

James Hahn James J. Hahn Engineering Putnam Business Park 1689 Route 22 Brewster, NY 10509

January 21, 2011

Dear Mr. Hahn:

Enclosed please find the annual monitoring report of 2010 for the Katonah Municipal Well, Town of Bedford, Westchester County, New York (NYSDEC Site ID # 3-60-007).

Please call should you have any questions.

Sincerely,

Stephen Cherepany Project Scientist

cc: Kenneth Caffrey, PE, NYSDOH Carl Hoffman, NYSDEC William Nixon, Town of Bedford Paul Kutzy, Westchester County DOH Damian Duda, USEPA Region 2

GROUNDWATER QUALITY MONITORING ANNUAL REPORT DECEMBER 29, 2010 KATONAH MUNICIPAL WELL TOWN OF BEDFORD WESTCHESTER, NEW YORK NYSDEC SITE ID # 3-60-007

EPM PROJECT NUMBER: 10001

PREPARED FOR:

James J. Hahn Engineering Millbrook Office Center Route 22 & Milltown Road Brewster, New York 10509

PREPARED BY:

Environmental Planning & Management, Inc. 1983 Marcus Avenue, Suite 109 Lake Success, New York 11042

TABLE OF CONTENTS

1.0	Introduction1
2.0	Sample Collection2
3.0	Findings
4.0	Future Actions
List o	f Tables
Table	1 - Summary of Laboratory Analysis Results5
List o	f Figures
Figur	e 1 - Sampling Tap Location Schematic6
Figur	e 2 - Influent Tetrachloroethene Levels7
APPE	NDICES
Appe	ndix A - Data Validation Groundwater Monitoring Report

11

Appendix B - Laboratory Analysis Report

1.0 INTRODUCTION

This annual groundwater sampling and analysis report has been prepared for the Katonah Municipal Well Site in Katonah, Town of Bedford, New York. This submittal is in accordance with the groundwater monitoring requirements of the New York State Department of Health (NYSDOH) and the United States Environmental Protection Agency (USEPA). This report includes the data collection and analysis results of the remedial system operation, for the year-end of 2010. Sampling of the remedial system and the two existing monitoring wells was conducted on December 29, 2010.

2.0 SAMPLE COLLECTION

Environmental Planning & Management, Inc., collected samples on December 29, 2010. Three sample sets were collected from sampling taps; the raw water sampling tap (RW), the stripper number two effluent sampling tap (STEFF), and the distribution sampling tap (DIST). One field duplicate sample (DUP) was collected from the Raw Water sampling tap. Samples were also collected from two monitoring wells, W4 and W11. Sample locations are shown on Figure 1 - Sampling Tap Location Schematic. Sampling was conducted in accordance with the approved Project Operation Plan.

Samples were labeled at the field location and placed into transport coolers containing ice. A field equipment blank, trip blank and chain-of-custody documentation accompanied the samples to the laboratory for analysis. The samples were analyzed by Accutest laboratories, of Dayton, New Jersey (NYS-Department of Health approved Environmental Laboratory Accreditation Program (ELAP) laboratory #10983, in accordance with CLP methods, for volatile organics (Principal Organic Contaminants), by USEPA method 524.2, revision number 3.

3.0 FINDINGS

VOC Analysis

Table 1 provides a summary of the analytical results for the annual water quality monitoring, as well as the applicable NYSDOH Drinking Water Standards and the US EPA clean-up requirement for Tetrachloroethene (PCE). As indicated by the laboratory analysis, the treatment system effluent meets the NYSDOH drinking water standards and the USEPA clean-up level of less than one part per billion (ppb) (or non-detectable) for Tetrachloroethene and meets the levels of less than 100 parts per billion for Trihalomethanes.

Tetrachloroethene was detected in the untreated Raw Water (RW) sample, at a concentration of 29.3 μ g/L (ppb), which exceeds the NYSDOH drinking water standard and the USEPA clean-up standard for this compound of 5 ppb and 1 ppb respectively. Sample RW also exhibited Trichloroethylene at a concentration of 0.90 ppb, and cis-1,2-Dichloroethene at a concentration of 0.58 ppb, which is below the NYSDOH drinking water standard and the USEPA Standard of 5 ppb for both compounds.

Analytical results for the duplicate sample (DUP) of the Raw Water (RW) similarly exhibited Tetrachloroethene at a concentration 29.4 ppb. This sample also exhibited Trichloroethylene at a concentration of 0.95 ppb, and cis-1,2-Dichloroethene at a concentration of 0.60 ppb, which is below the NYSDOH drinking water standard and the USEPA Standard of 5 ppb for both compounds.

No VOCs were detected in the treated (stripper number 2) water sample, STEFF.

Three VOCs, Bromodichloromethane, Bromoform and Dibromochloromethane were detected in the Distribution (DIST) water sample at a concentration of 1.2 ppb, 8.3ppb and 4.6ppb, respectively; however this is well below the NYSDOH drinking water standard and the USEPA Standard of 50 ppb for these three compounds.

Two VOCs, Trichloroethylene, and cis-1,2-Dichloroethene were detected in monitoring well 4 (W4) with a concentration of 0.28 ppb, and 0.88 respectively, which is below the NYSDOH drinking water standards and the USEPA Cleanup Standards for both compounds.

One VOC, Tetrachloroethene was detected in monitoring well 11 (W11) with a concentration of 0.59 ppb which is below the NYSDOH drinking water standard and the USEPA Cleanup Standard for this compound.

No VOCs were detected in the Field Blank (FB) or Trip blank water samples, thus suggesting that no contamination was introduced during sampling or that cross-contamination occurred during delivery to the laboratory.

Refer to Table 1 for a summary of the groundwater analysis results for volatile organic

compounds (VOCs). Table 1 reflects the detectable concentration values which have been qualified as a result of data validation. Refer to Appendix A for the data validation report which details any variations of the detectable concentration values discussed above.

The PCE concentration in the Influent (raw water) has increased relative to the last sampling event (see Figure 2). To date, the PCE level in the raw water samples is not of significant concern, since the treated water and distribution water samples continue to exhibit non-detectable or insignificant concentrations of PCE. However, changes in PCE levels will continue to be closely monitored.

	Table 1 - SUMMARY OF ANNUAL VOC RESULTS KATONAH MUNICIPAL WELL											
Date Collected				12/29/2010)							
Sample Location	Raw Water (Influent)	RW DUP	STEFF (Treated Water)	DIST (Distribution Water)	W4 (Well 4)	W11 (Well 11)	FB (Field Blank)	NYSDOH\ USEPA Standard				
Volatile Organic Compounds (ppb)												
Tetrachloroethylene (127-18-4)	29.3	29.4	ND	ND	ND	0.59	ND	5/1*				
Trichloroethylene (79-01-6)	0.90	0.95	ND	ND	0.28 J	ND	ND	5				
cis-1,2-Dichloroethylene (156-59-2)	0.58	0.60	ND	ND	0.88	ND	ND	5				
Methylene Chloride (75-09-2)	ND	ND	ND	ND	ND	ND	ND	5				
Bromoform (75-25-2)	ND	ND	ND	8.3	ND	ND	ND	50				
Dibromochloromethane (124-48-1)	ND	ND	ND	4.6	ND	ND	ND	50				
Bromodichloromethane (75-27-4)	ND	ND	ND	1.2	ND	ND	ND	50				
Methyl Tert Butyl Ether(MTBE 1634-04-4)	ND	ND	ND	ND	ND	ND	ND	0.010				

1 ppb is the USEPA cleanup standard for the site
 1 - Determined undetect following data validation

Level exceeds the USEPA/NYSDOH standard

U Denotes detection limit/not detected

J Denotes an estimated value

Ν Presumptive evidence of a compound

Determined unusable following data validation R

NS No standard

Denotes Detection in the Field Blank as well В

ND No Detectable Concentration

NR Denotes sample not analyzed for this compound

4.0 FUTURE ACTIONS

Water quality monitoring will continue to be conducted annually at the treatment system influent, stripper effluent, distribution point, and the two groundwater monitoring wells.

The next annual sampling event for the year-end of 2011, the twentieth year of sampling, is tentatively scheduled for the month of December, 2011.

APPENDIX A

DATA VALIDATION REPORT

C.T. MALE ASSOCIATES, P.C.

50 Century Hill Drive, Latham, NY 12110 518.786.7400 FAX 518.786.7299 ctmale@ctmale.com

January 19, 2011

Mr. Stephen Cherepany Environmental Planning & Management, Inc. 1983 Marcus Ave. Suite 109 Lake Success, New York 11042

Re: Data Validation – Katonah – 4th Quarter 2010 Water Sampling C.T. Male Project No.:07.7690

Dear Mr. Cherepany:

This Data Validation Summary Report for organic analysis was generated for the samples collected in association with the field investigation for the Katonah 4th Quarter 2010 Water Sampling. Five (5) water samples were collected on December 29, 2010. The samples were submitted, along with a field duplicate, a matrix spike (MS) sample, a MS duplicate (MSD) sample, a field blank and a trip blank to Accutest Laboratories (Accutest) in Dayton, New Jersey for volatile organic analysis (VOA) by the United States Environmental Protection Agency (USEPA) Method 524.2 by Gas Chromatography / Mass Spectrometry (GC/MS).

C. T. Male Associates, P. C. evaluated the data reported by the laboratory to determine data usability and deviations in accordance with the USEPA Region II Standard Operation Procedure for the Validation of Organic Data Acquired Using Method 524.2 (October 2001); with guidance from the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (June 2008); and the appropriate method from the New York State Department of Environmental Conservation (NYSDEC) Analytical Service Protocols (ASP), where applicable. The following criteria were reviewed:

- Completeness of data package as defined under the requirements for the NYSDEC ASP Category B or USEPA CLP deliverables;
- Holding time compliance for chemical analysis;
- Protocol required limits and specification compliance for quality control (QC) data (e.g., instrument tuning, calibration standards, blank results, spike results, duplicate results, etc);
- Contract compliance for analytical protocols;
- Omissions and transcription errors; and
- Data qualification.

1.0 Data Completeness

Documentation required by the project was included in the data package. There were no discrepancies found between the raw data and summary forms. The laboratory Case Narrative (Attachment A) identified deviations from laboratory analytical specifications. QC exceedences and data qualification recommendations are presented in the Data Evaluation Checklist (Attachment B).

C.T. MALE ASSOCIATES, P.C.

Mr. Stephen Cherepany January 19, 2011 Page - 2

Qualified sample results are presented in the laboratory summary forms, which are located in Attachment C. QC exceedences and data qualification recommendations are summarized below.

2.0 Sample Condition Upon Receipt

Accutest received all the samples listed on the chain of custody (COC) record intact and in good condition. The temperature of samples was within laboratory specification limits of 2 to 6°C upon receipt.

3.0 VOA by USEPA Method 524.2 GC/MS

3.1 Holding Times

The project samples were analyzed within the acceptable NYSDEC ASP holding time of 10 days from Verified Time of Sample Receipt (VTSR) for the preserved water samples.

3.2 GC/MS Instrument Performance Check and Calibration

All samples were analyzed within 12 hours of the performance check standard, BFB. Percent relative abundance of all ions met the criteria specified in Table 3 of the USEPA Method 524.2. Laboratory specifications were met during the initial and continuing calibrations associated with the project samples. In addition the average relative response factor (RRF) was greater than or equal to 0.05 for target analytes during the initial and continuing calibrations, except the RRF results were below 0.05 during the initial and continuing calibrations associated with the project samples for acetone. The associated results have been qualified as estimated (J/UJ) due to poor correlation in the calibration standards. The percent relative standard deviation (%RSD) between RRF was less than or equal to 30% during the initial calibration, and the percent difference (%D) between the initial calibration RRF was less than or equal to 25% for target analytes.

3.3 Surrogate Recovery and Internal Standards

Surrogate recovery and internal standard results met laboratory specifications for project samples.

3.4 Laboratory Control Sample (LCS)

The percent recovery (%R) results for LCS analyses were within laboratory specifications for the target analytes.

3.5 Matrix Spike and Matrix Spike Duplicate (MS/MSD)

Criteria for accuracy were met during the MS/MSD analysis of sample RW for target analytes except the %R of the MS and MSD were below laboratory specifications for tetrachloroethylene. The associated results have been qualified as estimated (J) due to analytical inaccuracy.

C.T. MALE ASSOCIATES, P.C.

Mr. Stephen Cherepany January 19, 2011 Page - 3

3.6 Method Blanks, Field Blank and Trip Blank

A method blank was reported for each analytical batch. A trip blank and a field blank were submitted to the laboratory for VOA. Target analytes were not detected during the analysis of the method blank, the trip blank or the field blank associated with the project samples.

3.7 Field Duplicates

A field duplicate evaluation was performed on samples DUP (blind field duplicate) and RW. Refer to Attachment B-1 for the duplicate evaluation. Criteria for precision was achieved for the detected analytes.

Summary

Overall, data quality objectives were met, as there were no data deficiencies that would indicate the need for re-sampling. All data reviewed is considered to be valid and usable with the appropriate qualifiers as noted in the data summary forms located in Attachment C. No analytical data has been rejected.

If you have any questions please contact me at (518) 786-7400.

Sincerely,

C. T. MALE ASSOCIATES, P. C.

Mycon Dussly

Megan Drosky Environmental Scientist

Enclosures

ATTACHMENT A Case Narrative

CASE NARRATIVE / CONFORMANCE SUMMARY

Client:	Environmental	. Planning an	d Management
---------	---------------	---------------	--------------

Job No: JA65236

1/10/2011 1:09:25 PM

Report Date

Site: Katonah Q4, Katonah Pump House, Bedford, NY

On 12/30/2010, 6 Sample(s), 1 Trip Blank(s) and 1 Field Blank(s) were received at Accutest Laboratories at a temperature of 4.6 C. Samples were intact and properly preserved, unless noted below. An Accutest Job Number of JA65236 was assigned to the project. Laboratory sample ID, client sample ID and dates of sample collection are detailed in the report's Results Summary Section.

Specified quality control criteria were achieved for this job except as noted below. For more information, please refer to the analytical results and QC summary pages.

Volatiles by GCMS By Method EPA 524.2 REV 4.1

	Matrix: AQ	••••	Batch ID:	V1B2368		······································	
83	All samples were analyze	d within the r	ecommended metho	od holding time.	·		

All method blanks for this batch meet method specific criteria.

- Sample(s) JA65236-1MS, JA65236-1MSD were used as the QC samples indicated.
- Matrix Spike / Matrix Spike Duplicate Recovery(s) for Tetrachloroethylene are outside control limits. Outside control limits due to high level in sample relative to spike amount.

Accutest certifies that data reported for samples received, listed on the associated custody chain or analytical task order, were produced to specifications meeting Accutest's Quality System precision, accuracy and completeness objectives except as noted.

Estimated non-standard method measurement uncertainty data is available on request, based on quality control bias and implicit for standard methods. Acceptable uncertainty requires tested parameter quality control data to meet method criteria.

Accutest Laboratories is not responsible for data quality assumptions if partial reports are used and recommends that this report be used in its entirety. Data release is authorized by Accutest Laboratories indicated via signature on the report cover

ATTACHMENT B Data Evaluation Checklist

Data Evaluation Checklist Organic Analyses

Project: Environmental Planning and Management – Kator	nah	Proje	ct No:	07.7690	
Job No.: <u>JA65236</u>		Meth	od:	USEPA 524.2 (VOA)	
Laboratory: <u>Accutest Laboratories – New Jersey</u>		Asso	ciated Sai	mple IDs: <u>RW, DUP, DIST, STEFF, MW-4, MW-11</u> .	FB and
		G	1	TB	
Reviewer: Megan Drosky		Samp	le Date:	12/29/10	
		Date:		01/19/11	
Review Questions	Yes	No	N/A	Samples (Analytes) Affected/Comments	Flag
1. Were holding times met?	\checkmark			VOA: ≤ 10 days	
2. Were sample storage and preservation requirements met?	×			4.6°C (2-6°C).	
3. Was a method blank analyzed with each batch?	\checkmark			VOA: V1B2368-MB1	
4. Were target analytes reported in the method or calibration blanks above the Detection Limit?		~			
5. Were target analytes reported in field blank analyses (e.g., trip, ambient, field, or equipment) above the DL?		~			
6. Were contaminants detected in samples below the blank contamination action level?			~	Blank contamination does not exist.	
7. Were initial and continuing calibration standards analyzed at the lab-specified frequency for each instrument?	~			 VOA Initial calibration: 12/08/10 Continuing calibration: 01/03/11 @ 09:38 	
8. Were these results within lab or project specifications?				 VOA – Initial calibration of 12/08/10. The RF >0.05 and %RSD between response factors was less than 30% for target analytes except acetone (0.031 RRF). J/UJ Continuing calibration of 01/03/11. The RF>0.05 and %D <25% for target analytes except acetone (0.032 RRF). J/UJ 	J/UJ
9. Was a LCS analyzed with each batch?	\checkmark			VOA: V1B2368-BS	
10. Were LCS' recoveries within lab specifications?	 ✓ 				
11. Were LCS/LCSD RPD within lab specifications?			\checkmark	LCS only	
12. Was a MS/MSD pair analyzed with each batch?	\checkmark			VOA: JA65236-1 (RW)	
13. Is the MS/MSD parent sample a project-specific sample?	\checkmark				

~

Data Evaluation Checklist (Continued)

Job No.: <u>JA65236</u> Page 2 of 2

Review Questions	Yes	No	N/A	Samples (Analytes) Affected/Comments	Flag
14. Were MS/MSD recoveries within lab specifications? Only QC results for project samples are evaluated.		~		RW: • Tetrachloroethylene @12 and 40%R (45-145). J	J
15. Were MS/MSD RPD within lab specifications? Only QC results for project samples are evaluated.	~				
16. Was a laboratory duplicate analyzed with each batch?			×		
17. Is the laboratory duplicate sample a project-specific sample?			 ✓ 		
18. Does laboratory duplicate results meet lab specifications? Only QC results for project samples are evaluated.			~		
19. Were surrogate recoveries within lab specifications during organic analysis?	~				
20. Were internal standard results within lab specifications during the VOA?	~				
21. Were TIC reported and were reported results qualified as estimated concentrations?		~			
22. Were field duplicate samples submitted to the laboratory for analysis?	~			DUP is the field duplicate of RW.	
23. Was precision deemed acceptable as defined by DV Guidelines?	~			Refer to Attachment B-1 for duplicate evaluation.	
24. Were lab comments included in report? If yes, summarize contents or attach a copy of the narrative.	~			Refer to Case Narrative	

Comments:

The data review process was modeled after the Appendix 2B, Guidance for the Development of Data Usability Summary Reports, of *DER-10 Technical Guidance for Site Investigation and Remediation* (NYSDEC, May 2010) with guidance from the applicable Region 2 RCRA and CERCLA Field and Data Validation Standard Operating Procedures and the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (June 2008).

UJ

ND

Ν

Key:

J Positive sample result is considered estimated

- R Unusable data
- R+ Positive sample result is considered unusable

Sample result is not detected and the detection limit is considered estimated

Sample result is not detected

A "tentative identification" has been made of the presence of an analyte

U Not present above the associated level; blank contamination exists

							Absolute	
Analyte	RW	DUP	MDL	MDLx5	Criteria	RPD	difference	Action
Chloroform	0.072	0.082	0.058	0.29	Abs Diff	13	0.01	None, absolute difference <mdl< td=""></mdl<>
cis-1,2-Dichloroethylene	0.58	0.6	0.084	0.42	RPD	3	0.02	None, RPD<20%
Tetrachloroethylene	29.3	29.4	0.067	0.335	RPD	0	0.1	None, RPD<20%
Trichloroethylene	0.9	0.95	0.11	0.55	RPD	5	0.05	None, RPD<20%

Note: If the analyte was not detected, then the cell is left blank.

RPD - Relative percent difference

*Results are reported in ug/L

Precision is based on either the absolute difference between sample results or RPD. If the sample results are less than or equal to 5x's the MDL, then precision is based on the absolute difference between duplicate results. If sample results >5x's MDL, then precision is evaluated using RPD. J sample results whenever the absolute difference is greater than MDL or RPD >20%. If the analyte is detected in one sample but not the other, then J/UJ sample results. Above table presents results for detected analytes only. Blank cells indicate that the analyte was not detected.

K:\Projects\077690\Admin\2010\4th Qtr Katonah\Duplicates.xls RW Field

ATTACHMENT C Qualified Sample Results

	Page 1 of 2						
Client Sam Lab Sampl Matrix: Method: Project:	aple ID: RW le ID: JA65236-1 DW - Drinking Water EPA 524.2 REV 4.1 Katonah Q4, Katonah						
Run #1 Run #2	File ID DF 1 1B51766.D 1 0	Analyzed 01/03/11	By MFH	Prep n/a) Date	Prep Batch n/a	Analytical Batch V1B2368
Run #1 Run #2	Purge Volume 5.0 ml						
VOA List					-	· · · · · ·	
CAS No.	Compound	Result	MCL	RL	MDL	Units Q	
67-64-1 78-93-3 71-43-2	Acetone 2-Butanone Benzene	ND UJ ND ND	5.0	5.0 5.0 0.50	1.5 1.8 0.061	ug/l ug/l ug/l	
108-86-1 74-97-5 75-27-4	Bromobenzene Bromochloromethane Bromodichloromethane	ND ND ND		0.50 0.50 0.50	0.053 0.15 0.038	ug/l ug/l ug/l	
75-25-2 74-83-9 104-51-8	Bromoform Bromomethane n-Butylbenzene	ND ND		0.50 0.50 0.50	0.093 0.095 0.033	ug/l ug/l	
135-98-8 98-06-6 75-15-0	sec-Butylbenzene tert-Butylbenzene	ND ND ND	•	0.50	0.059 0.045 0.070	ug/l ug/l ug/l	
108-90-7 75-00-3	Chlorobenzene Chloroethane	ND ND ND	100	0.50	0.070	ug/1 ug/1 ug/1	
74-87-3 95-49-8	Chloromethane o-Chlorotoluene	ND ND		0.50 0.50 0.50	0.058 0.15 <u>0</u> .065	ug/l ug/l ug/l	
106-43-4 56-23-5 75-34-3	p-Chlorotoluene Carbon tetrachloride 1,1-Dichloroethane	ND ND ND	5.0	0.50 0.50 0.50	0.089 0.094 0.098	ug/l ug/l . ug/l	
75-35-4 563-58-6 96-12-8	1,1-Dichloroethylene 1,1-Dichloropropene 1,2-Dibromo-3-chloropropan	ND ND e ND	7.0 	0.50 0.50 1.0	0.13 0.18 0.37	ug/l ug/l ug/l	
106-93-4 107-06-2 78-87-5	1,2-Dibromoethane 1,2-Dichloroethane	ND ND ND	0.050	0.50 0.50 0.50	0.075 0.072 0.12	ug/l ug/l ug/l	
142-28-9 594-20-7	1,3-Dichloropropane 2,2-Dichloropropane	ND ND	J.U	0.50	0.046	ug/l ug/l ug/l	
124-48-1 74-95-3 75-71-8 10061-01-5	Dibromocnioromethane Dibromomethane Dichlorodifluoromethane cis-1,3-Dichloropropene	ND ND ND ND		0.50 0.50 1.0 0.50	0.067 0.10 0.13 0.059	ug/I ug/I ug/I ug/I	

ND = Not detectedMDL - Method Detection LimitMCL = Maximum Contamination Level (40 CFR 141)E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B\,=\,Indicates$ analyte found in associated method blank

N = Indicates presumptive evidence of a compound

JA65236

Sample results have been qualified by C. T. Male Associates, P.C. based on the results of the data review process, which is modeled after the USEPA CLP National Functional Guidelines for Organic Data Review (June 2008) and the USEPA SOP Method 524.2.

دمې د س

		Repor	t of A	naly	sis		Page 2 of 2
Client Samj Lab Sample Matrix: Method	ple ID: RW = ID: JA65236-1 DW - Drinking Water EPA 524 2 REV 4 1			D D P	ate Sample ate Receive	d: 12/29/10 d: 12/30/10 s: n/a	
Project:	Katonah Q4, Katonah	Pump Hous	e, Bedfo	rd, NY	(
VOA List						a 	
CAS No.	Compound	Result	MCL	RL	MDL	Units Q	
EX1 70 1	- Disbission	NIN	•	0.50	0.045	·	
541-73-1	m-Dichlorobenzene	ND		0.50	0.045	ug/i	
90-00-1	o-Dichlorobenzene	ND.	000	0.50	0.12	ug/1	
106-46-7	p-Dichlorobenzene	ND	10	0.50	0.056	ug/1	
156-60-5	trans-1,2-Dichloroethylene	ND 0.50	100	0.50	0.089	ug/I	—
156-59-2	cis-1,2-Dichloroethylene	0.58	70	0.50	0.084	ug/I	
10061-02-6	trans-1,3-Dichloropropene	ND		0.50	0.055	ug/I	
100-41-4	Ethylbenzene	ND	100	0.50	0.099	ug/l	
87-68-3	Hexachlorobutadiene	ND		2.0	0.076	ug/l	
110-54-3	Hexane	ND	* .	0.50	0.16	ug/l	
591-78-6	2-Hexanone	ND	÷.	2.0	0.19	ug/l	
98-82-8	Isopropylbenzene	ND	÷.	0.50	0.15	ug/l	
99-87-6	p-Isopropyltoluene	ND	ал. Ал	0.50	0.058	ug/l	
75-09-2	Methylene chloride	ND	5.0	0.50	0.092	ug/I	
1634-04-4	Methyl Tert Butyl Ether	ND	4	0.50	0.39	ug/l	
108-10-1	4-Methyl-2-pentanone	ND		2.0	0.37	ug/l	
91-20-3	Naphthalene	ND		0.50	0.060	ug/l	
103-65-1	n-Propylbenzene	ND		0.50	0.12	ug/l	
100-42-5	Styrene	ND	100	0.50	0.051	ug/l	
630-20-6	1,1,1,2-Tetrachloroethane	ND		0.50	0.070	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	200	0.50	0.083	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND		0.50	0.047	ug/l	
79-00-5	1.1.2-Trichloroethane	ND	5.0	0.50	0.11	ug/1	
37-61-6	1.2.3-Trichlorobenzene	ND		0.50	0.045	ug/1	
)6-18-4	1.2.3-Trichloropropane	ND		0.50	0.28	119/1	
20-82-1	1.2.4-Trichlorohenzene	ND	70	0.50	0.051	ug/l	
)5-63-6	1.2.4-Trimethylbenzene	ND		0.50	0.032	ug/1	
08-67-8	1.3.5-Trimethylbenzene	ND		0.50	0.11	₩8/1 110/l	
27-18-4	Tetrachloroethylene	29.3 7	5.0	0.50	0.067	⊶ <u>⊖</u> 110/Ĭ	
08-88-3	Toluene	ND	1000	0.50	0 10	₩ <u>6</u> /1	
/9-01-6	Trichloroethylene	0.90	5.0	0.00	0.10	ug/1 ug/1	
5-69-4	Trichlorofluoromethane	ND		1.0	0.11	ug/1 ug/1	
75-01-4	Vinvl chloride	ND	2.0	1.0 0 50	0.12 0 080	ug/1	
0.01.4	m p. Yylana	ND	<u>.</u>	1 0	0.000	ug/1 ug/l	
5-47-6	n Jylona	ND	1	1.0	0.41 A 11	ug/1 11/1	
.330-20-7	Xylenes (total)	ND	10000	0.50	0.11	ug/I ug/I	
CAS No.	Surrogate Recoveries	Run# 1	Run#	2	Limits		
199-69-1	1,2-Dichlorobenzene-d4	110%			78-114%		
CO 00 4	A Due of the set of th	1010/					

ND = Not detected MDL - Method Detection Limit MCL = Maximum Contamination Level (40 CFR 141) E = Indicates value exceeds calibration range

Accutest Laboratories

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Sample results have been qualified by C. T. Male Associates, P.C. based on the results of the data review process, which is modeled after the USEPA CLP National Functional Guidelines for Organic Data Review (June 2008) and the USEPA SOP Method 524.2.

د ،

		Repor	t of A	nalys	is		Page 1 of 2
Client Sam Lab Sampl Matrix: Method: Project:	nple ID: DUP le ID: JA65236-2 DW - Drinking Wate EPA 524.2 REV 4.1 Katonah Q4, Katonah						
Run #1 Run #2	File ID DF 1B51767.D 1	Analyzed 01/03/11	By MFH	Prep n/a	Date	Prep Batch n/a	Analytical Batch V1B2368
Run #1 Run #2	Purge Volume 5.0 ml						
VOA List							
CAS No.	Compound	Result	MCL	RL	MDL	Units Q	·
67-64-1 78-93-3 71-43-2 108-86-1 74-97-5 75-27-4 75-25-2 74-83-9 104-51-8 135-98-8 98-06-6 75-15-0 108-90-7 75-00-3 67-66-3 74-87-3	Acetone 2-Butanone Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane n-Butylbenzene sec-Butylbenzene tert-Butylbenzene Carbon disulfide Chlorobenzene Chloroethane Chloroform Chloromethane	ND W3 ND ND ND ND ND ND ND ND ND ND ND ND ND	5.0	$\begin{array}{c} 5.0\\ 5.0\\ 0.50\\ 0$	$\begin{array}{c} 1.5\\ 1.8\\ 0.061\\ 0.053\\ 0.15\\ 0.038\\ 0.093\\ 0.095\\ 0.033\\ 0.059\\ 0.045\\ 0.070\\ 0.070\\ 0.070\\ 0.14\\ 0.058\\ 0.15 \end{array}$	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	
15-49-8 06-43-4 16-23-5 15-35-4 163-58-6 16-12-8 06-93-4 07-06-2 18-87-5 42-28-9 94-20-7 24-48-1 4-95-3 5-71-8	o-Chlorotoluene p-Chlorotoluene Carbon tetrachloride 1,1-Dichloroethane 1,1-Dichloroethylene 1,2-Dibromo-3-chloropropane 1,2-Dibromoethane 1,2-Dichloropropane 1,2-Dichloropropane 2,2-Dichloropropane 2,2-Dichloropropane Dibromochloromethane Dibromomethane	ND ND ND ND ND ND ND ND ND ND ND ND ND N	5.0 7.0 0.20 0.050 5.0 5.0	$\begin{array}{c} 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 1.0\\ \end{array}$	0.065 0.089 0.094 0.098 0.13 0.18 0.37 0.075 0.072 0.12 0.046 0.12 0.067 0.10 0.13	ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1	•

ND = Not detectedMDL - Method Detection Limit J = Indicates an estimated value

MCL = Maximum Contamination Level (40 CFR 141)

E = Indicates value exceeds calibration range

B = Indicates analyte found in associated method blankN = Indicates presumptive evidence of a compound

> 8 of 142 JA65236

ĩ

		Report	of A	naly	vsis			Page 2 of 2	
Client Samp Lab Sample Matrix: Method: Project:	ole ID: DUP JA65236-2 DW - Drinking Wate EPA 524.2 REV 4.1 Katonah Q4, Katonah	r 1 Pump House	Date Sampled: 12/29/10 Date Received: 12/30/10 Percent Solids: n/a Pump House, Bedford, NY						
VOA List	······································					, /			
CAS No.	Compound	Result	MCL	RL	MDL	Units Q			
541-73-1	m-Dichlorobenzene	ND	1	0 50	0.045	1107/1			
05 50 1	a Dichlorobonzona	ND	008	0.00	0.045	ug/1			
106-16-7	n-Dichlorobenzone	ND	75	0.50	0.12	ug/1	•		
156 60 5	trans 1.2 Dichloroethylono	ND	100	0.50	0.000	ug/1			
156 50 2	cis 1.2. Dichloroothylono	0.60	. 70	0.50	0.083	ug/1			
10061 02 6	trans 1.3 Dichloropropona	ND	10	0.50	0.004	ug/1 110/1			
10001-02-0	Ethylbonzono	ND	700	0.50	0.000	ug/1			
07 60 2	Lavashlarabutadiana	ND	100	2.00	0.055	ug/1			
110 54 2	Hexacinorobulatiene	ND		2.U 0.50	0.070	ug/1			
110-34-3 501 79 6	2 Hoverene	ND		2.00	0.10	ug/1			
391-70-0	Z-riexallone	ND		2.U 0.E0	0.19	ug/1			
30-02-0 00 97 6	n Jaannanvitaluana	ND		0.00	0.13	ug/1			
99-01-0 75 00 0	p-isopropyitoitiene	ND	50	0.50	0.000	ug/1			
10-09-2	Methylene chloride		9.0	0.00	0.092	ug/1			
1034-04-4	Methyl 1 eri Bulyi Etter			0.00	0.39	ug/1			
108-10-1	4-Methyl-2-pentanone	ND		2.0	0.37	ug/l			
91-20-3	Naphinaiene	ND		0.50	0.060	ug/I			
103-65-1	n-Propylbenzene	ND		0.50	0.12	ug/I			
100-42-5	Styrene	ND E	100	0.50	0.051	ug/l			
630-20-6	1,1,1,2-Tetrachloroethane	ND		0.50	0.070	ug/l			
71-55-6	1,1,1-Trichloroethane	ND	200	0.50	0.083	ug/I			
79-34-5	1,1,2,2-Tetrachloroethane	ND		0.50	0.047	ug/l			
79-00-5	1,1,2-Trichloroethane	ND	5.0	0.50	0.11	ug/l			
87-61-6	1,2,3-Trichlorobenzene	ND.		0.50	0.045	ug/l			
96-18-4	1,2,3-Trichloropropane	ND		0.50	0.28	ug/l			
120-82-1	1,2,4-Trichlorobenzene	ND	70	0.50	0.051	ug/l			
95-63-6	1,2,4-Trimethylbenzene	ND		0.50	0.032	ug/l			
108-67-8	1,3,5-Trimethylbenzene	• ND		0.50	0.11	ug/l			
127-18-4	Tetrachloroethylene	29.4	5.0	0.50	0.067	ug/l			
108-88-3	Toluene	ND	1000	0.50	0.10	ug/l			
79-01-6	Trichloroethylene	0.95	5.0	0.50	0.11	ug/l			
75-69-4	Trichlorofluoromethane	ND		1.0	0.12	ug/l			
75-01-4	Vinyl chloride	ND	2.0	0.50	0.080	ug/I			
	m,p-Xylenė	ND		1.0	0.21	ug/l			
95-47-6	o-Xylene	ND		0.50	0.11	ug/l			
1330-20-7	Xylenes (total)	ND	10000	0.50	0.11	ug/l			
CAS No.	Surrogate Recoveries	Run# 1	Run#	2	Limits				
2199-69-1	1,2-Dichlorobenzene-d4	109%			78-114%				
460-00-4	4-Bromofluorobenzene	101%			77-115%				

ND = Not detectedMDL - Method Detection Limit MCL = Maximum Contamination Level (40 CFR 141) E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

ACCUTEST

JA65236

i.

	Report of Analysis								
Client Sam Lab Sampl Matrix: Method: Project:	nple ID: DIST le ID: JA65236-3 DW - Drinking Wate EPA 524.2 REV 4.1 Katonah Q4, Katonal	er h Pump Hous							
Run #1 Run #2	File ID DF 1B51768.D 1	Analyzed 01/03/11	By MFH	Prej n/a	o Date	Prep Batch n/a	Analytical Batch V1B2368		
Run #1 Run #2	Purge Volume 5.0 ml								
VOA List						5 20-9-9-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0			
CAS No.	Compound	Result	MCL	RL	MDL	Units Q	·.		
67-64-1 78-93-3	Acetone 2-Butanone	ND 43		5.0 5.0	1.5 1.8	ug/l ug/l			
/1-43-2 108-86-1	Benzene Bromobenzene	ND ND	5.0	0.50 0.50	$0.061 \\ 0.053$	ug/l ug/l			
74-97-5 75-27-4	Bromochloromethane Bromodichloromethane	ND	ъ.	0.50	0.15	ug/l			
75-25-2	Bromoform	8.3		0.50	0.093	ug/l			
74-83-9	Bromomethane	ND		0.50	0.095	ug/l			
25-08-8	n-Butylbenzene	ND		0.50	0.033	ug/l			
8_06_6	tort-Butylbonzono	ND		0.50	0.009	ug/i			
/5-00-0 /5-15-0	Carbon disulfide	ND		0.50	0.040	ug/i			
08-90-7	Chlorobenzene	ND	100	0.50	0.070	ug/I			
5-00-3	Chloroethane	ND		0.50	0.070	ug/1 ug/1			
57-66-3	Chloroform	0.26	•	0.50	0.14	ug/1 ug/1 I			
4-87-3	Chloromethane	ND	•	0.50	0.15	ug/, j 110/1			
5-49-8	o-Chlorotoluene	ND		0.50	0.065	8 ug/l			
06-43-4	p-Chlorotoluene	ND		0.50	0.089	ug/1			
6-23-5	Carbon tetrachloride	ND	5.0	0.50	0.094	ug/l			
5-34-3	1,1-Dichloroethane	ND		0.50	0.098	ug/l			
5-35-4	1,1-Dichloroethylene	ND	7.0	0.50	0.13	ug/I			
63-58-6	1,1-Dichloropropene	ND		0.50	0.18	ug/l			
6-12-8	1,2-Dibromo-3-chloropropan	e ND	0.20	1.0	0.37	ug/l			
06-93-4	1,2-Dibromoethane	ND	0.050	0.50	0.075	ug/l			
07-06-2	1,2-Dichloroethane	ND	5.0	0.50	0.072	ug/l			
8-87-5	1,2-Dichloropropane	ND ·	5.0	0.50	0.12	ug/l			
42-28-9	1,3-Dichloropropane	ND		0.50	0.046	ug/l			
94-20-7	2,2-Dicnioropropane	ND		0.50	0.12	ug/l			
44-40-1 1 05 2	Dibromocnioromeinane	4.0 ND		0.50	0.067	ug/I			
4-90-3 5710	Dioblorodifluoromethere			0.50	0.10	ug/1			
				1 11	H 13	11(1/1			

ND = Not detected MDL - Method Detection Limit MCL = Maximum Contamination Level (40 CFR 141) E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Å.3

JA65236

			Report	of A	naly	/sis			Page 2 of 2
Client Sam Lab Sample Matrix: Method: Project:	ole ID: DIST ID: JA65 DW EPA Kato	ID: DIST D: JA65236-3 Date Sampled: 12/29/10 DW - Drinking Water Date Received: 12/30/10 EPA 524.2 REV 4.1 Percent Solids: n/a Katonah Q4, Katonah Pump House, Bedford, NY							
VOA List								-	
CAS No.	Compound		Result	MCL	RL	MDL	Units Q		
541-73-1	m-Dichlorob	enzene	ND		0.50	0.045	ug/l		
95-50-1	o-Dichlorob	enzene	ND	600	0.50	0.12	110/1		
106-46-7	p-Dichlorob	enzene	ND .	75	0.50	0.056	110/1		
156-60-5	trans-1.2-Di	chloroethylene	ND	100	0.50	0.089	ng/1		
156-59-2	cis-1.2-Dich	oroethvlene	ND	70	0.50	0.084	ng/l		
10061-02-6	trans-1.3-Di	chloropropene	ND		0.50	0.055	11g/l		
100-41-4	Ethylbenzen	n and a second sec	ND	700	0.50	0.000	ug/1		•
87-68-3	Heyachlorob	utadiene	ND	100	2.0	0.000	ug/1 11g/1		
110-54-3	Heyane	andatene	ND		0.50	0.070	ug/1 110/l		
591_78_6	2-Havanona		ND		2.0	0.10	ug/1		
08 83 8 231-10-0	Jeopropulbar	7000	ND		0.50	0.19	ug/1		
00 97 6	n Isopropyidei	luono	ND		0.00	0.13	ug/1		
75 00 2	Mothulana al	Nuche	ND	5.0	0.50	0.000	ug/1		
1621 01 1	Mothyl Tert	nonue Dutul Ethan		5.0	0.00	0.092	ug/1		
1034-04-4	Memyr Terr	bulyi Euler			0.00	0.39	ug/I		
100-10-1	4-memyi-2-j	entanone	ND		2.0	0.37	ug/I		
91-20-3	Naphinalene		ND		0.50	0.060	ug/I		
103-65-1	n-Propylbenz	ene	ND		0.50	0.12	ug/l		
100-42-5	Styrene		ND	100	0.50	0.051	ug/l		
630-20-6	1,1,1,2-Tetra	chloroethane	ND		0.50	0.070	ug/l		
71-55-6	1,1,1-Trichlo	proethane	ND	200	0.50	0.083	ug/l		
79-34-5	1,1,2,2-Tetra	chloroethane	ND		0.50	0.047	ug/l		
79-00-5	1,1,2-Trichlo	roethane	ND	5.0	0.50	0.11	ug/l		
37-61-6	1,2,3-Trichlo	robenzene	ND		0.50	0.045	ug/l		
6-18-4	1,2,3-Trichle	ropropane	ND		0.50	0.28	ug/l		
20-82-1	1,2,4-Trichlo	robenzene	ND	70	0.50	0.051	ug/l		
5-63-6	1,2,4-Trimet	hylbenzene	ND		0.50	0.032	ug/l		
.08-67-8	1,3,5-Trimet	hylbenzene	ND		0.50	0.11	ug/l		
27-18-4	Tetrachloroe	hylene	ND	5.0	0.50	0.067	ug/1		
.08-88-3	Toluene	5	ND	1000	0.50	0.10	ug/l		
9-01-6	Trichloroethy	lene	ND	5.0	0.50	0.11	ug/1		
5-69-4	Trichloroflug	romethane	ND		1.0	0.12	110/l		
5-01-4	Vinvl chlorid	e	ND	2.0	0.50	0.080	ng/l		
	m.n-Xvlene		ND	2.5	1.0	0.21	110/l		
5-47-6	o-Xvlene		ND		0.50	0.11	ug/1		
330-20-7	Xylenes (tota	1)	ND	10000	0.50	0.11	ug/l		
AS No.	Surrogate R	ecoveries	Run# 1	Run#2	2	Limits			
199-69-1	1,2-Dichlorol	oenzene-d4	112%			78-114%			
60-00-4	4-Bromofluor	obenzene	102%			77-115%			

ND = Not detectedMDL - Method Detection LimitMCL = Maximum Contamination Level (40 CFR 141)E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

ACOUTEST. JA65236

Sample results have been qualified by C. T. Male Associates, P.C. based on the results of the data review process, which is modeled after the USEPA CLP National Functional Guidelines for Organic Data Review (June 2008) and the USEPA SOP Method 524.2.

در) دری

		Repo	rt of A	nalysi	IS		Page 1 of 2
Client Samp Lab Sample Matrix: Method: Project:	ole ID: STEFF DI: JA65236-4 DW - Drinking Wate EPA 524.2 REV 4.1 Katonah Q4, Katonal	r Eff 1 Pump Hou	se, Bedfor	Dat Dat Per rd, NY	e Sample e Receive cent Solid	d: 12/29/10 d: 12/30/10 s: n/a	
Run #1 Run #2	File ID DF 1B51769.D 1	Analyzed 01/03/11	By MFH	Prep n/a	Date	Prep Batch n/a	Analytical Batch V1B2368
Run #1 Run #2	Purge Volume 5.0 ml						
VOA List	· · ·						<u></u>
CAS No.	Compound	Result	MCL	RL	MDL	Units Q	
67-64-1	Acetone	ND W	3 .	5.0	1.5	ug/l	
78-93-3	2-Butanone	ND	•	5.0	1.8	ug/l	
71-43-2	Benzene	ND	5.0	0.50	0.061	ug/l	
08-86-1	Bromobenzene	ND		0.50	0.053	ug/l	
74-97-5	Bromochloromethane	ND		0.50	0.15	ug/l	
75-27-4	Bromodichloromethane	ND		0.50	0.038	ng/l	
75-25-2	Bromoform	ND		0.50	0.000	ug/1	
74-83-9	Bromomethane	ND		0.50	0.000	ug/1	
104-51-8	n-Butylbonzone	ND ¹		0.50	0.000	ug/1	
125-08-8	sec-Butylbenzene	ND		0.50	0.059	ug/1 110/l	
18_06_6	tert_Butylbenzene	ND		0.50	0.005	ug/1 ug/1	
75-15-0	Carbon disulfide	ND		0.50	0.040	ug/1 ug/1	
08-00-7	Chlorobanzene	ND	100	0.50	0.070	ug/1 110/1	
75_00_3	Chloroethane	ND		0.50	0.070	ug/1 11g/1	
37-66-3	Chloroform	ND		0.50	0.058	110/l	
74-87-3	Chloromethane	ND		0.50	0.15	100/l	
5-49-8	o-Chlorotoluene	ND	· .	0.50	0.165	ug/1	
06-43-4	n-Chlorotoluene	ND		0.50	0.000	ug/1	
6-23-5	Carbon tetrachloride	ND	5.0	0.50	0.094	110/l	
75-34-3	1.1-Dichloroethane	ND	0.0	0.50	0.098	119/l	
5-35-4	1.1-Dichloroethylene	ND	7.0	0.50	0.13	ug/l	
63-58-6	1.1-Dichloropropene	ND		0.50	0.18	ng/l	•
6-12-8	1.2-Dibromo-3-chloronronan	e ND	0.20	1.0	0.37	110/1	
06-93-4	1.2-Dibromoethane	ND	0.050	0.50	0.075	ug/1	
07-06-2	1.2-Dichloroethane	ND	5.0	0.50	0.072	119/1	
8-87-5	1.2-Dichloropropane	ND	5.0	0.50	0.12	ug/l	
42-28-9	1.3-Dichloropropane	ND	~	0.50	0.046	ug/l	
94-20-7	2.2-Dichloropropane	ND		0.50	0.12	ug/1	
24-48-1	Dibromochloromethane	ND	n]	0.50	0.067	ug/l	
4-95-3	Dibromomethane	ND	•	0.50	0.10	ug/1	
5-71-8	Dichlorodifluoromethane	ND		1.0	0.13	ng/l	
	within outling officially	1111		1.V		ME/ 1	

ND = Not detectedMDL - Method Detection Limit MCL = Maximum Contamination Level (40 CFR 141) E = Indicates value exceeds calibration range

N = Indicates presumptive evidence of a compound

<u>م</u>

JA65236

	Page 2 of 2							
Client Sam Lab Sampl Matrix: Method: Project:	ple ID: STEFF e ID: JA65236-4 DW - Drinking Water EPA 524.2 REV 4.1 Katonah Q4, Katonah	Eff Pump House						
VOA List								
CAS No.	Compound	Result	MCL	RL	MDL	Units	Q	
541-73-1	m-Dichlorobenzene	ND	·	0 50	0.045	110/1		
95-50-1	o-Dichlorobenzene	ND	600	0.50	0.012	ug/1		
106-46-7	n-Dichlorobenzene	ND	75	0.50	0.056	110/l		
156-60-5	trans-1.2-Dichloroethylene	ND	100	0.50	0.089	ng/1		
156-59-2	cis-1 2-Dichloroethylene	ND	70	0.50	0.084	110/1		
10061-02-6	trans-1 3-Dichloropropene	ND	- -	0.50	0.055	110/1		
100-41-4	Ethylhenzene	ND	700	0.50	0.000	ug/1 ug/1		
87-68-3	Hexachlorobutadiene	ND	100	2.0	0.076	110/1		
110-54-3	Hexane	ND		0.50	0.016	ug/1 110/1		
591-78-6	2-Hexanone	ND		20	0.19	ug/1	•	÷.,
98-82-8	Isonronvlbenzene	ND		0.50	0.15	110/1		
99-87-6	n-IsonropyItaluene	ND		0.50	0.15	no/l		
75-09-2	Methylene chloride	ND	5.0	0.50	0.092	ug/l		
1634-04-4	Methyl Tert Butyl Ether	ND	0.0	0.50	0.39	110/l		
108-10-1	4-Methyl-2-pentanone	ND		2.0	0.37	ug/1		
91-20-3	Nanhthalene	ND		0.50	0.060	110/l		
103-65-1	n-Pronylhenzene	ND		0.50	0.000	ug/1 110/1		
100-42-5	Sturono	ND	100	0.50	0.12	ug/1 110/l		
630-20-6	1 1 1 2-Tetrachloroethane	ND	100	0.50	0.031	ug/1 ug/1		
71_55_6	1 1 1 Trichlaroathana	ND	200	0.00	0.070	ug/1 ug/1		
70 34 5	1 1 2 2 Totrachloroothana	ND	. 200	0.50	0.003	ug/1 ug/1		
70-04-5	1 1 2 Trichloroethana	ND	5.0	0.50	0.047	ug/1 ug/1		
87.61.6	1 2 3 Trichlorohonzono	ND	5.0	0.50	0.11	ug/1 ug/1		
96-18-4	1.2.3-Trichloronronana	ND		0.50	0.043	ug/1 110/1		
120-10-4	1.2.4.Trichlorobenzene	ND	70	0.50	0.20	ug/1 ug/1		
05 63 6	1.2.4 Trimothylbonzono	ND	10	0.50	0.031	ug/1		
108.67-8	1.3.5 Trimathylbanzona	ND		0.50	0.052	ug/1 ug/1		
127-18-4	Tetrachloroathylona	ND	5.0	0.50	0.11	ug/1 ug/1		
108.88.3	Toluopo	ND	1000	0.00	0.007	ug/1 ug/1		
70-01-6	Trichloroethylone	ND	5.0	0.50	0.10	ug/1 ug/1		
75.60-4	Trichlorofluoromathana	ND	5.0	1 0	0.11	ug/1 110/1		
75 01 /	Vinut chlorido	ND	2.0	0.50	0.12	ug/1 ug/1		
15-01-4	m n Yulono	ND	2.0	1.0	0.000	ug/1 ug/1		
95-47-6	n.p-Xylene	ND		1.U 0.50	0.41	ug/1 ug/1		
1330.20.7	Vylanos (total)	ND	10000	0.50	0.11	ug/1		
1000-20-1	xyrenes (ioiai)	1412	10000	0.00	0.11	ug/1		
CAS No.	Surrogate Recoveries	Run# 1	Run#	2	Limits			
2199-69-1	1.2-Dichlorobenzene-d4	109%			78-114%			
460-00-4	4-Bromofluorobenzene	105%			77-115%			
		· • 7 ·						

MDL - Method Detection Limit ND = Not detectedMCL = Maximum Contamination Level (40 CFR 141) E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

JA65236

(...)

Accutest Laboratories **Report of Analysis** Page 1 of 2 Client Sample ID: MW-4 Lab Sample ID: JA65236-5 Date Sampled: 12/29/10 DW - Drinking Water Matrix: Date Received: 12/30/10 Method: EPA 524.2 REV 4.1 Percent Solids: n/a Project: Katonah O4, Katonah Pump House, Bedford, NY File ID DF Analyzed Prep Date Prep Batch By Analytical Batch Run #1 1B51770.D 1 01/03/11 MFH n/a V1B2368 n/a Run #2 Purge Volume Run #1 5.0 ml Run #2 VOA List CAS No. Compound Result MCL RL MDL Units Q 67-64-1 Acetone ND US 5.0 1.5 ug/l 78-93-3 2-Butanone ND 5.0 1.8 ug/l 71-43-2 Benzene ND 5.0 0.50 0.061 ug/l 108-86-1 Bromobenzene ND 0.50 0.053 ug/l 74-97-5 Bromochloromethane ND 0.50 0.15 ug/l 75-27-4 Bromodichloromethane ND 0.50 0.038 ug/l 75-25-2 Bromoform ND 0.50 0.093 ug/l 74-83-9 Bromomethane NÐ 0.50 0.095 ug/l 104-51-8 n-Butylbenzene ND 0.50 0.033 ug/1 135-98-8 sec-Butylbenzene ND 0.50 0.059 ug/l 98-06-6 tert-Butylbenzene ND 0.50 0.045 ug/l 75-15-0 Carbon disulfide ND 0.50 0.070 ug/l 108-90-7 Chlorobenzene ND 100 0.50 0.070 ug/l 75-00-3 Chloroethane ND 0.50 0.14 ug/1 67-66-3 Chloroform ND 0.50 0.058 ug/l 74-87-3 Chloromethane ND 0.50 0.15 ug/l 95-49-8 o-Chlorotoluene ND 0.50 0.065ug/l 106-43-4 p-Chlorotoluene ND 0.500.089 ug/l 56-23-5 Carbon tetrachloride ND. 5.0 0.500.094úg/l 75-34-3 1.1-Dichloroethane ND 0.50 0.098ug/l 75-35-4 1,1-Dichloroethylene 7.0 ND 0.50 0.13 ug/l 563-58-6 1,1-Dichloropropene ND 0.50 0.18 ug/l 96-12-8 1,2-Dibromo-3-chloropropane ND 0.20 1.0 0.37 ug/l 106-93-4 1,2-Dibromoethane ND 0.050 0.50 0.075 ug/l 107-06-2 1,2-Dichloroethane ND 5.0 0.50 0.072 ug/l 78-87-5 1,2-Dichloropropane ND 0.50 5.0 0.12 ug/l 142-28-9 1,3-Dichloropropane ND 0.50 0.046 ug/l 594-20-7 2,2-Dichloropropane ND 0.50 0,12 ug/l 124-48-1 Dibromochloromethane ND 0.50 0.067 ug/l 74-95-3 Dibromomethane ND 0.50 0.10 ug/l 75-71-8 Dichlorodifluoromethane ND 1.0 0.13 ug/l 10061-01-5 cis-1,3-Dichloropropene ND 0.50 0.059 ug/l

ND = Not detected MDL - Method Detection Limit MCL = Maximum Contamination Level (40 CFR 141) E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Č.

ACCUTEST. JA65236

14 of 142

	Report of Analysis								
Client Sam Lab Sample Matrix: Method: Project:	ple ID: MW-4 e ID: JA65236-5 DW - Drinking Wate EPA 524.2 REV 4.1 Katonah Q4, Katonah	Date Sampled: 12/29/10 g Water Date Received: 12/30/10 V 4.1 Percent Solids: n/a Katonah Pump House, Bedford, NY							
VOA List		·····			· ·				
CAS No.	Compound	Result	MCL	RL	MDL	Units	Q	·	
541-73-1	m-Dichlorobenzene	ND		0.50	0.045	uø/1			
95-50-1	o-Dichlorobenzene	ND	600	0.50	0.12	no/1			
106-46-7	p-Dichlorobenzene	ND	75	0.50	0.056	110/1			
156-60-5	trans-1 2-Dichloroethylene	ND	100	0.50	0.000	ug/1			
156-59-2	cis_1 2-Dichloroethylene	0.88	70	0.00	0.084	ug/1	•••		
10061-02-6	trans_1 3_Dichloronronene	ND	10	0.50	0.055	ug/1			
100-41-4	Ethylhonzone	ND	700	0.50	0.000	ug/1			
27_68_2	Hevachlorobutadiona	ND	100	0.00	0.039	ug/1			
10.54 3	Uovano	ND	:	2.U 0.E0	0.070	ug/1			
10-J4-3	2 Howanona			0.00	0.10	ug/I			
001-10-0				2.0	0.19	ug/I			
0-02-0	Isopropyidenzene	ND		0.50	0.15	ug/I			
9-01-0	p-isopropynoiuene	ND	<i>-</i> 0	0.50	0.058	ug/I			
5-09-2	Methylene chloride	ND	5.0	0.50	0.092	ug/l			
634-04-4	Methyl Tert Butyl Ether	ND .		0.50	0.39	ug/l			
08-10-1	4-Methyl-2-pentanone	ND	£.	2.0	0.37	ug/l			
1-20-3	Naphthalene	ND		0.50	0.060	ug/l			
.03-65-1	n-Propylbenzene	ND		0.50	0.12	ug/l			
00-42-5	Styrene	ND	100	0.50	0.051	ug/l			
30-20-6	1,1,1,2-Tetrachloroethane	ND		0.50	0.070	ug/l			
1-55-6	1,1,1-Trichloroethane	ND	200	0.50	0.083	ug/l			
9-34-5	1,1,2,2-Tetrachloroethane	ND		0.50	0.047	ug/l			
9-00-5	1,1,2-Trichloroethane	ND	5.0	0.50	0.11	ug/l			
7-61-6	1,2,3-Trichlorobenzene	ND		0.50	0.045	ug/l			
6-18-4	1,2,3-Trichloropropane	ND		0.50	0.28	ug/l			
20-82-1	1.2.4-Trichlorobenzene	ND	70	0.50	0.051	110/1			
5-63-6	1.2.4-Trimethylbenzene	ND		0.50	0.032	ug/1			
08-67-8	1.3.5-Trimethylhenzene	ND		0.50	0.11	110/I			
27-18-4	Tetrachloroethylene	ND	5.0	0.50	0 067	110/I			
08-88-3	Toluene	ND	1000	0.50	0.007	ug/1 ug/1			
9-01-6	Trichloroethylene	0.28	5.0	0.00	0.10 A 11	ug/1 110/1	T		
5-69-4	Trichlorofluoromethane	ND	0.0	1.0	0.11	ug/1	J		
5-01-4	Vinvl chlorida	ND	20	1,U 0 20	0.12	ug/1			
0-01 - 4	m n Yylano	ND	£.U	0.00	0.080 0.01	ug/1			
5 47 6	n.p-Aytene			1.0	0.41	ug/I			
330-20-7	Xylenes (total)	ND	10000	0.50	0.11	ug/1 ug/l			
AS No.	Surrogate Recoveries	Run# 1	Run#	2 I	Limits				
199-69-1	1,2-Dichlorobenzene-d4	112%		7	78-114%				
60-00-4	4-Bromofluorobenzene	101%		7	7-115%				

ND = Not detectedMDL - Method Detection Limit MCL = Maximum Contamination Level (40 CFR 141) E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

15 of 142 ACCUTEST

JA65236

Report of Analysis								Page 1 of 2		
Client Sam Lab Samp Matrix: Method: Project:										
Run #1 Run #2	File ID DF 1B51771.D 1	Analyzed 01/03/11	By MFH	Prej n/a	p Date	Prep n/a	Batch	Analytical V1B2368	Batch	
Run #1 Run #2	Purge Volume 5.0 ml									
VOA List		•						··· · · ·	•••.	
CAS No.	Compound	Result	MCL	RL	MDL	Units	Q			
67-64-1	Acetone			5.0	1.5	ug/l				
10-93-3 71_13_9	2-Bulanone Bonzono		. F.O.	5.0	1.8	ug/l				
108-86-1	Bromohenzono	ND	5.0	0.50	0.051	ug/1				
74_97_5	Bromochloromethane	ND		0.50	0.000	ug/1				
75-27-4	Bromodichloromethane	ND	÷.	0.00	0.10	ug/1				
75-25-2	Bromoform	ND		0.50	0.000	ug/1				
74-83-9	Bromomethane	ND	. :	0.50	0.095	ug/1				
104-51-8	n-Butylbenzene	ND		0.50	0.033	ug/1	÷.			
135-98-8	sec-Butylbenzene	ND	2.	0.50	0.055	ug/1				
98-06-6	tert-Butylbenzene	ND		0.50	0.035	ug/1 110/1				
75-15-0	Carbon disulfide	ND	Ç.e.	0.50	0.045	ug/1 ug/l				
108-90-7	Chlorobenzene	ND	100	0.50	0.070	ug/1 110/1				
75-00-3	Chloroethane	ND		0.50	0.14	ug/1 110/1				
67-66-3	Chloroform	0.089		0.50	0.058	ug/1 11g/1	T			
74-87-3	Chloromethane	ND		0.50	0.15	11g/l	3			
95-49-8	o-Chlorotoluene	ND		0.50	0.065	ug/l				
106-43-4	p-Chlorotoluene	ND		0.50	0.089	ug/l				
56-23-5	Carbon tetrachloride	ND	5.0	0.50	0.094	ug/l				
75-34-3	1,1-Dichloroethane	ND		0.50	0.098	ug/l				
75-35-4	1,1-Dichloroethylene	ND	7.0	0.50	0.13	ug/l				
563-58-6	1,1-Dichloropropene	ND		0.50	0.18	ug/l				
96-12-8	1,2-Dibromo-3-chloropropan	e ND	0.20	1.0	0.37	ug/l				
106-93-4	1,2-Dibromoethane	ND	0.050	0.50	0.075	ug/l				
107-06-2	1,2-Dichloroethane	ND	5.0	0.50	0.072	ug/l				
78-87-5	1,2-Dichloropropane	ND	5.0	0.50	0.12	ug/l				
142-28-9	1,3-Dichloropropane	ND	•	0.50	0.046	ug/l				
594-20-7	2,2-Dichloropropane	ND		0.50	0.12	ug/l				
124-48-1	Dibromochloromethane	ND		0.50	0.067	ug/l				
74-95-3	Dibromomethane	ND	-	0.50	0.10	ug/l				
75-71-8	Dichlorodifluoromethane	ND		1.0	0.13	ug/l				
10061-01-5	cis-1,3-Dichloropropene	ND	· ·	0.50	0.059	ug/l				

ND = Not detected MDL - Method Detection Limit

MCL = Maximum Contamination Level (40 CFR 141)E = Indicates value exceeds calibration range J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

ω Ö

			Repor	t of A	Analy	vsis			Page 2 of 2
Client San Lab Samp Matrix: Method: Project:	nple ID: le ID:	MW-11 JA65236-6 DW - Drinking Wate EPA 524.2 REV 4.1 Katonah Q4, Katonał	r 1 Pump Hous	e, Bedfo	I I I ord, N	Date Sample Date Receive Percent Solie Y	xd: 12/29/10 xd: 12/30/10 ds: n/a)	• • •
VOA List									· · · · ·
CAS No.	Comp	ound	Result	MCL	RL	MDL	Units Q		
541-73-1	m-Dic	hlorobenzene	ND	¥1 .	0.50	0.045			
95-50-1	o-Dich	lorobenzene	ND	് റെറ	0.50	0.045	ug/1		
106-46-7	n-Dich	lorobenzene	ND	75	0.50	0.12	ug/1		
156-60-5	trans-1	2-Dichloroethylene	ND	: 100 : 100	0.00	0.000	ug/1		
156-59-2	cis-1 2	-Dichloroethylene	ND	70	0.00	0.089	ug/1		
10061-02-6	trans_1	3-Dichloronronono	ND	10	0.50	0.084	ug/I		
100-41-4	Fthylb	anzeno		700	0.30	0.055	ug/I		
87-68-3	Hovac	lorobutadiona	ND	100	0.50	0.099	ug/I		
110.54.3	Hovan	noroputatiene	ND		2.0	0.076	ug/l		
501.78_6	2. How	5			0.50	0.16	ug/l		
08 83 8	Looppor	uiuie willengene			2.0	0.19	ug/I		
00.02-0	n Inorr	ynuenzene	ND		0.50	0.15	ug/l		
75 00 2	Mother!	opynoinene	ND		0.50	0.058	ug/l		
10-00-6 1691 NI 1	Mothul	Tert But I Fil	ND	5.0	0.50	0.092	ug/l		
1034-04-4	Metnyi	Tert Butyl Ether	ND		0.50	0.39	ug/l		
1-01-0	4-Meth	yl-2-pentanone	ND		2.0	0.37	ug/l		
11-20-3	Naphth	alene	ND		0.50	0.060	ug/l		
103-65-1	n-Prop	lbenzene	ND		0.50	0.12	ug/l		
00-42-5	Styrene		ND	100	0.50	0.051	ug/l		
530-20-6	1,1,1,2	-Tetrachloroethane	ND	с. 	0.50	0.070	ug/l		
1-55-6	1,1,1-T	richloroethane	ND	200	0.50	0.083	ug/l		
9-34-5	1,1,2,2	-Tetrachloroethane	ND		0.50	0.047	ug/l		
'9-00-5	1,1,2-T	richloroethane	ND	5.0	0.50	0.11	ug/l		
7-61-6	1,2,3-T	richlorobenzene	ND		0.50	0.045	ug/1		
6-18-4	1,2,3-T	richloropropane	ND		0.50	0.28	<u>8</u> ng/l		
20-82-1	1,2,4-T	richlorobenzene	ND	70	0.50	0.051	ug/1		
5-63-6	1,2,4-T	rimethylbenzene	ND		0.50	0.032	<u>8</u> /-		
08-67-8	1,3,5-T	rimethylbenzene	ND		0.50	0.11	ug/1		
27-18-4	Tetrach	loroethylene	0.59	5.0	0.50	0.067	ug/1		
08-88-3	Toluene	- -	ND	1000	0.50	0.10	ug/1 ug/1		
9-01-6	Trichlor	oethylene	ND	5.0	0.50	0.11	⊶ _{6′} . µσ/Ι		
5-69-4	Trichlor	ofluoromethane	ND		1.0	0.12	48/1 μα/1		
5-01-4	Vinyl cl	loride	ND	2.0	0.50	0.12	ug/1 110/t		
	m,p-Xv	lene	ND	a	1 0	0.000	ug/1		
5-47-6	o-Xvlen	e	ND		0.50	0.44,	ug/1 ug/1		
330-20-7	Xylenes	(total)	ND	10000	0.50	0.11	ug/l		
AS No.	Surroga	te Recoveries	Run# 1	Run#2	2 1	Limits			
199-69-1	1,2-Dicl	lorobenzene-d4	111%		7	78-114%			
50-00-4	4-Brome	ofluorobenzene	103%		7	7-115%			

ND = Not detected MDL - Method Detection Limit

J = Indicates an estimated value

MCL = Maximum Contamination Level (40 CFR 141)E = Indicates value exceeds calibration range

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

(4) (7)

• 		Repo	rt of A	Analy	sis		Page 1 of 2
Client Sar Lab Samp Matrix: Method: Project:	nple ID: FB ble ID: JA65236-7 DW - Drinking Wate EPA 524.2 REV 4.1 Katonah Q4, Katonah						
Run #1 Run #2	File ID DF 1B51772.D 1	Analyzed 01/03/11	By MFH	Pre n/a	p Date	Prep Batch n/a	Analytical Batch V1B2368
Run #1 Run #2	Purge Volume 5.0 ml				·		
VOA List							······································
CAS No.	Compound	Result	MCL	, RL	MDL	Units Q	
67-64-1	Acetone	ND WY		5.0	1.5	н σ /1	
78-93-3	2-Butanone	ND	5	5.0	1.8	110/1	
71-43-2	Benzene	ND	5.0	0.50	0.061	119/1	,
108-86-1	Bromobenzene	ND		0.50	0.053	ug/1	
74-97-5	Bromochloromethane	ND		0.50	0.15	ug/l	
75-27-4	Bromodichloromethane	ND		0.50	0.038	ug/1 110/1	
75-25-2	Bromoform	ND	:	0.50	0.093	10/I	
74-83-9	Bromomethane	ND		0.50	0.095	up/1	
104-51-8	n-Butylbenzene	ND		0.50	0.033	119/1	
135-98-8	sec-Butylbenzene	ND		0.50	0.059	ug/l	
98-06-6	tert-Butylbenzene	ND		0.50	0.045	ug/l	
75-15-0	Carbon disulfide	ND	1	0.50	0.070	ug/l	· · · · · · · · · · · · · · · · · · ·
108-90-7	Chlorobenzene	ND	100	0.50	0.070	ug/l	
75-00-3	Chloroethane	ND	•	0.50	0.14	ng/l	
67-66-3	Chloroform	ND		0.50	0.058	ug/l	•
4-87-3	Chloromethane	ND		0.50	0.15	ug/l	
5-49-8	o-Chlorotoluene	ND	1	0.50	0.065	ug/l	
06-43-4	p-Chlorotoluene	ND		0.50	0.089	ug/l	
6-23-5	Carbon tetrachloride	ND	5.0	0.50	0.094	ug/l	
5-34-3	1,1-Dichloroethane	ND		0.50	0.098	ug/l	
5-35-4	1,1-Dichloroethylene	ND	7.0	0.50	0.13	ug/l	
63-58-6	1,1-Dichloropropene	ND		0.50	0.18	ug/1	
6-12-8	1,2-Dibromo-3-chloropropane	ND	0.20	1.0	0.37	ug/I	
06-93-4	1,2-Dibromoethane	ND	0.050	0.50	0.075	ug/I	
07-06-2	1,2-Dichloroethane	ND	5.0	0.50	0.072	ug/l	
8-87-5	1,2-Dichloropropane	ND	5.0	0.50	0.12	ug/l	
42-28-9	1,3-Dichloropropane	ND	:	0.50	0.046	ug/l	
94-20-7	2,2-Dichloropropane	ND		0.50	0.12	ug/l	
24-48-1	Dibromochloromethane	ND		0.50	0.067	ug/l	
4-95-3	Dibromomethane	ND		0.50	0.10	ug/l	
0-71-8	Dichlorodifluoromethane	ND		1.0	0.13	ug/l	
0061-01-5	cis-1,3-Dichloropropene	ND		0.50	0.059	ug/l	

ND = Not detected MDL - Method Detection Limit MCL = Maximum Contamination Level (40 CFR 141) E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Accutest L	aboratories								. •
		Repor	t of A	nal	ysis				Page 2 of 2
Client Sam Lab Samp Matrix: Method: Project:	nple ID: FB le ID: JA65236-7 DW - Drinking Wate EPA 524.2 REV 4.1 Katonah Q4, Katonal	er FB h Pump <u>Hous</u>	e, Bedfo						
VOA List									
CAS No.	Compound	Result	MCL	RL	MDL	Units	Q		
541-73-1	m-Dichlorobenzene	ND		0.50	0.045	ug/l			
95-50-1	o-Dichlorobenzene	ND	600	0.50	0.12	ug/l			
106-46-7	p-Dichlorobenzene	ND	75	0.50	0.056	ug/l			
156-60-5	trans-1,2-Dichloroethylene	ND	100	0.50	0.089	ug/l			
156-59-2	cis-1,2-Dichloroethylene	ND	70	0.50	0.084	ug/l			
10061-02-6	trans-1,3-Dichloropropene	ND	۰.	0.50	0.055	ug/l			
100-41-4	Ethylbenzene	ND	700	0.50	0.099	ug/l			
87-68-3	Hexachlorobutadiene	ND		2.0	0.076	ug/l			
110-54-3	Hexane	ND		0.50) 0.16	ug/l			
591-78-6	2-Hexanone	ND	10. 	2.0	0.19	ug/l			
98-82-8	Isopropylbenzene	ND		0.50	0.15	ug/l			
99-87-6	p-lsopropyltoluene	ND		0.50	0.058	ug/I			
75-09-2	Methylene chloride	ND	5.0	0.50	0.092	ug/I			
1634-04-4	Methyl Tert Butyl Ether	ND		0.50	0.39	ug/l			
108-10-1	4-Methyl-2-pentanone	ND		2.0	0.37	ug/l			
91-20-3	Naphinalene	ND		0.50	0.060	ug/l			
103-05-1	n-Propylbenzene	ND	100	0.50	0.12	ug/l			
100-42-5	Styrene	ND	100	0.50	0.051	ug/i			
030-20-0	1,1,1,2-1 etrachioroethane	ND	000	0.50	0.070	ug/l			
71-33-0	1,1,1-1 richloroethane		200	0.50	0.083	ug/l			
79-34-3	1,1,2,2-1etrachioroethane			0.50	0.047	ug/l			
19-00-J 97 61 6	1,1,2-1 Incinoroemane		ə .0	0.50	0.11	ug/1			
06-18- <i>1</i>	1.2.3-Trichloropropaga	ND		0.00	0.040	ug/1			
120-82-1	1.2 A_Trichlorohonzono	ND	70	0.00	0.20	ug/1			
95-63-6	1.2.4-Trimethylbonzone	ND	10	0.00	0.031	ug/1			
108-67-8	1.3.5-Trimethylbenzene	ND		0.50	0.032	ug/1			
127-18-4	Tetrachloroethylene	ND	5.0	0.50	0.11	ug/1			
108-88-3	Toluene	ND	1000	0.50	0.007	ug/1 ug/1			
79-01-6	Trichloroethylene	ND	5.0	0.50	0.10	ug/1 ug/1			
75-69-4	Trichlorofluoromethane	ND	0.0	1.0	0.12	ug/1 uo/1			
75-01-4	Vinvl chloride	ND	2.0	0.50	0.080	110/1			
	m,p-Xylene	ND		1.0	0.21	11g/1			
95-47-6	o-Xylene	ND		0.50	0.11	ug/1			
1330-20-7	Xylenes (total)	ND	10000	0.50	0.11	ug/l			
CAS No.	Surrogate Recoveries	Run# 1	Run#2	2	Limits	·			
2199-69-1	1.2-Dichlorobenzene-d4	109%			78-114%				
460-00-4	4-Bromofluorobenzene	104%			77-115%			• .	

ND = Not detectedMDL - Method Detection Limit MCL = Maximum Contamination Level (40 CFR 141) E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

JA65236

Sample results have been qualified by C. T. Male Associates, P.C. based on the results of the data review process, which is modeled after the USEPA CLP National Functional Guidelines for Organic Data Review (June 2008) and the USEPA SOP Method 524.2.
. . .

Accutest Laboratories

	Page 1 of 2						
Client San Lab Samp Matrix: Method: Project:	nple ID: TB le ID: JA65236-8 DW - Drinking Wate EPA 524.2 REV 4.1 Katonah Q4, Katonal	r TB 1 Pump Hou	Date Sampled: 12/29/10 TB Date Received: 12/30/10 Percent Solids: n/a Pump House, Bedford, NY				
Run #1 Run #2	File ID DF 1B51773.D 1	Analyzed 01/03/11	By MFH	Prej n/a	p Date	Prep Batch n/a	Analytical Batch V1B2368
Run #1 Run #2	Purge Volume 5.0 ml	.1					
VOA List							
CAS No.	Compound	Result	MCL	RL	MDL	Units Q	
67-64-1 78-93-3 71-43-2 108-86-1 74-97-5 75-27-4 75-25-2 74-83-9 104-51-8 135-98-8 18-06-6 75-15-0 108-90-7 75-00-3 16-3 75-66-3 75-66-3 75-66-3 75-66-3 75-66-3 75-68-3 15-49-8 16-23-5 75-34-3 75-34-3 75-34-3	Acetone 2-Butanone Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane n-Butylbenzene sec-Butylbenzene tert-Butylbenzene Carbon disulfide Chlorobenzene Chlorotenane Chloroform Chlorotoluene p-Chlorotoluene Carbon tetrachloride 1,1-Dichloroethane 1,1-Dichloroethylene	ND (AX) ND ND ND ND ND ND ND ND ND ND ND ND ND	5.0 5.0 100 5.0 7.0	$\begin{array}{c} 5.0\\ 5.0\\ 0.50\\ 0$	$\begin{array}{c} 1.5\\ 1.8\\ 0.061\\ 0.053\\ 0.15\\ 0.038\\ 0.093\\ 0.095\\ 0.033\\ 0.095\\ 0.033\\ 0.059\\ 0.045\\ 0.070\\ 0.070\\ 0.070\\ 0.14\\ 0.058\\ 0.15\\ 0.065\\ 0.089\\ 0.094\\ 0.098\\ 0.13\end{array}$	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	
63-53-4 63-58-6 6-12-8 06-93-4 07-06-2 8-87-5 42-28-9 94-20-7 24-48-1 4-95-3 5-71-8 0061-01-5	1,1-Dichloropropene 1,2-Dibromo-3-chloropropane 1,2-Dibromoethane 1,2-Dichloropropane 1,2-Dichloropropane 1,3-Dichloropropane 2,2-Dichloropropane Dibromochloromethane Dibromomethane Dichlorodifluoromethane cis-1,3-Dichloropropene	ND ND ND ND ND ND ND ND ND ND ND ND	0.20 0.050 5.0 5.0	0.50 0.50 1.0 0.50 0	0.13 0.18 0.37 0.075 0.072 0.12 0.046 0.12 0.067 0.10 0.13 0.059	ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1	

ND = Not detectedMDL - Method Detection Limit MCL = Maximum Contamination Level (40 CFR 141)

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range

N = Indicates presumptive evidence of a compound

со Со

Report of Analysis										Page 2 of 2
Client Sample ID:TBLab Sample ID:JA65236-8Matrix:DW - Drinking Water TBMethod:EPA 524.2 REV 4.1Project:Katonah Q4, Katonah Pump H				Date Sampled: 12/29/10 Date Received: 12/30/10 Percent Solids: n/a House, Bedford, NY						
VOA List									• .	
CAS No.	Comp	ound	Result	MCL	RL	MDL	Units	Q		
541-73-1	m-Dic	hlorobenzene	ND		0.50	0.045	ua/1			
95-50-1	o-Dich	lorohenzene	ND	600	0.50	0.040	ug/1			•
106-46-7	n-Dich	lorobenzene	ND	75	0.50	0.12	ug/1			
156-60-5	trane_1	2-Dichloroothylono	ND	100	0.00	0.000	ug/1			
156_50_2		Dichloroothylono	ND	100	0.00	0.009	ug/1			
10061 02 6	trane 1	2 Dichloropropopo	ND	. 10	0.00	0.084	ug/1			
10001-02-0	174115-1	,s-Dicilioropropene			0.50	0.055	ug/I			
100-41-4	Euryn	enzene		700	0.50	0.099	ug/I			
01-00-0	nexac	norobutadiene		·	2.0	0.076	ug/I			
110-34-3	Hexan	9	ND		0.50	0.16	ug/l			
591-78-6	Z-Hexa	unone	ND		2.0	0.19	ug/l			
98-82-8	Isoproj	oylbenzene	ND		0.50	0.15	ug/l			
99-87-6	p-isopr	opyltoluene	ND		0.50	0.058	ug/l			
75-09-2	Methy	ene chloride	ND	5.0	0.50	0.092	ug/l			
1634-04-4	Methyl	Tert Butyl Ether	ND		0.50	0.39	ug/l			
108-10-1	4-Meth	yl-2-pentanone	ND.		2.0	0.37	ug/l			
91-20-3	Naphth	alene	ND		0.50	0.060	ug/1			
103-65-1	n-Prop	ylbenzene	ND		0.50	0.12	ug/l			
100-42-5	Styrene	3	ND	100	0.50	0.051	ug/l			
630-20-6	1,1,1,2	-Tetrachloroethane	ND		0.50	0.070	ug/l			
71-55-6	1,1,1-7	richloroethane	ND	200	0.50	0.083	ug/l			
79-34-5	1.1.2.2	-Tetrachloroethane	ND		0.50	0.047	11ø/l			
79-00-5	1.1.2-7	richloroethane	ND	5.0	0.50	0.11	ng/l			
87-61-6	1.2.3-7	richlorobenzene	ND		0.50	0.045	110/1			
96-18-4	1.2.3-1	richloropronane	ND	•	0.50	0.28	110/1			
120-82-1	1.2.4-T	richlorohenzene	ND	70	0.50	0.20	u ₆ /1 uσ/1			
95-63-6	1.2.4-T	rimethylbenzene	ND	10	0.50	0.001	ug/1 ug/l			
108-67-8	135-T	rimethylbonzono	ND		0.50	0.052	ug/1			
127-18-4	Tetrach	loroethylono	ND	5.0	0.50	0.11	ug/1			
108-88-3	Toluon	aoroemyrene	ND	1000	0.50	0.007	ug/1			
70.01_6	Trichlo	roothulono	ND	5 0	0.00	0.10	ug/1			
75 60 4	Trichlo	noflugnomothers	ND	5.0	1.0	0.11	ug/1			
15-03-4 75 61 4	Vind a	blorida		2.0	1.0	0.12	ug/I			
13-01-4	v myi C	lano		2.0	0.50	0.080	ug/I			
05 47 6	ш,р- ху	lene	ND		1.0	0.21	ug/I			
99-47-0	0-Ayler	le (total)	ND	10000	0.50	0.11	ug/l			
1000-20-7	Aytenes		ND	10000	0,50	U.11	ug/I			
CAS No.	Surrog	ate Recoveries	Run# 1	Run#2	2	Limits				
2199-69-1	1,2-Dic	hlorobenzene-d4	107%		ı	78-114%				
460-00-4	4-Brom	ofluorobenzene	106%			77-115%				

ND = Not detectedMDL - Method Detection Limit J = Indicates an estimated value

MCL = Maximum Contamination Level (40 CFR 141) E = Indicates value exceeds calibration range

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

JA65236

Sample results have been qualified by C. T. Male Associates, P.C. based on the results of the data review process, which is modeled after the USEPA CLP National Functional Guidelines for Organic Data Review (June 2008) and the USEPA SOP Method 524.2.

ò

APPENDIX B

LABORATORY ANALYSIS SUMMARY REPORT

e-Hardcopy 2.0 **Automated Report**

.

Environmental Planning and Management

Katonah Q4, Katonah Pump House, Bedford, NY

10001

Accutest Job Number: JA65236

Sampling Date: 12/29/10

Technical Report for

Report to:

EPM 1983 Marcus Avenue Suite 109 Lake Success, NY 11042 scherepany@epmco.com

ATTN: Steve Cherepany

Total number of pages in report: 142

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Conference and/or state specific certification programs as applicable.

David N. Speis⁴

VP, Laboratory Director

Client Service contact: Tony Esposito 732-329-0200

Certifications: NJ(12129), NY(10983), CA, CT, DE, FL, IL, IN, KS, KY, LA, MA, MD, MI, MT, NC, PA, RI, SC, TN, VA, WV

This report shall not be reproduced, except in its entirety, without the written approval of Accutest Laboratories. Test results relate only to samples analyzed.

New Jersey • 2235 Route 130 • Dayton, NJ 08810 • tel: 732-329-0200 • fax: 732-329-3499 • http://www.accutest.com

Accutest Laboratories is the sole authority for authorizing edits or modifications to this document. Unauthorized modification of this report is strictly prohibited.

N

60

4

හා

()

Table of Contents

Section 1: Sample Summary	3
Section 2: Case Narrative/Conformance Summary	4
Section 3: Sample Results	5
3.1: JA65236-1: RW	6
3.2: JA65236-2: DUP	8
3.3: JA65236-3: DIST	10
3.4: JA65236-4: STEFF	12
3.5: JA65236-5: MW-4	14
3.6: JA65236-6: MW-11	16
3.7: JA65236-7: FB	18
3.8: JA65236-8: TB	20
Section 4: Misc. Forms	22
4.1: Chain of Custody	23
4.2: Sample Tracking Chronicle	26
4.3: Internal Chain of Custody	27
4.4: 2010 MDL Study - Method: EPA 524.2 REV 4.1	30
Section 5: GC/MS Volatiles - QC Data Summaries	33
5.1: Method Blank Summary	34
5.2: Blank Spike Summary	37
5.3: Matrix Spike/Matrix Spike Duplicate Summary	40
5.4: Instrument Performance Checks (BFB)	43
5.5: Internal Standard Area Summaries	45
5.6: Surrogate Recovery Summaries	46
5.7: Initial and Continuing Calibration Summaries	47
Section 6: GC/MS Volatiles - Raw Data	56
6.1: Samples	57
6.2: Method Blanks	83
6.3: Blank Spikes	85
6.4: Matrix Spike/Matrix Spike Duplicates	89
6.5: Instrument Performance Checks (BFB)	97
6.6: Initial and Continuing Calibarations	101
6.7: Instrument Run Logs	140

Sample Summary

Environmental Planning and Management

Job No: JA65236

Katonah Q4, Katonah Pump House, Bedford, NY Project No: 10001

Sample Number	Collected Date	Time By	Received	Matr Code	ix Type	Client Sample ID	
JA65236-1	12/29/10	11:15 SC	12/30/10	DW	Drinking Water	RW	
JA65236-1D	12/29/10	11:25 SC	12/30/10	DW	Drinking Water Dup.	RW MSD	
JA65236-1S	12/29/10	11:25 SC	12/30/10	DW	Drinking Water MS	RW MS	
JA65236-2	12/29/10	00:00 SC	12/30/10	DW	Drinking Water	DUP	
JA65236-3	12/29/10	10:00 SC	12/30/10	DW	Drinking Water	DIST	
JA65236-4	12/29/10	10:45 SC	12/30/10	DW	Drinking Water Eff	STEFF	
JA65236-5	12/29/10	12:10 SC	12/30/10	DW	Drinking Water	MW-4	
JA65236-6	12/29/10	13:30 SC	12/30/10	ĎW	Drinking Water	MW-11	
JA65236-7	12/29/10	13:15 SC	12/30/10	DW	Drinking Water FB	FB	
JA65236-8	12/29/10	13:30 SC	12/30/10	DW	Drinking Water TB	ТВ	

CASE NARRATIVE / CONFORMANCE SUMMARY

Client:	Environmental Planning and Management	Job No:	JA65236
			1/10/0011 1 00 05 PM
Site:	Katonah O4. Katonah Pump House, Bedford, NY	Report Date	I/10/2011 1:09:25 PM

On 12/30/2010, 6 Sample(s), 1 Trip Blank(s) and 1 Field Blank(s) were received at Accutest Laboratories at a temperature of 4.6 C. Samples were intact and properly preserved, unless noted below. An Accutest Job Number of JA65236 was assigned to the project. Laboratory sample ID, client sample ID and dates of sample collection are detailed in the report's Results Summary Section.

Specified quality control criteria were achieved for this job except as noted below. For more information, please refer to the analytical results and QC summary pages.

Volatiles by GCMS By Method EPA 524.2 REV 4.1

	Matrix: AQ	** *	Batch ID:	V1B2368		
882.	All samples were analyze	d within the re	commended metho	od holding tim	ie.	

- All method blanks for this batch meet method specific criteria.
- Sample(s) JA65236-1MS, JA65236-1MSD were used as the QC samples indicated.
- Matrix Spike / Matrix Spike Duplicate Recovery(s) for Tetrachloroethylene are outside control limits. Outside control limits due to high level in sample relative to spike amount.

Accutest certifies that data reported for samples received, listed on the associated custody chain or analytical task order, were produced to specifications meeting Accutest's Quality System precision, accuracy and completeness objectives except as noted.

Estimated non-standard method measurement uncertainty data is available on request, based on quality control bias and implicit for standard methods. Acceptable uncertainty requires tested parameter quality control data to meet method criteria.

Accutest Laboratories is not responsible for data quality assumptions if partial reports are used and recommends that this report be used in its entirety. Data release is authorized by Accutest Laboratories indicated via signature on the report cover

Page 1 of 1

New Jersey ACCUTEST EABORATORIES

60

Sample Results

Report of Analysis

· · · ·

.

.

.

JA65236 LABORATEST

Report of Analysis

Client Samj Lab Sample Matrix: Method: Project:	ple ID: RW DI: JA65236-1 DW - Drinking Wate EPA 524.2 REV 4.1 Katonah Q4, Katonał	r 1 Pump Hous	e, Bedfor	Dat Dat Per d, NY	e Samplec e Receive cent Solid	1: 12/29/10 d: 12/30/10 s: n/a	
Run #1 Run #2	File ID DF 1B51766.D 1	Analyzed 01/03/11	By MFH	Prep n/a	Date	Prep Batch n/a	Analytical Batch V1B2368
Run #1 Run #2	Purge Volume 5.0 ml						
VOA List				·		•••••	
CAS No.	Compound	Result	MCL	RL	MDL	Units Q	
67-64-1	Acetone	ND	1	5.0	1.5	ug/l	
78-93-3	2-Butanone	ND	1	5.0	1.8	ug/l	
71-43-2	Benzene	ND	5.0	0.50	0.061	ug/l	
108-86-1	Bromobenzene	ND		0.50	0.053	ug/l	
74-97-5	Bromochloromethane	ND		0.50	0.15	ug/l	
75-27-4	Bromodichloromethane	ND		0.50	0.038	ug/l	
75-25-2	Bromoform	ND		0.50	0.093	ug/l	
74-83-9	Bromomethane	ND		0.50	0.095	ug/l	
104-51-8	n-Butylbenzene	ND		0.50	0.033	ug/l	
135-98-8	sec-Butylbenzene	ND		0.50	0.059	ug/l	
98-06-6	tert-Butylbenzene	ND		0.50	0.045	ug/l	
75-15-0	Carbon disulfide	ND		0.50	0.070	ug/l	
108-90-7	Chlorobenzene	ND	100	0.50	0.070	ug/l	
75-00-3	Chloroethane	ND	÷.	0.50	0.14	ug/l	
67-66-3	Chloroform	0.072		0.50	0.058	ug/l J	
74-87-3	Chloromethane	ND		0.50	0.15	ug/l	
95-49-8	o-Chlorotoluene	ND		0.50	0.065	ug/l	
106-43-4	p-Chlorotoluene	ND	1	0.50	0.089	ug/l	
56-23-5	Carbon tetrachloride	ND	5.0	0.50	0.094	ug/l	
75-34-3	1,1-Dichloroethane	ND	:	0.50	0.098	ug/l	
75-35-4	1,1-Dichloroethylene	ND	7.0	0.50	0.13	ug/l	
563-58-6	1,1-Dichloropropene	ND		0.50	0.18	ug/l	
96-12-8	1,2-Dibromo-3-chloropropa	ne ND	0.20	1.0	0.37	ug/l	
106-93-4	1,2-Dibromoethane	ND	0.050	0.50	0.075	ug/l	
107-06-2	1,2-Dichloroethane	ND	5.0	0.50	0.072	ug/l	
78-87-5	1,2-Dichloropropane	ND	5.0	0.50	0.12	ug/l	
142-28-9	1,3-Dichloropropane	ND		0.50	0.046	ug/l	
594-20-7	2,2-Dichloropropane	ND		0.50	0.12	ug/l	
124-48-1	Dibromochloromethane	ND		0.50	0.067	ug/l	
74-95-3	Dibromomethane	ND	1	0.50	0.10	ug/l	
75-71-8	Dichlorodifluoromethane	ND		1.0	0.13	ug/l	
10061-01-5	cis-1.3-Dichloropropene	ND		0.50	0.059	ug/l	

ND = Not detectedMDL - Method Detection LimitMCL = Maximum Contamination Level (40 CFR 141)E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 2

ACCUTEST

Client Sample ID: RW

Lab Sample	ID: JA65236-1			Ď	ate Sampled	1: 12/29/10	
Matrix:	DW - Drinking Water	•		D	ate Received	d: 12/30/10	
Method:	EPA 524.2 REV 4.1	- -		Pe	ercent Solid	s: n/a	
Project:	Katonah Q4, Katonah	Pump House	e, Bedfor	d, NY	Ŧ.		
VOA List							·
10101							
CAS No.	Compound	Result	MCL	RL	MDL	Units Q	
541-73-1	m-Dichlorobenzene	ND		0.50	0.045	ug/1	
95-50-1	o-Dichlorobenzene	ND	600	0.50	0.12	ug/I	
106-46-7	p-Dichlorobenzene	ND	75	0.50	0.056	ug/1	
156-60-5	trans-1,2-Dichloroethylene	ND	100	0.50	0.089	ug/I	
156-59-2	cis-1,2-Dichloroethylene	0.58	70	0.50	0.084	ug/I	
10061-02-6	trans-1,3-Dichloropropene	ND		0.50	0.055	ug/l	
100-41-4	Ethylbenzene	ND	700	0.50	0.099	ug/l	
87-68-3	Hexachlorobutadiene	ND		2.0	0.076	ug/l	
110-54-3	Hexane	ND		0.50	0.16	ug/l	
591-78-6	2-Hexanone	ND	ti Den service	2.0	0.19	ug/l	
98-82-8	Isopropylbenzene	ND		0.50	0.15	ug/l	
99-87-6	p-Isopropyltoluene	ND		0.50	0.058	ug/l	
75-09-2	Methylene chloride	ND	5.0	0.50	0.092	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	-1.	0.50	0.39	ug/l	
108-10-1	4-Methyl-2-pentanone	ND		2.0	0.37	ug/l	
91-20-3	Naphthalene	ND		0.50	0.060	ug/l	
103-65-1	n-Propylbenzene	ND		0.50	0.12	ug/l	
100-42-5	Styrene	ND	100	0.50	0.051	ug/l	
630-20-6	1,1,1,2-Tetrachloroethane	ND		0.50	0.070	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	200	0.50	0.083	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	· · · ·	0.50	0.047	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	5.0	0.50	0.11	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	-	0.50	0.045	ug/l	
96-18-4	1,2,3-Trichloropropane	ND		0.50	0.28	ug/l	
120-82-1	1.2.4-Trichlorobenzene	ND	70	0.50	0.051	ug/l	
95-63-6	1.2.4-Trimethvlbenzene	ND		0.50	0.032	ug/l	
108-67-8	1.3.5-Trimethvlbenzene	ND		0.50	0.11	ug/l	
127-18-4	Tetrachloroethylene	29.3	5.0	0.50	0.067	ug/l	
108-88-3	Toluene	ND	1000	0.50	0.10	ug/l	
79-01-6	Trichloroethvlene	0.90	5.0	0.50	0.11	ug/l	
75-69-4	Trichlorofluoromethane	ND		1.0	0.12	ug/1	
75-03-4	Vinyl chlorida	ND	2.0	0.50	0 080		
10-01-4	m n. Xvlana	ND		1.00	0.000	ອ∕ 110/1	
05_17 6	m,p-2xy10n0 0-Yylono	ND	1	0 50	0.21 0.11	⊶ 6 /∔ 11σ/1	
00-41-0 1990 90 7	Vulence (total)	ND	10000	0.00	0.11 A 11	ug/1 110/l	
1000-20-7	Ayrenes (10181)	ามที่ 🦷		v .30	0.11	ug/1	
CAS No.	Surrogate Recoveries	Run#1	Run#	2	Limits		
2100-60 1	1 2-Dichlorohanzona-44	110%			78-114%		
780 00 1 780 00 1	1,2-Dicinoropenzene-04	101%	•		77-115%		
400-00-4	4-DI OHIOHUOFUDENZENE	10170			FI-11J70		

Report of Analysis

ND = Not detected MDL - Method Detection Limit

MCL = Maximum Contamination Level (40 CFR 141)

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 2 of 2

çə) min

Report of Analysis

Client Samp Lab Sample Matrix: Method: Project:	ple ID: DUP e ID: JA65236-2 DW - Drinking Wate EPA 524.2 REV 4.1 Katonah Q4, Katonal	r 1 Pump Hous	se, Bedfor	Dat Dat Per d, NY	e Sampled e Received cent Solid	l: 12/29/ 1: 12/30/ s: n/a	10 10	
Run #1 Run #2	File ID DF 1B51767.D 1	Analyzed 01/03/11	By MFH	Prep n/a	Date	Prep Ba n/a	atch	Analytical Batch V1B2368
Run #1 Run #2	Purge Volume 5.0 ml				· · · · · · · · · · · · · · · · · · ·		-	
VOA List								
CAS No.	Compound	Result	MCL	RL	MDL	Units Q	į	
67-64-1	Acetone	ND		5.0	1.5	ug/l	•	
78-93-3	2-Butanone	ND		5.0	1.8	ug/l		
71-43-2	Benzene	ND	5.0	0.50	0.061	ug/l		
108-86-1	Bromobenzene	ND		0.50	0.053	ug/l		
74-97-5	Bromochloromethane	ND		0.50	0.15	ug/l		
75-27-4	Bromodichloromethane	ND		0.50	0.038	ug/l		
75-25-2	Bromoform	ND		0.50	0.093	ug/l		
74-83-9	Bromomethane	ND		0.50	0.095	ug/l		
104-51-8	n-Butvlbenzene	ND		0.50	0.033	ug/l		
135-98-8	sec-Butylbenzene	ND	. *	0.50	0.059	ug/l		
98-06-6	tert-Butylbenzene	ND		0.50	0.045	ug/l		
75-15-0	Carbon disulfide	ND		0.50	0.070	ug/l		
108-90-7	Chlorobenzene	ND	100	0.50	0.070	ug/l		
75-00-3	Chloroethane	ND		0.50	0.14	ug/l		
67-66-3	Chloroform	0.082	÷	0.50	0.058	ug/l I		
74-87-3	Chloromethane	ND		0.50	0.15	ug/l		
95-49-8	o-Chlorotoluene	ND		0.50	0.065	ug/1		
106-43-4	n-Chlorotoluene	ND		0.50	0.089	ug/1		
56-23-5	Carbon tetrachloride	ND	5.0	0.50	0.094	ug/l		
75-34-3	1.1-Dichloroethane	ND		0.50	0.098	ug/l		
75-35-4	1 1-Dichloroethylene	ND	7.0	0.50	0.13	ug/l		
563-58-6	1 1-Dichloropronene	ND		0.50	0.18	ug/1		
96-12-8	1 2-Dibromo-3-chloropropa	ne ND	0.20	1.0	0.37	119/1		· · · ·
106-93-4	1.2 Dibromoethane	ND	0.050	0.50	0.075	11ø/l		
107-06-2	1.2 Dichloroethane	ND	5.0	0.50	0.072	110/1		
78-87-5	1 2-Dichloropronane	ND	5.0	0.50	0.12	чъ/1 110/1		
142 28 0	1.3.Dichloropropage	ND	0.0	0.50	0.12	110/1		
142-20-3 504_20-7	2 2-Dichloropropage	ND	*	0.50	0.040	ч 5/1 110/1		
194-20-1 194-49 1	Dibromochloromothane	ND		0.50	0.12	ч6/1 110/1		
7/_05 2	Dibromomathana	ND	-	0.50	0.001	ug/1 110/1		
75_71 Q	Dichlorodifluoromethero	ND		1.0	0.10 [] 13 ⁻	u ₆ /1 11σ/1		
10061 01 5	cis-1 3-Dichloropropage	ND		0.50	0.15	110/I		

ND = Not detected MDL - Method Detection Limit

MCL = Maximum Contamination Level (40 CFR 141) E = Indicates value exceeds calibration range J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Client Sample ID: DUP

Lab Sample Matrix: Method: Project:	ID: JA65236-2 DW - Drinking Water EPA 524.2 REV 4.1 Katonab 04 Katonab I	Date Sampled: 12/29/10 Date Received: 12/30/10 Percent Solids: n/a Pump House, Bedford, NY								
VOA List							, *			
011 2.50										
CAS No.	Compound	Result	MCL	RL	MDL	Units	Q			
541-73-1	m-Dichlorobenzene	ND	:	0.50	0.045	ug/l				
95-50-1	o-Dichlorobenzene	ND	600	0.50	0.12	ug/l				
106-46-7	p-Dichlorobenzene	ND	75	0.50	0.056	ug/l				
156-60-5	trans-1,2-Dichloroethylene	ND	100	0.50	0.089	ug/l				
156-59-2	cis-1,2-Dichloroethylene	0.60	70	0.50	0.084	ug/l				
10061-02-6	trans-1,3-Dichloropropene	ND		0.50	0.055	ug/l				
100-41-4	Ethylbenzene	ND	700	0.50	0.099	ug/l				
87-68-3	Hexachlorobutadiene	ND		2.0	0.076	ug/l				
110-54-3	Hexane	ND		0.50	0.16	ug/l				
591-78-6	2-Hexanone	ND		2.0	0.19	ug/l				
98-82-8	Isopropylbenzene	ND		0.50	0.15	ug/l				
99-87-6	p-Isopropyltoluene	ND		0.50	0.058	ug/l				
75-09-2	Methylene chloride	ND	5.0	0.50	0.092	ug/l				
1634-04-4	Methyl Tert Butyl Ether	ND		0.50	0.39	ug/l				
108-10-1	4-Methyl-2-pentanone	ND		2.0	0.37	ug/l				
91-20-3	Naphthalene	ND		0.50	0.060	ug/l				
103-65-1	n-Propylbenzene	ND		0.50	0.12	ug/l				
100-42-5	Styrene	ND	100	0.50	0.051	ug/l				
630-20-6	1,1,1,2-Tetrachloroethane	ND		0.50	0.070	ug/l				
71-55-6	1,1,1-Trichloroethane	ND	200	0.50	0.083	ug/l				
79-34-5	1,1,2,2-Tetrachloroethane	ND		0.50	0.047	ug/l				
79-00-5	1,1,2-Trichloroethane	ND	5.0	0.50	0.11	ug/l				
87-61-6	1,2,3-Trichlorobenzene	ND		0.50	0.045	ug/l				
96-18-4	1,2,3-Trichloropropane	ND		0.50	0.28	ug/l				
120-82-1	1.2.4-Trichlorobenzene	ND	70	0.50	0.051	ug/l				
95-63-6	1,2,4-Trimethylbenzene	ND		0.50	0.032	ug/I				
108-67-8	1,3,5-Trimethylbenzene	ND		0.50	0.11	ug/l				
127-18-4	Tetrachloroethylene	29.4	5.0	0.50	0.067	ug/l				
108-88-3	Toluene	ND	1000	0.50	0.10	ug/l				
79-01-6	Trichloroethvlene	0.95	5.0	0.50	0.11	ug/l				
75-69-4	Trichlorofluoromethane	ND		1.0	0.12	ug/l				
75-01-4	Vinvl chloride	ND	2.0	0.50	0.080	ug/l				
10 01 1	m.n-Xvlene	ND		1.0	0.21	ug/1				
95-47-6	o-Xvlene	ND		0.50	0.11	ug/l				
1330-20-7	Xylenes (total)	ND	10000	0.50	0.11	ug/l				
CAS No.	Surrogate Recoveries	Run# 1	Run#	2	Limits					
2100_60 1	1 2-Dichlorobenzene-d4	109%			78-114%					
780 UD 1	A Bromofluorobonzono	101%			77-115%					
400-00-4	4-DIVINIONUOLODENZENE	TOT /0			11-110/0					

Report of Analysis

Page 2 of 2

041

ND = Not detected MDL - Method Detection Limit MCL = Maximum Contamination Level (40 CFR 141) J = Indicates an estimated value

B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range

	Page 1 of 2						
Client Sam Lab Sample Matrix: Method: Project:	ple ID: DIST e ID: JA65236-3 DW - Drinking Water EPA 524.2 REV 4.1 Katonah Q4, Katonah	Pump House	e, Bedfor	Dat Dat Per d, NY	e Sampled e Received cent Solids	: 12/29/10 l: 12/30/10 s: n/a	
Run #1 Run #2	File ID DF DF <t< th=""><th>Analyzed)1/03/11</th><th>By MFH</th><th>Prep n/a</th><th>Date</th><th>Prep Batch n/a</th><th>Analytical Batch V1B2368</th></t<>	Analyzed)1/03/11	By MFH	Prep n/a	Date	Prep Batch n/a	Analytical Batch V1B2368
Run #1 Run #2	Purge Volume 5.0 ml						
VOA List							
CAS No.	Compound	Result	MCL	RL	MDL	Units Q	
67-64-1 78-93-3 71-43-2 108-86-1 74-97-5 75-27-4 75-25-2 74-83-9 104-51-8 135-98-8 98-06-6 75-15-0	Acetone 2-Butanone Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane n-Butylbenzene sec-Butylbenzene tert-Butylbenzene Carbon disulfide	ND ND ND ND 1.2 8.3 ND ND ND ND ND ND	5.0	$\begin{array}{c} 5.0\\ 5.0\\ 0.50\\ 0$	1.5 1.8 0.061 0.053 0.15 0.038 0.093 0.095 0.033 0.059 0.045 0.070	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	· · · · · · · · · · · · · · · · · · ·
108-90-7 75-00-3 67-66-3 74-87-3 95-49-8 106-43-4 56-23-5 75-34-3	Chlorobenzene Chlorotom Chloroform Chloromethane o-Chlorotoluene p-Chlorotoluene Carbon tetrachloride 1,1-Dichloroethane	ND ND 0.26 ND ND ND ND ND	5.0	0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50	0.070 0.14 0.058 0.15 0.065 0.089 0.094 0.098	ug/l ug/l ug/l ug/l ug/l ug/l ug/l	
75-35-4 563-58-6 96-12-8 106-93-4 107-06-2 78-87-5 142-28-9 594-20-7 124-48-1 74-95-3	1,1-Dichloroethylene 1,1-Dichloropropene 1,2-Dibromo-3-chloropropan 1,2-Dibromoethane 1,2-Dichloroethane 1,2-Dichloropropane 1,3-Dichloropropane 2,2-Dichloropropane Dibromochloromethane	ND ND ND ND ND ND ND ND 4.6 ND	0.20 0.050 5.0 5.0	0.50 0.50 1.0 0.50 0.50 0.50 0.50 0.50 0.50 0.50 1.6	0.13 0.18 0.37 0.075 0.072 0.12 0.046 0.12 0.067 0.10	ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1	
75-71-8 10061-01-5	Dichlorodifluoromethane cis-1,3-Dichloropropene	ND ND	• • •	1.0 0.50	0.13 0.059	ug/l ug/l	

ND = Not detectedMDL - Method Detection Limit MCL = Maximum Contamination Level (40 CFR 141) E = Indicates value exceeds calibration range

 $\begin{array}{l} J = \mbox{ Indicates an estimated value} \\ B = \mbox{ Indicates analyte found in associated method blank} \end{array}$

Client Sample ID: DIST

JA65236-3

Lab Sample ID:

Matrix: Method: Project:	DW - Drinking Water EPA 524.2 REV 4.1 Katonah Q4, Katonah	Bedfor	D Pe d, NY						
VOA List	р. та на					-			
CAS No.	Compound	Result	MCL	RL	MDL	Units	Q		
541-73-1	m-Dichlorobenzene	ND		0.50	0.045	ug/l			
95-50-1	o-Dichlorobenzene	ND	600	0.50	0.12	ug/l			
106-46-7	p-Dichlorobenzene	ND	75	0.50	0.056	ug/l			
156-60-5	trans-1,2-Dichloroethylene	ND	100	0.50	0.089	ug/l			
156-59-2	cis-1,2-Dichloroethylene	ND	70	0.50	0.084	ug/l			
10061-02-6	trans-1,3-Dichloropropene	ND		0.50	0.055	ug/l			
100-41-4	Ethylbenzene	ND	700	0.50	0.099	ug/l			
87-68-3	Hexachlorobutadiene	ND		2.0	0.076	ug/l			
110-54-3	Hexane	ND		0.50	0.16	ug/l			
591-78-6	2-Hexanone	ND		2.0	0.19	ug/l			
98-82-8	Isopropylbenzene	ND		0.50	0.15	ug/l			
99-87-6	p-Isopropyltoluene	ND		0.50	0.058	ug/l			
75-09-2	Methylene chloride	ND	5.0	0.50	0.092	ug/l			
1634-04-4	Methyl Tert Butyl Ether	ND		0.50	0.39	ug/l			
108-10-1	4-Methyl-2-pentanone	ND		2.0	0.37	ug/l			
91-20-3	Naphthalene	ND		0.50	0.060	ug/l			
103-65-1	n-Propylbenzene	ND		0.50	0.12	ug/l			
100-42-5	Styrene	ND	100	0.50	0.051	ug/l			
630-20-6	1,1,1,2-Tetrachloroethane	ND		0.50	0.070	ug/l			
71-55-6	1,1,1-Trichloroethane	ND	200	0.50	0.083	ug/l			
79-34-5	1,1,2,2-Tetrachloroethane	ND		0.50	0.047	ug/l			
79-00-5	1,1,2-Trichloroethane	ND	5.0	0.50	0.11	ug/l			
87-61-6	1,2,3-Trichlorobenzene	ND		0.50	0.045	ug/l			
96-18-4	1,2,3-Trichloropropane	ND		0.50	0.28	ug/l			
120-82-1	1,2,4-Trichlorobenzene	ND	70	0.50	0.051	ug/l			
95-63-6	1,2,4-Trimethylbenzene	ND		0.50	0.032	ug/l			
108-67-8	1,3,5-Trimethylbenzene	ND		0.50	0.11	ug/l			
127-18-4	Tetrachloroethylene	ND	5.0	0.50	0.067	ug/l			
108-88-3	Toluene	ND	1000	0.50	0.10	ug/l			
79-01-6	Trichloroethylene	ND	5.0	0.50	0.11	ug/l			
75-69-4	Trichlorofluoromethane	ND		1.0	0.12	ug/l			
75-01-4	Vinvl chloride	ND	2.0	0.50	0.080	ug/l			
	m.p-Xvlene	ND		1.0	0.21	ug/l			
95-47-6	o-Xylene	ND		0.50	0.11	ug/l			
1330-20-7	Xylenes (total)	ND	10000	0.50	0.11	ug/l			
CAS No.	Surrogate Recoveries	Run# 1	Run#	2	Limits				
2199-69-1	1 2-Dichlorobenzene-d4	112%			78-114%			·	
460-00-1	4-Bromofluorobenzene	102%			77-115%				
-100-00-4	-1-DI AIII AIII AIII AD CIIZEILE	100/0			110/0				

Report of Analysis

Date Sampled: 12/29/10

ND = Not detected MDL - Method Detection Limit MCL = Maximum Contamination Level (40 CFR 141) E = Indicates value exceeds calibration range J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 2 of 2

		Repo	rt of Ai	nalysi	S	_	Page 1 of 2
Client Sam Lab Sample Matrix: Method: Project:	ple ID: STEFF e ID: JA65236-4 DW - Drinking Wate EPA 524.2 REV 4.1 Katonah Q4, Katonah	r Eff Pump Hou	se, Bedfor	Dat Dat Per d, NY	e Sampled e Received cent Solids	l: 12/29/10 l: 12/30/10 s: n/a	
Run #1 Run #2	File ID DF 1B51769.D 1	Analyzed 01/03/11	By MFH	Prep n/a	Date	Prep Batch n/a	Analytical Batch V1B2368
Run #1 Run #2	Purge Volume 5.0 ml						
VOA List	•••						
CAS No.	Compound	Result	MCL	RL	MDL	Units Q	
67-64-1 78-93-3 71 42 2	Acetone 2-Butanone	ND ND	5.0	5.0 5.0 0.50	1.5 1.8 0.061	ug/l ug/l ug/l	
108-86-1 74-97-5	Bromobenzene Bromochloromethane	ND ND		0.50 0.50	0.053	ug/l ug/l	
75-27-4 75-25-2 74-83-9	Bromodichloromethane Bromoform Bromomethane	ND ND ND		0.50 0.50 0.50	0.038 0.093 0.095	ug/l ug/l ug/l	
104-51-8 135-98-8	n-Butylbenzene sec-Butylbenzene tert Butylbenzene	ND ND		0.50 0.50 0.50	0.033 0.059 0.045	ug/l ug/l ug/l	
98-00-0 75-15-0 108-90-7	Carbon disulfide Chlorobenzene	ND ND	100	0.50	0.070	ug/l ug/l	
75-00-3 67-66-3 74-87-3	Chloroethane Chloroform Chloromethane	ND ND ND		0.50 0.50 0.50	0.14 0.058 0.15	ug/l ug/l ug/l	
95-49-8 106-43-4	o-Chlorotoluene p-Chlorotoluene	ND ND	5.0	0.50 0.50 0.50	0.065 0.089 0.094	ug/l ug/l ug/l	
56-23-5 75-34-3 75-35-4	1,1-Dichloroethane 1,1-Dichloroethylene	ND ND ND	7.0	0.50 0.50	0.094 0.098 0.13	ug/l ug/l	· · ·
563-58-6 96-12-8	1,1-Dichloropropene 1,2-Dibromo-3-chloropropar	ND ne ND	0.20	0.50 1.0 0.50	0.18 0.37 0.075	ug/l ug/l ug/l	
106-93-4 107-06-2 78-87-5	1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloropropane	ND ND ND	5.0 5.0	0.50 0.50 0.50	0.073 0.12	ug/l ug/l	
142-28-9 594-20-7	1,3-Dichloropropane 2,2-Dichloropropane Dibromochloroprotector	ND ND		0.50 0.50 0.50	0.046 0.12 0.067	ug/l ug/l ug/l	
124-48-1 74-95-3 75-71-8	Dioromocinorometnane Dibromomethane Dichlorodifluoromethane	ND ND ND		0.50 0.50 1.0	0.10 0.13	ug/l ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND		0.50	0.059	ug/l	

ND = Not detectedMDL - Method Detection Limit MCL = Maximum Contamination Level (40 CFR 141) E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: STEFF

Lab Sample Matrix: Method: Project:	ID: JA65236-4 DW - Drinking Water EPA 524.2 REV 4.1 Katonah Q4, Katonah H	Eff Pump House,	Bedfor	Da Da Pe d, NY	ate Sampled: ate Received: ercent Solids:	12/2 12/3 n/a	29/10 80/10
VOA List							
CAS No.	Compound	Result	MCL	RL	MDL	Units	Q
541-73-1	m-Dichlorobenzene	ND		0.50	0.045	ug/l	
95-50-1	o-Dichlorobenzene	ND	600	0.50	0.12	ug/l	
106-46-7	p-Dichlorobenzene	ND	75	0.50	0.056	ug/l	
156-60-5	trans-1,2-Dichloroethylene	ND	100	0.50	0.089	ug/l	
156-59-2	cis-1,2-Dichloroethylene	ND	70	0.50	0.084	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND		0.50	0.055	ug/l	
100-41-4	Ethylbenzene	ND	700	0.50	0.099	ug/l	
87-68-3	Hexachlorobutadiene	ND		2.0	0.076	ug/l	
110-54-3	Hexane	ND		0.50	0.16	ug/l	
591-78-6	2-Hexanone	ND		2.0	0.19	ug/l	
98-82-8	Isopropylbenzene	ND		0.50	0.15	ug/l	
99-87-6	p-Isopropyltoluene	ND		0.50	0.058	ug/l	
75-09-2	Methylene chloride	ND	5.0	0.50	0.092	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND		0.50	0.39	ug/l	
108-10-1	4-Methyl-2-pentanone	ND		2.0	0.37	ug/l	
91-20-3	Naphthalene	ND		0.50	0.060	ug/l	
103-65-1	n-Propylbenzene	ND		0.50	0.12	ug/l	·
100-42-5	Styrene	ND	100	0.50	0.051	ug/l	
630-20-6	1,1,1,2-Tetrachloroethane	ND		0.50	0.070	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	200	0.50	0.083	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND		0.50	0.047	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	5.0	0.50	0.11	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	÷	0.50	0.045	ug/l	
96-18-4	1,2,3-Trichloropropane	ND		0.50	0.28	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	70	0.50	0.051	ug/l	
95-63-6	1,2,4-Trimethylbenzene	ND		0.50	0.032	ug/l	
108-67-8	1,3,5-Trimethylbenzene	ND		0.50	0.11	ug/l	
127-18-4	Tetrachloroethylene	ND	5.0	0.50	0.067	ug/l	
108-88-3	Toluene	ND	1000	0.50	0.10	ug/l	
79-01-6	Trichloroethylene	ND	5.0	0.50	0.11	ug/l	
75-69-4	Trichlorofluoromethane	ND		1.0	0.12	ug/l	
75-01-4	Vinyl chloride	ND	2.0	0.50	0.080	ug/l	
	m.p-Xylene	ND		1.0	0.21	ug/l	
95-47-6	o-Xylene	ND		0.50	0.11	ug/l	
1330-20-7	Xylenes (total)	ND	10000	0.50	0.11	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run#	2	Limits		
2199-69-1	1,2-Dichlorobenzene-d4	109%			78-114%		
460-00-4	4-Bromofluorobenzene	105%			77-115%		

Report of Analysis

ND = Not detected MDL - Method Detection Limit MCL = Maximum Contamination Level (40 CFR 141) E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

100

JA65236

Page 2 of 2

		Repo	rt of A	nalysi	is		Page 1 of 2
Client Sam Lab Sampl Matrix: Method: Project:	ple ID: MW-4 e ID: JA65236-5 DW - Drinking Water EPA 524.2 REV 4.1 Katonah Q4, Katonah	Pump Hous	se, Bedfor	Dat Dat Per d, NY	te Samplec te Receive cent Solid	l: 12/29/10 d: 12/30/10 s: n/a	
Run #1 Run #2	File ID DF A 1B51770.D 1 0	Analyzed 1/03/11	By MFH	Prep n/a	Date	Prep Batch n/a	Analytical Batch V1B2368
Run #1 Run #2	Purge Volume 5.0 ml						
VOA List				• . •			
CAS No.	Compound	Result	MCL	RL	MDL	Units Q	
67-64-1 78-93-3 71 42 2	Acetone 2-Butanone Baazana	ND ND	5.0	5.0 5.0 0.50	1.5 1.8 0.061	ug/l ug/l	
108-86-1	Bromobenzene Bromoseleremethene	ND ND		0.50	0.053	ug/l	
75-27-4	Bromodichloromethane	ND		0.50	0.038	ug/l	
75-25-2 74-83-9	Bromotorm Bromomethane	ND ND	ati Ali	0.50	0.093	ug/I ug/I	
104-51-8 135-98-8	n-Butylbenzene sec-Butylbenzene	ND ND		0.50 0.50	0.033 0.059	ug/1 11g/1	
98-06-6	tert-Butylbenzene	ND		0.50	0.045	ug/l	
75-15-0	Carbon disulfide	ND		0.50	0.070	ug/l	
108-90-7	Chlorobenzene	ND	100	0.50	0.070	ug/l	
75-00-3	Chloroethane	ND		0.50	0.14	ug/l	
67-66-3	Chloroform	ND		0.50	0.058	ug/1	
14-81-3	Chioromethane		:	0.50	0.10	ug/1	
9J-49-0	n Chlorotoluona			0.50	0.000	ug/1 ug/1	
56.23-5	Carbon tetrachloride		5.0	0.50	0.003	ug/l	
75-34-3	1. 1-Dichloroethane	ND		0.50	0.098	ug/l	
75-35-4	1.1-Dichloroethylene	ND	7.0	0.50	0.13	ug/l	
563-58-6	1.1-Dichloropropene	ND		0.50	0.18	ug/l	
96-12-8	1,2-Dibromo-3-chloropropan	e ND	0.20	1.0	0.37	ug/l	
106-93-4	1,2-Dibromoethane	ND	0.050	0.50	0.075	ug/l	
107-06-2	1,2-Dichloroethane	ND	5.0	0.50	0.072	ug/l	
78-87-5	1,2-Dichloropropane	ND	5.0	0.50	0.12	ug/l	
142-28-9	1,3-Dichloropropane	ND	, A.	0.50	0.046	ug/l	
594-20-7	2,2-Dichloropropane	ND		0.50	0.12	ug/l	
124-48-1	Dibromochloromethane	ND		0.50	0.067	ug/l	
74-95-3	Dibromomethane	ND	the second	0.50	0.10	ug/l	
75-71-8	Dichlorodifluoromethane	ND		1.0	0.13	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	2.	0.50	0.059	ug/I	

ND = Not detected MDL - Method Detection Limit MCL = Maximum Contamination Level (40 CFR 141) E = Indicates value exceeds calibration range J = Indicates an estimated value

B = Indicates analyte found in associated method blank

ços Cas

Client Sample ID:

Lab Sample ID:

MW-4

JA65236-5

12/30/10 DW - Drinking Water Date Received: Matrix: Percent Solids: n/a Method: EPA 524.2 REV 4.1 Katonah Q4, Katonah Pump House, Bedford, NY Project: VOA List MCL RL MDL Units Q Result CAS No. Compound ug/l 541-73-1 m-Dichlorobenzene ND 0.50 0.045 600 0.12 ug/l 95-50-1 o-Dichlorobenzene ND 0.50 75 0.056 ug/l ND 0.50 p-Dichlorobenzene 106-46-7 ND 100 0.50 0.089 ug/l. 156-60-5 trans-1.2-Dichloroethylene 0.88 70 0.500.084 ug/l 156-59-2 cis-1,2-Dichloroethylene ND 0.50 0.055 ug/l trans-1,3-Dichloropropene 10061-02-6 700 0.50 0.099 ug/l ND 100-41-4 Ethylbenzene Hexachlorobutadiene ND 2.0 0.076 ug/l 87-68-3 ug/l 0.500.16 110-54-3 Hexane ND 2.0 0.19ug/l 591-78-6 2-Hexanone ND 98-82-8 Isopropylbenzene ND 0.500.15 ug/l 99-87-6 p-Isopropyltoluene ND 0.50 0.058 ug/l Methylene chloride ND 5.0 0.50 0.092ug/l 75-09-2 0.50 0.39 ug/l Methyl Tert Butyl Ether ND 1634-04-4 2.0 0.37 ug/l 108-10-1 4-Methyl-2-pentanone ND ND 0.50 0.060 ug/l 91-20-3 Naphthalene ND 0.50 0.12 ug/l n-Propylbenzene 103-65-1 100 ND 0.500.051 100-42-5 Styrene ug/l 1,1,1,2-Tetrachloroethane ND 0.500.070 ug/l 630-20-6 ND 200 0.50 0.083 ug/l 71-55-6 1,1,1-Trichloroethane 0.50 0.047 ug/l 79-34-5 1,1,2,2-Tetrachloroethane ND 79-00-5 1.1.2-Trichloroethane ND 5.00.50 0.11 ug/1 0.500.045 87-61-6 1,2,3-Trichlorobenzene ND ug/l 0.50 0.28 1,2,3-Trichloropropane ND ug/l 96-18-4 120-82-1 1,2,4-Trichlorobenzene ND 70 0.50 0.051 ug/l 95-63-6 1,2,4-Trimethylbenzene ND 0.50 0.032 ug/l 108-67-8 1,3,5-Trimethylbenzene ND 0.500.11 ug/l 127-18-4 Tetrachloroethylene ND 5.0 0.50 0.067 ug/l 108-88-3 Toluene ND 1000 0.50 0.10 ug/l 79-01-6 Trichloroethylene 0.28 5.0 0.50 0.11 ug/l J Trichlorofluoromethane ND 1.0 0.12 ug/l 75-69-4 75-01-4 Vinyl chloride ND 2.0 0.50 0.080 ug/l m,p-Xylene ND 1.0 0.21 ug/l ŃD 0.50 0.11 ug/l 95-47-6 o-Xylene 10000 0.50 0.11 1330-20-7 Xylenes (total) ND ug/l Run#2 Limits Surrogate Recoveries Run#1 CAS No. 78-114% 2199-69-1 1.2-Dichlorobenzene-d4 112% 77-115% 460-00-4 4-Bromofluorobenzene 101%

Report of Analysis

ND = Not detectedMDL - Method Detection Limit MCL = Maximum Contamination Level (40 CFR 141) E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 2 of 2

12/29/10

Date Sampled:

		Repor	rt of A	nalysi	is			Page 1 of 3		
Client Sample ID: MW-11 Lab Sample ID: JA65236-6 Matrix: DW - Drinking Water Method: EPA 524.2 REV 4.1 Project: Katonah Q4, Katonah F		r 1 Pump Hous	Date Sampled: 12/29/10 Date Received: 12/30/10 Percent Solids: n/a Pump House, Bedford, NY							
Run #1 Run #2	File ID DF 1B51771.D 1	Analyzed 01/03/11	By MFH	Prep n/a	Date	Prep n/a	Batch	Analytical Batch V1B2368		
Run #1 Run #2	Purge Volume 5.0 ml									
VOA List								····		
CAS No.	Compound	Result	MCL	RL	MDL	Units	Q			
67-64-1	Acetone	ÑD		5.0	1.5	ug/l				
78-93-3	2-Butanone	ND		5.0	1.8	ug/l				
71-43-2	Benzene	ND	5.0	0.50	0.061	ug/l				
108-86-1	Bromobenzene	ND		0.50	0.053	ug/l				
74-97-5	Bromochloromethane	ND		0.50	0.15	ug/l				
75-27-4	Bromodichloromethane	ND	• • •	0.50	0.038	ug/l				
75-25-2	Bromoform	ND		0.50	0.093	ug/l				
74-83-9	Bromomethane	ND		0.50	0.095	ug/l				
104-51-8	n-Butylbenzene	ND		0.50	0.033	ug/l				
135-98-8	sec-Butylbenzene	ND		0.50	0.059	ug/l		·		
98-06-6	tert-Butylbenzene	ND		0.50	0.045	ug/l				
75-15-0	Carbon disulfide	ND		0.50	0.070	ug/l				
108-90-7	Chlorobenzene	ND	100	0.50	0.070	ug/l				
75-00-3	Chloroethane	ND		0.50	0.14	ug/l				
67-66-3	Chloroform	0.089		0.50	0.058	ug/l	J			
74-87-3	Chloromethane	ND		0.50	0.15	ug/l	-			
95-49-8	o-Chlorotoluene	ND		0.50	0.065	ug/l				
106-43-4	p-Chlorotoluene	ND		0.50	0.089	ug/l				
56-23-5	Carbon tetrachloride	ND	5.0	0.50	0.094	ug/l				
75-34-3	1.1-Dichloroethane	ND		0.50	0.098	ug/l				
75-35-4	1.1-Dichloroethylene	ND	7.0	0.50	0.13	ug/l				
563-58-6	1.1-Dichloropropene	ND		0.50	0.18	ug/l				
96-12-8	1.2-Dibromo-3-chloropropar	ne ND	0.20	1.0	0.37	ug/l				
106-93-4	1.2-Dibromoethane	ND	0.050	0.50	0.075	ug/l				
107-06-2	1.2-Dichloroethane	ND	5.0	0.50	0.072	ug/l				
78-87-5	1.2-Dichloropropane	ND	5.0	0.50	0.12	ug/l				
142-28-9	1.3-Dichloropropane	ND		0.50	0.046	ug/l				
594-20-7	2.2-Dichloropropane	ND		0.50	0.12	ug/l				
124-48-1	Dibromochloromethane	ND	т. Х	0.50	0.067	ug/l				
74-95-3	Dibromomethane	ND		0.50	0.10	ug/l				
						- .				

ND = Not detected MDL - Method Detection Limit MCL = Maximum Contamination Level (40 CFR 141) E = Indicates value exceeds calibration range

Dichlorodifluoromethane

10061-01-5 cis-1,3-Dichloropropene

75-71-8

J = Indicates an estimated value

0.13

0.059

1.0

0.50

ND

ND

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

ug/l

ug/l

ω

နှာ က

		Report	of A	naly	/SIS				Page 2 of 2
Client Sam Lab Sample Matrix: Method: Project:	ple ID: MW-11 e ID: JA65236-6 DW - Drinking Water EPA 524.2 REV 4.1 Katonah Q4, Katonah	Pump House,	Bedfor	I I P rd, N	Date Sampleo Date Received Percent Solid Y	l: 12/29 1: 12/30 s: n/a)/10)/10		
VOA List									J
CAS No.	Compound	Result	MCL	RL	MDL	Units	Q		
541-73-1	m-Dichlorobenzene	ND 11 11		0.50	0.045	ug/l			
95-50-1	o-Dichlorobenzene	ND	600	0.50	0.12	ug/1			
106-46-7	p-Dichlorobenzene	ND	75	0.50	0.056	ug/1			
156-60-5	trans-1,2-Dichloroethylene	ND	100	0.50	0.089	ug/l			
156-59-2	cis-1,2-Dichloroethylene	ND	70	0.50	0.084	ug/l			
10061-02-6	trans-1,3-Dichloropropene	ND		0.50	0.055	ug/l			
100-41-4	Ethylbenzene	ND	700	0.50	0.099	-ug/l			
87-68-3	Hexachlorobutadiene	ND		2.0	0.076	<u>8</u> 110/1			
110-54-3	Hexane	ND		0.50	0.16	ug/1			
591~78-6	2-Hexanone	ND		2.0	0.19	ug/1			
98-82-8	Isopropylbenzene	ND		0.50	0.15	ug/l			
99-87-6	p-Isopropyltoluene	ND		0.50	0.058	ug/l			
75-09-2	Methylene chloride	ND	5.0	0.50	0.092	ug/l			
1634-04-4	Methyl Tert Butyl Ether	ND		0.50	0.39	ug/l			
108-10-1	4-Methyl-2-pentanone	ND		2.0	0.37	ug/1			
91-20-3	Naphthalene	ND		0.50	0.060	ug/1			
103-65-1	n-Propylbenzene	ND		0.50	0.12	ug/1			
100-42-5	Styrene	ND	100	0.50	0.051	110/1			
630-20-6	1,1,1.2-Tetrachloroethane	ND		0.50	0.070	uø/1			
71-55-6	1.1.1-Trichloroethane	ND	200	0.50	0.083	110/1			
79-34-5	1,1,2,2-Tetrachloroethane	ND		0.50	0.047	119/1			
79-00-5	1,1,2-Trichloroethane	ND	5.0	0.50	0.11	119/1			
87-61-6	1.2.3-Trichlorobenzene	ND		0.50	0.045	110/l			
96-18-4	1.2.3-Trichloropropane	ND		0.50	0.28	no/1		•	
120-82-1	1.2.4-Trichlorobenzene	ND	70	0.50	0.051	110/l			
95-63-6	1.2.4-Trimethylbenzene	ND		0.50	0.032	ч <u>ө</u> /1 110/1			
108-67-8	1.3.5-Trimethylbenzene	ND		0.50	0.11	ug/1 ug/1			
127-18-4	Tetrachloroethvlene	0.59	5.0	0.50	0.067	ug/1 110/1		•	
108-88-3	Toluene	ND	1000	0.50	0.10	110/l			
79-01-6	Trichloroethylene	ND	5.0	0.50	0.11				
75-69-4	Trichlorofluoromethane	ND	510	1.0	0.12	ug/l			
75-01-4	Vinyl chloride	ND	2.0	0.50	0.080	ч о /1 цо/1			
-	m.p-Xvlene	ND		1.0	0.21	6/1 110/l			
95-47-6	o-Xvlene	ND		0.50	0.11	110/l			
1330-20-7	Xylenes (total)	ND	10000	0.50	0.11	ug/l			
CAS No.	Surrogate Recoveries	Run# 1	Run#	2	Limits				
2199-69-1	1,2-Dichlorobenzene-d4	111%			78 -114%				
460-00-4	4-Bromofluorobenzene	103%			77-115%				

MDL - Method Detection Limit ND = Not detectedMCL = Maximum Contamination Level (40 CFR 141) E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

· .		Report	of A	nalysi	S ·		Page 1 of 2
Client Sam Lab Sampl Matrix: Method: Project:	iple ID: FB le ID: JA65236-7 DW - Drinking Water EPA 524.2 REV 4.1 Katonah Q4, Katonah	FB Pump House, I					
Run #1 Run #2	File ID DF 2 1B51772.D 1 (Analyzed By 01/03/11 M	y FH	Prep n/a	Date	Prep Batch n/a	Analytical Batch V1B2368
Run #1 Run #2	Purge Volume 5.0 ml						· .
VOA List							
CAS No.	Compound	Result 1	MCL	RL	MDL	Units Q	
67-64-1 78-93-3 71-43-2 108-86-1 74-97-5 75-27-4 75-25-2 74-83-9 104-51-8 135-98-8 98-06-6 75-15-0 108-90-7 75-00-3 67-66-3 74-87-3 95-49-8 106-43-4 56-23-5	Acetone 2-Butanone Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane n-Butylbenzene sec-Butylbenzene tert-Butylbenzene Carbon disulfide Chlorobenzene Chlorobenzene Chlorotenane Chloroform Chloromethane o-Chlorotoluene p-Chlorotoluene Carbon tetrachloride	ND ND ND ND ND ND ND ND ND ND ND ND ND N	5.0	5.0 5.0 0.50	1.5 1.8 0.061 0.053 0.15 0.038 0.093 0.095 0.033 0.059 0.045 0.070 0.070 0.14 0.058 0.15 0.065 0.089 0.094	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	
75-34-3 75-35-4 563-58-6 96-12-8 106-93-4 107-06-2 78-87-5 142-28-9 594-20-7 124-48-1 74-95-3 75-71-8 10061-01-5	1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloropropene 1,2-Dibromo-3-chloropropane 1,2-Dibromoethane 1,2-Dichloropropane 1,2-Dichloropropane 2,2-Dichloropropane Dibromochloromethane Dibromomethane Dichlorodifluoromethane cis-1,3-Dichloropropene	ND ND ND ND ND ND ND ND ND ND ND ND ND N	7.0 0.20 0.050 5.0 5.0	0.50 0.50 0.50 1.0 0.50 0.50 0.50 0.50 0.50 0.50 0.50 1.0 0.50 1.0 0.50	0.098 0.13 0.18 0.37 0.075 0.072 0.12 0.046 0.12 0.067 0.10 0.13 0.059	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	

ND = Not detectedMDL - Method Detection LimitMCL = Maximum Contamination Level (40 CFR 141)E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

n i	~		1	•
Kenort	ot.	Αn	218	7010
	· UL	7 m	u 1 1	

Client Sample ID:FBLab Sample ID:JA65236-7Date Sampled:12/29.Matrix:DW - Drinking Water FBDate Received:12/30.Method:EPA 524.2 REV 4.1Percent Solids:n/aProject:Katonah Q4, Katonah Pump House, Bedford, NY	/10 /10
VOA List	
CAS No. Compound Result MCL RL MDL Units (2
541-73-1 m-Dichlorobenzene ND 0.50 0.045 ug/l	
95-50-1 o-Dichlorobenzene ND 600 0.50 0.12 ug/l	
106-46-7 p-Dichlorobenzene ND 75 0.50 0.056 ug/l	
156-60-5 trans-1,2-Dichloroethylene ND 100 0.50 0.089 ug/l	
156-59-2 cis-1,2-Dichloroethylene ND 70 0.50 0.084 ug/l	
10061-02-6 trans-1,3-Dichloropropene ND 0.50 0.055 ug/l	
100-41-4 Ethylbenzene ND 700 0.50 0.099 ug/l	
87-68-3 Hexachlorobutadiene ND 2.0 0.076 ug/l	
110-54-3 Hexane ND 0.50 0.16 ug/l	
591-78-6 2-Hexanone ND 2.0 0.19 ug/l	
98-82-8 Isopropylbenzene ND 0.50 0.15 ug/l	
99-87-6 p-Isopropyltoluene ND 0.50 0.058 ug/l	
75-09-2 Methylene chloride ND 5.0 0.50 0.092 ug/l	
1634-04-4 Methyl Tert Butyl Ether ND 0.50 0.39 ug/l	
108-10-1 4-Methyl-2-pentanone ND 2.0 0.37 ug/l	
91-20-3 Naphthalene ND 0.50 0.060 ug/l	
103-65-1 n-Propylbenzene ND 0.50 0.12 ug/l	
100-42-5 Styrene ND 100 0.50 0.051 ug/l	
630-20-6 1,1,1,2-Tetrachloroethane ND 0.50 0.070 ug/l	
71-55-6 1,1,1-Trichloroethane ND 200 0.50 0.083 ug/l	
79-34-5 1,1,2,2-Tetrachloroethane ND 0.50 0.047 ug/l	
79-00-5 1,1,2-Trichloroethane ND 5.0 0.50 0.11 ug/l	
87-61-6 1.2.3-Trichlorobenzene ND 0.50 0.045 ug/l	
96-18-4 1.2.3-Trichloropropane ND 0.50 0.28 ug/l	
120-82-1 1.2.4-Trichlorobenzene ND 70 0.50 0.051 ug/l	
95-63-6 1.2.4-Trimethylbenzene ND 0.50 0.032 ug/l	
108-67-8 1.3.5-Trimethylbenzene ND 0.50 0.11 ug/l	
127-18-4 Tetrachloroethylene ND 5.0 0.50 0.067 ug/l	
108-88-3 Toluene ND 1000 0.50 0.10 ug/l	
79-01-6 Trichloroethylene ND 5.0 0.50 0.11 ug/l	
75-69-4 Trichlorofluoromethane ND 1.0 0.12 ug/l	
75-01-4 Vinvl chloride ND 2.0 0.50 0.080 µg/l	
m.n-Xvlene ND 1.0 0.21 ug/l	
95-47-6 o-Xvlene ND 0.50 0.11 ug/l	
1330-20-7 Xylenes (total) ND 10000 0.50 0.11 ug/l	
CAS No. Surrogate Recoveries Run# 1 Run# 2 Limits	
2100-60-1 1.2-Dichlorabonzone-d/ 100% 78-11/%	
460-00-4 4-Bromofluorobenzene 104% 77-115%	-

ND = Not detected MDL - Method Detection Limit MCL = Maximum Contamination Level (40 CFR 141) E = Indicates value exceeds calibration range J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

19 of 142 ACCL JTEST. JA65236

Page 2 of 2

Raw Data: 195177610

• . •

Accutest Laboratories

		Repo	ort of A	nalysi	is			Page 1 of 2
Client Sam Lab Samp Matrix: Method: Project:	nple ID: TB le ID: JA65236-8 DW - Drinking Wate EPA 524.2 REV 4.1 Katonah Q4, Katonal	r TB 1 Pump Hot	ıse, Bedfor	Dat Dat Per d, NY	te Sampled te Received cent Solids	: 12/2 l: 12/3 s: n/a	9/10 0/10	
Run #1 Run #2	File ID DF 1B51773.D 1	Analyzed 01/03/11	By MFH	Prep n/a	Date	Prep n/a	Batch	Analytical Batch V1B2368
Run #1 Run #2	Purge Volume 5.0 ml							
VOA List								
CAS No.	Compound	Result	MCL	RL	MDL	Units	Q	
67-64-1	Acetone	ND		5.0	1.5	ug/l		
78-93-3	2-Butanone	ND	. 5.0	5.0	1.8	ug/I		4.
71-43-2	Benzene	ND	5.0	0.50	0.001	ug/1		
108-86-1	Bromobenzene			0.50	0.003	ug/1		
74-97-5	Bromochloromeinane	ND		0.50	0.10	ug/1		
75-27-4	Bromodicnioromeinane			0.00	0.000	ug/1		
79-29-2	Bromomothere			0.50	0.005	ug/1		
14-85-9	Bromomemane - Butulbenzene	ND		0.50	0.033	ug/1 ug/1		
104-31-8	n-Butylbenzene			0.50	0.033	ug/1 ug/1		
100-90-0	sec-Dulyibenzene		÷	0.50	0.035	ug/1 ug/1		
98-00-0 75 15 0	Carbon disulfide	ND		0.50	0.040	ug/1 110/1		
109 00 7	Chlorobonzono	ND	100	0.50	0.010	ug/1 ug/1		
75 00 2	Chloroothana	ND	100	0.50	0.010	ug/1 110/l		
67 66-3	Chloroform	ND		0.50	0.11	ug/1		
74-87-3	Chloromethane	ND	1	0.50	0.050	ug/l		
95_49_8	a-Chlorotoluene	ND		0.50	0.065	ug/1		
106-43-4	n-Chlorotoluene	ND		0.50	0.089	ug/l		
56-23-5	Carbon tetrachloride	ND	5.0	0.50	0.094	ug/l		
75-34-3	1.1-Dichloroethane	ND		0.50	0.098	ug/l		
75-35-4	1.1-Dichloroethylene	ND	7.0	0.50	0.13	ug/l		
563-58-6	1.1-Dichloropropene	ND		0.50	0.18	ug/l		
96-12-8	1.2-Dibromo-3-chloropropa	ne ND	0.20	1.0	0.37	ug/l		
106-93-4	1.2-Dibromoethane	ND	0.050	0.50	0.075	ug/l		
107-06-2	1.2-Dichloroethane	ND	5.0	0.50	0.072	ug/l		
78-87-5	1,2-Dichloropropane	ND	5.0	0.50	0.12	ug/l		
142-28-9	1,3-Dichloropropane	ND		0.50	0.046	ug/l		
594-20-7	2,2-Dichloropropane	ND		0.50	0.12	ug/l		
124-48-1	Dibromochloromethane	ND		0.50	0.067	ug/l		
74-95-3	Dibromomethane	ND	÷.,	0.50	0.10	ug/l		
75-71-8	Dichlorodifluoromethane	ND		1.0	0.13	ug/l		

MDL - Method Detection Limit ND = Not detectedMCL = Maximum Contamination Level (40 CFR 141) E = Indicates value exceeds calibration range

ND

10061-01-5 cis-1,3-Dichloropropene

J = Indicates an estimated value

0.059

0.50

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

ug/l

Client Sample ID:

Lab Sample ID:

Matrix:

TB IA65236-8

DW - Drinking Water TB

Method: EPA 524.2 REV 4.1 Percent Solids: n/a Project: Katonah Q4, Katonah Pump House, Bedford, NY VOA List MCL RL MDL Units Q CAS No. Compound Result m-Dichlorobenzene ND 0.50 0.045 ug/l 541-73-1 o-Dichlorobenzene ND 600 0.50 0.12 ug/l 95-50-1 ŇD 75 0.50 0.056 ug/l 106-46-7 p-Dichlorobenzene 0.089 0.50 __156-60-5 .trans-1,2-Dichloroethylene ND 100 ug/l 156-59-2 cis-1,2-Dichloroethylene ND 70 0.500.084 ug/l 0.055 10061-02-6 trans-1,3-Dichloropropene ND 0.50 ug/l 700 0.50 0.099 ND ug/l 100-41-4 Ethylbenzene 0.076 ug/l 87-68-3 Hexachlorobutadiene ND 2.0 ND 0.500.16 ug/l 110-54-3 Hexane ND 2.0 0.19ug/l 591-78-6 2-Hexanone Isopropylbenzene 0.500.15 ug/l 98-82-8 ND 99-87-6 p-Isopropyltoluene ND 0.500.058 ug/I 75-09-2 Methylene chloride ND 5.0 0.500.092ug/l Methyl Tert Butyl Ether ND 0.500.39ug/l 1634-04-4 ug/l 4-Methyl-2-pentanone ND 2.0 0.37 108-10-1 91-20-3 Naphthalene ND 0.50 0.060 ug/l n-Propylbenzene ND 0.50 0.12 ug/l 103-65-1 0.50 0.051 ND 100 ug/l Styrene 100-42-5 0.070 630-20-6 1,1,1,2-Tetrachloroethane ND 0.50 ug/l ND 200 0.50 0.083 ug/l 71-55-6 1,1,1-Trichloroethane 0.50 0.047 ug/l 79-34-5 1.1.2.2-Tetrachloroethane ND ug/l 1,1,2-Trichloroethane ND 5.0 0.50 0.11 79-00-5 ND 0.500.045 ug/l 87-61-6 1.2.3-Trichlorobenzene ND 0.500.28 ug/l 96-18-4 1,2,3-Trichloropropane 1,2,4-Trichlorobenzene 70 0.50 0.051 120-82-1 ND ug/l 0.032 95-63-6 1,2,4-Trimethylbenzene ND 0.50 ug/l ug/1 108-67-8 1,3,5-Trimethylbenzene ND 0.500.11 0.50 0.067 ug/l 127-18-4 Tetrachloroethylene ND 5.0108-88-3 Toluene ND 1000 0.50 0.10 ug/1 79-01-6 Trichloroethylene ND 5.0 0.500.11ug/l 1.0 0.12 ug/l 75-69-4 Trichlorofluoromethane ND 2.0 0.50 0.080 75-01-4 Vinyl chloride ND ug/l m,p-Xylene ND 1.00.21 ug/l 95-47-6 o-Xylene ND 0.500.11 ug/l 10000 0.50 0.11 1330-20-7 ND ug/l Xylenes (total) CAS No. Surrogate Recoveries Run#1 Run#2 Limits 2199-69-1 1,2-Dichlorobenzene-d4 107% 78-114% 460-00-4 4-Bromofluorobenzene 106% 77-115%

Report of Analysis

Date Sampled:

Date Received: 12/30/10

12/29/10

MDL - Method Detection Limit ND = Not detectedMCL = Maximum Contamination Level (40 CFR 141)

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range

N = Indicates presumptive evidence of a compound

Page 2 of 2

Section 4

Custody Do	cuments and Other Forms	
· / · · ·	·	
Includes the f	ollowing where applicable	
menuues me r	onowing where applicable.	
• Chain of Cun	today	
 Chain of Cus Sample Track	tody sing Chronicle	
 Chain of Cus Sample Track Internal Chain 2010 MDL S 	tody xing Chronicle n of Custody tudy - Method: EPA 524.2 REV 4.1	·
 Chain of Cus Sample Track Internal Chair 2010 MDL S 	tody king Chronicle n of Custody tudy - Method: EPA 524.2 REV 4.1	
 Chain of Cus Sample Track Internal Chain 2010 MDL S 	tody king Chronicle n of Custody tudy - Method: EPA 524.2 REV 4.1	
 Chain of Cus Sample Track Internal Chain 2010 MDL S 	tody ring Chronicle n of Custody tudy - Method: EPA 524.2 REV 4.1	· · · ·
 Chain of Cus Sample Track Internal Chain 2010 MDL S 	tody king Chronicle n of Custody tudy - Method: EPA 524.2 REV 4.1	· . ·

	T. B.		CHAI	NC)F_C	CUS	гоd	Y									PA	GE_	L¢)F _/
LABGRATOR	IS WIB	Tel	2235 Rc 732_320-	ute 13	50, Da	yton, N	VJ 0881	0 10/7.	480		汊	12°*7	353	139	-1	Botta Q	H M	_ 12	1221:	Dexa-la
		. 04		www.	acute	st.com	1		100		Accute	at Quote i			-	Accuted	t Jeb 1	A65	236	
Client / Reporting Information			Project	Informa	ation							Req	uested A	nalysi	5 (868)	TEST C	ODE si	neet)	1923	Matrix Cr
Efn Inc	Project Name:	Katen	<i>h</i> =	2011	2															DW - Drinking GW - Ground
1983 Marins A	ve strem tate	nuh Romp	House	Bi8(ng l	Informaß	on (If diff	erent from	Repo	ort to)		_ ^	y				1				SW - Surface SO - St
Lota Success NY	1042 Bedfe	rd, NY	State	Compan	ddoese															SED-Sedir OI - Oi
ic Churchen, Scherefan,	E-mail Project #	10001		City			State			210				ł						AIR - AI SOL - Other WP - Wi
16-275-1194 576-325-	Phone # Project Manage	1/2/22	12010-6	Attention	n:		••••				_ Ē			Í						FB-Field B EB-Equipmer RB- Rinse
<u>. 5. Спеторану</u>	5.(herchany	Collection		1		Na	nder of	1 preserve	d Boldes										ΤΒ-Τήρ ΒΙ
Field ID / Point of Collection	MEQHIDEVial	Date	Time	Sempled by	Matrix	R of poster	₽ J	HNOS	NONE DI Wister	NEOH	Ŕ							ľ		LAB USE !
r RW		12/29/10	11:15	SC	OW	3	X				\rightarrow									
RW/MS MSD			11:25		\square	3	X	╇			Ķ		┝╍┝	+	+		┟┈┥	+	+	999
DIST			10:00		\square	3	КH			┼╌	R								+	
STEFF			10:45		\square	3	X				X							\square	\square	
MW-4		++-	12:10			3	\square	+			-13			+			┝╼┥	-+	+	. – – –
FB		1	13:15		w	2	Ŕ,				12	 }			+			-		_
TB.		12/22/10	1400	Y	w	2	X	-	\square		X						\square			
						<u> </u>						<u> </u>								
	and the gast	1	ilo			Eal	Deliveral	hie ini			0.5.		anna ao	999-574-	Cor		Special	Instructio	008	
Intradición (Intel Business days) Std. 15 Business Days Std. 10 Business Days (by Contract 10 Day Bliste	Approved By (Ac	icutent Phij: / Date:	98.)		Commer Commer	citl "A" (citl "B" (citl "B" (Level 1) Level 2) H()	<		YASP Ca YASP Ca	tegory A tegory B	>			~	And			0 2	<u></u>
5 Day RUSH					NJ Redu Commer	ced clai "C"				DD Form	lat		_	~	1	<i>זעו</i>	_(<u># 1</u>	5_/	<u>}</u>
2 Day EMERGENCY 1 Day EMERGENCY mergency & Rush T/A data available V/A Lab	nk					Commer NJ Redu	val A = N dal "B" = R cad = Res	iesuits lesuits lite + (s + QC S QC Sum	ummary mary + Pa	itial Raw (laia					<u> </u>			
aling the second	Date Time:	Received By:		nented b	elow ea	ch time s	Ratinguisi	hang nd By			retuding	courier	delivery. De 1	ia fime:	- 10:0	Receive	14 By: /_	Ш.	1981.:: (\$ 	
Interreption Stampler:	Data Time:	Received By:	ren D	r			Refinquisi	hed By	<u>, </u>	<u></u>			De	te Time: 1	<u>, , i , i , i , i , i , i , i , i , i ,</u>	Raceire 4	nd By:	\mathcal{N}		
Lalinguished by:	Date Time:	Received By:					Gustody (ional II	n)i		lintact		Preserved	where app	licable			Onlog	Cor	aler Temp.

JA65236: Chain of Custody Page 1 of 3

4

MACCUTEST.		Log-in ouilii			000	
Lab Name:		· · · · · · · · · · · · · · · · · · ·		Page of	 _	
Received by (Print Nam	e): TIMOTILY ILIDSON					
Received by (Signature)				_Log-m Date:		
<u> </u>						
Case Number	N/A		CORRES	SPONDING		
SDG Number:	11/76	NYSDEC	SAMPLE	ASSIGNED	KEMARKS;	
SAS Number:	N/A	SAMPLE	TAG	LAB	OF SAMPLE	
		#	#	#	SHIPMENT, ETC	. [
REMARKS:	\sim	N/A		JA65236 -1	OK	
 Custody Seal(s) 	Present/Absent*	N/A		-7		
Custody Seal	Intact/Broken	N/A		-3		_
Numbers:		N/A N/A		1		_
3. Chain-of-Custody	Present Absent*	N/A			·	-
Records		N/A		-7		
Contract Lab	Present/Absent*	N/A		-8	1	-
Sample Inform.		N/A			· -	-1.
Sheet (CLSIS)		N/A				
AITOUI	Airbill/Sticker	N/A				. ·
Airhill No	2597 4257 /291	N/A		······	· · · · · · · · · · · · · · · · · · ·	
		N/A N/A	. <u> </u>			-4
. Sample Tags	Present/Absent*	N/A			· · · · · · · · · · · · · · · · · · ·	-
Sample Tag Nos.	Listed/Not Listed on	N/A	· · · · · · · · · · · · · · · · · · ·			-1
	Chain-of-Custody	N/A				1
. Sample Condition	tntact/Broken*/	N/A]
Does Information	Leaking	N/A		_		
on custody rec		N/A N/A				4
CLSIS, & sample		N/A N/A	·····		· · · ·	4
tags agree	(YerNo*	N/A				4
). Date received		N/A			·····	
at Lab:	12-30-10	N/A				1
Time Received:	09:30	N/A			· · · · · · · · · · · · · · · · · · ·]
Do squeous VOC vist						
ve headspace?	VerNo*					4
- neurophoet	TUDIE					-
. Are preserved voc					<u></u>	4
il samples fully im-						
rsed in preservative?	Yes/No* N/A	N/A				1
					· · · · · · · · · · · · · · · · · · ·	
otion	Sample Transfer					
ea #·						Chain of Custod
		─ ┝╍──┼			JA05.	50: Chain di Custou
	Chain-of-Custod	₩-				Page 2 of
Ontract BTSR and atten	record of resolution	ise _n I	l_	·····		
viewed By:		Loghook No		N/A		
ie:		Logbook Page N	n.:	N/A		
				1 11 7 8		

А	C	С	П	Т	Ε	S	6

ORIES

Accutest Laboratories Sample Receipt Summary

Accutest Job Number: JA6	5236	С	llent:			Immediate Client Serv	ices Actio	n Rec	luired	: No	_
Date / Time Received: 12/3	30/2010		Delive	ery Meth	od:	Client Service Acti	ion Require	ed at	Login	: No	
Project:			No. Co	oolers:		1 Airbill #'s:					_
Cooler Security Y	<u>' or N</u>			<u>Y o</u>	N	Sample Integrity - Documentation	<u> </u>	<u></u>	<u>N_</u>		
1. Custody Seals Present: 🗹 2. Custody Seals Intact: 🔽		3. (4. Sm	COC Present: pl Dates/Time OK	2		1. Sample labels present on bottles: 2. Container labeling complete:	7 7				
Cooler Temperature	<u>Y</u>	o <u>r N</u>				3. Sample container label / COC agree:					
1. Temp criteria achieved: 2. Cooler temp verification: 3. Cooler media:	Infa Ic	ared gun e (bag)				Sample Integrity - Condition 1. Sample recvd within HT: 2. All containers accounted for:	<u>ү</u> У У	ог			
Quality Control Preservatio	<u>Y</u>	or N	N/A			3. Condition of sample:		Intac	t		
 Trip Blank present / cooler: Trip Blank listed on COC: Samples preserved properly VOCs headspace free: 	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					Sample Integrity - Instructions 1. Analysis requested is clear: 2. Bottles received for unspecified tests 3. Sufficient volume recvd for analysis: 4. Compositing instructions clear:	Y 2 2 1	<u>or</u>		<u>N/A</u>	
						5. Filtering instructions clear:	. 🗖		₽		. •

Comments

Accutest Laboratories V:732,329,0200 2235 US Highway 130 F: 732,329,3499 Dayton, New Jersey www/accutest.com 4. 1

JA65236: Chain of Custody Page 3 of 3

Page 1 of 1

N N

Accutest Internal Chain of Custody

Job Number:	JA65236
Account:	EPMNYLS Enviro
Project:	Katonah Q4, Kato
Received:	12/30/10

onmental Planning and Management nah Pump House, Bedford, NY

Fammla Dattla	Tronafor	Transfor		
Number	FDOM	TO	Date/Time	Reason
INULIDEI	FROM	10	Date/ 1 line	
IA65236-1.1	Secured Storage	MoHui Huang	12/30/10 16:41	Retrieve from Storage
IA65236-1.1	MoHui Huang	GCMS1B	12/30/10 16:41	Load on Instrument
IA65236-1.1	GCMS1B	MoHui Huang	01/03/11 09:34	Unload from Instrument
IA65236-1.1	MoHui Huang	Secured Storage	01/03/11 09:34	Return to Storage
5	Ū	5		
JA65236-1.2	Secured Storage	MoHui Huang	12/30/10 16:41	Retrieve from Storage
JA65236-1.2	MoHui Huang	GCMS1B	12/30/10 16:41	Load on Instrument
JA65236-1.2	GCMS1B	MoHui Huang	01/03/11 09:34	Unload from Instrument
JA65236-1.2	MoHui Huang	Secured Storage	01/03/11 09:34	Return to Storage
IA65236-1.3	Secured Storage	MoHui Huang	12/30/10 16:41	Retrieve from Storage
IA65236-1.3	MoHui Huang	GCMS1B	12/30/10 16:41	Load on Instrument
IA65236-1.3	GCMS1B	MoHui Huang	01/03/11 09:34	Unload from Instrument
JA65236-1.3	MoHui Huang	Secured Storage	01/03/11 09:34	Return to Storage
				-
JA65236-1.4	Secured Storage	MoHui Huang	01/03/11 09:36	Retrieve from Storage
JA65236-1.4	MoHui Huang	GCMS1B	01/03/11 09:36	Load on Instrument
JA65236-1.4	GCMS1B	MoHui Huang	01/04/11 11:20	Unload from Instrument
JA65236-1.4	MoHui Huang	Secured Storage	01/04/11 11:20	Return to Storage
IA65236-1 5	Secured Storage	MoHui Huang	01/03/11 09:36	Retrieve from Storage
IA65236-1.5	MoHui Huang	GCMS1B	01/03/11 09:36	Load on Instrument
IA65236-1.5	GCMS1B	MoHui Huang	01/04/11 11:20	Unload from Instrument
IA65236-1.5	MoHui Huang	Secured Storage	01/04/11 11:20	Return to Storage
0	Б	0		
JA65236-1.6	Secured Storage	MoHui Huang	01/03/11 09:36	Retrieve from Storage
JA65236-1.6	MoHui Huang	GCMS1B	01/03/11 09:36	Load on Instrument
JA65236-1.6	GCMS1B	MoHui Huang	01/04/11 11:20	Unload from Instrument
JA65236-1.6	MoHui Huang	Secured Storage	01/04/11 11:20	Return to Storage
IA65236-2.1	Secured Storage	MoHui Huang	12/30/10 16:41	Retrieve from Storage
JA65236-2.1	MoHui Huang	GCMS1B	12/30/10 16:41	Load on Instrument
JA65236-2.1	GCMS1B	MoHui Huang	01/03/11 09:34	Unload from Instrument
JA65236-2.1	MoHui Huang	Secured Storage	01/03/11 09:34	Return to Storage
JA65236-2.2	Secured Storage	MoHui Huang	01/03/11 09:36	Retrieve from Storage
JA65236-2.2	MoHui Huang	GCMS1B	01/03/11 09:36	Load on Instrument
JA65236-2.2	GCMS1B	MoHui Huang	01/04/11 11:20	Unload from Instrument
JA65236-2.2	MoHui Huang	Secured Storage	01/04/11 11:20	Return to Storage
JA65236-3.1	Secured Storage	MoHui Huang	12/30/10 16:41	Retrieve from Storage
JA65236-3.1	MoHui Huang	GCMS1B	12/30/10 16:41	Load on Instrument
JA65236-3.1	GCMS1B	MoHui Huang	01/03/11 09:34	Unload from Instrument
JA65236-3.1	MoHui Huang	Secured Storage	01/03/11 09:34	Return to Storage

4. 3

Accutest Internal Chain of CustodyJob Number:JA65236Account:EPMNYLS Environmental Planning and ManagementProject:Katonah Q4, Katonah Pump House, Bedford, NY Received: 12/30/10

Sample. Bottle	Transfer	Transfer	The 4 - 107	D
Number	FROM	ΤΟ	Date/Time	Keason
1465026 2 2	Secured Storage	Mallui Huana	01/02/11 00.26	Detriorra from Storage
JA05250-5.2	Mollui Uuana		01/03/11 09:30	Load on Instrument
JA05250-5.2			01/03/11 09:30	Load on instrument
JA03230-3.2	Mollui Uuona	Secured Storage	01/04/11 11:20	Diffuse to Storage
JA03230-3.2		Secured Storage	01/04/11 11:20	Keturn to Storage
JA65236-4.1	Secured Storage	MoHui Huang	12/30/10 16:41	Retrieve from Storage
JA65236-4.1	MoHui Huang	GCMS1B	12/30/10 16:41	Load on Instrument
JA65236-4.1	GCMS1B	MoHui Huang	01/03/11 09:34	Unload from Instrument
JA65236-4.1	MoHui Huang	Secured Storage	01/03/11 09:34	Return to Storage
JA65236-4.2	Secured Storage	MoHui Huang	01/03/11 09:36	Retrieve from Storage
JA65236-4.2	MoHui Huang	GCMS1B	01/03/11 09:36	Load on Instrument
JA65236-4.2	GCMS1B	MoHui Huang	01/04/11 11:20	Unload from Instrument
JA65236-4.2	MoHui Huang	Secured Storage	01/04/11 11:20	Return to Storage
IA65236-5.1	Secured Storage	MoHui Huang	12/30/10 16:41	Retrieve from Storage
JA65236-5.1	MoHui Huang	GCMS1B	12/30/10 16:41	Load on Instrument
JA65236-5.1	GCMS1B	MoHui Huang	01/03/11 09:34	Unload from Instrument
JA65236-5.1	MoHui Huang	Secured Storage	01/03/11 09:34	Return to Storage
IA65236-5.2	Secured Storage	MoHui Huang	01/03/11 09:36	Retrieve from Storage
IA65236-5.2	MoHui Huang	GCMS1B	01/03/11 09:36	Load on Instrument
IA65236-5.2	GCMS1B	MoHui Huang	01/04/11 11:20	Unload from Instrument
JA65236-5.2	MoHui Huang	Secured Storage	01/04/11 11:20	Return to Storage
IA65236-6 1	Secured Storage	MoHui Huang	12/30/10 16:41	Retrieve from Storage
IA65236-6 1	MoHui Huang	CCMS1B	12/30/10 16:41	Load on Instrument
IA65236-6 1	GCMS1B	MoHui Huang	01/03/11 09:34	Unload from Instrument
JA65236-6.1	MoHui Huang	Secured Storage	01/03/11 09:34	Return to Storage
1465236.6.2	Secured Storage	МоЦиі Циола	01/02/11 00+26	Potriovo from Storago
JA0J230-0.2 JA65236_6 2	MoHui Huang	CCMS1B	01/03/11 09:30	Load on Instrument
JA05230-0.2 ΙΔ65236_6 2	CCMS1B	MoHui Huang	01/03/11 03.30	Unload from Instrument
JA65236-6.2	MoHui Huang	Secured Storage	01/04/11 11:20	Return to Storage
	- -		10/00/10 10 11	
JA65236-7.1	Secured Storage	MoHui Huang	12/30/10 16:41	Retrieve from Storage
JA05230-7.1	MOHUI Huang	GUMS1B Mallat H	12/30/10 16:41	Load on Instrument
JA00230-7.1	GOM91R	MoHui Huang	01/03/11 09:34	Unioad from Instrument
JA05230-7.1	MoHui Huang	Secured Storage	01/03/11 09:34	Keturn to Storage
JA65236-7.2	Secured Storage	MoHui Huang	01/03/11 09:36	Retrieve from Storage
JA65236-7.2	MoHui Huang	GCMS1B	01/03/11 09:36	Load on Instrument
JA65236-7.2	GCMS1B	MoHui Huang	01/04/11 11:20	Unload from Instrument

4.3

Page 2 of 3

Accutest Internal Chain of Custody Job Number: 1A65236

Job Number:	JA05230
Account:	EPMNYLS Environmental Planning and Management
Project:	Katonah Q4, Katonah Pump House, Bedford, NY
Received:	12/30/10

Sample.Bottle Number	Transfer FROM	Transfer TO	Date/Time	Reason
JA65236-7.2	MoHui Huang	Secured Storage	01/04/11 11:20	Return to Storage
IA65236-8.1	Secured Storage	MoHui Huang	12/30/10 16:41	Retrieve from Storage
JA65236-8.1	MoHui Huang	GCMS1B	12/30/10 16:41	Load on Instrument
IA65236-8.1	GCMS1B	MoHui Huang	01/03/11 09:34	Unload from Instrument
JA65236-8.1	MoHui Huang	Secured Storage	01/03/11 09:34	Return to Storage
IA65236-8.2	Secured Storage	MoHui Huang	01/03/11 09:36	Retrieve from Storage
IA65236-8.2	MoHui Huang	GCMS1B	01/03/11 09:36	Load on Instrument
IA65236-8.2	GCMS1B	MoHui Huang	01/04/11 11:20	Unload from Instrument
JA65236-8.2	MoHui Huang	Secured Storage	01/04/11 11:20	Return to Storage

Page 3 of 3

4. ω

Accutest Laboratories Annual Method Detection Limit Determination Dayton, NJ Facility

Method: Instrument(s): Analyst:

EPA 524.2 REV 4.1 (V524.2) GCMS1A, GCMS1B, GCMS2B, GCMS2E, GCMS3A, GCMS3B Pooled

Matrix: Quant Factor: Study Period:

1.00 March,2010 Å

					Rep	olicate Spik	es	-	`					
	Analysis	Spike	ŗ.	22	R3	R4	R5	R6	R7	X-Bar	X-Bar	STD.Dev.	MDL	Spike/MDL
Cmpd./Element/Parm. Name	Date	l/gn	l/gu	l/gu	l/6n	l/bn	//Gn	/Gn	ug/l	l/gn	%Recov.	ng/l		Ratio
Acetone	12-Feb-10	3	4.55	3.83	3.04	3.50	4.09	3.63	3.89	3.79	126.36	0.47	1.49	2.02
Acrolein	12-Feb-10	10	7.68	6.28	6.94	6.94	7.50	6.21	7.36	66.9	69.87	0.57	1.80	5.54
Acrylonitrile	9-Mar-10	2.5	1.37	1.84	1.80	1.98	2.13	2.26	1.84	1.89	75.52	0.29	06:0	2.78
Allyl chloride	26-Jan-10	0.5	0.49	0.48	0.49	0.59	0.55	0.54	0.41	0.51	101.52	0.06	. 0.18	2.73
2-Butanone	26-Jan-10	2.99988	3.04	2.97	3.60	3.49	4.72	3.69	3.37	3.56	118.50	0.58	1.83	1.64
Benzene	9-Mar-10	0.5	0.41	0.42	0.41	0.43	0.41	0.38	0.38	0.41	81.12	0.02	90,06	8.16
Bromobenzene	9-Mar-10	0.2	0.14	0.16	0.15	0.12	0.14	0.17	0.12	.14	21.15	0.02	0.05	3.79
Bromochloromethane	12-Feb-10	0.5	0.33	0.36	0.33	0.35	0.23	0.26	0.31	0.31	62.08	0.05	0.15	3.32
Bromodichloromethane	9-Mar-10	0.2	0.14	0.15	0.14	0.12	0.15	0.15	0.12	0.14	70.40	0.01	0.04	5.31
Bromoform	9-Mar-10	0.5	0.38	0.40	0.39	0.45	0.36	0.40	0.35	0.39	77.98	0.03	0.09	5.38
Bromomethane	26-Jan-10	0.2	0.28	0.24	0.22	0.30	0.23	0.26	0.23	0.25	126.29	0.03	0.09	2.11
n-Butylbenzene	26-Jan-10	0.2	0.20	0.22	0.21	0.20	0.22	0.20	0.21	0.21	103.65	0.01	0.03	6.15
sec-Butylbenzene	26-Jan-10	0.5	0.53	0.52	0.54	0.56	0.51	0.52	0.50	0.53	105.18	0.02		8.52
tert-Butylbenzene	26-Jan-10	0.2	0.22	0.23	0.21	0.22	0.19	0.24	0.22	0.22	109.10	0.01	0.04	4.46
Carbon disulfide	21-Jan-10	-	0.94	0.93	0.95	0.92	0.92	0.91	0.88	0.92	92.25	0.02	20.0	14.20
Chloroacetonitrile	27-Jan-10	25	26.77	22.10	19.99	23.29	21.16	23.26	24.43	23.00	92.00	2.22	66.9	3.58
1-Chlorobutane	12-Feb-10	-	0.53	0.57	0.51	0.53	0.48	0.41	0.51	0.51	50.50	0.05	0.16	6.32
Chlorobenzene	12-Feb-10	-	0.89	0.83	0.83	0.84	0.84	0.83	0.82	0.84	84.00	0.02	. 0.07	14.27
Chloroethane	9-Mar-10	F	0.81	0.77	0.79	0.78	06.0	0.78	0.78	0.80	80.05	0.04	0.14	7.32
Chloraform	9-Mar-10	0.5	0.40	0.44	0.42	0.43	0.44	0.46	0.42	0.43	85.90	0.02	0.06	8.70
2-Chloroethył vinyl ether	13-Jan-10	5	4.87	4.94	4.71	4.62	4.58	4.78	4.62	4.73	94.62	0.14	0.43	11.70
Chloromethane	8-Jan-10	0.2	0.20	0.22	0.32	0.29	0.21	0.27	0.31	0.26	129.37	0.05	0.15	1.30
o-Chlorotoluene	9-Mar-10	0.2	0.11	0.10	0.16	0.11	0.14	0.13	0.13	0.12	62.30	0.02	0.07	3.06
p-Chlorotoluene	9-Mar-10	1	06.0	06.0	0.89	0.88	0.86	0.82	0.86	0.87	86.97	0.03	0.09	11.26
Carbon tetrachloride	9-Mar-10	0.5	0.42	0.43	0.44	0.36	0.39	0.39	0.38	0.40	80.36	0.03	0.09	5.34
Cyclohexane	9-Mar-10	0.5	0.42	0.38	0.42	0.42	0.34	0.36	0.34	0.39	77.02	0.04	0,12	4.23
1,1-Dichloroethane	26-Jan-10	0.2	0.13	0.22	0.20	0.22	0.20	0.19	0.20	0.19	96,40	0.03	0.0	2.03
1,1-Dichloroethylene	9-Mar-10	0.5	0.40	0.39	0.35	0.38	0.30	0.40	0.31	0.36	72.60	0.04	013	3.86
1,1-Dichloropropene	9-Mar-10	1	0.87	0.88	0.83	0.76	0.79	0.91	0.78	0.83	83.01	0.06	0.18	5.47
1,2-Dibromo-3-chloropropane	9-Mar-10	0.5	0.42	0.34	0.22	0.46	0.18	0.34	0.16	0.30	60.56	0.12	0.37	1.34
1,2-Dibromoethane	9-Mar-10	0.2	0.10	0.16	0.14	0.14	0.10	0.14	0.14	0.13	66.45	0.02	20.0	2.67
1,2-Dichloroethane	9-Mar-10	0.2	0.17	0.13	0.15	0.19	0.18	0.17	0.20	0.17	85.45	0.02	0.07	2.79
1,2-Dichloropropane	9-Mar-10	0.5	0.40	0.47	0.37	0.39	0.44	0.38	0.38	0.40	80.66	0.04	0 12	4.32
1, 3-Dichloropropane	9-Mar-10	0.2	0.17	0.15	0.18	0.14	0.15	0.17	0.14	0.16	78.45	0.01	0.05	4.37
2,2-Dichloropropane	26-Jan-10	0.5	0.56	0.59	0.55	0.57	0.54	0.57	0.47	0.55	109.82	0.04	0.12	4.11
Dibromochloromethane	12-Feb-10	0.5	0.31	0.37	0.30	0.35	0.34	0.34	0.34	0.34	67.02	0.02	0.07	7.47
Dibromomethane	9-Mar-10	0.5	0.43	0.38	0.44	0.41	0.38	0.35	0.37	0.39	78.76	0.03	0.10	4.99

Detection limits derived using the method described in 40 CFR Part 136, Appendix B

2010 MDL Study - Method: EPA 524.2 REV 4.1 page 1 of 3

4.4

Method: Instrument(s): Analyst:

EPA 524.2 REV 4.1 (V524.2) GCMS1A, GCMS1B, GCMS2B, GCMS2E, GCMS3A, GCMS3B Pooled

Matrix: Quant Factor: Study Period:

1.00 March,2010

AQ

Cmpd./Etement/Parm. Name Analysis Spike R1 Dichlorodifluoromethane 13-Jan-10 0.5 0.35 Dichlorodifluoromethane 13-Jan-10 0.5 0.35 Dichlorobenzene 13-Jan-10 0.5 0.35 m-Dichlorobenzene 13-Jan-10 0.2 0.17 m-Dichlorobenzene 12-Feb-10 0.2 0.16 o-Dichlorobenzene 2-Mar-10 0.2 0.16 pDichlorobenzene 2-Mar-10 0.2 0.16 pDichlorobenzene 2-Mar-10 0.2 0.16 pDichlorobenzene 2-Mar-10 0.2 0.16 pDichlorobenzene 2-Jan-10 0.2 0.16 trans-1,2-Dichloropropene 2-Jan-10 0.2 0.2 <t< th=""><th>R1 R2 9/1 0.35 0.15 0.15 0.16 0.16 0.110 0.10 0.110 0.10 0.110 0.10 0.110 0.10 0.110 0.10 0.110 0.10 0.110 0.10 0.110 0.10 0.110 0.10 0.110 0.10 0.110 0.10</th><th>R3 R3 ug/l 0.31 13 0.17 13 0.18 16 0.17 16 0.18 16 0.18 16 0.18 16 0.18 17 0.16 18 0.18 19 0.18 10 0.18 118 0.18 118 0.18 128 0.18 133 0.19 14 0.18 10 0.18 118 0.18 128 0.19 137 0.15 14 0.18 15 0.19 16 0.15 17 0.15 18 0.15 19 0.15 10 0.15 118 0.15 118 0.15 118 0.15</th><th>R4 ug/l 0.29 0.15 0.14 0.14 0.14 0.14 0.14 0.22 0.31 0.43 0.43 0.43 0.19 0.88 0.88 0.88</th><th>R5 ug/l 0.36 0.14 0.19 0.19 0.19 0.19 0.19 0.19 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.2</th><th>R6 ug/l 0.24 0.14 0.14 0.17 0.14 0.17 0.21 0.21 0.20</th><th>R7 ug/l 0.27 0.13 0.13 0.14</th><th>X-Bar ug/l 0.31</th><th>X-Bar %Recov.</th><th>STD.Dev. ug/l 0.04</th><th>MDL</th><th>Spike/MDL Ratio</th></t<>	R1 R2 9/1 0.35 0.15 0.15 0.16 0.16 0.110 0.10 0.110 0.10 0.110 0.10 0.110 0.10 0.110 0.10 0.110 0.10 0.110 0.10 0.110 0.10 0.110 0.10 0.110 0.10 0.110 0.10	R3 R3 ug/l 0.31 13 0.17 13 0.18 16 0.17 16 0.18 16 0.18 16 0.18 16 0.18 17 0.16 18 0.18 19 0.18 10 0.18 118 0.18 118 0.18 128 0.18 133 0.19 14 0.18 10 0.18 118 0.18 128 0.19 137 0.15 14 0.18 15 0.19 16 0.15 17 0.15 18 0.15 19 0.15 10 0.15 118 0.15 118 0.15 118 0.15	R4 ug/l 0.29 0.15 0.14 0.14 0.14 0.14 0.14 0.22 0.31 0.43 0.43 0.43 0.19 0.88 0.88 0.88	R5 ug/l 0.36 0.14 0.19 0.19 0.19 0.19 0.19 0.19 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.2	R6 ug/l 0.24 0.14 0.14 0.17 0.14 0.17 0.21 0.21 0.20	R7 ug/l 0.27 0.13 0.13 0.14	X-Bar ug/l 0.31	X-Bar %Recov.	STD.Dev. ug/l 0.04	MDL	Spike/MDL Ratio
Dichlorodiftuoromethane 13-Jan-10 0.5 0.35 dis-1,3-Dichloropropene 9-Mar-10 0.2 0.17 m-Dichloropropene 9-Mar-10 0.2 0.15 m-Dichloropropene 12-Feb-10 0.2 0.16 o-Dichloropropene 12-Feb-10 0.2 0.19 p-Dichloropentylene 12-Feb-10 0.2 0.19 cis-1,2-Dichloropetrylene 9-Mar-10 0.2 0.16 cis-1,2-Dichloropetrylene 13-Jan-10 0.2 0.16 cis-1,2-Dichloropetrylene 13-Jan-10 0.2 0.16 frams-1,3-Dichloroproperne 25-Jan-10 0.2 0.16 frams-1,4-Dichloroproperne 25-Jan-10 0.2 0.16 frams-1,4-Dichloroproperne 25-Jan-10 0.2 0.35 Di-lsopropyl ether 22-Jan-10 0.2 0.2 <	0.23 0.11 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.17 0.0 0.18 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	22 0.31 22 0.31 23 0.31 24 0.13 24 0.18 24 0.18 25 0.15 26 0.15 26 0.15 27 0.15 28 0.215 28 0.2	0.29 0.15 0.14 0.14 0.14 0.14 0.14 0.13 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.4	0.36 0.15 0.14 0.14 0.19 0.19 0.29 0.29 0.38 0.38 0.38 0.38 0.38	0.14 0.14 0.17 0.17 0.17 0.17 0.14 0.21 0.32 0.32	0.27 0.13 0.14 0.87 0.17	0.31		0.04		
Dichlorodifiluoromethane 13-Jan-10 0.5 0.35 cis-1,3-Dichloropropene 9-Mar-10 0.2 0.17 m-Dichloropropene 9-Mar-10 0.2 0.15 m-Dichloropropene 12-Feb-10 0.2 0.16 ob-Dichloropropene 12-Feb-10 0.2 0.19 o-Dichloropenzene 13-Jan-10 0.2 0.16 cis-1,2-Dichloropethylene 1,3-Jan-10 0.2 0.16 frans-1,3-Dichloropopanone 25-Jan-10 0.2 0.35 I,1-Dichloropopanone 22-Jan-10 0.2 0.35 Di-lisopropyl ether 22-Jan-10 0.2 0.36 Di-lisopropyl ether 22-Jan-10 0.2 0.36 Di-lisopropyl ether 22-Jan-10 0.2 0.2	0.35 0.17 0.17 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16	22 0.31 33 0.18 6 0.16 7 0.16 6 0.18 7 0.16 8 0.17 17 0.16 16 0.03 24 0.16 16 0.18 24 0.18 25 0.15 26 0.15 27 0.39 28 0.915 27 0.915 27 0.915 27 0.915	0.29 0.15 0.16 0.14 0.14 0.14 0.14 0.21 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43	0.36 0.15 0.14 0.14 0.19 0.19 0.29 0.29 0.29 0.28 0.38 0.38 0.38	0.24 0.14 0.13 0.17 0.17 0.17 0.14 0.18 0.21 0.21 0.32	0.27 0.13 0.14 0.87 0.17	0.31		0.04	and a second sec	
dis-1,3-Dichloropropene 9-Mar-10 0.2 0.17 m-Dichloropenzene 12-Feb-10 0.2 0.15 m-Dichlorobenzene 12-Feb-10 0.2 0.15 p-Dichlorobenzene 12-Feb-10 0.2 0.16 p-Dichlorobenzene 12-Feb-10 0.2 0.16 p-Dichlorobenzene 9-Mar-10 0.2 0.16 p-Dichlorobenzene 9-Mar-10 0.2 0.16 prans-1,2-Dichloropropene 13-Jan-10 0.2 0.16 cis-1,3-Dichloropropene 25-Jan-10 0.2 0.18 trans-1,4-Dichloropropenone 12-Feb-10 0.2 0.18 frans-1,4-Dichloropropenone 26-Jan-10 0.2 0.20 frans-1,4-Dichloropropanone 22-Jan-10 0.2 0.20 frans-1,4-Dichloropropanone 22-Jan-10 0.2 0.26 frans-1,4-Dichloropropanone 22-Jan-10 0.2 0.20 frans-1,4-Dichloropropanone 22-Jan-10 0.2 0.26 frans-1,4-Dichloropropanone 22-Jan-10 0.2	0.17 0.16 0.16 0.19 0.19 0.116 0.19 0.116 0.19 0.116 0.19 0.116 0.10 0.10 0.20 0.20 0.20 0.20 0.20 0.20	3 0.18 13 0.17 17 0.16 177 0.16 177 0.16 18 0.16 19 0.18 19 0.18 14 0.39 177 0.16 18 0.18 19 0.18 19 0.18 14 0.39 15 0.18 16 0.15 17 0.39 18 0.18 19 0.15 10 0.18 118 0.39 118 0.39 118 0.39 118 0.39 118 0.39 118 0.39 118 0.31 118 0.31 118 0.31 119 0.31	0.15 0.14 0.14 0.14 0.14 0.11 0.22 0.21 0.22 0.21 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23	0.15 0.14 0.14 0.19 0.19 0.19 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23	0.14 0.13 0.17 0.17 0.14 0.18 0.18 0.32 0.32	0.13 0.14 0.87 0.17		61.02		0.13	3.82
m-Dichlorobenzene 12-Feb-10 0.2 0.15 o-Dichlorobenzene 12-Feb-10 1 0.98 p-Dichlorobenzene 9-Mar-10 0.2 0.19 p-Dichlorobenzene 9-Mar-10 0.2 0.16 p-Dichlorobenzene 9-Mar-10 0.2 0.16 p-Dichlorobenzene 13-Jan-10 0.2 0.16 cis-1,2-Dichlorophylene 26-Jan-10 0.2 0.18 trans-1,3-Dichlorophylene 25-Jan-10 0.2 0.18 1,1-Dichloropropanone 12-Feb-10 0.2 0.18 Trans-1,4-Dichloropropanone 22-Jan-10 0.2 0.20 Di-lsopropyl ether 22-Jan-10 0.2 0.20 Di-lsopropyl ether 22-Jan-10 0.2 0.20 Di-lsopropyl ether 22-Jan-10 0.2 0.20 Ethyl Acetate 22-Jan-10 0.2 0.20 Ethyl Herer 0.2 0.20 0.20 Ethyl Herer 22-Jan-10 0.2 0.20 Ethyl Iteher 0.2<	0.15 0.16 0.198 0.198 0.119 0.118 0.118 0.118 0.118 0.118 0.118 0.118 0.118 0.118 0.118 0.118 0.118 0.118 0.118 0.118 0.118 0.118 0.118 0.119 0.	14 0.17 88 0.88 77 0.16 16 0.16 19 0.18 19 0.18 19 0.18 19 0.18 18 0.18 19 0.18 19 0.18 19 0.18 19 0.18 19 0.18 19 0.18 19 0.18 19 0.18 10 0.33 10 0.18 10 0.18 11 0.33 12 0.34 13 0.35 14 0.36 15 0.40 16 0.31 17 0.31 18 0.31 19 0.31 10 0.31 10 0.31	0.14 0.91 0.14 0.14 0.11 0.22 0.21 0.21 0.21 0.21 0.21 0.23 0.23 0.43 0.68 0.68 0.43 0.43	0.14 0.14 0.19 0.19 0.19 0.23 0.23 0.17 0.17 0.81 0.83 0.92 0.38 0.92 0.38	0.13 0.91 0.17 0.14 0.18 0.18 0.32 0.32	0.14 0.87 0.17	0.15	75.45	0.02	90.0	3.38
o-Dichlorobenzene 12-Feb-10 1 0.38 p-Dichlorobenzene 9-Mar-10 0.2 0.19 trans-1,2-Dichloroethylene 9-Mar-10 0.2 0.16 cis-1,2-Dichloroethylene 9-Mar-10 0.2 0.14 trans-1,2-Dichloroethylene 13-Jan-10 0.2 0.14 trans-1,3-Dichlorophone 26-Jan-10 0.2 0.18 trans-1,3-Dichlorophone 25-Jan-10 0.2 0.18 trans-1,3-Dichlorophone 25-Jan-10 0.2 0.18 trans-1,4-Dichloro-2-Butene 25-Jan-10 0.2 0.20 Di-lsopropy ether 22-Jan-10 0 0 0.46 Ethyl horetale 1,2-Feb-10 0 0 0.20 Ethyl horetale 22-Jan-10 0 0 0.94 Ethyl horetale 1,2-Feb-10 0.5 0.28 0.26 Ethyl horetale 22-Jan-10 0 0 0.94 0 Ethyl horetale 1,2-Feb-10 0.5 0.20 0.28 0.26	0.98 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19	38 0.88 7 0.16 16 0.09 18 0.18 94 0.18 95 0.18 95 0.18 95 0.18 96 0.18 97 0.18 98 0.915 98 0.916 97 0.915 97 0.915	0.91 0.14 0.11 0.22 0.21 0.22 0.22 0.21 0.22 0.23 0.22 0.23 0.23 0.68 0.89 0.43	0.90 0.14 0.10 0.19 0.19 0.17 0.23 0.23 0.17 0.81 0.81 0.83 0.92 0.92 0.93 0.93	0.91 0.17 0.14 0.21 0.18 0.32 0.32	0.87	0.15	73.55	0.01	0.05	4.42
p-Dichlorobertzene 9-Mar-10 0.2 0.19 trans-1,2-Dichloroethylene 9-Mar-10 0.2 0.16 cis-1,2-Dichloroethylene 13-Jan-10 0.2 0.14 trans-1,3-Dichloroethylene 13-Jan-10 0.2 0.14 trans-1,3-Dichloropthylene 26-Jan-10 0.2 0.18 1,1-Dichloroptopene 26-Jan-10 0.2 0.18 1,1-Dichloroptopanone 12-Feb-10 0.5 4.55 Trans-1,4-Dichloro-2-Butene 25-Jan-10 0.2 0.20 Di-lsopropyl ether 22-Jan-10 0.2 0.35 Ethyl Acetale 22-Jan-10 0.2 0.20 Ethyl Itert Butyl Ether 26-Jan-10 0.2 0.20 Ethyl Itert Butyl Ether 9-Mar-10 0.5 0.28 Ethyl Itert 9-Mar-10 0.5 0.28 Ethyl Iter	0.19 0.16 0.16 0.144 0.18 0.188 0.35 0.188 0.20 0.35 0.20 0.35 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.2	7 0.16 16 0.09 18 0.18 19 0.18 14 0.39 15 0.16 16 0.18 17 0.18 18 0.18 19 0.18 10 0.18 11 0.39 12 0.15 13 0.15 14 0.39 15 0.15 16 0.15 17 0.16 18 0.16 19 0.15 10 0.15 10 0.15 10 0.16 11 0.17 12 0.16 13 0.16 14 0.16	0.14 0.11 0.22 0.21 0.21 0.23 0.23 0.23 0.23 0.43 0.68 0.89 0.89 0.43	0.14 0.10 0.19 0.19 0.17 0.17 0.81 0.83 0.92 0.92 0.94	0.17 0.14 0.21 0.18 0.32 0.32	0.17	06.0	90.41	0.04	0.12	8.49
trans-1,2-Dichloroethylene 9-Mar-10 0.2 0.16 cis-1,2-Dichloroethylene 13-Jan-10 0.2 0.14 trans-1,3-Dichloroethylene 25-Jan-10 0.2 0.18 1,1-Dichloroptopene 26-Jan-10 0.2 0.18 1,1-Dichloroptopanone 12-Feb-10 6 4.55 Trans-1,4-Dichloro-2-Butene 9-Mar-10 0.2 0.35 Di-lsopropyl ether 25-Jan-10 0.2 0.46 Ethyl Acctate 25-Jan-10 0.2 0.46 Ethyl Ether 9-Mar-10 1 0.48 Ethyl Ether 9-Mar-10 1 0.48 Ethyl Ether 25-Jan-10 1 0.48 Ethyl tert 25-Jan-10 1 0.48 Ethyl tert 9-Mar-10 1 0.36 Ethyl tert 2.4.56 1 0.28 Ethyl tert 2.4.56 1 0.46 Ethyl tert 2.4.56 1 0.46 Ethyl tert 2.4.56 1 0.46 <	0.16 0.14 0.14 0.18 0.35 0.35 0.20 0.35 0.35 0.20 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.3	6 0.09 18 0.18 19 0.18 14 0.39 20 0.15 20 0.16 21 0.18 22 0.91 22 0.91	0.11 0.22 0.21 0.43 0.43 0.43 0.43 0.43 0.68 0.89 0.89	0.10 0.19 0.19 0.19 0.129 0.29 0.83 0.83 0.92 0.92 0.94	0.14 0.21 0.18 0.32 0.32 0.32		0.16	80.90	0.02	0.06	3.58
cis-1,2-Dichloroethylene 13-Jan-10 0.2 0.14 trans-1,3-Dichloropropene 26-Jan-10 0.2 0.18 1,1-Dichloropropanone 12-Feb-10 5 4.55 Trans-1,4-Dichloro-2-Butene 9-Mar-10 0.2 0.18 Di-lsopropyl ether 9-Mar-10 0.2 0.35 Ethyl Accetate 22-Jan-10 0.2 0.46 Ethyl Accetate 22-Jan-10 0.2 0.48 Ethyl Ether 34-40 0.2 0.46 Ethyl Ether 22-Jan-10 1 0.48 Ethyl Ether 22-Jan-10 1 0.36 Ethyl Ether 9-Mar-10 1 0.38 Ethyl Ether 2.1-Jan-10 1 0.36 Ethyl methacrylate 2.1-Jan-10 1 0.36 Fithyl Ether 2.1-Jan-10 1 0.36	0.14 0.18 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35	8 0.18 9 0.13 44 0.15 20 0.15 20 0.15 21 0.15 22 0.91 22 0.91	0.22 0.21 4.52 0.43 0.43 0.68 0.84 0.89	0.19 0.19 0.29 0.29 0.81 0.81 0.83 0.92 0.92 0.92 0.94	0.21 0.18 0.32 0.32	0.12	0.12	61.95	0.03	0.09	2.26
trans-1,3-Dichloropropene 26-Jan-10 0.2 0.18 1,1-Dichloropropanone 12-Feb-10 5 4.55 Trans-1,4-Dichloro-2-Butene 9-Mar-10 0.5 0.35 Di-lsopropyl ether 22-Jan-10 0.2 0.45 Ethyl Acetate 22-Jan-10 0.2 0.46 Ethyl Herzene 22-Jan-10 1 0.48 Ethyl Ether 3-Mar-10 0.2 0.48 Ethyl Ether 9-Mar-10 1 0.91 Ethyl Herzene 2-T-Jan-10 1 0.28 Ethyl Ether 9-Mar-10 0.5 0.29 Ethyl Ether 21-Jan-10 1 0.91 Ethyl methacrylate 21-Jan-10 1 0.96 From 13 13-Jan-10 1 1.00	0.18 4.55 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0	9 0.18 44 4.66 14 0.39 20 0.15 25 0.39 35 0.91 35 0.91 32 0.91 32 0.91	0.21 4.52 0.43 0.19 0.68 0.84 0.89 0.43	0.19 0.29 0.29 0.81 0.81 0.83 0.92 0.92 0.92 0.94	0.18 4.36 0.32 0.20	0.18	0.18	92.20	0.03	0.08	2.37
1,1-Dichloropropanone 12-Feb-10 5 4.55 Trans-1,4-Dichloro-2-Butene 9-Mar-10 0.5 0.35 D-lsopropyl ether 22-Jan-10 0.2 0.48 Ethyl Acetate 22-Jan-10 1 0.48 Ethyl Ether 13-Feb-10 1 0.48 Ethyl Ether 24-bit 1 0.48 Ethyl Ether 3-Mar-10 1 0.38 Ethyl Ether 3-Mar-10 0.5 0.28 Ethyl methacrylate 21-Jan-10 1 0.38 Ethyl methacrylate 21-Jan-10 1 0.36	4.55 4.1 0.35 0.2 0.20 0.20 0.2 0.48 0.1 0.48 0.1 0.88 0.1 0.28 0.1	54 4.66 44 0.39 20 0.15 74 0.86 55 0.84 88 0.91 37 0.40	4.52 0.43 0.19 0.68 0.84 0.89 0.43	4.32 0.29 0.17 0.81 0.83 0.92 0.38 0.92 0.38	4.36 0.32 0.20	0.22.	0.19	97.20	0.02	0.05	3.67
Trans-1,4-Dichloro-2-Butene 9-Mar-10 0.5 0.35 Di-lsopropyl ether 22-Jan-10 0.2 0.20 Ethyl Acetate 26-Jan-10 0.2 0.20 Ethyl benzene 12-Feb-10 1 0.4B Ethyl tert Butyl Ether 9-Mar-10 1 0.91 Ethyl tert Butyl Ether 9-Mar-10 1 0.3B Ethyl methacrylate 21-Jan-10 0.5 0.20 Fthyl methacrylate 13-Jan-10 1 0.96 Feon 113 13-Jan-10 1 0.96	0.35 0.35 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.2	44 0.39 20 0.15 74 0.86 55 0.84 88 0.91 37 0.40 32 0.91	0.43 0.19 0.68 0.84 0.89 0.43	0.29 0.17 0.81 0.83 0.92 0.94	0.32	4.37	4.47	89.49	0.12	0.39	12.74
Di-lsopropyl ether 22-Jan-10 0.2 0.20 Ethyl Acetate 26-Jan-10 1 0.48 Ethylbenzene 12-Feb-10 1 0.91 Ethyl tert Butyl Ether 9-Mar-10 1 0.32 Ethyl tert Butyl Ether 9-Mar-10 1 0.38 Ethyl methacrylate 21-Jan-10 1 0.36 Feton 113 13-Jan-10 1 0.36	0.20 0.48 0.91 0.88 0.29 0.29 0.29	20 0.15 74 0.86 35 0.84 38 0.91 37 0.40 32 0.91	0.19 0.68 0.84 0.89 0.43	0.17 0.81 0.83 0.83 0.83 0.38 0.38	0.20	0.31	0.36	72.28	0.06	0,19	2.67
Ethyl Acetate 26-Jan-10 1 0.48 Ethylbenzene 12-Feb-10 1 0.91 Ethyl tert Butyl Ether 9-Mar-10 1 0.88 Ethyl tert Butyl Ether 9-Mar-10 1 0.36 Ethyl tert Butyl Ether 9-Mar-10 1 0.38 Ethyl methacrylate 21-Jan-10 1 0.36 From 113 13-Jan-10 1 1.00	0.48 0.91 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.	74 0.86 35 0.84 38 0.91 37 0.40 32 0.91	0.68 0.84 0.89 0.43	0.81 0.83 0.92 0.38 0.94	;;	0.21	0.19	94.16	0.02	0.06	3.16
Ethylbenzene 12-Feb-10 1 0.91 Ethyl tert Butyl Ether 9-Mar-10 1 0.88 Ethyl tert Butyl Ether 9-Mar-10 1 0.88 Ethyl tert Butyl Ether 9-Mar-10 1 0.38 Ethyl methacrylate 21-Jan-10 1 0.96 Freon 113 13-Jan-10 1 1.00	0.91 0.1 0.88 0.1 0.29 0.1	35 0.84 38 0.91 37 0.40 32 0.91	0.84 0.89 0.43	0.83 0.92 0.38 0.94	0.80	0.69	0.72	72.48	0.12	0.39	2.55
Ethyl tert Butyl Ether 9-Mar-10 1 0.88 Ethyl Ether 9-Mar-10 0.5 0.29 Ethyl methacrylate 21-Jan-10 1 0.96 Freon 113 13-Jan-10 1 1.00	0.29 0.1	38 0.91 37 0.40 32 0.91	0.89 0.43	0.92 0.38 0.94	0.82	0.82	0.84	84.37	0.03	0:0	10.10
Ethnyl Ether 9-Mar-10 0.5 0.29 Ethnyl methacrylate 21-Jan-10 1 0.96 Freon 113 13-Jan-10 1 1.00	0.29 0.1	37 0.40 32 0.91	0.43	0.38 0.94 0.89	0.87	0.87	0.89	88.91	0.02	0.07	15.29
Ethyl methacrylate 21-Jan-10 1 0.96 Freon 113 13-Jan-10 1 1.00		32 0.91		0.94	0.32	0.29	0.35	70.78	0.05	0.17	2.98
Freon 113 13-Jan-10 1 1.00	0.96		0.87	0.89	0.94	0.83	0.91	90.90	0.04	0.14	7.28
	1.00 0.1	38 0.85	0.83	.00	0.79	0.72	0.85	85.02	0.09	0.27	3.72
Hexachlorobutadiene 26-Jan-10 0.2 0.20	0.20	25 0.22	0.26	0.24	0.20	0.23	0.23	113.95	0.02	0.08	2.64
Hexane 9-Mar-10 0.5 0.45	0.45 0.	34 0.44	0.40	0.32	0.37	0.33	0.38	75.92	0.05	0.16	3.09
Hexachloroethane 12-Feb-10 0.5 0.35	0.35 0.	30 0.27	0.31	0.26	0.30	0.27	0.29	58.84	0.03	01.0	5.05
2-Hexanone 22-Jan-10 0.6 0.26	0.26 0.	35 0.43	0.37	0.43	0.37	0.35	0.36	60.72	0.06	0.19	3.20
Iodomethane 26-Jan-10 0.2 0.20	0.20 0.	23 0.17	0.21	0.20	0.22	0.19	0.20	101.10	0.02	0.07	3.01
Isopropylbenzene 13-Jan-10 1.08	1.08	0.99	1.00	1.00	0.97	0.93	1.00	99.66	0.05	0.15	6.79
p-lsopropyltoluene 26-Jan-10 0.5 0.53	0.53 0.5	54 0.53	0.54	0.52	0.52	0.49	0.52	104.46	0.02	0.06	8.65
Methylene chloride 9-Mar-10 0.2 0.16	0.16 0.	14 0.18	0.14	0.09	0.12	0.14	0.14	68.70	0.03	. 0.09	2.18
Methyl Tert Burlyf Ether 12-Feb-10 5 6.02	5.02 4.	97 5.27	5.02	4.96	4.92	4.90	5.01	100.18	0.13	95.0	12.70
4-Methyl-2-pentanone 12-Feb-10 3 3.44	3.44 3.	23 3.24	3.16	3.08	3.13	3.18	3.21	106.93	0.12	0.37	8.21
Methacrylonitrite 0.53 26-Jan-10 0.5 0.53	0.53 0.	54 0.52	0.43	0.42	0.49	0.43	0.48	95.82	0.05	0,17	2.96
Methyl methacrylate 12-Feb-10 12-60-3	0.63 0.	57 0.54	0.56	0.55	0.55	0.58	0.57	56.82	0.03	60.0	10.99
Methyl Acrylate 21-Jan-10 1 1.15	1.15 1.	10 0.91	0.84	1.03	1.03	0.92	1.00	<u>99.69</u>	0.11	0.35	2.86
Methyl Acetate 11-Jan-10 1.58	0.58 0.	41 0.47	0.41	0.43	0.45	0.43	0.45	45.39	0.06	0.19	5.22
Methylcyclohexane 22-Jan-10 0.2 0.20	0.20 0.	19 0.18	0.17	0.17	0.17	0.16	0.18	88.60	0.01	0.05	4,40
Nitrobenzene 12-Feb-10 50 52.27	52.27 52.	18 54.72	52.13	50.85	50.38	50.53	51.87	103.73	1.50	4.72	10.60
2-Nitropropane 9-Mar-10 1.05	1.05 1.	0.93	1.01	0:00	1.30	0.93	1.02	102.30	0.13	0.42	2.36
Naphthalene 26-Jan-10 0.5 0.49	0.49 0.	51 0.54	0.54	0.52	0.53	0.50	0.52	103.60	0.02	0.06	8.36
n-Propylbenzene 12-Feb-10 1.90	0.90	35 0.84	0.82	0.79	0.82	0.80	0.83	83.07	0.04	0.12	8.59
Pentachloroethane 12-Feb-10 0.5 0.36	0.36 0.	34 0.34	0.28	0.32	0.28	0.34	0.32	64.88	0.03	0.10	4.97
Propionitrile 22-Jan-10 5 2.59	2.59 1.	92 2.73	3.37	2.17	2.96	1.86	2.51	50.30	0.56	1.77	2.83
Styrene 9-Mar-10 0.2 0.16	0.16 0.	16 0.15	0.16	0.12	0.12	0.14	0.15	73.20	0.02		3.90
tert-Amyl Methyl Ether 22-Jan-10 0.5 0.55	0.55 0.	49 0.50	0.51	0.52	0.52	0.54	0.52	103.77	0.02	0.06	8.10

Detection limits derived using the method described in 40 CFR Part 136, Appendix B

4.4

2010 MDL Study - Method: EPA 524.2 REV 4.1 page 2 of 3

ACCUTEST JA65236

AQ 1.00 March,2010

Matrix: Quant Factor: Study Period: Replicate Spikes EPA 524.2 REV 4.1 (V524.2) GCMS1A, GCMS1B, GCMS2B, GCMS2E, GCMS3A, GCMS3B Pooled

Method: Instrument(s): Analyst:

	Analysis	Spike	Ł	R2	R3	R4	R5	RG	R7	X-Bar	X-Bar	STD.Dev. MDI	. Spike/N	MDL
Cmpd./Element/Parm. Name	Date	l/6n	l/gu	l/Bn	ng/)	l/bn	l/Bn	l/Bn	l/Bn	l/6n	%Recov.	l/6n	Ratio	0
1,1,1,2-Tetrachloroethane	9-Mar-10	0.5	0.43	0.39	0.41	0.43	0.43	0.37	0.41	0.41	81.90	0.02	0.07	7.16
Tetrahydrofuran	9-Mar-10	-	0.76	0.82	0.70	0.78	0.77	0.56	0.70	0.73	72.92	0.09	0.27	3.74
1,1,1-Trichloroethane	13-Jan-10	0.5	0.46	0.45	0.42	0.43	0.42	0.41	0.38	0.42	84.56	0.03	0.08 (6.01
1,1,2,2-Tetrachloroethane	9-Mar-10	0.2	0.17	0.18	0.15	0.18	0.14	0.16	0.18	0.17	83.95	0.01	0.05	4.28
1,1,2-Trichtoroethane	9-Mar-10	0.2	0.12	0.18	60.0	0.12	0.14	0.07	0.10	0.12	58.85	0.03	0.11	1.82
1,2,3-Trichlorobenzene	12-Feb-10	0.2	0.16	0.12	0.16	0.14	0.15	0.13	0.15	0.14	72.30	0.01	0.04	4.47
1,2,3-Trichloropropane	9-Mar-10	0.5	0.53	0.47	0.29	0.37	0.31	0.44	0.33	0.39	77.86	0.09	0,28	1.79
1,2,4-Trichlorobenzene	21-Jan-10	1	0.93	0.96	0.93	0.93	0.95	0.92	0.92	0.93	93.34	0.02	0.05 11	9.74
1,2,4-Trimethylbenzene	22-Jan-10	0.2	0.20	0.19	0.17	0.17	0.18	0.17	0.17	0.18	89.10	0.01	0:03	6.30
1,3,5-Trimethylbenzene	12-Feb-10	-	0.89	0.83	0.82	0.81	0.80	0.81	0.78	0.82	81.99	0.03	0,11	9.37
Tetrachloroethylene	9-Mar-10	0.2	60.0	0.13	0.08	0.11	0.12	0.13	0.13	0.11	56.30	0.02	0.07	2.97
Toluene	12-Feb-10	1	0.93	0.89	0.87	0.85	0.85	0.85	0.86	0.87	87.23	0.03	0.10 11	0.03
Trichloroethylene	9-Mar-10	0.5	0.37	0.38	0.41	0.32	0.40	0.37	0.33	0.37	73.62	0.03	0.11	4 74
Trichlorofluoromethane	9-Mar-10	1	0.85	0.85	0.80	0.80	0.87	0.75	0.82	0.82	81.97	0.04	0.12	8.23
Tertiary Butyl Alcohol	9-Mar-10	ۍ ت	4.97	4.02	4.91	4.47	5.36	4.50	4.51	4.68	93.56	0.43	1.36	3.67
Vinyl chloride	26-Jan-10	0.2	0.22	0.18	0.21	0.21	0.26	0.24	0.24	0.22	108.38	0.03	0.08	2.50
m,p-Xylene	13-Jan-10	2	2.08	2.06	1.96	2.00	1.96	1.89	1.93	1.98	99.14	0.07	0.21	9.35
o-Xylene	13-Jan-10	Ŧ	1.04	1.00	0.99	1.01	1.02	0.97	0.94	1.00	99.61	0.03	0.11	9.19
									•					

Detection limits derived using the method described in 40 CFR Part 136, Appendix B

32 of 142 ACCUTEST JA65236

4.4

GC/MS Volatiles

QC Data Summaries

Includes the following where applicable:

- Method Blank Summaries
- Blank Spike Summaries
- Matrix Spike and Duplicate Summaries
- Instrument Performance Checks (BFB)
- Internal Standard Area Summaries
- Surrogate Recovery Summaries
- Initial and Continuing Calibration Summaries

Method Blank Summary Job Number: JA65236 Account: EPMNYLS Environmental Planning and Management Project: Katonah Q4, Katonah Pump House, Bedford, NY								
Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch	
V1B2368-MB1	1B51763.D	1	01/03/11	MFH	n/a	n/a	V1B2368	

The QC reported here applies to the following samples:

Method: EPA 524.2 REV 4.1

JA65236-1, JA65236-2, JA65236-3, JA65236-4, JA65236-5, JA65236-6, JA65236-7, JA65236-8

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	5.0	1.5	ug/l	
78-93-3	2-Butanone	ND	5.0	1.8	ug/l	
71-43-2	Benzene	ND	0.50	0.061	ug/l	
108-86-1	Вготовелгеле	ND	0.50	0.053	ug/l	
74-97-5	Bromochloromethane	ND	0.50	0.15	ug/l	
75-27-4	Bromodichloromethane	ND	0.50	0.038	ug/l	
75-25-2	Bromoform	ND	0.50	0.093	ug/l	
74-83-9	Bromomethane	ND	0.50	0.095	ug/l	
104-51-8	n-Butylbenzene	ND	0.50	0.033	ug/l	
135-98-8	sec-Butylbenzene	ND	0.50	0.059	ug/l	
98-06-6	tert-Butylbenzene	ND	0.50	0.045	ug/l	
75-15-0	Carbon disulfide	ND	0.50	0.070	ug/l	
108-90-7	Chlorobenzene	ND	0.50	0.070	ug/l	
75-00-3	Chloroethane	ND	0.50	0.14	ug/l	
67-66-3	Chloroform	ND	0.50	0.058	ug/l	
74-87-3	Chloromethane	ND	0.50	0.15	ug/l	
95-49-8	o-Chlorotoluene	ND	0.50	0.065	ug/l	
106-43-4	p-Chlorotoluene	ND	0.50	0.089	ug/l	`
56-23-5	Carbon tetrachloride	ND	0.50	0.094	ug/l	
75-34-3	1,1-Dichloroethane	ND	0.50	0.098	ug/l	
75-35-4	1,1-Dichloroethylene	ND	0.50	0.13	ug/l	
563-58-6	1,1-Dichloropropene	ND	0.50	0.18	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND.	1.0	0.37	ug/l	
106-93-4	1,2-Dibromoethane	ND	0.50	0.075	ug/l	
107-06-2	1,2-Dichloroethane	ND	0.50	0.072	ug/l	
78-87-5	1,2-Dichloropropane	ND	0.50	0.12	ug/l	
142-28-9	1,3-Dichloropropane	ND	0.50	0.046	ug/l	
594-20-7	2,2-Dichloropropane	ND	0.50	0.12	ug/l	
124-48-1	Dibromochloromethane	ND	0.50	0.067	ug/l	
74-95-3	Dibromomethane	ND	0.50	0.10	ug/l	
75-71-8	Dichlorodifluoromethane	ND	1.0	0.13	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	0.50	0.059	ug/l	
541-73-1	m-Dichlorobenzene	ND	0.50	0.045	ug/l	
95-50-1	o-Dichlorobenzene	ND	0.50	0.12	ug/l	
106-46-7	p-Dichlorobenzene	ND	0.50	0.056	ug/l	
156-60-5	trans-1,2-Dichloroethylene	ND	0.50	0.089	ug/l	

5.1.1 5

Method Blank Summary

Job Number: Account: Project:	b Number: JA65236 count: EPMNYLS Environmental Planning and Management oject: Katonah Q4, Katonah Pump House, Bedford, NY								
Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch		
V1B2368-MB1	1B51763.D	1	01/03/11	MFH	n/a	n/a	V1B2368		

The QC reported here applies to the following samples:

Method: EPA 524.2 REV 4.1

JA65236-1, JA65236-2, JA65236-3, JA65236-4, JA65236-5, JA65236-6, JA65236-7, JA65236-8

CAS No.	Compound	Result	RL	MDL	Units	Q
156-59-2	cis-1,2-Dichloroethylene	ND	0.50	0.084	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	0.50	0.055	ug/l	
100-41-4	Ethylbenzene	ND	0.50	0.099	ug/l	
87-68-3	Hexachlorobutadiene	ND	2.0	0.076	ug/l	
110-54-3	Hexane	ND	0.50	0.16	ug/l	
591- 78 -6	2-Hexanone	ND	2.0	0.19	ug/l	
98-82-8	Isopropylbenzene	ND	0.50	0.15	ug/l	
99-87-6	p-Isopropyltoluene	ND	0.50	0.058	ug/l	
75-09-2	Methylene chloride	ND	0.50	0.092	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	0.50	0.39	ug/l	
108-10-1	4-Methyl-2-pentanone	ND	2.0	0.37	ug/l	
91-20-3	Naphthalene	ND	0.50	0.060	ug/l	
103-65-1	n-Propylbenzene	ND	0.50	0.12	ug/l	
100-42-5	Styrene	ND	0.50	0.051	ug/l	
630-20-6	1,1,1,2-Tetrachloroethane	ND	0.50	0.070	ug/l	
71-55-6	1,1,1-Trichloroethane	ND and an of	0.50	0.083	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.50	0.047	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	0.50	0.11	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	0.50	0.045	ug/l	
96-18-4	1,2,3-Trichloropropane	ND	0.50	0.28	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	0.50	0.051	ug/l	
95-63-6	1,2,4-Trimethylbenzene	ND	0.50	0.032	ug/l	
108-67-8	1,3,5-Trimethylbenzene	ND	0.50	0.11	ug/l	
127-18-4	Tetrachloroethylene	ND	0.50	0.067	ug/l	
108-88-3	Toluene	ND	0.50	0.10	ug/l	
79-01-6	Trichloroethylene	ND	0.50	0.11	ug/l	
75-69-4	Trichlorofluoromethane	ND	1.0	0.12	ug/l	
75-01-4	Vinyl chloride	ND	0.50	0.080	ug/l	
	m,p-Xylene	ND	1.0	0.21	ug/l	
95-47-6	o-Xylene	ND	0.50	0.11	ug/l	
1330-20-7	Xylenes (total)	ND	0.50	0.11	ug/l	
CAS No.	Surrogate Recoveries		Limits			
2199-69-1	1,2-Dichlorobenzene-d4	109%	78-1149	%		

Page 2 of 3

۲۹ هم

 (\mathbf{b}_{1})

Method Blank Summary

Job Number:	JA65236										
Account:	EPMNYLS Environmental Planning and Management										
Project:	Katonah Q4, Katonah Pump House, Bedford, NY										
Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch				
V1B2368-MB1	1B51763.D	1	01/03/11	MFH	n/a	n/a	V1B2368				

The QC reported here applies to the following samples:

Method: EPA 524.2 REV 4.1

JA65236-1, JA65236-2, JA65236-3, JA65236-4, JA65236-5, JA65236-6, JA65236-7, JA65236-8

CAS No.	Surrogate Recoveries		Limits		
460-00-4	4-Bromofluorobenzene	102%	77-115%		
CAS No.	Tentatively Identified Comp	ounds	R.T.	Est. Conc.	Units Q
	Total TIC, Volatile			0	ug/l

Page 3 of 3

ക

Blank Spik Job Number: Account: Project:	lank Spike Summary b Number: JA65236 count: EPMNYLS Environmental Planning and Management oject: Katonah Q4, Katonah Pump House, Bedford, NY								
Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch		
V1B2368-BS	1B51764.D	1	01/03/11	MFH	n/a	n/a	V1B2368		

The QC reported here applies to the following samples:

Method: EPA 524.2 REV 4.1

JA65236-1, JA65236-2, JA65236-3, JA65236-4, JA65236-5, JA65236-6, JA65236-7, JA65236-8

		Spike	BSP	BSP	
CAS No.	Compound	ug/l	ug/l	%	Limits
67-64-1	Acetone	20	18.5	93	70-130
78-93-3	2-Butanone	20	20.1	101	70-130
71-43-2	Benzene	5	5.0	100	70-130
108-86-1	Bromobenzene	5	5.6	112	70-130
74-97-5	Bromochloromethane	5	5.4	108	70-130
75-27-4	Bromodichloromethane	5	5.2	104	70-130
75-25-2	Bromoform	5	5.2	104	70-130
74-83-9	Bromomethane	2	2.0	100	70-130
104-51-8	n-Butylbenzene	5	5.5	110	70-130
135-98-8	sec-Butylbenzene	5	5.4	108	70-130
98-06-6	tert-Butylbenzene	5	5.4	108	70-130
75-15-0	Carbon disulfide	5	4.8	96	70-130
108-90-7	Chlorobenzene	5	5.5	110	70-130
75-00-3	Chloroethane	2	2.0	100	70-130
67-66-3	Chloroform	5	5.1	102	70-130
74-87-3	Chloromethane	2	1.9	95	70-130
95-49-8	o-Chlorotoluene	5	5.6	112	70-130
106-43-4	p-Chlorotoluene	5	5.1	102	70-130
56-23-5	Carbon tetrachloride	5	5.6	112	70-130
75-34-3	1,1-Dichloroethane	5	5.0	100	70-130
75-35-4	1,1-Dichloroethylene	5	4.5	90	70-130
563-58-6	1,1-Dichloropropene	5	5.0	100	70-130
96-12-8	1,2-Dibromo-3-chloropropane	5	5.1	102	70-130
106-93-4	1,2-Dibromoethane	5	5.4	108	70-130
107-06-2	1,2-Dichloroethane	5	5.5	110	70-130
78-87-5	1,2-Dichloropropane	5	5.1	102	70-130
142-28-9	1,3-Dichloropropane	5	5.5	110	70-130
594-20-7	2,2-Dichloropropane	5	5.2	104	70-130
124-48-1	Dibromochloromethane	5	5.4	108	70-130
74-95-3	Dibromomethane	5	5.5	110	70-130
75-71-8	Dichlorodifluoromethane	2	2.2	110	70-130
10061-01-5	cis-1,3-Dichloropropene	5	5.3	106	70-130
541-73-1	m-Dichlorobenzene	5	5.8	116	70-130
95-50-1	o-Dichlorobenzene	5	5.5	110	70-130
106-46-7	p-Dichlorobenzene	5	5.6	112	70-130
156-60-5	trans-1,2-Dichloroethylene	5	4.5	90	70-130

N N N

Blank Spike Summary

Job Number:	JA65236									
Account:	EPMNYLS Environmental Planning and Management									
Project:	Katonah Q4, Katonah Pump House, Bedford, NY									
Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch			
V1B2368-BS	1B51764.D	1	01/03/11	MFH	n/a	n/a	V1B2368			
	· · ·									

The QC reported here applies to the following samples:

Method: EPA 524.2 REV 4.1

JA65236-1, JA65236-2, JA65236-3, JA65236-4, JA65236-5, JA65236-6, JA65236-7, JA65236-8

		Smiles	DCD	DCD	
CAS No.	Compound	spike ug/l	ug/l	ыл %	Limits
0110 110.	Compound	-8-	-8		
156-59-2	cis-1,2-Dichloroethylene	5	5.2	104	70-130
10061-02-6	trans-1,3-Dichloropropene	5	5.4	108	70-130
100-41-4	Ethylbenzene	5	5.2	104	70-130
87-68-3	Hexachlorobutadiene	5	5.8	116	70-130
110-54-3	Hexane	5	5.2	104	70-130
591-78-6	2-Hexanone	20	19.0	95	70-130
98-82-8	Isopropylbenzene	5	5.3	106	70-130
99-87-6	p-Isopropyltoluene	5	5.6	112	70-130
75-09-2	Methylene chloride	5	4.4	88	70-130
1634-04-4	Methyl Tert Butyl Ether	10	9.7	97	70-130
108-10-1	4-Methyl-2-pentanone	20	19.1	96	70-130
91-20-3	Naphthalene	5	5.6	112	70-130
103-65-1	n-Propylbenzene	5	5.2	104	70-130
100-42-5	Styrene	5	4.9	98	70-130
630-20-6	1,1,1,2-Tetrachloroethane	5	5.5	110	70-130
71-55-6	1,1,1-Trichloroethane	5	5.2	104	70-130
79-34-5	1,1,2,2-Tetrachloroethane	5	5.2	104	70-130
79-00-5	1,1,2-Trichloroethane	5	5.3	106	70-130
87-61-6	1,2,3-Trichlorobenzene	5	6.0	120	70-130
96-18-4	1,2,3-Trichloropropane	5	5.7	114	70-130
120-82-1	1,2,4-Trichlorobenzene	5	5.8	116	70-130
95-63-6	1,2,4-Trimethylbenzene	5	5.3	106	70-130
108-67-8	1,3.5-Trimethylbenzene	5	5.3	106	70-130
127-18-4	Tetrachloroethylene	5	5.4	108	70-130
108-88-3	Toluene	5	5.3	106	70-130
79-01-6	Trichloroethylene	5	5.2	104	70-130
75-69-4	Trichlorofluoromethane	2	2.4	120	70-130
75-01-4	Vinyl chloride	2	2.0	100	70-130
· · · · · . ·	m.p-Xvlene	10	10.9	109	70-130
95-47-6	o-Xvlene	5	5.5	110	70-130
1330-20-7	Xvlenes (total)	15	16.4	109	70-130
				·	
CAS No.	Surrogate Recoveries	BSP	Li	mits	
2199-69-1	1,2-Dichlorobenzene-d4	111%	78	-114%	

Page 2 of 3

N N

জ

Blank Spike Summary

Job Number:	JA65236									
Account:	EPMNYLS Environmental Planning and Management									
Project:	Katonah Q4, Katonah Pump House, Bedford, NY									
Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch			
V1B2368-BS	1B51764.D	1	01/03/11	MFH	n/a	n/a	V1B2368			

The QC reported here applies to the following samples:

Method: EPA 524.2 REV 4.1

JA65236-1, JA65236-2, JA65236-3, JA65236-4, JA65236-5, JA65236-6, JA65236-7, JA65236-8

CAS No..Surrogate RecoveriesBSPLimits460-00-44-Bromofluorobenzene101%77-115%

Page 3 of 3

Matrix Spike/Matrix Spike Duplicate Summary

Job Number: Account: Project:	JA65236 EPMNYLS E Katonah Q4,	nvironmen Katonah Pi	ital Planning and ump House, Bec	l Manage Iford, NY	ement Y	
Sample	File ID	DF	Analyzed	Bv	Prep Date	Prep Batch

Sample JA65236-1MS JA65236-1MSD JA65236-1	File ID 1B51774.D 1B51775.D 1B51766.D	DF 1 1 1	Analyzed 01/03/11 01/03/11 01/03/11	By MFH MFH MFH	Prep Date n/a n/a n/a	Prep Batch n/a n/a n/a	Analytical Batch V1B2368 V1B2368 V1B2368 V1B2368
						· · · · · · · · · · · · · · · · · · ·	

The QC reported here applies to the following samples:

Method: EPA 524.2 REV 4.1

JA65236-1, JA65236-2, JA65236-3, JA65236-4, JA65236-5, JA65236-6, JA65236-7, JA65236-8

		JA65230	5-1	Spike	MS	MS	MSD	MSD		Limits
CAS No.	Compound	ug/l	Q	ug/l	ug/l	%	ug/l	%	RPD	Rec/RPD
67-64-1	Acetone	ND		20	18.5	93	19.0	95	3	41-142/24
78-93-3	2-Butanone	ND		20	19.4	97	19.3	97	1	55-129/31
71-43-2	Benzene	ND		5	5.2	104	5.5	110	6	53-138/16
108-86-1	Bromobenzene	ND		5	6.1	122	6.2	124	2	54-138/17
74-97-5	Bromochloromethane	ND		5	5.6	112	5.8	116	4	55-140/13
75-27-4	Bromodichloromethane	NÐ		5	5.3	106	5.5	110	4	57-147/11
75-25-2	Bromoform	ND		5	5.1	102	5.0	100	2	47-137/13
74-83-9	Bromomethane	ND		2	1.8	90	2.0	100	11	40-162/27
104-51-8	n-Butylbenzene	ND		5	5.7	114	6.1	122	7	45-144/19
135-98-8	sec-Butylbenzene	ND		5	5.7	114	6.2	124	8	46-145/20
98-06-6	tert-Butylbenzene	ND		5	5.9	118	6.2	124	5	48-141/17
75-15-0	Carbon disulfide	ND		5	4.0	80	4.2	84	5	35-127/32
108-90-7	Chlorobenzene	ND		5	5.9	118	6.1	122	3	54-135/15
75-00-3	Chloroethane	ND		2	1.8	90	1.9	95	5	38-153/43
67-66-3	Chloroform	0.072	J	5	5.5	109	5.6	111	2	57-151/13
74-87-3	Chloromethane	ND		2	1.8	90	2.0	100	11	39-165/35
95-49-8	o-Chlorotoluene	ND		5	6.0	120	6.4	128	6	55-142/15
106-43-4	p-Chlorotoluene	NÐ		5	5.7	114	5.9	118	3	55-139/20
56-23-5	Carbon tetrachloride	ND		5	6.0	120	6.3	126	5	49-170/24
75-34-3	1,1-Dichloroethane	ND		5	5.2	104	5.4	108	4	55-149/13
75-35-4	1,1-Dichloroethylene	ND		5	4.7	94	5.0	100	6	42-142/20
563-58-6	1,1-Dichloropropene	ND		5	5.4	108	5.6	112	4	46-151/21
96-12-8	1,2-Dibromo-3-chloropropane	ND		5	5.4	108	5.3	106	2	48-141/27
106-93-4	1,2-Dibromoethane	ND		5	5.6	112	5.9	118	5	57-135/10
107-06-2	1,2-Dichloroethane	ND		5	5.5	110	5.6	112	2	59-166/15
78-87-5	1,2-Dichloropropane	ND		5	5.4	108	5.6	112	4	53-142/11
142-28-9	1,3-Dichloropropane	ND		5	5.6	112	5.7	114	2	58-143/13
594-20-7	2,2-Dichloropropane	ND		5	5.5	110	5.8	116	5	38-165/19
124-48-1	Dibromochloromethane	ND		5	5.4	108	5.5	110	2	55-138/15
74-95-3	Dibromomethane	ND		5	5.7	114	5.7	114	0	61-144/10
75-71-8	Dichlorodifluoromethane	ND		2	1.4	70	1.6	80	13	23-172/30
10061-01-5	cis-1.3-Dichloropropene	ND		5	5.3	106	5.4	108	2	51-136/11
541-73-1	m-Dichlorobenzene	ND		5	6.0	120	6.2	124	3	53-138/17
95-50-1	o-Dichlorobenzene	ND		5	6.0	120	6.3	126	5	54-140/11
106-46-7	p-Dichlorobenzene	ND		5	6.0	120	6.2	124	3	53-137/14
156-60-5	trans-1,2-Dichloroethylene	ND		5	5.2	104	5.4	108	4	47-148/22

JA65236

Page 1 of 3

Matrix Spike/Matrix Spike Duplicate Summary

Project:	Katonah Q4, Katonah Pump House, Bedford, NY
Account:	EPMNYLS Environmental Planning and Management
Job Number:	JA65236

Sample JA65236-1MS JA65236-1MSD JA65236-1	File ID 1B51774.D 1B51775.D 1B51766.D	DF 1 1 1	Analyzed 01/03/11 01/03/11 01/03/11	By MFH MFH MFH	Prep Date n/a n/a n/a	Prep Batch n/a n/a n/a	Analytical Batch V1B2368 V1B2368 V1B2368 V1B2368

The QC reported here applies to the following samples:

Method: EPA 524.2 REV 4.1

JA65236-1, JA65236-2, JA65236-3, JA65236-4, JA65236-5, JA65236-6, JA65236-7, JA65236-8

CAS No.	Compound	JA65236-1 ug/1Q.	Spike ug/l .	MS ug/l	MS %	MSD ug/l	MSD %	RPD	Limits Rec/RPD
156-59-2	cis-1.2-Dichloroethylene	0.58	5	5.5	98	5.9	106	7	51-146/14
10061-02-6	trans-1.3-Dichloropropene	ND	5	5.2	104	5.4	108	4	54-142/10
100-41-4	Ethylbenzene	ND	5	5.7	114	6.0	120	5	51-138/18
87-68-3	Hexachlorobutadiene	ND	5	5.9	118	6.5	130	10	40-154/21
110-54-3	Hexane	ND	5	4.4	88	4.7	94	7	22-142/42
591-78-6	2-Hexanone	ND	20	19.1	96	18.8	94	2	53-128/29
98-82-8	Isopropylbenzene	ND	5	5.8	116	6.2	124	7	49-139/16
99-87-6	p-Isopropyltoluene	ND	5	5.7	114	6.2	124	8	45-141/17
75-09-2	Methylene chloride	ND	5	4.4	88	4.5	90	2	54-137/14
1634-04-4	Methyl Tert Butyl Ether	ND	5	4.8	96	4.9	98	2	53-143/10
108-10-1	4-Methyl-2-pentanone	ND	20	19.0	95	19.1	96	1	58-127/32
91-20-3	Naphthalene	ND	5	5.4	108	5.7	114	5	44-140/14
103-65-1	n-Propylbenzene	ND	5	5.7	114	6.1	122	7	50-142/20
100-42-5	Styrene	ND	5	4.9	98	5.1	102	4	23-130/20
630-20-6	1,1,1,2-Tetrachloroethane	ND	5	5.9	118	6.2	124	5	57-144/11
71-55-6	1,1,1-Trichloroethane	ND	5	5.7	114	6.1	122	7	52-164/13
79-34-5	1,1,2,2-Tetrachloroethane	ND	5	5.4	108	5.5	110	2	58-138/10
79-00-5	1,1,2-Trichloroethane	ND	5	5.4	108	5.6	112	4	59-139/11
87-61-6	1,2,3-Trichlorobenzene	ND	5	6.1	122	6.3	126	3	47-141/17
96-18-4	1,2,3-Trichloropropane	ND	5	5.9	118	5.8	116	2	56-148/15
120-82-1	1,2,4-Trichlorobenzene	ND	5	6.0	120	6.2	124	3	46-137/17
95-63-6	1,2,4-Trimethylbenzene	ND	5	5.5	110	5.8	116	5	41-138/16
108-67-8	1,3,5-Trimethylbenzene	ND	5	5.7	114	5.9	118	3	45-138/16
127-18-4	Tetrachloroethylene	29.3	5	29.9	12* a	31.3	40* a	5	45-145/19
108-88-3	Toluene	ND	5	5.6	112	5.9	118	5	52-134/19
79-01-6	Trichloroethylene	0.90	5	6.4	110	6.7	116	5	54-143/15
75-69-4	Trichlorofluoromethane	ND	2	1.7	85	1.9	95	11	36-167/28
75-01-4	Vinyl chloride	ND	2	1.8	.90	1.9	95	5	35-162/30
	m,p-Xylene	ND	10	11.8	118	12.3	123	4	49-135/18
95-47-6	o-Xylene	ND	5	6.0	120	6.1	122	2	49-134/19
1330-20-7	Xylenes (total)	ND	15	17.7	118	18.4	123	4	50-134/18
CAS No.	Surrogate Recoveries	MS	MSD	JA6	5236-1	Limits			
2199-69-1	1,2-Dichlorobenzene-d4	112%	110%	110	%	78-114%			

Page 2 of 3

Matrix Spike/Matrix Spike Duplicate Summary

Job Number: Account: Project:	JA65236 EPMNYLS Environmental Planning and Management Katonah Q4, Katonah Pump House, Bedford, NY										
Sample	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch				
JA65236-1MS	1B51774.D	1	01/03/11	MFH	n/a	n/a	V1B2368				
JA65236-1MSD	1B51775.D	1	01/03/11	MFH	n/a	n/a	V1B2368				

MFH

n/a

ne (ii ' tenotted here annues to the tollowing samples'	

1B51766.D 1

JA65236-1

Method: EPA 524.2 REV 4.1

V1B2368

n/a

JA65236-1, JA65236-2, JA65236-3, JA65236-4, JA65236-5, JA65236-6, JA65236-7, JA65236-8

01/03/11

CAS No.	Surrogate Recoveries	MS	MSD	_JA65236-1 ·	Limits
460-00-4	4-Bromofluorobenzene	102%	102%	101%	77-115%

(a) Outside control limits due to high level in sample relative to spike amount.

ເກ ເບ ເ

٠,

Instrument Performance Check (BFB)

Job Number:	JA65236	
Account:	EPMNYLS Environmental Planning and Management	
Project:	Katonah Q4, Katonah Pump House, Bedford, NY	

Sample: V1B2336-BFB Lab File ID: 1B51061.D Instrument ID: GCMS1B		Injection Date: 12/0 Injection Time: 19:0	8/10 3	
m/e	Ion Abundance Criteria	Raw Abundance	% Relative Abundance	Pass/Fail
50	15.0 - 40.0% of mass 95	2082	18.8	Pass
75	30.0 - 80.0% of mass 95	5341	48.3	Pass
95	Base peak, 100% relative abundance	11064	100.0	Pass
96	5.0 - 9.0% of mass 95	755	6.82	Pass
173	Less than 2.0% of mass 174	41	0.37 (0.49) ^a	Pass

8438

647

8119

541

76.3

5.85

73.4

4.89

(7.67) a

(96.2)^a

(6.66) b

 174
 50.0 - 120.0% of mass 95

 175
 5.0 - 9.0% of mass 174

 176
 95.0 - 101.0% of mass 174

 177
 5.0 - 9.0% of mass 176

(a) Value is % of mass 174

(b) Value is % of mass 176

This check applies to the following Samples, MS, MSD, Blanks, and Standards:

Lab Sample ID	Lab File ID	Date Analyzed	Time Analyzed	Hours Lapsed	Client Sample ID
V1B2336-IC2336	1B51062.D	12/08/10	19:35	00:32	Initial cal 0.5
V1B2336-IC2336	1B51063.D	12/08/10	20:07	01:04	Initial cal 1
V1B2336-IC2336	1B51064.D	12/08/10	20:39	01:36	Initial cal 2
V1B2336-IC2336	1B51065.D	12/08/10	21:11	02:08	Initial cal 5
V1B2336-ICC2336	1B51066.D	12/08/10	21:43	02:40	Initial cal 10
V1B2336-IC2336	1B51067.D	12/08/10	22:15	03:12	Initial cal 20
V1B2336-IC2336	1B51068.D	12/08/10	22:47	03:44	Initial cal 40
V1B2336-ICV2336	1B51070.D	12/08/10	23:51	04:48	Initial cal verification 10

Pass.

Pass

Pass

Pass

è Q

43 of 142 ACCUTEST

Instrument Performance Check (BFB)

Job Number:	JA65236	
Account:	EPMNYLS Environmental Planning and Management	
Project:	Katonah Q4, Katonah Pump House, Bedford, NY	
-		

Sample: Lab File ID: Instrument ID:	V1B2368-BFB 1B51761.D GCMS1B	Injection Date: 01/03/11 Injection Time: 09:06	
		Raw % Relative	_

m/e	Ion Abundance Criteria	Abundance	Abundance	Pass/Fail	
50	15.0 - 40.0% of mass 95	1743	16.0	Pass	
75	30.0 - 80.0% of mass 95	5277	48.4	Pass	
95	Base peak, 100% relative abundance	10914	100.0	Pass	
96	5.0 - 9.0% of mass 95	803	7.36	Pass	
173	Less than 2.0% of mass 174	0	0.00 (0.00) a	Pass	
174	50.0 - 120.0% of mass 95	8224	75.4	Pass	
175	5.0 - 9.0% of mass 174	730	6.69 (8.88) ^a	Pass	
176	95.0 - 101.0% of mass 174	8215	75.3 (99.9) ^a	Pass	
177	5.0 - 9.0% of mass 176	542	4.97 (6.60) ^b	Pass	

(a) Value is % of mass 174

(b) Value is % of mass 176

This check applies to the following Samples, MS, MSD, Blanks, and Standards:

Lab Sample ID	Lab File ID	Date Analyzed	Time Analyzed	Hours Lapsed	Client Sample ID
V1B2368-CC2336	1B51762.D	01/03/11	09:38	00:32	Continuing cal 10
V1B2368-MB1	1B51763.D	01/03/11	10:12	01:06	Method Blank
V1B2368-BS	1B51764.D	01/03/11	10:56	01:50	Blank Spike
ZZZZZZ	1B51765.D	01/03/11	11:32	02:26	(unrelated sample)
JA65236-1	1B51766.D	01/03/11	12:04	02:58	RW
JA65236-2	1B51767.D	01/03/11	12:35	03:29	DUP
JA65236-3	1B51768.D	01/03/11	13:07	04:01	DIST
JA65236-4	1B51769.D	01/03/11	13:40	04:34	STEFF
JA65236-5	1B51770.D	01/03/11	14:12	05:06	MW-4
JA65236-6	1B51771.D	01/03/11	14:44	05:38	MW-11
JA65236-7	1B51772.D	01/03/11	15:16	06:10	FB
JA65236-8	1B51773.D	01/03/11	15:48	06:42	TB
JA65236-1MS	1B51774.D	01/03/11	16:20	07:14	Matrix Spike
JA65236-1MSD	1B51775.D	01/03/11	16:52	07:46	Matrix Spike Duplicate
ZZZZZZ	1B51776.D	01/03/11	17:24	08:18	(unrelated sample)
ZZZZZZ	1B51780.D	01/03/11	19:34	10:28	(unrelated sample)
ZZZZZ	1B51781.D	01/03/11	20:06	11:00	(unrelated sample)
ZZZZZZ	1B51782.D	01/03/11	20:38	11:32	(unrelated sample)

Page 1 of 1

छ।

5.4.2

Volatile Internal Standard/Surrogate Area Summary

Job Number: JA65236

EPMNYLS Environmental Planning and Management Account: Katonah Q4, Katonah Pump House, Bedford, NY

Project:

Check Std: Lab File ID: Instrument ID:	V1B2368-CC2336 1B51762.D GCMS1B	In In M	jection Date: 01/ jection Time: 09: ethod: EP	'03/11 38 A 524.2 RE	V 4.1	
	IS 1 AREA RT	IS 2 AREA RT	Surr 3 AREA RT	Surr 4 AREA	RT	
Initial Cal ^a Previous Check ^b	23630 7.85 21917 7.83	6205311.285882211.27	2216417.712331617.70	22182 21798	16.03 16.01	
Check Std ^c Upper Limit ^d Lower Limit ^e	233227.85466448.35116617.35	5956411.2711912811.772978210.77	2170317.704340618.201085217.20	22270 44540 11135	16.02 16.52 15.52	
Lab Sample ID	IS 1 AREA RT	IS 2 AREA RT	Surr 3 AREA RT	Surr 4 AREA	RT	
V1B2368-MB1 V1B2368-BS ZZZZZZ JA65236-1 JA65236-2 JA65236-3 JA65236-4 JA65236-5 JA65236-6 JA65236-7 LA65236-8	22140 7.83 22636 7.82 23574 7.84 22379 7.85 21935 7.84 23482 7.85 23758 7.85 20069 7.85 21168 7.85 22540 7.86 19814 7.84	5847511.275954211.275921111.275917111.276098111.276000511.286602011.285738211.285764911.275957211.285879511.28	23110 17.70 23762 17.70 23368 17.70 23574 17.70 24111 17.70 24256 17.70 25982 17.71 23148 17.70 23072 17.70 23460 17.70 23460 17.70	21405 21508 21051 21279 22014 21824 24859 20626 21222 22045 22235	16.02 16.02 16.02 16.02 16.02 16.02 16.02 16.02 16.02 16.02 16.02	
JA65236-8 JA65236-1MS JA65236-1MSD ZZZZZZ ZZZZZZ ZZZZZZ ZZZZZZ ZZZZZZ ZZZZ	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	22770 17.70 23840 17.70 23265 17.70 23970 17.70 23149 17.70 22790 17.70 23007 17.70	22235 21442 21256 22182 21446 21455 21295	16.02 16.02 16.02 16.02 16.02 16.02 16.02	

= Tert Butyl Alcohol-D9 **IS** 1

= Fluorobenzene IS 2

Surr 3 = 1,2-Dichlorobenzene-d4

Surr 4 = 4-Bromofluorobenzene

(a) Initial Cal is: V1B2336-ICC2336 1B51066.D 12/08/10 21:43

(b) Previous Check is: V1B2366-CC2336 1B51716.D 12/30/10 10:47

(c) Check Std Limit = -30% of previous check area; -50% of initial cal area.

(d) Upper Limit = +100% of check standard area; Retention time +0.5 minutes.

(e) Lower Limit = -50% of check standard area; Retention time -0.5 minutes.

5

Volatile Surrogate Recovery Summary

Job Number:	JA65236
Account:	EPMNYLS Environmental Planning and Management
Project:	Katonah Q4, Katonah Pump House, Bedford, NY

Method: EPA 5	24.2 REV 4.1		Matrix:	AQ	
Samples and QC	shown here ap	ply to the abo	ove method		
Lab	Lab				
Sample ID	File ID	S 1	S2		
JA65236-1	1B51766.D	110.0	101.0		
JA65236-2	1B51767.D	109.0	101.0		
JA65236-3	1B51768.D	112.0	102.0		
JA65236-4	1B51769.D	109.0	105.0		
JA65236-5	1B51770.D	112.0	101.0		
JA65236-6	1B51771.D	111.0	103.0		
JA65236-7	1B51772.D	109.0	104.0		
JA65236-8	1B51773.D	107.0	106.0		
JA65236-1MS	1B51774.D	112.0	102.0		
JA65236-1MSD	1B51775.D	110.0	102.0		
V1B2368-BS	1B51764.D	111.0	101.0		
V1B2368-MB1	1B51763.D	109.0	102.0		
Surrogate		Recovery	,		
Compounds		Limits			
S1 = 1,2-Dichlor	robenzene-d4	78-114%			
S2 = 4-Bromoflu	orobenzene	77-115%			

Page 1 of 1

01 07

46 of 142 ACCUTEST, JA65236

Initi Job N Accou Projec	al Calibrati lumber: JA652 int: EPMN ct: Katona	on Summ 36 IYLS Enviror Ih Q4, Katon	l ary nmental Plann ah Pump Hou	ing and M se, Bedfor	lanagemen d, NY	San t Lab	nple: 9 FileID:	V1B2336-ICC2 1B51066.D	Page 1 2336
			Respons	e Facto	r Repor	t MS	1B	<u> </u>	
Me Ti La: Re:	thod : tle : st Update : sponse via :	C:\msdch method 5 Thu Dec Initial	em\1\METH 24, zb624 09 09:30: Calibrati	ODS\M1B 60mx0. 59 2010 on	2336.M 25mmx1.	(RTE 4um	Integra	tor)	
Ca. 5 40	libration Fi =1b51065.D =1b51068.D	les 10 =1 2 =1	b51066.D b51064.D	1 == 0.5 =	1b51063 1b51062	.D .D	20 =1b =	51067.D	,
_ Co	ompound	5	10 1	20	40	2	0.5	Avg	*RSD
1) 2) 3)	I Tert Bu TERTIARY BU 1,4-Dioxane	tyl Alcoh T 1.226 1 0.082 0	ol-d9 .201 1.15 .091 0.07	7 1.236 7 0.095	I 1.202 0.091	STD 1.191 0.079	1.342	1.222 0.086	- 4.81 8.83
4) 5) 6)	I FLUOROB 4-BROMOFLUO 1,2-DICHLOR	ENZENE R 0.357 0 O 0.364 0	.357 0.35	6 0.357 9 0.361	0.357 0.361	STD 0.360 0.363	0.356 0.363	0.357 0.361	0.43
7) 8) 9) 10)	CHLOROMETHA VINYL CHLOR BROMOMETHAN	L 0.448 0 N 0.510 0 I 0.436 0 E 0.263 0	.398 0.40 .480 0.52 .408 0.39 .249 0.26	7 0.305 3 0.414 0 0.344 2 0.214	0.352 0.471 0.397 0.246	0.322 0.499 0.374 0.255	0.505 0.321 0.246	0.372 0.486 0.381 0.248	14.76 7.48 10.20 6.66
11) 12) 13) 14)	CHLOROETHAN TRICHLOROFL ETHYL ETHER ACROLEIN	E 0.250 0 U 0.414 0 0.210 0 0.081 0	.234 0.24 .376 0.34 .216 0.21 .080 0.08	1 0.200 9 0.291 9 0.200 6 0.073	0.229 0.344 0.193 0.080	0.231 0.306 0.224 0.089	0.209 0.191	0.228 0.347 0.208 0.081	7.67 12.98 6.28 6.83
15) 16) 17) 18)	1,1-DICHLOR FREON 113 ACETONE	0.255 0 0.179 0 0.030 0	.252 0.24 .158 0.11 .033 0.02	3 0.226 6 0.136 6 0.033 2 0 384	0.223 0.143 0.031	0.245	0.257	0.243 0.145 0.031	5.72 14.79 8.34
19) 20)	CARBON DISU: METHYL ACET.	L 0.969 0 A 0.057 0 Linear	.976 0.85 .059 0.02 regressi	2 0.384 4 0.884 7 0.064 on	0.376 0.880 0.063 - Coef	0.991 0.050 ficie	0.372 0.822 nt = 0	0.387 0.899 0.053 .9997	6.35 26.32
	R	esponse R	atio = -0	.00633	+ 0.063	92 *A			
21) 22) 23) 24)	ALLYL CHLOR METHYLENE C ACRYLONITRI	I 0.174 0 H 0.353 0 L 0.149 0	.173 0.16 .360 0.35 .152 0.13	$\begin{array}{c} 0 & 0.154 \\ 3 & 0.333 \\ 8 & 0.153 \\ 1 & 0.948 \end{array}$	0.151 0.328 0.144	0.166 0.347 0.150	0.142 0.382 0.129	0.160 0.351 0.145	7.47 5.07 5.85
25) 26) 27)	trans-1,2-D HEXANE 1,1-DICHLOR	I 0.415 0 0.351 0 0.521 0	.426 0.36 .314 0.27 .527 0.47	6 0.385 5 0.266 9 0.484	0.373 0.266 0.468	0.385	0.373 0.187 0.449	0.389 0.278 0.489	5.91 18.22 5.70
28) 29) 30) 31)	ETHYL TERT-1 2-BUTANONE 2,2-DICHLOR	L 1.041 0 B 1.047 0 0.038 0 D 0.405 0	.991 1.05 .996 0.96 .042 0.03 .397 0.38	5 0.965 7 1.000 0 0.043 7 0.356	0.951 0.987 0.040 0.341	0.968 0.965 0.037 0.391	1.058 1.014 0.413	1.004 0.996 0.038 0.384	4.60 2.86 11.64 6.89
32) 33) 34) 35)	cis-1,2-DIC PROPIONITRI METHYLACRYLA	H 0.310 0 L 0.057 0 A 0.304 0	.316 0.34 .060 0.05 .320 0.24 216 0 17	6 0.291 8 0.062 9 0.330 6 0 220	0.280 0.058 0.319 0.211	0.310 0.059 0.284 0 197	0.367 0.054	0.317 0.058 0.301	9.56 3.90 9.96 8 16
36) 37) 38)	BROMOCHLOROI CHLOROFORM TETRAHYDROFU	4 0.142 0 0.484 0 0.161 0	.149 0.13 .486 0.48 .134 0.15	7 0.141 1 0.459 8 0.144	0.136 0.441 0.130	0.133	0.125	0.138 0.475 0.152	5.57 5.01 13.60
39) 40) 41) 42)	1,1,1-TRICH CYCLOHEXANE 1-CHLOROBUT 1,1-DICHLORO	L U.398 0 0.446 0 A 1.122 1 D 0.380 0	.401 0.34 .432 0.38 .117 0.95 .387 0.32	5 0.362 3 0.375 4 0.991 2 0.351	0.353 0.372 0.964 0.338	U.376 0.399 1.055 0.356	0.335 0.319 0.887 0.304	0.367 0.389 1.013 0.349	6.97 10.80 8.70 8.57

Initial Calibration Summary

Initi Job N Accou Projec	al Calibrati umber: JA652 int: EPMN ct: Katon	on Sum 36 IYLS Envi ah Q4, Kat	m ary ronmenta onah Pun	l Plannin 1p House	g and Ma , Bedford	anagemer 1, NY	Sam It Lab	ple: V1 FileID: 1B	B2336-ICC2 51066.D	Page 2 of 3 2336
43)	CARBON TETH	A 0.325	0.332	0.278	0.299	0.292	0.304	0.258	0.298	8.55
44)	1,2-DICHLOP	0.379	0.390	0.346	0.378	0.365	0.362	0.325	0.364	6.08
45)	BENZENE	1.137	1.168	1.044	1.078	1.046	1.098	1.068	1.091	4.28
46)	TERT AMYL N	Е 1.034	0.942	0.931	0.946	0.937	0.948	1.141	0.983	7.95
47)	TRICHLOROET	н 0.273	0.279	0.240	0.259	0.251	0.258	0.242	0.257	5.73
48)	METHYLCYCLO	н 0.487	0.434	0.380	0.381	0.392	0.401	0.273	0.393	16.53
49)	METHYL METH	IA 0.349	0.353	0.308	0.343	0.335	0.338	0.302	0.333	6.01
50)	1,2-DICHLOF	0.306	0.320	0.279	0.303	0.295	0.303	0.286	0.299	4.60
51)	DIBROMOMETH	IA 0.180	0.187	0.162	0.181	0.176	0.171	0.166	0.175	4.97
52)	BROMODICHLO	R 0.363	0.375	0.349	0.359	0.354	0.349	0.357	0.358	2.54
53)	CHLOROACETO	N 0.020	0.022	0.019	0.022	0.021	0.022	0.018	0.021	8.17
54)	2-NITROPROF	A 0.082	0.088	0.099	0.090	0.085	0.096		0.090	7.40
55)	2-CHLOROETH	IY 0.234	0.230	0.213	0.236	0.228	0.224	0.218	0.226	3.75
56)	cis-1,3-DIC	н 0.479	0.500	0.450	0.475	0.463	0.458	0.456	0.469	3.66
57)	4-METHYL-2-	P 0.143	0.152	0,141	0.151	0.140	0.153	0.159	0.149	4.64
58).	1,1-DICHLOF	0.101	0.119	0.095	0.128	0.124	0.108		0.113	11.77
59)	TOLUENE	0.666	0.698	0.585	0.642	0.626	0.636	0.641	0.642	5.44
60)	trans-1,3-I	DI 0.451	0.468	0.431	0.449	0.442	0.438	0.433	0.444	2.87
61)	ETHYL METHA	C 0.426	0.458	0.421	0.442	0.428	0.434	0.454	0.438	3.20
62)	1,1,2-TRICH	L 0.231	0.241	0.215	0.230	0.224	0.234	0.241	0.231	3.99
63)	1,3-DICHLOF	0.462	0.484	0.444	0.464	0.453	0.457	0.462	0.461	2.69
64)	2-HEXANONE	0.135	0.145	0.139	0.146	0.136	0.151	0.151	0.143	4.63
65)	TETRACHLORO)Е 0.272	0.279	0.234	0.255	0.247	0.258	0.231	0.254	7.15
66)	DIBROMOCHLO	R 0.272	0.289	0.266	0.277	0.275	0.271	0.259	0.273	3.44
67)	1,2-DIBROMC	E 0.265	0.281	0.254	0.275	0.269	0.260	0.247	0.264	4.49
68)	CHLOROBENZE	N 0.721	0.755	0.684	0.704	0.694	0.704	0.716	0.711	3.25
69)	1,1,1,2-TET	'R 0.272	0.274	0.256	0.259	0.257	0.261	0.258	0.262	2.76
70)	ETHYLBENZEN	IE 1.317	1.353	1.187	1.258	1.223	1.255	1.234	1.261	4.49
71)	m,p-XYLENE	0.500	0.511	0.457	0.476	0.464	0.479	0.467	0.479	4.10
72)	O-XYLENE	0.504	0.515	0.465	0.479	0.473	0.480	0.450	0.481	4.64
73)	STYRENE	0.838	0.880	0.777	0.822	0.816	0.820	0.798	0.821	3.92
74)	BROMOFORM	0.199	0.214	0.198	0.208	0.205	0.207	0.216	0.207	3.31
75)	ISOPROPYLBE	N 1.325	1.360	1.170	1.254	1.229	1.273	1.203	1.259	5.32
76)	BROMOBENZEN	E 0.310	0.316	0.294	0.304	0.296	0.306	0.297	0.303	2.69
77}	1,1,2,2-TET	R 0.417	0.443	0.436	0.428	0.413	0.466	0.453	0.436	4.43
78}	TRANS-1,4-L	$\begin{array}{c} 0.111 \\ 0.111 \end{array}$	0.117	0.109	0.116	0.111	0.121	0.112	0.114	3.70
79)	1,2,3-TRICE	LL U.II/	0.122	0.115	0.120	U.114	1 550	U.117 1 405	0.119	4.75
80)	N-PROPILSEN	IZ 1.596	1.030	1,4/1	0.000	1.481	1.002	1.400	T:000	4.02
81)	0-CHLOROTOL	U U.304	0.310	1 020	1.075	1 070	1 1 0 0	1 022	1 094	4.10
0Z)	I, 3, 5-TRIME	AT 1.124	1.100	1.030	1.075	1.072	1.100	1 005	1.084	4.30
0.0)	P-CHLOROTOI	0.997	0.075	0.902	0.947	0.923	0.990	1.005	0.977	1 35
04)	1 2 4 UDIME	ンローローローロー コーローローロー	1 100	1 069	1 111	1 006	1 150	1 132	1 129	3 59
001		1 1,104 10 0 107	0 100	0 176	0 101	1.090	0 108	1.132	0 191	1 11
00)		יסניט בועי 1 איז 1 אוי	1 526	1 302	1 /06	1 388	1 433	1 342	1 413	5 56
07		ля 1.490 л.1.10/	1 221	1 074	1 1 2 9	1 136	1 171	1 000	1 148	4 86
201	P-ISCENCE II	11 1.194 17 0 621	0 634	0 603	0 594	.0 585	0 614	0 608	0 608	2 69
905	R-DICHLOROF	E 0.021	0.034	0.003	0.554	0.000	0.656	0.642	0.633	3 79
911	n-BIITYI BENS	/Ξ 0.000 Έ ή κκγ	0 682	0.590	0.629	0.620	0.640	0.568	0.627	6.26
921	O-DICHIOROF	NE 0 619	0.602	0 612	0.606	0.596	0.644	0.642	0.624	3.30
921	HEXACHTOROF	ידי 0.013 ידי (173	0 185	0.129	0.174	0.177	0.168	0.156	0.169	7.33
941	1.2-DTRROMO	- 0.074	0.079	0.076	0.077	0.075	0.079	0.073	0.076	3.26
951	NITROBENZEN	IE 0.037	0.040	0.035	0.043	0.044	0.041	0.042	0.040	7.86
961	1.2.4-TRICE	L 0.471	0.504	0.447	0.478	0.479	0.497	0.464	0.477	4.02
97)	HEXACHLOROF	U 0.235	0.239	0.206	0.220	0.220	0.217	0.218	0.222	4.95
98)	NAPHTHALENE	1.388	1.500	1.281	1.467	1.448	1.547	1.346	1.425	6.49
99)	1,2,3-TRICH	IL 0.455	0.491	0.438	0.471	0.470	0.485	0.441	0.465	4.41
 (#)	= Out of Ra	 .nge ##	====== # Numl	ber of	calib:	ration	level	s exceeded	format	 ###

_____ ____ (1) Ö

M1B2336.M

Initial Calibration SummaryJob Number:JA65236Sample:Account:EPMNYLS Environmental Planning and ManagementLab FileID:Project:Katonah Q4, Katonah Pump House, Bedford, NYSample:

Thu Dec 09 09:51:25 2010

MS1B

Page 3 of 3 V1B2336-ICC2336 1B51066.D

(n ~| ___

35 M

36 M

37 M

METHACRYLONITRILE

CHLOROFORM

BROMOCHLOROMETHANE

... 1 0.11 . • **Υ**Ζ. 1.01 _

Initia Job Nu Accour Projec	al Cali umber: nt: t:	bration Verification JA65236 EPMNYLS Environmental Plann Katonah Q4, Katonah Pump Hou	ing and Man se, Bedford,	agement NY	Sample: Lab FileID:	V1B233 1B5107	Page 1 of 3 66-ICV2336 0.D	
		Evaluate Contin	uing Cali	bratior	n Report			
Dat Acc San Mis MS	ca File 4 On nple sc Integr	: C:\msdchem\1\DATA\1b : 8 Dec 2010 11:51 p : icv2336-10 : MS5663,V1B2336,W,,,, ation Params: rteint.p	51070.D m 1		V Opera Inst Multi	Vial: 10 ntor: mo : MS .plr: 1.) 5hui 31B .00	
Met Tit Las Res	thod tle st Upda sponse	: C:\msdchem\1\METH : method 524, zb624 te : Thu Dec 09 09:30: via : Multiple Level Ca	ODS\M1B23 60mx0.25 59 2010 libration	36.M (F mmx1.4u	RTE Integra m	itor)		
Mir Max	n. RRF K. RRF	: 0.010 Min. Rel Dev: 30% Max. Rel	. Area : . Area :	50% N 200%	Max. R.T. D	ev 0.3	30min	
	Co	mpound	AvgRF	CCRF	%Dev A	rea% I	Dev(min)R.T.	
1] 2] 3] n	[Ter 4 TER n 1,4	t Butyl Alcohol-d9 TIARY BUTYL ALCOHOL -Dioxane	1.000 1.222 0.086	1.000 1.376 0.106	0.0 -12.6 -23.3	108 (123 (125 ().00 7.86).00 7.99).00 12.12	
4 1 5 8 6 8 7 N	FLU 4-B 5 1,2	OROBENZENE ROMOFLUOROBENZENE (S) -DICHLOROBENZENE-d4 (S	1.000 0.357 0.361 0.372^{**}	1.000 0.350 0.357 0.371	0.0 2.0 1.1 0 3	104 (101 (104 (96 ().00 11.28).00 16.02).00 17.71	
8 N 9 N 10 N	4 CHL 4 VIN 4 BRC	OROMETHANE YL CHLORIDE MOMETHANE	0.486 0.381 0.248	0.452 0.405 0.245	7.0 -6.3 1.2	98 -(103 -(102 ().02 4.37).02 4.65).00 5.39).00 5.60	
12 M 13 M 14 M	4 CHL 4 TRI 4 ETH 4 ACR	CHLOROFLUOROMETHANE YL ETHER OLEIN	0.228 0.347 0.208 0.081	0.232	-11.0 8.7 -2.5	106 -(91 (107 (0.01 6.17 0.00 6.63 0.00 6.84 0.00 7.11	
15 M 16 M 17 M 18 M	4 I,I 4 FRE 4 ACE 4 IOD	-DICHLOROETHYLENE ON 113 TONE OMETHANE	0.243 0.145 0.031 0.387	0.237 0.167 0.032 0.382	-15.2 -3.2 1.3	97 (110 (99 (97 -().00 7.11).00 7.11).00 7.11).01 7.39	
19 N	I CAR	BON DISULFIDE	0.899	0.880	2.1 8 Defet	93 -1).01 /.57	
20 M	MET	HYL ACETATE	10.000	9.957	% DITIC 0.4	106 (0.00 7.68	
01 N	4 D TT		- AvgRF	CCRF	ቆ Dev	 95 (D	
21 N 22 N 23 N 24 N	4 ALL 4 MET 4 ACR 4 MET	HYLENE CHLORIDE YLONITRILE HYL TERT BUTYL ETHER	0.100 0.351 0.145 0.958	0.340 0.147 0.959	3.1 -1.4 -0.1	98 (100 (102	0.00 7.89 0.00 8.21 -0.01 8.32	
25 N 26 N 27 N	4 tra 4 HEX 4 1,1	ns-1,2-DICHLOROETHYLEN ANE -DICHLOROETHANE	0.389 0.278 0.489	0.356 0.269 0.503	8.5 3.2 -2.9	86 (89 (99 (D.00 8.36 D.00 8.77 D.00 8.97 D.00 8.97	
28 N 29 N 30 N 31 N	4 DI- 4 ETH 4 2-B 4 2-2	ISOPROPYL ETHER YL TERT-BUTYL ETHER UTANONE -DICHLOROPROPANE	1.004 0.996 0.038 0.384	1.064 1.032 0.040 0.364	-6.0 -3.6 -5.3 5.2	107 (99 (95 (9.02 0.00 9.54 0.01 9.73 0.00 9.81	
32 N 33 N 34 N	. 2,2 1 cis 1 PRC 1 MET	-1,2-DICHLOROETHYLENE PIONITRILE HYLACRYLATE	0.317 0.058 0.301	0.335 0.058 0.303	-5.7 0.0 -0.7	110 100 98	0.00 9.80 0.00 9.79 0.01 9.88	

0.207 0.138 0.475

0.208 0.139 0.475

-0.5 100

0.7 97 0.0 101 -0.7

JA65236 50 of 142

10.02 10.13 10.19

0.00

0.00

0.00

5.7.2

জ

[nitial (Job Numb Account: Project:	Calibration Verification ber: JA65236 EPMNYLS Environmental Plannin Katonah Q4, Katonah Pump Hous	ng and Man e, Bedford,	agement NY	Sample: Lab FileID:	Page 2 of 3 V1B2336-ICV2336 1B51070.D		
38 M	TETRAHYDROFURAN	0.152	0.145	4.6	112	0.00	10.20
39 M	1,1,1-TRICHLOROETHANE	0.367	0.378	-3.0	98	0.00	10.50
40 M	CYCLOHEXANE	0.389	0.389	0.0	93	0.00	10.62
41 M	1-CHLOROBUTANE	1.013	1.043	-3.0	97	0.00	10.60
42 M	1.1-DICHLOROPROPENE	0.349	0.367	-5.2	98	0.00	10.70
43 M	CARBON TETRACHLORIDE	0.298	0.313	-5.0	98	0.00	10.74
40 M	1.2-DICHLOROETHANE	0.364	0.372	-2.2	99	0.00	10.94
45 M	BENZENE	1.091	1.105	-1.3	98	0.00	10.97
46 M	TERT AMYL METHYL ETHER	0.983	1.012	-3.0	111	0.00	11.04
47 М	TRICHLOROETHYLENE	0.257	0.272	-5.8	101	0.00	11.75
дя м	METHYLCYCLOHEXANE	0.393	0.439	-11.7	105	0.00	12.02
лам	METHYL METHACRYLATE	0.333	0.332	0.3	97	0.00	12.02
чум 50 м	1 2-DICHLOROPROPANE	0.299	0.309	-3.3	100	0.00	11.99
50 M 51 M	DIBROMOMETHANE	0.175	0.180	-2.9	100	0.00	12.16
52 M	BROMODICHLOROMETHANE	0.358	0.368	-2.8	102	0.00	12.30
52 M		0.021	0.022	-4.8	105	0.00	12.44
53 M ⊑∕ M	2 - NITEOUODODUA CUTOUOTICUT	0.021	0.093	-3.3	109	0.00	12.48
54 M	2-NITROPROPANE 2 CHIODOREUNI MINNI FILIPP	0.000	0.000	15.0	86	0.00	12.56
55 M	2-CHEOROEINIL VINIL EINER	0.220	0 172	-0.6	98	0.00	12,80
56 M	CIS-I, 3-DICHLOROPROPENE	0.405	0.472	0.0	101	0 00	12.89
57 M	4-METHYL-Z-PENTANONE	0.149	0.149	0.0	98	0 00	12.99
58 M	1, 1-DICHLOROPROPANONE	0.113	0.113	-2.8	90	0.00	13.22
59 M	TOLUENE	0.042	0.000	_1 /	100	0.00	13.40
60 M	trans-1,3-DICHLOROPROPENE	0.444	0.450	-1.4	102	0.00	13 42
61 M	ETHYL METHACRYLATE	0.438	0.449	-2.5	102	0.00	13.62
62 M	1,1,2-TRICHLOROETHANE	0.231	0.230	0.4	99	0.00	12.02
63 M	1,3-DICHLOROPROPANE	0.461	0.463	-0.4	299	0.00	13.02
54 M	2-HEXANONE	0.143	0.142	0.7	102	0.00	10.01
65 M	TETRACHLOROETHYLENE	0.254	0.268	-5.5	T00	0.00	13.88
56 M	DIBROMOCHLOROMETHANE	0.273	0.271	0.7	97	0.00	14.12
57 M	1,2-DIBROMOETHANE	0.264	0.272	-3.0	100	0.00	14.28
58 M	CHLOROBENZENE	0.711	0.725	-2.0	99	0.00	14.81
69 M	1,1,1,2-TETRACHLOROETHANE	0.262	0.263	-0.4	100	0.00	14.87
70 M	ETHYLBENZENE	1.261	1.278	-1.3	98	0.00	14.88
71 M	m, p-XYLENE	0.479	0.490	-2.3	99	0.00	14.99
72 M	O-XYLENE	0.481	0.508	-5.6	102	0.00	15.45
73 M	STYRENE	0.821	0.833	-1.5	98	0.00	15.45
74 M	BROMOFORM	0.207	0.201	2.9	97	0.00	15.72
75 M	TSOPROPYLBENZENE	1.259	1.323	-5.1	101	0.00	15.82
76 M	BROMOBENZENE	0.303	0.307	-1.3	101	0.00	16.24
77 M	1 1.2.2-TETRACHLOROETHANE	0.436	0.415	4.8	97	0.00	16.10
79 M	TRANS-1 4-DICHLOBO-2-BUTE	0.114	0.121	-6.1	107	0.00	16.15
70 PI 70 M	1 2 3_TRICHLOROPROPANE	0.119	0.117	1.7	99	0.00	16.18
19 M	T, Z, J-IRICHLOROFROIAND	1 533	1.533	0.0	97	0.00	16.26
80 M	N-PROPILDENZENE	0.298	0 299	-0.3	100	0.00	16.42
81 M	0-CHLOROTOLOENE	1 094	1 121	-3.4	100	0.00	16.42
82 M	1, 3, 5-TRIMETHILBENZENE	1.004	0 050	2.8	97	0 00	16.52
83 M	P-CHLOROTOLUENE	0.977	0.000	_1 /	00	0.00	16 80
84 M	tert-BUTYLBENZENE	0.915	1 1 1 1 1	_1 1	00	0.00	16 84
85 M	1,2,4-TRIMETHYLBENZENE	1.129	1,141		99 1∩⊑	0.00	16 97
86 M	PENTACHLOROETHANE	0.191	0.201	-5.2	00 TUD	0.00	17 02
87 M	sec-BUTYLBENZENE	1.413	1.464	-3.6	99	0.00	17 15
88 M	p-ISOPROPYLTOLUENE	1.148	1.209	-5.3	102	0.00	17 00
89 M	M-DICHLOROBENZENE	0.608	0.620	-2.0	TOT	0.00	17.23
90 M	P-DICHLOROBENZENE	0.633	0.626	<u>1.1</u>	97	0.00	17.31
91 M	n-BUTYLBENZENE	0.627	0.664	-5.9	101	0.00	17.59
92 M	O-DICHLOROBENZENE	0.624	0.613	3 1.8	98	0.00	17.73
93 M	HEXACHLOROETHANE	0.169	0.178	-5.3	100	0.00	18.04
94 M	1,2-DIBROMO-3-CHLOROPROPA	0.076	0.075	5 1.3	98	0.00	18.53
95 M	NITROBENZENE	0.040	0.040	0.0	104	0.00	18.74
96 M	1 2 4-TRICHLOBOBENZENE	0.477	0.470) 1.5	97	0.00	19.42

0.220

0.222

0.9

95

NITROBENZENE 1,2,4-TRICHLOROBENZENE

HEXACHLOROBUTADIENE

96 M

97 M

5.7.2 ¢,

19.56

0.00

Initial Calibration VerificationJob Number:JA65236Account:EPMNYLS Environmental Planning and ManagementProject:Katonah Q4, Katonah Pump House, Bedford, NY Sample: Lab FileID: V1B2336-ICV2336 1B51070.D

98 99	M M	NAPHTHALENE 1,2,3-TRICHLOROBENZENE	:	1.425 0.465	1.411 0.464	1.0 0.2	97 98	0.00 0.00	19.71 19.98
	(#) 1b!	= Out of Range 51066.D M1B2336.M	Thu	SPCC's Dec 09	out = 0 09:48:50	CCC's 2010	out = MS1B	0	

Page 3 of 3

Continu Job Numb Account: Project:	uing Calibration Summary JA65236 EPMNYLS Environmental Planni Katonah Q4, Katonah Pump Hous	ing and Mar se, Bedford,	nagement , NY	Sample: Lab FileID:	V1H 1B5	32368-CC23 1762.D	Page 1 of 36	3
	Evaluate Continu	ing Cal	ibratio	n Report				
Data 1 Acq Or Sample Misc MS Inf	File : C:\msdchem\1\DATA\1b n : 3 Jan 2011 9:38 ar e : cc2336-10 : MS6764,V1B2368,W,,,, tegration Params: rteint.p	51762.D n 1		Oper Inst Mult	Vial: ator: ; iplr:	2 mohui MS1B 1.00		
Method Title Last (Respon	d : C:\msdchem\1\METH : method 524, zb624 Update : Thu Dec 09 09:30: nse via : Multiple Level Ca RRF : 0.010 Min. Rel	DDS\M1B2 60mx0.2 59 2010 Libration	336.M (I 5mmx1.4 n 50% I	RTE Integra um Max. R.T.	ator) Dev	0.30min		
Max. H	RRF Dev : 30% Max. Rel	Area :	200%			, and the second s		
	Compound	AvgRF	CCRF	%Dev	Area%	Dev(mi	n)R.T.	•••
1 I 2 M 3 m	Tert Butyl Alcohol-d9 TERTIARY BUTYL ALCOHOL 1,4-Dioxane	1.000 1.222 0.086	1.000 1.212 0.105	0.0 0.8 -22.1	99 100 114	-0.01 0.00 0.00	7.85 7.98 12.11	
4 I 5 S 6 S 7 M 8 M	FLUOROBENZENE 4-BROMOFLUOROBENZENE (S) 1,2-DICHLOROBENZENE-d4 (S DICHLORODIFLUOROMETHANE CHLOROMETHANE	1.000 0.357 0.361 0.372 0.486	1.000 0.374 0.364 0.357 0.472	0.0 -4.8 -0.8 4.0 2.9	96 100 98 86 94	-0.01 0.00 -0.01 0.00 -0.02	11.27 16.02 17.70 4.02 4.37	
9 M 10 M 11 M 12 M 13 M 14 M	VINYL CHLORIDE BROMOMETHANE CHLOROETHANE TRICHLOROFLUOROMETHANE ETHYL ETHER ACROLEIN	0.381 0.248 0.228 0.347 0.208 0.081	0.389 0.248 0.238 0.383 0.173 0.088	-2.1 0.0 -4.4 -10.4 16.8 -8.6	92 96 98 98 77 106	$ \begin{array}{r} -0.02 \\ -0.01 \\ 0.00 \\ -0.01 \\ -0.01 \\ -0.01 \\ -0.01 \\ \end{array} $	4.65 5.38 5.60 6.17 6.63 6.84	
15 M 16 M 17 M 18 M 19 M	1,1-DICHLOROETHYLENE FREON 113 ACETONE IODOMETHANE CARBON DISULFIDE	0.243 0.145 0.031 0.387 0.899	0.214 0.161 0.032 0.379 0.828	11.9 -11.0 -3.2 2.1 7.9	82 98 95 89 81	-0.01 0.00 0.00 -0.02 -0.02	7.10 7.11 7.10 7.39 7.56	

20 M METHYL ACETATE 10.000 11.472 -14.7 114 0.00 7.67 % Dev ----- AvaRF CCRF _____ 21 M ALLYL CHLORIDE 0.160 0.150 6.3 83 -0.01 7.68 22 M METHYLENE CHLORIDE 0.351 0.305 13.1 81 -0.01 7.89 23 M ACRYLONITRILE 0.145 0.149 -2.8 95 0.00 8.20 METHYL TERT BUTYL ETHER 0.958 0.947 1.1 93 -0.02 24 M 8.32 25 M trans-1,2-DICHLOROETHYLEN 0.389 0.362 6.9 82 -0.01 8.35 86 -0.01 26 M HEXANE 0.278 0.280 -0.7 8.76 1,1-DICHLOROETHANE 0.489 89 -0.01 27 M 0.486 0.6 8.97 7.2 28 M DI-ISOPROPYL ETHER 1.004 90 -0.01 9.01 0.932 95 -0.01 29 M ETHYL TERT-BUTYL ETHER 0.996 0.986 1.0 9.53 0.00 30 M -10.5 98 2-BUTANONE 0.038 0.042 9.72 31 M 2,2-DICHLOROPROPANE 0.384 0.401 -4.4 97 -0.01 9.81 32 M cis-1,2-DICHLOROETHYLENE 0.317 0.311 1.9 94 -0.01 9.79 33 M PROPIONITRILE 0.058 0.063 -8.6 101 0.00 9.77 34 M METHYLACRYLATE 0.301 0.309 -2.793 0,00 9.87 -7.2 35 M METHACRYLONITRILE 0.207 0.222 98 0.00 10.01 36 M BROMOCHLOROMETHANE -12.3 99 -0.01 0.138 0.155 10.12 37 M CHLOROFORM 0.475 0.493 -3.8 97 -0.01 10.18

Calc.

% Drift ------

True

57.3 -2-3

Continuing Calibration Summary

HEXACHLOROBUTADIENE

97 M

Job Num Account: Project:	ber: JA65236 EPMNYLS Environmental Plann Katonah Q4, Katonah Pump Hous	JA65236 EPMNYLS Environmental Planning and Management Katonah Q4, Katonah Pump House, Bedford, NY					V1B2368-CC2336 1B51762.D			
38 M	TETRAHYDROFURAN	0.152	0.147	3.3	105	0.00	10.20			
39 M	1,1,1-TRICHLOROETHANE	0.367	0.381	-3.8	91	0.00	10.50			
40 M	CYCLOHEXANE	0.389	0.343	11.8	76	-0.01	10.61			
41 M	1-CHLOROBUTANE	1.013	0.910	10.2	78	-0.02	10.59			
42 M	1,1-DICHLOROPROPENE	0.349	0.343	1.7	85	0.00	10.70			
43 M	CARBON TETRACHLORIDE	0.298	0.324	-8.7	94	-0.01	10.73			
44 M	1,2-DICHLOROETHANE	0.364	0.411	-12.9	101	-0.01	10.94			
45 M	BENZENE	1.091	1.078	1.2	89	-0.01	10.96			
46 M	TERT AMYL METHYL ETHER	0.983	0.980	0.3	100	-0.01	11.03			
47 M	TRICHLOROETHYLENE	0.257	0.270	-5.1	93	-0.01	11.74			
48 M	METHYLCYCLOHEXANE	0.393	0.403	-2.5	89	-0.01	12.01			
49 M	METHYL METHACRYLATE	0.333	0.333	0.0	90	-0.01	12.01			
50 M	1,2-DICHLOROPROPANE	0.299	0.312	-4.3	94	-0.01	11.98			
51 M	DIBROMOMETHANE	0.175	0.200	-14.3	103	0.00	12.15			
52 M	BROMODICHLOROMETHANE	0.358	0.385	-7.5	99	-0.01	12.29			
53 M	CHLOROACETONITRILE	0.021	0.025	-19.0	111	0.00	12.43			
54 M	2-NITROPROPANE	0.090	0.099	-10.0	107	0.00	12.47			
55 M	2-CHLOROETHYL VINYL ETHER	0.226	0.230	-1.8	96	-0.01	12.55			
56 M	cis-1,3-DICHLOROPROPENE	0.469	0.515	-9.8	99	-0.01	12.79			
57 M	4-methyl-2-pentanone	0.149	0.150	-0.7	95	-0.01	12.88			
58 M	1,1-DICHLOROPROPANONE	0.113	0.138	-22.1	111	0.00	12.98			
59 M	TOLUENE	0.642	0.689	-7.3	95	-0.01	13.21			
60 M	trans-1,3-DICHLOROPROPENE	0.444	0.507	-14.2	104	0.00	13.39			
61 M	ETHYL METHACRYLATE	0.438	0.439	-0.2	92	0.00	13.41			
62 M	1,1,2-TRICHLOROETHANE	0.231	0.258	-11.7	103	0.00	13.62			
63 M	1,3-DICHLOROPROPANE	0.461	0.525	-13.9	104	0.00	13.82			
64 M	2-HEXANONE	0.143	0.143	0.0	94	-0.01	13.80			
65 M	TETRACHLOROETHYLENE	0.254	0.286	-12.6	98	-0.01	13.87			
66 M	DIBROMOCHLOROMETHANE	0.273	0.318	-16.5	105	-0.01	14.11			
67 M	1,2-DIBROMOETHANE	0.264	0.305	-15.5	104	-0.01	14.27			
68 M	CHLOROBENZENE	0.711	0.811	-14.1	103	0.00	14.80			
69 M	1,1,1,2-TETRACHLOROETHANE	0.262	0.308	-17.6	108	-0.01	14.86			
70 M	ETHYLBENZENE	1.261	1.359	-7.8	96	0.00	14.87			
71 M	m,p-XYLENE	0.479	0.542	-13.2	102	0.00	14.99			
72 M	O-XYLENE	0.481	0.551	-14.6	103	-0.01	15.44			
73 M	STYRENE	0.821	0.866	-5.5	95	0.00	15.44			
74 M	BROMOFORM	0.207	0.239	-15.5	108	0.00	15.71			
75 M	ISOPROPYLBENZENE	1.259	1.406	-11.7	99	-0.01	15.81			
76 M	BROMOBENZENE	0.303	0,359	-18.5	109	0.00	16.23			
77 M	1,1,2,2-TETRACHLOROETHANE	0.436	0.489	-12.2	106	-0.01	16.09			
78 M	TRANS-1,4-DICHLORO-2-BUTE	0.114	0.135	-18.4	111	-0.01	16.13			
79 M	1,2,3-TRICHLOROPROPANE	0.119	0.142	-19.3	111	-0.01	16.17			
80 M	n-PROPYLBENZENE	1.533	1.692	-10.4	100	-0.01	16.25			
81 M	O-CHLOROTOLUENE	0.298	0.348	-16.8	108	-0.01	16.41			
82 M	1,3,5-TRIMETHYLBENZENE	1.084	1.233	-13.7	102	0.00	16.41			
83 M	P-CHLOROTOLUENE	0.977	1.068	-9.3	101	-0.01	16.51			
84 M	tert-BUTYLBENZENE	0.915	0.944	-3.2	93	-0.01	16.79			
85 M	1,2,4-TRIMETHYLBENZENE	1.129	1.132	-0.3	91	-0.01	16.83			
86 M	PENTACHLOROETHANE	0.191	0.210	-9.9	102	0.00	16.87			
87 M	sec-BUTYLBENZENE	1.413	1.442	-2.1	91	-0.01	17.02			
88 M	p-ISOPROPYLTOLUENE	1.148	1.204	-4.9	94	0.00	17.15			
89 M	M-DICHLOROBENZENE	0.608	0.645	-6.1	98	0.00	17.22			
90 M	P-DICHLOROBENZENE	0.633	0.674	-6.5	- 97	-0.01	17.30			
91 M	n-BUTYLBENZENE	0.627	0.642	-2.4	90	0.00	17.59			
92 M	O-DICHLOROBENZENE	0.624	0.705	-13.0	104	0.00	17.72			
93 M	HEXACHLOROETHANE	0.169	0.182	-7.7	95	-0.01	18.03			
94 M	1,2-DIBROMO-3-CHLOROPROPA	0.076	0.080	-5.3	97	-0.01	18.51			
95 M	NITROBENZENE	0.040	0.044	-10.0	105	0.00	18.72			
96 M	1.2.4-TRICHLOROBENZENE	0.477	0.535	-12.2	102	-0.01	19,41			

0.235

0.222

-5.9

95

0.00

ບາ - - -ເຜ

Page 2 of 3

JA65236 54 of 142

19.55

ContinuingCalibrationSummJob Number:JA65236Account:EPMNYLS EnvironmentalProject:Katonah Q4, Katonah Pumj		uing Calibration Summa JA65236 EPMNYLS Environmental I Katonah Q4, Katonah Pump	ary Planning and Mana House, Bedford, J	Sample: Lab FileID:	V1E 1B5	32368-CC2 1762.D	Page 3 of 3 336	
98 99 	M M	NAPHTHALENE 1,2,3-TRICHLOROBENZENE	1.425 0.465	1.565 0.531	-9.8 -14.2	100 104	-0.01 0.00	19.70 19.97
	(#) 1b	= Out of Range 51066.D M1B2336.M	SPCC's Tue Jan 04	out = 08:19:	0 CCC's 49 2011	out = MS1B	0	

57.3

67

GC/MS Volatiles

Raw Data

(QT Reviewed)

Data Path : C:\msdchem\1\DATA\ Data File : 1b51766.D Acq On : 3 Jan 2011 12:04 pm Operator : mohui Sample : ja65236-1 Misc : MS6794,V1B2368,W,,,,1 ALS Vial : 6 Sample Multiplier:	1	•
Quant Time: Jan 04 08:22:06 2011 Quant Method : C:\msdchem\l\METHODS Quant Title : method 524, zb624 60 QLast Update : Thu Dec 09 09:30:59 Response via : Initial Calibration Compound	S\M1B2336.M mx0.25mmx1.4um 2010 R.T. QIon Response	Conc Units Dev(Min)

Internal Standards 1) Tert Butyl Alcohol-d9	7.851	65	22379	50.00	PPB	-0.01
4) FLUOROBENZENE	11.274	96	59171	5.00	PPb	-0.01
System Monitoring Compounds	s) 16.019	95	21279	5.03	PPb	0.00
Spiked Amount 5 000	Range 77	- 115	Recover	v =	100.	60%
6) 1 2-DICHLOROPENZENZE dA	17 702	152	23574	y 5.52	PPh	0.00
Spiked Prount 5 000	17.702 Pange 78	- 114	Becover	v =	110.	40%
spiked Amount 5.000	Kange 70	T T 4	Recover	ľ	TTO •	100
Target Compounds					•	Qvalue
24) METHYL TERT BUTYL ETHE	R 8.343	73	863	0.08	PPb	55
32) cis-1,2-DICHLOROETHYLE	NE 9.806	96	2175	0.58	PPb	81
37) CHLOROFORM	10.199	83	406	0.07	PPb	88
47) TRICHLOROETHYLENE	11.741	95	2749	0.90	PPb	86
65) TETRACHLOBOETHYLENE	13.870	166	87991	29,30	PPb	98
		,				

(#) = qualifier out of range (m) = manual integration (+) = signals summed

JA65236

Quantitation Report

(QT Reviewed)

Data Path : C:\msdchem\l\DATA\ Data File : 1b51766.D Acq On : 3 Jan 2011 12:04 pm Operator : mohui Sample : ja65236-1 Misc : MS6794,V1B2368,W,,,,1 ALS Vial : 6 Sample Multiplier: 1

Quant Time: Jan 04 08:22:06 2011 Quant Method : C:\msdchem\1\METHODS\M1B2336.M Quant Title : method 524, zb624 60mx0.25mmx1.4um QLast Update : Thu Dec 09 09:30:59 2010 Response via : Initial Calibration

Page: 2

58 of 142 ACOUTEST

() _____

M1B2336.M Tue Jan 04 08:53:21 2011 MS1B

1.1 8

1b51766.D M1B2336.M

Tue Jan 04 08:53:22 2011

MS1B

1B51766 D: JA65236-1 RW page 3 of 5

1b51766.D M1B2336.M

Tue Jan 04 08:53:22 2011

MS1B

Page 4

ACCUTEST. JA65236

1B51766 D: JA65236-1 RW page 4 of 5

1b51766.D M1B2336.M

Tue Jan 04 08:53:22 2011

MS1B

Page 5

1B51766.D: JA65236-1 RW page 5 of 5

ACCUTEST. JA65236

(QT Reviewed)

Data Path : C:\msdchem\1\DATA\ Data File : 1b51767.D Acq On : 3 Jan 2011 12:35 Operator : mohui Sample : ja65236-2 Misc : MS6794,V1B2368,W,,, ALS Vial : 7 Sample Multipli Quant Time: Jan 04 08:23:07 201 Quant Method : C:\msdchem\1\MET Quant Title : method 524, zb62 QLast Update : Thu Dec 09 09:30 Response via : Initial Calibrat	pm ,1 er: 1 1 HODS\M1B2 4 60mx0.2 :59 2010 ion	2336.M 25mmx1	. 4 um			
Compound	R.T.	QIon	Response	Conc Ur	nits	Dev(Min)
. Internal Standards 1) Tert Butyl Alcohol-d9 4) FLUOROBENZENE	7.840 11.274	65 96	21935 60981	50.00 5.00	PPB PPb	-0.02 -0.01
System Monitoring Compounds 5) 4-BROMOFLUOROBENZENE (S) Spiked Amount 5.000 R 6) 1,2-DICHLOROBENZENE-d4 Spiked Amount 5.000 R	16.019 ange 77 17.702	95 - 115 152 - 114	22014 Recove 24111 Recove	5.05 ery = 5.47	PPb 101 PPb 109	0.00 .00% 0.00
Target Compounds 24) METHYL TERT BUTYL ETHER 32) cis-1,2-DICHLOROETHYLENE 37) CHLOROFORM 47) TRICHLOROETHYLENE 65) TETBACHLOROETHYLENE	8.328 9.801 10.194 11.746 13.875	73 96 83 95	886 2329 477 2980 90841	0.08 0.60 0.08 0.95 29.35	PPb PPb PPb PPb PPb	Qvalue 55 78 77 98 96

(#) = qualifier out of range (m) = manual integration (+) = signals summed

M1B2336.M Tue Jan 04 08:53:23 2011 MS1B

JA65236

6. 1.2

(QT Reviewed)

Data Path : C:\msdchem\l\DATA\ Data File : 1b51767.D Acq On : 3 Jan 2011 12:35 pm Operator : mohui Sample : ja65236-2 Misc : MS6794,V1B2368,W,,,,1 ALS Vial : 7 Sample Multiplier: 1

Quant Time: Jan 04 08:23:07 2011 Quant Method : C:\msdchem\1\METHODS\M1B2336.M Quant Title : method 524, zb624 60mx0.25mmx1.4um QLast Update : Thu Dec 09 09:30:59 2010 Response via : Initial Calibration

Page: 2

ACCUTEST. JA65236

ం స్

1B51767 D: JA65236-2 DUP page 2 of 5

M1B2336.M Tue Jan 04 08:53:23 2011 MS1B

1b51767.D M1B2336.M

Tue Jan 04 08:53:23 2011

MS1B

Page 3

ACCUTEST. JA65236

1b51767.D M1B2336.M

MS1B

Page 4

1851767 D: JA65236-2 DUP page 4 of 5

Sample Results: 1851767.0

1b51767.D M1B2336.M

Tue Jan 04 08:53:23 2011

MS1B

Page 5

ACCUTEST

Data Path : C:\msdchem\1\DATA Data File : 1b51768.D Acq On : 3 Jan 2011 1:0 Operator : mohui Sample : ja65236-3 Misc : MS6794,V1B2368,W, ALS Vial : 8 Sample Multip Quant Time: Jan 04 08:23:29 2 Quant Method : C:\msdchem\1\M Quant Title : method 524, zb OLast Update : Thu Dec 09 09:	<pre>// 7 pm //,,1 /lier: 1 ///lier: 1 ///lieTHODS\M1B2 ///////lieTHODS\M1B2 ////////////////////////////////////</pre>	2336.M 25mmx1.	. 4 um			
Response via : Initial Calibr	ation					
Compound	Ŗ.Ţ.	QIon	Response	Conc Ur	its	Dev(Min)
Internal Standards 1) Tert Butyl Alcohol-d9 4) FLUOROBENZENE	7.845 11.279	65 96	23482 60005	50.00 5.00	PPB PPb	-0.02 0.00
System Monitoring Compounds 5) 4-BROMOFLUOROBENZENE (S Spiked Amount 5.000 6) 1,2-DICHLOROBENZENE-d4. Spiked Amount 5.000	<pre> 16.024 Range 77 . 17.702 Range 78 </pre>	95 - 115 152 - 114	21824 Recover 24256 Recover	5.09 y = 5.60 y =	PPb 101. PPb 112.	0.00 80% 0.00 00%
Target Compounds 37) CHLOROFORM 52) BROMODICHLOROMETHANE 66) DIBROMOCHLOROMETHANE 74) BROMOFORM	10.194 12.297 14.111 15.710	83 83 129 173	1491 5019 15078 20520	0.26 1.17 4.61 8.27	PPb PPb PPb PPb	Qvalue 95 99 97 98

(#) = qualifier out of range (m) = manual integration (+) = signals summed

M1B2336.M Tue Jan 04 08:53:24 2011 MS1B

Page: 1 67 of 142

JA65236

(QT Reviewed)

Data Path : C:\msdchem\1\DATA\ Data File : 1b51768.D Acq On : 3 Jan 2011 1:07 pm Operator : mohui Sample : ja65236-3 Misc : MS6794,V1B2368,W,,,,1 ALS Vial : 8 Sample Multiplier: 1

Quant Time: Jan 04 08:23:29 2011 Quant Method : C:\msdchem\1\METHODS\M1B2336.M Quant Title : method 524, zb624 60mx0.25mmx1.4um QLast Update : Thu Dec 09 09:30:59 2010 Response via : Initial Calibration

M1B2336.M Tue Jan 04 08:53:24 2011 MS1B

Page: 2

రా సి

1b51768.D M1B2336.M

Tue Jan 04 08:53:25 2011

MS1B

Page 3

1B51768.D: JA65236-3 DIST page 3 of 4

.1.3 0

1b51768.D M1B2336.M

Tue Jan 04 08:53:25 2011

MS1B

Page 4

Data Path : C:\msdchem\l\DAT Data File : 1b51769.D Acq On : 3 Jan 2011 1: Operator : mohui Sample : ja65236-4 Misc : MS6794,V1B2368,W ALS Vial : 9 Sample Multi	A\ 40 pm ,,,,1 olier: 1					
Quant Time: Jan 03 14:11:06 2 Quant Method : C:\msdchem\1\J Quant Title : method 524, z QLast Update : Thu Dec 09 09 Response via : Initial Calib	2011 METHODS\M182 0624 60mx0.2 :30:59 2010 ration	2336.M 25mmx1	4 um			
Compound	R.T.	QION	Response C	lonc Ui	nits Dev	(Min)
Internal Standards 1) Tert Butyl Alcohol-d9 4) FLUOROBENZENE	7.845 11.279	65 96.	23758 66020	50.00 5.00	PPB PPb	-0.02 0.00
System Monitoring Compounds 5) 4-BROMOFLUOROBENZENE (Spiked Amount 5.000 6) 1,2-DICHLOROBENZENE-d4 Spiked Amount 5.000	S) 16.024 Range 77 17.707 Range 78	95 - 115 152 - 114	24859 Recovery 25982 Recovery	5.27 5.45	PPb 105.40% PPb 109.00%	0.00 0.00
Target Compounds					Qv	alue

(#) = qualifier out of range (m) = manual integration (+) = signals summed

M1B2336.M Tue Jan 04 08:53:25 2011 MS1B

Page: 1

JA65236 71 of 142

0 ,4

Data Path : C:\msdchem\1\DATA\ Data File : 1b51769.D 3 Jan 2011 1:40 pm Acq On : Operator : mohui : ja65236-4 Sample Misc : MS6794, V1B2368, W,,,,1 ALS Vial : 9 Sample Multiplier: 1

Quant Time: Jan 03 14:11:06 2011 Quant Method : C:\msdchem\1\METHODS\M1B2336.M Quant Title : method 524, zb624 60mx0.25mmx1.4um QLast Update : Thu Dec 09 09:30:59 2010 Response via : Initial Calibration

Page: 2

JA65236

72 of 142 ACCUTEST, LABOR

M1B2336.M Tue Jan 04 08:53:26 2011 MS1B

Data Path : C:\msdchem\1\DATA\ Data File : 1b51770.D Acq On : 3 Jan 2011 2:12 pm Operator : mohui Sample : ja65236-5 Misc : MS6794,V1B2368,W,,,,1 ALS Vial : 10 Sample Multiplie Quant Time: Jan 04 08:24:50 2011 Quant Method : C:\msdchem\1\METHC Quant Title : method 524, zb624 QLast Update : Thu Dec 09 09:30:5 Response via : Initial Calibratic	r: 1 PDS\M1B2 60mx0.2 9 2010 n	2336.M 25mmx1	.4um			• • •
Compound	R.T.	QIon	Response C	Conc Ur	nits D	ev(Min)
Internal Standards 1) Tert Butyl Alcohol-d9 4) FLUOROBENZENE	7.845 11.280	65 96	20069 57382	50.00 5.00	PPB PPb	-0.02
System Monitoring Compounds 5) 4-BROMOFLUOROBENZENE (S) Spiked Amount 5.000 Ran 6) 1,2-DICHLOROBENZENE-d4 Spiked Amount 5.000 Ran	16.019 ge 77 17.702 ge 78	95 - 115 152 - 114	20626 Recovery 23148 Recovery	5.03 / = 5.58 / =	PPb 100.6 PPb 111.6	0.00 0% 0.00 0%
Target Compounds 32) cis-1,2-DICHLOROETHYLENE 47) TRICHLOROETHYLENE	9.806 11.746	96 95	3189 825 -	0.88 0.28	PPb PPb	Qvalue 87 99

(#) = qualifier out of range (m) = manual integration (+) = signals summed

က ကို

٠,

M1B2336.M Tue Jan 04 08:53:27 2011 MS1B

Page: 1

Data Path	:	C:\msdchem\1\DATA\
Data File	ť	1b51770.D
Acq On	:	3 Jan 2011 2:12 pm
Operator	:	mohui
Sample	:	ja65236-5
Misc	:	MS6794,V1B2368,W,,,,1
ALS Vial	:	10 Sample Multiplier: 1

Quant Time: Jan 04 08:24:50 2011 Quant Method : C:\msdchem\1\METHODS\M1B2336.M Quant Title : method 524, zb624 60mx0.25mmx1.4um QLast Update : Thu Dec 09 09:30:59 2010 Response via : Initial Calibration

Page: 2

రా హ

0.1.5 1.5

1b51770.D M1B2336.M

Tue Jan 04 08:53:27 2011

MS1B

Page 3

1B51770 D: JA65236-5 MW-4 page 3 of 3

Data Path : C:\msdchem\1\DATA\ Data File : 1b51771.D : 3 Jan 2011 2:44 pm Acq On Operator : mohui Sample : ja65236-6 Misc : MS6794,V1B2368,W,,,,1 ALS Vial : 11 Sample Multiplier: 1 Quant Time: Jan 04 08:25:13 2011 Quant Method : C:\msdchem\1\METHODS\M1B2336.M Quant Title : method 524, zb624 60mx0.25mmx1.4um QLast Update : Thu Dec 09 09:30:59 2010 Response via : Initial Calibration Compound R.T. QIon Response Conc Units Dev(Min) _____ Internal Standards 21168 50.00 PPB -0.02 1) Tert Butyl Alcohol-d9 7.845 65 11.274 96 57649 5.00 PPb -0.01 4) FLUOROBENZENE System Monitoring Compounds . . 5) 4-BROMOFLUOROBENZENE (S) 16.025 95 21222 5.15 PPb 0.00 Recovery = 103.00% 23072 5.54 PPb 0.00 Spiked Amount 5.000 Range 77 - 115 6) 1,2-DICHLOROBENZENE-d4... 17.702 152 Recovery = 110.80% Spiked Amount 5.000 Range 78 - 114 Target Compounds Qvalue 0.09 PPb 488 83 10.194 83 37) CHLOROFORM 65) TETRACHLOROETHYLENE 0.59 PPb 85 13.875 166 1726 ______

(#) = qualifier out of range (m) = manual integration (+) = signals summed

M1B2336.M Tue Jan 04 08:53:28 2011 MS1B

76 of 142 ACCUTEST 249084703126 JA65236

Page: 1

Data Path : C:\msdchem\1\DATA\ Data File : 1b51771.D Acq On : 3 Jan 2011 2:44 pm Operator : mohui : ja65236-6 Sample : MS6794,V1B2368,W,,,,1 Misc . Sample Multiplier: 1 ALS Vial : 11

Quant Time: Jan 04 08:25:13 2011 Quant Method : C:\msdchem\1\METHODS\M1B2336.M Quant Title : method 524, zb624 60mx0.25mmx1.4um QLast Update : Thu Dec 09 09:30:59 2010 Response via : Initial Calibration

M1B2336.M Tue Jan 04 08:53:28 2011 MS1B

රා _____ _____

6

0. . . .

1b51771.D M1B2336.M

Tue Jan 04 08:53:28 2011

MS1B

Page 3

1B51771 D: JA65236-6 MW-11 page 3 of 3

Quantitation Report

(QT Reviewed)

Data Path : C:\msdchem\l\DATA\ Data File : 1b51772.D Acq On : 3 Jan 2011 3:16 pm Operator : mohui Sample : ja65236-7 Misc : MS6794,V1B2368,W,,,,1 ALS Vial : 12 Sample Multiplier: 1

Quant Time: Jan 04 08:25:33 2011 Quant Method : C:\msdchem\1\METHODS\M1B2336.M Quant Title : method 524, zb624 60mx0.25mmx1.4um QLast Update : Thu Dec 09 09:30:59 2010 Response via : Initial Calibration

Compound	R.T.	QIon	Response	Conc Ur	nits Dev	(Min)
Internal Standards						
1) Tert Butyl Alcohol-d9	7.856	65	22540	50.00	PPB	0.00
4) FLUOROBENZENE	11.280	96	59572	5.00	PPb	0.00
System Monitoring Compounds						
5) 4-BROMOFLUOROBENZENE (S)	16.019	95	22045	5.18	PPb	0.00
Spiked Amount 5.000 Ra	ange 77	- 115	Recover	у =	103.60%	
6) 1,2-DICHLOROBENZENE-d4	17.702	152	23460	5.45	PPb	0.00
Spiked Amount 5.000 Ra	ange 78	- 114	Recover	у =	109.00%	
Target Compounds					Qv	alue

(#) = qualifier out of range (m) = manual integration (+) = signals summed

M1B2336.M Tue Jan 04 08:53:29 2011 MS1B

0.1.7

۰..

Data Path : C:\msdchem\l\DATA\ Data File : 1b51772.D Acq On : 3 Jan 2011 3:16 pm Operator : mohui Sample : ja65236-7 Misc : MS6794,V1B2368,W,,,,1 ALS Vial : 12 Sample Multiplier: 1

Quant Time: Jan 04 08:25:33 2011 Quant Method : C:\msdchem\1\METHODS\M1B2336.M Quant Title : method 524, zb624 60mx0.25mmx1.4um QLast Update : Thu Dec 09 09:30:59 2010 Response via : Initial Calibration

M1B2336.M Tue Jan 04 08:53:29 2011 MS1B

Page: 2

Data Path : C:\msdchem\1\DATA\						
Data File : 1051//3.D Agg On 3 Jan 2011 3:48	ъm					
Operator : mohui	Pm					
Sample : ja65236-8						
Misc : MS6794,V1B2368,W,,	,,1					
ALS Vial : 13 Sample Multip	lier: 1					
Quant Time: Jan 04 08:25:53 20	11					
Quant Method : C:\msdchem\1\ME	THODS\M1B	2336.M				
Quant Title : method 524, zb6	24 60mx0.2	25mmx1	.4um			
QLast Update : Thu Dec 09 09:3	0:59 2010					
Response via : inicial calibra	LION					
Compound	R.T.	QIon	Response	Conc U	nits De	ev(Min)
Tatemaal Standarda						
1) Tert Butyl Alcohol-d9	7.840	65	19814	50.00	PPB	-0.02
4) FLUOROBENZENE	11.279	96	58795	5.00	PPb	0.00
-,						
System Monitoring Compounds						
5) 4-BROMOFLUOROBENZENE (S)	16,024	95	22235	5.29	PPb	0.00
Spiked Amount 5.000	Range 77	- 115	Recove	ry =	105.8	0%
6) 1,2-DICHLOROBENZENE-d4	. 17.702	152	22770	5.36	PPb	0.00
Spiked Amount 5.000	Range 78	- 114	Recove	ry =	107.20	08
Target Compounds					(Qvalue

(#) = qualifier out of range (m) = manual integration (+) = signals summed

Page: 1

0 1.00

Quantitation Report

(QT Reviewed)

Data Path : C:\msdchem\1\DATA\ Data File : 1b51773.D Acq On : 3 Jan 2011 3:48 pm Operator : mohui Sample : ja65236-8 Misc : MS6794,V1B2368,W,,,,1 ALS Vial : 13 Sample Multiplier: 1

Quant Time: Jan 04 08:25:53 2011 Quant Method : C:\msdchem\1\METHODS\M1B2336.M Quant Title : method 524, zb624 60mx0.25mmx1.4um QLast Update : Thu Dec 09 09:30:59 2010 Response via : Initial Calibration

Page: 2

JA65236

82 of 142

0 . . .

M1B2336.M Tue Jan 04 08:53:30 2011 MS1B

Data Path : C:\msdchem\l\DATA\ Data File : 1b51763.D Acq On : 3 Jan 2011 10:12 am Operator : mohui Sample : mb1 Misc : MS6764,V1B2368,W,,,,1 ALS Vial : 3 Sample Multiplier: 1

Quant Time: Jan 04 08:20:36 2011 Quant Method : C:\msdchem\1\METHODS\M1B2336.M Quant Title : method 524, zb624 60mx0.25mmx1.4um QLast Update : Thu Dec 09 09:30:59 2010 Response via : Initial Calibration

Compound	R.T.	QIon	Response	Conc Un	nits De	v(Min)
Internal Standards 1) Tert Butyl Alcohol-d9 4) FLUOROBENZENE	7.835 11.274	65 96	22140 58475	50.00 5.00	PPB PPb	-0.03 -0.01
System Monitoring Compounds 5) 4-BROMOFLUOROBENZENE (S) Spiked Amount 5.000 6) 1,2-DICHLOROBENZENE-d4 Spiked Amount 5.000	16.019 Range 77 . 17.702 Range 78	95 - 115 152 - 114	21405 Recover 23110 Recover	5.12 y = 5.47 y =	PPb 102.40 PPb 109.40	0.00 % 0.00 %
Target Compounds					Q	value

(#) = qualifier out of range (m) = manual integration (+) = signals summed

M1B2336.M Tue Jan 04 08:53:19 2011 MS1B

Page: 1

0 |2 |2

1B51763 D: V1B2368-MB1 Method Blank page 1 of 2

Quantitation Report

(QT Reviewed)

Data Path : C:\msdchem\l\DATA\ Data File : 1b51763.D Acq On : 3 Jan 2011 10:12 am Operator : mohui Sample : mb1 Misc : MS6764,V1B2368,W,,,,1 ALS Vial : 3 Sample Multiplier: 1

Quant Time: Jan 04 08:20:36 2011 Quant Method : C:\msdchem\1\METHODS\M1B2336.M Quant Title : method 524, zb624 60mx0.25mmx1.4um QLast Update : Thu Dec 09 09:30:59 2010 Response via : Initial Calibration

Page: 2

0 N N

M1B2336.M Tue Jan 04 08:53:19 2011 MS1B

QC Report: 11551764.0

Quantitation Report

(QT Reviewed)

Data Path : C:\msdchem\1\DATA\ Data File : 1b51764.D							
Acq On : 3 Jan 2011 10:56 a Operator : mohui	am						
Sample : bs							
Misc : MS6764,V1B2368,W,,,,	1						
ALS Vial : 4 Sample Multiplie	er: 1						
Quant Time: Jan 03 12:41:43 2011 Quant Method : C:\msdchem\1\METH Quant Title : method 524, zb624	L HODS\M1B2 4 60mx0.2	2336.M 25mmx1	.4um				·
QLast Update : Thu Dec 09 09:30:	59 2010						
Response via : Initial Calibrati	Lon						
Compound	R.T.	QIon	Response	Conc Ur	nits	Dev	(Min)
Internal Standards							
 Tert Butyl Alcohol-d9 	7.824	65	22636	50.00	PPB	-	0.04
4) FLUOROBENZENE	11.269	96	59542	5.00	PPb	-	-0.02
System Monitoring Compounds							
5) 4-BROMOFLUOROBENZENE (S)	16.019	95	21508	5.06	PPb		0.00
Spiked Amount 5.000 Ra	ange 77	- 115	Recove	ry =	101.	208	
6) 1,2-DICHLOROBENZENE-d4	17.702	152	23762	5.53	PPb	C 0.0	0.00
Spiked Amount 5.000 Ra	ange 78	- 114	Recove	ry =	110.	.60%	
Target Compounds	•					Qva	alue
2) TERTIARY BUTYL ALCOHOL	7.971	59	14283	25.81	PPb	_	95
3) 1,4-Dioxane	12.103	88	5944	152.92	PPB		91
7) DICHLORODIFLUOROMETHANE	4.023	85	9886	2.23	PPb		96
8) CHLOROMETHANE	4.364	50	11167	1.93	PPb		99
9) VINYL CHLORIDE	4.63/	6Z 07	9169 5075	2.02	PPD		99
11) CHLOROETHANE	5.591	64	5462	2.01	PPb		99
12) TRICHLOROFLUOROMETHANE	6.162	101	9890	2.39	PPb		99
13) ETHYL ETHER	6.619	45	9942	4.02	PPb		93
14) ACROLEIN	6.839	56	47027	48.52	PPb		96
15) 1,1-DICHLOROETHYLENE	7.090	96	13149	4.55	PPb		87
16) FREON 113	7.090	151	10118 6754	2.85 19.55	PPD		9⊥ 94
18) TODOMETHANE	7.090	142	23202	5.03	PPb		99
19) CARBON DISULFIDE	7.562	76	51635	4.82	PPb		99
20) METHYL ACETATE	7.678	74	3409	4.97	PPb	#	85
21) ALLYL CHLORIDE	7.683	76	9416	4.94	PPb		90
22) METHYLENE CHLORIDE	7.882	84	18384	4.40	PPb		97
23) ACRYLONITRILE	8.202	53	42848	24.85	PPD		94
24) METHYL TERT BUTYL EINER 25) trans-1 2-DICHLOROFTHY	8 349	75 61	20923	4.52	PPb		99
26) HEXANE	8.752	57	17131	5.17	PPb		99
27) 1,1-DICHLOROETHANE	8.962	63	29078	4.99	PPb		97
28) DI-ISOPROPYL ETHER	9.009	45	54499	4.56	PPb		92
29) ETHYL TERT-BUTYL ETHER	9.528	59	55177	4.65	PPb		98
30) 2-BUTANONE	9.728	72	9132 22075	ZU.IU 5 24	PPD		81 81
31) 2,2-DICHLOROPROPANE 22) cic-1 2-DICHLOROPROPANE	9.801	96	23973	5.20	PPh		99
33) PROPIONITRILE	9.775	54	35135	50.55	PPb		99
34) METHYLACRYLATE	9.880	55	17529	4.89	PPb		100
35) METHACRYLONITRILE	10.016	41	12241	4.96	PPb		95
36) BROMOCHLOROMETHANE	10.116	128	8848	5.40	PPb		78
37) CHLOROFORM	10.179	. 83	28969	5.12	PPD DDb		98 90
30) 1 1 1-TETRAHYDKOFURAN	10.194	42 07	2021 22861	5.51 5.23	PPh		98
40) CYCLOHEXANE	10.400	84	22890	4.94	PPb	#	100
41) 1-CHLOROBUTANE	10.593	56	58035	4.81	PPb		96
42) 1,1-DICHLOROPROPENE	10.698	75	20663	4.98	PPb		98
43) CARBON TETRACHLORIDE	10.734	117	19741	5.56	PPb		99

M1B2336.M Tue Jan 04 08:55:21 2011 MS1B

Page: 1

ရာ ပူသ — QC Report: 151351764.00

(QT Reviewed)

Data Path : C:\msdchem\1\DATA\ Data File : 1b51764.D Acq On : 3 Jan 2011 10:56 am Operator : mohui Sample : bs Misc : MS6764,V1B2368,W,,,,1 ALS Vial : 4 Sample Multiplier: 1

Quant Time: Jan 03 12:41:43 2011 Quant Method : C:\msdchem\1\METHODS\M1B2336.M Quant Title : method 524, zb624 60mx0.25mmx1.4um QLast Update : Thu Dec 09 09:30:59 2010 Response via : Initial Calibration

Compound	R.T.	QIon	Response	Conc Units	Dev(Min)
44) 1.2-DICHLOROETHANE	10.934	62	23797	5.50 PPb	97
45) BENZENE	10.955	78	65129	5.01 PPb	97
46) TERT AMYL METHYL ETHER	11.028	73	55467	4.74 PPB	98
47) TRICHLOROETHYLENE	11.736	95.	16029	5.23 PPb	96
48) METHYLCYCLOHEXANE	12.008	- 83	24605	5.26 PPb	99
49) METHYL METHACRYLATE	12.008	69	18581	4.69 PPb	86
50) 1,2-DICHLOROPROPANE	11.977	63	18304	5.14 PPb	97
51) DIBROMOMETHANE	12.145	93	11396	5.48 PPb	94
52) BROMODICHLOROMETHANE	12.286	83	22193	5.21 PPb	99
53) CHLOROACETONITRILE	12.433	75	7206	29.31 PPb	88
54) 2-NITROPROPANE	12.470	41	5935	5.54 PPb	83
55) 2-CHLOROETHYL VINYL ETHER	12.548	63	63958	23.73 PPb	97
56) cis-1,3-DICHLOROPROPENE	12.790	75	29662	5.31 PPb	99
57) 4-METHYL-2-PENTANONE	12.879	58	33727	19.07 PPb	96
58) 1,1-DICHLOROPROPANONE	12.984	43	6721	5.01 PPb	96
59) TOLUENE	13.209	92	40689	5.32 PPb	98
60) trans-1,3-DICHLOROPROPENE	13.387	75	28691	5.42 PPb	99
61) ETHYL METHACRYLATE	13.408	69	24308	4.67 PPb	. 95
62) 1,1,2-TRICHLOROETHANE	13.613	. 83	14599	5.31 PPb	98
63) 1,3-DICHLOROPROPANE	13.812	76	30313	5.52 PPb	92
64) 2-HEXANONE	13.807	58	32491	19.02 PPb	. 97
65) TETRACHLOROETHYLENE	13.870	166	16184	5.36 PPb	97
66) DIBROMOCHLOROMETHANE	14.106	129	17594	5.42 PPb	97
67) 1,2-DIBROMOETHANE	14.268	107	17136	5.44 PPb	99
68) CHLOROBENZENE	14.798	112	46766	5.52 PPb	96
69) 1,1,1,2-TETRACHLOROETHANE	14.855	131	17322	5.54 PPb	98
70) ETHYLBENZENE	14.871	91	78600	5.23 PPb	97
71) m,p-XYLENE	14.986	106	62209	10.90 PPb	96
72) O-XYLENE	15.437	106	31392	5.48 PPc	96
73) STYRENE	15.443	104	47567	4.86 PPc	98
74) BROMOFORM	15.705	173	12848	5.22 PPD	95
75) ISOPROPYLBENZENE	15.810	105	80192	5.35 PPC) 98
76) BROMOBENZENE	16.234	156	20380	5.64 PPC	90
77) 1,1,2,2-TETRACHLOROETHANE	16.093	83	26869	5.17 PPC	> 97
78) TRANS~1,4-DICHLORO-2-B	16.140	53	//41	5.71 PPC) 93 # 75
79) 1,2,3-TRICHLOROPROPANE	16.177	110	8105	5.70 PPC) # /J
80) n-PROPYLBENZENE	16.250	100	94262	D.16 PPL) <u> </u>
81) O-CHLOROTOLUENE	16.407	126	19792	. 5.36 PPL	> 00
82) 1,3,5-TRIMETHYLBENZENE	16.413	105	68883	5.34 FFL 5.14 DD4) 94
83) P-CHLOROTOLUENE	16.512	110	59799	5.14 PPL) 94
84) tert-BUTYLBENZENE	16.790	119	58778	5.39 FFL	90
85) 1,2,4-TRIMETHYLBENZENE	16.837	105	12007	5.29 PPI) 90 . 04
86) PENTACHLOROETHANE	16.863	107	13097	5.// PPI) 94 . 00
87) sec-BUTYLBENZENE	17.021	110	90968	5.41 PPL 5 50 DDV) 90 \ 08
88) p-ISOPROPYLTOLUENE	17 000	119	/0423	5.39 PPL 5 76 PPL	, 90 , 90
89) M-DICHLOROBENZENE	17.220	140	41090 A1000	5.70 PPL 5.56 DDV	, 90 , 05
90) P-DICHLOROBENZENE	17 504	140	41009	5.00 PPL 5 AQ DM	, <u>9</u> 0
91) N-BUTYLBENZENE	17 702	92	40340	5 /Q DD	, 99 , 99
92) O-DICHLOROBENZENE	10 022	0 ±40	110022	J.47 EE1 5 50 DDL	, 07 70
93) HEXACHLOROETHANE	T0.038	201	TT/0/	J.JZ FFL	, ,,

M1B2336.M Tue Jan 04 08:55:21 2011 MS1B

Page: 2

က ယူ ကို

Data Path : C:\msdchem\l\DATA\ Data File : 1b51764.D Acq On : 3 Jan 2011 10:56 am Operator : mohui Sample : bs Misc : MS6764,V1B2368,W,,,,1 ALS Vial : 4 Sample Multiplier: 1

Quant Time: Jan 03 12:41:43 2011 Quant Method : C:\msdchem\1\METHODS\M1B2336.M Quant Title : method 524, zb624 60mx0.25mmx1.4um QLast Update : Thu Dec 09 09:30:59 2010 Response via : Initial Calibration

Compound	R.T.	QIon	Response	Conc Units	Dev(Min)
<pre>94) 1,2-DIBROMO-3-CHLOROPR 95) NITROBENZENE 96) 1,2,4-TRICHLOROBENZENE 97) HEXACHLOROBUTADIENE 98) NAPHTHALENE 99) 1,2,3-TRICHLOROBENZENE</pre>	18.520 18.725 19.412 19.553 19.700 19.973	155 77 180 225 128 180	4625 24481 33160 15291 94520 33271	5.10 PPb 50.99 PPb 5.84 PPb 5.78 PPb 5.57 PPb 6.01 PPb	88 95 97 94 99 93

(#) = qualifier out of range (m) = manual integration (+) = signals summed

Page: 3

Quantitation Report (QT Reviewed)

Data Path : C:\msdchem\1\DATA\ Data File : 1b51764.D Acq On : 3 Jan 2011 10:56 am Operator : mohui Sample : bs : MS6764,V1B2368,W,,,,1 Misc ALS Vial : 4 Sample Multiplier: 1

Quant Time: Jan 03 12:41:43 2011 Quant Method : C:\msdchem\1\METHODS\M1B2336.M Quant Title : method 524, zb624 60mx0.25mmx1.4um QLast Update : Thu Dec 09 09:30:59 2010 Response via : Initial Calibration

Abundance	TiC: 1b51764.D\data.ms
230000	
220000	
210000	
200000	
190000	
180000	
170000	
160000	
150000	
140000	
130000	
120000	HERE STATES AND A
110000	R M M M M M M M M M M M M M M M M M M M
100000	
90000	
80000	A SACHARA RELATION OF THE RELA
70000	
60000	
50000	
40000	
30000	
20000	
10000	
0	
HIM> 4	

တ ယ ။။။

M1B2336.M Tue Jan 04 08:55:21 2011 MS1B

Page: 4

Data Data Acq O Opera Sampl Misc ALS V	Path : C:\msdchem\1\DATA\ File : 1b51774.D n : 3 Jan 2011 4:20 p tor : mohui e : ja65236-1ms : MS6794,V1B2368,W,,, ial : 14 Sample Multipl:	om ,1 ier: 1				·	
Quant Quant Quant QLast Respo	Time: Jan 03 17:06:27 201 Method : C:\msdchem\1\MET Title : method 524, zb62 Update : Thu Dec 09 09:30 nse via : Initial Calibrat	1 HODS\M1B2 4 60mx0.2 :59 2010 ion	2336.M 25mmx1	.4um			
	Compound	R.T.	QIon	Response	Conc Uni	ts Der	v(Min)
Inte 1) 4)	rnal Standards Tert Butyl Alcohol-d9 FLUOROBENZENE	7.845 [.] 11.274	65 96	21042 58770	50.00 P 5.00 P	PB Pb	-0.02 -0.01
Syst 5) Sp 6)	em Monitoring Compounds 4-BROMOFLUOROBENZENE (S) iked Amount 5.000 R 1,2-DICHLOROBENZENE-d4	16.024 ange 77 17.702	95 - 115 152	21442 Recove 23840	5.11 P ery = 1 5.62 P	Pb 02.20 Pb	0.00
Sp	iked Amount 5.000 R	ange 78	- 114	Recove	ery = 1	12.40	0
Targ 2)	et Compounds TERTIARY BUTYL ALCOHOL	7.982	59	15328	29.80 P	Q. Pb	value 92
3)	1,4-Dioxane	12.118	88	5559	153.85 P	PB	86
7)	DICHLORODIFLUOROMETHANE	4.034	85	6104 10183	1.40 F 1.78 F	PD PD	98
8)	VINXL CHLORIDE	4.309	62	7952	1.77 P	Pb	97
101	BROMOMETHANE	5.381	94	5220	1.79 F	Pb	98
11)	CHLOROETHANE	5.596	64	4693	1.75 F	Pb	92
12)	TRICHLOROFLUOROMETHANE	6.168	101	7105	1.74 P	Рb	89
13)	ETHYL ETHER	6.634	45	94.60	3.88 F	Pb	98
14)	ACROLEIN	6.849	56	42793	44.73 F	Pb	100
15)	1,1-DICHLOROETHYLENE	7,106	96	13381	4.69 F	Pb	97
16)	FREON 113	7.111	151	8331	4.88 E	PD PD	88
10)	ACETONE LODOMERNANE	7 304	58 142	0002 22717	10.JJ P	rD PPh	98
19)	CARBON DISULFIDE	7.567	76	42336	4.01 F	Pb	99
20)	METHYL ACETATE	7.699	74	3394	5.01 F	Pb #	· 1
21)	ALLYL CHLORIDE	7.688	76	8176	4.34 F	Pb	94
22)	METHYLENE CHLORIDE	7.893	84	18121	4.40 F	Pb	95
23)	ACRYLONITRILE	8.218	53	37944	22.30 E	Pb	96
24)	METHYL TERT BUTYL ETHER	8,322	13	54439	4.83 E	PD DD	98
25) 26)	Trans-1,2-DICHLOROETHI	8 758	57	14509	4.44 F	PPb	96
207	1.1-DICHLOROETHANE	8.973	63	29771	5.18 E	Pb	99
28)	DI-ISOPROPYL ETHER	9.020	45	55369	4.69 E	Pb	90
29)	ETHYL TERT-BUTYL ETHER	9.534	59	58403	4.99 H	Pb	97
30)	2-BUTANONE	9.738	72	8711	19.42 E	Pb	91
31)	2,2-DICHLOROPROPANE	9.806	77	24883	5.51 H	Pb	97
32)	cis-1,2-DICHLOROETHYLENE	9.790	96	20526	5.5U E	2PD DDb	90
33) 24)	PROPIONITRILE METUVI ACDVI ATE	9.705	54	15931	40.02 1	PPh	100
351	METHACRYLONITRILE	10.021	41	11742	4.82	Pb	95
36)	BROMOCHLOROMETHANE	10.121	128	8993	5.56 I	Pb	87
37)	CHLOROFORM	10.189	83	30511	5.46 H	PPb	98
38)	TETRAHYDROFURAN	10.199	42	6642	3.71 1	Pb	. 91
39)	1,1,1-TRICHLOROETHANE	10.498	97	24429	5.66 I	rrb adab ≞	100
40)	CYCLOHEXANE	10.614	84 54	23/61 60374	5.19 E 5.07 T	רי <i>י</i> # קרי	100 97
41) 72)	1 1-DICHLOROPROPENE	10.598	50 75	22221	5.42	Pb	95
43)	CARBON TETRACHLORIDE	10.739	117	21147	6.03 I	Pb	99

M1B2336.M Tue Jan 04 08:55:22 2011 MS1B

Page: 1

0) . .

QC Report:

Quantitation Report

(QT Reviewed)

Data Path : C:\msdchem\l\DATA\ Data File : 1b51774.D Acq On : 3 Jan 2011 4:20 pm Operator : mohui Sample : ja65236-1ms Misc : MS6794,V1B2368,W,,,,1 ALS Vial : 14 Sample Multiplier: 1

Quant Time: Jan 03 17:06:27 2011 Quant Method : C:\msdchem\1\METHODS\M1B2336.M Quant Title : method 524, zb624 60mx0.25mmx1.4um QLast Update : Thu Dec 09 09:30:59 2010 Response via : Initial Calibration

	Compound	R.T.	QIon	Response	Conc Units	Dev(Min)
44)	1 2-DICHLOBOETHANE	10.944	62	23629	5.53 PPb		98
15)	BENZENE	10.965	78	67234	5.24 PPb		99
46)	TERT AMYL METHYL ETHER	11.033	73	58867	5.10 PPB		99
40)	TRICHLOROETHYLENE	11.741	95	19236	6.36 PPb		98
49). 78)	METHYLCYCLOHEXANE	12.014	83	21038	4.56 PPb		97
10)	METHYL METHACRYLATE	12.019	69	17318	4.43 PPb		88
50)	1 2-DICHLOROPROPANE	11.987	63	18957	5.40 PPb		97
51)	DIBROMOMETHANE	12.150	93	11704	5.70 PPb		97
521	BROMODICHLOROMETHANE	12.297	83	22439	5.33 PPb		99
53)	CHLOBOACETONITBILE	12.449	75	6352	26.17 PPb		97
54)	2-NITROPROPANE	12.475	41	5669	5.36 PPb		93
551	2-CHLOROETHYL VINYL ETHER	12.664	63	204	0.08 PPb	#	46
56)	cis-1.3-DICHLOROPROPENE	12.800	75	29284	5.32 PPb		97
57)	4-METHYL-2-PENTANONE	12.884	58	33127	18.97 PPb		95
581	1.1-DICHLOROPROPANONE	12.989	43	6631	5.01 PPb		97
59)	TOLUENE	13,214	92	41980	5.56 PPb		99
60)	trans-1.3-DICHLOROPROPENE	13.392	75	27250	5.22 PPb		.99
61)	ETHYL METHACRYLATE	13.413	69	23263	4.52 PPb		94
621	1.1.2-TRICHLOROETHANE	13.618	83	14661	5.40 PPb		-95
631	1.3-DICHLOROPROPANE	13.817	76	30296	5.59 PPb		95
64)	2-HEXANONE	13.807	58	32145	19.06 PPb		97
65)	TETRACHLOROETHYLENE	13.875	166	89238	29.92 PPb		97
66)	DTBROMOCHLOROMETHANE	14.111	129	17300	5.40 PPb		95
67)	1.2-DIBROMOETHANE	14.273	107	17548	5.65 PPb		97
681	CHLOBOBENZENE	14.803	112	49548	5.93 PPb		96
69)	1.1.1.2-TETRACHLOROETHANE	14.861	131	18346	5.95 PPb		98
70)	ÊTHYLBENZENE	14.871	91	84280	5.69 PPb		96
71)	m, p-XYLENE	14.986	106	66392	11.79 PPb		100
721	O-XYLENE	15.443	106	33659	5.95 PPb		93
73)	STYRENE	15.448	104	47683	4.94 PPb		97
74)	BROMOFORM	15.710	173	12446	5.12 PPb		98
75)	ISOPROPYLBENZENE	15.815	105	85913	5.80 PPb		98
76)	BROMOBENZENE	16.234	156	21606	6.06 PPb		93
77)	1,1,2,2-TETRACHLOROETHANE	16.093	83	27736	5.41 PPb		99
78)	TRANS-1,4-DICHLORO-2-B	16.140	53	5969	4.46 PPb		97
79)	1,2,3-TRICHLOROPROPANE	16.177	110	8244	5.87 PPb	÷ †	82
80)	n-PROPYLBENZENE	16.255	91	103589	5.75 PPb		97
81)	O-CHLOROTOLUENE	16.412	126	21038	6.01 PPb		89
82)	1,3,5-TRIMETHYLBENZENE	16.412	105	72589	5.70 PPb	•	99
83)	P-CHLOROTOLUENE	16.512	91	65262	5.68 PPb	1	95
84)	tert-BUTYLBENZENE	16.795	5 119	63053	5.86 PPb	,	97
85)	1,2,4-TRIMETHYLBENZENE	16.837	105	72954	5.50 PPb) -	96
86)	PENTACHLOROETHANE	16.869) 167	12890	5.76 PPb	,	95
87)	sec-BUTYLBENZENE	17.026	5 105	95352	5.74 PPb)	98
88)	p-ISOPROPYLTOLUENE	17.146	5 119	77053	5.71 PPb	>	98
89)	M-DICHLOROBENZENE	17.220) 146	42822	5.99 PPb)	98
90)	P-DICHLOROBENZENE	17.309	3 146	44726	6.01 PPb)	97
91)	n-BUTYLBENZENE	17.587	92	41859	5.68 PPk	>	99
92)	O-DICHLOROBENZENE	17.723	3 146	43728	5.96 PPb)	97
93)	HEXACHLOROETHANE	18.038	3 201	11178	5.64 PPb)	95

M1B2336.M Tue Jan 04 08:55:22 2011 MS1B

Page: 2

90 of 142 ACCUTEST. JA65236

1B51774 D: JA65236-1MS Matrix Spike page 2 of 4

Data Path : C:\msdchem\1\DATA\ Data File : 1b51774.D Acq On : 3 Jan 2011 4:20 pm Operator : mohui Sample : ja65236-1ms Misc : MS6794,V1B2368,W,,,,1 ALS Vial : 14 Sample Multiplier: 1

Quant Time: Jan 03 17:06:27 2011 Quant Method : C:\msdchem\1\METHODS\M1B2336.M Quant Title : method 524, zb624 60mx0.25mmx1.4um QLast Update : Thu Dec 09 09:30:59 2010 Response via : Initial Calibration

	Compound	R.T.	QIon	Response	Conc Un	its	Dev(Min)
94) 1		18.520	155	4803	5,37	PPb	91
95) N	ITROBENZENE	18.730	77	16799	35.45	PPb	96
96) 1	1,2,4-TRICHLOROBENZENE	19.417	180	33920	6.05	PPb	95
97) H	AEXACHLOROBUTADIENE	19.553	225	15501	5,94	PPb	95
98) N	JAPHTHALENE	19.705	128	90859	5.42	PPb	98
99) 1	1,2,3-TRICHLOROBENZENE	19.972	180	33287	6.10	PPb	100

(#) = qualifier out of range (m) = manual integration (+) = signals summed

M1B2336.M Tue Jan 04 08:55:22 2011 MS1B

Quantitation Report

(QT Reviewed)

Data Path : C:\msdchem\1\DATA\ Data File : 1b51774.D 4:20 pm 3 Jan 2011 Acq On : Operator : mohui : ja65236-1ms Sample : MS6794,V1B2368,W,,,,1 Misc Sample Multiplier: 1 ALS Vial : 14 Quant Time: Jan 03 17:06:27 2011

Quant Method : C:\msdchem\1\METHODS\M1B2336.M Quant Title : method 524, zb624 60mx0.25mmx1.4um QLast Update : Thu Dec 09 09:30:59 2010 Response via : Initial Calibration

M1B2336.M Tue Jan 04 08:55:23 2011 MS1B

Quantitation Report

(QT Reviewed)

Data Path : C:\msdchem\1\DATA\ Data File : 1b51775.D Acq On : 3 Jan 2011 4:52 Operator : mohui Sample : ja65236-1msd Misc : MS6794,V1B2368,W,, ALS Vial : 15 Sample Multip	pm ,,1 lier: 1	- - - -				
Quant Time: Jan 04 08:33:03 20 Quant Method : C:\msdchem\1\ME' Quant Title : method 524, zb63 QLast Update : Thu Dec 09 09:34 Response via : Initial Calibrat	11 THODS\M1B 24 60mx0.3 0:59 2010 tion	2336.M 25mmx1	.4um			
Compound	R.T.	QIon	Response	Conc Ur	nits	Dev(Min)
Internal Standards 1) Tert Butyl Alcohol-d9 4) FLUOROBENZENE	7.840 11.274	65 96	21340 58595	50.00 5.00	PPB PPb	-0.02 -0.01
System Monitoring Compounds 5) 4-BROMOFLUOROBENZENE (S) Spiked Amount 5.000 1 6) 1,2-DICHLOROBENZENE-d4 Spiked Amount 5.000 1	16.019 Range 77 . 17.702 Range 78	95 - 115 152 - 114	21256 Recove 23265 Recove	5.08 ery = 5.50 ery =	PPb 101. PPb 110.	0.00 60% 0.00 00%
Spiked Amount5.000Target Compounds2) TERTIARY BUTYL ALCOHOL3) 1,4-Dioxane7) DICHLORODIFLUOROMETHANE8) CHLOROMETHANE9) VINYL CHLORIDE10) BROMOMETHANE11) CHLOROETHANE12) TRICHLOROFLUOROMETHANE13) ETHYL ETHER14) ACROLEIN15) 1,1-DICHLOROETHYLENE16) FREON 11317) ACETONE18) IODOMETHANE19) CARBON DISULFIDE20) METHYL ACETATE21) ALLYL CHLORIDE22) METHYLENE CHLORIDE23) ACRYLONITRILE24) METHYL TERT BUTYL ETHER25) trans-1, 2-DICHLOROETHY26) HEXANE27) 1, 1-DICHLOROETHANE28) DI-ISOPROPYL ETHER29) ETHYL TERT-BUTYL ETHER30) 2-BUTANONE31) 2, 2-DICHLOROPROPANE32) cis-1, 2-DICHLOROETHYLENE	Range 78 7.976 12.118 4.018 4.374 4.647 5.386 5.601 6.173 6.634 6.844 7.101 7.096 7.111 7.389 7.567 7.683 7.693 7.887 8.212 8.322 8.322 8.322 8.359 8.763 8.961 9.534 9.738	-114 59 88 50 62 94 101 56 96 151 58 142 76 843 73 61 57 63 59 72 96	Recover 16141 6052 6860 11390 8546 5920 5179 7554 9848 44004 14103 9213 6805 24294 43818 3518 8506 18656 38492 54926 24653 15331 31015 57740 60511 8630 25979 21759	<pre>sry =</pre>	110. PPB PPP PPP PPP PPP PPP PPP PPP PPP PPP	00% Qvalue 92 90 98 96 97 96 94 98 97 100 99 99 4 79 4 96 100 99 99 4 79 84 97 98 100 99 99 4 97 98 100 99 99 99 99 99 99 99 99 99
<pre>33) PROPIONITRILE 34) METHYLACRYLATE 35) METHACRYLONITRILE 36) BROMOCHLOROMETHANE 37) CHLOROFORM 38) TETRAHYDROFURAN 39) 1,1,1-TRICHLOROETHANE 40) CYCLOHEXANE 41) 1-CHLOROBUTANE 42) 1,1-DICHLOROPROPENE 43) CARBON TETRACHLORIDE</pre>	9.780 9.895 10.021 10.115 10.189 10.503 10.619 10.598 10.703 10.745	54 55 41 128 83 42 97 84 56 75 117	33672 14954 11722 9418 31400 6784 26307 25358 62901 22740 22112	49.23 4.24 4.83 5.84 5.64 3.80 6.12 5.56 5.30 5.57 6.32	PPb PPb PPb PPb PPb PPb PPb PPb PPb PPb	96 100 92 85 93 90 99 # 100 95 97 97

M1B2336.M Tue Jan 04 08:55:24 2011 MS1B

JA65236 93 of 142 JA65236

Data File : 1b51775.D	
Acq On : 3 Jan 2011 4:52 pm	
Operator : mohui	
Sample : ja65236-1msd	
Misc : MS6794,V1B2368,W,,,,1	
ALS Vial : 15 Sample Multiplier:	1

Quant Time: Jan 04 08:33:03 2011 Quant Method : C:\msdchem\1\METHODS\M1B2336.M Quant Title : method 524, zb624 60mx0.25mmx1.4um QLast Update : Thu Dec 09 09:30:59 2010 Response via : Initial Calibration

	Compound	R.T.	QIon	Response	Conc Units	Dev	(Min)
44)	1,2-DICHLOROETHANE	10.944	62	23796	5.59 PPb		 97
45)	BENZENE	10.960	78	69880	5.46 PPb		98
·46)	TERT AMYL METHYL ETHER	11.033	- 73	61662	5.35 PPB		99
47)	TRICHLOROETHYLENE	11.741	95	20199	6.70 PPb		95
48)	METHYLCYCLOHEXANE	12.019	83	22948	4.99 PPb	#	73
49)	METHYL METHACRYLATE	12.019	69	18371	4.71 PPb		91
50)	1,2-DICHLOROPROPANE	11.987	63	19498	5.57 PPb		- 97
51)	DIBROMOMETHANE	12.150	93	11692	5.71 PPb		97
52)	BROMODICHLOROMETHANE	12.291	83	23148	5.52 PPb		92
53)	CHLOROACETONITRILE	12.449	75	6794	28.08 PPb		98
54)	2-NITROPROPANE	12.480	41	5657	5.36 PPb		98
55)	2-CHLOROETHYL VINYL ETHER	12.664	63	297	0.11 PPb	#	46
56)	cis-1, 3-DICHLOROPROPENE	12.795	75	29559	5.38 PPb		98
57)	4-METHYL-2-PENTANONE	12.884	58	33172	19.06 PPb		96
58)	I, I-DICHLOROPROPANONE	12.989	43	6386	4.84 PPb		98
59)	TOLUENE	13.214	92	44270	5.88 PPb		96
60)	DEUXI MEETI ODVIDER	13.392	75	28335	5.44 PPb		92
(10 (10)	ETHIL METHACRILATE	13.413	69	24112	4.70 PPb		98
62)	1, 1, 2-TRIUHLOROETHANE	13.618	83	15077	5.57 PPb		96
63)	1, 3-DICHLOROPROPANE	13.81/	/6	30910	5.72 PPb		94
64) (E)	Z-HEXANONE TERDAQUI ODOERUVI ENE	13.812	58	31647	18.83 PPD		95
65)	DIDDOMOGULODOMERUNNE	13.870	166	92971	31.26 PPb		98
67)	1 2 DIBROMOCHLOROMETHANE	14,116	129	1/511	5.48 PPb		97
60)	CULODODENZENE	14.273	1107	18214	5.88 PPD		95
60)	1 1 1 2 TREDACULODOREUNAR	14.803	121	51240	6.15 PPD		93
70)	T, I, I, Z-IEIRACHLOROEIHANE	14.860	131	19062	6.20 PPD		93
70)	EINIDENZENE m p-VVIENE	14.0/1	106	69017	0.02 PPD		98
72)	A-YVIENE	15 /37	106	21112	12.34 PPD		94
73)	STVRENE	15 4407	100	10201	5.12 PPD		100
74)	BROMOFORM	15.442 15 710	173	12196	5.12 PPD		100
751	ISOPROPYLBENZENE	15 815	105	01375	5.04 FFD 6 10 DDh		100
76)	BROMOBENZENE	16 234	156	22185	6 24 PPb		100
77)	1.1.2.2-TETRACHLOROFTHANE	16 098	700	27083	5 47 DDb		92
78)	TRANS-1.4-DICHLORO-2-B	16 140	53	6266	4 70 PPh		90
79)	1.2.3-TRICHLOROPROPANE	16 171	110	8106	5 79 PPh		9.9 G G G
80)	n-PROPYLBENZENE	16.255	91	110014	6 12 PPh		98
81)	O-CHLOROTOLUENE	16.412	126	22224	6 37 PPb	#	78
82)	1.3.5-TRIMETHYLBENZENE	16.412	105	75195	5 92 PPb	"	95
83)	P-CHLOROTOLUENE	16.512	91	67179	5 87 PPb		97
84)	tert-BUTYLBENZENE	16.790	119	66270	6 18 PPb		95
85)	1.2.4-TRIMETHYLBENZENE	16.837	105	76865	5 81 PPb		98
86)	PENTACHLOROETHANE	16.869	167	13637	6 11 PPb		93
87)	sec-BUTYLBENZENE	17.021	105	101989	6.16 PPb		100
88)	p-ISOPROPYLTOLUENE	17.146	119	83193	6.19 PPb		97
89)	M-DICHLOROBENZENE	17.220	146	44530	6.25 PPh		97
90)	P-DICHLOROBENZENE	17.309	146	46292	6.24 PPb		98
91)	n-BUTYLBENZENE	17.587	92	44724	6.08 PPb		97
92)	O-DICHLOROBENZENE	17,723	146	45802	6.26 PPb		98
93)	HEXACHLOROETHANE	18 032	201	11451	5.80 PPb		92

M1B2336.M Tue Jan 04 08:55:24 2011 MS1B

Page: 2

0,4.2

1B51775.D: JA65236-1MSD Matrix Spike Duplicate page 2 of 4.

Data Path : C:\msdchem\1\DATA\ Data File : 1b51775.D Acq On : 3 Jan 2011 4:52 pm Operator : mohui Sample : ja65236-1msd Misc : MS6794,V1B2368,W,,,,1 ALS Vial : 15 Sample Multiplier: 1

Quant Time: Jan 04 08:33:03 2011 Quant Method : C:\msdchem\1\METHODS\M1B2336.M Quant Title : method 524, zb624 60mx0.25mmx1.4um QLast Update : Thu Dec 09 09:30:59 2010 Response via : Initial Calibration

Compound	R.T.	QIon	Response	Conc Units	Dev(Min)
<pre>94) 1,2-DIBROMO-3-CHLOROPR 95) NITROBENZENE 96) 1,2,4-TRICHLOROBENZENE 97) HEXACHLOROBUTADIENE 98) NAPHTHALENE 99) 1,2,3-TRICHLOROBENZENE</pre>	18.520 18.730 19.417 19.553 T9. 7 05 19.972	155 77 180 225 128 180	4756 17540 34579 16918 94938 34155	5.33 PPt 37.12 PPt 6.19 PPt 6.50 PPt 5.68 PPt 6.27 PPt	96 96 97 97 97 97 99 99 96
			~~		

(#) = qualifier out of range (m) = manual integration (+) = signals summed

M1B2336.M Tue Jan 04 08:55:24 2011 MS1B

Page: 3

Quantitation Report

(QT Reviewed)

6.4.2

.

JA65236

ACCUTEST.

Data Path : C:\msdchem\1\DATA\ Data File : 1b51775.D Acq On 4:52 pm : 3 Jan 2011 Operator : mohui : ja65236-1msd Sample Misc : MS6794,V1B2368,W,,,,1 ALS Vial : 15 Sample Multiplier: 1

Quant Time: Jan 04 08:33:03 2011 Quant Method : C:\msdchem\1\METHODS\M1B2336.M Quant Title : method 524, zb624 60mx0.25mmx1.4um QLast Update : Thu Dec 09 09:30:59 2010 Response via : Initial Calibration

1B51775 D: JA65236-1MSD Matrix Spike Duplicate page 4 of 4

BFB

Title : method 524, zb624 60mx0.25mmx1.4um

PASS

PASS

PASS

PASS

PASS

PASS

755 |

8438

647

8119 |

541 |

41 |

0,0 ,0

97 of 142

LABORAT

JA65236

Tune Report:

1B51061 D: V1B2336-BFB Instrument Performance Check (BFB) page 1 of 2

5

50

5

5

95

0.00

96

173

174

175

176

177

1b51061.D M1B2336.M

95

174

174

174

176

95

9

2

9

9

Thu Dec 09 09:04:21 2010 MS1B

120

101

6.8

0.5

76.3

7.7

96.2 6.7 Average of 16.025 to 16.035 min.: 1b51061.D\data.ms bfb Modified:subtracted

	TOUTTTOU.D	aberaceea						
	m/z	abund.	m/z	abund.	m/z	abund.	m/z	abund.
	36.00	108	50.00	2082	70.00	- 75	86.95	540
	37.00	553	51.00	697	72.00	37	87.95	549
	38.00	437	55.00	43	73.00	483	92.00	302
	39.05	250	55.95	166	74.00	1701	93.00	432
	42.05	57	57.05	303	75.05	5341	94.05	1241
	43.00	60	60.05	145	76.05	483	95.05	11064
	44.00	89	61.00	500	76.95	134	96.05	755
	44.90	67	62.00	460	78.00	57	140.95	- 57
	47.00	160	63.05	351	78.90	232	143.00	61
	48.00	58	68.00	1147	80.00	31	172.80	41
	49.00	465	69.00	1053	80.95	229	174.00	8438
7	Average of	16.025 to	16.035 mi	n.: 1b5106	1.D\data.	ms		
k	ofb							
Þ	Aodified:su	ubtracted						
	m/z	abund.	m/z	abund.	m/z	abund.	m/z	abund.
	175.00	647						
	176.00	8119						
	176.95	541						

6,5,1

98 of 142 ACCUTEST JA65236

	BF	B	
Data File :	C:\msdchem\1\DATA\1b51761.D	Vial:	1 mohui
Sample :	bfb	Inst : 1	MS1B
Misc : MS Integrat	MS6764,V1B2368,W,,,,1	Multiplr:	1.00
ind integrat	ton rurano, recrucip		
Method :	C:\msdchem\1\METHODS\M1B2336.M	(RTE Integrator)	

Title : method 524, zb624 60mx0.25mmx1.4um

1b51761.D M1B2336.M Tue Jan 04 08:19:10 2011 MS1B

сл Ку

1B51761.D: V1B2368-BFE Instrument Performance Check (BFB) page 1 of 2

Average of 16.014 to 16.024 min.: 1b51761.D\data.ms bfb

m/z	abund.	m/z	abund.	m/z	abund.	m/z	abund.
36.00	57	55.95	164	75.00	5277	94.00	1138
37.05	473	57.05	269	75.95	462	95.00	10914
38.00	353	59.85	73	76.90	69	96.05	803
39.05	234	60.95	490	77.10	39	140.80	37
40.00	17	61,95	458	78.90	261	141.00	28
43.95	15	63.05	356	79.95	74	142.70	34
45.05	117	68.00	1031	80.95	249	142.90	28
47.05	174	69.00	1048	87.00	587	173.95	8224
49.00	383	70.05	63	88.00	518	174.95	730
50.00	1743	73.00	536	91.95	308	175.95	8215
51.00	605	74.00	1739	92.95	435	176.95	542
Average of	16.014 to	16.024 min	n.: 1b5176	1.D\data.	ms		
bfb		· · ·					
Modified:su	ubtracted						
m/z	abund.	m/z	abund.	m/z	abund.	m/z	abund.
206.80	32						

6.3 .7 .7

@ >

Data File : 1b51062.D

Operator : mohui Sample : ic2336-0.5

Acq On

Data Path : C:\msdchem\1\DATA\

: 8 Dec 2010 7:35 pm

Quantitation Report

(QT Reviewed)

0 0

Misc ALS V	: MS5663,V1B2336,W,, ial : 2 Sample Multipl	,,1 ier: 1						
Quant Quant Quant QLast Respon	Time: Dec 09 09:21:28 20 Method : C:\msdchem\1\ME Title : method 524, zb6 Update : Thu Dec 09 07:5 nse via : Initial Calibra	10 THODS\M1E 24 60mx0. 2:51 2010 tion	32336.M 25mmx1)	.4um				
	Compound	R.T.	QIon	Response	Conc Ur	nits	Dev	(Min)
Inte	rnal Standards							
1)	Tert Butyl Alcohol-d9	7.860	65	24584	50.00	PPB		0.00
4)	FLUOROBENZENE	11.28	5 96	62042	5.00	РРЬ		0.00
Syst	em Monitoring Compounds							
5)	4-BROMOFLUOROBENZENE (S)	16.030) 95	22103	4,99	PPb		0.00
Sp	iked Amount 5.000	Range 7	7 - 115	Recover	y =	99. DDb	80%	0 00
6)	1,2-DICHLOROBENZENE-d4	. 17.708	3 152	22549	5.03	100	600	0.00
Sp.	iked Amount 5.000	Range 78	3 - 114	Recover	:у =	·100.	603	
Targ	et Compounds						Qva	alue
2)	TERTIARY BUTYL ALCOHOL	8.013	3 59	1650	2.75	PPb		80
3)	1,4-Dioxane	12.15) 88	390	9.60	PPB	#	73
- 7)	DICHLORODIFLUOROMETHANE	4.034	4 85	1403	0.30	PPb		80
8)	CHLOROMETHANE	4.380) 50	3134	0.52	PPb		86
9)	VINYL CHLORIDE	4.652	2 62	1990	0.42	PPb		91
10)	BROMOMETHANE	5.39	7 94	1526	0.50	PPb		89
11)	CHLOROETHANE	5.601	7 64	1298	0.46	PPb		97
12)	TRICHLOROFLUOROMETHANE	6.17	3 101	1224m	0.28	PPb		
13)	ETHYL ETHER	6.66	645	1185	0.43	PPb		83
14)	ACROLEIN	6.89	6 56	5615	5.56	PPb		92
15)	1.1-DICHLOROETHYLENE	7.11	796	1595	0.53	PPb		86
16)	FREON 113	7.11	1 151	. 303	0.17	PPb	#	19
17)	ACETONE	7.18	5 58	616	1.67	PPb -		95
18)	TODOMETHANE	7.40	5 142	2310	0.48	PPb		95
19)	CABBON DISULFIDE	7.58	3 76	5098	0.46	PPb		90
21)	ALLYL CHLORIDE	7.70	4 76	878	0.44	PPb	#	51
22)	METHYLENE CHLORIDE	7.90	8 84	2368	0.54	PPb		95
22)	ACRYLONITRILE	8 27	5 53	4017	2.24	PPb		85
24)	METHYL TERT BUTYL ETHER	8 34	3 73	6086	0.51	PPb		97
25)	trans-1 2-DICHLOBOETHY	8 37	5 61	2312	0.48	PPb		83
201	UPYAND	8 77	9 57	1158	0.34	PPb		90
207	1 1-DICHLOROETHANE	8.98	3 63	2787	0.46	PPb		98
277	DI-ISOPPOPYL FTHER	9 04	1 45	6567	0.53	PPb		90
20)	ETHVI TERT-BUTYI, ETHER	9.55	5 59	6288	0.51	PPb		94
29)	2-BIMANONE	9.00	5 72	641	1.42	PPb		59
21)	2 2 DICHLORODDANE	0 83	3 77	2565	0.54	PPh		98
331	2,2-DICHLOROFROIANE	2 9.85	2 96	2279	0.58	PPb		76
32) 22)	DEODIONITERITE	0 83	2 50 8 54	3380	4.67	PPh		81
22)	MEDUACRYLONIERIE	10.05	ο <u>J</u> - ρ <u>4</u> 1	1405	0 50	PPh		85
33)	DETHACKILONIIKILE	10.05	1 128	775	0.00	PPh		75
20)	CULODOFODM	10.13	E 03	3192	0.10	PPh		97
37)		10.20	5 05 6 10	1709	0.04	DDD		. 86
38)	1 1 1 DECULODOREUME	10.22	∪ 4 ∠ ∕ 0.7	2078	0.05	TD		91
39)	I, I, I-IRICHLUKULTHANL	10.51	- <i> </i>	1070	0.41	PPh	#	100
40)		10.02	- 04 A EC	5505	0.41	DDP	т	±00 27
41)	1 1 DIGULOBORDORENE	10.01		1997	0.44	DDP		20 20
42)	1,1-DICHLOKOPROPENE	10./1	J /J	1607	0.44	ב ביבע אודום		Q1
43)	CARBON TETRACHLORIDE	10./4	5 11/ 5 (2	2015	0.43	270 775		21 00
44)	I, Z-DICHLOROETHANE	10.96	5 6Z	2010	0.40	רבים אתמ		24
45)	BENZENE	10.97	o /ŏ	0023	0.49	гrи		23

10.976

M1B2336.M Thu Dec 09 09:53:30 2010 MS1B

45) BENZENE

Page: 1

101 of 142 JA65236 LABORATORIES

Quantitation Report

(QT Reviewed)

Data Path	:	C:\msdchem\1\DATA\
Data File	:	1b51062.D
Acq On	:	8 Dec 2010 7:35 pm
Operator	:	mohui
Sample	:	ic2336-0.5
Misc	:	MS5663,V1B2336,W,,,,1
ALS Vial	:	2 Sample Multiplier: 1

Quant Time: Dec 09 09:21:28 2010 Quant Method : C:\msdchem\1\METHODS\M1B2336.M Quant Title : method 524, zb624 60mx0.25mmx1.4um QLast Update : Thu Dec 09 07:52:51 2010 Response via : Initial Calibration

	Compound	R.T.	QION	Response	Conc Units	Dev	(Min)
46)	TERT AMYL METHYL ETHER	11.049	73	7078	0.58 PPB	#	49
47)	TRICHLOROETHYLENE	11,751	95	1499	0.47 PPb		94
48)	METHYLCYCLOHEXANE	12.024	83	1693	0.35 PPb	#	76
49)	METHYL METHACRYLATE	12.045	69	1874	0.45 PPb	#	53
 -50)	1,2-DICHLOROPROPANE	12.003	63	1774	0.48 PPb		92
51)	DIBROMOMETHANE	12.160	93	1032	0.48 PPb		91
52)	BROMODICHLOROMETHANE	12.302	83	2214	0.50 PPb		92
53)	CHLOROACETONITRILE	12.480	75	565	2.21 PPb	#	70
54)	2-NITROPROPANE	12,496	41	718	0.64 PPb		77
55)	2-CHLOROETHYL VINYL ETHER	12.575	63	6773	2.41 PPb		96
56)	cis-1,3-DICHLOROPROPENE	12.811	75	2831	0.49 PPb		95
57)	4-METHYL-2-PENTANONE	12.905	58	3934	2.13 PPb		97
58)	1,1-DICHLOROPROPANONE	13.005	43	461	0:33 PPb		82
59)	TOLUENE	13,230	92	3979	0.50 PPb		88
60)	trans-1,3-DICHLOROPROPENE	13,414	75	2686	0.49 PPb		97
61)	ETHYL METHACRYLATE	13.434	69	2815	0.52 PPb		94
62)	1,1,2-TRICHLOROETHANE	13.634	83	1495	0.52 PPb		94
63)	1, 3-DICHLOROPROPANE	13.833	76	2866	0.50 PPb		96
64)	2-HEXANONE	13.833	58	3740	2.10 PPb		95
65)	TETRACHLOROETHYLENE	13.885	166	1431	0.45 PPb		89
66)	DIBROMOCHLOROMETHANE	14.127	129	1608	0.48 PPb		96
67)	1,2-DIBROMOETHANE	14.289	107	1531	0.47 PPb		90
68)	CHLOROBENZENE	14.819	112	4440	0.50 PPb		92
69)	1,1,1,2-TETRACHLOROETHANE	14.871	131	1599	0.49 PPb		93
70)	ETHYLBENZENE	14.882	91	7656	0.49 PPb		97
71)	m, p-XYLENE	15.002	106	5796	0.97 PPb		95
72)	O-XYLENE	15.448	106	2792	0.47 PPb		97
73)	STYRENE	15.453	104	4948	0.49 PPb		94
74)	BROMOFORM	15.726	173	1343	0.52 PPb		95
75)	ISOPROPYLBENZENE	15.825	105	7463	0.48 PPb		98
76)	BROMOBENZENE	16.245	156	1843	0.49 PPb		97
77)	1,1,2,2-TETRACHLOROETHANE	16.103	83	2812	0.52 PPb		95
78)	TRANS-1.4-DICHLORO-2-B	16.156	53	697	0.49 PPb		98
79)	1.2.3-TRICHLOROPROPANE	16.187	110	728	0.49 PPb	#	89
80)	n-PROPYLBENZENE	16.266	91	9216	0.48 PPb		99
81)	O-CHLOROTOLUENE	16.418	126	1935	0.52 PPb		98
82)	1,3,5-TRIMETHYLBENZENE	16.423	105	6380	0.47 PPb		97
83)	P-CHLOROTOLUENE	16.523	91	6235	0.51 PPb		97
84)	tert-BUTYLBENZENE	16.801	119	5487	0.48 PPb		96
85)	1,2,4-TRIMETHYLBENZENE	16.848	105	7023	0.50 PPb		85
86)	PENTACHLOROETHANE	16.879	167	1169	0.49 PPb		92
87)	sec-BUTYLBENZENE	17,031	105	8329	0.48 PPb		96
88)	p-ISOPROPYLTOLUENE	17,157	119	6761	0.47 PPb		97
89)	M-DICHLOROBENZENE	17.230	146	3772	0.50 PPb	,	95
901	P-DICHLOROBENZENE	17.320	146	3983	0.51 PPb	1	97
91)	n-BUTYLBENZENE	17.597	92	3526	0.45 PPb)	97
921	O-DICHLOROBENZENE	17.729	146	3981	0.51 PPb	,	95
931	HEXACHLOROETHANE	18.038	201	967	0.46 PPb)	85
94ì	1,2-DIBROMO-3-CHLOROPR	18.531	155	451	0.48 PPb	,	98
95)	NITROBENZENE	18.740	77	2627	5.25 PPb)	89

M1B2336.M Thu Dec 09 09:53:30 2010 MS1B

Page: 2

	02 of 142
ACC	UTEST
JA65236	LABORATORIES

6 0 1

1B51062.D: V1B2336-IC2336 Initial Calibration (0.5) page 2 of 4

Data Path : C:\msdchem\l\DATA\ Data File : 1b51062.D Acq On : 8 Dec 2010 7:35 pm Operator : mohui Sample : ic2336-0.5 Misc : MS5663,V1B2336,W,,,,1 ALS Vial : 2 Sample Multiplier: 1

Quant Time: Dec 09 09:21:28 2010 Quant Method : C:\msdchem\1\METHODS\M1B2336.M Quant Title : method 524, zb624 60mx0.25mmx1.4um QLast Update : Thu Dec 09 07:52:51 2010 Response via : Initial Calibration

Compound	R.T.	QIon	Response	Conc Units	Dev(Min)
 96) 1,2,4-TRICHLOROBENZENE 97) HEXACHLOROBUTADIENE 98) NAPHTHALENE 99) 1,2,3-TRICHLOROBENZENE 	19.422	180	2878	0.49 PPb	87
	19.558	225	1354	0.49 PPb	97
	19.716	128	8350	0.47 PPb	98
	19.983	180	2739	0.48 PPb	95

(#) = qualifier out of range (m) = manual integration (+) = signals summed

Page: 3

ခဲ့ာ

1B51062.D: V1B2336-IC2336 Initial Calibration (0.5) page 3 of 4

0.0 []

104 of 142

ACCUTEST. LADOBATOR

JA65236

Data Path : C:\msdchem\1\DATA\ Data File : 1b51062.D Acq On : 8 Dec 2010 7:35 pm Operator : mohui : ic2336-0.5 Sample : MS5663,V1B2336,W,,,,1 Misc ALS Vial : 2 Sample Multiplier: 1

Quant Time: Dec 09 09:21:28 2010 Quant Method : C:\msdchem\1\METHODS\M1B2336.M Quant Title : method 524, zb624 60mx0.25mmx1.4um QLast Update : Thu Dec 09 07:52:51 2010 Response via : Initial Calibration

1B51062 D: V1B2336-IC2336 Initial Calibration (0.5) page 4 of 4

Manual Integration Approval Summary

Sample Number: Lab FileID: Injection Time:

V1B2336-IC2336 1B51062.D 12/08/10 19:35

Method: Analyst approved:

EPA 524.2 REV 4.1 12/09/10 09:51 MoHui Huang Supervisor approved: 12/10/10 04:56 Kanya Veerawat

Parameter	CAS	Sig#	R.T. (min.)	Reason	
Trichlorofluoromethane	75-69-4		6.17	Split peak	· · ·

Quantitation Report (Qedit)

M1B2336.M Thu Dec 09 09:21:24 2010 MS1B

Page: 1

M1B2336.M Thu Dec 09 09:21:31 2010 MS1B

Page: 1

107 of 142 ACCUTEST,

JA65236

4B51062 D edits: TRICHLOROFLUOROMETHANE

(QT Reviewed)

Data F Data F Acq Or Operat Sample Misc ALS Vi	<pre>Path : C:\msdchem\1\DATA\ Tile : 1b51063.D Tile : 8 Dec 2010 8:07 Tile : mohui Tile : ic2336-1 Tile : MS5663,V1B2336,W,,, Tile : 3 Sample Multipli</pre>	pm ,1 er: 1					
Quant Quant Quant QLast Respor	Time: Dec 09 08:20:36 201 Method : C:\msdchem\1\MET Title : method 524, zb62 Update : Thu Dec 09 08:19 nse via : Initial Calibrat	0 HODS\M1B2 4 60mx0.2 :04 2010 ion	2336.M 25mmx1.	.4um			·
	Compound	R.T.	QIon	Response	Conc Unit	ts Dev	(Min)
Inter 1)	rnal Standards Tert Butyl Alcohol-d9	7.866	65	25237	50.00 Pi	PB	0.00
4)	FLUOROBENZENE	11.285	96	62590	5.00 P.	rD	0,00
Syste 5)	em Monitoring Compounds 4-BROMOFLUOROBENZENE (S)	16.030	95 - 115	22256 Recove	4.98 P	Pb 99.60%	0.00
5p: 6)	1,2-DICHLOROBENZENE-d4	17.708	152	22443	4.96 P	Pb	0.00
Spi	iked Amount 5.000 R	ange 78	- 114	Recove	ry =	99.20%	
Tara	at Compounds					Qv	alue
1arye 2)	TERTIARY BUTYL ALCOHOL	7.992	59	2919	4.73 P	Pb	91
3)	1.4-Dioxane	12.134	88	973	23.32 P	PB	83
7)	DICHLORODIFLUOROMETHANE	4.034	85	5094	1.09 P	Pb	94
8)	CHLOROMETHANE	4.380	50	6542	1.08 P	Pb	97
9)	VINYL CHLORIDE	4.647	62	4878	1.02 P	Pb	95
10)	BROMOMETHANE	5.397	94	3281	1.06 P	Pb	98
11)	CHLOROETHANE	5.601	64	3012	1.06 P	Pb	97
12)	TRICHLOROFLUOROMETHANE	6.168	101	4370	1.01 P	Pb	88
13)	ETHYL ETHER	6.655	45	2740	1.05 P	Pb	88
14)	ACROLEIN	6.875	56	10761	10.56 P	Pb	91
15)	1,1-DICHLOROETHYLENE	7.111	96	3040	1.00 P	Pb	91
16)	FREON 113	7.111	151	1449	0.80 P	Pb	86
17)	ACETONE	7.164	58	1303	3.50 P	Pb	89
18)	IODOMETHANE	7.405	142	4662	0.96 P	Pb	97
19)	CARBON DISULFIDE	7.578	76	10686	0.95 P	Pb	98
20)	METHYL ACETATE	7.751	74	332	0.50 P	Pb #	1
21)	ALLYL CHLORIDE	7.704	76	2008	1.00 P	Pb #	77
22)	METHYLENE CHLORIDE	7.903	84	4414	1.01 F	Pb	97
23)	ACRYLONITRILE	8.254	53	8620	4.76 F	PD	98
24)	METHYL TERT BUTYL ETHER	8.343	73	11910	0.99 F	'PD	98
25)	trans-1,2-DICHLOROETHY	. 8.375	61	4579	0.94 E	'PD D-	100
26)	HEXANE	8.789	57	3443	0.99 E	PD Db	100
27)	1, 1-DICHLOROETHANE	8.978	6.3	5992	0.90 E	rru DDb	95
28)	DI-ISOPROPYL ETHER	9.036	45	10101	1.05 E	DDh	90
29)	ETHYL TERT-BUTYL ETHER	9.555	59	1512	· 0.97 ±	v E D V D h	87
30)	2-BUTANONE	9.785	12	1010	1 01 1	ירט מסלה	92
31)	2,2-DICHLOROPROPANE	9.817		4040	1 00 1	PDh	79
32)	cis-1,2-D1CHLOROETHYLENE	9.012	. 90 EA	4000	9 98 1	PPh	92
33)	PROPIONITRILE	9.01/	9 55	2116	0 89 1	PPh	100
34)	METHYLACRYLATE	3.931	50 / /1	2203	0.85 1	· - ∼ PPb	- 00
35)	METHACKYLONITKILE	10 125	100	1710	0.99 1	PPb	91
36)	BROMUCHLORUMETHANE	10 205	, <u>8</u> 3	6018	1.01	Pb	98
37)	ULLOKUTUKU MEMDANANDO FUDAN	10.200	5 42	1983	1.04	PPb	90
38) 201	1 1 1 TERDICULOROFUND 1 1 1 TERDICULOROFUND	10.500	97	4315	0.94 1	PPb	96
39) 10)	CACTOREXAME	10.629	84	4789	0.98 1	Pb #	100
40) /1\	1-CHLOBOBUTANE	10.608	3 56	11937	0.94 1	PPb	89
41) 491	1.1-DICHLOROPROPENE	10.713	3 75	4034	0.92 1	PPb	92
43)	CARBON TETRACHLORIDE	10.750) 117	3482	0.93 1	PPb	88
/							

M1B2336.M Thu Dec 09 09:53:32 2010 MS1B

Page: 1

> 108 of 142 ACCUTEST: JA65236 JA65236

6,6,2

Cal Report:

Quantitation Report

(QT Reviewed)

Data Path : C:\msdchem\l\DATA\ Data File : 1b51063.D Acq On : 8 Dec 2010 8:07 pm Operator : mohui Sample : ic2336-1 Misc : MS5663,V1B2336,W,,,,1 ALS Vial : 3 Sample Multiplier: 1

Quant Time: Dec 09 08:20:36 2010 Quant Method : C:\msdchem\1\METHODS\M1B2336.M Quant Title : method 524, zb624 60mx0.25mmx1.4um QLast Update : Thu Dec 09 08:19:04 2010 Response via : Initial Calibration

	Compound	R.T.	QIon	Response	Conc Units	Dev(Min)
44)	1,2-DICHLOROETHANE	10.960	62	4336	0.95 PPb	98
45)	BENZENE	10.975	78	13066	0.96 PPb	95
46)	TERT AMYL METHYL ETHER	11.038	73	11654	0.95 PPB	# 75
47)	TRICHLOROETHYLENE	11.751	95	3003	0.93 PPb	86
48)	METHYLCYCLOHEXANE	12.024	83	4763	0.97 PPb	# 35
49)	METHYL METHACRYLATE	12.040	69	3850	0.92 PPb	70
50)	1,2-DICHLOROPROPANE	11.993	63	3487	0.93 PPb	96
51)	DIBROMOMETHANE	12.166	93	2029	0.93 PPb	88
52)	BROMODICHLOROMETHANE	12.302	83	4375	0.98 PPb	96
53)	CHLOROACETONITRILE	12.470	75	1165	4.51 PPb	94
54)	2-NITROPROPANE	12.496	41	1244	1.06 PPb	97
55)	2-CHLOROETHYL VINYL ETHER	12.569	63	13319	4.70 PPb	.98
56)	cis-1,3-DICHLOROPROPENE	12.805	75	5630	0.96 PPb	99
57)	4-METHYL-2-PENTANONE	12.900	58	/0//	3.81 PPD	97
58)	1,1~DICHLOROPROPANONE	13.005	43	1191	0.85 PPD	82
59)	TOLUENE	13.225	92	7321	0.91 PPD	90
60)	trans-1,3-DICHLOROPROPENE	13.403	/5	5391	0.97 PPD	92
61)	ETHYL METHACRYLATE	13.429	69	5276	0.96 PPD	92
62)	1, 1, 2-TRICHLOROETHANE	13.628	83	2691	0.95 PPD	90
63)	1, 3-DICHLOROPROPANE	13.828	10	5560	0.96 PPD	99
64)	2-HEXANONE	13.822	100	2022	0.09 PPD	24
65)	TETRACHLOROETHYLENE	13.880	100	2927	0.92 PPD	97
66)	1 2 DIBROMOCHLOROMETHANE	14.12/	107	2102	0.96 PPD	97
67)	I, Z-DIBROMOETHANE	14.289	1107	310Z	0.90 PPD	22
68)	1 1 1 0 MEMDACULODORMUNIC	14.813	121	2210	0.90 PPD	92
· 69)	I, I, I, Z-TETRACHLOROETHANE	14.0/1	101	14962	0.90 FFD	90
70)	ETHYLBENZENE m m YVIENE	14.002	106	11/32	0.94 FFD 1 01 DDb	95
71)	m, p-AILENE	14.997	106	5025	0 07 PPh	20
72)	O-AILENE COVDENE	15 440	100	0729	0.97 FFD	99
73)	JI IKENE DDOMOEODM	15 726	172	2/8/	0.95 PPb	90
74)	ISODDODYLDENZENE	15 920	105	14640	0.90 110	99
75)	ISOFROFILBENZENE DDOMODENZENE	16 2/5	156	3680	0.95 FFD 0.97 PPh	80
101		16 103	730	5455	1 00 PPb	96
70	T, T, Z, Z-TETRACHEOROETHANG	16 150	53	1361	0.96 PPb	G F
70)	$1 2 3 - \pi \pi \tau c u O O D O D O N F$	16 182	110	1442	0.90 IID 0.96 PPh	80
001	2, 2, 3 - IRICHLOROFROZANE	16 266	110 01	18418	0.90 PPb	96
00)	O-CULOBOTOLUENE	16 418	126	3534	0.95 PPb	91
02)	1 2 5-TOINETUVIERNZENE	16 423	105	12897	0.95 PPb	94
02)	P_CULOPOTOLUENE	16 523	100 01	12041	0.95 PPb	96
0.0)	tort-BUTYLBENZENE	16 800	119	10649	0.90 IID 0.93 PPh	98
851	$1 - 2 - \pi R T M E T M L B E N Z E N E$	16 848	105	13366	0.95 PPb	86
86)	PENTACHLOROETHANE	16 879	167	2205	0.92 PPb	95
87)	Sec-BUTYLBENZENE	17.031	105	16302	0.92 PPb	98
881	D-ISOPBOPYLTOLUENE	17 157	119	13446	0.94 PPb	98
891	M-DICHLOROBENZENE	17.230	146	7545	0.99 PPh	95
901	P-DICHLOROBENZENE	17.314	146	7558	0.95 PPb	95
911	n-BUTYLBENZENE	17.597		7391	0.94 PPb	99
921	O-DTCHLOROBENZENE	17.729	146	7660	0.98 PPb	98
93)	HEXACHLOROETHANE	18.043	201	1864	0.88 PPb	95

M1B2336.M Thu Dec 09 09:53:32 2010 MS1B

Page: 2

109 of 142 ACCUTEST. JA65236

M1B2336.M Thu Dec 09 09:53:32 2010 MS1B

(QT Reviewed)

Data Path : C:\msdchem\l\DATA\ Data File : 1b51063.D Acq On : 8 Dec 2010 8:07 pm Operator : mohui Sample : ic2336-1 Misc : MS5663,V1B2336,W,,,,1 ALS Vial : 3 Sample Multiplier: 1

Quant Time: Dec 09 08:20:36 2010 Quant Method : C:\msdchem\1\METHODS\M1B2336.M Quant Title : method 524, zb624 60mx0.25mmx1.4um QLast Update : Thu Dec 09 08:19:04 2010 Response via : Initial Calibration

	*
94) 1,2-DIBROMO-3-CHLOROPR 18.525 1 95) NITROBENZENE 18.740 96) 1,2,4-TRICHLOROBENZENE 19.422 1 97) HEXACHLOROBUTADIENE 19.564 2 98) NAPHTHALENE 19.716 1 991 1.2.3-TRICHLOROBENZENE 19.978 1	155 946 0.99 PPb 92 77 4393 8.70 PPb 92 180 5599 0.94 PPb 97 225 2583 0.93 PPb 97 128 16032 0.90 PPb 98 180 5484 0.94 PPb 98

(#) = qualifier out of range (m) = manual integration (+) = signals summed

Page: 3

0.6.2

ACCUTEST.

JA65236

Data Path : C:\msdchem\1\DATA\ Data File : 1b51063.D Acq On 8 Dec 2010 : 8:07 pm : mohui Operator : ic2336-1 Sample Misc : MS5663,V1B2336,W,,,,1 ALS Vial : 3 Sample Multiplier: 1 Quant Time: Dec 09 08:20:36 2010 Quant Method : C:\msdchem\1\METHODS\M1B2336.M Quant Title : method 524, zb624 60mx0.25mmx1.4um

QLast Update : Thu Dec 09 08:19:04 2010 Response via : Initial Calibration

Cal Report:

(QT Reviewed)

Data : Data : Acq O Opera Sample Misc ALS V: Quant Quant Quant QLast RespO	Path : C:\msdchem\1\DATA\ File : 1b51064.D n : 8 Dec 2010 8:39 tor : mohui e : ic2336-2 : MS5663,V1B2336,W,,, ial : 4 Sample Multipli Time: Dec 09 07:51:09 201 Method : C:\msdchem\1\MET Title : method 524, zb62 Update : Thu Dec 09 07:50 nse via : Initial Calibrat	pm ,1 er: 1 0 HODS\M1B2 4 60mx0.2 57 2010 ion	2336.M 25mmx1	.4um			·	
-	Compound	R.T.	OIon	Response	Conc Ur	its	Dev (Min)
Inte	rnal Standards							
1)	Tert Butyl Alcohol-d9	7.850	65	25797	50.00	PPB	-	0.02
4)	FLUOROBENZENE	11.285	96	61316	5.00	PPb		0.00
Syste 5) Sp: 6)	em Monitoring-Cómpounds 4-BROMOFLUOROBENZENE (S) iked Amount 5.000 R 1,2-DICHLOROBENZENE-d4 iked Amount 5.000 B	16.030 ange 77 17.707 ange 78	95 - 115 152 - 114	22095 Recove 22241 Recove	5.05 ery = 5.04	PPb 101. PPb 100.	00% 80%	0.00 0.00
02.					-1			
Targe 2)	et Compounds TERTIARY BUTYL ALCOHOL	7.992	59	6147	9.66	PPb	Qva	lue 90
3)	1,4-Dioxane	12.129	88	2038	51.07	PPB		80
7)	DICHLORODIFLUOROMETHANE	4.039	85	7900	1.71	PPb		96
8)	CHLOROMETHANE	4.374	50	12237	1.99	PPb		96
9)	VINYL CHLORIDE	4.647	62	9163	2.00	PPb		100
10)	BROMOMETHANE	5.397	94	6261	2.02	PPb		96
11)	CHLOROETHANE	5.612	64	5677	2.03	PPb		95
12)	TRICHLOROFLUOROMETHANE	6.178	101	7506	1.80	PPb		87
13)	ETHYL ETHER	6.645	45	5491	1.80	PPb		94
14)	ACROLEIN	6.870	56	21738	21.32	PPb		93
15)	1,1-DICHLOROETHYLENE	7.111	96	6000	1.95	PPb		93
16)	FREON 113	7.106	151	3416	2.59	PPb		90
17)	ACETONE	7.132	58	2952	8.63	PPb		85
18)	IODOMETHANE	7.405	142	9623	2.04	PPb		97
19)	CARBON DISULFIDE	7.578	76	22348	2.06	PPb		99
20)	METHYL ACETATE	7.714	74	1222	2.32	PPb	#	69
21)	ALLYL CHLORIDE	7.698	76	4079	2.10	PPb	#	85
22)	METHYLENE CHLORIDE	7.898	84	8505	1.90	PPb		94
.23)	ACRYLONITRILE	8.244	53	18335	10.71	PPb		91
24)	METHYL TERT BUTYL ETHER	8.338	73	23584	1.98	PPb		99
25)	trans-1,2-DICHLOROETHY	8.375	61	9434	1.98	PPb		98
26)	HEXANE	8.773	57	7033	2.22	PPb		97
27)	1,1-DICHLOROETHANE	8.983	63	12183	2.05	PPb		97
28)	DI-ISOPROPYL ETHER	9.035	, 45	23735	1.87	PPb		99
29)	ETHYL TERT-BUTYL ETHER	9.544	59	23659	1.94	PPD		98
30)	2-BUTANONE	9.759	72	3611	9.05	PPD		94
31)	2,2-DICHLOROPROPANE	9.822	11	9591	1.96	PPD		97
32)	CIS-I, Z-DICHLOROETHYLENE	9.806	96	14201	1.80	PPD		92
33)	PROPIONITRILE	-9.811 0.021	54	14381	20.34	PPD		100
34) 25)	METHILACKILATE MERUACDVI ONI PRI I	9.921 10 027	22	1/ CO 1000	2.03	rrd DDP		00 TUU
30)	PEIGACKILUNITKILE RDOMOCUI OROMETUNIT	10.037	4,⊥ 1.2.0	40ZV 3045	1 04	rru Doh		92 Q <i>C</i>
271		10.120	770 770	11280	1 24	PPh		30
327	TETRAHYDROFIIRAN	10 220	42	4560	1 7 8	PPh	#	74
201	1.1.1-TRICHLOROFTHANE	10.503	97	9218	2.09	PPh	п	99
40)	CYCLOHEXANE	10.629	84	9797	2.12	PPh	#	100
41)	1-CHLOROBUTANE	10.608	56	25870	2.14	PPb		- 98
42)	1,1-DICHLOROPROPENE	10.713	75	8740	2.11	PPb		94
43)	CARBON TETRACHLORIDE	10.755	117	7454	2.10	PPb		92

M1B2336.M Thu Dec 09 09:53:33 2010 MS1B

Page: 1

0.0 0.0

Data Path : C:\msdchem\1\DATA\ Data File : 1b51064.D 8:39 pm Acq On : 8 Dec 2010 Operator : mohui Sample : ic2336-2 Misc : MS5663,V1B2336,W,,,,1 ALS Vial : 4 Sample Multiplier: 1

Quant Time: Dec 09 07:51:09 2010 Quant Method : C:\msdchem\1\METHODS\M1B2336.M Quant Title : method 524, zb624 60mx0.25mmx1.4um QLast Update : Thu Dec 09 07:50:57 2010 Response via : Initial Calibration

	Compound	R.T.	QIon	Response	Conc Units	Dev(Min)
44)	1,2-DICHLOROETHANE	10.954	 62	8877	2.05 PPb	93
45)	BENZENE	10.975	78	26926	2.01 PPb	98
46)	TERT AMYL METHYL ETHER	11.038	73	23253	1.88 PPB	99
47)	TRICHLOROETHYLENE	11.756	95	6326	2.04 PPb	95
48)	METHYLCYCLOHEXANE	12.019	. 83	9836	2.21 PPb	94
49)	METHYL METHACRYLATE	12.029	69	8285	2.11 PPb	93
50)	1,2-DICHLOROPROPANE	11.992	63	7438	2.06 PPb	96
51)	DIBROMOMETHANE	12.155	93	4199	1.99 PPb	93
52)	BROMODICHLOROMETHANE	12.302	83	8560	1.94 PPb	100
53)	CHLOROACETONITRILE	12.464	75	2700	11.23 PPb	97
54)	2-NITROPROPANE	12.491	41	2356	1.90 PPb	99
55)	2-CHLOROETHYL VINYL ETHER	12.564	63	27498	10.17 PPb	99
56)	cis-1,3-DICHLOROPROPENE	12.805	75	11241	1.96 PPb	98
57)	4-METHYL-2-PENTANONE	12.894	58	15056	8.15 PPb	95
58)	1,1-DICHLOROPROPANONE	13.004	43	2644	2.24 PPb	96
59)	TOLUENE	13.219	92	15601	1.98 PPb	95
60)	trans-1,3-DICHLOROPROPENE	13.403	75	10738	1.97 PPb	94
61)	ETHYL METHACRYLATE	13.424	69	10650	1.95 PPb	89
62)	1,1,2-TRICHLOROETHANE	13.628	83	5745	2.02 PPb	. 95
63)	1, 3-DICHLOROPROPANE	13.827	76	11205	1.97 PPb	94
64)	2-HEXANONE	13.822	58	14859	8.35 PPb	. 99
65)	TETRACHLOROETHYLENE	13.880	166	6324	2.08 PPb	95
66)	DIBROMOCHLOROMETHANE	14.121	129	6638	1.99 PPb	94
67)	1,2-DIBROMOETHANE	14.289	107	6368	1.99 PPb	98
68)	CHLOROBENZENE	14.813	112	17269	1.96 PPb	96
69)	1,1,1,2-TETRACHLOROETHANE	14.871	131	6404	1.99 PPb	94
70)	ETHYLBENZENE	14.881	91	30775	1.99 PPb	99
(1)	m, p-XYLENE	14.997	106	23498	4.01 PPb	100
72)	O-XYLENE	15.448	106	11774	2.01 PPb	93
73)	STYRENE	15.453	104	20102	2.00 PPb	100
74)	BROMOFORM	15.720	173	5079	1.98 PPb	96
75)	ISOPROPYLBENZENE	15.820	105	31226	2.05 PPb	99
76)	BROMOBENZENE	16.245	156	/495	2.02 PPb	96
77)	T, I, Z, Z-TETRACHLOROETHANE	16.103	83	11439	2.10 PPb	96
70)	TRANS-1,4-DICHLORU-Z-B	16.145	53	2973	2.15 PPD	93
/ 9)	1, 2, 3-TRICHLOROPROPANE	10,187	110	3204	2.21 PPD	# 83
00)		16.260	100	38063	2.03 PPD	99
01) 92)		16 400	120	7429	2.01 PPD	100
02)	D-CULODOTOLIENE	16 617	105	20905	2.05 PPD	- 90
03) 9/1	tort-DURVI DENGENE	16 900	91 110	24291	1.99 PPD	100
-951	1 2 A_TOINDENZENE	16,000	105	22073	2.05 PPD	99
86)	I, Z, 4 - INIMAINI DENZENE DENTACULODORTUANE	16 97/	167	20213	2.04 PPD	00
871	PENTACHBOROEINANE	17 021	105	4040	2.10 PPD	97
881	DUITEDENZENE	17.051	110	29712	2.00 FFD 2.07 PPh	99
891	M-DICHLOROBENZENE	17 220	146	15057	2.07 FFD 2 00 DDh	27 QQ
901	P-DICHLOROBENZENE	17 314	146	16089	2.00 FFD 2 NG DDh	20 20
911	n-BUTYLBENZENE	17 597	92	15699	2.00 PPb	50 07
921	O-DICHLOROBENZENE	17,728	146	15798	2.03 PPb	99
93)	HEXACHLOROETHANE	18.038	201	4112	2.06 PPb	90

M1B2336.M Thu Dec 09 09:53:33 2010 MS1B

Page: 2

113 of 142 ACCUTEST. LABORATORIES JA65236

1B51064.D: V1B2336-IC2336 Initial Calibration (2) page 2 of 4	

Data Path : C:\msdchem\1\DATA\ Data File : 1b51064.D Acq On : 8 Dec 2010 8:39 pm Operator : mohui Sample : ic2336-2 Misc : MS5663,V1B2336,W,,,,1 ALS Vial : 4 Sample Multiplier: 1

Quant Time: Dec 09 07:51:09 2010 Quant Method : C:\msdchem\1\METHODS\M1B2336.M Quant Title : method 524, zb624 60mx0.25mmx1.4um QLast Update : Thu Dec 09 07:50:57 2010 Response via : Initial Calibration

Compound	R.T.	QIon	Response	Conc Ur	its	Dev(Min)
94) 1,2-DIBROMO-3-CHLOROPR 95) NITROBENZENE 96) 1 2 4-TRICHLOROBENZENE	18.525 18.735 19.422	155 77 180	1949 9951 12190	2.10 20.71 2 11	PPb PPb PPb	90 92 94
 96) 1,2,4 TRICHLOROBENZENE 97) HEXACHLOROBUTADIENE 98) NAPHTHALENE 90) 1,2,3 EDICULOBOBENZENE 	19.558 19.710	225 128	_5334 37941 -	1.97	PPb PPb	95 99
99) 1,2,3-IRICHLOROBENZENE	19.903	100	11900	Z,1Z	PPD	

(#) = qualifier out of range (m) = manual integration (+) = signals summed

ල.ල. ප. ප

M1B2336.M Thu Dec 09 09:53:33 2010 MS1B

1B51064.D: V1B2336-IC2336 Initial Calibration (2) page 3 of 4

Page: 3

114 of 142 ACCUTEST. JA65236

1B51064.D

Quantitation Report

(QT Reviewed)

Data Path : C:\msdchem\1\DATA\ Data File : 1b51064.D Acq On : 8 Dec 2010 8:39 pm Operator : mohui : ic2336-2 Sample Misc : MS5663,V1B2336,W,,,,1 ALS Vial : 4 Sample Multiplier: 1 Quant Time: Dec 09 07:51:09 2010 Quant Method : C:\msdchem\1\METHODS\M1B2336.M

Quant Title : method 524, zb624 60mx0.25mmx1.4um QLast Update : Thu Dec 09 07:50:57 2010 Response via : Initial Calibration

0.0 0.0 1B51065.D

(OT Reviewed)

	24		po.			~)	
Data	Path : C:\msdchem\1\DATA\						
Data 1	File : 1b51065.D						
Acq O	n : 8 Dec 2010 9:11	pm					
Opera	tor : mohui						
Sample	e : ic2336-5						
Misc	: MS5663,V1B2336,W,,	,,1					
ALS V:	ial : 5 Sample Multipl	ier: 1					
August	m_{1}^{1}	10					
Quant	Method : C:\msdchem\1\ME	THODS\M1B;	2336 M				
Quant	Title : method 524 zb6	24 60mx0 3	2550.M	4 um			
OLast	Hpdate : Thu Dec 09 07:5	$1:17\ 2010$	Johnna	· I am			
Respon	nse via : Initial Calibra	tion					
-							
	Compound	R.T.	QIon	Response	Conc Ur	nits Dev	/(Min)
Tnto	rnal Standards	·					
11	Tert Butyl Alcohol-d9	7.851	65	24196	50.00	PPB	0.00
4)	FLUOROBENZENE	11.285	96	62447	5.00	PPb	0.00
- /		111200	20	00117			
Syste	em Monitoring Compounds						
5)	4-BROMOFLUOROBENZENE (S)	16.030	95	22275	4.99	PPb	0.00
Sp:	iked Amount 5.000 1	Range 77	- 115	Recove	ry =	99.80%	5
6)	1,2-DICHLOROBENZENE-d4	. 17.707	152	22732	5.05	PPb	0,00
Sp:	iked Amount 5.000 1	Range 78	- 114	Recove	ry =	101.00%	5
Tara	at Compounds					01	721110
2)	TERTIARY BUTYL ALCOHOL	7.987	59	14837	25.07	PPb	97
3)	1.4-Dioxane	12.124	88	4932	131.06	PPB	95
7)	DICHLORODIFLUOROMETHANE	4.028	85	27962	5.72	PPb	97
8)	CHLOROMETHANE	4.374	50	31867	5.09	PPb	97
9)	VINYL CHLORIDE	4.652	62	27203	5.84	PPb	100
10)	BROMOMETHANE	5.392	94	16411	5.19	PPb	99
11)	CHLOROETHANE	5.601	64	15586	5.45	PPb	98
12)	TRICHLOROFLUOROMETHANE	6.173	101	25860	5.63	PPb	98
13)	ETHYL ETHER	6.639	45	13104	4.33	PPb	. 96
14)	ACROLEIN	6.854	56	50549	4/.03	PPD	98
15)	I,I-DICHLOROETHILENE	7.100	90 151	11185	7 76	PPD	90
17)	ACETONE	7.117	58	7610	21.42	PPh	98
18)	TODOMETHANE	7.400	142	25279	5.24	PPb	99
19)	CARBON DISULFIDE	7.578	76	60502	5.44	PPb	99
20)	METHYL ACETATE	.7.704	74	3581	6.34	PPb #	1
21)	ALLYL CHLORIDE	7.698	76	10887	5.44	PPb	. 89
22)	METHYLENE CHLORIDE	7.898	84	22021	4.90	PPb	97
23)	ACRYLONITRILE	8.223	53	46380	26.13	PPb	98
24)	METHYL TERT BUTYL ETHER	8.333	73	60042	4.96	PPb	99
25)	trans-1,2-DICHLOROETHY	. 8.364	61	25904	5.35	PPb	99
26)	HEXANE	8./68	57	21936	6.61 5.24	PPD	98
27)	I, I-DICHLOROETHANE	8.978	65 45	52530	5.34 5.11	PPD PPh	99
20)	DI-ISOPROFIL BINER	9.025	40 50	65409	5 32	PPh	90
30)	2-BUTANONE	9 743	72	9481	22.60	PPh	96
31)	2.2-DICHLOROPROPANE	9.822	77	25322	5.11	PPb	98
32)	cis-1,2-DICHLOROETHYLENE	9.796	96	19384	4.63	PPb	97
33)	PROPIONITRILE	9.790	54	35664	49.31	PPb	97
34)	METHYLACRYLATE	9.901	55	18982	6.85	PPb	100
35)	METHACRYLONITRILE	10.032	41	12808	4.36	PPb	96
36)	BROMOCHLOROMETHANE	10.131	128	8837	5.20	PPb	90
37)	CHLOROFORM	10.199	83	30235	4.99	PPb	98
38)	TETRAHYDROFURAN	10.205	42	10075	3.98	PPb	91
39)	1,1,1-TRICHLOROETHANE	10.509	97	24833	5.46	PPD ·	100
4U) 41)	LILLUHEXANE	10.624	84 56	2/834 70042	3.8Z	rro # DDb	. TOO
41) 12)	1.1-DICHLOROPROPENE	10.008	75	23753	5 55	PPb	90
43)	CARBON TETRACHLORIDE	10.750	117	20279	5.54	PPb	99

M1B2336.M Thu Dec 09 09:53:34 2010 MS1B

Page: 1

 116 of 142

 ACCUTEST.

 JA65236
 LABORATARIES

6.6.4

1B/51065.D

Quantitation Report

(QT Reviewed)

Data Path : C:\msdchem\1\DATA\ Data File : 1b51065.D Acq On : 8 Dec 2010 9:11 pm Operator : mohui Sample : ic2336-5 Misc : MS5663,V1B2336,W,,,,1 ALS Vial : 5 Sample Multiplier: 1

Quant Time: Dec 09 07:51:28 2010 Quant Method : C:\msdchem\1\METHODS\M1B2336.M Quant Title : method 524, zb624 60mx0.25mmx1.4um QLast Update : Thu Dec 09 07:51:17 2010 Response via : Initial Calibration

	Compound	R.T.	QIon	Response	Conc Units	Dev(Min)
44)	1,2-DICHLOROETHANE	10.949	62	23683	5.33 PPb	97
45)	BENZENE	10.970	78	71030	5.20 PPb	98
46)	TERT AMYL METHYL ETHER	11.038	73	64552	5.20 PPB	99
47)	TRICHLOROETHYLENE	11.746	95	17057	5.36 PPb	97
48)	METHYLCYCLOHEXANE	12.019	83	30385	6.54 PPb	99
49)	METHYL METHACRYLATE	12.024	69	21787	5.36 PPb	97
50)	1,2-DICHLOROPROPANE	11.993	63	19132	5.16 PPb	97
51)	DIBROMOMETHANE	12.155	93	11240	5.24 PPb	96
52)	BROMODICHLOROMETHANE	12.302	83	22670	5.08 PPb	98
53)	CHLOROACETONITRILE	12.449	75	6296	24.95 PPb	94
54)	2-NITROPROPANE	12.491	41	5101	4.09 PPb	89
55)	2-CHLOROETHYL VINYL ETHER	12.559	63	73174	26.46 PPb	97
56)	cis-1,3-DICHLOROPROPENE	12.805	75	29910	5.14 PPb	99
57)	4-METHYL-2-PENTANONE	12.894	58	35797	18.94 PPb	98
58)	1,1-DICHLOROPROPANONE	12.999	43	6301	5.09 PPb	97
59)	TOLUENE	13.219	92	41594	5.20 PPb	98
60)	trans-1,3-DICHLOROPROPENE	13.398	75	28168	5.10 PPb	98
61)	ETHYL METHACRYLATE	13.419	69	26610	4.82 PPb	95
62)	1,1,2-TRICHLOROETHANE	13.628	83	14446	4.97 PPb	97
63)	1,3-DICHLOROPROPANE	13.822	76	28848	5.00 PPb	96
64)	2-HEXANONE	13.817	58	33783	18.44 PPb	98
65)	TETRACHLOROETHYLENE	13.880	166	16992	5.43 PPb	98
66)	DIBROMOCHLOROMETHANE	14.121	129	16963	5.01 PPb	97
67)	1,2-DIBROMOETHANE	14.284	107	16557	5.09 PPb	95
68)	CHLOROBENZENE	14.813	112	45025	5.04 PPb	97
69)	1, 1, 1, 2-TETRACHLOROETHANE	14.871	131	16967	5.18 PPb	98
70)	ETHYLBENZENE	14.881	91	82216	5.24 PPb	99
71)	m, p-XYLENE	14.997	106	62411	10.44 PPb	98
72)	O-XYLENE	15.448	106	31481	5.28 PPb	97
73)	STYRENE	15.453	104	52342	5.12 PPb	99
74)	BROMOFORM	15.715	173	12411	4.76 PPb	100
75)	ISOPROPYLBENZENE	15.820	105	82743	5.29 PPb	99
76)	BROMOBENZENE	16.245	156	19383	5.12 PPb	96
70)	1, 1, 2, 2-TETRACHLOROETHANE	16.103	83	26038	4.64 PPb	98
70)	1 2 2 MDIGULODODDODDO	16.145	53	6944	4.84 PPb	95
19)	1, 2, 3-TRICHLOROPROPANE	16.182	110	7323	4.83 PPb	86
0U) 01)		16.260	91	99642	5.20 PPb	100
01) 02)	1 2 5 EDIMENTINA DENGENE	16.418	126	18958	5.03 PPb	98
02)	1, 5, 5-TRIMETHILBENZENE	16.423	105	70194	5.21 PPb	99
0 <i>3</i>) 0/1	TO THE OROTOLOUNE	16.517	91	50700	5.02 PPb	100
04)	1 2 4 DDINEBUULDENGEND	16.800	119	58728	5.17 PPb	99
861	I, 2, 4 TRIMEIRIDENZENE DENTACUI OBOERUANE	16.842	105	12075	5.09 PPb	98
871	PENIACHLOROSINANE	17 021	105	11050	4.91 PPb	94
881	SEC-BUIILBENZENE	17.031	110	93045	5.32 PPD	100
89)	M-DICHLODOBENZENE M-DICHLODOBENZENE	17 220	146	74573	5.23 PPD	99
901	P-DICHLOROBENZENE	17 214	140	30/09- 300E1	3.05 PPD 4 07 DD-	96
91	n-BHTYLBENZENE	17 507	0 T H D	39834 41956	4.97 PPD 5 24 DD-	T00
92) (O-DICHLOROBENZENE	17 720	92 116	41000	J.J4 PPD	
	<pre>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>></pre>	±1.1ZQ	T 4 0	20000	4.00 PPD	22

M1B2336.M Thu Dec 09 09:53:34 2010 MS1B

1B51065.D: V1B2336-IC2336 Initial Calibration (5) -- page 2 of 4

(QT Reviewed)

Data Path : C:\msdchem\l\DATA\ Data File : 1b51065.D Acq On : 8 Dec 2010 9:11 pm Operator : mohui Sample : ic2336-5 Misc : MS5663,V1B2336,W,,,,1 ALS Vial : 5 Sample Multiplier: 1

Quant Time: Dec 09 07:51:28 2010 Quant Method : C:\msdchem\1\METHODS\M1B2336.M Quant Title : method 524, zb624 60mx0.25mmx1.4um QLast Update : Thu Dec 09 07:51:17 2010 Response via : Initial Calibration

-	X.11 , Q1011	Response	CONC UNITS	Dev (MIII)
94) 1,2-DIBROMO-3-CHLOROPR 18 95) NITROBENZENE 18 96) 1,2,4-TRICHLOROBENZENE 19 97) HEXACHLOROBUTADIENE 19 98) NAPHTHALENE 19 99) 1,2,3-TRICHLOROBENZENE 19	.525 155 .735 77 .422 180 .558 225 .710 128 .833 180	4623 .23305 29403 14644 86669 28441	4.83 PPb 47.21 PPb 4.93 PPb 5.32 PPb 4.89 PPb 4.81 PPb	97 98 96 95 99

(#) = qualifier out of range (m) = manual integration (+) = signals summed

Page: 3

6.6.4

Cal Report:

1B51065.D

(QT Reviewed)

0.0 4

•

ACCL JA65236

Data Path	:	C:\msdchem\1\DATA\
Data File	:	1b51065.D
Acq On	:	8 Dec 2010 9:11 pm
Operator	:	mohui
Sample	:	ic2336-5
Misc	:	MS5663,V1B2336,W,,,,1
ALS Vial	:	5 Sample Multiplier: 1
Quant Time	:	Dec 09 07:51:28 2010
Quant Meth	00	d : C:\msdchem\1\METHODS\M1B2336.M
Quant Titl	е	: method 524, zb624 60mx0.25mmx1.4um
QLast Upda	te	e : Thu Dec 09 07:51:17 2010

Response via : Initial Calibration

1B51065 D: V1B2336-IC2336 Initial Calibration (5) page 4 of 4

Data Data Acq O Opera Sampl Misc ALS V	<pre>Path : C:\msdchem\1\DATA\ File : 1b51066.D n : 8 Dec 2010 9:43 tor : mohui e : icc2336-10</pre>	pm ,1 .er: 1	·				
Quant Quant Quant QLast Respo	Time: Dec 09 07:48:19 201 Method : C:\msdchem\1\MET Title : method 524, zb62 Update : Thu Nov 11 09:50 nse via : Initial Calibrat	0 HODS\M1B2 24 60mx0.2 0:17 2010 :ion	2336.M 25mmx1	.4um			
	Compound	R.T.	QIon	Response	Conc Ur	its :	Dev(Min)
Inte 1) 4)	rnal Standards Tert Butyl Alcohol-d9 FLUOROBENZENE	7.851 11.285	65 96	23630 62053	50.00 5.00	PPB PPb	-0.01 0.00
Syst 5) Sp (6)	em Monitoring Compounds 4-BROMOFLUOROBENZENE (S) iked Amount 5.000 F 1,2-DICHLOROBENZENE-d4	16.030 Range 77 17.708	95 - 115 152	22182 Recove 22164	4.77 ery = 4.59	PPb 95. PPb	0.00 40% 0.00
Sp	iked Amount 5.000 F	lange 78	- 114	Recove	ery =	91.	80%
Targ	et Compounds						Qvalue
2)	TERTIARY BUTYL ALCOHOL	7.982	59	28372	46.95	PPb	78
3) 7)	DICHLORODIFLUOROMETHANE	4.023	85	49418	11.42	PPb	90
8)	CHLOROMETHANE	4.369	50	59608	10.09	PPb	100
9)	VINYL CHLORIDE	4.652	62	50582	10.95	PPb	100
10)	BROMOMETHANE	5.392	94	30872	9.74	PPb	99
11)	CHLOROETHANE	5.601	64	29065	9.70	PPb	97
13)	TRICHLOROFLUOROMETHANE	6.173	101	46698	9.91	PPD	98 94
14)	ACROLEIN	6.849	4.5 56	20037 99673	113.18	PPb	98
15)	1,1-DICHLOROETHYLENE	7.106	96	31291	10.02	PPb	95
16)	FREON 113	7.117	151	19571	9.54	PPb	97
17)	ACETONE	7.111	58	16317	40.30	PPb	99
18)	IODOMETHANE	7.400	142	50600	9,51	PPb	98
20)	METHYL ACETATE	7.683	74	7355	9.63	PPb	# 98
21)	ALLYL CHLORIDE	7.693	76	21432	10.00	PPb	
22)	METHYLENE CHLORIDE	7.893	84	44643	9.49	PPb	98
23)	ACRYLONITRILE	8.212	53	94100	47.27	PPb	99
24) 25)	TRADEL 2-DICHLOROFTHY	8.328	73 61	52927	9.28	PPD PPh	100
26)	HEXANE	8.773	57	39019	8.65	PPb	98
27)	1,1-DICHLOROETHANE	8.978	63	65392	9.98	PPb	99
28)	DI-ISOPROPYL ETHER	9.020	45	123000	9.08	PPb	94
29)	ETHYL TERT-BUTYL ETHER	9.544	59	123625	9.29	PPb	96
30)	2-BUTANONE 2-2-DICHLOROPROPANE	9.812	.72	49254	9.43	PPh	100
32)	cis-1,2-DICHLOROETHYLENE	9.796	96	39257	9.37	PPb	99
33)	PROPIONITRILE	9.785	54	74788	95.31	PPb	97
34)	METHYLACRYLATE	9.885	55	39682	9.68	PPb	100
35)	METHACRY LONITRILE BROMOCHI OROMETHANE	10.026	4⊥ 128	26817 18538	9.40	PPD	96
37)	CHLOROFORM	10.120	83	60326	9.70	PPb	99 99
38)	TETRAHYDROFURAN	10.200	42	16686	8.10	PPb	95
39)	1, 1, 1-TRICHLOROETHANE	10.509	97	49749	10.28	PPb	99
40)	CYCLOHEXANE	10.624	84	53582 139500	11.74	PPb DDr	# 100
41) 42)	1.1-DICHLOROPROPENE	10.003	20 75	48070	10.64	rro PPb	98 100
43)	CARBON TETRACHLORIDE	10.750	117	41202	10.43	PPb	97

M1B2336.M Thu Dec 09 10:01:17 2010 MS1B-

Page: 1

120 of 142 ACCUTEST. JA65236

က ဂ က

(@})

1B51066.D

Quantitation Report

(QT Reviewed)

Data Path : C:\msdchem\1\DATA\ Data File : 1b51066.D Acq On : 8 Dec 2010 9:43 pm Operator : mohui Sample : icc2336-10 Misc : MS5663,V1B2336,W,,,,1 ALS Vial : 6 Sample Multiplier: 1 Quant Time: Dec 09 07:48:19 2010

Quant Method : C:\msdchem\1\METHODS\M1B2336.M Quant Title : method 524, zb624 60mx0.25mmx1.4um QLast Update : Thu Nov 11 09:50:17 2010 Response via : Initial Calibration

		Compound	R.T.	QIon	Response	Conc Uni	ts	Dev(Min)
	44)	1,2-DICHLOROETHANE	10.949	62	48344	9.88 P	Pb	97
	45)	BENZENE	10.970	78	144924	10.00 F	Pb	100
	46)	TERT AMYL METHYL ETHER	11.038	73	116887	8.78 F	PB	99
	47)	TRICHLOROETHYLENE	11.746	95	34610	9.95 F	Pb	.98
	48)	METHYLCYCLOHEXANE	12.019	83	53924	9.36 F	Pb	98
	49)	METHYL METHACRYLATE	12.019	69	43835	9.64 F	Pb	99
	50)	1,2-DICHLOROPROPANE	11.993	63	39707 _.	9.74 F	Pb	98
	51)	DIBROMOMETHANE	12.155	93	23192	9.52 E	Pb	98
	52)	BROMODICHLOROMETHANE	12.297	83	46561	9.88 E	Pb	100
	53)	CHLOROACETONITRILE	12.444	75	13642	47.82 E	Pb	99
	54)	2-NITROPROPANE	12.485	41	10972	9.45 F	Pb	100
	55)	2-CHLOROETHYL VINYL ETHER	12.559	63	142839	46.31 F	2Pb	97
	56)	cis-1,3-DICHLOROPROPENE	12.800	75	62026	9.61 E	2PD	99
	57)	4-METHYL-2-PENTANONE	12.889	58	/5405	37.37 E	2PD	95
	58)	1,1-DICHLOROPROPANONE	12.994	43	14821	9.91 6	2PD	98
•	-59)	TOLUENE	13.220	92	86661	9.73 E	PD	96
	60)	trans-1, 3-DICHLOROPROPENE	13.398	/5	58047	9.52 8	2PD	99
	61)	ETHYL METHACRYLATE	13.419	69	56795	9.58 E	PD	94
	62)	1,1,2-TRICHLOROETHANE	13.623	. 83	29858	9.65 E	PD D	98
	63)	1, 3-DICHLOROPROPANE	13.822	76	60123	9.45 E	2PD	97
	64)	2-HEXANONE	13.812	58	12125	36.15 E	2PD	97
	65)	TETRACHLOROETHYLENE	13.880	166	34649	9.94 1	PD	99
	66)	DIBROMOCHLOROMETHANE	14.121	129	35900	9.64 1	PD	99
	67)	1,2-DIBROMOETHANE	14.284	107	34889	9.38 E	PD	99
	68)	CHLOROBENZENE	14.808	11Z	93121	9.33 E	PD	94
	69)	1,1,1,2-TETRACHLOROETHANE	14.8/1	131	33984	9.30 E	PD	99
	70)	ETHYLBENZENE	14.8/6	100	167921	9./L E	PD	98
	71)	m, p-XYLENE	14.997	106	126848	18.95 F	PD	99
	72)	O-XYLENE	15.448	106	63970	9.49 1	- PD	94
	73)	STYRENE	15.448	104	109156	9.37 E		98
	74)	BROMOFORM	15./15	1/3	26513	10.17 1		98
	75)	ISOPROPYLBENZENE	15.820	105	108830	9.70 1	- PD	99
	76)	BROMOBENZENE	16.239	120	39206	9.17 F	2 P.D D D b	92 09
	11)	1,1,2,2-TETRACHLOROETHANE	16.103	83	54930 14403		rru onh	90
	78)	TRANS-1, 4-DICHLORO-2-B	16.145	110	14493	10.00 1	n Dh	30
	79)	1, Z, 3-TRICHLOROPROPANE	16 260	110	202300 061CT	9.20 1	rrD DDh	00
	80)		16.200	126	202308	0.25 1	רבי מסל	95
	81)	1 2 5 MDINIBULY DENGENE	16.410	105	142660	9.20 I 0 51 I	רבי מממ	90
	8Z)	1,3,5-TRIMETHILBENZENE	16.410	105	125009	9.JI I 0.35 T	rru DDh	90
	83)	P-CHLOROTOLOENE	16.317	9⊥ 110	121059	9.55 1	DDP	90
	84)	TETT-BUTILBENZENE	16.795	105	147560	9.00	PPD DDb	90
	85)	1, 2, 4-TRIMETHILBENZENE	16.042	167	24664	9.41	DDh	.97
	86) 07)	PENTACHLOROETHANE	10.0/9	107	100272	9.25 1	DDb	
	07)	- ICODDODYL HOL HENE	17.031	110	152775	9.90 1	DDh	97
	00)	M DIGULODOBENZENE	17 225	116	19659	0 A A A A	DDD	92
	09)	M-DICHLOKOBENZENE	17 214	116	82830	יבט.כ ז בר 0	DDP	08 20
	90) 01 V	- DIGATOKODENZENE - DIGATOKODENZENE	17 507	140	84613	0 83 1	PPh	90
	91) 90)	H-BUIINDENZENE O-DICHLORORENZENE	17 700	1 A G	80419	9 11 T	PPh	100
	94) 031	ALAYCAI OBOEMANE ALAITOKOBENSENE	18 0/3	201	22910	9 76 1	PPh	- 00 97
	231	HEAACHIOROEI HANE	TO . 043	201	6. L I _ J			21

M1B2336.M Thu Dec 09 10:01:17 2010 MS1B

Page: 2

Cal Report:

1B51066.D

Quantitation Report

(QT Reviewed)

Data Path : C:\msdchem\l\DATA\ Data File : 1b51066.D Acq On : 8 Dec 2010 9:43 pm Operator : mohui Sample : icc2336-10 Misc : MS5663,V1B2336,W,,,,1 ALS Vial : 6 Sample Multiplier: 1 Quant Time: Dec 09 07:48:19 2010

Quant Method : C:\msdchem\l\METHODS\M1B2336.M Quant Title : method 524, zb624 60mx0.25mmx1.4um QLast Update : Thu Nov 11 09:50:17 2010 Response via : Initial Calibration

Compound	R.T.	QION	Response	Conc Ur	nits	Dev(Min)
94) 1,2-DIBROMO-3-CHLOROPR 95) NITROBENZENE 96) 1,2,4-TRICHLOROBENZENE 97) HEXACHLOROBUTADIENE 98) NAPHTHALENE	18.525 18.735 19.422 19.558 19.710	155 77 180 225 128	9804 49757 62507 29626 186146	9.44 151.00 8.98 9.41 8.91	PPb PPb PPb PPb PPb	96 96 99 100 99
99) 1,2,3-TRICHLOROBENZENE	19.978	180	60955	8.92	PPb	96

(#) = qualifier out of range (m) = manual integration (+) = signals summed

122 of 142 ACCUTEST: JA65236

က က က Cal Report:

Quantitation Report

(QT Reviewed)

1B51066.D

Data Path :	C:\msdchem\1\DATA\
Data File :	1b51066.D
Acq On :	8 Dec 2010 9:43 pm
Operator :	mohui
Sample :	icc2336-10
Misc :	MS5663,V1B2336,W,,,,1
ALS Vial :	6 Sample Multiplier: 1
Quant Time:	Dec 09 07:48:19 2010
Quant Metho	d : C:\msdchem\1\METHODS\M1B2336.M
Quant Title	: method 524, zb624 60mx0.25mmx1.4um
QLast Updat	e : Thu Nov 11 09:50:17 2010

Response via : Initial Calibration

Page: 4

123 of 142 JA65236

රා ලා ලා

•

1851067 0

Sample : ic2336-20 Misc : MS5663,V1B2336,W,,,,1 ALS Vial : 7 Sample Multiplier: 1	
Quant Time: Dec 09 07:52:16 2010 Quant Method : C:\msdchem\1\METHODS\M1B2336.M Quant Title : method 524, zb624 60mx0.25mmx1.4um QLast Update : Thu Dec 09 07:51:59 2010 Response via : Initial Calibration	
Compound R.T. QIon Response Conc Units D	ev(Min)
Internal Standards	
1) Tert Butyl Alcohol-d9 7.851 65 25803 50.00 PPB	0.00
4) FLOOROBENZENE 11.285 96 63028 5.00 PPb	0.00
System Monitoring Compounds	^ `
5) 4-BROMOFLUOROBENZENE (S) 16.025 95 22470 4.99 PPb	0.00
Spiked Amount 5.000 Range 77 - 115 Recovery = 99.8	08
6) 1,2-DICHLOROBENZENE-d4 17.708 152 22751 5.00 PPb	0.00
Spiked Amount 5.000 Range $78 - 114$ Recovery = 100.0	08
Target Compounds	Ovalue
2) TERTIARY BUTYL ALCOHOL 7.976 59 63764 100.99 PPb	96
3) 1,4-Dioxane 12.118 88 24603 607.19 PPB	90
7) DICHLORODIFLUOROMETHANE 4.028 85 76787 14.91 PPb	98
8) CHLOROMETHANE 4.374 50 104311 16.44 PPb	100
9) VINYL CHLORIDE 4.658 62 86744 17.85 PPb	99
10) BROMOMETHANE 5.386 94 53961 16.79 PPb	98
11) CHLOROETHANE 5.601 64 50348 17.14 PPb	97
12) TRICHLOROFLUOROMETHANE 6.173 101 73477 15.08 PPb	98
13) ETHYL ETHER 6.634 45 50396 16.96 PPb	96
14) ACROLEIN 6.844 56 182960 172.86 PPb	100
15) 1,1-DICHLOROETHYLENE 7.106 96 56912 18.03 PPb	99
16) FREON 113 7.111 151 34184 21.16 PPb	95
17) ACETONE 7.101 58 33324 91.62 PPb	97
18) IODOMETHANE 7.400 142 96878 19.71 PPD	98
20\ METHUN DISULFIDE 7.573 76 222801 19.50 PPD	9/ # 100
20) MEINIL ACEIALE 7.072 74 10082 20.43 FPD	# 100 00
21) ALDIL CHLONIDE 7.000 /0 50050 10.50 FFD 22) METHYLENE CHLORIDE 7.003 04 04060 10.50 DDb	90 00
23) ACRYLONITETIE 8 207 53 192473 106 49 PPD	90 07
24) METHYL TERT BUTYL ETHER 8.328 73 239098 19.61 PPb	9.9 9.9
25) trans-1,2-DICHLOROETHY 8.359 61 97184 19.62 PPb	99
26) HEXANE 8.768 57 67136 18.83 PPb	100
27) 1,1-DICHLOROETHANE 8.978 63 122148 19.60 PPb	99
28) DI-ISOPROPYL ETHER 9.025 45 243307 18.87 PPb	97
29) ETHYL TERT-BUTYL ETHER 9.539 59 252053 20.04 PPb	100
30) 2-BUTANONE 9.728 72 42943 98.84 PPb	97
31) 2,2-DICHLOROPROPANE 9.812 77 89759 17.86 PPb	97
32) cis-1,2-DICHLOROETHYLENE 9.796 96 73285 17.62 PPb	98
33) PROPIONITRILE 9.780 54 155369 213.44 PPb	99
34) METHYLACRYLATE 9.874 55 83092 27.66 PPb	100
35) METHACRILONITRILE 10.021 41 55463 19.18 PPb	98
36) BROMOCHLOROMETHANE 10.126 128 35610 20.60 PPb	94
SIJ CHLOKOFORM 10.194 83 115792 18.93 PPD 28) ШЕШРАЦИРОБЛИРАМ 10.000 40 26202 14.00 271	99
20) 1 1 1 TELEVICION 10, 200 10 10 200 10 20 20 20 20 20 20 20 20 20 20 20 20 20	95
40) CVCIOUEVANE 10.004 97 91144 19.50 PPD 10 CVCIOUEVANE 10 C24 04 04416 10 C2 DD	4 100
10.024 54 94410 18.93 PPD	# 100
42) $1.1-\text{DICHLOROPROPENE}$ 10.000 00 240/00 19.30 PPD 42) $1.1-\text{DICHLOROPROPENE}$ 10.703 75 88560 20.07 DPb	20
43) CARBON TETRACHLORIDE 10.745 117 75414 19.98 PPb	98

M1B2336.M Thu Dec 09 09:53:37 2010 MS1B

Page: 1

124 of 142 ACCUTEST. JA65236

Data Path	:	C:\msdchem\1\DATA\
Data File	:	1b51067.D
Acq On	:	8 Dec 2010 10:15 pm
Operator	:	mohui
Sample	:	ic2336-20
Misc	:	MS5663,V1B2336,W,,,,1
ALS Vial	:	7 Sample Multiplier: 1

Quant Time: Dec 09 07:52:16 2010 Quant Method : C:\msdchem\1\METHODS\M1B2336.M Quant Title : method 524, zb624 60mx0.25mmx1.4um QLast Update : Thu Dec 09 07:51:59 2010 Response via : Initial Calibration

	Compound	R.T.	QIon	Response	Conc Units	Dev(Min)
44)	1,2-DICHLOROETHANE	10.949	62	95327	20.98 PPb	98
45)	BÉNZENE	10.970	78	271763	19.55 PPb	99
46)	TERT AMYL METHYL ETHER	11.038	73	238599	18.90 PPB	99
47)	TRICHLOROETHYLENE	11.746	95	65217	20.03 PPb	97
48)	METHYLCYCLOHEXANE	12.019	83	96012	19.28 PPb	99
49)	METHYL METHACRYLATE	12.014	69	86476	20.79 PPb	97
50)	1,2-DICHLOROPROPANE	11.993	63	76401	20.28 PPb	99
51)	DIBROMOMETHANE	12.155	93	45517	20.84 PPb	97
52)	BROMODICHLOROMETHANE	12.297	83	90522	20.02 PPb	100
53)	CHLOROACETONITRILE	12.438	75	28119	110.44 PPb	98
54)	2-NITROPROPANE	12.480	41	22571	18.60 PPb	97
55)	2-CHLOROETHYL VINYL ETHER	12.559	. 63	297881	105.50 PPb	100
56)	cis-1,3-DICHLOROPROPENE	12.800	75	119749	20.27 PPb	99
57)	4-METHYL-2-PENTANONE	12.889	58	152073	80.58 PPb	99
58)	1,1-DICHLOROPROPANONE	12.994	43	32269	25.72 PPb	99
59)	TOLUENE	13.214	92	161956	19.91 PPb	99
60)	trans-1,3-DICHLOROPROPENE	13.393	75	113178	20.22 PPb	98
61)	ETHYL METHACRYLATE	13.413	69	111322	20.13 PPb	96
62)	1,1,2-TRICHLOROETHANE	13.623	83	58099	19.83 PPb	99
63)	1, 3-DICHLOROPROPANE	13.822	76	117010	20.10 PPb	98
64)	2-HEXANONE	13.812	58	147246	80.89 PPb	98
65)	TETRACHLOROETHYLENE	13.875	166	64401	20.06 PPb	98
66)	DIBROMOCHLOROMETHANE	14.116	129	69784	20.40 PPb	98
67)	1,2-DIBROMOETHANE	14.279	107	69272	21.02 PPb	99
68)	CHLOROBENZENE	14.808	. 112	177592	19.68 PPb	88
69)	1, 1, 1, 2-TETRACHLOROETHANE	14.871	131	65355	19.63 PPD	99
70)	ETHYLBENZENE	14.876	91	31/06/	19.82 PPb	99
71)	m, p-XYLENE	14.992	106	240241	39.48 PPD	100
72)	O-XYLENE	15.448	. 106	120872	19.85 PPD	9/
73)	STYRENE	15.448	104	207143	19.98 PPD	100
74)	BROMOFORM	15./15	1/3	52335	20.07 PPb	.98
75)	ISOPROPYLBENZENE	15.820	105	316262	19.81 PPD	100
/6)	BROMOBENZENE	16.239	156	/6635	19.96 PPD	94
77)	1,1,2,2-TETRACHLOROETHANE	16.103	83	10/836	19.31 PPD	98
78)	TRANS-1, 4-DICHLORO-2-B	16.145	53	29148	ZU.Z/ PPD	94
79)	1, Z, 3-TRICHLOROPROPANE	16.182	110	30154	19.84 PPD	94
80)	n-PROPILBENZENE	16.260	100	382290	19.01 PPD	100
81)	1 2 5 MDINEMUNI DENGENIE	16.418	105	73014	19.16 PPD	98
82)	1, 3, 5-TRIMETHYLBENZENE	16.418	105	2/1069	19.76 PPD	99
83)		16.517	110	238793	19.06 PPD	. 99
84) 05)	tert-BUTILBENZENE	16.800	105	232045	20.12 PPD	97
85)	1, 2, 4-TRIMETHILBENZENE	16.842	105	280062	19.51 PPD	
00)	PENTACHLOROETHANE	17 021	107	40094	20.15 PPD 10.01 DDb	97 100
01)	Sec-BUIILBENZENE	17.031	110	206006	19.01 PPD 10 76 DPh	100
00)	P-ISOPKOPILITOLULINE M-DICULOROBENZENE	17 005	146	200900	10 20 FPD	29 70
07) 001	M-DICHIOROBENZENE D-DICHIODODENZENE	17 214	140	155630	10 06 DPL	97 00
90) 01)	E-DICHLORODENZENE	17 502	140	159524	20 01 PPL	0C 0D
3T) 001	U-DICUIODOBENZENE U-DICUIODOBENZENE	17 720	72 1 1 C	152920	10 15 PPD	20
24) 031	U-DICHLORODENZENE NEVÄCUI ODOETUJNE	18 0/2	201	13781	20 03 PPD	99 QG
231	NEAGHUONOEINANE	10.043	2 V I	-J/01	20.33 FFD	20

M1B2336.M Thu Dec 09 09:53:37 2010 MS1B

Page: 2

1B51067 D

Data Path	:	C:\msdchem\1\DATA\
Data File	:	1b51067.D
Acq On	:	8 Dec 2010 10:15 pm
Operator	:	mohui
Sample	:	ic2336-20
Misc	:	MS5663,V1B2336,W,,,,1
ALS Vial	:	7 Sample Multiplier: 1

Quant Time: Dec 09 07:52:16 2010 Quant Method : C:\msdchem\1\METHODS\M1B2336.M Quant Title : method 524, zb624 60mx0.25mmx1.4um QLast Update : Thu Dec 09 07:51:59 2010 Response via : Initial Calibration

Compound	R.T.	QIon	Response	Conc Units	Dev(Min)
94) 1,2-DIBROMO-3-CHLOROPR	18.525	155	19370	20.18 PPt	» 97
95) NITROBENZENE 96) 1,2,4-TRICHLOROBENZENE	18.730 19.422	180	108069	219.35 PPt 20.07 PPt	o 97 o 98
97) HEXACHLOROBUTADIENE	19.558	225	55437	19.72 PPb	98
98) NAPHTHALENE	19.710	128	369932	20.78 PPh) 100
99) 1,2,3-TRICHLOROBENZENE	19.978	180	118747	20.38 PPh	97

(#) = qualifier out of range (m) = manual integration (+) = signals summed

Page: 3

6.6.6

1B51067.D

Data Path :	C:\msdchem\1\DATA\						
Data File :	1b51067.D						
Acq On :	8 Dec 2010 10:15 pm						
Operator :	mohui						
Sample :	ic2336-20						
Misc :	MS5663,V1B2336,W,,,,1						
ALS Vial : 7 Sample Multiplier: 1							
Quant Time: Dec 09 07:52:16 2010							
Qualit Time. Dec $09.07.32.10.2010$							
Quant Method : C:\msdCnem\1\METHODS\M1B2336.M							

Quant Title : method 524, zb624 60mx0.25mmx1.4um QLast Update : Thu Dec 09 07:51:59 2010 Response via : Initial Calibration

JA65236

0.0 0

1B51068.D

6.6.7 6

(QT Reviewed)

Data Data Acq O Opera Sampl Misc ALS V	Path : C:\msdchem\1\DATA\ File : 1b51068.D n : 8 Dec 2010 10:47 tor : mohui e : ic2336-40 : MS5663,V1B2336,W,,, ial : 8 Sample Multipli	pm ,1 er: 1						
Quant Quant Quant QLast Respo	Time: Dec 09 07:52:42 201 Method : C:\msdchem\1\MET Title : method 524, zb62 Update : Thu Dec 09 07:52 nse via : Initial Calibrat	0 HODS\M1B2 4 60mx0.2 :32 2010 ion	2336.M 25mmx1	.4um				
	Compound	R.T.	QIon	Response	Conc Ur	nits	Dev (Min)
Inte	rnal Standards							
1)	Tert Butyl Alcohol-d9	7.861	65	24968	50.00	PPB		0.00
4)	FLUOROBENZENE	11.285	96	64126	5.00	PPb		0.00
Syste 5)	em Monitoring Compounds 4-BROMOFLUOROBENZENE (S)	16.024	95	22898	5.00	PPb		0.00
Sp:	iked Amount 5.000 R	ange 77	- 115	Recov	ery =	100.	00%	
6)	1,2-DICHLOROBENZENE-d4	17.707	152	23161	5.00	PPb		0.00
Sp:	iked Amount 5.000 R	ange 78	- 114	Recov	ery =	100.	008	
Targ	et Compounds						Ova	lue
2)	TERTIARY BUTYL ALCOHOL	7.981	59	120080	196.22	PPb	210	96
3)	1,4-Dioxane	12.113	88	45281	1115.04	PPB		91
7)	DICHLORODIFLUOROMETHANE	4.028	85	180688	44.48	PPb		99
8)	CHLOROMETHANE	4.385	50	241753	38.59	PPb		100
9)	VINYL CHLORIDE	4.673	62	203832	41.98	PPb		98
10)	BROMOMETHANE	5.391	94	126115	39.63	PPb		98
11)	CHLOROETHANE MDLOULODOELHODOMEMUNNE	5.601	64 101	11/629	40.32	PPD		98
12)	TRICHLOROFLUOROMETHANE	6.183	101	1/6/09	45.40	PPD		97
14)	ACPOIETN	6.039	40	99014 /10223	301 57	PPD		90
15)	1 1-DICHIOROFTHYLENE	7 111	96	114155	36 14	PPh	-	99
16)	FREON 113	7.116	151	73613	44.36	PPb		97
17)	ACETONE	7.101	58	63611	167.83	PPb		93
18)	IODOMETHANE	7.405	142	192968	38.68	PPb		97
19)	CARBON DISULFIDE	7.583	76	451390	39.00	PPb		99
20)	METHYL ACETATE	7.672	74	32246	48.96	PPb		94
21)	ALLYL CHLORIDE	7.693	76	77643	37.47	PPb		96
22)	METHYLENE CHLORIDE	7.898	84	168059	36.97	PPb		99
23)	ACRYLONITRILE	8.207	53	369216	198.63	PPb		98
24)	METHYL TERT BUTYL ETHER	8.333	73	474402	38.37	PPb		93
25)	trans-1,2-DICHLOROETHY	8.364	61	191205	38.07	PPD		98
26)	HEXANE	8./68	51	136594	38.03	PPD		99
28)	DI-ISODRODYI FTHER	9.025	45	487735	37.50	PPh		96
29)	ETHYI, TERT-BUTYI, ETHER	9 544	59	506407	39.56	PPb		99
30)	2-BUTANONE	9.722	72	81769	178.00	PPb		97
31)	2,2-DICHLOROPROPANE	9.817	77	174786	34.80	PPb		98
32)	cis-1,2-DICHLOROETHYLENE	9.796	96	143755	34.66	PPb		99
33)	PROPIONITRILE	9.780	54	298513	398.60	PPb		97
34)	METHYLACRYLATE	9.874	55	163532	50.29	PPb		100
35)	METHACRYLONITRILE	10.016	41	108070	36.99	PPb		97
36)	BROMOCHLOROMETHANE	10.126	128	69671	39.42	PPb		99
37)	CHLOROFORM	10.194	83	226392	36,71	PPb		99
38)	TETRAHYDROFURAN	10.194	42	66532	27.87	PPb DDL		98
39)	I, I, I-TRIUHLOROETHANE	10.503	97	100010	38.21	PPD DDD	#	9/
40) ⁻ /1)	LICHUARANE 1-CHIODORUEANE	10.624	84 56	1303T3 T303T3	37.90	rrø dør	1 F	τ00 100
4⊥) 20)	1 1-DICHLOROPROPENE	10.003	50 75	494414 .173480	38 61	PPh		92 QQ
43)	CARBON TETRACHLORIDE	10.745	117	149929	39.05	PPb		97

M1B2336.M Thu Dec 09 09:53:38 2010 MS1B

Page: 1

JA65236 LABORATORIES

Data Path : C:\msdchem\l\DATA\ Data File : 1b51068.D Acq On : 8 Dec 2010 10:47 pm Operator : mohui Sample : ic2336-40 Misc : MS5663,V1B2336,W,,,,1 ALS Vial : 8 Sample Multiplier: 1

Quant Time: Dec 09 07:52:42 2010 Quant Method : C:\msdchem\1\METHODS\M1B2336.M Quant Title : method 524, zb624 60mx0.25mmx1.4um QLast Update : Thu Dec 09 07:52:32 2010 Response via : Initial Calibration

	Compound	R.T.	QIon	Response	Conc Units	Dev(Min)
44)	1.2-DICHLOROETHANE	10.949	62	187165	40.17 PPb	97
45)	BENZENE	10,970	78	536575	38.08 PPb	99
46)	TERT AMYL METHYL ETHER	11.038	73	480468	37.76 PPB	98
47)	TRICHLOROETHYLENE	11,746	95	128925	38.91 PPb	98
48)	METHYLCYCLOHEXANE	12.019	83	200926	39.89 PPb	99
49)	METHYL METHACRYLATE	12.019	69	172041	40.39 PPb	96
50)	1,2-DICHLOROPROPANE	11.992	63	151333	39.40 PPb	97
51)	DIBROMOMETHANE	12.155	93	90212	40.31 PPb	97
52)	BROMODICHLOROMETHANE	12.297	83	181412	39.43 PPb	100
53)	CHLOROACETONITRILE	12.438	75	54491	206.75 PPb	95
54)	2-NITROPROPANE	12.480	41	43592	35.73 PPb	95
55)	2-CHLOROETHYL VINYL ETHER	12.559	63	584743	201.71 PPb	100
56)	cis-1,3-DICHLOROPROPENE	12.800	75	237502	39.43 PPb	99
57)	4-METHYL-2-PENTANONE	12.889	58	288201	149.92 PPb	100
58)	1,1-DICHLOROPROPANONE	12.989	43	63611	47.57 PPb	99
59)	TOLUENE	13.219	92	320985	38.81 PPb	100
60)	trans-1,3-DICHLOROPROPENE	13.392	75	226736	39.74 PPb	97
61)	ETHYL METHACRYLATE	13.413	69	219473	38.97 PPb	95
62)	1,1,2-TRICHLOROETHANE	13.623	83	114888	38.60 PPb	99
63)	1,3-DICHLOROPROPANE	13.822	76	232406	39.20 PPb	99
64)	2-HEXANONE	13.812	58	279217	150.48 PPb	98
65)	TETRACHLOROETHYLENE	13.880	166	126855	38.81 PPb	98
66)	DIBROMOCHLOROMETHANE	14.121	129	140980	40.38 PPb	98
67)	1,2-DIBROMOETHANE	14.284	107	137964	40.81 PPb	99
68)	CHLOROBENZENE	14.808	112	355816	38.86 PPb	89
69)	1,1,1,2-TETRACHLOROETHANE	14,871	131	131903	39.06 PPb	100
70)	ETHYLBENZENE	14,876	91	627365	38.60 PPb	99
71)	m, p-XYLENE	14.991	106	476433	77.12 PPb	99
72)	O-XYLENE	15.448	106	242742	39.23 PPb	96
73)	STYRENE	15.448	104	418465	39.68 PPb	99
74)	BROMOFORM	15.715	173	105013	39.56 PPb	98
75)	ISOPROPYLBENZENE	15.820	105	630329	38.88 PPb	99
76)	BROMOBENZENE	16.239	156	151654	38.84 PPb	96
77)	1,1,2,2-TETRACHLOROETHANE	16.103	83	211705	37.48 PPb	99
78)	TRANS-1,4~DICHLORO-2-B	16.145	53	56918	38.82 PPb	95
79)	1,2,3-TRICHLOROPROPANE	16.182	110	58387	37.81 PPb	99
80)	n-PROPYLBENZENE	16.260	91	759676	38.42 PPb	100
81)	O-CHLOROTOLUENE	16.418	126	145472	37.79 PPb	96
82)	1,3,5-TRIMETHYLBENZENE	16.418	105	549791	39.48 PPb	99
83)	P-CHLOROTOLUENE	16.517	91	473761	37.46 PPb	99
84)	tert-BUTYLBENZENE	16.800	119	466931	39.75 PPb	99
85)	1,2,4-TRIMETHYLBENZENE	16.842	105	562424	38.67 PPb	100
86)	PENTACHLOROETHANE	16.874	167	100247	41.20 PPD	98
87)	sec-BUTYLBENZENE	17.031	105	/12161	39.20 PPD	100
8.8)	p-ISOPROPYLTOLUENE	17.152	119	582626	39.52 PPD	99
89)	M-DICHLOROBENZENE	17.225	146	300279	38,24 PPD	98
90)	P-DICHLOROBENZENE	17.314	146	311/99	38.15 PPD	98
91)	n-BUTYLBENZENE	17.592	92	31/8/0	39.43 FPD	99
92)	O-DICHLOROBENZENE	17.728	146	305995	37.96 PPD	99
93)	HEXACHLOROETHANE	18.043	201	ANPTP	42.25 PPD	97

M1B2336.M Thu Dec 09 09:53:38 2010 MS1B

Page: 2

6.6.7

(QT Reviewed)

Data Path : C:\msdchem\l\DATA Data File : 1b51068.D Acq On : 8 Dec 2010 10:47 pm Operator : mohui Sample : ic2336-40 Misc : MS5663,V1B2336,W,,,,1 ALS Vial : 8 Sample Multiplier: 1

Quant Time: Dec 09 07:52:42 2010 Quant Method : C:\msdchem\1\METHODS\M1B2336.M Quant Title : method 524, zb624 60mx0.25mmx1.4um QLast Update : Thu Dec 09 07:52:32 2010 Response via : Initial Calibration

Compound	R.T.	QIon	Response	Conc Units	Dev(Min)
94) 1,2-DIBROMO-3-CHLOROPR	18.525	155	38634	39.50 PPb	96
95) NITROBENZENE	18.730	77	225493	442.71 PPb	97
96) 1,2,4-TRICHLOROBENZENE	19.422	180	245520	40.15 PPb	98
97) HEXACHLOROBUTADIENE	19.558	225	112669	39.48 PPb	98
98) NAPHTHALENE	19.710	128	742889	40.75 PPb	100
99) 1,2,3-TRICHLOROBENZENE	19.978	180	241018	40.53 PPb	97

(#) = qualifier out of range (m) = manual integration (+) = signals summed

M1B2336.M Thu Dec 09 09:53:38 2010 MS1B

Page: 3

6.6.7

(QT Reviewed)

Data Path : C:\msdchem\1\DATA\ Data File : 1b51068.D Acq On 8 Dec 2010 10:47 pm Operator : mohui Sample : ic2336-40 Misc : MS5663,V1B2336,W,,,,1 ALS Vial : 8 Sample Multiplier: 1 Quant Time: Dec 09 07:52:42 2010

Quant Method : C:\msdchem\1\METHODS\M1B2336.M Quant Title : method 524, zb624 60mx0.25mmx1.4um QLast Update : Thu Dec 09 07:52:32 2010 Response via : Initial Calibration

Page: 4

0 0 7

(QT Reviewed)

Data Path : C:\msdchem\1\DATA\ Data File : 1b51070.D Acq On : 8 Dec 2010 11:51 Operator : mohui Sample : icv2336-10 Misc : MS5663,V1B2336,W,,, ALS Vial : 10 Sample Multipl	pm ,1 ier: 1						
Quant Time: Dec 09 09:46:00 201 Quant Method : C:\msdchem\1\MET Quant Title : method 524, zb62 QLast Update : Thu Dec 09 09:30 Response via : Initial Calibrat	0 HODS\M1B2 4 60mx0.2 :59 2010 ion	2336.M 25mmx1	.4um				
Compound	R.T.	QIon	Response	Conc Ur	nits	Dev	(Min)
Tatomal Standards							
1) Tert Butyl Alcohol-d9 4) FLUOROBENZENE	7.856 11.280	65 96	25405 64295	50.00 5.00	PPB PPb		0.00 0.00
System Monitoring Compounds				• • • •			
5) 4-BROMOFLUOROBENZENE (S)	16.025	95	22487	4.90	PPb		0.00
Spiked Amount 5.000 R	ange 77	- 115	Recove	ry =	98.	.00%	0 00
6) 1,2-DICHLOROBENZENE-d4 Spiked Amount 5.000 R	17.708 ange 78	152 - 114	22968 Recove	4.95 ry =	999.	.00%	0.00
				4			-
Target Compounds	- 007	ΓO	24054	EC 20	DDb	Qva	alue
2) TERTIARY BUTYL ALCOHOL	12 110	29	34934	309.29	DDB		99
7) DICHLORODIFLUOROMETHANE	4.028	85	47679	9.97	PPb		99
8) CHLOROMETHANE	4.369	50	58168	9.31	PPb		99
9) VINYL CHLORIDE	4.652	62	52095	10.63	PPb		99
10) BROMOMETHANE	5.386	94	31492	9.88	PPb		96
11) CHLOROETHANE	5.601	64	29793	10.17	PPb		- 100
12) TRICHLOROFLUOROMETHANE	6.173	101	49529	11.10	PPb		94
13) ETHYL ETHER	6.634	45	24461	9.17	PPD		97
14) ACRULEIN 15) 1-1 DICHLODORTHYLENR	0.844	20	30448	9 75	PPh		99
16) FREON 113	7.111	151	21525	11.53	PPb		95
17) ACETONE	7.106	58	16229	41.27	PPb		94
18) IODOMETHANE	7.395	142	49144	9.87	₽₽b		98
19) CARBON DISULFIDE	7.573	76	113158	9.79	PPb		100
20) METHYL ACETATE	7.678	74	7777	9.96	PPb		96
21) ALLYL CHLORIDE	7.688	76	20401	9.91	PPb		91
22) METHYLENE CHLORIDE	7.893	84	43669	9.69	PPD		98.
23) ACRYLONITRILE 24) MERUNI MEDM DUMNI EMNED	8.212	53 73	94410 246681	20.02	PPD		90
25) trans-1 2-DICHLOROETHY	8 359	7.3 61	45731	9.14	PPb		97
26) HEXANE	8.768	57	34588	9.67	PPb		97
27) 1,1-DICHLOROETHANE	8.973	63	64641	10.27	PPb		99
28) DI-ISOPROPYL ETHER	9.020	45	136868	10.60	PPb		98
29) ETHYL TERT-BUTYL ETHER	9.539	59	132713	10.36	PPb		98
30) 2-BUTANONE	9.733	72	20493	41.77	PPD		97
31) 2,2-DICHLOROPROPANE	9.812		46825	9.47	PPD		99
32) CIS-I,Z-DICHLOROEIHILENE	9.790	54	74903	99.80	PPb		97
34) METHYLACRYLATE	9.885	55	38900	10.05	PPb		100
35) METHACRYLONITRILE	10.021	41	26688	10.01	PPb		98
36) BROMOCHLOROMETHANE	10.126	128	17903	10.12	PPb		-92
37) CHLOROFORM	10.194	83	61048	9.99	PPb		99
38) TETRAHYDROFURAN	10.200	42	18691	9.54	PPb		95
39) 1,1,1-TRICHLOROETHANE	10.504	97	48591	10.30	PPD JUP	#	97
40) CYCLOHEXANE	10.624	84 56	134004	10.00	rrø pph	#	97
417 I-CHLOROBUTANE 42) 1 1-DICHLOROPROPENE	10.003	50 75	47208	10.53	PPh		99
43) CARBON TETRACHLORIDE	10.745	117	40294	10.50	PPb		100

M1B2336.M Thu Dec 09 09:53:40 2010 MS1B

0 0 0

•

Data Path : C:\msdchem\1\DATA\ Data File : 1b51070.D Acq On : 8 Dec 2010 11:51 pm Operator : mohui Sample : icv2336-10 Misc : MS5663,V1B2336,W,,,,1 ALS Vial : 10 Sample Multiplier: 1

Quant Time: Dec 09 09:46:00 2010 Quant Method : C:\msdchem\1\METHODS\M1B2336.M Quant Title : method 524, zb624 60mx0.25mmx1.4um QLast Update : Thu Dec 09 09:30:59 2010 Response via : Initial Calibration

	Compound	R.T.	QIon	Response	Conc Units	Dev(Min)
44)	1,2-DICHLOROETHANE	10,944	62	47880	10.24 PPb	98
45)	BENZENE	10.970	78	142119	10.13 PPb	99
46)	TERT AMYL METHYL ETHER	11.038	73	130111	10.30 PPB	98
47)	TRICHLOROETHYLENE	11.746	95	35030	10.59 PPb	.97
48)	METHYLCYCLOHEXANE	12.019	83	56492	11.19 PPb	- 99
49)	METHYL METHACRYLATE	12.019	69	42728	9.99 PPb	95
50)	1,2-DICHLOROPROPANE	11.987	6.3	39693	10.33 PPb	98
51)	DIBROMOMETHANE	12.155	93	23099	10.28 PPb	97
52)	BROMODICHLOROMETHANE	12.297	83	47272	10,27 PPb	- 98
53)	CHLOROACETONITRILE	12.444	75	14280	53.78 PPb	99
54)	2-NITROPROPANE	12.480	41	11964	10.34 PPb	97
55)	2-CHLOROETHYL VINYL ETHER	12.559	63	123367	42.39 PPb	100
56)	cis-1,3-DICHLOROPROPENE	12.800	75	60699	10.07 PPb	99
57)	4-METHYL-2-PENTANONE	12.889	58	76471	40.04 PPb	99
58)	1,1-DICHLOROPROPANONE	12.994	43	14505	10.02 PPb	98
59)	TOLUENE	13.220	92	84919	10.28 PPb	97
60)	trans-1,3-DICHLOROPROPENE	13.398	75	57909	10.13 PPb	98
61)	ETHYL METHACRYLATE	13.419	69	57779	10.27 PPb	97
62)	1,1,2-TRICHLOROETHANE	13.623	83	29532	9.95 PPb	98
63)	1,3-DICHLOROPROPANE	13.822	76	59499	10.04 PPb	96
64)	2-HEXANONE	13.812	58	73227	39.70 PPb	98
65)	TETRACHLOROETHYLENE	13.880	166	34502	10.57 PPb	97
66)	DIBROMOCHLOROMETHANE	14.116	129	34904	9.96 PPb	99
67)	1,2-DIBROMOETHANE	14.279	107	34998	10.30 PPb	99
68)	CHLOROBENZENE	14.808	112	93201	10.19 PPb	96
69)	1,1,1,2-TETRACHLOROETHANE	14.871	131	33833	10.03 PPb	96
70)	ETHYLBENZENE	14.876	91	164356	10.14 PPb	99
71)	m,p-XYLENE	14.992	106	125996	20.45 PPb	100
72)	O-XYLENE	15.448	106	65379	10.57 PPb	94
73)	STYRENE	15.448	104	107054	10.14 PPb	100
74)	BROMOFORM	15.715	173	25813	9.71 PPb	98
75)	ISOPROPYLBENZENE	15.820	105	170062	10.50 PPb	100
76)	BROMOBENZENE	16.240	156	39442	IO.IZ PPD	97
77)	1,1,2,2-TETRACHLOROETHANE	16.103	83	53308	9.50 PPD	100
78)	TRANS-1, 4-DICHLORO-2-B	16.145	53	15555	10.63 PPD	92
79)	1,2,3-TRICHLOROPROPANE	16.182	110	15019	9.78 PPD	89
80)	n-PROPYLBENZENE	16.261	100	197098	10.00 PPD	99
81)	O-CHLOROTOLUENE	16.418	126	38435	10.04 PPD	100
82)	1,3,5-TRIMETHYLBENZENE	16.418	105	144136	10.34 PPD	100
83)	P-CHLOROTOLUENE	16.51/	91 110	110200	9.72 PPD	100
84)	tert-BUTYLBENZENE	16.795	119	119306	10.14 PPD	90
85)	1, 2, 4-TRIMETHYLBENZENE	16.842	105	. 146749	10 52 DDb	99
86)	PENTACHLOROETHANE	17 026	107	100204	10.05 PPD	97
87)	SEC-BUTTLBENZENE	17.020	- 105 110	100294	10.37 FFD 10 54 DDb	99
88)	p-1SOPROPYLTOLUENE	17.132	146	100022	10.54 PFD 10 10 DDb	· 00
89)	M-DICHLOROBENZENE	17 214	140	19143	10.13 FFD 400 DDW	99 07
90)	P-DICHLOROBENZENE	17 502	140	00402	10 58 PPD	. 0.Q
90) AT)	A-BUTILBENZENE	17 700	92 146	78975	0 22 FPD 10.30 FPD	100
92)	U-DICHLOROBENZENE URVACUI ODORZUJNE	10 020	201	22011	10 57 PPh	07
23)	NEVACUTOKOELLANE	T0.030	2 U I	<u> </u>	10.07 EED	21

M1B2336.M Thu Dec 09 09:53:40 2010 MS1B

Page: 2

133 of 142 ACCUTEST. JA65236

0.0 0.0

Quantitation Report (QT Reviewed)

Data Path : C:\msdchem\1\DATA\ Data File : 1b51070.D Acq On : 8 Dec 2010 11:51 pm Operator : mohui Sample : icv2336-10 Misc : MS5663,V1B2336,W,,,,1 ALS Vial : 10 Sample Multiplier: 1

Quant Time: Dec 09 09:46:00 2010 Quant Method : C:\msdchem\1\METHODS\M1B2336.M Quant Title : method 524, zb624 60mx0.25mmx1.4um QLast Update : Thu Dec 09 09:30:59 2010 Response via : Initial Calibration

Compound	R.T.	QIon	Response	Conc Units	s Dev(Min)
<pre>94) 1,2-DIBROMO-3-CHLOROPR 95) NITROBENZENE 96) 1,2,4-TRICHLOROBENZENE 97) HEXACHLOROBUTADIENE 98) NAPHTHALENE 99) 1,2,3-TRICHLOROBENZENE</pre>	18.525 18.735 19.422 19.558 19.710 19.978	155 77 180 225 128 180	9610 51725 60479 28279 181400 59609	9.82 PP 99.76 PP 9.86 PP 9.90 PP 9.90 PP 9.90 PP 9.98 PP	97 98 100 97 97 97 100 95

(#) = qualifier out of range (m) = manual integration (+) = signals summed

M1B2336.M Thu Dec 09 09:53:40 2010 MS1B

Page: 3

134 of 142 ACCUTEST. JA65236

6.0.8

Data Path : C:\msdchem\1\DATA\ Data File : 1b51070.D 8 Dec 2010 11:51 pm Acq On : : mohui Operator : icv2336-10 Sample : MS5663,V1B2336,W,,,,1 Misc Sample Multiplier: 1 : 10 ALS Vial Quant Time: Dec 09 09:46:00 2010 Quant Method : C:\msdchem\1\METHODS\M1B2336.M

Quant Method : C:(msdchem()(MEIRODS(MID25551) Quant Title : method 524, zb624 60mx0.25mmx1.4um QLast Update : Thu Dec 09 09:30:59 2010 Response via : Initial Calibration

1B51070 D: V1B2336-JCV2336 Initial Calibration Verification (10) page 4 of 4

Quantitation Report (QT Reviewed)

Data I Data I Acq Or Operat Sample Misc ALS Vi Quant Quant Quant QLast Respor	<pre>Path : C:\msdchem\1\DATA\ File : 1b51762.D 1 : 3 Jan 2011 9:38 For : mohui 2 : cc2336-10 2 : MS6764,V1B2368,W,, Fial : 2 Sample Multipl Time: Jan 03 10:02:41 20 Method : C:\msdchem\1\ME Title : method 524, zb6 Update : Thu Dec 09 09:3 hse via : Initial Calibra</pre>	am ,,1 ier: 1 11 THODS\M1B2 24 60mx0.2 0:59 2010 tion	2336.M 25mmx1	. 4 um				
	Compound	R.T.	QIon	Response	Conc Ur	nits	Dev	(Min)
Inter	rnal Standards	7 051	65	23322	50.00	PPR	_	0.01
⊥) 4)	FLUOROBENZENE	11.274	96	59564	5.00	PPb	_	-0.01
	FHOOLODINALINH	11.07	50	00000				
Syste	em Monitoring Compounds							
5)	4-BROMOFLUOROBENZENE (S)	16.019	95	22270	5.23	PPb	600	0.00
Spi	iked Amount 5.000	Range 77	- 115	Recove	ry =	104.	608	0 01
6)	1,2-DICHLOROBENZENE-d4	. 17.697 Dange 79	152	21703 Pogove	5.04 rv =	100	- 80%	-0.01
spi	iked Amount 5.000	Range /o	- 114	Recove	ту –	100.	008	
Targe	t Compounds	·					Ova	alue
21	TERTIARY BUTYL ALCOHOL	7.976	59	28274	49.60	PPb		89
3)	1.4-Dioxane	12.108	88	12295	307.00	PPB		99
7)	DICHLORODIFLUOROMETHANE	4.023	85	42551	9.60	PPb		98
8)	CHLOROMETHANE	4.369	50	56253	9.72	PPb		100
9)	VINYL CHLORIDE	4,652	62	46309	10.20	PPb		100
10)	BROMOMETHANE	5.381	94	29530	10.00	PPb		96
11)	CHLOROETHANE	5.596	64	28356	10.45	PPb		99
12)	TRICHLOROFLUOROMETHANE	6.173	101	45602	11.03	₽Pb		96
13)	ETHYL ETHER	6.629	45	20663	8.36	PPb		98
14)	ACROLEIN	6.839	56	105214	108.50	PPb		98
15)	1,1-DICHLOROETHYLENE	7.101	96	25515	8.82	PPb		91
16)	FREON 113	7.106	151	19168	11.08	PPb		93
$17)^{'}$	ACETONE	7.101	58	15424	42.34	PPb		97
18)	IODOMETHANE	7.389	142	45158	9.79	PPb		96
19)	CARBON DISULFIDE	7.562	76	98692	9.21	PPb		100.
20)	METHYL ACETATE	7.672	74	8358	11.47	PPb	Ħ	1
21)	ALLYL CHLORIDE	7.683	76	17824	9.35	PPb		88
22)	METHYLENE CHLORIDE	7.887	84	36319	8.69	PPb		9.9
23)	ACRYLONITRILE	8.202	53	88998	51.60	₽₽b		98
24)	METHYL TERT BUTYL ETHER	8.317	73	112823	9.88	PPb		99
25)	trans-1,2-DICHLOROETHY	. 8.354	61	43181	9.32	PPb		97
26)	HEXANE	8.758	57	33366	10.07	PPb		97
27)	1,1-DICHLOROETHANE	8.967	63	57878	9.93	PPD		98
28)	DI-ISOPROPYL ETHER	9.014	45	111080	9.29	22D		94
29)	ETHYL TERT-BUTYL ETHER	9.534	59	11/452	9.89	PPD		97
30)	2-BUTANONE	9.722	12	20120	44.20	PPD		92
31)	2,2-DICHLOROPROPANE	9.806		4///9.	10.43	PPD DDb		90
32)	CIS-I, Z-DICHLOROETHYLENE	9.785	90 E4	37003	100 47	DDh		90
33)	PROPIONITRILE	9.775	54	26014	10 29	DDP		1.00
34) 25)	METHILACKILATE MEMUACOVIONIMOIIE	3.009 10 011	00 //1	26412	10.20	PPh		98
35)	MEINACKILONITKILE RROMOCHIOROMERUNNE	10.0114	100	18401	11 25	PDP		87
30)	CHIOROFORM	10.110	53 ΤζΟ	58763	10 32	PPh		. 97
37)	URLUKUTUKU TETIDA UVDDOFUDAN	10 100	12	17545	4 67 20.50	PPh		88
20)	1 1 1_ΠΟΤΟΓΟΚΑΝ	10 400	97	45437	10 40	PPh		97
29) 101	TATATA TATATANA	10 614	84	40826	8.80	PPh	#	100
40) /1 V	1_CHIORORUTANE	10 597	56	108383	8,98	PPh	н	94
	1.1-DICHLOROPROPENE	10.698	75	40866	9.84	PPb		98
431	CARBON TETRACHLORIDE	10,734	117	38600	10.86	PPb		97

M1B2336.M Tue Jan 04 08:55:19 2011 MS1B

JA65236 136 of 142

Page: 1

6.6.9

Data Path	:	C:\msdchem\l\DATA\	
Data File	:	1b51762.D	
Acq On	:	3 Jan 2011 9:38 am	
Operator	:	mohui	
Sample	:	cc2336-10	
Misc	:	MS6764,V1B2368,W,,,,1	
ALS Vial	:	2 Sample Multiplier: 1	

Quant Time: Jan 03 10:02:41 2011 Quant Method : C:\msdchem\1\METHODS\M1B2336.M Quant Title : method 524, zb624 60mx0.25mmx1.4um QLast Update : Thu Dec 09 09:30:59 2010 Response via : Initial Calibration

	Compound	R.T.	QIon	Response	Conc Units	Dev(Min)
44)	1,2-DICHLOROETHANE	10.939	62	48931	11.30 PPb	99
45)	BENZENE	10.960	78	128453	9.88 PPb	99
46)	TERT AMYL METHYL ETHER	11.028	73	116706	9.97 PPB	99
47)	TRICHLOROETHYLENE	11.736	95	32165	10.49 PPb	97
48)	METHYLCYCLOHEXANE	12.008	83	48064	10.28 PPb	97
49)	METHYL METHACRYLATE	12.008	69	39665	10.01 PPb	98
50)	1,2-DICHLOROPROPANE	11.982	63	37183	10.44 PPb	98
51)	DIBROMOMETHANE	12.150	93	23875	11.47 PPb	. 97
52)	BROMODICHLOROMETHANE	12.286	83	45864	10.75 PPb	99
53)	CHLOROACETONITRILE	12.433	75	15096	61.37 PPb	94
54)	2-NITROPROPANE	12.475	41	11790	11.00 PPb	95
55)	2-CHLOROETHYL VINYL ETHER	12.548	63	137264	50.91 PPb	97
56)	cis-1,3-DICHLOROPROPENE	12.789	75	61303	10.98 PPb	98
57)	4-METHYL-2-PENTANONE	12.879	58	71597	40.46 PPb	97
58)	1,1-DICHLOROPROPANONE	12.983	43	16471	12.29 PPb	97
59)	TOLUENE	13.209	92	82028	10.72 PPb	96
60)	trans-1,3-DICHLOROPROPENE	13.387	75	60357	11.40 PPb	98
61)	ETHYL METHACRYLATE	13.408	69	52273	10.03 PPb	96
62)	1,1,2-TRICHLOROETHANE	13.618	83	30721	11.17 PPb	97
63)	1, 3-DICHLOROPROPANE	13.817	76	62537	11.39 PPb	94
64)	2-HEXANONE	13.801	58	68038	39.81 PPb	98
65)	TETRACHLOROETHYLENE	13.870	166	34063	11.27 PPb	94
66)	DIBROMOCHLOROMETHANE	14.111	129	37862	11.66 PPb	97
67)	1,2-DIBROMOETHANE	14.273	107	36343	11.54 PPb	98
68)	CHLOROBENZENE	14.803	112	96632	11.41 PPb	91
69)	1,1,1,2-TETRACHLOROETHANE	14.860	131	36738	11.75 PPb	98
70)	ETHYLBENZENE	14.871	91	161871	10.78 PPb	96
71)	m, p-XYLENE	14.986	106	129136	22.62 PPb	96
72)	O-XYLENE	15.437	106	65602	11.45 PPb	93
73)	STYRENE	15.442	104	103156	10.54 PPb	97
74)	BROMOFORM	15.710	173	28518	11.58 PPb	97
75)	ISOPROPYLBENZENE	15.809	105	167520	11.17 PPb	98
76)	BROMOBENZENE	16.234	156	42815	11.85 PPb	94
77)	1,1,2,2-TETRACHLOROETHANE	16.093	83	58207	11.19 PPb	100
78)	TRANS-1,4-DICHLORO-2-B	16.135	53	16058	11.84 PPb	95
79)	1,2,3-TRICHLOROPROPANE	16.171	110	16889	11.87 PPb	- 88
80)	n-PROPYLBENZENE	16.250	91	201568	11.04 PPb	98
81)	O-CHLOROTOLUENE	16.407	126	41464	11.69 PPb	87
82)	1,3,5-TRIMETHYLBENZENE	16.412	105	146910	11.38 PPb	96
83)	P-CHLOROTOLUENE	16.507	91	127287	10.93 PPb	94
84)	tert-BUTYLBENZENE	16.790	119	112494	10.32 PPb	97
85)	1,2,4-TRIMETHYLBENZENE	16.832	105	134887	10.03 PPb	98
86)	PENTACHLOROETHANE	16.869	167	25066	11.04 PPb	97
87)	sec-BUTYLBENZENE	17.021	105	171756	10.21 PPb	. 99
88)	p-ISOPROPYLTOLUENE	17.146	119	143401	10.49 PPb	96
89)	M-DICHLOROBENZENE	17.220	146	76891	10.61 PPb	97
90)	P-DICHLOROBENZENE	17.304	146	80254	10.64 PPb	97
91)	n-BUTYLBENZENE	17.587	92	76430	10.23 PPb	98
92)	O-DICHLOROBENZENE	17.723	146	84021	11.30 PPb	98
. 93)	HEXACHLOROETHANE	18.032	201	21695	10.80 PPb	97

M1B2336.M Tue Jan 04 08:55:19 2011 MS1B

Page: 2

Data Path : C:\msdchem\1\DATA\ Data File : 1b51762.D Acq On : 3 Jan 2011 9:38 am Operator : mohui Sample : cc2336-10 Misc : MS6764,V1B2368,W,,,,1 ALS Vial : 2 Sample Multiplier: 1

Quant Time: Jan 03 10:02:41 2011 Quant Method : C:\msdchem\1\METHODS\M1B2336.M Quant Title : method 524, zb624 60mx0.25mmx1.4um QLast Update : Thu Dec 09 09:30:59 2010 Response via : Initial Calibration

	Compound	R.T.	QIon	Response	Conc Units	Dev(Min)
94)	1,2-DIBROMO-3-CHLOROPR	18.515	155	9471	10.44 PPb	96
95)	NITROBENZENE	18.725	77	52260	108.80 PPb	98
96)	1,2,4-TRICHLOROBENZENE	19.411	180	63717	11.21 PPb	98
.97)	HEXACHLOROBUTADIENE	19.553	225	28004	10.58 PPb	98
9 8)	NAPHTHALENE	19.700	128	186384	10.98 PPb	100
99)	1,2,3-TRICHLOROBENZENE	19.972	180	63259	11.43 PPb	97

(#) = qualifier out of range (m) = manual integration (+) = signals summed

Page: 3

0 0 0

1B51762.D: V1B2368-CC2336 Continuing Calibration (10) page 3 of 4

Data Path : C:\msdchem\1\DATA\ Data File : 1b51762.D Acq On : 3 Jan 2011 9:38 am Operator : mohui Sample : cc2336-10 Misc : MS6764,V1B2368,W,,,,1 ALS Vial : 2 Sample Multiplier: 1

Quant Time: Jan 03 10:02:41 2011 Quant Method : C:\msdchem\1\METHODS\M1B2336.M Quant Title : method 524, zb624 60mx0.25mmx1.4um QLast Update : Thu Dec 09 09:30:59 2010 Response via : Initial Calibration

Abundance IIC: 1051762.Didata.ms	
480000	
460000	
400000	
	-
340000 K B B B B B B B B B B B B B B B B B	
	M M M
	DBENZE THALEN NZENE,
	CHLORC
	A-TRICHL
	1,2,3-
	CHLOR
	HEX
	9.00 20.00 21.00
	Page: 4

6.6 9

```
1B51762 D: V1B2368-CC2336 Continuing Calibration (10) page 4 of 4
```


VOLATILE ANALYSIS LOG

Batch ID: VIB >386

$\begin{array}{c c c c c c c c c c c c c c c c c c c $			n <i>ia</i>		·			•				÷	Print An	aly	st l nof	Name:	Mohn: Huch	<u> </u>
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	D	ate: 1218	i (" Standard n	afa					2	tande	ard '	Data	Analyst	7161	141	шт <i>¢і</i>	Lobe to Line P. Ma	'
Lot in Description Construct Construct <thconstruct< th=""> Construct</thconstruct<>	—	T - 4 H D -	standard D	Con	c.]	L	ור ±	¥.I		erin	ion	Jaia	Conc	4	പ	umns	ma bias	-
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		Lot # De	cription			1.00), <u>,</u> },		De	AIT	4		Cones	`	-01	(unijuo)	28-000	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	R)	10 9 49 4 1 1		1202	198		119- 16.0			N CT			10 1 40 20	· T	Иe	thod	V 524	
$-\frac{22}{10}$ $\frac{10}{100}$ 100 <th< td=""><td>2</td><td></td><td><u> </u></td><td></td><td></td><td>10010</td><td></td><td>. 11. I</td><td>·</td><td>14</td><td>7 </td><td></td><td>100-100-021</td><td>-</td><td></td><td></td><td></td><td></td></th<>	2		<u> </u>			10010		. 11. I	·	14	7 		100-100-021	-				
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	-		harless	199 94		10-10-1	10				-			I	nit	tial Ca	1. Method M181736	,
Manually integrated chromatographic peaks in the following reportable files have been perieved and verified to com with the criteria of Accutest SOP EQA044. Manually integrated chromatographic peaks in the following reportable files have been perieved and verified to com with the criteria of Accutest SOP EQA044. Date: 11/4/0 R Data File Sample ID Test M Yest Periods Date: 11/4/0 Date: 11/4/0 R Data File Sample ID Test M Yest Periods Sample MORE Secondary Life Stans Comments Pile 185710-01 Stans Amt Sample ID Test M Yest Periods Comments Pile 185710-01 Stans Amt Sample ID Test M Yest Periods Pile			HK A V					,47	· · .	 14		<u> </u>	3				· · · · · · · · · · · · · · · · · · ·	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			ntod chrom	1 3921 T	nhie	neal		n fh	e follu	1 via	T Tel	norfe	Hie files h	9VI	• ħ	een ve	viewed and verified to	comp
Supervisor Signature: Pull pate: $\frac{1}{4}\frac{4}{4}^{1/0}$ R Data File Sample ID Test M Vial ALS X Sample MOIl Secondary anti- more (u) L 18 Status (u) Comments product (u) 18,510,01 3.76 1 5.1 0.4 72.03 pm 5.2 18,510,01 3.76 - - - 0.4 72.03 pm 5.2 18,510,01 3.76 - - - 0.4 72.03 pm 5.2 18,510,01 3.76 - - - 0.4 72.03 pm 5.2 18,510,01 3.76 - - - 0.4 72.03 pm 5.2 10,51 1.76 - - - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 <td>TAT Any</td> <td>ith the criteria</td> <td>of Accutes</td> <td>t SOP</td> <td>EOA</td> <td>044.</td> <td>310</td> <td>\$67.</td> <td>h j</td> <td>1.10</td> <td></td> <td>hor e</td> <td>JJINSOL</td> <td></td> <td></td> <td>all</td> <td>nich da ana formioù io</td> <td>comp.</td>	TAT Any	ith the criteria	of Accutes	t SOP	EOA	044.	310	\$67.	h j	1.10		hor e	JJINSOL			all	nich da ana formioù io	comp.
R Data File Sample ID Test M Vial ALS Samp. And And and MORI Secondary L I I Situate and and Comments PH 185710-b1 879 1 71 9 04 72.03 pm 02 185710-b1 879 1 71 04 04 72.03 pm 02 185710-b1 879 1 71 04 04 72.03 pm 02 1055 1.0316-0.5 - - 0 - 04 - - 04 - - 04	¥¥ 1		OI FREE LES						Super	visor	Sign	ature		Ŵ	r	Il	ADate: 12/9/10	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ľï	R Data File	Sample		T T	est	jM	(Vial	ALS	San	ap.	MOH	I Secondary	L	IS	Status	Comments	 pH*
Image Image Image Image Image IBSTIGH BTB I Tit $0K$ 7:03 pm State I Tit $0K$ 7:03 pm State Image Image $0K$ $0K$ $0K$ $0K$		- Data Phe	Çampı.	,			h	#	#	Ar	nt	amt.	dilution	+	slu	l (Data)		<2
1851041 878 1 751 0K $7258pm$ $r1055$ $10316 \cdot 0.5$ -702 $62^{00} p5.55$ $10^{00} p5.55$ $r1055$ $10336 \cdot 1$ 3 -702 $62^{00} p5.55$ $10^{00} p5.55$ $r1055$ $10336 \cdot 1$ 3 -702 -702 $10^{00} p5.55$ $r1057$ $10356 \cdot 1$ 7 -702 -702 $10^{00} p5.55$ $r1057$ $10336 \cdot 10$ $10^{00} p5.55$ -702 -702 -702 $r1058$ $10336 \cdot 10$ $10^{00} p5.55$ -702 -702 -702 $r1058$ $10336 \cdot 10$ $71^{00} p5.55$ -702 -702 -702 $r1058$ $10336 \cdot 10$ $71^{00} p5.55$ -702 -702 -702 $r1058$ $100 p5.55$ $100 p5.55$ -702 -702 -702 -702 $r1059$ $100 p5.55$ $100 p5.55$ $100 p5.55$ -702 -702 -702 -702 -702 -702 -702 -702 -702 -702 -702 -702		· · ·								(mic)r g)	(u!)		$\frac{1}{1}$	╈		· · · · · · · · · · · · · · · · · · ·	
$r_{10}b = T_{11}b = 0, 5$ $r_{10}b = 1$ $r_{10}b = 1$ $r_{10}b = 1$ $r_{10}b = T_{11}b = 0, 5$ $r_{10}b = 1$ $r_{10}b = 1$ $r_{10}b = 1$ $r_{10}b = T_{11}b = 0, 5$ $r_{10}b = 1$ $r_{10}b = 1$ $r_{10}b = 1$ $r_{10}b = T_{11}b = 0, 5$ $r_{10}b = 1$ $r_{10}b = 1$ $r_{10}b = 1$ $r_{10}b = T_{11}b = 0, 5$ $r_{10}b = 1$ $r_{10}b = 1$ $r_{10}b = 1$ $r_{10}b = T_{11}b = 0, 5$ $r_{10}b = 1$ $r_{10}b = 1$ $r_{10}b = 1$ $r_{10}b = T_{11}b = 0, 5$ $r_{10}b = 1$ $r_{$		IRVIOU	15 70	1			ĺ		۱	5	ŧ	1.				ok	7:03.04	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-				-				1		1			Ħ				+
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		5106-	Insil	- 0,5				ļ	7				<u> </u>		1	104	· 52 ps 136 pr p	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1.48							1		1].	04		
$r 064 \overline{u} u 36 - \overline{u} $ $r 0 \overline{u} $ $r 0 \overline{u} $ $r 06 \overline{u} u 316 - 10 $ $r 0 \overline{u} $ $r 0 \overline{u} $ $r 06 \overline{u} u 316 - 10 $ $r 0 \overline{u} $	Ļ	51205	1127331	ا ب و			-			ļ	4	 		┞┤	+			
$\frac{1}{100} \frac{1}{100} \frac{1}{100} \frac{1}{100} \frac{1}{100} \frac{1}{100} \frac{1}{1000} \frac{1}{10000000000000000000000000000000000$			ELNIG	- V					4		ľ					AIL		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	· F						┿							H	+	·	<u> </u>	
		x106r	zinst	,- 5					٢	ĺ				-	- 1	Olt		
				***			\uparrow		L L		1			Π	T			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		51050	nors	10-10										ŀ	-[~p		
$\frac{1}{1008} = \frac{1}{1008} = 1$	ł		142121			•••			1				· ·			OL		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	·	21.07			· · · ·		+-	<u> </u>	<u> </u>					$\left \right $		<u> </u>		
$\frac{1}{10000000000000000000000000000000000$		1068	inni	6 - 40				1	8		{	· ·			1.	614		
$\frac{5^{-12} b9}{5^{-10}} = \frac{5^{-12} b9}{5^{-10}} = \frac{5^{-12} b9}{5^{-10}} = \frac{5^{-12} b9}{5^{-10} b1} = \frac{5^{-12}$						·	+		+		-{			$\left \right $	+			
УЗ 070 ILV 2336-10 ИП ИП (V) 9 (V) 9 (V		51369	IB1						4						ł			
									10		1-	· ·		H.	-	av	1946 DEMA, 8, 1014 . 4 days	(C)
		11070	1 11 233	6-10						·	*			Ц			- loopin	
						÷			-		7					·	· · ·	
		<u></u>					1				<u> </u>				-			<u> </u>
																		1.
							┢			+								+
	Ĺ									111	•							1
							ŀ		1		121	ç			1		······································	<u> </u>
										•							•	
									\boldsymbol{V}									
	\vdash		<u> </u>	·				-/	1					Ц			· · · · · · · · · · · · · · · · · · ·	<u></u>
	.																	
		1					+	\vdash	<u> </u>		. 1		· · ·	$\left \cdot \right $	$\left \cdot \right $			
								l								·		

MTX = Matrix Designate W for water, S for soil, O for oil. L+=Library Search. IS = Internal Standard Area. SU = Surrogate. Sample Amt = Volume (ML) or Weight (g); MOH amt.= volume (ul) extract injected * IF pH > 2, comment on sample result .

All strike outs must be initialed, dated and reason code applied as follows: 1 = reviewer correction error; 2 = transcription error;3 =computer miscalculation; 4 =analyst's correction error 13 277

Form: OR001-9

0) ~~ ~~

Instrument Run Log V1B2336 page 1 of 1

ACCUTEST.

VOLATILE ANALYSIS LOG

Batch ID: VIB>368

	· · ·	. –				10							VU .				~~~~		
						,		•					Print A	nal	ys	t I	Name:	mohui Huhi	-
a	e:	1134	1									·	Analys	t Si	gn	at	ure:	· Y	
		S	tandard Da	ta					5	tand	ard	Data	<u> </u>	· ·	_			60 to VSAN VI. MAA	
Ĺ	ot#	Desc	ription	Con	<u>c.</u>	L	ot	#	De	scrip	tion		Conc.	ļ	<u>_</u> C	ol	lumns	29-64	
او زارم	174.30	1	xr A [112/100	n 0	wn	1.7.	\$1		A 514			199-1900	4	_	_		1 100 -	
	-57	Ĩ	67 L	14 9 H			<u> </u>	v *		8 5-74			190 - 5929	Ļ	N	Ie	thod_	1524	
	- 54		far B	100-54	P7		·	56		257	•	_	100		_			init vool	
	-55	t	yr Awalow	190 %	-		<u>.</u>	23		n,			400 1900		I	iit	ial Ca	l. Method	
4	- 64	-1	Vrok	3=4144	01902	·L	-	<u>) 5</u>		10			399]					
Ia (it)	nually i h the cr	ntegra iteria (ted chrom2 of Accutest	atogra SOP I	iphic EQA	peal 044.	ks j	in th . 74	e foll Super	owin Zwi visor	g reg Sign:	port: atur	able files	ha'	ve	ь <u>Р-</u>	een re	Date: 1/3	com
R	Data	File	Sample	ID	T	est	М	(Vial	ALS	Sar	np.	MÕI	I Secondar	y L	1	S	Status	Comments	[pH
	, .			·			TX	#	#	AI (ml)	nt vr ø}	amt. fulb	dilution	[+	S	U	(Data)		< 2
	13,51	561 :	878						I	5	, -	-					p.L	9:06 mm	
	51	>6~	u 2336.	-12					>						-	Ł	6714-	10114.9. 6. 5. 6. Anovia - 101 mil 102	
	ñ	>63	mai						3					-			-14		
	n	> 14	BJ						-			•			-	Ļ	or	She just 6 to 3. O ke, to see	
n	57	765	1+ 65225	r - 13	6: {~	564 14	2	r	r.		* ie		n			F	OK		
	ก	, , , , , , , , , , , , , , , , , , ,	746523	6-1		{	i.	4	6	5			17			-	0%		
	<u> </u>	おしつ	7+65236	. 2)	2	7						-	,	04		-
	5	1568	1+65236	.3				>	8			•			-	/	016		/
	5	4269	7+65236	- 4				*	1						•	1	44		1
-	5	170	7465236	-5	.			*	10						-	1	314		
_	5	15.1	1+65236	- 6				,	1,								PK.		/
_	r	\$>>~	7+65236	- 7				3	17						-	1	04		1
-	5	irry	TH65236	- 8			7/-#	r	• 4						-	~	or		1
_		1)74	7465236	(m			5 4	۲	14	. •					-	,	or	2 . 5 . 4 . 4 . 4 12 . 4 . 4 1 1 4 50 . 1 5 5	./
-	1	\$ >>5	7465236	. 166			II.	6	'r						-	-	ar		
_	5	1776	1465225	- 12			2	,	1.							/	oje-		/
	2	6222	7+65230-	- 1	د تا جا زا اهک	1 1	1	1	1	1	· ·	÷	↓`	+		/	or .		1

MTX = Matrix Designate W for water, S for soil, O for oil. L+ =Library Search. IS = Internal Standard Area. SU = Surrogate. Sample Amt = Volume (ML) or Weight (g); MOH amt.= volume (ul) extract injected * IF pH > 2, comment on sample result.

All strike outs must be initialed, dated and reason code applied as follows: 1 = reviewer correction error; 2 = transcription error; 3 = computer miscalculation; 4 = analyst's correction error

form: OR001-9 Rev. Date: 2/14/2007 101

141 of 142

JA65236
	Pr	that A material Manager Manager A 18 . 5
Date:) 13 17	Aı	alyst Signature:
Standard Data	Standard Data	
Lot # Description Conc. Lot #	Description Co	one. Columns: 2B-lim
		Method y 5 24
		
		Initial Cal. Method M 13 >33

Manually integrated chromatographic peaks in the following reportable files have been reviewed and verified to comply with the criteria of Accutest SOP EQA044. 1

						Super	visor Sigr	lature	:		b	~	2	Date:/_	<u>.</u>
R	Data File	Sample ID	Test	M T X	Vial #	ALS #	Samp. Amt (ml or g)	MOH amt (ul)	Secondary dilution	L +	IS	S U	Status (Data)	Comments	pH* < 2
	1851778	7465230-2	6608 Twilt	21-8	ı	18	5.4.1		14	1	-	-	•16-		
	51,224	7165230.3	4	7114	ì	, •				-			or		
	51300	7465290-1	(74 •245	u	ļ	20				ĺ	-	1	PIL		
	51081	7+65290.2	J.	27.4	3	21		•.			$\left \right $		01 ⁴		1
	מזרות	7+65284-24 7+68284-24	66=9 64=9 113	5	i	بب					$\left \right $	/	Ø IL	- ·	
÷					~		$\overline{}$						-		
														·····	
				Π			/	•						· · · · · · · · · · · · · · · · · · ·	
							1							· · ·	-
							mit					1			1
						1	.113								
			•			1			· ·					·····	
			· · ·				-								
					7							Ť			
					/				······	Ť					
				1								╞			
				t		·	· · · ·			1	1				+

MTX = Matrix Designate W for water, S for soil, O for oil. L+=Library Search. IS = Internal Standard Area. SU = Surrogate. sample Amt = Volume (ML) or Weight (g); MOH amt.= volume (ul) extract injected * IF pH > 2, comment on sample result.

All strike outs must be initialed, dated and reason code applied as follows: 1 = reviewer correction error; 2 = transcription error; = computer miscalculation; 4 = analyst's correction error orm: OR001-9

Rev. Date: 2/14/2007

103