

Enclosure 1 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

Site No. 3	60035	Site Details		Box 1	
Site Name Harr	ison Subresidency				
Site Address: Ro City/Town: Harri County: Westches Site Acreage: 5.0	son ster	ode:			
Reporting Period	September 15, 2006	6 to May 14, 2010			
				YES	NO
1. Is the informa	ation above correct?			×	
If NO, include	handwritten above o	r on a separate sheet.		,	
	all of the site property ndment during this Re	been sold, subdivided, merged, eporting Period?	or undergone a		×
	en any change of use R 375-1.11(d))?	at the site during this Reporting F	Period		×
	eral, state, and/or loc roperty during this Re	al permits (e.g., building, discharg porting Period?	e) been issued		×
		s 2 thru 4, include documentati eviously submitted with this ce			
5. Is the site cur	rently undergoing dev	velopment?			X
				Box 2	
				YES	NO
6. Is the current	site use consistent w	ith the use(s) listed below?		X	
7. Are all ICs/E0	S in place and function	oning as designed?		×	
IF THE		R QUESTION 6 OR 7 IS NO, sign a MPLETE THÈ REST OF THIS FOR		nd	
A Corrective Mea	sures Work Plan mus	t be submitted along with this fo	rm to address th	iese iss	ues.
Signature of Owne	r, Remedial Party or D	esignated Representative	Date		

SITE NO. 360035 Box 3

Description of Institutional Controls

<u>Parcel</u>

<u>Owner</u>

Institutional Control

971-22

NYS Department of Transportation

O&M Plan

Box 4

Description of Engineering Controls

<u>Parcel</u> 971-22 **Engineering Control**

Cover System

Fencing/Access Control

Control Description for Site No. 360035

Parcel: 971-22

The NYSDOT is conducting operation and maintenance of the landfill which includes surface water, sediment and groundwater monitoring and visual inspections of the cover material. Landfill inspections are conducted semi-annually and groundwater samples are collected every fifth quarter.

	Periodic Review Report (PRR) Certification Statements
1.	I certify by checking "YES" below that:
	 a) the Periodic Review report and all attachments were prepared under the direction of, and reviewed by, the party making the certification;
	b) to the best of my knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the site remedial program, and generally accepted
	engineering practices; and the information presented is accurate and compete. YES NO
	X □
2.	If this site has an IC/EC Plan (or equivalent as required in the Decision Document), for each Institutional or Engineering control listed in Boxes 3 and/or 4, I certify by checking "YES" below that all of the following statements are true:
	(a) the Institutional Control and/or Engineering Control(s) employed at this site is unchanged since the date that the Control was put in-place, or was last approved by the Department;
	(b) nothing has occurred that would impair the ability of such Control, to protect public health and the environment;
	 (c) access to the site will continue to be provided to the Department, to evaluate the remedy, including access to evaluate the continued maintenance of this Control;
	(d) nothing has occurred that would constitute a violation or failure to comply with the Site Management Plan for this Control; and
	(e) if a financial assurance mechanism is required by the oversight document for the site, the mechanism remains valid and sufficient for its intended purpose established in the document.
	YES NO
	X ¬
	IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM.
4	A Corrective Measures Work Plan must be submitted along with this form to address these issues.
;	Signature of Owner, Remedial Party or Designated Representative Date

IC CERTIFICATIONS SITE NO. 360035

Box 6

SITE OWNER OR DESIGNATED REPRESENTATIVE SIGNATURE

I certify that all information and statements in Boxes 2 and/or 3 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

at 4 Burnett Blud., Poughteepsic, NY 12603 print name print business address

am certifying as owner (NYSDoT) (Owner or Remedial Party)

for the Site named in the Site Details Section of this form.

Signature of Owner or Remedial Party Rendering Certification

Date

IC/EC CERTIFICATIONS

Box 7

Qualified Environmental Professional Signature

I certify that all information in Boxes 4 and 5 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

at <u>H Burnett Blud., Poughtreepsie, NY 126,03</u>
print name print business address

am certifying as a Qualified Environmental Professional for the WYSDOT

(Owner or Remedial Party)

Signature of Qualified Environmental Professional, for the Owner or Remedial Party, Rendering Certification

1 Houthan Sut

Stamp (Required for PE)

11/23/10 Date

Site Management Periodic Review Report NYSDOT Harrison Sub-Residency Harrison, New York Site Number 360035 May 11, 2010

Introduction

The New York State Department of Transportation (DOT) Harrison sub-residency site is located east of Route 120 and west of the Westchester County Airport in the Town of Harrison, Westchester County (see Figures 1 and 2).

Currently, there are two environmental concerns at the Harrison sub-residency:

- a 2.6 acre landfill, which is listed in the New York State Registry of Inactive Hazardous
 Waste Sites and is classified as a "Category 4", meaning that it has been remediated and
 only ongoing monitoring is required, and
- a "closed, does not meet standards" petroleum spill (#94-07349) which, at present, still requires monitoring.

Over the past ten years, results from extensive environmental monitoring (surface water, groundwater, sediment, landfill gas, petroleum-remediation gas emissions) indicate that these areas do not represent a significant threat to the environment, including the nearby Kensico Reservoir.

Site History

The Harrison sub-residency facility was built in 1967 to support the construction and operation of Interstate 684. Roadside and highway construction debris were disposed on-site in a landfill between 1967 and 1976. The area was fenced in 1972. In April 1993 a 55-gallon drum of road striping paint was removed from the landfill during a test pit excavation. Because the paint contained toluene (a solvent), the site was placed on the New York State Registry of Inactive Hazardous Waste Sites.

DOT consulted with the New York State Department of Environmental Conservation (DEC) and the New York State Department of Health (DOH) and performed an expedited, comprehensive investigation (i.e., Preliminary Site Assessment) of the landfill and its vicinity in 1995. Several drums containing hazardous or suspected hazardous waste, mostly paint products, were encountered and removed from the landfill. Based on the results of the investigation, DEC, DOH and DOT indicated that the landfill was not a significant threat to the reservoir.

After consulting with DEC, DOH, and the New York City Department of Environmental Protection (DEP), the landfill was re-graded and capped in accordance with stringent DEC landfill closure requirements on August 31, 1999. The cap includes a durable polyethylene liner to prevent the infiltration of water and subsequent leaching of contaminants into the

environment. A small stream that drains into the reservoir was rerouted around the landfill so that it could not act as a collector trench for contaminants (see Figure 3). The plastic liner extends beneath the repositioned stream, so that any leachate generated within the fill cannot discharge into surface water. Environmental monitoring results have shown no evidence of toxic contaminants from the landfill with the potential of reaching the reservoir.

DOT also identified a petroleum spill at the vicinity of the fuel tank area. With DEC approval, in August 1994, DOT removed three underground petroleum storage tanks (two 400-gallon and one 2000-gallon), 130 cubic yards of contaminated soil, and 8,000 gallons of contaminated water. There are currently no tanks remaining on this property. Monitoring results at the petroleum spill area suggested that the spill had not migrated off-site and was not a significant threat to the reservoir.

Landfill monitoring has been conducted on a quarterly basis since 2000. In February 2010, with concurrence from DOH and DEP, DEC granted permission to DOT to change this frequency to semi-annually. These monitoring reports have been and continue to be submitted to DEC, DOH and DEP.

Beginning in 2000, DOT completed quarterly groundwater, surface water, and sediment sampling and reports at the landfill area, and groundwater sampling and reports at the petroleum spill area. The quarterly reports changed to every-5th quarter reports in October 2005. These reports have been and continue to be submitted to DEC, DOH and DEP.

At the request of DOH and in coordination with DEC, a sub-slab soil gas investigation was conducted in March 2006 at two locations within the sub-residency building beneath the concrete slab foundation (see Figure 17). The purpose of the sub-slab soil gas investigation was to assess the potential for vapor intrusion into the sub-residency building from the potential presence of volatile organic compounds in the groundwater and/or sub-surface soil adjacent to and/or beneath the building. DEC reviewed the results of the sub-slab investigation and concluded that the low levels of site-related volatile organic compounds detected in the sub-slab vapor of the sub-residency building indicated that the potential for exposure to site-related compounds via indoor vapor intrusion was unlikely. In addition, the presence of non-site related compounds at the levels detected in the sub-slab soil vapor did not represent an exposure concern considering the current use of the building.

<u>Institutional and Engineering Controls</u>

Air Sparge/Soil Vapor Extraction System

On October 31, 2000, DOT started operating an Air Sparge/Soil Vapor Extraction (AS/SVE) system at the petroleum spill area. This system was highly successful: a 90% overall reduction of contaminants was achieved in less than a year due to volatilization and bioremediation of the petroleum product. Because contaminant levels significantly decreased in the first year and then remained relatively constant (i.e., natural attenuation processes were/are effectively reducing and containing the plume), and it was agreed that the maximum benefits of the

system had been achieved, the remedial system was taken off-line in October 2002. The pipes were plugged by DOT Maintenance in October 2006.

In March 2008, DEC determined that the remedial work performed at the site, specifically the past operations of the AS/SVE system and the monitoring program which is ongoing, had addressed the open spill number 94-07349. The spill was declared "Closed, does not meet standards". (The official spill closure date is 10/10/02, which is when the AS/SVE system was shut down). The ongoing monitoring program serves to document the status of the residual contamination.

In May –June 2008, after discussions among DOT, DEC, DOH, and DEP, thirteen (13) wells in the petroleum spill area were "closed" or decommissioned. In June of 2008, two new wells were installed (see Figures 7-9).

Fence

The Harrison sub-residency site is secured with a fence and a locked gate. There is also a fence surrounding the entire perimeter of the landfill. The Town of Harrison operates a leaf transfer station at the Harrison sub-residency. The Town operates out of the old sub-residency garage that is on-site. While the Town is not involved in the groundwater monitoring or landfill inspections, they are responsible for maintaining the area where they work. Any damage to the landfill fence is noted on the quarterly (now semi-annual) landfill inspection reports. Any necessary repairs to the fence are made by DOT. On occasion, the Town of Harrison has been asked to fix portions of the fence that have been damaged by their operations.

Landfill Cap

The landfill was re-graded and capped in accordance with stringent DEC landfill closure requirements on August 31, 1999. The cap includes a durable polyethylene liner to prevent the infiltration of water and subsequent leaching of contaminants into the environment. Minor erosion on the western slope of the landfill became an issue in 2006 (see Figure 16). DOT Region 8 Maintenance applied wood chips to the area in the Spring of 2007. A permanent fix to the erosion/soil slump took place in May 2009 when it was repaired by DOT Residency 8-9 personnel. Approximately 6 inches of #2 crushed stone (NYSDOT Standard Spec. 623.12) was placed on the slump then covered with approximately 12 inches of fine stone fill (NYSDOT Standard Spec. 620.02). Repair suggestions were provided by the DOT Region 8 Geotechnical Group.

Operations and Maintenance Plan

An Operations and Maintenance (O+M) plan was developed by DOT when well sampling and landfill monitoring began. The O+M plan has been updated throughout the years as necessary and is always shared with and agreed upon by DEC, DOH, and DEP. The most current O+M plan is dated February 2010 (see Figure 10).

Please see the attached figures for more information:

- Figure 1 Site Location Map 1
- Figure 2 Site Location Map 2
- Figure 3 Site Map
- Figure 4 Groundwater Sample Locations Landfill
- Figure 5 Surface Water and Sediment Sample Locations Landfill
- Figure 6 Gas Vent Locations Landfill
- Figure 7 Landfill and Petroleum Spill Area Monitoring Well Locations as of June 2008
- Figure 8 Petroleum Spill Area Monitoring Well Locations as of June 2008
- Figure 9 Petroleum Spill Area Historic Well Locations
- Figure 10 Operations and Maintenance Plan for the Landfill and Petroleum Spill Area
- Figure 11 Groundwater Data Summary Petroleum Spill Area January 2010
- Figure 12 Groundwater Data Summary Landfill Area January 2010
- Figure 13 Surface Water Data Summary Landfill Area January 2010
- Figure 14 Sediment Data Summary Landfill Area January 2010
- Figure 15 Monitoring Well Historic Data Summary (May 2000 October 2008) (10 pages)
- Figure 16 Erosion Area Landfill Area January 2008
- Figure 17 Proposed Soil Vapor Points
- Figure 18 Groundwater Contamination Plume Petroleum Spill Area 1997 2004
- Figure 19 Groundwater Contamination Plume Petroleum Spill Area 2004 vs. 2005/2006
- Figure 20 Groundwater Contamination Plume Petroleum Spill Area October 2005/March 2006

Scale: 1 inch equals 2000 feet

Harrison Subresidency Site

Copyright (C) 1997, Maptech, Inc.

NYSDOT Environmental Analysis Bureau October 1, 2001

FIGURE 1. HARRISON SUBRESIDENCY, WESTCHESTER COUNTY. SITE LOCATION

Source: NYSDOT

Henningson, Durham & Richardson Architecture and Engineering, P.C.

One Blue Hill Plaza Pearl River, NY 10965

NOTE:

Monitoring Well PC-1 is located north of the site within the Landfill Area

Spill Site Monitoring Well Locations NYSDOT • Harrison, NY

as of June 2008

\M\Graphics\\\HarrisonGarageFigure_Rev15Dec08.des

APPROX. SCALE (ft)

Figure

Monitoring
Well Locations
May 2009
(locations as of

Monitoring Wells

Vents

Henningson, Durham & Richardson Architecture and Engineering, P.C. One Blue Hill Plaza Pearl River, NY 10965

Petroleum Spill Area Historic Well Locations NYSDOT • Harrison, NY

OPERATION AND MAINTENANCE PLAN FOR THE HARRISON SUBRESIDENCY LANDFILL AND PETROLEUM SPILL AREA

February 2010

Semi-annual (DOT)

- 1. Inspect monitoring wells.
- 2. Landfill cap (including cap vegetation) inspection.
- 3. Inspect landfill gas vents.
- 4. Inspect perimeter fence, gates, and signs.

Every 5 Quarters (Consultant)

5. Measure water level from monitoring wells.

Landfill Area Only:

- 6. Vector and vermin inspection.
- 7. Perimeter drainage swales.
- 8. Gas monitoring at gas vents and property line perimeter.
- 9. Sample ground- and surface- water for field parameters: Temperature, turbidity, DO, pH, and specific conductivity. In addition, sample groundwater only for: Eh (or ReDox; field parameter). (See Note 1 below).
- 10. Sample all the media for TCL VOCs, SVOCs, TAL-Metals (including cyanide and chloride). (See Note 2, Note 3, and Note 4 below).

Petroleum Spill Area Only:

- 11. Sample groundwater for field parameters: Temperature, turbidity, DO, pH, and specific conductivity, and Eh. (See Note 1 below).
- 12. Sample groundwater for BTEX, MTBE, and natural attenuation parameters: Iron (dissolved; Fe-II), Manganese (dissolved; Mn-II), Bicarbonate Alkalinity (reported as HCO3), Alkalinity (Total), Nitrate (NO3), and Sulfate (SO4). Parameters can be modified based on discussions with DEC.

Other (DOT):

- 13. Twice a year during the growing season (e.g., End of June, Mid September): mow cap grass to a height of no lower than 15 cm.
- 14. After major rainfall events (5-year storms): inspect cap and drainage swales.
- Well purge water can be discharged immediately downgradient from the well.
- Note 1: A flow cell meter must be used to measure all field parameters.
- **Note 2:** Groundwater: filter samples for TAL-Metal analyses. Surface Water: unfiltered samples; filter samples for TAL-Metal analyses if samples have been significantly disturbed (e.g., the consultant dug a hole to collect a sample and water turbidity resulted from digging the hole; no unfiltered "disturbed" samples are to be collected for TAL-Metal analyses).
- **Note 3:** Testing for pesticides and PCBs has been suspended after October 2005, because we have no evidence of any disposal of these contaminants at the site, and levels of these contaminants have not been detected or not significantly detected at site monitoring points.
- **Note 4:** If field duplicate samples are collected, they will be performed on water samples only (not on sediment samples), since water samples are expected to be more homogeneous.

GROUNDWATER DATA SUMMARY Fifth Quarter Sampling - Harrison Spill Site January 2010

Turbidity (NTUs)	Dissolved Oxygen (mg/l)	Oxidation-Reduction Potential (mV)	Specific conductivity (uS)	PH	Temperature (°C)	Field Parameters	Sulfate	Nitrate	Bicarbonate Alkalinity	Total Alkalinity	Natural Attenuation Parameters (mg/l)	Manganese	Iron	Filtered Metals (ug/l)	Methyl tert butyl ether (MTBE)	Total BTEX	o-Xylenes	m&p-Xylenes	Toluene	Ethylbenzene	Benzene	Volatile Organic Compounds (ug/l)	PARAMETER	
0.04	3.45	85.8	0.249	5.1	7.59		21	2.7	13	13		ND	ND		ND	ND	ND	ND	ND	ND	ND		1/11/2010	Upgradient MW-1
26.1	3.01	21.4	0.848	5.7	8.54		9.4	ND	270	270		6600	ND		ND	171.88	3.1	35	2.9	130	0.88		1/12/2010	MW-11
3.22	2.61	4.3	1.267	6	11.59		19	0.35	200	200		17000	2600		N	4.1	ND	ND	ND	4.1	N		1/12/2010	Downgradient/Sidegradient* MW-13 MW-13
41.23	5.87	52.1	0.98	6.1	11.03		23	1.5	220	220		170	ND		ND	ND	ND	ND	ND	ND	ND		1/112010	Sidegradient* MW-13
0	1.92	52	0.976	5.71	3.44		36	ND	400	400		N	ND		ND	ND	ND	ND	ND	ND	N		1/12/2010	PC-1
0	1.92	52	0.976	5.71	3.44		36	ND	390	390		N	ND		ND	ND	ND	ND	ND	ND	ND		1/12/2010	SP-1**
•	٠	٠	•	٠	•		٠	•	•	٠		•	٠		N	ND	ND	ND	N	ND	N		1/11/2010	Trip Blank
NS	SN	SN	SN	SN	SN		250	10	SN	NS		300	300		50 GV	100	Ŋ	ъ	ъ	Ŋ			Standards (a)	NYSDEC Class GA

GV - Guidance value.◆ - Not analyzed.NS - No standard.ND - Not detected.

Notes:

*Piezometers GP-1 and GP-2 were dry and therefore were not sampled.
**SP-1 is the blind duplicate sample of PC-1.

Fifth Quarter Sampling - Harrison Subresidency Landfill Area January 2010 TABLE 1 GROUNDWATER DATA SUMMARY

PARAMETER	Site Background LMW-2 1/13/10	LMW-4 1/13/10	PC-1 1/12/10	PC-2 1/13/10	PC-3	Duplicate PC-1 LF-1 1/12/10	Trip Blank 1/13/10	NATURAL AMBIENT GROUNDWATER RANGES (n)	NYSDEC CLASS GA STANDARDS (a)
Filtered Metals (ug/L)									
Aluminum	ND	ND	N	ND	ND	N	•	<5.0 - 1000	S
Antimony	ND	ND	N	ND	ND	ND	*	AA	ω
Arsenic	ND	ND	ND	ND	ND	ND	*	<1.0 - 30	25
Barium	98	54	110	91	110	110	*	10 - 500	1000
Beryllium	ND	ND	R	ND	ND	ND	٠	<10	3.0 GV
Cadmium	ND	N	N	ND	ND	ND	٠	<1.0	51
Calcium	82,000	45,000	140,000	68,000	49,000	140,000		1000 - 150000	NS
Chromium	ND	ND	N	ND	ND	ND		<1.0 - 5.0	50
Cobalt	ND	18	N	ND	ND	ND	٠	^10	NS
Copper	ND	N	R	N D	ND	ND	*	<1.0 - 3	200
Iron	ND	22,000	N	18,000	2,200	ND	٠	10 - 10000	300 (m)
Lead	ND	ND	ND	ND	ND	ND		<15	25
Magnesium	32,000	19,000	20,000	20,000	14,000	20,000	٠	1000 - 50000	35000 GV
Manganese	290	20,000	ND	11,000	1,900	ND	*	<1.0 - 1000	300 (m)
Mercury	ND	10	ND	ND	N D	ND		<1.0	0.7
Nickel	ND	N	N	ND	ND	ND	٠	<10 - 50	100
Potassium	4,000	2,500	3,800	3,600	4,200	3,800	٠	1000 - 10000	NS
Selenium	ND	N	N	N D	N D	ND	*	<1.0 - 10	10
Silver	ND	N	N	N D	N D	ND	*	\$	50
Sodium	34,000	34,000	54,000	38,000	86,000	54,000	*	500 - 120000	20000
Thallium	ND	N	N	N D	N D	ND	*	NA	0.5 GV
Vanadium	ND	ND	ND	ND	ND	ND		<1.0 - 10	NS
Zinc	ND	N	ND	N D	ND	ND		<10 - 2000	2000 GV
Chloride (mg/l)	16	20	100	31	140	98	*	NA	250
Cyanide (mg/l)	ND	N	ND	N D	N D	ND	*	NA	200
Volatile Organic Compounds (ug/L)	ug/L)	5	5	5	5	5	5	5	n
Semivolatile Organic Compounds (ug/L)	mpounds (ug/L)	i	i	į	i	i	i		,
Total SVOCs	N D	N	ND	N D	ND	ND	*	NA	50

⁽a) - NYSDEC Division of Water Technical and Operational Guidance Series (1.1.1). June 1998, revised April 200 GV - Guidance Value (m) - Sum of Iron and Manganese not to exceed 500 ug/ (n) - Dragun, J., The Soil Chemistry of Hazardous Material: NA - Not applicable.

NA - Not detected at analytical detection limit.

J- Detected below the detection limit.

NS - No standard.

* - Not analyzed.

Fifth Quarter Sampling - Harrison Subresidency Landfill Area SURFACE WATER DATA SUMMARY January 2010

PARAMETER	Site Background SW-1 1/13/10	SW-2*	SW-3*	SW-4 1/13/10	Field Blank 1/13/2010	Trip Blank 1/13/2010	NATURAL AMBIENT GROUNDWATER RANGES (n)	NYSDEC CLASS GA STANDARDS (a)	NYSDEC CLASS A STANDARDS (a)
TAL Metals (ug/L)									
Aluminum	240	*		160	ND	*	<5.0 - 1000	NS	100 ²
Antimony	ND	٠		ND	ND	*	NA	ω	31
Arsenic	ND	*		ND	ND	*	<1.0 - 30	25	50 ¹ , 150 ² , 340 ³
Barium	34	*	٠	26	N D	*	10 - 500	1000	1,000 1
Beryllium	ND	*		ND	ND	*	^10	3.0 GV	3 GV 1
Cadmium	ND	٠	*	ND	ND	*	<1.0	51	5 1
Calcium	36,000	*	٠	33,000	ND	*	1000 - 150000	NS	NS
Chromium	ND	*		ND	ND	*	<1.0 - 5.0	50	50 ¹
Cobalt	N D	*	*	ND	ND	*	<10	NS	5 2
Copper	ND	٠	*	ND	ND	*	<1.0 - 3	200	200 1
Iron	850	٠	*	570	ND	*	10 - 10000	300 (m)	300 ^{2, 4}
Lead	ND	•	٠	ND	ND	*	<15	25	50 ¹
Magnesium	12,000	*	*	9,800	ND	*	1000 - 50000	35000 GV	35,000 1
Manganese	700	٠	*	130	ND	*	<1.0 - 1000	300 (m)	300 4
Mercury	ND	*		ND	ND	*	<1.0	0.7	0.7 ¹ , 7e-4 ⁵ , 0.77 ² , 1.4 ³ , 0.0026 ⁶
Nickel	ND	٠		ND	ND	*	<10 - 50	100	100 1
Potassium	ND	*	*	ND	ND	*	1000 - 10000	NS	NS
Selenium	ND	٠	*	N	ND	*	<1.0 - 10	10	10 ¹ , 4.6 ²
Silver	ND	*	*	ND	ND	*	\$	50	50 1
Sodium	9,200	٠	*	16,000	ND	*	500 - 120000	20000	NS
Thallium	ND		*	ND	ND	*	NA	0.5 GV	0.5 GV ¹ , 8 ²
Vanadium	ND	*	٠	ND	ND	*	<1.0 - 10	NS	14 2
Zinc	ND	*	*	ND	ND	*	<10 - 2000	2000 GV	2,000 GV ¹ , 5,000 GV ⁴
Chloride (mg/l)	6.4	*	*	19	ND	*	NA	250	250,000 1
Cyanide (mg/l)	ND	٠	٠	N	ND		NA	200	200 ¹ , 9,000 ⁵ , 5.2 ² , 22 ³
Volatile Organics (ug/L)	i								
Total VOCs	ND	٠	٠	ND	ND	ND	NA	5	NA
Semi-Volatile Organics (ug/L)	į			j	, j	•		}	:

⁽a) - NYSDEC Division of Water Technical and Operational Guidance Series (1.1.1). June 1998, revised April 2000
(m) - Sum of Iron and Manganese not to exceed 500 ug/L
(n) - Dragun, J., The Soil Chemistry of Hazardous Materials

Class A Standards for Surface Water as a source of Drinking Water as these are tributaries to Kensico Reservoir.

Other Class A Standards are for Fish Propagation Fish Survival Aesthetic Human Consumption of Fish, and Wildlife Protection GV - Guidance Value.

NA - Not applicable.

ND - Not detected at analytical detection limit * - Not analyzed; Locations SW-2 and SW-3 were frozen - no samples collected NS - No Standard.

Note - results in **bold** exceed one or more of the standards.

select Class A standards are specific to sample conditions and require hardness concentrations; therefore, these were not included.

TABLE 3

SEDIMENT DATA SUMMARY

Fifth Quarter Sampling - Harrison Subresidency Landfill Area January 2010

PARAMETER	Site Background SD-1 1/13/10	SD-2*	SD-3*	SD-4 1/13/10	Sedimen LEL¹	t Criteria (a) SEL²
TAL Metals (mg/kg)		-				
Aluminum	9,000	*	*	4,000	NA	NA
Antimony	ND	*	*	ND	2	<u>25</u>
Arsenic	ND	*	*	3.9	6	<u>33</u>
Barium	97	*	*	43	NA	NA
Beryllium	ND	*	*	ND	NA	NA
Cadmium	ND	*	*	ND	0.6	9
Calcium	1,900	*	*	12,000	NA	NA
Chromium	20	*	*	7.3	26	110
Cobalt	7.7	*	*	4.8	NA	NA
Copper	20	*	*	7.4	16	110
Iron	19,000	*	*	12,000	20000	40000
Lead	ND	*	*	9.4	31	<u>110</u>
Magnesium	4,200	*	*	8,700	NA	NA
Manganese	990	*	*	1,600	460	<u>1100</u>
Mercury	ND	*	*	ND	0.15	<u>1.3</u>
Nickel	16	*	*	10	16	<u>50</u>
Potassium	2,900	*	*	1,100	NA	<u>NA</u>
Selenium	ND	*	*	ND	NA	<u>NA</u>
Silver	ND	*	*	ND	1	<u>2.2</u>
Sodium	ND	*	*	ND	NA	NA
Thallium	ND	*	*	ND	NA	<u>NA</u>
Vanadium	30	*	*	ND	NA	<u>NA</u>
Zinc	45	*	*	44	120	<u>270</u>
Chloride	ND	*	*	ND	NA	<u>NA</u>
Cyanide	ND	*	*	ND	NA	<u>NA</u>
Volatile Organic Comp	ounds (mg/kg)					ria (a) Water Qua
Acetone	0.042	*	*	ND		NA
Semivolatile Organic C	Compounds (mg/kg	1)				
Total SVOCs	. ND	*	*	ND		NA

⁽a) - NYSDEC Technical Guidance for Screening Contaminated Sediments. November 1993, revised January 1999.

Note - results exceeding the LEL and SEL are shown in bold and underlined, respectively.

^{1 -} Lowest Effect Level

^{2 -} Severe Effect Level

ND - Not detected at analytical detection limit.

B - Detected in laboratory sample.

NA - No applicable criterion.

ATTACHMENT A
MONITORING WELL HISTORICAL DATA SUMMARY
May 2000 to October 2008
(Page 1 of 10)
Harrison Subresidency Spill Site

WELL ID: MW 1	BASELINE (May 2000)	(Jan 2001)	(May 2001)	(Jan 2002)	(Jan 2003)	(Sept 2003)	(May 2004)	(Oct 2005)/ (Mar 2006)	(July 2007)	(Oct 2008)	TARGET EFFLUENT CRITERIA
Volatile Organics (ug/L)							1				
MTBE	ND /	54	ND	ND	ND	ND	ND	ND	ND	ND	50
Benzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	14131451511
Toluene	ND	ND	ND	ND	ND	ND	ND	ND	ND .	ND	
Ethylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
m,p-Xylene	ND	ND	-	-	ND	ND	ND	ND	ND	ND	2.
O-Xylene	ND	ND	-	-	ND	ND	ND	ND	ND	ND	
Xylenes (total)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
TOTAL BTEX	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	100
Semi-volatile Org.(ug/L) 2-Methylnaphthalene Napthalene			ND ND	:	:	:	:	:	:	:	50 25
Metals (ug/L) Chloride	7,000										250,000
Sodium	27,000	•	•	•				•			20,000
Iron (total)	ND	•	207	3,760	264			5810	4840		300
Iron (dissolved)	ND	•	ND	298	35	85.1 B	56.5 B	58 B	96.1 B	ND	300
Lead	ND	•	•	•	•	•	•	•	•	•	25
Other	1 1				l						
Nitrogen, Nitrate (ug/L)	4,100	•	11,000	3,000	7,700	6,200	6,800	6,200	6,900	2,500	10,000
Sulfate (ug/L)	15,000	•	13,000	17,000	15,000	17,000	14,000	17,000	13,000	17,000	250,000
TOC (ug/L)	4,000	•	9,000	8,000	ND	•		•	•		N/A
Petroleum Hydrocarbons (ug/L)	1 • 1	•	•	•		•	•	•	•		N/A
Carbon Dioxide (ug/L)	97,400	•	59,000	42,000	30,000	16,000	45,000 H	56,000	73,000		N/A
Dissolved Oxygen (mg/L)	3.6	1.97	6.42	8.3	2.5	3.89	4.2	5.9	7.36	5.10	N/A

WELL ID: MW 2	BASELINE (May 2000)	(Jan 2001)	(May 2001)	(Jan 2002)	(Jan 2003)	(Sept 2003)	(May 2004)	(Oct 2005)/ (Mar 2006)	(July 2007)	(Oct 2008)	TARGET EFFLUENT CRITERIA
Volatile Organics (ug/L)							1.775				
MTBE	5.5	15	ND	NĐ	ND	ND	ND	ND	ND		50
Benzene	2.1	ND	ND	ND	ND	ND	ND	ND	ND		4
Toluene	8.0	2	ND	ND	ND	ND	ND	ND	ND		
Ethylbenzene	2.7	ND	ND	ND	ND	ND	ND	ND	ND		
m,p-Xylene	ND	-	-	-	ND	ND	ND	ND	ND		
O-Xylene	3.8	-	-	-	ND	ND	ND	ND	ND		
Xylenes (total)	3.8	2	ND	ND	ND	ND	ND	ND	ND		
TOTAL BTEX	16.6	4	ND	ND	ND	ND	ND	ND	ND	•	100
Semi-volatile Org.(ug/L)			1								
2-Methylnaphthalene	1		ND								50
Napthalene			ND	•	٠	٠	•	•	•		50 25
Metals (ug/L)			l								
Chloride	10,000	•		•	•	•					250,000
Sodium	22,000	•			•			•			20,000
Iron (total)		•	6,330	75,600	10,400			3780	12,800	. 1	300
Iron (dissolved)		•	646	4,240	2,770	5,860	6,780	187	1,310		300
Lead		•	•	•	•	•	٠	•	•	•	25
Other											
Nitrogen, Nitrate (ug/L)		•	ND	ND.	81	58	70	230	87	. 1	
Sulfate (ug/L)		•	14,000	150,000	25,000	15,000	15,000	26,000	9,700	Annual Control	
TOC (ug/L)		•	17,000	18,000	ND	•	•	•	•		
Petroleum Hydrocarbons (ug/L)		•	•	•	•	•	•	•	• 1/1		
Carbon Dioxide (ug/L)	1 •	•	49,000	40,000	23,000	33,000	43,000 H	46,000	51,000		
Dissolved Oxygen (mg/L)	2.6	3.08	4.23	3.6	1.5	1.07	1.3	1.7	3.00		

ATTACHMENT A
MONITORING WELL HISTORICAL DATA SUMMARY
May 2000 to October 2008
(Page 2 of 10)
Harrison Subresidency Spill Site

WELL ID: MW 3	BASELINE (May 2000)	(Jan 2001)	(May 2001)	(Jan 2002)	(Jan 2003)	(Sept 2003)	(May 2004)	(Oct 2005)/ (Mar 2006)	(July 2007)	(Oct 2008)	TARGET EFFLUENT CRITERIA
Volatile Organics (ug/L)										1	
MTBE	50	21	ND	ND	ND	ND	ND	ND	ND		50
Benzene	64	ND	2	3	ND	ND	ND	ND	ND		
Toluene	21	ND	2	3	ND	ND	ND	ND	1J		10.00
Ethylbenzene	350	ND	ND	40	82	120	61	ND	82		
m,p-Xylene	460	-	-	-	44	56	15	20	10		I Carry of
O-Xylene	65	-	-	-	6	5	1 J	2J	ND		TORUGE.
Xylenes (total)	525	2	170	110	50	61	16	22	10		
TOTAL BTEX	960.0	2	174	156	132	181	77	22	93	•	100
Semi-volatile Org.(ug/L)											
2-Methylnaphthalene			ND						•		50
Napthalene	160		4 J	•	•	•	•	•	•	•	25
Metals (ug/L)						ł	l				
Chloride	24,000		•	•	•	•	•	•	•	•	250,000
Sodium	43,000	•	•		•	•	•	•	•	•	20,000
Iron (total)	18,000	•	8,880	35,100	14,400	•		20,800	17,200	•	300
Iron (dissolved)	ND	•	2,410	4,000	7,250	6,870	7,030	5,260	4,610	•	300
Lead	8	•	*	•	•	•	•	•	•	•	25
Other			4	- 1111		}		1			
Nitrogen, Nitrate (ug/L)	ND		ND	ND *	ND	ND	ND	32	ND	•	10,000
Sulfate (ug/L)	ND	•	18,000	24,000	27,000	6,500	7,300	14,000	ND	•	250,000
TOC (ug/L)	10,000		27,000	70,000	6,300	•		•	•	•	N/A
Petroleum Hydrocarbons (ug/L)	9,200		•	•	•	•		•	•		N/A
Carbon Dioxide (ug/L)	105,000		48,000	70,000	45,000	84,000	51,000 H	61,000	65,000		N/A
Dissolved Oxygen (mg/L)	2.1	2.93	1,89	3.0	1.1	1.36	1.04	1.26	1.33	•	N/A

WELL ID: MW 4	BASELINE (May 2000)	(Jan 2001)	(May 2001)	(Jan 2002)	(Jan 2003)	(Sept 2003)	(May 2004)	(Oct 2005)/ (Mar 2006)	(July 2007)	(Oct 2008)	TARGET EFFLUENT CRITERIA
Volatile Organics (ug/L)											CITICIA
MTBE	13	3	ND	ND	ND	ND	ND	ND	ND		50
Benzene	4.4	ND	ND	ND	ND	ND	ND	ND	ND		ESTREATED
Toluene	ND	ND	ND	ND	ND	ND	ND	ND	ND		
Ethylbenzene	22	2	2	ND	16	ND	1 J	2J	ND		
m,p-Xylene		-		l -	1	ND	ND	ND	ND		
O-Xylene	•	-	-	· -	ND	ND	ND	ND	ND	•	
Xylenes (total)	13	ND	1	ND	1	ND	ND	ND	ND		
TOTAL BTEX	39.4	2	3	ND	17	ND	1	2	ND	•	100
Semi-volatile Org.(ug/L)											
2-Methylnaphthalene]		ND			•			•	•	50
Napthalene			ND	•	•	•	•	•	•		25
Metals (ug/L)											
Chloride	8,000	•	•			•			•	l • 1	250,000
Sodium	22,000	•	•		•	•	•	•	•		20,000
Iron (total)		•	1,360	1,330	3,480	•	•	307	14,600		300
Iron (dissolved)		•	1,010	ND	2,740	61.0 B	635	55.1 B	199B		300
Lead		•	•	•	•	•	•	•	•	•	25
Other											
Nitrogen, Nitrate (ug/L)	 •	•	ND	3,200	ND	2400	530	450	960		10,000
Sulfate (ug/L)			15,000	22,000	21,000	18,000	13,000	13,000	13,000		250,000
TOC (ug/L)		•	14,000	13,000	44,000	•	,	•	•		N/A
Petroleum Hydrocarbons (ug/L)		•	•		•	•	•	•	•	•	N/A
Carbon Dioxide (ug/L)		•	55,000	40,000	55,000	21,000	65,000 H	98,000	91,000	•	N/A
Dissolved Oxygen (mg/L)	3.5	2.35	4.29	3.9	0.82	1.42	2	1.6	2.97	•	N/A

ATTACHMENTA
MONITORING WELL HISTORICAL DATA SUMMARY
May 2000 to October 2008
(Page 3 of 10)
Harrison Subresidency Spill Site

WELL ID: MW 5	BASELINE (May 2000)	(Jan 2001)	(May 2001)	(Jan 2002)	(Jan 2003)	(Sept 2003)	(May 2004)	(Oct 2005)/ (Mar 2006)	(July 2007)	(Oct 2008)	TARGET EFFLUENT CRITERIA
Volatile Organics (ug/L)											
MTBE	150	ND	ND	ND	ND	ND	ND	ND	" ND		50
Benzene	14	ND	1	ND	ND	ND	ND	ND	ND		
Toluene	32	2	2	ND	2	ND	ND	1J	ND		The state of
Ethylbenzene	410	ND	ND	ND	150	ND	99	140	75		
m,p-Xylene	•	-	-	-	93	ND	42	46	12		-
O-Xylene	•	-	-	-	5	ND	2 J	3J	ND		1
Xylenes (total)	460	43	230	4	98	ND	44	49	12		
TOTAL BTEX	916	45	233	4	250	ND	143	190	87	•	100
Semi-volatile Org.(ug/L)											
2-Methylnaphthalene			10	•	•	•	•	•	•		50
Napthalene			ND	•	•	•	•	•	•	•	25
Metals (ug/L)											
Chloride	60,000	•	•	•	•	•	•	•	•	•	250,000
Sodium	32,000	•	•	•	•	•	•	•	•	•	20,000
Iron (total)	•	•	9,630	3,910	4,500	•	•	9770	9,830	•	300
Iron (dissolved)	•	•	2,930	1,820	1,240	7,070	4,560	6,100	4,690	•	300
Lead	•	•	•	•	•	•	•	•	•	•	25
Other											
Nitrogen, Nitrate (ug/L)	•	•	ND	620	210	ND	ND	220	29	•	10,000
Sulfate (ug/L)	•	•	17,000	12,000	16,000	42,000	8,500	ND	ND	•	250,000
TOC (ug/L)	•	•	23,000	14,000	12,000	•	•	•	•	•	N/A
Petroleum Hydrocarbons (ug/L)	•	•	•	•	•	•	•	•			N/A
Carbon Dioxide (ug/L)	•	•	68,000	12,000	28,000	100,000	73,000 H	74,000	ND	•	N/A
Dissolved Oxygen (mg/L)	3.4	3.09	6.12	9.0	1.6	1.19	1.73	1.23	1.52		N/A

WELL ID: MW 6	BASELINE (May 2000)	(Jan 2001)	(May 2001)	(Jan 2002)	(Jan 2003)	(Sept 2003)	(May 2004)	(Oct 2005)/ (Mar 2006)	(July 2007)	(Oct 2008)	TARGET EFFLUENT CRITERIA
Volatile Organics (ug/L)											
MTBE	73	20	ND	ND	ND	ND	ND	ND	ND	•	50
Benzene	7.9	ND	ND	ND	ND	ND	ND	ND	ND	•	
Toluene	7	ND	ND	ND	ND	ND	ND	ND	ND	•	
Ethylbenzene	98	ND	ND	3	61	ND	88	16	100	•	
m,p-Xylene	•	-	-	-	30	14	37	27	28	•	
O-Xylene	•	-	-	-	2	1	3 J	4J	31		
Xylenes (total)	112	21	6	27	33	16	40	31	31		
TOTAL BTEX	224.9	21	6	30	94	16	128	47	131	•	100
Semi-volatile Org.(ug/L)											
2-Methylnaphthalene			ND	•	•	•		•			50
Napthalene			ND	•	•	•		•		•	50 25
Metals (ug/L)											
Chloride	40,000	•	•	•	•	•	•	•	•	•	250,000
Sodium	33,000	•	•	•	•	•	•	•	•	•	20,000
Iron (total)	•	•	1,720	2,410	2,750	•	•	4610	5,630	•	300
Iron (dissolved)	•	•	475	2,060	874	1,080	1,620	1,270	593	•	300
Lead	•	•	•	•	•	•	•	•	•	٠	25
Other								·			
Nitrogen, Nitrate (ug/L)		•	ND	ND *	ND	ND	ND	ND	ND	· ·	10,000
Sulfate (ug/L)		•	17,000	19,000	22,000	10,000	7,400	7,200	ND	·	250,000
TOC (ug/L)		•	17,000	25,000	ND	•	•	•	•	•	N/A
Petroleum Hydrocarbons (ug/L)	•	•	•	•	•	•	•	•	•		N/A
Carbon Dioxide (ug/L)	•	•	60,000	32,000	27,000	33,000	48,000	45,000	49,000	· 1	N/A
Dissolved Oxygen (mg/L)	3.1	6.05	4.1	3.5	0.89	1.41	2.9	3.3	1.57		N/A

ATTACHMENT A

MONITORING WELL HISTORICAL DATA SUMMARY
May 2000 to October 2008

(Page 4 of 10)

Harrison Subresidency Spill Site

WELL ID: MW 7	BASELINE (May 2000)	(Jan 2001)	(May 2001)	(Jan 2002)	(Jan 2003)	(Sept 2003)	(May 2004)	(Oct 2005)/ (Mar 2006)	(July 2007)	(Oct 2008)	TARGET EFFLUENT CRITERIA
Volatile Organics (ug/L)											
MTBE	16	38	17	ND	ND	ND	ND	ND	ND		50
Benzene	3.4	ND	ND	ND	ND	ND	ND	ND	ND		HALL OF
Toluene	4	ND	ND	ND	ND	ND	ND	ND	ND		U. B.
Ethylbenzene	5.7	ND	ND	ND	ND	ND	ND	ND	ND		
m,p-Xylene	•	-	-	-	ND	ND	ND	ND	ND		find . yal
O-Xylene	•	-	-	-	ND	ND	ND	ND	ND		tighter -
Xylenes (total)	4.8	ND	ND	ND	ND	ND	ND	ND	ND	•	KI BALL
TOTAL BTEX	17.9	ND	ND	ND	ND	ND	ND	ND	ND	•	100
Semi-volatile Org.(ug/L)											
2-Methylnaphthalene			ND	•	•		•		•		50
Napthalene			ND	•	•	٠ ا	•	•	•	•	25
Metals (ug/L)											
Chloride	40,000		. •	•					•		250,000
Sodium	35,000		•	•					•		20,000
Iron (total)			2,700	30,000	3,080			3960	18,000	•	300
Iron (dissolved)			1,880	4,020	2,380	2,190	2,640	1,600	165B	•	300
Lead	•	•	•	•	•	•	•	•	•	•	25
Other											
Nitrogen, Nitrate (ug/L)	•	•	ND	ND*	150	ND	160	330	ND	•	10,000
Sulfate (ug/L)	•	•	15,000	38,000	20,000	8,200	13,000	11,000	7,400	•	250,000
TOC (ug/L)	•	•	16,000	21,000	11,000	•	•	•	•	•	N/A
Petroleum Hydrocarbons (ug/L)	•	•	•	•	•		•	•	•	•	N/A
Carbon Dioxide (ug/L)	•	•	78,000	35,000	37,000	27,000	42,000	63,000	41,000	•	N/A
Dissolved Oxygen (mg/L)	3.2	3.12	4.43	3.4	1.0	2.2	1.8	2.0	2.66	· •	N/A

WELL ID: MW 8	BASELINE (May 2000)	(Jan 2001)	(May 2001)	(Jan 2002)	(Jan 2003)	(Sept 2003)	(May 2004)	(Oct 2005)/ (Mar 2006)	(July 2007)	(Oct 2008)	TARGET EFFLUEN CRITERIA
Volatile Organics (ug/L)											
MTBE	68	6	ND	ND	ND	ND -	ND	ND	ND	•	50
Benzene	110	ND	ND	ND	ND	ND	ND	ND	ND		
Toluene	26	ND	2	ND	ND	ND	2 J	ND	ND	•	lei Filbreit
Ethylbenzene	60	ND	ND	ND	2	1	41	2J	27	•	1011114
m,p-Xylene	160	-	-	-	1	ND	12	7	5	•	
O-Xylene	40	-	-	-	ND	ND	2 J	2J	2J	•	MARKET AND DESCRIPTION OF THE PERSON OF THE
Xylenes (total)	200	ND	34	7	1	ND	14	9	7	•	1510104112
TOTAL BTEX	396	ND	36	7	3	1	57	11	34	•	100
Semi-volatile Org.(ug/L)											
2-Methylnaphthalene	•		ND			 		•	•		50
Napthalene	34		ND	•	•	•	•	•	•	•	25
Metals (ug/L)											
Chloride	5,000	•		•	•		•	•	•	•	250,000
Sodium	63,000	•		•		•	•	•	•	· •	20,000
Iron (total)	8,600	•	545	4,370	3,320	•		7160	4,070	· •	300
Iron (dissolved)	230	•	ND	48.7 B	ND	1,890	3,310	3,160	282		300
Lead	ND	•	•	•	•	•	٠ ا	•	•	•	25
Other				1							
Nitrogen, Nitrate (ug/L)	33	•	ND	ND*	190	ND	ND	120	28		10,000
Sulfate (ug/L)	ND	•	31,000	ND	ND	ND	3,800	ND	ND		250,000
TOC (ug/L)	12,000	•	21,000	25,000	ND	•		•	•	•	N/A
Petroleum Hydrocarbons (ug/L)	7,600	•	•	•	•	•		•	•	•	N/A
Carbon Dioxide (ug/L)	264,000	•	37,000	22,000	19,000	30,000	56,000	55,000	42,000	•	N/A
Dissolved Oxygen (mg/L)	1.5	6.3	4.6	4.5	0.89	0.88	2.18	3.13	1.96	•	N/A

ATTACHMENT A

MONITORING WELL HISTORICAL DATA SUMMARY

May 2000 to October 2008

(Page 5 of 10)

Harrison Subresidency Spill Si	te
, , , , , , , , , , , , , , , , , , , ,	

WELL ID: MW 9	BASELINE (May 2000)	(Jan 2001)	(May 2001)	(Jan 2002)	(Jan 2003)	(Sept 2003)	(May 2004)	(Oct 2005)/ (Mar 2006)	(July 2007)	(Oct 2008)	TARGET EFFLUENT CRITERIA
Volatile Organics (ug/L)											
MTBE	ND	ND	ND	ND	ND	ND	ND	ND	ND		50
Benzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	•	
Toluene	. ND	ND	ND	ND	ND	ND	ND	ND	ND	•	
Ethylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	•	11-1-1
m,p-Xylene		-	-	-	ND	ND	ND	ND	ND	•	
O-Xylene		-	-	-	ND	ND	ND	ND	ND	•	100
Xylenes (total)	ND	ND	ND	ND	ND	ND	ND	ND	ND	•	Chileral.
TOTAL BTEX	ND	ND	ND	ND	ND	ND	ND	ND	ND	+	100
Semi-volatile Org.(ug/L)											
2-Methylnaphthalene	1		2 J			•	•		•	•	50 25
Napthalene			ND	•		•	•	•	•	•	25
Metals (ug/L)											
Chloride	260,000					•			•	•	250,000
Sodium	160,000	•				•			•	•	20,000
Iron (total)		•	4,570	7,870	12,600	•	•	232	16,000	•	300
Iron (dissolved)		•	ND	ND	ND	32.2 B	ND	44.9 B	450	•	300
Lead	•	•	•	•	•	•	•	•	•	•	25
Other											
Nitrogen, Nitrate (ug/L)	•	•	ND	690	340	730	870	770	1,100	•	10,000
Sulfate (ug/L)	•	•	21,000	23,000	19,000	12,000	12,000	17,000	19,000	•	250,000
TOC (ug/L)	•	•	18,000	15,000	9,000	•	•	•	•	•	N/A
Petroleum Hydrocarbons (ug/L)	•	•	•	•	•	•	•		•	•	N/A
Carbon Dioxide (ug/L)	•	•	ND	ND *	ND	ND	ND	ND	ND	•	N/A
Dissolved Oxygen (mg/L)	3.3	7.5	5.49	12.3	6.30	3.65	7.60	8.20	6.65	•	N/A

WELL ID: MW 11								(Mar 2006)	(July 2007)	(Oct 2008)	TARGET EFFLUENT CRITERIA
Volatile Organics (ug/L)								l			
MTBE			1					ND	ND	ND	50
Benzene								ND	ND	0.88	
Toluene								1 J	ND	1 1	
Ethylbenzene					ł			10	3J	13	
m,p-Xylene								7	ND	3.8	
O-Xylene								ND	ND	1.6	
Xylenes (total)								7	ND	5.4	
TOTAL BTEX								18	3	20.28	100
Semi-volatile Org.(ug/L)				1							
2-Methylnaphthalene			1				ļ			• j	50 25
Napthalene		ĺ						•	•	·	25
Metals (ug/L)											
Chloride	1			1					•		250,000
Sodium								•	•		20,000
Iron (total)					ĺ			174,000	23,400	· •	300
Iron (dissolved)			1					1370	307	ND	300
Lead								•	•	•	25
Other											
Nitrogen, Nitrate (ug/L)	1		1					0.98	240	ND	10,000
Sulfate (ug/L)		J						57,000	15,000	19	250,000
TOC (ug/L)	1							•	•	•	N/A
Petroleum Hydrocarbons (ug/L)								•	•	· •	N/A
Carbon Dioxide (ug/L)								230,000	140,000		N/A
Dissolved Oxygen (mg/L)		1						3.70	5.45	3.30	N/A

MONITORING WELL HISTORICAL DATA SUMMARY
May 2000 to October 2008
(Page 5 of 10)
Hamson Subresidency Spill Site

WELL ID: MW 12							(Oct 2008)	TARGET EFFLUENT CRITERIA
Volatile Organics (ug/L)								
MTBE							ND ND	50
Benzene							ND ND	
Toluene							23	Pilot and the party of the part
Ethylbenzene							ND ND	(137 P
m,p-Xylene O-Xylene							ND ND	4 ranha
Xylenes (total)							ND ND	HELPH CALL
TOTAL BTEX		-					23	100
Semi-volatile Org.(ug/L)								little
2-Methylnaphthalene							•	50 25
Napthalene							•	25
Metals (ug/L) Chloride								250,000
Sodium					!			20,000
Iron (total)		1				ł	•	300
Iron (dissolved)							650	300
Lead							•	25
Other								
Nitrogen, Nitrate (ug/L)							ND	10,000
Sulfate (ug/L)							5.6	250,000
TOC (ug/L)								N/A N/A
Petroleum Hydrocarbons (ug/L)								N/A
Carbon Dioxide (ug/L)							1.10	N/A N/A
Dissolved Oxygen (mg/L)							1.10	HI/A

WELL ID: MW 13	2-17-129						HHIME		(Oct 2008)	TARGET EFFLUENT CRITERIA
Volatile Organics (ug/L)										
MTBE									ND	50
Benzene									ND	
Toluene									ND ND	7
Ethylbenzene									ND I	MUSICUA
m,p-Xylene									ND ND	NOT THE PART OF THE
O-Xylene									ND ND	
Xylenes (total)							-		ND ND	100
TOTAL BTEX									I ND	100
Semi-volatile Org.(ug/L)								l	1 1	MINUTES OF
2-Methylnaphthalene				J		ļ	J			50 25
Napthalene			ĺ							25
Metals (ug/L) Chloride										250,000
Sodium									1 : 1	20,000
Iron (total)							l	1	1 : 1	300
Iron (dissolved)				ľ					1 : 1	300
Lead		[1 : 1	25
									'	
Other							1			40.000
Nitrogen, Nitrate (ug/L)			1						0.46	10,000
Sulfate (ug/L)						1			13	250,000 N/A
TOC (ug/L)	[N/A N/A
Petroleum Hydrocarbons (ug/L) Carbon Dioxide (ug/L)										N/A
Dissolved Oxygen (mg/L)	1								1.80	N/A

MONITORING WELL HISTORICAL DATA SUMMARY
May 2000 to October 2008
(Page 7 of 10)
Harrison Subresidency Spill Site

WELL ID: SP 1	BASELINE (May 2000)	(Jan 2001)	(May 2001)	(Jan 2002)	(Jan 2003)	(Sept 2003)	(May 2004)	(Oct 2005)/ (Mar 2006)	(July 2007)	(Oct 2008)	TARGET EFFLUENT CRITERIA
Volatile Organics (ug/L)											
MTBE	3.2	31	ND	ND	ND	•	•	•	•	•	50
Benzene	1.4	ND	ND	ND	ND	•	•	•	•	•	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Toluene	3.7	ND	ND	ND	60	•	•	•	•	•	3
Ethylbenzene	4.0	ND	ND	2	22	•	•	•	•	•	in the state
m,p-Xylene	8.1	-	-	-	100	•		•	•	•	
O-Xylene	2.9	-	-	-	42				•	•	
Xylenes (total)	11.0	ND	ND	1	140			•	•	•	In the said
TOTAL BTEX	20.1	ND	ND	3	222	•	•	•	•	•	100
Semi-volatile Org.(ug/L)											
2-Methylnaphthalene			ND		•	•	•	•	•	•	50 25
Napthalene			ND	•	•	•	•	•	•	•	25
Metals (ug/L)											in the
Chloride	16,000	•	•	•	•	•	•	•		•	250,000
Sodium	45,000	•	•			•	•	•		•	20,000
Iron (total)			3,940	3,720	NA	•			•	•	300
Iron (dissolved)		•	52.1 B	68.0 B	NA	•	•	•	•	•	300
Lead	•	•	•	•	•	•	•	•	•	•	25
Other											WHITE !
Nitrogen, Nitrate (ug/L)	•	•	ND*	160	NA	•	•	•	•	•	10,000
Sulfate (ug/L)	•	•	48,000	46,000	NA	•	•	•	•	•	250,000
TOC (ug/L)	•	•	25,000	17,000	ND	•	•	•	•	•	N/A
Petroleum Hydrocarbons (ug/L)	•		•	•	NA	•	•	•	•	•	N/A
Carbon Dioxide (ug/L)	•	•	18,000	19,000	NA	•	•	•	•	•	N/A
Dissolved Oxygen (mg/L)	4.6	9.66	4.6	2.3	NA	•	•	•	•	•	N/A

WELL ID: MW 10 B	BASELINE (May 2000)	(Jan 2001)	(May 2001)	(Jan 2002)	(Jan 2003)	(Sept 2003)	(May 2004)	(Oct 2005)/ (Mar 2006)	(July 2007)	(Oct 2008)	TARGET EFFLUENT CRITERIA
Volatile Organics (ug/L)											
MTBE	4.9	•	ND	NA	ND	ND	ND	ND	ND	•	50
Benzene	2.1	•	ND	NA	ND	ND	ND	ND	ND	•	
Toluene	ND	•	ND	NA	ND	ND	ND	ND	ND	•	and the contract of
Ethylbenzene	ND	•	1	NA	9	23	8	ND	9	•	
m,p-Xylene	3.5	•	-	NA	2	15	2 J	ND	2J	•	
O-Xylene	5.6	•	-	NA	ND	ND	ND	ND	ND	•	
Xylenes (total)	9.1	•	ND	NA	2	15	2 J	ND	2	•	
TOTAL BTEX	11.2	•	1	NA	11	38	10	ND	11	•	100
Semi-volatile Org.(ug/L)											
2-Methylnaphthalene	1		ND	NA	•		•	•	•	•	50
Napthalene			ND	NA	•	•	•	•	•		25
Metals (ug/L)]							
Chloride	34,000	•	•	NA	•	•	•	•	•	· •	250,000
Sodium	27,000	•	•	NA	•	•		•	•	· •	20,000
Iron (total)	•	•	1,080	NA	1,190	•	•	1460	1,880		300
Iron (dissolved)	•	•	32.8 B	NA	462	644	592	456	343		300
Lead	•	•	•	NA	•	٠ ا	•	•	•		25
Other											
Nitrogen, Nitrate (ug/L)	•	•	ND*	NA	ND	ND	120	ND	120		10,000
Sulfate (ug/L)	•	•	27,000	NA	19,000	9,000	12,000	12,000	8,100		250,000
TOC (ug/L)	•	•	14,000	NA	9,400	•	•	•	•	•	N/A
Petroleum Hydrocarbons (ug/L)	•	•	•	NA	•	•		•	•		N/A
Carbon Dioxide (ug/L)	•	•	39,000	NA	39,000	25,000	32,000	25,000	14,000		N/A
Dissolved Oxygen (mg/L)	4.7		4.91	NA	2.0	2.9	2.4	1.1	5.35	•	N/A

AFTABLIMENT A

MONITORING WELL HISTORICAL DATA SUMMARY
May 2000 to October 2008
(Page 8 of 10)
Harrison Subresidency Spill Site

WELL ID: SP 2	BASELINE (May 2000)	(Jan 2001)	(May 2001)	(Jan 2002)	(Jan 2003)	(Sept 2003)	(May 2004)	(Oct 2005)/ (Mar 2006)	(July 2007)	(Oct 2008)	TARGET EFFLUENT CRITERIA
Volatile Organics (ug/L)											CKITEKIA
MTBE	18		14	ND	ND	ND	ND	•			50
Benzene	19		ND	7	7	5	2 J	•			
Toluene	25		ND	6	2	2	4 J	•			
Ethylbenzene	110		1	42	ND	5	42	•			and the
m,p-Xylene	52		_	-	4	1	13	•			
O-Xylene	11		_	_	2	ND	ND	•			
Xylenes (total)	63		ND	3	6	1	13	•		•	Sind Salls
TOTAL BTEX	217.0	•	1	58	15	13	61	•	•	•	100
Semi-volatile Org.(ug/L)											12.
2-Methylnaphthalene			ND	•		•				•	50
Napthalene			ND	•	•	•	•	•	•	•	50 25
Metals (ug/L)				,							
Chloride	36,000	•		•		•		•	•	•	250,000
Sodium	75,000	•		•		•		•	•	•	20,000
Iron (total)	•	•	9,750	7,590	2,700	•		•	•	•	300
Iron (dissolved)	•	•	ND	126 B	ND	166 B	2,120	•	•	•	300
Lead	•	•	•	•	•	•	•	•	•	•	25
Other											
Nitrogen, Nitrate (ug/L)	•	•	ND*	100	ND	37	ND	•	•	•	10,000
Sulfate (ug/L)	•	•	26,000	64,000	18,000	7,900	7,200	•	•	•	250,000
TOC (ug/L)	•	•	17,000	29,000	14,000	•		•	•	•	N/A
Petroleum Hydrocarbons (ug/L)	•	•	•	•	•	•	•	•	•	•	N/A
Carbon Dioxide (ug/L)	•	•	36,000	42,000	38,000	37,000	58,000	•	•	•	N/A
Dissolved Oxygen (mg/L)	2.5	•	3.1	4.0	1.0	1.47	1.7	•	•	•	N/A

WELL ID: SP 3	BASELINE (May 2000)	(Jan 2001)	(May 2001)	(Jan 2002)	(Jan 2003)	(Sept 2003)	(May 2004)	(Oct 2005)/ (Mar 2006)	(July 2007)	(Oct 2008)	TARGET EFFLUENT CRITERIA
Volatile Organics (ug/L)											ONTENA
MTBE	38	•	7	ND	ND	ND	ND	ND	ND	•	50
Benzene	110	•	ND	ND	ND	ND	ND	ND	ND	•	12810
Toluene	39	•	1	ND	ND	ND	ND	ND	ND	•	and street
Ethylbenzene	200		ND	ND	ND	ND	ND	ND	31		00311404
m,p-Xylene	180		_	-	ND	ND	ND	ND	4J		200025-12
O-Xylene	57	•	_	-	ND	ND	ND	ND	3J	•	
Xylenes (total)	237	•	15	ND	ND	ND	ND	ND	7	•	
TOTAL BTEX	586.0	•	16	ND	ND	ND	ND	ND	38	•	100
Semi-volatile Org.(ug/L)											
2-Methylnaphthalene		ar.	ND		•		•	•	•		50
Napthalene			ND	•	•	•	•	•	•	•	25
Metals (ug/L)											
Chloride	6,000	•		•	•		•	•	•		250,000
Sodium	38,000	•	•		•		•	•	•	•	20,000
Iron (total)	•	•	2,970	1,060	133 B	•	•	3380	3,170		300
Iron (dissolved)		•	ND	ND	ND	116 B	384	891	572		300
Lead	•	•	•	•	•	•	•	•	•	•	25
Other											
Nitrogen, Nitrate (ug/L)	1 •	•	ND*	100	ND	25	66	ND	ND		10,000
Sulfate (ug/L)		•	56,000	16,000	19,000	5,900	22,000	ND	ND	•	250,000
TOC (ug/L)	· •	•	11,000	18,000	41,000	•	•	•	•	•	N/A
Petroleum Hydrocarbons (ug/L)		•	•	•	•	•	•	•	•	•	N/A
Carbon Dioxide (ug/L)		•	11,000	11,000	20,000	19,000	26,000	57,000	32,000	•	N/A
Dissolved Oxygen (mg/L)	3.4	•	4.21	5.7	1.1	1.7	2.2	1.05	3.27	•	N/A

ATTACHMENTA

MONITORING WELL HISTORICAL DATA SUMMARY
May 2000 to October 2008
(Page 9 of 10)
Harrison Subresidency Spill Site

WELL ID: SP 4	BASELINE (May 2000)	(Jan 2001)	(May 2001)	(Jan 2002)	(Jan 2003)	(Sept 2003)	(May 2004)	(Oct 2005)/ (Mar 2006)	(July 2007)	(Oct 2008)	TARGET EFFLUENT CRITERIA
Volatile Organics (ug/L)											
MTBE	24	•	ND	ND	ND	ND	ND	ND	ND	•	50
Benzene	24	•	ND	ND	ND	ND	ND	ND	ND	•	
Toluene	3.8	•	ND	ND	ND	ND	ND	ND	ND	•	
Ethylbenzene	35	•	ND	3	26	ND	ND	ND	ND	•	SALE OF THE SALES
m,p-Xylene	9.5	•	-	-	8	ND	ND	ND	ND	•	
O-Xylene	2.4	•	_	-	ND	ND	ND	ND	ND	•	THE RULL
Xylenes (total)	11.9	•	ND	2	8	ND	ND	ND	ND	•	A ELAN ALLEN
TOTAL BTEX	74.7	•	ND	5	34	ND	ND	ND	ND	•	100
Semi-volatile Org.(ug/L)											
2-Methylnaphthalene		•	ND						•		50
Napthalene		•	ND	•	•	•	•	•	•	•	25
Metals (ug/L)			}								
Chloride	16,000	•	•	•	•	•	•	! •	•	•	250,000
Sodium	24,000	•	•	•	•	•	•	•	•	•	20,000
Iron (total)	•	•	3,790	5,350	2,490		•	10,400	25,400	•	300
Iron (dissolved)	•	•	602	1,810	1,810	2,460	44.5	953	326	•	300
Lead	•	•	•	•	•	•	•	•	•	•	25
Other											
Nitrogen, Nitrate (ug/L)	•	•	ND*	ND*	ND	ND	150	200	ND	•	10,000
Sulfate (ug/L)	•	•	34,000	22,000	37,000	26,000	8,400	24,000	13,000	•	250,000
TOC (ug/L)	•	•	14,000	24,000	11,000	•	•	•	•	•	N/A
Petroleum Hydrocarbons (ug/L)	•	•	•	•	•	•	•	•	•	•	N/A
Carbon Dioxide (ug/L)	•	•	39,000	24,000	31,000	26,000	23,000	39,000	ND	•	N/A
Dissolved Oxygen (mg/L)	4.2	•	6.89	4.2	2.4	6.2	3.4	3.8	5.6	•	N/A

WELL ID: GP 2	BASELINE (May 2000)	(Jan 2001)	(May 2001)	(Jan 2002)	(Jan 2003)	(Sept 2003)	(May 2004)	(Oct 2005)/ (Mar 2006)	(July 2007)	(Oct 2008)	TARGET EFFLUENT CRITERIA
Volatile Organics (ug/L)											
MTBE	•	•	•	•	3	ND	ND	•	•		50
Benzene	•	•	•	•	ND	ND	ND	•	•	•	1001151161
Toluene	•	•	•	•	ND	ND	ND	•	•	• [
Ethylbenzene	•		•	•	ND	ND	ND	•	•	•	
m,p-Xylene	•		•	•	ND	ND	ND	•	•	•	
O-Xylene	•			•	ND	ND	ND	•	•		RELIEF HER
Xylenes (total)	•		•	•	ND	ND	ND	•	•		DATE SET OF
TOTAL BTEX	•	•	•	•	3	ND	ND	•	•	•	100
Semi-volatile Org.(ug/L)											
2-Methylnaphthalene	•				•	•		•	•		50
Napthalene	•	٠ ا	•	•	•	•	•	•	•	· •	25
Metals (ug/L)											
Chloride	•				•	•	•	•	•		250,000
Sodium	•		•	•	•	•	•	•	•		20,000
Iron (total)	•	•	•	•	•	•	•	•	•		300
Iron (dissolved)		•		•	•	•	•	•	•	•	300
Lead	•	•	•	•	•	•	•	•	•	•	25
Other											
Nitrogen, Nitrate (ug/L)	•	•	•	•	•	•	•	•	•		10,000
Sulfate (ug/L)	•	•		•	•	•	•	•	•		250,000
TOC (ug/L)	•	•	•	•	•	•	•	•	•		N/A
Petroleum Hydrocarbons (ug/L)	•	•	•	•	•	•	•	•	•		N/A
Carbon Dioxide (ug/L)	•	•	•	•	•	•	•	•	•	• "	N/A
Dissolved Oxygen (mg/L)	•	•	•	•	•	•	•	•	•		N/A

MONITORING WELL HISTORICAL DATA SUMMARY
May 2000 to October 2008
(Page 10 of 10)
Harrison Subresidency Spill Site

WELL ID: PC-1								(Oct 2005)/ (Mar 2006)	(July 2007)	(Oct 2008)	TARGET EFFLUENT CRITERIA
Volatile Organics (ug/L)											Old. Elast
MTBE	•	•		•		•		ND	ND	ND	50
Benzene	•	•		•		•		ND	ND	ND	Mitellance:
Toluene	•	•		•		•		ND	ND	ND	
Ethylbenzene	•	•		•		•	•	ND	ND	ND	
m,p-Xylene	•	•		•		•	•	ND	ND	ND	
O-Xylene	•	•		•	•	•	•	ND	ND	ND	
Xylenes (total)	•	•	•	•	•	•	•	ND	ND	ND	
TOTAL BTEX	•	٠	•	•	•	•	•	ND	ND	ND	100
Semi-volatile Org.(ug/L)											
2-Methylnaphthalene	•		•	•		•	•		•	•	50
Napthalene	•	•	•	•			•		•	•	25
Metals (ug/L)			ľ							l	
Chloride						•			•		250,000
Sodium									•		20,000
Iron (total)	•							599	952		300
Iron (dissolved)								28.6 B	425	ND	300
Lead	•		•	•	•		•	•	•	•	25
Other											
Nitrogen, Nitrate (ug/L)	•	•	•	•	•	•	•	50	ND*	ND	10,000
Sulfate (ug/L)	•	•	•	•	•	•	•	5000	37,000	34	250,000
TOC (ug/L)	•	•	•	•	•	•	•	•	•	•	N/A
Petroleum Hydrocarbons (ug/L)	•	•	•	•	•	•	•	•	•	•	N/A
Carbon Dioxide (ug/L)	•	•	•	•	•		•	10,000	35,000	•	N/A
Dissolved Oxygen (mg/L)	•	•		•			• "	2.72	3.02	4.1	N/A

Notes:

Notes:

ND = Non Detect

B = Concentration below the reporting limit equal to or above the detection limit.

J = Concentration below the reporting limit.

H = Analyzed outside of the holding time.

* Nitrogen, Nitrate was analyzed outside the recommended holding time for this sample and therefore the analytical results may be biased low.

May 2004

October 2005 / March 2006

Legend

> 25 ppb BTEX & MTBE

> 50 ppb BTEX & MTBE

> 100 ppb BTEX & MTBE (<500ppb)

Proposed Soil Vapor Points

Plume Contours: Approximate location of equal BTEX & MTBE concentrations in micrograms per liter (ug/l or ppb)

NOTE: BTEX stands for benzene, toluene ethyl-benzene, and xylenes. MTBE for methyl-tertiary butyl ether. No MTBE has been detected since September 2003

> NYSDOT Environmental Analysis Bureau December 28, 2005

Harrison Subresidency, Westchester County. Petroleum (BTEX & MTBE)
Contaminant Plume at the Water Table & Proposed Soil Vapor Points

- Former boring
- Bdk/Overb. interface well
- Water table well
- Piezometer
- Overburden Sparge well

Plume Contours: Approximate location

been detected since September 2003

NOTE: BTEX stands for benzene, toluene

ethyl-benzene, and xylenes. MTBE for methyl-tertiary butyl ether. No MTBE has

of equal BTEX & MTBE concentrations in micrograms per liter (ug/l or ppb)

NYSDOT Environmental Analysis Bureau M.Roma, September 22, 2006

Former UST location (apprx.)

> 100 ppb BTEX & MTBE (<500ppb)

> 50 ppb BTEX & MTBE

> 25 ppb BTEX & MTBE

NYSDOTHARRISON SUBRESIDENCY. WESTCHESTER CO. Petroleum (BTEX & MTBE) Contaminant Plume at the Water Table (Oct. 2005/Mar. 2006).