SITE MANAGEMENT PLAN STATUS REPORT REPORT PERIOD: JULY 1, 2023 THROUGH SEPTEMBER 30, 2023

HARMON RAILROAD YARD
OPERABLE UNITS: OU-I AND OU-II
WESTCHESTER COUNTY, NEW YORK
SITE NO. 3-60-010

SUMMARY OF WORK COMPLETED DURING THE REPORTING PERIOD: This status report summarizes the remedial actions and monitoring completed between July 1, 2023 and September 30, 2023 at the Harmon Railroad Yard Operable Units: OU-I and OU-II, Westchester County, New York, NYSDEC Site No. 3-60-010 (the Site). This status report was prepared in accordance with the provisions presented in the document tilted Metro-North Railroad, Harmon Railroad Yard, Westchester, County, New York, Site Management Plan OU-I and OU-II, NYSDEC Site Number: 3-60-010 dated December 2011 as revised November 11, 2012, January 31, 2015, and January 31, 2016 (the SMP). During this report period, depth to free product and groundwater measurements were completed as outlined in the SMP and free product was removed from select wells. Depth to free product and static water level measurements were also made in off-site monitoring wells that were installed in September 2016.

DEPTH TO GROUNDWATER AND FREE PRODUCT MEASUREMENTS: The wells monitored, and the depth to groundwater and free product measurements completed during this report period are presented on the logs included in Attachment A. A groundwater contour map developed using static water levels measured between August 14, 2023 and August 17, 2023 is included as Figure 1.

FREE PRODUCT REMOVAL RECORDS: The monitoring logs in Attachment A document the amount of free product removed (if any) from specific wells during this report period. A summary of the amount of free product removed from each well during the current report period is presented in Table 1. The total amount of free product removed from each well during prior report periods (i.e., between December 1, 2012 and June 30, 2023) is summarized in Table 2. A spider diagram presenting the maximum free product thicknesses measured, and the amount of free product removed from select wells during the current report period (i.e., between July 1, 2023 and September 30, 2023) and the preceding report period (i.e., between April 1, 2023 and June 30, 2023) is included as Figure 2.

During the report period, wells RW-1, FA4-8, and AI2-3 contained Spill BusterTM systems (i.e., a pumping system that continuously monitors/removes free product). A bailer or portable Spill BuddyTM was used to remove free product from other wells containing sufficient amounts of free product.

• Compared to the previous report period (i.e., April 1, 2023 to June 30, 2023), lower amounts of free product were removed from wells RW-1 and AI2-3 in the current report period (i.e., July 1, 2023 to September 30, 2023). Specifically, 14.8 gallons of free product were removed from well AI2-3 in the current report period compared to 15.6 gallons in the previous report period and 37.6 gallons of free product were removed from well RW-1 in the current report period compared to 54.4 gallons of free product removed from well RW-1 in the previous report period. Free product was not removed from well FA4-8 during the current or previous report periods. [Note: During the report period, the Spill Buster in well FA4-8 was reportedly not operational.]

A total of approximately 58.9 gallons of free product was removed from wells at the Site during the current report period. Most of the free product was removed from NAPL Area L4 (i.e., approximately 44.1 gallons). The total amount of free product removed in the previous reporting period (i.e., between April 1, 2023 to June 30, 2023) was approximately 79.9 gallons. In a similar calendar period (i.e., between July 1, 2022 to September 30, 2022) 162.9 gallons were removed. Since January 1, 2013, approximately 5,126 gallons of free product or approximately 111 gallons per reporting period (i.e., every three months) has been removed from the Site.

The free product removed is placed in 55-gallon drums, which are stored in a waste accumulation area. Samples were collected from four full 55-gallon drums on August 1, 2023, and submitted to York Analytical Laboratories, Inc. (York) for testing of polychlorinated biphenyls (PCBs). As presented in the reports prepared by York (refer to Attachment B), PCBs were not detected at concentrations greater than 50 parts per million (ppm) in any of the four samples tested. Drums free product were not removed from the Site for disposal in the current report period.

Note: On November 2, 2018, a request was submitted to the NYSDEC to change the disposal requirements of the collected free product. Specifically, since PCBs have not been detected in samples of free product removed from OU-II wells at concentrations greater than 50 parts per million (ppm) since August 26, 2002, MNR requested that further disposal of free product collected from OU-II wells be disposed of as non-hazardous petroleum waste provided that waste characterization testing confirms PCB concentrations below 50 ppm. In the event a PCB concentration in excess of 50 ppm is detected in a free product accumulation drum, the contents of the drum would be disposed of as a TSCA regulated waste. NYSDEC approved this request in a letter dated January 4, 2019.

GROUNDWATER SAMPLING AND TESTING: Groundwater sampling and testing of wells located in OU-II was not completed during the report period. However, a summary of the detected constituents in the groundwater samples collected between March 2012 (i.e., the initial quarter completed under the SMP) and March 2023 (i.e., the most recent sampling event) is included in the tables listed below for reference purposes. The results of field duplicate, field blank, and trip blank samples collected during the monitoring events are included on the summary tables. MS/MSD results are included in the reports prepared by the analytical laboratory.

- volatile organic compounds (VOCs), (Table 3);
- semi-volatile organic compounds (SVOCs), (Table 4);
- PCBs (Table 5);
- metals (Table 6); and
- per- and polyfluorinated alkyl substances (PFAS) and 1,4-dioxane (Table 7).

[Note: The Data Usability Summary Report (DUSR) related to PFAS testing completed in 2023 has not been received as of the date of this report. This DUSR will be included in the next status report (if received).]

The next groundwater sampling event is currently scheduled to be completed in August 2024. During the August 2024 sample event, samples will be collected from monitoring wells VE1-2, VE1-4, VE2-1, VE3-1, VE4-11, and DAY-1. These samples will be submitted to an analytical laboratory for testing of volatile organic compounds, semi-volatile organic compounds, polychlorinated biphenyls, and select metals. Samples will be collected from monitoring wells VE1-4, VE2-1, and VE4-11 and tested

for PFAS and 1,4-dioxane. Quality assurance/quality control samples that will be collected during the August 2024 sampling event include: a field duplicate, MS/MSD, trip blank (VOCs and PFAS only), and an equipment blank. Samples will also be collected from five on-site monitoring wells (i.e., FA4-9, FA4-16, VE4-7, VE4-9, and PGW-2) and six off-site monitoring wells (i.e., OUII-A through OUII-F) and tested for PCBs. No additional QA/QC samples will be collected/tested from these monitoring wells. [Note: If sufficient free product is present in any of these eleven monitoring wells, a sample of the free product will be submitted for testing of PCBs.] Laboratory packages will be submitted for data validation.

OFF-SITE MONITORING WELLS: Off-Site monitoring wells designated OUII-A through OUII-F were installed between September 20 and 22, 2016 (refer to Figure 1 for locations). Static water level and free product thickness measurements in these monitoring wells commenced on October 4, 2016. The results of the monitoring completed during the current report period for these wells are provided in Attachment C. As shown, free product was observed in monitoring wells OUII-A, OUII-B, OUII-D, OUII-E, and OUII-F, ranging in thickness between 0.01 ft. (monitoring well MW-E) and 1.67 ft. (monitoring well MW-D). Free product was not recovered from the off-site monitoring wells during the report period.

Table 8 presents the range of static water levels and the free product thickness measured in each of the off-site wells during the monitoring events completed to date. Figure 3 shows the average free product thickness detected in the off-site monitoring wells by report period. Historically, free product has been consistently detected in off-site wells OUII-A, OUII-B, OUII-D, and OUII-F; and occasionally detected in off-site well OUII-C and OUII-E. [Note: Free product was detected in well OUII-E on one occasion in the previous report period and once in the current report period at a reported thickness of 0.01 ft. on both occasions. These measurements may have been the result of equipment error.] As shown on Figure 3, the amount of free product in the off-site wells is seasonally affected, with the highest amounts in the late summer and fall seasons. Except for OUII-D, which had a decreasing trend during the summer months in 2017 through 2021, but an increase in 2022 and 2023; the thicknesses of free product measured in the off-site monitoring wells during this period are comparable or lower to the thicknesses measured in previous report periods during a similar timeframe (i.e., July through September). The average thickness of free product detected in the off-site wells has generally decreased, or remained consistent, since monitoring began in 2016.

Hydrographs depicting the uncorrected groundwater elevation and free product elevation in each offsite monitoring well are provided in Attachment C. As shown on the hydrographs the amount of free product detected typically decreases when the groundwater elevation increases.

AREA L1 SHEET PILE WALL WELLS: Monitoring well WB-9 is located at the southern terminus of the sheet pile wall installed along the western boundary of Area L1 and monitoring well SP-North is located at the northern terminus of the sheet pile wall in Area L1 (refer to Figure 1). Routine monitoring of WB-9 commenced on November 16, 2016, and on October 4, 2016 for SP-North to evaluate the potential for free product to migrate around the sheet pile wall. To date, free product has only been detected on two occasions in SP-North (i.e., a reported thickness of 0.03 ft. on March 15, 2017, and a reported thickness of 0.11 ft. on March 20, 2020). The validity of these reported free product thickness measurements is questionable (e.g., free product has not been detected in well SP-North subsequent to the March 20, 2020 monitoring event). To date, free product has not been detected in WB-9. The static water level and free product thickness records completed during this report period for these wells are provided in Attachment A.

BI-ANNUAL OU-I AND OU-II INSPECTION: The most recent bi-annual inspection of OU-I and OU-II was completed on April 21, 2023 by MNR.

During the April 21, 2023 inspection of the OU-I and OU-II areas, the following item requiring corrective actions were identified.

- Cracks were observed in the asphalt cover of OU-I.
- A missing cap was observed on well P-7.

The next bi-annual inspection is scheduled for October 2023.

EMERGENCY OU-I AND **OU-II** INSPECTION: An emergency inspection of OU-I and OU-II was completed on July 10, 2023 by MNR following a heavy rain event on July 9, 2023. Items requiring corrective actions were not identified during the July 10, 2023 inspection of the OU-I and OU-II areas. A copy of the Emergency Inspection Report is included in Attachment D.

Work Anticipated For The Upcoming Report Period and Schedule: During the upcoming reporting period (i.e., between October 1, 2023 and December 31, 2023), free product and groundwater monitoring will continue in accordance with the schedule presented in the SMP (i.e., as modified by the schedule presented in the March 2014 CAP). As such, it is anticipated that free product will be removed from wells RW-1 and AI2-3 using the Spill BusterTM system, and the Spill BusterTM in FA4-8 (if it can be repaired and determined to be functional). [Note: Spill BusterTM/ Spill BuddyTM systems are reportedly no longer serviced. As such, MNR is currently in the process of identifying alternative options, and the results of this evaluation will be presented in a subsequent status report.] The off-site monitoring wells will continue to be monitored on a weekly basis and free product removed if warranted.

Note: If 0.2 feet, or more, of free product is encountered in a 4-inch diameter, or larger on-site well, or 0.5 ft. or more of free product is measured in on-site wells less than 4-inches in diameter; it should be removed. If 0.2 feet, or more, of free product is encountered in any off-site monitoring well (i.e., OUII-A through OUII-F) it should be removed using a bailer or other appropriate method.

In the event free product drums are filled during the next reporting period, samples should be collected and tested, as outlined in the SMP. Following testing, full free product drums should be transported off the Site and disposed of in accordance with applicable regulations. [Note: If PCB concentrations are below 50 ppm, the drum contents will be disposed of as a non-hazardous petroleum waste. If a PCB concentration in excess of 50 ppm is detected in a free product accumulation drum, the contents of the free product drum will be disposed of as a TSCA regulated waste.]

Monitoring well VE 3-1 should be developed to remove the apparent blockage encountered in August 2022 and March 2023. If the apparent blockage observed during the August 2022 and March 2023 groundwater sampling event in monitoring well VE 3-1 cannot be removed, a replacement well will be required.

The next OU-I/OU-II inspection is due on or about October 31, 2023. The next groundwater sampling and testing will be completed on, or about, August 31, 2024. A SMP status report for the work completed during the upcoming period (i.e., October 1, 2023 through December 31, 2023) will be submitted in January 2024.

If free product is identified in either WB-9 or SP-North additional measurements should be made on subsequent days. In the event free product is confirmed, the free product should be removed with a bailer, and the well(s) checked in subsequent days to assess the presence of free product and the need for additional remedial measures.

If comments are received from the NYSDEC on the August 31, 2022 document describing an alternative approach to assess the free product impact in the OUII area during the upcoming period, the document should be revised and work described should be initiated, as appropriate.

A PRR for the reporting period January 1, 2022 through January 1, 2025, will be submitted on, or before, January 31, 2025.

Tables

Table 1:	Free Product Removal Totals: July 1, 2023 through September 30, 2023
Table 2:	Historic Free Product Removal Totals: December 1, 2012 through June 30, 2023
Table 3:	Summary of VOCs: Groundwater Samples
Table 4:	Summary of SVOCs: Groundwater Samples
Table 5:	Summary of PCBs: Groundwater Samples
Table 6:	Summary of Metals: Groundwater Samples
Table 7:	Summary of Emerging Contaminants: Groundwater Samples
Table 8:	Off-Site Wells Static Water Levels and Range of Free Product Thickness

Figures

Figure 2: Summary of Free Product Removal for the Report Periods July 1, 2023 – September

30, 2023 and April 1, 2023 – June 30, 2023

Figure 3: Average Thickness of Free Product in Off-Site Wells by Report Period

Attachments

Attachment A: Well Monitoring Logs and Free Product Removal Records: July 1, 2023 – September

30, 2023

Attachment B: Analytical Laboratory Report

Attachment C: Off-Site Monitoring Well Hydrographs

Attachment D: Emergency Site Inspection

F:\Clients - Major\MNR\Harmon Yard\Remediation Reports\OU I & OU II\OUI-OUII Status Reports\2023-10 Q3\Site ID 360010 OUI OUII Status Report July-Sept 2023.docx

Table 1

Harmon Railroad Yard OU-I and OU-II Westchester County, New York Site No. 3-60-010

Free Product Removal Totals Current Report Period: July 1, 2023 through September 30, 2023

OU I										
Well ID	Gallons									
well ib	Removed									
V1	0									
V2	0									
V3	0									
V4	0									
Total	0									

		OU II								
Free Produc	t AREA L1	Free Produc	t AREA L2							
Well ID	Gallons Removed	Well ID	Gallons Removed							
AI1-1	0	AI2-2	0							
AI1-4	0	AI2-3*	14.8							
AI1-8	0	VE2-1	0							
AI1-11	0	Total	14.8							
AI1-12	0									
AI1-15	0	Free Product AREA L								
AI1-16	0	AI3-4	0							
AI1-17	0	AI3-5	NM							
SP-North	0	AI3-6	0							
VE1-1	0	VE3-1	0							
VE1-2	0	Total	0							
VE1-3	NM									
VE1-4	NM									
WB-9	0									
Total	0									

NM = Not measured

Free product was removed from other locations using a portable Spill Buddy™

FA4-10	INIVI
FA4-11	0
FA4-12	0
FA4-13	0
FA4-14	2.01
FA4-15	0
FA4-16	0
FA4-17	2.50
FA4-18	0.25
FA4-19	NM
FA4-20	0
FA4-21	0
FA4-23	0
PGW-2	0
RW-1*	37.6
VE4-1	0
VE4-5	1.75
VE4-6	0
VE4-7	0
VE4-8	0
VE4-9	0
VE4-10	0
VE4-11	NM
VE4-12	0
VE4-13	NM
Total	44.11

Free Product AREA L4

Well ID

DAY-1 FA4-8*

FA4-9

FA4-10

Gallons

Removed

0

0

NM

^{*}Free product was removed from these wells using a Spill Buster™ system (i.e., a system installed within the well that continuously monitors/removes free product) and from other locations using a portable Spill Buddy™.]

Table 2

Harmon Railroad Yard OU-I and OU-II Westchester County, New York Site No. 3-60-010

Historic Free Product Removal Totals (i.e., Prior to Current Report Period) December 1, 2012 - June 30, 2023

OUI										
Well ID	Gallons									
well ib	Removed									
V1	5.18									
V2	5.235									
V3	19.08									
V4	167.31									
Total	196.805									

Free Produ	ct AREA L1								
Well ID	Gallons								
Well ID	Removed								
AI1-1	0.03								
AI1-4	0.04								
AI1-8	0.06								
AI1-11	0.122								
AI1-12	0.18								
AI1-15	0.38								
AI1-16	0								
AI1-17	9.14								
VE1-1	24.89								
VE1-2	0.01								
VE1-3	0.1								
VE1-4	0								
Total	34.882								
<u> </u>	-								

OU II												
Free Produc	t AREA L2											
Well ID	Gallons											
weilib	Removed											
AI2-2	1.63											
AI2-3*	1071.63											
VE2-1	0											
Total	1073.26											
	10,0.10											

Free Product AREA L3												
AI3-4	0.34											
AI3-6	0.5											
VE3-1	15.88											
Total	16.72											

Gallons
Removed
0
616.26
4.48
0.13
160.47
13.67
101.8
312.43
87.79
76.56
88.1
119.97
0
0
0.54
1.17
23.83
1879.8
0
237.66
2.26
0.08
2.92
9.41
5.56

VE4-11 VE4-12 VE4-13

Total

3745.89

Free Product AREA L4

NM = Not measured

Free product was removed from other locations using a portable Spill Buddy™

^{*}Free product was removed from these wells using a Spill Buster™ system (i.e., a system installed within the well that continuously monitors/removes free product) and from other

Table 3 NYSDEC Site #360010 Harmon Yard Waste Water Area

Summary of Detected Volatile Organic Compounds Groundwater Samples

	1														1	est Location	and Sample	Date													
	Construction		VE 1-2														VE 1-4														
Compound	Groundwater Standard or								,,,,						Duplicate									,,,,							T
	Guidance Value (1)	3/27/12	9/12/12	4/2/13	9/25/13	5/27/14	5/20/15	5/17/16	8/2/17	11/27/18	9/10/19	6/3/20	8/25/21	8/11/22	-	3/9/23	3/27/12	9/12/12	4/2/13	9/25/13	5/27/14	5/20/15	5/18/16	8/2/17	11/27/18	9/10/19	6/3/20	8/24/21	8/11/22	3/9/23	03092023DUP
1,2,4-Trimethylbenzene	5	ND [5.0]	ND [1.0]	ND [1.0]	ND [1.0]	ND [0.20]	ND [0.11]	ND [0.11]	ND [0.20]	ND [1.0]	ND [1.0]	ND [1.0]	ND [5.0]	ND [5.0]	ND [5.0]	ND [5.0]	ND [5.0]	ND [1.0]	ND [1.0]	ND [1.0]	ND [0.20]	ND [0.11]	ND [0.11]	ND [0.20]	ND [1.0]	ND [1.0]	ND [1.0]				
1,3,5-Trimethylbenzene	5	ND [5.0]	ND [1.0]	ND [1.0]	ND [1.0]	ND [0.20]	ND [0.14]	ND [0.14]	ND [0.25]	ND [1.0]	ND [1.0]	ND [1.0]	ND [5.0]	ND [5.0]	ND [5.0]	ND [5.0]	ND [5.0]	ND [1.0]	ND [1.0]	ND [1.0]	ND [0.20]	ND [0.14]	ND [0.14]	ND [0.25]	ND [1.0]	ND [1.0]	ND [1.0]				
Benzene	1	ND [5.0]	ND [1.0]	ND [1.0]	ND [1.0]	ND [0.20]	ND [0.10]	ND [0.10]	ND [0.18]	ND [0.50]	ND [0.50]	ND [0.5]	ND [5.0]	ND [5.0]	ND [5.0]	ND [5.0]	ND [5.0]	ND [1.0]	ND [1.0]	ND [1.0]	ND [0.20]	ND [0.10]	ND [0.10]	ND [0.18]	ND [0.50]	ND [0.5]	ND [0.5]				
Chlorobenzene	5	ND [5.0]	ND [1.0]	ND [1.0]	ND [1.0]	NT	ND [0.080]	ND [0.080]	ND [0.17]	ND [1.0]	ND [1.0]	ND [1.0]	ND [5.0]	ND [5.0]	ND [5.0]	ND [5.0]	ND [5.0]	ND [1.0]	ND [1.0]	ND [1.0]	NT	ND [0.080]	ND [0.080]	ND [0.17]	ND [1.0]	ND [1.0]	ND [1.0]				
Ethylbenzene	5	ND [5.0]	ND [1.0]	ND [1.0]	ND [1.0]	ND [0.20]	ND [0.080]	ND [0.080]	ND [0.18]	ND [1.0]	ND [1.0]	ND [1.0] J	ND [5.0]	ND [5.0]	ND [5.0]	ND [5.0]	ND [5.0]	ND [1.0]	ND [1.0]	ND [1.0]	ND [0.20]	ND [0.080]	ND [0.080]	ND [0.18]	ND [1.0]	ND [1.0]	ND [1.0] J				
Isopropylbenzene	5	ND [5.0]	ND [1.0]	ND [1.0]	ND [1.0]	ND [0.20]	ND [0.13]	ND [0.13]	ND [0.23]	ND [1.0]	ND [1.0]	ND [1.0]	ND [5.0]	ND [5.0]	ND [5.0]	ND [5.0]	ND [5.0]	ND [1.0]	ND [1.0]	ND [1.0]	ND [0.20]	ND [0.13]	ND [0.13]	ND [0.23]	ND [1.0]	ND [1.0]	ND [1.0]				
Methyl tert-butyl ether (MTBE)	10	ND [5.0]	ND [1.0]	ND [1.0]	ND [1.0]	ND [0.20]	ND [0.070]	ND [0.070]	ND [0.22]	ND [1.0]	ND [0.87]	ND [0.87] J	ND [5.0]	ND [5.0]	ND [5.0]	ND [5.0]	ND [5.0]	ND [1.0]	ND [1.0]	ND [1.0]	ND [0.20]	ND [0.070]	ND [0.070]	ND [0.22]	ND [0.87]	ND [0.87]	ND [0.87] J				
Naphthalene	10	1.7 J, B	ND [10]	1.4 J	ND [10]	ND [10]	ND [1.0]	ND [1.0]	ND [1.0]	ND [0.20]	NT	NT	NT	ND [0.87]	ND [1.0]	ND [1.0]	0.93 J, B	ND [10]	ND [10]	ND [10]	ND [10]	ND [1.0]	ND [1.0]	ND [1.0]	ND [0.20]	NT	NT	NT	ND [1.0]	ND [1.0]	ND [1.0]
n-Butylbenzene	5	ND [5.0]	ND [1.0]	ND [1.0]	ND [1.0]	ND [0.20]	ND [0.12]	ND [0.12]	ND [0.19]	ND [1.0]	ND [1.0]	ND [1.0]	ND [5.0]	ND [5.0]	ND [5.0]	ND [5.0]	ND [5.0]	ND [1.0]	ND [1.0]	ND [1.0]	ND [0.20]	ND [0.12]	ND [0.12]	ND [0.19]	ND [1.0]	ND [1.0] J	ND [1.0]				
n-Propylbenzene	5	ND [5.0]	ND [1.0]	ND [1.0]	ND [1.0]	ND [0.20]	ND [0.11]	ND [0.11]	ND [0.24]	ND [1.0]	ND [1.0]	ND [1.0]	ND [5.0]	ND [5.0]	ND [5.0]	ND [5.0]	ND [5.0]	ND [1.0]	ND [1.0]	ND [1.0]	ND [0.20]	ND [0.11]	ND [0.11]	ND [0.24]	ND [1.0]	ND [1.0]	ND [1.0]				
o-Xylene	5	ND [5.0]	ND [1.0]	ND [1.0]	ND [1.0]	ND [0.20]	ND [0.13]	ND [0.13]	ND [0.19]	ND [1.0]	ND [1.0]	ND [1.0]	ND [5.0]	ND [5.0]	ND [5.0]	ND [5.0]	ND [5.0]	ND [1.0]	ND [1.0]	ND [1.0]	ND [0.20]	ND [0.13]	ND [0.13]	ND [0.19]	ND [1.0]	ND [1.0]	ND [1.0]				
p- & m- Xylenes	NS	ND [10]	ND [2.0]	ND [1.0]	ND [2.0]	ND [0.50]	ND [0.20]	ND [0.20]	ND [0.32]	ND [1.0] J	ND [1.0] J	ND [1.0]	ND [10]	ND [10]	ND [10]	ND [10]	ND [10]	ND [2.0]	ND [2.0]	ND [2.0]	ND [0.50]	ND [0.20]	ND [0.20]	ND [0.32]	ND [1.0] J	ND [1.0] J	ND [1.0]				
p-Isopropyltoluene	NS	ND [5.0]	ND [1.0]	ND [1.0]	ND [1.0]	ND [0.20]	ND [0.12]	ND [0.12]	ND [0.21]	ND [1.0]	ND [1.0]	ND [1.0]	ND [5.0]	ND [5.0]	ND [5.0]	ND [5.0]	ND [5.0]	ND [1.0]	ND [1.0]	ND [1.0]	ND [0.20]	ND [0.12]	ND [0.12]	ND [0.21]	ND [1.0]	ND [1.0]	ND [1.0]				
sec-Butylbenzene	5	ND[5.0]	ND[5.0]	ND[5.0]	ND[5.0]	ND[5.0]	ND [1.0]	ND [1.0]	ND [1.0]	ND [0.20]	ND [0.12]	ND [0.12]	ND [0.23]	ND [1.0]	ND [1.0]	ND [1.0]	ND[5.0]	ND[5.0]	ND[5.0]	ND[5.0]	ND[5.0]	ND [1.0]	ND [1.0]	ND [1.0]	ND [0.20]	ND [0.12]	ND [0.12]	ND [0.23]	ND [1.0]	ND [1.0]	ND [1.0]
tert-Butylbenzene	5	ND [5.0]	ND [1.0]	ND [1.0]	ND [1.0]	ND [0.20]	ND [0.11]	ND [0.11]	ND [0.26]	ND [1.0]	ND [1.0]	ND [1.0]	ND [5.0]	ND [5.0]	ND [5.0]	ND [5.0]	ND [5.0]	ND [1.0]	ND [1.0]	ND [1.0]	ND [0.20]	ND [0.11]	ND [0.11]	ND [0.26]	ND [1.0]	ND [1.0]	ND [1.0]				
Toluene	5	ND [5.0]	ND [1.0]	2.1	0.48 J	ND [0.20]	ND [0.12]	ND [0.12]	ND [0.22]	ND [1.0]	ND [1.0]	ND [1.0]	ND [5.0]	ND [5.0]	ND [5.0]	ND [5.0]	ND [5.0]	ND [1.0]	ND [1.0]	ND [1.0]	ND [0.20]	ND [0.12]	ND [0.12]	ND [0.22]	ND [1.0]	ND [1.0] J	ND [1.0] J				
Xylenes, Total	5	ND [15]	ND [3.0]	ND [3.0]	ND [3.0]	ND [0.60]	ND [0.33]	ND [0.33]	ND [0.51]	ND [1.0]	ND [1.0]	ND [1.0]	ND [15]	ND [15]	ND [15]	ND [15]	ND [15]	ND [3.0]	ND [3.0]	ND [3.0]	ND [0.60]	ND [0.33]	ND [0.33]	ND [0.51]	ND [1.0]	ND [1.0]	ND [1.0]				

														1	est Location	and Sample I	Date												
Compound	Groundwater		VE 2-1														VE 3-1												
Compound	Standard or												DUP																
	Guidance Value (1)	3/28/12	9/12/12	4/2/13	9/24/13	5/28/14	5/20/15	5/18/16	8/3/17	11/28/18	9/11/19	6/3/20	6/3/2020	8/25/21	8/11/22	3/9/23	3/27/12	9/11/12	4/2/13	9/25/13	5/28/14	5/19/15	5/18/16	8/3/17	11/28/18	9/11/19	6/3/20	8/25/21	3/9/23
1,2,4-Trimethylbenzene	5	ND [5.0]	ND [1.0]	ND [1.0]	ND [1.0]	ND [0.20]	ND [0.11]	ND [0.11]	ND [0.11]	ND [0.20]	ND [1.0]	ND [1.0]	3.4 J	2.6 J	ND [5.0]	5.1	5.1	3.60	6.4	3.9	4.5	5.2	3.6	7.60	3.50				
1,3,5-Trimethylbenzene	5	ND [5.0]	ND [1.0]	ND [1.0]	ND [1.0]	ND [0.20]	ND [0.14]	ND [0.14]	ND [0.14]	ND [0.25]	ND [1.0]	ND [1.0]	1.9 J	1.2 J	ND [5.0]	2.0 J	2.2 J	1.70	2.7	1.9	2	2.7	1.9	3.50	2.2 JH				
Benzene	1	ND [5.0]	ND [1.0]	ND [1.0]	ND [1.0]	ND [0.20]	ND [0.10]	ND [0.10]	ND [0.10]	ND [0.18]	ND [0.50	ND [0.5]	ND [5.0]	ND [1.0]	ND [1.0]	ND [1.0]	ND [0.40]	ND [0.10]	ND [0.10]	0.25 J	ND [0.5]								
Chlorobenzene	5	ND [5.0]	ND [1.0]	ND [1.0]	ND [1.0]	NT	ND [0.080	ND [0.080]	ND [0.080]	ND [0.17]	ND [1.0]	ND [1.0]	2.6 J	2.4 J	ND [5.0]	3.6 J	2.5 J	2.70	3.6	3.5	NT	2.9	2.4	4.20	1.40				
Ethylbenzene	5	ND [5.0]	ND [1.0]	ND [1.0]	ND [1.0]	ND [0.20]	ND [0.080	ND [0.080]	ND [0.080]	ND [0.18]	ND [1.0]	ND [1.0] J	ND [5.0]	ND [5.0]	ND [5.0]	ND [5.0]	0.81 J	0.40 J	0.48 J	0.34 J	0.62 J	0.39 J	0.33 J	0.42 J	ND [1.0] J				
Isopropylbenzene	5	ND [5.0]	ND [1.0]	ND [1.0]	ND [1.0]	ND [0.20]	ND [0.13]	ND [0.13]	ND [0.13]	ND [0.23]	ND [1.0]	ND [1.0]	ND [5.0]	ND [1.0]	0.46 J	0.31 J	0.42 EJ	0.42 J	0.28 J	0.52 J	ND [1.0]								
Methyl tert-butyl ether (MTBE)	10	ND [5.0]	ND [1.0]	ND [1.0]	ND [1.0]	ND [0.20]	ND [0.070	ND [0.070]	ND [0.070]	ND [0.22]	ND [0.87]	ND [0.87] J	ND [5.0]	ND [1.0]	ND [1.0]	ND [1.0]	ND [0.40]	ND [0.070]	ND [0.070]	ND [0.22]	ND [0.87] J								
Naphthalene	10	ND [10]	ND [10]	ND [10]	1.3 J,B	1.3 J,B	ND [1.0]	ND [1.0]	ND [1.0]	ND [0.20]	NT	NT	NT	NT	ND [1.0]	ND [1.0]	5.6 J, B	6.6 J	ND [10]	9.3 J	10	9.00	9.4	6.2	8	NT	NT	NT	1.0
n-Butylbenzene	5	ND [5.0]	ND [1.0]	ND [1.0]	ND [1.0]	ND [0.20]	ND [0.12]	ND [0.12]	ND [0.12]	ND [0.19]	ND [1.0]	ND [1.0]	1.1 J	ND [5.0]	ND [5.0]	ND [5.0]	ND [5.0]	ND [1.0]	ND [1.0]	0.52 J	ND [0.40]	1.1	ND [0.12]	ND [0.19]	ND [1.0]				
n-Propylbenzene	5	ND [5.0]	ND [1.0]	ND [1.0]	ND [1.0]	ND [0.20]	ND [0.11]	ND [0.11]	ND [0.11]	ND [0.24]	ND [1.0]	ND [1.0]	ND [5.0]	0.42 J	0.76 J	0.53 J	0.74 J	0.83 J	0.49 J	0.97 J	ND [1.0]								
o-Xylene	5	ND [5.0]	ND [1.0]	ND [1.0]	ND [1.0]	ND [0.20]	ND [0.13]	ND [0.13]	ND [0.13]	ND [0.19]	ND [1.0]	ND [1.0]	ND [5.0]	ND [5.0]	ND [5.0]	ND [5.0]	1.0 J	0.97 J	1.3	0.96 J	1.3	1.1	0.91 J	1.60	ND [1.0]				
p- & m- Xylenes	NS	ND [10]	ND [2.0]	ND [2.0]	ND [2.0]	ND [0.50]	ND [0.20]	ND [0.20]	ND [0.20]	ND [0.32]	ND [1.0] J	ND [1.0]	ND [10]	ND [10]	ND [10]	ND [10]	1.1 J	0.56 J	0.75 J	0.55 J	ND [1.0]	0.71 J	ND [0.20]	0.80 J	ND [1.0]				
p-Isopropyltoluene	NS	ND [5.0]	ND [1.0]	ND [1.0]	ND [1.0]	ND [0.20]	ND [0.12]	ND [0.12]	ND [0.12]	ND [0.21]	ND [1.0]	ND [1.0]	1.5 J	ND [5.0]	ND [5.0]	0.89 J	1.6 J	0.79 J	ND [1.0]	0.69 J	ND [0.40]	1	0.66 J	1.20	ND [1.0]				
sec-Butylbenzene	5	ND[5.0]	ND[5.0]	ND[5.0]	ND[5.0]	ND[5.0]	ND [1.0]	ND [1.0]	ND [1.0]	ND [0.20]	ND [0.12]	ND [0.12]	ND [0.12]	ND [0.23]	ND [1.0]	ND [1.0]	ND[5.0]	ND[5.0]	ND[5.0]	ND[5.0]	ND[5.0]	ND [1.0]	0.6 J	0.45 J	0.50 J	0.72 J	0.46 J	0.86 J	ND [1.0]
tert-Butylbenzene	5	ND [5.0]	ND [1.0]	ND [1.0]	ND [1.0]	ND [0.20]	ND [0.11]	ND [0.11]	ND [0.11]	ND [0.26]	ND [1.0]	ND [1.0]	ND [5.0]	ND [1.0]	ND [1.0]	ND [1.0]	ND [0.40]	0.29 J	ND [0.11]	ND [0.26]	ND [1.0]								
Toluene	5	ND [5.0]	ND [1.0]	ND [1.0]	23.7	ND [0.20]	0.56 J	ND [0.12]	ND [0.12]	ND [0.22]	8.3	ND [1.0]	ND [5.0]	0.77 J	0.75 J	0.52 J	0.92 J	0.39 J	ND [0.12]	0.70 J	ND [1.0]								
Xylenes, Total	5	ND [15]	ND [3.0]	ND [3.0]	ND [3.0]	ND [0.60]	ND [0.33]	ND [0.33]	ND [0.33]	ND [0.51]	ND [1.0]	ND [1.0]	ND [15]	ND [15]	ND [15]	ND [15]	2.1 J	1.35 J	2.05	1.51 J	2.2 J	1.81 J	0.91 J	1.60	ND [1.0]				

All results and groundwater standards/guidance values are in parts per billion (ppb)
(1) = Groundwater standard or guidance value as referenced in NYSDECTOGS 1.1.1 dated June 1998 as amended in January 1999, April 2000, and June 2004.

ND [Reporting Limit] = Not Detected at a concentation greater than the reporting limit shown in bracket NS = No Standard

J = Estimated concentration.

B = Analyte is found in the associated analysis batch blank. For volatiles, methylene chloride and acetone are common lab contaminants. Data users should consider anything <10x the blank value as artifact.

BOLD TYPE indicates the reported concentration or reporting limit exceeds the groundwater standard or guidance value

Table 3 Continued NYSDEC Site #360010 **Harmon Yard Waste Water Area** OU II

Summary of Detected Volatile Organic Compounds Groundwater Samples

·	Groundwater					-	•							-	Test Lo	cation and Sa	mple Date	•	-						•			-		
Compound	Standard or								VE 4-11														D	AY 1						
	Guidance Value (1)	3/27/12	9/11/12	9/11/12 DU	P 4/2/13	9/24/13	5/27/14	5/19/15	5/17/16	8/2/17	11/27/18	9/10/19	6/3/20	8/24/21	8/11/22	3/9/23	3/27/12	9/11/12	4/2/13	9/24/13	5/27/14	5/19/15	5/17/16	8/2/17	11/27/18	9/10/19	6/3/20	8/26/21	8/10/22	3/8/23
1,2,4-Trimethylbenzene	5	1.1 J	ND [5.0]	ND [5.0]	ND [5.0]	ND [5.0]	ND [5.0]	ND [1.0]	ND [1.0]	ND [1.0]	0.78	ND [0.11]	ND [0.11]	ND [0.20]	ND [1.0]	ND [1.0]	ND [5.0]	ND [5.0]	ND [5.0]	ND [5.0]	ND [5.0]	0.43 J	0.42 J	ND [1.0]	0.35 J	ND [0.11]	ND [0.11]	ND [0.20]	ND [1.0]	ND [1.0]
1,3,5-Trimethylbenzene	5	ND [5.0]	ND [5.0]	ND [5.0]	ND [5.0]	ND [5.0]	ND [5.0]	ND [1.0]	ND [1.0]	ND [1.0]	ND [0.20]	ND [0.14]	ND [0.14]	ND [0.25]	ND [1.0]	ND [1.0]	ND [5.0]	ND [5.0]	ND [5.0]	ND [5.0]	ND [5.0]	ND [1.0]	ND [1.0]	ND [1.0]	ND [0.20]	ND [0.14]	ND [0.14]	ND [0.25]	ND [1.0]	ND [1.0]
Benzene	1	ND [5.0]	ND [5.0]	ND [5.0]	ND [5.0]	ND [5.0]	ND [5.0]	ND [1.0]	ND [1.0]	ND [1.0]	ND [0.20]	ND [0.10]	ND [0.10]	ND [0.18]	ND [0.50]	ND [0.5]	ND [5.0]	0.82 J	ND [5.0]	ND [5.0]	ND [5.0]	0.53 J	0.62 J	0.32 J	0.61	ND [0.10]	ND [0.10]	0.67 J	0.82	ND [0.5]
Chlorobenzene	5	ND [5.0]	ND [5.0]	ND [5.0]	ND [5.0]	ND [5.0]	ND [5.0]	ND [1.0]	ND [1.0]	ND [1.0]	NT	ND [0.080]	ND [0.080]	ND [0.17]	ND [1.0]	ND [1.0]	ND [5.0]	ND [5.0]	ND [5.0]	ND [5.0]	ND [5.0]	ND [1.0]	ND [1.0]	ND [1.0]	NT	ND [0.080]	ND [0.080]	ND [0.17]	ND [1.0]	ND [1.0]
Ethylbenzene	5	ND [5.0]	ND [5.0]	ND [5.0]	ND [5.0]	ND [5.0]	ND [5.0]	ND [1.0]	ND [1.0]	ND [1.0]	ND [0.20]	ND [0.080]	ND [0.080]	ND [0.18]	ND [1.0]	ND [1.0] J	ND [5.0]	ND [5.0]	ND [5.0]	ND [5.0]	ND [5.0]	0.27 J	ND [1.0]	ND [1.0]	0.28 J	ND [0.080]	ND [0.080]	ND [0.18]	ND [1.0]	ND [1.0]
Isopropylbenzene	5	ND [5.0]	ND [5.0]	ND [5.0]	ND [5.0]	ND [5.0]	ND [5.0]	ND [1.0]	ND [1.0]	ND [1.0]	ND [0.20]	ND [0.13]	ND [0.13]	ND [0.23]	ND [1.0]	ND [1.0]	ND [5.0]	ND [5.0]	ND [5.0]	ND [5.0]	ND [5.0]	ND [1.0]	0.39 J	0.22 J	0.41 EJ	ND [0.13]	ND [0.13]	0.41 J	ND [1.0]	ND [1.0]
Methyl tert-butyl ether (MTBE)	10	ND [5.0]	ND [5.0]	ND [5.0]	ND [5.0]	ND [5.0]	ND [5.0]	ND [1.0]	ND [1.0]	ND [1.0]	ND [0.20]	ND [0.070]	ND [0.070]	ND [0.22]	ND [1.0]	ND [0.87] J	ND [5.0]	ND [5.0]	ND [5.0]	ND [5.0]	ND [5.0]	ND [1.0]	ND [1.0]	ND [1.0]	ND [0.20]	ND [0.070]	ND [0.070]	ND [0.22]	ND [1.0]	ND [0.87]
Naphthalene	10	4.0 J, B	ND [10]	ND [10]	ND [10]	ND [10]	ND [10]	ND [1.0]	ND [1.0]	ND [1.0]	2.9	NT	NT	NT	ND [0.87]	ND [1.0]	1.9 J, B	ND [10]	ND [10]	ND [10]	1.9 J	2.00	3.50	ND [1.0]	1.8 J	NT	NT	NT	ND [0.87]	ND [1.0]
n-Butylbenzene	5	ND [5.0]	ND [5.0]	ND [5.0]	ND [5.0]	ND [5.0]	ND [5.0]	ND [1.0]	ND [1.0]	ND [1.0]	ND [0.20]	ND [0.12]	ND [0.12]	ND [0.19]	ND [1.0]	ND [1.0]	ND [5.0]	ND [5.0]	ND [5.0]	ND [5.0]	ND [5.0]	0.37 J	0.79 J	0.31 J	0.40 J	0.59 J	ND [0.12]	0.75 J	ND [1.0]	ND [1.0]
n-Propylbenzene	5	ND [5.0]	ND [5.0]	ND [5.0]	ND [5.0]	ND [5.0]	ND [5.0]	ND [1.0]	ND [1.0]	ND [1.0]	0.22 J	ND [0.11]	ND [0.11]	ND [0.24]	ND [1.0]	ND [1.0]	ND [5.0]	ND [5.0]	ND [5.0]	ND [5.0]	ND [5.0]	ND [1.0]	0.7 J	0.37 J	0.75	0.86 J	ND [0.11]	0.74 J	ND [1.0]	ND [1.0]
o-Xylene	5	ND [5.0]	ND [5.0]	ND [5.0]	ND [5.0]	ND [5.0]	ND [5.0]	ND [1.0]	ND [1.0]	ND [1.0]	ND [0.20]	ND [0.13]	ND [0.13]	ND [0.19]	ND [1.0]	ND [1.0]	ND [5.0]	ND [5.0]	ND [5.0]	ND [5.0]	ND [5.0]	0.48 J	ND [1.0]	0.25 J	0.59	ND [0.13]	ND [0.13]	0.54 J	ND [1.0]	ND [1.0]
p- & m- Xylenes	NS	ND [10]	ND [10]	ND [10]	ND [10]	ND [10]	ND [10]	ND [2.0]	ND [2.0]	ND [2.0]	ND [0.50]	ND [0.20]	ND [0.20]	ND [0.32]	ND [1.0] J	ND [1.0]	ND [10]	ND [10]	ND [10]	ND [10]	ND [10]	ND [2.0]	ND [2.0]	ND [2.0]	ND [0.50]	ND [0.20]	ND [0.20]	ND [0.32]	ND [1.0]	ND [1.0]
p-Isopropyltoluene	NS	ND [5.0]	ND [5.0]	ND [5.0]	ND [5.0]	ND [5.0]	ND [5.0]	ND [1.0]	ND [1.0]	ND [1.0]	ND [0.20]	ND [0.12]	ND [0.12]	ND [0.21]	ND [1.0]	ND [1.0]	ND [5.0]	ND [5.0]	ND [5.0]	ND [5.0]	ND [5.0]	ND [1.0]	ND [1.0]	ND [1.0]	ND [0.20]	ND [0.12]	ND [0.12]	ND [0.21]	ND [1.0]	ND [1.0]
sec-Butylbenzene	5	ND[5.0]	ND[5.0]	ND[5.0]	ND[5.0]	ND[5.0]	ND[5.0]	ND [1.0]	ND [1.0]	ND [1.0]	ND [0.20]	ND [0.12]	ND [0.12]	ND [0.19]	ND [1.0]	ND [1.0]	ND[5.0]	ND[5.0]	ND[5.0]	ND[5.0]	ND[5.0]	ND [1.0]	0.42 J	0.21 J	0.43 J	ND [0.12]	ND [0.12]	0.42 J	ND [1.0]	ND [1.0]
tert-Butylbenzene	5	ND [5.0]	ND [5.0]	ND [5.0]	ND [5.0]	ND [5.0]	ND [5.0]	ND [1.0]	ND [1.0]	ND [1.0]	ND [0.20]	ND [0.11]	ND [0.11]	ND [0.19]	ND [1.0]	ND [1.0]	ND [5.0]	ND [5.0]	ND [5.0]	ND [5.0]	ND [5.0]	ND [1.0]	ND [1.0]	ND [1.0]	ND [0.20]	ND [0.11]	ND [0.11]	ND [0.26]	ND [1.0]	ND [1.0]
Toluene	5	ND [5.0]	ND [5.0]	ND [5.0]	ND [5.0]	ND [5.0]	ND [5.0]	ND [1.0]	ND [1.0]	ND [1.0]	ND [0.20]	ND [0.12]	ND [0.12]	ND [0.19]	ND [1.0]	ND [1.0]	ND [5.0]	ND [5.0]	ND [5.0]	ND [5.0]	ND [5.0]	0.40 J	ND [1.0]	ND [1.0]	0.26 J	ND [0.12]	ND [0.12]	0.42 J	ND [1.0]	ND [1.0]
Xylenes, Total	5	ND [15]	ND [15]	ND [15]	ND [15]	ND [15]	ND [15]	ND [3.0]	ND [3.0]	ND [3.0]	ND [0.60]	ND [0.33]	ND [0.33]	ND [0.39]	ND [1.0]	ND [1.0]	ND [15]	ND [15]	ND [15]	ND [15]	ND [15]	0.48 J	ND [3.0]	ND [3.0]	0.85 J	ND [0.33]	ND [0.33]	0.54 J	ND [1.0]	ND [1.0]

	Groundwater									Test Loca	tion and San	nple Date								
Compound	Standard or						Field Blank									Trip	Blank			
	Guidance Value (1)	3/28/12	9/12/12	4/2/13	9/25/13	5/20/15	11/28/18	9/11/19	6/4/20	8/26/21	8/11/22	3/9/23	9/12/12	4/2/13	9/25/13	5/18/16	8/3/17	11/28/18	8/26/21	3/8/23
1,2,4-Trimethylbenzene	5	ND [5.0]	ND [5.0]	ND [5.0]	ND [5.0]	ND [1.0]	ND [0.20]	ND [0.11]	ND [0.11]	ND [0.20]	ND [1.0]	ND [1.0]	ND [5.0]	ND [5.0]	ND [5.0]	ND [1.0]	ND [1.0]	ND [0.20]	ND [0.20]	ND [1.0]
1,3,5-Trimethylbenzene	5	ND [5.0]	ND [5.0]	ND [5.0]	ND [5.0]	ND [1.0]	ND [0.20]	ND [0.14]	ND [0.14]	ND [0.24]	ND [1.0]	ND [1.0]	ND [5.0]	ND [5.0]	ND [5.0]	ND [1.0]	ND [1.0]	ND [0.20]	ND [0.24]	ND [1.0]
Benzene	1	ND [5.0]	ND [5.0]	ND [5.0]	ND [5.0]	ND [1.0]	ND [0.20]	ND [0.10]	ND [0.10]	ND [0.18]	ND [0.50]	ND [0.5]	ND [5.0]	ND [5.0]	ND [5.0]	ND [1.0]	ND [1.0]	ND [0.20]	ND [0.18]	ND [0.5]
Chlorobenzene	5	ND [5.0]	ND [5.0]	ND [5.0]	ND [5.0]	ND [1.0]	ND [0.20]	ND [0.080]	ND [0.080]	ND [0.17]	ND [1.0]	ND [1.0]	ND [5.0]	ND [5.0]	ND [5.0]	ND [1.0]	ND [1.0]	ND [0.20]	ND [0.17]	ND [1.0]
Ethylbenzene	5	ND [5.0]	ND [5.0]	ND [5.0]	ND [5.0]	ND [1.0]	ND [0.20]	ND [0.080]	ND [0.080]	ND [0.18]	ND [1.0]	ND [1.0]	ND [5.0]	ND [5.0]	ND [5.0]	ND [1.0]	ND [1.0]	ND [0.20]	ND [0.18]	ND [1.0]
Isopropylbenzene	5	ND [5.0]	ND [5.0]	ND [5.0]	ND [5.0]	ND [1.0]	ND [0.20]	ND [0.13]	ND [0.13]	ND [0.23]	ND [1.0]	ND [1.0]	ND [5.0]	ND [5.0]	ND [5.0]	ND [1.0]	ND [1.0]	ND [0.20]	ND [0.23]	ND [1.0]
Methyl tert-butyl ether (MTBE)	10	ND [5.0]	ND [5.0]	ND [5.0]	ND [5.0]	ND [1.0]	ND [0.20]	ND [0.070]	ND [0.070]	ND [0.22]	ND [0.87]	ND [0.87] J	ND [5.0]	ND [5.0]	ND [5.0]	ND [1.0]	ND [1.0]	ND [0.20]	ND [0.22]	ND [0.87] J
Naphthalene	10	ND [10]	ND [10]	ND [10]	ND [10]	ND [1.0]	ND [1.0]	NT	NT	NT	ND [1.0]	ND [1.0]	ND [10]	ND [10]	ND [10]	ND [1.0]	ND [1.0]	ND [1.0]	NT	ND [1.0]
n-Butylbenzene	5	ND [5.0]	ND [5.0]	ND [5.0]	ND [5.0]	ND [1.0]	ND [0.20]	ND [0.12]	ND [0.12]	ND [0.19]	ND [1.0]	ND [1.0]	ND [5.0]	ND [5.0]	ND [5.0]	ND [1.0]	ND [1.0]	ND [0.20]	ND [0.19]	ND [1.0]
n-Propylbenzene	5	ND [5.0]	ND [5.0]	ND [5.0]	ND [5.0]	ND [1.0]	ND [0.20]	ND [0.11]	ND [0.11]	ND [0.24]	ND [1.0]	ND [1.0]	ND [5.0]	ND [5.0]	ND [5.0]	ND [1.0]	ND [1.0]	ND [0.20]	ND [0.24]	ND [1.0]
o-Xylene	5	ND [5.0]	ND [5.0]	ND [5.0]	ND [5.0]	ND [1.0]	ND [0.20]	ND [0.13]	ND [0.13]	ND [0.19]	ND [1.0]	ND [1.0] J	ND [5.0]	ND [5.0]	ND [5.0]	ND [1.0]	ND [1.0]	ND [0.20]	ND [0.19]	ND [1.0] J
p- & m- Xylenes	NS	ND [10]	ND [10]	ND [10]	ND [10]	ND [2.0]	ND [0.50]	ND [0.20]	ND [0.20]	ND [0.32]	ND [1.0]	ND [1.0]	ND [10]	ND [10]	ND [10]	ND [2.0]	ND [2.0]	ND [0.50]	ND [0.32]	ND [1.0]
p-Isopropyltoluene	NS	ND [5.0]	ND [5.0]	ND [5.0]	ND [5.0]	ND [1.0]	ND [0.20]	ND [0.12]	ND [0.12]	ND [0.21]	ND [1.0]	ND [1.0]	ND [5.0]	ND [5.0]	ND [5.0]	ND [1.0]	ND [1.0]	ND [0.20]	ND [0.21]	ND [1.0]
sec-Butylbenzene	5	ND[5.0]	ND[5.0]	ND[5.0]	ND[5.0]	ND [1.0]	ND [0.20]	ND [0.12]	ND [0.12]	ND [0.23]	ND [1.0]	ND [1.0]	ND[5.0]	ND[5.0]	ND[5.0]	ND [1.0]	ND [1.0]	ND [0.20]	ND [0.23]	ND [1.0]
tert-Butylbenzene	5	ND [5.0]	ND [5.0]	ND [5.0]	ND [5.0]	ND [1.0]	ND [0.20]	ND [0.11]	ND [0.11]	ND [0.26]	ND [1.0]	ND [1.0]	ND [5.0]	ND [5.0]	ND [5.0]	ND [1.0]	ND [1.0]	ND [0.20]	ND [0.26]	ND [1.0]
Toluene	5	ND [5.0]	ND [5.0]	ND [5.0]	ND [5.0]	ND [1.0]	ND [0.20]	ND [0.12]	ND [0.12]	ND [0.22]	ND [1.0]	ND [1.0]	ND [5.0]	ND [5.0]	ND [5.0]	ND [1.0]	ND [1.0]	0.25 J	ND [0.22]	ND [1.0]
Xylenes, Total	5	ND [15]	ND [15]	ND [15]	ND [15]	ND [3.0]	ND [0.60]	ND [0.33]	ND [0.33]	ND [0.51]	ND [1.0]	ND [1.0]	ND [15]	ND [15]	ND [15]	ND [3.0]	ND [3.0]	ND [0.60]	ND [0.51]	ND [1.0]

Notes:
All results and groundwater standards/guidance values are in parts per billion (ppb;
(1) = Groundwater standard or guidance value as referenced in NYSDEC TOGS 1.1.1 dated June 1998 as amended in January 1999, April 2000, and June 2004
ND [Reporting Limit] = Not Detected at a concentation greater than the reporting limit shown in brackets
NS = No Standard

J = Estimated concentration.

B = Analyte is found in the associated analysis batch blank. For volatiles, methylene chloride and acetone are common lab contaminants. Data users should consider anything <10x the blank value as artifact.

 $\textbf{BOLD TYPE} \ \text{indicates the reported concentration or reporting } \ \text{limit exceeds the groundwater standard or guidance value}$

Table 3 continued NYSDEC Site #360010 Harmon Yard Waste Water Area OU II

Summary of Detected Volatile Organic Compounds Groundwater Samples

	Groundwater		Test	t Location and Sample	Date	
Compound	Standard or	OUII-C	OUII-E	VE4-7	VE4-9	FA4-9
	Guidance Value (1)	8/24/21	8/24/21	8/25/21	8/25/21	8/26/21
1,2,4-Trimethylbenzene	5	ND [0.20]	ND [0.20]	ND [0.20]	2	1.4
1,3,5-Trimethylbenzene	5	ND [0.25]	ND [0.25]	ND [0.25]	1.7	0.53 J
Benzene	1	ND [0.18]	ND [0.18]	ND [0.18]	0.25 J	0.53 J
Chlorobenzene	5	ND [0.17]	ND [0.17]	ND [0.17]	1.2	ND [0.17]
Ethylbenzene	5	ND [0.18]	ND [0.18]	ND [0.18]	ND [0.18]	ND [0.18]
Isopropylbenzene	5	ND [0.23]	ND [0.23]	ND [0.23]	ND [0.23]	ND [0.23]
Methyl tert-butyl ether (MTBE)	10	ND [0.22]	ND [0.22]	ND [0.22]	NS [0.22]	ND [0.22]
n-Butylbenzene	5	ND [0.19]	ND [0.19]	ND [0.19]	ND [0.19]	ND [0.19]
n-Propylbenzene	5	ND [0.24]	ND [0.24]	ND [0.24]	ND [0.24]	ND [0.24]
o-Xylene	5	ND [0.19]	ND [0.19]	ND [0.19]	0.64 J	1.9
p- & m- Xylenes	NS	ND [0.32]	ND [0.32]	1.5 J	0.47 J	0.43 J
p-Isopropyltoluene	NS	ND [0.21]	ND [0.21]	ND [0.21]	0.27 J	ND [0.21]
sec-Butylbenzene	5	ND [0.23]	ND [0.23]	ND [0.23]	ND [0.23]	0.29 J
tert-Butylbenzene	5	ND [0.26]	ND [0.26]	ND [0.26]	ND [0.26]	ND [0.26]
Toluene	5	ND [0.22]	ND [0.22]	0.45 J	0.44 J	0.46 J
Xylenes, Total	5	ND	ND	1.5	1.11	2.33

Notes:

All results and groundwater standards/guidance values are in parts per billion (ppb)

(1) = Groundwater standard or guidance value as referenced in NYSDEC TOGS 1.1.1 dated June 1998 as amended in January 1999, April 2000, and June 2004.

ND [Reporting Limit] = Not Detected at a concentation greater than the reporting limit shown in brackets

NS = No Standard

J = Estimated concentration.

B = Analyte is found in the associated analysis batch blank. For volatiles, methylene chloride and acetone are common lab contaminants. Data users should consider anything <10x the blank value as artifact.

 $\textbf{BOLD TYPE} \ indicates \ the \ reported \ concentration \ or \ reporting \ \ limit \ exceeds \ the \ groundwater \ standard \ or \ guidance \ value$

Table 4 NYSDEC Site #360010 Harmon Yard Waste Water Area OU II

Summary of Detected Semi-Volatile Organic Compounds Groundwater Samples

	1																														
															T	est Location	and Sample	Date													
Compound	Groundwater								VE 1-	2														VE 1-4							
Compound	Standard or	2/27/12	0/12/12	1/2/12	0/25/12	5/27/14	5/20/15	5/17/16	8/2/17	11/27/18	9/10/19	6/3/20	9/25/21	8/11/22	Duplicate	3/9/23	3/27/12	9/12/12	4/2/13	9/25/13	5/27/14	5/20/15	5/18/16	8/2/17	11/27/19	9/10/19	6/3/20	8/25/21	8/11/22	3/9/23	03092023DUP
	Guidance Value (1)	3/2//12	3/12/12	4/2/13	3/23/13	3/2//14	3/20/13	3/17/10	0/2/17	11/2//10	3/10/13	0/3/20	0/23/21	0/11/22	8/11/22	3/3/23	3/2//12	3/12/12	4/2/13	3/23/13	3/2//14	3/20/13	3/10/10	0/2/1/	11/2//10	3/10/13	0/3/20	0/23/21	0/11/22	3/3/23	03032023001
2-Methylnaphthalene	NS	ND [5.13]	ND [5.56]	ND [5.13]	ND [6.25]	ND [5.88]	ND [10.1]	ND [10.2]	ND [10.1]	ND [2.91]	ND [2.50]	ND [2.30]	ND [2.20]	ND [2.0]	ND [2.0]	ND [2.0]	ND [5.13]	ND [5.71]	ND [5.26]	ND [5.88]	ND [6.67]	ND [10.2]	ND [10.2]	ND [10.1]	ND [2.83]	ND [2.50]	ND [2.30]	ND [2.20]	ND [2.0]	ND [2.0]	ND [2.0]
Acenaphthene	20	ND [5.13]	ND [5.56]	ND [5.13]	ND [6.25]	ND [0.06]	ND [10.1]	ND [10.2]	ND [10.1]	0.663	ND [2.80]	ND [2.00]	ND [2.30]	ND [2.0]	ND [2.0]	ND [2.0]	ND [5.13]	ND [5.71]	ND [5.26]	ND [5.88]	ND [0.07]	ND [10.2]	ND [10.2]	ND [10.1]	0.554	ND [2.80]	ND [2.00]	ND [2.30]	ND [2.0]	ND [2.0]	ND [2.0]
Acenaphthylene	NS	ND [5.13]	ND [5.56]	ND [5.13]	ND [6.25]	ND [0.06]	ND [10.1]	ND [10.2]	ND [10.1]	0.0947	ND [2.70]	ND [2.10]	ND [2.10]	ND [2.0]	ND [2.0]	ND [2.0]	ND [5.13]	ND [5.71]	ND [5.26]	ND [5.88]	ND [0.07]	ND [10.2]	ND [10.2]	ND [10.1]	0.164	ND [2.70]	ND [2.10]	ND [2.10]	ND [2.0]	ND [2.0]	ND [2.0]
Anthracene	50	ND [5.13]	ND [5.56]	ND [5.13]	ND [6.25]	ND [0.06]	ND [10.1]	ND [10.2]	ND [10.1]	0.189	ND [2.50]	ND [2.50]	ND [2.30]	ND [2.0]	ND [2.0]	ND [2.0]	ND [5.13]	ND [5.71]	ND [5.26]	ND [5.88]	ND [0.07]	ND [10.2]	ND [10.2]	ND [10.1]	0.0821	ND [2.50]	ND [2.50]	ND [2.30]	ND [2.0]	ND [2.0]	ND [2.0]
Benzo(a)anthracene	0.002	ND [5.13]	ND [5.56]	ND [5.13]	ND [6.25]	ND [0.06]	ND [10.1]	ND [10.2]	ND [10.1]	ND [0.0526]	ND [2.30]	ND [1.90]	ND [2.20]	ND [2.0]	ND [2.0]	ND [2.0]	ND [5.13]	ND [5.71]	ND [5.26]	ND [5.88]	ND [0.07]	ND [10.2]	ND [10.2]	ND [10.1]	ND [0.0513]	ND [2.30]	ND [1.90]	ND [2.20]	ND [2.0]	ND [2.0]	ND [2.0]
Benzo(a)pyrene	ND	ND [5.13]	ND [5.56]	ND [5.13]	ND [6.25]	ND [0.06]	ND [10.1]	ND [10.2]	ND [10.1]	ND [0.0526]	ND [2.40]	ND [2.00]	ND [2.00]	ND [2.0]	ND [2.0]	ND [2.0]	ND [5.13]	ND [5.71]	ND [5.26]	ND [5.88]	ND [0.07]	ND [10.2]	ND [10.2]	ND [10.1]	0.0513 J	ND [2.40]	ND [2.00]	ND [2.00]	ND [2.0]	ND [2.0]	ND [2.0]
Benzo(b)fluoranthene	0.002	ND [5.13]	ND [5.56]	ND [5.13]	ND [6.25]	ND [0.06]	ND [10.1]	ND [10.2]	ND [10.1]	ND [0.0526]	ND [2.30]	ND [1.90]	ND [2.00]	ND [2.0]	ND [2.0]	ND [2.0]	ND [5.13]	ND [5.71]	ND [5.26]	ND [5.88]	ND [0.07]	ND [10.2]	ND [10.2]	ND [10.1]	0.0615	ND [2.30]	ND [1.90]	ND [2.00]	ND [2.0]	ND [2.0]	ND [2.0]
Benzo(g,h,i)perylene	NS	ND [5.13]	ND [5.56]	ND [5.13]	ND [6.25]	ND [0.06]	ND [10.1]	ND [10.2]	ND [10.1]	ND [0.0526]	ND [2.60]	ND [1.60]	ND [2.00]	ND [2.0]	ND [2.0]	ND [2.0]	ND [5.13]	ND [5.71]	ND [5.26]	ND [5.88]	ND [0.07]	ND [10.2]	ND [10.2]	ND [10.1]	0.0513 J	ND [2.60]	ND [1.60]	ND [2.00]	ND [2.0]	ND [2.0]	ND [2.0]
Benzo(k)fluoranthene	0.002	ND [5.13]	ND [5.56]	ND [5.13]	ND [6.25]	ND [0.06]	ND [10.1]	ND [10.2]	ND [10.1]	ND [0.0526]	ND [2.30]	ND [1.80]	ND [2.00]	ND [2.0]	ND [2.0]	ND [2.0]	ND [5.13]	ND [5.71]	ND [5.26]	ND [5.88]	ND [0.07]	ND [10.2]	ND [10.2]	ND [10.1]	ND [0.0513]	ND [2.30]	ND [1.80]	ND [2.00]	ND [2.0]	ND [2.0]	ND [2.0]
Chrysene	0.002	ND [5.13]	ND [5.56]	ND [5.13]	ND [6.25]	ND [0.06]	ND [10.1]	ND [10.2]	ND [10.1]	ND [0.0526]	ND [2.40]	ND [1.90]	ND [2.30]	ND [2.0]	ND [2.0]	ND [2.0]	ND [5.13]	ND [5.71]	ND [5.26]	ND [5.88]	ND [0.07]	ND [10.2]	ND [10.2]	ND [10.1]	0.133	ND [2.40]	ND [1.90]	ND [2.30]	ND [2.0]	ND [2.0]	ND [2.0]
Dibenzo(a,h)anthracene	NS	ND [5.13]	ND [5.56]	ND [5.13]	ND [6.25]	ND [0.06]	ND [10.1]	ND [10.2]	ND [10.1]	ND [0.0526]	ND [2.60]	ND [1.90]	ND [2.30]	ND [2.0]	ND [2.0]	ND [2.0]	ND [5.13]	ND [5.71]	ND [5.26]	ND [5.88]	ND [0.07]	ND [10.2]	ND [10.2]	ND [10.1]	ND [0.0513]	ND [2.60]	ND [1.90]	ND [2.30]	ND [2.0]	ND [2.0]	ND [2.0]
Fluoranthene	50	ND [5.13]	ND [5.56]	ND [5.13]	ND [6.25]	ND [0.06]	ND [10.1]	ND [10.2]	ND [10.1]	0.0842	ND [2.90]	ND [2.50]	ND [2.60]	5.5	4.3	ND [2.0]	ND [5.13]	ND [5.71]	ND [5.26]	ND [5.88]	ND [0.07]	ND [10.2]	ND [10.2]	ND [10.1]	0.256	ND [2.90]	ND [2.50]	ND [2.60]	ND [2.0]	ND [2.0]	ND [2.0]
Fluorene	50	ND [5.13]	ND [5.56]	ND [5.13]	ND [6.25]	ND [0.06]	ND [10.1]	ND [10.2]	ND [10.1]	1.47	ND [2.50]	ND [2.40]	ND [2.20]	12	12	ND [2.0]	ND [5.13]	ND [5.71]	ND [5.26]	ND [5.88]	ND [0.07]	ND [10.2]	ND [10.2]	ND [10.1]	0.451	ND [2.50]	ND [2.40]	ND [2.20]	ND [2.0]	ND [2.0]	ND [2.0]
Indeno(1,2,3-cd)pyrene	0.002	ND [5.13]	ND [5.56]	ND [5.13]	ND [6.25]	ND [0.06]	ND [10.1]	ND [10.2]	ND [10.1]	ND [0.0526]	ND [3.30]	ND [3.20]	ND [2.60]	ND [2.0]	ND [2.0]	ND [2.0]	ND [5.13]	ND [5.71]	ND [5.26]	ND [5.88]	ND [0.07]	ND [10.2]	ND [10.2]	ND [10.1]	ND [0.0513]	ND [3.30]	ND [3.20]	ND [2.60]	ND [2.0]	ND [2.0]	ND [2.0]
Naphthalene	10	ND [5.13]	ND [5.56]	ND [5.13]	ND [6.25]	ND [0.06]	ND [10.1]	NT	ND [10.1]	0.0526 J	ND [2.50]	ND [1.80]	ND [1.90]	ND [0.50]	ND [0.50]	ND [0.50]	ND [5.13]	ND [5.71]	ND [5.26]	ND [5.88]	ND [0.07]	ND [10.2]	NT	ND [10.1]	ND [0.0513]	ND [2.50]	ND [1.80]	ND [1.90]	ND [0.50]	ND [0.50] J	ND [0.50]
Phenanthrene	50	ND [5.13]	ND [5.56]	ND [5.13]	ND [6.25]	ND [0.06]	ND [10.1]	ND [10.2]	ND [10.1]	0.0842	ND [2.50]	ND [2.00]	ND [2.20]	ND [2.0]	ND [2.0]	ND [2.0]	ND [5.13]	ND [5.71]	ND [5.26]	ND [5.88]	ND [0.07]	ND [10.2]	ND [10.2]	ND [10.1]	0.503	ND [2.50]	ND [2.00]	ND [2.20]	ND [2.0]	ND [2.0]	ND [2.0]
Pyrene	50	ND [5.13]	ND [5.56]	ND [5.13]	ND [6.25]	ND [0.06]	ND [10.1]	ND [10.2]	ND [10.1]	0.295	ND [2.50] J	ND [1.40]	ND [1.90]	12	10	ND [2.0]	ND [5.13]	ND [5.71]	ND [5.26]	ND [5.88]	ND [0.07]	ND [10.2]	2.8 J	ND [10.1]	1.10	ND [2.50] J	ND [1.40]	ND [1.90]	ND [2.0]	ND [2.0]	ND [2.0]

	Groundwater													,	Test Location	and Sampl	e Date												
Compound	Standard or								VE 2-1													VE 3	J-1						
	Guidance Value (1)	3/28/12	9/12/12	4/2/13	9/24/13	5/28/14	5/20/15	5/18/16	8/3/17	11/28/18	9/11/19	6/3/20	8/25/21	8/11/22	3/9/23	3/27/12	9/11/12	4/2/13	9/25/13	5/28/14	5/19/15	5/18/16	8/3/17	8/3/17	11/28/18	9/11/19	6/3/20	8/25/21	3/9/23
2-Methylnaphthalene	NS	ND [5.13]	ND [6.25]	ND [26.3]	ND [5.56]	ND [5.88]	ND [10.1]	ND [10]	ND [10.1]	ND [2.83]	ND [2.50]	ND [2.30]	ND [2.20]	ND [2.0]	ND [2.0]	ND [5.13]	ND [5.26]	ND [5.13]	12	4.30 J	ND [10]	34.7	30.1	30.1	36.3	ND [2.50]	ND [2.30]	32.4	35
Acenaphthene	20	ND [5.13]	ND [6.25]	ND [26.3]	ND [5.56]	ND [0.06]	ND [10.1]	ND [10]	ND [10.1]	ND [0.0513]	ND [2.80]	ND [2.00]	ND [2.30]	ND [2.0]	ND [2.0]	ND [5.13]	ND [5.26]	ND [5.13]	9.26	ND [0.06]	3.600 J	4.7 J	5.9 J	5.9 J	6.66	5.00 J	ND [2.00]	18.0	13
Acenaphthylene	NS	ND [5.13]	ND [6.25]	ND [26.3]	ND [5.56]	ND [0.06]	ND [10.1]	ND [10]	ND [10.1]	ND [0.0513]	ND [2.70]	ND [2.10]	ND [2.10]	ND [2.0]	ND [2.0]	ND [5.13]	ND [5.26]	ND [5.13]	ND [5.88]	ND [0.06]	ND [10]	ND [10]	ND [10.1]	ND [10.1]	1.29	ND [2.70]	ND [2.10]	4.40 J	ND [2.0]
Anthracene	50	ND [5.13]	ND [6.25]	ND [26.3]	ND [5.56]	ND [0.06]	ND [10.1]	ND [10]	ND [10.1]	ND [0.0513]	ND [2.50]	ND [2.50]	ND [2.30]	ND [2.0]	ND [2.0]	ND [5.13]	ND [5.26]	ND [5.13]	3.44 J	ND [0.06]	ND [10]	ND [10]	ND [10.1]	ND [10.1]	2.35	ND [2.50]	ND [2.50]	ND [2.30]	ND [2.0]
Benzo(a)anthracene	0.002	ND [5.13]	ND [6.25]	ND [26.3]	ND [5.56]	ND [0.06]	ND [10.1]	ND [10]	ND [10.1]	ND [0.0513]	ND [2.30]	ND [1.90]	ND [2.20]	ND [2.0]	ND [2.0]	ND [5.13]	ND [5.26]	ND [5.13]	ND [5.88]	0.238	ND [10]	ND [10]	ND [10.1]	ND [10.1]	0.0821	ND [2.30]	ND [1.90]	ND [2.20]	ND [2.0]
Benzo(a)pyrene	ND	ND [5.13]	ND [6.25]	ND [26.3]	ND [5.56]	ND [0.06]	ND [10.1]	ND [10]	ND [10.1]	ND [0.0513]	ND [2.40]	ND [2.00]	ND [2.00]	ND [2.0]	ND [2.0]	ND [5.13]	ND [5.26]	ND [5.13]	ND [5.88]	0.112	ND [10]	ND [10]	ND [10.1]	ND [10.1]	ND [0.0513]	ND [2.40]	ND [2.00]	ND [2.00]	ND [2.0]
Benzo(b)fluoranthene	0.002	ND [5.13]	ND [6.25]	ND [26.3]	ND [5.56]	ND [0.06]	ND [10.1]	ND [10]	ND [10.1]	ND [0.0513]	ND [2.30]	ND [1.90]	ND [2.00]	ND [2.0]	ND [2.0]	ND [5.13]	ND [5.26]	ND [5.13]	ND [5.88]	0.275	ND [10]	ND [10]	ND [10.1]	ND [10.1]	0.0718	ND [2.30]	ND [1.90]	ND [2.00]	ND [2.0]
Benzo(g,h,i)perylene	NS	ND [5.13]	ND [6.25]	ND [26.3]	ND [5.56]	ND [0.06]	ND [10.1]	ND [10]	ND [10.1]	ND [0.0513]	ND [2.60]	ND [1.60]	ND [2.00]	ND [2.0]	ND [2.0]	ND [5.13]	ND [5.26]	ND [5.13]	ND [5.88]	0.100	ND [10]	ND [10]	ND [10.1]	ND [10.1]	ND [0.0513]	ND [2.60]	ND [1.60]	ND [2.00]	ND [2.0]
Benzo(k)fluoranthene	0.002	ND [5.13]	ND [6.25]	ND [26.3]	ND [5.56]	ND [0.06]	ND [10.1]	ND [10]	ND [10.1]	ND [0.0513]	ND [2.30]	ND [1.80]	ND [2.00]	ND [2.0]	ND [2.0]	ND [5.13]	ND [5.26]	ND [5.13]	ND [5.88]	0.262	ND [10]	ND [10]	ND [10.1]	ND [10.1]	0.0718	ND [2.30]	ND [1.80]	ND [2.00]	ND [2.0]
Chrysene	0.002	ND [5.13]	ND [6.25]	ND [26.3]	ND [5.56]	ND [0.06]	ND [10.1]	ND [10]	ND [10.1]	ND [0.0513]	ND [2.40]	ND [1.90]	ND [2.30]	ND [2.0]	ND [2.0]	ND [5.13]	ND [5.26]	ND [5.13]	ND [5.88]	0.250	ND [10]	ND [10]	ND [10.1]	ND [10.1]	0.185	ND [2.40]	ND [1.90]	ND [2.30]	ND [2.0]
Dibenzo(a,h)anthracene	NS	ND [5.13]	ND [6.25]	ND [26.3]	ND [5.56]	ND [0.06]	ND [10.1]	ND [10]	ND [10.1]	ND [0.0513]	ND [2.60]	ND [1.90]	ND [2.30]	ND [2.0]	ND [2.0]	ND [5.13]	ND [5.26]	ND [5.13]	ND [5.88]	ND [0.06]	ND [10]	ND [10]	ND [10.1]	ND [10.1]	ND [0.0513]	ND [2.60]	ND [1.90]	ND [2.30]	ND [2.0]
Fluoranthene	50	ND [5.13]	ND [6.25]	ND [26.3]	ND [5.56]	ND [0.06]	ND [10.1]	ND [10]	ND [10.1]	ND [0.0513]	ND [2.90]	ND [2.50]	ND [2.60]	ND [2.0]	ND [2.0]	ND [5.13]	ND [5.26]	ND [5.13]	1.94 J	ND [0.06]	ND [10]	ND [10]	ND [10.1]	ND [10.1]	0.697	ND [2.90]	ND [2.50]	6.30	2.80
Fluorene	50	ND [5.13]	ND [6.25]	ND [26.3]	ND [5.56]	ND [0.06]	ND [10.1]	ND [10]	ND [10.1]	ND [0.0513]	ND [2.50]	ND [2.40]	ND [2.20]	ND [2.0]	ND [2.0]	ND [5.13]	2.85 J	ND [5.13]	12.3	6.75	3.200 J	6.4 J	7.8 J	7.8 J	9.31	4.50 J	ND [2.40]	31.7	16
Indeno(1,2,3-cd)pyrene	0.002	ND [5.13]	ND [6.25]	ND [26.3]	ND [5.56]	ND [0.06]	ND [10.1]	ND [10]	ND [10.1]	ND [0.0513]	ND [3.30]	ND [3.20]	ND [2.60]	ND [2.0]	ND [2.0]	ND [5.13]	ND [5.26]	ND [5.13]	ND [5.88]	0.112	ND [10]	ND [10]	ND [10.1]	ND [10.1]	ND [0.0513]	ND [3.30]	ND [3.20]	ND [2.60]	ND [2.0]
Naphthalene	10	ND [5.13]	ND [6.25]	ND [26.3]	ND [5.56]	ND [0.06]	ND [10.1]	NT	NT	ND [0.0513]	ND [2.50]	ND [1.80]	ND [1.90]	ND [0.50]	ND [0.50]	ND [5.13]	ND [5.26]	ND [5.13]	ND [5.88]	ND [0.06]	ND [10]	NT	NT	NT	0.974	ND [2.50]	ND [1.80]	ND [1.90]	ND [0.50]
Phenanthrene	50	ND [5.13]	ND [6.25]	ND [26.3]	ND [5.56]	ND [0.06]	ND [10.1]	ND [10]	ND [10.1]	ND [0.0513]	ND [2.50]	ND [2.00]	ND [2.20]	ND [2.0]	ND [2.0]	ND [5.13]	2.41 J	1.87 J	23	10.8	2.600 J	12.2	11.1	11.1	16.8	7.20 J	ND [2.00]	59.9	30
Pyrene	50	ND [5.13]	ND [6.25]	ND [26.3]	ND [5.56]	ND [0.06]	ND [10.1]	ND [10]	ND [10.1]	ND [0.0513]	ND [2.50] J	ND [1.40]	ND [1.90]	ND [2.0]	ND [2.0]	ND [5.13]	ND [5.26]	ND [5.13]	2.08 J	3.28	ND [10]	ND [10]	ND [10.1]	ND [10.1]	1.42	ND [2.50] J	ND [1.40]	9.30	4.40

Notes

All results and groundwater standards/guidance values are in parts per billion (ppb)

(1) = Groundwater standard or guidance value as referenced in NYSDEC TOGS 1.1.1 dated June 1998 as amended in January 1999, April 2000, and June 2004.

ND [Reporting Limit] = Not Detected at a concentation greater than the reporting limit shown in brackets

NS = No Standard

J = Estimated Concentration

BOLD TYPE indicates the concentration or reporting limit exceeds the groundwater standard or guidance value

Table 4 Continued NYSDEC Site #360010 Harmon Yard Waste Water Area OU II

Summary of Detected Semi-Volatile Organic Compounds Groundwater Samples

	T 6	1																												
	Groundwater														Test Loc	ation and	Sample Date													
Compound	Standard or								VE 4-1	.1													DAY	1						
	Guidance Value (1)	3/27/12	9/11/12	/11/12 DU	4/2/13	9/24/13	5/27/14	5/19/15	5/17/16	8/2/17	11/27/18	9/10/19	6/3/2020	0 #######	8/11/2022	3/9/23	3/27/12	9/11/12	4/2/13	9/24/13	5/27/14	5/19/15	5/17/16	8/2/17	11/27/18	9/10/19	6/3/20	8/26/21	8/10/22	3/8/23
2-Methylnaphthalene	NS	ND [5.13]	ND [5.71]	ND [6.06]	ND [25.0]	ND [6.67]	ND [6.06]	ND [10.3]	ND [10]	ND [10]	ND [2.91]	ND [2.50]	ND [2.30]	ND [2.20]	ND [2.0]	ND [2.0]	ND [5.13]	ND [5.56]	ND [5.13]	ND [12.1]	ND [5.88]	ND [10.2]	2.4 J	ND [10.1]	ND [2.83]	ND [2.50]	ND [2.30]	ND [2.20]	ND [2.0]	ND [2.0] J
Acenaphthene	20	ND [5.13]	ND [5.71]	ND [6.06]	ND [25.0]	ND [6.67]	ND [0.06]	ND [10.3]	ND [10]	ND [10]	ND [0.0526]	ND [2.80]	ND [2.00]	ND [2.30]	ND [2.0]	ND [2.0]	ND [5.13]	ND [5.56]	ND [5.13]	ND [12.1]	ND [0.06]	2.500 J	3.3 J	4.3 J	3.64	3.30 J	ND [2.00]	3.50 J	10	4.1
Acenaphthylene	NS	ND [5.13]	ND [5.71]	ND [6.06]	ND [25.0]	ND [6.67]	ND [0.06]	ND [10.3]	ND [10]	ND [10]	ND [0.0526]	ND [2.70]	ND [2.10]	ND [2.10]	ND [2.0]	ND [2.0]	ND [5.13]	ND [5.56]	ND [5.13]	ND [12.1]	ND [0.06]	ND [10.2]	ND [10.1]	ND [10.1]	0.667	ND [2.70]	ND [2.10]	ND [2.10]	ND [2.0]	ND [2.0]
Anthracene	50	ND [5.13]	ND [5.71]	ND [6.06]	ND [25.0]	ND [6.67]	ND [0.06]	ND [10.3]	ND [10]	ND [10]	ND [0.0526]	ND [2.50]	ND [2.50]	ND [2.30]	ND [2.0]	ND [2.0]	ND [5.13]	ND [5.56]	ND [5.13]	ND [12.1]	ND [0.06]	ND [10.2]	ND [10.1]	ND [10.1]	0.708	ND [2.50]	ND [2.50]	ND [2.30]	ND [2.0]	ND [2.0]
Benzo(a)anthracene	0.002	ND [5.13]	ND [5.71]	ND [6.06]	ND [25.0]	ND [6.67]	ND [0.06]	ND [10.3]	ND [10]	ND [10]	ND [0.0526]	ND [2.30]	ND [1.90]	ND [2.20]	ND [2.0]	ND [2.0]	ND [5.13]	ND [5.56]	ND [5.13]	ND [12.1]	ND [0.06]	ND [10.2]	ND [10.1]	ND [10.1]	ND [0.0513]	ND [2.30]	ND [1.90]	ND [2.20]	ND [2.0]	ND [2.0]
Benzo(a)pyrene	ND	ND [5.13]	ND [5.71]	ND [6.06]	ND [25.0]	ND [6.67]	ND [0.06]	ND [10.3]	ND [10]	ND [10]	ND [0.0526]	ND [2.40]	ND [2.00]	ND [2.00]	ND [2.0]	ND [2.0]	ND [5.13]	ND [5.56]	ND [5.13]	ND [12.1]	ND [0.06]	ND [10.2]	ND [10.1]	ND [10.1]	ND [0.0513]	ND [2.40]	ND [2.00]	ND [2.00]	ND [2.0]	ND [2.0]
Benzo(b)fluoranthene	0.002	ND [5.13]	ND [5.71]	ND [6.06]	ND [25.0]	ND [6.67]	ND [0.06]	ND [10.3]	ND [10]	ND [10]	ND [0.0526]	ND [2.30]	ND [1.90]	ND [2.00]	ND [2.0]	ND [2.0]	ND [5.13]	ND [5.56]	ND [5.13]	ND [12.1]	ND [0.06]	ND [10.2]	ND [10.1]	ND [10.1]	ND [0.0513]	ND [2.30]	ND [1.90]	ND [2.00]	ND [2.0]	ND [2.0]
Benzo(g,h,i)perylene	NS	ND [5.13]	ND [5.71]	ND [6.06]	ND [25.0]	ND [6.67]	ND [0.06]	ND [10.3]	ND [10]	ND [10]	ND [0.0526]	ND [2.60]	ND [1.60]	ND [2.00]	ND [2.0]	ND [2.0]	ND [5.13]	ND [5.56]	ND [5.13]	ND [12.1]	ND [0.06]	ND [10.2]	ND [10.1]	ND [10.1]	ND [0.0513]	ND [2.60]	ND [1.60]	ND [2.00]	ND [2.0]	ND [2.0]
Benzo(k)fluoranthene	0.002	ND [5.13]	ND [5.71]	ND [6.06]	ND [25.0]	ND [6.67]	ND [0.06]	ND [10.3]	ND [10]	ND [10]	ND [0.0526]	ND [2.30]	ND [1.80]	ND [2.00]	ND [2.0]	ND [2.0]	ND [5.13]	ND [5.56]	ND [5.13]	ND [12.1]	ND [0.06]	ND [10.2]	ND [10.1]	ND [10.1]	ND [0.0513]	ND [2.30]	ND [1.80]	ND [2.00]	ND [2.0]	ND [2.0]
Chrysene	0.002	ND [5.13]	ND [5.71]	ND [6.06]	ND [25.0]	ND [6.67]	ND [0.06]	ND [10.3]	ND [10]	ND [10]	ND [0.0526]	ND [2.40]	ND [1.90]	ND [2.30]	ND [2.0]	ND [2.0]	ND [5.13]	ND [5.56]	ND [5.13]	ND [12.1]	ND [0.06]	ND [10.2]	ND [10.1]	ND [10.1]	ND [0.0513]	ND [2.40]	ND [1.90]	ND [2.30]	ND [2.0]	ND [2.0]
Dibenzo(a,h)anthracene	e NS	ND [5.13]	ND [5.71]	ND [6.06]	ND [25.0]	ND [6.67]	ND [0.06]	ND [10.3]	ND [10]	ND [10]	ND [0.0526]	ND [2.60]	ND [1.90]	ND [2.30]	ND [2.0]	ND [2.0]	ND [5.13]	ND [5.56]	ND [5.13]	ND [12.1]	ND [0.06]	ND [10.2]	ND [10.1]	ND [10.1]	ND [0.0513]	ND [2.60]	ND [1.90]	ND [2.30]	ND [2.0]	ND [2.0]
Fluoranthene	50	ND [5.13]	ND [5.71]	ND [6.06]	ND [25.0]	ND [6.67]	ND [0.06]	ND [10.3]	ND [10]	ND [10]	ND [0.0526]	ND [2.90]	ND [2.50]	ND [2.60]	ND [2.0]	ND [2.0]	ND [5.13]	ND [5.56]	ND [5.13]	ND [12.1]	ND [0.06]	ND [10.2]	ND [10.1]	ND [10.1]	0.0821	ND [2.90]	ND [2.50]	ND [2.60]	ND [2.0]	ND [2.0]
Fluorene	50	ND [5.13]	ND [5.71]	ND [6.06]	ND [25.0]	ND [6.67]	ND [0.06]	ND [10.3]	ND [10]	ND [10]	ND [0.0526]	ND [2.50]	ND [2.40]	ND [2.20]	ND [2.0]	ND [2.0]	ND [5.13]	ND [5.56]	ND [5.13]	ND [12.1]	ND [0.06]	3.300 J	5.8 J	9.5 J	6.96	4.90 J	ND [2.40]	6.90	17	7.2
Indeno(1,2,3-cd)pyrene	0.002	ND [5.13]	ND [5.71]	ND [6.06]	ND [25.0]	ND [6.67]	ND [0.06]	ND [10.3]	ND [10]	ND [10]	ND [0.0526]	ND [3.30]	ND [3.20]	ND [2.60]	ND [2.0]	ND [2.0]	ND [5.13]	ND [5.56]	ND [5.13]	ND [12.1]	ND [0.06]	ND [10.2]	ND [10.1]	ND [10.1]	ND [0.0513]	ND [3.30]	ND [3.20]	ND [2.60]	ND [2.0]	ND [2.0]
Naphthalene	10	ND [5.13]	ND [5.71]	ND [6.06]	ND [25.0]	ND [6.67]	ND [0.06]	ND [10.3]	NT	NT	ND [0.0526]	ND [2.50]	ND [1.80]	ND [1.90]	ND [0.50]	ND [0.50]	ND [5.13]	ND [5.56]	ND [5.13]	ND [12.1]	0.141	ND [10.2]	NT	NT	0.533	ND [2.50]	ND [1.80]	ND [1.90]	ND [2.0]	ND [0.50] J
Phenanthrene	50	ND [5.13]	ND [5.71]	ND [6.06]	ND [25.0]	ND [6.67]	ND [0.06]	ND [10.3]	ND [10]	ND [10]	ND [0.0526]	ND [2.50]	ND [2.00]	ND [2.20]	ND [2.0]	ND [2.0]	ND [5.13]	ND [5.56]	ND [5.13]	ND [12.1]	0.471	ND [10.2]	5.3 J	10.7	7.27	ND [2.50]	ND [2.00]	4.80 J	29	11
Pyrene	50	ND [5.13]	ND [5.71]	ND [6.06]	ND [25.0]	ND [6.67]	ND [0.06]	ND [10.3]	ND [10]	ND [10]	ND [0.0526]	ND [2.50]	J ND [1.40]	ND [1.90]	ND [2.0]	ND [2.0]	ND [5.13]	ND [5.56]	ND [5.13]	ND [12.1]	ND [0.06]	ND [10.2]	ND [10.1]	ND [10.1]	0.185	ND [2.50] J	ND [1.40]	ND [1.90]	3.5	ND [2.0]

	Groundwater				Tes	t Location	and Sampl	e Date			
Compound	Standard or					Fiel	d Blank				
	Guidance Value (1)	3/28/12	9/12/12	4/2/13	9/25/13	5/20/15	11/28/18	9/10/19	8/26/21	8/11/22	3/9/2023
2-Methylnaphthalene	NS	ND [5.13]	ND [5.26]	ND [5.26]	ND [5.56]	ND [10.1]	ND [2.83]	ND [2.50]	ND [2.20]	ND [2.0]	ND [2.0]
Acenaphthene	20	ND [5.13]	ND [5.26]	ND [5.26]	ND [5.56]	ND [10.1]	ND [0.0513]	ND [2.80]	ND [2.30]	ND [2.0]	ND [2.0]
Acenaphthylene	NS	ND [5.13]	ND [5.26]	ND [5.26]	ND [5.56]	ND [10.1]	ND [0.0513]	ND [2.70]	ND [2.10]	ND [2.0]	ND [2.0]
Anthracene	50	ND [5.13]	ND [5.26]	ND [5.26]	ND [5.56]	ND [10.1]	ND [0.0513]	ND [2.50]	ND [2.30]	ND [2.0]	ND [2.0]
Benzo(a)anthracene	0.002	ND [5.13]	ND [5.26]	ND [5.26]	ND [5.56]	ND [10.1]	ND [0.0513]	ND [2.30]	ND [2.20]	ND [2.0]	ND [2.0]
Benzo(a)pyrene	ND	ND [5.13]	ND [5.26]	ND [5.26]	ND [5.56]	ND [10.1]	ND [0.0513]	ND [2.40]	ND [2.00]	ND [2.0]	ND [2.0]
Benzo(b)fluoranthene	0.002	ND [5.13]	ND [5.26]	ND [5.26]	ND [5.56]	ND [10.1]	ND [0.0513]	ND [2.30]	ND [2.00]	ND [2.0]	ND [2.0]
Benzo(g,h,i)perylene	NS	ND [5.13]	ND [5.26]	ND [5.26]	ND [5.56]	ND [10.1]	ND [0.0513]	ND [2.60]	ND [2.00]	ND [2.0]	ND [2.0]
Benzo(k)fluoranthene	0.002	ND [5.13]	ND [5.26]	ND [5.26]	ND [5.56]	ND [10.1]	ND [0.0513]	ND [2.30]	ND [2.00]	ND [2.0]	ND [2.0]
Chrysene	0.002	ND [5.13]	ND [5.26]	ND [5.26]	ND [5.56]	ND [10.1]	ND [0.0513]	ND [2.40]	ND [2.30]	ND [2.0]	ND [2.0]
Dibenzo(a,h)anthracene	NS	ND [5.13]	ND [5.26]	ND [5.26]	ND [5.56]	ND [10.1]	ND [0.0513]	ND [2.60]	ND [2.30]	ND [2.0]	ND [2.0]
Fluoranthene	50	ND [5.13]	ND [5.26]	ND [5.26]	ND [5.56]	ND [10.1]	ND [0.0513]	ND [2.90]	ND [2.60]	ND [2.0]	ND [2.0]
Fluorene	50	ND [5.13]	ND [5.26]	ND [5.26]	ND [5.56]	ND [10.1]	ND [0.0513]	ND [2.50]	ND [2.20]	ND [2.0]	ND [2.0]
Indeno(1,2,3-cd)pyrene	0.002	ND [5.13]	ND [5.26]	ND [5.26]	ND [5.56]	ND [10.1]	ND [0.0513]	ND [3.30]	ND [2.60]	ND [2.0]	ND [2.0]
Naphthalene	10	ND [5.13]	ND [5.26]	ND [5.26]	ND [5.56]	ND [10.1]	ND [0.0513]	ND [2.50]	ND [1.90]	ND [0.50]	ND [0.50]
Phenanthrene	50	ND [5.13]	ND [5.26]	ND [5.26]	ND [5.56]	ND [10.1]	ND [0.0513]	ND [2.50]	ND [2.20]	ND [2.0]	ND [2.0]
Pyrene	50	ND [5.13]	ND [5.26]	ND [5.26]	ND [5.56]	ND [10.1]	ND [0.0513]	ND [2.50] J	ND [1.90]	ND [2.0]	ND [2.0]

Notes

All results and groundwater standards/guidance values are in parts per billion (ppb)

(1) = Groundwater standard or guidance value as referenced in NYSDEC TOGS 1.1.1 dated June 1998 as amended in January 1999, April 2000, and June 2004.

ND [Reporting Limit] = Not Detected at a concentation greater than the reporting limit shown in brackets

NS = No Standard

J = Estimated Concentration

 $\textbf{BOLD TYPE} \ indicates \ the \ concentration \ or \ reporting \ \ limit \ exceeds \ the \ groundwater \ standard \ or \ guidance \ value$

Table 4 continued NYSDEC Site #360010 Harmon Yard Waste Water Area OU II

Summary of Detected Semi-Volatile Organic Compounds Groundwater Samples

	Groundwater			Test Location and Sample Date		
Compound	Standard or	OUII-C	OUII-E	VE4-7	VE4-9	FA4-9
	Guidance Value (1)	8/24/21	8/24/21	8/25/21	8/25/21	8/26/21
2-Methylnaphthalene	NS	ND [2.20]	ND [2.20]	ND [2.20]	ND [2.20]	ND [2.20]
Acenaphthene	20	ND [2.30]	ND [2.30]	ND [2.30]	ND [2.30]	ND [2.30]
Acenaphthylene	NS	ND [2.10]	ND [2.10]	ND [2.10]	ND [2.10]	ND [2.10]
Anthracene	50	ND [2.30]	ND [2.30]	ND [2.30]	ND [2.30]	ND [2.30]
Benzo(a)anthracene	0.002	ND [2.20]	ND [2.20]	ND [2.20]	ND [2.20]	ND [2.20]
Benzo(a)pyrene	ND	ND [2.00]	ND [2.00]	ND [2.00]	ND [2.00]	ND [2.00]
Benzo(b)fluoranthene	0.002	ND [2.00]	ND [2.00]	ND [2.00]	ND [2.00]	ND [2.00]
Benzo(g,h,i)perylene	NS	ND [2.00]	ND [2.00]	ND [2.00]	ND [2.00]	ND [2.00]
Benzo(k)fluoranthene	0.002	ND [2.00]	ND [2.00]	ND [2.00]	ND [2.00]	ND [2.00]
Chrysene	0.002	ND [2.30]	ND [2.30]	ND [2.30]	ND [2.30]	ND [2.30]
Dibenzo(a,h)anthracene	NS	ND [2.30]	ND [2.30]	ND [2.30]	ND [2.30]	ND [2.30]
Fluoranthene	50	ND [2.60]	ND [2.60]	ND [2.60]	ND [2.60]	ND [2.60]
Fluorene	50	ND [2.20]	ND [2.20]	ND [2.20]	ND [2.20]	3.60
Indeno(1,2,3-cd)pyrene	0.002	ND [2.60]	ND [2.60]	ND [2.60]	ND [2.60]	ND [2.60]
Naphthalene	10	ND [1.90]	ND [1.90]	ND [1.90]	ND [1.90]	ND [1.90]
Phenanthrene	50	ND [2.20]	ND [2.20]	ND [2.20]	ND [2.20]	ND [2.20]
Pyrene	50	ND [1.90]	ND [1.90]	ND [1.90]	2.20 J	ND [1.90]

Notes:

All results and groundwater standards/guidance values are in parts per billion (ppb)

(1) = Groundwater standard or guidance value as referenced in NYSDEC TOGS 1.1.1 dated June 1998 as amended in January 1999, April 2000, and June 2004.

ND [Reporting Limit] = Not Detected at a concentation greater than the reporting limit shown in brackets

NS = No Standard

J = Estimated Concentration

BOLD TYPE indicates the concentration or reporting limit exceeds the groundwater standard or guidance value

Table 5 NYSDEC Site #360010 Harmon Yard Waste Water Area OU II

Summary of Detected Polychlorinated Biphenyls Groundwater Samples

	T																16 1 5														
	Croundwater														les	t Location a	nd Sample Da	ite													
Compound	Groundwater								VE 1-2															VE 1-4							
	Standard or	3/27/12	9/12/12	4/2/13	9/25/13	5/27/14	5/20/15	5/17/16	8/2/17	11/27/18	9/10/19	6/3/20	8/25/21	8/11/22	Duplicate	2/0/22	3/27/12	9/12/12	4/2/13	9/25/13	5/27/14	5/20/15	5/18/16	8/2/17	11/27/18	9/10/19	6/3/20	8/25/21	8/11/22	3/9/23	03092023DUP
	Guidance Value (1)	3/2//12	3/12/12	4/2/13	3/23/13	3/2//14	3/20/13	3/17/10	0/2/1/	11/2//10	3/10/13	0/3/20	0/23/21	0/11/22	8/11/2022	3/3/23	3/2//12	9/12/12	4/2/13	3/23/13	3/2//14	3/20/13	3/16/10	0/2/1/	11/2//10	9/10/19	0/3/20	0/23/21	0/11/22	3/3/23	03092023D0F
Aroclor 1016	NS	ND [0.0513]	ND [0.0556]	ND [0.0526]	ND [0.0606]	ND [0.0588]	ND [0.096]	ND [0.5]	ND [0.505]	ND [0.0513]	ND [0.093]	ND [0.12]	ND [0.13]	ND [0.25]	ND [0.25]	ND [0.25]	ND [0.0513]	ND [0.0513]	ND [0.0526]	ND [0.0625]	ND [0.0606]	ND [0.098]	ND [0.51]	ND [0.502]	ND [0.0513]	ND [0.093]	ND [0.12]	ND [0.13]	ND [0.25]	ND [0.25]	ND [0.25]
Aroclor 1221	NS	ND [0.0513]	ND [0.0556]	ND [0.0526]	ND [0.0606]	ND [0.0588]	ND [0.1]	ND [0.5]	ND [0.505]	ND [0.0513]	ND [0.13]	ND [0.17]	ND [0.14]	ND [0.25]	ND [0.25]	ND [0.25]	ND [0.0513]	ND [0.0513]	ND [0.0526]	ND [0.0625]	ND [0.0606]	ND [0.102]	ND [0.51]	ND [0.502]	ND [0.0513]	ND [0.13]	ND [0.17]	ND [0.14]	ND [0.25]	ND [0.25]	ND [0.25]
Aroclor 1232	NS	ND [0.0513]	ND [0.0556]	ND [0.0526]	ND [0.0606]	ND [0.0588]	ND [0.1]	ND [0.5]	ND [0.505]	ND [0.0513]	ND [0.18]	ND [0.14]	ND [0.17]	ND [0.25]	ND [0.25]	ND [0.25]	ND [0.0513]	ND [0.0513]	ND [0.0526]	ND [0.0625]	ND [0.0606]	ND [0.0102]	ND [0.51]	ND [0.502]	ND [0.0513]	ND [0.18]	ND [0.14]	ND [0.17]	ND [0.25]	ND [0.25]	ND [0.25]
Aroclor 1242	NS	ND [0.0513]	ND [0.0556]	ND [0.0526]	ND [0.0606]	ND [0.0588]	ND [0.089]	ND [0.5]	ND [0.505]	ND [0.0513]	ND [0.18]	ND [0.11]	ND [0.12]	ND [0.25]	ND [0.25]	ND [0.25]	ND [0.0513]	ND [0.0513]	ND [0.0526]	ND [0.0625]	ND [0.0606]	ND [0.091]	ND [0.51]	ND [0.502]	ND [0.0513]	ND [0.18]	ND [0.11]	ND [0.12]	ND [0.25]	ND [0.25]	ND [0.25]
Aroclor 1248	NS	ND [0.0513]	ND [0.0556]	ND [0.0526]	ND [0.0606]	ND [0.0588]	ND [0.1]	ND [0.5]	ND [0.505]	ND [0.0513]	ND [0.12]	ND [0.097]	ND [0.12]	ND [0.25]	ND [0.25]	ND [0.25]	ND [0.0513]	ND [0.0513]	ND [0.0526]	ND [0.0625]	ND [0.0606]	ND [0.102]	ND [0.51]	ND [0.502]	ND [0.0513]	ND [0.12]	ND [0.097]	ND [0.12]	ND [0.25]	ND [0.25]	ND [0.25]
Aroclor 1254	NS	ND [0.0513]	ND [0.0556]	ND [0.0526]	ND [0.0606]	ND [0.0588]	ND [0.044]	ND [0.5]	ND [0.505]	ND [0.0513]	ND [0.12]	ND [0.11]	ND [0.12]	ND [0.25]	ND [0.25]	ND [0.25]	ND [0.0513]	ND [0.0513]	ND [0.0526]	ND [0.0625]	ND [0.0606]	ND [0.045]	ND [0.51]	ND [0.502]	ND [0.0513]	ND [0.12]	ND [0.11]	ND [0.12]	ND [0.25]	ND [0.25]	ND [0.25]
Aroclor 1260	NS	ND [0.0513]	ND [0.0556]	ND [0.0526]	ND [0.0606]	ND [0.0588]	ND [0.081]	ND [0.5]	ND [0.505]	ND [0.0513]	ND [0.14]	ND [0.12]	ND [0.11]	ND [0.25]	ND [0.25]	ND [0.25]	ND [0.0513]	ND [0.0513]	ND [0.0526]	ND [0.0625]	ND [0.0606]	ND [0.083]	ND [0.51]	ND [0.502]	ND [0.0513]	ND [0.14]	ND [0.12]	ND [0.11]	ND [0.25]	ND [0.25]	ND [0.25]
Aroclor 1262	NS	ND [0.0513]	ND [0.0556]	ND [0.0526]	ND [0.0606]	ND [0.0588]	ND [0.081]	ND [0.5]	ND [0.505]	ND [0.0513]	ND [0.19]	ND [0.097]	ND [0.12]	ND [0.25]	ND [0.25]	ND [0.25]	ND [0.0513]	ND [0.0513]	ND [0.0526]	ND [0.0625]	ND [0.0606]	ND [0.083]	ND [0.51]	ND [0.502]	ND [0.0513]	ND [0.19]	ND [0.097]	ND [0.12]	ND [0.25]	ND [0.25]	ND [0.25]
Aroclor 1268	NS	ND [0.0513]	ND [0.0556]	ND [0.0526]	ND [0.0606]	ND [0.0588]	ND [0.081]	ND [0.5]	ND [0.505]	ND [0.0513]	ND [0.14]	ND [0.13]	ND [0.16]	ND [0.25]	ND [0.25]	ND [0.25]	ND [0.0513]	ND [0.0513]	ND [0.0526]	ND [0.0625]	ND [0.0606]	ND [0.083]	ND [0.51]	ND [0.502]	ND [0.0513]	ND [0.14]	ND [0.13]	ND [0.16]	ND [0.25]	ND [0.25]	ND [0.25]
Total PCBs	0.09	ND [0.0513]	ND [0.0556]	ND [0.0526]	ND [0.0606]	ND [0.0588]	ND [0.1]	ND [0.5]	ND [0.505]	ND [0.0513]	ND	ND	ND	ND [0.25]	ND [0.25]	ND	ND [0.0513]	ND [0.0513]	ND [0.0526]	ND [0.0625]	ND [0.0606]	ND [0.102]	ND [0.51]	ND [0.502]	ND [0.0513]	ND	ND	ND	ND	ND	ND

	Groundwater													Test Loca	tion and San	nple Date												
Compound	Standard or							VE	2-1													VE 3-1						
	Guidance Value (1)	3/28/12	9/12/12	4/2/13	9/24/13	5/28/14	5/20/15	5/18/16	8/3/17	11/28/18	9/11/19	6/4/20	8/25/21	8/11/22	3/9/23	3/27/12	9/11/12	4/2/13	9/25/13	5/28/14	5/19/15	5/18/16	8/3/17	11/28/18	9/11/19	6/3/20	8/25/21	3/9/23
Aroclor 1016	NS	ND [0.0513]	ND [0.0571]	ND [0.0526]	ND [0.0667]	ND [0.0625]	ND [0.097]	ND [0.505]	ND [0.507]	ND [0.0513]	ND [0.093]	ND [0.12]	ND [0.12]	ND [0.25]	ND [0.25]	ND [0.0513]	ND [0.0513]	ND [0.0526]	ND [0.0588]	ND [0.0625]	ND [0.096]	ND [0.505]	ND [0.505]	ND [0.0513]	ND [0.093]	ND [0.12] J	ND [0.13]	ND [0.25]
Aroclor 1221	NS	ND [0.0513]	ND [0.0571]	ND [0.0526]	ND [0.0667]	ND [0.0625]	ND [0.101]	ND [0.505]	ND [0.507]	ND [0.0513]	ND [0.13]	ND [0.17]	ND [0.17]	ND [0.25]	ND [0.25]	ND [0.0513]	ND [0.0513]	ND [0.0526]	ND [0.0588]	ND [0.0625]	ND [0.1]	ND [0.505]	ND [0.505]	ND [0.0513]	ND [0.13]	ND [0.17] J	ND [0.14]	ND [0.25]
Aroclor 1232	NS	ND [0.0513]	ND [0.0571]	ND [0.0526]	ND [0.0667]	ND [0.0625]	ND [0.101]	ND [0.505]	ND [0.507]	ND [0.0513]	ND [0.18]	ND [0.14]	ND [0.14]	ND [0.25]	ND [0.25]	ND [0.0513]	ND [0.0513]	ND [0.0526]	ND [0.0588]	ND [0.0625]	ND [0.1]	ND [0.505]	ND [0.505]	ND [0.0513]	ND [0.18]	ND [0.14] J	ND [0.17]	ND [0.25]
Aroclor 1242	NS	ND [0.0513]	ND [0.0571]	ND [0.0526]	ND [0.0667]	ND [0.0625]	ND [0.09]	ND [0.505]	ND [0.507]	ND [0.0513]	ND [0.18]	ND [0.11]	ND [0.11]	ND [0.25]	ND [0.25]	ND [0.0513]	ND [0.0513]	ND [0.0526]	ND [0.0588]	ND [0.0625]	ND [0.089]	ND [0.505]	ND [0.505]	ND [0.0513]	ND [0.18]	ND [0.11] J	ND [0.12]	ND [0.25]
Aroclor 1248	NS	ND [0.0513]	ND [0.0571]	ND [0.0526]	ND [0.0667]	ND [0.0625]	ND [0101]	ND [0.505]	ND [0.507]	ND [0.0513]	ND [0.12]	ND [0.097]	ND [0.097]	ND [0.25]	ND [0.25]	ND [0.0513]	ND [0.0513]	ND [0.0526]	ND [0.0588]	ND [0.0625]	ND [0.1]	ND [0.505]	ND [0.505]	ND [0.0513]	ND [0.12]	ND [0.097] J	ND [0.12]	ND [0.25]
Aroclor 1254	NS	ND [0.0513]	ND [0.0571]	ND [0.0526]	ND [0.0667]	ND [0.0625]	ND [0.044]	ND [0.505]	ND [0.507]	ND [0.0513]	ND [0.12]	ND [0.11]	ND [0.11]	ND [0.25]	ND [0.25]	ND [0.0513]	ND [0.0513]	ND [0.0526]	ND [0.0588]	ND [0.0625]	ND [0.044]	ND [0.505]	ND [0.505]	ND [0.0513]	ND [0.12]	ND [0.11] J	ND [0.12]	ND [0.25]
Aroclor 1260	NS	ND [0.0513]	ND [0.0571]	ND [0.0526]	ND [0.0667]	ND [0.0625]	ND [0.082]	ND [0.505]	ND [0.507]	ND [0.0513]	ND [0.14]	ND [0.12]	ND [0.12]	ND [0.25]	ND [0.25]	ND [0.0513]	ND [0.0513]	ND [0.0526]	ND [0.0588]	ND [0.0625]	ND [0.081]	ND [0.505]	ND [0.505]	ND [0.0513]	ND [0.14]	ND [0.12] J	ND [0.11]	ND [0.25]
Aroclor 1262	NS	ND [0.0513]	ND [0.0571]	ND [0.0526]	ND [0.0667]	ND [0.0625]	ND [0.082]	ND [0.505]	ND [0.507]	ND [0.0513]	ND [0.19]	ND [0.097]	ND [0.097]	ND [0.25]	ND [0.25]	ND [0.0513]	ND [0.0513]	ND [0.0526]	ND [0.0588]	ND [0.0625]	ND [0.081]	ND [0.505]	ND [0.505]	ND [0.0513]	ND [0.19]	ND [0.097] J	ND [0.12]	ND [0.25]
Aroclor 1268	NS	ND [0.0513]	ND [0.0571]	ND [0.0526]	ND [0.0667]	ND [0.0625]	ND [0.082]	ND [0.505]	ND [0.507]	ND [0.0513]	ND [0.14]	ND [0.13]	ND [0.13]	ND [0.25]	ND [0.25]	ND [0.0513]	ND [0.0513]	ND [0.0526]	ND [0.0588]	ND [0.0625]	ND [0.081]	ND [0.505]	ND [0.505]	ND [0.0513]	ND [0.14]	ND [0.13] J	ND [0.16]	ND [0.25]
Total PCBs	0.09	ND [0.0513]	ND [0.0571]	ND [0.0526]	ND [0.0667]	ND [0.0625]	ND [0.101]	ND [0.505]	ND [0.507]	ND [0.0513]	ND	ND	ND	ND [0.25]	ND	ND [0.0513]	ND [0.0513]	ND [0.0526]	ND [0.0588]	ND [0.0625]	ND [0.1]	ND [0.505]	ND [0.505]	ND [0.0513]	ND	ND	ND	ND

All results and groundwater standards/guidance values are in parts per billion (ppb)

(1) = Groundwater standard or guidance value as referenced in NYSDEC TOGS 1.1.1 dated June 1998 as amended in January 1999, April 2000, and June 2004.

ND [Reporting Limit] = Not Detected at a concentation greater than the reporting limit shown in brackets

NS = No Standard

BOLD TYPE indicates the concentration exceeds the groundwater standard for total PCBs

Table 5 Continued NYSDEC Site #360010 Harmon Yard Waste Water Area OU II

Summary of Detected Polychlorinated Biphenyls Groundwater Samples

	Groundwater							Test Loca	ition and San	nple Date						
Compound	Standard or								VE 4-11							
	Guidance Value (1)	3/27/12	9/11/12	9/11/12 DUP	4/2/13	9/24/13	5/27/14	5/19/15	5/17/16	8/2/17	11/27/18	9/10/19	6/3/20	8/24/21	8/11/22	3/9/23
Aroclor 1016	NS	ND [0.0513]	ND [0.0625]	ND [0.0690]	ND [0.0500]	ND [0.0667]	ND [0.0588]	ND [0.099]	ND [0.5]	ND [0.506]	ND [0.0513]	ND [0.093]	ND [0.12]	ND [0.13]	ND [0.25]	ND [0.25]
Aroclor 1221	NS	ND [0.0513]	ND [0.0625]	ND [0.0690]	ND [0.0500]	ND [0.0667]	ND [0.0588]	ND [0.103]	ND [0.5]	ND [0.506]	ND [0.0513]	ND [0.13]	ND [0.17]	ND [0.14]	ND [0.25]	ND [0.25]
Aroclor 1232	NS	ND [0.0513]	ND [0.0625]	ND [0.0690]	ND [0.0500]	ND [0.0667]	ND [0.0588]	ND [0.103]	ND [0.5]	ND [0.506]	ND [0.0513]	ND [0.18]	ND [0.14]	ND [0.17]	ND [0.25]	ND [0.25]
Aroclor 1242	NS	ND [0.0513]	ND [0.0625]	ND [0.0690]	ND [0.0500]	ND [0.0667]	ND [0.0588]	ND [0.092]	ND [0.5]	ND [0.506]	ND [0.0513]	ND [0.18]	ND [0.11]	ND [0.12]	ND [0.25]	ND [0.25]
Aroclor 1248	NS	ND [0.0513]	ND [0.0625]	ND [0.0690]	ND [0.0500]	ND [0.0667]	ND [0.0588]	ND [0.103]	ND [0.5]	ND [0.506]	ND [0.0513]	ND [0.12]	ND [0.097]	ND [0.12]	ND [0.25]	ND [0.25]
Aroclor 1254	NS	ND [0.0513]	0.0805	0.0786	ND [0.0500]	0.0928	ND [0.0588]	ND [0.045]	0.914	0.711	ND [0.0513]	0.29 J	ND [0.11]	ND [0.12]	1.1 J	ND [0.25]
Aroclor 1260	NS	ND [0.0513]	ND [0.0625]	ND [0.0690]	ND [0.0500]	ND [0.0667]	ND [0.0588]	ND [0.084]	ND [0.5]	ND [0.506]	ND [0.0513]	ND [0.14]	ND [0.12]	ND [0.11]	ND [0.25]	ND [0.25]
Aroclor 1262	NS	ND [0.0513]	ND [0.0625]	ND [0.0690]	ND [0.0500]	ND [0.0667]	ND [0.0588]	ND [0.084]	ND [0.5]	ND [0.506]	ND [0.0513]	ND [0.19]	ND [0.097]	ND [0.12]	ND [0.25]	ND [0.25]
Aroclor 1268	NS	ND [0.0513]	ND [0.0625]	ND [0.0690]	ND [0.0500]	ND [0.0667]	ND [0.0588]	ND [0.084]	ND [0.5]	ND [0.506]	0.0747	ND [0.14]	ND [0.13]	ND [0.16]	ND [0.25]	ND [0.25]
Total PCBs	0.09	ND [0.0513]	0.0805	0.0786	ND [0.0500]	0.0928	ND [0.0588]	ND [0.103]	0.914	0.711	0.0747	0.29 J	ND	ND	1.1	ND

	Groundwater										Te	st Location a	nd Sample Da	ate									
Compound	Standard or							DA	Y 1										Field	Blank			
	Guidance Value (1)	3/27/12	9/11/12	4/2/13	9/24/13	5/27/14	5/19/15	5/17/16	8/2/17	11/27/18	9/11/19	6/3/20	8/26/21	8/10/22	3/8/23	3/28/12	9/12/12	4/2/13	9/25/13	5/20/15	11/28/18	9/11/19	8/11/2022
Aroclor 1016	NS	ND [0.0513]	ND [0.0556]	ND [0.0526]	ND [0.0625]	NT	ND [0.098]	ND [0.51]	ND [0.504]	ND [0.0513]	ND [0.093]	ND [0.12]	ND [0.13]	ND [0.25]	ND [0.25]	ND [0.0513]	ND [0.0556]	ND [0.0513]	ND [0.0645]	ND [0.097]	ND [0.0513]	ND [0.093]	ND [0.25]
Aroclor 1221	NS	ND [0.0513]	ND [0.0556]	ND [0.0526]	ND [0.0625]	NT	ND [0.102]	ND [0.51]	ND [0.504]	ND [0.0513]	ND [0.13]	ND [0.17]	ND [0.14]	ND [0.25]	ND [0.25]	ND [0.0513]	ND [0.0556]	ND [0.0513]	ND [0.0645]	ND [0.101]	ND [0.0513]	ND [0.13]	ND [0.25]
Aroclor 1232	NS	ND [0.0513]	ND [0.0556]	ND [0.0526]	ND [0.0625]	NT	ND [0.102]	ND [0.51]	ND [0.504]	ND [0.0513]	ND [0.18]	ND [0.14]	ND [0.17]	ND [0.25]	ND [0.25]	ND [0.0513]	ND [0.0556]	ND [0.0513]	ND [0.0645]	ND [0.101]	ND [0.0513]	ND [0.18]	ND [0.25]
Aroclor 1242	NS	ND [0.0513]	ND [0.0556]	ND [0.0526]	ND [0.0625]	NT	ND [0.091]	ND [0.51]	ND [0.504]	ND [0.0513]	ND [0.18]	ND [0.11]	ND [0.12]	ND [0.25]	ND [0.25]	ND [0.0513]	ND [0.0556]	ND [0.0513]	ND [0.0645]	ND [0.09]	ND [0.0513]	ND [0.18]	ND [0.25]
Aroclor 1248	NS	ND [0.0513]	ND [0.0556]	ND [0.0526]	ND [0.0625]	NT	ND [0.102]	ND [0.51]	ND [0.504]	ND [0.0513]	ND [0.12]	ND [0.097]	ND [0.12]	ND [0.25]	ND [0.25]	ND [0.0513]	ND [0.0556]	ND [0.0513]	ND [0.0645]	ND [0.101]	ND [0.0513]	ND [0.12]	ND [0.25]
Aroclor 1254	NS	ND [0.0513]	ND [0.0556]	ND [0.0526]	ND [0.0625]	NT	ND [0.045]	ND [0.51]	ND [0.504]	ND [0.0513]	ND [0.12]	ND [0.11]	ND [0.12]	6.5 J	ND [0.25]	ND [0.0513]	ND [0.0556]	ND [0.0513]	ND [0.0645]	ND [0.044]	ND [0.0513]	ND [0.12]	ND [0.25]
Aroclor 1260	NS	ND [0.0513]	ND [0.0556]	ND [0.0526]	ND [0.0625]	NT	ND [0.083]	ND [0.51]	ND [0.504]	ND [0.0513]	ND [0.14]	ND [0.12]	ND [0.11]	ND [0.25]	ND [0.25]	ND [0.0513]	ND [0.0556]	ND [0.0513]	ND [0.0645]	ND [0.082]	ND [0.0513]	ND [0.14]	ND [0.25]
Aroclor 1262	NS	ND [0.0513]	ND [0.0556]	ND [0.0526]	ND [0.0625]	NT	ND [0.083]	ND [0.51]	ND [0.504]	ND [0.0513]	ND [0.19]	ND [0.097]	ND [0.12]	ND [0.25]	ND [0.25]	ND [0.0513]	ND [0.0556]	ND [0.0513]	ND [0.0645]	ND [0.082]	ND [0.0513]	ND [0.19]	ND [0.25]
Aroclor 1268	NS	ND [0.0513]	ND [0.0556]	ND [0.0526]	ND [0.0625]	NT	ND [0.083]	ND [0.51]	ND [0.504]	ND [0.0513]	ND [0.14]	ND [0.13]	ND [0.16]	ND [0.25]	ND [0.25]	ND [0.0513]	ND [0.0556]	ND [0.0513]	ND [0.0645]	ND [0.082]	ND [0.0513]	ND [0.14]	ND [0.25]
Total PCBs	0.09	ND [0.0513]	ND [0.0556]	ND [0.0526]	ND [0.0625]	NT	ND [0.102]	ND [0.51]	ND [0.504]	ND [0.0513]	ND	ND	ND	6.5	ND	ND [0.0513]	ND [0.0556]	ND [0.0513]	ND [0.0645]	ND [0.101]	ND [0.0513]	ND	ND [0.25]

Notes:

All results and groundwater standards/guidance values are in parts per billion (ppb)

(1) = Groundwater standard or guidance value as referenced in NYSDEC TOGS 1.1.1 dated June 1998 as amended in January 1999, April 2000, and June 2004.

ND [Reporting Limit] = Not Detected at a concentation greater than the reporting limit shown in brackets

NS = No Standard

 $\textbf{BOLD TYPE} \ indicates \ the \ concentration \ exceeds \ the \ groundwater \ standard \ for \ total \ PCBs$

Table 5 continued NYSDEC Site #360010 Harmon Yard Waste Water Area OU II

Summary of Detected Polychlorinated Biphenyls Groundwater Samples

	Groundwater								Test Loca	ition and San	nple Date							
Compound	Standard or		OUII-A		OU	II-B		OUII-C			OUII-D			OUII-E			OUII-F	
	Guidance Value (1)	8/24/21	8/10/22	3/8/23	8/10/22	3/8/23	8/24/21	8/10/22	3/8/23	8/24/21	8/10/22	3/8/2022*	8/24/21	8/10/22	3/8/23	8/24/21	8/10/22	3/8/23
Aroclor 1016	NS	ND [0.13]	ND [1.3]	ND [1.3]	ND [0.75]	ND [0.50]	ND [0.13]	ND [0.26]	ND [0.25]	ND [0.91]	ND [0.26]	ND [0.50]	ND [0.13]	ND [0.26]	ND [0.25]	ND [0.13]	ND [0.25]	ND [0.25]
Aroclor 1221	NS	ND [0.14]	ND [1.3]	ND [1.3]	ND [0.75]	ND [0.50]	ND [0.14]	ND [0.26]	ND [0.25]	ND [0.99]	ND [0.26]	ND [0.50]	ND [0.14]	ND [0.26]	ND [0.25]	ND [0.14]	ND [0.25]	ND [0.25]
Aroclor 1232	NS	ND [0.17]	ND [1.3]	ND [1.3]	ND [0.75]	ND [0.50]	ND [0.17]	ND [0.26]	ND [0.25]	ND [1.20]	ND [0.26]	ND [0.50]	ND [0.17]	ND [0.26]	ND [0.25]	ND [0.17]	ND [0.25]	ND [0.25]
Aroclor 1242	NS	ND [0.12]	ND [1.3]	ND [1.3]	ND [0.75]	ND [0.50]	ND [0.12]	ND [0.26]	ND [0.25]	ND [0.84]	ND [0.26]	ND [0.50]	ND [0.12]	ND [0.26]	ND [0.25]	ND [0.12]	ND [0.25]	ND [0.25]
Aroclor 1248	NS	ND [0.12]	ND [1.3]	ND [1.3]	ND [0.75]	ND [0.50]	ND [0.12]	ND [0.26]	ND [0.25]	ND [0.87]	ND [0.26]	ND [0.50]	ND [0.12]	ND [0.26]	ND [0.25]	ND [0.12]	ND [0.25]	ND [0.25]
Aroclor 1254	NS	14.7 DJ	66 J	33 J	28 J	7 J	ND [0.12]	ND [0.26]	ND [0.25]	8.30 PJ	0.61 J	2.3	ND [0.12]	0.36 J	ND [0.25]	2.00 PJ	4.8 J	7.5
Aroclor 1260	NS	ND [0.11]	ND [1.3]	ND [1.3]	ND [0.75]	ND [0.50]	ND [0.11]	ND [0.26]	ND [0.25]	ND [0.76]	ND [0.26]	ND [0.50]	ND [0.11]	ND [0.26]	ND [0.25]	ND [0.11]	ND [0.25]	ND [0.25]
Aroclor 1262	NS	ND [0.12]	ND [1.3]	ND [1.3]	ND [0.75]	ND [0.50]	ND [0.12]	ND [0.26]	ND [0.25]	ND [0.84]	ND [0.26]	ND [0.50]	ND [0.12]	ND [0.26]	ND [0.25]	ND [0.12]	ND [0.25]	ND [0.25]
Aroclor 1268	NS	ND [0.16]	ND [1.3]	ND [1.3]	ND [0.75]	ND [0.50]	ND [0.16]	ND [0.26]	ND [0.25]	ND [1.20]	ND [0.26]	ND [0.50]	ND [0.16]	ND [0.26]	ND [0.25]	ND [0.16]	ND [0.25]	ND [0.25]
Total PCBs	0.09	14.7	66	33	28	7	ND	ND [0.26]	ND [0.25]	8.3	0.61	2.3	ND	0.36	ND [0.25]	2	4.8	7.5

	Groundwater							Te	st Location a	nd Sample D	ate						
Compound	Standard or		FA4-9		FA4-11		FA4-16			PGW-2			VE4-7			VE4-9	
	Guidance Value (1)	8/26/21	8/10/22	3/8/2023*	8/24/21	8/24/21	8/10/22	3/8/2023*	8/24/21	8/10/22	3/8/2023*	8/25/21	8/10/22	3/8/23	8/24/21	8/10/22	3/8/2023*
Aroclor 1016	NS	ND [0.13]	ND [5.0]	ND [2.5]	ND [0.13]	ND [0.13]	J	ND [2.5]	ND [0.41]	ND [0.25]	ND [2.5]	ND [0.13]	ND [0.25]	ND [2.5]	ND [0.13]	ND [1.3]	ND [2.5]
Aroclor 1221	NS	ND [0.14]	ND [5.0]	ND [2.5]	ND [0.14]	ND [0.14]	ND [5.0]	ND [2.5]	ND [0.45]	ND [0.25]	ND [2.5]	ND [0.14]	ND [0.25]	ND [2.5]	ND [0.14]	ND [1.3]	ND [2.5]
Aroclor 1232	NS	ND [0.17]	ND [5.0]	ND [2.5]	ND [0.17]	ND [0.17]	ND [5.0]	ND [2.5]	ND [0.54]	ND [0.25]	ND [2.5]	ND [0.17]	ND [0.25]	ND [2.5]	ND [0.17]	ND [1.3]	ND [2.5]
Aroclor 1242	NS	ND [0.12]	ND [5.0]	ND [2.5]	ND [0.12]	ND [0.12]	ND [5.0]	ND [2.5]	ND [0.38]	ND [0.25]	ND [2.5]	ND [0.12]	ND [0.25]	ND [2.5]	ND [0.12]	ND [1.3]	ND [2.5]
Aroclor 1248	NS	ND [0.12]	ND [5.0]	ND [2.5]	ND [0.12]	ND [0.12]	ND [5.0]	ND [2.5]	ND [0.39]	ND [0.25]	ND [2.5]	ND [0.12]	ND [0.25]	ND [2.5]	ND [0.12]	ND [1.3]	ND [2.5]
Aroclor 1254	NS	ND [0.12] J	140 J	30 J	0.89 PJ	10 J	67 J	34EJ	2.1 J	4.2 J	4.7	0.35 JP	3.7 J	47 J	ND [0.12]	17 J	52 J
Aroclor 1260	NS	ND [0.11]	ND [5.0]	ND [2.5]	ND [0.11]	ND [0.11]	ND [5.0] J	ND [2.5]	ND [0.34]	ND [0.25]	ND [2.5]	ND [0.11]	ND [0.25]	ND [2.5]	ND [0.11]	ND [1.3]	ND [2.5]
Aroclor 1262	NS	ND [0.12]	ND [5.0]	ND [2.5]	ND [0.12]	ND [0.12]	ND [5.0]	ND [2.5]	ND [0.38]	ND [0.25]	ND [2.5]	ND [0.12]	ND [0.25]	ND [2.5]	ND [0.12]	ND [1.3]	ND [2.5]
Aroclor 1268	NS	ND [0.16]	ND [5.0]	ND [2.5]	ND [0.16]	ND [0.16]	ND [5.0]	ND [2.5]	ND [0.53]	ND [0.25]	ND [2.5]	ND [0.16]	ND [0.25]	ND [2.5]	ND [0.16]	ND [1.3]	ND [2.5]
Total PCBs	0.09	ND	140	30	0.89	10	67	34	2.1	4.2	4.7	0.35	3.7	47	ND	17	52

Notes:

All results and groundwater standards/guidance values are in parts per billion (ppb)

(1) = Groundwater standard or guidance value as referenced in NYSDEC TOGS 1.1.1 dated June 1998 as amended in January 1999, April 2000, and June 2004.

ND [Reporting Limit] = Not Detected at a concentration greater than the reporting limit shown in brackets

NS = No Standard

BOLD TYPE indicates the concentration exceeds the groundwater standard for total PCBs

P = Indicates >25% difference for detected concentrations between the two GC columns

J = Value higher than laboratory method detection limit but below laboratory reporting limit

E = Estimated value

* = NAPL sample analyzed

Table 6 NYSDEC Site #360010 Harmon Yard Waste Water Area OU II

Summary of Detected Metals Groundwater Samples

								Test Loc		ample Date						
Compound	Groundwater								VE 1-2							
Compound	Standard or Guidance Value ⁽¹⁾	3/27/12	9/12/12	4/2/13	9/25/13	5/27/14	5/20/15	5/17/16	8/2/17	11/27/18	9/10/19	6/3/20	8/25/21	8/11/22	Duplicate 8/11/22	3/9/23
Arsenic	25	ND [10]	ND [4.0]	ND [4.0]	ND [4.0]	ND [4.0]	2.82	4.71	1.57	ND [1.11]	ND [0.68]	ND [2.38]	ND [4.13]	ND [2.0]	4.3	ND [2.0]
Chromium	50	ND [5]	ND [5]	ND [5]	ND [5]	ND [5]	0.969 J	1.71 JN*	0.85 JN	ND [1.11]	ND [1.33]	1.53 J	2.32 J	2.4	7.5	ND [2.0]
Copper	200	ND [5]	ND [5]	ND [5]	ND [3]	ND [3]	3.21	21.5 N	4.48	5.52	ND [10]	28.2	20.7 JH	29	160	ND [10]
Lead	25	ND [3]	ND [3]	ND [3]	ND [3]	ND [3]	4.34	7.76	1.56*	2.32	22.2	31.2	6.66	21	51	ND [3.0]

	Groundwater							Те		and Sample	Date						
Compound	Standard or								V	E 1-4							
	Guidance Value ⁽¹⁾	3/27/12	9/12/12	4/2/13	9/25/13	5/27/14	5/20/15	5/18/16	8/2/17	11/27/18	9/10/19	6/3/20	8/25/21	8/25/21	8/11/22	3/9/23	0302023DUP
Arsenic	25	ND [10]	ND [4.0]	ND [4.0]	ND [4.0]	ND [4.0]	3.5	36.5	1.21	1.22	ND [0.68]	ND [2.38]	ND [4.13]	ND [4.13]	ND [2.0]	ND [2.0] J	ND [2.0] J
Chromium	50	ND [5]	ND [5]	ND [5]	ND [5]	ND [5]	0.796 J	139 N*	1.62 JN	1.26	ND [1.33]	1.24 J	1.42 J	1.42 J	ND [2.0]	2.3	ND [2.0]
Copper	200	ND [5]	ND [5]	ND [5]	ND [3]	ND [3]	10.8	6060 N	48	57.3	ND [10]	5.31 J	22.3 JH	22.3	34	16	ND [10]
Lead	25	ND [3]	ND [3]	ND [3]	ND [3]	ND [3]	3.89	1690	14.7*	17.8	14.4	20.7	3.55 J	3.55 J	14	6.3 J	ND [3.0] J

Compound	Groundwater Standard or							Test Loca	ation and Sa	ample Date						
	Guidance Value ⁽¹⁾	3/28/12	9/12/12	4/2/13	9/24/13	5/28/14	5/20/15	5/18/16	8/3/17	11/28/18	9/11/19	6/4/20	DUP	8/25/21	8/11/22	3/9/23
Arsenic	25	ND [10]	ND [4.0]	ND [4.0]	ND [4.0]	ND [4.0]	0.507 J	0.42 J	0.92 J	ND [1.11]	ND [0.68]	ND [2.38]	ND [2.38]	ND [4.13]	ND [2.0]	ND [2.0]
Chromium	50	ND [5]	ND [5]	ND [5]	ND [5]	ND [5]	0.137 J	0.65 JN*	0.73 JN	ND [1.11]	ND [1.33]	ND [0.81] J	ND [0.81] J	1.25 J	ND [2.0]	ND [2.0]
Copper	200	ND [5]	6.72	5.56	4.70	9.00	4.55	3.5 N	3.48	10.70	ND [10]	4.92 J	4.47 J	1.68 JH	ND [10]	ND [10]
Lead	25	ND [3]	ND [3]	ND [3]	ND [3]	ND [3]	1.38	0.3 J	0.17 J*	ND [1.11]	8.83	23.3	23.3	ND [1.64]	ND [3.0] J	ND [3.0]

	Groundwater						Test Loca	tion and San	nple Date					
Compound	Standard or							VE 3-1						
	Guidance Value ⁽¹⁾	3/27/12	9/11/12	4/2/13	9/25/13	5/28/14	5/19/15	5/18/16	8/3/17	11/28/18	9/11/19	6/3/20	8/25/21	3/9/23
Arsenic	25	ND [10]	4.71	6.03	ND [4.0]	5.62	9.16	16.5	19.1	26.9	ND [0.68]	ND [2.38]	11	4.9
Chromium	50	ND [5]	ND [5]	ND [5]	ND [5]	ND [5]	3.07	5.62 N*	5.35 N	6.34	ND [1.33]	2.44 J	6.51	3
Copper	200	ND [5]	ND [5]	ND [5]	ND [3]	ND [3]	5.24	6.73 N	9.65	10.50	21.7 JH	3.97 J	7.86 JH	ND [10]
Lead	25	ND [3]	ND [3]	ND [3]	ND [3]	ND [3]	3.77	1.44	2.71 *	3.59	10 U	9.64	6.33	3.9

Notes:

All results and groundwater standards/guidance values are in parts per billion (ppb)

(1) = Groundwater standard or guidance value as referenced in NYSDEC TOGS 1.1.1 dated June 1998 as amended in January 1999, April 2000, and June 2004.

ND (Method Detection Limit) [Reporting Limit] = Not Detected at a concentration greater than the reporting limit shown in brackets

NS = No Standard

J = Estimated Concentration

N = Indicates the spiked sample recovery is not within control limits

H = Result may be biased high

* = Indicates that the duplicate analysis is not within control limits

BOLD TYPE indicates the reported concentration or reporting limit exceeds the groundwater standard or guidance value

Table 6 Continued NYSDEC Site #360010 Harmon Yard Waste Water Area OU II

Summary of Detected Metals Groundwater Samples

	Groundwater							Test Locat	ion and Sam	ple Date						
Compound	Standard or								VE 4-11							
	Guidance Value ⁽¹⁾	3/27/12	9/11/12	9/11/2012 DUP	4/2/13	9/24/13	5/27/14	5/19/15	5/17/16	8/2/17	11/27/18	9/10/19	6/3/20	8/24/21	8/11/22	3/9/23
Arsenic	25	ND [10]	ND [4.0]	ND [4.0]	ND [4.0]	ND [4.0]	ND [4.0]	2.3	0.76 J	1.67	ND [1.11]	ND [0.68]	ND [2.38]	ND [4.13]	ND [2.0]	ND [2.0]
Chromium	50	ND [5]	ND [5]	ND [5]	ND [5]	ND [5]	ND [5]	1.37 J	0.66 JN*	0.81 JN	ND [1.11]	ND [1.33]	ND [0.81] J	0.92 J	ND [2.0]	ND [2.0]
Copper	200	7.64	10.1	8.7	ND [5]	13.7	4.44	9.24	9.02 N	7.24	ND [1.11]	ND [10]	5.53 J	8.21 JH	ND [10]	ND [10]
Lead	25	ND [3]	ND [3]	ND [3]	ND [3]	ND [3]	ND [3]	1.55	0.19 J	0.66 J*	ND [1.11]	11.6	24.4 JH	2.39 J	ND [3.0]	ND [3.0]

Compound	Groundwater Standard or						Test	Location an DAY	•	ate					
	Guidance Value ⁽¹⁾	3/27/12	9/11/12	4/2/13	9/24/13	5/27/14	5/19/15	5/17/16	8/2/17	11/27/18	9/10/19	6/3/20	8/26/21	8/10/22	3/8/23
Arsenic	25	ND [10]	12.5	ND [4.0]	ND [4.0]	ND [4.0]	10.7	10.6	10.8	12.4	ND [0.68]	ND [2.38]	10.6	11	9.4
Chromium	50	ND [5]	ND [5]	ND [5]	ND [5]	ND [5]	1.31 J	1.44 JN*	0.95 JN	ND [1.11]	ND [1.33]	3.38 J	ND [0.74]	11	4.9
Copper	200	ND [5]	ND [5]	ND [5]	ND [3]	ND [3]	1.34 J	2.77 N	2.99	1.57	ND [10]	3.40 J	1.98 JH	16	ND [10]
Lead	25	ND [3]	ND [3]	ND [3]	ND [3]	ND [3]	1.75	0.15 J	0.41 J*	ND [1.11]	3.80 J	ND [1.25]	2.15 J	8.5	ND [3.0]

	Groundwater					Test Location	on and Samp	le Date				
Compound	Standard or					F	ield Blank					
	Guidance Value ⁽¹⁾	3/28/12	9/12/12	4/2/13	9/25/13	5/20/15	11/28/18	9/11/19	6/4/20	8/26/21	8/11/22	3/9/23
Arsenic	25	ND [10]	ND [4.0]	ND [4.0]	ND [4.0]	ND [1.0]	ND [1.11]	ND [0.68]	ND [2.38]	ND [4.13]	ND [2.0]	ND [2.0]
Chromium	50	ND [5]	ND [5]	ND [5]	ND [5]	0.431 J	ND [1.11]	ND [1.33]	ND [0.81] J	ND [0.74]	ND [2.0]	ND [2.0]
Copper	200	ND [5]	ND [5]	ND [5]	17.3	80	ND [1.11]	ND [0.49]	ND [1.23]	ND [0.89]	ND [10]	ND [10]
Lead	25	ND [3]	ND [3]	ND [3]	ND [3]	1.6	ND [1.11]	ND [1.43]	ND [1.25] JH	ND [1.64]	ND [3.0]	ND [3.0]

Notes:

All results and groundwater standards/guidance values are in parts per billion (ppb)

(1) = Groundwater standard or guidance value as referenced in NYSDEC TOGS 1.1.1 dated June 1998 as amended in January 1999, April 2000, and June 2004.

ND (Method Detection Limit) [Reporting Limit] = Not Detected at a concentration greater than the reporting limit shown in brackets

NS = No Standard

J = Estimated Concentration

N = Indicates the spiked sample recovery is not within control limits

H = Result may be biased high

* = Indicates that the duplicate analysis is not within control limits

BOLD TYPE indicates the reported concentration or reporting limit exceeds the groundwater standard or guidance value

Table 7 NYSDEC Site #360010 Harmon Yard Waste Water Area OUII

Summary of Detected PFAS and 1,4-Dioxane **Groundwater Samples**

											Test Loca	ition and Sa	mple Date								
Compound	Guidance Values ¹	VE 1-2					VE 1-4										VE 2-1				
		8/2/17	8/2/17	11/27/18	9/10/19	6/3/20	8/25/21	DUP (8/25/21)	8/11/22	3/9/23	030923 DUP	8/2/17	11/28/18	DUP (11/28/18)	9/11/19	DUP (9/11/19)	6/4/20	DUP (6/4/20)	8/25/21	8/11/22	3/9/23
Perfluoroheptanoic acid (PFHpA)	100	ND [0.79]	7.7	45	12.9	12 J	19	19	8.2	7.72	7.35	4	ND [2.0]	ND [2.0]	ND [10]	ND [10]	3.3 J	3.0 J	19	4.6	ND [1.26]
Perfluorooctanoic acid (PFOA)	6.7	5.2	29	50	51.3	15 J	44	43	12.3	7.01	6.16	7.7	ND [2.0]	ND [2.0]	ND [10]	ND [10]	4.4	6.9	23	7.3	0.844 J
Perfluoroononanoic acid (PFNA)	100	1.3 J	2.8	7.1	ND [10]	4.1 J	5.0	4.9	1.9	1.23 J	ND [0.939]	2.6	ND [2.0]	ND [2.0]	ND [10]	ND [10]	2.3 J	2.8 J	2.9	ND [1.8]	ND [0.925]
Perfluorodecanoic acid (PFDA)	100	ND [0.43]	ND [0.43]	4.1	ND [10]	1.3 J	1.1 J	0.97 J	ND [1.8]	ND [1.34]	ND [1.35]	0.76 J	ND [2.0]	ND [2.0]	ND [10]	ND [10]	ND [4.5]	ND [4.5]	ND [0.41]	ND [1.8]	ND [1.33]
Perfluoroundecanoic acid (PFUnA)	100	ND [0.73]	ND [0.73]	ND [2.0]	ND [10]	ND [4.5]	ND [0.43]	ND [0.42]	ND [1.8]	ND [2.01]	ND [2.04]	ND [0.74]	ND [2.0]	ND [2.0]	ND [10]	ND [10]	ND [4.5]	ND [4.5]	ND [0.41]	ND [1.8]	ND [2.01]
Perfluorododecanoic acid (PFDoA)	100	1.2 J	ND [0.57]	ND [2.0]	ND [10]	ND [4.5]	ND [0.43]	ND [0.42]	ND [1.8]	ND [1.57]	ND [1.59]	ND [0.58]	ND [2.0]	ND [2.0]	ND [10]	ND [10]	ND [4.5]	ND [4.5]	ND [0.41]	ND [1.8]	ND [1.57]
Perfluorotridecanoic acid (PFTriA)	100	ND [0.54]	ND [0.54]	ND [2.0]	ND [10]	ND [4.5]	ND [0.43]	ND [0.42]	ND [1.8]	ND [1.32]	ND [1.34]	ND [0.54]	ND [2.0]	ND [2.0]	ND [10]	ND [10]	ND [4.5]	ND [4.5]	ND [0.41]	ND [1.8] J	ND [1.32]
Perfluorotetradecanoic acid (PFTeA)	100	ND [0.20]	ND [0.19]	ND [2.0]	ND [10]	ND [4.5]	ND [0.43]	ND [0.42]	ND [1.8]	ND [1.23]	ND [1.25]	0.27 J B	ND [2.0]	ND [2.0]	ND [10]	ND [10]	ND [4.5]	ND [4.5]	ND [0.41]	ND [1.8] J	ND [1.23]
Perfluorohexanesulfonic acid (PFHxS)	100	7.4	9.7	11	20.3	5.3	3.9	4.0	ND [1.8]	4.62	4.43	24	3.4	5.4	ND [10]	ND [10]	11	14	41	15.4	8.79
Perfluoroheptanesulfonic acid (PFHpS)	100	ND [0.70]	0.77 J	2.2	ND [10]	0.80 J	1.5 J *-	1.7 *-	ND [1.8]	ND [1.62]	ND [1.64]	ND [0.70]	ND [2.0]	ND [2.0]	ND [10]	ND [10]	0.89 J	0.73 J	0.89 *-	ND [1.8]	ND [1.62]
Perfluorooctanesulfonic acid (PFOS)	2.7	37	62	43	63.3	34	71	73	55.5	24.1	22.7	55	16	21	42.9	38.2	56	60	81	60.5	33.5
Perfluorodecanesulfonic acid (PFDS)	100	ND [1.2]	ND [1.2]	ND [2.0]	ND [10]	ND [4.5]	ND [0.43]	ND *- [0.42]	ND [1.8] J	ND [2.35]	ND [2.38]	ND [1.2]	ND [2.0]	ND [2.0]	ND [10]	ND [10]	ND [4.5]	ND [4.5]	ND *- [0.41]	ND [1.8]	ND [2.35]
Perfluorooctane Sulfonamide (FOSA)	100	ND [0.63]	ND [0.62]	ND [2.0]	ND [10]	ND [4.5]	2.2	1.8	ND [18]	ND [1.57]	ND [1.59]	3.9 J	ND [2.0]	ND [2.0]	ND [10]	ND [10]	ND [4.5]	ND [4.5]	0.42 J	ND [18] J	ND [1.57]
Perfluorobutanoic acid (PFBA)	100	ND [22]	ND [22]	10	13.4	ND [4.5]	12	12	4.1	7.20 J	11.1 J	54 J B Cl	ND [2.0]	ND [2.0]	ND [10]	ND [10]	2.0 J	3.1 J	100	4.4	ND [0.587]
Perfluoropentanoic acid (PFPeA)	100	ND [48]	ND [48]	93	14.6	10	24 *-	24 *-	19.8	12.4	11.8	ND [49]	ND [2.0]	ND [2.0]	ND [10]	ND [10]	ND [4.5]	ND [4.5]	35 *-	ND [8.9]	0.986 J
Perfluorohexanoic acid (PFHxA)	100	ND [39]	ND [38]	50	14.2	8.8	21	22	9.7	6.84	7.64	ND [39]	ND [2.0]	ND [2.0]	ND [10]	ND [10]	ND [9.2] J	ND [9.2] J	42	4.8	0.803 J
Perfluorobutanesulfonic acid (PFBS)	100	ND [45]	ND [45]	13	ND [10]	3.2 J	3 *-	3.1 *-	ND [1.8]	7.76	7.10	ND [45]	ND [2.0]	ND [2.0]	ND [10]	ND [10]	2.0 J	1.9 J	7.0 *-	2.8	0.965 J
6:2 Fluorotelomersulfonate (6:2 FTS)	100	NT	NT	50	ND [25]	0.85 J	ND [1.7]	ND [1.7]	ND [7.1]	ND [1.89]	ND [3.70]	NT	ND [2.0]	ND [2.0]	ND [10]	ND [25]	ND [4.5] J	ND [4.5] J	ND [1.7]	ND [7.1]	ND [1.89]
8:2 Fluorotelomersulfonate (8:2 FTS)	100	NT	NT	5.3	ND [10]	0.38 J	ND [0.82]	ND [0.84]	ND [7.1]	ND [3.65]	ND [1.91]	NT	ND [2.0]	ND [2.0]	ND [10]	ND [10]	ND [4.5] J	ND [4.5] J	ND [0.83]	ND [7.1]	ND [3.65]
NMeFOSAA	100	NT	NT	ND [2.0]	ND [10]	ND [4.5]	ND [0.52]	ND [0.50]	ND [3.6]	ND [7.11]	ND [1.43]	NT	ND [2.0]	ND [2.0]	ND [10]	ND [10]	ND [4.5]	ND [4.5]	ND [0.50]	ND [3.6]	ND [1.41]
NEtFOSAA	100	NT	NT	ND [2.0]	ND [10]	ND [4.5] J	ND {0.43]	ND [0.42]	ND [3.6]	ND [2.82]	ND [1.86]	NT	ND [2.0]	ND [2.0]	ND [10]	ND [10]	ND [4.5]	ND [4.5]	ND [0.41]	ND [3.6]	ND [1.83]
PFOA & PFOS		42.2	91	93	114.6	49	115	116	67.8	31.11	28.86	62.7	16	21	42.9	38.2	60.4	66.9	104	67.8	34.344
Maximum PFAS (not inc PFOA/PFOS)		7.4	9.7	93	20.3	10	92.7	93.47	55.5	56.5	57.5	24	3.4	5.4	0	0	11	14	100	60.5	8.79
Total PFAS	500	49.6	111.2	383.7	190	95.73	207.7	209.47	111.50	78.90	78.25	93.3	19.4	26.4	42.9	38.2	81.89	92.43	352.21	99.8	45.888
1,4-Dioxane	350	NT	NT	ND [200]	ND [200]	ND [90]	ND [100]	ND [100]	ND [100]	ND [100]		NT	ND [200]	ND [200]	ND [200]	NT	ND [90]	ND [90]	ND [100]	ND [100]	ND [100]

										Test Loca	tion and San	nple Date							
Compound	Guidance Values ¹	VE 3-1				VE 4-11				DAY 1			Field Blan	k		Trip Blank		Equipment Blan	k
		8/2/17	8/2/17	11/27/18	9/10/19	6/3/20	8/24/21	8/11/22	3/9/23	8/2/17	2017	2018	FB91119	FB6420	FB-082621	3/9/23	EB-082621	8/11/2022	3/9/23
Perfluoroheptanoic acid (PFHpA)	100	3.3	ND [0.81]	ND [2.0]	ND [10]	ND [4.3] J	ND [0.42]	ND [8.9]	ND [1.28]	5.4	ND [0.67]	ND [2.0]	ND [10]	ND [4.4]	ND [0.42]	ND [1.31]	ND [0.42]	ND [1.8]	ND [1.32]
Perfluorooctanoic acid (PFOA)	6.7	5.6	ND [0.75]	ND [2.0]	ND [10]	ND [1.7] J	1.4 JI	ND [1.8]	ND [0.758]	18	ND [0.62]	ND [2.0]	ND [10]	ND [1.8]	ND [0.42]	ND [0.777]	ND [0.42]	ND [1.8]	ND [0.778]
Perfluoroononanoic acid (PFNA)	100	1.1 J	ND [0.66]	ND [2.0]	ND [10]	ND [4.3]	ND [0.42]	ND [1.8]	ND [0.939]	2.4	ND [0.54]	ND [2.0]	ND [10]	ND [4.4]	ND [0.42]	ND [0.962]	ND [0.42]	ND [1.8]	ND [0.963]
Perfluorodecanoic acid (PFDA)	100	ND [0.44]	ND [0.44]	ND [2.0]	ND [10]	ND [4.3]	ND [0.42]	ND [1.8]	ND [1.35]	ND [0.44]	ND [0.37]	ND [2.0]	ND [10]	ND [4.4]	ND [0.42]	ND [1.39]	ND [0.42]	ND [1.8]	ND [1.39]
Perfluoroundecanoic acid (PFUnA)	100	ND [0.75]	ND [0.75]	ND [2.0]	ND [10]	ND [4.3]	ND [0.42]	ND [1.8]	ND [2.04]	ND [0.75]	ND [0.62]	ND [2.0]	ND [10]	ND [4.4]	ND [0.42]	ND [2.09]	ND [0.42]	ND [1.8]	ND [2.09]
Perfluorododecanoic acid (PFDoA)	100	ND [0.75]	1.4 J	ND [2.0]	ND [10]	ND [4.3]	ND [0.42]	ND [1.8]	ND [1.59]	ND [0.58]	ND [0.49]	ND [2.0]	ND [10]	ND [4.4]	ND [0.42]	ND [1.63]	ND [0.42]	ND [1.8]	ND [1.63]
Perfluorotridecanoic acid (PFTriA)	100	ND [0.59]	ND [0.56]	ND [2.0]	ND [10]	ND [4.3]	ND [0.42]	ND [1.8] J	ND [1.34]	ND [0.55]	ND [0.46]	ND [2.0]	ND [10]	ND [4.4]	ND [0.42]	ND [1.37]	ND [0.42]	ND [1.8]	ND [1.37]
Perfluorotetradecanoic acid (PFTeA)	100	ND [0.55]	ND [0.20	ND [2.0]	ND [10]	ND [4.3]	ND [0.42]	ND [1.8] J	ND [1.25]	ND [0.20]	ND [0.17]	ND [2.0]	ND [10]	ND [4.4]	ND [0.42]	ND [1.28]	ND [0.42]	ND [1.8]	ND [1.28]
Perfluorohexanesulfonic acid (PFHxS)	100	2	39	ND [2.0]	10.5	6.8	8.2	9.4	4.32	5.0	ND [0.72]	ND [2.0]	ND [10]	ND [4.4]	ND [0.42]	ND [1.26]	ND [0.42]	ND [1.8]	ND [1.26]
Perfluoroheptanesulfonic acid (PFHpS)	100	ND [0.72]	ND [0.72]	ND [2.0]	ND [10]	ND [4.3]	ND [0.42]	ND [1.8]	ND [1.64]	ND [0.71]	ND [0.59]	ND [2.0]	ND [10]	ND [4.4]	ND [0.42]	ND [1.68]	ND [0.42]	ND [1.8]	ND [1.69]
Perfluorooctanesulfonic acid (PFOS)	2.7	14	7.2	4.2	ND [10]	5.2	6.11	6.6	ND [1.48]	16	ND [1.1]	ND [2.0]	ND [10]	ND [1.8]	ND [0.42]	ND [1.52]	ND [0.42]	ND [1.8]	ND [1.52]
Perfluorodecanesulfonic acid (PFDS)	100	ND [1.2]	ND [1.2]	ND [2.0]	ND [10]	ND[4.3]	ND [0.42]	ND [1.8]	ND [2.38]	ND [1.2]	ND [1.0]	ND [2.0]	ND [10]	ND [4.4]	ND [0.42]	ND [2.44]	ND [0.42]	ND [1.8]	ND [2.44]
Perfluorooctane Sulfonamide (FOSA)	100	ND [0.64]	ND [0.64]	ND [2.0]	ND [10]	ND [4.3]	0.71 J	ND [18] J	ND [1.59]	ND [0.64]	ND [0.53]	ND [2.0]	ND [10]	ND [4.4]	ND [0.42]	ND [1.63]	ND [0.42]	ND [3.6]	ND [1.63]
Perfluorobutanoic acid (PFBA)	100	2200 B CI	ND [23]	ND [2.0]	ND [10]	ND [4.3]	13 F2 F1	ND [8.9]	ND [0.596]	2000 B CI	ND [0.38]	ND [2.0]	ND [10]	ND [4.4]	ND [1.7]	ND [0.611]	ND [1.7]	ND [3.6]	ND [0.611]
Perfluoropentanoic acid (PFPeA)	100	ND [50]	ND [50]	ND [2.0]	ND [10]	ND [4.3]	120 *-	ND [8.9]	0.416 J	4600 CI	ND [0.82]	ND [2.0]	ND [10]	ND [4.4]	ND [0.42]	ND [0.426]	ND [0.42]	ND [1.8]	ND [0.426]
Perfluorohexanoic acid (PFHxA)	100	ND [39]	ND [40]	5.7	ND [10]	ND [9.2] J	ND [0.42]	ND [8.9]	0.731 J	ND [39]	ND [0.65]	ND [2.0]	ND [10]	ND [9.2]	ND [0.42]	ND [0.648]	ND [0.42]	ND [1.8]	ND [0.648]
Perfluorobutanesulfonic acid (PFBS)	100	ND [46]	ND [46]	15	ND [10]	ND [4.3]	43 F2 I F1 *-	ND [8.9]	1.20 J	ND [46]	ND [0.76]	ND [2.0]	ND [10]	ND [4.4]	ND [0.42]	ND [0.870]	ND [0.42]	ND [1.8]	ND [0.871]
6:2 Fluorotelomersulfonate (6:2 FTS)	100	NT	NT	ND [2.0]	ND [25]	ND [4.3] J	ND [1.7]	ND [7.1]	ND [1.91]	NT	NT	ND [2.0]	ND [25]	ND [4.4]	1.7 J B	ND [1.96]	2.0 J B	ND [7.1]	ND [1.96]
8:2 Fluorotelomersulfonate (8:2 FTS)	100	NT	NT	ND [2.0]	ND [10]	ND [4.3] J	ND [0.85]	ND [7.1]	ND [3.70]	NT	NT	ND [2.0]	ND [10]	ND [4.4]	ND [0.84]	ND [3.79]	ND [0.85]	ND [7.1]	ND [3.80]
NMeFOSAA	100	NT	NT	ND [2.0]	ND [10]	ND [4.3]	ND [0.51]	ND [3.6]	ND [1.43]	NT	NT	ND [2.0]	ND [10]	ND [4.4]	ND [0.51]	ND [1.46]	ND [0.51]	ND [3.6]	ND [1.46]
NEtFOSAA	100	NT	NT	ND [2.0]	ND [10]	ND [4.3] J	ND [0.42]	ND [3.6]	ND [1.86]	NT	NT	ND [2.0]	ND [10]	ND [4.4]	ND [0.42]	ND [1.91]	ND [0.42]	ND [3.6]	ND [1.91]
PFOA & PFOS	NS	19.6	7.2	4.2	-	-	7.5	6.6	ND	34	ND	ND	ND	ND	ND	ND	ND	ND	ND
Maximum PFAS (not inc PFOA/PFOS)	NS	3.3	39	15	10.5	6.8	184.91	9.4	4.32	5.4	ND	ND	ND	1.7	1.7	ND	ND	ND	ND
Total PFAS	500	24.9	46.2	24.9	10.5	12	192.41		16	46.8	ND	ND	ND	1.7	1.7	ND	2.0	ND	ND
1,4-Dioxane	350	NT	NT	ND [200]	ND [200]	ND [90]	ND [100]	ND [100]	ND [100]	NT	ND [200]	NT	ND [90]	ND [100]	ND [100]		ND [100]		

Notes:
All results are in nanograms per liter (ng/L) or parts per trillion (ppt)

ND [Reporting Limit] = Not Detected at a concentration greater than the reporting limit shown in brackets

NT = Not Tested

J = Estimated Concentration

B = Compound was found in the blank and samples

CI = The peak identified in the data system exhibited chromatographic interference that could not be resolved. There is reason to suspect there may be a high bias

1 Per-and polyfluoroalkyl substances (PFAS) guidance values, as specified in the NYSDEC document titled Sampling, Analysis, and Assessment of PFAS Under NYSDEC's Part 375 Remedial Programs, dated January 2021

²Perfluorooctanoic acid (PFOA), Perfluorooctanesulfonic acid (PFOS), and 1,4-dioxane guidance values referenced in 2023 Addendum to June 1998 Division of Water Technical and Operational Guidance Series (TOGS) No. 1.1.1 I = Value is EMPC (estimated maximum possible concentration)

F1 = MS and/or MSD exceeds control limits

F2 = MS/MSD RPD exceeds control limits

*- = LCS and/or LCSD is outside acceptance limits, low biased

Table 8 NYSDEC Site #360010 Harmon Yard Waste Water Area

Off-Site Monitoring Wells (OUII-A to OUII-F) Depth to Static Water Levels and Range of Free Product Thickness

October 4, 2016 -		OUII-A	OUII-B	OUII-C	OUII-D	OUII-E	OUII-
	Depth to Static Water Level	4.58-5.04	4.36-5.04	4.58-5.18	4.40-4.97	4.55-5.05	2.87-5.0
November 30, 2016	Range of Free Product Thickness (ft.)	0.7-3.0	1.3-3.2	0	1.9-3.0	0	0.0-1.3
	Average Free Product Thickness (ft.)	2.3	2.5	0	2.5	0	0.68
December 1, 2016 -	Depth to Static Water Level	5.53-6.19	5.58-6.11	5.99-6.76	5.47-5.96	5.56-6.18	5.8-7.0
February 28, 2017	Range of Free Product Thickness (ft.)	0.0-0.55	0.0-0.96	0	1.65-2.15	0	0-0.93
	Average Free Product Thickness (ft.)	0.36	0.39	0	1.8	0	0.29
March 1, 2017 - May	Depth to Static Water Level	5.56-6.86	5.46-6.89	5.53-7.45	5.3-6.77	5.57-6.89	5.27-8.0
31, 2017	Range of Free Product Thickness (ft.)	0.0-0.94	0.08-1.97	0.0-1.24	0.0-1.84	0	0.0-0.2
	Average Free Product Thickness (ft.)	0.29	1.1	0.099	1.3	0	0.043
June 1, 2017 - July 31,	Depth to Static Water Level	5.37-6.28	5.12-6.13	4.82-6.31	5.19-6.18	5.28-6.26	4.43-6.6
2017	Range of Free Product Thickness (ft.)	0.04-1.28	0.68-1.7	0	0.5-1.85	0	0-0.26
	Average Free Product Thickness (ft.) Depth to Static Water Level	1.3 9.36-9.82	1.7	0	1.9	0 44 0 82	0.26
September 1, 2017 -			9.28-9.84	9.18-9.59	9.57-9.93	9.44-9.82	7.19-7.8
November 30, 2017	Range of Free Product Thickness (ft.)	0.67-2.01	1.39-2.36	0-1.82	1.78-2.24	0	0.40-2.
	Average Free Product Thickness (ft.)	1.3	1.9	0.12	2.0	0	2.0
December 1, 2017 -	Depth to Static Water Level	8.31-10.00	8.20-10.02	7.25-9.81	8.46-10.18	8.34-10.07	4.18-8.
February 28, 2018	Range of Free Product Thickness (ft.)	0-2.26	0-2.71	0	0.48-2.37	0	0.35-3.
	Average Free Product Thickness (ft.)	1.1	1.9	0	1.8	0	1.9
March 1, 2018 - May	Depth to Static Water Level	7.75-8.54	7.77-9.11	6.85-8.09	7.97-8.76	7.92-8.52	3.87-5.0
31, 2018	Range of Free Product Thickness (ft.)	0-0.59	0-1.36	0	0.02-1.88	0	0.01-0.2
	Average Free Product Thickness (ft.)	0.15	0.90	0	0.94	0	0.1
June 1, 2018 - August	Depth to Static Water Level	8.15-9.15	7.96-9.20	7.41-8.96	8.10-9.32	8.24-9.37	4.43-6.
31, 2018	Range of Free Product Thickness (ft.)	0-0.24	0.02-1.38	0	0.1-1.67	0	0-0.04
	Average Free Product Thickness (ft.)	0.084	1.0	0	1.1	0	0.009
September 1, 2018 -	Depth to Static Water Level	7.18-8.63	7.31-8.56	6.56-8.09	7.12-8.81	7.62-8.69	3.29-5.
November 30, 2018	Range of Free Product Thickness (ft.)	0-0.26	0-1.75	0	0-1.37	0	0-0.0
, - *	Average Free Product Thickness (ft.)	0.043	0.44	0	0.37	0	0.011
anuary 1, 2019 - May	Depth to Static Water Level	6.61-7.82	6.83-7.86	6.15-7.38	6.12-7.59	6.92-7.89	2.72-4.
31, 2019	Range of Free Product Thickness (ft.)	0-0.02	0.86-2.80	0	0-0.62	0	0
. ,	Average Free Product Thickness (ft.)	0.009	1.6	0	0.10	0	0
June 1, 2019 -	Depth to Static Water Level	6.97-8.95	7.08-8.93	8.50-8.62	6.58-9.01	7.26-9.03	3.45-6.
September 30, 2019	Range of Free Product Thickness (ft.)	0-0.12	0-1.86	0	0-1.27	0	0-0.0
	Average Free Product Thickness (ft.)	0.009	0.65	0	0.91	0	0.002
October 1, 2019 -	Depth to Static Water Level	7.50-9.07	7.40-9.05	6.75-9.00	7.50-9.36	7.75-9.30	3.85-9.
December 31, 2019	Range of Free Product Thickness (ft.)	0-0.57	0-1.06	0	0.25-1.50	0	0-0.13
December 31, 2017	Average Free Product Thickness (ft.)	0.21	0.3	0	0.81	0	0.03
1 2020	Depth to Static Water Level	6.96-8.30	7.25-8.18	6.86-9.35	7.09-8.36	7.71-8.35	3.96-5.
January 1, 2020 - March 31, 2020	Range of Free Product Thickness (ft.)	0.07-1.38	0-0.48	0	0-0.7	0	0-0.2
March 31, 2020	Average Free Product Thickness (ft.)	0.3	0.27	0	0.17	0	0.08
4 . 7 1 2020	Depth to Static Water Level	7.65-8.71	7.50-8.57	7.18-8.61	7.12-8.89	7.79-8.81	4.10-8.
April 1, 2020 - June 30, 2020	Range of Free Product Thickness (ft.)	0-0.01	0.27-0.58	0-0.01	0-1.2	0	0.01-0.
June 30, 2020	Average Free Product Thickness (ft.)	0.004	0.40	0.001	0.35	0	0.20
	Depth to Static Water Level	8.72-9.24	8.56-9.11	8.49-9.17	8.86-9.42	8.95-9.43	6.70-7.
July 1, 2020 -	Range of Free Product Thickness (ft.)	0.04-1.05	0.24-0.96	0	0.05-1.56	0	0.01-0.
September 30, 2020	Average Free Product Thickness (ft.)	0.43	0.62	0	0.99	0	0.13
	Depth to Static Water Level	8.12-9.21	7.91-9.05	7.46-9.50	7.66-9.41	8.22-9.33	4.67-7.
October 1, 2020 -	Range of Free Product Thickness (ft.)	0-0.30	0-0.59	0	0-1.42	0	0.03-1.
December 31, 2020							
	Average Free Product Thickness (ft.)	0.086			0.34	0	0.70
	Average Free Product Thickness (ft.) Depth to Static Water Level	0.086 7.45-8.40	0.14	0	0.34	0 7.78-8.52	0.70 4.03-6.
January 1, 2021 -	Depth to Static Water Level	7.45-8.40	0.14 7.33-8.64	0 7.08-8.49	6.69-8.65	7.78-8.52	4.03-6.
January 1, 2021 - March 31, 2021	Depth to Static Water Level Range of Free Product Thickness (ft.)	7.45-8.40 001	0.14 7.33-8.64 0-0.07	0 7.08-8.49 0-0.01	6.69-8.65 0-0.27	7.78-8.52 0	4.03-6. 0.03-0.
March 31, 2021	Depth to Static Water Level Range of Free Product Thickness (ft.) Average Free Product Thickness (ft.)	7.45-8.40 001 0.001	0.14 7.33-8.64 0-0.07 0.01	0 7.08-8.49 0-0.01 0.00	6.69-8.65 0-0.27 0.05	7.78-8.52 0 0	4.03-6. 0.03-0. 0.28
March 31, 2021	Depth to Static Water Level Range of Free Product Thickness (ft.) Average Free Product Thickness (ft.) Depth to Static Water Level	7.45-8.40 001 0.001 7.91-8.78	0.14 7.33-8.64 0-0.07 0.01 7.67-8.63	0 7.08-8.49 0-0.01 0.00 7.32-8.50	6.69-8.65 0-0.27 0.05 7.12-8.70	7.78-8.52 0 0 8.15-8.91	4.03-6. 0.03-0. 0.28 4.27-6.
March 31, 2021	Depth to Static Water Level Range of Free Product Thickness (ft.) Average Free Product Thickness (ft.) Depth to Static Water Level Range of Free Product Thickness (ft.)	7.45-8.40 001 0.001 7.91-8.78 001	0.14 7.33-8.64 0-0.07 0.01 7.67-8.63 0.01-0.37	0 7.08-8.49 0-0.01 0.00 7.32-8.50 0	6.69-8.65 0-0.27 0.05 7.12-8.70 0-0.70	7.78-8.52 0 0 8.15-8.91	4.03-6. 0.03-0. 0.28 4.27-6. 0.04-0.
March 31, 2021	Depth to Static Water Level Range of Free Product Thickness (ft.) Average Free Product Thickness (ft.) Depth to Static Water Level Range of Free Product Thickness (ft.) Average Free Product Thickness (ft.)	7.45-8.40 001 0.001 7.91-8.78 001 0.001	0.14 7.33-8.64 0-0.07 0.01 7.67-8.63 0.01-0.37 0.15	0 7.08-8.49 0-0.01 0.00 7.32-8.50 0	6.69-8.65 0-0.27 0.05 7.12-8.70 0-0.70 0.099	7.78-8.52 0 0 8.15-8.91 0	4.03-6. 0.03-0. 0.28 4.27-6. 0.04-0. 0.31
March 31, 2021 April 1, 2021 - June 30, 2021 July 1, 2021 -	Depth to Static Water Level Range of Free Product Thickness (ft.) Average Free Product Thickness (ft.) Depth to Static Water Level Range of Free Product Thickness (ft.) Average Free Product Thickness (ft.) Depth to Static Water Level	7.45-8.40 001 0.001 7.91-8.78 001 0.001 7.78-9.34	0.14 7.33-8.64 0-0.07 0.01 7.67-8.63 0.01-0.37 0.15 7.85-9.16	0 7.08-8.49 0-0.01 0.00 7.32-8.50 0 0 7.45-9.25	6.69-8.65 0-0.27 0.05 7.12-8.70 0-0.70	7.78-8.52 0 0 8.15-8.91 0 0 7.89-9.38	4.03-6. 0.03-0. 0.28 4.27-6. 0.04-0. 0.31 4.42-9.
March 31, 2021 April 1, 2021 - June 30, 2021	Depth to Static Water Level Range of Free Product Thickness (ft.) Average Free Product Thickness (ft.) Depth to Static Water Level Range of Free Product Thickness (ft.) Average Free Product Thickness (ft.) Depth to Static Water Level Range of Free Product Thickness (ft.)	7.45-8.40 001 0.001 7.91-8.78 001 0.001 7.78-9.34 0-0.63	0.14 7.33-8.64 0-0.07 0.01 7.67-8.63 0.01-0.37 0.15 7.85-9.16 0-1.05	0 7.08-8.49 0-0.01 0.00 7.32-8.50 0 0 7.45-9.25	0.69-8.65 0-0.27 0.05 7.12-8.70 0-0.70 0.099 7.85-9.43 0-1.43	7.78-8.52 0 0 8.15-8.91 0 0 7.89-9.38 0	4.03-6. 0.03-0. 0.28 4.27-6. 0.04-0. 0.31 4.42-9. 0.01-0.
March 31, 2021 April 1, 2021 - June 30, 2021 July 1, 2021 - September 30, 2021	Depth to Static Water Level Range of Free Product Thickness (ft.) Average Free Product Thickness (ft.) Depth to Static Water Level Range of Free Product Thickness (ft.) Average Free Product Thickness (ft.) Depth to Static Water Level Range of Free Product Thickness (ft.) Average Free Product Thickness (ft.) Average Free Product Thickness (ft.)	7.45-8.40 001 0.001 7.91-8.78 001 0.001 7.78-9.34 0-0.63 0.22	0.14 7.33-8.64 0-0.07 0.01 7.67-8.63 0.01-0.37 0.15 7.85-9.16 0-1.05 0.39	0 7.08-8.49 0-0.01 0.00 7.32-8.50 0 0 7.45-9.25 0	6.69-8.65 0-0.27 0.05 7.12-8.70 0-0.70 0.099 7.85-9.43 0-1.43 0.52	7.78-8.52 0 0 8.15-8.91 0 0 7.89-9.38 0	4.03-6. 0.03-0. 0.28 4.27-6. 0.04-0. 0.31 4.42-9. 0.01-0. 0.09
March 31, 2021 April 1, 2021 - June 30, 2021 July 1, 2021 - September 30, 2021 October 1, 2021 -	Depth to Static Water Level Range of Free Product Thickness (ft.) Average Free Product Thickness (ft.) Depth to Static Water Level Range of Free Product Thickness (ft.) Average Free Product Thickness (ft.) Depth to Static Water Level Range of Free Product Thickness (ft.) Average Free Product Thickness (ft.) Average Free Product Thickness (ft.) Depth to Static Water Level	7.45-8.40 001 0.001 7.91-8.78 001 0.001 7.78-9.34 0-0.63 0.22 7.5-8.73	0.14 7.33-8.64 0-0.07 0.01 7.67-8.63 0.01-0.37 0.15 7.85-9.16 0-1.05 0.39 7.58-9.21	0 7.08-8.49 0-0.01 0.00 7.32-8.50 0 0 7.45-9.25 0 0 6.99-8.21	6.69-8.65 0-0.27 0.05 7.12-8.70 0-0.70 0.099 7.85-9.43 0-1.43 0.52 7.02-9.86	7.78-8.52 0 0 8.15-8.91 0 0 7.89-9.38 0 0 7.53-8.55	4.03-6. 0.03-0. 0.28 4.27-6. 0.04-0. 0.31 4.42-9. 0.01-0. 0.09 4.41-6.
March 31, 2021 April 1, 2021 - June 30, 2021 July 1, 2021 - September 30, 2021	Depth to Static Water Level Range of Free Product Thickness (ft.) Average Free Product Thickness (ft.) Depth to Static Water Level Range of Free Product Thickness (ft.) Average Free Product Thickness (ft.) Average Free Product Thickness (ft.) Depth to Static Water Level Range of Free Product Thickness (ft.) Average Free Product Thickness (ft.) Depth to Static Water Level Range of Free Product Thickness (ft.)	7.45-8.40 001 0.001 7.91-8.78 001 0.001 7.78-9.34 0-0.63 0.22 7.5-8.73 0-0.2	0.14 7.33-8.64 0-0.07 0.01 7.67-8.63 0.01-0.37 0.15 7.85-9.16 0-1.05 0.39 7.58-9.21	0 7.08-8.49 0-0.01 0.00 7.32-8.50 0 7.45-9.25 0 0 6.99-8.21	6.69-8.65 0-0.27 0.05 7.12-8.70 0-0.70 0.099 7.85-9.43 0-1.43 0.52 7.02-9.86 0.01-1.25	7.78-8.52 0 0 8.15-8.91 0 0 7.89-9.38 0 0 7.53-8.55	4.03-6. 0.03-0. 0.28 4.27-6. 0.04-0. 0.31 4.42-9. 0.01-0. 0.09 4.41-6.
March 31, 2021 April 1, 2021 - June 30, 2021 July 1, 2021 - September 30, 2021 October 1, 2021 - December 31, 2021	Depth to Static Water Level Range of Free Product Thickness (ft.) Average Free Product Thickness (ft.) Depth to Static Water Level Range of Free Product Thickness (ft.) Average Free Product Thickness (ft.) Depth to Static Water Level Range of Free Product Thickness (ft.) Depth to Static Water Level Range of Free Product Thickness (ft.) Average Free Product Thickness (ft.) Depth to Static Water Level Range of Free Product Thickness (ft.) Average Free Product Thickness (ft.)	7.45-8.40 001 0.001 7.91-8.78 001 0.001 7.78-9.34 0-0.63 0.22 7.5-8.73 0-0.2	0.14 7.33-8.64 0-0.07 0.01 7.67-8.63 0.01-0.37 0.15 7.85-9.16 0-1.05 0.39 7.58-9.21 0-0.81	0 7.08-8.49 0-0.01 0.00 7.32-8.50 0 7.45-9.25 0 0 6.99-8.21	6.69-8.65 0-0.27 0.05 7.12-8.70 0-0.70 0.099 7.85-9.43 0.1-43 0.52 7.02-9.86 0.01-1.25 0.37	7.78-8.52 0 0 8.15-8.91 0 7.89-9.38 0 0 7.53-8.55 0	4.03-6. 0.03-0. 0.28 4.27-6. 0.04-0. 0.31 4.42-9. 0.01-0. 0.09 4.41-6. 0-0.00
March 31, 2021 April 1, 2021 - June 30, 2021 July 1, 2021 - September 30, 2021 October 1, 2021 - December 31, 2021 January 1, 2022 -	Depth to Static Water Level Range of Free Product Thickness (ft.) Average Free Product Thickness (ft.) Depth to Static Water Level Range of Free Product Thickness (ft.) Average Free Product Thickness (ft.) Depth to Static Water Level Range of Free Product Thickness (ft.) Average Free Product Thickness (ft.) Average Free Product Thickness (ft.) Depth to Static Water Level Range of Free Product Thickness (ft.) Average Free Product Thickness (ft.) Depth to Static Water Level Depth to Static Water Level	7.45-8.40 001 0.001 7.91-8.78 001 0.001 7.78-9.34 0-0.63 0.22 7.5-8.73 0-0.2 0.006 7.58-8.60	0.14 7.33-8.64 0-0.07 0.01 7.67-8.63 0.01-0.37 0.15 7.85-9.16 0-1.05 0.39 7.58-9.21 0-0.81 0.17 7.14-8.42	0 7.08-8.49 0-0.01 0.00 7.32-8.50 0 0 7.45-9.25 0 0 6.99-8.21 0 0 7.04-8.49	6.69-8.65 0-0.27 0.05 7.12-8.70 0-0.70 0.099 7.85-9.43 0-1.43 0.52 7.02-9.86 0.01-1.25 0.37 6.74-8.65	7.78-8.52 0 0 8.15-8.91 0 0 7.89-9.38 0 0 7.53-8.55 0 0 7.81-8.45	4.03-6. 0.03-0. 0.28 4.27-6. 0.04-0. 0.31 4.42-9. 0.01-0. 0.09 4.41-6. 0-0.00 4.32-5.
March 31, 2021 April 1, 2021 - June 30, 2021 July 1, 2021 - September 30, 2021 October 1, 2021 - December 31, 2021	Depth to Static Water Level Range of Free Product Thickness (ft.) Average Free Product Thickness (ft.) Depth to Static Water Level Range of Free Product Thickness (ft.) Average Free Product Thickness (ft.) Average Free Product Thickness (ft.) Depth to Static Water Level Range of Free Product Thickness (ft.) Average Free Product Thickness (ft.) Average Free Product Thickness (ft.) Depth to Static Water Level Range of Free Product Thickness (ft.) Average Free Product Thickness (ft.) Depth to Static Water Level Range of Free Product Thickness (ft.)	7.45-8.40 0.01 0.001 7.91-8.78 001 0.001 7.78-9.34 0-0.63 0.22 7.5-8.73 0-0.2 0.006 7.58-8.60 0-0.01	0.14 7.33-8.64 0-0.07 0.01 7.67-8.63 0.01-0.37 0.15 7.85-9.16 0-1.05 0.39 7.58-9.21 0-0.81 0.17 7.14-8.42	0 7.08-8.49 0-0.01 0.00 7.32-8.50 0 0 7.45-9.25 0 0 6.99-8.21 0 0 7.04-8.49	6.69-8.65 0-0.27 0.05 7.12-8.70 0-0.70 0.099 7.85-9.43 0-1.43 0.52 7.02-9.86 0.01-1.25 0.37 6.74-8.65 0-0.13	7.78-8.52 0 0 8.15-8.91 0 0 7.89-9.38 0 0 7.53-8.55 0 0 7.81-8.45	4.03-6. 0.03-0. 0.28 4.27-6. 0.04-0. 0.31 4.42-9. 0.01-0. 0.09 4.41-6. 0-0.00 4.32-5. 0-0.0
March 31, 2021 April 1, 2021 - June 30, 2021 July 1, 2021 - September 30, 2021 October 1, 2021 - December 31, 2021 January 1, 2022 - March 31, 2022	Depth to Static Water Level Range of Free Product Thickness (ft.) Average Free Product Thickness (ft.) Depth to Static Water Level Range of Free Product Thickness (ft.) Average Free Product Thickness (ft.) Average Free Product Thickness (ft.) Depth to Static Water Level Range of Free Product Thickness (ft.) Average Free Product Thickness (ft.) Depth to Static Water Level Range of Free Product Thickness (ft.) Average Free Product Thickness (ft.) Average Free Product Thickness (ft.) Bepth to Static Water Level Range of Free Product Thickness (ft.) Average Free Product Thickness (ft.) Average Free Product Thickness (ft.)	7.45-8.40 0-01 0.001 7.91-8.78 0-01 0.001 7.78-9.34 0-0.63 0.22 7.5-8.73 0-0.2 0.006 7.58-8.60 0-0.01 0.008	0.14 7.33-8.64 0-0.07 0.01 7.67-8.63 0.01-0.37 0.15 7.85-9.16 0-1.05 0.39 7.58-9.21 0-0.81 0.17,14-8.42 0.04-0.88	0 7.08-8.49 0-0.01 0.00 7.32-8.50 0 0 7.45-9.25 0 0 6.99-8.21 0 0	6.69-8.65 0-0.27 0.05 7.12-8.70 0-0.70 0.099 7.85-9.43 0-1.3 0.52 7.02-9.86 0.01-1.25 0.37 6.74-8.65 0-0.13 0.022	7.78-8.52 0 0 8.15-8.91 0 0 7.89-9.38 0 0 7.53-8.55 0 0 7.81-8.45 0	4.03-6. 0.03-0. 0.28 4.27-6. 0.04-0. 0.31 4.42-9. 0.01-0. 0.09 4.41-6. 0-0.0 0.008 4.32-5. 0-0.0 0.0000
March 31, 2021 April 1, 2021 - June 30, 2021 July 1, 2021 - September 30, 2021 October 1, 2021 - December 31, 2021 January 1, 2022 - March 31, 2022 April 1, 2022 - June 30,	Depth to Static Water Level Range of Free Product Thickness (ft.) Average Free Product Thickness (ft.) Depth to Static Water Level Range of Free Product Thickness (ft.) Average Free Product Thickness (ft.) Average Free Product Thickness (ft.) Depth to Static Water Level Range of Free Product Thickness (ft.) Average Free Product Thickness (ft.) Depth to Static Water Level Range of Free Product Thickness (ft.) Average Free Product Thickness (ft.) Average Free Product Thickness (ft.) Average Free Product Thickness (ft.) Depth to Static Water Level Range of Free Product Thickness (ft.) Average Free Product Thickness (ft.) Depth to Static Water Level	7.45-8.40 001 0.001 7.91-8.78 001 0.001 7.78-9.34 0-0.63 0.22 7.5-8.73 0-0.2 0.006 7.58-8.60 0-0.01 0.008	0.14 7.33-8.64 0-0.07 0.01 7.67-8.63 0.01-0.37 0.15 0.15 0.19 7.58-9.16 0-1.05 0-39 1.17 7.14-8.42 0.04-0.83 0.33 6.95-825	0 7.08-8.49 0-0.01 0.00 7.32-8.50 0 0 7.45-9.25 0 0 0 9-8.21 0 0 7.04-8.49 0	6.69-8.65 0-0.27 0.05 7.12-8.70 0-0.70 0.099 7.85-9.43 0.152 7.02-9.86 0.01-1.25 0.37 6.74-8.63 0.022 6.39-8.45	7.78-8.52 0 0 8.15-8.91 0 0 7.89-9.38 0 0 7.53-8.55 0 0 7.81-8.45 0 0	4.03-6. 0.03-0. 0.28 4.27-6. 0.04-0. 0.31 4.42-9. 0.01-0. 0.09 4.41-6. 0-0.0 0.008 4.32-5. 0-0.000 3.38-5.
March 31, 2021 April 1, 2021 - June 30, 2021 July 1, 2021 - September 30, 2021 October 1, 2021 - December 31, 2021 January 1, 2022 - March 31, 2022	Depth to Static Water Level Range of Free Product Thickness (ft.) Average Free Product Thickness (ft.) Depth to Static Water Level Range of Free Product Thickness (ft.) Average Free Product Thickness (ft.) Average Free Product Thickness (ft.) Depth to Static Water Level Range of Free Product Thickness (ft.) Average Free Product Thickness (ft.) Average Free Product Thickness (ft.) Depth to Static Water Level Range of Free Product Thickness (ft.) Average Free Product Thickness (ft.) Depth to Static Water Level Range of Free Product Thickness (ft.) Average Free Product Thickness (ft.) Depth to Static Water Level Range of Free Product Thickness (ft.)	7.45-8.40 001 0.001 7.91-8.78 001 0.001 7.78-9.34 0-0.63 0.22 7.5-8.73 0-0.2 0.006 7.58-8.60 0-0.01 0.006	0.14 7.33-8.64 0-0.07 0.01 7.67-8.63 0.01-0.37 0.15 7.85-9.16 0-1.05 0.39 7.58-9.21 0-0.81 0.17 7.14-8.42 0.04-0.88 0.33 6.95-8.25	0 7.08-8.49 0-0.01 0.00 7.32-8.50 0 7.45-9.25 0 0 6.99-8.21 0 7.04-8.49 0	6.69-8.65 0-0.27 0.05 7.12-8.70 0-0.70 0.099 7.85-9.43 0-1.43 0.52 7.02-9.86 0.01-1.25 0.37 6.74-8.65 0-0.13 0.022 0.03-0.37	7.78-8.52 0 0 8.15-8.91 0 0 7.89-9.38 0 0 0 7.53-8.55 0 0 7.81-8.45 0 0 7.13-8.18	4.03-6. 0.03-0. 0.28 4.27-6. 0.04-0. 0.31 4.42-9. 0.01-0. 0.09 4.41-6. 0-0.0 0.008 4.32-5. 0-0.0 0.000 0.338-5. 0-0.0
March 31, 2021 pril 1, 2021 - June 30, 2021 July 1, 2021 - September 30, 2021 October 1, 2021 - December 31, 2021 January 1, 2022 - March 31, 2022 pril 1, 2022 - June 30,	Depth to Static Water Level Range of Free Product Thickness (ft.) Average Free Product Thickness (ft.) Depth to Static Water Level Range of Free Product Thickness (ft.) Average Free Product Thickness (ft.) Average Free Product Thickness (ft.) Depth to Static Water Level Range of Free Product Thickness (ft.) Average Free Product Thickness (ft.) Depth to Static Water Level Range of Free Product Thickness (ft.) Average Free Product Thickness (ft.) Average Free Product Thickness (ft.) Depth to Static Water Level Range of Free Product Thickness (ft.) Average Free Product Thickness (ft.)	7.45-8.40 0-01 0.001 7.91-8.78 0-01 0.001 7.78-9.34 0-0.63 0.22 7.5-8.73 0-0.2 0.006 7.58-8.60 0-0.01 0.008 6.78-8.45 0-0.05	0.14 7.33-8.64 0-0.07 0.01 7.67-8.63 0.01-0.37 0.15 7.85-9.16 0-1.05 0.39 7.58-9.21 0-0.81 0.17 7.14-8.42 88 0.33 6.95-825 0-0.4 0.12	07.08-8.49 0-0.01 0.00 7.32-8.50 0 0 7.45-9.25 0 0 6.99-8.21 0 0 0 6.34-7.89 0	6.69-8.65 0-0.27 0.05 7.12-8.70 0-0.70 0.099 7.85-9.43 0-1.43 0.52 7.02-9.86 0.01-1.25 0.37 6.74-8.65 0-0.13 0.022 6.39-8.45 0-0.13 0.022	7.78-8.52 0 0 8.15-8.91 0 0 7.89-9.38 0 0 7.53-8.55 0 0 7.81-8.45 0 0 0	4.03-6. 0.03-0. 0.28 4.27-6. 0.04-0. 0.31 4.42-9. 0.01-0. 0.008 4.32-5. 0-0.00 3.38-5. 0-0.00 0.0000
March 31, 2021 pril 1, 2021 - June 30, 2021 July 1, 2021 - September 30, 2021 October 1, 2021 - December 31, 2021 January 1, 2022 - March 31, 2022 pril 1, 2022 - June 30, 2022 July 1, 2022 - July 1, 2022 -	Depth to Static Water Level Range of Free Product Thickness (ft.) Average Free Product Thickness (ft.) Depth to Static Water Level Range of Free Product Thickness (ft.) Average Free Product Thickness (ft.) Average Free Product Thickness (ft.) Depth to Static Water Level Range of Free Product Thickness (ft.) Average Free Product Thickness (ft.) Depth to Static Water Level Range of Free Product Thickness (ft.) Average Free Product Thickness (ft.) Average Free Product Thickness (ft.) Depth to Static Water Level Range of Free Product Thickness (ft.) Average Free Product Thickness (ft.) Depth to Static Water Level	7.45-8.40 0-01 0.001 7.91-8.78 0-01 0.001 7.78-9.34 0-0.63 0.22 7.5-8.73 0-0.2 0.006 7.58-8.60 0.008 6.78-8.45 0-0.03 0.005 8.19-9.14	0.14 7.33-8.64 0-0.07 0.01 7.67-8.63 0.01-0.37 0.15 7.85-9.16 0-1.05 0.39 7.58-9.21 0-0.81 0.17 7.14-8.42 0.04-0.88 0.33 6.95-825 0-0.4 0.12 8.13-9.42	0 7.08-8.49 0-0.01 0.00 7.32-8.50 0 0 7.45-9.25 0 0 0 0 7.45-9.25 0 0 0 7.04-8.49 0 0 0 6.34-7.89 0 0 8.01-9.19	6.69-8.65 0-0.27 0.05 7.12-8.70 0-0.70 0.099 7.85-9.43 0-1.43 0.52 7.02-9.66 0.01-1.25 0.37 6.74-8.65 0-0.13 0.022 6.39-8.45 0-0.17 0.035 8.05-9.75	7.78-8.52 0 0 8.15-8.91 0 0 7.89-9.38 0 0 0 7.53-8.55 0 0 7.81-8.45 0 0 0 0 0 0 0 0 0 0 0 0 0	4.03-6. 0.03-0. 0.28 4.27-6. 0.04-0. 0.31 4.42-9. 0.01-0. 0.00 4.41-6. 0-0.0 0.008 4.32-5. 0-0.0 0.008 0.008 0.008 0.009 0.008 0.009 0.0
March 31, 2021 April 1, 2021 - June 30, 2021 July 1, 2021 - September 30, 2021 October 1, 2021 - December 31, 2021 January 1, 2022 - March 31, 2022 April 1, 2022 - June 30, 2022	Depth to Static Water Level Range of Free Product Thickness (ft.) Average Free Product Thickness (ft.) Depth to Static Water Level Range of Free Product Thickness (ft.) Average Free Product Thickness (ft.) Average Free Product Thickness (ft.) Depth to Static Water Level Range of Free Product Thickness (ft.) Average Free Product Thickness (ft.) Average Free Product Thickness (ft.) Depth to Static Water Level Range of Free Product Thickness (ft.) Average Free Product Thickness (ft.) Depth to Static Water Level Range of Free Product Thickness (ft.) Average Free Product Thickness (ft.) Depth to Static Water Level Range of Free Product Thickness (ft.) Depth to Static Water Level Range of Free Product Thickness (ft.) Depth to Static Water Level Range of Free Product Thickness (ft.)	7.45-8.40 001 0.001 7.91-8.78 001 0.001 7.78-9.34 0-0.63 0.22 7.5-8.73 0-0.2 0.006 7.58-8.60 0-0.01 0.008 6.78-8.45 0-0.03 0.005 8.19-9.14 0-0.29	0.14 7.33-8.64 0-0.07 0.01 7.67-8.63 0.01-0.37 0.15 7.85-9.16 0-1.05 0.39 7.58-9.21 0-0.81 0.17 7.14-8.42 0.04-0.88 0.39 0.95-825 0-0.4 0.12 8.13-9.42 0.01-0.91	0 7.08-8.49 0-0.01 0.00 7.32-8.50 0 0 7.45-9.25 0 0 0 6.99-8.21 0 0 0 6.34-7.89 0 0 8.01-9.19 0	6.69-8.65 0-0.27 0.05 7.12-8.70 0-0.70 0-0.99 7.85-9.43 0-1.43 0.52 7.02-9.86 0.01-1.25 0.37 6.74-8.65 0-0.13 0.02 0.099	7.78-8.52 0 0 8.15-8.91 0 0 7.89-9.38 0 0 7.53-8.55 0 0 7.13-8.18 0 0 8.22-9.41	4.03-6. 0.03-0. 0.28 4.27-6. 0.04-0. 0.31 4.42-9. 0.01-0. 0.09 4.41-6. 0-0.0 0.000 4.32-5. 0-0.0 0.000 6.00-7. 0-0.000
March 31, 2021 April 1, 2021 - June 30, 2021 July 1, 2021 - September 30, 2021 October 1, 2021 - December 31, 2021 January 1, 2022 - March 31, 2022 April 1, 2022 - June 30, 2022 July 1, 2022 - July 1, 2022 -	Depth to Static Water Level Range of Free Product Thickness (ft.) Average Free Product Thickness (ft.) Depth to Static Water Level Range of Free Product Thickness (ft.) Average Free Product Thickness (ft.) Average Free Product Thickness (ft.) Depth to Static Water Level Range of Free Product Thickness (ft.) Average Free Product Thickness (ft.) Average Free Product Thickness (ft.) Depth to Static Water Level Range of Free Product Thickness (ft.) Average Free Product Thickness (ft.) Depth to Static Water Level Range of Free Product Thickness (ft.) Average Free Product Thickness (ft.) Depth to Static Water Level Range of Free Product Thickness (ft.) Average Free Product Thickness (ft.) Average Free Product Thickness (ft.) Average Free Product Thickness (ft.) Range of Free Product Thickness (ft.) Depth to Static Water Level Range of Free Product Thickness (ft.) Average Free Product Thickness (ft.)	7.45-8.40 0-01 0.001 7.91-8.78 0-01 0.001 7.78-9.34 0-0.63 0.22 7.5-8.73 0-0.2 0.006 0-0.01 0.008 6.78-8.45 0-0.03 0.005 8.19-9.14 0.08	0.14 7.33-8.64 0-0.07 0.01 7.67-8.63 0.01-0.37 0.15 7.85-9.16 0-1.05 0.39 7.58-9.21 0-0.81 0.17 7.14-8.42 0.04-0.88 0.33 6.95-825 0-0.4 0.12 8.13-9.42 0.01-0.91 0.025	07.08-8.49 0-0.01 0.00 7.32-8.50 0 0 7.45-9.25 0 0 6.99-8.21 0 0 6.34-7.89 0 0 8.01-9.19	6.69-8.65 0-0.27 0.05 7.12-8.70 0-0.70 0-0.70 0-0.70 0-0.70 0-0.73 0-1.43 0.52 7.02-9.86 0.01-1.25 0.37 6.74-8.65 0-0.17 0.035 8.05-9.75 0.01-1.80 0.01-1.80 0.01-1.80	7.78-8.52 0 0 8.15-8.91 0 0 7.89-9.38 0 0 7.53-8.55 0 0 7.81-8.45 0 0 0 8.22-9.41 0	4.03-6. 0.03-0. 0.28 4.27-6. 0.04-0. 0.01-0. 0.09 4.41-6. 0-0.0 0.008 4.32-5. 0-0.0 0.000 3.38-5. 0-0.0 0.000 6.00-7.
March 31, 2021 April 1, 2021 - June 30, 2021 July 1, 2021 - September 30, 2021 October 1, 2021 - December 31, 2021 January 1, 2022 - March 31, 2022 April 1, 2022 - June 30, 2022 July 1, 2022 - July 1, 2022 -	Depth to Static Water Level Range of Free Product Thickness (ft.) Average Free Product Thickness (ft.) Depth to Static Water Level Range of Free Product Thickness (ft.) Average Free Product Thickness (ft.) Average Free Product Thickness (ft.) Depth to Static Water Level Range of Free Product Thickness (ft.) Average Free Product Thickness (ft.) Depth to Static Water Level Range of Free Product Thickness (ft.) Average Free Product Thickness (ft.) Depth to Static Water Level Range of Free Product Thickness (ft.) Depth to Static Water Level Range of Free Product Thickness (ft.) Depth to Static Water Level Range of Free Product Thickness (ft.) Average Free Product Thickness (ft.) Depth to Static Water Level Range of Free Product Thickness (ft.) Average Free Product Thickness (ft.) Depth to Static Water Level Range of Free Product Thickness (ft.)	7.45-8.40 0-01 0.001 7.91-8.78 0-01 0.001 7.78-9.34 0-0.63 0.22 7.5-8.73 0-0.2 0.006 7.58-8.60 0-0.01 0.008 6.78-8.45 0-0.03 0.005 8.19-9.14 0-0.29 0.08 8.38-9.47	0.14 7.33-8.64 0-0.07 0.01 7.67-8.63 0.01-0.37 0.15 7.85-9.16 0-1.05 0.39 1.14-8.42 0.04-0.88 0.33 6.95-825 0.04 0.12 8.13-9.42 0.01-0.91 0.25 8.00-9.42	0.000	6.69-8.65 0-0.27 0.05 7.12-8.70 0-0.70 0.09 7.85-9.43 0-1.43 0.52 7.02-9.66 0.01-1.25 0.37 6.74-8.65 0-0.13 0.022 6.39-8.45 0-0.11 0.035 8.05-9.75 0.01-1.80 0.75 8.33-9.35	7.78-8.52 0 0 8.15-8.91 0 0 7.89-9.38 0 0 7.53-8.55 0 0 7.113-8.18 0 0 8.22-9.41 0 8.43-9.60	4.03-6. 0.03-0. 0.28 4.27-6. 0.04-0. 0.31 4.42-9. 0.01-0. 0.008 4.32-5. 0-0.0 0.000 3.38-5. 0-0.0 0.000 6.00-7. 0-0.3 0.04 4.42-7.
March 31, 2021 pril 1, 2021 - June 30, 2021 July 1, 2021 - September 30, 2021 October 1, 2021 - December 31, 2021 January 1, 2022 - March 31, 2022 pril 1, 2022 - June 30, 2022 July 1, 2022 - September 30, 2022	Depth to Static Water Level Range of Free Product Thickness (ft.) Average Free Product Thickness (ft.) Depth to Static Water Level Range of Free Product Thickness (ft.) Average Free Product Thickness (ft.) Depth to Static Water Level Range of Free Product Thickness (ft.) Depth to Static Water Level Range of Free Product Thickness (ft.) Average Free Product Thickness (ft.) Average Free Product Thickness (ft.) Depth to Static Water Level Range of Free Product Thickness (ft.) Average Free Product Thickness (ft.) Average Free Product Thickness (ft.) Average Free Product Thickness (ft.) Depth to Static Water Level Range of Free Product Thickness (ft.) Average Free Product Thickness (ft.) Average Free Product Thickness (ft.) Average Free Product Thickness (ft.) Depth to Static Water Level Range of Free Product Thickness (ft.) Average Free Product Thickness (ft.) Depth to Static Water Level Range of Free Product Thickness (ft.)	7.45-8.40 0-01 0.001 7.91-8.78 0-01 0.001 7.78-9.34 0-0.63 0.22 7.5-8.73 0-0.2 0.006 7.58-8.60 0-0.01 0.008 6.78-8.45 0-0.03 0.005 8.19-9.14 0-0.29 0.08 8.38-9.47 0-1.34	0.14 7.33-8.64 0-0.07 0.01 7.67-8.63 0.01-0.37 0.15 7.85-9.16 0-1.05 0.39 7.58-9.21 0-0.81 0.17 7.14-8.42 0.04-0.88 0.33 6.95-825 0-0.4 0.12 8.13-9.42 0.01-0.91 0.25 8.00-9.42 0.137	0 7.08-8.49 0-0.01 0.00 7.32-8.50 0 0 7.45-9.25 0 0 0 7.45-9.25 0 0 0 7.04-8.49 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6.69-8.65 0-0.27 0.05 7.12-8.70 0-0.70 0.099 7.85-9.43 0-1.43 0.52 7.02-9.66 0.01-1.25 0.37 6.74-8.65 0-0.13 0.022 6.39-8.45 0-0.17 0.035 8.05-9.75 0.01-1.80 0.75 8.33-9.35 0.01-1.80	7.78-8.52 0 0 8.15-8.91 0 0 7.89-9.38 0 0 0 7.53-8.55 0 0 0 7.13-8.18 0 0 8.22-9.41 0 0 8.43-9.60	4.03-6. 0.03-0. 0.28 4.27-6. 0.04-0. 0.31 4.42-9. 0.01-0. 0.09 4.41-6. 0-0.0 0.000 0.000 0.000 6.00-7. 0-0.3 0.04 4.42-7.
March 31, 2021 April 1, 2021 - June 30, 2021 July 1, 2021 - September 30, 2021 October 1, 2021 - December 31, 2021 January 1, 2022 - March 31, 2022 April 1, 2022 - June 30, 2022 July 1, 2022 - September 30, 2022 October 1, 2022 - October 1, 2022 -	Depth to Static Water Level Range of Free Product Thickness (ft.) Average Free Product Thickness (ft.) Depth to Static Water Level Range of Free Product Thickness (ft.) Average Free Product Thickness (ft.) Average Free Product Thickness (ft.) Depth to Static Water Level Range of Free Product Thickness (ft.) Average Free Product Thickness (ft.) Depth to Static Water Level Range of Free Product Thickness (ft.) Average Free Product Thickness (ft.) Average Free Product Thickness (ft.) Average Free Product Thickness (ft.) Depth to Static Water Level Range of Free Product Thickness (ft.) Depth to Static Water Level Range of Free Product Thickness (ft.) Average Free Product Thickness (ft.) Average Free Product Thickness (ft.) Range of Free Product Thickness (ft.) Average Free Product Thickness (ft.) Range of Free Product Thickness (ft.) Average Free Product Thickness (ft.)	7.45-8.40 0-0.1 0.001 7.91-8.78 0-0.1 0.001 7.78-9.34 0-0.63 0.22 0.006 0-0.01 0.008 6.78-8.45 0-0.03 0.005 8.19-9.14 0-0.08 8.38-9.47 0-0.08	0.14 7.33-8.64 0-0.07 0.01 7.67-8.63 0.01-0.37 0.15 7.85-9.16 0-1.05 0.39 7.58-9.21 0-0.81 0.17 7.14-8.42 0.04-0.88 0.33 6.95-825 0-0.4 0.12 8.13-9.42 0.01-0.91 0.25 8.00-9.42 0-1.37 0.555	07.08-8.49 0-0.01 0.00 7.32-8.50 0 0 7.45-9.25 0 0 6.99-8.21 0 0 7.04-8.49 0 0 8.01-9.19 0 0 7.61-9.42 0 0 0	6.69-8.65 0-0.27 0.05 7.12-8.70 0-0.70 0-0.70 0.099 7.85-9.43 0-1.43 0.52 0.37 6.74-8.65 0-0.13 0.022 6.39-8.6 0.01-1.25 0.37 0.023 6.39-8.6 0.01-1.80 0.75 8.05-9.18 0.01-1.80 0.75 8.33-9.35 0.01-1.80 0.75	7.78-8.52 0 0 0.15-8.91 0 0 7.89-9.38 0 0 0 7.53-8.55 0 0 0 7.81-8.45 0 0 0 8.22-9.41 0 0 8.43-9.60 0	4.03-6.4 0.03-0.0 0.28 4.27-6.0 0.31 4.42-9.0 0.01-0.0 0.000 4.41-6.0 0.000 0.
March 31, 2021 April 1, 2021 - June 30, 2021 July 1, 2021 - September 30, 2021 October 1, 2021 - December 31, 2021 January 1, 2022 - March 31, 2022 April 1, 2022 - June 30, 2022 July 1, 2022 - September 30, 2022 October 1, 2022 - December 31, 2022 October 1, 2022 - December 31, 2022	Depth to Static Water Level Range of Free Product Thickness (ft.) Average Free Product Thickness (ft.) Depth to Static Water Level Range of Free Product Thickness (ft.) Average Free Product Thickness (ft.) Average Free Product Thickness (ft.) Depth to Static Water Level Range of Free Product Thickness (ft.) Average Free Product Thickness (ft.) Average Free Product Thickness (ft.) Depth to Static Water Level Range of Free Product Thickness (ft.) Average Free Product Thickness (ft.) Depth to Static Water Level Range of Free Product Thickness (ft.) Average Free Product Thickness (ft.) Depth to Static Water Level Range of Free Product Thickness (ft.) Average Free Product Thickness (ft.) Average Free Product Thickness (ft.) Depth to Static Water Level Range of Free Product Thickness (ft.) Average Free Product Thickness (ft.) Depth to Static Water Level Range of Free Product Thickness (ft.) Average Free Product Thickness (ft.) Depth to Static Water Level Range of Free Product Thickness (ft.) Depth to Static Water Level Range of Free Product Thickness (ft.) Depth to Static Water Level	7.45-8.40 0-01 0.001 7.91-8.78 0-01 0.001 7.78-9.34 0-0.63 0.22 7.5-8.73 0-0.2 0.006 7.58-8.60 0-0.01 0.008 8.19-9.14 0-0.29 0.08 8.38-9.47 0-1.34 0-4.3 7.56-8.68	0.14 7.33-8.64 0-0.07 0.01 7.67-8.63 0.01-0.37 0.15 7.85-9.16 0-1.05 0.39 7.58-9.21 0-0.81 0.17 7.14-8.42 0.04-0.88 0.33 6.95-825 0-0.4 0.12 8.13-9.42 0.01-0.91 0.25 8.00-9.42 0-1.37 0.55 7.23-8.50	07.08-8.49 0-0.01 0.00 7.32-8.50 0 0 7.45-9.25 0 0 6.99-8.21 0 0 6.34-7.89 0 0 8.01-9.19 0 0 7.61-9.42 0 0 6.51-8.49	6.69-8.65 0-0.27 0.05 7.12-8.70 0-0.70 0.095 7.12-8.70 0.097 7.85-9.43 0-1.43 0.52 0.37 6.74-8.65 0-0.13 0.022 6.39-8.45 0-0.17 0.035 8.05-9.75 0.01-1.202 1.07 7.57-8.59	7.78-8.52 0 0 8.15-8.91 0 0 7.89-9.38 0 0 7.53-8.55 0 0 7.81-8.45 0 0 0 8.22-9.41 0 8.43-9.60 0 7.92-8.81	4.03-6. 0.03-0. 0.03-0. 0.04-0. 0.04-0. 0.01-0. 0.099 4.41-6. 0.00 0.000 0
March 31, 2021 April 1, 2021 - June 30, 2021 July 1, 2021 - September 30, 2021 October 1, 2021 - December 31, 2021 January 1, 2022 - March 31, 2022 April 1, 2022 - June 30, 2022 July 1, 2022 - September 30, 2022 October 1, 2022 - October 1, 2022 -	Depth to Static Water Level Range of Free Product Thickness (ft.) Average Free Product Thickness (ft.) Depth to Static Water Level Range of Free Product Thickness (ft.) Average Free Product Thickness (ft.) Depth to Static Water Level Range of Free Product Thickness (ft.) Depth to Static Water Level Range of Free Product Thickness (ft.) Average Free Product Thickness (ft.) Depth to Static Water Level Range of Free Product Thickness (ft.) Average Free Product Thickness (ft.) Depth to Static Water Level Range of Free Product Thickness (ft.) Average Free Product Thickness (ft.) Average Free Product Thickness (ft.) Depth to Static Water Level Range of Free Product Thickness (ft.) Average Free Product Thickness (ft.) Depth to Static Water Level Range of Free Product Thickness (ft.) Depth to Static Water Level Range of Free Product Thickness (ft.) Average Free Product Thickness (ft.) Average Free Product Thickness (ft.) Depth to Static Water Level Range of Free Product Thickness (ft.)	7.45-8.40 0-01 0.001 7.91-8.78 0-01 0.001 7.78-9.34 0-0.63 0.22 7.5-8.73 0-0.2 0.006 7.58-8.60 0-0.01 0.008 8.19-9.14 0-0.29 0.08 8.38-9.47 0-1.34 0.43 0.43	0.14 7.33-8.64 0-0.07 0.01 7.67-8.63 0.01-0.37 0.15 7.85-9.16 0-1.05 0.39 7.58-9.21 0-0.81 0.17 7.14-8.42 0.04-0.88 0.33 6.95-825 0-0.4 0.12 8.13-9.42 0.01-0.91 0.25 8.00-9.42 0-1.37 0.55 0-0.10	0 7.08-8.49 0-0.01 0.00 7.32-8.50 0 0 7.45-9.25 0 0 0 6.99-8.21 0 0 0 6.34-7.89 0 0 6.34-7.89 0 0 0 6.51-8.49 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6.69-8.65 0-0.27 0.05 7.12-8.70 0-0.70 0.099 7.85-9.43 0-1.43 0.52 7.02-9.66 0.01-1.25 0.37 6.74-8.65 0-0.13 0.022 6.39-8.45 0-0.17 0.035 8.05-9.75 0.01-1.80 0.75 8.33-9.35 0.01-2.02 1.07 7.57-8.59 0.27-2.02	7.78-8.52 0 0 8.15-8.91 0 0 7.89-9.38 0 0 7.53-8.55 0 0 7.31-8.45 0 0 0 8.22-9.41 0 0 8.43-9.60 0 0 0	4.03-6. 0.03-0. 0.28 4.27-6. 0.04-0. 0.01 0.01 0.01 0.09 4.41-0. 0.09 4.41-0. 0.00 0.008 4.32-5. 0.00 0.000 0.000 0.000 4.42-0. 0.01 0.000
March 31, 2021 April 1, 2021 - June 30, 2021 July 1, 2021 - September 30, 2021 October 1, 2021 - December 31, 2021 January 1, 2022 - March 31, 2022 April 1, 2022 - June 30, 2022 July 1, 2022 - September 30, 2022 October 1, 2022 - December 31, 2022 January 1, 2023 - June 30, 2022	Depth to Static Water Level Range of Free Product Thickness (ft.) Average Free Product Thickness (ft.) Depth to Static Water Level Range of Free Product Thickness (ft.) Average Free Product Thickness (ft.) Average Free Product Thickness (ft.) Depth to Static Water Level Range of Free Product Thickness (ft.) Average Free Product Thickness (ft.) Depth to Static Water Level Range of Free Product Thickness (ft.) Average Free Product Thickness (ft.)	7.45-8.40 0-0.1 0.001 7.91-8.78 0-0.1 0.001 7.78-9.34 0-0.63 0.22 0.006 7.58-8.73 0-0.2 0.006 0-0.01 0.008 8.19-9.1 0-0.03 0.005 8.19-9.1 0.08 8.38-9.47 0-0.29 0.08 8.38-9.47 0.43 0.43 0.43 7.56-8.68	0.14 7.33-8.64 0-0.07 0.01 7.67-8.63 0.01-0.37 0.15 7.85-9.16 0-1.05 0.39 7.58-9.21 0-0.81 0.17 7.14-8.42 0.04-0.88 0.33 0.31 0.17 7.14-8.42 0.04-0.88 0.33 0.35 0.95-825 0-0.4 0.12 0.10-0.10 0.25 8.00-9.47 0.55 7.23-8.50 0-0.10 0.02	0 7.08-8.49 0-0.01 0.00 7.32-8.50 0 0 7.45-9.25 0 0 0 6.59-8.21 0 0 0 6.51-8.49 0 0 0 6.51-8.49 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6.69-8.65 0-0.27 0.05 7.12-8.70 0-0.70 0-0.70 0.099 7.85-9.43 0-1.43 0.52 0.37 7.02-9.86 0.01-1.25 0.37 0.01-0.22 6.39-8.45 0-0.13 0.022 6.39-8.45 0-0.17 0.035 8.05-9.75 0.01-1.80 0.75 8.33-9.35 0.01-2.02 1.07 7.57-8.59 0.27-2.02 0.83	7.78-8.52 0 0 8.15-8.91 0 0 7.89-9.38 0 0 7.81-8.45 0 0 7.13-8.18 0 0 8.2-9.41 0 0 7.92-8.81 0-0.007	4.03-6. 0.03-0. 0.288 4.27-6. 0.04-0. 0.131 0.090 0.000
March 31, 2021 April 1, 2021 - June 30, 2021 July 1, 2021 - September 30, 2021 October 1, 2021 - December 31, 2021 January 1, 2022 - March 31, 2022 April 1, 2022 - June 30, 2022 July 1, 2022 - September 30, 2022 October 1, 2022 - December 31, 2022 January 1, 2023 - March 31, 2023 January 1, 2023 - March 31, 2023	Depth to Static Water Level Range of Free Product Thickness (ft.) Average Free Product Thickness (ft.) Depth to Static Water Level Range of Free Product Thickness (ft.) Average Free Product Thickness (ft.) Average Free Product Thickness (ft.) Depth to Static Water Level Range of Free Product Thickness (ft.) Average Free Product Thickness (ft.) Average Free Product Thickness (ft.) Depth to Static Water Level Range of Free Product Thickness (ft.) Average Free Product Thickness (ft.) Depth to Static Water Level Range of Free Product Thickness (ft.) Average Free Product Thickness (ft.) Depth to Static Water Level Range of Free Product Thickness (ft.) Average Free Product Thickness (ft.) Average Free Product Thickness (ft.) Depth to Static Water Level Range of Free Product Thickness (ft.) Average Free Product Thickness (ft.) Average Free Product Thickness (ft.) Depth to Static Water Level Range of Free Product Thickness (ft.) Depth to Static Water Level Range of Free Product Thickness (ft.) Depth to Static Water Level Range of Free Product Thickness (ft.) Depth to Static Water Level Range of Free Product Thickness (ft.)	7.45-8.40 0-01 0.001 7.91-8.78 0-01 0.001 7.78-9.34 0-0.63 0.22 7.5-8.73 0-0.2 0.006 7.58-8.60 0-0.01 0.008 6.78-8.45 0-0.03 0.005 8.19-9.14 0.08 8.38-9.47 0-1.34 0.43 7.56-8.68 0-0.27 0.03 7.56-8.68	0.14 7.33-8.64 0-0.07 0.01 7.67-8.63 0.01-0.37 0.15 7.85-9.16 0-1.05 0.39 7.58-9.21 0-0.81 0.17 7.14-8.42 0.04-0.88 0.33 6.95-825 0-0.4 0.12 8.13-9.42 0.01-0.91 0.25 8.00-9.42 0-1.37 0.55 7.23-8.50 0-0.10 0.02 7.89-9.52	07.08-8.49 0-0.01 0.00 7.32-8.50 0 0 7.45-9.25 0 0 6.99-8.21 0 0 6.34-7.89 0 0 8.01-9.19 0 0 7.61-9.42 0 0 0 6.51-8.49 0-0.03 0 7.46-8.92	6.69-8.65 0-0.27 0.05 7.12-8.70 0-0.70 0-0.70 0-0.70 0-0.70 0-0.70 0-0.70 0-0.70 0-0.70 0-0.70 0-0.70 0-0.70 0-0.70 0-0.70 0-0.75 8.35-9.75 0.01-1.80 0.75 8.33-9.35 0.01-2.07 7.57-8.59 0.72-0.20 8.88-7-10.93	7.78-8.52 0 0 8.15-8.91 0 0 7.89-9.38 0 0 7.53-8.55 0 0 7.81-8.45 0 0 0 8.22-9.41 0 0 8.43-9.60 0 7.92-8.81 0-0.07 7.92-8.81	4.03-6.1 0.03-0.2 4.27-6.1 0.04-0.2 0.28 8 4.27-6.1 0.04-0.2 0.01-0.0 0.099 4.32-5. 0-0.0 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000 0.000
March 31, 2021 April 1, 2021 - June 30, 2021 July 1, 2021 - September 30, 2021 October 1, 2021 - December 31, 2021 January 1, 2022 - March 31, 2022 April 1, 2022 - June 30, 2022 October 1, 2022 - June 30, 2022 October 1, 2022 - December 31, 2022 January 1, 2023 - March 31, 2023 April 1, 2023 - June 30, 2021	Depth to Static Water Level Range of Free Product Thickness (ft.) Average Free Product Thickness (ft.) Depth to Static Water Level Range of Free Product Thickness (ft.) Average Free Product Thickness (ft.) Average Free Product Thickness (ft.) Depth to Static Water Level Range of Free Product Thickness (ft.) Average Free Product Thickness (ft.) Depth to Static Water Level Range of Free Product Thickness (ft.) Average Free Product Thickness (ft.) Depth to Static Water Level Range of Free Product Thickness (ft.) Depth to Static Water Level Range of Free Product Thickness (ft.) Average Free Product Thickness (ft.) Depth to Static Water Level Range of Free Product Thickness (ft.) Depth to Static Water Level Range of Free Product Thickness (ft.) Average Free Product Thickness (ft.) Depth to Static Water Level Range of Free Product Thickness (ft.) Depth to Static Water Level Range of Free Product Thickness (ft.) Average Free Product Thickness (ft.) Depth to Static Water Level Range of Free Product Thickness (ft.) Depth to Static Water Level Range of Free Product Thickness (ft.) Depth to Static Water Level Range of Free Product Thickness (ft.) Depth to Static Water Level Range of Free Product Thickness (ft.) Average Free Product Thickness (ft.) Depth to Static Water Level	7.45-8.40 0-01 0.001 7.91-8.78 0-01 0.001 7.78-9.34 0-0.63 0.22 7.5-8.73 0-0.2 0.006 7.58-8.60 0-0.01 0.008 6.78-8.45 0-0.03 0.005 8.19-9.14 0-0.29 0.08 8.38-9.47 0-1.34 0-4.3 7.56-8.68 0-0.27 0.033 7.81-9.13 0-0.13	0.14 7.33-8.64 0-0.07 0.01 7.67-8.63 0.01-0.37 0.15 7.85-9.16 0-1.05 0.39 7.58-9.21 0-0.81 0.17 7.14-8.42 0.04-0.88 0.33 6.95-825 0-0.4 0.12 8.13-9.42 0.11-0.91 0.25 8.00-9.42 0-1.37 0.55 0-0.10 0.02 7.38-9.55 0-0.10 0.02 7.88-9.55 0-0.10	0 7.08-8.49 0-0.01 0.00 7.32-8.50 0 0 0 7.45-9.25 0 0 0 0 6.99-8.21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6.69-8.65 0-0.27 0.05 7.12-8.70 0-0.70 0.09 7.12-8.70 0-0.70 0.09 0-1.43 0.52 7.02-9.68 0.01-1.25 0.37 6.74-8.65 0-0.13 0.022 6.39-8.45 0-0.13 0.022 6.39-8.45 0-0.17 5.75 8.33-9.35 0.01-2.02 1.07 7.57-8.59 0.27-2.02 0.83 8.87-10.93 0.18-1.64	7.78-8.52 0 0 8.15-8.91 0 0 7.89-9.38 0 0 7.53-8.55 0 0 7.31-8.45 0 0 0 8.22-9.41 0 0 8.43-9.60 0 7.92-8.81 0-0.07	4.03-6. 0.03-0. 0.288 4.27-6. 0.04-0. 0.01-0. 0.01-0. 0.099 4.41-6. 0.0-0. 0.090 3.38-5. 0.000 6.00-7. 0.01-2. 0.01-2. 0.04-0. 0.000
March 31, 2021 April 1, 2021 - June 30, 2021 July 1, 2021 - September 30, 2021 October 1, 2021 - December 31, 2021 January 1, 2022 - March 31, 2022 April 1, 2022 - June 30, 2022 July 1, 2022 - September 30, 2022 October 1, 2022 - December 31, 2022 January 1, 2023 - June 30, 2022	Depth to Static Water Level Range of Free Product Thickness (ft.) Average Free Product Thickness (ft.) Depth to Static Water Level Range of Free Product Thickness (ft.) Average Free Product Thickness (ft.) Average Free Product Thickness (ft.) Depth to Static Water Level Range of Free Product Thickness (ft.) Average Free Product Thickness (ft.) Average Free Product Thickness (ft.) Depth to Static Water Level Range of Free Product Thickness (ft.) Average Free Product Thickness (ft.) Depth to Static Water Level Range of Free Product Thickness (ft.) Average Free Product Thickness (ft.) Depth to Static Water Level Range of Free Product Thickness (ft.) Average Free Product Thickness (ft.) Depth to Static Water Level Range of Free Product Thickness (ft.) Depth to Static Water Level Range of Free Product Thickness (ft.) Average Free Product Thickness (ft.) Depth to Static Water Level Range of Free Product Thickness (ft.) Average Free Product Thickness (ft.)	7.45-8.40 -0.01 0.001 7.91-8.78 -0.01 0.001 7.78-9.34 -0.03 0.22 0.006 -7.58-8.60 -0.01 0.008 8.38-9.41 -0.02 0.08 8.38-9.41 -0.29 0.08 8.38-9.47 -0.13 -0.43 -7.56-8.69 -0.03	0.14 7.33-8.64 0-0.07 0.01 7.67-8.63 0.01-0.37 0.15 7.85-9.16 0-1.05 0.39 7.58-9.21 0-0.81 0.17 7.14-8.42 0.04-0.88 0.17 7.14-8.42 0.04-0.88 0.17 7.14-8.42 0.04-0.89 0.17 7.14-8.42 0.10-0.91 0.25 8.00-9.42 0.1-37 0.55 7.23-8.50 0-0.10 0.02 7.89-9.52 0.01-0.72 0.35	0 7.08-8.49 0-0.01 0.00 7.32-8.50 0 0 7.45-9.25 0 0 0 6.59-8.21 0 0 0 6.51-8.49 0 0 0 6.51-8.49 0 0 7.61-9.42 0 0 7.61-9.42 0 0 7.61-9.42 0 0 0 7.61-9.42 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6.69-8.65 0-0.27 0.05 7.12-8.70 0-0.70 0-0.70 0-0.99 7.85-9.43 0-1.43 0.52 7.02-9.86 0.01-1.25 0.37 0.74-8.65 0-0.13 0.022 0.35 0.01-1.25 0.37 0.74-8.65 0-0.17 0.035 8.05-9.75 0.01-1.80 0.75 8.33-9.35 0.01-2.02 1.07 7.57-8.59 0.27-2.02 0.83 8.87-10-93 0.18-1.64	7.78-8.52 0 0 8.15-8.91 0 0 7.89-9.38 0 7.89-9.38 0 7.81-8.45 0 0 7.31-8.18 0 0 0 8.22-9.41 0 0 7.92-8.81 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4.03-6.1 0.03-0.2 4.27-6.1 0.04-0.2 0.28 4.27-6.1 0.04-0.2 0.01-0.3 0.01-0.0 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.
March 31, 2021 April 1, 2021 - June 30, 2021 July 1, 2021 - September 30, 2021 October 1, 2021 - December 31, 2021 January 1, 2022 - March 31, 2022 April 1, 2022 - June 30, 2022 October 1, 2022 - June 30, 2022 October 1, 2022 - December 31, 2022 January 1, 2023 - March 31, 2023 April 1, 2023 - June 30, 2021	Depth to Static Water Level Range of Free Product Thickness (ft.) Average Free Product Thickness (ft.) Depth to Static Water Level Range of Free Product Thickness (ft.) Average Free Product Thickness (ft.) Average Free Product Thickness (ft.) Depth to Static Water Level Range of Free Product Thickness (ft.) Average Free Product Thickness (ft.) Depth to Static Water Level Range of Free Product Thickness (ft.) Average Free Product Thickness (ft.) Depth to Static Water Level Range of Free Product Thickness (ft.) Depth to Static Water Level Range of Free Product Thickness (ft.) Average Free Product Thickness (ft.) Depth to Static Water Level Range of Free Product Thickness (ft.) Depth to Static Water Level Range of Free Product Thickness (ft.) Average Free Product Thickness (ft.) Depth to Static Water Level Range of Free Product Thickness (ft.) Depth to Static Water Level Range of Free Product Thickness (ft.) Average Free Product Thickness (ft.) Depth to Static Water Level Range of Free Product Thickness (ft.) Depth to Static Water Level Range of Free Product Thickness (ft.) Depth to Static Water Level Range of Free Product Thickness (ft.) Depth to Static Water Level Range of Free Product Thickness (ft.) Average Free Product Thickness (ft.) Depth to Static Water Level	7.45-8.40 0-01 0.001 7.91-8.78 0-01 0.001 7.78-9.34 0-0.63 0.22 7.5-8.73 0-0.2 0.006 7.58-8.60 0-0.01 0.008 6.78-8.45 0-0.03 0.005 8.19-9.14 0-0.29 0.08 8.38-9.47 0-1.34 0-4.3 7.56-8.68 0-0.27 0.033 7.81-9.13 0-0.13	0.14 7.33-8.64 0-0.07 0.01 7.67-8.63 0.01-0.37 0.15 7.85-9.16 0-1.05 0.39 7.58-9.21 0-0.81 0.17 7.14-8.42 0.04-0.88 0.33 6.95-825 0-0.4 0.12 8.13-9.42 0.11-0.91 0.25 8.00-9.42 0-1.37 0.55 0-0.10 0.02 7.38-9.55 0-0.10 0.02 7.88-9.55 0-0.10	0 7.08-8.49 0-0.01 0.00 7.32-8.50 0 0 0 7.45-9.25 0 0 0 0 6.99-8.21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6.69-8.65 0-0.27 0.05 7.12-8.70 0-0.70 0.09 7.12-8.70 0-0.70 0.09 0-1.43 0.52 7.02-9.68 0.01-1.25 0.37 6.74-8.65 0-0.13 0.022 6.39-8.45 0-0.13 0.022 6.39-8.45 0-0.17 5.75 8.33-9.35 0.01-2.02 1.07 7.57-8.59 0.27-2.02 0.83 8.87-10.93 0.18-1.64	7.78-8.52 0 0 8.15-8.91 0 0 7.89-9.38 0 0 7.53-8.55 0 0 7.31-8.45 0 0 0 8.22-9.41 0 0 8.43-9.60 0 7.92-8.81 0-0.07	4.03-6.1 0.03-0.2 4.27-6.1 0.04-0.0 0.01-0.2 0.09-1 0.01-0.2 0.09-1 0.00-0.2

Note:
Depth to Static Water Level in feet above mean sea level corrected for the presence of Free Product based on the following relationship:
Corrected SWL (ft. bgs) = Measured SWL (ft. bgs) – 0.85 x Measured Free Product Thickness (ft.)

10-31-2023 As Noted CPS

DAY ENGINEERING, P.C.
ENVIRONMENTAL ENGINEERING CONSULTANTS
ROCHESTER, NEW YORK 14606

Groundwater Contour Map: August 2023

23-3690M

FIGURE 1

ATTACHMENT A

Well Monitoring Logs and Free Product Removal Records
July 1, 2023 through September 30, 2023

Metro-North Railroad Free Product Recovery Report						
Metro-North Yard: Harmon (OU I) Well ID: P1 Diameter: 2 in.						
Date Depth to Free Product Free Product Product (ft) Depth to Free Product Free Product Recovered (gal)						
8/14/2023	-	13.35	0	0		

Metro-North Railroad Free Product Recovery Report						
Metro-North Yard: Harmon (OU I) Well ID: P2 Diameter: 2 in.						
Date Depth to Free Product Free Product Product (ft) Water (ft) Thickness (ft) Recovered (gal)						
8/14/2023	-	13.17	0	0		

Metro-North Railroad Free Product Recovery Report						
Metro-North Yard: Harmon (OU I) Well ID: P3 Diameter: 2 in.						
Date Depth to Free Product Free Product Product (ft) Depth to Free Product Thickness (ft) Recovered (gal)						
8/14/2023	-	13.62	0	0		

Metro-North Railroad Free Product Recovery Report							
Metro-North Yard: Harmon (OU I) Well ID: P4 Diameter: 2 in.							
Date	Date Depth to Free Depth to Free Product Free Product Product (ft) Water (ft) Thickness (ft) Recovered (gal)						
8/14/2023	-	13.25	0	0			

Metro-North Railroad Free Product Recovery Report						
Metro-North Yard: Harmon (OU I) Well ID: P5 Diameter: 2 in.						
Date Depth to Free Product Free Product Product (ft) Water (ft) Thickness (ft) Recovered (gal)						
8/14/2023	-	4.65	0	0		

Metro-North Railroad Free Product Recovery Report							
Metro-North Yard: Harmon (OU I) Well ID: P6 Diameter: 2 in.							
Date Depth to Free Product Free Product Product (ft) Water (ft) Thickness (ft) Recovered (gal)							
Not measured							

Metro-North Railroad Free Product Recovery Report						
Metro-North Yard: Harmon (OU I) Well ID: P7 Diameter: 2 in.						
Date	Date Depth to Free Depth to Free Product Free Product Product (ft) Water (ft) Thickness (ft) Recovered (gal)					
8/14/2023	-	13.14	0	0		

Metro-North Railroad Free Product Recovery Report						
Metro-North Yard: Harmon (OU I) Well ID: P8 Diameter: 2 in.						
Date	Date Depth to Free Depth to Free Product Free Product Product (ft) Water (ft) Thickness (ft) Recovered (gal)					
8/14/2023	-	12.84	0	0		

Metro-North Railroad Free Product Recovery Report						
Metro-North Yard: Harmon (OU I) Well ID: P9 Diameter: 2 in.						
Date Depth to Free Depth to Free Product Free Product Comments C						
8/14/2023	-	12.95	0	0		

Metro-North Railroad Free Product Recovery Report						
Metro-N	Metro-North Yard: Harmon (OU I) Well ID: P10 Diameter: 2 in.					
Date	Depth to Free Product (ft)	Depth to Water (ft)	Free Product Thickness (ft)	Free Product Recovered (gal)	Comments	
8/14/2023	-	12.83	0	0		

Metro-North Railroad Free Product Recovery Report Metro-North Yard: Harmon (OU I) Well ID: V-1 Diameter: 4 in. Depth to Free Depth to Water **Free Product** Free Product Comments Date Product (ft) Recovered (gal) (ft) Thickness (ft) 8/17/2023 15.74 0 0.37 8/23/2023 15.46 15.83 9/6/2023 15.82 0 0

Metro-North Railroad Free Product Recovery Report Metro-North Yard: Harmon (OU I) Well ID: V-2 Diameter: 4 in. Depth to Free Depth to Water Free Product Free Product Comments

Date	Depth to Free Product (ft)	Depth to Water (ft)	Free Product Thickness (ft)	Free Product Recovered (gal)	Comments
7/11/2023	16.68	16.78	0.1 0		
8/17/2023	16.64	16.69	0.05	0.05 0	
9/6/2023	16.74	16.92	0.18	0	

Metro-North Railroad Free Product Recovery Report Metro-North Yard: Harmon (OU I) Well ID: V-3 Diameter: 4 in. Depth to Free Depth to Water Free Product Free Product Date Comments Product (ft) (ft) Thickness (ft) Recovered (gal) 7/11/2023 16.25 16.34 0.09 0 8/17/2023 16.28 16.29 0.01 9/6/2023 16.41 16.54 0.13 0

Metro-North Yard: Harmon (OU I) Well ID: V-4 Diameter: 4 in.

Date	Depth to Free Product (ft)	Depth to Water (ft)	Free Product Thickness (ft)	Free Product Recovered (gal)	Comments
7/5/2023	16.15	16.4	0.25	0	
7/11/2023	15.25	15.45	0.2	0	
7/19/2023	15.09	15.41	0.32	0	
7/26/2023	15.1	15.46	0.36	0	
8/1/2023	15.18	15.49	0.31	0	
8/11/2023	15.35	15.63	0.28	0	
8/17/2023	15.41	15.68	0.27	0	
8/29/2023	15.5	15.84	0.34	0	
9/6/2023	15.61	15.95	0.34	0	
9/15/2023	15.65	16.3	0.65	0.65 0	
9/19/2023	15.7	16.15	0.45	0	
9/28/2023	14.85	14.89	0.04	0	

Metro-North Railroad Free Product Recovery Report						
Metro-North Yard: Harmon (OU I) Well ID: Al1-1 Diameter: 2 in.					١.	
Date	Depth to Free Product (ft)	Depth to Water (ft)	Free Product Thickness (ft)	Free Product Recovered (gal)	Comments	
8/14/2023	-	10.81	0	0		

Metro-North Railroad Free Product Recovery Report						
Metro-	Metro-North Yard: Harmon (OU I) Well ID: Al1-4 Diameter: 2 in.				า.	
Date	Depth to Free Product (ft)	Depth to Water (ft)	Free Product Thickness (ft)	Comments		
8/14/2023	-	9.8	0	0		

Metro-North Railroad Free Product Recovery Report						
Metro-North Yard: Harmon (OU I) Well ID: AI1-8 Diameter: 2 in.					n.	
Date	Depth to Free Product (ft)	Depth to Water (ft)	Free Product Thickness (ft)	Free Product Recovered (gal)	Comments	
8/14/2023	-	12.92	0	0		

Metro-North Railroad Free Product Recovery Report						
Metro-North Yard: Harmon (OU I) Well ID: Al1-11 Diameter: 2 in.					in.	
Date	Depth to Free Product (ft)	Depth to Water (ft)	Free Product Thickness (ft)	Comments		
8/14/2023	13.61	13.62	0.01	0		

Metro-North Railroad Free Product Recovery Report							
Metro-North Yard: Harmon (OU I) Well ID: Al1-12 Diameter: 2 in.							
Date	Depth to Free Product (ft)	Depth to Water (ft)	Free Product Thickness (ft)	Free Product Recovered (gal)	Comments		
8/14/2023	16.51	16.62	0.11	0			

Metro-North Railroad Free Product Recovery Report							
Metro-North Yard: Harmon (OU I) Well ID: AI1-15 Diameter: 2 in.							
Date	Depth to Free Product (ft)	· I · I Com					
8/14/2023	17.91	17.92	0.01	0			

Metro-North Railroad Free Product Recovery Report						
Metro-North Yard: Harmon (OU I) Well ID: AI1-16 Diameter: 2 in.					in.	
Date	Depth to Free Product (ft)	Depth to Water (ft)	Free Product Thickness (ft)	Free Product Recovered (gal)	Comments	
8/14/2023	-	13.43	0	0		

Metro-North Railroad Free Product Recovery Report						
Metro-North Yard: Harmon (OU I) Well ID: Al1-17 Diameter: 2 in.					n.	
Date	Depth to Free Product (ft)	Depth to Water (ft)	Free Product Thickness (ft)	Comments		
8/14/2023	-	11.68	0	0		

Metro-North Yard: Harmon (OU I) Well ID: SP-North Diameter: 1 in.

Date	Depth to Free Product (ft)	Depth to Water (ft)	Free Product Thickness (ft)	Free Product Recovered (gal)	Comments
7/5/2023	-	9.55	0	0	
7/11/2023	-	8.29	0	0	
7/19/2023	-	8.57	0	0	
7/26/2023	-	8.52	0	0	
8/1/2023	-	8.73	0	0	
8/11/2023	-	8.68	0	0	
8/17/2023	-	9.01	0	0	
8/23/2023	-	9.01	0	0	
8/29/2023	-	8.99	0	0	
9/6/2023	-	9.04	0	0	
9/15/2023	-	8.75	0	0	
9/19/2023	-	8.68	0	0	
9/28/2023	-	8.12	0	0	

Metro-North Railroad Free Product Recovery Report							
Metro-North Yard: Harmon (OU I) Well ID: VE-1-1 Diameter: 4 in.							
Date	Depth to Free Product (ft)	Depth to Water (ft)	Free Product Thickness (ft)	Free Product Recovered (gal)	Comments		
8/14/2023	8.00	8.45	0.45	0			

Metro-North Railroad Free Product Recovery Report							
Metro-North Yard: Harmon (OU I) Well ID: VE-1-2 Diameter: 4 in.							
Date	Depth to Free Product (ft)	Depth to Water (ft)	Free Product Thickness (ft)	Free Product Recovered (gal)	Comments		
8/14/2023	-	8.21	0	0			

Metro-North Railroad Free Product Recovery Report							
Metro-North Yard: Harmon (OU I) Well ID: VE-1-3 Diameter: 4 in.							
Date	Depth to Free Product (ft)	Depth to Water (ft)	Free Product Thickness (ft)	Free Product Recovered (gal)	Comments		
Not measured							

Metro-North Railroad Free Product Recovery Report							
Metro-North Yard: Harmon (OU I) Well ID: VE-1-4 Diameter: 4 in.							
Date	Depth to Free Product (ft)	Depth to Water (ft)	Free Product Thickness (ft)	Free Product Recovered (gal)	Comments		
	Not measured						

Metro-North Railroad Free Product Recovery Report								
Metro-North Yard: Harmon (OU I) Well ID: WB-9 Diameter: 4 in.								
Date	Depth to Free Product (ft)	Depth to Water (ft)	Free Product Thickness (ft)	Free Product Recovered (gal)	Comments			
8/14/2023	-	8.14	0	0				

Metro-North Railroad Free Product Recovery Report							
Metro-North Yard: Harmon (OU I) Well ID: AI2-2 Diameter: 2 in.							
Date	Depth to Free Product (ft)	Depth to Water (ft)	Free Product Thickness (ft)	Free Product Recovered (gal)	Comments		
8/14/2023	14.21	14.22	0.01	0			

Metro-North Yard: Harmon (OU I) Well ID: Al2-3 Diameter: 4 in.

Date	Depth to Free Product (ft)	Depth to Water (ft)	Free Product Thickness (ft)	Free Product Recovered (gal)	Comments*
7/5/2023	15.5	15.51	0.01	0	drum-2.17
7/11/2023	14.8	14.81	0.01	0	drum-2.35
7/19/2023	14.68	14.69	0.01	0	
7/26/2023	14.65	14.66	0.01	0	Drum-0.02
8/1/2023	14.7	14.71	0.01	0	Drum-0.03
8/11/2023	14.86	14.87	0.01	0	Drum-0.08
8/14/2023	14.91	14.92	0.01	0	
8/17/2023	14.9	14.91	0.01	0	Drum-0.09
8/23/2023	14.83	14.84	0.01	0	Drum-0.1
8/29/2023	14.83	14.84	0.01	0	Drum-0.15
9/6/2023	15.33	15.34	0.01	0	Drum-0.20
9/15/2023	15.12	15.26	0.14	0	Drum-0.26
9/19/2023	15.25	15.26	0.01	0	Drum-0.29
9/28/2023	14.48	14.49	0.01	0	Drum- 0.39

^{*}Measured height of Free Product accumulated in drum. Height of drum is assumed to be 2.5 ft and equal to approximately 50 gallons. Comment on 6/29/2023 stated '2.15 ft'. Approximately 14.8 gallons of free product recovered during report period.

Metro-North Railroad Free Product Recovery Report							
Metro-North Yard: Harmon (OU I) Well ID: VE2-1 Diameter: 4 in.							
Date	Depth to Free Product (ft)	Depth to Water (ft)	Free Product Thickness (ft)	Comme			
8/14/2023	-	10.75	0	0			

Metro-North Railroad Free Product Recovery Report							
Metro-North Yard: Harmon (OU I) Well ID: Al3-4 Diameter: 2 in.							
Date	Date Depth to Free Depth to Free Product Free Product Product (ft) Water (ft) Thickness (ft) Recovered (gal)						
8/14/2023	-	12.94	0	0			

Metro-North Railroad Free Product Recovery Report							
Metro-North Yard: Harmon (OU I) Well ID: Al3-5 Diameter: 2 in.							
Date	Depth to Free Product (ft)	Depth to Water (ft)	Free Product Thickness (ft)	Free Product Recovered (gal)	Comments		
Not measured							

Metro-North Railroad Free Product Recovery Report							
Metro-North Yard: Harmon (OU I) Well ID: AI3-6 Diameter: 2 in.							
Date	Depth to Free Product (ft)	Depth to Water (ft)	Free Product Thickness (ft)	Free Product Recovered (gal)	Comments		
8/14/2023	16.12	16.13	0.01	0			

Metro-North Yard: Harmon (OU I) Well ID: VE3-1 Diameter: 4 in.

Date	Depth to Free Product (ft)	Depth to Water (ft)	Free Product Thickness (ft)	Free Product Recovered (gal)	Comments
7/11/2023	13.32	13.33	0.01	0	
8/17/2023	10.6	10.65	0.05	0	
9/6/2023	10.95	11.04	0.09	0	

Metro-North Railroad Free Product Recovery Report						
Metro-North Yard: Harmon (OU I) Well ID: DAY-1 Diameter: 4 in.						
Date	Depth to Free Product (ft)	Depth to Water (ft)	Free Product Thickness (ft)	Free Product Recovered (gal)	Comments	
8/14/2023	16.10	16.11	0.01	0		

Metro-North Yard: Harmon (OU I) Well ID: FA4-8 Diameter: 4 in.

Date	Depth to Free Product (ft)	Depth to Water (ft)	Free Product Thickness (ft)	Free Product Recovered (gal)	Comments*
7/11/2023	16.22	16.23	0.01	0	Drum-0.62
7/19/2023	15.84	15.85	0.01	0	Drum-0.59
7/26/2023	16	16.01	0.01	0	Drum-0.59
8/1/2023	15.97	15.98	0.01	0	Drum-0.58
8/11/2023	16.12	16.13	0.01	0	Drum-0.59
8/17/2023	16.1	16.11	0.01	0	Drum-0.59
8/23/2023	16.04	16.07	0.03	0	Drum-0.59
8/29/2023	16.08	16.1	0.02	0	Drum-0.64
9/6/2023	16.24	16.25	0.01	0	Drum-0.57
9/15/2023	16.4	16.7	0.3	0	Drum-0.6
9/19/2023	16.41	16.42	0.01	0	Drum-0.64
9/28/2023	14.46	14.47	0.01	0	Drum-0.59

^{*}Measured height of Free Product accumulated in drum. Height of drum is assumed to be 2.5 ft and equal to approximately 50 gallons. Comment on 6/29/2023 stated 'drum 0.56 ft'. Free product not removed from well FA4-8 in report period.

Metro-North Yard: Harmon (OU I) Well ID: FA4-9 Diameter: 2 in.

Date	Depth to Free Product (ft)	Depth to Water (ft)	Free Product Thickness (ft)	Free Product Recovered (gal)	Comments
7/11/2023	6.39	6.9	0.51	0	
8/17/2023	7.28	7.55	0.27	0	

Metro-North Railroad Free Product Recovery Report						
Metro-North Yard: Harmon (OU I) Well ID: FA4-10 Diameter: 2 in.						
Date	Depth to Free Product (ft)	Depth to Water (ft)	Free Product Thickness (ft)	Free Product Recovered (gal)	Comments	
Not measured						

Metro-North Yard: Harmon (OU I) Well ID: FA4-11 Diameter: 4 in.

Date	Depth to Free Product (ft)	Depth to Water (ft)	Free Product Thickness (ft)	Free Product Recovered (gal)	Comments
7/5/2023	16.42	16.43	0.01	0	
7/11/2023	10.56	10.57	0.01	0	
7/19/2023	10.55	10.56	0.01	0	
7/26/2023	10.2	10.21	0.01	0	
8/1/2023	10.61	10.62	0.01	0	
8/11/2023	10.84	10.85	0.01	0	
8/14/2023	10.79	10.80	0.01	0	
8/17/2023	10.55	10.56	0.01	0	
8/23/2023	10.65	10.66	0.01	0	
8/29/2023	10.82	10.83	0.01	0	
9/15/2023	11.33	11.40	0.07	0	
9/19/2023	11.32	11.33	0.01	0	
9/28/2023	9.97	9.98	0.01	0	

Metro-North Railroad Free Product Recovery Report						
Metro-North Yard: Harmon (OU I) Well ID: FA4-12 Diameter: 4 in.						
Date	Date Depth to Free Depth to Free Product Product (ft) Water (ft) Thickness (ft)		Free Product Recovered (gal)	Comments		
8/14/2023	13.93	14.05	0.12	0		

Metro-North Yard: Harmon (OU I) Well ID: FA4-13R Diameter: 4 in.

Date	Depth to Free Product (ft)	Depth to Water (ft)	Free Product Thickness (ft)	Free Product Recovered (gal)	Comments
7/5/2023	10.88	10.89	0.01	0	
7/11/2023	10.05	10.06	0.01	0	
7/19/2023	10.17	10.18	0.01	0	
7/26/2023	9.89	9.9	0.01	0	
8/1/2023	10.18	10.19	0.01	0	
8/11/2023	10.52	10.53	0.01	0	
8/14/2023	10.43	10.44	0.01	0	
8/17/2023	10.22	10.23	0.01	0	
8/23/2023	10.25	10.26	0.01	0	
8/29/2023	10.35	10.36	0.01	0	
9/6/2023	10.66	10.67	0.01	0	
9/15/2023	10.71	10.72	0.01	0	
9/19/2023	10.64	10.65	0.01	0	
9/28/2023	9.45	9.46	0.01	0	

Metro-North Yard: Harmon (OU I) Well ID: FA4-14 Diameter: 4 in.

Date	Depth to Free Product (ft)	Depth to Water (ft)	Free Product Thickness (ft)	Free Product Recovered (gal)	Comments
7/5/2023	13.28	13.35	0.07	0	
7/11/2023	12.72	13.05	0.33	0	
7/19/2023	12.72	13.01	0.29	0	
7/26/2023	12.50	12.91	0.41	0	
8/1/2023	12.67	13.44	0.77	0.75	
8/11/2023	12.88	13.32	0.44	0	
8/17/2023	12.85	13.25	0.40	0	
8/23/2023	12.81	13.53	0.72	0.63	
8/29/2023	12.85	13.21	0.36	0	
9/6/2023	13.09	13.48	0.39	0	
9/15/2023	13.20	14.05	0.85	0	
9/19/2023	13.25	13.95	0.70	0.63	
9/28/2023	12.26	12.31	0.05	0	

Metro-North Yard: Harmon (OU I) Well ID: FA4-15R Diameter: 4 in.

Date	Depth to Free Product (ft)	Depth to Water (ft)	Free Product Thickness (ft)	Free Product Recovered (gal)	Comments
7/5/2023	10.45	10.52	0.07	0	
7/11/2023	9.59	9.85	0.26	0	
7/19/2023	9.68	9.77	0.09	0	
7/26/2023	9.55	9.79	0.24	0	
8/1/2023	9.72	9.93	0.21	0	
8/11/2023	9.95	9.98	0.03	0	
8/14/2023	9.97	9.99	0.02	0	
8/17/2023	9.80	9.83	0.03	0	
8/23/2023	9.83	9.98	0.15	0	
8/29/2023	9.90	9.91	0.01	0	
9/6/2023	10.11	10.18	0.07	0	
9/15/2023	10.22	10.47	0.25	0	
9/19/2023	10.26	10.43	0.17	0	
9/28/2023	9.01	9.15	0.14	0	

Metro-North Yard: Harmon (OU I) Well ID: FA4-16 Diameter: 2 in.

Date	Depth to Free Product (ft)	Depth to Water (ft)	Free Product Thickness (ft)	Free Product Recovered (gal)	Comments
7/5/2023	14.50	14.65	0.15	0	
7/11/2023	14.05	14.12	0.07	0	
7/19/2023	13.85	13.91	0.06	0	
7/26/2023	13.71	13.85	0.14	0	
8/1/2023	13.81	14.01	0.20	0	
8/11/2023	13.75	13.92	0.17	0	
8/17/2023	13.94	14.01	0.07	0	
8/23/2023	13.91	14.18	0.27	0	
8/29/2023	14.01	14.12	0.11	0	
9/6/2023	14.18	14.34	0.16	0	
9/15/2023	14.30	14.54	0.24	0	
9/19/2023	14.35	14.65	0.30	0	
9/28/2023	13.39	13.65	0.26	0	

Metro-North Yard: Harmon (OU I) Well ID: FA4-17R Diameter: 4 in.

Date	Depth to Free Product (ft)	Depth to Water (ft)	Free Product Thickness (ft)	Free Product Recovered (gal)	Comments
7/5/2023	10.55	10.6	0.05	0	
7/11/2023	9.85	10.20	0.35	0	
7/19/2023	9.82	10.28	0.46	0	
7/26/2023	9.62	10.04	0.42	0	
8/1/2023	9.84	10.78	0.94	1.25	
8/11/2023	10.12	10.25	0.13	0	
8/17/2023	9.98	10.35	0.37	0	
8/23/2023	9.97	10.55	0.58	1.25	
8/29/2023	10.05	10.40	0.35	0	
9/6/2023	10.27	10.48	0.21	0	
9/15/2023	10.40	11.80	1.40	0.25	
9/19/2023	10.42	10.82	0.40	0	
9/28/2023	9.34	9.45	0.11	0	

^{*}Measured height of Free Product accumulated in drum. Spill Buster ™formerly located in well, removed in 2020. No comments during current report period re. installation of Spill Buster or drum measurements.

Metro-North Yard: Harmon (OU I) Well ID: FA4-18 Diameter: 4 in.

Date	Depth to Free Product (ft)	Depth to Water (ft)	Free Product Thickness (ft)	Free Product Recovered (gal)	Comments
7/5/2023	12.82	12.83	0.01	0	
7/11/2023	12.41	12.55	0.14	0	
7/19/2023	12.28	12.54	0.26	0	
7/26/2023	12.21	12.45	0.24	0	
8/1/2023	12.27	12.45	0.18	0	
8/11/2023	12.51	12.72	0.21	0	
8/17/2023	12.42	12.56	0.14	0	
8/23/2023	12.41	12.65	0.24	0	
8/29/2023	12.51	12.71	0.2	0	
9/6/2023	12.72	12.91	0.19	0	
9/15/2023	12.8	13.1	0.3	0	
9/19/2023	12.9	13.14	0.24	0	
9/28/2023	11.91	11.92	0.01	0.25	

Metro-North Railroad Free Product Recovery Report							
Metro-North Yard: Harmon (OU I) Well ID: FA4-19 Diameter: 2 in.							
Date	Depth to Free Product (ft)	Depth to Water (ft)	Free Product Thickness (ft)	Free Product Recovered (gal)	Comments		
		Not me	easured				

Metro-North Railroad Free Product Recovery Report							
Metro-North Yard: Harmon (OU I) Well ID: FA4-20 Diameter: 2 in.					n.		
Date	Depth to Free Product (ft)	Depth to Water (ft)	Free Product Free Product Comme				
8/14/2023	-	12.55	0	0			

Metro-North Yard: Harmon (OU I) Well ID: FA4-21 Diameter: 2 in.

Date	Depth to Free Product (ft)	Depth to Water (ft)	Free Product Thickness (ft)	Free Product Recovered (gal)	Comments
7/11/2023	13.35	13.36	0.01	0	
8/17/2023	13.19	13.2	0.01	0	
9/6/2023	13.45	13.68	0.23	0	

Metro-North Yard: Harmon (OU I) Well ID: FA4-23 Diameter: 2 in.

Date	Depth to Free Product (ft)	Depth to Water (ft)	Free Product Thickness (ft)	Free Product Recovered (gal)	Comments
7/11/2023	12.6	12.61	0.01	0	
8/17/2023	12.45	12.52	0.07	0	
9/6/2023	12.79	12.81	0.02	0	

Metro-North Yard: Harmon (OU I) Well ID: PGW-2 Diameter: 2 in.

Date	Depth to Free Product (ft)	Depth to Water (ft)	Free Product Thickness (ft)	Free Product Recovered (gal)	Comments
7/5/2023	7.08	7.15	0.07	0	
7/11/2023	5.41	5.73	0.32	0	
7/19/2023	5.6	5.88	0.28	0	
7/26/2023	5.4	6.01	0.61	0	
8/1/2023	5.35	6	0.65	0	
8/11/2023	5.22	5.88	0.66	0	
8/17/2023	6.18	6.34	0.16	0	
8/23/2023	6.05	6.22	0.17	0	
8/29/2023	6.02	6.21	0.19	0	
9/6/2023	6.95	7.4	0.45	0	
9/15/2023	6.9	7.1	0.2	0	
9/19/2023	8.88	9.14	0.26	0	
9/28/2023	4.61	4.78	0.17	0	

Metro-North Yard: Harmon (OU I) Well ID: RW-1 Diameter: 6 in.

Date	Depth to Free Product (ft)	Depth to Water (ft)	Free Product Thickness (ft)	Free Product Recovered (gal)	Comments*
7/5/2023	14.9	14.91	0.01	0	Drum-1.87
7/11/2023	14.19	14.22	0.03	0	Drum-2.30
7/19/2023	14.24	14.25	0.01	0	Drum-0.32
7/26/2023	14.11	14.12	0.01	0	Drum-0.42
8/1/2023	14.17	14.18	0.01	0	Drum-0.42
8/11/2023	14.45	14.46	0.01	0	Drum-0.49
8/17/2023	14.35	14.36	0.01	0	Drum-0.43
8/22/2023	8.91	8.92	0.01	0	
8/23/2023	14.34	14.35	0.01	0	Drum-0.43
8/29/2023	14.31	14.32	0.01	0	
9/6/2023	14.65	14.66	0.01	0	Drum-0.59
9/15/2023	14.72	14.8	0.08	0	Drum-0.89
9/19/2023	14.85	14.86	0.01	0	
9/28/2023	13.78	13.79	0.01	0	Drum-1.20

^{*}Measured height of Free Product accumulated in drum. Height of drum is assumed to be approximately 2.5 ft and equal to approximately 50 gallons. Comment on 6/23/2023 stated 'drum 1.82 ft'. Approximately 37.6 gallons of ree product removed from well RW-1 in report period.

Metro-North Railroad Free Product Recovery Report							
Metro-North Yard: Harmon (OU I) Well ID: VE4-1 Diameter: 4 in.					n.		
Date	Depth to Free Product (ft)	Depth to Water (ft)	· I Comn				
8/14/2023	-	8.35	0	0			

Metro-North Yard: Harmon (OU I) Well ID: VE4-5 Diameter: 4 in.

Date	Depth to Free Product (ft)	Depth to Water (ft)	Free Product Thickness (ft)	Free Product Recovered (gal)	Comments
7/5/2023	9.52	9.64	0.12	0	
7/11/2023	9.11	9.45	0.34	0	
7/19/2023	9.11	9.45	0.34	0	
7/26/2023	8.91	9.38	0.47	0	
8/1/2023	9.01	9.98	0.97	1	
8/11/2023	9.32	9.69	0.37	0	
8/17/2023	9.18	9.35	0.17	0	
8/23/2023	8.81	9.24	0.43	0.75	
8/29/2023	9.25	9.4	0.15	0	
9/6/2023	9.52	9.65	0.13	0	
9/15/2023	9.60	9.95	0.35	0	
9/19/2023	9.65	10.00	0.35	0	
9/28/2023	8.75	9.01	0.26	0	

Metro-North Railroad Free Product Recovery Report							
Metro-North Yard: Harmon (OU I) Well ID: VE4-6 Diameter: 4 in.							
Date	Depth to Free Product (ft)	l · l Comm					
8/14/2023	6.65	6.75	0.1	0			

Metro-North Yard: Harmon (OU I) Well ID: VE4-7 Diameter: 4 in.

Date	Depth to Free Product (ft)	Depth to Water (ft)	Free Product Thickness (ft)	Free Product Recovered (gal)	Comments
7/11/2023	6.66	6.67	0.01	0	
8/17/2023	7.35	7.36	0.01	0	
9/6/2023	-	7.55	0	0	

Metro-North Yard: Harmon (OU I) Well ID: VE4-8 Diameter: 4 in.

Date	Depth to Free Product (ft)	Depth to Water (ft)	Free Product Thickness (ft)	Free Product Recovered (gal)	Comments
7/11/2023	6.75	6.76	0.01	0	
8/17/2023	7.65	7.66	0.01	0	
9/6/2023	-	7.84	0	0	

Metro-North Yard: Harmon (OU I) Well ID: VE4-9 Diameter: 4 in.

Date	Depth to Free Product (ft)	Depth to Water (ft)	Free Product Thickness (ft)	Free Product Recovered (gal)	Comments
7/11/2023	7.33	7.34	0.01	0	
8/17/2023	7.93	7.94	0.01	0	
9/6/2023	8.16	8.18	0.02	0	

Metro-North Railroad Free Product Recovery Report							
Metro-North Yard: Harmon (OU I) Well ID: VE4-10 Diameter: 4 in.							
Date	Date Depth to Free Depth to Free Product Free Product Cor Product (ft) Water (ft) Thickness (ft) Recovered (gal)						
8/14/2023	12.10	12.11	0.01	0			

Metro-North Railroad Free Product Recovery Report							
Metro-North Yard: Harmon (OU I) Well ID: VE4-11 Diameter: 4 in.							
Date	Depth to Free Product (ft)	Depth to Water (ft)	Free Product Thickness (ft)	Free Product Recovered (gal)	Comments		

Metro-North Railroad Free Product Recovery Report							
Metro-North Yard: Harmon (OU I) Well ID: VE4-12 Diameter: 4 in.							
Date	Depth to Free Product (ft)	Depth to Free Product Free Product Water (ft) Thickness (ft) Recovered (gal)					
8/14/2023	-	13.10	0	0			

Metro-North Railroad Free Product Recovery Report							
Metro-North Yard: Harmon (OU I) Well ID: VE4-13 Diameter: 4 in.							
Date	Depth to Free Product (ft)	Depth to Water (ft)	Free Product Thickness (ft)	Free Product Recovered (gal)	Comments		
	Not measured						

	Metro-North Railroad Free Product Recovery Report								
Met	Metro-North Yard: Harmon (OU II) Well ID: OUII-A Diameter: 1 in.								
Date	Depth to Free Product (ft)	Depth to Water (ft)	Free Product Thickness (ft)	Free Product Recovered (gal)	Comments				
7/5/2023	8.99	9.2	0.21	0					
7/11/2023	0	8.01	0	0					
7/19/2023	8.03	8.04	0.01	0					
7/26/2023	8.03	8.05	0.02	0					
8/1/2023	8.09	8.12	0.03	0					
8/11/2023	8.05	8.06	0.01	0					
8/17/2023	8.01	8.06	0.05	0					
8/23/2023	8.15	8.16	0.01	0					
8/29/2023	8.22	8.23	0.01	0					
9/6/2023	8.45	8.46	0.01	0					
9/15/2023	8.6	8.61	0.01	0					
9/19/2023	8.39	8.4	0.01	0					
9/28/2023	8.01	8.02	0.01	0					

<u> </u>	Metro-North Railroad Free Product Recovery Report Metro-North Yard: Harmon (OU II) Well ID: OUII-B Diameter: 1 in.								
Date	Date Depth to Free Depth to Water Free Product Free Product Comm								
	Product (ft)	(ft)	Thickness (ft)	Recovered (gal)					
7/5/2023	8.68	9.35	0.67	0					
7/11/2023	0	7.83	0	0					
7/19/2023	7.68	7.69	0.01	0					
7/26/2023	0	7.62	0	0					
8/1/2023	8	8.01	0.01	0					
8/11/2023	8.03	8.04	0.01	0					
8/17/2023	7.98	7.99	0.01	0					
8/23/2023	7.8	7.81	0.01	0					
8/29/2023	7.93	7.94	0.01	0					
9/6/2023	8.3	8.31	0.01	0					
9/15/2023	8.2	8.45	0.25	0					
9/19/2023	7.84	7.9	0.06	0					
9/28/2023	7.91	8.09	0.18	0					

	Metro-North Railroad Free Product Recovery Report								
M	Metro-North Yard: Harmon (OU II) Well ID: OUII-C Diameter: 1 in.								
Date	Depth to Free Product (ft)	Depth to Water (ft)	Free Product Thickness (ft)	Free Product Recovered (gal)	Comments				
7/5/2023	-	8.8	0	0					
7/11/2023	-	7.31	0	0					
7/19/2023	-	7.69	0	0					
7/26/2023	-	7.41	0	0					
8/1/2023	-	7.85	0	0					
8/11/2023	-	7.81	0	0					
8/17/2023	-	7.81	0	0					
8/23/2023	-	7.78	0	0					
8/29/2023	-	7.86	0	0					
9/6/2023	-	8.32	0	0					
9/15/2023	-	8.01	0	0					
9/19/2023	-	7.99	0	0					
9/28/2023	-	7.55	0	0					

	Metro-North Railroad Free Product Recovery Report							
М	Metro-North Yard: Harmon (OU II) Well ID: OUII-D Diameter: 1 in.							
Date	Depth to Free Product (ft)	Depth to Water (ft)	Free Product Thickness (ft)	Free Product Recovered (gal)	Comments			
7/5/2023	10.00	10.9	0.9	0				
7/11/2023	8.31	8.51	0.2	0				
7/19/2023	7.94	8.48	0.54	0				
7/26/2023	8.01	8.78	0.77	0				
8/1/2023	8.00	9.2	1.2	0				
8/11/2023	8.05	9.16	1.11	0				
8/17/2023	7.98	9.15	1.17	0				
8/23/2023	7.96	9.01	1.05	0				
8/29/2023	8.01	9.05	1.04	0				
9/6/2023	8.21	9.88	1.67	0				
9/15/2023	8.38	9.68	1.3	0				
9/19/2023	8.49	9.37	0.88	0				
9/28/2023	7.91	8.72	0.81	0				

	Metro-North Railroad Free Product Recovery Report								
M	Metro-North Yard: Harmon (OU II) Well ID: OUII-E Diameter: 1 in.								
Date	Date Depth to Free Depth to Free Product Free Product Product (ft) Water (ft) Thickness (ft) Recovered (gal)								
7/5/2023	-	9.25	0	0					
7/11/2023	-	8.3	0	0					
7/19/2023	-	8.32	0	0					
7/26/2023	-	8.21	0	0					
8/1/2023	-	8.29	0	0					
8/11/2023	-	8.26	0	0					
8/17/2023	-	8.25	0	0					
8/23/2023	-	8.32	0	0					
8/29/2023	-	8.4	0	0					
9/6/2023	-	8.63	0	0					
9/15/2023	-	8.43	0	0					
9/19/2023	-	8.39	0	0					
9/28/2023	8.21	8.22	0.01	0					

	Metro-North Railroad Free Product Recovery Report								
Met	Metro-North Yard: Harmon (OU II) Well ID: OUII-F Diameter: 1 in.								
Date	Depth to Free Product (ft)	Depth to Water (ft)	Free Product Thickness (ft)	Free Product Recovered (gal)	Comments				
7/5/2023	6.48	6.49	0.01	0					
7/11/2023	-	4.62	0	0					
7/19/2023	4.68	4.69	0.01	0					
7/26/2023	4.69	4.7	0.01	0					
8/1/2023	5.21	5.22	0.01	0					
8/11/2023	5.19	5.21	0.02	0					
8/17/2023	5.23	5.25	0.02	0					
8/23/2023	5.12	5.13	0.01	0					
8/29/2023	5.16	5.17	0.01	0					
9/6/2023	4.81	4.85	0.04	0					
9/15/2023	6.09	6.1	0.01	0					
9/28/2023	4.85	4.86	0.01	0					

ATTACHMENT B

Analytical Laboratory Report

Technical Report

prepared for:

Metro North Commuter Railroad

525 North Broadway White Plains NY, 10603

Attention: Sara Gianazza

Report Date: 08/03/2023

Client Project ID: Harmon OU II Drums Well Al 2-3 H2 Recovered Oil

York Project (SDG) No.: 23H0044

CT Cert. No. PH-0723

New Jersey Cert. No. CT005 and NY037

New York Cert. Nos. 10854 and 12058

PA Cert. No. 68-04440

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371

132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418 ClientServices@yorklab.com Report Date: 08/03/2023

Client Project ID: Harmon OU II Drums Well Al 2-3 H2 Recovered Oil

York Project (SDG) No.: 23H0044

Metro North Commuter Railroad

525 North Broadway White Plains NY, 10603 Attention: Sara Gianazza

Purpose and Results

This report contains the analytical data for the sample(s) identified on the attached chain-of-custody received in our laboratory on August 01, 2023 and listed below. The project was identified as your project: Harmon OU II Drums Well Al 2-3 H2 Recovered Oil.

The analyses were conducted utilizing appropriate EPA, Standard Methods, and ASTM methods as detailed in the data summary tables.

All samples were received in proper condition meeting the customary acceptance requirements for environmental samples except those indicated under the Sample and Analysis Qualifiers section of this report.

All analyses met the method and laboratory standard operating procedure requirements except as indicated by any data flags, the meaning of which are explained in the Sample and Data Qualifiers Relating to This Work Order section of this report and case narrative if applicable.

The results of the analyses, which are all reported on dry weight basis (soils) unless otherwise noted, are detailed in the following pages.

Please contact Client Services at 203.325.1371 with any questions regarding this report.

York Sample ID	Client Sample ID	<u>Matrix</u>	Date Collected	Date Received
23H0044-01	Drum No. 1	Oil	08/01/2023	08/01/2023
23Н0044-02	Drum No. 2	Oil	08/01/2023	08/01/2023
23Н0044-03	Drum No. 3	Oil	08/01/2023	08/01/2023
23Н0044-04	Drum No. 4	Oil	08/01/2023	08/01/2023

General Notes for York Project (SDG) No.: 23H0044

- 1. The RLs and MDLs (Reporting Limit and Method Detection Limit respectively) reported are adjusted for any dilution necessary due to the levels of target and/or non-target analytes and matrix interference. The RL(REPORTING LIMIT) is based upon the lowest standard utilized for the calibration where applicable.
- 2. Samples are retained for a period of thirty days after submittal of report, unless other arrangements are made.
- 3. York's liability for the above data is limited to the dollar value paid to York for the referenced project.
- 4. This report shall not be reproduced without the written approval of York Analytical Laboratories, Inc.
- 5. All analyses conducted met method or Laboratory SOP requirements. See the Sample and Data Qualifiers Section for further information.
- 6. It is noted that no analyses reported herein were subcontracted to another laboratory, unless noted in the report.
- 7. This report reflects results that relate only to the samples submitted on the attached chain-of-custody form(s) received by York.

8. Analyses conducted at York Analytical Laboratories, Inc. Stratford, CT are indicated by NY Cert. No. 10854; those conducted at York Analytical Laboratories, Inc., Richmond Hill, NY are indicated by NY Cert. No. 12058.

Approved By: Oh I most

Cassie L. Mosher Laboratory Manager **Date:** 08/03/2023

Sample Information

Client Sample ID: Drum No. 1 **York Sample ID:** 23H0044-01

York Project (SDG) No. Collection Date/Time Date Received Client Project ID Matrix 23H0044 Harmon OU II Drums Well Al 2-3 H2 Recovered Oil Oil August 1, 2023 9:43 am 08/01/2023

Polychlorinated Biphenyls (PCB) Sample Prepared by Method: Oil Preparation for GC **Log-in Notes:**

Sample Notes:

CAS No	o. P	arameter Result	Flag Units	Reported to	Oilution	Reference	Date/Time Method Prepared	Date/Time Analyzed	Analyst
12674-11-2	Aroclor 1016	ND	mg/kg	4.98	1	EPA 8082A Certifications:	08/01/2023 16:32 CTDOH-PH-0723,NELAC-NY10	08/03/2023 10:40 854	ВСЈ
11104-28-2	Aroclor 1221	ND	mg/kg	4.98	1	EPA 8082A Certifications:	08/01/2023 16:32 CTDOH-PH-0723,NELAC-NY10	08/03/2023 10:40 854	BCJ
11141-16-5	Aroclor 1232	ND	mg/kg	4.98	1	EPA 8082A Certifications:	08/01/2023 16:32 CTDOH-PH-0723,NELAC-NY10	08/03/2023 10:40 854	BCJ
53469-21-9	Aroclor 1242	ND	mg/kg	4.98	1	EPA 8082A Certifications:	08/01/2023 16:32 CTDOH-PH-0723,NELAC-NY10	08/03/2023 10:40 854	BCJ
12672-29-6	Aroclor 1248	ND	mg/kg	4.98	1	EPA 8082A Certifications:	08/01/2023 16:32 CTDOH-PH-0723,NELAC-NY10	08/03/2023 10:40 854	BCJ
11097-69-1	Aroclor 1254	ND	mg/kg	4.98	1	EPA 8082A Certifications:	08/01/2023 16:32 CTDOH-PH-0723,NELAC-NY10	08/03/2023 10:40 854	BCJ
11096-82-5	Aroclor 1260	ND	mg/kg	4.98	1	EPA 8082A Certifications:	08/01/2023 16:32 CTDOH-PH-0723,NELAC-NY10	08/03/2023 10:40 854	BCJ
1336-36-3	* Total PCBs	ND	mg/kg	4.98	1	EPA 8082A Certifications:	08/01/2023 16:32	08/03/2023 10:40	ВСЈ

Surrogate Recoveries Result Acceptance Range 877-09-8 Surrogate: Tetrachloro-m-xylene 65.0 % 30-150 Surrogate: Decachlorobiphenyl 2051-24-3 55.0 %

30-150

Sample Information

Drum No. 2 **Client Sample ID: York Sample ID:** 23H0044-02

York Project (SDG) No. Client Project ID Collection Date/Time Date Received Matrix Harmon OU II Drums Well Al 2-3 H2 Recovered Oil 23H0044 Oil August 1, 2023 9:48 am 08/01/2023

Polychlorinated Biphenyls (PCB)

Log-in Notes:

Sample Notes:

CAS N	o. Parameter	Result	Flag Units	Reported to LOQ Dilu	ution	Reference Me	Date/Time ethod Prepared	Date/Time Analyzed	Analyst
12674-11-2	Aroclor 1016	ND	mg/kg	4.75		EPA 8082A Certifications: CT	08/01/2023 16:32 TDOH-PH-0723,NELAC-NY10	08/03/2023 10:53 854	BCJ
11104-28-2	Aroclor 1221	ND	mg/kg	4.75		EPA 8082A Certifications: CT	08/01/2023 16:32 FDOH-PH-0723,NELAC-NY10	08/03/2023 10:53 854	ВСЈ
11141-16-5	Aroclor 1232	ND	mg/kg	4.75		EPA 8082A Certifications: CT	08/01/2023 16:32 FDOH-PH-0723,NELAC-NY10	08/03/2023 10:53 854	ВСЈ
53469-21-9	Aroclor 1242	ND	mg/kg	4.75		EPA 8082A Certifications: CT	08/01/2023 16:32 TDOH-PH-0723,NELAC-NY10	08/03/2023 10:53 854	BCJ
12672-29-6	Aroclor 1248	ND	mg/kg	4.75		EPA 8082A Certifications: CT	08/01/2023 16:32 TDOH-PH-0723,NELAC-NY10	08/03/2023 10:53 854	BCJ

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371

132-02 89th AVENUE FAX (203) 357-0166

RICHMOND HILL, NY 11418

ClientServices@ Page 4 of 10

Sample Information

Client Sample ID: Drum No. 2 York Sample ID: 23H0044-02

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received23H0044Harmon OU II Drums Well Al 2-3 H2 Recovered OilOilAugust 1, 2023 9:48 am08/01/2023

Polychlorinated Biphenyls (PCB)
Sample Prepared by Method: Oil Preparation for GC

Log-in Notes:

Sample Notes:

CAS N	o. Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference I	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
11097-69-1	Aroclor 1254	ND		mg/kg	4.75	1	EPA 8082A Certifications:	CTDOH-PH	08/01/2023 16:32 I-0723,NELAC-NY10	08/03/2023 10:53 854	ВСЈ
11096-82-5	Aroclor 1260	ND		mg/kg	4.75	1	EPA 8082A Certifications:	CTDOH-PH	08/01/2023 16:32 H-0723,NELAC-NY10	08/03/2023 10:53 854	ВСЈ
1336-36-3	* Total PCBs	ND		mg/kg	4.75	1	EPA 8082A Certifications:		08/01/2023 16:32	08/03/2023 10:53	BCJ
	Surrogate Recoveries	Result		Accepta	ince Range						
877-09-8	Surrogate: Tetrachloro-m-xylene	61.5 %		3	0-150						
2051-24-3	Surrogate: Decachlorobiphenyl	52.5 %		3	0-150						

Sample Information

Client Sample ID: Drum No. 3 York Sample ID: 23H0044-03

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received23H0044Harmon OU II Drums Well Al 2-3 H2 Recovered OilOilAugust 1, 2023 9:52 am08/01/2023

Log-in Notes:

Polychlorinated Biphenyls (PCB)

Sample Notes:

CAS N	o. Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
12674-11-2	Aroclor 1016	ND		mg/kg	4.90	1	EPA 8082A Certifications:	CTDOH-PI	08/01/2023 16:32 H-0723,NELAC-NY10	08/03/2023 11:07 854	ВСЈ
11104-28-2	Aroclor 1221	ND		mg/kg	4.90	1	EPA 8082A Certifications:	CTDOH-PI	08/01/2023 16:32 H-0723,NELAC-NY10	08/03/2023 11:07 854	ВСЈ
11141-16-5	Aroclor 1232	ND		mg/kg	4.90	1	EPA 8082A Certifications:	CTDOH-PH	08/01/2023 16:32 H-0723,NELAC-NY10	08/03/2023 11:07 854	BCJ
53469-21-9	Aroclor 1242	ND		mg/kg	4.90	1	EPA 8082A Certifications:	CTDOH-PI	08/01/2023 16:32 H-0723,NELAC-NY10	08/03/2023 11:07 854	ВСЈ
12672-29-6	Aroclor 1248	ND		mg/kg	4.90	1	EPA 8082A Certifications:	CTDOH-PH	08/01/2023 16:32 H-0723,NELAC-NY10	08/03/2023 11:07 854	ВСЈ
11097-69-1	Aroclor 1254	ND		mg/kg	4.90	1	EPA 8082A Certifications:	CTDOH-PH	08/01/2023 16:32 H-0723,NELAC-NY10	08/03/2023 11:07 854	ВСЈ
11096-82-5	Aroclor 1260	ND		mg/kg	4.90	1	EPA 8082A Certifications:	CTDOH-PI	08/01/2023 16:32 H-0723,NELAC-NY10	08/03/2023 11:07 854	BCJ
1336-36-3	* Total PCBs	ND		mg/kg	4.90	1	EPA 8082A Certifications:		08/01/2023 16:32	08/03/2023 11:07	BCJ
	Surrogate Recoveries	Result		Acceptan	ce Range						
877-09-8	Surrogate: Tetrachloro-m-xylene	61.5 %		30-	150						
2051-24-3	Surrogate: Decachlorobiphenyl	49.5 %		30-	150						

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@ Page 5 of 10

Sample Information

Client Sample ID: Drum No. 4 **York Sample ID:** 23H0044-04

Date Received York Project (SDG) No. Client Project ID Matrix Collection Date/Time 23H0044 Harmon OU II Drums Well Al 2-3 H2 Recovered Oil Oil August 1, 2023 9:58 am 08/01/2023

Polychlorinated Biphenyls (PCB) Sample Prepared by Method: Oil Preparation for GC **Log-in Notes:**

Sample Notes:

CAS N	o. Parameter	Result	Flag Units	Reported to LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
12674-11-2	Aroclor 1016	ND	mg/kg	4.99	1	EPA 8082A Certifications:	CTDOH-PI	08/01/2023 16:32 H-0723,NELAC-NY10	08/03/2023 11:21 854	ВСЈ
11104-28-2	Aroclor 1221	ND	mg/kg	4.99	1	EPA 8082A Certifications:	CTDOH-PI	08/01/2023 16:32 H-0723,NELAC-NY10	08/03/2023 11:21 854	ВСЈ
11141-16-5	Aroclor 1232	ND	mg/kg	4.99	1	EPA 8082A Certifications:	CTDOH-PI	08/01/2023 16:32 H-0723,NELAC-NY10	08/03/2023 11:21 854	BCJ
53469-21-9	Aroclor 1242	ND	mg/kg	4.99	1	EPA 8082A Certifications:	CTDOH-PI	08/01/2023 16:32 H-0723,NELAC-NY10	08/03/2023 11:21 854	BCJ
12672-29-6	Aroclor 1248	ND	mg/kg	4.99	1	EPA 8082A Certifications:	CTDOH-PI	08/01/2023 16:32 H-0723,NELAC-NY10	08/03/2023 11:21 854	ВСЈ
11097-69-1	Aroclor 1254	ND	mg/kg	4.99	1	EPA 8082A Certifications:	CTDOH-PI	08/01/2023 16:32 H-0723,NELAC-NY10	08/03/2023 11:21 854	ВСЈ
11096-82-5	Aroclor 1260	ND	mg/kg	4.99	1	EPA 8082A Certifications:	CTDOH-PI	08/01/2023 16:32 H-0723,NELAC-NY10	08/03/2023 11:21 854	BCJ
1336-36-3	* Total PCBs	ND	mg/kg	4.99	1	EPA 8082A Certifications:		08/01/2023 16:32	08/03/2023 11:21	ВСЈ
	Surrogate Recoveries	Result	Acceptance	e Range						
877-09-8	Surrogate: Tetrachloro-m-xylene	61.5 %	30-1	50						
2051-24-3	Surrogate: Decachlorobiphenyl	53.0 %	30-1	50						

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

ClientServices@ Page 6 of 10

Analytical Batch Summary

Batch ID: BH30070	Preparation Method:	Oil Preparation for GC	Prepared By:	BCJ
YORK Sample ID	Client Sample ID	Preparation Date		
23H0044-01	Drum No. 1	08/01/23		
23H0044-02	Drum No. 2	08/01/23		
23H0044-03	Drum No. 3	08/01/23		
23H0044-04	Drum No. 4	08/01/23		
BH30070-BLK1	Blank	08/01/23		
BH30070-DUP1	Duplicate	08/01/23		
BH30070-SRM1	Reference	08/01/23		

Polychlorinated Biphenyls by GC/ECD - Quality Control Data

York Analytical Laboratories, Inc. - Stratford

Spike

20.0

65.5

30-150

Reporting

13.1

		Reporting		Spike	Bource		/OKEC				
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BH30070 - Oil Preparation	for GC										
Blank (BH30070-BLK1)							Prep	ared & Anal	yzed: 08/01/	/2023	
Aroclor 1016	ND	5.00	mg/kg								
Aroclor 1221	ND	5.00	"								
Aroclor 1232	ND	5.00	"								
Aroclor 1242	ND	5.00	"								
Aroclor 1248	ND	5.00	"								
Aroclor 1254	ND	5.00	"								
Aroclor 1260	ND	5.00	"								
Total PCBs	ND	5.00	"								
Surrogate: Tetrachloro-m-xylene	18.7		"	20.0		93.5	30-150				
Surrogate: Decachlorobiphenyl	12.5		"	20.0		62.5	30-150				
Duplicate (BH30070-DUP1)	*Source sample: 2	3H0047-02 (D	uplicate)								
Aroclor 1260	ND	4.58	mg/kg		ND					200	
Total PCBs	ND	4.58	"		ND					200	
Surrogate: Tetrachloro-m-xylene	12.5		"	18.3		68.5	30-150				
Surrogate: Decachlorobiphenyl	11.3		"	18.3		61.5	30-150				
Reference (BH30070-SRM1)							Prep	ared & Anal	yzed: 08/01/	/2023	
Aroclor 1260	83.0	5.00	mg/kg	100		83.0	19.06-140.6				
Surrogate: Tetrachloro-m-xylene	13.7		"	20.0		68.5	30-150				

120 RESEARCH DRIVE STRATFORD, CT 06615 www.YORKLAB.com (203) 325-1371

Surrogate: Decachlorobiphenyl

RPD

%REC

Sample and Data Qualifiers Relating to This Work Order Definitions and Other Explanations

*	Analyte is not certified or the state of the samples origination does not offer certification for the Analyte.
---	--

ND NOT DETECTED - the analyte is not detected at the Reported to level (LOQ/RL or LOD/MDL)

RL REPORTING LIMIT - the minimum reportable value based upon the lowest point in the analyte calibration curve.

LOQ LIMIT OF QUANTITATION - the minimum concentration of a target analyte that can be reported within a specified degree of confidence. This is the lowest point in an analyte calibration curve that has been subjected to all steps of the processing/analysis and verified to meet defined criteria. This is

based upon NELAC 2009 Standards and applies to all analyses.

LOD LIMIT OF DETECTION - a verified estimate of the minimum concentration of a substance in a given matrix that an analytical process can reliably detect. This is based upon NELAC 2009 Standards and applies to all analyses conducted under the auspices of EPA SW-846.

detect. This is based upon NELAC 2009 Standards and applies to an analyses conducted under the auspices of ErA 5 w -046.

MDL METHOD DETECTION LIMIT - a statistically derived estimate of the minimum amount of a substance an analytical system can reliably detect with a 99% confidence that the concentration of the substance is greater than zero. This is based upon 40 CFR Part 136 Appendix B and applies only to EPA

600 and 200 series methods.

Reported to This indicates that the data for a particular analysis is reported to either the LOD/MDL, or the LOQ/RL. In cases where the "Reported to" is located

above the LOD/MDL, any value between this and the LOQ represents an estimated value which is "J" flagged accordingly. This applies to volatile and

semi-volatile target compounds only.

NR Not reported

RPD Relative Percent Difference

Wet The data has been reported on an as-received (wet weight) basis

Low Bias Low Bias flag indicates that the recovery of the flagged analyte is below the laboratory or regulatory lower control limit. The data user should take note

that this analyte may be biased low but should evaluate multiple lines of evidence including the LCS and site-specific MS/MSD data to draw bias

 $conclusions. \ In \ cases \ where \ no \ site-specific \ MS/MSD \ was \ requested, only \ the \ LCS \ data \ can \ be \ used \ to \ evaluate \ such \ bias.$

High Bias High Bias flag indicates that the recovery of the flagged analyte is above the laboratory or regulatory upper control limit. The data user should take

 $note that this analyte \ may \ be \ biased \ high \ but \ should \ evaluate \ multiple \ lines \ of \ evidence \ including \ the \ LCS \ and \ site-specific \ MS/MSD \ data \ to \ draw \ bias$

conclusions. In cases where no site-specific MS/MSD was requested, only the LCS data can be used to evaluate such bias.

Non-Dir. Non-dir. flag (Non-Directional Bias) indicates that the Relative Percent Difference (RPD) (a measure of precision) among the MS and MSD data is outside the laboratory or regulatory control limit. This alerts the data user where the MS and MSD are from site-specific samples that the RPD is high

due to either non-homogeneous distribution of target analyte between the MS/MSD or indicates poor reproducibility for other reasons.

If EPA SW-846 method 8270 is included herein it is noted that the target compound N-nitrosodiphenylamine (NDPA) decomposes in the gas chromatographic inlet and cannot be separated from diphenylamine (DPA). These results could actually represent 100% DPA, 100% NDPA or some combination of the two. For this reason, York reports the combined result for n-nitrosodiphenylamine and diphenylamine for either of these compounds as a combined concentration as Diphenylamine.

If Total PCBs are detected and the target aroclors reported are "Not detected", the Total PCB value is reported due to the presence of either or both Aroclors 1262 and 1268 which are non-target aroclors for some regulatory lists.

2-chloroethylvinyl ether readily breaks down under acidic conditions. Samples that are acid preserved, including standards will exhibit breakdown. The data user should take note.

Certification for pH is no longer offered by NYDOH ELAP.

Semi-Volatile and Volatile analyses are reported down to the LOD/MDL, with values between the LOD/MDL and the LOQ being "J" flagged as estimated results.

For analyses by EPA SW-846-8270D, the Limit of Quantitation (LOQ) reported for benzidine is based upon the lowest standard used for calibration and is not a verified LOQ due to this compound's propensity for oxidative losses during extraction/concentration procedures and non-reproducible chromatographic performance.

120 RESEARCH DRIVE STRATFORD, CT 06615 ■ 132-02 89th AVENUE RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices@

Page 9 of 10

www.YORKLAB.com (203) 325-1371

York Analytical Laboratories, Inc.

clientservices@yorklab.com

Field Chain-of-Custody Record

23H0044 **YORK Project No.**

Container Description **Turn-Around Time** Compared to the following Regulation(s): (please fill in) YORK Reg. Comp. Special Instruction Standard (5-7 Day) RUSH - Three Day RUSH - Four Day RUSH - Next Day Field Filtered RUSH - Two Day Lab to Filter 70- h HUMON OUT DIM NJDEP SRP HazSite Standard Excel EDD EQuIS (Standard) NYSDEC EQUIS OUT Well A 2-3 YOUR Project Number Report / EDD Type (circle selections) NOTE: YORK's Standard Terms & Conditions are listed on the back side of this document. This document serves as your written authorization for YORK to proceed with the analyses requested below. Your signature binds you to YORK's Standard Terms & Conditions. Preservation: (check all that apply) Analysis Requested CT RCP DQA/DUE NJDEP Reduced NJDKOP YOUR PO#: HN03 NY ASP A Package NY ASP B Package Summary Report MeOH Ascorbic Acid Invoice To: 오 SUMP Date/Time Sampled 3460 8/1/23 0945 Samples From Pennsylvania Connecticut New Jersey Other DW - drinking water Matrix Codes GW - groundwater Sample Matrix WW - wastewater Other Report To: CAMP Please print clearly and legibly. All information must be complete. Samples will not be logged in and the turn-around-time clock will not begin until any questions by YORK are resolved. 132-02 89th Ave Queens, NY 11418 www.yorklab.com heMoine Sample Identification 120 Research Drive Stratford, CT 06615 Dara (5:01) 02-20 N. W. Je Plains Py ddress: 525 N Brondway 914-461-0591 YOUR Information DIVE Comments Page 10 of 10

Temp. Received at Lab

273

8/1/23 14:19

ATTACHMENT C

Off-Site Monitoring Well Hydrographs

ATTACHMENT D

Emergency Site Inspection

Emergency inspection due to significant rain event on 7/9/23

Metro-North Railroad Harmon Yard Operational Unit OU-I and OU-II Inspection Form NYSDEC Site Number 3-60-010

Note the location(s) of the inspection findings described below on the attached site sketch. Also attach copies of photographs to document conditions observed at the time of this inspection and show the location/orientation of the photographs taken on the site sketch.

	Yes	No	Corrective Action Needed?
OU-I Asphalt Cover			
Are there any cracks in the asphalt cover?		X	
Any geotextile observed?		X	
Is there any surface water ponding on the asphalt cover?		X	
Is there any evidence of settlement?		х	
Is there any elevation difference at the grouted manhole covers?		X	
Settlement or erosion in the area of the perimeter sheet pile wall?		X	
Specify the Recommended Corrective Actions and Other Relevant Observa	ations:		
OU-I Contingency Air-Inlet/Vapor Extraction Well Clusters Describe the condition of the protective covers and the well clusters. Also observations, and include photographs (if warranted).	provide	e other	relevant
OU-II Areas Around the Asphalt Cover			
Are there any erosion rivulets?		X	
Is there evidence of any washouts or soil slides?		X	
Is the vegetative cover maintained?		X	
Is there debris or other material on the slopes?		Х	
Settlement or erosion in the area of the NAPL Area L1 sheet pile wall?		X	
Specify the Recommended Corrective Actions and Other Relevant Observa	ations:		
OU-II Monitoring and Product Removal Wells Describe condition of monitoring wells and protective casings repairs. If warranted include photographs of wells and note the photograph and well on the site sketch.			

<u>OU-I/OU-II Drainage Channels</u>			
Is there any exposed geotextile in the drainage channel?		X	
If so, is the exposed geotextile damaged?		N/A	
Is there significant sedimentation in the drainage channel?		X	
{The rip rap drainage channel is located adjacent to the asphalt cover so the	ere shou	ıld be m	inimal
sedimentation, and any significant sedimentation should be investigated to	determi	ne its so	ource and cause.]
			_
Specify the Recommended Corrective Actions and Other Relevant Observ	ations:		
	3.7	> T	G : 1 ::
	Yes	No	Corrective Action Needed?
OU-I/OU-II Waste Accumulation Drums and Tank			receded:
Is the 500-gallon waste oil disposal AST full? REMOVED – N/A			
Are the 55-gallon waste oil disposal drums full?		X	
Is the 55-gallon NRD disposal drum full? N/A		71	
Evidence of spillage/leakage in the area of disposal vessels?		X	
Evidence of spinlage reakage in the area of disposar vessels:		Λ	
Explain when the drums and AST were last sampled, and attached	ch coni	es of t	ect recults (if
•	-		•
available). Identify when the drums and AST last emptied/rep			t disposai
facilities/dates (if known). Provide additional information as	warran	ted.	
To be provided during biannual inspection			
OU-I/OU-II Perimeter Fencing			
Is there any damaged fencing?		X	
Is there any vegetation close to the exterior of the fence that should			
be removed to eliminate a means for access to the Site over the fence?		X	
Are the gate locks present and in good working condition?		X	
Specify Correction Actions Needed:			
D (CI (7/10/22	~	α.	
Date of Inspection: 7/10/23 Inspection Completed B	y: <u>S.</u>	Gianaz	zza

cc: Metro-North Department of Environmental Compliance and Services

Cover system in OU-I

Cover system in OU-I

Drum storage area

Slope of NAPL Area L4

Slope of NAPL Area L4

Well FA 4-18