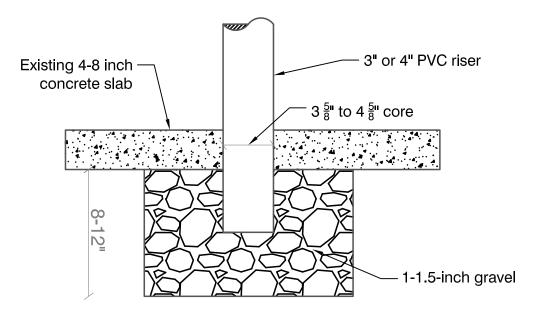
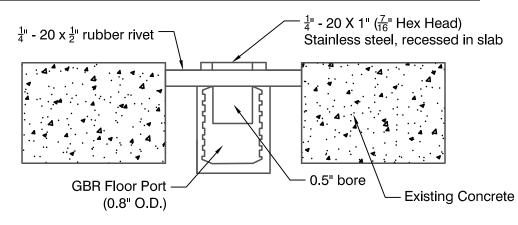
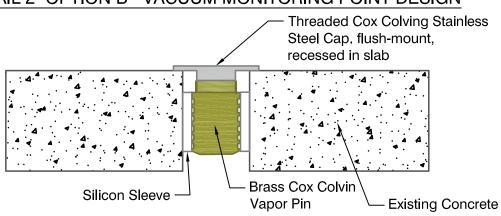
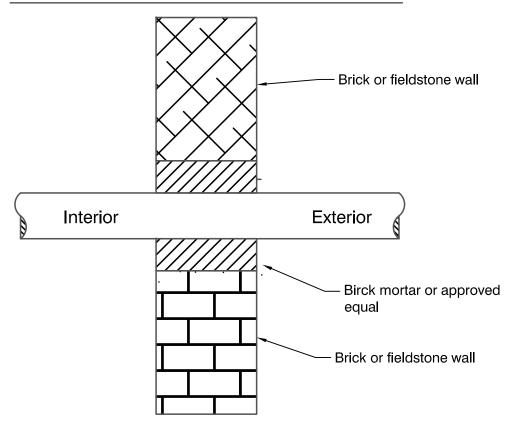

Site Location Plan

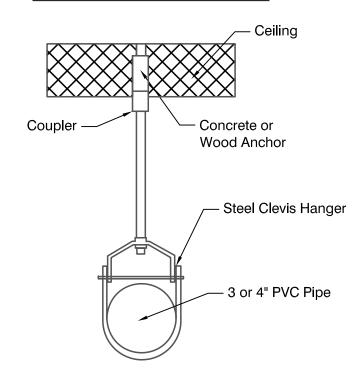
Figure No: 1






DETAIL 1 - SSDS EXTRACTION WELL DESIGN


DETAIL 2 - OPTION A - VACUUM MONITORING POINT DESIGN


DETAIL 2 -OPTION B- VACUUM MONITORING POINT DESIGN

DETAIL 3 - EXTERIOR WALL PIPE PENETRATION

DETAIL 4 - TYPICAL HANGER

DT Consulting Services, Inc. Bellucci Engineering, PLLC

Installation Details

77 Cornell Street LLC 77 Cornell Street, Kingston, NY

DB

Site Number 356061 PE/PG DB

6

TABLES

TABLE 1 - SUB-SLAB SOIL GAS INDOOR AIR COMPARISON - NYSDOH MATRIX A

77 Cornell Street Kingston, NY

		Soil Vapor and Indoor Air Concentrations (μg/m³)												NYSDOH Decision Matrix A: Trichloroethylene (TCE), cis- 1,2-Dichloroethene, 1,1-Dichloroethene and Carbon Tetrachloride					
				SSSG				Office	Unit	Unit	Unit				or Air Concenti	ration			
Compound	SVP-1	SVP-2	SVP-3	MID STAIR	VP-2	VP-3	VP-5	(IA)	124 (IA)	112 (IA)	109 (IA)			<0.2 μg/m ³	0.2 to <1 μg/m ³	1 μg/m³ and above			
Trichloroethylene	15.2	5.9	88.1	115	378	176	455	ND	ND	ND	2.57	Vapor ration	<6 μg/m³	1. No Further Action	2. No Further Action	3. Identify Source(s) and Resample or			
cis-1,2-Dichloroethene	ND	ND	ND	2.37	8.23	1.64	ND	ND	ND	ND	ND	o-Slab	6 to 60 μg/m³	4. No Further Action	5. Monitor	6. Mitigate			
1,1-Dichloroethene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	Suk S	60 μg/m ³ and above	7. Mitgate	8. Mitigate	9. Mitigate			
Carbon Tetrachloride	ND	ND	ND	ND	0.585	0.520	0.608	ND	ND	ND	ND								

NFA - No Further Action

 $\mu g/m^3$ - micrograms per cubic meter

NYSDOH - New York State Department of Health - May 2017 - Soil Vapor Matrix A

ND - Compound not detected above laboratory detection limits

SVP-1, SVP-2 and SVP-3 collected by Partner Engineering & Science 12/12/2018

SSSG MIDSTAIR collected by Partner Engineering & Science 01/14/2019

Office (IA), Unit 124 (IA), Unit 112 (IA) and Unit 109 (IA) collected by Partner Engineering & Science 01/14/2019

VP-2, VP-3 and VP-5 collected by Bellucci Engineering and DT Consulting 10/07/2020

TABLE 1 - SUB-SLAB SOIL GAS INDOOR AIR COMPARISON - NYSDOH MATRIX B

77 Cornell Street Kingston, NY

			Soil Va	por and	l Indo	or Air	Conce	ntration	NYSDOH Decision Matrix B: Tetrachloroethene (PCE), 1,1,1- Trichloroethane (1,1,1-TCA) and Methylene Chloride							
				sssg				Office	Unit	Unit	Unit				Indoor Air	ſ
Compound	SVP-1	SVP-2	SVP-3	MID STAIR	VP-2	VP-3	VP-5	(IA)	124 (IA)	112 (IA)	109 (IA)			<3 μg/m ³	3 to <10 μg/m ³	10 μg/m³ and above
Tetrachloroethene	46.3	17.9	39.5	12.6	21.7	47.3	154	ND	ND	ND	ND	Vapor ration	<100 μg/m ³	1. No Further Action	2. No Further Action	3. Identify Source(s) and Resample or Mitigate
1,1,1-Trichloroethane	ND	ND	ND	ND	6.09	1.58	12	ND	ND	ND	ND	Sub-Slab \ Concentra	100 to 1,000 μg/m ³	4. No Further Action	5. Monitor	6. Mitgate
Methylene Chloride	ND	ND	ND	ND	ND	ND	16.6	ND	ND	0.886	1.26		1,000 μg/m ³ and above	7. Mitgate	8. Mitgate	9. Mitgate

μg/m³ - micrograms per cubic meter

NYSDOH - New York State Department of Health - May 2017 - Soil Vapor Matrix B

ND - Compound not detected above laboratory detection limits

SVP-1, SVP-2 and SVP-3 collected by Partner Engineering & Science 12/12/2018

SSSG MIDSTAIR collected by Partner Engineering & Science 01/14/2019

Office (IA), Unit 124 (IA), Unit 112 (IA) and Unit 109 (IA) collected by Partner Engineering & Science 01/14/2019

VP-2, VP-3 and VP-5 collected by Bellucci Engineering and DT Consulting 10/07/2020

TABLE 1 - SUB-SLAB SOIL GAS INDOOR AIR COMPARISON - NYSDOH MATRIX C

77 Cornell Street Kingston, NY

		Soil Vapor and Indoor Air Concentrations (μg/m³)											NYSDOH Decision Matrix C: Vinyl Chloride					
				SSSG				Office	Unit	Unit	Unit			Indoor A	ir Concentration			
	SVP-1	SVP-2	SVP-3		VP-2	VP-3	VP-5	(IA)	124	112	109			<0.2	$0.2 \mu g/m^3 a and$			
Compound				STAIR				, ,	(IA)	(IA)	(IA)			μg/m³	above			
														1. No	2. Identify			
												or	$<6 \mu g/m^3$	Further	Source(s) and			
												Vapor ration		Action	Resample or			
Vinyl Chloride	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		6 to 60	3. Monitor	4 Mitanto			
												Sub-Slab Concent	μg/m³	5. Monitor	4. Mitgate			
												Sut	60 μg/m ³	F Mitanto	C Mitanto			
													and above	5. Mitgate	6. Mitgate			

μg/m³ - micrograms per cubic meter

NYSDOH - New York State Department of Health - May 2017 - Soil Vapor Matrix C

ND - Compound not detected above laboratory detection limits

SVP-1, SVP-2 and SVP-3 collected by Partner Engineering & Science 12/12/2018

SSSG MIDSTAIR collected by Partner Engineering & Science 01/14/2019

Office (IA), Unit 124 (IA), Unit 112 (IA) and Unit 109 (IA) collected by Partner Engineering & Science 01/14/2019

VP-2, VP-3 and VP-5 collected by Bellucci Engineering and DT Consulting 10/07/2020

TABLE 2 - EXTRACTION WELL SYSTEM DATA

77 Cornell Street Kingston, NY

Test #	Time	Pump Well Number	Flow Rate (CFM)	Vacuum (in-Hg)	Vacuum (in-H ₂ O)	Temp (°F)
Test # 1	12:25	EX-1	116.6	0.477	6.5	67.4
1631#1	12:35	LV-1	107.9	0.477	6.5	67.3
Test # 2	12:40	EX-4	96.0	0.551	7.5	67.7
1651 # 2	12:50	LA-4	100.2	0.514	7.0	67.6
Toot # 2	13:50	EX-2	34.9	1.175	16.0	67.8
Test # 3	14:00	EX-Z	36.3	1.175	16.0	67.4
Test # 4	14:20	EX-3	35.4	1.175	16.0	69.3
1651 # 4	14:30	EA-3	46.3	1.175	16.0	70.4
		Minimum	34.9	0.477	6.5	67.3
		Maximum	116.6	1.175	16.0	70.4
		Average	75.3	0.840	11.4	68.1

Notes:

in-Hg = inches of mercury

 $in-H_2O = Inches of water$

CFM = cubic feet per minute

ppmv = parts per million volume

TABLE 3 - VACUUM MONITORING POINT DATA

77 Cornell Street Kingston, NY

Test #	Time	Vacuum Monitoring Points (in-H ₂ O)							
		VP-1	VP-2	VP-3	VP-4	VP-5			
			T	T	1	1			
Test #1 (EX-1)	12:25	-0.163	0.000	0.000	0.000	0.000			
103t #1 (LX-1)	12:35	-0.170	0.000	0.000	0.000	0.000			
Test #2 (EX-4)	12:40	-0.002	-0.015	0.000	0.000	0.000			
163t #2 (LX-4)	12:50	-0.001	-0.015	0.000	0.000	0.000			
Test #3 (EX-2)	13:50	0.000	-0.039	0.000	0.000	-0.005			
1621 #3 (EX-2)	14:00	-0.007	-0.037	0.000	0.000	-0.003			
Test #3 (EX-3)	14:20	0.000	0.000	0.000	-0.043	-0.027			
1621 #3 (EX-3)	14:30	0.000	0.000	0.000	-0.040	-0.034			
	Minimum	0.000	0.000	0.000	0.000	0.000			
	Maximum	-0.170	-0.039	0.000	-0.043	-0.034			
	Average	-0.043	-0.013	0.000	-0.010	-0.009			

Notes:

in-H₂O = Inches of water

Vacuum monitoring point measurements taken with Infiltec DMI Micro Manometer with a detection limit of 0.001 inches of water

TABLE 4 MASS REMOVAL CALCULATIONS -LABORATORY ANALYTICAL DATA

77 Cornell Street Kingston, NY

Sample Location	Sample Starting Period	Sample Ending Period	Sample Duration (minutes)	Average Flow Rate (CFM)	Temp. (°F)	Temp. (R)	In-Ho	Atm. (Relative)	Atm. (Corrected)	V=nRT/p	lb mole	Volume of Removed Soil Vapor (CF)	PCE (ppmv)	TCE (ppmv)	PCE Mass Removed (lbs)	TCE Mass Removed (lbs)	Mass
EX-1	10/7/20 12:20 PM	10/7/20 12:40 PM	20	112.3	67.4	527.4	0.477	0.016	0.984	391.3	0.00256	2245	0.00400	0.06800	3.81E-06	5.13E-05	5.51E-05
EX-2	10/7/20 13:50 PM	10/7/20 14:10 PM	20	35.6	67.6	527.6	1.175	0.039	0.961	401.0	0.00249	712	0.00400	0.06800	1.18E-06	1.59E-05	1.70E-05
EX-3	10/7/20 14:20 PM	10/7/20 14:40 PM	20	40.9	69.9	529.9	1.175	0.039	0.961	402.7	0.00248	817	0.00400	0.06800	1.35E-06	1.81E-05	1.95E-05
EX-4	10/7/20 12:40 PM	10/7/20 13:00 PM	20	98.1	67.7	527.7	-0.533	-0.018	1.018	378.6	0.00264	1962	0.00400	0.06800	3.44E-06	4.63E-05	4.97E-05
Total			80									5,736			9.77E-06	1.32E-04	1.41E-04
												Mass Remo	oval Rate (I	bs/day)			2.54E-03

Notes:

V=nRT/p Where: V = volume of the gas; P = pressure of the gas; n = 1 lb-mole; R = Ideal Gas Constant (0.7302); T = Absolute Temperature ($^{\circ}$ F+460)

Mass Removed = [(1 / Volume of gas) x (time elapsed) x (Flow) x (Concentration CVOC) x (molecular weight CVOC)] / 1x10⁶

Molecular weights (g/mole): PCE 165.83, TCE 131.39

CFM = cubic foot per minute

ppmv = parts per million by volume

lbs = pounds

1-in-Hg = 0.033421 atm

ATTACHMENTS

ATTACHMENT A

Environmental Services Health & Safety Plan

Job Name: 77 Cornell Street LLC

- 1.0 Introduction
- 2.0 Organizational Structure
 - 2.1 Safety and Health Manager
 - 2.2 Site Safety and Health Office
 - 2.2.1 Responsibilities
- 3.0 Personal Protective Equipment
 - 3.1 Protection Levels
 - 3.1.1 Level A
 - 3.1.2 Level B
 - 3.1.3 Level C
 - 3.1.4 Level D
- 4.0 Work Zones
 - 4.1 Exclusion Zone
 - 4.2 Contamination Reduction Zone
 - 4.3 Support Zone
- 5.0 Air Monitoring
- 6.0 Site Communications
- 7.0 Emergency Procedures
 - 7.1 Injury in the exclusion zone
 - 7.2 Injury in the support zone
 - 7.3 Fire or explosion
 - 7.4 Protective equipment failure
- 8.0 Standard Safety Practices
- 9.0 Daily Safety Meetings
- 10.0 Site Specific Plan
 - 10.1 Detailed Site information
 - 10.2 Contaminants on Site/Action Levels
 - 10.3 Emergency Information
 - 10.3.1 Emergency Responders
 - 10.3.1.1 Hospital
 - 10.3.1.2 Emergency telephone numbers
 - 10.3.1.3 Regulatory agencies

10		T-1	4 . 1
10	.4	First	A ₁ d

10.5 Work Zones

10.5.1 Command post

10.6 Site Communications

10.6.1 Telephone

10.6.2 Hand Signals

10.7 Environmental Monitoring

10.8 Personal Protective Equipment

10.8.1 Exclusion zone

10.8.2 Contamination reduction corridor

10.9 Decontamination

10.9.1 Decontamination Procedure

11.0 Key Personnel

12.0 Work Plan

12.1 Job objective / Detailed work plan

ATTACHMENTS

COVID Safety Standards

A

1.0 INTRODUCTION

DT Consulting Services, Inc. (DTCS) has designed a safety and health program to provide its employees and subcontractors with the guidelines necessary to ensure their own safety and health as well as that of the surrounding community. The goal of this plan is to minimize the risk of injury during remedial investigation procedures including the advancement and sampling of soil cores, coring for soil gas sampling, along with the installation, development and monitoring of groundwater wells.

2.0 ORGANIZATIONAL STRUCTURE

2.1 SAFETY AND HEALTH MANAGER

It is the responsibility of the safety and health manager to develop the comprehensive safety and health plan. The safety and health manager will be appraised of any changes in the comprehensive safety and health plan as well as all Site-specific procedural determinations. The safety and health manager for this project will be Ms. Deborah Thompson.

2.1.1 RESPONSIBILITIES

- a) Initial Site evaluation
- b) Hazard identification
- c) Determination of appropriate protection levels
- d) Conduct daily safety and health meetings
- e) Supervision of Site sampling and monitoring
- f) Supervision of decontamination procedures
- g) Designate work zones to maintain Site integrity

3.0 PERSONAL PROTECTIVE EQUIPMENT

The proper personal protective equipment is chosen by the Site safety and health officer in consultation with the safety and health manager. The level of protection is dependent on the hazards that are likely to be encountered on-Site.

3.1 PROTECTION LEVELS

DTCS utilizes four levels of protection as set forth in the OSHA guidelines, Appendix B of 1910.120.

3.1.1 Level A

Level A provides the greatest level of skin, respiratory, and eye protection with the following minimum equipment:

- Full face, self-contained breathing apparatus (SCBA) or supplied air with escape SCBA
- Fully encapsulated chemical resistant suit
- Chemical resistant boots
- Chemical resistant inner and outer gloves

3.1.2 Level B

Level B provides the greatest level of respiratory protection, but a lower level of skin protection than Level A with the following minimum equipment:

- Full face SCBA or supplied air with escape SCBA
- Chemical resistant clothing
- Chemical resistant inner and out gloves
- Chemical resistant boots

3.1.3 Level C

Level C provides the same level of skin protection as Level B, but a lower level of respiratory protection with the following minimum equipment:

- Full face piece air purifying respirator with appropriate cartridge. Cartridges are chosen based on knowledge of hazardous material
- Chemical resistant clothing
- Chemical resistant inner and outer gloves
- Chemical resistant boots

3.1.4 Level **D**

Level D provides the lowest level of skin protection and no respiratory protection with the following minimum equipment:

- Coveralls
- Safety boots
- Gloves
- Safety glasses or splash goggles

4.0 WORK ZONES

DTCS utilizes the standard three-zone approach to Site control. These zones are the exclusion zone, the contamination reduction zone and the support zone. The support zone will be located upwind of work locales. Movement of personnel and equipment through these zones shall be strictly regulated in order to prevent contamination of clean environments and to protect workers in the support zone from possible exposure.

4.1 EXCLUSION ZONE

The exclusion zone is the area of highest contamination. All personnel entering this zone must wear the appropriate level of protection as prescribed in the Site specific safety plan. The outer boundary of the exclusion zone, referred to as the Hotline, shall be determined based upon such considerations as; extent of surface contamination, safe distance in the case of fire or explosion, physical area necessary for workers to conduct operations in a safe manner and safe distance in the event of vapor or gas emissions. Upon determination, the Hotline shall be visibly marked and secured to prevent accidental entry by unauthorized personnel.

4.2 CONTAMINATION REDUCTION ZONE

The Contamination Reduction Zone is the area between the exclusion zone and the support zone. Its purpose it to protect the clean environment from contamination as workers enter and exit the exclusion zone. The outer boundary of this zone is referred to as the Coldline and shall be clearly marked. Decontamination stations shall be set up in this zone in a line known as the contamination reduction corridor. All personnel exiting the exclusion zone must follow the steps as prescribed in the decontamination procedures prior to re-entering the support zone.

4.3 SUPPORT ZONE

The support zone is the area furthest away from the exclusion zone. It is considered a clean, non-contaminated area where workers need not wear any protective equipment. The command post, equipment trailer, first aid station and lavatory facilities are all located in this area. This area is not, however, open to traffic. Only authorized personnel may enter.

5.0 AIR MONITORING

While executing the Remedial Investigation, specific health and safety monitoring procedures, including particulate and volatile organic compound or VOC monitoring will be conducted during Site activities. Refer to Section 10 for the Site specific monitoring plan.

6.0 SITE COMMUNICATIONS

Various methods of communication will be employed based upon Site conditions and work zones. Regardless of method of communication, personnel working in the exclusion zone will remain within constant view of support crews.

DTCS has a network of devices to aid in communications. All or some of the following devices may be used depending upon job Site requirements; hand held radios, headset transistor walkie-talkies and cellular telephones.

The following hand signals shall be standardized for use in emergencies and in event of radio communication breakdown.

Hand gripping throat - out of air, can't breathe Grip partner's wrist - leave area immediately Hands on top of head - need assistance Thumbs up - I am all right, okay Thumbs down - no, negative

Horn blasts may be used to gain the immediate attention of crews to indicate that dangerous conditions exist.

7.0 EMERGENCY PROCEDURES

The following procedures shall be followed by all Site personnel in the event of an emergency. Any changes to this procedure shall be noted in the Site-specific plan. In all situations where there has been an evacuation of exclusion zone to the support zone, the support zone will be located upwind of work locales. Reentry shall not be permitted until the following conditions have been met; the cause of the emergency has been determined and corrected, the Site hazards have been reassessed, the safety plan has been reviewed and all personnel have been apprised of any changes.

7.1 INJURY IN THE EXCLUSION ZONE

In the event of an injury in the exclusion zone, the emergency signal shall be sounded. All personnel in the exclusion zone will assemble at the contamination reduction corridor. First aid procedures will begin on-Site and if necessary, an ambulance will be called. No personnel will be allowed to re-enter the exclusion zone until the exact nature and cause of the injury has been determined.

7.2 INJURY IN THE SUPPORT ZONE

In the event of an injury in the support zone, on-Site first aid procedures will begin immediately and an ambulance called if necessary. The Site safety and health officer shall determine if the nature and cause of the injury or loss of the injured person will jeopardize the smooth running of the operations. If so, the emergency signal will be sounded and all personnel will follow the same procedure as outline above.

7.3 FIRE OR EXPLOSION

In the event of fire or explosion, the emergency signal shall be sounded and all personnel will assemble at the contamination reduction corridor. The fire department will be called and all personnel will be evacuated to a safe distance.

7.4 PROTECTIVE EQUIPMENT FAILURE

In the event of protective equipment failure, the affected worker and his/her buddy will leave the exclusion zone immediately. In the event of any other equipment failure, the Site safety and health officer will determine if this failure affects the operation. If so, the emergency signal will be sounded and all personnel will leave the exclusion zone until such time as it is deemed safe.

8.0 STANDARD SAFETY PRACTICES

The following guidelines will be followed by all personnel at all times; any changes must be approved by the safety and health manager.

- All employees will attend the daily safety meetings prior to Site entry.

- The buddy system will be utilized at all times.
- There will be no eating, drinking, smoking, or use of smoking material (i.e. matches) within the work area(s). COVID safety practices will be utilized (see Attachment A).
- Only authorized personnel will be allowed in designated work zones and will wear the proper personal protective clothing and equipment as prescribed in the Site safety plan.
- The Site safety and health officer will be appraised of any unusual circumstances immediately.

Such circumstances include but are not limited to the following; unusual odors, emissions, signs of chemical reaction, and discovery of conditions or substances not mentioned in the Site safety plan. The Site safety officer will then determine if these conditions warrant a shut down of operations.

9.0 DAILY SAFETY MEETINGS

Daily safety meetings will be conducted by the Site safety and health officer prior to commencement of work. All personnel, regardless of job classification are required to attend.

9.1 DISCUSSIONS

- 1. Overview of safety and health plan.
- 2. Detailed discussion of substances of concern with emphasis on exposure limits, exposure symptoms and exposure hazards.
- 3. Review of standard safety precautions and work practices.
- 4. Review of work plan.
- 5. Review of hand signals and emergency signals.

Personnel will sign a daily attendance sheet, which shall include an overview of the topics discussed.

10.0 SITE SPECIFIC PLAN

10.1 DETAILED SITE INFORMATION

- Plan Date TBA

- **Job Name** 77 Cornell Street LLC

- Client 77 Cornell Street LLC

77 Cornell Street

Kingston, New York 12401

- Client Contact/Phone No. Mr. Barley (212) 561-5165

- **Site Address** 77 Cornell Street

Kingston, New York 12401

- **Cross Street** Smith Avenue

- Site Access Direct

10.2 CONTAMINANTS ON SITE/ACTION LEVELS

The following substances are known or suspected to be on Site, primarily in Site wastes. The primary hazards of each are identified, associated primarily with direct skin contact and inhalation.

SUBSTANCE	PRIMARY HAZARDS
Volatile Organics	
Trichloroethene (TCE) Tetrachloroethene (PCE)	Eye, skin and respiratory irritation. Nausea, vomiting, headache
Cis-1,2-Dichloroethylene	Skin irritation, gastrointestinal or respiratory tract irritation.

Particulate Air Monitoring

Particulate monitoring will be conducted during ground intrusive activities at the Site in accordance with the Fugitive Dust and Particulate Monitoring from DER-10 Technical Guidance for Site Investigation and Remediation. Dust and particulate monitoring will be conducted near the approximate upwind and downwind perimeters of the exclusion zone, when possible, or where dust generating operations are apparent. Dust monitoring may be suspended during periods of precipitation and snow cover.

Particulate air monitoring will be conducted with a DataRAM-4 (or a similar device). This instrument is equipped with an audible alarm (indication of exceedance) and is capable of measuring particulate matter less than 10 micrometers in size (PM-10). It will continually record emissions (calculating 15-minute running average concentrations) generated during field activities. The dust monitoring devices will be checked and recorded periodically throughout the day of intrusive activities to assess emissions and the need for corrective action. Particulate monitoring response and action levels include:

- If the downwind PM-10 particulate level is 100 micrograms per cubic meter (µg/m3) greater than background (upwind perimeter) for the 15-minute period or if airborne dust is observed leaving the work area, then dust suppression techniques must be employed. Work may continue with dust suppression techniques provided that downwind PM-10 particulate levels do not exceed 150 µg/m3 above the upwind level and provided that no visible dust is migrating from the work area.
- If, after implementation of dust suppression techniques, downwind PM-10 particulate levels are greater than 150 µg/m3 above the upwind level, work must be stopped and a re-evaluation of activities initiated. Work can resume provided that dust suppression measures and other controls are successful in reducing the downwind PM-10 particulate concentration to within 150 µg/m3 of the upwind level and in preventing visible dust migration.

Volatile Organic Compound Air Monitoring

Volatile organic compound (VOC) air monitoring will be conducted in conjunction with the dust monitoring program. VOC air monitoring will be conducted using a RAE Systems MiniRAE 2000 VOC instrument (or a similar photoionization detector device) to provide real-time recordable air monitoring data. VOC monitoring will be conducted for ground intrusive (continuous monitoring) and non-intrusive activities (periodic monitoring).

VOCs will be monitored and recorded at the downwind perimeter of the immediate work area. Upwind concentrations will be measured before field activities commence and periodically throughout the day to establish background conditions. The downwind VOC monitoring device will also be checked periodically throughout the day to assess emissions and the need for corrective action. VOC monitoring response and action levels include:

11.0 KEY PERSONNEL

SAFETY AND HEALTH MANAGER / ON-SITE SUPERVISOR

Deborah J. Thompson

FOREMEN

TBA

FIELD PERSONNEL

Will Vary

12.0 WORK PLAN

12.1 **JOB OBJECTIVE**

The objective is to execute a Site Characterization Work Plan which includes soil, soil gas and groundwater sampling to further characterize the extent of historical contamination identified on-Site under the direct supervision of the New York State Department of Environmental Conservation. Upon completion of field work, a Site Characterization Report will be generated to address documented contamination.

- If the ambient air concentration of total organic vapors at the downwind perimeter of the work area or exclusion zone exceeds 5 parts per million (ppm) above background for the 15-minute average, work activities must be temporarily halted and monitoring continued. If the total organic vapor level readily decreases (per instantaneous readings) below 5 ppm over background, work activities can resume with continued monitoring.
- If the organic vapor level remains sustained above 5 ppm at the perimeter of the work area, activities must be shut down and work will be re-evaluated.

Documentation and Calibration

The volatile organic compound air monitoring device shall be calibrated prior to daily field activities according to manufacturer's instructions and standard industrial hygiene practices. Calibration measurements will be recorded on a field data record. Field measurements will be recorded and available for State (NYSDEC and NYSDOH) personnel to review. The particulate monitoring device is factory calibrated on an annual basis. Upon completion of field activities, available monitored data recorded will be downloaded, evaluated and summarized in the Remedial Investigation Report.

Meteorological Monitoring

Wind direction is the only meteorological data considered relevant for the RI activities. To evaluate wind direction, a windsock, wind vane, or other equivalent equipment will be utilized. Wind direction will be established at the start of each work day, and may be reestablished during the day should a significant shift in wind direction be noted. These results will be employed to position the particulate and VOC monitoring equipment in appropriate upwind and downwind locations. Wind direction and location of the monitoring stations will be noted in daily field logs.

10.3 EMERGENCY INFORMATION

10.3.1 EMERGENCY RESPONDERS

10.3.1.1 HOSPITAL

Name: Kingston Hospital

Address & Telephone Number:

396 Broadway, Kingston, New York 12401 (845) 331-3131

Distance from Site: 0.6 Miles

10.3.1.2 EMERGENCY TELEPHONE NUMBERS

Police911 on Cellular PhoneFire911 on Cellular PhoneAmbulance911 on Cellular Phone

10.3.1.3 REGULATORY AGENCIES

EPA Telephone Number 1-800-424-8802

NYSDEC Spills Hotline 1-800-457-7362

10.4 FIRST AID

First Aid available at the following stations:

First Aid Kit TRUCK Emergency Eye Wash TRUCK & ON SITE

10.5 WORK ZONES

10.5.1 COMMAND POST

Command post will be mobile.

10.6 SITE COMMUNICATIONS

10.6.1 TELEPHONE

Command Post Telephone - Cellular Phone Number (845)943-0159

10.6.2 HAND SIGNALS

See Section 6.0

10.7 ENVIRONMENTAL MONITORING

10.7.1 MONITORING EQUIPMENT

Refer to RI Work Plan

10.8 PERSONAL PROTECTIVE EQUIPMENT

10.8.1 EXCLUSION ZONE, PROTECTION LEVEL

PROTECTIVE EQUIPMENT: Level D **RESPIRATORY** None

HEAD Hard Hat & Safety Glasses

HANDS Nitrile or Leather FEET Steel Toed Boots

SUIT None

10.8.2 CONTAMINATION REDUCTION CORRIDOR (DECON LINE)

PROTECTIVE EQUIPMENT: Level D **RESPIRATORY** None

HEAD Hard Hat & Safety Glasses

HANDS Nitrile or Leather

FEET Steel Toed SUIT None

10.9 **DECONTAMINATION**

10.9.1 DECONTAMINATION PROCEDURE

Decontamination procedures to be utilized on-Site will be pursuant to Sampling, Analysis, And Assessment of Per-And Polyfluoroalkyl Substances (PFAS) under NYSDEC's Part 375 Remedial Programs, June 2021. Standard two step decontamination using detergent (Alconox brand or similar) and clean, PFAS-free water will be performed for sampling equipment. All sources of water used for equipment decontamination should be verified in advance to be PFAS-free through laboratory analysis or certification.

ATTACHMENT A

<u>Summary of Sector Specific Workplace Safety Standards to Address</u> **COVID-19**

DT Consulting Services, Inc. (DTCS)

Standards that Apply to All Workers while performing Fieldwork or Remediation Activities

- 1. There will be zero tolerance for sick workers reporting to work. If you are sick, stay home! If you feel sick, go home! If you see someone sick, send them home!
- 2. Staff must self-screen for COVID symptoms prior to reporting to a construction/remediation site.
 - a. Symptoms (per CDC on June 3, 2020) include:
 - i. Fever or chills
 - ii. Cough
 - iii. Shortness of breath or difficulty breathing
 - iv. Fatigue
 - v. Muscle or body aches
 - vi. Headache
 - vii. New loss of taste or smell
 - viii. Sore throat
 - ix. Congestion or runny nose
 - x. Nausea or vomiting
 - xi. Diarrhea
- 3. Prior to starting a shift/arriving at the site, each employee will self-screen to ensure that they:
 - Have no signs of a fever or a measured temperature above 100.3 degrees or greater, a cough or trouble breathing within the past 24 hours
 - b. Have not had "close contact" with an individual diagnosed with COVID-19. "Close contact" means living in the same household as a person who has tested positive for COVID-19, caring for a person who has tested positive for COVID-19, being within 6 feet of a person who has tested positive for COVID-19 for about 15 minutes, or coming in direct contact with secretions (e.g., sharing utensils, being coughed on) from a person who has tested positive for COVID-19, while that person was symptomatic.
 - c. Have not been asked to self-isolate or quarantine by their doctor or a local public health official.

- d. Employees exhibiting symptoms or unable to self-certify should leave the work site and seek medical attention and applicable testing by their health care provider. They are not to return to the work site until cleared by a medical professional.
- 4. Document self-screening of DTCS staff in the daily field notes a brief documentation of COVID screening.
 - For example: "Employee Name performed COVID self-screening in compliance with DTCS current employee guidance before arriving at the site.
 - 5. Sub-contractors working directly with DTCS must provide their own COVID screening protocols ahead of arriving onsite or if screening protocols are not in place, any sub-contractors must self-screen and inform DTCS management of that screening prior to arriving on site.
 - a. Document self-screening of sub-contractor in the daily field notes a brief documentation of COVID screening.
 - i. For example: "Sub-contractor Name performed COVID self-screening before arriving at the site.

6. General Onsite Protocols:

- a. No handshaking
- b. It is recommended to wear a facemask when representing the company at all times on a "site". It is required to wear a facemask when:
 - i. social distancing (6 feet) can-not be maintained
 - ii. indoors
 - iii. in a "public space"
 - iv. working or interacting with the "public"
 - v. indicated it is required by the client or a contractor
- c. Must implement social distancing by maintaining a minimum distance of 6-feet from other individuals
- d. Avoid face to face meetings critical situations requiring in-person discussion must follow social distancing
- e. Conduct all meetings via conference calls, if possible. Do not convene meetings of more than 10 people. Recommend use of cell phones, texting, web meeting sites and conference calls for project discussion
- f. Cover coughing or sneezing with a tissue, then throw the tissue in the

trash and wash hands, if no tissue is available then cough into your elbow

- g. Avoid touching eyes, nose, and mouth with your hands
- h. If you or a family member is feeli5ng ill, stay home!

DTCS Led Investigative/Remedial Activities

- 1. Assign a site-specific COVID-19 Officer (this person may also be the Health and Safety Officer)
- 2. PPE
 - a. Hand sanitizer will be available onsite if soap/water/paper towels are not available.
 - i. Frequent use of handwashing or alcohol-based hand sanitizers should be encouraged
 - b. Gloves should be available and used at all times.
 - c. Eye protection is recommended as applicable
 - d. Facemasks
 - i. Facemasks must be worn at all times during indoor activities by DTCS staff and subcontractors
 - Facemasks must be worn at all times by DTCS staff and subcontractors when social distancing cannot be ensured (less than 6' of distance)
 - iii. Facemasks must be worn in "public places" per guidance from the New York State Department of Health; the project manager will determine ahead of time if a site is considered a "public place".
 - iv. Facemasks must be available on the employee or subcontractor's person during all other site related activities but are not required to be worn if social distancing (6') is maintained, activities are outdoors, not located in a "public place" or as otherwise required by a contractor or client.
 - e. Any trash generated during the day's site activities should be removed from the site by DTCS staff or disposed of in a trash receptacle designated as acceptable by the client.

3. "Social" Distancing

- a. All individual work crew meetings / tailgate talks should be held outside and follow social distancing
- b. Recommend use of cell phones, texting, web meeting sites and conference calls for project discussion
- c. In instances where it is possible, workers should maintain separation of 6 feet from each other per CDC guidelines
- d. Multi person activities will be limited where feasible
- e. In work conditions where required social distancing is impossible to achieve, employees shall be supplied PPE including, as appropriate, a standard face mask, gloves, and eye protection. Be sure to use your own water bottle, and do not share
- f. Please maintain Social Distancing separation during breaks and lunch

Protocol if COVID Positive or COVID Symptoms are Discovered

- DTCS shall direct workers with COVID-19 related symptoms to leave the site immediately and contact their healthcare provider. The local board of health will make appropriate notifications to those who had direct prolonged contact with the COVID-19 positive workers. DTCS shall work with the local board of health to identify any potential job site exposures, including:
 - a. Other workers, vendors, inspectors, or visitors to the work site with close contact to the individual
 - b. Work areas
 - c. Work tools and equipment
 - d. Common areas such as tables and sanitary facilities
- 2. Upon learning of an infection, DTCS staff and/or subcontractors must immediately notify the designated COVID-19 safety officer and the owner
 - a. Keep all employee names confidential as required by law
- After a worker with COVID-19 related symptoms has been asked to leave the
 job site, DTCS staff shall take immediate steps to sanitize any common areas
 and direct work places that may have been in close contact with the infected
 worker.
 - a. Sanitation will be conducted with personnel, equipment, and material approved for COVID-19 sanitization.
 - b. Identified areas should remain isolated from any other workers until

sanitation process has been completed and area is deemed safe for use.

- c. Workers who leave during the work day due to COVID-19 symptoms and develop COVID-19 as confirmed by laboratory testing or diagnosis by a healthcare provider shall not return to the site until either released from isolation by healthcare provider or public health official.
- d. All impacted workers should follow CDC and DOH recommended steps concerning return to work. Workers who are considered close contacts to a COVID-19 case by public health authorities should not return for 14 days and are subject quarantine by public health.
- e. Other employees may be sent home while a workspace is being cleaned but will return to work after cleaning unless advised otherwise by a health care provider
- f. Other employees should be asked to contact their health provider if they have any questions
- g. Remind other employees to continue to practice proper sanitation and monitor for flu like symptoms

ATTACHMENT B

DT CONSULTING SERVICES, INC.

Community Air Monitoring Plan

Job Name/Site Number: 77 Cornell Street LLC/ Site # 356061

TABLE OF CONTENTS

1.0	INTRODUCTION	2
1.2	CAMP Objectives Revisions to the CAMP Potential Air Emissions Related to Investigative Activities	2 2 3
2.0	CAMP	4-6
2.2 2.3 2.4 2.5	Selection of Monitoring Locations VOC Monitoring Total Particulates Monitoring Periodic Monitoring for Odors Action Levels Action Levels for Organic Vapors Action Levels for PM ₁₀ Instrument Calibration	4 4 4 5 5 5 6 7
3.0 3.1 3.2	MONITORING SCHEDULE/DATA COLLECTION/REPORTING Monitoring Schedule Data Collection and Reporting	7- 9 7 7
	FIGURES	
Site	Base Map	1
	<u>ATTACHMENTS</u>	
DEI	R-10	A

1.0 INTRODUCTION

This Community Air Monitoring Plan (CAMP) has been prepared by DT Consulting Services, Inc. (DTCS) to support the implementation of Remedial Investigation activities associated with the Site Characterization/Interim Remedial Measures Work Plan (SC/IRM WP) generated for the Subject Property located at 77 Cornell Street, Kingston, Ulster County, New York. A Site Plan is provided as Figure 1. Details related to the investigative activities are presented in the SC/IRM WP, to which this CAMP is included as an attachment and as a supporting plan. This CAMP fulfills the routine monitoring requirements provided in the New York State Department of Environmental Conservation (NYSDEC) document entitled Division of Environmental Remediation Technical Guidance for Site Investigation and Remediation (DER-10) issued on May 3, 2010 (NYSDEC 2010). Appendix 1A of DER-10 (included in Attachment A) provides general guidance and protocols for the preparation and implementation of a CAMP. Appendix 1B of DER- 10 (included in Attachment A) supplements the contents of Appendix 1A of DER-10 and provides additional requirements for fugitive dust/particulate monitoring. This CAMP identifies the required air monitoring to protect the community during the implementation of proposed investigative activities.

1.1 CAMP Objectives

The overall objective of the CAMP is to establish requirements for protection measures for downwind receptors from potential airborne releases of constituents of concern during intrusive and/or potential dust generating Site activities. As summarized in the SC/IRM Work plan, laboratory analysis indicates that constituents of concern at the Site include volatile organic compounds (VOCs). This CAMP identifies potential air emissions, and describes air monitoring procedures, the monitoring schedule, data collection, and reporting requirements for the SC/IRM actions to be completed by DTCS. DTCS will implement this CAMP and will provide all labor, materials, and equipment necessary to implement the monitoring program specified in this CAMP, as well as any required contractor worker documentation and monitoring described in the Environmental Health and Safety Plan prepared for the implementation of the project.

1.2 Revisions to the CAMP

Any changes to the scope or procedures in this CAMP will be formally documented as a revision to this document. A revision number will be indicated on the front page of

> CAMP 77 Cornell Street LLC Site #: 356061

any revised document and will serve as a historical record of any and all revisions made to the document. For changes requiring immediate resolution during the implementation of this CAMP, approval will be secured from the NYSDEC and, if applicable, the Responsible Party.

1.3 Potential Air Emissions Related to Investigative Activities

Intrusive investigation activities have the potential to generate localized impacts to air quality. Investigative components that are considered intrusive for the purposes of this CAMP and that have the potential to generate air emissions are anticipated to include, but may not be limited to the following:

- ✓ Installation of soil borings or groundwater monitoring wells;
- ✓ Sampling of soils and groundwater; and
- ✓ Soil vapor/soil gas sampling.

2.0 COMMUNITY AIR MONITORING PLAN

Real-time air monitoring for VOCs and particulate levels will be performed at representative locations, upwind and downwind during Site investigative activities. Furthermore, continuous monitoring will be performed for all ground intrusive activities and during the handling of contaminated or potentially contaminated media. Ground intrusive activities include, but are not limited to, the installation and sampling of soil borings, monitoring wells and/or soil gas sampling. In addition, during work hours, hourly or more frequent monitoring for Site-related odors at the perimeter of the work area will be performed.

Periodic monitoring for VOCs will be performed during non-intrusive activities such as the collection of soil samples, the collection of groundwater samples from Site monitoring wells and/or soil gas sampling. Periodic monitoring during sample collection, for instance, will consist of taking a reading upon arrival at a sample location, monitoring while opening a well cap or overturning soil, monitoring during well baling/purging, and taking a reading prior to leaving a sample location. Depending upon the proximity of potentially exposed individuals, continuous monitoring may be performed during sampling activities. Exceedances of action levels observed during performance of the CAMP will be reported to the DEC Project Manager and included in the Daily Report.

2.1 Selection of Monitoring Locations

Upwind and downwind monitoring station locations for VOCs and PM_{10} will be determined daily based on data from published information (predictions of prevailing and predominant wind direction) for the Site and the nature and location of the anticipated construction activities.

An upwind location (station "UPW") for both VOCs and PM₁₀ will be confirmed at the start of each workday, based upon the use of the meteorological data and the location of the proposed construction activities. A downwind location (station "DWN 1") (based upon prevalent wind direction) for both VOCs and PM₁₀ will also be selected. Another downwind monitoring location (regardless of wind direction) will be used to monitor for both VOCs and PM₁₀ at the closest sensitive receptor (i.e., nearest occupied building [NOB]), determined at the date of investigative activities. If wind directions shift radically during the workday and for an extended period such that the upwind direction and downwind locations no longer fall within acceptable guidelines (+-60 degrees compass change from the original wind direction), the monitoring stations will be relocated so that the upwind and downwind locations are maintained. Any changes will be documented in the CAMP reports.

2.2 VOC Monitoring

VOCs will be monitored continuously during the intrusive and/or potential dust-generating investigative activities with instrumentation equipped with electronic data-logging capabilities. A real-time VOC monitor (RAE MultiRae 3000 or equivalent) equipped with a Photoionization Detector (PID) will be used for monitoring. All 15-minute average concentrations, as well as any instantaneous readings taken to facilitate activity decisions, will be recorded, stored on-Site and summarized in a CAMP report.

2.3 Total Particulates Monitoring

Total particulates will also be monitored continuously during intrusive and/or potential dust- generating investigative activities using instrumentation equipped with electronic data-logging capabilities. The particulate monitoring equipment will also be equipped with an audible alarm to indicate exceedances of the action levels identified below in Section 2.5. A TSI DustTrak II 8530 (or equivalent) will be used to conduct the real-time PM_{10} monitoring during the SC/IRM activities. All 15-minute average concentrations, as well as any instantaneous readings taken to facilitate activity

decisions, will be recorded and summarized in a CAMP report. Fugitive dust migration will be visually assessed during all work activities, and reasonable dust suppression techniques will be used during any activity that may generate fugitive dust.

2.4 Periodic Monitoring for Odors

During work hours, hourly or more frequent walks around the perimeter of the work area will be performed to qualitatively monitor for the presence and intensity of Siterelated odors. Perimeter checks will be performed more frequently, as necessary, depending on the nature and location of work being performed. If odors are noted at the perimeter of the work area, work will continue and odor, vapor, and dust controls will be employed to abate emissions. Additionally, construction techniques will be evaluated and modified, if necessary and appropriate, and more frequent checks of the perimeter of the work area will be performed. If odors persist at the perimeter of the work area at an unacceptable intensity, work will be stopped while activities are reevaluated. The source or cause of the odors will be identified and additional odor, vapor, and dust controls will be employed. Work will resume provided that the controls are successful in mitigating the intensity of odors at the perimeter of the work area.

2.5 Action Levels

The action levels provided below are to be used to initiate corrective actions, if necessary, based upon the real-time monitoring. If the action levels are exceeded at the perimeter locations for VOCs or PM₁₀, work will be suspended and engineering controls will be implemented to bring concentrations back down to acceptable levels. Each piece of monitoring equipment will have alarm capabilities (audible and/or visual) to indicate exceedances of the action levels specified below. All readings will be recorded and available review.

Action Levels for Organic Vapors

If the ambient air concentration of total VOCs at the downwind perimeter of the work area, Exclusion Zone, or opposite the nearest occupied building exceeds 5 parts per million (ppm) above the background (upwind) concentration for the 15-minute average, work activities will be temporarily halted while monitoring continues. If total VOC concentration readily decreases (through observation of instantaneous readings) below 5 ppm above the background concentration, work activities will resume with continued monitoring.

CAMP 77 Cornell Street LLC Site #: 356061 If the ambient air concentration of total VOCs at the downwind perimeter of the work area, Exclusion Zone, or opposite the nearest occupied building persists at levels in excess of 5 ppm but less than 25 ppm above the background (upwind) concentration: (1) work activities will be halted; (2) the source of the elevated total VOC concentration will be identified; (3) corrective actions will be implemented to reduce or abate the emissions; and (4) air monitoring will be continued. Once these activities have been implemented, work activities will resume provided the following two conditions are met:

- The 15-minute average VOC concentrations remain below 5 ppm above background (upwind); and
- The total VOC concentration 200 feet downwind of the work area/Exclusion Zone or half the distance to the nearest potential receptor or residential/commercial structure whichever is less but in no case less than 20 feet) is below 5 ppm over the background (upwind) concentration for the 15-minute average.

If the ambient air concentration of total VOCs at the downwind perimeter of the work area, Exclusion Zone, or opposite the nearest occupied building exceeds 25 ppm above the background (upwind) concentration, work activities will stop, and corrective actions will be implemented to reduce or abate the emissions. When work shutdown occurs, as directed by the Environmental Monitor, corrective actions will be implemented to ensure that vapor emission does not impact the nearest occupied structure at levels exceeding the action levels specified herein. If following work shutdown, or as the result of an emergency, VOC concentrations persist above 5 ppm above background (upwind) 200 feet downwind (or half the distance to the nearest occupied structure), then air quality must be monitored within 20 feet of the perimeter of the nearest residential or commercial structure (20-foot zone).

Action Levels for PM₁₀

If the ambient air concentration of PM_{10} at the downwind perimeter of the work area or nearest occupied building exceeds 100 micrograms per cubic meter ($\mu g/m^3$) above the background (upwind) concentration, or if airborne dust is observed leaving the work area, dust suppression techniques will be employed. Work will continue with dust suppression techniques provided the

CAMP 77 Cornell Street LLC Site #: 356061 downwind PM_{10} concentration does not exceed 150 $\mu g/m^3$ above the background (upwind) concentration. If, after implementation of dust suppression techniques, the downwind PM_{10} concentration is greater than 150 $\mu g/m^3$ above the background (upwind) concentration, work will be stopped while activities are re-evaluated. Work will resume provided the dust suppression techniques and other controls are successful in: (1) reducing the downwind PM_{10} concentration to less than 150 $\mu g/m^3$ above the background (upwind) concentration; and (2) preventing visible dust from leaving the work area.

2.6 Instrument Calibration

Calibration of the VOC and PM₁₀, instrumentation will be conducted in accordance with each of the equipment manufacturer's calibration and quality assurance requirements. The VOC and PM₁₀ monitoring equipment will be calibrated or zeroed, respectively, daily (at a minimum), and such calibrations will be recorded in the field logbook.

3.0 MONITORING SCHEDULE/DATA COLLECTION/REPORTING

The following identifies the monitoring schedule and data collection/reporting requirements.

3.1 Monitoring Schedule

Community air monitoring will be conducted prior to initiating investigative activities to establish adequate baseline data and until such time that intrusive and/or potential dust generating activities are complete. The frequency of community air monitoring will be relative to the level of Site work activities being conducted and may be adjusted as the work proceeds and in consideration of the monitoring results. Air monitoring for VOCs and dust may be discontinued during periods of heavy precipitation that would otherwise result in unreliable data or damage to monitoring equipment.

3.2 Data Collection and Reporting

Community air monitoring data will be collected continuously from VOC and PM₁₀ monitors during all intrusive and/or potential dust-generating activities by the electronic data-logging systems, except as discussed above in Section 3.1. The data management software will be set up to continuously monitor instantaneous readings

CAMP 77 Cornell Street LLC Site #: 356061 and record average concentrations (calculated for continuous 15-minute increments: i.e., 08:00 to 08:15, 08:15 to 08:30, etc.). Results of the perimeter/community air monitoring for total organic vapors and particulates (both instantaneous readings and 15- minute average concentrations) will be recorded by the monitoring instruments (data loggers).

The Environmental Monitor will prepare a CAMP reports that will include, but not be limited to, the following:

• A brief memorandum summarizing the air monitoring work activities and results for the monitoring period. A summary of the qualitative perimeter monitoring for the presence and intensity of Site-related odors will also be included. The memorandum will be supported by two attachments: (1) Attachment A showing air monitoring station daily locations; and (2) Attachment B presenting graphs of the 15-minute time-weighted average VOC and particulate concentrations recorded at each of the sampling stations (one graph for each station showing the results relative to action levels).

In the event that an exceedance of a community air monitoring action level (for either PM_{10} or VOCs), the Environmental Monitor will notify DEC (via telephone) as soon as possible (i.e., real time). Within 24 hours of the observed exceedance, the Environmental Monitor will send a follow-up e-mail to DEC's representative, and the Responsible Party summarizing the data, the cause of the exceedance, and any corrective measures implemented (or to be implemented) as a result of the exceedance. The information will also be documented in the CAMP report.

Odor complaints received from the public will be evaluated and verified based on the following:

- Date and time of complaint;
- Location and nature of work activities being performed at the Site;
- Location and nature of non-project-related work activities being performed in the surrounding community; and
- Prevailing wind direction and other local meteorological conditions.

Regardless of the outcome of this evaluation, all associated parties will be notified of odor complaints within 24 hours. In response to a verified odor complaint, perimeter monitoring will continue and additional odor, vapor, and dust controls will be employed to mitigate Site-related odor emissions. Construction techniques will also be evaluated and modified, if necessary and appropriate.

The time and outcome of each perimeter check will be documented in a daily odor monitoring log, specifically noting the presence or absence of Site-related odors and identifying the intensity and general location(s) along the perimeter of the work area where odors (if any) are noted. The time and outcome of any odor complaints from the public will also be documented in the daily odor monitoring log.

APPENDIX A

NYSDEC DER-10 TECHNICAL GUIDANCE FOR SITE INVESTIGATION AND REMEDIATION (DER-10) MAY 3, 2010.

APPENDIX 1A OF DER-10

Appendix 1A New York State Department of Health Generic Community Air Monitoring Plan

Overview

A Community Air Monitoring Plan (CAMP) requires real-time monitoring for volatile organic compounds (VOCs) and particulates (i.e., dust) at the downwind perimeter of each designated work area when certain activities are in progress at contaminated sites. The CAMP is not intended for use in establishing action levels for worker respiratory protection. Rather, its intent is to provide a measure of protection for the downwind community (i.e., off-site receptors including residences and businesses and on-site workers not directly involved with the subject work activities) from potential airborne contaminant releases as a direct result of investigative and remedial work activities. The action levels specified herein require increased monitoring, corrective actions to abate emissions, and/or work shutdown. Additionally, the CAMP helps to confirm that work activities did not spread contamination off-site through the air.

The generic CAMP presented below will be sufficient to cover many, if not most, sites. Specific requirements should be reviewed for each situation in consultation with NYSDOH to ensure proper applicability. In some cases, a separate site-specific CAMP or supplement may be required. Depending upon the nature of contamination, chemical- specific monitoring with appropriately-sensitive methods may be required. Depending upon the proximity of potentially exposed individuals, more stringent monitoring or response levels than those presented below may be required. Special requirements will be necessary for work within 20 feet of potentially exposed individuals or structures and for indoor work with co-located residences or facilities. These requirements should be determined in consultation with NYSDOH.

Reliance on the CAMP should not preclude simple, common-sense measures to keep VOCs, dust, and odors at a minimum around the work areas.

Community Air Monitoring Plan

Depending upon the nature of known or potential contaminants at each site, real-time air monitoring for VOCs and/or particulate levels at the perimeter of the exclusion zone or work area will be necessary. Most sites will involve VOC and particulate monitoring; sites known to be contaminated with heavy metals alone may only require particulate monitoring. If radiological contamination is a concern, additional monitoring requirements may be necessary per consultation with appropriate DEC/NYSDOH staff.

Continuous monitoring will be required for all <u>ground intrusive</u> activities and during the demolition of contaminated or potentially contaminated structures. Ground intrusive activities include, but are not limited to, soil/waste excavation and handling, test pitting or trenching, and the installation of soil borings or monitoring wells.

Periodic monitoring for VOCs will be required during <u>non-intrusive</u> activities such as the collection of soil and sediment samples or the collection of groundwater samples from existing monitoring wells. "Periodic" monitoring during sample collection might reasonably consist of taking a reading upon arrival at a sample location, monitoring while opening a well cap or

Final DER-10 Page 204 of 226

overturning soil, monitoring during well baling/purging, and taking a reading prior to leaving a sample location. In some instances, depending upon the proximity of potentially exposed individuals, continuous monitoring may be required during sampling activities. Examples of such situations include groundwater sampling at wells on the curb of a busy urban street, in the midst of a public park, or adjacent to a school or residence.

VOC Monitoring, Response Levels, and Actions

Volatile organic compounds (VOCs) must be monitored at the downwind perimeter of the immediate work area (i.e., the exclusion zone) on a continuous basis or as otherwise specified. Upwind concentrations should be measured at the start of each workday and periodically thereafter to establish background conditions, particularly if wind direction changes. The monitoring work should be performed using equipment appropriate to measure the types of contaminants known or suspected to be present. The equipment should be calibrated at least daily for the contaminant(s) of concern or for an appropriate surrogate. The equipment should be capable of calculating 15-minute running average concentrations, which will be compared to the levels specified below.

- 1. If the ambient air concentration of total organic vapors at the downwind perimeter of the work area or exclusion zone exceeds 5 parts per million (ppm) above background for the 15-minute average, work activities must be temporarily halted and monitoring continued. If the total organic vapor level readily decreases (per instantaneous readings) below 5 ppm over background, work activities can resume with continued monitoring.
- 2. If total organic vapor levels at the downwind perimeter of the work area or exclusion zone persist at levels in excess of 5 ppm over background but less than 25 ppm, work activities must be halted, the source of vapors identified, corrective actions taken to abate emissions, and monitoring continued. After these steps, work activities can resume provided that the total organic vapor level 200 feet downwind of the exclusion zone or half the distance to the nearest potential receptor or residential/commercial structure, whichever is less but in no case less than 20 feet, is below 5 ppm over background for the 15-minute average.
- 3. If the organic vapor level is above 25 ppm at the perimeter of the work area, activities must be shutdown.
- 4. All 15-minute readings must be recorded and be available for State (DEC and NYSDOH) personnel to review. Instantaneous readings, if any, used for decision purposes should also be recorded.

Particulate Monitoring, Response Levels, and Actions

Particulate concentrations should be monitored continuously at the upwind and downwind perimeters of the exclusion zone at temporary particulate monitoring stations. The particulate monitoring should be performed using real-time monitoring equipment capable of measuring particulate matter less than 10 micrometers in size (PM-10) and capable of integrating over a period of 15 minutes (or less) for comparison to the airborne particulate action level. The equipment must be equipped with an audible alarm to indicate exceedance of the action level. In addition, fugitive dust migration should be visually assessed during all work activities.

Final DER-10 Page 205 of 226

- 1. If the downwind PM-10 particulate level is 100 micrograms per cubic meter (mcg/m³) greater than background (upwind perimeter) for the 15-minute period or if airborne dust is observed leaving the work area, then dust suppression techniques must be employed. Work may continue with dust suppression techniques provided that downwind PM-10 particulate levels do not exceed 150 mcg/m³ above the upwind level and provided that no visible dust is migrating from the work area.
- 2. If, after implementation of dust suppression techniques, downwind PM-10 particulate levels are greater than 150 mcg/m³ above the upwind level, work must be stopped and a re-evaluation of activities initiated. Work can resume provided that dust suppression measures and other controls are successful in reducing the downwind PM-10 particulate concentration to within 150 mcg/m³ of the upwind level and in preventing visible dust migration.
- 3. All readings must be recorded and be available for State (DEC and NYSDOH) and County Health personnel to review.

December 2009

Final DER-10 Page 206 of 226

APPENDIX 1B OF DER-10

Appendix 1B **Fugitive Dust and Particulate Monitoring**

A program for suppressing fugitive dust and particulate matter monitoring at hazardous waste sites is a responsibility on the remedial party performing the work. These procedures must be incorporated into appropriate intrusive work plans. The following fugitive dust suppression and particulate monitoring program should be employed at sites during construction and other intrusive activities which warrant its use:

- Reasonable fugitive dust suppression techniques must be employed during all site activities which may generate fugitive dust.
- Particulate monitoring must be employed during the handling of waste or contaminated soil or when activities on site may generate fugitive dust from exposed waste or contaminated soil. Remedial activities may also include the excavation, grading, or placement of clean fill. These control measures should not be considered necessary for these activities.
- Particulate monitoring must be performed using real-time particulate monitors and shall monitor particulate matter less than ten microns (PM10) with the following minimum performance standards:
 - (a) Objects to be measured: Dust, mists or aerosols;
 - (b) Measurement Ranges: 0.001 to 400 mg/m3 (1 to 400,000 :ug/m3);
- (c) Precision (2-sigma) at constant temperature: +/- 10 :g/m3 for one second averaging; and +/- 1.5 g/m3 for sixty second averaging;
 - (d) Accuracy: +/- 5% of reading +/- precision (Referred to gravimetric calibration with SAE fine test dust (mmd= 2 to 3 :m, g= 2.5, as aerosolized);
 - (e) Resolution: 0.1% of reading or 1g/m3, whichever is larger;
 - (f) Particle Size Range of Maximum Response: 0.1-10;
 - (g) Total Number of Data Points in Memory: 10,000;
- (h) Logged Data: Each data point with average concentration, time/date and data point number
- (i) Run Summary: overall average, maximum concentrations, time/date of maximum, total number of logged points, start time/date, total elapsed time (run duration), STEL concentration and time/date occurrence, averaging (logging) period, calibration factor, and tag number;
- Alarm Averaging Time (user selectable): real-time (1-60 seconds) or STEL (15 minutes), alarms required;
 - (k) Operating Time: 48 hours (fully charged NiCd battery); continuously with charger;
 - (l) Operating Temperature: -10 to 50° C (14 to 122° F);
- (m) Particulate levels will be monitored upwind and immediately downwind at the working site and integrated over a period not to exceed 15 minutes.
- In order to ensure the validity of the fugitive dust measurements performed, there must be 4. appropriate Quality Assurance/Quality Control (QA/QC). It is the responsibility of the remedial party to adequately supplement QA/QC Plans to include the following critical features: periodic instrument calibration, operator training, daily instrument performance (span) checks, and a record keeping plan.
 - The action level will be established at 150 ug/m3 (15 minutes average). While conservative, 5.

this short-term interval will provide a real-time assessment of on-site air quality to assure both health and safety. If particulate levels are detected in excess of 150 ug/m3, the upwind background level must be confirmed immediately. If the working site particulate measurement is greater than 100 ug/m3 above the background level, additional dust suppression techniques must be implemented to reduce the generation of fugitive dust and corrective action taken to protect site personnel and reduce the potential for contaminant migration. Corrective measures may include increasing the level of personal protection for on-site personnel and implementing additional dust suppression techniques (see paragraph 7). Should the action level of 150 ug/m3 continue to be exceeded work must stop and DER must be notified as provided in the site design or remedial work plan. The notification shall include a description of the control measures implemented to prevent further exceedances.

- 6. It must be recognized that the generation of dust from waste or contaminated soil that migrates off-site, has the potential for transporting contaminants off-site. There may be situations when dust is being generated and leaving the site and the monitoring equipment does not measure PM10 at or above the action level. Since this situation has the potential to allow for the migration of contaminants off-site, it is unacceptable. While it is not practical to quantify total suspended particulates on a real-time basis, it is appropriate to rely on visual observation. If dust is observed leaving the working site, additional dust suppression techniques must be employed. Activities that have a high dusting potentialsuch as solidification and treatment involving materials like kiln dust and lime--will require the need for special measures to be considered.
- The following techniques have been shown to be effective for the controlling of the generation and migration of dust during construction activities:
 - (a) Applying water on haul roads:
 - (b) Wetting equipment and excavation faces;
 - (c) Spraying water on buckets during excavation and dumping;
 - (d) Hauling materials in properly tarped or watertight containers;
 - (e) Restricting vehicle speeds to 10 mph;
 - (f) Covering excavated areas and material after excavation activity ceases; and
 - (g) Reducing the excavation size and/or number of excavations.

Experience has shown that the chance of exceeding the 150ug/m3 action level is remote when the above-mentioned techniques are used. When techniques involving water application are used, care must be taken not to use excess water, which can result in unacceptably wet conditions. Using atomizing sprays will prevent overly wet conditions, conserve water, and provide an effective means of suppressing the fugitive dust.

The evaluation of weather conditions is necessary for proper fugitive dust control. When extreme wind conditions make dust control ineffective, as a last resort remedial actions may need to be suspended. There may be situations that require fugitive dust suppression and particulate monitoring requirements with action levels more stringent than those provided above. Under some circumstances, the contaminant concentration and/or toxicity may require additional monitoring to protect site personnel and the public. Additional integrated sampling and chemical analysis of the dust may also be in order. This must be evaluated when a health and safety plan is developed and when appropriate suppression and monitoring requirements are established for protection of health and the environment.

Final DER-10 Page 208 of 226 May 2010

ATTACHMENT C

Technical Report

prepared for:

Core Down Drilling, LLC

53 Bridle Ridge Road Patterson NY, 12563

Attention: Daniel Bellucci

Report Date: 10/15/2020

Client Project ID: 77 Cornell Street Kingston, NY

York Project (SDG) No.: 20J0419

CT Cert. No. PH-0723

New Jersey Cert. No. CT005 and NY037

New York Cert. Nos. 10854 and 12058

PA Cert. No. 68-04440

Report Date: 10/15/2020

Client Project ID: 77 Cornell Street Kingston, NY

York Project (SDG) No.: 20J0419

Core Down Drilling, LLC

53 Bridle Ridge Road Patterson NY, 12563

Attention: Daniel Bellucci

Purpose and Results

This report contains the analytical data for the sample(s) identified on the attached chain-of-custody received in our laboratory on October 08, 2020 and listed below. The project was identified as your project: 77 Cornell Street Kingston, NY.

The analyses were conducted utilizing appropriate EPA, Standard Methods, and ASTM methods as detailed in the data summary tables.

All samples were received in proper condition meeting the customary acceptance requirements for environmental samples except those indicated under the Sample and Analysis Qualifiers section of this report.

All analyses met the method and laboratory standard operating procedure requirements except as indicated by any data flags, the meaning of which are explained in the Sample and Data Qualifiers Relating to This Work Order section of this report and case narrative if applicable.

The results of the analyses, which are all reported on dry weight basis (soils) unless otherwise noted, are detailed in the following pages.

Please contact Client Services at 203.325.1371 with any questions regarding this report.

York Sample ID	Client Sample ID	<u>Matrix</u>	Date Collected	Date Received
20J0419-01	UP-5	Soil Vapor	10/07/2020	10/08/2020
20J0419-02	UP-3	Soil Vapor	10/07/2020	10/08/2020
20J0419-03	UP-2	Soil Vapor	10/07/2020	10/08/2020
20J0419-04	EX-4 EFF	Soil Vapor	10/07/2020	10/08/2020
1				

General Notes for York Project (SDG) No.: 20J0419

- 1. The RLs and MDLs (Reporting Limit and Method Detection Limit respectively) reported are adjusted for any dilution necessary due to the levels of target and/or non-target analytes and matrix interference. The RL(REPORTING LIMIT) is based upon the lowest standard utilized for the calibration where applicable.
- 2. Samples are retained for a period of thirty days after submittal of report, unless other arrangements are made.
- 3. York's liability for the above data is limited to the dollar value paid to York for the referenced project.
- 4. This report shall not be reproduced without the written approval of York Analytical Laboratories, Inc.
- 5. All analyses conducted met method or Laboratory SOP requirements. See the Sample and Data Qualifiers Section for further information.
- 6. It is noted that no analyses reported herein were subcontracted to another laboratory, unless noted in the report.
- 7. This report reflects results that relate only to the samples submitted on the attached chain-of-custody form(s) received by York.

8. Analyses conducted at York Analytical Laboratories, Inc. Stratford, CT are indicated by NY Cert. No. 10854; those conducted at York Analytical Laboratories, Inc., Richmond Hill, NY are indicated by NY Cert. No. 12058.

Approved By:

Benjamin Gulizia

Laboratory Director

Date: 10/15/2020

Client Sample ID: UP-5 York Sample ID: 20J0419-01

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received20J041977 Cornell Street Kingston, NYSoil VaporOctober 7, 2020 9:52 am10/08/2020

Volatile Organics, TO15 Chlorinated Targets

Sample Prepared by Method: EPA TO15 PREP

Log-in Notes:

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference M	1ethod	Date/Time Prepared	Date/Time Analyzed	Analyst
71-55-6	1,1,1-Trichloroethane	12.0		ug/m³	1.76	3.222	EPA TO-15		10/11/2020 12:00	10/12/2020 03:03	LLJ
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/m³	2.21	3.222	EPA TO-15		712058,NJDEP-Queen 10/11/2020 12:00 712058,NJDEP-Queens	10/12/2020 03:03	LLJ
	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/m³	2.47	3.222	EPA TO-15 Certifications: N	NELAC-NY	10/11/2020 12:00 12058,NJDEP-Queens	10/12/2020 03:03	LLJ
79-00-5	1,1,2-Trichloroethane	ND		ug/m³	1.76	3.222	EPA TO-15 Certifications: N	NELAC-NY	10/11/2020 12:00 12058,NJDEP-Queens	10/12/2020 03:03	LLJ
75-34-3	1,1-Dichloroethane	ND		ug/m³	1.30	3.222	EPA TO-15 Certifications: N	NELAC-NY	10/11/2020 12:00 12058,NJDEP-Queens	10/12/2020 03:03	LLJ
75-35-4	1,1-Dichloroethylene	ND		ug/m³	1.28	3.222	EPA TO-15 Certifications: N	NELAC-NY	10/11/2020 12:00 12058,NJDEP-Queens	10/12/2020 03:03	LLJ
120-82-1	1,2,4-Trichlorobenzene	ND		ug/m³	2.39	3.222	EPA TO-15 Certifications:	NELAC-NY	10/11/2020 12:00 12058,NJDEP-Queens	10/12/2020 03:03	LLJ
95-50-1	1,2-Dichlorobenzene	ND		ug/m³	1.94	3.222	EPA TO-15 Certifications:	NELAC-NY	10/11/2020 12:00 12058,NJDEP-Queens	10/12/2020 03:03	LLJ
107-06-2	1,2-Dichloroethane	ND		ug/m³	1.30	3.222	EPA TO-15 Certifications: N	NELAC-NY	10/11/2020 12:00 12058,NJDEP-Queens	10/12/2020 03:03	LLJ
78-87-5	1,2-Dichloropropane	ND		ug/m³	1.49	3.222	EPA TO-15 Certifications:	NELAC-NY	10/11/2020 12:00 12058,NJDEP-Queens	10/12/2020 03:03	LLJ
76-14-2	1,2-Dichlorotetrafluoroethane	ND		ug/m³	2.25	3.222	EPA TO-15 Certifications:	NELAC-NY	10/11/2020 12:00 12058,NJDEP-Queens	10/12/2020 03:03	LLJ
541-73-1	1,3-Dichlorobenzene	ND		ug/m³	1.94	3.222	EPA TO-15 Certifications: N	NELAC-NY	10/11/2020 12:00 12058,NJDEP-Queens	10/12/2020 03:03	LLJ
106-46-7	1,4-Dichlorobenzene	ND		ug/m³	1.94	3.222	EPA TO-15 Certifications:	NELAC-NY	10/11/2020 12:00 12058,NJDEP-Queens	10/12/2020 03:03	LLJ
107-05-1	3-Chloropropene	ND		ug/m³	5.04	3.222	EPA TO-15 Certifications: N	NELAC-NY	10/11/2020 12:00 12058,NJDEP-Queens	10/12/2020 03:03	LLJ
100-44-7	Benzyl chloride	ND		ug/m³	1.67	3.222	EPA TO-15 Certifications: N	NELAC-NY	10/11/2020 12:00 12058,NJDEP-Queens	10/12/2020 03:03	LLJ
75-27-4	Bromodichloromethane	ND		ug/m³	2.16	3.222	EPA TO-15 Certifications: N	NELAC-NY	10/11/2020 12:00 12058,NJDEP-Queens	10/12/2020 03:03	LLJ
56-23-5	Carbon tetrachloride	0.608		ug/m³	0.507	3.222	EPA TO-15 Certifications:	NELAC N	10/11/2020 12:00 Y12058,NJDEP-Queen	10/12/2020 03:03	LLJ
108-90-7	Chlorobenzene	ND		ug/m³	1.48	3.222	EPA TO-15		10/11/2020 12:00 12058,NJDEP-Queens	10/12/2020 03:03	LLJ
75-00-3	Chloroethane	ND		ug/m³	0.850	3.222	EPA TO-15 Certifications: N	NELAC-NY	10/11/2020 12:00 12058,NJDEP-Queens	10/12/2020 03:03	LLJ
67-66-3	Chloroform	2.67		ug/m³	1.57	3.222	EPA TO-15		10/11/2020 12:00 Y12058,NJDEP-Queen	10/12/2020 03:03	LLJ
74-87-3	Chloromethane	ND		ug/m³	0.665	3.222	EPA TO-15		10/11/2020 12:00 12058,NJDEP-Queens	10/12/2020 03:03	LLJ
156-59-2	cis-1,2-Dichloroethylene	ND		ug/m³	1.28	3.222	EPA TO-15		12038,NJDEP-Queens 10/11/2020 12:00 12058,NJDEP-Queens	10/12/2020 03:03	LLJ

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 **RICHMOND HILL, NY 11418**

ClientServices@ Page 4 of 17

Client Sample ID: UP-5 York Sample ID: 20J0419-01

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received20J041977 Cornell Street Kingston, NYSoil VaporOctober 7, 2020 9:52 am10/08/2020

Volatile Organics, TO15 Chlorinated Targets

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA TO15 PREF
--

CAS No). Parameter	Result	Flag	Units	Reported t	Dilution	Reference	e Method	Date/Time Prepared	Date/Time Analyzed	Analyst
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/m³	1.46	3.222	EPA TO-15 Certifications:	NELAC-N	10/11/2020 12:00 Y12058,NJDEP-Queen:	10/12/2020 03:03	LLJ
75-71-8	Dichlorodifluoromethane	3.82		ug/m³	1.59	3.222	EPA TO-15		10/11/2020 12:00	10/12/2020 03:03	LLJ
							Certifications:	NELAC-N	Y12058,NJDEP-Queer	s	
87-68-3	Hexachlorobutadiene	ND		ug/m³	3.44	3.222	EPA TO-15 Certifications:	NELAC-N	10/11/2020 12:00 Y12058,NJDEP-Queen:	10/12/2020 03:03	LLJ
75-09-2	Methylene chloride	16.6		ug/m³	2.24	3.222	EPA TO-15		10/11/2020 12:00	10/12/2020 03:03	LLJ
							Certifications:	NELAC-N	Y12058,NJDEP-Queer	S	
127-18-4	Tetrachloroethylene	154		ug/m³	2.19	3.222	EPA TO-15		10/11/2020 12:00	10/12/2020 03:03	LLJ
							Certifications:	NELAC-N	Y12058,NJDEP-Queer	S	
156-60-5	trans-1,2-Dichloroethylene	ND		ug/m³	1.28	3.222	EPA TO-15 Certifications:	NELAC-N	10/11/2020 12:00 Y12058,NJDEP-Queen:	10/12/2020 03:03	LLJ
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/m³	1.46	3.222	EPA TO-15 Certifications:	NELAC-N	10/11/2020 12:00 Y12058,NJDEP-Queen:	10/12/2020 03:03	LLJ
79-01-6	Trichloroethylene	455		ug/m³	0.433	3.222	EPA TO-15		10/11/2020 12:00	10/12/2020 03:03	LLJ
							Certifications:	NELAC-N	Y12058,NJDEP-Queer	S	
75-69-4	Trichlorofluoromethane (Freon 11)	2.17		ug/m³	1.81	3.222	EPA TO-15		10/11/2020 12:00	10/12/2020 03:03	LLJ
							Certifications:	NELAC-N	Y12058,NJDEP-Queer	S	
75-01-4	Vinyl Chloride	ND		ug/m³	0.824	3.222	EPA TO-15		10/11/2020 12:00	10/12/2020 03:03	LLJ
							Certifications:	NELAC-N	Y12058,NJDEP-Queen	3	
	Surrogate Recoveries	Result		Accept	ance Range						
460-00-4	Surrogate: SURR: p-Bromofluorobenzene	89.9 %		7	70-130						

Sample Information

Client Sample ID:UP-3York Sample ID:20J0419-02York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received20J041977 Cornell Street Kingston, NYSoil VaporOctober 7, 2020 10:04 am10/08/2020

Volatile Organics, TO15 Chlorinated Targets

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA TO15 PREP

CAS N	o. Parameter	Result	Flag Units	Reported to LOQ	Dilution	Reference Met	Date/Time nod Prepared	Date/Time Analyzed	Analyst
71-55-6	1,1,1-Trichloroethane	1.58	ug/m³	1.13	2.065	EPA TO-15 Certifications: NEI	10/11/2020 12:00 AC-NY12058,NJDEP-Quee	10/12/2020 04:03	LLJ
79-34-5	1,1,2,2-Tetrachloroethane	ND	ug/m^3	1.42	2.065	EPA TO-15 Certifications: NEL	10/11/2020 12:00 AC-NY12058,NJDEP-Queer	10/12/2020 04:03	LLJ
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND	ug/m³	1.58	2.065	EPA TO-15 Certifications: NEL	10/11/2020 12:00 AC-NY12058,NJDEP-Queer	10/12/2020 04:03	LLJ
79-00-5	1,1,2-Trichloroethane	ND	ug/m³	1.13	2.065	EPA TO-15 Certifications: NEL	10/11/2020 12:00 AC-NY12058,NJDEP-Queer	10/12/2020 04:03	LLJ

120 RESEARCH DRIVE STRATFORD, CT 06615 ■ 132-02 89th AVENUE RICHMOND HILL, NY 11418

www.YORKLAB.com (203) 325-1371

FAX (203) 357-0166

ClientServices@ Page 5 of 17

Client Sample ID: UP-3

<u>York Sample ID:</u> 20J0419-02

<u>York Project (SDG) No.</u> <u>Client Project ID</u>

20J0419 77 Cornell Street Kingston, NY

<u>Matrix</u> Soil Vapor <u>Collection Date/Time</u> October 7, 2020 10:04 am Date Received 10/08/2020

Volatile Organics, TO15 Chlorinated Targets

Log-in Notes:

Sample Notes:

	d by Method: EPA TO15 PREP								_		
CAS No	. Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
75-34-3	1,1-Dichloroethane	ND		ug/m³	0.836	2.065	EPA TO-15 Certifications:	NELAC-NY	10/11/2020 12:00 12058,NJDEP-Queens	10/12/2020 04:03	LLJ
75-35-4	1,1-Dichloroethylene	ND		ug/m³	0.819	2.065	EPA TO-15 Certifications:	NELAC-NY	10/11/2020 12:00 12058,NJDEP-Queens	10/12/2020 04:03	LLJ
20-82-1	1,2,4-Trichlorobenzene	ND		ug/m³	1.53	2.065	EPA TO-15 Certifications:	NELAC-NY	10/11/2020 12:00 12058,NJDEP-Queens	10/12/2020 04:03	LLJ
95-50-1	1,2-Dichlorobenzene	ND		ug/m³	1.24	2.065	EPA TO-15 Certifications:	NELAC-NY	10/11/2020 12:00 12058,NJDEP-Queens	10/12/2020 04:03	LLJ
07-06-2	1,2-Dichloroethane	ND		ug/m³	0.836	2.065	EPA TO-15 Certifications:	NELAC-NY	10/11/2020 12:00 12058,NJDEP-Queens	10/12/2020 04:03	LLJ
8-87-5	1,2-Dichloropropane	ND		ug/m³	0.954	2.065	EPA TO-15 Certifications:	NELAC-NY	10/11/2020 12:00 12058,NJDEP-Queens	10/12/2020 04:03	LLJ
6-14-2	1,2-Dichlorotetrafluoroethane	ND		ug/m³	1.44	2.065	EPA TO-15 Certifications:	NELAC-NY	10/11/2020 12:00 12058,NJDEP-Queens	10/12/2020 04:03	LLJ
41-73-1	1,3-Dichlorobenzene	ND		ug/m³	1.24	2.065	EPA TO-15 Certifications:	NELAC-NY	10/11/2020 12:00 12058,NJDEP-Queens	10/12/2020 04:03	LLJ
06-46-7	1,4-Dichlorobenzene	ND		ug/m³	1.24	2.065	EPA TO-15 Certifications:	NELAC-NY	10/11/2020 12:00 12058,NJDEP-Queens	10/12/2020 04:03	LLJ
07-05-1	3-Chloropropene	ND		ug/m³	3.23	2.065	EPA TO-15 Certifications:	NELAC-NY	10/11/2020 12:00 12058,NJDEP-Queens	10/12/2020 04:03	LLJ
00-44-7	Benzyl chloride	ND		ug/m³	1.07	2.065	EPA TO-15 Certifications:	NELAC-NY	10/11/2020 12:00 12058,NJDEP-Queens	10/12/2020 04:03	LLJ
5-27-4	Bromodichloromethane	ND		ug/m³	1.38	2.065	EPA TO-15 Certifications:	NELAC-NY	10/11/2020 12:00 12058,NJDEP-Queens	10/12/2020 04:03	LLJ
6-23-5	Carbon tetrachloride	0.520		ug/m³	0.325	2.065	EPA TO-15 Certifications:	NELAC-NY	10/11/2020 12:00 Y12058,NJDEP-Queen:	10/12/2020 04:03	LLJ
08-90-7	Chlorobenzene	ND		ug/m³	0.951	2.065	EPA TO-15 Certifications:		10/11/2020 12:00 12058,NJDEP-Queens	10/12/2020 04:03	LLJ
5-00-3	Chloroethane	ND		ug/m³	0.545	2.065	EPA TO-15 Certifications:		10/11/2020 12:00 12058,NJDEP-Queens	10/12/2020 04:03	LLJ
7-66-3	Chloroform	6.15		ug/m³	1.01	2.065	EPA TO-15		10/11/2020 12:00	10/12/2020 04:03	LLJ
4-87-3	Chloromethane	ND		ug/m³	0.426	2.065	Certifications: EPA TO-15		Y12058,NJDEP-Queen: 10/11/2020 12:00	10/12/2020 04:03	LLJ
56-59-2	cis-1,2-Dichloroethylene	1.64		ug/m³	0.819	2.065	Certifications: EPA TO-15	NELAC-NY	12058,NJDEP-Queens 10/11/2020 12:00	10/12/2020 04:03	LLJ
2061.01.5		ND.		/ 2	0.027	2.065	Certifications:	NELAC-NY	/12058,NJDEP-Queen:	10/12/2020 04:03	
0061-01-5	cis-1,3-Dichloropropylene	ND		ug/m³	0.937	2.065	EPA TO-15 Certifications:	NELAC-NY	10/11/2020 12:00 12058,NJDEP-Queens	10/12/2020 04:03	LLJ
-71-8	Dichlorodifluoromethane	2.45		ug/m³	1.02	2.065	EPA TO-15 Certifications:	NELAC-NY	10/11/2020 12:00 Y12058,NJDEP-Queen:	10/12/2020 04:03	LLJ
7-68-3	Hexachlorobutadiene	ND		ug/m³	2.20	2.065	EPA TO-15 Certifications:	NELAC-NY	10/11/2020 12:00 12058,NJDEP-Queens	10/12/2020 04:03	LLJ
5-09-2	Methylene chloride	ND		ug/m³	1.43	2.065	EPA TO-15 Certifications:		10/11/2020 12:00 12058,NJDEP-Queens	10/12/2020 04:03	LLJ
27-18-4	Tetrachloroethylene	47.3		ug/m³	1.40	2.065	EPA TO-15		10/11/2020 12:00	10/12/2020 04:03	LLJ
							Certifications:	NELAC-NY	Y12058,NJDEP-Queen:	3	

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices@ Page 6 of 17

Client Sample ID: UP-3 York Sample ID: 20J0419-02

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received20J041977 Cornell Street Kingston, NYSoil VaporOctober 7, 2020 10:04 am10/08/2020

Volatile Organics, TO15 Chlorinated Targets

Sample Prepared by Method: EPA TO15 PREP

Log		

Sample Notes:

CAS No	o. Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
156-60-5	trans-1,2-Dichloroethylene	ND		ug/m³	0.819	2.065	EPA TO-15 Certifications:	NELAC-N	10/11/2020 12:00 Y12058,NJDEP-Queen	10/12/2020 04:03	LLJ
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/m³	0.937	2.065	EPA TO-15 Certifications:	NELAC-N	10/11/2020 12:00 Y12058,NJDEP-Queen	10/12/2020 04:03 s	LLJ
79-01-6	Trichloroethylene	176		ug/m³	0.277	2.065	EPA TO-15 Certifications:	NELAC-N	10/11/2020 12:00 Y12058,NJDEP-Queen	10/12/2020 04:03	LLJ
75-69-4	Trichlorofluoromethane (Freon 11)	1.74		ug/m³	1.16	2.065	EPA TO-15 Certifications:	NELAC-N	10/11/2020 12:00 Y12058,NJDEP-Queen	10/12/2020 04:03	LLJ
75-01-4	Vinyl Chloride	ND		ug/m³	0.528	2.065	EPA TO-15 Certifications:	NELAC-N	10/11/2020 12:00 Y12058,NJDEP-Queen	10/12/2020 04:03 s	LLJ
	Surrogate Recoveries	Result		Acceptai	nce Range						
460-00-4	Surrogate: SURR: p-Bromofluorobenzene	85.3 %		70	-130						

Sample Information

Client Sample ID: UP-2 20J0419-03

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received20J041977 Cornell Street Kingston, NYSoil VaporOctober 7, 2020 11:30 am10/08/2020

Volatile Organics, TO15 Chlorinated Targets

ample Prepared by Method: EPA TO15 PREP

Log-in Notes:	Sample Notes: TO-VAC

CAS No	o. Parameter	Result	Flag Units	Reported to LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
71-55-6	1,1,1-Trichloroethane	6.09	ug/m³	1.69	3.1	EPA TO-15 Certifications:	NELAC-N	10/11/2020 12:00 Y12058,NJDEP-Queen	10/12/2020 05:01	LLJ
79-34-5	1,1,2,2-Tetrachloroethane	ND	ug/m³	2.13	3.1	EPA TO-15 Certifications:	NELAC-NY	10/11/2020 12:00 /12058,NJDEP-Queens	10/12/2020 05:01	LLJ
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND	ug/m³	2.38	3.1	EPA TO-15 Certifications:	NELAC-NY	10/11/2020 12:00 /12058,NJDEP-Queens	10/12/2020 05:01	LLJ
79-00-5	1,1,2-Trichloroethane	ND	ug/m³	1.69	3.1	EPA TO-15 Certifications:	NELAC-NY	10/11/2020 12:00 /12058,NJDEP-Queens	10/12/2020 05:01	LLJ
75-34-3	1,1-Dichloroethane	ND	ug/m³	1.25	3.1	EPA TO-15 Certifications:	NELAC-NY	10/11/2020 12:00 /12058,NJDEP-Queens	10/12/2020 05:01	LLJ
75-35-4	1,1-Dichloroethylene	ND	ug/m³	1.23	3.1	EPA TO-15 Certifications:	NELAC-NY	10/11/2020 12:00 /12058,NJDEP-Queens	10/12/2020 05:01	LLJ
120-82-1	1,2,4-Trichlorobenzene	ND	ug/m³	2.30	3.1	EPA TO-15 Certifications:	NELAC-NY	10/11/2020 12:00 /12058,NJDEP-Queens	10/12/2020 05:01	LLJ
95-50-1	1,2-Dichlorobenzene	ND	ug/m³	1.86	3.1	EPA TO-15 Certifications:	NELAC-NY	10/11/2020 12:00 /12058,NJDEP-Queens	10/12/2020 05:01	LLJ
107-06-2	1,2-Dichloroethane	ND	ug/m³	1.25	3.1	EPA TO-15 Certifications:	NELAC-NY	10/11/2020 12:00 Y12058,NJDEP-Queens	10/12/2020 05:01	LLJ

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@ Page 7 of 17

Client Sample ID: UP-2

York Sample ID: 20J0419-03

York Project (SDG) No. 20J0419 <u>Client Project ID</u> 77 Cornell Street Kingston, NY <u>Matrix</u> Soil Vapor <u>Collection Date/Time</u> October 7, 2020 11:30 am Date Received 10/08/2020

Volatile Organics, TO15 Chlorinated Targets

Log-in Notes:

Sample Notes: TO-VAC

CAS No											
	. Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference	e Method	Date/Time Prepared	Date/Time Analyzed	Analys
78-87-5	1,2-Dichloropropane	ND		ug/m³	1.43	3.1	EPA TO-15 Certifications:	NELAC-N	10/11/2020 12:00 Y12058,NJDEP-Queens	10/12/2020 05:01	LLJ
76-14-2	1,2-Dichlorotetrafluoroethane	ND		ug/m³	2.17	3.1	EPA TO-15 Certifications:	NELAC-N	10/11/2020 12:00 Y12058,NJDEP-Queens	10/12/2020 05:01	LLJ
541-73-1	1,3-Dichlorobenzene	ND		ug/m³	1.86	3.1	EPA TO-15 Certifications:	NELAC-N	10/11/2020 12:00 Y12058,NJDEP-Queens	10/12/2020 05:01	LLJ
106-46-7	1,4-Dichlorobenzene	ND		ug/m³	1.86	3.1	EPA TO-15 Certifications:	NELAC-N	10/11/2020 12:00 Y12058,NJDEP-Queens	10/12/2020 05:01	LLJ
107-05-1	3-Chloropropene	ND		ug/m³	4.85	3.1	EPA TO-15 Certifications:	NELAC-N	10/11/2020 12:00 Y12058,NJDEP-Queens	10/12/2020 05:01	LLJ
100-44-7	Benzyl chloride	ND		ug/m³	1.60	3.1	EPA TO-15 Certifications:	NELAC-N	10/11/2020 12:00 Y12058,NJDEP-Queens	10/12/2020 05:01	LLJ
75-27-4	Bromodichloromethane	ND		ug/m³	2.08	3.1	EPA TO-15 Certifications:	NELAC-N	10/11/2020 12:00 Y12058,NJDEP-Queens	10/12/2020 05:01	LLJ
56-23-5	Carbon tetrachloride	0.585		ug/m³	0.488	3.1	EPA TO-15	NET LON		10/12/2020 05:01	LLJ
108-90-7	Chlorobenzene	ND		ug/m³	1.43	3.1	Certifications: EPA TO-15 Certifications:		Y12058,NJDEP-Queens 10/11/2020 12:00 Y12058,NJDEP-Queens	10/12/2020 05:01	LLJ
75-00-3	Chloroethane	ND		ug/m³	0.818	3.1	EPA TO-15 Certifications:			10/12/2020 05:01	LLJ
67-66-3	Chloroform	3.78		ug/m³	1.51	3.1	EPA TO-15		10/11/2020 12:00	10/12/2020 05:01	LLJ
							Certifications:	NELAC-N	Y12058,NJDEP-Queens		
74-87-3	Chloromethane	ND		ug/m³	0.640	3.1	EPA TO-15 Certifications:	NELAC-N	10/11/2020 12:00 Y12058,NJDEP-Queens	10/12/2020 05:01	LLJ
156-59-2	cis-1,2-Dichloroethylene	8.23		ug/m³	1.23	3.1	EPA TO-15			10/12/2020 05:01	LLJ
							Certifications:	NELAC-N	Y12058,NJDEP-Queens		
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/m³	1.41	3.1	EPA TO-15 Certifications:	NELAC-N	Y12058,NJDEP-Queens	10/12/2020 05:01	LLJ
75-71-8	Dichlorodifluoromethane	3.22		ug/m³	1.53	3.1	EPA TO-15	NIEL ACIN		10/12/2020 05:01	LLJ
07.40.3					2.21		Certifications:	NELAC-N	Y12058,NJDEP-Queens		
87-68-3	Hexachlorobutadiene	ND		ug/m³	3.31	3.1	EPA TO-15 Certifications:	NELAC-N	Y12058,NJDEP-Queens	10/12/2020 05:01	LLJ
75-09-2	Methylene chloride	ND		ug/m³	2.15	3.1	EPA TO-15 Certifications:	NELAC-N	10/11/2020 12:00 Y12058,NJDEP-Queens	10/12/2020 05:01	LLJ
127-18-4	Tetrachloroethylene	21.7		ug/m³	2.10	3.1	EPA TO-15		10/11/2020 12:00	10/12/2020 05:01	LLJ
							Certifications:	NELAC-N	Y12058,NJDEP-Queens		
156-60-5	trans-1,2-Dichloroethylene	ND		ug/m³	1.23	3.1	EPA TO-15 Certifications:	NELAC-N	10/11/2020 12:00 Y12058,NJDEP-Queens	10/12/2020 05:01	LLJ
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/m³	1.41	3.1	EPA TO-15 Certifications:	NELAC-N	10/11/2020 12:00 Y12058,NJDEP-Queens	10/12/2020 05:01	LLJ
79-01-6	Trichloroethylene	378		ug/m³	0.416	3.1	EPA TO-15			10/12/2020 05:01	LLJ
							Certifications:	NELAC-N	Y12058,NJDEP-Queens		
75-69-4	Trichlorofluoromethane (Freon 11)	ND		ug/m³	1.74	3.1	EPA TO-15 Certifications:	NELAC-N	10/11/2020 12:00 Y12058,NJDEP-Queens	10/12/2020 05:01	LLJ
75-01-4	Vinyl Chloride	ND		ug/m³	0.792	3.1	EPA TO-15 Certifications:	NELAC-N	10/11/2020 12:00 Y12058,NJDEP-Queens	10/12/2020 05:01	LLJ

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

ClientServices@

FAX (203) 357-0166

Page 8 of 17

Client Sample ID: UP-2 **York Sample ID:** 20J0419-03

Client Project ID Collection Date/Time Date Received York Project (SDG) No. Matrix 20J0419 77 Cornell Street Kingston, NY Soil Vapor October 7, 2020 11:30 am 10/08/2020

Volatile Organics, TO15 Chlorinated Targets

Log-in Notes: Sample Notes: TO-VAC

Sample Prepared by Method: EPA TO15 PREP

Reported to LOQ Date/Time Date/Time CAS No. Parameter Result Flag Units Dilution Reference Method Prepared Analyzed Analyst **Surrogate Recoveries** Result Acceptance Range

460-00-4 Surrogate: SURR: 84.7 % 70-130

 $p\hbox{-}Bromofluor obenzene$

Sample Information

Client Sample ID: EX-4 EFF **York Sample ID:** 20J0419-04

York Project (SDG) No. Collection Date/Time Client Project ID Matrix Date Received 20J0419 77 Cornell Street Kingston, NY Soil Vapor October 7, 2020 12:48 pm 10/08/2020

Volatile Organics, TO15 Chlorinated Targets

Log-in Notes: Sample Notes:

Sample Prepared by Method: EPA TO15 PREP

CAS No	. Parameter	Result	Flag Units	Reported to LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
71-55-6	1,1,1-Trichloroethane	4.28	ug/m³	1.71	3.138	EPA TO-15		10/11/2020 12:00	10/12/2020 05:59	LLJ
						Certifications:	NELAC-N	IY12058,NJDEP-Queens	s	
79-34-5	1,1,2,2-Tetrachloroethane	ND	ug/m³	2.15	3.138	EPA TO-15 Certifications:	NELAC-N	10/11/2020 12:00 Y12058,NJDEP-Queens	10/12/2020 05:59	LLJ
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND	ug/m³	2.40	3.138	EPA TO-15 Certifications:	NELAC-N	10/11/2020 12:00 Y12058,NJDEP-Queens	10/12/2020 05:59	LLJ
79-00-5	1,1,2-Trichloroethane	ND	ug/m³	1.71	3.138	EPA TO-15 Certifications:	NELAC-N	10/11/2020 12:00 Y12058,NJDEP-Queens	10/12/2020 05:59	LLJ
75-34-3	1,1-Dichloroethane	ND	ug/m³	1.27	3.138	EPA TO-15 Certifications:	NELAC-N	10/11/2020 12:00 Y12058,NJDEP-Queens	10/12/2020 05:59	LLJ
75-35-4	1,1-Dichloroethylene	ND	ug/m³	1.24	3.138	EPA TO-15 Certifications:	NELAC-N	10/11/2020 12:00 Y12058,NJDEP-Queens	10/12/2020 05:59	LLJ
120-82-1	1,2,4-Trichlorobenzene	ND	ug/m³	2.33	3.138	EPA TO-15 Certifications:	NELAC-N	10/11/2020 12:00 Y12058,NJDEP-Queens	10/12/2020 05:59	LLJ
95-50-1	1,2-Dichlorobenzene	ND	ug/m³	1.89	3.138	EPA TO-15 Certifications:	NELAC-N	10/11/2020 12:00 Y12058,NJDEP-Queens	10/12/2020 05:59	LLJ
107-06-2	1,2-Dichloroethane	ND	ug/m³	1.27	3.138	EPA TO-15 Certifications:	NELAC-N	10/11/2020 12:00 Y12058,NJDEP-Queens	10/12/2020 05:59	LLJ
78-87-5	1,2-Dichloropropane	ND	ug/m³	1.45	3.138	EPA TO-15 Certifications:	NELAC-N	10/11/2020 12:00 Y12058,NJDEP-Queens	10/12/2020 05:59	LLJ
76-14-2	1,2-Dichlorotetrafluoroethane	ND	ug/m³	2.19	3.138	EPA TO-15 Certifications:	NELAC-N	10/11/2020 12:00 Y12058,NJDEP-Queens	10/12/2020 05:59	LLJ
541-73-1	1,3-Dichlorobenzene	ND	ug/m³	1.89	3.138	EPA TO-15 Certifications:	NELAC-N	10/11/2020 12:00 Y12058,NJDEP-Queens	10/12/2020 05:59	LLJ
106-46-7	1,4-Dichlorobenzene	ND	ug/m³	1.89	3.138	EPA TO-15 Certifications:	NELAC-N	10/11/2020 12:00 Y12058,NJDEP-Queens	10/12/2020 05:59	LLJ
107-05-1	3-Chloropropene	ND	ug/m³	4.91	3.138	EPA TO-15 Certifications:	NELAC-N	10/11/2020 12:00 Y12058,NJDEP-Queens	10/12/2020 05:59	LLJ
100-44-7	Benzyl chloride	ND	ug/m³	1.62	3.138	EPA TO-15 Certifications:	NELAC-N	10/11/2020 12:00 Y12058,NJDEP-Queens	10/12/2020 05:59	LLJ
120 RES	EARCH DRIVE	STRATFORD, C	T 06615	1 32	-02 89th <i>A</i>			Y12058,NJDEP-Queens		

(203) 325-1371 ClientServices@ www.YORKLAB.com FAX (203) 357-0166 Page 9 of 17

Client Sample ID: EX-4 EFF

York Sample ID: 20J0419-04

<u>York Project (SDG) No.</u> <u>Client Project ID</u>

20J0419 77 Cornell Street Kingston, NY

<u>Matrix</u> Soil Vapor <u>Collection Date/Time</u> October 7, 2020 12:48 pm Date Received 10/08/2020

Volatile Organics, TO15 Chlorinated Targets

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA TO15 PREP

CAS No	o. Parameter	Result	Flag	Units	Reported to	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
75-27-4	Bromodichloromethane	ND		ug/m³	2.10	3.138	EPA TO-15 Certifications:	NELAC-NY	10/11/2020 12:00 /12058,NJDEP-Queens	10/12/2020 05:59	LLJ
56-23-5	Carbon tetrachloride	0.592		ug/m³	0.494	3.138	EPA TO-15		10/11/2020 12:00	10/12/2020 05:59	LLJ
							Certifications:	NELAC-N	Y12058,NJDEP-Queen	S	
108-90-7	Chlorobenzene	ND		ug/m³	1.44	3.138	EPA TO-15 Certifications:	NELAC-NY	10/11/2020 12:00 /12058,NJDEP-Queens	10/12/2020 05:59	LLJ
75-00-3	Chloroethane	ND		ug/m³	0.828	3.138	EPA TO-15 Certifications:	NELAC-NY	10/11/2020 12:00 (12058,NJDEP-Queens	10/12/2020 05:59	LLJ
67-66-3	Chloroform	3.83		ug/m³	1.53	3.138	EPA TO-15		10/11/2020 12:00	10/12/2020 05:59	LLJ
							Certifications:	NELAC-N	Y12058,NJDEP-Queen	S	
74-87-3	Chloromethane	1.75		ug/m³	0.648	3.138	EPA TO-15		10/11/2020 12:00	10/12/2020 05:59	LLJ
							Certifications:	NELAC-N	Y12058,NJDEP-Queen	S	
156-59-2	cis-1,2-Dichloroethylene	2.86		ug/m³	1.24	3.138	EPA TO-15		10/11/2020 12:00	10/12/2020 05:59	LLJ
							Certifications:	NELAC-N	Y12058,NJDEP-Queen	S	
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/m³	1.42	3.138	EPA TO-15 Certifications:	NELAC-NY	10/11/2020 12:00 /12058,NJDEP-Queens	10/12/2020 05:59	LLJ
75-71-8	Dichlorodifluoromethane	2.79		ug/m³	1.55	3.138	EPA TO-15		10/11/2020 12:00	10/12/2020 05:59	LLJ
							Certifications:	NELAC-N	Y12058,NJDEP-Queen	S	
87-68-3	Hexachlorobutadiene	ND		ug/m³	3.35	3.138	EPA TO-15 Certifications:	NELAC-NY	10/11/2020 12:00 /12058,NJDEP-Queens	10/12/2020 05:59	LLJ
75-09-2	Methylene chloride	ND		ug/m³	2.18	3.138	EPA TO-15 Certifications:	NELAC-NY	10/11/2020 12:00 /12058,NJDEP-Queens	10/12/2020 05:59	LLJ
127-18-4	Tetrachloroethylene	26.4		ug/m³	2.13	3.138	EPA TO-15		10/11/2020 12:00	10/12/2020 05:59	LLJ
							Certifications:	NELAC-N	Y12058,NJDEP-Queen	S	
156-60-5	trans-1,2-Dichloroethylene	ND		ug/m³	1.24	3.138	EPA TO-15 Certifications:	NELAC-NY	10/11/2020 12:00 /12058,NJDEP-Queens	10/12/2020 05:59	LLJ
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/m³	1.42	3.138	EPA TO-15 Certifications:	NELAC-NY	10/11/2020 12:00 /12058,NJDEP-Queens	10/12/2020 05:59	LLJ
79-01-6	Trichloroethylene	366		ug/m³	0.422	3.138	EPA TO-15		10/11/2020 12:00	10/12/2020 05:59	LLJ
							Certifications:	NELAC-N	Y12058,NJDEP-Queen	S	
75-69-4	Trichlorofluoromethane (Freon 11)	ND		ug/m³	1.76	3.138	EPA TO-15 Certifications:	NELAC-NY	10/11/2020 12:00 /12058,NJDEP-Queens	10/12/2020 05:59	LLJ
75-01-4	Vinyl Chloride	ND		ug/m³	0.802	3.138	EPA TO-15 Certifications:	NELAC-NY	10/11/2020 12:00 /12058,NJDEP-Queens	10/12/2020 05:59	LLJ
	Surrogate Recoveries	Result		Acce	otance Range						
460-00-4	Surrogate: SURR: p-Bromofluorobenzene	85.7 %			70-130						

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@

Page 10 of 17

Analytical Batch Summary

Batch ID:	BJ00632	Preparation Method:	EPA TO15 PREP	Prepared By:	AS

YORK Sample ID	Client Sample ID	Preparation Date	
20J0419-01	UP-5	10/11/20	
20J0419-02	UP-3	10/11/20	
20J0419-03	UP-2	10/11/20	
20J0419-04	EX-4 EFF	10/11/20	
BJ00632-BLK1	Blank	10/11/20	
BJ00632-BS1	LCS	10/11/20	
BJ00632-DUP1	Duplicate	10/11/20	

Volatile Organic Compounds in Air by GC/MS - Quality Control Data York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Blank (BJ00632-BLK1)				Prepared: 10	/11/2020 Analyzed: 10/12/202
1,1,1-Trichloroethane	ND	0.546	ug/m³		
1,1,2,2-Tetrachloroethane	ND	0.687	"		
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon	ND	0.766	"		
113)					
1,1,2-Trichloroethane	ND	0.546	"		
1,1-Dichloroethane	ND	0.405	"		
1,1-Dichloroethylene	ND	0.396	"		
1,2,4-Trichlorobenzene	ND	0.742	"		
1,2-Dichlorobenzene	ND	0.601	"		
1,2-Dichloroethane	ND	0.405	"		
1,2-Dichloropropane	ND	0.462	"		
1,2-Dichlorotetrafluoroethane	ND	0.699	"		
1,3-Dichlorobenzene	ND	0.601	"		
,4-Dichlorobenzene	ND	0.601	"		
3-Chloropropene	ND	1.57	"		
Benzyl chloride	ND	0.518	"		
Bromodichloromethane	ND	0.670	"		
Carbon tetrachloride	ND	0.157	"		
Chlorobenzene	ND	0.460	"		
Chloroethane	ND	0.264	"		
Chloroform	ND	0.488	"		
Chloromethane	ND	0.207	"		
cis-1,2-Dichloroethylene	ND	0.396	"		
cis-1,3-Dichloropropylene	ND	0.454	"		
Dichlorodifluoromethane	ND	0.495	"		
Hexachlorobutadiene	ND	1.07	"		
Methylene chloride	ND	0.695	"		
Tetrachloroethylene	ND	0.170	"		
rans-1,2-Dichloroethylene	ND	0.396	"		
rans-1,3-Dichloropropylene	ND	0.454	"		
Trichloroethylene	ND	0.134	"		
Frichlorofluoromethane (Freon 11)	ND	0.562	"		
Vinyl Chloride	ND	0.256	"		
Surrogate: SURR: p-Bromofluorobenzene	7.60		ppbv	10.0 76.0 72-118	
			PP -		

120 RESEARCH DRIVE STRATFORD, CT 06615 www.YORKLAB.com (203) 325-1371

132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@ Page 12 of 17

Volatile Organic Compounds in Air by GC/MS - Quality Control Data York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

LCS (BJ00632-BS1)					Prepared & Analyzed: 10/11/2020
1,1,1-Trichloroethane	10.2	ppbv	10.0	102	70-130
1,1,2,2-Tetrachloroethane	9.99	"	10.0	99.9	70-130
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon	9.29	"	10.0	92.9	70-130
113)					
,1,2-Trichloroethane	9.37	"	10.0	93.7	70-130
,1-Dichloroethane	9.33	"	10.0	93.3	70-130
1,1-Dichloroethylene	8.93	"	10.0	89.3	70-130
1,2,4-Trichlorobenzene	8.15	"	10.0	81.5	70-130
,2-Dichlorobenzene	11.6	"	10.0	116	70-130
1,2-Dichloroethane	9.21	"	10.0	92.1	70-130
,2-Dichloropropane	9.57	"	10.0	95.7	70-130
1,2-Dichlorotetrafluoroethane	10.5	"	10.0	105	70-130
1,3-Dichlorobenzene	8.68	"	10.0	86.8	70-130
,4-Dichlorobenzene	8.28	"	10.0	82.8	70-130
3-Chloropropene	9.87	"	10.0	98.7	70-130
Benzyl chloride	8.60	"	10.0	86.0	70-130
Bromodichloromethane	9.81	"	10.0	98.1	70-130
Carbon tetrachloride	9.75	"	10.0	97.5	70-130
Chlorobenzene	10.3	"	10.0	103	70-130
Chloroethane	10.1	"	10.0	101	70-130
Chloroform	9.63	"	10.0	96.3	70-130
Chloromethane	11.2	"	10.0	112	70-130
cis-1,2-Dichloroethylene	8.71	"	10.0	87.1	70-130
cis-1,3-Dichloropropylene	10.2	"	10.0	102	70-130
Dichlorodifluoromethane	10.7	"	10.0	107	70-130
Hexachlorobutadiene	10.1	"	10.0	101	70-130
Methylene chloride	11.1	"	10.0	111	70-130
Tetrachloroethylene	8.67	"	10.0	86.7	70-130
rans-1,2-Dichloroethylene	9.36	"	10.0	93.6	70-130
rans-1,3-Dichloropropylene	9.98	"	10.0	99.8	70-130
Trichloroethylene	9.49	"	10.0	94.9	70-130
Trichlorofluoromethane (Freon 11)	9.56	"	10.0	95.6	70-130
Vinyl Chloride	10.6	"	10.0	106	70-130

120 RESEARCH DRIVE STRATFORD, CT 06615 www.YORKLAB.com (203) 325-1371

12.5

 $Surrogate: SURR: p\hbox{-} Bromofluor obenzene$

72-118

Volatile Organic Compounds in Air by GC/MS - Quality Control Data York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Batch BJ00632 - EPA TO15 PREP

Duplicate (BJ00632-DUP1)	*Source sample: 20J	0419-04 (EX	(-4 EFF)		Prepared: 10/11/2020 Analyze	ed: 10/12/2020
1,1,1-Trichloroethane	4.28	1.71	ug/m³	4.28	0.00	25
,1,2,2-Tetrachloroethane	ND	2.15	"	ND		25
,1,2-Trichloro-1,2,2-trifluoroethane (Freon	ND	2.40	"	ND		25
13)						
,1,2-Trichloroethane	ND	1.71	"	ND		25
,1-Dichloroethane	ND	1.27	"	ND		25
,1-Dichloroethylene	ND	1.24	"	ND		25
,2,4-Trichlorobenzene	ND	2.33	"	ND		25
,2-Dichlorobenzene	ND	1.89	"	ND		25
,2-Dichloroethane	ND	1.27	"	ND		25
,2-Dichloropropane	ND	1.45	"	ND		25
,2-Dichlorotetrafluoroethane	ND	2.19	"	ND		25
,3-Dichlorobenzene	ND	1.89	"	ND		25
,4-Dichlorobenzene	ND	1.89	"	ND		25
-Chloropropene	ND	4.91	"	ND		25
enzyl chloride	ND	1.62	"	ND		25
romodichloromethane	ND	2.10	"	ND		25
arbon tetrachloride	0.592	0.494	"	0.592	0.00	25
hlorobenzene	ND	1.44	"	ND		25
hloroethane	ND	0.828	"	ND		25
Chloroform	3.98	1.53	"	3.83	3.92	25
Chloromethane	1.75	0.648	"	1.75	0.00	25
is-1,2-Dichloroethylene	2.86	1.24	"	2.86	0.00	25
is-1,3-Dichloropropylene	ND	1.42	"	ND		25
pichlorodifluoromethane	2.79	1.55	"	2.79	0.00	25
exachlorobutadiene	ND	3.35	"	ND		25
fethylene chloride	ND	2.18	"	ND		25
etrachloroethylene	26.6	0.532	"	26.4	0.803	25
ans-1,2-Dichloroethylene	ND	1.24	"	ND		25
rans-1,3-Dichloropropylene	ND	1.42	"	ND		25
richloroethylene	368	0.422	"	366	0.505	25
richlorofluoromethane (Freon 11)	1.41	1.76	"	1.59	11.8	25
inyl Chloride	ND	0.802	"	ND		25
urrogate: SURR: p-Bromofluorobenzene	8.56		ppbv	10.0 85.6	72-118	

120 RESEARCH DRIVE STRATFORD, CT 06615 132-02 89th AVENUE RICHMOND HILL, NY 11418 www.YORKLAB.com (203) 325-1371 FAX (203) 357-0166

ClientServices@ Page 14 of 17

120 RESEARCH DRIVE STRATFORD, CT 06615 www.YORKLAB.com (203) 325-1371

Sample and Data Qualifiers Relating to This Work Order

TO-VAC The final vacuum in the canister was less than -2 inches Hg vacuum. The time integrated sampling may be affected and not reflect proper sampling over the time period. The data user should take note.

Definitions and Other Explanations

 * Analyte i 	is not certified or the state of the samples	origination does not offer ce	ertification for the Analyte.
---------------------------------	--	-------------------------------	-------------------------------

ND NOT DETECTED - the analyte is not detected at the Reported to level (LOQ/RL or LOD/MDL)

RL REPORTING LIMIT - the minimum reportable value based upon the lowest point in the analyte calibration curve.

LIMIT OF QUANTITATION - the minimum concentration of a target analyte that can be reported within a specified degree of confidence. This is the LOO lowest point in an analyte calibration curve that has been subjected to all steps of the processing/analysis and verified to meet defined criteria. This is based upon NELAC 2009 Standards and applies to all analyses.

LIMIT OF DETECTION - a verified estimate of the minimum concentration of a substance in a given matrix that an analytical process can reliably detect. This is based upon NELAC 2009 Standards and applies to all analyses conducted under the auspices of EPA SW-846.

METHOD DETECTION LIMIT - a statistically derived estimate of the minimum amount of a substance an analytical system can reliably detect with a MDL 99% confidence that the concentration of the substance is greater than zero. This is based upon 40 CFR Part 136 Appendix B and applies only to EPA 600 and 200 series methods.

This indicates that the data for a particular analysis is reported to either the LOD/MDL, or the LOQ/RL. In cases where the "Reported to" is located above the LOD/MDL, any value between this and the LOQ represents an estimated value which is "J" flagged accordingly. This applies to volatile and semi-volatile target compounds only.

Not reported NR

LOD

RPD Relative Percent Difference

Wet The data has been reported on an as-received (wet weight) basis

Low Bias Low Bias flag indicates that the recovery of the flagged analyte is below the laboratory or regulatory lower control limit. The data user should take note that this analyte may be biased low but should evaluate multiple lines of evidence including the LCS and site-specific MS/MSD data to draw bias conclusions. In cases where no site-specific MS/MSD was requested, only the LCS data can be used to evaluate such bias.

High Bias flag indicates that the recovery of the flagged analyte is above the laboratory or regulatory upper control limit. The data user should take High Bias note that this analyte may be biased high but should evaluate multiple lines of evidence including the LCS and site-specific MS/MSD data to draw bias conclusions. In cases where no site-specific MS/MSD was requested, only the LCS data can be used to evaluate such bias.

Non-Dir. Non-dir. flag (Non-Directional Bias) indicates that the Relative Percent Difference (RPD) (a measure of precision) among the MS and MSD data is outside the laboratory or regulatory control limit. This alerts the data user where the MS and MSD are from site-specific samples that the RPD is high due to either non-homogeneous distribution of target analyte between the MS/MSD or indicates poor reproducibility for other reasons.

If EPA SW-846 method 8270 is included herein it is noted that the target compound N-nitrosodiphenylamine (NDPA) decomposes in the gas chromatographic inlet and cannot be separated from diphenylamine (DPA). These results could actually represent 100% DPA, 100% NDPA or some combination of the two. For this reason, York reports the combined result for n-nitrosodiphenylamine and diphenylamine for either of these compounds as a combined concentration as Diphenylamine.

If Total PCBs are detected and the target aroclors reported are "Not detected", the Total PCB value is reported due to the presence of either or both Aroclors 1262 and 1268 which are non-target aroclors for some regulatory lists.

2-chloroethylvinyl ether readily breaks down under acidic conditions. Samples that are acid preserved, including standards will exhibit breakdown. The data user should take note.

Certification for pH is no longer offered by NYDOH ELAP.

Semi-Volatile and Volatile analyses are reported down to the LOD/MDL, with values between the LOD/MDL and the LOQ being "J" flagged as estimated results.

For analyses by EPA SW-846-8270D, the Limit of Quantitation (LOQ) reported for benzidine is based upon the lowest standard used for calibration and is not a verified LOQ due to this compound's propensity for oxidative losses during extraction/concentration procedures and non-reproducible chromatographic performance.

STRATFORD, CT 06615 **RICHMOND HILL, NY 11418** 120 RESEARCH DRIVE 132-02 89th AVENUE FAX (203) 357-0166 ClientServices@ Page 16 of 17

www.YORKLAB.com (203) 325-1371

York Analytical Laboratories, Inc.

clientservices@yorklab.com

120 Research Drive 132-02 89th Ave Queens, Stratford, CT 06615 NY 11418

Field Chain-of-Custody Record - AIR

7050419 YORK Project No.

Turn-Around Time YORK Reg. Comp. Compared to the following Regulation(s): (please fill in) Page _____of__ Standard (5-7 Day) RUSH - Three Day RUSH - Next Day RUSH - Four Day RUSH - Two Day You Standard Excel EDD YOUR Project Number EQuIS (Standard) NYSDEC EQuIS Report / EDD Type (circle selections) NOTE: YORK's Standard Terms & Conditions are listed on the back side of this document This document serves as your written authorization for YORK to proceed with the analyses requested below. signature binds you to YORK's Standard Terms & Conditions. NJDEP Reduced Deliv. YOUR PO#: CT RCP DOA/DUE CT RCP NY ASP A Package NY ASP B Package Summary Report QA Report 7 Invoice To: Samples From Connecticut New Jersey New York Al - Indoor Ambient Air AO - Outdoor Amb. Air Air Matrix Codes AE - Vapor Extraction Well/ Report To: d by: (print your name above and sign below) www.yorklab.com Officery and region, All information must be composed in and the inter-INS, NECTIME YOUR Information

NJDEP SRP HazSite

NJDKQP

Other:

Pennsylvania

Other

AS - Soil Vapor/Sub-Slab

Sampling Media Reporting Units: ug/m³ 🗶 ppbv 🗶 ppmv Analysis Requested **Detection Limits Required** Flow Cont. ID 0830 5505 6878 6874 Please enter the following REQUIRED Field Data Canister ID Canister Vacuum After Sampling (in Hg) らろろ Canister Vacuum Before Sampling (in Hg) 3 0 0 0 0 Air Matrix す の AS Date/Time Sampled 10.01 10.02 10/1/20/08/20 346 133 133 Individual Certified Canisters: Batch Sample Identification 9 ハイン Comments:

22.2 5461 Tedlar Bag Lolete 16/0/hr ٥ 414sh Routine Survey 11.40 14/20 1945 0-2-20 10/00° 00° 00° 5.5H1 0e/8/01 10/2/22 17 of 17

6 Liter Canister

NYSDEC V1 Limits_

≤1 ug/m̃

ATTACHMENT D

THE OBAR GBR76 COMPACT RADIAL BLOWER

Based on 25 years of experience and 2 years of research and development, the patent pending GBR series of compact radial blowers provide the perfect combination of performance and design.

PERFORMANCE

- GBR76 SOE 16" WC @ 0 Max flow 155 CFM.
- GBR76 UD 40" WC @ 0 Max flow 195 CFM.
- Built in speed control to customize performance.
- Condensate bypass built in.
- 12 month warranty 40,000 hr sealed bearings.

GBR76 WITH ROOF MOUNT

DESIGN

- Our modular design means the blower and manifold assembly can be removed and replaced as a unit. This makes repairs cost effective and easy and allows contractors to upgrade systems simply by swapping assemblies.
- The GBR series is based on a bypass blower designed to handle combustible materials.
- The housing is not required to be air tight, so you can add gauges and alarms without compromising the system.
- Built in condensate bypass.
- Built in speed control.
- Quick disconnect electrical harness.
- All UL listed components including UL listed enclosure for outside use.
- Wall fastening lugs included.
- GBR series roof and wall mounts available to quickly configure the blowers for your installation while providing a custom built look.
- Compact design 16"x 14"x 8" weighing only 18 lbs.
- 3" schedule 40 inlet and exhaust.
- Universal Drive model accepts voltage from 120-240V without alteration

COST	GBR76 SOE	GBR76 UD
COMPLETE UNIT	\$1289.00	\$1489.00
3 YEAR WARRANTY	\$450.00	\$550.00

GBR76 SOE	0"	2"	4"	6"	8"	10"	12"	16"	Wattage
SOE 16	150	140	129	118	105	90	75	35	150-320
SOE 12	125	115	100	83	62	39	0		110-200
SOE 8	105	90	70	42	0				60-120
SOE 4	75	50	0						37-50

GBR SOE performance using built in potentiometer set at sealed vacuums of 16, 12, 8, and 4" WC

GBR76 UD	0"	10"	20"	30"	37"	Wattage
110V	195	158	118	63	20	700-870
220V	197	162	130	89	50	800-1100

Blower Specifications

Notes:

- Input Voltage Range: 108-132 Volts AC RMS, 50/60 Hz, single phase.
- Input Current: 6 amps AC RMS
- Operating Temperature (Ambient Air and Working Air): 0°C to 50°C
- Storage Temperature: -40°C to 85°C
- · Dielectric Testing: 1500 Volts AC RMS 60 Hz applied for one second between input pins and ground, 3mA leakage maximum.
- Speed Control Methods: PWM (Pulse Width Modulation) (1 kHz to 10 kHz)

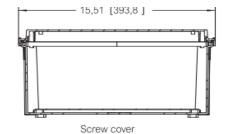
0 to 10 VDC speed control.

Mechanical: A potentiometer is available for speed control of the blower. The potentiometer can be preset for a specific speed. Access for speed adjustment located in motor housing.

- Approximate Weight: 4.8 Lbs. / 2.2 Kg
- Regulatory Agency Certification: Underwriters Laboratories Inc. UL507 Recognized under File E94403 and compliant under the CE Low Voltage Directive 2006/95/EC.
- Design Features: Designed to provide variable airflow for low NOx & CO emission in high efficiency gas fired combustion systems. Built with non-sparking materials. Blower housing assembly constructed of die cast aluminum. Impeller constructed from hardened aluminum. Rubber isolation mounts built into blower construction to dampen vibration within the motor. Two piece blower housing assembly sealed with O-ring gasket for combustion applications. Customer is responsible to check for any leakage once the blower is installed into the final application.
- Miscellaneous: Blower inlet, discharge, and all motor cooling inlet and discharge vents must not be obstructed. Motor ventilation air to be free of oils and other foreign particles, (i.e. breathing quality air). Blower is to be mounted so ventilation air cannot be re-circulated.

POWER CONNECTION: Blower connector, AMP Universal MATE-N-LOK, part no. 1-350943-0.

SPEED CONNECTION: Blower connector, Molex Mini-Fit Jr., part no. 39-30-3056.


Mating harnesses available upon request.

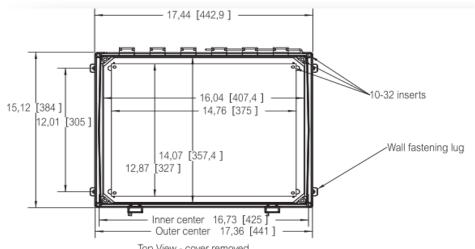
Enclosure Specifications

Ratings:

Ingress Protection (EN 60529): 66/67

Electrical insulation: Totally insulated

Halogen free (DIN/VDE 0472, Part 815): yes


UV resistance: UL 508

Flammability Rating (UL 746 C 5): complies with UL 508

Glow Wire Test (IEC 695-2-1) °C: 960

NEMA Class: UL Type 4, 4X, 6, 6P, 12 and 13

Certificates: Underwriters Laboratories

THE OBAR GBR89 COMPACT RADIAL BLOWER

Based on 25 years of experience and 2 years of research and development, the patent pending GBR series of compact radial blowers provide the perfect combination of performance and design.

PERFORMANCE

- GBR89 HA 14" WC at 100CFM max flow 500 CFM.
- Built in speed control to customize performance.
- Condensate bypass built in.
- 12 month warranty 40,000 hr sealed bearings.

GBR89 WITH ROOF MOUNT

DESIGN

- Our modular design means the blower and manifold assembly can be removed and replaced as a unit. This makes repairs cost effective and easy and allows contractors to upgrade systems simply by swapping assemblies.
- The GBR series is based on a bypass blower designed to handle combustible materials.
- The housing is not required to be air tight so you can add gauges and alarms without compromising the system.
- Built in condensate bypass.
- Built in speed control.
- Quick disconnect electrical harness.
- All UL listed components including UL listed enclosure for outside use.
- Wall fastening lugs included.
- GBR series roof and wall mounts available to quickly configure the blowers for your installation while providing a custom built look.
- Compact design 18"x 16"x 10" weighing only 18 lbs.
- 4" schedule 40 inlet and 6" schedule 40 exhaust.

1. COST GBR89 HA

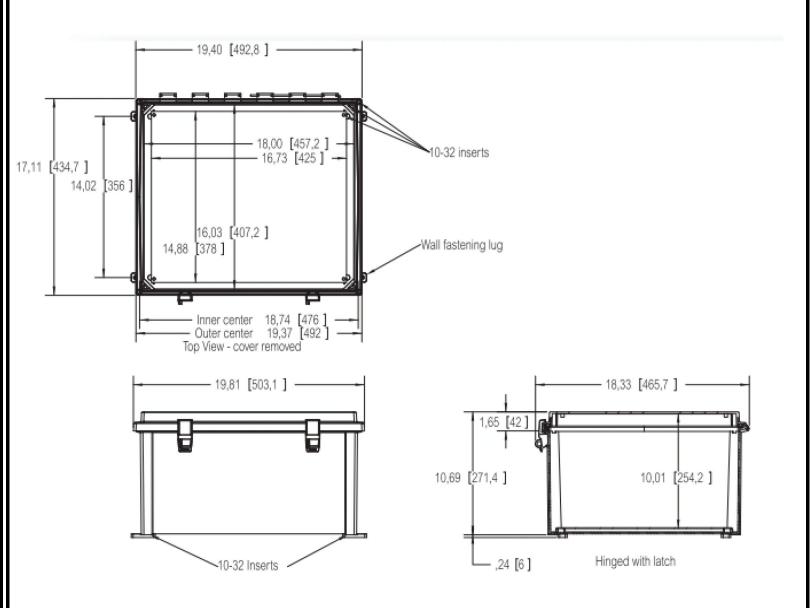
COMPLETE UNIT \$1,789.00 3 YEAR WARRANTY \$650.00

Enclosure Specifications Rating:

Ingress Protection (EN 60529): 66/67

Electrical insulation: Totally insulated

Halogen free (DIN/VDE 0472, Part 815): yes

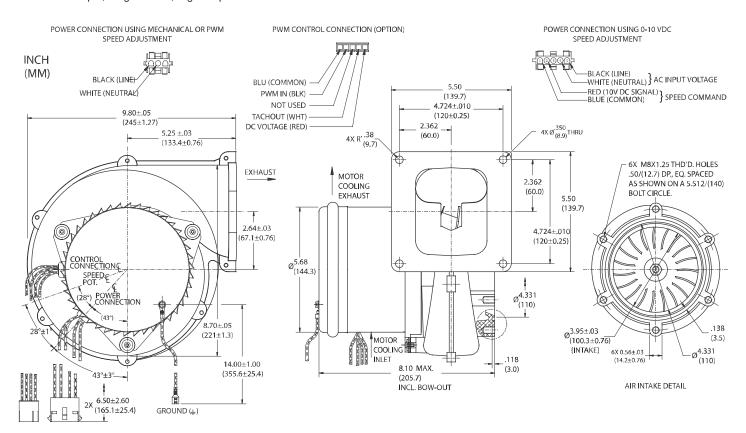

UV resistance: UL 508

Flammability Rating (UL 746 C 5): complies with UL 508

Glow Wire Test (IEC 695-2-1) °C: 960

NEMA Class: UL Type 4, 4X, 6, 6P, 12 and 13

Certificates: Underwriters Laboratories



High Voltage Brushless DC Blowers

Nautilair (TM) 8.9" (226mm) Variable Speed Blower

Nautilair

240 Volt AC Input, Single Phase, High Output

		Part/ Model Number						
Specification	Units	150240	150241	150242				
Speed Control	-	Mechanical	0-10 VDC	PWM				

Notes:

- Input Voltage Range: 216 264 Volts AC RMS, 50/60 Hz, single phase.
- Input Current: 10 amps AC RMS
- Operating Temperature (Ambient Air and Working Air): 0°C to 50°C
- Storage Temperature: -40°C to 85°C
- Dielectric Testing: 1800 Volts AC RMS 60 Hz applied for one second between input pins and ground, 3mA leakage maximum.
- Speed Control Methods: PWM (Pulse Width Modulation). Speed control input signal of 15 45 VDC @ 500 Hz 10 kHz, and tachometer output (2 Pulses / Revolution). Optional tachometer output (3 Pulses / Revolution).
- 0 to 10 VDC with a speed control input current of 5 mA to 20 mA at 10 VDC Input with multi-turn potentiometer set to minimum resistance (fully clockwise). Mechanical: A potentiometer is available for speed control of the blower. The potentiometer can be preset for a specific speed. Access for speed adjustment located in motor housing. 4-20mA speed control available.
- · Approximate Weight: 9.3 Lbs. / 4.2 Kg.
- Option Card available for Customization
- Regulatory Agency Certification: Underwriters Laboratories Inc. UL507 Recognized under File E94403 and CSA C22.2#133 under File LR43448
- Design Features: Designed to provide variable airflow for low NOx & CO emission in high efficiency gas fired combustion systems. Built with non-sparking materials. Blower housing assembly constructed of die cast aluminum. Impeller constructed from hardened aluminum. Rubber isolation mounts built into blower construction to dampen vibration within the motor. Two piece blower housing assembly sealed with O-ring gasket for combustion applications. Customer is responsible to check for any leakage once the blower is installed into the final application.
- Miscellaneous: Blower inlet, discharge, and all motor cooling inlet and discharge vents must not be obstructed. Motor ventilation air to be free of oils and other foreign particles, (i.e. breathing quality air). Blower is to be mounted so ventilation air cannot be re-circulated.

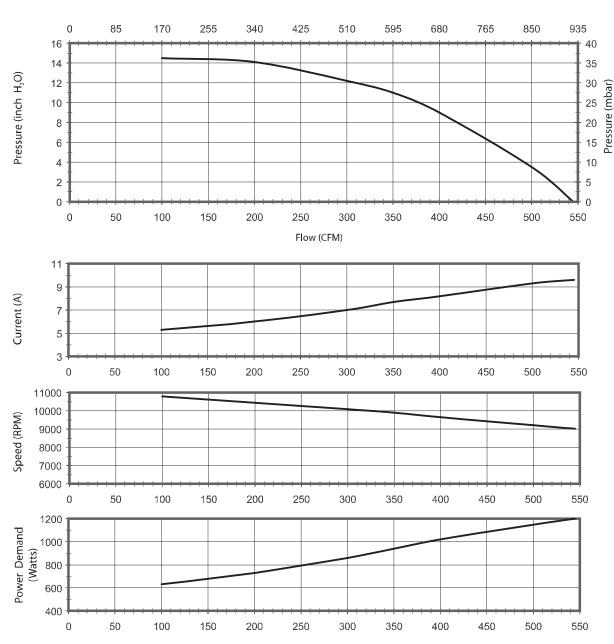
POWER CONNECTION (3 CAVITY): Blower connector, AMP Universal MATE-N-LOK, part no. 1-480701-0.

POWER CONNECTION (5 CAVITY): Blower connector, AMP Universal MATE-N-LOK, part no. 350810-1.

SPEED CONNECTION (5 CAVITY): Blower connector, Molex Mini-Fit Jr., part no. 39-01-4057.

Mating harnesses available upon request.

This document is for informational purposes only and should not be considered as a binding description of the products or their performance in all applications. The performance data on this page depicts typical performance under controlled laboratory conditions. AMETEK is not responsible for blowers driven beyond factory specified speed, temperature, pressure, flow or without proper alignment. Actual performance will vary depending on the operating environment and application. AMETEK products are not designed for and should not be used in medical life support applications. AMETEK reserves the right to revise its products without notification. The above characteristics represent standard products. For product designed to meet specific applications, contact AMETEK Technical & Industrial Products Sales department.

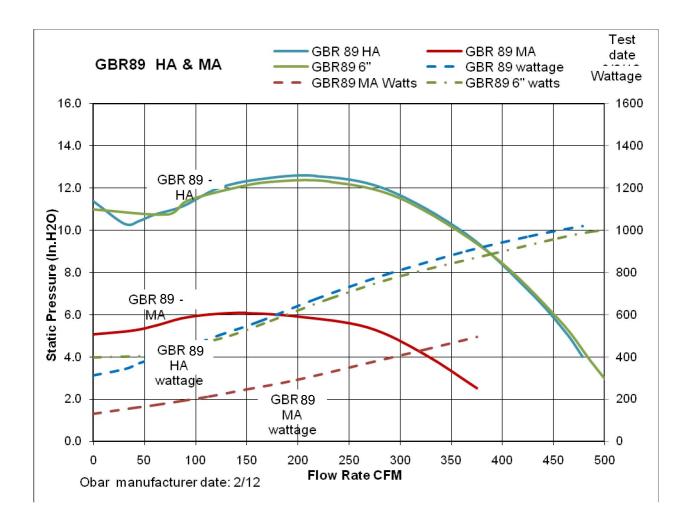


240 Volt AC Input, Single Phase, High Output

Typical Performance

Flow (m³/hr)

Data presented represents blower performance at STANDARD AIR DENSITY, .075 lb/ft³ (29.92" Hg, Sea Level, 68° F) Vacuum performance available upon request.


This document is for informational purposes only and should not be considered as a binding description of the products or their performance in all applications. The performance data on this page depicts typical performance under controlled laboratory conditions. AMETEK is not responsible for blowers driven beyond factory specified speed, temperature, pressure, flow or without proper alignment. Actual performance will vary depending on the operating environment and application. AMETEK products are not designed for and should not be used in medical life support applications. AMETEK reserves the right to revise its products without notification. The above characteristics represent standard products. For product designed to meet specific applications, contact AMETEK Technical & Industrial Products Sales department.

GBR89 HA tested at full voltage with 8 feet of 4" inlet (Blue Lines) and 6" Inlet (Green lines)

Maximum airflow with no exhaust piping and 8' of 6" piping is 529 CFM

GBR89 MA tested with speed control set to half the wattage consumption (Red Line)

PRODUCTS | MARKETS | RESOURCES | NEWS | ABOUT US | CATALOG | VIDEOS

CAREERS

BLOG

Products / Pressure / Differential Pressure

Series 2000 Magnehelic® Differential Pressure Gages

Indicate Positive, Negative or Differential, Accurate within 1%

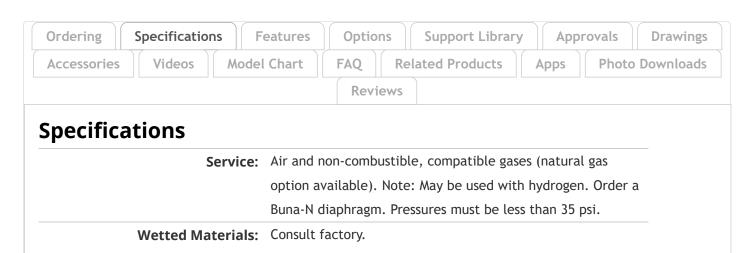
Used in Isolation/ Hospital Environments and Temporary Units (no power required)

Select the Series 2000 Magnehelic® Gage for a versatile low differential pressure gage with a wide choice of 81 models and 27 options to choose from. Using Dwyer's simple, frictionless Magnehelic® gage movement, it quickly indicates air or noncorrosive gas pressures--either positive, negative (vacuum) or differential. The design resists shock, vibration, over-pressures and is weatherproof to IP67. Select the -HA High Accuracy Magnehelic® Gage option for an accuracy within 1% of full scale, located below in the Product Configurator. Also included with the -HA option at no extra cost are a mirrored scale overlay and a 6 point calibration certificate.

Note: May be used with Hydrogen. Order a Buna-N diaphragm. Pressures must be less than 35

View All Product Images

I y 🖂 ...


SHARE

Please see Series AT22000 for ATEX approved.

California Residents: Click Here for Proposition 65 WARNING.

Product Applications

- Filter Monitoring Air Velocity with Dwyer Pitot Tube Blower Vacuum Monitoring
- Fan Pressure Indication Duct, Room or Building Pressures
- · Clean Room Positive Pressure Indication

psi.

020	Series 2000 Magnehelic® Differential	Pressure Gages is a versatile low differential pressure gauge with a wide choice of
	Housing:	Die cast aluminum case and bezel, with acrylic cover, Exterior
		finish is coated gray to withstand 168 hour salt spray
		corrosion test.
	Accuracy:	±2% (-HA model ±1) of FS (±3% (-HA ±1.5%) on -0, -100PA,
		-125PA, -10MM and $\pm 4\%$ (-HA $\pm 2\%$) on -00, -60PA, -6MM
		ranges), throughout range at 70°F (21.1°C).
	Pressure Limits:	-20 in Hg. to 15 psig.† (-0.677 bar to 1.034 bar); MP option:
		35 psig (2.41 bar), HP option: 80 psig (5.52 bar).
	Enclosure Rating:	IP67.
	Overpressure:	Relief plug opens at approximately 25 psig (1.72 bar),
		standard gages only. See Overpressure Protection note on
		Catalog page.
	Temperature Limits:	20 to 140°F (-6.67 to 60°C)20°F (-28°C) with low
		temperature option.
	Size:	4" (101.6 mm) diameter dial face.
	Mounting Orientation:	Diaphragm in vertical position. Consult factory for other
		position orientations.
	Process Connections:	1/8" female NPT duplicate high and low pressure taps - one
		pair side and one pair back.
	Weight:	1 lb 2 oz (510 g); MP & HP 2 lb 2 oz (963 g).
	Standard Accessories:	Two 1/8" NPT plugs for duplicate pressure taps, two 1/8" pipe
		thread to rubber tubing adapters and three flush mounting
		adapterswith screws. (Mounting and snap ring retainer
		substituted for three adapters in MP & HP gage accessories.)
	Agency Approval:	Meets the technical requirements of EU Directive 2011/65/EU
		(RoHS II). Note: -SP models not RoHS approved.
		Note: For applications with high cycle rate within gage total pressure rating, next higher rating is
		recommended. See Options Page.

ATTACHMENT E

January 18, 2019

Duna Real Estate Group

Hagai Barlev 1412 Broadway, Suite 2304 New York, NY 10018

Subject: Vapor Sampling Results Summary Report

Duna Real Estate Group 77 Cornell Street Kingston, New York 12401 PSG Proposal Number 19292485

Dear Mr. Barlev,

PSG Engineering, D.P.C. (PSG) recently conducted environmental services for the above-referenced property. Specifically, additional sub-slab soil gas sampling and concurrent indoor-air sampling was conducted to further assess contaminated sub-slab soil vapor conditions as well as assess indoor air conditions on the first floor of the subject Site building.

Project History

PSG completed a *Phase I Environmental Site Assessment Report* (Phase I), dated November 12, 2018, prepared on behalf of Duna Real Estate Group. According to available historical sources, the subject property was formerly developed with residences on the southern portion as early as 1899 and developed with the current four-story, mixed-use structure in 1916. The residences were demolished by 1978 and the southern portion was developed with a parking lot. The four-story building was occupied by garment manufacturing tenants from the time of initial development until at least 1979, and subsequently was occupied by various light industrial, office and retail tenants.

The Phase I identified the following three recognized environmental concerns (RECs) associated with the subject property. Former operations including shirt manufacturing and dry cleaning on-Site. A suspect vent pipe located along the eastern side of the building, which doesn't obviously correspond with a former heating oil UST on the property. And a former 5,000-gallon No.2 fuel oil underground storage tank (UST) which was excavated and properly removed from the Site and was granted a letter of No Further Action (NFA) in October 2010.

To evaluate the Phase I identified RECs, PSG completed a *Phase II Subsurface Investigation Report* (Phase II), dated January 7, 2019, prepared on behalf of Duna Real Estate Group. The main objective of the investigation was to identify the location of on-site underground storage tanks (USTs), former tank holds, and/or other associated features and to evaluate the potential impact of petroleum hydrocarbons,

Vapor Sampling Results Summary report Duna Real Estate Group 77 Cornell Street Kingston, NY Partner Proposal Number 18292306 January 18, 2019 Page | 2

volatile organic compounds (VOCs), and/or polynuclear aromatic hydrocarbons (PAHs) to soil, groundwater and/or soil gas as a consequence of a release or releases from the historic operations and suspected/former USTs. Based on the geophysical survey, and information provided by subject property management, the scope of work was revised to include only interior sub-slab soil gas samples. Regulatory criteria and/or matrix exceedances of trichloroethylene (TCE) and tetrachloroethylene (PCE) were detected in sub-slab soil gas samples at both properties. Based on PSG's recommendation for additional investigation, a proposal for additional soil vapor and indoor air assessment was prepared.

The scope of work approved by Duna Real Estate Group was formulated and executed to effectively evaluate soil gas and indoor air conditions at the subject building to assess potential pre-existing conditions, conduct a receptor risk analysis and ultimately determine if a pathway exists from the subslab to the indoor air. Additionally, the site visit would allow Partner to gather enough information to be able to prepare a SSDS Installation proposal.

Scope of Work Completed

- Coordination with Duna Real Estate Group and the current property owner to acquire the necessary Site access to complete the building assessment and necessary sampling activities.
- Portal-to-portal mobilization to the property for the proposed scope of work.
- Day-1: Thorough building assessment including all first-floor spaces, basements and crawl spaces and roof-top.
- Day-1: Deploy four 6-Liter Summa Canisters for the 24-hour collection of indoor air samples. Samplers shall be placed in the four most commonly occupied spaces of the first floor.
- Day-1: Install one sub-slab soil vapor sampling point in the central staircase portion of the building first floor and collect a 30-minute 1-Liter Summa Canister vapor sample.
- Day-2: Retrieve the four 6-Liter 24-hour indoor air and ambient out-door air Summa Canisters
- Day-2: Demobilize from the site and submit the sample canisters to the laboratory for expedited analysis with 48-hour turnaround time.

Results & Interpretation

The observations and laboratory analytical results of this scope of work indicate that a contaminated vapor intrusion pathway from the subject building sub-slab to the indoor first-floor occupied space exists. Specifically, the highest concentration of Trichloroethylene (TCE) present in the sub-slab soil gas sample "SSSG-MIDSTAIR" was detected at 115 micrograms per cubic meter (ug/m³). Several previous sub-slab soil gas samples previously collected during Phase II activities revealed concentrations of TCE ranging from 5.86 – 88.1 ug/m³. A concentration of TCE of 2.57 ug/m³ was detected in sample "Unit 109" which is located in the first-floor building commercial space. The Unit 109 sample concentration of TCE of 2.57 ug/m³ is above the New York State Department of Health Guideline for Indoor Air which requires additional investigation or mitigation, but is below the NYSDOH Immediate Action Level of 20ug/m³ for TCE.

Vapor Sampling Results Summary report Duna Real Estate Group 77 Cornell Street Kingston, NY Partner Proposal Number 18292306 January 18, 2019 Page | 3

When the results of the sub-slab soil gas samples are compared with the indoor air samples using the NYSDOH Soil Vapor/Indoor Air Matrix A Dated May 2017 which includes the assigned analyte TCE, the Matrix identifies the recommendation to "Mitigate" in this particular scenario where TCE is "60ug/m³ and above" in sub-slab vapor and "1ug/m³ and above" in indoor air. The tabulated results of all soil gas and indoor air concentrations are provided on the attached table. Sample locations are indicated on the attached Figure. The laboratory analytical results and the NYSDOH Decision Matrices are also attached for reference.

Based on these results and a thorough building assessment, Partner recommends that a mitigation system, i.e. Sub-Slab Depressurization System (SSDS) be installed to address the presence of sub-slab soil vapor contamination and associated vapor intrusion into the breathing space of the building.

Signatures of Environmental Professionals

If you have any questions, please do not hesitate to contact Levi Langevin at (732) 759-3431 or Sarah Fonseca at 646-863-8537.

Sincerely,

Levi Langevin Project Manager Sarah Fonseca Principal

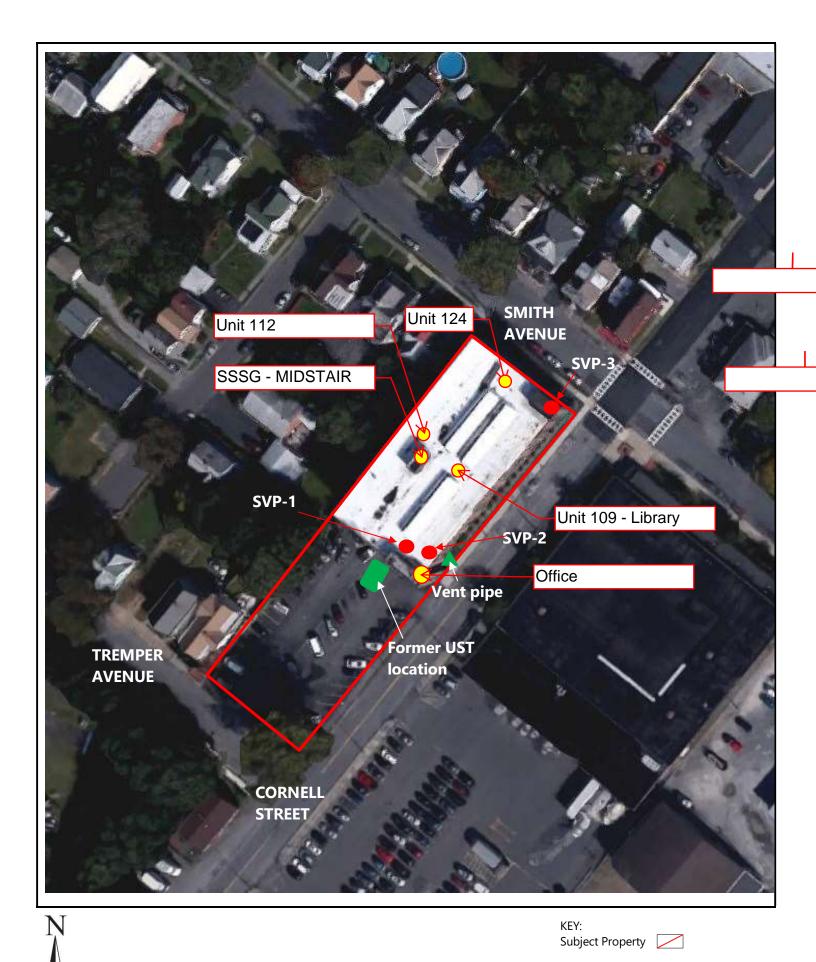
Table 1: Soil Gas/Indoor Air Sample Laboratory Results 77 Cornell Street Kingston, New York Partner Project Number 18-228431.6

December 2018 - January 2019

EPA Method						VOCs via	TO-15				
Units						(ug/m³)					
Sample Type				Soil \	/apor		Air				
						SSSG-					
Sample Name			SVP-1 (SV)	SVP-2 (SV)	SVP-3 (SV)	MIDSTAIR (SV)	Ambient (IA)	Office (IA)	Unit 124 (IA)	Unit 112 (IA)	Unit 109 (IA)
Sample Date			12/12/2018	12/12/2018	12/12/2018	1/14/2019	1/15/2019	1/16/2019	1/17/2019	1/18/2019	1/19/2019
Analyte	NYSDOH Guideline (IA)										
1,1-Dichloroethene (DCE)			<1.59	<1.59	<0.793	<0.793	<0.793	<0.793	<0.793	<0.793	<0.793
1,1,1-Trichloroethane			<2.18	<2.18	3.23	<1.09	<1.09	<1.09	<1.09	<1.09	<1.09
1,2,4-Trimethylbenzene			2.53	<1.97	<0.983	<0.982	<0.982	<0.982	<0.982	<0.982	1.62
1,3-Butadiene			1.94	<0.885	<0.442	<4.43	<4.43	<4.43	<4.43	<4.43	<4.43
2-Butanone			27.2	3.36	<1.47	<3.69	<3.69	<3.69	<3.69	<3.69	3.73
2-Hexanone			4.01	<1.64	<0.82	<5.11	<5.11	<5.11	<5.11	<5.11	<5.11
Acetone			233	47	9.38	6.53	3.07	9.98	7.07	9.34	34.2
Benzene			4.63	<1.28	< 0.639	0.644	1.36	1.4	1.16	0.993	1.31
Bromodichloromethane			3.03	2.95	<1.34	<1.34	<1.34	<1.34	<1.34	<1.34	<1.34
Carbon Tetrachloride			<2.52	<2.52	<1.26	<1.26	<1.26	<1.26	<1.26	<1.26	<1.26
Chloroform			625	625	2.38	< 0.973	< 0.973	< 0.973	<0.973	< 0.973	< 0.973
Chloromethane			1.43	<0.826	<0.413	<0.413	0.71	1.12	0.664	0.824	0.842
cis-1,2-Dichloroethene (DCE)			<1.59	<1.59	<0.793	2.37	<0.793	<0.793	<0.793	<0.793	<0.793
Dichlorodifluoromethane			2.18	2.41	2.17	1.27	1.33	1.66	1.38	1.27	1.3
Ethyl Alcohol			55.4	<18.8	<9.42	15.3	11.1	53.1	60	21.7	20.3
Ethylbenzene			3.18	<1.74	<0.869	< 0.867	< 0.867	< 0.867	< 0.867	< 0.867	<0.867
iso-Propyl Alcohol			19.2	5.92	6.24	3.4	<3.07	6.4	14.8	4.95	59
Methylene Chloride	60		<3.47	<3.47	<1.74	<0.694	< 0.694	< 0.694	<0.694	0.886	1.26
o-Xylene			1.88	<1.74	<0.869	< 0.867	< 0.867	< 0.867	<0.867	< 0.867	1.06
p/m-Xylene			4.07	<3.47	<1.74	<1.73	<1.73	<1.73	<1.73	<1.73	3.03
Styrene			22.4	<1.7	<0.852	<0.851	< 0.851	<0.851	<0.851	< 0.851	<0.851
tert-Butyl Alcohol			3.64	<3.03	<1.52	NA	NA	NA	NA	NA	NA
Tetrachloroethene	30	300	46.3	17.9	39.5	12.6	<1.36	<1.36	<1.36	<1.36	<1.36
Tetrahydrofuran			5.6	<2.95	<1.47	<0.590	<0.590	0.834	<0.590	<0.590	<0.590
Toluene			7.05	<1.51	1.77	20.1	1.72	3.67	1.68	5.52	19.7
Trichloroethene (TCE)	2	20	15.2	5.86	88.1	115	<1.07	<1.07	<1.07	<1.07	2.57
Vinyl Chloride			<1.02	<1.02	<0.511	<0.511	<0.511	<0.511	<0.511	<0.511	<0.511

Notes:

VOCs = volatile organic compounds


EPA = United States Environmental Protection Agency

ug/m3 = micrograms per cubic meter

< = not detected above indicated laboratory Method Detection Limit (MDL)

-- = Not established

NA = Not analyzed

ANALYTICAL REPORT

January 17, 2019

Partner Engineering & Science - NJ

Sample Delivery Group: L1061489

Samples Received: 01/16/2019

Project Number: 19292485

Description: Kingston, NY

Site: THE SHIRT FACTORY

Report To: Mr. Levi Langevin

611 Industrial Way W

Eatontown, NJ 07724

Entire Report Reviewed By:

T. Alan Harvill Project Manager

Hamill

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace National is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
OFFICE L1061489-01	5
UNIT 124 L1061489-02	7
UNIT 112 L1061489-03	9
UNIT 109 L1061489-04	11
AMBIENT L1061489-05	13
SSSG-MIDSTAIR L1061489-06	15
Qc: Quality Control Summary	17
Volatile Organic Compounds (MS) by Method TO-15	17
GI: Glossary of Terms	21
Al: Accreditations & Locations	22
Sc: Sample Chain of Custody	23

			Collected by	Collected date/time	Received date/time
OFFICE L1061489-01 Air			levi langevin	01/15/19 08:32	01/16/19 08:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Volatile Organic Compounds (MS) by Method TO-15	WG1224503	1	01/17/19 10:21	01/17/19 10:21	AMC
			Collected by	Collected date/time	Received date/time
UNIT 124 L1061489-02 Air			levi langevin	01/15/19 08:37	01/16/19 08:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Volatile Organic Compounds (MS) by Method TO-15	WG1224503	1	01/17/19 11:10	01/17/19 11:10	AMC
			Collected by	Collected date/time	Received date/time
UNIT 112 L1061489-03 Air			levi langevin	01/15/19 08:38	01/16/19 08:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Volatile Organic Compounds (MS) by Method TO-15	WG1224503	1	01/17/19 11:57	01/17/19 11:57	AMC
			Collected by	Collected date/time	Received date/time
UNIT 109 L1061489-04 Air			levi langevin	01/15/19 08:35	01/16/19 08:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Volatile Organic Compounds (MS) by Method TO-15	WG1224503	1	01/17/19 12:49	01/17/19 12:49	AMC
			Collected by	Collected date/time	Received date/time
AMBIENT L1061489-05 Air			levi langevin	01/15/19 08:30	01/16/19 08:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Volatile Organic Compounds (MS) by Method TO-15	WG1224503	1	01/17/19 13:37	01/17/19 13:37	AMC
			Collected by	Collected date/time	Received date/time
SSSG-MIDSTAIR L1061489-06 Air			levi langevin	01/14/19 12:06	01/16/19 08:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
			-1 - 4 - /4:	-1 - 4 - /k*	

WG1224503

Partner Engineering & Science - NJ

Volatile Organic Compounds (MS) by Method TO-15

date/time

01/17/19 14:24

date/time

01/17/19 14:24

AMC

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Project Manager

ONE LAB. NATIONWIDE.

Collected date/time: 01/15/19 08:32

1061489

	CAS #	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch
Analyte			ppbv	ug/m3	ppbv	ug/m3			
Acetone	67-64-1	58.10	1.25	2.97	4.20	9.98		1	WG1224503
Allyl chloride	107-05-1	76.53	0.200	0.626	ND	ND		1	WG1224503
Benzene	71-43-2	78.10	0.200	0.639	0.439	1.40		1	WG1224503
Benzyl Chloride	100-44-7	127	0.200	1.04	ND	ND		1	WG1224503
Bromodichloromethane	75-27-4	164	0.200	1.34	ND	ND		1	WG1224503
Bromoform	75-25-2	253	0.600	6.21	ND	ND		1	WG1224503
Bromomethane	74-83-9	94.90	0.200	0.776	ND	ND		1	WG1224503
1,3-Butadiene	106-99-0	54.10	2.00	4.43	ND	ND		1	WG1224503
Carbon disulfide	75-15-0	76.10	0.200	0.622	ND	ND		1	WG1224503
Carbon tetrachloride	56-23-5	154	0.200	1.26	ND	ND		1	WG1224503
Chlorobenzene	108-90-7	113	0.200	0.924	ND	ND		1	WG1224503
Chloroethane	75-00-3	64.50	0.200	0.528	ND	ND		1	WG1224503
Chloroform	67-66-3	119	0.200	0.973	ND	ND		1	WG1224503
Chloromethane	74-87-3	50.50	0.200	0.413	0.542	1.12		1	WG1224503
2-Chlorotoluene	95-49-8	126	0.200	1.03	ND	ND		1	WG1224503
Cyclohexane	110-82-7	84.20	0.200	0.689	ND	ND		1	WG1224503
Dibromochloromethane	124-48-1	208	0.200	1.70	ND	ND		1	WG1224503
1,2-Dibromoethane	106-93-4	188	0.200	1.54	ND	ND		1	WG1224503
1,2-Dichlorobenzene	95-50-1	147	0.200	1.20	ND	ND		1	WG1224503
1,3-Dichlorobenzene	541-73-1	147	0.200	1.20	ND	ND		1	WG1224503
1,4-Dichlorobenzene	106-46-7	147	0.200	1.20	ND	ND		1	WG1224503
1,2-Dichloroethane	107-06-2	99	0.200	0.810	ND	ND		1	WG1224503
1,1-Dichloroethane	75-34-3	98	0.200	0.802	ND	ND		1	WG1224503
1,1-Dichloroethene	75-35-4	96.90	0.200	0.793	ND	ND		1	WG1224503
cis-1,2-Dichloroethene	156-59-2	96.90	0.200	0.793	ND	ND		1	WG1224503
trans-1,2-Dichloroethene	156-60-5	96.90	0.200	0.793	ND	ND		1	WG1224503
1,2-Dichloropropane	78-87-5	113	0.200	0.924	ND	ND		1	WG1224503
cis-1,3-Dichloropropene	10061-01-5	111	0.200	0.908	ND	ND		1	WG1224503
trans-1,3-Dichloropropene	10061-01-3	111	0.200	0.908	ND	ND		1	WG1224503
1,4-Dioxane	123-91-1	88.10	0.200	0.721	ND	ND		1	WG1224503 WG1224503
Ethanol	64-17-5	46.10	0.630	1.19	28.2	53.1	13	1	WG1224503 WG1224503
Ethylbenzene	100-41-4	106	0.030	0.867	ND	ND	<u>J3</u>	1	WG1224503 WG1224503
•	622-96-8	120	0.200	0.867	ND	ND		1	
4-Ethyltoluene Trichlorofluoromethane	75-69-4	137.40	0.200	1.12	0.207	1.16		1	WG1224503
		120.92						1	WG1224503
Dichlorodifluoromethane	75-71-8		0.200	0.989	0.335	1.66		1	WG1224503
1,1,2-Trichlorotrifluoroethane	76-13-1	187.40	0.200	1.53	ND	ND		1	WG1224503
1,2-Dichlorotetrafluoroethane	76-14-2	171	0.200	1.40	ND	ND		1	WG1224503
Heptane	142-82-5	100	0.200	0.818	ND	ND		1	WG1224503
Hexachloro-1,3-butadiene	87-68-3	261	0.630	6.73	ND	ND		1	WG1224503
n-Hexane	110-54-3	86.20	0.200	0.705	0.248	0.875		1	WG1224503
Isopropylbenzene	98-82-8	120.20	0.200	0.983	ND	ND		1	WG1224503
Methylene Chloride	75-09-2	84.90	0.200	0.694	ND	ND		1	WG1224503
Methyl Butyl Ketone	591-78-6	100	1.25	5.11	ND	ND		1	WG1224503
2-Butanone (MEK)	78-93-3	72.10	1.25	3.69	ND	ND		1	WG1224503
4-Methyl-2-pentanone (MIBK)	108-10-1	100.10	1.25	5.12	ND	ND		1	WG1224503
Methyl methacrylate	80-62-6	100.12	0.200	0.819	ND	ND		1	WG1224503
MTBE	1634-04-4	88.10	0.200	0.721	ND	ND		1	WG1224503
Naphthalene	91-20-3	128	0.630	3.30	ND	ND		1	WG1224503
2-Propanol	67-63-0	60.10	1.25	3.07	2.60	6.40		1	WG1224503
Propene	115-07-1	42.10	0.400	0.689	ND	ND		1	WG1224503
Styrene	100-42-5	104	0.200	0.851	ND	ND		1	WG1224503
1,1,2,2-Tetrachloroethane	79-34-5	168	0.200	1.37	ND	ND		1	WG1224503
Tetrachloroethylene	127-18-4	166	0.200	1.36	ND	ND		1	WG1224503
Tetrahydrofuran	109-99-9	72.10	0.200	0.590	0.283	0.834		1	WG1224503
Toluene	108-88-3	92.10	0.200	0.753	0.974	3.67		1	WG1224503
	120-82-1	181	0.630	4.66	ND	ND		1	WG1224503

ONE LAB. NATIONWIDE.

Collected date/time: 01/15/19 08:32

L1061489

	CAS #	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch
Analyte			ppbv	ug/m3	ppbv	ug/m3			
1,1,1-Trichloroethane	71-55-6	133	0.200	1.09	ND	ND		1	WG1224503
1,1,2-Trichloroethane	79-00-5	133	0.200	1.09	ND	ND		1	WG1224503
Trichloroethylene	79-01-6	131	0.200	1.07	ND	ND		1	WG1224503
1,2,4-Trimethylbenzene	95-63-6	120	0.200	0.982	ND	ND		1	WG1224503
1,3,5-Trimethylbenzene	108-67-8	120	0.200	0.982	ND	ND		1	WG1224503
2,2,4-Trimethylpentane	540-84-1	114.22	0.200	0.934	ND	ND		1	WG1224503
Vinyl chloride	75-01-4	62.50	0.200	0.511	ND	ND		1	WG1224503
Vinyl Bromide	593-60-2	106.95	0.200	0.875	ND	ND		1	WG1224503
Vinyl acetate	108-05-4	86.10	0.200	0.704	ND	ND		1	WG1224503
m&p-Xylene	1330-20-7	106	0.400	1.73	ND	ND		1	WG1224503
o-Xylene	95-47-6	106	0.200	0.867	ND	ND		1	WG1224503
(S) 1,4-Bromofluorobenzene	460-00-4	175	60.0-140		95.2				WG1224503

ONE LAB. NATIONWIDE.

Collected date/time: 01/15/19 08:37

L1061489

Volatile Organic Compounds (MS) by Method TO-15

	CAS#	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch
Analyte			ppbv	ug/m3	ppbv	ug/m3			_
Acetone	67-64-1	58.10	1.25	2.97	2.97	7.07		1	WG1224503
Allyl chloride	107-05-1	76.53	0.200	0.626	ND	ND		1	WG1224503
Benzene	71-43-2	78.10	0.200	0.639	0.363	1.16		1	WG1224503
Benzyl Chloride	100-44-7	127	0.200	1.04	ND	ND		1	WG1224503
Bromodichloromethane	75-27-4	164	0.200	1.34	ND	ND		1	WG1224503
Bromoform	75-25-2	253	0.600	6.21	ND	ND		1	WG1224503
Bromomethane	74-83-9	94.90	0.200	0.776	ND	ND		1	WG1224503
1,3-Butadiene	106-99-0	54.10	2.00	4.43	ND	ND		1	WG1224503
Carbon disulfide	75-15-0	76.10	0.200	0.622	ND	ND		1	WG1224503
Carbon tetrachloride	56-23-5	154	0.200	1.26	ND	ND		1	WG1224503
Chlorobenzene	108-90-7	113	0.200	0.924	ND	ND		1	WG1224503
Chloroethane	75-00-3	64.50	0.200	0.528	ND	ND		1	WG1224503
Chloroform	67-66-3	119	0.200	0.973	ND	ND		1	WG1224503
Chloromethane	74-87-3	50.50	0.200	0.413	0.322	0.664		1	WG1224503
2-Chlorotoluene	95-49-8	126	0.200	1.03	ND	ND		1	WG1224503
Cyclohexane	110-82-7	84.20	0.200	0.689	ND	ND		1	WG1224503
Dibromochloromethane	124-48-1	208	0.200	1.70	ND	ND		1	WG1224503
1,2-Dibromoethane	106-93-4	188	0.200	1.54	ND	ND		1	WG1224503
1,2-Dichlorobenzene	95-50-1	147	0.200	1.20	ND	ND		1	WG1224503
1,3-Dichlorobenzene	541-73-1	147	0.200	1.20	ND	ND		1	WG1224503
1,4-Dichlorobenzene	106-46-7	147	0.200	1.20	ND	ND		1	WG1224503
1,2-Dichloroethane	107-06-2	99	0.200	0.810	ND	ND		1	WG1224503
1,1-Dichloroethane	75-34-3	98	0.200	0.802	ND	ND		1	WG1224503
1,1-Dichloroethene	75-34-3 75-35-4	96.90	0.200	0.793	ND	ND		1	WG1224503 WG1224503
cis-1,2-Dichloroethene	156-59-2	96.90	0.200	0.793	ND	ND		1	WG1224503 WG1224503
trans-1,2-Dichloroethene	156-60-5	96.90	0.200	0.793	ND ND	ND ND		1	WG1224503 WG1224503
	78-87-5	113	0.200	0.793	ND	ND		1	
1,2-Dichloropropane	10061-01-5		0.200	0.924	ND ND	ND ND		1	WG1224503
cis-1,3-Dichloropropene	10061-01-5	111 111	0.200	0.908	ND	ND		1	WG1224503
trans-1,3-Dichloropropene 1,4-Dioxane	123-91-1	88.10	0.200	0.908	ND ND	ND ND		1	WG1224503
•	64-17-5	46.10			31.8		10		WG1224503
Ethanol			0.630 0.200	1.19 0.867	ND	60.0 ND	<u>J3</u>	1	WG1224503 WG1224503
Ethylbenzene 4 Ethylbenzene	100-41-4 622-96-8	106							
4-Ethyltoluene		120	0.200	0.982	ND	ND		1	WG1224503
Trichlorofluoromethane	75-69-4	137.40	0.200	1.12	0.213	1.20		1	WG1224503
Dichlorodifluoromethane	75-71-8	120.92	0.200	0.989	0.280	1.38		1	WG1224503
1,1,2-Trichlorotrifluoroethane	76-13-1	187.40	0.200	1.53	ND	ND		1	WG1224503
1,2-Dichlorotetrafluoroethane	76-14-2	171	0.200	1.40	ND	ND		1	WG1224503
Heptane	142-82-5	100	0.200	0.818	ND	ND		1	WG1224503
Hexachloro-1,3-butadiene	87-68-3	261	0.630	6.73	ND	ND		1	WG1224503
n-Hexane	110-54-3	86.20	0.200	0.705	ND	ND		1	WG1224503
Isopropylbenzene	98-82-8	120.20	0.200	0.983	ND	ND		1	WG1224503
Methylene Chloride	75-09-2	84.90	0.200	0.694	ND	ND		1	WG1224503
Methyl Butyl Ketone	591-78-6	100	1.25	5.11	ND	ND		1	WG1224503
2-Butanone (MEK)	78-93-3	72.10	1.25	3.69	ND	ND		1	WG1224503
4-Methyl-2-pentanone (MIBK)	108-10-1	100.10	1.25	5.12	ND	ND		1	WG1224503
Methyl methacrylate	80-62-6	100.12	0.200	0.819	ND	ND		1	WG1224503
MTBE	1634-04-4	88.10	0.200	0.721	ND	ND		1	WG1224503
Naphthalene	91-20-3	128	0.630	3.30	ND	ND		1	WG1224503
2-Propanol	67-63-0	60.10	1.25	3.07	6.04	14.8		1	WG1224503
Propene	115-07-1	42.10	0.400	0.689	ND	ND		1	WG1224503
Styrene	100-42-5	104	0.200	0.851	ND	ND		1	WG1224503
1,1,2,2-Tetrachloroethane	79-34-5	168	0.200	1.37	ND	ND		1	WG1224503
Tetrachloroethylene	127-18-4	166	0.200	1.36	ND	ND		1	WG1224503
Tetrahydrofuran	109-99-9	72.10	0.200	0.590	ND	ND		1	WG1224503
Toluene	108-88-3	92.10	0.200	0.753	0.445	1.68		1	WG1224503
1,2,4-Trichlorobenzene	120-82-1	181	0.630	4.66	ND	ND		1	WG1224503

³Ss

Cn

СQс

GI

³Sc

ONE LAB. NATIONWIDE.

Collected date/time: 01/15/19 08:37

L1061489

	CAS #	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch
Analyte			ppbv	ug/m3	ppbv	ug/m3			
1,1,1-Trichloroethane	71-55-6	133	0.200	1.09	ND	ND		1	WG1224503
1,1,2-Trichloroethane	79-00-5	133	0.200	1.09	ND	ND		1	WG1224503
Trichloroethylene	79-01-6	131	0.200	1.07	ND	ND		1	WG1224503
1,2,4-Trimethylbenzene	95-63-6	120	0.200	0.982	ND	ND		1	WG1224503
1,3,5-Trimethylbenzene	108-67-8	120	0.200	0.982	ND	ND		1	WG1224503
2,2,4-Trimethylpentane	540-84-1	114.22	0.200	0.934	ND	ND		1	WG1224503
Vinyl chloride	75-01-4	62.50	0.200	0.511	ND	ND		1	WG1224503
Vinyl Bromide	593-60-2	106.95	0.200	0.875	ND	ND		1	WG1224503
Vinyl acetate	108-05-4	86.10	0.200	0.704	ND	ND		1	WG1224503
m&p-Xylene	1330-20-7	106	0.400	1.73	ND	ND		1	WG1224503
o-Xylene	95-47-6	106	0.200	0.867	ND	ND		1	WG1224503
(S) 1,4-Bromofluorobenzene	460-00-4	175	60.0-140		94.9				WG1224503

ONE LAB. NATIONWIDE.

Collected date/time: 01/15/19 08:38

1061489

Volatile Organic Compounds (MS) by Method TO-15

	CAS #	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch
Analyte			ppbv	ug/m3	ppbv	ug/m3			
Acetone	67-64-1	58.10	1.25	2.97	3.93	9.34		1	WG1224503
Allyl chloride	107-05-1	76.53	0.200	0.626	ND	ND		1	WG1224503
Benzene	71-43-2	78.10	0.200	0.639	0.311	0.993		1	WG1224503
Benzyl Chloride	100-44-7	127	0.200	1.04	ND	ND		1	WG1224503
Bromodichloromethane	75-27-4	164	0.200	1.34	ND	ND		1	WG1224503
Bromoform	75-25-2	253	0.600	6.21	ND	ND		1	WG1224503
Bromomethane	74-83-9	94.90	0.200	0.776	ND	ND		1	WG1224503
1,3-Butadiene	106-99-0	54.10	2.00	4.43	ND	ND		1	WG1224503
Carbon disulfide	75-15-0	76.10	0.200	0.622	ND	ND		1	WG1224503
Carbon tetrachloride	56-23-5	154	0.200	1.26	ND	ND		1	WG1224503
Chlorobenzene	108-90-7	113	0.200	0.924	ND	ND		1	WG1224503
Chloroethane	75-00-3	64.50	0.200	0.528	ND	ND		1	WG1224503
Chloroform	67-66-3	119	0.200	0.973	ND	ND		1	WG1224503
Chloromethane	74-87-3	50.50	0.200	0.413	0.399	0.824		1	WG1224503
2-Chlorotoluene	95-49-8	126	0.200	1.03	ND	ND		1	WG1224503
Cyclohexane	110-82-7	84.20	0.200	0.689	ND	ND		1	WG1224503
Dibromochloromethane	124-48-1	208	0.200	1.70	ND	ND		1	WG1224503
1,2-Dibromoethane	106-93-4	188	0.200	1.54	ND	ND		1	WG1224503
1,2-Dichlorobenzene	95-50-1	147	0.200	1.20	ND	ND		1	WG1224503
1,3-Dichlorobenzene	541-73-1	147	0.200	1.20	ND	ND		1	WG1224503
1,4-Dichlorobenzene	106-46-7	147	0.200	1.20	ND	ND		1	WG1224503
1,2-Dichloroethane	107-06-2	99	0.200	0.810	ND	ND		1	WG1224503
1,1-Dichloroethane	75-34-3	98	0.200	0.802	ND	ND		1	WG1224503
1,1-Dichloroethene	75-35-4	96.90	0.200	0.793	ND	ND		1	WG1224503
cis-1,2-Dichloroethene	156-59-2	96.90	0.200	0.793	ND	ND		1	WG1224503
trans-1,2-Dichloroethene	156-60-5	96.90	0.200	0.793	ND	ND		1	WG1224503
1,2-Dichloropropane	78-87-5	113	0.200	0.924	ND	ND		1	WG1224503
cis-1,3-Dichloropropene	10061-01-5	111	0.200	0.908	ND	ND		1	WG1224503
trans-1,3-Dichloropropene	10061-02-6	111	0.200	0.908	ND	ND		1	WG1224503
1,4-Dioxane	123-91-1	88.10	0.200	0.721	ND	ND		1	WG1224503
Ethanol	64-17-5	46.10	0.630	1.19	11.5	21.7	<u>J3</u>	1	WG1224503
Ethylbenzene	100-41-4	106	0.200	0.867	ND	ND ND	<u>50</u>	1	WG1224503
4-Ethyltoluene	622-96-8	120	0.200	0.982	ND	ND		1	WG1224503
Trichlorofluoromethane	75-69-4	137.40	0.200	1.12	0.214	1.20		1	WG1224503
Dichlorodifluoromethane	75-71-8	120.92	0.200	0.989	0.257	1.27		1	WG1224503
1,1,2-Trichlorotrifluoroethane	76-13-1	187.40	0.200	1.53	ND	ND		1	WG1224503
1,2-Dichlorotetrafluoroethane	76-13-1	171	0.200	1.40	ND	ND		1	WG1224503 WG1224503
Heptane	142-82-5	100	0.200	0.818	ND	ND		1	WG1224503 WG1224503
Hexachloro-1,3-butadiene	87-68-3	261	0.630	6.73	ND	ND		1	WG1224503 WG1224503
	110-54-3	86.20	0.030	0.705	ND ND	ND		1	
n-Hexane Isopropylbenzene	98-82-8	120.20	0.200	0.705	ND ND	ND			WG1224503
								1	WG1224503
Methylene Chloride	75-09-2	84.90	0.200	0.694	0.255	0.886			WG1224503
Methyl Butyl Ketone	591-78-6	100	1.25	5.11	ND	ND		1	WG1224503
2-Butanone (MEK)	78-93-3	72.10	1.25	3.69	ND	ND		1	WG1224503
4-Methyl-2-pentanone (MIBK)	108-10-1	100.10	1.25	5.12	ND	ND		1	WG1224503
Methyl methacrylate	80-62-6	100.12	0.200	0.819	ND	ND		1	WG1224503
MTBE	1634-04-4	88.10	0.200	0.721	ND	ND		1	WG1224503
Naphthalene	91-20-3	128	0.630	3.30	ND	ND		1	WG1224503
2-Propanol	67-63-0	60.10	1.25	3.07	2.01	4.95		1	WG1224503
Propene	115-07-1	42.10	0.400	0.689	ND	ND		1	WG1224503
Styrene	100-42-5	104	0.200	0.851	ND	ND		1	WG1224503
1,1,2,2-Tetrachloroethane	79-34-5	168	0.200	1.37	ND	ND		1	WG1224503
Tetrachloroethylene	127-18-4	166	0.200	1.36	ND	ND		1	WG1224503
Tetrahydrofuran	109-99-9	72.10	0.200	0.590	ND	ND		1	WG1224503
Toluene	108-88-3	92.10	0.200	0.753	1.47	5.52		1	WG1224503
1,2,4-Trichlorobenzene	120-82-1	181	0.630	4.66	ND	ND		1	WG1224503

Ss

Cn

Gl

Sc

ONE LAB. NATIONWIDE.

Collected date/time: 01/15/19 08:38

L1061489

	CAS #	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch
Analyte			ppbv	ug/m3	ppbv	ug/m3			
1,1,1-Trichloroethane	71-55-6	133	0.200	1.09	ND	ND		1	WG1224503
1,1,2-Trichloroethane	79-00-5	133	0.200	1.09	ND	ND		1	WG1224503
Trichloroethylene	79-01-6	131	0.200	1.07	ND	ND		1	WG1224503
1,2,4-Trimethylbenzene	95-63-6	120	0.200	0.982	ND	ND		1	WG1224503
1,3,5-Trimethylbenzene	108-67-8	120	0.200	0.982	ND	ND		1	WG1224503
2,2,4-Trimethylpentane	540-84-1	114.22	0.200	0.934	ND	ND		1	WG1224503
Vinyl chloride	75-01-4	62.50	0.200	0.511	ND	ND		1	WG1224503
Vinyl Bromide	593-60-2	106.95	0.200	0.875	ND	ND		1	WG1224503
Vinyl acetate	108-05-4	86.10	0.200	0.704	ND	ND		1	WG1224503
m&p-Xylene	1330-20-7	106	0.400	1.73	ND	ND		1	WG1224503
o-Xylene	95-47-6	106	0.200	0.867	ND	ND		1	WG1224503
(S) 1,4-Bromofluorobenzene	460-00-4	175	60.0-140		95.6				WG1224503

ONE LAB. NATIONWIDE.

Collected date/time: 01/15/19 08:35

JAIVII	\vdash	KLJULI	J
		L1061489	

Volatile Organic Co	mpounas	(MS) by	Method I C)-15					
	CAS #	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch
Analyte			ppbv	ug/m3	ppbv	ug/m3			
Acetone	67-64-1	58.10	1.25	2.97	14.4	34.2		1	WG1224503
Allyl chloride	107-05-1	76.53	0.200	0.626	ND	ND		1	WG1224503
Benzene	71-43-2	78.10	0.200	0.639	0.411	1.31		1	WG1224503
Benzyl Chloride	100-44-7	127	0.200	1.04	ND	ND		1	WG1224503
Bromodichloromethane	75-27-4	164	0.200	1.34	ND	ND		1	WG1224503
Bromoform	75-25-2	253	0.600	6.21	ND	ND		1	WG1224503
Bromomethane	74-83-9	94.90	0.200	0.776	ND	ND		1	WG1224503
1,3-Butadiene	106-99-0	54.10	2.00	4.43	ND	ND		1	WG1224503
Carbon disulfide	75-15-0	76.10	0.200	0.622	ND	ND		1	WG1224503
Carbon tetrachloride	56-23-5	154	0.200	1.26	ND	ND		1	WG1224503
Chlorobenzene	108-90-7	113	0.200	0.924	ND	ND		1	WG1224503
Chloroethane	75-00-3	64.50	0.200	0.528	ND	ND		1	WG1224503
Chloroform	67-66-3	119	0.200	0.973	ND	ND		1	WG1224503
Chloromethane	74-87-3	50.50	0.200	0.413	0.408	0.842		1	WG1224503
2-Chlorotoluene	95-49-8	126	0.200	1.03	ND	ND		1	WG1224503
Cyclohexane	110-82-7	84.20	0.200	0.689	ND	ND		1	WG1224503
Dibromochloromethane	124-48-1	208	0.200	1.70	ND	ND		1	WG1224503
1,2-Dibromoethane	106-93-4	188	0.200	1.54	ND	ND		1	WG1224503
1,2-Dichlorobenzene	95-50-1	147	0.200	1.20	ND	ND		1	WG1224503
1,3-Dichlorobenzene	541-73-1	147	0.200	1.20	ND	ND		1	WG1224503
1,4-Dichlorobenzene	106-46-7	147	0.200	1.20	ND	ND		1	WG1224503
1,2-Dichloroethane	107-06-2	99	0.200	0.810	ND	ND		1	WG1224503
1,1-Dichloroethane	75-34-3	98	0.200	0.802	ND	ND		1	WG1224503
1,1-Dichloroethene	75-35-4	96.90	0.200	0.793	ND	ND		1	WG1224503
cis-1,2-Dichloroethene	156-59-2	96.90	0.200	0.793	ND	ND		1	WG1224503 WG1224503
	156-60-5	96.90	0.200		ND	ND		1	
trans-1,2-Dichloroethene	78-87-5		0.200	0.793 0.924	ND	ND			WG1224503
1,2-Dichloropropane		113						1	WG1224503
cis-1,3-Dichloropropene	10061-01-5	111	0.200	0.908	ND	ND		1	WG1224503
trans-1,3-Dichloropropene	10061-02-6	111	0.200	0.908	ND	ND		1	WG1224503
1,4-Dioxane	123-91-1	88.10	0.200	0.721	ND	ND	10	1	WG1224503
Ethanol	64-17-5	46.10	0.630	1.19	10.8	20.3	<u>J3</u>	1	WG1224503
Ethylbenzene	100-41-4	106	0.200	0.867	ND	ND		1	WG1224503
4-Ethyltoluene	622-96-8	120	0.200	0.982	ND	ND		1	WG1224503
Trichlorofluoromethane	75-69-4	137.40	0.200	1.12	ND	ND		1	WG1224503
Dichlorodifluoromethane	75-71-8	120.92	0.200	0.989	0.264	1.30		1	WG1224503
1,1,2-Trichlorotrifluoroethane	76-13-1	187.40	0.200	1.53	ND	ND		1	WG1224503
1,2-Dichlorotetrafluoroethane	76-14-2	171	0.200	1.40	ND	ND		1	WG1224503
Heptane	142-82-5	100	0.200	0.818	0.342	1.40		1	WG1224503
Hexachloro-1,3-butadiene	87-68-3	261	0.630	6.73	ND	ND		1	WG1224503
n-Hexane	110-54-3	86.20	0.200	0.705	ND	ND		1	WG1224503
Isopropylbenzene	98-82-8	120.20	0.200	0.983	ND	ND		1	WG1224503
Methylene Chloride	75-09-2	84.90	0.200	0.694	0.363	1.26		1	WG1224503
Methyl Butyl Ketone	591-78-6	100	1.25	5.11	ND	ND		1	WG1224503
2-Butanone (MEK)	78-93-3	72.10	1.25	3.69	1.26	3.73		1	WG1224503
4-Methyl-2-pentanone (MIBK)	108-10-1	100.10	1.25	5.12	ND	ND		1	WG1224503
Methyl methacrylate	80-62-6	100.12	0.200	0.819	ND	ND		1	WG1224503
MTBE	1634-04-4	88.10	0.200	0.721	ND	ND		1	WG1224503
Naphthalene	91-20-3	128	0.630	3.30	ND	ND		1	WG1224503
2-Propanol	67-63-0	60.10	1.25	3.07	24.0	59.0		1	WG1224503
Propene	115-07-1	42.10	0.400	0.689	ND	ND		1	WG1224503
Styrene	100-42-5	104	0.200	0.851	ND	ND		1	WG1224503
1,1,2,2-Tetrachloroethane	79-34-5	168	0.200	1.37	ND	ND		1	WG1224503
Tetrachloroethylene	127-18-4	166	0.200	1.36	ND	ND		1	WG1224503
Tetrahydrofuran	109-99-9	72.10	0.200	0.590	ND	ND		1	WG1224503
Toluene	108-88-3	92.10	0.200	0.753	5.22	19.7		1	WG1224503
1,2,4-Trichlorobenzene	120-82-1	181	0.630	4.66	ND	ND		1	WG1224503

ONE LAB. NATIONWIDE.

Collected date/time: 01/15/19 08:35

L1061489

	CAS #	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch
Analyte			ppbv	ug/m3	ppbv	ug/m3			
1,1,1-Trichloroethane	71-55-6	133	0.200	1.09	ND	ND		1	WG1224503
1,1,2-Trichloroethane	79-00-5	133	0.200	1.09	ND	ND		1	WG1224503
Trichloroethylene	79-01-6	131	0.200	1.07	0.479	2.57		1	WG1224503
1,2,4-Trimethylbenzene	95-63-6	120	0.200	0.982	0.330	1.62		1	WG1224503
1,3,5-Trimethylbenzene	108-67-8	120	0.200	0.982	ND	ND		1	WG1224503
2,2,4-Trimethylpentane	540-84-1	114.22	0.200	0.934	ND	ND		1	WG1224503
Vinyl chloride	75-01-4	62.50	0.200	0.511	ND	ND		1	WG1224503
Vinyl Bromide	593-60-2	106.95	0.200	0.875	ND	ND		1	WG1224503
Vinyl acetate	108-05-4	86.10	0.200	0.704	ND	ND		1	WG1224503
m&p-Xylene	1330-20-7	106	0.400	1.73	0.699	3.03		1	WG1224503
o-Xylene	95-47-6	106	0.200	0.867	0.245	1.06		1	WG1224503
(S) 1,4-Bromofluorobenzene	460-00-4	175	60.0-140		95.5				WG1224503

ONE LAB. NATIONWIDE.

Collected date/time: 01/15/19 08:30

1061489

Volatile Organic Compounds (MS) by Method TO-15

	CAS #	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch
Analyte			ppbv	ug/m3	ppbv	ug/m3			
Acetone	67-64-1	58.10	1.25	2.97	1.29	3.07		1	WG1224503
Allyl chloride	107-05-1	76.53	0.200	0.626	ND	ND		1	WG1224503
Benzene	71-43-2	78.10	0.200	0.639	0.425	1.36		1	WG1224503
Benzyl Chloride	100-44-7	127	0.200	1.04	ND	ND		1	WG1224503
Bromodichloromethane	75-27-4	164	0.200	1.34	ND	ND		1	WG1224503
Bromoform	75-25-2	253	0.600	6.21	ND	ND		1	WG1224503
Bromomethane	74-83-9	94.90	0.200	0.776	ND	ND		1	WG1224503
1,3-Butadiene	106-99-0	54.10	2.00	4.43	ND	ND		1	WG1224503
Carbon disulfide	75-15-0	76.10	0.200	0.622	ND	ND		1	WG1224503
Carbon tetrachloride	56-23-5	154	0.200	1.26	ND	ND		1	WG1224503
Chlorobenzene	108-90-7	113	0.200	0.924	ND	ND		1	WG1224503
Chloroethane	75-00-3	64.50	0.200	0.528	ND	ND		1	WG1224503
Chloroform	67-66-3	119	0.200	0.973	ND	ND		1	WG1224503
Chloromethane	74-87-3	50.50	0.200	0.413	0.344	0.710		1	WG1224503
2-Chlorotoluene	95-49-8	126	0.200	1.03	ND	ND		1	WG1224503
Cyclohexane	110-82-7	84.20	0.200	0.689	ND	ND		1	WG1224503
Dibromochloromethane	124-48-1	208	0.200	1.70	ND	ND		1	WG1224503
1,2-Dibromoethane	106-93-4	188	0.200	1.54	ND	ND		1	WG1224503
1,2-Dichlorobenzene	95-50-1	147	0.200	1.20	ND	ND		1	WG1224503
1,3-Dichlorobenzene	541-73-1	147	0.200	1.20	ND	ND		1	WG1224503
1,4-Dichlorobenzene	106-46-7	147	0.200	1.20	ND	ND		1	WG1224503
1,2-Dichloroethane	107-06-2	99	0.200	0.810	ND	ND		1	WG1224503
1,1-Dichloroethane	75-34-3	98	0.200	0.802	ND	ND		1	WG1224503
1,1-Dichloroethene	75-35-4	96.90	0.200	0.793	ND	ND		1	WG1224503
cis-1,2-Dichloroethene	156-59-2	96.90	0.200	0.793	ND	ND		1	WG1224503
trans-1,2-Dichloroethene	156-60-5	96.90	0.200	0.793	ND	ND		1	WG1224503
1,2-Dichloropropane	78-87-5	113	0.200	0.924	ND	ND		1	WG1224503
cis-1,3-Dichloropropene	10061-01-5	111	0.200	0.908	ND	ND		1	WG1224503
trans-1,3-Dichloropropene	10061-01-3	111	0.200	0.908	ND	ND		1	WG1224503
1,4-Dioxane	123-91-1	88.10	0.200	0.721	ND	ND		1	WG1224503
Ethanol	64-17-5	46.10	0.630	1.19	5.89	11.1	13	1	WG1224503
Ethylbenzene	100-41-4	106	0.030	0.867	ND	ND	<u>J3</u>	1	WG1224503 WG1224503
•	622-96-8	120	0.200	0.867	ND	ND		1	
4-Ethyltoluene Trichlorofluoromethane	75-69-4	137.40	0.200	1.12	0.214	1.20		1	WG1224503
		120.92						1	WG1224503
Dichlorodifluoromethane	75-71-8 76-13-1		0.200	0.989	0.268	1.33		1	WG1224503
1,1,2-Trichlorotrifluoroethane	76-13-1	187.40	0.200	1.53	ND	ND		1	WG1224503
1,2-Dichlorotetrafluoroethane	76-14-2	171	0.200	1.40	ND	ND		1	WG1224503
Heptane	142-82-5	100	0.200	0.818	ND	ND		1	WG1224503
Hexachloro-1,3-butadiene	87-68-3	261	0.630	6.73	ND	ND		1	WG1224503
n-Hexane	110-54-3	86.20	0.200	0.705	ND	ND		1	WG1224503
Isopropylbenzene	98-82-8	120.20	0.200	0.983	ND	ND		1	WG1224503
Methylene Chloride	75-09-2	84.90	0.200	0.694	ND	ND		1	WG1224503
Methyl Butyl Ketone	591-78-6	100	1.25	5.11	ND	ND		1	WG1224503
2-Butanone (MEK)	78-93-3	72.10	1.25	3.69	ND	ND		1	WG1224503
4-Methyl-2-pentanone (MIBK)	108-10-1	100.10	1.25	5.12	ND	ND		1	WG1224503
Methyl methacrylate	80-62-6	100.12	0.200	0.819	ND	ND		1	WG1224503
MTBE	1634-04-4	88.10	0.200	0.721	ND	ND		1	WG1224503
Naphthalene	91-20-3	128	0.630	3.30	ND	ND		1	WG1224503
2-Propanol	67-63-0	60.10	1.25	3.07	ND	ND		1	WG1224503
Propene	115-07-1	42.10	0.400	0.689	ND	ND		1	WG1224503
Styrene	100-42-5	104	0.200	0.851	ND	ND		1	WG1224503
1,1,2,2-Tetrachloroethane	79-34-5	168	0.200	1.37	ND	ND		1	WG1224503
Tetrachloroethylene	127-18-4	166	0.200	1.36	ND	ND		1	WG1224503
Tetrahydrofuran	109-99-9	72.10	0.200	0.590	ND	ND		1	WG1224503
Toluene	108-88-3	92.10	0.200	0.753	0.458	1.72		1	WG1224503
1,2,4-Trichlorobenzene	120-82-1	181	0.630	4.66	ND	ND		1	WG1224503

Ss

Cn

Gl

Sc

ONE LAB. NATIONWIDE.

Collected date/time: 01/15/19 08:30

L1061489

	CAS #	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch
Analyte			ppbv	ug/m3	ppbv	ug/m3			
1,1,1-Trichloroethane	71-55-6	133	0.200	1.09	ND	ND		1	WG1224503
1,1,2-Trichloroethane	79-00-5	133	0.200	1.09	ND	ND		1	WG1224503
Trichloroethylene	79-01-6	131	0.200	1.07	ND	ND		1	WG1224503
1,2,4-Trimethylbenzene	95-63-6	120	0.200	0.982	ND	ND		1	WG1224503
1,3,5-Trimethylbenzene	108-67-8	120	0.200	0.982	ND	ND		1	WG1224503
2,2,4-Trimethylpentane	540-84-1	114.22	0.200	0.934	ND	ND		1	WG1224503
Vinyl chloride	75-01-4	62.50	0.200	0.511	ND	ND		1	WG1224503
Vinyl Bromide	593-60-2	106.95	0.200	0.875	ND	ND		1	WG1224503
Vinyl acetate	108-05-4	86.10	0.200	0.704	ND	ND		1	WG1224503
m&p-Xylene	1330-20-7	106	0.400	1.73	ND	ND		1	WG1224503
o-Xylene	95-47-6	106	0.200	0.867	ND	ND		1	WG1224503
(S) 1,4-Bromofluorobenzene	460-00-4	175	60.0-140		94.7				WG1224503

Collected date/time: 01/14/19 12:06

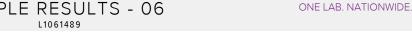
SAMPLE RESULTS - 06

Тс

Ss

Cn

Sr


Qc

GΙ

ΑI

Sc

Volatile Organic Compounds (MS) by Method TO-15

1,1,2-Trichlorotrifluoroethane 76-13-1 187 40 0.200 1.53 ND ND WG1224503 ND WG1224503 1,2-Dichlorotetrafluoroethane 76-14-2 171 0.200 ND 1 1.40 WG1224503 Heptane 142-82-5 100 0.200 0.818 ND ND 1 ND ND WG1224503 Hexachloro-1,3-butadiene 87-68-3 261 0.630 6.73 1 WG1224503 n-Hexane 110-54-3 86.20 0.200 0.705 ND ND 1 WG1224503 Isopropylbenzene 98-82-8 120.20 0.200 0.983 ND ND 1 Methylene Chloride 75-09-2 84.90 0.200 0.694 ND ND 1 WG1224503 Methyl Butyl Ketone 591-78-6 100 1.25 5.11 ND ND 1 WG1224503 ND ND WG1224503 2-Butanone (MEK) 78-93-3 72 10 1.25 3.69 4-Methyl-2-pentanone (MIBK) 108-10-1 100.10 1.25 5.12 ND ND 1 WG1224503 Methyl methacrylate 0.819 ND ND WG1224503 80-62-6 100.12 0.200 1 MTRF 1634-04-4 88 10 0.200 0.721 ND ND 1 WG1224503 0.630 3.30 ND ND WG1224503 91-20-3 128 Naphthalene WG1224503 2-Propanol 67-63-0 60.10 1.25 3.07 1.38 3.40 1 WG1224503 Propene 115-07-1 42.10 0.400 0.689 ND ND 100-42-5 104 0.200 0.851 ND ND 1 WG1224503 Styrene WG1224503 ND ND 1,1,2,2-Tetrachloroethane 79-34-5 168 0.200 1.37 Tetrachloroethylene 127-18-4 166 0.200 136 1.85 12.6 1 WG1224503

109-99-9

108-88-3

120-82-1

72.10

92 10

181

0.200

0.200

0.630

Tetrahydrofuran

1,2,4-Trichlorobenzene

Toluene

ND

5 35

ND

0.590

0.753

4.66

ND

201

ND

1

WG1224503

WG1224503

WG1224503

ONE LAB. NATIONWIDE.

L1061489

Collected date/time: 01/14/19 12:06

	CAS #	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch
Analyte			ppbv	ug/m3	ppbv	ug/m3			
1,1,1-Trichloroethane	71-55-6	133	0.200	1.09	ND	ND		1	WG1224503
1,1,2-Trichloroethane	79-00-5	133	0.200	1.09	ND	ND		1	WG1224503
Trichloroethylene	79-01-6	131	0.200	1.07	21.4	115		1	WG1224503
1,2,4-Trimethylbenzene	95-63-6	120	0.200	0.982	ND	ND		1	WG1224503
1,3,5-Trimethylbenzene	108-67-8	120	0.200	0.982	ND	ND		1	WG1224503
2,2,4-Trimethylpentane	540-84-1	114.22	0.200	0.934	ND	ND		1	WG1224503
Vinyl chloride	75-01-4	62.50	0.200	0.511	ND	ND		1	WG1224503
Vinyl Bromide	593-60-2	106.95	0.200	0.875	ND	ND		1	WG1224503
Vinyl acetate	108-05-4	86.10	0.200	0.704	ND	ND		1	WG1224503
m&p-Xylene	1330-20-7	106	0.400	1.73	ND	ND		1	WG1224503
o-Xylene	95-47-6	106	0.200	0.867	ND	ND		1	WG1224503
(S) 1,4-Bromofluorobenzene	460-00-4	175	60.0-140		95.0				WG1224503

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (MS) by Method TO-15

L1061489-01,02,03,04,05,06

Method Blank (MB)

Method Blank (MB)				
(MB) R3376624-3 01/17/19	09:33			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ppbv		ppbv	ppbv
Acetone	U		0.0569	1.25
Allyl Chloride	U		0.0546	0.200
Benzene	U		0.0460	0.200
Benzyl Chloride	U		0.0598	0.200
Bromodichloromethane	U		0.0436	0.200
Bromoform	U		0.0786	0.600
Bromomethane	U		0.0609	0.200
1,3-Butadiene	U		0.0563	2.00
Carbon disulfide	U		0.0544	0.200
Carbon tetrachloride	U		0.0585	0.200
Chlorobenzene	U		0.0601	0.200
Chloroethane	U		0.0489	0.200
Chloroform	U		0.0574	0.200
Chloromethane	U		0.0544	0.200
2-Chlorotoluene	U		0.0605	0.200
Cyclohexane	U		0.0534	0.200
Dibromochloromethane	U		0.0494	0.200
1,2-Dibromoethane	U		0.0494	0.200
1,2-Dichlorobenzene	U		0.0603	0.200
	U		0.0597	
1,3-Dichlorobenzene			0.0597	0.200 0.200
1,4-Dichlorobenzene	U		0.0557	
1,2-Dichloroethane			0.0514	0.200 0.200
1,1-Dichloroethane	U			
1,1-Dichloroethene	U		0.0490	0.200
cis-1,2-Dichloroethene	U		0.0389	0.200
trans-1,2-Dichloroethene	U		0.0464	0.200
1,2-Dichloropropane	U		0.0599	0.200
cis-1,3-Dichloropropene	U		0.0588	0.200
trans-1,3-Dichloropropene	U		0.0435	0.200
1,4-Dioxane	U		0.0554	0.200
Ethylbenzene	U		0.0506	0.200
4-Ethyltoluene	U		0.0666	0.200
Trichlorofluoromethane	U		0.0673	0.200
Dichlorodifluoromethane	U		0.0601	0.200
1,1,2-Trichlorotrifluoroethane	U		0.0687	0.200
	U		0.0458	0.200
Heptane	U		0.0626	0.200
Hexachloro-1,3-butadiene	U		0.0656	0.630
n-Hexane	U		0.0457	0.200
Isopropylbenzene	U		0.0563	0.200

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (MS) by Method TO-15

L1061489-01,02,03,04,05,06

Method Blank (MB)

(MB) R3376624-3 01/17/19	09:33				-
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	ppbv		ppbv	ppbv	
Methylene Chloride	U		0.0465	0.200	
Methyl Butyl Ketone	U		0.0682	1.25	3
2-Butanone (MEK)	U		0.0493	1.25	
4-Methyl-2-pentanone (MIBK)	U		0.0650	1.25	4
Methyl Methacrylate	U		0.0773	0.200	
MTBE	U		0.0505	0.200	
Naphthalene	U		0.154	0.630	5
2-Propanol	U		0.0882	1.25	L
Propene	U		0.0932	0.400	6
Styrene	U		0.0465	0.200	
1,1,2,2-Tetrachloroethane	U		0.0576	0.200	_
Tetrachloroethylene	U		0.0497	0.200	7
Tetrahydrofuran	U		0.0508	0.200	L
Toluene	U		0.0499	0.200	8
1,2,4-Trichlorobenzene	U		0.148	0.630	
1,1,1-Trichloroethane	U		0.0665	0.200	
1,1,2-Trichloroethane	U		0.0287	0.200	9
Trichloroethylene	U		0.0545	0.200	L
1,2,4-Trimethylbenzene	U		0.0483	0.200	
1,3,5-Trimethylbenzene	U		0.0631	0.200	
2,2,4-Trimethylpentane	U		0.0456	0.200	
Vinyl chloride	U		0.0457	0.200	
Vinyl Bromide	U		0.0727	0.200	
Vinyl acetate	U		0.0639	0.200	
m&p-Xylene	U		0.0946	0.400	
o-Xylene	U		0.0633	0.200	
Ethanol	U		0.0832	0.630	
(S) 1,4-Bromofluorobenzene	94.5			60.0-140	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3376624-1 01/17/19	08:02 • (LCSD) R3376624-2	01/17/19 08:47	7						
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ppbv	ppbv	ppbv	%	%	%			%	%
Ethanol	3.75	3.61	2.76	96.3	73.7	55.0-148		<u>J3</u>	26.6	25
Propene	3.75	3.49	3.31	93.0	88.4	64.0-144			5.10	25
Dichlorodifluoromethane	3.75	3.47	3.61	92.6	96.3	64.0-139			3.94	25
1,2-Dichlorotetrafluoroethane	3.75	3.17	3.90	84.5	104	70.0-130			20.5	25
Chloromethane	3.75	3.32	3.85	88.5	103	70.0-130			15.0	25

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (MS) by Method TO-15

L1061489-01,02,03,04,05,06

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3376624-1	01/17/19 08·02	• (LCSD) R3376624-2	∩1/17/19 ∩8·47

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	ppbv	ppbv	ppbv	%	%	%			%	%	
/inyl chloride	3.75	3.62	3.97	96.7	106	70.0-130			9.08	25	
,3-Butadiene	3.75	3.44	4.40	91.6	117	70.0-130			24.6	25	
Bromomethane	3.75	3.50	3.55	93.4	94.6	70.0-130			1.19	25	
Chloroethane	3.75	3.33	3.25	88.8	86.8	70.0-130			2.30	25	
Trichlorofluoromethane	3.75	3.88	3.16	104	84.1	70.0-130			20.7	25	
,1,2-Trichlorotrifluoroethane	3.75	3.83	3.87	102	103	70.0-130			0.810	25	
,1-Dichloroethene	3.75	3.82	3.85	102	103	70.0-130			0.844	25	
,1-Dichloroethane	3.75	3.63	3.69	96.8	98.3	70.0-130			1.53	25	
Acetone	3.75	3.85	3.81	103	101	70.0-130			1.12	25	
2-Propanol	3.75	3.83	3.85	102	103	70.0-139			0.605	25	
Carbon disulfide	3.75	3.78	3.78	101	101	70.0-130			0.00201	25	
Methylene Chloride	3.75	3.46	3.50	92.2	93.3	70.0-130			1.23	25	
ИТВЕ	3.75	3.66	3.71	97.5	98.8	70.0-130			1.36	25	
rans-1,2-Dichloroethene	3.75	3.66	3.69	97.7	98.5	70.0-130			0.804	25	
n-Hexane	3.75	3.68	3.71	98.2	98.9	70.0-130			0.643	25	
'inyl acetate	3.75	3.82	3.89	102	104	70.0-130			1.88	25	
Methyl Ethyl Ketone	3.75	3.67	3.72	97.8	99.3	70.0-130			1.53	25	
is-1,2-Dichloroethene	3.75	3.62	3.67	96.6	97.8	70.0-130			1.21	25	
Chloroform	3.75	3.54	3.59	94.4	95.6	70.0-130			1.26	25	
Cyclohexane	3.75	3.60	3.64	96.1	97.2	70.0-130			1.08	25	
,1,1-Trichloroethane	3.75	3.55	3.59	94.6	95.8	70.0-130			1.30	25	
Carbon tetrachloride	3.75	3.57	3.61	95.1	96.3	70.0-130			1.25	25	
Benzene	3.75	3.60	3.65	96.1	97.4	70.0-130			1.37	25	
,2-Dichloroethane	3.75	3.57	3.61	95.3	96.3	70.0-130			1.02	25	
Heptane	3.75	3.57	3.63	95.3	96.9	70.0-130			1.73	25	
richloroethylene	3.75	3.59	3.61	95.8	96.3	70.0-130			0.539	25	
,2-Dichloropropane	3.75	3.59	3.67	95.7	97.8	70.0-130			2.23	25	
,4-Dioxane	3.75	3.62	3.56	96.6	94.9	70.0-140			1.80	25	
Bromodichloromethane	3.75	3.63	3.68	96.8	98.1	70.0-130			1.42	25	
cis-1,3-Dichloropropene	3.75	3.66	3.71	97.5	99.0	70.0-130			1.51	25	
l-Methyl-2-pentanone (MIBK)	3.75	3.72	3.78	99.1	101	70.0-139			1.78	25	
oluene	3.75	3.64	3.67	97.0	97.9	70.0-130			0.987	25	
rans-1,3-Dichloropropene	3.75	3.71	3.77	98.9	101	70.0-130			1.71	25	
,1,2-Trichloroethane	3.75	3.56	3.60	94.8	96.0	70.0-130			1.28	25	
etrachloroethylene	3.75	3.65	3.68	97.2	98.1	70.0-130			0.881	25	
Methyl Butyl Ketone	3.75	3.92	3.94	104	105	70.0-149			0.625	25	
Dibromochloromethane	3.75	3.75	3.77	99.9	101	70.0-130			0.640	25	
,2-Dibromoethane	3.75	3.75	3.78	99.9	101	70.0-130			0.959	25	
					-					-	

3.75

3.75

3.73

3.58

3.78

3.60

99.4

95.6

Chlorobenzene

Ethylbenzene

101

95.9

70.0-130

70.0-130

1.48

0.349

25

25

Vinyl Bromide

Isopropylbenzene

(S) 1,4-Bromofluorobenzene

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (MS) by Method TO-15

L1061489-01,02,03,04,05,06

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3376624-1 01/17/19 08:02 • (LCSD) R3376624-2 01/17/19 08:47

Analyte ppbv m&p-Xylene 7.50 o-Xylene 3.75 Styrene 3.75 Bromoform 3.75 1,1,2,2-Tetrachloroethane 3.75 4-Ethyltoluene 3.75 1,3,5-Trimethylbenzene 3.75 1,2,4-Trimethylbenzene 3.75 1,3-Dichlorobenzene 3.75 1,4-Dichlorobenzene 3.75 1,2-Dichlorobenzene 3.75 1,2-Trichlorobenzene 3.75 1,2,4-Trichlorobenzene 3.75 Hexachloro-1,3-butadiene 3.75	ppbv 7.02 3.55 3.72 3.73 3.58 3.62 3.61 3.64 3.66	7.06 3.60 3.76 3.77 3.62 3.67 3.64 3.65	% 93.6 94.7 99.3 99.5 95.5 96.7 96.1 97.2	% 94.1 96.0 100 100 96.5 97.8	% 70.0-130 70.0-130 70.0-130 70.0-130 70.0-130 70.0-130 70.0-130 70.0-130		% 0.592 1.30 1.09 0.991 1.08 1.12	% 25 25 25 25 25 25 25 25	
o-Xylene 3.75 Styrene 3.75 Bromoform 3.75 1,1,2,2-Tetrachloroethane 3.75 4-Ethyltoluene 3.75 1,3,5-Trimethylbenzene 3.75 1,2,4-Trimethylbenzene 3.75 1,4-Dichlorobenzene 3.75 Benzyl Chloride 3.75 1,2-Dichlorobenzene 3.75 1,2-Dichlorobenzene 3.75 1,2-Trichlorobenzene 3.75 1,2-Trichlorobenzene 3.75 1,2-Trichlorobenzene 3.75	3.55 3.72 3.73 3.58 3.62 3.61 3.64	3.60 3.76 3.77 3.62 3.67 3.64	94.7 99.3 99.5 95.5 96.7 96.1	96.0 100 100 96.5 97.8	70.0-130 70.0-130 70.0-130 70.0-130 70.0-130		1.30 1.09 0.991 1.08	25 25 25 25 25	
Styrene 3.75 Bromoform 3.75 1,1,2,2-Tetrachloroethane 3.75 4-Ethyltoluene 3.75 1,3,5-Trimethylbenzene 3.75 1,2,4-Trimethylbenzene 3.75 1,3-Dichlorobenzene 3.75 1,4-Dichlorobenzene 3.75 1,2-Dichlorobenzene 3.75 1,2-Dichlorobenzene 3.75 1,2,4-Trichlorobenzene 3.75	3.72 3.73 3.58 3.62 3.61 3.64	3.76 3.77 3.62 3.67 3.64	99.3 99.5 95.5 96.7 96.1	100 100 96.5 97.8	70.0-130 70.0-130 70.0-130 70.0-130		1.09 0.991 1.08	25 25 25	
Bromoform 3.75 1,1,2,2-Tetrachloroethane 3.75 4-Ethyltoluene 3.75 1,3,5-Trimethylbenzene 3.75 1,2,4-Trimethylbenzene 3.75 1,3-Dichlorobenzene 3.75 1,4-Dichlorobenzene 3.75 1,2-Dichlorobenzene 3.75 1,2,4-Trichlorobenzene 3.75 1,2,4-Trichlorobenzene 3.75	3.73 3.58 3.62 3.61 3.64	3.77 3.62 3.67 3.64	99.5 95.5 96.7 96.1	100 96.5 97.8	70.0-130 70.0-130 70.0-130		0.991 1.08	25 25	
1,1,2,2-Tetrachloroethane 3.75 4-Ethyltoluene 3.75 1,3,5-Trimethylbenzene 3.75 1,2,4-Trimethylbenzene 3.75 1,3-Dichlorobenzene 3.75 1,4-Dichlorobenzene 3.75 1,2-Dichlorobenzene 3.75 1,2-Trichlorobenzene 3.75 1,2,4-Trichlorobenzene 3.75	3.58 3.62 3.61 3.64	3.62 3.67 3.64	95.5 96.7 96.1	96.5 97.8	70.0-130 70.0-130		1.08	25	
4-Ethyltoluene 3.75 1,3,5-Trimethylbenzene 3.75 1,2,4-Trimethylbenzene 3.75 1,3-Dichlorobenzene 3.75 1,4-Dichlorobenzene 3.75 Benzyl Chloride 3.75 1,2-Dichlorobenzene 3.75 1,2,4-Trichlorobenzene 3.75	3.62 3.61 3.64	3.67 3.64	96.7 96.1	97.8	70.0-130				
1,3,5-Trimethylbenzene 3.75 1,2,4-Trimethylbenzene 3.75 1,3-Dichlorobenzene 3.75 1,4-Dichlorobenzene 3.75 Benzyl Chloride 3.75 1,2-Dichlorobenzene 3.75 1,2,4-Trichlorobenzene 3.75	3.61 3.64	3.64	96.1				1.12	25	
1,2,4-Trimethylbenzene 3.75 1,3-Dichlorobenzene 3.75 1,4-Dichlorobenzene 3.75 Benzyl Chloride 3.75 1,2-Dichlorobenzene 3.75 1,2,4-Trichlorobenzene 3.75	3.64			97.0	70.0-130				
1,3-Dichlorobenzene3.751,4-Dichlorobenzene3.75Benzyl Chloride3.751,2-Dichlorobenzene3.751,2,4-Trichlorobenzene3.75		3.65	07.2		70.0 130		0.861	25	
1,4-Dichlorobenzene 3.75 Benzyl Chloride 3.75 1,2-Dichlorobenzene 3.75 1,2,4-Trichlorobenzene 3.75	2.66		31.Z	97.3	70.0-130		0.175	25	
Benzyl Chloride 3.75 1,2-Dichlorobenzene 3.75 1,2,4-Trichlorobenzene 3.75	3.00	3.71	97.7	99.0	70.0-130		1.38	25	
1,2-Dichlorobenzene 3.75 1,2,4-Trichlorobenzene 3.75	3.73	3.78	99.5	101	70.0-130		1.28	25	
1,2,4-Trichlorobenzene 3.75	3.88	3.87	103	103	70.0-152		0.225	25	
	3.65	3.67	97.4	97.9	70.0-130		0.478	25	
Havaahlara 12 hutadiana 275	3.96	3.94	106	105	70.0-160		0.471	25	
Hexachloro-1,3-butadiene 3.75	3.65	3.72	97.3	99.2	70.0-151		1.92	25	
Naphthalene 3.75	3.96	3.93	106	105	70.0-159		0.859	25	
Allyl Chloride 3.75	3.68	3.71	98.0	98.8	70.0-130		0.803	25	
2-Chlorotoluene 3.75	3.59	3.63	95.7	96.7	70.0-130		1.01	25	
Methyl Methacrylate 3.75	3.66	3.75	97.6	99.9	70.0-130		2.35	25	
Tetrahydrofuran 3.75	3.56	3.64	95.0	97.0	70.0-137		2.01	25	
2,2,4-Trimethylpentane 3.75	3.58	3.63	95.4	96.8	70.0-130		1.46	25	

70.0-130

70.0-130

60.0-140

3.75

3.75

3.93

3.59

3.12

3.62

105

95.6

97.4

83.2

96.6

97.5

22.9

0.981

25

25

DATE/TIME:

01/17/19 15:26

PAGE:

21 of 24

GLOSSARY OF TERMS

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Abbreviations and Definitions

MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier Description

J3

The associated batch QC was outside the established quality control range for precision.

ACCREDITATIONS & LOCATIONS

State Accreditations

Alabama	40660
Alaska	17-026
Arizona	AZ0612
Arkansas	88-0469
California	2932
Colorado	TN00003
Connecticut	PH-0197
Florida	E87487
Georgia	NELAP
Georgia ¹	923
Idaho	TN00003
Illinois	200008
Indiana	C-TN-01
lowa	364
Kansas	E-10277
Kentucky ^{1 6}	90010
Kentucky ²	16
Louisiana	Al30792
Louisiana ¹	LA180010
Maine	TN0002
Maryland	324
Massachusetts	M-TN003
Michigan	9958
Minnesota	047-999-395
Mississippi	TN00003
Missouri	340
Montana	CERT0086

Nebraska	NE-OS-15-05
Nevada	TN-03-2002-34
New Hampshire	2975
New Jersey-NELAP	TN002
New Mexico ¹	n/a
New York	11742
North Carolina	Env375
North Carolina ¹	DW21704
North Carolina ³	41
North Dakota	R-140
Ohio-VAP	CL0069
Oklahoma	9915
Oregon	TN200002
Pennsylvania	68-02979
Rhode Island	LAO00356
South Carolina	84004
South Dakota	n/a
Tennessee 1 4	2006
Texas	T 104704245-17-14
Texas ⁵	LAB0152
Utah	TN00003
Vermont	VT2006
Virginia	460132
Washington	C847
West Virginia	233
Wisconsin	9980939910
Wyoming	A2LA

Third Party Federal Accreditations

A2LA – ISO 17025	1461.01
A2LA - ISO 17025 5	1461.02
Canada	1461.01
EPA-Crypto	TN00003

AIHA-LAP,LLC EMLAP	100789
DOD	1461.01
USDA	P330-15-00234

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

Our Locations

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.

	billing information;			64.99			Ana	Analysis / Container / Preservative					Chain of Custody Page 10					
Partner Engineering 8	2154 T Torran			thia King rrance Blvd., e, CA 90501										Pac	e Analytical* Contents Testing & Incomestor			
Report to: Email To Mr. Levi Langevin			Email To: I	ill To: Ilangevin@partneresi.com											12065 Lebanon 8d Mount Juliet, TN 3			
Project Description: Kingston, NY		5	1	VY										Phone: 615-758-5858 Phone: 800-767-5859 Fax: 615-758-5859				
Phone: 732-945-4077 Fax:	Client Project	#		Lab Project #	J-KINGSTONN	1 =										L# 106		
Collected by (print): Levi Langeu W Collected by (signature):	Site/Facility II	hirtE		P.O. #												Acctnum: PA	M125 ARENGENJ	
Immediately Packed on Ice N Y	Same D Same D Next Da Three D	y 5 Day	MODELLE		esults Needed by 12:00ph	No. of	5 Summa										89824 Man Harvill	
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	Cntrs	10-1									Shipped Via: F	Sample # (lab only)	
Office	Comp	Air	-	1/15/19	0832	1	X									1000000	-01	
Unit 124	Comp	Air	-		0837	1	X									1.85	02	
Uni+112	Comp	Air	-		0838	1	Х					0.00	104			Op.	03	
Unit 109	Comp	Air	_		0835	1	X									N- 1-2	04	
Ambient	Comp	Air	-	V	0830	1	X				5			100			05	
333G - Midstain	Grab	Air	1211	1/14/19	1206	1	X							- Mill		4	06	
		Air				1	X			7								
										N3								
* Matrix: SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater	Remarks:									pH _		_ Temp_		COC S	Samp eal Pr igned/ es arr	le Receipt C esent/Intact Accurate: ive intact:	necklist : NP Y N ZY N	
DW - Drinking Water OT - Other	Samples retur	ned via: dExCou	rier		Tracking#	47	91	9 8 8	12745	Flow_		_ Other_	15-10	Suffi	clent	Volume ment: If Applicab	y N	
Relinquished by ((Signature)		Date: 1/15/1		Time: Received by: (Signature						Trip Blank Received: Yes / No HCL / MeoH			VOA Zero Headspace: Preservation Correct/Checked: Y N					
Relinquished by (Signature)	>>	Date:			Received by: (Signa	ture)		J	1-07	Inp:	°C	Bottles	Received	If prese	preservation required by Login: Date/Time			
Relinquished by : (Signature)		Date:	T	ime:	Received for lab by	: (Signat	ture)		Dat		9	Time:	6	Hold:			Condition: NCF / OK	

Company Nam	e/Address:		300	100	Billing Informati	pa:	11755	- 1 d	Anal	ysis	Chain of Custody	Page / of /	
Hartne	er Engin	Engineering + Science				ex Eng	meering						
611 In	dustrial 1	way west, !	suiter	A	Partner Engineering + Science 2154 Torrence Blod. Suite 200						Pace Analytical*		
Eatontown, NT 07724			Torra	nce, Cf	4 90507		1		w Garacter Teating a restriction				
eport to:				10	Email To:	2200.	in@partru			12065 Lebanop Rd Mount Juliet, 19-37122			
rruect	angevin			2	CHUISTATA			aesi.wiv.			Phone: 615-758-5858 A7 S Phone: 800-767-5859 A7 S Phone: 800-767-5859 A7 S Phone: 615-758-5859 A		
escription:	The Johir	+ Factory A	Sam	phing	Collected: 1	ingston	, NY					La Chieda 2	
		Client Project # 19292	485		Lab Project #		AT STATE OF	11 - 3 - 3 W			106	1489	
	385-1701	1									Table #		
ollected by (p		Site/Facility ID #	C 1		P.O. #		1 1 22			-	Acctnum:		
-evi L	angevin	The Shirt	tacto	my			Process and the second		10		The second secon	Ullana	
- Contraction	2	Rush? (Lab MU:	T Be Notified	31	1/18/1	9 64	Results Needed	m	0		Template: 774 4473		
1	2	Next Day	100	0%	Email?	No XVes		essure/Vacuum	7		TSR:		
	0	Three Day	25		FAX?	NoYes		And the last of th	0		PB:		
Sample 10	Sam	ple Description	Car	n #	Date	Time	Initial	Final	1		Shipped Via:		
	Office) Is set	938	1	1/15/19	0832	-30"	-4"	X		Rem /Contaminant	Service # (Lub unity)	
	Unit 1		620	-		837	-31"	-6"	X			02	
	Uniti		689			0838	-31"	-12.11	X	100	PER LINE	03	
	Unit		546			0835		-12"	V			. 04	
	Ambier		513		V	0830	-30"	-6"	X			05	
		- Mid Stair	552		1/14/19	1206	- 30"	-8"	×			06	
					1111					5.5	4	00	
			1										
	0.1		1	100	100			1400.2					
		T 1887 128		1000	The state of the s		18 S 76 C	A CONTRACTOR			1		
1	Fedex.	al Lagurana	11010	117	OU CET 7	0-71						A. A	
emarks:	racking	#-47948827	456	147	17 88 67	4571				Hold#			
elinquished b	(Signature)	Date ,	1 -	Time:		oy: (Signature;		Samples returned via:		Conditio	n: (lab	use only)	
	17	1/1	5/19	12:		1,122,10		FedEx Cour		a de la	0	L.	
eundowhed b	* (Signature)	Date		Time:	Received t	by: (Signatum !			ttles Received:				
telinguished b	y : (Signature)	Date		Time:	Received f	or lab by: (5 gnatu	re)	And Date: Tir	100	COC Sea		N NA	
				S. M. S.	1	er sea et la luato		1 10	me:	pH Check	ked: NCF:		
-				-	19/	>		1113111	0 = 0				

Soil Vapor/Indoor Air Matrix A

May 2017

Analytes Assigned:

Trichloroethene (TCE), cis-1,2-Dichloroethene (c12-DCE), 1,1-Dichloroethene (11-DCE), Carbon Tetrachloride

	INDOOR AIR CONCENTRATION of COMPOUND (mcg/m³)							
SUB-SLAB VAPOR CONCENTRATION of COMPOUND (mcg/m³)	< 0.2	0.2 to < 1	1 and above					
< 6	No further action	2. No Further Action	3. IDENTIFY SOURCE(S) and RESAMPLE or MITIGATE					
6 to < 60	4. No further action	5. MONITOR	6. MITIGATE					
60 and above	7. MITIGATE	8. MITIGATE	9. MITIGATE					

No further action: No additional actions are recommended to address human exposures.

Identify Source(s) and Resample or Mitigate: We recommend that reasonable and practical actions be taken to identify the source(s) affecting the indoor air quality and that actions be implemented to reduce indoor air concentrations to within background ranges. For example, if an indoor or outdoor air source is identified, we recommend the appropriate party implement actions to reduce the levels. In the event that indoor or outdoor sources are not readily identified or confirmed, resampling (which might include additional sub-slab vapor and indoor air sampling locations) is recommended to demonstrate that SVI mitigation actions are not needed. Based on the information available, mitigation might also be recommended when soil vapor intrusion cannot be ruled out.

Monitor: We recommend monitoring (sampling on a recurring basis), including but not necessarily limited to sub-slab vapor, basement air and outdoor air sampling, to determine whether concentrations in the indoor air or sub-slab vapor have changed and/or to evaluate temporal influences. Monitoring might also be recommended to determine whether existing building conditions (e.g., positive pressure heating, ventilation and air-conditioning systems) are maintaining the desired mitigation endpoint and to determine whether changes are needed. The type and frequency of monitoring is determined based on site-, building- and analyte-specific information, taking into account applicable environmental data and building operating conditions. Monitoring is an interim measure required to evaluate exposures related to soil vapor intrusion until contaminated environmental media are remediated.

Mitigate: We recommend mitigation to minimize current or potential exposures associated with soil vapor intrusion. The most common mitigation methods are sealing preferential pathways in conjunction with installing a sub-slab depressurization system and changing the pressurization of the building in conjunction with monitoring. The type, or combination of types, of mitigation is determined on a building-specific basis, taking into account building construction and operating conditions. Mitigation is considered a temporary measure implemented to address exposures related to soil vapor intrusion until contaminated environmental media are remediated.

These general recommendations are made with consideration being given to the additional notes on page 2.

MATRIX A Page 1 of 2

ADDITIONAL NOTES FOR MATRIX A

This matrix summarizes actions recommended to address current and potential exposures related to soil vapor intrusion. To use the matrix appropriately as a tool in the decision-making process, the following should be noted:

- [1] The matrix is generic. As such, it may be appropriate to modify a recommended action to accommodate analyte-specific, building-specific conditions (e.g., dirt floor in basement, crawl spaces, thick slabs, current occupancy, etc.), and/or factors provided in Section 3.2 of the quidance (e.g., current land use, environmental conditions, etc.). For example, collection of additional samples may be recommended when the matrix indicates "no further action" for a particular building, but the results of adjacent buildings (especially sub-slab vapor results) indicate a need to take actions to address exposures related to soil vapor intrusion. Mitigation might be recommended when the results of multiple contaminants indicate monitoring is recommended. Proactive actions may be proposed at any time. For example, the party implementing the actions may decide to install sub-slab depressurization systems on buildings where the matrix indicates "no further action" or "monitoring." Such an action might be undertaken for reasons other than public health (e.g., seeking community acceptance, reducing costs, etc.). However, actions implemented in lieu of sampling will typically be expected to be captured in the final engineering report and site management plan, and might not rule out the need for post-implementation sampling (e.g., to document effectiveness or to support terminating the action).
- [2] Actions provided in the matrix are specific to addressing human exposures. Implementation of these actions does not preclude investigating possible sources of soil vapor contamination, nor does it preclude remediating contaminated soil vapor or the source of soil vapor contamination.
- [3] Appropriate care should be taken during all aspects of sample collection to ensure that high quality data are obtained. Since the data are being used in the decision-making process, the laboratory analyzing the environmental samples must have current Environmental Laboratory Approval Program (ELAP) certification for the appropriate analyte and environmental matrix combinations. Furthermore, samples should be analyzed by methods that can achieve a minimum reporting limit of 0.20 microgram per cubic meter for indoor and outdoor air samples. For sub-slab vapor samples and dirt floor soil vapor samples, a minimum reporting limit of 1 microgram per cubic meter is recommended.
- [4] Sub-slab vapor and indoor air samples are typically collected when the likelihood of soil vapor intrusion is considered to be the greatest (i.e., worst-case conditions). If samples are collected at other times (typically, samples collected outside of the heating season), then resampling during worst-case conditions might be appropriate to verify that actions taken to address exposures related to soil vapor intrusion are protective of human health.
- [5] When current exposures are attributed to sources other than soil vapor intrusion, the agencies should be given documentation (e.g., applicable environmental data, completed indoor air sampling questionnaire, digital photographs, etc.) to support a proposed action other than that provided in the matrix box and to support agency assessment and follow-up.
- [6] The party responsible for implementing the recommended actions will differ depending upon several factors, including but not limited to the following: the identified source of the volatile chemicals, the environmental remediation program, and analyte-specific, site-specific and building-specific factors.

Soil Vapor/Indoor Air Matrix B

May 2017

Analytes Assigned:

Tetrachloroethene (PCE), 1,1,1-Trichloroethane (111-TCA), Methylene Chloride

	INDOOR AIR CONCENTRATION of COMPOUND (mcg/m³)							
SUB-SLAB VAPOR CONCENTRATION of COMPOUND (mcg/m³)	< 3	3 to < 10	10 and above					
< 100	1. No further action	2. No Further Action	3. IDENTIFY SOURCE(S) and RESAMPLE or MITIGATE					
100 to < 1,000	4. No further action	5. MONITOR	6. MITIGATE					
1,000 and above	7. MITIGATE	8. MITIGATE	9. MITIGATE					

No further action: No additional actions are recommended to address human exposures.

Identify Source(s) and Resample or Mitigate: We recommend that reasonable and practical actions be taken to identify the source(s) affecting the indoor air quality and that actions be implemented to reduce indoor air concentrations to within background ranges. For example, if an indoor or outdoor air source is identified, we recommend the appropriate party implement actions to reduce the levels. In the event that indoor or outdoor sources are not readily identified or confirmed, resampling (which might include additional sub-slab vapor and indoor air sampling locations) is recommended to demonstrate that SVI mitigation actions are not needed. Based on the information available, mitigation might also be recommended when soil vapor intrusion cannot be ruled out.

Monitor: We recommend monitoring (sampling on a recurring basis), including but not necessarily limited to sub-slab vapor, basement air and outdoor air sampling, to determine whether concentrations in the indoor air or sub-slab vapor have changed and/or to evaluate temporal influences. Monitoring might also be recommended to determine whether existing building conditions (e.g., positive pressure heating, ventilation and air-conditioning systems) are maintaining the desired mitigation endpoint and to determine whether changes are needed. The type and frequency of monitoring is determined based on site-, building- and analyte-specific information, taking into account applicable environmental data and building operating conditions. Monitoring is an interim measure required to evaluate exposures related to soil vapor intrusion until contaminated environmental media are remediated.

Mitigate: We recommend mitigation to minimize current or potential exposures associated with soil vapor intrusion. The most common mitigation methods are sealing preferential pathways in conjunction with installing a sub-slab depressurization system and changing the pressurization of the building in conjunction with monitoring. The type, or combination of types, of mitigation is determined on a building-specific basis, taking into account building construction and operating conditions. Mitigation is considered a temporary measure implemented to address exposures related to soil vapor intrusion until contaminated environmental media are remediated.

These general recommendations are made with consideration being given to the additional notes on page 2.

MATRIX B Page 1 of 2

ADDITIONAL NOTES FOR MATRIX B

This matrix summarizes actions recommended to address current and potential exposures related to soil vapor intrusion. To use the matrix appropriately as a tool in the decision-making process, the following should be noted:

- [1] The matrix is generic. As such, it may be appropriate to modify a recommended action to accommodate analyte-specific, building-specific conditions (e.g., dirt floor in basement, crawl spaces, thick slabs, current occupancy, etc.), and/or factors provided in Section 3.2 of the quidance (e.g., current land use, environmental conditions, etc.). For example, collection of additional samples may be recommended when the matrix indicates "no further action" for a particular building, but the results of adjacent buildings (especially sub-slab vapor results) indicate a need to take actions to address exposures related to soil vapor intrusion. Mitigation might be recommended when the results of multiple contaminants indicate monitoring is recommended. Proactive actions may be proposed at any time. For example, the party implementing the actions may decide to install sub-slab depressurization systems on buildings where the matrix indicates "no further action" or "monitoring." Such an action might be undertaken for reasons other than public health (e.g., seeking community acceptance, reducing costs, etc.). However, actions implemented in lieu of sampling will typically be expected to be captured in the final engineering report and site management plan, and might not rule out the need for post-implementation sampling (e.g., to document effectiveness or to support terminating the action).
- [2] Actions provided in the matrix are specific to addressing human exposures. Implementation of these actions does not preclude investigating possible sources of soil vapor contamination, nor does it preclude remediating contaminated soil vapor or the source of soil vapor contamination.
- [3] Appropriate care should be taken during all aspects of sample collection to ensure that high quality data are obtained. Since the data are being used in the decision-making process, the laboratory analyzing the environmental samples must have current Environmental Laboratory Approval Program (ELAP) certification for the appropriate analyte and environmental matrix combinations. Furthermore, samples should be analyzed by methods that can achieve a minimum reporting limit of 1 microgram per cubic meter for indoor and outdoor air samples. For sub-slab vapor samples and dirt floor soil vapor samples, a minimum reporting limit of 1 microgram per cubic meter is recommended.
- [4] Sub-slab vapor and indoor air samples are typically collected when the likelihood of soil vapor intrusion is considered to be the greatest (i.e., worst-case conditions). If samples are collected at other times (typically, samples collected outside of the heating season), then resampling during worst-case conditions might be appropriate to verify that actions taken to address exposures related to soil vapor intrusion are protective of human health.
- [5] When current exposures are attributed to sources other than soil vapor intrusion, the agencies should be given documentation (e.g., applicable environmental data, completed indoor air sampling questionnaire, digital photographs, etc.) to support a proposed action other than that provided in the matrix box and to support agency assessment and follow-up.
- [6] The party responsible for implementing the recommended actions will differ depending upon several factors, including but not limited to the following: the identified source of the volatile chemicals, the environmental remediation program, and analyte-specific, site-specific and building-specific factors.

Soil Vapor/Indoor Air Matrix C

May 2017

Analytes Assigned:

Vinyl Chloride

	INDOOR AIR CONCENTRATION of COMPOUND (mcg/m³)						
SUB-SLAB VAPOR CONCENTRATION of COMPOUND (mcg/m³)	< 0.2	0.2 and above					
< 6	No further action	2. IDENTIFY SOURCE(S) and RESAMPLE or MITIGATE					
6 to < 60	3. MONITOR	4. MITIGATE					
60 and above	5. MITIGATE	6. MITIGATE					

No further action: No additional actions are recommended to address human exposures.

Identify Source(s) and Resample or Mitigate: We recommend that reasonable and practical actions be taken to identify the source(s) affecting the indoor air quality and that actions be implemented to reduce indoor air concentrations to within background ranges. For example, if an indoor or outdoor air source is identified, we recommend the appropriate party implement actions to reduce the levels. In the event that indoor or outdoor sources are not readily identified or confirmed, resampling (which might include additional sub-slab vapor and indoor air sampling locations) is recommended to demonstrate that SVI mitigation actions are not needed. Based on the information available, mitigation might also be recommended when soil vapor intrusion cannot be ruled out.

Monitor: We recommend monitoring (sampling on a recurring basis), including but not necessarily limited to sub-slab vapor, basement air and outdoor air sampling, to determine whether concentrations in the indoor air or sub-slab vapor have changed and/or to evaluate temporal influences. Monitoring might also be recommended to determine whether existing building conditions (e.g., positive pressure heating, ventilation and air-conditioning systems) are maintaining the desired mitigation endpoint and to determine whether changes are needed. The type and frequency of monitoring is determined based on site-, building- and analyte-specific information, taking into account applicable environmental data and building operating conditions. Monitoring is an interim measure required to evaluate exposures related to soil vapor intrusion until contaminated environmental media are remediated.

Mitigate: We recommend mitigation to minimize current or potential exposures associated with soil vapor intrusion. The most common mitigation methods are sealing preferential pathways in conjunction with installing a sub-slab depressurization system and changing the pressurization of the building in conjunction with monitoring. The type, or combination of types, of mitigation is determined on a building-specific basis, taking into account building construction and operating conditions. Mitigation is considered a temporary measure implemented to address exposures related to soil vapor intrusion until contaminated environmental media are remediated.

These general recommendations are made with consideration being given to the additional notes on page 2.

MATRIX C Page 1 of 2

ADDITIONAL NOTES FOR MATRIX C

This matrix summarizes actions recommended to address current and potential exposures related to soil vapor intrusion. To use the matrix appropriately as a tool in the decision-making process, the following should be noted:

- [1] The matrix is generic. As such, it may be appropriate to modify a recommended action to accommodate analyte-specific, building-specific conditions (e.g., dirt floor in basement, crawl spaces, thick slabs, current occupancy, etc.), and/or factors provided in Section 3.2 of the guidance (e.g., current land use, environmental conditions, etc.). For example, collection of additional samples may be recommended when the matrix indicates "no further action" for a particular building, but the results of adjacent buildings (especially sub-slab vapor results) indicate a need to take actions to address exposures related to soil vapor intrusion. Mitigation might be recommended when the results of multiple contaminants indicate monitoring is recommended. Proactive actions may be proposed at any time. For example, the party implementing the actions may decide to install sub-slab depressurization systems on buildings where the matrix indicates "no further action" or "monitoring." Such an action might be undertaken for reasons other than public health (e.g., seeking community acceptance, reducing costs, etc.). However, actions implemented in lieu of sampling will typically be expected to be captured in the final engineering report and site management plan, and might not rule out the need for post-implementation sampling (e.g., to document effectiveness or to support terminating the action).
- [2] Actions provided in the matrix are specific to addressing human exposures. Implementation of these actions does not preclude investigating possible sources of soil vapor contamination, nor does it preclude remediating contaminated soil vapor or the source of soil vapor contamination.
- [3] Appropriate care should be taken during all aspects of sample collection to ensure that high quality data are obtained. Since the data are being used in the decision-making process, the laboratory analyzing the environmental samples must have current Environmental Laboratory Approval Program (ELAP) certification for the appropriate analyte and environmental matrix combinations. Furthermore, samples should be analyzed by methods that can achieve a minimum reporting limit of 0.20 microgram per cubic meter for indoor and outdoor air samples. For sub-slab vapor samples and dirt floor soil vapor samples, a minimum reporting limit of 1 microgram per cubic meter is recommended.
- [4] Sub-slab vapor and indoor air samples are typically collected when the likelihood of soil vapor intrusion is considered to be the greatest (i.e., worst-case conditions). If samples are collected at other times (typically, samples collected outside of the heating season), then resampling during worst-case conditions might be appropriate to verify that actions taken to address exposures related to soil vapor intrusion are protective of human health.
- [5] When current exposures are attributed to sources other than soil vapor intrusion, the agencies should be given documentation (e.g., applicable environmental data, completed indoor air sampling questionnaire, digital photographs, etc.) to support a proposed action other than that provided in the matrix box and to support agency assessment and follow-up.
- [6] The party responsible for implementing the recommended actions will differ depending upon several factors, including but not limited to the following: the identified source of the volatile chemicals, the environmental remediation program, and analyte-specific, site-specific and building-specific factors.

SUBSURFACE INVESTIGATION

Kingston Lofts LLC
The Shirt Factory
77 Cornell Street
Kingston, Ulster County, New York

January 5, 2021

1291 Old Post Road Ulster Park, New York 12487 (845) 658-3484 (phone) dtconsulting@hvc.rr.com

January 5, 2021

Mr. Hagai Barlev

Kingston Lofts LLC 77 Cornell Street, Management Office Kingston, New York 12401

RE: SUBSURFACE INVESTIGATION

Kingston Lofts LLC
The Shirt Factory
77 Cornell Street
Kingston, Ulster County, New York

Dear Mr. Barley:

Attached please find Subsurface Investigation Report detailing field study and testing activities performed on the above referenced Site. If you should have any questions or require additional information please feel free to contact me at (845) 658-3484. DT Consulting Services, Inc. thanks you for the opportunity to work with you on this project.

Sincerely,

DT CONSULTING SERVICES, INC.

Deborah J. Thompson
Deborah J. Thompson
Senior Geologist/Project Manager

Cc: G/ Bowitch, Esq. NYSDEC Region III

SUBSURFACE INVESTIGATION

Pertaining to:

Kingston Lofts LLC
The Shirt Factory
77 Cornell Street
Kingston, Ulster County, New York

Prepared for:

Kingston Lofts LLC Mr. Hagai Barlev 77 Cornell Street, Management Office Kingston, New York 12401

Prepared by:

Ms. Deborah J. Thompson Senior Geologist/Project Manager **DT CONSULTING SERVICES, INC.** 1291 Old Post Road Ulster Park, New York 12487

Date: January 5, 2021

TABLE OF CONTENTS

1.0		INTRODUCTION/SITE INFORMATION	1
	1.1	Historic Background Information	1-3
2.0		SSDS PILOT TESTING	3-4
3.0		SUBSURFACE INVESTIGATION FIELD ACTIVITIES	4-9
	3.1	Private Underground Utility Mark-out	5-6
	3.2	Soil Sampling Procedures	6
	3.3	Subsurface Soil Characterization	6-7
	3.4	Subsurface Soil/Groundwater Sampling and Laboratory Analysis	7-9
4.0		FINDINGS	9-10
	4.1	Subsurface Soil Quality	9
	4.2	Groundwater Quality	10
5.0		CONCLUSIONS	10
6.0		RECOMENDATIONS	10
7.0		LIMITATIONS	11
FIC	<u> SUR</u>	<u>ES</u>	
SIT	EL	OCATION PLAN	1
SIT	E B	ASE PLAN	2
cV(OC (CONTAMINANT MAP	3
<u>TA</u>	BLE	E <u>S</u>	
SO	IL/G	GROUNDWATER QUALITY DATA TABLE	1
<u>AT</u>	TAC	<u>CHMENTS</u>	
AT	TAC	CHMENT A – SOIL BORING LOGS	
AT	TAC	CHMENT B –LABORATORY REPORT	

1.0 INTRODUCTION/SITE INFORMATION

DT Consulting Services, Inc. (DTCS) has been contracted by Kingston Lofts LLC to perform a Subsurface Investigation on the property located at 77 Cornell Street, Kingston, Ulster County, New York (hereinafter referenced as the Site or Subject Property). A Site location map and Site (base) plan (Figures 1 & 2) are included for your reference.

The Subject Property contains a regular shaped lot which encompasses an area of approximately 0.88 acres along the southwest corner of the intersection of Smith Avenue and Cornell Street. The Site, also known as the Shirt Factory, is improved with 4-story building occupied by 62 tenant spaces for commercial and residential use. On-Site operations consist of artist loft/studios, professional offices and storage activities, and associated property maintenance. A partial basement is located along the southern portion of the Site structure. Areas surrounding the building include asphalt paved parking surfaces, concrete walkways and landscape spaces. Site topography is relatively flat, and at grade with the surrounding roadways. Electric and gas services is supplied by Central Hudson Gas & Electric, while potable water and sanitary services are supplied by The City of Kingston (Municipal). Land-use surrounding the Subject Property is primarily characterized by residential and commercial development.

1.1 Historic Background Information

Partner Assessment Corporation (Partner) conducted a Phase I Environmental Site Assessment (ESA) dated November 12, 2018. The Phase I ESA identified the following recognized environmental conditions (RECs) at the Subject Property:

The Subject Property identified as Gant Shirt Makers at 77 Cornell Street is identified on the New York Drycleaners database under Facility ID 3-5108-00012. Based on a review of historical sources, this tenant operated on-Site

roughly between 1968 and 1979, a time of limited or no regulatory oversight. Additionally, former tenants including Not Fade Away Tie Die and QDP Electronics, utilized hazardous wastes, including benzene, ignitable wastes and tetrachloroethylene (PCE) on Site from at least 1982 through 1999. Dry cleaning operations typically use chlorinated solvents, particularly PCE, during the drycleaning process. These solvents, even when properly stored and disposed of, can be released from these facilities in small, frequent releases through floor drains, cracked concrete and sewer systems. Chlorinated solvents are highly mobile chemicals that can easily accumulate in the soil and migrate to the groundwater beneath a facility. Based on the confirmed use of chlorinated solvents, including PCE, on the Site for approximately 30 years, the historical use of the Subject Property is considered a REC.

Subsequently, Partner performed a Phase II Subsurface Investigation dated January 3, 2019. Pertinent findings from the Phase II Subsurface Investigation include the following:

A total of three sub-slab soil gas samples were collected from beneath the Site structure. Two samples were collected from the southern portion of the building and one sample was collected from the northern portion of the building. The soil gas samples were submitted for volatile organic compound (VOC) analysis by EPA Method TO-15. Trichloroethylene (TCE) was detected in soil vapor sample SVP-3 (northern portion of the building) at 88.1 micrograms per cubic meter (μg/m³). This concentration exceeds the New York State Department of Health (NYSDOH) Matrix A concentration of 60 μg/m³, with the resulting recommendation of mitigation. TCE was also detected in SVP-1 at a concentration of 15.2 μg/m³, which corresponds to a NYSDOH recommendation of no further action, monitor and mitigate, depending on the indoor air concentration.

Based on the findings of the Phase II Subsurface Investigation, Partner recommended further investigation to assess soil gas and indoor air. PSG Engineering, D.P.C. completed the additional investigation work as summarized in a Vapor Sampling Results Summary Report dated January 18, 2019. Pertinent findings from the vapor sampling investigation report include the following:

- One sub-slab soil vapor sample was collected from the central portion of the building. TCE was detected at a concentration of 115 μg/m³ in the soil gas sample designated SSSG-MIDSTAIR, above the NYSDOH Matrix A concentration of 60 μg/m³, with the resulting recommendation of mitigation.
- A total of four indoor air and one ambient air sample were collected from the Subject Property. Of note, TCE was detected in one of the five samples collected at a concentration of 2.57 μg/m³. This sample, designated "Unit 109", was collected from the central portion of the building. The concentration is above the NYSDOH guideline which requires additional investigation or mitigation. TCE was not detected in the remaining indoor and ambient air samples.

Based on the results of the investigation, Partner recommended that a mitigation system, such as a Sub-slab Depressurization System (SSDS), be installed to address the vapor intrusion concerns at the Subject Property.

2.0 SSDS PILOT TESTING

The purpose of the pilot test was to evaluate the effectiveness of SSDS as a potential mitigation measure for chlorinated VOCs (cVOCs) in soil vapor identified beneath the building. Field activities were conducted on October 6 and 7, 2020 by DTCS and Bellucci Engineering. A description of the SSDS extraction well installation, vacuum monitoring point installation and other pilot/diagnostic test work are presented in Sub-Slab Depressurization Pilot Testing - Proposed System Startup Report, DTCS, October

27, 2020. At the conclusion of testing procedures the following findings were documented:

The sub-slab soil gas and indoor air results collected to date indicate vapor intrusion mitigation is necessary in the slab-on-grade portion of the building. More specifically, the concentration of TCE in the indoor sample collected from Unit 109 along with the sub-slab soil gas concentrations of TCE at SVP-3, SSSG MID STAIR, VP-2, VP-3 and VP-5 require mitigation based on evaluation of NYSDOH Matrix A. The SSDS removed soil vapor at rates ranging from 34.9 to 116.6 CFM from the four extraction wells. The highest flow readings were recorded in the northern portion of the building at EX-1 and EX-4. Average sub-slab vacuum readings ranged from 0.000 to -0.043 in-H2O in five vacuum monitoring points. Sub-slab vacuum was observed in all of the points, with the exception of VP-3 located in the southern hallway area. Sub-grade piping, footings or other unknown sub-slab obstructions may be present proximal to VP-3. The presence of such obstructions can cause "short-circuiting" of the radius of influence. Vacuum was demonstrated at each of the remaining locations during one or more of the tests.

DTCS submitted all environmental reporting generated on the Subject Property to Mr. Michael Kilmer of the New York State Department of Environmental Conservation (NYSDEC) for review and comment on November 6, 2020. Mr. Kilmer responded to the submittal, also on November 6, 2020, requesting that soil and groundwater data be collected on-Site prior to proceeding with regulatory review.

3.0 SUBSURFACE INVESTIGATION FIELD ACTIVITIES

To complete the request for an environmental survey, DTCS conducted a Private Utility Locate and a Subsurface Sampling Investigation on behalf of Kingston Lofts LLC on November 18, 2020. To complete these tasks, DTCS's Scope of Work included:

- Contacting Dig Safely New York 811 (UFPO) to obtain subsurface utility markouts prior to performing the field sampling investigation;
- Performance of a Private Utility Locate utilizing a magnetometer, void detector and ground penetrating radar (GPR) equipment. The purpose of this survey was to "clear" proposed soil sampling locations (i.e., identify underground utility infrastructure to ensure services were not impacted/damaged during the installation of soil borings);
- Provide quantitative data on targeted VOCs, within soil and groundwater located surrounding the Site structure; and
- Prepare an assessment document summarizing the findings of the field investigation and provide recommendations to address any reported subsurface contamination.

The identified six soil borings (SB-1 - SB-6) and the converted groundwater monitoring wells (SB-3/GW – SB-5/GW) locations documented for the Site are depicted in Figure 2, attached.

3.1 Private Underground Utility Mark-out

On November 18, 2020 DTCS and Underground Surveying, LLC (US) of Brookfield, CT performed the Private Utility Locate utilizing a Noggin Ground Penetrating Radar (GPR) Cart system unit, ferromagnetic metal detectors and electro-magnetic/Radio Frequency Pipe/Cable Locators.

Findings

1. Utility Clearance

DTCS and US scanned and cleared a total of six soil boring locations across the Site. Utilities were not discovered in the location of the proposed boring sampling locations.

3.2 Soil Sampling Procedures

DTCS mobilized to the Site with Core Down Drilling (drilling services contractor) of Pawling, New York on November 18, 2020 to perform the subsurface investigation. Employing a Geoprobe trac-mounted drill rig, soil samples were collected from six borehole locations continuously from grade to a maximum depth of 20 feet below grade surface or bgs (see Figure 2 for sampling locations). The soil borings were advanced by the Geoprobe and soil samples were obtained with a 4-foot, 2.0-inch outer diameter macro core sample rod equipped with a disposable acetate liner into undisturbed soils. To prevent the potential for cross-contamination, all sampling equipment was decontaminated between each soil boring location.

An on-Site DTCS Geologist performed screening and classification immediately following collection of subsurface materials. The screening was conducted using a field calibrated MiniRae Photoionization Detector or PID. PID screening can indicate the presence of volatile organics in a soil sample. Additionally, soil samples were screened by visual and olfactory means for staining and/or unusual odors.

3.3 Subsurface Soil Characterization

As detected during this investigation, the lithology of overburden materials encountered at the facility can generally be characterized as mixed fill, underlain by sand. Refer to Attachment A for soil boring logs which detail subsurface materials encountered during this investigation. While performing this field survey, all soil cores were screened with a

PID for VOCs upon removal from the subsurface. This screening was performed by placing the selected soil sample in a Ziploc® style freezer bag, sealing the bag, and after short pause, yielding stabilized readings with a PID calibrated to 100 parts-per million (ppm) isobutylene standard. The headspace screening yielded non-detect responses within each soil core on the day of the survey. Refer to Soil Boring Logs in Attachment A for specific field analytical readings as they relate to each soil core. Saturated soils (typically an indicator of groundwater) were encountered at an average depth of 16-19 feet bgs across the Subject Property.

3.4 Subsurface Soil/Groundwater Sampling and Laboratory Analysis

During investigative procedures, soil samples were collected from one foot above through one foot below the detected groundwater table as obvious impacts were not encountered (note that soil collection depths within each borehole are documented in Attachment A).

To provide data on the local aquifer, three soil boring locations were converted into temporary groundwater monitoring wells (denoted as SB-3/GW - SB-5 GW) during the Site investigation. Each well was constructed of one-inch inside diameter, schedule 40 PVC casing and 0.10-slot well screen. The wells were then backfilled as per NYSDEC guidelines with a #0 filter pack extending above the screen. Prior to sampling, fluid levels in the monitoring wells were gauged using a sonic interface probe to determine the depth of free phase product (DTP) if any, depth to water (DTW) and depth to bottom (DTB) of the well. These measurements were recorded in a field log along with details of the sampling procedures. A summary of collected monitoring data is as follows:

Monitoring Well No.	Depth to Product (ft.)	Depth to Water (ft.)	Depth to Bottom (ft.)	Observations
SB-3/GW	Not detected	16.75	20.00	Light brown-clear, no odor or sheen.
SB-4/GW	Not detected	15.70	20.00	Light brown-clear, no
SB-5/GW	Not detected	15.60	20.00	odor or sheen. Light brown-clear, no odor or sheen.

Upon collection of monitoring data, groundwater was then purged with the use of a peristaltic pump, equipped with disposable polyethylene tubing from each monitoring point until the water is free of appreciable sediment. In order to prevent cross contamination between wells, all sampling equipment that entered the well was dedicated or decontaminated between monitoring locations. At the conclusion of groundwater sampling all well materials were extracted from the borehole and discarded.

All samples collected during the investigation were packed on ice and prepared for transport to York Analytical Laboratories, Inc. (York) of Stratford, CT under standard chain of custody protocol. Analytical testing methods utilized on the collected soil and groundwater samples were as follows:

MATRIX	EPA TEST METHOD - COMPOUNDS
Soil	8260 – Volatile Organics
Groundwater	8260 – Volatile Organics

Subsurface materials submitted for laboratory testing were identified as follows:

York Laboratory Number: 20K0850-01 – 20K0850-09

Sample No. 01 = SB-1

Sample No. 02 = SB-2

Sample No. 03 = SB-3

Sample No. 04 = SB-3/GW

Sample No. 05 = SB-4

Sample No. 06 = SB-4/GW

Sample No. 07 = SB-5

Sample No. 08 = SB-5/GW

Sample No. 09 = SB-6

The complete laboratory package may be found in Attachment B for review.

4.0 FINDINGS

Based upon the field and laboratory results of this investigation, DTCS presents the following findings concerning subsurface soil and groundwater quality at the Site:

4.1 Subsurface Soil Quality

To provide additional data on current subsurface soil conditions, a total of six soil borings were advanced at the Subject Property. Upon review of analytical testing results, DTCS concludes that all soil boring locations were returned with either non-detectable concentrations of VOCs or with reported values which met unrestricted soil cleanup objectives (SCOs). Attached as Table 1 is a soil quality chart of laboratory documented VOCs in comparison to their respective regulatory standard as defined in NYSDEC Part 375-6.8 (a).

4.2 Groundwater Quality

A total of three groundwater samples were obtained from the 77 Cornell Street, Kingston, New York property to characterize groundwater quality. Analysis of groundwater collected from the temporary Site wells constructed in Soil Borings SB-3, SB-4 and SB-5 revealed detectable levels of Chloroform, PCE, and TCE which only slightly exceed NYSDEC Division of Water Technical and Operational Guidance Series (TOGS) 1.1.1., Class GA groundwater quality standards. The remaining VOCs were returned with either non-detectable sample concentrations or with reported concentrations below guidance. Attached as Table 1 is a groundwater quality chart of laboratory documented VOCs in comparison to their respective regulatory standard as defined in NYSDEC TOGS 1.1.1.

5.0 CONCLUSIONS

The historic on-Site dry cleaning operations have impacted groundwater and sub-slab soil gas on-Site. Based upon the investigations performed to date, there is evidence of a historic release of chlorinated solvents which has been found to impact indoor air quality. Most recent subsurface investigation activities have not revealed any substantial groundwater impacts from cVOCs beneath the Site; however the analysis of soil gas and ambient air indicate the necessity for mitigation to address soil vapor intrusion based upon applicable NYSDOH guidance. Attached for your review as Figure 3 (cVOC Contaminant Concentration Map) is a graphic representation of most recent soil, soil gas and groundwater detections to date.

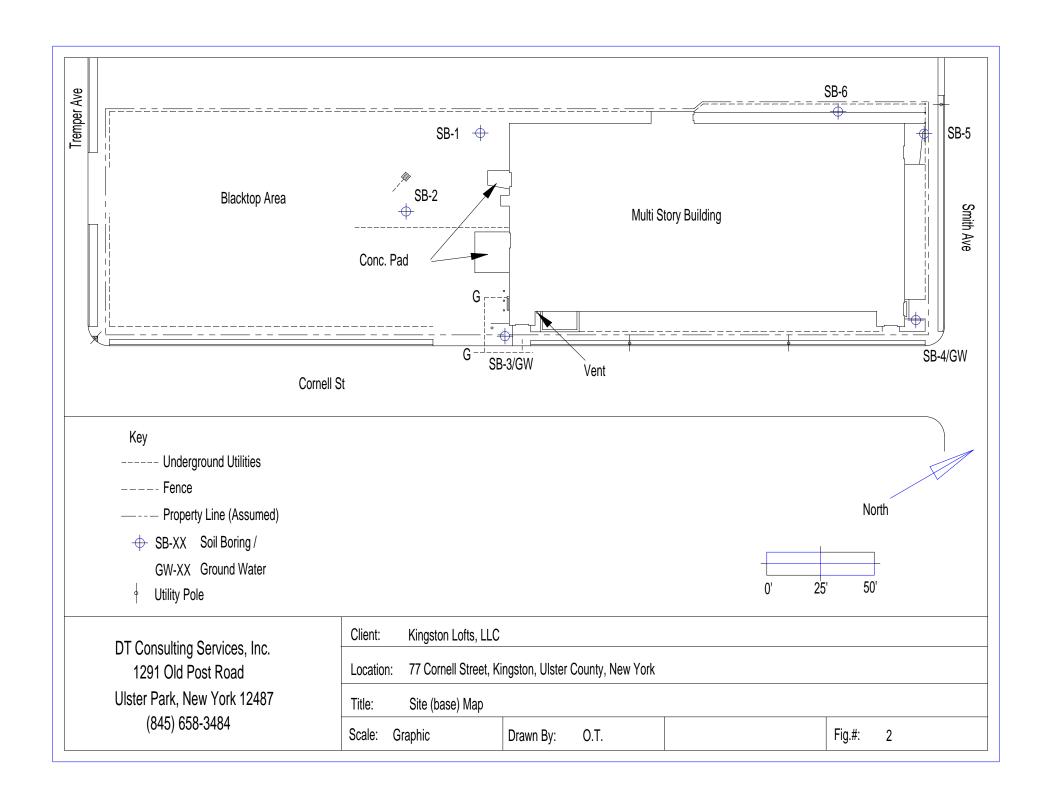
6.0 RECOMENDATIONS

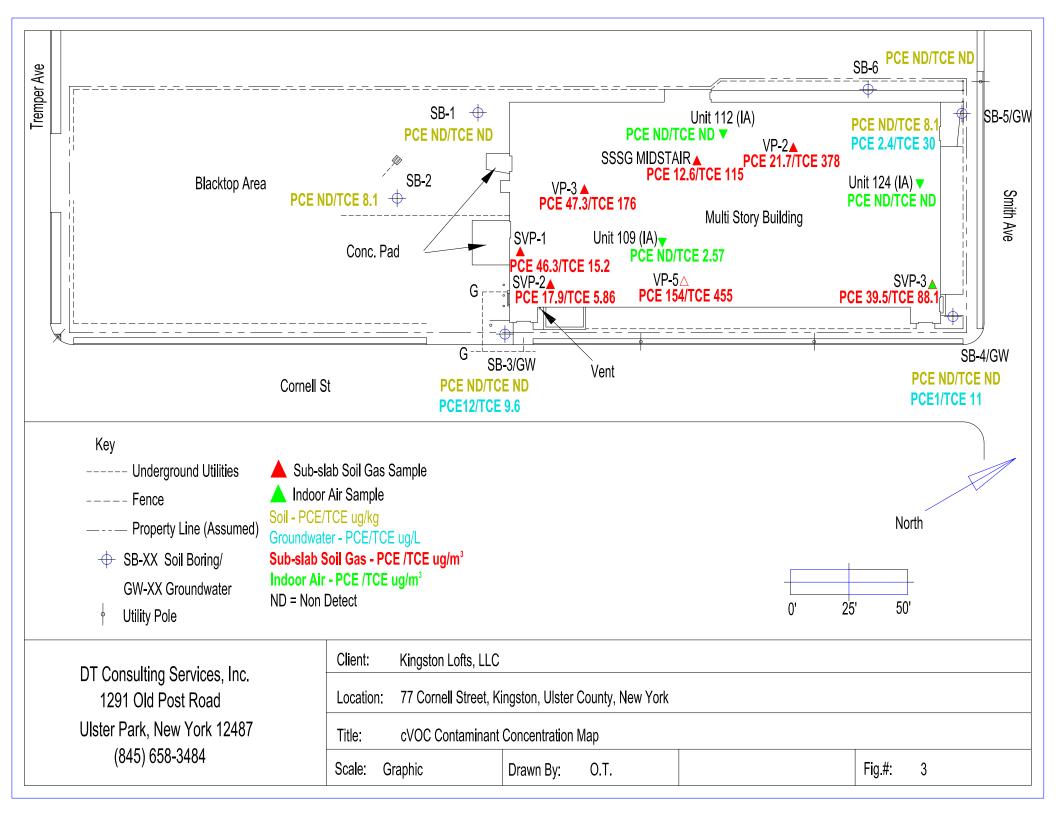
The subsurface investigation results describe herein indicate that no further investigation is necessary at the Site; however, sub-slab soil gas and indoor air results collected to date indicate that vapor intrusion mitigation is necessary in the slab-on-grade portion of the building. As such, DTCS is recommending the installation and maintenance of a SSDS

for the Site in order to implement soil vapor mitigation in accordance with NYSDOH guidelines.

7.0 LIMITATIONS

DTCS has prepared this report using reasonable efforts in each phase of its work to determine the extent of subsurface contamination (if any) within the locations of potential environmental concern. This report is not definitive, and should not be assumed to be a complete or specific definition of all conditions above or below grade. The conclusions/recommendations set forth herein are applicable only to the facts and conditions described at the time of this report.


FIGURES



Client: Kingston	Lofts LLC							
Site: 77 Cornell Street, Kingston, New York								
	Drawn by:	Scale: Graphic						

Site Location Plan

Figure No: 1

TABLES

Table 1:

Summary of Soil Laboratory Analysis - Volatile Organic Compounds

Page 1 of 2

Client: Kingston Lofts LLC

Contractor: DT Consulting Services, Inc.

Site: Kingston Lofts LLC/The Shirt Factory

77 Cornell Street

Kingston, Ulster County, New York

Sample Location Sample Number		SB-1	SB-2	SB-3	SB-4	SB-5 5	SB-6 6
Date Collected		11/18/2020	11/18/2020	11/18/2020	11/18/2020	11/18/2020	11/18/2020
Matrix		Soil	Soil	Soil	Soil	Soil	Soil
Analytical Method		8260	8260	8260	8260	8260	8260
	Unrestricted Use						
Compound	Soil Cleanup	Sample Conc.					
	Objectives						
	NS	4.0 J,B	5.3 J,B	4.1 J,B	3.5 J.B	4.0 J,B	4.1 J,B
2-Butanone				- /	,	/	- /

Notes:

- 1. Soil results are recorded in micrograms-per-kilogram (µg/kg) or ppb.
- 2. ND = Undetected.
 - J = Detected below the Reporting Limit but greater than or equal to the Method Detection Limit (MDL/LOD) or in the case of a TIC, the result is an estimated concentration.
 - B = Analyte is found in the associated analysis batch blank. For volatiles, methylene chloride and acetone are common lab contaminants.
- 3. The presented soil guidance values were adopted from NYSDEC 6 NYCRR Part 375, Table 375-6.8(a): Unrestricted Use Soil Cleanup Objectives, December 2006.
- 4. Those compounds which exceeded groundwater quality standards are represented in bold and underlyined as such: 100.
- 5. Only those compounds with laboratory reportable compounds are presented in this chart. The remaining parameters within the EPA Test Method 8260 were returned non-detected.

Table 1:

Summary of Groundwater Laboratory Analysis - Volatile Organic Compounds

Page 2 of 2

Client: Kingston Lofts LLC

Contractor: DT Consulting Services, Inc.

Site: Kingston Lofts LLC/The Shirt Factory

77 Cornell Street

Kingston, Ulster County, New York

Sample Location		SB-3/GW	SB-4/GW	SB-5/GW	
Sample Number		4	6	8	
Date Collected		11/18/2020	11/18/2020	11/18/2020	
Matrix		Groundwater	Groundwater	Groundwater	
Analytical Method		8260	8260	8260	
	TOGS-Class GA				
Compound	Standard	Sample Conc.	Sample Conc.	Sample Conc.	
1,2,4,5-Tetramethylbenzene	5	0.27J	ND	ND	
2-Butanone	NS	0.80 J,B	0.88 J,B	1.0 J,B	
Chloroform	7	<u>11</u>	0.27 J	1.5	
cis-1,2-Dichloroethylene	5	ND	0.37 J	1.8	
Naphthalene	10	1.1J	ND	ND	
Tetrachloroethylene	5	<u>12</u>	1	2.4	
Trichloroethylene	5	<u>9.6</u>	<u>11</u>	<u>30</u>	

Notes:

- 1. Groundwater results are recorded in micrograms-per-liter (µg/L) or ppb.
- 2. ND = Undetected.
 - J = Detected below the Reporting Limit but greater than or equal to the Method Detection Limit (MDL/LOD) or in the case of a TIC, the result is an estimated concentration. NS = No published standard. B = Analyte is found in the associated analysis batch blank.
- 3. The presented guidance values were adopted from the NYSDEC Division of Water Technical and Operational Guidance Series (TOGS) 1.1.1., Class GA, December 2006.
- 4. Those compounds which exceeded groundwater quality standards are represented in bold and underlyined as such: 100.
- 5. Only those compounds with laboratory reportable compounds are presented in this chart. The remaining parameters within the EPA Test Method 8260 were returned non-detect.

ATTACHMENTS

ATTACHMENT A

DT Consulting Services, Inc. 1291 Old Post Road Ulster Park, New York 12487 (845) 658-3484		Sc	Soil Boring Log SB-1		Hole No: SB-1		Date Started: 11-18-20				
					Sheet 1 of 1 Date Finished: 11-18-20						
Client: Kingston Lofts LLC											
					Metho	od of investigation:	2.00" Hollow Stem Samp	blers			
Location:	The Shirt Facto	ory, 77 Cornel	Street, Kingst	on, New York							
Drilling Co: Core Down Dr					illing		Driller: A. Bellucci				Weather:
P. Manager:			г			D. Helper: O. Tanner				Partly Cloudy	
Deborah Thompson Geologist: Deb				eborah Thomp	son		Drill Rig: Geoprobe				45° F @ 0830
		Sample	1		-			PID (ppm)			Groundwater
Depth		Blows		Recovery		Sample		Analytical	В	oring	and Other
(ft.)	Depth (ft.)	per 6"	"N"	(in.)		Description		Readings	D	etails	Observations
	1				Asphalt, stone.						
	2 Brown, sa					p, no odor.					Sampled subsurface soils
	3										(18-20-ft bgs, SB-1)
4				32"	Same.						
	5										Groundwater
	6										encountered @ 19-ft bgs.
	7										No obvious impacts.
8				36"	Brown, coarse san	d damp no odor					
Ů	9			30	Drown, course sun	a, damp, no odon					
	10										
					1						
	11				-						
				44"	Same.			-			
	13				-						
	14										
	15				-						
16				44"	Same.						
	17				_						
	18				<u> </u>						
	19				Brown, fine sand-s	silt, saturated at 19	turated at 19-ft bgs, no odor.			•	
20				42"	Same.		Τ				
Sample Ty	ypes:						П	Bac	kfill Wel	l Key	
S=l	Hollow Spoon:	X		-				Asphalt Patch			Native Fill
I	R= Rock Core:			-							
N = ASTM D1586 BGS = Below Grade Surface						[::::]	Borehole		Ħ	Bentonite	

Ulster Par	ulting Services Old Post Roark rk, New York 1 45) 658-3484	s, Inc. d 12487	So	oil Boring Lo SB-2	g	Hole No.		Date Started: 1			
						Sheet	t 1 of 1	Date Finished:	11-18-20		
Client: Kir	ngston Lofts LL	.C									
					Meth	od of investigation	: 2.00" Hollow Stem Samp	nlers			
						od of myeonganom	2.00 Honow Stein Samp	1013			
Location:	The Shirt Factor	ory, 77 Cornel	1 Street, Kingsto	on, New York							
			Drilling Co: (Core Down Dri	illing		Driller: A. Bellucci				Weather:
P. Manage	er:						D. Helper: O. Tanner				Partly Cloudy
Deborah T	Thompson		Geologist: D	eborah Thomp	oson		Drill Rig: Geoprobe	,			55° F @ 0830
	Ī	Sample		1	_			PID (ppm)			Groundwater
Depth		Blows		Recovery		Sample		Analytical	Borir	ng	and Other
(ft.)	Depth (ft.)	per 6"	"N"	(in.)		Description		Readings	Detai	ils	Observations
	1				Asphalt, stone.				8888	3888	
	1				rispitate, stolic.						
	2				Brown, sand, damp	p, no odor.		0.0			Sampled subsurface soils
	3				_						(18-20-ft bgs, SB-2)
4		<u> </u>		38"	Same.			0.0			
											C. Joseph
	5	<u> </u>			1						Groundwater
	6	İ			-						encountered @ 19-ft bgs.
	7				_						No obvious impacts.
8		ı <u></u>		46"	Brown, coarse san	nd, damp, <u>no odor.</u>		0.0			
	0							1			
	9				1						
	10		 		-						
	11				_						
12				42"	Same.			0.0			
	12										
	13										
	14				-						
	15				_						
16		<u> </u>		46"	Same.			0.0			
	17										
	17										
	18		<u> </u>		_						
	19				Brown, fine sand-s	silt, saturated at 19)-ft bgs, no odor.			1	
20				40"	Same.			0.0			
Sample Ty								Bac	ckfill Well K	ey	
S=I	Hollow Spoon:	X		-			ШШ	Cement]	Native Fill
F	R= Rock Core:			-							
N = ASTN	M D1586 - BG9	S – Below Gr	ade Surface	DTW/DTB =	Depth to Water/De	enth to Bottom	[::::]	Borehole			Bentonite

Ulster Pa	ulting Services Old Post Roadsk, New York 1 45) 658-3484	i Inc. d 12487	So	oil Boring Lo SB-3	'g			Date Started: 1			
						Sheet	t 1 of 1	Date Finished:	11-18-20		
Client: Kir	ngston Lofts LL	.C									
					Methr	od of investigation:	: 2.00" Hollow Stem Samp	olers			
Location:	The Shirt Facto	orv. 77 Corne!	ll Street, Kingste	ton, New York							
			Drilling Co: C	Core Down Dri	illing		Driller: A. Bellucci				Weather:
P. Manage	er:						D. Helper: O. Tanner				Partly Cloudy
Deborah T	hompson		Geologist: D	Deborah Thomps	son		Drill Rig: Geoprobe	T	1		55° F @ 0830
		Sample			_			PID (ppm)			Groundwater
Depth		Blows		Recovery		Sample		Analytical	Bo	oring	and Other
				•							
(ft.)	Depth (ft.)	per 6"	"N"	(in.)		Description		Readings	IIII	etails	Observations
	1			 	Asphalt, stone.						
	2			<u> </u>	Brown, sand, damp	p, no odor.		0.0		3838	Sampled subsurface soils
	3	<u> </u>									(15-17-ft bgs, SB-3)
4				34"	Same.			0.0			
*				.34	Same.			0.0			
	5		-		-						Groundwater
	6		 		_						encountered @ 16-ft bgs.
	7										No obvious impacts.
8		ı		38"	Brown, coarse sand	nd, damp, no odor.		0.0			1" ID Temporary GW Well set
	9]			at 20-ft. bgs. Extracted at
					-						-
	10	·	-		-						completion of sampling
	11		 		_						activities.
12			<u> </u>	47"	Same.			0.0			
	13	ı									DTW - 16.75-ft bgs
	14	·			-						DTB - 20.00-ft bgs
	15		 	 	-						
16				48"	Brown, fine sand-s	silt, saturated at 16	-ft bgs, no odor.	0.0		1	Brown-clear, no odor or sheen.
	17										
	18										
	19	·									
20				47"	Same.		T	0.0	::::	[:::	
Sample Ty	ypes:						пп	Bac	ckfill Well	Key	
S=I	Hollow Spoon:	X		_				Cement			Native Fill
1	R= Rock Core:						15151				
	M D1586 BGS							Borehole			Bentonite

1291 Ulster Pa	ulting Services Old Post Roa rk, New York 45) 658-3484	d	Sc	oil Boring Lo SB-4	g		SB-4/SB-4 GW	Date Started: 1 Date Finished:			
Client: Kii	ngston Lofts LL	.c	1		Metho		2.00" Hollow Stem Samp		11-10-20		
I ocation:	The Shirt Facto	ory 77 Cornel	l Street, Kingsto	on New York							
Location.	The omit racte	яу, тт сонис									
			Drilling Co: C	Core Down Dri	illing		Driller: A. Bellucci				Weather:
P. Manage	er:						D. Helper: O. Tanner				Partly Cloudy
Deborah T	Thompson		Geologist: D	eborah Thomp	son		Drill Rig: Geoprobe				55° F @ 0830
		Sample			-			PID (ppm)			Groundwater
Depth		Blows		Recovery		Sample		Analytical	Borin	ng	and Other
(ft.)	Depth (ft.)	per 6"	"N"	(in.)		Description		Readings	Deta	ils	Observations
	1				Asphalt, stone.						
	2				Brown, sand, dam	p, no odor.		0.0			Sampled subsurface soils
	3										(15-17-ft bgs, SB-4)
4	4 34" Same.							0.0			
4	4 34" Same.							0.0			
	5										Groundwater
	6										encountered @ 16-ft bgs.
	7				-						No obvious impacts.
8				46"	Brown, coarse san	d, damp, no odor.		0.0			1" ID Temporary GW Well set
	9										at 20-ft. bgs. Extracted at
	10										completion of sampling
	11										activities.
	11				-						activities.
				38"	Same.			0.0			
	13				_						DTW - 15.70-ft bgs
	14				-						DTB - 20.00-ft bgs
	15				1						
16				41"	Brown, fine sand-s	silt, saturated at 16	-ft bgs, no odor.	0.0		1	Brown-clear, no odor or sheen.
	17										
	18				-						
	19				1						
20				42"	Same.			0.0		[:::	
Sample Ty		X						Bac	ckfill Well K		Native Fill
							[11]				
	M D1586 BGS						1::::	Borehole			Bentonite

1291 Ulster Pa	ulting Services Old Post Roark, New York 45) 658-3484	d	Sc	oil Boring Lo SB-5	'g			Date Started: 1			
						Sneed	t 1 of 1	Date Finished:	11-18-20		
Client: Kir	ngston Lofts LL	.C									
					Metho	od of investigation:	: 2.00" Hollow Stem Samp	olers			
Location:	The Shirt Factor	ory, 77 Cornel	ll Street, Kingsto	on, New York			T				
			Drilling Co: (Core Down Dri	illing		Driller: A. Bellucci				Weather:
P. Manage	er:						D. Helper: D. Bellucci				Partly Cloudy
Deborah T	Γhompson		Geologist: D	Deborah Thomps	oson		Drill Rig: Geoprobe	T			55° F @ 0830
		Sample						PID (ppm)			Groundwater
Depth		Blows		Recovery		Sample		Analytical	Borii	ng	and Other
(ft.)	Depth (ft.)	per 6"	"N"	(in.)		Description		Readings	Deta	iils	Observations
	1				Brown, sand, dam	n no odor.			13333	8888	
	2				,	F,		0.0			C1-1 subsurface soils
					-			0.0			Sampled subsurface soils
	3		-		-						(15-17-ft bgs, SB-5)
4			-	30"	Same.			0.0			
	5		 	-	-						Groundwater
	6		 	 	_						encountered @ 16-ft bgs.
	7				_						No obvious impacts.
8			<u> </u>	32"	Brown, coarse sand	ıd, damp, no odor.		0.0			1" ID Temporary GW Well set
	9										at 20-ft. bgs. Extracted at
	10										completion of sampling
	11										activities.
				42"				0.0			
				42"	Same.			0.0			DTW - 15.60-ft bgs
	13				-						DTB - 20.00-ft bgs
	14		-		-						
	15		<u> </u>	 	_						Brown-clear, no odor or sheen.
16				32"	Brown, fine sand-s	silt, saturated at 16	-ft bgs, no odor.	0.0		1	
	17		<u> </u>	<u> </u>	_						
	18				_						
	19										
20				38"	Same.			0.0			
				-	1511111				-1-611 Well K		
Sample Ty									ckfill Well K		
							FEET	Cement	BRREER		Native Fill
I I	₹= Rock Core:			-							
N = ASTM	M D1586 BGS	S - Below Gr	cade Surface					Borehole			Bentonite

1291 Ulster Pa	ulting Service: Old Post Roa rk, New York 45) 658-3484	d	Soil Boring Log SB-6			Hole No.		Date Started: 11		
Client: Vi	ngston Lofts LL	C	1			Sheet	t 1 of 1	Date Finished:	11-18-20	
Chent: Kii	igston Lotts LL	ı.			Metho	od of investigation:	: 1.00" Hollow Stem Samp	lers		
Location:	The Shirt Factor	ory, 77 Cornel	l Street, Kingst	on, New York						
			Drilling Co: O	Core Down Dri	lling		Driller: A. Bellucci			Weather:
P. Manage	er:						D. Helper: O. Tanner			Partly Cloudy
Deborah T	Thompson		Geologist: D	eborah Thomp	son		Drill Rig: Hand Tooling		1	55° F @ 0830
		Sample	1					PID (ppm)		Groundwater
Depth		Blows		Recovery		Sample		Analytical	Boring	and Other
(ft.)	Depth (ft.)	per 6"	"N"	(in.)		Description		Readings	Details	Observations
	1				Brown, sand, dam	p, no odor.				-
	2			16"				0.0		Sampled subsurface soils
	3									(4-6-ft bgs, SB-6)
4	4			20"	Same.			0.0		
	5									Groundwater
	6			12"	Resistance encoun	tered at 6-ft. bgs.		0.0		not encountered.
	7									
8										
	9									
	10									
	11									
12										
	13									
	14									
	15									
16										
	17									
	18									
	19									
20										
Sample Ty								Bac	kfill Well Key	
							111111 ET-TO	Cement Grout	////	Native Fill
	R= Rock Core: = ASTM D1586 BGS = Below Grade Surface							Borehole		Bentonite

ATTACHMENT B

Technical Report

prepared for:

DT Consulting Services

1291 Old Post Road Ulster Park NY, 12487

Attention: Deborah Thompson

Report Date: 11/30/2020

Client Project ID: 77 Carnell Street Kingsten, New York

York Project (SDG) No.: 20K0850

CT Cert. No. PH-0723

New Jersey Cert. No. CT005 and NY037

New York Cert. Nos. 10854 and 12058

PA Cert. No. 68-04440

Report Date: 11/30/2020

Client Project ID: 77 Carnell Street Kingsten, New York

York Project (SDG) No.: 20K0850

DT Consulting Services

1291 Old Post Road Ulster Park NY, 12487

Attention: Deborah Thompson

Purpose and Results

This report contains the analytical data for the sample(s) identified on the attached chain-of-custody received in our laboratory on November 19, 2020 with a temperature of 1.2 C. The project was identified as your project: 77 Carnell Street Kingsten, New York.

The analyses were conducted utilizing appropriate EPA, Standard Methods, and ASTM methods as detailed in the data summary tables.

All samples were received in proper condition meeting the customary acceptance requirements for environmental samples except those indicated under the Sample and Analysis Qualifiers section of this report.

All analyses met the method and laboratory standard operating procedure requirements except as indicated by any data flags, the meaning of which are explained in the Sample and Data Qualifiers Relating to This Work Order section of this report and case narrative if applicable.

The results of the analyses, which are all reported on dry weight basis (soils) unless otherwise noted, are detailed in the following pages.

Please contact Client Services at 203.325.1371 with any questions regarding this report.

York Sample ID	Client Sample ID	<u>Matrix</u>	Date Collected	Date Received
20K0850-01	SB-1	Soil	11/18/2020	11/19/2020
20K0850-02	SB-2	Soil	11/18/2020	11/19/2020
20K0850-03	SB-3	Soil	11/18/2020	11/19/2020
20K0850-04	SB-3 GW	Water	11/18/2020	11/19/2020
20K0850-05	SB-4	Soil	11/18/2020	11/19/2020
20K0850-06	SB-4 GW	Water	11/18/2020	11/19/2020
20K0850-07	SB-5	Soil	11/18/2020	11/19/2020
20K0850-08	SB-5 GW	Water	11/18/2020	11/19/2020
20K0850-09	SB-6	Soil	11/18/2020	11/19/2020

General Notes for York Project (SDG) No.: 20K0850

- 1. The RLs and MDLs (Reporting Limit and Method Detection Limit respectively) reported are adjusted for any dilution necessary due to the levels of target and/or non-target analytes and matrix interference. The RL(REPORTING LIMIT) is based upon the lowest standard utilized for the calibration where applicable.
- 2. Samples are retained for a period of thirty days after submittal of report, unless other arrangements are made.
- 3. York's liability for the above data is limited to the dollar value paid to York for the referenced project.
- 4. This report shall not be reproduced without the written approval of York Analytical Laboratories, Inc.
- 5. All analyses conducted met method or Laboratory SOP requirements. See the Sample and Data Qualifiers Section for further information.
- 6. It is noted that no analyses reported herein were subcontracted to another laboratory, unless noted in the report.
- 7. This report reflects results that relate only to the samples submitted on the attached chain-of-custody form(s) received by York.

8. Analyses conducted at York Analytical Laboratories, Inc. Stratford, CT are indicated by NY Cert. No. 10854; those conducted at York Analytical Laboratories, Inc., Richmond Hill, NY are indicated by NY Cert. No. 12058.

Approved By:

Date: 11/30/2020

Benjamin Gulizia Laboratory Director

Client Sample ID: SB-1 York Sample ID: 20K0850-01

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received20K085077 Carnell Street Kingsten, New YorkSoilNovember 18, 2020 9:49 am11/19/2020

Volatile Organics, 8260 List
Sample Prepared by Method: EPA 5035A

Log-in Notes:

CAS No.	. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference N	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
630-20-6	1,1,1,2-Tetrachloroethane	ND		ug/kg dry	2.6	5.3	1	EPA 8260C Certifications:	CTDOH,NI	11/24/2020 06:47 ELAC-NY10854,NEL	11/24/2020 17:25 AC-NY12058,PA	TMP
71-55-6	1,1,1-Trichloroethane	ND		ug/kg dry	2.6	5.3	1	EPA 8260C Certifications:	CTDOH,NI	11/24/2020 06:47 ELAC-NY10854,NEL	11/24/2020 17:25 AC-NY12058,PA	TMP
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/kg dry	2.6	5.3	1	EPA 8260C Certifications:	CTDOH,NI	11/24/2020 06:47 ELAC-NY10854,NEL	11/24/2020 17:25 AC-NY12058,PA	TMP
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/kg dry	2.6	5.3	1	EPA 8260C Certifications:	CTDOH,NI	11/24/2020 06:47 ELAC-NY10854,NEL	11/24/2020 17:25 AC-NY12058,NJ	TMP
79-00-5	1,1,2-Trichloroethane	ND		ug/kg dry	2.6	5.3	1	EPA 8260C Certifications:	CTDOH,NI	11/24/2020 06:47 ELAC-NY10854,NEL	11/24/2020 17:25 AC-NY12058,PA	TMP
75-34-3	1,1-Dichloroethane	ND		ug/kg dry	2.6	5.3	1	EPA 8260C Certifications:	CTDOH,NI	11/24/2020 06:47 ELAC-NY10854,NEL	11/24/2020 17:25 AC-NY12058,PA	TMP
75-35-4	1,1-Dichloroethylene	ND		ug/kg dry	2.6	5.3	1	EPA 8260C Certifications:	CTDOH,NI	11/24/2020 06:47 ELAC-NY10854,NEL	11/24/2020 17:25 AC-NY12058,PA	TMP
563-58-6	1,1-Dichloropropylene	ND		ug/kg dry	2.6	5.3	1	EPA 8260C Certifications:	NELAC-NY	11/24/2020 06:47 /10854,NELAC-NY12	11/24/2020 17:25 2058,PADEP,NJE	TMP
87-61-6	1,2,3-Trichlorobenzene	ND		ug/kg dry	2.6	5.3	1	EPA 8260C Certifications:	NELAC-NY	11/24/2020 06:47 /10854,NELAC-NY12	11/24/2020 17:25 2058,PADEP,NJE	TMP
96-18-4	1,2,3-Trichloropropane	ND		ug/kg dry	2.6	5.3	1	EPA 8260C Certifications:	NELAC-NY	11/24/2020 06:47 /10854,NELAC-NY12	11/24/2020 17:25 2058,NJDEP	TMP
120-82-1	1,2,4-Trichlorobenzene	ND		ug/kg dry	2.6	5.3	1	EPA 8260C Certifications:	NELAC-NY	11/24/2020 06:47 /10854,NELAC-NY12	11/24/2020 17:25 2058,PADEP,NJE	TMP
95-63-6	1,2,4-Trimethylbenzene	ND		ug/kg dry	2.6	5.3	1	EPA 8260C Certifications:	CTDOH,NI	11/24/2020 06:47 ELAC-NY10854,NELA	11/24/2020 17:25 AC-NY12058,PA	TMP
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/kg dry	2.6	5.3	1	EPA 8260C Certifications:	CTDOH,NI	11/24/2020 06:47 ELAC-NY10854,NELA	11/24/2020 17:25 AC-NY12058,PA	TMP
106-93-4	1,2-Dibromoethane	ND		ug/kg dry	2.6	5.3	1	EPA 8260C Certifications:	CTDOH,NI	11/24/2020 06:47 ELAC-NY10854,NELA	11/24/2020 17:25 AC-NY12058,PA	TMP
95-50-1	1,2-Dichlorobenzene	ND		ug/kg dry	2.6	5.3	1	EPA 8260C Certifications:	CTDOH,NI	11/24/2020 06:47 ELAC-NY10854,NELA	11/24/2020 17:25 AC-NY12058,PA	TMP
107-06-2	1,2-Dichloroethane	ND		ug/kg dry	2.6	5.3	1	EPA 8260C Certifications:	CTDOH,NI	11/24/2020 06:47 ELAC-NY10854,NELA	11/24/2020 17:25 AC-NY12058,PA	TMP
78-87-5	1,2-Dichloropropane	ND		ug/kg dry	2.6	5.3	1	EPA 8260C Certifications:	CTDOH,NI	11/24/2020 06:47 ELAC-NY10854,NELA	11/24/2020 17:25 AC-NY12058,PA	TMP
108-67-8	1,3,5-Trimethylbenzene	ND		ug/kg dry	2.6	5.3	1	EPA 8260C		11/24/2020 06:47 ELAC-NY10854,NELA	11/24/2020 17:25	TMP
541-73-1	1,3-Dichlorobenzene	ND		ug/kg dry	2.6	5.3	1	EPA 8260C		11/24/2020 06:47 ELAC-NY10854,NEL	11/24/2020 17:25	TMP
142-28-9	1,3-Dichloropropane	ND		ug/kg dry	2.6	5.3	1	EPA 8260C	_1201i,ivi	11/24/2020 06:47 /10854,NELAC-NY12	11/24/2020 17:25	TMP

Client Sample ID: SB-1 York Sample ID: 20K0850-01

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received20K085077 Carnell Street Kingsten, New YorkSoilNovember 18, 2020 9:49 am11/19/2020

Volatile Organics, 8260 List
Sample Prepared by Method: EPA 5035A

Log-in Notes:

CAS No	. Parameter	Result	Flag U	nits	Reported to LOD/MDL	LOQ	Dilution	Reference M	Iethod	Date/Time Prepared	Date/Time Analyzed	Analyst
106-46-7	1,4-Dichlorobenzene	ND	ug	/kg dry	2.6	5.3	1	EPA 8260C		11/24/2020 06:47	11/24/2020 17:25	TMP
								Certifications:	TDOH,NE	LAC-NY10854,NELA	AC-NY12058,PA	
123-91-1	1,4-Dioxane	ND	ug	/kg dry	53	110	1	EPA 8260C		11/24/2020 06:47	11/24/2020 17:25	TMP
								Certifications:	NELAC-NY	10854,NELAC-NY12		
594-20-7	2,2-Dichloropropane	ND	ug	/kg dry	2.6	5.3	1	EPA 8260C		11/24/2020 06:47	11/24/2020 17:25	TMP
									NELAC-NY	10854,NELAC-NY12	*	
78-93-3	2-Butanone	4.0	J, B ug/	kg dry	2.6	5.3	1	EPA 8260C Certifications: 0	TDOU NE	11/24/2020 06:47 LAC-NY10854,NEL	11/24/2020 17:25	TMP
05 40 8	2 (11 4 1	ND		/	2.6	5.2			JIDOH,NE	11/24/2020 06:47	11/24/2020 17:25	TMD
95-49-8	2-Chlorotoluene	ND	ug	/kg dry	2.6	5.3	1	EPA 8260C Certifications: 0	TDOH NE	11/24/2020 06.4/ LAC-NY10854,NEL/		TMP
106.42.4	4.001	ND		/1 4	2.6	5.2	1		orbon, N	11/24/2020 06:47	11/24/2020 17:25	TMD
106-43-4	4-Chlorotoluene	ND	ug	/kg dry	2.6	5.3	1	EPA 8260C Certifications: 0	TDOH NE	11/24/2020 06.4/ LAC-NY10854,NEL/		TMP
(7.64.1		ND	***	/Iro des	5.2	11	1		JIDOH,NE		11/24/2020 17:25	TMD
67-64-1	Acetone	ND	ug	/kg dry	5.3	11	1	EPA 8260C Certifications: 0	TDOH NE	11/24/2020 06:47 LAC-NY10854,NELA		TMP
71.42.2	D	ND		/1 4	2.6	5.3	1		orbon, N	11/24/2020 06:47	11/24/2020 17:25	TMP
71-43-2	Benzene	ND	ug	/kg dry	2.6	3.3	1	EPA 8260C Certifications: 0	TDOH NE	11/24/2020 06.4/ LAC-NY10854,NEL/		IMP
100.07.1	D 1	ND	***	/Iro des	2.6	5.2	1		JIDOII,IVL	11/24/2020 06:47	11/24/2020 17:25	TMD
108-86-1	Bromobenzene	ND	ug	/kg dry	2.6	5.3	1	EPA 8260C Certifications:	NEL AC-NV	11/24/2020 06.4/ 10854,NELAC-NY12		TMP
74-97-5	D 11 4	ND		/1 4	2.6	5.2	1	EPA 8260C	VELITIC-IVI	11/24/2020 06:47	11/24/2020 17:25	TMP
/4-9/-3	Bromochloromethane	ND	ug	/kg dry	2.6	5.3	1		NEL AC-NV	11/24/2020 06.4/ 10854,NELAC-NY12		IMP
75 27 4	D 1111 4	ND		/1 4	2.6	5.2			VELITIC-IVI	11/24/2020 06:47	11/24/2020 17:25	TMD
75-27-4	Bromodichloromethane	ND	ug	/kg dry	2.6	5.3	1	EPA 8260C Certifications: 0	TDOH NE	11/24/2020 06.4/ LAC-NY10854,NEL/		TMP
75.25.2	D C	ND	***	/Iro des	2.6	5.2	1		JIDOH,NE			TMD
75-25-2	Bromoform	ND	ug	/kg dry	2.0	5.3	1	EPA 8260C Certifications: 0	TDOH NE	11/24/2020 06:47 LAC-NY10854,NELA	11/24/2020 17:25	TMP
74-83-9	D 4	ND		/1 4	2.6	5.3	1	EPA 8260C	orbon, N	11/24/2020 06:47	11/24/2020 17:25	TMP
/4-83-9	Bromomethane	ND	ug	/kg dry	2.6	3.3	1		TDOH NE	11/24/2020 06.4/ LAC-NY10854,NEL/		IMP
56 22 5	0.1 (4.11.11	ND	***	/Iro des	2.6	5.3	1	EPA 8260C	312311,112	11/24/2020 06:47	11/24/2020 17:25	TMP
56-23-5	Carbon tetrachloride	ND	ug	/kg dry	2.0	3.3	1		TDOH NE	LAC-NY10854,NEL		INIF
108-90-7	Chlorohonzono	ND	110	/ka dry	2.6	5.3	1	EPA 8260C	011011,112	11/24/2020 06:47	11/24/2020 17:25	TMP
108-90-7	Chlorobenzene	ND	ug	/kg dry	2.0	3.3	1		CTDOH.NE	LAC-NY10854,NEL		TIVII
75-00-3	Chloroethane	ND	110	/kg dry	2.6	5.3	1	EPA 8260C		11/24/2020 06:47	11/24/2020 17:25	TMP
75-00-3	Chioroeulane	ND	ug	/kg tily	2.0	5.5	1		CTDOH.NE	LAC-NY10854,NEL		TIVII
67-66-3	Chloroform	ND	110	/kg dry	2.6	5.3	1	EPA 8260C	, ,	11/24/2020 06:47	11/24/2020 17:25	TMP
07 00 3	Chlorotom	ND		, ng ur j	2.0	0.5	•		CTDOH,NE	LAC-NY10854,NEL		11111
74-87-3	Chloromethane	ND	110	/kg dry	2.6	5.3	1	EPA 8260C		11/24/2020 06:47	11/24/2020 17:25	TMP
7.073	Chloromediane	ND		, ng ur j	2.0	0.5	•		CTDOH,NE	LAC-NY10854,NEL		*****
156-59-2	cis-1,2-Dichloroethylene	ND	119	/kg dry	2.6	5.3	1	EPA 8260C		11/24/2020 06:47	11/24/2020 17:25	TMP
-50 57 2	cis 1,2 Diemorocutyiene	ND					-		CTDOH,NE	LAC-NY10854,NELA		*****
10061-01-5	cis-1,3-Dichloropropylene	ND	110	/kg dry	2.6	5.3	1	EPA 8260C		11/24/2020 06:47	11/24/2020 17:25	TMP
	1,5 Siemoropropjiene						-		CTDOH,NE	LAC-NY10854,NELA		
124-48-1	Dibromochloromethane	ND	ug	/kg dry	2.6	5.3	1	EPA 8260C		11/24/2020 06:47	11/24/2020 17:25	TMP
				,					NELAC-NY	10854,NELAC-NY12		

Client Sample ID: SB-1 York Sample ID: 20K0850-01

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received20K085077 Carnell Street Kingsten, New YorkSoilNovember 18, 2020 9:49 am11/19/2020

Volatile Organics, 8260 List
Sample Prepared by Method: EPA 5035A

Log-in Notes:

CAS No.	. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference M	1ethod	Date/Time Prepared	Date/Time Analyzed	Analyst
74-95-3	Dibromomethane	ND		ug/kg dry	2.6	5.3	1	EPA 8260C Certifications:	NELAC-NY1	11/24/2020 06:47 0854,NELAC-NY12	11/24/2020 17:25	TMP
75-71-8	Dichlorodifluoromethane	ND		ug/kg dry	2.6	5.3	1	EPA 8260C		11/24/2020 06:47	11/24/2020 17:25	TMP
								Certifications:	NELAC-NY1	0854,NELAC-NY12	2058,PADEP,NJE	
100-41-4	Ethyl Benzene	ND		ug/kg dry	2.6	5.3	1	EPA 8260C		11/24/2020 06:47	11/24/2020 17:25	TMP
								Certifications: 0	CTDOH,NEL	AC-NY10854,NEL		
87-68-3	Hexachlorobutadiene	ND		ug/kg dry	2.6	5.3	1	EPA 8260C	NIEL AC NIVI	11/24/2020 06:47	11/24/2020 17:25	TMP
00.02.0	T 11	ND		ug/kg dry	2.6	5.3	1		NELAC-N I I	11/24/2020 06:47	11/24/2020 17:25	TMP
98-82-8	Isopropylbenzene	ND		ug/kg ury	2.0	5.5	1	EPA 8260C Certifications:	CTDOH.NEL	AC-NY10854,NEL		IMP
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/kg dry	2.6	5.3	1	EPA 8260C	,	11/24/2020 06:47	11/24/2020 17:25	TMP
	wiethyr tert-outyr ether (WFBE)	ND							CTDOH,NEL	AC-NY10854,NEL		
75-09-2	Methylene chloride	ND		ug/kg dry	5.3	11	1	EPA 8260C		11/24/2020 06:47	11/24/2020 17:25	TMP
	·							Certifications:	CTDOH,NEL	AC-NY10854,NEL	AC-NY12058,PA	
91-20-3	Naphthalene	ND		ug/kg dry	2.6	11	1	EPA 8260C		11/24/2020 06:47	11/24/2020 17:25	TMP
								Certifications:	NELAC-NY1	0854,NELAC-NY12	2058,PADEP,NJE	
104-51-8	n-Butylbenzene	ND		ug/kg dry	2.6	5.3	1	EPA 8260C		11/24/2020 06:47	11/24/2020 17:25	TMP
								Certifications:	CTDOH,NEL	AC-NY10854,NEL	AC-NY12058,PA	
103-65-1	n-Propylbenzene	ND		ug/kg dry	2.6	5.3	1	EPA 8260C		11/24/2020 06:47	11/24/2020 17:25	TMP
								Certifications:	CTDOH,NEL	AC-NY10854,NEL	AC-NY12058,PA	
95-47-6	o-Xylene	ND		ug/kg dry	2.6	5.3	1	EPA 8260C		11/24/2020 06:47	11/24/2020 17:25	TMP
								Certifications:	CTDOH,NEL	AC-NY10854,NEL	AC-NY12058,PA	
179601-23-1	p- & m- Xylenes	ND		ug/kg dry	5.3	11	1	EPA 8260C	OTDOH NEI	11/24/2020 06:47	11/24/2020 17:25	TMP
									CTDOH,NEL	AC-NY10854,NEL		
99-87-6	p-Isopropyltoluene	ND		ug/kg dry	2.6	5.3	1	EPA 8260C Certifications:	CTDOH NEI	11/24/2020 06:47 AC-NY10854,NEL	11/24/2020 17:25 AC-NV12058 PA	TMP
135-98-8	Dut illumin	ND		ug/kg dry	2.6	5.3	1	EPA 8260C	CTDOII,IVEE	11/24/2020 06:47	11/24/2020 17:25	TMP
133-96-6	sec-Butylbenzene	ND		ug/kg ury	2.0	5.5	1		CTDOH.NEL	AC-NY10854,NEL		TIVIT
100-42-5	Styrene	ND		ug/kg dry	2.6	5.3	1	EPA 8260C	,	11/24/2020 06:47	11/24/2020 17:25	TMP
	Styrone	NB							CTDOH,NEL	AC-NY10854,NEL		
98-06-6	tert-Butylbenzene	ND		ug/kg dry	2.6	5.3	1	EPA 8260C		11/24/2020 06:47	11/24/2020 17:25	TMP
								Certifications:	CTDOH,NEL	AC-NY10854,NEL	AC-NY12058,PA	
127-18-4	Tetrachloroethylene	ND		ug/kg dry	2.6	5.3	1	EPA 8260C		11/24/2020 06:47	11/24/2020 17:25	TMP
								Certifications:	CTDOH,NEL	AC-NY10854,NEL	AC-NY12058,PA	
108-88-3	Toluene	ND		ug/kg dry	2.6	5.3	1	EPA 8260C		11/24/2020 06:47	11/24/2020 17:25	TMP
								Certifications:	CTDOH,NEL	AC-NY10854,NEL	AC-NY12058,PA	
156-60-5	trans-1,2-Dichloroethylene	ND		ug/kg dry	2.6	5.3	1	EPA 8260C		11/24/2020 06:47	11/24/2020 17:25	TMP
									CTDOH,NEL	AC-NY10854,NEL		
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/kg dry	2.6	5.3	1	EPA 8260C		11/24/2020 06:47	11/24/2020 17:25	TMP
									CTDOH,NEL	AC-NY10854,NEL		
79-01-6	Trichloroethylene	ND		ug/kg dry	2.6	5.3	1	EPA 8260C	CTDOH NET	11/24/2020 06:47	11/24/2020 17:25	TMP
								Certifications: 0	C1DOH,NEL	AC-NY10854,NEL	AC-N Y 12058,PA	

Client Sample ID: SB-1 20K0850-01

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received20K085077 Carnell Street Kingsten, New YorkSoilNovember 18, 2020 9:49 am11/19/2020

Volatile Organics, 8260 List
Sample Prepared by Method: EPA 5035A

Log-in Notes:

Sample Notes:

CAS No.	. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
75-69-4	Trichlorofluoromethane	ND		ug/kg dry	2.6	5.3	1	EPA 8260C Certifications:	CTDOH,N	11/24/2020 06:47 ELAC-NY10854,NEL	11/24/2020 17:25 AC-NY12058,PA	TMP
108-05-4	Vinyl acetate	ND		ug/kg dry	2.6	5.3	1	EPA 8260C Certifications:	NELAC-N	11/24/2020 06:47 Y10854,NELAC-NY12	11/24/2020 17:25 2058,PADEP,NJE	TMP
75-01-4	Vinyl Chloride	ND		ug/kg dry	2.6	5.3	1	EPA 8260C Certifications:	CTDOH,N	11/24/2020 06:47 ELAC-NY10854,NEL	11/24/2020 17:25 AC-NY12058,PA	TMP
1330-20-7	Xylenes, Total	ND		ug/kg dry	7.9	16	1	EPA 8260C Certifications:	CTDOH,N	11/24/2020 06:47 ELAC-NY10854,NEL	11/24/2020 17:25 AC-NY12058,NJ	TMP
	Surrogate Recoveries	Result		Acce	ptance Ran	ge						
17060-07-0	Surrogate: SURR: 1,2-Dichloroethane-d4	99.0 %			77-125							
2037-26-5	Surrogate: SURR: Toluene-d8	101 %			85-120							
460-00-4	Surrogate: SURR: p-Bromofluorobenzene	97.4 %			76-130							

Total Solids <u>Log-in Notes:</u> <u>Sample Notes:</u>

Sample Prepared by Method: % Solids Prep

CAS	No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Met	hod	Date/Time Prepared	Date/Time Analyzed	Analyst
solids	* % Solids		85.4		%	0.100	1	SM 2540G	1	11/30/2020 16:32	11/30/2020 16:35	KHA
								Certifications: CTD	OOH			

Sample Information

Client Sample ID: SB-2 York Sample ID: 20K0850-02

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received20K085077 Carnell Street Kingsten, New YorkSoilNovember 18, 2020 10:30 am11/19/2020

Volatile Organics, 8260 List

Sample Prepared by Method: EPA 5035A

Log-in Notes: Sample Notes:

CAS No	. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
630-20-6	1,1,1,2-Tetrachloroethane	ND		ug/kg dry	2.8	5.6	1	EPA 8260C Certifications:	CTDOH,NI	11/24/2020 06:47 ELAC-NY10854,NEL	11/24/2020 17:52 AC-NY12058,PA	TMP
71-55-6	1,1,1-Trichloroethane	ND		ug/kg dry	2.8	5.6	1	EPA 8260C Certifications:	CTDOH,NI	11/24/2020 06:47 ELAC-NY10854,NEL	11/24/2020 17:52 AC-NY12058,PA	TMP
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/kg dry	2.8	5.6	1	EPA 8260C Certifications:	CTDOH,NI	11/24/2020 06:47 ELAC-NY10854,NEL	11/24/2020 17:52 AC-NY12058,PA	TMP
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/kg dry	2.8	5.6	1	EPA 8260C Certifications:	CTDOH,NI	11/24/2020 06:47 ELAC-NY10854,NEL	11/24/2020 17:52 AC-NY12058,NJ	TMP

120 RESEARCH DRIVE STRATFORD, CT 06615

132-02 89th AVENUE RICHMOND HILL, NY 11418

www.YORKLAB.com (203) 325-1371 FAX (203) 357-0166

Page 7 of 41

ClientServices

Client Sample ID: SB-2 York Sample ID: 20K0850-02

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received20K085077 Carnell Street Kingsten, New YorkSoilNovember 18, 2020 10:30 am11/19/2020

Volatile Organics, 8260 List
Sample Prepared by Method: EPA 5035A

Log-in Notes:

CAS No.	. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference M	1ethod	Date/Time Prepared	Date/Time Analyzed	Analyst
79-00-5	1,1,2-Trichloroethane	ND		ug/kg dry	2.8	5.6	1	EPA 8260C		11/24/2020 06:47	11/24/2020 17:52	TMP
								Certifications:	CTDOH,NEI	LAC-NY10854,NEL	AC-NY12058,PA	
75-34-3	1,1-Dichloroethane	ND		ug/kg dry	2.8	5.6	1	EPA 8260C		11/24/2020 06:47	11/24/2020 17:52	TMP
									CTDOH,NEI	LAC-NY10854,NEL		
75-35-4	1,1-Dichloroethylene	ND		ug/kg dry	2.8	5.6	1	EPA 8260C Certifications:	CTDOH,NEI	11/24/2020 06:47 LAC-NY10854,NEL	11/24/2020 17:52 AC-NY12058,PA	TMP
563-58-6	1,1-Dichloropropylene	ND		ug/kg dry	2.8	5.6	1	EPA 8260C		11/24/2020 06:47	11/24/2020 17:52	TMP
	-,								NELAC-NY	10854,NELAC-NY12	2058,PADEP,NJE	
87-61-6	1,2,3-Trichlorobenzene	ND		ug/kg dry	2.8	5.6	1	EPA 8260C		11/24/2020 06:47	11/24/2020 17:52	TMP
								Certifications:	NELAC-NY	10854,NELAC-NY12	2058,PADEP,NJE	
96-18-4	1,2,3-Trichloropropane	ND		ug/kg dry	2.8	5.6	1	EPA 8260C		11/24/2020 06:47	11/24/2020 17:52	TMP
								Certifications:	NELAC-NY	10854,NELAC-NY12	2058,NJDEP	
120-82-1	1,2,4-Trichlorobenzene	ND		ug/kg dry	2.8	5.6	1	EPA 8260C		11/24/2020 06:47	11/24/2020 17:52	TMP
								Certifications:	NELAC-NY	10854,NELAC-NY12	2058,PADEP,NJE	
95-63-6	1,2,4-Trimethylbenzene	ND		ug/kg dry	2.8	5.6	1	EPA 8260C		11/24/2020 06:47	11/24/2020 17:52	TMP
								Certifications:	CTDOH,NEI	LAC-NY10854,NEL	AC-NY12058,PA	
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/kg dry	2.8	5.6	1	EPA 8260C		11/24/2020 06:47	11/24/2020 17:52	TMP
								Certifications:	CTDOH,NEI	LAC-NY10854,NEL	AC-NY12058,PA	
106-93-4	1,2-Dibromoethane	ND		ug/kg dry	2.8	5.6	1	EPA 8260C		11/24/2020 06:47	11/24/2020 17:52	TMP
								Certifications:	CTDOH,NEI	LAC-NY10854,NEL	AC-NY12058,PA	
95-50-1	1,2-Dichlorobenzene	ND		ug/kg dry	2.8	5.6	1	EPA 8260C		11/24/2020 06:47	11/24/2020 17:52	TMP
								Certifications:	CTDOH,NEI	LAC-NY10854,NEL	AC-NY12058,PA	
107-06-2	1,2-Dichloroethane	ND		ug/kg dry	2.8	5.6	1	EPA 8260C		11/24/2020 06:47	11/24/2020 17:52	TMP
								Certifications:	CTDOH,NEI	LAC-NY10854,NEL	AC-NY12058,PA	
78-87-5	1,2-Dichloropropane	ND		ug/kg dry	2.8	5.6	1	EPA 8260C		11/24/2020 06:47	11/24/2020 17:52	TMP
								Certifications:	CTDOH,NEI	LAC-NY10854,NEL	AC-NY12058,PA	
108-67-8	1,3,5-Trimethylbenzene	ND		ug/kg dry	2.8	5.6	1	EPA 8260C		11/24/2020 06:47	11/24/2020 17:52	TMP
								Certifications:	CTDOH,NEI	LAC-NY10854,NEL	AC-NY12058,PA	
541-73-1	1,3-Dichlorobenzene	ND		ug/kg dry	2.8	5.6	1	EPA 8260C		11/24/2020 06:47	11/24/2020 17:52	TMP
								Certifications:	CTDOH,NEI	LAC-NY10854,NEL	AC-NY12058,PA	
142-28-9	1,3-Dichloropropane	ND		ug/kg dry	2.8	5.6	1	EPA 8260C		11/24/2020 06:47	11/24/2020 17:52	TMP
								Certifications:	NELAC-NY	10854,NELAC-NY12	2058,PADEP,NJE	
106-46-7	1,4-Dichlorobenzene	ND		ug/kg dry	2.8	5.6	1	EPA 8260C		11/24/2020 06:47	11/24/2020 17:52	TMP
									CTDOH,NEI	LAC-NY10854,NEL		
123-91-1	1,4-Dioxane	ND		ug/kg dry	56	110	1	EPA 8260C		11/24/2020 06:47	11/24/2020 17:52	TMP
									NELAC-NY	10854,NELAC-NY12		
594-20-7	2,2-Dichloropropane	ND		ug/kg dry	2.8	5.6	1	EPA 8260C		11/24/2020 06:47	11/24/2020 17:52	TMP
									NELAC-NY	10854,NELAC-NY12		
78-93-3	2-Butanone	5.3	J, B	ug/kg dry	2.8	5.6	1	EPA 8260C Certifications:	СТООН МЕТ	11/24/2020 06:47 LAC-NY10854,NEL	11/24/2020 17:52 AC-NV12058 PA	TMP
05 40 9	2.611) ID		na/l 4-	20	5.6	1		C1DOII,NEI			TMAD
95-49-8	2-Chlorotoluene	ND		ug/kg dry	2.8	5.6	1	EPA 8260C Certifications:	СТООН МЕТ	11/24/2020 06:47 LAC-NY10854,NEL	11/24/2020 17:52	TMP
								Certifications.	CIDOR,NEI	LAC-IN 1 10834,INEL	AC-IN I 12038,PA	

Client Sample ID: SB-2 York Sample ID: 20K0850-02

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received20K085077 Carnell Street Kingsten, New YorkSoilNovember 18, 2020 10:30 am11/19/2020

Volatile Organics, 8260 List
Sample Prepared by Method: EPA 5035A

Log-in Notes:

CAS No	. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference M	1ethod	Date/Time Prepared	Date/Time Analyzed	Analyst
106-43-4	4-Chlorotoluene	ND		ug/kg dry	2.8	5.6	1	EPA 8260C		11/24/2020 06:47	11/24/2020 17:52	TMP
								Certifications:	CTDOH,NEI	LAC-NY10854,NEL	AC-NY12058,PA	
67-64-1	Acetone	ND		ug/kg dry	5.6	11	1	EPA 8260C		11/24/2020 06:47	11/24/2020 17:52	TMP
									CTDOH,NEI	LAC-NY10854,NEL		
71-43-2	Benzene	ND		ug/kg dry	2.8	5.6	1	EPA 8260C Certifications:	CTDOH NEI	11/24/2020 06:47 LAC-NY10854,NEL	11/24/2020 17:52 AC-NY12058 PA	TMP
108-86-1	D	NID		na/ka dry	2.8	5.6	1	EPA 8260C	CTDOII,IVEI	11/24/2020 06:47	11/24/2020 17:52	TMP
.08-80-1	Bromobenzene	ND		ug/kg dry	2.0	3.0	1		NELAC-NY1	11/24/2020 00:4/ 10854,NELAC-NY12		IMP
74-97-5	Bromochloromethane	ND		ug/kg dry	2.8	5.6	1	EPA 8260C		11/24/2020 06:47	11/24/2020 17:52	TMP
47/3	Biomochioromethane	ND		ug ng ur y	2.0	5.0	•		NELAC-NY1	10854,NELAC-NY12		11411
75-27-4	Bromodichloromethane	ND		ug/kg dry	2.8	5.6	1	EPA 8260C		11/24/2020 06:47	11/24/2020 17:52	TMP
	Bromodemoromediane	NB							CTDOH,NEI	LAC-NY10854,NEL	AC-NY12058,PA	
75-25-2	Bromoform	ND		ug/kg dry	2.8	5.6	1	EPA 8260C		11/24/2020 06:47	11/24/2020 17:52	TMP
								Certifications:	CTDOH,NEI	AC-NY10854,NEL	AC-NY12058,PA	
74-83-9	Bromomethane	ND		ug/kg dry	2.8	5.6	1	EPA 8260C		11/24/2020 06:47	11/24/2020 17:52	TMP
								Certifications:	CTDOH,NEI	LAC-NY10854,NEL	AC-NY12058,PA	
56-23-5	Carbon tetrachloride	ND		ug/kg dry	2.8	5.6	1	EPA 8260C		11/24/2020 06:47	11/24/2020 17:52	TMP
								Certifications:	CTDOH,NEI	LAC-NY10854,NEL	AC-NY12058,PA	
108-90-7	Chlorobenzene	ND		ug/kg dry	2.8	5.6	1	EPA 8260C		11/24/2020 06:47	11/24/2020 17:52	TMP
								Certifications:	CTDOH,NEI	LAC-NY10854,NEL	AC-NY12058,PA	
75-00-3	Chloroethane	ND		ug/kg dry	2.8	5.6	1	EPA 8260C		11/24/2020 06:47	11/24/2020 17:52	TMP
								Certifications:	CTDOH,NEI	LAC-NY10854,NEL	AC-NY12058,PA	
7-66-3	Chloroform	ND		ug/kg dry	2.8	5.6	1	EPA 8260C		11/24/2020 06:47	11/24/2020 17:52	TMP
								Certifications:	CTDOH,NEI	LAC-NY10854,NEL	AC-NY12058,PA	
4-87-3	Chloromethane	ND		ug/kg dry	2.8	5.6	1	EPA 8260C		11/24/2020 06:47	11/24/2020 17:52	TMP
									CTDOH,NEI	LAC-NY10854,NEL		
56-59-2	cis-1,2-Dichloroethylene	ND		ug/kg dry	2.8	5.6	1	EPA 8260C	CTDOU NE	11/24/2020 06:47	11/24/2020 17:52	TMP
					• •	- /			CIDOH,NEI	LAC-NY10854,NEL		
0061-01-5	cis-1,3-Dichloropropylene	ND		ug/kg dry	2.8	5.6	1	EPA 8260C Certifications:	CTDOH NEI	11/24/2020 06:47 LAC-NY10854,NEL	11/24/2020 17:52 A.C. NIV12058 PA	TMP
24-48-1	D1 11 4	ND		na/Ira den	2.8	5.6	1	EPA 8260C	CTDOII,IVEI	11/24/2020 06:47	11/24/2020 17:52	TMP
24-40-1	Dibromochloromethane	ND		ug/kg dry	2.8	3.0	1		NELAC-NY1	11/24/2020 00.4/ 10854,NELAC-NY12		INIF
4-95-3	Dibromomethane	ND		ug/kg dry	2.8	5.6	1	EPA 8260C		11/24/2020 06:47	11/24/2020 17:52	TMP
4-75-5	Diotomomeutane	ND		ug/kg ury	2.0	5.0	•		NELAC-NY1	10854,NELAC-NY12		TIVII
5-71-8	Dichlorodifluoromethane	ND		ug/kg dry	2.8	5.6	1	EPA 8260C		11/24/2020 06:47	11/24/2020 17:52	TMP
	Diemoroumano memane	1,12							NELAC-NY1	10854,NELAC-NY12		
00-41-4	Ethyl Benzene	ND		ug/kg dry	2.8	5.6	1	EPA 8260C		11/24/2020 06:47	11/24/2020 17:52	TMP
	.,							Certifications:	CTDOH,NEI	AC-NY10854,NEL	AC-NY12058,PA	
7-68-3	Hexachlorobutadiene	ND		ug/kg dry	2.8	5.6	1	EPA 8260C		11/24/2020 06:47	11/24/2020 17:52	TMP
								Certifications:	NELAC-NY1	10854,NELAC-NY12	2058,PADEP,NJE	
98-82-8	Isopropylbenzene	ND		ug/kg dry	2.8	5.6	1	EPA 8260C		11/24/2020 06:47	11/24/2020 17:52	TMP
								Certifications:	CTDOH,NEI	.AC-NY10854,NEL	AC-NY12058,PA	

Client Sample ID: SB-2 York Sample ID: 20K0850-02

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received20K085077 Carnell Street Kingsten, New YorkSoilNovember 18, 2020 10:30 am11/19/2020

Volatile Organics, 8260 List
Sample Prepared by Method: EPA 5035A

Log-in Notes:

Sample Notes:

CAS No.	. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference Meth	Date/Time nod Prepared	Date/Time Analyzed	Analyst
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/kg dry	2.8	5.6	1	EPA 8260C	11/24/2020 06:47	11/24/2020 17:52	TMP
75-09-2	Methylene chloride	ND		ug/kg dry	5.6	11	1	Certifications: CTD EPA 8260C	OH,NELAC-NY10854,NEL 11/24/2020 06:47	11/24/2020 17:52	TMP
5-07-2	Methylene chloride	ND		ug kg ury	5.0	11	•		OH,NELAC-NY10854,NEL		11411
1-20-3	Naphthalene	ND		ug/kg dry	2.8	11	1	EPA 8260C	11/24/2020 06:47	11/24/2020 17:52	TMP
								Certifications: NEL	AC-NY10854,NELAC-NY1	2058,PADEP,NJE	
04-51-8	n-Butylbenzene	ND		ug/kg dry	2.8	5.6	1	EPA 8260C	11/24/2020 06:47	11/24/2020 17:52	TMP
03-65-1	n Dranyih angana	ND		ug/kg dry	2.8	5.6	1	Certifications: CTD EPA 8260C	OH,NELAC-NY10854,NEL 11/24/2020 06:47	11/24/2020 17:52	TMP
13-03-1	n-Propylbenzene	ND		ug/kg ury	2.6	5.0	1		0H,NELAC-NY10854,NEL		INIF
5-47-6	o-Xylene	ND		ug/kg dry	2.8	5.6	1	EPA 8260C	11/24/2020 06:47	11/24/2020 17:52	TMP
	•							Certifications: CTD	OH,NELAC-NY10854,NEL	AC-NY12058,PA	
79601-23-1	p- & m- Xylenes	ND		ug/kg dry	5.6	11	1	EPA 8260C	11/24/2020 06:47	11/24/2020 17:52	TMP
									OH,NELAC-NY10854,NEL		
9-87-6	p-Isopropyltoluene	ND		ug/kg dry	2.8	5.6	1	EPA 8260C Certifications: CTD	11/24/2020 06:47 OH NELAC NV10854 NEL	11/24/2020 17:52	TMP
35-98-8	ana Dutylhangana	ND		ug/kg dry	2.8	5.6	1	EPA 8260C			TMP
13-98-8	sec-Butylbenzene	ND		ug/kg ury	2.6	3.0	1				IMP
00-42-5	Styrene	ND		ug/kg dry	2.8	5.6	1	EPA 8260C	11/24/2020 06:47	11/24/2020 17:52	TMP
	,							Certifications: CTD	OH,NELAC-NY10854,NEL	AC-NY12058,PA	
8-06-6	tert-Butylbenzene	ND		ug/kg dry	2.8	5.6	1	EPA 8260C	11/24/2020 06:47	11/24/2020 17:52	TMP
								Certifications: CTD	TDOH,NELAC-NY10854,NELAC-NY12058,PA 11/24/2020 06:47 11/24/2020 17:52 TDOH,NELAC-NY10854,NELAC-NY12058,PA 11/24/2020 06:47 11/24/2020 17:52 TDOH,NELAC-NY10854,NELAC-NY12058,PA		
27-18-4	Tetrachloroethylene	ND		ug/kg dry	2.8	5.6	1	EPA 8260C			TMP
20.00.2	T. 1	ND		// 4	2.0	<i>5 (</i>	1				TMP
08-88-3	Toluene	ND		ug/kg dry	2.8	5.6	1	EPA 8260C Certifications: CTD	OH,NELAC-NY10854,NEL		INIF
56-60-5	trans-1,2-Dichloroethylene	ND		ug/kg dry	2.8	5.6	1	EPA 8260C	11/24/2020 06:47	11/24/2020 17:52	TMP
	, , , , , , , , , , , , , , , , , , ,							Certifications: CTD	OH,NELAC-NY10854,NEL	AC-NY12058,PA	
0061-02-6	trans-1,3-Dichloropropylene	ND		ug/kg dry	2.8	5.6	1	EPA 8260C	11/24/2020 06:47	11/24/2020 17:52	TMP
								Certifications: CTD	OH,NELAC-NY10854,NEL	AC-NY12058,PA	
9-01-6	Trichloroethylene	ND		ug/kg dry	2.8	5.6	1	EPA 8260C	11/24/2020 06:47	11/24/2020 17:52	TMP
5 (0 4	m: 11 d d	ND.			2.0	<i>5 (</i>	1		OH,NELAC-NY10854,NEL		T1 (D
5-69-4	Trichlorofluoromethane	ND		ug/kg dry	2.8	5.6	1	EPA 8260C Certifications: CTD	11/24/2020 06:47 OH,NELAC-NY10854,NEL	11/24/2020 17:52 AC-NY12058.PA	TMP
08-05-4	Vinyl acetate	ND		ug/kg dry	2.8	5.6	1	EPA 8260C	11/24/2020 06:47	11/24/2020 17:52	TMP
									AC-NY10854,NELAC-NY1	2058,PADEP,NJE	
5-01-4	Vinyl Chloride	ND		ug/kg dry	2.8	5.6	1	EPA 8260C	11/24/2020 06:47	11/24/2020 17:52	TMP
								Certifications: CTD	OH,NELAC-NY10854,NEL	AC-NY12058,PA	
330-20-7	Xylenes, Total	ND		ug/kg dry	8.4	17	1	EPA 8260C	11/24/2020 06:47	11/24/2020 17:52	TMP
								Certifications: CTD	OH,NELAC-NY10854,NEL	AC-NY12058,NJ	
70(0.07.0	Surrogate Recoveries	Result		Acce	ptance Ran	ge					
7060-07-0	Surrogate: SURR: 1,2-Dichloroethane-d4	99.4 %			77-125						

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices

Page 10 of 41

Client Sample ID: SB-2 York Sample ID: 20K0850-02

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received20K085077 Carnell Street Kingsten, New YorkSoilNovember 18, 2020 10:30 am11/19/2020

Volatile Organics, 8260 List <u>Log-in Notes:</u> <u>Sample Notes:</u>

Sample Prepared by Method: EPA 5035A

Reported to CAS No. Parameter Result Flag Units LOD/MDL LOQ Dilution Reference Method Prepared Analyzed Analyst

 2037-26-5
 Surrogate: SURR: Toluene-d8
 102 %
 85-120

 460-00-4
 Surrogate: SURR:
 98.0 %
 76-130

p-Bromofluorobenzene

Total Solids <u>Log-in Notes:</u> <u>Sample Notes:</u>

Sample Prepared by Method: % Solids Prep

Date/Time Date/Time Reported to LOO Dilution Reference Method CAS No. Parameter Result Flag Units Analyzed Analyst Prepared solids * % Solids 79.1 % SM 2540G 11/30/2020 16:32 11/30/2020 16:35 KHA Certifications: CTDOH

Sample Information

Client Sample ID: SB-3 York Sample ID: 20K0850-03

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received20K085077 Carnell Street Kingsten, New YorkSoilNovember 18, 2020 11:15 am11/19/2020

<u>Volatile Organics, 8260 List</u> <u>Log-in Notes:</u> <u>Sample Notes:</u>

Sample Prepared by Method: EPA 5035A

CAS No.	. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
630-20-6	1,1,1,2-Tetrachloroethane	ND		ug/kg dry	2.6	5.1	1	EPA 8260C Certifications:	CTDOH,NI	11/24/2020 06:47 ELAC-NY10854,NELA	11/24/2020 18:20 AC-NY12058,PA	TMP
71-55-6	1,1,1-Trichloroethane	ND		ug/kg dry	2.6	5.1	1	EPA 8260C Certifications:	CTDOH,NI	11/24/2020 06:47 ELAC-NY10854,NELA	11/24/2020 18:20 AC-NY12058,PA	TMP
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/kg dry	2.6	5.1	1	EPA 8260C Certifications:	CTDOH,NI	11/24/2020 06:47 ELAC-NY10854,NELA	11/24/2020 18:20 AC-NY12058,PA	TMP
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/kg dry	2.6	5.1	1	EPA 8260C Certifications:	CTDOH,NI	11/24/2020 06:47 ELAC-NY10854,NELA	11/24/2020 18:20 AC-NY12058,NJ	TMP
79-00-5	1,1,2-Trichloroethane	ND		ug/kg dry	2.6	5.1	1	EPA 8260C Certifications:	CTDOH,NI	11/24/2020 06:47 ELAC-NY10854,NEL	11/24/2020 18:20 AC-NY12058,PA	TMP
75-34-3	1,1-Dichloroethane	ND		ug/kg dry	2.6	5.1	1	EPA 8260C Certifications:	CTDOH,NI	11/24/2020 06:47 ELAC-NY10854,NEL	11/24/2020 18:20 AC-NY12058,PA	TMP
75-35-4	1,1-Dichloroethylene	ND		ug/kg dry	2.6	5.1	1	EPA 8260C Certifications:	CTDOH,NI	11/24/2020 06:47 ELAC-NY10854,NEL	11/24/2020 18:20 AC-NY12058,PA	TMP
563-58-6	1,1-Dichloropropylene	ND		ug/kg dry	2.6	5.1	1	EPA 8260C Certifications:	NELAC-NY	11/24/2020 06:47 /10854,NELAC-NY12	11/24/2020 18:20 058,PADEP,NJE	TMP
87-61-6	1,2,3-Trichlorobenzene	ND		ug/kg dry	2.6	5.1	1	EPA 8260C Certifications:	NELAC-NY	11/24/2020 06:47 /10854,NELAC-NY12	11/24/2020 18:20 2058,PADEP,NJE	TMP

120 RESEARCH DRIVE STRATFORD, CT 06615 www.YORKLAB.com (203) 325-1371

132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices

Client Sample ID: **SB-3** York Sample ID: 20K0850-03

York Project (SDG) No. Client Project ID Matrix Collection Date/Time Date Received 20K0850 77 Carnell Street Kingsten, New York Soil November 18, 2020 11:15 am 11/19/2020

Volatile Organics, 8260 List Sample Prepared by Method: EPA 5035A

Log-in Notes:

Sam	ple	No	tes:

CAS No.	. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference M	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
96-18-4	1,2,3-Trichloropropane	ND		ug/kg dry	2.6	5.1	1	EPA 8260C		11/24/2020 06:47	11/24/2020 18:20	TMP
								Certifications:	NELAC-NY1	0854,NELAC-NY12	2058,NJDEP	
120-82-1	1,2,4-Trichlorobenzene	ND		ug/kg dry	2.6	5.1	1	EPA 8260C Certifications:		11/24/2020 06:47 0854,NELAC-NY12	11/24/2020 18:20 2058,PADEP,NJE	TMP
95-63-6	1,2,4-Trimethylbenzene	ND		ug/kg dry	2.6	5.1	1	EPA 8260C		11/24/2020 06:47	11/24/2020 18:20	TMP
75-05-0	1,2,4-11iiietiiyibelizelle	ND		ug/kg ury	2.0	5.1				AC-NY10854,NEL		11411
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/kg dry	2.6	5.1	1	EPA 8260C		11/24/2020 06:47	11/24/2020 18:20	TMP
								Certifications:	CTDOH,NEL	AC-NY10854,NEL	AC-NY12058,PA	
106-93-4	1,2-Dibromoethane	ND		ug/kg dry	2.6	5.1	1	EPA 8260C		11/24/2020 06:47	11/24/2020 18:20	TMP
	,							Certifications:	CTDOH,NEL	AC-NY10854,NEL	AC-NY12058,PA	
95-50-1	1,2-Dichlorobenzene	ND		ug/kg dry	2.6	5.1	1	EPA 8260C		11/24/2020 06:47	11/24/2020 18:20	TMP
	-,							Certifications:	CTDOH,NEL	AC-NY10854,NEL	AC-NY12058,PA	
107-06-2	1,2-Dichloroethane	ND		ug/kg dry	2.6	5.1	1	EPA 8260C		11/24/2020 06:47	11/24/2020 18:20	TMP
	1,2 Bromoroumane	112						Certifications:		AC-NY10854,NEL		
78-87-5	1,2-Dichloropropane	ND		ug/kg dry	2.6	5.1	1	EPA 8260C		11/24/2020 06:47	11/24/2020 18:20	TMP
	1,2 Diemoropropune	112								AC-NY10854,NEL		
108-67-8	1,3,5-Trimethylbenzene	ND		ug/kg dry	2.6	5.1	1	EPA 8260C		11/24/2020 06:47	11/24/2020 18:20	TMP
100 07 0	1,5,5-11methylochzene	ND								AC-NY10854,NEL		
541-73-1	1,3-Dichlorobenzene	ND		ug/kg dry	2.6	5.1	1	EPA 8260C		11/24/2020 06:47	11/24/2020 18:20	TMP
J.1. 7J.	1,5-Diemoroochzene	ND				***				AC-NY10854,NEL		
142-28-9	1,3-Dichloropropane	ND		ug/kg dry	2.6	5.1	1	EPA 8260C		11/24/2020 06:47	11/24/2020 18:20	TMP
142 20 7	1,3-Dichioropropane	ND		ug ng ury	2.0	5.1	1			0854,NELAC-NY12		11411
106-46-7	1,4-Dichlorobenzene	ND		ug/kg dry	2.6	5.1	1	EPA 8260C		11/24/2020 06:47	11/24/2020 18:20	TMP
100-40-7	1,4-Dichiolobenzene	ND		ug kg ury	2.0	5.1	1			AC-NY10854,NEL		11411
123-91-1	1,4-Dioxane	ND		ug/kg dry	51	100	1	EPA 8260C		11/24/2020 06:47	11/24/2020 18:20	TMP
123-71-1	1,4-Dioxane	ND		ug/kg ury	31	100	1			0854,NELAC-NY12		11411
594-20-7	2,2-Dichloropropane	ND		ug/kg dry	2.6	5.1	1	EPA 8260C		11/24/2020 06:47	11/24/2020 18:20	TMP
3)4-20-7	2,2-Dichioropropane	ND		ug kg ury	2.0	5.1	1			0854,NELAC-NY12		11411
78-93-3	2-Butanone	4.1	J, B	ug/kg dry	2.6	5.1	1	EPA 8260C		11/24/2020 06:47	11/24/2020 18:20	TMP
70 73 3	2-Butanone	7.1	э, Б	ug/ ug ur j	2.0	J	•			AC-NY10854,NEL		
95-49-8	2-Chlorotoluene	ND		ug/kg dry	2.6	5.1	1	EPA 8260C		11/24/2020 06:47	11/24/2020 18:20	TMP
	2 cmorotoraene	112							CTDOH,NEL	AC-NY10854,NEL	AC-NY12058,PA	
106-43-4	4-Chlorotoluene	ND		ug/kg dry	2.6	5.1	1	EPA 8260C		11/24/2020 06:47	11/24/2020 18:20	TMP
	. Chiorotolaene	112								AC-NY10854,NEL		
67-64-1	Acetone	ND		ug/kg dry	5.1	10	1	EPA 8260C		11/24/2020 06:47	11/24/2020 18:20	TMP
.,	rectore	ND			***					AC-NY10854,NEL		
71-43-2	Benzene	ND		ug/kg dry	2.6	5.1	1	EPA 8260C		11/24/2020 06:47	11/24/2020 18:20	TMP
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Bellzelle	ND				***				AC-NY10854,NEL		
108-86-1	Bromobenzene	ND		ug/kg dry	2.6	5.1	1	EPA 8260C		11/24/2020 06:47	11/24/2020 18:20	TMP
	Diomouchizene	MD		u _D n _D ury	2.0	J				0854,NELAC-NY12		
74-97-5	Bromochloromethane	ND		ug/kg dry	2.6	5.1	1	EPA 8260C		11/24/2020 06:47	11/24/2020 18:20	TMP
17-71-3	Бтонюсиютописитапе	ND		ug/kg ury	2.0	J.1	1			11/24/2020 00:4/ 0854,NELAC-NY12		ı IVIT
								co.tineutions.		000 I,I IEEE IC-IVI II	2020,111011,1101	

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371

132-02 89th AVENUE FAX (203) 357-0166

RICHMOND HILL, NY 11418

ClientServices

Page 12 of 41

Client Sample ID: SB-3 York Sample ID: 20K0850-03

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received20K085077 Carnell Street Kingsten, New YorkSoilNovember 18, 2020 11:15 am11/19/2020

Volatile Organics, 8260 List
Sample Prepared by Method: EPA 5035A

Log-in Notes:

CAS No	. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference M	lethod	Date/Time Prepared	Date/Time Analyzed	Analyst
75-27-4	Bromodichloromethane	ND		ug/kg dry	2.6	5.1	1	EPA 8260C		11/24/2020 06:47	11/24/2020 18:20	TMP
		1.75			2.6				CTDOH,NE	LAC-NY10854,NEL		T1 (D
75-25-2	Bromoform	ND		ug/kg dry	2.6	5.1	1	EPA 8260C Certifications: 0	CTDOH,NE	11/24/2020 06:47 LAC-NY10854,NEL	11/24/2020 18:20 AC-NY12058,PA	TMP
74-83-9	Bromomethane	ND		ug/kg dry	2.6	5.1	1	EPA 8260C		11/24/2020 06:47	11/24/2020 18:20	TMP
								Certifications:	CTDOH,NE	LAC-NY10854,NEL	AC-NY12058,PA	
56-23-5	Carbon tetrachloride	ND		ug/kg dry	2.6	5.1	1	EPA 8260C		11/24/2020 06:47	11/24/2020 18:20	TMP
									CTDOH,NE	LAC-NY10854,NEL		
108-90-7	Chlorobenzene	ND		ug/kg dry	2.6	5.1	1	EPA 8260C Certifications: 0	TDOU NE	11/24/2020 06:47 LAC-NY10854,NEL	11/24/2020 18:20	TMP
75-00-3	Chlaraethana	ND		ug/kg dry	2.6	5.1	1	EPA 8260C	CIDOII,NE	11/24/2020 06:47	11/24/2020 18:20	TMP
73-00-3	Chloroethane	ND		ug/kg ury	2.0	5.1	1		CTDOH,NE	LAC-NY10854,NEL		TIVIT
67-66-3	Chloroform	ND		ug/kg dry	2.6	5.1	1	EPA 8260C		11/24/2020 06:47	11/24/2020 18:20	TMP
								Certifications:	CTDOH,NE	LAC-NY10854,NEL	AC-NY12058,PA	
74-87-3	Chloromethane	ND		ug/kg dry	2.6	5.1	1	EPA 8260C		11/24/2020 06:47	11/24/2020 18:20	TMP
								Certifications:	CTDOH,NE	LAC-NY10854,NEL		
156-59-2	cis-1,2-Dichloroethylene	ND		ug/kg dry	2.6	5.1	1	EPA 8260C Certifications: 0	OTDOU NE	11/24/2020 06:47 LAC-NY10854,NEL	11/24/2020 18:20	TMP
10061-01-5	ois 1.2 Dishloronronvilono	ND		ug/kg dry	2.6	5.1	1	EPA 8260C	. I DOH,NE	11/24/2020 06:47	11/24/2020 18:20	TMP
10001-01-3	cis-1,3-Dichloropropylene	ND		ug/kg ury	2.0	5.1			CTDOH,NE	LAC-NY10854,NEL		TIVIT
124-48-1	Dibromochloromethane	ND		ug/kg dry	2.6	5.1	1	EPA 8260C		11/24/2020 06:47	11/24/2020 18:20	TMP
								Certifications:	NELAC-NY	10854,NELAC-NY12	2058,PADEP,NJE	
74-95-3	Dibromomethane	ND		ug/kg dry	2.6	5.1	1	EPA 8260C		11/24/2020 06:47	11/24/2020 18:20	TMP
									NELAC-NY	10854,NELAC-NY12		
75-71-8	Dichlorodifluoromethane	ND		ug/kg dry	2.6	5.1	1	EPA 8260C Certifications:	NELAC NV	11/24/2020 06:47 10854,NELAC-NY12	11/24/2020 18:20	TMP
100-41-4	Ethyl Benzene	ND		ug/kg dry	2.6	5.1	1	EPA 8260C	VELAC-IVI	11/24/2020 06:47	11/24/2020 18:20	TMP
100-41-4	Ethyl Benzene	ND		ug/kg ury	2.0	5.1			CTDOH,NE	LAC-NY10854,NEL		11411
87-68-3	Hexachlorobutadiene	ND		ug/kg dry	2.6	5.1	1	EPA 8260C		11/24/2020 06:47	11/24/2020 18:20	TMP
								Certifications:	NELAC-NY	10854,NELAC-NY12	2058,PADEP,NJE	
98-82-8	Isopropylbenzene	ND		ug/kg dry	2.6	5.1	1	EPA 8260C		11/24/2020 06:47	11/24/2020 18:20	TMP
									CTDOH,NE	LAC-NY10854,NEL		
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/kg dry	2.6	5.1	1	EPA 8260C Certifications: 0	TDOH NE	11/24/2020 06:47 LAC-NY10854,NEL	11/24/2020 18:20 A.C. NIV12058 PA	TMP
75-09-2	Methylene chloride	ND		ug/kg dry	5.1	10	1	EPA 8260C	e i boii,i ve	11/24/2020 06:47	11/24/2020 18:20	TMP
13 0) 2	Wethylene emorae	ND		ug/kg ury	5.1	10			CTDOH,NE	LAC-NY10854,NEL		11411
91-20-3	Naphthalene	ND		ug/kg dry	2.6	10	1	EPA 8260C		11/24/2020 06:47	11/24/2020 18:20	TMP
								Certifications:	NELAC-NY	10854,NELAC-NY12	2058,PADEP,NJE	
104-51-8	n-Butylbenzene	ND		ug/kg dry	2.6	5.1	1	EPA 8260C		11/24/2020 06:47	11/24/2020 18:20	TMP
									CTDOH,NE	LAC-NY10854,NEL		
103-65-1	n-Propylbenzene	ND		ug/kg dry	2.6	5.1	1	EPA 8260C Certifications: 0	CTDOH NE	11/24/2020 06:47 LAC-NY10854,NEL	11/24/2020 18:20 AC-NY12058 PA	TMP
								communitions.	C.12011,14E	L. 10 111 1005-, NEL	.10 12000,171	

Client Sample ID: **SB-3 York Sample ID:** 20K0850-03

York Project (SDG) No. Client Project ID Matrix Collection Date/Time Date Received 20K0850 77 Carnell Street Kingsten, New York November 18, 2020 11:15 am 11/19/2020 Soil

Volatile Organics, 8260 List Sample Prepared by Method: EPA 5035A

Log-in Notes:

Sample Notes:

CAS No). Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference !	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
95-47-6	o-Xylene	ND		ug/kg dry	2.6	5.1	1	EPA 8260C Certifications:	CTDOH NI	11/24/2020 06:47 ELAC-NY10854,NEL	11/24/2020 18:20	TMP
179601-23-1	p- & m- Xylenes	ND		ug/kg dry	5.1	10	1	EPA 8260C		11/24/2020 06:47 ELAC-NY10854,NEL	11/24/2020 18:20	TMP
99-87-6	p-Isopropyltoluene	ND		ug/kg dry	2.6	5.1	1	EPA 8260C		11/24/2020 06:47 ELAC-NY10854,NEL	11/24/2020 18:20	TMP
135-98-8	sec-Butylbenzene	ND		ug/kg dry	2.6	5.1	1	EPA 8260C		11/24/2020 06:47 ELAC-NY10854,NEL	11/24/2020 18:20	TMP
100-42-5	Styrene	ND		ug/kg dry	2.6	5.1	1	EPA 8260C		11/24/2020 06:47 ELAC-NY10854,NEL	11/24/2020 18:20	TMP
98-06-6	tert-Butylbenzene	ND		ug/kg dry	2.6	5.1	1	EPA 8260C		11/24/2020 06:47 ELAC-NY10854,NELA	11/24/2020 18:20	TMP
127-18-4	Tetrachloroethylene	ND		ug/kg dry	2.6	5.1	1	EPA 8260C Certifications:	CTDOH,NI	11/24/2020 06:47 ELAC-NY10854,NELA	11/24/2020 18:20 AC-NY12058,PA	TMP
108-88-3	Toluene	ND		ug/kg dry	2.6	5.1	1	EPA 8260C Certifications:	CTDOH,NI	11/24/2020 06:47 ELAC-NY10854,NELA	11/24/2020 18:20 AC-NY12058,PA	TMP
156-60-5	trans-1,2-Dichloroethylene	ND		ug/kg dry	2.6	5.1	1	EPA 8260C Certifications:	CTDOH,NI	11/24/2020 06:47 ELAC-NY10854,NELA	11/24/2020 18:20 AC-NY12058,PA	TMP
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/kg dry	2.6	5.1	1	EPA 8260C		11/24/2020 06:47 ELAC-NY10854,NELA	11/24/2020 18:20	TMP
79-01-6	Trichloroethylene	ND		ug/kg dry	2.6	5.1	1	EPA 8260C Certifications:	CTDOH,NI	11/24/2020 06:47 ELAC-NY10854,NEL	11/24/2020 18:20 AC-NY12058,PA	TMP
75-69-4	Trichlorofluoromethane	ND		ug/kg dry	2.6	5.1	1	EPA 8260C Certifications:	CTDOH,NI	11/24/2020 06:47 ELAC-NY10854,NELA	11/24/2020 18:20 AC-NY12058,PA	TMP
108-05-4	Vinyl acetate	ND		ug/kg dry	2.6	5.1	1	EPA 8260C Certifications:	NELAC-N	11/24/2020 06:47 Y10854,NELAC-NY12	11/24/2020 18:20 2058,PADEP,NJE	TMP
75-01-4	Vinyl Chloride	ND		ug/kg dry	2.6	5.1	1	EPA 8260C Certifications:	CTDOH,NI	11/24/2020 06:47 ELAC-NY10854,NELA	11/24/2020 18:20 AC-NY12058,PA	TMP
1330-20-7	Xylenes, Total	ND		ug/kg dry	7.7	15	1	EPA 8260C Certifications:	CTDOH,NI	11/24/2020 06:47 ELAC-NY10854,NELA	11/24/2020 18:20 AC-NY12058,NJ	TMP
	Surrogate Recoveries	Result		Acce	ptance Ran	ge						
17060-07-0	Surrogate: SURR: 1,2-Dichloroethane-d4	101 %			77-125							
2037-26-5	Surrogate: SURR: Toluene-d8	102 %			85-120							
460-00-4	Surrogate: SURR: p-Bromofluorobenzene	97.2 %			76-130							

Log-in Notes: Sample Notes: Total Solids

Sample Prepared by Method: % Solids Prep

CAS	No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference I	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
solids	* % Solids		91.0		%	0.100	1	SM 2540G Certifications:	СТДОН	11/30/2020 16:32	11/30/2020 16:35	KHA
120	RESEARCH DRIV	E	STRATFORD, C	CT 06615		1 3	32-02 89th	AVENUE		RICHMOND HI	LL, NY 11418	

www.YORKLAB.com (203) 325-1371 FAX (203) 357-0166

RICHMOND HILL, NY 11418

ClientServices

Page 14 of 41

Client Sample ID: SB-3 York Sample ID: 20K0850-03

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received20K085077 Carnell Street Kingsten, New YorkSoilNovember 18, 2020 11:15 am11/19/2020

Sample Information

Client Sample ID: SB-3 GW York Sample ID: 20K0850-04

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received20K085077 Carnell Street Kingsten, New YorkWaterNovember 18, 2020 11:40 am11/19/2020

Volatile Organics, 8260 List - Low Level

Sample Prepared by Method: EPA 5030B

Log-in Notes:

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference M	Date/Time Iethod Prepared	Date/Time Analyzed	Analyst
630-20-6	1,1,1,2-Tetrachloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	11/23/2020 06:47 CTDOH,NELAC-NY10854,NEI	11/23/2020 18:55 AC-NY12058,NJ	TMP
71-55-6	1,1,1-Trichloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	11/23/2020 06:47 CTDOH,NELAC-NY10854,NEI	11/23/2020 18:55 AC-NY12058,NJ	TMP
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	11/23/2020 06:47 CTDOH,NELAC-NY10854,NEI	11/23/2020 18:55 AC-NY12058,NJ	TMP
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	11/23/2020 06:47 CTDOH,NELAC-NY10854,NEI	11/23/2020 18:55 AC-NY12058,NJ	TMP
79-00-5	1,1,2-Trichloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	11/23/2020 06:47 CTDOH,NELAC-NY10854,NEI	11/23/2020 18:55 AC-NY12058,NJ	TMP
75-34-3	1,1-Dichloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	11/23/2020 06:47 CTDOH,NELAC-NY10854,NEI	11/23/2020 18:55 AC-NY12058,NJ	TMP
75-35-4	1,1-Dichloroethylene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	11/23/2020 06:47 CTDOH,NELAC-NY10854,NEI	11/23/2020 18:55 AC-NY12058,NJ	TMP
563-58-6	1,1-Dichloropropylene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	11/23/2020 06:47 NELAC-NY10854,NELAC-NY	11/23/2020 18:55 2058,NJDEP	TMP
87-61-6	1,2,3-Trichlorobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	11/23/2020 06:47 NELAC-NY10854,NELAC-NY	11/23/2020 18:55 2058,NJDEP,PAE	TMP
96-18-4	1,2,3-Trichloropropane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	11/23/2020 06:47 NELAC-NY10854,NELAC-NY	11/23/2020 18:55 2058,NJDEP,PAE	TMP
95-93-2	* 1,2,4,5-Tetramethylbenzene	0.27	J	ug/L	0.20	0.50	1	EPA 8260C Certifications:	11/23/2020 06:47	11/23/2020 18:55	TMP
120-82-1	1,2,4-Trichlorobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	11/23/2020 06:47 NELAC-NY10854,NELAC-NY	11/23/2020 18:55 2058,NJDEP,PAE	TMP
95-63-6	1,2,4-Trimethylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	11/23/2020 06:47 CTDOH,NELAC-NY10854,NEI	11/23/2020 18:55 .AC-NY12058,NJ	TMP
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	11/23/2020 06:47 CTDOH,NELAC-NY10854,NEI	11/23/2020 18:55 .AC-NY12058,NJ	TMP
106-93-4	1,2-Dibromoethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	11/23/2020 06:47 CTDOH,NELAC-NY10854,NEI	11/23/2020 18:55 AC-NY12058,NJ	TMP
95-50-1	1,2-Dichlorobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	11/23/2020 06:47 CTDOH,NELAC-NY10854,NEI	11/23/2020 18:55 AC-NY12058,NJ	TMP
107-06-2	1,2-Dichloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	11/23/2020 06:47 CTDOH,NELAC-NY10854,NEI	11/23/2020 18:55 AC-NY12058,NJ	TMP

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices Page 15 of 41

Client Sample ID: SB-3 GW

York Sample ID: 20K0850-04

York Project (SDG) No. 20K0850

<u>Client Project ID</u> 77 Carnell Street Kingsten, New York Matrix Water <u>Collection Date/Time</u> November 18, 2020 11:40 am Date Received 11/19/2020

Volatile Organics, 8260 List - Low Level

Log-in Notes:

Sample Prepare	d by Method: EPA 5030B										
CAS No	. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference Meth	Date/Time nod Prepared	Date/Time Analyzed	Analyst
78-87-5	1,2-Dichloropropane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications: CTD	11/23/2020 06:47 OH,NELAC-NY10854,NEI	11/23/2020 18:55 AC-NY12058,NJ	TMP
108-67-8	1,3,5-Trimethylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications: CTD	11/23/2020 06:47 OH,NELAC-NY10854,NEI	11/23/2020 18:55 AC-NY12058,NJ	TMP
541-73-1	1,3-Dichlorobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications: CTD	11/23/2020 06:47 OH,NELAC-NY10854,NEI	11/23/2020 18:55 AC-NY12058,NJ	TMP
142-28-9	1,3-Dichloropropane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications: NEL.	11/23/2020 06:47 AC-NY10854,NELAC-NY1	11/23/2020 18:55 2058,NJDEP,PAE	TMP
106-46-7	1,4-Dichlorobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications: CTD	11/23/2020 06:47 OH,NELAC-NY10854,NEI	11/23/2020 18:55 AC-NY12058,NJ	TMP
594-20-7	2,2-Dichloropropane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications: NEL.	11/23/2020 06:47 AC-NY10854,NELAC-NY1	11/23/2020 18:55 2058,NJDEP,PAE	TMP
78-93-3	2-Butanone	0.80	J, B	ug/L	0.20	2.0	1	EPA 8260C Certifications: CTD	11/23/2020 06:47 OH,NELAC-NY10854,NEI	11/23/2020 18:55 AC-NY12058,NJ	TMP
95-49-8	2-Chlorotoluene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications: CTD	11/23/2020 06:47 OH,NELAC-NY10854,NEI	11/23/2020 18:55 AC-NY12058,NJ	TMP
591-78-6	2-Hexanone	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications: CTD	11/23/2020 06:47 OH,NELAC-NY10854,NEI	11/23/2020 18:55 AC-NY12058,NJ	TMP
106-43-4	4-Chlorotoluene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications: CTD	11/23/2020 06:47 OH,NELAC-NY10854,NEI	11/23/2020 18:55 AC-NY12058,NJ	TMP
108-10-1	4-Methyl-2-pentanone	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications: CTD	11/23/2020 06:47 OH,NELAC-NY10854,NEI	11/23/2020 18:55 AC-NY12058,NJ	TMP
67-64-1	Acetone	ND		ug/L	1.0	2.0	1	EPA 8260C Certifications: CTD	11/23/2020 06:47 OH,NELAC-NY10854,NEI	11/23/2020 18:55 AC-NY12058,NJ	TMP
71-43-2	Benzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications: CTD	11/23/2020 06:47 OH,NELAC-NY10854,NEI	11/23/2020 18:55 AC-NY12058,NJ	TMP
108-86-1	Bromobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications: NEL.	11/23/2020 06:47 AC-NY10854,NELAC-NY1	11/23/2020 18:55 2058,NJDEP,PAE	TMP
74-97-5	Bromochloromethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications: NEL.	11/23/2020 06:47 AC-NY10854,NELAC-NY1	11/23/2020 18:55 2058,NJDEP,PAE	TMP
75-27-4	Bromodichloromethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications: CTD	11/23/2020 06:47 OH,NELAC-NY10854,NEI	11/23/2020 18:55 AC-NY12058,NJ	TMP
75-25-2	Bromoform	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications: CTD	11/23/2020 06:47 OH,NELAC-NY10854,NEI	11/23/2020 18:55 AC-NY12058,NJ	TMP
74-83-9	Bromomethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications: CTD	11/23/2020 06:47 OH,NELAC-NY10854,NEI	11/23/2020 18:55 AC-NY12058,NJ	TMP
75-15-0	Carbon disulfide	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications: CTD	11/23/2020 06:47 OH,NELAC-NY10854,NEI	11/23/2020 18:55 AC-NY12058,NJ	TMP
56-23-5	Carbon tetrachloride	ND		ug/L	0.20	0.50	1	EPA 8260C	11/23/2020 06:47 OH,NELAC-NY10854,NEI	11/23/2020 18:55	TMP
108-90-7	Chlorobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	11/23/2020 06:47 OH,NELAC-NY10854,NEI	11/23/2020 18:55	TMP

Client Sample ID: SB-3 GW

York Sample ID:

20K0850-04

York Project (SDG) No. 20K0850

<u>Client Project ID</u> 77 Carnell Street Kingsten, New York Matrix Water <u>Collection Date/Time</u> November 18, 2020 11:40 am Date Received 11/19/2020

Volatile Organics, 8260 List - Low Level

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA 5030B

CAS No	. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference 1	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
75-00-3	Chloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C		11/23/2020 06:47	11/23/2020 18:55	TMP
(7.66.2	CILL 6			/T	0.20	0.50	,	Certifications:	CTDOH,NE	LAC-NY10854,NEL 11/23/2020 06:47	AC-NY12058,NJ 11/23/2020 18:55	TMD
67-66-3	Chloroform	11		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NE	11/23/2020 06.47 LAC-NY10854,NEL		TMP
74-87-3	Chloromethane	ND		ug/L	0.20	0.50	1	EPA 8260C		11/23/2020 06:47	11/23/2020 18:55	TMP
								Certifications:	CTDOH,NE	LAC-NY10854,NEL	AC-NY12058,NJ	
156-59-2	cis-1,2-Dichloroethylene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOLLNE	11/23/2020 06:47 LAC-NY10854,NEL	11/23/2020 18:55	TMP
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/L	0.20	0.50	1	EPA 8260C	C1DOII,NE	11/23/2020 06:47	11/23/2020 18:55	TMP
10001-01-3	cis-1,3-Dicinoropropylene	ND		ug/L	0.20	0.50		Certifications:	CTDOH,NE	LAC-NY10854,NEL		11411
124-48-1	Dibromochloromethane	ND		ug/L	0.20	0.50	1	EPA 8260C		11/23/2020 06:47	11/23/2020 18:55	TMP
								Certifications:	CTDOH,NE	LAC-NY10854,NEL	AC-NY12058,NJ	
74-95-3	Dibromomethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	NEL AC NIV	11/23/2020 06:47 10854,NELAC-NY1	11/23/2020 18:55	TMP
75-71-8	Dichlorodifluoromethane	ND		ug/L	0.20	0.50	1	EPA 8260C	NELAC-N1	11/23/2020 06:47	11/23/2020 18:55	TMP
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Diemorodinationemane	ND		ug 2	0.20	0.50	•	Certifications:	NELAC-NY	10854,NELAC-NY1		
100-41-4	Ethyl Benzene	ND		ug/L	0.20	0.50	1	EPA 8260C		11/23/2020 06:47	11/23/2020 18:55	TMP
								Certifications:	CTDOH,NE	LAC-NY10854,NEL		
87-68-3	Hexachlorobutadiene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	NEL AC NV	11/23/2020 06:47 10854,NELAC-NY1	11/23/2020 18:55	TMP
98-82-8	Isopropylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	NELAC-N1	11/23/2020 06:47	11/23/2020 18:55	TMP
70 02 0	isopropyrochizene	ND		ug 2	0.20	0.50	•	Certifications:	CTDOH,NE	LAC-NY10854,NEL		11411
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/L	0.20	0.50	1	EPA 8260C		11/23/2020 06:47	11/23/2020 18:55	TMP
								Certifications:	CTDOH,NE	LAC-NY10854,NEL		
75-09-2	Methylene chloride	ND		ug/L	1.0	2.0	1	EPA 8260C Certifications:	CTDOH NE	11/23/2020 06:47 LAC-NY10854,NEL	11/23/2020 18:55 AC-NV12058 NI	TMP
91-20-3	Naphthalene	1.1	J	ug/L	1.0	2.0	1	EPA 8260C	CIDON,NE	11/23/2020 06:47	11/23/2020 18:55	TMP
	- mp		· ·	0				Certifications:	NELAC-NY	10854,NELAC-NY1	2058,NJDEP,PAE	
104-51-8	n-Butylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C		11/23/2020 06:47	11/23/2020 18:55	TMP
102 (5.1	D 11	110		/7	0.20	0.50		Certifications:	CTDOH,NE	LAC-NY10854,NEL		T1 (D
103-65-1	n-Propylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NE	11/23/2020 06:47 LAC-NY10854,NEL	11/23/2020 18:55 AC-NY12058,NJ	TMP
95-47-6	o-Xylene	ND		ug/L	0.20	0.50	1	EPA 8260C		11/23/2020 06:47	11/23/2020 18:55	TMP
	•							Certifications:	CTDOH,NE	LAC-NY10854,NEL	AC-NY12058,PA	
179601-23-1	p- & m- Xylenes	ND		ug/L	0.50	1.0	1	EPA 8260C		11/23/2020 06:47	11/23/2020 18:55	TMP
105.05.5		110		/7	0.20	0.50		Certifications:	CTDOH,NE	LAC-NY10854,NEL		T1 (D
105-05-5	* p-Diethylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:		11/23/2020 06:47	11/23/2020 18:55	TMP
622-96-8	* p-Ethyltoluene	ND		ug/L	0.20	0.50	1	EPA 8260C		11/23/2020 06:47	11/23/2020 18:55	TMP
	. ,							Certifications:				
99-87-6	p-Isopropyltoluene	ND		ug/L	0.20	0.50	1	EPA 8260C		11/23/2020 06:47	11/23/2020 18:55	TMP
								Certifications:	CTDOH,NE	LAC-NY10854,NEL		
135-98-8	sec-Butylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH NE	11/23/2020 06:47 LAC-NY10854,NEL	11/23/2020 18:55 AC-NY12058 NI	TMP
	DE A DOLL DON'E	CTDATEODD						AV/ENULE		DICLIMOND LI		

120 RESEARCH DRIVE

www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices

Page 17 of 41

Client Sample ID: SB-3 GW

York Sample ID:

20K0850-04

York Project (SDG) No. 20K0850

<u>Client Project ID</u> 77 Carnell Street Kingsten, New York Matrix Water <u>Collection Date/Time</u> November 18, 2020 11:40 am Date Received 11/19/2020

Volatile Organics, 8260 List - Low Level

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA 5030B

CAS No.	. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference 1	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
100-42-5	Styrene	ND		ug/L	0.20	0.50	1	EPA 8260C		11/23/2020 06:47	11/23/2020 18:55	TMP
								Certifications:	CTDOH,NI	ELAC-NY10854,NEL	AC-NY12058,NJ	
98-06-6	tert-Butylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C		11/23/2020 06:47	11/23/2020 18:55	TMP
								Certifications:	CTDOH,NI	ELAC-NY10854,NEL	AC-NY12058,NJ	
127-18-4	Tetrachloroethylene	12		ug/L	0.20	0.50	1	EPA 8260C		11/23/2020 06:47	11/23/2020 18:55	TMP
	•							Certifications:	CTDOH,NI	ELAC-NY10854,NEL	AC-NY12058,NJ	
108-88-3	Toluene	ND		ug/L	0.20	0.50	1	EPA 8260C		11/23/2020 06:47	11/23/2020 18:55	TMP
								Certifications:	CTDOH,NI	ELAC-NY10854,NEL	AC-NY12058,NJ	
156-60-5	trans-1,2-Dichloroethylene	ND		ug/L	0.20	0.50	1	EPA 8260C		11/23/2020 06:47	11/23/2020 18:55	TMP
	,							Certifications:	CTDOH,NI	ELAC-NY10854,NEL	AC-NY12058,NJ	
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/L	0.20	0.50	1	EPA 8260C		11/23/2020 06:47	11/23/2020 18:55	TMP
	tians 1,5 Biemoropropytene	112		C					CTDOH,NI	ELAC-NY10854,NEL	AC-NY12058,NJ	
79-01-6	Trichloroethylene	9.6		ug/L	0.20	0.50	1	EPA 8260C		11/23/2020 06:47	11/23/2020 18:55	TMP
	The state of the s	7.0		Ü				Certifications:	CTDOH,NI	ELAC-NY10854,NEL	AC-NY12058,NJ	
75-69-4	Trichlorofluoromethane	ND		ug/L	0.20	0.50	1	EPA 8260C		11/23/2020 06:47	11/23/2020 18:55	TMP
				-				Certifications:	CTDOH,NI	ELAC-NY10854,NEL	AC-NY12058,NJ	
75-01-4	Vinyl Chloride	ND		ug/L	0.20	0.50	1	EPA 8260C		11/23/2020 06:47	11/23/2020 18:55	TMP
	vinyr emoriae	112		C				Certifications:	CTDOH,NI	ELAC-NY10854,NEL	AC-NY12058,NJ	
1330-20-7	Xylenes, Total	ND		ug/L	0.60	1.5	1	EPA 8260C		11/23/2020 06:47	11/23/2020 18:55	TMP
	Trylones, Total	ND		-0				Certifications:	CTDOH,NI	ELAC-NY10854,NEL	AC-NY12058,NJ	
	Surrogate Recoveries	Result		Acc	eptance Ran	Pe						
7060-07-0	Surrogate: SURR:	101 %			69-130	•						
17000-07-0	1,2-Dichloroethane-d4	101 /0			09-130							
2037-26-5	Surrogate: SURR: Toluene-d8	97.8 %			81-117							
160-00-4	Surrogate: SURR:	98.0 %			79-122							
100 00-4	p-Bromofluorobenzene	90.0 /0			/ 9-122							

Sample Information

Client Sample ID: SB-4

York Sample ID:

20K0850-05

York Project (SDG) No. 20K0850

<u>Client Project ID</u> 77 Carnell Street Kingsten, New York Matrix Soil <u>Collection Date/Time</u> November 18, 2020 12:12 pm <u>Date Received</u> 11/19/2020

Volatile Organics, 8260 List

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA 5035A

CAS No	. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference M	Date/Time ethod Prepared	Date/Time Analyzed	Analyst
630-20-6	1,1,1,2-Tetrachloroethane	ND		ug/kg dry	2.4	4.9	1	EPA 8260C Certifications: C	11/24/2020 06:47 TDOH,NELAC-NY10854,NEL	11/24/2020 18:47 AC-NY12058,PA	TMP
71-55-6	1,1,1-Trichloroethane	ND		ug/kg dry	2.4	4.9	1	EPA 8260C Certifications: C	11/24/2020 06:47 TDOH,NELAC-NY10854,NEL	11/24/2020 18:47 AC-NY12058,PA	TMP

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

132-02 89th AVENUE

RICHMOND HILL, NY 11418

(203) 325-1371

FAX (203) 357-0166

ClientServices

Page 18 of 41

Client Sample ID: SB-4 York Sample ID: 20K0850-05

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received20K085077 Carnell Street Kingsten, New YorkSoilNovember 18, 2020 12:12 pm11/19/2020

Volatile Organics, 8260 List
Sample Prepared by Method: EPA 5035A

Log-in Notes:

CAS No.	. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference M	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/kg dry	2.4	4.9	1	EPA 8260C	OTTO OVEN I	11/24/2020 06:47	11/24/2020 18:47	TMP
76 12 1	110 T : 11 100 ()	ND		ua/ka deu	2.4	4.9	1	Certifications: EPA 8260C	CIDOH,NE	ELAC-NY10854,NEL 11/24/2020 06:47	11/24/2020 18:47	TMP
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/kg dry	2.4	4.9	1		CTDOH,NE	11/24/2020 06.47 ELAC-NY10854,NEL		IMP
79-00-5	1,1,2-Trichloroethane	ND		ug/kg dry	2.4	4.9	1	EPA 8260C		11/24/2020 06:47	11/24/2020 18:47	TMP
								Certifications:	CTDOH,NE	LAC-NY10854,NEL	AC-NY12058,PA	
75-34-3	1,1-Dichloroethane	ND		ug/kg dry	2.4	4.9	1	EPA 8260C		11/24/2020 06:47	11/24/2020 18:47	TMP
								Certifications:	CTDOH,NE	LAC-NY10854,NEL	AC-NY12058,PA	
75-35-4	1,1-Dichloroethylene	ND		ug/kg dry	2.4	4.9	1	EPA 8260C		11/24/2020 06:47	11/24/2020 18:47	TMP
									CTDOH,NE	LAC-NY10854,NEL		
563-58-6	1,1-Dichloropropylene	ND		ug/kg dry	2.4	4.9	1	EPA 8260C Certifications:	NEL AC NIV	11/24/2020 06:47 /10854,NELAC-NY12	11/24/2020 18:47	TMP
97.61.6	1227:11	ND		ua/Ira deu	2.4	4.9	1		NELAC-N I	11/24/2020 06:47	11/24/2020 18:47	TMD
87-61-6	1,2,3-Trichlorobenzene	ND		ug/kg dry	2.4	4.9	1	EPA 8260C Certifications:	NELAC-NY	11/24/2020 06:47 10854,NELAC-NY12		TMP
96-18-4	1,2,3-Trichloropropane	ND		ug/kg dry	2.4	4.9	1	EPA 8260C		11/24/2020 06:47	11/24/2020 18:47	TMP
,010.	1,2,5-111emoropropune	ND		ug ng ury	2		•		NELAC-NY	10854,NELAC-NY12		
120-82-1	1,2,4-Trichlorobenzene	ND		ug/kg dry	2.4	4.9	1	EPA 8260C		11/24/2020 06:47	11/24/2020 18:47	TMP
	-,_,								NELAC-NY	10854,NELAC-NY12	2058,PADEP,NJE	
95-63-6	1,2,4-Trimethylbenzene	ND		ug/kg dry	2.4	4.9	1	EPA 8260C		11/24/2020 06:47	11/24/2020 18:47	TMP
								Certifications:	CTDOH,NE	ELAC-NY10854,NEL	AC-NY12058,PA	
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/kg dry	2.4	4.9	1	EPA 8260C		11/24/2020 06:47	11/24/2020 18:47	TMP
								Certifications:	CTDOH,NE	LAC-NY10854,NEL	AC-NY12058,PA	
106-93-4	1,2-Dibromoethane	ND		ug/kg dry	2.4	4.9	1	EPA 8260C		11/24/2020 06:47	11/24/2020 18:47	TMP
									CTDOH,NE	LAC-NY10854,NEL		
95-50-1	1,2-Dichlorobenzene	ND		ug/kg dry	2.4	4.9	1	EPA 8260C	CTPOH NE	11/24/2020 06:47	11/24/2020 18:47	TMP
					2.4	4.0			CIDOH,NE	LAC-NY10854,NEL		
107-06-2	1,2-Dichloroethane	ND		ug/kg dry	2.4	4.9	1	EPA 8260C Certifications:	CTDOH NE	11/24/2020 06:47 LAC-NY10854,NEL	11/24/2020 18:47 AC-NY12058 PA	TMP
78-87-5	1,2-Dichloropropane	ND		ug/kg dry	2.4	4.9	1	EPA 8260C	CIDOII,IVE	11/24/2020 06:47	11/24/2020 18:47	TMP
76-67-3	1,2-Dichloropropane	ND		ug kg ury	2.7	4.7	•		CTDOH,NE	LAC-NY10854,NEL		11411
108-67-8	1,3,5-Trimethylbenzene	ND		ug/kg dry	2.4	4.9	1	EPA 8260C		11/24/2020 06:47	11/24/2020 18:47	TMP
	1,5,6 111116111,1001126116	112		00,					CTDOH,NE	LAC-NY10854,NEL	AC-NY12058,PA	
541-73-1	1,3-Dichlorobenzene	ND		ug/kg dry	2.4	4.9	1	EPA 8260C		11/24/2020 06:47	11/24/2020 18:47	TMP
								Certifications:	CTDOH,NE	LAC-NY10854,NEL	AC-NY12058,PA	
142-28-9	1,3-Dichloropropane	ND		ug/kg dry	2.4	4.9	1	EPA 8260C		11/24/2020 06:47	11/24/2020 18:47	TMP
								Certifications:	NELAC-NY	710854,NELAC-NY12	2058,PADEP,NJE	
106-46-7	1,4-Dichlorobenzene	ND		ug/kg dry	2.4	4.9	1	EPA 8260C		11/24/2020 06:47	11/24/2020 18:47	TMP
									CTDOH,NE	LAC-NY10854,NEL		
123-91-1	1,4-Dioxane	ND		ug/kg dry	49	97	1	EPA 8260C		11/24/2020 06:47	11/24/2020 18:47	TMP
504.00 -				,,		4.6	_		NELAC-NY	710854,NELAC-NY12		
594-20-7	2,2-Dichloropropane	ND		ug/kg dry	2.4	4.9	1	EPA 8260C Certifications:	NEL AC NV	11/24/2020 06:47 10854,NELAC-NY12	11/24/2020 18:47	TMP
								Certifications.	NELAC-NY	10054, NELAC-NY I	2030,NJDEP	

Client Sample ID: SB-4 York Sample ID: 20K0850-05

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received20K085077 Carnell Street Kingsten, New YorkSoilNovember 18, 2020 12:12 pm11/19/2020

Volatile Organics, 8260 List
Sample Prepared by Method: EPA 5035A

Log-in Notes:

CAS No). Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference N	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
78-93-3	2-Butanone	3.5	J, B	ug/kg dry	2.4	4.9	1	EPA 8260C Certifications:	CTDOH.NE	11/24/2020 06:47 LAC-NY10854,NEL	11/24/2020 18:47 AC-NY12058.PA	TMP
95-49-8	2-Chlorotoluene	ND		ug/kg dry	2.4	4.9	1	EPA 8260C		11/24/2020 06:47	11/24/2020 18:47	TMP
									CIDOH,NE.	LAC-NY10854,NEL		
106-43-4	4-Chlorotoluene	ND		ug/kg dry	2.4	4.9	1	EPA 8260C Certifications:	CTDOH,NE	11/24/2020 06:47 LAC-NY10854,NEL	11/24/2020 18:47 AC-NY12058,PA	TMP
67-64-1	Acetone	ND		ug/kg dry	4.9	9.7	1	EPA 8260C		11/24/2020 06:47	11/24/2020 18:47	TMP
								Certifications:	CTDOH,NE	LAC-NY10854,NEL	AC-NY12058,PA	
71-43-2	Benzene	ND		ug/kg dry	2.4	4.9	1	EPA 8260C		11/24/2020 06:47	11/24/2020 18:47	TMP
								Certifications:	CTDOH,NE	LAC-NY10854,NEL	AC-NY12058,PA	
108-86-1	Bromobenzene	ND		ug/kg dry	2.4	4.9	1	EPA 8260C		11/24/2020 06:47	11/24/2020 18:47	TMP
								Certifications:	NELAC-NY	10854,NELAC-NY12	2058,PADEP,NJE	
74-97-5	Bromochloromethane	ND		ug/kg dry	2.4	4.9	1	EPA 8260C		11/24/2020 06:47	11/24/2020 18:47	TMP
								Certifications:	NELAC-NY	10854,NELAC-NY12	2058,PADEP,NJE	
75-27-4	Bromodichloromethane	ND		ug/kg dry	2.4	4.9	1	EPA 8260C		11/24/2020 06:47	11/24/2020 18:47	TMP
								Certifications:	CTDOH,NE	LAC-NY10854,NEL	AC-NY12058,PA	
75-25-2	Bromoform	ND		ug/kg dry	2.4	4.9	1	EPA 8260C		11/24/2020 06:47	11/24/2020 18:47	TMP
									CTDOH,NE	LAC-NY10854,NEL		
74-83-9	Bromomethane	ND		ug/kg dry	2.4	4.9	1	EPA 8260C		11/24/2020 06:47	11/24/2020 18:47	TMP
								Certifications:	CTDOH,NE	LAC-NY10854,NEL	AC-NY12058,PA	
56-23-5	Carbon tetrachloride	ND		ug/kg dry	2.4	4.9	1	EPA 8260C		11/24/2020 06:47	11/24/2020 18:47	TMP
								Certifications:	CTDOH,NE	LAC-NY10854,NEL	AC-NY12058,PA	
108-90-7	Chlorobenzene	ND		ug/kg dry	2.4	4.9	1	EPA 8260C		11/24/2020 06:47	11/24/2020 18:47	TMP
								Certifications:	CTDOH,NE	LAC-NY10854,NEL	AC-NY12058,PA	
75-00-3	Chloroethane	ND		ug/kg dry	2.4	4.9	1	EPA 8260C		11/24/2020 06:47	11/24/2020 18:47	TMP
								Certifications:	CTDOH,NE	LAC-NY10854,NEL	AC-NY12058,PA	
67-66-3	Chloroform	ND		ug/kg dry	2.4	4.9	1	EPA 8260C		11/24/2020 06:47	11/24/2020 18:47	TMP
								Certifications:	CTDOH,NE	LAC-NY10854,NEL	AC-NY12058,PA	
74-87-3	Chloromethane	ND		ug/kg dry	2.4	4.9	1	EPA 8260C		11/24/2020 06:47	11/24/2020 18:47	TMP
								Certifications:	CTDOH,NE	LAC-NY10854,NEL	AC-NY12058,PA	
156-59-2	cis-1,2-Dichloroethylene	ND		ug/kg dry	2.4	4.9	1	EPA 8260C		11/24/2020 06:47	11/24/2020 18:47	TMP
								Certifications:	CTDOH,NE	LAC-NY10854,NEL	AC-NY12058,PA	
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/kg dry	2.4	4.9	1	EPA 8260C		11/24/2020 06:47	11/24/2020 18:47	TMP
								Certifications:	CTDOH,NE	LAC-NY10854,NEL	AC-NY12058,PA	
124-48-1	Dibromochloromethane	ND		ug/kg dry	2.4	4.9	1	EPA 8260C		11/24/2020 06:47	11/24/2020 18:47	TMP
								Certifications:	NELAC-NY	10854,NELAC-NY12	2058,PADEP,NJE	
74-95-3	Dibromomethane	ND		ug/kg dry	2.4	4.9	1	EPA 8260C		11/24/2020 06:47	11/24/2020 18:47	TMP
								Certifications:	NELAC-NY	10854,NELAC-NY12	2058,PADEP,NJE	
75-71-8	Dichlorodifluoromethane	ND		ug/kg dry	2.4	4.9	1	EPA 8260C		11/24/2020 06:47	11/24/2020 18:47	TMP
								Certifications:	NELAC-NY	10854,NELAC-NY12	2058,PADEP,NJE	
100-41-4	Ethyl Benzene	ND		ug/kg dry	2.4	4.9	1	EPA 8260C		11/24/2020 06:47	11/24/2020 18:47	TMP
								Certifications:	CTDOH,NE	LAC-NY10854,NEL	AC-NY12058,PA	

Client Sample ID: SB-4 York Sample ID: 20K0850-05

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received20K085077 Carnell Street Kingsten, New YorkSoilNovember 18, 2020 12:12 pm11/19/2020

Volatile Organics, 8260 List
Sample Prepared by Method: EPA 5035A

Log-in Notes:

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
87-68-3	Hexachlorobutadiene	ND		ug/kg dry	2.4	4.9	1	EPA 8260C		11/24/2020 06:47	11/24/2020 18:47	TMP
								Certifications:	NELAC-NY	/10854,NELAC-NY1	2058,PADEP,NJE	
98-82-8	Isopropylbenzene	ND		ug/kg dry	2.4	4.9	1	EPA 8260C	OTTO ON A VE	11/24/2020 06:47	11/24/2020 18:47	TMP
								Certifications:	C1DOH,NE	ELAC-NY10854,NEL		
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/kg dry	2.4	4.9	1	EPA 8260C Certifications:	CTDOH,NE	11/24/2020 06:47 ELAC-NY10854,NEL	11/24/2020 18:47 AC-NY12058,PA	TMP
75-09-2	Methylene chloride	ND		ug/kg dry	4.9	9.7	1	EPA 8260C		11/24/2020 06:47	11/24/2020 18:47	TMP
	Treaty tene emeriae	1.2						Certifications:	CTDOH,NE	ELAC-NY10854,NEL	AC-NY12058,PA	
91-20-3	Naphthalene	ND		ug/kg dry	2.4	9.7	1	EPA 8260C		11/24/2020 06:47	11/24/2020 18:47	TMP
	•							Certifications:	NELAC-NY	/10854,NELAC-NY1	2058,PADEP,NJE	
104-51-8	n-Butylbenzene	ND		ug/kg dry	2.4	4.9	1	EPA 8260C		11/24/2020 06:47	11/24/2020 18:47	TMP
								Certifications:	CTDOH,NE	ELAC-NY10854,NEL	AC-NY12058,PA	
103-65-1	n-Propylbenzene	ND		ug/kg dry	2.4	4.9	1	EPA 8260C		11/24/2020 06:47	11/24/2020 18:47	TMP
								Certifications:	CTDOH,NE	ELAC-NY10854,NEL	AC-NY12058,PA	
95-47-6	o-Xylene	ND		ug/kg dry	2.4	4.9	1	EPA 8260C		11/24/2020 06:47	11/24/2020 18:47	TMP
								Certifications:	CTDOH,NE	ELAC-NY10854,NEL	AC-NY12058,PA	
179601-23-1	p- & m- Xylenes	ND		ug/kg dry	4.9	9.7	1	EPA 8260C		11/24/2020 06:47	11/24/2020 18:47	TMP
								Certifications:	CTDOH,NE	ELAC-NY10854,NEL	AC-NY12058,PA	
99-87-6	p-Isopropyltoluene	ND		ug/kg dry	2.4	4.9	1	EPA 8260C		11/24/2020 06:47	11/24/2020 18:47	TMP
								Certifications:	CTDOH,NE	ELAC-NY10854,NEL	AC-NY12058,PA	
135-98-8	sec-Butylbenzene	ND		ug/kg dry	2.4	4.9	1	EPA 8260C		11/24/2020 06:47	11/24/2020 18:47	TMP
								Certifications:	CTDOH,NE	ELAC-NY10854,NEL		
100-42-5	Styrene	ND		ug/kg dry	2.4	4.9	1	EPA 8260C		11/24/2020 06:47	11/24/2020 18:47	TMP
								Certifications:	CTDOH,NE	ELAC-NY10854,NEL		
98-06-6	tert-Butylbenzene	ND		ug/kg dry	2.4	4.9	1	EPA 8260C	CTDOLLNE	11/24/2020 06:47	11/24/2020 18:47	TMP
					2.4	4.0		Certifications:	CIDOH,NE	ELAC-NY10854,NEL		
127-18-4	Tetrachloroethylene	ND		ug/kg dry	2.4	4.9	1	EPA 8260C Certifications:	CTDOH NE	11/24/2020 06:47 ELAC-NY10854,NEL	11/24/2020 18:47	TMP
108-88-3	Talaana	ND		ug/kg dry	2.4	4.9	1	EPA 8260C	CTDOII,NE	11/24/2020 06:47	11/24/2020 18:47	TMP
100-00-3	Toluene	ND		ug/kg ury	2.4	4.7	1	Certifications:	CTDOH.NE	11/24/2020 00.47 ELAC-NY10854,NEL		INIF
156-60-5	trans-1,2-Dichloroethylene	ND		ug/kg dry	2.4	4.9	1	EPA 8260C		11/24/2020 06:47	11/24/2020 18:47	TMP
130 00 3	trans-1,2-Dictioroethylene	ND		ug/kg ury	2.7	4.7	1	Certifications:	CTDOH,NE	ELAC-NY10854,NEL		1.411
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/kg dry	2.4	4.9	1	EPA 8260C		11/24/2020 06:47	11/24/2020 18:47	TMP
10001 02 0	trans-1,3-Diemoropropytene	ND						Certifications:	CTDOH,NE	ELAC-NY10854,NEL		1.1.11
79-01-6	Trichloroethylene	ND		ug/kg dry	2.4	4.9	1	EPA 8260C		11/24/2020 06:47	11/24/2020 18:47	TMP
								Certifications:	CTDOH,NE	ELAC-NY10854,NEL	AC-NY12058,PA	
75-69-4	Trichlorofluoromethane	ND		ug/kg dry	2.4	4.9	1	EPA 8260C		11/24/2020 06:47	11/24/2020 18:47	TMP
								Certifications:	CTDOH,NE	ELAC-NY10854,NEL	AC-NY12058,PA	
108-05-4	Vinyl acetate	ND		ug/kg dry	2.4	4.9	1	EPA 8260C		11/24/2020 06:47	11/24/2020 18:47	TMP
								Certifications:	NELAC-NY	/10854,NELAC-NY1	2058,PADEP,NJE	
75-01-4	Vinyl Chloride	ND		ug/kg dry	2.4	4.9	1	EPA 8260C		11/24/2020 06:47	11/24/2020 18:47	TMP
								Certifications:	CTDOH,NE	ELAC-NY10854,NEL	AC-NY12058,PA	

SB-4 **Client Sample ID: York Sample ID:** 20K0850-05

Client Project ID Matrix Date Received York Project (SDG) No. Collection Date/Time

20K0850 77 Carnell Street Kingsten, New York Soil November 18, 2020 12:12 pm 11/19/2020

Volatile Organics, 8260 List

Sample Prepared by Method: EPA 5035A

Log-in Notes: Sample Notes:

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
1330-20-7	Xylenes, Total	ND		ug/kg dry	7.3	15	1	EPA 8260C Certifications:	CTDOH,NI	11/24/2020 06:47 ELAC-NY10854,NEL	11/24/2020 18:47 AC-NY12058,NJ	TMP
	Surrogate Recoveries	Result		Acce	ptance Ran	ge						
17060-07-0	Surrogate: SURR: 1,2-Dichloroethane-d4	99.9 %			77-125							
2037-26-5	Surrogate: SURR: Toluene-d8	101 %			85-120							
460-00-4	Surrogate: SURR: p-Bromofluorobenzene	98.6 %			76-130							

Log-in Notes: Total Solids Sample Notes:

Sample Prepared by Method: % Solids Prep

CAS	No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
solids	* % Solids		95.2		%	0.100	1	SM 2540G		11/30/2020 16:32	11/30/2020 16:35	KHA
								Certifications:	CTDOH			

Sample Information

SB-4 GW **Client Sample ID: York Sample ID:** 20K0850-06

York Project (SDG) No. Client Project ID Matrix Collection Date/Time Date Received 20K0850 77 Carnell Street Kingsten, New York Water November 18, 2020 12:42 pm 11/19/2020

Volatile Organics, 8260 List - Low Level

Sample Prepared by Method: EPA 5030B

Log-in Notes: Sample Notes:

CAS No.	. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference !	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
630-20-6	1,1,1,2-Tetrachloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NE	11/23/2020 06:47 LAC-NY10854,NELA	11/23/2020 19:21 AC-NY12058,NJ	TMP
71-55-6	1,1,1-Trichloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NE	11/23/2020 06:47 LAC-NY10854,NELA	11/23/2020 19:21 AC-NY12058,NJ	TMP
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NE	11/23/2020 06:47 LAC-NY10854,NELA	11/23/2020 19:21 AC-NY12058,NJ	TMP
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NE	11/23/2020 06:47 LAC-NY10854,NELA	11/23/2020 19:21 AC-NY12058,NJ	TMP
79-00-5	1,1,2-Trichloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NE	11/23/2020 06:47 LAC-NY10854,NEL	11/23/2020 19:21 AC-NY12058,NJ	TMP
75-34-3	1,1-Dichloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NE	11/23/2020 06:47 LAC-NY10854,NEL	11/23/2020 19:21 AC-NY12058,NJ	TMP
75-35-4	1,1-Dichloroethylene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NE	11/23/2020 06:47 LAC-NY10854,NELA	11/23/2020 19:21 AC-NY12058,NJ	TMP

120 RESEARCH DRIVE STRATFORD, CT 06615 www.YORKLAB.com (203) 325-1371

132-02 89th AVENUE FAX (203) 357-0166

RICHMOND HILL, NY 11418

ClientServices Page 22 of 41

Client Sample ID: SB-4 GW

York Sample ID: 20K0850-06

York Project (SDG) No. 20K0850

<u>Client Project ID</u> 77 Carnell Street Kingsten, New York Matrix Water <u>Collection Date/Time</u> November 18, 2020 12:42 pm Date Received 11/19/2020

Volatile Organics, 8260 List - Low Level

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA 5030B

CAS No	. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference N		Date/Time Prepared	Date/Time Analyzed	Analyst
563-58-6	1,1-Dichloropropylene	ND		ug/L	0.20	0.50	1	EPA 8260C		1/23/2020 06:47	11/23/2020 19:21	TMP
										354,NELAC-NY12		
87-61-6	1,2,3-Trichlorobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C		1/23/2020 06:47	11/23/2020 19:21	TMP
										354,NELAC-NY12		
96-18-4	1,2,3-Trichloropropane	ND		ug/L	0.20	0.50	1	EPA 8260C		1/23/2020 06:47	11/23/2020 19:21	TMP
										354,NELAC-NY12		
95-93-2	* 1,2,4,5-Tetramethylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	1	1/23/2020 06:47	11/23/2020 19:21	TMP
120-82-1	1,2,4-Trichlorobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	1	1/23/2020 06:47	11/23/2020 19:21	TMP
								Certifications:	NELAC-NY108	354,NELAC-NY12	2058,NJDEP,PAE	
95-63-6	1,2,4-Trimethylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	1	1/23/2020 06:47	11/23/2020 19:21	TMP
								Certifications:	CTDOH,NELA	C-NY10854,NEL	AC-NY12058,NJ	
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/L	0.20	0.50	1	EPA 8260C	1	1/23/2020 06:47	11/23/2020 19:21	TMP
	-,								CTDOH,NELA	C-NY10854,NEL	AC-NY12058,NJ	
106-93-4	1,2-Dibromoethane	ND		ug/L	0.20	0.50	1	EPA 8260C	1	1/23/2020 06:47	11/23/2020 19:21	TMP
	1,2 Diolomochane	ND		-8-	**-*		-			C-NY10854,NEL		
95-50-1	1,2-Dichlorobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	1	1/23/2020 06:47	11/23/2020 19:21	TMP
)3-30-1	1,2-Dichiorobenzene	ND		ug/L	0.20	0.50				C-NY10854,NEL		TIVII
107-06-2	1,2-Dichloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C		1/23/2020 06:47	11/23/2020 19:21	TMP
107-00-2	1,2-Dichioroethane	ND		ug/L	0.20	0.50	1			C-NY10854,NEL		TIVII
78-87-5	10 B: 11	N.D.		/T	0.20	0.50	1	EPA 8260C		1/23/2020 06:47	11/23/2020 19:21	TMP
76-67-3	1,2-Dichloropropane	ND		ug/L	0.20	0.30	1			C-NY10854,NEL		INIF
100 (7.0	125 T : 1 N	NID.		/T	0.20	0.50	1					TMD
108-67-8	1,3,5-Trimethylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:		1/23/2020 06:47 C-NY10854,NEL	11/23/2020 19:21	TMP
				-								
541-73-1	1,3-Dichlorobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:		1/23/2020 06:47 C-NY10854,NEL	11/23/2020 19:21	TMP
				-								
142-28-9	1,3-Dichloropropane	ND		ug/L	0.20	0.50	1	EPA 8260C		1/23/2020 06:47	11/23/2020 19:21	TMP
				-						354,NELAC-NY12		
106-46-7	1,4-Dichlorobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C		1/23/2020 06:47	11/23/2020 19:21	TMP
										C-NY10854,NEL		
594-20-7	2,2-Dichloropropane	ND		ug/L	0.20	0.50	1	EPA 8260C		1/23/2020 06:47	11/23/2020 19:21	TMP
										354,NELAC-NY12		
78-93-3	2-Butanone	0.88	J, B	ug/L	0.20	2.0	1	EPA 8260C Certifications:		1/23/2020 06:47 C-NY10854,NEL	11/23/2020 19:21	TMP
				-								
95-49-8	2-Chlorotoluene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:		1/23/2020 06:47 C-NY10854,NEL	11/23/2020 19:21	TMP
591-78-6	2-Hexanone	ND		ug/L	0.20	0.50	1	EPA 8260C		1/23/2020 06:47	11/23/2020 19:21	TMP
										C-NY10854,NEL		
106-43-4	4-Chlorotoluene	ND		ug/L	0.20	0.50	1	EPA 8260C		1/23/2020 06:47	11/23/2020 19:21	TMP
										C-NY10854,NEL		
108-10-1	4-Methyl-2-pentanone	ND		ug/L	0.20	0.50	1	EPA 8260C		1/23/2020 06:47	11/23/2020 19:21	TMP
								Certifications:	CTDOH,NELA	C-NY10854,NEL	AC-NY12058,NJ	

Client Sample ID: SB-4 GW **York Sample ID:** 20K0850-06

Date/Time

Analyzed

11/23/2020 19:21

York Project (SDG) No. 20K0850

Client Project ID 77 Carnell Street Kingsten, New York Matrix Water

Collection Date/Time November 18, 2020 12:42 pm Date Received 11/19/2020

Analyst

TMP

Volatile Organics, 8260 List - Low Level

Log-in Notes:

Sample Notes:

Sample Prepar	ed by Method: EPA	5030B									
CAS N	0.	Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference 1	Method	Date/Time Prepared
67-64-1	Acetone		ND		ug/L	1.0	2.0	1	EPA 8260C	CTDOLLNI	11/23/2020 06:47

0, 0.1	Actione	ND		ug L	1.0	2.0	•	Certifications:	CTDOH,NELAC-NY10854,NELAC-NY12058,NJ	
71-43-2	Benzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	11/23/2020 06:47 11/23/2020 19:21 CTDOH,NELAC-NY10854,NELAC-NY12058,NJ	TMP
108-86-1	Bromobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	11/23/2020 06:47 11/23/2020 19:21 NELAC-NY10854,NELAC-NY12058,NJDEP,PAE	TMP
74-97-5	Bromochloromethane	ND		ug/L	0.20	0.50	1	EPA 8260C	11/23/2020 06:47	TMP
75-27-4	Bromodichloromethane	ND		ug/L	0.20	0.50	1	Certifications: EPA 8260C	NELAC-NY10854,NELAC-NY12058,NJDEP,PAE 11/23/2020 06:47	TMP
75-25-2	Bromoform	ND		ug/L	0.20	0.50	1	Certifications: EPA 8260C	CTDOH,NELAC-NY10854,NELAC-NY12058,NJ 11/23/2020 06:47 11/23/2020 19:21	TMP
74-83-9	Bromomethane	ND		ug/L	0.20	0.50	1	Certifications: EPA 8260C	CTDOH,NELAC-NY10854,NELAC-NY12058,NJ 11/23/2020 06:47 11/23/2020 19:21	TMP
75-15-0	Carbon disulfide	ND		ug/L	0.20	0.50	1	Certifications: EPA 8260C	CTDOH,NELAC-NY10854,NELAC-NY12058,NJ 11/23/2020 06:47 11/23/2020 19:21	TMP
56-23-5	Carbon tetrachloride	ND		ug/L	0.20	0.50	1	Certifications: EPA 8260C Certifications:	CTDOH,NELAC-NY10854,NELAC-NY12058,NJ 11/23/2020 06:47 11/23/2020 19:21 CTDOH,NELAC-NY10854,NELAC-NY12058,NJ	TMP
108-90-7	Chlorobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	11/23/2020 06:47 11/23/2020 19:21 CTDOH,NELAC-NY10854,NELAC-NY12058,NJ	TMP
75-00-3	Chloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	11/23/2020 06:47 11/23/2020 19:21 CTDOH,NELAC-NY10854,NELAC-NY12058,NJ	TMP
67-66-3	Chloroform	0.27	J	ug/L	0.20	0.50	1	EPA 8260C Certifications:	11/23/2020 06:47 11/23/2020 19:21 CTDOH,NELAC-NY10854,NELAC-NY12058,NJ	TMP
74-87-3	Chloromethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	11/23/2020 06:47 11/23/2020 19:21 CTDOH,NELAC-NY10854,NELAC-NY12058,NJ	TMP
156-59-2	cis-1,2-Dichloroethylene	0.37	J	ug/L	0.20	0.50	1	EPA 8260C Certifications:	11/23/2020 06:47	TMP
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	11/23/2020 06:47 11/23/2020 19:21 CTDOH,NELAC-NY10854,NELAC-NY12058,NJ	TMP
124-48-1	Dibromochloromethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	11/23/2020 06:47 11/23/2020 19:21 CTDOH,NELAC-NY10854,NELAC-NY12058,NJ	TMP
74-95-3	Dibromomethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	11/23/2020 06:47 11/23/2020 19:21 NELAC-NY10854,NELAC-NY12058,NJDEP,PAE	TMP
75-71-8	Dichlorodifluoromethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	11/23/2020 06:47 11/23/2020 19:21 NELAC-NY10854,NELAC-NY12058,NJDEP,PAE	TMP
100-41-4	Ethyl Benzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	11/23/2020 06:47 11/23/2020 19:21 CTDOH,NELAC-NY10854,NELAC-NY12058,NJ	TMP
87-68-3	Hexachlorobutadiene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	11/23/2020 06:47 11/23/2020 19:21 NELAC-NY10854,NELAC-NY12058,NJDEP,PAE	TMP
98-82-8	Isopropylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	11/23/2020 06:47	TMP
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	11/23/2020 06:47 11/23/2020 19:21 CTDOH,NELAC-NY10854,NELAC-NY12058,NJ	TMP

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices

Page 24 of 41

Client Sample ID: SB-4 GW **York Sample ID:** 20K0850-06

York Project (SDG) No. 20K0850

Client Project ID 77 Carnell Street Kingsten, New York Matrix Water

Collection Date/Time November 18, 2020 12:42 pm Date Received 11/19/2020

Volatile Organics, 8260 List - Low Level

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA 5030B

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference M	1ethod	Date/Time Prepared	Date/Time Analyzed	Analyst
75-09-2	Methylene chloride	ND		ug/L	1.0	2.0	1	EPA 8260C Certifications:		11/23/2020 06:47 AC-NY10854,NELA	11/23/2020 19:21 AC-NY12058,NJ	TMP
91-20-3	Naphthalene	ND		ug/L	1.0	2.0	1	EPA 8260C		11/23/2020 06:47 0854,NELAC-NY12	11/23/2020 19:21	TMP
104-51-8	n-Butylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C		11/23/2020 06:47 AC-NY10854,NELA	11/23/2020 19:21	TMP
103-65-1	n-Propylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:		11/23/2020 06:47 AC-NY10854,NELA	11/23/2020 19:21 AC-NY12058,NJ	TMP
95-47-6	o-Xylene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:		11/23/2020 06:47 AC-NY10854,NELA	11/23/2020 19:21 AC-NY12058,PA	TMP
179601-23-1	p- & m- Xylenes	ND		ug/L	0.50	1.0	1	EPA 8260C Certifications:		11/23/2020 06:47 AC-NY10854,NELA	11/23/2020 19:21 AC-NY12058,PA	TMP
105-05-5	* p-Diethylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:		11/23/2020 06:47	11/23/2020 19:21	TMP
622-96-8	* p-Ethyltoluene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:		11/23/2020 06:47	11/23/2020 19:21	TMP
99-87-6	p-Isopropyltoluene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:		11/23/2020 06:47 AC-NY10854,NELA	11/23/2020 19:21 AC-NY12058,NJ	TMP
135-98-8	sec-Butylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:		11/23/2020 06:47 AC-NY10854,NELA	11/23/2020 19:21 AC-NY12058,NJ	TMP
100-42-5	Styrene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:		11/23/2020 06:47 AC-NY10854,NELA	11/23/2020 19:21 AC-NY12058,NJ	TMP
98-06-6	tert-Butylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:		11/23/2020 06:47 AC-NY10854,NELA	11/23/2020 19:21 AC-NY12058,NJ	TMP
127-18-4	Tetrachloroethylene	1.2		ug/L	0.20	0.50	1	EPA 8260C Certifications:		11/23/2020 06:47 AC-NY10854,NELA	11/23/2020 19:21 AC-NY12058,NJ	TMP
108-88-3	Toluene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:		11/23/2020 06:47 AC-NY10854,NELA	11/23/2020 19:21 AC-NY12058,NJ	TMP
156-60-5	trans-1,2-Dichloroethylene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:		11/23/2020 06:47 AC-NY10854,NELA	11/23/2020 19:21 AC-NY12058,NJ	TMP
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:		11/23/2020 06:47 AC-NY10854,NELA	11/23/2020 19:21 AC-NY12058,NJ	TMP
79-01-6	Trichloroethylene	11		ug/L	0.20	0.50	1	EPA 8260C Certifications:		11/23/2020 06:47 AC-NY10854,NELA	11/23/2020 19:21 AC-NY12058,NJ	TMP
75-69-4	Trichlorofluoromethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:		11/23/2020 06:47 AC-NY10854,NELA	11/23/2020 19:21 AC-NY12058,NJ	TMP
75-01-4	Vinyl Chloride	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:		11/23/2020 06:47 AC-NY10854,NELA	11/23/2020 19:21 AC-NY12058,NJ	TMP
1330-20-7	Xylenes, Total	ND		ug/L	0.60	1.5	1	EPA 8260C Certifications:		11/23/2020 06:47 AC-NY10854,NELA	11/23/2020 19:21 AC-NY12058,NJ	TMP
	Surrogate Recoveries	Result		Acc	eptance Ran	ge						
17060-07-0	Surrogate: SURR: 1,2-Dichloroethane-d4	103 %			69-130							

120 RESEARCH DRIVE

www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166 ClientServices

Page 25 of 41

SB-4 GW **Client Sample ID:** York Sample ID:

Client Project ID Date Received York Project (SDG) No. Matrix Collection Date/Time 20K0850 77 Carnell Street Kingsten, New York Water November 18, 2020 12:42 pm 11/19/2020

Volatile Organics, 8260 List - Low Level

Sample Prepared by Method: EPA 5030B

460-00-4

Log-in Notes:

Sample Notes:

20K0850-06

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
2037-26-5	Surrogate: SURR: Toluene-d8	97.4 %			81-117					

79-122

97.9 % Surrogate: SURR: $p\hbox{-}Bromofluor obenzene$

Sample Information

Client Sample ID: SB-5 York Sample ID: 20K0850-07

Collection Date/Time York Project (SDG) No. Client Project ID Matrix Date Received 20K0850 77 Carnell Street Kingsten, New York Soil November 18, 2020 1:00 pm 11/19/2020

Volatile Organics, 8260 List Sample Prepared by Method: EPA 5035A

Log-in Notes:

Sample Notes:

CAS No	. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
630-20-6	1,1,1,2-Tetrachloroethane	ND		ug/kg dry	2.5	5.0	1	EPA 8260C		11/24/2020 06:47	11/24/2020 19:14	TMP
								Certifications:	CTDOH,N	ELAC-NY10854,NEL	AC-NY12058,PA	
71-55-6	1,1,1-Trichloroethane	ND		ug/kg dry	2.5	5.0	1	EPA 8260C		11/24/2020 06:47	11/24/2020 19:14	TMP
								Certifications:	CTDOH,N	ELAC-NY10854,NEL	AC-NY12058,PA	
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/kg dry	2.5	5.0	1	EPA 8260C		11/24/2020 06:47	11/24/2020 19:14	TMP
								Certifications:	CTDOH,N	ELAC-NY10854,NEL	AC-NY12058,PA	
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	ND		ug/kg dry	2.5	5.0	1	EPA 8260C		11/24/2020 06:47	11/24/2020 19:14	TMP
	(Freon 113)							Certifications:	CTDOH,N	ELAC-NY10854,NEL	AC-NY12058,NJ	
79-00-5	1,1,2-Trichloroethane	ND		ug/kg dry	2.5	5.0	1	EPA 8260C		11/24/2020 06:47	11/24/2020 19:14	TMP
								Certifications:	CTDOH,N	ELAC-NY10854,NEL	AC-NY12058,PA	
75-34-3	1,1-Dichloroethane	ND		ug/kg dry	2.5	5.0	1	EPA 8260C		11/24/2020 06:47	11/24/2020 19:14	TMP
	,							Certifications:	CTDOH,N	ELAC-NY10854,NEL	AC-NY12058,PA	
75-35-4	1,1-Dichloroethylene	ND		ug/kg dry	2.5	5.0	1	EPA 8260C		11/24/2020 06:47	11/24/2020 19:14	TMP
	1,1 2101110100011,10110	112		00,				Certifications:	CTDOH,N	ELAC-NY10854,NEL	AC-NY12058,PA	
563-58-6	1,1-Dichloropropylene	ND		ug/kg dry	2.5	5.0	1	EPA 8260C		11/24/2020 06:47	11/24/2020 19:14	TMP
	1,1 Diemotopropytene	112		00,				Certifications:	NELAC-N	Y10854,NELAC-NY1:	2058,PADEP,NJE	
87-61-6	1,2,3-Trichlorobenzene	ND		ug/kg dry	2.5	5.0	1	EPA 8260C		11/24/2020 06:47	11/24/2020 19:14	TMP
*, *- *	1,2,3-1116111010001120110	ND		-6 -6)				Certifications:	NELAC-N	Y10854,NELAC-NY1	2058,PADEP,NJE	
96-18-4	1,2,3-Trichloropropane	ND		ug/kg dry	2.5	5.0	1	EPA 8260C		11/24/2020 06:47	11/24/2020 19:14	TMP
70 10 4	1,2,3-Themoropropane	ND		ug ng ur	2.0	5.0	•	Certifications:	NELAC-N	Y10854,NELAC-NY1		1.111
120-82-1	1,2,4-Trichlorobenzene	ND		ug/kg dry	2.5	5.0	1	EPA 8260C		11/24/2020 06:47	11/24/2020 19:14	TMP
120-02-1	1,2,4-Themorobenzene	ND		ug/kg ury	2.3	5.0	1	Certifications:	NELAC-N	Y10854,NELAC-NY1		11411
95-63-6	1247: 4 1	ND		ug/kg dry	2.5	5.0	1	EPA 8260C		11/24/2020 06:47	11/24/2020 19:14	TMP
93-03-0	1,2,4-Trimethylbenzene	ND		ug/kg ury	2.3	3.0	1	Certifications:	CTDOH N	ELAC-NY10854,NEL		INIF
06.12.0	1007 011	ND		/! 3	2.5	5.0	1		CIDOII,N	,	,	T1 4D
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/kg dry	2.5	5.0	1	EPA 8260C	CTDOLLN	11/24/2020 06:47	11/24/2020 19:14	TMP
								Certifications:	CIDOH,N	ELAC-NY10854,NEL	AC-NY 12058,PA	

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371

132-02 89th AVENUE FAX (203) 357-0166

RICHMOND HILL, NY 11418

ClientServices

Page 26 of 41

Client Sample ID: SB-5 York Sample ID: 20K0850-07

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received20K085077 Carnell Street Kingsten, New YorkSoilNovember 18, 2020 1:00 pm11/19/2020

Volatile Organics, 8260 List

Log-in Notes:

C 1 D	Turnes, 0200 Else						-				
CAS No.	d by Method: EPA 5035A Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference Met	Date/Time hod Prepared	Date/Time Analyzed	Analyst
106-93-4	1,2-Dibromoethane	ND		ug/kg dry	2.5	5.0	1	EPA 8260C Certifications: CTI	11/24/2020 06:47 DOH,NELAC-NY10854,NEL	11/24/2020 19:14 AC-NY12058.PA	TMP
95-50-1	1,2-Dichlorobenzene	ND		ug/kg dry	2.5	5.0	1	EPA 8260C	11/24/2020 06:47 DOH,NELAC-NY10854,NEL	11/24/2020 19:14	TMP
107-06-2	1,2-Dichloroethane	ND		ug/kg dry	2.5	5.0	1	EPA 8260C Certifications: CTI	11/24/2020 06:47 DOH,NELAC-NY10854,NEL	11/24/2020 19:14 AC-NY12058,PA	TMP
78-87-5	1,2-Dichloropropane	ND		ug/kg dry	2.5	5.0	1	EPA 8260C Certifications: CTI	11/24/2020 06:47 DOH,NELAC-NY10854,NEL	11/24/2020 19:14 AC-NY12058,PA	TMP
108-67-8	1,3,5-Trimethylbenzene	ND		ug/kg dry	2.5	5.0	1	EPA 8260C Certifications: CTI	11/24/2020 06:47 DOH,NELAC-NY10854,NEL	11/24/2020 19:14 AC-NY12058,PA	TMP
541-73-1	1,3-Dichlorobenzene	ND		ug/kg dry	2.5	5.0	1	EPA 8260C Certifications: CTI	11/24/2020 06:47 DOH,NELAC-NY10854,NEL	11/24/2020 19:14 AC-NY12058,PA	TMP
142-28-9	1,3-Dichloropropane	ND		ug/kg dry	2.5	5.0	1	EPA 8260C Certifications: NEI	11/24/2020 06:47 LAC-NY10854,NELAC-NY1	11/24/2020 19:14 2058,PADEP,NJE	TMP
106-46-7	1,4-Dichlorobenzene	ND		ug/kg dry	2.5	5.0	1	EPA 8260C Certifications: CTI	11/24/2020 06:47 DOH,NELAC-NY10854,NEL	11/24/2020 19:14 AC-NY12058,PA	TMP
123-91-1	1,4-Dioxane	ND		ug/kg dry	50	99	1	EPA 8260C Certifications: NEI	11/24/2020 06:47 LAC-NY10854,NELAC-NY1	11/24/2020 19:14 2058,PADEP,NJE	TMP
594-20-7	2,2-Dichloropropane	ND		ug/kg dry	2.5	5.0	1	EPA 8260C Certifications: NEI	11/24/2020 06:47 LAC-NY10854,NELAC-NY1	11/24/2020 19:14 2058,NJDEP	TMP
78-93-3	2-Butanone	4.0	J, B	ug/kg dry	2.5	5.0	1	EPA 8260C Certifications: CTI	11/24/2020 06:47 DOH,NELAC-NY10854,NEL	11/24/2020 19:14 AC-NY12058,PA	TMP
95-49-8	2-Chlorotoluene	ND		ug/kg dry	2.5	5.0	1	EPA 8260C Certifications: CTI	11/24/2020 06:47 DOH,NELAC-NY10854,NEL	11/24/2020 19:14 AC-NY12058,PA	TMP
106-43-4	4-Chlorotoluene	ND		ug/kg dry	2.5	5.0	1	EPA 8260C Certifications: CTI	11/24/2020 06:47 DOH,NELAC-NY10854,NEL	11/24/2020 19:14 AC-NY12058,PA	TMP
67-64-1	Acetone	ND		ug/kg dry	5.0	9.9	1	EPA 8260C Certifications: CTI	11/24/2020 06:47 DOH,NELAC-NY10854,NEL	11/24/2020 19:14 AC-NY12058,PA	TMP
71-43-2	Benzene	ND		ug/kg dry	2.5	5.0	1	EPA 8260C Certifications: CTI	11/24/2020 06:47 DOH,NELAC-NY10854,NEL	11/24/2020 19:14 AC-NY12058,PA	TMP
108-86-1	Bromobenzene	ND		ug/kg dry	2.5	5.0	1	EPA 8260C Certifications: NEI	11/24/2020 06:47 LAC-NY10854,NELAC-NY1	11/24/2020 19:14 2058,PADEP,NJE	TMP
74-97-5	Bromochloromethane	ND		ug/kg dry	2.5	5.0	1	EPA 8260C Certifications: NEI	11/24/2020 06:47 LAC-NY10854,NELAC-NY1	11/24/2020 19:14 2058,PADEP,NJE	TMP
75-27-4	Bromodichloromethane	ND		ug/kg dry	2.5	5.0	1	EPA 8260C Certifications: CTI	11/24/2020 06:47 DOH,NELAC-NY10854,NEL	11/24/2020 19:14 AC-NY12058,PA	TMP
75-25-2	Bromoform	ND		ug/kg dry	2.5	5.0	1	EPA 8260C Certifications: CTI	11/24/2020 06:47 DOH,NELAC-NY10854,NEL	11/24/2020 19:14 AC-NY12058,PA	TMP
74-83-9	Bromomethane	ND		ug/kg dry	2.5	5.0	1	EPA 8260C Certifications: CTI	11/24/2020 06:47 DOH,NELAC-NY10854,NEL	11/24/2020 19:14 AC-NY12058,PA	TMP
56-23-5	Carbon tetrachloride	ND		ug/kg dry	2.5	5.0	1	EPA 8260C Certifications: CTI	11/24/2020 06:47 DOH,NELAC-NY10854,NEL	11/24/2020 19:14 AC-NY12058,PA	TMP

Client Sample ID: SB-5 York Sample ID: 20K0850-07

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received20K085077 Carnell Street Kingsten, New YorkSoilNovember 18, 2020 1:00 pm11/19/2020

Volatile Organics, 8260 List
Sample Prepared by Method: EPA 5035A

Log-in Notes:

	CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference M	lethod	Date/Time Prepared	Date/Time Analyzed	Analyst
Table Tabl	108-90-7	Chlorobenzene	ND		ug/kg dry	2.5	5.0	1		TDOH NEI			TMP
Chloroform	75-00-3	Chloroethane	ND		ug/kg dry	2.5	5.0	1	EPA 8260C		11/24/2020 06:47	11/24/2020 19:14	TMP
Conficience Chiloromethane Chiloro										TDOH,NEL			
156-59-2	67-66-3	Chloroform	ND		ug/kg dry	2.5	5.0	1		CTDOH,NEL			TMP
1966-9-2 1967-9-2 1967-9-2 1968-9-2	74-87-3	Chloromethane	ND		ug/kg dry	2.5	5.0	1					TMP
						2.5				TDOH,NEL			
	156-59-2	cis-1,2-Dichloroethylene	ND		ug/kg dry	2.5	5.0	I		CTDOH,NEL			TMP
	10061-01-5	cis-1,3-Dichloropropylene	ND		ug/kg dry	2.5	5.0	1	EPA 8260C		11/24/2020 06:47	11/24/2020 19:14	TMP
Page									Certifications: C	CTDOH,NEL	AC-NY10854,NEL	AC-NY12058,PA	
Page	124-48-1	Dibromochloromethane	ND		ug/kg dry	2.5	5.0	1	EPA 8260C		11/24/2020 06:47	11/24/2020 19:14	TMP
									Certifications: N	NELAC-NY1	0854,NELAC-NY12	2058,PADEP,NJE	
Part	74-95-3	Dibromomethane	ND		ug/kg dry	2.5	5.0	1					TMP
										NELAC-NY1			
Page	75-71-8	Dichlorodifluoromethane	ND		ug/kg dry	2.5	5.0	1		TT 1 0 3 77 1			TMP
										NELAC-NYI			
Reachiorobutadiene ND	100-41-4	Ethyl Benzene	ND		ug/kg dry	2.5	5.0	1		TDOU NEI			TMP
Suppose Supp	97 (9.2	** 11 1 . **	N.D.		// 4	2.5	5.0			TDOH,NEL			TMD
Series Sopropylbenzene ND ug/kg dry 2.5 5.0 1 EPA 8260C 11/24/2020 66.47 11/24/2020 19.14 TMP Certifications: CTDOH,NELAC-NY10854,NELAC-NY12058,PA TMP TMP Certifications: CTDOH,NELAC-NY10854,NELAC-NY12058,PA TMP TM	87-68-3	Hexachlorobutadiene	ND		ug/kg ary	2.5	5.0	1		JELAC-NY1			IMP
Methyl tert-butyl ether (MTBE)	98-82-8	Isonronylhenzene	ND		ug/kg dry	2.5	5.0	1					TMP
Pach	70 02 0	isopropytochizene	ND		-667			-		TDOH,NEL			
Certifications	1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/kg dry	2.5	5.0	1	EPA 8260C		11/24/2020 06:47	11/24/2020 19:14	TMP
ND										CTDOH,NEL	AC-NY10854,NEL	AC-NY12058,PA	
ND	75-09-2	Methylene chloride	ND		ug/kg dry	5.0	9.9	1	EPA 8260C		11/24/2020 06:47	11/24/2020 19:14	TMP
104-51-8 n-Butylbenzene ND ug/kg dry 2.5 5.0 1 EPA 8260C 11/24/2020 06:47 11/24/2020 19:14 TMP		•							Certifications:	CTDOH,NEL	AC-NY10854,NEL	AC-NY12058,PA	
104-51-8 n-Butylbenzene ND ug/kg dry 2.5 5.0 l EPA 8260C 11/24/2020 06:47 11/24/2020 19:14 TMP	91-20-3	Naphthalene	ND		ug/kg dry	2.5	9.9	1	EPA 8260C		11/24/2020 06:47	11/24/2020 19:14	TMP
103-65-1 n-Propylbenzene ND ug/kg dry 2.5 5.0 1 EPA 8260C 11/24/2020 06:47 11/24/2020 19:14 TMP									Certifications: N	NELAC-NY1	0854,NELAC-NY12	2058,PADEP,NJE	
103-65-1 n-Propylbenzene ND ug/kg dry 2.5 5.0 1 EPA 8260C 11/24/2020 66:47 11/24/2020 19:14 TMP	104-51-8	n-Butylbenzene	ND		ug/kg dry	2.5	5.0	1			11/24/2020 06:47	11/24/2020 19:14	TMP
Post									Certifications: C	CTDOH,NEL	AC-NY10854,NEL	AC-NY12058,PA	
95-47-6 o-Xylene ND ug/kg dry 2.5 5.0 l EPA 8260C 11/24/2020 66:47 11/24/2020 19:14 TMP 179601-23-1 p- & m- Xylenes ND ug/kg dry 5.0 9.9 l EPA 8260C 11/24/2020 66:47 11/24/2020 19:14 TMP 99-87-6 p-Isopropyltoluene ND ug/kg dry 2.5 5.0 l EPA 8260C 11/24/2020 66:47 11/24/2020 19:14 TMP 135-98-8 sec-Butylbenzene ND ug/kg dry 2.5 5.0 l EPA 8260C 11/24/2020 66:47 11/24/2020 19:14 TMP 135-98-8 sec-Butylbenzene ND ug/kg dry 2.5 5.0 l EPA 8260C 11/24/2020 66:47 11/24/2020 19:14 TMP	103-65-1	n-Propylbenzene	ND		ug/kg dry	2.5	5.0	1					TMP
P-& m- Xylenes ND ug/kg dry 5.0 9.9 1 EPA 8260C 11/24/2020 06:47 11/24/2020 19:14 TMP										TDOH,NEL	AC-NY10854,NEL	AC-NY12058,PA	
179601-23-1 p- & m- Xylenes ND ug/kg dry 5.0 9.9 1 EPA 8260C 11/24/2020 06:47 11/24/2020 19:14 TMP	95-47-6	o-Xylene	ND		ug/kg dry	2.5	5.0	1		WED OUT YES			TMP
Part										TDOH,NEL			
99-87-6 p-Isopropyltoluene ND ug/kg dry 2.5 5.0 1 EPA 8260C 11/24/2020 06:47 11/24/2020 19:14 TMP Certifications: CTDOH,NELAC-NY10854,NELAC-NY12058,PA 135-98-8 sec-Butylbenzene ND ug/kg dry 2.5 5.0 1 EPA 8260C 11/24/2020 06:47 11/24/2020 19:14 TMP	179601-23-1	p- & m- Xylenes	ND		ug/kg dry	5.0	9.9	1		TDOU NEI			TMP
Certifications: CTDOH,NELAC-NY10854,NELAC-NY12058,PA 135-98-8 sec-Butylbenzene ND ug/kg dry 2.5 5.0 1 EPA 8260C 11/24/2020 06:47 11/24/2020 19:14 TMP						2.5	- 0			IDOH,NEL			
135-98-8 sec-Butylbenzene ND ug/kg dry 2.5 5.0 1 EPA 8260C 11/24/2020 06:47 11/24/2020 19:14 TMP	99-87-6	p-Isopropyltoluene	ND		ug/kg dry	2.5	5.0	1		TDOH NEI			TMP
see Buty to enzeme	125.00.0	D 4 II	NE		na/l 4-	2.5	5.0			LIOH,NEL			TMD
	133-70-0	sec-Butytbenzene	ND		ug/kg dry	2.3	3.0	1		TDOH,NEL			I IVII

Client Sample ID: **SB-5 York Sample ID:** 20K0850-07

York Project (SDG) No. Client Project ID Matrix Collection Date/Time Date Received 20K0850 77 Carnell Street Kingsten, New York November 18, 2020 1:00 pm 11/19/2020 Soil

Volatile Organics, 8260 List

Sample Prepared by Method: EPA 5035A

Log-in Notes:

Sample Notes:

CAS No.	. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference 1	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
100-42-5	Styrene	ND		ug/kg dry	2.5	5.0	1	EPA 8260C Certifications:	CTDOH,NE	11/24/2020 06:47 ELAC-NY10854,NELA	11/24/2020 19:14 AC-NY12058,PA	TMP
98-06-6	tert-Butylbenzene	ND		ug/kg dry	2.5	5.0	1	EPA 8260C Certifications:	CTDOH,NE	11/24/2020 06:47 ELAC-NY10854,NEL	11/24/2020 19:14 AC-NY12058,PA	TMP
127-18-4	Tetrachloroethylene	ND		ug/kg dry	2.5	5.0	1	EPA 8260C Certifications:	CTDOH,NE	11/24/2020 06:47 ELAC-NY10854,NELA	11/24/2020 19:14 AC-NY12058,PA	TMP
108-88-3	Toluene	ND		ug/kg dry	2.5	5.0	1	EPA 8260C Certifications:	CTDOH,NE	11/24/2020 06:47 ELAC-NY10854,NELA	11/24/2020 19:14 AC-NY12058,PA	TMP
156-60-5	trans-1,2-Dichloroethylene	ND		ug/kg dry	2.5	5.0	1	EPA 8260C Certifications:	CTDOH,NE	11/24/2020 06:47 ELAC-NY10854,NELA	11/24/2020 19:14 AC-NY12058,PA	TMP
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/kg dry	2.5	5.0	1	EPA 8260C Certifications:	CTDOH,NE	11/24/2020 06:47 ELAC-NY10854,NELA	11/24/2020 19:14 AC-NY12058,PA	TMP
79-01-6	Trichloroethylene	8.1		ug/kg dry	2.5	5.0	1	EPA 8260C Certifications:	CTDOH,NE	11/24/2020 06:47 ELAC-NY10854,NELA	11/24/2020 19:14 AC-NY12058,PA	TMP
75-69-4	Trichlorofluoromethane	ND		ug/kg dry	2.5	5.0	1	EPA 8260C Certifications:	CTDOH,NE	11/24/2020 06:47 ELAC-NY10854,NELA	11/24/2020 19:14 AC-NY12058,PA	TMP
108-05-4	Vinyl acetate	ND		ug/kg dry	2.5	5.0	1	EPA 8260C Certifications:	NELAC-NY	11/24/2020 06:47 /10854,NELAC-NY12	11/24/2020 19:14 2058,PADEP,NJE	TMP
75-01-4	Vinyl Chloride	ND		ug/kg dry	2.5	5.0	1	EPA 8260C Certifications:	CTDOH,NE	11/24/2020 06:47 ELAC-NY10854,NEL	11/24/2020 19:14 AC-NY12058,PA	TMP
1330-20-7	Xylenes, Total	ND		ug/kg dry	7.4	15	1	EPA 8260C Certifications:	CTDOH,NE	11/24/2020 06:47 ELAC-NY10854,NELA	11/24/2020 19:14 AC-NY12058,NJ	TMP
	Surrogate Recoveries	Result		Acce	ptance Ran	ge						
17060-07-0	Surrogate: SURR: 1,2-Dichloroethane-d4	99.3 %			77-125							
2037-26-5	Surrogate: SURR: Toluene-d8	101 %			85-120							
460-00-4	Surrogate: SURR: p-Bromofluorobenzene	97.8 %			76-130							

Total Solids Log-in Notes: Sample Notes:

Sample Prepared by Method: % Solids Prep

CAS N	No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference M	lethod	Date/Time Prepared	Date/Time Analyzed	Analyst
solids	* % Solids		83.1		%	0.100	1	SM 2540G		11/30/2020 16:32	11/30/2020 16:35	КНА
								Certifications: C	CTDOH			

132-02 89th AVENUE 120 RESEARCH DRIVE STRATFORD, CT 06615 www.YORKLAB.com (203) 325-1371 FAX (203) 357-0166

RICHMOND HILL, NY 11418

ClientServices

Page 29 of 41

Client Sample ID: SB-5 GW York Sample ID: 20K0850-08

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received20K085077 Carnell Street Kingsten, New YorkWaterNovember 18, 2020 1:28 pm11/19/2020

Volatile Organics, 8260 List - Low Level

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA 5030

CAS No	. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
630-20-6	1,1,1,2-Tetrachloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C		11/23/2020 06:47	11/23/2020 19:48	TMP
	=				0.20	0.50		Certifications:	CTDOH,NE	ELAC-NY10854,NEL		
71-55-6	1,1,1-Trichloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH NE	11/23/2020 06:47 ELAC-NY10854,NEL	11/23/2020 19:48 AC-NY12058 NJ	TMP
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C		11/23/2020 06:47	11/23/2020 19:48	TMP
,,,,,,,,	1,1,2,2-10114011101000114110	ND		8-	****			Certifications:	CTDOH,NE	ELAC-NY10854,NEL		1.,,1
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	ND		ug/L	0.20	0.50	1	EPA 8260C		11/23/2020 06:47	11/23/2020 19:48	TMP
	(Freon 113)							Certifications:	CTDOH,NE	ELAC-NY10854,NEL	AC-NY12058,NJ	
79-00-5	1,1,2-Trichloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C		11/23/2020 06:47	11/23/2020 19:48	TMP
								Certifications:	CTDOH,NE	ELAC-NY10854,NEL	AC-NY12058,NJ	
75-34-3	1,1-Dichloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C		11/23/2020 06:47	11/23/2020 19:48	TMP
								Certifications:	CTDOH,NE	ELAC-NY10854,NEL		
75-35-4	1,1-Dichloroethylene	ND		ug/L	0.20	0.50	1	EPA 8260C	CEDOLLNE	11/23/2020 06:47	11/23/2020 19:48	TMP
					0.20	0.50		Certifications:	C1DOH,NE	ELAC-NY10854,NEL		
563-58-6	1,1-Dichloropropylene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	NEL AC NV	11/23/2020 06:47 /10854,NELAC-NY12	11/23/2020 19:48	TMP
87-61-6	1227:11	NID		na/I	0.20	0.50	1	EPA 8260C	NELAC-N1	11/23/2020 06:47	11/23/2020 19:48	TMP
57-01-0	1,2,3-Trichlorobenzene	ND		ug/L	0.20	0.30	1	Certifications:	NELAC-NY	710854,NELAC-NY12		TIVIF
96-18-4	1,2,3-Trichloropropane	ND		ug/L	0.20	0.50	1	EPA 8260C		11/23/2020 06:47	11/23/2020 19:48	TMP
J0 10 4	1,2,3-Themoropropane	ND		ug L	0.20	0.50	•	Certifications:	NELAC-NY	/10854,NELAC-NY12		1.411
95-93-2	* 1,2,4,5-Tetramethylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C		11/23/2020 06:47	11/23/2020 19:48	TMP
	-,-, ,,-							Certifications:				
120-82-1	1,2,4-Trichlorobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C		11/23/2020 06:47	11/23/2020 19:48	TMP
								Certifications:	NELAC-NY	/10854,NELAC-NY12	2058,NJDEP,PAE	
95-63-6	1,2,4-Trimethylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C		11/23/2020 06:47	11/23/2020 19:48	TMP
								Certifications:	CTDOH,NE	ELAC-NY10854,NEL	AC-NY12058,NJ	
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/L	0.20	0.50	1	EPA 8260C		11/23/2020 06:47	11/23/2020 19:48	TMP
								Certifications:	CTDOH,NE	ELAC-NY10854,NEL	AC-NY12058,NJ	
106-93-4	1,2-Dibromoethane	ND		ug/L	0.20	0.50	1	EPA 8260C		11/23/2020 06:47	11/23/2020 19:48	TMP
								Certifications:	CTDOH,NE	ELAC-NY10854,NEL		
95-50-1	1,2-Dichlorobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	CEDOLLNE	11/23/2020 06:47	11/23/2020 19:48	TMP
					0.20	0.50		Certifications:	CTDOH,NE	ELAC-NY10854,NEL		
107-06-2	1,2-Dichloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH NE	11/23/2020 06:47 ELAC-NY10854,NEL	11/23/2020 19:48	TMP
78-87-5	1.2 Disklamman	ND		ug/L	0.20	0.50	1	EPA 8260C	CTDOII,IVE	11/23/2020 06:47	11/23/2020 19:48	TMP
76-67-3	1,2-Dichloropropane	ND		ug/L	0.20	0.50		Certifications:	CTDOH,NE	ELAC-NY10854,NEL		TIVII
108-67-8	1,3,5-Trimethylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	, ,	11/23/2020 06:47	11/23/2020 19:48	TMP
	1,5,5-11momyroonzonc	ND					•	Certifications:	CTDOH,NE	ELAC-NY10854,NEL		
541-73-1	1,3-Dichlorobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C		11/23/2020 06:47	11/23/2020 19:48	TMP
	•							Certifications:	CTDOH,NE	ELAC-NY10854,NEL	AC-NY12058,NJ	
142-28-9	1,3-Dichloropropane	ND		ug/L	0.20	0.50	1	EPA 8260C		11/23/2020 06:47	11/23/2020 19:48	TMP
								Certifications:	NELAC-NY	/10854,NELAC-NY12	2058,NJDEP,PAE	

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices

Page 30 of 41

Client Sample ID: SB-5 GW

York Sample ID: 20K0850-08

York Project (SDG) No. 20K0850

<u>Client Project ID</u> 77 Carnell Street Kingsten, New York Matrix Water <u>Collection Date/Time</u> November 18, 2020 1:28 pm Date Received 11/19/2020

Volatile Organics, 8260 List - Low Level

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA 5030B

CAS No	. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference 1	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
106-46-7	1,4-Dichlorobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C		11/23/2020 06:47	11/23/2020 19:48	TMP
								Certifications:	CTDOH,NE	ELAC-NY10854,NEL	AC-NY12058,NJ	
594-20-7	2,2-Dichloropropane	ND		ug/L	0.20	0.50	1	EPA 8260C		11/23/2020 06:47	11/23/2020 19:48	TMP
								Certifications:	NELAC-NY	/10854,NELAC-NY12	2058,NJDEP,PAE	
78-93-3	2-Butanone	1.0	J, B	ug/L	0.20	2.0	1	EPA 8260C		11/23/2020 06:47	11/23/2020 19:48	TMP
								Certifications:	CTDOH,NE	ELAC-NY10854,NEL	AC-NY12058,NJ	
95-49-8	2-Chlorotoluene	ND		ug/L	0.20	0.50	1	EPA 8260C		11/23/2020 06:47	11/23/2020 19:48	TMP
								Certifications:	CTDOH,NE	ELAC-NY10854,NEL	AC-NY12058,NJ	
591-78-6	2-Hexanone	ND		ug/L	0.20	0.50	1	EPA 8260C		11/23/2020 06:47	11/23/2020 19:48	TMP
								Certifications:	CTDOH,NE	ELAC-NY10854,NEL	AC-NY12058,NJ	
106-43-4	4-Chlorotoluene	ND		ug/L	0.20	0.50	1	EPA 8260C		11/23/2020 06:47	11/23/2020 19:48	TMP
								Certifications:	CTDOH,NE	ELAC-NY10854,NEL	AC-NY12058,NJ	
108-10-1	4-Methyl-2-pentanone	ND		ug/L	0.20	0.50	1	EPA 8260C		11/23/2020 06:47	11/23/2020 19:48	TMP
								Certifications:	CTDOH,NE	ELAC-NY10854,NEL	AC-NY12058,NJ	
67-64-1	Acetone	ND		ug/L	1.0	2.0	1	EPA 8260C		11/23/2020 06:47	11/23/2020 19:48	TMP
								Certifications:	CTDOH,NE	ELAC-NY10854,NEL	AC-NY12058,NJ	
71-43-2	Benzene	ND		ug/L	0.20	0.50	1	EPA 8260C		11/23/2020 06:47	11/23/2020 19:48	TMP
								Certifications:	CTDOH,NE	ELAC-NY10854,NEL	AC-NY12058,NJ	
108-86-1	Bromobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C		11/23/2020 06:47	11/23/2020 19:48	TMP
100 00 1	Biomobelizene	ND		ug L	0.20	0.50	•	Certifications:	NELAC-NY	/10854,NELAC-NY1		
74-97-5	Bromochloromethane	ND		ug/L	0.20	0.50	1	EPA 8260C		11/23/2020 06:47	11/23/2020 19:48	TMP
14-71-5	Biomocinoromethane	ND		ug/L	0.20	0.50		Certifications:	NELAC-NY	/10854,NELAC-NY12		11411
75 27 4	Bromodichloromethane	ND		ng/I	0.20	0.50	1	EPA 8260C	TELLIO IVI	11/23/2020 06:47	11/23/2020 19:48	TMD
75-27-4	Bromodicnioromethane	ND		ug/L	0.20	0.50	1	Certifications:	CTDOH NE	ELAC-NY10854,NEL		TMP
75.25.2	-	170		/7	0.20	0.50			CIDOII,NE			TMD
75-25-2	Bromoform	ND		ug/L	0.20	0.50	1	EPA 8260C	CTDOU NE	11/23/2020 06:47	11/23/2020 19:48	TMP
				_				Certifications:	C1DOII,NE	ELAC-NY10854,NEL		
74-83-9	Bromomethane	ND		ug/L	0.20	0.50	1	EPA 8260C	OTTO MANUE	11/23/2020 06:47	11/23/2020 19:48	TMP
								Certifications:	CIDOH,NE	ELAC-NY10854,NEL		
75-15-0	Carbon disulfide	ND		ug/L	0.20	0.50	1	EPA 8260C		11/23/2020 06:47	11/23/2020 19:48	TMP
								Certifications:	CTDOH,NE	ELAC-NY10854,NEL	AC-NY12058,NJ	
56-23-5	Carbon tetrachloride	ND		ug/L	0.20	0.50	1	EPA 8260C		11/23/2020 06:47	11/23/2020 19:48	TMP
								Certifications:	CTDOH,NE	ELAC-NY10854,NEL	AC-NY12058,NJ	
108-90-7	Chlorobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C		11/23/2020 06:47	11/23/2020 19:48	TMP
								Certifications:	CTDOH,NE	ELAC-NY10854,NEL	AC-NY12058,NJ	
75-00-3	Chloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C		11/23/2020 06:47	11/23/2020 19:48	TMP
								Certifications:	CTDOH,NE	ELAC-NY10854,NEL	AC-NY12058,NJ	
67-66-3	Chloroform	1.5		ug/L	0.20	0.50	1	EPA 8260C		11/23/2020 06:47	11/23/2020 19:48	TMP
								Certifications:	CTDOH,NE	ELAC-NY10854,NEL	AC-NY12058,NJ	
74-87-3	Chloromethane	ND		ug/L	0.20	0.50	1	EPA 8260C		11/23/2020 06:47	11/23/2020 19:48	TMP
								Certifications:	CTDOH,NE	ELAC-NY10854,NEL	AC-NY12058,NJ	
156-59-2	cis-1,2-Dichloroethylene	1.8		ug/L	0.20	0.50	1	EPA 8260C		11/23/2020 06:47	11/23/2020 19:48	TMP
								Certifications:	CTDOH,NE	ELAC-NY10854,NEL	AC-NY12058,NJ	
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/L	0.20	0.50	1	EPA 8260C		11/23/2020 06:47	11/23/2020 19:48	TMP
								Certifications:	CTDOH,NE	ELAC-NY10854,NEL	AC-NY12058,NJ	

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices@

Page 31 of 41

Client Sample ID: SB-5 GW

York Sample ID:

20K0850-08

York Project (SDG) No. 20K0850

<u>Client Project ID</u> 77 Carnell Street Kingsten, New York Matrix Water <u>Collection Date/Time</u> November 18, 2020 1:28 pm Date Received 11/19/2020

Volatile Organics, 8260 List - Low Level

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA 5030B

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
124-48-1	Dibromochloromethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH N	11/23/2020 06:47 ELAC-NY10854,NEL	11/23/2020 19:48 AC-NY12058 NI	TMP
74-95-3	Dibromomethane	ND		ug/L	0.20	0.50	1	EPA 8260C		11/23/2020 06:47	11/23/2020 19:48	TMP
								Certifications:	NELAC-N	Y10854,NELAC-NY12		
75-71-8	Dichlorodifluoromethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	NELAC-N	11/23/2020 06:47 Y10854,NELAC-NY12	11/23/2020 19:48 2058,NJDEP,PAE	TMP
100-41-4	Ethyl Benzene	ND		ug/L	0.20	0.50	1	EPA 8260C		11/23/2020 06:47	11/23/2020 19:48	TMP
								Certifications:	CTDOH,N	ELAC-NY10854,NEL	AC-NY12058,NJ	
87-68-3	Hexachlorobutadiene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	NEL AC N	11/23/2020 06:47 Y10854,NELAC-NY12	11/23/2020 19:48	TMP
00.02.0	· "	NID.		/T	0.20	0.50	1		NELAC-N			TMD
98-82-8	Isopropylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,N	11/23/2020 06:47 ELAC-NY10854,NEL	11/23/2020 19:48 AC-NY12058,NJ	TMP
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/L	0.20	0.50	1	EPA 8260C		11/23/2020 06:47	11/23/2020 19:48	TMP
	meany test outy outer (MTB2)	112						Certifications:	CTDOH,N	ELAC-NY10854,NEL	AC-NY12058,NJ	
75-09-2	Methylene chloride	ND		ug/L	1.0	2.0	1	EPA 8260C		11/23/2020 06:47	11/23/2020 19:48	TMP
	-							Certifications:	CTDOH,N	ELAC-NY10854,NEL	AC-NY12058,NJ	
91-20-3	Naphthalene	ND		ug/L	1.0	2.0	1	EPA 8260C		11/23/2020 06:47	11/23/2020 19:48	TMP
								Certifications:	NELAC-N	Y10854,NELAC-NY12	2058,NJDEP,PAE	
104-51-8	n-Butylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C		11/23/2020 06:47	11/23/2020 19:48	TMP
								Certifications:	CTDOH,N	ELAC-NY10854,NEL	AC-NY12058,NJ	
103-65-1	n-Propylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C		11/23/2020 06:47	11/23/2020 19:48	TMP
								Certifications:	CTDOH,N	ELAC-NY10854,NEL	AC-NY12058,NJ	
95-47-6	o-Xylene	ND		ug/L	0.20	0.50	1	EPA 8260C		11/23/2020 06:47	11/23/2020 19:48	TMP
								Certifications:	CTDOH,N	ELAC-NY10854,NEL	AC-NY12058,PA	
179601-23-1	p- & m- Xylenes	ND		ug/L	0.50	1.0	1	EPA 8260C		11/23/2020 06:47	11/23/2020 19:48	TMP
								Certifications:	CTDOH,N	ELAC-NY10854,NEL	AC-NY12058,PA	
105-05-5	* p-Diethylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C		11/23/2020 06:47	11/23/2020 19:48	TMP
								Certifications:				
622-96-8	* p-Ethyltoluene	ND		ug/L	0.20	0.50	1	EPA 8260C		11/23/2020 06:47	11/23/2020 19:48	TMP
								Certifications:				
99-87-6	p-Isopropyltoluene	ND		ug/L	0.20	0.50	1	EPA 8260C		11/23/2020 06:47	11/23/2020 19:48	TMP
								Certifications:	CTDOH,N	ELAC-NY10854,NEL	AC-NY12058,NJ	
135-98-8	sec-Butylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C		11/23/2020 06:47	11/23/2020 19:48	TMP
								Certifications:	CTDOH,N	ELAC-NY10854,NEL	AC-NY12058,NJ	
100-42-5	Styrene	ND		ug/L	0.20	0.50	1	EPA 8260C		11/23/2020 06:47	11/23/2020 19:48	TMP
								Certifications:	CTDOH,N	ELAC-NY10854,NEL		
98-06-6	tert-Butylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C		11/23/2020 06:47	11/23/2020 19:48	TMP
107.10				-	0.26	0.50	_	Certifications:	CTDOH,N	ELAC-NY10854,NEL		
127-18-4	Tetrachloroethylene	2.4		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH N	11/23/2020 06:47 ELAC-NY10854,NEL	11/23/2020 19:48 AC-NY12058.NJ	TMP
108-88-3	Tolyana	ND		ng/I	0.20	0.50	1	EPA 8260C	2.2011,11	11/23/2020 06:47	11/23/2020 19:48	TMP
100-00-3	Toluene	ND		ug/L	0.20	0.50	1	Certifications:	CTDOH N	11/23/2020 06.47 ELAC-NY10854,NEL		INIP
								Continuations.	C1D011,14	LL. 10-111 1005-11EL	10 1.11 12000,110	

SB-5 GW **Client Sample ID: York Sample ID:** 20K0850-08

Client Project ID Matrix Collection Date/Time Date Received York Project (SDG) No. 20K0850 77 Carnell Street Kingsten, New York Water November 18, 2020 1:28 pm 11/19/2020

Volatile Organics, 8260 List - Low Level

Sample Prepared by Method: EPA 5030B

		Log	-in	N	ot	es	:	
--	--	-----	-----	---	----	----	---	--

Sample Notes:

CAS No.	. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
156-60-5	trans-1,2-Dichloroethylene	ND		ug/L	0.20	0.50	1	EPA 8260C		11/23/2020 06:47	11/23/2020 19:48	TMP
								Certifications:	CTDOH,NI	ELAC-NY10854,NEL	AC-NY12058,NJ	
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/L	0.20	0.50	1	EPA 8260C		11/23/2020 06:47	11/23/2020 19:48	TMP
								Certifications:	CTDOH,NI	ELAC-NY10854,NEL	AC-NY12058,NJ	
79-01-6	Trichloroethylene	30		ug/L	0.20	0.50	1	EPA 8260C		11/23/2020 06:47	11/23/2020 19:48	TMP
								Certifications:	CTDOH,NI	ELAC-NY10854,NEL	AC-NY12058,NJ	
75-69-4	Trichlorofluoromethane	ND		ug/L	0.20	0.50	1	EPA 8260C		11/23/2020 06:47	11/23/2020 19:48	TMP
								Certifications:	CTDOH,NI	ELAC-NY10854,NEL	AC-NY12058,NJ	
75-01-4	Vinyl Chloride	ND		ug/L	0.20	0.50	1	EPA 8260C		11/23/2020 06:47	11/23/2020 19:48	TMP
	-							Certifications:	CTDOH,NI	ELAC-NY10854,NEL	AC-NY12058,NJ	
1330-20-7	Xylenes, Total	ND		ug/L	0.60	1.5	1	EPA 8260C		11/23/2020 06:47	11/23/2020 19:48	TMP
	yy							Certifications:	CTDOH,NI	ELAC-NY10854,NEL	AC-NY12058,NJ	
	Surrogate Recoveries	Result		Acc	eptance Ran	ge						
17060-07-0	Surrogate: SURR: 1,2-Dichloroethane-d4	103 %			69-130							
2037-26-5	Surrogate: SURR: Toluene-d8	97.7 %			81-117							
460-00-4	Surrogate: SURR: p-Bromofluorobenzene	99.3 %			79-122							

Sample Information

Client Sample ID: SB-6 York Sample ID: 20K0850-09

York Project (SDG) No. Client Project ID Matrix Collection Date/Time Date Received November 18, 2020 2:00 pm Soil 20K0850 77 Carnell Street Kingsten, New York 11/19/2020

Volatile Organics, 8260 List

Sample Prepared by Method: EPA 5035A

Log-in Notes: Sa	mple Notes:
------------------	-------------

CAS No.	. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference Met	Date/Time thod Prepared	Date/Time Analyzed	Analyst
630-20-6	1,1,1,2-Tetrachloroethane	ND		ug/kg dry	2.3	4.7	1	EPA 8260C Certifications: CTI	11/24/2020 06:47 DOH,NELAC-NY10854,NELA	11/24/2020 19:42 .C-NY12058,PA	TMP
71-55-6	1,1,1-Trichloroethane	ND		ug/kg dry	2.3	4.7	1	EPA 8260C Certifications: CTI	11/24/2020 06:47 DOH,NELAC-NY10854,NELA	11/24/2020 19:42 .C-NY12058,PA	TMP
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/kg dry	2.3	4.7	1	EPA 8260C Certifications: CTI	11/24/2020 06:47 DOH,NELAC-NY10854,NELA	11/24/2020 19:42 .C-NY12058,PA	TMP
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/kg dry	2.3	4.7	1	EPA 8260C Certifications: CTI	11/24/2020 06:47 DOH,NELAC-NY10854,NELA	11/24/2020 19:42 C-NY12058,NJ	TMP
79-00-5	1,1,2-Trichloroethane	ND		ug/kg dry	2.3	4.7	1	EPA 8260C Certifications: CTI	11/24/2020 06:47 DOH,NELAC-NY10854,NELA	11/24/2020 19:42 C-NY12058,PA	TMP
75-34-3	1,1-Dichloroethane	ND		ug/kg dry	2.3	4.7	1	EPA 8260C Certifications: CTI	11/24/2020 06:47 DOH,NELAC-NY10854,NELA	11/24/2020 19:42 C-NY12058,PA	TMP

120 RESEARCH DRIVE www.YORKLAB.com (203) 325-1371

STRATFORD, CT 06615

132-02 89th AVENUE FAX (203) 357-0166

RICHMOND HILL, NY 11418

ClientServices

Page 33 of 41

Client Sample ID: **SB-6** York Sample ID: 20K0850-09

York Project (SDG) No. Client Project ID Matrix Collection Date/Time Date Received 20K0850 77 Carnell Street Kingsten, New York Soil November 18, 2020 2:00 pm 11/19/2020

Volatile Organics, 8260 List Sample Prepared by Method: EPA 5035A

Log-in Notes:

CAS No	. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference M	Aethod	Date/Time Prepared	Date/Time Analyzed	Analyst
75-35-4	1,1-Dichloroethylene	ND		ug/kg dry	2.3	4.7	1	EPA 8260C		11/24/2020 06:47	11/24/2020 19:42	TMP
								Certifications:	CTDOH,NE	LAC-NY10854,NELA	AC-NY12058,PA	
563-58-6	1,1-Dichloropropylene	ND		ug/kg dry	2.3	4.7	1	EPA 8260C	NEL AC NE	11/24/2020 06:47	11/24/2020 19:42	TMP
									NELAC-NY	10854,NELAC-NY12		
87-61-6	1,2,3-Trichlorobenzene	ND		ug/kg dry	2.3	4.7	1	EPA 8260C Certifications:	NEL AC-NV	11/24/2020 06:47 10854,NELAC-NY12	11/24/2020 19:42	TMP
					2.2				IVEE/IC-IVI			
96-18-4	1,2,3-Trichloropropane	ND		ug/kg dry	2.3	4.7	1	EPA 8260C Certifications:	NELAC-NY	11/24/2020 06:47 10854,NELAC-NY12	11/24/2020 19:42 2058,NJDEP	TMP
120-82-1	1.2.4 Trichlorohongone	ND		ug/kg dry	2.3	4.7	1	EPA 8260C		11/24/2020 06:47	11/24/2020 19:42	TMP
120-82-1	1,2,4-Trichlorobenzene	ND		ug/kg ury	2.3	4.7	1		NELAC-NY	11/24/2020 00:47 10854,NELAC-NY12		TIVIT
95-63-6	1,2,4-Trimethylbenzene	ND		ug/kg dry	2.3	4.7	1	EPA 8260C		11/24/2020 06:47	11/24/2020 19:42	TMP
75-05-0	1,2,4-11inietnyloenzene	ND		ug/kg ury	2.3	4.7			CTDOH,NE	LAC-NY10854,NEL		TIVII
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/kg dry	2.3	4.7	1	EPA 8260C		11/24/2020 06:47	11/24/2020 19:42	TMP
70 12 0	1,2-Dioromo-3-emoropropane	ND							CTDOH,NE	LAC-NY10854,NELA		*****
106-93-4	1,2-Dibromoethane	ND		ug/kg dry	2.3	4.7	1	EPA 8260C		11/24/2020 06:47	11/24/2020 19:42	TMP
	1,2 21010111001111110	112							CTDOH,NE	LAC-NY10854,NELA	AC-NY12058,PA	
95-50-1	1,2-Dichlorobenzene	ND		ug/kg dry	2.3	4.7	1	EPA 8260C		11/24/2020 06:47	11/24/2020 19:42	TMP
	1,2 Diemoroochzene	ND							CTDOH,NE	LAC-NY10854,NELA		
107-06-2	1,2-Dichloroethane	ND		ug/kg dry	2.3	4.7	1	EPA 8260C		11/24/2020 06:47	11/24/2020 19:42	TMP
10, 00 2	1,2-Diemoroculane	ND		-887					CTDOH,NE	LAC-NY10854,NELA		*****
78-87-5	1,2-Dichloropropane	ND		ug/kg dry	2.3	4.7	1	EPA 8260C		11/24/2020 06:47	11/24/2020 19:42	TMP
70 07 5	1,2-Diemoropropane	ND		ug ng ur y	2.3	,	•		CTDOH,NE	LAC-NY10854,NELA		*****
108-67-8	1,3,5-Trimethylbenzene	ND		ug/kg dry	2.3	4.7	1	EPA 8260C		11/24/2020 06:47	11/24/2020 19:42	TMP
	1,5,5 Timethytoenzene	ND							CTDOH,NE	LAC-NY10854,NEL		
541-73-1	1,3-Dichlorobenzene	ND		ug/kg dry	2 3	4.7	1	EPA 8260C		11/24/2020 06:47	11/24/2020 19:42	TMP
	1,5 Diemorobenzene	ND							CTDOH,NE	LAC-NY10854,NELA		
142-28-9	1,3-Dichloropropane	ND		ug/kg dry	2.3	4.7	1	EPA 8260C		11/24/2020 06:47	11/24/2020 19:42	TMP
	-,							Certifications:	NELAC-NY	10854,NELAC-NY12	2058,PADEP,NJE	
106-46-7	1,4-Dichlorobenzene	ND		ug/kg dry	2.3	4.7	1	EPA 8260C		11/24/2020 06:47	11/24/2020 19:42	TMP
	•							Certifications:	CTDOH,NE	LAC-NY10854,NELA	AC-NY12058,PA	
123-91-1	1,4-Dioxane	ND		ug/kg dry	47	94	1	EPA 8260C		11/24/2020 06:47	11/24/2020 19:42	TMP
	•							Certifications:	NELAC-NY	10854,NELAC-NY12	2058,PADEP,NJE	
594-20-7	2,2-Dichloropropane	ND		ug/kg dry	2.3	4.7	1	EPA 8260C		11/24/2020 06:47	11/24/2020 19:42	TMP
	• •							Certifications:	NELAC-NY	10854,NELAC-NY12	2058,NJDEP	
78-93-3	2-Butanone	4.1	J, B	ug/kg dry	2.3	4.7	1	EPA 8260C		11/24/2020 06:47	11/24/2020 19:42	TMP
								Certifications:	CTDOH,NE	LAC-NY10854,NELA	AC-NY12058,PA	
95-49-8	2-Chlorotoluene	ND		ug/kg dry	2.3	4.7	1	EPA 8260C		11/24/2020 06:47	11/24/2020 19:42	TMP
								Certifications:	CTDOH,NE	LAC-NY10854,NELA	AC-NY12058,PA	
106-43-4	4-Chlorotoluene	ND		ug/kg dry	2.3	4.7	1	EPA 8260C		11/24/2020 06:47	11/24/2020 19:42	TMP
								Certifications:	CTDOH,NE	LAC-NY10854,NELA	AC-NY12058,PA	
67-64-1	Acetone	ND		ug/kg dry	4.7	9.4	1	EPA 8260C		11/24/2020 06:47	11/24/2020 19:42	TMP
								Certifications:	CTDOH,NE	LAC-NY10854,NELA	AC-NY12058,PA	

Client Sample ID: **SB-6** York Sample ID: 20K0850-09

York Project (SDG) No. Client Project ID Matrix Collection Date/Time Date Received 20K0850 77 Carnell Street Kingsten, New York Soil November 18, 2020 2:00 pm 11/19/2020

Volatile Organics, 8260 List

Log-in Notes: Sample Prepared by Method: EPA 5035A

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
71-43-2	Benzene	ND		ug/kg dry	2.3	4.7	1	EPA 8260C		11/24/2020 06:47	11/24/2020 19:42	TMP
								Certifications:	CTDOH,NE	LAC-NY10854,NEL	AC-NY12058,PA	
108-86-1	Bromobenzene	ND		ug/kg dry	2.3	4.7	1	EPA 8260C	NEL AC NIN	11/24/2020 06:47	11/24/2020 19:42	TMP
74.07.5	D 11 1	ND.		a 1	2.2	4.7		Certifications:	NELAC-NY	10854,NELAC-NY12		TMD
74-97-5	Bromochloromethane	ND		ug/kg dry	2.3	4.7	1	EPA 8260C Certifications:	NELAC-NY	11/24/2020 06:47 10854,NELAC-NY12	11/24/2020 19:42 2058,PADEP,NJE	TMP
75-27-4	Bromodichloromethane	ND		ug/kg dry	2.3	4.7	1	EPA 8260C		11/24/2020 06:47	11/24/2020 19:42	TMP
								Certifications:	CTDOH,NE	LAC-NY10854,NEL	AC-NY12058,PA	
75-25-2	Bromoform	ND		ug/kg dry	2.3	4.7	1	EPA 8260C		11/24/2020 06:47	11/24/2020 19:42	TMP
								Certifications:	CTDOH,NE	LAC-NY10854,NEL	AC-NY12058,PA	
74-83-9	Bromomethane	ND		ug/kg dry	2.3	4.7	1	EPA 8260C		11/24/2020 06:47	11/24/2020 19:42	TMP
								Certifications:	CTDOH,NE	LAC-NY10854,NEL	AC-NY12058,PA	
56-23-5	Carbon tetrachloride	ND		ug/kg dry	2.3	4.7	1	EPA 8260C		11/24/2020 06:47	11/24/2020 19:42	TMP
								Certifications:	CTDOH,NE	LAC-NY10854,NEL		
108-90-7	Chlorobenzene	ND		ug/kg dry	2.3	4.7	1	EPA 8260C Certifications:	CTDOU NE	11/24/2020 06:47 LAC-NY10854,NEL	11/24/2020 19:42	TMP
75.00.2	CLL d	ND		ua/Ira deu	2.3	4.7	1		CTDOII,NE	11/24/2020 06:47	11/24/2020 19:42	TMD
75-00-3	Chloroethane	ND		ug/kg dry	2.3	4.7	1	EPA 8260C Certifications:	CTDOH NE	LAC-NY10854,NEL		TMP
67-66-3	Chloroform	ND		ug/kg dry	2.3	4.7	1	EPA 8260C		11/24/2020 06:47	11/24/2020 19:42	TMP
0, 00 3	Cinorolom	ND						Certifications:	CTDOH,NE	LAC-NY10854,NEL		*****
74-87-3	Chloromethane	ND		ug/kg dry	2.3	4.7	1	EPA 8260C		11/24/2020 06:47	11/24/2020 19:42	TMP
								Certifications:	CTDOH,NE	LAC-NY10854,NEL	AC-NY12058,PA	
156-59-2	cis-1,2-Dichloroethylene	ND		ug/kg dry	2.3	4.7	1	EPA 8260C		11/24/2020 06:47	11/24/2020 19:42	TMP
								Certifications:	CTDOH,NE	LAC-NY10854,NEL	AC-NY12058,PA	
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/kg dry	2.3	4.7	1	EPA 8260C		11/24/2020 06:47	11/24/2020 19:42	TMP
								Certifications:	CTDOH,NE	LAC-NY10854,NEL	AC-NY12058,PA	
124-48-1	Dibromochloromethane	ND		ug/kg dry	2.3	4.7	1	EPA 8260C		11/24/2020 06:47	11/24/2020 19:42	TMP
								Certifications:	NELAC-NY	10854,NELAC-NY12		
74-95-3	Dibromomethane	ND		ug/kg dry	2.3	4.7	1	EPA 8260C Certifications:	NEL AC NV	11/24/2020 06:47 10854,NELAC-NY12	11/24/2020 19:42	TMP
75-71-8	Disklass Jifferson albana	ND		na/ka dru	2.2	4.7	1	EPA 8260C	NELAC-N1	11/24/2020 06:47	11/24/2020 19:42	TMP
/3-/1-6	Dichlorodifluoromethane	ND		ug/kg dry	2.3	4.7	1	Certifications:	NELAC-NY	11/24/2020 00:4/ 10854,NELAC-NY12		TIVII
100-41-4	Ethyl Benzene	ND		ug/kg dry	2.3	4.7	1	EPA 8260C		11/24/2020 06:47	11/24/2020 19:42	TMP
	Emyr Benzene	NB						Certifications:	CTDOH,NE	LAC-NY10854,NEL		
87-68-3	Hexachlorobutadiene	ND		ug/kg dry	2.3	4.7	1	EPA 8260C		11/24/2020 06:47	11/24/2020 19:42	TMP
								Certifications:	NELAC-NY	10854,NELAC-NY12	2058,PADEP,NJE	
98-82-8	Isopropylbenzene	ND		ug/kg dry	2.3	4.7	1	EPA 8260C		11/24/2020 06:47	11/24/2020 19:42	TMP
								Certifications:	CTDOH,NE	LAC-NY10854,NEL	AC-NY12058,PA	
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/kg dry	2.3	4.7	1	EPA 8260C		11/24/2020 06:47	11/24/2020 19:42	TMP
								Certifications:	CTDOH,NE	LAC-NY10854,NEL		
75-09-2	Methylene chloride	ND		ug/kg dry	4.7	9.4	1	EPA 8260C		11/24/2020 06:47	11/24/2020 19:42	TMP
								Certifications:	CTDOH,NE	LAC-NY10854,NEL	AC-NY12058,PA	

Client Sample ID: SB-6 York Sample ID: 20K0850-09

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received20K085077 Carnell Street Kingsten, New YorkSoilNovember 18, 2020 2:00 pm11/19/2020

Volatile Organics, 8260 List
Sample Prepared by Method: EPA 5035A

Log-in Notes:

CAS No.	Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
91-20-3	Naphthalene	ND		ug/kg dry	2.3	9.4	1	EPA 8260C Certifications:	NEL AC NIV	11/24/2020 06:47 10854,NELAC-NY12	11/24/2020 19:42	TMP
104-51-8	n-Butylbenzene	ND		ug/kg dry	2.3	4.7	1	EPA 8260C Certifications:		11/24/2020 06:47 LAC-NY10854,NEL	11/24/2020 19:42	TMP
103-65-1	n-Propylbenzene	ND		ug/kg dry	2.3	4.7	1	EPA 8260C Certifications:		11/24/2020 06:47 LAC-NY10854,NEL	11/24/2020 19:42	TMP
95-47-6	o-Xylene	ND		ug/kg dry	2.3	4.7	1	EPA 8260C Certifications:	CTDOH,NE	11/24/2020 06:47 LAC-NY10854,NEL	11/24/2020 19:42 AC-NY12058,PA	TMP
179601-23-1	p- & m- Xylenes	ND		ug/kg dry	4.7	9.4	1	EPA 8260C Certifications:	CTDOH,NE	11/24/2020 06:47 LAC-NY10854,NEL	11/24/2020 19:42 AC-NY12058,PA	TMP
99-87-6	p-Isopropyltoluene	ND		ug/kg dry	2.3	4.7	1	EPA 8260C Certifications:	CTDOH.NE	11/24/2020 06:47 LAC-NY10854,NEL	11/24/2020 19:42 AC-NY12058.PA	TMP
135-98-8	sec-Butylbenzene	ND		ug/kg dry	2.3	4.7	1	EPA 8260C Certifications:		11/24/2020 06:47 LAC-NY10854,NEL	11/24/2020 19:42	TMP
100-42-5	Styrene	ND		ug/kg dry	2.3	4.7	1	EPA 8260C Certifications:		11/24/2020 06:47 LAC-NY10854,NEL	11/24/2020 19:42	TMP
98-06-6	tert-Butylbenzene	ND		ug/kg dry	2.3	4.7	1	EPA 8260C Certifications:		11/24/2020 06:47 LAC-NY10854,NEL	11/24/2020 19:42	TMP
127-18-4	Tetrachloroethylene	ND		ug/kg dry	2.3	4.7	1	EPA 8260C Certifications:		11/24/2020 06:47 LAC-NY10854,NEL	11/24/2020 19:42	TMP
108-88-3	Toluene	ND		ug/kg dry	2.3	4.7	1	EPA 8260C Certifications:		11/24/2020 06:47 LAC-NY10854,NEL	11/24/2020 19:42	TMP
156-60-5	trans-1,2-Dichloroethylene	ND		ug/kg dry	2.3	4.7	1	EPA 8260C Certifications:	CTDOH,NE	11/24/2020 06:47 LAC-NY10854,NEL	11/24/2020 19:42 AC-NY12058,PA	TMP
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/kg dry	2.3	4.7	1	EPA 8260C Certifications:	CTDOH,NE	11/24/2020 06:47 LAC-NY10854,NEL	11/24/2020 19:42 AC-NY12058,PA	TMP
79-01-6	Trichloroethylene	ND		ug/kg dry	2.3	4.7	1	EPA 8260C Certifications:	CTDOH,NE	11/24/2020 06:47 LAC-NY10854,NEL	11/24/2020 19:42 AC-NY12058,PA	TMP
75-69-4	Trichlorofluoromethane	ND		ug/kg dry	2.3	4.7	1	EPA 8260C Certifications:		11/24/2020 06:47 LAC-NY10854,NEL	11/24/2020 19:42	TMP
108-05-4	Vinyl acetate	ND		ug/kg dry	2.3	4.7	1	EPA 8260C Certifications:		11/24/2020 06:47 (10854,NELAC-NY12	11/24/2020 19:42	TMP
75-01-4	Vinyl Chloride	ND		ug/kg dry	2.3	4.7	1	EPA 8260C Certifications:		11/24/2020 06:47 LAC-NY10854,NEL	11/24/2020 19:42	TMP
1330-20-7	Xylenes, Total	ND		ug/kg dry	7.0	14	1	EPA 8260C Certifications:		11/24/2020 06:47 LAC-NY10854,NEL	11/24/2020 19:42	TMP
	Surrogate Recoveries	Result		Acce	ptance Ran	ge			ŕ	,	,	
17060-07-0	Surrogate: SURR: 1,2-Dichloroethane-d4	102 %			77-125	-						
2037-26-5	Surrogate: SURR: Toluene-d8	102 %			85-120							
460-00-4	Surrogate: SURR: p-Bromofluorobenzene	97.6 %			76-130							

Client Sample ID: SB-6 York Sample ID: 20K0850-09

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received20K085077 Carnell Street Kingsten, New YorkSoilNovember 18, 2020 2:00 pm11/19/2020

<u>Total Solids</u> <u>Log-in Notes:</u> <u>Sample Notes:</u>

Sample Prepared by Method: % Solids Prep

CAS No	0.	Parameter	Result	Flag Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
solids	* % Solids		98.2	%	0.100	1	SM 2540G	11/30/2020 16:32	11/30/2020 16:35	KHA
							Certifications: CTDOH			

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices

Page 37 of 41

Volatile Analysis Sample Containers

Lab ID	Client Sample ID	Volatile Sample Container
20K0850-01	SB-1	40mL Vial with Stir Bar-Cool 4° C
20K0850-02	SB-2	40mL Vial with Stir Bar-Cool 4° C
20K0850-03	SB-3	40mL Vial with Stir Bar-Cool 4° C
20K0850-04	SB-3 GW	40mL Clear Vial (pre-pres.) HCl; Cool to 4° C
20K0850-05	SB-4	40mL Vial with Stir Bar-Cool 4° C
20K0850-06	SB-4 GW	40mL Clear Vial (pre-pres.) HCl; Cool to 4° C
20K0850-07	SB-5	40mL Vial with Stir Bar-Cool 4° C
20K0850-08	SB-5 GW	40mL Clear Vial (pre-pres.) HCl; Cool to 4° C
20K0850-09	SB-6	40mL Vial with Stir Bar-Cool 4° C

Sample and Data Qualifiers Relating to This Work Order

QL-02	This LCS analyte is outside Laboratory Recovery limits due the analyte behavior using the referenced method. The reference method
	has certain limitations with respect to analytes of this nature

Detected below the Reporting Limit but greater than or equal to the Method Detection Limit (MDL/LOD) or in the case of a TIC, the result is an estimated concentration.

The value reported is ESTIMATED. The value is estimated due to its behavior during continuing calibration verification (>20%

Difference for average Rf or >20% Drift for quadratic fit).

Analyte is found in the associated analysis batch blank. For volatiles, methylene chloride and acetone are common lab contaminants.

Definitions and Other Explanations

Analyte is not certified or the state of the samples origination does not offer certification for the Analyte.

ND NOT DETECTED - the analyte is not detected at the Reported to level (LOQ/RL or LOD/MDL)

RI. REPORTING LIMIT - the minimum reportable value based upon the lowest point in the analyte calibration curve.

LOQ LIMIT OF QUANTITATION - the minimum concentration of a target analyte that can be reported within a specified degree of confidence. This is the lowest point in an analyte calibration curve that has been subjected to all steps of the processing/analysis and verified to meet defined criteria. This is based upon NELAC 2009 Standards and applies to all analyses.

LOD LIMIT OF DETECTION - a verified estimate of the minimum concentration of a substance in a given matrix that an analytical process can reliably detect. This is based upon NELAC 2009 Standards and applies to all analyses conducted under the auspices of EPA SW-846.

MDL METHOD DETECTION LIMIT - a statistically derived estimate of the minimum amount of a substance an analytical system can reliably detect with a 99% confidence that the concentration of the substance is greater than zero. This is based upon 40 CFR Part 136 Appendix B and applies only to EPA 600 and 200 series methods.

This indicates that the data for a particular analysis is reported to either the LOD/MDL, or the LOQ/RL. In cases where the "Reported to" is located above Reported to the LOD/MDL, any value between this and the LOQ represents an estimated value which is "J" flagged accordingly. This applies to volatile and semi-volatile target compounds only.

Not reported NR

CCV-E

В

RPD Relative Percent Difference

Wet The data has been reported on an as-received (wet weight) basis

Low Bias Low Bias flag indicates that the recovery of the flagged analyte is below the laboratory or regulatory lower control limit. The data user should take note that this analyte may be biased low but should evaluate multiple lines of evidence including the LCS and site-specific MS/MSD data to draw bias conclusions. In cases where no site-specific MS/MSD was requested, only the LCS data can be used to evaluate such bias.

High Bias High Bias flag indicates that the recovery of the flagged analyte is above the laboratory or regulatory upper control limit. The data user should take note that this analyte may be biased high but should evaluate multiple lines of evidence including the LCS and site-specific MS/MSD data to draw bias conclusions. In cases where no site-specific MS/MSD was requested, only the LCS data can be used to evaluate such bias.

Non-Dir. Non-dir. flag (Non-Directional Bias) indicates that the Relative Percent Difference (RPD) (a measure of precision) among the MS and MSD data is outside the laboratory or regulatory control limit. This alerts the data user where the MS and MSD are from site-specific samples that the RPD is high due to either non-homogeneous distribution of target analyte between the MS/MSD or indicates poor reproducibility for other reasons.

If EPA SW-846 method 8270 is included herein it is noted that the target compound N-nitrosodiphenylamine (NDPA) decomposes in the gas chromatographic inlet and cannot be separated from diphenylamine (DPA). These results could actually represent 100% DPA, 100% NDPA or some combination of the two. For this reason, York reports the combined result for n-nitrosodiphenylamine and diphenylamine for either of these compounds as a combined concentration as Diphenylamine.

If Total PCBs are detected and the target aroclors reported are "Not detected", the Total PCB value is reported due to the presence of either or both Aroclors 1262 and 1268 which are non-target aroclors for some regulatory lists.

2-chloroethylvinyl ether readily breaks down under acidic conditions. Samples that are acid preserved, including standards will exhibit breakdown. The data user should

Certification for pH is no longer offered by NYDOH ELAP.

120 RESEARCH DRIVE STRATFORD, CT 06615 132-02 89th AVENUE RICHMOND HILL, NY 11418 www.YORKLAB.com (203) 325-1371 ClientServices

FAX (203) 357-0166

Semi-Volatile and Volatile analyses are reported down to the LOD/MDL, with values between the LOD/MDL and the LOQ being "J" flagged as estimated results.

For analyses by EPA SW-846-8270D, the Limit of Quantitation (LOQ) reported for benzidine is based upon the lowest standard used for calibration and is not a verified LOQ due to this compound's propensity for oxidative losses during extraction/concentration procedures and non-reproducible chromatographic performance.

120 RESEARCH DRIVE STRATFORD, CT 06615 www.YORKLAB.com (203) 325-1371

132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices(

York Analytical Laboratories, Inc.

132-02 89th Ave Queens, NY 11418 clientservices@yorklab.com 120 Research Drive Stratford, CT 06615

Field Chain-of-Custody Record

NOTE: YORK's Standard Terms & Conditions are listed on the back side of this document. This document serves as your written authorization for YORK to proceed with the analyses requested below. Your signature binds you to YORK's Standard Terms & Conditions.

20K085D YORK Project No.

Turn-Around Time RUSH - Next Day RUSH - Two Day YOUR Project Number Invoice To: Company Sine Report To: www.yorklab.com asulting tenil YOUR Information

Container Description Compared to the following Regulation(s): (please fill in) YORK Reg. Comp. 3 Special Instruction Standard (5-7 Day) RUSH - Three Day Field Filtered RUSH - Four Day Lab to Filter 3)40 F Crasto, New York Standard Excel EDD NJDEP SRP HazSite EQuIS (Standard) NYSDEC EQUIS ZnAc YOUR Project Name Report / EDD Type (circle selections) Preservation: (check all that apply) NaOH (annell Analysis Requested CT RCP DQA/DUE H2SO4 NJDEP Reduced Deliverables NJDKQP YOUR PO# CT RCP HNO3 NY ASP A Package NY ASP B Package MeOH > Summary Report Ascorbic Acid QA Report HGI Y ENG. 1030 12 Date/Time Sampled 646 7/2 40 20 Samples From 9 28 Pennsylvania Connecticut 20 New Jersey **New York** 18 Other DW - drinking water Matrix Codes GW - groundwater Sample Matrix WW - wastewater Other S - soil / solid 20 0 - Oil Please print clearly and legibly. All information must be complete. Samples will not be logged in and the turn-around-time clock will not begin until any guestions by YORK are resolved. Inchigo Sample Identification Samples Collected by: (print your name ab 000 Comments 23

Temp. Received at Lab

1435

11/19/20

1435

8

8

Page 41 of 41

Samples Received by / Company