June 24, 2011

Ms. Gretchen Fitzgerald Construction Group NYSDOT Region 8 4 Burnett Boulevard Poughkeepsie, NY 12603

RE: PIN 8806.51.101, Harrison Landfill Area Harrison Sub-Residency, Westchester County, New York Fifth-Quarter Sampling Results, April 2011

Dear Ms. Fitzgerald,

This letter report summarizes the field investigative procedures and results of the fifth-quarter monitoring performed by Cashin Associates, P.C. (CA) at the Harrison Landfill site (Figure 1) on April 19, 2011 on behalf of the New York State Department of Transportation (NYSDOT).

The operation and maintenance efforts conducted at the Harrison Landfill were performed in order to meet the requirements of the New York State Department of Conservation (NYSDEC) for post-closure monitoring. The sampling was performed in accordance with CA's Scope of Work and Cost Estimate dated March 2011 and approved by NYSDOT on March 9, 2011. The scope was developed in accordance with the NYSDOT's Operation and Maintenance Plan for the Harrison Sub-Residency, Landfill and Petroleum Spill Area, February 2010.

Monitoring efforts at the Harrison Landfill included the collection of groundwater samples from the five existing monitoring wells (PC-1 through PC-3, LMW-2 and LMW-4), surface water and sediment samples from the on-site stream sample locations (SW/SD-1 through SW/SD-4), gas monitoring at the four existing gas vents (V-1 through V-4) and along the property line perimeter, and a visual inspection of vector and vermin. A site map and sample locations are shown on Figures 2 through 5. The sampling methodology performed by CA was consistent with the methodology used in prior sampling events at the site, as discussed below.

CA met with the NYSDOT site representative prior to the monitoring event to discuss field activities and locate the monitoring wells. Field instruments used were calibrated on-site prior to sampling.

Groundwater Sampling

Groundwater samples were collected from the following five (5) monitoring wells (locations shown on Figure 3) listed below with regard to their relationship to the landfill:

On-Site/Site Background
LWM-2

On-Site/Downgradient
LMW-4
PC-3

PC-1
PC-2

Prior to sampling, a round of static water level measurements and total depth measurements from the groundwater monitoring wells were recorded.

All of the monitoring well casings and well heads were inspected for any signs of damage or tampering. Prior to sampling, groundwater was purged until the hydraulic equilibrium between casing water and aquifer was achieved in order to obtain a representative sample of the aquifer. This was accomplished by calculating the relative contribution from stagnant casing water to the total discharged from the well. The well was purged of three well volumes or until dryness using a Whale pump equipped with a Rheostat (for adjustable flow) and dedicated tubing. A peristaltic pump was used to purge and sample monitoring well PC-2 due to the historic bent well casing. Groundwater samples were collected when the well recovered to approximately 75% of its initial volume or within two hours (whichever came first) using a dedicated disposable polyethylene bailer. Well purge water was discharged immediately downgradient of the well. Field parameters of temperature, turbidity, dissolved oxygen (DO), pH, specific conductivity, and oxidation-reduction potential (Eh) were recorded for each well during purging and at the time of sample collection using a Horiba U-22 water quality monitor equipped with an in-line flow-through cell.

Groundwater samples were transferred to clean, pre-preserved, laboratory-supplied containers for analysis of target compound list (TCL) volatile organic compounds (VOCs), TCL semi-volatile organic compounds (SVOCs), and target analyte list (TAL) metals (filtered only), including cyanide and chloride. Metal samples were filtered and preserved by the laboratory.

Surface Water/Sediment Sampling

Surface water (SW) and sediment (SD) samples (locations shown on Figure 4) were collected from the following four locations listed below with regard to their relationship to the landfill:

On-Site/Site Background	On-Site/Downgradient	Off-Site/Downgradient
SW/SD-1	SW/SD-2	SW/SD-4
	SW/SD-3	

Prior to sample collection, CA recorded the approximate stream flow and stream depth at each station. Surface water samples from each respective location were collected first, in order to minimize turbidity, using a clean stainless steel ladle. Field parameters of

temperature, turbidity, DO, pH and specific conductivity were collected during sampling at each location. Sediment sample were collected following the collection of the surface water samples, from within the same general area using a clean stainless steel trowel.

Surface water and sediment samples were transferred to clean, pre-preserved laboratory-supplied containers for laboratory analysis of TCL VOCs, TCL SVOCs, and TAL metals (unfiltered only), including cyanide and chloride. Metal samples for surface water were filtered and preserved by the laboratory if the samples had been disturbed and resulted in high turbidity.

For quality assurance/quality control (QA/QC) purposes, a field blank was collected during the time of the surface water and sediment sampling. The field blank was conducted by pouring distilled water into the ladle used for sample collection and then from the ladle to the sample bottles. The field blank was analyzed for the same set of parameters for the surface water samples.

All samples were preserved on ice and analyzed by a New York State certified laboratory (Hampton-Clarke Veritech, Farifield, New Jersey) according to NYSDEC Analytical Services Protocol (ASP).

Gas Monitoring

CA conducted gas monitoring at each of the four (4) gas vents (V-1 through V-4) (locations shown on Figure 5) and along the perimeter of the property line. Prior to the collection of measurements at each location, ambient readings were recorded. Each location was monitored for methane and other explosive gases through the use of a combustible gas indicator (CGI). Gas vent readings were obtained by inserting the instrument detector probe into each vent. The CGI was set to alarm if readings exceeded 10% of the lower explosive limit (LEL) of methane. In addition, alarms were set at 10% of the LEL of hydrogen sulfide, 25 parts per million (ppm) of carbon monoxide and 19.5% and 23.5% of oxygen. A photoionization detector (PID) and a flame ionization detector (FID) (with and without a methane filter) were used to monitor for VOCs at each of the four gas vents and around the perimeter of the landfill.

Field Survey

The monitoring of the Harrison Landfill site included a visual inspection of site for the presence of vector/vermin. Other than low numbers of mosquitoes in the drainage swale areas, CA did not observe any vector/vermin at the site during sampling.

Analytical Results

Groundwater Samples

Results of the groundwater samples were compared to the NYSDEC Class GA Standards or Guidance Values (NYSDEC Division of Water Technical and Operational Guidance Series 1.1.1, June 1998) and are summarized in Table 1.

Non-RCRA metals iron, manganese and sodium were detected at concentrations exceeding NYSDEC Standards in groundwater samples. Iron and manganese

exceedances were reported in downgradient wells PC-2, PC-3 and LMW-4 (highest concentration in LMW-4). Sodium exceedances were reported in all wells, with highest concentrations in off-site downgradient well PC-3. Chloride was detected in all monitoring wells, which was reported below the NYSDEC Standard. Cyanide was detected in two wells, LMW-2 and LMW-4, both reported below the NYSDEC Standard. VOCs and SVOCs were not detected in any of the groundwater monitoring wells. No floating product or sheen was detected in any of the wells during purging.

Water quality parameters of temperature, pH, specific conductivity and turbidity are provided in Table 3. The complete list of the groundwater laboratory results is attached as Appendix A. Groundwater sampling logs are attached as Appendix B.

Surface Water

The analytical results of the surface water samples were compared to both NYSDEC Ambient Water Quality Class GA Groundwater Standards/Guidance Values and NYSDEC Class A Surface Water Standards/Guidance Values, where available. Both standards were used since the drainage swales on the site from which the surface waters were sampled serve as tributaries to the Kensico Reservoir, which is a source of drinking water. Where appropriate, the most conservative Standard or Guidance Value was used for comparison purposes.

Surface water from the on-site background location (SW-1) and one or more of the on-site downgradient locations (SW-2 through SW-4) were reported with concentrations of non-RCRA metals (aluminum, iron and sodium) exceeding NYSDEC Standards. All four surface water sample locations were reported with aluminum concentrations exceeding the NYSDEC Class A Standard for fish propagation (a Class GA Standard has not been established for aluminum). Iron exceedances were detected from the on-site background location and one on-site downgradient location (SW-2) for NYSDEC Class GA Standards as well as NYSDEC Class A Standards for fish propagation and aesthetics. Sodium concentrations at downgradient locations SW-3 (on-site) and SW-4 (off-site) exceeded the NYSDEC Class GA Standard.

Chloride was detected in all surface water samples, but at concentrations below NYSDEC Standards. Cyanide was not detected in any of the surface water samples. No VOCs or SVOCs were detected in any of the surface water samples.

The analytical results of the surface water samples are presented in Table 2. Water quality parameters of dissolved oxygen, turbidity, temperature, pH, specific conductivity and stream flow taken during sampling are presented in Table 3.

Sediment Samples

Sediment sample results were compared to the NYSDEC Technical Guidance for Screening Contaminated Sediments Lowest Effect Level (LEL) and Severe Effect Level (SEL). Metals were detected in all sediment samples with the exception of SD-3. RCRA metal chromium and non-RCRA metals copper, iron, nickel and zinc were reported at concentrations exceeding NYSDEC Standards. Sediment samples SD-1

(background location) and SD-2 (on-site) contained exceedances for chromium, copper, and iron. Nickel and zinc exceedances were reported for SD-1 and SD-2, respectively. Nickel was detected in both the background location and the off-site location at the same concentration, which was above the NYSDEC Standard.

Chloride was detected in all four sediment samples. Cyanide was detected only in SD-4 at a concentration of 1.2 parts per million (ppm). Metal concentrations for sediment samples are presented in Table 4.

One SVOC, pyrene, was detected above the NYSDEC Technical Guidance for Screening Contaminated Sediments; exceeding the standard for wildlife bioaccumulation in SD-2. Total VOC and total SVOC concentrations for the sediment samples are presented in Table 5.

Gas Monitoring

Methane gases were not detected in any of the gas vents. The combustible gas indicator did not detect concentrations levels above the alarms set for methane, hydrogen sulfide, carbon monoxide, or oxygen. PID readings and FID readings of the gas vents and around the perimeter of the landfill were zero.

QA/QC Results

The QA/QC results of the duplicate sample (LF-1) to the original sample (PC-1) indicates an acceptable degree of precision and accuracy of the analytical results reported by the laboratory and confirms the adequacy of decontamination, handling and transportation procedures to meet quality requirements for the monitoring program. In addition, the analytical results of the trip blank were all non-detect. The field blank was reported with a detection of chloride only, detected slightly above the reporting limit of 1.0 ug/L.

Conclusion and Recommendations

Historic monitoring at the site detected mercury in groundwater, sediment and surface water samples at concentrations exceeding the NYSDEC Standard. Consistent with the previous sampling round in January 2010, mercury was not detected in any of the groundwater, sediment or surface water samples during the April 2011 sampling.

Groundwater results indicated that high sodium concentrations exist throughout the site. Iron and manganese concentrations were detected in downgradient wells only, including the off-site downgradient well.

Aluminum concentrations in surface water were detected throughout the site, including the background sample and off-site downgradient sample, indicating that the landfill is not a contributing factor to aluminum concentrations in surface water in the surrounding area. Sodium was detected in the background surface water sample (below the NYSDEC Standard) and at concentrations exceeding the NYSDEC Standard in two downgradient locations. Iron exceedances in surface water were reported for the background location and an on-site downgradient location. Iron was detected below the NYSDEC Standard at

the off-site downgradient location and therefore, does not appear to be migrating from the landfill in surface water.

Sediment samples with exceedances for chromium, copper, iron and nickel were reported in both the on-site background sample location and downgradient locations. Nickel concentrations were the same in the background location and downgradient off-site location and do not appear to be emanating from the landfill. The highest concentrations of chromium, copper and iron were reported in the on-site downgradient location (SD-2). SD-2 was also the only sediment location that was reported with zinc and pyrene (SVOC) concentrations exceeding NYSDEC Standards.

The area of highest contamination appears to be in the northwestern portion of the landfill, with greatest concentrations of metals in groundwater. Results indicate that manganese and iron could be migrating off-site from the landfill, as the highest concentrations were detected in the on-site downgradient well LMW-4, with lower concentrations detected in off-site downgradient well PC-3. Sodium concentrations may also be migrating off-site from the landfill via surface water. Based upon the results of the on-site background groundwater, surface water and sediment samples, the site appears to be receiving metal concentrations from an upgradient source.

The post-closure monitoring of the Harrison Landfill Site will be continued on a fifth-quarter basis unless otherwise decided by NYSDEC.

If you have any questions, or require any additional information, please feel free to contact me.

Sincerely,

CASHIN ASSOCIATES, P.C.

Gregory T. Greene Director of Environmental Programs

cc: Anjan Sen, NYSDOT Consultant Management Bureau Carl Kochersberger, NYSDOT Environmental Science Bureau Table 1. Analytical Results of Groundwater Samples

	<u>.</u>	able 1. Analyt	ioui itoouito	l Croanaw	l			
		Well ID:	PC-3	PC-2	LMW-4	LMW-2	PC-1	LF-1
Analyte	Units	NYSDEC CLASS GA STD/GV						
Volatiles								
Total VOCs	ug/L	5	ND	ND	ND	ND	ND	ND
Semi-Volatiles								
Total SVOCs	ug/L	50	ND	ND	ND	ND	ND	ND
Metals								
Mercury	ug/L	0.7	ND	ND	ND	ND	ND	ND
Aluminum	ug/L	NS	140	150	200	410	150	140
Antimony	ug/L	3	ND	ND	ND	ND	ND	ND
Arsenic	ug/L	25	ND	ND	ND	ND	ND	ND
Barium	ug/L	1000	91	67	81	130	72	72
Beryllium	ug/L	3	ND	ND	ND	ND	ND	ND
Cadmium	ug/L	5	ND	ND	ND	ND	ND	ND
Calcium	ug/L	NS	38,000	73,000	44,000	85,000	76,000	76,000
Chromium	ug/L	50	ND	ND	ND	ND	ND	ND
Cobalt	ug/L	NS	ND	ND	19	ND	ND	ND
Copper	ug/L	200	ND	ND	ND	ND	ND	ND
Iron	ug/L	300	680	4,900	34,000	ND	ND	ND
Lead	ug/L	25	ND	ND	ND	ND	ND	ND
Magnesium	ug/L	35,000	12,000	19,000	18,000	33,000	12,000	12,000
Manganese	ug/L	300	390	9,500	17,000	130	ND	ND
Nickel	ug/L	100	ND	ND	ND	ND	ND	ND
Potassium	ug/L	NS	5,100	3,900	3,000	3,800	3,200	3,200
Selenium	ug/L	10	ND	ND	ND	ND	ND	ND
Silver	ug/L	50	ND	ND	ND	ND	ND	ND
Sodium	ug/L	20,000	49,000	36,000	29,000	33,000	36,000	36,000
Thallium	ug/L	0.5	ND	ND	ND	ND	ND	ND
Vanadium	ug/L	NS	ND	ND	ND	ND	ND	ND
Zinc	ug/L	2000	ND	ND	ND	ND	ND	ND
Chloride	ug/L	250,000	82,000	21,000	26,000	21,000	49,000	49,000
Cyanide	ug/L	200,000	ND	ND	20	20	ND	ND

Notes:

BOLD - indicates a concentration exceeding NYSDEC Standard or Guidance Value

NS - no standard

ND - not detected at analytical detection limit

LF-1 serves as the duplicate sample taken from PC-1

Table 2. Analytical Results of Surface Water Samples

			Sample ID:	SW-1	SW-2	SW-3	SW-4	FB-1	TRIP
Analyte	Units	NYSDEC Class GA Std.	NYSDEC Class A Std.						
Volatiles									
Total VOCs	ug/L	NA	NA	ND	ND	ND	ND	ND	ND
Semi-Volatiles									
Total SVOCs	ug/L	NA	NA	ND	ND	ND	ND	ND	NA
Metals									
Mercury	ug/L	0.7	0.7 ¹ , 7e-4 ⁵ , 0.77 ² , 1.4 ³ , 0.0026 ⁶	ND	ND	ND	ND	ND	NA
Aluminum	ug/L	NS	100 ²	180	190	160	230	ND	NA
Antimony	ug/L	3	50 ¹ , 150 ² , 340 ³	ND	ND	ND	ND	ND	NA
Arsenic	ug/L	25		ND	ND	ND	ND	ND	NA
Barium	ug/L	1,000	1,000 ¹	29 ND	26 ND	48 ND	ND	ND	NA
Beryllium	ug/L	3	5 ¹	ND	ND	ND	ND	ND	NA
Cadmium	ug/L	5 NS		ND 24.000	ND 29.000	ND 01.000	ND 20,000	ND	NA NA
Calcium Chromium	ug/L	50	NS 50 ¹	31,000 ND	29,000 ND	91,000 ND	26,000 ND	ND ND	NA NA
Cobalt	ug/L ug/L	NS	5 ²	ND ND	ND ND	ND	ND ND	ND	NA NA
Copper	ug/L	200	200 ¹	ND ND	ND ND	ND ND	ND ND	ND	NA
Iron	ug/L ug/L	300	300 ^{2,4}	310	410	170	170	ND	NA
Lead	ug/L	25	50 ¹	ND	ND	ND	ND	ND	NA
Magnesium	ug/L	35,000	35,000 ¹	8,900	8,200	11,000	7,300	ND	NA
Manganese	ug/L	300	300 ⁴	260	210	210	50	ND	NA
Nickel	ug/L	100	100 ¹	ND	ND	ND	ND	ND	NA
Potassium	ug/L	NS	NS	3,000	3,000	3,800	2,700	ND	NA
Selenium	ug/L	10	10 ¹ , 4.6 ²	ND	ND	ND	ND	ND	NA
Silver	ug/L	50	50 ¹	ND	ND	ND	ND	ND	NA
Sodium	ug/L	20,000	NS	11.000	18,000	44,000	20,000	ND	NA
Thallium	ug/L	0.5	0.5 ¹ , 8 ²	ND	ND	ND	ND	ND	NA
Vanadium	ug/L	NS	14 ²	ND	ND	ND	ND	ND	NA
Zinc	ug/L	2000	2,000 ¹ , 5,000 ⁴	ND	ND	ND	ND	ND	NA
Chloride	ug/L	250,000	250,000 ¹	8,900	21,000	59,000	24,000	1,100	NA
Cyanide	ug/L	200,000	200 ¹ , 9000 ⁵ , 5.2 ² , 22 ³	ND	ND	ND	ND	ND	NA

Notes:

BOLD - indicates a concentration exceeding NYSDEC Standard or Guidance Value

NS - no standard

ND - not detected at analytical detection limit

Table 3. Surface Water Quality Parameters

			Table 3. 3	ullace wat	er Quality F	arameters			
Station ID	Time	Sample Depth	Total Depth	Temp (°C)	рН	Cond. (ms/cm)	Turb (NTUs)	DO (mg/l)	Flow (CFS)
SW-1	0150	0-4"	8.5"	9.48	7.31	0.27	0	9.38	1.5
SW-2	1208	0-4"	4"	9.42	7.42	0.299	0	10.76	1.6
SW-3	1500	0-4"	12"	8.71	7.45	0.723	0	8.37	1.4
SW-4	1600	0-4"	1'5"	9.6	7.8	0.278	0	10.67	1.8

¹ Class A Standards for Surface Water as a source of Drinking Water

 $^{^{2,3,4,5,6} \, \}text{Other Class A Standards: Fish Propagation}^2, \, \text{Fish Survival}^3, \, \text{Aesthetic}^4, \, \text{Human Consumption of Fish}^5, \, \text{Wildlife Protection}^6, \, \text$

Table 4. Analytical Results of Sediment Samples for Metals

		abic 4. A		saits of Oculin	ent Samples for	Wetais	
			Sample ID:	SD-1	SD-2	SD-3	SD-4
		Sedimer	t Criteria				
Analyte	Units	LEL	SEL				
Metals							
Mercury	mg/Kg	0.15	1.3	ND	ND	ND	ND
Aluminum	mg/Kg	NS	NS	11,000	12,000	5,400	8,100
Antimony	mg/Kg	2	25	ND	ND	ND	ND
Arsenic	mg/Kg	6	33	ND	ND	2.7	ND
Barium	mg/Kg	NS	NS	190	860	27	150
Beryllium	mg/Kg	NS	NS	ND	ND	ND	ND
Cadmium	mg/Kg	0.6	9	ND	ND	ND	ND
Calcium	mg/Kg	NS	NS	6,000	14,000	76,000	17,000
Chromium	mg/Kg	26	110	29	44	8.7	25
Cobalt	mg/Kg	NS	NS	11	ND	6	8.5
Copper	mg/Kg	16	110	27	48	11	17
Iron	mg/Kg	20,000	40,000	28,000	58,000	15,000	19,000
Lead	mg/Kg	31	110	26	68	9.7	32
Magnesium	mg/Kg	NS	NS	5,100	6,000	39,000	13,000
Manganese	mg/Kg	460	1,100	4,200	29,000	390	3,400
Nickel	mg/Kg	16	50	20	ND	11	20
Potassium	mg/Kg	NS	NS	2,800	ND	1,700	1,900
Selenium	mg/Kg	NS	NS	ND	16	ND	ND
Silver	mg/Kg	1	2.2	ND	ND	ND	ND
Sodium	mg/Kg	NS	NS	ND	ND	ND	ND
Thallium	mg/Kg	NS	NS	ND	ND	ND	ND
Vanadium	mg/Kg	NS	NS	37	ND	ND	33
Zinc	mg/Kg	120	270	94	270	32	93
Chloride	mg/Kg	NS	NS	280	1,200	230	290
Cyanide	mg/Kg	NS	NS	ND	ND	ND	1.2

Notes:

NS - No Standard ND - Not detected

BOLD indicates a concentration exceeding NYSDEC Standard

Table 5. Analytical Results of Sediment Samples for VOCs and SVOCs

Analyte	Human Health Bioaccum. Sediment Criteria mg/gOC	Benthic Aquatic Life Acute Toxicity Sediment Criteria mg/gOC	Benthic Aquatic Life Chronic Toxicity Sediment Criteria mg/gOC	Wildlife Bioaccum. Sediment Criteria mg/gOC	SD-1	SD-2	SD-3	SD-4
Semi-Volatiles								
Total SVOCs					2.1	3.11	0	1.85
Benzo[a]anthracene	NS	NS	NS	NS	0.19	ND	ND	0.16
Benzo[a]pyrene	NS	NS	NS	NS	0.21	0.56	ND	0.22
Benzo[b]fluoranthene	NS	NS	NS	NS	0.31	0.85	ND	0.33
Benzo[g,h,i]perylene	NS	NS	NS	NS	0.19	ND	ND	0.18
Chrysene	NS	NS	NS	NS	0.22	ND	ND	0.18
Fluoranthene	NS	NS	1.020 (E) ¹ 1.340 (E)	NS	0.3	0.72	ND	0.28
Indeno[1,2,3- cd]pyrene	NS	NS	NS	NS	0.15	ND	ND	0.16
Phenanthrene	NS	NS	NS	NS	0.14	ND	ND	ND
Pyrene	NS	0.877	NS	0.961	0.39	0.98	ND	0.34
Volatiles								
Total VOCs					0.028	0	0.022	0
Acetone	NS	NS	NS	NS	0.028	ND	0.022	ND

Notes:

BOLD indicates a concentration exceeding NYSDEC Standard

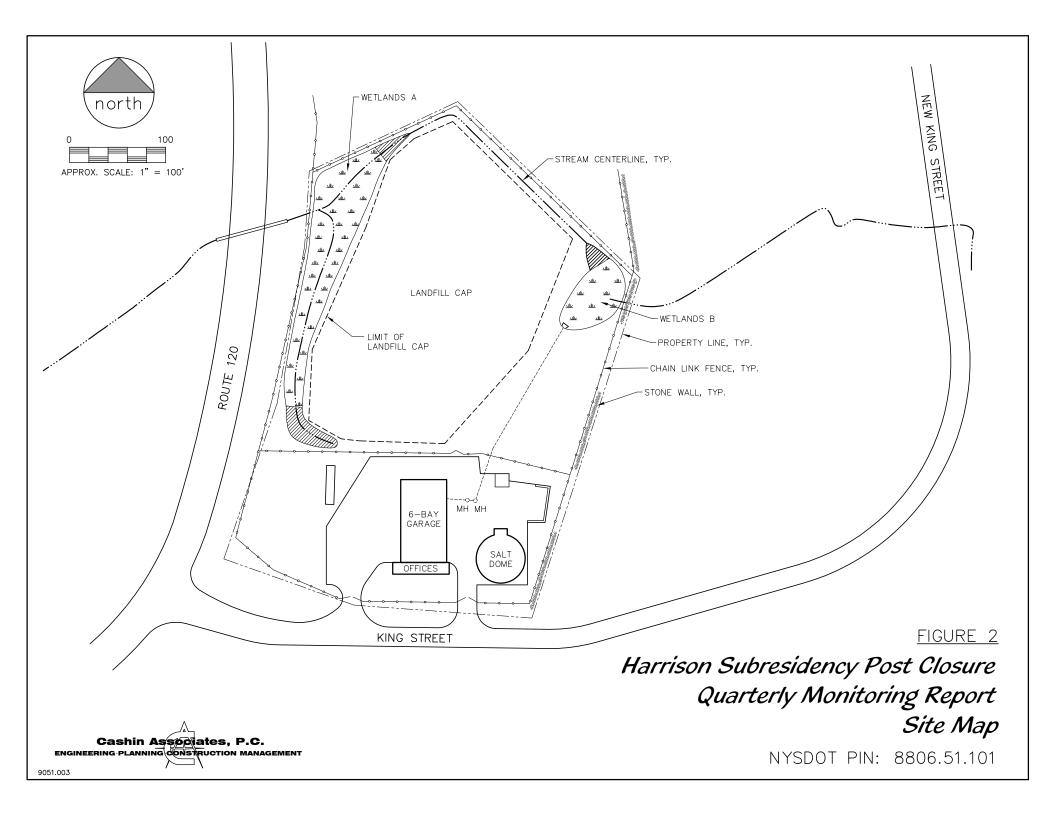
NS - No Standard

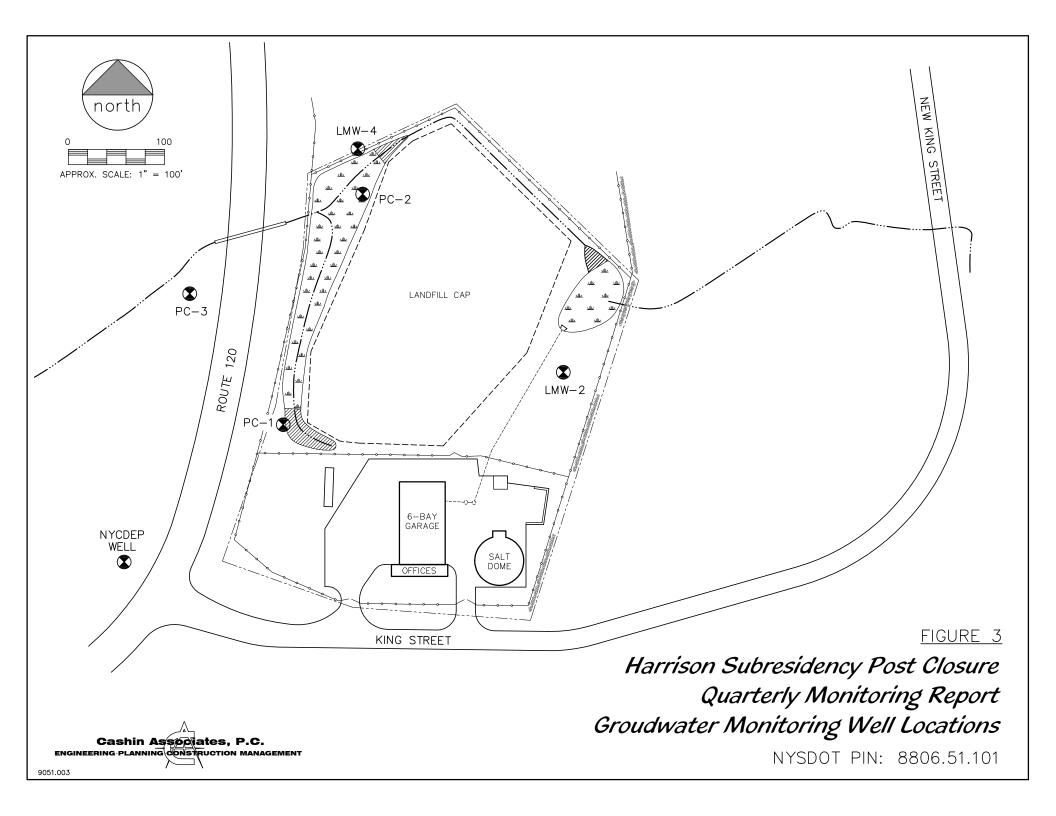
ND - Not detected

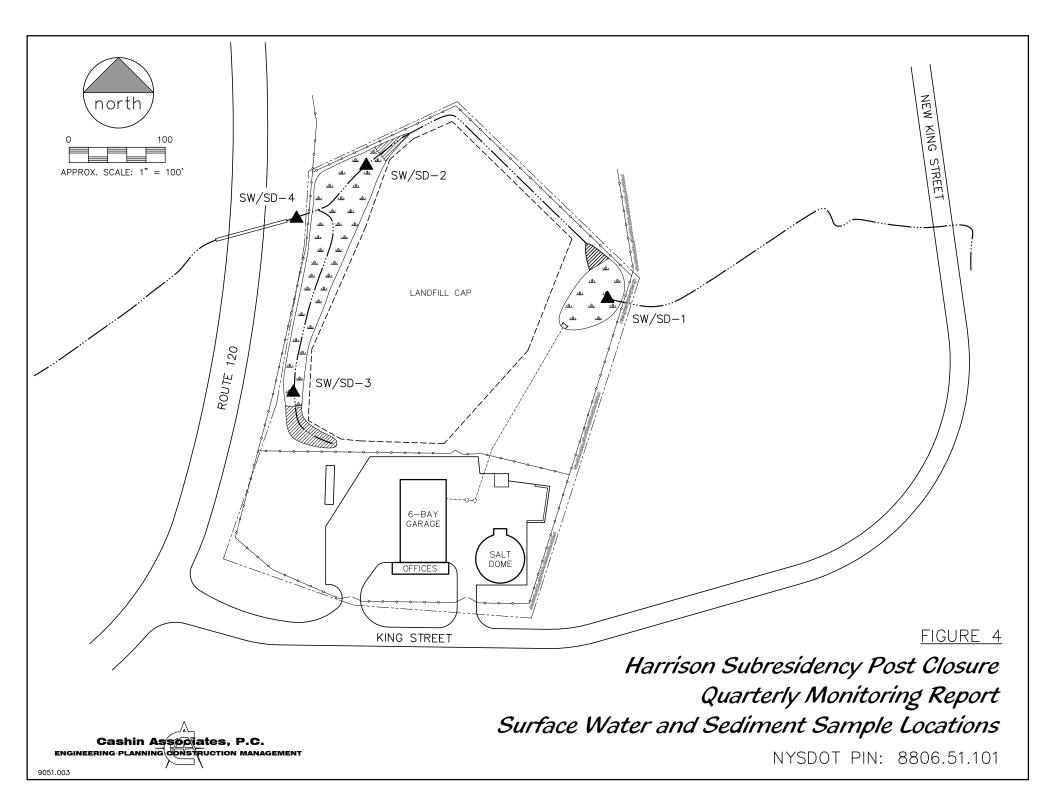
¹ - (E) EPA criteria was used if water quality criteria was not listed in TOGS 1.1.1

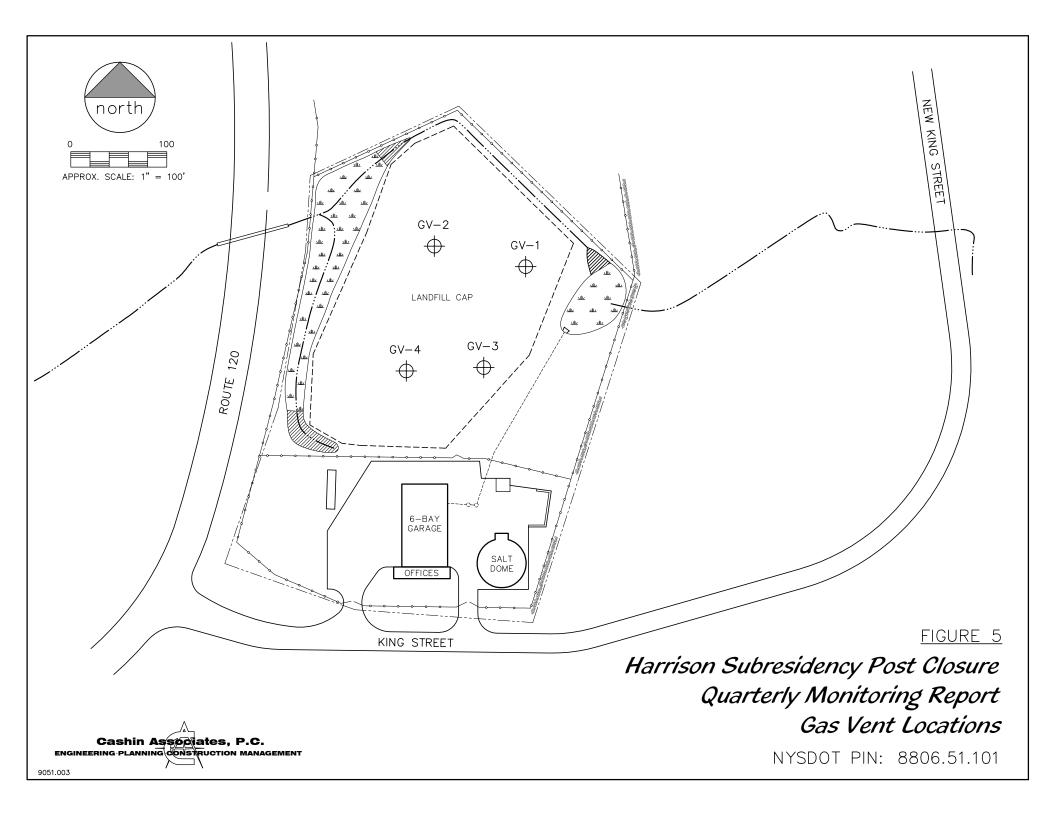
Table 6. Gas Vent Monitoring Results

		%LEL	PID	FID (ppm)	Backg	round
Station ID	Time	CGI	Equiv.	With CH4 filter	W/Out CH4 filter	PID	FID
V-1	0730	0	0	0	0	0	0
V-2	0735	0	0	0	0	0	0
V-3	0740	0	0	0	0	0	0
V-4	0745	0	0	0	0	0	0
S Perimeter	0747	0	0	0	0	0	0
E Perimeter	0750	0	0	0	0	0	0
N Perimeter	0755	0	0	0	0	0	0
W Perimeter	0800	0	0	0	0	0	0




FIGURE 1


Harrison Subresidency Post Closure Quarterly Monitoring Report Site Location


NYSDOT PIN: 8806.51.101

175 ROUTE 46 WEST, UNIT D · FAIRFIELD, NJ 07004 2 MADISON ROAD, FAIRFIELD, NJ 07004 800-426-9992 · 973-244-9770 FAX: 973-244-9787

WWW.HCVLAB.COM

Project: 9051.003

Client PO: 9051.003

Report To: Cashin Associates

1200 Veterans Memorial Highway

Hauppauge, NY 11788

Attn: Kimberly Somers

Received Date: 4/20/2011

Report Date: 5/23/2011

Deliverables: NYDOH-CatA

Lab ID: AC58548

Lab Project No: 1042017

This report is a true report of results obtained from our tests of this material. All results meet the requirements of the NELAC Institute standards. In lieu of a formal contract document, the total aggregate liability of Veritech to all parties shall not exceed Veritech's total fee for analytical services rendered.

Jen Rossi - Quality Assurance Director

OR

Stanley Gilewicz - Laboratory Director

(07071 and 07069) NJ

NY (ELAP11408 and 11939) CT (PH-0671)

USACE

(68-00463 and 68-04409) KY (90124)

WV (353)

THIS CATEGORY "A" REPORT IS NUMBERED FROM 1 to 73

HCV Case Narrative/Conformance Summary

Client:

Project:

Cashin Associates

HCV Project: 1042017 9051.003

Hampton-Clarke/Veritech (HC·V) received the following samples on April 20, 2011:

Client ID	HCV Sample ID	<u>Matrix</u>	<u>Analysis</u>
PC-3 U	AC58548-001	Aqueous	VO (624), BNA (625), Alkalinity (SM2320B), Chloride (300.0), Cyanide (335.4)
PC-3 F	AC58548-002	Aqueous	Metals (200.7/8)
PC-2 U	AC58548-003	Aqueous	VO (624), BNA (625), Alkalinity (SM2320B), Chloride (300.0), Cyanide (335.4)
PC-2 F	AC58548-004	Aqueous	Metals (200.7/8)
LMW-4 U	AC58548-005	Aqueous	VO (624), BNA (625), Alkalinity (SM2320B), Chloride (300.0), Cyanide (335.4)
LMW-4 F	AC58548-006	Aqueous	Metals (200.7/8)
LMW-2 U	AC58548-007	Aqueous	VO (624), BNA (625), Alkalinity (SM2320B), Chloride (300.0), Cyanide (335.4)
LMW-2 F	AC58548-008	Aqueous	Metals (200.7/8)
LF-1 U	AC58548-009	Aqueous	VO (624), BNA (625), Alkalinity (SM2320B), Chloride (300.0), Cyanide (335.4)
LF-1 F	AC58548-010	Aqueous	Metals (200.7/8)
PC-1 U	AC58548-011	Aqueous	VO (624), BNA (625), Alkalinity (SM2320B), Chloride (300.0), Cyanide (335.4)
PC-1 F	AC58548-012	Aqueous	Metals (200.7/8)

Volatile Organic Analysis:

2-Chloroethylvinylether did not recover in the Matrix Spike and Matrix Spike Duplicate in batch 7424 due to acid preservation of sample. 2-Chloroethylvinylether readily decomposes under acidic conditions. The recovery of 2-Chloroethylvinylether is within QC limits in the Laboratory Control Sample (MBS).

Base Neutral Acid Extractable Analysis:

The recoveries of Diethylphthalate, Dimethylphthalate and Di-n-butylphthalate are biased high, outside QC limits in the Matrix Spike and/or Matrix Spike Duplicate in batch 5098. All QC criteria were met in the Laboratory Control Sample (MBS).

Metals Analysis:

The recoveries of Calcium and Silver are biased low, outside QC limits in the Matrix Spike and/or Matrix Spike Duplicate in batch 6699. All QC criteria were met in the Laboratory Control Sample (MBS). Also the serial dilution for Aluminum is outside QC limits, suggesting matrix interference.

Wet Chemistry Analysis:

Data conforms to method requirements.

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package and in the computer-readable data has been authorized by the Laboratory Manager or his designee, as verified by the following signature.

5/23/1, Date Stanley Gilewicz **Laboratory Director** Quality Assurance Director

	A fee of \$5/sample will be assessed for storage should sample not be activated for any analysis.	A fee of \$5/sample will be assessed for storage should sample not be activated for any analysis.	assessed for storag	sample will be	fee of \$5/s	A							1	ਨ	Specif	Project	HC-V 2010 Merged; iv) PA; v) NY; vi) Project-Specific	HC-V 2010 Me
	Date: 4/20/11		LIM Some	name): /	ampler (print name):	Sample	11) 8	<u>-</u>	rent To		SRS	2008	۷). ا		HC-V	refer to	Please circle required parameter list (refer to HC-V summary): i) N.I 2008 SRS: ii) Current TCI	Please circle
Ш	2.4,3,1,3,2		ligh Contaminant Concentrations	inant Co	ontam	High C												
	Cooler Temperature		Check if applicable: Project-Specific Reporting Limits	ific Repo	application t-Speci	Note: Check if applicable: Project-Specifie	Note							(
)		or 6020)	Metals (ICP-MS 200.8 or 6020)	(ICP-N	Metals	+ -	15:30	"	200					X	1	How ois, Jal	lier
	Note: Check if low-level groundwater methods required to meet current standards in NJ or PA: BN or BNA (8270C SIM)	quired to meet curre	ater methods re //)	Check if low-level groundwate BN or BNA (8270C SIM)	low-leve	BN or E	—	1430	26/4	74		5	1	ر العلام	Jr.		ne	18e
	3, HAZARDS	Comments, Notes, Special Requirements, HAZARDS	Notes, Speci	ments,	Com			Time	Date	_		Y:	Accepted by:	Acce		H	hed by:	10) Relinquished by:
0			SENS POSSOBUIED DO CONTROL	10000000000000000000000000000000000000		3055-C-1-1-150-050												
								-			+		+					
								-		+			-			+-		
					+						-		+	-				-
-		4		4				+	r	×	×		9	300	2/12	G.F.	1-38	011/012
_		7		4				+	*	x	K		ð	230	4/20	-	LF-1	008/00
		3		4				<u>ۍ</u>	¥	x	×		0	9 300	9/14	-	LMW-2	
	100	3	4					9	V	⊢	×		2	9 145	4/19		1-MM-4	
	9	3			-			*	v		א		43		4//9	_	PC-2	03/104
		No.	11	153				, y	<u> </u>	\vdash	×		3	9 1015		62	PC-3	00//bo2
:	9b) Comments	HCI H2S	Me(ΕP	t^-		\vdash	1 (0	-	┢	Gra	ē	├	_	Matrix	4) Customer Sample ID	Lab Sample #
	er: _	504 03	OH Core	НС	H C			Cĥ.	ya.		Z 1	b (G)	npos	6) Sample		5)		
	, (P. 10)	# of Bottles	# of E					101	nic)	site (OL - Oil	WW - Waste Water OL	K-5353X
	Numbers (If		8)					ide	12	VOC als itere			C)	A - Air OT - Other		S - Soil SL - Sludge	DW - Drinking Water S-GW - Ground Water SL	Batch #
	9a) Methanol Bottle			tionation	en/Tota		4	,				Type	l s			Matrix Codes	Matrix	→ EY
1.				nalysis:	For EPH Analysis:	įπ				+			ingent	Check If Contingent ===>	Check			USE
						est	s Requ	7) Analysis Request	2			\square						FOR LAB
	Expedited TAT Not Always Available (Please Check with Lab)!	\lways Available (Pl	edited TAT Not	Exp														
	Other:		570.	Other:	0	83	051.00.	7		Applicat	PO# (If	2d) Quote/PO # (If Applicable):	20			ers v	Km So	1d) Send Report to:
	PDF	Other:		2 Weeks	2			λY	I	Harrison	£.				,	YOU DO	2	1c) Send Invoice to:
	Excel - PA Act 2	Category A	%)	10 Days (10%)	<u>_</u>				taté): /	n (City/S	Location	2c) Project Location (City/State):		· com	G-PC.	000	Ksa	1b) Email/Cell/Fax/Ph:
	Excel - NY TAGM	Full / Category B	;; ЕРН)	1 Week (25%; EPH)			0	Grog Greene	1096	671	t Mgr:	2b) Project Mgr:	25			∽ ⊘	Han Donner WY 1	_ r
	Excel - NJCC	CLP		4 Days (35%; TPH)	4							•			HWU	- 1	0	
	EQuIS EZ	Red - NJ / NY / PA		72 Hours (50%)	7;				2003	9051.003		2a) Project:	2a			,	l'ashin Assor	1a) Customer:
	FOUIS 4-File	Waste		24 Hours (100%)	4 2			Project Information	ct Info	Proje	100	100.00	1939	400		ation	Customer Information	
				(4)	2		124	3 KY #0	WV #35	04409	83 & 68	#68_00	030 0	14/08 9 1	֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓	#04 06	EI AC/NI #07074 8 07060 CT	
	Electronic Deliv.	Report Type	ound	Turnaround				i		3	AROG: VEHITEC	HAMPIONO			ω.	439-145	Ph. 800-426-9992 Fax: 973-439-1458	00
	(Please Circle)	3) Reporting Requirements (Please Circle)	3) Reporting	- 1	Т	J	RECORD	R		•	Ż	X			-	0700 LN	198 Route 46 East Fairfield NJ 07004	
_	ge of	Page	Project# (Lab Use Only)			STODY	FCU	CHAIN OF CUS	<u>단</u>	No.				Ô	-Clark	npton	Veritech/Division of Hampton-Clarke	Veri

CONDITION UPON RECEIPT

Batch Number AC58548

Entered By: Frantz

Date Entered 4/20/2011 4:27:00 PM

		Bate Lineled 4/20/2011 4.27.001 W
1	Yes	Is there a corresponding COC included with the samples?
2	Yes	Are the samples in a container such as a cooler or Ice chest?
3	Yes	Are the COC seals intact?
4	Yes	Please specify the Temperature inside the container (in degC) 2.4,2.5,3.1,3.0
5	Yes	Are the samples refrigerated (where required)/have they arrived on ice?
6	Yes	Are the samples within the holding times for the parameters listed on the COC? IF no, list parameters and samples:
7	Yes	Are all of the sample bottles intact? If no, specify sample numbers broken/leaking
8	Yes	Are all of the sample labels or numbers legible? If no specify:
9	Yes	Do the contents match the COC? If no, specify
10	Yes	Is there enough sample sent for the analyses listed on the COC? If no, specify:
11	Yes	Are samples preserved correctly?
12	Yes	Was temperature blank present (Place comment below if not)? If not was temperature of samples verified?
13	NA	Other commentsSpecify
14	NA	Corrective actions (Specify item number and corrective action taken).

PRESERVATION DOCUMENT

Batch Number AC58548

Entered By: Frantz

Date Entered 4/20/2011 4:27:00 PM

Lab#:	Container Siz	Container Typ	Parameter	Preservative	PH
AC58548-001	40ml	G	VO+10	HCL	1
AC58548-001	500ml	G	CN	NaOH	14
AC58548-002	NA	NA	NA	NA	NA
AC58548-002	NA	NA	NA	NA	NA
AC58548-003	40mi	G	VO+10	HCL	1
AC58548-003	500ml	G	CN	NaOH	14
AC58548-004	NA	NA	NA	NA	NA
AC58548-004	NA	NA	NA	NA	NA
AC58548-005	40ml	G	VO+10	HCL	1
AC58548-005	500ml	G	CN	NaOH	14
AC58548-006	NA	NA	NA	NA	NA
AC58548-006	NA	NA	NA	NA	NA
AC58548-007	40ml	G	VO+10	HCL	1
AC58548-007	500ml	G	CN	NaOH	14
AC58548-008	NA	NA	NA	NA	NA
AC58548-008	NA	NA	NA	NA	NA
AC58548-009	40ml	G	VO+10	HCL	1
AC58548-009	500ml	G	CN	NaOH	14
AC58548-010	NA	NA	NA	NA	NA
AC58548-010	NA	NA	NA	NA	NA
AC58548-011	40ml	G	VO+10	HCL	1
AC58548-011	500ml	G	CN	NaOH	14
AC58548-012	NA	NA	NA	NA	NA
AC58548-012	NA	NA	NA	NA	NA

Internal Chain of Custody

Lab#: DateTime: Or Bot A/ M Analysis	
AC58548-001	
AC58548-001	
AC58548-001 04/28/11 18:55 R12 1 A ic-w AC58548-001 04/28/11 18:55 SB 1 A ic-w	I
AC58548-001 04/28/11 18:55 SB 1 A ic-w	
AC58548-001 04/26/11 07:29 JB 2 A TCN	
AC58548-001 04/26/11 14:42 R12 2 A NONE	
AC58548-001 04/24/11 05:19 MLC 4 A A, BNA	
AC58548-001 04/21/11 07:55 R22 6 A NONE	
AC58548-001 04/22/11 14:33 SG 6 A VOA	
AC58548-001 04/22/11 18:10 R22 6 M NONE	
AC58548-001	
AC58548-001 04/26/11 09:04 WP 6 A VOA	
AC58548-001 04/21/11 07:55 R22 7 A NONE	
AC58548-002 04/20/11 15:30 FRAN 0 M Received	
AC58548-002 04/20/11 16:26 FRAN 0 M Login	
AC58548-002 04/22/11 14:17 JPC 1 A FILTERING	
AC58548-002 04/22/11 16:01 R12 1 A NONE	
AC58548-002 04/25/11 11:32 JPC 1 A TDWI-HG	
AC58548-002 04/25/11 13:07 R12 1 A NONE	
AC58548-003	
AC58548-003	
AC58548-003 04/22/11 14:33 SG 2 A VOA	
AC58548-003 04/22/11 18:10 R22 2 M NONE	
AC58548-003 04/25/11 15:04 SG 2 A VOA	
AC58548-003 04/26/11 08:22 R22 2 A NONE	
AC58548-003 04/26/11 09:04 WP 2 A VOA	
AC58548-003 04/21/11 07:55 R22 3 A NONE	
AC58548-003 04/28/11 18:55 R12 4 A ic-w	
AC58548-003 04/28/11 18:55 SB 4 A ic-w	
AC58548-003	
AC58548-003 04/24/11 05:19 MLC 6 A A, BNA	
AC58548-004 04/20/11 15:30 FRAN 0 M Received	
AC58548-004 04/20/11 16:26 FRAN 0 M Login	
AC58548-004 04/22/11 14:17 JPC 1 A FILTERING	
AC58548-004 04/22/11 16:01 R12 1 A NONE	
AC58548-004 04/25/11 11:32 JPC 1 A TDWI-HG	
AC58548-004 04/25/11 13:07 R12 1 A NONE	
AC58548-005 04/20/11 15:30 FRAN 0 M Received	
AC58548-005 04/20/11 16:26 FRAN 0 M Login AC58548-005 04/24/11 05:19 MLC 2 A A, BNA	
AC58548-005 04/26/11 07:29 JB 3 A TCN	
AC58548-005 04/26/11 14:42 R12 3 A NONE	
AC58548-005 04/28/11 18:55 R12 4 A ic-w	
AC58548-005 04/28/11 18:55 SB 4 A ic-w	
AC58548-005 04/21/11 07:55 R22 6 A NONE	
AC58548-005 04/22/11 14:33 SG 6 A VOA	
AC58548-005 04/22/11 18:10 R22 6 M NONE	
AC58548-005 04/25/11 15:04 SG 6 A VOA	
AC58548-005	
AC58548-005 04/21/11 07:55 R22 7 A NONE	
AC58548-006 04/20/11 15:30 FRAN 0 M Received	
AC58548-006 04/20/11 16:26 FRAN 0 M Login	
AC58548-006 04/22/11 14:17 JPC 1 A FILTERING	
AC58548-006 04/22/11 16:01 R12 1 A NONE	
AC58548-006 04/25/11 11:32 JPC 1 A TDWI-HG	
AC58548-006 04/25/11 13:07 R12 1 A NONE	
AC58548-007 04/20/11 15:30 FRAN 0 M Received	
AC58548-007	
AC58548-007 04/22/11 14:33 SG 2 A VOA	
AC58548-007 04/22/11 18:10 R22 2 M NONE	
AC58548-007 04/25/11 15:04 SG 2 A VOA	
AC58548-007 04/26/11 08:22 R22 2 A NONE	
AC58548-007 04/26/11 09:04 WP 2 A VOA	
AC58548-007 04/21/11 07:55 R22 3 A NONE	
AC58548-007 04/26/11 07:29 JB 4 A TCN	
AC58548-007 04/26/11 14:42 R12 4 A NONE	
AC58548-007 04/28/11 18:55 R12 5 A ic-w	
AC58548-007 04/28/11 18:55 SB 5 A ic-w AC58548-007 04/24/11 05:19 MLC 6 A A, BNA	
AC58548-007	
Samples marked as received are stored in coolers or refrigerator R	12 or P24

		T		Т	
		Loc	D-4	١,,	
l ab#	DataTima	or	Bot	A/	Analysis
Lab#:	DateTime:	User	-	М	Analysis
AC58548-008	04/20/11 16:26	FRAN	0	М	Login
AC58548-008	04/22/11 14:17	JPC	1	Α	FILTERING
AC58548-008	04/22/11 16:01	R12	1	Α	NONE
AC58548-008	04/25/11 11:32	JPC	1	Α	TDWI-HG
AC58548-008	04/25/11 13:07	R12	1	Α	NONE
AC58548-009	04/20/11 15:30	FRAN		М	Received
AC58548-009	04/20/11 16:26	FRAN	0	М	Login
AC58548-009	04/28/11 18:55	R12	1	Α	ic-w
AC58548-009	04/28/11 18:55	SB	1	Α	ic-w
AC58548-009	04/26/11 07:29	JB	2	Α	TCN
AC58548-009	04/26/11 14:42	R12	2	Α	NONE
AC58548-009	04/24/11 05:19	MLC	3	Α	A, BNA
AC58548-009	04/21/11 07:55	R22	6	Α	NONE
AC58548-009	04/22/11 14:33	SG	6	Α	VOA
AC58548-009	04/22/11 18:10	R22	6	M	NONE
AC58548-009	04/25/11 15:04	SG	6	Α	VOA
AC58548-009	04/26/11 08:22	R22	6	Α	NONE
AC58548-009	04/26/11 09:04	WP	6	Α	VOA
AC58548-009	04/21/11 07:55	R22	7	Α	NONE
AC58548-010	04/20/11 15:30	FRAN	0	M	Received
AC58548-010	04/20/11 16:26	FRAN	0	М	Login
AC58548-010	04/22/11 14:17	JPC	1	Α	FILTERING
AC58548-010	04/22/11 16:01	R12	1	Α	NONE
AC58548-010	04/25/11 11:32	JPC	1	Α	TDWI-HG
AC58548-010	04/25/11 13:07	R12	1	Α	NONE
AC58548-011	04/20/11 15:30	FRAN		М	Received
AC58548-011	04/20/11 16:26	FRAN	0	М	Login
AC58548-011	04/28/11 18:55	SB	1	Α	ic-w
AC58548-011	04/28/11 18:55	R12	1	Α	ic-w
AC58548-011	04/26/11 07:29	JB	2	Α	TCN
AC58548-011	04/26/11 14:42	R12	2	Α	NONE
AC58548-011	04/24/11 05:19	MLC	4	Α	A, BNA
AC58548-011	04/21/11 07:55	R22	6	Α	NONE
AC58548-011	04/22/11 14:33	SG	6	Α	VOA
AC58548-011	04/22/11 18:10	R22	6	M	NONE
AC58548-011	04/25/11 15:04	SG	6	Α	VOA
AC58548-011	04/26/11 08:22	R22	6	Α	NONE
AC58548-011	04/26/11 09:04	WP	6	Α	VOA
AC58548-011	04/21/11 07:55	R22	7	Α	NONE
AC58548-012	04/20/11 15:30	FRAN	0	М	Received
AC58548-012	04/20/11 16:26	FRAN	0	М	Login
AC58548-012	04/22/11 14:17	JPC	1	Α	FILTERING
AC58548-012	04/22/11 16:01	R12	1	Α	NONE
AC58548-012	04/25/11 11:32	JPC	1	Α	TDWI-HG
AC58548-012	04/25/11 13:07	R12	1	Α	NONE

Samples marked as received are stored in coolers or refrigerator R12, or R24 at 4 deg C until Login

Laboratory Chronicle

Client: Cashin Associates

Project: 9051.003

HCV Project #: 1042017

Lab#:	AC58548-001	Sample ID:	PC-3 U

	Prep	Prep		Analytical	Analysis	
Test Code	Method	Date	Ву	Method	Date	Ву
Chloride (Water) 300.0		4/28/11	nnm	300.0 rev2.1	5/2/11 19:33	nnm
Cyanide-Water (EPA 335.4)	EPA 335.4	4/26/11	johns	EPA 335.4	4/27/11 00:00	hossain
Semivolatile Organics + 25 (625)	EPA 625	4/24/11	mahaliac	EPA 625	4/25/11 06:50	AHD
Volatile Organics + 10 (624)	EPA 624			EPA 624	4/26/11 09:53	WP

Lab#:	AC58548-002	Sample ID: PC-3 F

Test Code	Prep Method	Prep Date	By	Analytical Method	Analysis Date	Ву
Mercury (Water) 245.1	245.1 rev3.0	4/25/11	Joelly	245.1 rev3.0	4/26/11 14:09	CJA
TAL Metals 200.7/8	EPA 200.2	4/25/11	Joelly	200.7/200.8	4/26/11 18:32	SRB
TAL Metals 200.7/8	EPA 200.2	4/25/11	Joelly	200.7/200.8	4/26/11 21:21	SRB

Lab#: AC58548-003	Sample ID: PC-2 U
-------------------	-------------------

	Prep	Prep		Analytical	Analysis	
Test Code	Method	Date	Ву	Method	Date	Ву
Chloride (Water) 300.0		4/28/11	nnm	300.0 rev2.1	4/29/11 06:52	nnm
Cyanide-Water (EPA 335.4)	EPA 335.4	4/26/11	johns	EPA 335.4	4/27/11 00:00	hossain
Semivolatile Organics + 25 (625)	EPA 625	4/24/11	mahaliac	EPA 625	4/25/11 07:12	AHD
Volatile Organics + 10 (624)	EPA 624			EPA 624	4/26/11 10:09	WP

Lab#: AC58548-004	Sample ID: PC-2 F
-------------------	-------------------

Test Code	Prep Method	Prep Date	Ву	Analytical Method	Analysis Date	Ву
Mercury (Water) 245.1	245.1 rev3.0	4/25/11	Joelly	245.1 rev3.0	4/26/11 14:11	CJA
TAL Metals 200.7/8	EPA 200.2	4/25/11	Joelly	200.7/200.8	4/26/11 18:36	SRB
TAL Metals 200.7/8	EPA 200.2	4/25/11	Joelly	200.7/200.8	4/26/11 21:24	SRB

Project #: 1042017 Page 1 of 3

Laboratory Chronicle

Client: Cashin Associates

Project: 9051.003

HCV Project #: 1042017

Lab#: AC58548-005	Sample ID: LMW-4 U	
		\

	Prep	Prep		Analytical	Analysis	
Test Code	Method	Date	Ву	Method	Date	Ву
Chloride (Water) 300.0		4/28/11	nnm	300.0 rev2.1	4/29/11 07:23	nnm
Cyanide-Water (EPA 335.4)	EPA 335.4	4/26/11	johns	EPA 335.4	4/27/11 00:00	hossain
Semivolatile Organics + 25 (625)	EPA 625	4/24/11	mahaliac	EPA 625	4/25/11 07:34	AHD
Volatile Organics + 10 (624)	EPA 624			EPA 624	4/26/11 10:26	WP

Lab#: AC58548-006	Sample ID: LMW-4 F

	Prep	Prep		Analytical	Analysis		
Test Code	Method	Date	Ву	Method	Date	Ву	
Mercury (Water) 245.1	245.1 rev3.0	4/25/11	Joelly	245.1 rev3.0	4/26/11 14:13	CJA	
TAL Metals 200.7/8	EPA 200.2	4/25/11	Joelly	200.7/200.8	4/28/11 18:32	SRB	
TAL Metals 200.7/8	EPA 200.2	4/25/11	Joelly	200.7/200.8	4/26/11 18:40	SRB	
TAL Metals 200.7/8	EPA 200.2	4/25/11	Joelly	200.7/200.8	4/26/11 21:27	SRB	

Lab#: AC58548-007	Sample ID: LMW-2 U

	Prep Prep			Analytical	Analysis	
Test Code	Method	Date	Ву	Method	Date	Ву
Chloride (Water) 300.0		4/28/11	nnm	300.0 rev2.1	4/29/11 07:53	nnm
Cyanide-Water (EPA 335.4)	EPA 335.4	4/26/11	johns	EPA 335.4	4/27/11 00:00	hossain
Semivolatile Organics + 25 (625)	EPA 625	4/24/11	mahaliac	EPA 625	4/25/11 07:56	AHD
Volatile Organics + 10 (624)	EPA 624			EPA 624	4/26/11 10:42	WP

Lab#: AC58548-008	Sample ID: LMW-2 F	

Test Code	Prep Method	Prep Date	Ву	Analytical Method	Analysis Date	Ву
Mercury (Water) 245.1	245.1 rev3.0	4/25/11	Joelly	245.1 rev3.0	4/26/11 14:53	CJA
TAL Metals 200.7/8	EPA 200.2	4/25/11	Joelly	200.7/200.8	4/26/11 18:45	SRB
TAL Metals 200.7/8	EPA 200.2	4/25/11	Joelly	200.7/200.8	4/26/11 21:29	SRB

Laboratory Chronicle

Client: Cashin Associates

Project: 9051.003

HCV Project #: 1042017

1	ab#:	Δ.	52	5/12	
_	aum.	AL	JO	340	-uus

Sample ID: LF-1 U

	Prep	Prep		Analytical	Analysis	
Test Code	Method	Date	Ву	Method	Date	Ву
Chloride (Water) 300.0		4/28/11	nnm	300.0 rev2.1	4/29/11 08:24	nnm
Cyanide-Water (EPA 335.4)	EPA 335.4	4/26/11	johns	EPA 335.4	4/27/11 00:00	hossain
Semivolatile Organics + 25 (625)	EPA 625	4/24/11	mahaliac	EPA 625	4/25/11 08:18	AHD
Volatile Organics + 10 (624)	EPA 624			EPA 624	4/26/11 10:59	WP

Lab#: AC58548-010

Sample ID: LF-1 F

Test Code	Prep Method	Prep Date	Ву	Analytical Method	Analysis Date	Ву
Mercury (Water) 245.1	245.1 rev3.0	4/25/11	Joelly	245.1 rev3.0	4/26/11 14:55	CJA
TAL Metals 200.7/8	EPA 200.2	4/25/11	Joelly	200.7/200.8	4/26/11 18:48	SRB
TAL Metals 200.7/8	EPA 200.2	4/25/11	Joelly	200.7/200.8	4/26/11 21:32	SRB

Lab#: AC58548-011

Sample ID: PC-1 U

	Prep	Prep	_	Analytical	Analysis	_
Test Code	Method	Date	Ву	Method	Date	Ву
Chloride (Water) 300.0		4/28/11	nnm	300.0 rev2.1	4/29/11 08:54	nnm
Cyanide-Water (EPA 335.4)	EPA 335.4	4/27/11	johns	EPA 335.4	4/28/11 00:00	JS
Semivolatile Organics + 25 (625)	EPA 625	4/24/11	mahaliac	EPA 625	4/25/11 08:40	AHD
Volatile Organics + 10 (624)	EPA 624			EPA 624	4/26/11 11:15	WP

Lab#: AC58548-012

Sample ID: PC-1 F

	Prep Prep		Analytical		Analysis	
Test Code	Method	Date	Ву	Method	Date	Ву
Mercury (Water) 245.1	245.1 rev3.0	4/25/11	Joelly	245.1 rev3.0	4/26/11 14:56	CJA
TAL Metals 200.7/8	EPA 200.2	4/25/11	Joelly	200.7/200.8	4/26/11 21:36	SRB
TAL Metals 200.7/8	EPA 200.2	4/25/11	Joelly	200.7/200.8	4/26/11 18:52	SRB

Project #: 1042017

HCV Reporting Limit Definitions/Data Qualifiers

REPORTING DEFINITIONS

DF = Dilution Factor

MDL = Method Detection Limit

RL = Reporting Limit *

RT = Retention Time

NA = Not Applicable

ND = Not Detected

DATA QUALIFIERS

- **B-** Indicates analyte was present in the Method Blank and sample.
- **d-** For Pesticide and PCB analysis, the concentration between primary and secondary columns is greater than 40%. The lower concentration is generally reported.
- **E-** Indicates the concentration exceeded the upper calibration range of the instrument.
- J- Indicates the concentration is below the Reporting Limit (RL) but above the MDL (Method Detection Limit). The concentration reported is an estimate.

^{*}For Clean Water Act and SW846 Organic Methods and Metals Methods, the Reporting Limit is determined by the concentration of the lowest standard in the calibration curve.

^{*}For Clean Water Act and SW846 Wet Chemistry methods, the Reporting Limit is determined by the concentration of the lowest standard in the calibration curve. For most gravimetric methods the Reporting Limit is defined as a value 3 to 5 times the MDL.

HCV Report Of Analysis

Client: Cashin Associates

Project: 9051.003

HCV Project #: 1042017

Sample ID: PC-3 U

Lab#: AC58548-001

Collection Date: 4/19/2011 Receipt Date: 4/20/2011

Matrix: Aqueous

Analyte	DF	Units	RL	Result	
Chloride	5	mg/l	5.0	82	
Cyanide-Water (EPA 335.4)					

Analyte	DF	Units	RL	Result
Cyanide	1	mg/l	.02	ND

Semivolatile Organics + 25 (625)

Analyte	DF	Units	RL	Result
1,1'-Biphenyl	1	ug/l	2.1	ND
1,2,4,5-Tetrachlorobenzene	1	ug/l	2.1	ND
2,3,4,6-Tetrachlorophenol	1	ug/l	2.1	ND
2,4,5-Trichlorophenol	1	ug/l	2.1	ND
2,4,6-Trichlorophenol	1	ug/l	2.1	ND
2,4-Dichlorophenol	1	ug/l	2.1	ND
2,4-Dimethylphenol	1	u g/ l	2.1	ND
2,4-Dinitrophenol	1	ug/l	10	ND
2,4-Dinitrotoluene	1	ug/l	2.1	ND
2,6-Dinitrotoluene	1	ug/l	2.1	ND
2-Chloronaphthalene	1	ug/l	2.1	ND
2-Chlorophenol	1	ug/l	2.1	ND
2-Methylnaphthalene	1	ug/l	2.1	ND
2-Methylphenol	1	ug/l	0.52	ND
2-Nitroaniline	1	ug/l	2.1	ND
2-Nitrophenol	1	ug/l	2.1	ND
3&4-Methylphenol	1	ug/l	0.52	ND
3,3'-Dichlorobenzidine	1	ug/l	2.1	ND
3-Nitroaniline	1	ug/l	2.1	ND
4,6-Dinitro-2-methylphenol	1	ug/l	10	ND
4-Bromophenyl-phenylether	1	ug/l	2.1	ND
4-Chloro-3-methylphenol	1	ug/l	2.1	ND
4-Chloroaniline	1	ug/I	0.52	ND
4-Chlorophenyl-phenylether	1	ug/l	2.1	ND
4-Nitroaniline	1	ug/l	2.1	ND
4-Nitrophenol	1	ug/l	2.1	ND
Acenaphthene	1	ug/l	2.1	ND
Acenaphthylene	1	ug/l	2.1	ND
Acetophenone	1	ug/l	2.1	ND
Anthracene	1	ug/l	2.1	ND
Atrazine	1	ug/l	2.1	ND
Benzaldehyde	1	ug/l	2.1	ND
Benzo[a]anthracene	1	ug/l	2,1	ND
Benzo[a]pyrene	1	ug/l	2.1	ND
Benzo[b]fluoranthene	1	ug/l	2.1	ND
Benzo(g,h,i)perylene	1	ug/l	2.1	ND
Benzo[k]fluoranthene	1	ug/l	2.1	ND
bis(2-Chloroethoxy)methane	1	ug/l	2.1	ND
bis(2-Chloroethyl)ether	1	ug/l	0.52	ND
bis(2-Chloroisopropyl)ether	1	ug/l	2.1	ND
bis(2-Ethylhexyl)phthalate	1	ug/l	2.1	ND
Butylbenzylphthalate	1	ug/l	2.1	ND
Caprolactam	1	ug/l	2.1	ND
Carbazole	1	ug/l	2.1	ND
Chrysene	1	ug/l	2.1	ND
Dibenzo[a,h]anthracene	1	ug/l	2.1	ND
Dibenzofuran Dibenzofuran	1	ug/l	0.52	ND
Dipenzoturan Diethylphthalate	1		2.1	ND .
	1	ug/l	2.1	ND .
Dimethylphthalate		ug/l	2.1	ND
Di-n-butylphthalate	1	ug/l	Z. I	Page 1 of 24

NOTE: Soil Results are reported to Dry Weight

Project #: 1042017

Page 1 of 24

	PC-3 U AC58548-001 Aqueous				Date: 4/19/2011 Date: 4/20/2011
WIGHTA.	Di-n-octylphthalate	1	ug/l	2.1	ND
	Fluoranthene	1	ug/l	2.1	ND
	Fluorene	1	ug/l	2.1	ND
	Hexachlorobenzene	1	ug/l	2.1	ND
	Hexachlorobutadiene		ug/l	2.1	ND
		1	ug/l	2.1	ND
	Hexachlorocyclopentadiene		_	2.1	ND
	Hexachloroethane	1	ug/l	2.1	ND
	Indeno[1,2,3-cd]pyrene	1	ug/l	2.1	
	Isophorone	1	ug/l		ND
	Naphthalene	1	ug/l	0.52	ND
	Nitrobenzene	1	ug/l	2.1	ND
	N-Nitroso-di-n-propylamine	1	ug/l	0.52	ND .
	N-Nitrosodiphenylamine	1	ug/l	2.1	ND
	Pentachlorophenol	1	ug/l	10	ND
	Phenanthrene	1	ug/l	2.1	ND
	Phenol	1	ug/l	2.1	ND
_	Pyrene	1	ug/l	2.1	ND
S	Semivolatile Organics + 25 (625) Library Search	es			
-	Analyte	DF	Units	RT	Result
	Ethanol, 2-butoxy-	1	ug/l	4.52	9.5JB
	2-Propanol, 1-butoxy-	1	ug/l	4.84	10JB
	TotalSemiVolatileTic	1	ug/l	NA NA	20J
	/olatile Organics + 10 (624)				
_	Analyte	DF	Units	RL	Result
	1,1,1-Trichloroethane	1	ug/l	1.0	ND
	1,1,2,2-Tetrachloroethane	1	ug/l	1.0	ND
	1,1,2-Trichloro-1,2,2-trifluoroethane	1	ug/l	5.0	ND
	1,1,2-Trichloroethane	1	ug/l	1.0	ND
	1,1-Dichloroethane	1	ug/l	1.0	ND
	1,1-Dichloroethene	1	ug/l	1.0	ND
	1,2,3-Trichlorobenzene	1	ug/l	1.0	ND
	1,2,4-Trichlorobenzene	1	ug/l	1.0	ND
	1,2-Dibromo-3-chloropropane	1	ug/l	1.0	ND
	1,2-Dibromoethane	1	ug/l	1.0	ND
	1,2-Dichlorobenzene	1	u g/ l	1.0	ND
	1,2-Dichloroethane	1	ug/l	0.50	ND
	1,2-Dichloropropane	1	ug/l	1.0	ND
	1,3-Dichlorobenzene	1	ug/l	1.0	ND
	1,4-Dichlorobenzene	1	ug/l	1.0	ND
	1,4-Dioxane	1	ug/l	50	ND
	2-Butanone	1	ug/l	1.0	ND
	2-Hexanone	1	ug/l	1.0	ND
	4-Methyl-2-pentanone	1	ug/l	1.0	ND .
	Acetone	1	ug/l	10	ND
	Benzene	1	ug/l	0.50	ND
	Bromochloromethane	1	ug/l	1.0	ND
	Bromodichloromethane	1	ug/l	0.61	ND
	Bromoform	1	ug/l	1.0	ND
	Bromomethane	1	ug/l	1.0	ND
	Carbon disulfide	1	ug/l	1.0	ND
	Carbon tetrachloride	1	ug/l	1.0	ND
		1	ug/l	1.0	ND
	Chlorobenzene		ug/l	1.0	ND ND
	Chlorobenzene	1			
	Chloroethane	1		1.0	NID
	Chloroethane Chloroform	1	ug/l	1.0 1.0	ND ND
	Chloroethane Chloroform Chloromethane	1 1	ug/l ug/l	1.0	ND
	Chloroethane Chloroform Chloromethane cis-1,2-Dichloroethene	1 1 1	ug/l ug/l ug/l	1.0 1.0	ND ND
	Chloroethane Chloroform Chloromethane cis-1,2-Dichloroethene cis-1,3-Dichloropropene	1 1 1	ug/l ug/l ug/l	1.0 1.0 1.0	ND ND ND
	Chloroethane Chloroform Chloromethane cis-1,2-Dichloroethene cis-1,3-Dichloropropene Cyclohexane	1 1 1 1	ug/l ug/l ug/l ug/l	1.0 1.0 1.0 1.0	ND ND ND ND
	Chloroethane Chloroform Chloromethane cis-1,2-Dichloroethene cis-1,3-Dichloropropene Cyclohexane Dibromochloromethane	1 1 1 1 1	ug/l ug/l ug/l ug/l ug/l	1.0 1.0 1.0 1.0	ND ND ND ND ND
	Chloroethane Chloroform Chloromethane cis-1,2-Dichloroethene cis-1,3-Dichloropropene Cyclohexane Dibromochloromethane Dichlorodifluoromethane	1 1 1 1 1 1	ug/l ug/l ug/l ug/l ug/l ug/l	1.0 1.0 1.0 1.0 1.0	ND ND ND ND ND ND
	Chloroethane Chloroform Chloromethane cis-1,2-Dichloroethene cis-1,3-Dichloropropene Cyclohexane Dibromochloromethane Dichlorodifluoromethane Ethylbenzene	1 1 1 1 1 1 1	ug/l ug/l ug/l ug/l ug/l ug/l	1.0 1.0 1.0 1.0 1.0 1.0	ND ND ND ND ND ND ND ND ND
	Chloroethane Chloroform Chloromethane cis-1,2-Dichloroethene cis-1,3-Dichloropropene Cyclohexane Dibromochloromethane Dichlorodifluoromethane Ethylbenzene Isopropylbenzene	1 1 1 1 1 1 1 1	ug/l ug/l ug/l ug/l ug/l ug/l ug/l	1.0 1.0 1.0 1.0 1.0 1.0 1.0	ND
	Chloroethane Chloroform Chloromethane cis-1,2-Dichloroethene cis-1,3-Dichloropropene Cyclohexane Dibromochloromethane Dichlorodifluoromethane Ethylbenzene Isopropylbenzene m&p-Xylenes	1 1 1 1 1 1 1 1 1	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	ND
	Chloroethane Chloroform Chloromethane cis-1,2-Dichloroethene cis-1,3-Dichloropropene Cyclohexane Dibromochloromethane Dichlorodifluoromethane Ethylbenzene Isopropylbenzene m&p-Xylenes Methyl Acetate	1 1 1 1 1 1 1 1 1	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	ND N
	Chloroethane Chloroform Chloromethane cis-1,2-Dichloroethene cis-1,3-Dichloropropene Cyclohexane Dibromochloromethane Dichlorodifluoromethane Ethylbenzene Isopropylbenzene m&p-Xylenes Methyl Acetate Methylcyclohexane	1 1 1 1 1 1 1 1 1 1 1	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	ND N
	Chloroethane Chloroform Chloromethane cis-1,2-Dichloroethene cis-1,3-Dichloropropene Cyclohexane Dibromochloromethane Dichlorodifluoromethane Ethylbenzene Isopropylbenzene m&p-Xylenes Methyl Acetate	1 1 1 1 1 1 1 1 1	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	ND N

mple ID: PC-3 U Lab#: AC58548-001			Collection Date: 4/19/2011 Receipt Date: 4/20/2011		
Matrix:	Aqueous				
	o-Xylene	1	ug/l	1.0	ND
	Styrene	1	ug/I	1.0	ND
	Tetrachloroethene	1	ug/l	1.0	ND
	Toluene	1	ug/l	1.0	ND
	trans-1,2-Dichloroethene	1	ug/l	1.0	ND
	trans-1,3-Dichloropropene	1	u g/ l	1.0	ND
	Trichloroethene	1	ug/l	1.0	ND
	Trichlorofluoromethane	1	ug/l	1.0	ND
	Vinyl chloride	1	ug/l	1.0	ND
	Xylenes (Total)	1	ug/l	1.0	ND

Volatile Organics + 10 (624) Library Searches

Analyte	DF	Units	RT	Result
No Unknown Compounds Detected	1	ug/l	NA	ND
TotalVolatileTic	1	ug/l	NA	ND

Sample ID: PC-3 F

Lab#: AC58548-002

Collection Date: 4/19/2011 Receipt Date: 4/20/2011

Matrix: Aqueous

Mercury (Water) 245.1

Analyte	DF	Units	RL	Result	
Mercury	1	ug/l	0.20	ND	

TAL Metals 200.7/8

Analyte	DF	Units	RL	Result
Aluminum	1	ug/l	100	140
Antimony	1	ug/l	7.5	ND
Arsenic	1	ug/l	20	ND
Barium	1	ug/l	25	91
Beryllium	1	ug/l	4.0	ND
Cadmium	1	ug/l	2.0	ND
Calcium	1	ug/l	1000	38000
Chromium	1	ug/l	25	ND
Cobalt	1	ug/l	10	ND
Copper	1	ug/l	25	ND
Iron	1	ug/l	150	680
Lead	1	ug/l	5.0	ND
Magnesium	1	ug/l	1000	12000
Manganese	1	ug/l	25	390
Nickel	1	ug/I	10	ND
Potassium	1	ug/I	2500	5100
Selenium	1	ug/l	25	ND
Silver	1	ug/l	10	ND
Sodium	1	ug/l	2500	49000
Thallium	1	ug/l	5.0	ND
Vanadium	1	ug/i	25	ND
Zinc	1	ug/l	25	ND

Sample ID: PC-2 U Lab#: AC58548-003 Matrix: Aqueous Collection Date: 4/19/2011 Receipt Date: 4/20/2011

Chloride (Water) 300.0

Analyte	DF	Units	RL	Result	
Chloride	1	mg/l	1.0	21	

Cyanide-Water (EPA 335.4)

Analyte	DF	Units	RL	Result
Cyanide	1	mg/l	.02	ND

Semivolatile Organics + 25 (625)

Analyte	DF	Units	RL	Result
1,1'-Biphenyl	1	ug/l	2.2	ND
1,2,4,5-Tetrachlorobenzene	1	ug/l	2.2	ND
2,3,4,6-Tetrachlorophenol	1	ug/l	2.2	ND
2,4,5-Trichlorophenol	1	ug/l	2.2	ND
2,4,6-Trichlorophenol	1	ug/l	2.2	ND
2,4-Dichlorophenol	1	ug/l	2.2	ND
2,4-Dimethylphenol	1	ug/l	2.2	ND
2,4-Dinitrophenol	1	ug/l	11	ND
2,4-Dinitrotoluene	1	ug/l	2.2	ND
2,6-Dinitrotoluene	1	ug/i	2.2	ND
2-Chloronaphthalene	1	ug/l	2.2	ND
2-Chlorophenol	1	ug/l	2.2	ND
2-Methylnaphthalene	1	ug/l	2.2	ND
2-Methylphenol	1	ug/l	0.56	ND
2-Nitroaniline	1	ug/l	2.2	ND
2-Nitrophenol	1	ug/l	2.2	ND
3&4-Methylphenol	1	ug/l	0.56	ND
3,3'-Dichlorobenzidine	1	ug/l	2.2	ND
3-Nitroaniline	1	ug/l	2.2	ND
4,6-Dinitro-2-methylphenol	1	ug/l	11	ND
4-Bromophenyl-phenylether	1	ug/l	2.2	ND
4-Chloro-3-methylphenol	1	ug/i	2.2	ND
4-Chloroaniline	1	ug/l	0.56	ND
4-Chlorophenyl-phenylether	1	ug/l	2.2	ND
4-Nitroaniline	1	ug/l	2.2	ND
4-Nitrophenol	1	ug/l	2.2	ND
Acenaphthene	1	ug/l	2.2	ND
Acenaphthylene	1	ug/i	2.2	ND
Acetophenone	1	ug/l	2.2	ND
Anthracene	1	ug/l	2.2	ND
Atrazine	1	ug/l	2.2	ND
Benzaldehyde	1	ug/l	2.2	ND
Benzo[a]anthracene	1	ug/l	2.2	ND
Benzo[a]pyrene	1	ug/l	2.2	ND
Benzo[b]fluoranthene	1	ug/l	2.2	ND
Benzo[g,h,i]perylene	1	ug/l	2.2	ND
Benzo[k]fluoranthene	1	ug/l	2.2	ND
bis(2-Chloroethoxy)methane	1	ug/l	2.2	ND
bis(2-Chloroethyl)ether	1	ug/l	0.56	ND
bis(2-Chloroisopropyl)ether	1	ug/l	2.2	ND
bis(2-Ethylhexyl)phthalate	1	ug/i	2.2	ND
Butylbenzylphthalate	1	ug/l	2.2	ND
Caprolactam	1	ug/l	2.2	ND
Carbazole	1	ug/l	2.2	ND
Chrysene	1	ug/l	2.2	ND ND
Dibenzo[a,h]anthracene	1	ug/l	2.2	ND
Dibenzofuran Dibenzofuran	1	ug/l ug/l	0.56	ND
Dibenzoruran Diethylphthalate	1	ug/l ug/l	2.2	ND ND
Dietriyiphthalate Dimethylphthalate	1	ug/l	2.2	ND ND
Dimetnyiphthalate Di-n-butylphthalate	1	=	2.2	ND
		ug/l		
Di-n-octylphthalate	1	ug/l	2.2	ND ND
Fluoranthene	1	ug/l	2.2	ND ND
Fluorene	1	ug/l	2.2	ND ND
Hexachlorobenzene	1	ug/l	2.2	ND ND
Hexachlorobutadiene	1	ug/l	2.2	ND ND
Hexachlorocyclopentadiene	1	ug/l	2.2	ND ND
Hexachloroethane	1	ug/l	2.2	ND
Indeno[1,2,3-cd]pyrene	1	ug/l	2.2	ND

NOTE: Soil Results are reported to Dry Weight

Project #: 1042017

Page 5 of 24

mple ID: Lab#:	PC-2 U AC58548-003				n Date: 4/19/2011 t Date: 4/20/2011
	Aqueous			Receipt	Date: 4/20/2011
	Isophorone	1	ug/l	2.2	ND
	Naphthalene	: 1	ug/l	0.56	ND ND
	Nitrobenzene	1		2.2	ND
	N-Nitroso-di-n-propylamine	1	ug/l	0.56	ND
	N-Nitrosodiphenylamine	1	ug/l ug/l	2.2	ND ND
	Pentachlorophenol	1	ug/l	11	ND ND
	Phenanthrene	1	-	2.2	ND
	Phenol	1	ug/l	2.2	ND
		1	ug/l	2.2	ND
-	Pyrene		ug/l	2.2	NU
-	Semivolatile Organics + 25 (625) Library Sea				
	Analyte	DF	Units	RT	Result
	Ethanol, 2-butoxy-	1	ug/l	4.51	16JB
	2-Propanol, 1-butoxy-	1	ug/l	4.84	15JB
	TotalSemiVolatileTic	1	ug/l	NA .	31J
٧	/olatile Organics + 10 (624)				
	Analyte	DF	Units	RL	Result
	1,1,1-Trichloroethane	1	ug/l	1.0	ND
	1,1,2,2-Tetrachloroethane	1	ug/l	1.0	ND
	1,1,2-Trichloro-1,2,2-trifluoroethane	1	ug/l	5.0	ND
	1,1,2-Trichloroethane	1	ug/l	1.0	ND
	1,1-Dichloroethane	1	ug/l	1.0	ND
	1,1-Dichloroethene	1	ug/ł	1.0	ND
	1,2,3-Trichlorobenzene	1	ug/t	1.0	ND
	1,2,4-Trichlorobenzene	1	ug/l	1.0	ND
	1,2-Dibromo-3-chloropropane	1	ug/l	1.0	ND
	1,2-Dibromoethane	1	ug/l	1.0	ND
	1,2-Dichlorobenzene	1	ug/l	1.0	ND
	1,2-Dichloroethane	1	ug/l	0.50	ND
	1,2-Dichloropropane	1	ug/l	1.0	ND
	1,3-Dichlorobenzene	1	ug/l	1.0	ND
	1,4-Dichlorobenzene	1	ug/l	1.0	ND
	1,4-Dioxane	1	ug/l	50	ND
	2-Butanone	1	ug/l	1.0	ND
	2-Hexanone	1	ug/l	1.0	ND
	4-Methyl-2-pentanone	1	ug/l	1.0	ND
	Acetone	1	ug/l	10	ND
	Benzene	1	ug/l	0.50	ND
	Bromochloromethane	1	ug/l	1.0	ND
	Bromodichloromethane	1	ug/l	0.61	ND
	Bromoform	1	ug/l	1.0	ND
	Bromomethane	1	ug/l	1.0	ND
	Carbon disulfide	1	ug/l	1.0	ND
	Carbon tetrachloride	1	ug/l	1.0	ND
	Chlorobenzene	1	ug/l	1.0	ND
	Chloroethane	<u>'</u>	ug/l	1.0	ND ND
	Chloroform	1	ug/l	1.0	ND
	Chloromethane	1	ug/l	1.0	ND
	cis-1,2-Dichloroethene	1	ug/l	1.0	ND
	cis-1,3-Dichloropropene	1	ug/l	1.0	ND
	Cyclohexane	1	ug/l	1.0	ND
	Dibromochloromethane	1	ug/l	1.0	ND
	Dichlorodifluoromethane	1	ug/l	1.0	ND
	Ethylbenzene	1	ug/l	1.0	ND
	Isopropylbenzene	1	ug/l	1.0	ND
	m&p-Xylenes	1	ug/l	1.0	ND
	Methyl Acetate	1	ug/l	1.0	ND
	Methylcyclohexane	1	ug/l	1.0	ND ND
	Methylene chloride	1	ug/l	1.0	ND
	Methyl-t-butyl ether	1		0.50	ND ND
		1	ug/l		ND
	o-Xylene	1	ug/l	1.0	
	Styrene		ug/l	1.0	ND ND
	Tetrachloroethene	1	ug/l	1.0	ND ND
	Toluene	1	ug/l	1.0	ND ND
	trans-1,2-Dichloroethene	1	ug/l	1.0	ND ND
	trans-1,3-Dichloropropene	1	ug/l	1.0	ND
	Trichloroethene	1	ug/l	1.0	ND
	Trichlorofluoromethane	1	ug/l	1.0	ND

Sample ID: PC-2 U
Lab#: AC58548-003
Matrix: Aqueous

Vinyl chloride
Xylenes (Total)

Collection Date: 4/19/2011
Receipt Date: 4/20/2011

1 ug/l 1.0 ND
ND

Volatile	Organics	+ 10	(624)) Librar	y Searches

Analyte	DF	Units	RT	Result	
No Unknown Compounds Detected	1	ug/l	NA	ND	
TotalVolatileTic	1	ug/l	NA	ND	

Sample ID: PC-2 F

Lab#: AC58548-004 Matrix: Aqueous Collection Date: 4/19/2011 Receipt Date: 4/20/2011

Mercury (Water) 245.1

Analyte	DF	Units	RL	Result
Mercury	1	ug/l	0.20	ND

Analyte	DF	Units	RL	Result
Aluminum	1	ug/l	100	150
Antimony	1	ug/l	7.5	ND
Arsenic	1	ug/l	20	ND
Barium	. 1	ug/l	25	67
Beryllium	1	ug/l	4.0	ND
Cadmium	1	ug/l	2.0	ND
Calcium	1	ug/l	1000	73000
Chromium	1	ug/l	25	ND
Cobalt	1	ug/l	10	ND
Copper	1	ug/l	25	ND
Iron	1	ug/l	150	4900
Lead	1	ug/l	5.0	ND
Magnesium	1	ug/l	1000	19000
Manganese	1	ug/l	25	9500
Nickel	1	u g/ l	10	ND
Potassium	1	ug/l	2500	3900
Selenium	1	ug/l	25	ND
Silver	1	ug/l	10	ND
Sodium	1	ug/l	2500	36000
Thallium	1	ug/l	5.0	ND
Vanadium	1	ug/l	25	ND
Zinc	1	ug/l	25	ND

Sample ID: LMW-4 U Lab#: AC58548-005 Matrix: Aqueous

Collection Date: 4/19/2011

Receipt Date: 4/20/2011

Analyte	DF	Units	RL	Result	
Chloride	1	mg/l	1.0	26	

Cyanide-Water (EPA 335.4)

Analyte	DF	Units	RL	Result
Cyanide	1	mg/l	.02	.02

Semivolatile Organics + 25 (625)

Analyte	DF	Units	RL	Result
1,1'-Biphenyl	1	ug/l	2.1	ND
1,2,4,5-Tetrachlorobenzene	1	ug/l	2.1	ND
2,3,4,6-Tetrachlorophenol	1	ug/l	2.1	ND
2,4,5-Trichlorophenol	1	ug/l	2.1	ND
2,4,6-Trichlorophenol	1	ug/l	2.1	ND
2,4-Dichlorophenol	1	ug/l	2.1	ND
2,4-Dimethylphenol	1	ug/i	2.1	ND
2,4-Dinitrophenol	1	ug/l	11	ND
2,4-Dinitrotoluene	1	ug/l	2.1	ND
2,6-Dinitrotoluene	1	ug/l	2.1	ND
2-Chloronaphthalene	1	ug/l	2.1	ND
2-Chlorophenol	1	ug/l	2.1	ND
2-Methylnaphthalene	1	ug/l	2.1	ND
2-Methylphenol	1	ug/l	0.53	ND
2-Nitroaniline	1	ug/l	2.1	ND
2-Nitrophenol	1	ug/l	2.1	ND
3&4-Methylphenol	1	ug/l	0.53	ND
3,3'-Dichlorobenzidine	1	ug/l	2.1	ND
3-Nitroaniline	1	ug/l	2.1	ND
4,6-Dinitro-2-methylphenol	1	ug/l	11	ND
4-Bromophenyl-phenylether	1	ug/l	2.1	ND
4-Chloro-3-methylphenol	1	ug/l	2.1	ND
4-Chloroaniline	1	ug/l	0.53	ND
4-Chlorophenyl-phenylether	1	ug/l	2.1	ND
4-Nitroaniline	1	ug/l	2.1	ND
4-Nitrophenol	1	ug/l	2.1	ND
Acenaphthene	1	ug/l	2.1	ND
Acenaphthylene	1	ug/l	2.1	ND
Acetophenone	1	ug/l	2.1	ND
Anthracene	1	ug/l	2.1	ND
Atrazine	1	ug/l	2.1	ND
Benzaldehyde	11	ug/l	2.1	ND
Benzo[a]anthracene	1	ug/l	2.1	ND
Benzo[a]pyrene	1	ug/l	2.1	ND
Benzo[b]fluoranthene	1	ug/l	2.1	ND
Benzo[g,h,i]perylene	1	ug/l	2.1	ND
Benzo[k]fluoranthene	1	ug/l	2.1	ND
bis(2-Chloroethoxy)methane	1	ug/l	2.1	ND
bis(2-Chloroethyl)ether	1	ug/l	0.53	ND
bis(2-Chloroisopropyl)ether	1	ug/l	2.1	ND
bis(2-Ethylhexyl)phthalate	1	ug/l	2.1	ND
Butylbenzylphthalate	1	ug/l	2.1	ND
Caprolactam	1	ug/l	2.1	ND
Carbazole	1	ug/l	2.1	ND
Chrysene	1	ug/l	2.1	ND
Dibenzo[a,h]anthracene	1	ug/l	2.1	ND
Dibenzofuran	1	ug/l	0.53	ND
Diethylphthalate	1	ug/l	2.1	ND
Dimethylphthalate	1	ug/l	2.1	ND ND
Di-n-butylphthalate	1	ug/l	2.1	ND ND
Di-n-octylphthalate	1	ug/l	2.1	ND ND
Fluoranthene	1	ug/l	2.1	ND ND
Fluorene	1	ug/l	2.1	ND ND
Hexachlorobenzene Hexachlorobutediana	1	ug/l	2.1	ND ND
Hexachlorobutadiene Hexachlorocyclopentadiene	1 1	ug/l	2.1 2.1	ND ND
		ug/l	2.1	ND ND
Hexachloroethane	1	ug/l		
Indeno[1,2,3-cd]pyrene	1	ug/l	2.1	ND Page 9 of 2

Project #: 1042017

le ID:	LMW-4 U			Collection	Date: 4/19/2011
	AC58548-005			Receipt	t Date: 4/20/2011
atrix: .	Aqueous				
	Isophorone	1	ug/l	2.1	ND
	Naphthalene	1	ug/l	0.53	ND
	Nitrobenzene	1	ug/l	2.1	ND
	N-Nitroso-di-n-propylamine	11	ug/l	0.53	ND
	N-Nitrosodiphenylamine	1	ug/l	2.1	ND
	Pentachlorophenol Phenanthrene	1	ug/l	11 2.1	ND ND
	Phenol	1	ug/l ug/l	2.1	ND ND
	Pyrene	1	ug/l	2.1	ND
Se	emivolatile Organics + 25 (625) Library Searches				
_	Analyte	DF	Units	RT	Result
	Ethanol, 2-butoxy-	1	ug/l	4.52	6.3JB
	Ethane, 1,1,2,2-tetrachloro-	1	ug/l	4.68	4.4J
	2-Propanol, 1-butoxy-	1	ug/l	4.84	7.1JB
_	TotalSemiVolatileTic	1	ug/l	NA	18J
Vo	olatile Organics + 10 (624)				
	Analyte	DF	Units	RL	Result
	1,1,1-Trichloroethane	1	ug/I	1.0	ND
	1,1,2,2-Tetrachloroethane	1	ug/l	1.0	ND
	1,1,2-Trichloro-1,2,2-trifluoroethane	1	ug/l	5.0	ND
	1,1,2-Trichloroethane	1	ug/l	1.0	ND
	1,1-Dichloroethane	1	ug/l	1.0	ND ND
	1,1-Dichloroethene 1,2,3-Trichlorobenzene	1	ug/l ug/l	1.0 1.0	ND ND
	1,2,4-Trichlorobenzene	1	ug/l	1.0	ND
	1,2-Dibromo-3-chloropropane	<u>.</u> 1	ug/l	1.0	ND
	1,2-Dibromoethane	1	ug/l	1.0	ND
	1,2-Dichlorobenzene	1	ug/l	1.0	ND
	1,2-Dichloroethane	1	ug/l	0.50	ND
	1,2-Dichloropropane	1	ug/l	1.0	ND
	1,3-Dichlorobenzene	1	u g /l	1.0	ND
	1,4-Dichlorobenzene	1	ug/l	1.0	ND
	1,4-Dioxane	11	ug/l	50	ND
	2-Butanone 2-Hexanone	1 1	ug/I	1.0 1.0	ND ND
	4-Methyl-2-pentanone	1	ug/l ug/l	1.0	ND
	Acetone	1	ug/l	10	ND
	Benzene	1	ug/l	0.50	ND
	Bromochloromethane	1	ug/l	1.0	ND
	Bromodichloromethane	1	ug/l	0.61	ND
	Bromoform	1	ug/l	1.0	ND
	Bromomethane	1	ug/l	1.0	ND
	Carbon disulfide	1	ug/l	1.0	ND
	Carbon tetrachloride	1	ug/l	1.0	ND
	Chlorobenzene Chloroethane	1 1	ug/l	1.0	ND ND
	Chloroform	1	ug/l ug/l	1.0	ND ND
	Chloromethane	1	ug/l	1.0	ND
	cis-1,2-Dichloroethene	1	ug/l	1.0	ND
	cis-1,3-Dichloropropene	1	ug/l	1.0	ND
	Cyclohexane	1	ug/l	1.0	ND
	Dibromochloromethane	1	ug/l	1.0	ND
	Dichlorodifluoromethane	1	ug/l	1.0	ND
	Ethylbenzene	1	ug/l	1.0	ND
	Isopropylbenzene	1	ug/l	1.0	ND .
	m&p-Xylenes	1	ug/l	1.0	ND
	Methyl Acetate	1	ug/l	1.0	ND ND
	Methylcyclohexane Methylene chloride	1 1	ug/l	1.0 1.0	ND ND
	Methyl-t-butyl ether	1	ug/l ug/l	0.50	ND ND
	o-Xylene	1	ug/l	1.0	ND
	Styrene	1	ug/l	1.0	ND ND
	Tetrachloroethene	1	ug/l	1.0	ND
	Toluene	1	ug/l	1.0	ND
	trans-1,2-Dichloroethene	1	ug/l	1.0	ND
				1.0	ND
	trans-1,3-Dichloropropene	1	ug/l	1.0	140

Sample ID: LMW-4 U Lab#: AC58548-005 Matrix: Aqueous				Date: 4/19/2011 Date: 4/20/2011
Trichlorofluoromethane	1	ug/l	1.0	ND
Vinyl chloride	1	ug/l	1.0	ND
Xylenes (Total)	1	u g/l	1.0	ND

Volatile Organics + 10 (624) Library Searches

-	Analyte	DF	Units	RT	Result
1	No Unknown Compounds Detected	1	ug/l	NA	ND
٦	TotalVolatileTic	1	ug/l	NA	ND

Sample ID: LMW-4 F Lab#: AC58548-006

Matrix: Aqueous

Collection Date: 4/19/2011 Receipt Date: 4/20/2011

Mercury (Water) 245.1

Analyte	DF	Units	RL	Result	
Mercury	1	ug/l	0.20	ND	

TAL Metals 200.7/8

Analyte	DF	Units	RL	Result
Aluminum	1	ug/l	100	200
Antimony	1	ug/l	7.5	ND
Arsenic	1	ug/l	20	ND
Barium	1	ug/l	25	81
Beryllium	1	ug/l	4.0	ND
Cadmium	1	ug/l	2.0	ND
Calcium	1	ug/l	1000	44000
Chromium	1	ug/I	25	ND
Cobalt	1	ug/l	10	19
Copper	1	ug/l	25	ND
Iron	1	ug/l	150	34000
Lead	1	ug/l	5.0	ND
Magnesium	1	ug/l	1000	18000
Manganese	2	ug/l	50	17000
Nickel	1	ug/l	10	ND
Potassium	1	ug/l	2500	3000
Selenium	1	ug/l	25	ND
Silver	1	ug/l	10	ND
Sodium	1	ug/l	2500	29000
Thallium	1	ug/l	5.0	ND
Vanadium	1	ug/l	25	ND
Zinc	1	ug/l	25	ND

Sample ID: LMW-2 U Lab#: AC58548-007 Matrix: Aqueous

Collection Date: 4/19/2011 Receipt Date: 4/20/2011

hloride (Water) 300.0				
Analyte	DF	Units	RL	Result
Chloride	1	mg/l	1.0	21
yanide-Water (EPA 335.4)				
Analyte	DF	Units	RL	Result
Cyanide	1	mg/l	.02	.02
-	I	1119/1	.02	.02
emivolatile Organics + 25 (625)				
Analyte	DF	Units	RL	Result
1,1'-Biphenyl	1	ug/I	2.1	ND
1,2,4,5-Tetrachlorobenzene	1	ug/I	2.1	ND
2,3,4,6-Tetrachlorophenol	1	ug/l	2.1	ND
2,4,5-Trichlorophenol	<u> </u>	ug/l	2.1	ND ND
2,4,6-Trichlorophenol 2,4-Dichlorophenol	1	ug/l ug/l	2.1	ND ND
2,4-Dictriorophenol	1	ug/l	2.1	ND
2,4-Dinitrophenol	1	ug/l	10	ND
2,4-Dinitrotoluene	1	ug/l	2.1	ND
2,6-Dinitrotoluene	1	ug/l	2.1	ND
2-Chloronaphthalene	1	ug/l	2.1	ND
2-Chlorophenol	1	ug/l	2.1	ND
2-Methylnaphthalene	1	ug/l	2.1	ND
2-Methylphenol	1	ug/l	0.52	ND
2-Nitroaniline	1	ug/l	2.1	ND
2-Nitrophenol	1	ug/l	2.1	ND ND
3&4-Methylphenol	1 1	ug/l	0.52 2.1	ND ND
3,3'-Dichlorobenzidine 3-Nitroaniline	1	ug/l ug/l	2.1	ND
4,6-Dinitro-2-methylphenol	1	ug/l	10	ND
4-Bromophenyl-phenylether	1	ug/l	2.1	ND
4-Chloro-3-methylphenol	1	ug/l	2.1	ND
4-Chloroaniline	1	ug/l	0.52	ND
4-Chlorophenyl-phenylether	1	ug/l	2.1	ND
4-Nitroaniline	1	ug/l	2.1	ND
4-Nitrophenol	1	ug/l	2.1	ND
Acenaphthene	1	ug/l	2.1	ND
Acenaphthylene	1	ug/l	2.1	ND
Acetophenone	1	ug/l	2.1	ND
Anthracene	1	ug/l	2.1 2.1	ND ND
Atrazine Benzaldehyde	1	ug/l ug/l	2.1	ND ND
Benzo(a)anthracene		ug/l	2.1	ND
Benzo[a]pyrene	1	ug/l	2.1	ND
Benzo[b]fluoranthene	1	ug/l	2.1	ND
Benzo[g,h,i]perylene	1	ug/l	2.1	ND
Benzo[k]fluoranthene	1	ug/l	2.1	ND
bis(2-Chloroethoxy)methane	1	ug/l	2.1	ND
bis(2-Chloroethyl)ether	1	ug/l	0.52	ND
bis(2-Chloroisopropyl)ether	1	ug/l	2.1	ND
bis(2-Ethylhexyl)phthalate	1	ug/l	2.1	ND
Butylbenzylphthalate	1	ug/l	2.1	ND ND
Caprolactam	1	ug/l	2.1 2.1	ND ND
Carbazole Chrysene	1 1	ug/l ug/l	2.1	ND ND
Chrysene Dibenzo[a,h]anthracene	1	ug/l	2.1	ND ND
Dibenzofuran	1	ug/l	0.52	ND
Diethylphthalate	1	ug/l	2.1	ND
Dimethylphthalate	1	ug/l	2.1	ND
Di-n-butylphthalate	1	ug/l	2.1	ND
Di-n-octylphthalate	1	ug/l	2.1	ND
Fluoranthene	1	ug/l	2.1	ND
Fluorene	1	u g/ l	2.1	ND
Hexachlorobenzene	1	ug/l	2.1	ND
Hexachlorobutadiene	1	u g /l	2.1	ND
Heyachlorocyclonentadiene	1	ua/l	2.1	ND

Indeno[1,2,3-cd]pyrene NOTE: Soil Results are reported to Dry Weight

Hexachlorocyclopentadiene

Project #: 1042017

ug/l

ug/l

ug/l

2.1

2.1 2.1

Page 13 of 24

ND

ND

ND

-	.MW-2 U AC58548-007			Collection Dat	
				Receipt Dat	e: 4/20/2011
Matrix: A					
	Isophorone	1	ug/l	2.1	ND ND
	Naphthalene Nitrobenzene	1	ug/l	0.52 2.1	ND ND
	N-Nitroso-di-n-propylamine	1	ug/l ug/l	0.52	ND
	N-Nitrosodiphenylamine	1	ug/l	2.1	ND
	Pentachlorophenol	1	ug/l	10	ND
	Phenanthrene	1	ug/l	2.1	ND
	Phenol	1	ug/l	2.1	ND
	Pyrene	1	ug/l	2.1	ND
Sei	mivolatile Organics + 25 (625) Library Sear	rches			
	Analyte	DF	Units	RT	Result
	Ethanol, 2-butoxy-	1	ug/l	4.52	7.2JB
	2-Propanol, 1-butoxy-	1	ug/l	4.84	8.4JB
	TotalSemiVolatileTic	1	ug/l	NA	16J
Vol	latile Organics + 10 (624)				
_	Analyte	DF	Units	RL	Result
	1,1,1-Trichloroethane	1	ug/l	1.0	ND
	1,1,2,2-Tetrachloroethane	1	ug/l	1.0	ND
	1,1,2-Trichloro-1,2,2-trifluoroethane	1	ug/I	5.0	ND
	1,1,2-Trichloroethane	1	ug/l	1.0	ND
	1,1-Dichloroethane	1	ug/l	1.0	ND
	1,1-Dichloroethene	1	ug/l	1.0	ND
	1,2,3-Trichlorobenzene	1	ug/l	1.0	ND
	1,2,4-Trichlorobenzene	1	ug/l	1.0	ND
	1,2-Dibromo-3-chloropropane	1	ug/l	1.0	ND
	1,2-Dibromoethane 1,2-Dichlorobenzene	1	ug/l	1.0	ND
	1,2-Dichloroethane	1 1	ug/l	1.0 0.50	ND ND
	1,2-Dichloropropane	1	ug/l ug/l	1.0	ND ND
	1,3-Dichlorobenzene	1	ug/l	1.0	ND
	1,4-Dichlorobenzene	1	ug/l	1.0	ND
	1,4-Dioxane	1	ug/l	50	ND
	2-Butanone	1	ug/l	1.0	ND
	2-Hexanone	1	ug/l	1.0	ND
	4-Methyl-2-pentanone	1	ug/l	1.0	ND
	Acetone	1	ug/l	10	ND
	Benzene	1	ug/l	0.50	ND
	Bromochloromethane	1	ug/l	1.0	ND
	Bromodichloromethane	1	ug/l	0.61	ND
	Bromoform Bromomethane	1	ug/l	1.0	ND
	Carbon disulfide	1	ug/l ug/l	1.0 1.0	ND ND
	Carbon tetrachloride	1	ug/l	1.0	ND
	Chlorobenzene	1	ug/l	1.0	ND
	Chloroethane	1	ug/I	1.0	ND
	Chloroform	1	ug/l	1.0	ND
	Chloromethane	1	ug/l	1.0	ND
	cis-1,2-Dichloroethene	1	ug/l	1.0	ND
	cis-1,3-Dichloropropene	1	ug/l	1.0	ND
	Cyclohexane	1	ug/l	1.0	ND
	Dibromochloromethane	1	ug/l	1.0	ND
	Dichlorodifluoromethane	1	ug/l	1.0	ND
	Ethylbenzene	1	ug/i	1.0	ND
	tsopropylbenzene	1	ug/l	1.0	ND
	m&p-Xylenes	1	ug/l	1.0	ND
	Methylocolohovano	1	ug/l	1.0	ND
	Methylcyclohexane Methylene chloride	1	ug/l	1.0 1.0	ND ND
	Methyl-t-butyl ether	1	ug/l ug/l	0.50	ND ND
	o-Xylene	1	ug/l	1.0	ND ND
	Styrene	<u>'</u> 1	ug/l	1.0	ND
	Tetrachloroethene	1	ug/l	1.0	ND
	Toluene	1	ug/l	1.0	ND
	trans-1,2-Dichloroethene	1	ug/l	1.0	ND
	trans-1,3-Dichloropropene	1	ug/l	1.0	ND
			-		
	Trichloroethene	1	ug/l	1.0	ND

 Sample ID: LMW-2 U
 Collection Date: 4/19/2011

 Lab#: AC58548-007
 Receipt Date: 4/20/2011

 Matrix: Aqueous
 Vinyl chloride
 1
 ug/l
 1.0
 ND

 Xylenes (Total)
 1
 ug/l
 1.0
 ND

Volatile Organics + 10 (624) Library Searches

Analyte	DF	Units	RT	Result
No Unknown Compounds Detected	1	ug/l	NA	ND
TotalVolatileTic	1	ug/l	NA	ND

Sample ID: LMW-2 F

Lab#: AC58548-008

Matrix: Aqueous

Collection Date: 4/19/2011

Receipt Date: 4/20/2011

Mercury (Water) 245.1

Analyte	DF	Units	RL	Result	
Mercury	1	ug/l	0.20	ND	

TAL Metals 200.7/8

Analyte	DF	Units	RL	Result
Aluminum	1	ug/l	100	410
Antimony	1	ug/l	7.5	ND
Arsenic	1	ug/l	20	ND
Barium	1	ug/l	25	130
Beryllium	1	ug/l	4.0	ND
Cadmium	1	ug/l	2.0	ND
Calcium	1	ug/l	1000	85000
Chromium	1	ug/l	25	ND
Cobalt	1	ug/l	10	ND
Copper	1	ug/l	25	ND
Iron	1	ug/l	150	ND
Lead	1	ug/l	5.0	ND
Magnesium	1	ug/l	1000	33000
Manganese	1	ug/l	25	130
Nickel	1	ug/l	10	ND
Potassium	1	ug/l	2500	3800
Selenium	1	ug/l	25	ND
Silver	1	ug/l	10	ND
Sodium	1	ug/l	2500	33000
Thallium	1	ug/l	5.0	ND
Vanadium	1	ug/l	25	ND
Zinc	1	ug/l	25	ND

Sample ID: LF-1 U

Lab#: AC58548-009

Collection Date: 4/20/2011 Receipt Date: 4/20/2011

Matrix: Aqueous

Chlasida	/\A/~4~~\	2000
Chloride (vvater	300.0

Analyte	DF	Units	RL	Result	
Chloride	1	mg/l	1.0	49	

Cyanide-Water (EPA 335.4)

Analyte	DF	Units	RL	Result	
Cyanide	1	mg/l	.02	ND	

Semivolatile Organics + 25 (625)

Analyte	DF	Units	RL	Result
1,1'-Biphenyl	1	ug/l	2.1	ND
1,2,4,5-Tetrachlorobenzene	1	u g /l	2.1	ND
2,3,4,6-Tetrachlorophenol	1	ug/l	2.1	ND
2,4,5-Trichlorophenol	1	ug/l	2.1	ND
2,4,6-Trichlorophenol	1	ug/l	2.1	ND
2,4-Dichlorophenol	1	ug/l	2.1	ND
2,4-Dimethylphenol	1	ug/l	2.1	ND
2,4-Dinitrophenol	1	ug/l	10	ND
2,4-Dinitrotoluene	1	ug/l	2.1	ND
2,6-Dinitrotoluene	1	ug/l	2,1	ND
2-Chloronaphthalene	1	ug/l	2.1	ND
2-Chlorophenol	1	ug/l	2.1	ND
2-Methylnaphthalene	1	ug/l	2,1	ND
2-Methylphenol	1	ug/l	0.52	ND
2-Nitroaniline	1	ug/l	2.1	ND
2-Nitrophenol	1	ug/l	2.1	ND
3&4-Methylphenol	1	ug/l	0.52	ND ND
3,3'-Dichlorobenzidine	1	ug/l	2.1	ND
3-Nitroaniline	1	ug/l	2.1	ND
4,6-Dinitro-2-methylphenol	1	ug/l	10	ND
4-Bromophenyl-phenylether	<u>'</u> 1	ug/l	2.1	ND ND
4-Chloro-3-methylphenol	1	ug/l	2.1	ND
4-Chloroaniline	1	ug/l	0.52	ND
4-Chlorophenyl-phenylether	1	ug/l	2.1	ND
4-Nitroaniline	<u>-</u>	ug/l	2.1	ND ND
4-Nitrophenol	1	_	2.1	ND
	1	ug/l	2.1	ND ND
Accepabitivions		ug/l	2.1	ND ND
Acetaphanasa	1	ug/l	2.1	ND ND
Actorphenone		ug/l		
Anthracene	1 1	ug/l	2.1	ND ND
Atrazine		ug/l	2.1	ND ND
Benzaldehyde	11	ug/l	2.1	ND ND
Benzo[a]anthracene	1	ug/l	2.1	ND
Benzo[a]pyrene	1	ug/l	2.1	ND
Benzo[b]fluoranthene	1	ug/l	2.1	ND
Benzo[g,h,i]perylene	11	ug/l	2.1	ND ND
Benzo[k]fluoranthene	1	ug/l	2.1	ND
bis(2-Chloroethoxy)methane	1	ug/l	2.1	ND
bis(2-Chloroethyl)ether	1	ug/l	0.52	ND
bis(2-Chloroisopropyl)ether	11	ug/l	2.1	ND
bis(2-Ethylhexyl)phthalate	1	ug/l	2.1	ND
Butylbenzylphthalate	1	ug/l	2.1	ND
Caprolactam	1	ug/l	2.1	ND
Carbazole	1	ug/l	2.1	ND
Chrysene	1	ug/l	2.1	ND
Dibenzo[a,h]anthracene	1	ug/l	2.1	ND
Dibenzofuran	1	ug/l	0.52	ND
Diethylphthalate	11	ug/I	2.1	ND
Dimethylphthalate	1	ug/l	2.1	ND
Di-n-butylphthalate	1	ug/l	2.1	ND
Di-n-octylphthalate	1	ug/l	2.1	ND
Fluoranthene	1	ug/l	2.1	ND
Fluorene	1	ug/l	2.1	ND
Hexachlorobenzene	1	ug/l	2.1	ND
Hexachlorobutadiene	1	ug/l	2.1	ND
Hexachlorocyclopentadiene	1	ug/l	2.1	ND
Hexachloroethane	1	ug/l	2.1	ND
Indeno[1,2,3-cd]pyrene	1	ug/l	2.1	ND
NOTE: Soil Results are reported to Dry Weight	Project #:	1042017		Page 17 of 24

mple ID:					Date: 4/20/2011
	AC58548-009			Receipt	t Date: 4/20/2011
Matrix:	Aqueous				
	Isophorone	1	ug/l	2.1	ND
	Naphthalene Nitrobenzene	1	ug/l ug/l	0.52 2.1	ND ND
	N-Nitroso-di-n-propylamine	1	ug/l	0.52	ND
	N-Nitrosodiphenylamine	1	ug/l	2.1	ND
	Pentachlorophenol	1	ug/l	10	ND
	Phenanthrene	1	ug/l	2.1	ND
	Phenol	1	ug/l	2.1	ND
_	Pyrene	1	ug/l	2.1	ND
s _	Semivolatile Organics + 25 (625) Library Sea	rches			
	Analyte	DF	Units	RT	Result
	Ethanol, 2-butoxy-	1	ug/l	4.51	14JB
	2-Propanol, 1-butoxy-	1	ug/l	4.84	15JB
_	TotalSemiVolatileTic	1	ug/l	NA	29J
V	olatile Organics + 10 (624)				
	Analyte	DF	Units	RL	Result
	1,1,1-Trichloroethane	1	ug/l	1.0	ND
	1,1,2,2-Tetrachloroethane	1	ug/l	1.0	ND
	1,1,2-Trichloro-1,2,2-trifluoroethane	1	ug/l	5.0	ND
	1,1,2-Trichloroethane	1	ug/l	1.0	ND ND
	1,1-Dichloroethane 1,1-Dichloroethene	1	ug/l	1.0 1.0	ND ND
	1,1-Dichloroethene 1,2,3-Trichlorobenzene	1 1	ug/l ug/l	1.0	ND ND
	1,2,4-Trichlorobenzene	1	ug/i	1.0	ND
	1,2-Dibromo-3-chloropropane	1	ug/l	1.0	ND
	1,2-Dibromoethane	1	ug/l	1.0	ND
	1,2-Dichlorobenzene	1	ug/l	1.0	ND
	1,2-Dichloroethane	1	ug/l	0.50	ND
	1,2-Dichloropropane 1,3-Dichlorobenzene	1	ug/l	1.0 1.0	ND ND
	1,4-Dichlorobenzene	1	ug/l ug/l	1.0	ND ND
	1,4-Dioxane	1	ug/l	50	ND
	2-Butanone	1	ug/l	1.0	ND
	2-Hexanone	1	ug/l	1.0	ND
	4-Methyl-2-pentanone	1	u g/ l	1.0	ND
	Acetone	11	ug/l	10	ND
	Benzene	1	ug/l	0.50	ND
	Bromochloromethane Bromodichloromethane	1	ug/l	1.0	ND ND
	Bromoform	1	ug/l ug/l	0.61 1.0	ND ND
	Bromomethane	1	ug/l	1.0	ND ND
	Carbon disulfide	1	ug/l	1.0	ND
	Carbon tetrachloride	1	ug/l	1.0	ND
	Chlorobenzene	1	ug/l	1.0	ND
	Chloroethane	1	ug/l	1.0	ND
	Chloroform Chloromethane	1	ug/l	1.0	ND ND
	cis-1,2-Dichloroethene	1	ug/l ug/l	1.0 1.0	ND ND
	cis-1,3-Dichloropropene	1	ug/l	1.0	ND ND
	Cyclohexane	1	ug/l	1.0	ND
	Dibromochloromethane	1	ug/l	1.0	ND
	Dichlorodifluoromethane	1	ug/l	1.0	ND
	Ethylbenzene	1	ug/i	1.0	ND
	Isopropylbenzene	1	ug/l	1.0	ND ND
	m&p-Xylenes Methyl Acetate	1	ug/l	1.0	ND ND
	Methylcyclohexane	1	ug/l	1.0	ND ND
	Methylene chloride	1	ug/l	1.0	ND ND
	Methyl-t-butyl ether	1	ug/l	0.50	ND
	o-Xylene	1	ug/l	1.0	ND
	Styrene	1	ug/l	1.0	ND
	Tetrachloroethene	1	ug/l	1.0	ND
	Toluene	1	ug/l	1.0	ND
	trans-1,2-Dichloroethene	1	ug/l	1.0	ND
	trans-1,3-Dichloropropene	1	ug/l	1.0	ND
	Trichloroethene Trichlorofluoromethane	1	ug/l ug/l	1.0 1.0	ND ND
			1.0.1/1		

 Sample ID: LF-1 U
 Collection Date: 4/20/2011

 Lab#: AC58548-009
 Receipt Date: 4/20/2011

 Matrix: Aqueous
 Vinyl chloride
 1
 ug/l
 1.0
 ND

 Xylenes (Total)
 1
 ug/l
 1.0
 ND

Volatile Organics + 10 (624) Library Searches	Volatile	Organics +	10 (624) Library	/ Searches
---	----------	------------	---------	-----------	------------

Analyte	DF	Units	RT	Result	
No Unknown Compounds Detected	1	ug/l	NA	ND	
TotalVolatileTic	1	ug/l	NA	ND	

Sample ID: LF-1 F

Lab#: AC58548-010 Matrix: Aqueous Collection Date: 4/20/2011 Receipt Date: 4/20/2011

Mercury (Water) 245.1

Analyte	DF	Units	RL	Result
Mercury	1	ug/l	0.20	ND

TAL Metals 200.7/8

Analyte	DF	Units	RL	Result
Aluminum	1	ug/l	100	140
Antimony	1	u g/l	7.5	ND
Arsenic	1	ug/l	20	ND
Barium	1	ug/l	25	72
Beryllium	1	ug/l	4.0	ND
Cadmium	1	ug/l	2.0	ND
Calcium	1	ug/l	1000	76000
Chromium	1	ug/l	25	ND
Cobalt	1	ug/l	10	ND
Copper	1	ug/l	25	ND
Iron	1	ug/l	150	ND
Lead	1	ug/l	5.0	ND
Magnesium	1	ug/l	1000	12000
Manganese	1	ug/l	25	ND
Nickel	1	ug/l	10	ND
Potassium	1	ug/l	2500	3200
Selenium	1	ug/l	25	ND
Silver	1	ug/l	10	ND
Sodium	1	ug/l	2500	36000
Thallium	1	ug/l	5.0	ND
Vanadium	1	ug/l	25	ND
Zinc	1	ug/l	25	ND

Sample ID: PC-1 U Lab#: AC58548-011 Matrix: Aqueous Collection Date: 4/20/2011 Receipt Date: 4/20/2011

Chloride (Water) 300.0

Analyte	DF	Units	RL	Result
Chloride	1	mg/l	1.0	49

Cyanide-Water (EPA 335.4)

Analyte	DF	Units	RL	Result
Cyanide	1	mg/l	0.02	ND

Semivolatile Organics + 25 (625)

Analyte	DF	Units	RL	Result
1,1'-Biphenyl	1	ug/l	2.1	ND
1,2,4,5-Tetrachlorobenzene	1	ug/l	2.1	ND
2,3,4,6-Tetrachlorophenol	1	u g/ l	2.1	ND
2,4,5-Trichlorophenol	1	ug/l	2.1	ND
2,4,6-Trichlorophenol	1	ug/l	2.1	ND
2,4-Dichlorophenol	1	ug/l	2.1	ND
2,4-Dimethylphenol	1	ug/l	2.1	ND
2,4-Dinitrophenol	1	ug/l	10	ND
2,4-Dinitrotoluene	1	ug/l	2.1	ND
2,6-Dinitrotoluene	1	ug/l	2.1	ND
2-Chloronaphthalene	1	ug/l	2.1	ND
	1		2.1	ND
2-Chlorophenol	1	ug/l	2.1	ND ND
2-Methylnaphthalene		ug/l		
2-Methylphenol	1	ug/l	0.52	ND
2-Nitroaniline	1	ug/l	2.1	ND
2-Nitrophenol	1	ug/l	2.1	ND
3&4-Methylphenol	1	ug/l	0.52	ND
3,3'-Dichlorobenzidine	1	ug/l	2.1	ND
3-Nitroaniline	1	ug/l	2.1	ND
4,6-Dinitro-2-methylphenol	1	ug/l	10	ND
4-Bromophenyl-phenylether	1	ug/l	2.1	ND
4-Chloro-3-methylphenol	1	ug/l	2.1	ND
4-Chloroaniline	1	ug/l	0.52	ND
4-Chlorophenyl-phenylether	1	ug/l	2.1	ND
4-Nitroaniline	1	ug/l	2.1	ND
4-Nitrophenol	1	ug/l	2.1	ND
Acenaphthene	1	ug/l	2.1	ND
Acenaphthylene	1	ug/l	2.1	ND
Acetophenone	1	ug/l	2.1	ND
Anthracene	1	ug/l	2.1	ND
Atrazine	1	ug/l	2.1	ND
Benzaldehyde	1	ug/l	2.1	ND
Benzo[a]anthracene	1	ug/l	2.1	ND
Benzo[a]pyrene	1	ug/l	2.1	ND
Benzo[b]fluoranthene	1	ug/l	2.1	ND
Benzo[g,h,i]perylene	1	ug/l	2.1	ND
Benzo[k]fluoranthene	1	ug/l	2.1	ND
bis(2-Chloroethoxy)methane	1	ug/l	2.1	ND
bis(2-Chloroethyl)ether	1	ug/l	0.52	ND
bis(2-Chloroisopropyl)ether	1	ug/l	2.1	ND
bis(2-Ethylhexyl)phthalate	1	ug/l	2.1	ND
Butylbenzylphthalate	1	ug/l	2.1	ND
Caprolactam	1	ug/l	2.1	ND
Carbazole	1	ug/l	2.1	ND
	<u>'</u> 1		2.1	ND ND
Chrysene	1	ug/l	2.1	ND ND
Dibenzo[a,h]anthracene		ug/l		
Dibenzofuran Diabetzeleta	1	ug/l	0.52	ND ND
Diethylphthalate	11	ug/l	2.1	ND
Dimethylphthalate	1	ug/l	2.1	ND
Di-n-butylphthalate	1	ug/l	2.1	ND
Di-n-octylphthalate	1	ug/l	2.1	ND
Fluoranthene	1	ug/l	2.1	ND
Fluorene	1	ug/l	2.1	ND
Hexachlorobenzene	1	ug/l	2.1	ND
Hexachlorobutadiene	1	ug/l	2.1	ND
Hexachlorocyclopentadiene	1	ug/l	2.1	ND
Hexachloroethane	1	ug/l	2.1	ND
Indeno[1,2,3-cd]pyrene	1	ug/l	2.1	ND
NOTE: Soil Results are reported to Dry Weight	Project #:	1042017		Page 21 of 24

Project #: 1042017

Page 21 of 24

mple ID:					Date: 4/20/2011
	AC58548-011			Receip	t Date: 4/20/2011
watrix:	Aqueous				
	Isophorone	1	ug/l	2.1	ND ND
	Naphthalene Nitrobenzene	1 1	ug/l ug/l	0,52 2.1	ND ND
	N-Nitroso-di-n-propylamine	1	ug/l	0.52	ND
	N-Nitrosodiphenylamine	1	ug/l	2.1	ND ND
	Pentachlorophenol	1	ug/l	10	ND
	Phenanthrene	1	ug/l	2.1	ND
	Phenol	1	ug/l	2.1	ND
_	Pyrene	1	ug/l	2.1	ND
S	emivolatile Organics + 25 (625) Library Sear	rches			
_	Analyte	DF	Units	RT	Result
	Ethanol, 2-butoxy-	1	ug/l	4.52	4.9JB
	2-Propanol, 1-butoxy-	1	ug/l	4.84	6.4JB
	TotalSemiVolatileTic	1	ug/t	NA	11J
V	olatile Organics + 10 (624)				
_	Analyte	DF	Units	RL	Result
	1,1,1-Trichloroethane	1	ug/l	1.0	ND
	1,1,2,2-Tetrachloroethane	1	ug/l	1.0	ND
	1,1,2-Trichloro-1,2,2-trifluoroethane	1	ug/l	5.0	ND
	1,1,2-Trichloroethane	1	ug/l	1.0	ND
	1,1-Dichloroethane	1	ug/l	1.0	ND
	1,1-Dichloroethene	1	ug/l	1.0	ND
	1,2,3-Trichlorobenzene	1	ug/l	1.0	ND
	1,2,4-Trichlorobenzene	1	ug/l	1.0	ND
	1,2-Dibromo-3-chloropropane	1	ug/l	1.0	ND
	1,2-Dibromoethane	1	ug/i	1.0	ND
	1,2-Dichlorobenzene	1	ug/l	1.0	ND
	1,2-Dichloropethane 1,2-Dichloropropane	1	ug/l	0.50	ND
	1,3-Dichlorobenzene	1	ug/l ug/l	1.0	ND ND
	1,4-Dichlorobenzene	1	ug/l	1.0	ND ND
	1,4-Dioxane	1	ug/l	50	ND
	2-Butanone	1	ug/l	1.0	ND
	2-Hexanone	1	ug/l	1.0	ND
	4-Methyl-2-pentanone	1	u g/l	1.0	ND
	Acetone	1	ug/l	10	ND
	Benzene	1	ug/l	0.50	ND
	Bromochloromethane	1	ug/l	1.0	ND
	Bromodichloromethane	1	ug/l	0.61	ND
	Bromoform	1	ug/l	1.0	ND
	Bromomethane	1	ug/l	1.0	ND
	Carbon disulfide	1	ug/l	1.0	ND
	Carbon tetrachloride Chlorobenzene	1	ug/l	1.0	ND ND
	Chloroethane	1	ug/l	1.0	ND ND
	Chloroform	1	ug/l ug/l	1.0	ND ND
	Chloromethane	1	ug/i ug/i	1.0	ND ND
	cis-1,2-Dichloroethene	1	ug/i	1.0	ND
	cis-1,3-Dichloropropene	1	ug/l	1.0	ND
	Cyclohexane	1	ug/l	1.0	ND
	Dibromochloromethane	1	ug/l	1.0	ND
	Dichlorodifluoromethane	1	ug/l	1.0	ND
	Ethylbenzene	1	ug/l	1.0	ND
	Isopropylbenzene	1	ug/l	1.0	ND
	m&p-Xylenes	1	ug/l	1.0	ND
	Methyl Acetate	1	ug/l	1.0	ND
	Methylcyclohexane	1	ug/l	1.0	ND
	Methylene chloride	1	ug/l	1.0	ND
	Methyl-t-butyl ether	1	ug/l	0.50	ND
	o-Xylene Shrone	1	ug/l	1.0	ND
	Styrene	1	ug/l	1.0	ND
	Tetrachloroethene Toluene	1 1	ug/l	1.0	ND ND
	trans-1,2-Dichloroethene	1	ug/l	1.0 1.0	ND ND
	trans-1,3-Dichloropropene	1	ug/I ug/I	1.0	ND ND
	Trichloroethene	1	ug/l	1.0	ND
	Trichlorofluoromethane	1	ug/l	1.0	ND

 Sample ID: PC-1 U
 Collection Date: 4/20/2011

 Lab#: AC58548-011
 Receipt Date: 4/20/2011

 Matrix: Aqueous
 Vinyl chloride
 1
 ug/l
 1.0
 ND

 Xylenes (Total)
 1
 ug/l
 1.0
 ND

Volatile Organics + 10 (624) Library Searches

Analyte	DF	Units	RT	Result
No Unknown Compounds Detected	1	ug/l	NA	ND
TotalVolatileTic	1	ug/l	NA	ND

Sample ID: PC-1 F

Lab#: AC58548-012

Matrix: Aqueous

Collection Date: 4/20/2011 Receipt Date: 4/20/2011

Mercury (Water) 245.1

Analyte	DF	Units	RL	Result	
Mercury	1	ug/l	0.20	ND	_

TAL Metals 200.7/

Analyte	DF	Units	RL	Result
Aluminum	1	ug/l	100	150
Antimony	1	ug/l	7.5	ND
Arsenic	1	ug/l	20	ND
Barium	1	ug/l	25	72
Beryllium	1	ug/l	4.0	ND
Cadmium	1	ug/l	2.0	ND
Calcium	1	ug/l	1000	76000
Chromium	1	ug/l	25	ND
Cobalt	1	ug/l	10	ND
Copper	1	u g/l	25	ND
Iron	1	ug/l	150	ND
Lead	1	ug/l	5.0	ND
Magnesium	1	ug/l	1000	12000
Manganese	1	ug/l	25	ND
Nickel	1	ug/l	10	ND
Potassium	1	ug/l	2500	3200
Selenium	1	ug/l	25	ND
Silver	1	u g/l	10	ND
Sodium	1	ug/l	2500	36000
Thallium	1	ug/l	5.0	ND
Vanadium	1	ug/l	25	ND
Zinc	1	ug/l	25	ND

Form1 ORGANICS VOLATILE REPORT

Sample Number: DAILY BLANK

Client Id:

Method: EPA 624 Matrix: Aqueous

Data File: 3M91239.D

Initial Vol: 5ml

Analysis Date: 04/26/11 08:46

Final Vol: NA Dilution: 1.00

Date Rec/Extracted:

Solids: 0

Column: DB-624 25M 0.200mm ID 1.12um film

J

Units:	ug/L
--------	------

Offits: ug/L											
Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc				
71-55-6	1,1,1-Trichloroethane	1.0	U	56-23-5	Carbon Tetrachloride	1.0	U				
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U	108-90-7	Chlorobenzene	1.0	U				
76-13-1	1,1,2-Trichloro-1,2,2-trifluor	5.0	U	75-00-3	Chloroethane	1.0	U				
79-00-5	1,1,2-Trichloroethane	1.0	U	67-66-3	Chloroform	1.0	U				
75-34-3	1,1-Dichloroethane	1.0	U	74-87-3	Chloromethane	1.0	U				
75-35-4	1,1-Dichloroethene	1.0	U	156-59-2	cis-1,2-Dichloroethene	1.0	U				
87-61-6	1,2,3-Trichlorobenzene	1.0	U	10061-01-5	cis-1,3-Dichloropropene	1.0	U				
120-82-1	1,2,4-Trichlorobenzene	1.0	U	110-82-7	Cyclohexane	1.0	U				
96-12-8	1,2-Dibromo-3-Chloropropa	1.0	U	124-48-1	Dibromochloromethane	1.0	U				
106-93-4	1,2-Dibromoethane	1.0	U	75-71-8	Dichlorodifluoromethane	1.0	U				
95-50-1	1,2-Dichlorobenzene	1.0	U	100-41-4	Ethylbenzene	1.0	U				
107-06-2	1,2-Dichloroethane	0.50	U	98-82-8	Isopropylbenzene	1.0	U				
78-87-5	1,2-Dichloropropane	1.0	U	136777612	m&p-Xylenes	1.0	U				
541-73-1	1,3-Dichlorobenzene	1.0	U	79-20-9	Methyl Acetate	1.0	U				
106-46-7	1,4-Dichlorobenzene	1.0	U	108-87-2	Methylcyclohexane	1.0	U				
123-91-1	1,4-Dioxane	50	U	75-09-2	Methylene Chloride	1.0	U				
78-93-3	2-Butanone	1.0	U	1634-04-4	Methyl-t-butyl ether	0.50	U				
591-78-6	2-Hexanone	1.0	U	95-47-6	o-Xylene	1.0	U				
108-10-1	4-Methyl-2-Pentanone	1.0	U	100-42-5	Styrene	1.0	U				
67-64-1	Acetone	10	U	127-18-4	Tetrachloroethene	1.0	U				
71-43-2	Benzene	0.50	U	108-88-3	Toluene	1.0	U				
74-97-5	Bromochloromethane	1.0	U	156-60-5	trans-1,2-Dichloroethene	1.0	U				
75-27-4	Bromodichloromethane	0.61	U	10061-02-6	trans-1,3-Dichloropropene	1.0	U				
75-25-2	Bromoform	1.0	U	79-01-6	Trichloroethene	1.0	U				
74-83-9	Bromomethane	1.0	U	75-69-4	Trichlorofluoromethane	1.0	U				
75-15-0	Carbon Disulfide	1.0	υ	75-01-4	Vinyl Chloride	1.0	U				

Worksheet #: 188735

Total Target Concentration

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

 $[\]it J$ - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

Form1 ORGANICS VOLATILE REPORT

Sample Number: AC58548-001

Client Id: PC-3 U Data File: 3M91243.D

Analysis Date: 04/26/11 09:53 Date Rec/Extracted: 04/20/11-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 624

Matrix: Aqueous

Initial Vol: 5ml

Final Vol: NA Dilution: 1.00

Solids: 0

Units: ug/L

Onits: ug/∟										
Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc			
71-55-6	1,1,1-Trichloroethane	1.0	U	56-23-5	Carbon Tetrachloride	1.0	U			
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U	108-90-7	Chlorobenzene	1.0	U			
76-13-1	1,1,2-Trichloro-1,2,2-trifluor	5.0	U	75-00-3	Chloroethane	1.0	U			
79-00-5	1,1,2-Trichloroethane	1.0	U	67-66-3	Chloroform	1.0	U			
75-34-3	1,1-Dichloroethane	1.0	U	74-87-3	Chloromethane	1.0	U			
75-35-4	1,1-Dichloroethene	1.0	U	156-59-2	cis-1,2-Dichloroethene	1.0	U			
87-61-6	1,2,3-Trichlorobenzene	1.0	U	10061-01-5	cis-1,3-Dichloropropene	1.0	U			
120-82-1	1,2,4-Trichlorobenzene	1.0	U	110-82-7	Cyclohexane	1.0	U			
96-12-8	1,2-Dibromo-3-Chloropropa	1.0	U	124-48-1	Dibromochloromethane	1.0	U			
106-93-4	1,2-Dibromoethane	1.0	U	75-71-8	Dichlorodifluoromethane	1.0	U			
95-50-1	1,2-Dichlorobenzene	1.0	U	100-41-4	Ethylbenzene	1.0	U			
107-06-2	1,2-Dichloroethane	0.50	U	98-82-8	Isopropylbenzene	1.0	U			
78-87-5	1,2-Dichloropropane	1.0	U	136777612	m&p-Xylenes	1.0	U			
541-73-1	1,3-Dichlorobenzene	1.0	U	79-20-9	Methyl Acetate	1.0	U			
106-46-7	1,4-Dichlorobenzene	1.0	U	108-87-2	Methylcyclohexane	1.0	U			
123-91-1	1,4-Dioxane	50	U	75-09-2	Methylene Chloride	1.0	U			
78-93-3	2-Butanone	1.0	U	1634-04-4	Methyl-t-butyl ether	0.50	U			
591-78-6	2-Hexanone	1.0	U	95-47-6	o-Xylene	1.0	U			
108-10-1	4-Methyl-2-Pentanone	1.0	U	100-42-5	Styrene	1.0	U			
67-64-1	Acetone	10	U	127-18-4	Tetrachloroethene	1.0	U			
71-43-2	Benzene	0.50	U	108-88-3	Toluene	1.0	U			
74-97-5	Bromochloromethane	1.0	U	156-60-5	trans-1,2-Dichloroethene	1.0	U			
75-27-4	Bromodichloromethane	0.61	U	10061-02-6	trans-1,3-Dichloropropene	1.0	U			
75-25-2	Bromoform	1.0	U	79-01-6	Trichloroethene	1.0	U			
74-83-9	Bromomethane	1.0	U	75-69-4	Trichlorofluoromethane	1.0	U			
75-15-0	Carbon Disulfide	1.0	U	75-01-4	Vinyl Chloride	1.0	U			
1330-20-7	Xylenes (Total)	1.0	U							

Worksheet #: 188735

Total Target Concentration

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument,

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

ORGANICS VOLATILE REPORT

Sample Number: AC58548-003 Client Id: PC-2 U

Data File: 3M91244.D Analysis Date: 04/26/11 10:09

Date Rec/Extracted: 04/20/11-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 624

Matrix: Aqueous

Initial Vol: 5ml

Final Vol: NA Dilution: 1.00

Solids: 0

Units: ug/L

Units: ug/L										
Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc			
71-55-6	1,1,1-Trichloroethane	1.0	U	56-23-5	Carbon Tetrachloride	1.0	U			
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U	108-90-7	Chlorobenzene	1.0	U			
76-13-1	1,1,2-Trichloro-1,2,2-trifluor	5.0	U	75-00-3	Chloroethane	1.0	U			
79-00-5	1,1,2-Trichloroethane	1.0	U	67-66-3	Chloroform	1.0	U			
75-34-3	1,1-Dichloroethane	1.0	U	74-87-3	Chloromethane	1.0	U			
75-35-4	1,1-Dichloroethene	1.0	U	156-59-2	cis-1,2-Dichloroethene	1.0	U			
87-61 - 6	1,2,3-Trichlorobenzene	1.0	U	10061-01-5	cis-1,3-Dichloropropene	1.0	U			
120-82-1	1,2,4-Trichlorobenzene	1.0	U	110-82-7	Cyclohexane	1.0	U			
96-12-8	1,2-Dibromo-3-Chloropropa	1.0	U	124-48-1	Dibromochloromethane	1.0	U			
106-93-4	1,2-Dibromoethane	1.0	U	75-71-8	Dichlorodifluoromethane	1.0	U			
95-50-1	1,2-Dichlorobenzene	1.0	U	100-41-4	Ethylbenzene	1.0	U			
107-06-2	1,2-Dichloroethane	0.50	U	98-82-8	Isopropylbenzene	1.0	U			
78-87-5	1,2-Dichloropropane	1.0	U	136777612	m&p-Xylenes	1.0	U			
541-73-1	1,3-Dichlorobenzene	1.0	U	79-20-9	Methyl Acetate	1.0	U			
106-46-7	1,4-Dichlorobenzene	1.0	U	108-87-2	Methylcyclohexane	1.0	U			
123-91-1	1,4-Dioxane	50	U	75-09-2	Methylene Chloride	1.0	U			
78-93-3	2-Butanone	1.0	U	1634-04-4	Methyl-t-butyl ether	0.50	U			
591-78-6	2-Hexanone	1.0	U	95-47-6	o-Xylene	1.0	U			
108-10-1	4-Methyl-2-Pentanone	1.0	U	100-42-5	Styrene	1.0	U			
67-64-1	Acetone	10	U	127-18-4	Tetrachloroethene	1.0	U			
71-43-2	Benzene	0.50	U	108-88-3	Toluene	1.0	U			
74-97-5	Bromochloromethane	1.0	U	156-60-5	trans-1,2-Dichloroethene	1.0	U			
75-27-4	Bromodichloromethane	0.61	U	10061-02-6	trans-1,3-Dichloropropene	1.0	U			
75-25-2	Bromoform	1.0	U	79-01-6	Trichloroethene	1.0	U			
74-83-9	Bromomethane	1.0	U	75-69-4	Trichlorofluoromethane	1.0	U			
75-15-0	Carbon Disulfide	1.0	U	75-01-4	Vinyl Chloride	1.0	U			
1330-20-7	Xylenes (Total)	1.0	U							

Worksheet #: 188735

Total Target Concentration

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

 $^{{\}it J}$ - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

Form1 ORGANICS VOLATILE REPORT

Sample Number: AC58548-005 Client Id: LMW-4 U

Data File: 3M91245.D Analysis Date: 04/26/11 10:26

Date Rec/Extracted: 04/20/11-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 624

Matrix: Aqueous Initial Vol: 5ml Final Vol: NA

Dilution: 1.00 Solids: 0

Units: ua/L

	Onits: ug/L										
Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc				
71-55-6	1,1,1-Trichloroethane	1.0	U	56-23-5	Carbon Tetrachloride	1.0	U				
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U	108-90-7	Chlorobenzene	1.0	U				
76-13-1	1,1,2-Trichloro-1,2,2-trifluor	5.0	U	75-00-3	Chloroethane	1.0	U				
79-00-5	1,1,2-Trichloroethane	1.0	U	67-66-3	Chloroform	1.0	U				
75-34-3	1,1-Dichloroethane	1.0	U	74-87-3	Chloromethane	1.0	U				
75-35-4	1,1-Dichloroethene	1.0	U	156-59-2	cis-1,2-Dichloroethene	1.0	U				
87-61-6	1,2,3-Trichlorobenzene	1.0	U	10061-01-5	cis-1,3-Dichloropropene	1.0	U				
120-82-1	1,2,4-Trichlorobenzene	1.0	U	110-82-7	Cyclohexane	1.0	U				
96-12-8	1,2-Dibromo-3-Chloropropa	1.0	U	124-48-1	Dibromochloromethane	1.0	U				
106-93-4	1,2-Dibromoethane	1.0	U	75-71-8	Dichlorodifluoromethane	1.0	U				
95-50-1	1,2-Dichlorobenzene	1.0	U	100-41-4	Ethylbenzene	1.0	U				
107-06-2	1,2-Dichloroethane	0.50	U	98-82-8	Isopropylbenzene	1.0	U				
78-87-5	1,2-Dichloropropane	1.0	U	136777612	m&p-Xylenes	1.0	U				
541-73-1	1,3-Dichlorobenzene	1.0	U	79-20-9	Methyl Acetate	1.0	U				
106-46-7	1,4-Dichlorobenzene	1.0	U	108-87-2	Methylcyclohexane	1.0	U				
123-91-1	1,4-Dioxane	50	U	75-09-2	Methylene Chloride	1.0	U				
78-93-3	2-Butanone	1.0	U	1634-04-4	Methyl-t-butyl ether	0.50	U				
591-78-6	2-Hexanone	1.0	U	95-47-6	o-Xylene	1.0	U				
108-10-1	4-Methyl-2-Pentanone	1.0	U	100-42-5	Styrene	1.0	U				
67-64-1	Acetone	10	υ	127-18-4	Tetrachloroethene	1.0	U				
71-43-2	Benzene	0.50	U	108-88-3	Toluene	1.0	U				
74-97-5	Bromochloromethane	1.0	U	156-60-5	trans-1,2-Dichloroethene	1.0	U				
75-27-4	Bromodichloromethane	0.61	U	10061-02-6	trans-1,3-Dichloropropene	1.0	U				
75-25-2	Bromoform	1.0	U	79-01-6	Trichloroethene	1.0	U				
74-83-9	Bromomethane	1.0	U	75-69-4	Trichlorofluoromethane	1.0	U				
75-15-0	Carbon Disulfide	1.0	U	75-01-4	Vinyl Chloride	1.0	U				
1330-20-7	Xylenes (Total)	1.0	U								

Worksheet #: 188735

Total Target Concentration

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the

specified detection limit. d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used

Form1 ORGANICS VOLATILE REPORT

Sample Number: AC58548-007

Client Id: LMW-2 U Data File: 3M91246.D

Analysis Date: 04/26/11 10:42 Date Rec/Extracted: 04/20/11-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 624

Matrix: Aqueous

Initial Vol: 5ml Final Vol: NA

Dilution: 1.00

Solids: 0

Units: ug/L

			Units: u	g/L			
Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc
71-55-6	1,1,1-Trichloroethane	1.0	U	56-23-5	Carbon Tetrachloride	1.0	U
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U	108-90-7	Chlorobenzene	1.0	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluor	5.0	U	75-00-3	Chloroethane	1.0	U
79-00-5	1,1,2-Trichloroethane	1.0	U	67-66-3	Chloroform	1.0	U
75-34-3	1,1-Dichloroethane	1.0	U	74-87-3	Chloromethane	1.0	U
75-35-4	1,1-Dichloroethene	1.0	U	156-59-2	cis-1,2-Dichloroethene	1.0	U
87-61-6	1,2,3-Trichlorobenzene	1.0	U	10061-01-5	cis-1,3-Dichloropropene	1.0	U
120-82-1	1,2,4-Trichlorobenzene	1.0	U	110-82-7	Cyclohexane	1.0	U
96-12-8	1,2-Dibromo-3-Chloropropa	1.0	U	124-48-1	Dibromochloromethane	1.0	U
106-93-4	1,2-Dibromoethane	1.0	U	75-71-8	Dichlorodifluoromethane	1.0	U
95-50-1	1,2-Dichlorobenzene	1.0	U	100-41-4	Ethylbenzene	1.0	U
107-06-2	1,2-Dichloroethane	0.50	U	98-82-8	Isopropylbenzene	1.0	U
78-87-5	1,2-Dichloropropane	1.0	U	136777612	m&p-Xylenes	1.0	U
541-73-1	1,3-Dichlorobenzene	1.0	U	79-20-9	Methyl Acetate	1.0	U
106-46-7	1,4-Dichlorobenzene	1.0	U	108-87-2	Methylcyclohexane	1.0	U
123-91-1	1,4-Dioxane	50	U	75-09-2	Methylene Chloride	1.0	U
78-93-3	2-Butanone	1.0	U	1634-04-4	Methyl-t-butyl ether	0.50	U
591-78-6	2-Hexanone	1.0	U	95-47-6	o-Xylene	1.0	U
108-10-1	4-Methyl-2-Pentanone	1.0	U	100-42-5	Styrene	1.0	U
67-64-1	Acetone	10	U	127-18-4	Tetrachloroethene	1.0	U
71-43-2	Benzene	0.50	U	108-88-3	Toluene	1.0	U
74-97-5	Bromochloromethane	1.0	U	156-60-5	trans-1,2-Dichloroethene	1.0	U
75-27-4	Bromodichloromethane	0.61	U	10061-02-6	trans-1,3-Dichloropropene	1.0	U
75-25-2	Bromoform	1.0	U	79-01-6	Trichloroethene	1.0	U
74-83-9	Bromomethane	1.0	U	75-69-4	Trichlorofluoromethane	1.0	U
75-15-0	Carbon Disulfide	1.0	U	75-01-4	Vinyl Chloride	1.0	U
1330-20-7	Xylenes (Total)	1.0	U				

Worksheet #: 188735

Total Target Concentration

ColumnID: (^) Indicates results from 2nd column

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

ORGANICS VOLATILE REPORT

Sample Number: AC58548-009

Client Id: LF-1 U Data File: 3M91247.D

Analysis Date: 04/26/11 10:59

Date Rec/Extracted: 04/20/11-NA Column: DB-624 25M 0.200mm ID 1.12um film Method: EPA 624 Matrix: Aqueous

Initial Vol: 5ml

Final Vol: NA Dilution: 1.00

Solids: 0

Units: ua/l

			Units: u	g/L			
Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc
71-55-6	1,1,1-Trichloroethane	1.0	U	56-23-5	Carbon Tetrachloride	1.0	U
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U	108-90-7	Chlorobenzene	1.0	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluor	5.0	U	75-00-3	Chloroethane	1.0	U
79-00-5	1,1,2-Trichloroethane	1.0	U	67-66-3	Chloroform	1.0	U
75-34-3	1,1-Dichloroethane	1.0	U	74-87-3	Chloromethane	1.0	U
75-35-4	1,1-Dichloroethene	1.0	U	156-59-2	cis-1,2-Dichloroethene	1.0	U
87-61-6	1,2,3-Trichlorobenzene	1.0	U	10061-01-5	cis-1,3-Dichloropropene	1.0	U
120-82-1	1,2,4-Trichlorobenzene	1.0	U	110-82-7	Cyclohexane	1.0	U
96-12-8	1,2-Dibromo-3-Chloropropa	1.0	U	124-48-1	Dibromochloromethane	1.0	U
106-93-4	1,2-Dibromoethane	1.0	U	75-71-8	Dichlorodifluoromethane	1.0	U
95-50-1	1,2-Dichlorobenzene	1.0	U	100-41-4	Ethylbenzene	1.0	U
107-06-2	1,2-Dichloroethane	0.50	U	98-82-8	Isopropylbenzene	1.0	U
78-87-5	1,2-Dichloropropane	1.0	U	136777612	m&p-Xylenes	1.0	U
541-73-1	1,3-Dichlorobenzene	1.0	U	79-20-9	Methyl Acetate	1.0	U
106-46-7	1,4-Dichlorobenzene	1.0	U	108-87-2	Methylcyclohexane	1.0	U
123-91-1	1,4-Dioxane	50	U	75-09-2	Methylene Chloride	1.0	U
78-93-3	2-Butanone	1.0	U	1634-04-4	Methyl-t-butyl ether	0.50	U
591-78-6	2-Hexanone	1.0	U	95-47-6	o-Xylene	1.0	U
108-10-1	4-Methyl-2-Pentanone	1.0	U	100-42-5	Styrene	1.0	U
67-64-1	Acetone	10	U	127-18-4	Tetrachloroethene	1.0	U
71-43-2	Benzene	0.50	U	108-88-3	Toluene	1.0	U
74-97-5	Bromochloromethane	1.0	U	156-60-5	trans-1,2-Dichloroethene	1.0	U
75-27-4	Bromodichloromethane	0.61	U	10061-02-6	trans-1,3-Dichloropropene	1.0	U
75-25-2	Bromoform	1.0	U	79-01-6	Trichloroethene	1.0	U
74-83-9	Bromomethane	1.0	U	75-69-4	Trichlorofluoromethane	1.0	U
75-15-0	Carbon Disulfide	1.0	U	75-01-4	Vinyl Chloride	1.0	U
1330-20-7	Xylenes (Total)	1.0	U				

Worksheet #: 188735

Total Target Concentration

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.
d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

ORGANICS VOLATILE REPORT

Sample Number: AC58548-011

Client Id: PC-1 U

Data File: 3M91248.D

Analysis Date: 04/26/11 11:15 Date Rec/Extracted: 04/20/11-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 624

Matrix: Aqueous

Initial Vol: 5ml

Final Vol: NA Dilution: 1.00

Solids: 0

Units: ug/L

Units: ug/L										
Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc			
71-55-6	1,1,1-Trichloroethane	1.0	U	56-23-5	Carbon Tetrachloride	1.0	U			
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U	108-90-7	Chlorobenzene	1.0	U			
76-13-1	1,1,2-Trichloro-1,2,2-trifluor	5.0	U	75-00-3	Chloroethane	1.0	U			
79-00-5	1,1,2-Trichloroethane	1.0	U	67-66-3	Chloroform	1.0	U			
75-34-3	1,1-Dichloroethane	1.0	U	74-87-3	Chloromethane	1.0	U			
75-35-4	1,1-Dichloroethene	1.0	U	156-59-2	cis-1,2-Dichloroethene	1.0	U			
87-61-6	1,2,3-Trichlorobenzene	1.0	U	10061-01-5	cis-1,3-Dichloropropene	1.0	U			
120-82-1	1,2,4-Trichlorobenzene	1.0	υ	110-82-7	Cyclohexane	1.0	U			
96-12-8	1,2-Dibromo-3-Chloropropa	1.0	υ	124-48-1	Dibromochloromethane	1.0	U			
106-93-4	1,2-Dibromoethane	1.0	U	75-71-8	Dichlorodifluoromethane	1.0	U			
95-50-1	1,2-Dichlorobenzene	1.0	U	100-41-4	Ethylbenzene	1.0	U			
107-06-2	1,2-Dichloroethane	0.50	υ	98-82-8	Isopropylbenzene	1.0	U			
78-87-5	1,2-Dichloropropane	1.0	υ	136777612	m&p-Xylenes	1.0	U			
541-73-1	1,3-Dichlorobenzene	1.0	υ	79-20-9	Methyl Acetate	1.0	U			
106-46-7	1,4-Dichlorobenzene	1.0	U	108-87-2	Methylcyclohexane	1.0	U			
123-91-1	1,4-Dioxane	50	U	75-09-2	Methylene Chloride	1.0	U			
78-93-3	2-Butanone	1.0	U	1634-04-4	Methyl-t-butyl ether	0.50	U			
591-78-6	2-Hexanone	1.0	U	95-47-6	o-Xylene	1.0	U			
108-10-1	4-Methyl-2-Pentanone	1.0	υ	100-42-5	Styrene	1.0	U			
67-64-1	Acetone	10	υ	127-18-4	Tetrachloroethene	1.0	U			
71-43-2	Benzene	0.50	U	108-88-3	Toluene	1.0	U			
74-97-5	Bromochloromethane	1.0	υ	156-60-5	trans-1,2-Dichloroethene	1.0	U			
75-27-4	Bromodichloromethane	0.61	υ	10061-02-6	trans-1,3-Dichloropropene	1.0	U			
75-25-2	Bromoform	1.0	υ	79-01-6	Trichloroethene	1.0	U			
74-83-9	Bromomethane	1.0	υ	75-69-4	Trichlorofluoromethane	1.0	U			
75-15-0	Carbon Disulfide	1.0	υ	75-01-4	Vinyl Chloride	1.0	U			
1330-20-7	Xylenes (Total)	1.0	υ							

Worksheet #: 188735

Total Target Concentration

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

Form3 Recovery Data QC Batch: MBS7424

Data File

Sample ID:

Analysis Date

Spike or Dup: 3M91255.D Non Spike(If applicable): 3M91159.D AC58462-006(MS) AC58462-006 4/26/2011 1:26:00 PM 4/22/2011 1:34:00 PM

Inst Blank(If applicable):

Method: 624

Matrix: Aqueous

QC Type: MS

		Spike	Sample	Expected	_	Lower	Upper		ME Uppe
Analyte:	Col	Conc	Conc	Conc	Recovery	Limit	Limit	Limit	Limit
Chloromethane	1	10.5884	0	20	53	1	273	0	0
Bromomethane	1	14.1844	0	20	71	1	242	0	0
Vinyl Chloride	1	16.4886	0	20	82	1	251	0	0
Chloroethane	1	24.6965	0	20	123	14	230	0	0
Trichlorofluoromethane	1	21.852	0	20	109	17	181	0	0
Methylene Chloride	1	14.793	0	20	74	1	221	0	0
1,1-Dichloroethene	1	15.8615	0	20	79	1	234	0	0
1,1-Dichloroethane	1	16.1741	0	20	81	59	155	0	0
trans-1,2-Dichloroethene	1	16.3007	0	20	82	54	156	0	0
Chloroform	1	18.1989	0	20	91	51	138	0	0
1,2-Dichloroethane	1	15.1867	0	20	76	49	155	0	0
1,1,1-Trichloroethane	1	17.6786	0	20	88	52	162	0	0
Carbon Tetrachloride	1	20.0096	0	20	100	70	140	0	0
Bromodichloromethane	1	17.1825	0	20	86	35	155	0	0
1,2-Dichloropropane	1	16.7647	0	20	84	1	210	0	0
Trichloroethene	1	16.7538	0	20	84	71	157	0	0
Benzene	1	17.3949	0	20	87	37	151	0	0
Dibromochloromethane	1	16.3913	0	20	82	53	149	0	0
2-Chloroethylvinylether	1	0	0	20	0*	1	305	0	0
cis-1,3-Dichloropropene	1	13.2794	0	20	66	1	227	0	0
trans-1,3-Dichloropropene	1	12.8461	0	20	64	17	183	0	0
1,1,2-Trichloroethane	1	17.4613	0	20	87	52	150	0	0
Tetrachloroethene	1	18.9564	0	20	95	64	148	0	0
Toluene	1	17.1902	0	20	86	47	150	0	0
Chlorobenzene	1	18.4138	0	20	92	37	160	0	0
Bromoform	1	15.076	0	20	75	45	169	0	0
Ethylbenzene	1	18.3641	0	20	92	37	162	0	0
1,1,2,2-Tetrachloroethane	1	16.488	0	20	82	46	157	0	0
1,3-Dichlorobenzene	1	19.2915	0	20	96	59	156	0	0
1,4-Dichlorobenzene	1	16.0701	0	20	80	18	190	0	0
1,2-Dichlorobenzene	1	17.6745	0	20	88	18	190	0	0

Form3 Recovery Data QC Batch: MBS7424

Data File

Sample ID:

AC58462-006

Analysis Date

Spike or Dup: 3M91256.D

AC58462-006(MSD)

4/26/2011 1:43:00 PM 4/22/2011 1:34:00 PM

Non Spike(If applicable): 3M91159.D Inst Blank(If applicable):

Method: 624

Matrix: Aqueous

QC Type: MSD

		Spike	Sample	Expected	_	Lower	Upper		ME Upper
Analyte:	Col	Conc	Conc	Conc	Recovery	Limit	Limit	Limit	Limit
Chloromethane	1	12.1201	0	20	61	1	273	0	0
Bromomethane	1	13.5636	0	20	68	1	242	0	0
Vinyl Chloride	1	15.8538	0	20	79	1	251	0	0
Chloroethane	1	19.8263	0	20	99	14	230	0	0
Trichlorofluoromethane	1	19.3998	0	20	97	17	181	0	0
Methylene Chloride	1	15.3824	0	20	77	1	221	0	0
1,1-Dichloroethene	1	14.389	0	20	72	1	234	0	0
1,1-Dichloroethane	1	17.4514	0	20	87	59	155	0	0
trans-1,2-Dichloroethene	1	17.4139	0	20	87	54	156	0	0
Chloroform	1	18.005	0	20	90	51	138	0	0
1,2-Dichloroethane	1	15.5598	0	20	78	49	155	0	0
1,1,1-Trichloroethane	1	17.1495	0	20	86	52	162	0	0
Carbon Tetrachloride	1	19.1777	0	20	96	70	140	0	0
Bromodichloromethane	1	16.6052	0	20	83	35	155	0	0
1,2-Dichloropropane	1	17.2773	0	20	86	1	210	0	0
Trichloroethene	1	17.9824	0	20	90	71	157	0	0
Benzene	1	17.4941	0	20	87	37	151	0	0
Dibromochloromethane	1	16.3288	0	20	82	53	149	0	0
2-Chloroethylvinylether	1	0	0	20	0*	1	305	0	0
cis-1,3-Dichloropropene	1	13.4075	0	20	67	1	227	0	0
trans-1,3-Dichloropropene	1	11.823	0	20	59	17	183	0	0
1,1,2-Trichloroethane	1	17.7145	0	20	89	52	150	0	0
Tetrachloroethene	1	18.7521	0	20	94	64	148	0	0
Toluene	1	17.0933	0	20	85	47	150	0	0
Chlorobenzene	1	17.6375	0	20	88	37	160	0	0
Bromoform	1	16.0944	0	20	80	45	169	0	0
Ethylbenzene	1	18.5999	0	20	93	37	162	0	0
1,1,2,2-Tetrachloroethane	1	17.7148	0	20	89	46	157	0	0
1,3-Dichlorobenzene	1	17.4991	0	20	87	59	156	0	0
1,4-Dichlorobenzene	1	16.7766	0	20	84	18	190	0	0
1,2-Dichlorobenzene	1	17.8462	0	20	89	18	190	0	0

Form3 RPD DATA

QC Batch: MBS7424

Data File

Sample ID:

Analysis Date

Spike or Dup: 3M91256.D Duplicate(If applicable): 3M91255.D

AC58462-006(MSD) AC58462-006(MS) 4/26/2011 1:43:00 PM 4/26/2011 1:26:00 PM

Inst Blank(If applicable):

Method: 624

Matrix: Aqueous

QC Type: MSD

		Dup/MSD/MBSD	Sample/MS/MBS		
Analyte:	Column	Conc	Conc	RPD	Limit
Chloromethane	1	12.1201	10.5884	13	66
Bromomethane	1	13.5636	14.1844	4.5	42
Vinyl Chloride	1	15.8538	16.4886	3.9	30
Chloroethane	1	19.8263	24.6965	22	50
Trichlorofluoromethane	1	19.3998	21.852	12	41
Methylene Chloride	1	15.3824	14.793	3.9	38
1,1-Dichloroethene	1	14.389	15.8615	9.7	34
I,1-Dichloroethane	1	17.4514	16.1741	7.6	30
rans-1,2-Dichloroethene	1	17.4139	16.3007	6.6	48
Chloroform	1	18.005	18.1989	1.1	37
1,2-Dichloroethane	1	15.5598	15.1867	2.4	34
1,1,1-Trichloroethane	1	17.1495	17.6786	3	33
Carbon Tetrachloride	1	19.1777	20.0096	4.2	32
Bromodichloromethane	1	16.6052	17.1825	3.4	30
1,2-Dichloropropane	1	17.2773	16.7647	3	30
Trichloroethene	1	17.9824	16.7538	7.1	30
Benzene	1	17.4941	17.3949	0.57	29
Dibromochloromethane	1	16.3288	16.3913	0.38	30
2-Chloroethylvinylether	1	0	0	NA	40
cis-1,3-Dichloropropene	1	13.4075	13.2794	0.96	34
rans-1,3-Dichloropropene	1	11.823	12.8461	8.3	31
1,1,2-Trichloroethane	1	17.7145	17.4613	1.4	37
Tetrachloroethene	1	18.7521	18.9564	1.1	27
Toluene	1	17.0933	17.1902	0.57	33
Chlorobenzene	1	17.6375	18.4138	4.3	30
Bromoform	1	16.0944	15.076	6.5	30
Ethylbenzene	1	18.5999	18.3641	1.3	41
1,1,2,2-Tetrachloroethane	1	17.7148	16.488	7.2	29
1,3-Dichlorobenzene	1	17.4991	19.2915	9.7	30
1,4-Dichlorobenzene	1	16.7766	16.0701	4.3	30
1,2-Dichlorobenzene	1	17.8462	17.6745	0.97	34

^{* -} Indicates outside of limits

NA - Both concentrations=0... no result can be calculated

ORGANICS SEMIVOLATILE REPORT

Sample Number: WMB5098

Client Id:

Data File: 10M21022.D

Analysis Date: 04/24/11 17:23 Date Rec/Extracted: NA-04/24/11

Column: DB-5MS 30M 0.250mm ID 0.25um film

Method: EPA 625

Matrix: Aqueous

Initial Vol: 1000ml

Final Vol: 1ml

Dilution: 1

Solids: 0

Units: ug/L

			Units: u	g/L			
Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc
92-52-4	1,1'-Biphenyl	2.0	U	205-99-2	Benzo[b]fluoranthene	2.0	U
95-94-3	1,2,4,5-Tetrachlorobenzene	2.0	U	191-24-2	Benzo[g,h,i]perylene	2.0	U
58-90-2	2,3,4,6-Tetrachlorophenol	2.0	U	207-08-9	Benzo[k]fluoranthene	2.0	U
95-95-4	2,4,5-Trichlorophenol	2.0	U	111-91-1	bis(2-Chloroethoxy)methan	2.0	U
88-06-2	2,4,6-Trichlorophenol	2.0	U	111-44-4	bis(2-Chloroethyl)ether	0.50	U
120-83-2	2,4-Dichlorophenol	2.0	U	108-60-1	bis(2-chloroisopropyl)ether	2.0	U
105-67-9	2,4-Dimethylphenol	2.0	U	117-81-7	bis(2-Ethylhexyl)phthalate	2.0	U
51-28-5	2,4-Dinitrophenol	10	U	85-68-7	Butylbenzylphthalate	2.0	U
121-14-2	2,4-Dinitrotoluene	2.0	U	105-60-2	Caprolactam	2.0	U
606-20-2	2,6-Dinitrotoluene	2.0	U	86-74-8	Carbazole	2.0	U
91-58-7	2-Chloronaphthalene	2.0	U	218-01-9	Chrysene	2.0	U
95-57-8	2-Chlorophenol	2.0	U	53-70-3	Dibenzo[a,h]anthracene	2.0	U
91-57-6	2-Methylnaphthalene	2.0	U	132-64-9	Dibenzofuran	0.50	U
95-48-7	2-Methylphenol	0.50	U	84-66-2	Diethylphthalate	2.0	U
88-74-4	2-Nitroaniline	2.0	U	131-11-3	Dimethylphthalate	2.0	U
88-75-5	2-Nitrophenol	2.0	U	84-74-2	Di-n-butylphthalate	2.0	U
106-44-5	3&4-Methylphenol	0.50	U	117-84-0	Di-n-octylphthalate	2.0	U
91-94-1	3,3'-Dichlorobenzidine	2.0	U	206-44-0	Fluoranthene	2.0	U
99-09-2	3-Nitroaniline	2.0	U	86-73-7	Fluorene	2.0	U
534-52-1	4,6-Dinitro-2-methylphenol	10	U	118-74-1	Hexachlorobenzene	2.0	U
101-55-3	4-Bromophenyl-phenylether	2.0	U	87-68-3	Hexachlorobutadiene	2.0	U
59-50-7	4-Chloro-3-methylphenol	2.0	U	77-47-4	Hexachlorocyclopentadiene	2.0	U
106-47-8	4-Chloroaniline	0.50	U	67-72-1	Hexachloroethane	2.0	U
7005-72-3	4-Chlorophenyl-phenylether	2.0	U	193-39-5	Indeno[1,2,3-cd]pyrene	2.0	U
100-01-6	4-Nitroaniline	2.0	U	78-59-1	Isophorone	2.0	U
100-02-7	4-Nitrophenol	2.0	U	91-20-3	Naphthalene	0.50	U
83-32-9	Acenaphthene	2.0	U	98-95-3	Nitrobenzene	2.0	U
208-96-8	Acenaphthylene	2.0	U	621-64-7	N-Nitroso-di-n-propylamine	0.50	U
98-86-2	Acetophenone	2.0	U	86-30-6	n-Nitrosodiphenylamine	2.0	U
120-12-7	Anthracene	2.0	U	87-86-5	Pentachlorophenol	10	U
1912-24-9	Atrazine	2.0	U	85-01-8	Phenanthrene	2.0	U
100-52-7	Benzaldehyde	2.0	U	108-95-2	Phenol	2.0	U
56-55-3	Benzo[a]anthracene	2.0	U	129-00-0	Pyrene	2.0	U
50-32-8	Benzo[a]pyrene	2.0	U				

Worksheet #: 188853

Total Target Concentration

ColumnID: (^) Indicates results from 2nd column

0

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

ORGANICS SEMIVOLATILE REPORT

Sample Number: AC58548-001

Client Id: PC-3 U Data File: 10M21057.D Analysis Date: 04/25/11 06:50

Date Rec/Extracted: 04/20/11-04/24/11

Column: DB-5MS 30M 0.250mm ID 0.25um film

Method: EPA 625

Matrix: Aqueous

Initial Vol: 960ml

Final Vol: 1ml Dilution: 1

Solids: 0

Unite: ua/l

Units: ug/L										
Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc			
92-52-4	1,1'-Biphenyl	2.1	U	205-99-2	Benzo[b]fluoranthene	2.1	U			
95-94-3	1,2,4,5-Tetrachlorobenzene	2.1	U	191-24-2	Benzo[g,h,i]perylene	2.1	U			
58-90-2	2,3,4,6-Tetrachlorophenol	2.1	U	207-08-9	Benzo[k]fluoranthene	2.1	U			
95-95-4	2,4,5-Trichlorophenol	2.1	U	111-91-1	bis(2-Chloroethoxy)methan	2.1	U			
88-06-2	2,4,6-Trichlorophenol	2.1	U	111-44-4	bis(2-Chloroethyl)ether	0.52	U			
120-83-2	2,4-Dichlorophenol	2.1	U	108-60-1	bis(2-chloroisopropyl)ether	2.1	U			
105-67-9	2,4-Dimethylphenol	2.1	U	117-81-7	bis(2-Ethylhexyl)phthalate	2.1	U			
51-28-5	2,4-Dinitrophenol	10	U	85-68-7	Butylbenzylphthalate	2.1	U			
121-14-2	2,4-Dinitrotoluene	2.1	U	105-60-2	Caprolactam	2.1	U			
606-20-2	2,6-Dinitrotoluene	2.1	U	86-74-8	Carbazole	2.1	U			
91-58-7	2-Chloronaphthalene	2.1	U	218-01-9	Chrysene	2.1	U			
95-57-8	2-Chlorophenol	2.1	U	53-70-3	Dibenzo[a,h]anthracene	2.1	U			
91-57-6	2-Methylnaphthalene	2.1	U	132-64-9	Dibenzofuran	0.52	U			
95-48-7	2-Methylphenol	0.52	U	84-66-2	Diethylphthalate	2.1	U			
88-74-4	2-Nitroaniline	2.1	U	131-11-3	Dimethylphthalate	2.1	U			
88-75-5	2-Nitrophenol	2.1	U	84-74-2	Di-n-butylphthalate	2.1	U			
106-44-5	3&4-Methylphenol	0.52	U	117-84-0	Di-n-octylphthalate	2.1	U			
91-94-1	3,3'-Dichlorobenzidine	2.1	U	206-44-0	Fluoranthene	2.1	U			
99-09-2	3-Nitroaniline	2.1	U	86-73-7	Fluorene	2.1	U			
534-52-1	4,6-Dinitro-2-methylphenol	10	U	118-74-1	Hexachlorobenzene	2.1	U			
101-55-3	4-Bromophenyl-phenylether	2.1	U	87-68-3	Hexachlorobutadiene	2.1	U			
59-50-7	4-Chloro-3-methylphenol	2.1	U	77-47-4	Hexachlorocyclopentadiene	2.1	U			
106-47-8	4-Chloroaniline	0.52	U	67-72-1	Hexachloroethane	2.1	U			
7005-72-3	4-Chlorophenyl-phenylether	2.1	U	193-39-5	Indeno[1,2,3-cd]pyrene	2.1	U			
100-01-6	4-Nitroaniline	2.1	U	78-59-1	Isophorone	2.1	U			
100-02-7	4-Nitrophenol	2.1	U	91-20-3	Naphthalene	0.52	U			
83-32-9	Acenaphthene	2.1	U	98-95-3	Nitrobenzene	2.1	U			
208-96-8	Acenaphthylene	2.1	U	621-64-7	N-Nitroso-di-n-propylamine	0.52	U			
98-86-2	Acetophenone	2.1	U	86-30-6	n-Nitrosodiphenylamine	2.1	U			
120-12-7	Anthracene	2.1	U	87-86-5	Pentachlorophenol	10	U			
1912-24-9	Atrazine	2.1	U	85-01-8	Phenanthrene	2.1	U			
100-52-7	Benzaldehyde	2.1	U	108-95-2	Phenol	2.1	U			
56-55-3	Benzo[a]anthracene	2.1	U	129-00-0	Pyrene	2.1	U			
50-32-8	Benzo[a]pyrene	2.1	U							

Worksheet #: 188853

Total Target Concentration

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the

specified detection limit.
d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

ORGANICS SEMIVOLATILE REPORT

Sample Number: AC58548-003

Client Id: PC-2 U

Data File: 10M21058.D

Analysis Date: 04/25/11 07:12 Date Rec/Extracted: 04/20/11-04/24/11

Column: DB-5MS 30M 0.250mm ID 0.25um film

Method: EPA 625

Matrix: Aqueous

Initial Vol: 900ml

Final Vol: 1ml

Dilution: 1

Solids: 0

Units: ug/L

	Units: ug/L										
Cas #	Compound	RL	Conc	Cas#	Compound	RL	Conc				
92-52-4	1,1'-Biphenyl	2.2	U	205-99-2	Benzo[b]fluoranthene	2.2	U				
95-94-3	1,2,4,5-Tetrachlorobenzene	2.2	U	191-24-2	Benzo[g,h,i]perylene	2.2	U				
58-90-2	2,3,4,6-Tetrachlorophenol	2.2	U	207-08-9	Benzo[k]fluoranthene	2.2	U				
95-95-4	2,4,5-Trichlorophenol	2.2	U	111-91-1	bis(2-Chloroethoxy)methan	2.2	U				
88-06-2	2,4,6-Trichlorophenol	2.2	U	111-44-4	bis(2-Chloroethyl)ether	0.56	U				
120-83-2	2,4-Dichlorophenol	2.2	U	108-60-1	bis(2-chloroisopropyl)ether	2.2	U				
105-67-9	2,4-Dimethylphenol	2.2	U	117-81-7	bis(2-Ethylhexyl)phthalate	2.2	U				
51-28-5	2,4-Dinitrophenol	11	U	85-68-7	Butylbenzylphthalate	2.2	U				
121-14-2	2,4-Dinitrotoluene	2.2	U	105-60-2	Caprolactam	2.2	U				
606-20-2	2,6-Dinitrotoluene	2.2	U	86-74-8	Carbazole	2.2	U				
91-58-7	2-Chioronaphthalene	2.2	U	218-01-9	Chrysene	2.2	U				
95-57-8	2-Chlorophenol	2.2	U	53-70-3	Dibenzo[a,h]anthracene	2.2	U				
91-57-6	2-Methylnaphthalene	2.2	U	132-64-9	Dibenzofuran	0.56	U				
95-48-7	2-Methylphenol	0.56	U	84-66-2	Diethylphthalate	2.2	U				
88-74-4	2-Nitroaniline	2.2	U	131-11-3	Dimethylphthalate	2.2	U				
88-75-5	2-Nitrophenol	2.2	U	84-74-2	Di-n-butylphthalate	2.2	U				
106-44-5	3&4-Methylphenol	0.56	U	117-84-0	Di-n-octylphthalate	2.2	U				
91-94-1	3,3'-Dichlorobenzidine	2.2	U	206-44-0	Fluoranthene	2.2	U				
99-09-2	3-Nitroaniline	2.2	U	86-73-7	Fluorene	2.2	U				
534-52-1	4,6-Dinitro-2-methylphenol	11	U	118-74-1	Hexachlorobenzene	2.2	U				
101-55-3	4-Bromophenyl-phenylether	2.2	U	87-68-3	Hexachlorobutadiene	2.2	U				
59-50-7	4-Chloro-3-methylphenol	2.2	U	77-47-4	Hexachlorocyclopentadiene	2.2	U				
106-47-8	4-Chloroaniline	0.56	U	67-72-1	Hexachloroethane	2.2	U				
7005-72-3	4-Chlorophenyl-phenylether	2.2	U	193-39-5	Indeno[1,2,3-cd]pyrene	2.2	U				
100-01-6	4-Nitroaniline	2.2	U	78-59-1	Isophorone	2.2	U				
100-02-7	4-Nitrophenol	2.2	U	91-20-3	Naphthalene	0.56	U				
83-32-9	Acenaphthene	2.2	U	98-95-3	Nitrobenzene	2.2	U				
208-96-8	Acenaphthylene	2.2	U	621-64-7	N-Nitroso-di-n-propylamine	0.56	U				
98-86-2	Acetophenone	2.2	U	86-30-6	n-Nitrosodiphenylamine	2.2	U				
120-12-7	Anthracene	2.2	U	87-86-5	Pentachlorophenol	11	U				
1912-24-9	Atrazine	2.2	U	85-01-8	Phenanthrene	2.2	U				
100-52-7	Benzaldehyde	2.2	U	108-95-2	Phenol	2.2	U				
56-55-3	Benzo[a]anthracene	2.2	υ	129-00-0	Pyrene	2.2	U				
50-32-8	Benzo[a]pyrene	2.2	U								

Worksheet #: 188853

Total Target Concentration

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the

R - Retention Time Out

 $^{{\}it J}$ - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

ORGANICS SEMIVOLATILE REPORT

Sample Number: AC58548-005

Client Id: LMW-4 U Data File: 10M21059.D

Analysis Date: 04/25/11 07:34 Date Rec/Extracted: 04/20/11-04/24/11

Column: DB-5MS 30M 0.250mm ID 0.25um film

Method: EPA 625

Matrix: Aqueous

Initial Vol: 940ml

Final Vol: 1ml

Dilution: 1

Solids: 0

Units: ug/L

Units: ug/L										
Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc			
92-52-4	1,1'-Biphenyl	2.1	U	205-99-2		2.1	U			
95-94-3	1,2,4,5-Tetrachlorobenzene	2.1	U	191-24-2	Benzo[g,h,i]perylene	2.1	U			
58-90-2	2,3,4,6-Tetrachlorophenol	2.1	U	207-08-9	Benzo[k]fluoranthene	2.1	U			
95-95-4	2,4,5-Trichlorophenol	2.1	U	111-91-1	bis(2-Chloroethoxy)methan	2.1	U			
88-06-2	2,4,6-Trichlorophenol	2.1	U	111-44-4	bis(2-Chloroethyl)ether	0.53	U			
120-83-2	2,4-Dichlorophenol	2.1	U	108-60-1	bis(2-chloroisopropyl)ether	2.1	U			
105-67-9	2,4-Dimethylphenol	2.1	U	117-81-7	bis(2-Ethylhexyl)phthalate	2.1	U			
51-28-5	2,4-Dinitrophenol	11	U	85-68-7	Butylbenzylphthalate	2.1	U			
121-14 - 2	2,4-Dinitrotoluene	2.1	U	105-60-2	Caprolactam	2.1	U			
606-20-2	2,6-Dinitrotoluene	2.1	U	86-74-8	Carbazole	2.1	U			
91-58-7	2-Chloronaphthalene	2.1	U	218-01-9	Chrysene	2.1	U			
95-57-8	2-Chlorophenol	2.1	U	53-70-3	Dibenzo[a,h]anthracene	2.1	U			
91-57-6	2-Methylnaphthalene	2.1	U	132-64-9	Dibenzofuran	0.53	U			
95-48-7	2-Methylphenol	0.53	U	84-66-2	Diethylphthalate	2.1	U			
88-74-4	2-Nitroaniline	2.1	U	131-11-3	Dimethylphthalate	2.1	U			
88-75-5	2-Nitrophenol	2.1	U	84-74-2	Di-n-butylphthalate	2.1	U			
106-44-5	3&4-Methylphenol	0.53	U	117-84-0	Di-n-octylphthalate	2.1	U			
91-94-1	3,3'-Dichlorobenzidine	2.1	U	206-44-0	Fluoranthene	2.1	U			
99-09-2	3-Nitroaniline	2.1	U	86-73-7	Fluorene	2.1	U			
534-52-1	4,6-Dinitro-2-methylphenol	11	U	118-74-1	Hexachlorobenzene	2.1	U			
101-55-3	4-Bromophenyl-phenylether	2.1	U	87-68-3	Hexachlorobutadiene	2.1	U			
59-50-7	4-Chloro-3-methylphenol	2.1	U	77-47-4	Hexachlorocyclopentadiene	2.1	U			
106-47-8	4-Chloroaniline	0.53	U	67-72-1	Hexachloroethane	2.1	U			
7005-72-3	4-Chlorophenyl-phenylether	2.1	U	193-39-5	Indeno[1,2,3-cd]pyrene	2.1	U			
100-01 - 6	4-Nitroaniline	2.1	U	78-59-1	Isophorone	2.1	U			
100-02-7	4-Nitrophenol	2.1	U	91-20-3	Naphthalene	0.53	U			
83-32-9	Acenaphthene	2.1	U	98-95-3	Nitrobenzene	2.1	U			
208-96-8	Acenaphthylene	2.1	U	621-64-7	N-Nitroso-di-n-propylamine	0.53	U			
98-86-2	Acetophenone	2.1	U	86-30-6	n-Nitrosodiphenylamine	2.1	U			
120-12-7	Anthracene	2.1	U	87-86-5	Pentachlorophenol	11	U			
1912-24-9	Atrazine	2.1	U	85-01-8	Phenanthrene	2.1	U			
100-52-7	Benzaldehyde	2.1	U	108-95-2	Phenol	2.1	U			
56-55-3	Benzo[a]anthracene	2.1	U	129-00-0	Pyrene	2.1	U			
50-32-8	Benzo[a]pyrene	2.1	U							
			1							

Worksheet #: 188853

Total Target Concentration

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

ORGANICS SEMIVOLATILE REPORT

Sample Number: AC58548-007

Client Id: LMW-2 U Data File: 10M21060.D Analysis Date: 04/25/11 07:56

Date Rec/Extracted: 04/20/11-04/24/11

Column: DB-5MS 30M 0.250mm ID 0.25um film

Method: EPA 625 Matrix: Aqueous Initial Vol: 960ml

Final Vol: 1ml Dilution: 1

Solids: 0

Units: ug/L

			Units: ug/	/L			
Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc
92-52-4	1,1'-Biphenyl	2.1	U	205-99-2	Benzo[b]fluoranthene	2.1	U
95-94-3	1,2,4,5-Tetrachlorobenzene	2.1	U	191-24-2	Benzo[g,h,i]perylene	2.1	U
58-90-2	2,3,4,6-Tetrachlorophenol	2.1	U	207-08-9	Benzo[k]fluoranthene	2.1	U
95-95-4	2,4,5-Trichlorophenol	2.1	U	111-91-1	bis(2-Chloroethoxy)methan	2.1	U
88-06-2	2,4,6-Trichlorophenol	2.1	U	111-44-4	bis(2-Chloroethyl)ether	0.52	U
120-83-2	2,4-Dichlorophenol	2.1	U	108-60-1	bis(2-chloroisopropyl)ether	2.1	U
105-67-9	2,4-Dimethylphenol	2.1	U	117-81-7	bis(2-Ethylhexyl)phthalate	2.1	U
51 - 28-5	2,4-Dinitrophenol	10	U	85-68-7	Butylbenzylphthalate	2.1	U
121-14-2	2,4-Dinitrotoluene	2.1	U	105-60-2	Caprolactam	2.1	U
606-20-2	2,6-Dinitrotoluene	2.1	U	86-74-8	Carbazole	2.1	U
91-58-7	2-Chloronaphthalene	2.1	U	218-01-9	Chrysene	2.1	U
95-57-8	2-Chlorophenol	2.1	U	53-70-3	Dibenzo[a,h]anthracene	2.1	U
91-57-6	2-Methylnaphthalene	2.1	U	132-64-9	Dibenzofuran	0.52	U
95 - 48-7	2-Methylphenol	0.52	U	84-66-2	Diethylphthalate	2.1	U
88-74-4	2-Nitroaniline	2.1	U	131-11-3	Dimethylphthalate	2.1	U
88-75-5	2-Nitrophenol	2.1	U	84-74-2	Di-n-butylphthalate	2.1	U
106-44-5	3&4-Methylphenol	0.52	U	117-84-0	Di-n-octylphthalate	2.1	U
91-94-1	3,3'-Dichlorobenzidine	2.1	U	206-44-0	Fluoranthene	2.1	U
99-09-2	3-Nitroaniline	2.1	U	86-73-7	Fluorene	2.1	U
534-52-1	4,6-Dinitro-2-methylphenol	10	U	118-74-1	Hexachlorobenzene	2.1	U
101-55-3	4-Bromophenyl-phenylether	2.1	U	87-68-3	Hexachlorobutadiene	2.1	U
59-50-7	4-Chloro-3-methylphenol	2.1	U	77-47-4	Hexachlorocyclopentadiene	2.1	U
106-47-8	4-Chloroaniline	0.52	U	67-72-1	Hexachloroethane	2.1	U
7005-72-3	4-Chlorophenyl-phenylether	2.1	U	193-39-5	Indeno[1,2,3-cd]pyrene	2.1	U
100-01-6	4-Nitroaniline	2.1	U	78-59-1	Isophorone	2.1	U
100-02-7	4-Nitrophenol	2.1	U	91-20-3	Naphthalene	0.52	U
83-32-9	Acenaphthene	2.1	U	98-95-3	Nitrobenzene	2.1	U
208-96-8	Acenaphthylene	2.1	U	621-64-7	N-Nitroso-di-n-propylamine	0.52	U
98-86-2	Acetophenone	2.1	U	86-30-6	n-Nitrosodiphenylamine	2.1	U
120-12-7	Anthracene	2.1	U	87-86-5	Pentachlorophenol	10	U
1912-24-9	Atrazine	2.1	U	85-01-8	Phenanthrene	2.1	U
100-52-7	Benzaldehyde	2.1	U	108-95-2	Phenol	2.1	U
56-55-3	Benzo[a]anthracene	2.1	U	129-00-0	Pyrene	2.1	U
50-32-8	Benzo[a]pyrene	2.1	U				

Worksheet #: 188853

Total Target Concentration

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the

specified detection limit.
d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

Form1 ORGANICS SEMIVOLATILE REPORT

Sample Number: AC58548-009

Client Id: LF-1 U

Data File: 10M21061.D

Analysis Date: 04/25/11 08:18

Date Rec/Extracted: 04/20/11-04/24/11

Column: DB-5MS 30M 0.250mm ID 0.25um film

Method: EPA 625 Matrix: Aqueous

Initial Vol: 970ml Final Vol: 1ml

Dilution: 1

Solids: 0

Units:	ug/L
--------	------

			Units:	ug/L				
Cas #	Compound	RL	Conc		Cas #	Compound	RL	Conc
92-52-4	1,1'-Biphenyl	2.1	U		205-99-2	Benzo[b]fluoranthene	2.1	U
95-94-3	1,2,4,5-Tetrachlorobenzene	2.1	U		191-24-2	Benzo[g,h,i]perylene	2.1	U
58-90-2	2,3,4,6-Tetrachlorophenol	2.1	U		207-08-9	Benzo[k]fluoranthene	2.1	U
95-95-4	2,4,5-Trichlorophenol	2.1	U		111-91-1	bis(2-Chloroethoxy)methan	2.1	U
88-06-2	2,4,6-Trichlorophenol	2.1	U		111-44-4	bis(2-Chloroethyl)ether	0.52	U
120-83-2	2,4-Dichlorophenol	2.1	U		108-60-1	bis(2-chloroisopropyl)ether	2.1	U
105-67-9	2,4-Dimethylphenol	2.1	U		117-81 - 7	bis(2-Ethylhexyl)phthalate	2.1	U
51-28-5	2,4-Dinitrophenol	10	U		85-68-7	Butylbenzylphthalate	2.1	U
121-14-2	2,4-Dinitrotoluene	2.1	U		105-60-2	Caprolactam	2.1	U
606-20-2	2,6-Dinitrotoluene	2.1	U		86-74 - 8	Carbazole	2.1	U
91-58-7	2-Chloronaphthalene	2.1	U		218-01-9	Chrysene	2.1	U
95-57-8	2-Chlorophenol	2.1	U		53-70-3	Dibenzo[a,h]anthracene	2.1	U
91-57-6	2-Methylnaphthalene	2.1	U		132-64-9	Dibenzofuran	0.52	U
95-48-7	2-Methylphenol	0.52	U		84-66-2	Diethylphthalate	2.1	U
88-74-4	2-Nitroaniline	2.1	U		131-11-3	Dimethylphthalate	2.1	U
88-75-5	2-Nitrophenol	2.1	U	į	84-74-2	Di-n-butylphthalate	2.1	U
106-44-5	3&4-Methylphenol	0.52	U		117-84-0	Di-n-octylphthalate	2.1	U
91-94-1	3,3'-Dichlorobenzidine	2.1	U		206-44-0	Fluoranthene	2.1	U
99-09-2	3-Nitroaniline	2.1	U		86-73-7	Fluorene	2.1	U
534-52-1	4,6-Dinitro-2-methylphenol	10	U		118-74-1	Hexachlorobenzene	2.1	U
101-55-3	4-Bromophenyl-phenylether	2.1	U		87-68-3	Hexachlorobutadiene	2.1	U
59-50-7	4-Chloro-3-methylphenol	2.1	U		77-47-4	Hexachlorocyclopentadiene	2.1	U
106-47-8	4-Chloroaniline	0.52	U		67-72-1	Hexachloroethane	2.1	U
7005-72-3	4-Chlorophenyl-phenylether	2.1	U		193-39-5	Indeno[1,2,3-cd]pyrene	2.1	U
100-01-6	4-Nitroaniline	2.1	U		78-59-1	Isophorone	2.1	U
100-02-7	4-Nitrophenol	2.1	U		91-20-3	Naphthalene	0.52	U
83-32-9	Acenaphthene	2.1	U	i	98-95-3	Nitrobenzene	2.1	U
208-96-8	Acenaphthylene	2.1	U		621-64-7	N-Nitroso-di-n-propylamine	0.52	U
98-86-2	Acetophenone	2.1	U		86-30-6	n-Nitrosodiphenylamine	2.1	U
120-12-7	Anthracene	2.1	U	İ	87-86-5	Pentachlorophenol	10	U
1912-24-9	Atrazine	2.1	U		85-01-8	Phenanthrene	2.1	U
100-52-7	Benzaldehyde	2.1	U		108-95-2	Phenol	2.1	U
56-55-3	Benzo[a]anthracene	2.1	U		129-00-0	Pyrene	2.1	U
50-32-8	Benzo[a]pyrene	2.1	U					

Worksheet #: 188853

Total Target Concentration

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the

specified detection limit.
d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

ORGANICS SEMIVOLATILE REPORT

Sample Number: AC58548-011

Client Id: PC-1 U Data File: 10M21062.D

Analysis Date: 04/25/11 08:40 Date Rec/Extracted: 04/20/11-04/24/11

Column: DB-5MS 30M 0.250mm ID 0.25um film

Method: EPA 625 Matrix: Aqueous

Initial Vol: 970ml Final Vol: 1ml

Dilution: 1 Solids: 0

Units: ug/L

			Units: ug/	L			
Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc
92-52-4	1,1'-Biphenyl	2.1	U	205-99-2	Benzo[b]fluoranthene	2.1	U
95-94-3	1,2,4,5-Tetrachlorobenzene	2.1	U	191-24-2	Benzo[g,h,i]perylene	2.1	U
58-90-2	2,3,4,6-Tetrachlorophenol	2.1	U	207-08-9	Benzo[k]fluoranthene	2.1	U
95-95-4	2,4,5-Trichlorophenol	2.1	U	111-91-1	bis(2-Chloroethoxy)methan	2.1	U
88-06-2	2,4,6-Trichlorophenol	2.1	U	111-44-4	bis(2-Chloroethyl)ether	0.52	U
120-83-2	2,4-Dichlorophenol	2.1	U	108-60-1	bis(2-chloroisopropyl)ether	2.1	U
105-67-9	2,4-Dimethylphenol	2.1	U	117-81-7	bis(2-Ethylhexyl)phthalate	2.1	U
51-28-5	2,4-Dinitrophenol	10	U	85-68-7	Butylbenzylphthalate	2.1	U
121-14-2	2,4-Dinitrotoluene	2.1	U	105-60-2	Caprolactam	2.1	U
606-20-2	2,6-Dinitrotoluene	2.1	U	86-74-8	Carbazole	2.1	U
91-58-7	2-Chloronaphthalene	2.1	U	218-01-9	Chrysene	2.1	U
95-57-8	2-Chlorophenol	2.1	U	53-70-3	Dibenzo[a,h]anthracene	2.1	U
91-57-6	2-Methylnaphthalene	2.1	U	132-64-9	Dibenzofuran	0.52	U
95-48-7	2-Methylphenol	0.52	U	84-66-2	Diethylphthalate	2.1	U
88-74-4	2-Nitroaniline	2.1	U	131-11-3	Dimethylphthalate	2.1	U
88-75-5	2-Nitrophenol	2.1	U	84-74-2	Di-n-butylphthalate	2.1	U
106-44-5	3&4-Methylphenol	0.52	U	117-84-0	Di-n-octylphthalate	2.1	U
91-94-1	3,3'-Dichlorobenzidine	2.1	U	206-44-0	Fluoranthene	2.1	U
99-09-2	3-Nitroaniline	2.1	U	86-73-7	Fluorene	2.1	U
534-52-1	4,6-Dinitro-2-methylphenol	10	U	118-74-1	Hexachlorobenzene	2.1	U
101-55-3	4-Bromophenyl-phenylether	2.1	U	87-68-3	Hexachlorobutadiene	2.1	U
59-50-7	4-Chloro-3-methylphenol	2.1	U	77-47-4	Hexachlorocyclopentadiene	2.1	U
106-47-8	4-Chloroaniline	0.52	U	67-72-1	Hexachioroethane	2.1	U
7005-72-3	4-Chlorophenyl-phenylether	2.1	U	193-39-5	Indeno[1,2,3-cd]pyrene	2.1	U
100-01-6	4-Nitroaniline	2.1	U	78-59-1	Isophorone	2.1	U
100-02-7	4-Nitrophenol	2.1	υ	91-20-3	Naphthalene	0.52	U
83-32-9	Acenaphthene	2.1	υ	98-95-3	Nitrobenzene	2.1	U
208-96-8	Acenaphthylene	2.1	U	621-64-7	N-Nitroso-di-n-propylamine	0.52	U
98-86-2	Acetophenone	2.1	U	86-30-6	n-Nitrosodiphenylamine	2.1	U
120-12-7	Anthracene	2.1	U	87-86-5	Pentachlorophenol	10	U
1912-24-9	Atrazine	2.1	υ	85-01-8	Phenanthrene	2.1	U
100-52-7	Benzaldehyde	2.1	υ	108-95-2	Phenol	2.1	U
56-55-3	Benzo[a]anthracene	2.1	υ	129-00-0	Pyrene	2.1	U
50-32-8	Benzo[a]pyrene	2.1	υ				
			1				

Worksheet #: 188853

Total Target Concentration 0
ut not detected. R - Retention Time Out

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

Form3 Recovery Data QC Batch: WMB5098

Data File

Sample ID:

Analysis Date

Spike or Dup: 10M21025.D

AC58547-004(MS) AC58547-004 4/24/2011 7:03:00 PM 4/24/2011 6:41:00 PM

Non Spike(If applicable): 10M21024.D Inst Blank(If applicable):

Method: 625

Matrix: Aqueous

QC Type: MS

		Spike	Sample	Expected		Lower	Upper	ME Low	ME Upper
Analyte:	Col	Conc	Conc	Ċonc	Recovery	Limit	Limit	Limit	Limit
N-Nitrosodimethylamine	1	104.8165	0	100	105	40	109	0	0
bis(2-Chloroethyl)ether	1	112.2677	0	100	112	12	158	0	0
Phenol	1	73.4123	0	100	73	5	112	0	0
2-Chlorophenol	1	110.5783	0	100	111	23	134	0	0
bis(2-chloroisopropyl)ether	1	114.7603	0	100	115	36	166	0	0
Hexachloroethane	1	108.7902	0	100	109	40	113	0	0
N-Nitroso-di-n-propylamine	1	112.9348	0	100	113	1	230	0	0
Nitrobenzene	1	115.1085	0	100	115	35	180	0	0
Isophorone	1	96.2375	0	100	96	21	196	0	0
2-Nitrophenol	1	118.2565	0	100	118	29	182	0	0
2,4-Dimethylphenol	1	104.4585	0	100	104	32	119	0	0
bis(2-Chloroethoxy)methane	1	115.2415	0	100	115	33	184	0	0
2,4-Dichlorophenol	1	110.419	0	100	110	39	135	0	0
1,2,4-Trichlorobenzene	1	100.0236	0	100	100	44	142	0	0
Naphthalene	1	104.6658	0	100	105	21	133	0	0
Hexachlorobutadiene	1	107.1813	0	100	107	24	116	0	0
4-Chloro-3-methylphenol	1	115.4051	0	100	115	22	147	0	0
2,4,6-Trichlorophenol	1	124.6111	0	100	125	37	144	0	0
2-Chloronaphthalene	1	111.6465	0	100	112	60	118	0	0
Acenaphthylene	1	117.251	0	100	117	33	145	0	0
Dimethylphthalate	1	113.7205	0	100	114*	1	112	0	0
2,6-Dinitrotoluene	1	114.1006	0	100	114	50	158	0	0
Acenaphthene	1	107.105	0	100	107	47	145	0	0
2,4-Dinitrophenol	1	115.351	0	100	115	1	191	0	0
2,4-Dinitrotoluene	1	112.2889	0	100	112	39	139	0	0
4-Nitrophenol	1	80.775	0	100	81	1	132	0	0
Fluorene	1	106.5229	0	100	107	59	121	0	0
4-Chlorophenyl-phenylether	1	110.8996	0	100	111	25	158	0	0
Diethylphthalate	1	109.607	0	100	110	1	114	0	0
4,6-Dinitro-2-methylphenol	1	112.2392	0	100	112	1	181	0	0
4-Bromophenyl-phenylether	1	112.3092	0	100	112	53	127	0	0
Hexachlorobenzene	1	100.4111	0	100	100	1	152	0	0
Pentachlorophenol	1	115.0786	0	100	115	14	176	0	0
Phenanthrene	1	112.0295	0	100	112	54	120	0	0
Anthracene	1	108.6304	0	100	109	27	133	0	0
Di-n-butylphthalate	1	120.3048	0	100	120*	1	118	0	0
Fluoranthene	1	108.7557	0	100	109	26	137	0	0
Pyrene	1	108.5101	0	100	109	52	115	0	0
Butylbenzylphthalate	1	111.7787	0	100	112	1	152	0	0
3,3'-Dichlorobenzidine	1	100.7319	0	100	101	1	262	0	0
Benzo[a]anthracene	1	105.8964	0	100	106	33	143	0	0
Chrysene	1	109.7769	0	100	110	17	168	0	0
bis(2-Ethylhexyl)phthalate	1	112.2832	0	100	112	8	158	0	0
Di-n-octylphthalate	1	109.3639	0	100	109	4	146	0	0
Benzo[b]fluoranthene	1	122.2163	0	100	122	24	159	0	0
Benzo[k]fluoranthene	1	97.508	0	100	98	11	162	0	0
Benzo[a]pyrene	1	114.2941	0	100	114	17	163	0	0
Indeno[1,2,3-cd]pyrene	1	98.1299	0	100	98	1	171	0	0
Dibenzo[a,h]anthracene	1	105.0236	0	100	105	1	227	0	0
Benzo[g,h,i]perylene	1	94.8629	0	100	95	1	219	0	0

Form3 Recovery Data QC Batch: WMB5098

Data File

Sample ID:

AC58547-004

ID: Analysis Date

Spike or Dup: 10M21026.D

AC58547-004(MSD)

4/24/2011 7:25:00 PM 4/24/2011 6:41:00 PM

Non Spike(If applicable): 10M21024.D Inst Blank(If applicable):

Method: 625

Matrix: Aqueous

QC Type: MSD

Analyte:			Spike	Sample	Expected		Lower	Upper	MELOW	ME Upper
N-Nitrosodimethylamine	Analyte:	Col	•			Recovery				
bis(2-Chlorethyl)ether Phenol 1 72,9559 0 100 73 5 112 0 0 1 0 0 2-Chlorophenol 1 72,9559 0 100 110 23 134 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				0	100	102	40	109	0	0
Phenol		-		-			12	158	0	0
2-Chiorophenol	•					73	5	112	0	0
Dis(2-chloroisopropy)either				-					0	0
Hexachloroethane	•			_			36	166	0	0
N-Nitroso-di-n-propylamine				-		108	40	113	0	0
Nitrobenzene				-			1	230	0	0
Sopharone				-		121	35	180	0	0
2-Nitrophenol 1 119,6381 0 100 120 29 182 0 0 2,4-Dimethylphenol 1 105,0559 0 100 105 32 119 0 0 0 bis(2-Chloroethoxy)methane 1 114,9689 0 100 105 32 119 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		-		-		97	21	196	0	0
2.4-Dimethyliphenol 1 105.0559 0 100 105 32 119 0 0 bis(2-Chloroethoxy)methane 1 114.9689 0 100 115 33 184 0 0 2.4-Dichlorophenol 1 109.1953 0 100 109 39 135 0 0 1.2.4-Trichlorophenol 1 104.246 0 100 104 44 142 0 0 Hexachlorobutadiene 1 108.7855 0 100 107 24 116 0 0 4-Chloro-3-methylphenol 1 124.4379 0 100 124 37 144 0 0 2.4-G-Trictholorophenol 1 122.8864 0 100 118 60 118 0 0 2.4-Dintrophenol 1 122.8864 0 100 122 1 112 0 0 2.6-Dinitroblue 1 122.6886 0	•					120	29	182	0	O
Dis(2-Chloroethoxy)methane	· · · · · · · · · · · · · · · · · · ·					105	32	119	0	0
2,4-Dichlorophenol 1 109,1953 0 100 109 39 135 0 0 1,2,4-Trichlorobenzene 1 104,246 0 100 104 44 142 0 0 Naphthalene 1 108,8469 0 100 107 24 116 0 0 Hexachlorobutadiene 1 106,7585 0 100 107 24 116 0 0 4,G-Trichlorophenol 1 124,4379 0 100 124 37 144 0 0 2,G-Dintrotolivene 1 118,0286 0 100 118 60 118 0 0 2,G-Dintrotolivene 1 122,8884 0 100 123 33 145 0 0 2,G-Dintrotolivene 1 122,6891 0 100 123 50 158 0 0 2,4-Dintrotolivene 1 120,8882 0 100 </td <td></td> <td>-</td> <td></td> <td></td> <td></td> <td>115</td> <td>33</td> <td>184</td> <td>0</td> <td>0</td>		-				115	33	184	0	0
1,2,4-Trichlorobenzene 1 104,246 0 100 104 44 142 0 0 Naphthalene 1 108,8469 0 100 109 21 133 0 0 Hexachlorobutadiene 1 106,7585 0 100 107 24 116 0 0 4-Chloro-3-methylphenol 1 121,4379 0 100 121 22 147 0 0 2,4,6-Trichlorophenol 1 124,4555 0 100 128 37 144 0 0 2,-Chloronaphthalene 1 118,0286 0 100 123 33 145 0 0 Dimethylphthalate 1 122,4864 0 100 123 33 145 0 0 2,6-Dinitroluene 1 122,6891 0 100 113 47 145 0 0 2,4-Dinitrobluene 1 119,2597 0		-					39	135	0	0
Naphthalene	•	-		-		104	44	142	0	0
Hexachlorobutadiene	• •	-	-	-			21	133	0	0
4-Chloro-3-methylphenol	• • •						24	116	0	0
2.4,6-Trichlorophenol 1 124,4555 0 100 124 37 144 0 0 2-Chloronaphthalene 1 118,0286 0 100 118 0 0 Acenaphthylene 1 122,8864 0 100 123 33 145 0 0 Dimethylphthalate 1 122,8864 0 100 122* 1 112 0 0 2,6-Dinitrotoluene 1 122,8891 0 100 123 50 158 0 0 2,4-Dinitrotoluene 1 112,5957 0 100 113 47 145 0 0 2,4-Dinitrotoluene 1 119,2259 0 100 119 1 191 0 0 2,4-Dinitro-Dinitr				-		121	22	147	0	0
2-Chloronaphthalene	• •			-				144	0	0
Acenaphthylene				_		118	60	118	0	0
Dimethylphthalate	_					123	33	145	0	0
2,6-Dinitrotoluene 1 122,6891 0 100 123 50 158 0 0 Acenaphthene 1 112,5957 0 100 113 47 145 0 0 2,4-Dinitrophenol 1 119,2259 0 100 119 1 191 0 0 2,4-Dinitrotoluene 1 120,8862 0 100 121 39 139 0 0 4-Nitrophenol 1 82,4887 0 100 82 1 132 0 0 Fluorene 1 111,765 0 100 112 59 121 0 0 4-Chlorophenyl-phenylether 1 115,049 0 100 116* 1 114 0 0 4-Bromophenyl-phenylether 1 118,343 0 100 117 1 181 0 0 4-Bromophenyl-phenylether 1 118,8643 0 100				-			1	112	0	0
Acenaphthene				_			50	158	0	0
2,4-Dinitrophenol 1 119.2259 0 100 119 1 191 0 0 2,4-Dinitrotoluene 1 120.8862 0 100 121 39 139 0 0 0 4-Nitrophenol 1 82.4687 0 100 82 1 132 0 0 0 0 1 139 0	•					113	47	145	0	0
2,4-Dinitrotoluene 1 120.8862 0 100 121 39 139 0 0 4-Nitrophenol 1 82.4687 0 100 82 1 132 0 0 Fluorene 1 111.765 0 100 112 59 121 0 0 4-Chlorophenyl-phenylether 1 115.049 0 100 115 25 158 0 0 Diethylphthalate 1 116.2924 0 100 116* 1 114 0 0 4-Bromophenyl-phenylether 1 117.3749 0 100 117 1 181 0 0 4-Bromophenyl-phenylether 1 118.8643 0 100 119 53 127 0 0 Hexachlorobenzyl-phenylether 1 110.3168 0 100 119 53 127 0 0 Pentachlorobenziene 1 110.3511 0	•			-			1	191	0	0
4-Nitrophenol 1 82.4687 0 100 82 1 132 0 0 Fluorene 1 111.765 0 100 112 59 121 0 0 0 4-Chlorophenyl-phenylether 1 115.049 0 100 115 25 158 0 0 Diethylphthalate 1 116.2924 0 100 116* 1 114 0 0 4.6-Dinitro-2-methylphenol 1 117.3749 0 100 117 1 181 0 0 4.6-Bromophenyl-phenylether 1 118.8643 0 100 117 1 181 0 0 4.Bromophenyl-phenylether 1 118.8643 0 100 117 1 181 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	•	-				121	39	139	0	0
Fluorene 1 111.765 0 100 112 59 121 0 0 4-Chlorophenyl-phenylether 1 115.049 0 100 115 25 158 0 0 Diethylphthalate 1 116.2924 0 100 116* 1 114 0 0 4-6-Dinitro-2-methylphenol 1 117.3749 0 100 117 1 181 0 0 4-Bromophenyl-phenylether 1 118.8643 0 100 117 1 181 0 0 4-Bromophenyl-phenylether 1 118.8643 0 100 119 53 127 0 0 Hexachlorobenzene 1 110.3168 0 100 119 53 127 0 0 Pentachlorophenol 1 118.6355 0 100 119 14 176 0 0 Pentachlorophenol 1 118.6355 0 100 119 14 176 0 0 Phenanthrene 1 120.3511 0 100 120 54 120 0 0 Anthracene 1 117.1075 0 100 117 27 133 0 0 Di-n-butylphthalate 1 127.4421 0 100 127* 1 118 0 0 Fluoranthene 1 118.9049 0 100 117 27 133 0 0 Eliuranthene 1 118.9049 0 100 119 26 137 0 0 Pyrene 1 108.5544 0 100 109 52 115 0 0 Butylbenzylphthalate 1 13.6115 0 100 114 1 152 0 0 Butylbenzylphthalate 1 104.0912 0 100 104 1 262 0 0 Benzo[a]anthracene 1 109.1785 0 100 104 1 262 0 0 Benzo[a]anthracene 1 113.66 0 100 114 8 158 0 0 Chrysene 1 111.6608 0 100 114 8 158 0 0 Di-n-octylphthalate 1 13.03834 0 100 114 8 158 0 0 Di-n-octylphthalate 1 130.3834 0 100 114 4 146 0 0 Benzo[b]fluoranthene 1 96.1578 0 100 96 11 162 0 0 Benzo[a]pyrene 1 121.2321 0 100 121 17 163 0 0 Dienzo[a,h]anthracene 1 108.886 0 100 107 1 171 0 0 Dibenzo[a,h]anthracene 1 113.8859 0 100 114 1 227 0	•			-		82	1	132	0	0
4-Chlorophenyl-phenylether 1 115.049 0 100 115 25 158 0 0 Diethylphthalate 1 116.2924 0 100 116* 1 114 0 0 4-Bromophenyl-phenylether 1 118.8643 0 100 117 1 181 0 0 Hexachlorobenzene 1 110.3168 0 100 110 1 152 0 0 Pentachlorophenol 1 118.6355 0 100 119 14 176 0 0 Phenanthrene 1 120.3511 0 100 119 14 176 0 0 Phenanthrene 1 127.3511 0 100 120 54 120 0 0 Phenanthrene 1 117.1075 0 100 117 27 133 0 0 Phenanthrene 1 117.1075 0 100 <t< td=""><td>•</td><td></td><td></td><td></td><td></td><td></td><td>59</td><td>121</td><td>0</td><td>0</td></t<>	•						59	121	0	0
Diethylphthalate		-			100	115	25	158	0	0
4,6-Dinitro-2-methylphenol 1 117.3749 0 100 117 1 181 0 0 4-Bromophenyl-phenylether 1 118.8643 0 100 119 53 127 0 0 Hexachlorobenzene 1 110.3168 0 100 110 1 152 0 0 Pentachlorophenol 1 118.6355 0 100 119 14 176 0 0 Phenanthrene 1 120.3511 0 100 119 14 176 0 0 Anthracene 1 117.1075 0 100 117 27 133 0 0 Di-n-butylphthalate 1 127.4421 0 100 127* 1 118 0 0 Fluoranthene 1 118.9049 0 100 119 26 137 0 0 Pyrene 1 108.5544 0 100 109 52 115 0 0 Butylbenzylphthalate 1 11					100	116*	1	114	0	0
4-Bromophenyl-phenylether 1 118.8643 0 100 119 53 127 0 0 Hexachlorobenzene 1 110.3168 0 100 110 1 152 0 0 Pentachlorophenol 1 118.6355 0 100 119 14 176 0 0 Phenanthrene 1 120.3511 0 100 120 54 120 0 0 Anthracene 1 117.1075 0 100 117 27 133 0 0 Di-n-butylphthalate 1 127.4421 0 100 127* 1 118 0 0 Fluoranthene 1 118.9049 0 100 119 26 137 0 0 Pyrene 1 108.5544 0 100 119 26 137 0 0 Butylbenzylphthalate 1 113.6115 0 100 114 1 152 0 0 Benzo[a]anthracene 1 104.0912 </td <td>• •</td> <td>1</td> <td>117.3749</td> <td>0</td> <td>100</td> <td>117</td> <td>1</td> <td>181</td> <td>0</td> <td>0</td>	• •	1	117.3749	0	100	117	1	181	0	0
Hexachlorobenzene				0	100	119	53	127	0	0
Pentachlorophenol 1 118.6355 0 100 119 14 176 0 0 Phenanthrene 1 120.3511 0 100 120 54 120 0 0 Anthracene 1 117.1075 0 100 117 27 133 0 0 Di-n-butylphthalate 1 127.4421 0 100 127* 1 118 0 0 Fluoranthene 1 118.9049 0 100 119 26 137 0 0 Pyrene 1 108.5544 0 100 109 52 115 0 0 Butylbenzylphthalate 1 113.6115 0 100 114 1 152 0 0 Benzo[a]anthracene 1 104.0912 0 100 104 1 262 0 0 Chrysene 1 111.6608 0 100 112 17<	, , ,	1	110.3168	0	100	110	1	152	0	-
Phenanthrene 1 120.3511 0 100 120 54 120 0 Anthracene 1 117.1075 0 100 117 27 133 0 0 Di-n-butylphthalate 1 127.4421 0 100 127* 1 118 0 0 Fluoranthene 1 118.9049 0 100 119 26 137 0 0 Pyrene 1 108.5544 0 100 109 52 115 0 0 Butylbenzylphthalate 1 113.6115 0 100 114 1 152 0 0 Butylbenzylphthalate 1 104.0912 0 100 114 1 152 0 0 Benzo[a]anthracene 1 104.0912 0 100 104 1 262 0 0 Chrysene 1 111.6608 0 100 112 17		1	118.6355	0	100	119	14	176	0	0
Anthracene 1 117.1075 0 100 117 27 133 0 0 Di-n-butylphthalate 1 127.4421 0 100 127* 1 118 0 0 Fluoranthene 1 118.9049 0 100 119 26 137 0 0 Pyrene 1 108.5544 0 100 109 52 115 0 0 Butylbenzylphthalate 1 113.6115 0 100 114 1 152 0 0 Benzo[a]anthracene 1 104.0912 0 100 104 1 262 0 0 Benzo[a]anthracene 1 109.1785 0 100 109 33 143 0 0 Chrysene 1 111.6608 0 100 112 17 168 0 0 Di-n-octylphthalate 1 113.8032 0 100 114 8 158 0 0 Benzo[b]fluoranthene 1 130.3834	•	1		0	100	120	54	120	0	-
Di-n-butylphthalate 1 127.4421 0 100 127* 1 118 0 0 Fluoranthene 1 118.9049 0 100 119 26 137 0 0 Pyrene 1 108.5544 0 100 109 52 115 0 0 Butylbenzylphthalate 1 113.6115 0 100 114 1 152 0 0 3,3'-Dichlorobenzidine 1 104.0912 0 100 104 1 262 0 0 Benzo[a]anthracene 1 109.1785 0 100 109 33 143 0 0 Chrysene 1 111.6608 0 100 112 17 168 0 0 Chrysene 1 113.66 0 100 114 8 158 0 0 Di-n-octylphthalate 1 113.8032 0 100 114		1	117.1075	0	100	117	27	133	0	_
Fluoranthene 1 118.9049 0 100 119 26 137 0 0 Pyrene 1 108.5544 0 100 109 52 115 0 0 Butylbenzylphthalate 1 113.6115 0 100 114 1 152 0 0 3,3'-Dichlorobenzidine 1 104.0912 0 100 104 1 262 0 0 Benzo[a]anthracene 1 109.1785 0 100 109 33 143 0 0 Chrysene 1 111.6608 0 100 112 17 168 0 0 bis(2-Ethylhexyl)phthalate 1 113.66 0 100 114 8 158 0 0 Di-n-octylphthalate 1 113.8032 0 100 114 8 158 0 0 Di-n-octylphthalate 1 130.3834 0 100 114 4 146 0 0 Benzo[b]fluoranthene 1 130.3834 0 100 130 24 159 0 Benzo[k]fluoranthene 1 96.1578 0 100 96 11 162 0 Benzo[a]pyrene 1 121.2321 0 100 121 17 163 0 Dihenzo[a,h]anthracene 1 133.8859 0 100 114 1 227 0 Dibenzo[a,h]anthracene		1	127.4421	0	100	127 *	1	118	0	•
Pyrene 1 108.5544 0 100 109 52 115 0 Butylbenzylphthalate 1 113.6115 0 100 114 1 152 0 0 3,3'-Dichlorobenzidine 1 104.0912 0 100 104 1 262 0 0 Benzo[a]anthracene 1 109.1785 0 100 109 33 143 0 0 Chrysene 1 111.6608 0 100 112 17 168 0 0 Dis(2-Ethylhexyl)phthalate 1 113.66 0 100 114 8 158 0 0 Di-n-octylphthalate 1 113.8032 0 100 114 4 146 0 0 Benzo[b]fluoranthene 1 130.3834 0 100 130 24 159 0 0 Benzo[a]pyrene 1 121.2321 0 100 121	• •	1	118.9049	0	100	119	26	137	0	-
Butylbenzylphthalate 1 113.6115 0 100 114 1 152 0 0 3,3'-Dichlorobenzidine 1 104.0912 0 100 104 1 262 0 0 Benzo[a]anthracene 1 109.1785 0 100 109 33 143 0 0 Chrysene 1 111.6608 0 100 112 17 168 0 0 bis(2-Ethylhexyl)phthalate 1 113.66 0 100 114 8 158 0 0 Di-n-octylphthalate 1 113.8032 0 100 114 4 146 0 0 Benzo[b]fluoranthene 1 130.3834 0 100 130 24 159 0 0 Benzo[k]fluoranthene 1 96.1578 0 100 96 11 162 0 0 Benzo[a]pyrene 1 121.2321 0 100 121 17 163 0 0 Indeno[1,2,3-cd]pyrene		1	108.5544	0	100	109	52	115		
3,3'-Dichlorobenzidine	•	1	113.6115	0	100	114	1	152	0	_
Benzo[a]anthracene 1 109.1785 0 100 109 33 143 0 0 Chrysene 1 111.6608 0 100 112 17 168 0 0 bis(2-Ethylhexyl)phthalate 1 113.66 0 100 114 8 158 0 0 Di-n-octylphthalate 1 113.8032 0 100 114 4 146 0 0 Benzo[b]fluoranthene 1 130.3834 0 100 130 24 159 0 0 Benzo[k]fluoranthene 1 96.1578 0 100 96 11 162 0 0 Benzo[a]pyrene 1 121.2321 0 100 121 17 163 0 0 Indeno[1,2,3-cd]pyrene 1 106.8986 0 100 107 1 171 0 0 Dibenzo[a,h]anthracene 1 113.8859 0 100 114 1 227 0 0		1	104.0912	0	100	104	1	262	0	
Chrysene 1 111.6608 0 100 112 17 168 0 0 bis(2-Ethylhexyl)phthalate 1 113.66 0 100 114 8 158 0 0 Di-n-octylphthalate 1 113.8032 0 100 114 4 146 0 0 Benzo[b]fluoranthene 1 130.3834 0 100 130 24 159 0 0 Benzo[k]fluoranthene 1 96.1578 0 100 96 11 162 0 0 Benzo[a]pyrene 1 121.2321 0 100 121 17 163 0 0 Indeno[1,2,3-cd]pyrene 1 106.8986 0 100 107 1 171 0 0 Dibenzo[a,h]anthracene 1 113.8859 0 100 114 1 227 0 0	•	1	109.1785	0	100	109	33	143	-	_
bis(2-Ethylhexyl)phthalate 1 113.66 0 100 114 8 158 0 0 Di-n-octylphthalate 1 113.8032 0 100 114 4 146 0 0 Benzo[b]fluoranthene 1 130.3834 0 100 130 24 159 0 0 Benzo[k]fluoranthene 1 96.1578 0 100 96 11 162 0 0 Benzo[a]pyrene 1 121.2321 0 100 121 17 163 0 0 Indeno[1,2,3-cd]pyrene 1 106.8986 0 100 107 1 171 0 0 Dibenzo[a,h]anthracene 1 113.8859 0 100 114 1 227 0 0		1	111.6608	0	100	112	17	168	0	-
Di-n-octylphthalate 1 113.8032 0 100 114 4 146 0 0 Benzo[b]fluoranthene 1 130.3834 0 100 130 24 159 0 0 Benzo[k]fluoranthene 1 96.1578 0 100 96 11 162 0 0 Benzo[a]pyrene 1 121.2321 0 100 121 17 163 0 0 Indeno[1,2,3-cd]pyrene 1 106.8986 0 100 107 1 171 0 0 Dibenzo[a,h]anthracene 1 113.8859 0 100 114 1 227 0 0	•	1	113.66	0	100	114	8	158	_	-
Benzo[b]fluoranthene 1 130.3834 0 100 130 24 159 0 0 Benzo[k]fluoranthene 1 96.1578 0 100 96 11 162 0 0 Benzo[a]pyrene 1 121.2321 0 100 121 17 163 0 0 Indeno[1,2,3-cd]pyrene 1 106.8986 0 100 107 1 171 0 0 Dibenzo[a,h]anthracene 1 113.8859 0 100 114 1 227 0 0		1	113.8032	0	100	114	4	146		
Benzo[k]fluoranthene 1 96.1578 0 100 96 11 162 0 0 Benzo[a]pyrene 1 121.2321 0 100 121 17 163 0 0 Indeno[1,2,3-cd]pyrene 1 106.8986 0 100 107 1 171 0 0 Dibenzo[a,h]anthracene 1 113.8859 0 100 114 1 227 0 0	• •	1	130.3834	0	100	130	24	159	_	-
Benzo[a]pyrene 1 121.2321 0 100 121 17 163 0 0 Indeno[1,2,3-cd]pyrene 1 106.8986 0 100 107 1 171 0 0 Dibenzo[a,h]anthracene 1 113.8859 0 100 114 1 227 0 0		1	96.1578	0	100	96	11	162	-	_
Indeno[1,2,3-cd]pyrene 1 106.8986 0 100 107 1 171 0 0 Dibenzo[a,h]anthracene 1 113.8859 0 100 114 1 227 0 0		1	121.2321	0	100	121	17	163	-	-
Dibenzo[a,h]anthracene 1 113.8859 0 100 114 1 227 0 0		1	106.8986	0	100	107			_	_
	•	1		0	100	114				
Benzo[g,h,i]perylene 1 106.0031 0 100 106 1 219 0 0		1	106.0031	0	100	106	1	219	0	0

Form1 Inorganic Analysis Data Sheet

Sample ID: AC58548-002

% Solid: 0

Units: UG/L

Lab Name: Veritech

Nras No:

Client Id: PC-3 F

Matrix: AQUEOUS

Date Rec: 4/21/2011

Lab Code: Contract: Sdg No:

Case No:

Level: LOW

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol	Analysis Date		File:	Seq Num	М	Instr
7429-90-5	Aluminum	100	140	1	100	50	04/26/11	6699	A12564C	22	Р	PEICP1A
7440-36-0	Antimony	7.5	ND	1	100	50	04/26/11	6699	A12564C	22	Р	PEICP1A
7440-38-2	Arsenic	20	ND	1	100	50	04/26/11	6699	A12564C	22	Р	PEICP1A
7440-39-3	Barium	25	91	1	100	50	04/26/11	6699	A12564C	22	Р	PEICP1A
7440-41-7	Beryllium	4.0	ND	1	100	50	04/26/11	6699	A12564C	22	Р	PEICP1A
7440-43-9	Cadmium	2.0	ND	1	100	50	04/26/11	6699	A12564C	22	Р	PEICP1A
7440-70-2	Calcium	1000	38000	1	100		04/26/11	6699	A12564C	22	Р	PEICP1A
7440-47-3	Chromium	25	ND	1	100	50	04/26/11	6699	A12564C	22	Р	PEICP1A
7440-48-4	Cobalt	10		1	100		04/26/11	6699	A12564C	22	Р	PEICP1A
7440-50-8	Copper	25	ND	1	100	50	04/26/11	6699	A12564C	22	Р	PEICP1A
7439-89-6	Iron	150	680		100	50	04/26/11	6699	A12564C	22	Р	PEICP1A
7439-92-1	Lead	5.0	ND	1	100	50		6699	A12564C	22	Р	PEICP1A
7439-95-4	Magnesium	1000	12000	1	100		04/26/11	6699			Р	PEICP1A
7439-96-5	Manganese	25	390		100	50		6699		22	Р	PEICP1A
7439-97-6	Mercury	0.20	ND.		25	25			H12564Ab	18	CV	HGCV2A
7440-02-0	Nickel	10	ND	1	100	50		6699			Р	PEICP1A
7440-09-7	Potassium	2500	5100	1	100	50		6699		21	Р	PEICPRAD1A
7782-49-2	Selenium	25			100	50		6699		22	P	PEICP1A
7440-22-4	Silver	10	ND		100	50		6699		22	Р	PEICP1A
7440-23-5	Sodium	2500	49000		100	50				21	Р	PEICPRAD1A
7440-28-0	Thallium	5.0	49000 ND	-	100	50				22	Р	PEICP1A
7440-26-0	Vanadium	25	ND	1	100	50		6699			Р	PEICP1A
				4	100		04/26/11			22	Р	PEICP1A
7440-66-6	Zinc	25	ND	1	100	50	04/20/11	6699	A12304C	22		FEIGHIA

Comments:		13		

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

MS - ICP-MS

Form1 Inorganic Analysis Data Sheet

Sample ID: AC58548-004

% Solid: 0

Lab Name: Veritech

Nras No:

Client Id: PC-2 F

Matrix: AQUEOUS

Units: UG/L Date Rec: 4/21/2011 Lab Code:

Sdg No:

6699 A12564C 23

PEICP1A

Level:

LOW

Contract:

Case No:

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol		Analysis Date		File:	Seq Num	М	Instr
7429-90-5	Aluminum	100	150	1	100	50	04/26/11	6699	A12564C	23	Р	PEICP1A
7440-36-0	Antimony	7.5	ND	1	100	50	04/26/11	6699	A12564C	23	Р	PEICP1A
7440-38-2	Arsenic	20	ND	1	100	50	04/26/11	6699	A12564C	23	Р	PEICP1A
7440-39-3	Barium	25	67	1	100	50	04/26/11	6699	A12564C	23	Р	PEICP1A
7440-41-7	Beryllium	4.0	ND	1	100	50	04/26/11	6699	A12564C	23	Р	PEICP1A
7440-43-9	Cadmium	2.0	ND	1	100	50	04/26/11	6699	A12564C	23	Р	PEICP1A
7440-70-2	Calcium	1000	73000	1	100	50	04/26/11	6699	A12564C	23	Р	PEICP1A
7440-47-3	Chromium	25	ND	1	100	50	04/26/11	6699	A12564C	23	Р	PEICP1A
7440-48-4	Cobalt	10	ND	1	100	50	04/26/11	6699	A12564C	23	Р	PEICP1A
7440-50-8	Copper	25	ND] 1	100	50	04/26/11	6699	A12564C	23	Р	PEICP1A
7439-89-6	Iron	150	4900	1	100	50	04/26/11	6699	A12564C	23	Р	PEICP1A
7439-92-1	Lead	5.0	ND	1	100	50	04/26/11	6699	A12564C	23	Р	PEICP1A
7439-95-4	Magnesium	1000	19000	1	100	- 50	04/26/11	6699	A12564C	23	Р	PEICP1A
7439-96-5	Manganese	25	9500	1	100	50	04/26/11	6699	A12564C	23	Р	PEICP1A
7439-97-6	Mercury	0.20	ND	1	25	25	04/26/11	6699	H12564Ab	19	CV	HGCV2A
7440-02-0	Nickel	10	ND	1	100	50	04/26/11	6699	A12564C	23	Р	PEICP1A
7440-09-7	Potassium	2500	3900	1	100	50	04/26/11	6699	A12564D	22	Р	PEICPRAD1A
7782-49-2	Selenium	25	ND	1	100	50	04/26/11	6699	A12564C	23	Р	PEICP1A
7440-22-4	Silver	10	ND	1	100	50	04/26/11	6699	A12564C	23	Р	PEICP1A
7440-23-5	Sodium	2500	36000	1	100	50	04/26/11	6699	A12564D	22	Р	PEICPRAD1A
7440-28-0	Thallium	5.0	ND	1	100	50	04/26/11	6699	A12564C	23	Р	PEICP1A
7440-62-2	Vanadium	25	ND	1	100	50	04/26/11	6699	A12564C	23	Р	PEICP1A

100

50 04/26/11

Comments:		 	

ND

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

25

Zinc

P - ICP-AES

7440-66-6

CV -ColdVapor

MS - ICP-MS

Matrix: Level:

Sample ID: AC58548-006

Client Id: LMW-4 F

AQUEOUS

LOW

% Solid: 0

Units: UG/L

Lab Name: Lab Code:

Veritech

Nras No:

Sdg No:

Date Rec: 4/21/2011

Contract:

Case No:

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol	Analysis Date		File:	Seq Num	М	Instr
7429-90-5	Aluminum	100	200	1	100	50	04/26/11	6699	A12564C	24	Р	PEICP1A
7440-36-0	Antimony	7.5	ND	1	100	50	04/26/11	6699	A12564C	24	Р	PEICP1A
7440-38-2	Arsenic	20	ND	1	100	50	04/26/11	6699	A12564C	24	Р	PEICP1A
7440-39-3	Barium	25	81	1	100	50	04/26/11	6699	A12564C	24	Р	PEICP1A
440-41-7	Beryllium	4.0	ND	1	100	50	04/26/11	6699	A12564C	24	Р	PEICP1A
7440-43-9	Cadmium	2.0	ND	1	100	50	04/26/11	6699	A12564C	24	Р	PEICP1A
7440-70-2	Calcium	1000	44000	1	100	50	04/26/11	6699	A12564C	24	Р	PEICP1A
7440-47-3	Chromium	25	ND	1	100	50	04/26/11	6699	A12564C	24	Р	PEICP1A
7440-48-4	Cobalt	10	19	1	100	50	04/26/11	6699	A12564C	24	Р	PEICP1A
440-50-8	Copper	25	ND	1	100	50	04/26/11	6699	A12564C	24	Р	PEICP1A
439-89-6	Iron	150	34000	1	100	50	04/26/11	6699	A12564C	24	Р	PEICP1A
7439-92-1	Lead	5.0	ND	1	100	50	04/26/11	6699	A12564C	24	Р	PEICP1A
439-95-4	Magnesium	1000	18000	1	100	50	04/26/11	6699	A12564C	24	Р	PEICP1A
439-96-5	Manganese	50	17000	2	100	50	04/28/11	6699	A12564G	15	Р	PEICP1A
439-97-6	Mercury	0.20	ND	1	25	25	04/26/11	6699	H12564Ab	20	СV	HGCV2A
7440-02-0	Nickel	10	ND	1	100	50	04/26/11	6699	A12564C	24	Р	PEICP1A
440-09-7	Potassium	2500	3000	1	100	50	04/26/11	6699	A12564D	23	Р	PEICPRAD1A
782-49-2	Selenium	25	ND	1	100	50	04/26/11	6699	A12564C	24	Р	PEICP1A
440-22-4	Silver	10	ND	1	100	50	04/26/11	6699	A12564C	24	Р	PEICP1A
440-23-5	Sodium	2500	29000	1	100	50	04/26/11	6699	A12564D	23	Р	PEICPRAD1A
440-28-0	Thallium	5.0	ND	1	100	50	04/26/11	6699	A12564C	24	Р	PEICP1A
										1	i	

100

100

50 04/26/11

50 04/26/11

6699

6699

A12564C

A12564C

Р

Р

24

24

PEICP1A

PEICP1A

Comments:				

ND

ND

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

25

25

P - ICP-AES

7440-62-2

7440-66-6

Vanadium

Zinc

CV -ColdVapor

Sample ID: AC58548-008

Client Id: LMW-2 F

% Solid: 0

Units: UG/L

Lab Name: Veritech Lab Code:

Nras No:

Sdg No:

Level: LOW

Matrix: AQUEOUS

Date Rec: 4/21/2011

Contract:

Case No:

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol	Analysis Date	Prep Batch	File:	Seq Num	М	Instr
7429-90-5	Aluminum	100	410	1	100	50	04/26/11	6699	A12564C	25	Р	PEICP1A
7440-36-0	Antimony	7.5	ND	1	100	50	04/26/11	6699	A12564C	25	Р	PEICP1A
7440-38-2	Arsenic	20	ND	1	100	50	04/26/11	6699	A12564C	25	Р	PEICP1A
7440-39-3	Barium	25	130	1	100	50	04/26/11	6699	A12564C	25	Р	PEICP1A
7440-41-7	Beryllium	4.0	ND	1	100	50	04/26/11	6699	A12564C	25	Р	PEICP1A
7440-43-9	Cadmium	2.0	ND	1	100	50	04/26/11	6699	A12564C	25	Р	PEICP1A
7440-70-2	Calcium	1000	85000	1	100	50	04/26/11	6699	A12564C	25	Р	PEICP1A
7440-47-3	Chromium	25	ND	1	100	50	04/26/11	6699	A12564C	25	Р	PEICP1A
7440-48-4	Cobalt	10	ND	1	100	50	04/26/11	6699	A12564C	25	Р	PEICP1A
7440-50-8	Copper	25	ND	1	100	50	04/26/11	6699	A12564C	25	Р	PEICP1A
7439-89-6	Iron	150	ND	1	100	50	04/26/11	6699	A12564C	25	Р	PEICP1A
7439-92-1	Lead	5.0	ND	1	100	50	04/26/11	6699	A12564C	25	Р	PEICP1A
7439-95-4	Magnesium	1000	33000	1	100	50	04/26/11	6699	A12564C	25	Р	PEICP1A
7439-96-5	Manganese	25	130	1	100	50	04/26/11	6699	A12564C	25	Р	PEICP1A
7439-97-6	Mercury	0.20	ND	1	25	25	04/26/11	6699	H12564Ac	11	CV	HGCV2A
7440-02-0	Nickel	10	ND	1	100	50	04/26/11	6699	A12564C	25	Р	PEICP1A
7440-09-7	Potassium	2500	3800	1	100	50	04/26/11	6699	A12564D	24	Р	PEICPRAD1A
7782-49-2	Selenium	25	ND	1	100	50	04/26/11	6699	A12564C	25	Р	PEICP1A
7440-22-4	Silver	10	ND	1	100	50	04/26/11	6699	A12564C	25	Р	PEICP1A
7440-23-5	Sodium	2500	33000	1	100	50	04/26/11	6699	A12564D	24	Р	PEICPRAD1A
7440-28-0	Thallium	5.0	ND	1	100	50	04/26/11	6699	A12564C	25	Р	PEICP1A
7440-62-2	Vanadium	25	ND	1	100	50	04/26/11	6699	A12564C	25	Р	PEICP1A
7440-66-6	Zinc	25	ND	1	100	50	04/26/11	6699	A12564C	25	Р	PEICP1A

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC58548-010

% Solid: 0

Lab Name: Veritech

Nras No:

Client Id: LF-1 F

Matrix: AQUEOUS

Units: UG/L

Date Rec: 4/21/2011

Lab Code: Contract:

Sdg No: Case No:

Level: LOW

							-					
Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol	Analysis Date		File:	Seq Num	м	Instr
7429-90-5	Aluminum	100	140		100	50	04/26/11		A12564C	26	P	PEICP1A
7440-36-0	Antimony	7.5	ND		100	50	04/26/11	6699	A12564C	26	Р	PEICP1A
7440-38-2	Arsenic	20	ND	1	100	50	04/26/11	6699	A12564C	26	Р	PEICP1A
7440-39-3	Barium	25	72	1	100	50	04/26/11	6699	A12564C	26	Р	PEICP1A
7440-41-7	Beryllium	4.0	ND	1	100	50	04/26/11	6699	A12564C	26	Р	PEICP1A
7440-43-9	Cadmium	2.0	ND	1	100	50		6699		26	Р	PEICP1A
7440-70-2	Calcium	1000	76000	1	100	50		6699		26	Р	PEICP1A
7440-47-3	Chromium	25	ND	1	100	50				26	Р	PEICP1A
7440-48-4	Cobalt	10		1		50					Р	PEICP1A
7440-50-8	Copper	25	ND	1		50				i	Р	PEICP1A
7439-89-6	Iron	150			100	50					Р	PEICP1A
7439-92-1	Lead	5.0	ND	1		50					P	PEICP1A
7439-95-4	Magnesium	1000	12000	1	100	50			A12564C		Р	PEICP1A
7439-96-5	Manganese	25	ND	': 1	100	50 50		6699	A12564C		P	PEICP1A
7439-90-6	Mercury	0.20	ND	<u>'</u>	25	25			H12564Ac		CV.	HGCV2A
7440-02-0	Nickel	10	ND	'	100	50		6699		26	Р	PEICP1A
7440-02-0	Potassium	2500	3200	1		50		6699		25	Р	PEICPRAD1A
										26	Р	PEICP1A
7782-49-2	Selenium	25	ND	1		50		6699	A12564C		P	PEICP1A PEICP1A
7440-22-4	Silver	10	ND	1	100	-	04/26/11	6699	A12564C	26		
7440-23-5	Sodium	2500	36000	1	100	- 7	04/26/11	6699		25	Р	PEICPRAD1A
7440-28-0	Thallium	5.0	ND	1	100		04/26/11	6699		26	P	PEICP1A
7440-62-2	Vanadium	25	ND	1	100	50		6699	A12564C	26	P	PEICP1A
7440-66-6	Zinc	25	ND	1	100	50	04/26/11	6699	A12564C	26	Р	PEICP1A

Comments:	 	 	 	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC58548-012

Client Id: PC-1 F

Matrix: AQUEOUS

% Solid: 0

Units: UG/L Date Rec: 4/21/2011

Lab Code:

Contract:

Lab Name: Veritech

Nras No:

Sdg No:

Case No:

Level: LOW

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol	Analysis Date		File:	Seq Num	М	Instr
7429-90-5	Aluminum	100	150	1	100	50	04/26/11	6699	A12564C	27	Р	PEICP1A
7440-36-0	Antimony	7.5	ND	1	100	50	04/26/11	6699	A12564C	27	Р	PEICP1A
7440-38-2	Arsenic	20	ND	1	100	50	04/26/11	6699	A12564C	27	Р	PEICP1A
7440-39-3	Barium	25	72	1	100	50	04/26/11	6699	A12564C	27	Р	PEICP1A
7440-41-7	Beryllium	4.0	ND	1	100	50	04/26/11	6699	A12564C	27	Ρ	PEICP1A
7440-43-9	Cadmium	2.0	ND	1	100	50	04/26/11	6699	A12564C	27	Р	PEICP1A
7440-70-2	Calcium	1000	76000	1	100	50	04/26/11	6699	A12564C	27	Р	PEICP1A
7440-47-3	Chromium	25	ND	1	100	50	04/26/11	6699	A12564C	27	Р	PEICP1A
7440-48-4	Cobalt	10	ND	1	100	50	04/26/11	6699	A12564C	27	Р	PEICP1A
7440-50-8	Copper	25	ND	1	100	50	04/26/11	6699	A12564C	27	Ρ	PEICP1A
7439-89-6	Iron	150	ND	1	100	50	04/26/11	6699	A12564C	27	Р	PEICP1A
7439-92-1	Lead	5.0	ND	1	100	50	04/26/11	6699	A12564C	27	Р	PEICP1A
7439-95-4	Magnesium	1000	12000	1	100	50	04/26/11	6699	A12564C	27	Р	PEICP1A
7439-96-5	Manganese	25	ND	1	100	50	04/26/11	6699	A12564C	27	Р	PEICP1A
7439-97-6	Mercury	0.20	ND	1	25	25	04/26/11	6699	H12564Ac	13	CV	HGCV2A
7440-02-0	Nickel	10	ND	1	100	50	04/26/11	6699	A12564C	27	Р	PEICP1A
7440-09-7	Potassium	2500	3200	1	100	50	04/26/11	6699	A12564D	26	Р	PEICPRAD1A
7782-49-2	Selenium	25	ND	1	100	50	04/26/11	6699	A12564C	27	Р	PEICP1A
7440-22-4	Silver	10	ND	1	100	50	04/26/11	6699	A12564C	27	Р	PEICP1A
7440-23-5	Sodium	2500	36000	1	100	50	04/26/11	6699	A12564D	26	Р	PEICPRAD1A
7440-28-0	Thallium	5.0	ND	1	100	50	04/26/11	6699	A12564C	27	Р	PEICP1A
7440-62-2	Vanadium	25	ND	1	100	50	04/26/11	6699	A12564C	27	Ρ	PEICP1A
7440-66-6	Zinc	25	ND	1	100	50	04/26/11	6699	A12564C	27	Р	PEICP1A
						1				1		

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

FORM 3 (ICB/CCB/MB Summary)

Date Analyzed: 04/26/11

Data File: A12564C

Lab Name: Lab Code:

Veritech

Prep Batch: 6699

Reporting Limits Used: AQUEOUS,200.7(ICP)/200.8(ICPMS)/245.1(Hg)

Contract:

Instrument: PEICP1A

Nras No:

Units: All units in ppm except Hg and icp-ms in ppb

Sdg No:

Project Number: 1042017

Case No:

Analyte	ICB V-112282- 8	CCB-20	CCB-29	CCB-39	MB 6699 (0.5)- 11
Aluminum	.2 U	.2 U	.2 U	.2 U	.1 U
Antimony	.015 U	.015 U	.015 U	.015 U	.0075 U
Arsenic	.04 U	.04 U	.04 U	.04 U	.02 U
Barium	.05 U	.05 U	.05 U	.05 U	.025 U
Beryllium	.008 U	.008 U	.008 U	.008 U	.004 U
Cadmium	.004 U	.004 U	.004 U	.004 U	.002 U
Calcium	2 U	2 U	2 U	2 U	1 U
Chromium	.05 U	.05 U	.05 U	.05 U	.025 U
Cobalt	.02 U	.02 U	.02 U	.02 U	.01 U
Copper	.05 U	.05 U	.05 U	.05 U	.025 U
Iron	.3 U	.3 U	.3 U	.3 U	.15 U
Lead	.01 U	.01 U	.01 U	.01 U	.005 U
Magnesium	2 U	2 U	2 U	2 U	1 U
Manganese	.05 U	.05 U	.05 U	.05 U	.025 U
Nickel	.02 U	.02 U	.02 U	.02 U	.01 U
Selenium	.05 U	.05 U	.05 U	.05 U	.025 U
Silver	.02 U	.02 U	.02 U	.02 U	.01 U
Thallium	.01 U	.01 U	.01 U	.01 U	.005 U
Vanadium	.05 U	.05 U	.05 U	.05 U	.025 U
Zinc	.05 U	.05 U	.05 U	.05 U	.025 U

Notes: a-indicates absolute value of result found above the reporting limits in CCB/ICB or result found above reporting limit in the MB u-indicates result below reporting limit

FORM 3 (ICB/CCB/MB Summary)

Date Analyzed: 04/26/11

Data File: A12564D

Lab Name:

Prep Batch: 6699

Lab Code:

Veritech

Reporting Limits Used: AQUEOUS,200.7(ICP)/200.8(ICPMS)/245.1(Hg)

Contract:

Instrument: PEICPRAD1A

Nras No:

Sdg No:

Units: All units in ppm except Hg and icp-ms in ppb

Project Number: 1042017

Case No:

Analyte	ICB V-112282- 7	CCB-19	CCB-28	CCB-37	MB 6699 (0.5)- 10	
Potassium	5 U	5 U	5 U	5 U	2.5 U	
Sodium	5 U	5 U	5 U	5 U	2.5 U	

Notes: a-indicates absolute value of result found above the reporting limits in CCB/ICB or result found above reporting limit in the MB u-indicates result below reporting limit

FORM 3 (ICB/CCB/MB Summary)

Date Analyzed: 04/26/11

Data File: H12564Ab

Lab Name: Veritech

Prep Batch: 6699

Lab Code:

Reporting Limits Used: AQUEOUS,200.7(ICP)/200.8(ICPMS)/245.1(Hg)

Contract:

Nras No:

Instrument: HGCV2A

Sdg No:

Units: All units in ppm except Hg and icp-ms in ppb

Project Number: 1042017

Case No:

į							
				'			
	ICB-10	CCB-22	CCB-32	MB 6699 (1)-11			
A 1 1 -	100 10	000 22	000 02	0000 (1) 11			
Analyte							
·					7	 	
Mercury	.2 U	.2 U	.2 U	.2 U		j	
moroury	.20	.20	.20			 	

Notes: a-indicates absolute value of result found above the reporting limits in CCB/ICB or result found above reporting limit in the MB u-indicates result below reporting limit

FORM 3 (ICB/CCB/MB Summary)

Date Analyzed: 04/26/11

Data File: H12564Ac

Prep Batch: 6699 Reporting Limits Used: AQUEOUS,200.7(ICP)/200.8(ICPMS)/245.1(Hg)

Instrument: HGCV2A

Units: All units in ppm except Hg and icp-ms in ppb

Project Number: 1042017

Lab Name: Veritech

Lab Code:

Contract:

Nras No:

Sdg No:

Case No:

Analyte	ICB-10	CCB-20			
Mercury	.2 U	.2 U			

Notes: a-indicates absolute value of result found above the reporting limits in CCB/ICB or result found above reporting limit in the MB u-indicates result below reporting limit

FORM5/FORM7 SPIKE RECOVERY DATA

PREP BATCH: 6699

Instrument Type: ICP/HG

Analytical Method(s):6010/200.7/7470A/7471A/245.1

ICP units in ppm, ICPMS and Hg in ppb

TxtQcType:	MS	Mat	rix: AQUEC	JUS	Sample	ID: AC	58547-003					
Analyte	BatchId	DF	Data File	Seq#:	NS Data Fil	Seq#	Spk Conc:	NS Conc:	Spk Added	Recov	Qual Lo Lim	Hi Lim
Aluminum	6699	1	A12564C	16	A12564C	14	4.9392	0.3179	5.000	92	70	130
Antimony	6699	1	A12564C	16	A12564C	14	0.4788	.015U	.5000	96	70	130
Arsenic	6699	1	A12564C	16	A12564C	14	0.4762	0.040U	.5000	95	70	130
Barium	6699	1	A12564C	16	A12564C	14	0.5410	0.0958	.5000	89	70	130
Beryllium	6699	1	A12564C	16	A12564C	14	0.4752	.008U	.5000	95	70	130
Cadmium	6699	1	A12564C	16	A12564C	14	0.4598	.004U	.5000	92	70	130
Calcium	6699	1	A12564C	16	A12564C	14	219.3030	181.2890	50.000	76	70	130
Chromium	6699	1	A12564C	16	A12564C	14	0.4567	0.05U	.5000	91	70	130
Cobalt	6699	1	A12564C	16	A12564C	14	0.4456	.02U	.5000	89	70	130
Copper	6699	1	A12564C	16	A12564C	14	0.4624	0.050U	.5000	92	70	130
lron	6699	1	A12564C	16	A12564C	14	4.7384	0.3470	5.000	88	70	130
Lead	6699	1	A12564C	16	A12564C	14	0.4526	0.010U	.5000	91	70	130
Magnesium	6699	1	A12564C	16	A12564C	14	67.2199	21.7762	50.000	91	70	130
Manganese	6699	1	A12564C	16	A12564C	14	0.8664	0.4197	.5000	89	70	130
Mercury	6699	1	H12564Ab	16	H12564Ab	14	11.2300	0.2U	10	112	70	130
Nickel	6699	1	A12564C	16	A12564C	14	0.4459	.02U	.5000	89	70	130
Potassium	6699	1	A12564D	15	A12564D	13	57.3470	7.5746	50.000	100	70	130
Selenium	6699	1	A12564C	16	A12564C	14	0.4903	0.05∪	.5000	98	70	130
Silver	6699	1	A12564C	16	A12564C	14	0.0976	0.02U	0.100	98	70	130
Sodium	6699	1	A12564D	15	A12564D	13	137.0080	87.0773	50.000	100	70	130
Thallium	6699	1	A12564C	16	A12564C	14	0.4746	.010U	.5000	95	70	130
Vanadium	6699	1	A12564C	16	A12564C	14	0.4601	.05U	.5000	92	70	130
Zinc	6699	1	A12564C	16	A12564C	14	0.4580	.05U	.5000	92	70	130

1xtQc1ype:	MSD	Ma	itrix: AQUE	JUS	Sample	eid: AC	58547-003					
Analyte	Batchld	DF	Data File	Seq#:	NS Data Fil	Seq#	Spk Conc:	NS Conc:	Spk Added	Recov	Qual Lo Lim	Hi Lim
Aluminum	6699	1	A12564C	17	A12564C	14	4.8319	0.3179	5.000	90	70	130
Antimony	6699	1	A12564C	17	A12564C	14	0.4681	.015U	.5000	94	70	130
Arsenic	6699	1	A12564C	17	A12564C	14	0.4590	0.040U	.5000	92	70	130
Barium	6699	1	A12564C	17	A12564C	14	0.5229	0.0958	.5000	85	70	130
Beryllium	6699	1	A12564C	17	A12564C	14	0.4657	U800.	.5000	93	70	130
Cadmium	6699	1	A12564C	17	A12564C	14	0.4457	.004U	.5000	89	70	130
Calcium	6699	1	A12564C	17	A12564C	14	213.4720	181.2890	50.000	64	a 70	130
Chromium	6699	1	A12564C	17	A12564C	14	0.4456	0.05U	.5000	89	70	130
Cobalt	6699	1	A12564C	17	A12564C	14	0.4346	.02U	.5000	87	70	130
Copper	6699	1	A12564C	17	A12564C	14	0.4504	0.050U	.5000	90	70	130
Iron	6699	1	A12564C	17	A12564C	14	4.6455	0.3470	5.000	86	70	130
Lead	6699	1	A12564C	17	A12564C	14	0.4436	0.010U	.5000	89	70	130
Magnesium	6699	1	A12564C	17	A12564C	14	65.4537	21.7762	50.000	87	70	130
Manganese	6699	1	A12564C	17	A12564C	14	0.8426	0.4197	.5000	85	70	130
Mercury	6699	1	H12564Ab	17	H12564Ab	14	10.9200	0.2U	10	109	70	130
Nickel	6699	1	A12564C	17	A12564C	14	0.4363	.02U	.5000	87	70	130
Potassium	6699	1	A12564D	16	A12564D	13	55.6682	7.5746	50.000	96	70	130
Selenium	6699	1	A12564C	17	A12564C	14	0.4771	0.05U	.5000	95	70	130
Silver	6699	1	A12564C	17	A12564C	14	0.0947	0.02U	0.100	95	70	130
Sodium	6699	1	A12564D	16	A12564D	13	131.6550	87.0773	50.000	89	70	130
Thallium	6699	1	A12564C	17	A12564C	14	0.4631	.010U	.5000	93	70	130
Vanadium	6699	1	A12564C	17	A12564C	14	0.4487	.05U	.5000	90	70	130
Zinc	6699	1	A12564C	17	A12564C	14	0.4435	.05U	.5000	89	70	130

FORM5/FORM7 SPIKE RECOVERY DATA

PREP BATCH: 6699

Instrument Type: ICP/HG

Analytical Method(s):6010/200.7/7470A/7471A/245.1

ICP units in ppm, ICPMS and Hg in ppb

TxtQcType: PS	Ma	trix: AQUE	ous	Sample	eID: AC	58547-003					
Analyte	DF	Data File	Seq#:	NS Data Fil	Seq#	Spk Conc:	NS Conc:	Spk Added	Recov	Qual Lo	Lim Hi Lim
Aluminum	1	A12564C	18	A12564C	14	5.4923	0.3179	5.00	103	85	115
Antimony	1	A12564C	18	A12564C	14	0.5295	.015U	.500	106	85	115
Arsenic	1	A12564C	18	A12564C	14	0.5231	0.040U	.500	105	85	115
Barium	1	A12564C	18	A12564C	14	0.5691	0.0958	.500	95	85	115
Beryllium	1	A12564C	18	A12564C	14	0.5237	.008U	.500	105	85	115
Cadmium	1	A12564C	18	A12564C	14	0.5030	.004U	.500	101	85	115
Calcium	1	A12564C	18	A12564C	14	219.5030	181.2890	50	76	a 85	115
Chromium	1	A12564C	18	A12564C	14	0.5063	0.05U	.500	101	85	115
Cobalt	1	A12564C	18	A12564C	14	0.4968	.02U	.500	99	85	115
Copper	1	A12564C	18	A12564C	14	0.5102	0.050U	.500	102	85	115
Iron	1	A12564C	18	A12564C	14	5.2312	0.3470	5	98	85	115
Lead	1	A12564C	18	A12564C	14	0.5014	0.010U	.500	100	85	115
Magnesium	1	A12564C	18	A12564C	14	71.1577	21.7762	50	99	85	115
Manganese	1	A12564C	18	A12564C	14	0.9026	0.4197	.500	97	85	115
Nickel	1	A12564C	18	A12564C	14	0.4847	.02U	.500	97	85	115
Potassium	1	A12564D	17	A12564D	13	61.2345	7.5746	50.000	107	85	115
Selenium	1	A12564C	18	A12564C	14	0.5387	0.05∪	.500	108	85	115
Silver	1	A12564C	18	A12564C	14	0.0758	0.02U	.1	76	a 85	115
Sodium	1	A12564D	17	A12564D	13	137.1710	87.0773	50.000	100	85	115
Thallium	1	A12564C	18	A12564C	14	0.5243	.010U	.500	105	85	115
Vanadium	1	A12564C	18	A12564C	14	0.5024	.05U	.500	100	85	115
Zinc	1	A12564C	18	A12564C	14	0.5038	.05U	.500	101	85	115

FORM6/FORM9

RPD/%Difference Data

PREP BATCH: 6699

Instrument Type: ICP/HG

TxtQcType: N	/ISD	Matrix:	AQUEOUS	Sam	pleID: AC585	547-003			
Analyte	BatchId	Data File	Seq#:	MS File	Seq#	Result 1	Result 2	RPD	Limit
Aluminum	6699	A12564C	17	A12564C	16	4.8319	4.9392	2.2	20
Antimony	6699	A12564C	17	A12564C	16	0.4681	0.4788	2.3	20
Arsenic	6699	A12564C	17	A12564C	16	0.4590	0.4762	3.7	20
Barium	6699	A12564C	17	A12564C	16	0.5229	0.5410	3.4	20
Beryllium	6699	A12564C	17	A12564C	16	0.4657	0.4752	2	20
Cadmium	6699	A12564C	17	A12564C	16	0.4457	0.4598	3.1	20
Calcium	6699	A12564C	17	A12564C	16	213.4720	219.3030	2.7	20
Chromium	6699	A12564C	17	A12564C	16	0.4456	0.4567	2.5	20
Cobalt	6699	A12564C	17	A12564C	16	0.4346	0.4456	2.5	20
Copper	6699	A12564C	17	A12564C	16	0.4504	0.4624	2.6	20
iron	6699	A12564C	17	A12564C	16	4.6455	4.7384	2	20
Lead	6699	A12564C	17	A12564C	16	0.4436	0.4526	2	20
Magnesium	6699	A12564C	17	A12564C	16	65.4537	67.2199	2.7	20
Manganese	6699	A12564C	17	A12564C	16	0.8426	0.8664	2.8	20
Mercury	6699	H12564Ab		H12564Ab	16	10.9200	11.2300	2.8	20
Nickel	6699	A12564C	17	A12564C	16	0.4363	0.4459	2.2	20
Potassium	6699	A12564D	16	A12564D	15	55.6682	57.3470	3	20
Selenium	6699	A12564C	17	A12564C	16	0.4771	0.4903	2.7	20
Silver	6699	A12564C	17	A12564C	16	0.0947	0.0976	3.1	20
Sodium	6699	A12564D	16	A12564D	15	131.6550	137.0080	4	20
Thallium	6699	A12564C	17	A12564C	16	0.4631	0.4746	2.4	20
Vanadium	6699	A12564C	17	A12564C	16	0.4487	0.4601	2.5	20
Zinc	6699	A12564C	17	A12564C	16	0.4435	0.4580	3.2	20
TxtQcType: S	BD	Matrix:	AQUEOUS	Sam	pleID: AC585	547-003		···.	
Analyte	Batchld	Data File	Seq#:	NS File	Seg# DF	Result 1	Result 2	%Diff	Limit
Aluminum	6699	A12564C	21	A12564C	14 5	0.2215	0.3179	248 a	10
Antimony	6699	A12564C	21	A12564C	14 5	0.0023	0.0039		10
Arsenic	6699	A12564C	21	A12564C	14 5	-0.0015	-0.0020		10
Barium	6699	A12564C	21	A12564C	14 5	0.0201	0.0958	5.1	10
Beryllium	6699	A12564C	21	A12564C	14 5	0.0000	0.0001		10

					,					
Analyte	Batchld	Data File	Seq#:	NS File	Seq# DF	Result 1	Result 2	%Diff		Limit
Aluminum	6699	A12564C	21	A12564C	14 5	0.2215	0.3179	248	а	10
Antimony	6699	A12564C	21	A12564C	14 5	0.0023	0.0039			10
Arsenic	6699	A12564C	21	A12564C	14 5	-0.0015	-0.0020			10
Barium	6699	A12564C	21	A12564C	14 5	0.0201	0.0958	5.1		10
Beryllium	6699	A12564C	21	A12564C	14 5	0.0000	0.0001			10
Cadmium	6699	A12564C	21	A12564C	14 5	0.0005	0.0011			10
Calcium	6699	A12564C	21	A12564C	14 5	38.8198	181.2890	7.1		10
Chromium	6699	A12564C	21	A12564C	14 5	-0.0020	-0.0019			10
Cobalt	6699	A12564C	21	A12564C	14 5	-0.0038	-0.0035		,	10
Copper	6699	A12564C	21	A12564C	14 5	0.0059	0.0066	349	С	10
Iron	6699	A12564C	21	A12564C	14 5	0.0504	0.3470	27	С	10
Lead	6699	A12564C	21	A12564C	14 5	-0.0048	-0.0029			10
Magnesium	6699	A12564C	21	A12564C	14 5	4.6108	21.7762	5.9		10
Manganese	6699	A12564C	21	A12564C	14 5	0.0904	0.4197	7.7		10
Nickel	6699	A12564C	21	A12564C	14 5	-0.0002	0.0001			10
Potassium	6699	A12564D	20	A12564D	13 5	1.5808	7.5746	4.3		10
Selenium	6699	A12564C	21	A12564C	14 5	0.0252	0.0378	232	С	10
Silver	6699	A12564C	21	A12564C	14 5	0.0007	0.0015			10
Sodium	6699	A12564D	20	A12564D	13 5	17.1564	87.0773	1.5		10
Thallium	6699	A12564C	21	A12564C	14 5	0.0000	0.0033			10
Vanadium	6699	A12564C	21	A12564C	14 5	0.0011	0.0206	75	С	10
Zinc	6699	A12564C	21	A12564C	14 5	0.0082	0.0155	164	С	10

a-Indicates Rpd Failed the criteria

b-Method Rep Out but concentrations < 5*RL

c-Serial dilution Out but conc < 10 * IDL

Cyanide Water

							l					
									-			
****************	*******	******	************	*********	************	**********	*************	**************	*******	***********	*****	******
Analysis	Cyanide Wat	er (Total)		Q.C. DATA]		
Batch#	286				Theoretical							
					Value	Result	% REC	Limits (%)				
Prep Date	4/26/2011				PPM	PPM						
Prep By	JB											
Analysis Date	4/27/2011	4/28/2011		LCS	0.40	0.399	100	75-125				
Analyzed By	hs			MS	0.40	0.409	100	75-125				
				MSD	0.40	0.408	100	75-125				
				Sample		0.008						
					MS	0.409	RPD					
					MSD	0.408	0	20	-			
**************	***********	***********	**********	********	***********	***********	************	*************	*********	*********	*****	*******
Samples #		PPM	Solid Factor	Sample vol	Dilution Factor	Scrub. vol(L)	TCN (ppm)	RL	%Rec	Date		
CV		0.376924	1	50	1	50		0.02	94	4/27/2011		
CB		0.007873	1	50	1	50	ND	0.02		4/27/2011		7
МВ		0.007262	1	50	1	50	ND	0.02		4/27/2011		
LCS		0.399336	1	50	1	50	0.399	0.02		4/27/2011		-
AC58547-01	T.W.	0.007840	1	50	1	50	ND	0.02		4/27/2011		
AC58547-002	1	0.007500	1	50	1	50	ND	0.02		4/27/2011		
AC58547-002MS		0.408514	1	50	1	50	0.409	0.02		4/27/2011		
AC58547-003		0.014749	1	50	1	50	ND	0.02		4/27/2011	-	
AC58547-004		0.014314	1	50	1	50	ND	0.02		4/27/2011		
AC58547-009		0.006339	1	50	1	50		0.02		4/27/2011	-	
AC58548-001		0.006244	1	50	1	50		0.02		4/27/2011		
CCV	1	0.381453	1	50	1	50		0.02	95	4/27/2011		
CCB		0.007898	1	50	1	50		0.02		4/27/2011		
AC58548-003		0.008509	1	50	1	50	ND	0.02		4/27/2011		
AC58548-005		0.019620	1	50	1	50		0.02		4/27/2011		-
AC58548-007		0.020369	1	50	1	50		0.02		4/27/2011		
AC58548-009		0.007026	1	50	1	50		0.02		4/27/2011		
CCV		0.392466	1	50	1	50	0.392	0.02	98	4/27/2011		-
CCB		0.009262	1	50	1	50	ND	0.02		4/27/2011	-	
						- 00	112	0.02		4/2//2011		
CCV	<u> </u>	0.413238	1	50	1	50	0.413	0.02	103	4/28/2011		
CCB		0.002807	1	50	1	50	ND ND	0.02	100	4/28/2011		
AC58547-002MSD		0.407613	1	50	1	50	0.408	0.02		4/28/2011		
CCV		0.409436	1		1	50	0.409	0.02	102	4/28/2011		
CCB		0.003283	1		1	50	ND ND	0.02	102	4/28/2011		
		0.000200		- 30		- 30	140	0,02		7/20/2011		
		1										
	1											
												•
							774					

JN 5141"

Units: mg/l

Calibration Curve Information

Qc Type	Qc Name	SpkAmt	Rec Lim	Rpd Lim	Raw Result	Recov	Rpd	Flags
CAL-01	CAL-01-04/28/11	0.4	90-110	NA	0.387743	97	NA	
CCV	CCV-1	0.4	90-110	NA	0.406023	NA	NA	
DUP	AC57897-014	0	NA	20	0.796609	NA	NA	
ICB	ICB-1	0	NA	NA	0.002637	NA	NA	
LCS	LCS-2	0.4	75-125	NA	0.395043	NA	NA	
LCS	LCS-1	0.4	75-125	NA	0.389927	97	NA	
MS	AC58548-011	0.4	75-125	NA	0.353583	88	NA	
MSD	AC58548-011	0.4	75-125	20	0.38604	97	8.8	

Analytical Method(s) EPA 335.4

					Per	Full	Amt	SmpVol	DF	ScrubV	Prep	Prep	Anal	Anal
Sam #	Type	MB	Result	RL	Sol	Resul	t			ol	Date	Ву	Date	Ву
CAL-01-04/28/11	CAL-01	or a planting miles on the facilities of the	0.39	TO STE SERVICE STEERING	100	0.38774	.387743] Committee de Children et Sv	1	J	formers Biggs College St. Green Community and game Service report to the Biggs of the advantage of the additional little	26 W0040A040000000000000000000000000000000	04/28/11	JS
MB-1-04/27/11	MB		ND	0.02	100	0.006269	0.006269	50	1	50	04/27/11		04/28/11	JS
ICB-1	ICB	MB-1-04/28/11	ND	0.02	100	0.002637	0.002637	50	1	50	04/27/11	JS	04/28/11	JS
LCS-1	LCS	MB-1-04/28/11	0.39	0.02	100	0.38993	0.389927	50	1	50	04/27/11	JS	04/28/11	JS
AC58458-001	Sample	MB-1-04/28/11	ND	0.02	100	0.003064	0.003064	50	1	50	04/27/11	JS	04/28/11	JS
AC58548-011	Sample	MB-1-04/28/11	ND	0.02	100	0.007428	0.007428	50	1	50	04/27/11	JS	04/28/11	JS
AC58548-011	MS	MB-1-04/28/11	0.35	0.02	100	0.35358	0.353583	50	1	50	04/27/11	JS	04/28/11	JS
AC58548-011	MSD	MB-1-04/28/11	0.39	0.02	100	0.38604	0.386040	50	1	50	04/27/11	JS	04/28/11	JS
AC58657-003	Sample		2.4	0.1	100	2.3573	.471463	50	5	50	04/27/11		04/28/11	JS
AC57897-014	Sample	MB-1-04/27/11	0.78	0.02	100	0.7836	.783595	50	1	50	04/27/11		04/28/11	JS
AC57897-014	DUP	MB-1-04/27/11	0.8	0.02	100	0.79661	.796609	50	t	50	04/27/11	ì	04/28/11	JS
LCS-2	LCS	MB-1-04/27/11	0.4	0.02	100	0.39504	.395043	50	1	50	04/27/11	1	04/28/11	JS
CCV-I	CCV	MB-1-04/27/11	0.41		100	0.40602	.406023	50	1	50	04/27/11	1	04/28/11	JS
CCB-2	CCB	MB-1-04/27/11	ND	0.02	100	0.003084	.003084	50	1	50	04/27/11	•	04/28/11	JS

answell!

Non Spike

RunID Analysis Date

04/29/11 01:48

Batch

12 04/29/11 02:19 20110428204

MS/MSD Recovery

Prep Batch: W-408 Method: 300.0 rev2.1 Sample ID: AC58547-001 Matrix Aqueous

Qc Type	MS	Limits		MS	Sample		
Analyte	Amt	Recov	Dil	Conc	Conc	Recov	Flag
Chloride	5	80-120	1	13.3001	8.8619	89	

Qc Type:	MSD	Lim	its		MSD	Sample					MS/MS	D		Non Spi	ke
Analyte	Amt	Recov	Rpd	Dil	Conc	Conc	Recov	Rpd	Flag	Batch	RunID	Analysis Date	Batch	RunID	Analysis Date
Chloride	5	80-120	20	1	13.2347	8.8619	87	0.5		20110428204	13	04/29/11 02:49	20110428204	11	04/29/11 01:48

Batch

20110428204

MS/MSD

RunID Analysis Date

LCS Recoveries

BatchRunID/RunID:==	==> 201104282044-10	201105021359-10			
QcBatchID:=	==> LCSW-0320	LCS			
Date/Time:==	==> 04/29/11 01:18	05/02/11 18:32			
Analytical Method:=	> 300.0 rev2.1	300.0 rev2.1			
Matrix:=	> Aqueous	Soil	Soil	Soil	Soil
300.0 rev2.1 Analyte Amt Limits Amt Li	mits % Rec Flags	% Rec Flags	% Rec Flags	% Rec Flags	% Rec Flags
Chloride 5 90-110	107	103			

Calibration Curve

Instrument: IC1 Analysis Date: 04/28/11 Analytical Methods: 300.0 rev2.1;EPA 9056

201105021359 Chloride 0	201104282044 Chloride 0	Batch ID: Analyte: Area1	
0.128	0.139	Area2	Are
0.657	0.661	Area3	Area Found
1.487	1.457	Area4	
3.012	3.008	Area5	
8.47	8.287	Area6	
0	0	Conc1	
_	_	Conc2	
Ç.	5	Conc3	Concentration
10	6	Conc4	centration Amount
20	20	Conc5	
50	50	Conc6	
99.91	99.933	гSq	

Calibration Summary:

Instrument: IC1

Analysis Meth: 300.0 rev2.1

Analyte	Batch ID	Run#	Qc Type	Recov	Spk Ar	nt Limit	Analyte	Batch ID	Run#	Qc Type Recov	Spk Amt	Limit
Chloride	201104282044	7	ICV	97	10	90-110						
	201104282044		CCV	97	10	90-110						
Chloride	201104282044	32	CCV	97	10	90-110						
Chloride	201105021359	7	ICV	100	10	90-110						
Chloride	201105021359	19	CCV	94	10	90-110						

Blank Summary

Instrument: IC1

Qc Type: Metho	od Blank Summary	Prep [Date: 4	/28/11		
Run Batch ID	Analysis Date/Time	Sample ID	Run#	Analyte	Conc	RL
201104282044	4/29/11 00:47	MBW-0320	9	Chloride	ND	1.0
Qc Type: ICB S	ummary	Prep [Date: N	Α		
Run Batch ID	Analysis Date/Time	Sample ID	Run#	Analyte	Conc	RL
201104282044	4/29/11 00:17	ICB	8	Chloride	ND	1.0
201105021359	5/2/11 17:32	ICB	8	Chloride	ND	1.0
Qc Type: CCB	Summary	Prep [Date: N	Α		
Run Batch ID	Analysis Date/Time	Sample ID	Run#	Analyte	Conc	RL
201104282044	4/29/11 06:22	ССВ	20	Chloride	ND	1.0
201104282044	4/29/11 12:57	CCB	33	Chloride	ND	1.0
201105021359	5/2/11 23:36	CCB	20	Chloride	ND	1.0

175 ROUTE 46 WEST, UNIT D · FAIRFIELD, NJ 07004 198 ROUTE 46 EAST, FAIRFIELD, NJ 07004 800-426-9992 973-244-9770

FAX: 973-244-9787

WWW.HCVLAB.COM

Project: 9051.003

Client PO: 9051.003

Report To: Cashin Associates

1200 Veterans Memorial Highway

Hauppauge, NY 11788

Attn: Kimberly Somers

Received Date: 4/20/2011

Report Date: 5/23/2011

Deliverables: NYDOH-CatA

Lab ID: AC58547

Lab Project No: 1042016

This report is a true report of results obtained from our tests of this material. All results meet the requirements of the NELAC Institute standards. In lieu of a formal contract document, the total aggregate liability of Veritech to all parties shall not exceed Veritech's total fee for analytical services rendered.

OR

Stanley Gilewicz - Laboratory Director

(07071 and 07069) NJ

(ELAP11408 and 11939) CT NY

(PH-0671)

USACE

(68-00463 and 68-04409) KY (90124)

WV (353)

THIS CATEGORY "A" REPORT IS NUMBERED FROM 1 to 132

HCV Case Narrative/Conformance Summary

Client: Cashin Associates

Project: 9051.003

HCV Project: 1042016

Hampton-Clarke/Veritech (HC·V) received the following samples on April 20, 2011:

Client ID	HCV Sample ID	<u>Matrix</u>	<u>Analysis</u>
SW-1	AC58547-001	Aqueous	VO (624), BNA (625), Metals (200.7/245.1), Chloride (300.0), Cyanide (335.4)
SW-2	AC58547-002	Aqueous	VO (624), BNA (625), Metals (200.7/245.1), Chloride (300.0), Cyanide (335.4)
SW-3	AC58547-003	Aqueous	VO (624), BNA (625), Metals (200.7/245.1), Chloride (300.0), Cyanide (335.4)
SW-4	AC58547-004	Aqueous	VO (624), BNA (625), Metals (200.7/245.1), Chloride (300.0), Cyanide (335.4)
SD-1	AC58547-005	Soil	VO (8260B), BNA (8270C), Metals (9010B/4771A), Chloride (9056), Cyanide (9012B)
SD-2	AC58547-006	Soil	VO (8260B), BNA (8270C), Metals (9010B/4771A), Chloride (9056), Cyanide (9012B)
SD-3	AC58547-007	Soil	VO (8260B), BNA (8270C), Metals (9010B/4771A), Chloride (9056), Cyanide (9012B)
SD-4	AC58547-008	Soil	VO (8260B), BNA (8270C), Metals (9010B/4771A), Chloride (9056), Cyanide (9012B)
FB-1	AC58547-009	Aqueous	VO (624), BNA (625), Metals (200.7/245.1), Chloride (300.0), Cyanide (335.4)
TRIP	AC58547-010	Aqueous	VO (624)

Volatile Organic Analysis:

2-Chloroethylvinylether did not recover in the Matrix Spike and Matrix Spike Duplicate in batch MBS7464 due to acid preservation of sample. 2-Chloroethylvinylether readily decomposes under acidic conditions. The recovery of 2-Chloroethylvinylether is within QC limits in the Laboratory Control Sample (MBS).

The recovery of 1,1-Dichloroethane is biased low, outside QC limits in the Matrix Spike and Matrix Spike Duplicate in batch MBS7464. All QC criteria were met in the Laboratory Control Sample (MBS).

Base Neutral/Acid Extractable Analysis:

The recoveries of Dimethylphthalate and Di-n-Butylphthalate are biased high, outside QC limits in the Matrix Spike and Matrix Spike Duplicate in batch WMB5098. The recovery of Diethylphthalate is biased high, outside QC limits in the Matrix Spike Duplicate. All QC criteria were met in the Laboratory Control Sample (MBS).

Metals Analysis:

The recoveries of Aluminum, Antimony, Copper, Manganese and Zinc are outside QC limits in the Matrix Spike and/or Matrix Spike Duplicate in batch 6695. The MS/MSD RPD of Iron and Lead is outside QC limits also. All QC criteria were met in the LCS and LCS MR. The serial dilution for Cobalt and Silver is outside QC limits suggesting matrix interference.

The recovery of Calcium is biased low, outside QC limits in the Matrix Spike Duplicate in batch 6699. All QC criteria were met in the LCS and LCS MR. The serial dilution for Aluminum is outside QC limits suggesting matrix interference.

Wet Chemistry Analysis:

The recovery of Chloride is biased low, outside QC limits in the Matrix Spike and Matrix Spike Duplicate in batch S-147. All QC criteria were met in the Laboratory Control Sample (MBS).

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package and in the computer-readable data has been authorized by the Laboratory Manager or his designee, as verified by the following signature.

Jeri Rossi Or Stanley Gilewicz Date

Quality Assurance Director Laboratory Director

1a) Customer: Address:

Hauppauge

ksomes e caspe com

88611 KN

Depoil Young

Kimberly Somers

2d) Quote/PO # (If Applicable):

Harnson, NY

4051,003

2c) Project Location (City/State):

2b) Project Mgr:

Gres Greene

2a) Project:

9051,003

Project Information

1200 Veterans Mcm Huy

Cashin Assoc

Customer Information

1d) Send Report to: 1c) Send Invoice to: 1b) Email/Cell/Fax/Ph:

	Many.
RECORD	CHAIN OF CUS

CUSTODY

Page
૽ૣૡ

1042016	riojeci# (Lab ose Olliy)
Page	

3) Reporting Requirements (1042016
ents (Please Circle	Page
©	<u> </u>

Other:		Other: STV
PDF	Other:	2 Weeks
Excel - PA Act 2	Category A	10 Days (10%)
Excel - NY TAGM	Full / Category B	1 Week (25%; EPH)
Excel - NJCC	CLP	4 Days (35%; TPH)
EQuIS EZ	Red - NJ / NY / PA	72 Hours (50%)
EQuIS 4-File	Waste	48 Hours (75%)
Hazsite/CSV	Data Summary	24 Hours (100%)
Electronic Deliv.	Report Type	Turnaround

ase note NUMBERED items. If not completed your analytical work may be delayed. A fee of \$5/sample will be assessed for storage should sample not be activated for any analysis.	alytical be activat	mple not	leted y	c ompl prage st	If not a	tems.	RED it	JMBEF /sample	ote NU	ase no	Ple		<u> </u>	IT TCL	urren	; ii) C	SRS	8002) NJ	mary):	:-V sum ecific	ct-Spe	Hease circle required parameter list (refer to HC-V summary): i) NJ 2008 SRS; ii) Current TCL; iii) HC-V 2010 Merged; iv) PA; v) NY; vi) Project-Specific	se circle req ' 2010 Merge	HC-V
e: 4/20/1/	Date:		٢	Somers		2		t name	npler (print name):	npler	San	11		-		-									2
d-1,3.1,30				ons	h Contaminant Concentrations	nce	င္က	ninar	ntan		Hiç	Π													
Cooler Temperature				its	Project-Specific Reporting Limits	orting	Repo	ific I	Spec	Project-Specific		Note:													
7					į	9		2 1		٠ ټ		4		-	1	+			K	1	1	+			
					20)	or 60	or 8(SIM	260B	VOC (8260B SIM or 8011) Metals (ICP-MS 200.8 or 6020)	_ L ∰ 6	Т	0,30	``	100/20	ठ			<u>~</u>	1	*	4	\ \ \ \		<u> </u>
BN or BNA (8270C SIM)	current .) meet (lired to	s requ	ietnod,	M)	S SIN	ei gro	NA (8	or BNA (8270C SIM)	BN SE	_	1430	2	120		\	1	1) } }	2	و.		Kda	
Comments, Notes, Special Requirements, HAZARUS	ents, i	llrem	Keqt	ecial	s, sp	Note	nts,	nme	Cor	-	2		Ine	+	£ Dale	ç. _			u by.	Accepted by:	/	9	i by.	ro) Nellilquisileu by.	7
474000				10000000		-		100000000000000000000000000000000000000		0.000	Charles Control	1000		-	7	-	1000		7		,		by:	Odlinguisha	10)
						_	L	-	\vdash	-													TRIP	~010	1
			ئن			تو	0.5				,	4	イヤ	20	×	X	۲	×		1000	4/20	GW	FB-1 6	d U	
						2					Ì	*	×	X	×	X	X	×		4:00	4/19	5	SD-4	ģ	
						2			_		1	ヘヤ	^ لا	×	×	×	X	*		300	4/19	S	SD-3	ģ	
						2	_		-		<u> </u>	イメ	×	x	×	X	×	ł		12:08	4/19		SD-2	, 00G	_
						2			-		_	イメ	X	x	×	X	X	+		1:50	4/19	V	SD-1	- 005	
	1	_	نور	_		2	N 1				1	^ Х	X	X	×	X	X	1		1 00	4/19	GW.		7004	
		_	w	_		2	٥,				7	x X	X X	y .	×	X	X	¥		3:00	4/19	GX.		8	-
		1	3	_		2					<u>'</u>	7	Х Х		×	Y	×	¥		12:08	4/19	<u>c</u>	2		
		-	191	-		2	4				1	ヤャ	7	13	X	×	×	*		1:50	4/19	GW	Sw-1 6	8	
9b) Comments	Other	H2SO	нсі	NaOH	MeOF	None	EPH	EPH	EPH		Me	Ch	ŕ	TAL Cy	TAC	TCO	TC	Grab	Comp	Time	Date	Matrix	4) Customer Sample ID	Lab Sample #	Lab s
		\dashv		,			\neg				rci								posi	nple	6) Sample	5			
Applicable)			ttles	# of Bottles	#		t 2				(M)		•	٠,					te (C					120 A	7
Numbers (If				<u>∞</u>			Frac									_			;)	_	A - Air OT - Other	dge	DW - Drinking Water S - Soil GW - Ground Water SL - Sludge	Batch #	> > B
9a) Methanol Bottle							ctio				-96			57 1			8≥					es	lati		Ţ
							natio		-		204A	****		er	b ta		60		Туре			•		←	
							n	al	\dashv	+		\dashv	-		_			_	Sample						0
							Sis:	Analys	For EPH Analysis:	Fo	_	\dashv	\dashv	-	\dashv			ij	== 1N6	ontinge	Check If Contingent ===>	Ch		USE	_
							\dashv				Request	s Rec	Analysis	7) <u>A</u> r										FOR LAB	FO
Expedited TAT Not Always Available (Please Check with Lab)!	le (Plea	\vailab	ways /	ot Al	TAT	editec	Exp					1	NAME OF THE PARTY	The state of the s				Section of the sectio							

PROJECT MODIFICATIONS

Client: CASHIN HCV Project #: 1042016

Project: 9051.003

joy192.168.1.31 5/23/2011 3:43:40 PM

Trip Blank date on vials is 4/13/11. JK 5/23/11

CONDITION UPON RECEIPT

Batch Number AC58547

Entered By: Frantz

Date Entered 4/20/2011 4:21:00 PM

		Buto Entored 4720720 T. 12 Troot III
1	Yes	Is there a corresponding COC included with the samples?
2	Yes	Are the samples in a container such as a cooler or Ice chest?
3	Yes	Are the COC seals intact?
4	Yes	Please specify the Temperature inside the container (in degC) 2.4,2.5,3.1,3.0
5	Yes	Are the samples refrigerated (where required)/have they arrived on ice?
6	Yes	Are the samples within the holding times for the parameters listed on the COC? IF no, list parameters and samples:
7	Yes	Are all of the sample bottles intact? If no, specify sample numbers broken/leaking
8	Yes	Are all of the sample labels or numbers legible? If no specify:
9	Yes	Do the contents match the COC? If no, specify
10	Yes	Is there enough sample sent for the analyses listed on the COC? If no, specify:
11	Yes	Are samples preserved correctly?
12	Yes	Was temperature blank present (Place comment below if not)? If not was temperature of samples verified?
13	NA	Other commentsSpecify
14	NA	Corrective actions (Specify item number and corrective action taken).

PRESERVATION DOCUMENT

Batch Number AC58547

Entered By: Frantz

Date Entered 4/20/2011 4:22:00 PM

Lab#:	Container Siz	Container Typ	Parameter	Preservative	PH
AC58547-001	40ml	G	VO+10	HCL	1
AC58547-001	500ml	G	CN	NaOH	14
AC58547-001	1L	Р	METALS	HNO3	1
AC58547-002	40ml	G	VO+10	HCL	1
AC58547-002	500ml	G	CN	NaOH	14
AC58547-002	1L	Р	METALS	HNO3	1
AC58547-003	40ml	G	VO+10	HCL	1
AC58547-003	500ml	G	CN	NaOH	14
AC58547-003	1L	Р	METALS	HNO3	1
AC58547-004	40ml	G	VO+10	HCL	1
AC58547-004	500ml	G	CN	NaOH	14
AC58547-004	1L	Р	METALS	HNO3	1
AC58547-005	NA	NA	NA	NA	NA
AC58547-006	NA	NA	NA	NA	NA
AC58547-007	NA	NA	NA	NA	NA
AC58547-008	NA	NA	NA	NA	NA
AC58547-009	40ml	G	VO+10	HCL	1
AC58547-009	500ml	G	CN	NaOH	14
AC58547-009	1L	Р	METALS	HNO3	1
AC58547-010	40mi	G	VO+10	HCL	1

Internal Chain of Custody

August			Loc	Ι	Т		!			Loc		Т	
Lade				Bot	A						Bot	A/	
March Marc	Lab#:	DateTime:				Analysis		Lab#:	DateTime:	User	Nu	M	Analysis
ACSSST-000 OLIZIN 107 97 90 SZZ 2 A WOME ACSSST-000 OLIZIN 100 90 RTZ A WOME ACSSST-000 OLIZIN 100 9	AC58547-001	04/20/11 15:30	FRAN	0	М	Received	· · · · · ·	AC58547-005	04/22/11 10:49	R12	2	Α	NONE
ACCISSENT COLOR DE CO	AC58547-001	04/20/11 16:21	FRAN	0	М	Login		AC58547-005	04/23/11 12:53	JPC	2	Α	TDSI-HG
ACCIDENT COST CALCULATION	AC58547-001	04/21/11 07:55	R22	2	Α	NONE		AC58547-005	04/23/11 14:35	R12	ł .	1 .	NONE
ACCESSED ON COLUMN 1951 197 197 197 197 197 197 197 197 197 19		04/22/11 15:03	1							_	_	- · ·	
ACCESSED ON DATES 11 307 PT 2 A NONE ACCESSED ON DATES 12 A NONE ACCESSED ON DATES 15													
ACCESSED 08 045911 1930 1932 17 A NONE ACCESSED 08 050911 1752 18								1			1		1
ACCISION DOCUMENT 1972 Sept.											1		
ACSSST 070													
ACCESSED FOR CONTRACT September ACCESSED FOR CONTRACT ACCESSED FOR CON					1					_		+ -	
ACSSST-702 040211 10:21 FRAN 0 M Recoived ACSSST-702 040211 10:24 FRAN 0 M Recoived ACSSST-702 040211 10:25 FRAN 0	AC58547-001			8	Α	ic-w		AC58547-006	04/20/11 16:21	FRAN	0	м	Login
AGBSS-1002 040201 18-22	AC58547-001	04/28/11 18:55	R12	8	Α	ic-w		AC58547-006	04/21/11 07:52	R21	1	Α	NONE
ACCISSED 7002 DIAZPET 1975 S. R2 2 A NONE ACCISSED 7002 DIAZPET 1970 S. R2 3 A NONE ACCISSED 7002 DIAZPET 1970 S.	AC58547-002	04/20/11 15:30	FRAN	0	М	Received		AC58547-006	04/21/11 15:44	SG	1	Α	VOA
ACCISSES FORD CONTINUES SQ 2 A NONE		04/20/11 16:21	1	0	М						1	ļ	
ACSISTATION DE CONTROLLES DE C										1	1	1	
ACSSST-7002 D042711 1938 R1 2				1	1.					1			
AC68847-020 042011 1938				1						1			
AC65867-002			1		Ι					1			1
AGSSS47020 042011 1839 812 6 A NONE AGSSS47020 0427811 1832 812 1 A NONE AGSSS47020 0427811 1832 812 1 A NONE AGSSS47020 042781 1839 812 8	1			1	1								
AC68847-020 O4291111302 PLA DIVIN-HG AC68847-020 O4291111501 PLA DIVIN-HG AC68847-020 O4291111501 PLA DIVIN-HG AC68847-020 O4291111501 PLA DIVIN-HG AC68847-020 O42911111501 PLA DIVIN-HG AC68847-020 O4291111101 AL PLA			+	-	F								i
AC68847-000 04/2911 19.29 8 7 A NONE AC68847-000 04/2911 19.01 S 2	AC58547-002			i	1						1		
AC65847-020 04/2011 1638 R12 7 A NONE AC56847-000 04/2011 130 JS 2 A TONE AC65847-020 04/2011 1638 R12 7 A NONE AC56847-000 05/0411 1726 R12 A NONE AC65847-020 04/2011 1638 R12 8 A NONE AC65847-020 04/2011 1638 R12 8 A NONE AC65847-020 04/2011 1635 R12 8 A NONE AC65847-020 04/2011 1638 R12 A NONE AC65847-020 04/2	AC58547-002				Ι						l .	Α	1
AGGSB47-020	AC58547-002	04/20/11 16:38	1	7	Α	NONE		AC58547-006	04/28/11 11:30	JS	2		TCN-S
AC69847-002 O40211 18.38 R12 8 A NONE AC69847-003 O50411 17.52 SR 2 A Inc. AC69847-002 O40211 18.55 SR A Inc. AC69847-003 O40211 18.21 FRAN O M Received AC69847-003 O40211 18.03 SR A Inc. AC	AC58547-002	04/26/11 07:29		ļ	-					1	1		
AC69847-007 04/2011 18-55 R12 8 A Icw AC69847-007 04/2011 19-30 FRAN 0 M Colin AC69847-000 04/2011 18-30 FRAN 0 M Received AC69847-000 04/2011 18-30 FRAN 0 M Colin AC69847-000 04/2011 18-30 FR					Α						1		
AC68847-007 042011 18:55 SB 8 A Cw AC68847-007 042011 18:55 SB 8 A Cw AC68847-007 042011 18:56 SB 1 A NONE AC68847-007 042011 18:58 R12 A NONE AC68847-000 042011 18:58 R12 A NONE AC688					1								
ACSS847-003 M2011 1163-00 FRAN 0 M Received ACSS847-007 O4/22/11 1503-00 R2 1													
AGSS847-003												_	
ACS8847-003				-							1		I
ACS8847-003 M22911 15:03 SG 2 A NONE ACS8847-007 M22911 10:010 PA 2 A NONE ACS8847-003 M2291 16:38 R12 4 A NONE ACS8847-007 M2291 10:010 PA 2 A NONE ACS8847-003 M2291 16:38 R12 4 A NONE ACS8847-007 M2291 10:010 PA 2 A NONE ACS8847-003 M2291 16:38 R12 5 A NONE ACS8847-007 M2291 10:020 JCC 2 A NONE ACS8847-003 M2291 16:38 R12 5 A NONE ACS8847-007 M2291 10:020 JCC 2 A NONE ACS8847-003 M2291 16:38 R12 6 A NONE ACS8847-007 M2291 10:020 JCC 2 A NONE ACS8847-003 M2291 11:020 JCC 2 A NONE ACS8847-004 M2291 11:020 JCC 2 A NONE AC				1						1		('	
ACSSS47-003	AC58547-003			1	1 .						2	Α	
AC58647-003	AC58547-003	04/21/11 07:55	l.	3	Α	NONE		AC58547-007	04/21/11 00:10	PA	2	Α	mixing
AC58847-003	AC58547-003	04/20/11 16:38	R12	4	Α	NONE		AC58547-007	04/21/11 00:10	R12	2	Α	NONE
AC58547-003 O4/2011 16:38 R12 B A NONE AC58547-007 O4/2011 16:38 JPC C A NONE AC58547-007 O4/2011 16:38 R12 C A NONE AC58547-007 O4/2011 16:35 SB B A NONE AC58547-007 O4/2011 16:55 SB B A NONE AC58547-008 O4/2011 16:30 FRAN D M Login AC58547-008 O4/2011 16:30 FRAN D M Logi	AC58547-003	04/20/11 16:38	R12	5	Α	NONE		AC58547-007	04/22/11 10:20	1			
ACS8847-003 04/28/11 13/2 JPC 6 A 700/HG ACS8947-007 04/28/11 13/2 JPC 6 A NONE ACS8947-007 04/28/11 18/38 R12 7 A NONE ACS8947-007 04/28/11 18/38 R12 8 A NONE ACS8947-007 04/28/11 18/38 R12 8 A NONE ACS8947-007 04/28/11 18/35 R12 2 A NONE ACS8947-000 04/28/11 18/35 R12 8 A NONE ACS8947-000 04/28/11 18/38 R12 4 A NONE ACS8947-000 04/28/11 18/38 R12 5 A NONE ACS8947-000 04/28/11 18/38 R12 6 A NONE ACS894	AC58547-003			-	Α			1				1	
AC58547-003 04/26/11 13-07 R12 6 A NONE AC58547-007 04/26/11 15-08 MSL 2 A NONE AC58547-008 04/26/11 15-08 MSL 2 A N								1			1		
AGS8547-003										+			
AC58547-003 0428/11 14-42 R12 7 A NONE AC58547-007 0428/11 11-30 JS 2 A TCN-S AC58547-003 0428/11 11-438 R12 8 A NONE AC58547-007 0428/11 11-50 R12 2 A NONE AC58547-003 0428/11 11-50 S B 8 A NONE AC58547-007 05/04/11 17:52 SB 2 A NONE AC58547-003 0428/11 18-55 S B 8 A NONE AC58547-007 05/04/11 17:52 SB 2 A NONE AC58547-004 0428/11 15-30 FRAN 0 M Received AC58547-004 0429/11 15-30 FRAN 0 M Login AC58547-004 0429/11 15-30 S R2 2 A NONE AC58547-005 0429/11 16-38 R12 4 A NONE AC58547-005 0429/11 16-38 R12 5 A NONE AC58547-006 0429/11 10-31 R12 5 A NONE AC58547-006 0429/11 11-32 JPC 6 A NONE AC58547-006 0429/11 11-32 JPC 6 A NONE AC58547-006 0429/11 11-33 R12 5 A NONE AC58547-006 0429/11 16-38 R12 8 A NONE AC58547-006 0429/11 16-38 R12 8 A NONE AC5854							ł					í	l .
ACS8547-003					1			1					
AGS8547-003 Ox/2011 18:38 R12 8			1	1		1		i l			1	1 .	
AGS8547-008	AC58547-003				1						l.	Α	
AC58547-004	AC58547-003		SB	8	Α	ic-w		AC58547-007	05/04/11 17:52	SB	2	Α	ic-s
AC58547-004 04/20/11 16:21 FRAN 0 M Login AC58547-008 04/21/11 07:52 RZ1 1 A NONE AC58547-008 04/21/11 15:03 SG 2 A VOA AC58547-008 04/21/11 15:04 SG 1 A VOA AC58547-008 04/21/11 15:03 SG 2 A VOA AC58547-008 04/21/11 16:04 RZ1 1 A NONE AC58547-008 04/21/11 16:04 RZ1 1 A NONE AC58547-008 04/21/11 16:04 RZ1 1 A NONE AC58547-008 04/21/11 16:05 RZ1 2 A NONE AC58547-008 04/21/11 00:10 RZ1 2 A NONE AC58547-008 04/21/11 10:09 RZ1 2 A NONE AC58547-008 04/21/11 10:39 RZ1 2 A NONE AC58547-008 04/21/11 10:39 RZ1 2 A NONE AC58547-008 04/21/11 10:39 RZ1 2 A NONE AC58547-008 04/22/11 10:39 RZ1 2 A NONE AC58547-009 04/22/11 10:39 RZ1 2 A NONE AC58547-00	AC58547-003	04/28/11 18:55	R12	8	Α	ic-w	1	AC58547-008	04/20/11 15:30	FRAN	0	М	Received
AC58547-004 04/21/11 15:03 SG 2 A NONE AC58547-008 04/21/11 15:44 SG 1 A VOA AC58547-004 04/21/11 15:03 SG 2 A NONE AC58547-008 04/21/11 16:04 R21 1 A NONE AC58547-004 04/21/11 16:38 R12 2 A NONE AC58547-008 04/21/11 00:10 R12 2 A NONE AC58547-004 04/21/11 16:38 R12 5 A NONE AC58547-008 04/21/11 00:10 PA 2 A MINING AC58547-004 04/21/11 10:19 MLC 4 A B. BNA AC58547-008 04/21/11 10:10 PA 2 A MINING AC58547-004 04/21/11 10:19 MLC 5 A B. BNA AC58547-008 04/21/11 10:10 PA 2 A MINING AC58547-004 04/21/11 10:19 MLC 5 A B. BNA AC58547-008 04/22/11 10:49 R12 2 A NONE AC58547-004 04/24/11 10:13 R12 5 A NONE AC58547-008 04/22/11 10:49 R12 2 A NONE AC58547-004 04/24/11 10:13 R12 5 A NONE AC58547-008 04/23/11 10:49 R12 2 A NONE AC58547-004 04/25/11 10:13 R12 5 A NONE AC58547-008 04/23/11 10:49 R12 2 A NONE AC58547-004 04/25/11 10:31 PC 2 A NONE AC58547-008 04/25/11 10:49 R12 2 A NONE AC58547-004 04/25/11 10:32 JPC 6 A NONE AC58547-008 04/25/11 10:30 JPC 2 A NONE AC58547-004 04/25/11 13:07 R12 6 A NONE AC58547-008 04/25/11 13:07 R12 2 A NONE AC58547-004 04/25/11 13:07 R12 6 A NONE AC58547-008 04/25/11 13:07 R12 2 A NONE AC58547-004 04/25/11 13:07 R12 8 A NONE AC58547-009 04/25/11 13:07 R12 2 A NONE AC58547-004 04/25/11 13:07 R12 8 A NONE AC58547-009 04/25/11 13:07 R12 2 A NONE AC58547-004 04/25/11 13:07 R12 8 B A NONE AC58547-009 04/25/11 13:07 R12 2 A NONE AC58547-009 04/25/11 13:03 R12 2 A NONE AC58547-009 04/25/11 13:03 R12 2 A NONE AC58547-009 04/25/11 13:03 R12 2 A NONE	AC58547-004	04/20/11 15:30	FRAN	0	M	Received		AC58547-008	04/20/11 16:21		0	1	_
AC58547-004 04/22/11 15:03 SG 2 A VOA AC58547-008 04/22/11 16:04 R21 1 A NONE AC58547-004 04/22/11 16:38 R12 2 A NONE AC58547-004 04/22/11 16:38 R12 4 A NONE AC58547-006 04/22/11 10:10:10 R12 2 A NONE AC58547-006 04/22/11 10:10 R12 2 A NONE AC58547-006 04/25/11 11:30 R12 5 A NONE AC58547-006 04/25/11 11:30 R12 6 A NONE AC58547-006 04/25/11 11:30 R12 6 A NONE AC58547-006 04/25/11 11:30 R12 2 A NONE AC58547-006 04/25/11 11:30 R12 6 A NONE AC58547-006 04/25/11 11:30 R12 2 A NONE AC58547-006 04/25/11 11:30 R12 A	AC58547-004		1	ı				1					I .
AC58547-004 04/21/11 07.55 R22 3 A NONE AC58547-008 04/21/11 00.10 R12 2 A NONE AC58547-004 04/21/11 06.19 MLC 4 A A, BNA AC58547-008 04/21/11 00.10 PA 2 A mixing AC58547-004 04/21/11 06.19 MLC 5 A, BNA AC58547-008 04/21/11 00.10 PA 2 A mixing AC58547-004 04/21/11 00.8 R12 5 A NONE AC58547-008 04/21/11 10.10 R12 5 A NONE AC58547-008 04/21/11 10.10 R12 5 A NONE AC58547-008 04/23/11 12.53 JPC 2 A TOSH-FG AC58547-004 04/24/11 10.13 R12 5 A NONE AC58547-008 04/25/11 11.30 R12 5 A NONE AC58547-008 04/25/11 11.30 JR 12 5 A NONE AC58547-008 04/25/11 11.30 R12 5 A NONE AC58547-008 04/25/11 11.30 JR 12 6 A NONE AC58547-008 04/25/11 11.30 JR 12 A NONE AC58547-008 04/25/11 11.30 JR 12 A NONE AC58547-008 04/25/11 11.50 R12 2 A NONE AC58547-009 04/25/1	1		1		1	1		<u> </u>					
AC58547-004 04/24/11 05:19 MLC 4 A BNA AC58547-008 04/21/11 00:10 PA 2 A mixing AC58547-004 04/24/11 05:19 MLC 5 A BNA AC58547-008 04/22/11 10:01 PA 2 A MONE AC58547-008 04/22/11 10:02 JC 2 A MIXING			-	_	+			1			l		
AC58547-004 04/24/11 05:19 MLC 4 A A, BNA AC58547-008 04/21/11 00:10 PA 2 A mixing AC58547-008 04/22/11 10:20 JCC 2 A WSOLIDS AC58547-008 04/22/11 10:20 JCC 2 A WSOLIDS AC58547-008 04/22/11 10:49 MLC 5 A NONE AC58547-008 04/22/11 10:49 MLC 5 A NONE AC58547-008 04/22/11 10:49 MLC 5 A NONE AC58547-008 04/23/11 10:49 MLC 5 A NONE AC58547-008 04/23/11 10:49 MLC 5 A NONE AC58547-008 04/23/11 10:59 JPC 2 A NONE AC58547-008 04/23/11 10:13 MLC 5 A NONE AC58547-008 04/23/11 10:35 MLC 2 A NONE AC58547-008 04/23/11 10:35 MLC 2 A NONE AC58547-008 04/25/11 10:49 MLC 2 A NONE AC58547-009 04/25/11 10:49 MLC 2 A NONE AC58547-009 04/25/11 10:49 MLC 2 A NONE AC58547-009 04/25/11 10:59 MLC 4 A NONE AC58547-009 04/25/11 10:01 MLC 4 A NO			1	1	1			1					
AC58547-004 04/24/11 10:19 MLC 5 A A, BNA AC58547-008 04/22/11 10:20 JCC 2 A %SOLIDS AC58547-004 04/24/11 05:19 MLC 5 A A, BNA AC58547-008 04/22/11 10:049 R12 2 A NONE AC58547-004 04/24/11 10:13 R12 5 A NONE AC58547-008 04/23/11 12:53 JPC 2 A NONE AC58547-004 04/24/11 10:13 R12 5 A NONE AC58547-008 04/23/11 16:35 R12 2 A NONE AC58547-004 04/24/11 11:30 JPC 6 A TDWI-HG AC58547-008 04/25/11 18:30 R12 2 A NONE AC58547-004 04/25/11 18:30 JPC 6 A NONE AC58547-008 04/25/11 15:10 R12 2 A NONE AC58547-004 04/25/11 16:38 R12 7 A NONE AC58547-008 04/26/11 16:38 R12 7 A NONE AC58547-008 04/26/11 17:50 R12 2 A NONE AC58547-004 04/26/11 16:38 R12 7 A NONE AC58547-008 04/26/11 17:50 R12 2 A NONE AC58547-004 04/26/11 16:38 R12 7 A NONE AC58547-008 04/26/11 17:50 R12 2 A NONE AC58547-004 04/26/11 16:38 R12 7 A NONE AC58547-008 04/26/11 17:50 R12 2 A NONE AC58547-004 04/26/11 16:38 R12 8 A NONE AC58547-008 05/04/11 17:50 R12 2 A NONE AC58547-004 04/26/11 18:55 SB 8 A ic-w AC58547-009 04/20/11 16:30 FRAN 0 M Received AC58547-004 04/26/11 18:55 SB 8 A ic-w AC58547-009 04/20/11 16:30 FRAN 0 M Received AC58547-005 04/20/11 16:30 FRAN 0 M Received AC58547-005 04/20/11 16:31 FRAN 0 M Received AC58547-009 04/20/11 16:21 FRAN 0 M Received AC58547-009 04/20/11 16:30 R12 4 A NONE AC58547-009 04/20/11 16:30 R12 5			į.		1	1				1	1	1	
AC58547-004 04/24/11 10:51:9 MLC 5 A A, BNA AC58547-008 04/24/11 10:49 R12 2 A NONE AC58547-004 04/24/11 10:13 R12 5 A NONE AC58547-008 04/23/11 12:53 JPC 2 A TDSI-HG AC58547-004 04/24/11 10:13 R12 5 A NONE AC58547-008 04/23/11 12:53 JPC 2 A NONE AC58547-004 04/25/11 11:32 JPC 6 A NONE AC58547-008 04/25/11 11:32 JPC 6 A NONE AC58547-008 04/25/11 11:30 JS 2 A NONE AC58547-008 04/25/11 11:30 JS 2 A NONE AC58547-008 04/25/11 11:30 JS 2 A NONE AC58547-009 04/25/11 11:30 JS 2 A NONE AC58547-004 04/25/11 13:07 R12 6 A NONE AC58547-008 04/25/11 11:30 JS 2 A NONE AC58547-004 04/25/11 13:07 R12 7 A NONE AC58547-008 04/25/11 11:30 JS 2 A NONE AC58547-004 04/26/11 14:42 R12 7 A NONE AC58547-008 04/26/11 11:30 JS 2 A NONE AC58547-004 04/26/11 14:42 R12 7 A NONE AC58547-008 05/04/11 17:52 SB 2 A ic-s AC58547-004 04/26/11 18:55 SB 8 A NONE AC58547-009 04/20/11 16:38 R12 8 A NONE AC58547-009 04/20/11 16:31 FRAN 0 M Received AC58547-004 04/26/11 16:35 SB A ic-w AC58547-009 04/20/11 16:21 FRAN 0 M Received AC58547-009 04/20/11 16:31 FRAN 0 M Received AC58547-009 04/20/11 16:31 FRAN 0 M Received AC58547-009 04/20/11 16:38 R12 4 A NONE AC58547-005 04/20/11 16:04 R21 1 A NONE AC58547-009 04/20/11 16:38 R12 4 A NONE AC58547-005 04/20/11 16:38 R12 4 A NONE AC58547-005 04/20/11 16:38 R12 5 A NONE AC58547-009 04/20/11 16:38 R12 6 A NONE AC58547-009 04/20/11 16:38 R12 6 A NONE AC58547-009 04/20/11 16:38 R12 6 A NONE AC58547-005 04/20/11 16:38 R12 5 A NONE AC58547-005 04/20/11 16:38 R12 6 A NONE AC58547-005 04/20/11 16:38 R12 6 A NONE AC58547-005 04/20/11 10:00 D R12 2 A NONE AC58547-009 04/20/11 10:38 R12 6 A NONE AC58547-005 04/20/11 10:			i	1	1			1			E	1	_
AC58547-004 04/24/11 10:08 R12 5 A NONE AC58547-008 04/23/11 12:53 JPC 2 A TDSI-HG AC58547-004 04/24/11 10:13 R12 5 A NONE AC58547-008 04/23/11 13:35 R12 2 A NONE AC58547-008 04/25/11 08:42 MSL 2 A NONE AC58547-004 04/25/11 13:07 R12 6 A NONE AC58547-008 04/25/11 16:38 R12 7 A NONE AC58547-008 04/26/11 10:20 BR12 2 A NONE AC58547-004 04/26/11 07:29 JB 7 A TCN AC58547-008 05/04/11 17:52 SB 2 A ic-s AC58547-004 04/26/11 16:38 R12 7 A NONE AC58547-008 05/04/11 17:52 R12 2 A NONE AC58547-004 04/26/11 18:55 SB 8 A ic-w AC58547-009 04/26/11 18:55 SB 8 A ic-w AC58547-009 04/26/11 18:55 R12 8 A ic-w AC58547-009 04/26/11 16:38 SG 2 A VOA AC58547-005 04/26/11 16:38 R12 FRAN 0 M Received AC58547-005 04/26/11 16:39 FRAN 0 M Received AC58547-005 04/26/11 16:39 FRAN 0 M Received AC58547-005 04/26/11 16:31 FRAN 0 M Received AC58547-005 04/26/11 16:32 FRAN 0 M Received AC58547-005 04/26/11 16:31 FRAN 0 M Received AC58547-005 04/26/11 16:32 FRAN 0 M Received AC58547-005 04/26/11 16:31 FRAN 0 M Received AC58547-005 04/26/11 16:32 FRAN 0 M Received AC58547-005 04/26/11 16:34 FRAN 0 M Received AC58547-005 04/26/11 16:35 FRAN 0 M Received AC58547-005 04/26/11 16:36 FRAN 0 M Received AC58547-005 04/26/11 16:36 FRAN 0 M Received AC58547-009 04/26/11 16:36 FRAN 0 M Received AC58547-009 04/26/11 16:38 FRAN 0 M NONE A	AC58547-004		1	1	1						+	_	
AC58547-004 04/24/11 10:13 R12 5 A NONE AC58547-008 04/23/11 14:35 R12 2 A NONE AC58547-004 04/25/11 11:32 JPC 6 A TDWI-HG AC58547-008 04/25/11 15:10 R:42 A NONE AC58547-004 04/25/11 11:32 JPC 6 A NONE AC58547-008 04/25/11 11:30 JS 2 A TCN-S AC58547-004 04/25/11 16:38 R12 7 A NONE AC58547-008 04/26/11 12:06 R12 2 A NONE AC58547-004 04/26/11 16:38 R12 7 A NONE AC58547-008 04/26/11 17:52 SB 2 A IC-S AC58547-004 04/26/11 16:38 R12 7 A NONE AC58547-008 04/26/11 17:52 SB 2 A IC-S AC58547-004 04/26/11 16:38 R12 8 A NONE AC58547-008 05/04/11 17:52 R12 2 A IC-S AC58547-004 04/26/11 16:38 R12 8 A NONE AC58547-009 04/20/11 16:38 R12 8 A IC-W AC58547-009 04/20/11 16:55 SB 8 A IC-W AC58547-009 04/20/11 16:30 FRAN 0 M Received AC58547-005 04/20/11 15:30 FRAN 0 M Received AC58547-005 04/20/11 16:21 FRAN 0 M Received AC58547-005 04/20/11 16:34 SG 1 A NONE AC58547-009 04/20/11 16:34 SG 1 A NONE AC58547-009 04/20/11 16:34 SG 1 A NONE AC58547-009 04/20/11 16:36 R12 2 M NONE AC58547-005 04/21/11 16:04 R21 1 A NONE AC58547-009 04/20/11 16:38 R12 2 A NONE AC58547-005 04/21/11 16:04 R21 1 A NONE AC58547-009 04/20/11 16:38 R12 2 A NONE AC58547-005 04/21/11 16:04 R21 1 A NONE AC58547-009 04/20/11 16:38 R12 2 A NONE AC58547-005 04/21/11 16:04 R21 1 A NONE AC58547-009 04/20/11 16:38 R12 4 A NONE AC58547-005 04/21/11 16:04 R21 1 A NONE AC58547-009 04/21/11 07:55 R22 3 A NONE AC58547-005 04/21/11 16:04 R21 1 A NONE AC58547-009 04/21/11 07:55 R22 3 A NONE AC58547-005 04/21/11 16:04 R21 1 A NONE AC58547-009 04/21/11 07:55 R22 3 A NONE AC58547-005 04/21/11 16:04 R21 1 A NONE AC58547-009 04/21/11 07:55 R22 3 A NONE AC58547-005 04/21/11 16:04 R21 1 A NONE AC58547-009 04/21/11 16:38 R12 5 A NONE AC58547-005 04/21/11 16:04 R21 1 A NONE AC58547-009 04/21/11 16:38 R12 5 A NONE AC58547-005 04/21/11 16:01 R22 2 A NONE AC58547-009 04/21/11 16:38 R12 5 A NONE AC58547-005 04/21/11 10:010 R12 2 A NONE AC58547-009 04/21/11 16:38 R12 5 A NONE AC58547-005 04/21/11 10:010 R12 2 A NONE AC58547-009 04/21/11 16:38 R12 5 A NONE AC58547-005 04/21/11 10:010 R12 2	AC58547-004						1	1				Α	l .
AC58547-004	AC58547-004		i	i .	Α	I		AC58547-008	04/23/11 14:35	R12	1	Α	NONE
AC58547-004	AC58547-004		1	ł		1		1		1		- 1	I .
AC58547-004	AC58547-004			1	1					+	_		
AC58547-004 04/26/11 14:42 R12 7 A NONE AC58547-008 05/04/11 17:52 SB 2 A ic-s AC58547-004 04/26/11 18:55 SB 8 A NONE AC58547-009 04/20/11 16:38 R12 8 A NONE AC58547-005 04/21/11 16:04 R21 1 A NONE AC58547-005 04/21/11 16:04 R21 1 A NONE AC58547-005 04/21/11 16:08 R12 2 A NONE AC58547-005 04/21/11 16:09 R21 1 A NONE AC58547-005 04/21/11 16:00 R21 1 A NONE AC58547-009 04/21/11 05:19 MLC 4 A NONE AC58547-005 04/21/11 00:10 PA 2 A MIXING AC58547-009 04/22/11 16:38 R12 5 A NONE AC58547-005 04/21/11 00:10 R12 2 A NONE AC58547-009 04/22/11 16:38 R12 6 A NONE AC58547-005 04/21/11 00:10 R12 2 A NONE AC58547-009 04/22/11 16:38 R12 6 A NONE AC58547-005 04/22/11 10:20 JCC 2 A %SOLIDS	AC58547-004				_			1		1	1		l .
AC58547-004				1	1						1		
AC58547-004 04/20/11 16:38 R12 8 A NONE AC58547-009 04/20/11 16:30 FRAN 0 M Received AC58547-004 04/28/11 18:55 SB 8 A ic-w AC58547-009 04/20/11 16:21 FRAN 0 M Login AC58547-005 04/20/11 16:21 FRAN 0 M Received AC58547-005 04/20/11 16:21 FRAN 0 M Received AC58547-009 04/22/11 18:10 R22 2 M NONE AC58547-005 04/21/11 07:55 R21 1 A NONE AC58547-009 04/22/11 18:10 R22 2 M NONE AC58547-005 04/21/11 15:44 SG 1 A VOA AC58547-009 04/21/11 16:48 R12 4 A NONE AC58547-005 04/21/11 16:04 R21 1 A NONE AC58547-005 04/21/11 16:04 R21 1 A NONE AC58547-009 04/21/11 16:38 R12 2 A NONE AC58547-005 04/21/11 00:10 PA 2 A MIXING AC58547-009 04/21/11 16:38 R12 5 A NONE AC58547-005 04/21/11 10:10 R12 2 A NONE AC58547-005 04/21/11 10:10 R12 2 A NONE AC58547-009 04/21/11 16:38 R12 5 A NONE AC58547-005 04/21/11 10:10 R12 2 A NONE AC58547-009 04/22/11 16:38 R12 5 A NONE AC58547-005 04/21/11 10:10 R12 2 A NONE AC58547-009 04/22/11 16:38 R12 5 A NONE AC58547-005 04/21/11 10:20 JCC 2 A %SOLIDS AC58547-009 04/25/11 11:32 JPC 6 A TDWI-HG	1										1		
AC58547-004			}	ł						1	1		
AC58547-004	l												
AC58547-005	AC58547-004		_		-		1				1		
AC58547-005	AC58547-005		1	I						1	1		1
AC58547-005	AC58547-005			1	1	1				1	1		
AC58547-005 04/21/11 16:04 R21 1 A NONE AC58547-009 04/20/11 16:38 R12 4 A NONE AC58547-005 04/20/11 16:38 R12 2 A NONE AC58547-005 04/21/11 00:10 PA 2 A mixing AC58547-009 04/21/11 00:10 R12 2 A NONE AC58547-009 04/20/11 16:38 R12 5 A NONE AC58547-005 04/21/11 00:10 R12 2 A NONE AC58547-009 04/20/11 16:38 R12 6 A NONE AC58547-005 04/22/11 10:20 JCC 2 A %SOLIDS AC58547-009 04/25/11 11:32 JPC 6 A TDWI-HG	AC58547-005			1						1		Α	1
AC58547-005 04/20/11 16:38 R12 2 A NONE AC58547-009 04/24/11 05:19 MLC 4 A A, BNA AC58547-005 04/21/11 00:10 PA 2 A mixing AC58547-009 04/20/11 16:38 R12 5 A NONE AC58547-005 04/21/11 00:10 R12 2 A NONE AC58547-005 04/22/11 10:20 JCC 2 A %SOLIDS AC58547-009 04/25/11 11:32 JPC 6 A TDWI-HG	AC58547-005		1	1	Α			i	04/21/11 07:55	R22	3	Α	1
AC58547-005 04/21/11 00:10 PA 2 A mixing AC58547-009 04/20/11 16:38 R12 5 A NONE AC58547-005 04/21/11 00:10 R12 2 A NONE AC58547-005 04/22/11 10:20 JCC 2 A %SOLIDS AC58547-009 04/25/11 11:32 JPC 6 A TDWI-HG	AC58547-005		R21	1	1					1	1		
AC58547-005 04/21/11 00:10 R12 2 A NONE AC58547-009 04/20/11 16:38 R12 6 A NONE AC58547-009 04/22/11 10:20 JCC 2 A %SOLIDS AC58547-009 04/25/11 11:32 JPC 6 A TDWI-HG	AC58547-005		1	1	1			1		1			1 1
AC58547-005 04/22/11 10:20 JCC 2 A %SOLIDS AC58547-009 04/25/11 11:32 JPC 6 A TDWI-HG	AC58547-005		ļ.	1	1	_				1	1		1
			l .	i	1	1					+	_	
					4	L	J			JPC	٥	A	I DWI-NG

Samples marked as received are stored in coolers or refrigerator R12, or R24 at 4 deg C until Login

Internal Chain of Custody

		Loc	Г	Т				Loc		Т	Т
		or	Bot	Δ/				or	Bot	A/	
Lab#:	DateTime:	User	1		Analysis	Lab#:	DateTime:	User			Analy
AC58547-009	04/25/11 13:07	R12	6	Α	NONE						
AC58547-009	05/02/11 09:18	JPC	6	Α	tdwi						
AC58547-009	05/02/11 09:28	R12	6	Α	NONE						
AC58547-009	04/20/11 16:38	R12	7	Α	NONE						
AC58547-009	04/26/11 07:29	JB	7	A	TCN						
AC58547-009	04/26/11 14:42	R12	7	Α	NONE						
AC58547-009	04/20/11 16:38	R12	8	Α	NONE						
AC58547-009	04/28/11 18:55	SB	8	Α	ic-w						
AC58547-009	04/28/11 18:55	R12	8	Α	ic-w						
AC58547-010	04/20/11 15:30	FRAN	0	М	Received						
AC58547-010	04/20/11 16:21	FRAN	0	М	Login						
AC58547-010	04/21/11 07:55	R22	2	Α	NONE	1					
AC58547-010	04/22/11 14:33	SG	2	Α	VOA						
AC58547-010	04/22/11 18:10	R22	2	М	NONE						
AC58547-010	04/25/11 14:54	WP	2	Α	VOA						
AC58547-010	04/21/11 07:55	R22	3	Α	NONE						
AC58547-010	04/21/11 07:55	R22	4	Α	NONE	1					
AC58547-010	04/21/11 07:55	R22	5	Α	NONE						
AC58547-010	04/21/11 07:55	R22	6	Α	NONE						

Client: Cashin Associates

Project: 9051.003

HCV Project #: 1042016

Lab#: AC58547-001

Sample ID: SW-1

	Prep	Prep		Analytical	Analysis	
Test Code	Method	Date	Ву	Method	Date	Ву
Chloride (Water) 300.0		4/28/11	nnm	300.0 rev2.1	4/29/11 01:48	nnm
Cyanide-Water (EPA 335.4)	EPA 335.4	4/26/11	johns	EPA 335.4	4/27/11 00:00	hossain
Mercury (Water) 245.1	245.1 rev3.0	4/25/11	Joelly	245.1 rev3.0	4/26/11 14:58	CJA
Semivolatile Organics + 25 (625)	EPA 625	4/24/11	mahaliac	EPA 625	4/25/11 05:21	AHD
TAL Metals 200.7/8	EPA 200.2	4/25/11	Joelly	200.7/200.8	4/26/11 19:01	SRB
TAL Metals 200.7/8	EPA 200.2	4/25/11	Joelly	200.7/200.8	4/26/11 21:44	SRB
Volatile Organics + 10 (624)	EPA 624			EPA 624	4/23/11 01:34	SG

Lab#: AC58547-002

Sample ID: SW-2

	Prep	Prep		Analytical	Analysis	
Test Code	Method	Date	Ву	Method	Date	Ву
Chloride (Water) 300.0		4/28/11	nnm	300.0 rev2.1	4/29/11 03:20	nnm
Cyanide-Water (EPA 335.4)	EPA 335.4	4/26/11	johns	EPA 335.4	4/27/11 00:00	hossain
Mercury (Water) 245.1	245.1 rev3.0	4/25/11	Joelly	245.1 rev3.0	4/26/11 14:59	CJA
Semivolatile Organics + 25 (625)	EPA 625	4/24/11	mahaliac	EPA 625	4/25/11 05:43	AHD
TAL Metals 200.7/8	EPA 200.2	4/25/11	Joelly	200.7/200.8	4/26/11 19:05	SRB
FAL Metals 200.7/8	EPA 200.2	4/25/11	Joelly	200.7/200.8	4/26/11 21:47	SRB
Volatile Organics + 10 (624)	EPA 624			EPA 624	4/23/11 01:50	SG

Lab#: AC58547-003

Sample ID: SW-3

	Prep	Prep		Analytical	Analysis	
Test Code	Method	Date	Ву	Method	Date	Ву
Chloride (Water) 300.0		4/28/11	nnm	300.0 rev2.1	5/2/11 19:03	nnm
Cyanide-Water (EPA 335.4)	EPA 335.4	4/26/11	johns	EPA 335.4	4/27/11 00:00	hossain
Mercury (Water) 245.1	245.1 rev3.0	4/25/11	Joelly	245.1 rev3.0	4/26/11 14:03	CJA
Semivolatile Organics + 25 (625)	EPA 625	4/24/11	mahaliac	EPA 625	4/25/11 06:05	AHD
FAL Metals 200.7/8	EPA 200.2	4/25/11	Joelly	200.7/200.8	4/26/11 20:58	SRB
AL Metals 200.7/8	EPA 200.2	4/25/11	Joelly	200.7/200.8	4/26/11 18:06	SRB
Volatile Organics + 10 (624)	EPA 624			EPA 624	4/23/11 02:06	SG

Client: Cashin Associates

Project: 9051.003

HCV Project #: 1042016

Lab#: AC58547-004 Sample ID: SW-4

	Prep	Prep		Analytical	Analysis	
Test Code	Method	Date	Ву	Method	Date	Ву
Chloride (Water) 300.0		4/28/11	nnm	300.0 rev2.1	4/29/11 04:20	nnm
Cyanide-Water (EPA 335.4)	EPA 335.4	4/26/11	johns	EPA 335.4	4/27/11 00:00	hossain
Mercury (Water) 245.1	245.1 rev3.0	4/25/11	Joelly	245.1 rev3.0	4/26/11 15:01	CJA
Semivolatile Organics + 25 (625)	EPA 625	4/24/11	mahaliac	EPA 625	4/24/11 18:41	AHD
TAL Metals 200.7/8	EPA 200.2	4/25/11	Joelly	200.7/200.8	4/26/11 19:08	SRB
TAL Metals 200.7/8	EPA 200.2	4/25/11	Joelly	200.7/200.8	4/26/11 21:50	SRB
Volatile Organics + 10 (624)	EPA 624			EPA 624	4/23/11 02:22	SG

Lab#: AC58547-005 Sample ID: SD-1

	Prep	Prep		Analytical	Analysis	
Test Code	Method	Date	Ву	Method	Date	Ву
% Solids SM2540G				SM 2540G	4/22/11 00:00	jon
Chloride (Soil) 9056		5/4/11	sylviab	EPA 9056	5/5/11 01:48	nnm
Cyanide (Soil/Waste) 9012B	EPA 9012B	4/28/11	sylvia	EPA 9012B	4/29/11 00:00	johns
Mercury (Soil/Waste) 7471A	EPA 7471A	4/23/11	Joelly	EPA 7471A	4/25/11 10:23	CJA
Semivolatile Organics + 25 (8270)	3510C/3550B	4/25/11	marie	EPA 8270C	4/25/11 23:34	AHD
TAL Metals 6010	3005&10/3050	4/23/11	Joelly	EPA 6010B	4/25/11 16:54	GK
TAL Metals 6010	3005&10/3050	4/23/11	Joelly	EPA 6010B	4/25/11 13:45	GK
Volatile Organics + 10 (8260)	EPA5030/5035			EPA 8260B	4/21/11 19:00	WP

Lab#: AC58547-006 Sample ID: SD-2

	Prep	Prep		Analytical	Analysis	
Test Code	Method	Date	Ву	Method	Date	Ву
% Solids SM2540G				SM 2540G	4/22/11 00:00	jon
Chloride (Soil) 9056		5/4/11	sylviab	EPA 9056	5/5/11 04:20	nnm
Cyanide (Soil/Waste) 9012B	EPA 9012B	4/28/11	sylvia	EPA 9012B	4/29/11 00:00	johns
Mercury (Soil/Waste) 7471 A	EPA 7471A	4/23/11	Joelly	EPA 7471A	4/25/11 10:24	CJA
Semivolatile Organics + 25 (8270)	3510C/3550B	4/25/11	marie	EPA 8270C	4/25/11 23:57	AHD
TAL Metals 6010	3005&10/3050	4/23/11	Joelly	EPA 6010B	4/25/11 16:58	GK
ΓAL Metals 6010	3005&10/3050	4/23/11	Joelly	EPA 6010B	4/26/11 15:32	GK
TAL Metals 6010	3005&10/3050	4/23/11	Joelly	EPA 6010B	4/25/11 13:51	GK
Volatile Organics + 10 (8260)	EPA5030/5035			EPA 8260B	4/21/11 19:48	WP

Client: Cashin Associates

Project: 9051.003

HCV Project #: 1042016

Lab#: AC58547-007 Sample ID: SD-3

	Prep	Prep		Analytical	Analysis	
Test Code	Method	Date	Ву	Method	Date	Ву
% Solids SM2540G				SM 2540G	4/22/11 00:00	jon
Chloride (Soil) 9056		5/4/11	sylviab	EPA 9056	5/5/11 04:50	nnm
Cyanide (Soil/Waste) 9012B	EPA 9012B	4/28/11	sylvia	EPA 9012B	4/29/11 00:00	johns
Mercury (Soil/Waste) 7471 A	EPA 7471A	4/23/11	Joelly	EPA 7471A	4/25/11 10:25	CJA
Semivolatile Organics + 25 (8270)	3510C/3550B	4/25/11	marie	EPA 8270C	4/27/11 16:53	AHD
TAL Metals 6010	3005&10/3050	4/23/11	Joelly	EPA 6010B	4/25/11 17:01	GK
TAL Metals 6010	3005&10/3050	4/23/11	Joelly	EPA 6010B	4/25/11 13:57	GK
Volatile Organics + 10 (8260)	EPA5030/5035			EPA 8260B	4/21/11 19:16	WP

Lab#: AC58547-008 Sample ID: SD-4

	Prep	Prep		Analytical	Analysis	
Test Code	Method	Date	Ву	Method	Date	Ву
% Solids SM2540G				SM 2540G	4/22/11 00:00	jon
Chloride (Soil) 9056		5/4/11	sylviab	EPA 9056	5/5/11 05:21	nnm
Cyanide (Soil/Waste) 9012B	EPA 9012B	4/28/11	sylvia	EPA 9012B	4/29/11 00:00	johns
Mercury (Soil/Waste) 7471 A	EPA 7471A	4/23/11	Joelly	EPA 7471A	4/25/11 10:26	CJA
Semivolatile Organics + 25 (8270)	3510C/3550B	4/25/11	marie	EPA 8270C	4/27/11 17:16	AHD
TAL Metals 6010	3005&10/3050	4/23/11	Joelly	EPA 6010B	4/25/11 14:02	GK
TAL Metals 6010	3005&10/3050	4/23/11	Joelly	EPA 6010B	4/25/11 17:05	GK
Volatile Organics + 10 (8260)	EPA5030/5035			EPA 8260B	4/21/11 19:32	WP

Lab#: AC58547-009 Sample ID: FB-1

	Prep	Prep		Analytical	Analysis	
Test Code	Method	Date	Ву	Method	Date	Ву
Chloride (Water) 300.0		4/28/11	nnm	300.0 rev2.1	4/29/11 04:51	nnm
Cyanide-Water (EPA 335.4)	EPA 335.4	4/26/11	johns	EPA 335.4	4/27/11 00:00	hossain
Mercury (Water) 245.1	245.1 rev3.0	4/25/11	Joelly	245.1 rev3.0	4/26/11 15:02	CJA
Semivolatile Organics + 25 (625)	EPA 625	4/24/11	mahaliac	EPA 625	4/25/11 06:27	AHD
TAL Metals 200.7/8	EPA 200.2	4/25/11	Joelly	200.7/200.8	4/26/11 21:53	SRB
TAL Metals 200.7/8	EPA 200.2	4/25/11	Joelly	200.7/200.8	4/28/11 18:25	SRB
TAL Metals 200.7/8	EPA 200.2	5/2/11	Joelly	200.7/200.8	5/2/11 20:11	SRB
Volatile Organics + 10 (624)	EPA 624			EPA 624	4/25/11 20:57	WP

Client: Cashin Associates

HCV Project #: 1042016

Project: 9051.003

Lab#: AC58547-010 Sample ID: TRIP

	Prep	Prep		Analytical	Analysis		
Test Code	Method	Date	Ву	Method	Date	Ву	
Volatile Organics + 10 (624)	EPA 624			EPA 624	4/25/11 21:13	WP	

Project #: 1042016 Page 4 of 4

HCV Reporting Limit Definitions/Data Qualifiers

REPORTING DEFINITIONS

DF = Dilution Factor

MDL = Method Detection Limit

RL = Reporting Limit *

RT = Retention Time

NA = Not Applicable

ND = Not Detected

DATA QUALIFIERS

- **B-** Indicates analyte was present in the Method Blank and sample.
- **d-** For Pesticide and PCB analysis, the concentration between primary and secondary columns is greater than 40%. The lower concentration is generally reported.
- **E-** Indicates the concentration exceeded the upper calibration range of the instrument.
- J- Indicates the concentration is below the Reporting Limit (RL) but above the MDL (Method Detection Limit). The concentration reported is an estimate.

^{*}For Clean Water Act and SW846 Organic Methods and Metals Methods, the Reporting Limit is determined by the concentration of the lowest standard in the calibration curve.

^{*}For Clean Water Act and SW846 Wet Chemistry methods, the Reporting Limit is determined by the concentration of the lowest standard in the calibration curve. For most gravimetric methods the Reporting Limit is defined as a value 3 to 5 times the MDL.

HCV Report Of Analysis

Client: Cashin Associates

HCV Project #: 1042016

Project: 9051.003

Sample ID: SW-1

Lab#: AC58547-001

Matrix: Aqueous

Collection Date: 4/19/2011

Receipt Date: 4/20/2011

Chloride (Wa	ater) 30	0.00
--------------	----------	------

Analyte		Units	RL	Result
Chloride	1	mg/l	1.0	8.9

Cyanide-Water (EPA 335.4)

Analyte	DF	Units	RL	Result
Cyanide	1	mg/l	.02	ND

Mercury (Water) 245.1

Analyte	DF	Units	RL	Result	
Mercury	1	ug/l	0.20	ND	

Semivolatile Organics + 25 (625)

Analyte	DF	Units	RL	Result
1,1'-Biphenyl	1	ug/l	1.3	ND
1,2,4,5-Tetrachlorobenzene	1	ug/l	1.3	ND
2,3,4,6-Tetrachlorophenol	1	ug/l	1.3	ND
2,4,5-Trichlorophenol	1	ug/l	1.3	ND
2,4,6-Trichlorophenol	1	ug/l	1.3	ND
2,4-Dichlorophenol	1	ug/l	1.3	ND
2,4-Dimethylphenol	1	ug/l	1.3	ND
2,4-Dinitrophenol	1	ug/l	6.4	ND
2,4-Dinitrotoluene	1	ug/l	1.3	ND
2,6-Dinitrotoluene	1	ug/l	1.3	ND
2-Chloronaphthalene	1	ug/l	1.3	ND
2-Chlorophenol	1	ug/l	1.3	ND
2-Methylnaphthalene	1	ug/l	1.3	ND
2-Methylphenol	1	ug/l	0.32	ND
2-Nitroaniline	1	ug/l	1.3	ND
2-Nitrophenol	1	ug/l	1.3	ND
3&4-Methylphenol	1	ug/l	0.32	ND
3,3'-Dichlorobenzidine	1	ug/l	1.3	ND
3-Nitroaniline	1	ug/l	1,3	ND
4,6-Dinitro-2-methylphenol	1	ug/l	6.4	ND
4-Bromophenyl-phenylether	1	ug/l	1.3	ND
4-Chloro-3-methylphenol	1	ug/l	1.3	ND
4-Chloroaniline	1	ug/l	0.32	ND
4-Chlorophenyl-phenylether	1	ug/l	1.3	ND
4-Nitroaniline	1	ug/l	1.3	ND ND
4-Nitrophenol	1	ug/l	1.3	ND
Acenaphthene	1	ug/l	1.3	ND
Acenaphthylene	1	ug/l	1.3	ND
Acetophenone		ug/l	1.3	ND
Anthracene	1	ug/l	1.3	ND
Atrazine	1	ug/l	1.3	ND
Benzaldehyde	1	ug/l	1.3	ND
Benzo[a]anthracene	1	ug/l	1.3	ND
Benzo[a]pyrene	1	ug/l	1.3	ND
Benzo[b]fluoranthene	1	ug/l	1.3	ND
Benzo[g,h,i]perylene	1	ug/l	1.3	ND
Benzo[k]fluoranthene	1	ug/l	1.3	ND
bis(2-Chloroethoxy)methane	1	ug/l	1.3	ND
	1	-	0.32	ND
bis(2-Chloroethyl)ether	1	ug/l	1.3	ND ND
bis(2-Chloroisopropyl)ether	1	ug/l	1.3	ND ND
bis(2-Ethylhexyl)phthalate	·	ug/l		
Butylbenzylphthalate	1	ug/l	1.3	ND
Caprolactam	1	ug/l	1.3	ND
Carbazole	1	ug/l	1.3	ND ND

NOTE: Soil Results are reported to Dry Weight

Project #: 1042016

Page 1 of 28

Lab#:	SW-1 AC58547-001			Collection Date: Receipt Date:	
	Aqueous			Nederpt Date.	4/20/2011
	Dibenzo[a,h]anthracene	1	ug/l	1.3	ND
	Dibenzofuran	1	ug/l	0.32	ND
	Diethylphthalate	1	ug/l	1.3	ND
	Dimethylphthalate	1	ug/l	1.3	ND
	Di-n-butylphthalate	1	ug/l	1.3	ND
	Di-n-octylphthalate	1	ug/l	1.3	ND
	Fluoranthene	1	ug/l	1.3	ND
	Fluorene	1	ug/l	1.3	ND
	Hexachlorobenzene	1	ug/l	1.3	ND
	Hexachlorobutadiene	1	ug/l	1.3	ND
	Hexachlorocyclopentadiene	1	ug/l	1.3	ND
	Hexachloroethane	1	ug/l	1.3	ND
	Indeno[1,2,3-cd]pyrene	1	ug/l	1.3	ND
	Isophorone	1	ug/l	1.3	ND
	Naphthalene	1	ug/l	0.32	ND
	Nitrobenzene	1	ug/l	1.3	ND
	N-Nitroso-di-n-propylamine	1	ug/l	0.32	ND
	N-Nitrosodiphenylamine	1	ug/l	1.3	ND
	Pentachlorophenol	1	ug/l	6.4	ND
	Phenanthrene	1	ug/l	1.3	ND
	Phenol	1	ug/l	1.3	ND
	Pyrene	1	ug/l	1.3	ND
s	Semivolatile Organics + 25 (625) Library Sea	rches			
_	Analyte	DF	Units	RT	Result
	unknown	1	ug/l	3.83	2.8JB
	Ethanol, 2-butoxy-	1	ug/l	4.51	7.3JB
	2-Propanol, 1-butoxy-	1	ug/l	4.84	9.2JB
	Benzene, 1,2,3-trimethyl-	1	ug/l	5.29	2.6J
	TotalSemiVolatileTic	1	ug/i	NA	22J
	AL Metals 200.7/8				
-	Analyte	DF	Units	RL	Result
	Aluminum	1	ug/l	100	180
	Antimony	1	ug/l	7.5	ND
	Arsenic	1	ug/l	20	ND
	Barium	1	ug/l	25	29
	Beryllium	1	ug/I	4.0	ND
	Cadmium	1	ug/l	2.0	ND
	Calcium	1	ug/l	1000	31000
	Chromium	1	ug/l	25	ND
	Cobalt	1	ug/l	10	ND
				25	ND
	Copper	1			ND
	Copper Iron	1 1	ug/l ua/l		310
	Iron	1	ug/l	150	310 ND
	Iron Lead	1 1	ug/l ug/l	150 5.0	ND
	Iron Lead Magnesium	1 1	ug/l ug/l ug/l	150 5.0 1000	ND 8900
	Iron Lead Magnesium Manganese	1 1 1	ug/l ug/l ug/l ug/l	150 5.0 1000 25	ND 8900 260
	Iron Lead Magnesium Manganese Nickel	1 1 1 1	ug/l ug/l ug/l ug/l ug/l	150 5.0 1000 25 10	ND 8900 260 ND
	Iron Lead Magnesium Manganese Nickel Potassium	1 1 1 1 1	ug/l ug/l ug/l ug/l ug/l ug/l	150 5.0 1000 25 10 2500	ND 8900 260 ND 3000
	Iron Lead Magnesium Manganese Nickel Potassium Selenium	1 1 1 1 1 1	ug/l ug/l ug/l ug/l ug/l ug/l	150 5.0 1000 25 10 2500	ND 8900 260 ND 3000 ND
	Iron Lead Magnesium Manganese Nickel Potassium Selenium Silver	1 1 1 1 1 1 1	ug/l ug/l ug/l ug/l ug/l ug/l ug/l	150 5.0 1000 25 10 2500 25	ND 8900 260 ND 3000 ND
	Iron Lead Magnesium Manganese Nickel Potassium Selenium Silver Sodium	1 1 1 1 1 1 1 1	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	150 5.0 1000 25 10 2500 25 10	ND 8900 260 ND 3000 ND ND 11000
	Iron Lead Magnesium Manganese Nickel Potassium Selenium Silver Sodium Thallium	1 1 1 1 1 1 1 1 1	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	150 5.0 1000 25 10 2500 25 10 2500 5.0	ND 8900 260 ND 3000 ND ND 11000
	Iron Lead Magnesium Manganese Nickel Potassium Selenium Silver Sodium	1 1 1 1 1 1 1 1	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	150 5.0 1000 25 10 2500 25 10	ND 8900 260 ND 3000 ND ND 11000
V	Iron Lead Magnesium Manganese Nickel Potassium Selenium Silver Sodium Thallium	1 1 1 1 1 1 1 1 1 1	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	150 5.0 1000 25 10 2500 25 10 2500 5.0	ND 8900 260 ND 3000 ND ND 11000 ND
v	Iron Lead Magnesium Manganese Nickel Potassium Selenium Silver Sodium Thallium Vanadium Zinc	1 1 1 1 1 1 1 1 1 1	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	150 5.0 1000 25 10 2500 25 10 2500 5.0	ND 8900 260 ND 3000 ND ND 11000 ND
<u>v</u>	Iron Lead Magnesium Manganese Nickel Potassium Selenium Silver Sodium Thallium Vanadium Zinc Colatile Organics + 10 (624) Analyte	1 1 1 1 1 1 1 1 1 1 1 1	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	150 5.0 1000 25 10 2500 25 10 2500 5.0 25 25	ND 8900 260 ND 3000 ND ND 11000 ND ND ND
v	Iron Lead Magnesium Manganese Nickel Potassium Selenium Silver Sodium Thallium Vanadium Zinc Colatile Organics + 10 (624) Analyte 1,1,1-Trichloroethane	1 1 1 1 1 1 1 1 1 1 1 1 1 1	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	150 5.0 1000 25 10 2500 25 10 2500 5.0 26 25 26 27 RL	ND 8900 260 ND 3000 ND ND 11000 ND
<u>v</u>	Iron Lead Magnesium Manganese Nickel Potassium Selenium Silver Sodium Thallium Vanadium Zinc Colatile Organics + 10 (624) Analyte 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	150 5.0 1000 25 10 2500 25 10 2500 5.0 26 25 26 27 RL 1.0 1.0	ND 8900 260 ND 3000 ND ND 11000 ND
<u>v</u>	Iron Lead Magnesium Manganese Nickel Potassium Selenium Silver Sodium Thallium Vanadium Zinc Folatile Organics + 10 (624) Analyte 1,1,1-Trichloroethane 1,1,2-Tetrachloroethane 1,1,2-Trichloro-1,2,2-trifluoroethane	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	150 5.0 1000 25 10 2500 25 10 2500 5.0 26 25 26 27 RL 1.0 1.0 5.0	ND 8900 260 ND 3000 ND ND 11000 ND
v	Iron Lead Magnesium Manganese Nickel Potassium Selenium Silver Sodium Thallium Vanadium Zinc Folatile Organics + 10 (624) Analyte 1,1,1-Trichloroethane 1,1,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	150 5.0 1000 25 10 2500 25 10 2500 5.0 26 25 26 27 RL 1.0 1.0 5.0 1.0	ND 8900 260 ND 3000 ND ND 11000 ND
<u>v</u>	Iron Lead Magnesium Manganese Nickel Potassium Selenium Silver Sodium Thallium Vanadium Zinc Folatile Organics + 10 (624) Analyte 1,1,1-Trichloroethane 1,1,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	150 5.0 1000 25 10 2500 25 10 2500 5.0 26 25 26 27 RL 1.0 1.0 5.0 1.0	ND 8900 260 ND 3000 ND ND 11000 ND
<u>v</u>	Iron Lead Magnesium Manganese Nickel Potassium Selenium Silver Sodium Thallium Vanadium Zinc folatile Organics + 10 (624) Analyte 1,1,1-Trichloroethane 1,1,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethane	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	150 5.0 1000 25 10 2500 25 10 2500 5.0 25 25 26 27 28 29 20 1.0 1.0 1.0 1.0 1.0 1.0	ND 8900 260 ND 3000 ND ND 11000 ND
<u>v</u>	Iron Lead Magnesium Manganese Nickel Potassium Selenium Silver Sodium Thallium Vanadium Zinc folatile Organics + 10 (624) Analyte 1,1,1-Trichloroethane 1,1,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2,3-Trichlorobenzene	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	150 5.0 1000 25 10 2500 25 10 2500 5.0 25 25 26 27 RL 1.0 1.0 1.0 1.0 1.0 1.0	ND 8900 260 ND 3000 ND ND 11000 ND
<u>v</u>	Iron Lead Magnesium Manganese Nickel Potassium Selenium Silver Sodium Thallium Vanadium Zinc folatile Organics + 10 (624) Analyte 1,1,1-Trichloroethane 1,1,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Trichlorobenzene 1,2,4-Trichlorobenzene	DF 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	150 5.0 1000 25 10 2500 25 10 2500 5.0 26 25 26 27 RL 1.0 1.0 1.0 1.0 1.0 1.0 1.0	ND 8900 260 ND 3000 ND ND 11000 ND
<u>v</u>	Iron Lead Magnesium Manganese Nickel Potassium Selenium Silver Sodium Thallium Vanadium Zinc folatile Organics + 10 (624) Analyte 1,1,1-Trichloroethane 1,1,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Trichloroethane 1,2-Trichloroethane 1,2-Trichloroethane 1,2-Trichloroethane 1,2-Trichloroethane	DF 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	150 5.0 1000 25 10 2500 25 10 2500 5.0 26 25 26 27 RL 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	ND 8900 260 ND 3000 ND ND 11000 ND
<u>v</u>	Iron Lead Magnesium Manganese Nickel Potassium Selenium Silver Sodium Thallium Vanadium Zinc folatile Organics + 10 (624) Analyte 1,1,1-Trichloroethane 1,1,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Trichlorobenzene 1,2,4-Trichlorobenzene	DF 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	150 5.0 1000 25 10 2500 25 10 2500 5.0 26 25 26 27 RL 1.0 1.0 1.0 1.0 1.0 1.0 1.0	ND 8900 260 ND 3000 ND ND 11000 ND

SW-1 AC58547-001 Aqueous				Date: 4/19/2011 Date: 4/20/2011
 1,2-Dichloroethane	1	ug/l	0.50	ND
1,2-Dichloropropane	1	ug/l	1.0	ND
1,3-Dichlorobenzene	1	ug/l	1.0	ND
1,4-Dichlorobenzene	1	ug/l	1.0	ND
1,4-Dioxane	1	ug/l	50	ND
2-Butanone	1	ug/l	1.0	ND
2-Hexanone	1	u g/l	1.0	ND
4-Methyl-2-pentanone	1	u g/ l	1.0	ND
Acetone	1	ug/l	10	ND
Benzene	1	u g/ l	0.50	ND
Bromochloromethane	1	ug/l	1.0	ND
Bromodichloromethane	1	ug/l	1.0	ND
Bromoform	1	ug/l	1.0	ND
Bromomethane	1	ug/l	1.0	ND
Carbon disulfide	1	ug/l	1.0	ND
Carbon tetrachloride	1	ug/l	1.0	ND
Chlorobenzene	1	ug/I	1.0	ND
Chloroethane	1	ug/i	1.0	ND
Chloroform	1	ug/l	1.0	ND
Chloromethane	1	ug/l	1.0	ND
cis-1,2-Dichloroethene	1	ug/l	1.0	ND
cis-1,3-Dichloropropene	1	ug/l	1.0	ND
Cyclohexane	1	ug/l	1.0	ND
Dibromochloromethane	1	ug/l	1.0	ND
Dichlorodifluoromethane	1	ug/l 	1.0	ND NB
Ethylbenzene	1	ug/l	1.0	ND ND
Isopropylbenzene	1	ug/l	1.0 1.0	ND ND
m&p-Xylenes Methyl Acetate	1	ug/l	1.0	ND ND
Methylcyclohexane	1	ug/l ug/l	1.0	ND
Methylene chloride	1	ug/l	1.0	ND
Methyl-t-butyl ether	1	ug/l	0.50	ND
o-Xylene	1	ug/l	1.0	ND ND
Styrene	1	ug/l	1.0	ND
Tetrachloroethene	1	ug/l	1.0	ND
Toluene	1	ug/l	1,0	ND
trans-1,2-Dichloroethene	1	ug/l	1.0	ND
trans-1,3-Dichloropropene	1	ug/l	1.0	ND
Trichloroethene	1	ug/l	1.0	ND
Trichlorofluoromethane	1	ug/l	1.0	ND
Vinyl chloride	1	ug/l	1.0	ND ND
Xylenes (Total)	1	ug/l	1.0	ND

Volatile Organics + 10 (624) Library Searches

Analyte	DF	Units	RT	Result	
No Unknown Compounds Detected	1	ug/l	NA	ND	
TotalVolatileTic	1	u g/l	NA	ND	

Sample ID: SW-2

Lab#: AC58547-002

Collection Date: 4/19/2011 Receipt Date: 4/20/2011

Matrix: Aqueous

oride (Water) 300.0				
Analyte	DF	Units	RL	Result
Chloride	1	mg/l	1.0	21
nide-Water (EPA 335.4)				
Analyte	DF	Units	RL	Result
Cyanide	1	mg/l	.02	ND
cury (Water) 245.1				
Analyte	DF	Units	RL	Result
Mercury	1	ug/l	0.20	ND
ivolatile Organics + 25 (625)		ugn	0.20	NO
Analyte	DF	Units	RL	Result
1,1'-Biphenyl	1	ug/l	2.1	ND
1,2,4,5-Tetrachlorobenzene	1	ug/l	2.1	ND
2,3,4,6-Tetrachlorophenol	1	ug/l	2.1	ND
2,4,5-Trichlorophenol	1	ug/l	2.1	ND
2,4,6-Trichlorophenol 2,4-Dichlorophenol	1	ug/l ug/l	2.1 2.1	ND ND
2,4-Dimethylphenol	1	ug/l	2.1	ND ND
2,4-Dinitrophenol	1	ug/l	10	ND
2,4-Dinitrotoluene	1	ug/l	2.1	ND
2,6-Dinitrotoluene	1	ug/l	2.1	ND
2-Chloronaphthalene	1	ug/l	2.1	ND
2-Chlorophenol	1	ug/l	2.1	ND
2-Methylnaphthalene	1	ug/l	2.1	ND
2-Methylphenol	1	ug/l	0.52	ND
2-Nitroaniline	1	ug/l	2.1	ND
2-Nitrophenol	1	ug/l	2.1	ND
3&4-Methylphenol	1	ug/l	0.52	ND
3,3'-Dichlorobenzidine	1	ug/l	2.1	ND
3-Nitroaniline	1	ug/l	2.1	ND
4,6-Dinitro-2-methylphenol	1	ug/l	10	ND
4-Bromophenyl-phenylether	1	ug/l	2.1	ND
4-Chloro-3-methylphenol	1	ug/l	2.1	ND
4-Chloroaniline 4-Chlorophenyl-phenylether	1	ug/l	0.52	ND ND
4-Chlorophenyl-phenylether 4-Nitroaniline	1	ug/l	2.1 2.1	ND ND
4-Nitrophenol	1	ug/l	2.1	ND
Acenaphthene	1	ug/l	2.1	ND
Acenaphthylene	1	ug/l	2.1	ND
Acetophenone	1	ug/l	2.1	ND
Anthracene	1	ug/l	2.1	ND
Atrazine	1	ug/l	2.1	ND
Benzaldehyde	1	ug/l	2.1	ND
Benzo[a]anthracene	1	ug/l	2.1	ND
Benzo[a]pyrene	1	ug/l	2.1	ND
Benzo[b]fluoranthene	1	ug/l	2.1	ND
Benzo[g,h,i]perylene	1	ug/l	2.1	ND
Benzo[k]fluoranthene	1	ug/l	2.1	ND
bis(2-Chloroethoxy)methane	1	ug/l	2.1	ND
bis(2-Chloroethyl)ether	1	ug/l	0.52	ND
bis(2-Chloroisopropyl)ether	1	ug/l	2.1	ND
bis(2-Ethylhexyl)phthalate	1	ug/l	2.1	ND
Butylbenzylphthalate	1	ug/l	2.1	ND
Carbonala	1	ug/l	2.1	ND
Carbazole	1	ug/l	2.1	ND
Chrysene Dibanzola blanthracena	1	ug/t	2.1	ND ND
Dibenzo[a,h]anthracene Dibenzofuran	1	ug/l	2.1	ND ND
Dibenzoturan Diethylphthalate	1 1	ug/l	0.52	ND ND
Directly iphthalate Directly iphthalate	1	ug/l	2.1	ND ND
Di-n-butylphthalate	1	ug/l ug/l	2.1	ND ND
Di-n-octylphthalate	1	ug/l	2.1	ND ND
very ip in initiate		ugri	4.1	NU

mple ID: Lab#:	SW-2 AC58547-002				Date: 4/19/2011 Date: 4/20/2011
Matrix:	Aqueous				1,20,2011
	Hexachlorobenzene	1	· ug/l	2.1	ND
	Hexachlorobutadiene	1	ug/l	2.1	ND
	Hexachlorocyclopentadiene	1	ug/l	2.1	ND
	Hexachloroethane	1	ug/ł	2.1	ND
	Indeno[1,2,3-cd]pyrene	1	ug/l	2.1	ND
	Isophorone	1	ug/l	2.1	ND
	Naphthalene	1	ug/l	0.52	ND
	Nitrobenzene	1	ug/l	2.1	ND
	N-Nitroso-di-n-propylamine	1	ug/l	0.52	ND
	N-Nitrosodiphenylamine	1	ug/l	2.1	ND
	Pentachlorophenol	1	ug/l	10	ND
	Phenanthrene	1	ug/l	2.1	ND
	Phenol	1	ug/l	2.1	ND
_	Pyrene	1	ug/l	2.1	ND
5	Semivolatile Organics + 25 (625) Library Sea	arches			
	Analyte	DF	Units	RT	Result
	Ethanol, 2-butoxy-	1	ug/l	4.51	14JB
	2-Propanol, 1-butoxy-	1	ug/l	4.84	16JB
	Benzene, 1,3,5-trimethyl-	1	ug/l	5.29	5.9JB
_	TotalSemiVolatileTic	1	ug/l	NA	36J
7	TAL Metals 200.7/8				
-	Analyte	DF	Units	RL	Result
	Aluminum	1	ug/l	100	190
	Antimony	1	ug/i	7.5	ND
	Arsenic	1	ug/i	20	ND
	Barium	1	ug/l	25	26
	Beryllium	1	ug/l	4.0	ND
	Cadmium	1	ug/l	2.0	ND
	Calcium	1	ug/l	1000	29000
	Chromium	1	ug/l	25	ND
	Cobalt	1	ug/l	10	ND
	Copper	1	ug/l	25	ND
	Iron	1	ug/l	150	410
	Lead	1	ug/l	5.0	ND sace
	Magnesium Manganese	1	ug/l	1000 25	8200 210
	Nickel	1	ug/l ug/l	10	ND
	Potassium	1		2500	3000
	Selenium	 1	ug/l ug/l	25	ND ND
	Silver	1	ug/l	10	ND
	Sodium	1	ug/l	2500	18000
	Thallium	1	ug/I	5.0	ND
	Vanadium	1	ug/l	25	ND
	Zinc	1	ug/l	25	ND
V	/olatile Organics + 10 (624)				
-	Analyte	DF	Units	RL	Result
	1,1,1-Trichloroethane	1	ug/l	1.0	ND
	1,1,2,2-Tetrachloroethane	1	ug/l	1.0	ND
	1,1,2-Trichloro-1,2,2-trifluoroethane	1	ug/l	5.0	ND
	1,1,2-Trichloroethane		ug/t	1.0	ND
	1,1-Dichloroethane	, 1	ug/l	1.0	ND
	1,1-Dichloroethene	1	ug/l	1.0	ND ND
	1,2,3-Trichlorobenzene	1	ug/l	1.0	ND ND
	1,2,4-Trichlorobenzene	1	ug/l	1.0	ND ND
	1,2-Dibromo-3-chloropropane 1,2-Dibromoethane	1	ug/l	1.0 1.0	ND ND
	1,2-Dibromoetnane 1,2-Dichlorobenzene	1	ug/l ug/l	1.0	ND ND
	1,2-Dichlorobenzene 1,2-Dichloroethane	1	ug/l ug/l	0.50	ND ND
	1,2-Dichloropropane	1	ug/l	1.0	ND ND
	1,3-Dichlorobenzene	1	ug/l	1.0	ND
	1,4-Dichlorobenzene	1	ug/l	1.0	ND ND
	1,4-Dioxane	1	ug/l	50	ND ND
	1,7 Erecuire			1.0	ND ND
	2-Butanone	1	ug/l		
	2-Butanone 2-Hexanone	1	ug/l ua/l		
	2-Hexanone	1 1 1	ug/l	1.0	ND
		1			

ample ID:	SW-2			Collection	Date: 4/19/2011
Lab#:	AC58547-002			Receipt	Date: 4/20/2011
Matrix:	Aqueous				
	Benzene	1	ug/l	0.50	ND
	Bromochloromethane	1	ug/l	1.0	ND
	Bromodichloromethane	1	ug/l	1.0	ND
	Bromoform	1	ug/l	1.0	ND
	Bromomethane	1	ug/l	1.0	ND
	Carbon disulfide	1	ug/l	1.0	ND
	Carbon tetrachloride	1	u g/ l	1.0	ND
	Chlorobenzene	1	u g/ l	1.0	ND
	Chloroethane	1	ug/l	1.0	ND
	Chloroform	1	ug/l	1.0	ND
	Chloromethane	1	ug/l	1.0	ND
	cis-1,2-Dichloroethene	1	ug/l	1.0	ND
	cis-1,3-Dichloropropene	1	ug/l	1.0	ND
	Cyclohexane	1	ug/l	1.0	ND
	Dibromochloromethane	1	ug/l	1.0	ND
	Dichlorodifluoromethane	1	ug/l	1.0	ND
	Ethylbenzene	1	ug/l	1.0	ND
	Isopropylbenzene	1	ug/l	1.0	ND
	m&p-Xylenes	1	ug/l	1.0	ND
	Methyl Acetate	1	ug/l	1.0	ND
	Methylcyclohexane	1	ug/l	1.0	ND
	Methylene chloride	1	ug/l	1.0	ND
	Methyl-t-butyl ether	1	ug/l	0.50	ND
	o-Xylene	1	ug/l	1.0	ND
	Styrene	1	ug/l	1.0	ND
	Tetrachloroethene	1	ug/l	1.0	ND
	Toluene	1	ug/l	1.0	ND
	trans-1,2-Dichloroethene	1	ug/l	1.0	ND
	trans-1,3-Dichloropropene	1	ug/l	1.0	ND
	Trichloroethene	1	ug/l	1.0	ND
	Trichlorofluoromethane	1	ug/l	1.0	ND
	Vinyl chloride	1	ug/l	1.0	ND
	Xylenes (Total)	1	ug/l	1.0	ND

Volatile Organics +	١0 +	(624) Libr	ary Searches
---------------------	------	------------	--------------

Analyte	DF	Units	RT	Result	
No Unknown Compounds Detected	1	ug/l	NA	ND	
TotalVolatileTic	1	ug/l	NA	ND	

Sample ID: SW-3

Lab#: AC58547-003 Matrix: Aqueous Collection Date: 4/19/2011

Receipt Date: 4/20/2011

Chloride (\	(Vater	300.0
-------------	--------	-------

Analyte	DF	Units	RL	Result
Chloride	5	mg/l	5.0	59

Cyanide-Water (EPA 335.4)

Analyte	DF	Units	RL	Result
Cyanide	1	mg/l	.02	ND

Mercury (Water) 245.1

Analyte	DF	Units	RL	Result
Mercury	1	ug/l	0.20	ND

Semivolatile Organics + 25 (625)

Analyte	DF	Units	RL	Result
1,1'-Biphenyl	1	ug/l	2.2	ND
1,2,4,5-Tetrachlorobenzene	1	ug/l	2.2	ND
2,3,4,6-Tetrachlorophenol	1	ug/l	2.2	ND
2,4,5-Trichlorophenol	1	ug/I	2.2	ND
2,4,6-Trichlorophenol	1	ug/l	2.2	ND
2,4-Dichlorophenol	1	ug/l	2.2	ND
2,4-Dimethylphenol	1	ug/l	2.2	ND
2,4-Dinitrophenol	1	ug/l	11	ND
2,4-Dinitrotoluene	1	ug/l	2.2	ND
2,6-Dinitrotoluene	1	ug/l	2.2	ND
2-Chloronaphthalene	1	ug/l	2.2	ND
2-Chlorophenol	1	ug/i	2.2	ND
2-Methylnaphthalene	1	ug/l	2.2	ND
2-Methylphenol	1	ug/l	0.54	ND
2-Nitroaniline	1	ug/l	2.2	ND
2-Nitrophenol	1	ug/l	2.2	ND
3&4-Methylphenol	1	ug/l	0.54	ND
3,3'-Dichlorobenzidine	1	ug/l	2.2	ND
3-Nitroaniline	1	ug/l	2.2	ND
4,6-Dinitro-2-methylphenol	1	ug/l	11	ND
4-Bromophenyl-phenylether	1	ug/l	2.2	ND
4-Chloro-3-methylphenol	1	ug/l	2.2	ND
4-Chloroaniline	1	ug/l	0.54	ND
4-Chlorophenyl-phenylether	1	ug/l	2.2	ND
4-Nitroaniline	1	ug/l	2.2	ND
4-Nitrophenol	1	ug/l	2.2	ND
Acenaphthene	1	ug/l	2.2	ND
Acenaphthylene	1	ug/l	2.2	ND
Acetophenone	1	ug/l	2.2	ND
Anthracene	1	ug/l	2.2	ND
Atrazine	1	ug/l	2.2	ND
Benzaldehyde	1	ug/l	2.2	ND
Benzo[a]anthracene	1	ug/l	2.2	ND
Benzo[a]pyrene	1	u g/ 1	2.2	ND
Benzo[b]fluoranthene	1	ug/l	2.2	ND
Benzo[g,h,i]perylene	1	ug/l	2.2	ND
Benzo[k]fluoranthene	1	ug/l	2.2	ND
bis(2-Chloroethoxy)methane	1	ug/l	2.2	ND
bis(2-Chloroethyl)ether	1	ug/l	0.54	ND
bis(2-Chloroisopropyl)ether	1	ug/l	2.2	ND
bis(2-Ethylhexyl)phthalate	1	ug/l	2.2	ND
Butylbenzylphthalate	1	ug/l	2.2	ND
Caprolactam	1	ug/l	2.2	ND
Carbazole	1	ug/l	2.2	ND
Chrysene	1	ug/l	2.2	ND
Dibenzo[a,h]anthracene	1	ug/l	2.2	ND
Dibenzofuran	1	ug/l	0.54	ND
Diethylphthalate	1	ug/l	2.2	ND
Dimethylphthalate	1	ug/l	2.2	ND
Dinethylphthalate Di-n-butylphthalate	1	ug/l	2.2	ND
Di-n-octylphthalate Di-n-octylphthalate	1	ug/l	2.2	ND
* *	1	ug/l	2.2	ND
Fluoranthene		ugri	۷.۷	IND

ole ID:	SW-3		Collection Date: 4/19/2011		
Lab#:	AC58547-003			Receipt	Date: 4/20/2011
latrix:	Aqueous				
	Hexachlorobenzene	1	ug/l	2.2	ND
	Hexachlorobutadiene	1	ug/l	2.2	ND
	Hexachlorocyclopentadiene	1	ug/l	2.2	ND
	Hexachloroethane	1	ug/l	2.2	ND
	Indeno[1,2,3-cd]pyrene	1	ug/l	2.2	ND
	Isophorone	1	ug/l	2.2	ND
	Naphthalene	1	ug/l	0.54 2.2	ND ND
	Nitrobenzene	1	ug/l	0.54	ND ND
	N-Nitroso-di-n-propylamine N-Nitrosodiphenylamine	1	ug/l ug/l	2.2	ND
	Pentachlorophenol	1	ug/l	11	ND
	Phenanthrene	1	ug/l	2.2	ND
	Phenol	1	ug/l	2.2	ND
	Pyrene	1	ug/l	2.2	ND
s	emivolatile Organics + 25 (625) Library Sear	rches			
_	Analyte	DF	Units	RT	Result
	Ethanol, 2-butoxy-	1	ug/l	4.52	4.3JB
	2-Propanol, 1-butoxy-	1	ug/l	4.84	7.1JB
_	TotalSemiVolatileTic	1	ug/l	NA	11J
Т	AL Metals 200.7/8				
_	Analyte	DF	Units	RL	Result
	Aluminum	1	ug/l	100	160
	Antimony	1	ug/l	7.5	ND
	Arsenic	1	ug/l	20	ND
	Barium	1	ug/l	25	48
	Beryllium	1	ug/l	4.0	ND
	Cadmium	1	ug/l	2.0	ND 91000
	Calcium Chromium	1 1	ug/l ug/l	1000 25	ND
	Cobalt	1	ug/l	10	ND
	Copper	1	ug/l	25	ND
	Iron	1	ug/l	150	170
	Lead	1	ug/l	5.0	ND
	Magnesium	1	ug/l	1000	11000
	Manganese	1	ug/l	25	210
	Nickel	1	ug/l	10	ND
	Potassium	1	ug/l	2500	3800
	Selenium	1	ug/l	25	ND
	Silver	1	ug/l	10	ND
	Sodium	1	ug/l	2500	44000
	Thallium	1	ug/l	5.0	ND
	Vanadium	1	ug/l	25 25	ND ND
_	Zinc	1	ug/l	25	NU
<u>_</u>	olatile Organics + 10 (624)	Dr.	11-14-		Dooult
	Analyte	DF 1	Units	RL	Result
	1,1,1-Trichloroethane	1	ug/l	1.0 1.0	ND ND
	1,1,2,2-Tetrachloroethane 1,1,2-Trichloro-1,2,2-trifluoroethane	1	ug/l ug/l	5.0	ND
	1,1,2-Trichloroethane	1	ug/l	1.0	ND
	1,1-Dichloroethane	1	ug/l	1.0	ND
	1,1-Dichloroethene	1	ug/l	1.0	ND
	1,2,3-Trichlorobenzene	1	ug/l	1.0	ND
	1,2,4-Trichlorobenzene	1	ug/l	1.0	ND
	1,2-Dibromo-3-chloropropane	1	ug/l	1.0	ND
	1,2-Dibromoethane	1	ug/ł	1.0	ND
	1,2-Dichlorobenzene	1	u g/i	1.0	ND
	1,2-Dichloroethane	1	ug/l	0.50	ND
	1,2-Dichloropropane	1	ug/l	1.0	ND
	1,3-Dichlorobenzene	1	ug/l	1.0	ND
	1,4-Dichlorobenzene	1	ug/l	1.0	ND
	1,4-Dioxane	1	ug/l	50	ND
	2-Butanone	1	ug/l	1.0	ND ND
	2-Hexanone	1	ug/l	1.0	ND ND
	4-Methyl-2-pentanone	1	ug/i	1.0 10	ND ND
	Acatama				
	Acetone Benzene	1	ug/l ug/l	0.50	ND

ample ID:	SW-3			Collection	Date: 4/19/2011	
Lab#:	AC58547-003		Receipt Date: 4/20			
Matrix:	Aqueous			•		
	Bromochloromethane	1	ug/l	1.0	ND	
	Bromodichloromethane	1	ug/l	1.0	ND	
	Bromoform	1	ug/l	1.0	ND	
	Bromomethane	1	ug/l	1.0	ND	
	Carbon disulfide	1	ug/l	1.0	ND	
	Carbon tetrachloride	1	ug/l	1.0	ND	
	Chlorobenzene	1	u g/l	1.0	ND	
	Chloroethane	1	ug/l	1.0	ND	
	Chloroform	1	ug/l	1.0	ND	
	Chloromethane	1	ug/l	1.0	ND	
	cis-1,2-Dichloroethene	1	ug/l	1.0	ND	
	cis-1,3-Dichloropropene	1	ug/l	1.0	ND	
	Cyclohexane	1	ug/l	1.0	ND	
	Dibromochloromethane	1	ug/l	1.0	ND	
	Dichlorodifluoromethane	1	ug/l	1.0	ND	
	Ethylbenzene	1	ug/l	1.0	ND	
	Isopropylbenzene	1	ug/l	1.0	ND	
	m&p-Xylenes	1	ug/l	1.0	ND	
	Methyl Acetate	1	ug/i	1.0	ND	
	Methylcyclohexane	1	ug/l	1.0	ND	
	Methylene chloride	1	ug/l	1.0	ND	
	Methyl-t-butyl ether	1	ug/l	0.50	ND	
	o-Xylene	1	ug/l	1.0	ND	
	Styrene	1	ug/l	1.0	ND	
	Tetrachloroethene	1	ug/l	1.0	ND	
	Toluene	1	u g/l	1.0	ND	
	trans-1,2-Dichloroethene	1	ug/l	1.0	ND	
	trans-1,3-Dichloropropene	1	ug/l	1.0	ND	
	Trichloroethene	1	ug/l	1.0	ND	
	Trichlorofluoromethane	1	ug/l	1.0	ND	
	Vinyl chloride	1	ug/l	1.0	ND	
	Xylenes (Total)	1	ug/l	1.0	ND	

Volatile Organics + 10 (624) Library Searches

Analyte	DF	Units	RT	Result	
No Unknown Compounds Detected	1	ug/l	NA	ND	
TotalVolatileTic	1	u g/l	NA	ND	

Sample ID: SW-4

Lab#: AC58547-004

Collection Date: 4/19/2011 Receipt Date: 4/20/2011

Matrix: Aqueous

loride (Water) 300.0				
Analyte	DF	Units	RL	Result
Chloride	1	mg/l	1.0	24
anide-Water (EPA 335.4)				
Analyte	DF	Units	RL	Result
Cyanide	1	mg/l	.02	ND
	·			
ercury (Water) 245.1				
Analyte	DF	Units	RL	Result
Mercury	1	ug/l	0.20	ND
mivolatile Organics + 25 (625)				
Analyte	DF	Units	RL	Result
1,1'-Biphenyl	1	ug/l	2.0	ND
1,2,4,5-Tetrachlorobenzene	1	ug/I	2.0	ND
2,3,4,6-Tetrachlorophenol	1	ug/I	2.0	ND
2,4,5-Trichlorophenol	1	ug/I	2.0	ND
2,4,6-Trichlorophenol	1	ug/I	2.0	ND
2,4-Dichlorophenol	1	ug/l	2.0	ND
2,4-Dimethylphenol	1	ug/l	2.0	ND
2,4-Dinitrophenol	1	ug/l	10	ND
2,4-Dinitrotoluene	1	ug/l	2.0 2.0	ND ND
2,6-Dinitrotoluene 2-Chloronaphthalene	1 1	ug/l ug/l	2.0	ND ND
2-Chlorophenol	1	ug/l	2.0	ND
2-Methylnaphthalene	1	ug/l	2.0	ND ND
2-Methylphenol	1	ug/l	0.50	ND
2-Nitroaniline	1	ug/l	2.0	ND
2-Nitrophenol	1	ug/l	2.0	ND
3&4-Methylphenol	1	ug/l	0.50	ND
3,3'-Dichlorobenzidine	1	ug/l	2.0	ND
3-Nitroaniline	1	ug/l	2.0	ND
4,6-Dinitro-2-methylphenol	1	ug/l	10	ND
4-Bromophenyl-phenylether	1	ug/l	2.0	ND
4-Chloro-3-methylphenol	1	ug/l	2.0	ND
4-Chloroaniline	1	ug/l	0.50	ND
4-Chlorophenyl-phenylether	1	ug/l	2.0	ND
4-Nitroaniline	1	ug/l	2.0	ND
4-Nitrophenol	1	ug/l	2.0	ND
Acenaphthene	1	ug/l	2.0	ND
Acenaphthylene	1	ug/l	2.0	ND
Actionhenone	1	ug/l	2.0	ND ND
Anthracene	1	ug/l	2.0	ND ND
Atrazine Benzaldehyde	1 1	ug/l ug/l	2.0 2.0	ND ND
Benzo[a]anthracene	1	ug/l	2.0	ND ND
Benzo[a]pyrene	1	ug/l	2.0	ND ND
Benzo[b]fluoranthene	1	ug/l	2.0	ND
Benzo[g,h,i]perylene	1	ug/l	2.0	ND
Benzo[k]fluoranthene	1	ug/I	2.0	ND
bis(2-Chloroethoxy)methane	1	ug/l	2.0	ND
bis(2-Chloroethyl)ether	1	ug/I	0.50	ND
bis(2-Chloroisopropyl)ether	1	ug/l	2.0	ND
bis(2-Ethylhexyl)phthalate	1	ug/l	2.0	ND
Butylbenzylphthalate	1	ug/l	2.0	ND
Caprolactam	1	ug/l	2.0	ND
Carbazole	1	ug/l	2.0	ND
Chrysene	1	ug/l	2.0	ND
Dibenzo[a,h]anthracene	1	ug/l	2.0	ND
Dibenzofuran	1	ug/l	0.50	ND
Diethylphthalate	1	ug/l	2.0	ND
Dimethylphthalate	1	ug/l	2.0	ND ND
Di-n-butylphthalate	1	ug/l	2.0	ND ND
Di-n-octylphthalate	1	ug/l	2.0	ND ND
Fluoranthene Fluorene	<u>1</u> 1	ug/l ug/l	2.0	ND ND

ample ID:					Date: 4/19/2011
	AC58547-004			Receipt	Date: 4/20/2011
Matrix:	Aqueous				ND
	Hexachlorobenzene	1 1	ug/l	2.0 2.0	ND ND
	Hexachlorobutadiene Hexachlorocyclopentadiene	1	ug/l ug/l	2.0	ND
	Hexachloroethane	1	ug/l	2.0	ND
	Indeno[1,2,3-cd]pyrene	1	ug/l	2.0	ND
	Isophorone	1	ug/l	2.0	ND
	Naphthalene	1	ug/l	0.50	ND
	Nitrobenzene	1	ug/l	2.0	ND
	N-Nitroso-di-n-propylamine	1	ug/l	0.50	ND
	N-Nitrosodiphenylamine	1	ug/l	2.0	ND
	Pentachlorophenol	1	ug/l	10	ND
	Phenanthrene		ug/l	2.0	ND
	Phenol Pyrene	1 1	ug/l	2.0 2.0	ND ND
			ug/l	2.0	MD
-	Semivolatile Organics + 25 (625) Library Sea		1114		D#
	Analyte	DF	Units	RT	Result
	Ethanol, 2-butoxy-	1	ug/l	4.51	9.7JB
	2-Propanol, 1-butoxy-	1	ug/l	4.84 5.29	14JB 5.1JB
	Benzene, 1,3,5-trimethyl- TotalSemiVolatileTic	1	ug/l ug/l	5.29 NA	5.1JB 29J
-	TAL Metals 200.7/8				
	Analyte	DF	Units	RL	Result
	Aluminum	1		100	230
	Antimony	1	ug/l ug/l	7.5	ND
	Arsenic	1	ug/t	20	ND
	Barium	1	ug/l	25	ND
	Beryllium	1	ug/l	4.0	ND
	Cadmium	1	ug/i	2.0	ND
	Calcium	1	ug/l	1000	26000
	Chromium	1	ug/l	25	ND
	Cobalt	1	ug/i	10	ND
	Copper	1	ug/l	25	ND
	Iron Lead	1 1	ug/l	150 5.0	170 ND
	Magnesium	1	ug/l ug/l	1000	7300
	Manganese	1	ug/i	25	50
	Nickel	1	ug/l	10	ND
	Potassium	1	ug/l	2500	2700
	Selenium	1	ug/l	25	ND
	Silver	1	ug/l	10	ND
	Sodium	1	ug/l	2500	20000
	Thallium	<u> </u>	ug/l	5.0	ND
	Vanadium Zinc	1 1	ug/l ug/l	25 25	ND ND
_	/olatile Organics + 10 (624)		-6.		
_	Analyte	DF	Units	RL	Result
	1,1,1-Trichloroethane	1	ug/l	1.0	ND
	1,1,2,2-Tetrachloroethane	1	ug/l	1.0	ND
	1,1,2-Trichloro-1,2,2-trifluoroethane	1	ug/l	5.0	ND
	1,1,2-Trichloroethane	1	ug/l	1.0	ND
	1,1-Dichloroethane	1	ug/l	1.0	ND
	1,1-Dichloroethene	1	ug/l	1.0	ND
	1,2,3-Trichlorobenzene	1	ug/l	1.0	ND
	1,2,4-Trichlorobenzene	1	ug/l	1.0	ND ND
	1,2-Dibromo-3-chloropropane	1	ug/l	1.0	ND ND
	1,2-Dibromoethane 1,2-Dichlorobenzene	1	ug/l ug/l	1.0 1.0	ND ND
	I LE DIGITADO ILONO	1	ug/l	0.50	ND
			-5'	1.0	ND ND
	1,2-Dichloroethane	1	ug/i	1,0	
			ug/l ug/l	1.0	ND
	1,2-Dichloroethane 1,2-Dichloropropane	1	ug/l ug/l ug/l		
	1,2-Dichloroethane 1,2-Dichloropropane 1,3-Dichlorobenzene	1	ug/l	1.0	ND
	1,2-Dichloroethane 1,2-Dichloropropane 1,3-Dichlorobenzene 1,4-Dichlorobenzene	1 1 1	ug/l ug/l	1.0 1.0	ND ND
	1,2-Dichloroethane 1,2-Dichloropropane 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dioxane	1 1 1 1	ug/l ug/l ug/l	1.0 1.0 50 1.0	ND ND ND ND
	1,2-Dichloroethane 1,2-Dichloropropane 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dioxane 2-Butanone	1 1 1 1	ug/l ug/l ug/l ug/l	1.0 1.0 50 1.0	ND ND ND

mple ID:				Collection Date: 4/19/2011 Receipt Date: 4/20/2011		
	AC58547-004					
Matrix:	Aqueous					
	Benzene	1	ug/l	0.50	ND	
	Bromochloromethane	1	ug/l	1.0	ND	
	Bromodichloromethane	1	ug/l	1.0	ND	
	Bromoform	1	ug/l	1.0	ND	
	Bromomethane	1	ug/l	1.0	ND	
	Carbon disulfide	1	ug/l	1.0	ND	
	Carbon tetrachloride	1	ug/l	1.0	ND	
	Chlorobenzene	1	ug/l	1.0	ND	
	Chloroethane	1	ug/l	1.0	ND	
	Chloroform	1	ug/l	1.0	ND	
	Chloromethane	1	ug/l	1.0	ND	
	cis-1,2-Dichloroethene	1	ug/l	1.0	ND	
	cis-1,3-Dichloropropene	1	ug/l	1.0	ND	
	Cyclohexane	1	ug/l	1.0	ND	
	Dibromochloromethane	1	ug/l	1.0	ND	
	Dichlorodifluoromethane	1	ug/l	1.0	ND	
	Ethylbenzene	1	ug/l	1.0	ND	
	Isopropylbenzene	1	ug/l	1.0	ND	
	m&p-Xylenes	1	ug/l	1.0	ND	
	Methyl Acetate	1	ug/l	1.0	ND	
	Methylcyclohexane	1	ug/l	1.0	ND	
	Methylene chloride	1	ug/l	1.0	ND	
	Methyl-t-butyl ether	1	ug/l	0.50	ND	
	o-Xylene	1	ug/l	1.0	ND	
	Styrene	1	ug/l	1.0	ND	
	Tetrachloroethene	1	ug/l	1.0	ND	
	Toluene	1	ug/l	1.0	ND	
	trans-1,2-Dichloroethene	1	ug/l	1.0	ND	
	trans-1,3-Dichloropropene	1	ug/l	1.0	ND	
	Trichloroethene	1	ug/l	1.0	ND	
	Trichlorofluoromethane	1	ug/l	1.0	ND	
	Vinyl chloride	1	ug/l	1.0	ND	
	Xylenes (Total)	1	ug/l	1.0	ND	

Volatile Organics + 10 (624) Library Searches

Analyte	DF	Units	RT	Result
No Unknown Compounds Detected	1	ug/l	NA	ND
TotalVolatileTic	1	ug/l	NA	ND

Sample ID: SD-1

Lab#: AC58547-005

Matrix: Soil

Collection Date: 4/19/2011 Receipt Date: 4/20/2011

Solids SM2540G				
Analyte	DF	Units	RL	Result
% Solids	1	percent		51
hloride (Soil) 9056				
Analyte	DF	Units	RL	Result
Chloride	1	mg/kg	200	280
yanide (Soil/Waste) 9012B		9		
Analyte	DF	Units	RL	Result
Cyanide	1	mg/kg	0.98	ND
ercury (Soil/Waste) 7471A				
Analyte	DF	Units	RL	Result
Mercury	1	mg/kg	0.16	ND
emivolatile Organics + 25 (8270)				
Analyte	DF	Units	RL	Result
1,1'-Biphenyl	1	mg/kg	0.13	ND
1,2,4,5-Tetrachlorobenzene	1	mg/kg	0.13	ND
2,3,4,6-Tetrachlorophenol	1	mg/kg	0.13	ND
2,4,5-Trichlorophenol	1	mg/kg	0.13	ND
2,4,6-Trichlorophenol	1	mg/kg	0.13	ND
2,4-Dichlorophenol 2,4-Dimethylphenol	1	mg/kg	0.033	ND ND
2,4-Dimethylphenol	1 1	mg/kg mg/kg	0.13 0.65	ND ND
2,4-Dinitrotoluene	1	mg/kg	0.13	ND ND
2,6-Dinitrotoluene	1	mg/kg	0.13	ND
2-Chloronaphthalene	1	mg/kg	0.13	ND
2-Chlorophenol	1	mg/kg	0.13	ND
2-Methylnaphthalene	1	mg/kg	0,13	ND
2-Methylphenol	1	mg/kg	0.033	ND
2-Nitroaniline	1	mg/kg	0.13	ND
2-Nitrophenol	1	mg/kg	0.13	ND
3&4-Methylphenol	1	mg/kg	0.033	ND
3,3'-Dichlorobenzídine	1	mg/kg	0.13	ND
3-Nitroaniline	1	mg/kg	0.13	ND
4,6-Dinitro-2-methylphenol	1	mg/kg	0.65	ND
4-Bromophenyl-phenylether	1	mg/kg	0.13	ND
4-Chloro-3-methylphenol	1	mg/kg	0.13	ND
4-Chloroaniline	1	mg/kg	0.062	ND
4-Chlorophenyl-phenylether	1	mg/kg	0.13	ND
4-Nitroaniline 4-Nitrophenol	1 1	mg/kg	0.13 0.13	ND ND
Acenaphthene	1	mg/kg mg/kg	0.13	ND
Acenaphthylene	1	mg/kg	0.13	ND
Acetophenone	1	mg/kg	0.13	ND
Anthracene	1	mg/kg	0.13	ND
Atrazine	1	mg/kg	0.13	ND
Benzaldehyde	1	mg/kg	0.13	ND
Benzo[a]anthracene	1	mg/kg	0.13	0.19
Benzo[a]pyrene	1	mg/kg	0.13	0.21
Benzo[b]fluoranthene	1	mg/kg	0.13	0.31
Benzo[g,h,i]perylene	1	mg/kg	0.13	0.19
Benzo[k]fluoranthene	1	mg/kg	0.13	ND
bis(2-Chloroethoxy)methane	1	mg/kg	0.13	ND
bis(2-Chloroethyl)ether	1	mg/kg	0.033	ND
bis(2-Chloroisopropyl)ether	<u>1</u> 1	mg/kg	0.13	ND ND
bis(2-Ethylhexyl)phthalate Butylbenzylphthalate	1	mg/kg mg/kg	0.13 0.13	ND ND
Caprolactam	1	mg/kg mg/kg	0.13 0.13	ND ND
Carbazole	1	mg/kg	0.13	ND ND
Chrysene	1	mg/kg	0.13	0.22
Dibenzo[a,h]anthracene	1	mg/kg	0.13	ND
Dibenzofuran	1	mg/kg	0.033	ND
Diethylphthalate	1	mg/kg	0.13	ND
Dimethylphthalate	1	mg/kg	0.13	ND

mple ID:	SD-1			Collection Date:	4/19/2011
	AC58547-005			Receipt Date:	4/20/2011
Matrix:					
	Di-n-butylphthalate	1	mg/kg	0.13	ND
	Di-n-octylphthalate Fluoranthene	1 1	mg/kg	0.13 0.13	ND 0.30
	Fluorene	1	mg/kg mg/kg	0.13	ND
	Hexachlorobenzene	1	mg/kg	0.13	ND
	Hexachlorobutadiene	1	mg/kg	0.13	ND
	Hexachlorocyclopentadiene	1	mg/kg	0.65	ND
	Hexachloroethane	1	mg/kg	0.13	ND
	Indeno[1,2,3-cd]pyrene	1	mg/kg	0.13	0.15
	Isophorone	1	mg/kg	0.13	ND
	Naphthalene	1	mg/kg	0.033	ND
	Nitrobenzene	1	mg/kg	0.13	ND
	N-Nitroso-di-n-propylamine	1	mg/kg	0.033	ND
	N-Nitrosodiphenylamine	1	mg/kg	0.13	ND
	Pentachlorophenol	1	mg/kg	1.3	ND
	Phenanthrene	1	mg/kg	0.13	0.14
	Phenol	1	mg/kg	0.13	ND
_	Pyrene	<u> </u>	mg/kg	0.13	0.39
S	Semivolatile Organics + 25 (8270) Library Searc				
	Analyte	DF	Units	RT	Result
	Heptacosane	1	mg/kg	11.84	0.28J
	unknown	1	mg/kg	12.18	0.52J
	1,3-Benzenediol, 5-pentadecyl-	1	mg/kg	12.22	0.36J
	1-Dotriacontanol	1	mg/kg	12.65	1.1J
	1-Hexadecene	1	mg/kg	13.42	1.8J
	unknown	1	mg/kg	13.65 13.85	0.59J 0.53J
	Farnesol Octadecanal	1 1	mg/kg	13.93	0.53J 0.41J
	Hexatriacontane	<u>'.</u>	mg/kg mg/kg	14,14	0.413 0.77J
	Phosphonic acid, dioctadecyl ester	1	mg/kg	14.16	0.71J
	Perylene	1	mg/kg	14.3	0.31J
	Hexadecanal	1	mg/kg	14.69	0.60J
	Tetracosane, 3-ethyl-	1	mg/kg	14.91	0.44J
	unknown	1	mg/kg	15.02	0.38J
	Vitamin E	1	mg/kg	15.14	0.99J
	unknown	1	mg/kg	15.25	0.37J
	unknown	1	mg/kg	15.81	0.37J
	Cyclohexane, 1,1-dimethyl-2,4-bis(1-met	1	mg/kg	15.93	0.73J
	Stigmast-5-en-3-ol, (3.beta.,24S)-	1	mg/kg	16.27	2.8J
	unknown	1	mg/kg	4.05	2.5JB
	2-Pentanone, 4-hydroxy-4-methyl-	1	mg/kg	4.36	130JAB
	Ethanol, 2-butoxy-	1	mg/kg	4.93	0.33J
	unknown	1	mg/kg	5.04	0.65JB
	2-Propanol, 1-butoxy-	1	mg/kg	5.23	0.53JB
	Benzene, 1,2,4-trimethyl- TotalSemiVolatileTic	1 1	mg/kg mg/kg	5.67 NA	0.29J 150J
т.	AL Metals 6010	<u>'</u>	Illyrky	110	1303
<u> </u>	Analyte	DF	Units	RL	Result
	Alluminum	1	mg/kg	390	11000
	Antimony	1	mg/kg	3.9	ND
	Arsenic	1	mg/kg	3.9	ND
	Barium	1	mg/kg	20	190
	Beryllium	1	mg/kg	1.2	ND
	Cadmium	1	mg/kg	1.2	ND
	Calcium	1	mg/kg	2000	6000
	Chromium	1	mg/kg	9.8	29
	Cobalt	1	mg/kg	4.9	11
	Copper	1	mg/kg	9.8	27
	Iron	1	mg/kg	390	28000
	Lead	1	mg/kg	9.8	26
	Magnesium	1	mg/kg	980	5100
	Manganese	1	mg/kg	20	4200
	_			9.8	20
	Nickel	1	mg/kg		
	Nickel Potassium	1	mg/kg	980	2800
	Nickel Potassium Selenium	1	mg/kg mg/kg	980 3.5	2800 ND
	Nickel Potassium	1	mg/kg	980	2800

 Sample ID: SD-1
 Collection Date: 4/19/2011

 Lab#: AC58547-005
 Receipt Date: 4/20/2011

 Matrix: Soil
 Receipt Date: 4/20/2011

 Thallium
 1
 mg/kg
 2.4
 ND

 Vanadium
 1
 mg/kg
 20
 37

 Zinc
 1
 mg/kg
 20
 94

Volatile Organics + 10 (8260)

Analyte	DF	Units	RL	Result
1,1,1-Trichloroethane	0.947	mg/kg	0.0037	ND
1,1,2,2-Tetrachloroethane	0.947	mg/kg	0.0093	ND
1,1,2-Trichloro-1,2,2-trifluoroethane	0.947	mg/kg	0.0037	ND
1,1,2-Trichloroethane	0.947	mg/kg	0.0037	ND
1,1-Dichloroethane	0.947	mg/kg	0.0037	ND
1,1-Dichloroethene	0.947	mg/kg	0.0037	ND
1,2,3-Trichlorobenzene	0.947	mg/kg	0.0037	ND
1,2,4-Trichlorobenzene	0.947	mg/kg	0.0037	ND
1,2-Dibromo-3-chloropropane	0.947	mg/kg	0.0037	ND
1,2-Dibromoethane	0.947	mg/kg	0.0010	ND
1,2-Dichlorobenzene	0.947	mg/kg	0.0037	ND
1,2-Dichloroethane	0.947	mg/kg	0.0037	ND
1,2-Dichloropropane	0.947	mg/kg	0.0037	ND
1,3-Dichlorobenzene	0.947	mg/kg	0.0037	ND
1,4-Dichlorobenzene	0.947	mg/kg	0.0037	ND
1,4-Dioxane	0.947	mg/kg	0.19	ND
2-Butanone	0.947	mg/kg	0.0037	ND
2-Hexanone	0.947	mg/kg	0.0037	ND
4-Methyl-2-pentanone	0.947	mg/kg	0.0037	ND
Acetone	0.947	mg/kg	0.019	0.028
Benzene	0.947	mg/kg	0.0019	ND
Bromochloromethane	0.947	mg/kg	0.0037	ND
Bromodichloromethane	0.947	mg/kg	0.0037	ND
Bromoform	0.947	mg/kg	0.0037	ND
Bromomethane	0.947	mg/kg	0.0037	ND
Carbon disulfide	0.947	mg/kg	0.0037	ND
Carbon tetrachloride	0.947	mg/kg	0.0037	ND
Chlorobenzene	0.947	mg/kg	0.0037	ND
Chloroethane	0.947	mg/kg	0.0037	ND
Chloroform	0.947	mg/kg	0.0037	ND
Chloromethane	0.947	mg/kg	0.0037	ND
cis-1,2-Dichloroethene	0.947	mg/kg	0.0037	ND
cis-1,3-Dichloropropene	0.947	mg/kg	0.0093	ND
Cyclohexane	0.947	mg/kg	0.0037	ND
Dibromochloromethane	0.947	mg/kg	0.0093	ND
Dichlorodifluoromethane	0.947	mg/kg	0.0037	NÐ
Ethylbenzene	0,947	mg/kg	0.0019	ND
Isopropylbenzene	0.947	mg/kg	0.0019	ND
m&p-Xylenes	0.947	mg/kg	0.0019	NÐ
Methyl Acetate	0.947	mg/kg	0.0037	NÐ
Methylcyclohexane	0.947	mg/kg	0.0037	ND
Methylene chloride	0.947	mg/kg	0.0037	NÐ
Methyl-t-butyl ether	0.947	mg/kg	0.0019	ND
o-Xylene	0.947	mg/kg	0.0019	ND
Styrene	0.947	mg/kg	0.0037	ND
Tetrachloroethene	0.947	mg/kg	0.0037	ND
Toluene	0.947	mg/kg	0.0019	ND
trans-1,2-Dichloroethene	0.947	mg/kg	0.0037	ND
trans-1,3-Dichloropropene	0.947	mg/kg	0.0093	ND
Trichloroethene	0.947	mg/kg	0.0037	ND
Trichlorofluoromethane	0.947	mg/kg	0.0037	ND
Vinyl chloride	0.947	mg/kg	0.0037	ND
Xylenes (Total)	0.947	mg/kg	0.0019	ND

Volatile Organics + 10 (8260) Library Searches

Analyte	DF	Units	RT	Result
No Unknown Compounds Detected	0.947	mg/kg	NA	ND
TotalVolatileTic	0.947	mg/kg	NA	ND

Sample ID: SD-2

Lab#: AC58547-006

Matrix: Soil

Collection Date: 4/19/2011 Receipt Date: 4/20/2011

% Solids SN	12540G
-------------	--------

CO1103 C11125400				
Analyte	DF	Units	RL	Result
% Solids	1	percent		12
	<u>.</u>	percent		12
hloride (Soil) 9056				
Analyte	DF	Units	RL	Result
Chloride	1	mg/kg	830	1200
		ilig/kg	030	1200
yanide (Soil/Waste) 9012B				
Analyte	DF	Units	RL	Result
Cyanide	1	mg/kg	4.17	ND
	<u> </u>	- Ingrky	4.17	NO.
ercury (Soil/Waste) 7471A				
Analyte	DF	Units	RL	Result
Mercury	1	mg/kg	0.69	ND
		Пулу	0.00	
emivolatile Organics + 25 (8270)				
Analyte	DF	Units	RL	Result
1,1'-Biphenyl	1	mg/kg	0.56	ND
1,2,4,5-Tetrachlorobenzene	1	mg/kg	0.56	ND
2,3,4,6-Tetrachlorophenol	1	mg/kg	0.56	ND
2,4,5-Trichlorophenol	1	mg/kg	0.56	ND
2,4,6-Trichlorophenol	1	mg/kg	0.56	ND
2,4-Dichlorophenol	1	mg/kg	0.14	ND
2,4-Dimethylphenol	1	mg/kg	0.56	ND
2,4-Dinitrophenol	1	mg/kg	2.8	ND
2,4-Dinitrotoluene	1	mg/kg	0.56	ND ND
2,6-Dinitrotoluene	1		0.56	ND
2-Chloronaphthalene	1	mg/kg		
•	1	mg/kg	0.56	ND ND
2-Chlorophenol		mg/kg	0.56	ND
2-Methylnaphthalene	1	mg/kg	0.56	ND NB
2-Methylphenol	1	mg/kg 	0.14	ND
2-Nitroaniline	1	mg/kg	0.56	ND
2-Nitrophenol	1	mg/kg	0.56	ND
3&4-Methylphenol	1	mg/kg	0.14	ND
3,3'-Dichlorobenzidine	1	mg/kg	0.56	ND
3-Nitroaniline	1	mg/kg	0.56	ND
4,6-Dinitro-2-methylphenol	1	mg/kg	2.8	ND
4-Bromophenyl-phenylether	1	mg/kg	0.56	ND
4-Chloro-3-methylphenol	1	mg/kg	0.56	ND
4-Chloroaniline	1	mg/kg	0.26	ND
4-Chlorophenyl-phenylether	1	mg/kg	0.56	ND
4-Nitroaniline	1	mg/kg	0.56	ND
4-Nitrophenol	1	mg/kg	0.56	ND
Acenaphthene	1	mg/kg	0.56	ND
Acenaphthylene	1	mg/kg	0.56	ND
Acetophenone	1	mg/kg	0.56	ND
Anthracene	1	mg/kg	0.56	ND
Atrazine	1	mg/kg	0.56	ND
Benzaldehyde	1	mg/kg	0.56	ND
Benzo[a]anthracene	1	mg/kg	0.56	ND
Benzo[a]pyrene	1	mg/kg	0.56	0.56
Benzo[b]fluoranthene	1	mg/kg	0.56	0.85
Benzo[g,h,i]perylene	1	mg/kg	0.56	ND
Benzo[k]fluoranthene	1		0.56	ND ND
bis(2-Chloroethoxy)methane	1	mg/kg mg/kg	0.56	ND ND
•	1	mg/kg		
bis(2-Chloroethyl)ether		mg/kg	0.14	ND
bis(2-Chloroisopropyl)ether	1	mg/kg	0.56	ND
bis(2-Ethylhexyl)phthalate	1	mg/kg	0.56	ND
Butylbenzylphthalate	1	mg/kg	0.56	ND
Caprolactam	1	mg/kg	0.56	ND
		mg/kg	0.56	ND
Carbazole	1			
Carbazole Chrysene	1	mg/kg	0.56	ND
Carbazole Chrysene Dibenzo[a,h]anthracene			0.56 0.56	ND ND
Carbazole Chrysene	1	mg/kg		
Carbazole Chrysene Dibenzo[a,h]anthracene	1 1	mg/kg mg/kg	0.56	ND

ample ID: Lab#:	SD-2 AC58547-006				Date: 4/19/2011 Date: 4/20/2011
Matrix:					- 410. 1/20/2017
	Di-n-butylphthalate	1	mg/kg	0.56	ND
	Di-n-octylphthalate	1	mg/kg	0.56	ND
	Fluoranthene	1	mg/kg	0.56	0.72
	Fluorene	1	mg/kg	0.56	ND
	Hexachlorobenzene	1	mg/kg	0.56	ND
	Hexachlorobutadiene	1	mg/kg	0.56	ND
	Hexachlorocyclopentadiene	1	mg/kg	2.8	ND
	Hexachloroethane	1	mg/kg	0.56	ND
	Indeno[1,2,3-cd]pyrene	1	mg/kg	0.56	ND
	Isophorone	1	mg/kg	0.56	ND
	Naphthalene	1	mg/kg	0.14	ND
	Nitrobenzene	1	mg/kg	0.56	ND
	N-Nitroso-di-n-propylamine	1	mg/kg	0.14	ND
	N-Nitrosodiphenylamine	1	mg/kg	0.56	ND
	Pentachlorophenol	1	mg/kg	5.6	ND
	Phenanthrene	1	mg/kg	0.56	ND
	Phenol	1	mg/kg	0.56	ND
	Pyrene	1	mg/kg	0.56	0.98
-	Cominglatile Organics + 25 (9270) Library Cons	ahaa			
-	Semivolatile Organics + 25 (8270) Library Sear				
	Analyte	DF	Units	RT	Result
	(24R)-4-STIGMASTEN-3-ONE	1	mg/kg	12.18	2.4J
	1-Hexadecene	1	mg/kg	12.66	4.0J
	Hexadecane	· i	mg/kg	13.42	12J
	6-Octen-1-ol, 3,7-dimethyl-, formate	i	mg/kg	13.65	3.7J
	Octadecane	1	mg/kg	13.78	2.6J
	10-DEMETHYLSQUALENE	1	mg/kg	13.86	4.6J
	Octadecanal	1	mg/kg	13.94	3.8J
	Hexatriacontane	1	mg/kg	14.14	15J
	unknown	1	mg/kg	14.16	4.9J
	2,2-DIDEUTERO OCTADECANAL	1	mg/kg	14.69	2.9J
	.gammaTocopherol	1	mg/kg	14.79	2.4J
	Hexatriacontane	1	mg/kg	14.91	6.5J
	9-Eicosene, (E)-	1	mg/kg	14.96	3.7J
	unknown	1	mg/kg	15.02	3.1J
	Vitamin E	1	mg/kg	15.14	6.2J
	Cholest-5-en-3-ol (3.beta.)-	i	mg/kg	15.25	5.6J
	unknown	1	mg/kg	15.46	4.5J
	4,4\-DINITRODIPHENYLSULPHIDE	<u>'</u>	mg/kg	15.76	2.8J
		1	mg/kg	15.94	4.7J
	Tricyclo[4.3.0.0(7,9)]nonane, 2,2,5,5,8 unknown	; 1	mg/kg	16.02	2.6J
	Stigmast-5-en-3-ol, (3.beta.,24S)-	1	mg/kg	16.27	27J
		1		4.01	11JB
	unknown		mg/kg	4.33	570JAB
	2-Pentanone, 4-hydroxy-4-methyl-	1	mg/kg	5.03	3.1JB
	unknown 2-Propanol, 1-butoxy-	<u> </u>	mg/kg	5.23	2.5JY
	2-Propanol, 1-butoxy- TotalSemiVolatileTic	1	mg/kg mg/kg	5.23 NA	2.5J¥ 710J
_		1	mg/kg	NA	/ IUJ
T	TAL Metals 6010				
_	Analyte	DF	Units	RL	Result
	Aluminum	1	mg/kg	1700	12000
	Antimony	1	mg/kg	17	ND
	Arsenic	1	mg/kg	17	ND
	Barium	1	mg/kg	83	860
	Beryllium	1	mg/kg	5.0	ND
	Cadmium	1	mg/kg	5.0	ND
	Calcium	1	mg/kg	8300	14000
	Chromium	1	mg/kg	42	44
	Cobalt	1	mg/kg	21	ND
	Copper	1	mg/kg	42	48
	Iron	1	mg/kg	1700	58000
	Lead	11	mg/kg	42	68
	Magnesium	1	mg/kg	4200	6000
	Manganese	1	mg/kg	83	29000
	Nickel	1	mg/kg	42	ND
	Potassium	1	mg/kg	4200	ND
	Selenium	1	mg/kg	15	16
		1	mg/kg	12	ND
	Silver		iliging		
	Silver Sodium	1	mg/kg	2100	ND

Sample ID: SD-2 Collection Date: 4/19/2011

Lab#: AC58547-006 Receipt Date: 4/20/2011

Matrix: Soil

 Thallium
 1
 mg/kg
 10
 ND

 Vanadium
 1
 mg/kg
 83
 ND

 Zinc
 1
 mg/kg
 83
 270

Volatile Organics + 10 (8260)

Analyte	DF	Units	RL	Result
1,1,1-Trichloroethane	0.965	mg/kg	0.016	ND
1,1,2,2-Tetrachloroethane	0.965	mg/kg	0.040	ND
1,1,2-Trichloro-1,2,2-trifluoroethane	0.965	mg/kg	0.016	ND
1,1,2-Trichloroethane	0.965	mg/kg	0.016	ND
1.1-Dichloroethane	0,965	mg/kg	0.016	ND
1,1-Dichloroethene	0.965	mg/kg	0.016	ND
1,2,3-Trichlorobenzene	0.965	mg/kg	0.016	ND
1,2,4-Trichlorobenzene	0.965	mg/kg	0.016	ND
1,2-Dibromo-3-chloropropane	0.965	mg/kg	0.016	ND
1,2-Dibromoethane	0.965	mg/kg	0.0044	ND
1,2-Dichlorobenzene	0.965	mg/kg	0.016	ND
1,2-Dichloroethane	0.965	mg/kg	0.016	ND
1,2-Dichloropropane	0.965	mg/kg	0.016	ND
1,3-Dichlorobenzene	0.965	mg/kg	0.016	ND
1,4-Dichlorobenzene	0.965	mg/kg	0.016	ND
1,4-Dioxane	0.965	mg/kg	0.80	ND
2-Butanone	0.965	mg/kg	0.016	ND
2-Hexanone	0.965	mg/kg	0.016	ND
4-Methyl-2-pentanone	0.965	mg/kg	0.016	ND
Acetone	0.965	mg/kg	0.080	ND ND
Benzene	0.965	mg/kg	0.0080	ND
Bromochloromethane	0.965		0.016	ND
		mg/kg		ND
Bromodichloromethane	0.965	mg/kg	0.016 0.016	ND ND
Bromoform	0.965	mg/kg		
Bromomethane	0.965	mg/kg	0.016	ND ND
Carbon disulfide	0.965	mg/kg	0.016	ND ND
Carbon tetrachloride	0.965	mg/kg	0.016	ND ND
Chiorobenzene	0.965	mg/kg	0.016	ND
Chloroethane	0.965	mg/kg	0.016	ND
Chloroform	0.965	mg/kg	0.016	ND
Chloromethane	0.965	mg/kg	0.016	ND
cis-1,2-Dichloroethene	0.965	mg/kg	0.016	ND
cis-1,3-Dichloropropene	0.965	mg/kg	0.040	ND
Cyclohexane	0.965	mg/kg	0.016	ND
Dibromochloromethane	0.965	mg/kg	0.040	ND
Dichlorodifluoromethane	0.965	mg/kg	0.016	ND
Ethylbenzene	0.965	mg/kg	0.0080	ND
Isopropylbenzene	0.965	mg/kg	0.0080	ND
m&p-Xylenes	0.965	mg/kg	0.0080	ND
Methyl Acetate	0.965	mg/kg	0.016	ND
Methylcyclohexane	0.965	mg/kg	0.016	ND
Methylene chloride	0.965	mg/kg	0.016	ND
Methyl-t-butyl ether	0.965	mg/kg	0.0080	ND
o-Xylene	0.965	mg/kg	0.0080	ND
Styrene	0.965	mg/kg	0.016	ND
Tetrachloroethene	0.965	mg/kg	0.016	ND
Toluene	0.965	mg/kg	0.0080	ND
trans-1,2-Dichloroethene	0.965	mg/kg	0.016	ND
trans-1,3-Dichloropropene	0.965	mg/kg	0.040	ND
Trichloroethene	0.965	mg/kg	0.016	ND
Trichlorofluoromethane	0.965	mg/kg	0.016	ND
Vinyl chloride	0.965	mg/kg	0.016	ND
Xylenes (Total)	0.965	mg/kg	0.0080	ND

Volatile Organics + 10 (8260) Library Searches

Analyte	DF	Units	RT	Result
No Unknown Compounds Detected	0.965	mg/kg	NA	ND
TotalVolatileTic	0.965	mg/kg	NA	ND

Sample ID: SD-3

Lab#: AC58547-007

Matrix

Collection Date: 4/19/2011 Receipt Date: 4/20/2011

Soil				
Solids SM2540G				
Analyte	DF	Units	RL	Result
% Solids	1	percent		73
nloride (Soil) 9056				
Analyte	DF	Units	RL	Result
			· · · · · · · · · · · · · · · · · · ·	230
Chloride Chloride	1	mg/kg	140	230
anide (Soil/Waste) 9012B				
Analyte	DF	Units	RL	Result
Cyanide	1	mg/kg	0.68	ND
rcury (Soil/Waste) 7471A				
Analyte	DF	Units	RL	Result
Mercury	1	mg/kg	0.11	ND
mivolatile Organics + 25 (8270)				
Analyte	DF	Units	RL	Result
1,1'-Biphenyl	1	mg/kg	0.091	ND
1,2,4,5-Tetrachlorobenzene	1	mg/kg	0.091	ND
2,3,4,6-Tetrachlorophenol	1 1	mg/kg mg/kg	0.091 0.091	ND ND
2,4,5-Trichlorophenol 2,4,6-Trichlorophenol	1	mg/kg mg/kg	0.091	ND ND
2,4-Dichlorophenol	1	mg/kg	0.023	ND
2,4-Dimethylphenol	1	mg/kg	0.091	ND
2,4-Dinitrophenol	1	mg/kg	0.46	ND
2,4-Dinitrotoluene	1	mg/kg	0.091	ND
2,6-Dinitrotoluene	1	mg/kg	0.091	ND
2-Chloronaphthalene	1	mg/kg	0.091	ND ND
2-Chlorophenol 2-Methylnaphthalene	1	mg/kg mg/kg	0.091	ND ND
2-Methylphenol	1	mg/kg	0.023	ND
2-Nitroaniline	1	mg/kg	0.091	ND
2-Nitrophenol	1	mg/kg	0.091	ND
3&4-Methylphenol	. 1	mg/kg	0.023	ND
3,3'-Dichlorobenzidine	1	mg/kg	0.091	ND
3-Nitroaniline	1	mg/kg	0.091	ND ND
4,6-Dinitro-2-methylphenol	<u> </u>	mg/kg	0.091	ND ND
4-Bromophenyl-phenylether 4-Chloro-3-methylphenol	1	mg/kg mg/kg	0.091 0.091	ND
4-Chloroaniline	1	mg/kg	0.043	ND
4-Chlorophenyl-phenylether	1	mg/kg	0.091	ND
4-Nitroaniline	1	mg/kg	0.091	ND
4-Nitrophenol	1	mg/kg	0.091	ND
Acenaphthene	1	mg/kg	0.091	ND
Acenaphthylene	1	mg/kg	0.091	ND ND
Actophenone	1	mg/kg	0.091	ND ND
Anthracene Atrazine	1 1	mg/kg mg/kg	0.091 0.091	ND ND
Benzaldehyde	1	mg/kg	0.091	ND
Benzo[a]anthracene	1	mg/kg	0.091	ND
Benzo[a]pyrene	1	mg/kg	0.091	ND
Benzo[b]fluoranthene	1	mg/kg	0.091	ND
Benzo[g,h,i]perylene	1	mg/kg	0.091	ND
Benzo[k]fluoranthene	1	mg/kg	0.091	ND NB
bis(2-Chloroethoxy)methane	1	mg/kg	0.091	ND ND
bis(2-Chloroethyl)ether bis(2-Chloroisopropyl)ether	1 1	mg/kg mg/kg	0.023 0.091	ND ND
bis(2-Ethylhexyl)phthalate	1	mg/kg	0.091	ND ND
Butylbenzylphthalate	1	mg/kg	0.091	ND ND
Caprolactam	1	mg/kg	0.091	ND
Carbazole	1	mg/kg	0.091	ND
Chrysene	1	mg/kg	0.091	ND
Dibenzo[a,h]anthracene	1	mg/kg	0.091	ND
Dibenzofuran	1	mg/kg	0.023	ND
Directly shall be a second of the second of	1	mg/kg	0.091	ND ND
Lumetnyinntnalaté	1	malka	COMP	NII

Dimethylphthalate

mg/kg

0.091

ND

	Analyte	DF	Units	RL	Result
<u></u>	olatile Organics + 10 (8260)		11.2	D.	
	Zinc	1	mg/kg	14	32
	Vanadium	1	mg/kg	14	ND
	Thallium	1	mg/kg	1.6	ND
	Sodium	1	mg/kg	340	ND
	Silver	1	mg/kg	2.1	ND
	Potassium Selenium	1 1	mg/kg mg/kg	2.5	1700 ND
	Nickel	1	mg/kg	6.8	11
	Manganese	1	mg/kg	14	390
	Magnesium	1	mg/kg	680	39000
	Lead	1	mg/kg	6.8	9.7
	lron	1	mg/kg mg/kg	270	15000
	Cobalt Copper	1 1	mg/kg mg/kg	3.4 6.8	6.0 11
	Chromium	1	mg/kg	3.4	8.7
	Calcium	1	mg/kg	1400	76000
	Cadmium	1	mg/kg	0.82	ND
	Beryllium	1	mg/kg	0.82	ND
	Barium	1	mg/kg	14	27
	Arsenic	1	mg/kg	2.7	2.7
	Antimony	1	mg/kg	2.7	ND
	Aluminum	1	mg/kg	270	5400
_	Analyte	DF	Units	RL	Result
T	AL Metals 6010				
	TotalSemiVolatileTic	1	mg/kg	NA	110J
	2-Propanol, 1-butoxy-	1	mg/kg	5.29	0.36JB
	unknown	1	mg/kg	5.09	0.47JB
	Ethanol, 2-butoxy-	1	mg/kg	4.98	0.23J
	2-Pentanone, 4-hydroxy-4-methyl-	1	mg/kg	4.42	100JAB
	unknown	1	mg/kg	4.09	1.8JB
	Stigmast-5-en-3-ol, (3.beta.,24S)-	1	mg/kg	16.4	1.1J
	Naphthalene, 1,2,3,4,4a,5,6,8a-octahydr	1	mg/kg	15.79	0.45J
	Eicosane 4H-Naphtho[2,3-b]pyran-4,6,9-trione, 5,	1	mg/kg mg/kg	14.23 14.65	0.61J 0.41J
	Tetradecanal	1	mg/kg	14.02	0.19J
	unknown	1	mg/kg	13.89	0.28J
	unknown	1	mg/kg	13.77	0.34J
	Dihydrobetabisabolene	1	mg/kg	13.65	1.8J
	Tetratetracontane	1	mg/kg	13.51	0.29J
	unknown	1	mg/kg	13.45	0.47J
	(24R)-4-STIGMASTEN-3-ONE Phosphonic acid, dioctadecyl ester	1	mg/kg mg/kg	12.1 12.73	0.64J 0.24J
	1-Dodecanol	1	mg/kg	11.22	0.27J
	Hexadecanoic acid	1	mg/kg	10.39	0.26J
	Analyte				
_		DF	Units	RT	Result
S	emivolatile Organics + 25 (8270) Library Searches	3			
_	Pyrene	1	mg/kg	0.091	ND
	Phenol	1	mg/kg	0.091	ND
	Phenanthrene	1	mg/kg	0.091	ND
	Pentachlorophenol	1	mg/kg	0.46	ND
	N-Nitrosodiphenylamine N-Nitrosodiphenylamine	1	mg/kg	0.023	ND ND
	Nitrobenzene N-Nitroso-di-n-propylamine	1	mg/kg mg/kg	0.091	ND ND
	Naphthalene	1	mg/kg	0.023	ND ND
	Isophorone	1	mg/kg	0.091	ND
	Indeno[1,2,3-cd]pyrene	1	mg/kg	0.091	ND
	Hexachloroethane	1	mg/kg	0.091	ND
	Hexachlorocyclopentadiene	1	mg/kg	0.091	ND
	Hexachlorobutadiene	1	mg/kg	0.091	ND ND
	Fluorene Hexachlorobenzene	1 1	mg/kg mg/kg	0.091	ND ND
	Fluoranthene	1	mg/kg	0.091	ND ND
	Di-n-octylphthalate	1	mg/kg	0.091	ND
	Di-n-butylphthalate	1	mg/kg	0.091	ND
uix.	Soil				
triv				Receipt	Date: 4/20/2011
	AC58547-007				

Sample ID: SD-3 Collection Date: 4/19/2011 Lab#: AC58547-007 Receipt Date: 4/20/2011 Matrix: Soil 0.982 0.0027 1,1,1-Trichloroethane mg/kg 1,1,2,2-Tetrachloroethane 0.982 mg/kg 0.0067 ND ND 1,1,2-Trichloro-1,2,2-trifluoroethane 0.982 mg/kg 0.0027 1,1,2-Trichloroethane 0.982 0.0027 ND mg/kg 0.0027 ND 1,1-Dichloroethane 0.982 mg/kg 1,1-Dichloroethene 0.982 mg/kg 0.0027 ND 1.2.3-Trichlorobenzene 0.982 mg/kg 0.0027 ND 1,2,4-Trichlorobenzene 0.982 0.0027 ND mg/kg 0.982 0.0027 ND 1,2-Dibromo-3-chloropropane mg/kg ΝĐ 1,2-Dibromoethane 0.982 mg/kg 0.00074 ND 1.2-Dichlorobenzene 0.982 0.0027 mg/kg 1,2-Dichloroethane 0.982 mg/kg 0.0027 ND 1,2-Dichloropropane 0.982 0.0027 ND mg/kg 0.982 0.0027 ND 1.3-Dichlorobenzene mg/kg 1,4-Dichlorobenzene 0.982 0.0027 ND ma/ka 1,4-Dioxane 0.982 0.13 ND mg/kg 2-Butanone 0.982 mg/kg 0.0027 ND ND 0.982 0.0027 2-Hexanone mg/kg 0.0027 ND 4-Methyl-2-pentanone 0.982 mg/kg Acetone 0.982 mg/kg 0.013 0.022 0.0013 ND Benzene 0.982 mg/kg 0.982 mg/kg 0.0027 ND Bromochloromethane Bromodichloromethane 0.982 0.0027 ND mg/kg 0.0027 ND Bromoform 0.982 mg/kg Bromomethane 0.982 0.0027 ND mg/kg 0.0027 ND Carbon disulfide 0.982 mg/kg Carbon tetrachloride 0.982 mg/kg 0.0027 ND Chlorobenzene 0.0027 ND 0.982 mg/kg Chloroethane 0.982 0.0027 ND mg/kg Chloroform 0.982 mg/kg 0.0027 ND Chloromethane 0.982 mg/kg 0.0027 ND 0.982 ND 0.0027 cis-1.2-Dichloroethene mg/kg 0.982 0.0067 ND cis-1,3-Dichloropropene mg/kg Cyclohexane 0.982 mg/kg 0.0027 ND 0.982 0.0067 ND Dibromochloromethane ma/ka 0.982 0.0027 Dichlorodifluoromethane mg/kg ND Ethylbenzene 0.982 mg/kg 0.0013 ND ND isopropylbenzene 0.982 mg/kg 0.0013 m&p-Xvlenes 0.982 mg/kg 0.0013 ND Methyl Acetate 0.982 0.0027 ND mg/kg Methylcyclohexane 0.982 mg/kg 0.0027 ND 0.982 mg/kg 0.0027 ND Methylene chloride 0.982 0.0013 ND Methyl-t-butyl ether mg/kg o-Xylene 0.982 mg/kg 0.0013 ND 0.0027 ND 0.982 Styrene mg/kg ND Tetrachloroethene 0.982 0.0027 mg/kg 0.982 0.0013 ND mg/kg trans-1,2-Dichloroethene 0.982 mg/kg 0.0027 ND trans-1,3-Dichloropropene 0.0067 ND 0.982 mg/kg 0.0027 ND Trichloroethene 0.982 mg/kg Trichlorofluoromethane 0.982 mg/kg 0.0027 ND 0.0027 ND Vinvl chloride 0.982 mg/kg Xylenes (Total) 0.982 mg/kg 0.0013 ND

Volatile Organics + 10 (8260) Library Searches

Analyte	DF	Units	RT	Result	
No Unknown Compounds Detected	0.982	mg/kg	NA	ND	
TotalVolatileTic	0.982	mg/kg	NA	ND	

Sample ID: SD-4

Lab#: AC58547-008

Matrix: Soil

Collection Date: 4/19/2011

Receipt Date: 4/20/2011

Analyta	DF	I In:t-	RL	Pagult
Analyte		Units	RL	Result
% Solids	1	percent		54
nloride (Soil) 9056				
Analyte	DF	Units	RL	Result
Chloride	1	mg/kg	190	290
vanide (Soil/Waste) 9012B				
Analyte	DF	Units	RL	Result
Cyanide	11	mg/kg	0.93	1.2
ercury (Soil/Waste) 7471A				
Analyte	DF	Units	RL	Result
Mercury	1	mg/kg	0.15	ND
·	<u>'</u>	mg/kg	0.13	
mivolatile Organics + 25 (8270)				
Analyte	DF	Units	RL	Result
1,1'-Biphen y l	1	mg/kg	0.12	ND
1,2,4,5-Tetrachlorobenzene	1	mg/kg	0.12	ND
2,3,4,6-Tetrachlorophenol	1	mg/kg	0.12	ND
2,4,5-Trichlorophenol	1	mg/kg	0.12	ND ND
2,4,6-Trichlorophenol	1	mg/kg	0.12	ND
2,4-Dichlorophenol	1	mg/kg	0.031	ND
2,4-Dimethylphenol 2,4-Dinitrophenol	1 1	mg/kg mg/kg	0.12 0.62	ND ND
2,4-Dinitrotoluene	1	mg/kg	0.12	ND
2,6-Dinitrotoluene	1	mg/kg	0.12	ND
2-Chloronaphthalene	1	mg/kg	0.12	ND
2-Chlorophenol	1	mg/kg	0.12	ND
2-Methylnaphthalene	1	mg/kg	0.12	ND
2-Methylphenol	1	mg/kg	0.031	ND
2-Nitroaniline	1	mg/kg	0.12	ND
2-Nitrophenol	1	mg/kg	0.12	ND
3&4-Methylphenol	1	mg/kg	0.031	ND
3,3'-Dichlorobenzidine	1	mg/kg	0.12	ND
3-Nitroaniline	1	mg/kg	0.12	ND
4,6-Dinitro-2-methylphenol	1	mg/kg	0.12	ND
4-Bromophenyl-phenylether	1	mg/kg	0.12	ND
4-Chloro-3-methylphenol	1	mg/kg	0.12	ND
4-Chloroaniline	1	mg/kg	0.059	ND
4-Chlorophenyl-phenylether	1	mg/kg	0.12	ND ND
4-Nitroaniline 4-Nitrophenol	1	mg/kg	0.12 0.12	ND ND
4-Nitrophenol Acenaphthene	1	mg/kg mg/kg	0.12	ND
Acenaphthylene	1	mg/kg	0.12	ND
Acetophenone	1	mg/kg	0.12	ND ND
Anthracene	1	mg/kg	0.12	ND
Atrazine	1	mg/kg	0.12	ND
Benzaldehyde	1	mg/kg	0.12	ND
Benzo[a]anthracene	1	mg/kg	0.12	0.16
Benzo[a]pyrene	1	mg/kg	0.12	0.22
Benzo[b]fluoranthene	1	mg/kg	0.12	0.33
Benzo[g,h,i]perylene	1	mg/kg	0.12	0.18
Benzo[k]fluoranthene	1	mg/kg	0.12	ND
bis(2-Chloroethoxy)methane	1	mg/kg	0.12	ND
bis(2-Chloroethyl)ether	1	mg/kg	0.031	ND
bis(2-Chloroisopropyl)ether	1	mg/kg	0.12	ND ND
bis(2-Ethylhexyl)phthalate	1	mg/kg	0.12	ND ND
Butylbenzylphthalate	1	mg/kg	0.12	ND ND
Carbazola	1 1	mg/kg	0.12 0.12	ND ND
Carbazole Chrysene	1	mg/kg mg/kg	0.12	0.18
Dibenzo[a,h]anthracene	1	mg/kg mg/kg	0.12	ND
Dibenzofuran Dibenzofuran	1	mg/kg	0.031	ND
Diethylphthalate	1	mg/kg	0.12	ND

Project #: 1042016

Page 22 of 28

NOTE: Soil Results are reported to Dry Weight

nple ID:	SD-4			Collection Date:	4/19/2011
Lab#:	AC58547-008			Receipt Date:	4/20/2011
Matrix:	Soil			•	
	Di-n-butylphthalate	1	mg/kg	0.12	ND
	Di-n-octylphthalate	1	mg/kg	0.12	ND
	Fluoranthene	1	mg/kg	0.12	0.28
	Fluorene	1	mg/kg	0.12	ND
	Hexachlorobenzene	1	mg/kg	0.12	ND
	Hexachlorobutadiene	1	mg/kg	0.12	ND
	Hexachlorocyclopentadiene	1 .	mg/kg	0.12	ND
	Hexachloroethane	1	mg/kg	0.12	ND
	Indeno[1,2,3-cd]pyrene	1	mg/kg	0.12	0.16
	Isophorone	1	mg/kg	0.12	ND
	Naphthalene	1	mg/kg	0,031	ND
	Nitrobenzene	1	mg/kg	0.12	ND
	N-Nitroso-di-n-propylamine	1	mg/kg	0.031	ND
	N-Nitrosodiphenylamine	1	mg/kg	0.12	ND
	Pentachlorophenol	1	mg/kg	0.62	ND
	Phenanthrene	1	mg/kg	0.12	ND
	Phenol	1	mg/kg	0,12	ND
	Pyrene	1	mg/kg	0.12	0.34
_			mgreg	0.12	0.04
S	iemivolatile Organics + 25 (8270) Library Searc	ches			
	Analyte	DF	Units	RT	Result
	9-Hexadecenoic acid	1	mg/kg	10.32	2.5J
	9-Hexadecenoic acid	1	mg/kg	10.36	1.1J
	Hexadecanoic acid	1	mg/kg	10.41	3.2J
	15-Tetracosenoic acid, methyl ester, (Z	1	mg/kg	11.25	1.9J
	Tritetracontane	1	mg/kg	12.75	2.3J
	1-Nonadecene	1	mg/kg	13.52	3.2J
	Lycopersen	1	mg/kg	13.95	0.78J
	Triacontane	1	mg/kg	14.24	6.3J
	Tetradecanal	1	mg/kg	14.8	1.1J
	Octacosane	1	mg/kg	15.03	1.3J
	Cyclohexadecane	1	mg/kg	15.07	1.7J
	unknown	1	mg/kg	15.14	0.87J
	Vitamin E	1	mg/kg	15.26	1.1J
	Cholest-5-en-3-ol (3.beta.)-	1	mg/kg	15.36	1.3J
	unknown	1	mg/kg	15.57	1.2J
	1-Octadecanol	1	mg/kg	15.76	1.1J
	Ergost-5-en-3-ol, (3.beta.)-	1	mg/kg	15.70	1.3J
	Stigmasta-5,23-dien-3.betaol	1	mg/kg	16.05	1.5J
		· •		40.00	
	3-Eicosene, (E)-	1	mg/kg	16.09	0.94J 12J
	Stigmast-5-en-3-ol, (3.beta.,24S)- Androstane-3,17-diot	1	mg/kg	16.42 16.5	0.81J
	·		mg/kg		2.4JB
	unknown	1	mg/kg	4.08	
	2-Pentanone, 4-hydroxy-4-methyl-	1	mg/kg	4.42	140JAB
	unknown	1	mg/kg	5.09	0.74JB
	unknown	1	mg/kg	7.41	0.79J
	TotalSemiVolatileTic	1	mg/kg	NA	190J
Т.	AL Metals 6010				
_	Analyte	DF	Units	RL	Result
	Aluminum	1	mg/kg	370	8100
	Antimony	1	mg/kg	3.7	ND
	Arsenic	1	mg/kg	3.7	ND
	Barium	1	mg/kg	19	150
	Beryllium	1	mg/kg	1.1	ND
	Cadmium	1	mg/kg	1.1	ND
	Calcium	1	mg/kg	1900	17000
	Chromium	1	mg/kg	9.3	25
	Cobalt	1	mg/kg	4.6	8.5
	Copper	1	mg/kg	9.3	17
	Iron	1	mg/kg	370	19000
	Lead	1	mg/kg	9.3	32
	Magnesium	1	mg/kg	930	13000
	magnesium Manganese	1	mg/kg mg/kg	19	3400
	manganese Nickel				20
	NICKEI	1	mg/kg 	9.3	
	Potaccium	4			
	Potassium	1	mg/kg	930	1900
	Selenium	1	mg/kg	3.3	ND

 Sample ID: SD-4
 Collection Date: 4/19/2011

 Lab#: AC58547-008
 Receipt Date: 4/20/2011

 Matrix: Soil
 Receipt Date: 4/20/2011

 Thallium
 1
 mg/kg
 2.2
 ND

 Vanadium
 1
 mg/kg
 19
 33

 Zinc
 1
 mg/kg
 19
 93

Volatile Organics + 10 (8260)

Analyte	DF	Units	RL	Result
1,1,1-Trichloroethane	0.967	mg/kg	0.0036	ND
1,1,2,2-Tetrachloroethane	0.967	mg/kg	0.0090	ND
1,1,2-Trichloro-1,2,2-trifluoroethane	0.967	mg/kg	0.0036	ND
1,1,2-Trichloroethane	0.967	mg/kg	0.0036	ND
1,1-Dichloroethane	0.967	mg/kg	0.0036	ND
1,1-Dichloroethene	0.967	mg/kg	0.0036	ND
1,2,3-Trichlorobenzene	0.967	mg/kg	0.0036	ND
1,2,4-Trichlorobenzene	0.967	mg/kg	0.0036	ND
1,2-Dibromo-3-chloropropane	0.967	mg/kg	0.0036	ND
1,2-Dibromoethane	0.967	mg/kg	0.00099	ND
1,2-Dichlorobenzene	0.967	mg/kg	0.0036	ND
1,2-Dichloroethane	0.967	mg/kg	0.0036	ND
1,2-Dichloropropane	0.967	mg/kg	0.0036	ND
1,3-Dichlorobenzene	0.967	mg/kg	0.0036	ND
1,4-Dichlorobenzene	0.967	mg/kg	0.0036	ND
1,4-Dioxane	0.967	mg/kg	0,18	ND
2-Butanone	0.967	mg/kg	0.0036	ND
2-Hexanone	0.967	mg/kg	0.0036	ND
4-Methyl-2-pentanone	0.967	mg/kg	0.0036	ND
Acetone	0.967	mg/kg	0.018	ND
Benzene	0.967	mg/kg	0.0018	ND
Bromochloromethane	0.967	mg/kg	0.0036	ND
Bromodichloromethane	0.967	mg/kg	0.0036	ND
Bromoform	0.967	mg/kg	0.0036	ND
Bromomethane	0.967	mg/kg	0.0036	ND
Carbon disulfide	0.967	mg/kg	0.0036	ND
Carbon tetrachloride	0.967	mg/kg	0.0036	ND
Chlorobenzene	0.967	mg/kg	0.0036	ND
Chloroethane	0.967	mg/kg	0.0036	ND
Chloroform	0.967	mg/kg	0.0036	ND
Chloromethane	0.967	mg/kg	0.0036	ND
cis-1,2-Dichloroethene	0.967	mg/kg	0.0036	ND
cis-1,3-Dichloropropene	0.967	mg/kg	0.0090	ND
Cyclohexane	0.967	mg/kg	0.0036	ND
Dibromochloromethane	0.967	mg/kg	0.0090	ND
Dichlorodifluoromethane	0.967	mg/kg	0.0036	ND
Ethylbenzene	0.967	mg/kg	0.0018	ND ND
-	0.967	mg/kg	0.0018	ND
Isopropylbenzene	0.967	mg/kg	0.0018	ND
m&p-Xylenes	0.967	mg/kg	0.0036	ND
Methyl Acetate	0.967		0.0036	ND
Methylcyclohexane	0.967	mg/kg	0.0036	ND
Methylene chloride		mg/kg	0.0038	ND
Methyl-t-butyl ether	0.967 0.967	mg/kg	0.0018	ND
o-Xylene		mg/kg		ND ND
Styrene	0.967	mg/kg	0.0036	
Tetrachloroethene	0.967	mg/kg	0.0036	ND ND
Toluene	0.967	mg/kg	0.0018	ND
trans-1,2-Dichloroethene	0.967	mg/kg	0.0036	ND
trans-1,3-Dichloropropene	0.967	mg/kg	0.0090	ND
Trichloroethene	0.967	mg/kg	0.0036	ND
Trichlorofluoromethane	0.967	mg/kg	0.0036 0.0036	ND ND
Vinyl chloride	0.967	mg/kg		

Volatile Organics + 10 (8260) Library Searches

Analyte	DF	Units	RT	Result	
No Unknown Compounds Detected	0.967	mg/kg	NA	ND	
TotalVolatileTic	0.967	mg/kg	NA	ND	

Sample ID: FB-1

Lab#: AC58547-009

Collection Date: 4/20/2011 Receipt Date: 4/20/2011

Matrix: Aqueous

Analyte	DF	Units	RL	Result
Chloride	1	mg/l	1.0	1.1
nide-Water (EPA 335.4)				
Analyte	DF	Units	RL	Result
Cyanide	1	mg/l	.02	ND
rcury (Water) 245.1				
Analyte	DF	Units	RL	Result
Mercury	1	ug/l	0.20	ND
nivolatile Organics + 25 (625)				
Analyte	DF	Units	RL	Result
1,1'-Biphenyl	1	ug/l	2.1	ND
1,2,4,5-Tetrachlorobenzene	1	ug/I	2.1	ND
2,3,4,6-Tetrachlorophenol	1	ug/l	2.1	ND
2,4,5-Trichlorophenol	1	ug/I	2.1	ND
2,4,6-Trichlorophenol	1	ug/I	2.1	ND
2,4-Dichlorophenol	1	ug/l	2.1	ND
2,4-Dimethylphenol	1	ug/l	2.1	ND
2,4-Dinitrophenol	1	ug/l	10	ND
2,4-Dinitrotoluene	1	ug/l	2.1	ND
2,6-Dinitrotoluene	1	ug/l	2.1	ND
2-Chloronaphthalene	1	ug/l	2.1	ND
2-Chlorophenol	1	ug/l	2.1	ND
2-Methylnaphthalene	1	ug/I	2.1	ND
2-Methylphenol	1	ug/l	0.52	ND
2-Nitroaniline	1	ug/I	2.1	ND
2-Nitrophenol	1	ug/l	2.1	ND
3&4-Methylphenol	1	ug/l	0.52	ND
3,3'-Dichlorobenzidine	1	ug/l	2.1	ND
3-Nitroaniline	1	ug/l	2.1	ND
4,6-Dinitro-2-methylphenol	1	ug/l	10	ND
4-Bromophenyl-phenylether	1	ug/l	2.1	ND
4-Chloro-3-methylphenol	1	ug/l	2.1	ND
4-Chloroaniline	1	ug/l	0.52	ND
			2.1	ND
4-Chlorophenyl-phenylether	<u> </u>	ug/l	2.1	ND
4-Nitroaniline		ug/l		ND
4-Nitrophenol	1	ug/l	2.1	
Acenaphthene	1	ug/l	2.1	ND
Acenaphthylene	1	ug/l	2.1	ND
Actophenone	1	ug/l	2.1	ND
Anthracene	1	ug/l	2.1	ND ND
Atrazine	1	ug/l	2.1	ND
Benzaldehyde	1	ug/l	2.1	ND
Benzo[a]anthracene	1	ug/l	2.1	ND
Benzo[a]pyrene	1	ug/l	2.1	ND
Benzo(b)fluoranthene	1	ug/l	2.1	ND
Benzo[g,h,i]perylene	1	ug/l	2.1	ND
Benzo[k]fluoranthene	1	ug/l	2.1	ND
bis(2-Chloroethoxy)methane	1	ug/l	2.1	ND
bis(2-Chloroethyl)ether	1	ug/l	0.52	ND
bis(2-Chloroisopropyl)ether	1	ug/l	2.1	ND
bis(2-Ethylhexyl)phthalate	1	ug/l	2.1	ND
Butylbenzylphthalate	1	ug/l	2.1	ND
Caprolactam	1	ug/l	2.1	ND
Carbazole	1	ug/I	2.1	ND
Chrysene	1	ug/l	2.1	ND
Dibenzo[a,h]anthracene	1	ug/l	2.1	ND
Dibenzofuran	1	ug/l	0,52	ND
Diethylphthalate	1	ug/l	2.1	ND
Dimethylphthalate	1	ug/l	2.1	ND
Di-n-butylphthalate	1	ug/l	2.1	ND
Di-n-octylphthalate	1	ug/l	2.1	ND
Fluoranthene	1	ug/l	2.1	ND
Fluoraninene	1	ug/l	2.1	ND ND

ple ID:				Collection Date:	
	AC58547-009			Receipt Date:	4/20/2011
Matrix:	Aqueous				
	Hexachlorobenzene	1	ug/l	2.1	ND
	Hexachlorobutadiene	1	ug/l	2.1 2.1	ND ND
	Hexachlorocyclopentadiene Hexachloroethane	1 1	ug/l ug/l	2.1	ND ND
	Indeno[1,2,3-cd]pyrene	<u>'</u> 1	ug/l	2.1	ND
	Isophorone	1	ug/l	2.1	ND
	Naphthalene	1	ug/l	0.52	ND
	Nitrobenzene	1	ug/l	2.1	ND
	N-Nitroso-di-n-propylamine	1	ug/l	0.52	ND
	N-Nitrosodiphenylamine	1	ug/l	2.1	ND
	Pentachlorophenol	1	ug/l	10	ND
	Phenanthrene	1	ug/l	2.1	ND
	Phenol Pyrene	1	ug/l ug/l	2.1 2.1	ND ND
s	Semivolatile Organics + 25 (625) Library Searches			2-1	
-	Analyte	DF	Units	RT	Result
	1,3-Dioxolane, 2,2,4-trimethyl-	1	ug/l	2.22	4.9J
	2-Propanol, 1-butoxy-	1	ug/l	4.84	6.7JB
	TotalSemiVolatileTic	1	ug/l	NA	12J
T.	AL Metals 200.7/8				
_	Analyte	DF	Units	RL	Result
	Aluminum	1	ug/l	100	ND
	Antimony	1	ug/l	7.5	ND
	Arsenic	1	ug/l	20	ND
	Barium	1	ug/l	25	ND
	Beryllium	1	ug/l	4.0	ND
	Cadmium Calcium	1	ug/l	2.0 1000	ND ND
	Chromium	1	ug/l ug/l	25	ND
	Cobalt	1	ug/l	10	ND
	Copper	1	ug/l	25	ND
	Iron	1	ug/l	150	ND
	Lead	1	ug/l	5.0	ND
	Magnesium	1	ug/l	1000	ND
	Manganese	1	ug/l	25	ND
	Nickel	1	ug/i	10	ND
	Potassium Selenium	1	ug/l ug/l	2500 25	ND ND
	Silver	1	ug/l	10	ND
	Sodium	1	ug/l	2500	ND
	Thallium	1	ug/l	5.0	ND
	Vanadium	1	ug/l	25	ND
_	Zinc	1	ug/l	25	ND
V	/olatile Organics + 10 (624)				
	Analyte	DF	Units	RL	Result
	1,1,1-Trichloroethane	1	ug/l	1.0	ND
	1,1,2,2-Tetrachloroethane	1	ug/l	1.0	ND ND
	1,1,2-Trichloro-1,2,2-trifluoroethane	1	ug/l	5.0 1.0	ND ND
	1,1,2-Trichloroethane	1	ug/l ug/l	1.0	ND
	1,1-Dichloroethane	1	ug/l	1.0	ND
	1,2,3-Trichlorobenzene	1	ug/l	1.0	ND
	1,2,4-Trichlorobenzene	1	ug/l	1.0	ND
	1,2-Dibromo-3-chloropropane	1	ug/l	1.0	ND
	1,2-Dibromoethane	1	ug/l	1.0	ND
	1,2-Dichlorobenzene	1	ug/I	1.0	ND
	1,2-Dichloroethane	1	ug/I	0.50	ND
	1,2-Dichloropropane	1	ug/l	1.0	ND ND
	1,3-Dichlorobenzene	1	ug/l	1.0 1.0	ND ND
	1,4-Dichlorobenzene 1,4-Dioxane	1 1	ug/l ug/l	1.0 50	ND ND
	2-Butanone	1	ug/l	1.0	ND
	2-Hexanone	1	ug/l	1.0	ND
	4-Methyl-2-pentanone	1	ug/l	1.0	ND
		1 1		1.0 10	ND ND

ample ID:	FB-1			Collection	Date: 4/20/2011
Lab#:	AC58547-009			Receipt	Date: 4/20/2011
Matrix:	Aqueous				
	Bromochloromethane	1	ug/l	1.0	ND
	Bromodichloromethane	1	ug/l	1.0	ND
	Bromoform	1	ug/l	1.0	ND
	Bromomethane	1	ug/l	1.0	ND
	Carbon disulfide	1	ug/l	1.0	ND
	Carbon tetrachloride	1	ug/l	1.0	ND
	Chlorobenzene	1	ug/l	1.0	ND
	Chloroethane	1	ug/l	1.0	ND
	Chloroform	1	ug/l	1.0	ND
	Chloromethane	1	ug/l	1.0	ND
	cis-1,2-Dichloroethene	1	ug/l	1.0	ND
	cis-1,3-Dichloropropene	1	ug/l	1.0	ND
	Cyclohexane	1	ug/l	1.0	ND
	Dibromochloromethane	1	ug/l	1.0	ND
	Dichlorodifluoromethane	1	ug/l	1.0	ND
	Ethylbenzene	1	ug/l	1.0	ND
	Isopropylbenzene	1	ug/l	1.0	ND
	m&p-Xylenes	1	ug/l	1.0	ND
	Methyl Acetate	1	ug/l	1.0	ND
	Methylcyclohexane	1	ug/l	1.0	ND
	Methylene chloride	1	ug/l	1.0	ND
	Methyl-t-butyl ether	1	ug/l	0.50	ND
	o-Xylene	1	ug/l	1.0	ND
	Styrene	1	ug/l	1.0	ND
	Tetrachloroethene	1	ug/l	1.0	ND
	Toluene	1	ug/l	1.0	ND
	trans-1,2-Dichloroethene	1	ug/l	1.0	ND
	trans-1,3-Dichloropropene	1	ug/l	1.0	ND
	Trichloroethene	1	ug/l	1.0	ND
	Trichlorofluoromethane	1	ug/l	1.0	ND
	Vinyl chloride	1	ug/l	1.0	ND
	Yvlenes (Total)	1	ug/l	1.0	ND

Volatile Organics + 10 (624) Library Searches

Xylenes (Total)

Analyte	DF	Units	RT	Result	
No Unknown Compounds Detected	1	ug/l	NA	ND	
TotalVolatileTic	1	ug/l	NA	ND	

ug/l

1.0

ND

Sample ID: TRIP

Lab#: AC58547-010 Matrix: Aqueous Collection Date: 4/19/2011 Receipt Date: 4/20/2011

Volatile Organics + 10 (624)

Analyte	DF	Units	RL	Result
1,1,1-Trichloroethane	1	ug/l	1.0	ND
1,1,2,2-Tetrachloroethane	1	ug/l	1.0	ND
1,1,2-Trichloro-1,2,2-trifluoroethane	1	ug/l	5.0	ND
1,1,2-Trichloroethane	1	u g/l	1.0	ND
1,1-Dichloroethane	1	ug/l	1.0	ND
1,1-Dichloroethene	1	ug/l	1.0	ND
1,2,3-Trichlorobenzene	1	ug/l	1.0	ND
1,2,4-Trichlorobenzene	1	ug/l	1.0	ND
1,2-Dibromo-3-chloropropane	1	ug/l	1.0	ND
1,2-Dibromoethane	1	ug/I	1.0	ND
1,2-Dichlorobenzene	1	ug/l	1.0	ND
1,2-Dichloroethane	1	u g/l	0.50	ND
1,2-Dichloropropane	1	ug/l	1.0	ND
1,3-Dichlorobenzene	1	ug/l	1.0	ND
1,4-Dichlorobenzene	1	ug/l	1.0	ND
1,4-Dioxane	1	ug/l	50	ND
2-Butanone	1	ug/l	1.0	ND
2-Hexanone	1	ug/l	1.0	ND
4-Methyl-2-pentanone	1	ug/l	1.0	ND
Acetone	1	ug/l	10	ND
Benzene	1	ug/l	0.50	ND
Bromochloromethane	1	ug/l	1.0	ND
Bromodichloromethane	1	ug/l	1.0	ND
Bromoform	1	ug/l	1.0	ND
Bromomethane	1	ug/l	1.0	ND
Carbon disulfide	1	ug/l	1.0	ND
Carbon tetrachloride	1	ug/l	1.0	ND
Chlorobenzene	1	ug/l	1.0	ND
Chloroethane	1	ug/l	1.0	ND
Chloroform	1	ug/l	1.0	ND
Chloromethane	1	ug/l	1.0	ND
cis-1,2-Dichloroethene	1	ug/l	1.0	ND
cis-1,3-Dichloropropene	1	ug/l	1.0	ND
Cyclohexane	1	ug/l	1.0	ND
Dibromochloromethane	1	ug/l	1.0	ND
Dichlorodifluoromethane	1	ug/l	1.0	ND
Ethylbenzene	1	ug/l	1.0	ND
Isopropylbenzene	1	ug/l	1.0	ND
m&p-Xylenes	1	ug/l	1.0	ND
Methyl Acetate	1	ug/l	1.0	ND
Methylcyclohexane	1	ug/l	1.0	ND
Methylene chloride	1	ug/l	1.0	ND
Methyl-t-butyl ether	1	ug/l	0.50	ND
o-Xylene	1	ug/l	1.0	ND
Styrene	1	ug/l	1.0	ND
Tetrachloroethene	1	ug/l	1.0	ND
Toluene	1	ug/l	1.0	ND
trans-1,2-Dichloroethene	1	ug/l	1.0	ND
trans-1,3-Dichloropropene	1	ug/l	1.0	ND
Trichloroethene	1	ug/l	1.0	ND
Trichlorofluoromethane	1	ug/l	1.0	ND
Vinyl chloride	1	ug/l	1.0	ND
Xylenes (Total)	1	ug/l	1.0	ND ND

Volatile Organics + 10 (624) Library Searches

Analyte	DF	Units	RT	Result	
No Unknown Compounds Detected	1	ug/l	NA	ND	
TotalVolatileTic	1	ug/l	NA	ND	

Form1 ORGANICS VOLATILE REPORT

Sample Number: DAILY BLANK

Client Id:

Data File: 2M65624.D Analysis Date: 04/22/11 09:46

Date Rec/Extracted:

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 624

Matrix: Aqueous

Initial Vol: 5ml

Final Vol: NA

Dilution: 1.00

Solids: 0

Units: ug/L

				• • • • • •	· 5 · –				
_	Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc	
	71-55-6	1,1,1-Trichloroethane	1.0	U	56-23-5	Carbon Tetrachloride	1.0	U	
	79-34-5	1,1,2,2-Tetrachloroethane	1.0	U	108-90-7	Chlorobenzene	1.0	U	
	76-13-1	1,1,2-Trichloro-1,2,2-trifluor	5.0	U	75-00-3	Chloroethane	1.0	U	
	79-00-5	1,1,2-Trichloroethane	1.0	U	67-66-3	Chloroform	1.0	U	
	75-34-3	1,1-Dichloroethane	1.0	U	74-87-3	Chloromethane	1.0	U	
	75-35-4	1,1-Dichloroethene	1.0	U	156-59-2	cis-1,2-Dichloroethene	1.0	U	
	87-61-6	1,2,3-Trichlorobenzene	1.0	U	10061-01-5	cis-1,3-Dichloropropene	1.0	U	
	120-82-1	1,2,4-Trichlorobenzene	1.0	U	110-82-7	Cyclohexane	1.0	U	
	96-12-8	1,2-Dibromo-3-Chloropropa	1.0	U	124-48-1	Dibromochloromethane	1.0	U	
	106-93-4	1,2-Dibromoethane	1.0	U	75-71-8	Dichlorodifluoromethane	1.0	U	
	95-50-1	1,2-Dichlorobenzene	1.0	U	100-41-4	Ethylbenzene	1.0	U	
	107-06-2	1,2-Dichloroethane	0.50	U	98-82-8	Isopropylbenzene	1.0	U	
	78-87 - 5	1,2-Dichloropropane	1.0	U	136777612	m&p-Xylenes	1.0	U	
	541-73-1	1,3-Dichlorobenzene	1.0	U	79-20-9	Methyl Acetate	1.0	U	
	106-46-7	1,4-Dichlorobenzene	1.0	U	108-87-2	Methylcyclohexane	1.0	U	
	123-91-1	1,4-Dioxane	50	U	75-09-2	Methylene Chloride	1.0	U	
	78-93-3	2-Butanone	1.0	U	1634-04-4	Methyl-t-butyl ether	0.50	U	
	591-78-6	2-Hexanone	1.0	U	95-47-6	o-Xylene	1.0	U	
	108-10-1	4-Methyl-2-Pentanone	1.0	U	100-42-5	Styrene	1.0	U	
	67-64-1	Acetone	10	U	127-18-4	Tetrachloroethene	1.0	U	
	71-43-2	Benzene	0.50	U	108-88-3	Toluene	1.0	U	
	74-97 - 5	Bromochloromethane	1.0	U	156-60-5	trans-1,2-Dichloroethene	1.0	U	
	75-27-4	Bromodichloromethane	1.0	U	10061-02-6	trans-1,3-Dichloropropene	1.0	U	
	75-25-2	Bromoform	1.0	U	79-01-6	Trichloroethene	1.0	U	
	74-83-9	Bromomethane	1.0	U	75-69-4	Trichlorofluoromethane	1.0	U	
	75-15-0	Carbon Disulfide	1.0	U	75-01-4	Vinyl Chloride	1.0	U	

Worksheet #: 188806

Total Target Concentration

ColumnID: (^) Indicates results from 2nd column

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

 $^{{\}it J}$ - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

Form1e

ORGANICS VOLATILE REPORT **Tentatively Identified Compounds**

Sample Number: DAILY BLANK

Client Id:

Data File: 2M65624.D

Analysis Date: 04/22/11 09:46

Date Rec/Extracted:

Matrix: Aqueous

Initial Vol: 5ml

Final Vol: NA

Dilution: 1.00

Solids:

Method: EPA 624

Units: ug/L

Cas #	Compound	RT	Conc	
1	No Unknown Compounds Detected	0.00	0.J	

Worksheet #: 188806

Total Tentatively Identified Concentration 0

A - Indicates an aldol condensate. J - Indicates an estimated value.

B - Indicates the analyte was found in the blank as well as in the sample.
Y - Indicates the analyte was found in the blank at <10% of the concentration of the sample.

<10% - Indicates the analyte was found in the blank at < 10% of nearest Internal Standard

Form1 ORGANICS VOLATILE REPORT

Sample Number: DAILY BLANK

Client Id:

Data File: 1M67211.D

Analysis Date: 04/21/11 10:20

Date Rec/Extracted:

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260B

Matrix: Soil

Initial Vol: 5g

Final Vol: NA

Dilution: 1.00

Solids: 100

Units: mg/Kg

Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc
71-55-6	1,1,1-Trichloroethane	0.0020	υ	56-23-5	Carbon Tetrachloride	0.0020	U
79-34-5	1,1,2,2-Tetrachloroethane	0.0050	υ	108-90-7	Chlorobenzene	0.0020	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluor	0.0020	υ	75-00-3	Chloroethane	0.0020	U
79-00-5	1,1,2-Trichloroethane	0.0020	υ	67-66-3	Chloroform	0.0020	U
75-34-3	1,1-Dichloroethane	0.0020	υ	74-87-3	Chloromethane	0.0020	U
75-35-4	1,1-Dichloroethene	0.0020	υ	156-59-2	cis-1,2-Dichloroethene	0.0020	U
87-61-6	1,2,3-Trichlorobenzene	0.0020	υ	10061-01-5	cis-1,3-Dichloropropene	0.0050	U
120-82-1	1,2,4-Trichlorobenzene	0.0020	υ	110-82-7	Cyclohexane	0.0020	U
96-12-8	1,2-Dibromo-3-Chloropropa	0.0020	υ	124-48-1	Dibromochloromethane	0.0050	U
106-93-4	1,2-Dibromoethane	0.00055	υ	75-71-8	Dichlorodifluoromethane	0.0020	U
95-50-1	1,2-Dichlorobenzene	0.0020	υ	100-41-4	Ethylbenzene	0.0010	U
107-06-2	1,2-Dichloroethane	0.0020	υ	98-82-8	Isopropylbenzene	0.0010	U
78-87-5	1,2-Dichloropropane	0.0020	υ	136777612	m&p-Xylenes	0.0010	U
541-73-1	1,3-Dichlorobenzene	0.0020	υ	79-20-9	Methyl Acetate	0.0020	U
106-46-7	1,4-Dichlorobenzene	0.0020	υ	108-87-2	Methylcyclohexane	0.0020	U
123-91-1	1,4-Dioxane	0.10	υ	75-09-2	Methylene Chloride	0.0020	U
78-93-3	2-Butanone	0.0020	υ	1634-04-4	Methyl-t-butyl ether	0.0010	U
591-78-6	2-Hexanone	0.0020	υ	95-47-6	o-Xylene	0.0010	U
108-10-1	4-Methyl-2-Pentanone	0.0020	υ	100-42-5	Styrene	0.0020	U
67-64-1	Acetone	0.010	υ	127-18-4	Tetrachloroethene	0.0020	U
71-43-2	Benzene	0.0010	U	108-88-3	Toluene	0.0010	U
74-97-5	Bromochloromethane	0.0020	U	156-60-5	trans-1,2-Dichloroethene	0.0020	U
75-27-4	Bromodichloromethane	0.0020	U	10061-02-6	trans-1,3-Dichloropropene	0.0050	U
75-25-2	Bromoform	0.0020	U	79-01-6	Trichloroethene	0.0020	U
74-83-9	Bromomethane	0.0020	U	75-69-4	Trichlorofluoromethane	0.0020	U
75-15-0	Carbon Disulfide	0.0020	U	75-01-4	Vinyl Chloride	0.0020	U

ColumnID: (^) Indicates results from 2nd column

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

Form1e

ORGANICS VOLATILE REPORT **Tentatively Identified Compounds**

Sample Number: DAILY BLANK

Client Id:

Matrix: Soil Initial Vol: 5g

Data File: 1M67211.D

Final Vol: NA

Analysis Date: 04/21/11 10:20

Dilution: 1.00

Date Rec/Extracted:

Solids: 100

Method: EPA 8260B

Units: mg/Kg

	Cas #	Compound	RT	Conc	
1		No Unknown Compounds Detected	0.00	0 J	

Worksheet #: 188807

Total Tentatively Identified Concentration 0

A - Indicates an aldol condensate.

J - Indicates an estimated value.
B - Indicates the analyte was found in the blank as well as in the sample.
Y - Indicates the analyte was found in the blank at <10% of the concentration of the sample.

<10% - Indicates the analyte was found in the blank at < 10% of nearest Internal Standard

Form1 ORGANICS VOLATILE REPORT

Sample Number: DAILY BLANK

Client Id:

Data File: 6M67581.D Analysis Date: 04/25/11 10:29

Date Rec/Extracted:

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 624

Matrix: Aqueous

Initial Vol: 5ml

Final Vol: NA

Dilution: 1.00

Solids: 0

Units: ug/L

Omes. ug/L								
Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc	
71-55-6	1,1,1-Trichloroethane	1.0	U	56-23-5	Carbon Tetrachloride	1.0	U	
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U	108-90-7	Chlorobenzene	1.0	U	
76-13-1	1,1,2-Trichloro-1,2,2-trifluor	5.0	U	75-00-3	Chloroethane	1.0	U	
79-00-5	1,1,2-Trichloroethane	1.0	U	67-66-3	Chloroform	1.0	U	
75-34-3	1,1-Dichloroethane	1.0	U	74-87-3	Chloromethane	1.0	U	
75-35-4	1,1-Dichloroethene	1.0	U	156-59-2	cis-1,2-Dichloroethene	1.0	U	
87-61-6	1,2,3-Trichlorobenzene	1.0	U	10061-01-5	cis-1,3-Dichloropropene	1.0	U	
120-82-1	1,2,4-Trichlorobenzene	1.0	U	110-82-7	Cyclohexane	1.0	U	
96-12-8	1,2-Dibromo-3-Chloropropa	1.0	U	124-48-1	Dibromochloromethane	1.0	U	
106-93-4	1,2-Dibromoethane	1.0	U	75-71-8	Dichlorodifluoromethane	1.0	U	
95-50-1	1,2-Dichlorobenzene	1.0	U	100-41-4	Ethylbenzene	1.0	U	
107-06-2	1,2-Dichloroethane	0.50	U	98-82-8	Isopropylbenzene	1.0	U	
78-87-5	1,2-Dichloropropane	1.0	U	136777612	m&p-Xylenes	1.0	U	
541-73-1	1,3-Dichlorobenzene	1.0	U	79-20-9	Methyl Acetate	1.0	U	
106-46-7	1,4-Dichlorobenzene	1.0	U	108-87-2	Methylcyclohexane	1.0	U	
123-91-1	1,4-Dioxane	50	U	75-09-2	Methylene Chloride	1.0	U	
78-93-3	2-Butanone	1.0	U	1634-04-4	Methyl-t-butyl ether	0.50	U	
591-78-6	2-Hexanone	1.0	U	95-47-6	o-Xylene	1.0	U	
108-10-1	4-Methyl-2-Pentanone	1.0	U	100-42-5	Styrene	1.0	U	
67-64-1	Acetone	10	U	127-18-4	Tetrachloroethene	1.0	U	
71-43-2	Benzene	0.50	U	108-88-3	Toluene	1.0	U	
74-97-5	Bromochloromethane	1.0	U	156-60-5	trans-1,2-Dichloroethene	1.0	U	
75-27-4	Bromodichloromethane	1.0	U	10061-02-6	trans-1,3-Dichloropropene	1.0	U	
75-25-2	Bromoform	1.0	U	79-01-6	Trichloroethene	1.0	U	
74-83-9	Bromomethane	1.0	U	75-69-4	Trichlorofluoromethane	1.0	U	
75-15-0	Carbon Disulfide	1.0	U	75-01-4	Vinyl Chloride	1.0	U	

ColumnID: (^) Indicates results from 2nd column

R - Retention Time Out

 $[\]it U$ - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample. E - Indicates the analyte concentration exceeds the calibration range of the instrument.

J - Indicates an estimated value when a compound is detected at less than the

specified detection limit.
d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

Form1e

ORGANICS VOLATILE REPORT Tentatively Identified Compounds

Sample Number: DAILY BLANK

Client Id:

Data File: 6M67581.D

Analysis Date: 04/25/11 10:29

Date Rec/Extracted:

Matrix: Aqueous

Initial Vol: 5ml

Final Vol: NA

Dilution: 1.00

Solids:

Method: EPA 624

Units: ug/L

Cas #	Compound	RT	Conc
1	No Unknown Compounds Detected	0.00	0 J

Worksheet #: 188806

Total Tentatively Identified Concentration 0

- A Indicates an aldol condensate.
- J Indicates an estimated value.
- B Indicates the analyte was found in the blank as well as in the sample.
 Y Indicates the analyte was found in the blank at <10% of the concentration of the sample.
- <10% Indicates the analyte was found in the blank at < 10% of nearest Internal Standard

Form1 ORGANICS VOLATILE REPORT

Sample Number: AC58547-001

Client Id: SW-1

Data File: 2M65683.D Analysis Date: 04/23/11 01:34

Date Rec/Extracted: 04/20/11-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 624

Matrix: Aqueous

Initial Vol: 5ml

Final Vol: NA

Dilution: 1.00

Solids: 0

Units: ug/L

	omes. ug/L								
Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc		
71-55-6	1,1,1-Trichloroethane	1.0	U	56-23-5	Carbon Tetrachloride	1.0	U		
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U	108-90-7	Chlorobenzene	1.0	U		
76-13-1	1,1,2-Trichloro-1,2,2-trifluor	5.0	U	75-00-3	Chloroethane	1.0	U		
79-00-5	1,1,2-Trichloroethane	1.0	U	67-66-3	Chloroform	1.0	U		
75-34-3	1,1-Dichloroethane	1.0	U	74-87-3	Chloromethane	1.0	U		
75-35-4	1,1-Dichloroethene	1.0	U	156-59-2	cis-1,2-Dichloroethene	1.0	U		
87-61-6	1,2,3-Trichlorobenzene	1.0	U	10061-01-5	cis-1,3-Dichloropropene	1.0	U		
120-82-1	1,2,4-Trichlorobenzene	1.0	U	110-82-7	Cyclohexane	1.0	U		
96-12-8	1,2-Dibromo-3-Chloropropa	1.0	U	124-48-1	Dibromochloromethane	1.0	U		
106-93-4	1,2-Dibromoethane	1.0	U	75-71-8	Dichlorodifluoromethane	1.0	U		
95-50-1	1,2-Dichlorobenzene	1.0	U	100-41-4	Ethylbenzene	1.0	U		
107-06-2	1,2-Dichloroethane	0.50	U	98-82-8	Isopropylbenzene	1.0	U		
78-87-5	1,2-Dichloropropane	1.0	U	136777612	m&p-Xylenes	1.0	U		
541-73-1	1,3-Dichlorobenzene	1.0	U	79-20-9	Methyl Acetate	1.0	U		
106-46-7	1,4-Dichlorobenzene	1.0	U	108-87-2	Methylcyclohexane	1.0	U		
123-91-1	1,4-Dioxane	50	U	75-09-2	Methylene Chloride	1.0	U		
78-93-3	2-Butanone	1.0	U	1634-04-4	Methyl-t-butyl ether	0.50	U		
591-78-6	2-Hexanone	1.0	U	95-47-6	o-Xylene	1.0	U		
108-10-1	4-Methyl-2-Pentanone	1.0	U	100-42-5	Styrene	1.0	U		
67-64-1	Acetone	10	U	127-18-4	Tetrachloroethene	1.0	U		
71-43-2	Benzene	0.50	U	108-88-3	Toluene	1.0	U		
74-97-5	Bromochloromethane	1.0	U	156-60-5	trans-1,2-Dichloroethene	1.0	U		
75-27-4	Bromodichloromethane	1.0	U	10061-02-6	trans-1,3-Dichloropropene	1.0	U		
75-25-2	Bromoform	1.0	U	79-01-6	Trichloroethene	1.0	U		
74-83-9	Bromomethane	1.0	U	75-69-4	Trichlorofluoromethane	1.0	U		
75-15-0	Carbon Disulfide	1.0	U	75-01-4	Vinyl Chloride	1.0	U		
1330-20-7	Xylenes (Total)	1.0	U						

Worksheet #: 188806

Total Target Concentration

ColumnID: (^) Indicates results from 2nd column

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

 $^{{\}it J}$ - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

Form1e

ORGANICS VOLATILE REPORT **Tentatively Identified Compounds**

Sample Number: AC58547-001

Client Id: SW-1

Data File: 2M65683.D

Analysis Date: 04/23/11 01:34

Date Rec/Extracted: 04/20/11-NA

Matrix: Aqueous

Initial Vol: 5ml

Final Vol: NA

Dilution: 1.00

Solids:

Method: EPA 624

Units: ug/L

Cas #	Compound	RT	Conc
1	No Unknown Compounds Detected	0.00	OJ

Worksheet #: 188806

Total Tentatively Identified Concentration 0

<sup>A - Indicates an aldol condensate.
J - Indicates an estimated value.
B - Indicates the analyte was found in the blank as well as in the sample.
Y - Indicates the analyte was found in the blank at <10% of the concentration of the sample.</sup>

<10% - Indicates the analyte was found in the blank at < 10% of nearest Internal Standard

Form1

ORGANICS VOLATILE REPORT

Sample Number: AC58547-002

Client Id: SW-2

Data File: 2M65684.D

Analysis Date: 04/23/11 01:50 Date Rec/Extracted: 04/20/11-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 624 Matrix: Aqueous

Initial Vol: 5ml

Final Vol: NA Dilution: 1.00

Solids: 0

Units: ug/L

	Onits: ug/L									
Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc			
71-55-6	1,1,1-Trichloroethane	1.0	υ	56-23-5	Carbon Tetrachloride	1.0	U			
79-34-5	1,1,2,2-Tetrachloroethane	1.0	υ	108-90-7	Chlorobenzene	1.0	U			
76-13-1	1,1,2-Trichloro-1,2,2-trifluor	5.0	υ	75-00-3	Chloroethane	1.0	U			
79-00-5	1,1,2-Trichloroethane	1.0	υ	67-66-3	Chloroform	1.0	U			
75-34-3	1,1-Dichloroethane	1.0	υ	74-87-3	Chloromethane	1.0	U			
75-35-4	1,1-Dichloroethene	1.0	υ	156-59-2	cis-1,2-Dichloroethene	1.0	U			
87 - 61-6	1,2,3-Trichlorobenzene	1.0	υ	10061-01-5	cis-1,3-Dichloropropene	1.0	U			
120-82-1	1,2,4-Trichlorobenzene	1.0	υ	110-82-7	Cyclohexane	1.0	U			
96-12-8	1,2-Dibromo-3-Chloropropa	1.0	υ	124-48-1	Dibromochloromethane	1.0	U			
106-93-4	1,2-Dibromoethane	1.0	υ	75-71-8	Dichlorodifluoromethane	1.0	U			
95-50-1	1,2-Dichlorobenzene	1.0	υ	100-41-4	Ethylbenzene	1.0	U			
107-06-2	1,2-Dichloroethane	0.50	υ	98-82-8	Isopropylbenzene	1.0	U			
78-87 - 5	1,2-Dichloropropane	1.0	υ	136777612	m&p-Xylenes	1.0	U			
541-73-1	1,3-Dichlorobenzene	1.0	υ	79-20-9	Methyl Acetate	1.0	U			
106-46-7	1,4-Dichlorobenzene	1.0	υ	108-87-2	Methylcyclohexane	1.0	U			
123-91-1	1,4-Dioxane	50	υ	75-09-2	Methylene Chloride	1.0	U			
78-93-3	2-Butanone	1.0	υ	1634-04-4	Methyl-t-butyl ether	0.50	U			
591-78-6	2-Hexanone	1.0	υ	95-47-6	o-Xylene	1.0	U			
108-10-1	4-Methyl-2-Pentanone	1.0	υ	100-42-5	Styrene	1.0	U			
67-64-1	Acetone	10	υ	127-18-4	Tetrachloroethene	1.0	U			
71-43-2	Benzene	0.50	υ	108-88-3	Toluene	1.0	U			
74-97-5	Bromochloromethane	1.0	υ	156-60-5	trans-1,2-Dichloroethene	1.0	U			
75-27-4	Bromodichloromethane	1.0	υ	10061-02-6	trans-1,3-Dichloropropene	1.0	U			
75-25-2	Bromoform	1.0	U	79-01-6	Trichloroethene	1.0	U			
74-83-9	Bromomethane	1.0	υ	75-69-4	Trichlorofluoromethane	1.0	U			
75-15-0	Carbon Disulfide	1.0	U	75-01-4	Vinyl Chloride	1.0	U			
1330-20-7	Xylenes (Total)	1.0	U							

Worksheet #: 188806

Total Target Concentration

ColumnID: (^) Indicates results from 2nd column

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

Form1e

ORGANICS VOLATILE REPORT **Tentatively Identified Compounds**

Sample Number: AC58547-002

Client Id: SW-2

Data File: 2M65684.D

Analysis Date: 04/23/11 01:50

Date Rec/Extracted: 04/20/11-NA

Matrix: Aqueous

Initial Vol: 5ml

Final Vol: NA

Dilution: 1.00

Solids:

Method: EPA 624

Units: ug/L

Cas #	Compound	RT	Conc	
1	No Unknown Compounds Detected	0.00	0.1	

Worksheet #: 188806

Total Tentatively Identified Concentration 0

A - Indicates an aldol condensate.

<sup>J - Indicates an attact condensate.
J - Indicates an estimated value.
B - Indicates the analyte was found in the blank as well as in the sample.
Y - Indicates the analyte was found in the blank at <10% of the concentration of the sample.</sup>

<10% - Indicates the analyte was found in the blank at < 10% of nearest Internal Standard

Form1 ORGANICS VOLATILE REPORT

Sample Number: AC58547-003

Client Id: SW-3

Data File: 2M65685.D

Analysis Date: 04/23/11 02:06 Date Rec/Extracted: 04/20/11-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 624

Matrix: Aqueous

Initial Vol: 5ml

Final Vol: NA

Dilution: 1.00

Solids: 0

Units: ug/L

			Omis. (49, L			
Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc
71-55-6	1,1,1-Trichloroethane	1.0	U	56-23-5	Carbon Tetrachloride	1.0	U
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U	108-90-7	Chlorobenzene	1.0	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluor	5.0	U	75-00-3	Chloroethane	1.0	U
79-00-5	1,1,2-Trichloroethane	1.0	U	67-66-3	Chloroform	1.0	U
75-34-3	1,1-Dichloroethane	1.0	U	74-87-3	Chloromethane	1.0	U
75-35-4	1,1-Dichloroethene	1.0	U	156-59-2	cis-1,2-Dichloroethene	1.0	U
87-61-6	1,2,3-Trichlorobenzene	1.0	U	10061-01-5	cis-1,3-Dichloropropene	1.0	U
120-82-1	1,2,4-Trichlorobenzene	1.0	U	110-82-7	Cyclohexane	1.0	U
96-12-8	1,2-Dibromo-3-Chloropropa	1.0	U	124-48-1	Dibromochloromethane	1.0	U
106-93-4	1,2-Dibromoethane	1.0	U	75-71-8	Dichlorodifluoromethane	1.0	U
95-50-1	1,2-Dichlorobenzene	1.0	U	100-41-4	Ethylbenzene	1.0	U
107-06-2	1,2-Dichloroethane	0.50	U	98-82-8	Isopropylbenzene	1.0	U
78-87-5	1,2-Dichloropropane	1.0	U	136777612	m&p-Xylenes	1.0	U
541-73-1	1,3-Dichlorobenzene	1.0	U	79-20-9	Methyl Acetate	1.0	U
106-46-7	1,4-Dichlorobenzene	1.0	U	108-87-2	Methylcyclohexane	1.0	U
123-91-1	1,4-Dioxane	50	U	75-09-2	Methylene Chloride	1.0	U
78-93-3	2-Butanone	1.0	U	1634-04-4	Methyl-t-butyl ether	0.50	U
591-78-6	2-Hexanone	1.0	U	95-47-6	o-Xylene	1.0	U
108-10-1	4-Methyl-2-Pentanone	1.0	U	100-42-5	Styrene	1.0	U
67-64-1	Acetone	10	U	127-18-4	Tetrachloroethene	1.0	U
71-43-2	Benzene	0.50	U	108-88-3	Toluene	1.0	U
74-97-5	Bromochloromethane	1.0	U	156-60-5	trans-1,2-Dichloroethene	1.0	U
75-27-4	Bromodichloromethane	1.0	U	10061-02-6	trans-1,3-Dichloropropene	1.0	U
75-25-2	Bromoform	1.0	U	79-01-6	Trichloroethene	1.0	U
74-83-9	Bromomethane	1.0	U	75-69-4	Trichlorofluoromethane	1.0	U
75-15-0	Carbon Disulfide	1.0	U	75-01-4	Vinyl Chloride	1.0	U
1330-20-7	Xylenes (Total)	1.0	U				

Worksheet #: 188806

Total Target Concentration

ColumnID: (^) Indicates results from 2nd column

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

ORGANICS VOLATILE REPORT **Tentatively Identified Compounds**

Sample Number: AC58547-003

Client Id: SW-3

Data File: 2M65685.D

Analysis Date: 04/23/11 02:06

Date Rec/Extracted: 04/20/11-NA

Matrix: Aqueous

Initial Vol: 5ml

Final Vol: NA

Dilution: 1.00

Solids:

Method: EPA 624

Units: ug/L

Cas #	Compound	RT	Conc
1	No Unknown Compounds Detected	0.00	OJ

Worksheet #: 188806

A - Indicates an aldol condensate.

J - Indicates an estimated value.
B - Indicates the analyte was found in the blank as well as in the sample.
Y - Indicates the analyte was found in the blank at <10% of the concentration of the sample.

<10% - Indicates the analyte was found in the blank at < 10% of nearest Internal Standard

ORGANICS VOLATILE REPORT

Sample Number: AC58547-004

Client Id: SW-4

Data File: 2M65686.D

Analysis Date: 04/23/11 02:22 Date Rec/Extracted: 04/20/11-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 624

Matrix: Aqueous

Initial Vol: 5ml

Final Vol: NA

Dilution: 1.00 Solids: 0

Units: ug/L

omo. ug/L							
Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc
71-55-6	1,1,1-Trichloroethane	1.0	U	56-23-5	Carbon Tetrachloride	1.0	U
79-34-5	1,1,2,2-Tetrachloroethane	1.0	υ	108-90-7	Chlorobenzene	1.0	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluor	5.0	υ	75-00-3	Chloroethane	1.0	U
79-00-5	1,1,2-Trichloroethane	1.0	U	67-66-3	Chloroform	1.0	U
75-34-3	1,1-Dichloroethane	1.0	U	74-87-3	Chloromethane	1.0	U
75-35-4	1,1-Dichloroethene	1.0	U	156-59-2	cis-1,2-Dichloroethene	1.0	U
87-61-6	1,2,3-Trichlorobenzene	1.0	U	10061-01-5	cis-1,3-Dichloropropene	1.0	U
120-82-1	1,2,4-Trichlorobenzene	1.0	U	110-82-7	Cyclohexane	1.0	υ
96-12-8	1,2-Dibromo-3-Chloropropa	1.0	U	124-48-1	Dibromochloromethane	1.0	υ
106-93-4	1,2-Dibromoethane	1.0	U	75-71-8	Dichlorodifluoromethane	1.0	U
95-50-1	1,2-Dichlorobenzene	1.0	U	100-41-4	Ethylbenzene	1.0	U
107-06-2	1,2-Dichloroethane	0.50	υ	98-82-8	Isopropylbenzene	1.0	U
78-87-5	1,2-Dichloropropane	1.0	U	136777612	m&p-Xylenes	1.0	U
541-73-1	1,3-Dichlorobenzene	1.0	U	79-20-9	Methyl Acetate	1.0	U
106-46-7	1,4-Dichlorobenzene	1.0	U	108-87-2	Methylcyclohexane	1.0	U
123-91-1	1,4-Dioxane	50	U	75-09-2	Methylene Chloride	1.0	U
78-93-3	2-Butanone	1.0	U	1634-04-4	Methyl-t-butyl ether	0.50	U
591-78-6	2-Hexanone	1.0	U	95-47-6	o-Xylene	1.0	U
108-10-1	4-Methyl-2-Pentanone	1.0	υ	100-42-5	Styrene	1.0	υ
67-64-1	Acetone	10	υ	127-18-4	Tetrachloroethene	1.0	U
71-43-2	Benzene	0.50	υ	108-88-3	Toluene	1.0	U
74-97-5	Bromochloromethane	1.0	υ	156-60-5	trans-1,2-Dichloroethene	1.0	υ
75-27-4	Bromodichloromethane	1.0	υ	10061-02-6	trans-1,3-Dichloropropene	1.0	υ
75-25-2	Bromoform	1.0	υ	79-01 - 6	Trichloroethene	1.0	υ
74-83-9	Bromomethane	1.0	U	75-69-4	Trichlorofluoromethane	1.0	υ
75-15-0	Carbon Disulfide	1.0	U	75-01-4	Vinyl Chloride	1.0	υ
1330-20-7	Xylenes (Total)	1.0	υ				

ColumnID: (^) Indicates results from 2nd column

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out
L - Indicates an estimated v

 $[\]it J$ - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

ORGANICS VOLATILE REPORT **Tentatively Identified Compounds**

Sample Number: AC58547-004

Client Id: SW-4

Data File: 2M65686.D

Analysis Date: 04/23/11 02:22

Date Rec/Extracted: 04/20/11-NA

Matrix: Aqueous

Initial Vol: 5ml

Final Vol: NA

Dilution: 1.00

Solids:

Method: EPA 624

Units: ug/L

Cas #	Compound	RT	Conc
1	No Unknown Compounds Detected	0.00	0 J

Worksheet #: 188806

A - Indicates an aldol condensate.

J - Indicates an estimated value.

B - Indicates the analyte was found in the blank as well as in the sample.
Y - Indicates the analyte was found in the blank at <10% of the concentration of the sample.

<10% - Indicates the analyte was found in the blank at < 10% of nearest Internal Standard

ORGANICS VOLATILE REPORT

Sample Number: AC58547-005

Client Id: SD-1

Data File: 1M67243.D

Analysis Date: 04/21/11 19:00 Date Rec/Extracted: 04/20/11-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260B

Matrix: Soil

Initial Vol: 5.28g

Final Vol: NA

Dilution: 0.947

Solids: 51

Units: mg/Kg

			Omto. i	פיישיי			
Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc
71-55-6	1,1,1-Trichloroethane	0.0037	U	56-23-5	Carbon Tetrachloride	0.0037	U
79-34-5	1,1,2,2-Tetrachloroethane	0.0093	U	108-90-7	Chlorobenzene	0.0037	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluor	0.0037	U	75-00-3	Chloroethane	0.0037	U
79-00-5	1,1,2-Trichloroethane	0.0037	U	67-66-3	Chloroform	0.0037	U
75-34-3	1,1-Dichloroethane	0.0037	U	74-87-3	Chloromethane	0.0037	U
75-35-4	1,1-Dichloroethene	0.0037	U	156-59-2	cis-1,2-Dichloroethene	0.0037	U
87-61-6	1,2,3-Trichlorobenzene	0.0037	U	10061-01-5	cis-1,3-Dichloropropene	0.0093	U
120-82-1	1,2,4-Trichlorobenzene	0.0037	U	110-82-7	Cyclohexane	0.0037	U
96-12-8	1,2-Dibromo-3-Chloropropa	0.0037	U	124-48-1	Dibromochloromethane	0.0093	U
106-93-4	1,2-Dibromoethane	0.0010	U	75-71-8	Dichlorodifluoromethane	0.0037	U
95-50-1	1,2-Dichlorobenzene	0.0037	U	100-41-4	Ethylbenzene	0.0019	U
107-06-2	1,2-Dichloroethane	0.0037	U	98-82-8	Isopropylbenzene	0.0019	U
78-87-5	1,2-Dichloropropane	0.0037	U	136777612	m&p-Xylenes	0.0019	U
541-73-1	1,3-Dichlorobenzene	0.0037	U	79-20-9	Methyl Acetate	0.0037	U
106-46-7	1,4-Dichlorobenzene	0.0037	U	108-87-2	Methylcyclohexane	0.0037	U
123-91-1	1,4-Dioxane	0.19	U	75-09-2	Methylene Chloride	0.0037	U
78-93-3	2-Butanone	0.0037	U	1634-04-4	Methyl-t-butyl ether	0.0019	U
591-78-6	2-Hexanone	0.0037	U	95-47-6	o-Xylene	0.0019	U
108-10-1	4-Methyl-2-Pentanone	0.0037	υ	100-42-5	Styrene	0.0037	U
67-64-1	Acetone	0.019	0.028	127-18-4	Tetrachloroethene	0.0037	U
71-43-2	Benzene	0.0019	U	108-88-3	Toluene	0.0019	U
74-97-5	Bromochloromethane	0.0037	U	156-60-5	trans-1,2-Dichloroethene	0.0037	U
75-27-4	Bromodichloromethane	0.0037	U	10061-02-6	trans-1,3-Dichloropropene	0.0093	U
75-25-2	Bromoform	0.0037	U	79-01-6	Trichloroethene	0.0037	U
74-83-9	Bromomethane	0.0037	U	75-69-4	Trichlorofluoromethane	0.0037	U
75-15-0	Carbon Disulfide	0.0037	U	75-01-4	Vinyl Chloride	0.0037	U
1330-20-7	Xylenes (Total)	0.0019	U				

Worksheet #: 188807

Total Target Concentration

ColumnID: (^) Indicates results from 2nd column

0.028

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.
d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

ORGANICS VOLATILE REPORT Tentatively Identified Compounds

Sample Number: AC58547-005

Client Id: SD-1

Matrix: Soil Initial Vol: 5.28g

Data File: 1M67243.D

Final Vol: NA

Analysis Date: 04/21/11 19:00

Dilution: 0.947

Date Rec/Extracted: 04/20/11-NA

Solids: 51

Method: EPA 8260B

Units: mg/Kg

Cas #	Compound	RT	Conc	
1	No Unknown Compounds Detected	0.00	0 J	

Worksheet #: 188807

Total Tentatively Identified Concentration 0

J - Indicates an estimated value.

B - Indicates the analyte was found in the blank as well as in the sample, Y - Indicates the analyte was found in the blank at <10% of the concentration of the sample.

<10% - Indicates the analyte was found in the blank at < 10% of nearest Internal Standard

A - Indicates an aldol condensate.

ORGANICS VOLATILE REPORT

Sample Number: AC58547-006

Client Id: SD-2

Data File: 1M67246.D

Analysis Date: 04/21/11 19:48 Date Rec/Extracted: 04/20/11-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260B

Matrix: Soil

Initial Vol: 5.18g

Final Vol: NA

Dilution: 0.965

Solids: 12

Units: mg/Kg

	onits. Ingreg								
Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc		
71-55-6	1,1,1-Trichloroethane	0.016	U	56-23-5	Carbon Tetrachloride	0.016	U		
79-34-5	1,1,2,2-Tetrachloroethane	0.040	U	108-90-7	Chlorobenzene	0.016	U		
76-13-1	1,1,2-Trichloro-1,2,2-trifluor	0.016	U	75-00-3	Chloroethane	0.016	U		
79-00-5	1,1,2-Trichloroethane	0.016	U	67-66-3	Chloroform	0.016	U		
75-34-3	1,1-Dichloroethane	0.016	U	74-87-3	Chloromethane	0.016	U		
75-35-4	1,1-Dichloroethene	0.016	U	156-59-2	cis-1,2-Dichloroethene	0.016	U		
87-61-6	1,2,3-Trichlorobenzene	0.016	U	10061-01-5	cis-1,3-Dichloropropene	0.040	U		
120-82-1	1,2,4-Trichlorobenzene	0.016	U	110-82-7	Cyclohexane	0.016	U		
96-12-8	1,2-Dibromo-3-Chloropropa	0.016	U	124-48-1	Dibromochloromethane	0.040	U		
106-93-4	1,2-Dibromoethane	0.0044	U	75-71-8	Dichlorodifluoromethane	0.016	U		
95-50-1	1,2-Dichlorobenzene	0.016	U	100-41-4	Ethylbenzene	0.0080	U		
107-06-2	1,2-Dichloroethane	0.016	U	98-82-8	Isopropylbenzene	0.0080	U		
78-87 - 5	1,2-Dichloropropane	0.016	U	136777612	m&p-Xylenes	0.0080	U		
541-73-1	1,3-Dichlorobenzene	0.016	U	79-20-9	Methyl Acetate	0.016	U		
106-46-7	1,4-Dichlorobenzene	0.016	U	108-87-2	Methylcyclohexane	0.016	U		
123-91-1	1,4-Dioxane	0.80	U	75-09-2	Methylene Chloride	0.016	U		
78-93-3	2-Butanone	0.016	U	1634-04-4	Methyl-t-butyl ether	0.0080	U		
591-78-6	2-Hexanone	0.016	U	95-47-6	o-Xylene	0.0080	U		
108-10-1	4-Methyl-2-Pentanone	0.016	U	100-42-5	Styrene	0.016	U		
67-64-1	Acetone	0.080	U	127-18-4	Tetrachloroethene	0.016	U		
71-43-2	Benzene	0.0080	U	108-88-3	Toluene	0.0080	U		
74-97-5	Bromochloromethane	0.016	U	156-60-5	trans-1,2-Dichloroethene	0.016	U		
75-27-4	Bromodichloromethane	0.016	U	10061-02-6	trans-1,3-Dichloropropene	0.040	U		
75-25-2	Bromoform	0.016	U	79-01-6	Trichloroethene	0.016	U		
74-83-9	Bromomethane	0.016	U	75-69-4	Trichlorofluoromethane	0.016	U		
75-15-0	Carbon Disulfide	0.016	U	75-01-4	Vinyl Chloride	0.016	U		
1330-20-7	Xylenes (Total)	0.0080	U						

Worksheet #: 188807

Total Target Concentration

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

ORGANICS VOLATILE REPORT **Tentatively Identified Compounds**

Sample Number: AC58547-006

Client Id: SD-2

Data File: 1M67246.D

Analysis Date: 04/21/11 19:48

Date Rec/Extracted: 04/20/11-NA

Matrix: Soil

Initial Vol: 5.18g

Final Vol: NA

Dilution: 0.965

Solids: 12

Method: EPA 8260B

Units: mg/Kg

Cas #	Compound	RT	Conc
1	No Unknown Compounds Detected	0.00	OJ

Worksheet #: 188807

A - Indicates an aldol condensate.

J - Indicates an estimated value.

B - Indicates the analyte was found in the blank as well as in the sample.
Y - Indicates the analyte was found in the blank at <10% of the concentration of the sample.

<10% - Indicates the analyte was found in the blank at < 10% of nearest Internal Standard

ORGANICS VOLATILE REPORT

Sample Number: AC58547-007

Client Id: SD-3

Data File: 1M67244.D

Analysis Date: 04/21/11 19:16

Date Rec/Extracted: 04/20/11-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260B

Matrix: Soil

Initial Vol: 5.09g

Final Vol: NA

Dilution: 0.982

Solids: 73

Units: mg/Kg

	onite. Ingreg							
Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc	
71-55-6	1,1,1-Trichloroethane	0.0027	U	56-23-5	Carbon Tetrachloride	0.0027	U	
79-34-5	1,1,2,2-Tetrachloroethane	0.0067	U	108-90-7	Chlorobenzene	0.0027	U	
76-13-1	1,1,2-Trichloro-1,2,2-trifluor	0.0027	U	75-00-3	Chloroethane	0.0027	υ	
79-00-5	1,1,2-Trichloroethane	0.0027	U	67-66-3	Chloroform	0.0027	U	
75-34-3	1,1-Dichloroethane	0.0027	U	74-87-3	Chloromethane	0.0027	U	
75-35-4	1,1-Dichloroethene	0.0027	U	156-59-2	cis-1,2-Dichloroethene	0.0027	U	
87-61-6	1,2,3-Trichlorobenzene	0.0027	U	10061-01-5	cis-1,3-Dichloropropene	0.0067	U	
120-82-1	1,2,4-Trichlorobenzene	0.0027	U	110-82-7	Cyclohexane	0.0027	U	
96-12-8	1,2-Dibromo-3-Chloropropa	0.0027	U	124-48-1	Dibromochloromethane	0.0067	U	
106-93-4	1,2-Dibromoethane	0.00074	U	75-71-8	Dichlorodifluoromethane	0.0027	U	
95-50-1	1,2-Dichlorobenzene	0.0027	U	100-41-4	Ethylbenzene	0.0013	U	
107-06-2	1,2-Dichloroethane	0.0027	U	98-82-8	Isopropylbenzene	0.0013	U	
78-87-5	1,2-Dichloropropane	0.0027	U	136777612	m&p-Xylenes	0.0013	U	
541-73-1	1,3-Dichlorobenzene	0.0027	U	79-20-9	Methyl Acetate	0.0027	U	
106-46-7	1,4-Dichlorobenzene	0.0027	U	108-87-2	Methylcyclohexane	0.0027	U	
123-91-1	1,4-Dioxane	0.13	U	75-09-2	Methylene Chloride	0.0027	U	
78-93-3	2-Butanone	0.0027	U	1634-04-4	Methyl-t-butyl ether	0.0013	U	
591-78-6	2-Hexanone	0.0027	U	95-47-6	o-Xylene	0.0013	U	
108-10-1	4-Methyl-2-Pentanone	0.0027	U	100-42-5	Styrene	0.0027	U	
67-64-1	Acetone	0.013	0.022	127-18-4	Tetrachloroethene	0.0027	U	
71-43-2	Benzene	0.0013	U	108-88-3	Toluene	0.0013	U	
74-97-5	Bromochloromethane	0.0027	U	156-60-5	trans-1,2-Dichloroethene	0.0027	U	
7 5-27-4	Bromodichloromethane	0.0027	U	10061-02-6	trans-1,3-Dichloropropene	0.0067	U	
75-25-2	Bromoform	0.0027	U	79-01-6	Trichloroethene	0.0027	U	
74-83-9	Bromomethane	0.0027	U	75-69-4	Trichlorofluoromethane	0.0027	U	
75-15-0	Carbon Disulfide	0.0027	U	75-01-4	Vinyl Chloride	0.0027	Ú	
1330-20-7	Xylenes (Total)	0.0013	U					

Worksheet #: 188807

Total Target Concentration

0.022

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample,

 $^{{\}it E}$ - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

ORGANICS VOLATILE REPORT **Tentatively Identified Compounds**

Sample Number: AC58547-007

Client Id: SD-3

Data File: 1M67244.D

Analysis Date: 04/21/11 19:16

Date Rec/Extracted: 04/20/11-NA

Matrix: Soil

Initial Vol: 5.09g

Final Vol: NA

Dilution: 0.982

Solids: 73

Method: EPA 8260B

Units: mg/Kg

Ca	as#	Compound	RT	Conc	
1		No Unknown Compounds Detected	0.00	OJ	

Worksheet #: 188807

A - Indicates an aldol condensate.

J - Indicates an estimated value.
B - Indicates the analyte was found in the blank as well as in the sample.
Y - Indicates the analyte was found in the blank at <10% of the concentration of the sample.

<10% - Indicates the analyte was found in the blank at < 10% of nearest Internal Standard

Form1 ORGANICS VOLATILE REPORT

Sample Number: AC58547-008

Client Id: SD-4

Data File: 1M67245.D

Analysis Date: 04/21/11 19:32 Date Rec/Extracted: 04/20/11-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260B

Matrix: Soil

Initial Vol: 5.17g

Final Vol: NA

Dilution: 0.967 Solids: 54

Units: mg/Kg

			• • • • • • • • • • • • • • • • • • • •				
Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc
71-55-6	1,1,1-Trichloroethane	0.0036	U	56-23-5	Carbon Tetrachloride	0.0036	U
79-34-5	1,1,2,2-Tetrachloroethane	0.0090	U	108-90-7	Chlorobenzene	0.0036	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluor	0.0036	U	75-00-3	Chloroethane	0.0036	U
79-00-5	1,1,2-Trichloroethane	0.0036	U	67-66-3	Chloroform	0.0036	U
75-34-3	1,1-Dichloroethane	0.0036	U	74-87-3	Chloromethane	0.0036	U
75-35-4	1,1-Dichloroethene	0.0036	U	156-59-2	cis-1,2-Dichloroethene	0.0036	U
87-61-6	1,2,3-Trichlorobenzene	0.0036	U	10061-01-5	cis-1,3-Dichloropropene	0.0090	U
120-82-1	1,2,4-Trichlorobenzene	0.0036	U	110-82-7	Cyclohexane	0.0036	U
96-12-8	1,2-Dibromo-3-Chloropropa	0.0036	U	124-48-1	Dibromochloromethane	0.0090	U
106-93-4	1,2-Dibromoethane	0.00099	U	75-71-8	Dichlorodifluoromethane	0.0036	U
95-50-1	1,2-Dichlorobenzene	0.0036	U	100-41-4	Ethylbenzene	0.0018	U
107-06-2	1,2-Dichloroethane	0.0036	U	98-82-8	Isopropylbenzene	0.0018	U
78-87-5	1,2-Dichloropropane	0.0036	U	136777612	m&p-Xylenes	0.0018	U
541-73-1	1,3-Dichlorobenzene	0.0036	U	79-20-9	Methyl Acetate	0.0036	U
106-46-7	1,4-Dichlorobenzene	0.0036	U	108-87-2	Methylcyclohexane	0.0036	U
123-91-1	1,4-Dioxane	0.18	U	75-09-2	Methylene Chloride	0.0036	U
78-93-3	2-Butanone	0.0036	U	1634-04-4	Methyl-t-butyl ether	0.0018	U
591-78-6	2-Hexanone	0.0036	U	95-47-6	o-Xylene	0.0018	U
108-10-1	4-Methyl-2-Pentanone	0.0036	U	100-42-5	Styrene	0.0036	U
67-64-1	Acetone	0.018	U	127-18-4	Tetrachloroethene	0.0036	U
71-43-2	Benzene	0.0018	U	108-88-3	Toluene	0.0018	U
74-97-5	Bromochloromethane	0.0036	U	156-60-5	trans-1,2-Dichloroethene	0.0036	U
75-27-4	Bromodichloromethane	0.0036	U	10061-02-6	trans-1,3-Dichloropropene	0.0090	U
75-25-2	Bromoform	0.0036	U	79-01-6	Trichloroethene	0.0036	U
74-83-9	Bromomethane	0.0036	U	75-69-4	Trichlorofluoromethane	0.0036	U
75-15-0	Carbon Disulfide	0.0036	U	75-01-4	Vinyl Chloride	0.0036	U
1330-20-7	Xylenes (Total)	0.0018	U				

Worksheet #: 188807

Total Target Concentration

ColumnID: (^) Indicates results from 2nd column

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

ORGANICS VOLATILE REPORT **Tentatively Identified Compounds**

Sample Number: AC58547-008

Client Id: SD-4

Data File: 1M67245.D

Analysis Date: 04/21/11 19:32

Date Rec/Extracted: 04/20/11-NA

Matrix: Soil

Initial Vol: 5.17g

Final Vol: NA

Dilution: 0.967

Solids: 54

Method: EPA 8260B

Units: mg/Kg

Cas #	Compound	RT	Conc
1	No Unknown Compounds Detected	0.00	0 J

Worksheet #: 188807

- A Indicates an aldol condensate.

- J Indicates an estimated value.
 B Indicates the analyte was found in the blank as well as in the sample.
 Y Indicates the analyte was found in the blank at <10% of the concentration of the sample.
- <10% Indicates the analyte was found in the blank at < 10% of nearest Internal Standard

Form1 ORGANICS VOLATILE REPORT

Sample Number: AC58547-009

Client Id: FB-1

Data File: 6M67619.D

Analysis Date: 04/25/11 20:57 Date Rec/Extracted: 04/20/11-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 624

Matrix: Aqueous

Initial Vol: 5ml

Final Vol: NA

Dilution: 1.00

Solids: 0

Units: ug/L

	omis. ug/L							
Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc	
71-55-6	1,1,1-Trichloroethane	1.0	U	56-23-5	Carbon Tetrachloride	1.0	U	
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U	108-90-7	Chlorobenzene	1.0	U	
76-13-1	1,1,2-Trichloro-1,2,2-trifluor	5.0	U	75-00-3	Chloroethane	1.0	U	
79-00-5	1,1,2-Trichloroethane	1.0	U	67-66-3	Chloroform	1.0	U	
75-34-3	1,1-Dichloroethane	1.0	U	74-87-3	Chloromethane	1.0	U	
75-35-4	1,1-Dichloroethene	1.0	U	156-59-2	cis-1,2-Dichloroethene	1.0	U	
87-61-6	1,2,3-Trichlorobenzene	1.0	U	10061-01-5	cis-1,3-Dichloropropene	1.0	U	
120-82-1	1,2,4-Trichlorobenzene	1.0	U	110-82-7	Cyclohexane	1.0	U	
96-12-8	1,2-Dibromo-3-Chloropropa	1.0	U	124-48-1	Dibromochloromethane	1.0	U	
106-93-4	1,2-Dibromoethane	1.0	U	75-71-8	Dichlorodifluoromethane	1.0	U	
95-50-1	1,2-Dichlorobenzene	1.0	U	100-41-4	Ethylbenzene	1.0	U	
107-06-2	1,2-Dichloroethane	0.50	U	98-82-8	Isopropylbenzene	1.0	U	
78-87-5	1,2-Dichloropropane	1.0	U	136777612	m&p-Xylenes	1.0	U	
541-73-1	1,3-Dichlorobenzene	1.0	U	79-20-9	Methyl Acetate	1.0	U	
106-46-7	1,4-Dichlorobenzene	1.0	U	108-87-2	Methylcyclohexane	1.0	U	
123-91-1	1,4-Dioxane	50	U	75-09-2	Methylene Chloride	1.0	U	
78-93-3	2-Butanone	1.0	U	1634-04-4	Methyl-t-butyl ether	0.50	U	
591-78-6	2-Hexanone	1.0	U	95-47-6	o-Xylene	1.0	U	
108-10-1	4-Methyl-2-Pentanone	1.0	U	100-42-5	Styrene	1.0	U	
67-64-1	Acetone	10	U	127-18-4	Tetrachloroethene	1.0	U	
71-43-2	Benzene	0.50	U	108-88-3	Toluene	1.0	U	
74-97-5	Bromochloromethane	1.0	U	156-60-5	trans-1,2-Dichloroethene	1.0	U	
75-27-4	Bromodichloromethane	1.0	U	10061-02-6	trans-1,3-Dichloropropene	1.0	U	
75-25-2	Bromoform	1.0	U	79-01-6	Trichloroethene	1.0	U	
74-83-9	Bromomethane	1.0	U	75-69-4	Trichlorofluoromethane	1.0	U	
75-15-0	Carbon Disulfide	1.0	U	75-01-4	Vinyl Chloride	1.0	U	
1330-20-7	Xylenes (Total)	1.0	U					

Worksheet #: 188806

Total Target Concentration

ColumnID: (^) Indicates results from 2nd column

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

ORGANICS VOLATILE REPORT **Tentatively Identified Compounds**

Sample Number: AC58547-009

Client Id: FB-1

Data File: 6M67619.D

Analysis Date: 04/25/11 20:57

Date Rec/Extracted: 04/20/11-NA

Matrix: Aqueous

Initial Vol: 5ml

Final Vol: NA

Dilution: 1.00

Solids:

Method: EPA 624

Units: ug/L

	Cas #	Compound	RT	Conc
1		No Unknown Compounds Detected	0.00	OJ

Worksheet #: 188806

A - Indicates an aldol condensate.

J - Indicates an estimated value.
B - Indicates the analyte was found in the blank as well as in the sample.
Y - Indicates the analyte was found in the blank at <10% of the concentration of the sample.

<10% - Indicates the analyte was found in the blank at < 10% of nearest Internal Standard

ORGANICS VOLATILE REPORT

Sample Number: AC58547-010

Client Id: TRIP

Data File: 6M67620.D

Analysis Date: 04/25/11 21:13

Date Rec/Extracted: 04/20/11-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 624

Matrix: Aqueous

Initial Vol: 5ml

Final Vol: NA

Dilution: 1.00

Solids: 0

Units: ua/L

	Onits: ug/L										
Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc				
71-55-6	1,1,1-Trichloroethane	1.0	U	56-23-5	Carbon Tetrachloride	1.0	U				
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U	108-90-7	Chlorobenzene	1.0	U				
76-13-1	1,1,2-Trichloro-1,2,2-trifluor	5.0	U	75-00-3	Chloroethane	1.0	U				
79-00-5	1,1,2-Trichloroethane	1.0	U	67-66-3	Chloroform	1.0	U				
75-34-3	1,1-Dichloroethane	1.0	U	74-87-3	Chloromethane	1.0	U				
75-35-4	1,1-Dichloroethene	1.0	U	156-59-2	cis-1,2-Dichloroethene	1.0	U				
87-61-6	1,2,3-Trichlorobenzene	1.0	U	10061-01-5	cis-1,3-Dichloropropene	1.0	U				
120-82-1	1,2,4-Trichlorobenzene	1.0	U	110-82-7	Cyclohexane	1.0	U				
96-12-8	1,2-Dibromo-3-Chloropropa	1.0	U	124-48-1	Dibromochloromethane	1.0	U				
106-93-4	1,2-Dibromoethane	1.0	U	75-71-8	Dichlorodifluoromethane	1.0	U				
95-50-1	1,2-Dichlorobenzene	1.0	U	100-41-4	Ethylbenzene	1.0	U				
107-06-2	1,2-Dichloroethane	0.50	U	98-82-8	Isopropylbenzene	1.0	U				
78-87-5	1,2-Dichloropropane	1.0	U	136777612	m&p-Xylenes	1.0	U				
541-73-1	1,3-Dichlorobenzene	1.0	U	79-20-9	Methyl Acetate	1.0	U				
106-46-7	1,4-Dichlorobenzene	1.0	U	108-87-2	Methylcyclohexane	1.0	U				
123-91-1	1,4-Dioxane	50	U	75-09-2	Methylene Chloride	1.0	U				
78-93-3	2-Butanone	1.0	U	1634-04-4	Methyl-t-butyl ether	0.50	U				
591-78-6	2-Hexanone	1.0	U	95-47-6	o-Xylene	1.0	U				
108-10-1	4-Methyl-2-Pentanone	1.0	U	100-42-5	Styrene	1.0	U				
67-64-1	Acetone	10	U	127-18-4	Tetrachloroethene	1.0	U				
71-43-2	Benzene	0.50	U	108-88-3	Toluene	1.0	U				
74-97-5	Bromochloromethane	1.0	U	156-60-5	trans-1,2-Dichloroethene	1.0	U				
75-27-4	Bromodichloromethane	1.0	U	10061-02-6	trans-1,3-Dichloropropene	1.0	U				
75-25-2	Bromoform	1.0	U	79-01-6	Trichloroethene	1.0	U				
74-83-9	Bromomethane	1.0	U	75-69-4	Trichlorofluoromethane	1.0	U				
75-15-0	Carbon Disulfide	1.0	U	75-01-4	Vinyl Chloride	1.0	U				
1330-20-7	Xylenes (Total)	1.0	U								

ColumnID: (^) Indicates results from 2nd column

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample. E - Indicates the analyte concentration exceeds the calibration range of the

instrument.

R - Retention Time Out J - Indicates an estimated value when a compound is detected at less than the

specified detection limit. d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

ORGANICS VOLATILE REPORT Tentatively Identified Compounds

Sample Number: AC58547-010

Client Id: TRIP

Data File: 6M67620.D Analysis Date: 04/25/11 21:13

Date Rec/Extracted: 04/20/11-NA

Matrix: Aqueous

Initial Vol: 5ml

Final Vol: NA

Dilution: 1.00

Solids:

Method: EPA 624

Units: ug/L

Cas #	Compound	RT	Conc
1	No Unknown Compounds Detected	0.00	0 J

Worksheet #: 188806

A - Indicates an aldol condensate. J - Indicates an estimated value.

B - Indicates the analyte was found in the blank as well as in the sample.
Y - Indicates the analyte was found in the blank at <10% of the concentration of the sample.

<10% - Indicates the analyte was found in the blank at < 10% of nearest Internal Standard

Form3 Recovery Data QC Batch: MBS7464

Data File

Sample ID:

Analysis Date

Spike or Dup: 2M65997.D Non Spike(If applicable): 2M65946.D AC58596-001(MS) AC58596-001 4/29/2011 7:24:00 AM 4/28/2011 3:57:00 PM

Inst Blank(If applicable):

Method: 624

Matrix: Aqueous

QC Type: MS

		Spike	Sample	Expected		Lower	Upper		ME Uppe
Analyte:	Col	Conc	Conc	Conc	Recovery	Limit	Limit	Limit	Limit
Chloromethane	1	21.9928	0	20	110	1	273	0	0
Bromomethane	1	29.6826	0	20	148	1	242	0	0
Vinyl Chloride	1	28.2459	0	20	141	1	251	0	0
Chloroethane	1	29.5055	0	20	148	14	230	0	0
Trichlorofluoromethane	1	29.0237	0	20	145	17	181	0	0
Methylene Chloride	1	19.0895	0	20	95	1	221	0	0
1,1-Dichloroethene	1	27.1898	10.2215	20	85	1	234	0	0
1,1-Dichloroethane	1	44.1089	33.5964	20	53 *	59	155	0	0
trans-1,2-Dichloroethene	1	20.54	0	20	103	54	156	0	0
Chloroform	1	23.3496	0	20	117	51	138	0	0
1,2-Dichloroethane	1	29.2736	0	20	146	49	155	0	0
1,1,1-Trichloroethane	1	25.8505	0	20	129	52	162	0	0
Carbon Tetrachloride	1	25.0567	0	20	125	70	140	0	0
Bromodichloromethane	1	20.4975	0	20	102	35	155	0	0
1,2-Dichloropropane	1	17.5793	0	20	88	1	210	0	0
Trichloroethene	1	22.1149	2.367	20	99	71	157	0	0
Benzene	1	20.0231	2.2844	20	89	37	151	0	0
Dibromochloromethane	1	23.0522	0	20	115	53	149	0	0
2-Chloroethylvinylether	1	0	0	20	0*	1	305	0	0
cis-1,3-Dichloropropene	1	21.7782	0	20	109	1	227	0	0
trans-1,3-Dichloropropene	1	24.7403	0	20	124	17	183	0	0
1,1,2-Trichloroethane	1	23.338	0	20	117	52	150	0	0
Tetrachloroethene	1	25.0271	2.1776	20	114	64	148	0	0
Toluene	1	22.7156	0	20	114	47	150	0	0
Chlorobenzene	1	23.9744	2.7407	20	106	37	160	0	0
Bromoform	1	15.598	0	20	78	45	169	0	0
Ethylbenzene	1	25.2027	0	20	126	37	162	0	0
1,1,2,2-Tetrachloroethane	1	20.3276	0	20	102	46	157	0	0
1,3-Dichlorobenzene	1	23.6939	0	20	118	59	156	0	0
1,4-Dichlorobenzene	1	21.2687	0	20	106	18	190	0	0
1,2-Dichlorobenzene	1	21.3958	0	20	107	18	190	0	0

Form3 Recovery Data QC Batch: MBS7464

Data File

Sample ID:

AC58596-001

Analysis Date

Spike or Dup: 2M65998.D

Non Spike(If applicable): 2M65946.D

AC58596-001(MSD)

4/29/2011 7:40:00 AM 4/28/2011 3:57:00 PM

Inst Blank(If applicable):

Method: 624

Matrix: Aqueous

QC Type: MSD

							11	MEL	MC Harris
Amalida	0.1	Spike	Sample	Expected	Deceyes:	Lower	Upper Limit		ME Upper Limit
Analyte:	Col	Conc	Conc	Conc	Recovery	Limit		Limit	
Chloromethane	1	21.0444	0	20	105	1	273	0	0
Bromomethane	1	29.9547	0	20	150	1	242	0	0
Vinyl Chloride	1	28.6498	0	20	143	1	251	0	0
Chloroethane	1	26.5978	0	20	133	14	230	0	0
Trichlorofluoromethane	1	27.3395	0	20	137	17	181	0	0
Methylene Chloride	1	18.8599	0	20	94	1	221	0	0
1,1-Dichloroethene	1	26.3862	10.2215	20	81	1	234	0	0
1,1-Dichloroethane	1	44.858	33.5964	20	56*	59	155	0	0
trans-1,2-Dichloroethene	1	20.5652	0	20	103	54	156	0	0
Chloroform	1	23.3231	0	20	117	51	138	0	0
1,2-Dichloroethane	1	27.7804	0	20	139	49	155	0	0
1,1,1-Trichloroethane	1	25.0933	0	20	125	52	162	0	0
Carbon Tetrachloride	1	23.5343	0	20	118	70	140	0	0
Bromodichloromethane	1	21.5296	0	20	108	35	155	0	0
1,2-Dichloropropane	1	18.5887	0	20	93	1	210	0	0
Trichloroethene	1	20.0571	2.367	20	88	71	157	0	0
Benzene	1	20.9487	2.2844	20	93	37	151	0	0
Dibromochloromethane	1	23.5733	0	20	118	53	149	0	0
2-Chloroethylvinylether	1	0	0	20	0*	1	305	0	0
cis-1,3-Dichloropropene	1	23.3454	0	20	117	1	227	0	0
trans-1,3-Dichloropropene	1	25.8864	0	20	129	17	183	0	0
1,1,2-Trichloroethane	1	22.4592	0	20	112	52	150	0	0
Tetrachloroethene	1	23.8073	2.1776	20	108	64	148	0	0
Toluene	1	22.9684	0	20	115	47	150	0	0
Chlorobenzene	1	24.2711	2.7407	20	108	37	160	0	0
Bromoform	1	17.4042	0	20	87	45	169	0	0
Ethylbenzene	1	26.142	0	20	131	37	162	0	0
1,1,2,2-Tetrachloroethane	1	23.3216	0	20	117	46	157	0	0
1,3-Dichlorobenzene	1	25.2351	Ō	20	126	59	156	0	0
1,4-Dichlorobenzene	1	24.0399	Ō	20	120	18	190	0	0
1,2-Dichlorobenzene	1	24.0671	Ö	20	120	18	190	0	0

ORGANICS SEMIVOLATILE REPORT

Sample Number: WMB5098

Client Id:

Data File: 10M21022.D Analysis Date: 04/24/11 17:23

Date Rec/Extracted: NA-04/24/11

Column: DB-5MS 30M 0.250mm ID 0.25um film

Method: EPA 625

Matrix: Aqueous

Initial Vol: 1000ml

Final Vol: 1ml

Dilution: 1

Solids: 0

Units: ug/L

	Units: ug/L									
Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc			
92-52-4	1,1'-Biphenyl	2.0	U	205-99-2	Benzo[b]fluoranthene	2.0	U			
95-94-3	1,2,4,5-Tetrachlorobenzene	2.0	U	191-24-2	Benzo[g,h,i]perylene	2.0	Ų			
58-90-2	2,3,4,6-Tetrachlorophenol	2.0	U	207-08-9	Benzo[k]fluoranthene	2.0	U			
95-95-4	2,4,5-Trichlorophenol	2.0	υ	111-91-1	bis(2-Chloroethoxy)methan	2.0	U			
88-06-2	2,4,6-Trichlorophenol	2.0	U	111-44-4	bis(2-Chloroethyl)ether	0.50	U			
120-83-2	2,4-Dichlorophenol	2.0	U	108-60-1	bis(2-chloroisopropyl)ether	2.0	U			
105-67-9	2,4-Dimethylphenol	2.0	U	117-81-7	bis(2-Ethylhexyl)phthalate	2.0	U			
51-28-5	2,4-Dinitrophenol	10	U	85-68-7	Butylbenzylphthalate	2.0	Ų			
121-14-2	2,4-Dinitrotoluene	2.0	U	105-60-2	Caprolactam	2.0	U			
606-20-2	2,6-Dinitrotoluene	2.0	υ	86-74-8	Carbazole	2.0	U			
91-58-7	2-Chloronaphthalene	2.0	U	218-01-9	Chrysene	2.0	U			
95-57-8	2-Chlorophenol	2.0	U	53-70-3	Dibenzo[a,h]anthracene	2.0	U			
91-57-6	2-Methylnaphthalene	2.0	υ	132-64-9	Dibenzofuran	0.50	U			
95-48-7	2-Methylphenol	0.50	U	84-66-2	Diethylphthalate	2.0	U			
88-74-4	2-Nitroaniline	2.0	U	131-11-3	Dimethylphthalate	2.0	U			
88-75-5	2-Nitrophenol	2.0	U	84-74-2	Di-n-butylphthalate	2.0	U			
106-44-5	3&4-Methylphenol	0.50	υ	117-84-0	Di-n-octylphthalate	2.0	U			
91-94-1	3,3'-Dichlorobenzidine	2.0	U	206-44-0	Fluoranthene	2.0	U			
99-09-2	3-Nitroaniline	2.0	U	86-73-7	Fluorene	2.0	U			
534-52-1	4,6-Dinitro-2-methylphenol	10	υ	118-74-1	Hexachlorobenzene	2.0	U			
101-55-3	4-Bromophenyl-phenylether	2.0	U	87-68-3	Hexachlorobutadiene	2.0	U			
59-50-7	4-Chloro-3-methylphenol	2.0	υ	77-47-4	Hexachlorocyclopentadiene	2.0	U			
106-47-8	4-Chloroaniline	0.50	U	67-72-1	Hexachloroethane	2.0	U			
7005-72-3	4-Chlorophenyl-phenylether	2.0	U	193-39-5	Indeno[1,2,3-cd]pyrene	2.0	U			
100-01-6	4-Nitroaniline	2.0	υ	78-59-1	Isophorone	2.0	U			
100-02-7	4-Nitrophenol	2.0	U	91-20-3	Naphthalene	0.50	U			
83-32-9	Acenaphthene	2.0	U	98-95-3	Nitrobenzene	2.0	U			
208-96-8	Acenaphthylene	2.0	U	621-64-7	N-Nitroso-di-n-propylamine	0.50	U			
98-86-2	Acetophenone	2.0	υ	86-30-6	n-Nitrosodiphenylamine	2.0	U			
120-12-7	Anthracene	2.0	U	87-86-5	Pentachlorophenol	10	U			
1912-24-9	Atrazine	2.0	υ	85-01-8	Phenanthrene	2.0	U			
100-52-7	Benzaldehyde	2.0	U	108-95-2	Phenol	2.0	U			
56-55-3	Benzo[a]anthracene	2.0	U	129-00-0	Pyrene	2.0	U			
50-32-8	Benzo[a]pyrene	2.0	υ							

Worksheet #: 188810

Total Target Concentration

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used

ORGANICS SEMIVOLATILE REPORT **Tentatively Identified Compounds**

Sample Number: WMB5098

Client Id:

Data File: 10M21022.D

Analysis Date: 04/24/11 17:23

Date Rec/Extracted: NA-04/24/11

Matrix: Aqueous

Initial Vol: 1000ml

Final Vol: 1ml

Dilution: 1

Solids: 0

Method: EPA 625

Units: ug/L

	Cas #	Compound	RT	Conc	
1	590-36-3	2-Pentanol, 2-methyl-	2.35	<10%	
2		unknown	3.83	<10%	
3	111-76-2	Ethanol, 2-butoxy-	4.52	5.0 J	
4	5131-66-8	2-Propanol, 1-butoxy-	4.84	7.1 J	
5	622-96-8	Benzene, 1-ethyl-4-methyl-	5.03	<10%	
6	108-67-8	Benzene, 1,3,5-trimethyl-	5.29	<10%	
7	112-36-7	Ethane, 1,1'-oxybis[2-ethoxy-	5.80	<10%	
8		unknown	14.61	<10%	

Worksheet #: 188810

<sup>A - Indicates an aldol condensate.
J - Indicates an estimated value.
B - Indicates the analyte was found in the blank as well as in the sample.
Y - Indicates the analyte was found in the blank at <10% of the concentration of the sample.</sup>

<10% - Indicates the analyte was found in the blank at < 10% of nearest Internal Standard

Form₁

ORGANICS SEMIVOLATILE REPORT

Sample Number: SMB5101

Client Id:

Data File: 9M34032.D Analysis Date: 04/25/11 16:44

Date Rec/Extracted: NA-04/25/11

Column: DB-5MS 30M 0.250mm ID 0.25um film

Method: EPA 8270C

Matrix: Soil

Initial Vol: 30g

Final Vol: 1ml Dilution: 1

Solids: 100

Unite: ma/Ka

Units: mg/Kg										
Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc			
92-52-4	1,1'-Biphenyl	0.067	U	205-99-2	Benzo[b]fluoranthene	0.067	U			
95-94-3	1,2,4,5-Tetrachlorobenzene	0.067	U	191-24-2	Benzo[g,h,i]perylene	0.067	U			
58-90-2	2,3,4,6-Tetrachlorophenol	0.067	U	207-08-9	Benzo[k]fluoranthene	0.067	U			
95-95-4	2,4,5-Trichlorophenol	0.067	U	111-91-1	bis(2-Chloroethoxy)methan	0.067	U			
88-06-2	2,4,6-Trichlorophenol	0.067	U	111-44-4	bis(2-Chloroethyl)ether	0.017	U			
120-83-2	2,4-Dichlorophenol	0.017	U	108-60-1	bis(2-chloroisopropyl)ether	0.067	U			
105-67-9	2,4-Dimethylphenol	0.067	U	117-81-7	bis(2-Ethylhexyl)phthalate	0.067	U			
51-28-5	2,4-Dinitrophenol	0.33	U	85-68-7	Butylbenzylphthalate	0.067	U			
121-14-2	2,4-Dinitrotoluene	0.067	U	105-60-2	Caprolactam	0.067	U			
606-20-2	2,6-Dinitrotoluene	0.067	U	86-74-8	Carbazole	0.067	U			
91-58-7	2-Chloronaphthalene	0.067	U	218-01-9	Chrysene	0.067	U			
95-57-8	2-Chlorophenol	0.067	U	53-70-3	Dibenzo[a,h]anthracene	0.067	U			
91-57-6	2-Methylnaphthalene	0.067	U	132-64-9	Dibenzofuran	0.017	U			
95-48-7	2-Methylphenol	0.017	U	84-66-2	Diethylphthalate	0.067	U			
88-74-4	2-Nitroaniline	0.067	U	131-11-3	Dimethylphthalate	0.067	U			
88-75-5	2-Nitrophenol	0.067	U	84-74-2	Di-n-butylphthalate	0.067	U			
106-44-5	3&4-Methylphenol	0.017	U	117-84-0	Di-n-octylphthalate	0.067	U			
91-94-1	3,3'-Dichlorobenzidine	0.067	U	206-44-0	Fluoranthene	0.067	U			
99-09-2	3-Nitroaniline	0.067	U	86-73-7	Fluorene	0.067	U			
534-52-1	4,6-Dinitro-2-methylphenol	0.33	U	118-74-1	Hexachlorobenzene	0.067	U			
101-55-3	4-Bromophenyl-phenylether	0.067	U	87-68-3	Hexachlorobutadiene	0.067	U			
59-50-7	4-Chloro-3-methylphenol	0.067	U	77-47-4	Hexachlorocyclopentadiene	0.33	U			
106-47-8	4-Chloroaniline	0.032	υ	67-72-1	Hexachloroethane	0.067	U			
7005-72-3	4-Chlorophenyl-phenylether	0.067	U	193-39-5	Indeno[1,2,3-cd]pyrene	0.067	U			
100-01-6	4-Nitroaniline	0.067	U	78-59-1	Isophorone	0.067	U			
100-02-7	4-Nitrophenol	0.067	U	91-20-3	Naphthalene	0.017	U			
83-32-9	Acenaphthene	0.067	U	98-95-3	Nitrobenzene	0.067	U			
208-96-8	Acenaphthylene	0.067	U	621-64-7	N-Nitroso-di-n-propylamine	0.017	U			
98-86-2	Acetophenone	0.067	U	86-30-6	n-Nitrosodiphenylamine	0.067	U			
120-12-7	Anthracene	0.067	U	87-86-5	Pentachlorophenol	0.67	U			
1912-24-9	Atrazine	0.067	U	85-01-8	Phenanthrene	0.067	U			
100-52-7	Benzaldehyde	0.067	U	108-95-2	Phenol	0.067	U			
56-55-3	Benzo[a]anthracene	0.067	U	129-00-0	Pyrene	0.067	U			
50-32-8	Benzo[a]pyrene	0.067	U							

Worksheet #: 188746

Total Target Concentration

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit. d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

ORGANICS SEMIVOLATILE REPORT **Tentatively Identified Compounds**

Sample Number: SMB5101

Client Id:

Data File: 9M34032.D

Analysis Date: 04/25/11 16:44

Date Rec/Extracted: NA-04/25/11

Matrix: Soil

Initial Vol: 30g

Final Vol: 1ml

Dilution: 1

Solids: 100

Method: EPA 8270C

Units: mg/Kg

	Cas #	Compound	RT	Conc
1	141-79-7	3-Penten-2-one, 4-methyl-	3.77	0.56 JA
2		unknown	4.02	1.9 J
3	123-42-2	2-Pentanone, 4-hydroxy-4-methyl-	4.35	97 JA
4		unknown	5.03	0.55 J
5	5131-66-8	2-Propanol, 1-butoxy-	5.23	0.18 J
6	84-69-5	1,2-Benzenedicarboxylic acid, bis(2-met	9.91	0.55 J

Worksheet #: 188746

A - Indicates an aldol condensate.

J - Indicates an estimated value.
B - Indicates the analyte was found in the blank as well as in the sample.
Y - Indicates the analyte was found in the blank at <10% of the concentration of the sample.

<10% - Indicates the analyte was found in the blank at < 10% of nearest Internal Standard

ORGANICS SEMIVOLATILE REPORT

Sample Number: AC58547-001

Client Id: SW-1

Data File: 10M21053.D

Analysis Date: 04/25/11 05:21 Date Rec/Extracted: 04/20/11-04/24/11

Column: DB-5MS 30M 0.250mm ID 0.25um film

Method: EPA 625

Matrix: Aqueous

Initial Vol: 780ml

Final Vol: 0.5ml Dilution: 1

Solids: 0

Units: ug/L

	Units: ug/L									
Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc			
	1,1'-Biphenyl	1.3	U	205-99-2	Benzo[b]fluoranthene	1.3	U			
95-94-3	1,2,4,5-Tetrachlorobenzene	1.3	U	191-24-2	Benzo[g,h,i]perylene	1.3	U			
58-90-2	2,3,4,6-Tetrachlorophenol	1.3	U	207-08-9	Benzo[k]fluoranthene	1.3	U			
95-95-4	2,4,5-Trichlorophenol	1.3	U	111-91-1	bis(2-Chloroethoxy)methan	1.3	U			
88-06-2	2,4,6-Trichlorophenol	1.3	U	111-44-4	bis(2-Chloroethyl)ether	0.32	U			
120-83-2	2,4-Dichlorophenol	1.3	U	108-60-1	bis(2-chloroisopropyl)ether	1.3	U			
105-67-9	2,4-Dimethylphenol	1.3	U	117-81-7	bis(2-Ethylhexyl)phthalate	1.3	U			
51-28-5	2,4-Dinitrophenol	6.4	U	85-68-7	Butylbenzylphthalate	1.3	U			
121-14-2	2,4-Dinitrotoluene	1.3	U	105-60-2	Caprolactam	1.3	U			
606-20-2	2,6-Dinitrotoluene	1.3	U	86-74-8	Carbazole	1.3	U			
91-58-7	2-Chloronaphthalene	1.3	U	218-01-9	Chrysene	1.3	U			
95-57-8	2-Chlorophenol	1.3	U	53-70-3	Dibenzo[a,h]anthracene	1.3	U			
91-57-6	2-Methylnaphthalene	1.3	U	132-64-9	Dibenzofuran	0.32	U			
95-48-7	2-Methylphenol	0.32	U	84-66-2	Diethylphthalate	1.3	U			
88-74-4	2-Nitroaniline	1.3	U	131-11-3	Dimethylphthalate	1.3	U			
88-75-5	2-Nitrophenol	1.3	U	84-74-2	Di-n-butylphthalate	1.3	U			
106-44-5	3&4-Methylphenol	0.32	U	117-84-0	Di-n-octylphthalate	1.3	U			
91-94-1	3,3'-Dichlorobenzidine	1.3	U	206-44-0	Fluoranthene	1.3	U			
99-09-2	3-Nitroaniline	1.3	U	86-73-7	Fluorene	1.3	U			
534-52-1	4,6-Dinitro-2-methylphenol	6.4	U	118-74-1	Hexachlorobenzene	1.3	U			
101-55-3	4-Bromophenyl-phenylether	1.3	U	87-68-3	Hexachlorobutadiene	1.3	U			
59-50-7	4-Chloro-3-methylphenol	1.3	U	77-47-4	Hexachlorocyclopentadiene	1.3	U			
106-47-8	4-Chloroaniline	0.32	U	67-72-1	Hexachloroethane	1.3	U			
7005-72-3	4-Chlorophenyl-phenylether	1.3	υ	193-39-5	Indeno[1,2,3-cd]pyrene	1.3	U			
	4-Nitroaniline	1.3	υ	78-59-1	Isophorone	1.3	U			
100-02-7	4-Nitrophenol	1.3	υ	91-20-3	Naphthalene	0.32	U			
83-32-9	Acenaphthene	1.3	U	98-95-3	Nitrobenzene	1.3	U			
208-96-8	Acenaphthylene	1.3	U	621-64-7	N-Nitroso-di-n-propylamine	0.32	U			
98-86-2	Acetophenone	1.3	U	86-30-6	n-Nitrosodiphenylamine	1.3	U			
120-12-7	Anthracene	1.3	U		Pentachlorophenol	6.4	U			
1912-24-9	Atrazine	1.3	U	85-01-8	Phenanthrene	1.3	U			
100-52-7	Benzaldehyde	1.3	U	108-95-2	Phenol	1.3	Ū			
56-55-3	Benzo[a]anthracene	1.3	U	129-00-0	Pyrene	1.3	Ū			
50-32-8	Benzo[a]pyrene	1.3	υ		-					
			1							

Worksheet #: 188810

Total Target Concentration

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

ORGANICS SEMIVOLATILE REPORT Tentatively Identified Compounds

Sample Number: AC58547-001

Client Id: SW-1

Data File: 10M21053.D

Analysis Date: 04/25/11 05:21

Date Rec/Extracted: 04/20/11-04/24/11

Matrix: Aqueous

Initial Vol: 780ml Final Vol: 0.5ml

Dilution: 1

Solids:

Method: EPA 625

Units: ug/L

	Cas#	Compound	RT	Conc
1		unknown	3.83	2.8 JB
2	111-76-2	Ethanol, 2-butoxy-	4.51	7.3 JB
3	5131-66-8	2-Propanol, 1-butoxy-	4.84	9.2 JB
4	526-73-8	Benzene, 1,2,3-trimethyl-	5.29	2.6 J

Worksheet #: 188810

<sup>A - Indicates an aldol condensate.
J - Indicates an estimated value.
B - Indicates the analyte was found in the blank as well as in the sample.
Y - Indicates the analyte was found in the blank at <10% of the concentration of the sample.</sup>

<10% - Indicates the analyte was found in the blank at < 10% of nearest Internal Standard

ORGANICS SEMIVOLATILE REPORT

Sample Number: AC58547-002

Client Id: SW-2

Data File: 10M21054.D

Analysis Date: 04/25/11 05:43

Date Rec/Extracted: 04/20/11-04/24/11

Column: DB-5MS 30M 0.250mm ID 0.25um film

Method: EPA 625

Matrix: Aqueous

Initial Vol: 960ml

Final Vol: 1ml

Dilution: 1

Solids: 0

Units: ug/L

			Units: ug/L	-			
Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc
92-52-4	1,1'-Biphenyl	2.1	U	205-99-2	Benzo[b]fluoranthene	2.1	U
95-94-3	1,2,4,5-Tetrachlorobenzene	2.1	U	191-24-2	Benzo[g,h,i]perylene	2.1	U
58-90-2	2,3,4,6-Tetrachlorophenol	2.1	U	207-08-9	Benzo[k]fluoranthene	2.1	U
95-95-4	2,4,5-Trichlorophenol	2.1	U	111-91-1	bis(2-Chloroethoxy)methan	2.1	U
88-06-2	2,4,6-Trichlorophenol	2.1	U	111-44-4	bis(2-Chloroethyl)ether	0.52	U
120-83-2	2,4-Dichlorophenol	2.1	U	108-60-1	bis(2-chloroisopropyl)ether	2.1	U
105-67-9	2,4-Dimethylphenol	2.1	U	117-81-7	bis(2-Ethylhexyl)phthalate	2.1	U
51-28-5	2,4-Dinitrophenol	10	U	85-68-7	Butylbenzylphthalate	2.1	U
121-14-2	2,4-Dinitrotoluene	2.1	U	105-60-2	Caprolactam	2.1	U
606-20-2	2,6-Dinitrotoluene	2.1	U	86-74-8	Carbazole	2.1	U
91-58-7	2-Chloronaphthalene	2.1	U	218-01-9	Chrysene	2.1	U
95-57-8	2-Chlorophenol	2.1	U	53-70-3	Dibenzo[a,h]anthracene	2.1	U
91-57-6	2-Methylnaphthalene	2.1	U	132-64-9	Dibenzofuran	0.52	U
95-48-7	2-Methylphenol	0.52	U	84-66-2	Diethylphthalate	2.1	U
88-74-4	2-Nitroaniline	2.1	U	131-11-3	Dimethylphthalate	2.1	U
88-75-5	2-Nitrophenol	2.1	U	84-74-2	Di-n-butylphthalate	2.1	U
106-44-5	3&4-Methylphenol	0.52	U	117-84-0	Di-n-octylphthalate	2.1	U
91-94-1	3,3'-Dichlorobenzidine	2.1	U	206-44-0	Fluoranthene	2.1	U
99-09-2	3-Nitroaniline	2.1	U	86-73-7	Fluorene	2.1	U
534-52-1	4,6-Dinitro-2-methylphenol	10	U	118-74-1	Hexachlorobenzene	2.1	U
101-55-3	4-Bromophenyl-phenylether	2.1	U	87-68-3	Hexachlorobutadiene	2.1	U
59-50-7	4-Chloro-3-methylphenol	2.1	U	77-47-4	Hexachlorocyclopentadiene	2.1	U
106-47-8	4-Chloroaniline	0.52	U	67-72-1	Hexachloroethane	2.1	U
7005-72-3	4-Chlorophenyl-phenylether	2.1	U	193-39-5	Indeno[1,2,3-cd]pyrene	2.1	U
100-01-6	4-Nitroaniline	2.1	U	78-59-1	Isophorone	2.1	U
100-02-7	4-Nitrophenol	2.1	U	91-20-3	Naphthalene	0.52	U
83-32-9	Acenaphthene	2.1	U	98-95-3	Nitrobenzene	2.1.	U
208-96-8	Acenaphthylene	2.1	U	621-64-7	N-Nitroso-di-n-propylamine	0.52	U
98-86-2	Acetophenone	2.1	U		n-Nitrosodiphenylamine	2.1	U
120-12-7	Anthracene	2.1	U	87-86-5	Pentachlorophenol	10	U
1912-24-9	Atrazine	2.1	U		Phenanthrene	2.1	U
100-52-7	Benzaldehyde	2.1	U	108-95-2	Phenol	2.1	U
56-55-3	Benzo[a]anthracene	2.1	U	129-00-0	Pyrene	2.1	Ū
50-32-8	Benzo[a]pyrene	2.1	U		-		
	- · ·						

Worksheet #: 188810

Total Target Concentration

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

ORGANICS SEMIVOLATILE REPORT Tentatively Identified Compounds

Sample Number: AC58547-002

Client Id: SW-2

Data File: 10M21054.D

Analysis Date: 04/25/11 05:43

Date Rec/Extracted: 04/20/11-04/24/11

Matrix: Aqueous

Initial Vol: 960ml

Final Vol: 1ml

Dilution: 1

Solids:

Method: EPA 625

Units: ug/L

	Cas#	Compound	RT	Conc
1	111-76-2	Ethanol, 2-butoxy-	4.51	14 JB
2	5131-66-8	2-Propanol, 1-butoxy-	4.84	16 JB
3	108-67-8	Benzene, 1,3,5-trimethyl-	5.29	5.9 JB

Worksheet #: 188810

A - Indicates an aldol condensate.

J - Indicates an estimated value.

B - Indicates the analyte was found in the blank as well as in the sample.

Y - Indicates the analyte was found in the blank at <10% of the concentration of the sample.

<10% - Indicates the analyte was found in the blank at < 10% of nearest Internal Standard

ORGANICS SEMIVOLATILE REPORT

Sample Number: AC58547-003

Client Id: SW-3

Data File: 10M21055.D Analysis Date: 04/25/11 06:05

Date Rec/Extracted: 04/20/11-04/24/11

Column: DB-5MS 30M 0.250mm ID 0.25um film

Method: EPA 625

Matrix: Aqueous

Initial Vol: 930ml

Final Vol: 1ml

Dilution: 1

Solids: 0

Units: ug/L

Units: ug/L							
Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc
92-52-4	· / · · = · / · · · · · · · · · ·	2.2	U	205-99-2	Benzo[b]fluoranthene	2.2	U
95-94-3	1,2,4,5-Tetrachlorobenzene	2.2	U	191-24-2	Benzo[g,h,i]perylene	2.2	U
58-90-2	2,3,4,6-Tetrachlorophenol	2.2	U	207-08-9	Benzo[k]fluoranthene	2.2	U
95-95-4	2,4,5-Trichlorophenol	2.2	U	111-91-1	bis(2-Chloroethoxy)methan	2.2	U
88-06-2	2,4,6-Trichlorophenol	2.2	U	111-44-4	bis(2-Chloroethyl)ether	0.54	U
120-83-2	2,4-Dichlorophenol	2.2	U	108-60-1	bis(2-chloroisopropyl)ether	2.2	U
105-67-9	2,4-Dimethylphenol	2.2	U	117-81-7	bis(2-Ethylhexyl)phthalate	2.2	U
51-28-5	2,4-Dinitrophenol	11	U	85-68-7	Butylbenzylphthalate	2.2	U
121-14-2	2,4-Dinitrotoluene	2.2	U	105-60-2	Caprolactam	2.2	U
606-20-2	2,6-Dinitrotoluene	2.2	U	86-74-8	Carbazole	2.2	U
91-58-7	2-Chloronaphthalene	2.2	U	218-01-9	Chrysene	2.2	U
95-57-8	2-Chlorophenol	2.2	U	53-70-3	Dibenzo[a,h]anthracene	2.2	U
91-57-6	2-Methylnaphthalene	2.2	U	132-64-9	Dibenzofuran	0.54	U
95-48-7	2-Methylphenol	0.54	U	84-66-2	Diethylphthalate	2.2	U
88-74-4	2-Nitroaniline	2.2	U	131-11-3	Dimethylphthalate	2.2	U
88-75-5	2-Nitrophenol	2.2	U	84-74-2	Di-n-butylphthalate	2.2	U
106-44-5	3&4-Methylphenol	0.54	U	117-84-0	Di-n-octylphthalate	2.2	U
91-94-1	3,3'-Dichlorobenzidine	2.2	U	206-44-0	Fluoranthene	2.2	U
99-09-2	3-Nitroaniline	2.2	U	86-73-7	Fluorene	2.2	U
534-52-1	4,6-Dinitro-2-methylphenol	11	U	118-74-1	Hexachlorobenzene	2.2	U
101-55-3	4-Bromophenyl-phenylether	2.2	U	87-68-3	Hexachlorobutadiene	2.2	U
59-50-7	4-Chloro-3-methylphenol	2.2	U	77-47-4	Hexachlorocyclopentadiene	2.2	U
106-47-8	4-Chloroaniline	0.54	U	67-72-1	Hexachloroethane	2.2	U
7005-72-3	4-Chlorophenyl-phenylether	2.2	U	193-39-5	Indeno[1,2,3-cd]pyrene	2.2	U
100-01-6	4-Nitroaniline	2.2	U	78-59-1	Isophorone	2.2	U
100-02-7	4-Nitrophenol	2.2	U	91-20-3	Naphthalene	0.54	U
83-32-9	Acenaphthene	2.2	U	98-95-3	Nitrobenzene	2.2	U
208-96-8	Acenaphthylene	2.2	U	621-64-7	N-Nitroso-di-n-propylamine	0.54	U
98-86-2	Acetophenone	2.2	U	86-30-6	n-Nitrosodiphenylamine	2.2	U
120-12-7	Anthracene	2.2	U	87-86-5	Pentachlorophenol	11	U
1912-24-9	Atrazine	2.2	U	85-01-8	Phenanthrene	2.2	U
100-52-7	Benzaldehyde	2.2	U	108-95-2	Phenol	2.2	U
56-55-3	Benzo[a]anthracene	2.2	U	129-00-0	Pyrene	2.2	U
50-32-8	Benzo[a]pyrene	2.2	U				

Worksheet #: 188810

Total Target Concentration

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

ORGANICS SEMIVOLATILE REPORT Tentatively Identified Compounds

Sample Number: AC58547-003

Client Id: SW-3

Data File: 10M21055.D

Analysis Date: 04/25/11 06:05

Date Rec/Extracted: 04/20/11-04/24/11

Matrix: Aqueous

Initial Vol: 930ml

Final Vol: 1ml

Dilution: 1

Solids:

Method: EPA 625

Units: ug/L

	Cas#	Compound	RT	Conc	
 1	111-76-2	Ethanol, 2-butoxy-	4.52	4.3 JB	
2	5131-66-8	2-Propanol, 1-butoxy-	4.84	7.1 JB	

Worksheet #: 188810

A - Indicates an aldol condensate. J - Indicates an estimated value. B - Indicates the analyte was found in the blank as well as in the sample. Y - Indicates the analyte was found in the blank at <10% of the concentration of the sample.

<10% - Indicates the analyte was found in the blank at < 10% of nearest Internal Standard

ORGANICS SEMIVOLATILE REPORT

Sample Number: AC58547-004

Client Id: SW-4

Data File: 10M21024.D

Analysis Date: 04/24/11 18:41

Date Rec/Extracted: 04/20/11-04/24/11 Column: DB-5MS 30M 0.250mm ID 0.25um film Method: EPA 625

Matrix: Aqueous

Initial Vol: 500ml

Final Vol: 0.5ml

Dilution: 1

Solids: 0

Units: ug/L

	Units: ug/L						
Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc
92-52-4	1,1'-Biphenyl	2.0	U	205-99-2	Benzo[b]fluoranthene	2.0	U
95-94-3	1,2,4,5-Tetrachlorobenzene	2.0	U	191-24-2	Benzo[g,h,i]perylene	2.0	U
58-90-2	2,3,4,6-Tetrachlorophenol	2.0	U	207-08-9	Benzo[k]fluoranthene	2.0	U
95-95-4	2,4,5-Trichlorophenol	2.0	U	111-91-1	bis(2-Chloroethoxy)methan	2.0	U
88-06-2	2,4,6-Trichlorophenol	2.0	U	111-44-4	bis(2-Chloroethyl)ether	0.50	U
120-83-2	2,4-Dichlorophenol	2.0	U	108-60-1	bis(2-chloroisopropyl)ether	2.0	U
105-67-9	2,4-Dimethylphenol	2.0	U	117-81-7	bis(2-Ethylhexyl)phthalate	2.0	U
51-28-5	2,4-Dinitrophenol	10	U	85-68-7	Butylbenzylphthalate	2.0	U
121-14-2	2,4-Dinitrotoluene	2.0	U	105-60-2	Caprolactam	2.0	U
606-20-2	2,6-Dinitrotoluene	2.0	U	86-74-8	Carbazole	2.0	U
91-58-7	2-Chloronaphthalene	2.0	U	218-01-9	Chrysene	2.0	U
95-57-8	2-Chlorophenol	2.0	U	53-70-3	Dibenzo[a,h]anthracene	2.0	U
91-57-6	2-Methylnaphthalene	2.0	U	132-64-9	Dibenzofuran	0.50	U
95-48-7	2-Methylphenol	0.50	U	84-66-2	Diethylphthalate	2.0	U
88-74-4	2-Nitroaniline	2.0	U	131-11-3	Dimethylphthalate	2.0	U
88-75 - 5	2-Nitrophenol	2.0	U	84-74-2	Di-n-butylphthalate	2.0	U
106-44-5	3&4-Methylphenol	0.50	U	117-84-0	Di-n-octylphthalate	2.0	U
91-94-1	3,3'-Dichlorobenzidine	2.0	U	206-44-0	Fluoranthene	2.0	U
99-09-2	3-Nitroaniline	2.0	U	86-73-7	Fluorene	2.0	U
534-52-1	4,6-Dinitro-2-methylphenol	10	U	118-74-1	Hexachlorobenzene	2.0	U
101-55-3	4-Bromophenyl-phenylether	2.0	U	87-68-3	Hexachlorobutadiene	2.0	U
59-50-7	4-Chloro-3-methylphenol	2.0	U	77-47-4	Hexachlorocyclopentadiene	2.0	U
106-47-8	4-Chloroaniline	0.50	U	67-72-1	Hexachloroethane	2.0	U
7005-72-3	4-Chlorophenyl-phenylether	2.0	U	193-39-5	Indeno[1,2,3-cd]pyrene	2.0	U
100-01-6	4-Nitroaniline	2.0	U	78-59-1	Isophorone	2.0	U
100-02-7	4-Nitrophenol	2.0	U	91-20-3	Naphthalene	0.50	U
83-32-9	Acenaphthene	2.0	U	98-95-3	Nitrobenzene	2.0	U
208-96-8	Acenaphthylene	2.0	U	621-64-7	N-Nitroso-di-n-propylamine	0.50	U
98-86-2	Acetophenone	2.0	U	86-30-6	n-Nitrosodiphenylamine	2.0	U
120-12-7	Anthracene	2.0	U	87-86-5	Pentachlorophenol	10	U
1912-24-9	Atrazine	2.0	U	85-01-8	Phenanthrene	2.0	U
100-52-7	Benzaldehyde	2.0	U	108-95-2	Phenol	2.0	U
56-55-3	Benzo[a]anthracene	2.0	U	129-00-0	Pyrene	2.0	U
50-32-8	Benzo[a]pyrene	2.0	U				

Worksheet #: 188810

Total Target Concentration

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

ORGANICS SEMIVOLATILE REPORT **Tentatively Identified Compounds**

Sample Number: AC58547-004

Client Id: SW-4

Data File: 10M21024.D

Analysis Date: 04/24/11 18:41

Date Rec/Extracted: 04/20/11-04/24/11

Matrix: Aqueous

Initial Vol: 500ml

Final Vol: 0.5ml

Dilution: 1

Solids:

Method: EPA 625

Units: ug/L

	Cas #	Compound	RT	Conc	
1	111-76-2	Ethanol, 2-butoxy-	4.51	9.7 JB	
2	5131-66-8	2-Propanol, 1-butoxy-	4.84	14 JB	
3	108-67-8	Benzene, 1,3,5-trimethyl-	5.29	5.1 JB	

Worksheet #: 188810

<sup>A - Indicates an aldol condensate.
J - Indicates an estimated value.
B - Indicates the analyte was found in the blank as well as in the sample.
Y - Indicates the analyte was found in the blank at <10% of the concentration of the sample.</sup>

<10% - Indicates the analyte was found in the blank at < 10% of nearest Internal Standard

ORGANICS SEMIVOLATILE REPORT

Sample Number: AC58547-005

Client Id: SD-1

Data File: 9M34050.D Analysis Date: 04/25/11 23:34

Date Rec/Extracted: 04/20/11-04/25/11

Column: DB-5MS 30M 0.250mm ID 0.25um film

Method: EPA 8270C

Matrix: Soil

Initial Vol: 30g

Final Vol: 1ml

Dilution: 1

Solids: 51

Units: mg/Kg

Units: mg/kg							
Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc
92-52-4	1,1'-Biphenyl	0.13	U	205-99-2	Benzo[b]fluoranthene	0.13	0.31
95-94-3	1,2,4,5-Tetrachlorobenzene	0.13	U	191-24-2	Benzo[g,h,i]perylene	0.13	0.19
58-90-2	2,3,4,6-Tetrachlorophenol	0.13	U	207-08-9	Benzo[k]fluoranthene	0.13	U
95-95-4	2,4,5-Trichlorophenol	0.13	U	111-91-1	bis(2-Chloroethoxy)methan	0.13	U
88-06-2	2,4,6-Trichlorophenol	0.13	U	111-44-4	bis(2-Chloroethyl)ether	0.033	U
120-83-2	2,4-Dichlorophenol	0.033	U	108-60-1	bis(2-chloroisopropyl)ether	0.13	U
105-67-9	2,4-Dimethylphenol	0.13	U	117-81-7	bis(2-Ethylhexyl)phthalate	0.13	U
51-28-5	2,4-Dinitrophenol	0.65	U	85-68-7	Butylbenzylphthalate	0.13	U
121-14-2	2,4-Dinitrotoluene	0.13	U	105-60-2	Caprolactam	0.13	U
606-20-2	2,6-Dinitrotoluene	0.13	U	86-74-8	Carbazole	0.13	U
91-58-7	2-Chloronaphthalene	0.13	U	218-01-9	Chrysene	0.13	0.22
95-57-8	2-Chlorophenol	0.13	U	53-70-3	Dibenzo[a,h]anthracene	0.13	U
91-57-6	2-Methylnaphthalene	0.13	U	132-64-9	Dibenzofuran	0.033	U
95-48-7	2-Methylphenol	0.033	U	84-66-2	Diethylphthalate	0.13	U
88-74-4	2-Nitroaniline	0.13	U	131-11-3	Dimethylphthalate	0.13	U
88-75-5	2-Nitrophenol	0.13	U	84-74-2	Di-n-butylphthalate	0.13	U
106-44-5	3&4-Methylphenol	0.033	U	117-84-0	Di-n-octylphthalate	0.13	U
91-94-1	3,3'-Dichlorobenzidine	0.13	U	206-44-0	Fluoranthene	0.13	0.30
99-09-2	3-Nitroaniline	0.13	U	86-73-7	Fluorene	0.13	U
534-52-1	4,6-Dinitro-2-methylphenol	0.65	U	118-74-1	Hexachlorobenzene	0.13	U
101-55-3	4-Bromophenyl-phenylether	0.13	U	87-68-3	Hexachlorobutadiene	0.13	U
59-50-7	4-Chloro-3-methylphenol	0.13	U	77-47-4	Hexachlorocyclopentadiene	0.65	U
106-47-8	4-Chloroaniline	0.062	U	67-72-1	Hexachloroethane	0.13	U
7005-72-3	4-Chlorophenyl-phenylether	0.13	υ	193-39-5	Indeno[1,2,3-cd]pyrene	0.13	0.15
100-01-6	4-Nitroaniline	0.13	U	78-59-1	Isophorone	0.13	U
100-02-7	4-Nitrophenol	0.13	U	91-20-3	Naphthalene	0.033	U
83-32-9	Acenaphthene	0.13	U	98-95-3	Nitrobenzene	0.13	U
208-96-8	Acenaphthylene	0.13	U	621-64-7	N-Nitroso-di-n-propylamine	0.033	U
98-86-2	Acetophenone	0.13	U	86-30-6	n-Nitrosodiphenylamine	0.13	U
120-12-7	Anthracene	0.13	U	87-86-5	Pentachlorophenol	1.3	U
1912-24-9	Atrazine	0.13	U	85-01-8	Phenanthrene	0.13	0.14
100-52-7	Benzaldehyde	0.13	υ	108-95-2	Phenol	0.13	U
56-55-3	Benzo[a]anthracene	0.13	0.19	129-00-0	Pyrene	0.13	0.39
50-32-8	Benzo[a]pyrene	0.13	0.21				

Worksheet #: 188746

Total Target Concentration

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

ORGANICS SEMIVOLATILE REPORT **Tentatively Identified Compounds**

Sample Number: AC58547-005

Client Id: SD-1

Matrix: Soil Initial Vol: 30g

Final Vol: 1ml

Data File: 9M34050.D Analysis Date: 04/25/11 23:34

Dilution: 1

Solids: 51

Date Rec/Extracted: 04/20/11-04/25/11

Method: EPA 8270C

Units: mg/Kg

	Cas #	Compound	RT	Conc
1		unknown	4.05	2.5 JB
2	123-42-2	2-Pentanone, 4-hydroxy-4-methyl-	4.36	130 JAB
3	111-76-2	Ethanol, 2-butoxy-	4.93	0.33 J
4		unknown	5.04	0.65 JB
5	5131-66-8	2-Propanol, 1-butoxy-	5.23	0.53 JB
6	95-63-6	Benzene, 1,2,4-trimethyl-	5.67	0.29 J
7	593-49-7	Heptacosane	11.84	0.28 J
8		unknown	12.18	0.52 J
9	3158-56-3	1,3-Benzenediol, 5-pentadecyl-	12.22	0.36 J
10	6624-79-9	1-Dotriacontanol	12.65	1.1 J
11	629-73-2	1-Hexadecene	13.42	1.8 J
12		unknown	13.65	0.59 J
13	4602-84-0	Farnesol	13.85	0.53 J
14	638-66-4	Octadecanal	13.93	0.41 J
15	630-06-8	Hexatriacontane	14.14	0.77 J
16	19047-85-9	Phosphonic acid, dioctadecyl ester	14.16	0.51 J
17	198-55-0	Perylene	14.30	0.31 J
18	629-80-1	Hexadecanal	14.69	0.60 J
19	55282-17-2	Tetracosane, 3-ethyl-	14.91	0.44 J
20		unknown	15.02	0.38 J
21	59-02-9	Vitamin E	15.14	0.99 J
22		unknown	15.25	0.37 J
23		unknown	15.81	0.37 J
24	62337-98-8	Cyclohexane, 1,1-dimethyl-2,4-bis(1-me	15.93	0.73 J
25	83-47-6	Stigmast-5-en-3-ol, (3.beta.,24S)-	16.27	2.8 J

Worksheet #: 188746

A - Indicates an aldol condensate. J - Indicates an estimated value.

B - Indicates the analyte was found in the blank as well as in the sample.
Y - Indicates the analyte was found in the blank at <10% of the concentration of the sample.

<10% - Indicates the analyte was found in the blank at < 10% of nearest Internal Standard

ORGANICS SEMIVOLATILE REPORT

Sample Number: AC58547-006

Client ld: SD-2

Data File: 9M34051.D

Analysis Date: 04/25/11 23:57 Date Rec/Extracted: 04/20/11-04/25/11

Column: DB-5MS 30M 0.250mm ID 0.25um film

Method: EPA 8270C

Matrix: Soil

Initial Vol: 30g

Final Vol: 1ml Dilution: 1

Solids: 12

Units: mg/Kg

Units: mg/Kg							
Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc
92-52-4	.,,,.	0.56	U	205-99-2	Benzo[b]fluoranthene	0.56	0.85
95-94-3	1,2,4,5-Tetrachlorobenzene	0.56	U	191-24-2	Benzo[g,h,i]perylene	0.56	U
58-90-2	2,3,4,6-Tetrachlorophenol	0.56	U	207-08-9	Benzo[k]fluoranthene	0.56	Ū
95-95-4	2,4,5-Trichlorophenol	0.56	U	111-91-1	bis(2-Chloroethoxy)methan	0.56	U
88-06-2	2,4,6-Trichlorophenol	0.56	U	111-44-4	bis(2-Chloroethyl)ether	0.14	U
120-83-2	2,4-Dichlorophenol	0.14	U	108-60-1	bis(2-chloroisopropyl)ether	0.56	U
105-67-9	2,4-Dimethylphenol	0.56	U	117-81-7	bis(2-Ethylhexyl)phthalate	0.56	U
51-28-5	2,4-Dinitrophenol	2.8	U	85-68-7	Butylbenzylphthalate	0.56	U
121-14-2	2,4-Dinitrotoluene	0.56	U	105-60-2	Caprolactam	0.56	U
606-20-2	2,6-Dinitrotoluene	0.56	U	86-74-8	Carbazole	0.56	U
91-58-7	2-Chloronaphthalene	0.56	U	218-01-9	Chrysene	0.56	U
95-57-8	2-Chlorophenol	0.56	U	53-70-3	Dibenzo[a,h]anthracene	0.56	U
91-57-6	2-Methylnaphthalene	0.56	U	132-64-9	Dibenzofuran	0.14	U
95-48-7	2-Methylphenol	0.14	U	84-66-2	Diethylphthalate	0.56	U
88-74-4	2-Nitroaniline	0.56	U	131-11-3	Dimethylphthalate	0.56	U
88-75-5	2-Nitrophenol	0.56	U	84-74-2	Di-n-butylphthalate	0.56	U
106-44-5	3&4-Methylphenol	0.14	U	117-84-0	Di-n-octylphthalate	0.56	U
91-94-1	3,3'-Dichlorobenzidine	0.56	U	206-44-0	Fluoranthene	0.56	0.72
99-09-2	3-Nitroaniline	0.56	U	86-73-7	Fluorene	0.56	U
534-52-1	4,6-Dinitro-2-methylphenol	2.8	U	118-74-1	Hexachlorobenzene	0.56	U
101-55-3	4-Bromophenyl-phenylether	0.56	U	87-68-3	Hexachlorobutadiene	0.56	U
59-50-7	4-Chloro-3-methylphenol	0.56	U	77-47-4	Hexachlorocyclopentadiene	2.8	U
106-47-8	4-Chloroaniline	0.26	U	67-72-1	Hexachloroethane	0.56	U
7005-72-3	4-Chlorophenyl-phenylether	0.56	U	193-39-5	Indeno[1,2,3-cd]pyrene	0.56	U
100-01-6	4-Nitroaniline	0.56	U	78-5 9 -1	Isophorone	0.56	U
100-02-7	4-Nitrophenol	0.56	U	91-20-3	Naphthalene	0.14	U
83-32-9	Acenaphthene	0.56	U	98-95-3	Nitrobenzene	0.56	U
208-96-8	Acenaphthylene	0.56	U	621-64-7	N-Nitroso-di-n-propylamine	0.14	U
98-86-2	Acetophenone	0.56	U	86-30-6	n-Nitrosodiphenylamine	0.56	U
120-12-7	Anthracene	0.56	U	87-86-5	Pentachlorophenol	5.6	U
1912-24-9	Atrazine	0.56	υ	85-01-8	Phenanthrene	0.56	U
100-52-7	Benzaldehyde	0.56	υ	108-95-2	Phenol	0.56	Ü
56-55-3	Benzo[a]anthracene	0.56	U	129-00-0	Pyrene	0.56	0.98
50-32-8	Benzo[a]pyrene	0.56	0.56				

Worksheet #: 188746

Total Target Concentration

ColumnID: (^) Indicates results from 2nd column

3.1

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

ORGANICS SEMIVOLATILE REPORT Tentatively Identified Compounds

Sample Number: AC58547-006 Matrix: Soil Client Id: SD-2 Initial Vol: 30g Data File: 9M34051.D Final Vol: 1ml

Analysis Date: 04/25/11 23:57 Dilution: 1 Date Rec/Extracted: 04/20/11-04/25/11 Solids: 12

Method: EPA 8270C

Units: mg/Kg

	Cas#	Compound	RT	Conc
1		unknown	4.01	11 JB
2	123-42-2	2-Pentanone, 4-hydroxy-4-methyl-	4.33	570 JAB
3		unknown	5.03	3.1 JB
4	5131-66-8	2-Propanol, 1-butoxy-	5.23	2.5 JY
5	1058-61-3	(24R)-4-STIGMASTEN-3-ONE	12.18	2.4 J
6	629-73-2	1-Hexadecene	12.66	4.0 J
7	544-76-3	Hexadecane	13.42	12 J
8	105-85-1	6-Octen-1-ol, 3,7-dimethyl-, formate	13.65	3.7 J
9	593-45-3	Octadecane	13.78	2.6 J
10	59681-06-0	10-DEMETHYLSQUALENE	13.86	4.6 J
11	638-66-4	Octadecanal	13.94	3.8 J
12	630-06-8	Hexatriacontane	14.14	15 J
13		unknown	14.16	4.9 J
14	56555-07-8	2,2-DIDEUTERO OCTADECANAL	14.69	2.9 J
15	7616-22-0	.gammaTocopherol	14.79	2.4 J
16	630-06-8	Hexatriacontane	14.91	6.5 J
17	74685-29-3	9-Eicosene, (E)-	14.96	3.7 J
18		unknown	15.02	3.1 J
19	59-02-9	Vitamin E	15.14	6.2 J
20	57-88-5	Cholest-5-en-3-ol (3.beta.)-	15.25	5.6 J
21		unknown	15.46	4,5 J
22	22100-66-9	4,4\-DINITRODIPHENYLSULPHIDE	15.76	2.8 J
23	54832-82-5	Tricyclo[4.3.0.0(7,9)]nonane, 2,2,5,5,8,	15.94	4.7 J
24		unknown	16.02	2.6 J
25	83-47-6	Stigmast-5-en-3-ol, (3.beta.,24S)-	16.27	27 J

Worksheet #: 188746 Total Tentatively Identified Concentration 710

A - Indicates an aldol condensate.

J - Indicates an estimated value.
B - Indicates the analyte was found in the blank as well as in the sample.
Y - Indicates the analyte was found in the blank at <10% of the concentration of the sample.

<10% - Indicates the analyte was found in the blank at < 10% of nearest Internal Standard

ORGANICS SEMIVOLATILE REPORT

Sample Number: AC58547-007

Method: EPA 8270C

Client Id: SD-3

Matrix: Soil

Data File: 9M34088.D

Initial Vol: 30g

Analysis Date: 04/27/11 16:53

Final Vol: 1ml Dilution: 1

Date Rec/Extracted: 04/20/11-04/25/11

Solids: 73

Column: DB-5MS 30M 0.250mm ID 0.25um film

Units: mg/Kg

	Onits. hig/kg						
Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc
92-52-4	1,1'-Biphenyl	0.091	U	205-99-2	Benzo[b]fluoranthene	0.091	U
95-94-3	1,2,4,5-Tetrachlorobenzene	0.091	U	191-24-2	Benzo[g,h,i]perylene	0.091	U
58-90-2	2,3,4,6-Tetrachlorophenol	0.091	U	207-08-9	Benzo[k]fluoranthene	0.091	U
95-95-4	2,4,5-Trichlorophenol	0.091	U	111-91-1	bis(2-Chloroethoxy)methan	0.091	U
88-06-2	2,4,6-Trichlorophenol	0.091	U	111-44-4	bis(2-Chloroethyl)ether	0.023	U
120-83-2	2,4-Dichlorophenol	0.023	U	108-60-1	bis(2-chloroisopropyl)ether	0.091	U
105-67-9	2,4-Dimethylphenol	0.091	U	117-81-7	bis(2-Ethylhexyl)phthalate	0.091	U
51-28-5	2,4-Dinitrophenol	0.46	U	85-68-7	Butylbenzylphthalate	0.091	U
121-14-2	2,4-Dinitrotoluene	0.091	U	105-60-2	Caprolactam	0.091	U
606-20-2	2,6-Dinitrotoluene	0.091	U	86-74-8	Carbazole	0.091	U
91-58-7	2-Chloronaphthalene	0.091	U	218-01-9	Chrysene	0.091	U
95-57-8	2-Chlorophenol	0.091	U	53-70-3	Dibenzo[a,h]anthracene	0.091	U
91-57-6	2-Methylnaphthalene	0.091	υ	132-64-9	Dibenzofuran	0.023	U
95-48-7	2-Methylphenol	0.023	U	84-66-2	Diethylphthalate	0.091	U
88-74-4	2-Nitroaniline	0.091	U	131-11-3	Dimethylphthalate	0.091	U
88-75-5	2-Nitrophenol	0.091	υ	84-74-2	Di-n-butylphthalate	0.091	U
106-44-5	3&4-Methylphenol	0.023	U	117-84-0	Di-n-octylphthalate	0.091	U
91-94-1	3,3'-Dichlorobenzidine	0.091	υ	206-44-0	Fluoranthene	0.091	U
99-09-2	3-Nitroaniline	0.091	U	86-73-7	Fluorene	0.091	U
534-52-1	4,6-Dinitro-2-methylphenol	0.091	U	118-74-1	Hexachlorobenzene	0.091	U
101-55-3	4-Bromophenyl-phenylether	0.091	U	87-68-3	Hexachlorobutadiene	0.091	U
59-50-7	4-Chloro-3-methylphenol	0.091	U	77-47-4	Hexachlorocyclopentadiene	0.091	U
106-47-8	4-Chloroaniline	0.043	U	67-72-1	Hexachloroethane	0.091	U
7005-72-3	4-Chlorophenyl-phenylether	0.091	U	193-39-5	Indeno[1,2,3-cd]pyrene	0.091	U
100-01-6	4-Nitroaniline	0.091	U	78-59-1	Isophorone	0.091	U
100-02-7	4-Nitrophenol	0.091	U	91-20-3	Naphthalene	0.023	U
83-32-9	Acenaphthene	0.091	U	98-95-3	Nitrobenzene	0.091	U
208-96-8	Acenaphthylene	0.091	υİ	621-64-7	N-Nitroso-di-n-propylamine	0.023	U
98-86-2	Acetophenone	0.091	U	86-30-6	n-Nitrosodiphenylamine	0.091	U
120-12-7	Anthracene	0.091	U	87-86-5	Pentachlorophenol	0.46	U
1912-24-9	Atrazine	0.091	U	85-01-8	Phenanthrene	0.091	U
100-52-7	Benzaldehyde	0.091	U	108-95-2	Phenol	0.091	U
56-55-3	Benzo[a]anthracene	0.091	U	129-00-0	Pyrene	0.091	U
50-32-8	Benzo[a]pyrene	0.091	U				

Worksheet #: 188746

Total Target Concentration

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the

R - Retention Time Out

 $^{{\}it J}$ - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

ORGANICS SEMIVOLATILE REPORT **Tentatively Identified Compounds**

Sample Number: AC58547-007 Client Id: SD-3

Data File: 9M34088.D

Analysis Date: 04/27/11 16:53

Date Rec/Extracted: 04/20/11-04/25/11

Matrix: Soil

Initial Vol: 30g

Final Vol: 1ml

Dilution: 1

Solids: 73

Method: EPA 8270C

Units: mg/Kg

	Cas #	Compound	RT	Conc
1		unknown	4.09	1.8 JB
2	123-42-2	2-Pentanone, 4-hydroxy-4-methyl-	4.42	100 JAB
3	111-76-2	Ethanol, 2-butoxy-	4.98	0.23 J
4		unknown	5.09	0.47 JB
5	5131-66-8	2-Propanol, 1-butoxy-	5.29	0.36 JB
6	57-10-3	Hexadecanoic acid	10.39	0.26 J
7	112-53-8	1-Dodecanol	11.22	0.27 J
8	1058-61-3	(24R)-4-STIGMASTEN-3-ONE	12.10	0.64 J
9	19047-85-9	Phosphonic acid, dioctadecyl ester	12.73	0.24 J
10		unknown	13.45	0.47 J
11	7098-22-8	Tetratetracontane	13.51	0.29 J
12	76164-13-1	Dihydrobetabisabolene	13.65	1.8 J
13		unknown	13.77	0.34 J
14		unknown	13.89	0.28 J
15	124-25-4	Tetradecanal	14.02	0.19 J
16	112-95-8	Eicosane	14.23	0.61 J
17	19206-58-7	4H-Naphtho[2,3-b]pyran-4,6,9-trione, 5,	14.65	0.41 J
18	473-13-2	Naphthalene, 1,2,3,4,4a,5,6,8a-octahydr	15.79	0.45 J
19	83-47-6	Stigmast-5-en-3-ol, (3.beta.,24S)-	16.40	1.1 J

Worksheet #: 188746

A - Indicates an aldol condensate.

J - Indicates an estimated value.

B - Indicates the analyte was found in the blank as well as in the sample.
Y - Indicates the analyte was found in the blank at <10% of the concentration of the sample.

<10% - Indicates the analyte was found in the blank at < 10% of nearest Internal Standard

ORGANICS SEMIVOLATILE REPORT

Sample Number: AC58547-008

Client Id: SD-4

Data File: 9M34089.D

Analysis Date: 04/27/11 17:16 Date Rec/Extracted: 04/20/11-04/25/11

Column: DB-5MS 30M 0.250mm ID 0.25um film

Method: EPA 8270C

Matrix: Soil

Initial Vol: 30g

Final Vol: 1ml

Dilution: 1

Solids: 54

Units: mg/Kg

Units: mg/Kg							
Cas#	Compound	RL	Conc	Cas #	Compound	RL	Conc
92-52-4	1,1'-Biphenyl	0.12	U	205-99-2	Benzo[b]fluoranthene	0.12	0.33
95-94-3	1,2,4,5-Tetrachlorobenzene	0.12	U	191-24-2	Benzo[g,h,i]perylene	0.12	0.18
58-90-2	2,3,4,6-Tetrachlorophenol	0.12	U	207-08-9	Benzo[k]fluoranthene	0.12	U
95-95-4	2,4,5-Trichlorophenol	0.12	U	111-91-1	bis(2-Chloroethoxy)methan	0.12	U
88-06-2	2,4,6-Trichlorophenol	0.12	U	111-44-4	bis(2-Chloroethyl)ether	0.031	U
120-83-2	2,4-Dichlorophenol	0.031	U	108-60-1	bis(2-chloroisopropyl)ether	0.12	U
105-67-9	2,4-Dimethylphenol	0.12	U	117-81-7	bis(2-Ethylhexyl)phthalate	0.12	U
51-28-5	2,4-Dinitrophenol	0.62	U	85-68-7	Butylbenzylphthalate	0.12	U
121-14-2	2,4-Dinitrotoluene	0.12	U	105-60-2	Caprolactam	0.12	U
606-20-2	2,6-Dinitrotoluene	0.12	U	86-74-8	Carbazole	0.12	U
91-58-7	2-Chloronaphthalene	0.12	U	218-01-9	Chrysene	0.12	0.18
95-57-8	2-Chlorophenol	0.12	U	53-70-3	Dibenzo[a,h]anthracene	0.12	U
91-57-6	2-Methylnaphthalene	0.12	U	132-64-9	Dibenzofuran	0.031	U
95-48-7	2-Methylphenol	0.031	U	84-66-2	Diethylphthalate	0.12	U
88-74-4	2-Nitroaniline	0.12	U	131-11-3	Dimethylphthalate	0.12	U
88-75-5	2-Nitrophenol	0.12	υ	84-74-2	Di-n-butylphthalate	0.12	U
106-44-5	3&4-Methylphenol	0.031	U	117-84-0	Di-n-octylphthalate	0.12	U
91-94-1	3,3'-Dichlorobenzidine	0.12	U	206-44-0	Fluoranthene	0.12	0.28
99-09-2	3-Nitroaniline	0.12	U	86-73-7	Fluorene	0.12	U
534-52-1	4,6-Dinitro-2-methylphenol	0.12	U	118-74-1	Hexachlorobenzene	0.12	U
101-55-3	4-Bromophenyl-phenylether	0.12	U	87-68-3	Hexachlorobutadiene	0.12	U
59-50-7	4-Chloro-3-methylphenol	0.12	U	77-47-4	Hexachlorocyclopentadiene	0.12	U
106-47-8	4-Chloroaniline	0.059	U	67-72-1	Hexachloroethane	0.12	U
7005-72-3	4-Chlorophenyl-phenylether	0.12	U	193-39-5	Indeno[1,2,3-cd]pyrene	0.12	0.16
100-01-6	4-Nitroaniline	0.12	U	78-59-1	Isophorone	0.12	U
100-02-7	4-Nitrophenol	0.12	U	91-20-3	Naphthalene	0.031	U
83-32-9	Acenaphthene	0.12	U	98-95-3	Nitrobenzene	0.12	U
208-96-8	Acenaphthylene	0.12	U	621-64-7	N-Nitroso-di-n-propylamine	0.031	U
98-86-2	Acetophenone	0.12	U	86-30-6	n-Nitrosodiphenylamine	0.12	U
120-12-7	Anthracene	0.12	U	87-86-5	Pentachlorophenol	0.62	U
1912-24-9	Atrazine	0.12	U	85-01-8	Phenanthrene	0.12	U
100-52-7	Benzaldehyde	0.12	U	108-95-2	Phenol	0.12	U
56-55-3	Benzo[a]anthracene	0.12	0.16	129-00-0	Pyrene	0.12	0.34
50-32-8	Benzo[a]pyrene	0.12	0.22				

Worksheet #: 188746

Total Target Concentration

ColumnID: (^) Indicates results from 2nd column

1.8

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

Form1e

ORGANICS SEMIVOLATILE REPORT **Tentatively Identified Compounds**

Sample Number: AC58547-008

Client Id: SD-4

Data File: 9M34089.D

Analysis Date: 04/27/11 17:16

Date Rec/Extracted: 04/20/11-04/25/11

Matrix: Soil

Initial Vol: 30g

Final Vol: 1ml

Dilution: 1

Solids: 54 Method: EPA 8270C

Units: mg/Kg

	Cas#	Compound	RT	Conc
1		unknown	4.08	2.4 JB
2	123-42-2	2-Pentanone, 4-hydroxy-4-methyl-	4.42	140 JAB
3		unknown	5.09	0.74 JB
4		unknown	7.41	0.79 J
5	2091-29-4	9-Hexadecenoic acid	10.32	2.5 J
6	2091-29-4	9-Hexadecenoic acid	10.36	1.1 J
7	57-10-3	Hexadecanoic acid	10.41	3.2 J
8	2733-88-2	15-Tetracosenoic acid, methyl ester, (Z)	11.25	1.9 J
9	7098-21-7	Tritetracontane	12.75	2.3 J
10	18435-45-5	1-Nonadecene	13.52	3.2 J
11	502-62-5	Lycopersen	13.95	0.78 J
12	638-68-6	Triacontane	14.24	6.3 J
13	124-25-4	Tetradecanal	14.80	1.1 J
14	630-02-4	Octacosane	15.03	1.3 J
15	295-65-8	Cyclohexadecane	15.07	1.7 J
16		unknown	15.14	0.87 J
17	59-02-9	Vitamin E	15.26	1.1 J
18	57-88-5	Cholest-5-en-3-ol (3.beta.)-	15.36	1.3 J
19		unknown	15.57	1.2 J
20	112-92-5	1-Octadecanol	15.76	1.1 J
21	4651-51-8	Ergost-5-en-3-ol, (3.beta.)-	15.91	1.3 J
22	38485-29-9	Stigmasta-5,23-dien-3.betaol	16.05	1.5 J
23	74685-33-9	3-Eicosene, (E)-	16.09	0.94 J
24	83-47-6	Stigmast-5-en-3-ol, (3.beta.,24S)-	16.42	12 J
25	25126-76-5	Androstane-3,17-diol	16.50	0.81 J

Worksheet #: 188746

Total Tentatively Identified Concentration 190

A - Indicates an aldol condensate.

<sup>A - Indicates an attor conversate.
J - Indicates an estimated value.
B - Indicates the analyte was found in the blank as well as in the sample.
Y - Indicates the analyte was found in the blank at <10% of the concentration of the sample.</sup>

<10% - Indicates the analyte was found in the blank at < 10% of nearest Internal Standard

Form1

ORGANICS SEMIVOLATILE REPORT

Sample Number: AC58547-009

Client Id: FB-1

Data File: 10M21056.D

Analysis Date: 04/25/11 06:27 Date Rec/Extracted: 04/20/11-04/24/11

Column: DB-5MS 30M 0.250mm ID 0.25um film

Method: EPA 625

Matrix: Aqueous

Initial Vol: 970ml

Final Vol: 1ml

Dilution: 1

Solids: 0

Unite: ua/l

			Units: u	g/L			
Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc
92-52-4	1,1'-Biphenyl	2.1	U	205-99-2	Benzo[b]fluoranthene	2.1	U
95-94-3	1,2,4,5-Tetrachlorobenzene	2.1	U	191-24-2	Benzo[g,h,i]perylene	2.1	U
58-90-2	2,3,4,6-Tetrachlorophenol	2.1	U	207-08-9	Benzo[k]fluoranthene	2.1	U
95-95-4	2,4,5-Trichlorophenol	2.1	U	111-91-1	bis(2-Chloroethoxy)methan	2.1	U
88-06-2	2,4,6-Trichlorophenol	2.1	U	111-44-4	bis(2-Chloroethyl)ether	0.52	U
120-83-2	2,4-Dichlorophenol	2.1	U	108-60-1	bis(2-chloroisopropyl)ether	2.1	U
105-67-9	2,4-Dimethylphenol	2.1	U	117-81-7	bis(2-Ethylhexyl)phthalate	2.1	U
51-28-5	2,4-Dinitrophenol	10	U	85-68-7	Butylbenzylphthalate	2.1	U
121-14-2	2,4-Dinitrotoluene	2.1	U	105-60-2	Caprolactam	2.1	U
606-20-2	2,6-Dinitrotoluene	2.1	U	86-74-8	Carbazole	2.1	U
91-58-7	2-Chloronaphthalene	2.1	U	218-01-9	Chrysene	2.1	U
95-57-8	2-Chlorophenol	2.1	U	53-70-3	Dibenzo[a,h]anthracene	2.1	U
91-57-6	2-Methylnaphthalene	2.1	U	132-64-9	Dibenzofuran	0.52	U
95-48-7	2-Methylphenol	0.52	U	84-66-2	Diethylphthalate	2.1	U
88-74-4	2-Nitroaniline	2.1	U	131-11-3	Dimethylphthalate	2.1	U
88-75-5	2-Nitrophenol	2.1	U	84-74-2	Di-n-butylphthalate	2.1	U
106-44-5	3&4-Methylphenol	0.52	U	117-84-0	Di-n-octylphthalate	2.1	U
91-94-1	3,3'-Dichlorobenzidine	2.1	U	206-44-0	Fluoranthene	2.1	U
99-09-2	3-Nitroaniline	2.1	U	86-73-7	Fluorene	2.1	U
534-52-1	4,6-Dinitro-2-methylphenol	10	U	118-74-1	Hexachlorobenzene	2.1	U
101-55-3	4-Bromophenyl-phenylether	2.1	U	87-68-3	Hexachlorobutadiene	2.1	U
59-50-7	4-Chloro-3-methylphenol	2.1	U	77-47-4	Hexachlorocyclopentadiene	2.1	U
106-47-8	4-Chloroaniline	0.52	U	67-72-1	Hexachloroethane	2.1	U
7005-72-3	4-Chlorophenyl-phenylether	2.1	U	193-39-5	Indeno[1,2,3-cd]pyrene	2.1	U
100-01-6	4-Nitroaniline	2.1	U	78-59-1	Isophorone	2.1	U
100-02-7	4-Nitrophenol	2.1	U	91-20-3	Naphthalene	0.52	U
83-32-9	Acenaphthene	2.1	U	98-95-3	Nitrobenzene	2.1	U
208-96-8	Acenaphthylene	2.1	U	621-64-7	N-Nitroso-di-n-propylamine	0.52	U
98-86-2	Acetophenone	2.1	U	86-30-6	n-Nitrosodiphenylamine	2.1	U
120-12-7	Anthracene	2.1	U	87-86-5	Pentachlorophenol	10	U
1912-24-9	Atrazine	2.1	U	85-01-8	Phenanthrene	2.1	U
100-52-7	Benzaldehyde	2.1	υ	108-95-2	Phenol	2.1	U
56-55-3	Benzo[a]anthracene	2.1	U	129-00-0	Pyrene	2.1	U
50-32-8	Benzo[a]pyrene	2.1	U				

Worksheet #: 188810

Total Target Concentration

ColumnID: (^) Indicates results from 2nd column

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.
d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

Form1e

ORGANICS SEMIVOLATILE REPORT Tentatively Identified Compounds

Sample Number: AC58547-009

Client Id: FB-1

Data File: 10M21056.D

Analysis Date: 04/25/11 06:27

Date Rec/Extracted: 04/20/11-04/24/11

Matrix: Aqueous

Initial Vol: 970ml

Final Vol: 1ml

Dilution: 1

Solids:

Method: EPA 625

Units: ug/L

	Cas#	Compound	RT	Conc
1	1193-11-9	1,3-Dioxolane, 2,2,4-trimethyl-	2.22	4.9 J
2	5131-66-8	2-Propanol, 1-butoxy-	4.84	6.7 JB

Worksheet #: 188810

Total Tentatively Identified Concentration 12

A - Indicates an aldol condensate.

J - Indicates an estimated value.

B - Indicates the analyte was found in the blank as well as in the sample.
Y - Indicates the analyte was found in the blank at <10% of the concentration of the sample.

<10% - Indicates the analyte was found in the blank at < 10% of nearest Internal Standard

Form3 Recovery Data QC Batch: WMB5098

Data File

Sample ID:

Analysis Date

Spike or Dup: 10M21025.D

Non Spike(If applicable): 10M21024.D

AC58547-004(MS) AC58547-004 4/24/2011 7:03:00 PM 4/24/2011 6:41:00 PM

Inst Blank(If applicable):

Method: 625

Matrix: Aqueous

QC Type: MS

		Spike	Sample	Expected		Lower	Upper	ME Low	ME Upper
Analyte:	Col	Conc	Conc	Ċonc	Recovery	Limit	Limit	Limit	Limit
N-Nitrosodimethylamine	1	104.8165	0	100	105	40	109	0	0
bis(2-Chloroethyl)ether	1	112.2677	0	100	112	12	158	0	0
Phenol	1	73.4123	0	100	73	5	112	0	0
2-Chlorophenol	1	110.5783	0	100	111	23	134	0	0
bis(2-chloroisopropyl)ether	1	114.7603	0	100	115	36	166	0	0
Hexachloroethane	1	108.7902	0	100	109	40	113	0	0
N-Nitroso-di-n-propylamine	1	112.9348	0	100	113	1	230	0	0
Nitrobenzene	1	115.1085	0	100	115	35	180	0	0
Isophorone	1	96.2375	0	100	96	21	196	0	0
2-Nitrophenol	1	118.2565	0	100	118	29	182	0	0
2,4-Dimethylphenol	1	104.4585	0	100	104	32	119	0	0
bis(2-Chloroethoxy)methane	1	115.2415	0	100	115	33	184	0	0
2,4-Dichlorophenol	1	110.419	0	100	110	39	135	0	0
1,2,4-Trichlorobenzene	1	100.0236	0	100	100	44	142	0	0
Naphthalene	1	104.6658	0	100	105	21	133	0	0
Hexachlorobutadiene	1	107.1813	0	100	107	24	116	0	0
4-Chloro-3-methylphenol	1	115.4051	0	100	115	22	147	0	0
2,4,6-Trichlorophenol	1	124.6111	Ō	100	125	37	144	0	0
2-Chloronaphthalene	1	111.6465	Ö	100	112	60	118	0	0
Acenaphthylene	1	117.251	Ö	100	117	33	145	0	0
Dimethylphthalate	i	113.7205	Ö	100	114*	1	112	0	0
2,6-Dinitrotoluene	i	114.1006	Ö	100	114	50	158	0	0
Acenaphthene	i	107.105	Ö	100	107	47	145	Ō	Ō
2,4-Dinitrophenol	i	115.351	Ö	100	115	1	191	Ö	Ō
2.4-Dinitrophenol	i	112.2889	Ö	100	112	39	139	0	0
4-Nitrophenol	i	80.775	Ö	100	81	1	132	Ō	Ō
Fluorene	1	106.5229	Ö	100	107	59	121	Ö	Ō
4-Chlorophenyl-phenylether	i	110.8996	Ö	100	111	25	158	0	0
Diethylphthalate	1	109.607	Ö	100	110	1	114	Ö	Ō
4,6-Dinitro-2-methylphenol	1	112.2392	Ö	100	112	i	181	Ö	Ō
4-Bromophenyl-phenylether	1	112.2002	Ö	100	112	53	127	Ö	Ō
Hexachlorobenzene	1	100.4111	Ö	100	100	1	152	Ö	Ö
	1	115.0786	Ö	100	115	14	176	Õ	Ö
Pentachlorophenol	1	112.0295	0	100	112	54	120	Ö	Ō
Phenanthrene	1	108.6304	0	100	109	27	133	Ö	Ö
Anthracene	1	120.3048	0	100	120*	1	118	Ö	0
Di-n-butylphthalate	1	108.7557	0	100	109	26	137	Ö	Ö
Fluoranthene	1	108.7557	0	100	109	52	115	Ö	Ö
Pyrene	1	111.7787	0	100	112	1	152	Ö	Ö
Butylbenzylphthalate	1		0	100	101	i	262	Ö	Ö
3,3'-Dichlorobenzidine	-	100.7319	0	100	106	33	143	Ö	0
Benzo[a]anthracene	1	105.8964 109.7769	0	100	110	17	168	Ö	Ö
Chrysene	-		0	100	112	8	158	0	Ö
bis(2-Ethylhexyl)phthalate	1	112.2832	0	100	109	4	146	0	0
Di-n-octylphthalate	1	109.3639 122.2163	0	100	122	24	159	0	Ö
Benzo[b]fluoranthene			0	100	98	11	162	0	0
Benzo[k]fluoranthene	1	97.508	0	100	96 114	17	163	0	0
Benzo[a]pyrene	1	114.2941	_	100	98	17	171	0	0
Indeno[1,2,3-cd]pyrene	1	98.1299	0		96 105	1	227	0	0
Dibenzo[a,h]anthracene Benzo[g,h,i]perylene	1	105.0236 94.8629	0 0	100 100	95	1	219	0	0

Form3 **Recovery Data** QC Batch: WMB5098

Data File Spike or Dup: 10M21026.D

Sample ID: AC58547-004(MSD) Analysis Date

Non Spike(If applicable): 10M21024.D

AC58547-004

4/24/2011 7:25:00 PM 4/24/2011 6:41:00 PM

Inst Blank(If applicable):

Method: 625

Matrix: Aqueous

QC Type: MSD

		Spike	Sample	Expected		Lower	Upper	ME Low	ME Upper
Analyte:	Col	Conc	Conc	Conc	Recovery	Limit	Limit	Limit	Limit
N-Nitrosodimethylamine	1	101.5078	0	100	102	40	109	0	0
bis(2-Chloroethyl)ether	1	114.0007	0	100	114	12	158	0	0
Phenol	1	72.9559	0	100	73	5	112	0	0
2-Chlorophenol	1	110.4662	0	100	110	23	134	0	0
bis(2-chloroisopropyl)ether	1	112.4696	0	100	112	36	166	0	0
Hexachloroethane	1	108.0591	0	100	108	40	113	0	0
N-Nitroso-di-n-propylamine	1	110.7656	0	100	111	1	230	0	0
Nitrobenzene	1	120.6397	0	100	121	35	180	0	0
Isophorone	1	97.1235	0	100	97	21	196	0	0
2-Nitrophenol	1	119.6381	0	100	120	29	182	0	0
2,4-Dimethylphenol	1	105.0559	0	100	105	32	119	0	0
bis(2-Chloroethoxy)methane	1	114.9689	0	100	115	33	184	0	0
2,4-Dichlorophenol	1	109.1953	0	100	109	39	135	0	0
1,2,4-Trichlorobenzene	1	104.246	0	100	104	44	142	0	0
Naphthalene	1	108.8469	0	100	109	21	133	0	0
Hexachlorobutadiene	1	106.7585	0	100	107	24	116	0	0
4-Chloro-3-methylphenol	1	121.4379	0	100	121	22	147	0	0
2,4,6-Trichlorophenol	1	124.4555	0	100	124	37	144	0	0
2-Chloronaphthalene	1	118.0286	0	100	118	60	118	0	0
Acenaphthylene	1	122.8864	0	100	123	33	145	0	0
Dimethylphthalate	1	122,4747	0	100	122*	1	112	0	0
2,6-Dinitrotoluene	1	122.6891	0	100	123	50	158	0	0
Acenaphthene	1	112.5957	0	100	113	47	145	0	0
2,4-Dinitrophenol	1	119.2259	0	100	119	1	191	0	0
2,4-Dinitrotoluene	1	120.8862	0	100	121	39	139	0	0
4-Nitrophenol	1	82.4687	0	100	82	1	132	0	0
Fluorene	1	111,765	0	100	112	59	121	0	0
4-Chlorophenyl-phenylether	1	115.049	0	100	115	25	158	0	0
Diethylphthalate	1	116.2924	0	100	116*	1	114	0	0
4,6-Dinitro-2-methylphenol	1	117.3749	0	100	117	1	181	0	0
4-Bromophenyl-phenylether	1	118.8643	0	100	119	53	127	0	0
Hexachlorobenzene	1	110.3168	0	100	110	1	152	0	0
Pentachlorophenol	1	118.6355	0	100	119	14	176	0	0
Phenanthrene	1	120.3511	0	100	120	54	120	0	0
Anthracene	1	117.1075	0	100	117	27	133	0	0
Di-n-butylphthalate	1	127.4421	0	100	127*	1	118	0	0
Fluoranthene	1	118.9049	0	100	119	26	137	0	0
Pyrene	1	108.5544	0	100	109	52	115	0	0
Butylbenzylphthalate	1	113.6115	0	100	114	1	152	0	0
3,3'-Dichlorobenzidine	1	104.0912	0	100	104	1	262	0	0
Benzo[a]anthracene	1	109.1785	0	100	109	33	143	0	0
Chrysene	1	111.6608	0	100	112	17	168	0	0
bis(2-Ethylhexyl)phthalate	1	113.66	0	100	114	8	158	0	0
Di-n-octylphthalate	1	113.8032	0	100	114	4	146	0	0
Benzo[b]fluoranthene	1	130.3834	0	100	130	24	159	0	0
Benzo[k]fluoranthene	1	96.1578	0	100	96	11	162	0	0
Benzo[a]pyrene	1	121.2321	0	100	121	17	163	0	0
Indeno[1,2,3-cd]pyrene	1	106.8986	0	100	107	1	171	0	0
Dibenzo[a,h]anthracene	1	113.8859	0	100	114	1	227	0	0
Benzo[g,h,i]perylene	1	106.0031	0	100	106	1	219	0	0

Sample ID: AC58547-001

Client ld: SW-1

% Solid: 0

Lab Name: Veritech

Nras No: Sdg No:

Matrix: AQUEOUS

Units: UG/L Date Rec: 4/20/2011 Lab Code: Contract:

Case No:

Level: LOW

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol	Analysis Date	Prep Batch	File:	Seq Num	М	Instr
429-90-5	Aluminum	100	180	1	100	50	04/26/11	6699	A12564C	30	Р	PEICP1A
440-36-0	Antimony	7.5	ND	1	100	50	04/26/11	6699	A12564C	30	Р	PEICP1A
440-38-2	Arsenic	20	ND	1	100	50	04/26/11	6699	A12564C	30	Ρ	PEICP1A
440-39-3	Barium	25	29	1	100	50	04/26/11	6699	A12564C	30	Р	PEICP1A
440-41-7	Beryllium	4.0	ND	1	100	50	04/26/11	6699	A12564C	30	Р	PEICP1A
440-43-9	Cadmium	2.0	ND	1	100	50	04/26/11	6699	A12564C	30	Ρ	PEICP1A
440-70-2	Calcium	1000	31000	1	100	50	04/26/11	6699	A12564C	30	Р	PEICP1A
440-47-3	Chromium	25	ND	1	100	50	04/26/11	6699	A12564C	30	Ρ	PEICP1A
440-48-4	Cobalt	10	ND	1	100	50	04/26/11	6699	A12564C	30	Р	PEICP1
440-50-8	Copper	25	ND	1	100	50	04/26/11	6699	A12564C	30	Р	PEICP1/
439-89-6	Iron	150	310	1	100	50	04/26/11	6699	A12564C	30	Ρ	PEICP1
439-92-1	Lead	5.0	ND	1	100	50	04/26/11	6699	A12564C	30	Ρ	PEICP1/
439-95-4	Magnesium	1000	8900	1	100	50	04/26/11	6699	A12564C	30	Ρ	PEICP1
439-96-5	Manganese	25	260	1	100	50	04/26/11	6699	A12564C	30	Р	PEICP1
439-97-6	Mercury	0.20	ND	1	25	25	04/26/11	6699	H12564Ac	14	CV	HGCV2
440-02-0	Nickel	10	ND	1	100	50	04/26/11	6699	A12564C	30	Р	PEICP1/
440-09-7	Potassium	2500	3000	1	100	50	04/26/11	6699	A12564D	29	Р	PEICPRAD1
782-49-2	Selenium	25	ND	1	100	50	04/26/11	6699	A12564C	30	Р	PEICP1
440-22-4	Silver	10	ND	1	100	50	04/26/11	6699	A12564C	30	Ρ	PEICP1
440-23-5	Sodium	2500	11000	1	100	50	04/26/11	6699	A12564D	29	Ρ	PEICPRAD1
440-28-0	Thallium	5.0	ND	1	100	50	04/26/11	6699	A12564C	30	Р	PEICP1
440-62-2	Vanadium	25	ND	1	100	50	04/26/11	6699	A12564C	30	Р	PEICP1
440-66-6	Zinc	25	ND	1	100	50	04/26/11	6699	A12564C	30	Р	PEICP1

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC58547-002

% Solid: 0

Lab Name: Veritech

Nras No:

Matrix: AQUEOUS

Client Id: SW-2

Units: UG/L Date Rec: 4/21/2011 Lab Code:

Contract:

Sdg No: Case No:

Level: LOW

м		Seq Num	File:	Prep Batch	Analysis Date	Final Wt/Vol	Initial Wt/Vol	Dil Fact	Conc	RL	Analyte	Cas No.
P PEI	Р	31	A12564C	6699	04/26/11	50	100	1	190	100	Aluminum	7429-90-5
P PEI	P	31	A12564C	6699	04/26/11	50	100	1	ND	7.5	Antimony	7440-36-0
P PEK	Р	31	A12564C	6699	04/26/11	50	100	1	ND	20	Arsenic	7440-38-2
P PEI	Р	31	A12564C	6699	04/26/11	50	100	1	26	25	Barium	7440-39-3
P PEK	Р	31	A12564C	6699	04/26/11	50	100	1	ND	4.0	Beryllium	7440-41-7
P PEI	Р	31	A12564C	6699	04/26/11	50	100	1	ND	2.0	Cadmium	7440-43-9
P PEI	Р	31	A12564C	6699	04/26/11	50	100	1	29000	1000	Calcium	7440-70-2
P PEI	Р	31	A12564C	6699	04/26/11	50	100	1	ND	25	Chromium	7440-47-3
P PEI	Р	31	A12564C	6699	04/26/11	50	100	1	ND	10	Cobalt	7440-48-4
P PEK	Р	31	A12564C	6699	04/26/11	50	100	1	ND	25	Copper	7440-50-8
P PEI	Р	31	A12564C	6699	04/26/11	50	100	1	410	150	Iron	7439-89-6
P PEI	Р	31	A12564C	6699	04/26/11	50	100	1	ND	5.0	Lead	7439-92-1
P PEK	Р	31	A12564C	6699	04/26/11	50	100	1	8200	1000	Magnesium	7439-95-4
P PEI	Р	31	A12564C	6699	04/26/11	50	100	1	210	25	Manganese	7439-96-5
CV HG	CV	15	H12564Ac	6699	04/26/11	25	25	1	ND	0.20	Mercury	7439-97-6
P PEK	Р	31	A12564C	6699	04/26/11	50	100	1	ND	10	Nickel	7440-02-0
P PEICPR	Р	30	A12564D	6699	04/26/11	50	100	1	3000	2500	Potassium	7440-09-7
P PEI	Р	31	A12564C	6699	04/26/11	50	100	1	ND	25	Selenium	7782-49-2
P PEI	Р	31	A12564C	6699	04/26/11	50	100	1	ND	10	Silver	7440-22-4
P PEICPRA	Р	30	A12564D	6699	04/26/11	50	100	1	18000	2500	Sodium	7440-23-5
P PEI	Р	31	A12564C	6699	04/26/11	50	100	1	ND	5.0	Thallium	7440-28-0
P PEI	Р	31	A12564C	6699	04/26/11	50	100	1	ND	25	Vanadium	7440-62-2
P PEI	Р	31	A12564C	6699	04/26/11	50	100	1	ND	25	Zinc	7440-66-6

Comments:		

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC58547-003

Client Id: SW-3 Matrix: AQUEOUS % Solid: 0

Units: UG/L

Date Rec: 4/21/2011

Lab Name: Veritech

Nras No:

Lab Code:

Contract:

Sdg No: Case No:

Level: LOW

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol	Analysis Date	Prep Batch	File:	Seq Num	М	Instr
7429-90-5	Aluminum	100	160	1	100	50	04/26/11	6699	A12564C	14	Р	PEICP1A
7440-36-0	Antimony	7.5	ND	1	100	50	04/26/11	6699	A12564C	14	Р	PEICP1A
7440-38-2	Arsenic	20	ND	1	100	50	04/26/11	6699	A12564C	14	Р	PEICP1A
7440-39-3	Barium	25	48	1	100	50	04/26/11	6699	A12564C	14	Р	PEICP1A
7440-41-7	Beryllium	4.0	ND	1	100	50	04/26/11	6699	A12564C	14	Р	PEICP1A
7440-43-9	Cadmium	2.0	ND	1	100	50	04/26/11	6699	A12564C	14	Р	PEICP1A
7440-70-2	Calcium	1000	91000	1	100	50	04/26/11	6699	A12564C	14	Р	PEICP1A
7440-47-3	Chromium	25	ND	1	100	50	04/26/11	6699	A12564C	14	Р	PEICP1A
7440-48-4	Cobalt	10	ND	1	100	50	04/26/11	6699	A12564C	14	Р	PEICP1A
7440-50-8	Copper	25	ND	1	100	50	04/26/11	6699	A12564C	14	Р	PEICP1A
7439-89-6	Iron	150	170	1	100	50	04/26/11	6699	A12564C	14	Р	PEICP1A
7439-92-1	Lead	5.0	ND	1	100	50	04/26/11	6699	A12564C	14	Р	PEICP1A
7439-95-4	Magnesium	1000	11000	1	100	50	04/26/11	6699	A12564C	14	Р	PEICP1A
7439-96-5	Manganese	25	210	1	100	50	04/26/11	6699	A12564C	14	Р	PEICP1A
7439-97-6	Mercury	0.20	ND	1	25	25	04/26/11	6699	H12564Ab	14	CV	HGCV2A
7440-02-0	Nickel	10	ND	1	100	50	04/26/11	6699	A12564C	14	Р	PEICP1A
7440-09-7	Potassium	2500	3800	1	100	50	04/26/11	6699	A12564D	13	Р	PEICPRAD1A
7782-49-2	Selenium	25	ND	1	100	50	04/26/11	6699	A12564C	14	Р	PEICP1A
7440-22-4	Silver	10	ND	1	100	50	04/26/11	6699	A12564C	14	Р	PEICP1A
7440-23-5	Sodium	2500	44000	1	100	50	04/26/11	6699	A12564D	13	Р	PEICPRAD1A
7440-28-0	Thallium	5.0	ND	1	100	50	04/26/11	6699	A12564C	14	Р	PEICP1A
7440-62-2	Vanadium	25	ND	1	100		04/26/11	6699	A12564C	14	Р	PEICP1A
7440-66-6	Zinc	25	ND	1	100		04/26/11	6699		14	Р	PEICP1A

Comments:	 	 ·

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC58547-004

% Solid: 0 Units: UG/L Lab Name: Veritech

Nras No:

Matrix: AQUEOUS

Client Id: SW-4

Date Rec: 4/21/2011

Lab Code: Contract:

Sdg No: Case No:

Level: LOW

Inst	м	Seq Num	File:		Analysis Date	Final Wt/Vol	Initial Wt/Vol	Dil Fact	Conc	RL	Analyte	Cas No.
PEICP1A	Р	32	A12564C	6699	04/26/11	50	100	1	230	100	Aluminum	7429-90-5
PEICP1A	Р	32	A12564C	6699	04/26/11	50	100	1	ND	7.5	Antimony	7440-36-0
PEICP1A	Р	32	A12564C	6699	04/26/11	50	100	1	ND	20	Arsenic	7440-38-2
PEICP1A	Р	32	A12564C	6699	04/26/11	50	100	1	ND	25	Barium	7440-39-3
PEICP1A	Р	32	A12564C	6699	04/26/11	50	100	1	ND	4.0	Beryllium	7440-41-7
PEICP1A	Р	32	A12564C	6699	04/26/11	50	100	1	ND	2.0	Cadmium	7440-43-9
PEICP1A	Р	32	A12564C	6699	04/26/11	50	100	1	26000	1000	Calcium	7440-70-2
PEICP1A	Р	32	A12564C	6699	04/26/11	50	100	1	ND	25	Chromium	7440-47-3
PEICP1A	Р	32	A12564C	6699	04/26/11	50	100	1	ND	10	Cobalt	7440-48-4
PEICP1A	Р	32	A12564C	6699	04/26/11	50	100	1	ND	25	Copper	7440-50-8
PEICP1A	Р	32	A12564C	6699	04/26/11	50	100	1	170	150	Iron	7439-89-6
PEICP1A	Р	32	A12564C	6699	04/26/11	50	100	1	ND	5.0	Lead	439-92-1
PEICP1A	Ρ	32	A12564C	6699	04/26/11	50	100	1	7300	1000	Magnesium	439-95-4
PEICP1A	Р	32	A12564C	6699	04/26/11	50	100	1	50	25	Manganese	439-96-5
HGCV2A	CV	16	H12564Ac	6699	04/26/11	25	25	1	ND	0.20	Mercury	7439-97-6
PEICP1A	Р	32	A12564C	6699	04/26/11	50	100	1	ND	10	Nickel	440-02-0
PEICPRAD1A	Р	31	A12564D	6699	04/26/11	50	100	1	2700	2500	Potassium	7440-09-7
PEICP1A	Р	32	A12564C	6699	04/26/11	50	100	1	ND	25	Selenium	7782-49-2
PEICP1A	Р	32	A12564C	6699	04/26/11	50	100	1	ND	10	Silver	7440-22-4
PEICPRAD1A	Р	31	A12564D	6699	04/26/11	50	100	1	20000	2500	Sodium	440-23-5
PEICP1A	Р	32	A12564C	6699	04/26/11	50	100	1	ND	5.0	Thallium	440-28-0
PEICP1A	Р	32	A12564C	6699	04/26/11	50	100	1	ND	25	Vanadium	440-62-2
PEICP1A	Р	32	A12564C	6699	04/26/11	50	100	1	ND	25	Zinc	440-66-6

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC58547-005

% Solid: 51

Lab Name: Veritech

Nras No:

Client Id: SD-1 Matrix: SOIL

Units: MG/KG Date Rec: 4/20/2011

Lab Code: Contract:

Sdg No: Case No:

Level: LOW

М	М	Seq Num	File:		Analysis Date	Final Wt/Vol	Initial Wt/Vol	Dil Fact	Conc	RL	Analyte	Cas No.
P PEICPRA	Р	35	S12560B3	6695	04/25/11	50	0.5	1	11000	390	Aluminum	7429-90-5
P PEIC	Р	35	S12560A3	6695	04/25/11	50	0.5	1	ND	3.9	Antimony	7440-36-0
P PEIC	Р	35	S12560A3	6695	04/25/11	50	0.5	1	ND	3.9	Arsenic	7440-38-2
P PEIC	Р	35	S12560A3	6695	04/25/11	50	0.5	1	190	20	Barium	7440-39-3
P PEIC	Р	35	S12560A3	6695	04/25/11	50	0.5	1	ND	1.2	Beryllium	7440-41-7
P PEIC	Р	35	S12560A3	6695	04/25/11	50	0.5	1	ND	1.2	Cadmium	7440-43-9
PEICPRA	Р	35	S12560B3	6695	04/25/11	50	0.5	1	6000	2000	Calcium	7440-70-2
P PEIC	Р	35	S12560A3	6695	04/25/11	50	0.5	1	29	9.8	Chromium	7440-47-3
P PEIC	Р	35	S12560A3	6695	04/25/11	50	0.5	1	11	4.9	Cobalt	7440-48-4
P PEIC	Р	35	S12560A3	6695	04/25/11	50	0.5	1	27	9.8	Copper	7440-50-8
P PEICPRA	Р	35	S12560B3	6695	04/25/11	50	0.5	1	28000	390	Iron	7439-89-6
P PEIC	Р	35	S12560A3	6695	04/25/11	50	0.5	1	26	9.8	Lead	7439-92-1
P PEICPRA	Р	35	S12560B3	6695	04/25/11	50	0.5	1	5100	980	Magnesium	7439-95-4
P PEIC	Р	35	S12560A3	6695	04/25/11	50	0.5	1	4200	20	Manganese	7439-96-5
CV HGC	CV	27	H12560S	6695	04/25/11	25	0.15	1	ND	0.16	Mercury	7439-97-6
P PEIC	Р	35	S12560A3	6695	04/25/11	50	0.5	1	20	9.8	Nickel	7440-02-0
PEICPRA	Р	35	S12560B3	6695	04/25/11	50	0.5	1	2800	980	Potassium	7440-09-7
P PEIC	Р	35	S12560A3	6695	04/25/11	50	0.5	1	ND	3.5	Selenium	7782-49-2
P PEIC	Р	35	S12560A3	6695	04/25/11	50	0.5	1	ND	2.9	Silver	7440-22-4
P PEICPRA	Р	35	S12560B3	6695	04/25/11	50	0.5	1	ND	490	Sodium	7440-23-5
P PEIC	Р	35	S12560A3	6695	04/25/11	50	0.5	1	ND	2.4	Thallium	7440-28-0
P PEIC	Р	35	S12560A3	6695	04/25/11	50	0.5	1	37	20	Vanadium	7440-62-2
P PEIC	Р	35	S12560A3	6695	04/25/11	50	0.5	1	94	20	Zinc	7440-66-6

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC58547-006

Client Id: SD-2

Matrix: SOIL

% Solid: 12

Units: MG/KG

Date Rec: 4/21/2011

Lab Code:

Contract:

Lab Name: Veritech

Nras No: Sdg No:

Case No:

Level: LOW

					1141-1		A = = ' =	Des		Soc		:
Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol	Analysis Date		File:	Seq Num	М	Instr
7429-90-5	Aluminum	1700	12000	1	0.5	50	04/25/11	6695	S12560B3	36	Р	PEICPRAD3A
7440-36-0	Antimony	17	ND	1	0.5	50	04/25/11	6695	S12560A3	36	Р	PEICP3A
7440-38-2	Arsenic	17	ND	1	0.5	50	04/25/11	6695	S12560A3	36	Р	PEICP3A
7440-39-3	Barium	83	860	1	0.5	50	04/25/11	6695	S12560A3	36	Р	PEICP3A
7440-41-7	Beryllium	5.0	ND	1	0.5	50	04/25/11	6695	S12560A3	36	Р	PEICP3A
7440-43-9	Cadmium	5.0	ND	1	0.5	50	04/25/11	6695	S12560A3	36	Р	PEICP3A
7440-70-2	Calcium	8300	14000	1	0.5	50	04/25/11	6695	S12560B3	36	Р	PEICPRAD3A
7440-47-3	Chromium	42	44	1	0.5	50	04/25/11	6695	S12560A3	36	Р	PEICP3A
7440-48-4	Cobalt	21	ND	1	0.5	50	04/25/11	6695	S12560A3	36	Р	PEICP3A
7440-50-8	Copper	42	48	1	0.5	50	04/25/11	6695	S12560A3	36	Р	PEICP3A
7439-89-6	Iron	1700	58000	1	0.5	50	04/25/11	6695	S12560B3	36	Ρ	PEICPRAD3A
7439-92-1	Lead	42	68	1	0.5	50	04/25/11	6695	S12560A3	36	Р	PEICP3A
7439-95-4	Magnesium	4200	6000	1	0.5	50	04/25/11	6695	S12560B3	36	Р	PEICPRAD3A
7439-96-5	Manganese	83	29000	1	0.5	50	04/25/11	6695	S12560A3	36	Р	PEICP3A
7439-97-6	Mercury	0.69	ND	1	0.15	25	04/25/11	6695	H12560S	28	CV	HGCV2A
7440-02-0	Nickel	42	ND	1	0.5	50	04/25/11	6695	S12560A3	36	Р	PEICP3A
7440-09-7	Potassium	4200	ND	1	0.5	50	04/25/11	6695	S12560B3	36	Р	PEICPRAD3A
7782-49-2	Selenium	15	16	1	0.5	50	04/25/11	6695	S12560A3	36	Р	PEICP3A
7440-22-4	Silver	12	ND	1	0.5	50	04/25/11	6695	S12560A3	36	Р	PEICP3A
7440-23-5	Sodium	2100	ND	1	0.5	50	04/25/11	6695	S12560B3	36	Р	PEICPRAD3A
7440-28-0	Thallium	10	ND	1	0.5	50	04/26/11	6695	S12560C3	11	Р	PEICP3A
7440-62-2	Vanadium	83	ND	1	0.5	50	04/25/11	6695	S12560A3	36	Р	PEICP3A
7440-66-6	Zinc	83	270	1	0.5	50	04/25/11	6695	S12560A3	36	Р	PEICP3A

Comments:	 	 	 	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC58547-007

Client Id: SD-3

Matrix: SOIL

% Solid: 73

Units: MG/KG

Date Rec: 4/21/2011

Lab Name: Veritech Lab Code: Contract:

Nras No: Sdg No:

Case No:

Level: LOW

												
Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol	Analysis Date		File:	Seq. Num	м	Instr
7429-90-5	Aluminum	270	5400	1	0.5	50	04/25/11	6695	S12560B3	37	Р	PEICPRAD3A
7440-36-0	Antimony	2.7	ND	1	0.5	50	04/25/11	6695	S12560A3	37	Р	PEICP3A
7440-38-2	Arsenic	2.7	2.7	1	0.5	50	04/25/11	6695	S12560A3	37	Р	PEICP3A
7440-39-3	Barium	14	27	1	0.5	50	04/25/11	6695	S12560A3	37	Р	PEICP3A
7440-41-7	Beryllium	0.82	ND	1	0.5	50	04/25/11	6695	S12560A3	37	Р	PEICP3A
7440-43-9	Cadmium	0.82	ND	1	0.5	50	04/25/11	6695	S12560A3	37	Р	PEICP3A
7440-70-2	Calcium	1400	76000	1	0.5	50	04/25/11	6695	S12560B3	37	Р	PEICPRAD3A
7440-47-3	Chromium	6.8	8.7	1	0.5	50	04/25/11	6695	S12560A3	37	Р	PEICP3A
7440-48-4	Cobalt	3.4	6.0	1	0.5	50	04/25/11	6695	S12560A3	37	Р	PEICP3A
7440-50-8	Copper	6.8	11	1	0.5	50	04/25/11	6695	S12560A3	37	Р	PEICP3A
7439-89-6	Iron	270	15000	1	0.5	50	04/25/11	6695	S12560B3	37	Р	PEICPRAD3A
7439-92-1	Lead	6.8	9.7	1	0.5	50	04/25/11	6695	S12560A3	37	Р	PEICP3A
7439-95-4	Magnesium	680	39000	1	0.5	50	04/25/11	6695	S12560B3	37	Р	PEICPRAD3A
7439-96-5	Manganese	14	390	1	0.5	50	04/25/11	6695	S12560A3	37	Р	PEICP3A
7439-97-6	Mercury	0.11	ND	1	0.15	25	04/25/11	6695	H12560S	29	cv	HGCV2A
7440-02-0	Nickel	6.8	11	1	0.5	50	04/25/11	6695	S12560A3	37	Р	PEICP3A
7440-09-7	Potassium	680	1700	1	0.5	50	04/25/11	6695	S12560B3	37	Р	PEICPRAD3A
7782-49-2	Selenium	2.5	ND	1	0.5	50	04/25/11	6695	S12560A3	37	Р	PEICP3A
7440-22-4	Silver	2.1	ND	1	0.5	50	04/25/11	6695	S12560A3	37	Р	PEICP3A
7440-23-5	Sodium	340	ND	1	0.5	50	04/25/11	6695	S12560B3	37	Р	PEICPRAD3A
7440-28-0	Thallium	1.6	ND	1	0.5	50	04/25/11	6695	S12560A3	37	Р	PEICP3A
7440-62-2	Vanadium	14	ND	1	0.5	50	04/25/11	6695	S12560A3	37	Р	PEICP3A
7440-66-6	Zinc	14	32	1	0.5	50	04/25/11	6695	S12560A3	37	Р	PEICP3A
	0					-				1 1		

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC58547-008

Client Id: SD-4

% Solid: 54

Lab Name: Veritech

Nras No:

Matrix: SOIL

Units: MG/KG Date Rec: 4/21/2011

Lab Code: Contract: Sdg No:

Case No:

Level: LOW

Ins	М	Seq Num	File:		Analysis Date	Final Wt/Vol	Initial Wt/Vol	Dil Fact	Conc	RL	Analyte	Cas No.
PEICPRAD3	Р	38	S12560B3	6695	04/25/11	50	0.5	1	8100	370	Aluminum	7429-90-5
PEICP3	Р	38	S12560A3	6695	04/25/11	50	0.5	1	ND	3.7	Antimony	7440-36-0
PEICP3	Р	38	S12560A3	6695	04/25/11	50	0.5	1	ND	3.7	Arsenic	7440-38-2
PEICP3	Р	38	S12560A3	6695	04/25/11	50	0.5	1	150	19	Barium	7440-39-3
PEICP3	Р	38	S12560A3	6695	04/25/11	50	0.5	1	ND	1.1	Beryllium	7440-41-7
PEICP3	Р	38	S12560A3	6695	04/25/11	50	0.5	1	ND	1.1	Cadmium	7440-43-9
PEICPRAD3	Р	38	S12560B3	6695	04/25/11	50	0.5	1	17000	1900	Calcium	7440-70-2
PEICP3	Р	38	S12560A3	6695	04/25/11	50	0.5	1	25	9.3	Chromium	7440-47-3
PEICP3	Р	38	S12560A3	6695	04/25/11	50	0.5	1	8.5	4.6	Cobalt	440-48-4
PEICP3	Р	38	S12560A3	6695	04/25/11	50	0.5	1	17	9.3	Copper	440-50-8
PEICPRAD3	Р	38	S12560B3	6695	04/25/11	50	0.5	1	19000	370	Iron	439-89-6
PEICP3	Р	38	S12560A3	6695	04/25/11	50	0.5	1	32	9.3	Lead	439-92-1
PEICPRAD3	Р	38	S12560B3	6695	04/25/11	50	0.5	1	13000	930	Magnesium	439-95-4
PEICP3	Р	38	S12560A3	6695	04/25/11	50	0.5	1	3400	19	Manganese	439-96-5
HGCV2	CV	30	H12560S	6695	04/25/11	25	0.15	1	ND	0.15	Mercury	439-97-6
PEICP3	Р	38	S12560A3	6695	04/25/11	50	0.5	1	20	9.3	Nickel	440-02-0
PEICPRAD3	Р	38	S12560B3	6695	04/25/11	50	0.5	1	1900	930	Potassium	440-09-7
PEICP3	Р	38	S12560A3	6695	04/25/11	50	0.5	1	ND	3.3	Selenium	782-49-2
PEICP3	Р	38	S12560A3	6695	04/25/11	50	0.5	1	ND	2.8	Silver	440-22-4
PEICPRAD3	Р	38	S12560B3	6695	04/25/11	50	0.5	1,	ND	460	Sodium	440-23-5
PEICP3	Р	38	S12560A3	6695	04/25/11	50	0.5	1	ND	2.2	Thallium	440-28-0
PEICP3	Р	38	S12560A3	6695	04/25/11	50	0.5	1	33	19	Vanadium	440-62-2
PEICP3	Р	38	S12560A3	6695	04/25/11	50	0.5	1	93	19	Zinc	440-66-6

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC58547-009

% Solid: 0

Lab Name: Veritech

Nras No:

Client Id: Matrix:

FB-1 AQUEOUS Units: UG/L

Lab Code:

Sdg No:

Level:

LOW

Date Rec: 4/21/2011

Contract:

Case No:

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol	Analysis Date	Prep Batch	File:	Seq Num	м	Instr
7429-90-5	Aluminum	100	ND	1	100	50	04/28/11	6699	A12564G	13	Р	PEICP1A
7440-36-0	Antimony	7.5	ND	1	100	50	04/28/11	6699	A12564G	13	Р	PEICP1A
7440-38-2	Arsenic	20	ND	1	100	50	04/28/11	6699	A12564G	13	Р	PEICP1A
7440-39-3	Barium	25	ND	1	100	50	04/28/11	6699	A12564G	13	Р	PEICP1A
7440-41-7	Beryllium	4.0	ND	1	100	50	04/28/11	6699	A12564G	13	Р	PEICP1A
7440-43-9	Cadmium	2.0	ND	1	100	50	04/28/11	6699	A12564G	13	Р	PEICP1A
7440-70-2	Calcium	1000	ND	1	100	50	05/02/11	6699	A12564H	14	Р	PEICP1A
7440-47-3	Chromium	25	ND	1	100	50	04/28/11	6699	A12564G	13	Р	PEICP1A
7440-48-4	Cobalt	10	ND	1	100	50	04/28/11	6699	A12564G	13	Р	PEICP1A
7440-50-8	Copper	25	ND	1	100	50	04/28/11	6699	A12564G	13	Р	PEICP1A
7439-89-6	Iron	150	ND	1	100	50	04/28/11	6699	A12564G	13	Р	PEICP1A
7439-92-1	Lead	5.0	ND	1	100	50	04/28/11	6699	A12564G	13	Р	PEICP1A
7439-95-4	Magnesium	1000	ND	1	100	50	04/28/11	6699	A12564G	13	Р	PEICP1A
7439-96-5	Manganese	25	ND	1	100	50	04/28/11	6699	A12564G	13	Р	PEICP1A
7439-97-6	Mercury	0.20	ND	1	25	25	04/26/11	6699	H12564Ac	17	CV	HGCV2A
7440-02-0	Nickel	10	ND	1	100	50	04/28/11	6699	A12564G	13	Р	PEICP1A
7440-09-7	Potassium	2500	ND	1	100	50	04/26/11	6699	A12564D	32	Р	PEICPRAD1A
7782-49-2	Selenium	25	ND	1	100	50	04/28/11	6699	A12564G	13	Р	PEICP1A
7440-22-4	Silver	10	ND	1	100	50	04/28/11	6699	A12564G	13	Р	PEICP1A
7440-23-5	Sodium	2500	ND	1	100	50	04/26/11	6699	A12564D	32	Р	PEICPRAD1A
7440-28-0	Thallium	5.0	ND	1	100	50	04/28/11	6699	A12564G	13	Р	PEICP1A
7440-62-2	Vanadium	25	ND	1	100	50	04/28/11	6699	A12564G	13	Р	PEICP1A
7440-66-6	Zinc	25	ND	1	100	50	05/02/11	6699	A12564H	14	Р	PEICP1A

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: MB 6699 (0.5)

% Solid: 0

Lab Name: Veritech

Client Id: Matrix: Level: MB 6699 (0.5)

AQUEOUS

LOW

Units: UG/L Lab Code:

Inst	М	Seq Num	File:	Prep Batch	Analysis Date	Final Wt/Vol	Initial Wt/Vol	Dil Fact	Conc	RL	Analyte	Cas No.
PEICP1A	Р	11	A12564C	6699	04/26/11	50	100	1	ND	100	Aluminum	7429-90-5
PEICP1	Р	11	A12564C	6699	04/26/11	50	100	1	ND	7.5	Antimony	7440-36-0
PEICP1A	Р	11	A12564C	6699	04/26/11	50	100	1	ND	20	Arsenic	7440-38-2
PEICP1A	Р	11	A12564C	6699	04/26/11	50	100	1	ND	25	Barium	7440-39-3
PEICP1A	Р	11	A12564C	6699	04/26/11	50	100	1	ND	4.0	Beryllium	7440-41-7
PEICP1A	Р	11	A12564C	6699	04/26/11	50	100	1	ND	2.0	Cadmium	7440-43-9
PEICP1A	Р	11	A12564C	6699	04/26/11	50	100	1	ND	1000	Calcium	7440-70-2
PEICP1A	Р	11	A12564C	6699	04/26/11	50	100	1	ND	25	Chromium	7440-47-3
PEICP1A	Р	11	A12564C	6699	04/26/11	50	100	1	ND	10	Cobalt	7440-48-4
PEICP1A	Р	11	A12564C	6699	04/26/11	50	100	1	ND	25	Copper	7440-50-8
PEICP1	Р	11	A12564C	6699	04/26/11	50	100	1	ND	150	Iron	7439-89-6
PEICP1A	Р	11	A12564C	6699	04/26/11	50	100	1	ND	5.0	Lead	7439-92-1
PEICP1A	Р	11	A12564C	6699	04/26/11	50	100	1	ND	1000	Magnesium	7439-95-4
PEICP1A	Р	11	A12564C	6699	04/26/11	50	100	1	ND	25	Manganese	7439-96-5
PEICP1A	Р	11	A12564C	6699	04/26/11	50	100	1	ND	10	Molybdenum	7439-98-7
PEICP1A	Р	11	A12564C	6699	04/26/11	50	100	1	ND	10	Nickel	7440-02-0
PEICPRAD1A	Р	10	A12564D	6699	04/26/11	50	100	1	ND	2500	Potassium	7440-09-7
PEICP1A	Р	11	A12564C	6699	04/26/11	50	100	. 1	ND	25	Selenium	7782-49-2
PEICP1A	Р	11	A12564C	6699	04/26/11	50	100	1	ND	10	Silver	7440-22-4
PEICPRAD1A	Р	10	A12564D	6699	04/26/11	50	100	1	ND	2500	Sodium	7440-23-5
PEICP1A	Р	11	A12564C	6699	04/26/11	50	100	1	ND	5.0	Thallium	7440-28-0
PEICP1A	Р	11	A12564C	6699	04/26/11	50	100	1	ND	25	Tin	7440-31-5
PEICP1A	Р	11	A12564C	6699	04/26/11	50	100	1	ND	25	Titanium	7440-32-6
PEICP1A	Р	11	A12564C	6699	04/26/11	50	100	1	ND	25	Vanadium	7440-62-2
PEICP1A	Р	11	A12564C	6699	04/26/11	50	100	1	ND	25	Zinc	7440-66-6

Comments:	
-----------	--

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: MB 6695 (100)

% Solid: 0

Lab Name: Veritech

Client Id:

MB 6695 (100)

Units: MG/KG

Lab Code:

Matrix: SOIL Level: LOW

		Con		Des		F:	1					
Instr	М	Seq Num	File:	Prep Batch	Analysis Date	Final Wt/Vol	Initial Wt/Vol	Dil Fact	Conc	RL	Analyte	Cas No.
PEICPRAD3A	Р	10	S12560B3	6695	04/25/11	50	0.5	1	ND	200	Aluminum	7429-90-5
PEICP3A	Р	11	S12560A3	6695	04/25/11	50	0.5	1	ND	2.0	Antimony	7440-36-0
PEICP3A	Р	11	S12560A3	6695	04/25/11	50	0.5	1	ND	2.0	Arsenic	7440-38-2
PEICP3A	Р	11	S12560A3	6695	04/25/11	50	0.5	1	ND	10	Barium	7440-39-3
PEICP3A	Ρ	11	S12560A3	6695	04/25/11	50	0.5	1	ND	0.60	Beryllium	7440-41-7
PEICP3A	Ρ	11	S12560A3	6695	04/25/11	50	0.5	1	ND	0.60	Cadmium	7440-43-9
PEICPRAD3A	Р	10	S12560B3	6695	04/25/11	50	0.5	1	ND	1000	Calcium	7440-70-2
PEICP3A	Ρ	11	S12560A3	6695	04/25/11	50	0.5	1	ND	5.0	Chromium	7440-47-3
PEICP3A	Р	11	S12560A3	6695	04/25/11	50	0.5	1	ND	2.5	Cobalt	7440-48-4
PEICP3A	Ρ	11	S12560A3	6695	04/25/11	50	0.5	1	ND	5.0	Copper	7440-50-8
PEICPRAD3A	Р	10	S12560B3	6695	04/25/11	50	0.5	1	ND	200	Iron	7439-89-6
PEICP3A	Р	11	S12560A3	6695	04/25/11	50	0.5	1	ND	5.0	Lead	7439-92-1
PEICPRAD3A	Р	10	S12560B3	6695	04/25/11	50	0.5	1	ND	500	Magnesium	7439-95-4
PEICP3A	Р	11	S12560A3	6695	04/25/11	50	0.5	1	ND	10	Manganese	7439-96-5
PEICP3A	Р	11	S12560A3	6695	04/25/11	50	0.5	1	ND	2.5	Molybdenum	7439-98-7
PEICP3A	Р	11	S12560A3	6695	04/25/11	50	0.5	1	ND	5.0	Nickel	7440-02-0
PEICPRAD3A	Р	10	S12560B3	6695	04/25/11	50	0.5	1	ND	500	Potassium	7440-09-7
PEICP3A	Р	11	S12560A3	6695	04/25/11	50	0.5	1	ND	1.8	Selenium	7782-49-2
PEICP3A	Р	11	S12560A3	6695	04/25/11	50	0.5	1	ND	1.5	Silver	7440-22-4
PEICPRAD3A	Р	10	S12560B3	6695	04/25/11	50	0.5	1	ND	250	Sodium	7440-23-5
PEICP3A	Р	11	S12560A3	6695	04/25/11	50	0.5	1	ND	1.2	Thallium	7440-28-0
PEICP3A	Р	11	S12560A3	6695	04/25/11	50	0.5	1	ND	5.7	Tin	7440-31-5
PEICP3A	Р	11	S12560A3	6695	04/25/11	50	0.5	1	ND	35	Titanium	7440-32-6
PEICP3A	Р	11	S12560A3	6695	04/25/11	50	0.5	1	ND	10	Vanadium	7440-62-2
PEICP3A	Р	11	S12560A3	6695	04/25/11	50	0.5	1	ND	10	Zìnc	7440-66-6
former comment of the same												

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: MB 6699 (1)

% Solid: 0

Lab Name: Veritech

Level: LOW

Client Id: MB 6699 (1)

Matrix: AQUEOUS

Units: UG/L

Lab Code:

						Initial	Final		Prep		800		
-	Cas No.	Analyte	RL	Cono	Dil Fact		Wt/Vol		Dotob	File:	Seq Num	м	Instr
l	Cas No.	Allalyte	NL.	Conc	Direct	VVI VOI	VVUVOI	Analysis Date	Batti	riie.	Nulli	IVI	11150
	7439-97-6	Mercury	0.20	ND	1	25	25	04/26/11	6699	H12564Ab	11	CV	HGCV2A

Comments:				

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit P - ICP-AES CV -ColdVapor

Sample ID: MB 6695 (167)

% Solid: 0

Lab Name: Veritech

Client Id:

MB 6695 (167)

Units: MG/KG

Lab Code:

Matrix: SOIL Level: LOW

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol	Analysis Date	Prep Batch	File:	Seq Num	М	Instr
7439-97-6	Mercury	0.083	ND	1	0.15	25	04/25/11	6695	H12560S	11	CV	HGCV2A

Comments:	

Flag Codes:

 $\ensuremath{\mathsf{U}}$ or $\ensuremath{\mathsf{ND}}$ - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Date Analyzed: 04/25/11

Data File: S12560A3

Lab Name: Veritech

Lab Code:

Prep Batch: 6695 Reporting Limits Used: SOIL,6010B(ICP)/7470A,7471A(Hg),6020 Contract:

Instrument: PEICP3A

Nras No: Sdg No:

Units: All units in ppm except Hg and icp-ms in ppb

Project Number: 1042016

Case No:

Analyte	ICB V-113875- 8	CCB V-113875- 20	CCB V-113875- 30	CCB V-113875- 40	CCB V-113875- 51	MB 6695 (100)- 11	MB FB 6695 (1)-33	
Antimony	.02 U	.02 U	.02 U	.02 U	.02 U	2U	.02U	, , , , , , , , , , , , , , , , , , , ,
Arsenic	.02 U	.02 U	.02 U	.02 U	.02 U	2U	.02U	
Barium	.1 U	.1 U	.1 U	.1 U	.1 U	10 U	.1U	
Beryllium	.006 U	.006 U	.006 U	.006 U	.006 U	.6U	.006 U	
Cadmium	.006 U	.006 U	.006 U	.006 U	.006 U	.6U	.006U	
Chromium	.05 U	.05 U	.05 U	.05 U	.05 U	5 U	.05U	
Cobalt	.025 U	.025 U	.025 U	.025 U	.025 U	2.5 U	.025U	
Copper	.05 U	.05 U	.05 U	.05 U	.05 U	5 U	.05U	
Lead	.05 U	.05 U	.05 U	.05 U	.05 U	5U	.05U	
Manganese	.1 U	.1 U	.1 U	.1 U	.1 U	10 U	.1U	
Nickel	.05 U	.05 U	.05 U	.05 U	.05 U	5U	.05U	
Selenium	.018 U	.018 U	.018 U	.018 U	.018 U	1.8U	.018U	
Silver	.015 U	.015 U	.015 U	.015 U	.015 U	1.5U	.015U	
Thallium	.012 U	.012 U	.012 U	.012 U	.012 U	1.2U	.012U	
Vanadium	.1 U	.1 U	.1 U	.1 U	.1 U	10 U	.10	
Zinc	.1 U	.1 U	.1 U	.10	.1 U	10U	.1U	

Date Analyzed: 04/25/11

Data File: S12560B3

Prep Batch: 6695

Reporting Limits Used: SOIL,6010B(ICP)/7470A,7471A(Hg),6020

Instrument: PEICPRAD3A

Units: All units in ppm except Hg and icp-ms in ppb

Project Number: 1042016

Lab Name: Veritech

Lab Code:

Contract:

Nras No:

Sdg No:

Case No:

Analyte	ICB V-113875- 7	CCB V-113875- 19	CCB V-113875- 28	CCB V-113875- 34	CCB V-113875- 42	MB 6695 (100)- 10	MB FB 6695 (1)-31	
Aluminum	2 U	2 U	2 U	2 U	2 U	200U	2U	:
Calcium	10 U	10 U	10 U	10 U	10 U	1000 U	10U	
Iron	2 U	2 U	2 U	2 U	2 U	200 U	2U	
Magnesium	5 U	5 U	5 U	5 U	5 U	500 U	5U	
Potassium	5 U	5 U	5 U	5 U	5 U	500 U	5U	
Sodium	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	250 U	2.5U	

Date Analyzed: 04/26/11

Data File: S12560C3

Lab Name: V

Veritech

Prep Batch: 6695

Reporting Limits Used: SOIL,6010B(ICP)/7470A,7471A(Hg),6020

Lab Code: Contract:

Instrument: PEICP3A

Nras No:

Tallion, TEIOTON

Sdg No:

Units: All units in ppm except Hg and icp-ms in ppb

Case No:

| ICB V-113875- | CCB V-113875- | Analyte | 8 | 15 | | Thallium | .012 U | .012 U |

Project Number: 1042016

Date Analyzed: 04/26/11

Data File: A12564C

Prep Batch: 6699

Reporting Limits Used: AQUEOUS,200.7(ICP)/200.8(ICPMS)/245.1(Hg)

Instrument: PEICP1A

Units: All units in ppm except Hg and icp-ms in ppb

Project Number: 1042016

Lab Name: Veritech

Lab Code:

Contract:

Nras No:

Sdg No:

Case No:

Analyte	ICB V-112282- 8	CCB-20	CCB-29	CCB-39	MB 6699 (0.5)- 11	
Aluminum	.2U	.2 U	.2 U	.2 U	.1 U	.,
Antimony	.015 U	.015 U	.015 U	.015 U	.0075 U	
rsenic	.04 U	.04 U	.04 U	.04 U	.02 U	
Barium	.05 U	.05 U	.05 U	.05 U	.025 U	
3eryllium	.008 U	U 800.	.008 U	.008 U	.004 U	
Cadmium	.004 U	.004 U	.004 U	.004 U	.002 U	
Calcium	2 U	2 U	2 U	2 U	1 U	
Chromium	.05 U	.05 U	.05 U	.05 U	.025 U	
Cobalt	.02 U	.02 U	.02 U	.02 U	.01 U	
Copper	.05 U	.05 U	.05 U	.05 U	.025 U	
ron	.3 U	.3 U	.3 U	.3 U	.15 U	
_ead	.01 U	.01 U	.01 U	.01 U	.005 U	
Magnesium	2 U	2 U	2 U	2 U	1 U	
Manganese	.05 U	.05 U	.05 U	.05 U	.025 U	
lickel	.02 U	.02 U	.02 U	.02 U	.01 U	
Selenium	.05 U	.05 U	.05 U	.05 U	.025 U	
Silver	.02 U	.02 U	.02 U	.02 U	.01 U	
Thallium	.01 U	.01 U	.01 U	.01 U	.005 U	
/anadium	.05 U	.05 U	.05 U	.05 U	.025 U	
Zinc	.05 U	.05 U	.05 U	.05 U	.025 U	

Date Analyzed: 04/26/11

Data File: A12564D

Lab Name: Veritech

Prep Batch: 6699

Reporting Limits Used: AQUEOUS,200.7(ICP)/200.8(ICPMS)/245.1(Hg)

Lab Code:

Instrument: PEICPRAD1A

Contract:

Nras No: Sdg No:

Units: All units in ppm except Hg and icp-ms in ppb

Case No:

Project Number: 1042016

	ICB V-112282-	CCB-19	CCB-28	CCB-37	MB 6699 (0.5)-	
Analyte	7				10	
Potassium	5 U	5 U	5 U	5 U	2.5 U	
Sodium	5 U	5 U	5 U	5 U	2.5 U	
				· · · · · · · · · · · · · · · · · · ·	L	

Date Analyzed: 04/28/11

Data File: A12564G

Lab Name: Veritech

Prep Batch: 6699

Lab Code:

Reporting Limits Used: AQUEOUS,200.7(ICP)/200.8(ICPMS)/245.1(Hg)

Contract:

Nras No: Sdg No:

Instrument: PEICP1A Units: All units in ppm except Hg and icp-ms in ppb

Project Number: 1042016

Case No:

	ICB V-112282-	CCB-12	CCB-19
Analyte	8		
Aluminum	.2 U	.2 U	.2 U
Antimony	.015 U	.015 U	.015 U
Arsenic	.04 U	.04 U	.04 U
Barium	.05 U	.05 U	.05 U
Beryllium	.008 U	.008 U	.008 U
Cadmium	.004 U	.004 U	.004 U
Calcium	2 U	2 U	2 U
Chromium	.05 U	.05 U	.05 U
Cobalt	.02 U	.02 U	.02 U
Copper	.05 U	.05 U	.05 U
Iron	.3 U	.3 U	.3 U
Lead	.01 U	.01 U	.01 U
Magnesium	2 U	2 U	2 U
Manganese	.05 U	.05 U	.05 U
Nickel	.02 U	.02 U	.02 U
Selenium	.05 U	.05 U	.05 U
Silver	.02 U	.02 U	.02 U
Thallium	.01 U	.01 U	.01 U
Vanadium	.05 U	.05 U	.05 U
Zinc	.05 U	.05 U	.05 U

Date Analyzed: 05/02/11

Data File: A12564H

Lab Name: Veritech

Prep Batch: 6699

Lab Code:

Reporting Limits Used: AQUEOUS,200.7(ICP)/200.8(ICPMS)/245.1(Hg)

Contract:

Nras No:

Instrument: PEICP1A

Sdg No:

Units: All units in ppm except Hg and icp-ms in ppb

Project Number: 1042016

Case No:

			• • • • • • • • • • • • • • • • • • • •		
Calcium	2 U	2 U	1 U		
Zinc	.05 U	.05 U	.025 U		

Date Analyzed: 04/25/11

Data File: H12560S

Prep Batch: 6695

Reporting Limits Used: SOIL,6010B(ICP)/7470A,7471A(Hg),6020

Instrument: HGCV2A

Units: All units in ppm except Hg and icp-ms in ppb

Project Number: 1042016

Lab Name: Veritech

Lab Code:

Contract:

Nras No: Sdg No:

Case No:

Analyte	ICB-10	CCB-22	CCB-34	CCB-39	MB 6695 (167)- 11	MB FB 6695-36		
Mercury	.5 U	.5 U	.5 U	.5 U	83 U	.5U	1	

Date Analyzed: 04/26/11

Data File: H12564Ab

Prep Batch: 6699

Reporting Limits Used: AQUEOUS,200.7(ICP)/200.8(ICPMS)/245.1(Hg)

Instrument: HGCV2A

Units: All units in ppm except Hg and icp-ms in ppb

Project Number: 1042016

Lab Name: Veritech

Lab Code:

Contract:

Nras No:

Sdg No:

Case No:

						- A - WYV	
1	ICB-10	CCB-22	CCB-32	MB 6699 (1)-11			
Analyte		332 22	333 32				
Mercury	.2 U	.2 U	.2 U	.2 U			

Date Analyzed: 04/26/11

Data File: H12564Ac

Lab Name: Veritech

Prep Batch: 6699

Lab Code:

Contract:

Reporting Limits Used: AQUEOUS,200.7(ICP)/200.8(ICPMS)/245.1(Hg)

Nras No:

Instrument: HGCV2A

Sdg No:

Units: All units in ppm except Hg and icp-ms in ppb

Project Number: 1042016

Case No:

ICB-10 CCB-20 Analyte Mercury .2 U .2 U

PREP BATCH: 6695

Instrument Type: ICP/HG

Analytical Method(s):6010/200.7/7470A/7471A/245.1

TxtQcType:	LCS	Ma	atrix: AQUEC	DUS	SampleID: LCSW 6695				
Analyte	BatchId	DF	Data File	Seq#:	Spk Conc:	Spk Added	Recov	Qual Lo Lim	Hi Lim
Aluminum	6695	1	S12560B3	32	4.5533	5.0	91	75	125
Antimony	6695	1	S12560A3	34	0.4676	0.500	94	75	125
Arsenic	6695	1	S12560A3	34	0.4675	0.500	94	75	125
Barium	6695	1	S12560A3	34	0.4786	0.500	96	75	125
Beryllium	6695	1	S12560A3	34	0.4701	0.500	94	75	125
Cadmium	6695	1	S12560A3	34	0.4682	0.500	94	75	125
Calcium	6695	1	S12560B3	32	48.5464	50	97	75	125
Chromium	6695	1	S12560A3	34	0.4757	0.500	95	75	125
Cobalt	6695	1	S12560A3	34	0.4828	0.500	97	75	125
Copper	6695	1	S12560A3	34	0.4838	0.500	97	75	125
ron	6695	1	S12560B3	32	4.6109	5.0	92	75	125
_ead	6695	1	S12560A3	34	0.4785	0.500	96	75	125
Magnesium	6695	1	S12560B3	32	47.4028	50	95	75	125
Manganese	6695	1	S12560A3	34	0.4762	0.500	95	75	125
Mercury	6695	1	H12560S	37	11.9200	10	119	75	125
Nickel	6695	1	S12560A3	34	0.4792	0.500	96	75	125
otassium	6695	1	S12560B3	32	46.1105	50	92	75	125
Selenium	6695	1	S12560A3	34	0.4688	0.500	94	75	125
Silver	6695	1	S12560A3	34	0.0941	0.100	94	75	125
Sodium	6695	1	S12560B3	32	47.3534	50	95	75	125
hallium	6695	1	S12560A3	34	0.5056	0.500	101	75	125
/anadium	6695	1	S12560A3	34	0.3030	0.500	95	75 75	125
Zinc	6695	1	S12560A3	34	0.4890	0.500	98	75 75	125
TxtQcType: Analyte	BatchId	DF	trix: SOIL Data File	Seq#:	SampleID: LCS 6695 MR Spk Conc:	Spk Added	Recov	Qual Lo Lim	Hi Lim
Numinum	6695	1	S12560B3	12	44.9751	97.8	46	39	161
Antimony	6695	1	S12560A3	13	0.6883	1.21	57	1.7	219
Arsenic	6695	1	S12560A3	13	0.9223	1.09	85	83	117
Barium	6695	1	S12560A3	13	2.8518	3.25	88	83	117
Beryllium	6695	1	S12560A3	13	0.7938	0.921	86	84	116
Cadmium	6695	1	S12560A3	13	1.0237	1.10	93	81	119
Calcium	6695	1	S12560B3	12	61.4936	67.0	92	78	122
Chromium	6695	1	S12560A3	13	0.8675	0.934	93	81	120
Cobalt	6695	1	S12560A3	13	1.3549	1.33	102	81	119
Copper	6695	1		13	0.6945	0.747	93	84	116
			3 1/30UA3			0.777	JJ		
			S12560A3 S12560B3					51	
on	6695	1	S12560B3	12	81.7828	131	62	51 79	149
on ead	6695 6695	1	S12560B3 S12560A3	12 13	81.7828 1.4639	131 1.52	62 96	79	121
on ead lagnesium	6695 6695 6695	1 1 1	S12560B3 S12560A3 S12560B3	12 13 12	81.7828 1.4639 22.0917	131 1.52 29.8	62 96 74	79 69	121 130
on ead lagnesium langanese	6695 6695 6695	1 1 1	S12560B3 S12560A3 S12560B3 S12560A3	12 13 12 13	81.7828 1.4639 22.0917 4.0594	131 1.52 29.8 4.43	62 96 74 92	79 69 77	121 130 123
on ead lagnesium langanese lercury	6695 6695 6695 6695	1 1 1 1	S12560B3 S12560A3 S12560B3 S12560A3 H12560S	12 13 12 13 15	81.7828 1.4639 22.0917 4.0594 9.7560	131 1.52 29.8 4.43 97.6	62 96 74 92 100	79 69 77 71	121 130 123 129
on ead lagnesium langanese lercury lickel	6695 6695 6695 6695 6695	1 1 1 1 10 1	\$12560B3 \$12560A3 \$12560B3 \$12560A3 H12560S \$12560A3	12 13 12 13 15	81.7828 1.4639 22.0917 4.0594 9.7560 1.1026	131 1.52 29.8 4.43 97.6 1.09	62 96 74 92 100 101	79 69 77 71 81	121 130 123 129 118
ron ead Magnesium Manganese Mercury lickel Potassium	6695 6695 6695 6695 6695 6695	1 1 1 1 10 1	\$12560B3 \$12560A3 \$12560B3 \$12560A3 H12560S \$12560A3 \$12560B3	12 13 12 13 15 13	81.7828 1.4639 22.0917 4.0594 9.7560 1.1026 18.0207	131 1.52 29.8 4.43 97.6 1.09 27.7	62 96 74 92 100 101 65	79 69 77 71 81 65	121 130 123 129 118 135
ead dagnesium danganese dercury lickel otassium elenium	6695 6695 6695 6695 6695 6695 6695	1 1 1 1 10 1 1	\$12560B3 \$12560A3 \$12560B3 \$12560B3 \$12560B3 \$12560B3 \$12560B3 \$12560B3	12 13 12 13 15 13 12 13	81.7828 1.4639 22.0917 4.0594 9.7560 1.1026 18.0207 1.8369	131 1.52 29.8 4.43 97.6 1.09 27.7 2.07	62 96 74 92 100 101 65 89	79 69 77 71 81 65 79	121 130 123 129 118 135 120
ead flagnesium flagnese flercury flickel otassium felenium	6695 6695 6695 6695 6695 6695 6695 6695	1 1 1 1 10 1 1 1	\$12560B3 \$12560A3 \$12560B3 \$12560A3 H12560S \$12560A3 \$12560B3 \$12560A3 \$12560A3	12 13 12 13 15 13 12 13 13	81.7828 1.4639 22.0917 4.0594 9.7560 1.1026 18.0207 1.8369 0.4481	131 1.52 29.8 4.43 97.6 1.09 27.7 2.07 0.519	62 96 74 92 100 101 65 89 86	79 69 77 71 81 65 79 66	121 130 123 129 118 135 120 134
ead dagnesium danganese dercury lickel otassium delenium silver	6695 6695 6695 6695 6695 6695 6695 6695	1 1 1 1 10 1 1 1 1 1	\$12560B3 \$12560A3 \$12560B3 \$12560A3 H12560S \$12560A3 \$12560B3 \$12560A3 \$12560A3 \$12560B3	12 13 12 13 15 13 12 13 13 12	81.7828 1.4639 22.0917 4.0594 9.7560 1.1026 18.0207 1.8369 0.4481 6.9177	131 1.52 29.8 4.43 97.6 1.09 27.7 2.07 0.519 7.24	62 96 74 92 100 101 65 89 86 96	79 69 77 71 81 65 79 66 71	121 130 123 129 118 135 120 134 129
ron lead lagnesium langanese lectury lickel lotassium lelenium lilver lodium lallium	6695 6695 6695 6695 6695 6695 6695 6695	1 1 1 1 10 1 1 1 1 1 1	\$12560B3 \$12560A3 \$12560B3 \$12560A3 H12560S \$12560B3 \$12560B3 \$12560A3 \$12560B3 \$12560B3	12 13 12 13 15 13 12 13 13 12 13	81.7828 1.4639 22.0917 4.0594 9.7560 1.1026 18.0207 1.8369 0.4481 6.9177 1.5595	131 1.52 29.8 4.43 97.6 1.09 27.7 2.07 0.519 7.24 1.71	62 96 74 92 100 101 65 89 86 96	79 69 77 71 81 65 79 66 71	121 130 123 129 118 135 120 134 129 122
ron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Silver Sodium Thallium Janadium Zinc	6695 6695 6695 6695 6695 6695 6695 6695	1 1 1 1 10 1 1 1 1 1	\$12560B3 \$12560A3 \$12560B3 \$12560A3 H12560S \$12560A3 \$12560B3 \$12560A3 \$12560A3 \$12560B3	12 13 12 13 15 13 12 13 13 12	81.7828 1.4639 22.0917 4.0594 9.7560 1.1026 18.0207 1.8369 0.4481 6.9177	131 1.52 29.8 4.43 97.6 1.09 27.7 2.07 0.519 7.24	62 96 74 92 100 101 65 89 86 96	79 69 77 71 81 65 79 66 71	121 130 123 129 118 135 120 134 129

PREP BATCH: 6695

Instrument Type: ICP/HG

Analytical Method(s):6010/200.7/7470A/7471A/245.1

TxtQcType:	LCS	Mat	rix: SOIL		SampleID: LCS 6695				
Analyte	BatchId	DF	Data File	Seq#:	Spk Conc:	Spk Added	Recov	Qual Lo Lim	Hi Lim
Aluminum	6695	1	S12560B3	11	47.9395	97.8	49	39	161
Antimony	6695	1	S12560A3	12	0.7115	1.21	59	1.7	219
Arsenic	6695	1	S12560A3	12	0.9671	1.09	89	83	117
Barium	6695	1	S12560A3	12	3.0030	3.25	92	83	117
Beryllium	6695	1	S12560A3	12	0.8308	0.921	90	84	116
Cadmium	6695	1	S12560A3	12	1.0748	1.10	98	81	119
Calcium	6695	1	S12560B3	11	66.6451	67.0	99	78	122
Chromium	6695	1	S12560A3	12	0.8593	0.934	92	81	120
Cobalt	6695	1	S12560A3	12	1.4292	1.33	107	81	119
Copper	6695	1	S12560A3	12	0.7229	0.747	97	84	116
Iron	6695	1	S12560B3	11	85.4486	131	65	51	149
Lead	6695	1	S12560A3	12	1.5497	1.52	102	79	121
Magnesium	6695	1	S12560B3	11	23.4666	29.8	79	69	130
Manganese	6695	1	S12560A3	12	4.2950	4.43	97	77	123
Mercury	6695	10	H12560S	14	10.8800	97.6	111	71	129
Nickel	6695	1	S12560A3	12	1.1435	1.09	105	81	118
Potassium	6695	1	S12560B3	11	19.0071	27.7	69	65	135
Selenium	6695	1	S12560A3	12	1.9357	2.07	94	79	120
Silver	6695	1	S12560A3	12	0.4636	0.519	89	66	134
Sodium	6695	1	S12560B3	11	7.4259	7.24	103	71	129
Thallium	6695	1	S12560A3	12	1.6153	1.71	94	78	122
Vanadium	6695	1	S12560A3	12	0.9035	1.10	82	77	124
Zinc	6695	1	S12560A3	12	2.8391	2.99	95	82	118

TxtQcType:	MSD	Mat	rix: SOIL		Sample	eID: AC	58551-002						
Analyte	Batchld	DF	Data File	Seq#:	NS Data Fil	Seq#	Spk Conc:	NS Conc:	Spk Added	Recov	Qual	Lo Lim	Hi Lim
Aluminum	6695	1	S12560B3	16	S12560B3	13	28.0764	14.3818	5	274	а	75	125
Antimony	6695	1	S12560A3	17	S12560A3	14	0.3280	0.02U	0.5	66	а	75	125
Arsenic	6695	1	S12560A3	17	S12560A3	14	0.5122	0.0918	0.5	84		75	125
Barium	6695	1	S12560A3	17	S12560A3	14	2.1277	1.6876	0.5	88		75	125
Beryllium	6695	1	S12560A3	17	S12560A3	14	0.4407	0.006U	.5	88		75	125
Cadmium	6695	1	S12560A3	17	S12560A3	14	0.4466	0.0082	0.5	88		75	125
Calcium	6695	1	S12560B3	16	S12560B3	13	49.4088	10U	50	99		75	125
Chromium	6695	1	S12560A3	17	S12560A3	14	0.4893	0.0689	0.5	84		75	125
Cobalt	6695	1	S12560A3	17	S12560A3	14	0.4762	0.025U	.5	95		75	125
Copper	6695	1	S12560A3	17	S12560A3	14	0.9357	0.8368	0.5	20	а	75	125
Iron	6695	1	S12560B3	16	S12560B3	13	93.1348	158.0660	5	-1300	b	75	125
Lead	6695	1	S12560A3	17	S12560A3	14	3.7233	3.9963	0.5	-55	b	75	125
Magnesium	6695	1	S12560B3	16	S12560B3	13	49.1101	5U	50	98		75	125
Manganese	6695	1	S12560A3	17	S12560A3	14	0.6675	0.3602	0.5	61	а	75	125
Mercury	6695	1	H12560S	19	H12560S	16	14.2500	4.7260	10	95		75	125
Nickel	6695	1	S12560A3	17	S12560A3	14	0.4762	0.0868	0.5	78		75	125
Potassium	6695	1	S12560B3	16	S12560B3	13	49.6579	7.3365	50	85		75	125
Selenium	6695	1	S12560A3	17	S12560A3	14	0.4377	0.018U	0.5	88		75	125
Silver	6695	1	S12560A3	17	S12560A3	14	0.0981	0.0233	.1	75		75	125
Sodium	6695	1	S12560B3	16	S12560B3	13	44.9266	2.5U	50	90		75	125
Thallium	6695	1	S12560A3	17	S12560A3	14	0.4591	0.012U	0.5	92		75	125
Vanadium	6695	1	S12560A3	17	S12560A3	14	0.5379	0.1424	0.5	79		75	125
Zinc	6695	1	S12560A3	17	S12560A3	14	0.9386	0.9144	0.5	4.8	а	75	125

PREP BATCH: 6695

Instrument Type: ICP/HG

Analytical Method(s):6010/200.7/7470A/7471A/245.1

TxtQcType: I	MS	Ма	trix: SOIL		Sample	eID: AC	58551-002						
Analyte	Batchld	DF	Data File	Seq#:	NS Data Fil	Seq#	Spk Conc:	NS Conc:	Spk Added	Recov	Qual	Lo Lim	Hi Lim
Aluminum	6695	1	S12560B3	15	S12560B3	13	32.5491	14.3818	5.000	363	а	75	125
Antimony	6695	1	S12560A3	16	S12560A3	1.4	0.3150	0.02U	0.5	63	а	75	125
Arsenic	6695	1	S12560A3	16	S12560A3	14	0.5295	0.0918	0.5	88		75	125
Barium	6695	1	S12560A3	16	S12560A3	14	2.2500	1.6876	0.5	112		75	125
Beryllium	6695	1	S12560A3	16	S12560A3	14	0.4398	0.006U	.5	88		75	125
Cadmium	6695	1	S12560A3	16	S12560A3	.14	0.4497	0.0082	0.5	88		75	125
Calcium	6695	1	S12560B3	15	S12560B3	13	49.0828	10U	50.000	98		75	125
Chromium	6695	1	S12560A3	16	S12560A3	14	0.4975	0.0689	0.5	86		75	125
Cobalt	6695	1	S12560A3	16	S12560A3	14	0.4756	0.025U	.5	95		75	125
Copper	6695	1	S12560A3	16	S12560A3	14	0.9457	0.8368	0.5	22	а	75	125
Iron	6695	1	S12560B3	15	S12560B3	13	128.2700	158.0660	5.000	-600	b	75	125
Lead	6695	1	S12560A3	16	S12560A3	14	5.9205	3.9963	0.5	385	b	75	125
Magnesium	6695	1	S12560B3	15	S12560B3	13	50.0753	5U	50.000	100		75	125
Manganese	6695	1	S12560A3	16	S12560A3	14	0.8021	0.3602	0.5	88		75	125
Mercury	6695	1	H12560S	18	H12560S	16	15.3500	4.7260	10	106		75	125
Nickel	6695	1	S12560A3	16	S12560A3	14	0.4835	0.0868	0.5	79		75	125
Potassium	6695	1	S12560B3	15	S12560B3	13	51.7260	7.3365	50	89		75	125
Selenium	6695	1	S12560A3	16	S12560A3	14	0.4514	0.018U	0.5	90		75	125
Silver	6695	1	S12560A3	16	S12560A3	14	0.0982	0.0233	.1	75		75	125
Sodium	6695	1	S12560B3	15	S12560B3	13	45.4866	2.5U	50.00	91		75	125
Thallium	6695	1	S12560A3	16	S12560A3	14	0.4591	0.012U	0.5	92		75	125
Vanadium	6695	1	S12560A3	16	S12560A3	14	0.5770	0.1424	0.5	87		75	125
Zinc	6695	1	S12560A3	16	S12560A3	14	0.9369	0.9144	0.5	4.5	а	75	125

PREP BATCH: 6699

Instrument Type: ICP/HG

Analytical Method(s):6010/200.7/7470A/7471A/245.1

TxtQcType:	LCS	Ма	trix: AQUEC	ous	SampleID: LCSW 6699				
Analyte	BatchId	DF	Data File	Seq#:	Spk Conc:	Spk Added	Recov	Qual Lo Lim	Hi Lim
Aluminum	6699	1	A12564C	12	5.1534	5.000	103	85	115
Antimony	6699	1	A12564C	12	0.5193	.5000	104	85	115
Arsenic	6699	1	A12564C	12	0.5055	.5000	101	85	115
Barium	6699	1	A12564C	12	0.5050	.5000	101	85	115
Beryllium	6699	1	A12564C	12	0.5118	.5000	102	85	115
Cadmium	6699	1	A12564C	12	0.5207	.5000	104	85	115
Calcium	6699	1	A12564C	12	50.2848	50.000	101	85	115
Chromium	6699	1	A12564C	12	0.5077	.5000	102	85	115
Cobalt	6699	1	A12564C	12	0.5220	.5000	104	85	115
Copper	6699	1	A12564C	12	0.4946	.5000	99	85	115
Iron	6699	1	A12564C	12	4.9962	5.000	100	85	115
Lead	6699	1	A12564C	12	0.5136	.5000	103	85	115
Magnesium	6699	1	A12564C	12	51.6503	50.000	103	85	115
Manganese	6699	1	A12564C	12	0.5087	.5000	102	85	115
Mercury	6699	1	H12564Ab	12	10.4500	10	104	85	115
Nickel	6699	1	A12564C	12	0.5279	.5000	106	85	115
Potassium	6699	1	A12564D	11	51.9997	50.000	104	85	115
Selenium	6699	1	A12564C	12	0.5264	.5000	105	85	115
Silver	6699	1	A12564C	12	0.1031	0.1000	103	85	115
Sodium	6699	1	A12564D	11	52.0020	50.000	104	85	115
Thallium	6699	1	A12564C	12	0.5553	.5000	111	85	115
Vanadium	6699	1	A12564C	12	0.4998	.5000	100	85	115
Zinc	6699	1	A12564C	12	0.5008	.5000	100	85	115

TxtQcType:	LCSMR	Ma	trix: AQUE	OUS	SampleID: LCSW MR 6699				
Analyte	Batchld	DF	Data File	Seq#:	Spk Conc:	Spk Added	Recov	Qual Lo Lim	Hi Lim
Aluminum	6699	1	A12564C	13	5.2008	5.000	104	85	115
Antimony	6699	1	A12564C	13	0.5169	.5000	103	85	115
Arsenic	6699	1	A12564C	13	0.5035	.5000	101	85	115
Barium	6699	1	A12564C	13	0.5046	.5000	101	85	115
Beryllium	6699	1	A12564C	13	0.5101	.5000	102	85	115
Cadmium	6699	1	A12564C	13	0.5215	.5000	104	85	115
Calcium	6699	1	A12564C	13	50.7605	50.000	102	85	115
Chromium	6699	1	A12564C	13	0.5068	.5000	101	85	115
Cobalt	6699	1	A12564C	13	0.5243	.5000	105	85	115
Copper	6699	1	A12564C	13	0.4963	.5000	99	85	115
Iron	6699	1	A12564C	13	4.9977	5.000	100	85	115
Lead	6699	1	A12564C	13	0.5116	.5000	102	85	115
Magnesium	6699	1	A12564C	13	52.3854	50.000	105	85	115
Manganese	6699	1	A12564C	13	0.5093	.5000	102	85	115
Mercury	6699	1	H12564Ab	13	10.9100	10	109	85	115
Nickel	6699	1	A12564C	13	0.5259	.5000	105	85	115
Potassium	6699	1	A12564D	12	52.0098	50.000	104	85	115
Selenium	6699	1	A12564C	13	0.5372	.5000	107	85	115
Silver	6699	1	A12564C	13	0.1035	0.1000	104	85	115
Sodium	6699	1	A12564D	12	52.1044	50.000	104	85	115
Thallium	6699	1	A12564C	13	0.5496	.5000	110	85	115
Vanadium	6699	1	A12564C	13	0.4991	.5000	100	85	115
Zinc	6699	1	A12564C	13	0.5045	.5000	101	85	115

70

70

130

130

FORM5/FORM7 SPIKE RECOVERY DATA

PREP BATCH: 6699

Instrument Type: ICP/HG

TxtQcType:	MS	Mat	trix: AQUE	ous	Sample	eID: AC	58547-003					
Analyte	BatchId	DF	Data File	Seq#:	NS Data Fil			NS Conc:	Spk Added	Pecov	Qual Lo Lim	Hi Lim
Aluminum	6699	1	A12564C	16	A12564C	14	4.9392	0.3179	5.000	92	70	130
Antimony	6699	1	A12564C	16	A12564C	14		.015U	.5000	96	70	130
Arsenic	6699	1	A12564C	16	A12564C	14		0.040U	.5000	95	70	130
Barium	6699	1	A12564C	16	A12564C	14	0.5410	0.0958	.5000	89	70	130
Beryllium	6699	1	A12564C	16	A12564C	14		.008U	.5000	95	70	130
Cadmium	6699	1	A12564C	16	A12564C	14		.004U	.5000	92	70	130
Calcium	6699	1	A12564C	16	A12564C	14		181.2890	50.000	76	70 70	130
Chromium	6699	1	A12564C	16	A12564C	14		0.05U	.5000	91	70	130
Cobalt	6699	1	A12564C	16	A12564C		0.4456	.02U	.5000	89	70	130
	6699	1	A12564C	16	A12564C	14	0.4436	0.050U	.5000	92	70 70	130
Copper	6699		A12564C								70 70	
ron		1		16	A12564C	14	4.7384	0.3470	5.000	88		130
_ead	6699	1 1	A12564C	16	A12564C	14		0.010U	.5000	91	70	130
Magnesium	6699 6699		A12564C	16	A12564C A12564C	14		21.7762	50.000	91	70 70	130
Manganese		1	A12564C	16		14		0.4197	.5000	89	70 70	130
Mercury Nickel	6699	1	H12564Ab	16	H12564Ab	14	11.2300	0.2U	10	112	70 70	130
	6699	1	A12564C	16	A12564C	14		.02U	.5000	89	70	130
Potassium	6699	1	A12564D	15	A12564D	13	57.3470	7.5746	50.000	100	70 70	130
Selenium	6699	1	A12564C	16	A12564C	14	0.4903	0.05U	.5000	98	70 70	130
Silver	6699	1	A12564C	16	A12564C	14	0.0976	0.02U	0.100	98	70 70	130
Sodium	6699		A12564D	15	A12564D	13	137.0080	87.0773	50.000	100	70	130
hallium	6699	1	A12564C	16	A12564C	14	0.4746	.010U	.5000	95	70	130
/anadium	6699	1	A12564C	16	A12564C	14		.05U	.5000	92	70	130
inc	6699	1	A12564C	16	A12564C	14	0.4580	.05U	.5000	92	70	130
TxtQcType:	MSD	Mat	trix: AQUEC	ous	Sample	ID: AC	58547-003					
Analyte	Batchld	DF	Data File	Seq#:	NS Data Fil	Seq#	Spk Conc:	NS Conc:	Spk Added	Recov	Qual Lo Lim	Hi Lim
Aluminum	6699	1	A12564C	17	A12564C	14	4.8319	0.3179	5.000	90	70	130
Antimony	6699	1	A12564C	17	A12564C	14	0.4681	.015U	.5000	94	70	130
Arsenic	6699	1	A12564C	17	A12564C	14	0.4590	0.040U	.5000	92	70	130
Barium	6699	1	A12564C	17	A12564C	14	0.5229	0.0958	.5000	85	70	130
Beryllium	6699	1	A12564C	17	A12564C	14	0.4657	.008U	.5000	93	70	130
admium	6699	1	A12564C	17	A12564C	14	0.4457	.004U	.5000	89	70	130
Calcium	6699	1	A12564C	17	A12564C	14	213.4720	181.2890	50.000	64	a 70	130
hromium	6699	1	A12564C	17	A12564C	14	0.4456	0.05U	.5000	89	70	130
Cobalt	6699	1	A12564C	17	A12564C	14	0.4346	.02U	.5000	87	70	130
Copper	6699	1	A12564C	17	A12564C		0.4504	0.050U	.5000	90	70	130
on	6699	1	A12564C	17	A12564C	14	4.6455	0.3470	5.000	86	70	130
ead	6699	1	A12564C	17	A12564C	14	0.4436	0.010U	.5000	89	70	130
lagnesium	6699	1	A12564C	17	A12564C	14	65.4537	21.7762	50.000	87	70	130
langanese	6699	1	A12564C	17	A12564C	14	0.8426	0.4197	.5000	85	70	130
lercury	6699	1	H12564Ab	17	H12564Ab	14	10.9200	0.2U	10	109	70	130
lickel	6699	1	A12564C	17	A12564C	14	0.4363	.02U	.5000	87	70	130
otassium	6699	1	A12564D	16	A12564D	13	55.6682	7.5746	50.000	96	70	130
	6699	1	A12564C	17	A12564C		0.4771	0.05U	.5000	95	70 70	
elenium												
												130
ilver	6699	1	A12564C	17	A12564C	14	0.0947	0.02U	0.100	95	70	130
elenium ilver odium hallium						14 13						

6699

6699

1

1

A12564C

A12564C

A12564C

A12564C

17

17

Vanadium

Zinc

.05U

.05U

.5000

.5000

90

89

14 0.4487

14 0.4435

FORM6/FORM9

RPD/%Difference Data

PREP BATCH: 6695

Instrument Type: ICP/HG

Analytical Method(s):6010/200.7/7470A/7471A/245.1

TxtQcType: L	CSMR	Matrix: SOIL	Sam	npleID: LCS	6695 MR		The second of th	
Analyte	Batchld	Data File Seq#:	NS File	Seq#	Result 1	Result 2	RPD	Limit
Aluminum	6695	S12560B3 12	S12560B3	11	44.9751	47.9395	6.4	20
Antimony	6695	S12560A3 13	S12560A3	12	0.6883	0.7115	3.3	20
Arsenic	6695	S12560A3 13	S12560A3	12	0.9223	0.9671	4.7	20
Barium	6695	S12560A3 13	S12560A3	12	2.8518	3.0030	5.2	20
Beryllium	6695	S12560A3 13	S12560A3	12	0.7938	0.8308	4.6	20
Cadmium	6695	S12560A3 13	S12560A3	12	1.0237	1.0748	4.9	20
Calcium	6695	S12560B3 12	S12560B3	11	61.4936	66.6451	8	20
Chromium	6695	S12560A3 13	S12560A3	12	0.8675	0.8593	.95	20
Cobalt	6695	S12560A3 13	S12560A3	12	1.3549	1.4292	5.3	20
Copper	6695	S12560A3 13	S12560A3	12	0.6945	0.7229	4	20
Iron	6695	S12560B3 12	S12560B3	11	81.7828	85.4486	4.4	20
Lead	6695	S12560A3 13	S12560A3	12	1.4639	1.5497	5.7	20
Magnesium	6695	S12560B3 12	S12560B3	11	22.0917	23.4666	6	20
Manganese	6695	S12560A3 13	S12560A3	12	4.0594	4.2950	5.6	20
Mercury	6695	H12560S 15	H12560S	14	9.7560	10.8800	11	20
Nickel	6695	S12560A3 13	S12560A3	12	1.1026	1.1435	3.6	20
Potassium	6695	S12560B3 12	S12560B3	11	18.0207	19.0071	5.3	20
Selenium	6695	S12560A3 13	S12560A3	12	1.8369	1.9357	5.2	20
Silver	6695	S12560A3 13	S12560A3	12	0.4481	0.4636	3.4	20
Sodium	6695	S12560B3 12	S12560B3	11	6.9177	7.4259	7.1	20
Thallium	6695	S12560A3 13	S12560A3	12	1.5595	1.6153	3.5	20
Vanadium	6695	S12560A3 13	S12560A3	12	0.8686	0.9035	3.9	20
Zinc	6695	S12560A3 13	S12560A3	12	2.6686	2.8391	6.2	20
TxtQcType: N	IR	Matrix: SOIL	San	npleID: AC5	8551-002			
Analyte	Batchld	Data File Seq#:	NS File	Seq#	Result 1	Result 2	RPD	Limit
Aluminum	6695	S12560B3 14	S12560B3	13	12.9808	14.3818	10,	20
Antimony	6695	S12560A3 15	S12560A3	14	0.02U	0.02U		20
Arsenic	6695	S12560A3 15	S12560A3	14	0.0848	0.0918	7.9	20
Barium	6695	S12560A3 15	S12560A3	14	1.5239	1.6876	10	20
Beryllium	6695	S12560A3 15	S12560A3	14	0.006U	0.006U		20
Cadmium	6695	S12560A3 15	S12560A3	14	0.0074	0.0082	9.2	20
Calcium	6695	S12560B3 14	S12560B3	13	10.5896	10U		20
Chromium	6695	S12560A3 15	S12560A3	14	0.0538	0.0689	25 b	20
Cobalt	6695	S12560A3 15	S12560A3	14	0.025U	0.025U		20
Copper	6695	S12560A3 15	S12560A3	14	0.7419	0.8368	12	20
ron	6695	S12560B3 14	S12560B3	13	134.2140	158.0660	16	20
Lead	6695	S12560A3 15	S12560A3	14	4.2093	3.9963	5.2	20
Magnesium	6695	S12560B3 14	S12560B3	13	6.4018	5U		20
Manganese	6695	S12560A3 15	S12560A3	14	0.4378	0.3602	19	20
Mercury	6695	H12560S 17	H12560S	16	5.5750	4.7260	16	20
Vickel	6695	S12560A3 15	S12560A3	14	0.05U	0.0868		20
otassium	6695	S12560B3 14	S12560B3	13	7.2662	7.3365	0.96	20
Selenium	6695	S12560A3 15	S12560A3	14	0.0181	0.018U	0.55	20
Silver	6695	S12560A3 15	S12560A3	14	0.015U	0.0180		20
								20
Sodium Thallium	6695	S12560B3 14 S12560A3 15	S12560B3	13 14	2.5U 0.012U	2.5U 0.012U		20
	6695		S12560A3				12	
√anadium	6695	S12560A3 15	S12560A3	14	0.1249	0.1424	13	20
Zinc	6695	S12560A3 15	S12560A3	14	0.7733	0.9144	17	20

FORM6/FORM9

RPD/%Difference Data

PREP BATCH: 6695

Instrument Type: ICP/HG

Analytical Met	hod(s):6010/2	200.7/7470A/74	471A/245.	1		IC	P units in ppm, IC	CPMS and Hg in	ppb
TxtQcType: N	ИSD	Matrix: S	OIL	Sam	pleID: AC585	51-002			
Analyte	Batchld	Data File	Seq#:	MS File	Seq#	Result 1	Result 2	RPD	Limit
Aluminum	6695	S12560B3	16	S12560B3	15	28.0764	32.5491	15	20
Antimony	6695	S12560A3	17	S12560A3	16	0.3280	0.3150	4	20
Arsenic	6695	S12560A3	17	S12560A3	16	0.5122	0.5295	3.3	20
Barium	6695	S12560A3	17	S12560A3	16	2.1277	2.2500	5.6	20
Beryllium	6695	S12560A3	17	S12560A3	16	0.4407	0.4398	.2	20
Cadmium	6695	S12560A3	17	S12560A3	16	0.4466	0.4497	.69	20
Calcium	6695	S12560B3	16	S12560B3	15	49.4088	49.0828	.66	20
Chromium	6695	S12560A3	17	S12560A3	16	0.4893	0.4975	1.7	20
Cobalt	6695	S12560A3	17	S12560A3	16	0.4762	0.4756	.14	20
Copper	6695	S12560A3	17	S12560A3	16	0.9357	0.9457	1.1	20
Iron	6695	S12560B3	16	S12560B3	15	93.1348	128.2700	32 a	20
Lead	6695	S12560A3	17	S12560A3	16	3.7233	5.9205	46 a	20
Magnesium	6695	S12560B3	16	S12560B3	15	49.1101	50.0753	1.9	20
Manganese	6695	S12560A3	17	S12560A3	16	0.6675	0.8021	18	20
Mercury	6695	H12560S	19	H12560S	18	14.2500	15.3500	7.4	20
Nickel	6695	S12560A3	17	S12560A3	16	0.4762	0.4835	1.5	20
Potassium	6695	S12560B3	16	S12560B3	15	49.6579	51.7260	4.1	20
Selenium	6695	S12560A3	17	S12560A3	16	0.4377	0.4514	3.1	20
Silver	6695	S12560A3	17	S12560A3	16	0.0981	0.0982	.054	20
Sodium	6695	S12560B3	16	S12560B3	15	44.9266	45.4866	1.2	20
Thallium	6695	S12560A3	17	S12560A3	16	0.4591	0.4591	.0031	20
Vanadium	6695	S12560A3	17	S12560A3	16	0.5379	0.5770	7	20
Zinc	6695	S12560A3	17	S12560A3	16	0.9386	0.9369	.17	20
TxtQcType: S	SD	Matrix: S	OIL	Sam	pleID: AC585	551-002			
Analyte	Batchld	Data File	Seq#:	NS File	Seq# DF	Result 1	Result 2	%Diff	Limit
Aluminum	6695	S12560B3	20	S12560B3	13 5	2.8058	14.3818	2.5	10
Antimony	6695	S12560A3	21	S12560A3	14 5	0.0041	0.0118	74 c	10
Arsenic	6695	S12560A3	21	S12560A3	14 5	0.0169	0.0918	7.7	10

Analyte	Batchld	Data File	Seq#:	NS File	Seq# DF	Result 1	Result 2	%Diff		Limit
Aluminum	6695	S12560B3	20	S12560B3	13 5	2.8058	14.3818	2.5		10
Antimony	6695	S12560A3	21	S12560A3	14 5	0.0041	0.0118	74	С	10
Arsenic	6695	S12560A3	21	S12560A3	14 5	0.0169	0.0918	7.7		10
Barium	6695	S12560A3	21	S12560A3	14 5	0.3424	1.6876	1.4		10
Beryllium	6695	S12560A3	21	S12560A3	14 5	0.0015	0.0024	212	С	10
Cadmium	6695	S12560A3	21	S12560A3	14 5	0.0030	0.0082	83	С	10
Calcium	6695	S12560B3	20	S12560B3	13 5	1.3531	6.8798	1.7		10
Chromium	6695	S12560A3	21	S12560A3	14 5	0.0141	0.0689	2.6		10
Cobalt	6695	S12560A3	21	S12560A3	14 5	0.0042	0.0175	21	а	10
Copper	6695	S12560A3	21	S12560A3	14 5	0.1686	0.8368	0.75		10
Iron	6695	S12560B3	20	S12560B3	13 5	31.7598	158.0660	0.46		10
Lead	6695	S12560A3	21	S12560A3	14 5	0.8146	3.9963	1.9		10
Magnesium	6695	S12560B3	20	S12560B3	13 5	0.7700	3.8553	0.14		10
Manganese	6695	S12560A3	21	S12560A3	14 5	0.0738	0.3602	2.5		10
Nickel	6695	S12560A3	21	S12560A3	14 5	0.0172	0.0868	0.9		10
Potassium	6695	S12560B3	20	S12560B3	13 5	1.5174	7.3365	3.4		10
Selenium	6695	S12560A3	21	S12560A3	14 5	0.0026	0.0160			10
Silver	6695	S12560A3	21	S12560A3	14 5	0.0052	0.0233	12	а	10
Sodium	6695	S12560B3	20	S12560B3	13 5	0.3921	2.1664	9.5		10
Thallium	6695	S12560A3	21	S12560A3	14 5	0.0013	0.0023			10
Vanadium	6695	S12560A3	21	S12560A3	14 5	0.0272	0.1424	4.4		10
Zinc	6695	S12560A3	21	S12560A3	14 5	0.1880	0.9144	2.8		10

a-Indicates Rpd Failed the criteria

b-Method Rep Out but concentrations < 5*RL

c-Serial dilution Out but conc < 10 * IDL

FORM6/FORM9

RPD/%Difference Data

PREP BATCH: 6699

Instrument Type: ICP/HG

Analytical Method(s):6010/200.7/7470A/7471A/245.1

ICP units in ppm, ICPMS and Hg in ppb

TxtQcType: L	.CSMR	Matrix:	AQUEOUS	Sam	pleID: LCS\	W MR 6699			
Analyte	BatchId	Data File	Seq#:	NS File	Seq#	Result 1	Result 2	RPD	Limit
Aluminum	6699	A12564C	13	A12564C	12	5.2008	5.1534	.92	20
Antimony	6699	A12564C	13	A12564C	12	0.5169	0.5193	.48	20
Arsenic	6699	A12564C	13	A12564C	12	0.5035	0.5055	.4	20
Barium	6699	A12564C	13	A12564C	12	0.5046	0.5050	.074	20
Beryllium	6699	A12564C	13	A12564C	12	0.5101	0.5118	.34	20
Cadmium	6699	A12564C	13	A12564C	12	0.5215	0.5207	.17	20
Calcium	6699	A12564C	13	A12564C	12	50.7605	50.2848	.94	20
Chromium	6699	A12564C	13	A12564C	12	0.5068	0.5077	.18	20
Cobalt	6699	A12564C	13	A12564C	12	0.5243	0.5220	.44	20
Copper	6699	A12564C	13	A12564C	12	0.4963	0.4946	.35	20
Iron	6699	A12564C	13	A12564C	12	4.9977	4.9962	.031	20
Lead	6699	A12564C	13	A12564C	12	0.5116	0.5136	.4	20
Magnesium	6699	A12564C	13	A12564C	12	52.3854	51.6503	1.4	20
Manganese	6699	A12564C	13	A12564C	12	0.5093	0.5087	.12	20
Mercury	6699	H12564Ab	13	H12564Ab	12	10.9100	10.4500	4.3	20
Nickel	6699	A12564C	13	A12564C	12	0.5259	0.5279	.37	20
Potassium	6699	A12564D	12	A12564D	11	52.0098	51.9997	.019	20
Selenium	6699	A12564C	13	A12564C	12	0.5372	0.5264	2	20
Silver	6699	A12564C	13	A12564C	12	0.1035	0.1031	.38	20
Sodium	6699	A12564D	12	A12564D	11	52.1044	52.0020	.2	20
Thallium	6699	A12564C	13	A12564C	12	0.5496	0.5553	<u>:</u>	20
Vanadium	6699	A12564C	13	A12564C	12	0.4991	0.4998	.14	20
Zinc	6699	A12564C	13	A12564C	12	0.5045	0.5008	.74	20
TxtQcType: N	1R	Matrix:	AQUEOUS	Samı	oleID: AC58	3547-003			
Analyte	BatchId	Data File	Seq#:	NS File	Seq#	Result 1	Result 2	RPD	Limit
Aluminum	6699	A12564C	15	A12564C	14	0.2872	0.3179	10	20
Antimony	6699	A12564C	15	A12564C	14	.015U	.015∪		20
Arsenic	6699	A12564C	15	A12564C	14	0.040U	0.040U		20
Barium	6699	A12564C	15	A12564C	14	0.0934	0.0958	2.6	20
Beryllium	6699	A12564C	15	A12564C	14	.008U	.008U		20
Cadmium	6699	A12564C	15	A12564C	14	.004U	.004U		20
Calcium	6699	A12564C	15	A12564C	14	177.0630	181.2890	2.4	20
Chromium	6699	A12564C	15	A12564C	14	0.05U	0.05U		20
Cobalt	6699	A12564C	15	A12564C	14	.02U	.02U		20
Copper	6699	A12564C	15	A12564C	14	0.050U	0.050U		20
ron	6699	A12564C	15	A12564C	14	0.300U	0.3470		20
_ead	6699	A12564C	15	A12564C	14	0.010U	0.010U		20
Magnesium	6699	A12564C	15	A12564C	14	21.4716	21.7762	1.4	20
Manganese	6699	A12564C	15	A12564C	14	0.4137	0.4197	1.4	20
Mercury	6699	H12564Ab	15	H12564Ab	14	0.2U	0.2U		20
Nickel	6699	A12564C	15	A12564C	14	.02U	.02U		20
otassium	6699	A12564D	14	A12564D	13	7.3122	7.5746	3.5	20
Selenium	6699	A12564C	15	A12564C	14	0.05U	0.05U		20
	0033						0.05U 0.02U		20
	6600	V13EE4C							
Silver	6699	A12564C	15 14	A12564C	14 12	0.02U			
Silver Sodium	6699	A12564D	14	A12564D	13	85.5393	87.0773	1.8	20

Zinc

6699

A12564C

15

A12564C

14

.05U

.05U

20

a-Indicates Rpd Failed the criteria

b-Method Rep Out but concentrations < 5*RL

c-Serial dilution Out but conc < 10 * IDL

FORM6/FORM9

RPD/%Difference Data

PREP BATCH: 6699

Instrument Type: ICP/HG

Analytical Method(s):6010/200.7/7470A/7471A/245.1

ICP units in ppm, ICPMS and Hg in ppb

TxtQcType: N	/ISD	Matrix:	AQUEOUS	Sam	pleID: AC585	47-003				
Analyte	Batchid	Data File	Seq#:	MS File	Seq#	Result 1	Result 2	RPD		Limit
Aluminum	6699	A12564C	17	A12564C	16	4.8319	4.9392	2.2		20
Antimony	6699	A12564C	17	A12564C	16	0.4681	0.4788	2.3		20
Arsenic	6699	A12564C	17	A12564C	16	0.4590	0.4762	3.7		20
Barium	6699	A12564C	17	A12564C	16	0.5229	0.5410	3.4		20
Beryllium	6699	A12564C	17	A12564C	16	0.4657	0.4752	2		20
Cadmium	6699	A12564C	17	A12564C	16	0.4457	0.4598	3.1		20
Calcium	6699	A12564C	17	A12564C	16	213.4720	219.3030	2.7		20
Chromium	6699	A12564C	17	A12564C	16	0.4456	0.4567	2.5		20
Cobalt	6699	A12564C	17	A12564C	16	0.4346	0.4456	2.5		20
Copper	6699	A12564C	17	A12564C	16	0.4504	0.4624	2.6		20
Iron	6699	A12564C	17	A12564C	16	4.6455	4.7384	2		20
Lead	6699	A12564C	17	A12564C	16	0.4436	0.4526	2		20
Magnesium	6699	A12564C	17	A12564C	16	65.4537	67.2199	2.7		20
Manganese	6699	A12564C	17	A12564C	16	0.8426	0.8664	2.8		20
Mercury	6699	H12564Ab		H12564Ab	16	10.9200	11.2300	2.8		20
Nickel	6699	A12564C	17	A12564C	16	0.4363	0.4459	2.2		20
Potassium	6699	A12564D	16	A12564D	15	55.6682	57.3470	3		20
Selenium	6699	A12564C	17	A12564C	16	0.4771	0.4903	2.7		20
Silver	6699	A12564C	17	A12564C	16	0.0947	0.0976	3.1		20
Sodium	6699	A12564D	16	A12564D	15	131.6550	137.0080	4		20
Thallium	6699	A12564C	17	A12564C	16	0.4631	0.4746	2.4		20
Vanadium	6699	A12564C	17	A12564C	16	0.4487	0.4601	2.5		20
Zinc	6699	A12564C	17	A12564C	16	0.4435	0.4580	3.2		20
21110	0099	A12304C		A123040		0.4400	0.4000	5.2		
TxtQcType: S	SD	Matrix:	AQUEOUS	Sam	npleID: AC585	547-003				
Analyte	Batchld	Data File	Seq#:	NS File	Seq#_DF	Result 1	Result 2	%Diff		Limit
Aluminum	6699	A12564C	21	A12564C	14 5	0.2215	0.3179	248	а	10
Antimony	6699	A12564C	21	A12564C	14 5	0.0023	0.0039			10
Arsenic	6699	A12564C	21	A12564C	14 5	-0.0015	-0.0020			10
Barium	6699	A12564C	21	A12564C	14 5	0.0201	0.0958	5.1		10
Beryllium	6699	A12564C	21	A12564C	14 5	0.0000	0.0001			10
Cadmium	6699	A12564C	21	A12564C	14 5	0.0005	0.0011			10
Calcium	6699	A12564C	21	A12564C	14 5	38.8198	181.2890	7.1		10
Chromium	6699	A12564C	21	A12564C	14 5	-0.0020	-0.0019			10
Cobalt	6699	A12564C	21	A12564C	14 5	-0.0038	-0.0035			10
Copper	6699	A12564C	21	A12564C	14 5	0.0059	0.0066	349	С	10
ron	6699	A12564C	21	A12564C	14 5	0.0504	0.3470	27	С	10
Lead	6699	A12564C	21	A12564C	14 5	-0.0048	-0.0029		-	10
Magnesium	6699	A12564C	21	A12564C	14 5	4.6108	21.7762	5.9		10
Manganese	6699	A12564C	21	A12564C	14 5	0.0904	0.4197	7.7		10
Vickel	6699	A12564C	21	A12564C	14 5	-0.0002	0.0001			10
Potassium	6699	A12564D	20	A12564D	13 5	1.5808	7.5746	4.3		10
Selenium					14 5	0.0252		232		10
,	6699	A12564C	21	A12564C			0.0378		С	10
Silver	6699	A12564C	21	A12564C	14 5	0.0007	0.0015	1.5		
Sodium	6699	A12564D	20	A12564D	13 5	17.1564	87.0773	1.5		10
Thallium	6699	A12564C	21	A12564C	14 5	0.0000	0.0033			10

A12564C

A12564C

14 5

14 5

0.0011

0.0082

0.0206

0.0155

75

164

С

C

10

10

6699

6699

A12564C

A12564C

21

21

Vanadium

Zinc

VERITECH Wet Chem Form1 Analysis Summary

	AC58547-001 Aqueous SW-1					Rece	ct Number: 10420 sived Date: 4/20/2 ollect Date: 4/19/2	2011		
Analysis		TestGroup	Dilution:	Result	Units:	RL	Prep Date:	Analysis Date:		
Chloride		CHLORIDE-ICW	1	8.9	mg/L	1.0	04/28/11	04/29/11		
				ND	-	.02	04/26/11	04/27/11		
yanide		CN-WATER-MUR	1	ND	mg/L	.02	04/26/11	04/2//11		
	AC58547-002 Aqueous SW-2					Rece	ct Number: 10420 eived Date: 4/20/3 ollect Date: 4/19/3	e: 4/20/2011		
Analysis		TestGroup	Dilution:	Result	Units:	RL	Prep Date:	Analysis Date		
Chloride		CHLORIDE-ICW	1	21	mg/L	1.0	04/28/11	04/29/11		
Cyanide		CN-WATER-MUR	1	ND	mg/L	.02	04/26/11	04/27/11		
الماماء ا	AC58547-003					Draia	at Numahasi 1042	016		
						-	ot Number: 10420			
	Aqueous						eived Date: 4/20/			
Client SampleID:	SW-3						ollect Date: 4/19/	2011		
Analysis		TestGroup	Dilution:	Result	Units:	RL	Prep Date:	Analysis Date		
Chloride		CHLORIDE-ICW	5	59	mg/L	5.0	04/28/11	05/02/11		
Cyanide		CN-WATER-MUR	1	ND	mg/L	.02	04/26/11	04/27/11		
					<u> </u>			040		
	AC58547-004					-	ct Number: 1042			
	Aqueous						eived Date: 4/20/			
Client SampleID:	SW-4					Co	ollect Date: 4/19/	2011		
nalysis	311111 (3111111111111111111111111111111	TestGroup	Dilution:	Result	Units:	RL	Prep Date:	Analysis Date		
Chloride		CHLORIDE-ICW	1	24	mg/L	1.0	04/28/11	04/29/11		
Cyanide		CN-WATER-MUR	1	ND	mg/L	.02	04/26/11	04/27/11		
							st Niumbar: 1012	016		
Lab#: Matrix Client SampleID:						Rece	ot Number: 1042 Dived Date: 4/20/ Dilect Date: 4/19/	2011		
Matrix Client SampleID:	Soil	TestGroup	Dilution:	Result	Units:	Rece	eived Date: 4/20/	2011 2011		
Matrix Client SampleID: Analysis	Soil	TestGroup CHLORIDE-ICS	Dilution:	Result	Units: mg/Kg	Rece Co	eived Date: 4/20/	2011 2011		
Matrix Client SampleID: Analysis Chloride	Soil					Rece Co RL	eived Date: 4/20/ ollect Date: 4/19/ Prep Date:	2011 2011 Analysis Date		
Matrix Client SampleID: Analysis Chloride Cyanide	Soil SD-1	CHLORIDE-ICS	1	280	mg/Kg	Rece Co RL 200 0.98	Prep Date: 05/04/11 04/28/11	2011 2011 Analysis Date 05/05/11 04/29/11		
Matrix Client SampleID: Analysis Chloride Cyanide	Soil SD-1 AC58547-006	CHLORIDE-ICS	1	280	mg/Kg	Rece Co RL 200 0.98	Prep Date: 05/04/11	2011 2011 Analysis Date 05/05/11 04/29/11		
Matrix Client SampleID: Analysis Chloride Cyanide Lab#: Matrix	Soil SD-1 AC58547-006 Soil	CHLORIDE-ICS	1	280	mg/Kg	Rece Co RL 200 0.98 Projec Rece	Prep Date: 05/04/11 04/28/11	2011 2011 Analysis Date 05/05/11 04/29/11 016 2011		
Matrix Client SampleID: analysis Chloride Cyanide Lab#: Matrix Client SampleID:	Soil SD-1 AC58547-006 Soil	CHLORIDE-ICS CN-S-9012	1	280 ND	mg/Kg mg/kg	Rece Co RL 200 0.98 Projec Rece Co	Prep Date: 4/19/3 Prep Date: 05/04/11 04/28/11 et Number: 10426/20/20/20/20/20/20/20/20/20/20/20/20/20/	2011 2011 Analysis Date 05/05/11 04/29/11 016 2011 2011		
Matrix Client SampleID: Analysis Chloride Cyanide Lab#: Matrix Client SampleID:	Soil SD-1 AC58547-006 Soil	CHLORIDE-ICS CN-S-9012	1 1 Dilution:	280 ND	mg/Kg mg/kg Units:	Rece Co RL 200 0.98 Projec Rece Co	Prep Date: 4/20// 0llect Date: 4/19// Prep Date: 05/04/11 04/28/11 ct Number: 10420// ollect Date: 4/19// Prep Date:	2011 2011 Analysis Date 05/05/11 04/29/11 016 2011 Analysis Date		
Matrix Client SampleID: Analysis Chloride Cyanide Lab#: Matrix Client SampleID: Analysis Chloride	Soil SD-1 AC58547-006 Soil	CHLORIDE-ICS CN-S-9012 TestGroup CHLORIDE-ICS	1 1 Dilution:	280 ND Result	mg/Kg mg/kg Units:	Rece Co RL 200 0.98 Projec Rece Co RL 830	Prep Date: 4/20/20/20/20/20/20/20/20/20/20/20/20/20/	Analysis Date 05/05/11 04/29/11 016 2011 Analysis Date 05/05/11		
Matrix Client SampleID: Analysis Chloride Cyanide Lab#: Matrix Client SampleID: Analysis Chloride Cyanide	Soil SD-1 AC58547-006 Soil SD-2	CHLORIDE-ICS CN-S-9012	1 1 Dilution:	280 ND	mg/Kg mg/kg Units:	Rece Co RL 200 0.98 Projec Rece Co RL 830 4.17	Prep Date: 4/20// 0/10/10/10/10/10/10/10/10/10/10/10// Prep Date: 05/04/11 04/28/11 Prep Date: 4/20// 0/10/10/10/10/10/10/10//10/10/10/10/10/1	Analysis Date 05/05/11 04/29/11 016 2011 Analysis Date 05/05/11 04/29/11		
Matrix Client SampleID: Analysis Chloride Cyanide Lab#: Matrix Client SampleID: Analysis Chloride Cyanide Lab#:	Soil SD-1 AC58547-006 Soil SD-2 AC58547-007	CHLORIDE-ICS CN-S-9012 TestGroup CHLORIDE-ICS	1 1 Dilution:	280 ND Result	mg/Kg mg/kg Units:	Rece Co RL 200 0.98 Projec Rece Co RL 830 4.17	Prep Date: 05/04/11 04/28/11 04/28/11 04/28/11 04/28/11 04/28/11 04/28/11 04/28/11 04/28/11 04/28/11 04/28/11 04/28/11 04/28/11 04/28/11	Analysis Date 05/05/11 04/29/11 O16 2011 Analysis Date 05/05/11 04/29/11 O16		
Matrix Client SampleID: Analysis Chloride Cyanide Lab#: Matrix Client SampleID: Analysis Chloride Cyanide Lab#: Matrix Matrix	Soil SD-1 AC58547-006 Soil SD-2 AC58547-007 Soil	CHLORIDE-ICS CN-S-9012 TestGroup CHLORIDE-ICS	1 1 Dilution:	280 ND Result	mg/Kg mg/kg Units:	Rece Co RL 200 0.98 Projec Rece Co RL 830 4.17	Prep Date: 05/04/11 04/28/11 Prep Date: 05/04/11 04/28/11 ct Number: 1042/28/20/20/28/20/28/20/28/20/28/20	Analysis Date 05/05/11 04/29/11 O16 2011 Analysis Date 05/05/11 04/29/11 O16 2011		
Matrix Client SampleID: Analysis Chloride Cyanide Lab#: Matrix Client SampleID: Analysis Chloride Cyanide Lab#: Matrix Matrix Analysis Chloride Cyanide	Soil SD-1 AC58547-006 Soil SD-2 AC58547-007 Soil	CHLORIDE-ICS CN-S-9012 TestGroup CHLORIDE-ICS	1 1 Dilution:	280 ND Result	mg/Kg mg/kg Units:	Rece Co RL 200 0.98 Projec Rece Co RL 830 4.17	Prep Date: 05/04/11 04/28/11 04/28/11 04/28/11 04/28/11 04/28/11 04/28/11 04/28/11 04/28/11 04/28/11 04/28/11 04/28/11 04/28/11 04/28/11	Analysis Date 05/05/11 04/29/11 O16 2011 Analysis Date 05/05/11 04/29/11 O16 2011		
Matrix Client SampleID: Analysis Chloride Cyanide Lab#: Matrix Client SampleID: Analysis Chloride Cyanide Lab#: Chloride Cyanide Lab#: Matrix Client SampleID:	Soil SD-1 AC58547-006 Soil SD-2 AC58547-007 Soil	CHLORIDE-ICS CN-S-9012 TestGroup CHLORIDE-ICS	1 1 Dilution:	280 ND Result	mg/Kg mg/kg Units:	Rece Co RL 200 0.98 Projec Rece Co RL 830 4.17	Prep Date: 05/04/11 04/28/11 Prep Date: 05/04/11 04/28/11 ct Number: 1042/28/20/20/28/20/28/20/28/20/28/20	Analysis Date 05/05/11 04/29/11 016 2011 Analysis Date 05/05/11 04/29/11 016 2011 016 2011 016 2011		
Matrix Client SampleID: Analysis Chloride Cyanide Lab#: Matrix Client SampleID: Analysis Chloride Cyanide Lab#: Matrix Client SampleID: Analysis Chloride Cyanide	Soil SD-1 AC58547-006 Soil SD-2 AC58547-007 Soil	CHLORIDE-ICS CN-S-9012 TestGroup CHLORIDE-ICS CN-S-9012	Dilution:	280 ND Result 1200 ND	mg/Kg mg/kg Units: mg/Kg mg/kg	Rece Co RL 200 0.98 Projec Rece Co RL 830 4.17 Projec Rece Co	Prep Date: 05/04/11 04/28/11 0	Analysis Date 05/05/11 04/29/11 016 2011 Analysis Date 05/05/11 04/29/11 016 2011 016 2011 016 2011		
Matrix Client SampleID: Analysis Chloride Cyanide Lab#: Matrix Client SampleID: Analysis Chloride Cyanide Lab#: Matrix Client SampleID: Analysis Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride	Soil SD-1 AC58547-006 Soil SD-2 AC58547-007 Soil	CHLORIDE-ICS CN-S-9012 TestGroup CHLORIDE-ICS CN-S-9012 TestGroup	Dilution:	280 ND Result 1200 ND	mg/Kg mg/kg Units: mg/Kg mg/kg	Rece Co RL 200 0.98 Projec Rece Co RL 830 4.17 Projec Rece Co	Prep Date: 4/20// Dilect Date: 4/19// Prep Date: 05/04/11 04/28/11 ct Number: 1042/eived Date: 4/19// Prep Date: 05/04/11 04/28/11 ct Number: 1042/eived Date: 4/20// Dilect Date: 4/19// Prep Date: 4/19// Prep Date: 4/19//	Analysis Date 05/05/11 04/29/11 016 2011 Analysis Date 05/05/11 04/29/11 016 2011 Analysis Date 05/05/11 04/29/11 Analysis Date Analysis Date		
Matrix Client SampleID: Analysis Chloride Cyanide Lab#: Matrix Client SampleID: Analysis Chloride Cyanide Lab#: Matrix Client SampleID: Analysis Chloride Cyanide Lab#: Matrix Client SampleID:	Soil SD-1 AC58547-006 Soil SD-2 AC58547-007 Soil SD-3	TestGroup CHLORIDE-ICS CN-S-9012 TestGroup CHLORIDE-ICS CN-S-9012 TestGroup CHLORIDE-ICS	Dilution: 1 Dilution: 1	Result 1200 ND Result 230	mg/Kg mg/kg Units: mg/Kg mg/kg Units:	Rece Co RL 200 0.98 Project Rece Co RL 830 4.17 Project Rece Co	Prep Date: 4/20// 0/28/11 ct Number: 1042/eived Date: 4/19// Prep Date: 4/20// 0/28/11 ct Number: 1042/eived Date: 4/19// Prep Date: 05/04/11 04/28/11 Prep Date: 4/20// 0/28/11 Prep Date: 4/19// 0/28/11 Prep Date: 4/19// 0/28/11	Analysis Date 05/05/11 04/29/11 O16 2011 Analysis Date 05/05/11 04/29/11 Analysis Date 05/05/11 04/29/11 Analysis Date 05/05/11 04/29/11		
Matrix Client SampleID: Analysis Chloride Cyanide Lab#: Matrix Client SampleID: Analysis Chloride Cyanide Lab#: Matrix Client SampleID: Analysis Chloride Cyanide Lab#: Analysis Chloride Cyanide Lab#: Analysis Chloride Cyanide Lab#:	Soil SD-1 AC58547-006 Soil SD-2 AC58547-007 Soil SD-3	TestGroup CHLORIDE-ICS CN-S-9012 TestGroup CHLORIDE-ICS CN-S-9012 TestGroup CHLORIDE-ICS	Dilution: 1 Dilution: 1	Result 1200 ND Result 230	mg/Kg mg/kg Units: mg/Kg mg/kg Units:	Rece Co RL 200 0.98 Projec Rece Co RL 830 4.17 Projec Rece Co	Prep Date: 05/04/11 04/28/11	Analysis Date 05/05/11 04/29/11 O16 2011 Analysis Date 05/05/11 04/29/11 O16 2011 Analysis Date 05/05/11 04/29/11 Analysis Date 05/05/11 04/29/11		
Matrix Client SampleID: Analysis Chloride Cyanide Lab#: Matrix Client SampleID: Analysis Chloride Cyanide Lab#: Matrix Client SampleID: Analysis Chloride Cyanide Lab#: Matrix Client SampleID: Analysis Chloride Cyanide Lab#: Matrix	Soil SD-1 AC58547-006 Soil SD-2 AC58547-007 Soil SD-3	TestGroup CHLORIDE-ICS CN-S-9012 TestGroup CHLORIDE-ICS CN-S-9012 TestGroup CHLORIDE-ICS	Dilution: 1 Dilution: 1	Result 1200 ND Result 230	mg/Kg mg/kg Units: mg/Kg mg/kg Units:	Rece Co RL 200 0.98 Projec Rece Co RL 830 4.17 Projec Rece Co Co RL 140 0.68	Prep Date: 4/20// 0/28/11 ct Number: 1042/eived Date: 4/19// Prep Date: 4/20// 0/28/11 ct Number: 1042/eived Date: 4/19// Prep Date: 05/04/11 04/28/11 Prep Date: 4/20// 0/28/11 Prep Date: 4/19// 0/28/11 Prep Date: 4/19// 0/28/11	Analysis Date 05/05/11 04/29/11 016 2011 Analysis Date 05/05/11 04/29/11 016 2011 Analysis Date 05/05/11 04/29/11 016 2011 016 2011 016 2011		
Matrix Client SampleID: Analysis Chloride Cyanide Lab#: Matrix Client SampleID: Analysis Chloride Cyanide Lab#: Matrix Client SampleID: Analysis Chloride Cyanide Lab#: Matrix Client SampleID: Analysis Chloride Cyanide Lab#: Matrix	Soil SD-1 AC58547-006 Soil SD-2 AC58547-007 Soil SD-3	TestGroup CHLORIDE-ICS CN-S-9012 TestGroup CHLORIDE-ICS CN-S-9012 TestGroup CHLORIDE-ICS	Dilution: 1 Dilution: 1	Result 1200 ND Result 230	mg/Kg mg/kg Units: mg/Kg mg/kg mg/kg	Rece Co RL 200 0.98 Projec Rece Co RL 830 4.17 Projec Rece Co Co RL 140 0.68 Projec Rece Co	Prep Date: 05/04/11 04/28/11 0	Analysis Date 05/05/11 04/29/11 016 2011 Analysis Date 05/05/11 04/29/11 016 2011 Analysis Date 05/05/11 04/29/11 016 2011 Analysis Date 05/05/11 04/29/11		
Matrix Client SampleID: Analysis Chloride Cyanide Lab#: Matrix Client SampleID: Analysis Chloride Cyanide Lab#: Matrix Client SampleID: Client SampleID: Analysis Chloride Cyanide Lab#: Matrix Client SampleID: Analysis Chloride Cyanide	Soil SD-1 AC58547-006 Soil SD-2 AC58547-007 Soil SD-3	TestGroup CHLORIDE-ICS CN-S-9012 TestGroup CHLORIDE-ICS CN-S-9012 TestGroup CHLORIDE-ICS CN-S-9012	Dilution: Dilution: Dilution:	Result 1200 ND Result 230 ND	mg/Kg mg/kg Units: mg/Kg mg/kg mg/kg Units:	Rece Co RL 200 0.98 Projec Rece Co RL 140 0.68 Projec Rece Co	Prep Date: 05/04/11 04/28/11 0	Analysis Date 05/05/11 04/29/11 O16 2011 Analysis Date 05/05/11 04/29/11 O16 2011 Analysis Date 05/05/11 04/29/11 O16 2011 Analysis Date 05/05/11 04/29/11 O16 2011 Analysis Date Analysis Date O5/05/11 O4/29/11 O16 2011 Analysis Date		
Matrix Client SampleID: Analysis Chloride Cyanide Lab#: Matrix Client SampleID: Analysis Chloride Cyanide Lab#: Matrix Client SampleID: Analysis Chloride Cyanide Lab#: Analysis Chloride Cyanide Lab#: Lab#: Lab#: Client SampleID:	Soil SD-1 AC58547-006 Soil SD-2 AC58547-007 Soil SD-3	TestGroup CHLORIDE-ICS CN-S-9012 TestGroup CHLORIDE-ICS CN-S-9012 TestGroup CHLORIDE-ICS CN-S-9012	Dilution: 1 1 Dilution: 1 1	Result 1200 ND Result 230 ND	mg/Kg mg/kg Units: mg/Kg mg/kg mg/kg	Rece Co RL 200 0.98 Projec Rece Co RL 830 4.17 Projec Rece Co Co RL 140 0.68 Projec Rece Co	Prep Date: 05/04/11 04/28/11 0	Analysis Date 05/05/11 04/29/11 O16 2011 Analysis Date 05/05/11 04/29/11 O16 2011 Analysis Date 05/05/11 04/29/11 Analysis Date 05/05/11 04/29/11 O16 2011		

VERITECH Wet Chem Form1 Analysis Summary

Lab#: AC58547-009 Matrix Aqueous

Client SampleID: FB-1

Project Number: 1042016

Received Date: 4/20/2011 Collect Date: 4/20/2011

Analysis	TestGroup	Dilution:	Result	Units:	RL	Prep Date:	Analysis Date:
Chloride	CHLORIDE-ICW	1	1.1	mg/L	1.0	04/28/11	04/29/11
Cyanide	CN-WATER-MUR	1	ND	mg/L	.02	04/26/11	04/27/11

TCN Soil

TCN SOIL										
		Date	4/29/2011							
STD ppm			Height							-
0.00	-		-82	· · · · · · · · · · · · · · · · · · ·	Intercept	Constant	400.4723841			-
0.02			5089		Slope	X Coefficients	237875.472			
0.10			24104							
0.40			96797							
0.80			190090							
						DIFF				
STD ppm 0.00			Height -82	·	-0.002029316					
0.02			5089		0.019711728					
0.10			24104		0.0.00					
0.40			96797		0.405241002	-0.005241002				
0.80			190090		0.797431009	0.002568991				
SUMMARY OUTPUT		***************************************		·····		1	***************************************			
SUMMART OUTPUT										
Regression Sta	tistics									
Multiple R	0.999965999									
R Square	0.999932				-					
Adjusted R Square	0.999898									
Standard Error	0.0057519									
Observations	4									
ANOVA			 							
N1404V	df	SS	MS	F	Significance F					
Regression	1	0.973004661	0.973004661	29409,81216						
Residual	2	6.61687E-05	3.30844E-05							
Total	3	0.97307083								
	Coefficients	Standard Error		P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%		
Intercept	-0.001846774	0.004099876					-0.019487131 1.526639222	0.015793583 1.605215617		
X Variable 1	1.56592/419	0.009131151	171.4928925	3.40005E-05	1.520039222	1.005215017	1.520039222	1.003213017		
			 			 				
						 		·		
Samples #	Height	PPM	Solid Factor	Sample wt	Dilution Factor	Scrub vol(mL)	TCN (ppm)	True Value(ppm)	% REC	QC Limits (%)
ICV	96441	0.4037429	1	1	1	1	0.40374	0.40	100.9	90-110
LCS	91075	0.3811849	1	2	1	50	9.52962	10.00	95.3	90-110
						1 50			30.0	30-11
ICCV	96251						0.40294	0.40	100.7	
CCV	96251 95274	0.4029441	1				0.40294			90-11
CCV	96251 95274		1	1	1			0.40	100.7	90-11
	95274	0.4029441 0.3988369	1	1	1	1	0.40294 0.39884	0.40 0.40	100.7 99.7	90-11 90-11
CCV	95274	0.4029441 0.3988369	1	1	1	1	0.40294 0.39884	0.40 0.40	100.7 99.7	90-11 90-11
CCV Analysis	95274 CN SOIL 901:	0.4029441 0.3988369	1	1	1	1	0.40294 0.39884	0.40	100.7 99.7	90-110 90-110
CCV	95274	0.4029441 0.3988369	1	1	1 1	1 1	0.40294 0.39884	0.40 0.40	100.7 99.7	90-110 90-110
Analysis Batch#	95274 CN SOIL 9012 655	0.4029441 0.3988369	1	1	1	1	0.40294 0.39884	0.40	100.7 99.7	90-110 90-110
Analysis Batch# Prep Date	95274 CN SOIL 901: 655 4/28/2011	0.4029441 0.3988369	1	1	Value PPM	Result	0.40294 0.39884 % REC	0.40 0.40 QC Limits (%)	100.7 99.7	90-110 90-110
Analysis Batch# Prep Date Prep By	95274 CN SOIL 901: 655 4/28/2011 JS	0.4029441 0.3988369	1	1 1	Value PPM 10.00	Result PPM 9.50	0.40294 0.39884 % REC	0.40 0.40 QC Limits (%)	100.7 99.7	90-11 90-11
Analysis Batch# Prep Date Prep By Analysis Date	95274 CN SOIL 901: 655 4/28/2011 JS 4/29/2011	0.4029441 0.3988369	1	LCS MS	Value PPM 10.00 19.60	Result PPM 9.50 16.00	0.40294 0.39884 % REC	0.40 0.40 QC Limits (%) 90-110 75-125	100.7 99.7	90-11 90-11
Analysis Batch# Prep Date Prep By Analysis Date	95274 CN SOIL 901: 655 4/28/2011 JS	0.4029441 0.3988369	1	LCS MS MSD	Value PPM 10.00	Result PPM 9.50 16.00	0.40294 0.39884 % REC	0.40 0.40 QC Limits (%) 90-110 75-125	100.7 99.7	90-11 90-11
Analysis Batch# Prep Date Prep By Analysis Date	95274 CN SOIL 901: 655 4/28/2011 JS 4/29/2011	0.4029441 0.3988369	1	LCS MS	Value PPM 10.00 19.60	Result PPM 9.50 16.00 21.60	0.40294 0.39884 % REC 95 82 110	0.40 0.40 QC Limits (%) 90-110 75-125 75-125	100.7 99.7	90-11 90-11
Analysis Batch# Prep Date Prep By Analysis Date	95274 CN SOIL 901: 655 4/28/2011 JS 4/29/2011	0.4029441 0.3988369	1	LCS MS MSD	Value PPM 10.00 19.60	Result PPM 9.50 16.00	0.40294 0.39884 % REC	0.40 0.40 QC Limits (%) 90-110 75-125 75-125	100.7 99.7	90-11 90-11
Analysis Batch# Prep Date Prep By Analysis Date Analyzed By	95274 CN SOIL 901: 655 4/28/2011 JS 4/29/2011 HS	0.4029441 0.3988369	1 1	LCS MS MSD Sample	Value PPM 10.00 19.60 19.60	Result PPM 9.50 16.00 21.60 RPD	95 82 110	0.40 0.40 QC Limits (%) 90-110 75-125 75-125	100.7	90-11(90-11)
Analysis Batch# Prep Date Prep By Analysis Date Analyzed By	95274 CN SOIL 901: 655 4/28/2011 JS 4/29/2011 HS	0.4029441 0.3988369	1 1	LCS MS MSD Sample	Value PPM 10.00 19.60 19.60	Result PPM 9.50 16.00 21.60 RPD	95 82 110	0.40 0.40 QC Limits (%) 90-110 75-125 75-125	100.7	90-11
Analysis Batch# Prep Date Prep By Analysis Date Analyzed By Samples #	95274 CN SOIL 901: 655 4/28/2011 JS 4/29/2011 HS Height	0.4029441 0.3988369	1 1	LCS MS MSD Sample	Value PPM 10.00 19.60 19.60 Dilution Factor	Result PPM 9.50 16.00 21.60 RPD	0.40294 0.39884 % REC 95 82 110 5	0.40 0.40 QC Limits (%) 90-110 75-125 75-125	100.7	90-11
Analysis Batch# Prep Date Prep By Analysis Date Analyzed By Samples # ICV	95274 CN SOIL 901: 655 4/28/2011 JS 4/29/2011 HS Height 96441	0.4029441 0.3988369 2 2 PPM 0.403742	Solid Factor 1.00	LCS MS MSD Sample	Value PPM 10.00 19.60 19.60 Dilution Factor	Result PPM 9.50 16.00 21.60 RPD Scrub vol(ml) 1	95 82 110 TCN (ppm) 0.4	90-110 75-125 75-125 RL 0.02	100.7	90-11
Analysis Batch# Prep Date Prep By Analysis Date Analyzed By Samples # ICV ICB	95274 CN SOIL 901: 655 4/28/2011 JS 4/29/2011 HS Height 96441 -37	0.4029441 0.3988369 2 2 PPM 0.403742 -0.001838	Solid Factor 1.00	LCS MS MSD Sample Sample wt(g)	Value PPM 10.00 19.60 19.60	Result PPM 9.50 16.00 21.60 RPD Scrub vol(ml) 1	0.40294 0.39884 % REC 95 82 110 5 TCN (ppm) 0.4 ND	90-110 75-125 75-126 20 RL 0.02 0.02	100.7	90-11
Analysis Batch# Prep Date Prep By Analysis Date Analyzed By Samples # ICV ICB MB	95274 CN SOIL 901: 655 4/28/2011 JS 4/29/2011 HS Height 96441 -37 1408	0.4029441 0.3988369 2 2 PPM 0.403742 -0.001838 0.004234	Solid Factor 1.00 1.00	LCS MS MSD Sample Sample wt(g) 1 1 2	Value PPM 10.00 19.60 19.60 19.60 19.60 19.60	Result PPM 9,50 16,00 21,60 RPD Scrub vol(ml) 1 1 50	0.40294 0.39884 % REC 95 82 110 5 TCN (ppm) 0.4 ND ND	0.40 0.40 QC Limits (%) 90-110 75-125 75-125 20 RL 0.02 0.02 0.02	100.7	90-11
Analysis Batch# Prep Date Prep By Analysis Date Analyzed By Samples # ICV ICB MB LCS	95274 CN SOIL 901: 655 4/28/2011 JS 4/29/2011 HS Height 96441 -37 1408 91075	0.4029441 0.3988369 2 2 PPM 0.403742 -0.001838 0.004234 0.381187	Solid Factor 1.00 1.00 1.00	LCS MS MSD Sample Sample wt(g) 1 1 2 2	Value PPM 10.00 19.60 19.60 19.61 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1	Result PPM 9.50 16.00 21.60 RPD Scrub vol(ml) 1 1 500 60	0.40294 0.39884 % REC 95 82 110 5 TCN (ppm) 0.4 ND ND 9.5	0.40 0.40 QC Limits (%) 90-110 75-125 75-126 20 RL 0.02 0.02 0.50 0.50	100.7	90-11
Analysis Batch# Prep Date Prep By Analysis Date Analyzed By Samples # ICV ICB MB LCS AC58547-005	95274 CN SOIL 901: 655 4/28/2011 JS 4/29/2011 HS Height 96441 -37 1408 91075 4638	0.4029441 0.3988369 2 2 PPM 0.403742 -0.001838 0.004234 0.381187 0.017816	Solid Factor 1.00 1.00 1.00 0.51	LCS MS MSD Sample Sample wl(g) 1 1 2 2 2 2	Value PPM 10.00 19.60 19.60 19.61 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1	Result PPM 9.50 16.00 21.60 RPD 1 1 1 1 50 50 50 50	0.40294 0.39884 % REC 95 82 110 5 TCN (ppm) 0.4 ND ND 9.5 ND	0.40 0.40 QC Limits (%) 90-110 75-125 75-125 20 RL 0.02 0.02 0.02 0.50 0.50 0.98	100.7	90-11
Analysis Batch# Prep Date Prep By Analysis Date Analyzed By ***********************************	95274 CN SOIL 901: 655 4/28/2011 JS 4/29/2011 HS Height 96441 -37 1408 91075 4638 77951	0.4029441 0.3988369 22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 4 4 4 4	Solid Factor 1.00 1.00 1.00 0.51 0.51	LCS MS MSD Sample Sample wt(g) 1 2 2 2 2 2	Value PPM 10.00 19.60 19.60 Dilution Factor 1 1 1 1 1	Result PPM 9.50 16.00 21.60 RPD Scrub vol(ml) 1 50 50 50 60	0.40294 0.39884 % REC 95 82 110 5 TCN (ppm) 0.4 ND ND ND 9.5 ND 16.0	0.40 0.40 0.40 QC Limits (%) 90-110 75-125 75-125 20 RL 0.02 0.02 0.50 0.50 0.98 0.98	100.7	90-11
Analysis Batch# Prep Date Prep By Analysis Date Analyzed By Samples # ICV ICB MB LCS MB LCS AC58547-005 AC58547-005MS AC58547-005MSD	95274 CN SOIL 901: 655 4/28/2011 JS 4/29/2011 HS Height 96441 -37 1408 91075 4638 77951 105017	0.4029441 0.3988369 2 2 2 PPM 0.403742 -0.001838 0.004234 0.381187 0.017816 0.326014 0.439797	Solid Factor 1.00 1.00 1.00 0.51 0.51	LCS MS MSD Sample Sample wt(g) 1 1 2 2 2 2 2 2 2 2 2	Value PPM 10.00 19.60 19.60 19.61 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Result PPM 9.50 16.00 21.60 1 1 1 50 60 50 50 50 50 50	0.40294 0.39884 % REC 95 82 110 5 TCN (ppm) 0.4 ND ND ND ND 9.5 ND 16.0 21.6	0.40 0.40 0.40 QC Limits (%) 90-110 75-125 75-125 20 RL 0.02 0.02 0.02 0.50 0.50 0.98 0.98 0.98	100.7	90-11
Analysis Batch# Prep Date Prep By Analysis Date Analysis Date Analyzed By Samples # ICV ICB MB LCS AC58547-005 AC58547-005MS AC58547-006MSD AC58547-006	95274 CN SOIL 901: 655 4/28/2011 JS 4/29/2011 HS Height 96441 -37 1408 91075 4638 77951 105017 3081	0.4029441 0.3988369 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 4 0.04234 0.381187 0.017816 0.326014 0.439797 0.011268	Solid Factor 1.00 1.00 0.51 0.51 0.12	LCS MS MSD Sample	Value PPM 10.00 19.60 19.60 19.61 19	Result PPM 9.50 16.00 21.60 RPD Scrub vol(ml) 1 1 50 60 50 50 50 60	0.40294 0.39884 % REC 95 82 110 5 TCN (ppm) 0.4 ND ND 9.5 ND 16.0 21.6 ND	QC Limits (%) 90-110 75-125 75-125 20 RL 0.02 0.02 0.50 0.50 0.98 0.98 0.98 4.17	100.7	90-11
Analysis Batch# Prep Date Prep By Analysis Date Analyzed By Samples # ICV ICB MB LCS AC58547-005 AC58547-005MS AC58547-006AC58547-006 AC58547-006	95274 CN SOIL 901: 655 4/28/2011 JS 4/29/2011 HS Height 96441 -37 1408 91075 4638 77951 105017 3081 249	0.4029441 0.3988369 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3	Solid Factor 1.00 1.00 0.51 0.51 0.73	LCS MS MSD Sample Sample wt(g) 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Value PPM 10.00 19.60 19.60 19.61 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1	Result PPM 9.50 16.00 21.60 RPD Scrub vol(ml) 1 50 50 50 50 50 50 50	0.40294 0.39884 % REC 95 82 110 5 TCN (ppm) 0.4 ND ND ND 9.5 ND 16.0 21.6 ND ND	QC Limits (%) 90-110 75-125 75-125 75-126 RL 0.02 0.02 0.50 0.50 0.98 0.98 0.98 4.17 0.68	100.7	90-11
Analysis Batch# Prep Date Prep By Analysis Date Analyzed By ***********************************	95274 CN SOIL 901: 655 4/28/2011 JS 4/29/2011 HS Height 96441 -37 1408 91075 4638 77951 105017 3081 249 6416	PPM 0.403742 -0.001838 0.004234 0.381187 0.017816 0.326014 0.493797 0.010636 0.002529	Solid Factor 1.00 1.00 1.00 0.51 0.51 0.73 0.54	LCS MS MSD Sample	Value PPM 10.00 19.60 19.60 19.61 1.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Result PPM 9.50 16.00 21.60 RPD Scrub vol(ml) 1 50 50 50 50 50 50 50 50 50	0.40294 0.39884 % REC 95 82 110 5 TCN (ppm) 0.4 ND ND 9.5 ND 16.0 21.6 ND ND ND	RL 0.02 0.50 0.50 0.98 0.98 4.17 0.68 0.93	100.7	90-11
Analysis Batch# Prep Date Prep By Analysis Date Analyzed By Samples # ICV ICB MB LCS AC58547-005 AC58547-005MS AC58547-006 AC58547-006 AC58547-007	95274 CN SOIL 901: 655 4/28/2011 JS 4/29/2011 HS Height 96441 -37 1408 91075 4638 77951 105017 3081 249 6416 4780	0.4029441 0.3988369 22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Solid Factor 1.00 1.00 1.00 0.51 0.51 0.73 0.54 0.88	LCS MS MSD Sample	Value PPM 10.00 19.60 19.60 19.61 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Result PPM 9.50 16.00 21.60 RPD Scrub vol(ml) 1 50 50 50 50 50 50 50 50	0.40294 0.39884 % REC 95 82 110 5 TCN (ppm) 0.4 ND ND 9.5 ND 16.0 21.6 ND ND ND	RL 0.02 0.50 0.50 0.98 0.98 0.98 0.98 0.93 0.57	100.7	90-11
Analysis Batch# Prep Date Prep By Analysis Date Analyzed By Samples # ICV ICB MB LCS AC58547-005 AC58547-005MSD AC58547-006 AC58547-006 AC58547-006 AC58547-007 AC58547-008	95274 CN SOIL 901: 655 4/28/2011 JS 4/29/2011 HS Height 96441 -37 1408 91075 4638 77951 105017 3081 249 6416	PPM 0.403742 -0.001838 0.004234 0.381187 0.017816 0.326014 0.493797 0.010636 0.002529	Solid Factor 1.00 1.00 1.00 0.51 0.51 0.73 0.54	LCS MS MSD Sample	Value PPM 10.00 19.60 19	Result PPM 9.50 16.00 21.60 RPD Scrub vol(ml) 1 1 50 50 50 50 50 50 50 50 50	0.40294 0.39884 % REC 95 82 110 5 TCN (ppm) 0.4 ND ND 9.5 ND 16.0 21.6 ND ND ND ND	RL 0.02 0.50 0.98 0.98 0.98 4.17 0.68 0.93 0.57 0.57	100.7	90-11
Analysis Batch# Prep Date Prep By Analysis Date Analyzed By Samples # ICV ICB MB LCS AC58547-005 AC58547-005MS AC58547-006 AC58547-006 AC58547-007 AC58547-008 AC58547-008 AC58547-008 AC585547-008 AC585547-008 AC58551-005	95274 CN SOIL 901: 655 4/28/2011 JS 4/29/2011 HS Height 96441 -37 1408 91075 4638 77951 105017 3081 249 6416 4780	0.4029441 0.3988369 22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Solid Factor 1.00 1.00 1.00 0.51 0.51 0.51 0.73 0.88 0.88	LCS MS MSD Sample	Value PPM 10.00 19.60 19.60 19.61 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Result PPM 9.50 16.00 21.60 RPD Scrub vol(ml) 1 1 50 50 50 50 50 50 50 50 50	0.40294 0.39884 % REC 95 82 110 5 TCN (ppm) 0.4 ND ND 9.5 ND 16.0 21.6 ND ND ND ND	RL 0.02 0.50 0.98 0.98 0.98 4.17 0.68 0.93 0.57 0.57 0.02	100.7	90-11
Analysis Batch# Prep Date Prep By Analysis Date Analysis Date Analyzed By Samples # ICV ICB MB LCS AC58547-005 AC58547-005MS AC58547-005MS AC58547-006 AC58547-007 AC58547-007 AC58547-008 AC58551-006 AC58551-006	95274 CN SOIL 901: 655 4/28/2011 JS 4/29/2011 HS Height 96441 -37 1408 91075 4638 77951 105017 3081 249 6416 4780 5648	0.4029441 0.3988369 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Solid Factor 1.00 1.00 1.00 1.01 0.51 0.51 0.52 0.53 0.54 0.88 0.88	LCS MS MSD Sample	Value PPM 10.00 19.60 19.60 19.61 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Result PPM 9.50 16.00 21.60 RPD Scrub vol(ml) 1 1 50 50 50 50 50 50 50 50 50 50 50 50	0.40294 0.39884 % REC 95 82 110 5 TCN (ppm) 0.4 ND ND 9.5 ND 16.0 21.6 ND ND ND ND	RL 0.02 0.50 0.98 0.98 0.98 4.17 0.68 0.93 0.57 0.57	100.7	90-11
Analysis Batch# Prep Date Prep By Analysis Date Analyzed By Samples # ICV ICB MB LCS AC58547-005 AC58547-005MS AC58547-006 AC58547-007 AC58547-008 AC58551-005 AC58551-006 CCV CCB	95274 CN SOIL 901: 655 4/28/2011 JS 4/29/2011 HS Height 96441 -37 1408 91075 4638 77951 105017 3081 249 6416 4780 5648 96251	0.4029441 0.3988369 2 2 2 2 2 2 2 2 2 2 2 2 2	Solid Factor 1,00 1,00 1,00 0,51 0,51 0,51 0,54 0,88 0,88 1,80 1,00	LCS MS MSD Sample Sample wt(g) 1 1 2 2 2 2 2 2 2 1 1 1	Value PPM 10.00 19.60 19.60 19.61 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Result PPM 9.50 16.00 21.60 RPD Scrub vol(ml) 1 500 500 500 500 500 500 500 11	0.40294 0.39884 % REC 95 82 110 5 TCN (ppm) 0.4 ND ND 16.0 21.6 ND ND ND 12.0 ND ND ND ND	RL 0.02 0.50 0.98 0.98 0.98 4.17 0.68 0.93 0.57 0.57 0.02	100.7	90-11
Analysis Batch# Prep Date Prep By Analysis Date Analyzed By Samples # ICV ICB MB LCS AC58547-005 AC58547-005 AC58547-006 AC58547-007 AC58547-008 AC58551-006 AC58551-006 CCV	95274 CN SOIL 901: 655 4/28/2011 JS 4/29/2011 HS Height 96441 -37 1408 91075 4638 77951 105017 3081 249 6416 4780 5648 96251 -72	0.4029441 0.3988369 2 2 2 2 2 2 2 2 2 2 2 2 2	Solid Factor 1.00 1.00 1.00 0.51 0.51 0.52 0.73 0.54 0.88 0.88 1.00 1.00 0.88	LCS MS MSD Sample 1 1 2 2 2 2 2 2 1 1 1 2 2	Value PPM 10.00 19.60 19.60 19.61 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1	Result PPM 9.50 16.00 21.60 RPD Scrub vol(ml) 1 50 50 50 50 50 50 50 50 11	0.40294 0.39884 % REC 95 82 110 5 TCN (ppm) 0.4 ND 9.5 ND 16.0 21.6 ND ND 12.6 ND ND 0.4 ND	RL 0.02 0.50 0.98 0.98 4.17 0.68 0.93 0.57 0.02 0.02 0.02 0.057 0.02 0.02 0.02 0.00	100.7	90-11

Cyanide Water

			,	,	T	,		,		· · · · · · · · · · · · · · · · · · ·		
****		ļ				ļ			ļ		\rightarrow	
***************								*******	**********		*****	******
				Q.C. DATA	I	1	T	1	1			
Analysis	Cyanide Wa			Q.C. DATA	Tt				 			
Batch#	286)			Theoretical		% REC	Limits (%)		-	\rightarrow	
D D-1-	4/00/0044	-			Value PPM	Result PPM	% REC	Limits (%)	ļ	1	\rightarrow	
Prep Date	4/26/2011	 			PPM	PPM	ļ		<u> </u>		$\overline{}$	
Prep By	JB	1/00/0044		1.00	0.40	0.000	100	75-125		+	, 	
Analysis Date	4/27/2011	4/28/2011		LCS MS	0.40			75-125 75-125	 			
Analyzed By	hs	ļ		MSD	0.40		100	75-125 75-125		 	, -	
	-	 			0.40		100	75-125			, 	
		ļ		Sample		0.008	-				-	
		-			140	2 400	000					
					MS	0.409	RPD 0	20	ļ			
	+				MSD	0.408	ļ	20	ļ			
******	1								**********	**********	*****	******
		РРМ						RL	%Rec			
Samples #	 	0.376924	Solid Factor	Sample voi	Dilution Factor			0.02	%Rec 94	Date 4/27/2011		
CV CB		0.376924	1	50		50 50		0.02	94	4/27/2011		
	-							0.02	ļ	4/27/2011	-	
MB	-	0.007262	1						ļ			
LCS	1	0.399336	1					0.02		4/27/2011	-	
AC58547-01	 	0.007840	1					0.02	ļ			
AC58547-002	 	0.007500	1			50		0.02		4/27/2011 4/27/2011	·	
AC58547-002MS	 	0.408514	1					0.02		4/27/2011	, <u>-</u>	
AC58547-003		0.014749	1			50 50		0.02 0.02	ļ	4/27/2011		
AC58547-004	ļ	0.014314	1						 			
AC58547-009	 	0.006339		50		50		0.02	<u> </u>	4/27/2011		
AC58548-001	1	0.006244	1					0.02	- OF	4/27/2011 4/27/2011		
CCV	1	0.381453	1					0.02	95	4/27/2011		
CCB		0.007898	····					0.02		4/27/2011		
AC58548-003	 	0.008509	1					0.02				
AC58548-005	 	0.019620		<u></u>				0.02		4/27/2011		
AC58548-007		0.020369	1			 		0.02	ļ	4/27/2011	\vdash	
AC58548-009	 	0.007026	1					0.02		4/27/2011		
CCV	 	0.392466	1					0.02	98	4/27/2011		
JOB	 	0.009262	1	50	1	50	ND	0.02		4/27/2011		
CCV	 	0.443000			ļ		0.442	0.00	103	4/20/2044		
CCB	 	0.413238	1	50 50		50 50		0.02	103	4/28/2011		
AC58547-002MSD	 	0.002807	1					0.02	 	4/28/2011	· · · · · · · · · · · · · · · · · · ·	
		0.407613	1					0.02	102	4/28/2011		
DCV DCB	+	0.409436	1					0.02	102	4/28/2011	\longrightarrow	
JUB	 	0.003283	1	50	1 1	50	ND	0.02	 	4/20/2011	_ 	
	 						ļ ·	l	ł		·	
		+				ļ		·····		 		
	1	+				+	 		 	-		
	1	+				-	 		 	+		
	1	 				 			 	 		
	1	ــــــــــــــــــــــــــــــــــــــ						1		1		

Ox 514/11

Blank Summary

Instrument: IC1

Qc Type: Metho	od Blank Summary	Prep I	Date: 4	/28/11		
Run Batch ID	Analysis Date/Time	Sample ID	Run#	Analyte	Conc	RL
201104282044	4/29/11 00:47	MBW-0320	9	Chloride	ND	1.0
201105041741	5/5/11 00:47	MBS-0152	15	Chloride	ND	100
Qc Type: ICB S	ummary	Prep I	Date: N	A		
Run Batch ID	Analysis Date/Time	Sample ID	Run#	Analyte	Conc	RL
201104282044	4/29/11 00:17	ICB	8	Chloride	ND	1.0
201105021359	5/2/11 17:32	ICB	8	Chloride	ND	1.0
201105041741	5/4/11 21:14	ICB	8	Chloride	ND	1.0
Qc Type: CCB	Summary	Prep I	Date: N	Α		
Run Batch ID	Analysis Date/Time	Sample ID	Run#	Analyte	Conc	RL
201104282044	4/29/11 06:22	ССВ	20	Chloride	ND	1.0
201105021359	5/2/11 23:36	CCB	20	Chloride	ND	1.0
201105041741	5/5/11 03:19	CCB	20	Chloride	ND	1.0
201105041741	5/5/11 06:52	ССВ	27	Chloride	ND	1.0

MS/MSD Recovery

							IVIO/	IVIS	אַע	ecovery					
	Batch: 9 ethod: l	S-147 EPA 9056	3		;	Sample ID: A Matrix S		-005							
Qc Type:	MS	Limits			MS	Sample					MS/MS	SD .		Non Spi	ke
Analyte	Amt	Recov		Dil	Conc	Conc	Recov		Flag	Batch	RunID	Analysis Date	Batch	RunID	Analysis Date
Chloride	5	80-120		1	5.2264	1.4266	76		Ms	20110504174	18	05/05/11 02:18	20110504174	17	05/05/11 01:48
Qc Type:	MSD	Lim	its		MSD	Sample					MS/MS	SD		Non Spi	ke
Analyte	Amt	Recov	Rpd	Dil	Conc	Conc	Recov	Rpd	Flag	Batch	RunID	Analysis Date	Batch	RunID	Analysis Date
Chloride	5	80-120	20	1	5.2797	1.4266	77	1	Ms	20110504174	21	05/05/11 03:50	20110504174	17	05/05/11 01:48
Prep	Batch: \	W-408				Sample ID:	AC58547	-001							
M	ethod: 3	300.0 rev	2.1			Matrix A	Aqueous								
Qc Type:	MS	Lim	its		MS	Sample					MS/MS	SD		Non Spi	ke
Analyte	Amt	Recov		Dil	Conc	Conc	Recov		Flag	Batch	RunID	Analysis Date	Batch	RunID	Analysis Date
Chloride	5	80-120		1	13.3001	8.8619	89			20110428204	12	04/29/11 02:19	20110428204	11	04/29/11 01:48
Qc Type:	MSD	Lim	its		MSD	Sample					MS/MS	SD		Non Spi	ke
Analyte	Amt	Recov	Rpd	Dil	Conc	Conc	Recov	Rpd	Flag	Batch	RunID	Analysis Date	Batch	RunID	Analysis Date
Chloride	5	80-120	20	1	13.2347	8.8619	87	0.5		20110428204	13	04/29/11 02:49	20110428204	11	04/29/11 01:48

Site Name: Harrison Landfill Well/Sampling Point ID: PC-1

Site Location: Harrison Subresidency, Harrison, NY Well Diameter: 2"

Date: 4/20/11 **Weather:** Overcast, 60-65°F

Purge Method: Whale Pump Purge Start Time: 12:50 Purge End Time: 2:15

Well Casing Condition: Lock rusted; needed to saw casing to access well

Water Level & Water Column Height (feet)

Depth to Water (DTW)	Depth to Well Bottom (DTB)	Water Column Height (DTB-DTW)	WELL CAPACITY (gal/ft):
1.2	16.73	15.53	2.5

Purge Volume Conversions

0.75"=0.02	1"=0.04	1.25"=0.06	2"=0.16	3"=0.37	4"=0.65	5"=1.02	6"=1.47	12"=5.88
------------	---------	------------	---------	---------	---------	---------	---------	----------

^{*1} well volume = volume/linear foot x water column height

Well Purge Water Quality

VOLUME PURGED (gal)	PH	TEMP (C)	COND (µmhos)	DO (mg/L)	TURB (NTUs)	ORP
0	7.85	9.5	0.591	17.31	257	79
3	7.67	9.6	0.574	17.17	50	90
5	7.56	9.4	0.578	17.22	46	88
8	7.51	9.4	0.578	16.0	39	91
10	7.51	9.5	0.580	16.23	15	97
20	7.52	9.5	0.591	16.57	5.6	105

Groundwater Sampling Data

SAMPLED BY:		
Kimberly Somers, Tom LaB	anca	
SAMPLING METHOD:	SAMPLE COLLECTED AT:	REMARKS:
Dedicated bailer	2:15	Landfill Site Duplicate Location (LF-1)
ANALYSIS:		
TCL VOCs, TCL SVOCs, T	AL Metals (lab filtered), Cyanide, Chl	oride

Site Name: Well/Sampling Point ID: PC-2 Harrison Landfill

Site Location: Harrison Subresidency, Harrison, NY Well Diameter: 2" Weather: Overcast, 60-65°F

4/19/11 Purge Method: Whale Pump Purge Start Time: 11:30 Purge End Time: 12:43

Well Casing Condition: Good; locked

Water Level & Water Column Height (feet)

Trate: Determine			
Depth to Water (DTW)	Depth to Well Bottom (DTB)	Water Column Height (DTB-DTW)	WELL CAPACITY (gal/ft):
2.0	9.5	7.5	1.2

Purge Volume Conversions

0.75"=0.02	1"=0.04	1.25"=0.06	2"=0.16	3"=0.37	4"=0.65	5"=1.02	6"=1.47	12"=5.88
------------	---------	------------	---------	---------	---------	---------	---------	----------

^{*1} well volume = volume/linear foot x water column height

Well Purge Water Quality

VOLUME PURGED (gal)	PH	TEMP (C)	COND (µmhos)	DO (mg/L)	TURB (NTUs)	ORP
0	6.18	9.35	0.647	4.46	16.8	-85
1	6.45	7.98	0.799	9.65	4.6	-113
2	6.40	8.12	0.830	3.32	24.4	-111
6	6.45	8.59	0.836	10.13	4.1	-126
10	6.42	8.45	0.833	9.56	3.2	-122
			_			

Groundwater Sampling Data								
SAMPLED BY:								
Kimberly Somers, Tom LaBar	nca							
SAMPLING METHOD:	SAMPLE COLLECTED AT:	REMARKS:						
Dedicated bailer	12:43							
ANALYSIS:	,							
TCL VOCs, TCL SVOCs, TAL Metals (lab filtered), Cyanide, Chloride								

Site Name: Harrison Landfill Well/Sampling Point ID: PC-3

Site Location: Harrison Subresidency, Harrison, NY Well Diameter: 2"

Date: 4/19/11 Weather: Overcast, 60-65°F

Date: 4/19/11
Purge Method: Whale Pump
Purge Start Time: 9:33
Purge End Time: 10:15

Well Casing Condition: Good; locked

Water Level & Water Column Height (feet)

Trate: 2010: a trate: Column riolgite (1004)								
Depth to Water (DTW)		Depth to Well Bottom (DTB)	Water Column Height (DTB-DTW)	t WELL CAPACITY (gal/ft):				
	5.7	18.37	12.67	12.67				

Purge Volume Conversions

0.75"=0.02 1"	"=0.04 1.25"=0.06	2"=0.16	3"=0.37	4"=0.65	5"=1.02	6"=1.47	12"=5.88
---------------	-------------------	---------	---------	---------	---------	---------	----------

^{*1} well volume = volume/linear foot x water column height

Well Purge Water Quality

well Furge water Quality							
VOLUME PURGED (gal)	РН	TEMP (C)	COND (µmhos)	DO (mg/L)	TURB (NTUs)	ORP	
0	5.91	8.1	1.31	>19.99	622	97	
5	5.33	9.5	0.0	>19.99	55.6	150	
10	6.70	7.4	0.529	19.99	7.5	32	
15	6.75	7.1	0.519	16.25	0	18	
20	6.80	7.2	0.520	18.20	0	7	
25	6.89	7.2	0.522	19.47	0	7	
30	6.85	7.2	0.516	19.02	0	7	
35	6.82	7.2	0.511	18.75	0	19	
40	6.82	7.1	0.512	17.84	0	14	

Groundwater Sampling Data

Ordanawater damping bata										
SAMPLED BY:										
Kimberly Somers, Tom LaBanca										
SAMPLING METHOD:	SAMPLE COLLECTED AT:	REMARKS:								
Dedicated bailer	10:15									
ANALYSIS:										
TCL VOCs, TCL SVOCs, TAL N	TCL VOCs, TCL SVOCs, TAL Metals (lab filtered), Cyanide, Chloride									
. ,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,									

Site Name: Harrison Landfill Well/Sampling Point ID: LMW-2

Site Location: Harrison Subresidency, Harrison, NY Well Diam

Date: 4/19/11
Purge Method: Whale Pump
Purge Start Time: 2:52
Purge End Time: 3:00

Well Casing Condition: Good; locked

Well Diameter: <u>2"</u>
Weather: <u>Overcast, 60-65°F</u>

Water Level & Water Column Height (feet)

Trator Lover & trator Column Holght (100t)							
	Depth to Water	Depth to Well Bottom	Water Column Height	WELL CAPACITY			
	(DTW)	(DTB)	(DTB-DTW)	(gal/ft):			
	7.4	20	12.6	2.1			

Purge Volume Conversions

0	.75"=0.02	1"=0.04	1.25"=0.06	2"=0.16	3"=0.37	4"=0.65	5"=1.02	6"=1.47	12"=5.88

^{*1} well volume = volume/linear foot x water column height

Well Purge Water Quality

VOLUME PURGED (gal)	PH	TEMP (C)	COND (µmhos)	DO (mg/L)	TURB (NTUs)	ORP
0	7.06	9.22	0.727	3.66	39.8	90
5	7.08	9.71	0.758	5.31	201	95

Groundwater Sampling Data

SAMPLED BY:										
Kimberly Somers, Tom LaBanca										
SAMPLING METHOD:	SAMPLE COLLECTED AT:	REMARKS:								
Dedicated bailer	3:00	Dry at 3 gallons purged								
ANALYSIS:										
TCL VOCs, TCL SVOCs, TAL Metals (lab filtered), Cyanide, Chloride										

Weather: Overcast, 60-65°F

Site Name: Well/Sampling Point ID: LMW-4 Harrison Landfill

Site Location: Harrison Subresidency, Harrison, NY Well Diameter: 2"

Date: 4/19/11 Purge Method: Whale Pump Purge Start Time: 12:45 Purge End Time: 2:30

Well Casing Condition: Good; locked

Water Level & Water Column Height (feet)

Trator Zovor a trator Colamii Holght (100t)								
	Depth to Water	Depth to Well Bottom	Water Column Height	WELL CAPACITY				
	(DTW)	(DTB)	(DTB-DTW)	(gal/ft):				
	3.4	12	8.6	1.3				

Purge Volume Conversions

0.75"=0.02	1"=0.04	1.25"=0.06	2"=0.16	3"=0.37	4"=0.65	5"=1.02	6"=1.47	12"=5.88
------------	---------	------------	---------	---------	---------	---------	---------	----------

^{*1} well volume = volume/linear foot x water column height

Well Purge Water Quality

VOLUME PURGED (gal)	PH	TEMP (C)	COND (µmhos)	DO (mg/L)	TURB (NTUs)	ORP
0	6.59	8.2	0.883	19.55	22.6	-93
3	6.60	8.5	0.900	16.60	35.7	-95
5	6.70	8.8	0.911	17.34	48.6	-95
8	6.47	8.6	0.763	17.13	44.9	-74
10	6.58	8.4	0.723	17.61	38.3	-59

Groundwater Sampling Data						
SAMPLED BY:						
Kimberly Somers, Tom LaBanca						
SAMPLING METHOD:	SAMPLE COLLECTED AT:	REMARKS:				
Dedicated bailer	2:30	Dry at 3 gallons purged; slow				
		recharge				
ANALYSIS:						
TCL VOCs, TCL SVOCs, TAL Metals (lab filtered), Cyanide, Chloride						