NEW YORK STATE DEPARTMENT OF TRANSPORTATION

Albany, New York

POST-CLOSURE QUARTERLY LANDFILL MONITORING Second Year - First Quarter

Harrison Subresidency

D008873 P.I.N. 8806.51.301 Town of Harrison Westchester County, New York

February 2002

Prepared By

LAWLER, MATUSKY & SKELLY ENGINEERS LLP

Environmental Science & Engineering Consultants
One Blue Hill Plaza
Pearl River, New York 10965

NEW YORK STATE DEPARTMENT OF TRANSPORTATION ALBANY, NEW YORK

HARRISON SUBRESIDENCY WESTCHESTER COUNTY POST-CLOSURE MONITORING RESULTS

D008873, PIN 8806.51.301

SECOND YEAR, FIRST QUARTERLY REPORT

February 2002

MAR - 6 2002

LAWLER, MATUSKY & SKELLY ENGINEERS LLP

Environmental Science & Engineering Consultants One Blue Hill Plaza Pearl River, New York 10965

HARRISON SUBRESIDENCY WESTCHESTER COUNTY POST-CLOSURE QUARTERLY MONITORING RESULTS SECOND YEAR, FIRST QUARTER

D008873, PIN 8806.51.301

EXECUTIVE SUMMARY

This report presents the results of the 7 and 8 November 2001 second year, first quarter post-closure sampling and monitoring conducted at the Harrison Subresidency site located in the town of Harrison, Westchester County, New York. The objectives of the post-closure sampling and monitoring program are to; 1) evaluate the environmental impacts of the landfill; 2) meet the post-closure monitoring requirements of the NYSDEC and; 3) provide NYSDEC with data to evaluate and/or modify the existing sampling and monitoring program. As part of this program six wells (LMW-2, MW-4, PC-1, PC-2, PC-3 and PC-4) and four surface water/sediment locations (SW/SD-1, SW/SD-2, SD-3 and SW/SD-4) were sampled for Target Analyte List (TAL) metals and chloride.

The analytical results indicate that the RCRA metals selenium and chromium were detected in the groundwater above their respective New York State (NYS) Class GA standard. Chromium was not detected in the filtered samples and selenium was detected in only one filtered sample, PC-2, slightly above the standard. Concentrations of iron, manganese, magnesium, sodium and thallium (which are non-RCRA constituents) were detected in excess of the NYS standards in the filtered and unfiltered groundwater samples. However, in general, the data indicates that a large portion of the TAL metals detected in the groundwater are associated with the suspended solids faction (which typically do not migrate) and were not detected in the dissolved phase or were detected at a lower concentration. Elevated levels of iron, magnesium, manganese, sodium and thallium, in the sample collected from the upgradient well LMW-2, suggest there may be a contributing external source to the concentrations detected in the downgradient wells. The Harrison Subresidency landfill is located approximately 508 ft. downgradient of a local landfill and approximately 574 ft. downgradient of the Westchester County Airport (Figure 6).

Chloride was detected in excess of the NYS standard of 250 ppm in the off-site well PC-3. The concentrations of chloride detected in this well have consistently been one order of magnitude higher than the levels detected in the other wells since the monitoring program began in October

2000. PC-3 is located near a highway and the elevated chloride levels detected in this well may be due in part to road de-icing activities in this area.

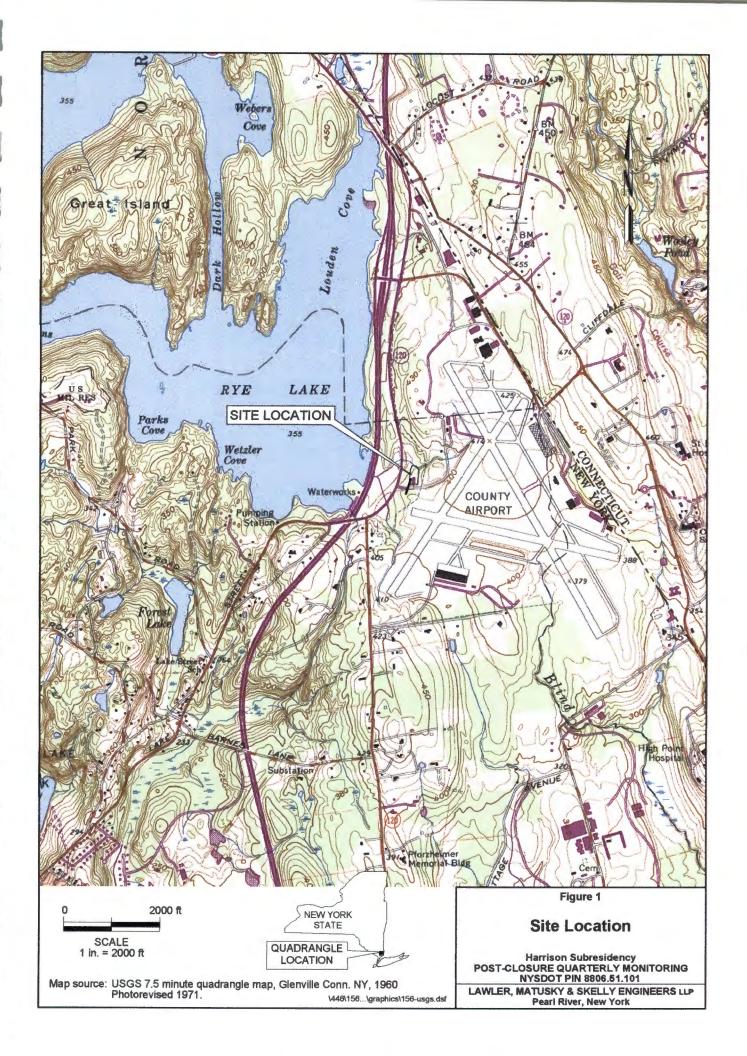
Surface water analytical results indicate that the RCRA metal lead was detected above the NYS standard in the sample collected from SW-2. However, lead was not detected in the downstream surface water sample (SW-4) which was collected from a point near a culvert that diverts the stream under Route 120 to Rye Lake. This indicates there is no off-site surface water migration of lead from the landfill. In addition, concentrations of the non-RCRA metals, iron, manganese, sodium and thallium were detected at levels that exceeded the NYS standards.

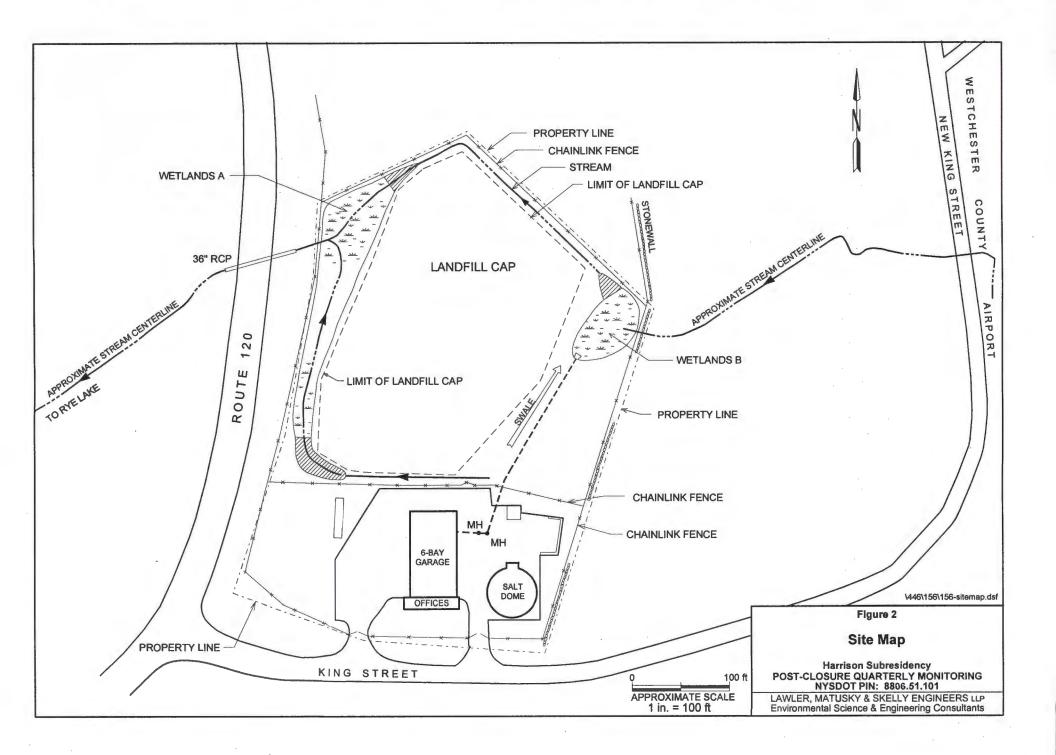
Lead and zinc were detected in two sediment samples (lead in SD-3 and zinc in SD-4) above their respective severe effect levels (SELs). However, zinc was not detected above the NYS guidance value in the corresponding surface water sample collected from SW-4. The stream at SW-3 was dry and therefore a corresponding surface water sample was not collected. Cadmium, copper, manganese and nickel were detected in the downstream sediment samples above or at their respective lowest effect levels (LELs). However, only manganese was detected above the NYS standard in the surface water samples. Manganese is not a hazardous or RCRA metal.

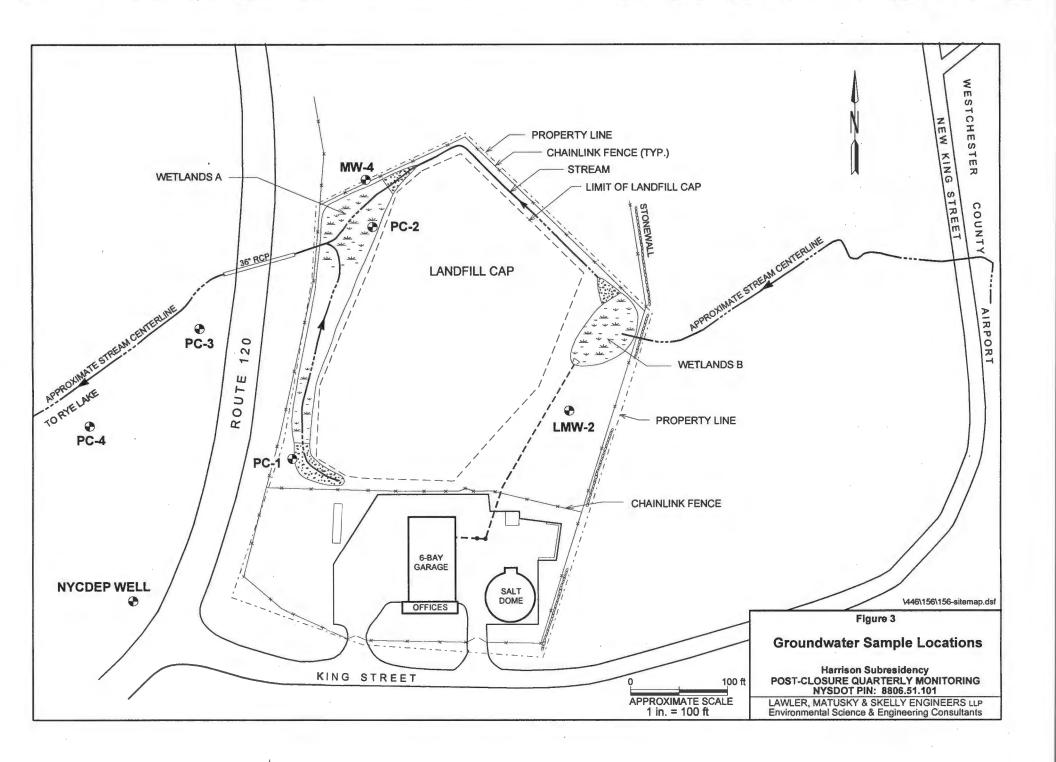
1.0 INTRODUCTION

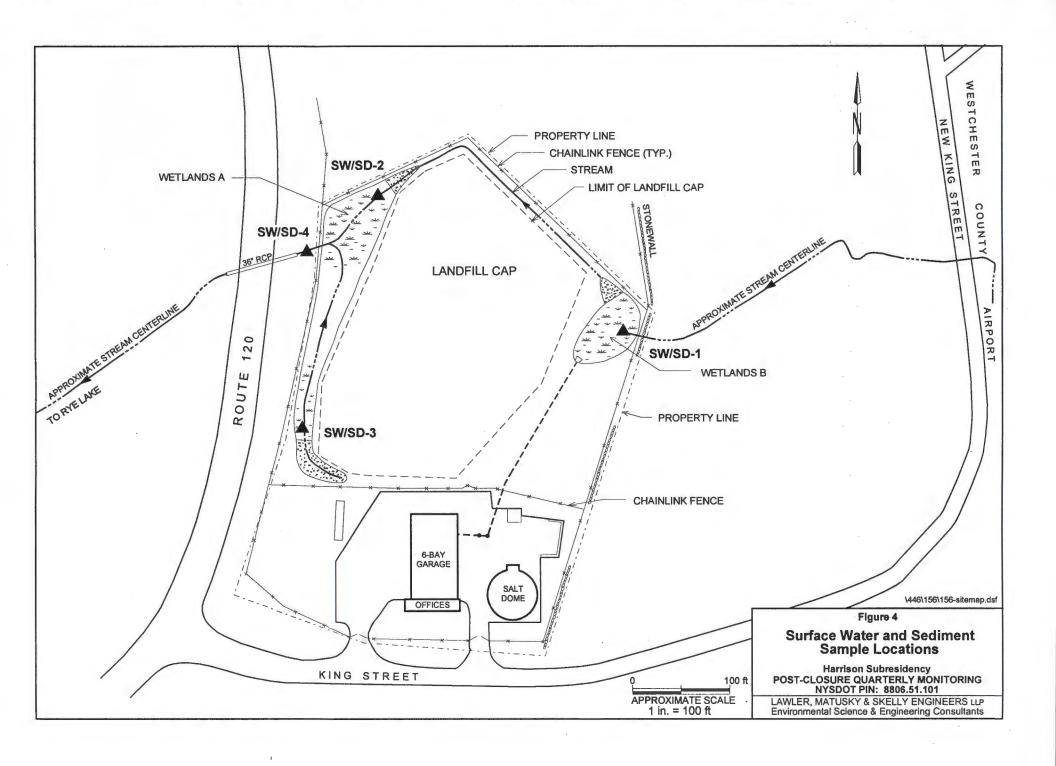
1.1 Background

This report presents the results of the 7 and 8 November 2001 second year, first quarter post-closure sampling and monitoring conducted at the Harrison Subresidency site located in the town of Harrison, Westchester County, New York (Figure 1). The site, a seasonal highway maintenance support and salt storage facility operated by the New York State Department of Transportation (NYSDOT), includes approximately 2.6 acres of landfill area (Figure 2) that was closed in December 1998 in compliance with New York State Department of Environmental Conservation (NYSDEC) 6 NYCRR Part 360 regulations. The second year, first quarter sampling and monitoring was conducted to evaluate the environmental impacts of landfill closure through groundwater, surface water and sediment sampling, gas monitoring and a landfill inspection. The quarterly sampling and monitoring program was established to conform to the requirements of 6 NYCRR Part 360 2.15 (K).


1.2 Monitoring Objectives


The objectives of the post-closure sampling and monitoring program are to; 1) evaluate the environmental impacts of the landfill; 2) meet the post-closure monitoring requirements of the NYSDEC and; 3) provide NYSDEC with data to evaluate and/or modify the existing sampling and monitoring program.


1.3 First Year Quarterly Post-Closure Monitoring


In October 2000, LMS conducted the first quarterly post-closure monitoring of the groundwater, surface water and sediment at the landfill. Samples were collected from four on-site and two off-site monitoring wells (Figure 3), three on-site surface water locations and four corresponding sediment locations (Figure 4) and analyzed for TAL metals and chloride. Analytical results indicate that, with the exception of selenium, no RCRA metals were detected above the Class GA standards or guidance values in the filtered groundwater and surface water samples. Lead, manganese and silver were detected above the Lowest Effect Level (LEL) in three sediment samples. Chloride was detected, above the Class GA standard of 250 ppm, in a groundwater sample collected from the off-site well PC-3.

In January 2001, LMS conducted the second quarterly post-closure monitoring of the groundwater, surface water and sediment at the landfill. Samples were collected from four on-

site and two off-site monitoring wells, two downstream surface water locations and two corresponding sediment locations. Analytical results indicate that, with the exception of thallium, no RCRA metals were detected above the standards or guidance values in the filtered groundwater or surface water samples. No RCRA metals were detected above guidance values in the sediment.

LMS conducted the third quarterly post-closure monitoring of the groundwater, surface water and sediment at the landfill in June 2001. Samples were collected from four on-site and two off-site monitoring wells, one upstream and three downstream surface water locations and four corresponding sediment locations. With the exception of selenium, there were no exceedances of RCRA metals detected in the filtered groundwater samples. Chloride was detected at the NYS standard of 250 mg/l in the offsite well, PC-3. Results of the surface water analysis indicated that no RCRA metals exceeded the standards in the filtered samples. Copper, lead, manganese, silver and zinc were detected above the LEL in both the upstream and downstream sediment samples. Copper and zinc were detected at higher concentrations in the upstream sample, which suggests a contributing off-site source.

In August 2001, LMS conducted the fourth quarterly post-closure monitoring of the groundwater, surface water and sediment at the landfill. Samples were collected from four onsite and two off-site monitoring wells, one upstream and two downstream surface water locations and three sediment locations. Analytical results indicate that no RCRA metals were detected above the standards and guidance values in the filtered groundwater and surface water samples. Copper, iron and lead were detected in the downstream sediment samples above their respective Severe Effect Level (SEL) and antimony, arsenic, chromium, manganese, nickel and zinc were detected above the LEL. Copper was also detected above the LEL in the sample collected from the upstream location SD-1, which suggests a contributing external source. Antimony, arsenic, chromium, copper, nickel and zinc were not detected above the NYS standards and/or guidance values in the groundwater or surface water samples, which indicates there has been no off-site migration of these constituents from the landfill.

Results of the first year quarterly post-closure monitoring at the landfill suggest that a large portion of the non-RCRA metals and the majority of the RCRA metals detected in the samples collected from the landfill were associated with the suspended solids faction (suspended particulates greater than 0.45 microns) and were not detected in the dissolved phase, or were detected at lower concentrations.

2.0 FIELD INVESTIGATION

2.1 Monitoring Well Sampling

As part of the quarterly post-closure sampling and monitoring program, six monitoring wells (LMW-2, MW-4, PC-1, PC-2, PC-3 and PC-4) were purged and sampled for Target Analyte List (TAL) metals and chloride from 7 November 2001 to 8 November 2001. An additional sample, LMW-1, was collected as a blind duplicate of PC-4.

The upgradient well LMW-2 and the downgradient well MW-4 were purged dry after 2.5 and 3 gallons respectively. The wells were allowed to recharge to more than 90% before sampling. PC-1, PC-2, PC-3 and PC-4 were each purged of three well volumes prior to sampling. Purging of each well was performed by using either a small submersible pump, a peristaltic pump or by hand using a dedicated bailer. PC-2 was purged with a peristaltic pump because of a damaged casing (the well casing at PC-2 had sheared sideways allowing only a gap of about 2 cm down the well). After purging, samples were collected using dedicated disposable bailers. The samples were preserved on ice to 4°C and sent, under chain of custody, to a New York State Department of Health (NYSDOH)-approved laboratory for TAL metal (filtered and total) and chloride analyses.

A round of static water level measurements was recorded for all wells prior to sampling activities. Groundwater chemistry measurements (temperature, pH, conductivity, and turbidity) were recorded before, during, and after purging, with a measurement recorded for approximately every well volume. An additional round of static water measurements was recorded for all wells after purging. Groundwater purging information is recorded on the groundwater well sampling logs included in Attachment A.

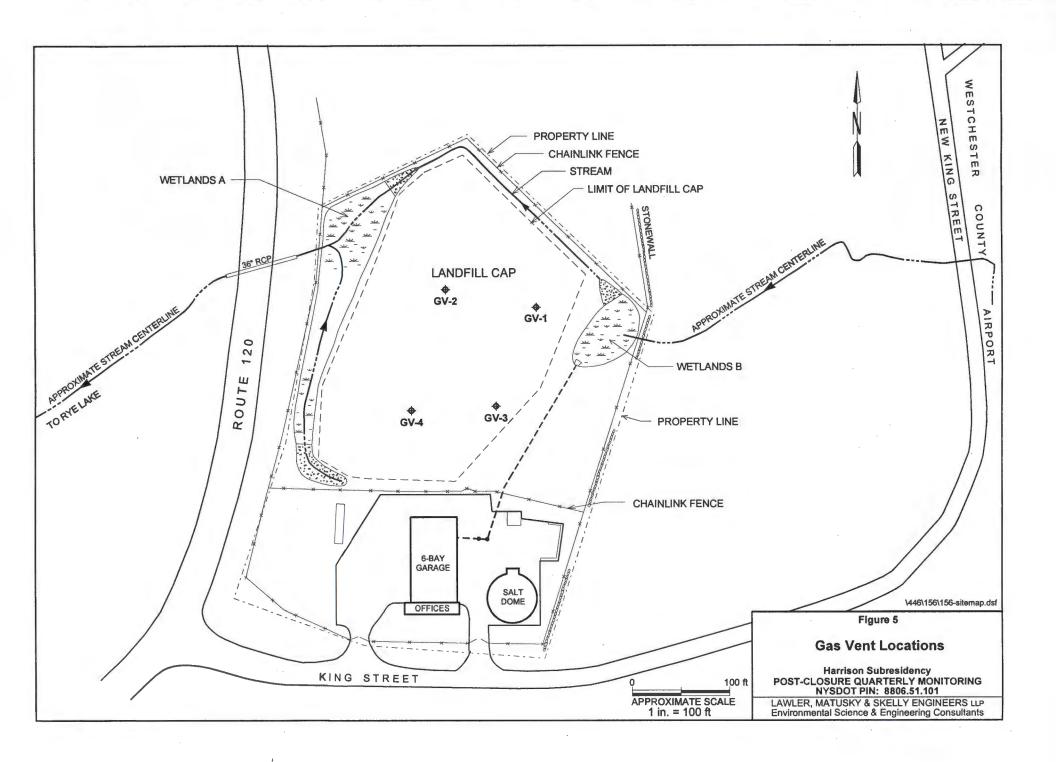
2.2 Surface Water Sampling

On 7 November 2001 one upstream (SW-1) and two downstream (SW-2 and SW-4) surface water sampling points (Figure 4) were sampled. The stream at SW-3 was dry. All surface water samples were collected from approximately the same location staked out during the first quarterly sampling event.

SW-1 was collected from a point located at the eastern section of wetlands B. SW-2 was collected from a point located at the northern portion of wetlands A (western side of the landfill). SW-4 was collected from a point located approximately 17 ft. northeast of the 36-in. reinforced

concrete pipe (RCP) culvert that diverts the stream southwest under Route 120 to Rye Lake. The flow at SW-1, SW-2 and SW-4 was very low, <1 cubic foot per second (cfs), and limited to a small channel approximately 2 to 7 inches deep.

The samples were collected by dipping a dedicated laboratory-cleaned stainless steel ladle into the water and transferring the sample to the appropriate pre-cleaned laboratory-supplied container. The containers were iced to 4°C and sent, under chain of custody, to a NYSDOH-approved laboratory for TAL metal (filtered and unfiltered) and chloride analyses. Water chemistry measurements (temperature, pH, conductivity, and turbidity) were recorded during sample collection and are included in Attachment B.


2.3 Sediment Sampling

One upstream sediment sample (SD-1) and three downstream sediment samples (SD-2, SD-3 and SD-4) were collected for TAL metal and chloride analyses. Each sediment sample was collected subsequent to, and at the same location as, its corresponding surface water sample (Figure 4). The samples were collected using a dedicated laboratory-cleaned stainless steel spoon and placed directly into the appropriate pre-cleaned laboratory-supplied sample container. Each sample container was iced to 4°C and sent, under chain of custody, to a NYSDOH-approved laboratory for TAL metal and chloride analyses. The sample depth, texture, color and odor were noted and are included in Attachment B.

2.4 Gas Monitoring

In conformance with the June 2000 Post-Closure Operations and Maintenance Manual, a gas monitoring program was instituted to verify that any gases, produced as a result of the natural decomposition of waste, do not pose a hazard to health or safety. The program includes the measurement of concentrations of methane or other explosive gases, hydrogen sulfide and volatile organic compounds (VOCs) at each of four gas vents and around the perimeter of the landfill (Figure 5).

Methane and other explosive gases were measured with a combustible gas indicator (CGI) around the perimeter of landfill and gas vents. Gas vent readings were obtained by inserting the instrument detector probe into the vent. The CGI was set to sound an alarm if the readings exceeded 10 % of the lower explosive limit (LEL) of methane. In addition, alarms were set at 10% of the LEL of hydrogen sulfide, 25 parts per million (ppm) of carbon monoxide and 19.5%

and 23.5% of oxygen. No readings were detected above the preset alarm levels at the gas vents or the perimeter of the site.

VOCs were measured with a photoionization detector (PID) and a flame ionization detector (FID) (with and without the methane filter) at the perimeter of the landfill and at each of the four gas vents. There were no readings, above background, at the vents or the perimeter of the landfill. An air monitoring field data sheet is included in Attachment C.

2.5 Inspections

All six groundwater monitoring wells were inspected and, with the exception of PC-2, were found to be in good condition. As noted in Section 2.1.1 the well casing at PC-2 had sheared sideways allowing only a gap of about 2 cm down the well. The landfill was inspected and, with the exception of a few small areas devoid of vegetation (western side of the landfill), was found to be in good condition. The drainage swales were inspected and found to be in good condition. All four gas vents were also inspected and were found to be in good condition. No vermin or vector were noted on the landfill.

3.0 ANALYTICAL RESULTS

3.1 Groundwater Results

Filtered and unfiltered groundwater samples were collected on 7 and 8 November 2001 from four on-site (LMW-2, MW-4, PC-1 and PC-2) and two off-site (PC-3 and PC-4) monitoring wells and were analyzed for TAL metals and chloride. In addition, a blind duplicate sample, LMW-1 was collected from PC-4. Groundwater samples were analyzed according to NYSDEC Analytical Services Protocol (ASP). Analytical results for the filtered and unfiltered groundwater samples are presented in Table 1 and a copy of the analytical laboratory report is presented in Attachment D. Field parameters for temperature, pH, specific conductance, and turbidity are provided on the groundwater well sampling logs included in Attachment A. Results of the analyses indicate that nineteen TAL metals were detected in the groundwater samples. Antimony, beryllium, mercury and silver were not detected in the filtered and unfiltered groundwater samples. In addition, lead was not detected in the filtered groundwater samples. With some exceptions [cadmium (LMW-1, PC-3), calcium (LMW-1, MW-4, PC-1, PC-3, PC-4), chromium (PC-2), cobalt (PC-2), manganese (MW-4), sodium (LMW-1, LMW-2, MW-4, PC-2, PC-4) and thallium (MW-4, PC-1, PC-3)] the concentrations of TAL metals detected in the filtered ground water samples were lower than those detected in the unfiltered samples.

Chloride was detected in all the unfiltered groundwater samples. The highest concentration, 330 parts per million (ppm) was detected in the off-site well PC-3.

3.2 Surface Water Results

Three surface water samples were collected on 7 November 2001 and analyzed for TAL metals (filtered and unfiltered) and chloride. Surface water samples were analyzed according to NYSDEC ASP. Analytical results are presented in Table 2 and a copy of the analytical laboratory report is presented in Attachment D. Field parameters for temperature, pH, specific conductance, and turbidity are provided on the surface water sampling logs included in Attachment B. Results of the TAL metals analyses indicate that nineteen TAL metals were detected in the surface water samples. Antimony, beryllium, mercury and silver were not detected in the filtered and unfiltered surface water samples. In addition, cadmium, cobalt, lead and nickel were not detected in the filtered surface water samples. With some exceptions [calcium (SW-1), chromium (SW-4), selenium (SW-1), sodium (SW-1) and thallium (SW-1, SW-4)] the concentrations of TAL metals detected in the filtered surface water samples were lower than those detected in the unfiltered samples.

TABLE 1

GROUNDWATER DATA SUMMARY

Second Year - First Quarter (November 2001)

Harrison Subresidency NYSDOT

D008873, PIN 8806.51.301

PARAMETER	LMW-1	FIL EMW-1	LMW-2	FIL LMW-2	MW-4	FIL MW-4	PC-1	FIL PG/1	PG-2	FIL PC-2	PC-3	FIL PC-3	PC-4	FIL PC-4	NATURAL AMBIENT GROUNDWATER RANGES (n)	NYSDEC CLASS GA STANDARDS (a)
TAL METALS (ug/L)																
Aluminum	16000	190	4200	39	10000	ND	39000	120	110	ND	35000	48	21000	120	<5.0 - 1000	NS
Antimony	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	N/A	3
Arsenic	4.1	ND	ND	ND	ND	ND	8.3	ND	ND	ND	3.3	ND	6.8	3.8	<1.0 - 30	25
Barium	200	120	220	150	280	120	470	63	180	87	530	340	260	100	10 - 500	1000
Beryllium	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<10	3.0 GV
Cadmium	ND	0.34	0.45	ND	ND	0.23	ND	ND	ND	ND	ND	0.33	ND	ND	<1.0	5
Calcium	30000	36000	91000	91000	64000	70000	45000	47000	63000	62000	150000	160000	34000	36000	1000 - 150000	NS
Chromium	60	1.7	17	7	58	31	95	1.8	13	19	68	9.1	81	4.9	<1.0 + 5.0	50
Cobalt	8.3	0.94	5.2	0.63	21	14	24	ND	1.4	2.1	22	2.1	12	0.56	<10	NS
Copper	33	2.3	13	3.1	25	ND	96	2	ND	ND	110	ND	47	1.7	<1.0 - 3	200
Iron	24000	140	7000	22	90000	18000	70000	110	74000	27000	45000	83	31000	84	10 - 10000	300 (m)
Lead	8.2	ND	ND	ND	13	ND	20	ND	ND	ND	13	ND	15	ND	<15	25
Magnesium	16000	12000	38000	37000	23000	22000	27000	10000	22000	22000	53000	47000	19000	12000	1000 - 50000	35000 GV
Manganese	210	82	1300	650	29000	30000	3100	850	16000	16000	710	560	290	80	<1.0 - 1000	300 (m)
Mercury	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<1.0	0.7
Nickel	54	10	20	12	20	ND	64	1	ND	ND	45	2.9	73	11	<10 + 50	100
Potassium	7400	5200	7400	5600	5300	3700	19000	3400	3200	3100	12000	9000	8900	5300	1000 - 10000	NS
Selenium	5	ND	ND	ND	30	3.3	18	ND	23	13	11	ND	12	ND	<1.0 - 10	10
Silver	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<5	50
Sodium	45000	51000	53000	55000	33000	35000	130000	130000	67000	68000	110000	110000	48000	51000	500 - 120000	20000
Thallium	ND	ND	8	4.5	54	63	2.5	4.1	47	43	ND	5.2	ND	ND	N/A	0.5 GV
Vanadium	58	18	26	16	47	12	140	12	18	16	110	23	73	17	<1.0 - 10	NS
Zinc	67	ND	32	12	56	ND	180	9.3	10	ND	100	ND	91	9.1	<10 - 2000	2000 GV
Chloride (mg/L)	91	*	25	*	48	*	95	*	70	•	330	*	89		N/A	250

⁽a) - NYSDEC Division of Water Technical and Operational Guidance Series (1.1.1). June 1998, revised April 2000.

NS - No standard.

* - Not analyzed.

GV - Guidance value.

⁽m) - Sum of Iron and Manganese not to exceed 500 ug/L.
(n) - Dragun, J., The Soil Chemistry of Hazardous Materials.

N/A - Not applicable.
ND - Not detected at analytical detection limit.

ABLE 2

SURFACE WATER DATA SUMMARY

Second Year - First Quarter (November 2001)

Harrison Subresidency NYSDOT D008873, PIN 8806.51.301

PARAMETER	SW-1	FIL SW-1	SW-2	FIL SW-2	SW-4	FIL SW-4	NATURAL AMBIENT GROUNDWATER RANGES (n)	NYSDEC CLASS GA STANDARDS (a)
TAL METALS (ug/L)	500	00	0500	00	400	0.4	-F 0 +000	NS
Aluminum	580	36	3500	36	130	34	<5.0 - 1000	
Antimony	ND	ND	ND	ND	ND	ND	N/A	3
Arsenic	2.5	2.7	2.8	2.3	ND	2.6	<1.0 - 30	25
Barium	35	31	110	20	28	23	10 - 500	1000
Beryllium	ND	ND	ND	ND	ND	ND	<10	3.0 GV
Cadmium	ND	ND	0.32	ND	ND	ND	<1.0	5
Calcium	45000	46000	45000	43000	45000	43000	1000 - 150000	NS
Chromium	3	2.1	12	1.9	2.3	2.4	<1.0 - 5.0	50
Cobalt	ND	ND	3.3	ND	ND	ND	<10	NS
Copper	2.9	0.88	13	0.9	1.1	0.61	<1.0 - 3	200
Iron	1200	84	8800	28	700	31	10 - 10000	300 (m)
Lead	ND	ND	34	ND	ND	ND	<15	25
Magnesium	16000	16000	16000	15000	15000	14000	1000 - 50000	35000 GV
Manganese	190	160	4000	2	100	9.7	<1.0 - 1000	300 (m)
Mercury	ND	ND	ND	ND	ND	ND	<1.0	0.7
Nickel	ND	ND	6.3	ND	ND	ND	<10 - 50	100
Potassium	4200	4000	4500	3800	3600	3600	1000 - 10000	NS
Selenium	2.9	4.6	4.9	ND	ND	ND	<1.0 - 10	10
Silver	ND	ND	ND	ND	ND	ND	<5	50
Sodium	20000	21000	20000	19000	19000	19000	500 - 120000	20000
Thallium	ND	2.8	19	ND	ND	2.2	N/A	0.5 GV
Vanadium	11	8.9	17	8.4	9.7	8.9	<1.0 - 10	NS
Zinc	19	9.6	53	ND	13	ND	<10 - 2000	2000 GV
Chloride (mg/L)	22	*	22	*	22	*	N/A	250

^{* -} Not analyzed.

⁽a) - NYSDEC Division of Water Technical and Operational Guidance Series (1.1.1). June 1998, revised April 2000.

GV - Guidance value.

⁽n) - Dragun, J., The Soil Chemistry of Hazardous Materials.

ND - Not detected at analytical detection limit, N/A - Not Applicable.

Chloride was detected at 22 ppm in each unfiltered surface water sample.

3.3 Sediment Data Results

Four sediment samples (one upstream and three downstream) were collected on 7 November 2001 and were analyzed for TAL metals and chloride. Sediment samples were analyzed according to NYSDEC ASP. Analytical results are presented in Table 3 and a copy of the analytical laboratory report is presented in Attachment D. Sample depths and field observations are provided on the sediment sampling logs included in Attachment B.

Seventeen TAL metals were detected in the upstream (SD-1) and downstream (SD-2, SD-3 and SD-4) sediment samples. Antimony, beryllium, mercury, silver, sodium and thallium were not detected in the sediment samples. In general, the highest concentrations of TAL metals were detected in the sample collected from SD-3.

Chloride was detected in the sample collected from the upstream location SD-1 (150 ppm) and the downstream sampling location SD-2 (89 ppm).

TABLE 3

SEDIMENT DATA SUMMARY

Second Year - First Quarter (November 2001)

Harrison Subresidency NYSDOT D008873, PIN 8806.51.301

PARAMETER	SD-1	SD-2	SD-3	SD-4	Sediment LEL*	Criteria (a) SEL?
TAL METALS (mg/k	(g)					
Aluminum	8100	5100	8600	3800		
Antimony	ND	ND	ND	ND	2	25
Arsenic	ND	ND	2.4	ND	6	33
Barium	53	32	48	40		
Beryllium	ND	ND	ND	ND		
Cadmium	ND	ND	ND	0.98	0.6	.9
Calcium	5700	41000	43000	40000		
Chromium	16	9.6	17	ND	26	110
Cobalt	5.2	4.7	5.7	3.9		
Copper	12	10	19	10	16	110
Iron	14000	13000	15000	11000	20000	40000
Lead	21	19	210	19	31.0	110
Magnesium	4900	23000	25000	23000		
Manganese	280	720	250	740	460	1100
Mercury	ND	ND	ND	ND	0.15	1.3
Nickel	13	12	16	12	16	.50
Potassium	1200	1100	1600	860		
Selenium	ND	ND	2.4	ND		
Silver	ND	ND	ND	ND	1	2.2
Sodium	ND	ND	ND	ND		
Thallium	ND	ND	ND	ND		
Vanadium	22	ND	25	16		
Zinc	87	24	78	500	120	270
Chloride (mg/kg)	150	89	ND	ND		

⁽a) - NYSDEC Technical Guidance for Screening Contaminated Sediments. November 1993, revised January 1999.

^{1 -} Lowest Effect Level

^{2 -} Severe Effect Level

ND - Not detected at analytical detection limit.

4.0 COMPARISON TO APPLICABLE CRITERIA

4.1 Groundwater

The results of the groundwater TAL metals and chloride analyses were compared to current NYSDEC Ambient Water Quality Class GA Standards and Guidance Values (April 2000 Revision).

The results of the TAL metals analyses indicate that five non-RCRA and two RCRA metals, detected in the unfiltered and filtered samples, occurred at concentrations exceeding their respective groundwater criteria (Table 1). As stated in section 3.1, TAL metals detected in the filtered ground water samples were lower than those detected in the unfiltered samples. Groundwater turbidity, measured during sample collection, ranged from greater than 50 nephelometric turbidity units (NTUs) to less than 200 NTUs in the wells. This suggests that the majority of the TAL metals detected in the samples are associated with the suspended solids portion, which typically do not migrate with the groundwater.

Iron and manganese exceeded their combined Class GA standard of 500 parts per billion (ppb) in all but one sample (filtered PC-4 and its blind duplicate filtered LMW-1). The highest combined concentration of iron and manganese was detected in the unfiltered sample collected from MW-4. However, all the combined concentrations of iron and manganese detected in the filtered samples were lower than those detected in the unfiltered samples.

Magnesium exceeded the Class GA guidance value of 35,000 ppb in the unfiltered and filtered upgradient samples collected from LMW-2 and the samples collected from the off-site well, PC-3. The highest concentration (53,000 ppb) was detected in the unfiltered sample collected from PC-3. The associated filtered sample concentration (47,000 ppb) was lower than the unfiltered concentration but still exceeded the guidance value.

Sodium exceeded the standard of 20,000 ppb in all filtered and unfiltered groundwater samples. The highest concentration (130,000 ppb) was detected in the unfiltered and filtered samples collected from PC-1.

Thallium exceeded the Class GA guidance value of 0.5 ppb five wells. The highest concentration (63 ppb) was detected in the filtered sample collected from MW-4. Thallium was also detected in both the unfiltered and filtered samples collected from the upgradient well, LMW-2, which suggests a contributing off-site source. Thallium was detected in the filtered

samples from MW-4, PC-1 and PC-3 at higher concentrations than detected in their corresponding unfiltered samples. All five non-RCRA TAL metals were also detected above the standards and/or guidance values in the upgradient well, LMW-2 which suggests a contributing off-site source.

Two RCRA metals, chromium and selenium, were detected at concentrations exceeding their respective Class GA standards of 50 ppb and 10 ppb in the unfiltered and one filtered groundwater sample.

Chromium exceeded the Class GA standard in four unfiltered samples (MW-4, PC-1, PC-3 and PC-4). The highest concentration of chromium, 95 ppb, was detected in PC-1.

Selenium was detected above the Class GA standard in five unfiltered (MW-4, PC-1, PC-2, PC-3 and PC-4) and one filtered sample (PC-3). The highest concentration of selenium (30 ppb) was detected in the unfiltered sample collected from MW-4. Selenium was also detected above the Class GA standard in the filtered sample collected from PC-2 (13 ppb). However, the concentration of selenium detected in the corresponding unfiltered sample (23 ppb) was higher.

Chloride was detected above the Class GA standard of 250 ppm in the off-site well PC-3 (330 ppm).

4.2 Surface Water

The results of the surface water analyses were compared to current NYSDEC Ambient Water Quality Class GA Standards and Guidance Values (April 2000 Revision).

The results of the TAL metals analyses indicate that four non-RCRA metals (iron, manganese sodium and thallium) and one RCRA metal (lead) were detected in the surface water samples at concentrations exceeding their respective criteria (Table 2). Iron and manganese exceeded the combined Class GA standard of 500 ppb in the unfiltered samples collected from the upstream location, SW-1 and both downstream locations, SW-2 and SW-4. The highest combined iron and manganese concentration was detected in SW-2 (12,800 ppb). Iron and manganese were not detected above the combined standard in the filtered samples. The elevated levels of iron and manganese detected in the upstream sampling location, SW-1, suggest a contributing off-site source.

Sodium was detected at the Class GA standard of 20,000 ppb in the unfiltered sample collected from the upstream location SW-1 and above the standard in the corresponding filtered sample (21,000 ppb). Sodium was also detected at the Class GA standard in the unfiltered sample collected from SW-2. The elevated level of sodium detected in the filtered upstream sample suggests a contributing off-site source.

Thallium was detected above the Class GA guidance value of 0.5 ppb in the filtered samples collected from SW-1 (2.8 ppb) and SW-4 (2.2 ppb). Thallium was also detected above the Class GA standard in the unfiltered sample collected from the downstream sample location SW-2 at 19 ppb.

One RCRA metal, lead, was detected above the Class GA standard of 25 ppb in the unfiltered sample collected from the downstream sample location SW-2 at 34 ppb. Lead was not detected in any other surface water sample (unfiltered or filtered).

Chloride was not detected above the Class GA standard of 250 ppm in the surface water samples.

4.3 Sediment

The results of the sediment analyses (Table 3) were compared to the current NYSDEC Technical Guidance for Screening Contaminated Sediments (January 1999 Revision).

The results of the TAL metals analyses indicate that concentrations of cadmium, copper, manganese and nickel exceeded or was detected at the lowest effect level (LEL) in the downstream sample locations while lead and zinc exceeded the severe effect level (SEL) sediment criteria. Cadmium exceeded the LEL of 0.6 ppm in the downstream sampling location SD-4 (0.98 ppm). Copper exceeded the LEL of 16 ppm in the downstream sample collected from SD-3 (19 ppm). Manganese exceeded the LEL of 460 ppm in the downstream samples collected from SD-2 (720 ppm) and SD-4 (740 ppm). Nickel was detected in SD-3 at the LEL of 16 ppm. According to the NYSDEC Technical Guidance for Screening Contaminated Sediments if only the LEL criterion is exceeded, the impact to the sediment is considered moderate. When compared to the surface water and groundwater results it was noted that only the non-RCRA metal manganese was detected above the NYS standard in the surface water and groundwater samples.

Lead was detected above the SEL of 110 ppm in the downstream sample collected from SD-3 (210 ppm). Zinc was detected above the SEL of 270 ppm in the downstream sample collected

from SD-4 at 500 ppm. According to the NYSDEC Technical Guidance for Screening Contaminated Sediments, sediment that exceeds the SEL is considered to be severely impacted. However, when compared to the surface water and groundwater results it was noted that zinc was not detected above the NYS standard in the surface water or groundwater samples and lead was only detected above the NYS standard in one unfiltered surface water sample.

There is no recommended sediment criterion for chloride.

5.0 COMPARISON WITH PREVIOUS QUARTER

5.1 Groundwater

Results of the second year first quarter groundwater sampling event (November 2001) indicate that the TAL metals of concern (i.e., those metals exceeding NYSDEC standards or guidance values) show an increase in concentration of the RCRA metals chromium (in the unfiltered samples) and selenium (in unfiltered samples and one filtered sample). In addition, there has been an increase in the concentrations of iron (in the unfiltered samples), magnesium (in the filtered samples), sodium (in both filtered and unfiltered samples) and thallium (in both the filtered and unfiltered samples) since the previous sampling event (August 2001). However, the concentrations of manganese (in both the filtered and unfiltered samples) detected in the August 2001 sampling event, were higher than detected in current sampling event (November 2001). In addition, the concentration of chloride detected in PC-3 in August 2001 (580 ppm) was higher than that detected in this well (330 ppm) during the November 2001 sampling event.

5.2 Surface Water

Between August 2001 and November 2001 there has been an increase in the concentration of the RCRA metal, lead, and the non-RCRA metals, iron, manganese and thallium, detected above the standards and guidance values, in the surface water samples. However, there has been a decrease in the overall concentration of sodium. In addition, there has been a decrease in the chloride concentration detected in the upstream sample, SW-1.

5.3 Surface Sediments

Between August 2001 and November 2001 there has been a decrease in the concentrations of RCRA metals, (arsenic, chromium and lead) antimony, copper, iron, and nickel. There has been an increase in the RCRA metal cadmium and the non-RCRA metals manganese and zinc.

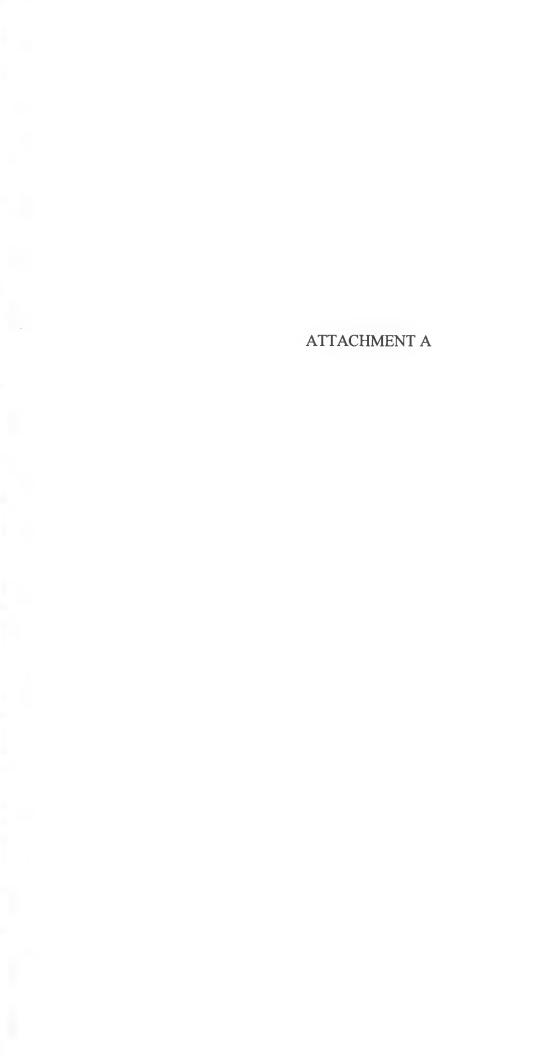
6.0 CONCLUSIONS

Concentrations of iron, manganese, magnesium, sodium and thallium (which are non-RCRA constituents) were detected in excess of the NYS standards in the unfiltered and filtered groundwater samples. Elevated levels of iron, magnesium, manganese, sodium and thallium, in the sample collected from the upgradient well LMW-2, suggest there may be a contributing external source to the concentrations detected in the downgradient wells. The Harrison Subresidency landfill is located approximately 508 ft. downgradient of a local landfill and approximately 574 ft. downgradient of the Westchester County Airport (Figure 6). The analytical results also indicate that concentrations of the RCRA metals, chromium and selenium were detected in excess of the NYS standards in the downgradient wells. Chromium was not detected in the filtered samples and selenium was detected, slightly above the NYS standard of 10 ug/l, in the filtered sample collected from PC-2 (13 ug/l). The filtered and unfiltered analytical results suggest that a large portion of the TAL metals, detected in the groundwater samples, is associated with the suspended solids faction (which typically do not migrate with the groundwater) and were not detected in the dissolved phase or were detected at lower concentrations.

Chloride was detected in excess of the NYS standard of 250 ppm in the off-site well PC-3. Since the monitoring program began in October 2000, the concentration of chloride in this well has consistently been one order of magnitude higher than that detected in the other wells. PC-3 is located near a highway and the elevated chloride levels detected in this well may be due in part to road de-icing activities in this area.

Surface water analytical results indicate that concentrations of the non-RCRA metals, iron, manganese, sodium and thallium were detected at levels exceeding the NYS standards. In addition, the RCRA metal lead was detected in the surface water sample collected from SW-2. Lead was not detected in the downstream surface water sample (SW-4), which was collected from a point located near a culvert that diverts the stream under Route 120 to Rye Lake. This indicates there is no off-site surface water migration of lead from the landfill.

Lead and zinc were detected in two sediment samples (lead in SD-3 and zinc in SD-4) above their respective SELs. Zinc was not detected above the NYS guidance value in the corresponding surface water sample collected from SW-4. The stream at SW-3 was dry therefore a corresponding surface water sample was not collected from this location. Cadmium, copper, manganese and nickel were detected in the downstream sediment samples above, or at, their



Source: NYSDOT 2001

V446\156...\graphics\156-site vicinity aerial.dsf

Harrison Subresidency
POST-CLOSURE QUARTERLY MONITORING
NYSDOT PIN 8806.51.101

LAWLER, MATUSKY & SKELLY ENGINEERS LLP Pearl River, New York respective LELs. However, only manganese was detected above the NYS standard in the corresponding surface water samples. Manganese is not a hazardous or RCRA metal.

Well Sampling Log

11/07/2001

Crew: E.T., M.P. Job No: 446-304

Project: Harrison Landfill

Project Site: Harrison NY

Well ID No.: LMW-2 Well Condition: Good

Well Depth/Diameter: 24.19'/2"

Well Casing Type:

Screened Interval: NA

Casing Ht./Lock No.:

Reference Pt.: TOC Depth to Water (DTW) 12.75'

Water Column Ht./Vol. 11.44'/1.9 gal.

Purge Est.:

6 gal.

Purge Method(s):

Hand Bailed

PVC

Purge Date/Time(s):

11/07/2001 10:35

Depth(s):

Rates (gpm): NA

Purged Volume: 2.5 gal.

DTW After Purging: Purged dry

Yield Rate: L - M - H

Purge Observations:

Slightly turbid.

METERS USED

TCL#9 Temp.:

pH: 9907

Cond.: TCL#9

Turb.: LMS

DTW Before Sampling: 12.75

Sample Date/Time: 11/7/01/13:30

Sampling Method: Bailer

Sampling Depth(s): 13-16' DTW After Sampling: 12,12'

Chain-of-Custody No.(s):

Analytical Lab(s): Veritech

Sampling Observations:

SAMPLE CHEMISTRIES

	Temp. (°C)	рН	Sp. Cond.	Turb.
Start	12.6	7.1	0.678	>50<200
End	12.6	7.1	0.678	>50<200

SAMPLE ANALYSES

Parameters	Inv. No.	Pres. Meth.	Filter
Total metals	NA	HNO3	No
Filtered metals	NA	None	Yes
Cl ⁻	NA	None	No

PURGE CHEMISTRIES

	Vol.	Temp. (°C)	рН	Sp. Cond.	Turb.
•	0	13.3	7.3	0.877	>50<200
	2.5	13.3	7.3	0.877	>50<200

Comments:

Air Temp: 60°F

Weather Conditions:

Sunny/Windy

Crew Chief Signature Sundantic Chief

Date: 1/7/0/

LMS

Well Sampling Log

Date: 11/07/2001

Crew: E.T., M.P.

Job No: 446-304

Project: Harrison Landfill

Project Site: Harrison NY

Well ID No.: MW-4
Well Condition: Good

Well Depth/Diameter: 15.73'/2"
Well Casing Type: PVC
Screened Interval: NA

Casing Ht./Lock No.:

Reference Pt.: TOC Depth to Water (DTW): 7.44'

Water Column Ht./Vol.: 8.29'/1.4 gal.

Purge Est.: 4.5 gal.

Purge Method(s): Hand bailed

Purge Date/Time(s): 11/07/2001 12:20

Depth(s):

Rates (gpm): NA

Purged Volume: 3 gal.

DTW After Purging: Purged dry

Yield Rate: L - M - H
Purge Observations:

Slightly turbid.

PURGE CHEMISTRIES

Vol.	Temp. (°C)	рН	Sp. Cond.	Turb.
0	14.3	6.9	0.982	>50<200
3	14.3	6.9	0.982	>50<200

Comments:

METERS USED

Temp.: TCL # 9
pH: 9907
Cond.: TCL # 9
Turb.: LMS

DTW Before Sampling: 7.44'

Sample Date/Time: 11/7/01/13:50

Sampling Method: Bailer

Sampling Depth(s): 8-12'
DTW After Sampling: 7.89'
Chain-of-Custody No.(s): NA

Analytical Lab(s):

Veritech

Sampling Observations:

SAMPLE CHEMISTRIES

	Temp. (°C)	рН	Sp. Cond.	Turb.
Start	13.9	6.9	0.967	>50<200
End	13.9	6.9	0.967	>50<200

SAMPLE ANALYSES

Parameters	Inv. No.	Pres. Meth.	Filter
Total metals	NA	HNO3	No
Filtered metal	NA	None	Yes
Cl	NA	None	No

Air Temp: 60°F

Weather Conditions: Sunny/Windy

Н

Date: //.7/0/

Well Sampling Log

11/07/2001 Date: Crew: E.T., M.P. Job No: 446-304 Project: Harrison Landfill

PC-1 Well ID No .:

Well Condition: Good

Project Site: Harrison NY

Well Depth/Diameter: 16.82'/2" Well Casing Type: **PVC** Screened Interval: NA

Casing Ht./Lock No.:

Reference Pt.: TOC Depth to Water (DTW): 7.99'

Water Column Ht./Vol.: 8.83'/1.4 gal.

Purge Est.: 5 gal.

Purge Method(s): Hand Bailed

Purge Date/Time(s): 11/07/2001 10:50

Depth(s):

Rates (gpm): NA

Purged Volume: 6 gal. 7.99' DTW After Purging:

Н Yield Rate: L - M - H

Purge Observations: Slightly turbid.

PURGE CHEMISTRIES

Vol.	Temp. (°C)	рН	Sp. Cond.	Turb.
0	18.4	7.5	0.936	>50<200
6	18.4	7.5	0.936	>50<200

Comments:

Air Temp: 60°F

Weather Conditions: Sunny/Windy

METERS USED TCL#9

Temp.: 9907 pH: Cond.: TCL#9 LMS Turb.:

DTW Before Sampling:

7.99'

Sample Date/Time:

11/7/01/13:40

Sampling Method:

Bailer

Sampling Depth(s):

8-12'

DTW After Sampling: Chain-of-Custody No.(s): 7.99' NA

Analytical Lab(s):

Veritech

Sampling Observations:

SAMPLE CHEMISTRIES

	Temp. (°C)	pН	Sp. Cond.	Turb.
Start	14.1	7.4	0.88	>50<200
End	14.1	7.4	0.88	>50<200

SAMPLE ANALYSES

Parameters	Inv. No.	Pres. Meth.	Filter
Total metals	NA	HNO3	No
Filtered metal	NA	None	Yes
CI	NA	None	No

OK RE WEL

Date: 11,7/0 /

Crew Chief Signature

LMS

Well Sampling Log

Date: _	11	/07/2001		
Crew:	E.T.	, M.P.		
Job No:	446	-304		
Project:	Han	rison Landfil		
Project :	Site:	Harrison N	Υ	

Well ID No.: PC-2

Well Condition: Poor (bent)
Well Depth/Diameter: 11.49'/2"

Well Casing Type: PVC Screened Interval: NA

Casing Ht./Lock No.:

Reference Pt.: TOC Depth to Water (DTW): 5.62'

Water Column Ht./Vol.: 5.87'/1 gal.

Purge Est.: 5 gal.

Purge Method(s): Peristaltic pump
Purge Date/Time(s): 11/07/2001 11:10

Depth(s):

Comments:

Rates (gpm): <1 gpm
Purged Volume: 5 gal.
DTW After Purging: 5.87'

Yield Rate: L - M - H M

Purge Observations:
Slightly turbid.

PURGE CHEMISTRIES

Vol. Temp. (°C) pH		Sp. Cond.	Turb.	
0	16.1	6.8	0.988	>50<200
5	16.1	6.8	0.988	>50<200

METERS USED

Temp.: TCL # 9
pH: 9907
Cond.: TCL # 9
Turb.: LMS

DTW Before Sampling: 5.62'

Sample Date/Time: 11/07/01/14:00

Sampling Method: Bailer

Sampling Depth(s): 6-10'
DTW After Sampling: 5.89'
Chain-of-Custody No.(s): NA

Analytical Lab(s):

Veritech

Sampling Observations:

SAMPLE CHEMISTRIES

	Temp. (°C)	pН	Sp. Cond.	Turb.
Start	18.5	7.2	1.031	>50<200
End	18.5	7.2	1.031	>50<200

SAMPLE ANALYSES

Parameters	Inv. No.	Pres. Meth.	Filter No	
Total metals	NA	HNO3		
Filtered metals	NA	None	Yes	
Cl	NA	None	No	

Air Temp: 60°F

Weather Conditions: Sunny/Windy

Crew Chief Signature _____ Date: 11/7/01

Well Sampling Log

11/08/2001 Date: Crew: E.T., M.P. Job No: 446-304

Project: Harrison Landfill

Project Site: Harrison NY

Well ID No .: PC-3 Well Condition: Good

Well Depth/Diameter: 18.57'/2" **PVC** Well Casing Type: NA

Screened Interval:

Casing Ht./Lock No.:

Reference Pt.: TOC

Depth to Water (DTW): 11.35

Water Column Ht./Vol.: 7.22'/1.2 gal.

Purge Est.: 5 gal.

Purge Method(s): Hand bailed Purge Date/Time(s): 11/08/2001 9:30

Depth(s): Rates (gpm): NA

Purged Volume: 5 gal. DTW After Purging: 11.65'

Yield Rate: L - M - H Н

Purge Observations: Slightly turbid.

PURGE CHEMISTRIES

Vol.	Temp. (°C)	рН	Sp. Cond.	Turb.
0	12.8	7.1	2.38	>50<200
5	12.8	7.1	2.38	>50<200

Comments:

Air Temp: 60°F

Weather Conditions:

Sunny/Windy

METERS USED

TCL#9 Temp.: 9907 pH: TCL #9 Cond.: Turb.: LMS

DTW Before Sampling:

11.35'

Sample Date/Time:

11/08/01/11:00

Sampling Method:

Bailer

Sampling Depth(s): DTW After Sampling: 12-16' 11.69'

Chain-of-Custody No.(s):

NA

Analytical Lab(s):

Veritech

Sampling Observations:

SAMPLE CHEMISTRIES

	Temp. (°C)	рН	Sp. Cond.	Turb.
Start	13.1	7.2	1.793	>50<200
End	13.1	7.2	1.793	>50<200

SAMPLE ANALYSES

Parameters	Inv. No.	Pres. Meth.	Filter
Total metals	NA	HNO3	No
Filtered metal	NA	None	Yes
CI	NA	None	No

Crew Chief Signature

Sh seiver

Date: 11/8/0/

LMS

Well Sampling Log

Date: 11/08/2001

Crew: E.T., M.P.

Job No: 446-304

Project: Harrison Landfill

Project Site: Harrison NY

Well ID No.: PC-4
Well Condition: Good

Well Depth/Diameter: 16.68'/2"
Well Casing Type: PVC
Screened Interval: NA

Casing Ht./Lock No.:

Reference Pt.: TOC

Depth to Water (DTW): 10.48 Water Column Ht./Vol.: 6.2'/1 gal.

Purge Est.: 5 gal.

Purge Method(s): Hand bailed

Purge Date/Time(s): 11/08/2001 9:40

Depth(s):

Rates (gpm): NA

Purged Volume: 5 gal. DTW After Purging: 11.02

Yield Rate: L - M - H H

Purge Observations: Slightly turbid.

PURGE CHEMISTRIES

Vol	Temp. (°C)	pН	Sp. Cond.	Turb.
0	13.8	7.3	0.514	>50<200
5	13.8	7.3	0.514	>50<200

Comments:

METERS USED

Temp.: TCL#9
pH: 9907
Cond.: TCL#9
Turb.: LMS

DTW Before Sampling:

10.48

Sample Date/Time:

11/8/01/10:00

Sampling Method:

Bailer

Sampling Depth(s):

11-15'

DTW After Sampling: Chain-of-Custody No.(s): 10.56' NA

Analytical Lab(s):

Veritech

Sampling Observations:

SAMPLE CHEMISTRIES

	Temp. (°C)	рΗ	Sp. Cond.	Turb.
Start	13.1	7.3	0.527	>50<200
End	13.1	7.3	0.527	>50<200

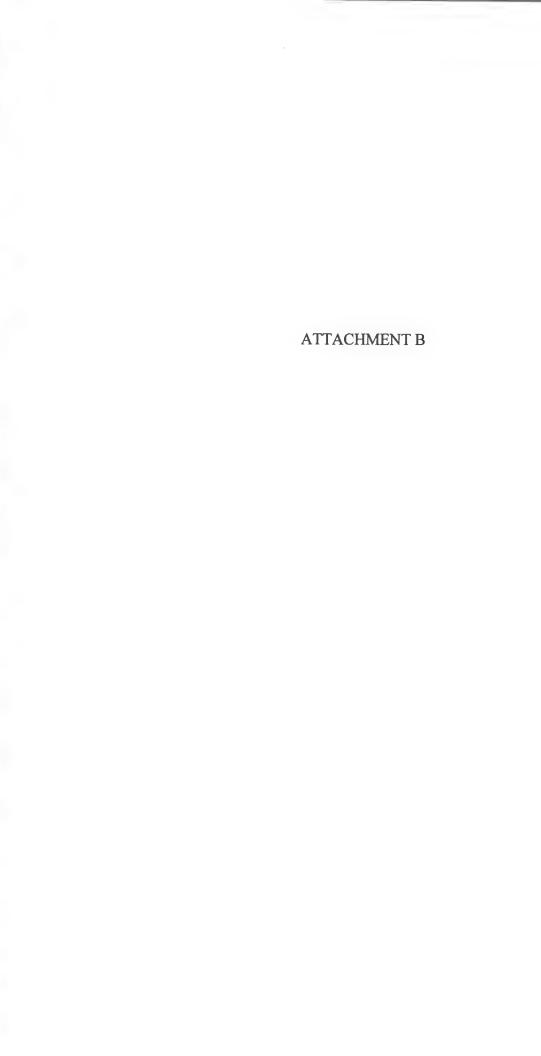
SAMPLE ANALYSES

Parameters	Inv. No.	Pres. Meth.	Filter
Total metals	NA	HNO3	No
Filtered metal	NA	None	Yes
Cl	NA	None	No

Collected Blind Duplicate Sample (Labeled LMW-1 taken at 1130)

Sample was collected with PC-4 samples at 10:00

Air Temp: 60°F


Weather Conditions:

Sunny/Windy

Crew Chief Signature

J Danielle

Date: 11/8/0/

Lawler, Matusky & Skelly , Eng. Pearl River, New York

Date: 11/7/01

Crew: MP/ET

Site: HARRISON LF

FIELD DATA SHEET FOR SURFACE WATER

pH No: 9907
TLC No: #9
Turb. Meter: LMS-1

Sta. No.	Time	Sample Depth	Total Depth	Temp.	рН	Cond.	Turb. NTUs	Flow CFS	Sample Parameters	Comments
Sw-1	1050	5"	5"	9.6	7.7	0.445	250	< 1	TAL METALS (T&F) CL	. /
Sw-2	1300	2"	2"	13.3	7.6	0.403	L 50	21		
Su-3	*	/	/	/	/	/	/	/		X NO SAMPLE COLLECTED - STREAM Dry.
Sw-4	1240	7"	7"	12.9	7.8	0.426	450	21	TAL METALS (T+F) CL	

Date: Crew:

Site:

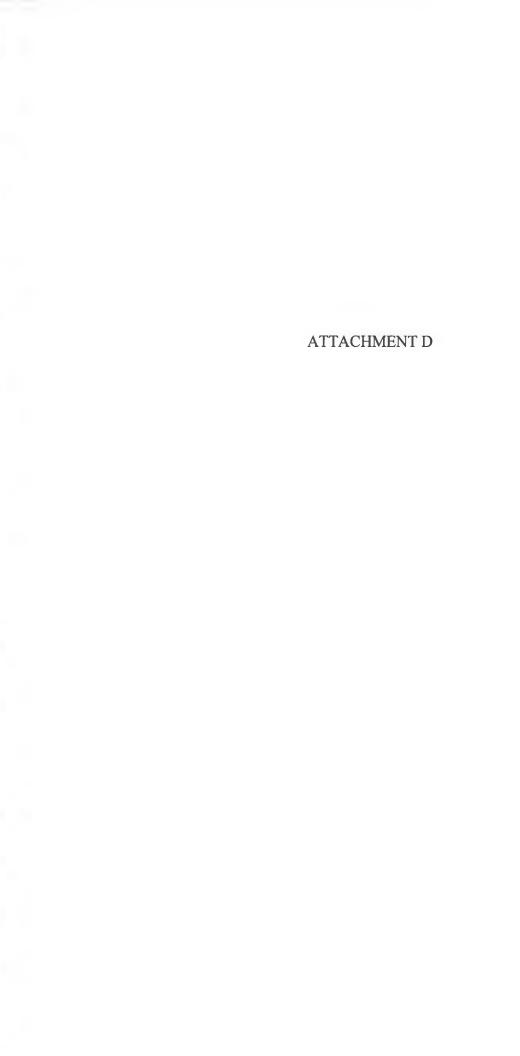
MP/ET HARRISON LA

FIELD DATA SHEET FOR SOIL/SEDIMENTS

Lawler, Matusky & Skelly, Eng. Pearl River, New York

Sta. No.	Time	Sample Depth	Method	Texture	Color	Odor	Sample Parameters	Comments
SD-L	1050		Ded, SPOON (SS)	Sandy	Beown/ Drk.Br	NONE	TAL METALS CL	Some organic meterial.
5D-2	1300				Brown			
SD-3	1220				1			
SD-4	1240	√	1	4	Brown Drk. Br.	V	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Some organic Material

ATTACHMENT C


Lawler, Matusky & Skelly , Eng. Pearl River, New York

Date: 11/8/0/
Crew: MP/ET
Site: HARRISON L.F.

AIR MONITORING FIELD DATA SHEET

CGI: Genisis
PID: HNU
FID: FOYBORD

Sample Point	Time	Inspector	% LEL CGI	PID Equiv.	FID PPM	CH4	Backo PID	round FID	Observations/Notes
GV-1	1530	MP	0%	< 3	2/42	0	<3	2	Gas VenT *START
2									
3									
4									
S									PROPERTY LING
E									
N									
W	1600	V	V	1	V	V	1	V	** GND
Piller ye.									

Hampton-Clarke, Inc. veritech laboratories

175 Route 46 West, Unit D Fairfield, NJ 07004 (973) 244-9770 Federal ID: 222679402

Lawler, Metusky & Skelly Engineers

Format: NYDOH-CatA

Project: Harrison Landfill

PO Number: 446-156

Samples submitted on: 11/8/01

AB46349 AB46351 AB46352 AB46353 AB46354 AB46356 AB46357 AB46358 AB46359 AB46360 AB46361 AB46362 AB46363 AB46364 AB46365 AB46366 AB46367 AB46368 AB46369

Environmental Chemistry Section

DEC 2 1 2001

Date: 12/7/01

HCI Project: 11081749

CT#: PH-0671 MA#: NJ386 NJ#: 14622 NY#: 11408 PA#: 68-463

SDG Narrative

Page

Project: NYSDOT Harrison LF

Job: 446-156

Hampton-Clarke, Inc. (HCI) received the following Lawler, Metusky & Skelly Engineers samples on November 8, 2001:

LMS#	HCI#	Type	Analysis
SW-1 (w) unfiltered SW-1(w) filtered SW-2 (w) unfiltered SW-2 (w) filtered SW-4(w) unfiltered SW-4(w) filtered PC-1 (w) unfiltered PC-1 (w) unfiltered MW-4 (w) unfiltered LMW-2(w) unfiltered LMW-2(w) filtered PC-2 (w) unfiltered PC-2 (w) filtered PC-2 (w) filtered SD-1 SD-1 SD-1	AB46349 AB46350 AB46351 AB46352 AB46353 AB46354 AB46355 AB46356 AB46357 AB46358 AB46360 AB46360 AB46361 AB46362 AB46363 AB46364 AB46365	Aqueous Soil Soil	TAL-METALS (6010B), HG (7470A), CHLORIDE (EPA 325) TAL-METALS (6010B), HG (7470A) TAL-METALS (6010B), HG (7471A), CHLORIDE (EPA 325) TAL-METALS (6010B), HG (7470A) TAL-METALS (6010B), HG (7470A), CHLORIDE (EPA 325) TAL-METALS (6010B), HG (7470A) TAL-METALS (6010B), HG (7471A), CHLORIDE (EPA 325) TAL-METALS (6010B), HG (7470A) TAL-METALS (6010B), HG (7470A), CHLORIDE (EPA 325) TAL-METALS (6010B), HG (7470A) TAL-METALS (6010B), HG (7470A) TAL-METALS (6010B), HG (7470A) TAL-METALS (6010B), HG (7470A), CHLORIDE (EPA 325) CANCEL TAL-METALS (6010B), HG (7470A), CHLORIDE (EPA 325)
SD-2 SD-2	AB46365 AB46366	Soil Soil	CANCEL
PC-2 (w) filtered	AB46362	Aqueous	TAL-METALS (6010B), HG (7470A), CHLORIDE (EPA 325)
SD-1			CANCEL
	AB46365	Soil	TAL-METALS (6010B), HG (7470A), CHLORIDE (EPA 325)
SD-2 SD-3 SD-3	AB46367 AB46368	Soil Soil	TAL-METALS (6010B), HG (7470A), CHLORIDE (EPA 325)
SD-4 SD-4	AB46369 AB46370	Soil Soil	TAL-METALS (6010B), HG (7471A), CHLORIDE (EPA 325) CANCEL

To meet the necessary detection limits for the Aqueous samples, the samples were concentrated during the digestion step (200ml to 100 ml). This step is evident on the result page, were the dilution factor is indicated as 0.5

All metals sample results have been reported to the MDL, as requested by the client, to achieve the detection limits as listed in the ASP Standards. The Method blanks and continuing calibration blanks are based upon the PQL criteria.

Problems associated with these analyses are as follows:

Metals

For Batch 3713

The serial dilution exceeded the RPD criteria for vanadium. This suggests that there may be some matrix interference occurring in the sample.

No other problems were encountered in the analysis of these samples.

For Batch 3711:

The serial dilution exceeded the RPD criteria for Aluminum, Calcium, Cobalt, Iron, Magnesium and Zinc. This suggests that there may be some matrix interference occurring in the sample.

The MS and MSD fell outside the QC limit for the following elements:

Aluminum MS-27% MSD-2.1% Antimony MS-58% MSD-44%

Barium	MS-59%	
Calcium	MS-37%	MSD-29%
Chromium	MS-0%	MSD-0%
Copper	MS-34%	MSD-63%
Iron	MS-0%	MSD-0%
Lead	MS-420%	MSD-0%
Manganese		MSD-56%
Nickel	MS-0%	MS-0%
Silver	MS-46%	MSD-52%
Vanadium	MS-54%	
Zinc	MS-49%	MSD-44%

Several elements were out of the control limits for RPD:

Arsenic	RPD-60%
Copper	RPD-33%
Magnesium	RPD-23%
Nickel	RPD-35%
Vanadium	RPD-23%
Zinc	RPD-22%

Wet Chemistry

No problems were encountered in the analysis of these samples.

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package and in the computer-readable data submitted on floppy diskette has been authorized by the Laboratory Manager or his designee, as verified by the following signature.

Stan Gilewicz, Laboratory Director

Date

 $\int_{L_{k} d_{2k}} f$

11081749

Veritech, 175 Route 46 West, Fairfield, NJ 07004
A Division of HAMPTON-CLARKE, INC. NJDEPE # 14622

CHAIN OF CUSTODY RECORD

PHONE (800) 426-9992 FAX (973) 439-1458

- A		RE	PORT	NFO	RMA	TION				P	ROJECT IN	IFORMATIC)N
CUSTOMER INFORMATION CUSTOMER: LMS ENCYLLERS ADDRESS: OR BIJE HIPPAZA TELEPHONE: 645 735 8300 FAX: 645 735 7466 PROJECT: HATILISON INNAFILL PROJECT LOCATION; HARRISON, MY STATE:	SEND I	SEND REPORT TO: MARIA HEICHZ ONE BUE THE PINZA PROCE BY 10975 SEND INVOICE TO: FINANCE						RUSH WASTE BUS			FULL BUST EXCEL CUSTOM DELIVERABLE		
PO NUMBER: 446-156		ΔΙ	NALYTI	CAL	REC	UEST	s						
LAB SAMPLE NUMBER (LAB USE ONLY)	TION METHANOL BOTTLE #	DATE	TIME	SAMPLE TYPE	SAMPLE	Maga Ha	No. of Bo	Ascarbic	Methanol			ALYSIS	
AB46349 C. 1 1 U		11/7	1050	X	WX	81		2		Metal	(Total/F. He	rec) f, C	1
46351 SW-2 F 46352 SW-2 F			1300	1									
46353 PC-1 F			13/0										
46353 (MW-Z F			1330			#							
46361 PC-7 F 46362 PC-7 F 46363 Stuly SO-1 F	811/9		1050		\$	/Nr							
46365 Bulg SD-Z #			1220		1						1	(INITIA	15)
SAMPLER CERTIFIES THAT EACH SAM	IPLE RECEIVED PRO	PER FIE	LD PRESI	ERVAT	ION	(IF RE	QUIRE	0)			NOXIOUS FI		(13)
SAMPLE HAZARDS: FLAMMABLE	SKIN IRRITA	INT	1	NON-H	ZARD		U	NKNOW	N L				CIPT: / A ^c
SPECIAL INSTRUCTIONS: RELINQUISHED BY: M. G.	NOR				/TIME		ECEIVE AGENT RECEIVE	OF:		_ UP		JRE UPON REC	DATE/TIME
RELINQUISHED BY: AGENT OF:	uP5						AGENT				2.0.0	MCI	11/09/9/945

Veritech, 175 Route 46 West, Fairfield, NJ 07004 A Division of HAMPTON-CLARKE, INC. NJDEPE # 14622

CHAIN OF CUSTODY RECORD

PHONE (800) 426-9992 FAX (973) 439-1458

A STATE OF THE STA		RE	PORT	INF	ORN	IATIO	NC					PROJECT INFORMATION
CUSTOMER INFORMATION CUSTOMER: TO A CI JCLR S ADDRESS: PROJECT: PLANTING THE PROJECT LOCATION: HARRING THE PROJECT LOCATION:		REPORT	TO:									TURNAROUND (CONFIRM RUSH TAT'S WITH LAB) STARDARD RUSH 24 HOURS 100% 48 HOURS 75% 72 HOURS 50% 1 WEEK 25% 10 DAYS 10% DELIVERABLES (PLEASE CHECK BOX) STANDARD STANDARD VIEW BUST NJ REDUCED EXCEL HAZSITE CUSTOM ELECTRONIC DELIVERABLE OTHER (SPECIFY)
		А	NALYT	ICAI	. RE	QUE	ST	S				· ·
LAB		ED	TED	SAMPLE	W 8				Bottl			ANALYSIS
SAMPLE IDENTIFICATION (LAB USE ONLY)	METHANOL BOTTLE #	DATE COLLECTED	TIME	COMPOSITE(C)	SAMPLE	M8504	\$\\\ \delta \	HORN ZAA	Alecorbe:	MONE	Methanol	000
AB 46 369 1 46 370 101/9 Side 4 4 1.5/1/9			1240	ø								Metab (Total 1 F. Itured) CI
					-			+				and the second s
	1	1	1				-		5	-		
	W.											
						-		1	1	-		
						11			-	-		
						++			-			
SAMPLER CERTIFIES THAT EACH SAMPLE R	ECEIVED PRO	PER FIF	I D PRES	ERVA	TION	(IF	REO	UIR	ED)			(INITIALS)
	SKIN IRRIT			NON-I	IAZAF	P Z			UNK	NOV	VN [NOXIOUS FUMES
SAMPLE HAZARDS: FLAMMABLE SPECIAL						1						TEMPERATURE UPON RECEIPT: 4.0
INSTRUCTIONS:				1	E/TII	ME			VED		4	COS DATE/TIME
AGENT OF: LMJ ENGINE			17=	(1/7 DAT	E/TII	ME			T OF		:	RIMORE CRACKS WATE/TIME
RELINQUISHED BY: UP	7								T OF			19(1 1086 149

CONDITION UPOR	N RECEIPT FORM		Veritech				
Date Received: Client: Veritech Project #	11/08/01 LMS Eng.	Filed By: Project/Account:	RM Harrison Land Lill				
YES NO			INITIAL CONTRACTOR				
	Is there a corresponding C	hain of Custody included wi	INITIAL CONDITIONS				
[2]	of the control of the		-				
[3]	and contain	iner such as a cooler or ice (chest?				
	Are the custody seals intac IF NO, please circle		missing broken NA				
<u>4,0</u> ℃ [4]			mussing broken N.A.				
YES NO			SAMPLE INFORMATION				
[5]	Are the samples properly re	efrigerated (where required),					
[6]	Are the samples within hold	ding times for the parameter					
/	If NO, list parameter	s and associated samples:					
[7]	Are all of the sample bottles broken: leaking:	s intact? If NO, specify san	nple numbers below:				
[8]	Are all of the sample labels						
/ [9]	Do the contents of the conta	niner match the COC? If NO	O, specify:				
[10]	Is there enough sample sent	for the analyses listed on the	e COC? If NO, specify:				
[11]	Are the samples preserved c	correctly (see Preservation F	orm for actual pH readings)?				
[12]	Are all soil VO(NJ) samples (8g - 12g) and accompanied		anol with the correct soil weights				
[13]	Specify:		OTHER				
NO. ACT	ION		CORRECTIVE ACTIONS				

00052

CONDITION UPON RECEIPT FORM

CUR9.DOC

verifech laboratories

PRESERVATION DOCUMENTATION

Date Received	11/08/01	Filed By	RM
Client	LMS	Project	Harrison Landfil
Veritech Project #			

SAMPLE ID:	CONTAINER SIZE	CONTAINER TYPE (PG)	PARAMETER	PRESERVATIVE	pН
SW-1	40mL	P	Metals	HNG3	1
SW-2			1	:]	1
SW-1 SW-2 SW-4					1.
PC-1					1
MW-4					-
LMW-2					1
PC-2	1	4	4	1	(
					_

veritech

INTERNAL CHAIN OF CUSTODY RECORD - REFRIGERATOR #12

Client ID: ________

Location: C-Y

COMMENTS

Two boxes

				REMOVED:			RETURNED:					
TEST	SAMPLE No.	DATE	TIME	SIGNATURE	ALTERNATE	DATE	TIME	SIGNATURE	ALTERNATE			
ihloride	46349,51,53,55	11/9/01	9:45	208	Rec	11/9/01	19:20	908				
TOUT / CHC	46363, 65, 67, 69	11/12/07	8235	Dm.		11/12/07	1100	0	e,			
103	46363	11.12.01	10:55	los me		11.12.01	11:30	mg				
7c5	46365-6769	11/12/01	14:58	Bet		11/12/01	16:00	307				
3 15/11/2	46749 - 62	11/13/01	0820	Dm.		भागित्री	1240	2				
nelal fittali	46350,5254,6152,60	11/13/0	((to		11	1	ah				
CI	46 363,65,67,69	11/15/01	1055	75		11/15/01	1355	1)				

FOR LOGIN BATCH

AB46349-70

Lab Name: Veritech Data File Name: W3713A1

Lab Code: 14622 Analysis Date: 11/15/01

Matrix: Water Lab Sample ID: AB46349

Client ID: SW-1 unfiltered

Level: low/med Dilution: 0.5
Batch: 3713 % Solid: 0

Concentration Units: ug/L

ICas No.	Analyte	MDL	Concentration	M
1	-1			11
7440360	Antimony	1.7	l U	P
17440393	Barium	0.17	35	P_
17440417	Beryllium	0.026	U	P_
17440439	Cadmium	0.18	ľ	P_
17440702	Calcium	11	45000	P_
17440473	Chromium	0.80	3.0	P_
	Cobalt	0.14	U	P
17440484	IIron	20	1 1200	P
17439896		3.6	16000	IP I
17439954	Magnesium	,	190	IP I
17439965	Manganese	0.79	,	
7440020	Nickel	0.21	U	P_
17782492	Selenium	2.4	2.9	P_
17440224	Silver	0.30	U	P_
	Thallium	1.6	U	P
17440280			1 11	IP I
17440622	Vanadium	0.49		-
17440666	Zinc	7.9	19	P

U - Indicates compound not found above detection/reporting limit

* - Indicates compound above calibration range

P - Indicates analyzed by ICP(OPTIMA 3000DV)

CV - Indicates analyzed by Cold Vapor

mments:		
	FORM I - IN	ILM02.0

12/5/5

Lab Name: Veritech

Data File Name: W3713Z

Lab Code: 14622

Analysis Date: 11/16/01

Matrix: Water

Lab Sample ID: AB46349

Client ID: SW-1 unfiltered

Dilution: 0.5 % Solid: 0

Level: low/med Batch: 3713

Concentration Units: ug/L

Cas No. Analyte	e	MDL	Concentration	M
 7440097 Potass: 7440235 Sodium	ium	48 110	4200 20000	P P

U - Indicates compound not found above detection/reporting limit

* - Indicates compound above calibration range

P - Indicates analyzed by ICP(ARL 3560)

CV - Indicates analyzed by Cold Vapor

FORM I - IN

Lab Name: Veritech

Data File Name: W3713A2

Lab Code: 14622

Analysis Date: 11/15/01

Matrix: Water

Lab Sample ID: AB46349

Level: low/med Batch: 3713

Client ID: SW-1 unfiltered
Dilution: 0.5
% Solid: 0

ILM02.0

Concentration Units: ug/L

Cas No. Analyte	1	MDL	Concentration	M
7440508 Copper 7439921 Lead		0.34	2.9 U	P_ P_

U - Indicates compound not found above detection/reporting limit

* - Indicates compound above calibration range P - Indicates analyzed by ICP(OPTIMA 3000DV)

CV - Indicates analyzed by Cold Vapor

Comments:	

FORM I - IN

Lab Name: Veritech

Data File Name: W3713C

Lab Code: 14622

Analysis Date: 11/20/01

Matrix: Water

Lab Sample ID: AB46349

Client ID: SW-1 unfiltered

Level: low/med Batch: 3713

Dilution: 0.5 % Solid: 0

Concentration Units: ug/L

	Analyte		Concentration	[M
, , ,	Aluminum Arsenic	8.0	580	P

U - Indicates compound not found above detection/reporting limit

* - Indicates compound above calibration range

P - Indicates analyzed by ICP(OPTIMA 3000DV)

CV - Indicates analyzed by Cold Vapor

omments:		
	FORM I - IN	ILM02.0

FORM I - IN

Lab Name: Veritech Data File Name: H3713SW

Lab Code: 14622 Analysis Date: 11/15/2001

Matrix: Water Lab Sample ID: AB46349

Client ID: SW-1 unfiltered

Level: low/med Dilution: 1
Batch: 3713 % Solid: 0

Concentration Units: Ug/L

Cas No.	Analyte		Concentration	
7439976		0.23	U	CV

U - Indicates compound not found above detection/reporting limit

* - Indicates compound above calibration range P - Indicates analyzed by ICP(OPTIMA 3000DV)

CV - Indicates analyzed by Cold Vapor

Comments:	

FORM I - IN

ILM02.0

12/03/01

Lab Name: Veritech

Data File Name: W3713A1

Lab Code: 14622

Analysis Date: 11/15/01

Matrix: Water

Level: low/med Batch: 3713

Lab Sample ID: AB46350

Client ID: SW-1 filtered

Dilution: 0.5 % Solid: 0

Concentration Units: ug/L

Cas No.	Analyte	1	MDL	10	Concentration	M
	-					
17440360	Antimony	1	1.7	1	U	P_
7440393	Barium	1	0.17	1	31	I P
7440417	Beryllium		0.026	1	U	P
17440439	Cadmium	1	0.18	1	U	I P
17440702	Calcium	i	11		46000	P
17440473	Chromium	i	0.80	İ	2.1	P
17440484	Cobalt	i	0.14	Ĺ	U	I P
7439896	Iron	i	20	ĺ	84	P
17439954	Magnesium	i	3.6	ĺ	16000	I P
17439965	Manganese	i	0.79	İ	160	P
17440020	Nickel	i	0.21		U	I P
17782492	Selenium	i	2.4	1	4.6	P
17440224	Silver	1	0.30	i i	U	P_
17440280	Thallium	i	1.6	1	2.8	I P
17440622	Vanadium	i	0.49	Ĺ	8.9	P
17440666	Zinc	i	7.9	1	9.6	P_
1	,	•				

U - Indicates compound not found above detection/reporting limit

mments:		
	FORM T - TN	TIM02.0

lie;

^{* -} Indicates compound above calibration range

P - Indicates analyzed by ICP(OPTIMA 3000DV)

CV - Indicates analyzed by Cold Vapor

Lab Name: Veritech

Data File Name: W3713Z

Lab Code: 14622

Analysis Date: 11/16/01

Matrix: Water

Lab Sample ID: AB46350

Client ID: SW-1 filtered

Dilution: 0.5

Level: low/med Batch: 3713

% Solid: 0

Concentration Units: ug/L

Cas No.	Analyte	MDL	Concentration	M
17440097	Potassium	48	4000	P
17440235	Sodium	110	21000	P_

U - Indicates compound not found above detection/reporting limit

* - Indicates compound above calibration range

P - Indicates analyzed by ICP(ARL 3560)

CV - Indicates analyzed by Cold Vapor

Comments:	 		

FORM I - IN

Lab Name: Veritech

Data File Name: W3713A2

Lab Code: 14622

Analysis Date: 11/15/01

Matrix: Water

Lab Sample ID: AB46350

Client ID: SW-1 filtered

Level: low/med Batch: 3713

Dilution: 0.5 % Solid: 0

Concentration Units: ug/L

Cas No.	Analyte	MDL	Coi	ncentration	M
7440508 7439921	Copper Lead	0.34 0.79		0.88 U	P_

U - Indicates compound not found above detection/reporting limit

* - Indicates compound above calibration range P - Indicates analyzed by ICP(OPTIMA 3000DV)

CV - Indicates analyzed by Cold Vapor

Comments:				

FORM I - IN

Lab Name: Veritech

Data File Name: W3713C

Lab Code: 14622

Analysis Date: 11/20/01

Matrix: Water

Lab Sample ID: AB46350

Client ID: SW-1 filtered

Level: low/med Batch: 3713 Dilution: 0.5 % Solid: 0

Concentration Units: ug/L

Cas No.	Analyte	MDL	Concentration	M
7429905 7440382	Aluminum Arsenic	8.0	36 2.7	P

U - Indicates compound not found above detection/reporting limit

* - Indicates compound above calibration range P - Indicates analyzed by ICP(OPTIMA 3000DV)

CV - Indicates analyzed by Cold Vapor

Comments:	

FORM I - IN

ILM02.0

The state of the s

Lab	Name:	Veritech	Data	File	Name:	H3713SW
-----	-------	----------	------	------	-------	---------

Lab Code: 14622 Analysis Date: 11/15/2001

Matrix: Water Lab Sample ID: AB46350

Client ID: SW-1 filtered

Level: low/med Dilution: 1
Batch: 3713 % Solid: 0

Concentration Units: Ug/L

Cas No.	Analyte	MDL	Concentration	M
17439976	Mercury	0.23	U	icvi
U - Indica	ates compound ates compound	not found above calibrate	ve detection/repo tion range	rting limit

P - Indicates analyzed by ICP(OPTIMA 3000DV) CV - Indicates analyzed by Cold Vapor

Comments:			
	FORM I - IN	ILM02.0	

100301

Lab Name: Veritech Data File Name: W3713A1

Lab Code: 14622 Analysis Date: 11/15/01

Matrix: Water Lab Sample ID: AB46351

Client ID: SW-2 unfiltered

Level: low/med Dilution: 0.5
Batch: 3713 % Solid: 0

Concentration Units: ug/L

Cas No.	Analyte	MDL	Concentration	M
	_			
7440360	Antimony	1 1.7	U	P_
17440393	Barium	0.17	110	P_
7440417	Beryllium	0.026	U	P_
17440439	Cadmium	0.18	0.32	P_
17440702	Calcium	11	1 45000	P_
17440473	Chromium	0.80	12	P_
17440484	Cobalt	0.14	3.3	P_
17439896	Iron	20	1 8800	P_
17439954	Magnesium	3.6	1 16000	P_
17439965	Manganese	0.79	1 4000	P_
17440020	Nickel	0.21	1 6.3	P_
17782492	Selenium	2.4	1 4.9	P_
17440224	Silver	0.30) U	P_
17440280	Thallium	1.6	1 19	P_
17440622	Vanadium	0.49	17	P_
7440666	Zinc	7.9	53	P_
1				

U - Indicates compound not found above detection/reporting limit

* - Indicates compound above calibration range

P - Indicates analyzed by ICP(OPTIMA 3000DV)

CV - Indicates analyzed by Cold Vapor

omments:		
	FORM I - IN	ILM02.0

150

Lab Name: Veritech

Data File Name: W3713Z

Lab Code: 14622

Analysis Date: 11/16/01

Matrix: Water

Lab Sample ID: AB46351

Client ID: SW-2 unfiltered

Level: low/med Batch: 3713

Dilution: 0.5 % Solid: 0

Concentration Units: ug/L

Cas No.	Analyte	MDL	Concentration	M
7440097	Potassium Sodium	48 110	4500 20000	P P

U - Indicates compound not found above detection/reporting limit

* - Indicates compound above calibration range

P - Indicates analyzed by ICP(ARL 3560) CV - Indicates analyzed by Cold Vapor

Comments:	

FORM I - IN

Lab Name: Veritech

Data File Name: W3713A2

Lab Code: 14622

Analysis Date: 11/15/01

Matrix: Water

Lab Sample ID: AB46351

Client ID: SW-2 unfiltered

Level: low/med

Dilution: 0.5 % Solid: 0

Batch: 3713

Concentration Units: ug/L

Cas No.	Analyte	!	MDL	Concent	ation M
7440508 7439921	Copper Lead		0.34 0.79	13	P P

U - Indicates compound not found above detection/reporting limit

* - Indicates compound above calibration range P - Indicates analyzed by ICP(OPTIMA 3000DV)

CV - Indicates analyzed by Cold Vapor

Comments:_	
_	

FORM I - IN

Lab Name: Veritech

Data File Name: W3713C

Lab Code: 14622

Analysis Date: 11/20/01

Matrix: Water

Level: low/med Batch: 3713

Lab Sample ID: AB46351

Client ID: SW-2 unfiltered

Dilution: 0.5 % Solid: 0

Concentration Units: ug/L

Cas No.	Analyte	1	MDL	Concent	M
7429905 7440382	Aluminum Arsenic		8.0 2.0	3500	P P

U - Indicates compound not found above detection/reporting limit

* - Indicates compound above calibration range P - Indicates analyzed by ICP(OPTIMA 3000DV)

CV - Indicates analyzed by Cold Vapor

Comments:			
	FORM I - IN	ILM02.0	

FORM I - IN

Hall Page

Lab Name: Veritech

Data File Name: H3713SW

Lab Code: 14622

Analysis Date: 11/15/2001

Matrix: Water

Lab Sample ID: AB46351

Client ID: SW-2 unfiltered

Level: low/med Batch: 3713

Dilution: 1 % Solid: 0

Concentration Units: Ug/L

Cas No.	Analyte		COHCCHETAGEO	M
	Mercury	0.23		CV

U - Indicates compound not found above detection/reporting limit

* - Indicates compound above calibration range

P - Indicates analyzed by ICP(OPTIMA 3000DV)

CV - Indicates analyzed by Cold Vapor

· · · · · · · · · · · · · · · · · · ·	
Comments:	

FORM I - IN

ILM02.0

[NO3/01

Lab Name: Veritech

Data File Name: W3713A1

Lab Code: 14622

Analysis Date: 11/15/01

Matrix: Water

Lab Sample ID: AB46352

Client ID: SW-2 filtered

Level: low/med

Batch: 3713

Dilution: 0.5 % Solid: 0

Concentration Units: ug/L

ICas No.	Analyte	MDL	Concentration	M
Cas No. 	Analyte - Antimony Barium Beryllium Cadmium Calcium Chromium Cobalt Iron Magnesium Manganese Nickel Selenium Silver Thallium Vanadium	MDL 1.7 0.17 0.026 0.18 11 0.80 0.14 20 3.6 0.79 0.21 2.4 0.30 1.6 0.49	Concentration U	M
7440622 7440666	Zinc	7.9	j U	P_

U - Indicates compound not found above detection/reporting limit

Comments:		
	FORM T - TN	ILM02.0

^{* -} Indicates compound above calibration range

P - Indicates analyzed by ICP(OPTIMA 3000DV)

CV - Indicates analyzed by Cold Vapor

Lab Name: Veritech

Data File Name: W3713Z

Lab Code: 14622

Analysis Date: 11/16/01

Matrix: Water

Lab Sample ID: AB46352

Client ID: SW-2 filtered

Dilution: 0.5 % Solid: 0

Level: low/med Batch: 3713

Concentration Units: ug/L

Cas No.	Analyte	ļ	MDL	Concentration	M
7440097	Potassium		48	3800	P_
7440235	Sodium		110	19000	P_

U - Indicates compound not found above detection/reporting limit

* - Indicates compound above calibration range

P - Indicates analyzed by ICP(ARL 3560)

CV - Indicates analyzed by Cold Vapor

Comments:			
_			
_			

FORM I - IN

ILM02.0

Party.

Lab Name: Veritech

Data File Name: W3713A2

Lab Code: 14622

Analysis Date: 11/15/01

Matrix: Water

Lab Sample ID: AB46352

Client ID: SW-2 filtered

Level: low/med Batch: 3713

Dilution: 0.5 % Solid: 0

Concentration Units: ug/L

Cas No.	Analyte	MDL	Concentration	M
7440508 7439921	Copper Lead	0.34	0.90 U	P

U - Indicates compound not found above detection/reporting limit

* - Indicates compound above calibration range P - Indicates analyzed by ICP(OPTIMA 3000DV)

CV - Indicates analyzed by Cold Vapor

Comments:	

FORM I - IN

Lab Name: Veritech

Data File Name: W3713C

Lab Code: 14622

Analysis Date: 11/20/01

Matrix: Water

Lab Sample ID: AB46352

Client ID: SW-2 filtered

Dilution: 0.5

Level: low/med

Batch: 3713

% Solid: 0

Concentration Units: ug/L

Cas No.	Analyte		Concentration	M
7429905 7440382	Aluminum Arsenic	8.0	36	P_ P_

U - Indicates compound not found above detection/reporting limit

* - Indicates compound above calibration range P - Indicates analyzed by ICP(OPTIMA 3000DV)

CV - Indicates analyzed by Cold Vapor

Comments:	

FORM I - IN

Lab Name: Veritech Data File Name: H3713SW

Lab Code: 14622 Analysis Date: 11/15/2001

Matrix: Water Lab Sample ID: AB46352

Client ID: SW-2 filtered

Level: low/med Dilution: 1
Batch: 3713 % Solid: 0

Concentration Units: Ug/L

Cas No.	Analyte		Concentration	
7439976		0.23	U	CV

U - Indicates compound not found above detection/reporting limit

* - Indicates compound above calibration range P - Indicates analyzed by ICP(OPTIMA 3000DV)

CV - Indicates analyzed by Cold Vapor

Comments:	

FORM I - IN

Lab Name: Veritech

Data File Name: W3713A1

Lab Code: 14622

Analysis Date: 11/15/01

Matrix: Water

Lab Sample ID: AB46353

Client ID: SW-4 unfiltered

Level: low/med Batch: 3713

Dilution: 0.5 % Solid: 0

Concentration Units: ug/L

Cas No.	Analyte	1	MDL	IC	oncentration	M
	-	1		-		
7440360	Antimony	1	1.7	1	U	P_
7440393	Barium	1	0.17	1	28	P_
7440417	Beryllium		0.026	1	U	I P
7440439	Cadmium	i	0.18	1	U	I P
7440702	Calcium	ĺ	11	1	45000	P
7440473	Chromium	i	0.80	1	2.3	I P
7440484	Cobalt	i	0.14	1	U	P
7439896	Iron	i	20	1	700	P
7439954	Magnesium	i	3.6	1	15000	P
7439965	Manganese	i	0.79	1	100	P
7440020	Nickel	i	0.21	i	U	P
7782492	Selenium	1	2.4	1	U	P
7440224	Silver	i	0.30	i	U	P
7440280	Thallium	i	1.6	i	U	I P
7440200	Vanadium	i	0.49	i	9.7	P
7440622	Zinc		7.9	i	13	P
					,	

U - Indicates compound not found above detection/reporting limit

mments:					
	FOR	I M	- IN	ILM02.0	

^{* -} Indicates compound above calibration range

P - Indicates analyzed by ICP(OPTIMA 3000DV)

CV - Indicates analyzed by Cold Vapor

Lab Name: Veritech

Data File Name: W3713Z

Lab Code: 14622

Analysis Date: 11/16/01

Matrix: Water

Lab Sample ID: AB46353

Client ID: SW-4 unfiltered

Dilution: 0.5 % Solid: 0

Level: low/med Batch: 3713

Concentration Units: ug/L

Cas No.	Analyte	MDL	Concentration	M
1	-			!!
17440097	Potassium	48	3600	P_
17440235	Sodium	110	19000	P
i				1

U - Indicates compound not found above detection/reporting limit

* - Indicates compound above calibration range

P - Indicates analyzed by ICP(ARL 3560) CV - Indicates analyzed by Cold Vapor

Comments:	

FORM I - IN

ILM02.0

They

Lab Name: Veritech

Data File Name: W3713A2

Lab Code: 14622

Analysis Date: 11/15/01

Matrix: Water

Lab Sample ID: AB46353

Client ID: SW-4 unfiltered

Dilution: 0.5 % Solid: 0

Level: low/med Batch: 3713

Concentration Units: ug/L

Cas No.	Analyte	1	MDL	Cor	ncentration	n M
 7440508 7439921	Copper Lead		0.34		1.1 U	P_ P_

U - Indicates compound not found above detection/reporting limit

* - Indicates compound above calibration range P - Indicates analyzed by ICP(OPTIMA 3000DV)

CV - Indicates analyzed by Cold Vapor

Comments:	
-	

FORM I - IN

Lab Name: Veritech

Data File Name: W3713C

Lab Code: 14622

Analysis Date: 11/20/01

Matrix: Water

Lab Sample ID: AB46353

Client ID: SW-4 unfiltered

Level: low/med Batch: 3713 Dilution: 0.5 % Solid: 0

Concentration Units: ug/L

Cas No.	Analyte	1	MDL	Con	centration	M
7429905 7440382	Aluminum Arsenic		8.0		130 ປ	P_ P_

U - Indicates compound not found above detection/reporting limit

* - Indicates compound above calibration range P - Indicates analyzed by ICP(OPTIMA 3000DV)

CV - Indicates analyzed by Cold Vapor

omments:		
	FORM I - IN	1LM02.0

China China

Lab Name: Veritech Data File Name: H3713SW

Lab Code: 14622 Analysis Date: 11/15/2001

Matrix: Water Lab Sample ID: AB46353

Client ID: SW-4 unfiltered

Level: low/med Dilution: 1
Batch: 3713 % Solid: 0

Concentration Units: Ug/L

Cas No.	Analyte		Concentration	
	Mercury	0.23	U	CV

U - Indicates compound not found above detection/reporting limit

* - Indicates compound above calibration range P - Indicates analyzed by ICP(OPTIMA 3000DV)

CV - Indicates analyzed by Cold Vapor

Comments:	

FORM I - IN

ILM02.0

1-2/3/01

Lab Name: Veritech Data File Name: W3713A1

Lab Code: 14622 Analysis Date: 11/15/01

Matrix: Water Lab Sample ID: AB46354

Client ID: SW-4 filtered

Level: low/med Dilution: 0.5
Batch: 3713 % Solid: 0

Concentration Units: ug/L

Cas No.	Analyte	1	MDL	Concentrat	ion M
7440360	Antimony		1.7	U	P
7440393	Barium	1	0.17	1 23	P
7440417	Beryllium	i	0.026	U	P
7440439	Cadmium		0.18	U	P
7440702	Calcium	i	11	43000	P
7440473	Chromium	1	0.80	2.4	P
7440484	Cobalt	1	0.14	U	I P
7439896	Iron		20	31	P_
7439954	Magnesium	1	3.6	14000	I P_
7439965	Manganese	1	0.79	9.7	P_
7440020	Nickel	}	0.21	J U	P_
7782492	Selenium		2.4	U	I P_
7440224	Silver		0.30	1 0	I P_
7440280	Thallium	1	1.6	2.2	I P_
7440622	Vanadium		0.49	8.9	I P_
7440666	Zinc	1	7.9	1 0	P

U - Indicates compound not found above detection/reporting limit

Comments:		
	FORM I - IN	ILM02.0

1.25

^{* -} Indicates compound above calibration range

P - Indicates analyzed by ICP(OPTIMA 3000DV)

CV - Indicates analyzed by Cold Vapor

Lab Name: Veritech

Data File Name: W3713Z

Lab Code: 14622

Analysis Date: 11/16/01

Matrix: Water

Lab Sample ID: AB46354

Client ID: SW-4 filtered

Level: low/med

Batch: 3713

Dilution: 0.5 % Solid: 0

Concentration Units: ug/L

Cas No. A	nalyte	MDL	Concentration	M
1	otassium	48	3600	P
	odium	110	19000	P

U - Indicates compound not found above detection/reporting limit

* - Indicates compound above calibration range

P - Indicates analyzed by ICP(ARL 3560)

CV - Indicates analyzed by Cold Vapor

Comments:	

FORM I - IN

Lab Name: Veritech

Data File Name: W3713A2

Lab Code: 14622

Analysis Date: 11/15/01

Matrix: Water

Lab Sample ID: AB46354

Level: low/med

Batch: 3713

Client ID: SW-4 filtered Dilution: 0.5 % Solid: 0

Concentration Units: ug/L

Cas No.	Analyte	!	MDL	Co	ncentration	M
7440508 7439921	Copper Lead		0.34 0.79		0.61 U	P P

U - Indicates compound not found above detection/reporting limit

* - Indicates compound above calibration range P - Indicates analyzed by ICP(OPTIMA 3000DV)

CV - Indicates analyzed by Cold Vapor

Comments:	

FORM I - IN

Lab Name: Veritech

Data File Name: W3713C

Lab Code: 14622

Analysis Date: 11/20/01

Matrix: Water

Level: low/med Batch: 3713

Lab Sample ID: AB46354

Client ID: SW-4 filtered

Dilution: 0.5 % Solid: 0

Concentration Units: ug/L

Cas No.	Analyte	1	MDL	Co	ncentratio	n M
7429905 7440382	Aluminum Arsenic		8.0 2.0		34 2.6	P_ P_

U - Indicates compound not found above detection/reporting limit

* - Indicates compound above calibration range P - Indicates analyzed by ICP(OPTIMA 3000DV)

CV - Indicates analyzed by Cold Vapor

Comments:			

FORM I - IN

Lab Name: Veritech

Data File Name: H3713SW

Lab Code: 14622

Analysis Date: 11/15/2001

Matrix: Water

Lab Sample ID: AB46354

Client ID: SW-4 filtered

Level: low/med Batch: 3713

Dilution: 1 % Solid: 0

Concentration Units: Ug/L

Cas No.	Analyte	MDL	Concentration	
7439976		0.23	j u	CVI

U - Indicates compound not found above detection/reporting limit

* - Indicates compound above calibration range

P - Indicates analyzed by ICP(OPTIMA 3000DV)

CV - Indicates analyzed by Cold Vapor

Comments:	

FORM I - IN

ILM02.0

\$40

Lab Name: Veritech

Data File Name: W3713A1

Lab Code: 14622

Analysis Date: 11/15/01

Matrix: Water

Lab Sample ID: AB46355

Level: low/med

Client ID: PC-1 unfiltered

Batch: 3713

Dilution: 0.5 % Solid: 0

Concentration Units: ug/L

Cas No.	Analyte	MDL	Concentration	M
	Antimony Barium Beryllium Cadmium Calcium Chromium Cobalt Iron Magnesium Manganese Nickel Selenium Silver Thallium Vanadium Zinc	1.7 0.17 0.026 0.18 11 0.80 0.14 20 3.6 0.79 0.21 1.2.4 0.30 1.6 0.49 7.9	U	P

U - Indicates compound not found above detection/reporting limit

* - Indicates compound above calibration range

P - Indicates analyzed by ICP(OPTIMA 3000DV)

CV - Indicates analyzed by Cold Vapor

Comments:		
	FORM I - IN	ILM02.0

Lab Name: Veritech

Data File Name: W3713Z

Lab Code: 14622

Analysis Date: 11/16/01

Matrix: Water

Lab Sample ID: AB46355

Client ID: PC-1 unfiltered

Dilution: 0.5 % Solid: 0

Level: low/med Batch: 3713

Concentration Units: ug/L

Cas No.	Analyte	MDL	Concentration	M
7440097	Potassium	48	19000	P
	Sodium	110	130000	P

U - Indicates compound not found above detection/reporting limit

* - Indicates compound above calibration range

P - Indicates analyzed by ICP(ARL 3560)

CV - Indicates analyzed by Cold Vapor

Comments:	

FORM I - IN

Lab Name: Veritech

Data File Name: W3713A2

Lab Code: 14622

Analysis Date: 11/15/01

Matrix: Water

Lab Sample ID: AB46355

Client ID: PC-1 unfiltered

Level: low/med Batch: 3713

Dilution: 0.5 % Solid: 0

Concentration Units: ug/L

Cas No.	Analyte		MDL		ncentratio	
7440508 7439921	Copper Lead	 	0.34 0.79		96 20	P_ P_

U - Indicates compound not found above detection/reporting limit

* - Indicates compound above calibration range

P - Indicates analyzed by ICP(OPTIMA 3000DV) CV - Indicates analyzed by Cold Vapor

CV Indicator analyzed by

omments:	

FORM I - IN

ILM02.0

125

Lab Name: Veritech

Data File Name: W3713C

Lab Code: 14622

Analysis Date: 11/20/01

Matrix: Water

Lab Sample ID: AB46355

Client ID: PC-1 unfiltered

Level: low/med Batch: 3713 Dilution: 0.5 % Solid: 0

Concentration Units: ug/L

Cas No.	Analyte	MDL	Concentration	M !!
7429905 7440382	Aluminum Arsenic	8.0	39000	P P

U - Indicates compound not found above detection/reporting limit

* - Indicates compound above calibration range P - Indicates analyzed by ICP(OPTIMA 3000DV)

CV - Indicates analyzed by Cold Vapor

comments:	

FORM I - IN

Lab Name: Veritech Data File Name: H3713SW

Lab Code: 14622 Analysis Date: 11/15/2001

Matrix: Water Lab Sample ID: AB46355

Client ID: PC-1 unfiltered

Level: low/med Dilution: 1
Batch: 3713 % Solid: 0

Concentration Units: Ug/L

Cas No. Analyte	-	MDL		entration	
 7439976 Mercury		0.23		U	CV

U - Indicates compound not found above detection/reporting limit

* - Indicates compound above calibration range P - Indicates analyzed by ICP(OPTIMA 3000DV)

CV - Indicates analyzed by Cold Vapor

Comments:	

FORM I - IN

Lab Name: Veritech

Data File Name: W3713A1

Lab Code: 14622

Analysis Date: 11/15/01

Matrix: Water

Lab Sample ID: AB46356

Client ID: PC-1 filtered

Dilution: 0.5 % Solid: 0

Level: low/med Batch: 3713

Concentration Units: ug/L

Cas No.	Analyte	I	MDL	Concentration	M
7440360	Antimony	1	1.7	l U	P_
7440393	Barium	-	0.17	63	P_
7440417	Beryllium	1	0.026	l U	P
7440439	Cadmium	1	0.18	l ū	P_
7440702	Calcium	1	11	47000	P_
7440473	Chromium	1	0.80	1.8	P
7440484	Cobalt		0.14	U	I P
7439896	Iron		20	110	P_
7439954	Magnesium	1	3.6	1 10000 -	IP_
7439965	Manganese	-	0.79	850	P
7440020	Nickel	1	0.21	1.0	P
7782492	Selenium	1	2.4	U	I P
7440224	Silver	1	0.30) U	I P
7440280	Thallium	1	1.6	4.1	I P
7440622	Vanadium		0.49	12	P
7440666	Zinc	1	7.9	9.3	I P

U - Indicates compound not found above detection/reporting limit

ments:	

Ald I

^{* -} Indicates compound above calibration range

P - Indicates analyzed by ICP(OPTIMA 3000DV)

CV - Indicates analyzed by Cold Vapor

Lab Name: Veritech

Data File Name: W3713Z

Lab Code: 14622

Analysis Date: 11/16/01

Matrix: Water

Lab Sample ID: AB46356

Client ID: PC-1 filtered

Level: low/med

Dilution: 0.5 % Solid: 0

Batch: 3713

Concentration Units: ug/L

Cas No.	Analyte	1	MDL	Concentration	M
		-			
17440097	Potassium		48	3400	P_
7440235	Sodium	1	110	130000	P_
1					

U - Indicates compound not found above detection/reporting limit

* - Indicates compound above calibration range

P - Indicates analyzed by ICP(ARL 3560) CV - Indicates analyzed by Cold Vapor

Comments:	

FORM I - IN

Lab Name: Veritech

Data File Name: W3713A2

Lab Code: 14622

Analysis Date: 11/15/01

Matrix: Water

Lab Sample ID: AB46356

Client ID: PC-1 filtered

Level: low/med Batch: 3713

Dilution: 0.5 % Solid: 0

Concentration Units: ug/L

Cas No.	Analyte		MDL	Co	ncentration	M
7440508 17439921	Copper Lead	1	0.34		2.0 U	P P

U - Indicates compound not found above detection/reporting limit

* - Indicates compound above calibration range P - Indicates analyzed by ICP(OPTIMA 3000DV)

CV - Indicates analyzed by Cold Vapor

Comments:		

FORM I - IN

Lab Name: Veritech

Data File Name: W3713C

Lab Code: 14622

Analysis Date: 11/20/01

Matrix: Water

Lab Sample ID: AB46356

Client ID: PC-1 filtered

Level: low/med

Dilution: 0.5 % Solid: 0

Batch: 3713

Concentration Units: ug/L

Cas No.	Analyte	MDL	Concentration	M
7429905	Aluminum	8.0	1 120	P
7440382	Arsenic		U	P

U - Indicates compound not found above detection/reporting limit

* - Indicates compound above calibration range

P - Indicates analyzed by ICP(OPTIMA 3000DV)

CV - Indicates analyzed by Cold Vapor

Comments:	

FORM I - IN

Lab Name: Veritech

Data File Name: H3713SW

Lab Code: 14622

Analysis Date: 11/15/2001

Matrix: Water

Lab Sample ID: AB46356

Client ID: PC-1 filtered

Dilution: 1 % Solid: 0

Level: low/med Batch: 3713

Concentration Units: Ug/L

Cas No.	Analyte		Concentration	
17439976		0.23	U	

U - Indicates compound not found above detection/reporting limit

* - Indicates compound above calibration range

P - Indicates analyzed by ICP(OPTIMA 3000DV)

CV - Indicates analyzed by Cold Vapor

Comments:	

FORM I - IN

Lab Name: Veritech

Data File Name: W3713A1

Lab Code: 14622

Analysis Date: 11/15/01

Matrix: Water

Lab Sample ID: AB46357

Client ID: MW-4 unfiltered

Level: low/med Batch: 3713

Dilution: 0.5 % Solid: 0

Concentration Units: ug/L

Cas No.	Analyte	1	MDL	Concen	tration	M
	-					
7440360	Antimony		1.7		U	P_
7440393	Barium	1	0.17	280		P
7440417	Beryllium		0.026	1	U	P
7440439	Cadmium	1	0.18	1	U	I P
7440702	Calcium	İ	11	64000		P
7440473	Chromium	1	0.80] 58		P
7440484	Cobalt	1	0.14	21		I P
7439896	lIron	i	20	90000		P
7439954	Magnesium	i	3.6	23000		P
7440020	Nickel	1	0.21	1 20		I P
7782492	Selenium	i	2.4	30		P
7440224	Silver	i	0.30	i	U	P
7440280	Thallium	i	1.6	54		P
7440622	Vanadium	i	0.49	1 47		P
7440666	Zinc	1	7.9	1 56		P

U - Indicates compound not found above detection/reporting limit

ments:		

^{* -} Indicates compound above calibration range

P - Indicates analyzed by ICP(OPTIMA 3000DV)

CV - Indicates analyzed by Cold Vapor

Lab Name: Veritech

Data File Name: W3713Z

Lab Code: 14622

Analysis Date: 11/16/01

Matrix: Water

Lab Sample ID: AB46357

Client ID: MW-4 unfiltered

Level: low/med Batch: 3713

Dilution: 0.5 % Solid: 0

Concentration Units: ug/L

Cas No.	Analyte	MDL	Concentration	M
7440097	Potassium	48	5300	P
7440235	Sodium		33000	P

U - Indicates compound not found above detection/reporting limit

* - Indicates compound above calibration range

P - Indicates analyzed by ICP(ARL 3560) CV - Indicates analyzed by Cold Vapor

Comments:	

FORM I - IN

ILM02.0

1350

Lab Name: Veritech

Data File Name: W3713A2

Lab Code: 14622

Analysis Date: 11/15/01

Matrix: Water

Lab Sample ID: AB46357

Client ID: MW-4 unfiltered

Dilution: 0.5 % Solid: 0

Level: low/med Batch: 3713

Concentration Units: ug/L

Cas No.	Analyte		MDL	Concentration	M
17440508	Copper		0.34	25	P
17439921	Lead	1	0.79	1 13	P_

U - Indicates compound not found above detection/reporting limit

* - Indicates compound above calibration range

P - Indicates analyzed by ICP(OPTIMA 3000DV) CV - Indicates analyzed by Cold Vapor

Comments:			 	
				_

FORM I - IN

ILM02.0

11150

Lab Name: Veritech

Data File Name: W3713C

Lab Code: 14622

Analysis Date: 11/20/01

Matrix: Water

Level: low/med Batch: 3713

Lab Sample ID: AB46357

Client ID: MW-4 unfiltered

Dilution: 0.5 % Solid: 0

Concentration Units: ug/L

Cas No.	Analyte	1	MDL	Con	centration	M
17429905 17440382	Aluminum Arsenic	1	8.0	10	000 U	P P

U - Indicates compound not found above detection/reporting limit

* - Indicates compound above calibration range P - Indicates analyzed by ICP(OPTIMA 3000DV)

CV - Indicates analyzed by Cold Vapor

comments:	

FORM I - IN

Lab Name: Veritech

Data File Name: W3713D

Lab Code: 14622

Analysis Date: 11/21/01

Matrix: Water

Lab Sample ID: AB46357

Client ID: MW-4 unfiltered

Dilution: 2.5 % Solid: 0

Level: low/med Batch: 3713

Concentration Units: ug/L

Cas No.	Analyte		Concentration	M
•	 Manganese	3.9	29000	P

U - Indicates compound not found above detection/reporting limit

* - Indicates compound above calibration range P - Indicates analyzed by ICP(OPTIMA 3000DV)

CV - Indicates analyzed by Cold Vapor

Comments:	

FORM I - IN

Lab Name: Veritech

Data File Name: H3713SW

Lab Code: 14622

Analysis Date: 11/15/2001

Matrix: Water

Lab Sample ID: AB46357

Client ID: MW-4 unfiltered

Level: low/med Batch: 3713

Dilution: 1 % Solid: 0

Concentration Units: Ug/L

Cas No. Analyte	MDL	COllegiferacton	M
Cas No. Analyte 7439976 Mercury	0.23	U	CVI

U - Indicates compound not found above detection/reporting limit

* - Indicates compound above calibration range P - Indicates analyzed by ICP(OPTIMA 3000DV)

CV - Indicates analyzed by Cold Vapor

Comments:	

FORM I - IN

ILM02.0

nech 12030

Data File Name: W3713A1 Lab Name: Veritech

Analysis Date: 11/15/01 Lab Code: 14622

Lab Sample ID: AB46358 Matrix: Water

Client ID: MW-4 filtered

Dilution: 0.5 % Solid: 0 Level: low/med Batch: 3713

Concentration Units: ug/L

ICas No.	Analyte	MDL	Concentration	M
7440360 7440393 7440417 7440439 7440702 7440473 7440484 7439896 7439954 7440020 7782492 7440224 7440280 7440622 7440666	Antimony Barium Beryllium Cadmium Calcium Chromium Cobalt Iron Magnesium Nickel Selenium Silver Thallium Vanadium Zinc	1.7 0.17 0.026 0.18 11 0.80 0.14 20 3.6 0.21 2.4 0.30 1.6 0.49 7.9	U 120 U 0.23 70000 31 14 18000 22000 U 3.3 U 63 12	P

U - Indicates compound not found above detection/reporting limit

* - Indicates compound above calibration range

P - Indicates analyzed by ICP(OPTIMA 3000DV)

CV - Indicates analyzed by Cold Vapor

Comments:		
	FORM I - IN	ILM02.0

Lab Name: Veritech

Data File Name: W3713Z

Lab Code: 14622

Analysis Date: 11/16/01

Matrix: Water

Lab Sample ID: AB46358

Client ID: MW-4 filtered

Level: low/med Batch: 3713

Dilution: 0.5 % Solid: 0

Concentration Units: ug/L

12 2-4-	1	MDL	Concentration	M
Cas No. Analyte	1			-
7440097 Potassium		48 110	3700 35000	P_ P_

U - Indicates compound not found above detection/reporting limit

* - Indicates compound above calibration range

P - Indicates analyzed by ICP(ARL 3560)

CV - Indicates analyzed by Cold Vapor

Comments:	

FORM I - IN

Lab Name: Veritech

Data File Name: W3713A2

Lab Code: 14622

Analysis Date: 11/15/01

Matrix: Water

Lab Sample ID: AB46358

Client ID: MW-4 filtered Dilution: 0.5

Level: low/med Batch: 3713

% Solid: 0

Concentration Units: ug/L

Cas No.	Analyte	ļ	MDL		centration	
7440508 7439921	Copper Lead	1	0.34	1	U	P

U - Indicates compound not found above detection/reporting limit

* - Indicates compound above calibration range

P - Indicates analyzed by ICP(OPTIMA 3000DV)

CV - Indicates analyzed by Cold Vapor

comments:	

FORM I - IN

Lab Name: Veritech

Data File Name: W3713C

Lab Code: 14622

Analysis Date: 11/20/01

Matrix: Water

Lab Sample ID: AB46358

Client ID: MW-4 filtered

Level: low/med

Dilution: 0.5

Batch: 3713

% Solid: 0

Concentration Units: ug/L

Cas No.	Analyte		COllegieración	M
	Aluminum Arsenic	8.0 2.0	U U U	P

U - Indicates compound not found above detection/reporting limit

* - Indicates compound above calibration range P - Indicates analyzed by ICP(OPTIMA 3000DV)

CV - Indicates analyzed by Cold Vapor

Comments:	

FORM I - IN

Lab Name: Veritech

Data File Name: W3713D

Lab Code: 14622

Analysis Date: 11/21/01

Matrix: Water

Lab Sample ID: AB46358

Client ID: MW-4 filtered

Level: low/med Batch: 3713 Dilution: 2.5 % Solid: 0

Concentration Units: ug/L

Cas No.	Analyte	MDL	COMPETERATION	M
	Manganese		30000	P

U - Indicates compound not found above detection/reporting limit

* - Indicates compound above calibration range

P - Indicates analyzed by ICP(OPTIMA 3000DV)

CV - Indicates analyzed by Cold Vapor

Comments:	

FORM I - IN

ILM02.0

Park 2/5

Lab Name: Veritech

Data File Name: H3713SW

Lab Code: 14622

Analysis Date: 11/15/2001

Matrix: Water

Lab Sample ID: AB46358

Client ID: MW-4 filtered

Dilution: 1

Level: low/med Batch: 3713

% Solid: 0

Concentration Units: Ug/L

Cas No. Analyte	MDL	Concentration	M
Cas No. Analyte	0.23	U	CV

U - Indicates compound not found above detection/reporting limit

* - Indicates compound above calibration range

P - Indicates analyzed by ICP(OPTIMA 3000DV)

CV - Indicates analyzed by Cold Vapor

Comments:	

FORM I - IN

Lab Name: Veritech Data File Name: W3713A1

Lab Code: 14622 Analysis Date: 11/15/01

Matrix: Water Lab Sample ID: AB46359

Client ID: LMW-2 unfiltered

Level: low/med Dilution: 0.5
Batch: 3713 & Solid: 0

Concentration Units: ug/L

Cas No.	Analyte	MDL	Concentration	M
	-			
7440360	Antimony	1.7	l U	IP_
7440393	Barium	0.17	220	P_
7440417	Beryllium	0.026	U	P_
7440439	Cadmium	0.18	0.45	P_
7440702	Calcium	11	91000	P_
17440473	Chromium	0.80	17	P
17440473	Cobalt	0.14	5.2	I P
17439896	Iron	20	7000	P
	Magnesium	3.6	38000	I P
7439954		0.79	1 1300	I P
17439965	Manganese	0.73	20	I P
17440020	Nickel	2.4	1 11	I P
17782492	Selenium	,	1	P
7440224	Silver	0.30		I P
17440280	Thallium	1.6	8.0	
17440622	Vanadium	0.49	1 26	IP_
17440666	Zinc	7.9	32	P_
1				

U - Indicates compound not found above detection/reporting limit

* - Indicates compound above calibration range

P - Indicates analyzed by ICP(OPTIMA 3000DV)

CV - Indicates analyzed by Cold Vapor

Comments:			
	FORM I - IN	ILM02.0	

2000年

Lab Name: Veritech

Data File Name: W3713Z

Lab Code: 14622

Analysis Date: 11/16/01

Matrix: Water

Lab Sample ID: AB46359

Client ID: LMW-2 unfiltered

Level: low/med Batch: 3713

Dilution: 0.5 % Solid: 0

Concentration Units: ug/L

Cas No.	Analyte	I	MDL	Concentration	M
 7440097 7440235	Potassium Sodium		48 110	7400 53000	P_ P_

U - Indicates compound not found above detection/reporting limit

* - Indicates compound above calibration range P - Indicates analyzed by ICP(ARL 3560)

CV - Indicates analyzed by Cold Vapor

Comments:	

FORM I - IN

Lab Name: Veritech

Data File Name: W3713A2

Lab Code: 14622

Analysis Date: 11/15/01

Matrix: Water

Lab Sample ID: AB46359

Client ID: LMW-2 unfiltered

Level: low/med Batch: 3713

Dilution: 0.5 % Solid: 0

Concentration Units: ug/L

Cas No.	Analyte	1	MDL	centration	
7440508 7439921	Copper Lead		0.34 0.79	13 U	P_ P_

U - Indicates compound not found above detection/reporting limit

* - Indicates compound above calibration range P - Indicates analyzed by ICP(OPTIMA 3000DV)

CV - Indicates analyzed by Cold Vapor

Comments:	

FORM I - IN

Lab Name: Veritech

Data File Name: W3713C

Lab Code: 14622

Analysis Date: 11/20/01

Matrix: Water

Lab Sample ID: AB46359

Client ID: LMW-2 unfiltered

Level: low/med Batch: 3713

Dilution: 0.5 % Solid: 0

Concentration Units: ug/L

Cas No.	Analyte	MDL	Concentration	M
7429905	Aluminum	8.0	4200	P
7440382	Arsenic		U	P

U - Indicates compound not found above detection/reporting limit

* - Indicates compound above calibration range P - Indicates analyzed by ICP(OPTIMA 3000DV)

CV - Indicates analyzed by Cold Vapor

Comments:	

FORM I - IN

ILM02.0

MA

Lab Name: Veritech

Data File Name: H3713SW

Lab Code: 14622

Analysis Date: 11/15/2001

Matrix: Water

Lab Sample ID: AB46359

Client ID: LMW-2 unfiltered

Level: low/med Batch: 3713

Dilution: 1 % Solid: 0

ILM02.0

Concentration Units: Ug/L

Cas No.	Analyte		Concentration	M
				-
17439976	Mercury	0.23	U	1001

U - Indicates compound not found above detection/reporting limit

* - Indicates compound above calibration range

P - Indicates analyzed by ICP(OPTIMA 3000DV)

CV - Indicates analyzed by Cold Vapor

Comments:	

FORM I - IN

Lab Name: Veritech Data File Name: W3713A1

Lab Code: 14622 Analysis Date: 11/15/01

Matrix: Water Lab Sample ID: AB46360

Client ID: LMW-2 filtered

Level: low/med Dilution: 0.5
Batch: 3713 % Solid: 0

Concentration Units: ug/L

U - Indicates compound not found above detection/reporting limit

* - Indicates compound above calibration range

P - Indicates analyzed by ICP(OPTIMA 3000DV)

CV - Indicates analyzed by Cold Vapor

Comments:				
	FORM I	- IN	ILM02.0	

Lab Name: Veritech

Data File Name: W3713Z

Lab Code: 14622

Analysis Date: 11/16/01

Matrix: Water

Lab Sample ID: AB46360

Client ID: LMW-2 filtered

Level: low/med Batch: 3713 Dilution: 0.5 % Solid: 0

Concentration Units: ug/L

Cas No.	Analyte	MDL	Concentration	M
7440097	Potassium	48	5600	P_
7440235	Sodium	110	55000	P_

U - Indicates compound not found above detection/reporting limit

* - Indicates compound above calibration range

P - Indicates analyzed by ICP(ARL 3560)

CV - Indicates analyzed by Cold Vapor

Comments:	

FORM I - IN

ILM02.0

The same

62 1 4 11 may 1

Lab Name: Veritech

Data File Name: W3713A2

Lab Code: 14622

Analysis Date: 11/15/01

Matrix: Water

Lab Sample ID: AB46360

Client ID: LMW-2 filtered

Level: low/med Batch: 3713

Dilution: 0.5 % Solid: 0

Concentration Units: ug/L

Cas No. Analyte	MDL	Concentration	M
7440508 Copper	0.34	3.1 U	P_ P_

U - Indicates compound not found above detection/reporting limit

* - Indicates compound above calibration range

P - Indicates analyzed by ICP(OPTIMA 3000DV)

CV - Indicates analyzed by Cold Vapor

Comments:	

FORM I - IN

ILM02.0

11/2

Lab Name: Veritech

Data File Name: W3713C

Lab Code: 14622

Analysis Date: 11/20/01

Matrix: Water

Lab Sample ID: AB46360

Client ID: LMW-2 filtered

Level: low/med

Dilution: 0.5 % Solid: 0

Batch: 3713

Concentration Units: ug/L

Cas No. Analyte	MDL	Concentration	M
	8.0	39 U	P

U - Indicates compound not found above detection/reporting limit

* - Indicates compound above calibration range

P - Indicates analyzed by ICP(OPTIMA 3000DV)

CV - Indicates analyzed by Cold Vapor

Comments:	

FORM I - IN

Lab Name: Veritech

Data File Name: H3713SW

Lab Code: 14622

Analysis Date: 11/15/2001

Matrix: Water

Lab Sample ID: AB46360

Client ID: LMW-2 filtered

Level: low/med Batch: 3713

Dilution: 1 % Solid: 0

Concentration Units: Ug/L

Cas No. An	nalyte		Concentration	M
 7439976 Me		0.23	U	CV

U - Indicates compound not found above detection/reporting limit

* - Indicates compound above calibration range P - Indicates analyzed by ICP(OPTIMA 3000DV)

CV - Indicates analyzed by Cold Vapor

Comments:	

FORM I - IN ILM02.0

Lab Name: Veritech

Data File Name: W3713A1

Lab Code: 14622

Analysis Date: 11/15/01

Matrix: Water

Lab Sample ID: AB46361

Tarral . low/med

Client ID: PC-2 unfiltered

Level: low/med Batch: 3713

Dilution: 0.5 % Solid: 0

Concentration Units: ug/L

Cas No.	Analyte	MDL	Concentration	M
7440260	- Antimony	1.7	U	P
7440360	Barium	0.17	180	P
7440393	Beryllium	0.026	į U	P
7440417	Cadmium	0.18	i v	P
7440439	Calcium	11	1 63000	P
7440702	Chromium	0.80	13	P
7440473	Cobalt	0.14	1.4	P
7440484	Iron	20	74000	IP
7439896 7439954	Magnesium	3.6	1 22000	P
7440020	Nickel	0.21	U	1P
•	Selenium	2.4	1 23	P
7782492	Silver	0.30	i U	P
17440224	Thallium	1.6	1 47	P
7440280	Vanadium	0.49	1 18	P
7440622 7440666	Zinc	7.9	10	I P
1				

U - Indicates compound not found above detection/reporting limit

* - Indicates compound above calibration range

P - Indicates analyzed by ICP(OPTIMA 3000DV)

CV - Indicates analyzed by Cold Vapor

Comments:						
	FORM	I	-	IN	ILM02.0	

Missile Marie

Lab Name: Veritech

Data File Name: W3713Z

Lab Code: 14622

Analysis Date: 11/16/01

Matrix: Water

Lab Sample ID: AB46361

Client ID: PC-2 unfiltered

Level: low/med Batch: 3713 Dilution: 0.5 % Solid: 0

Concentration Units: ug/L

Cas No.	Analyte	MDL	Concentration	M
 7440097 7440235	Potassium Sodium	48 110	3200 67000	P_ P_

U - Indicates compound not found above detection/reporting limit

* - Indicates compound above calibration range

P - Indicates analyzed by ICP(ARL 3560) CV - Indicates analyzed by Cold Vapor

Comments:	

FORM I - IN

ILM02.0

Part

Lab Name: Veritech

Data File Name: W3713A2

Lab Code: 14622

Analysis Date: 11/15/01

Matrix: Water

Lab Sample ID: AB46361 Client ID: PC-2 unfiltered

Dilution: 0.5 % Solid: 0

Level: low/med Batch: 3713

Concentration Units: ug/L

Cas No.	Analyte	1	MDL	Con	centration	M
7440508 7439921	Copper Lead		0.34		U U	P_ P_

U - Indicates compound not found above detection/reporting limit

* - Indicates compound above calibration range P - Indicates analyzed by ICP(OPTIMA 3000DV)

CV - Indicates analyzed by Cold Vapor

Comments:	

FORM I - IN

Lab Name: Veritech

Data File Name: W3713C

Lab Code: 14622

Analysis Date: 11/20/01

Matrix: Water

Lab Sample ID: AB46361

Client ID: PC-2 unfiltered

Level: low/med Batch: 3713 Dilution: 0.5

% Solid: 0

Concentration Units: ug/L

Cas No.	Analyte	MDL	Concentration	M
17429905	Aluminum	8.0	110	P_
17440382	Arsenic		U	P_

U - Indicates compound not found above detection/reporting limit

* - Indicates compound above calibration range P - Indicates analyzed by ICP(OPTIMA 3000DV)

CV - Indicates analyzed by Cold Vapor

comments:	

FORM I - IN

Lab Name: Veritech

Data File Name: A3747B

Lab Code: 14622

Analysis Date: 12/04/2001

Matrix: Water

Lab Sample ID: AB46361

Client ID: PC-2 unfiltered

Level: low/med

Dilution: 0.5

Batch: 3713

% Solid: 0

Concentration Units: ug/L

Cas No. Analyte	MDL	Conconcia	M
7439965 Manganese		16000	P_

U - Indicates compound not found above detection/reporting limit

* - Indicates compound above calibration range

P - Indicates analyzed by ICP(OPTIMA 3000DV)

CV - Indicates analyzed by Cold Vapor

FORM I - IN

Lab Name: Veritech

Data File Name: H3713SW

Lab Code: 14622

Analysis Date: 11/15/2001

Matrix: Water

Lab Sample ID: AB46361

Client ID: PC-2 unfiltered

Level: low/med Batch: 3713 Dilution: 1 % Solid: 0

ILM02.0

Concentration Units: Ug/L

Cas No.	Analyte		COllecticracrair	M
7439976		0.23	U	 CV

U - Indicates compound not found above detection/reporting limit

* - Indicates compound above calibration range P - Indicates analyzed by ICP(OPTIMA 3000DV)

CV - Indicates analyzed by Cold Vapor

Comments:	

FORM I - IN

12/30

1 INORGANIC ANALYSIS DATA SHEET

Lab Name: Veritech

Data File Name: W3713A1

Lab Code: 14622

Analysis Date: 11/15/01

Matrix: Water

Lab Sample ID: AB46362

Client ID: PC-2 filtered

Level: low/med Batch: 3713

Dilution: 0.5 % Solid: 0

Concentration Units: ug/L

Cas No.	Analyte	MDL	Concentration	M
	-	1.7	U	I P
7440360	Antimony	0.17	87	I P
7440393	Barium	0.026	1 11	I P
7440417	Beryllium	•	1 11	IP I
7440439	Cadmium	0.18	1 62000	IP.
7440702	Calcium	11	1 62000	-
17440473	Chromium	0.80	19	P_
17440484	Cobalt	0.14	2.1	P_
17439896	Iron	20	27000	P_
17439954	Magnesium	3.6	22000	P_
17440020	Nickel	0.21	U	P_
17782492	Selenium	2.4	1 13	P_
17440224	Silver	0.30	l û	P
17440280	Thallium	1.6	43	P_
17440622	Vanadium	0.49	16	P
17440666	Zinc	7.9	l U	IP_

U - Indicates compound not found above detection/reporting limit

* - Indicates compound above calibration range P - Indicates analyzed by ICP(OPTIMA 3000DV)

CV - Indicates analyzed by Cold Vapor

omments:			
	FORM I - IN	ILM02.0	

Lab Name: Veritech

Data File Name: W37132

Lab Code: 14622

Analysis Date: 11/16/01

Matrix: Water

Lab Sample ID: AB46362

Client ID: PC-2 filtered

Level: low/med Batch: 3713

Dilution: 0.5 % Solid: 0

Concentration Units: ug/L

Cas No.	Analyte	1	MDL	Concentration	M
7440097	Potassium		48	3100	P_
7440235	Sodium		110	68000	P_

U - Indicates compound not found above detection/reporting limit

* - Indicates compound above calibration range P - Indicates analyzed by ICP(ARL 3560) CV - Indicates analyzed by Cold Vapor

Comments:	

FORM I - IN

Lab Name: Veritech

Data File Name: W3713A2

Lab Code: 14622

Analysis Date: 11/15/01

Matrix: Water

Lab Sample ID: AB46362

Client ID: PC-2 filtered

Level: low/med

Dilution: 0.5

Batch: 3713

% Solid: 0

Concentration Units: ug/L

Cas No.	Analyte	1	MDL		centration	
7440508 7439921	Copper Lead		0.34	1	บ บ	P

U - Indicates compound not found above detection/reporting limit

* - Indicates compound above calibration range

P - Indicates analyzed by ICP(OPTIMA 3000DV)

CV - Indicates analyzed by Cold Vapor

Comments:	

FORM I - IN

Lab Name: Veritech

Data File Name: W3713C

Lab Code: 14622

Analysis Date: 11/20/01

Matrix: Water

Lab Sample ID: AB46362

Client ID: PC-2 filtered

Dilution: 0.5

Level: low/med Batch: 3713

% Solid: 0

Concentration Units: ug/L

Cas No.	Analyte	MDL	Concentration	M
	Aluminum Arsenic	8.0	U	P P P

U - Indicates compound not found above detection/reporting limit

* - Indicates compound above calibration range

P - Indicates analyzed by ICP(OPTIMA 3000DV) CV - Indicates analyzed by Cold Vapor

Comments:	

FORM I - IN

Lab Name: Veritech

Data File Name: A3747B

Lab Code: 14622

Analysis Date: 12/04/2001

Matrix: Water

Lab Sample ID: AB46362

Client ID: PC-2 filtered

Level: low/med Batch: 3713 Dilution: 0.5 % Solid: 0

Concentration Units: ug/L

Cas No. Analyte	MDL	Concentration	M
Cas No. Allaryte 7439965 Manganese	9.0	16000	P_

U - Indicates compound not found above detection/reporting limit

* - Indicates compound above calibration range

P - Indicates analyzed by ICP(OPTIMA 3000DV)

CV - Indicates analyzed by Cold Vapor

Comments:	

FORM I - IN

ILM02.0

Might.

Lab Name: Veritech

Data File Name: H3713SW

Lab Code: 14622

Analysis Date: 11/15/2001

Matrix: Water

Lab Sample ID: AB46362

Client ID: PC-2 filtered

Level: low/med Batch: 3713

Dilution: 1 % Solid: 0

Concentration Units: Ug/L

Cas No. Analyte	MDL	COMOCHIGAGO	M
 7439976 Mercury	0.23	U	CV

U - Indicates compound not found above detection/reporting limit

* - Indicates compound above calibration range P - Indicates analyzed by ICP(OPTIMA 3000DV)

CV - Indicates analyzed by Cold Vapor

Comments:	

FORM I - IN

Lab Name: Veritech

Data File Name: S3711A

Lab Code: 14622

Analysis Date: 11/14/2001

Matrix: Soil

Lab Sample ID: AB46363 Client ID: SD-1

Level: low/med

Batch: 3711

Dilution: 100 % Solid: 76

Concentration Units: Mg/Kg

Cas No. 7	malyte	RL	Concentration	M
7440360	Antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt Copper Lead Manganese Nickel	2.6 2.6 13 0.79 0.79 6.6 3.3 6.6 6.6 21	Concentration	P
7782492	Selenium Silver	2.6	ן ט ז ט	P
7440280	Thallium Vanadium	1.6) U	P_

U - Indicates compound not found above detection/reporting limit

Comments:	

FORM I - IN ILM02.0

^{* -} Indicates compound above calibration range

P - Indicates analyzed by ICP(OPTIMA 3000DV)

CV - Indicates analyzed by Cold Vapor

Lab Name: Veritech

Data File Name: S3711B

Lab Code: 14622

Analysis Date: 11/15/2001

Matrix: Soil

Lab Sample ID: AB46363 Client ID: SD-1

Level: low/med

Dilution: 100

Batch: 3711

% Solid: 76

Concentration Units: Mg/Kg

Cas No.	Analyte		Concentration	
17440666	•	13	87	 P_

U - Indicates compound not found above detection/reporting limit

* - Indicates compound above calibration range P - Indicates analyzed by ICP(OPTIMA 3000DV)

CV - Indicates analyzed by Cold Vapor

Comments:		

FORM I - IN

Lab Name: Veritech Data File Name: S3711Z

Lab Code: 14622 Analysis Date: 11/14/01

Matrix: Soil

Lab Sample ID: AB46363

Client ID: SD-1

Level: low/med

Batch: 3711

Dilution: 100
% Solid: 76

Concentration Units: Mg/Kg

Cas No.	Analyte	l RL	Concentration	M
7429905 7440702 7439896 7439954 7440097 7440235	Aluminum Calcium Iron Magnesium Potassium Sodium	390 660 390 660 330	8100 5700 14000 4900 1200	P

U - Indicates compound not found above detection/reporting limit

* - Indicates compound above calibration range

P - Indicates analyzed by ICP(ARL 3560) CV - Indicates analyzed by Cold Vapor

Comments:	

FORM I - IN

ILM02.0

11/5/g

Lab Name: Veritech

Data File Name: H3711S

Lab Code: 14622

Analysis Date: 11/13/2001

Matrix: Soil

Lab Sample ID: AB46363

Level: low/med

Client ID: SD-1

Batch: 3711

Dilution: 167 % Solid: 76

Concentration Units: mg/Kg

Cas No. Analyte	RL	Concentration	
Cas No. Analyte	0.19	U	CV

U - Indicates compound not found above detection/reporting limit

* - Indicates compound above calibration range P - Indicates analyzed by ICP(OPTIMA 3000DV)

CV - Indicates analyzed by Cold Vapor

Comments:	

FORM I - IN

Data File Name: S3711A Lab Name: Veritech

Analysis Date: 11/14/2001 Lab Code: 14622

Lab Sample ID: AB46365 Client ID: SD-2 Matrix: Soil

Dilution: 100 Level: low/med % Solid: 68 Batch: 3711

Concentration Units: Mg/Kg

Cas No.	Analyte	RL	Concentration	M
7440360 7440382 7440393 7440417 7440439 7440473 7440484 7440508 7439921 7439965 7440020 7782492 7440224 7440280 77440622	Antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt Copper Lead Manganese Nickel Selenium Silver Thallium Vanadium	2.9 2.9 15 0.88 0.88 7.4 3.7 7.4 7.4 24 7.4 2.9 3.7 1.8	32 U U 9.6 4.7 10 19 720 12 U U U	P

U - Indicates compound not found above detection/reporting limit

* - Indicates compound above calibration range

P - Indicates analyzed by ICP(OPTIMA 3000DV)

CV - Indicates analyzed by Cold Vapor

Comments:				
-				
	FORM I	- IN	ILM02.0	

Lab Name: Veritech

Data File Name: S3711B

Lab Code: 14622

Analysis Date: 11/15/2001

Matrix: Soil

Lab Sample ID: AB46365 Client ID: SD-2

Level: low/med

Batch: 3711

Dilution: 100 % Solid: 68

Concentration Units: Mg/Kg

Cas No. Analyte R	Concentration	[M]
	24	 P_

U - Indicates compound not found above detection/reporting limit

* - Indicates compound above calibration range

P - Indicates analyzed by ICP(OPTIMA 3000DV)

CV - Indicates analyzed by Cold Vapor

Comments:		
		,
	FORM I - IN	ILM02.0

Lab Name: Veritech

Data File Name: S3711Z

Lab Code: 14622

Analysis Date: 11/14/01

Matrix: Soil

Lab Sample ID: AB46365 Client ID: SD-2

Dilution: 100

Level: low/med Batch: 3711

% Solid: 68

Concentration Units: Mg/Kg

Cas No.	Analyte	RL	Concentration	M
17440702 17439896 17439954 17440097	Aluminum Calcium Iron Magnesium Potassium Sodium	440 1 740 1 440 1 740 1 370 1 740	5100 41000 13000 23000 1100	P

U - Indicates compound not found above detection/reporting limit

* - Indicates compound above calibration range

P - Indicates analyzed by ICP(ARL 3560)

CV - Indicates analyzed by Cold Vapor

Comments:	

FORM I - IN

ILM02.0

30

Lab Name: Veritech

Data File Name: H3711S

Lab Code: 14622

Analysis Date: 11/13/2001

Matrix: Soil

Lab Sample ID: AB46365

Level: low/med

Client ID: SD-2 Dilution: 167

Batch: 3711

% Solid: 68

Concentration Units: mg/Kg

Cas No.	Analyte	Concentration	
7439976		I D	CAL

U - Indicates compound not found above detection/reporting limit

* - Indicates compound above calibration range P - Indicates analyzed by ICP(OPTIMA 3000DV)

CV - Indicates analyzed by Cold Vapor

Comments:			
	FORM I - IN	ILM02.0	

Lab Name: Veritech

Data File Name: S3711A

Lab Code: 14622

Analysis Date: 11/14/2001

Matrix: Soil

Lab Sample ID: AB46367

Level: low/med

Client ID: SD-3

Batch: 3711

Dilution: 100 % Solid: 88

Concentration Units: Mg/Kg

Cas No.	Analyte	1	RL	Concentration	M
17440360	Antimony	1	2.3	U	P_
17440382	Arsenic	1	2.3	1 2.4	P_
17440393	Barium	1	11	48	I P
17440417	Beryllium	ĺ	0.68	U	P
17440439	Cadmium	i	0.68	l Ü	P_
17440473	Chromium	i	5.7	17	P
17440484	Cobalt	1	2.8	5.7	I P
7440508	Copper	i	5.7	1 19	P
7439921	Lead	i	5.7	210	P
17439965	Manganese	į	18	1 250	I P
17440020	Nickel	1	5.7	1 16	P
17782492	Selenium	i i	2.3	2.4	IP.
	Silver	1	2.8	i U	I P
17440224	Thallium	1	1.4	Ü	I P
17440280 17440622	Vanadium		11	25	P

U - Indicates compound not found above detection/reporting limit

Comments:	

FORM I - IN ILM02.0

^{* -} Indicates compound above calibration range

P - Indicates analyzed by ICP(OPTIMA 3000DV)

CV - Indicates analyzed by Cold Vapor

Lab Name: Veritech Data File Name: S3711Z

Lab Code: 14622 Analysis Date: 11/14/01

Matrix: Soil Lab Sample ID: AB46367

Client ID: SD-3 Dilution: 100 % Solid: 88

Batch: 3711 % So Concentration Units: Mg/Kg

Level: low/med

ICas No.	Analyte	1	RL	10	Concentration	M
 7429905 7440702 7439896 7439954 7440097	Aluminum Calcium Iron Magnesium Potassium Sodium		340 570 340 570 280 570		8600 43000 15000 25000 1600	P

U - Indicates compound not found above detection/reporting limit

* - Indicates compound above calibration range

P - Indicates analyzed by ICP(ARL 3560)

CV - Indicates analyzed by Cold Vapor

Comments:	 		

FORM I - IN

Lab Name: Veritech

Data File Name: S3711C

Lab Code: 14622

Analysis Date: 11/15/2001

Matrix: Soil

Lab Sample ID: AB46367

Level: low/med

Batch: 3711

Client ID: SD-3 Dilution: 100 % Solid: 88

Concentration Units: Mg/Kg

Cas No.	Analyte	RL	Concentration	
	-			
17440666		11	78	P_
	·			1

U - Indicates compound not found above detection/reporting limit

* - Indicates compound above calibration range

P - Indicates analyzed by ICP(OPTIMA 3000DV)

CV - Indicates analyzed by Cold Vapor

Comments:				

FORM I - IN

Lab Name: Veritech

Data File Name: H3711S

Lab Code: 14622

Analysis Date: 11/13/2001

Matrix: Soil

Lab Sample ID: AB46367 Client ID: SD-3

Level: low/med Batch: 3711

Dilution: 167 % Solid: 88

Concentration Units: mg/Kg

yte	RL	Concentration	IM I
		-	
ury	0.16	U	CV
			1
mpound not	found above	detection/repor	ting lim
	ury	ury 0.16	

* - Indicates compound above calibration range P - Indicates analyzed by ICP(OPTIMA 3000DV)

CV - Indicates analyzed by Cold Vapor

Comments:		

FORM I - IN

ILM02.0

Only

Lab Name: Veritech

Data File Name: S3711A

Lab Code: 14622

Analysis Date: 11/14/2001

Matrix: Soil

Lab Sample ID: AB46369 Client ID: SD-4

Level: low/med

Batch: 3711

Dilution: 100 % Solid: 81

Concentration Units: Mg/Kg

Cas No.	Analyte		RL	Concentration	M
17440360	Antimony		2.5	U	P
17440382	Arsenic	i	2.5	į U	P_
7440393	Barium	i	12	40	P_
7440417	Beryllium	1	0.74	U	IP_
7440439	Cadmium	1	0.74	0.98	P_
7440473	Chromium	i	6.2	1 0	IP_
7440484	Cobalt	İ	3.1	3.9	P_
7440508	Copper	İ	6.2	10	IP_
7439921	Lead	1	6.2	19	IP_
7439965	Manganese	1	20	740	IP_
17440020	Nickel	1	6.2	12	IP_
7782492	Selenium	1	2.5	1 0	IP_
17440224	Silver	1	3.1	l n	IP_
7440280	Thallium	1	1.5	l U	IP_
17440622	Vanadium		12	16	IP_

U - Indicates compound not found above detection/reporting limit

Comments:	

FORM I - IN

^{* -} Indicates compound above calibration range

P - Indicates analyzed by ICP(OPTIMA 3000DV)

CV - Indicates analyzed by Cold Vapor

Lab Name: Veritech

Data File Name: S3711C

Lab Code: 14622

Analysis Date: 11/15/2001

Matrix: Soil

Lab Sample ID: AB46369 Client ID: SD-4

Level: low/med

Dilution: 100 % Solid: 81

Batch: 3711

Concentration Units: Mg/Kg

Cas No.	Analyte	RL	Concentration	n M
7440666		12	500	 P_
1	12210			

U - Indicates compound not found above detection/reporting limit

* - Indicates compound above calibration range P - Indicates analyzed by ICP(OPTIMA 3000DV) CV - Indicates analyzed by Cold Vapor

Comments:	

FORM I - IN

Lab Name: Veritech

Data File Name: S3711Z

Lab Code: 14622

Analysis Date: 11/14/01

Matrix: Soil

Lab Sample ID: AB46369

Level: low/med

Client ID: SD-4

Dilution: 100 % Solid: 81

Batch: 3711

Concentration Units: Mg/Kg

Cas No.	Analyte	RL	Concentration	M
7429905 7440702 7439896 7439954 7440097 7440235	Aluminum Calcium Iron Magnesium Potassium Sodium	370 620 370 620 310 620	3800 40000 11000 23000 860	P_ P_ P_ P_

U - Indicates compound not found above detection/reporting limit

* - Indicates compound above calibration range P - Indicates analyzed by ICP(ARL 3560)

CV - Indicates analyzed by Cold Vapor

Comments:	

FORM I - IN

ILM02.0

Lab Name: Veritech

Data File Name: H3711S

Lab Code: 14622

Analysis Date: 11/13/2001

Matrix: Soil

Lab Sample ID: AB46369

Level: low/med

Client ID: SD-4 Dilution: 167

Batch: 3711

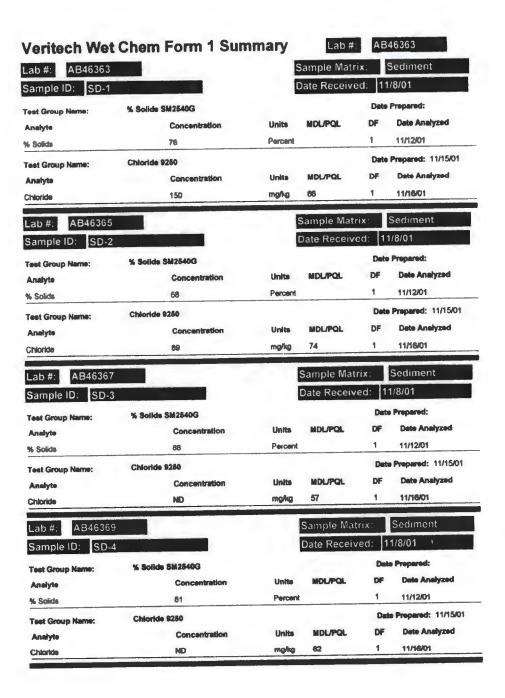
% Solid: 81

Concentration Units: mg/Kg

Cas No.	Analyte		Concentration	
7439976	Mercury	0.18	U	CV

U - Indicates compound not found above detection/reporting limit

* - Indicates compound above calibration range P - Indicates analyzed by ICP(OPTIMA 3000DV)


CV - Indicates analyzed by Cold Vapor

Comments		

FORM I - IN ILM02.0

			Cample Mate		Aqueous
nb #: AB46349			Sample Matr	_+	/8/01
ample ID: SW-1 unfi	Itered	L	Date Receive	عر کنید	
est Group Name: Ch	nioride EPA 325				Prepared: 11/9/01
unalyte	Concentration	Units	MDL/PQL	DF	Date Analyzed
hloride	22	mg/l	0.98	1	11/9/01
ab #: AB46351			Sample Mati	rix:	Aqueous
sample ID: SW-2 unfi	Itered		Date Receiv	ed: 1′	1/8/01
est Group Name: CI	hloride EPA 325			Date	Prepared: 11/9/01
Analyte	Concentration	Units	MDL/PQL	DF	Date Analyzed
hloride	22	mg/l	0.98	1	11/9/01
.ab #: AB46353			Sample Mat	rix:	Aqueous
Sample ID: SW-4 unf	iltered	1	Date Receiv	ed: 1	1/8/01
est Group Name: C	hioride EPA 325			Date	Prepared: 11/9/01
Analyte	Concentration	Units	MDL/PQL	DF	Date Analyzed
Chloride	22	mg/l	0.98	1	11/9/01
_ab #: AB46355			Sample Mat	rix:	Aqueouş
Sample ID: PC-1 unfi	iltered		Date Receiv	ed: 1	1/8/01
	hioride EPA 325			Date	Prepared: 11/9/01
Analyte	Concentration	Units	MOL/POL	DF	Date Analyzed
Chloride	95	mg/l	0.98	1	11/9/01
	95	mg/l			
Lab #: AB46357		mgA	Sample Mat	rix:	Aqueous
Lab #: AB46357 Sample ID: MW-4 un	filtered	mgA		rix: /ed: 1	Aqueous 1/8/01
Lab #: AB46357 Sample ID: MW-4 un	filtered Chloride EPA 325		Sample Mat	rix: /ed: 1	Aqueous
Lab #: AB46357 Sample ID: MW-4 un Teet Group Name: C	filtered	mg/l Units mg/l	Sample Mat	rix: /ed: 1	Aqueous 1/8/01 Prepared: 11/9/01
Lab #: AB46357 Sample ID: NIW-4 un Teet Group Name: C Analyte Chloride	filtered Chloride EPA 325 Concentration	Units	Sample Mat Date Receiv MDL/PQL 0.98	rix: /ed: 1 Det DF	Aqueous 1/8/01 Prepared: 11/9/01 Date Analyzed 11/9/01
Lab #: AB46357 Sample ID: MW-4 un Teet Group Name: C Analyte Chloride Lab #: AB46359	filtered Chloride EPA 328 Concentration 48	Units	Sample Mat Date Receiv MDL/PQL 0.98	rix: red: 1 Det DF 1	Aqueous 1/8/01 Prepared: 11/8/01 Date Analyzed 11/8/01 Aqueous
Lab #: AB46357 Sample ID: MW-4 un Teet Group Name: C Analyte Chloride Lab #: AB46359 Sample ID: LMW-2 u	filtered Chloride EPA 326 Concentration 48	Units	Sample Mat Date Receiv MDL/PQL 0.98	rrix: /ed: 1 Det DF 1 trix:	Aqueous 1/8/01 Prepared: 11/8/01 Data Analyzed 11/8/01 Aqueous 1/8/01
Lab #: AB46357 Sample ID: MW-4 un Teet Group Name: C Analyte Chloride Lab #: AB46359 Sample ID: LMW-2 u	filtered Chloride EPA 325 Concentration 48 Infiltered Chloride EPA 325	Units mg/l	Sample Mat Date Receiv MDL/PQL 0.98	rrix: /ed: 1 Det DF 1 trix: /ed: 1	Aqueous 1/8/01 Prepared: 11/8/01 Date Analyzed 11/8/01 Aqueous 11/8/01 te Prepared: 11/8/01
Lab #: AB46357 Sample ID: MW-4 un Toet Group Name: Chloride Lab #: AB46359 Sample ID: LMW-2 un Toet Group Name: Analyte	filtered Chloride EPA 328 Concentration 48 Infiltered Chloride EPA 326 Concentration	Units mg/l	Sample Mat Date Receiv MDL/PQL 0.98 Sample Mat Date Receiv	Per la la la la la la la la la la la la la	Aqueous 1/8/01 Prepared: 11/8/01 Date Analyzed 11/8/01 Aqueous 1/8/01 te Prepared: 11/8/01 Date Analyzed
Lab #: AB46357 Sample ID: MW-4 un Teet Group Name: C Analyte Chloride Lab #: AB46359 Sample ID: LMW-2 u	filtered Chloride EPA 325 Concentration 48 Infiltered Chloride EPA 325	Units mg/l	Sample Mat Date Receiv MDL/PQL 0.88 Sample Mat Date Receiv MDL/PQL 0.98	Det DF 1 Det DF 1 DE DF 1 DE DF 1 DF 1	Aqueous 1/8/01 Prepared: 11/8/01 Date Analyzed 11/8/01 Aqueous 11/8/01 be Prepared: 11/8/01 Date Analyzed 11/9/01
Lab #: AB46357 Sample ID: MW-4 un Toet Group Name: Chloride Lab #: AB46359 Sample ID: LMW-2 un Toet Group Name: Analyte	filtered Chloride EPA 328 Concentration 48 Infiltered Chloride EPA 326 Concentration	Units mg/l	Sample Mat Date Receiv MDL/PQL 0.98 Sample Mat Date Receiv MDL/PQL 0.98	Det Det Det Det Det Det Det Det Det Det	Aqueous 1/8/01 Prepared: 11/9/01 Date Analyzed 11/9/01 Aqueous 1/8/01 te Prepared: 11/9/01 Date Analyzed 11/9/01 Aqueous
Lab #: AB46357 Sample ID: MW-4 un Teet Group Name: Chloride Lab #: AB46359 Sample ID: LMW-2 un Teet Group Name: Chloride	filtered Chloride EPA 328 Concentration 48 Infiltered Chloride EPA 328 Concentration 25	Units mg/l	Sample Mat Date Receiv MDL/PQL 0.88 Sample Mat Date Receiv MDL/PQL 0.98	Det Det Det Det Det Det Det Det Det Det	Aqueous 1/8/01 Prepared: 11/8/01 Date Analyzed 11/8/01 Aqueous 11/8/01 be Prepared: 11/8/01 Date Analyzed 11/9/01
Lab #: AB46357 Sample ID: MW-4 un Teet Group Name: C Analyte Chloride Lab #: AB46359 Sample ID: LMW-2 u Teet Group Name: C Analyte Chloride Lab #: AB46361 Sample ID: PC-2 un	filtered Chloride EPA 328 Concentration 48 Infiltered Chloride EPA 328 Concentration 25	Units mg/l	Sample Mat Date Receiv MDL/PQL 0.98 Sample Mat Date Receiv MDL/PQL 0.98	per la la la la la la la la la la la la la	Aqueous 1/8/01 Prepared: 11/9/01 Date Analyzed 11/9/01 Aqueous 1/8/01 te Prepared: 11/9/01 Date Analyzed 11/9/01 Aqueous

Lab Name: Veritech

Data File Name: 83711Z

Lab Code: 14622

Analysis Date: 11/14/01

Batch: 3711

All Concentration Units in PPM except Mercury in PPB

l i	Analyte	MB3711mg/	kg ICB H-01-I	BL CCB	CCB	CCB	1	1		1	[H]
и	-		-				== ==				=
b.	Aluminum	1300.00000	U13.0000000	U 3.0000000	U 3.0000000	U 3.0000000	Ol	. 1		11	P
1	Calcium	1500.00000	U[5.0000000	U 5.0000000	U 5.0000000	U15.0000000	Ol	I		11	P
	Iron	1300.00000	U13.0000000	U13.0000000	U13.0000000	U13.0000000	וט	I		11	P
	Magnesium	1500.00000	U 5.0000000	U 5.0000000	U15.0000000	U15.0000000	וט	- 1		11	P
			U 2.5000000					1		11	P
	Sodium	1500.00000	U 5.0000000	U 5.0000000	U 5.0000000	U 5.0000000	וט	1	1	11	P

FORM III - IN

ILM02.0

Garage Garage

Lab Name: Veritech

Data File Name: S3711B

Lab Code: 14622

Analysis Date: 11/15/2001

Batch: 371

All Concentration Units in PPM except Mercury in PPB

Analyte	MB3711mg/kg ICB M-01-BL CCB	CCB	1		[M]
					=
Zinc	10.000000 U 0.1000000 U 0.100000	0 010.1000000 U		1	IPI

FORM III - IN

ILM02.0

1000

Lab Name: Veritech

Data File Name: 83711A

Lab Code: 14622

Analysis Date: 11/14/2001

Batch: 3711

All Concentration Units in PPM except Mercury in PPB

Analyte	MB3711mg/kg ICB M-01-BL CCB	CCB	I CCB			M =
Antimony Arsenic Barium Beryllium Cadmium Chromium	2.0000000 U 0.0200000 U 0.0200000 U 2.000000 U 0.0200000 U 0.0200000 U 0.0200000 U 0.0200000 U 0.000000 0.000000 U 0.000000 U 0.0000000 0.000000 U 0.0000000 U 0.00000000 U 0.0000000 U 0.0000000 U 0.000000 U 0.000000 U 0.0000000 U 0.000000 U 0.000000 U 0.00000 0.0000 U 0.00000 U 0.00000 U 0.00000 U 0.0000 U 0.00000 U 0	10.0200000 10.1000000 10.0060000 10.0060000	#10.0200000 #10.0200000 #10.000000 #10.0060000 #10.0060000	U U U U U U		P P P P P
Cobalt Copper Lead Manganese Nickel Selenium Silver Thallium Vanadium	2.5000000 10.0250000 10.0250000 15.000000 10.0500000 10.0500000 15.000000 10.0500000 15.000000 10.0500000 16.000000 10.1600000 15.000000 10.0500000 10.0500000 12.0000000 10.0250000 10.0250000 10.0250000 10.0250000 10.0250000 10.0250000 10.0250000 10.0250000 10.0250000 10.0250000 10.0000000 10.0000000 10.0000000 10.00000000 10.00000000 10.0000000 10.0000000 10.0000000 10.000000 10.0000000 10.000000 10.000000 10.000000 10.0000000 10.000000 10.000000 10.000000 10.000000 10.0000000 10.0000000 10.0000000 10.0000000 10.0000000 10.0000000 10.0000000 10.0000000 10.00000000 10.0000000 10.0000000 10.0000000 10.0000000 10.0000000 10.0000000 10.0000000 10.0000000 10.0000000 10.0000000 10.0000000 10.0000000 10.0000000 10.0000000 10.0000000 10.0000000000	710.0500000 710.0500000 710.1600000 710.0500000 710.0250000 710.0250000	0 0.0500000 0 0.0500000 0 0.1600000 0 0.0500000 0 0.0250000 0 0.0250000	01 01 01 01	 	P P P P P

FORM III - IN

Lab Name: Veritech

Data File Name: S3711C

Lab Code: 14622

Analysis Date: 11/15/2001

Batch: 3711

11 Concentration Units in PPM except Mercury in PPB

- Analyte	ICB H-01-BL CCB	CCB	1		1		
	.				1		
Zinc	10.1000000 U[0.1000	000 010.10000000 0	1	!	•	•	, ,,,,,

FORM III - IN

ILM02.0

Herris Herris Herris Herris Herris

3 BLANKS

Lab Name: Veritech

Data File Name: H37118

Lab Code: 14622

Analysis Date: 11/13/2001

Batch: 3711

All Concentration Units in PPM except Mercury in PPB

ė	Analyte	1MD2711mg/k	GLICE	1 CCB	CCB	CCB	I CCB	CCB	ļ.	M
в						0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	# PE00000	1110.850000	0 UI	1101
-	Mercury	10.1419500	UIO.8500000	U[0.8500000	010.850000	00 UIO.8500000	010.850000	, 0,0.00000		

FORM III - IN

ILM02.0

Lab Name: Veritech

Data File Name: S3711A

Lab Code: 14622

Analysis Date: 11/14/2001

ICP sample ID: 46282

Batch: 3711

46282 MS 1 46282 MS 2
and the control of th
pike Matrix Spike 1 Matrix Spike 2 Rec1 Rec2
=======================================
6498 0.4091974 0.5051000
0148 0.5329657 0.5371362 86 87 1 1
9079 1.8978653 2.1255209 59* 105 1 1
0000 U 0.4399730 0.4354666 88 87 P
9061 0.4598217 0.4543246 88 87 1 1
9319 13.9786785 12.2298726 < 0* < 0* P
0811 0.8034972 0.8654999 75 88 P
0 2021002 34* 63* [P]
4 7240716 1420*1101 LIPI
7 5200799 1 99 1 56*11P1
1.7427010 1.5007770 1.5001PI
13929 14.2031900 1 0 4420513 1 06 1 93 1101
1815
0.2324730
20000 01 0.3994420 1 0.394420
5181 1.0351220 1.1720065 54* 81 P

 $^{^{\}star}$ - Indicates the analyte failed the control limit criteria U - Indicates the analyte was not detected

Lab Name: Veritech

Data File Name: S3711B

Lab Code: 14622

Analysis Date: 11/15/2001

ICP sample ID: 46282

Batch: 3711

All Concentration Units in PPM except Mercury in PPB

Analyte Added QC Limits Non Spike Matr	46282 MS 1 46282 MS 2
	1.2394157 1.2165314 49* 44*

 \star - Indicates the analyte failed the control limit criteria U - Indicates the analyte was not detected

Lab Name: Veritech

Data File Name: S3711Z

Lab Code: 14622

Analysis Date: 11/14/01

ICP sample ID: 46282

Batch: 3711

			1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	46282 MS 2	
1	Amt	46282	46282 MS 1	46282 MS 2 Matrix Spike 2	IRec1 Rec2
Analyte	Added QC Limits		Matrix Spike 1	=====================================	==== M
Aluminum Calcium Iron	5.000 75 - 125 5.000 75 - 125 5.000 75 - 125 5.000 75 - 125 50.000 75 - 125 50.000 75 - 125	59.9320000 257.9570000 740.8220000 35.7930000 3.7550000	61.2790000 276.6230000 651.7130000 87.2950000 50.5610000	60.0370000 272.6860000 724.0330000 84.5060000 52.3320000	27* 2.1* P 37* 29* P < 0* < 0* P 103 97 P 94 97 P 105 105 P
Sodium	150.0001 75 - 125	5.0000000 U	52.6860000	32.3300000	1200 1200 1121

 $[\]star$ - Indicates the analyte failed the control limit criteria U - Indicates the analyte was not detected

Lab Name: Veritech

Data File Name: H3711S

Lab Code: 14622

Analysis Date: 11/13/2001

ICP sample ID: 46282

Batch: 3711

ĸ	Amt Analyte Added QC Limits 	= =====================================	ŀ
	Mercury 10.000 75 - 125	1.9467793 11.6942197 11.5464364 97 96 C	1

 $[\]star$ - Indicates the analyte failed the control limit criteria U - Indicates the analyte was not detected

Data File Name: S3711Z Lab Name: Veritech

Analysis Date: 11/14/01 Lab Code: 14622

Batch: 3711 ICP sample ID: LCS 100 MR

				1 11 1
	Spike	QC		
Analyte	Amount	Limits	Found	Rec
	=======	=======================================		= ==== M
Aluminum	9200	5300- 13100	7476.5000000	81 P
Calcium	11700	8740- 14600	11266.6000000	96 P
Iron	13700	8350- 19100	13412.9000000	1 98 P
Magnesium	3070	2280- 3860	2961.9000000	96 P
Potassium	3640	2670- 4610	3241.7000000	89 P
Sodium	863	585- 1140	838.5000000	97 P
•				

 $[\]star$ - Indicates the analyte failed the control limit criteria U - Indicates the analyte was not detected

Lab Name: Veritech

Data File Name: S3711Z

Lab Code: 14622

Analysis Date: 11/14/01

ICP sample ID: LCS 100

Batch: 3711

	Spike	QC			!!
Analyte	Amount	Limits	Found	Reci	
=========	========		== ==================================	= ====	1 1
Aluminum	9200	5300- 1310		73	
Calcium	11700	8740- 1460		97	
Iron	13700	8350- 1910		92	
Magnesium	3070	2280- 386	2920.8000000	1 95 1	
Potassium	3640	2670- 463	10 3112.4000000	86	P
Sodium	863	585- 114	841.7000000	98	P

^{* -} Indicates the analyte failed the control limit criteria

U - Indicates the analyte was not detected

Lab Name: Veritech

Data File Name: S3711B

Lab Code: 14622

Analysis Date: 11/15/2001

ICP sample ID: LCS 100 MR

Batch: 3711

		0.0			1 11 1
	Spike	QC			
13mmlusta	Amount	Limit	S	Found	Rec
Analyte	Allouite	Dimito			= ==== IM1
=========	========	========	=====	=======================================	1 100
•	289		356		99 1121
Zinc	203		• • •		

 $[\]star$ - Indicates the analyte failed the control limit criteria U - Indicates the analyte was not detected

Lab Name: Veritech

Data File Name: S3711B

Lab Code: 14622

Analysis Date: 11/15/2001

ICP sample ID: LCS 100

Batch: 3711

					1 11 1
	Spike	OC			111
		7 2 - 2 4	_	l Found	Rec
Analyte	Amount	Limit			
1		========	=====		== ==== M
=======			0.5.6	000 0200050	1 99 11P1
IZinc	ı 289 i	224-	356	286.8388950	1 33 1151
Dine					

 $[\]star$ - Indicates the analyte failed the control limit criteria U - Indicates the analyte was not detected

Laboratory Control Sample

Lab Name: Veritech

Data File Name: S3711A

Lab Code: 14622

Analysis Date: 11/14/2001

ICP sample ID: LCS 100 MR

Batch: 3711

1	Spike	Ι	QC			
Analyte	Amount	1	Limi	ts	Found Rec	
=========	_========	=	======	_=====		
Antimony	62.7	1	17.1-	141	7010012220 1	P
Arsenic	1 47.5	I	34.4-	60.6	10.000	P
Barium	509	1	392-	626	499.0504250 98	P
Beryllium	55.9	i	43.8-	68.2	55.0792210 99	P
Cadmium	157	i	118-	196	160.2088830 102	PI
Chromium	51.4	i	39.0-	63.7	50.0300870 97	P
Cobalt	88.4	i	68.8-	108	93.6002950 106	P
•	69.5	i	56.9-	82.0	69.8344370 100	P
Copper	186	i	139-	233	184.6526540 99	PI
•	674	i	511-	836	668.7276990 99	PI
Manganese Nickel	1112	1	87.6-	137	116.8759810 104	PI
Selenium	109	i	81.0-	138		IPI
Silver	84.3	ì	54.2-	114	86.7876290 103	PI
,	66.2	1	37.9-	94.7		P
Thallium	1 136		92.6-	179		P
Vanadium	1 130	ļ	92.0-	113	, 200.220200 , 2 = ,	

 $[\]star$ - Indicates the analyte failed the control limit criteria U - Indicates the analyte was not detected

Lab Name: Veritech

Data File Name: S3711A

Lab Code: 14622

Analysis Date: 11/14/2001

ICP sample ID: LCS 100

Batch: 3711

	Spike	QC	,		1	11 1
Analyte	Amount	Limi	ts	Found	Rec	
========		=======	======		====	1 1 1
Antimony	62.7	17.1-	141	74.3152840	1119	P
Arsenic	47.5	34.4-	60.6	49.4333540	1104	P
Barium	509	392-	626	505.8600280	1 99	P
Beryllium	55.9	43.8-	68.2	55.2341050	1 99	P
Cadmium	157	118-	196	160.4580290	102	P
Chromium	51.4	39.0-	63.7	49.3238140	1 96	IP
Cobalt	88.4	68.8-	108	94.3498940	107	P
Copper	69.5	56.9-	82.0	70.0932460	1101	P
Lead	186	139-	233	186.9734300	101	IIPI
Manganese	674	511-	836	670.3345950	99	P
Nickel	112	87.6-	137	115.9901010	104	P
Selenium	109	81.0-	138	110.0356910	1101	P
Silver	84.3	54.2-	114	86.7961920	1103	P
Thallium	66.2	37.9-	94.7	67.3284160	102	IIPI
Vanadium	136	92.6-	179	138.9324400	1102	P

 $[\]star$ - Indicates the analyte failed the control limit criteria U - Indicates the analyte was not detected

Lab Name: Veritech

Data File Name: H3711S

Lab Code: 14622

Analysis Date: 11/13/2001

ICP sample ID: LCS 334

Batch: 3711

1	Spike	QC			1	Π
Analyte	Amount	Limi	ts	Found	Rec	
=========	========	*======	=====		= ====	= M
Mercury	6210	4190-	8230	5536.5276200	89	IICI

 $[\]star$ - Indicates the analyte failed the control limit criteria U - Indicates the analyte was not detected

Analysis Type: CL-W Batch Number: CL-W-8 Cal Curve Date:

Units: mg/l

Calibration Curve Information

		Qc S	ummar	y Res	ults			
Qc Туре	Qc Name	SpkAmt	Rec Lim	Rpd Llm	Raw Result	Recov	Rpd	Flags
CAL-01 CAL-01 CAL-01 DUP MBS MS MSD	CAL-01-11/09/01 CAL-01-11/07/01 CAL-01-10/18/01 AB44274 MBS AB44274 AB44274	50 50 50 NA 50 50 50	90-110 90-110 90-110 NA 75-125 75-125 75-125	NA NA 20 NA NA 20	50.68074 51.66483 50.68074 18.23752 51.17278 67.90235 67.4103	101 103 101 NA 102 102 101	NA NA 3 NA 0.73	

					Per	Raw	Titr Vo	l Smp	DF	NofT	Tit Bik	Prep	Prep	Anal	Anal
Sam #	Туре	MB	Result	Mdl	Sol	Result	l .	Vol				Date	Ву	Date	Ву
AL-01-10/18/01	CAL-01		51		100	50.681	5.2	50	1	0.01388	.05	· · · · · · · · · · · · · · · · · · ·		10/18/01	
/IB-1-10/18/01	MB	MB-1-10/18/01	ND	0.98	100	0	0.05	50	1	0.01388	.05	10/11/01		10/18/01	
B44274	Sample	MB-1-10/18/01	17	0.98	100	16.73	1.75	50	1	0.01388	.05	10/18/01		10/11/01	
B44274	DUP	MB-1-10/18/01	16	0.98	100	16.238	1.7	50	1	0.01388	.05	10/18/01		10/12/01	
B44274	MS	MB-1-10/18/01	68	0.98	100	67.902	6.95	50	1	0.01388	.05	10/11/01		10/18/01	
B44274	MSD	MB-1-10/18/01	67	0.98	100	67.41	6.9	50	1	0.01388	.05	10/12/01		10/18/01	
B44275	Sample	MB-1-10/18/01	27	0.98	100	27.063	2.8	50	1	0.01388	.05	10/18/01	-	10/18/01	
BS	MBS	MB-1-10/18/01	51	0.98	100	51.173	5.25	50	1	0.01388	.05	10/18/01	mg	10/18/01	
AL-01-11/07/01	CAL-01		52		100	51.665	5.3	50	1	0.01388	.05			11/07/01	
	MB	MB-1-11/07/01	ND	0.98	100	0	0.05	50	1	0.01388	.05	11/07/01	4	11/07/01	
(B-1-11/07/01 B46107	Sample	MB-1-11/07/01	8.4	0.98	100	8.3648	0.90	50	1	0.01388	.05	11/07/01		11/07/01	
B46108	Sample	MB-1-11/07/01	65	0.98	100	65,442	6.70	50	1	0.01388	.05	11/07/01		11/07/01	
	Sample	MB-1-11/07/01	22	0.98	100	22,142	2.30	50	1	0.01388	.05	11/07/01		11/07/01	
B46109	Sample	MB-1-11/07/01	32	0.98	100	32,475	3.35	50	1	0.01388	.05	11/07/01	jds	11/07/01	
AL-01-11/09/01	CAL-01	1025-1-1110-1701	51	0.50	100	50.681	5.20	50	1	0.01388	.05			11/09/01	
AB-1-11/09/01	MB	MB-1-11/09/01	ND	0.98	100	0	0.05	50	1	0.01388	.05	11/09/01	jds	11/09/01	
	Sample	MB-1-11/09/01	ND	0.98	100	0	0.05	50	1	0.01388	.05	11/09/01	jds	11/09/01	
AB46236	-	MB-1-11/09/01	22	0.98	100	22.142	2.30	50	1	0.01388	.05	11/09/01	jds	11/09/01	jds
B46349	Sample	MB-1-11/09/01	22	0.98	100	22.142	2.30	50	1	0.01388	.05	11/09/01	jds	11/09/01	jds
AB46351	Sample	MB-1-11/09/01	22	0.98	100	22.142	2.30	50	1	0,01388	.05	11/09/01	jds	11/09/01	jds
AB46353	Sample	MB-1-11/09/01	95	0.98	100	94.965	9.70	50	1	0.01388	.05	11/09/01	jds	11/09/01	
B46355	Sample	MB-1-11/09/01	48	0.98	100	48.221	4.95	50	1	0.01388	.05	11/09/01	jds	11/09/01	jds
AB46357	Sample	MB-1-11/09/01	25	0.98	100	25.094	2.60	50	1	0.01388	.05	1 1/09/01	jds	11/09/01	
AB46359	•	MB-1-11/09/01	70	0.98	100	70.363	7.20	50	1	0.01388	.05	11/09/01	jds	11/09/01	
AB46361	Sample	MB-1-11/09/01	110	0.98	100	111.2	11.35	50	1	0.01388	.05	11/09/01	jds	11/09/01	jds
AB46399	Sample	MB-1-11/09/01	220	0.98	100	215.52	21.95	50	1	0.01388	.05	11/09/01	jds	11/09/01	
AB46401	Sample	MB-1-11/09/01	200	0.98	100	197.8	20.15	50	1	0.01388		11/09/01	jds	11/09/01	
AB46403	Sample	MB-1-11/09/01	170	0.98	100	171.72	17.50	50	1	0.01388		11/09/01	jds	11/09/01	
AB46405	Sample	MB-1-11/09/01	150	0.98	100	145.15	14,80	50	1	0.01388		11/09/01	jds	11/09/01	jds
AB46407	Sample	M2B-1-11/09/01	94	0.98		94.473	9.65	50	1	0.01388		11/09/0	jds	11/09/01	jds
AB46410	Sample	MIND-1-11/VNVI	79	0.70	100	77.713	7.05								

Flag Codes: Ra - Recovery failed specified criteria (PVS/MBS/MSD/ICV/CAL)

Na - Not Applicable

Rp - RPD failed specified criteria.

Nc - Not Checked ..either one or both values =ND

Analysis Type: CL-S Batch Number: CL-S-7 Cal Curve Date:

Units: mg/kg

Calibration Curve Information

Qc Summary Results Rpd Llm Raw Rec Rpd Flags Recov SpkAmt Qc Name Result Qc Type Lim CAL-01-11/16/01 AB46367 MBS AB46367 AB46367 50 NA 500 568 1818 568,1818 90-110 NA 75-125 75-125 75-125 53.96 48.40909 536.05 633.3523 657.5568 106 NA 107 111 116 CAL-01 DUP MBS MS MSD

						1											
Sam #	Туре	MB	Result	Mdl	Per Sol	Resul		Titr Vol2	DF	Smp Vol	Smp	Fln V	ol NofT	Prep Date	Prep By	Anal Date	Anal By
CAL-01-11/16/01	CAL-01		54		100	53.96	3.22	1.70	1	50	100	100	.025			11/16/01	ges
MB-1-11/15/01	MB	MB-1-11/15/01	ND	50	100	31.95	0.21	0.12	1	50	10	100	.025	11/15/01	ges	11/16/01	ges
		MB-1-11/15/01	ND	57	88	56,477	0.31	0.17	1	50	10	100	.025	11/15/01	ges	11/16/01	
AB46367	Sample DUP	MB-1-11/15/01	ND	57	88	48,409	0.27	0.15	1	50	10	100	.025	11/15/01	ges	11/16/01	ges
AB46367	MS	MB-1-11/15/01	630	57	88	633,35	3.16	1.59	1	50	10	100	.025	11/15/01	ges	11/16/01	ges
AB46367	MSD	MD-1-11/15/01	660	57	88	657.56	3.21	1.58	1	50	10	100	.025	11/15/01	ges	11/16/01	ges
AB46367		MB-1-11/15/01	540	50	100	536.05	3.33	1.82	1	50	10	100	.025	11/15/01	ges	11/16/01	ges
MBS	MBS	MB-1-11/15/01	150	66	76	154.14	0.64	0.31	i	50	10	100	.025	11/15/01	ges	11/16/01	ges
AB46363	Sample	MB-1-11/15/01	89	74	68	88.75	0.40	0.23	i	50	10	100	.025	11/15/01	ges	11/16/01	ges
AB46365 AB46369	Sample Sample	MB-1-11/15/01	ND	62		43.827	0.19	0.09	1	50	10	100	.025	11/15/01	ges	11/16/01	ges

Flag Codes: Ra - Recovery failed specified criteria (PVS/MBS/MS/MSD/ICV/CAL)

Na - Not Applicable

Rp - RPD failed specified criteria.

Nc - Not Checked ..either one or both values =ND

Analysis Type: SOLIDS Batch Number: SOLIDS-237

Cal Curve Date:

Units: Percent

Calibration Curve Information

		WC 0	CHILITIES	1100	TO THE			
Qc Type	Qc Name	SpkAmt	Rec	Rpd Llm	Raw Result	Recov	Rpd	Flags
DUP	AB46334	NA	NA	20	97.87234	NA	0.69	

			1													
Sam #	Туре	MB	Result	Mdl	Per	Raw		Tare Wet	Tare Dry		Prep Date	Ргер Ву	Anal Date	Anal By		
			98	-	100	97.872	1	10.4	10,2				11/09/01			
AB46334	DUP		97		100	97.196	1	11.7	11.4				11/09/01			
AB46334	Sample		97		100	96.875	1	10.6	10.3				11/09/01			
AB46335	Sample				100	98,214	i	12.2	12.0				11/09/01			
AB46336	Sample		98		100	96.842	1	10.5	10.2				11/09/01			
AB46337	Sample		97				1	11.4	11.1				11/09/01	jw		
AB46338	Sample		97		100	97.115	1	11.7	11.4				11/09/01	jw		
AB46339	Sample		97		100	97.196	1		10.5				11/09/01	iw		
AB46340	Sample		88		100	87,963	1	11.8					11/09/01	iw		
AB46341	Sample		96		100	96.46	1	12.3	11.9				11/09/01			
AB46342	Sample		95		100	95.098	1	11.2	10.7				11/09/01	4		
AB46343	Sample		96		100	96.078	1	11.2	10.8				11/09/01			
AB46344	Sample		97		100	97.115	1	11.4	11.1				11/09/01			
AB46345	Sample		97		100	96,939	1	10.8	10.5				11/09/01			
AB46305	Sample		89		100	89,474	1	10.5	9.5				11/09/01			
	Sample		90		100	90.11	1	10.1_	9.2				11/09/01			
AB46306	Sample		92		100	92.035	1	12.3	11.4							
AB46347			92		100	91,667	1	10.6	9.8				11/09/01			
AB46348	Sample		90		100	90	1	11.0	10.0				11/09/01			
AB44523	Sample		76		100	75.701	1	11.7	9.1				11/12/01			
AB46363	Sample		88		100	88.172	1	10.3	9.2				11/12/01			
AB46423	Sample		84		100	83.654	1	11.4	9.7				11/12/01	MG		
AB46434	Sample		84		100	35,054										

Flag Codes: Ra - Recovery failed specified criteria (PVS/MBS/MSD/ICV/CAL)

Na - Not Applicable

Rp - RPD failed specified criteria.

No - Not Checked ..either one or both values =ND

Analysis Type: SOLIDS Batch Number: SOLIDS-245

Cal Curve Date:

Units: Percent

Calibration Curve Information

 Qc Summary Results

 Qc Type
 Qc Name
 SpkAmt
 Rec Lim
 Rpd Result
 Recov
 Rpd Flags

 DUP
 AB46365
 NA
 NA
 20
 66,94915
 NA
 2.2

Sam #	Туре	MB	Result	Mdi	Per Sol	Raw Result		Tare Wet	Tare Dry	Prep Date	Prep By	Anal Date	Anal By
B46365	DUP		67		100	66.949	1	12.8	8.9			11/12/01	
\B46365	Sample		68		100	68.421	1	12.4	8.8			11/12/01	
B46367	Sample		88		100	87.5	1	10.6	9.4			11/12/01	
B46369	Sample		81		100	81.481	1	11.8	9.8			11/12/01	
B46389	Sample		85		100	85.455	1	12.0	10.4			11/12/01	
B46390	Sample		85		100	85.106	1	10.4	9.0			11/12/01	
B46391	Sample		86		100	85,567	1	10.7	9.3			11/12/01	
B46392	Sample		84		100	84.112	1	11.7	10.0			11/12/01	
B46628	Sample		74		100	74.312	1	11.9	9.1			11/12/01	
B46629	Sample		81		100	81.111	1	10.0	8.3			11/12/01	
B46630	Sample		83		100	82.796	1	10.3	8.7			11/12/01	
B46631	Sample		84		100	84	1	11.0	9.4			11/12/01	
B46647	Sample		96		100	95.69	1	12.6	12.1			11/13/01	
B46648	Sample		95		100	95,37	1	11.8	11.3				JW/M
B46649	Sample		96		100	95.833	1	10,6	10.2			11/13/01	
B46650	Sample		96		100	96.296	1	11.8	11.4				JW/M
B46651	Sample		98		100	97.917	1	10,6	10.4			11/13/01	
B46652	Sample		96		100	96.33	1	11.9	11.5				JW/M
B46654	Sample		86		100	86.17	1	10.4	9.1				JW/M
B46534	Sample		38		100	38.462	1	12.7	5.5				jw/mg
B46554	Sample		95		100	94,792	1	10.6	10.1			11/13/01	jw/mg

Flag Codes: Ra - Recovery failed specified criteria (PVS/MBS/MSM/SD/ICV/CAL)

Na - Not Applicable

Rp - RPD falled specified criteria.

No - Not Checked ..either one or both values =ND

Hampton-Clarke, Inc. veritech laboratories

175 Route 46 West, Unit D Fairfield, NJ 07004 (973) 244-9770 Federal ID: 222679402

Lawler, Metusky & Skelly Engineers

Format: NYDOH-CatA

Project: Harrison Landfill

PO Number: 446-156

Samples submitted on: 11/9/01

AB46503 AB46504 AB46505 AB46506 AB46507 AB46508

> Environmental Chemistry Section

DEC 2 1 2001

Date: 12/7/01

HCI Project: 11091737

CT #: PH-0671 MA #: NJ386 NJ #: 14622 NY #: 11408 PA #: 68-463

SDG Narrative

Project: NYSDOT Harrison LF

Job: 446-156

Hampton-Clarke, Inc. (HCI) received the following Lawler, Metusky & Skelly Engineers samples on November 8, 2001:

LMS#	HCI#	Type	Analysis
PC-3 (w) unfiltered	AB46503	Aqueous	TAL-METALS (6010B), HG (7470A), CHLORIDE (EPA 325)
PC-3 (w) filtered	AB46504	Aqueous	TAL-METALS (6010B), HG (7470A)
PC-4 (w) unfiltered	AB46505	Aqueous	TAL-METALS (6010B), HG (7471A), CHLORIDE (EPA 325)
PC-4 (w) filtered	AB46506	Aqueous	TAL-METALS (6010B), HG (7470A)
LMW-1(w) unfiltered	AB46507	Aqueous	TAL-METALS (6010B), HG (7470A), CHLORIDE (EPA 325)
LMW-1(w) filtered	AB46508	Aqueous	TAL-METALS (6010B), HG (7470A)

To meet the necessary detection limits for the Aqueous samples, the samples were concentrated during the digestion step (200ml to 100 ml). This step is evident on the result page, were the dilution factor is indicated as 0.5

All metals sample results have been reported to the MDL, as requested by the client, to achieve the detection limits as listed in the ASP Standards. The Method blanks and continuing calibration blanks are based upon the PQL criteria.

Problems associated with these analyses are as follows:

Metals

For Batch 3713

The serial dilution exceeded the RPD criteria for vanadium. This suggests that there may be some matrix interference occurring in the sample.

No other problems were encountered in the analysis of these samples.

Wet Chemistry

No problems were encountered in the analysis of these samples.

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package and in the computer-readable data submitted on floppy diskette has been authorized by the Laboratory Manager or his designee, as verified by the following signature.

Stan Gilewicz, Laboratory Director

Date

12/20/01

+1081749 11091737

Veritech, 175 Route 46 West, Fairfield, NJ 07004 A Division of HAMPTON-CLARKE, INC. NJDEPE # 14622

CHAIN OF CUSTODY RECORD

PHONE (800) 426-9992 FAX (973) 439-1458

CUSTOMED INFORMATION	R	EPORT INFORMATI	ON	PROJECT IN	FORMATION
CUSTOMER INFORMATION CUSTOMER: MS ENGINEERS ADDRESS: PEARC RUCERNY TELEPHONE: (845) 73-83-83 FAX: (843) FAX: (843) FROJECT: HARRISON LANDENI PROJECT MANAGER: TOTA SCHM. 63-87 PROJECT LOCATION: HARRISON, NA STATE: PO NUMBER: 446-136		TO: MAIZIA HEL Blue HIM PINZ River NY 108	CNZ	TURNAROUND INFIRM RUSH TAT'S WITH LAB) STARDARD RUSH 24 HOURS 100% 48 HOURS 75% 72 HOURS 50% 1 WEEK 25% 10 DAYS 10%	DELIVERABLES (PLEASE CHECK BOX) STANDARD FULL WASTE BUST NJ REDUCED EXCEL HAZSITE CUSTOM ELECTRONIC DELIVERABLE OTHER (SPECIFY)
		ANALYTICAL REQUI	ESTS		<u></u>
LAB SAMPLE NUMBER (LAB USE ONLY)	DATE # 311108	COLLECTED COMPOSITE(C)	No. of Bottles		ALYSIS
AB46503 DC 3 U	11/8	5 1100 XW 1	2	Metals (Total	4 F. 16002) + C1-
46505 PC-4 F		1000			
46308 CMW-1- F	W	1130	V		
		La. U.	Tout !		
SAMPLER CERTIFIES THAT EACH SAMPLE RE	CEIVED PROPER FI	ELD PRESERVATION (IF	REQUIRED)		(INITIALS) MUP
SAMPLE HAZARDS: FLAMMABLE	SKIN IRRITANT	NON-HAZARD	UNKNOWN	NOXIOUS FU	
SPECIAL INSTRUCTIONS: LAB F. 1685 &		V. Herez Meka		A-1	RE UPON RECEIPT: (()
AGENT OF:	the	DATE / TIME 11/8 3000	RECEIVED BY: AGENT OF: RECEIVED BY:	amore hat	DATE/TIME
RELINQUISHED BY: AGENT OF:	(7		AGENT OF:		HCI 11/9/01/1000

CONDITION UPON RECEIPT FORM Veritech Date Received: Filed By: DM Client: Project/Account: Harrison Landfill Veritech Project # YES NO INITIAL CONDITIONS Is there a corresponding Chain of Custody included with the samples? Are the samples in a container such as a cooler or ice chest? [3] Are the custody seals intact? IF NO, please circle one of the following: missing broken N.A. [4] Please specify the temperature inside the container. °C YES NO SAMPLE INFORMATION [5] Are the samples properly refrigerated (where required), have they arrived on ice? [6] Are the samples within holding times for the parameters listed on the COC? If NO, list parameters and associated samples: [7] Are all of the sample bottles intact? If NO, specify sample numbers below: broken: leaking: [8] Are all of the sample labels or numbers legible? If NO, specify: [9] Do the contents of the container match the COC? If NO, specify: Is there enough sample sent for the analyses listed on the COC? If NO, specify: [11] Are the samples preserved correctly (see Preservation Form for actual pH readings)? Are all soil VO(NJ) samples properly preserved in methanol with the correct soil weights (8g - 12g) and accompanied by dry soil? **OTHER** Specify:

NO. ACTION CORRECTIVE ACTIONS

PRESERVATION DOCUMENTATION

Date Received	11/9/01	Filed By	RM	
Client	LMS	Project	Harrison Landfill	
Veritech Project #				No.

SAMPLE ID:	CONTAINER SIZE	CONTAINER TYPE (PG)	PARAMETER	PRESERVATIVE	pН
PC-3	11	ρ	Metals	HN03	1
PC-3 PC-4				1	1
LMW-1	1		1	1	1.
	-				

INTER AL CHAIN OF CUSTODY RECORD	•	REFRIGERATOR #12
CHANGE / MIS		

Location:

COMMENTS

				REMOVED:				RETURNED:	
TEST	SAMPLE No.	DATE	TIME	SIGNATURE	ALTERNATE	DATE	TIME	SIGNATURE	ALTERNATE
[D-12] WHE		11/13/07	0810	Om.		11/13/01	1509	Om.	
metals fitation	2-4610486,08	11/0/0	11	11		(1	10	Dha	
Chloriole	465503,05,07	11.16.01	9:05	me		14.16.01	12:00	Mg	
				0				0	
A									
:									

FOR LOGIN BATCH

AB 46503-508

Lab Name: Veritech Data File Name: W3713A1

Lab Code: 14622 Analysis Date: 11/15/01

Matrix: Water Lab Sample ID: AB46503

Client ID: PC-3 unfiltered

Level: low/med . Dilution: 0.5 Batch: 3713 % Solid: 0

Concentration Units: ug/L

Cas No. Analyte		1	MDL	Concentration	M
	-				
17440360	Antimony	1	1.7	U	I P_
7440393	Barium	1	0.17	530	P_
17440417	Beryllium	1	0.026	U	P_
7440439	Cadmium	1	0.18	U	P
17440702	Calcium	1	11	150000	IP_
17440473	Chromium		0.80	68	P_
7440484	Cobalt	1	0.14	22	P
7439896	Iron	1	20	45000	P_
17439954	Magnesium	1	3.6	53000	P_
17439965	Manganese		0.79	710	I P
17440020	Nickel	1	0.21	45	I P
17782492	Selenium		2.4	1 11	P_
17440224	Silver	1	0.30	l n	P_
17440280	Thallium	1	1.6	U	P_
17440622	Vanadium	1	0.49	110	I P
7440666	Zinc	1	7.9	100	P_

U - Indicates compound not found above detection/reporting limit

* - Indicates compound above calibration range

P - Indicates analyzed by ICP(OPTIMA 3000DV)

CV - Indicates analyzed by Cold Vapor

Comments:	

FORM I - IN

ILM02.0

Take.

Lab Name: Veritech

Data File Name: W3713Z

Lab Code: 14622

Analysis Date: 11/16/01

Matrix: Water

Lab Sample ID: AB46503

Client ID: PC-3 unfiltered

Level: low/med Batch: 3713 Dilution: 0.5 % Solid: 0

Concentration Units: ug/L

	Analyte	MDL	Concentration	M
•	Potassium Sodium	48 110	12000 110000	P P

U - Indicates compound not found above detection/reporting limit

* - Indicates compound above calibration range

P - Indicates analyzed by ICP(ARL 3560)

CV - Indicates analyzed by Cold Vapor

comments:	
_	

FORM I - IN

ILM02.0

Lab Name: Veritech

Data File Name: W3713A2

Lab Code: 14622

Analysis Date: 11/15/01

Matrix: Water

Batch: 3713

Lab Sample ID: AB46503

Level: low/med

Client ID: PC-3 unfiltered

Dilution: 0.5 % Solid: 0

Concentration Units: ug/L

Cas No.	Analyte	1	MDL	Concentrat	ion M
17440508	Copper	i	0.34	1 110	P_
17439921	Lead	1	0.79	1 13	P_
i					1

U - Indicates compound not found above detection/reporting limit

* - Indicates compound above calibration range

P - Indicates analyzed by ICP(OPTIMA 3000DV)

CV - Indicates analyzed by Cold Vapor

Comments:	

FORM I - IN

ILM02.0

A Share

Lab Name: Veritech

Data File Name: W3713C

Lab Code: 14622

Analysis Date: 11/20/01

Matrix: Water

Lab Sample ID: AB46503

Client ID: PC-3 unfiltered

Level: low/med Batch: 3713 Dilution: 0.5 % Solid: 0

Concentration Units: ug/L

Cas No.	Analyte	MDL	Concentration	M
17429905	Aluminum	8.0	35000	P_
7440382	Arsenic	2.0	3.3	P

U - Indicates compound not found above detection/reporting limit

* - Indicates compound above calibration range

P - Indicates analyzed by ICP(OPTIMA 3000DV) CV - Indicates analyzed by Cold Vapor

Comments:	

FORM I - IN

ILM02.0

ah	Name:	Veritech	Data	File	Name:	H3713SW

Lab Code: 14622 Analysis Date: 11/15/2001

Matrix: Water Lab Sample ID: AB46503

Client ID: PC-3 unfiltered

Level: low/med Dilution: 1
Batch: 3713 % Solid: 0

Concentration Units: Ug/L

Cas No.			MDL		centration	M
17439976		-	0.23	-		ICVI
1/439970	Mercury	'	0.23	1	Ü	1011

U - Indicates compound not found above detection/reporting limit

* - Indicates compound above calibration range P - Indicates analyzed by ICP(OPTIMA 3000DV)

CV - Indicates analyzed by Cold Vapor

comments:			

FORM I - IN

ILM02.0

Deg (

Lab Name: Veritech

Data File Name: W3713A1

Lab Code: 14622

Analysis Date: 11/15/01

Matrix: Water

Lab Sample ID: AB46504

Level: low/med Batch: 3713

Client ID: PC-3 filtered

Dilution: 0.5 % Solid: 0

Concentration Units: ug/L

Cas No. Analyte		1	MDL	Concentration	M
	-	1			
7440360	Antimony	1	1.7	l ū	IP_
17440393	Barium		0.17	340	P_
17440417	Beryllium	1	0.026	U	P_
17440439	Cadmium		0.18	1 0.33	P_
17440702	Calcium		11	160000	P
17440473	Chromium		0.80	9.1	P_
7440484	Cobalt	1	0.14	2.1	P_
17439896	Iron	1	20	83	P
17439954	Magnesium	i	3.6	47000	P
17439965	Manganese	i	0.79	560	P
17440020	Nickel	i	0.21	2.9	P
17782492	Selenium	i	2.4	U	P
17440224	Silver	1	0.30	U	P
17440280	Thallium	i	1.6	5.2	P
17440622	Vanadium	i	0.49	23	P
17440666	Zinc	1	7.9	U	P_

U - Indicates compound not found above detection/reporting limit

Comments:	
-	

FORM I - IN ILM02.0

^{* -} Indicates compound above calibration range

P - Indicates analyzed by ICP(OPTIMA 3000DV)

CV - Indicates analyzed by Cold Vapor

Lab Name: Veritech

Data File Name: W3713Z

Lab Code: 14622

Analysis Date: 11/16/01

Matrix: Water

Lab Sample ID: AB46504

Client ID: PC-3 filtered

Level: low/med Batch: 3713

Dilution: 0.5 % Solid: 0

Concentration Units: ug/L

	Analyte	MDL	Concentration	M
7440097	Potassium	48	9000	P
7440235	Sodium	110		P

U - Indicates compound not found above detection/reporting limit

* - Indicates compound above calibration range

P - Indicates analyzed by ICP(ARL 3560)

CV - Indicates analyzed by Cold Vapor

Comments:	

FORM I - IN

ILM02.0

MS.

Lab Name: Veritech

Data File Name: W3713A2

Lab Code: 14622

Analysis Date: 11/15/01

Matrix: Water

Lab Sample ID: AB46504

Level: low/med Batch: 3713

Client ID: PC-3 filtered
Dilution: 0.5
% Solid: 0

Concentration Units: ug/L

Cas No.	Analyte	MDL	Concentration	M
7440508	Copper	0.34	U	P_
7439921	Lead		U	P_

U - Indicates compound not found above detection/reporting limit

* - Indicates compound above calibration range P - Indicates analyzed by ICP(OPTIMA 3000DV)

CV - Indicates analyzed by Cold Vapor

Comments:	

FORM I - IN

ILM02.0

Lab Name: Veritech

Data File Name: W3713C

Lab Code: 14622

Analysis Date: 11/20/01

Matrix: Water

Lab Sample ID: AB46504

Client ID: PC-3 filtered

Level: low/med Batch: 3713 Dilution: 0.5 % Solid: 0

Concentration Units: ug/L

Cas No.	Analyte	1	MDL	Concentration	M
7429905 7440382	Aluminum Arsenic		8.0 2.0	48 U	P P

U - Indicates compound not found above detection/reporting limit

* - Indicates compound above calibration range P - Indicates analyzed by ICP(OPTIMA 3000DV)

CV - Indicates analyzed by Cold Vapor

Comments:	

FORM I - IN

ILM02.0

12/5

Lab Name: Veritech

Data File Name: H3713SW

Lab Code: 14622

Analysis Date: 11/15/2001

Matrix: Water

Lab Sample ID: AB46504

Client ID: PC-3 filtered

Level: low/med Batch: 3713

Dilution: 1 % Solid: 0

Concentration Units: Ug/L

Cas No. Analyte	Concentration	
 7439976 Mercury	U	CV

U - Indicates compound not found above detection/reporting limit

* - Indicates compound above calibration range P - Indicates analyzed by ICP(OPTIMA 3000DV)

CV - Indicates analyzed by Cold Vapor

Comments:	

FORM I - IN

ILM02.0

Lab Name: Veritech

Data File Name: W3713A1

Lab Code: 14622

Analysis Date: 11/15/01

Matrix: Water

Lab Sample ID: AB46505

Clie

Client ID: PC-4 unfiltered

Level: low/med Batch: 3713 Dilution: 0.5 % Solid: 0

Concentration Units: ug/L

Cas No.	Analyte	1	MDL	Concentration	M
1	-1				
17440360	Antimony	i	1.7	U	P_
17440393	Barium	1	0.17	260	P
7440417	Beryllium	1	0.026	U	1 P_
7440439	Cadmium	1	0.18	U	P
17440702	Calcium	i	11	34000	P_
7440473	Chromium	1	0.80	81	P_
17440484	Cobalt	1	0.14	12	IP_
17439896	Iron	1	20	31000	P_
17439954	Magnesium	1	3.6	19000	P
17439965	Manganese	1	0.79	290	P_
17440020	Nickel	Ĺ	0.21	73	P_
17782492	Selenium	i	2.4	1 12	IP_
17440224	Silver	i	0.30	l u	P_
17440280	Thallium	i	1.6	U	I P
17440622	Vanadi.um	1	0.49	73	P
7440666	Zinc	i	7.9	91	P
1					

U - Indicates compound not found above detection/reporting limit

Comments:				
	FORM I	- TN	ILM02.0	

125

^{* -} Indicates compound above calibration range

P - Indicates analyzed by ICP(OPTIMA 3000DV)

CV - Indicates analyzed by Cold Vapor

Lab Name: Veritech

Data File Name: W3713Z

Lab Code: 14622

Analysis Date: 11/16/01

Matrix: Water

Lab Sample ID: AB46505

Client ID: PC-4 unfiltered

Level: low/med Batch: 3713

Dilution: 0.5 % Solid: 0

Concentration Units: ug/L

Cas No.	Analyte	1	MDL	Concentration	M	1
 7440097 7440235	Potassium Sodium	1 1	48	8900 48000	P P	-

U - Indicates compound not found above detection/reporting limit

* - Indicates compound above calibration range

P - Indicates analyzed by ICP(ARL 3560)

CV - Indicates analyzed by Cold Vapor

omments:				
	FORM I	- IN	ILM02.0	

FORM I - IN

Lab Name: Veritech

Data File Name: W3713A2

Lab Code: 14622

Analysis Date: 11/15/01

Matrix: Water

Lab Sample ID: AB46505

Client ID: PC-4 unfiltered

Level: low/med Batch: 3713

Dilution: 0.5 % Solid: 0

Concentration Units: ug/L

Cas No.	Analyte		MDL	ncentration	
7440508 7439921	Copper Lead		0.34	47 15	P_ P_

U - Indicates compound not found above detection/reporting limit

* - Indicates compound above calibration range P - Indicates analyzed by ICP(OPTIMA 3000DV)

CV - Indicates analyzed by Cold Vapor

Comments:	

FORM I - IN

ILM02.0

12/50

Lab Name: Veritech

Data File Name: W3713C

Lab Code: 14622

Analysis Date: 11/20/01

Matrix: Water

Lab Sample ID: AB46505

Client ID: PC-4 unfiltered

Level: low/med Batch: 3713 Dilution: 0.5 % Solid: 0

Concentration Units: ug/L

Cas No.	Analyte	MDL	Concentration	M
 7429905 7440382	Aluminum Arsenic	8.0 2.0	21000	P_ P_

U - Indicates compound not found above detection/reporting limit

* - Indicates compound above calibration range P - Indicates analyzed by ICP(OPTIMA 3000DV)

CV - Indicates analyzed by Cold Vapor

Comments:	

FORM I - IN

ILM02.0

17/5

Lab Name: Veritech	Data	File	Name:	H3713SW
--------------------	------	------	-------	---------

Lab Code: 14622 Analysis Date: 11/15/2001

Matrix: Water Lab Sample ID: AB46505

Client ID: PC-4 unfiltered

Level: low/med Dilution: 1
Batch: 3713 % Solid: 0

Concentration Units: Ug/L

Cas No.	Analyte	MDL	Concentration	M
17439976	Mercury	0.23		CV
1			detection/report	tine 1

U - Indicates compound not found above detection/reporting limit

* - Indicates compound above calibration range P - Indicates analyzed by ICP(OPTIMA 3000DV)

CV - Indicates analyzed by Cold Vapor

omments:		
	FORM I - IN	TT.M02 0

12/30

Lab Name: Veritech

Data File Name: W3713A1

Lab Code: 14622

Analysis Date: 11/15/01

Matrix: Water

Lab Sample ID: AB46506

Client ID: PC-4 filtered

Dilution: 0.5

Level: low/med Batch: 3713

% Solid: 0

Concentration Units: ug/L

Cas No.	Analyte	1	MDL	Ic	oncentration	M
 7440360	Antimony		1.7	-	υ	I P
17440393	Barium		0.17	1	100	P
17440417	Beryllium	i	0.026	1	U	P
17440439	Cadmium	1	0.18	1	U	P
7440702	Calcium	İ	11	1	36000	P
7440473	Chromium	i	0.80	1	4.9	P
17440484	Cobalt	1	0.14	1	0.56	I P
17439896	Iron	1	20	-	84	P
17439954	Magnesium	İ	3.6	1	12000	l P
17439965	Manganese	İ	0.79	- 1	80	P
17440020	Nickel	1	0.21	1	11	P
17782492	Selenium	1	2.4	1	U	P
17440224	Silver	i	0.30	1	U	P
17440280	Thallium	1	1.6	1	U	1P
17440622	Vanadium	i	0.49	1	17	IP.
17440666	Zinc	1	7.9	1	9.1	I P

U - Indicates compound not found above detection/reporting limit

Comments:				
	FORM I -	IN	ILM02.0	

^{* -} Indicates compound above calibration range

P - Indicates analyzed by ICP(OPTIMA 3000DV)

CV - Indicates analyzed by Cold Vapor

Lab Name: Veritech

Data File Name: W3713Z

Lab Code: 14622

Analysis Date: 11/16/01

Matrix: Water

Lab Sample ID: AB46506

Client ID: PC-4 filtered

Level: low/med Batch: 3713 Dilution: 0.5 % Solid: 0

Concentration Units: ug/L

Cas No.	Analyte	1	MDL	Concentration	M
 7440097 7440235	Potassium Sodium	-	48 110	5300	P P

U - Indicates compound not found above detection/reporting limit

* - Indicates compound above calibration range

P - Indicates analyzed by ICP(ARL 3560)

CV - Indicates analyzed by Cold Vapor

Comments:	•	 	

FORM I - IN

ILM02.0

Maga

Lab Name: Veritech

Data File Name: W3713A2

Lab Code: 14622

Analysis Date: 11/15/01

Matrix: Water

Lab Sample ID: AB46506

Client ID: PC-4 filtered

Level: low/med Batch: 3713

Dilution: 0.5 % Solid: 0

Concentration Units: ug/L

Cas No.	Analyte	ļ	MDL	Cor	centration	n M
 7440508 7439921	Copper Lead		0.34		1.7 U	P_ P_

U - Indicates compound not found above detection/reporting limit

* - Indicates compound above calibration range P - Indicates analyzed by ICP(OPTIMA 3000DV)

CV - Indicates analyzed by Cold Vapor

Comments:				

FORM I - IN

ILM02.0

Alle Politice

Lab Name: Veritech

Data File Name: W3713C

Lab Code: 14622

Analysis Date: 11/20/01

Matrix: Water

Lab Sample ID: AB46506

Client ID: PC-4 filtered

Level: low/med Batch: 3713 Dilution: 0.5 % Solid: 0

Concentration Units: ug/L

Cas No.	Analyte	İ	MDL	Co	ncentration	M
7429905 7440382	Aluminum Arsenic		8.0		120	P P

U - Indicates compound not found above detection/reporting limit

* - Indicates compound above calibration range P - Indicates analyzed by ICP(OPTIMA 3000DV)

CV - Indicates analyzed by Cold Vapor

Comments:	

FORM I - IN

ILM02.0

Ank.

Lab Name: Veritech

Data File Name: H3713SW

Lab Code: 14622

Analysis Date: 11/15/2001

Matrix: Water

Lab Sample ID: AB46506

Client ID: PC-4 filtered

Level: low/med Batch: 3713

Dilution: 1

% Solid: 0

Concentration Units: Ug/L

Cas No. Analyte		100110011011	
 7439976 Mercury	0.23	U	CV

U - Indicates compound not found above detection/reporting limit

* - Indicates compound above calibration range

P - Indicates analyzed by ICP(OPTIMA 3000DV)

CV - Indicates analyzed by Cold Vapor

Comments:	

FORM I - IN

Lab Name: Veritech

Data File Name: W3713A1

Lab Code: 14622

Analysis Date: 11/15/01

Matrix: Water

Lab Sample ID: AB46507

Client ID: LMW-1 unfiltered

Dilution: 0.5 % Solid: 0

Level: low/med Batch: 3713

Concentration Units: ug/L

Cas No.	Analyte	1	MDL	Concentration	M
	-				
17440360	Antimony	1	1.7	l ū	P_
17440393	Barium	1	0.17	200	P_
17440417	Beryllium	1	0.026	U	P_
17440439	Cadmium	1	0.18) U	P_
17440702	Calcium	1	11	30000	P_
17440473	Chromium	1	0.80	60	P_
17440484	Cobalt	1	0.14	8.3	P_
17439896	Iron	1	20	24000	P_
17439954	Magnesium	1	3.6	1 16000	P_
17439965	Manganese		0.79	210	P_
17440020	Nickel	1	0.21	54	P_
17782492	Selenium	1	2.4	5.0	P_
17440224	Silver	1	0.30	l U	P_
17440280	Thallium	1	1.6	l U	P
17440622	Vanadium	1	0.49	1 58	P_
17440666	Zinc	1	7.9	67	P_

U - Indicates compound not found above detection/reporting limit

* - Indicates compound above calibration range

P - Indicates analyzed by ICP(OPTIMA 3000DV)

CV - Indicates analyzed by Cold Vapor

comments:				
	FORM I	- IN	ILM02.0	

17/4

Lab Name: Veritech

Data File Name: W3713Z

Lab Code: 14622

Analysis Date: 11/16/01

Matrix: Water

Lab Sample ID: AB46507

Level: low/med

Client ID: LMW-1 unfiltered

Dilution: 0.5

Batch: 3713

% Solid: 0

Concentration Units: ug/L

Cas No. Ana	lyte	MDL	Concentration	M
7440097 Pota	assium	48	7400	P_
7440235 Sod	ium	110	45000	P_

U - Indicates compound not found above detection/reporting limit

* - Indicates compound above calibration range

P - Indicates analyzed by ICP(ARL 3560)

CV - Indicates analyzed by Cold Vapor

Comments:		

FORM I - IN

Lab Name: Veritech

Data File Name: W3713A2

Lab Code: 14622

Analysis Date: 11/15/01

Matrix: Water

Lab Sample ID: AB46507

Client ID: LMW-1 unfiltered

Level: low/med

Batch: 3713

Dilution: 0.5 % Solid: 0

Concentration Units: ug/L

Cas No.	Analyte		MDL	Co	ncentration	M
17440508	Copper	ĺ	0.34	1	33	1P
17439921	Lead	1	0.79	1	8.2	P_
1						

U - Indicates compound not found above detection/reporting limit

* - Indicates compound above calibration range

P - Indicates analyzed by ICP(OPTIMA 3000DV)

CV - Indicates analyzed by Cold Vapor

comments:			
Onuncii co .			

FORM I - IN

Lab Name: Veritech

Data File Name: W3713C

Lab Code: 14622

Analysis Date: 11/20/01

Matrix: Water

Lab Sample ID: AB46507

Client ID: LMW-1 unfiltered

Level: low/med Batch: 3713

Dilution: 0.5 % Solid: 0

Concentration Units: ug/L

Cas No.	Analyte	ı	MDL	Concentration	M
		-1			11
17429905	Aluminum	1	8.0	16000	IP I
17440382	Arsenic	1	2.0	4.1	P
ŧ					_1

U - Indicates compound not found above detection/reporting limit

* - Indicates compound above calibration range

P - Indicates analyzed by ICP(OPTIMA 3000DV)

CV - Indicates analyzed by Cold Vapor

mments:	 	 	

FORM I - IN

ILM02.0

A STATE OF THE STA

Lab Name: Veritech

Data File Name: H3713SW

Lab Code: 14622

Analysis Date: 11/15/2001

Matrix: Water

Lab Sample ID: AB46507

% Solid: 0

Client ID: LMW-1 unfiltered

Dilution: 1 Level: low/med Batch: 3713

Concentration Units: Ug/L

Cas No.	Analyte	MDL	Concentration	M
				-
17439976	Mercury	0.23	U	CV
1				1

U - Indicates compound not found above detection/reporting limit

* - Indicates compound above calibration range P - Indicates analyzed by ICP(OPTIMA 3000DV)

CV - Indicates analyzed by Cold Vapor

FORM I - IN ILM02.0

Lab Name: Veritech

Data File Name: W3713A1

Lab Code: 14622

Analysis Date: 1/15/01

Matrix: Water

Lab Sample ID: AB46508

Level: low/med Batch: 3713

Client ID: LMW-1 filtered
Dilution: 0.5
% Solid: 0

Concentration Units: ug/L

Cas No.	Analyte	1	MDL	Concentration	M
		-			
17440360	Antimony	l	1.7	ľ	P
17440393	Barium	1	0.17	1 120	P
7440417	Beryllium	1	0.026) U	P
7440439	Cadmium	1	0.18	0.34	P
17440702	Calcium	1	11	36000	P
17440473	Chromium	1	0.80	1.7	P
17440484	Cobalt	1	0.14	0.94	P
17439896	Iron	1	20	140	P
17439954	Magnesium	1	3.6	12000	P
7439965	Manganese	1	0.79	82	P
17440020	Nickel	1	0.21	10	IP I
17782492	Selenium	1	2.4	U	P
17440224	Silver	1	0.30	U	P
17440280	Thallium	1	1.6	U	P
17440622	Vanadium	1	0.49	18	IP I
17440666	Zinc		7.9	U	P_
1					

U - Indicates compound not found above detection/reporting limit

^{* -} Indicates compound above calibration range

P - Indicates analyzed by ICP(OPTIMA 3000DV)

CV - Indicates analyzed by Cold Vapor

Lab Name: Veritech

Data File Name: W3713Z

Lab Code: 14622

Analysis Date: 11/16/01

Matrix: Water

Lab Sample ID: AB46508

Client ID: LMW-1 filtered

Level: low/med Batch: 3713

Dilution: 0.5 % Solid: 0

Concentration Units: ug/L

Cas No.	Analyte	1	MDL	Concentration	M
17440097	Potassium	-	48	5200	 P
7440235	Sodium	İ	110	51000	P_

U - Indicates compound not found above detection/reporting limit

* - Indicates compound above calibration range

P - Indicates analyzed by ICP(ARL 3560) CV - Indicates analyzed by Cold Vapor

Comments:			
Container CS.			

FORM I - IN

Lab Name: Veritech

Data File Name: W3713A2

Lab Code: 14622

Analysis Date: 11/15/01

Matrix: Water

Lab Sample ID: AB46508

Level: low/med Batch: 3713

Client ID: LMW-1 filtered

Dilution: 0.5 % Solid: 0

Concentration Units: ug/L

Cas No.	Analyte	MDL	Concentration	M
7440508	Copper	0.34	2.3	P
7439921	Lead		U	P

U - Indicates compound not found above detection/reporting limit

* - Indicates compound above calibration range P - Indicates analyzed by ICP(OPTIMA 3000DV)

CV - Indicates analyzed by Cold Vapor

Comments:	

FORM I - IN

Lab Name: Veritech

Data File Name: W3713C

Lab Code: 14622

Analysis Date: 11/20/01

Matrix: Water

Lab Sample ID: AB46508 Client ID: LMW-1 filtered

Level: low/med

Batch: 3713

Dilution: 0.5 % Solid: 0

Concentration Units: ug/L

Cas No.	[Analyte	1	MDL	Conc	entration	M
7429905 7440382	Aluminum Arsenic		8.0		υ υ	P_

U - Indicates compound not found above detection/reporting limit

* - Indicates compound above calibration range

P - Indicates analyzed by ICP(OPTIMA 3000DV)

CV - Indicates analyzed by Cold Vapor

Comments:	3:	

FORM I - IN

Lab Name: Veritech

Data File Name: H3713SW

Lab Code: 14622

Analysis Date: 11/15/2001

Matrix: Water

Lab Sample ID: AB46508

Client ID: LMW-1 filtered

Level: low/med Dilution: 1
Batch: 3713 % Solid: 0

Concentration Units: Ug/L

Cas No.	Analyte	-	MDL	*	centration	M
17439976	Mercury		0.23		U	CV
1						!

U - Indicates compound not found above detection/reporting limit

* - Indicates compound above calibration range P - Indicates analyzed by ICP(OPTIMA 3000DV)

CV - Indicates analyzed by Cold Vapor

Comments:	
	-

FORM I - IN

Lab Name: Veritech

Data File Name: W3713A1

Lab Code: 14622

Analysis Date: 11/15/01

Batch: 3713

All Concentration Units in PPM except Mercury in PPB

					1000	1000		1	1 1 2 2 2 2
Analyte) ICB MOIBLE	-	CCB	CCB	I CCB	1	1	M
E		_					=		-11-1
Antimony		U 0.0150000							P
Barium	10.0500000	U 0.0500000	U 0.0500000	U 0.0500000	U 0.0500000	U 0.0500000	וט	1	P
Beryllium	10.0150000	U 0.0150000	U 0.0150000	U 0.0150000	U 0.0150000	U 0.0150000	וט	1	IIPI
Cadmium	10.0035000	U10.0035000	U 0.0035000	U 0.0035000	U10.0035000	U 0.0035000	וט	1	P
Calcium		U12.0000000						1	IP
Chromium		U 0.0500000						1	IIP
Cobalt		U 0.0200000						1	IIPI
Iron		UI 0.2750000						i	IIPI
		U 2.0000000							IIPI
Manganese		U 0.0400000						•	IIPI
Nickel		U10.0500000							IP
•		U10.0400000						•	IP
Selenium		U10.0200000							IIPI
Silver								•	I P
Thallium		U 0.0100000							
Vanadium		U 0.0500000						*	P
Zinc	10.0500000	U 0.0500000	U 0.0500000	U 0.0500000	U 0.0500000	U[0.0500000	וט	1	P

FORM III - IN

Lab Name: Veritech

Data File Name: W3713Z

Lab Code: 14622

Analysis Date: 11/16/01

Batch: 3713

All Concentration Units in PPM except Mercury in PPB

Analyte MB 3713 (1) ICB M-	01-BLICCB IC	CCB CCB	CCB	1	[[M]
				-	-
Potassium 2.0000000 U 2.0000					P
Sodium 2.0000000 U 2.0000	000 U 2.0000000 U 2	2.0000000 012.000000	00 012.0000000	וס	

FORM III - IN

Lab Name: Veritech

Data File Name: W3713A2

Lab Code: 14622

Analysis Date: 11/15/01

Batch: 3713

All Concentration Units in PPM except Mercury in PPB

			(1) ICB M01BL		CCB	CCB	CCB	1	[M]
н	9	•	•	•	*				=
			00.0500000						P
٠.	Lead	10.008000	00000000000	alo.00800000	u10.0080000	010.0080000	alo.0080000	וט	P

FORM III - IN

Lab Name: Veritech

Data File Name: W3713C

Lab Code: 14622

Analysis Date: 11/20/01

Batch: 3713

All Concentration Units in PPM except Mercury in PPB

Analyte	MB 3713 (1) ICB HOIBLE	2 CCB	CCB	I CCB	I CCB	1		1 [11]
Aluminum	10.1800000	U 0.1800000 U 0.0075000	U 0.1800000 T	010.1800000	U 0.1800000	000000 וט	וס		= = P P

FORM III - IN

Lab Name: Veritech

Data File Name: H3713SW

Lab Code: 14622

Analysis Date: 11/15/2001

Batch: 3713

All Concentration Units in PPM except Mercury in PPB

Analyte	MB 3713 (1) ICB	[CCB	I CCB	I CCB	1	1	
		1	•		=		========= =
Mercury	10.7000000 U10.7000000	J 0.7000000 T	710.7000000 t	10.7000000	U	1	l lici

FORM III - IN

Lab Name: Veritech

Data File Name: W3713A1

Lab Code: 14622

Analysis Date: 11/15/01

ICP sample ID: 46349

Batch: 3713

		Amt		1	46349		46349 MS 1	1	46349 MS	2			
	Analyte	Added	QC Limits	1	Non Spike	- 1	Matrix Spike 1	I	Matrix Spike		Recl	•	
	=========	======	========	===		==		=	=========	==	====	•	M
	Antimony	0.5000	75 - 125	1	0.0150000	U	0.4767580	1	0.4772500	1	95	95	P
	Barium	0.5000	75 - 125	1	0.0707480	1	0.5281630	-	0.5387950		91	94	P
ŀ	•	10.5000	75 - 125		0.0150000	U	0.4621210	1	0.4642820		92	93	P
		10.5000	75 - 125	1	0.0035000	U	0.4644320	1	0.4659760		93	93	IIP
	Calcium	150.000	75 - 125		90.7910000	- 1	129.9380000	- 1	132.6850000		78	84	P
	Chromium	10.5000	75 - 125	1	0.0500000	Ul	0.4680770	-	0.4714250	-	94	94	P
п	Cobalt	10.5000	75 - 125	1	0.0200000	U	0.4727920	1	0.4744900	1	95	95	P
	Iron	1 5.000	75 - 125	1	2.4711100		6.8039100	- 1	6.9795000	- 1	87	90	P
	Magnesium	150.000	75 - 125	1	31.4600000	1	77.7773000	-1	79.2094000	-	93	95	P
	Manganese	10.5000	75 - 125	1	0.3745030	-	0.8255200	-	0.8647130		90	98	P
1	Nickel	10.5000	75 - 125	1	0.0500000	U	0.4669400	-	0.4688490	- 1	93	94	P
	Selenium	10.5000	75 - 125	1	0.0400000	U	0.4751710	1	0.4838130	1	95	97	P
	Silver	10.5000	75 - 125	-	0.0200000	U	0.4593220	-	0.4648610		92	93	P
	Thallium	10.5000	75 - 125	1	0.0100000	U	0.4904010	1	0.4911370		98	98	P
	Vanadium	10.5000		1	0.0500000	U	0.4807180		0.4865670		96	97	P
	Zinc	10.5000	75 - 125	1	0.0500000	U	0.4932140	1	0.4961040		99	99	P

 $[\]star$ - Indicates the analyte failed the control limit criteria U - Indicates the analyte was not detected

Lab Name: Veritech

Data File Name: W3713Z

Lab Code: 14622

Analysis Date: 11/16/01

ICP sample ID: 46349

Batch: 3713

•	1	Amt		46349	46349 MS 1 46349 MS 2	111
Ė	Analyte	Added	QC Limits	Non Spike	Matrix Spike 1 Matrix Spike 2 Rec1 Re	:c2
	=======================================	=====	========	=======================================		== M
)	Potassium	150.000	75 - 125	8.3090000	57.4670000 58.5010000 98 10	0 P
	Sodium	150.0001	75 - 125	40.1830000	86.3560000 88.7080000 92 9	7 P

^{* -} Indicates the analyte failed the control limit criteria

U - Indicates the analyte was not detected

Lab Name: Veritech

Data File Name: W3713A2

Lab Code: 14622

Analysis Date: 11/15/01

ICP sample ID: 46349

Batch: 3713

 Analyte	Amt Added QC Limits	46349 Non Spike	46349 MS 1 Matrix Spike 1	•	, , , ,
======= Copper		0.0500000		0.4941280 0.4793660	98 99 P 95 96 P

^{* -} Indicates the analyte failed the control limit criteria

U - Indicates the analyte was not detected

Lab Name: Veritech

Data File Name: W3713C

Lab Code: 14622

Analysis Date: 11/20/01

ICP sample ID: 46349

Batch: 3713

	Amt	l	46349	46349 MS 1	46349 MS 2	11
Analyte	Added	QC Limits	Non Spike	Matrix Spike 1	Matrix Spike 2 Rec1 Rec2	1 1
	======					M
Aluminum	1 5.000	75 - 125	1.1515800	6.0022300	6.1081000 97 99	P
Arsenic	10.5000	75 - 125	0.0075000 U	0.4933450	0.4945560 99 99	P

^{* -} Indicates the analyte failed the control limit criteria

U - Indicates the analyte was not detected

Lab Name: Veritech

Data File Name: H3713SW

Lab Code: 14622

Analysis Date: 11/15/2001

ICP sample ID: 46351

Batch: 3713

_	1	1 7	Amt				46:	351	1	46351	MS	1	1 463	51 M	IS 2	2			11	T
_	Analyte	1	Added	QC	Lin	nits	No	n Spike	Mat	rix Sp	ike	1	Matrix	Spik	e 2	2 1	Rec1	Rec	211	1
K	========	==	=====	===	===	====	=====		== ===		====	==			===	== :	====	===	=]	M
5	Mercury	110	0.0001	75	-	125	0.0	0000000	U	9.429	2674		8.0	8200	32	1	94	81	. 11	CI

 $[\]mbox{\scriptsize \star}$ - Indicates the analyte failed the control limit criteria U - Indicates the analyte was not detected

7 Laboratory Control Sample

Lab Name: Veritech

Data File Name: W3713A1

Lab Code: 14622

Analysis Date: 11/15/01

ICP sample ID: LCSW

Batch: 3713

	Spike	QC		1 11 1
Analyte	Amount	Limits	Found	Rec
========	========	=========	=== =================================	== === M
Antimony	0.5000	75-125	0.5051150	101 P
Barium	0.5000	75-125	0.4997820	100 P
Beryllium	0.5000	75-125	0.4953730	99 P
Cadmium	0.5000	75-125	0.4948970	99 P
Calcium	50.000	75-125	48.9418000	98 P
Chromium	0.5000	. 75-125	0.4955680	99 P
Cobalt	0.5000	75-125	0.5095640	102 P
Iron	5.000	75-125	5.0897000	102 P
Magnesium	50.000	75-125	51.4330000	103 P
Manganese	0.5000	75-125	0.5189020	104 P
Nickel	0.5000	75-125	0.5018140	100 P
Selenium	0.5000	75-125	0.4998360	100 P
Silver	0.5000	75-125	0.4860200	97 P
Thallium	0.5000	75-125	0.5161750	103 P
Vanadium	0.5000	75-125	0.5059080	101 P
Zinc	0.5000	75–125	0.5025400	101 P

^{* -} Indicates the analyte failed the control limit criteria

U - Indicates the analyte was not detected

Lab Name: Veritech

Data File Name: W3713Z

Lab Code: 14622

Analysis Date: 11/16/01

ICP sample ID: LCSW

Batch: 3713

	Spike	QC	1 11 1
Analyte	Amount	Limits	Found Rec
	=======		====== M
Potassium	50.000	75-125	53.6520000 107 P
Sodium	50.000	75-125	54.6600000 109 P

^{* -} Indicates the analyte failed the control limit criteria

U - Indicates the analyte was not detected

Lab Name: Veritech

Data File Name: W3713A2

Lab Code: 14622

Analysis Date: 11/15/01

ICP sample ID: LCSW

Batch: 3713

	Spike	QC	
Analyte	Amount	Limits	Found Rec
=========	========		========= ==== M
Copper	0.5000	75-125	0.4993960 100 P
Lead	0.5000	75-125	0.4962060 99 P

^{* -} Indicates the analyte failed the control limit criteria

U - Indicates the analyte was not detected

Lab Name: Veritech

Data File Name: W3713C

Lab Code: 14622

Analysis Date: 11/20/01

ICP sample ID: LCSW

Batch: 3713

1	1	Spike	QC		1	111
Analyte	1	Amount	Limits	Found	Red	1 11
	1:	========			= ====	M =
Aluminum		5.000	75-125	4.9068100	1 98	P
Arsenic	1	0.5000	75-125	0.5036920	1101	P

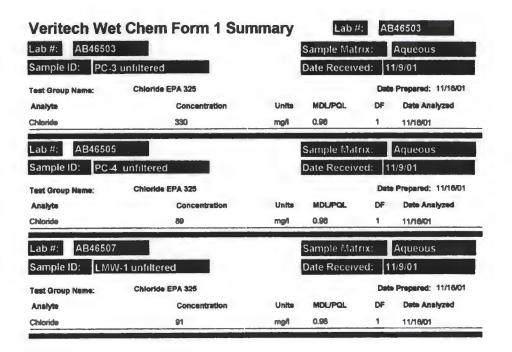
^{* -} Indicates the analyte failed the control limit criteria

U - Indicates the analyte was not detected

Lab Name: Veritech

Data File Name: H3713SW

Lab Code: 14622


Analysis Date: 11/15/2001

ICP sample ID: LCSW

Batch: 3713

T	Spike	1 00			1	TIT
Analyte	Amoun	t Limi	ts	Found	Red	
========	======	== =======	===== ====		====	= M
Mercury	10.00	0 75-1	25	9.1055238	91	1101

 $^{^{\}star}$ - Indicates the analyte failed the control limit criteria U - Indicates the analyte was not detected

Analysis Type: CL-W Batch Number: CL-W-9

Cal Curve Date: Units: mg/l

Calibration Curve Information

Qc Summary Results

Qc Type	Qc Name	SpkAmt	Rec Lim	Rpd Lim	Raw Result	Recov	Rpd	Flags
CAL-01	CAL-01-11/16/01	50	90-110	NA	49.69665	99	NA	
CAL-01	CAL-01-11/09/01	50	90-110	NA	50.68074	101	NA	
DUP	AB46412	NA	NA	20	85.12395	NA	1.2	
MBS	MB8	50	75-125	NA	51.66483	103	NA	
MS	AB46412	50	75-125	NA	135.3127	102	NA	
MSD	AB46412	50	75-125	20	133.3445	98	1.5	

Sam #		MB	Result Mo												
	Туре			Mdl	Per Sol	Raw Result		Vol	DF	NofT	Tit Bik	Prep Date	Prep By	Anai Date	Anal By
CAL-01-11/09/01	CAL-01		51		100	50.681	5.20	50	1	0.01388	.05			11/09/01	
MB-1-11/09/01	MB	MB-1-11/09/01	ND	0.98	100	0	0.05	50	1	0.01388	.05	11/09/01		11/09/01	
AB46412	Sample	MB-1-11/09/01	84	0.98	100	84.14	8.60	50	1	0.01388	.05	11/09/01		11/09/01	
AB46412	DUP	MB-1-11/09/01	85	0.98	100	85.124	8.70	50	1	0.01388	.05	11/09/01		11/09/01	
AB46412	MS	MB-1-11/09/01	140	0.98	100	135.31	13.80	50	1	0.01388	.05	11/09/01		11/09/01	
AB46412	MSD	MB-1-11/09/01	130	0.98	100	133.34	13.60	50	1	0.01388	.05	11/09/01	jds	11/09/01	jds
MBS	MBS	MB-1-11/09/01	52	0.98	100	51.665	5.30	50	1	0.01388	.05	11/09/01		11/09/01	
AB46414	Sample	MB-1-11/09/01	77	0.98	100	77.251	7.90	50	1	0.01388	.05	11/09/01		11/09/01	
AB46416	Sample	MB-1-11/09/01	37	0.98	100	37.395	3.85	50	1	0.01388	.05	11/09/01	jds	11/09/01	jds
AB46418	Sample	MB-1-11/09/01	190	4.9	100	191.9	3.95	10	1	0.01388	.05	11/09/01	jds	11/09/01	jds
CAL-01-11/16/01	CAL-01		50		100	49.697	5.1	50	1	0.01388	.05			11/16/01	mg
AB-1-11/16/01	MB	MB-1-11/16/01	ND	0.98	100	0	0.05	50	1	0.01388	.05	11/16/01	mg	11/16/01	mg
B46498	Sample	MB-1-11/16/01	3400	980	100	3444.3	0.4	0.05	1	0.01388	.05	11/16/01		11/16/01	
AB46500	Sample	MB-1-11/16/01	3400	980	100	3444.3	0.4	0.05	1	0.01388	.05	11/16/01	mg	11/16/01	mg
AB46502	Sample	MB-1-11/16/01	1200	490	100	1230.1	0.3	0.1	1	0.01388	.05	11/16/01		11/16/01	mg
AB46503	Sample	MB-1-11/16/01	330	0.98	100	333.12	33.9	50	1	0.01388	.05	11/16/01	mg	11/16/01	mg
AB46505	Sample	MB-1-11/16/01	89	0.98	100	89.06	9.I	50	1	0.01388	.05	11/16/01	mg	11/16/01	mg
AB46507	Sample	MB-1-11/16/01	91	0.98	100	91.029	9.3	50	1	0.01388	.05	11/16/01	mg	11/16/01	mg
AB46660	Sample	MB-1-11/16/01	68	0.98	100	68.394	7.0	50	1	0.01388	.05	11/16/01	mg	11/16/01	mg
AB46661	Sample	MB-1-11/16/01	25	0.98	100	25,094	2.6	50	1	0.01388	.05	11/16/01	mg	11/16/01	mg
AB46662	Sample	MB-1-11/16/01	110	0.98	100	113.66	11.6	50	1	0.01388	.05	11/16/01	mg	11/16/01	mg
AB46663	Sample	MB-1-11/16/01	170	0.98	100	172.71	17.6	50	1	0.01388	.05	11/16/01		11/16/01	
AB46664	Sample	MB-1-11/16/01	130	0.98	100	132.36	13.5	50	1	0.01388	.05	11/16/01	mg	11/16/01	mg
JB46665	Sample	MB-1-11/16/01	ND	0.98	100	0	0.05	50	1	0.01388	.05	11/16/01		11/16/01	mg
XB46666	Sample	MB-1-11/16/01	110	0.98	100	108.74	11.1	50	1	0.01388	.05	11/16/01		11/16/01	mg
AB46667	Sample	MB-1-11/16/01	4700	490	100	4674.4	1.0	0.1	1	0.01388	.05	11/16/01	mg	11/16/01	mg
AB46668	Sample	MB-1-11/16/01	36000	2000	100	36411	1.9	0.025	1	0.01388	.05	11/16/01	mg	11/16/01	mg
AB46669	Sample	MB-1-11/16/01	2400	49	100	2386.4	4.9	1.0	1	0.01388	.05	11/16/01	mg	11/16/01	me

Flag Codes: Ra - Recovery failed specified criteria (PVS/MBS/MS/MSD/ICV/CAL)

Na - Not Applicable

Rp - RPD failed specified criteria.

Nc - Not Checked ..either one or both values =ND