June 24, 2011

Ms. Gretchen Fitzgerald Construction Group NYSDOT Region 8 4 Burnett Boulevard Poughkeepsie, NY 12603

RE: PIN 8807.31.101, Harrison Spill Site (NYSDEC #94-07349) Harrison Sub-Residency, Westchester County, New York Fifth-Quarter Sampling Results, April 2011

Dear Ms. Fitzgerald,

The following letter report summarizes the field investigative procedures and results of the fifth-quarter groundwater sampling event at the above referenced site (see Figure 1) by Cashin Associates, P.C. (CA). The sampling was performed in accordance with CA's Scope of Work and Cost Estimate dated March 2011 and approved by the New York State Department of Transportation (NYSDOT) on March 9, 2011. The scope was developed in accordance with the NYSDOT's *Operation and Maintenance Plan for the Harrison Sub-Residency, Landfill and Petroleum Spill Area, February 2010.*

The previous spill at the Harrison Sub-Residency site was closed by the New York State Department of Conservation (NYSDEC) on October 10, 2002 when the air sparge/soil vapor extraction (AS/SVE) system was shut down. The recent groundwater sampling was performed to meet monitoring requirements of the NYSDOT relating to NYSDEC Spill #94-07349. A discussion of the methodology and analytical results of the recent groundwater sampling round (April 2011) is presented in this letter.

GROUNDWATER SAMPLING METHODOLOGY

The April 2011 monitoring event consisted of the collection and laboratory analysis of groundwater samples from the six existing monitoring wells (MW-1, MW-11 through MW-13, GP-1 and GP2) at the spill site (see Figure 2). CA met with NYSDOT prior to the monitoring event to discuss field activities and locate the monitoring wells.

The groundwater sampling methodology performed by CA was consistent with the methodology used in prior sampling events at the site.

Prior to commencing site activities, CA conducted a visual inspection of the monitoring well casings and well heads to note any signs of damage or tampering. Static water level measurements and total depth measurements from all groundwater monitoring wells were recorded. During sampling, groundwater was purged from each monitoring well until the hydraulic equilibrium between casing water and the aquifer was achieved, in order to obtain a representative sample of the aquifer. This was accomplished by calculating the relative contribution from stagnant casing water to the total discharged from the well.

Well volumes were purged using a Whale pump equipped with a Rheostat (for adjustable flow), in-line flow cell and dedicated tubing. Groundwater samples were collected when the well recovered to approximately 75% of its initial volume or within two hours (whichever came first) using a dedicated disposable polyethylene bailer. Well purge water was discharged immediately downgradient of the well sampled. Field parameters of temperature, turbidity, dissolved oxygen (DO), pH, specific conductivity, and oxidation-reduction potential (Eh) were recorded for each well during purging and at the time of sample collection using a Horiba U-22 water quality monitor equipped with an inline flow-through cell.

All samples were transferred to clean, pre-preserved laboratory-supplied containers to be submitted and analyzed by a New York State certified laboratory (Hampton-Clarke Veritech, Farifield, New Jersey) for the presence of BTEX compounds (benzene, toluene, ethylbenzene and total xylenes) plus MTBE (methyl tertiary butyl ether) and the natural attenuation parameters: iron (dissolved, Fe-II), manganese (dissolved, Mn-II), bicarbonate alkalinity (as HCO₃), alkalinity (total), nitrate (NO₃) and sulfate (SO₄). For quality control/assurance purposes, one trip blank and one groundwater field duplicate were submitted to the laboratory. The field duplicate was collected from monitoring well PC-1 at the same time as the original sample and analyzed for the same parameters. The duplicate sample was identified as SP-1, as not to indicate to the laboratory that it was a duplicate sample of well PC-1.

During field sampling activities, it was found that the well casing of the upgradient well (MW-1) was obstructed at approximately one foot below land surface (bls); preventing the passageway for tubing down the casing of the well. After several attempts to dislodge the obstruction, it was determined that MW-1 was unable to be sampled. CA could not verify the type of obstruction in the well.

RESULTS

Analytical results of the groundwater samples were compared to the NYSDEC Class GA Standards or Guidance Values. No floating product was detected in any of the wells; however a sheen and odor were detected from purged water in well MW-12.

Monitoring wells MW-13, GP-1, GP-2 and PC-1 contained no VOC detections. BTEX compounds were detected in two wells, MW-11 and MW-12. Of the BTEX compounds detected, only MW-11 had detections exceeding NYSDEC Standards for ethylbenzene and m&p xylenes. MTBE was not detected in any of the wells sampled.

Dissolved iron and dissolved manganese were detected in wells MW-11 and MW-12 at concentrations exceeding NYSDEC Standards. Neither metal was detected in any of the remaining wells.

Nitrate was detected in well MW-13 only, at a concentration below the NYSDEC Standard. Sulfate was detected in all wells sampled at concentrations below the NYSDEC Standard.

Total alkalinity and alkalinity biocarbonate were the same at each of the wells, ranging from a concentration of 190 mg/l in MW-11 to 270 mg/l in wells MW-13 and PC-1.

The QA/QC results of the duplicate sample (SP-1) to the original sample (PC-1) indicates an acceptable degree of precision and accuracy of the analytical results reported by the laboratory and confirms the adequacy of decontamination, handling and transportation procedures to meet quality requirements for the monitoring program. In addition, one trip blank was submitted for analysis of BTEX and MTBE. The analytical results of the trip blank were all non-detect.

A summary of the analytical data for the monitoring wells and QA/QC results for the April 2011 monitoring round, in tabular form, are presented in Table 1. Copies of the laboratory analytical results and sample chain-of-custody documents are enclosed as Appendix A. Groundwater sampling logs are attached as Appendix B.

DISCUSSION

Compared to the previous sampling round conducted in January 2010, the results of the April 2011 groundwater monitoring show a decline in BTEX concentrations in wells MW-11 and MW-12 where volatile compounds were detected. Monitoring wells MW-13, GP-1, GP-2, and PC-1 (downgradient well) were all reported as non-detect for BTEX and MTBE. The decrease in BTEX concentrations in MW-11 and the absence of BTEX detections in GP-1 and GP-2 indicate that the plume is not migrating off-site.

Evidence of redox potential (ORP), dissolved oxygen (DO), alkalinity, metals (iron and manganese), anions (nitrate and sulfate), and pH were measured to characterize the site's groundwater with respect to biodegradation. Field indications of biological activity were identified by aerobic conditions present based on DO values (>2.0 mg/L) at all wells with pH values ranging between 6.7 and 7.52. An increase in ferrous iron concentrations was noted for wells MW-11 and MW-12. Sulfate concentrations increased in wells MW-11 and MW-13, but remain at highest concentrations in downgradient wells (MW-13, GP-1, GP-2 and PC-1). Alkalinity increased in MW-12 and MW-13 and was reported at higher

concentrations in downgradient wells. Iron and manganese concentrations were detected in MW-11 and MW-12, but not in any of the downgradient wells.

The groundwater monitoring of the Harrison Spill Site will be continued on a fifth-quarter basis unless otherwise decided by NYSDEC.

If you have any questions, or require any additional information, please feel free to contact me.

Sincerely,

CASHIN ASSOCIATES, P.C.

Gregory T. Greene Director of Environmental Programs

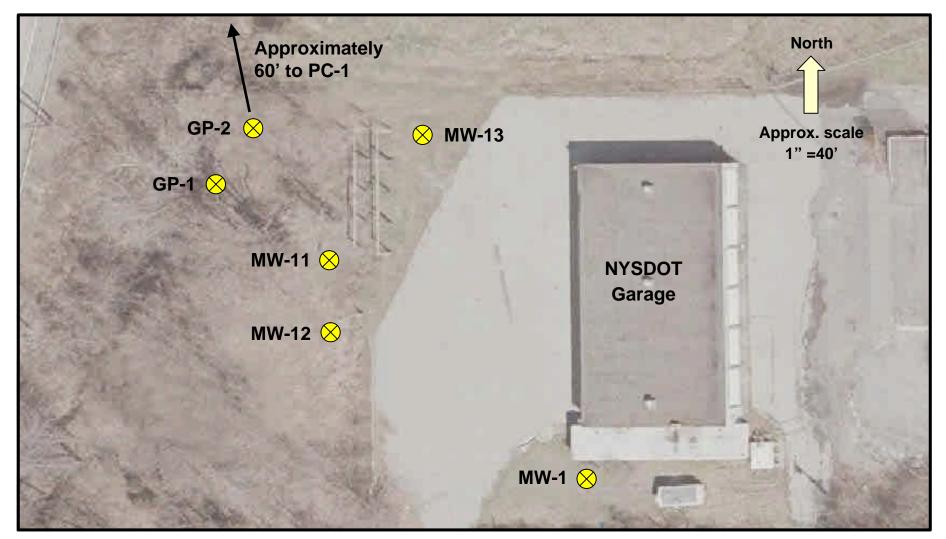
cc: Anjan Sen, NYSDOT Consultant Management Bureau Carl Kochersberger, NYSDOT Environmental Science Bureau

Table 1. Analytical Results of Groundwater Monitoring Wells, April 2011

	SAME	CLIENT ID: CTION DATE: PLE MATRIX: MPLE UNITS:	MW-11 4/20/2011 Aqueous ug/L	MW-12 4/20/2011 Aqueous ug/L	MW-13 4/20/2011 Aqueous ug/L	GP-1 4/20/2011 Aqueous ug/L	GP-2 4/20/2011 Aqueous ug/L	PC-1 4/20/2011 Aqueous ug/L	SP-1 4/20/2011 Aqueous ug/L
Analyte	Units	NYSDEC Class GA Standard							
Metals									
Iron (filtered)	ug/L	300	610	4,100	ND	ND	ND	ND	ND
Manganese (filtered)	ug/L	300	3,400	10,000	ND	ND	ND	ND	ND
Volatiles									
Benzene	ug/L	1	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	ug/L	5	53	3.4	ND	ND	ND	ND	ND
m&p-Xylenes	ug/L	5	12	ND	ND	ND	ND	ND	ND
Methyl-t-butyl ether	ug/L	50	ND	ND	ND	ND	ND	ND	ND
o-Xylene	ug/L	5	1.2	ND	ND	ND	ND	ND	ND
Toluene	ug/L	5	ND	ND	ND	ND	ND	ND	ND
Wet Chemistry									
Alkalinity	mg CaCO3/I	NA	190	220	270	230	240	270	270
Alkalinity	ug/L	NA	190,000	220,000	270,000	230,000	240,000	270,000	270,000
Nitrate	ug/L	10,000	ND	ND	1,300	ND	ND	ND	ND
Sulfate	ug/L	250,000	14,000	13,000	25,000	17,000	21,000	13,000	13,000
Field Parameters									
pН		NA	6.7	7	7.1	7.34	7.11	7.52	
Temperature	Celcius	NA	9	9.74	9.59	8.9	9.5	9.5	
Specific Conductivity	umhos	NA	0.806	1.97	0.802	0.646	0.576	0.591	
Dissolved Oxygen	mg/L	NA	16.25	4.51	5.87	18.71	16.79	16.57	
Turbidity	NTUs	NA	0.96	0	35.1	57.2	16.9	5.6	
ORP		NA	-8	-93	31	118	116	105	

Notes

Highlight indicates a concentration exceeding NYSDEC Class GA Standard


ND – Non Detect

NA – Not Applicable

Figure 1 Harrison Subresidency Site

Note:

PC-1 is located north of the site within the Harrison landfill area.

Monitoring Well Location

Figure 2 Harrison Subresidency Spill Site Monitoring Well Locations NYSDOT Harrison, N.Y.

175 ROUTE 46 WEST, UNIT D · FAIRFIELD, NJ 07004 2 MADISON ROAD, FAIRFIELD, NJ 07004 800-426-9992 · 973-244-9770 FAX: 973-244-9787

WWW.HCVLAB.COM

Project: 9051.003

Client PO: 9051.003

Report To: Cashin Associates

1200 Veterans Memorial Highway

Hauppauge, NY 11788

Attn: Kimberly Somers

Received Date: 4/20/2011

Report Date: 5/19/2011

Deliverables: NYDOH-CatA

Lab ID: AC58546

Lab Project No: 1042015

This report is a true report of results obtained from our tests of this material. All results meet the requirements of the NELAC Institute standards. In lieu of a formal contract document, the total aggregate liability of Veritech to all parties shall not exceed Veritech's total fee for analytical services rendered.

Jeri Rossi - Quality Assurance Director

OR

Stanley Gilewicz - Laboratory Director

NJ (07071 and 07069)

NY (ELAP11408 and 11939) CT (PH-0671)

USACE

PA (68-00463 and 68-04409) KY (90124)

WV (353)

THIS CATEGORY "A" REPORT IS NUMBERED FROM 1 to 56

HCV Case Narrative/Conformance Summary

Client: Cashin Associates **HCV Project:** 1042015

9051.003 Project:

Hampton-Clarke/Veritech (HC·V) received the following samples on April 20, 2011:

Client ID	HCV Sample ID	Matrix	<u>Analysis</u>
MW-11 U	AC58546-001	Aqueous	VO (624), Alkalinity (SM2320B), Sulfate/Nitrate (300.0)
MW-11 F	AC58546-002	Aqueous	Metals (200.7/8)
MW-12 U	AC58546-003	Aqueous	VO (624), Alkalinity (SM2320B), Sulfate/Nitrate (300.0)
MW-12 F	AC58546-004	Aqueous	Metals (200.7/8)
MW-13 U	AC58546-005	Aqueous	VO (624), Alkalinity (SM2320B), Sulfate/Nitrate (300.0)
MW-13 F	AC58546-006	Aqueous	Metals (200.7/8)
GP-1 U	AC58546-007	Aqueous	VO (624), Alkalinity (SM2320B), Sulfate/Nitrate (300.0)
GP-1 F	AC58546-008	Aqueous	Metals (200.7/8)
GP-2 U	AC58546-009	Aqueous	VO (624), Alkalinity (SM2320B), Sulfate/Nitrate (300.0)
GP-2 F	AC58546-010	Aqueous	Metals (200.7/8)
PC-1 U	AC58546-011	Aqueous	VO (624), Alkalinity (SM2320B), Sulfate/Nitrate (300.0)
PC-1 F	AC58546-012	Aqueous	Metals (200.7/8)
SP-1 U	AC58546-013	Aqueous	VO (624), Alkalinity (SM2320B), Sulfate/Nitrate (300.0)
SP-1 F	AC58546-014	Aqueous	Metals (200.7/8)

Volatile Organic Analysis:

2-Chloroethylvinylether did not recover in the Matrix Spike and Matrix Spike Duplicate in batch 7430 due to acid preservation of sample. 2-Chloroethylvinylether readily decomposes under acidic conditions. The recovery of 2-Chloroethylvinylether is within QC limits in the Laboratory Control Sample (MBS).

Metals Analysis:

Data conforms to method requirements.

Wet Chemistry Analysis:

Data conforms to method requirements.

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package and in the computer-readable data has been authorized by the Laboratory Manager or his designee, as verified by the following signature.

Jeri Rossi Laboratory Director **Quality Assurance Director**

																	_					_						(00	03		
HC-V 2010 M	2			Prix &	Kalo	10) Relinquished by:		I T	_	2 10/119	010/500		005/006	004004	001/002	Lab Sample #	7	Batch # \(\) 58.546	♦ ONLY	USE	FOR LAB		1d) Send Report to:	1c) Send Invoice to:	1b) Email/Cell/Fax/Ph:	Address:	1a)Customer:	,				Ver
Hease circle required parameter list (refer to HC-V summary): i) NJ 2008 SRS; ii) Current ICL; iii) HC-V 2010 Merged; iv) PA; v) NY; vi) Project-Specific				an John Comme	{	shed by:		(PAM	1-dS	PC-1	CP-2	GP-1		mw-12	MW-11	4) Customer Sample ID		DW - Drinking Water S - Soil GW - Ground Water SL - Slu WW - Waste Water OL - Oil	Matrix Codes					Middle	16000	HALLOWING VIN	F	Customer Information	NELAC/NJ #07071 & 07069 CT #PH-0671 NY #11408 & 11939 PA #68-00463 & 68-04409 WV #353 KY #90124	Ph: 800-426-9992 Fax: 973-439-1458	175 US Hwy 46 West, Fairfield, New Jersey 07004	Veritech/Division of Hampton-Clarke
eter to Ho roject-Sp			_	+	Post.										6w	Matrix	5)	dge	Codes	2			1 1	_ (ا د	- 1	. [#PH-0671 I	139-1458	/ Jersey 070	pton-CI
C-V sumi			Ç		1	A			(_		ı	4/20	Date	6) Sample	A - Air OT - Other		Check If Contingent ===>				Dehbie Youn	9-17-0	1/288	Ι.		NY #11408		04	arke
mary): ı)				7	2	Accepted by:			₩ 0	خاح	1100	050	930	316	∞	e				ontingen			_		2	$\frac{HWY}{2}$,	& 11939 F			
800Z CN					-	by:			¥				<i>u</i>			Gra	b (G)		Type	Ī			2d) Quote/PO# (If Applicable):		2c) Project Location (City/State):	2b) Project Mgr:	2a) Project:	•	A #68-004	HAMPIONCIA	Ţ	
SRS; II)									+	+ +	4	4	4	ヤヤ	+		ICE TEX)3 (+M:	1 <i>B E</i>				0 # (If Ap		Location (C		405	7	63 & 68-04	AND VERTECH		
Current			,	Jet/20/	1/20/4	Date			γ Υ	ヤイ	<u>く</u> く	4	ヤヤ	ヤヤ	ャメ		tal etal	Alkal	FILM FILM	4	7		olicable):			Grea	-	<u> 6</u>	409 WV #		<u>Ω</u>	:
ICL; III)				1630	1430	Time			`									s FeI	, Mn II		7) Analysis		9051.003		Harrison	00000	003	formatio	353 KY #		HAIN	
	11)		Note:		Note:	Т													,		Req		003	,	3	$ \vec{\epsilon} $		13	0124		OF CUS	
Please no	Sampler (print name):	High Co	Check if applicable: Project-Specific	VOC (8260B SIM or 8011) Metals (ICP-MS 200.8 or 6020)	Check if lo													ot 1		For	uest			1	7					Ì	CHAIN OF CUSTODY	
note NUMBERED items. If not completed your analytical work may be din a fee of \$5/sample will be assessed for storage should sample not be activated for any analysis.	(print nam	High Contaminant Concentrations	Check if applicable: Project-Specific Reporting Limits	VOC (8260B SIM or 8011) Metals (ICP-MS 200.8 or 6	Check if low-level groundwate BN or BNA (8270C SIM)	Comme										\vdash	H C	at 2 Scre	een/Tota	For EPH Analy			Other:	2 Weeks	10 Da	1 Wee		48 Ho	24 Ho	_	0	5
RED items	e): 5,3	nt Conc	Reporti	or 8011 200.8 or 6	oundwater C SIM)	Comments, Notes, Special Requirements, HAZARDS			6	6	6	6	6	e	E	EP Nor		at 2 Frac	ctionation	\sis:		Expedite	57D.	Š	10 Days (10%)	4 Days (35%; FPH) 1 Week (25%; EPH)	72 Hours (50%)	48 Hours (75%)	24 Hours (100%)	Turnaround	1 × C	Project#
s. If not co	30V	entratio	ng Limit) 6020)	methods	es, Spe										Me0	OH Core	# of				ed TAT No	<u> </u>			<u> </u>				d .		Project# (Lab Use Only)
əmpleted y age should sa	Somers	ns	S ·		required to	cial Regi			N	7	2	2	4	2	12	NaC HCI		8) # of Bottles				t Always A		Other:	Category A	Full / Category B	Red - NJ	Waste	Data Summary	Repo	n Regui	Only)
our analy	ľ) rneet cur	uiremen										H2S	03					Expedited TAT Not Always Available (Please			A	tegory B	Red - NJ / NY / PA		mmary	Report Type	rements	_
tical work activated for	Date: 4	R.	2 0	2	rent stand	ts, HAZ										Oth	ег: _		9	$\left\{ \right.$			 Q	<u>'</u> 2	ш I	<u> </u>	, m				(Please	Page
Please note NUMBERED items. If not completed your analytical work may be delayed. A fee of \$5(sample will be assessed for storage should sample not be activated for any analysis.	4/20	<u> </u>	Cooler Ter)	Check if low-level groundwater methods required to meet current standards in NJ or PA: BN or BNA (8270C SIM)	ARDS										9b) Comments		Numbers (If Applicable)	ı) Metha			Check with _ab)!	Other:	PDF	Excel - PA Act 2	Excel - NY TAGM	EQuIS EZ	EQuIS 4-File	Hazsite/CSV	Electronic Deliv.	3) Reporting Requirements (Please Circle)	of.
elayed.	1711	.1, 3.0	Cooler Temperature		J or PA:											nments		Numbers (If Applicable)	9a) Methanol Bottle		,	.ab)!			±2	GM				ic Deliv.		

PROJECT MODIFICATIONS

Client: CASHIN
Project: 9051.003

HCV Project #: 1042015

joy192.168.1.31 4/21/2011 6:01:12 PM

Per Kim Somers run NO3 and SO4. JK 4/21/11

CONDITION UPON RECEIPT

Batch Number AC58546

Entered By: Frantz

Date Entered 4/20/2011 4:19:00 PM

		Date Entered 4/20/2011 4:19:00 PM
1	Yes	Is there a corresponding COC included with the samples?
2	Yes	Are the samples in a container such as a cooler or Ice chest?
3	Yes	Are the COC seals intact?
4	Yes	Please specify the Temperature inside the container (in degC) 2.5,2.4,3.1,3.0
5	Yes	Are the samples refrigerated (where required)/have they arrived on ice?
6	Yes	Are the samples within the holding times for the parameters listed on the COC? IF no, list parameters and samples:
7	Yes	Are all of the sample bottles intact? If no, specify sample numbers broken/leaking
8	Yes	Are all of the sample labels or numbers legible? If no specify:
9	NO	Do the contents match the COC? If no, specify NO3 and SO4 received for all samples but was not on the COC.
10	Yes	Is there enough sample sent for the analyses listed on the COC? If no, specify:
11	Yes	Are samples preserved correctly?
12	Yes	Was temperature blank present (Place comment below if not)? If not was temperature of samples verified?
13	NA	Other commentsSpecify
14	YES	Corrective actions (Specify item number and corrective action taken). 9. Per Kim Somers run NO3 and SO4. JK 4/21/11

PRESERVATION DOCUMENT

Batch Number AC58546

Entered By: Frantz

Date Entered 4/20/2011 4:19:00 PM

Lab#:	Container Siz	Container Typ	Parameter	Preservative	PH
AC58546-001	40ml	G	VO+10	HCL	1
AC58546-002	NA	NA	NA	NA	NA
AC58546-003	40ml	G	VO+10	HCL	1
AC58546-004	NA	NA	NA	NA	NA
AC58546-005	40ml	G	VO+10	HCL	1
AC58546-006	NA	NA	NA	NA	NA
AC58546-007	40ml	G	VO+10	HCL	1
AC58546-008	NA	NA	NA	NA	NA
AC58546-009	40ml	G	VO+10	HCL	1
AC58546-010	NA	NA	NA	NA	NA
AC58546-011	40ml	G	VO+10	HCL	1
AC58546-012	NA	NA	NA	NA	NA
AC58546-013	40ml	G	VO+10	HCL	1
AC58546-014	NA	NA	NA	NA	NA

Internal Chain of Custody

		Loc		Т				Loc			
		or	Bot	A/				or	Bot	Α/	
Lab#:	DateTime:	User	Nu	М	Analysis	 Lab#:	DateTime:	User	Nu	M	Analysis
AC58546-001	04/20/11 15:30	FRAN	1	М	Received	AC58546-005	04/29/11 09:28	JAR	6	Α	alkalinity
AC58546-001	04/20/11 16:19	FRAN	1	M	Login	AC58546-005	04/29/11 18:29	R12	6	A	NONE
AC58546-001 AC58546-001	04/21/11 07:55	1	2	A	NONE	AC58546-005	04/20/11 16:24	R12	7 7	A	NONE
AC58546-001 AC58546-001	04/22/11 14:33 04/22/11 18:10		2	A M	VOA NONE	AC58546-005 AC58546-005	04/29/11 09:28 04/29/11 18:29	JAR R12	7	A A	alkalinity NONE
AC58546-001	04/25/11 15:04	SG	2	A	VOA	AC58546-005 AC58546-005	05/03/11 11:57	JW	7	A	alkalinity
AC58546-001	04/26/11 08:22		2	A	NONE	AC58546-005	05/03/11 16:32	R12	7	A	NONE
AC58546-001	04/26/11 09:04		2	Α	VOA	AC58546-005	04/20/11 16:24	R12	8	Α	NONE
AC58546-001	04/21/11 07:55	1	3	Α	NONE	AC58546-005	04/20/11 19:10	NNM	8	м	ic
AC58546-001	04/26/11 15:44	SG	3	Α	VOA	AC58546-005	04/20/11 21:07	R12	8	Α	NONE
AC58546-001	04/20/11 16:24	R12	4	Α	NONE	AC58546-006	04/20/11 15:30	FRAN	0	М	Received
AC58546-001	04/20/11 19:10	NNM	4	М	ic	AC58546-006	04/20/11 16:19	l	0	М	Login
AC58546-001	04/20/11 21:07	R12	4	Α	NONE	AC58546-006	04/20/11 16:24	R12	1	Α	NONE
AC58546-001	04/20/11 16:24	R12	5	Α	NONE	AC58546-006	04/22/11 14:17	JPC	1	Α	FILTERING
AC58546-001 AC58546-001	05/02/11 09:49	JAR	5	A	alkalinity	AC58546-006 AC58546-006	04/22/11 16:01 04/25/11 11:32	R12 JPC	1	A A	NONE TDWI-HG
AC58546-001 AC58546-001	05/02/11 18:41 05/03/11 11:57	R12 JW	5 5	A	NONE alkalinity	AC58546-006 AC58546-006	04/25/11 11:32	R12	1	A	NONE
AC58546-001	05/03/11 16:32	R12	5	Â	NONE	AC58546-007	04/20/11 15:30	FRAN	0	М	Received
AC58546-001	04/20/11 16:24	R12	6	A	NONE	AC58546-007	04/20/11 16:19	FRAN		м	Login
AC58546-001	04/29/11 09:28	JAR	6	Α	alkalinity	AC58546-007	04/21/11 07:55	R22	2	A	NONE
AC58546-001	04/29/11 18:29	R12	6	Α	NONE	AC58546-007	04/22/11 14:46	SG	2	Α	VOA
AC58546-001	04/20/11 16:24		7	Α	NONE	AC58546-007	04/21/11 07:55	R22	3	Α	NONE
AC58546-001	04/20/11 16:24	1	8	Α	NONE	AC58546-007	04/20/11 16:24	R12	4	Α	NONE
AC58546-001	04/29/11 09:28	JAR	8	Α	alkalinity	AC58546-007	04/29/11 09:28	JAR	4	Α	alkalinity
AC58546-001	04/29/11 18:29		8	Α	NONE	AC58546-007	04/29/11 18:29	R12	4	Α	NONE
AC58546-002	04/20/11 15:30	FRAN	1	М	Received	AC58546-007	05/03/11 11:57	JW	4	Α	alkalinity
AC58546-002 AC58546-002	04/20/11 16:19	FRAN	l	M	Login	AC58546-007	05/03/11 16:32	R12	4	A	NONE
AC58546-002 AC58546-002	04/20/11 16:24 04/22/11 14:17	R12 JPC	1	A A	NONE FILTERING	AC58546-007 AC58546-007	04/20/11 16:24 04/29/11 09:28	R12 JAR	5 5	A	NONE alkalinity
AC58546-002	04/22/11 16:01	R12	1	A	NONE	AC58546-007	04/29/11 18:29	R12	5	A	NONE
AC58546-002	04/25/11 11:32	JPC	1	A	TDWI-HG	AC58546-007	04/20/11 16:24	R12	6	A	NONE
AC58546-002	04/25/11 13:07	R12	1	Α	NONE	AC58546-007	04/20/11 16:24	R12	7	Α	NONE
AC58546-003	04/20/11 15:30	FRAN	0	м	Received	AC58546-007	05/02/11 09:49	JAR	7	Α	alkalinity
AC58546-003	04/20/11 16:19	FRAN	0	М	Login	AC58546-007	05/02/11 18:41	R12	7	A	NONE
AC58546-003	04/21/11 07:55	R22	2	Α	NONE	AC58546-007	05/03/11 11:57	JW	7	Α	alkalinity
AC58546-003	04/22/11 14:33	1	2	Α	VOA	AC58546-007	05/03/11 16:32	R12	7	Α	NONE
AC58546-003	04/22/11 18:10	1	2	М	NONE	AC58546-007	04/20/11 16:24	R12	8	Α	NONE
AC58546-003	04/25/11 15:04	SG	2	Α	VOA	AC58546-007	04/20/11 19:10	NNM	8	М	ic
AC58546-003 AC58546-003	04/26/11 08:22 04/26/11 09:04	R22 WP	2	A	NONE VOA	AC58546-007 AC58546-008	04/20/11 21:07 04/20/11 15:30	R12 FRAN	8	A M	NONE Received
AC58546-003	04/20/11 09:04		3	A	NONE	 AC58546-008	04/20/11 16:19	FRAN		М	Login
AC58546-003	04/26/11 15:44	SG	3	A	VOA	AC58546-008	04/20/11 16:13	R12	1	A	NONE
AC58546-003	04/20/11 16:24	R12	4	A	NONE	AC58546-008	04/22/11 14:17	JPC	1	Α	FILTERING
AC58546-003	05/02/11 09:49	JAR	4	Α	alkalinity	AC58546-008	04/22/11 16:01	R12	1	Α	NONE
AC58546-003	05/02/11 18:41	R12	4	Α	NONE	AC58546-008	04/25/11 11:32	JPC	1	Α	TDWI-HG
AC58546-003	05/03/11 11:57	JW	4	Α	alkalinity	AC58546-008	04/25/11 13:07	R12	1	Α	NONE
AC58546-003	05/03/11 16:32	R12	4	Α	NONE	AC58546-009	04/20/11 15:30	FRAN		М	Received
AC58546-003	04/20/11 16:24	R12	5	Α	NONE	AC58546-009	04/20/11 16:19	FRAN	0	M	Login
AC58546-003	04/20/11 16:24	R12	6	A	NONE	AC58546-009	04/21/11 07:55	R22	2	Α	NONE
AC58546-003	04/29/11 09:28	JAR	6	A	alkalinity	AC58546-009	04/22/11 14:46	SG	2	A	VOA
AC58546-003 AC58546-003	04/29/11 18:29	R12	6	A A	NONE NONE	AC58546-009 AC58546-009	04/21/11 07:55 04/20/11 16:24	R22 R12	3 4	A	NONE NONE
AC58546-003	05/03/11 16:32 04/20/11 16:24	R12 R12	7	A	NONE	AC58546-009 AC58546-009	04/20/11 19:10	NNM	4	м	ic
AC58546-003	04/29/11 09:28	JAR	7	A	alkalinity	AC58546-009	04/20/11 21:07	R12	4	Α	NONE
AC58546-003	04/29/11 18:29	R12	7	A	NONE	AC58546-009	04/20/11 16:24	R12	5	Α	NONE
AC58546-003	04/20/11 16:24		8	Α	NONE	AC58546-009	04/29/11 09:28	JAR	5	Α	alkalinity
AC58546-003	04/20/11 19:10	1	8	М	ic	AC58546-009	04/29/11 18:29	R12	5	Α	NONE
AC58546-003	04/20/11 21:07	R12	8	Α	NONE	AC58546-009	04/20/11 16:24	R12	6	Α	NONE
AC58546-004	04/20/11 15:30	FRAN	0	М	Received	AC58546-009	04/20/11 16:24	R12	7	Α	NONE
AC58546-004	04/20/11 16:19	FRAN	0	М	Login	AC58546-009	04/29/11 09:28	JAR	7	Α	alkalinity
AC58546-004	04/20/11 16:24		1	Α	NONE	AC58546-009	04/29/11 18:29	R12	7	A	NONE
AC58546-004	04/22/11 14:17	JPC	1	A	FILTERING	AC58546-009	04/20/11 16:24	R12	8	A	NONE
AC58546-004	04/22/11 16:01	R12	1	A	NONE	AC58546-009	05/02/11 09:49	JAR	8	A	alkalinity
AC58546-004 AC58546-004	04/25/11 11:32 04/25/11 13:07	JPC R12	1	A A	TDWI-HG NONE	AC58546-009 AC58546-009	05/02/11 18:41 05/03/11 11:57	R12 JW	8	A	NONE alkalinity
AC58546-004 AC58546-005	04/20/11 15:30	FRAN	-	М	Received	AC58546-009 AC58546-009	05/03/11 16:32	R12	8	A	NONE
AC58546-005	04/20/11 16:19	FRAN		M	Login	AC58546-009 AC58546-010	04/20/11 15:30	FRAN		м	Received
AC58546-005	04/21/11 07:55		2	A	NONE	AC58546-010	04/20/11 16:19	FRAN		M	Login
AC58546-005	04/22/11 14:46		2	Α	VOA	AC58546-010	04/20/11 16:24	R12	1	Α	NONE
AC58546-005	04/21/11 07:55		3	Α	NONE	AC58546-010	04/22/11 14:17	JPC	1	Α	FILTERING
AC58546-005	04/20/11 16:24	+	4	Α	NONE	AC58546-010	04/22/11 16:01	R12	1	Α	NONE
AC58546-005	05/02/11 09:49	JAR	4	Α	alkalinity	AC58546-010	04/25/11 11:32	JPC	1	Α	TDWI-HG
AC58546-005	05/02/11 18:41	R12	4	Α	NONE	AC58546-010	04/25/11 13:07	R12	1	Α	NONE
1											
AC58546-005 AC58546-005	04/20/11 16:24 04/20/11 16:24	1	5 6	A A	NONE NONE	AC58546-011 AC58546-011	04/20/11 15:30 04/20/11 16:19	FRAN		M	Received Login

Samples marked as received are stored in coolers or refrigerator R12, or R24 at 4 deg C until Login

Internal Chain of Custody

		Loc		Т		1			Loc	Loc	Loc
-		Loc	Bot	A/					or		
b#:	DateTime:	User		м	Analysis		Lab#:	Lab#: DateTime:	1 1	1 1 1	1 1 1 1
	04/21/11 07:55	R22	2	A	NONE	Ī		leave	Later Later	Edden: Desc. VVIII	Edda. Said
	04/22/11 14:46	SG	2	A	VOA						
1	04/21/11 07:55	R22	3	A	NONE						
	04/20/11 16:24	R12	4	A	NONE						
1	04/29/11 09:28	JAR	4	Â	alkalinity						
	04/29/11 18:29	R12	4	A	NONE						
		R12	5	A	NONE						
1	04/20/11 16:24		1	A							
1	05/03/11 11:57	JW	5	١,	alkalinity						
1	05/03/11 16:32	R12	5	A	NONE						
1	04/20/11 16:24	R12	6	Α	NONE						
	04/29/11 09:28	JAR	6	Α	alkalinity		_				
!	04/29/11 18:29	R12	6	Α	NONE						
1	05/02/11 09:49	JAR	6	Α	alkalinity						
	05/02/11 18:41	R12	6	Α	NONE						
1	04/20/11 16:24	R12	7	Α	NONE						
	04/20/11 16:24	R12	8	Α	NONE		ļ				
	04/20/11 19:10	NNM	8	М	ic						
	04/20/11 21:07	R12	8	Α	NONE						
	04/20/11 15:30	FRAN	f	М	Received						
I .	04/20/11 16:19	FRAN	0	М	Login						
58546-012	04/20/11 16:24	R12	1	Α	NONE						
58546-012	04/22/11 14:17	JPC	1	Α	FILTERING						
58546-012	04/22/11 16:01	R12	1	Α	NONE						
58546-012	04/25/11 11:32	JPC	1	A	TDWI-HG						
58546-012	04/25/11 13:07	R12	1	Α	NONE						
58546-013	04/20/11 15:30	FRAN	0	м	Received						
58546-013	04/20/11 16:19	FRAN	0	M	Login						
58546-013	04/21/11 07:55	R22	2	Α	NONE						
58546-013	04/22/11 14:46	SG	2	Α	VOA						
58546-013	04/21/11 07:55	R22	3	Α	NONE						
58546-013	04/20/11 16:24	R12	4	Α	NONE						
58546-013	05/02/11 09:49	JAR	4	Α	alkalinity						
I	05/02/11 18:41	R12	4	Α	NONE						
	04/20/11 16:24	R12	5	A	NONE						
	04/20/11 16:24	R12	6	Α	NONE						
	04/29/11 09:28	JAR	6	A	alkalinity						
	04/29/11 18:29	R12	6	A	NONE			1			
58546-013	04/20/11 16:24	R12	7	A	NONE						
	04/29/11 09:28	JAR	7	A	alkalinity						
	04/29/11 18:29	R12	7	A	NONE						
58546-013	05/03/11 11:57	JW	7	A	alkalinity						
	05/03/11 16:32	R12	7	A	NONE						
	04/20/11 16:24	R12	8	Ā	NONE						
			1	M	ic						
	04/20/11 19:10 04/20/11 21:07	NNM R12	8	A	NONE						
:		1			I						
	04/20/11 15:30	FRAN		M	Received						
	04/20/11 16:19	FRAN	1	М	Login						
	04/20/11 16:24	R12	1	Α	NONE						
	04/22/11 14:17	JPC	1	Α	FILTERING						
I	04/22/11 16:01	R12	1	Α	NONE						
58546-014	04/25/11 11:32	JPC	1	Α	TDWI-HG						
58546-014	04/25/11 13:07	R12	1	Α	NONE						

Client: Cashin Associates

Project: 9051.003

HCV Project #: 1042015

Lab	#: AC58546-001	Sample ID: MW-11 U

	Prep	Prep		Analytical	Analysis	_
Test Code	Method	Date	Ву	Method	Date	By
Alkalinity-Bicarbonate (SM2320B-97)		5/3/11	jw	SM2320B-97	5/3/11 00:00	jw
Alkalinity-Total (SM2320B-97)		4/29/11	JW	SM2320B-97	4/29/11 00:00	JW
BTEX (624)	EPA 624			EPA 624	4/26/11 11:31	WP
Nitrate-N (Water) 300.0				300.0 rev2.1	4/21/11 00:54	nnm
Sulfate (Water) 300.0				300.0 rev2.1	4/21/11 00:54	nnm

	Lab#: AC58546-002	Sample ID: MW-11 F	
--	-------------------	--------------------	--

	Prep	Prep		Analytical	Analysis		
Test Code	Method	Date	Ву	Method	Date	Ву	
Metals Pair 200.7/8	EPA 200.2	4/25/11	Joelly	200.7/200.8	4/27/11 16:45	SRB	

Lab#: AC58546-003	Sample ID: MW-12 U	}

	Prep	Prep		Analytical	Analysis	
Test Code	Method	Date	Ву	Method	Date	Ву
Alkalinity-Bicarbonate (SM2320B-97)		5/3/11	jw	SM2320B-97	5/3/11 00:00	jw
Alkalinity-Total (SM2320B-97)		4/29/11	JW	SM2320B-97	4/29/11 00:00	JW
BTEX (624)	EPA 624			EPA 624	4/26/11 11:48	WP
Nitrate-N (Water) 300.0				300.0 rev2.1	4/21/11 02:25	n n m
Sulfate (Water) 300.0				300.0 rev2.1	4/21/11 02:25	n n m

Lab#: AC58546-004	Sample ID: MW-12 F

	Prep Prep			Analytical Analysis		
Test Code	Method	Date	Ву	Method	Date	Ву
Metals Pair 200.7/8	EPA 200.2	4/25/11	Joelly	200.7/200.8	4/27/11 16:50	SRB

Project #: 1042015 Page 1 of 4

Client: Cashin Associates

Project: 9051.003

HCV Project #: 1042015

Lab#: AC58546-005	Sample ID: MW-13 U	

Test Code	Prep Method	Prep Date	Ву	Analytical Method	Analysis Date	Ву
Alkalinity-Bicarbonate (SM2320B-97)		5/3/11	jw	SM2320B-97	5/3/11 00:00	jw
Alkalinity-Total (SM2320B-97)		4/29/11	JW	SM2320B-97	4/29/11 00:00	JW
BTEX (624)	EPA 624			EPA 624	4/23/11 02:34	SG
Nitrate-N (Water) 300.0				300.0 rev2.1	4/21/11 02:56	nnm
Sulfate (Water) 300.0				300.0 rev2.1	4/21/11 02:56	nnm

Lab#: AC58546-006 Sample ID: MW-13 F

	Prep	Prep		Analytical	Analysis	
Test Code	Method	Date	Ву	Method	Date	Ву
Metals Pair 200,7/8	EPA 200.2	4/25/11	Joelly	200.7/200.8	4/27/11 16:54	SRB

Lab#: AC58546-007 Sample ID: GP-1 U

	Prep	Prep		Analytical	Analysis	
Test Code	Method	Date	Ву	Method	Date	Ву
Alkalinity-Bicarbonate (SM2320B-97)		5/3/11	jw	SM2320B-97	5/3/11 00:00	jw
Alkalinity-Total (SM2320B-97)		4/29/11	JW	SM2320B-97	4/29/11 00:00	JW
BTEX (624)	EPA 624			EPA 624	4/23/11 02:51	SG
Nitrate-N (Water) 300.0				300.0 rev2.1	4/21/11 03:26	nnm
Sulfate (Water) 300.0				300.0 rev2.1	4/21/11 03:26	nnm

Lab#: AC58546-008 Sample ID: GP-1 F

	Prep	p Prep		Analytical Analysis		
Test Code	Method	Date	Ву	Method	Date	Ву
Metals Pair 200.7/8	EPA 200.2	4/25/11	Joelly	200.7/200.8	4/27/11 16:57	SRB

Client: Cashin Associates

Project: 9051.003

HCV Project #: 1042015

Lab#: AC58546-009	Sample ID: GP-2 U	

	Prep	Prep		Analytical	Analysis	
Test Code	Method	Date	Ву	Method	Date	Ву
Alkalinity-Bicarbonate (SM2320B-97)		5/3/11	jw	SM2320B-97	5/3/11 00:00	jw
Alkalinity-Total (SM2320B-97)		4/29/11	JW	SM2320B-97	4/29/11 00:00	JW
BTEX (624)	EPA 624			EPA 624	4/23/11 03:07	SG
Nitrate-N (Water) 300.0				300.0 rev2.1	4/21/11 03:56	nnm
Sulfate (Water) 300.0				300.0 rev2.1	4/21/11 03:56	nnm

La	b#: AC58546-010	Sample ID: GP-2 F
- 1		

	Prep	Prep		Analytical	Analysis	
Test Code	Method	Date	Ву	Method	Date	Ву
Metals Pair 200 7/8	EPA 200 2	4/25/11	Joelly	200.7/200.8	4/27/11 17:01	SRB

	Lab#: AC58546-011	Sample ID: PC-1 U	
-			

Test Code	Prep Method	Prep Date	Ву	Analytical Method	Analysis Date	Ву
Alkalinity-Bicarbonate (SM2320B-97)		5/3/11	jw	SM2320B-97	5/3/11 00:00	jw
Alkalinity-Total (SM2320B-97)		4/29/11	JW	SM2320B-97	4/29/11 00:00	JW
BTEX (624)	EPA 624			EPA 624	4/23/11 03:23	SG
Nitrate-N (Water) 300.0				300.0 rev2.1	4/21/11 04:27	nnm
Sulfate (Water) 300.0				300.0 rev2.1	4/21/11 04:27	nnm

Lab#: AC58546-012	Sample ID: PC-1 F

	Prep	Prep		Analytical	Analysis		
Test Code	Method	Date	Ву	Method	Date	Ву	
Metals Pair 200,7/8	EPA 200.2	4/25/11	Joelly	200.7/200.8	4/27/11 17:04	SRB	

Project #: 1042015 Page 3 of 4

Client: Cashin Associates

Project: 9051.003

HCV Project #: 1042015

Lab#: AC58546-013	Sample ID: SP-1 U	

	Prep	Prep		Analytical	Analysis	
Test Code	Method	Date	Ву	Method	Date	Ву
Alkalinity-Bicarbonate (SM2320B-97)		5/3/11	jw	SM2320B-97	5/3/11 00:00	jw
Alkalinity-Total (SM2320B-97)		4/29/11	JW	SM2320B-97	4/29/11 00:00	JW
BTEX (624)	EPA 624			EPA 624	4/23/11 03:40	SG
Nitrate-N (Water) 300.0				300.0 rev2.1	4/21/11 05:58	nnm
Sulfate (Water) 300.0				300.0 rev2.1	4/21/11 05:58	nnm

Lab#: AC58546-014	Sample ID: SP-1 F	

	Prep	Prep	Analytical		Analysis		
Test Code	Method	Date	Ву	Method	Date	Ву	
Metals Pair 200.7/8	EPA 200.2	4/25/11	Joelly	200.7/200.8	4/27/11 17:07	SRB	

HCV Reporting Limit Definitions/Data Qualifiers

REPORTING DEFINITIONS

DF = Dilution Factor

MDL = Method Detection Limit

RL = Reporting Limit *

RT = Retention Time

NA = Not Applicable

ND = Not Detected

DATA QUALIFIERS

- **B-** Indicates analyte was present in the Method Blank and sample.
- **d-** For Pesticide and PCB analysis, the concentration between primary and secondary columns is greater than 40%. The lower concentration is generally reported.
- **E-** Indicates the concentration exceeded the upper calibration range of the instrument.
- J- Indicates the concentration is below the Reporting Limit (RL) but above the MDL (Method Detection Limit). The concentration reported is an estimate.

*For Clean Water Act and SW846 Organic Methods and Metals Methods, the Reporting Limit is determined by the concentration of the lowest standard in the calibration curve.

*For Clean Water Act and SW846 Wet Chemistry methods, the Reporting Limit is determined by the concentration of the lowest standard in the calibration curve. For most gravimetric methods the Reporting Limit is defined as a value 3 to 5 times the MDL.

HCV Report Of Analysis

Client: Cashin Associates

HCV Project #: 1042015

Project: 9051.003

Sample ID: MW-11 U

Lab#: AC58546-001

Matrix: Aqueous

Collection Date: 4/20/2011 Receipt Date: 4/20/2011

Analyte	DF	Units	RL	Result
Alkalinity	1	mg caco3/l	10	190
Alkalinity-Total (SM2320B-97)		-		
Analyte	DF	Units	RL	Result
Alkalinity	1	mg caco3/l	10	190
BTEX (624)				
Analyte	DF	Units	RL	Result
Benzene	1	ug/l	0.50	ND
Ethylbenzene	1	ug/l	1.0	53
m&p-Xylenes	1	ug/l	1.0	12
Methyl-t-butyl ether	1	ug/l	0.50	ND
o-Xylene	1	ug/l	1.0	1.2
Toluene	1	ug/l	1.0	ND
Xylenes (Total)	11	ug/l	1.0	13.2
Nitrate-N (Water) 300.0				
Analyte	DF	Units	RL	Result
Nitrate	1	mg/l	1.0	ND
Sulfate (Water) 300.0				
Analyte	DF	Units	RL	Result
Sulfate		mg/l	1.0	14

Sample ID: MW-11 F

Lab#: AC58546-002

Matrix: Aqueous

Collection Date: 4/20/2011

Receipt Date: 4/20/2011

Analyte	DF	Units	RL	Result	_
Iron	1	ug/l	150	610	
Manganese	1	ug/l	25	3400	

Sample ID: MW-12 U

Lab#: AC58546-003 Matrix: Aqueous

Collection Date: 4/20/2011

Receipt Date: 4/20/2011

Alkalinity-Bicarbonate (SM2320B-97)				
Analyte	DF	Units	RL	Result
Alkalinity	1	mg caco3/l	10	220
Alkalinity-Total (SM2320B-97)				
Analyte	DF	Units	RL	Result
Alkalinity	1	mg caco3/l	10	220
3TEX (624)				
Analyte	DF	Units	RL	Result
Benzene	1	ug/l	0.50	ND
Ethylbenzene	1	ug/l	1.0	3.4
m&p-Xylenes	1	ug/l	1.0	ND
Methyl-t-butyl ether	1	ug/l	0.50	ND
o-Xylene	1	ug/l	1,0	ND
Toluene	1	ug/l	1.0	ND
Xylenes (Total)	1	ug/l	1.0	ND
litrate-N (Water) 300.0				
Analyte	DF	Units	RL	Result
Nitrate	1	mg/l	1.0	ND
Sulfate (Water) 300.0				
Analyte	DF	Units	RL	Result
Sulfate	1	mg/l	1.0	13

Sample ID: MW-12 F

Lab#: AC58546-004 Matrix: Aqueous

Collection Date: 4/20/2011

Receipt Date: 4/20/2011

Analyte	DF	Units	RL	Result
Iron	1	ug/l	150	4100
Manganese	1	ug/l	25	10000

Sample ID: MW-13 U Lab#: AC58546-005

Matrix: Aqueous

Collection Date: 4/20/2011 Receipt Date: 4/20/2011

Analyte	DF	Units	RL	Result
Alkalinity	1	mg caco3/l	10	270
Alkalinity-Total (SM2320B-97)				
Analyte	DF	Units	RL	Result
Alkalinity	1	mg caco3/t	10	270
BTEX (624)		***************************************		
Analyte	DF	Units	RL	Result
Benzene	1	ug/l	0.50	ND
Ethylbenzene	1	ug/l	1.0	ND
m&p-Xylenes	1	ug/l	1.0	ND
Methyl-t-butyl ether	1	ug/l	0.50	ND
o-Xylene	1	ug/l	1.0	ND
Toluene	1	ug/l	1.0	ND
Xylenes (Total)	1	ug/l	1.0	ND
litrate-N (Water) 300.0				
Analyte	DF	Units	RL	Result
Nitrate	1	mg/l	1.0	1,3
Sulfate (Water) 300.0				
Analyte	DF	Units	RL	Result
Sulfate	1	mg/l	1.0	25

Sample ID: MW-13 F

Lab#: AC58546-006

Matrix: Aqueous

Collection Date: 4/20/2011

Receipt Date: 4/20/2011

Analyte	DF	Units	RL	Result	
Iron	1	ug/l	150	ND	
Manganese	1	ug/l	25	ND	

Sample ID: GP-1 U Lab#: AC58546-007

Matrix: Aqueous

Collection Date: 4/20/2011

Receipt Date: 4/20/2011

Alkalinity-Bicarbonate (SM2320B-97)				
Analyte	DF	Units	RL	Result
Alkalinity	1	mg caco3/l	10	230
Alkalinity-Total (SM2320B-97)				
Analyte	DF	Units	RL	Result
Alkalinity	1	mg caco3/l	10	230
BTEX (624)				
Analyte	DF	Units	RL	Result
Benzene	1	ug/l	0.50	ND
Ethylbenzene	1	ug/l	1.0	ND
m&p-Xylenes	1	ug/l	1.0	ND
Methyl-t-butyl ether	1	ug/l	0.50	ND
o-Xylene	1	ug/l	1.0	ND
Toluene	1	ug/l	1.0	ND
Xylenes (Total)	1	ug/l	1.0	ND
Nitrate-N (Water) 300.0				
Analyte	DF	Units	RL	Result
Nitrate	1	mg/l	1.0	ND
Sulfate (Water) 300.0				
Analyte	DF	Units	RL	Result
Sulfate	1	mg/l	1.0	17

Sample ID: GP-1 F

Lab#: AC58546-008

Matrix: Aqueous

Collection Date: 4/20/2011

Receipt Date: 4/20/2011

Analyte	DF	Units	RL	Result
Iron	1	ug/l	150	ND
Manganese	1	ug/l	25	ND

Sample ID: GP-2 U

Lab#: AC58546-009 Matrix: Aqueous Collection Date: 4/20/2011

Receipt Date: 4/20/2011

Alkalinity-Bicarbonate (SM2320B-97)				
Analyte	DF	Units	RL	Result
Alkalinity	1	mg caco3/l	10	240
Alkalinity-Total (SM2320B-97)				
Analyte	DF	Units	RL	Result
Alkalinity	1	mg caco3/I	10	240
BTEX (624)				13338
Analyte	DF	Units	RL	Result
Benzene	1	ug/l	0.50	ND
Ethylbenzene	1	ug/l	1.0	ND
m&p-Xylenes	1	ug/l	1.0	ND
Methyl-t-butyl ether	1	ug/l	0.50	ND
o-Xylene	1	ug/l	1.0	ND
Toluene	1	ug/l	1.0	ND
Xylenes (Total)	1	ug/l	1.0	ND
Nitrate-N (Water) 300.0				
Analyte	DF	Units	RL	Result
Nitrate	1	mg/l	1.0	ND
Sulfate (Water) 300.0				
Analyte	DF	Units	RL	Result
Sulfate	1	ma/l	1.0	21

Sample ID: GP-2 F

Lab#: AC58546-010 Matrix: Aqueous Collection Date: 4/20/2011

Receipt Date: 4/20/2011

Analyte	DF	Units	RL	Result	
Iron	1	ug/l	150	ND	
Manganese	1	ug/l	25	ND	

Sample ID: PC-1 U

Lab#: AC58546-011 Matrix: Aqueous Collection Date: 4/20/2011 Receipt Date: 4/20/2011

ND

Alkalinity-Bicarbonate (SM2320B-97) DF Units RL Result Analyte 270 Alkalinity 1 mg caco3/l 10 Alkalinity-Total (SM2320B-97) Analyte DF Units RL Result Alkalinity 1 mg caco3/l 270 BTEX (624) Analyte DF Units RL Result Benzene 1 0.50 ND ug/l 1.0 ND Ethylbenzene ug/l m&p-Xylenes 1 ug/l 1.0 ND 0.50 ND Methyl-t-butyl ether 1 ug/l o-Xylene ug/l 1.0 ПD ND 1.0 Toluene 1 ug/l

Xylenes (Total)					
Nitrate-N	(Water	300.0			

Analyte	DF	Units	RL	Result
Nitrate	1	mg/l	1.0	ND

ug/l

1.0

Sulfate (Water) 300.0

ounded (Water) over					
Analyte	DF	Units	RL	Result	
Sulfate	1	mg/l	1.0	13	

Sample ID: PC-1 F

Lab#: AC58546-012 Matrix: Aqueous Collection Date: 4/20/2011

Receipt Date: 4/20/2011

Analyte	DF	Units	RL	Result	
Iron	1	ug/l	150	ND	
Manganese	1	ug/l	25	ND	

Sample ID: SP-1 U

Lab#: AC58546-013

Matrix: Aqueous

Collection Date: 4/20/2011

Receipt Date: 4/20/2011

lkalinity-Bicarbonate (SM2320B-97)				
Analyte	DF	Units	RL	Result
Alkalinity	1	mg caco3/l	10	270
lkalinity-Total (SM2320B-97)				
Analyte	DF	Units	RL	Result
Alkalinity	1	mg caco3/l	10	270
TEX (624)				
Analyte	DF	Units	RL	Result
Benzene	1	ug/l	0.50	ND
Ethylbenzene	1	ug/l	1.0	ND
m&p-Xylenes	1	ug/l	1.0	ND
Methyl-t-butyl ether	1	ug/l	0.50	ND
o-Xylene	1	ug/l	1.0	ND
Toluene	1	ug/l	1.0	ND
Xylenes (Total)	1	ug/l	1.0	ND
litrate-N (Water) 300.0				
Analyte	DF	Units	RL	Result
Nitrate	1	mg/l	1.0	ND
ulfate (Water) 300.0				
Analyte	DF	Units	RL	Result
Sulfate	1	mg/l	1.0	13

Sample ID: SP-1 F

Lab#: AC58546-014

Matrix: Aqueous

Collection Date: 4/20/2011

Receipt Date: 4/20/2011

Analyte	DF	Units	RL	Result
Iron	1	ug/l	150	ND
Manganese	1	ug/l	25	ND

Form1

ORGANICS VOLATILE REPORT

Sample Number: DAILY BLANK

Client Id:

Data File: 8M67221.D Analysis Date: 04/22/11 07:02

Date Rec/Extracted:

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 624

Matrix: Aqueous

Initial Vol: 5ml

Final Vol: NA

Dilution: 1.00

Solids: 0

Units: ug/L

• · · · · · · · · · · · · · · · · · · ·								
Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc	
71-43-2	Benzene	0.50	U	1634-04-4	Methyl-t-butyl ether	0.50	U	
100-41-4	Ethylbenzene	1.0	U	95-47-6	o-Xylene	1.0	U	
136777612	m&p-Xylenes	1.0	U	108-88-3	Toluene	1.0	U	

Worksheet #: 188791

Total Target Concentration

ColumnID: (^) Indicates results from 2nd column

0

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.
E - Indicates the analyte concentration exceeds the calibration range of the instrument.

J - Indicates an estimated value when a compound is detected at less than the

specified detection limit.
d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

ORGANICS VOLATILE REPORT

Sample Number: DAILY BLANK

Client Id:

Data File: 3M91239.D Analysis Date: 04/26/11 08:46

Date Rec/Extracted:

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 624

Matrix: Aqueous

Initial Vol: 5ml

Final Vol: NA

Dilution: 1.00

Solids: 0

Units: ug/L

			• • • • • • • • • • • • • • • • • • • •	~g/ —				
 Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc	
71-43-2	Benzene	0.50	U	1634-04-4	Methyl-t-butyl ether	0.50	U	
100-41-4	Ethylbenzene	1.0	U	95-47-6	o-Xylene	1.0	U	
136777612	m&p-Xylenes	1.0	U	108-88-3	Toluene	1.0	U	

Worksheet #: 188791

Total Target Concentration

ColumnID: (^) Indicates results from 2nd column

0 R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

 $[\]it E$ - Indicates the analyte concentration exceeds the calibration range of the

instrument.

ORGANICS VOLATILE REPORT

Sample Number: AC58546-001

Client Id: MW-11 U Data File: 3M91249.D

Analysis Date: 04/26/11 11:31

Date Rec/Extracted: 04/20/11-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 624

Matrix: Aqueous

Initial Vol: 5ml

Final Vol: NA

Dilution: 1.00

Solids: 0

Units: ug/L

			Omes.	. ug, <u>–</u>				
Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc	
71-43-2	Benzene	0.50	U	1634-04-4	Methyl-t-butyl ether	0.50	U	
100-41-4	Ethylbenzene	1.0	53	95-47-6	o-Xylene	1.0	1.2	
136777612	m&p-Xylenes	1.0	12	108-88-3	Toluene	1.0	U	
1330-20-7	Xylenes (Total)	1.0	13.2					

66

ColumnID: (^) Indicates results from 2nd column

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the

specified detection limit. d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

ORGANICS VOLATILE REPORT

Sample Number: AC58546-003

Client Id: MW-12 U

Data File: 3M91250.D Analysis Date: 04/26/11 11:48

Date Rec/Extracted: 04/20/11-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 624

Matrix: Aqueous

Initial Vol: 5ml

Final Vol: NA

Dilution: 1.00

Solids: 0

Units: ug/L

Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc	
71-43-2	Benzene	0.50	U	1634-04-4	Methyl-t-butyl ether	0.50	U	
100-41-4	Ethylbenzene	1.0	3.4	95-47-6	o-Xylene	1.0	U	
136777612	m&p-X yle nes	1.0	U	108-88-3	Toluene	1.0	U	
1330-20-7	Xylenes (Total)	1.0	U					

Worksheet #: 188791

Total Target Concentration

ColumnID: (^) Indicates results from 2nd column

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

instrument.

E - Indicates the analyte concentration exceeds the calibration range of the

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the

specified detection limit.
d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

ORGANICS VOLATILE REPORT

Sample Number: AC58546-005

Client Id: MW-13 U

Data File: 8M67291.D

Analysis Date: 04/23/11 02:34

Date Rec/Extracted: 04/20/11-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 624

Matrix: Aqueous

Initial Vol: 5ml

Final Vol: NA

Dilution: 1.00

Solids: 0

Units: ua/L

			•	~g· =				
Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc	
71-43-2	Benzene	0.50	U	1634-04-4	Methyl-t-butyl ether	0.50	U	
100-41-4	Ethylbenzene	1.0	U	95-47-6	o-Xylene	1.0	U	
136777612	m&p-Xylenes	1.0	U	108-88-3	Toluene	1.0	U	
1330-20-7	Xylenes (Total)	1.0	U					

ColumnID: (^) Indicates results from 2nd column

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the

specified detection limit.
d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

ORGANICS VOLATILE REPORT

Sample Number: AC58546-007

Client Id: GP-1 U

Data File: 8M67292.D

Analysis Date: 04/23/11 02:51

Date Rec/Extracted: 04/20/11-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 624

Matrix: Aqueous

Initial Vol: 5ml

Final Vol: NA

Dilution: 1.00

Solids: 0

Units: ua/L

			O	3 [,] –				
Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc	
71-43-2	Benzene	0.50	U	1634-04-4	Methyl-t-butyl ether	0.50	U	
100-41-4	Ethylbenzene	1.0	U	95-47-6	o-Xylene	1.0	U	
136777612	m&p-Xylenes	1.0	υ	108-88-3	Toluene	1.0	U	
1330-20-7	Xylenes (Total)	1.0	U					

Worksheet #: 188791

Total Target Concentration

ColumnID: (^) Indicates results from 2nd column

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the

specified detection limit.
d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the

instrument.

ORGANICS VOLATILE REPORT

Sample Number: AC58546-009

Client Id: GP-2 U

Data File: 8M67293.D

Analysis Date: 04/23/11 03:07

Date Rec/Extracted: 04/20/11-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 624

Matrix: Aqueous

Initial Vol: 5ml

Final Vol: NA

Dilution: 1.00

Solids: 0

Units: ua/L

			omes.	ug, L				
Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc	
71-43-2	Benzene	0.50	U	1634-04-4	Methyl-t-butyl ether	0.50	U	
100-41-4	Ethylbenzene	1.0	U	95-47-6	o-Xylene	1.0	U	
136777612	m&p-Xylenes	1.0	U	108-88-3	Toluene	1.0	U	
1330-20-7	Xylenes (Total)	1.0	U					

Worksheet #: 188791

Total Target Concentration

ColumnID: (^) Indicates results from 2nd column

 $[\]emph{U}$ - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the

instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the

specified detection limit.
d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

ORGANICS VOLATILE REPORT

Sample Number: AC58546-011

Client Id: PC-1 U

Data File: 8M67294.D

Analysis Date: 04/23/11 03:23

Date Rec/Extracted: 04/20/11-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 624

Matrix: Aqueous

Initial Vol: 5ml

Final Vol: NA

Dilution: 1.00

Solids: 0

Units: ug/L

				·· J· —				
Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc	
71-43-2	Benzene	0.50	U	1634-04-4	Methyl-t-butyl ether	0.50	U	
100-41-4	Ethylbenzene	1.0	U	95-47-6	o-Xylene	1.0	U	
136777612	m&p-Xylenes	1.0	U	108-88-3	Toluene	1.0	U	
1330-20-7	Xylenes (Total)	1.0	U					

Worksheet #: 188791

Total Target Concentration

ColumnID: (^) Indicates results from 2nd column

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the

instrument.

ORGANICS VOLATILE REPORT

Sample Number: AC58546-013

Client Id: SP-1 U

Data File: 8M67295.D

Analysis Date: 04/23/11 03:40

Date Rec/Extracted: 04/20/11-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 624

Matrix: Aqueous

Initial Vol: 5ml

Final Vol: NA

Dilution: 1.00

Solids: 0

Units: ua/L

			• • • • • • • • • • • • • • • • • • • •	~g/ =				
Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc	
71-43-2	Benzene	0.50	U	1634-04-4	Methyl-t-butyl ether	0.50	U	
100-41-4	Ethylbenzene	1.0	U	95-47-6	o-Xylene	1.0	U	
136777612	m&p-Xylenes	1.0	U	108-88-3	Toluene	1.0	U	
1330-20-7	Xylenes (Total)	1.0	U					

Worksheet #: 188791

Total Target Concentration

ColumnID: (^) Indicates results from 2nd column

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the

specified detection limit.
d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the

instrument.

Form3 Recovery Data QC Batch: MBS7430

Data File

Sample ID:

Analysis Date

Spike or Dup: 3M91276.D Non Spike(If applicable): 3M91179.D AC58575-011(MS) AC58575-011 4/26/2011 7:27:00 PM 4/22/2011 7:09:00 PM

Inst Blank(If applicable):

Method: 624

Matrix: Aqueous

QC Type: MS

111041104.024	'	matrix.7 iquoous					1		
		Spike	Sample	Expected	_	Lower	Upper		ME Upper
Analyte:	Col	Conc	Conc	Conc	Recovery	Limit	Limit	Limit	Limit
Chloromethane	1	12.346	0	20	62	1	273	0	0
Bromomethane	1	15.4804	0	20	77	1	242	0	0
Vinyl Chloride	1	14.5051	0	20	73	1	251	0	0
Chloroethane	1	18.492	0	20	92	14	230	0	0
Trichlorofluoromethane	1	19.8029	0	20	99	17	181	0	0
Methylene Chloride	1	16.3197	0	20	82	1	221	0	0
1,1-Dichloroethene	1	15.4669	0	20	77	1	234	0	0
1,1-Dichloroethane	1	17.4546	0	20	87	59	155	0	0
trans-1,2-Dichloroethene	1	18.8327	0	20	94	54	156	0	0
Chioroform	1	18.2411	0	20	91	51	138	0	0
1,2-Dichloroethane	1	15.2706	0	20	76	49	155	0	0
1,1,1-Trichloroethane	1	18.5315	0	20	93	52	162	0	0
Carbon Tetrachloride	1	19.0201	0	20	95	70	140	0	0
Bromodichloromethane	1	16.5325	0	20	83	35	155	0	0
1,2-Dichloropropane	1	17.1321	0	20	86	1	210	0	0
Trichloroethene	1	17.7033	0	20	89	71	157	0	0
Benzene	1	18.6916	0	20	93	37	151	0	0
Dibromochloromethane	1	14.8245	0	20	74	53	149	0	0
2-Chloroethylvinylether	1	0	0	20	0*	1	305	0	0
cis-1,3-Dichloropropene	1	12.5374	0	20	63	1	227	0	0
trans-1,3-Dichloropropene	1	11.0976	0	20	55	17	183	0	0
1,1,2-Trichloroethane	1	16.8085	0	20	84	52	150	0	0
Tetrachloroethene	1	17.7436	0	20	89	64	148	0	0
Toluene	1	17.2918	0	20	86	47	150	0	0
Chlorobenzene	1	17.9822	0	20	90	37	160	0	0
Bromoform	1	13.5823	0	20	68	45	169	0	0
Ethylbenzene	1	19.6749	0	20	98	37	162	0	0
1,1,2,2-Tetrachloroethane	1	16.1941	0	20	81	46	157	0	0
1,3-Dichlorobenzene	1	18.3	0	20	92	59	156	0	0
1,4-Dichlorobenzene	1	16.1296	0	20	81	18	190	0	0
1,2-Dichlorobenzene	1	17.9256	0	20	90	18	190	0	0

Form3 Recovery Data QC Batch: MBS7430

Data File

Sample ID:

AC58575-011

Analysis Date

Spike or Dup: 3M91277.D Non Spike(If applicable): 3M91179.D

AC58575-011(MSD)

4/26/2011 7:45:00 PM 4/22/2011 7:09:00 PM

Inst Blank(If applicable):

Method: 624

Matrix: Aqueous

QC Type: MSD

		Spike	Sample	Expected	_	Lower	Upper		ME Upper
Analyte:	Col	Conc	Conc	Conc	Recovery	Limit	Limit	Limit	Limit
Chloromethane	1	14.2528	0	20	71	1	273	0	0
Bromomethane	1	14.3586	0	20	72	1	242	0	0
Vinyl Chloride	1	9.8566	0	20	49	1	251	0	0
Chloroethane	1	17.2898	0	20	86	14	230	0	0
Trichlorofluoromethane	1	18.6924	0	20	93	17	181	0	0
Methylene Chloride	1	16.1624	0	20	81	1	221	0	0
1,1-Dichloroethene	1	15.0806	0	20	75	1	234	0	0
1,1-Dichloroethane	1	17.0147	0	20	85	59	155	0	0
trans-1,2-Dichloroethene	1	17.7561	0	20	89	54	156	0	0
Chloroform	1	17.6648	0	20	88	51	138	0	0
1,2-Dichloroethane	1	16.0158	0	20	80	49	155	0	0
1,1,1-Trichloroethane	1	18.9889	0	20	95	52	162	0	0
Carbon Tetrachloride	1	19.2402	0	20	96	70	140	0	0
Bromodichloromethane	1	16.4294	0	20	82	35	155	0	0
1,2-Dichloropropane	1	17.2668	0	20	86	1	210	0	0
Trichloroethene	1	17.1078	0	20	86	71	157	0	0
Benzene	1	18.6814	0	20	93	37	151	0	0
Dibromochloromethane	1	15.2065	0	20	76	53	149	0	0
2-Chloroethylvinylether	1	0	0	20	0*	1	305	0	0
cis-1,3-Dichloropropene	1	12.6524	0	20	63	1	227	0	0
trans-1,3-Dichloropropene	1	11.1955	0	20	56	17	183	0	0
1,1,2-Trichloroethane	1	15.4825	0	20	77	52	150	0	0
Tetrachloroethene	1	18.6294	0	20	93	64	148	0	0
Toluene	1	17.1621	0	20	86	47	150	0	0
Chlorobenzene	1	17.8678	0	20	89	37	160	0	0
Bromoform	1	13.5402	0	20	68	45	169	0	0
Ethylbenzene	1	17.9376	0	20	90	37	162	0	0
1,1,2,2-Tetrachloroethane	1	16.5263	0	20	83	46	157	0	0
1,3-Dichlorobenzene	1	18.1795	0	20	91	59	156	0	0
1,4-Dichlorobenzene	1	16.2508	0	20	81	18	190	0	0
		16.6135	0	20	83	18	190	0	0

Form3 RPD DATA

QC Batch: MBS7430

Data File

Sample ID:

Analysis Date

Spike or Dup: 3M91277.D

AC58575-011(MSD)

4/26/2011 7:45:00 PM

Duplicate(If applicable): 3M91276.D

AC58575-011(MS)

4/26/2011 7:27:00 PM

Inst Blank(If applicable):

Method: 624

Matrix: Aqueous

QC Type: MSD

		Dup/MSD/MBSD	Sample/MS/MBS		
Analyte:	Column	Conc	Conc	RPD	Limit
Chloromethane	1	14.2528	12.346	14	66
Bromomethane	1	14.3586	15.4804	7.5	42
Vinyl Chloride	1	9.8566	14.5051	38*	30
Chloroethane	1	17.2898	18.492	6.7	50
Trichlorofluoromethane	1	18.6924	19.8029	5.8	41
Methylene Chloride	1	16.1624	16.3197	0.97	38
1,1-Dichloroethene	1	15.0806	15.4669	2.5	34
1,1-Dichloroethane	1	17.0147	17.4546	2.6	30
trans-1,2-Dichloroethene	1	17.7561	18.8327	5.9	48
Chloroform	1	17.6648	18.2411	3.2	37
1,2-Dichloroethane	1	16.0158	15.2706	4.8	34
1,1,1-Trichloroethane	1	18.9889	18.5315	2.4	33
Carbon Tetrachloride	1	19.2402	19.0201	1.2	32
Bromodichloromethane	1	16.4294	16.5325	0.63	30
1,2-Dichloropropane	1	17.2668	17.1321	0.78	30
Trichloroethene	1	17.1078	17.7033	3.4	30
Benzene	1	18.6814	18.6916	0.05	29
Dibromochloromethane	1	15.2065	14.8245	2.5	30
2-Chloroethylvinylether	1	0	0	NA	40
cis-1,3-Dichloropropene	1	12.6524	12.5374	0.91	34
trans-1,3-Dichloropropene	1	11.1955	11.0976	0.88	31
1,1,2-Trichloroethane	1	15.4825	16.8085	8.2	37
Tetrachloroethene	1	18.6294	17.7436	4.9	27
Toluene	1	17.1621	17.2918	0.75	33
Chlorobenzene	1	17.8678	17.9822	0.64	30
Bromoform	1	13.5402	13.5823	0.31	30
Ethylbenzene	1	17.9376	19.6749	9.2	41
1,1,2,2-Tetrachloroethane	1	16.5263	16.1941	2	29
1,3-Dichlorobenzene		18.1795	18.3	0.66	30
1,4-Dichlorobenzene	1	16.2508	16.1296	0.75	30
1,2-Dichlorobenzene	1	16.6135	17.9256	7.6	_34

^{* -} Indicates outside of limits

NA - Both concentrations=0... no result can be calculated

Sample ID: AC58546-002

% Solid: 0

Lab Name: Veritech

Nras No:

Client Id: MW-11 F

Units: UG/L

Lab Code:

Sdg No:

Matrix: AQUEOUS

Level: LOW

Date Rec: 4/20/2011

Contract:

Case No:

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol			File:	Seq Num	М	Instr
7439-89-6	Iron	150	610	1	100	50	04/27/11	6699	A12564F	14	Р	PEICP1A
7439-96-5	Manganese	25	3400	1	100	50	04/27/11	6699	A12564F	14	Р	PEICP1A

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC58546-004

% Solid: 0

Lab Name: Veritech

Nras No:

Client Id: MW-12 F

Units: UG/L

Date Rec: 4/21/2011

Lab Code:

Sdg No:

Matrix: AQUEOUS Level: LOW

Contract:

Case No:

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol	,		File:	Seq Num	М	Instr
7439-89-6	Iron	150	4100	1	100	50	04/27/11	6699	A12564F	15	Р	PEICP1A
7439-96-5	Manganese	25	10000	1	100	50	04/27/11	6699	A12564F	15	Р	PEICP1A

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC58546-006

% Solid: 0

Lab Name: Veritech

Nras No:

Client Id: MW-13 F

Units: UG/L

Lab Code:

Sdg No:

Matrix: AQUEOUS

Date Rec: 4/21/2011

Contract:

Case No:

evel:

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol		Prep Batch	File:	Seq Num	М	Instr
7439-89-6	Iron	150	ND	1	100	50	04/27/11	6699	A12564F	16	Р	PEICP1A
7439-96-5	Manganese	25	ND	1	100	50	04/27/11	6699	A12564F	16	Р	PEICP1A

Comments:		

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit P - ICP-AES

CV -ColdVapor

Sample ID: AC58546-008

% Solid: 0

Lab Name: Veritech

Nras No:

Matrix: AQUEOUS

Client Id: GP-1 F

Units: UG/L

Lab Code:

Sdg No:

Date Rec: 4/21/2011

Contract:

Case No:

Level: LOW

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol	,	Prep Batch	File:	Seq Num	М	Instr
7439-89-6	Iron	150	ND	1	100	50	04/27/11	6699	A12564F	17	Р	PEICP1A
7439-96-5	Manganese	25	ND	1	100	50	04/27/11	6699	A12564F	17	Р	PEICP1A

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC58546-010

% Solid: 0

Lab Name: Veritech

Nras No:

Matrix: AQUEOUS

Client Id: GP-2 F

Units: UG/L

Date Rec: 4/21/2011

Lab Code: Contract: Sdg No:

Case No:

Level: LOW

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol			File:	Seq Num	М	Instr
7439-89-6	Iron	150	ND	1	100	50	04/27/11	6699	A12564F	18	Р	PEICP1A
7439-96-5	Manganese	25	ND	1	100	50	04/27/11	6699	A12564F	18	Р	PEICP1A

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC58546-012

% Solid: 0

Lab Name: Veritech

Nras No:

Client Id: PC-1 F

Units: UG/L

Lab Code:

Sdg No:

Matrix: AQUEOUS Level: LOW

Date Rec: 4/21/2011

Contract:

Case No:

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol			File:	Seq Num	М	Instr
7439-89-6	Iron	150	ND	1	100	50	04/27/11	6699	A12564F	19	Р	PEICP1A
7439-96-5	Manganese	25	ND	1	100	50	04/27/11	6699	A12564F	19	Р	PEICP1A

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC58546-014

% Solid: 0

Lab Name: Veritech

Nras No:

Client Id: SP-1 F

Matrix: AQUEOUS

Units: UG/L Date Rec: 4/21/2011 Lab Code: Contract: Sdg No:

Case No:

Level: LOW

	Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol			File:	Seq Num	М	Instr
	7439-89-6	Iron	150	ND	1	100	50	04/27/11	6699	A12564F	20	Р	PEICP1A
l.	7439-96-5	Manganese	25	ND	1	100	50	04/27/11	6699	A12564F	20	Р	PEICP1A

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

FORM 3 (ICB/CCB/MB Summary)

Date Analyzed: 04/26/11

Data File: A12564C

Prep Batch: 6699

Reporting Limits Used: AQUEOUS,200.7(ICP)/200.8(ICPMS)/245.1(Hg)

Instrument: PEICP1A

Units: All units in ppm except Hg and icp-ms in ppb

Project Number: 1042015

Lab Name: Veritech

Lab Code:

Contract: Nras No:

Sdg No:

Case No:

	ICB V-112282-	CCB-20	CCB-29	CCB-39	MB 6699 (0.5)-	
Analyte	8	000 20	00B-20	005-00	11	
Aluminum	.2 U	.2 U	.2 U	.2 U	.1 U	
Antimony	.015 U	.015 U	.015 U	.015 U	.0075 U	
Arsenic	.04 U	.04 U	.04 U	.04 U	.02 U	
Barium	.05 U	.05 U	.05 U	.05 U	.025 U	
Beryllium	.008 U	.008 U	.008 U	.008 U	.004 U	
Cadmium	.004 U	.004 U	.004 U	.004 U	.002 U	
Calcium	2 U	2 U	2 U	2 U	1 U	
Chromium	.05 U	.05 U	.05 U	.05 U	.025 U	
Cobalt	.02 U	.02 U	.02 U	.02 U	.01 U	
Copper	.05 U	.05 U	.05 U	.05 U	.025 U	
Iron	.3 U	.3 U	.3 U	.3 U	.15 U	
Lead	.01 U	.01 U	.01 U	.01 U	.005 U	
Magnesium	2 U	2 U	2 U	2 U	1 U	
Manganese	.05 U	.05 U	.05 U	.05 U	.025 U	
Nickel	.02 U	.02 U	.02 U	.02 U	.01 U	
Selenium	.05 U	.05 U	.05 U	.05 U	.025 U	
Silver	.02 U	.02 U	.02 U	.02 U	.01 U	
Thallium	.01 U	.01 U	.01 U	.01 U	.005 U	
Vanadium	.05 U	.05 U	.05 U	.05 U	.025 U	
Zinc	.05 U	.05 U	.05 U	.05 U	.025 U	

Notes: a-indicates absolute value of result found above the reporting limits in CCB/ICB or result found above reporting limit in the MB u-indicates result below reporting limit

FORM 3 (ICB/CCB/MB Summary)

Date Analyzed: 04/27/11

Data File: A12564F

Prep Batch: 6699

Reporting Limits Used: AQUEOUS,200.7(ICP)/200.8(ICPMS)/245.1(Hg)

Instrument: PEICP1A

Units: All units in ppm except Hg and icp-ms in ppb

Project Number: 1042015

Lab Name: Veritech

Lab Code:

Contract: Nras No:

Sdg No:

Case No:

	48			1,000	
Analyte	ICB V-112282- 8	CCB-12	CCB-24		:
Iron	.3∪	.3∪	.3 ∪		
Manganese	.05 U	.05 U	.05 U		

Notes: a-indicates absolute value of result found above the reporting limits in CCB/ICB or result found above reporting limit in the MB u-indicates result below reporting limit

Carbonate / Bicarbonate

	Analysis	Carbonate / E	Bicarbonate		Q.C. DATA			
	Batch#	23		:				Limits
	Date	5/4/2011			LCS RPD			
	Analyst	JW			LCS	104.07	RPD	
					LCSD	104.07	0.00	20
					Carbonate RPD			
		Titrant Result	Carbonate	Bicarbonate	Sample	0.00	RPD	
		P = 0	0	M	Sample Dup	0.00	NA	20
		P < (1/2) M	2P	M-2P				
		P = (1/2) M	2P	0				
		P > (1/2) M	2 (M-P)	0	Bicarbonate RPD			
		P = M	0	0	Sample	190.64	RPD	
					Sample Dup	190.64	0.00000	20
*******	************	**********	**********	**********	*********	*******	*******	*******
	Samples #	M-Alkalinity	P-Alkalinity	Carbonate	Bicarbonate	MDL		% Recover
		(Total)		CO3-2 as mg CaCO3/L	HCO3 as mg CaCO3/L			75-125%
	MB	0.00	0.00	0.00	0.00	10		
	LCS	104.07	78.59	50.96	0.00	10		104
	LCSD	104.07	76.46	55.22	0.00	10		104
	AC58546-001	190.64	0.00	0.00	190.64	10		
QC Sample	AC58546-001	190.64	0.00	0.00	190.64	10		
	AC58546-003	220.14	0.00	0.00	220.14	10		
	AC58546-005	265.53	0.00	0.00	265.53	10		
	AC58546-007	229.22	0.00	0.00	229.22	10		
	AC58546-009	238.30	0.00	0.00	238.30	10		
	AC58546-011	270.07	0.00	0.00	270.07	10		İ
	AC58546-013	270.07	0.00	0.00	270.07	10		
	AC58663-002	292.04	0.00	0.00	292.04	10		
	AC58663-004	49.91	0.00	0.00	49.91	10		
	AC58688-010	257.00	0.00	0.00	257.00	10		
	71000000 010	285.67	0.00	0.00	285.67	10		

Analysis Type: ALKAL-M

Batch Number: ALKAL-M-214

Units: mg CaCO3/l

Calibration	Curvo	Information
Calibration	Curve	Information

MANAGED STREET		SERVICE AND PROPERTY OF THE PERSONS	Append American Company	A STATE OF THE PARTY OF T	SECTION AND AND ADDRESS OF THE PARTY OF THE	The second secon	Manage Service	
T1 - 1775 - 1775 - 1775 - 1775 - 1775 - 1775 - 1775 - 1775 - 1775 - 1775 - 1775 - 1775 - 1775 - 1775 - 1775 -	1407	Qc S	ummar	v Res	ults			
Qc Type	Qc Name	SpkAmt	Rec Lim	Rpd Lim	Raw Result	Recov	Rpd	Flags
DUP LCS LCSD	AC58546-001 LCS LCSD	0 100 100	NA 75-125 75-125	20 NA 20	190.640436 108.937392 107.8026275	NA 109 108	Ф N A 1	

Analytical Method(s)

SM2320B-97

						0.0000000000000000000000000000000000000	Miles Committee	THE PLANT OF THE PROPERTY OF THE PARTY OF TH	AL HUMANA AND AND AND AND AND AND AND AND AND				
Sam #	Туре	мв	Result	RL	Per Sol		m t h2so4	h2so4 (N)	Sam Voi (ml)	Prep Date	Prep By	Anal Date	Anal By
MB-1-04/29/11	MB	MB-1-04/29/11	ND	10	100	2.2695	0.1	.0226952	50	04/29/11	JW	04/29/11	JW
LCS	LCS	MB-1-04/29/11	110	10	100	108.94	4.8	.0226952	50	04/29/11	JW	04/29/11	JW
LCSD	LCSD	MB-1-04/29/11	110	10	100	107.8	4.75	.0226952	50	04/29/11	JW	04/29/11	JW
AC58546-001	DUP	MB-1-04/29/11	190	10	100	190.64	8.4	.0226952	50	04/29/11	JW	04/29/11	JW
AC58546-001	Sample	MB-1-04/29/11	190	10	100	190.64	8.4	.0226952	50	04/29/11	JW	04/29/11	JW
AC58546-003	Sample	MB-1-04/29/11	220	10	100	220.14	9.7	.0226952	50	04/29/11	JW	04/29/11	JW
AC58546-005	Sample	MB-1-04/29/11	270	10	100	265.53	11.7	.0226952	50	04/29/11	JW	04/29/11	JW
AC58546-007	Sample	MB-1-04/29/11	230	10	100	229,22	10.1	.0226952	50	04/29/11	JW	04/29/11	JW ·
AC58546-009	Sample	MB-1-04/29/11	240	10	100	238.3	10.5	.0226952	50	04/29/11	JW	04/29/11	JW
AC58546-011	Sample	MB-1-04/29/11	270	10	100	270.07	11.9	.0226952	50	04/29/11	JW	04/29/11	JW
AC58546-013	Sample	MB-1-04/29/11	270	10	100	270.07	11.9	.0226952	50	04/29/11	JW	04/29/11	JW

JW 4/29/11

Batch Number: ALKAL-P-15

Units:mg CaCO3/I

Calibration Curve Information

3		Charles and the contract of th	اد علا	IIIIII a	IV Kest	1112	Tat. Co. NET VERTICAL	314-44-W	COLUMN TO A SECURITION AND
Chicken at hear \$10000	Qc Type	Qc Name	SpkAmt	Rec Lim	Rpd Lim	Raw Result	Recov	Rpd	Flags
ALTERNATION OF THE PERSON NAMED IN COLUMN	DUP LCS LCSD	AC58663-002 LCS LCSD	0 100 100	NA 75-125 75-125	20 NA 20	0 78.586594 76.462632	N A 79 76 、	NA NA 2.7	Nc

Analytical Method(s) SM2320B-97

						980,000	CONTRACTOR DE LA CONTRA	ad Cold Library and Cold Print a secure of the Cold Cold					
Sam #	Туре	MB	Result	RL	Per Sol		l ml th2so4	h2so4 (N)	Sam Vol (ml)	Prep Date	Prep By	Anal Date	Anal By
MB-1-05/03/11	MB	MB-1-05/03/11	ND	10	100	0	0	0.021239	50	05/03/11	iw	05/03/11	jw
LCS	LCS	MB-1-05/03/11	79	10	100	78,587	3.7	0.021239	50	05/03/11	iw	05/03/11	iw
LCSD	LCSD	MB-1-05/03/11	76	10	100	76.463	3.6	0.021239	50	05/03/11	iw	05/03/11	jw
AC58663-002	DUP	MB-1-05/03/11	ND	10	100	0	0	0.021239	50	05/03/11	jw	05/03/11	iw
AC58663-002	Sample	MB-1-05/03/11	ND	10	100	0	0	0,021239	50	05/03/11	jw	05/03/11	jw
AC58663-004	Sample	MB-1-05/03/11	ND	10	100	0	0	0.021239	50	05/03/11	jw	05/03/11	iw
AC58688-010	Sample	MB-1-05/03/11	ND	10	100	0	0	0.021239	50	05/03/11	iw	05/03/11	jw
AC58688-014	Sample	MB-1-05/03/11	ND	10	100	0	0	0.021239	50	05/03/11	iw	05/03/11	iw
AC58546-001	Sample	MB-1-05/03/11	ND	10	100	0	0	0.021239	50	05/03/11	jw	05/03/11	iw
AC58546-003	Sample	MB-1-05/03/11	ND	10	100	0	0	0.021239	50	05/03/11	jw	05/03/11	jw
AC58546-005	Sample	MB-1-05/03/11	ND	10	100	0	0	0.021239	50	05/03/11	iw	05/03/11	iw
AC58546-007	Sample	MB-1-05/03/11	ND	10	100	0	0	0.021239	50	05/03/11	jw	05/03/11	iw
AC58546-009	Sample	MB-1-05/03/11	ND	10	100	0	0	0.021239	50	05/03/11	jw	05/03/11	jw
AC58546-011	Sample	MB-1-05/03/11	ND	10	100	0	0	0.021239	50	05/03/11	iw	05/03/11	iw
AC58546-013	Sample	MB-1-05/03/11	ND	10	100	0	0	0.021239	50	05/03/11	iw	05/03/11	iw

MS/MSD Recovery

Prep Batch: W-404 Method: 300.0 rev2.1

Sample ID: AC58546-001 Matrix Aqueous

Qc Type	: MS	Limits		MS	Sample		-
Analyte	Amt	Recov	Dil	Conc	Conc	Recov	Flag
Nitrate	5	80-120	1	4.7232	0	94	
Sulfate	5	80-120	1	18.0139	13.7436	85	

	MS/MS	D	Non Spike					
Batch	RunID	Analysis Date	Batch	RunID	Analysis Date			
20110420195	12	04/21/11 01:24	20110420195	11	04/21/11 00:54			
20110420195	12	04/21/11 01:24	20110420195	11	04/21/11 00:54			

Qc Type	: MSD	Lim	its		MSD	Sample					MS/MS	SD.		Non Spi	ke
Analyte	Amt	Recov	Rpd	Dil	Conc	Conc	Recov	Rpd	Flag	Batch	RunID	Analysis Date	Batch	RuniD	Analysis Date
Nitrate	5	80-120	20	1	4.7444	0	95	0.4		20110420195	13	04/21/11 01:55	20110420195	11	04/21/11 00:54
Sulfate	5	80-120	20	1	18.0654	13.7436	86	0.3		20110420195	13	04/21/11 01:55	20110420195	11	04/21/11 00:54

LCS Recoveries

	BatchRunID/RunID:===> QcBatchID:===>	l I				
	Date/Time:==> Analytical Method:==> Matrix:==>	300.0 rev2.1	Soil	Soil	Soil	Soil
Analyte	300.0 rev2.1 Amt Limits Amt Limits	% Rec Flags	% Rec Flags	% Rec Flags	% Rec Flags	% Rec Flags
Nitrate Sulfate	5 90-110 5 90-110	97 103				

Calibration Curve

Instrument: IC1 Analysis Date: 04/20/11

\nalytic	
tical Meth	•
//ethods:300.0 rev2.1	
.0 rev2.1	
;EPA (
9056	

			Area	Area Found						Concentration	on Amount			
Batch ID: Analyte:	lyte:	Area1	Area2	Area3	Area4	Area5	Area6	Conc1	Conc2	Conc3	Conc4	Conc5	Conc6	rSq
201104201950 Nitrate	е	0	0.35	1.709	3.594	7.825		0	_	G1	10	20		99.894
201104201950 Sulfate	e	0	0.105	0.478	0.97	1.996	5.312	0	_	տ	10	20	50	99.965

Calibration Summary:

Instrument: IC1
Analysis Meth: 300.0 rev2.1

alyte	Batch ID	Run#	Qc Тур	e Recov	Spk Ar	nt Limit	Analyte	Batch ID	Run# Qc Type Recov	Spk Amt
litrate	201104201950	7	ICV	106	2.26	90-110				
litrate	201104201950	19	CCV	96	10	90-110				
litrate	201104201950	31	CCV	96	10	90-110				
Sulfate	201104201950	7	ICV	98	10	90-110				
Sulfate	201104201950	19	CCV	97	10	90-110				
Sulfate	201104201950	31	CCV	97	10	90-110				

Blank Summary

Instrument:IC1

Qc Type: Metho	od Blank Summary	Prep I	Date: 4	/20/11		
Run Batch ID	Analysis Date/Time	Sample ID	Run#	Analyte	Conc	RL
201104201950	4/20/11 23:53	MBW-0316	9	Nitrate	ND	1.0
201104201950	4/20/11 23:53	MBW-0316	9	Sulfate	ND	1.0
Qc Type: ICB S	ummary	Prep I	Date: N	IA .		
Run Batch ID	Analysis Date/Time	Sample ID	Run#	Analyte	Conc	RL
201104201950	4/20/11 23:23	ICB	8	Nitrate	ND	1.0
201104201950	4/20/11 23:23	ICB	8	Sulfate	ND	1.0
Qc Type: CCB Summary		Prep I	Date: N	IA		
Run Batch ID	Analysis Date/Time	Sample ID	Run#	Analyte	Conc	RL
201104201950	4/21/11 05:28	ССВ	20	Nitrate	ND	1.0
201104201950	4/21/11 11:32	CCB	32	Nitrate	ND	1.0
201104201950	4/21/11 05:28	CCB	20	Sulfate	ND	1.0
201104201950	4/21/11 11:32	ССВ	32	Sulfate	ND	1.0

Site Name: Harrison Spill Site Well/Sampling Point ID: GP-1

Site Location: Harrison Subresidency, Harrison, NY Well Diameter: 2"

Date: 4/20/11
Purge Method: Whale Pump
Purge Start Time: 10:10
Purge End Time: 10:50
Well Casing Condition: Good

Weather: Overcast, 60-65°F

Water Level & Water Column Height (feet)

Trator Ector & Trator Go	idilili Holgiit (100t)		
Depth to Water	Depth to Well Bottom	Water Column Height	WELL CAPACITY
(DTW)	(DTB)	(DTB-DTW)	(gal/ft):
1.54	6.26	4.72	0.75

Purge Volume Conversions

								
0.75"=0.02	1"=0.04	1.25"=0.06	2"=0.16	3"=0.37	4"=0.65	5"=1.02	6"=1.47	12"=5.88

^{*1} well volume = volume/linear foot x water column height

Well Purge Water Quality

well Purge v	vater Qualii	L y				
VOLUME PURGED (gal)	РН	TEMP (C)	COND (µmhos)	DO (mg/L)	TURB (NTUs)	ORP
0	7.40	8.6	0.667	18.29	250	91
5	7.34	8.9	0.646	183.71	57.2	118

Groundwater Sampling Data

SAMPLED BY:		
Kimberly Somers, Tom LaBanca		
SAMPLING METHOD:	SAMPLE COLLECTED AT:	REMARKS:
Dedicated bailer	10:50	Dry at >1 gallon
ANALYSIS:		
BTEX & MTBE, Fe II & Mn II (labora	atory filtered), HCO ₃ , total alkalinity, NO ₃ ,	, SO ₄

Site Name: Harrison Spill Site Well/Sampling Point ID: GP-2

Site Location: Harrison Subresidency, Harrison, NY Well Diameter: 2"

Date: 4/20/11
Purge Method: Whale Pump
Purge Start Time: 10:20
Purge End Time: 11:00
Well Casing Condition: Good

Water Level & Water Column Height (feet)

Trater Level & Trater Oo	idilili ricigiit (icct)		
Depth to Water	Depth to Well Bottom	Water Column Height	WELL CAPACITY
(DTW)	(DTB)	(DTB-DTW)	(gal/ft):
1.8	4.86	3.06	0.48

Purge Volume Conversions

0.75"=0.02	1"=0.04	1.25"=0.06	2"=0.16	3"=0.37	4"=0.65	5"=1.02	6"=1.47	12"=5.88

^{*1} well volume = volume/linear foot x water column height

Well Purge Water Quality

VOLUME PURGED (gal)	PH	TEMP (C)	COND (µmhos)	DO (mg/L)	TURB (NTUs)	ORP
0	7.12	9.3	0.552	18.15	146	106
5	7.43	9.7	0.544	18.00	139	86
10	7.11	9.5	0.576	16.79	16.9	116
15	7.19	9.5	0.562	16.80	32	103
			_			

Groundwater Sampling Data

SAMPLED BY:						
Kimberly Somers, Tom LaBanca						
SAMPLING METHOD:	SAMPLE COLLECTED AT:	REMARKS:				
Dedicated bailer	11:00					
ANALYSIS:						
BTEX & MTBE, Fe II & Mn II (laboratory filtered), HCO ₃ , total alkalinity, NO ₃ , SO ₄						

Weather: Overcast, 60-65°F

Site Name: Harrison Spill Site
Site Location: Harrison Subresidency, Harrison, NY
Date: 4/20/11

Purge Method: Whale Pump
Purge Start Time: NA

Well/Sampling Point ID: MW-1
Well Diameter: 1"
Weather: Overcast, 60-65°F

Purge Start Time: NA
Purge End Time: NA
Well Seeing Condition flush mount care

Well Casing Condition: flush mount cover has no bolts; no cap on well

Water Level & Water Column Height (feet)

Depth to Water Depth to Well Bottom (DTW) (DTB)		Water Column Height (DTB-DTW)	WELL CAPACITY (gal/ft):	

Purge Volume Conversions

0.75"=0.02	1"=0.04	1.25"=0.06	2"=0.16	3"=0.37	4"=0.65	5"=1.02	6"=1.47	12"=5.88
------------	---------	------------	---------	---------	---------	---------	---------	----------

^{*1} well volume = volume/linear foot x water column height

Well Purge Water Quality

VOLUME PURGED (gal)	PH	TEMP (C)	COND (µmhos)	DO (mg/L)	TURB (NTUs)	ORP

Groundwater Sampling Data

Groundwater Sampling Data							
SAMPLED BY:							
Kimberly Somers, Tom LaBanca							
SAMPLING METHOD:	SAMPLE COLLECTED AT:	REMARKS:					
		Obstruction in well @ 1.55' bls					
ANALYSIS:							
No samples collected							
•							

Site Name: Harrison Spill Site

Site Location: Harrison Subresidency, Harrison, NY

Date: <u>4/20/11</u>

Purge Method: Whale Pump
Purge Start Time: 8:26
Purge End Time: 9:20
Well Casing Condition: Good

Water Level & Water Column Height (feet)

rater Level & Water Column Height (leet)								
Depth to Water Depth to Well Bottom (DTW) (DTB)		Water Column Height (DTB-DTW)	WELL CAPACITY (gal/ft):					
6.2	18.15	11.95	5.7					

Purge Volume Conversions

^{*1} well volume = volume/linear foot x water column height

Well Purge Water Quality

VOLUME PURGED (gal)	PH	TEMP (C)	COND (µmhos)	DO (mg/L)	TURB (NTUs)	ORP
0	7.17	8.9	0.620	15.57	91.0	89
3	6.97	8.9	0.674	16.03	2.2	47
6	6.82	8.9	0.687	16.70	5.1	29
10	6.73	9.0	0.786	16.41	0.2	2
15	6.70	9.0	0.806	16.25	0.6	-8

Groundwater Sampling Data

Si Sanawater Sampining Bata							
SAMPLED BY:							
Kimberly Somers, Tom LaBanca							
,	T						
SAMPLING METHOD:	SAMPLE COLLECTED AT:	REMARKS:					
Dedicated bailer	9:20						
ANALYSIS:							
7							
BTEX & MTBE, Fe II & Mn II (labora	atory filtered), HCO ₃ , total alkalinity, NO ₃ ,	SO_4					
,	, , , , , , , , , , , , , , , , , , , ,						

Well/Sampling Point ID: MW-11

Weather: Overcast, 60-65°F

Well Diameter: 2"

Site Name: Harrison Spill Site Well/Sampling Point ID: MW-12

Site Location: Harrison Subresidency, Harrison, NY Well Diameter: 2"

Date: 4/20/11
Purge Method: Whale Pump
Purge Start Time: 8:42
Purge End Time: 9:15

Well Casing Condition: Good

Water Level & Water Column Height (feet)

	Water Level & Water Oo	ater Level & Water Goldmir Height (1666)								
·		Water Column Height	WELL CAPACITY							
	(DTW) (DTB)		(DTB-DTW)	(gal/ft):						
	6.2	18.15	11.95	5.7						

Purge Volume Conversions

0.75"=0.02	1"=0.04	1.25"=0.06	2"=0.16	3"=0.37	4"=0.65	5"=1.02	6"=1.47	12"=5.88
------------	---------	------------	---------	---------	---------	---------	---------	----------

^{*1} well volume = volume/linear foot x water column height

Well Purge Water Quality

VOLUME PURGED (gal)	PH	TEMP (C)	COND (µmhos)	DO (mg/L)	TURB (NTUs)	ORP
0	6.94	8.72	4.06	5.52	35.4	-141
5	6.77	9.32	3.16	3.95	16.3	-115
10	6.85	9.64	2.21	3.90	0	-90
20	6.86	9.74	1.97	4.51	0	-93
			_		_	

Groundwater Sampling Data

SAMPLED BY:		
Kimberly Somers, Tom LaBanca		
SAMPLING METHOD:	SAMPLE COLLECTED AT:	REMARKS:
Dedicated bailer	9:15	Slight sheen on purge water; odor
Dodioatoa balloi		
ANALYSIS:	0.10	angine and a second a second and a second an

Weather: Overcast, 60-65°F

Site Name: Harrison Spill Site Well/Sampling Point ID: MW-13

Site Location: Harrison Subresidency, Harrison, NY Well Diameter: 2"

Date: 4/20/11
Purge Method: Whale Pump
Purge Start Time: 8:18
Purge End Time: 9:30

Well Casing Condition: Good

Water Level & Water Column Height (feet)

vater Lever & vvater Column rieight (leet)						
Depth to Water	Depth to Well Bottom	Water Column Height	WELL CAPACITY			
(DTW)	(DTB)	(DTB-DTW)	(gal/ft):			
8.5	15.0	6.5	1			

Purge Volume Conversions

								
0.75"=0.02	1"=0.04	1.25"=0.06	2"=0.16	3"=0.37	4"=0.65	5"=1.02	6"=1.47	12"=5.88

^{*1} well volume = volume/linear foot x water column height

Well Purge Water Quality

VOLUME PURGED (gal)	PH	TEMP (C)	COND (µmhos)	DO (mg/L)	TURB (NTUs)	ORP
0	7.48	8.52	1.10	6.29	50.6	90
3	7.10	9.59	0.802	5.87	35.1	31
				_		

Groundwater Sampling Data

SAMPLED BY:	,	
Kimberly Somers, Tom LaBand	a	
SAMPLING METHOD:	SAMPLE COLLECTED AT:	REMARKS:
Dedicated bailer	9:30	Dry after 2 gallons
ANALYSIS:	·	•
BTEX & MTBE, Fe II & Mn II (la	aboratory filtered), HCO ₃ , total alkalinity, l	NO ₃ , SO ₄

Weather: Overcast, 60-65°F

Site Name: Harrison Spill Site Well/Sampling Point ID: PC-1

Site Location: Harrison Subresidency, Harrison, NY Well Diameter: 2"

Date: 4/20/11 **Weather**: Overcast, 60-65°F

Purge Method: Whale Pump
Purge Start Time: 12:50
Purge End Time: 2:15

Well Casing Condition: Lock rusted; needed to saw casing to access well

Water Level & Water Column Height (feet)

Tracor Ector & Tracor Co	iaiiiii i ioigiit (ioot)		
Depth to Water	Depth to Well Bottom	Water Column Height	WELL CAPACITY
(DTW)	(DTB)	(DTB-DTW)	(gal/ft):
1.2	16.73	15.53	2.5

Purge Volume Conversions

0.75"=0.02	1"=0.04	1.25"=0.06	2"=0.16	3"=0.37	4"=0.65	5"=1.02	6"=1.47	12"=5.88
------------	---------	------------	---------	---------	---------	---------	---------	----------

^{*1} well volume = volume/linear foot x water column height

Well Purge Water Quality

VOLUME PURGED (gal)	PH	TEMP (C)	COND (µmhos)	DO (mg/L)	TURB (NTUs)	ORP
0	7.85	9.5	0.591	17.31	257	79
3	7.67	9.6	0.574	17.17	50	90
5	7.56	9.4	0.578	17.22	46	88
8	7.51	9.4	0.578	16.0	39	91
10	7.51	9.5	0.580	16.23	15	97
20	7.52	9.5	0.591	16.57	5.6	105

Groundwater Sampling Data

SAMPLED BY:						
Kimberly Somers, Tom LaBa	nca					
SAMPLING METHOD:	SAMPLE COLLECTED AT:	REMARKS:				
Dedicated bailer	2:15	Spill Site Duplicate Location (SP-1)				
ANALYSIS:						
BTEX & MTBE, Fe II & Mn II (laboratory filtered), HCO ₃ , total alkalinity, NO ₃ , SO ₄						