Well Design Specifications Taylors Lane Compositing Site - Mamaroneck, NY

Criteria		Basis of Design
Well Diameter	14-in	Well diameter must be large enough to accomodate the pump and to maintain uphole velocity of 5 ft/s or less
		From Driscoll (1986) for wells with anticipated discharges of 100 gpm or less, the range of casing diameters is 5 to 6 in.
		Also, need to maintain <0.1 ft/s entrance velocity (see below).
Screen Material	Stainless	From Driscoll (1986) this type of stainless steel has excellent corrosion resistence and is most commonly used
	Steel	stainless steel material for water well screens
	Type 304	
Casing Material	Carbon Steel	
Screen Slot Type	Continuous	Provides greatest amount of open area
	wire-wound	
Well Depth (ft)	14	The well depth will extend to the top of the lower sand layer, which was encountered at approximately 13.7 feet
		below existing grade.
Screen Length (ft)	6	From Driscoll (1986), theoretical considerations and experience have shown that screening 1/3 to 1/2 of an aquifer
		less than 150 ft. thick provides the optimum design for homogeneous and hetergeneous unconfined aquifers.
		Additional consideration as it relates to entrance velocity is also needed. Must balance between well diameter, screen
		length and required yield to achieve the appropriate entrance velocity of < = 0.1 ft/s (see below). This will allow the well
		to produce up to 365 gpm without having an entrance velocity above 0.1 ft/s.
Filter Pack Material		Determined from grain size distribution. The finest materials were encountered at 10 to 13.7 ft from boring LWB, sample
effective grain size (d10)	0.035	S3, which was used to detemine the slot size and filter pack design.
uniformity coefficient	1.4	Taking d30/D70 grain size from the finest sample which is 0.3459 mm (0.014 in)
chem. Composition	> = 90% silica	multiple this value by factor of 3 to 6 depending on formation characteristics.
thickness	3 in < t < 8 in	
type	No. 1	
Screen Slot Size (in)	0.03	slot size retaining 90% to 99% of filter pack

Leachate Well Samples Grain Size Distribution Data Taylors Lane Composting Site - Mamaroneck, NY

Formation Data								
			% Passing					
Sieve	Sieve Size (mm)	Sieve Size (in/1000)	S1	S2	S3			
			3 ft to 5 ft	5 ft to 10 ft	10 ft to 13.7 ft			
0.375	9.51	374.4	100	100	100			
#4	4.75	187.0	82.3	80.7	87.7			
#10	2	78.7	65	65.7	71.1			
#20	0.841	33.1	44.7	46.2	53.3			
#40	0.42	16.5	27.3	29.7	35.1			
#60	0.25	9.8	16.5	18.6	21.9			
#140	0.105	4.1	7.8	8.7	10.7			
#200	0.074	2.9	5.4	6	7.6			
	d10 (mm)		0.132	0.1183	0.0984			
	d30 (mm)		0.4737	0.4311	0.3459			
	d50 (mm)		1.0617	1.0047	0.749			
	d60 (mm)		1.6199	1.5574	1.173			
	d10 (in/1000)		5.20	4.66	3.87			
	d30 (in/1000)		18.65	16.97	13.62			
	d50 (in/1000)		41.80	39.56	29.49			
	d60 (in/1000)		63.78	61.31	46.18			
	U (Uniformity Co	efficient)	12.27	13.16	11.92			
	n (porosity)		0.28	0.28	0.28			

Design Filter Pack Data							
% Passing							
d30 (S3)	30	13.6	in/1000				
3X d30 S3	30	40.9	in/1000				
6X d30 S3	30	81.7	in/1000				

Typical Commercial Filter Packs

No. 1		in	thousands in %Passing		%Retained
d10	35	0.094	94	100	0
d60	50	0.067	67	95	5
U	1.4	0.045	45	45	55
d50	47.5	0.033	33	5	95
d30	40	0.023	23	1	99
No. 2		in	thousands in	%Passing	%Retained
d10	45	0.132	132	100	0
d60	70	0.094	94	95	5
U	1.6	0.067	67	55	45
d50	66.7	0.045	45	10	90
d30	55	0.033	33	1	99

Taylors Lane Composting Site - Mamaroneck, NY

HYDRAULIC CONDUCTIVITY CALULATIONS FROM GRAIN SIZE DISTRIBUTION CURVES

Methods

Kozeny-Carmen, 1927, 1933, & 1956

$$K = \frac{g}{v} \times 8.3 \times 10^{-3} \left[\frac{n^3}{(1-n)^2} \right] d_{10}^2$$

K = hydraulic conductivity, (m/s) g= acceleration due to gravity m/s2 v= kinematic viscosity (m2/s) n= porosity d10 = 10% passing grain size, (m)

$$\eta = 0.255 * (1 + 0.83^U)$$

Breyer, 1964 (from Vukovic and Soro, 1992)

$$K = Cd^2$$

$$C = 4.5x10^{-3}\log\frac{500}{U}$$

K = hydraulic conductivity, (m/s)

C= empirical coefficient based on uniformity coefficient

U = uniformity coefficient

d = effective grain size (d10), (mm)

Domain of applicability = 0.06 mm < d10 < 0.6 mm & 1 < n < 20

Slitcher, 1897-1898 (from Vukovic and Soro, 1992)

$$K = 4960^{\circ} M^{\circ} d^{2}$$

K = hydraulic conductivity, (m/d)

d = effective grain size (d10), (mm)

M = coefficient dependant on porosity assuming 0.28 porosity, therefore M = 0.01517

Domain of applicability = 0.01 mm < d10 < 5 mm

Hydraulic Conductivity Calculation Results

Boring	LWB	LWB	LWB				
Sample	S-1	S-2	S-3				
Depth (ft)	3 to 5	5 to 10	10 to 13.7				
d10 (mm)	0.132	0.1183	0.0984				
d30 (mm)	0.4737	0.4311	0.3459				
d50 (mm)	1.0617	1.0047	0.749				
d60 (mm)	1.6199	1.5574	1.173				
U (Uniformity Coefficient)	12.27	13.16	11.92				
n (porosity)	0.28	0.28	0.28		Geomet	ric Mean	
				m/s	m/d	ft/d	cm/s
Kozeny-Carmen (m/s)	4.7E-05	3.5E-05	2.6E-05	3.5E-05	3.0	10.0	0.004
Breyer (m/s)	1.3E-04	9.9E-05	7.1E-05	9.6E-05	8.3	27.2	0.010
Slitcher (m/s)	1.5E-05	1.2E-05	8.4E-06	1.2E-05	1.0	3.3	0.001

Taylors Lane Composting Site - Mamaroneck, NY

EQUILIBRIUM DRAWDOWN CALCULATIONS

Governing Equation

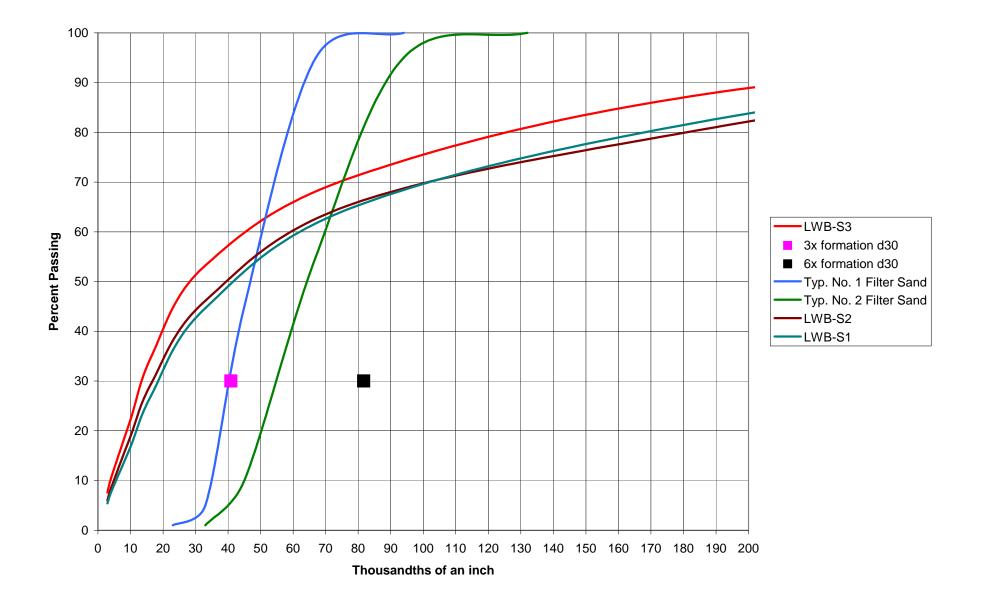
Assumptions and Definitions

Theim (1906) Equation for equilibrium radial flow in unconfined aquifers (from Driscoll, 1986)

$$Q = \frac{K(H^{2} - h^{2})}{1055 * \log(\frac{R}{r})}$$

K (avg) 10 ft/d hydraulic conductivity based on grain size analysis K (avg) 75.7 gpd/ft2 Q 2.0 gpm discharge rate 5 gpm 10 gpm 25 gpm

depression
fer to static water level (ie staurated
level
ter level and equilibrium water level
f


Equilibrium drawdown calculations for different cases

Case	Α	В	С	D	E	F	G	Н
Q (gpm)	2	2	5	5	10	10	25	25
log R/r	2.2	0.2	1.2	0.2	1.2	0.2	1.2	0.2
h	6.1	9.7	3.7	9.1	#NUM!	8.2	#NUM!	4.2
H-h	3.9	0.3	6.3	0.9	#NUM!	1.8	#NUM!	5.8

Entrance Velocity Calculations

Well diameter (in)	14
screen length (ft)	6
Total screen area (sq. ft.)	21.98
percent open area	0.25
open area ⁽¹⁾ (sq. ft.)	5.54
Q (gpm)	2
	5
	10
	25
	250
Velocity (ft/s) @ 2gpm	0.0008
@ 5 gpm	0.002
@ 10 gpm	0.004
@ 25 gpm	0.010
@ 250 gpm	0.101

1. Based on JohnsonsWell Screens company - continuous wire wound stainless steel screen

REFERENCES

Carman, P. C. 1937. Fluid Flow through Granular Beds. Trans.Inst.Chem. Eng., 15,150.

Carman, P.C. 1956. Flow of Gases through Porous Media. Butterworths Scientific Publications, London

Cronican, A.E. and M.M Gibb, 2004. Literature Review: Equations for predicting Hydraulic Conductivity Based on Grain-Size Data. Ground Water, 42(3):459-464.

Driscoll, F. (1986). Groundwater and Wells. St. Paul, MN: Johnson Filtration Systems, second edition. ISBN 978-0961645601

Kozeny, J. 1927. Uber Kapillare Leitung Des Wassers in Boden. Sitzungsber Akad. Wiss.Wien Math.Naturwiss.KI., Abt.2a, 136,271-306 (In German).

Odong, J, 2007. Evaluation of Empirical Formulae for Determination of Hydraulic Conductivity based on Grain-Size Analysis. Journal of American Science, 3(3), 2007. Thiem. G. (1906) Hydrologische Methoden, Gebhardt, Leipzig, 56 pp.

Vukovic, M., and Soro, A. 1992. Determination of Hydraulic Conductivity of Porous Media from Grain-Size Composition. Water Resources Publications, Littleton, Colorado