
Environmental	
P \ Planning &	
F M Management, I	nc.

1983 Marcus Ave., Suite 109 Lake Success, New York 11042 (516) 328-1194 Fay (516) 328-1381

LETTER OF TRANSMITTAL

M	Manage	ment, Inc	. (516 — Fax	(516) 3 (516) 3	194 28-1381			Date	09/23/0	4	Job No. 24001
								Alle	ntion:	Mr.	Carl Hoffman
6	NYSDEC 825 Broadway Albany, NY 122	233-7013						Re:	Kat		uarterly Water nitoring
∟ RE S	ENDING YOU:		Inclu	uded	U	⊔ nder separate o	over via	_		t	he following items:
		Drawings of Letter		Print Repo		Pla	ns] (Qualifications		Specifications
PIES	DATE	NO.									
1	9/23/04		Katonah Q	uarterly	Water Mo	nitoring Report	- 2nd Quart	le <u>r</u>			
					_		_				
						and the second s	Marine Commission				
	E TRANSMITT	ED AS IN	DICATED B	ELOW:		d on aubmittad			Dooubmit	,	Canian for Approval
	or Approval or your use					d as submitted d as noted			Resubmit .		Copies for Approval ies for distribution
_	s requested					d for corrections			Return		ected Prints
	or review & cor	mment			rtotamo	2 701 00110110					
MARKS											
there a	are any questio	ns, please	e call me.				_	_			
OT Y	File						CICNED		12.		
							SIGNED		flech	ca	Marc

James Hahn James J. Hahn Engineering Millbrook Office Center Route 22 & Milltown Road Brewster, NY 10509

September 14, 2004

Dear Mr. Hahn:

Enclosed please find the quarterly monitoring report for the second quarter of 2004 for the Katonah Municipal Well, Town of Bedford, Westchester County, New York (NYSDEC Site ID # 3-60-007).

Please call me with any questions.

Sincerely,

Aphrodite Socrates

Vice President

Kenneth Caffrey, PE, NYSDOH cc:

Carl Hoffman, NYSDEC

William Nixon, Town of Bedford

Paul Kutzy, Westchester County DOH

Damian Duda, USEPA region 2

GROUNDWATER QUALITY MONITORING QUARTERLY REPORT JUNE 2004 KATONAH MUNICIPAL WELL TOWN OF BEDFORD WESTCHESTER, NEW YORK NYSDEC Site ID # 3-60-007

September 14, 2004

PREPARED FOR:

James J. Hahn Engineering Millbrook Office Center Route 22 & Milltown Road Brewster, New York 10509

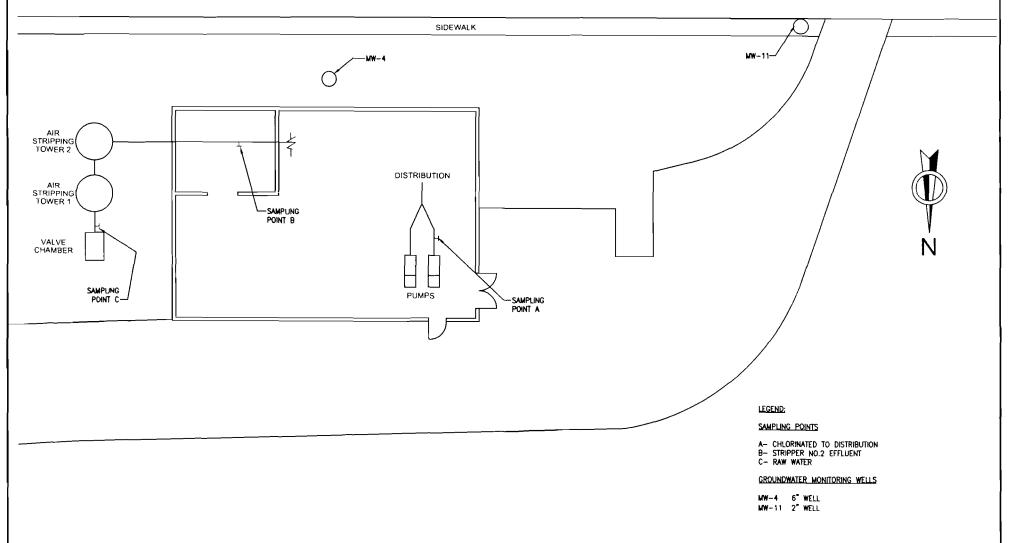
PREPARED BY:

Environmental Planning & Management, Inc. 1983 Marcus Avenue, Suite 109 Lake Success, New York 11042

TABLE OF CONTENTS

1.0	Introduction1
2.0	Sample Collection
3.0	Findings4
4.0	Future Actions7
List of	Tables
Table	1 - Summary of Laboratory Analysis Results5
List of	Figures
Figure	e 1 - Sampling Tap Location Schematic
Figure	2 - Influent Tetrachloroethene Levels6
APPE	NDICES
Apper	ndix A - Data Validation Groundwater Monitoring Quarterly Report
Apper	ndix B - Laboratory Analysis Report

1.0 INTRODUCTION


This quarterly groundwater sampling and analysis report has been prepared for the Katonah Municipal Well Site in Katonah, Town of Bedford, New York. This submittal is in accordance with the groundwater monitoring requirements of the New York State Department of Health (NYSDOH) and the U.S. Environmental Protection Agency (USEPA). This report includes the data collection and analysis results of the remedial system operation, for the quarter of April of 2004 to June of 2004. Sampling of the remedial system was conducted on June 23rd, 2004.

2.0 SAMPLE COLLECTION

Environmental Planning & Management, Inc., collected samples on June 23rd, 2004. Three samples were collected from sampling taps; the raw water sampling tap (RW), the stripper number two effluent sampling tap (STEF) and the distribution sampling tap (DIST). One field duplicate sample (DUP) of the Raw Water was also collected on June 23rd, 2004. Sample locations are shown on Figure 1 - Sampling Tap Location Schematic. Sampling was conducted in accordance with the approved Project Operation Plan.

Samples were labeled at the field location and placed into transport coolers containing ice. A trip blank and chain-of-custody documentation accompanied the samples to the laboratory for analysis. The samples were analyzed by AmeriSci Boston, in accordance with CLP methods, for volatile organics (Principal Organic Contaminants), by method 524.2, revision number 3.

JAY STREET

DRAWN BY:	AMR	DATE: 06/23/04					
CHECKED BY:	EW	FILENAME: KATONAH					
APPR'VD BY:	ASG	SCALE: NOT TO SCALE					
PATH: C:\AMR\BEDFORD\KATONAH\22001DWGS							

KATONAH MUNICIPAL WATER SYSTEM TIME: SIMPLIFIED SAMPLING LOCATION SCHEMATIC
PROJECT
LOCATION: KATONAH MUNICIPAL WATER SYSTEM

KATONAH MUNICPAL WATER SYSTEM KATONAH, NEW YORK

FIG. 1

SHEET 1 OF

3.0 FINDINGS

Table 1 provides a summary of the analytical results for the quarterly water quality monitoring, as well as the applicable NYSDOH Drinking Water Standards and the U.S. EPA clean-up requirement for Tetrachloroethene. As indicated by the laboratory analysis, the treatment system effluent meets the NYSDOH drinking water standards and the USEPA clean-up level of less than one part per billion (ppb) (or non-detectable) for Tetrachloroethene and meets the levels of less than 100 parts per billion for Trihalomethanes.

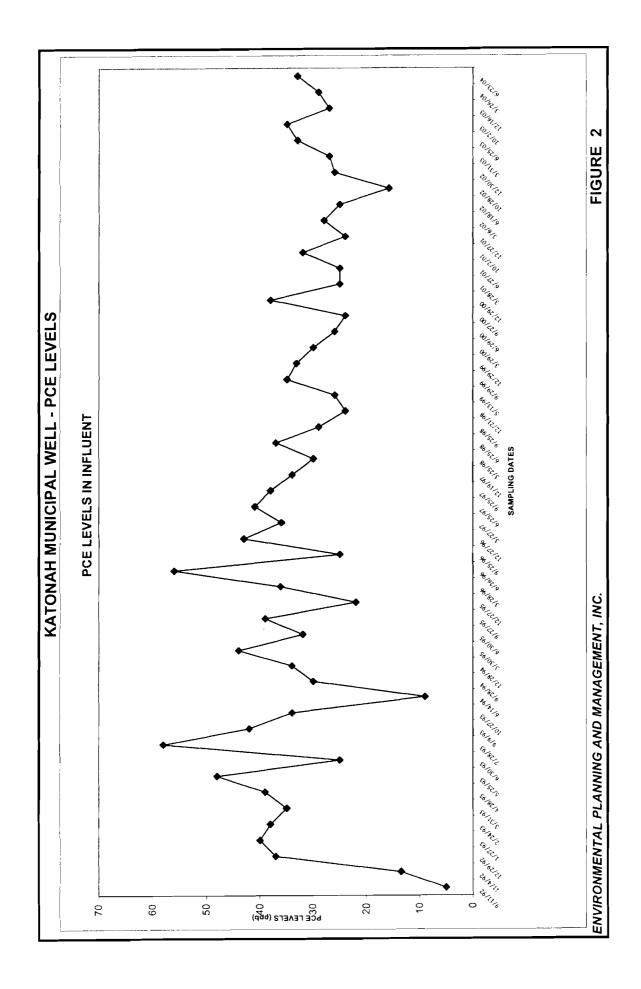
Tetrachloroethene was detected in the raw water sample, RW, at a concentration of **33.0** ug/l (ppb), exceeding the NYSDOH drinking water standard for that compound. Three additional VOC's, cis-1,2-Dichloroethene, Trichloroethene and Methylene Chloride, were detected in RW at concentrations of 1.1 ppb and .9 ppb and 2.0 ppb, respectively. These values are below the NYSDOH drinking water standards.

Methylene Chloride was detected in the treated (stripper number 2) water sample, STEFF at a concentration of 1.2 ppb. This VOC was found in the STORAGE and TRIP BLANK as well and can be a result of laboratory contamination.

Three VOC's, dibromochlorethane, bromodichlormethane and Methylene Chloride were found in the distribution water sample, DIST, at concentrations of 3.9 ppb, 1.8 ppb and 0.5 ppb respectively. These values are well below the NYSDOH drinking water standards. The value for Methylene Chloride is estimated because it is below the.

Methylene Chloride was found in the storage blank, STORAGE BLANK, at a concentration of 1.4 ppb. This is due to laboratory contamination.

Methylene Chloride, was found in the trip blank, TRIP BLANK, at a concentration of 1.4 ppb. Qualifiers have been added to four other samples that Methylene Chloride was found in; RW, STEFF, DIST and DUP.


Refer to Table 1 for a summary of the groundwater analysis results for volatile organic compounds (VOC's). Table 1 reflects the detectable concentration values which have been qualified as a result of data validation. Refer to Appendix A for the data validation report which details the revisions and qualifiers in the detectable concentration values discussed above.

The PCE concentration in the Influent (raw water) has increased over the last sampling event (see Figure 2). To date, the PCE level in the raw water samples is not of significant concern, since the treated water and distribution water samples continue to exhibit non-detectable or insignificant concentrations of PCE. However, changes in PCE levels will continue to be closely monitored.

Table 1 - SUMMARY OF QUARTERLY ANALYTICAL RESULTS KATONAH MUNICIPAL WELL June 2004

Date Collected			06	6/23/04		
Sample Location	RW (Influent)	DUP (RW)	STEFF (Treated Water)	DIST (Distribution Water)	TB (Trip Blank)	NYSDOH\ USEPA Standard
Volatile Organic Compounds (ppb)	22.0	22.0	0.511	0.511	0.511	
Tetrachloroethene	33.0	32.0	0 <u>.</u> 5U	0.5U	0.5U	5/1*
Trichloroethene	0.9	0.9	0.5U	0.5U	0.5U	5
cis-1,2-Dichloroethene	1.1	1.2	0.5U	0.5U	0.5U	5
Methylene Chloride	2.0B	2.3B	1.2B	0.5UJB	1.4	5
Dibromochloromethane	10	1U	0.5U	3.9	0.5U	50
Bromodichloromethane	1U	1U	0.5U	1.8	0.5U	50

- * 1 ppb is the USEPA cleanup standard for the site
- 1 Determined undetect following data validation
- Level exceeds the USEPA/NYSDOH standard
- U Denotes detection limit/not detected
- J Denotes an estimated value
- N Presumptive evidence of a compound
- R Determined unusable following data validation
- NS No standard
- B Denotes Detection in the Field Blank, Storage Blank and Trip Blank as well.

4.0 FUTURE ACTIONS

Water quality monitoring will continue to be conducted quarterly at the treatment system influent, stripper number 2 effluent, and distribution entry point. Groundwater monitoring well samples will be collected bi-annually.

The next sampling event, the third quarterly event for year fourteen, is scheduled for September 29th, 2004.

APPENDIX A

Katonah Municipal Well Site Data Validation Groundwater Quality Monitoring Quarterly Report - June 2004

Samples Collected by Environmental Planning & Management, Inc.
Samples Analyzed by AmeriSci Boston

Data Validation Performed by:

Aran Puetto for Telie Smith

Julie Smith
Environmental Chemist

PROJECT DESCRIPTION

Report Prepared by: Julie Smith, Environmental Chemist

Date of Validation Report: August 19, 2004

EPM Project Name/No. 24001-Katonah

Laboratory: AmeriSci Boston, Inc.

Laboratory Project Name: AmeriSci Work Order 0406-00386

Laboratory Report Date: July 27, 2004

Deliverable Format: NYSDEC ASP B

Sample Date: June 23, 2004

Samples Validated: EPM Sample ID Laboratory Sample ID

RW 0406-00386-001 RWMS 0406-00386-001M RWMSD 0406-00386-001P DIST 0406-00386-002 STEFF 0406-00386-003 DUP 0406-00386-004 TB 0406-00386-005

Validation Protocols/

References:

U.S. Environmental Protection Agency (USEPA) Standard Operating Procedure for the Validation of Organic Data Acquired Using Method 524.2, October 2001.

U.S. Environmental Protection Agency (USEPA) Measurement of Purgeable Organic Compounds in Water by Capillary Column Gas Chromatography/Mass Spectrometry, Method 524.2, Methods for

Chemical Analysis of Water and Wastes, 1995.

U.S. Environmental Protection Agency (USEPA) National

Functional Guidelines for Organic Data Review, 1999.

INTRODUCTION

Data qualification provides guidance regarding data usability. As part of the environmental laboratory analytical reporting process under most environmental methods of analysis, the laboratory is required to append data qualifiers to reported analytical observations to account for minor, acceptable QC deficiencies that arise during the course of standard operations. As part of the analytical data validation process, additional data qualifiers may be applied. These qualifiers are applied for other QC deficiencies that impact data quality but that may not have been identified by the laboratory or that may not be part of the reporting requirement of the applied analytical method. In many cases, the laboratory may be compliant with the requirements of the applied analytical methods but may not be compliant with the data validation review protocols.

In general, the data qualifiers are intended to assist the data user with the overall data interpretation by serving as descriptive indicators of the data quality of the associated analytical observations. There are a number of other data qualifiers that describe the representativeness of the associated data and also serve to provide information about the quality of the associated control data.

- **U** The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- UJ The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- J The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample. When data are qualified as estimated (qualified "J"), there generally is no information on the quantitative impact on the associated result although there may be useful information on the direction of bias of the result
- R The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet QC criteria. The presence or absence of the analyte cannot be confirmed. In some cases, sample data are qualified as unusable and rejected (qualified "R") due to major method non-compliance or extreme deficiencies in associated QC data. In these cases, there is no information as to the presence or absence of the rejected analyte in the affected sample.

VALIDATION SUMMARY

The analytical data has been reviewed in accordance with the appropriate regulatory guidelines and/or associated analytical methodology. If required, the data has been qualified, negated, or rejected according to applicable validation protocols and professional judgment. The analytical validation was performed based upon the following parameters:

- Completeness of data package Blank Contamination
- * Hold Times
- * GC/MS Performance Check (Tuning) Summaries
- * System Monitoring Compound (Surrogate) Recoveries
- * Internal Standard Area Performance
- Initial and Continuing Calibration Results
- Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Summaries Laboratory Control Sample
- * Target Compound Identification and Quantitation
 - * All criteria were met for this parameter

OVERALL DATA ASSESSMENT

The volatile organics data was validated for compliance with the requirements set forth in EPA Method 524.2 and as described by the Standard Operating Procedure for the Validation of Organic Data Acquired Using Method 524.2. Overall, AmeriSci Boston has submitted analytical data of acceptable completeness and known quality.

VOLATILE ORGANIC RESULTS

General Comments

Documentation as required by the project sample analyses was included in the data package. Additionally, there were no discrepancies found between the reviewed raw data and summary forms.

It should be noted that the initial calibration for volatile analysis was performed on 10/9/2003. While Method 524.2 does not specify the frequency at which an initial calibration should be analyzed, it is typically good practice to perform an initial calibration on a routine basis (i.e. monthly). No qualifier is required since this has minimal impact on the data usability.

Blank Contamination

Laboratory method blanks (instrument blanks) are clean liquid matrix samples prepared by the laboratory and analyzed in the same manner as the investigative samples. Laboratory method blanks are used to identify whether investigative samples have been contaminated during the sample preparation, sample analysis or from a previous sample (instrument carry-over).

Laboratory storage blanks (holding blanks) are clean liquid matrix samples prepared by the laboratory upon receipt of the investigative samples and stored with the samples under the same conditions. The storage blank is analyzed in the same manner as the investigative samples and is used to identify whether contamination may have occurred during storage of the samples in the laboratory.

Trip-blanks are carbon-free deionized water samples that accompany volatile investigative samples during all stages of shipment, storage and analysis. The trip-blanks are used to assess the potential for artificial introduction of volatile compounds into the investigative samples during the transportation and sample handling processes.

- The VOA target compound, methylene chloride, was detected in the method blank (1.6 μg/L), storage blank (1.8 μg/L) and trip blank sample (1.4 μg/L). The positive methylene chloride results in the associated project samples (RW, STEFF, DIST and DUP) are less than 10 times the concentration found in the aforementioned blanks. Therefore the positive methylene chloride results for the associated samples are qualitatively questionable and negated due to laboratory contamination.
- The VOA target compound, chloroform, was detected in the trip blank sample (0.9 μ g/L). The positive chloroform result found in sample DIST is therefore regarded as an estimated value and flagged (J) on the laboratory summary pages.
- The following table summarizes the compounds qualified due to blank contamination:

Sample ID	VOA Compound	Sample Result (µg/L)	Highest Blank Conc (µg/L)	Final Sample Result (µg/L)
RW	Methylene Chloride	2.0 B	1.8	2.0 U
STEFF	Methylene Chloride	1.2 B	1.8	1.2 U
DIST	Methylene Chloride	0.5 B	1.8	0.5 U
	Chloroform	0.5	0.9	0.5 J
DUP	Methylene Chloride	2.3 B	1.8	2.3 U

Hold Times

Technical hold times were assessed by comparing the sample dates with that of the preparation dates and/or analysis dates.

 All volatile analyses performed on the associated project samples were within the required hold times. The sample cooler temperature (9.4°C) upon verified time of sample receipt (VTSR) in the laboratory fell outside the 4°C (+2°C) requirement. No qualifier is required since the temperature was less than 10°C.

Internal Standard Area Performance

Internal standards are analytes that are added to the investigative samples prior to analysis to ensure that GC/MS sensitivity and responses remain stable. Internal standards are reported with the volatile analyses.

 The volatile internal standard area counts and retention times fell within control limits for the associated project samples. No qualifier is required.

Matrix Spike/Matrix Spike Duplicate

Matrix spikes are samples spiked with known concentrations of analytes of interest. The MS/MSD percent recoveries and duplicate results are used to assess extraction efficiencies, possible matrix effects, and overall analytical accuracy and precision.

- A matrix spike/matrix spike duplicate (MS/MSD) was performed on EPM Sample RW. The volatile percent recoveries (%R) fell within control limits with the exception of tetrachloroethene (low), 1,2,4-trimethylbenzene (high), naphthalene (low), and 1,2,3-trichlorobenzene (low) in the MS. No qualifier is required since the %R for the aforementioned compounds fell within control limits in the MSD.
- The relative percent differences (RPD) of target compounds, tetrachloroethene, naphthalene, 1,3-dichlrobenzene, 1,2-dichlorobenzene 1,2,4-trichlorobenzene, 1,2,3-trichlorobenzene and hexachlorobutadiene fell outside control limits. No qualifier is required since this has minimal impact on the data usability.

Laboratory Control Sample

The laboratory control sample (LCS) and/or blank spike (BS) are blank samples fortified (spiked) with known concentrations of analytes of interest. The percent recoveries of the LCS and/or BS are used to assess overall analytical accuracy and precision.

• The volatile LCS/BS results fell within acceptable control limits with the exception of methylene chloride (high), naphthalene (low), and 1,2,4-trichlorobenzene (low). No qualifier is required for the methylene chloride results since they are negated based on blank contamination, as previously mentioned. However, the non-detected results for naphthalene and 1,2,4-trichlorobenzene are regarded as estimated values and are flagged (UJ) on the laboratory summary pages.

System Monitoring Compounds (Surrogates)

System monitoring compounds are those compounds that are not expected to be detected in the investigative samples but that are chemically similar to analytes of interest. Surrogate compound percent recoveries are used to assess extraction efficiencies, possible matrix effects and overall analytical accuracy.

 The recoveries of the volatile surrogates, 4-bromofluorobenzene (BFB) and 1,2dichlorobenzene-d4 (DCB), fell within control limits for the reviewed project samples. No qualifier is required.

Initial Calibration and Continuing Calibration Results

Control limits for initial and continuing instrument calibrations are established to ensure that the instrument is capable of producing accurate quantitative data at the beginning and throughout each of the analyses.

• The volatile initial calibration percent relative standard deviations (%RSD) fell within acceptable control limits with the exception of MTBE (44%), 1,1,2,2-tetrachloroethane (24.6%) and hexachlorobutadiene (22.3%). No qualifier is required since MTBE was calibrated using linear regression (r > 0.990) and 1,1,2,2-tetrachoroethane and hexachlorobutadiene results were non-detect in the associated project samples.

- The volatile continuing calibration percent differences (%D) fell within acceptable control limits. No qualifier is required.
- The volatile initial and continuing calibration response factors (RRF) fell within acceptable control limits with the exception of 1,2-dibromo-3-chloropropane. The RRF of target compound, 1,2-dibromo-3-chloropropane, fell outside control limits (RRF ≤ 0.05) in the initial and continuing calibrations. No qualifier is required since the RRF is greater than 0.010.
- In the volatile five-point initial calibration, the RRFs for the lowest calibration standard (0.5 ppb) were omitted for the calculation of the %RSD for target compounds, methylene chloride, 1,2,3-trichloropropane, 1,2,3-trichlorobenzene and 1,2-dibromo-3-chloropropane. There is minimal impact on the data quality since Method 524.2 allows for a minimum three-point calibration. Accordingly, the reporting limits reflect the lowest concentration of the standard used in the initial calibration (1.0 μg/L). No qualifier is required.

GC/MS Performance Check (Tuning) Summaries

Gas chromatograph/mass spectrometer (GC/MS) instrument tuning and performance checks are performed to ensure the instrument's ability to provide appropriate mass-resolution, identification and sensitivity.

 The bromofluorobenzene (BFB) tuning compound mass-ion abundance criteria for the volatile organic compound analyses were reported within control limits. The samples were analyzed within eight hours of BFB injection. No qualifier is required.

Compound Identification and Quantitation

The laboratory calculations are verified and compound identifications are reviewed and assessed by the data reviewer.

In the course of the analytical procedures, it is sometimes necessary to dilute or reanalyze a sample. Frequently, the original analysis and dilution and/or reanalysis are reported by the laboratory and included in the report.

- Samples RW and DUP were analyzed at a 1:2 dilution resulting in elevated detection limits, due to the target compound, tetrachloroethene, concentration exceeding the linear calibration range requirements. No qualifier is required.
- Sample DUP was collected and submitted as a blind field duplicate of project sample RW.
 The reproducibility of the associated analyses is good providing a positive indication of the accuracy and precision associated with these samples.

Tentatively Identified Compound

Area not examined, validation not requested.

Volatiles Method 524.2

Instrument Performance Check (BFB) Inc.

10/9/2003 8:26 AM 4/6/2004 12:05 AM Instr# GC/MS N meets QC requirements meets QC requirements

Initial Calibration 10/9/2003 Instr# GC/MS N

Compound	0.5 R	RF	1 F	RF	10 F	RRF	15 R	RF	25 F	RRF	Mean	STDEV	%RSD
Fluorobenzene (IS)	6835821		5827365		7673196		7626138		7355501				
Vinyl Chloride	106375	0.311	178415	0.306	2182809	0.284	3427838	0.300	5732498	0.312	0.303	0.011	3.72
1,1-dichloroethene	104130	0.305	147021	0.252	1510679	0.197	2583178	0.226	4372838	0.238	0.243	0.040	16.35
Methylene Chloride	164554	0.481	132767	0.228	1733645	0.226	2501183	0.219	3062444	0.167	0.210	0.029	13.86
Chloroform	137764	0.403	194205	0.333	2913445	0.380	4268398	0.373	6628258	0.360	0.370	0.026	6.94
tetrachloroethene	115042	0.337	152727	0.262	2193777	0.286	3389815	0.296	5245949	0.285	0.293	0.027	9.30
Carbon tetrachloride	126648	0.371	188913	0.324	2368462	0.309	4117304	0.360	6573393	0.357	0.344	0.026	7.66
Bromoform	17832	0.052	18087	0.031	514899	0.067	787407	0.069	1208588	0.066	0.063	0.008	12.03
Trichloroethene	112659	0.330	147092	0.252	2072537	0.270	3280873	0.287	4983400	0.271	0.282	0.029	10.38
BFB	1847915	0.270	1459501	0.250	2191671	0.286	2188253	0.287	2108700	0.287	0.276	0.016	5.76
1,2,-dichlorobenzene-d4	1997233	0.292	1557664	0.267	2677399	0.349	2795795	0.367	2886579	0.392	0.333	0.052	15.65

control limit RSD < 20%

Continuing Calibration	VSTD010	7/06/04	Instr# GC/MS N
Continuing Cambration	101010	1,00,04	111311# 00/11/0 11

Compound	10 F	10 RRF		Status
Fluorobenzene (IS)	4838425			
Vinyl Chloride	1762221	0.3642	-20.3	ok
1,1-dichloroethene	1239021	0.2561	-5.2	ok
Methylene Chloride	1231112	0.2544	-21.3	ok
Chloroform	1754906	0.3627	2.0	ok
tetrachloroethene	1393396	0.2880	1.8	ok
Carbon tetrachloride	1954282	0.4039	-17.4	ok
Bromoform	272929	0.0564	11.1	ok
Trichloroethene	1309037	0.2706	4.1	ok
BFB	1236535	0.2556	7.4	ok
1,2,-dichlorobenzene-d4	1476591	0.3052	8.5	ok
control limit D < 30%				

EPMSDG240012ndqtr.xls

Surrogate Recovery	BFB	Status	1,2-dichlorobenzene-d4	Status	Limits
VBLK01	91	ok	80	ok	80-120
RW	88	ok	80	ok	80-120
RW MS	98	ok	101	ok	80-120
RW MSD	93	ok	98	ok	80-120
STEFF	105	ok	98	ok	80-120
DIST	90	ok	80	ok	80-120
DUP	89	ok	80	ok	80-120
Trip Blank	90	ok	82	ok	80-120
Storage Blank	90	ok	81	ok	80-120
MSB01	92	ok	96	ok	80-120

Internal Standard Summary

Internal standard areas and retention times fell within control limits for the reviewed samples.

Blanks	Conc.	Compound
Method Blank	1.6 ug/L	Methylene chloride
Storage Blank	1.8 ug/L	Methylene chloride
Trip Blank	1.4 ug/L	Methylene chloride
	0.9 ug/L	Chloroform

									QC I	imits
QC	Sample RW	RW MS	%R F	RW MSD	%R	RPD	MSB	%R	%R	RPD
Vinyl Chloride	ND	22.9	115	23.7	119	3	8.8	88	70-130	15
Methylene Chloride	2	23.6	108	24.8	114	5	9.4	94	70-130	15
Chloroform	ND	18.7	94	19.9	100	6	9.6	96	70-130	15
Bromochloromethane	ND	17.6	88	18.5	93	5	8.1	81	70-130	15
Trichloroethene	0.9	18	86	20	100	16	9.1	91	70-130	15
Tetrachloroethene	32.6	41.9	47	48.4	79 🆫	52	8.5	85	70-130	15
Bromodichloromethane	ND	18.9	95	20.1	101	6	8.6	86	70-130	15
cis-1,2-dichloroethene	1.1	18.9	89	20.2	101	13	8.6	86	70-130	15

outside control limits

FIELD DUPLICATE RESULTS	RW	DUP	RPD
Trichloroethene	0.9	0.9	0.0
Tetrachloroethene	33	32	3.1
cis-1,2-dichloroethene	1.1	1.2	-8.7

EPMSDG240012ndqtr.xls

Sample Results

ug/L= (area of compound)(amt of IS in nanograms) (area of IS)(RRT)

Sample ID RW	Lab ID 0406-0038	36-001		R	aw Result	Dilution	Final Result	Reported Result
Trichloroethene	66683	10	666830					
	5113786	0.282	= 1442028.96	=	0.46 ug/L	2	0.92 ug/L	0.9 ug/L
Tetrachloroetnene	2450103	10	24501030					
	5113786	0.2932	= 1499552.61	=	16.34 ug/L	2	32.68 ug/L	33 ug/L
cis-1,2-dichloroethene	76141	10	761410					
	5113786	0.2590	= 1324470.57	=	0.57 ug/L	2	1.15 ug/L	1.1 ug/L
Sample ID DIST	Lab ID 0406-0038	36-002						
					Result	Reported Result		
Dibromochloromethane	219623	10	2196230		204 "	0.0 "		
	4887171	0.117	= 571799.01	=	3.84 ug/L	3.9 ug/L		
Bromodichloromethane	191394	10	1913940					
	4887171	0.221	= 1080064.79	=	1.77 ug/L	1.8 ug/L		
Bromoform	94267	10	942670					
	4887171	0.063	= 310132.76	=	3.04 ug/L	3 ug/L		
Sample ID DUP	Lab ID 0406-003	86-004						
				F	Raw Result	Dilution	Final Result	Reported Result
Trichloroethene	64961	10	649610					
	5030152	0.282	= 1418445.13	=	0.46 ug/L	2	0.92 ug/L	0.9 ug/L
Tetrachloroethene	2335337	10	23353370					
	5030152	0.293	= 1475028.00	=	15.83 ug/L	2	31.66 ug/L	32 ug/L
cis-1,2-dichloroethene	75430	10	754300					
	5030152	0.2590	= 1302809.37	=	0.58 ug/L	2	1.16 ug/L	1.2 ug/L

EPMSDG240012ndqtr.xls

APPENDIX B LABORATORY ANALYSIS SUMMARY REPORT

APPENDIX B LABORATORY ANALYSIS SUMMARY REPORT

Laboratory Report

AmeriSci Boston **Eight School Street** Weymouth, MA 02189 781-337-9334

Report Date

07/09/2004

Workorder No. 0406-00386

Customer: Environmental Planning & Mgmt. 1983 Marcus Avenue

Suite 109

Lake Success, NY 11042

Attention: Mr. Francesco Portelos

KATONAH Subject:

Sample: 001

RW Date: 06/23/2004 Time: 1:30:00PM

Matrix: **WATER**

Parameter Drinking Water Volatiles	Method	Results	<u>Units</u> ug/L	PQL	Analyst NAC	Analysis Date 07/06/2004	Qual
Dichlorodifluoromethane	EPA 524.2	ND	ug/L	1.0	NAC	07/06/2004	
Chloromethane	EPA 524.2	ND	ug/L	1.0	NAC	07/06/2004	
Vinyl Chloride	EPA 524.2	ND	ug/L	1.0	NAC	07/06/2004	
Bromomethane	EPA 524.2	ND	ug/L	1.0	NAC	07/06/2004	
Chloroethane	EPA 524.2	ND	ug/L	1.0	NAC	07/06/2004	
Trichlorofluoromethane	EPA 524.2	ND	ug/L	1.0	NAC	07/06/2004	
1,1-Dichloroethene	EPA 524.2	ND	ug/L	1.0	NAC	07/06/2004	
Methylene Chloride	EPA 524.2	2.0	ug/L	2.0	NAC	07/06/2004	В
Methyl-Tert-Butyl-Ether	EPA 524.2	ND	ug/L	1.0	NAC	07/06/2004	
Trans-1,2-Dichloroethene	EPA 524.2	ND	ug/L	1.0	NAC	07/06/2004	
1,1-Dichloroethane	EPA 524.2	ND	ug/L	1.0	NAC	07/06/2004	
2,2-Dichloropropane	EPA 524.2	ND	ug/L	1.0	NAC	07/06/2004	
cis-1,2-Dichloroethene	EPA 524.2	1.1	ug/L	1.0	NAC	07/06/2004	
Chloroform	EPA 524.2	ND	ug/L	1.0	NAC	07/06/2004	
Bromochloromethane	EPA 524.2	ND	ug/L	1.0	NAC	07/06/2004	
1,1,1-Trichloroethane	EPA 524.2	ND	ug/L	1.0	NAC	07/06/2004	
1,1-Dichloropropene	EPA 524.2	ND	ug/L	1.0	NAC	07/06/2004	
Carbon Tetrachloride	EPA 524.2	ND	ug/L	1.0	NAC	07/06/2004	
1,2-Dichloroethane	EPA 524.2	ND	ug/L	1.0	NAC	07/06/2004	
Benzene	EPA 524.2	ND	ug/L	1.0	NAC	07/06/2004	
Trichloroethene	EPA 524.2	0.9	ug/L	1.0	NAC	07/06/2004	J
1,2-Dichloropropane	EPA 524.2	ND	ug/L	1.0	NAC	07/06/2004	
Bromodichloromethane	EPA 524.2	ND	ug/L	1.0	NAC	07/06/2004	
Dibromomethane	EPA 524.2	ND	ug/L	1.0	NAC	07/06/2004	
cis-1,3-Dichloropropene	EPA 524.2	ND	ug/L	1.0	NAC	07/06/2004	

Certifications:

MA: MA069 NY:10982 CT: PH0119 RI:A45 CA:2050

1 of

Customer: Environmental Planning & Mgmt.

Workorder No. 0406-00386

Sample: 001 RW (Continued)

Parameter Toluene	Method EPA 524.2	Results ND	Units ug/L	PQL 1.0	Analyst NAC	Analysis Date 07/06/2004	Qual
trans-1,3-Dichloropropene	EPA 524.2	ND	ug/L	1.0	NAC	07/06/2004	
1,1,2-Trichloroethane	EPA 524.2	ND	ug/L	1.0	NAC	07/06/2004	
1,3-Dichloropropane	EPA 524.2	ND	ug/L	1.0	NAC	07/06/2004	
Tetrachloroethene	EPA 524.2	33	ug/L	1.0	NAC	07/06/2004	
Dibromochloromethane	EPA 524.2	ND	ug/L	1.0	NAC	07/06/2004	
1,2-Dibromoethane	EPA 524.2	ND	ug/L	1.0	NAC	07/06/2004	
Chlorobenzene	EPA 524.2	ND	ug/L	1.0	NAC	07/06/2004	
1,1,1,2-Tetrachloroethane	EPA 524.2	ND	ug/L	1.0	NAC	07/06/2004	
Ethylbenzene	EPA 524.2	ND	ug/L	1.0	NAC	07/06/2004	
m & p-Xylene	EPA 524.2	ND	ug/L	2.0	NAC	07/06/2004	
o-Xylene	EPA 524.2	ND	ug/L	1.0	NAC	07/06/2004	
Styrene	EPA 524.2	ND	ug/L	1.0	NAC	07/06/2004	
Bromoform	EPA 524.2	ND	ug/L	1.0	NAC	07/06/2004	
Isopropylbenzene	EPA 524.2	ND	ug/L	1.0	NAC	07/06/2004	
1,1,2,2-Tetrachloroethane	EPA 524.2	ND	ug/L	1.0	NAC	07/06/2004	
1,2,3-Trichloropropane	EPA 524.2	ND	ug/L	2.0	NAC	07/06/2004	
n-Propylbenzene	EPA 524.2	ND	ug/L	1.0	NAC	07/06/2004	
Bromobenzene	EPA 524.2	ND	ug/L	1.0	NAC	07/06/2004	
1,3,5-Trimethylbenzene	EPA 524.2	ND	ug/L	1.0	NAC	07/06/2004	
2-Chlorotoluene	EPA 524.2	ND	ug/L	1.0	NAC	07/06/2004	
4-Chlorotoluene	EPA 524.2	ND	ug/L	1.0	NAC	07/06/2004	
tert-Butylbenzene	EPA 524.2	ND	ug/L	1.0	NAC	07/06/2004	
1,2,4-Trimethlybenzene	EPA 524.2	ND	ug/L	1.0	NAC	07/06/2004	
sec-Butylbenzene	EPA 524.2	ND	ug/L	1.0	NAC	07/06/2004	
4-Isopropyltoluene	EPA 524.2	ND	ug/L	1.0	NAC	07/06/2004	
1,3-Dichlorobenzene	EPA 524.2	ND	ug/L	1.0	NAC	07/06/2004	
1,4-Dichlorobenzene	EPA 524.2	ND	ug/L	1.0	NAC	07/06/2004	
n-Butylbenzene	EPA 524.2	ND	ug/L	1.0	NAC	07/06/2004	
1,2-Dichlorobenzene	EPA 524.2	ND	ug/L	1.0	NAC	07/06/2004	
1,2-Dibromo-3-Chloropropan	EPA 524.2	ND	ug/L	2.0	NAC	07/06/2004	
1,2,4-Trichlorobenzene	EPA 524.2	ND	ug/L	1.0	NAC	07/06/2004	
Hexachlorobutadiene	EPA 524.2	ND	ug/L	1.0	NAC	07/06/2004	
Naphthalene	EPA 524.2	ND	ug/L	1.0	NAC	07/06/2004	

Certifications: MA: MA069 NY:10982 CT: PH0119 RI:A45 CA:2050 NJ: 59744

Customer: Environmental Planning & Mgmt.

Workorder No. 0406-00386

Sample: 001 RW

002

DIST

(Continued)

Sample:

	Parameter 1,2,3-Trichlorobenzene	Method EPA 524.2	Results ND	Units ug/L	<u>PQL</u> 2.0	Analyst NAC	Analysis Date 07/06/2004	Qual
•	4-BROMOFLUOROBENZEN		88.0	%		NAC	07/06/2004	
	1,2-DICHLOROBENZENE-D		80.0	%		NAC	07/06/2004	

Date: 06/23/2004 Time: 1:30:00PM **WATER** Matrix: PQL Parameter Method Results Units Analyst Analysis Date Qual NAC 07/06/2004 **Drinking Water Volatiles** ug/L NAC Dichlorodifluoromethane EPA 524.2 ND ug/L 0.50 07/06/2004 Chloromethane EPA 524.2 ND ug/L 0.50 NAC 07/06/2004 Vinyl Chloride EPA 524.2 ND ug/L 0.50 NAC 07/06/2004 EPA 524.2 Bromomethane ND ug/L 0.50 NAC 07/06/2004 Chloroethane EPA 524.2 ND ug/L 0.50 NAC 07/06/2004 Trichlorofluoromethane ND NAC EPA 524.2 ug/L 0.50 07/06/2004 ND 0.50 NAC 1,1-Dichloroethene EPA 524.2 ug/L 07/06/2004 Methylene Chloride EPA 524.2 0.5 ug/L 1.0 NAC 07/06/2004 JB Methyl-Tert-Butyl-Ether 0.50 EPA 524.2 ND ug/L NAC 07/06/2004 Trans-1.2-Dichloroethene ND ug/L 0.50 NAC EPA 524.2 07/06/2004 ug/L 0.50 NAC 1,1-Dichloroethane EPA 524.2 ND 07/06/2004 2,2-Dichloropropane EPA 524.2 ND ug/L 0.50 NAC 07/06/2004 cis-1,2-Dichloroethene EPA 524.2 ND ug/L 0.50 NAC 07/06/2004 Chloroform EPA 524.2 0.5 ug/L 0.50 NAC 07/06/2004 0.50 NAC Bromochloromethane EPA 524.2 ND ug/L 07/06/2004 ND 0.50 NAC 1,1,1-Trichloroethane EPA 524.2 ug/L 07/06/2004 1,1-Dichloropropene EPA 524.2 ND ug/L 0.50 NAC 07/06/2004 Carbon Tetrachloride EPA 524.2 ND ug/L 0.50 NAC 07/06/2004 1,2-Dichloroethane EPA 524.2 ND ug/L 0.50 NAC 07/06/2004 Benzene EPA 524.2 ND ug/L 0.50 NAC 07/06/2004 0.50 NAC Trichloroethene EPA 524.2 ND ug/L 07/06/2004 1,2-Dichloropropane EPA 524.2 ND ug/L 0.50 NAC 07/06/2004 Bromodichloromethane EPA 524.2 1.8 ug/L 0.50 NAC 07/06/2004 Dibromomethane EPA 524.2 ND ug/L 0.50 NAC 07/06/2004

Certifications: MA: MA069 NY:10982 CT: PH0119 RI:A45 CA:2050 NJ: 59744

■ ND = Not Detected PQL= Practical Quantitation Limit

Customer: Environmental Planning & Mgmt.

Workorder No. 0406-00386

Sample: 002 DIST

(Continued)

Parameter cis-1,3-Dichloropropene	Method EPA 524.2	Results ND	Units ug/L	PQL 0.50	Analyst NAC	Analysis Date 07/06/2004	Qual
Toluene	EPA 524.2	ND	ug/L	0.50	NAC	07/06/2004	
trans-1,3-Dichloropropene	EPA 524.2	ND	ug/L	0.50	NAC	07/06/2004	
1,1,2-Trichloroethane	EPA 524.2	ND	ug/L	0.50	NAC	07/06/2004	
1,3-Dichloropropane	EPA 524.2	ND	ug/L	0.50	NAC	07/06/2004	
Tetrachloroethene	EPA 524.2	ND	ug/L	0.50	NAC	07/06/2004	
Dibromochloromethane	EPA 524.2	3.9	ug/L	0.50	NAC	07/06/2004	
1,2-Dibromoethane	EPA 524.2	ND	ug/L	0.50	NAC	07/06/2004	
Chlorobenzene	EPA 524.2	ND	ug/L	0.50	NAC	07/06/2004	
1,1,1,2-Tetrachloroethane	EPA 524.2	ND	ug/L	0.50	NAC	07/06/2004	
Ethylbenzene	EPA 524.2	ND	ug/L	0.50	NAC	07/06/2004	
m & p-Xylene	EPA 524.2	ND	ug/L	1.0	NAC	07/06/2004	
o-Xylene	EPA 524.2	ND	ug/L	0.50	NAC	07/06/2004	
Styrene	EPA 524.2	ND	ug/L	0.50	NAC	07/06/2004	
Bromoform	EPA 524.2	3.0	ug/L	0.50	NAC	07/06/2004	
Isopropylbenzene	EPA 524.2	ND	ug/L	0.50	NAC	07/06/2004	
1,1,2,2-Tetrachloroethane	EPA 524.2	ND	ug/L	0.50	NAC	07/06/2004	
1,2,3-Trichloropropane	EPA 524.2	ND	ug/L	1.0	NAC	07/06/2004	
n-Propylbenzene	EPA 524.2	ND	ug/L	0.50	NAC	07/06/2004	
Bromobenzene	EPA 524.2	ND	ug/L	0.50	NAC	07/06/2004	
1,3,5-Trimethylbenzene	EPA 524.2	ND	ug/L	0.50	NAC	07/06/2004	
2-Chlorotoluene	EPA 524.2	ND	ug/L	0.50	NAC	07/06/2004	
4-Chlorotoluene	EPA 524.2	ND	ug/L	0.50	NAC	07/06/2004	
tert-Butylbenzene	EPA 524.2	ND	ug/L	0.50	NAC	07/06/2004	
1,2,4-Trimethlybenzene	EPA 524.2	ND	ug/L	0.50	NAC	07/06/2004	
sec-Butylbenzene	EPA 524.2	ND	ug/L	0.50	NAC	07/06/2004	
4-Isopropyltoluene	EPA 524.2	ND	ug/L	0.50	NAC	07/06/2004	
1,3-Dichlorobenzene	EPA 524.2	ND	ug/L	0.50	NAC	07/06/2004	
1,4-Dichlorobenzene	EPA 524.2	ND	ug/L	0.50	NAC	07/06/2004	
n-Butylbenzene	EPA 524.2	ND	ug/L	0.50	NAC	07/06/2004	
1,2-Dichlorobenzene	EPA 524.2	ND	ug/L	0.50	NAC	07/06/2004	
1,2-Dibromo-3-Chloropropan	EPA 524.2	ND	ug/L	1.0	NAC	07/06/2004	
1,2,4-Trichlorobenzene	EPA 524.2	ND	ug/L	0.50	NAC	07/06/2004	
Hexachlorobutadiene	EPA 524.2	ND	ug/L	0.50	NAC	07/06/2004	

Certifications: NY:10982 CT: PH0119 MA: MA069 RI:A45 CA:2050 NJ: 59744

■ ND = Not Detected PQL= Practical Quantitation Limit

Customer:

Environmental Planning & Mgmt.

Workorder No.

0406-00386

Sample:

002

DIST

(Continued)

	Parameter	<u>Method</u>	<u>Results</u>	Units	<u>PQL</u>	Analyst	Analysis Date	Qual	
-	Naphthalene	EPA 524.2	ND	ug/L	0.50	NAC	07/06/2004		
_	1,2,3-Trichlorobenzene	EPA 524.2	ND	ug/L	1.0	NAC	07/06/2004		
	4-BROMOFLUOROBENZEN		90.0	%		NAC	07/06/2004		
-	1,2-DICHLOROBENZENE-D		80.2	%		NAC	07/06/2004		

Sample:

003 **STEFF**

Date: Matrix: 06/23/2004

Time: 1:30:00PM

WATER

Parameter Drinking Water Volatiles	Method	Results	Units ug/L	PQL	Analyst NAC	Analysis Date 07/06/2004	Qual
Dichlorodifluoromethane	EPA 524.2	ND	ug/L	0.50	NAC	07/06/2004	
Chloromethane	EPA 524.2	ND	ug/L	0.50	NAC	07/06/2004	
Vinyl Chloride	EPA 524.2	ND	ug/L	0.50	NAC	07/06/2004	
Bromomethane	EPA 524.2	ND	ug/L	0.50	NAC	07/06/2004	
Chloroethane	EPA 524.2	ND	ug/L	0.50	NAC	07/06/2004	
Trichlorofluoromethane	EPA 524.2	ND	ug/L	0.50	NAC	07/06/2004	
1,1-Dichloroethene	EPA 524.2	ND	ug/L	0.50	NAC	07/06/2004	
Methylene Chloride	EPA 524.2	1.2	ug/L	1.0	NAC	07/06/2004	В
Methyl-Tert-Butyl-Ether	EPA 524.2	ND	ug/L	0.50	NAC	07/06/2004	
Trans-1,2-Dichloroethene	EPA 524.2	ND	ug/L	0.50	NAC	07/06/2004	
1,1-Dichloroethane	EPA 524.2	ND	ug/L	0.50	NAC	07/06/2004	
2,2-Dichloropropane	EPA 524.2	ND	ug/L	0.50	NAC	07/06/2004	
cis-1,2-Dichloroethene	EPA 524.2	ND	ug/L	0.50	NAC	07/06/2004	
Chloroform	EPA 524.2	ND	ug/L	0.50	NAC	07/06/2004	
Bromochloromethane	EPA 524.2	ND	ug/L	0.50	NAC	07/06/2004	
1,1,1-Trichloroethane	EPA 524.2	ND	ug/L	0.50	NAC	07/06/2004	
1,1-Dichloropropene	EPA 524.2	ND	ug/L	0.50	NAC	07/06/2004	
Carbon Tetrachloride	EPA 524.2	ND	ug/L	0.50	NAC	07/06/2004	
1,2-Dichloroethane	EPA 524.2	ND	ug/L	0.50	NAC	07/06/2004	
Benzene	EPA 524.2	ND	ug/L	0.50	NAC	07/06/2004	
Trichloroethene	EPA 524.2	ND	ug/L	0.50	NAC	07/06/2004	
1,2-Dichloropropane	EPA 524.2	ND	ug/L	0.50	NAC	07/06/2004	
Bromodichloromethane	EPA 524.2	ND	ug/L	0.50	NAC	07/06/2004	

Certifications:

MA: MA069

NY:10982

CT: PH0119

RI:A45

CA:2050

NJ: 59744

Page: 5 of 13

■ ND = Not Detected

PQL= Practical Quantitation Limit

Customer: Environmental Planning & Mgmt.

Workorder No. 0406-00386

Sample: 003 STEFF

(Continued)

Parameter Dibromomethane	Method EPA 524.2	Results ND	Units ug/L	PQL 0.50	Analyst NAC	Analysis Date 07/06/2004	Qual
cis-1,3-Dichloropropene	EPA 524.2	ND	ug/L	0.50	NAC	07/06/2004	
Toluene	EPA 524.2	ND	ug/L	0.50	NAC	07/06/2004	
trans-1,3-Dichloropropene	EPA 524.2	ND	ug/L	0.50	NAC	07/06/2004	
1,1,2-Trichloroethane	EPA 524.2	ND	ug/L	0.50	NAC	07/06/2004	
1,3-Dichloropropane	EPA 524.2	ND	ug/L	0.50	NAC	07/06/2004	
Tetrachloroethene	EPA 524.2	ND	ug/L	0.50	NAC	07/06/2004	
Dibromochloromethane	EPA 524.2	ND	ug/L	0.50	NAC	07/06/2004	
 1,2-Dibromoethane 	EPA 524.2	ND	ug/L	0.50	NAC	07/06/2004	
Chlorobenzene	EPA 524.2	ND	ug/L	0.50	NAC	07/06/2004	
1,1,1,2-Tetrachloroethane	EPA 524.2	ND	ug/L	0.50	NAC	07/06/2004	
Ethylbenzene	EPA 524.2	ND	ug/L	0.50	NAC	07/06/2004	
m & p-Xylene	EPA 524.2	ND	ug/L	1.0	NAC	07/06/2004	
o-Xylene	EPA 524.2	ND	ug/L	0.50	NAC	07/06/2004	
Styrene	EPA 524.2	ND	ug/L	0.50	NAC	07/06/2004	
Bromoform	EPA 524.2	ND	ug/L	0.50	NAC	07/06/2004	
Isopropylbenzene	EPA 524.2	ND	ug/L	0.50	NAC	07/06/2004	
1,1,2,2-Tetrachloroethane	EPA 524.2	ND	ug/L	0.50	NAC	07/06/2004	
1,2,3-Trichloropropane	EPA 524.2	ND	ug/L	1.0	NAC	07/06/2004	
n-Propylbenzene	EPA 524.2	ND	ug/L	0.50	NAC	07/06/2004	
Bromobenzene	EPA 524.2	ND	ug/L	0.50	NAC	07/06/2004	
1,3,5-Trimethylbenzene	EPA 524.2	0.9	ug/L	0.50	NAC	07/06/2004	
2-Chiorotoluene	EPA 524.2	ND	ug/L	0.50	NAC	07/06/2004	
4-Chlorotoluene	EPA 524.2	ND	ug/L	0.50	NAC	07/06/2004	
tert-Butylbenzene	EPA 524.2	ND	ug/L	0.50	NAC	07/06/2004	
1,2,4-Trimethlybenzene	EPA 524.2	2.5	ug/L	0.50	NAC	07/06/2004	
sec-Butylbenzene	EPA 524.2	ND	ug/L	0.50	NAC	07/06/2004	
4-Isopropyltoluene	EPA 524.2	ND	ug/L	0.50	NAC	07/06/2004	
1,3-Dichlorobenzene	EPA 524.2	ND	ug/L	0.50	NAC	07/06/2004	
1,4-Dichlorobenzene	EPA 524.2	ND	ug/L	0.50	NAC	07/06/2004	
n-Butylbenzene	EPA 524.2	ND	ug/L	0.50	NAC	07/06/2004	
1,2-Dichlorobenzene	EPA 524.2	ND	ug/L	0.50	NAC	07/06/2004	
1,2-Dibromo-3-Chloropropan	EPA 524.2	ND	ug/L	1.0	NAC	07/06/2004	
1,2,4-Trichlorobenzene	EPA 524.2	ND	ug/L	0.50	NAC	07/06/2004	

Certifications: MA: MA069 NY:10982 CT: PH0119 RI:A45 CA:2050 NJ: 59744

■ ND = Not Detected PQL= Practical Quantitation Limit Page: 6 of

13

"Verner"

Customer:

Environmental Planning & Mgmt.

Workorder No.

0406-00386

Sample:

003

STEFF

(Continued)

	<u>Parameter</u>	<u>Method</u>	Results	Units	PQL	Analyst	Analysis Date	Qual
-	Hexachlorobutadiene	EPA 524.2	ND	ug/L	0.50	NAC	07/06/2004	
_	Naphthalene	EPA 524.2	ND	ug/L	0.50	NAC	07/06/2004	
	1,2,3-Trichlorobenzene	EPA 524.2	ND	ug/L	1.0	NAC	07/06/2004	
-	4-BROMOFLUOROBENZEN		105	%		NAC	07/06/2004	
	1,2-DICHLOROBENZENE-D		98.0	%		NAC	07/06/2004	

Sample: Date:

004 **DUP**

Matrix:

06/23/2004

WATER

Time: 1:30:00PM

<u>Parameter</u> Drinking Water Volatiles	<u>Method</u>	Results	<u>Units</u> ug/L	PQL	Analyst NAC	Analysis Date 07/06/2004	Qual
Dichlorodifluoromethane	EPA 524.2	ND	ug/L	1.0	NAC	07/06/2004	
Chloromethane	EPA 524.2	ND	ug/L	1.0	NAC	07/06/2004	
Vinyl Chloride	EPA 524.2	ND	ug/L	1.0	NAC	07/06/2004	
Bromomethane	EPA 524.2	ND	ug/L	1.0	NAC	07/06/2004	
Chloroethane	EPA 524.2	ND	ug/L	1.0	NAC	07/06/2004	
Trichlorofluoromethane	EPA 524.2	ND	ug/L	1.0	NAC	07/06/2004	
1,1-Dichloroethene	EPA 524.2	ND	ug/L	1.0	NAC	07/06/2004	
Methylene Chloride	EPA 524.2	2.3	ug/L	2.0	NAC	07/06/2004	В
Methyl-Tert-Butyl-Ether	EPA 524.2	ND	ug/L	1.0	NAC	07/06/2004	
Trans-1,2-Dichloroethene	EPA 524.2	ND	ug/L	1.0	NAC	07/06/2004	
1,1-Dichloroethane	EPA 524.2	ND	ug/L	1.0	NAC	07/06/2004	
2,2-Dichloropropane	EPA 524.2	ND	ug/L	1.0	NAC	07/06/2004	
cis-1,2-Dichloroethene	EPA 524.2	1.2	ug/L	1.0	NAC	07/06/2004	
Chloroform	EPA 524.2	ND	ug/L	1.0	NAC	07/06/2004	
Bromochloromethane	EPA 524.2	ND	ug/L	1.0	NAC	07/06/2004	
1,1,1-Trichloroethane	EPA 524.2	ND	ug/L	1.0	NAC	07/06/2004	
1,1-Dichloropropene	EPA 524.2	ND	ug/L	1.0	NAC	07/06/2004	
Carbon Tetrachloride	EPA 524.2	ND	ug/L	1.0	NAC	07/06/2004	
1,2-Dichloroethane	EPA 524.2	ND	ug/L	1.0	NAC	07/06/2004	
Benzene	EPA 524.2	ND	ug/L	1.0	NAC	07/06/2004	
Trichloroethene	EPA 524.2	0.9	ug/L	1.0	NAC	07/06/2004	J
1,2-Dichloropropane	EPA 524.2	ND	ug/L	1.0	NAC	07/06/2004	

Certifications:

MA: MA069

NY:10982

CT: PH0119

RI:A45

CA:2050

NJ: 59744

Page: 7 of 13

■ ND = Not Detected

PQL= Practical Quantitation Limit

Customer: Environmental Planning & Mgmt.

Workorder No. 0406-00386

Sample: 004 DUP

(Continued)

Parameter Bromodichloromethane	Method EPA 524.2	Results ND	Units ug/L	PQL 1.0	Analyst NAC	Analysis Date 07/06/2004	Qual
Dibromomethane	EPA 524.2	ND	ug/L	1.0	NAC	07/06/2004	
cis-1,3-Dichloropropene	EPA 524.2	ND	ug/L	1.0	NAC	07/06/2004	
Toluene	EPA 524.2	ND	ug/L	1.0	NAC	07/06/2004	
trans-1,3-Dichloropropene	EPA 524.2	ND	ug/L	1.0	NAC	07/06/2004	
1,1,2-Trichloroethane	EPA 524.2	ND	ug/L	1.0	NAC	07/06/2004	
1,3-Dichloropropane	EPA 524.2	ND	ug/L	1.0	NAC	07/06/2004	
Tetrachloroethene	EPA 524.2	32	ug/L	1.0	NAC	07/06/2004	
Dibromochloromethane	EPA 524.2	ND	ug/L	1.0	NAC	07/06/2004	
1,2-Dibromoethane	EPA 524.2	ND	ug/L	1.0	NAC	07/06/2004	
Chlorobenzene	EPA 524.2	ND	ug/L	1.0	NAC	07/06/2004	
1,1,1,2-Tetrachloroethane	EPA 524.2	ND	ug/L	1.0	NAC	07/06/2004	
Ethylbenzene	EPA 524.2	ND	ug/L	1.0	NAC	07/06/2004	
m & p-Xylene	EPA 524.2	ND	ug/L	2.0	NAC	07/06/2004	
o-Xylene	EPA 524.2	ND	ug/L	1.0	NAC	07/06/2004	
Styrene	EPA 524.2	ND	ug/L	1.0	NAC	07/06/2004	
Bromoform	EPA 524.2	ND	ug/L	1.0	NAC	07/06/2004	
sopropylbenzene	EPA 524.2	ND	ug/L	1.0	NAC	07/06/2004	
1,1,2,2-Tetrachloroethane	EPA 524.2	ND	ug/L	1.0	NAC	07/06/2004	
1,2,3-Trichloropropane	EPA 524.2	ND	ug/L	2.0	NAC	07/06/2004	
n-Propylbenzene	EPA 524.2	ND	ug/L	1.0	NAC	07/06/2004	
Bromobenzene	EPA 524.2	ND	ug/L	1.0	NAC	07/06/2004	
1,3,5-Trimethylbenzene	EPA 524.2	ND	ug/L	1.0	NAC	07/06/2004	
2-Chlorotoluene	EPA 524.2	ND	ug/L	1.0	NAC	07/06/2004	
I-Chlorotoluene	EPA 524.2	ND	ug/L	1.0	NAC	07/06/2004	
ert-Butylbenzene	EPA 524.2	ND	ug/L	1.0	NAC	07/06/2004	
,2,4-Trimethlybenzene	EPA 524.2	ND	ug/L	1.0	NAC	07/06/2004	
ec-Butylbenzene	EPA 524.2	ND	ug/L	1.0	NAC	07/06/2004	
l-Isopropyltoluene	EPA 524.2	ND	ug/L	1.0	NAC	07/06/2004	
,3-Dichlorobenzene	EPA 524.2	ND	ug/L	1.0	NAC	07/06/2004	
,4-Dichlorobenzene	EPA 524.2	ND	ug/L	1.0	NAC	07/06/2004	
-Butylbenzene	EPA 524.2	ND	ug/L	1.0	NAC	07/06/2004	
,2-Dichlorobenzene	EPA 524.2	ND	ua/l	1.0	NAC	07/06/2004	
•	EFA 324.2	ND	ug/L	1.0	NAC	07/00/2004	

Certifications: NY:10982 CT: PH0119 RI:A45 CA:2050 NJ: 59744 MA: MA069

Page: PQL= Practical Quantitation Limit 8 of 13 ■ ND = Not Detected

Customer:

Environmental Planning & Mgmt.

Workorder No.

0406-00386

Sample:

004

DUP

(Continued)

	Parameter 1,2,4-Trichlorobenzene	Method EPA 524.2	Results ND	Units ug/L	<u>PQL</u> 1.0	Analyst NAC	Analysis Date 07/06/2004	Qual
#	Hexachlorobutadiene	EPA 524.2	ND	ug/L	1.0	NAC	07/06/2004	
	Naphthalene	EPA 524.2	ND	ug/L	1.0	NAC	07/06/2004	
	1,2,3-Trichlorobenzene	EPA 524.2	ND	ug/L	2.0	NAC	07/06/2004	
	4-BROMOFLUOROBENZEN		89.3	%		NAC	07/06/2004	
	1,2-DICHLOROBENZENE-D		80.2	%		NAC	07/06/2004	

Sample: Date: Matrix:

005 ΤB

WATER

06/23/2004

Time: 1:30:00PM

Parameter Drinking Water Volatiles	Method	Results	<u>Units</u> ug/L	PQL	Analyst NAC	Analysis Date 07/06/2004	Qua
Dichlorodifluoromethane	EPA 524.2	ND	ug/L	0.50	NAC	07/06/2004	
Chloromethane	EPA 524.2	ND	ug/L	0.50	NAC	07/06/2004	
Vinyl Chloride	EPA 524.2	ND	ug/L	0.50	NAC	07/06/2004	
Bromomethane	EPA 524.2	ND	ug/L	0.50	NAC	07/06/2004	
Chloroethane	EPA 524.2	ND	ug/L	0.50	NAC	07/06/2004	
Trichlorofluoromethane	EPA 524.2	ND	ug/L	0.50	NAC	07/06/2004	
1,1-Dichloroethene	EPA 524.2	ND	ug/L	0.50	NAC	07/06/2004	
Methylene Chloride	EPA 524.2	1.4	ug/L	1.0	NAC	07/06/2004	В
Methyl-Tert-Butyl-Ether	EPA 524.2	ND	ug/L	0.50	NAC	07/06/2004	
Trans-1,2-Dichloroethene	EPA 524.2	ND	ug/L	0.50	NAC	07/06/2004	
1,1-Dichloroethane	EPA 524.2	ND	ug/L	0.50	NAC	07/06/2004	
2,2-Dichloropropane	EPA 524.2	ND	ug/L	0.50	NAC	07/06/2004	
cis-1,2-Dichloroethene	EPA 524.2	ND	ug/L	0.50	NAC	07/06/2004	
Chloroform	EPA 524.2	ND	ug/L	0.50	NAC	07/06/2004	
Bromochloromethane	EPA 524.2	ND	ug/L	0.50	NAC	07/06/2004	
1,1,1-Trichloroethane	EPA 524.2	ND	ug/L	0.50	NAC	07/06/2004	
1,1-Dichloropropene	EPA 524.2	ND	ug/L	0.50	NAC	07/06/2004	
Carbon Tetrachloride	EPA 524.2	ND	ug/L	0.50	NAC	07/06/2004	
1,2-Dichloroethane	EPA 524.2	ND	ug/L	0.50	NAC	07/06/2004	
Benzene	EPA 524.2	ND	ug/L	0.50	NAC	07/06/2004	
Trichloroethene	EPA 524.2	ND	ug/L	0.50	NAC	07/06/2004	

Certifications: ■ ND = Not Detected MA: MA069

NY:10982

CT: PH0119

RI:A45

CA:2050

NJ: 59744

Page: 9 of

13

Customer:

Environmental Planning & Mgmt.

Workorder No.

0406-00386

_	(Continued)	Sample:
		005
		ΤB

1,2-Dichlorobenzene	n-Butylbenzene	1,4-Dichlorobenzene	1,3-Dichlorobenzene	4-IsopropyItoluene	sec-Butylbenzene	1,2,4-Trimethlybenzene	tert-Butylbenzene	4-Chlorotoluene	2-Chlorotoluene	1,3,5-Trimethylbenzene	Bromobenzene	n-Propylbenzene	1,2,3-Trichloropropane	1,1,2,2-Tetrachloroethane	Isopropylbenzene	Bromoform	Styrene	o-Xylene	m & p-Xylene	Ethylbenzene	1,1,1,2-Tetrachloroethane	Chlorobenzene	1,2-Dibromoethane	Dibromochloromethane	Tetrachloroethene	1,3-Dichloropropane	1,1,2-Trichloroethane	trans-1,3-Dichloropropene	Toluene	cis-1,3-Dichloropropene	Dibromomethane	Bromodichloromethane	Parameter 1,2-Dichloropropane
EPA 524.2	EPA 524.2	EPA 524.2	EPA 524.2	EPA 524.2	EPA 524.2	EPA 524.2	EPA 524.2	EPA 524.2	EPA 524.2	EPA 524.2	EPA 524.2	EPA 524.2	EPA 524.2	EPA 524.2	EPA 524.2	EPA 524.2	EPA 524.2	EPA 524.2	EPA 524.2	EPA 524.2	EPA 524.2	EPA 524.2	EPA 524.2	EPA 524.2	EPA 524.2	EPA 524.2	EPA 524.2	EPA 524.2	EPA 524.2	EPA 524.2	EPA 524.2	EPA 524.2	Method EPA 524.2
ND	N D	ND	ND	ND	N D	ND	N D	N D	ND	ND	N D	ND	N D	ND	ND	N D	ND	ND	N D	N _D	ND	ND	N _D	ND	ND	N D	ND	N D	ND	N D	N D	ND	Results ND
ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	Units ug/L
0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	1.0	0.50	0.50	0.50	0.50	0.50	1.0	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	PQL 0.50
NAC	NAC	NAC	NAC	NAC	NAC	NAC	NAC	NAC	NAC	NAC	NAC	NAC	NAC	NAC	NAC	NAC	NAC	NAC	NAC	NAC	NAC	NAC	NAC	NAC	NAC	NAC	NAC	NAC	NAC	NAC	NAC	NAC	Analyst NAC
07/06/2004	07/06/2004	07/06/2004	07/06/2004	07/06/2004	07/06/2004	07/06/2004	07/06/2004	07/06/2004	07/06/2004	07/06/2004	07/06/2004	07/06/2004	07/06/2004	07/06/2004	07/06/2004	07/06/2004	07/06/2004	07/06/2004	07/06/2004	07/06/2004	07/06/2004	07/06/2004	07/06/2004	07/06/2004	07/06/2004	07/06/2004	07/06/2004	07/06/2004	07/06/2004	07/06/2004	07/06/2004	07/06/2004	Analysis Date Qual 07/06/2004

ND = Not Detected Certifications:

PQL= Practical Quantitation Limit MA: MA069 NY:10982

CT: PH0119

RI:A45

CA:2050

NJ: 59744

Page:

Customer:

Environmental Planning & Mgmt.

Workorder No.

0406-00386

Sample:

005

TB

(Continued)

	Parameter	<u>Method</u>	Results	Units	PQL	Analyst	Analysis Date	Qual
	1,2-Dibromo-3-Chloropropan	EPA 524.2	ND	ug/L	1.0	NAC	07/06/2004	
	1,2,4-Trichlorobenzene	EPA 524.2	ND	ug/L	0.50	NAC	07/06/2004	
	Hexachlorobutadiene	EPA 524.2	ND	ug/L	0.50	NAC	07/06/2004	
-	Naphthalene	EPA 524.2	ND	ug/L	0.50	NAC	07/06/2004	
	1,2,3-Trichlorobenzene	EPA 524.2	ND	ug/L	1.0	NAC	07/06/2004	
•	4-BROMOFLUOROBENZEN		90.4	%		NAC	07/06/2004	
	1,2-DICHLOROBENZENE-D		81.1	%		NAC	07/06/2004	

Sample:

006 STORAGE BLANK

Date:

06/24/2004 Time: 9:30:00AM

Matrix:

WATER

Parameter Drinking Water Volatiles	Method	Results	<u>Units</u> ug/L	PQL	Analyst NAC	Analysis Date 07/06/2004	Qual
Dichlorodifluoromethane	EPA 524.2	ND	ug/L	0.50	NAC	07/06/2004	
Chloromethane	EPA 524.2	ND	ug/L	0.50	NAC	07/06/2004	
Vinyl Chloride	EPA 524.2	ND	ug/L	0.50	NAC	07/06/2004	
Bromomethane	EPA 524.2	ND	ug/L	0.50	NAC	07/06/2004	
Chloroethane	EPA 524.2	ND	ug/L	0.50	NAC	07/06/2004	
Trichlorofluoromethane	EPA 524.2	ND	ug/L	0.50	NAC	07/06/2004	
1,1-Dichloroethene	EPA 524.2	ND	ug/L	0.50	NAC	07/06/2004	
Methylene Chloride	EPA 524.2	1.8	ug/L	1.0	NAC	07/06/2004	В
Methyl-Tert-Butyl-Ether	EPA 524.2	ND	ug/L	0.50	NAC	07/06/2004	
Trans-1,2-Dichloroethene	EPA 524.2	ND	ug/L	0.50	NAC	07/06/2004	
1,1-Dichloroethane	EPA 524.2	ND	ug/L	0.50	NAC	07/06/2004	
2,2-Dichloropropane	EPA 524.2	ND	ug/L	0.50	NAC	07/06/2004	
cis-1,2-Dichloroethene	EPA 524.2	ND	ug/L	0.50	NAC	07/06/2004	
Chloroform	EPA 524.2	ND	ug/L	0.50	NAC	07/06/2004	
Bromochloromethane	EPA 524.2	ND	ug/L	0.50	NAC	07/06/2004	
1,1,1-Trichloroethane	EPA 524.2	ND	ug/L	0.50	NAC	07/06/2004	
1,1-Dichloropropene	EPA 524.2	ND	ug/L	0.50	NAC	07/06/2004	
Carbon Tetrachloride	EPA 524.2	ND	ug/L	0.50	NAC	07/06/2004	
1,2-Dichloroethane	EPA 524.2	ND	ug/L	0.50	NAC	07/06/2004	
Benzene	EPA 524.2	ND	ug/L	0.50	NAC	07/06/2004	

Certifications:

MA: MA069 NY:10982

CT: PH0119

RI:A45

CA:2050

NJ: 59744

Page: 11 of

13

ND = Not Detected

PQL= Practical Quantitation Limit

Customer:

Environmental Planning & Mgmt.

Workorder No.

0406-00386

Sample: 006 STORAGE BLANK

(Continued)

Parameter Trichloroethene	Method EPA 524.2	Results ND	<u>Units</u> ug/L	PQL 0.50	Analyst NAC	Analysis Date 07/06/2004	Qual
1,2-Dichloropropane	EPA 524.2	ND	ug/L	0.50	NAC	07/06/2004	
Bromodichloromethane	EPA 524.2	ND	ug/L	0.50	NAC	07/06/2004	
 Dibromomethane 	EPA 524.2	ND	ug/L	0.50	NAC	07/06/2004	
cis-1,3-Dichloropropene	EPA 524.2	ND	ug/L	0.50	NAC	07/06/2004	
Toluene	EPA 524.2	ND	ug/L	0.50	NAC	07/06/2004	
trans-1,3-Dichloropropene	EPA 524.2	ND	ug/L	0.50	NAC	07/06/2004	
1,1,2-Trichloroethane	EPA 524.2	ND	ug/L	0.50	NAC	07/06/2004	
1,3-Dichloropropane	EPA 524.2	ND	ug/L	0.50	NAC	07/06/2004	
Tetrachloroethene	EPA 524.2	ND	ug/L	0.50	NAC	07/06/2004	
Dibromochloromethane	EPA 524.2	ND	ug/L	0.50	NAC	07/06/2004	
1,2-Dibromoethane	EPA 524.2	ND	ug/L	0.50	NAC	07/06/2004	
Chlorobenzene	EPA 524.2	ND	ug/L	0.50	NAC	07/06/2004	
1,1,1,2-Tetrachloroethane	EPA 524.2	ND	ug/L	0.50	NAC	07/06/2004	
Ethylbenzene	EPA 524.2	ND	ug/L	0.50	NAC	07/06/2004	
m & p-Xylene	EPA 524.2	ND	ug/L	1.0	NAC	07/06/2004	
o-Xylene	EPA 524.2	ND	ug/L	0.50	NAC	07/06/2004	
Styrene	EPA 524.2	ND	ug/L	0.50	NAC	07/06/2004	
Bromoform	EPA 524.2	ND	ug/L	0.50	NAC	07/06/2004	
Isopropylbenzene	EPA 524.2	ND	ug/L	0.50	NAC	07/06/2004	
1,1,2,2-Tetrachloroethane	EPA 524.2	ND	ug/L	0.50	NAC	07/06/2004	
1,2,3-Trichloropropane	EPA 524.2	ND	ug/L	1.0	NAC	07/06/2004	
n-Propylbenzene	EPA 524.2	ND	ug/L	0.50	NAC	07/06/2004	
Bromobenzene	EPA 524.2	ND	ug/L	0.50	NAC	07/06/2004	
1,3,5-Trimethylbenzene	EPA 524.2	ND	ug/L	0.50	NAC	07/06/2004	
2-Chlorotoluene	EPA 524.2	ND	ug/L	0.50	NAC	07/06/2004	
4-Chlorotoluene	EPA 524.2	ND	ug/L	0.50	NAC	07/06/2004	
tert-Butylbenzene	EPA 524.2	ND	ug/L	0.50	NAC	07/06/2004	
1,2,4-Trimethlybenzene	EPA 524.2	ND	ug/L	0.50	NAC	07/06/2004	
sec-Butylbenzene	EPA 524.2	ND	ug/L	0.50	NAC	07/06/2004	
4-Isopropyltoluene	EPA 524.2	ND	ug/L	0.50	NAC	07/06/2004	
1,3-Dichlorobenzene	EPA 524.2	ND	ug/L	0.50	NAC	07/06/2004	
1,4-Dichlorobenzene	EPA 524.2	ND	ug/L	0.50	NAC	07/06/2004	
n-Butylbenzene	EPA 524.2	ND	ug/L	0.50	NAC	07/06/2004	
-							

Certifications:

MA: MA069

NY:10982

CT: PH0119

RI:A45

CA:2050

NJ: 59744

Page: 12 of

13

ND = Not Detected PQL= Practical Quantitation Limit

Customer:

Environmental Planning & Mgmt.

Workorder No.

0406-00386

Sample: 006 STORAGE BLANK

(Continued)

	Parameter 1,2-Dichlorobenzene	Method EPA 524.2	Results ND	<u>Units</u> ug/L	PQL 0.50	Analyst NAC	Analysis Date 07/06/2004	Qual
-	1,2-Dibromo-3-Chloropropan	EPA 524.2	ND	ug/L	1.0	NAC	07/06/2004	
	1,2,4-Trichlorobenzene	EPA 524.2	ND	ug/L	0.50	NAC	07/06/2004	
-	Hexachlorobutadiene	EPA 524.2	ND	ug/L	0.50	NAC	07/06/2004	
	Naphthalene	EPA 524.2	ND	ug/L	0.50	NAC	07/06/2004	
	1,2,3-Trichlorobenzene	EPA 524.2	ND	ug/L	1.0	NAC	07/06/2004	
-	4-BROMOFLUOROBENZEN		90.0	%		NAC	07/06/2004	
	1,2-DICHLOROBENZENE-D		82.3	%		NAC	07/06/2004	

To the best of my knowledge this report is true and accurate.

Authorized By:

Nicole Ingersoll, Technical Director

Certifications:

NY:10982 MA: MA069

CT: PH0119

RI:A45

CA:2050

NJ: 59744

Page: 13 of 13