October 9, 2012

Ms. Gretchen Fitzgerald Construction Group NYSDOT Region 8 4 Burnett Boulevard Poughkeepsie, NY 12603

RE: PIN 8806.51.101, Harrison Landfill Area Harrison Sub-Residency, Westchester County, New York Fifth-Quarter Sampling Results, July 2012

Dear Ms. Fitzgerald,

This letter report summarizes the field investigative procedures and results of the fifth-quarter monitoring performed by Cashin Associates, P.C. (CA) at the Harrison Landfill site (Figure 1) on July 25, 2012 on behalf of the New York State Department of Transportation (NYSDOT).

The operation and maintenance efforts conducted at the Harrison Landfill were performed in order to meet the requirements of the New York State Department of Conservation (NYSDEC) for post-closure monitoring. The sampling was performed in accordance with CA's Scope of Work and Cost Estimate dated June 2012 and approved by NYSDOT on June 28, 2012. The scope was developed in accordance with the NYSDOT's Operation and Maintenance Plan for the Harrison Sub-Residency, Landfill and Petroleum Spill Area, February 2010.

Monitoring efforts at the Harrison Landfill included the collection of groundwater samples from the five existing monitoring wells (PC-1 through PC-3, LMW-2 and LMW-4), surface water and sediment samples from the on-site stream sample locations (SW/SD-1 through SW/SD-4), gas monitoring at the four existing gas vents (V-1 through V-4) and along the property line perimeter, and a visual inspection of vector and vermin. A site map and sample locations are shown on Figures 2 through 5. The sampling methodology performed by CA was consistent with the methodology used in prior sampling events at the site, as discussed below.

Groundwater Sampling

Groundwater samples were collected from the following five (5) monitoring wells (locations shown on Figure 3) listed below with regard to their relationship to the landfill:

On-Site/Site Background	On-Site/Downgradient	Off-Site/Downgradient
LWM-2	LMW-4	PC-3
	PC-1	
	PC-2	

Prior to sampling, a round of static water level measurements and total depth measurements from the groundwater monitoring wells were recorded.

All of the monitoring well casings and well heads were inspected for any signs of damage or tampering. Prior to sampling, groundwater was purged until the hydraulic equilibrium between casing water and aquifer was achieved in order to obtain a representative sample of the aquifer. This was accomplished by calculating the relative contribution from stagnant casing water to the total discharged from the well. The well was purged of three well volumes or until dryness using a Whale pump equipped with a Rheostat (for adjustable flow) and dedicated tubing. A peristaltic pump was used to purge and sample monitoring well PC-2 due to the historic bent well casing. Groundwater samples were collected when the well recovered to approximately 75% of its initial volume or within two hours (whichever came first) using a dedicated disposable polyethylene bailer. Well purge water was discharged immediately downgradient of the well. Field parameters of temperature, turbidity, dissolved oxygen (DO), pH, specific conductivity, and oxidation-reduction potential (Eh) were recorded for each well during purging and at the time of sample collection using a Horiba U-22 water quality monitor equipped with an in-line flow-through cell.

Groundwater samples were transferred to clean, pre-preserved, laboratory-supplied containers for analysis of target compound list (TCL) volatile organic compounds (VOCs), TCL semi-volatile organic compounds (SVOCs), and target analyte list (TAL) metals (filtered only), including cyanide and chloride. Metal samples were filtered and preserved by the laboratory.

Surface Water/Sediment Sampling

Surface water (SW) and sediment (SD) samples (locations shown on Figure 4) were collected from the following four locations listed below with regard to their relationship to the landfill:

On-Site/Site Background	On-Site/Downgradient	Off-Site/Downgradient
SW/SD-1	SW/SD-2	SW/SD-4
	SW/SD-3	

Prior to sample collection, CA recorded the approximate stream flow and stream depth at each station. Surface water samples from each respective location were collected first, in order to minimize turbidity, using a clean stainless steel ladle. Field parameters of temperature, turbidity, DO, pH and specific conductivity were collected during sampling at each location. Sediment sample were collected following the collection of the surface water samples, from within the same general area using a clean stainless steel trowel.

Surface water sample location SW-3 was dry during sampling; therefore sample SW-3 was not collected. Sample SD-3 was not collected due to field error.

Surface water and sediment samples were transferred to clean, pre-preserved laboratory-supplied containers for laboratory analysis of TCL VOCs, TCL SVOCs, and TAL metals (unfiltered only), including cyanide and chloride. Metal samples for surface water were filtered and preserved by the laboratory if the samples had been disturbed and resulted in high turbidity.

For quality assurance/quality control (QA/QC) purposes, a field blank was collected during the time of the surface water and sediment sampling. The field blank was conducted by pouring distilled water into the ladle used for sample collection and then from the ladle to the sample bottles. The field blank was analyzed for the same set of parameters for the surface water samples.

All samples were preserved on ice and analyzed by a New York State certified laboratory (Hampton-Clarke Veritech, Farifield, New Jersey) according to NYSDEC Analytical Services Protocol (ASP).

Gas Monitoring

CA conducted gas monitoring at each of the four (4) gas vents (V-1 through V-4) (locations shown on Figure 5) and along the perimeter of the property line. Prior to the collection of measurements at each location, ambient readings were recorded. Each location was monitored for methane and other explosive gases through the use of a combustible gas indicator (CGI). Gas vent readings were obtained by inserting the instrument detector probe into each vent. The CGI was set to alarm if readings exceeded 10% of the lower explosive limit (LEL) of methane. In addition, alarms were set at 10% of the LEL of hydrogen sulfide, 25 parts per million (ppm) of carbon monoxide and 19.5% and 23.5% of oxygen. A photoionization detector (PID) and a flame ionization detector (FID) (with and without a methane filter) were used to monitor for VOCs at each of the four gas vents and around the perimeter of the landfill. Field instruments used were calibrated on-site prior to sampling.

Field Survey

The monitoring of the Harrison Landfill site included a visual inspection of site for the presence of vector/vermin. Other than mosquitoes and ticks within the drainage swale areas and tall grass areas across the site, CA did not observe any vector/vermin at the site during sampling.

Analytical Results

Groundwater Samples

Results of the groundwater samples were compared to the NYSDEC Class GA Standards or Guidance Values (NYSDEC Division of Water Technical and Operational Guidance Series 1.1.1, June 1998) and are summarized in Table 1.

No floating product or sheen was detected in any of the wells during purging, consistent with the prior sampling round in April 2011.

Water quality parameters of temperature, pH, specific conductivity and turbidity are included in Table 1. The complete list of the groundwater laboratory results is attached as Appendix A. Groundwater sampling logs are attached as Appendix B.

Surface Water

The analytical results of the surface water samples were compared to both NYSDEC Ambient Water Quality Class GA Groundwater Standards/Guidance Values and NYSDEC Class A Surface Water Standards/Guidance Values, where available. Both standards were used since the drainage swales on the site from which the surface waters were sampled serve as tributaries to the Kensico Reservoir, which is a source of drinking water. Where appropriate, the most conservative Standard or Guidance Value was used for comparison purposes.

Non-RCRA metal concentrations increased in all surface water samples compared to the previous sampling round (April 2011), including the on-site background surface water sample location.

The analytical results of the surface water samples are presented in Table 2. Water quality parameters of dissolved oxygen, turbidity, temperature, pH, specific conductivity and stream flow taken during sampling are included in Table 2.

Sediment Samples

Sediment sample results were compared to the NYSDEC Technical Guidance for Screening Contaminated Sediments Lowest Effect Level (LEL) and Severe Effect Level (SEL). Analytical results of the sediment samples reported exceedances for RCRA metals chromium and lead, and non-RCRA metals copper, iron, manganese, nickel and zinc.

Metal concentrations for sediment samples are presented in Table 3. Total VOC and total SVOC concentrations for the sediment samples are presented in Table 4.

Gas Monitoring

Methane gases were detected in all four gas vents (V-1 through V-4). Hydrogen sulfide was detected in all four gas vents, ranging from 1.7 ppm to 1.9 ppm. PID readings were non-detect in all four gas vents. PID and FID readings around the perimeter of the landfill were zero. Results of the gas monitoring is presented in Table 5.

QA/QC Results

The QA/QC results of the duplicate sample (LF-1) to the original sample (PC-1) were reported with concentrations within eight percent of each other, indicating an acceptable degree of precision and accuracy of the analytical results reported by the laboratory. Analytical results of the trip blanks and field blank were all non-detect. The results of the

QA/QC samples confirm the adequacy of decontamination, handling and transportation procedures to meet quality requirements for the monitoring program.

Conclusions and Recommendations

Historic monitoring at the site detected mercury in groundwater, sediment and surface water samples at concentrations exceeding the NYSDEC Standard. During the July 2012 sampling event, mercury was not detected in any of the groundwater, sediment or surface water samples.

Groundwater results indicate that high concentrations of sodium exist throughout the site, including the on-site background well. Manganese exceedances were present only in downgradient wells. Iron concentrations were detected in downgradient wells only, with the exception of PC-1.

Surface water samples detected large increases in aluminum, iron, and manganese at downgradient locations as well as the on-site background location. Corresponding increases in the background surface and off-site downgradient water samples indicate that the landfill is not a significant contributing factor to such metal concentrations in surface water in the surrounding area. Sodium concentrations below the NYSDEC Standard were detected in both the downgradient locations and the background location. In contrast to the previous sampling round in 2011, iron was detected above the NYSDEC Standard at the off-site downgradient location. Iron exceedances were also present in the on-site background sample and therefore, do not appear to be migrating from the landfill in surface water.

Sediment samples with exceedances for chromium, copper, manganese and nickel were reported in both the on-site background sample location and downgradient locations. Iron lead and zinc exceedances were only detected at downgradient locations and not the background location (SD-1). Off-site downgradient location SD-4 contained the most amount of metal exceedances. Trace amounts of SVOCs and VOCs were detected in background sediments and off-site downgradient sediments and not in on-site downgradient sediments.

The greatest concentrations of metals were detected in the northwestern portion of the landfill. Results indicate that manganese and iron could be migrating off-site from the landfill, as the highest concentrations were detected in the on-site downgradient well LMW-4, with lower concentrations detected in off-site downgradient well PC-3. Cobalt, lead, nickel and sodium concentrations may also be migrating off-site from the landfill via surface water. Based upon the results of the on-site background groundwater, surface water and sediment samples, the site appears to be receiving certain metal concentrations (calcium, magnesium, potassium) from an upgradient source. Compared to the previous sampling round in April 2011, overall metal concentrations have increased across the site, including the on-site background locations.

The post-closure monitoring of the Harrison Landfill Site will be continued on a fifth-quarter basis unless otherwise decided by NYSDEC. The next monitoring round is anticipated to take place in October 2013.

If you have any questions, or require any additional information, please feel free to contact me.

Sincerely,

CASHIN ASSOCIATES, P.C.

Gregory T. Greene Director of Environmental Programs

cc: Anjan Sen, NYSDOT Consultant Management Bureau Carl Kochersberger, NYSDOT Environmental Science Bureau Table 1. Analytical Results of Groundwater Samples

r	Table 1. Analytical Results of Groundwater Samples								
		Well ID:	LMW-2	PC-1	PC-2	LMW-4	PC-3	LF-1	Trip Blank
		Depth to Water:	12.18	7.77	4.3	5.0	10.5		
		Location:	background	downgradient	downgradient	downgradient	off-site downgradient	PC-1 Duplicate	
		Depth of Well:	21	17	11.2	15.5	18		
Analyte	Units	NYSDEC CLASS GA STD/GV							
Volatiles									
Total VOCs	ug/L	5	ND	ND	ND	ND	ND	ND	ND
SemiVolatiles									
Total SVOCs	ug/L	50	ND	ND	ND	ND	ND	ND	ND
Metals									
Mercury	ug/L	0.7	ND	ND	ND	ND	ND	ND	ND
Aluminum	ug/L	NS	ND	ND	ND	ND	ND	ND	ND
Antimony	ug/L	3	ND	ND	ND	ND	ND	ND	ND
Arsenic	ug/L	25	ND	ND	ND	ND	ND	ND	ND
Barium	ug/L	1000	120	120	130	160	120	110	ND
Beryllium	ug/L	3	ND	ND	ND	ND	ND	ND	ND
Cadmium	ug/L	5	ND	ND	ND	ND	ND	ND	ND
Calcium	ug/L	NS	74,000	60,000	77,000	60,000	56,000	58,000	ND
Chromium	ug/L	50	ND	ND	ND	ND	ND	ND	ND
Cobalt	ug/L	NA	ND	ND	ND	ND	ND	ND	ND
Copper	ug/L	200	ND	ND	ND	ND	ND	ND	ND
Iron	ug/L	300	ND	ND	25,000	72,000	1700	ND	ND
Lead	ug/L	25	ND	ND	ND	ND	ND	ND	ND
Magnesium	ug/L	35,000	29,000	8,800	22,000	25,000	16,000	8,400	ND
Manganese	ug/L	300	210	710	8,800	14,000	560	670	ND
Nickel	ug/L	100	ND	ND	ND	ND	ND	ND	ND
Potassium	ug/L	NS	3,700	3,800	4,800	3,800	4,900	3,700	ND
Selenium	ug/L	10	ND	ND	ND	ND	ND	ND	ND
Silver	ug/L	50	ND	ND	ND	ND	ND	ND	ND
Sodium	ug/L	20,000	27,000	87,000	43,000	31,000	64,000	85,000	ND
Thallium	ug/L	0.5	ND	ND	ND	ND	ND	ND	ND
Vanadium	ug/L	NS	ND	ND	ND	ND	ND	ND	ND
Zinc	ug/L	2000	ND	ND	ND	ND	ND	ND	ND
Chloride	mg/L	250	13	130	23	15	140	130	ND
Cyanide	mg/L	200	ND	ND	ND	ND	ND	ND	ND
Water Quality Param	neters								
pН			6.78	7.08	6.56	6.58	6.71	NA	NA
Temperature	Celsius		12.9	18.12	15.02	13.59	14.25	NA	NA
Conductivity	ms/cm		0.68	0.777	0.887	0.951	0.83	NA	NA
Dissolved Oxygen	mg/L		8.23	5.13	6.04	3.34	3.01	NA	NA
Turbidity	NTUs		21.7	33.3	42	20.7	0	NA	NA
ORP	1	†	120	38	-73	-71	34	NA NA	NA NA
O141			120	- 55	-, 0	_, .	0-7	14/3	14/3

Notes: BOLD - indicates a concentration exceeding NYSDEC Standard or Guidance Value

ND - not detected at analytical detection limit NS - no standard NA - not applicable

Table 2. Analytical Results of Surface Water Samples

		i abie z	2. Analytical Results of Sample ID:	SW-1	SW-2	SW-4	Field Blank
			Depth:	0-4"	0-4"	0-4"	i ioia Biank
Analyte	Units	NYSDEC Class GA Std.	NYSDEC Class A Std.	U-4	0-4	0-4	
Volatiles							
Total VOCs	ug/L	NA	NA	ND	ND	ND	ND
SemiVolatiles							
Total SVOCs	ug/L	NA	NA	ND	ND	ND	ND
Metals							
Mercury	ug/L	0.7	0.7 ¹ , 7e-4 ⁵ , 0.77 ² , 1.4 ³ , 0.0026 ⁶	ND	ND	ND	ND
Aluminum	ug/L	NS	100 ²	910	24000	21000	ND
Antimony	ug/L	3	3 ¹	ND	ND	ND	ND
Arsenic	ug/L	25	50 ¹ , 150 ² , 340 ³	ND	ND	ND	ND
Barium	ug/L	1,000	1,000 ¹	120	4500	1100	ND
Beryllium	ug/L	3	3 ¹	ND	ND	ND	ND
Cadmium	ug/L	5	5 ¹	ND	5.3	3.9	ND
Calcium	ug/L	NS	NS	45,000	120,000	85,000	ND
Chromium	ug/L	50	50 ¹	ND	ND	46	ND
Cobalt	ug/L	NS	5 ²	ND	41	30	ND
Copper	ug/L	200	200 ¹	ND	160	81	ND
Iron	ug/L	300	300 ^{2,4}	7100	140000	85000	ND
Lead	ug/L	25	50 ¹	ND	130	160	ND
Magnesium	ug/L	35,000	35,000 ¹	14,000	33,000	31,000	ND
Manganese	ug/L	300	300 ⁴	5000	120000	39000	ND
Nickel	ug/L	100	100 ¹	ND	75	51	ND
Potassium	ug/L	NS	NS	3,200	7,200	7,200	ND
Selenium	ug/L	10	10 ¹ , 4.6 ²	ND	ND	ND	ND
Silver	ug/L	50	50 ¹	ND	ND	ND	ND
Sodium	ug/L	20,000	NS	9,400	13,000	12,000	ND
Thallium	ug/L	0.5	$0.5^1, 8^2$	ND	ND	ND	ND
Vanadium	ug/L	NS	14 ²	ND	66	63	ND
Zinc	ug/L	2000	2,000 ¹ , 5,000 ⁴	ND	1200	450	ND
Chloride	mg/L	250	250,000 ¹	6	7	7	ND
Cyanide	mg/L	200	200 ¹ , 9000 ⁵ , 5.2 ² , 22 ³	ND	0.03	ND	ND
Water Quality Para	ameters						
рН				7.41	8.5	4.63	NA
Temperature	Celsius			18.07	19.39	22.53	NA
Conductivity	ms/cm			0.374	0.365	0.367	NA
Dissolved Oxygen	mg/L			14.21	7.67	5.77	NA
Turbidity	NTUs			41.1	201	207	NA
Flow	CFS			0	0	0	NA

Notes: BOLD - indicates a concentration exceeding NYSDEC Standard or Guidance Value

NS - no standard

ND - not detected at analytical detection limit

¹ Class A Standards for Surface Water as a source of Drinking Water ^{2,3,4,5,6} Other Class A Standards: Fish Propagation², Fish Survival³, Aesthetic⁴, Human Consumption of Fish⁵, Wildlife Protection ⁶

Table 3. Analytical Results of Sediment Samples for Metals

	Table 5. All	arytical ites	ment Samples	ioi wietais		
		SD-1	SD-2	SD-4		
		Sedimen	t Criteria			
Analyte	Units	LEL	SEL			
Metals						
Mercury	mg/Kg	0.15	1.3	ND	ND	ND
Aluminum	mg/Kg	NS	NS	6,900	11,000	11,000
Antimony	mg/Kg	2	25	ND	ND	ND
Arsenic	mg/Kg	6	33	ND	ND	ND
Barium	mg/Kg	NS	NS	79	820	220
Beryllium	mg/Kg	NS	NS	ND	ND	ND
Cadmium	mg/Kg	0.6	9	ND	ND	ND
Calcium	mg/Kg	NS	NS	1,500	16,000	17,000
Chromium	mg/Kg	26	110	13	ND	27
Cobalt	mg/Kg	NS	NS	4.5	ND	8.8
Copper	mg/Kg	16	110	11	37	25
Iron	mg/Kg	20,000	40,000	16,000	78,000	33,000
Lead	mg/Kg	31	110	ND	61	57
Magnesium	mg/Kg	NS	NS	3,700	5,800	12,000
Manganese	mg/Kg	460	1,100	1,300	35,000	8,000
Nickel	mg/Kg	16	50	11	ND	23
Potassium	mg/Kg	NS	NS	2,100	ND	1,800
Selenium	mg/Kg	NS	NS	ND	ND	ND
Silver	mg/Kg	1	2.2	ND	ND	ND
Sodium	mg/Kg	NS	NS	ND	ND	ND
Thallium	mg/Kg	NS	NS	ND	ND	ND
Vanadium	mg/Kg	NS	NS	19	ND	38
Zinc	mg/Kg	120	270	35	240	140
Chloride	mg/Kg	NS	NS	ND	ND	ND
Cyanide	mg/Kg	NS	NS	ND	2.3	ND

Notes:

BOLD - indicates a concentration exceeding NYSDEC Standard or Guidance Value

ND - not detected at analytical detection limit

NS – no standard

Table 4. Analytical Results of Sediment Samples for SVOCs and VOCs

Analyte	Human Health Bioaccum. Sediment Criteria mg/gOC	Benthic Aquatic Life Acute Toxicity Sediment Criteria mg/gOC	Benthic Aquatic Life Chronic Toxicity Sediment Criteria mg/gOC	Wildlife Bioaccum. Sediment Criteria mg/gOC	SD-1	SD-2	SD-4
Semi-Volatiles							
Total SVOCs					ND	ND	0.28
Pyrene	NS	0.877	NS	0.961	0.1	ND	0.28
Volatiles							
Total VOCs					ND	ND	0.1259
Acetone	NS	NS	NS	NS	ND	ND	0.12
Toluene	NS	0.235	NS	NS	ND	ND	0.0059

Notes:

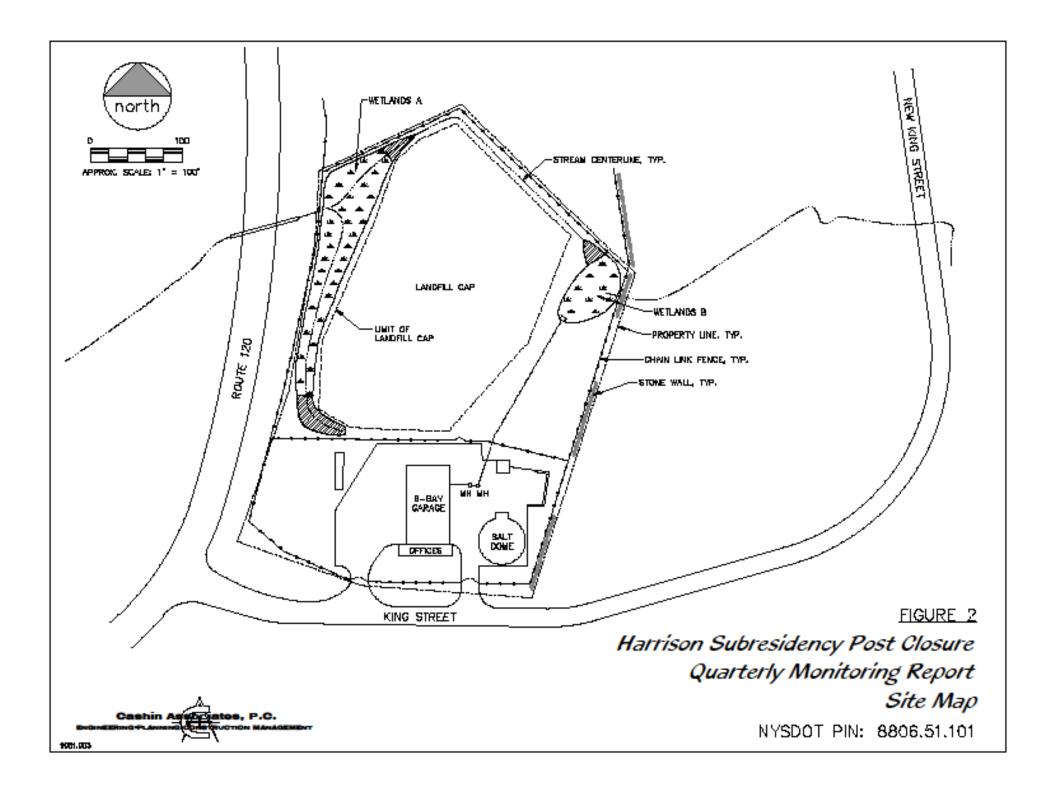
BOLD indicates a concentration exceeding NYSDEC Standard

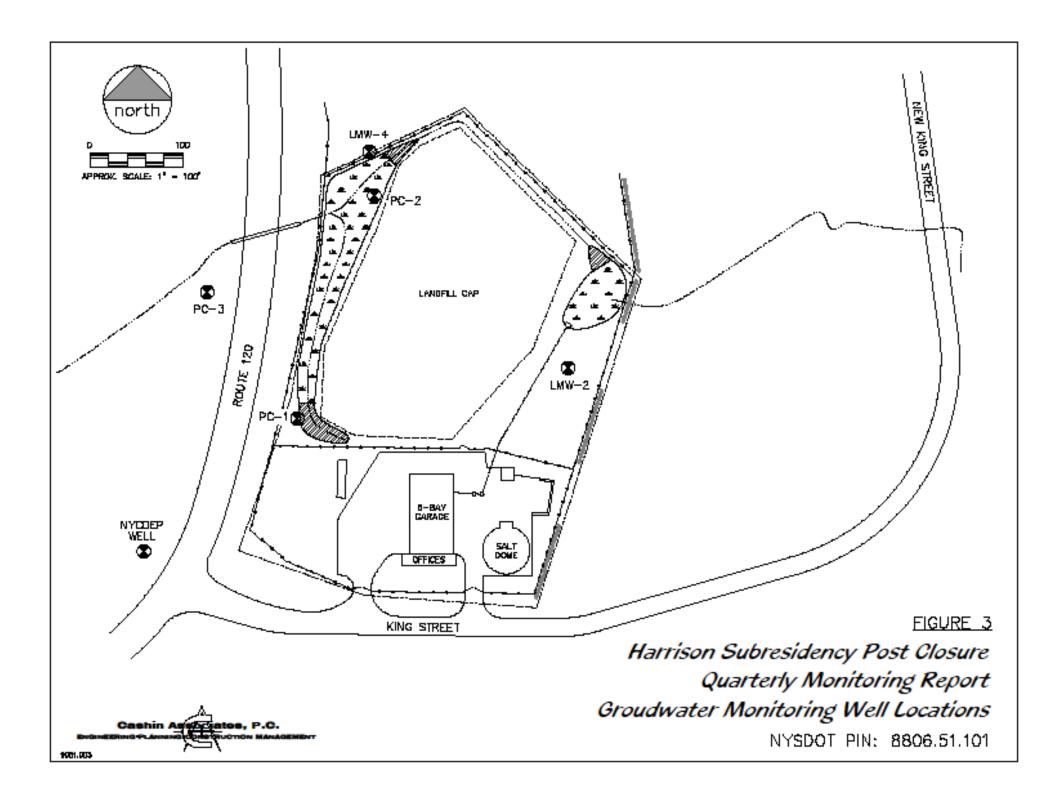
NS - No Standard

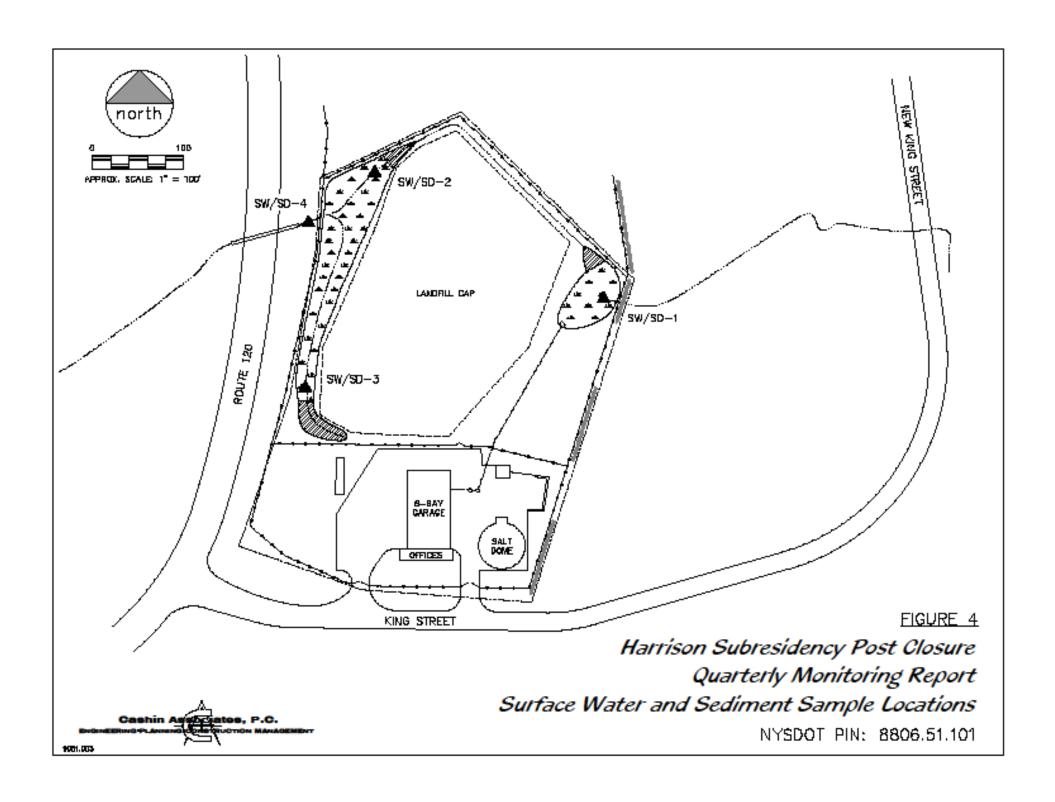
ND - Not detected

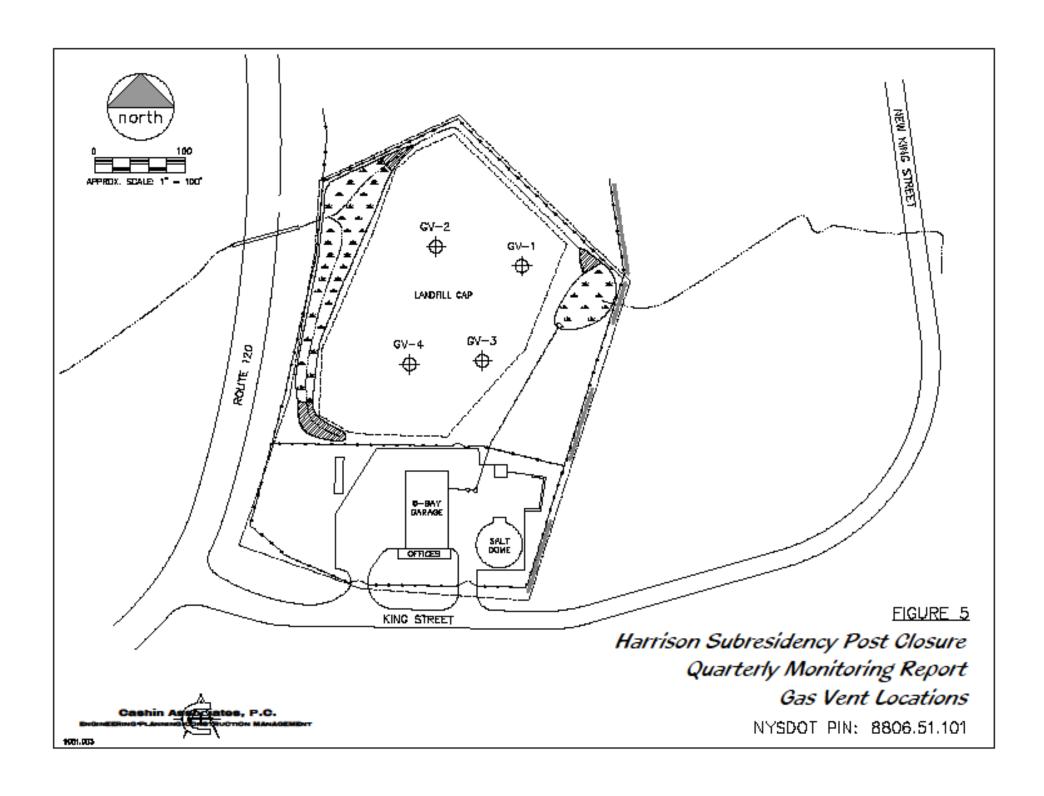
Table 5. Gas Monitoring Results

Station ID	% LEL CGI	PID Equiv.	FID (ppm)	H2S (ppm)	% O2	% CO2
V-1	0	0.0	431.6	1.8	19.4	0
V-2	>100	0.0	>4,951	1.7	6	0
V-3	>100	0.0	>4,951	1.9	6.2	0
V-4	18.1	0.0	3,794	1.9	18.1	0
S Perimeter	0	0.0	0	0	NA	NA
E Perimeter	0	0.0	0	0	NA	NA
N Perimeter	0	0.0	0	0	NA	NA
W Perimeter	0	0.0	0	0	NA	NA




FIGURE 1


Harrison Subresidency Post Closure Quarterly Monitoring Report Site Location


NYSDOT PIN: 8806.51.101

Appendix A

Analytical Data

Appendix B

Sampling Logs

Site Name: Harrison Landfill Well/Sampling Point ID: PC-1

Site Location:Harrison Subresidency, Harrison, NYWell Diameter:2"Date:7/24/12Weather:Sunny 95F

Purge Method: Whale Pump

Purge Start Time: Purge End Time:

Well Casing Condition: Good

Water Level & Water Column Height (feet)

water bever a water column rieight (leet)								
Depth to Water	Depth to Well Bottom	Water Column Height	WELL CAPACITY					
(DTW) (DTB)		(DTB-DTW)	(gallons):					
7.77	16.73	9.23	1.5					

Purge Volume Conversions

0.75"=0.02	1"=0.04	1.25"=0.06	2"=0.16	3"=0.37	4"=0.65	5"=1.02	6"=1.47	12"=5.88
------------	---------	------------	---------	---------	---------	---------	---------	----------

^{*1} well volume = volume/linear foot x water column height

Well Purge Water Quality

VOLUME PURGED (gal)	PH	TEMP (C)	COND (µmhos)	DO (mg/L)	TURB (NTUs)	ORP
0	7.18	18.29	0.737	3.52	145	72
3	7.22	19.19	0.773	5.39	66.8	-15
5	7.30	17.85	0.772	4.75	151	-9
8	7.08	18.12	0.777	5.13	33.3	38

Groundwater Sampling Data							
SAMPLED BY:							
Marc Califano, Tom LaBanca							
SAMPLING METHOD:	SAMPLE COLLECTED AT:	REMARKS:					
Dedicated bailer	15:00	Landfill Site Duplicate Location (LF-1)					
ANALYSIS:							
TCL VOCs, TCL SVOCs, TA	L Metals (lab filtered), Cyanide, Chlo	ride					

Site Name: Harrison Landfill Well/Sampling Point ID: PC-2

Site Location:Harrison Subresidency, Harrison, NYWell Diameter: _2"Date:7/25/12Weather: Sunny 95F

Purge Method: Peristaltic Pump

Purge Start Time: 8:30
Purge End Time: 9:00
Well Casing Condition: Good

Water Level & Water Column Height (feet)

Water Level & Water Column Height (leet)							
Depth to Water (DTW)	Depth to Well Bottom (DTB)	Water Column Height (DTB-DTW)	WELL CAPACITY (gallons):				
4.3	11.2	6.9	1.1				

Purge Volume Conversions

0.	0.75"=0.02	1"=0.04	1.25"=0.06	2"=0.16	3"=0.37	4"=0.65	5"=1.02	6"=1.47	12"=5.88
----	------------	---------	------------	---------	---------	---------	---------	---------	----------

^{*1} well volume = volume/linear foot x water column height

Well Purge Water Quality

VOLUME PURGED (gal)	PH	TEMP (C)	COND (µmhos)	DO (mg/L)	TURB (NTUs)	ORP
1	7.22	17.12	0.870	6.09	0.0	-95
2	6.92	15.36	0.889	13.17	100	-85
3	6.56	15.02	0.887	6.04	42	-73

SAMPLED BY:	/ata		
SAMPLED B1.			
Marc Califano, Tom LaBanca			
SAMPLING METHOD:	SAMPLE COLLECTED AT:	REMARKS:	
Dedicated bailer	9;10		
ANALYSIS:			
TCL VOCs, TCL SVOCs, TAL	. Metals (lab filtered), Cyanide, Chlori	ide	

Site Name: Harrison Landfill Well/Sampling Point ID: PC-3

Site Location:Harrison Subresidency, Harrison, NYWell Diameter:2"Date:7/25/12Weather:Sunny 95F

Purge Method: Whale Pump

Purge Start Time: Purge End Time:

Well Casing Condition: Good; locked rusted -had to cut

Water Level & Water Column Height (feet)

Depth to Water (DTW)	Depth to Well Bottom (DTB)	Water Column Height (DTB-DTW)	WELL CAPACITY (gallons):	
10.5	18.37	7.87	1.25	

Purge Volume Conversions

0.75"=0.02 1"	"=0.04 1.25"=0.06	2"=0.16	3"=0.37	4"=0.65	5"=1.02	6"=1.47	12"=5.88
---------------	-------------------	---------	---------	---------	---------	---------	----------

^{*1} well volume = volume/linear foot x water column height

Well Purge Water Quality

Well Purge Water Quality								
VOLUME PURGED (gal)	РН	TEMP (C)	COND (µmhos)	DO (mg/L)	TURB (NTUs)	ORP		
0	7.67	18.23	1.04	4.10	474	43		
3	7.43	15.32	0.985	3.59	953	39		
5	7.06	15.08	0.892	3.36	905	37		
8	6.84	14.69	0.848	3.04	5.7	35		
10	6.71	14.25	0.830	3.01	0.0	34		

<u> </u>								
SAMPLED BY:								
Mare Califone Tem LaBonea								
Marc Califano, Tom LaBanca								
SAMPLING METHOD:	SAMPLE COLLECTED AT:	REMARKS:						
o, = = =	O,							
Dedicated bailer	13:20							
	10.20							
ANALYSIS:								
TCL VOCs, TCL SVOCs, TAL Metals (lab filtered), Cyanide, Chloride								
102 1000, 102 01000, 1712 11	notalo (lab intoroa), Oyarilao, Oriioriao							

Site Name: Harrison Landfill Well/Sampling Point ID: LMW-2

Site Location:Harrison Subresidency, Harrison, NYWell Diameter: 2"Date:7/25/12Weather: Sunny 95F

Purge Method: Whale Pump
Purge Start Time: 12:00
Purge End Time: 12:45
Well Casing Condition: Good

Water Level & Water Column Height (feet)

	Trater Ector & Trater Go				
Depth to Water (DTW)		Depth to Well Bottom	Water Column Height	WELL CAPACITY (gallons):	
		(DTB)	(DTB-DTW)		
	12.18	21	8.82	1.5	

Purge Volume Conversions

0.75"=0.02	1"=0.04	1.25"=0.06	2"=0.16	3"=0.37	4"=0.65	5"=1.02	6"=1.47	12"=5.88
------------	---------	------------	---------	---------	---------	---------	---------	----------

^{*1} well volume = volume/linear foot x water column height

Well Purge Water Quality

VOLUME PURGED (gal)	PH	TEMP (C)	COND (µmhos)	DO (mg/L)	TURB (NTUs)	ORP
0	8.02	14.05	0.645	4.48	55.1	46
3	6.85	13.49	0.677	4.04	46.9	83
5	6.83	13.25	0.678	15.21	17.7	110
8	6.78	12.90	0.680	8.23	21.7	120

SAMPLED BY:								
Marc Califano, Tom LaBanca								
SAMPLING METHOD:	SAMPLE COLLECTED AT:	REMARKS:						
Dedicated bailer	13:00							
ANALYSIS:								
TCL VOCs, TCL SVOCs, TAL Metals (lab filtered), Cyanide, Chloride								

Site Name: Harrison Landfill Well/Sampling Point ID: LMW-4

Site Location:Harrison Subresidency, Harrison, NYWell Diameter:2"Date:7/25/12Weather:Sunny 950F

Purge Method: Whale Pump
Purge Start Time: 10:30
Purge End Time: 11:15

Well Casing Condition: Good; locked

Water Level & Water Column Height (feet)

Water Level & Water Column Height (leet)								
Depth to Water (DTW)	Depth to Well Bottom (DTB)	Water Column Height (DTB-DTW)	WELL CAPACITY (gallons):					
5.0	15.5	10.5	1.68					

Purge Volume Conversions

0.75"=0.02	1"=0.04	1.25"=0.06	2"=0.16	3"=0.37	4"=0.65	5"=1.02	6"=1.47	12"=5.88

^{*1} well volume = volume/linear foot x water column height

Well Purge Water Quality

VOLUME PURGED (gal)	PH	TEMP (C)	COND (µmhos)	DO (mg/L)	TURB (NTUs)	ORP
0	7.02	14.73	0.867	4.79	70.1	-72
3	6.77	14.74	0.934	5.13	148	-78
4	6.74	14.21	0.815	7.21	21.4	-82
5	5 6.58		0.951	3.34	20.7	-71

Groundwater Sampling	Data	
SAMPLED BY:		
Marc Califano, Tom LaBanca		
SAMPLING METHOD:	SAMPLE COLLECTED AT:	REMARKS:
DAMI LING METHOD.	CAMILLE COLLEGIED AT.	ILIMAINO.
Dedicated ballon	44.45	Dry at 5 walland number dy class
Dedicated bailer	11:15	Dry at 5 gallons purged; slow
		recharge
ANALYSIS:		
TCL VOCs. TCL SVOCs. TA	L Metals (lab filtered), Cyanide, Chlo	ride

SURFACE WATER SAMPLING LOG

SITE	SITE						
NAME: Harrison Landfill	LOCATION: Harrison, NY						
WEATHER: Sunny 85°F	DATE: 7/25/12						

Station ID	Time	Sample Depth	Total Depth	Temp °C	pН	Cond.	Turbidity NTUs	DO	Flow CFS
SW-1	12:30	0-4"	3"	18.07	7.41	0.374	41.1	14.21	0
SW-2	9:40	0-4"	2"	19.39	8.50	0.365	201	7.67	0
SW-3*	10:15	-	<1"	-	-	-	-	-	-
SW-4	14:45	0-4"	6"	22.53	4.63	0.367	207	5.77	0

SAMPLING DATA

SAMPLED BY:	
Marc Califano, Tom LaBanca	
SAMPLING METHOD:	

Stainless Steel Ladle

ANALYSIS:

TCL VOCs, TCL SVOCs, TAL Metals, Cyanide, Chloride

*SW-3 did not contain a measurable amount of water during time of sampling.

175 ROUTE 46 WEST, UNIT D · FAIRFIELD, NJ 07004 2 MADISON ROAD, FAIRFIELD, NJ 07004 800-426-9992 · 973-244-9770 FAX: 973-244-9787

WWW.HCVLAB.COM

Project: 9051.010 Harrison LF

Client PO: 9051.010

Report To: Cashin Associates

1200 Veterans Memorial Highway

Hauppauge, NY 11788

Attn: Kimberly Somers

Received Date: 7/24/2012

Report Date: 8/20/2012

Deliverables: NYDOH-CatA

Lab ID: AC67263

Lab Project No: 2072427

AUG 2 2 2012 905 | 010 CASHIN ASSOCIATES, P.C.

This report is a true report of results obtained from our tests of this material. The report relates only to those samples received and analyzed by the laboratory. All results meet the requirements of the NELAC Institute standards. Laboratory reports may not be reproduced, except in full, without the written approval of the laboratory.

In lieu of a formal contract document, the total aggregate liability of Veritech to all parties shall not exceed Veritech's total fee for analytical services rendered.

Robin Cousineau - Quality Assurance Director

OR

Stanley Gilewicz - Laboratory Director

NJ (07071) PA (68-00463) NY (ELAP11408) KY (90124)

CT (PH-0671)

USACE

THIS CATEGORY "A" REPORT IS NUMBERED FROM 1 to 57

HCV Case Narrative/Conformance Summary

Client: Cashin Associates HCV Project: 2072427

Project: 9051.011 Harrison LF

Hampton-Clarke/Veritech (HC·V) received the following samples on July 24, 2012:

Client ID	HCV Sample ID	Matrix	Analysis
PC-1 U	AC67263-001	Aqueous	VO (624), BNA (625), Chloride (300.0), Cyanide (335.4)
PC-1 F	AC67263-002	Aqueous	Metals (200.7, 245.1)
LF-1 U	AC67263-003	Aqueous	VO (624), BNA (625), Chloride (300.0), Cyanide (335.4)
LF-1 F	AC67263-004	Aqueous	Metals (200.7, 245.1)
PC-3 U	AC67263-005	Aqueous	VO (624), BNA (625), Chloride (300.0), Cyanide (335.4)
PC-3 F	AC67263-006	Aqueous	Metals (200.7, 245.1)
TB7/23	AC67263-007	Aqueous	VO (624)

Volatile Organic Analysis:

The Matrix Spike and/or Matrix Spike Duplicate for batch 19311 had recoveries outside QC limits. However, since the associated Method Blank and Laboratory Control Sample were within control, no corrective action was necessary.

Base Neutral/Acid Extractable Analysis:

The Matrix Spike/Matrix Spike Duplicate RPD for batch 14942 had recoveries outside QC limits. However, since the associated Method Blank and Laboratory Control Sample were within control, no corrective action was necessary.

Sample AC67263-001 MS had one or more surrogates outside QC limits.

Metals Analysis:

The serial dilution for batch 18151 is outside QC limits for one or more analytes, suggesting matrix interference.

Wet Chemistry Analysis:

The Matrix Spike and/or Matrix Spike Duplicate for Chloride batch 1272 recovered outside QC limits. However, since the associated Method Blank and Laboratory Control Sample were within control, no corrective action was necessary.

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package and in the computer-readable data has been authorized by the Laboratory Manager or his designee, as verified by the following signature.

Robin Cousineau Or Stanley Gilewicz Date

Quality Assurance Director Laboratory Director

HC-V 2010 Merged; iv) PA; v) NY; vi) Project-Specific	Please circle required parameter list refer to HCV summ	Amount of the second of the se	Additional Notes	No.	Mar Collins	10)Relinquished by:			Trip Blank (7)	-005/-006 PC-3	24 M3 - COH CF-1 EM 24	PC-1 624 7	HCV 1265 Lab Sample # 4) Customer Sample ID Matrix D	менен жана жана жана жана жана жана жана	spec	Batch # WW - Waster Water OI - Oil	DW - Drinking Water S - Soil A - Air		FOR LAB		1d) Send Report to:	C) Send Invoice to:	1b) Email/Cell/Fax/Ph:	Address 1205 Vetters Manual	1a) Customer: Ca.S.	Customer information	MI (Service Center): 8	Service Center: 137-D Gaither Drive, Mount Laurel, New Jersey 08054	Ph: 800-426-9992 973-244-9770 Fax: 973-244-9787 973-439-1459
	TO THE REAL PROPERTY AND ADDRESS OF THE PROPERTY ADDRESS O		Note	They have	1 15 15 15 15 10 NOIS	Accepted by: Date Time					%\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	500	Date Time Compo	site	(C)	voc Voc tel	Sample		7)Analysis Request	•	2d) Quote/PO # (If Applicable):	* Indanc Locatori (city/sidte).	20) Project Mgr.: (State)	Harr Sec	1. C. 2a) Project: 955/ 663 .	ner Information	56 ANV #44400 FOR PRINCIPAL LARKE V ERIECH		139-1458
r lease note NUMBERED items. If not completed your analytical work may be delayed. A fee of \$5/sample will be assessed for storage should sample not be activated for any analysis.	1) Sampler (print name):	High Contaminant Concentrations NJ LSRP Project	ئىسىت يى ك	6020)	Note: Check if low-level groundwater methods required to meet current standards in NJ or PA BN or BNA (8270C SIM) Trip Blank in NJ. and NJ.	Comments, Notes, Special Requirements, HAZARDS						N	Ione IeOH in Core	# of Bottles	3	SISTA ACCOUNTS OF THE CONTRACT		<=== Check if Contingent			3 Ob other: St	10 Days (10%)	1 Week (25%; EPH)	4 Days (35%; TPH) C	72 Hours (50%) R	3	Turnaround		
lefted your analytical work may be delayed, hould sample not be activated for any analysis.	Date:		19 70 # Chemical Royal	CONTROLLER (II CANTONO)	Trip Blenk Ind. add be.	Requirements, HAZARDS						1	NO3	Hes				ntingent		Please Ch	Other Other	ory A	ory B	CLP Excel_NL Regulatory	Waste EQuIS 4-File / EZ / NYS Red - NJ / NY / PA EQuIS EPA Region 2 or 5	Data Summary Hazsite/CSV	Report Type Electronic Deliv.	3)Reporting Requirements (Please Circle)	COM

PROJECT MODIFICATIONS

Client: CASHIN	HCV Project #: 2072427
Project: 9051.010 Harrison LF	
debrapost192.168.1.51	
7/26/2012 4:27:50 PM	
As per Mark Califano the proj. ID for the Harrison Landfill project	s 9051.010. DP 7/26/12
debrapost192.168.1.51	

AS per Mark Califan 7/27/12 remove all total metals from unfiltered sammples. Metals analysis removed from sampes AC67263-001,-003,-005. DP 7/27/12.

CONDITION UPON RECEIPT

Batch Number AC67263 Entered By: Ricardo

Date Entered 7/24/2012 6:38:00 PM

1	Yes	Is there a corresponding COC included with the samples?
2	Yes	Are the samples in a container such as a cooler or Ice chest?
3	NO	Are the COC seals intact?
4	Yes	Please specify the Temperature inside the container (in degC) 2.1C
5	Yes	Are the samples refrigerated (where required)/have they arrived on ice?
6	Yes	Are the samples within the holding times for the parameters listed on the COC? IF no, list parameters and samples:
7	Yes	Are all of the sample bottles intact? If no, specify sample numbers broken/leaking
8	Yes	Are all of the sample labels or numbers legible? If no specify:
9	NO	Do the contents match the COC? If no, specify TB7/23 RECEIVED BUT NOT STATED ON COC.
10	Yes	Is there enough sample sent for the analyses listed on the COC? If no, specify:
11	Yes	Are samples preserved correctly?
12	Yes	Was temperature blank present (Place comment below if not)? If not was temperature of samples verified?
13	NA	Other comments Specify
14	NA	Corrective actions (Specify item number and corrective action taken).

PRESERVATION DOCUMENT

Batch Number AC67263 Entered By: Ricardo

Date Entered 7/24/2012 6:39:00 PM

Lab#:	Container Siz	Container Typ	Parameter	Preservative	PH	
AC67263-001	40ML	G	VO	HCL	1	
AC67263-001	1L	P	METALS	HNO3	1	
AC67263-001	500ML	G	CN	NAOH	14	
AC67263-002	NA	NA	NA	NA	NA	
AC67263-002	NA	NA	NA	NA	NA	
AC67263-002	NA	NA	NA	NA	NA	
AC67263-003	40ML	G	VO	HCL	1	
AC67263-003	1L	Р	METALS	HNO3	1	
AC67263-003	500ML	G	CN	NAOH	14	
AC67263-004	NA	NA	NA	NA	NA	
AC67263-004	NA	NA	NA	NA	NA	
AC67263-004	NA	NA	NA	NA	NA	
AC67263-005	40ML	G	VO	HCL	1	
AC67263-005	1L	Р	METALS	HNO3	1	
AC67263-005	500ML	G	CN	NAOH	14	
AC67263-006	NA	NA	NA	NA	NA	
AC67263-006	NA	NA	NA	NA	NA	
AC67263-006	NA	NA	NA	NA	NA	
AC67263-007	40ML	G	VO	HCL	1	
AC67263-007	NA	NA	NA	NA	NA	
AC67263-007	NA	NA	NA	NA	NA	

Internal Chain of Custody

Lab#:	DateTime:	Loc or User	Bot Nu		Analysis	Lab#:
AC67263-001	07/24/12 17:24	RICAR		М	Received	Laur.
AC67263-001	07/24/12 18:38	RICAR		М	Login	
AC67263-001	07/25/12 14:13	R31	1	Α	NONE	
AC67263-001	07/25/12 14:13	R31	2	Α	NONE	
AC67263-001	08/02/12 15:30	ABM	2	Α	VOA	
AC67263-001	07/25/12 14:13	R31	3	Α	NONE	
AC67263-001	07/31/12 08:22	JW	4	Α	ic	
AC67263-001	07/31/12 09:12	R12	4	Α	NONE	
AC67263-001	08/01/12 08:43	JW	4	Α	c	
AC67263-001	08/01/12 16:28	R12	4	Α	NONE	
AC67263-001	07/27/12 08:47	MSL	6	Α	bn	
AC67263-001 AC67263-001	07/27/12 08:47	MSL	7	A	bn	
AC67263-001	07/27/12 08:48	R12	7	A	NONE	
AC67263-001	07/27/12 08:41	NAN R12	8	A	cn-water-mur NONE	
AC67263-002	07/24/12 17:24	RICAR		М	Received	
AC67263-002	07/24/12 18:38	RICAR		M	Login	
AC67263-002	07/27/12 17:14	RAMO		:A	r12	
AC67263-002	07/27/12 17:14	RAMO		Α.	filter	
AC67263-002	07/30/12 11:35	SRB	1	Α	tdsw-hg	
AC67263-002	07/30/12 12:50	R12	1	Α	NONE	
AC67263-003	07/24/12 17:24	RICAR		М	Received	
AC67263-003	07/24/12 18:38	RICAR		М	Login	
AC67263-003	07/25/12 14:13		1	Α	NONE	
AC67263-003	07/25/12 14:13	R31	2	Α	NONE	
AC67263-003	08/02/12 15:30	ABM	2	Α	VOA	
AC67263-003	07/25/12 14:13	R31	3	Α	NONE	
AC67263-003	07/31/12 08:22	JW	4	Α	ic	
AC67263-003	07/31/12 09:12	R12	4	Α	NONE	
AC67263-003	08/01/12 08:43	JW	4	Α	ic	
AC67263-003	08/01/12 16:28	R12	4	Α	NONE	
AC67263-003	07/27/12 08:51	MSL	6	Α	bn	
AC67263-003	07/27/12 08:41	NAN	8	Α	cn-water-mur	
AC67263-003	07/27/12 15:46	R12	8	Α	NONE	
AC67263-004	07/24/12 17:24	RICAR			Received	
AC67263-004	07/24/12 18:38	RICAR			Login	
AC67263-004	07/27/12 17:14	RAMO			r12	
AC67263-004 AC67263-004	07/27/12 17:14	RAMO			filter	
C67263-004	07/30/12 11:35 07/30/12 12:50	SRB			tdsw-hg	
C67263-005	07/24/12 17:24	R12 RICAR			NONE Received	
C67263-005	07/24/12 17:24	RICAR			Login	
C67263-005	07/25/12 14:13				NONE	
C67263-005	07/25/12 14:13				NONE	
C67263-005	08/02/12 15:30				VOA	
C67263-005	07/25/12 14:13				NONE	
C67263-005	07/31/12 08:22				ic	
C67263-005	07/31/12 09:12	R12 4			NONE	
C67263-005	08/01/12 08:43				ic	
C67263-005	08/01/12 16:28				NONE	
C67263-005	07/27/12 08:47	MSL 7	7		on	
C67263-005	07/27/12 08:41	NAN 8	3	A i	on-water-mur	
C67263-005	07/27/12 15:46	R12 8	3	A j	NONE	
C67263-006	07/24/12 17:24	RICAR)	M I	Received	
C67263-006	07/24/12 18:38	RICAR) [ИΙ	Login	
C67263-006	07/27/12 17:14	RAMO 1	,	۹ ۱	12	
C67263-006	07/27/12 17:14	RAMO 1	1	4 f	ilter	
C67263-006	07/30/12 11:35	SRB 1	1	۹ t	dsw-hg	
C67263-006	07/30/12 12:50	R12 1	1	۱ ۸	NONE	
C67263-007	07/24/12 17:24	RICAR 0	ı	vi F	Received	
C67263-007	07/24/12 18:38	RICAR 0	ı		.ogin	
C67263-007	07/25/12 14:13	R31 1			NONE	
C67263-007	08/02/12 14:10	WP 1			/OA	
C67263-007	07/25/12 14:13	R31 2			IONE	
C67263-007	07/25/12 14:13	R31 3	P	\ N	IONE	

Laboratory Chronicle

Client: Cashin Associates
Project: 9051.010 Harrison LF

HCV Project #: 2072427

Lab	#:	AC.	672	63-	001
	77.	\neg	U 1 2	UJ-	UUI

Samp	le l	D:	PC	2-1	U
------	------	----	----	-----	---

Test Code	Prep Method	Prep Date	Ву	Analytical Method	Analysis Date	Ву
Chloride (Water) 300.0		08/01/12	Janee	300.0 rev2.1	8/1/12 20:03	Janee
Cyanide-Water (EPA 335.4)	EPA 335.4	07/27/12	Neceta	EPA 335.4	7/30/12 16:43	JS
Semivolatile Organics + 25 (625)	EPA 625	07/27/12	marie	EPA 625	7/27/12 15:55	AHD
Volatile Organics + 10 (624)	EPA 624			EPA 624	8/3/12 00:11	WP

Lab#: AC67263-002

Sample ID: PC-1 F

Test Code	Prep Method	Prep Date	Ву	Analytical Method	Analysis Date	Ву
Mercury (Water) 245.1	245.1 rev3.0	07/30/12	sean	245.1 rev3.0	8/8/12 11:12	OA
TAL Metals 200.7/8	EPA 200.2	07/30/12	sean	200.7/200.8	8/3/12 12:09	SRB
TAL Metals 200.7/8	EPA 200.2	07/30/12	sean	200.7/200.8	8/3/12 21:42	SRB

Lab#: AC67263-003

Sample ID: LF-1 U

Test Code	Prep Method	Prep Date	Ву	Analytical Method	Analysis Date	Ву
Chloride (Water) 300.0		08/01/12	Janee	300.0 rev2.1	8/1/12 20:26	Janee
Cyanide-Water (EPA 335.4)	EPA 335.4	07/27/12	Neceta	EPA 335.4	7/30/12 16:45	JS
Semivolatile Organics + 25 (625)	EPA 625	07/27/12	marie	EPA 625	7/27/12 22:43	AHD
Volatile Organies + 10 (624)	EPA 624			EPA 624	8/3/12 00:27	WP

Lab#: AC67263-004

Sample ID: LF-1 F

Total Code	Prep	Prep		Analytical	Analysis	
Test Code	Method	Date	Ву	Method	Date	Ву
Mercury (Water) 245.1	245.1 rev3.0	07/30/12	sean	245.1 rev3.0	8/8/12 11:14	OA
ΓAL Metals 200.7/8	EPA 200.2	07/30/12	sean	200.7/200.8	8/3/12 12:13	SRB
TAL Metals 200.7/8	EPA 200.2	07/30/12	sean	200.7/200.8	8/3/12 21:46	SRB

Laboratory Chronicle

Client: Cashin Associates
Project: 9051.010 Harrison LF

HCV Project #: 2072427

Lab#: AC67263-005

Sample ID: PC-3 U

Test Code	Prep Method	Prep Date	Ву	Analytical Method	Analysis Date	Ву
Chloride (Water) 300.0		08/01/12	Janee	300.0 rev2.1	8/1/12 20:48	Janee
Cyanide-Water (EPA 335.4)	EPA 335.4	07/27/12	Neceta	EPA 335.4	7/30/12 16:47	JS
Semivolatile Organics + 25 (625)	EPA 625	07/27/12	marie	EPA 625	7/27/12 23:06	AHD
/olatile Organics + 10 (624)	EPA 624			EPA 624	8/2/12 22:06	WP

Lab#: AC67263-006

Sample ID: PC-3 F

Test Code	Prep Method	Prep Date	Ву	Analytical Method	Analysis Date	Ву
Mercury (Water) 245.1	245.1 rev3.0	07/30/12	sean	245.1 rev3.0	8/8/12 11:15	OA
TAL Metals 200.7/8	EPA 200.2	07/30/12	sean	200.7/200.8	8/3/12 12:17	SRB
TAL Metals 200.7/8	EPA 200.2	07/30/12	sean	200.7/200.8	8/3/12 21:49	SRB

Lab#: AC67263-007

Sample ID: TB7/23

Test Code	Prep Method	Prep Date	Ву	Analytical Method	Analysis Date	Ву	
Volatile Organics + 10 (624)	EPA 624			EPA 624	8/2/12 17:58	WP	

Project #: 2072427

HCV Reporting Limit Definitions/Data Qualifiers

REPORTING DEFINITIONS

DF = Dilution Factor

MDL = Method Detection Limit

RL* = Reporting Limit

ND = Not Detected

RT = Retention Time

NA = Not Applicable

DATA QUALIFIERS

- **B-** Indicates analyte was present in the Method Blank and sample.
- **d-** For Pesticide and PCB analysis, the concentration between primary and secondary columns is greater than 40%. The lower concentration is generally reported.
- E- Indicates the concentration exceeded the upper calibration range of the instrument.
- J- Indicates the value is estimated because it is either a Tentatively Identified Compound (TIC) or the reported concentration is greater than the MDL but less than the RL. For samples results between the MDL and RL there is a possibility of false positives or misidentification at the quantitation levels. Additionally, the acceptance criteria for QC samples may not be met.

^{*}Samples with elevated Reporting Limits (RLs) as a result of a dilution may not achieve client reporting limits in some cases. The elevated RLs are unavoidable consequences of sample dilution required to quantitate target analytes that exceed the calibration range of the instrument.

HCV Report Of Analysis

Client: Cashin Associates HCV Project #: 2072427

Project: 9051.010 Harrison LF

Sample ID: PC-1 U

Lab#: AC67263-001 Matrix: Aqueous Collection Date: 7/24/2012 Receipt Date: 7/24/2012

Chloride (Water) 300.0

Analyte	DF	Units	RL	Result
Chloride	10	mg/l	20	130

Cyanide-Water (EPA 335.4)

Cyanide 1 mg/l	0.020	ND

Semivolatile Organics + 25 (625)

Analyte	DF	Units	RL	Result
1,1'-Biphenyl	1	ug/l	2.0	ND
1,2,4,5-Tetrachlorobenzene	1	ug/l	2.0	ND
2,3,4,6-Tetrachlorophenol	1	ug/l	2.0	ND
2,4,5-Trichlorophenol	1	ug/l	2.0	ND
2,4,6-Trichlorophenol	1	ug/l	2.0	ND
2,4-Dichlorophenol	1	ug/l	2.0	ND
2,4-Dimethylphenol	1	ug/l	2.0	ND
2,4-Dinitrophenol	1	ug/l	10	ND
2,4-Dinitrotoluene	1	ug/l	2.0	ND
2,6-Dinitrotoluene	1	ug/l	2.0	ND
2-Chloronaphthalene	1	ug/l	2.0	ND
2-Chlorophenol	1	ug/l	2.0	ND
2-Methylnaphthalene	1	ug/l	2.0	ND
2-Methylphenol	1	ug/l	0.50	ND
2-Nitroaniline	1	ug/l	2.0	ND
2-Nitrophenol	1	ug/l	2.0	NĐ
3&4-Methylphenol	1	ug/l	0.50	ND
3,3'-Dichlorobenzidine	1	ug/l	2.0	ND
3-Nitroaniline	1	ug/l	2.0	ND
4,6-Dinitro-2-methylphenol	1	ug/l	2.0	ND
4-Bromophenyl-phenylether	1	ug/l	2.0	ND
4-Chloro-3-methylphenol	1	ug/l	2.0	ND
4-Chloroaniline	1	ug/l	0.50	ND
4-Chlorophenyl-phenylether	1	ug/l	2.0	ND
4-Nitroaniline	1	ug/l	2.0	ND
4-Nitrophenol	1	ug/l	2.0	ND
Acenaphthene	1	ug/l	2.0	ND
Acenaphthylene	1	ug/l	2.0	ND
Acetophenone	1	ug/l	2.0	ND
Anthracene	1	ug/l	2.0	ND
Atrazine	1	ug/l	2.0	ND
Benzaldehyde	1	ug/l	2.0	ND
Benzo[a]anthracene	1	ug/l	2.0	ND
Benzo[a]pyrene	1	ug/l	2.0	ND
Benzo[b]fluoranthene	1	ug/l	2.0	ND
Benzo[g,h,i]perylene	1	ug/l	2.0	ND
Benzo[k]fluoranthene	1	ug/l	2.0	ND
sis(2-Chloroethoxy)methane	1	ug/l	2.0	ND
sis(2-Chloroethyl)ether	1	ug/l	0.50	ND
pis(2-Chloroisopropyl)ether	1	ug/l	2.0	ND

ID: PC-1 U b#: AC67263-001			Collection Date: Receipt Date:	
rix: Aqueous				
bis(2-Ethylhexyl)phthalate	1	ug/I	2.0	ND
Butylbenzylphthalate	1	ug/l	2.0	ND
Caprolactam	1	ug/l	2.0	ND
Carbazole	1	ug/l	2.0	ND
Chrysene	1	ug/l	2.0	ND
Dibenzo[a,h]anthracene	1	ug/l	2.0	ND
Dibenzofuran	1	ug/l	0.50	ND
Diethylphthalate	1	ug/l	2.0	ND
Dimethylphthalate	1	ug/l	2.0	ND
Di-n-butylphthalate	1	ug/l	0.50	ND
Di-n-octylphthalate	1	ug/l	2.0	ND
Fluoranthene	1	ug/l	2.0	ND
Fluorene	1	ug/l	2.0	ND
Hexachlorobenzene	1	ug/l	2.0	ND
Hexachlorobutadiene	1	ug/l	2.0	ND
Hexachlorocyclopentadiene	1	ug/l	2.0	ND
Hexachloroethane	1	ug/l	2.0	ND
Indeno[1,2,3-cd]pyrene	1	ug/l	2.0	ND
Isophorone	1	ug/l	2.0	ND
Naphthalene	1	ug/l	0.50	ND ND
Nitrobenzene	1	ug/l	2.0	
N-Nitroso-di-n-propylamine	1		0.50	ND
N-Nitrosodiphenylamine	1	ug/l		ND
Pentachlorophenol	1	ug/l	2.0	ND
Phenanthrene		ug/l	10	ND
Phenol	1	ug/l	2.0	ND
Pyrene		ug/l	2.0	ND
Semivolatile Organics + 25 (625) Library S	earches	ug/l	2.0	ND
Analyte	DF	Units	RT	n - 1
No Unknown Compounds Detected				Result
	1	ug/l	NA	ND
TotalSemiVolatileTic	1	ug/l	NA	ND
Volatile Organics + 10 (624)				
Analyte	DF	Units	RL	Result
1,1,1-Trichloroethane	1	ug/l	1.0	ND
1,1,2,2-Tetrachloroethane	1	ug/l	1.0	ND
1,1,2-Trichloro-1,2,2-trifluoroethane	1	ug/l	5.0	ND
1,1,2-Trichloroethane	1	ug/l	1.0	ND
1,1-Dichloroethane	1	ug/l	1.0	ND
1,1-Dichloroethene	1	ug/i	1.0	ND
1,2,3-Trichlorobenzene	1	ug/l	1.0	ND
1,2,4-Trichlorobenzene	1	ug/l	1.0	ND
1,2-Dibromo-3-chloropropane	1	ug/l	1.0	
1,2-Dibromoethane	1			ND
1,2-Dichlorobenzene	1	ug/l	1.0	ND
1,2-Dichloroethane		ug/l	1.0	ND
1,2-Dichloropropane	1	ug/l	0.50	ND
1,3-Dichlorobenzene	1	ug/l	1.0	ND
	1	ug/l	1.0	ND
1,4-Dichlorobenzene	1	ug/l	1.0	ND
1,4-Dioxane	1	ug/l	50	ND
2-Butanone	1	ug/l	1.0	ND
2-Hexanone		um/l	1.0	ND
	1	ug/l	1.0	110
4-Methyl-2-pentanone	1	ug/l		ND
			1.0	
4-Methyl-2-pentanone	1	ug/l	1.0	ND

Bromochloromethane

ug/l

1.0

ND

Lab#:	PC-1 U AC67263-001			Collection Date Receipt Date	
Matrix:	Aqueous			•	
	Bromodichloromethane	1	ug/l	1.0	ND
	Bromoform	1	ug/i	1.0	ND
	Bromomethane	1	ug/l	1.0	ND
	Carbon disulfide	1	ug/l	1.0	ND
	Carbon tetrachloride	1	ug/l	1.0	ND
	Chlorobenzene	1	ug/l	1.0	ND
	Chloroethane	1	ug/l	1.0	ND
	Chloroform	1	ug/l	1.0	ND
	Chloromethane	1	ug/l	1.0	ND
	cis-1,2-Dichloroethene	1	ug/l	1.0	ND
	cis-1,3-Dichloropropene	1	ug/l	1.0	ND
	Cyclohexane	1	ug/l	1.0	ND
	Dibromochloromethane	1	ug/i	1.0	ND
	Dichlorodifluoromethane	1	ug/l	1.0	ND
	Ethylbenzene	1	ug/l	1.0	ND
	Isopropylbenzene	1	ug/l	1.0	ND
	m&p-Xylenes	<u> </u>	ug/l	1.0	ND
	Methyl Acetate	1	ug/l	1.0	ND
	Methylcyclohexane	1	ug/l	1.0	ND
	Methylene chloride	1	ug/l	1.0	ND
	Methyl-t-butyl ether	1	ug/l	0.50	ND
	o-Xylene	1	ug/l	1.0	ND
	Styrene	1	ug/l	1.0	ND
	Tetrachloroethene	. 1	ug/l	1.0	ND
	Toluene	1	ug/l	1.0	ND
	trans-1,2-Dichloroethene	1	ug/l	1.0	ND
	trans-1,3-Dichloropropene	1	ug/l	1.0	ND
	Trichloroethene	1	ug/l	1.0	ND
	Trichlorofluoromethane		ug/l	1.0	ND
	Vinyl chloride	1	ug/l	1.0	ND
	Xylenes (Total)	1	ug/l	1.0	ND

DF

Units

ug/l

ug/l

RT

NA

NA

Analyte

TotalVolatileTic

No Unknown Compounds Detected

Result

ND

ND

Sample ID: PC-1 F

Lab#: AC67263-002

Matrix: Aqueous

Collection Date: 7/24/2012

Receipt Date: 7/24/2012

Mercury (Water) 245.1

Analyte	DF	Units	RL	Result
Mercury	1	ug/l	0.20	ND

TAL Metals 200.7/8

Analyte	DF	Units	RL	Result
Aluminum	1	ug/l	100	ND
Antimony	1	ug/l	7.5	ND
Arsenic	1	ug/l	20	ND
Barium	1	ug/l	25	120
Beryllium	1	ug/l	4.0	ND
Cadmium	1	ug/I	2.0	ND
Calcium	1	ug/l	1000	60000
Chromium	1	ug/l	25	ND
Cobalt	1	ug/l	10	ND
Copper	1	ug/l	25	ND
Iron	1	ug/i	150	ND
Lead	1	ug/l	5.0	ND
Magnesium	1	ug/l	1000	8800
Manganese	1	ug/l	25	710
Nickel	1	ug/l	10	ND
Potassium	1	ug/l	2500	3800
Seleníum	1	ug/l	25	ND
Silver	1	ug/l	10	ND
Sodium	1	ug/l	2500	87000
Thallium	1	ug/l	5.0	ND
Vanadium	1	ug/l	25	ND
Zinc	1	ug/l	25	ND

Sample ID: LF-1 U Lab#: AC67263-003

Matrix: Aqueous

Collection Date: 7/24/2012 Receipt Date: 7/24/2012

Chloride (Water) 300.0

Chloride 10 mg/l 20	

Cyanide-Water (EPA 335.4)

Analyte	DF	Units	RL	Result
Cyanide	1	mg/l	0.020	ND

Semivolatile Organics + 25 (625)

Analyte	DF	Units	RL	Result
1,1'-Biphenyl	1	ug/l	2.0	ND
1,2,4,5-Tetrachlorobenzene	1	ug/l	2.0	ND
2,3,4,6-Tetrachlorophenol	1	ug/l	2.0	ND
2,4,5-Trichlorophenol	1	ug/l	2.0	ND
2,4,6-Trichlorophenol	1	ug/l	2.0	ND
2,4-Dichlorophenol	1	ug/I	2.0	ND
2,4-Dimethylphenol	1	ug/l	2.0	ND
2,4-Dinitrophenol	1	ug/l	10	ND
2,4-Dinitrotoluene	1	ug/l	2.0	ND
2,6-Dinitrotoluene	1	ug/l	2.0	ND
2-Chloronaphthalene	1	ug/l	2.0	ND
2-Chlorophenol	1	ug/l	2.0	ND
2-Methylnaphthalene	1	ug/l	2.0	ND
2-Methylphenol	1	ug/l	0.50	ND
2-Nitroaniline	1	ug/l	2.0	ND
2-Nitrophenol	1	ug/l	2.0	ND
3&4-Methylphenol	1	ug/l	0.50	ND
3,3'-Dichlorobenzidine	1	ug/l	2.0	ND
3-Nitroaniline	1	ug/l	2.0	ND
4,6-Dinitro-2-methylphenol	1	ug/I	2.0	ND
4-Bromophenyl-phenylether	1	ug/l	2.0	ND
4-Chloro-3-methylphenol	1	ug/l	2.0	ND
4-Chloroaniline	1	ug/l	0.50	ND
4-Chlorophenyl-phenylether	1	ug/l	2.0	ND
4-Nitroaniline	1	ug/l	2.0	ND
4-Nitrophenol	1	ug/l	2.0	ND
Acenaphthene	1	ug/l	2.0	ND
Acenaphthylene	1	ug/l	2.0	ND
Acetophenone	1	ug/l	2.0	ND
Anthracene	1	ug/l	2.0	ND
Atrazine	1	ug/l	2.0	ND
Benzaldehyde	1	ug/l	2.0	ND
Benzo[a]anthracene	1	ug/l	2.0	ND
Benzo[a]pyrene	1	ug/l	2.0	ND
Benzo[b]fluoranthene	1	ug/l	2.0	ND
Benzo[g,h,i]perylene	1	ug/l	2.0	ND
Benzo[k]fluoranthene	1	ug/l	2.0	ND
sis(2-Chloroethoxy)methane	1	ug/l	2.0	ND ND
is(2-Chloroethyl)ether	1	ug/l	0.50	ND
is(2-Chloroisopropyl)ether	1	ug/l	2.0	ND ND
is(2-Ethylhexyl)phthalate	1	ug/l	2.0	ND ND
Butylbenzylphthalate	1	ug/l	2.0	ND
aprolactam	1	ug/l	2.0	ND
arbazole	1	ug/l	2.0	ND
hrysene	1	ug/l	2.0	ND ND
ibenzo[a,h]anthracene	1	ug/l	2.0	
ibenzofuran	•	ug.,	4.0	ND

nple ID: Ll Lab#: A Matrix: A	C67263-003				Date: 7/24/2012 Date: 7/24/2012
	Diethylphthalate	1	ug/l	2.0	ND
	Dimethylphthalate	1	ug/l	2.0	ND
	Di-n-butylphthalate	1	ug/l	0.50	ND
	Di-n-octylphthalate	1	ug/l	2.0	ND
	Fluoranthene	1	ug/l	2.0	ND ND
	Fluorene	1	ug/l	2.0	ND
	Hexachlorobenzene	1	ug/l	2.0	ND
	Hexachlorobutadiene	1	ug/l	2.0	ND
	Hexachlorocyclopentadiene	1	ug/l	2.0	ND
	Hexachloroethane	1	ug/l	2.0	ND
	Indeno[1,2,3-cd]pyrene	1	ug/l	2.0	ND
	Isophorone	1	ug/l	2.0	ND
	Naphthalene	1	ug/l	0.50	ND
	Nitrobenzene	1	ug/l	2.0	ND
	N-Nitroso-di-n-propylamine	1	ug/l	0.50	ND
	N-Nitrosodiphenylamine	1	ug/l	2.0	ND
	Pentachlorophenol	1	ug/l	10	ND
	Phenanthrene	1	ug/l	2.0	ND
	Phenol	1	ug/l	2.0	ND

Semivolatile Organics + 25 (625) Library Searches

Analyte	DF	Units	RT	Result
unknown	1	ug/l	12.67	5.1J
TotalSemiVolatileTic	1	ug/l	NA	5.1J

2.0

ND

Volatile Organics + 10 (624)

Analyte	DF	Units	RL	Result
1,1,1-Trichloroethane	1	ug/l	1.0	ND
1,1,2,2-Tetrachioroethane	1	ug/l	1.0	ND
1,1,2-Trichloro-1,2,2-trifluoroethane	1	ug/l	5.0	ND
1,1,2-Trichloroethane	1	ug/l	1.0	ND
1,1-Dichloroethane	1	ug/l	1.0	ND
1,1-Dichloroethene	1	ug/l	1.0	ND
1,2,3-Trichlorobenzene	1	ug/l	1.0	ND
1,2,4-Trichlorobenzene	1	ug/l	1.0	ND
1,2-Dibromo-3-chloropropane	1	ug/l	1.0	ND
1,2-Dibromoethane	1	ug/i	1.0	ND
1,2-Dichlorobenzene	1	ug/l	1.0	ND
1,2-Dichloroethane	1	ug/l	0.50	ND
1,2-Dichloropropane	1	ug/l	1.0	ND
1,3-Dichlorobenzene	1	ug/l	1.0	ND
1,4-Dichlorobenzene	1	ug/l	1.0	ND
1,4-Dioxane	1	ug/l	50	ND
2-Butanone	1	ug/l	1.0	ND
2-Hexanone	1	ug/l	1.0	ND
4-Methyl-2-pentanone	1	ug/l	1.0	ND
Acetone	1	ug/l	10	ND
Benzene	1	ug/l	0.50	ND
Bromochloromethane	1	ug/l	1.0	ND
Bromodichloromethane	1	ug/i	1.0	ND
Bromoform	1	ug/l	1.0	ND
Bromomethane	1	ug/l	1.0	ND
Carbon disulfide	1	ug/l	1.0	ND
Carbon tetrachloride	1	ug/l	1.0	ND
Chlorobenzene	1	ug/l	1.0	ND
Chloroethane	1	ug/l	1.0	ND

LF-1 U AC67263-003 Aqueous				n Date: 7/24/2012 t Date: 7/24/2012
Chloroform	1	ug/l	1.0	ND
Chloromethane	1	ug/l	1.0	ND
cis-1,2-Dichloroethene	1	ug/l	1.0	ND
cis-1,3-Dichloropropene	1	ug/l	1.0	ND
Cyclohexane	1	ug/l	1.0	ND
Dibromochloromethane	1	ug/l	1.0	ND
Dichlorodifluoromethane	1	ug/l	1.0	ND
Ethylbenzene	1	ug/l	1.0	ND
Isopropylbenzene	1	ug/l	1.0	ND
m&p-Xylenes	1	ug/I	1.0	ND
Methyl Acetate	1	ug/l	1.0	ND
Methylcyclohexane	1	ug/l	1.0	ND
Methylene chloride	1	ug/l	1.0	ND
Methyl-t-butyl ether	1	ug/l	0.50	ND
o-Xylene	1	ug/l	1.0	ND
Styrene	1	ug/l	1.0	ND
Tetrachloroethene	1	ug/l	1.0	ND
Toluene	1	ug/l	1.0	ND
trans-1,2-Dichloroethene	1	ug/l	1.0	ND
trans-1,3-Dichloropropene	1	ug/l	1.0	ND
Trichloroethene	1	ug/l	1.0	ND
Trichlorofluoromethane	1	ug/I	1.0	ND
Vinyl chloride	1	ug/l	1.0	ND
Xylenes (Total)	1	ug/l	1.0	ND

DF

Units

ug/l

ug/l

RT

NA

NA

Result

ND

Analyte

TotalVolatileTic

No Unknown Compounds Detected

Sample ID: LF-1 F

Lab#: AC67263-004

Matrix: Aqueous

Collection Date: 7/24/2012 Receipt Date: 7/24/2012

Mercury (Water) 245.1

Analyte	DF	Units	RL	Result	
Mercury	1	ug/l	0.20	ND	

TAL I	Metals	200.	7/8
-------	--------	------	-----

Analyte	DF	Units	RL	Result
Aluminum	1	ug/l	100	ND
Antimony	1	ug/l	7.5	ND
Arsenic	1	ug/l	20	ND
Barium	1	ug/l	25	110
Beryllium	1	ug/l	4.0	ND
Cadmium	1	ug/I	2.0	ND
Calcium	1	ug/l	1000	58000
Chromium	1	ug/l	25	ND
Cobalt	1	ug/l	10	ND
Copper	1	ug/l	25	ND
Iron	1	ug/l	150	ND
Lead	1	ug/l	5.0	ND
Magnesium	1	ug/l	1000	8400
Manganese	1	ug/l	25	670
Nickel	1	ug/l	10	ND
Potassium	1	ug/l	2500	3700
Selenium	1	ug/l	25	ND
Silver	1	ug/l	10	ND
Sodium	1	ug/l	2500	85000
Thallium	1	ug/l	5.0	ND
Vanadium	1	ug/l	25	ND
Zinc	1	ug/l	25	ND

Sample ID: PC-3 U Lab#: AC67263-005

Matrix: Aqueous

Collection Date: 7/24/2012 Receipt Date: 7/24/2012

Chloride (Water) 300.0

Analyte	DF	Units	RL	Result
Chloride	10	mg/l	20	140

Cyanide-Water (EPA 335.4)

Analyte	DF	Units	RL	Result
Cyanide	1	mg/l	0.020	ND

Semivolatile Organics + 25 (625)

Analyte	DF	Units	RL	Result
1,1'-Biphenyl	1	ug/l	2.0	ND
1,2,4,5-Tetrachlorobenzene	1	ug/l	2.0	ND
2,3,4,6-Tetrachlorophenol	1	ug/l	2.0	ND
2,4,5-Trichlorophenol	1	ug/l	2.0	ND
2,4,6-Trichlorophenol	1	ug/l	2.0	ND
2,4-Dichlorophenol	1	ug/l	2.0	ND
2,4-Dimethylphenol	1	ug/l	2.0	ND
2,4-Dinitrophenol	1	ug/l	10	ND
2,4-Dinitrotoluene	1	ug/l	2.0	ND
2,6-Dinitrotoluene	1	ug/l	2.0	ND
2-Chloronaphthalene	1	ug/l	2.0	ND
2-Chlorophenol	1	ug/l	2.0	ND
2-Methylnaphthalene	1	ug/l	2.0	ND
2-Methylphenol	1	ug/l	0.50	ND
2-Nitroaniline	1	ug/l	2.0	ND ND
2-Nitrophenol	1	ug/l	2.0	ND
3&4-Methylphenol	1	ug/l	0.50	
3,3'-Dichlorobenzidine	1	ug/l	2.0	ND
3-Nitroaniline	1	ug/l	2.0	ND ND
4,6-Dinitro-2-methylphenol	1	ug/l	2.0	ND
4-Bromophenyl-phenylether	1			ND
4-Chloro-3-methylphenol	1	ug/l	2.0	ND
4-Chloroaniline	1	ug/l	2.0	ND
4-Chlorophenyl-phenylether	1	ug/l	0.50	ND
4-Nitroaniline	1	ug/l	2.0	ND
4-Nitrophenol	1	ug/l ug/l	2.0	ND
Acenaphthene	1	ug/l	2.0	ND
Acenaphthylene	1		2.0	ND
Acetophenone	1 1	ug/l	2.0	ND
Anthracene	1	ug/l	2.0	ND
Atrazine	1	ug/l	2.0	ND
Benzaldehyde	1	ug/l	2.0	ND
Benzo[a]anthracene	1	ug/l	2.0	ND
Benzo[a]pyrene	1	ug/l	2.0	ND
Benzo[b]fluoranthene		ug/l	2.0	ND
Benzo[g,h,i]perylene	1	ug/l	2.0	ND
Benzo(k)fluoranthene	1	ug/l	2.0	ND
bis(2-Chloroethoxy)methane	1	ug/l	2.0	ND
bis(2-Chloroethyl)ether	1	ug/l	2.0	ND
bis(2-Chloroisopropyl)ether	1	ug/l	0.50	ND
bis(2-Ethylhexyl)phthalate	1	ug/l	2.0	ND
Butylbenzylphthalate	1	ug/l	2.0	ND
Caprolactam	1	ug/l	2.0	ND
	1	ug/l	2.0	ND
Characte	1	ug/l	2.0	ND
Chrysene	1	ug/I	2.0	ND
Dibenzo[a,h]anthracene	1	ug/l	2.0	ND
Dibenzofuran	1	ug/l	0.50	ND

mple ID: PC-3 U			Collection Date: 7/24/2012		
Lab#: AC67263-005			Receipt Date: 7/24/2012		
Matrix: Aqueous					
Diethylphthalate	1	ug/l	2.0	ND	
Dimethylphthalate	1	ug/l	2.0	ND	
Di-n-butylphthalate	1	ug/l	0.50	ND	
Di-n-octylphthalate	1	ug/l	2.0	ND	
Fluoranthene	1	ug/l	2.0	ND	
Fluorene	1	ug/i	2.0	ND	
Hexachlorobenzene	1	ug/l	2.0	ND	
Hexachlorobutadiene	1	ug/l	2.0	ND	
Hexachlorocyclopentadiene	1	ug/l	2.0	ND	
Hexachloroethane	1	ug/l	2.0	ND	
Indeno[1,2,3-cd]pyrene	1	ug/l	2.0	ND	
Isophorone	1	ug/l	2.0	ND	
Naphthalene	1	ug/l	0.50	ND	
Nitrobenzene	1	ug/l	2.0	ND	
N-Nitroso-di-n-propylamine	1	ug/l	0.50	ND	
N-Nitrosodiphenylamine	1	ug/l	2.0	ND	
Pentachlorophenol	1	ug/l	10	ND	
Phenanthrene	1	ug/l	2.0	ND	
Phenol	1	ug/l	2.0	ND	

Semivolatile Organics + 25 (625) Library Searches

Analyte	DF	Units	RT	Result
No Unknown Compounds Detected	1	ug/l	NA	ND
TotalSemiVolatileTic	1	ug/l	NA	ND

2.0

Volatile Organics + 10 (624)

Pyrene

Analyte	DF	Units	RL	Result
1,1,1-Trichloroethane	1	ug/l	1.0	ND
1,1,2,2-Tetrachloroethane	1	ug/l	1.0	ND
1,1,2-Trichloro-1,2,2-trifluoroethane	1	ug/l	5.0	ND
1,1,2-Trichloroethane	1	ug/l	1.0	ND
1,1-Dichloroethane	1	ug/l	1.0	ND
1,1-Dichloroethene	1	ug/I	1.0	ND
1,2,3-Trichlorobenzene	1	ug/l	1.0	ND
1,2,4-Trichlorobenzene	1	ug/l	1.0	ND
1,2-Dibromo-3-chloropropane	1	ug/l	1.0	ND
1,2-Dibromoethane	1	ug/l	1.0	ND
1,2-Dichlorobenzene	1	ug/l	1.0	ND
1,2-Dichloroethane	1	ug/l	0.50	ND
1,2-Dichloropropane	1	ug/l	1,0	ND
1,3-Dichlorobenzene	1	ug/i	1.0	ND
1,4-Dichlorobenzene	1	ug/l	1.0	ND
1,4-Dioxane	1	ug/l	50	ND
2-Butanone	1	ug/l	1.0	ND
2-Hexanone	1	ug/l	1.0	ND
4-Methyl-2-pentanone	1	ug/l	1.0	ND
Acetone	1	ug/l	10	ND
Benzene	1	ug/l	0.50	ND
Bromochloromethane	1	ug/l	1.0	ND
Bromodichloromethane	1	ug/l	1.0	ND
Bromoform	1	ug/l	1.0	ND
Bromomethane	1	ug/l	1.0	ND
Carbon disulfide	1	ug/l	1.0	ND
Carbon tetrachloride	1	ug/l	1.0	ND
Chlorobenzene	1	ug/l	1.0	ND
Chloroethane	1	ug/l	1,0	ND

PC-3 U AC67263-005 Aqueous				Date: 7/24/2012 Date: 7/24/2012
Chloroform	1	ug/l	1.0	ND
Chloromethane	1	ug/l	1.0	ND
cis-1,2-Dichloroethene	1	ug/l	1.0	ND
cis-1,3-Dichloropropene	1	ug/l	1.0	ND
Cyclohexane	1	ug/l	1.0	ND
Dibromochloromethane	1	ug/l	1.0	ND
Dichlorodifluoromethane	1	ug/l	1.0	ND
Ethylbenzene	1	ug/l	1.0	ND
Isopropylbenzene	1	ug/l	1.0	ND
m&p-Xylenes	1	ug/l	1.0	ND
Methyl Acetate	1	ug/l	1.0	ND
Methylcyclohexane	1	ug/l	1.0	ND
Methylene chloride	1	ug/l	1.0	ND
Methyl-t-butyl ether	1	ug/l	0.50	ND
o-Xylene	1	ug/l	1.0	ND
Styrene	1	ug/l	1.0	ND
Tetrachloroethene	1	ug/l	1.0	ND
Toluene	1	ug/l	1.0	ND
trans-1,2-Dichloroethene	1	ug/l	1.0	ND
trans-1,3-Dichloropropene	1	ug/l	1.0	ND
Trichloroethene	1	ug/l	1.0	ND
Trichlorofluoromethane	1	ug/l	1.0	ND
Vinyl chloride	1	ug/l	1.0	ND
Xylenes (Total)	1	ug/l	1.0	ND

DF

Units

ug/l

ug/l

RT

NA

NA

Result

ND

ND

Volatile Organics + 10 (624) Library Searches

No Unknown Compounds Detected

Analyte

TotalVolatileTic

Sample ID: PC-3 F

Lab#: AC67263-006

Matrix: Aqueous

Collection Date: 7/24/2012 Receipt Date: 7/24/2012

Mercury (Water) 245.1

Analyte	DF	Units	RL	Result
Mercury	1	ug/l	0.20	ND

TAL Metals 200.7/8

Analyte	DF	Units	RL	Result
Aluminum	1	ug/l	100	ND
Antimony	1	ug/i	7.5	ND
Arsenic	1	ug/l	20	ND
Barium	1	ug/l	25	120
Beryllium	1	ug/l	4.0	ND
Cadmium	1	ug/l	2.0	ND
Calcium	1	ug/l	1000	56000
Chromium	1	ug/l	25	ND
Cobalt	1	ug/l	10	ND
Copper	1	ug/l	25	ND
Iron	1	ug/l	150	1700
Lead	1	ug/l	5.0	ND
Magnesium	1	ug/l	1000	16000
Manganese	1	ug/l	25	560
Nickel	1	ug/l	10	ND
Potassium	1	ug/l	2500	4900
Selenium	1	ug/l	25	ND
Silver	1	ug/l	10	ND
Sodium	1	ug/i	2500	64000
Thallium	1	ug/l	5.0	ND
Vanadium	1	ug/l	25	ND
Zinc	1	ug/l	25	ND

Sample ID: TB7/23 Lab#: AC67263-007 Matrix: Aqueous Collection Date: 7/24/2012 Receipt Date: 7/24/2012

Volatile Organics + 10 (624)

Analyte	DF	Units	RL	Result
1,1,1-Trichloroethane	1	ug/l	1.0	ND
1,1,2,2-Tetrachloroethane	1	ug/l	1.0	ND
1,1,2-Trichloro-1,2,2-trifluoroethane	1	ug/l	5.0	ND
1,1,2-Trichloroethane	1	ug/l	1.0	ND ND
1,1-Dichloroethane	1	ug/l	1.0	ND
1,1-Dichloroethene	1	ug/I	1.0	ND ND
1,2,3-Trichlorobenzene	1	ug/l	1.0	ND
1,2,4-Trichlorobenzene	1	ug/l	1.0	ND ND
1,2-Dibromo-3-chloropropane	1	ug/l	1.0	ND
1,2-Dibromoethane	1	ug/l	1.0	ND
1,2-Dichlorobenzene	1	ug/l	1.0	ND
1,2-Dichloroethane	1	ug/l	0.50	ND ND
1,2-Dichloropropane	1	ug/l	1.0	ND
1,3-Dichlorobenzene	1	ug/l	1.0	ND ND
1,4-Dichlorobenzene	1	ug/i	1.0	
1,4-Dioxane	1	ug/l	50	ND ND
2-Butanone	1	ug/l	1.0	ND
2-Hexanone	1	-		ND
4-Methyl-2-pentanone	1	ug/l	1.0	ND
Acetone		ug/l	1.0	ND
Benzene	1	ug/l	10	ND
Bromochloromethane	1	ug/l	0.50	ND
Bromodichloromethane	1	ug/l	1.0	ND
Bromoform	1	ug/l	1.0	ND
Bromomethane	1	ug/l	1.0	ND
Carbon disulfide	1	ug/l	1.0	ND
	1	ug/l	1.0	ND
Carbon tetrachloride	1	ug/l	1.0	ND
Chlorobenzene	1	ug/l	1.0	ND
Chloroethane	1	ug/l	1.0	ND
Chloroform	1	ug/l	1.0	ND
Chloromethane	1	ug/l	1.0	ND
cis-1,2-Díchloraethene	1	ug/l	1.0	ND
cis-1,3-Dichloropropene	1	ug/l	1.0	ND
Cyclohexane	1	ug/l	1.0	ND
Dibromochloromethane	1	ug/l	1.0	ND
Dichlorodifluoromethane	1	ug/l	1.0	ND
Ethylbenzene	1	ug/l	1.0	ND
Isopropylbenzene	1	ug/l	1.0	ND
m&p-Xylenes	1	ug/l	1.0	ND
Methyl Acetate	1	ug/I	1.0	ND
Methylcyclohexane	1	ug/l	1.0	ND
Methylene chloride	1	ug/l	1.0	ND
Methyl-t-butyl ether	1	ug/l	0.50	ND
o-Xylene	1	ug/l	1.0	ND
Styrene	1	ug/l	1.0	ND
Tetrachloroethene	1	ug/l	1.0	ND
Foluene	1	ug/l	1.0	ND
rans-1,2-Dichloroethene	1	ug/l	1.0	ND
rans-1,3-Dichloropropene	1	ug/l	1.0	ND
Frichloroethene	1	ug/I	1.0	ND
richlorofluoromethane	1	ug/l	1.0	ND

Sample ID: TB7/23

Lab#: AC67263-007

Matrix: Aqueous

Collection Date: 7/24/2012

Receipt Date: 7/24/2012

Volatile Organics + 10 (624) Library Searches

Analyte	DF	Units	RT	Result
No Unknown Compounds Detected	1	ug/l	NA	ND
Total/VolatileTic	1	ug/l	NA	ND

Form1

ORGANICS VOLATILE REPORT

Sample Number: DAILY BLANK

Client Id:

Data File: 3M15789.D Analysis Date: 08/02/12 08:16

Date Rec/Extracted:

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 624

Matrix: Aqueous

Initial Vol: 5ml

Final Vol: NA

Dilution: 1.00

Solids: 0

Units: ug/L

			Omico. u	g, 			_
Cas#	Compound	RL	Conc	Cas #	Compound	RL	Conc
71-55-6	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1.0	U	56-23-5	Carbon Tetrachloride	1.0	U
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U	108-90-7	Chlorobenzene	1.0	U
76-13-1		5.0	U	75-00-3	Chloroethane	1.0	U
79-00-5	1,1,2-Trichloroethane	1.0	U	67-66-3	Chloroform	1.0	U
75-34-3	1,1-Dichloroethane	1.0	U	74-87-3	Chloromethane	1.0	U
75-35-4	1,1-Dichloroethene	1.0	U	156-59-2	cis-1,2-Dichloroethene	1.0	U
87-61-6	1,2,3-Trichlorobenzene	1.0	U	10061-01-5	cis-1,3-Dichloropropene	1.0	U
120-82-1	1,2,4-Trichlorobenzene	1.0	U	110-82-7	Cyclohexane	1.0	U
96-12-8	1,2-Dibromo-3-Chloropropa	1.0	U	124-48-1	Dibromochloromethane	1.0	U
106-93-4	1,2-Dibromoethane	1.0	U	75-71-8	Dichlorodifluoromethane	1.0	U
95-50-1	1,2-Dichlorobenzene	1.0	U	100-41-4	Ethylbenzene	1.0	U
107-06-2	1,2-Dichloroethane	0.50	U	98-82-8	Isopropylbenzene	1.0	U
78-87-5	1,2-Dichloropropane	1.0	U	136777612	m&p-Xylenes	1.0	U
541-73-1	1,3-Dichlorobenzene	1.0	U	79-20-9	Methyl Acetate	1.0	U
106-46-7	1,4-Dichlorobenzene	1.0	U	108-87-2	Methylcyclohexane	1.0	U
123-91-1	1,4-Dioxane	50	U	75-09-2	Methylene Chloride	1.0	U
78-93-3	2-Butanone	1.0	U	1634-04-4	Methyl-t-butyl ether	0.50	U
591-78-6	2-Hexanone	1.0	U	95-47-6	o-Xylene	1.0	U
108-10-1	4-Methyl-2-Pentanone	1.0	U	100-42-5	Styrene	1.0	U
67-64-1	Acetone	10	U	127-18-4	Tetrachloroethene	1.0	U
71-43-2	Benzene	0.50	U	108-88-3	Toluene	1.0	U
74-97-5	Bromochloromethane	1.0	U	156-60-5	trans-1,2-Dichloroethene	1.0	U
75-27-4	Bromodichloromethane	1.0	U	10061-02-6	trans-1,3-Dichloropropene	1.0	U
75-25-2	Bromoform	1.0	U	79-01-6	Trichloroethene	1.0	U
74-83-9		1.0	U	75-69-4	Trichlorofluoromethane	1.0	U
	Carbon Disulfide	1.0	U	75-01-4	Vinyl Chloride	1.0	U
			1		•		

ColumnID: (^) Indicates results from 2nd column

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

ORGANICS VOLATILE REPORT Tentatively Identified Compounds

Sample Number: DAILY BLANK

Client Id:

Data File: 3M15789.D

Analysis Date: 08/02/12 08:16

Date Rec/Extracted:

Matrix: Aqueous

Initial Vol: 5ml

Final Vol: NA

Dilution: 1.00

Solids:

Method: EPA 624

Units: ug/L

Cas #	Compound	RT	Conc
1	No Unknown Compounds Detected	0.00	OJ

Worksheet #: 236023

Total Tentatively Identified Concentration 0

A - Indicates an aldol condensate. J - Indicates an estimated value.

B - Indicates the analyte was found in the blank as well as in the sample.
Y - Indicates the analyte was found in the blank at <10% of the concentration of the sample.

<10% - Indicates the analyte was found in the blank at < 10% of nearest Internal Standard

Form1 ORGANICS VOLATILE REPORT

Sample Number: AC67263-001

Client Id: PC-1 U Data File: 3M15848.D

Analysis Date: 08/03/12 00:11 Date Rec/Extracted: 07/24/12-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 624

Matrix: Aqueous

Initial Vol: 5ml

Final Vol: NA

Dilution: 1.00

Solids: 0

Units: ug/L

			Offico. u	9			
Cas#	Compound	RL	Conc	Cas #	Compound	RL	Conc
71-55-6		1.0	U	56-23-5	Carbon Tetrachloride	1.0	U
79-34-5	1,1,2,2-Tetrachloroethane	1.0	υ	108-90-7	Chlorobenzene	1.0	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluor	5.0	U	75-00-3	Chloroethane	1.0	U
79-00-5	1,1,2-Trichloroethane	1.0	υ	67-66-3	Chloroform	1.0	U
75-34-3	1,1-Dichloroethane	1.0	υ	74-87-3	Chloromethane	1.0	U
75-35-4	1,1-Dichloroethene	1.0	U	156-59-2	cis-1,2-Dichloroethene	1.0	U
87-61-6	1,2,3-Trichlorobenzene	1.0	U	10061-01-5	cis-1,3-Dichloropropene	1.0	U
120-82-1	1,2,4-Trichlorobenzene	1.0	υ	110-82-7	Cyclohexane	1.0	U
96-12-8	1,2-Dibromo-3-Chloropropa	1.0	U	124-48-1	Dibromochloromethane	1.0	U
106-93-4	1,2-Dibromoethane	1.0	U	75-71-8	Dichlorodifluoromethane	1.0	U
95-50-1	1,2-Dichlorobenzene	1.0	υ	100-41-4	Ethylbenzene	1.0	U
107-06-2	1,2-Dichloroethane	0.50	U	98-82-8	Isopropylbenzene	1.0	U
78-87-5	1,2-Dichloropropane	1.0	υ	136777612	m&p-Xylenes	1.0	U
541-73-1	1,3-Dichlorobenzene	1.0	υ	79-20-9	Methyl Acetate	1.0	U
106-46-7	1,4-Dichlorobenzene	1.0	U	108-87-2	Methylcyclohexane	1.0	U
123-91-1	1,4-Dioxane	50	U	75-09-2	Methylene Chloride	1.0	U
78-93-3	2-Butanone	1.0	υ	1634-04-4	Methyl-t-butyl ether	0.50	U
591-78-6	2-Hexanone	1.0	υ	95-47-6	o-Xylene	1.0	U
108-10-1	4-Methyl-2-Pentanone	1.0	U	100-42-5	Styrene	1.0	U
67-64-1	Acetone	10	U	127-18-4	Tetrachloroethene	1.0	U
71-43-2	Benzene	0.50	U	108-88-3	Toluene	1.0	U
74-97-5	Bromochloromethane	1.0	U	156-60-5	trans-1,2-Dichloroethene	1.0	U
75-27-4	Bromodichloromethane	1.0	U	10061-02-6	trans-1,3-Dichloropropene	1.0	U
75-25-2	Bromoform	1.0	υ	79-01-6	Trichloroethene	1.0	U
74-83-9	Bromomethane	1.0	U	75-69-4	Trichlorofluoromethane	1.0	U
75-15-0	Carbon Disulfide	1.0	U	75-01-4	Vinyl Chloride	1.0	U
1330-20-7	Xylenes (Total)	1.0	U				
	• • •		i				

Worksheet #: 236023

Total Target Concentration

ColumnID: (^) Indicates results from 2nd column

U - Indicates the compound was analyzed but not detected. B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out J - Indicates an estimated value when a compound is detected at less than the

specified detection limit. d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

ORGANICS VOLATILE REPORT Tentatively Identified Compounds

Sample Number: AC67263-001

Client Id: PC-1 U

Data File: 3M15848.D

Analysis Date: 08/03/12 00:11

Date Rec/Extracted: 07/24/12-NA

Matrix: Aqueous

Initial Vol: 5ml

Final Vol: NA

Dilution: 1.00

Solids:

Method: EPA 624

Units: ug/L

Cas #	Compound	RT	Conc
1	No Unknown Compounds Detected	0.00	OJ

Worksheet #: 236023

Total Tentatively Identified Concentration 0

A - Indicates an aldol condensate.
J - Indicates an estimated value.
B - Indicates the analyte was found in the blank as well as in the sample.
Y - Indicates the analyte was found in the blank at <10% of the concentration of the sample.

<10% - Indicates the analyte was found in the blank at < 10% of nearest Internal Standard

Form1

ORGANICS VOLATILE REPORT

Sample Number: AC67263-003

Client Id: LF-1 U
Data File: 3M15849.D
Analysis Date: 08/03/12 00:27

Date Rec/Extracted: 07/24/12-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 624 Matrix: Aqueous Initial Vol: 5ml Final Vol: NA

Dilution: 1.00

Solids: 0

Units: ug/L

Cas#	Compound	RL	Conc	Cas#	Compound	RL	Conc
71-55-6	1,1,1-Trichloroethane	1.0	U	56-23-5	Carbon Tetrachloride	1.0	U
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U	108-90-7	Chlorobenzene	1.0	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluor	5.0	U	75-00-3	Chloroethane	1.0	U
79-00-5	1,1,2-Trichloroethane	1.0	U	67-66-3	Chloroform	1.0	U
	1,1-Dichloroethane	1.0	U	74-87-3	Chloromethane	1.0	U
75-35-4	1,1-Dichloroethene	1.0	U	156-59-2	cis-1,2-Dichloroethene	1.0	U
87-61-6	1,2,3-Trichlorobenzene	1.0	U	10061-01-5	cis-1,3-Dichloropropene	1.0	U
120-82-1	1,2,4-Trichlorobenzene	1.0	U	110-82-7	Cyclohexane	1.0	U
96-12-8	1,2-Dibromo-3-Chloropropa	1.0	U	124-48-1	Dibromochloromethane	1.0	U
106-93-4	1,2-Dibromoethane	1.0	U	75-71-8	Dichlorodifluoromethane	1.0	U
95-50-1	1,2-Dichlorobenzene	1.0	U	100-41-4	Ethylbenzene	1.0	U
107-06-2	1,2-Dichloroethane	0.50	U	98-82-8	Isopropylbenzene	1.0	U
78-87-5	1,2-Dichloropropane	1.0	U	136777612	m&p-Xylenes	1.0	U
541-73-1	1,3-Dichlorobenzene	1.0	U	79-20-9	Methyl Acetate	1.0	U
106-46-7	1,4-Dichlorobenzene	1.0	U	108-87-2	Methylcyclohexane	1.0	U
123-91-1	1,4-Dioxane	50	U	75-09-2	Methylene Chloride	1.0	U
78-93-3	2-Butanone	1.0	U	1634-04-4	Methyl-t-butyl ether	0.50	U
591-78-6	2-Hexanone	1.0	U	95-47-6	o-Xylene	1.0	U
108-10-1	4-Methyl-2-Pentanone	1.0	U	100-42-5	Styrene	1.0	U
67-64-1	Acetone	10	U	127-18-4	Tetrachloroethene	1.0	U
71-43-2	Benzene	0.50	U	108-88-3	Toluene	1.0	U
74-97-5	Bromochloromethane	1.0	U	156-60-5	trans-1,2-Dichloroethene	1.0	U
75-27-4	Bromodichloromethane	1.0	U	10061-02-6	trans-1,3-Dichloropropene	1.0	U
75-25-2	Bromoform	1.0	U	79-01-6	Trichloroethene	1.0	U
74-83-9	Bromomethane	1.0	U	75-69-4	Trichlorofluoromethane	1.0	U
75-15-0	Carbon Disulfide	1.0	U	75-01-4	Vinyl Chloride	1.0	U
1330-20-7	Xylenes (Total)	1.0	U				

Worksheet #: 236023

Total Target Concentration

ColumnID: (^) Indicates results from 2nd column

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

ORGANICS VOLATILE REPORT Tentatively Identified Compounds

Sample Number: AC67263-003

Client Id: LF-1 U Data File: 3M15849.D

Analysis Date: 08/03/12 00:27

Date Rec/Extracted: 07/24/12-NA

Matrix: Aqueous

Initial Vol: 5ml

Final Vol: NA

Dilution: 1.00

Solids:

Method: EPA 624

Units: ug/L

Cas #	Compound	RT	Conc
1	No Unknown Compounds Detected	0.00	01

Worksheet #: 236023

Total Tentatively Identified Concentration 0

A - Indicates an aldol condensate.

J - Indicates an attor condensate.

J - Indicates an estimated value.

B - Indicates the analyte was found in the blank as well as in the sample.

Y - Indicates the analyte was found in the blank at <10% of the concentration of the sample.

<10% - Indicates the analyte was found in the blank at < 10% of nearest Internal Standard

Form1

ORGANICS VOLATILE REPORT

Sample Number: AC67263-005

Client Id: PC-3 U Data File: 3M15840.D Analysis Date: 08/02/12 22:06

Date Rec/Extracted: 07/24/12-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 624

Matrix: Aqueous

Initial Vol: 5ml

Final Vol: NA

Dilution: 1.00

Solids: 0

Units: ug/L

Cas#	Compound	RL	Conc	Cas #	Compound	RL	Conc
71-55-6	1,1,1-Trichloroethane	1.0	U	56-23-5	Carbon Tetrachloride	1.0	U
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U	108-90-7	Chlorobenzene	1.0	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluor	5.0	U	75-00-3	Chloroethane	1.0	U
79-00-5	1,1,2-Trichloroethane	1.0	U	67-66-3	Chloroform	1.0	U
75-34-3	1,1-Dichloroethane	1.0	U	74-87-3	Chloromethane	1.0	U
75-35-4	1,1-Dichloroethene	1.0	U	156-59-2	cis-1,2-Dichloroethene	1.0	U
87-61-6	1,2,3-Trichlorobenzene	1.0	Ų	10061-01-5	cis-1,3-Dichloropropene	1.0	U
120-82-1	1,2,4-Trichlorobenzene	1.0	U	110-82-7	Cyclohexane	1.0	U
96-12-8	1,2-Dibromo-3-Chloropropa	1.0	U	124-48-1	Dibromochloromethane	1.0	U
106-93-4	1,2-Dibromoethane	1.0	U	75-71-8	Dichlorodifluoromethane	1.0	U
95-50-1	1,2-Dichlorobenzene	1.0	U	100-41-4	Ethylbenzene	1.0	U
107-06-2	1,2-Dichloroethane	0.50	U	98-82-8	Isopropylbenzene	1.0	U
78-87-5	1,2-Dichloropropane	1.0	U	136777612	m&p-Xylenes	1.0	U
541-73-1	1,3-Dichlorobenzene	1.0	U	79-20-9	Methyl Acetate	1.0	U
106-46-7	1,4-Dichlorobenzene	1.0	U	108-87-2	Methylcyclohexane	1.0	U
123-91-1	1,4-Dioxane	50	U	75-09-2	Methylene Chloride	1.0	U
78-93-3	2-Butanone	1.0	U	1634-04-4	Methyl-t-butyl ether	0.50	U
591-78-6	2-Hexanone	1.0	U	95-47-6	o-Xylene	1.0	U
108-10-1	4-Methyl-2-Pentanone	1.0	U	100-42-5	Styrene	1.0	U
67-64-1	Acetone	10	U	127-18-4	Tetrachloroethene	1.0	U
71-43-2	Benzene	0.50	U	108-88-3	Toluene	1.0	U
74-97-5	Bromochloromethane	1.0	U	156-60-5	trans-1,2-Dichloroethene	1.0	U
75-27-4	Bromodichloromethane	1.0	U	10061-02-6	trans-1,3-Dichloropropene	1.0	U
75-25-2	Bromoform	1.0	U	79-01-6	Trichloroethene	1.0	U
74-83-9	Bromomethane	1.0	U	75-69-4	Trichlorofluoromethane	1.0	U
75-15-0	Carbon Disulfide	1.0	U	75-01-4	Vinyl Chloride	1.0	U
1330-20-7	Xylenes (Total)	1.0	U				

Worksheet #: 236023

Total Target Concentration

ColumnID: (^) Indicates results from 2nd column

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

ORGANICS VOLATILE REPORT Tentatively Identified Compounds

Sample Number: AC67263-005

Client Id: PC-3 U Data File: 3M15840.D

Analysis Date: 08/02/12 22:06

Date Rec/Extracted: 07/24/12-NA

Matrix: Aqueous Initial Vol: 5ml Final Vol: NA Dilution: 1.00

Solids: Method: EPA 624

Units: ug/L

Cas #	Compound	RT	Conc
	No Unknown Compounds Detected	0.00	0 J

Total Tentatively Identified Concentration 0

Worksheet #: 236023

<sup>A - Indicates an aldol condensate.
J - Indicates an estimated value.
B - Indicates the analyte was found in the blank as well as in the sample.
Y - Indicates the analyte was found in the blank at <10% of the concentration of the sample.</sup>

<10% - Indicates the analyte was found in the blank at < 10% of nearest Internal Standard

Form1

ORGANICS VOLATILE REPORT

Sample Number: AC67263-007

Client Id: TB7/23 Data File: 3M15824.D Analysis Date: 08/02/12 17:58

Date Rec/Extracted: 07/24/12-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 624 Matrix: Aqueous

Initial Vol: 5ml Final Vol: NA Dilution: 1.00 Solids: 0

Units: ug/L

			Onito. u	_	Compound	RL	Conc
Cas#	Compound	RL	Conc	Cas # 56-23-5	Carbon Tetrachloride	1.0	U
71-55-6	1,1,1-Trichloroethane	1.0	U		Chlorobenzene	1.0	U
, , , , ,	1,1,2,2-Tetrachloroethane	1.0	U	,00 00 .	Chloroethane	1.0	Ü
76-13-1	1,1,2-Trichloro-1,2,2-trifluor	5.0	U	75-00-3		1.0	U
79-00-5	1,1,2-Trichloroethane	1.0	U	67-66-3	Chloroform	1.0	U
75-34-3	1,1-Dichloroethane	1.0	U	74-87-3	Chloromethane	1.0	Ü
75-35-4	1,1-Dichloroethene	1.0	U		cis-1,2-Dichloroethene	1.0	U
87-61-6	1,2,3-Trichlorobenzene	1.0	U	10061-01-5	cis-1,3-Dichloropropene	1.0	Ü
120-82-1	1,2,4-Trichlorobenzene	1.0	Ų	110-82-7	•		Ü
96-12-8	1,2-Dibromo-3-Chloropropa	1.0	Ų	124-48-1		1.0	U
106-93-4	1,2-Dibromoethane	1.0	U		Dichlorodifluoromethane	1.0	•
95-50-1		1.0	U	100-41-4	Ethylbenzene	1.0	U
107-06-2	1,2-Dichloroethane	0.50	U	98-82-8		1.0	U
	1,2-Dichloropropane	1.0	U	136777612	m&p-Xylenes	1.0	U
541-73-1		1.0	U	79-20-9	Methyl Acetate	1.0	U
106-46-7	1,4-Dichlorobenzene	1.0	υ	108-87-2	Methylcyclohexane	1.0	U
123-91-1	,	50	U	75-09-2	Methylene Chloride	1.0	U
	2-Butanone	1.0	U	1634-04-4	Methyl-t-butyl ether	0.50	U
	2-Hexanone	1.0	U	95-47-6	o-Xylene	1.0	U
108-10-1		1.0	U	100-42-5	Styrene	1.0	U
67-64-1	•	10	U	127-18-4	Tetrachloroethene	1.0	U
• • • • •	Benzene	0.50	U	108-88-3	Toluene	1.0	U
74-97-5		1.0	U	156-60-5	trans-1,2-Dichloroethene	1.0	U
75-27-4		1.0	U	10061-02-6	trans-1,3-Dichloropropene	1.0	U
75-27-4		1.0	U	79-01-6	Trichloroethene	1.0	U
75-25-2 74-83-9		1.0	Ū	75-69-4	Trichlorofluoromethane	1.0	U
74-83-9 75-15-0		1.0	Ü		Vinyl Chloride	1.0	U
		1.0	Ü		-		
1330-20-7	Xylenes (Total)	1.0	J				

Worksheet #: 236023

Total Target Concentration

U - Indicates the compound was analyzed but not detected. B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

ColumnID: (^) Indicates results from 2nd column

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

ORGANICS VOLATILE REPORT Tentatively Identified Compounds

Sample Number: AC67263-007

Client Id: TB7/23

Data File: 3M15824.D

Analysis Date: 08/02/12 17:58

Date Rec/Extracted: 07/24/12-NA

Matrix: Aqueous

Initial Vol: 5ml

Final Vol: NA

Dilution: 1.00

Solids:

Method: EPA 624

Units: ug/L

Cas #	Compound	RT	Conc
	No Unknown Compounds Detected	0.00	0 J

Worksheet #: 236023

Total Tentatively Identified Concentration 0

A - Indicates an aldol condensate.

J - Indicates an estimated value.
 B - Indicates the analyte was found in the blank as well as in the sample.
 Y - Indicates the analyte was found in the blank at <10% of the concentration of the sample.

<10% - Indicates the analyte was found in the blank at < 10% of nearest Internal Standard

Form1

ORGANICS SEMIVOLATILE REPORT

Sample Number: WMB14942

Method: EPA 625

Client Id:

Matrix: Aqueous

Data File: 5M76215.D

Initial Vol: 1000ml

Analysis Date: 07/27/12 13:30

Final Vol: 1ml

Date Rec/Extracted: NA-07/27/12

Dilution: 1

C/EXITACIEU. NA-0//2//12

Solids: 0

Column: DB-5MS 30M 0.250mm ID 0.25um film

Units: ug/L

			Ollito.	ug, <u></u>			
Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc
92-52-4	1,1'-Biphenyl	2.0	U	205-99-2	Benzo[b]fluoranthene	2.0	U
95-94-3	1,2,4,5-Tetrachlorobenzene	2.0	U	191-24-2	Benzo[g,h,i]perylene	2.0	U
58-90-2	2,3,4,6-Tetrachlorophenol	2.0	U	207-08-9	Benzo[k]fluoranthene	2.0	U
95-95-4	2,4,5-Trichlorophenol	2.0	U	111-91-1	bis(2-Chloroethoxy)methan	2.0	U
88-06-2	2,4,6-Trichlorophenol	2.0	U	111-44-4	bis(2-Chloroethyl)ether	0.50	U
120-83-2	2,4-Dichlorophenol	2.0	U	108-60-1	bis(2-chloroisopropyl)ether	2.0	U
105-67-9	2,4-Dimethylphenol	2.0	U	117-81-7	bis(2-Ethylhexyl)phthalate	2.0	U
51-28-5	2,4-Dinitrophenol	10	U	85-68-7	Butylbenzylphthalate	2.0	U
121-14-2	2,4-Dinitrotoluene	2.0	U	105-60-2	Caprolactam	2.0	U
606-20-2	2,6-Dinitrotoluene	2.0	U	86-74-8	Carbazole	2.0	U
91-58-7	2-Chloronaphthalene	2.0	U	218-01-9	Chrysene	2.0	U
95-57-8	2-Chlorophenol	2.0	U	53-70-3	Dibenzo[a,h]anthracene	2.0	U
91-57-6	2-Methylnaphthalene	2.0	U	132-64-9	Dibenzofuran	0.50	U
95-48-7	2-Methylphenol	0.50	U	84-66-2	Diethylphthalate	2.0	U
88-74-4	2-Nitroaniline	2.0	U	131-11-3	Dimethylphthalate	2.0	U
88-75-5	2-Nitrophenol	2.0	U	84-74-2	Di-n-butylphthalate	0.50	U
106-44-5	3&4-Methylphenol	0.50	U	117-84-0	Di-n-octylphthalate	2.0	U
91-94-1	3,3'-Dichlorobenzidine	2.0	U	206-44-0	Fluoranthene	2.0	U
99-09-2	3-Nitroaniline	2.0	U	86-73-7	Fluorene	2.0	U
534-52-1	4,6-Dinitro-2-methylphenol	2.0	U	118-74-1	Hexachlorobenzene	2.0	U
101-55-3	4-Bromophenyl-phenylether	2.0	U	87-68-3	Hexachlorobutadiene	2.0	U
59-50-7	4-Chloro-3-methylphenol	2.0	υ	77-47-4	Hexachlorocyclopentadiene	2.0	U
106-47-8	4-Chloroaniline	0.50	U	67-72-1	Hexachloroethane	2.0	U
7005-72-3	4-Chlorophenyl-phenylether	2.0	υ	193-39-5	Indeno[1,2,3-cd]pyrene	2.0	U
100-01-6	4-Nitroaniline	2.0	υ	78-59-1	Isophorone	2.0	U
100-02-7	4-Nitrophenol	2.0	υ	91-20-3	Naphthalene	0.50	U
83-32-9	Acenaphthene	2.0	U	98-95-3	Nitrobenzene	2.0	U
208-96-8	Acenaphthylene	2.0	U	621-64-7	N-Nitroso-di-n-propylamine	0.50	U
98-86-2	Acetophenone	2.0	U	86-30-6	n-Nitrosodiphenylamine	2.0	U
120-12-7	Anthracene	2.0	U	87-86-5	Pentachlorophenol	10	U
1912-24-9	Atrazine	2.0	U	85-01-8	Phenanthrene	2.0	U
100-52-7	Benzaldehyde	2.0	U	108-95-2	Phenol	2.0	U
56-55-3	Benzo[a]anthracene	2.0	U	129-00-0	Pyrene	2.0	U
50-32-8	Benzo[a]pyrene	2.0	U				

Worksheet #: 235943

Total Target Concentration

ColumnID: (^) Indicates results from 2nd column

U - Indicates the compound was analyzed but not detected.

 $^{{\}it B}$ - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

ORGANICS SEMIVOLATILE REPORT Tentatively Identified Compounds

Sample Number: WMB14942

Client Id:

Data File: 5M76215.D

Analysis Date: 07/27/12 13:30

Date Rec/Extracted: NA-07/27/12

Matrix: Aqueous Initial Vol: 1000ml

Final Vol: 1ml

Dilution: 1

Solids: 0

Method: EPA 625

Units: ug/L

	Cas #	Compound	RT	Conc	
1	111-76-2	Ethanol, 2-butoxy-	4.96	<10%	
2	5131-66-8	2-Propanol, 1-butoxy-	5.26	5.4 J	
3		unknown	5.71	<10%	

Worksheet #: 235943 Total Tentatively Identified Concentration 5.4

A - Indicates an aldol condensate.

J - Indicates an estimated value.
B - Indicates the analyte was found in the blank as well as in the sample.
Y - Indicates the analyte was found in the blank at <10% of the concentration of the sample.

<10% - Indicates the analyte was found in the blank at < 10% of nearest Internal Standard

Form1

ORGANICS SEMIVOLATILE REPORT

Sample Number: AC67263-001

Client Id: PC-1 U Data File: 5M76221.D Analysis Date: 07/27/12 15:55

Date Rec/Extracted: 07/24/12-07/27/12

Column: DB-5MS 30M 0.250mm ID 0.25um film

Method: EPA 625

Matrix: Aqueous

Initial Vol: 500ml

Final Vol: 0.5ml

Dilution: 1

Solids: 0

Units: ua/L

			units: t	ug/L			
Cas#	Compound	RL	Conc	Cas #	Compound	RL	Conc
92-52-4	1,1'-Biphenyl	2.0	U	205-99-2	Benzo[b]fluoranthene	2.0	U
95-94-3	1,2,4,5-Tetrachlorobenzene	2.0	U	191-24-2	Benzo[g,h,i]perylene	2.0	U
58-90-2	2,3,4,6-Tetrachlorophenol	2.0	U	207-08-9	Benzo[k]fluoranthene	2.0	U
95-95-4	2,4,5-Trichlorophenol	2.0	U	111-91-1	bis(2-Chloroethoxy)methan	2.0	U
88-06-2	2,4,6-Trichlorophenol	2.0	U	111-44-4	bis(2-Chloroethyl)ether	0.50	U
120-83-2	2,4-Dichlorophenol	2.0	U	108-60-1	bis(2-chloroisopropyl)ether	2.0	U
105-67-9	2,4-Dimethylphenol	2.0	U	117-81-7	bis(2-Ethylhexyl)phthalate	2.0	U
51-28-5	2,4-Dinitrophenol	10	U	85-68-7	Butylbenzylphthalate	2.0	U
121-14-2	2,4-Dinitrotoluene	2.0	U	105-60-2	Caprolactam	2.0	U
606-20-2	2,6-Dinitrotoluene	2.0	U	86-74-8	Carbazole	2.0	U
91-58-7	2-Chloronaphthalene	2.0	U	218-01-9	Chrysene	2.0	U
95-57-8	2-Chlorophenol	2.0	U	53-70-3	Dibenzo[a,h]anthracene	2.0	U
91-57-6	2-Methylnaphthalene	2.0	υ	132-64-9	Dibenzofuran	0.50	U
95-48-7	2-Methylphenol	0.50	U	84-66-2	Diethylphthalate	2.0	U
88-74-4	2-Nitroaniline	2.0	U	131-11-3	Dimethylphthalate	2.0	U
88-75-5	2-Nitrophenol	2.0	U	84-74-2	Di-n-butylphthalate	0.50	U
106-44-5	3&4-Methylphenol	0.50	U	117-84-0	Di-n-octylphthalate	2.0	U
91-94-1	3,3'-Dichlorobenzidine	2.0	U	206-44-0	Fluoranthene	2.0	U
99-09-2	3-Nitroaniline	2.0	U	86-73-7	Fluorene	2.0	U
534-52-1	4,6-Dinitro-2-methylphenol	2.0	U	118-74-1	Hexachlorobenzene	2.0	U
101-55-3	4-Bromophenyl-phenylether	2.0	U	87-68-3	Hexachlorobutadiene	2.0	U
59-50-7	4-Chloro-3-methylphenol	2.0	U	77-47-4	Hexachlorocyclopentadiene	2.0	U
106-47-8	4-Chloroaniline	0.50	U	67-72-1	Hexachloroethane	2.0	U
7005-72-3	4-Chlorophenyl-phenylether	2.0	U	193-39-5	Indeno[1,2,3-cd]pyrene	2.0	U
100-01-6	4-Nitroaniline	2.0	U	78-59-1	Isophorone	2.0	U
100-02-7	4-Nitrophenol	2.0	U	91-20-3	Naphthalene	0.50	U
83-32-9	Acenaphthene	2.0	U	98-95-3	Nitrobenzene	2.0	U
208-96-8	Acenaphthylene	2.0	U	621-64-7	N-Nitroso-di-n-propylamine	0.50	U
98-86-2	Acetophenone	2.0	U		n-Nitrosodiphenylamine	2.0	U
120-12-7	Anthracene	2.0	U	87-86-5	Pentachlorophenol	10	U
1912-24-9	Atrazine	2.0	U	85-01-8	Phenanthrene	2.0	U
100-52-7	Benzaldehyde	2.0	U	108-95-2	Phenol	2.0	U
56-55-3	Benzo[a]anthracene	2.0	U	129-00-0	Pyrene	2.0	U
50-32-8	Benzo[a]pyrene	2.0	υ				
	· ·		1				

Worksheet #: 235943

Total Target Concentration

ColumnID: (^) Indicates results from 2nd column

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the

specified detection limit.
d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

ORGANICS SEMIVOLATILE REPORT Tentatively Identified Compounds

Sample Number: AC67263-001

Client Id: PC-1 U Data File: 5M76221.D Analysis Date: 07/27/12 15:55

Date Rec/Extracted: 07/24/12-07/27/12

Matrix: Aqueous Initial Vol: 500ml Final Vol: 0.5ml Dilution: 1

Solids:

Method: EPA 625

Units: ug/L

Cas #	Compound	RT	Conc	
1	No Unknown Compounds Detected	0.00	0 J	

Worksheet #: 235943 Total Tentatively Identified Concentration 0

A - Indicates an aldol condensate.

J - Indicates an attor condensate.
J - Indicates an estimated value.
B - Indicates the analyte was found in the blank as well as in the sample.
Y - Indicates the analyte was found in the blank at <10% of the concentration of the sample.

<10% - Indicates the analyte was found in the blank at < 10% of nearest Internal Standard

Form1 ORGANICS SEMIVOLATILE REPORT

Sample Number: AC67263-003

Client Id: LF-1 U Data File: 5M76238.D Analysis Date: 07/27/12 22:43

Date Rec/Extracted: 07/24/12-07/27/12

Column: DB-5MS 30M 0.250mm ID 0.25um film

Method: EPA 625

Matrix: Aqueous

Initial Vol: 1000ml

Final Vol: 1ml

Dilution: 1

Solids: 0

Units: ug/L

			omis: ug/	L			
Cas#	Compound	RL	Conc	Cas#	Compound	RL	Conc
	1,1'-Biphenyl	2.0	U	205-99-2	Benzo[b]fluoranthene	2.0	U
95-94-3	1,2,4,5-Tetrachlorobenzene	2.0	U	191-24-2	Benzo[g,h,i]perylene	2.0	U
58-90-2	2,3,4,6-Tetrachlorophenol	2.0	U	207-08-9	Benzo[k]fluoranthene	2.0	U
95-95-4	2,4,5-Trichlorophenol	2.0	U	111-91-1	bis(2-Chloroethoxy)methan	2.0	U
88-06-2	2,4,6-Trichlorophenol	2.0	U	111-44-4	bis(2-Chloroethyl)ether	0.50	U
120-83-2	2,4-Dichlorophenol	2.0	U	108-60-1	bis(2-chloroisopropyl)ether	2.0	U
105-67-9	2,4-Dimethylphenol	2.0	U	117-81-7	bis(2-Ethylhexyl)phthalate	2.0	U
51-28-5	2,4-Dinitrophenol	10	U	85-68-7	Butylbenzylphthalate	2.0	U
121-14-2	2,4-Dinitrotoluene	2.0	U	105-60-2	Caprolactam	2.0	U
606-20-2	2,6-Dinitrotoluene	2.0	U	86-74-8	Carbazole	2.0	U
91-58-7	2-Chloronaphthalene	2.0	U	218-01-9	Chrysene	2.0	U
95-57-8	2-Chlorophenol	2.0	U	53-70-3	Dibenzo[a,h]anthracene	2.0	U
91-57-6	2-Methylnaphthalene	2.0	U	132-64-9	Dibenzofuran	0.50	U
95-48-7	2-Methylphenol	0.50	U	84-66-2	Diethylphthalate	2.0	U
88-74-4	2-Nitroaniline	2.0	U	131-11-3	Dimethylphthalate	2.0	U
88-75-5	2-Nitrophenol	2.0	U	84-74-2	Di-n-butylphthalate	0.50	U
106-44-5	3&4-Methylphenol	0.50	U	117-84-0	Di-n-octylphthalate	2.0	U
91-94-1	3,3'-Dichlorobenzidine	2.0	U	206-44-0	Fluoranthene	2.0	U
99-09-2	3-Nitroaniline	2.0	U	86-73-7	Fluorene	2.0	U
534-52-1	4,6-Dinitro-2-methylphenol	2.0	U	118-74-1	Hexachlorobenzene	2.0	U
101-55-3	4-Bromophenyl-phenylether	2.0	U	87-68-3	Hexachlorobutadiene	2.0	U
59-50-7	4-Chloro-3-methylphenol	2.0	U	77-47-4	Hexachlorocyclopentadiene	2.0	U
106-47-8	4-Chloroaniline	0.50	U	67-72-1	Hexachloroethane	2.0	U
7005-72-3	4-Chlorophenyl-phenylether	2.0	U	193-39-5	Indeno[1,2,3-cd]pyrene	2.0	U
100-01-6	4-Nitroaniline	2.0	U	78-59-1	Isophorone	2.0	U
100-02-7	4-Nitrophenol	2.0	U	91-20-3	Naphthalene	0.50	U
83-32-9	Acenaphthene	2.0	U	98-95-3	Nitrobenzene	2.0	U
208-96-8	Acenaphthylene	2.0	U	621-64-7	N-Nitroso-di-n-propylamine	0.50	U
98-86-2	Acetophenone	2.0	U	86-30-6	n-Nitrosodiphenylamine	2.0	U
120-12-7	Anthracene	2.0	U	87-86-5	Pentachlorophenol	10	U
1912-24-9	Atrazine	2.0	U	85-01-8	Phenanthrene	2.0	U
100-52-7	Benzaldehyde	2.0	U	108-95-2	Phenol	2.0	U
56-55-3	Benzo[a]anthracene	2.0	U	129-00-0	Pyrene	2.0	U
50-32-8	Benzo[a]pyrene	2.0	U				
			*				

Worksheet #: 235943

Total Target Concentration

0

ColumnID: (^) Indicates results from 2nd column

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument

R - Retention Time Out

 $^{{\}it J}$ - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

ORGANICS SEMIVOLATILE REPORT Tentatively Identified Compounds

Sample Number: AC67263-003

Client Id: LF-1 U Data File: 5M76238.D Analysis Date: 07/27/12 22:43

Date Rec/Extracted: 07/24/12-07/27/12

Matrix: Aqueous Initial Vol: 1000ml

Final Vol: 1ml Dilution: 1

Solids:

Method: EPA 625

Units: ug/L

Cas #	Compound	RT	Conc
1	unknown	12.67	5.1 J

Worksheet #: 235943

Total Tentatively Identified Concentration 5.1

A - Indicates an aldol condensate.

J - Indicates an estimated value.

B - Indicates the analyte was found in the blank as well as in the sample. Y - Indicates the analyte was found in the blank at <10% of the concentration of the sample.

<10% - Indicates the analyte was found in the blank at < 10% of nearest Internal Standard

Form1

ORGANICS SEMIVOLATILE REPORT

Sample Number: AC67263-005

Client Id: PC-3 U Data File: 5M76239.D Analysis Date: 07/27/12 23:06

Date Rec/Extracted: 07/24/12-07/27/12

Column: DB-5MS 30M 0.250mm ID 0.25um film

Method: EPA 625

Matrix: Aqueous

Initial Vol: 1000ml

Final Vol: 1ml

Dilution: 1

Solids: 0

Units: ug/L

				g,			_
Cas#	Compound	RL	Conc	Cas #	Compound	RL	Conc
92-52-4	1,1'-Biphenyl	2.0	U	205-99-2	• •	2.0	U
95-94-3	1,2,4,5-Tetrachlorobenzene	2.0	U	191-24-2		2.0	U
58-90-2	2,3,4,6-Tetrachlorophenol	2.0	U	207-08-9		2.0	U
95-95-4	2,4,5-Trichlorophenol	2.0	U	111-91-1	bis(2-Chloroethoxy)methan	2.0	U
88-06-2	2,4,6-Trichlorophenol	2.0	U	111-44-4	bis(2-Chloroethyl)ether	0.50	U
120-83-2	2,4-Dichlorophenol	2.0	U	108-60-1	bis(2-chloroisopropyl)ether	2.0	υ
105-67-9	2,4-Dimethylphenol	2.0	U	117-81-7	bis(2-Ethylhexyl)phthalate	2.0	U
51-28-5	2,4-Dinitrophenol	10	U	85-68-7	Butylbenzylphthalate	2.0	υ
121-14-2	2,4-Dinitrotoluene	2.0	U	105-60-2	Caprolactam	2.0	υ
606-20-2	2,6-Dinitrotoluene	2.0	U	86-74-8	Carbazole	2.0	υ
91-58-7	2-Chloronaphthalene	2.0	U	218-01-9	Chrysene	2.0	U
95-57-8	2-Chlorophenol	2.0	U	53-70-3	Dibenzo[a,h]anthracene	2.0	U
91-57-6	2-Methylnaphthalene	2.0	U	132-64-9	Dibenzofuran	0.50	U
95-48-7	2-Methylphenol	0.50	Ų	84-66-2	Diethylphthalate	2.0	U
88-74-4	2-Nitroaniline	2.0	U	131-11-3	Dimethylphthalate	2.0	U
88-75-5	2-Nitrophenol	2.0	υ	84-74-2	Di-n-butylphthalate	0.50	U
106-44-5	3&4-Methylphenol	0.50	U	117-84-0	Di-n-octylphthalate	2.0	U
91-94-1	3,3'-Dichlorobenzidine	2.0	U	206-44-0	Fluoranthene	2.0	U
99-09-2	3-Nitroaniline	2.0	U	86-73-7	Fluorene	2.0	U
534-52-1	4,6-Dinitro-2-methylphenol	2.0	U	118-74-1	Hexachlorobenzene	2.0	U
101-55-3	4-Bromophenyl-phenylether	2.0	U	87-68-3	Hexachlorobutadiene	2.0	U
59-50-7	4-Chloro-3-methylphenol	2.0	U	77-47-4	Hexachlorocyclopentadiene	2.0	U
106-47-8	4-Chloroaniline	0.50	υ	67-72-1	Hexachloroethane	2.0	U
7005-72-3	4-Chlorophenyl-phenylether	2.0	U	193-39-5	Indeno[1,2,3-cd]pyrene	2.0	U
100-01-6	4-Nitroaniline	2.0	U	78-59-1	Isophorone	2.0	U
100-02-7	4-Nitrophenol	2.0	U	91-20-3	Naphthalene	0.50	U
83-32-9	Acenaphthene	2.0	U	98-95-3	Nitrobenzene	2.0	U
208-96-8	Acenaphthylene	2.0	U	621-64-7	N-Nitroso-di-n-propylamine	0.50	U
98-86-2	Acetophenone	2.0	U	86-30-6	n-Nitrosodiphenylamine	2.0	U
120-12-7	•	2.0	U	87-86-5	Pentachlorophenol	10	U
1912-24-9	Atrazine	2.0	U	85-01-8	Phenanthrene	2.0	U
100-52-7	Benzaldehyde	2.0	U	108-95-2	Phenol	2.0	U
56-55-3	Benzo[a]anthracene	2.0	U	129-00-0	Pyrene	2.0	U
50-32-8		2.0	Ü		·		
00 02-0	20		-				

Worksheet #: 235943

Total Target Concentration

0 R - Retention Time Out

ColumnID: (^) Indicates results from 2nd column

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the

J - Indicates an estimated value when a compound is detected at less than the specified detection limit. d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

ORGANICS SEMIVOLATILE REPORT Tentatively Identified Compounds

Sample Number: AC67263-005

Client Id: PC-3 U Data File: 5M76239.D

Analysis Date: 07/27/12 23:06 Date Rec/Extracted: 07/24/12-07/27/12

Matrix: Aqueous Initial Vol: 1000ml

Final Vol: 1ml

Dilution: 1 Solids:

Method: EPA 625

Units: ug/L

Cas #	Compound	RT	Conc	
1	No Unknown Compounds Detected	0.00	0 J	

Worksheet #: 235943

Total Tentatively Identified Concentration 0

A - Indicates an aldol condensate.

<sup>J - Indicates an attinated value.
B - Indicates the analyte was found in the blank as well as in the sample.
Y - Indicates the analyte was found in the blank at <10% of the concentration of the sample.</sup>

<10% - Indicates the analyte was found in the blank at < 10% of nearest Internal Standard

FORM2

Surrogate Recovery

Method: EPA 625

Dfile	Sample#	Matrix	Date/Time	Surr Dil	Dilute Out Flag	Column1 S1 Recov	Column1 S2 Recov	Column1 S3 Recov	Column1 S4 Recov	Column1 S5 Recov	Column1 S6 Recov
5M76221.D 5M76238.D 5M76239.D 5M76214.D 5M76222.D	WMB14942 AC67263-001 AC67263-003 AC67263-005 WMB14942(M AC67263-001(AC67263-001(Aqueous Aqueous Aqueous Aqueous	07/27/12 13:30 07/27/12 15:55 07/27/12 22:43 07/27/12 23:06 07/27/12 13:06 07/27/12 16:19 07/27/12 16:44	,		58 58 54 42 63 64 71	38 45 37 28 43 53 57	84 68 87 77 95 73 89	76 67 90 81 80 49*	83 66 96 83 105 84 101	89 70 93 89 100 82 99

Flags: SD=Surrogate diluted out

*=Surrogate out

Method: EPA 625

Aqueous Limits

Compound	Spike Amt	Limits
S1=2-Fluorophenol	100	29-113
S2=Phenol-d5	100	27-115
S3=Nitrobenzene-d5	50	51-139
S4=2-Fluorobiphenyl	50	53-129
S5=2,4,6-Tribromophenol	100	54-149
S6=Terphenyl-d14	50	55-146

Form3 RPD DATA

QC Batch: WMB14942

Data File

Sample ID:

Analysis Date

Spike or Dup: 5M76223.D

AC67263-001(MSD) AC67263-001(MS) 7/27/2012 4:44:00 PM 7/27/2012 4:19:00 PM

Duplicate(If applicable): 5M76222.D Inst Blank(If applicable):

Method: 625

Matrix: Aqueous

QC Type: MSD

		Dup/MSD/MBSD	Sample/MS/MBS		
Analyte:	Column	Conc	Conc	RPD	Limit
N-Nitrosodimethylamine	1	79.5102	78.8574	0.82	17
bis(2-Chloroethyl)ether	1	83.9852	72.2795	15*	12
Phenol	1	55.33	51.7184	6.7	27
2-Chlorophenol	1	85.2008	73.3671	15	21
bis(2-chloroisopropyl)ether	1	70.3458	61.8301	13	14
Hexachloroethane	1	64.3757	63.4658	1.4	39
N-Nitroso-di-n-propylamine	1	85.8395	73.4736	16*	14
Nitrobenzene	1	92.4186	79.7023	15*	13
Isophorone	1	93.6932	77.9005	18*	12
2-Nitrophenol	1	100.1094	80.2619	22	31
2,4-Dimethylphenol	1	82.4872	71.4503	14	18
bis(2-Chloroethoxy)methane	1	94.0051	79.4786	17*	12
2,4-Dichlorophenol	1	97.4179	80.1675	19	21
1,2,4-Trichlorobenzene	1	80.5564	70.071	14	17
Naphthalene	1	86.2304	71.3265	19*	16
Hexachlorobutadiene	1	81.1078	72.3207	11	24
4-Chloro-3-methylphenol	1	94.7504	80.7013	16	16
2,4,6-Trichlorophenol	1	97.3082	79.6883	20	24
2-Chloronaphthalene	1	98.9517	80.156	21*	13
Acenaphthylene	1	104.7303	84.9072	21 *	13
Dimethylphthalate	1	100.4565	83.3527	19*	12
2,6-Dinitrotoluene	1	110.9048	88.592	22*	13
	1	94.6716	77.44	20*	14
Acenaphthene	1	56.2037	32.9678	52 *	37
2,4-Dinitrophenol	1	97.774	78.3262	22*	13
2,4-Dinitrotoluene	1	61.0926	54.8645	11	41
4-Nitrophenol	1	96.375	77.9406	21*	14
Fluorene	1	99.1844	79.7985	22*	13
4-Chlorophenyl-phenylether	1	98.1392	81.8713	18*	12
Diethylphthalate	1	94.8684	73.7477	25	25
4,6-Dinitro-2-methylphenol	1	98.8165	83.7792	16*	13
4-Bromophenyl-phenylether	1			16*	12
Hexachlorobenzene		93.7179	79.7358	25	31
Pentachlorophenol	1	84.8035	65.9974	25 17*	12
Phenanthrene	1	99.4788	83.8867	15*	12
Anthracene	1	100.0723	86.1514	17*	
Di-n-butylphthalate	1	103.501	87.159		12
Fluoranthene	1	99.7426	85.5024	15*	13
Pyrene	1	99.6154	82.1233	19*	13
Butylbenzylphthalate	1	101.4413	83.7177	19*	12
3,3'-Dichlorobenzidine	1	134.1586	111.3709	19	40
Benzo[a]anthracene	1	92.1314	75.6183	20*	12
Chrysene	1	103.2451	87.033	17*	12
bis(2-Ethylhexyl)phthalate	1	96.4855	80.1183	19*	14
Di-n-octylphthalate	1	100.0455	83.755	18*	14
Benzo[b]fluoranthene	1	105.1879	86.0423	20*	15
Benzo[k]fluoranthene	1	97.2503	84.4087	14	14
Benzo[a]pyrene	1	108.7573	90.7797	18*	13
Indeno[1,2,3-cd]pyrene	1	119.3796	98.2555	19*	14
Dibenzo[a,h]anthracene	1	118.9925	97.1709	20*	14
Benzo[g,h,i]perylene	1	113.0659	93.1993	19*	15

^{* -} Indicates outside of limits

NA - Both concentrations=0... no result can be calculated

Sample ID: MB 18151 (0.5)

% Solid: 0 Units: UG/L Lab Name: Veritech

Lab Code:

Client Id: MB 18151 (0.5)

Matrix: AQUEOUS Level: LOW

Ins	М	Seq Num	File:	Prep Batch	Analysis Date	Final Wt/Vol	Initial Wt/Vol	Dil Fact	Conc	RL	Analyte	Cas No.
PEICP2	Р	13	A14186A2	18151	08/03/12	50	100	1	ND	100	Aluminum	7429-90-5
PEICP2	Р	13	A14186A2	18151	08/03/12	50	100	1	ND	7.5	Antimony	7440-36-0
PEICP2	Р	13	A14186A2	18151	08/03/12	50	100	1	ND	20	Arsenic	7440-38-2
PEICP2	Р	13	A14186A2	18151	08/03/12	50	100	1	ND	25	Barium	7440-39-3
PEICP2	Р	13	A14186A2	18151	08/03/12	50	100	1	ND	4.0	Beryllium	7440-41-7
PEICP2	Р	13	A14186A2	18151	08/03/12	50	100	1	ND	2.0	Cadmium	7440-43-9
PEICP2	Р	13	A14186A2	18151	08/03/12	50	100	1	ND	1000	Calcium	7440-70-2
PEICP2	Р	13	A14186A2	18151	08/03/12	50	100	1	ND	25	Chromium	7440-47-3
PEICP2	Р	13	A14186A2	18151	08/03/12	50	100	1	ND	10	Cobalt	7440-48-4
PEICP2	Р	13	A14186A2	18151	08/03/12	50	100	1	ND	25	Copper	7440-50-8
PEICP2	Р	13	A14186A2	18151	08/03/12	50	100	1	ND	150	Iron	7439-89-6
PEICP2	Р	13	A14186A2	18151	08/03/12	50	100	1	ND	5.0	Lead	7439-92-1
PEICP2	Р	13	A14186A2	18151	08/03/12	50	100	1	ND	1000	Magnesium	7439-95-4
PEICP2	Р	13	A14186A2	18151	08/03/12	50	100	1	ND	25	Manganese	7439-96-5
PEICP2	Р	13	A14186A2	18151	08/03/12	50	100	1	ND	10	Molybdenum	7439-98-7
PEICP2	Р	13	A14186A2	18151	08/03/12	50	100	1	ND	10	Nickel	7440-02-0
PEICPRAD2	Р	12	A14186B2	18151	08/03/12	50	100	1	ND	2500	Potassium	7440-09-7
PEICP2	Р	13	A14186A2	18151	08/03/12	50	100	1	ND	25	Selenium	7782-49-2
PEICP2	Р	13	A14186A2	18151	08/03/12	50	100	1	ND	10	Silver	7440-22-4
PEICPRAD2	Р	12	A14186B2	18151	08/03/12	50	100	1	ND	2500	Sodium	7440-23-5
PEICP2	Р	13	A14186A2	18151	08/03/12	50	100	1	ND	5.0	Thallium	7440-28-0
PEICP2	Р	13	A14186A2	18151	08/03/12	50	100	1	ND	25	Tin	7440-31-5
PEICP2	Р	13	A14186A2	18151	08/03/12	50	100	1	ND	25	Titanium	7440-32-6
PEICP2	Р	13	A14186A2	18151	08/03/12	50	100	1	ND	25	Vanadium	7440-62-2
PEICP2	Р	13	A14186A2	18151	08/03/12	50	100	1	ND	25	Zinc	7440-66-6

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

MS - ICP-MS

Sample ID: MB 18151 (1)

Mercury

% Solid: 0

ND

Lab Name: Veritech

Client Id: MB 18151 (1) Matrix: AQUEOUS

Level: LOW

7439-97-6

18151 (1)

Units: UG/L

Lab Code:

25

08/08/12

18151

H14186Ac

CV

HGCV1A

Cas No.	Analyte	RL	Conc Dil Fa	Initial Fina	Prep Batch	Seq Num	M	Instr

25

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit P - ICP-AES ${\it CV} - {\it ColdVapor} \\ {\it MS} - {\it ICP-MS}$

0.20

Sample ID: AC67263-002

% Solid:

Lab Name: Veritech Nras No:

Client Id: Matrix: PC-1 F **AQUEOUS**

Units: UG/L Date Rec: 7/25/2012

0

Lab Code: Contract:

Sdg No: Case No:

Level: LOW

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol	Analysis Date	•	File:	Seq Num	М	Instr
7429-90-5	Aluminum	100	ND	1	100	50	08/03/12	18151	A14186A2	24	Р	PEICP2A
7440-36-0	Antimony	7.5	ND	1	100	50	08/03/12	18151	A14186A2	24	Р	PEICP2A
7440-38-2	Arsenic	20	ND	1	100	50	08/03/12	18151	A14186A2	24	Р	PEICP2A
7440-39-3	Barium	25	120	1	100	50	08/03/12	18151	A14186A2	24	Р	PEICP2A
7440-41-7	Beryllium	4.0	ND	1	100	50	08/03/12	18151	A14186A2	24	Р	PEICP2A
7440-43-9	Cadmium	2.0	ND	1	100	50	08/03/12	18151	A14186A2	24	Р	PEICP2A
7440-70-2	Calcium	1000	60000	1	100	50	08/03/12	18151	A14186A2	24	Р	PEICP2A
7440-47-3	Chromium	25	ND	1	100	50	08/03/12	18151	A14186A2	24	Р	PEICP2A
7440-48-4	Cobalt	10	ND	1	100	50	08/03/12	18151	A14186A2	24	Р	PEICP2A
7440-50-8	Copper	25	ND	1	100	50	08/03/12	18151	A14186A2	24	Р	PEICP2A
7439-89-6	Iron	150	ND	1	100	50	08/03/12	18151	A14186A2	24	Р	PEICP2A
7439-92-1	Lead	5.0	ND	1	100	50	08/03/12	18151	A14186A2	24	Р	PEICP2A
7439-95-4	Magnesium	1000	8800	1	100	50	08/03/12	18151	A14186A2	24	Р	PEICP2A
7439-96-5	Manganese	25	710	1	100	50	08/03/12	18151	A14186A2	24	Ρ	PEICP2A
7439-97-6	Mercury	0.20	ND	1	25	25	08/08/12	18151	H14186Ac	18	CV	HGCV1A
7440-02-0	Nickel	10	ND	1	100	50	08/03/12	18151	A14186A2	24	Р	PEICP2A
7440-09-7	Potassium	2500	3800	1	100	50	08/03/12	18151	A14186B2	23	Р	PEICPRAD2A
7782-49-2	Selenium	25	ND	1	100	50	08/03/12	18151	A14186A2	24	Р	PEICP2A
7440-22-4	Silver	10	ND	1	100	50	08/03/12	18151	A14186A2	24	Р	PEICP2A
7440-23-5	Sodium	2500	87000	1	100	50	08/03/12	18151	A14186B2	23	Р	PEICPRAD2A
7440-28-0	Thallium	5.0	ND	1	100	50	08/03/12	18151	A14186A2	24	Р	PEICP2A
7440-62-2	Vanadium	25	ND	1	100	50	08/03/12	18151	A14186A2	24	Р	PEICP2A
7440-66-6	Zinc	25	ND	1	100	50	08/03/12	18151	A14186A2	24	Р	PEICP2A

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

MS - ICP-MS

Sample ID: AC67263-004

% Solid:

Lab Name: Veritech

Nras No:

Client Id: Matrix: AQUEOUS

LF-1 F

Units: UG/L Date Rec: 7/25/2012

0

Lab Code: Contract:

Sdg No: Case No:

Level: LOW

					Initial	Final	Analysis	Prep	OWNER OF COLORS	Seq		
Cas No.	Analyte	RL	Conc	Dil Fact	Wt/Vol	Wt/Vol	Date	Batch	File:	Num	М	Instr
7429-90-5	Aluminum	100	ND	1	100	50	08/03/12	18151	A14186A2	25	Р	PEICP2A
7440-36-0	Antimony	7.5	ND	1	100	50	08/03/12	18151	A14186A2	25	Р	PEICP2A
7440-38-2	Arsenic	20	ND	1	100	50	08/03/12	18151	A14186A2	25	Р	PEICP2A
7440-39-3	Barium	25	110	1	100	50	08/03/12	18151	A14186A2	25	Ρ	PEICP2A
7440-41-7	Beryllium	4.0	ND	1	100	50	08/03/12	18151	A14186A2	25	Ρ	PEICP2A
7440-43-9	Cadmium	2.0	ND	1	100	50	08/03/12	18151	A14186A2	25	Р	PEICP2A
7440-70-2	Calcium	1000	58000	1	100	50	08/03/12	18151	A14186A2	25	Р	PEICP2A
7440-47-3	Chromium	25	ND	1	100	50	08/03/12	18151	A14186A2	25	Ρ	PEICP2A
7440-48-4	Cobalt	10	ND	1	100	50	08/03/12	18151	A14186A2	25	Р	PEICP2A
7440-50-8	Copper	25	ND	1	100	50	08/03/12	18151	A14186A2	25	Ρ	PEICP2A
7439-89-6	Iron	150	ND	1	100	50	08/03/12	18151	A14186A2	25	Р	PEICP2A
7439-92-1	Lead	5.0	ND	1	100	50	08/03/12	18151	A14186A2	25	Р	PEICP2A
7439-95-4	Magnesium	1000	8400	1	100	50	08/03/12	18151	A14186A2	25	Р	PEICP2A
7439-96-5	Manganese	25	670	1	100	50	08/03/12	18151	A14186A2	25	Р	PEICP2A
7439-97-6	Mercury	0.20	ND	1	25	25	08/08/12	18151	H14186Ac	19	CV	HGCV1A
7440-02-0	Nickel	10	ND	1	100	50	08/03/12	18151	A14186A2	25	Р	PEICP2A
7440-09-7	Potassium	2500	3700	1	100	50	08/03/12	18151	A14186B2	24	Р	PEICPRAD2A
7782-49-2	Selenium	25	ND	1	100	50	08/03/12	18151	A14186A2	25	Р	PEICP2A
7440-22-4	Silver	10	ND	1	100	50	08/03/12	18151	A14186A2	25	Р	PEICP2A
7440-23-5	Sodium	2500	85000	1	100	50	08/03/12	18151	A14186B2	24	Р	PEICPRAD2A
7440-28-0	Thallium	5.0	ND	1	100	50	08/03/12	18151	A14186A2	25	Р	PEICP2A
7440-62-2	Vanadium	25	ND	1	100	50	08/03/12	18151	A14186A2	25	Р	PEICP2A
7440-66-6	Zinc	25	ND	1	100	50	08/03/12	18151	A14186A2	25	Р	PEICP2A

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

MS - ICP-MS

Form1 Inorganic Analysis Data Sheet

Sample ID: AC67263-006 % Solid: 0 Lab Name: Veritech Nras No: Client Id: PC-3 F Units: UG/L Lab Code: Sdg No: Matrix: AQUEOUS Date Rec: 7/25/2012 Contract: Case No:

Level: LOW

M I		Seq Num	File:		Analysis Date	Final Wt/Vol	Initial Wt/Vol	Dil Fact	Conc	RL	Analyte	Cas No.
P PEICI	Р	26	A14186A2	18151	08/03/12	50	100	1	ND	100	Aluminum	7429-90-5
P PEICI	Р	26	A14186A2	18151	08/03/12	50	100	1	ND	7.5	Antimony	7440-36-0
P PEICI	Р	26	A14186A2	18151	08/03/12	50	100	1	ND	20	Arsenic	7440-38-2
P PEIC	Р	26	A14186A2	18151	08/03/12	50	100	1	120	25	Barium	7440-39-3
P PEICI	Р	26	A14186A2	18151	08/03/12	50	100	1	ND	4.0	Beryllium	7440-41-7
P PEICI	Р	26	A14186A2	18151	08/03/12	50	100	1	ND	2.0	Cadmium	7440-43-9
P PEICE	Р	26	A14186A2	18151	08/03/12	50	100	1	56000	1000	Calcium	7440-70-2
P PEICE	Р	26	A14186A2	18151	08/03/12	50	100	1	ND	25	Chromium	7440-47-3
P PEICE	Р	26	A14186A2	18151	08/03/12	50	100	1	ND	10	Cobalt	7440-48-4
P PEICE	Р	26	A14186A2	18151	08/03/12	50	100	1	ND	25	Copper	7440-50-8
P PEICE	Р	26	A14186A2	18151	08/03/12	50	100	1	1700	150	Iron	7439-89-6
P PEICE	P	26	A14186A2	18151	08/03/12	50	100	1	ND	5.0	Lead	7439-92-1
P PEICE	Р	26	A14186A2	18151	08/03/12	50	100	1	16000	1000	Magnesium	7439-95-4
P PEICE	Р	26	A14186A2	18151	08/03/12	50	100	1	560	25	Manganese	7439-96-5
CV HGC\	CV	20	H14186Ac	18151	08/08/12	25	25	1	ND	0.20	Mercury	7439-97-6
P PEICE	Р	26	A14186A2	18151	08/03/12	50	100	1	ND	10	Nickel	7440-02-0
P PEICPRAI	Р	25	A14186B2	18151	08/03/12	50	100	1	4900	2500	Potassium	7440-09-7
P PEICE	Р	26	A14186A2	18151	08/03/12	50	100	1	ND	25	Selenium	7782-49-2
P PEICE	Р	26	A14186A2	18151	08/03/12	50	100	1	ND	10	Silver	7440-22-4
P PEICPRAE	Р	25	A14186B2	18151	08/03/12	50	100	1	64000	2500	Sodium	7440-23-5
P PEICE	Р	26	A14186A2	18151	08/03/12	50	100	1	ND	5.0	Thallium	7440-28-0
P PEICF	Р	26	A14186A2	18151	08/03/12	50	100	1	ND	25	Vanadium	7440-62-2
P PEICE	Р	26	A14186A2	18151	08/03/12	50	100	1	ND	25	Zinc	7440-66-6

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

MS - ICP-MS

FORM 3 (ICB/CCB/MB Summary)

Date Analyzed: 08/03/12

Data File: A14186A2

Lab Name: Veritech

Prep Batch: 18151

Lab Code:

Reporting Limits Used: AQUEOUS,200.7(ICP)/200.8(ICPMS)/245.1(Hg)

Contract:

Instrument: PEICP2A

Nras No: Sdg No:

Units: All units in ppm except Hg and icp-ms in ppb

Case No:

Project Number: 2072427

Analyte	ICB V-143551- 8	CCB-12	CCB-23	CCB-30	CCB-37	CCB-46	MB 18151 (0.5)-13
Aluminum	.2 U	.2 U	.2 U	.2 U	.2 U	.2U	.1 U
Antimony	.015 U	.015 U	.015 U	.015 U	.015 U	.015 U	.0075 U
Arsenic	.04 U	.04 U	.04 U	.04 U	.04 U	.04 U	.02 U
Barium	.05 U	.05 U	.05 U	.05 U	.05 U	.05 U	.025 U
Beryllium	.008 U	.008 U	.008 U	.008 U	.008 U	.008 U	.004 U
Cadmium	.004 U	.004 U	.004 U	.004 U	.004 U	.004 U	.002 U
Calcium	2 U	2 U	2 U	2 U	2 U	2 U	1 U
Chromium	.05 U	.05 U	.05 U	.05 U	.05 U	.05 U	.025 U
obalt	.02 U	.02 U	.02 U	.02 U	.02 U	.02 U	.01 U
opper	.05 U	.05 U	.05 U	.05 U	.05 U	.05 U	.025 U
ron	.3 U	.3 U	.3 U	.3 U	.3 U	.3U	.15 U
ead	.01 U	.01 U	.01 U	.01 U	.01 U	.01 U	.005 U
/lagnesium	2 U	2 U	2 U	2 U	2 U	2 U	1 U
fanganese	.05 U	.05 U	.05 U	.05 U	.05 U	.05 U	.025 U
lickel	.02 U	.02 U	.02 U	.02 U	.02 U	.02 U	.01 U
ielenium	.05 U	.05 U	.05 U	.05 U	.05 U	.05 U	.025 U
ilver	.02 U	.02 U	.02 U	.02 U	.02 U	.02 U	.01 U
hallium	.01 U	.01 U	.01 U	.01 U	.01 U	.01 U	.005 U
anadium	.05 U	.05 U	.05 U	.05 U	.05 U	.05 U	.025 U
inc	.05 U	.05 U	.05 U	.05 U	.05 U	.05 U	.025 U

Notes: a-indicates absolute value of result found above the reporting limits in CCB/ICB or result found above reporting limit in the MB u-indicates result below reporting limit

FORM 3 (ICB/CCB/MB Summary)

Date Analyzed: 08/03/12

Data File: A14186B2

Lab Name: Veritech

Prep Batch: 18151

Lab Code:

Reporting Limits Used: AQUEOUS,200.7(ICP)/200.8(ICPMS)/245.1(Hg)

Contract:

Nras No:

Instrument: PEICPRAD2A Units: All units in ppm except Hg and icp-ms in ppb

Sdg No:

Project Number: 2072427

Case No:

Anglista	ICB V-143551-	CCB-11	CCB-22	CCB-29	CCB-40	MB 18151	
Analyte Potassium	5 U	5 U	5 U	5 U	5 U	(0.5)-12 2.5 U	
Sodium	5 U	5 U	5 U	5 U	5 U	2.5 U	

Notes: a-indicates absolute value of result found above the reporting limits in CCB/ICB or result found above reporting limit in the MB u-indicates result below reporting limit

FORM 3 (ICB/CCB/MB Summary)

Date Analyzed: 08/08/12

Data File: H14186Ac

Lab Name: Veritech

Prep Batch: 18151

Lab Code:

Reporting Limits Used: AQUEOUS,200.7(ICP)/200.8(ICPMS)/245.1(Hg)

Contract:

Instrument: HGCV1A

Nras No:

Units: All units in ppm except Hg and icp-ms in ppb

Sdg No:

Project Number: 2072427

Case No:

Analyte	ICB-10	CCB-22	CCB-31	MB 18151 (1)- 11		
Mercury	.2 U	.2 U	.2 U	.2 U		

Notes: a-indicates absolute value of result found above the reporting limits in CCB/ICB or result found above reporting limit in the MB u-indicates result below reporting limit

VERITECH Wet Chem Form1 Analysis Summary

Lab#: AC67263-001					Projec	ct Number: 2072	427
Matrix Aqueous					Rece	eived Date: 7/24/	2012
Client SampleID: PC-1 U					Co	ollect Date: 7/24/	2012
Analysis	TestGroup	Dilution:	Result	Units:	RL	Prep Date:	Analysis Date
Chloride	CHLORIDE-ICW	10	130	mg/L	20	08/01/12	08/01/12
Cyanide	CN-WATER-MUR	1	ND	mg/L	0.020	07/27/12	07/30/12
Lab#: AC67263-003					Projec	ot Number: 2072	427
Matrix Aqueous					Rece	eived Date: 7/24/	2012
Client SampleID: LF-1 U					Co	ollect Date: 7/24/	2012
Analysis	TestGroup	Dilution:	Result	Units:	RL	Prep Date:	Analysis Date
Chloride	CHLORIDE-ICW	10	130	mg/L	20	08/01/12	08/01/12
Cyanide	CN-WATER-MUR	1	ND	mg/L	0.020	07/27/12	07/30/12
Lab#: AC67263-005					Projec	t Number: 2072	427
Matrix Aqueous					Rece	ived Date: 7/24/	2012
Client SampleID: PC-3 U					Co	llect Date: 7/24/	2012
Analysis	TestGroup	Dilution:	Result	Units:	RL	Prep Date:	Analysis Date
Chloride	CHLORIDE-ICW	10	140	mg/L	20	08/01/12	08/01/12
Cyanide	CN-WATER-MUR		ND	mg/L	0.020	07/27/12	07/30/12

MS/MSD/DUP Recovery

Prep Batch: W-1272 Method: 300.0 rev2.1 Sample ID: AC67384-001 Matrix Aqueous

					~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~									
Oc	Type:	MS			·									
40	, , , , ,		Limits		MS	Sam		OWN ALLOW	MS	S/MSD/	/DUP	l	Non Spi	ke
Ana	lyte	Amt	Recov	Dil	Conc	Conc	Recov	Flag	Batch	RunID	Analysis Date	Batch	RunID	Analysis Date
Chlo	oride	5	80-120	1	66.2579	62.6856	71	Mw	20120728132	59	08/01/12 11:27	20120728132	58	08/01/12 11:05

Qc Type:	MSD	Limi	ts		MS	Sam				M	S/MSD/	'DUP		Non Spi	ke
Analyte	Amt	Recov	Rpd	Dil	Conc	Conc	Recov	Rpd	Flag	Batch	RunID	Analysis Date	Batch	RunID	Analysis Date
Chloride	5	80-120	20	1	66.1355	62.6856	69	0.2	MW	 20120728132	60	08/01/12 11:50	20120728132	58	08/01/12 11:05

# Blank Summary

Instrument: IC1

	The state of the s		To a decident community of the state of the			
Qc Type: Meth	od Blank Summary	Prep	Date: 8	3/1/12		
Run Batch ID	Analysis Date/Time	Sample ID	Run#	Analyte	Conc	RL
20120728132	8/1/12 10:21	MBW-1272	56	Chloride	ND	2.0
Qc Type: ICB 9	Summary	Prep I	Date: N	IA		
Run Batch ID	Analysis Date/Time	Sample ID	Run#	Analyte	Conc	RL
20120728132	7/28/12 15:59	ICB	8	Chloride	ND	2.0
Qc Type: CCB	Summary	Prep (	Date: N	IA		
Run Batch ID	Analysis Date/Time	Sample ID	Run#	Analyte	Conc	RL
20120728132	8/1/12 09:59	CCB	55	Chloride	ND	2.0
20120728132	8/1/12 15:12	CCB	67	Chloride	ND	2.0
20120728132	8/1/12 19:41	ССВ	79	Chloride	ND	2.0
20120728132	8/1/12 21:33	CCB	84	Chloride	ND	2.0

# Blank Summary

Instrument: Flow1

					********************************	
Oc Type: Moth	od Plank Cumman	D	n			
ac Type, Meth	od Blank Summary	Prep	Date: 7			
Run Batch ID	Analysis Date/Time	Sample ID	Run#	Analyte	Conc	RL
20120730170	7/30/12 16:14	MBW-571	17	Cyanide	ND	0.02
Qc Type: ICB S	Summary	Prep	Date: N	IA		
Run Batch ID	Analysis Date/Time	Sample ID	Run#	Analyte	Conc	RL
20120730170	7/30/12 16:10	ICB	15	Cyanide	ND	0.02
Qc Type: CCB	Summary	Prep I	Date: N	A		
Run Batch ID	Analysis Date/Time	Sample ID	Run#	Analyte	Conc	RL
20120730170	7/30/12 16:37	ССВ	28	Cyanide	ND	0.02
20120730170	7/30/12 16:53	ССВ	36	Cyanide	ND	0.02



Last Page of Report



175 ROUTE 46 WEST, UNIT D · FAIRFIELD, NJ 07004 2 MADISON ROAD, FAIRFIELD, NJ 07004 800-426-9992 · 973-244-9770 FAX: 973-244-9787

WWW.HCVLAB.COM

Project: 9051.010 Harrison LF

Client PO: 9051.010

Report To: Cashin Associates

1200 Veterans Memorial Highway

Hauppauge, NY 11788

Attn: Kimberly Somers

Received Date: 7/25/2012

Report Date: 8/20/2012

Deliverables: NYDOH-CatA

Lab ID: AC67281

Lab Project No: 2072518

AUG 2 2 2012
9051.010
CASHIN ASSOCIATES, P.C.

This report is a true report of results obtained from our tests of this material. The report relates only to those samples received and analyzed by the laboratory. All results meet the requirements of the NELAC Institute standards. Laboratory reports may not be reproduced, except in full, without the written approval of the laboratory.

In lieu of a formal contract document, the total aggregate liability of Veritech to all parties shall not exceed Veritech's total fee for analytical services rendered.

Robin Cousineau - Quality Assurance Director

OR

Stanley Gilewicz - Laboratory Director

NJ (07071)

PA (68-00463)

NY (ELAP11408)

KY (90124)

CT (PH-0671)

USACE





# THIS CATEGORY "A" REPORT IS NUMBERED FROM 1 to 144

# **HCV Case Narrative/Conformance Summary**

Client: Cashin Associates HCV Project: 2072518 Project: 9051.010 Harrison LF

Hampton-Clarke/Veritech (HC·V) received the following samples on July 25, 2012:

Client ID SW-1 U SW-1 F SW-2 U SW-2 F SW-4 U SW-4 F SD-1	HCV Sample ID AC67281-001 AC67281-002 AC67281-003 AC67281-004 AC67281-005 AC67281-007 AC67281-007	Matrix Aqueous Aqueous Aqueous Aqueous Aqueous Aqueous Soil	Analysis VO (624), BNA (625), Metals (200.7, 245.1), Chloride (300.0), Cyanide (335.4) Not analyzed VO (624), BNA (625), Metals (200.7, 245.1), Chloride (300.0), Cyanide (335.4) Not analyzed VO (624), BNA (625), Metals (200.7, 245.1), Chloride (300.0), Cyanide (335.4) VO (8260B), BNA (8270C), Metals (6010B, 7471A), Chloride (9056), Cyanide (9012B) VO (8260B), BNA (8270C), Metals (6010B, 7471A), Chloride (9056), Cyanide (9012B)
SD-4	AC67281-009	Soil	VO (8260B), BNA (8270C), Metals (6010B, 7471A), Chloride (9056), Cyanide (9012B)
PC-2 U PC-2 F LMW-2 U LMW-2 F FB-1 LF U FB-1 LF F LMW-4 U LMW-4 F	AC67281-010 AC67281-011 AC67281-012 AC67281-013 AC67281-014 AC67281-015 AC67281-016 AC67281-017	Aqueous Aqueous Aqueous Aqueous Aqueous Aqueous Aqueous Aqueous Aqueous	VO (624), BNA (625), Metals (200.7, 245.1), Chloride (300.0), Cyanide (335.4) Metals (200.7, 245.1) VO (624), BNA (625), Metals (200.7, 245.1), Chloride (300.0), Cyanide (335.4) Metals (200.7, 245.1) VO (624), BNA (625), Metals (200.7, 245.1), Chloride (300.0), Cyanide (335.4) VO (624), BNA (625), Metals (200.7, 245.1), Chloride (300.0), Cyanide (335.4) VO (624), BNA (625), Metals (200.7, 245.1), Chloride (300.0), Cyanide (335.4) Metals (200.7, 245.1)

### Volatile Organic Analysis:

Acetone was recovered in sample AC67281-009 suggesting laboratory contamination.

The Matrix Spike and/or Matrix Spike Duplicate for batch 19327 had recoveries outside QC limits. However, since the associated Method Blank and Laboratory Control Sample were within control, no corrective action was necessary.

# Base Neutral/Acid Extractable Analysis:

The Matrix Spike/Matrix Spike Duplicate RPDs for batches 14969 and 14979 had recoveries outside QC limits. However, since the associated Method Blank and Laboratory Control Sample were within control, no corrective action was necessary.

Sample AC67281-003 and 005 had one or more surrogates outside QC limits. The samples were re-extracted and re-analyzed confirming recoveries outside QC limits due to matrix interference. The initial analyses are reported.

Samples AC67281-001, 016 and WMB14969 had one or more surrogates outside QC limits.

### Metals Analysis:

The serial dilution for batch 18151 is outside QC limits for one or more analytes, suggesting matrix interference.

The Matrix Spike and/or Matrix Spike Duplicate for batch 18149 had recoveries outside QC limits. However, since the associated Method Blank and Laboratory Control Sample were within control, no corrective action was necessary. The serial dilution is also outside QC limits, suggesting matrix interference.

#### Wet Chemistry Analysis:

The Matrix Spike and/or Matrix Spike Duplicate for Cyanide batch 944 recovered outside QC limits. However, since the associated Method Blank and Laboratory Control Sample were within control, no corrective action was necessary. In addition the RPD between the Sample and Sample Dup and MS/MSD RPD are outside QC limits.

The Matrix Spike and/or Matrix Spike Duplicate for Chloride batch 1079 recovered outside QC limits. However, since the associated Method Blank and Laboratory Control Sample were within control, no corrective action was necessary.

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package and in the computer-readable data has been authorized by the Laboratory Manager or his designee, as verified by the following signature.

Robin Cousineau Quality Assurance Director

Or

Stanley Gilewicz

Date

Additional Notes  Please circle required parameter list ( HC-V 2010 Merged; iv) PA; v) NY; vi)	$\frac{-c \mathcal{A}  - c \mathcal{A} }{-c \mathcal{A}  - c \mathcal{A} } = \frac{ \mathcal{A} }{ \mathcal{A} } = $	A(67381 Lab Sample # 4)Customer Sample ID $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	FOR LAB USE ONLY  DW - Drinking Water GW - Ground Water Ww - Waste Water OT - Other (please s)	Ph: 800-428-9992   973-244-9771  Service Center: 137-D Gaither Dri Ph (Service Center): 856- In Customer: CAS HIN IN INTERPRETATION INTERPRETATION INTERPRETATION IN INTERPRETATION INTERPRETATION INTERPRETATION INTERPRETATION IN INTERPRETATION INTERPRETATION INTERPRETATION I
Additional Notes  Additional Notes  Please circle required parameter list (refer to HC-V summary): i) NJ 2008 SRS; ii) Current TCL; iii) HC-V 2010 Merged; iv) PA; v) NY; vi) Project-Specific	w 725/12/1945 × X X X X X X X X X X X X X X X X X X	5) 6)Sample  Matrix Date Time  Sw 7/25/12 940  S 7/25/12 1730  Composite  X X X X  Grab (G)	Check If Conting  Matrix Codes  or S - Soil A - Air  or SL - Sludge OL - Oil   specify under item 9, Comments)	nn Road, Fairfield, New Jersey 07004 0 Fax: 973-244-9787   973-439-1458  Ive. Mount Laurel, New Jersey 08054 780-6057 Fax: 856-780-6056  LACINJ #07071   PA #88-00463   NV #11408    Information  TSS CCIATES P.  L-CAS IN ELECTIVE  TAY 1788  L-CAS CA-PC. Can  The North County  The North Can  The Nort Can  The North Can  Th
Note: Che Note:	Date Time Note: Check if low-level g  NOC (8260B SIM	XXXXXXXX TAL Me XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	7)Analysis Request	CHAIN OF CUSTODY RECORD  Tomation Land [1] Land [1] Land [1] Harrison, NY
Metals (ICP-MS 200.8 or 6020)  Metals: Soil (ICP-MS 6020 for Be & Ag)  Metals: Soil (ICP-MS 200.8 for Be & Ag)  Metals: Metals: Soil (ICP-MS 6020 for Be & Ag)  Metals: Soil (ICP-MS 200.8 for Be & Ag)  Metals: Metals: Soil (ICP-MS 6020 for Be & Ag)  Metals: Soil (ICP-MS 200.8 for Be & Ag)  Metals: Soil (ICP-MS 6020 for Be & A	Special Requirement to meet our carry carr	None MeOH En Core NaOH HCI H2SO4 HNO3 Other:	Expedited TAT Not Aways Available. Please Check If Contingent	Page_uirements (Please eport Type Summary NJ / NY / PA NJ / NY / PA Pategory B
Cal Farc 1127, hd27/12  Cal Farc 1127, hd27/12  Call Farc 1127, hd27/12		9)Comments	PDF Other:  Beck with Lab.	Circle) Electronic Deliv. Hazsite/CSV EQuiS 4-File / EZ / NYS EQuiS EPA Reguiatory Excel - NJ Regulatory Excel - NY Regulatory

# **PROJECT MODIFICATIONS**

Client: CASHIN

HCV Project #:2072518

Project: 9051.010 Harrison LF

debrapost192.168.1.51 7/26/2012 4:22:22 PM			
Per Mark Califano 7/26/1 AC67281-002 (SW-1) AC67281-004 (SW-2) AC67281-006 (SW-4) AC67281-007 (SD-1) AC67281-008 (SD-2) AC67281-009 (SD-4) AC67281-015 (FB-1 LF)	2 do not run dissolved metals o	on the following samples:	
debrapost192.168.1.51 7/27/2012 12:17:23 PM			
Per Mark Califano 7/26/1:	remove total metals from the	 Unfiltered sample of AC67281-	
lebrapost192.168.1.51 //27/2012 12:19:00 PM	***************************************		

Per Mark Califano 7/26/12 remove total metals from the Unfiltered samples AC67281-012 and -016.DP 7/27/12

# CONDITION UPON RECEIPT

Batch Number AC67281

Entered By: Ricardo

Date Entered 7/25/2012 5:23:00 PM

		Date Entered 7/25/2012 5:23:00 PM
1	Yes	Is there a corresponding COC included with the samples?
2	Yes	Are the samples in a container such as a cooler or Ice chest?
3	NO	Are the COC seals intact?
4	Yes	Please specify the Temperature inside the container (in degC) 3.2C,2.0C
5	Yes	Are the samples refrigerated (where required)/have they arrived on ice?
6	Yes	Are the samples within the holding times for the parameters listed on the COC? IF no, list parameters and samples:
7	Yes	Are all of the sample bottles intact? If no, specify sample numbers broken/leaking
8 1	Yes	Are all of the sample labels or numbers legible? If no specify:
9 Y	es/es	Do the contents match the COC? If no, specify
10 Y		Is there enough sample sent for the analyses listed on the COC? If no, specify:
11 Y	es	Are samples preserved correctly?
12 Y	es	Was temperature blank present (Place comment below if not)? If not was temperature of samples verified?
13 N	4	Other commentsSpecify
14 NA	Ą	Corrective actions (Specify item number and corrective action taken).

# PRESERVATION DOCUMENT

Batch Number AC67281

Entered By: Ricardo

Date Entered 7/25/2012 5:24:00 PM

Lab#:	Container S	Siz Container Typ	5	Entered 7/25/2012 5:24:(		
AC67281-0		G		Preservative	PH	
AC67281-0	01 1L	P	VO	HCL	1	
AC67281-0			METALS	HNO3	1	
AC67281-0		G	CN	NAOH	14	
AC67281-0		NA	NA	NA	NA	
AC67281-00		NA	NA	NA		
AC67281-00		NA	NA	NA	NA	
AC67281-00		G	VO	HCL	NA	
AC67281-00	· <del>-</del>	Р	METALS	HNO3	1	
AC67281-00	COOME	G	CN	NAOH	1	
AC67281-00		NA	NA	NA NA	14	
		NA	NA	NA NA	NA	
AC67281-00		NA	NA		NA	
AC67281-00		G	VO	NA NO:	NA	
AC67281-00		P	METALS	HCL	1	
AC67281-00		G	CN	HNO3	1	
AC67281-006		NA	NA NA	NAOH	14	
AC67281-006		NA	NA NA	NA	NA	
AC67281-006		NA		NA	NA	
AC67281-007		NA NA	NA NA	NA	NA	
AC67281-007	NA	NA NA	NA	NA	NA	
AC67281-007	NA	NA NA	NA	NA	NA	
AC67281-008	NA		NA	NA	NA	
AC67281-008	NA	NA	NA	NA	NA	
AC67281-008	NA	NA	NA	NA		
AC67281-009	NA NA	NA	NA	NA	NA NA	
AC67281-009		NA	NA	NA	NA	
AC67281-009	NA NA	NA	NA	NA	NA	
AC67281-010	NA 101 fi	NA	NA	NA NA	NA	
AC67281-010	40ML	G	VO		NA	
	1L	P	METALS	HCL	1 🖔	
AC67281-010	500ML	G	CN	HNO3	1	
AC67281-011	NA	NA	NA	NAOH	14	
AC67281-011	NA	NA	NA	NA	NA	
AC67281-011	NA	NA	NA	NA	NA	
AC67281-012	40 <b>M</b> L	G	VO	NA	NA	
AC67281-012	1L	P	METALS	HCL	1	
AC67281-012	500 <b>M</b> L	G		HNO3	1	
AC67281-013	NA	NA	CN	NAOH	14	
AC67281-013	NA	NA	NA NA	NA	NA	
AC67281-013	NA	NA	NA	NA	NA	
AC67281-014	40ML	G	NA	NA	NA	
AC67281-014	1L	P	VO	HCL	1	
AC67281-014	500ML	G	METALS	HNO3	1	
AC67281-015	NA		CN	NAOH	14	
AC67281-015	NA	NA	NA	NA		
AC67281-015	NA NA	NA	NA	NA	NA NA	
C67281-016		NA	NA	NA	NA	
00=00	40ML		VO	HCL	NA	
00===	1L	Р	METALS	HNO3	1	
00700	500ML		CN		1	
00707	NA	A 1 A	NA	NAOH	14	
00===	NA	A I A	NA .	NA	NA	
C67281-017	NA		NA	NA	NA	
			w.,	NA	NA	

Lab#:	DateTime	or e: Use	Bot r Nu	t A/				Lo				
AC6728	1-001 07/25/12 16			70.0	Lab#:		DateTime	or or		Bot		
AC6728				M Received				, 00	er	Nu	M	Analysis
AC67281				M Login	AC672		07/30/12 09		1	1		CN-S-9012
AC67281			1	A NONE	AC6728		07/30/12 09			1		NONE
AC67281			2	A NONE	AC6728		08/03/12 01	:48 HJ				bn
			2	A VOA	AC6728	31-008	08/03/12 01					
AC67281			3	A NONE	AC6728	11-008	08/02/12 11:					NONE
AC67281		22 JW	4	A ic	AC6728	1-008	08/02/12 11:					VOA
AC67281	-001 07/31/12 09:	12 R12	4	A NONE	AC6728	1-008	08/02/12 11:		2			NONE
AC67281	-001 07/27/12 08:4		5		AC6728	1-008	08/02/12 12:		3			NONE
AC67281-	-001 07/27/12 15:4			Water-Ingi	AC6728				4		A I	VOA
AC67281-	-001 07/30/12 11:3		5	A NONE	AC6728		08/02/12 12:		4		A M	VONE
AC67281-	001 07/30/12 12:5		6	A tdsw-hg			07/25/12 16:3	35 RICA	R 0	1	M F	Received
AC67281-			6	A NONE	AC6728		07/25/12 17:2	21 RICA	R 0			.ogin
AC67281-			7	A BN	AC6728	-009	07/26/12 22:1	18 PA	1			
	-1.20/12 10,3		0	M Received	AC67281	-009	07/26/12 22:1		1			nixing
AC67281-0	002 07/25/12 17:2	1 RICAR		M Login	AC67281	-009	07/27/12 08:4			^		IONE
AC67281-0	003 07/25/12 16:3:	RICAR	_		AC67281	-009	07/27/12 10:2		1	A		SOLIDS
AC67281-0	003 07/25/12 17:2-				AC67281				1	Α	to	dsi-hg
AC67281-0	07/26/12 08:10			M Login	AC67281		07/27/12 12:2		1	Α	N	ONE
AC67281-0				A NONE			07/28/12 11:1:		1	Α	ic	
AC67281-0				A NONE	AC67281		07/28/12 12:19		1	Α		ONE
AC67281-0		the second state	2 /	A VOA	AC67281-		07/30/12 09:36		1	A		N-S-9012
			3 /	NONE	AC67281-		07/30/12 09:52		1	A		
AC67281-0				A ic	AC67281-		08/03/12 01:48		1			ONE
AC67281-00	- 11 12 05,12	R12 4			AC67281-	009	08/03/12 01:51			Α	bn	
AC67281-00	03 07/27/12 08:41	NAN 5			AC67281-		08/02/12 11:29	_	1	Α		ONE
AC67281-00	03 07/27/12 15:46	R12 5		The tot thigh	AC67281-0				2	Α	VC	)A
AC67281-00	03 07/30/12 11:35				AC67281-0		08/02/12 11:43		2	Α	NC	NE
AC67281-00	07,00712 11.55	SRB 6	Α				08/02/12 11:44		3	Α		ONE
AC67281-00	1.00.72 12.50	R12 6	Α	NONE	AC67281-0		08/02/12 12:50		4	Α	VO	
AC67281-00		BNA 7	Α	KVR	AC67281-0	09	08/02/12 12:51	R31		A	NO	
		BNA 8	Α		AC67281-0		07/25/12 16:35	RICAR		M		
AC67281-00	120.00	RICAR 0	М		AC67281-0		07/25/12 17:21					ceived
AC67281-00		RICAR 0		Login	AC67281-0	10	07/26/12 08:10	RICAR		М	Log	
AC67281-005	5 07/25/12 16:35	RICAR 0			AC67281-0			R31		Α	NO	NE
AC67281-005	5 07/25/12 17:21		М		AC67281-0		07/26/12 08:10	R31 :	2	Α	NO	NE
AC67281-005		RICAR 0	М				08/02/12 15:30	ABM 2	2	Α	VOA	4
AC67281-005		R31 1	Α	NONE	AC67281-0		7/26/12 08:10	R31 3		Α	NON	
AC67281-005	=	R31 2	Α	NONE	AC67281-01		7/31/12 08:22	JW 4			ic	
		ABM 2	Α	VOA	AC67281-01	0 0	7/31/12 09:12	R12 4				ic
AC67281-005		R31 3	Α	NONE	AC67281-01		7/27/12 08:41				NON	
AC67281-005		JW 4	Α	ic	AC67281-01		7/27/12 15:46					rater-mur
AC67281-005	07/31/12 09:12	R12 4	A		AC67281-01		7/30/12 11:35	R12 5			NON	
AC67281-005	07/27/12 08:41			NONE	AC67281-01			SRB 6		A	tdsw-	-hg
AC67281-005	07/27/12 15:46		A	cn-water-mur	AC67281-01		7/30/12 12:50	R12 6		A I	NON	E
AC67281-005	07/30/12 11:35		A	NONE	AC67281-01		3/01/12 09:56	BNA 8		A F	KVR	
AC67281-005	07/30/12 12:50	SRB 6		tdsw-hg			7/25/12 16:35	RICAR 0		M F	Recei	ived
AC67281-005		R12 6		NONE	AC67281-01-		7/25/12 17:21	RICAR 0			.ogin	
AC67281-005	08/01/12 09:56	BNA 7	Α	KVR	AC67281-011		/27/12 17:14	RAMO 1			iter	
C67281-005	08/03/12 10:53	NU 8	М	BNA	AC67281-011	07	/27/12 17:14	RAMO 1				
	08/03/12 10:53	NU 8		BN	AC67281-011	07.	/30/12 11:35	SRB 1				
C67281-006	07/25/12 16:35	RICAR 0		Received	AC67281-011	07	/30/12 12:50				dsw-t	
C67281-006	07/25/12 17:21	RICAR 0			AC67281-012		/25/12 16:35	R12 1		A N		
C67281-007	07/25/12 16:35	RICAR 0		Login	AC67281-012		25/12 10.35	RICAR 0		M R	eceiv	ved
C67281-007	07/25/12 17:21			Received	AC67281-012		25/12 17:21	RICAR 0	1	M Lo	ogin	
C67281-007	07/26/12 22:18	RICAR 0		_ogin			26/12 08:10	R31 1			ONE	
67281-007		PA 1	A r	nixing	AC67281-012		26/12 08:10	R31 2			ONE	
C67281-007	07/26/12 22:19	R12 1	A	ONE	AC67281-012		02/12 15:30	ABM 2		A VO		
67281-007	07/27/12 08:49	DW 1		6SOLIDS	AC67281-012	07/2	26/12 08:10	R31 3	A			
	07/27/12 10:22	JU 1		dsi-hg	AC67281-012		31/12 08:22	JW 4			ONE	
67281-007	07/27/12 12:25	R12 1		IONE	AC67281-012		31/12 09:12	1	A			
67281-007	07/28/12 11:15	JW 1	A ic		AC67281-012		7/12 08:41	1	A		DNE	
67281-007	07/28/12 12:19	R12 1			AC67281-012		7/12 15:46	NAN 5	A		wate	er-mur
67281-007	07/30/12 09:36			ONE	AC67281-012			R12 5	Α	NO	NE	
67281-007	07/30/12 09:52	D40 .		N-S-9012	AC67281-012		1/12 09:56	BNA 7	Α	KV	R	
67281-007	08/03/12 01:48			ONE			1/12 12:44	R12 7	Α	NO		
67281-007	00/00/40 04 04		A br		AC67281-012		1/12 09:56	BNA 8	Α	KVI		
37281-007	00/00/40		A NO	ONE	AC67281-013	07/25	5/12 16:35	RICAR 0	M			A
		ABM 2	A VC		AC67281-013		5/12 17:21	RICAR 0			eive	u
37281-007		D00 -		ONE	AC67281-013		7/12 17:14		M	Log	ıΩ	
37281-007	00/00/40 44	e			AC67281-013			RAMO 1	Α	r12		
7281-007	00/00/40 44	4044		ONE	AC67281-013			RAMO 1	Α	filter	-	
7281-007	00/00/40 44 -	304	4 VO		AC67281-013		140 40 00	SRB 1	Α	tdsw	/-hg	
	07/07/							R12 1	Α	NON	_	
	07/05/40 45		A Rec	ceived	AC67281-014		/12 16:35	RICAR 0	М	Rece		1
	07/06/40 00	RICAR O A			AC67281-014	07/25/	140	RICAR 0	М	Login		
		PA 1 A			AC67281-014			R31 1				
		112 1 A			AC67281-014				A	NON		
7281-008	07/07/40 04	W 1 A		OLIDS	AC67281-014		40 4 4 4 4		A	NON	E	
7281-008	07/27/12 10:22 J				AC67281-014			204	Α	voa		
	07/07/40 40 40				AC67281-014				Α	NON	E	
	07/20/40 44 45	12 1 A	NON	4E				W 4	A	ic		
	07/00/40 40		ic		AC67281-014					NONE	Ξ	
	07/28/12 12:19 R	12 1 A	NON	ie ers or refrigerator R12, or R24	AC67281-014	07/27/1	12 08:41 N			cn-wa		
	00 00 00 00						2 15:46 R					

Lab#:	DateTime:	Loc or Use	Bo r Nu	t A	100	
AC67281-014	07/30/12 11:35	SRB	6	A	tdsw-ng	
AC67281-014	07/30/12 12:50	R12	6	A	NONE	
AC67281-014	08/01/12 09:56	BNA	8	A	KVR	
AC67281-015	07/25/12 16:35	RICA	1.5	М	Received	
AC67281-015	07/25/12 17:21	RICA		М	Login	
AC67281-016	07/25/12 16:35	RICA		M		
AC67281-016	07/25/12 17:21	RICAL	,	M	Received	
AC67281-016	07/26/12 08:10	R31	1	A	Login NONE	
AC67281-016	07/26/12 08:10	R31	2	A	NONE	
AC67281-016	08/02/12 15:30	ABM	2	A		
AC67281-016	07/26/12 08:10	R31	3	A	VOA	
AC67281-016	07/31/12 08:22	JW	4	A	NONE	
AC67281-016	07/31/12 09:12	R12	4	A	ic	
AC67281-016	07/27/12 08:41	NAN	5	A	NONE	
AC67281-016	07/27/12 15:46	R12	5		cn-water-mur	
AC67281-016	08/01/12 09:56	BNA	8		NONE	
AC67281-017	07/25/12 16:35	RICAR			KVR	
AC67281-017	07/25/12 17:21	RICAR			Received	
AC67281-017	07/27/12 17:14	RAMO			Login	
C67281-017	07/27/12 17:14	RAMO			r12	
C67281-017	07/30/12 11:35				filter	
C67281-017	07/30/12 12:50				ldsw-hg NONE	

Loc or Bot A/ Lab#: DateTime: User Nu M Analysis Client: Cashin Associates
Project: 9051.010 Harrison LF

**HCV Project #**: 2072518

Lab#: AC67281-001

Sample ID: SW-1 U

Test Code Chloride (Water) 300.0	Prep Method	Prep Date	Ву	Analytical Method	Analysis Date	Ву
Syanide-Water (EPA 335.4)  Hercury (Water) 245.1  emivolatile Organics + 25 (625)  AL Metals 200.7  AL Metals 200.7  Polatile Organics + 10 (624)	EPA 335.4 245.1 rev3.0 EPA 625 EPA 200.2 EPA 200.2 EPA 624	07/31/12 07/27/12 07/30/12 07/31/12 07/30/12 07/30/12	Janee Neceta sean NU sean sean	300.0 rev2.1 EPA 335.4 245.1 rev3.0 EPA 625 200.7 200.7 EPA 624	7/31/12 15:27 7/30/12 16:49 8/8/12 11:07 8/1/12 11:28 8/3/12 11:37 8/3/12 21:18 8/2/12 22:53	Janee JS OA AHD SRB SRB WP

Lab#: AC67281-003

Sample ID: SW-2 U

Lab#: AC67281-005

Sample ID: SW-4 U

Test Code	Prep	Prep		Analytical		
Chloride (Water) 300.0	Method	Date	Ву	Method	Analysis Date	Ву
Cyanide-Water (EPA 335.4) Mercury (Water) 245.1 Semivolatile Organics + 25 (625) FAL Metals 200.7 FAL Metals 200.7 FAL Metals 200.7 //olatile Organics + 10 (624)	EPA 335.4 245.1 rev3.0 EPA 625 EPA 200.2 EPA 200.2 EPA 200.2 EPA 624	07/31/12 07/27/12 07/30/12 08/01/12 07/30/12 07/30/12	Janee Neceta sean NU sean sean	300.0 rev2.1 EPA 335.4 245.1 rev3.0 EPA 625 200.7 200.7 EPA 624	7/31/12 16:11 7/31/12 14:30 8/8/12 11:20 8/2/12 19:37 8/3/12 22:09 8/3/12 12:55 8/3/12 12:44 8/2/12 23:40	Janee js OA AHD SRB SRB SRB

Client: Cashin Associates
Project: 9051.010 Harrison LF

**HCV Project #**: 2072518

Lab#: AC67281-007

Sample ID: SD-1

Test Code	Prep Method	Prep Date	Ву	Analytical Method	Analysis	
6 Solids SM2540G Chloride (Soil) 9056 Cyanide (Soil/Waste) 9012B dercury (Soil/Waste) 7471A emivolatile Organics + 25 (8270) AL Metals 6010 AL Metals 6010 AL Metals 6010 Olatile Organics + 10 (8260)	EPA 9012B EPA 7471A 3510C/3550B 3005&10/3050 3005&10/3050 3005&10/3050 EPA5030/5035	07/28/12 07/30/12 07/27/12 08/03/12 07/27/12 07/27/12 07/27/12	Janee Neceta julijana hj julijana julijana julijana	SM 2540G EPA 9056A EPA 9012B EPA 7471A EPA 8270C EPA 6010B EPA 6010B EPA 8260B	7/27/12 00:00 7/28/12 20:49 7/30/12 15:57 7/30/12 16:30 8/5/12 20:36 7/30/12 16:26 7/31/12 11:59 7/28/12 01:55 8/2/12 18:50	janee Janee js OA AHD OA OA WP

Lab#: AC67281-008

Sample ID: SD-2

Test Code % Solids SM2540G	Prep Method	Prep Date	Ву	Analytical Method	Analysis Date	Ву
Chloride (Soil) 9056 Cyanide (Soil/Waste) 9012B Mercury (Soil/Waste) 7471A Semivolatile Organics + 25 (8270) FAL Metals 6010 FAL Metals 6010 FAL Metals 6010 AL Metals 6010 Olatile Organics + 10 (8260)	EPA 9012B EPA 7471A 3510C/3550B 3005&10/3050 3005&10/3050 3005&10/3050 3005&10/3050 EPA5030/5035	07/28/12 07/30/12 07/27/12 08/03/12 07/27/12 07/27/12 07/27/12 07/27/12	Janee Neceta julijana hj julijana julijana julijana	SM 2540G EPA 9056A EPA 9012B EPA 7471A EPA 8270C EPA 6010B EPA 6010B EPA 6010B EPA 6010B EPA 8260B	7/27/12 00:00 7/28/12 21:11 7/30/12 15:59 7/30/12 16:31 8/5/12 20:12 7/31/12 12:02 7/28/12 01:58 7/30/12 16:06 7/30/12 16:30 8/2/12 19:06	janee Janee js OA AHD OA OA OA

Lab#: AC67281-009

Sample ID: SD-4

Test Code	Prep Method	Prep Date	Ву	Analytical Method	Analysis	
% Solids SM2540G Chloride (Soil) 9056 Cyanide (Soil/Waste) 9012B Mercury (Soil/Waste) 7471A emivolatile Organics + 25 (8270) AL Metals 6010 AL Metals 6010 OLAL Metals 6010 Olatile Organics + 10 (8260)	EPA 9012B EPA 7471A 3510C/3550B 3005&10/3050 3005&10/3050 3005&10/3050 EPA5030/5035	07/28/12 07/30/12 07/27/12 08/03/12 07/27/12 07/27/12 07/27/12	Janee Neceta julijana hj julijana julijana julijana	SM 2540G EPA 9056A EPA 9012B EPA 7471A EPA 8270C EPA 6010B EPA 6010B EPA 8260B	7/27/12 00:00 7/28/12 21:34 7/30/12 16:01 7/30/12 16:33 8/5/12 19:47 7/31/12 12:05 7/28/12 02:03 7/30/12 16:34 8/2/12 19:22	janee Janee js OA AHD OA OA OA

# **Laboratory Chronicle**

Client: Cashin Associates
Project: 9051.010 Harrison LF

**HCV Project #**: 2072518

Lab#: AC67281-010

Sample ID: PC-2 U

Test Code Chloride (Water) 300.0	Prep Method	Prep Date	Ву	Analytical Method	Analysis Date	Ву
Cyanide-Water (EPA 335.4) Mercury (Water) 245.1 Semivolatile Organics + 25 (625) TAL Metals 200.7 TAL Metals 200.7 Volatile Organics + 10 (624)	EPA 335.4 245.1 rev3.0 EPA 625 EPA 200.2 EPA 200.2 EPA 624	07/31/12 07/27/12 07/30/12 08/01/12 07/30/12 07/30/12	Janee Neceta sean kvr sean sean	300.0 rev2.1 EPA 335.4 245.1 rev3.0 EPA 625 200.7 200.7 EPA 624	7/31/12 16:34 7/31/12 14:32 8/8/12 11:22 8/1/12 18:55 8/3/12 13:13 8/3/12 22:11 8/3/12 01:29	Janee js OA AHD SRB SRB WP

Lab#: AC67281-011

Sample ID: PC-2 F

Test Code Mercury (Water) 245.1	Prep Method	Prep Date	By	Analytical	Analysis	
TAL Metals 200.7/8 TAL Metals 200.7/8	245.1 rev3.0	07/30/12	sean	245.1 rev3.0	8/8/12 11:23	OA
	EPA 200.2	07/30/12	sean	200.7/200.8	8/3/12 22:14	SRB
	EPA 200.2	07/30/12	sean	200.7/200.8	8/3/12 13:17	SRB

Lab#: AC67281-012

Sample ID: LMW-2 U

Test Code Chloride (Water) 300.0	Prep Method	Prep Date	Ву	Analytical Method	Analysis	
Cyanide-Water (EPA 335.4) Semivolatile Organics + 25 (625) Volatile Organics + 10 (624)	EPA 335.4 EPA 625 EPA 624	07/31/12 07/27/12 08/01/12	Janee Neceta kvr	300.0 rev2.1 EPA 335.4 EPA 625 EPA 624	7/31/12 16:56 7/31/12 14:34 8/1/12 17:56 8/2/12 23:08	Janee js AHD WP

Lab#: AC67281-013

Sample ID: LMW-2 F

Test Code	Prep Method	Prep Date	Bv	Analytical	Analysis	
Mercury (Water) 245.1 FAL Metals 200.7/8	245.1 rev3.0	07/30/12		Method	Date	Ву
AL Metals 200.7/8	EPA 200.2 EPA 200.2	07/30/12 07/30/12	sean sean sean	245.1 rev3.0 200.7/200.8 200.7/200.8	8/8/12 11:25 8/3/12 13:21 8/3/12 22:17	OA SRB SRB

# **Laboratory Chronicle**

Client: Cashin Associates
Project: 9051.010 Harrison LF

**HCV Project #**: 2072518

Lab#: AC67281-014

Sample ID: FB-1 LF U

Test Code Chloride (Water) 300.0	Prep Method	Prep Date	Ву	Analytical Method	Analysis Date	Ву
Cyanide-Water (EPA 335.4) Mercury (Water) 245.1 Semivolatile Organics + 25 (625) AL Metals 200.7 AL Metals 200.7 olatile Organics + 10 (624)	EPA 335.4 245.1 rev3.0 EPA 625 EPA 200.2 EPA 200.2 EPA 624	07/31/12 07/27/12 07/30/12 08/01/12 07/30/12 07/30/12	Janee Neceta sean kvr sean sean	300.0 rev2.1 EPA 335.4 245.1 rev3.0 EPA 625 200.7 200.7 EPA 624	7/31/12 14:19 7/31/12 14:41 8/8/12 11:26 8/1/12 19:17 8/3/12 22:21 8/3/12 13:25 8/1/12 17:26	Janee js OA AHD SRB SRB WP

Lab#: AC67281-016

Sample ID: LMW-4 U

Test Code	Prep Method	Prep Date	Ву	Analytical	Analysis	
Chloride (Water) 300.0 Cyanide-Water (EPA 335.4) Semivolatile Organics + 25 (625) Volatile Organics + 10 (624)	EPA 335.4 EPA 625 EPA 624	07/31/12 07/27/12 08/01/12	Janee Neceta kvr	300.0 rev2.1 EPA 335.4 EPA 625 EPA 624	7/31/12 17:18 7/31/12 14:42 8/1/12 19:39 8/3/12 01:13	Janee js AHD WP

Lab#: AC67281-017

Sample ID: LMW-4 F

Test Code	Prep Method	Prep Date	By	Analytical	Analysis	
Mercury (Water) 245.1 TAL Metals 200.7/8 TAL Metals 200.7/8	245.1 rev3.0 EPA 200.2 EPA 200.2	07/30/12 07/30/12 07/30/12	sean sean sean	Method 245.1 rev3.0 200.7/200.8 200.7/200.8	8/8/12 11:27 8/3/12 22:24 8/3/12 13:29	OA SRB SRB

# **HCV Reporting Limit Definitions/Data Qualifiers**

# REPORTING DEFINITIONS

**DF** = Dilution Factor

MDL = Method Detection Limit

RL* = Reporting Limit

ND = Not Detected

RT = Retention Time

NA = Not Applicable

*Samples with elevated Reporting Limits (RLs) as a result of a dilution may not achieve client reporting limits in some cases. The elevated RLs are unavoidable consequences of sample dilution required to quantitate target analytes that exceed the calibration range of the instrument.

### **DATA QUALIFIERS**

- B- Indicates analyte was present in the Method Blank and sample.
- **d-** For Pesticide and PCB analysis, the concentration between primary and secondary columns is greater than 40%. The lower concentration is generally reported.
- E- Indicates the concentration exceeded the upper calibration range of the instrument.
- J- Indicates the value is estimated because it is either a Tentatively Identified Compound (TIC) or the reported concentration is greater than the MDL but less than the RL. For samples results between the MDL and RL there is a possibility of false positives or misidentification at the quantitation levels. Additionally, the acceptance criteria for QC samples may not be

# **HCV Report Of Analysis**

Client: Cashin Associates

Project: 9051.010 Harrison LF

**HCV Project #:** 2072518

Sample ID: SW-1 U

Lab#: AC67281-001 Matrix: Aqueous

Collection Date: 7/25/2012 Receipt Date: 7/25/2012

Chloride	(Water)	300.0
----------	---------	-------

Analyte				
Chloride	DF	Units	RL	Result
Cyanido Water (EDA con a)	1	mg/l	2.0	5.8
Cyanide-Water (EPA 335.4)				

Analyte					
Cyanide	DF	Units	RL	Result	
Proury (Motor) 245 4		mg/i	0.020	ND	
ercury (Water) 245.1					

#### Mercury (Water) 245.1

Analyte					
Mercury	DF	Units	RL	Result	
Olifonia - Company of the Company of	1	ug/t	0.20		
Semivolatile Organics + 25 (625)		-	0.20	ND	

emivolatile Organics + 25 (625)				
Analyte	DF	Units	n:	
1,1'-Biphenyl	1		RL	Result
1,2,4,5-Tetrachlorobenzene	1	ug/!	2.0	ND
2,3,4,6-Tetrachlorophenol	1	ug/l	2.0	ND
2,4.5-Trichlorophenol	1	ug/l	2.0	ND
2,4,6-Trichlorophenol	1	ug/l	2.0	ND
2.4-Dichlorophenol	1	ug/l	2.0	ND
2,4-Dimethylphenol	1	ug/l	2.0	ND
2,4-Dinitrophenol	1	ug/l	2.0	ND
2,4-Dinitrotoluene		ug/l	10	ND
2.6-Dinitrotoluene		ug/l	2.0	ND
2-Chloronaphthalene	1	ug/l	2.0	ND
2-Chlorophenol	1	ug/l	2.0	ND
2-Methylnaphthalene	1	ug/l	2.0	ND
2-Methylphenol	1	ug/l	2.0	ND
2-Nitroaniline	1	ug/l	0.50	ND
2-Nitrophenol	1	ug/l	2.0	ND
3&4-Methylphenol	1	ug/l	2.0	ND
3,3'-Dichlorobenzidine	1	ug/l	0.50	ND
3-Nitroaniline	1	ug/l	2.0	ND
4,6-Dinitro-2-methylphenol	1	ug/l	2.0	ND
4-Bromophenyl-phenylether	1	ug/l	10	ND
4-Chloro-3-methylphenol	1	ug/l	2.0	ND
4-Chloroaníline	1	ug/l	2.0	ND
4-Chlorophenyl-phenylether	1	ug/l	0.50	ND
4-Nitroaniline	1	ug/l	2.0	ND
4-Nitrophenol	1	ug/l	2.0	ND
Acenaphthene	1	ug/l	2.0	ND
Acenaphthylene	1	ug/l	2.0	ND
Acetophenone	1	ug/l	2.0	ND
Anthracene	1	ug/i	2.0	ND
Atrazine	1	ug/l	2.0	ND
Benzaldehyde	1	ug/l	2.0	ND
Benzo[a]anthracene	1	ug/l	2.0	ND
Benzo[a]pyrene	1	ug/l	2.0	ND
Benzo[b]fluoranthene	1	ug/l	2.0	ND
Benzo[g,h,i]perylene	1	ug/l	2.0	ND
· · · · · · · · · · · · · · · · · · ·	1	ug/l	2.0	ND

2072518 001 Sample ID: SW-1 U Lab#: AC67281-001 Collection Date: 7/25/2012 Matrix: Aqueous Receipt Date: 7/25/2012 Benzo[k]fluoranthene bis(2-Chloroethoxy)methane ug/l 2.0 ND bis(2-Chloroethyl)ether ug/l 2.0 ND bis(2-Chloroisopropyl)ether ug/l 0.50 ND bis(2-Ethylhexyl)phthalate ug/l 2.0 ND Butylbenzylphthalate ug/l 2.0 ND Caprolactam ug/l 2.0 ND Carbazole ug/l 2.0 NO Chrysene ug/l 2.0 ND Dibenzo[a,h]anthracene ug/l 2.0 ND Dibenzofuran ug/l 2.0 ND Diethylphthalate ug/l 0.50 ND Dimethylphthalate ug/l 2.0 ND Di-n-butylphthalate ug/l 2.0 ND Di-n-octylphthalate ug/i 0.50 ND Fluoranthene ug/l 2.0 ND Fluorene ug/l 2.0 ND Hexachiorobenzene ug/i 2.0 ND Hexachlorobutadiene ug/l 2.0 ND Hexachlorocyclopentadiene ug/l 2.0 ND Hexachloroethane ug/l 2.0 ND Indeno[1,2,3-cd]pyrene ug/l 2.0 ND Isophorone ug/ī 2.0 ND Naphthalene ug/l 2.0 ND Nitrobenzene ug/l 0.50 ND N-Nitroso-di-n-propylamine ug/l 2.0 ND N-Nitrosodiphenylamine ug/l 0.50 ND Pentachlorophenol ug/l 2.0 ND Phenanthrene ug/l 10 ND Phenol ug/l 2.0 ND Ругепе ug/! 2.0 ND ug/l Semivolatile Organics + 25 (625) Library Searches 2.0 ND Analyte DF Units unknown RT Result 1 **TotalSemIVolatileTic** ug/l 5.12 14J 1 ug/i NA TAL Metals 200.7 14J Analyte DF Units Aluminum RL Result 1 Antimony ug/i 100 910 Arsenic ug/l 7.5 ND Barlum ug/l 20 ND Beryllium ug/i 25 120 Cadmium ug/l 4.0 ND Calcium ug/i 2.0 ND Chromium ug/l 1000 45000 Cobalt ug/l 25 ND Copper ug/i 10 ND ug/l Iron 25 ND Lead ug/i 150 7100 Magnesium ug/l 5.0 ND Manganese ug/i 1000 14000 Nickel ug/i 25 5000 Potassium ug/i 10 ND Selenium ug/I 2500 3200 Silver ug/l 25 ND ug/i 10 ND

Sample ID: SW-1 U Lab#: AC67281-001

Matrix: Aqueous

Collection Date: 7/25/2012 Receipt Date: 7/25/2012

Sodlum Thallium ug/l 2500 9400 ug/l Vanadium 5.0 ND ug/l Zinc 25 ND ug/l 25 ND

# Volatile Organics + 10 (624)

Analyte				
1.1,1-Trichloroethane	D	F Units	RL	Result
1,1.2,2-Tetrachloroethane	1	ug/l	1.0	
1,1,2-Trichloro-1,2,2-trifluoroethane	1	ug/l	1.0	ND
1,1,2-Trichloroethane	1	ug/l	5.0	ND
1,1-Dichloroethane	1	ug/l	1.0	ND
1,1-Dichloroethene	1	ug/l	1.0	ND
1,2,3-Trichlorobenzene	1	ug/l	1.0	ND
1,2,4-Trichlorobenzene	1	ug/l	1.0	ND
1,2-Dibromo-3-chloropropane	1	ug/I	1.0	ND
1,2-Dibromoethane	1	ug/l	1.0	ND
1,2-Dichlorobenzene	1	ug/i	1.0	ND
1,2-Dichloroethane	1	ug/l	1.0	ND
1,2-Dichloropropane	1	ug/i	0.50	ND
1,3-Dichlorobenzene	1	ug/l	1.0	ND
1,4-Dichlorobenzene	1	ug/I	1.0	ND
1,4-Dioxane	1	ug/l	1.0	ND
2-Butanone	1	ug/l		ND
2-Hexanone	1	ug/l	50	ND
4-Methyl-2-pentanone	1	ug/l	1.0	ND
Acetone Acetone	1	ug/l	1.0	ND
Benzene	1	ug/l	1.0	ND
	1	ug/l	10	ND
Bromochloromethane	1	ug/i	0.50	ND
Bromodichloromethane	1	ug/l	1.0	ND
Bromoform	1	ug/i	1.0	ND
Bromomethane	1	ug/l	1.0	ND
Carbon disulfide	1		1.0	ND
Carbon tetrachloride	1	ug/l	1.0	ND
Chlorobenzene	1	ug/l	1.0	ND
Chloroethane	1	ug/l	1.0	ND
Chloroform	1	ug/l	1.0	ND
Chloromethane	1	ug/l	1.0	ND
cis-1,2-Dichloroethene	1	ug/l	1.0	ND
cis-1,3-Dichloropropene	1	ug/l	1.0	ND
Cyclohexane	1	ug/l	1.0	ND
Dibromochloromethane	1	ug/l	1.0	ND
Dichlorodifluoromethane	1	ug/l	1.0	ND
Ethylbenzene	1	ug/l	1.0	ND
Isopropylbenzene	1	ug/l	1.0	ND
m&p-Xylenes	1	ug/l	1.0	ND
Methyl Acetate	1	ug/l	1.0	ND
Methylcyclohexane		ug/l	1.0	ND
Methylene chloride	1	ug/l	1.0	ND
Methyl-t-butyl ether	1	ug/i	1.0	ND
o-Xylene	1	ug/l	0.50	ND
Styrene	1	ug/l	1.0	ND
etrachloroethene	1	ug/l	1.0	ND
oluene	1	ug/i	1.0	ND
ans-1,2-Dichloroethene	1	ug/I	1.0	ND
ans-1.3-Dichloropropene	1	ug/I	1.0	ND
richloroethene	1	ug/l	1.0	ND
eported to Dry Weigh	1	ug/l	1.0	ND .

				24/2410
ample ID: SW-1 U Lab#: AC67281-001 Matrix: Aqueous			Collectio Receip	n Date: 7/25/2012 ot Date: 7/25/2012
Trichlorofluoromethane Vinyl chloride Xylenes (Total)	1	ug/i	1.0	ND ND
Volatile Organics + 10 (624) Library Searches	1	ug/l	1.0	ND
Analyte	DF	Unite		

Analyte	DF	13 1.		
No Unknown Compounds Detected	Ur	Units	RT	Result
TotalVolatileTic	1	ug/l	NA	ND
	1	ug/l	NA	ND

Sample ID: SW-2 U Lab#: AC67281-003

Matrix: Aqueous

Collection Date: 7/25/2012 Receipt Date: 7/25/2012

Chloride (Water) 300.0				eipt Date: 7/25/2012
Analyte	DF	Units	RL	
Chloride	1	mg/l	2.0	Result
Cyanide-Water (EPA 335.4)			2.0	6.5
Analyte	DF			
Cyanide		Units	RL	Result
Mercury (Water) 245.1		mg/l	0.020	0.030
Analyte				
Mercury	DF	Units	RL	Result
	1	ug/l	0.20	ND
Semivolatile Organics + 25 (625)				
Analyte	DF	Units	DI	
1,1'-Biphenyl	1	ug/l	RL	Result
1,2,4,5-Tetrachlorobenzene	1	ug/l	2.0	ND
2.3,4,6-Tetrachlorophenol	f	ug/l	2.0	ND
2.4.5-Trichlorophenol	1	ug/l	2.0	ND
2.4.6-Trichlorophenol	1	ug/l	2.0	ND
2.4-Dichlorophenol	1	ug/l	2.0	ND
2.4-Dimethylphenol	1	ug/l	2.0	ND
2,4-Dinitrophenol	1	ug/l	2.0	ND
2.4-Dinitrotoluene 2.6-Dinitrotoluene	1	ug/l	10	ND
	1	ug/l	2.0	ND
2-Chloronaphthalene 2-Chlorophenol	1	ug/l	2.0	ND
	1	ug/l	2.0	ND
2-Methylnaphthalene 2-Methylphenol	1	ug/l	2.0	ND
2-Nitroaniline	1	ug/l	2.0	ND
2-Nitrophenol	1	ug/l	0.51	ND
3&4-Methylphenol	1	ug/l	2.0	ND
3,3'-Dichlorobenzidine	1	ug/l	0.51	ND
3-Nitroaniline	1	ug/l	2.0	ND
4,6-Dinitro-2-methylphenol	1	ug/l	2.0	ND
4-Bromophenyl-phenylether	1	ug/l	10	ND
4-Chloro-3-methylphenol	1	ug/I	2.0	ND
4-Chloroaniline	1	ug/l	2.0	ND
4-Chlorophenyl-phenylether	1	ug/l	0.51	ND
4-Nitroaniline	1	ug/l	2.0	ND
4-Nitrophenol	1	ug/l	2.0	ND
Acenaphthene	1	ug/i	2.0	ND
Acenaphthylene	1	ug/l	2.0	ND
Acetophenone	1	ug/l	2.0	ND
Anthracene	1	ug/l	2.0	ND
Atrazine	1	ug/l	2.0	ND
Benzaldehyde	1	ug/l	2.0	ND ND
Benzo[a]anthracene	1	ug/l	2.0	ND ND
Benzo[a]pyrene	1	ug/l	2.0	ND
Benzo[b]fluoranthene	1	ug/l	2.0	ND ND
Benzo[g,h,i]perylene	1	ug/l	2.0	ND ND
Benzo[k]fluoranthene	1	ug/l	2.0	ND
bis(2-Chloroethoxy)methane	1	ug/l	2.0	ND
bis(2-Chloroethyl)ether	1	ug/l	2.0	ND
bis(2-Chloroisopropyl)ether		ug/l	0.51	ND ND
bis(2-Ethylhexyl)phthalate		ug/i	2.0	ND
Butylbenzylphthalate	1	ug/l	2.0	ND
Caprolactam	1	ug/l	2.0	ND

Lab#: AC67281-003			Collec	tion Date: 7/25/2012
Matrix: Aqueous			Rec	eipt Date: 7/25/2012
Carbazole	1			
Chrysene	1	og,,	2.0	ND
Dibenzo[a,h]anthracene		ug/i	2.0	ND
Dibenzofuran	1	ug/l	2.0	ND
Diethylphthalate	1	ug/l	0.51	ND
Dimethylphthalate	1	ug/l	2.0	ND
Di-n-butylphthalate	1	ug/l	2.0	ND
Di-n-octylphthalate	1	ug/l	0.51	ND ND
Fluoranthene	1	ug/l	2.0	
Fluorene	1	ug/I	2.0	ND
Hexachlorobenzene	1	ug/l	2.0	ND
Hexachlorobutadiene	1	ug/I	2.0	ND
Hexachlorocyclopentadiene	1	ug/i	2.0	ND
Hexachloroethane	1	ug/I	2.0	ND
Indeno[1,2,3-cd]pyrene	1	ug/l	2.0	ND
Isophorone	1	ug/l		ND
	1	ug/l	2.0	ND
Naphthalene	794 (00)	ug/l	2.0	ND
Nitrobenzene	1	ug/l	0.51	ND
N-Nitroso-di-n-propylamine	1	ug/l	2.0	ND
N-Nitrosodiphenylamine	1		0.51	ND
Pentachlorophenol	1	ug/l	2.0	ND
Phenanthrene	1	ug/l	10	ND
Phenol	1	ug/l	2.0	ND
Pyrene	1	ug/I	2.0	ND
Semivolatile Organics + 25 (625) Library Search		ug/I	2.0	ND
Analyte 25 (023) Library Search	nes			
3-Penten-1-ol, 2-methyl-	DF	Units	RT	
unknown	1	ug/i	3.78	Result
TotalSemiVolatileTic	1	ug/I	5.14	4.7J
	1	ug/l	NA.	28J
TAL Metals 200.7				33J
Analyte	DF			
Aluminum		Units	RL	Result
Aluminum Antimony	1	Units ug/l	RL 200	Result
				24000
Antimony	1	ug/l	200	<b>24000</b> ND
Antimony Arsenic	<b>1</b> 1	<b>ug/l</b> ug/l	<b>200</b> 15	<b>24000</b> ND ND
Antimony Arsenic Barium	<b>1</b> 1	<b>ug/l</b> ug/l ug/l	<b>200</b> 15 40	24000 ND ND 4500
Antimony Arsenic <b>Barium</b> Beryllium	1 1 1	<b>ug/l</b> ug/l <b>ug/l</b>	<b>200</b> 15 40 <b>50</b>	24000 ND ND 4500 ND
Antimony Arsenic Barium Beryllium Cadmium	1 1 1 1	<b>ug/l</b> ug/l ug/l <b>ug/l</b> ug/l	200 15 40 50 8.0	24000 ND ND 4500 ND 5.3
Antimony Arsenic Barium Beryllium Cadmlum Calcium	1 1 1 1 1	<b>ug/l</b> ug/l <b>ug/l</b> <b>ug/l</b> ug/l	200 15 40 50 8.0	24000 ND ND 4500 ND 5.3
Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium	1 1 1 1 1	ug/l ug/l ug/l ug/l ug/l ug/l	200 15 40 50 8.0 4.0 2000	24000 ND ND 4500 ND 5.3 120000 ND
Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper	1 1 1 1 1 1 1	ug/l ug/l ug/l ug/l ug/l ug/l ug/l	200 15 40 50 8.0 4.0 2000 100	24000 ND ND 4500 ND 5.3 120000 ND
Antimony Arsenic Barium Beryllium Cadmlum Calcium Chromium Cobalt Copper	1 1 1 1 1 1 1 2	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	200 15 40 50 8.0 4.0 2000 100 20 50	24000 ND ND 4500 ND 5.3 120000 ND 41
Antimony Arsenic Barium Beryllium Cadmlum Calcium Chromium Cobalt Copper Iron	1 1 1 1 1 1 2 1	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	200 15 40 50 8.0 4.0 2000 100 20 50 300	24000 ND ND 4500 ND 5.3 120000 ND
Antimony Arsenic Barium Beryllium Cadmlum Calcium Chromium Cobalt Copper Iron Lead Magnesium	1 1 1 1 1 1 2 1	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	200 15 40 50 8.0 4.0 2000 100 20 50 300	24000 ND ND 4500 ND 5.3 120000 ND 41
Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese	1 1 1 1 1 1 2 1 1 1	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	200 15 40 50 8.0 4.0 2000 100 20 50 300 10	24000 ND ND 4500 ND 5.3 120000 ND 41 160 140000
Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Nickel	1 1 1 1 1 1 2 1 1 1	ug/i ug/i ug/i ug/i ug/i ug/i ug/i ug/i	200 15 40 50 8.0 4.0 2000 100 20 50 300 10 2000 2000	24000 ND 4500 ND 5.3 120000 ND 41 160 140000 130
Antimony Arsenic Barium Beryllium Cadmlum Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Nickel Potassium	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	200 15 40 50 8.0 4.0 2000 100 20 50 300 10 2000 2000 200	24000 ND ND 4500 ND 5.3 120000 ND 41 160 140000 130 33000
Antimony Arsenic Barium Beryllium Cadmlum Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Nickel Potassium Selenium	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	200 15 40 50 8.0 4.0 2000 100 20 50 300 10 2000 200 200 5000	24000 ND ND 4500 ND 5.3 120000 ND 41 160 140000 130 33000
Antimony Arsenic  Barium  Beryllium  Cadmlum  Calcium  Chromium  Cobalt  Copper Iron  Lead  Magnesium  Manganese  Nickel  Potassium  Selenium	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	200 15 40 50 8.0 4.0 2000 100 20 50 300 10 2000 200 20 5000	24000 ND ND 4500 ND 5.3 120000 ND 41 160 140000 130 33000 120000 75
Antimony Arsenic  Barium  Beryllium  Cadmlum  Calcium  Chromium  Cobalt  Copper Iron  Lead  Magnesium  Manganese  Nickel  Potassium  Selenium  Silver	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 2 2 2	ug/i ug/i ug/i ug/i ug/i ug/i ug/i ug/i	200 15 40 50 8.0 4.0 2000 100 20 50 300 10 2000 200 200 5000	24000 ND ND 4500 ND 5.3 120000 ND 41 160 140000 130 33000 120000 75
Antimony Arsenic  Barium  Beryllium  Cadmlum  Calcium  Chromium  Cobalt  Copper Iron  Lead  Magnesium  Manganese  Nickel  Potassium  Selenium	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 2 2 1 1 1 1	ug/i ug/i ug/i ug/i ug/i ug/i ug/i ug/i	200 15 40 50 8.0 4.0 2000 100 20 50 300 10 2000 200 20 5000	24000 ND ND 4500 ND 5.3 120000 ND 41 160 140000 130 33000 120000 75 7200 ND
Antimony Arsenic  Barium  Beryllium  Cadmlum  Calcium  Chromium  Cobalt  Copper Iron  Lead  Magnesium  Manganese  Nickel  Potassium  Selenium  Silver	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 2 1 1 2 2 1 1 2	ug/i ug/i ug/i ug/i ug/i ug/i ug/i ug/i	200 15 40 50 8.0 4.0 2000 100 20 50 300 10 2000 200 5000 100 40	24000 ND ND 4500 ND 5.3 120000 ND 41 160 140000 130 33000 120000 75 7200 ND
Antimony Arsenic Barium Beryllium Cadmlum Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Nickel Potassium Selenium Silver Sodium	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 2 1 1 2 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ug/i ug/i ug/i ug/i ug/i ug/i ug/i ug/i	200 15 40 50 8.0 4.0 2000 100 20 50 300 10 2000 20 5000 100 40 5000	24000 ND ND 4500 ND 5.3 120000 ND 41 160 140000 130 33000 120000 75 7200 ND ND ND
Antimony Arsenic Barium Beryllium Cadmlum Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Nickel Potassium Selenium Silver Sodium Thallium Vanadlum Zinc	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 2 1 1 2 2 1 1 2	ug/i ug/i ug/i ug/i ug/i ug/i ug/i ug/i	200 15 40 50 8.0 4.0 2000 100 20 50 300 10 2000 20 5000 100 40 5000	24000 ND ND 4500 ND 5.3 120000 ND 41 160 140000 130 33000 120000 75 7200 ND
Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobait Copper Iron Lead Magnesium Manganese Nickel Potassium Selenium Silver Sodium Thallium	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 2 1 1 2 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ug/i ug/i ug/i ug/i ug/i ug/i ug/i ug/i	200 15 40 50 8.0 4.0 2000 100 20 50 300 10 2000 200 20 5000 100 40 5000 20 50	24000 ND ND 4500 ND 5.3 120000 ND 41 160 140000 130 33000 120000 75 7200 ND ND ND ND 13000 ND

Sample ID: SW-2 U Lab#: AC67281-003 Matrix: Aqueous

Collection Date: 7/25/2012 Receipt Date: 7/25/2012

Aqueous			ivece:	pt Date: 7/25/2012
1,1,1-Trichloroethane	1	ug/i	4.6	
1,1,2,2-Tetrachloroethane	1	ug/l	1.0	ND
1,1,2-Trichloro-1,2,2-trifluoroethane	1	ug/l	1.0	ND
1,1,2-Trichloroethane	1		5.0	ND
1,1-Dichloroethane	1	ug/l	1.0	ND
1,1-Dichloroethene	1	ug/l	1.0	ND
1,2,3-Trichlorobenzene	1	ug/l	1.0	ND
1,2,4-Trichlorobenzene	1	ug/l	1.0	ND
1,2-Dibromo-3-chloropropane		ug/l	1.0	ND
1,2-Dibromoethane	1	ug/l	1.0	ND
1,2-Dichlorobenzene	1	ug/l	1.0	ND
1,2-Dichloroethane		ug/I	1.0	ND
1,2-Dichloropropane	1	ug/l	0.50	ND
1,3-Dichlorobenzene	1	ug/l	1.0	ND
1,4-Dichlorobenzene	1	ug/l	1.0	ND
1,4-Dioxane	1	ug/l	1.0	ND
2-Butanone	<b>1</b>	ug/l	50	ND
2-Hexanone	1	ug/l	1.0	ND
4-Methyl-2-pentanone	1	ug/l	1.0	ND
Acetone	1	ug/l	1.0	ND
Benzene	1	ug/l	10	ND
Bromochloromethane	1	ug/l	0.50	ND
Bromodichloromethane	1	ug/l	1.0	ND
Bromoform	1	ug/l	1.0	ND
Bromomethane	1	ug/l	1.0	ND
Carbon disulfide	1	ug/l	1.0	ND
Carbon tetrachloride	1	ug/l	1.0	ND
Chlorobenzene	1	ug/l	1.0	ND
Chloroethane	1	ug/l	1.0	ND
Chloroform	1	ug/l	1.0	ND
	1	ug/l	1.0	ND
Chloromethane	1	ug/l	1.0	ND
cis-1,2-Dichloroethene	1	ug/I	1.0	ND
cis-1,3-Dichloropropene	1	ug/l	1.0	ND
Cyclohexane	1	ug/l	1.0	ND
Dibromochloromethane	1	ug/l	1.0	ND
Dichlorodifluoromethane	1	ug/l	1.0	ND
Ethylbenzene	1	ug/l	1.0	ND
sopropylbenzene	1	ug/l	1.0	ND
n&p-Xylenes	1	ug/l	1.0	ND
Methyl Acetate	1	ug/l	1.0	ND
Methylcyclohexane	1	ug/l	1.0	ND
Methylene chloride	1	ug/l	1.0	ND
lethyl-t-butyl ether	1	ug/l	0.50	
-Xylene	1	ug/l	1.0	ND NE
tyrene	1	ug/l	1.0	ND ND
etrachloroethene	1	ug/l	1.0	ND
Dluene	1	ug/l	1.0	ND
ans-1,2-Dichloroethene	1	ug/l		ND
ns-1,3-Dichloropropene	1	ug/l	1.0	ND
ichloroethene	1	ug/l	1.0	ND
ichlorofluoromethane	1		1.0	ND
nyl chloride	1	ug/l	1.0	ND
rienes (Total)	1	ug/l	1.0	ND

## Volatile Organics + 10 (624) Library Searches

, and the second				
Analyte	DF	Units	RT	Pocult
No Unknown Compounds Detected	1	ug/l	NA	ND
Sults are reported to Dry Weigh				

Sample ID: SW-2 U

Lab#: AC67281-003

Matrix: Aqueous

Collection Date: 7/25/2012

Receipt Date: 7/25/2012

TotalVolatileTic

ŧ

NA

ND

Sample ID: SW-4 U Lab#: AC67281-005 Matrix: Aqueous

Collection Date: 7/25/2012 Receipt Date: 7/25/2012

Chloride (Water) 300.0

Analyte				
	DF	Units	RL	
Chloride	1			Result
Cyanide-Water (EPA 335.4)		mg/I	2.0	6.6
Analyte				
Cyanide	DF	Units	RL	Result
Mercury (Water) 245.1	1	mg/i	0.020	ND
Analyte				
	DF	Units	Pi	_

Analyte				
Mercury	DF	Units	RL	Result
Semivolotile O	1	ug/l	0.20	ND
Semivolatile Organics + 25 (625)				

Analyte	DF	Units		
1,1'-Biphenyl	1		RL	Result
1,2,4,5-Tetrachlorobenzene	1	ug/l	2.0	ND
2.3.4.6-Tetrachlorophenol	1	ug/l	2.0	ND
2.4.5-Trichlorophenol	1	ug/l	2.0	ND
2,4,6-Trichlorophenol		ug/l	2.0	ND
2,4-Dichlorophenol	1	ug/l	2.0	ND
2,4-Dimethylphenol	1	ug/l	2.0	ND
2,4-Dinitrophenol	1	ug/l	2.0	ND
2,4-Dinitrotoluene	1	ug/l	10	ND
2,6-Dinitrotoluene	1	ug/l	2.0	ND
2-Chloronaphthalene	1	ug/l	2.0	ND
2-Chlorophenol	1	ug/l	2.0	ND
2-Methylnaphthalene	1	ug/l	2.0	ND
2-Methylphenol	1	ug/l	2.0	ND
2-Nitroaniline	1	ug/l	0.50	ND
2-Nitrophenol	1	ug/l	2.0	
3&4-Methylphenol	1	ug/l	2.0	ND
3,3'-Dichlorobenzidine	1	ug/l	0.50	ND
3-Nitroaniline	1	ug/l	2.0	ND
4.6-Dinitro-2-methylphenol	1	ug/i	2.0	ND
	1	ug/l	10	ND
4-Bromophenyl-phenylether	1	ug/l	2.0	ND
4-Chloro-3-methylphenol	1	ug/l	2.0	ND
4-Chloroaniline	1	ug/l		ND
4-Chlorophenyl-phenylether	1	ug/l	0.50	ND
4-Nitroanilíne	1	ug/i	2.0	ND
4-Nitrophenol	1		2.0	ND
Acenaphthene	1	ug/l	2.0	ND
Acenaphthylene	1	ug/l	2.0	ND
Acetophenone	1	ug/l	2.0	ND
Anthracene	1	ug/l	2.0	ND
Atrazine		ug/l	2.0	ND
Benzaldehyde	1	ug/l	2.0	ND
Benzo[a]anthracene	1	ug/l	2.0	ND
Benzo[a]pyrene	1	ug/l	2.0	ND
Benzo[b]fluoranthene	1	ug/l	2.0	ND
Benzo[g,h,i]perylene	1	ug/l	2.0	ND
Benzo[k]fluoranthene	1	ug/l	2.0	ND
bis(2-Chloroethoxy)methane	1	ug/l	2.0	ND
bis(2-Chloroethyl)ether	1	ug/l	2.0	ND
bis(2-Chloroisopropyl)ether	1	ug/l	0.50	ND ND
bis(2-Ethylhexyl)phthalate	1	ug/l	2.0	
Butylbenzylphthalate	1	ug/l	2.0	ND
Caprolactam	1	ug/I	2.0	ND
e reported to Dry Weigh	1	ug/l	2.0	ND

ample ID: SW-4 U Lab#: AC67281-005			Collect	tion Date: 7/25/2012
Matrix: Aqueous			Rece	eipt Date: 7/25/2012
Carbazole				o.pt Date. 7/25/2012
Chrysene	1	ug/l	2.0	ND
Dibenzo[a,h]anthracene	1	ug/l	2.0	ND
Dibenzofuran	1	ug/l	2.0	ND
Diethylphthalate	1	ug/l	0.50	
Dimethylphthalate	1	ug/i	2.0	ND
Di-n-butylphthalate	1	ug/l	2.0	ND
Di-n-octylphthalate	1	ug/l	0.50	ND
Fluoranthene	1	ug/l	2.0	ND ND
Fluorene	1	ug/i	2.0	ND
Hexachlorobenzene	1	ug/l	2.0	ND
Hexachlorobutadiene	1	ug/I	2.0	ND
Hexachlorocyclopentadiene	1	ug/i	2.0	ND
Hexachioroethane	1	ug/l	2.0	ND
Indeno[1,2,3-cd]pyrene	1	ug/l	2.0	ND
Isophorone	1	ug/l	2.0	ND
Naphthalene	1	ug/l	2.0	ND
Nitrobenzene	1	ug/l	0.50	ND
	1	ug/l	2.0	ND
N-Nitrosodinhonder	1	ug/l	0.50	ND
N-Nitrosodiphenylamine	1	ug/l		ND
Pentachiorophenoi	1	ug/l	2.0	ND
Phenanthrene Phenol	1	ug/l	10	ND
	1	ug/l	2.0	ND
Pyrene	1	ug/l	2.0	ND
Semivolatile Organics + 25 (625) Library Sear	rchon	39/1	2.0	ND
Analyte				
	DF	Units	DT	
unknown			RT	Pocula
unknown Heptacosane	1	ug/i		Result
Heptacosane	1 1		10.21	4.0J
Heptacosane Tetradecanal		ug/i	10.21 14.2	4.0J 11J
Heptacosane Tetradecanal Docosane	1	ug/l ug/l	10.21 14.2 14.77	4.0J 11J 5.3J
Heptacosane Tetradecanal Docosane unknown	1 1	ug/l ug/l ug/l	10.21 14.2 14.77 14.98	4.0J 11J 5.3J 5.0J
Heptacosane Tetradecanal Docosane unknown 17-Octadecenal	1 1 1	ug/l ug/l ug/l	10.21 14.2 14.77 14.98 15.35	4.0J 11J 5.3J 5.0J 11J
Heptacosane Tetradecanal Docosane unknown 17-Octadecenal unknown	1 1 1	ug/l ug/l ug/l ug/l	10.21 14.2 14.77 14.98 15.35	4.0J 11J 5.3J 5.0J 11J 8.3J
Heptacosane Tetradecanal Docosane unknown 17-Octadecenal unknown 1,1'-Biphenyl, 3-chloro-4-methoxy-	1 1 1 1	ug/l ug/l ug/l ug/l ug/l	10.21 14.2 14.77 14.98 15.35 15.7	4.0J 11J 5.3J 5.0J 11J 8.3J 7.9J
Heptacosane Tetradecanal Docosane unknown 17-Octadecenal unknown 1,1'-Biphenyl, 3-chloro-4-methoxy- 2-Pentanone, 4-hydroxy-4-methyl-	1 1 1 1 1	ug/l ug/l ug/l ug/l ug/l ug/l	10.21 14.2 14.77 14.98 15.35 15.7 16.4	4.0J 11J 5.3J 5.0J 11J 8.3J 7.9J 4.7J
Heptacosane Tetradecanal Docosane unknown 17-Octadecenal unknown 1,1*-Biphenyl, 3-chloro-4-methoxy- 2-Pentanone, 4-hydroxy-4-methyl- TotalSemiVolatileTic	1 1 1 1 1 1	ug/l ug/l ug/l ug/l ug/l ug/l	10.21 14.2 14.77 14.98 15.35 15.7 16.4 16.54	4.0J 11J 5.3J 5.0J 11J 8.3J 7.9J 4.7J
Heptacosane Tetradecanal Docosane unknown 17-Octadecenal unknown 1,1'-Biphenyl, 3-chloro-4-methoxy- 2-Pentanone, 4-hydroxy-4-methyl-	1 1 1 1 1 1	ug/l ug/l ug/l ug/l ug/l ug/l ug/l	10.21 14.2 14.77 14.98 15.35 15.7 16.4	4.0J 11J 5.3J 5.0J 11J 8.3J 7.9J 4.7J
Heptacosane Tetradecanal Docosane unknown 17-Octadecenal unknown 1,1*-Biphenyl, 3-chloro-4-methoxy- 2-Pentanone, 4-hydroxy-4-methyl- TotalSemiVolatileTic	1 1 1 1 1 1 1	ug/l ug/l ug/l ug/l ug/l ug/l ug/l	10.21 14.2 14.77 14.98 15.35 15.7 16.4 16.54 4.34	4.0J 11J 5.3J 5.0J 11J 8.3J 7.9J 4.7J
Heptacosane Tetradecanai Docosane unknown 17-Octadecenal unknown 1,1'-Biphenyl, 3-chloro-4-methoxy- 2-Pentanone, 4-hydroxy-4-methyl- TotalSemiVolatileTic  TAL Metals 200.7	1 1 1 1 1 1 1 1	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	10.21 14.2 14.77 14.98 15.35 15.7 16.4 16.54	4.0J 11J 5.3J 5.0J 11J 8.3J 7.9J 4.7J
Heptacosane Tetradecanal Docosane unknown 17-Octadecenal unknown 1,1*-Biphenyl, 3-chloro-4-methoxy- 2-Pentanone, 4-hydroxy-4-methyl- TotalSemiVolatileTic  TAL Metals 200.7 Analyte	1 1 1 1 1 1 1 1 DF	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	10.21 14.2 14.77 14.98 15.35 15.7 16.4 16.54 4.34	4.0J 11J 5.3J 5.0J 11J 8.3J 7.9J 4.7J 94JA
Heptacosane Tetradecanal Docosane unknown 17-Octadecenal unknown 1,1'-Biphenyl, 3-chloro-4-methoxy- 2-Pentanone, 4-hydroxy-4-methyl- TotalSemiVolatileTic  TAL Metals 200.7  Analyte Aluminum	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	10.21 14.2 14.77 14.98 15.35 15.7 16.4 16.54 4.34 NA	4.0J 11J 5.3J 5.0J 11J 8.3J 7.9J 4.7J 94JA 150J
Heptacosane Tetradecanal Docosane unknown 17-Octadecenal unknown 1,1'-Biphenyl, 3-chloro-4-methoxy- 2-Pentanone, 4-hydroxy-4-methyl- TotalSemiVolatileTic  TAL Metals 200.7  Analyte Aluminum Antimony	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	10.21 14.2 14.77 14.98 15.35 15.7 16.4 16.54 4.34 NA	4.0J 11J 5.3J 5.0J 11J 8.3J 7.9J 4.7J 94JA 150J  Result 21000 ND
Heptacosane Tetradecanai Docosane unknown 17-Octadecenal unknown 1,1'-Biphenyl, 3-chloro-4-methoxy- 2-Pentanone, 4-hydroxy-4-methyl- TotalSemiVolatileTic  TAL Metals 200.7  Analyte Aluminum Antimony Arsenic	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	10.21 14.2 14.77 14.98 15.35 15.7 16.4 16.54 4.34 NA	4.0J 11J 5.3J 5.0J 11J 8.3J 7.9J 4.7J 94JA 150J  Result 21000 ND ND
Heptacosane Tetradecanai Docosane unknown 17-Octadecenal unknown 1,1'-Biphenyl, 3-chloro-4-methoxy- 2-Pentanone, 4-hydroxy-4-methyl- TotalSemiVolatileTic  TAL Metals 200.7  Analyte Aluminum Antimony Arsenic Barium	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	10.21 14.2 14.77 14.98 15.35 15.7 16.4 16.54 4.34 NA  RL 100 7.5	4.0J 11J 5.3J 5.0J 11J 8.3J 7.9J 4.7J 94JA 150J  Result 21000 ND ND ND
Heptacosane Tetradecanai Docosane unknown 17-Octadecenal unknown 1,1'-Biphenyl, 3-chloro-4-methoxy- 2-Pentanone, 4-hydroxy-4-methyl- TotalSemiVolatileTic  TAL Metals 200.7  Analyte Aluminum Antimony Arsenic Barium Beryllium	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ug/I ug/I ug/I ug/I ug/I ug/I ug/I ug/I	10.21 14.2 14.77 14.98 15.35 15.7 16.4 16.54 4.34 NA  RL 100 7.5 20 25	4.0J 11J 5.3J 5.0J 11J 8.3J 7.9J 4.7J 94JA 150J  Result 21000 ND ND ND 1100
Heptacosane Tetradecanal Docosane unknown 17-Octadecenal unknown 1,1'-Biphenyl, 3-chloro-4-methoxy- 2-Pentanone, 4-hydroxy-4-methyl- TotalSemiVolatileTic  TAL Metals 200.7  Analyte Aluminum Antimony Arsenic Barium Beryllium Cadmium	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ug/i ug/i ug/i ug/i ug/i ug/i ug/i ug/i	10.21 14.2 14.77 14.98 15.35 15.7 16.4 16.54 4.34 NA  RL 100 7.5 20 25 4.0	4.0J 11J 5.3J 5.0J 11J 8.3J 7.9J 4.7J 94JA 150J  Result 21000 ND ND ND ND 1100 ND ND 3.9
Heptacosane Tetradecanal Docosane unknown 17-Octadecenal unknown 1,1'-Biphenyl, 3-chloro-4-methoxy- 2-Pentanone, 4-hydroxy-4-methyl- TotalSemiVolatileTic  TAL Metals 200.7  Analyte Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	10.21 14.2 14.77 14.98 15.35 15.7 16.4 16.54 4.34 NA  RL 100 7.5 20 25 4.0 2.0	4.0J 11J 5.3J 5.0J 11J 8.3J 7.9J 4.7J 94JA 150J  Result 21000 ND ND ND 1100 ND 1100 ND 3.9
Heptacosane Tetradecanal Docosane unknown 17-Octadecenal unknown 1,1'-Biphenyl, 3-chloro-4-methoxy- 2-Pentanone, 4-hydroxy-4-methyl- TotalSemiVolatileTic  TAL Metals 200.7  Analyte Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium	DF  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	10.21 14.2 14.77 14.98 15.35 15.7 16.4 16.54 4.34 NA  RL 100 7.5 20 25 4.0 2.0 1000	4.0J 11J 5.3J 5.0J 11J 8.3J 7.9J 4.7J 94JA 150J  Result 21000 ND ND ND ND 1100 ND 3.9 85000
Heptacosane Tetradecanai Docosane unknown 17-Octadecenal unknown 1,1'-Biphenyl, 3-chloro-4-methoxy- 2-Pentanone, 4-hydroxy-4-methyl- TotalSemiVolatileTic  TAL Metals 200.7  Analyte Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	10.21 14.2 14.77 14.98 15.35 15.7 16.4 16.54 4.34 NA  RL 100 7.5 20 25 4.0 2.0 1000 25	4.0J 11J 5.3J 5.0J 11J 8.3J 7.9J 4.7J 94JA 150J  Result 21000 ND ND ND ND 1100 ND 3.9 85000 46
Heptacosane Tetradecanai Docosane unknown 17-Octadecenal unknown 1,1'-Biphenyl, 3-chloro-4-methoxy- 2-Pentanone, 4-hydroxy-4-methyl- TotalSemiVolatileTic  TAL Metals 200.7  Analyte Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper	DF  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	10.21 14.2 14.77 14.98 15.35 15.7 16.4 16.54 4.34 NA  RL 100 7.5 20 25 4.0 2.0 1000 25	4.0J 11J 5.3J 5.0J 11J 8.3J 7.9J 4.7J 94JA 150J  Result 21000 ND ND ND 1100 ND 3.9 85000 46 30 81
Heptacosane Tetradecanai Docosane unknown 17-Octadecenal unknown 1,1'-Biphenyl, 3-chloro-4-methoxy- 2-Pentanone, 4-hydroxy-4-methyl- TotalSemiVolatileTic  TAL Metals 200.7  Analyte Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead	DF  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	10.21 14.2 14.77 14.98 15.35 15.7 16.4 16.54 4.34 NA  RL 100 7.5 20 25 4.0 2.0 1000 25 10 25	4.0J 11J 5.3J 5.0J 11J 8.3J 7.9J 4.7J 94JA 150J  Result 21000 ND ND 1100 ND 1100 ND 3.9 85000 46 30 81
Heptacosane Tetradecanal Docosane unknown 17-Octadecenal unknown 1,1'-Biphenyl, 3-chloro-4-methoxy- 2-Pentanone, 4-hydroxy-4-methyl- TotalSemiVolatileTic  TAL Metals 200.7  Analyte Aluminum Antimony Arsenic Barlum Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	10.21 14.2 14.77 14.98 15.35 15.7 16.4 16.54 4.34 NA  RL 100 7.5 20 25 4.0 2.0 1000 25 10 25 150	4.0J 11J 5.3J 5.0J 11J 8.3J 7.9J 4.7J 94JA 150J  Result 21000 ND ND 1100 ND 1100 ND 3.9 85000 46 30 81 85000 160
Heptacosane Tetradecanai Docosane unknown 17-Octadecenal unknown 1,1'-Biphenyl, 3-chloro-4-methoxy- 2-Pentanone, 4-hydroxy-4-methyl- TotalSemiVolatileTic  TAL Metals 200.7  Analyte Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	10.21 14.2 14.77 14.98 15.35 15.7 16.4 16.54 4.34 NA  RL 100 7.5 20 25 4.0 2.0 1000 25 10 25 150 5.0	4.0J 11J 5.3J 5.0J 11J 8.3J 7.9J 4.7J 94JA 150J  Result 21000 ND ND ND 1100 ND 3.9 85000 46 30 81 85000 160 31000
Heptacosane Tetradecanal Docosane unknown 17-Octadecenal unknown 1,1'-Biphenyl, 3-chloro-4-methoxy- 2-Pentanone, 4-hydroxy-4-methyl- TotalSemiVolatileTic  TAL Metals 200.7  Analyte Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ug/i ug/i ug/i ug/i ug/i ug/i ug/i ug/i	10.21 14.2 14.77 14.98 15.35 15.7 16.4 16.54 4.34 NA  RL 100 7.5 20 25 4.0 2.0 1000 25 10 25 10 25 1000	4.0J 11J 5.3J 5.0J 11J 8.3J 7.9J 4.7J 94JA 150J  Result 21000 ND ND 1100 ND 1100 ND 3.9 85000 46 30 81 85000 160

Sample ID: SW-4 U
Lab#: AC67281-005
Matrix: Aqueous

Collection Date: 7/25/2012 Receipt Date: 7/25/2012

ile Organics + 10 (624)				
Zinc	1	ug/l	25	63
Vanadium	۷.	ug/I	10	ND
Thallium	2			12000
Sodium	1	ug/l	2500	12000
0.11	1	ug/i	10	ND
Silver				

#### Volatile Organics + 10 (624)

Analyte	DF	Units	RL	Result
1,1,1-Trichloroethane	1	ug/l	1.0	ND
1,1,2,2-Tetrachloroethane	1	ug/l	1.0	
1,1,2-Trichloro-1,2,2-trifluoroethane	1	ug/l	5.0	ND ND
1,1,2-Trichloroethane	1	ug/l	1.0	
1,1-Dichloroethane		ug/l	1.0	ND
1,1-Dichloroethene	1	ug/l	1.0	ND
1,2,3-Trichlorobenzene	1	ug/l	1.0	ND
1,2,4-Trichlorobenzene	1	ug/l		ND
1,2-Dibromo-3-chloropropane	· · · · · · · · · · · · · · · · · · ·	ug/l	1.0	ND
1,2-Dibromoethane	. 1		1.0	ND
1,2-Dichlorobenzene	1	ug/l	1.0	ND
1,2-Dichloroethane	1	ug/l	1.0	ND
1,2-Dichloropropane		ug/l	0.50	ND
1,3-Dichlorobenzene	1	ug/l	1.0	ND
1,4-Dichlorobenzene	1	ug/l	1.0	ND
1,4-Dioxane	1	ug/l	1.0	ND
2-Butanone	<b>1</b>	ug/l	50	ND
2-Hexanone	1	ug/l	1.0	ND
4-Methyl-2-pentanone	1	ug/l	1.0	ND
Acetone Acetone	1	ug/l	1.0	ND
Benzene		ug/l	10	ND
	1	ug/l	0.50	ND
Bromochloromethane	1	ug/l	1.0	ND
Bromodichloromethane	1	ug/l	1.0	ND
Bromoform	1	ug/l	1.0	ND
Bromomethane	1	ug/l	1.0	ND
Carbon disulfide	1	ug/l	1,0	ND
Carbon tetrachloride	1	ug/I	1.0	ND
Chlorobenzene	1	ug/I	1.0	ND
Chloroethane	1	ug/l	1.0	ND
Chloroform	1	ug/l	1.0	ND
Chloromethane	1	ug/l	1.0	ND
cis-1,2-Dichloroethene	1	ug/l	1.0	ND
cis-1,3-Dichloropropene	1	ug/l	1.0	ND
Cyclohexane	1	ug/l	1.0	ND
Dibromochloromethane	1	ug/l	1.0	ND ND
Dichlorodifluoromethane	1	ug/l	1.0	ND ND
Ethylbenzene	1	ug/l	1.0	ND ND
Isopropylbenzene	1	ug/l	1.0	
m&p-Xylenes	1	ug/l	1.0	ND
Methyl Acetate	1	ug/l		ND
Methylcyclohexane	1	ug/l	1.0	ND
Methylene chloride	1		1.0	ND
Methyl-t-butyl ether	1	ug/l	1.0	ND
o-Xylene	1	ug/l	0.50	ND
Styrene	1	ug/l	1.0	ND
Tetrachloroethene		ug/l	1.0	ND
Toluene	1	ug/l	1.0	ND
rans-1,2-Dichloroethene	1	ug/l	1.0	ND
rans-1,3-Dichloropropene	1	ug/l	1.0	ND
opiopolio	1	ug/l	1.0	ND

ple ID: SW-4 U Lab#: AC67281-005 Matrix: Aqueous				n Date: 7/25/2012 t Date: 7/25/2012
Trichloroethene	1	ug/l	1.0	ND ND
Trichlorofluoromethane	1	ug/l	1.0	ND ND
Vinyl chloride	1	ug/l	1.0	ND ND
Xylenes (Total)	1	ug/l	1.0	ND
Volatile Organics + 10 (624) Library Searches				
Analyte	DF	Units	RT	Result
No Unknown Compounds Detected	1	ug/l	NA	
TotalVolatileTic	4	ug/l	NA .	ND ND

Lab#: AC67281-007

Matrix: Soil

Collection Date: 7/25/2012 Receipt Date: 7/25/2012

% Solids SM2540	G	40	254	M2	SI	ds	li	o	S	%
-----------------	---	----	-----	----	----	----	----	---	---	---

Analyte	DF	Units	RL	Result
% Solids	1	navand		
hloride (Soil) 9056				
Analyte	DF	Units	RL	Result
Chloride	7	malka	20	
yanide (Soil/Waste) 9012B				
Analyte	DF	Units	RL	Recult
Cyanìde				
Proupy (Coilling and Taras				***

## Mercury (Soil/Waste) 7471A

Analida					
Analyte	DF	Units	RL	Result	
Mercury	4				
Semivolatile Organica ( 25 (2070)		mg/kg	0.12	ND	
Semivolatile Organian + or (0070)					

# Semivolatile Organics + 25 (8270)

Analyte	DF	Units	RL	Result
1,1'-Biphenyl	1	mg/kg	0.10	
1,2,4,5-Tetrachlorobenzene	1	mg/kg	0.10	ND NB
2,3,4,6-Tetrachlorophenol	1	mg/kg	0.10	ND
2,4,5-Trichlorophenol	1	mg/kg	0.10	ND
2,4,6-Trichlorophenol		mg/kg	0.10	ND
2,4-Dichlorophenol	1	mg/kg	0.025	ND
2,4-Dimethylphenol	1	mg/kg	0.025	ND
2,4-Dinitrophenol	1	mg/kg	0.50	ND
2,4-Dinitrotoluene	1	mg/kg		ND
2,6-Dinitrotoluene	1	mg/kg	0.10	ND
2-Chloronaphthalene	1	-	0.10	ND
2-Chlorophenol	1	mg/kg	0.10	ND
2-Methylnaphthalene	1	mg/kg	0.10	ND
2-Methylphenol	1	mg/kg	0.10	ND
2-Nitroaniline	1	mg/kg	0.025	ND
2-Nitrophenol	1	mg/kg	0.10	ND
3&4-Methylphenol	1	mg/kg	0.10	ND
3,3'-Dichlorobenzidine		mg/kg	0.025	ND
3-Nitroaniline	1	mg/kg	0.10	ND
4,6-Dinitro-2-methylphenol	1	mg/kg	0.10	ND
4-Bromophenyl-phenylether	1	mg/kg	0.50	ND
4-Chloro-3-methylphenol	1	mg/kg	0.10	ND
4-Chloroaniline	1	mg/kg	0.10	ND
4-Chlorophenyl-phenylether	1	mg/kg	0.047	ND
4-Nitroaniline	1	mg/kg	0.10	ND
4-Nitrophenol	1	mg/kg	0.10	ND
Acenaphthene	1	mg/kg	0.10	ND
Acenaphthylene	1	mg/kg	0.10	ND
Acetophenone	1	mg/kg	0.10	ND
Anthracene	1	mg/kg	0.10	ND
Atrazine	1	mg/kg	0.10	ND
	1	mg/kg	0.10	ND
Benzaldehyde	1	mg/kg	0.10	ND
Benzo[a]anthracene	1	mg/kg	0.10	ND
Benzo[a]pyrene	1	mg/kg	0.10	ND
Benzo[b]fluoranthene	1	mg/kg	0.10	ND
Benzo[g,h,i]perylene	1	mg/kg	0.10	ND
Benzo(k)fluoranthene	1	mg/kg	0.10	ND
pis(2-Chloroethoxy)methane	1	mg/kg	0.10	ND
ois(2-Chloroethyl)ether	1	mg/kg	0.025	ND
reported to Dry Weigh				

mple ID: Lab#: Matrix:	AC67281-007			Collection Dat Receipt Dat	
	bis(2-Chloroisopropyl)ether	1	mg/kg	0.10	ND
	bis(2-Ethylhexyl)phthalate	1	mg/kg	0.10	ND
	Butylbenzylphthalate	1	mg/kg	0.10	ND
	Caprolactam	1	mg/kg	0.10	ND
	Carbazole	1	mg/kg	0.10	ND
	Chrysene	1	mg/kg	0.10	ND
	Dibenzo[a,h]anthracene	1	mg/kg	0.10	ND
	Dibenzofuran	1	mg/kg	0.025	ND
	Diethylphthalate	1	mg/kg	0.10	ND
	Dimethylphthalate	1	mg/kg	0.10	ND
	Di-n-butylphthalate	1	mg/kg	0.050	ND
	Di-n-octylphthalate	1	mg/kg	0.10	ND
	Fluoranthene	1	mg/kg	0.10	ND
	Fluorene	1	mg/kg	0.10	ND
	Hexachlorobenzene	1	mg/kg	0.10	ND
	Hexachlorobutadiene	1	mg/kg	0.10	ND
	Hexachlorocyclopentadiene	1	mg/kg	0.10	ND
	Hexachloroethane	1	mg/kg	0.10	ND
	Indeno[1,2,3-cd]pyrene	1	mg/kg	0.10	ND
	Isophorone	1	mg/kg	0.10	ND
	Naphthalene	1	mg/kg	0.025	ND
	Nitrobenzene	1	mg/kg	0.10	ND
	N-Nitroso-di-n-propylamine	1	mg/kg	0.025	ND
	N-Nitrosodiphenylamine	1	mg/kg	0.10	ND
	Pentachlorophenol	1	mg/kg	0.17	ND
	Phenanthrene	1	mg/kg	0.10	ND
	Phenol	1	mg/kg	0.10	ND
	Pyrene	1	mg/kg	0.10	0.10
Se	emivolatile Organics + 25 (8270) Library Searches				
	Analyte	DF	Units	RT	Result
	(E)- and (Z)-15-n-propyl-7,13-labdadien	1	mg/kg	12.41	1.0J
	Undecane, 5-methyl-	1	mg/kg	12.72	0.28J

Semivolatile	Organics +	25 (8270)	Library	Searches

Analyte	DF	Units	RT	Result
(E)- and (Z)-15-n-propyl-7,13-labdadien	1	mg/kg	12.41	1.0J
Undecane, 5-methyl-	1	mg/kg	12.72	0.28J
Hexacosane	1	mg/kg	13.49	0.58J
unknown	1	mg/kg	13.85	0.27J
Oxirane, tetradecyl-	1	mg/kg	14.01	0.38J
Eicosane	1	mg/kg	14.22	0.64J
Hexadecanal	1	mg/kg	14.8	0.77J
Eicosane	1	mg/kg	15.02	0.68J
unknown	1	mg/kg	15.25	0.34J
unknown	1	mg/kg	15.37	0.39J
Octadecanal	1	mg/kg	15.75	0.61J
unknown	1	mg/kg	16.42	0.97J
unknown	1	mg/kg	16.6	0.29J
unknown	1	mg/kg	16.84	0.37J
unknown	1	mg/kg	16.91	0.26J
unknown	1	mg/kg	17.01	0.42J
unknown	1	mg/kg	17.06	1.9J
Stigmast-4-en-3-one	1	mg/kg	17.31	0.51J
1,2-Propanediol	1	mg/kg	3.11	0.26JB
unknown	1	mg/kg	4.1	3.6JB
2-Pentanone, 4-hydroxy-4-methyl-	1	mg/kg	4.43	140JAB
ınknown	1	mg/kg	5.07	1.4JB
Benzene, 1-ethyl-2-methyl-	1	mg/kg	5.45	0.30JB
Benzene, 1,3,5-trimethyl-	1	mg/kg	5.7	0.39JB
inknown	1	mg/kg	6.81	0.45JB
otalSemiVolatileTic	1	mg/kg	NA	160J

Lab#: AC67281-007

Matrix: Soil

Collection Date: 7/25/2012 Receipt Date: 7/25/2012

### TAL Metals 6010

Analyte	DF	Units	RL	Result
Aluminum	1	mg/kg	300	6900
Antimony	1	mg/kg	3.0	ND
Arsenic	1	mg/kg	3.0	ND
Barium	1	mg/kg	15	79
Beryllium	1	mg/kg	0.90	ND
Cadmium	1	mg/kg	0.90	ND
Calcium	1	mg/kg	1500	1500
Chromium	1	mg/kg	7.5	13
Cobalt	1	mg/kg	3.7	4.5
Copper	1	mg/kg	7.5	11
Iron	1	mg/kg	300	16000
Lead	1	mg/kg	7.5	ND
Magnesium	1	mg/kg	750	3700
Manganese	1	mg/kg	15	1300
Nickel	1	mg/kg	7.5	11
Potassium	1	mg/kg	750	2100
Selenium	1	mg/kg	2.7	ND
Silver	1	mg/kg	2.2	ND
Sodium	1	mg/kg	370	ND
Thallium	1	mg/kg	1.8	ND
/anadium	1	mg/kg	15	19
žinc –	1	mg/kg	15	35

### Volatile Organics + 10 (8260)

Analyte	DF	Units	RL	Result
1,1,1-Trichloroethane	0.984	mg/kg	0.0029	ND
1,1,2,2-Tetrachloroethane	0.984	mg/kg	0.0029	ND
1,1,2-Trichloro-1,2,2-trifluoroethane	0.984	mg/kg	0.0029	ND
1,1,2-Trichloroethane	0.984	mg/kg	0.0029	ND
1,1-Dichloroethane	0.984	mg/kg	0.0029	ND
1,1-Dichloroethene	0.984	mg/kg	0.0029	ND
1,2,3-Trichlorobenzene	0.984	mg/kg	0.0029	ND
1,2,4-Trichlorobenzene	0.984	mg/kg	0.0029	ND
1,2-Dibromo-3-chloropropane	0.984	mg/kg	0.0029	ND
1,2-Dibromoethane	0.984	mg/kg	0.0015	ND
1,2-Dichlorobenzene	0.984	mg/kg	0.0029	ND
1,2-Dichloroethane	0.984	mg/kg	0.0029	NĐ
1,2-Dichloropropane	0.984	mg/kg	0.0029	ND
1,3-Dichlorobenzene	0.984	mg/kg	0.0029	ND
1,4-Dichlorobenzene	0.984	mg/kg	0.0029	ND
1,4-Dioxane	0.984	mg/kg	0.15	ND
2-Butanone	0.984	mg/kg	0.0029	ND
2-Hexanone	0.984	mg/kg	0.0029	ND
4-Methyl-2-pentanone	0.984	mg/kg	0.0029	ND
Acetone	0.984	mg/kg	0.015	ND
Benzene	0.984	mg/kg	0.0015	ND
Bromochloromethane	0.984	mg/kg	0.0029	ND
3romodichloromethane	0.984	mg/kg	0.0029	ND
Bromoform	0.984	mg/kg	0.0029	ND
3romomethane	0.984	mg/kg	0.0029	ND
Carbon disulfide	0.984	mg/kg	0.0029	ND
Carbon tetrachloride	0.984	mg/kg	0.0029	ND
Chlorobenzene	0.984	mg/kg	0.0029	ND
Chloroethane	0.984	mg/kg	0.0029	ND

					4n W 1 4n 2 1 4	D (4)
Sample ID: Lab#: Matrix:	AC67281-007				Date: 7/25/2012 Date: 7/25/2012	
	Chloroform	0.984	mg/kg	0.0029	ND	
	Chloromethane	0.984	mg/kg	0.0029	ND	
	cis-1,2-Dichloroethene	0.984	mg/kg	0.0029	ND	
	cis-1,3-Dichloropropene	0.984	mg/kg	0.0029	ND	
	Cyclohexane	0.984	mg/kg	0.0029	ND	
	Dibromochloromethane	0.984	mg/kg	0.0029	ND	
	Dichlorodifluoromethane	0.984	mg/kg	0.0029	ND	
	Ethylbenzene	0.984	mg/kg	0.0015	ND	
	Isopropylbenzene	0.984	mg/kg	0.0015	ND	
	m&p-Xylenes	0.984	mg/kg	0.0015	ND	
	Methyl Acetate	0.984	mg/kg	0.0029	ND	
	Methylcyclohexane	0.984	mg/kg	0.0029	ND	
	Methylene chloride	0.984	mg/kg	0.0029	ND	
	Methyl-t-butyl ether	0.984	mg/kg	0.0015	ND	
	o-Xylene	0.984	mg/kg	0.0015	ND	
	Styrene	0.984	mg/kg	0.0029	ND	
	Tetrachloroethene	0.984	mg/kg	0.0029	ND	
	Toluene	0.984	mg/kg	0.0015	ND	
	trans-1,2-Dichloroethene	0.984	mg/kg	0.0029	ND	
	trans-1,3-Dichloropropene	0.984	mg/kg	0.0029	ND	
	Trichloroethene	0.984	mg/kg	0.0029	ND	
	Trichlorofluoromethane	0.984	mg/kg	0.0029	ND	
	Ar				• • •	

### Volatile Organics + 10 (8260) Library Searches

Vinyl chloride

Xylenes (Total)

Analyte	DF	Units	RT	Result
Cyclotetrasiloxane, octamethyl-	0.984	mg/kg	6.73	0.0050J
TotalVolatileTic	0.984	mg/kg	NA	0.005J

mg/kg

mg/kg

0.0029

0.0015

ND

ND

0.984

0.984

Lab#: AC67281-008

Matrix: Soil

Collection Date: 7/25/2012 Receipt Date: 7/25/2012

0/2	80	lids	SM	25.	AΛ	c
70	30	nus	O IV	23	4 U	u

Analyte	DF	Units	RL	Result
% Solids	1	percent		14
Chloride (Soil) 9056				
Analyte	DF	Units	RL	Result
Chloride	1	mg/kg	140	ND
yanide (Soil/Waste) 9012B				
Analyte	DF	Units	RL	Result
Cyanide	1	mg/kg	1.7	2.3

### Mercury (Soil/Waste) 7471A

Analyte	DF	Units	RL	Result	
Mercury	1	mg/kg	0.60	ND	

### Semivolatile Organics + 25 (8270)

Analyte	DF	Units	RL	Result
1,1'-Biphenyl	1	mg/kg	0.48	ND
1,2,4,5-Tetrachlorobenzene	1	mg/kg	0.48	ND
2,3,4,6-Tetrachlorophenol	1	mg/kg	0.48	ND
2,4,5-Trichlorophenol	1	mg/kg	0.48	ND
2,4,6-Trichlorophenol	1	mg/kg	0.48	ND
2,4-Dichlorophenol	1	mg/kg	0.12	ND
2,4-Dimethylphenol	1	mg/kg	0.48	ND
2,4-Dinitrophenol	1	mg/kg	2.4	ND
2,4-Dinitrotoluene	1	mg/kg	0.48	ND
2,6-Dinitrotoluene	1	mg/kg	0.48	ND
2-Chloronaphthalene	1	mg/kg	0.48	ND
2-Chlorophenol	1	mg/kg	0.48	ND
2-Methylnaphthalene	1	mg/kg	0.48	ND
2-Methylphenol	1	mg/kg	0.12	ND
2-Nitroaniline	1	mg/kg	0.48	ND
2-Nitrophenol	1	mg/kg	0.48	ND
3&4-Methylphenol		mg/kg	0.12	ND
3,3'-Dichlorobenzidine	1	mg/kg	0.48	ND
3-Nitroaniline	1	mg/kg	0.48	ND
4,6-Dinitro-2-methylphenol	1	mg/kg	2.4	ND
4-Bromophenyl-phenylether	1	mg/kg	0.48	ND
4-Chloro-3-methylphenol	1	mg/kg	0.48	ND
4-Chloroaniline	1	mg/kg	0.23	ND
4-Chlorophenyl-phenylether	1	mg/kg	0.48	ND
4-Nitroaniline	1	mg/kg	0.48	ND
4-Nitrophenol	1	mg/kg	0.48	ND
Acenaphthene	1	mg/kg	0.48	ND
Acenaphthylene	1	mg/kg	0.48	ND
Acetophenone	1	mg/kg	0.48	ND
Anthracene	1	mg/kg	0.48	ND ND
Atrazine	1	mg/kg	0.48	
Benzaldehyde	1	mg/kg	0.48	ND
Benzo[a]anthracene	1	mg/kg	0.48	ND
Benzo[a]pyrene	1	mg/kg	0.48	ND
Benzo(b)fluoranthene	1		0.48	ND
lenzo(g,h,i)perylene	1	mg/kg mg/kg		ND
lenzo[k]fluoranthene		mg/kg	0.48	ND
is(2-Chloroethoxy)methane	1	mg/kg	0.48	ND
is(2-Chloroethyl)ether	1	mg/kg mg/kg	0.48	ND ND

bis(2-Chloroisopropyl)ether	1	mg/kg	0.48	ND
bis(2-Ethylhexyl)phthalate	1	mg/kg	0.48	ND
Butylbenzylphthalate	1	mg/kg	0.48	ND
Caprolactem	1	mg/kg	0.48	ND
Carbazole	1	mg/kg	0.48	ND
Chrysene	1	mg/kg	0.48	ND
Dibenzo[a,h]anthracene	1	mg/kg	0.48	ND
Dibenzofuran	1	mg/kg	0.12	ND
Diethylphthalate	1	mg/kg	0.48	ND
Dimethylphthalate	1	mg/kg	0.48	ND
Di-n-butylphthalate	1	mg/kg	0.24	ND
Di-n-octylphthalate	1	mg/kg	0.48	ND
Fluoranthene	1	mg/kg	0.48	ND
Fluorene	1	mg/kg	0.48	ND
Hexachlorobenzene	1	mg/kg	0.48	ND
Hexachlorobutadiene	1	mg/kg	0.48	ND
Hexachlorocyclopentadiene	1	mg/kg	0.48	ND
Hexachloroethane	1	mg/kg	0.48	ND
Indeno[1,2,3-cd]pyrene	1	mg/kg	0.48	ND
Isophorone	1	mg/kg	0.48	ND
Naphthalene	1	mg/kg	0.12	ND
Nitrobenzene	1	mg/kg	0.48	ND
N-Nitroso-di-n-propylamine	1	mg/kg	0.12	ND
N-Nitrosodiphenylamine	1	mg/kg	0.48	ND
Pentachlorophenol	1	mg/kg	0.80	ND
Phenanthrene	1	mg/kg	0.48	ND
Phenol	1	mg/kg	0.48	ND
Pyrene	1	mg/kg	0.48	ND

## Semivolatile Organics + 25 (8270) Library Searches

Analyte	DF	Units	RT	Result
1-Nonadecene	1	mg/kg	12.72	7.5J
Tetradecanal	1	mg/kg	13.27	3.9J
Tridecane, 7-hexyl-	1	mg/kg	13.49	26J
Hexatriacontane	1	mg/kg	13.86	3.2J
10-DEMETHYLSQUALENE	1	mg/kg	13.93	2.8J
Tetradecanal	1	mg/kg	14.02	13J
Pentadecane, 8-hexyl-	1	mg/kg	14.22	26J
Tetracosanolide	1	mg/kg	14.25	8.1J
2,2-DIDEUTERO OCTADECANAL	1	mg/kg	14.8	14J
Tetratetracontane	1	mg/kg	15.02	8.1J
3-Eicosene, (E)-	1	mg/kg	15.07	3.2J
unknown	1	mg/kg	15.13	2.9J
Vitamin E	1	mg/kg	15.25	4.4J
Cholest-5-en-3-ol (3.beta.)-	1	mg/kg	15.38	3.8J
Tetradecanal	1	mg/kg	15.75	9.6J
unknown	1	mg/kg	15.96	3.8J
unknown	1	mg/kg	16.1	3.1J
Stigmast-5-en-3-ol, (3.beta.,24S)-	1	mg/kg	16.43	18J
6-Acetyl-5-hydroxy-1,8-dimethyl-1,2,3,4	1	mg/kg	16.61	3.5J
unknown	1	mg/kg	16.76	3.8J
[2S-(2alpha.,4abeta.,5alpha.,8a	1	mg/kg	16.84	3.7J
(24R)-4-STIGMASTEN-3-ONE	1	mg/kg	17.31	9.3J
unknown	1	mg/kg	4.1	21JB
2-Pentanone, 4-hydroxy-4-methyl-	1	mg/kg	4.44	790JAB
unknown	1	mg/kg	5.07	8.0JB
TotalSemiVolatileTic	1	mg/kg	NA	1000J

Lab#: AC67281-008

Matrix: Soil

Collection Date: 7/25/2012 Receipt Date: 7/25/2012

#### TAL Metals 6010

Analyte	DF	Units	RL	Result
Aluminum	1	mg/kg	1400	11000
Antimony	1	mg/kg	14	ND
Arsenic	1	mg/kg	14	ND
Barium	1	mg/kg	71	820
Beryllium	1	mg/kg	4.3	ND
Cadmium	1	mg/kg	4.3	ND
Calcium	1	mg/kg	7100	16000
Chromium	1	mg/kg	36	ND
Cobalt	1	mg/kg	18	ND
Copper	1	mg/kg	36	37
iron	1	mg/kg	1400	78000
Lead	1	mg/kg	36	61
Magnesium	1	mg/kg	3600	5800
Manganese	2	mg/kg	140	35000
Nickel	1	mg/kg	36	ND
Potassium	1	mg/kg	3600	ND
Selenium	1	mg/kg	13	ND
Silver	1	mg/kg	11	ND
Sodium	1	mg/kg	1800	ND
Thallium	1	mg/kg	8.6	ND
Vanadium	1	mg/kg	71	ND
Zinc	1	mg/kg	71	240

### Volatile Organics + 10 (8260)

Analyte	DF	Units	RL	Result
1,1,1-Trichloroethane	0.967	mg/kg	0.014	ND
1,1,2,2-Tetrachloroethane	0.967	mg/kg	0.014	ND
1,1,2-Trichloro-1,2,2-trifluoroethane	0.967	mg/kg	0.014	ND
1,1,2-Trichloroethane	0.967	mg/kg	0.014	ND
1,1-Dichloroethane	0.967	mg/kg	0.014	ND
1,1-Dichloroethene	0.967	mg/kg	0.014	ND
1,2,3-Trichlorobenzene	0.967	mg/kg	0.014	ND
1,2,4-Trichlorobenzene	0.967	mg/kg	0.014	ND
1,2-Dibromo-3-chloropropane	0.967	mg/kg	0.014	ND
1,2-Dibromoethane	0.967	mg/kg	0.0069	ND
1,2-Dichlorobenzene	0.967	mg/kg	0.014	ND
1,2-Dichloroethane	0.967	mg/kg	0.014	ND
1,2-Dichloropropane	0.967	mg/kg	0.014	ND
1,3-Dichlorobenzene	0.967	mg/kg	0.014	ND
1,4-Dichlorobenzene	0.967	mg/kg	0.014	ND
1,4-Dioxane	0.967	mg/kg	0.69	ND
2-Butanone	0.967	mg/kg	0.014	ND
2-Hexanone	0.967	mg/kg	0.014	ND ND
4-Methyl-2-pentanone	0.967	mg/kg	0.014	ND
Acetone	0.967	mg/kg	0.069	ND
Benzene	0.967	mg/kg	0.0069	ND
Bromochloromethane	0.967	mg/kg	0.014	ND
Bromodichloromethane	0.967	mg/kg	0.014	ND
Bromoform	0.967	mg/kg	0.014	ND
3romomethane	0.967	mg/kg	0.014	ND
Carbon disulfide	0.967	mg/kg	0.014	ND ND
Carbon tetrachloride	0.967	mg/kg	0.014	ND ND
Chlorobenzene	0.967	mg/kg	0.014	ND ND
Chloroethane	0.967	mg/kg	0.014	ND

ample ID: Lab#: Matrix:	AC67281-008			Collection Date: Receipt Date:	
	Chloroform	0.967	mg/kg	0.014	ND
	Chloromethane	0.967	mg/kg	0.014	ND
	cís-1,2-Dichloroethene	0.967	mg/kg	0.014	ND
	cis-1,3-Dichloropropene	0.967	mg/kg	0.014	ND
	Cyclohexane	0.967	mg/kg	0.014	ND
	Dibromochloromethane	0.967	mg/kg	0.014	ND
	Dichlorodifluoromethane	0.967	mg/kg	0.014	ND
	Ethylbenzene	0.967	mg/kg	0.0069	ND
	Isopropylbenzene	0.967	mg/kg	0.0069	ND
	m&p-Xylenes	0.967	mg/kg	0.0069	ND
	Methyl Acetate	0.967	mg/kg	0.014	ND
	Methylcyclohexane	0.967	mg/kg	0.014	ND
	Methylene chloride	0.967	mg/kg	0.014	ND
	Methyl-t-butyl ether	0.967	mg/kg	0.0069	ND
	o-Xylene	0.967	mg/kg	0.0069	ND
	Styrene	0.967	mg/kg	0.014	ND
	Tetrachloroethene	0.967	mg/kg	0.014	ND
	Toluene	0.967	mg/kg	0.0069	ND
	trans-1,2-Dichloroethene	0.967	mg/kg	0.014	ND
	trans-1,3-Dichloropropene	0.967	mg/kg	0.014	ND
	Trichloroethene	0.967	mg/kg	0.014	ND
	Trichlorofluoromethane	0.967	mg/kg	0.014	ND
	Vinyl chloride	0.967	mg/kg	0.014	ND
	Xylenes (Total)	0.967	mg/kg	0.0069	ND

Volatile	<b>Organics</b>	+	10	(8260	Library	✓ Searches

Analyte	DF	Units	RT	Result
Cyclotetrasiloxane, octamethyl-	0.967	mg/kg	6.74	0.028J
TotalVolatileTic	0.967	mg/kg	NA	0.028J

Lab#: AC67281-009

Matrix: Soil

Collection Date: 7/25/2012 Receipt Date: 7/25/2012

### % Solids SM2540G

Analyte	DF	Units	RL	Result
% Solids	1	percent		31
ride (Soil) 9056				
(00.1) 0000				
Analyte	DF	Units	RL	Result

### Cyanide (Soil/Waste) 9012B

Analyte	DF	Units	RL	Result
Cyanide	1	mg/kg	0.77	ND

### Mercury (Soil/Waste) 7471A

Analyte	DF	Units	RL	Result
Mercury	1	mg/kg	0.27	ND

### Semivolatile Organics + 25 (8270)

Analyte	DF	Units	RL	Result
1,1'-Biphenyl	1	mg/kg	0.22	ND
1,2,4,5-Tetrachlorobenzene	1	mg/kg	0.22	ND
2.3,4,6-Tetrachlorophenol	1	mg/kg	0.22	ND
2,4,5-Trichlorophenol	1	mg/kg	0.22	ND
2,4,6-Trichlorophenol	1	mg/kg	0.22	ND
2,4-Dichlorophenol	1	mg/kg	0.054	ND
2,4-Dimethylphenol	1	mg/kg	0.22	ND
2,4-Dinitrophenol	1	mg/kg	1.1	ND
2,4-Dinitrotoluene	1	mg/kg	0.22	ND
2,6-Dinitrotoluene	1	mg/kg	0.22	ND
2-Chloronaphthalene	1	mg/kg	0.22	ND
2-Chlorophenol	1	mg/kg	0.22	ND
2-Methylnaphthalene	1	mg/kg	0.22	ND
2-Methylphenol	1	mg/kg	0.054	ND
2-Nitroaniline	1	mg/kg	0.22	ND
2-Nitrophenol	1	mg/kg	0.22	ND
3&4-Methylphenol	1	mg/kg	0.054	ND
3,3'-Dichlorobenzidine	1	mg/kg	0.22	ND
3-Nitroaniline	1	mg/kg	0.22	ND
l,6-Dinitro-2-methylphenol	1	mg/kg	1.1	ND
l-Bromophenyl-phenylether	1	mg/kg	0.22	ND
l-Chloro-3-methylphenol	1	mg/kg	0.22	ND
-Chloroaniline	1	mg/kg	0.10	ND
-Chlorophenyl-phenylether	1	mg/kg	0.22	ND
-Nitroaniline	1	mg/kg	0.22	ND
-Nitrophenol	1	mg/kg	0.22	ND
Acenaphthene	1	mg/kg	0.22	ND
cenaphthylene	1	mg/kg	0.22	ND
vcetophenone	1	mg/kg	0.22	ND
nthracene	1	mg/kg	0.22	ND
trazine	1	mg/kg	0.22	ND
enzaldehyde	1	mg/kg	0.22	ND
enzo[a]anthracene	1	mg/kg	0.22	ND
enzo[a]pyrene	1	mg/kg	0.22	ND
enzo[b]fluoranthene	1	mg/kg	0.22	ND
enzo[g,h,i]perylene	1	mg/kg	0.22	ND
enzo[k]fluoranthene	1	mg/kg	0.22	ND
is(2-Chloroethoxy)methane	1	mg/kg	0.22	ND
is(2-Chloroethyl)ether	1	mg/kg	0.054	ND

					State Cost I State to the Cost	5,3F 1
Sample ID: Lab#: Matrix:	AC67281-009				Date: 7/25/2012 t Date: 7/25/2012	
	bis(2-Chloroisopropyl)ether	1	mg/kg	0.22	ND	
	bis(2-Ethylhexyl)phthalate	1	mg/kg	0.22	ND	
	Butylbenzylphthalate	1	mg/kg	0.22	ND	
	Caprolactam	1	mg/kg	0.22	ND	
	Carbazole	1	mg/kg	0.22	ND	
	Chrysene	1	mg/kg	0.22	ND	
	Dibenzo[a,h]anthracene	1	mg/kg	0.22	ND	
	Dibenzofuran	1	mg/kg	0.054	ND	
	Diethylphthalate	1	mg/kg	0.22	ND	
	Dimethylphthalate	1	mg/kg	0.22	ND	
	Di-n-butylphthalate	1	mg/kg	0.11	ND	
	Di-n-octylphthalate	1	mg/kg	0.22	ND	
	Fluoranthene	1	mg/kg	0.22	ND	
	Fluorene	1	mg/kg	0.22	ND	
	Hexachlorobenzene	1	mg/kg	0.22	ND	
	Hexachlorobutadiene	1	mg/kg	0.22	ND	
	Hexachlorocyclopentadiene	1	mg/kg	0.22	ND	
	Hexachloroethane	1	mg/kg	0.22	ND	
	Indeno[1,2,3-cd]pyrene	1	mg/kg	0.22	ND	
	Isophorone	1	mg/kg	0.22	ND	
	Naphthalene	1	mg/kg	0.054	ND	
	Nitrobenzene	1	mg/kg	0.22	ND	
	N-Nitroso-di-n-propylamine	1	mg/kg	0.054	ND	
	N-Nitrosodiphenylamine	1	mg/kg	0.22	ND	

# Semivolatile Organics + 25 (8270) Library Searches

Pentachlorophenol

Phenanthrene

Phenol

Pyrene

Analyte	DF	Units	RT	Result
Tetratetracontane	1	mg/kg	12.72	3.2J
Tetracosane, 3-ethyl-	1	mg/kg	13.49	5.1J
16-Octadecenal	1	mg/kg	14.02	4.7J
Octacosane	1	mg/kg	14.22	10J
Cyclotetracosane	1	mg/kg	14.25	3.2J
Tetradecanal	1	mg/kg	14.8	7.4J
Heptacosane	1	mg/kg	15.02	6.5J
17-Pentatriacontene	1	mg/kg	15.08	2.2J
Vitamin E	1	mg/kg	15.26	4.0J
unknown	1	mg/kg	15.38	1.8J
10-Octadecenal	1	mg/kg	15.76	5.8J
unknown	1	mg/kg	15.95	1.9J
Heptadecane, 9-octyl-	1	mg/kg	16.02	4.0J
unknown	1	mg/kg	16.09	2.3J
Stigmast-5-en-3-ol, (3.beta.,24S)-	1	mg/kg	16.43	12J
1,2,3,3a,5,6,6a,7-Octahydro-1,3a,6-trim	1	mg/kg	16.61	3.3J
unknown	1	mg/kg	16.77	3.0J
2-Chloro-p-methoxybiphenyl	1	mg/kg	16.84	3.03 16J
D:C-Friedooleanan-3-one	1	mg/kg	16.92	6.0J
Cycloheptadecanol	1	mg/kg	17.01	6.0J 2.0J
Ethynyl (1R*,2R*,5S*)-5,8,8-trimethylbi	1	mg/kg	17.14	2.0J
(24R)-4-STIGMASTEN-3-ONE	1	mg/kg	17.14	19J 6.1J
unknown	1	mg/kg	4.12	6.1J 12JB
2-Pentanone, 4-hydroxy-4-methyl-	1	mg/kg	4.45	12JB 440JAB
unknown	1	mg/kg	5.07	
TotalSemiVolatileTic	1	mg/kg	NA	4.6JB 590J

mg/kg

mg/kg

mg/kg

mg/kg

0.36

0.22

0.22

0.22

ND

ND

ND

0.28

Lab#: AC67281-009

Matrix: Soil

Collection Date: 7/25/2012 Receipt Date: 7/25/2012

### TAL Metals 6010

Analyte	DF	Units	RL	Result
Aluminum	1	mg/kg	650	11000
Antimony	1	mg/kg	6.5	ND
Arsenic	1	mg/kg	6.5	ND
Barium	1	mg/kg	32	220
Beryllium	1	mg/kg	1.9	ND
Cadmium	1	mg/kg	1.9	ND
Calcium	1	mg/kg	3200	17000
Chromium	1	mg/kg	16	27
Cobalt		mg/kg	8.1	8.8
Copper	1	mg/kg	16	25
Iron	1	mg/kg	650	33000
Lead	1	mg/kg	16	
Magnesium		mg/kg	1600	57
Manganese	1	mg/kg	32	12000
Nickel	1	mg/kg	16	8000
Potassium	1	mg/kg	1600	23
Selenium		mg/kg		1800
Silver	1	mg/kg	5.8	ND
Sodium	1	mg/kg	4.8	ND
Fhallium	1		810	ND
<b>Vanadium</b>		mg/kg	3.9	ND
Zinc	1	mg/kg 	32	38
	1	mg/kg	32	140

### Volatile Organics + 10 (8260)

Analyte	DF	Units	RL	Result
1,1,1-Trichloroethane	0.998	mg/kg	0.0064	ND
1,1,2,2-Tetrachloroethane	0.998	mg/kg	0.0064	ND
1,1,2-Trichloro-1,2,2-trifluoroethane	0.998	mg/kg	0.0064	ND
1,1,2-Trichloroethane	0.998	mg/kg	0.0064	ND
1,1-Dichloroethane	0.998	mg/kg	0.0064	ND
1,1-Dichloroethene	0.998	mg/kg	0.0064	ND
1,2,3-Trichlorobenzene	0.998	mg/kg	0.0064	ND
1,2,4-Trichlorobenzene	0.998	mg/kg	0.0064	ND
1,2-Dibromo-3-chloropropane	0.998	mg/kg	0.0064	ND
1,2-Dibromoethane	0.998	mg/kg	0.0032	ND
1,2-Dichlorobenzene	0.998	mg/kg	0.0064	ND
1,2-Dichloroethane	0.998	mg/kg	0.0064	ND
1,2-Dichloropropane	0.998	mg/kg	0.0064	ND
1,3-Dichlorobenzene	0.998	mg/kg	0.0064	ND ND
1,4-Dichlorobenzene	0.998	mg/kg	0.0064	ND ND
1,4-Dioxane	0.998	mg/kg	0.32	ND
2-Butanone	0.998	mg/kg	0.0064	ND ND
2-Hexanone	0.998	mg/kg	0.0064	ND
4-Methyl-2-pentanone	0.998	mg/kg	0.0064	ND
Acetone	0.998	mg/kg	0.032	
Benzene	0.998	mg/kg	0.0032	0.12
Bromochloromethane	0.998	mg/kg	0.0064	ND
3romodichloromethane	0.998	mg/kg	0.0064	ND
Bromoform	0.998	mg/kg	0.0064	ND
Bromomethane	0.998	mg/kg	0.0064	ND
Carbon disulfide	0.998	mg/kg	0.0064	ND
Carbon tetrachloride	0.998	mg/kg	0.0064	ND
Chlorobenzene	0.998	mg/kg		ND
Chloroethane	0.998	mg/kg	0.0064	ND ND

nple ID: Lab#: Matrix:	AC67281-009			Collection Date: Receipt Date:	
	Chloroform	0.998	mg/kg	0.0064	ND
	Chloromethane	0.998	mg/kg	0.0064	ND
	cis-1,2-Dichloroethene	0.998	mg/kg	0.0064	ND
	cis-1,3-Dichloropropene	0.998	mg/kg	0.0064	ND
	Cyclohexane	0.998	mg/kg	0.0064	ND
	Dibromochloromethane	0.998	mg/kg	0.0064	ND
	Dichlorodifluoromethane	0.998	mg/kg	0.0064	ND
	Ethylbenzene	0.998	mg/kg	0.0032	ND
	Isopropylbenzene	0.998	mg/kg	0.0032	ND
	m&p-Xylenes	0.998	mg/kg	0.0032	ND
	Methyl Acetate	0.998	mg/kg	0.0064	ND
	Methylcyclohexane	0.998	mg/kg	0.0064	ND
	Methylene chloride	0.998	mg/kg	0.0064	ND
	Methyl-t-butyl ether	0.998	mg/kg	0.0032	ND
	o-Xylene	0.998	mg/kg	0.0032	ND
	Styrene	0.998	mg/kg	0.0064	ND
	Tetrachloroethene	0.998	mg/kg	0.0064	ND
	Toluene	0.998	mg/kg	0.0032	0.0059
	trans-1,2-Dichloroethene	0.998	mg/kg	0.0064	ND
	trans-1,3-Dichloropropene	0.998	mg/kg	0.0064	ND
	Trichloroethene	0.998	mg/kg	0.0064	ND
	Trichlorofluoromethane	0.998	mg/kg	0.0064	ND
	Vinyl chloride	0.998	mg/kg	0.0064	ND
	Xylenes (Total)	0.998	mg/kg	0.0032	ND
V	olatile Organics + 10 (8260) Library Sear	rches			
A-1-1-1	Analyte	DE	15		

Sample ID: PC-2 U Lab#: AC67281-010

Matrix: Aqueous Receipt Da

Collection Date: 7/25/2012 Receipt Date: 7/25/2012

Analyte	DF	Units	RL	Result
Chloride	1	mg/l	2.0	23

### Cyanide-Water (EPA 335.4)

Analyte	DF	Units	RL	Result
Cyanide	1	mg/l	0.020	ND

### Mercury (Water) 245.1

Analyte	DF	Units	RL	Result
Mercury	1	ug/l	0.20	ND

### Semivolatile Organics + 25 (625)

Analyte	DF	Units	RL	Result
1,1'-Biphenyl	1	ug/l	2.0	ND
1,2,4,5-Tetrachlorobenzene	1	ug/l	2.0	ND
2,3,4,6-Tetrachlorophenol	1	ug/l	2.0	ND
2,4,5-Trichlorophenol	1	ug/l	2.0	ND
2,4,6-Trichlorophenol	······ 1	ug/l	2.0	ND ND
2,4-Dichlorophenol	1	ug/l	2.0	ND
2,4-Dimethylphenol	1	ug/l	2.0	ND
2,4-Dinitrophenol	1	ug/l	10	ND
2,4-Dinitrotoluene	1	ug/l	2.0	ND ND
2,6-Dinitrotoluene	1	ug/l	2.0	ND
2-Chloronaphthalene	1	ug/l	2.0	ND
2-Chlorophenol	1	ug/l	2.0	ND
2-Methylnaphthalene	1	ug/l	2.0	ND
2-Methylphenol	1	ug/l	0.51	ND
2-Nitroaniline	1	ug/l	2.0	ND
2-Nitrophenol	1	ug/l	2.0	ND
3&4-Methylphenol	1	ug/l	0.51	ND
3,3'-Dichlorobenzidine	1	ug/l	2.0	ND
3-Nitroaniline	1	ug/l	2.0	ND
4,6-Dinitro-2-methylphenol	1	ug/l	10	ND
4-Bromophenyl-phenylether	1	ug/l	2.0	ND
4-Chloro-3-methylphenol	1	ug/l	2.0	ND
4-Chloroaniline	1	ug/l	0.51	ND
1-Chlorophenyl-phenylether	1	ug/l	2.0	ND
1-Nitroaniline	1	ug/l	2.0	ND
1-Nitrophenol	1	ug/l	2.0	ND
Acenaphthene	1	ug/l	2.0	ND
cenaphthylene	1	ug/l	2.0	ND
cetophenone	1	ug/l	2.0	ND
inthracene	1	ug/l	2.0	ND
strazine	1	ug/I	2.0	ND
enzaldehyde	1	ug/l	2.0	ND
enzo[a]anthracene	1	ug/I	2.0	ND
enzo[a]pyrene	1	ug/l	2.0	ND
enzo[b]fluoranthene	1	ug/l	2.0	ND
enzo[g,h,i]perylene	1	ug/l	2.0	ND
enzo[k]fluoranthene	1	ug/l	2.0	ND
s(2-Chloroethoxy)methane	1	ug/l	2.0	ND
s(2-Chloroethyl)ether	1	ug/l	0.51	ND
s(2-Chloroisopropyl)ether	1	ug/l	2.0	ND
s(2-Ethylhexyl)phthalate	1	ug/l	2.0	ND
utylbenzylphthalate	1	ug/l	2.0	ND
aprolactam	1			

le ID: PC-2 U			Collection Date	
Lab#: AC67281-010			Receipt Date	e: 7/25/2012
atrix: Aqueous				
Carbazole	1	ug/l	2.0	ND
Chrysene	1	ug/l	2.0	ND
Dibenzo[a,h]anthracene	1	ug/l	2.0	ND
Dibenzofuran	1	ug/l	0.51	ND
Diethylphthalate	1	ug/l	2.0	ND
Dimethylphthalate	1	ug/l	2.0	ND
Di-n-butylphthalate	1	ug/l	0.51	ND
Di-n-octylphthalate	1	ug/l	2.0	ND
Fluoranthene		ug/l	2.0	
Fluorene	1			ND
Hexachlorobenzene		ug/l	2.0	ND
Hexachlorobutadiene	1	ug/l	2.0	ND
	1	ug/l	2.0	ND
Hexachlorocyclopentadiene	1	ug/l	2.0	ND
Hexachloroethane	1	ug/l	2.0	ND
Indeno[1,2,3-cd]pyrene	1	ug/l	2.0	ND
Isophorone	1	ug/l	2.0	ND
Naphthalene	1	ug/l	0.51	ND
Nitrobenzene	1	ug/l	2.0	ND
N-Nitroso-di-n-propylamine	1	ug/l	0.51	ND
N-Nitrosodiphenylamine	1	ug/l	2.0	ND
Pentachlorophenol			10	
Phenanthrene	1	ug/l		ND
Phenoi	,	ug/l	2.0	ND
Pyrene	1	ug/l	2.0	ND
		ug/l	2.0	ND
Semivolatile Organics + 25 (625) Library Searc	hes			
Analyte	DF	Units	RT	Result
No Unknown Compounds Detected	1	ug/l	NA	ND
TotalSemiVolatileTic	1	ug/l	NA	ND
TAL Metals 200.7				
Analyte				
***************************************	DF	Units	RL	Result
Aluminum	1	ug/l	100	12000
Antimony	1	ug/l	7,5	ND
Arsenic	1	ug/l	20	ND
Barium	1	ug/l	25	330
Beryllium	1	ug/l	4.0	ND
Cadmium	1	ug/l	2.0	ND
Calcium	1	ug/l	1000	81000
Chromium	1	ug/l		
Cobalt	1		25	34
Copper		ug/l	10	18
Iron	1	ug/l	25	27
	1	ug/l	150	86000
Lead	1	ug/l	5.0	16
Magnesium	1	ug/l	1000	27000
Manganese	1	ug/l	25	9100
Nickel	1	ug/l	10	26
Potassium	1	ug/I	2500	6800
Selenium	1	ug/l	25	ND
Silver	1	ug/l	10	
Sodium	1			ND
Thallium		ug/l	2500	43000
Vanadium	1	ug/l	5.0	ND
	1	ug/l	25	46
Zinc	1	ug/l	25	62
17 1 19 6 1 1 1 1 1 1 1 1 1 1				
Volatile Organics + 10 (624)				
Analyte	DF	Units	RL	Result
	<b>DF</b>	Units ug/l	RL 1.0	Result

Lab#:	PC-2 U AC67281-010			Collection Date: Receipt Date:	
matrix:	Aqueous				
	1,1,2,2-Tetrachloroethane	1	ug/l	1.0	ND
	1,1,2-Trichloro-1,2,2-trifluoroethane	1	ug/l	5.0	ND
	1,1,2-Trichloroethane	1	ug/l	1.0	ND
	1,1-Dichloroethane	1	ug/l	1.0	ND
	1,1-Dichloroethene	1	ug/l	1.0	ND
	1,2,3-Trichlorobenzene	1	ug/l	1.0	ND
	1,2,4-Trichlorobenzene	1	ug/l	1.0	ND
	1,2-Dibromo-3-chloropropane	1	ug/l	1.0	ND
	1,2-Dibromoethane	1	ug/l	1.0	ND
	1,2-Dichlorobenzene	1	ug/l	1.0	ND
	1,2-Dichloroethane	1	ug/l	0.50	ND
	1,2-Dichloropropane	1	ug/l	1.0	ND
	1,3-Dichlorobenzene	1	ug/l	1.0	ND
	1,4-Dichlorobenzene	1	ug/l	1.0	ND
	1,4-Dioxane	1	ug/I	50	ND
	2-Butanone	1	ug/l	1.0	ND
	2-Hexanone	1	ug/l	1.0	ND
	4-Methyl-2-pentanone	1	ug/l	1.0	ND
	Acetone	1	ug/l	10	ND
	Benzene	1	ug/l	0.50	ND
	Bromochloromethane	1	ug/l	1.0	ND
	Bromodichloromethane	1	ug/l	1.0	ND
	Bromoform	1	ug/l	1.0	ND
	Bromomethane	1	ug/l	1.0	ND
	Carbon disulfide	1	ug/l	1.0	ND
	Carbon tetrachloride	1	ug/l	1.0	ND
	Chlorobenzene	1	ug/l	1.0	ND
	Chloroethane	1	ug/l	1.0	ND
	Chloroform	1	ug/l	1.0	ND
	Chloromethane	1	ug/l	1.0	ND
	cis-1,2-Dichloroethene	1	ug/l	1.0	
	cis-1,3-Dichloropropene	1	ug/l	1.0	ND
	Cyclohexane	1	ug/l	1.0	ND
	Dibromochloromethane	1	ug/l		ND
	Dichlorodifluoromethane	1	ug/l	1.0	ND
	Ethylbenzene	1	ug/l	1.0	ND
	Isopropylbenzene	1		1.0	ND
	m&p-Xylenes	1	ug/l	1.0	ND
	Methyl Acetate	1	ug/l	1.0	ND
	Methylcyclohexane	1	ug/l	1.0	ND
	Methylene chloride		ug/l	1.0	ND
	Methyl-t-butyl ether	1	ug/i	1.0	ND
	o-Xylene	1	ug/l	0.50	ND
	Styrene	1	ug/l	1.0	ND
	Tetrachloroethene	1	ug/l	1.0	ND
	Toluene	1	ug/l		ND
	trans-1,2-Dichloroethene	1	ug/l		ND
	trans-1,2-Dichloropropene	1	ug/l		ND
	Trichloroethene	1	ug/l		ND
		1	ug/l	1.0	ND
	Trichlorofluoromethane	1	ug/I	1.0	ND
	Vinyl chloride	1	ug/l	1.0	ND
	Xylenes (Total)	1	ug/l	1.0	ND

NOTE: Soil Results are reported to Dry Weigh

Analyte

TotalVolatileTic

No Unknown Compounds Detected

Project #: 2072518

Units

ug/l

ug/l

RT

NA

NA

DF

Result

ND

ND

Sample ID: PC-2 F Lab#: AC67281-011

Matrix: Aqueous

Collection Date: 7/25/2012 Receipt Date: 7/25/2012

### Mercury (Water) 245.1

Analyte	DF	Units	RL	Result	
Mercury	1	ug/l	0.20	ND	

### **TAL Metals 200.7/8**

Analyte	DF	Units	RL	Result
Aluminum	1	ug/l	100	ND
Antimony	1	ug/l	7.5	ND
Arsenic	1	ug/l	20	ND
Barium	1	ug/i	25	130
Beryllium	1	ug/l	4.0	ND
Cadmium	1	ug/l	2.0	ND
Calcium	1	ug/l	1000	77000
Chromium	1	ug/l	25	ND
Cobalt	1	ug/l	10	ND
Copper	1	ug/l	25	ND
Iron	1	ug/l	150	25000
Lead	1	ug/l	5.0	ND
Magnesium	1	ug/l	1000	22000
Manganese	1	ug/l	25	8800
Nickel	1	ug/l	10	ND
Potassium	1	ug/l	2500	4800
Selenium	1	ug/l	25	ND
Silver	1	ug/l	10	ND
Sodium	1	ug/l	2500	43000
Thallium	1	ug/l	5.0	ND
√anadium	1	ug/l	25	ND
Zinc	1	ug/l	25	ND

Sample ID: LMW-2 U Lab#: AC67281-012 Matrix: Aqueous

Collection Date: 7/25/2012 Receipt Date: 7/25/2012

### Chloride (Water) 300.0

Analyte	DF	Units	RL	Result
Chloride	1	mg/l	2.0	12

### Cyanide-Water (EPA 335.4)

Analyte	DF	Units	RL	Result
Cyanide	1	mg/l	0.020	ND

### Semivolatile Organics + 25 (625)

Analyte	DF	Units	RL	Result
1,1'-Biphenyl	1	ug/l	2.0	ND
1,2,4,5-Tetrachlorobenzene	1	ug/l	2.0	ND
2.3,4,6-Tetrachlorophenol	1	ug/l	2.0	ND
2,4,5-Trichlorophenol	1	ug/l	2.0	ND
2,4,6-Trichlorophenol	1	ug/l	2.0	ND
2,4-Dichlorophenol	1	ug/l	2.0	ND
2,4-Dimethylphenol	1	ug/I	2.0	ND
2,4-Dinitrophenol	1	ug/l	10	ND
2,4-Dinitrotoluene	1	ug/l	2.0	ND
2,6-Dinitrotoluene	1	ug/l	2.0	ND
2-Chloronaphthalene	1	ug/l	2.0	ND
2-Chlorophenol	1	ug/l	2.0	ND
2-Methylnaphthalene	1	ug/l	2.0	ND
2-Methylphenol	1	ug/l	0.50	ND
2-Nitroaniline	1	ug/l	2.0	ND
2-Nitrophenol	1	ug/l	2.0	ND
3&4-Methylphenol	1	ug/l	0.50	ND
3,3'-Dichlorobenzidine	1	ug/l	2.0	ND
3-Nitroaníline	1	ug/I	2.0	ND
4,6-Dinitro-2-methylphenol	1	ug/l	10	
4-Bromophenyl-phenylether	1	ug/l	2.0	ND ND
4-Chloro-3-methylphenol	1	ug/l	2.0	ND ND
4-Chloroaniline	1	ug/l	0.50	ND
4-Chlorophenyl-phenylether	1	ug/l	2.0	ND
4-Nitroaniline	1	ug/l	2.0	ND
4-Nitrophenol	1	ug/l	2.0	ND
Acenaphthene	1	ug/l	2.0	ND
Acenaphthylene	1	ug/l	2.0	ND
Acetophenone	1	ug/l	2.0	ND
Anthracene	1	ug/l	2.0	ND
Atrazine	1	ug/l		ND
Benzaldehyde	1		2.0	ND
Benzo[a]anthracene	1	ug/l	2.0	ND
Benzo[a]pyrene	1	ug/l	2.0	ND
Benzo[b]fluoranthene	1	ug/l	2.0	ND
Benzo[g,h,i]perylene	1	ug/l	2.0	ND
Benzo[k]fluoranthene	1	ug/l	2.0	ND
bis(2-Chloroethoxy)methane	1	ug/l	2.0	ND
bis(2-Chloroethyl)ether	1	ug/l	2.0	ND
bis(2-Chloroisopropyl)ether		ug/l	0.50	ND
bis(2-Ethylhexyl)phthalate	1	ug/l	2.0	ND
Butylbenzylphthalate	1	ug/l	2.0	ND
Caprolactam	1	ug/l	2.0	ND
Carbazole	1	ug/l	2.0	ND
Chrysene	1	ug/l	2.0	ND
Dibenzo[a,h]anthracene	1	ug/l	2.0	ND
Dibenzofuran	1	ug/l	2.0	ND
Proprietal:	1	ug/l	0.50	ND

Sample ID: LMW-2 U Lab#: AC67281-012 Matrix: Aqueous

Collection Date: 7/25/2012 Receipt Date: 7/25/2012

Diethylphthalate	1	ug/l	2.0	ND	
Dimethylphthalate	1	ug/l	2.0	ND	
Di-n-butylphthalate	1	ug/l	0.50	ND	
Di-n-octylphthalate	1	ug/I	2.0	ND	
Fluoranthene	1	ug/l	2.0	ND	
Fluorene	1	ug/l	2.0	ND	
Hexachlorobenzene	1	ug/l	2.0	ND ND	
Hexachlorobutadiene	1	ug/l	2.0	ND	
Hexachlorocyclopentadiene	1	ug/l	2.0	ND	
Hexachloroethane	1	ug/l	2.0	ND	
Indeno[1,2,3-cd]pyrene	1	ug/I	2.0	ND	
Isophorone	1	ug/l	2.0	ND	
Naphthalene	1	ug/l	0.50	ND	
Nitrobenzene	1	ug/l	2.0	ND	
N-Nitroso-di-n-propylamine	1	ug/I	0.50	ND	
N-Nitrosodiphenylamine	1	ug/l	2.0	ND	
Pentachlorophenol	1	ug/l	10	ND	
Phenanthrene	1	ug/l	2.0	ND	
Phenol	1	ug/l	2.0		
Pyrene	1	ug/l	2.0	ND	
		ogn	Z.U	ND	

# Semivolatile Organics + 25 (625) Library Searches

Analyte	DF	Units	RT	Result
No Unknown Compounds Detected	1	ug/l	NA	ND
TotalSemiVolatileTic	1	ug/l	NA	ND

### Volatile Organics + 10 (624)

Analyte	DF	Units	RL	Result
1,1,1-Trichloroethane	1	ug/l	1.0	ND
1,1,2,2-Tetrachloroethane	1	ug/l	1.0	ND
1,1,2-Trichloro-1,2,2-trifluoroethane	1	ug/l	5.0	ND
1,1,2-Trichloroethane	1	ug/l	1,0	ND
1,1-Dichloroethane	1	ug/l	1.0	ND
1,1-Dichloroethene	1	ug/l	1.0	ND
1,2,3-Trichlorobenzene	1	ug/l	1.0	ND
1,2,4-Trichlorobenzene	1	ug/l	1.0	ND
1,2-Dibromo-3-chloropropane	1	ug/l	1.0	ND
1,2-Dibromoethane	1	ug/l	1.0	ND
1,2-Dichlorobenzene	1	ug/l	1.0	ND
1,2-Dichloroethane	1	ug/l	0.50	ND
1,2-Dichloropropane	1	ug/l	1.0	ND
1,3-Dichlorobenzene	1	ug/l	1.0	ND ND
1,4-Dichlorobenzene	1	ug/l	1.0	ND ND
1,4-Dioxane	1	ug/l	50	ND
2-Butanone	1	ug/l	1.0	
2-Hexanone	1	ug/l	1.0	ND
4-Methyl-2-pentanone	1	ug/l	1.0	ND
Acetone	1	ug/l	10	ND
	1	ug/l		ND
Bromochloromethane	1		0.50	ND
Bromodichloromethane	1	ug/l ug/l	1.0	ND
Bromoform	1	-	1.0	ND
3romomethane	1	ug/l	1.0	ND
Carbon disulfide	1	ug/i	1.0	ND
Carbon tetrachloride		ug/I	1.0	ND
Chlorobenzene	1	ug/l	1.0	ND
Chloroethane	1	ug/l	1.0	ND
who contains	1	ug/l	1.0	ND

Lab#:	LMW-2 U AC67281-012				Date: 7/25/2012 Date: 7/25/2012
Matrix:	Aqueous				772072072
	Chloroform	1	ug/l	1.0	ND
	Chloromethane	1	ug/l	1.0	ND
	cis-1,2-Dichloroethene	1	ug/l	1.0	ND
	cis-1,3-Dichloropropene	1	ug/l	1.0	ND
	Cyclohexane	1	ug/l	1.0	ND
	Dibromochloromethane	1	ug/l	1.0	ND
	Dichlorodifluoromethane	1	ug/l	1.0	ND
	Ethylbenzene	1	ug/l	1.0	ND
	Isopropylbenzene	1	ug/l	1.0	ND
	m&p-Xylenes	1	ug/l	1.0	ND
	Methyl Acetate	1	ug/l	1.0	ND
	Methylcyclohexane	1	ug/l	1.0	ND
	Methylene chloride	1	ug/l	1.0	ND
	Methyl-t-butyl ether	1	ug/l	0.50	ND
	o-Xylene	1	ug/l	1.0	ND
	Styrene	1	ug/l	1.0	ND
	Tetrachloroethene	1	ug/l	1.0	ND
	Toluene	1	ug/l	1.0	ND
	trans-1,2-Dichloroethene	1	ug/l	1.0	ND
	trans-1,3-Dichloropropene	1	ug/l	1.0	ND
	Trichloroethene	1	ug/l	1.0	ND
	Trichlorofluoromethane	1	ug/l	1.0	ND
	Vinyl chloride	1	ug/l	1.0	ND
	Xylenes (Total)	1	ug/l	1.0	ND

DF

Units

ug/l

ug/l

RT

NA

NA

Result

ND

ND

Analyte

TotalVolatileTic

No Unknown Compounds Detected

Sample ID: LMW-2 F Lab#: AC67281-013

Matrix: Aqueous

Collection Date: 7/25/2012 Receipt Date: 7/25/2012

### Mercury (Water) 245.1

Analyte	DF	Units	RL	Result
Mercury	1	ug/l	0.20	ND

### **TAL Metals 200.7/8**

Analyte	DF	Units	RL	Result
Aluminum	1	ug/l	100	ND
Antimony	1	ug/l	7.5	ND
Arsenic	1	ug/l	20	ND
Barium	1	ug/l	25	120
Beryllium	1	ug/l	4.0	ND
Cadmium	1	ug/l	2.0	ND
Calcium	1	ug/l	1000	74000
Chromium	1	ug/l	25	ND
Cobalt	1	ug/l	10	ND
Copper	1	ug/l	25	ND
Iron	1	ug/l	150	ND
Lead	1	ug/l	5.0	ND
Magnesium	1	ug/l	1000	29000
Manganese	1	ug/l	25	210
Nickel	1	ug/l	10	ND
Potassium	1	ug/l	2500	3700
Selenium	1	ug/l	25	ND
Silver	1	ug/l	10	ND
Godium	1	ug/l	2500	27000
[hallium	1	ug/l	5.0	ND
/anadium	1	ug/l	25	ND
linc line				

Sample ID: FB-1 LF U Lab#: AC67281-014 Matrix: Aqueous

Collection Date: 7/25/2012 Receipt Date: 7/25/2012

Chloride (V	Vater)	300.0
-------------	--------	-------

Analyte	DF	Units	RL	Result
Chloride	4			
Vanido-Water (EDA 225 A)		mg/I	2.0	ND
Vanido Matar (EDA 225 A)				

### Cyanide-Water (EPA 335.4)

Analyte	DF	Units	RL	Result	
Cyanide	4	0			
Morcury (Water) 245 4		mg/l	0.020	ND	
Moroury (Motor) 245 4					

### Mercury (Water) 245.1

Analyte	DF	Units	RL	Result
Mercury	3	not fi	0.00	and the second s
Semivolatile Organics + 25 (625)				

# Semivolatile Organics + 25 (625)

Analyte	DF	Units	RL	Posit
1,1'-Biphenyl	1	ug/l		Result
1,2,4,5-Tetrachlorobenzene	1		2.0	ND
2,3,4,6-Tetrachlorophenol	1	ug/l	2.0	ND
2,4,5-Trichlorophenol	1	ug/l	2.0	ND
2,4,6-Trichlorophenol		ug/l	2.0	ND
2,4-Dichlorophenol	1	ug/l	2.0	ND
2,4-Dimethylphenol	1	ug/l	2.0	ND
2,4-Dinitrophenol	1	ug/l	2.0	ND
2,4-Dinitrotoluene	1	ug/l	10	ND
2,6-Dinitrotoluene	1	ug/l	2.0	ND
2-Chloronaphthalene	1	ug/l	2.0	ND
2-Chlorophenol	1	ug/l	2.0	ND
2-Methylnaphthalene		ug/l	2.0	ND
2-Methylphenol	1	ug/l	2.0	ND
2-Nitroaniline	1	ug/l	0.51	ND
2-Nitrophenol		ug/l	2.0	ND
3&4-Methylphenol	1	ug/l	2.0	ND
3,3'-Dichlorobenzidine	1	ug/l	0.51	ND
3-Nitroaniline	1	ug/l	2.0	ND
4,6-Dinitro-2-methylphenol	1	ug/l	2.0	ND
4-Bromophenyl-phenylether	1	ug/l	10	ND
4-Chloro-3-methylphenol	1	ug/l	2.0	ND
4-Chloroaniline	1	ug/l	2.0	ND
4-Chlorophenyl-phenylether	1	ug/l	0.51	ND
4-Nitroaniline	1	ug/l	2.0	ND
4-Nitrophenol	1	ug/l	2.0	ND
Acenaphthene	1	ug/l	2.0	ND
Acenaphthylene	1	ug/l	2.0	ND
Acetophenone	1	ug/l	2.0	ND
Anthracene	1	ug/l	2.0	ND
Atrazine	1	ug/l	2.0	ND
Benzaldehyde	1	ug/l	2.0	ND
Benzo[a]anthracene	1	ug/l	2.0	ND
Benzo[a]pyrene	1	ug/l	2.0	ND
Benzo[b]fluoranthene	1	ug/l	2.0	ND
Benzo[g,h,i]perylene	1	ug/I	2.0	ND
Benzo[k]fluoranthene	1	ug/l	2.0	ND
bis(2-Chloroethoxy)methane	1	ug/l	2.0	ND
bis(2-Chloroethyl)ether	1	ug/I	2.0	ND
bis(2-Chloroisopropyl)ether	1	ug/l	0.51	ND
	1	ug/l	2.0	ND
bis(2-Ethylhexyl)phthalate	1	ug/l	2.0	ND
Butylbenzylphthalate	1	ug/l	2.0	ND
Caprolactam				110

Lab#: A	B-1 LF U			Collection Date	e: 7/25/2012
	C67281-014			Receipt Date	e: 7/25/2012
Matrix: A					
	Carbazole	1	ug/l	2.0	ND
	Chrysene	1	ug/l	2.0	ND
	Dibenzo[a,h]anthracene	1	ug/l	2.0	ND
	Dibenzofuran		ug/l	0.51	ND
	Diethylphthalate	1	ug/l	2.0	ND
	Dimethylphthalate	1	ug/l	2.0	ND
	Di-n-butylphthalate	1	ug/l	0.51	ND
	Di-n-octylphthalate	1	ug/l	2.0	ND
	Fluoranthene	1	ug/l	2.0	ND
	Fluorene	1	ug/l	2.0	ND
	Hexachlorobenzene	1	ug/l	2.0	ND
	Hexachlorobutadiene		ug/I	2.0	ND
	Hexachlorocyclopentadiene	1	ug/l	2.0	ND
	Hexachloroethane	1	ug/l	2.0	ND
	Indeno[1,2,3-cd]pyrene	1	ug/l	2.0	ND
	Isophorone		ug/l	2.0	ND
	Naphthalene	1	ug/I	0.51	ND
	Nitrobenzene	1	ug/l	2.0	ND
	N-Nitroso-di-n-propylamine	1	ug/l	0.51	ND
	N-Nitrosodiphenylamine	1	ug/l	2.0	ND
	Pentachlorophenol	1	ug/l	10	ND
	Phenanthrene Phenol	1	ug/l	2.0	ND
		1	ug/l	2.0	ND
	Pyrene		ug/l	2.0	ND
Sen	nivolatile Organics + 25 (625) Library Sear	ches			
	Analyte	DF	Units	RT	Result
	No Unknown Compounds Detected	1	ug/l	NA	ND
	TotalSemiVolatileTic	1	ug/l	NA	ND
TAI	Metals 200.7				
	Analyte	DF	Units	RL	Result
	Aluminum	1	ug/l	100	ND
	Antimony	1	ug/l	7.5	ND
	Arsenic	1	ug/l	20	ND
	Barium	1	ug/l	25	ND
	Beryllium	1	ug/l	4.0	ND
	Cadmium	1	ug/I	2.0	ND
	Calcium	1	ug/l	1000	ND
	Ob an art are				
	Chromium	1	ug/l	25	ND
	Cobalt	1	ug/l		ND ND
				25	
	Cobalt	1	ug/l	25 10	ND
	Cobalt Copper Iron Lead	1 1	ug/l ug/l	25 10 25	ND ND
	Cobalt Copper Iron	1 1	ug/l ug/l	25 10 25 150	ND ND ND
	Cobalt Copper Iron Lead	1 1 1	ug/l ug/l ug/l ug/l	25 10 25 150 5.0	ND ND ND ND
	Cobalt Copper Iron Lead Magnesium	1 1 1	ug/l ug/l ug/l ug/l	25 10 25 150 5.0	ND ND ND ND
	Cobalt Copper Iron Lead Magnesium Manganese Nickel Potassium	1 1 1 1	ug/l ug/l ug/l ug/l ug/l	25 10 25 150 5.0 1000 25	ND ND ND ND ND
	Cobalt Copper Iron Lead Magnesium Manganese Nickel Potassium Selenium	1 1 1 1 1	ug/l ug/l ug/l ug/l ug/l ug/l	25 10 25 150 5.0 1000 25	ND ND ND ND ND ND ND ND
	Cobalt Copper Iron Lead Magnesium Manganese Nickel Potassium	1 1 1 1 1 1 1	ug/l ug/l ug/l ug/l ug/l ug/l	25 10 25 150 5.0 1000 25 10	ND
	Cobalt Copper Iron Lead Magnesium Manganese Nickel Potassium Selenium	1 1 1 1 1 1 1	ug/l ug/l ug/l ug/l ug/l ug/l ug/l	25 10 25 150 5.0 1000 25 10 2500	ND
	Cobalt Copper Iron Lead Magnesium Manganese Nickel Potassium Selenium Silver	1 1 1 1 1 1 1 1	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	25 10 25 150 5.0 1000 25 10 2500 25	ND N
	Cobalt Copper Iron Lead Magnesium Manganese Nickel Potassium Selenium Silver	1 1 1 1 1 1 1 1	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	25 10 25 150 5.0 1000 25 10 2500 25 10	ND N
	Cobalt Copper Iron Lead Magnesium Manganese Nickel Potassium Selenium Silver Sodium Thallium	1 1 1 1 1 1 1 1 1	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	25 10 25 150 5.0 1000 25 10 2500 25 10 2500 5.0	ND N
Vola	Cobalt Copper Iron Lead Magnesium Manganese Nickel Potassium Selenium Silver Sodium Thallium Vanadium Zinc	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	25 10 25 150 5.0 1000 25 10 2500 25 10 2500 5.0 25 10 2500 5.0	ND N
Volat	Cobalt Copper Iron Lead Magnesium Manganese Nickel Potassium Selenium Silver Sodium Thallium Vanadium Zinc tile Organics + 10 (624)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	25 10 25 150 5.0 1000 25 10 2500 25 10 2500 5.0 25 25	ND N
Volat	Cobalt Copper Iron Lead Magnesium Manganese Nickel Potassium Selenium Silver Sodium Thallium Vanadium Zinc	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	25 10 25 150 5.0 1000 25 10 2500 25 10 2500 5.0 25 10 2500 5.0	ND N

ole ID: FB-1 LF U Lab#: AC67281-014			Collecti	ion Date: 7/25/2012
latrix: Aqueous			Rece	ipt Date: 7/25/2012
1,1,2,2-Tetrachloroethane				
1,1,2-Trichloro-1,2,2-trifluoroethane	1	ug/l	1.0	ND
1,1,2-Trichloroethane	1	ug/l	5.0	ND
1,1-Dichloroethane	1	ug/l	1.0	ND
1,1-Dichloroethene	1	ug/l	1.0	ND
1,2,3-Trichlorobenzene	1	ug/l	1.0	ND
1,2,4-Trichlorobenzene	1	ug/l	1.0	ND
1,2-Dibromo-3-chloropropane	1	ug/l	1.0	ND
1,2-Distributions-chibropropane	1	ug/l	1.0	ND
	1	ug/l	1.0	ND
1,2-Dichlorobenzene	1	ug/i	1.0	ND
1,2-Dichloroethane	1	ug/l	0.50	ND
1,2-Dichloropropane	1	ug/l	1.0	ND
1,3-Dichlorobenzene	1	ug/l	1.0	ND
1,4-Dichlorobenzene	1	ug/l	1.0	
1,4-Dioxane	1	ug/l	50	ND ND
2-Butanone	1	ug/l	1.0	ND
2-Hexanone	1	ug/l	1.0	ND
4-Methyl-2-pentanone	1			ND
Acetone	1	ug/l	1.0	ND
Benzene	1	ug/l	10	ND
Bromochloromethane	· ·········	ug/l	0.50	ND
Bromodichloromethane	1	ug/l	1.0	ND
Bromoform	,	ug/l	1.0	ND
Bromomethane	1	ug/l	1.0	ND
Carbon disulfide	1	ug/l	1.0	ND
Carbon tetrachloride	1	ug/l	1.0	ND
Chlorobenzene	1	ug/l	1.0	ND
Chloroethane	1	ug/l	1.0	ND
	1	ug/i	1.0	ND
Chloroform	1	ug/l	1.0	ND
Chloromethane	1	ug/l	1.0	ND
cis-1,2-Dichloroethene	1	ug/l	1.0	ND
cis-1,3-Dichloropropene	1	ug/l	1.0	ND
Cyclohexane	1	ug/l	1,0	ND
Dibromochloromethane	1	ug/l	1.0	ND
Dichlorodifluoromethane	1	ug/l	1.0	ND
Ethylbenzene	1	ug/l	1.0	
Isopropylbenzene	1	ug/l	1.0	ND
m&p-Xylenes	1	ug/l		ND
Methyl Acetate	1	ug/l	1.0	ND
Methylcyclohexane	1	ug/l	1.0	ND
Methylene chloride	1		1.0	ND
Methyl-t-butyl ether	1	ug/l	1.0	ND
o-Xylene		ug/I	0.50	ND
Styrene	1	ug/I	1.0	ND
Tetrachloroethene		ug/l	1.0	ND
Toluene	1	ug/l	1.0	ND
	1	ug/l	1.0	ND
trans-1,2-Dichloroethene	1	ug/l	1.0	ND
trans-1,3-Dichloropropene	1	ug/l	1.0	ND
Trichloroethene	1	ug/l	1.0	ND
Trichlorofluoromethane	1	ug/l	1.0	ND
Vinyl chloride	1	ug/l	1.0	ND
Xylenes (Total)	1	ug/l	1.0	
Volatile Organics + 10 (624) Library Searches				ND
Analyte	DF	Units	DT	
No Unknown Compounds Detected			RT	Result
	1	ug/l	NA	ND

Sample ID: LMW-4 U Lab#: AC67281-016 Matrix: Aqueous

Collection Date: 7/25/2012 Receipt Date: 7/25/2012

### Chloride (Water) 300.0

Analyte	DF	Units	RL	Result
	4	mn/l	2.0	10
Chloride		gr-		

### Cyanide-Water (EPA 335.4)

Cyaniue-Water (El A 000.1)				······································
Analyte	DF	Units	RL	Result
a second committee accorda to the contract of		man at II	0.020	ND
Cyanide	1	my/i		

A 2 4 -	DF	Units	RL	Result
Analyte			2.0	ND
1,1'-Biphenyl	1	ug/l	2.0	ND
1,2,4,5-Tetrachiorobenzene	1	ug/l	2.0	ND
2,3,4,6-Tetrachlorophenol	1	ug/l	2.0	ND
2,4,5-Trichlorophenol	1	ug/l	2.0	ND
2,4,6-Trichlorophenol	1	ug/l	2.0	ND
2,4-Dichlorophenol	1	ug/l	2.0	ND
2,4-Dimethylphenol	1	ug/l	10	ND
2,4-Dinitrophenol	1 	ug/l	2.0	ND
2,4-Dinitrotoluene	1	ug/l	2.0	ND
2,6-Dinitrotoluene	1	ug/l	2.0	ND
2-Chloronaphthalene	1	ug/l		ND
2-Chlorophenol	1	ug/l	2.0	ND
2-Methylnaphthalene	1	ug/l	2.0	ND
2-Methylphenol	1	ug/i	0.51	ND
2-Nitroaniline	1	ug/l	2.0	ND
2-Nitrophenol	1	ug/l	2.0	
3&4-Methylphenol	1	ug/l	0.51	ND
3,3'-Dichlorobenzidine	1	ug/l	2.0	ND ND
3-Nitroaniline	1	ug/l	2.0	ND
4,6-Dinitro-2-methylphenol	1	ug/l	10	ND
4-Bromophenyl-phenylether	1	ug/l	2.0	ND
4-Chloro-3-methylphenol	1	ug/l	2.0	ND
4-Chloroaniline	1	ug/l	0.51	ND
4-Chlorophenyl-phenylether	1	ug/l	2.0	ND
4-Nitroaniline	1	ug/l	2.0	ND
4-Nitrophenol	1	ug/l	2.0	ND
Acenaphthene	1	ug/l	2.0	ND
Acenaphthylene	1	ug/l	2.0	ND
Acetophenone	1	ug/l	2.0	ND
Anthracene	1	ug/l	2.0	ND
Atrazine	1	ug/l	2.0	ND
Benzaldehyde	1	ug/I	2.0	ND
Benzo[a]anthracene	1	ug/l	2.0	ND
Benzo[a]pyrene	1	ug/I	2.0	ND
Benzo[b]fluoranthene	1	ug/l	2.0	ND
Benzo[g,h,i]perylene	1	ug/l	2.0	ND
Benzo[k]fluoranthene	1	ug/l	2.0	ND
bis(2-Chloroethoxy)methane	1	ug/l	2.0	ND
bis(2-Chloroethyl)ether	1	ug/l	0.51	ND
bis(2-Chloroisopropyl)ether	1	ug/l	2.0	ND
	1	ug/l	2.0	ND
bis(2-Ethylhexyl)phthalate	1	ug/l	2.0	ND
Butylbenzylphthalate	1	ug/l	2.0	ND
Caprolactam	1	ug/l	2.0	ND
Carbazole	1	ug/l	2.0	ND
Chrysene	1	ug/l	2.0	ND
Dibenzo[a,h]anthracene	1	ug/l	0.51	ND
Dibenzofuran	Proje			Page 36 of 39

ample ID: LMW-4 U Lab#: AC67281-016			Date: 7/25/2012 Date: 7/25/2012	
Matrix: Aqueous				
Diethylphthalate	1	ug/l	2.0	ND
Dimethylphthalate	1	ug/l	2.0	ND
Di-n-butylphthalate	1	ug/l	0.51	ND
Di-n-octylphthalate	1	ug/l	2.0	ND
Fluoranthene	1	ug/l	2.0	ND
Fluorene	1	ug/l	2.0	ND
Hexachlorobenzene	1	ug/l	2.0	ND
Hexachlorobutadiene	1	ug/l	2.0	ND 
Hexachlorocyclopentadiene	1	ug/l	2.0	ND
Hexachloroethane	1	ug/l	2.0	ND
Indeno[1,2,3-cd]pyrene	1	ug/l	2.0	ND
Isophorone	1	ug/l	2.0	ND
Naphthalene	1	ug/l	0.51	ND
Nitrobenzene	1	ug/I	2.0	ND
N-Nitroso-di-n-propylamine	1	ug/l	0.51	ND
N-Nitrosodiphenylamine	1	ug/l	2.0	ND
Pentachlorophenol		ug/l	10	ND
Phenanthrene	1	ug/l	2.0	ND
Phenol	1	ug/l	2.0	ND
Pyrene	1	ug/l	2.0	ND

# Semivolatile Organics + 25 (625) Library Searches

Analyte	DF	Units	RT	Result
No Unknown Compounds Detected		ug/l	NA	ND
	1	ug/l	NA	ND

## Volatile Organics + 10 (624)

Pyrene

e Organics + 10 (624)  Analyte	DF	Units	RL	Result
1,1,1-Trichloroethane	1	ug/l	1.0	ND
1,1,2,2-Tetrachloroethane	1	ug/l	1.0	ND
1,1,2,2-Trichloro-1,2,2-trifluoroethane	1	ug/l	5.0	ND
1,1,2-Trichloroethane	1	ug/l	1.0	ND
1,1-Dichloroethane		ug/l	1.0	ND
1,1-Dichloroethane	1	ug/l	1.0	ND
1.2.3-Trichlorobenzene	1	ug/l	1.0	ND
1,2,4-Trichlorobenzene	1	ug/l	1.0	ND
1,2-Dibromo-3-chloropropane		ug/l	1.0	ND
1,2-Dibromo-3-Chloropropane 1.2-Dibromoethane	1	ug/l	1.0	ND
1,2-Dichlorobenzene	1	ug/l	1.0	ND
*	1	ug/l	0.50	ND
1,2-Dichloroethane	1	ug/l	1.0	ND
1,2-Dichloropropane	1	ug/l	1.0	ND
1,3-Dichlorobenzene 1,4-Dichlorobenzene	1	ug/l	1.0	ND
1,4-Dioxane	1	ug/l	50	ND
	1	ug/l	1.0	ND
2-Butanone	1	ug/l	1.0	ND
2-Hexanone	1	ug/l	1.0	ND
4-Methyl-2-pentanone	1	ug/l	10	ND
Acetone	1	ug/l	0.50	ND
Benzene	1	ug/i	1.0	ND
Bromochloromethane	1	ug/l	1.0	ND
Bromodichloromethane	1	ug/l	1.0	ND
Bromoform	1	ug/l	1.0	ND
Bromomethane	1	ug/l	1.0	ND
Carbon disulfide	1	ug/l	1.0	ND
Carbon tetrachloride	1	ug/l	1.0	ND
Chlorobenzene	1	ug/l	1.0	ND

Lab#:	LMW-4 U AC67281-016 Aqueous				Date: 7/25/2012 Date: 7/25/2012
	Chloroform	1	ug/l	1.0	ND
	Chloromethane	1	ug/l	1.0	ND
	cis-1,2-Dichloroethene	1	ug/l	1.0	ND
	cis-1,3-Dichloropropene	1	ug/l	1.0	ND
	Cyclohexane	1	ug/l	1.0	ND
	Dibromochloromethane	1	ug/l	1.0	ND
	Dichlorodifluoromethane	1	ug/l	1.0	ND
	Ethylbenzene	1	ug/l	1.0	ND
	Isopropylbenzene	1	ug/l	1.0	ND
	m&p-Xylenes	1	ug/l	1.0	ND
	Methyl Acetate	1	ug/l	1.0	ND
	Methylcyclohexane	1	ug/l	1.0	ND
	Methylene chloride	1	ug/l	1.0	ND
	Methyl-t-butyl ether	1	ug/l	0.50	ND
	o-Xylene	1	ug/l	1.0	ND
	Styrene	1	ug/l	1.0	ND
	Tetrachloroethene	1	ug/l	1.0	ND
	Toluene	1	ug/l	1.0	ND
	trans-1,2-Dichloroethene	1	ug/l	1.0	ND
	trans-1,3-Dichloropropene	1	ug/l	1.0	ND
	Trichloroethene	1	ug/l	1.0	ND ND
	Trichlorofluoromethane	1	ug/l	1.0	ND
	Vinyl chloride	1	ug/l	1.0	ND

## Volatile Organics + 10 (624) Library Searches

Xylenes (Total)

Analyte	DF	Units	RT	Result
No Unknown Compounds Detected	1	ug/l	NA	ND
TotalVolatileTic	1	ug/l	NA	ND

ug/l

1.0

ND

Sample ID: LMW-4 F Lab#: AC67281-017 Matrix: Aqueous

Collection Date: 7/25/2012 Receipt Date: 7/25/2012

### Mercury (Water) 245.1

Analyte	DF	Units	RL	Result
Mercury	1	ug/l	0.20	ND

### **TAL Metals 200.7/8**

Analyte	DF	Units	RL	Result
Aluminum	1	ug/l	100	ND
Antimony	1	ug/l	7.5	ND
Arsenic	1	ug/l	20	ND
Barium	1	ug/l	25	160
Beryllium	1	ug/l	4.0	ND
Cadmium	1	ug/l	2.0	ND
Calcium	1	ug/l	1000	60000
Chromium	1	ug/I	25	ND
Cobalt	1	ug/l	10	ND
Copper	1	ug/l	25	ND
iron	1	ug/l	150	72000
Lead	1	ug/l	5.0	ND
Magnesium	1	ug/l	1000	25000
Manganese	1	ug/l	25	14000
Nickel	1	ug/l	10	ND
Potassium	1	ug/l	2500	3800
Selenium	1	ug/l	25	ND
Silver	1	ug/l	10	ND
Sodium	1	ug/l	2500	31000
Thallium	1	ug/l	5.0	ND
√anadium	1	ug/l	25	ND
Zinc	1	ug/l	25	ND

## Form1

#### ORGANICS VOLATILE REPORT

Sample Number: DAILY BLANK

Client Id:

Data File: 3M15696.D

Analysis Date: 08/01/12 08:15

Date Rec/Extracted:

xtracted. Column:DB-624 25M 0.200mm ID 1.12um film Method: EPA 624

Matrix: Aqueous

Initial Vol: 5ml

Final Vol: NA

Dilution: 1.00

Solids: 0

1. 12411 11111 301143

Units: ug/L

		omo. ug/L								
Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc			
71-55-6	1,1,1-Trichloroethane	1.0	U	56-23-5	Carbon Tetrachloride	1.0	U			
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U	108-90-7	Chlorobenzene	1.0	U			
76-13-1	1,1,2-Trichloro-1,2,2-trifluor	5.0	U	75-00-3	Chloroethane	1.0	U			
79-00-5	1,1,2-Trichloroethane	1.0	U	67-66-3	Chloroform	1.0	U			
75-34-3	1,1-Dichloroethane	1.0	U	74-87-3	Chloromethane	1.0	U			
75-35-4	1,1-Dichloroethene	1.0	U	156-59-2	cis-1,2-Dichloroethene	1.0	U			
87-61-6	1,2,3-Trichlorobenzene	1.0	U	10061-01-5	cis-1,3-Dichloropropene	1.0	U			
120-82-1	1,2,4-Trichlorobenzene	1.0	U	110-82-7	Cyclohexane	1.0	U			
96-12-8	1,2-Dibromo-3-Chloropropa	1.0	U	124-48-1	Dibromochloromethane	1.0	U			
106-93-4	1,2-Dibromoethane	1.0	U	75-71-8	Dichlorodifluoromethane	1.0	U			
95-50-1	1,2-Dichlorobenzene	1.0	U	100-41-4	Ethylbenzene	1.0	U			
107-06-2	1,2-Dichloroethane	0.50	U	98-82-8	Isopropylbenzene	1.0	U			
78-87-5	1,2-Dichloropropane	1.0	U	136777612	m&p-Xylenes	1.0	U			
541-73-1	1,3-Dichlorobenzene	1.0	U	79-20-9	Methyl Acetate	1.0	U			
106-46-7	1,4-Dichlorobenzene	1.0	U	108-87-2	Methylcyclohexane	1.0	U			
123-91-1	1,4-Dioxane	50	U	75-09-2	Methylene Chloride	1.0	Ū			
78-93-3	2-Butanone	1.0	U	1634-04-4	Methyl-t-butyl ether	0.50	Ū			
591-78-6	2-Hexanone	1.0	U	95-47-6	o-Xylene	1.0	Ū			
108-10-1	4-Methyl-2-Pentanone	1.0	U	100-42-5	Styrene	1.0	Ü			
67-64-1	Acetone	10	U	127-18-4	Tetrachloroethene	1.0	U			
71-43-2	Benzene	0.50	U	108-88-3	Toluene	1.0	Ü			
74-97-5	Bromochloromethane	1.0	U	156-60-5	trans-1,2-Dichloroethene	1.0	Ü			
75-27-4	Bromodichloromethane	1.0	U		trans-1,3-Dichloropropene	1.0	U			
75-25-2	Bromoform	1.0	U		Trichloroethene	1.0	U			
74-83-9	Bromomethane	1.0	U	75-69-4	Trichlorofluoromethane	1.0	Ü			
75-15-0	Carbon Disulfide	1.0	U	75-01-4	Vinyl Chloride	1.0	U			
			1		•		_			

ColumnID: (^) Indicates results from 2nd column

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

 $^{{\}it J}$  - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

### Form1e

### ORGANICS VOLATILE REPORT Tentatively Identified Compounds

Sample Number: DAILY BLANK

Client Id:

Data File: 3M15696.D

Analysis Date: 08/01/12 08:15

Date Rec/Extracted:

Matrix: Aqueous

Initial Vol: 5ml Final Vol: NA

Dilution: 1.00

Solids:

Method: EPA 624

Units: ug/L

Cas #	Compound	RT	Conc
1	No Unknown Compounds Detected	0.00	OJ

Worksheet #: 236115 Total Tentatively Identified Concentration 0

A - Indicates an aldol condensate.

<sup>J - Indicates an actimated value.
B - Indicates the analyte was found in the blank as well as in the sample.
Y - Indicates the analyte was found in the blank at <10% of the concentration of the sample.</li></sup> 

<10% - Indicates the analyte was found in the blank at < 10% of nearest Internal Standard

## Form1

#### ORGANICS VOLATILE REPORT

Sample Number: DAILY BLANK

Client Id:

Data File: 3M15789.D

Analysis Date: 08/02/12 08:16

Date Rec/Extracted:

Date: 08/02/12 08:16

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 624

Matrix: Aqueous

Initial Vol: 5ml

Final Vol: NA

Dilution: 1.00

Solids: 0

Units: ug/L

			Omico.	~ <del>_</del>			
Cas#	Compound	RL	Conc	Cas #	Compound	RL	Conc
71-55-6	1,1,1-Trichloroethane	1.0	U	56-23-5	Carbon Tetrachloride	1.0	U
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U	108-90-7	Chlorobenzene	1.0	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluor	5.0	U	75-00-3	Chloroethane	1.0	U
79-00-5	1,1,2-Trichloroethane	1.0	U	67-66-3	Chloroform	1.0	U
75-34-3	1,1-Dichloroethane	1.0	U	74-87-3	Chloromethane	1.0	U
75-35-4	1,1-Dichloroethene	1.0	U	156-59-2	cis-1,2-Dichloroethene	1.0	U
87-61-6	1,2,3-Trichlorobenzene	1.0	U	10061-01-5	cis-1,3-Dichloropropene	1.0	U
120-82-1	1,2,4-Trichlorobenzene	1.0	U	110-82-7	Cyclohexane	1.0	U
96-12-8	1,2-Dibromo-3-Chloropropa	1.0	U	124-48-1	Dibromochloromethane	1.0	U
106-93-4	1,2-Dibromoethane	1.0	U	75-71-8	Dichlorodifluoromethane	1.0	U
95-50-1	1,2-Dichlorobenzene	1.0	U	100-41-4	Ethylbenzene	1.0	U
107-06-2	1,2-Dichloroethane	0.50	U	98-82-8	isopropylbenzene	1.0	U
78-87-5	1,2-Dichloropropane	1.0	U	136777612	m&p-Xylenes	1.0	U
541-73-1	1,3-Dichlorobenzene	1.0	U	79-20-9	Methyl Acetate	1.0	U
106-46-7	1,4-Dichlorobenzene	1.0	U	108-87-2	Methylcyclohexane	1.0	U
123-91-1	1,4-Dioxane	50	U	75-09-2	Methylene Chloride	1.0	U
78-93-3	2-Butanone	1.0	U	1634-04-4	Methyl-t-butyl ether	0.50	U
591-78-6	2-Hexanone	1.0	U	95-47-6	o-Xylene	1.0	U
108-10-1	4-Methyl-2-Pentanone	1.0	U	100-42-5	Styrene	1.0	U
67-64-1	Acetone	10	U	127-18-4	Tetrachloroethene	1.0	U
71-43-2	Benzene	0.50	U	108-88-3	Toluene	1.0	U
74-97-5	Bromochloromethane	1.0	U	156-60-5	trans-1,2-Dichloroethene	1.0	U
75-27-4	Bromodichloromethane	1.0	U	10061-02-6	trans-1,3-Dichloropropene	1.0	U
75-25-2	Bromoform	1.0	U	79-01-6	Trichloroethene	1.0	U
74-83-9	Bromomethane	1.0	U	75-69-4	Trichlorofluoromethane	1.0	U
75-15-0	Carbon Disulfide	1.0	U	75-01-4	Vinyl Chloride	1.0	U

U - Indicates the compound was analyzed but not detected.

R - Retention Time Out

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

### Form1e

### ORGANICS VOLATILE REPORT Tentatively Identified Compounds

Sample Number: DAILY BLANK

Client Id:

Data File: 3M15789.D

Analysis Date: 08/02/12 08:16

Date Rec/Extracted:

Matrix: Aqueous

Initial Vol: 5ml Final Vol: NA

Dilution: 1.00

Solids:

Method: EPA 624

Units: ug/L

Cas #	Compound	RT	Conc
1	No Unknown Compounds Detected	0.00	0 J

Total Tentatively Identified Concentration 0

Worksheet #: 236115

A - Indicates an aldol condensate.

J - Indicates an atom condensate.
J - Indicates an estimated value.
B - Indicates the analyte was found in the blank as well as in the sample.
Y - Indicates the analyte was found in the blank at <10% of the concentration of the sample.

<10% - Indicates the analyte was found in the blank at < 10% of nearest Internal Standard

### Form1

### ORGANICS VOLATILE REPORT

Sample Number: DAILY BLANK Method: EPA 8260B

Client Id: Matrix: Soil
Data File: 6M86758.D Initial Vol: 5g
Analysis Date: 08/02/12 08:23 Final Vol: NA
Date Rec/Extracted: Dilution: 1.00

Column: DB-624 25M 0.200mm ID 1.12um film Solids: 100

Units: mg/Kg

	onits. hig/kg								
Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc		
71-55-6	1,1,1-Trichloroethane	0.0020	U	56-23-5	Carbon Tetrachloride	0.0020	U		
79-34-5	1,1,2,2-Tetrachloroethane	0.0020	U	108-90-7	Chlorobenzene	0.0020	U		
76-13-1	1,1,2-Trichloro-1,2,2-trifluor	0.0020	U	75-00-3	Chloroethane	0.0020	U		
79-00-5	1,1,2-Trichloroethane	0.0020	U	67-66-3	Chloroform	0.0020	U		
75-34-3	1,1-Dichloroethane	0.0020	U	74-87-3	Chloromethane	0.0020	U		
75-35-4	1,1-Dichloroethene	0.0020	U	156-59-2	cis-1,2-Dichloroethene	0.0020	U		
87-61-6	1,2,3-Trichlorobenzene	0.0020	υ	10061-01-5	cis-1,3-Dichloropropene	0.0020	U		
120-82-1	1,2,4-Trichlorobenzene	0.0020	U	110-82-7	Cyclohexane	0.0020	U		
96-12-8	1,2-Dibromo-3-Chloropropa	0.0020	U	124-48-1	Dibromochloromethane	0.0020	U		
106-93-4	1,2-Dibromoethane	0.0010	U	75-71-8	Dichlorodifluoromethane	0.0020	U		
95-50-1	1,2-Dichlorobenzene	0.0020	υ	100-41-4	Ethylbenzene	0.0010	U		
107-06-2	1,2-Dichloroethane	0.0020	U	98-82-8	Isopropylbenzene	0.0010	U		
78-87-5	1,2-Dichloropropane	0.0020	U	136777612	m&p-Xylenes	0.0010	U		
541-73-1	1,3-Dichlorobenzene	0.0020	U	79-20-9	Methyl Acetate	0.0020	U		
106-46-7	1,4-Dichlorobenzene	0.0020	U	108-87-2	Methylcyclohexane	0.0020	U		
123-91-1	1,4-Dioxane	0.10	U	75-09-2	Methylene Chloride	0.0020	U		
78-93-3	2-Butanone	0.0020	U	1634-04-4	Methyl-t-butyl ether	0.0010	U		
591-78-6	2-Hexanone	0.0020	U	95-47-6	o-Xylene	0.0010	υ		
108-10-1	4-Methyl-2-Pentanone	0.0020	U	100-42-5	Styrene	0.0020	U		
67-64-1	Acetone	0.010	U	127-18-4	Tetrachloroethene	0.0020	υ		
71-43-2	Benzene	0.0010	U	108-88-3	Toluene	0.0010	U		
74-97-5	Bromochloromethane	0.0020	U	156-60-5	trans-1,2-Dichloroethene	0.0020	U		
75-27-4	Bromodichloromethane	0.0020	U	10061-02-6	trans-1,3-Dichloropropene	0.0020	Ū		
75-25-2	Bromoform	0.0020	U	79-01-6	Trichloroethene	0.0020	Ū		
74-83-9	Bromomethane	0.0020	υ	75-69-4	Trichlorofluoromethane	0.0020	Ū		
75-15-0	Carbon Disulfide	0.0020	U	75-01-4	Vinyl Chloride	0.0020	Ū		
			1		•		=		

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used

### Form1e

### ORGANICS VOLATILE REPORT **Tentatively Identified Compounds**

Sample Number: DAILY BLANK Matrix: Soil Client Id: Initial Vol: 5g

Data File: 6M86758.D Final Vol: NA Analysis Date: 08/02/12 08:23 Dilution: 1.00 Date Rec/Extracted: Solids: 100

Method: EPA 8260B

Units: mg/Kg

Cas #	Compound	RT	Conc
1	No Unknown Compounds Detected	0.00	OJ

Worksheet #: 236116 Total Tentatively Identified Concentration 0

A - Indicates an aldol condensate. J - Indicates an estimated value. B - Indicates the analyte was found in the blank as well as in the sample. Y - Indicates the analyte was found in the blank at <10% of the concentration of the sample.

<10% - Indicates the analyte was found in the blank at < 10% of nearest Internal Standard

## Form1

### ORGANICS VOLATILE REPORT

Sample Number: AC67281-001

Client Id: SW-1 U Data File: 3M15843.D

Analysis Date: 08/02/12 22:53

Date Rec/Extracted: 07/25/12-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 624

Matrix: Aqueous

Initial Vol: 5ml

Final Vol: NA

Dilution: 1.00

Solids: 0

Units: ug/L

			Omis. t	49/L			
Cas#	Compound	RL	Conc	Cas #	Compound	RL	Conc
71-55-6	1,1,1-Trichloroethane	1.0	U	56-23-5		1.0	U
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U	108-90-7	Chlorobenzene	1.0	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluor	5.0	U	75-00-3	Chloroethane	1.0	U
79-00-5	1,1,2-Trichloroethane	1.0	υ	67-66-3	Chloroform	1.0	U
75-34-3	1,1-Dichloroethane	1.0	U	74-87-3	Chloromethane	1.0	Ū
75-35-4	1,1-Dichloroethene	1.0	υ	156-59-2	cis-1,2-Dichloroethene	1.0	Ū
87-61-6	1,2,3-Trichlorobenzene	1.0	υ	10061-01-5	cis-1,3-Dichloropropene	1.0	Ū
120-82-1	1,2,4-Trichlorobenzene	1.0	U	110-82-7	· · · · · · · · · · · · · · · · · · ·	1.0	Ū
96-12-8	1,2-Dibromo-3-Chloropropa	1.0	U	124-48-1	Dibromochloromethane	1.0	Ū
106-93-4	1,2-Dibromoethane	1.0	U	75-71-8	Dichlorodifluoromethane	1.0	Ū
95-50-1	1,2-Dichlorobenzene	1.0	U	100-41-4	Ethylbenzene	1.0	Ū
107-06-2	1,2-Dichloroethane	0.50	U	98-82-8	Isopropylbenzene	1.0	Ū
78-87-5	1,2-Dichloropropane	1.0	U	136777612	m&p-Xylenes	1.0	Ū
541-73-1	1,3-Dichlorobenzene	1.0	U	79-20-9	Methyl Acetate	1.0	Ü
106-46-7	1,4-Dichlorobenzene	1.0	U	108-87-2	Methylcyclohexane	1.0	Ü
123-91-1	1,4-Dioxane	50	U	75-09-2	Methylene Chloride	1.0	Ü
78-93-3	2-Butanone	1.0	U	1634-04-4	Methyl-t-butyl ether	0.50	Ū
591-78-6	2-Hexanone	1.0	U		o-Xylene	1.0	Ü
108-10-1	4-Methyl-2-Pentanone	1.0	υ	100-42-5	Styrene	1.0	Ü
67-64-1	Acetone	10	U		Tetrachloroethene	1.0	U
71-43-2	Benzene	0.50	U	108-88-3	Toluene	1.0	Ü
74-97-5	Bromochloromethane	1.0	U		trans-1,2-Dichloroethene	1.0	U
75-27-4	Bromodichloromethane	1.0	U		trans-1,3-Dichloropropene	1.0	U
75-25-2	Bromoform	1.0	U		Trichloroethene	1.0	υ
74-83-9	Bromomethane	1.0	U	75-69-4	Trichlorofluoromethane	1.0	U
75-15-0	Carbon Disulfide	1.0	U		Vinyl Chloride	1.0	U
1330-20-7	Xylenes (Total)	1.0	υ		•		Ü

ColumnID: (^) Indicates results from 2nd column

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.
d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

### Form1e

### ORGANICS VOLATILE REPORT **Tentatively Identified Compounds**

Sample Number: AC67281-001

Client Id: SW-1 U

Data File: 3M15843.D

Analysis Date: 08/02/12 22:53

Date Rec/Extracted: 07/25/12-NA

Matrix: Aqueous

Initial Vol: 5ml

Final Vol: NA Dilution: 1.00

Solids:

Method: EPA 624

Units: ug/L

Cas #	Compound	RT	Conc	
1	No Unknown Compounds Detected	0.00	OJ	

Worksheet #: 236115 Total Tentatively Identified Concentration 0

A - Indicates an aldol condensate, J - Indicates an estimated value, B - Indicates the analyte was found in the blank as well as in the sample, Y - Indicates the analyte was found in the blank at <10% of the concentration of the sample.

<10% - Indicates the analyte was found in the blank at < 10% of nearest Internal Standard

## Form1

#### ORGANICS VOLATILE REPORT

Sample Number: AC67281-003

Client Id: SW-2 U Data File: 3M15845.D

Analysis Date: 08/02/12 23:24 Date Rec/Extracted: 07/25/12-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 624

Matrix: Aqueous

Initial Vol: 5ml

Final Vol: NA

Dilution: 1.00

Solids: 0

Units: ug/L

			Units: t	19/L			
Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc
71-55-6	1,1,1-Trichloroethane	1.0	U	56-23-5	Carbon Tetrachloride	1.0	U
79-34-5	1,1,2,2-Tetrachloroethane	1.0	υ	108-90-7	Chlorobenzene	1.0	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluor	5.0	U	75-00-3	Chloroethane	1.0	U
79-00-5	1,1,2-Trichloroethane	1.0	υ	67-66-3	Chloroform	1.0	U
75-34-3	1,1-Dichloroethane	1.0	U	74-87-3	Chloromethane	1.0	U
75-35-4	1,1-Dichloroethene	1.0	U	156-59-2	cis-1,2-Dichloroethene	1.0	U
87-61-6	1,2,3-Trichlorobenzene	1.0	U	10061-01-5	cis-1,3-Dichloropropene	1.0	U
120-82-1	1,2,4-Trichlorobenzene	1.0	U	110-82-7	Cyclohexane	1.0	U
96-12-8	1,2-Dibromo-3-Chloropropa	1.0	U	124-48-1	Dibromochloromethane	1.0	U
106-93-4	1,2-Dibromoethane	1.0	U	75-71-8	Dichlorodifluoromethane	1.0	U
95-50-1	1,2-Dichlorobenzene	1.0	U	100-41-4	Ethylbenzene	1.0	U
107-06-2	1,2-Dichloroethane	0.50	U	98-82-8	Isopropylbenzene	1.0	Ū
78-87-5	1,2-Dichloropropane	1.0	U	136777612	m&p-Xylenes	1.0	U
541-73-1	1,3-Dichlorobenzene	1.0	U	79-20-9	Methyl Acetate	1.0	Ū
106-46-7	1,4-Dichlorobenzene	1.0	U	108-87-2	Methylcyclohexane	1.0	Ü
123-91-1	1,4-Dioxane	50	U	75-09-2	Methylene Chloride	1.0	Ü
78-93-3	2-Butanone	1.0	U	1634-04-4	Methyl-t-butyl ether	0.50	U
591-78-6	2-Hexanone	1.0	υ	95-47-6	o-Xylene	1.0	Ü
108-10-1	4-Methyl-2-Pentanone	1.0	U	100-42-5	Styrene	1.0	Ü
67-64-1	Acetone	10	U		Tetrachloroethene	1.0	U
71-43-2	Benzene	0.50	U	108-88-3	Toluene	1.0	Ü
74-97-5	Bromochloromethane	1.0	U	156-60-5	trans-1,2-Dichloroethene	1.0	Ü
75-27-4	Bromodichloromethane	1.0	U		trans-1,3-Dichloropropene	1.0	Ü
75-25-2	Bromoform	1.0	U		Trichloroethene	1.0	Ü
74-83-9	Bromomethane	1.0	U	75-69-4	Trichlorofluoromethane	1.0	Ü
75-15-0	Carbon Disulfide	1.0	U		Vinyl Chloride	1.0	Ü
1330-20-7	Xylenes (Total)	1.0	U		-		J

ColumnID: (^) Indicates results from 2nd column

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

# ORGANICS VOLATILE REPORT Tentatively Identified Compounds

Sample Number: AC67281-003

Client Id: SW-2 U

Data File: 3M15845.D Analysis Date: 08/02/12 23:24

Date Rec/Extracted: 07/25/12-NA

Matrix: Aqueous

Initial Vol: 5ml

Final Vol: NA

Dilution: 1.00

Solids:

Method: EPA 624

Units: ug/L

Cas #	Compound	RT	Conc
1	No Unknown Compounds Detected	0.00	OJ

Worksheet #: 236115

A - Indicates an aldol condensate.

J - Indicates an analyte was found in the blank as well as in the sample. S - Indicates the analyte was found in the blank at S - Indicates the analyte was found in the blank at S - Indicates the analyte was found in the blank at S - Indicates the analyte was found in the blank at S - Indicates the analyte was found in the blank at S - Indicates the analyte was found in the blank at S - Indicates the analyte was found in the blank at S - Indicates the analyte was found in the blank at S - Indicates the analyte was found in the blank at S - Indicates the analyte was found in the blank at S - Indicates the analyte was found in the blank at S - Indicates the analyte was found in the blank at S - Indicates the analyte was found in the blank at S - Indicates the analyte was found in the blank at S - Indicates the analyte was found in the blank at S - Indicates the analyte was found in the blank at S - Indicates the analyte was found in the blank at S - Indicates the analyte was found in the blank at S - Indicates the analyte was found in the blank at S - Indicates the analyte was found in the blank at S - Indicates the analyte was found in the blank at S - Indicates the analyte was found in the blank at S - Indicates the analyte was found in the blank at S - Indicates the analyte was found in the blank at S - Indicates the analyte was found in the blank at S - Indicates the analyte was found in the blank at S - Indicates the analyte was found in the blank at S - Indicates the analyte was found in the blank at S - Indicates the analyte was found in the blank at S - Indicates the analyte was found in the blank at S - Indicates the analyte was found in the blank at S - Indicates the analyte was found in the blank at S - Indicates the analyte was found in the blank at S - Indicates the analyte was found in the blank at S - Indicates the analyte was found in the blank at S - Indicates the analyte was found in the blank at S - Indicates the analy

<10% - Indicates the analyte was found in the blank at < 10% of nearest Internal Standard

## ORGANICS VOLATILE REPORT

Sample Number: AC67281-005

Client Id: SW-4 U

Data File: 3M15846.D

Analysis Date: 08/02/12 23:40

Date Rec/Extracted: 07/25/12-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 624

Matrix: Aqueous

Initial Vol: 5ml

Final Vol: NA

Dilution: 1.00

Solids: 0

Units: ug/L

			Omio.	ug/ L			
Cas #		RL	Conc	Cas #	Compound	RL	Conc
71-55-6	1,1,1	1.0	U	56-23-5	Carbon Tetrachloride	1.0	U
	1,1,2,2-Tetrachloroethane	1.0	U	108-90-7	Chlorobenzene	1.0	Ū
76-13-1	1,1,2-Trichloro-1,2,2-trifluor	5.0	U	75-00-3	Chloroethane	1.0	Ü
79-00-5	1,1,2-Trichloroethane	1.0	U	67-66-3	Chloroform	1.0	Ū
75-34-3	1,1-Dichloroethane	1.0	U	74-87-3	Chloromethane	1.0	U
75-35-4	.,	1.0	Ų	156-59-2	cis-1,2-Dichloroethene	1.0	Ū
87-61-6	1,2,3-Trichlorobenzene	1.0	U	10061-01-5	cis-1,3-Dichloropropene	1.0	Ū
120-82-1		1.0	U	110-82-7		1.0	Ū
96-12-8	1,2-Dibromo-3-Chloropropa	1.0	U	124-48-1	Dibromochloromethane	1.0	Ü
106-93-4	1,2-Dibromoethane	1.0	U	75-71-8	Dichlorodifluoromethane	1.0	Ü
95-50-1	1,2-Dichlorobenzene	1.0	U	100-41-4	Ethylbenzene	1.0	U
107-06-2	1,2-Dichloroethane	0.50	U	98-82-8	Isopropylbenzene	1.0	Ü
78-87-5	1,2-Dichloropropane	1.0	U	136777612	m&p-Xylenes	1.0	U
541-73-1	1,3-Dichlorobenzene	1.0	U	79-20-9	Methyl Acetate	1.0	U
106-46-7	1,4-Dichlorobenzene	1.0	U	108-87-2	Methylcyclohexane	1.0	Ü
123-91-1	1,4-Dioxane	50	U	75-09-2	Methylene Chloride	1.0	U
78-93-3	2-Butanone	1.0	U	1634-04-4		0.50	U
591-78-6	2-Hexanone	1.0	U	95-47-6	•	1.0	U
108-10-1	4-Methyl-2-Pentanone	1.0	U		•	1.0	U
67-64-1	Acetone	10	U		Tetrachloroethene	1.0	U
71-43-2	Benzene	0.50	U		Toluene	1.0	U
74-97-5	Bromochloromethane	1.0	U	156-60-5	trans-1,2-Dichloroethene	1.0	U
75-27-4	Bromodichloromethane	1.0	U		trans-1,3-Dichloropropene	1.0	U
75-25-2	Bromoform	1.0	U		Trichloroethene	1.0	U
74-83-9	Bromomethane	1.0	U		Trichlorofluoromethane	1.0	U
75-15-0	Carbon Disulfide	1.0	U		Vinyl Chloride	1.0	U
1330-20-7	Xylenes (Total)	1.0	U	·	· · · · y · · · · · · · · · · · · · · ·	1.0	U
			1				

ColumnID: (^) Indicates results from 2nd column

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

# ORGANICS VOLATILE REPORT Tentatively Identified Compounds

Sample Number: AC67281-005

Client Id: SW-4 U

Data File: 3M15846.D

Analysis Date: 08/02/12 23:40

Date Rec/Extracted: 07/25/12-NA

Matrix: Aqueous

Initial Vol: 5ml Final Vol: NA

Dilution: 1.00

Solids:

Method: EPA 624

Units: ug/L

Cas #	Compound	RT	Conc
1	No Unknown Compounds Detected	0.00	OJ

Worksheet #: 236115

<sup>A - Indicates an aldol condensate.
J - Indicates an estimated value.
B - Indicates the analyte was found in the blank as well as in the sample.
Y - Indicates the analyte was found in the blank at <10% of the concentration of the sample.</li></sup> 

<10% - Indicates the analyte was found in the blank at < 10% of nearest Internal Standard

## ORGANICS VOLATILE REPORT

Sample Number: AC67281-007

Client Id: SD-1 Data File: 6M86797.D

Analysis Date: 08/02/12 18:50 Date Rec/Extracted: 07/25/12-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260B

Matrix: Soil Initial Vol: 5.08g Final Vol: NA Dilution: 0.984

Solids: 67

Units: mg/Kg

Cas #	Compound	RL	Conc	Cas#	Compound	RL	Conc
71-55-6	1,1,1-Trichloroethane	0.0029	U	56-23-5	Carbon Tetrachloride	0.0029	U
79-34-5	1,1,2,2-Tetrachloroethane	0.0029	U	108-90-7	Chlorobenzene	0.0029	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluor	0.0029	U	75-00-3	Chloroethane	0.0029	U
79-00-5	1,1,2-Trichloroethane	0.0029	υ	67-66-3	Chloroform	0.0029	U
75-34-3	1,1-Dichloroethane	0.0029	U	74-87-3	Chloromethane	0.0029	U
75-35-4	1,1-Dichloroethene	0.0029	U	156-59-2	cis-1,2-Dichloroethene	0.0029	U
87-61-6	1,2,3-Trichlorobenzene	0.0029	U	10061-01-5	cis-1,3-Dichloropropene	0.0029	U
120-82-1	1,2,4-Trichlorobenzene	0.0029	U	110-82-7	Cyclohexane	0.0029	U
96-12-8	1,2-Dibromo-3-Chloropropa	0.0029	U	124-48-1	Dibromochloromethane	0.0029	U
106-93-4	1,2-Dibromoethane	0.0015	U	75-71-8	Dichlorodifluoromethane	0.0029	U
95-50-1	1,2-Dichlorobenzene	0.0029	U	100-41-4	Ethylbenzene	0.0015	U
107-06-2	1,2-Dichloroethane	0.0029	U	98-82-8	Isopropylbenzene	0.0015	U
78-87-5	1,2-Dichloropropane	0.0029	U	136777612	m&p-Xylenes	0.0015	U
541-73-1	1,3-Dichlorobenzene	0.0029	U	79-20-9	Methyl Acetate	0.0029	U
106-46-7	1,4-Dichlorobenzene	0.0029	U	108-87-2	Methylcyclohexane	0.0029	U
123-91-1	1,4-Dioxane	0.15	U	75-09-2	Methylene Chloride	0.0029	U
78-93-3	2-Butanone	0.0029	U	1634-04-4	Methyl-t-butyl ether	0.0015	U
591-78-6	2-Hexanone	0.0029	U	95-47-6	o-Xylene	0.0015	U
108-10-1	4-Methyl-2-Pentanone	0.0029	U	100-42-5	Styrene	0.0029	U
67-64-1	Acetone	0.015	U	127-18-4	Tetrachloroethene	0.0029	U
71-43-2	Benzene	0.0015	U	108-88-3	Toluene	0.0015	U
74-97-5	Bromochloromethane	0.0029	U	156-60-5	trans-1,2-Dichloroethene	0.0029	υ
75-27-4	Bromodichloromethane	0.0029	U	10061-02-6	trans-1,3-Dichloropropene	0.0029	U
75-25-2	Bromoform	0.0029	υ	79-01-6	Trichloroethene	0.0029	U
74-83-9	Bromomethane	0.0029	U	75-69-4	Trichlorofluoromethane	0.0029	U
75-15-0	Carbon Disulfide	0.0029	U	75-01-4	Vinyl Chloride	0.0029	U
1330-20-7	Xylenes (Total)	0.0015	U				

ColumnID: (^) Indicates results from 2nd column

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

 $[\]it E$  - Indicates the analyte concentration exceeds the calibration range of the instrument.

 $^{{\}it J}$  - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

## ORGANICS VOLATILE REPORT Tentatively Identified Compounds

Sample Number: AC67281-007

Client Id: SD-1

Data File: 6M86797.D

Analysis Date: 08/02/12 18:50

Date Rec/Extracted: 07/25/12-NA

Matrix: Soil

Initial Vol: 5.08g

Final Vol: NA

Dilution: 0.984

Solids: 67

Method: EPA 8260B

Units: mg/Kg

	Cas #	Compound	RT	Conc
1	556-67-2	Cyclotetrasiloxane, octamethyl-	6.73	0.0050 J

Total Tentatively Identified Concentration 0.005

Worksheet #: 236116

A - Indicates an aldol condensate. J - Indicates an estimated value.

B - Indicates the analyte was found in the blank as well as in the sample. Y - Indicates the analyte was found in the blank at <10% of the concentration of the sample. <10% - Indicates the analyte was found in the blank at < 10% of nearest Internal Standard

#### ORGANICS VOLATILE REPORT

Sample Number: AC67281-008

Client Id: SD-2 Data File: 6M86798.D Analysis Date: 08/02/12 19:06

Date Rec/Extracted: 07/25/12-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260B

Matrix: Soil Initial Vol: 5.17g Final Vol: NA

Dilution: 0.967 Solids: 14

Units, murku	Un	its:	mg/K	a
--------------	----	------	------	---

	Onto. ingrity									
Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc			
71-55-6	1,1,1-Trichloroethane	0.014	U	56-23-5	Carbon Tetrachloride	0.014	U			
79-34-5	1,1,2,2-Tetrachloroethane	0.014	U	108-90-7	Chlorobenzene	0.014	U			
76-13-1	1,1,2-Trichloro-1,2,2-trifluor	0.014	U	75-00-3	Chloroethane	0.014	U			
79-00-5	1,1,2-Trichloroethane	0.014	U	67-66-3	Chloroform	0.014	U			
75-34-3	1,1-Dichloroethane	0.014	U	74-87-3	Chloromethane	0.014	U			
75-35-4	1,1-Dichloroethene	0.014	υ	156-59-2	cis-1,2-Dichloroethene	0.014	U			
87-61-6	1,2,3-Trichlorobenzene	0.014	U	10061-01-5	cis-1,3-Dichloropropene	0.014	U			
120-82-1	1,2,4-Trichlorobenzene	0.014	υ	110-82-7	Cyclohexane	0.014	U			
96-12-8	1,2-Dibromo-3-Chloropropa	0.014	υ	124-48-1	Dibromochloromethane	0.014	U			
106-93-4	1,2-Dibromoethane	0.0069	υ	75-71-8	Dichlorodifluoromethane	0.014	U			
95-50-1	1,2-Dichlorobenzene	0.014	U	100-41-4	Ethylbenzene	0.0069	υ			
107-06-2	1,2-Dichloroethane	0.014	U	98-82-8	Isopropylbenzene	0.0069	Ū			
78-87-5	1,2-Dichloropropane	0.014	U	136777612	m&p-Xylenes	0.0069	U			
541-73-1	1,3-Dichlorobenzene	0.014	U	79-20-9	Methyl Acetate	0.014	U			
106-46-7	1,4-Dichlorobenzene	0.014	U	108-87-2	Methylcyclohexane	0.014	U			
123-91-1	1,4-Dioxane	0.69	U	75-09-2	Methylene Chloride	0.014	Ü			
78-93-3	2-Butanone	0.014	U	1634-04-4	Methyl-t-butyl ether	0.0069	U			
591-78-6	2-Hexanone	0.014	U	95-47-6	o-Xylene	0.0069	U			
108-10-1	4-Methyl-2-Pentanone	0.014	U	100-42-5	Styrene	0.014	U			
67-64-1	Acetone	0.069	U	127-18-4	Tetrachloroethene	0.014	Ü			
71-43-2	Benzene	0.0069	U	108-88-3	Toluene	0.0069	U			
74-97-5	Bromochloromethane	0.014	U	156-60-5	trans-1,2-Dichloroethene	0.014	Ü			
75-27-4	Bromodichloromethane	0.014	U	10061-02-6	trans-1,3-Dichloropropene	0.014	Ü			
75-25-2	Bromoform	0.014	υ		Trichloroethene	0.014	Ü			
74-83-9	Bromomethane	0.014	U	75-69-4	Trichlorofluoromethane	0.014	Ū			
75-15-0	Carbon Disulfide	0.014	U	75-01-4	Vinyl Chloride	0.014	Ū			
1330-20-7	Xylenes (Total)	0.0069	U		•		-			

ColumnID: (^) Indicates results from 2nd column

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

 $^{{\}it J}$  - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

## ORGANICS VOLATILE REPORT **Tentatively Identified Compounds**

Sample Number: AC67281-008

Client Id: SD-2

Data File: 6M86798.D Analysis Date: 08/02/12 19:06

Date Rec/Extracted: 07/25/12-NA

Matrix: Soil Initial Vol: 5.17g

Final Vol: NA Dilution: 0.967

Solids: 14 Method: EPA 8260B

Units: mg/Kg

	Cas#	Compound	RT	Conc
1	556-67-2	Cyclotetrasiloxane, octamethyl-	6.74	0.028 J

Total Tentatively Identified Concentration 0.028

Worksheet #: 236116

A - Indicates an aldol condensate.

<sup>A - Indicates an attack condensate.
J - Indicates an estimated value,
B - Indicates the analyte was found in the blank as well as in the sample.
Y - Indicates the analyte was found in the blank at <10% of the concentration of the sample.</li></sup> 

<10% - Indicates the analyte was found in the blank at < 10% of nearest Internal Standard

## ORGANICS VOLATILE REPORT

Sample Number: AC67281-009

Client Id: SD-4
Data File: 6M86799.D
Analysis Date: 08/02/12 19:22
Date Rec/Extracted: 07/25/12-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260B

Matrix: Soil Initial Vol: 5.01g Final Vol: NA Dilution: 0.998

Solids: 31

Units: mg/Kg

			Omto.				
Cas #	Compound	RL	Conc	Cas#	Compound	RL	Conc
71-55-6	1,1,1-Trichloroethane	0.0064	U	56-23-5	Carbon Tetrachloride	0.0064	U
79-34-5	1,1,2,2-Tetrachloroethane	0.0064	U	108-90-7	Chlorobenzene	0.0064	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluor	0.0064	U	75-00-3	Chloroethane	0.0064	U
79-00-5	1,1,2-Trichloroethane	0.0064	U	67-66-3	Chloroform	0.0064	U
75-34-3	1,1-Dichloroethane	0.0064	U	74-87-3	Chloromethane	0.0064	U
75-35-4	1,1-Dichloroethene	0.0064	Ų	156-59-2	cis-1,2-Dichloroethene	0.0064	U
87-61-6	1,2,3-Trichlorobenzene	0.0064	U	10061-01-5	cis-1,3-Dichloropropene	0.0064	U
120-82-1	1,2,4-Trichlorobenzene	0.0064	U	110-82-7	Cyclohexane	0.0064	U
96-12-8	1,2-Dibromo-3-Chloropropa	0.0064	U	124-48-1	Dibromochloromethane	0.0064	U
106-93-4	1,2-Dibromoethane	0.0032	U	75-71-8	Dichlorodifluoromethane	0.0064	U
95-50-1	1,2-Dichlorobenzene	0.0064	U	100-41-4	Ethylbenzene	0.0032	U
107-06-2	1,2-Dichloroethane	0.0064	U	98-82-8	Isopropylbenzene	0.0032	U
78-87-5	1,2-Dichloropropane	0.0064	U	136777612	m&p-Xylenes	0.0032	U
541-73-1	1,3-Dichlorobenzene	0.0064	U	79-20-9	Methyl Acetate	0.0064	U
106-46-7	1,4-Dichlorobenzene	0.0064	U	108-87-2	Methylcyclohexane	0.0064	U
123-91-1	1,4-Dioxane	0.32	U	75-09-2	Methylene Chloride	0.0064	U
78-93-3	2-Butanone	0.0064	U	1634-04-4	Methyl-t-butyl ether	0.0032	U
591-78-6	2-Hexanone	0.0064	U	95-47-6	o-Xylene	0.0032	U
108-10-1	4-Methyl-2-Pentanone	0.0064	U	100-42-5	Styrene	0.0064	U
67-64-1	Acetone	0.032	0.12	127-18-4	Tetrachloroethene	0.0064	Ū
71-43-2	Benzene	0.0032	U	108-88-3	Toluene	0.0032	0.0059
74-97-5	Bromochloromethane	0.0064	U	156-60-5	trans-1,2-Dichloroethene	0.0064	U
75-27-4	Bromodichloromethane	0.0064	Ų	10061-02-6	trans-1,3-Dichloropropene	0.0064	Ū
75-25-2	Bromoform	0.0064	U	79-01-6	Trichloroethene	0.0064	U
74-83-9	Bromomethane	0.0064	U	75-69-4	Trichlorofluoromethane	0.0064	Ü
75-15-0	Carbon Disulfide	0.0064	U	75-01-4	Vinyl Chloride	0.0064	Ü
1330-20-7	Xylenes (Total)	0.0032	U		•		•

0.13

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

 $^{{\}it J}$  - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

## ORGANICS VOLATILE REPORT **Tentatively Identified Compounds**

Sample Number: AC67281-009

Client Id: SD-4

Data File: 6M86799.D

Analysis Date: 08/02/12 19:22

Date Rec/Extracted: 07/25/12-NA

Matrix: Soil

Initial Vol: 5.01g

Final Vol: NA

Dilution: 0.998

Solids: 31

Method: EPA 8260B

Units: mg/Kg

	Cas #	Compound	RT	Conc
1	99-87-6	Benzene, 1-methyl-4-(1-methylethyl)-	7.29	0.011 J

Worksheet #: 236116

A - Indicates an aldol condensate. J - Indicates an estimated value. B - Indicates the analyte was found in the blank as well as in the sample. Y - Indicates the analyte was found in the blank at <10% of the concentration of the sample. <10% - Indicates the analyte was found in the blank at < 10% of nearest Internal Standard

#### ORGANICS VOLATILE REPORT

Sample Number: AC67281-010

Client ld: PC-2 U Data File: 3M15853.D

Analysis Date: 08/03/12 01:29 Date Rec/Extracted: 07/25/12-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 624 Matrix: Aqueous

Initial Vol: 5ml

Final Vol: NA

Dilution: 1.00

Solids: 0

Units: ug/L

	_		Omis. t	· • · · · ·			
Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc
71-55-6	.,.,.	1.0	U	56-23-5		1.0	U
79-34-5	1,1,0,0,0	1.0	U	108-90-7	Chlorobenzene	1.0	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluor	5.0	U	75-00-3	Chloroethane	1.0	Ū
79-00-5	1,1,2-Trichloroethane	1.0	U	67-66-3	Chloroform	1.0	Ū
75-34-3	1,1-Dichloroethane	1.0	U	74-87-3	Chloromethane	1.0	U
75-35-4	1,1-Dichloroethene	1.0	U	156-59-2	cis-1,2-Dichloroethene	1.0	Ü
87-61-6	1,2,3-Trichlorobenzene	1.0	U	10061-01-5		1.0	U
120-82-1	1,2,4-Trichlorobenzene	1.0	U	110-82-7		1.0	U
96-12-8	1,2-Dibromo-3-Chloropropa	1.0	U	124-48-1	Dibromochloromethane	1.0	U
106-93-4	1,2-Dibromoethane	1.0	U	75-71-8	Dichlorodifluoromethane	1.0	U
95-50-1	1,2-Dichlorobenzene	1.0	U	100-41-4		1.0	U
107-06-2	1,2-Dichloroethane	0.50	U	98-82-8	Isopropylbenzene	1.0	U
78-87-5	1,2-Dichloropropane	1.0	U	136777612		1.0	U
541-73-1	1,3-Dichlorobenzene	1.0	U	79-20-9	Methyl Acetate	1.0	U
106-46-7	1,4-Dichlorobenzene	1.0	U	108-87-2	Methylcyclohexane	1.0	U
123-91-1	1,4-Dioxane	50	U	75-09-2		1.0	U
78-93-3	2-Butanone	1.0	U	1634-04-4	Methyl-t-butyl ether	0.50	U
591-78-6	2-Hexanone	1.0	U	95-47-6	- ·	1.0	U
108-10-1	4-Methyl-2-Pentanone	1.0	U	100-42-5	Styrene	1.0	U
67-64-1	Acetone	10	U		Tetrachloroethene	1.0	U
71-43-2	Benzene	0.50	υ	108-88-3	Toluene	1.0	
74-97-5	Bromochloromethane	1.0	U		trans-1,2-Dichloroethene	1.0	U
75-27-4	Bromodichloromethane	1.0	U		trans-1,3-Dichloropropene	1.0	U
75-25-2	Bromoform	1.0	Ū		Trichloroethene	1.0	U
74-83-9	Bromomethane	1.0	U		Trichlorofluoromethane	1.0	U
75-15-0	Carbon Disulfide	1.0	U		Vinyl Chloride	1.0	U
1330-20-7	Xylenes (Total)	1.0	Ū	.0014	viiiyi Oliiolido	1.0	U

ColumnID: (^) Indicates results from 2nd column

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

## ORGANICS VOLATILE REPORT **Tentatively Identified Compounds**

Sample Number: AC67281-010

Client Id: PC-2 U

Data File: 3M15853.D

Analysis Date: 08/03/12 01:29

Date Rec/Extracted: 07/25/12-NA

Matrix: Aqueous

Initial Vol: 5ml Final Vol: NA

Dilution: 1.00

Solids:

Method: EPA 624

Units: ug/L

Cas #	Compound	RT	Conc
1	No Unknown Compounds Detected	0.00	OJ

Total Tentatively Identified Concentration 0

Worksheet #: 236115

A - Indicates an aldol condensate.

J - Indicates an attoricontains. J - Indicates an estimated value. B - Indicates the analyte was found in the blank as well as in the sample. Y - Indicates the analyte was found in the blank at <10% of the concentration of the sample.

<10% - Indicates the analyte was found in the blank at < 10% of nearest Internal Standard

## ORGANICS VOLATILE REPORT

Units: ug/L

Sample Number: AC67281-012

Client Id: LMW-2 U Data File: 3M15844.D

Analysis Date: 08/02/12 23:08 Date Rec/Extracted: 07/25/12-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 624

Matrix: Aqueous

Initial Vol: 5ml

Final Vol: NA

Dilution: 1.00

Solids: 0

Cas#	Compound	RL	Conc	
71-55-6	1,1,1-Trichloroethane	1.0	U	
79-34-5	1.1.2.2-Tetrachloroethane	1.0	11	

C #	Compound	D.I	0	~g. ~	O =		_
Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc
71-55-6	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1.0	U	56-23-5		1.0	U
	1,1,2,2-Tetrachloroethane	1.0	U	108-90-7		1.0	U
	1,1,2-Trichloro-1,2,2-trifluor	5.0	U	75-00-3	Chloroethane	1.0	U
79-00-5	1,1,2-Trichloroethane	1.0	U	67-66-3	Chloroform	1.0	U
75-34-3	1,1-Dichloroethane	1.0	U	74-87-3	Chloromethane	1.0	U
75-35-4	1,1-Dichloroethene	1.0	U	156-59-2	cis-1,2-Dichloroethene	1.0	U
87-61-6	1,2,3-Trichlorobenzene	1.0	U	10061-01-5	cis-1,3-Dichloropropene	1.0	U
120-82-1	1,2,4-Trichlorobenzene	1.0	U	110-82-7	Cyclohexane	1.0	U
96-12-8	1,2-Dibromo-3-Chloropropa	1.0	U	124-48-1	Dibromochloromethane	1.0	U
106-93-4	1,2-Dibromoethane	1.0	U	75-71-8	Dichlorodifluoromethane	1.0	U
95-50-1	1,2-Dichlorobenzene	1.0	U	100-41-4	Ethylbenzene	1.0	U
107-06-2	1,2-Dichloroethane	0.50	U	98-82-8	Isopropylbenzene	1.0	U
78-87-5	1,2-Dichloropropane	1.0	U	136777612	m&p-Xylenes	1.0	U
541-73-1	1,3-Dichlorobenzene	1.0	U	79-20-9	Methyl Acetate	1.0	U
106-46-7	1,4-Dichlorobenzene	1.0	U	108-87-2	Methylcyclohexane	1.0	U
123-91-1	1,4-Dioxane	50	U	75-09-2	Methylene Chloride	1.0	Ü
78-93-3	2-Butanone	1.0	U	1634-04-4	Methyl-t-butyl ether	0.50	Ū
591-78-6	2-Hexanone	1.0	U	95-47-6	o-Xylene	1.0	Ū
108-10-1	4-Methyl-2-Pentanone	1.0	U	100-42-5	Styrene	1.0	Ü
67-64-1	Acetone	10	υ	127-18-4	Tetrachloroethene	1.0	Ü
71-43-2	Benzene	0.50	U	108-88-3	Toluene	1.0	U
74-97-5	Bromochloromethane	1.0	U	156-60-5	trans-1,2-Dichloroethene	1.0	Ü
75-27-4	Bromodichloromethane	1.0	U		trans-1,3-Dichloropropene	1.0	Ü
75-25-2	Bromoform	1.0	U		Trichloroethene	1.0	Ü
74-83-9	Bromomethane	1.0	Ū		Trichlorofluoromethane	1.0	Ü
75-15-0	Carbon Disulfide	1.0	U		Vinyl Chloride	1.0	U
1330-20-7	Xylenes (Total)	1.0	Ū		y. zmenae	1.0	U
	• • •		-				

Worksheet #: 236115

Total Target Concentration

ColumnID: (^) Indicates results from 2nd column

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used

## ORGANICS VOLATILE REPORT **Tentatively Identified Compounds**

Sample Number: AC67281-012

Client Id: LMW-2 U

Data File: 3M15844.D

Analysis Date: 08/02/12 23:08

Date Rec/Extracted: 07/25/12-NA

Matrix: Aqueous

Initial Vol: 5ml

Final Vol: NA

Dilution: 1.00

Solids:

Method: EPA 624

Units: ug/L

Cas #	Compound	RT	Conc
1	No Unknown Compounds Detected	0.00	0 J

Worksheet #: 236115

A - Indicates an aldol condensate. J - Indicates an estimated value.

B - Indicates the analyte was found in the blank as well as in the sample. Y - Indicates the analyte was found in the blank at <10% of the concentration of the sample.

<10% - Indicates the analyte was found in the blank at < 10% of nearest Internal Standard

## ORGANICS VOLATILE REPORT

Sample Number: AC67281-014

Client Id: FB-1 LF U Data File: 3M15731.D

Analysis Date: 08/01/12 17:26 Date Rec/Extracted: 07/25/12-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 624

Matrix: Aqueous

Initial Vol: 5ml

Final Vol: NA

Dilution: 1.00

Solids: 0

Units: ug/L

			011160.	ug/ ==			
Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc
71-55-6	1,1,1-Trichloroethane	1.0	U	56-23-5	Carbon Tetrachloride	1.0	U
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U	108-90-7	Chlorobenzene	1.0	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluor	5.0	U	75-00-3	Chloroethane	1.0	U
79-00-5	1,1,2-Trichloroethane	1.0	U	67-66-3	Chloroform	1.0	U
75-34-3		1.0	U	74-87-3	Chloromethane	1.0	U
75-35-4	1,1-Dichloroethene	1.0	U	156-59-2	cis-1,2-Dichloroethene	1.0	U
87-61-6	1,2,3-Trichlorobenzene	1.0	U	10061-01-5	cis-1,3-Dichloropropene	1.0	Ū
120-82-1	1,2,4-Trichlorobenzene	1.0	U	110-82-7	Cyclohexane	1.0	Ü
96-12-8	1,2-Dibromo-3-Chloropropa	1.0	U	124-48-1	Dibromochloromethane	1.0	Ū
106-93-4	1,2-Dibromoethane	1.0	U	75-71-8	Dichlorodifluoromethane	1.0	Ū
95-50-1	1,2-Dichlorobenzene	1.0	U	100-41-4	Ethylbenzene	1.0	Ü
107-06-2		0.50	U	98-82-8	Isopropylbenzene	1.0	Ū
78-87-5	1,2-Dichloropropane	1.0	U	136777612	m&p-Xylenes	1.0	Ü
541-73-1	1,3-Dichlorobenzene	1.0	U	79-20-9	Methyl Acetate	1.0	Ü
106-46-7	1,4-Dichlorobenzene	1.0	U	108-87-2	Methylcyclohexane	1.0	Ú
123-91-1	1,4-Dioxane	50	U	75-09-2		1.0	Ū
78-93-3	2-Butanone	1.0	U	1634-04-4	Methyl-t-butyl ether	0.50	Ū
591-78-6	2-Hexanone	1.0	U	95-47-6	o-Xylene	1.0	Ü
108-10-1	4-Methyl-2-Pentanone	1.0	U	100-42-5	Styrene	1.0	Ü
67-64-1	Acetone	10	U	127-18-4	Tetrachloroethene	1.0	U
71-43-2	Benzene	0.50	U	108-88-3	Toluene	1.0	U
74-97-5	Bromochloromethane	1.0	U	156-60-5	trans-1,2-Dichloroethene	1.0	U
75-27-4	Bromodichloromethane	1.0	U		trans-1,3-Dichloropropene	1.0	Ü
75-25-2	Bromoform	1.0	U		Trichloroethene	1.0	Ü
74-83-9	Bromomethane	1.0	U		Trichlorofluoromethane	1.0	Ü
75-15-0	Carbon Disulfide	1.0	U		Vinyl Chloride	1.0	Ü
1330-20-7	Xylenes (Total)	1.0	U		<b>y</b>	7.0	J
			1				

ColumnID: (^) Indicates results from 2nd column

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

# ORGANICS VOLATILE REPORT Tentatively Identified Compounds

Sample Number: AC67281-014

Client Id: FB-1 LF U

Data File: 3M15731.D

Analysis Date: 08/01/12 17:26

Date Rec/Extracted: 07/25/12-NA

Matrix: Aqueous

Initial Vol: 5ml Final Vol: NA

Dilution: 1.00

Solids:

Method: EPA 624

Units: ug/L

Cas #	Compound	RT	Conc
1	No Unknown Compounds Detected	0.00	OJ

Worksheet #: 236115 Total Tentatively Identified Concentration 0

A - Indicates an aldol condensate.
J - Indicates an estimated value.
B - Indicates the analyte was found in the blank as well as in the sample.
Y - Indicates the analyte was found in the blank at <10% of the concentration of the sample.

<10% - Indicates the analyte was found in the blank at < 10% of nearest Internal Standard

## ORGANICS VOLATILE REPORT

Sample Number: AC67281-016

Client Id: LMW-4 U

Data File: 3M15852.D Analysis Date: 08/03/12 01:13

Date Rec/Extracted: 07/25/12-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 624

Matrix: Aqueous

Initial Vol: 5ml

Final Vol: NA

Dilution: 1.00

Solids: 0

Units: ug/L

			units:	ug/L			
Cas #		RL	Conc	Cas#	Compound	RL	Conc
71-55-6	1,1,1	1.0	U	56-23-5		1.0	U
79-34-5	77.71=1= 700.0000000000000000000000000000000000	1.0	U	108-90-7	Chlorobenzene	1.0	Ü
76-13-1	1,1,2-Trichloro-1,2,2-trifluor	5.0	U	75-00-3	Chloroethane	1.0	Ü
79-00-5	1,1,2-Trichloroethane	1.0	U	67-66-3	Chloroform	1.0	Ü
75-34-3	1,1-Dichloroethane	1.0	U	74-87-3		1.0	Ü
75-35-4	1,1-Dichloroethene	1.0	U	156-59-2		1.0	Ü
87-61-6	1,2,3-Trichlorobenzene	1.0	U	10061-01-5		1.0	Ü
120-82-1	1,2,4-Trichlorobenzene	1.0	U	110-82-7		1.0	U
96-12-8	1,2-Dibromo-3-Chloropropa	1.0	U	124-48-1	•	1.0	U
106-93-4	1,2-Dibromoethane	1.0	υ	75-71-8		1.0	U
95-50-1	1,2-Dichlorobenzene	1.0	U	100-41-4		1.0	U
107-06-2	1,2-Dichloroethane	0.50	U	98-82-8	Isopropylbenzene	1.0	U
78-87-5	1,2-Dichloropropane	1.0	U	136777612	m&p-Xylenes	1.0	_
541-73-1	1,3-Dichlorobenzene	1.0	U	79-20-9	Methyl Acetate	1.0	U
106-46-7	1,4-Dichlorobenzene	1.0	U	108-87-2	•	1.0	U
123-91-1	1,4-Dioxane	50	U		Methylene Chloride	1.0	U
78-93-3	2-Butanone	1.0	U	1634-04-4	Methyl-t-butyl ether	0.50	U
591-78-6	2-Hexanone	1.0	U			1.0	U
108-10-1	4-Methyl-2-Pentanone	1.0	U		Styrene	1.0	U
67-64-1	Acetone	10	U		•		U
71-43-2	Benzene	0.50	U		Toluene	1.0	U
74-97-5	Bromochloromethane	1.0	Ū		trans-1,2-Dichloroethene	1.0	U
75-27-4	Bromodichloromethane	1.0	U		trans-1,3-Dichloropropene	1.0	U
75-25-2	Bromoform	1.0	Ü		Trichloroethene	1.0	U
74-83-9	Bromomethane	1.0	U		Trichlorofluoromethane	1.0	U
75-15-0	Carbon Disulfide	1.0	Ü		Vinyl Chloride	1.0	U
1330-20-7	Xylenes (Total)	1.0	U	75-01-4	vinyi Cilionae	1.0	U
	• •		-				

Column

ColumnID: (^) Indicates results from 2nd column

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

#### ORGANICS VOLATILE REPORT Tentatively Identified Compounds

Sample Number: AC67281-016

Client Id: LMW-4 U Data File: 3M15852.D Analysis Date: 08/03/12 01:13

Date Rec/Extracted: 07/25/12-NA

Matrix: Aqueous

Initial Vol: 5ml Final Vol: NA Dilution: 1.00

Solids:

Method: EPA 624

Units: ug/L

Cas #	Compound	RT	Conc
1	No Unknown Compounds Detected	0.00	0 J

Total Tentatively Identified Concentration 0

Worksheet #: 236115

<sup>A - Indicates an aldol condensate.
J - Indicates an estimated value.
B - Indicates the analyte was found in the blank as well as in the sample.
Y - Indicates the analyte was found in the blank at <10% of the concentration of the sample.</li></sup> <10% - Indicates the analyte was found in the blank at < 10% of nearest Internal Standard

# Form3 Recovery Data

QC Batch: MBS19327

Data File

Sample ID:

Analysis Date

Spike or Dup: 3M15955.D Non Spike(If applicable): 3M15854.D AC67308-001(MS) AC67308-001 8/4/2012 4:21:00 AM 8/3/2012 1:44:00 AM

Inst Blank(If applicable):

Method: 624

Matrix: Aqueous

QC Type: MS

	Matrix. Aque	ous		QC Type: MS		
Col	Spike Conc	Sample Conc	Expected Conc	Recovery	Lower Limit	Upper Limit
1	5.9803	0	20	30	1	273
1	8.8456	0	20	44	1	242
1	7.5379	0	20	38	1	251
1	12.1007	0	20	61	14	230
1	10.1868	0	20	51	17	181
1	14.2072	0	20	71	1	221
1	13.7232	0	20	69	1	234
1	14.4389	0	20	72	59	155
1	14.5364	0	20	73	54	156
1	15.2895	0	20	76	51	138
1	16.8394	0	20	84	49	155
1	14.7729	0	20	74	52	162
1	14.1224	0	20	71	70	140
1	14.6848	0	20	73	35	155
1	14.8547	0	20	74	1	210
1	15.1613	0	20	76	71	157
1	16.4274	0	20	82	37	151
1	14.8444	0	20	74	53	149
1	0	0	20	0 *	1	305
1	13.6883	0	20	68	1	227
1	13.2825	0	20	66	17	183
1	14.5557	0	20	73	52	150
1	15.9044	0	20	80	64	148
1	15.6782	0	20	78	47	150
1	15.5395	0	20	78	37	160
1	12.68	0	20	63	45	169
1	16.812	0	20	84	37	162
1	14.2838	0	20	71	46	157
1	16.134	0	20	81	59	156
1	14.3578	0	20	72	18	190
1	14.8186	0	20	74	18	190
	Col 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Spike Conc  1 5.9803 1 8.8456 1 7.5379 1 12.1007 1 10.1868 1 14.2072 1 13.7232 1 14.4389 1 14.5364 1 15.2895 1 16.8394 1 14.7729 1 14.1224 1 14.6848 1 14.8547 1 15.1613 1 16.4274 1 14.8444 1 0 1 13.6883 1 13.2825 1 14.5557 1 15.9044 1 15.6782 1 15.5395 1 12.68 1 16.812 1 14.2838 1 16.134 1 14.3578	Col         Conc         Conc           1         5.9803         0           1         8.8456         0           1         7.5379         0           1         12.1007         0           1         10.1868         0           1         14.2072         0           1         13.7232         0           1         14.4389         0           1         14.5364         0           1         15.2895         0           1         16.8394         0           1         14.7729         0           1         14.6848         0           1         14.6848         0           1         14.6848         0           1         15.1613         0           1         16.4274         0           1         14.8444         0           1         0         0           1         13.6883         0           1         13.6883         0           1         15.5395         0           1         15.5395         0           1         15.5395         0	Col         Spike Conc         Sample Conc         Expected Conc           1         5.9803         0         20           1         8.8456         0         20           1         7.5379         0         20           1         12.1007         0         20           1         10.1868         0         20           1         14.2072         0         20           1         14.2332         0         20           1         14.5364         0         20           1         14.5364         0         20           1         15.2895         0         20           1         16.8394         0         20           1         14.7729         0         20           1         14.6848         0         20           1         14.6848         0         20           1         14.6848         0         20           1         14.8444         0         20           1         14.8444         0         20           1         13.6883         0         20           1         13.6883         0 <td< td=""><td>Col         Spike Conc         Sample Conc         Expected Conc         Recovery           1         5.9803         0         20         30           1         8.8456         0         20         44           1         7.5379         0         20         38           1         12.1007         0         20         61           1         10.1868         0         20         51           1         14.2072         0         20         71           1         13.7232         0         20         69           1         14.4389         0         20         72           1         14.5364         0         20         73           1         15.2895         0         20         76           1         16.8394         0         20         74           1         14.7729         0         20         74           1         14.6848         0         20         73           1         14.6848         0         20         74           1         14.8444         0         20         74           1         13.6883         <t< td=""><td>Col         Spike Conc         Sample Conc         Expected Conc         Lower Limit           1         5.9803         0         20         30         1           1         8.8456         0         20         44         1           1         7.5379         0         20         38         1           1         12.1007         0         20         61         14           1         10.1868         0         20         51         17           1         14.2072         0         20         71         1           1         13.7232         0         20         69         1           1         14.3899         0         20         72         59           1         14.5364         0         20         73         54           1         15.2895         0         20         76         51           1         16.8394         0         20         74         52           1         14.7729         0         20         74         52           1         14.8547         0         20         74         1           1         15.1613</td></t<></td></td<>	Col         Spike Conc         Sample Conc         Expected Conc         Recovery           1         5.9803         0         20         30           1         8.8456         0         20         44           1         7.5379         0         20         38           1         12.1007         0         20         61           1         10.1868         0         20         51           1         14.2072         0         20         71           1         13.7232         0         20         69           1         14.4389         0         20         72           1         14.5364         0         20         73           1         15.2895         0         20         76           1         16.8394         0         20         74           1         14.7729         0         20         74           1         14.6848         0         20         73           1         14.6848         0         20         74           1         14.8444         0         20         74           1         13.6883 <t< td=""><td>Col         Spike Conc         Sample Conc         Expected Conc         Lower Limit           1         5.9803         0         20         30         1           1         8.8456         0         20         44         1           1         7.5379         0         20         38         1           1         12.1007         0         20         61         14           1         10.1868         0         20         51         17           1         14.2072         0         20         71         1           1         13.7232         0         20         69         1           1         14.3899         0         20         72         59           1         14.5364         0         20         73         54           1         15.2895         0         20         76         51           1         16.8394         0         20         74         52           1         14.7729         0         20         74         52           1         14.8547         0         20         74         1           1         15.1613</td></t<>	Col         Spike Conc         Sample Conc         Expected Conc         Lower Limit           1         5.9803         0         20         30         1           1         8.8456         0         20         44         1           1         7.5379         0         20         38         1           1         12.1007         0         20         61         14           1         10.1868         0         20         51         17           1         14.2072         0         20         71         1           1         13.7232         0         20         69         1           1         14.3899         0         20         72         59           1         14.5364         0         20         73         54           1         15.2895         0         20         76         51           1         16.8394         0         20         74         52           1         14.7729         0         20         74         52           1         14.8547         0         20         74         1           1         15.1613

# Form3 Recovery Data QC Batch: MBS19327

Data File

Spike or Dup: 3M15956.D

Sample ID:

Analysis Date

Non Spike(If applicable): 3M15854.D

AC67308-001(MSD) AC67308-001 8/4/2012 4:37:00 AM 8/3/2012 1:44:00 AM

Inst Blank(If applicable):

Method: 624

Matrix: Aqueous

QC Type: MSD

	Wildlik: Addedds QC Type, P				ac Type Mai	MSD		
Analyte:	Col	Spike Conc	Sample Conc	Expected Conc	Recovery	Lower Limit	Upper Limit	
Chloromethane	1	6.297	0	20	31	1	273	
Bromomethane	1	8.4827	Ö	20	42	1	242	
Vinyl Chloride	1	7.5947	ō	20	38	1	251	
Chloroethane	1	12.0391	Ö	20	60	14	230	
Trichlorofluoromethane	1	10.8195	0	20	54	17	181	
Methylene Chloride	1	14.2492	Ō	20	71	1	221	
1,1-Dichloroethene	1	13.4039	0	20	67	1	234	
1,1-Dichloroethane	1	14.1375	Ō	20	71	59	155	
trans-1,2-Dichloroethene	1	14.2797	Ö	20	71	54	156	
Chloroform	1	15.3812	Ō	20	77	51	138	
1,2-Dichloroethane	1	16.21	0	20	81	49	155	
1,1,1-Trichloroethane	1	14.5996	Ō	20	73	52	162	
Carbon Tetrachloride	1	14.198	0	20	71	70	140	
Bromodichloromethane	1	14.7014	0	20	74	35	155	
1,2-Dichloropropane	1	14.7089	0	20	74	1	210	
Trichloroethene	1	14.6682	0	20	73	71	157	
Benzene	1	16.0588	0	20	80	37	151	
Dibromochloromethane	1	14.2192	0	20	71	53	149	
2-Chloroethylvinylether	1	0	0	20	0*	1	305	
cis-1,3-Dichloropropene	1	13.4977	0	20	67	1	227	
trans-1,3-Dichloropropene	1	13.1784	0	20	66	17	183	
1,1,2-Trichloroethane	1	14.3146	0	20	72	52	150	
Tetrachloroethene	1	16.1425	0	20	81	64	148	
Toluene	1	15.5881	0	20	78	47	150	
Chlorobenzene	1	15.2112	0	20	76	37	160	
Bromoform	1	13.0162	0	20	65	45	169	
Ethylbenzene	1	15.3204	0	20	77	37	162	
1,1,2,2-Tetrachloroethane	1	14.2525	0	20	71	46	157	
1,3-Dichlorobenzene	1	15.5178	0	20	78	59	156	
1,4-Dichlorobenzene	1	13.8918	0	20	69	18	190	
1,2-Dichlorobenzene	1	14.3835	0	20	72	18	190	

ORGANICS SEMIVOLATILE REPORT

Sample Number: WMB14969

Client Id:

Data File: 10M31961.D

Analysis Date: 08/01/12 11:51

Date Rec/Extracted: NA-07/31/12

Column: DB-5MS 30M 0.250mm ID 0.25um film

Method: EPA 625

Matrix: Aqueous

Initial Vol: 1000ml

Final Vol: 1ml

Dilution: 1

Solids: 0

Units: ug/L

			Onits.	ug/L			
Cas #		RL	Conc	Cas #	Compound	RL	Conc
92-52-4	.,. =	2.0	U	205-99-2	2 Benzo[b]fluoranthene	2.0	U
95-94-3	,, . ,	2.0	U	191-24-2	2 Benzo[g,h,i]perylene	2.0	U
	2,3,4,6-Tetrachlorophenol	2.0	U	207-08-9	Benzo[k]fluoranthene	2.0	U
	2,4,5-Trichlorophenol	2.0	U	111-91-1	bis(2-Chloroethoxy)methan	2.0	U
	2,4,6-Trichlorophenol	2.0	U	111-44-4	bis(2-Chloroethyl)ether	0.50	Ū
	2,4-Dichlorophenol	2.0	U	108-60-1		2.0	Ū
	2,4-Dimethylphenol	2.0	U	117-81-7		2.0	Ü
	2,4-Dinitrophenol	10	U	85-68-7		2.0	Ū
121-14-2	2,4-Dinitrotoluene	2.0	U	105-60-2	! Caprolactam	2.0	Ü
606-20-2	2,6-Dinitrotoluene	2.0	Ų	86-74-8		2.0	Ü
	2-Chloronaphthalene	2.0	U	218-01-9	Chrysene	2.0	Ü
	2-Chlorophenol	2.0	U	53-70-3	Dibenzo[a,h]anthracene	2.0	Ü
	2-Methylnaphthalene	2.0	U	132-64-9		0.50	U
95-48-7	2-Methylphenol	0.50	U	84-66-2	Diethylphthalate	2.0	U
88-74-4	2-Nitroaniline	2.0	U	131-11-3	• •	2.0	U
88-75-5	2-Nitrophenol	2.0	U	84-74-2	• • • • • • • • • • • • • • • • • • • •	0.50	U
106-44-5	3&4-Methylphenol	0.50	U	117-84-0		2.0	U
91-94-1	-1	2.0	U	206-44-0		2.0	U
99-09-2	3-Nitroaniline	2.0	U	86-73-7		2.0	U
534-52-1	4,6-Dinitro-2-methylphenol	10	U	118-74-1	Hexachlorobenzene	2.0	U
101-55-3	4-Bromophenyl-phenylether	2.0	U	87-68-3		2.0	U
59-50-7	4-Chloro-3-methylphenol	2.0	U		Hexachlorocyclopentadiene	2.0	U
106-47-8	4-Chloroaniline	0.50	U		Hexachloroethane	2.0	U
7005-72-3	4-Chlorophenyl-phenylether	2.0	υ	193-39-5	Indeno[1,2,3-cd]pyrene	2.0	U
100-01-6	4-Nitroaniline	2.0	υ	78-59-1	Isophorone	2.0	U
100-02-7	4-Nitrophenol	2.0	U	91-20-3	Naphthalene	0.50	
83-32-9	Acenaphthene	2.0	U	98-95-3	Nitrobenzene	2.0	U
208-96-8	Acenaphthylene	2.0	Ū	621-64-7	N-Nitroso-di-n-propylamine	0.50	U
98-86-2	Acetophenone	2.0	U	86-30-6	n-Nitrosodiphenylamine	2.0	U
120-12-7	Anthracene	2.0	Ū	87-86-5	Pentachlorophenol	2.0 10	U
1912-24-9	Atrazine	2.0	Ū		Phenanthrene	2.0	U
100-52-7	Benzaldehyde	2.0	Ū	108-95-2		<del>-</del>	U
56-55-3	Benzo[a]anthracene	2.0	Ü		Pyrene	2.0	U
	Benzo[a]pyrene	2.0	Ü	123-00-0	i yielle	2.0	U
			0				

Worksheet #: 236276

Total Target Concentration

ColumnID: (^) Indicates results from 2nd column

0

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

 $^{{\}it J}$  - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

## ORGANICS SEMIVOLATILE REPORT Tentatively Identified Compounds

Sample Number: WMB14969

Client Id:

Matrix: Aqueous Initial Vol: 1000ml

Final Vol: 1ml

Analysis Date: 08/01/12 11:51

Data File: 10M31961.D

Dilution: 1

Solids: 0

Date Rec/Extracted: NA-07/31/12

Method: EPA 625

Units: ug/L

	Cas#	Compound	RT	Conc	
1	123-42-2	2-Pentanone, 4-hydroxy-4-methyl-	4.32	<10%	
2	5131-66-8	2-Propanol, 1-butoxy-	5.26	<10%	

Worksheet #: 236276

A - Indicates an aldol condensate.
J - Indicates an estimated value.
B - Indicates the analyte was found in the blank as well as in the sample.
Y - Indicates the analyte was found in the blank at <10% of the concentration of the sample. <10% - Indicases the analyte was found in the blank at < 10% of nearest Internal Standard

#### ORGANICS SEMIVOLATILE REPORT

Sample Number: WMB14979

Client Id:

Data File: 9M45098.D

Analysis Date: 08/01/12 17:33

Date Rec/Extracted: NA-08/01/12

Column: DB-5MS 30M 0.250mm ID 0.25um film

Method: EPA 625

Matrix: Aqueous

Initial Vol: 1000ml

Final Vol: 1ml

Dilution: 1

Solids: 0

Units: ug/L

			Ointo.	ug/ <b></b>			
Cas #	Compound	RL	Conc	Cas#	Compound	RL:	Conc
92-52-4	1,1'-Biphenyl	2.0	U	205-99-2	Benzo[b]fluoranthene	2.0	U
95-94-3	1,2,4,5-Tetrachlorobenzene	2.0	U	191-24-2	Benzo[g,h,i]perylene	2.0	U
58-90-2	2,3,4,6-Tetrachlorophenol	2.0	U	207-08-9	Benzo[k]fluoranthene	2.0	U
95-95-4	2,4,5-Trichlorophenol	2.0	U	111-91-1	bis(2-Chloroethoxy)methan	2.0	U
88-06-2	2,4,6-Trichlorophenol	2.0	U	111-44-4	bis(2-Chloroethyl)ether	0.50	U
120-83-2	2,4-Dichlorophenol	2.0	U	108-60-1	bis(2-chloroisopropyl)ether	2.0	U
105-67-9	2,4-Dimethylphenol	2.0	U	117-81-7	bis(2-Ethylhexyl)phthalate	2.0	U
51-28-5	2,4-Dinitrophenol	10	U	85-68-7	Butylbenzylphthalate	2.0	U
121-14-2	2,4-Dinitrotoluene	2.0	U	105-60-2	Caprolactam	2.0	U
606-20-2	2,6-Dinitrotoluene	2.0	U	86-74-8	Carbazole	2.0	U
91-58-7	2-Chloronaphthalene	2.0	U	218-01-9	Chrysene	2.0	U
95-57-8	2-Chlorophenol	2.0	U	53-70-3	Dibenzo[a,h]anthracene	2.0	U
91-57-6	2-Methylnaphthalene	2.0	U	132-64-9	Dibenzofuran	0.50	U
95-48-7	2-Methylphenol	0.50	U	84-66-2	Diethylphthalate	2.0	U
88-74-4	2-Nitroaniline	2.0	U	131-11-3	Dimethylphthalate	2.0	U
88-75-5	2-Nitrophenol	2.0	U	84-74-2	Di-n-butylphthalate	0.50	U
106-44-5	3&4-Methylphenol	0.50	U	117-84-0	Di-n-octylphthalate	2.0	U
91-94-1	3,3'-Dichlorobenzidine	2.0	U	206-44-0	Fluoranthene	2.0	U
99-09-2	3-Nitroaniline	2.0	U	86-73-7	Fluorene	2.0	U
534-52-1	4,6-Dinitro-2-methylphenol	10	U	118-74-1	Hexachlorobenzene	2.0	U
101-55-3	4-Bromophenyl-phenylether	2.0	U	87-68-3	Hexachlorobutadiene	2.0	U
59-50-7	4-Chloro-3-methylphenol	2.0	U	77-47-4	Hexachlorocyclopentadiene	2.0	U
106-47-8	4-Chloroaniline	0.50	U	67-72-1	Hexachloroethane	2.0	U
7005-72-3	4-Chlorophenyl-phenylether	2.0	U	193-39-5	Indeno[1,2,3-cd]pyrene	2.0	U
100-01-6	4-Nitroaniline	2.0	U	78-59-1	Isophorone	2.0	U
100-02-7	4-Nitrophenol	2.0	U	91-20-3	Naphthalene	0.50	U
83-32-9	Acenaphthene	2.0	U	98-95-3	Nitrobenzene	2.0	U
208-96-8	Acenaphthylene	2.0	U	621-64-7	N-Nitroso-di-n-propylamine	0.50	Ū
98-86-2	Acetophenone	2.0	U	86-30-6	n-Nitrosodiphenylamine	2.0	Ū
120-12-7	Anthracene	2.0	U	87-86-5	Pentachlorophenol	10	Ū
1912-24-9	Atrazine	2.0	U	85-01-8	Phenanthrene	2.0	Ū
100-52-7	Benzaldehyde	2.0	U	108-95-2	Phenol	2.0	Ū
56-55-3	Benzo[a]anthracene	2.0	U	129-00-0	Pyrene	2.0	Ü
50-32-8	Benzo[a]pyrene	2.0	U		•		
			i				

Worksheet #: 236276

Total Target Concentration

ColumnID: (^) Indicates results from 2nd column

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

## ORGANICS SEMIVOLATILE REPORT Tentatively Identified Compounds

Sample Number: WMB14979

Client Id:

Data File: 9M45098.D

Analysis Date: 08/01/12 17:33

Date Rec/Extracted: NA-08/01/12

Matrix: Aqueous

Initial Vol: 1000ml

Final Vol: 1ml Dilution: 1

Solids: 0

Method: EPA 625

Units: ug/L

	Cas #	Compound	RT	Conc
1	111-76-2	Ethanol, 2-butoxy-	4.98	<10%
2		unknown	6.20	<10%

Worksheet #: 236276

A - Indicates an aldol condensate. J - Indicates an estimated value.

B - Indicates the analyte was found in the blank as well as in the sample. Y - Indicates the analyte was found in the blank at <10% of the concentration of the sample.

<10% - Indicases the analyte was found in the blank at < 10% of nearest Internal Standard

#### ORGANICS SEMIVOLATILE REPORT

Sample Number: WMB14979

Client Id:

Matrix: Aqueous Initial Vol: 1000ml Data File: 10M31977.D Final Vol: 1ml

Analysis Date: 08/01/12 18:33 Date Rec/Extracted: NA-08/01/12

Column: DB-5MS 30M 0.250mm ID 0.25um film

Dilution: 1

Solids: 0

Method: EPA 625

Units: ua/L

	Units: ug/L									
Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc			
92-52-4	1,1'-Biphenyl	2.0	U	205-99-2	Benzo[b]fluoranthene	2.0	U			
95-94-3	1,2,4,5-Tetrachlorobenzene	2.0	U	191-24-2	Benzo[g,h,i]perylene	2.0	U			
58-90-2	2,3,4,6-Tetrachlorophenol	2.0	U	207-08-9	Benzo[k]fluoranthene	2.0	U			
95-95-4	2,4,5-Trichlorophenol	2.0	U	111-91-1	bis(2-Chloroethoxy)methan	2.0	U			
88-06-2	2,4,6-Trichlorophenol	2.0	U	111-44-4	bis(2-Chloroethyl)ether	0.50	U			
120-83-2	2,4-Dichlorophenol	2.0	U	108-60-1	bis(2-chloroisopropyl)ether	2.0	U			
105-67-9	2,4-Dimethylphenol	2.0	U	117-81-7	bis(2-Ethylhexyl)phthalate	2.0	U			
51-28-5	2,4-Dinitrophenol	10	U	85-68-7	Butylbenzylphthalate	2.0	U			
121-14-2	2,4-Dinitrotoluene	2.0	U	105-60-2	Caprolactam	2.0	U			
606-20-2	2,6-Dinitrotoluene	2.0	U	86-74-8	Carbazole	2.0	U			
91-58-7	2-Chloronaphthalene	2.0	U	218-01-9	Chrysene	2.0	U			
95-57-8	2-Chlorophenol	2.0	U	53-70-3	Dibenzo[a,h]anthracene	2.0	U			
91-57-6	2-Methylnaphthalene	2.0	U	132-64-9	Dibenzofuran	0.50	U			
95-48-7	2-Methylphenol	0.50	U	84-66-2	Diethylphthalate	2.0	U			
88-74-4	2-Nitroaniline	2.0	U	131-11-3	Dimethylphthalate	2.0	U			
88-75-5	2-Nitrophenol	2.0	U	84-74-2	Di-n-butylphthalate	0.50	U			
106-44-5	3&4-Methylphenol	0.50	U	117-84-0	Di-n-octylphthalate	2.0	U			
91-94-1	3,3'-Dichlorobenzidine	2.0	U	206-44-0	Fluoranthene	2.0	U			
99-09-2	3-Nitroaniline	2.0	U	86-73-7	Fluorene	2.0	U			
534-52-1	4,6-Dinitro-2-methylphenol	10	U	118-74-1	Hexachlorobenzene	2.0	U			
101-55-3	4-Bromophenyl-phenylether	2.0	U	87-68-3	Hexachlorobutadiene	2.0	U			
59-50-7	4-Chloro-3-methylphenol	2.0	U	77-47-4	Hexachlorocyclopentadiene	2.0	U			
106-47-8	4-Chloroaniline	0.50	U	67-72-1		2.0	U			
7005-72-3	4-Chlorophenyl-phenylether	2.0	U	193-39-5	Indeno[1,2,3-cd]pyrene	2.0	U			
100-01-6	4-Nitroaniline	2.0	U	78-59-1	Isophorone	2.0	U			
100-02-7	4-Nitrophenol	2.0	U	91-20-3	Naphthalene	0.50	U			
83-32-9	Acenaphthene	2.0	U	98-95-3	Nitrobenzene	2.0	U			
208-96-8	Acenaphthylene	2.0	U	621-64-7	N-Nitroso-di-n-propylamine	0.50	Ū			
98-86-2	Acetophenone	2.0	U	86-30-6	n-Nitrosodiphenylamine	2.0	U			
120-12-7	Anthracene	2.0	U	87-86-5	Pentachlorophenol	10	Ū			
1912-24-9	Atrazine	2.0	U	85-01-8	Phenanthrene	2.0	Ū			
100-52-7	Benzaldehyde	2.0	U		Phenol	2.0	Ū			
56-55-3	Benzo[a]anthracene	2.0	U	129-00-0	Pyrene	2.0	Ū			
50-32-8	Benzo[a]pyrene	2.0	U							

Worksheet #: 236276

Total Target Concentration

ColumnID: (^) Indicates results from 2nd column

0

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the

R - Retentio: Time Out

J - Indicates in estimated value when a compound is detected at less than the specified de ction limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used

#### ORGANICS SEMIVOLATILE REPORT **Tentatively Identified Compounds**

Sample Number: WMB14979

Client Id:

Matrix: Aqueous

Initial Vol: 1000ml

Data File: 10M31977.D

Final Vol: 1ml

Analysis Date: 08/01/12 18:33

Dilution: 1

Date Rec/Extracted: NA-08/01/12

Solids: 0

Method: EPA 625

Units: ug/L

	Cas#	Compound	RT	Conc	
1		unknown	3.06	<10%	
2	111-76-2	Ethanol, 2-butoxy-	4.96	<10%	
3	5131-66-8	2-Propanol, 1-butoxy-	5.26	<10%	

Worksheet #: 236276

A - Indicates an aldol condensate. J - Indicates an estimated value.

B - Indicates the analyte was found in the blank as well as in the sample. Y - Indicates the analyte was found in the blank at <10% of the concentration of the sample. <10% - Indicates the analyte was found in the blank at < 10% of nearest Internal Standard

# ORGANICS SEMIVOLATILE REPORT

Method: EPA 8270C Sample Number: SMB15005

Client Id:

Matrix: Soil Initial Vol: 30g Data File: 7M55317.D Final Vol: 0.5ml Analysis Date: 08/03/12 17:09 Dilution: 1 Date Rec/Extracted: NA-08/03/12 Column: DB-5MS 30M 0.250mm ID 0.25um film Solids: 100

Units: mq/Kq

			Units: II	ig/Ng			
Cas#	Compound	RL	Conc	Cas#	Compound	RL	Conc
92-52-4	1,1'-Biphenyl	0.033	U	205-99-2	Benzo[b]fluoranthene	0.033	U
95-94-3	1,2,4,5-Tetrachlorobenzene	0.033	U	191-24-2	Benzo[g,h,i]perylene	0.033	U
58-90-2	2,3,4,6-Tetrachlorophenol	0.033	U	207-08-9	Benzo[k]fluoranthene	0.033	U
95-95-4	2,4,5-Trichlorophenol	0.033	U	111-91-1	bis(2-Chloroethoxy)methan	0.033	U
88-06-2	2,4,6-Trichlorophenol	0.033	U	111-44-4	bis(2-Chloroethyl)ether	0.0083	U
120-83-2	2,4-Dichlorophenol	0.0083	U	108-60-1	bis(2-chloroisopropyl)ether	0.033	U
105-67-9	2,4-Dimethylphenol	0.033	U	117-81-7	bis(2-Ethylhexyl)phthalate	0.033	U
51-28-5	2,4-Dinitrophenol	0.17	U	85-68-7	Butylbenzylphthalate	0.033	U
121-14-2	2,4-Dinitrotoluene	0.033	U	105-60-2	Caprolactam	0.033	U
606-20-2	2,6-Dinitrotoluene	0.033	U	86-74-8	Carbazole	0.033	U
91-58-7	2-Chloronaphthalene	0.033	U	218-01-9	Chrysene	0.033	U
95-57-8	2-Chlorophenol	0.033	U	53-70-3	Dibenzo[a,h]anthracene	0.033	U
91-57-6	2-Methylnaphthalene	0.033	U	132-64-9	Dibenzofuran	0.0083	U
95-48-7	2-Methylphenol	0.0083	U	84-66-2	Diethylphthalate	0.033	U
88-74-4	2-Nitroaniline	0.033	U	131-11-3	Dimethylphthalate	0.033	U
88-75-5	2-Nitrophenol	0.033	U	84-74-2	Di-n-butylphthalate	0.017	U
106-44-5	3&4-Methylphenol	0.0083	U	117-84-0	Di-n-octylphthalate	0.033	U
91-94-1	3,3'-Dichlorobenzidine	0.033	U	206-44-0	Fluoranthene	0.033	U
99-09-2	3-Nitroaniline	0.033	U	86-73-7	Fluorene	0.033	U
534-52-1	4,6-Dinitro-2-methylphenol	0.17	U	118-74-1	Hexachlorobenzene	0.033	U
101-55-3	4-Bromophenyl-phenylether	0.033	U	87-68-3	Hexachlorobutadiene	0.033	U
59-50-7	4-Chloro-3-methylphenol	0.033	U	77-47-4	Hexachlorocyclopentadiene	0.033	U
106-47-8	4-Chloroaniline	0.016	U	67-72-1	Hexachloroethane	0.033	U
7005-72-3	4-Chlorophenyl-phenylether	0.033	U	193-39-5	Indeno[1,2,3-cd]pyrene	0.033	U
100-01-6	4-Nitroaniline	0.033	U	78-59-1	Isophorone	0.033	U
100-02-7	4-Nitrophenol	0.033	U	91-20-3	Naphthalene	0.0083	U
83-32-9	Acenaphthene	0.033	U	98-95-3	Nitrobenzene	0.033	U
208-96-8	Acenaphthylene	0.033	U	621-64-7	N-Nitroso-di-n-propylamine	0.0083	U
98-86-2	Acetophenone	0.033	U	86-30-6	n-Nitrosodiphenylamine	0.033	U
120-12-7	Anthracene	0.033	U	87-86-5	Pentachlorophenol	0.056	U
1912-24-9	Atrazine	0.033	U	85-01-8	Phenanthrene	0.033	U
100-52-7	Benzaldehyde	0.033	U	108-95-2	Phenol	0.033	U
56-55-3	Benzo[a]anthracene	0.033	U	129-00-0	Pyrene	0.033	U
50-32-8		0.033	U				
			1				

Worksheet #: 236086

Total Target Concentration

R - Retention Time Out

ColumnID: (^) Indicates results from 2nd column

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

# ORGANICS SEMIVOLATILE REPORT Tentatively Identified Compounds

Sample Number: SMB15005

Client Id:

Data File: 7M55317.D

Analysis Date: 08/03/12 17:09

Date Rec/Extracted: NA-08/03/12

Matrix: Soil

Initial Vol: 30g Final Vol: 0.5ml

Dilution: 1

Solids: 100

Method: EPA 8270C

Units: mg/Kg

	Cas #	Compound	RT	Conc
1	57-55-6	1,2-Propanediol	3.26	0.082 J
2	79-00-5	Ethane, 1,1,2-trichloro-	3.60	0.093 J
3	141-79-7	3-Penten-2-one, 4-methyl-	3.83	0.21 JA
4		unknown	4.23	4.4 J
5	123-42-2	2-Pentanone, 4-hydroxy-4-methyl-	4.53	130 JA
6		unknown	4.82	0.12 J
7		unknown	5.09	1.7 J
8	79-34-5	Ethane, 1,1,2,2-tetrachloro-	5.14	0.16 J
9	5131-66-8	2-Propanol, 1-butoxy-	5.28	0.071 J
10	611-14-3	Benzene, 1-ethyl-2-methyl-	5.46	0.11 J
11	108-67-8	Benzene, 1,3,5-trimethyl-	5.71	0.15 J
12		unknown	6.82	0.48 J

Worksheet #: 236086

A - Indicates an aldol condensate.
J - Indicates an estimated value.
B - Indicates the analyte was found in the blank as well as in the sample.
Y - Indicates the analyte was found in the blank at <10% of the concentration of the sample.

<10% - Indicates the analyte was found in the blank at < 10% of nearest Internal Standard

#### ORGANICS SEMIVOLATILE REPORT

Sample Number: AC67281-001

Client Id: SW-1 U

Data File: 10M31960.D Analysis Date: 08/01/12 11:28

Date Rec/Extracted: 07/25/12-07/31/12

Column: DB-5MS 30M 0.250mm ID 0.25um film

Method: EPA 625

Matrix: Aqueous

Initial Vol: 1000ml

Final Vol: 1ml

Dilution: 1

Solids: 0

Units: ug/L

			Units: u	g/L			
Cas#	Compound	RL	Conc	Cas #	Compound	RL	Conc
92-52-4	1,1'-Biphenyl	2.0	U	205-99-2	Benzo[b]fluoranthene	2.0	U
95-94-3	1,2,4,5-Tetrachlorobenzene	2.0	U	191-24-2	Benzo[g,h,i]perylene	2.0	U
58-90-2	2,3,4,6-Tetrachlorophenol	2.0	U	207-08-9	Benzo[k]fluoranthene	2.0	U
95-95-4	2,4,5-Trichlorophenol	2.0	U	111-91-1	bis(2-Chloroethoxy)methan	2.0	U
88-06-2	2,4,6-Trichlorophenol	2.0	U	111-44-4	bis(2-Chloroethyl)ether	0.50	U
120-83-2	2,4-Dichlorophenol	2.0	U	108-60-1	bis(2-chloroisopropyl)ether	2.0	U
105-67-9	2,4-Dimethylphenol	2.0	U	117-81-7	bis(2-Ethylhexyl)phthalate	2.0	U
51-28-5	2,4-Dinitrophenol	10	U	85-68-7	Butylbenzylphthalate	2.0	U
121-14-2	2,4-Dinitrotoluene	2.0	U	105-60-2	Caprolactam	2.0	U
606-20-2	2,6-Dinitrotoluene	2.0	U	86-74-8	Carbazole	2.0	U
91-58-7	2-Chloronaphthalene	2.0	U	218-01-9	Chrysene	2.0	U
95-57-8	2-Chlorophenol	2.0	U	53-70-3	Dibenzo[a,h]anthracene	2.0	U
91-57-6	2-Methylnaphthalene	2.0	U	132-64-9	Dibenzofuran	0.50	U
95-48-7	2-Methylphenol	0.50	U	84-66-2	Diethylphthalate	2.0	U
88-74-4	2-Nitroaniline	2.0	U	131-11-3	Dimethylphthalate	2.0	U
88-75-5	2-Nitrophenol	2.0	U	84-74-2	Di-n-butylphthalate	0.50	U
106-44-5	3&4-Methylphenol	0.50	U	117-84-0	Di-n-octylphthalate	2.0	U
91-94-1	3,3'-Dichlorobenzidine	2.0	U	206-44-0	Fluoranthene	2.0	U
99-09-2	3-Nitroaniline	2.0	U	86-73-7	Fluorene	2.0	U
534-52-1	4,6-Dinitro-2-methylphenol	10	U	118-74-1	Hexachlorobenzene	2.0	U
101-55-3	4-Bromophenyl-phenylether	2.0	U	87-68-3	Hexachlorobutadiene	2.0	U
59-50-7	4-Chloro-3-methylphenol	2.0	υ	77-47-4	Hexachlorocyclopentadiene	2.0	U
106-47-8	4-Chloroaniline	0.50	U	67-72-1	Hexachloroethane	2.0	U
7005-72-3	4-Chlorophenyl-phenylether	2.0	Ų	193-39-5	Indeno[1,2,3-cd]pyrene	2.0	U
100-01-6	4-Nitroaniline	2.0	U	78-59-1	Isophorone	2.0	U
100-02-7	4-Nitrophenol	2.0	U	91-20-3	Naphthalene	0.50	U
83-32-9	Acenaphthene	2.0	U	98-95-3	Nitrobenzene	2.0	U
208-96-8	Acenaphthylene	2.0	U	621-64-7	N-Nitroso-di-n-propylamine	0.50	U
98-86-2	Acetophenone	2.0	U	86-30-6	n-Nitrosodiphenylamine	2.0	U
120-12-7	Anthracene	2.0	U	87-86-5	Pentachlorophenol	10	U
1912-24-9	Atrazine	2.0	U	85-01-8	Phenanthrene	2.0	U
100-52-7	Benzaldehyde	2.0	U	108-95-2	Phenol	2.0	U
56-55-3	Benzo[a]anthracene	2.0	U	129-00-0	Pyrene	2.0	U
50-32-8	Benzo[a]pyrene	2.0	U				

Worksheet #: 236276

Total Target Concentration

ColumnID: (^) Indicates results from 2nd column

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

ORGANICS SEMIVOLATILE REPORT Tentatively Identified Compounds

Sample Number: AC67281-001

Client Id: SW-1 U

Data File: 10M31960.D

Analysis Date: 08/01/12 11:28

Date Rec/Extracted: 07/25/12-07/31/12

Matrix: Aqueous Initial Vol: 1000ml

Final Vol: 1ml Dilution: 1

Solids:

Method: EPA 625

Units: ug/L

Cas #	Compound	RT	Conc
1	unknown	5.12	14.1

Worksheet #: 236276

A - Indicates an aldol condensate.
J - Indicates an estimated value.
B - Indicates the analyte was found in the blank as well as in the sample.
Y - Indicates the analyte was found in the blank at <10% of the concentration of the sample.

<10% - Indicates the analyte was found in the blank at < 10% of nearest Internal Standard

#### ORGANICS SEMIVOLATILE REPORT

Sample Number: AC67281-003

Client Id: SW-2 U

Data File: 9M45112.D Analysis Date: 08/01/12 22:53

Date Rec/Extracted: 07/25/12-08/01/12

Column: DB-5MS 30M 0.250mm ID 0.25um film

Method: EPA 625

Matrix: Aqueous

Initial Vol: 980ml

Final Vol: 1ml

Dilution: 1

Solids: 0

Units: ua/L

			Units: u	g/L			
Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc
92-52-4	1,1'-Biphenyl	2.0	U	205-99-2	Benzo[b]fluoranthene	2.0	U
95-94-3	1,2,4,5-Tetrachlorobenzene	2.0	U	191-24-2	Benzo[g,h,i]perylene	2.0	U
58-90-2	2,3,4,6-Tetrachlorophenol	2.0	U	207-08-9	Benzo[k]fluoranthene	2.0	U
95-95-4	2,4,5-Trichlorophenol	2.0	U	111-91-1	bis(2-Chloroethoxy)methan	2.0	U
88-06-2	2,4,6-Trichlorophenol	2.0	U	111-44-4	bis(2-Chloroethyl)ether	0.51	U
120-83-2	2,4-Dichlorophenol	2.0	U	108-60-1	bis(2-chloroisopropyl)ether	2.0	U
105-67-9	2,4-Dimethylphenol	2.0	U	117-81-7	bis(2-Ethylhexyl)phthalate	2.0	U
51-28-5	2,4-Dinitrophenol	10	U	85-68-7	Butylbenzylphthalate	2.0	U
121-14-2	2,4-Dinitrotoluene	2.0	U	105-60-2	Caprolactam	2.0	U
606-20-2	2,6-Dinitrotoluene	2.0	U	86-74-8	Carbazole	2.0	U
91-58-7	2-Chloronaphthalene	2.0	U	218-01-9	Chrysene	2.0	U
95-57-8	2-Chlorophenol	2.0	U	53-70-3	Dibenzo[a,h]anthracene	2.0	U
91-57-6	2-Methylnaphthalene	2.0	U	132-64-9	Dibenzofuran	0.51	U
95-48-7	2-Methylphenol	0.51	U	84-66-2	Diethylphthalate	2.0	U
88-74-4	2-Nitroaniline	2.0	U	131-11-3	Dimethylphthalate	2.0	U
88-75-5	2-Nitrophenol	2.0	U	84-74-2	Di-n-butylphthalate	0.51	U
106-44-5	3&4-Methylphenol	0.51	U	117-84-0	Di-n-octylphthalate	2.0	U
91-94-1	3,3'-Dichlorobenzidine	2.0	U	206-44-0	Fluoranthene	2.0	U
99-09-2	3-Nitroaniline	2.0	U	86-73-7	Fluorene	2.0	U
534-52-1	4,6-Dinitro-2-methylphenol	10	U	118-74-1	Hexachlorobenzene	2.0	U
101-55-3	4-Bromophenyl-phenylether	2.0	U	87-68-3	Hexachlorobutadiene	2.0	U
59-50-7	4-Chloro-3-methylphenol	2.0	U	77-47-4	Hexachlorocyclopentadiene	2.0	U
106-47-8	4-Chloroaniline	0.51	U	67-72-1	Hexachloroethane	2.0	U
7005-72-3	4-Chlorophenyl-phenylether	2.0	U	193-39-5	Indeno[1,2,3-cd]pyrene	2.0	U
100-01-6	4-Nitroaniline	2.0	υ	78-59-1	Isophorone	2.0	U
100-02-7	4-Nitrophenol	2.0	U	91-20-3	Naphthalene	0.51	U
83-32-9	Acenaphthene	2.0	U	98-95-3	Nitrobenzene	2.0	U
208-96-8	Acenaphthylene	2.0	U	621-64-7	N-Nitroso-di-n-propylamine	0.51	U
98-86-2	Acetophenone	2.0	U	86-30-6	n-Nitrosodiphenylamine	2.0	U
120-12-7	Anthracene	2.0	U	87-86-5	Pentachlorophenol	10	U
1912-24-9	Atrazine	2.0	U	85-01-8	Phenanthrene	2.0	U
100-52-7	Benzaldehyde	2.0	U	108-95-2	Phenol	2.0	U
56-55-3	Benzo[a]anthracene	2.0	U	129-00-0	Pyrene	2.0	U
50-32-8	Benzo[a]pyrene	2.0	U				
			1				

Worksheet #: 236276

Total Target Concentration

ColumnID: (^) Indicates results from 2nd column

U - Indicates the compound was analyzed but not detected.

R - Retention Time Out

B - Indicates the analyte was found in the blank as well as in the sample. E - Indicates the analyte concentration exceeds the calibration range of the

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pest cide %Diff>40% between columns due to coelution. Lower concentration usea

# ORGANICS SEMIVOLATILE REPORT Tentatively Identified Compounds

Sample Number: AC67281-003

Client Id: SW-2 U

Data File: 9M45112.D

Analysis Date: 08/01/12 22:53

Date Rec/Extracted: 07/25/12-08/01/12

Matrix: Aqueous Initial Vol: 980ml

Final Vol: 1ml

Dilution: 1 Solids:

Method: EPA 625

Units: ug/L

	Cas #	Compound	RT	Conc
1		3-Penten-1-ol, 2-methyl-	3.78	4.7 J
2		unknown	5.14	28 J

Worksheet #: 236276

A - Indicates an aldol condensate.
J - Indicates an estimated value.
B - Indicates the analyte was found in the blank as well as in the sample.
Y - Indicates the analyte was found in the blank at <10% of the concentration of the sample. <10% - Indicates the analyte was found in the blank at < 10% of nearest Internal Standard

#### ORGANICS SEMIVOLATILE REPORT

Sample Number: AC67281-005

Client Id: SW-4 U Data File: 9M45147.D

Analysis Date: 08/02/12 19:37

Date Rec/Extracted: 07/25/12-08/01/12

Column: DB-5MS 30M 0.250mm ID 0.25um film

Method: EPA 625

Matrix: Aqueous

Initial Vol: 1000ml

Final Vol: 1ml

Dilution: 1

Solids: 0

Units: ug/	L
------------	---

Units: ug/L								
Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc	
	1,1'-Biphenyl	2.0	U	205-99-2	Benzo[b]fluoranthene	2.0	U	
95-94-3	1,2,4,5-Tetrachlorobenzene	2.0	U	191-24-2	Benzo[g,h,i]perylene	2.0	U	
58-90-2	2,3,4,6-Tetrachlorophenol	2.0	U	207-08-9	Benzo[k]fluoranthene	2.0	U	
95-95-4	2,4,5-Trichlorophenol	2.0	U	111-91-1	bis(2-Chloroethoxy)methan	2.0	U	
88-06-2	2,4,6-Trichlorophenol	2.0	U	111-44-4	bis(2-Chloroethyl)ether	0.50	U	
	2,4-Dichlorophenol	2.0	U	108-60-1	bis(2-chloroisopropyl)ether	2.0	U	
105-67-9	2,4-Dimethylphenol	2.0	U	117-81-7	bis(2-Ethylhexyl)phthalate	2.0	U	
51-28-5	2,4-Dinitrophenol	10	Ų	85-68-7	Butylbenzylphthalate	2.0	U	
121-14-2	2,4-Dinitrotoluene	2.0	U	105-60-2	Caprolactam	2.0	U	
606-20-2	2,6-Dinitrotoluene	2.0	U	86-74-8	Carbazole	2.0	U	
	2-Chloronaphthalene	2.0	U	218-01-9	Chrysene	2.0	U	
95-57-8	2-Chlorophenol	2.0	U	53-70-3	Dibenzo[a,h]anthracene	2.0	U	
91-57-6	2-Methylnaphthalene	2.0	U	132-64-9	Dibenzofuran	0.50	U	
	2-Methylphenol	0.50	U	84-66-2	Diethylphthalate	2.0	U	
88-74-4	2-Nitroaniline	2.0	U	131-11-3	Dimethylphthalate	2.0	U	
88-75-5	2-Nitrophenol	2.0	U	84-74-2	Di-n-butylphthalate	0.50	U	
106-44-5	3&4-Methylphenol	0.50	U	117-84-0	Di-n-octylphthalate	2.0	U	
91-94-1	3,3'-Dichlorobenzidine	2.0	U	206-44-0	Fluoranthene	2.0	U	
99-09-2	3-Nitroaniline	2.0	U	86-73-7	Fluorene	2.0	U	
534-52-1	4,6-Dinitro-2-methylphenol	10	U	118-74-1	Hexachlorobenzene	2.0	U	
101-55-3	4-Bromophenyl-phenylether	2.0	U	87-68-3	Hexachlorobutadiene	2.0	U	
59-50-7	4-Chloro-3-methylphenol	2.0	U	77-47-4	Hexachlorocyclopentadiene	2.0	U	
106-47-8	4-Chloroaniline	0.50	U	67-72-1	Hexachloroethane	2.0	U	
7005-72-3	4-Chlorophenyl-phenylether	2.0	U	193-39-5	Indeno[1,2,3-cd]ryrene	2.0	U	
100-01-6	4-Nitroaniline	2.0	U	78-59-1	Isophorone	2.0	U	
100-02-7	4-Nitrophenol	2.0	U	91-20-3	Naphthalene	0.50	U	
83-32-9	Acenaphthene	2.0	U	98-95-3	Nitrobenzene	2.0	U	
208-96-8	Acenaphthylene	2.0	U	621-64-7	N-Nitroso-di-n-propylamine	0.50	U	
98-86-2	Acetophenone	2.0	U	86-30-6	n-Nitrosodiphenylamine	2.0	U	
120-12-7	Anthracene	2.0	U	87-86-5	Pentachlorophenol	10	U	
1912-24-9		2.0	U	85-01-8	Phenanthrene	2.0	U	
	Benzaldehyde	2.0	U	108-95-2	Phenol	2.0	U	
56-55-3	•	2.0	U	129-00-0	Pyrene	2.0	U	
50-32-8	• •	2.0	U					
			4					

Worksheet #: 236276

Total Target Concentration

ColumnID: (^) Indicates results from 2nd column

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

 $^{{\}it J}$  - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

# ORGANICS SEMIVOLATILE REPORT Tentatively Identified Compounds

Sample Number: AC67281-005

Client Id: SW-4 U

Data File: 9M45147.D

Analysis Date: 08/02/12 19:37

Date Rec/Extracted: 07/25/12-08/01/12

Matrix: Aqueous Initial Vol: 1000ml Final Vol: 1ml

Dilution: 1 Solids:

Method: EPA 625

Units: ug/L

	Cas #	Compound	RT	Conc
1	123-42-2	2-Pentanone, 4-hydroxy-4-methyl-	4.34	94 JA
2		unknown	10.21	4.0 J
3	593-49-7	Heptacosane	14.20	4.03 11 J
4	124-25-4	Tetradecanal	14.77	5.3 J
5	629-97-0	Docosane	14.98	5.3 J 5.0 J
6		unknown	15.35	
7	56554-86-0	17-Octadecenal	15.70	11 J
8		unknown	16.40	8.3 J
9	21424-83-9	1,1'-Biphenyl, 3-chloro-4-methoxy-	16.40	7.9 J 4.7 J

Worksheet #: 236276

A - Indicates an aldol condensate.

<sup>A - Indicates an audi condensule.
J - Indicates an estimated value.
B - Indicates the analyte was found in the blank as well as in the sample.
Y - Indicates the analyte was found in the blank at <10% of the concentration of the sample.</li></sup> <10% - Indicates the analyte was found in the blank at < 10% of nearest Internal Standard

#### ORGANICS SEMIVOLATILE REPORT

Sample Number: AC67281-007

Client Id: SD-1

Data File: 7M55340.D Analysis Date: 08/05/12 20:36

Date Rec/Extracted: 07/25/12-08/03/12

Column: DB-5MS 30M 0.250mm ID 0.25um film

Method: EPA 8270C

Matrix: Soil

Initial Vol: 30g

Final Vol: 1ml

Dilution: 1

Solids: 67

Units: mg/Kg

_		Onits.	ilig/Ng			
	RL	Conc	Cas #	Compound	RL	Conc
.,. = 4	0.10	U	205-99-2	Benzo[b]fluoranthene	0.10	U
	0.10	U	191-24-2	Benzo[g,h,i]perylene	0.10	U
	0.10	U	207-08-9	Benzo[k]fluoranthene	0.10	U
	0.10	U	111-91-1	bis(2-Chloroethoxy)methan	0.10	Ü
	0.10	U	111-44-4	bis(2-Chloroethyl)ether	0.025	Ü
	0.025	U	108-60-1		0.10	Ü
· ·	0.10	U	117-81-7	bis(2-Ethylhexyl)phthalate	0.10	Ü
	0.50	U	85-68-7	Butylbenzylphthalate	0.10	Ü
	0.10	Ų	105-60-2	Caprolactam		Ü
	0.10	Ų	86-74-8			Ü
	0.10	U	218-01-9	Chrysene		Ū
•	0.10	υ	53-70-3			Ü
2-Methylnaphthalene	0.10	U	132-64-9	Dibenzofuran		Ü
2-Methylphenol	0.025	U	84-66-2	Diethylphthalate		Ü
2-Nitroaniline	0.10	U	131-11-3	, ,		Ü
2-Nitrophenol	0.10	U				Ü
3&4-Methylphenol	0.025	U				U
3,3'-Dichlorobenzidine	0.10	U	206-44-0	Fluoranthene		U
3-Nitroaniline	0.10	U	86-73-7	Fluorene		U
4,6-Dinitro-2-methylphenol	0.50	U	118-74-1	Hexachlorobenzene		U
4-Bromophenyl-phenylether	0.10	υ	87-68-3	Hexachlorobutadiene	-	U
4-Chloro-3-methylphenol	0.10	υ	77-47-4			U
4-Chloroaniline	0.047	U	67-72-1			U
4-Chlorophenyl-phenylether	0.10	U	193-39-5			U
4-Nitroaniline	0.10	U	78-59-1			U
4-Nitrophenol	0.10	U		•		U
Acenaphthene	0.10	U	98-95-3	•		U
Acenaphthylene	0.10	U	621-64-7	· · · · · · · · · · · · · · · · · · ·		U
Acetophenone	0.10	U				U
Anthracene	0.10	υ				U
Atrazine	0.10	Ū				
Benzaldehyde	0.10	U		· · · · · · · ·		U
Benzo[a]anthracene	0.10					_
Benzo[a]pyrene	0.10	Ū		, ,,,,,,,	U. 1U	0.10
	1,1'-Biphenyl 1,2,4,5-Tetrachlorobenzene 2,3,4,6-Tetrachlorophenol 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Chlorophenol 2-Methylnaphthalene 2-Methylnaphthalene 2-Methylphenol 3-Nitroaniline 2-Nitrophenol 3,3'-Dichlorobenzidine 3-Nitroaniline 4,6-Dinitro-2-methylphenol 4-Bromophenyl-phenylether 4-Chloro-3-methylphenol 4-Chloroaniline 4-Nitrophenol Acenaphthene Acenaphthylene Acetophenone Anthracene Atrazine Benzaldehyde Benzo[a]anthracene	1,1'-Biphenyl       0.10         1,2,4,5-Tetrachlorobenzene       0.10         2,3,4,6-Tetrachlorophenol       0.10         2,4,5-Trichlorophenol       0.10         2,4,6-Trichlorophenol       0.025         2,4-Dichlorophenol       0.025         2,4-Dimethylphenol       0.10         2,4-Dinitrophenol       0.50         2,4-Dinitrotoluene       0.10         2,6-Dinitrotoluene       0.10         2-Chlorophenol       0.10         2-Methylnaphthalene       0.10         2-Methylnaphthalene       0.10         2-Methylphenol       0.025         2-Nitroaniline       0.10         3-Nitrophenol       0.10         3-Nitroaniline       0.10         4-G-Dinitro-2-methylphenol       0.50         4-Bromophenyl-phenylether       0.10         4-Chloro-3-methylphenol       0.10         4-Chlorophenyl-phenylether       0.10         4-Chlorophenyl-phenylether       0.10         4-Nitroaniline       0.10         4-Nitroaniline       0.10         4-Chlorophenol       0.10         Acenaphthene       0.10         Acenaphthylene       0.10         Acetophenone       0.1	Compound         RL         Conc           1,1'-Biphenyl         0.10         U           1,2,4,5-Tetrachlorobenzene         0.10         U           2,3,4,6-Tetrachlorophenol         0.10         U           2,4,5-Trichlorophenol         0.10         U           2,4,5-Trichlorophenol         0.10         U           2,4,5-Trichlorophenol         0.10         U           2,4,5-Trichlorophenol         0.10         U           2,4-Dinitrophenol         0.10         U           2,4-Dinitrophenol         0.50         U           2,4-Dinitrophenol         0.10         U           2,4-Dinitrotoluene         0.10         U           2,4-Dinitrotoluene         0.10         U           2,4-Dinitrotoluene         0.10         U           2,6-Dinitrotoluene         0.10         U           2,6-Dinitrotoluene         0.10         U           2-Chlorophenol         0.10         U           2-Methylphenol         0.10         U           2-Methylphenol         0.10         U           3,3'-Dichlorobenzidine         0.10         U           3,3'-Dichlorobenzidine         0.10         U           4	1,1'-Bipheny	Compound         RL         Conc         Cas # Compound           1.1-Biphenyl         0.10         U         205-99-2         Benzo[bjfluoranthene           1.2.4.5-Tetrachlorobenzene         0.10         U         191-24-2         Benzo[bjfluoranthene           2.3.4.6-Tetrachlorophenol         0.10         U         111-91-1         bis(2-Chloroethoxy)methan           2.4.5-Trichlorophenol         0.10         U         111-91-1         bis(2-Chloroethyt)ether           2.4.Dichlorophenol         0.10         U         111-44-4         bis(2-Chlorospy)ether           2.4-Dinitrophenol         0.50         U         85-68-7         Butylbenzylphthalate           2.4-Dinitrotoluene         0.10         U         105-60-2         Caprolactam           2.4-Dinitrotoluene         0.10         U         86-74-8         Carbazole           2.Chloronaphthalene         0.10         U         218-01-9         Chrysene           2-Chlorophenol         0.10         U         33-70-3         Dibenzo[a,h]anthracene           2-Methylinaphthalene         0.10         U         33-64-9         Dibenzo[a,h]anthracene           2-Nitrophenol         0.10         U         34-66-2         Diethyliphthalate           2-Nitr	Compound         RL         Conc         Cas # Compound         RL           1,1'-Biphenyl         0.10         U         205-99-2 Benzo(p)fluoranthene         0.10           1,2,4,5-Tetrachlorobenzene         0.10         U         191-24-2 Benzo(p,1)perylene         0.10           2,3,4,6-Tetrachlorophenol         0.10         U         207-08-9 Benzo(p,1)perylene         0.10           2,4,6-Trichlorophenol         0.10         U         111-91-1 bis(2-Chloroethxy)methan         0.10           2,4-Dichlorophenol         0.025         U         108-60-1 bis(2-Chloroethy)plether         0.025           2,4-Dinitrophenol         0.10         U         117-81-7 bis(2-Ethylhexyl)phthalate         0.10           2,4-Dinitrophenol         0.50         U         36-58-7 Butylbenzylphthalate         0.10           2,4-Dinitrotoluene         0.10         U         105-60-2 Caprolactam         0.10           2,4-Dinitrotoluene         0.10         U         218-01-9 Chrysene         0.10           2,Chloronaphthalene         0.10         U         218-01-9 Chrysene         0.10           2-Methylphenol         0.025         U         34-66-9 Dibenzofa, hjanthracene         0.10           2-Methylphenol         0.025         U         34-66-

Worksheet #: 236086

Total Target Concentration

ColumnID: (^) Indicates results from 2nd column

0.1

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

## ORGANICS SEMIVOLATILE REPORT Tentatively Identified Compounds

Sample Number: AC67281-007

Client Id: SD-1

Data File: 7M55340.D

Analysis Date: 08/05/12 20:36

Date Rec/Extracted: 07/25/12-08/03/12

Matrix: Soil Initial Vol: 30g Final Vol: 1ml

Dilution: 1

Solids: 67

Method: EPA 8270C

Units: mg/Kg

	Cas #	Compound	RT	Conc
1	57-55-6	1,2-Propanediol	3.11	0.26 JB
2		unknown	4.10	3.6 JB
3	123-42-2	2-Pentanone, 4-hydroxy-4-methyl-	4.43	140 JAB
4		unknown	5.07	1.4 JB
5	611-14-3	Benzene, 1-ethyl-2-methyl-	5.45	0.30 JB
6	108-67-8	Benzene, 1,3,5-trimethyl-	5.70	0.39 JB
7		unknown	6.81	0.45 JB
8	87953-43-3	(E)- and (Z)-15-n-propyl-7,13-labdadiene	12.41	1.0 J
9	1632-70-8	Undecane, 5-methyl-	12.72	0.28 J
10	630-01-3	Hexacosane	13.49	0.58 J
11		unknown	13.85	0.27 J
12	7320-37-8	Oxirane, tetradecyl-	14.01	0.38 J
13	112-95-8	Eicosane	14.22	0.64 J
14	629-80-1	Hexadecanal	14.80	0.77 J
15	112-95-8	Eicosane	15.02	0.68 J
16		unknown	15.25	0.34 J
17		unknown	15.37	0.39 J
18	638-66-4	Octadecanal	15.75	0.61 J
19		unknown	16.42	0.97 J
20		unknown	16.60	0.29 J
21		unknown	16.84	0.37 J
22		unknown	16.91	0.26 J
23		unknown	17.01	0.42 J
24		unknown	17.06	1.9 J
25	1058-61-3	Stigmast-4-en-3-one	17.31	0.51 J

Worksheet #: 236086

A - Indicates an aldol condensate.

A - Indicates an autor condensate. A - Indicates an estimated value, B - Indicates the analyte was found in the blank as well as in the sample, Y - Indicates the analyte was found in the blank at <10% of the concentration of the sample.

<10% - Indicates the analyte was found in the blank at < 10% of nearest Internal Standard

#### ORGANICS SEMIVOLATILE REPORT

Sample Number: AC67281-008

Method: EPA 8270C

Client Id: SD-2

Matrix: Soil

Data File: 7M55339.D

Initial Vol: 30g

Analysis Date: 08/05/12 20:12 Date Rec/Extracted: 07/25/12-08/03/12 Final Vol: 1ml Dilution: 1

Column: DB-5MS 30M 0.250mm ID 0.25um film

Solids: 14

Units: mg/Kg

Olika. hig/kg							
Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc
92-52-4	1,1'-Biphenyl	0.48	U	205-99-2	Benzo[b]fluoranthene	0.48	U
	1,2,4,5-Tetrachlorobenzene	0.48	U	191-24-2	Benzo[g,h,i]perylene	0.48	U
58-90-2	2,3,4,6-Tetrachlorophenol	0.48	U	207-08-9	Benzo[k]fluoranthene	0.48	U
95-95-4	2,4,5-Trichlorophenol	0.48	U	111-91-1	bis(2-Chloroethoxy)methan	0.48	U
88-06-2	2,4,6-Trichlorophenol	0.48	U	111-44-4	bis(2-Chloroethyl)ether	0.12	U
120-83-2	2,4-Dichlorophenol	0.12	U	108-60-1	bis(2-chloroisopropyl)ether	0.48	U
105-67-9	2,4-Dimethylphenol	0.48	U	117-81-7	bis(2-Ethylhexyl)phthalate	0.48	U
51-28-5	2,4-Dinitrophenol	2.4	U	85-68-7	Butylbenzylphthalate	0.48	U
121-14-2	2,4-Dinitrotoluene	0.48	U	105-60-2	Caprolactam	0.48	U
606-20-2	2,6-Dinitrotoluene	0.48	U	86-74-8	Carbazole	0.48	U
91-58-7	2-Chloronaphthalene	0.48	U	218-01-9	Chrysene	0.48	U
95-57-8	2-Chlorophenol	0.48	υ	53-70-3	Dibenzo[a,h]anthracene	0.48	U
91-57-6	2-Methylnaphthalene	0.48	U	132-64-9	Dibenzofuran	0.12	U
95-48-7	2-Methylphenol	0.12	U	84-66-2	Diethylphthalate	0.48	U
88-74-4	2-Nitroaniline	0.48	U	131-11-3	Dimethylphthalate	0.48	U
88-75-5	2-Nitrophenol	0.48	Ų	84-74-2	Di-n-butylphthalate	0.24	U
106-44-5	3&4-Methylphenol	0.12	U	117-84-0	• •	0.48	Ü
91-94-1	3,3'-Dichlorobenzidine	0.48	U	206-44-0	Fluoranthene	0.48	Ü
99-09-2	3-Nitroaniline	0.48	U	86-73-7	Fluorene	0.48	Ū
534-52-1	4,6-Dinitro-2-methylphenol	2.4	U	118-74-1	Hexachlorobenzene	0.48	Ū
101-55-3	4-Bromophenyl-phenylether	0.48	U	87-68-3	Hexachlorobutadiene	0.48	U
59-50-7	4-Chloro-3-methylphenol	0.48	U	77-47-4	Hexachlorocyclopentadiene	0.48	Ü
106-47-8	4-Chloroaniline	0.23	U	67-72-1	Hexachloroethane	0.48	Ū
7005-72-3	4-Chlorophenyl-phenylether	0.48	U	193-39-5	Indeno[1,2,3-cd]pyrene	0.48	Ü
100-01-6	4-Nitroaniline	0.48	U	78-59-1	Isophorone	0.48	Ü
100-02-7	4-Nitrophenol	0.48	U	91-20-3	Naphthalene	0.12	Ü
83-32-9	Acenaphthene	0.48	U	98-95-3	Nitrobenzene	0.48	U
208-96-8	Acenaphthylene	0.48	U	621-64-7	N-Nitroso-di-n-propylamine	0.12	Ü
98-86-2	Acetophenone	0.48	U	86-30-6	n-Nitrosodiphenylamine	0.48	U
120-12-7	Anthracene	0.48	Ų	87-86-5	Pentachlorophenol	0.80	U ő
1912-24-9	Atrazine	0.48	U	85-01-8	Phenanthrene	0.48	U
100-52-7	Benzaldehyde	0.48	U	108-95-2		0.48	U
56-55-3	Benzo[a]anthracene	0.48	U		Pyrene	0.48	Ú
50-32-8	Benzo[a]pyrene	0.48	U		-		-

Worksheet #: 236095

Total Target Concentration

ColumnID: (^) Indicates results from 2nd column

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument

R - Retention Time Out

 $^{{\}it J}$  - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

#### Form1e

#### ORGANICS SEMIVOLATILE REPORT Tentatively Identified Compounds

Sample Number: AC67281-008

Client Id: SD-2

Data File: 7M55339.D

Analysis Date: 08/05/12 20:12

Date Rec/Extracted: 07/25/12-08/03/12

Matrix: Soil Initial Vol: 30g Final Vol: 1ml

Dilution: 1

Solids: 14

Method: EPA 8270C

Units: mg/Kg

	Cas #	Compound	RT	Conc
1		unknown	4.10	21 JB
2	123-42-2	2-Pentanone, 4-hydroxy-4-methyl-	4.44	790 JAB
3		unknown	5.07	8.0 JB
4	18435-45-5	1-Nonadecene	12.72	7.5 J
5	124-25-4	Tetradecanal	13.27	3.9 J
6	7225-66-3	Tridecane, 7-hexyl-	13.49	26 J
7	630-06-8	Hexatriacontane	13.86	3.2 J
8	59681-06-0	10-DEMETHYLSQUALENE	13.93	2.8 J
9	124-25-4	Tetradecanal	14.02	13 J
10	13475-75-7	Pentadecane, 8-hexyl-	14.22	26 J
11	58296-52-9	Tetracosanolide	14.25	8.1 J
12	56555-07-8	2,2-DIDEUTERO OCTADECANAL	14.80	14 J
13	7098-22-8	Tetratetracontane	15.02	8.1 J
14	74685-33-9	3-Eicosene, (E)-	15.07	3.2 J
15		unknown	15.13	2.9 J
16	59-02-9	Vitamin E	15.25	4.4 J
17	57-88-5	Cholest-5-en-3-ol (3.beta.)-	15.38	3.8 J
18	124-25-4	Tetradecanal	15.75	9.6 J
19		unknown	15.96	3.8 J
20		unknown	16.10	3.1 J
21	83-47-6	Stigmast-5-en-3-ol, (3.beta.,24S)-	16.43	18 J
22	69611-14-9	6-Acetyl-5-hydroxy-1,8-dimethyl-1,2,3,4-	16.61	3.5 J
23		unknown	16.76	3.8 J
24	78854-21-4	[2S-(2alpha.,4abeta.,5alpha.,8al	16.84	3.7 J
25	1058-61-3	(24R)-4-STIGMASTEN-3-ONE	17.31	9.3 J

Worksheet #: 236095

Total Tentatively Identified Concentration 1000

A - Indicates an aldol condensate.

<sup>Indicates an estimated value.
Indicates an estimated value.
Indicates the analyte was found in the blank as well as in the sample.
Indicates the analyte was found in the blank at <10% of the concentration of the sample.</li></sup> <10% - Indicates the analyte was found in the blank at < 10% of nearest Internal Standard

#### Form1

#### ORGANICS SEMIVOLATILE REPORT

Sample Number: AC67281-009

Client Id: SD-4

Data File: 7M55338.D Analysis Date: 08/05/12 19:47

Date Rec/Extracted: 07/25/12-08/03/12

Column: DB-5MS 30M 0.250mm ID 0.25um film

Method: EPA 8270C

Matrix: Soil

Initial Vol: 30g

Final Vol: 1ml

Dilution: 1

Solids: 31

Units: mg/Kg

			Units: m	ig/ <b>n</b> g			
Cas #	Compound	RL	Conc	Cas#	Compound	RL	Conc
92-52-4	., 17.	0.22	U	205-99-2		0.22	U
95-94-3	3 1,2,4,5-Tetrachlorobenzene	0.22	U	191-24-2	Benzo[g,h,i]perylene	0.22	U
58-90-2	2 2,3,4,6-Tetrachlorophenol	0.22	U	207-08-9	Benzo[k]fluoranthene	0.22	U
	2,4,5-Trichlorophenol	0.22	U	111-91-1	bis(2-Chloroethoxy)methan	0.22	Ü
88-06-2	2 2,4,6-Trichlorophenol	0.22	υ	111-44-4	bis(2-Chloroethyl)ether	0.054	Ū
	2,4-Dichlorophenol	0.054	U	108-60-1		0.22	U
105-67-9	2,4-Dimethylphenol	0.22	U	117-81-7		0.22	Ü
51-28-5	2,4-Dinitrophenol	1.1	U	85-68-7		0.22	U
121-14-2	2,4-Dinitrotoluene	0.22	U	105-60-2	• • •	0.22	Ü
606-20-2	2,6-Dinitrotoluene	0.22	Ų	86-74-8	Carbazole	0.22	Ü
91-58-7	2-Chloronaphthalene	0.22	U	218-01-9	Chrysene	0.22	Ü
95-57-8	2-Chlorophenol	0.22	U	53-70-3	Dibenzo[a,h]anthracene	0.22	U
91-57-6	2-Methylnaphthalene	0.22	U	132-64-9	Dibenzofuran	0.054	Ü
95-48-7	2-Methylphenol	0.054	U	84-66-2		0.22	U
88-74-4	2-Nitroaniline	0.22	U	131-11-3	Dimethylphthalate	0.22	U
88-75-5	2-Nitrophenol	0.22	U	84-74-2		0.11	U
106-44-5	3&4-Methylphenol	0.054	U	117-84-0	Di-n-octylphthalate	0.22	U
91-94-1	3,3'-Dichlorobenzidine	0.22	U	206-44-0	Fluoranthene	0.22	U
99-09-2	3-Nitroaniline	0.22	U	86-73-7		0.22	U
534-52-1	4,6-Dinitro-2-methylphenol	1.1	U	118-74-1	Hexachlorobenzene	0.22	U
101-55-3	4-Bromophenyl-phenylether	0.22	U	87-68-3	Hexachlorobutadiene	0.22	U
59-50-7	4-Chloro-3-methylphenol	0.22	U	77-47-4	Hexachlorocyclopentadiene	0.22	U
106-47-8	4-Chloroaniline	0.10	U	67-72-1	Hexachloroethane	0.22	U
7005-72-3	4-Chlorophenyl-phenylether	0.22	U	193-39-5	Indeno[1,2,3-cd]pyrene	0.22	Ü
100-01-6	4-Nitroaniline	0.22	U	78-59-1	Isophorone	0.22	U
100-02-7	4-Nitrophenol	0.22	U	91-20-3	Naphthalene	0.054	U
83-32-9	Acenaphthene	0.22	U	98-95-3	Nitrobenzene	0.22	U
208-96-8	Acenaphthylene	0.22	U		N-Nitroso-di-n-propylamine	0.054	U
98-86-2	Acetophenone	0.22	υ		n-Nitrosodiphenylamine	0.034	U
120-12-7	Anthracene	0.22	U		Pentachlorophenol	0.22	U
1912-24-9	Atrazine	0.22	U		Phenanthrene	0.30	U
100-52-7	Benzaldehyde	0.22	U	108-95-2		0.22	U
56-55-3	Benzo[a]anthracene	0.22	U	129-00-0		0.22	0.28
50-32-8	Benzo[a]pyrene	0.22	U		. ,	U.ZZ	U.28
50-32-8				123-00-0	ryielle	0.22	0.

Worksheet #: 236086

Total Target Concentration

ColumnID: (^) Indicates results from 2nd column

0.28

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide % Diff>40% between columns due to coelution. Lower concentration usea

## Form1e

## ORGANICS SEMIVOLATILE REPORT Tentatively Identified Compounds

Sample Number: AC67281-009

Client Id: SD-4

Data File: 7M55338.D

Analysis Date: 08/05/12 19:47

Date Rec/Extracted: 07/25/12-08/03/12

Matrix: Soil

Initial Vol: 30g Final Vol: 1ml

Dilution: 1

Solids: 31

Method: EPA 8270C

Units: mg/Kg

		ointo. Ing/itg		
	Cas #	Compound	RT	Conc
1		unknown	4.12	12 JB
2	123-42-2	2-Pentanone, 4-hydroxy-4-methyl-	4.45	440 JAB
3		unknown	5.07	4.6 JB
4	7098-22-8	Tetratetracontane	12.72	3.2 J
5	55282-17-2	Tetracosane, 3-ethyl-	13.49	5.1 J
6	56554-87-1	16-Octadecenal	14.02	4.7 J
7	630-02-4	Octacosane	14.22	10 J
8	297-03-0	Cyclotetracosane	14.25	3.2 J
9	124-25-4	Tetradecanal	14.80	7.4 J
10	593-49-7	Heptacosane	15,02	6.5 J
11	6971-40-0	17-Pentatriacontene	15.08	2.2 J
12	59-02-9	Vitamin E	15.26	4.0 J
13		unknown	15.38	1.8 J
14	56554-92-8	10-Octadecenal	15.76	5.8 J
15		unknown	15.95	1.9 J
16	7225-64-1	Heptadecane, 9-octyl-	16.02	4.0 J
17		unknown	16.09	2.3 J
18	83-47-6	Stigmast-5-en-3-ol, (3.beta.,24S)-	16.43	12 J
19	71583-68-1	1,2,3,3a,5,6,6a,7-Octahydro-1,3a,6-trim	16.61	3.3 J
20		unknown	16.77	3.0 J
21	74428-82-3	2-Chloro-p-methoxybiphenyl	16.84	16 J
22	5945-53-9	D:C-Friedooleanan-3-one	16.92	6.0 J
23	4429-77-0	Cycloheptadecanol	17.01	2.0 J
24	85544-99-6	Ethynyl (1R*,2R*,5S*)-5,8,8-trimethylbic	17.14	19 J
25	1058-61-3	(24R)-4-STIGMASTEN-3-ONE	17.32	6.1 J

Worksheet #: 236086

Total Tentatively Identified Concentration 590

A - Indicates an aldol condensate.
J - Indicates an estimated value.
B - Indicates the analyte was found in the blank as well as in the sample.
Y - Indicates the analyte was found in the blank at <10% of the concentration of the sample. <10% - Indicates the analyte was found in the blank at < 10% of nearest Internal Standard

#### Form1

#### ORGANICS SEMIVOLATILE REPORT

Sample Number: AC67281-010

Client Id: PC-2 U

Data File: 10M31978.D

Analysis Date: 08/01/12 18:55 Date Rec/Extracted: 07/25/12-08/01/12

Column: DB-5MS 30M 0.250mm ID 0.25um film

Method: EPA 625

Matrix: Aqueous

Initial Vol: 980ml

Final Vol: 1ml Dilution: 1

Solids: 0

Units: ug/L

			Units: ເ	ug/L			
Cas #		RL	Conc	Cas #	Compound	RL	Conc
	4 1,1'-Biphenyl	2.0	U	205-99-2		2.0	U
	3 1,2,4,5-Tetrachlorobenzene	2.0	U	191-24-2	Benzo[g,h,i]perylene	2.0	U
	2 2,3,4,6-Tetrachlorophenol	2.0	U	207-08-9	Benzo[k]fluoranthene	2.0	Ü
	1 2,4,5-Trichlorophenol	2.0	U	111-91-1	= =	2.0	U
	2 2,4,6-Trichlorophenol	2.0	U	111-44-4		0.51	Ü
	2 2,4-Dichlorophenol	2.0	U	108-60-1	bis(2-chloroisopropyl)ether	2.0	U
	2,4-Dimethylphenol	2.0	U	117-81-7	bis(2-Ethylhexyl)phthalate	2.0	U
	2,4-Dinitrophenol	10	U	85-68-7	Butylbenzylphthalate	2.0	U
	2,4-Dinitrotoluene	2.0	U		Caprolactam	2.0	U
	2,6-Dinitrotoluene	2.0	U		Carbazole	2.0	_
	2-Chloronaphthalene	2.0	U	218-01-9		2.0	U
	2-Chlorophenol	2.0	U		Dibenzo[a,h]anthracene	2.0	U
	2-Methylnaphthalene	2.0	U		Dibenzofuran	0.51	U
	2-Methylphenol	0.51	U		Diethylphthalate	2.0	U
	2-Nitroaniline	2.0	U		Dimethylphthalate	2.0	U
88-75-5	2-Nitrophenol	2.0	U		Di-n-butylphthalate	0.51	U
106-44-5		0.51	U		Di-n-octylphthalate	2.0	U
	3,3'-Dichlorobenzidine	2.0	υ		Fluoranthene	2.0	U
	3-Nitroaniline	2.0	U	86-73-7		2.0	U
	4,6-Dinitro-2-methylphenol	10	U		Hexachloroberzene	2.0	U
	4-Bromophenyl-phenylether	2.0	U		Hexachlorobutadiene	2.0	U
	4-Chloro-3-methylphenol	2.0	U		Hexachlorocyclopentadiene		U
	4-Chloroaniline	0.51	U		Hexachloroethane	2.0	U
7005-72-3	4-Chlorophenyl-phenylether	2.0	U		Indeno[1,2,3-cd]pyrene	2.0	U
100-01-6	4-Nitroaniline	2.0	U		sophorone	2.0	U
100-02-7	4-Nitrophenol	2.0	Ū	•	Naphthalene	2.0	U
	Acenaphthene	2.0	Ū		Nitrobenzene	0.51	U
208-96-8	Acenaphthylene	2.0	U		N-Nitroso-di-n-propylamine	2.0	U
98-86-2	Acetophenone	2.0	Ū		n-Nitrosodiphenylamine	0.51	U
120-12-7	Anthracene	2.0	Ü		Pentachlorophenol	2.0	U
1912-24-9	Atrazine	2.0	Ü		Phenanthrene	10	U
100-52-7	Benzaldehyde	2.0	Ü	108-95-2 F		2.0	U
56-55-3	Benzo[a]anthracene	2.0	Ü			2.0	U
	Benzo[a]pyrene	2.0	U	129-00-0 P	ryrene	2.0	U
	• • •	2.0	V				

Worksheet #: 236276

**Total Target Concentration** 

ColumnID: (^) Indicates results from 2nd column

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

#### Form1e

ORGANICS SEMIVOLATILE REPORT Tentatively Identified Compounds

Sample Number: AC67281-010

Client Id: PC-2 U

Data File: 10M31978.D

Analysis Date: 08/01/12 18:55

Date Rec/Extracted: 07/25/12-08/01/12

Matrix: Aqueous Initial Vol: 980ml

Final Vol: 1ml

Dilution: 1 Solids:

Method: EPA 625

Units: ug/L

Cas #	Compound	RT	Conc
1	No Unknown Compounds Detected	0.00	0.1

Worksheet #: 236276

# Total Tentatively Identified Concentration 0

A - Indicates an aldol condensate.

<sup>A - Indicates an audi condensate.
J - Indicates an estimated value.
B - Indicates the analyte was found in the blank as well as in the sample.
Y - Indicates the analyte was found in the blank at <10% of the concentration of the sample.</li></sup>  $<\!10\%$  - Indicates the analyte was found in the blank at  $<\!10\%$  of nearest Internal Standard

#### Form1

## ORGANICS SEMIVOLATILE REPORT

Sample Number: AC67281-012

Client Id: LMW-2 U
Data File: 9M45099.D
Analysis Date: 08/01/12 17:56

Date Rec/Extracted: 07/25/12-08/01/12

Column: DB-5MS 30M 0.250mm ID 0.25um film

Method: EPA 625 Matrix: Aqueous

Initial Vol: 500ml Final Vol: 0.5ml

Dilution: 1 Solids: 0

Units: ug/L

			omis: u	g/L			
Cas #	the control of the co	RL	Conc	Cas #	Compound	RL	Conc
	1,1'-Biphenyl	2.0	U	205-99-2	Benzo[b]fluoranthene	2.0	U
95-94-3	. , .	2.0	U	191-24-2	Benzo[g,h,i]perylene	2.0	U
	2,3,4,6-Tetrachlorophenol	2.0	U	207-08-9	Benzo[k]fluoranthene	2.0	U
	2,4,5-Trichlorophenol	2.0	U	111-91-1	bis(2-Chloroethoxy)methan	2.0	U
	2,4,6-Trichlorophenol	2.0	U	111-44-4		0.50	Ü
	2,4-Dichlorophenol	2.0	U	108-60-1	bis(2-chloroisopropyl)ether	2.0	Ü
	2,4-Dimethylphenol	2.0	U	117-81-7		2.0	Ü
	2,4-Dinitrophenol	10	U	85-68-7		2.0	Ü
	2,4-Dinitrotoluene	2.0	U	105-60-2		2.0	Ü
	2,6-Dinitrotoluene	2.0	U	86-74-8		2.0	Ü
	2-Chloronaphthalene	2.0	U	218-01-9	Chrysene	2.0	Ü
95-57-8	2-Chlorophenol	2.0	U	53-70-3	Dibenzo[a,h]anthracene	2.0	U
91-57-6	2-Methylnaphthalene	2.0	U	132-64-9		0.50	U
95-48-7	2-Methylphenol	0.50	U	84-66-2	Diethylphthalate	2.0	U
88-74-4	2-Nitroaniline	2.0	U	131-11-3		2.0	U
88-75-5	2-Nitrophenol	2.0	U	84-74-2	Di-n-butylphthalate	0.50	U
106-44-5	3&4-Methylphenol	0.50	U	117-84-0		2.0	U
91-94-1	3,3'-Dichlorobenzidine	2.0	υ	206-44-0	- ·	2.0	U
99-09-2	3-Nitroaniline	2.0	U	86-73-7		2.0	U
534-52-1	4,6-Dinitro-2-methylphenol	10	U	118-74-1		2.0	U
	4-Bromophenyl-phenylether	2.0	U	87-68-3	Hexachlorobutadiene	2.0	U
59-50-7	4-Chloro-3-methylphenol	2.0	U		Hexachlorocyclopentadiene	2.0	
106-47-8	4-Chloroaniline	0.50	U	67-72-1	Hexachloroethane	2.0	U U
7005-72-3	4-Chlorophenyl-phenylether	2.0	U		Indeno[1,2,3-cd]pyrene	2.0	U
100-01-6	4-Nitroaniline	2.0	U	78-59-1	Isophorone	2.0	U
100-02-7	4-Nitrophenol	2.0	U	91-20-3	Naphthalene	0.50	-
83-32-9	Acenaphthene	2.0	U		Nitrobenzene	2.0	U
208-96-8	Acenaphthylene	2.0	Ū		N-Nitroso-di-n-propylamine	2.0 0.50	U
98-86-2	Acetophenone	2.0	U		n-Nitrosodiphenylamine	2.0	U
120-12-7	Anthracene	2.0	Ū		Pentachlorophenol	2.0 10	U
1912-24-9	Atrazine	2.0	Ü		Phenanthrene	2.0	U
100-52-7	Benzaldehyde	2.0	Ű	108-95-2		_	U
56-55-3	Benzo[a]anthracene	2.0	Ũ	129-00-0		2.0	U
	Benzo[a]pyrene	2.0	Ü	125-55-0	i yiche	2.0	U
			-				

Worksheet #: 236276

Total Target Concentration

ColumnID: (^) Indicates results from 2nd column

R - Retention Time Out

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample. E - Indicates the analyte concentration exceeds the calibration range of the

of the

J - Indicates are estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

#### Form1e

#### ORGANICS SEMIVOLATILE REPORT Tentatively Identified Compounds

Sample Number: AC67281-012

Client Id: LMW-2 U

Data File: 9M45099.D

Analysis Date: 08/01/12 17:56

Date Rec/Extracted: 07/25/12-08/01/12

Matrix: Aqueous Initial Vol: 500ml Final Vol: 0.5ml

Dilution: 1 Solids:

Method: EPA 625

Units: ug/L

Cas #	Compound	RT	Conc
1	No Unknown Compounds Detected	0.00	OJ

Worksheet #: 236276

Total Tentatively Identified Concentration 0

A - Indicates an aldol condensate.

J - Indicates an estimated value. B - Indicates the analyte was found in the blank as well as in the sample. Y - Indicates the analyte was found in the blank at <10% of the concentration of the sample.  $<\!10\%$  - Indicates the analyte was found in the blank at  $<\!10\%$  of nearest Internal Standard

#### Form1

#### ORGANICS SEMIVOLATILE REPORT

Sample Number: AC67281-014

Client Id: FB-1 LF U Data File: 10M31979.D Analysis Date: 08/01/12 19:17

Date Rec/Extracted: 07/25/12-08/01/12

Column: DB-5MS 30M 0.250mm ID 0.25um film

Method: EPA 625

Matrix: Aqueous

Initial Vol: 980ml Final Vol: 1ml

Dilution: 1

Solids: 0

Units: ug/L

_	_		Units: u	ıg/L			
Cas #	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	RL	Conc	Cas #	Compound	RL	Conc
92-52-4	,	2.0	U	205-99-2	Benzo[b]fluoranthene	2.0	U
95-94-3	, , ,	2.0	U	191-24-2	Benzo[g,h,i]perylene	2.0	Ü
	2,3,4,6-Tetrachlorophenol	2.0	U	207-08-9	Benzo[k]fluoranthene	2.0	Ü
	2,4,5-Trichlorophenol	2.0	U	111-91-1	bis(2-Chloroethoxy)methan	2.0	Ü
	2,4,6-Trichlorophenol	2.0	U	111-44-4		0.51	U
	2,4-Dichlorophenol	2.0	U	108-60-1		2.0	Ü
	2,4-Dimethylphenol	2.0	U	117-81-7		2.0	Ü
	2,4-Dinitrophenol	10	U	85-68-7		2.0	Ü
	2,4-Dinitrotoluene	2.0	U	105-60-2		2.0	U
606-20-2	2,6-Dinitrotoluene	2.0	U	86-74-8	Carbazole	2.0	Ü
91-58-7		2.0	U	218-01-9	Chrysene	2.0	Ü
95-57-8	2-Chlorophenol	2.0	U	53-70-3	•	2.0	U
91-57-6	2-Methylnaphthalene	2.0	U	132-64-9	Dibenzofuran	0.51	U
95-48-7	2-Methylphenol	0.51	U	84-66-2	Diethylphthalate	2.0	U
88-74-4	2-Nitroaniline	2.0	U	131-11-3	Dimethylphthalate	2.0	U
88-75-5	• •	2.0	U	84-74-2		0.51	U
106-44-5	3&4-Methylphenol	0.51	Ų	117-84-0	• • • • • • • • • • • • • • • • • • • •	2.0	U
91-94-1	3,3'-Dichlorobenzidine	2.0	U	206-44-0	<b>7</b> 1	2.0	U
99-09-2	3-Nitroaniline	2.0	υ	86-73-7		2.0	U
534-52-1	4,6-Dinitro-2-methylphenol	10	U	118-74-1		2.0	U
	4-Bromophenyl-phenylether	2.0	U	87-68-3	Hexachlorobutadiene	2.0	U
59-50-7	4-Chloro-3-methylphenol	2.0	U		Hexachlorocyclopentadiene	2.0	U
	4-Chloroaniline	0.51	U		Hexachloroethane	2.0	-
7005-72-3	4-Chlorophenyl-phenylether	2.0	U		Indeno[1,2,3-cd]pyrene	2.0	U U
100-01-6	4-Nitroaniline	2.0	U		Isophorone	2.0	U
100-02-7	4-Nitrophenol	2.0	U		Naphthalene	0.51	~
83-32-9	Acenaphthene	2.0	U		Nitrobenzene	2.0	U
208-96-8	Acenaphthylene	2.0	U		N-Nitroso-di-n-propylamine	0.51	U
98-86-2	Acetophenone	2.0	Ū		n-Nitrosodiphenylamine		U
120-12-7	Anthracene	2.0	U		Pentachlorophenol	2.0	U
1912-24-9	Atrazine	2.0	U		Phenanthrene	10	U
100-52-7	Benzaldehyde	2.0	Ü	108-95-2		2.0	U
56-55-3	Benzo[a]anthracene	2.0	U	129-00-0		2.0	U
	Benzo[a]pyrene	2.0	Ū	123-00-0	r yrene	2.0	U
			9				

Worksheet #: 236276

Total Target Concentration

ColumnID: (^) Indicates results from 2nd column

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used

#### Form1e

ORGANICS SEMIVOLATILE REPORT Tentatively Identified Compounds

Sample Number: AC67281-014

Client Id: FB-1 LF U

Data File: 10M31979.D

Analysis Date: 08/01/12 19:17

Date Rec/Extracted: 07/25/12-08/01/12

Matrix: Aqueous Initial Vol: 980ml Final Vol: 1ml

Dilution: 1 Solids:

Method: EPA 625

Units: ug/L

Cas #	Compound	RT	Conc
1	No Unknown Compounds Detected	0.00	0 J

Worksheet #: 236276

Total Tentatively Identified Concentration 0

A - Indicates an aldol condensate. J - Indicates an estimated value.

B - Indicates the analyte was found in the blank as well as in the sample, Y - Indicates the analyte was found in the blank at <10% of the concentration of the sample. <10% - Indicates the analyte was found in the blank at < 10% of nearest Internal Standard

#### Form1

#### ORGANICS SEMIVOLATILE REPORT

Sample Number: AC67281-016

Client Id: LMW-4 U Data File: 10M31980.D Analysis Date: 08/01/12 19:39

Date Rec/Extracted: 07/25/12-08/01/12

Column: DB-5MS 30M 0.250mm ID 0.25um film

Method: EPA 625 Matrix: Aqueous

Initial Vol: 990ml

Final Vol: 1ml Dilution: 1

Solids: 0

Units: ug/L

	Units: ug/L									
Cas #		RL	Conc	Cas #	Compound	RL	Conc			
	1,1'-Biphenyl	2.0	U	205-99-2	Benzo[b]fluoranthene	2.0	U			
95-94-3	1,2,4,5-Tetrachlorobenzene	2.0	U	191-24-2	Benzo[g,h,i]perylene	2.0	U			
58-90-2	2,3,4,6-Tetrachlorophenol	2.0	U	207-08-9	Benzo[k]fluoranthene	2.0	U			
95-95-4	2,4,5-Trichlorophenol	2.0	U	111-91-1	bis(2-Chloroethoxy)methan	2.0	U			
88-06-2	2,4,6-Trichlorophenol	2.0	U	111-44-4	bis(2-Chloroethyl)ether	0.51	U			
120-83-2	2,4-Dichlorophenol	2.0	U	108-60-1	bis(2-chloroisopropyl)ether	2.0	U			
105-67-9	2,4-Dimethylphenol	2.0	U	117-81-7	bis(2-Ethylhexyl)phthalate	2.0	U			
51-28-5	2,4-Dinitrophenol	10	U	85-68-7	Butylbenzylphthalate	2.0	U			
121-14-2	2,4-Dinitrotoluene	2.0	U	105-60-2	Caprolactam	2.0	U			
606-20-2	2,6-Dinitrotoluene	2.0	U	86-74-8	Carbazole	2.0	U			
91-58-7	2-Chloronaphthalene	2.0	U	218-01-9	Chrysene	2.0	Ū			
95-57-8	2-Chlorophenol	2.0	U	53-70-3	Dibenzo[a,h]anthracene	2.0	U			
91-57-6	2-Methylnaphthalene	2.0	U	132-64-9	Dibenzofuran	0.51	Ū			
95-48-7	2-Methylphenol	0.51	U	84-66-2	Diethylphthalate	2.0	Ü			
88-74-4	2-Nitroaniline	2.0	U	131-11-3	Dimethylphthalate	2.0	Ü			
88-75-5	2-Nitrophenol	2.0	U	84-74-2	Di-n-butylphthalate	0.51	Ū			
106-44-5	3&4-Methylphenol	0.51	U	117-84-0		2.0	Ü			
91-94-1	3,3'-Dichlorobenzidine	2.0	U	206-44-0	Fluoranthene	2.0	Ü			
99-09-2	3-Nitroaniline	2.0	υ	86-73-7	Fluorene	2.0	Ü			
534-52-1	4,6-Dinitro-2-methylphenol	10	υ	118-74-1	Hexachlorobenzene	2.0	Ü			
	4-Bromophenyl-phenylether	2.0	U	87-68-3	Hexachlorobutadiene	2.0	Ü			
59-50-7	4-Chloro-3-methylphenol	2.0	Ų	77-47-4	Hexachlorocyclopentadiene	2.0	U			
106-47-8	4-Chloroaniline	0.51	U	67-72-1	Hexachloroethane	2.0	Ü			
7005-72-3	4-Chlorophenyl-phenylether	2.0	Ų	193-39-5	Indeno[1,2,3-cd]pyrene	2.0	Ü			
100-01-6	4-Nitroaniline	2.0	U	78-59-1	Isophorone	2.0	U			
100-02-7	4-Nitrophenol	2.0	U	91-20-3	Naphthalene	0.51	Ü			
83-32-9	Acenaphthene	2.0	U	98-95-3	Nitrobenzene	2.0	Ü			
208-96-8	Acenaphthylene	2.0	U	621-64-7	N-Nitroso-di-n-propylamine	0.51	Ū			
98-86-2	Acetophenone	2.0	U	86-30-6	n-Nitrosodiphenylamine	2.0	Ü			
120-12-7	Anthracene	2.0	U	87-86-5	Pentachlorophenol	10	Ü			
1912-24-9	Atrazine	2.0	υ	85-01-8	Phenanthrene	2.0	Ü			
100-52-7	Benzaldehyde	2.0	U	108-95-2	Phenol	2.0	Ü			
56-55-3	Benzo[a]anthracene	2.0	U	129-00-0	Pyrene	2.0	Ü			
50-32-8	Benzo[a]pyrene	2.0	U		•		<b>U</b>			
			1							

Worksheet #: 236276

Total Target Concentration

ColumnID: (^) Indicates results from 2nd column

0

U - Indicates the compound was analyzed but not detected,

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pestic de %Diff>40% between columns due to coelution. Lower concentration usea

#### Form1e

ORGANICS SEMIVOLATILE REPORT Tentatively Identified Compounds

Sample Number: AC67281-016

Client Id: LMW-4 U

Data File: 10M31980.D

Analysis Date: 08/01/12 19:39

Date Rec/Extracted: 07/25/12-08/01/12

Matrix: Aqueous

Initial Vol: 990ml

Final Vol: 1ml

Dilution: 1

Solids:

Method: EPA 625

Units: ug/L

Cas #	Compound	RT	Conc
1	No Unknown Compounds Detected	0.00	0 J

Worksheet #: 236276

Total Tentatively Identified Concentration 0

A - Indicates an aldol condensate. J - Indicates an estimated value.

B - Indicates the analyte was found in the blank as well as in the sample. Y - Indicates the analyte was found in the blank at <10% of the concentration of the sample.

<10% - Indicates the analyte was found in the blank at < 10% of nearest Internal Standard

# FORM2

Surrogate Recovery

Method: EPA 625

Dfile Sample# Matrix	Date/Time	Surr	Dilute Out Flag	Column1 S1	Column1 S2	Column1 S3	Column1 S4	Column1 S5	Column1 S6
404404004 @ 4444		<u> </u>	Tidy	Recov	Recov	Recov	Recov	Recov	Recov
1011010		1		55	49	85	83	29 *	86
10M31977.D WMB14979 Aqueou		1		45	28	79	80	89	102
9M45098.D WMB14979 Aqueou		1		45	27	77	78	84	98
9M45182.D WMB15019 Aqueous		1		48	28	92	87	100	108
10M31960.D AC67281-001 Aqueous		1		29	18*	90	87	65	93
9M45112.D AC67281-003 Aqueous		1		7.8 *	3.1 *	85	89	73	92
9M45203.D AC67281-003( Aqueous		1		0 *	0.16 *	91	89	44*	114
9M45147.D AC67281-005 Aqueous		1		28*	15*	82	<b>8</b> 5	85	97
9M45232.D AC67281-005( Aqueous	08/06/12 10:11	1		28 *	20 *	100	93	80	96
10M31978.D AC67281-010 Aqueous	08/01/12 18:55	1		45	31	82	79	94	94
9M45099.D AC67281-012 Aqueous	08/01/12 17:56	1		57	44	85	82	91	110
10M31979.D AC67281-014 Aqueous	08/01/12 19:17	1		48	31	98	95	106	105
10M31980.D AC67281-016 Aqueous	08/01/12 19:39	1		36	25 *	71	74	88	101
10M31975.D AC67289-006( Aqueous		1		77	63	93	75	101	109
5M76268.D WMB14969(M Aqueous		1		64	45	99	90	103	99
5M76279.D AC67289-006 Aqueous		1		59	52	70	65	79	70
5M76285.D AC67289-006( Aqueous		1		78	66	96	80	106	95
9M45097.D WMB14979(M Aqueous		1		48	30	86	81	93	95
9M45100.D AC67281-012( Aqueous		1		60	46	87	86	97	101
9M45101.D AC67281-012( Aqueous	08/01/12 18:42	1		63	49	89	78	94	106

Flags: SD=Surrogate diluted out

*=Surrogate out

Method: EPA 625

## **Aqueous Limits**

Compound	Spike Amt	Limits
S1=2-Fluorophenol	100	29-113
S2=Phenol-d5	100	27-115
S3=Nitrobenzene-d5	50	51-139
S4=2-Fluorobiphenyl	50	53-129
S5=2,4,6-Tribromophenol	100	54-149
S6=Terphenyl-d14	50	55-146

## Form3 RPD DATA

QC Batch: WMB14969

Data File

Spike or Dup: 10M31975.D

Duplicate(If applicable): 5M76285.D

Sample ID:

AC67289-006(MSD)

AC67289-006(MS)

Analysis Date 8/1/2012 5:49:00 PM 8/1/2012 2:17:00 PM

Inst Blank(If applicable):

Method: 625

Matrix: Aqueous

QC Type: MSD

Analyte:	Column	Dup/MSD/MBSD Conc	Sample/MS/MBS Conc	RPD	Limit
N-Nitrosodimethylamine	1	82.8048	84.7898	2.4	
bis(2-Chloroethyl)ether	1	85.0348	89.5444		17
Phenol	1	55.4754		5.2	12
2-Chlorophenol	1	85.3464	59.0674 88.1776	6.3	27
bis(2-chloroisopropyl)ether	1	72.5056		3.3	21
Hexachloroethane	1	82.2406	77.1172	6.2	14
N-Nitroso-di-n-propylamine	1	80.4431	84.0739	2.2	39
Nitrobenzene	1	85.7853	91.7792	13	14
Isophorone	1	84.9342	88.7347	3.4	13
2-Nitrophenol	1	87.0553	89.9986	5.8	12
2,4-Dimethylphenol	1		97.8844	12	31
bis(2-Chloroethoxy)methane	1	78.7222 85.7106	82.0756	4.2	18
2,4-Dichlorophenol	1		88.0427	2.7	12
1,2,4-Trichlorobenzene	1	96.6327	96.0189	0.64	21
Naphthalene	1	83.9297	80.8796	3.7	17
dexachlorobutadiene	1	81.7009	85.6132	4.7	16
4-Chloro-3-methylphenol	1	88.7118	83.3511	6.2	24
2,4,6-Trichlorophenol	1	91.4288	97.3545	6.3	16
2-Chloronaphthalene	1	95.5619	98.0783	2.6	24
Acenaphthylene		86.8217	91.027	4.7	13
Dimethylphthalate	1	91.1032	98.9158	8.2	13
2,6-Dinitrotoluene	1	86.7893	94.6677	8.7	12
Acenaphthene	1	80.4719	106.323	28 *	13
2,4-Dinitrophenol	1	82.8895	92.9709	11	14
2,4-Dinitophenor	1	89.2118	96.5581	7.9	37
	1	79.7556	99.3312	22 *	13
l-Nitrophenol Fluorene	1	60.4075	67.3746	11	41
	1	80.8156	93.2934	14	14
-Chlorophenyl-phenylether	1	87.6023	95.849	9	13
Diethylphthalate	1	83.2914	95.606	14 *	12
,6-Dinitro-2-methylphenol	1	94.8927	99.6354	4.9	25
-Bromophenyl-phenylether	1	91.3986	90.3702	1.1	13
lexachlorobenzene	1	85.9259	88.9484	3.5	12
entachlorophenol	1	95.7878	94.2789	1.6	31
henanthrene	1	84.2775	93.499	10	12
nthracene	1	86.6547	92.8335	6.9	12
i-n-butylphthalate	1	94.7062	98.3632	3.8	12
luoranthene	1	85.9941	96.7004	12	13
yrene	1	90.4787	86.4681	4.5	13
utylbenzylphthalate	1	91.4316	90.5584	0.96	12
3'-Dichlorobenzidine	1	96.8209	111.0626	14	40
enzo[a]anthracene	1	78.0738	80.996	3.7	12
hrysene	1	89.89	94.1859	4.7	12
s(2-Ethylhexyl)phthalate	1	92.6836	85.3598	8.2	14
i-n-octylphthalate	1	103.05	86.1065	18*	14
enzo[b]fluoranthene	1	94.4241	93.8868	0.57	15
enzo[k]fluoranthene	1	77.4876	83.3069	7.2	14
enzo[a]pyrene	1	93.0841	97.9108	5.1	13
deno[1,2,3-cd]pyrene	1	95.4523	111.6381	16*	14
benzo[a,h]anthracene	1	97.5498	110.1127	12	14
enzo[g,h,i]perylene - Indicates outside of limits	1	85.7052	103.6978	19*	15

^{* -} Indicates outside of limits

# Form3 RPD DATA

QC Batch: WMB14979

Data File

Spike or Dup: 9M45101.D

Duplicate(If applicable): 9M45100.D

Sample ID:

AC67281-012(MSD)

AC67281-012(MS)

8/1/2012 6:42:00 PM 8/1/2012 6:19:00 PM

Analysis Date

Inst Blank(If applicable):

Method: 625

Matrix: Aqueous

QC Type: MSD

Analyte:	Column	Dup/MSD/MBSD Conc	Sample/MS/MBS Conc	RPD	Limit
N-Nitrosodimethylamine	1	70.4228	62.1298		
bis(2-Chloroethyl)ether	1	75.1401	73.6042	13	17
Phenol	1	41.1095	75.6042 39.8983	2.1	12
2-Chlorophenol	1	76.4746	72.5339	3	27
bis(2-chloroisopropyl)ether	1	61.3671	61.0801	5.3	21
Hexachloroethane	1	74.4963	73.0734	0.47	14
N-Nitroso-di-n-propylamine	1	69.5108	65.2895	1.9	39
Nitrobenzene	1	76.8876	78.8255	6.3	14
Isophorone	1	72.9725	73.29	2.5	13
2-Nitrophenol	1	82.6964	81.5045	0.43	12
2,4-Dimethylphenol	1	63.1893	65.9408	1.5	31
ois(2-Chloroethoxy)methane	i	78.3381	71.9984	4.3	18
2,4-Dichlorophenol	i	77.7225		8.4	12
1,2,4-Trichlorobenzene	1	68.4313	77.6772 71.5482	0.06	21
Naphthalene	1	72.2832		4.5	17
Hexachlorobutadiene	1	76.9509	70.8121	2.1	16
4-Chloro-3-methylphenol	1	73.4417	79.7216	3.5	24
2,4,6-Trichlorophenol	1	81.7205	75.3207	2.5	16
2-Chloronaphthalene	1	78.3756	86.366	5.5	24
Acenaphthylene	1	83.8972	79.13	0.96	13
Dimethylphthalate	1	82.1081	83.8368	0.07	13
2,6-Dinitrotoluene	1	82.4717	82.1508	0.05	12
cenaphthene	1	74.5203	84.3154	2.2	13
4.4-Dinitrophenol	1	82.9108	78.7847	5.6	14
,4-Dinitrotoluene	1	85.1857	74.6048	11	37
-Nitrophenol	1	53.4881	80.0766	6.2	13
luorene	1	77.5163	51.0869	4.6	41
-Chlorophenyl-phenylether	1	81.2752	77.2498	0.34	14
Piethylphthalate	1	80.6122	80.7353	0.67	13
,6-Dinitro-2-methylphenol	1		80.7242	0.14	12
-Bromophenyl-phenylether	1	83.8655	90.5959	7.7	25
lexachlorobenzene	1	76.235	85.5692	12	13
entachlorophenol	1	76.5073	81.1419	5.9	12
henanthrene	1	81.1795	84.4192	3.9	31
nthracene	1	73.6854	83.8844	13*	12
i-n-butylphthalate	1	75.7222	81.4017	7.2	12
uoranthene	1	81.4369	88.8394	8.7	12
yrene	1	74.6641	84.4516	12	13
utylbenzylphthalate		83.1245	81.4127	2.1	13
3'-Dichlorobenzidine	1 1	89.2516	89.3798	0.14	12
enzo[a]anthracene		83.7698	79.0508	5.8	40
hrysene	1	71.6839	74.2889	3.6	12
s(2-Ethylhexyl)phthalate	1	83.6815	85.5926	2.3	12
-n-octylphthalate	1	83.2504	83.6628	0.49	14
• .	1	85.8944	84.3759	1.8	14
enzo[b]fluoranthene	1	88.2875	91.1049	3.1	15
enzo[k]fluoranthene	1	63.5763	82.1111	25 *	14
enzo[a]pyrene	1	85.4514	85.217	0.27	13
deno[1,2,3-cd]pyrene	1	88.8138	94.6574	6.4	14
benzo[a,h]anthracene	1	84.3628	92.4177	9.1	14
enzo[g,h,i]perylene - Indicates outside of limits	11	85.1434	93.0673	8.9	15

^{* -} Indicates outside of limits

Sample ID: MB 18149 (100)

% Solid: 0

Lab Name: Veritech

Client Id: MB 18149 (100)

18149 (100) Units: MG/KG

Lab Code:

Matrix: SOIL Level: LOW

M Ir	K./	Seq Num		Prep Batch	Analysis Date	Final Wt/Vol	Initial Wt/Vol	Dil Fact	Conc	RL	Analyte	Cas No.
P PEICPRAD					07/31/12	50	0.5	1	ND	200	Aluminum	7429-90-5
P PEICP					07/28/12	50	0.5	1	ND	2.0	Antimony	7440-36-0
P PEICP					07/30/12	50	0.5	1	ND	2.0	Arsenic	7440-38-2
P PEICP	•			18149	07/28/12	50	0.5	1	ND	10	Barium	7440-39-3
P PEICP		11		18149	07/28/12	50	0.5	1	ND	0.60	Beryllium	7440-41-7
P PEICP	-	11		18149	07/28/12	50	0.5	1	ND	0.60	Cadmium	7440-43-9
P PEICPRAD		10		18149	07/31/12	50	0.5	1	ND	1000	Calcium	7440-70-2
P PEICP:	•	11		18149	07/28/12	50	0.5	1	ND	5.0	Chromium	7440-47-3
P PEICP:		11		18149	07/28/12	50	0.5	1	ND	2.5	Cobalt	7440-48-4
P PEICP:		11	S14184A3	18149	07/28/12	50	0.5	1	ND	5.0	Copper	7440-50-8
P PEICPRADS		10	S14184E3	18149	07/31/12	50	0.5	1	ND	200	Iron	7439-89-6
P PEICPS		11	S14184A3	18149	07/28/12	50	0.5	1	ND	5.0	Lead	7439-92-1
P PEICPRADS		10	S14184E3	18149	07/31/12	50	0.5	1	ND	500	Magnesium	7439-95-4
P PEICP3	.	11	S14184C3	18149	07/30/12	50	0.5	1	ND	10	Manganese	7439-96-5
P PEICP3		11	S14184A3	18149	07/28/12	50	0.5	1	ND	2.5	Molybdenum	7439-98-7
	P	11	S14184A3	18149	07/28/12	50	0.5	1	ND	5.0	Nickel	7440-02-0
. 2.0.	Р.	10	S14184E3	18149	07/31/12	50	0.5	1	ND	500	Potassium	7440-09-7
ì	P	11	S14184A3	18149	07/28/12	50	0.5	1	ND	1.8	Selenium	7782-49-2
	P	11	S14184A3		07/28/12	50	0.5	1	ND	1.5	Silver	7440-22-4
. =.0. 0		10	S14184E3		07/31/12	50	0.5	1	ND	250	Sodium	7440-23-5
	Р	11	S14184A3	-	07/28/12	50	0.5	1	ND	1.2	Thallium	7440-28-0
	P	11	S14184A3		07/28/12	50	0.5	1	ND	5.7	Tin	7440-31-5
1 2701 0	Р.	11	S14184A3		07/28/12	50	0.5	1	ND	35	Titanium	7440-32-6
	Р	11	S14184A3		07/28/12	50	0.5	1	ND	10	Vanadium	7440-62-2
	Р	11			07/28/12	50	0.5	1	ND	10	Zinc	7440-66-6

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: MB 18151 (0.5)

% Solid: 0

Units: UG/L

Lab Name: Veritech

Lab Code:

Client Id: MB 18151 (0.5)

Matrix: AQUEOUS

Level: LOW

/ Inst	N	Seq Num		Prep Batch	Analysis Date	Final Wt/Vol	Initial Wt/Vol	Dil Fact	Conc	RL	Analyte	Cas No.
	P	13	A14186A2	18151	08/03/12	50	100	1	ND	100	Aluminum	7429-90-5
	Р		A14186A2	18151	08/03/12	50	100	1	ND	7.5	Antimony	7440-36-0
	P		A14186A2	18151	08/03/12	50	100	1	ND	20	Arsenic	7440-38-2
. 2.0. 2	P	13	A14186A2	18151	08/03/12	50	100	1	ND	25	Barium	7440-39-3
	P	13	A14186A2	18151	08/03/12	50	100	1	ND	4.0	Beryllium	7440-41-7
	Р	13	A14186A2	18151	08/03/12	50	100	1	ND	2.0	Cadmium	7440-43-9
	Р	13	A14186A2	18151	08/03/12	50	100	1	ND	1000	Calcium	7440-70-2
	Р	13	A14186A2	18151	08/03/12	50	100	1	ND	25	Chromium	7440-47-3
	Р	13	A14186A2	18151	08/03/12	50	100	1	ND	10	Cobalt	7440-48-4
	Р	13	A14186A2	18151	08/03/12	50	100	1	ND	25	Copper	7440-50-8
	Р	13	A14186A2	18151	08/03/12	50	100	1	ND	150	Iron	7439-89-6
PEICP2A	Р	13	A14186A2	18151	08/03/12	50	100	1	ND	5.0	Lead	7439-92-1
PEICP2A	Р	13	A14186A2	18151	08/03/12	50	100	1	ND	1000	Magnesium	7439-95-4
PEICP2A	Р	13	A14186A2	18151	08/03/12	50	100	1	ND	25	Manganese	7439-96-5
PEICP2A	P	13	A14186A2	18151	08/03/12	50	100	1	ND	10	Molybdenum	7439-98-7
PEICP2A	Р	13	A14186A2	18151	08/03/12	50	100	1	ND	10	Nickel	7440-02-0
PEICPRAD2A	Р	12	A14186B2		08/03/12	50	100	1	ND	2500	Potassium	7440-09-7
PEICP2A	Р	13	A14186A2	Ì	08/03/12	50	100	1	ND	25	Selenium	7782-49-2
PEICP2A	P	13	A14186A2		08/03/12	50	100	1	ND	10	Silver	7440-22-4
PEICPRAD2A		12	A14186B2		08/03/12	50	100	1	ND	2500	Sodium	7440-23-5
PEICP2A	Р	13	A14186A2		08/03/12	50	100	1	ND	5.0	Thallium	7440-28-0
PEICP2A	Р	13	A14186A2		08/03/12	50	100	1	ND	25	Tin	7440-31-5
PEICP2A	Р	13	A14186A2	American Company	08/03/12	50	100	1	ND	25	Titanium	7440-32-6
PEICP2A	Р	13			08/03/12	50	100	1	ND	25	Vanadium	7440-62-2
PEICP2A	P	13		İ	08/03/12	50	100	1	ND	25	Zinc	440-66-6

#### Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: MB 18149 (167)

% Solid: 0

Lab Name: Veritech

Client Id:

MB 18149 (167)

Units: MG/KG

Lab Code:

Matrix: SOIL Level: LOW

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol	Analysis Date	Prep Batch	File:	Seq Num	М	Instr
7439-97-6	Mercury	0.083	ND	1	0.15	25	07/30/12		H14184S	11	CV	HGCV1A

Comments:	

#### Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit P - ICP-AES CV -ColdVapor MS - ICP-MS

Sample ID: MB 18151 (1)

% Solid: 0

Lab Name: Veritech

Level: LOW

Client Id: MB 18151 (1)

Matrix: AQUEOUS

Units: UG/L

Lab Code:

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt∕Vol	Final Wt/Vol	Analysis Date	Prep Batch		Seq Num	М	Instr
7439-97-6	Mercury	0.20	ND	1	25	25	08/08/12	18151	H14186Ac	11	CV	HGCV1A

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC67281-001

% Solid: 0

Lab Name: Veritech

Nras No: Sdg No:

Matrix: AQUEOUS

Client Id: SW-1 U

Units: UG/L Date Rec: 7/26/2012

Lab Code: Contract:

Case No:

Level: LOW

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Fina Wt/Vo		Prep Batch	File:	Seq Num	N	1 Instr
7429-90-5	Aluminum	100	910	1	100	50	08/03/12	18151	A14186A2	16	F	PEICP2A
7440-36-0	Antimony	7.5	ND	1	100	50	08/03/12	18151	A14186A2	16	P	PEICP2A
7440-38-2	Arsenic	20	ND	1	100	50	08/03/12	18151	A14186A2	16	Р	PEICP2A
7440-39-3	Barium	25	120	1	100	50	08/03/12	18151	A14186A2	16	Р	PEICP2A
7440-41-7	Beryllium	4.0	ND	1	100	50	08/03/12	18151	A14186A2	16	Р	
7440-43-9	Cadmium	2.0	ND	1	100	50	08/03/12	18151	A14186A2	16	Р	
7440-70-2	Calcium	1000	45000	1	100	50	08/03/12	18151	A14186A2	16	Р	PEICP2A
7440-47-3	Chromium	25	ND	1	100	50	08/03/12	18151	A14186A2	16	P	PEICP2A
7440-48-4	Cobalt	10	ND	1	100	50	08/03/12	18151	A14186A2	16	P	PEICP2A
7440-50-8	Copper	25	ND	1	100	50	08/03/12		A14186A2	16	Р	PEICP2A
7439-89-6	Iron	150	7100	1	100	50	08/03/12		A14186A2	16	Р	PEICP2A
7439-92-1	Lead	5.0	ND	1	100	50	08/03/12	18151	A14186A2	16	Р	PEICP2A
7439-95-4	Magnesium	1000	14000	1	100	50	08/03/12	18151	A14186A2	16	Р	PEICP2A
7439-96-5	Manganese	25	5000	1	100	50	08/03/12	18151	A14186A2	16	Р	PEICP2A
7439-97-6	Mercury	0.20	ND	1	25	25	08/08/12	18151	H14186Ac	14	CV	HGCV1A
7440-02-0	Nickel	10	ND	1	100	50	08/03/12		A14186A2	16	Р	PEICP2A
7440-09-7	Potassium	2500	3200	1	100	50	08/03/12	İ	A14186B2	15	Р	PEICPRAD2A
7782-49-2	Selenium	25	ND	1	100	50	08/03/12		A14186A2	16	Р	PEICP2A
7440-22-4	Silver	10	ND	1	100	50	08/03/12	18151	A14186A2	16	Р	PEICP2A
7440-23-5	Sodium	2500	9400	1	100	50	08/03/12		A14186B2	15		PEICPRAD2A
7440-28-0	Thallium	5.0	ND	1	100		08/03/12	-	A14186A2	16	P	PEICP2A
7440-62-2	Vanadium	25	ND	1	100	50	08/03/12		A14186A2	16	Р	PEICP2A
7440-66-6	Zinc	25	ND	1	100	50	08/03/12		A14186A2	16	P	PEICP2A

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

## Form₁ Inorganic Analysis Data Sheet

Sample ID: Client Id:

Matrix:

AC67281-003

SW-2 U

**AQUEOUS** 

% Solid: 0

Date Rec:

Units: UG/L

7/26/2012

Lab Name: Lab Code:

Contract:

Veritech

Nras No:

Sdg No: Case No:

Level: LOW

Initial Final Analysis Prep Sea Cas No. Analyte RL Conc Dil Fact Wt/Vol Wt/Vol File: Date Batch Num Μ Instr 7429-90-5 Aluminum 200 24000 50 50 08/03/12 18151 A14186A2 31 Р PEICP2A 7440-36-0 Antimony 15 ND 1 50 50 08/03/12 18151 A14186A2 31 Ρ PEICP2A 7440-38-2 Arsenic 40 ND 1 50 50 08/03/12 18151 A14186A2 31 Р PEICP2A 7440-39-3 Barium 50 4500 1 50 08/03/12 50 18151 A14186A2 31 Р PEICP2A 7440-41-7 Beryllium 8.0 ND 1 50 50 08/03/12 18151 A14186A2 31 Р PEICP2A 7440-43-9 Cadmium 4.0 5.3 1 50 50 08/03/12 18151 A14186A2 31 Ρ PEICP2A 7440-70-2 Calcium 2000 120000 1 50 50 08/03/12 18151 A14186A2 31 Ρ PEICP2A 7440-47-3 Chromium 100 ND 2 50 50 08/03/12 18151 A14186A2 33 Ρ PEICP2A 7440-48-4 Cobalt 20 41 1 50 08/03/12 18151 A14186A2 Р 31 PEICP2A 7440-50-8 Copper 50 160 1 50 50 08/03/12 18151 A14186A2 31 Р PEICP2A 7439-89-6 Iron 300 140000 50 50 08/03/12 18151 A14186A2 Ρ PEICP2A 7439-92-1 Lead 10 130 1 50 08/03/12 18151 A14186A2 Ρ 31 PEICP2A 7439-95-4 Magnesium 2000 33000 1 50 50 08/03/12 18151 A14186A2 31 Р PEICP2A 7439-96-5 Manganese 200 120000 50 50 08/03/12 18151 A14186A2 Р PEICP2A 7439-97-6 Mercury 0.20 ND 25 25 08/08/12 18151 H14186Ac 23 CV HGCV1A 7440-02-0 Nickel 20 75 50 Р 50 08/03/12 18151 A14186A2 31 PEICP2A 7440-09-7 Potassium 5000 7200 50 1 08/03/12 50 18151 A14186B2 30 Р PEICPRAD2A 7782-49-2 Selenium 100 2 ND 50 08/03/12 50 18151 A14186A2 33 Ρ PEICP2A 7440-22-4 Silver 40 ND 2 50 50 08/03/12 18151 A14186A2 Ρ 33 PEICP2A 7440-23-5 Sodium 5000 13000 1 08/03/12 50 50 18151 A14186B2 30 Ρ PEICPRAD2A

Comments:	

ND

66

1200

Flag Codes:

2

1

1

50

50

50

08/03/12

08/03/12

08/03/12

50

50

18151 A14186A2

18151 A14186A2

18151 A14186A2

33

31

P

Ρ

Ρ

PEICP2A

PEICP2A

PEICP2A

U or ND - Indicates Compound was not found above the detection/reporting limit

20

50

50

P - ICP-AES

CV -ColdVapor

7440-28-0

7440-62-2

7440-66-6

Thallium

Zinc

Vanadium

Sample ID: AC67281-005

% Solid: 0

Lab Name: Veritech

Nras No:

Matrix: AQUEOUS

Level: LOW

Client Id: SW-4 U

Units: UG/L

Date Rec: 7/26/2012

Lab Code: Contract:

Sdg No: Case No:

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol		Prep Batch	File:	Seq Num	1	Λ Instr
7429-90-5	Aluminum	100	21000	1	100	50	08/03/12	18151	A14186A2	32	F	P PEICP2A
7440-36-0	Antimony	7.5	ND	1	100	50	08/03/12	18151	A14186A2		F	,, _,,
7440-38-2	Arsenic	20	ND	1	100	50	08/03/12		A14186A2		F	1 2.01 2/1
7440-39-3	Barium	25	1100	1	100	50	08/03/12		A14186A2	32	· F	. =.0. =, .
7440-41-7	Beryllium	4.0	ND	1	100	50	08/03/12		A14186A2	32	P	
7440-43-9	Cadmium	2.0	3.9	1	100	50	08/03/12		A14186A2	32	, P	, 2,0,2,1
7440-70-2	Calcium	1000	85000	1	100	50	08/03/12		A14186A2	32	, P	. 2.0. 2, (
7440-47-3	Chromium	25	46	1	100	50	08/03/12		A14186A2	32	Р	
7440-48-4	Cobalt	10	30	1	100	50	08/03/12		A14186A2	32	Р	
7440-50-8	Copper	25	81	1	100	50	08/03/12	i	A14186A2	32	P	. =
7439-89-6	Iron	150	85000	1	100	50	08/03/12		A14186A2	32	Р	PEICP2A
7439-92-1	Lead	5.0	160	1	100		08/03/12		A14186A2	32	Р.	PEICP2A
7439-95-4	Magnesium	1000	31000	1	100	50	08/03/12		A14186A2	32	Р	PEICP2A
7439-96-5	Manganese	50	39000	2	100		08/03/12	-	A14186A2	34	P	PEICP2A
7439-97-6	Mercury	0.20	ND	1	25	25	08/08/12		H14186Ac	24	cv	HGCV1A
7440-02-0	Nickel	10	51	1	100		08/03/12		A14186A2	32	Р	PEICP2A
7440-09-7	Potassium	2500	7200	1	100	50	08/03/12		A14186B2	31	P	PEICPRAD2A
7782-49-2	Selenium	25	ND	1	100	50	08/03/12		A14186A2	32	Р	PEICP2A
7440-22-4	Silver	10	ND	1	100		08/03/12		A14186A2	32	Р	PEICP2A
7440-23-5	Sodium	2500	12000	1	100		08/03/12		A14186B2	31	Р	PEICPZA PEICPRAD2A
7440-28-0	Thallium	10	ND	2	100		08/03/12		A14186A2	34	P	
7440-62-2	Vanadium	25	63	1	100		08/03/12		A14186A2	32		PEICP2A
7440-66-6	Zinc	25	450	1	100		08/03/12	ĺ	414186A2	32	P P	PEICP2A PEICP2A

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC67281-007

% Solid: 67

Lab Name: Veritech

Nras No:

Client Id: Matrix: SOIL

SD-1

Units: MG/KG

Lab Code:

Sdg No:

Level: LOW

Date Rec: 7/26/2012 Contract:

Case No:

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol		Prep Batch	File:	Seq Num		Instr
7429-90-5	Aluminum	300	6900	1	0.5	50	07/31/12	18149	S14184E3	31	Р	PEICPRAD3A
7440-36-0	Antimony	3.0	ND	1	0.5	50	07/28/12	18149	S14184A3	36	Р	PEICP3A
7440-38-2	Arsenic	3.0	ND	1	0.5	50	07/30/12	18149	S14184C3	33	Р	PEICP3A
7440-39-3	Barium	15	79	1	0.5	50	07/28/12	18149	S14184A3	36	Р	
7440-41-7	Beryllium	0.90	ND	1	0.5	50	07/28/12	18149	S14184A3	36	Р	PEICP3A
7440-43-9	Cadmium	0.90	ND	1	0.5	50	07/28/12	18149	S14184A3	36	Р	
7440-70-2	Calcium	1500	1500	1	0.5	50	07/31/12	18149	S14184E3	31	Р	PEICPRAD3A
7440-47-3	Chromium	7.5	13	1	0.5	50	07/28/12	18149	S14184A3	36	Р	PEICP3A
7440-48-4	Cobalt	3.7	4.5	1	0.5	50	07/28/12	18149	S14184A3	36	Р	PEICP3A
7440-50-8	Copper	7.5	11	1	0.5	50	07/28/12	18149	S14184A3	36	P	PEICP3A
7439-89-6	Iron	300	16000	1	0.5	50	07/31/12	18149	S14184E3	31	Р	PEICPRAD3A
7439-92-1	Lead	7.5	ND	1	0.5	50	07/28/12		S14184A3	36	Р	PEICP3A
7439-95-4	Magnesium	750	3700	1	0.5	50	07/31/12		S14184E3	31	P	PEICPRAD3A
7439-96-5	Manganese	15	1300	1	0.5	50	07/30/12		S14184C3	33	Р	PEICP3A
7439-97-6	Mercury	0.12	ND	1	0.15	25	07/30/12	18149	H14184S	26	CV	HGCV1A
7440-02-0	Nickel	7.5	11	1	0.5	50	07/28/12		S14184A3	36	Р	PEICP3A
7440-09-7	Potassium	750	2100	1	0.5	-	07/31/12		S14184E3	31	P	PEICPRAD3A
7782-49-2	Selenium	2.7	ND	1	0.5		07/28/12		S14184A3	36	Р	PEICP3A
7440-22-4	Silver	2.2	ND	1	0.5		07/28/12		S14184A3	36	P	PEICP3A PEICP3A
7440-23-5	Sodium	370	ND	1	0.5		07/31/12		S14184E3	31		PEICP3A PEICPRAD3A
7440-28-0	Thallium	1.8	ND	1	0.5		07/28/12		S14184A3	36	•	
7440-62-2	Vanadium	15	19	1	0.5		07/28/12		S14184A3		Р	PEICP3A
7440-66-6	Zinc	15	35	1	0.5		07/28/12		S14184A3	36 36	P	PEICP3A PEICP3A

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC67281-008

% Solid: 14

Lab Name: Veritech

Nras No: Sdg No:

Client Id: SD-2 Matrix: SOIL

Units: MG/KG Date Rec: 7/26/2012 Lab Code: Contract:

Case No:

Level: LOW

	·											
Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol	Analysis Date	Prep Batch	File:	Seq Num	М	Instr
7429-90-5	Aluminum	1400	11000	1	0.5	50	07/31/12	18149	S14184E3	32	Р	PEICPRAD3A
7440-36-0	Antimony	14	ND	1	0.5	50	07/28/12	18149	S14184A3	37	Р	PEICP3A
7440-38-2	Arsenic	14	ND	1	0.5	50	07/30/12	18149	S14184C3	34	Ρ	PEICP3A
7440-39-3	Barium	71	820	1	0.5	50	07/28/12	18149	S14184A3	37	Р	PEICP3A
7440-41-7	Beryllium	4.3	ND	1	0.5	50	07/28/12	18149	S14184A3	37	Р	PEICP3A
7440-43-9	Cadmium	4.3	ND	1	0.5	50	07/28/12	18149	S14184A3	37	Р	PEICP3A
7440-70-2	Calcium	7100	16000	1	0.5	50	07/31/12	18149	S14184E3	32	Р	PEICPRAD3A
7440-47-3	Chromium	36	ND	1	0.5	50	07/28/12	18149	S14184A3	37	Р	PEICP3A
7440-48-4	Cobalt	18	ND	1	0.5	50	07/28/12	18149	S14184A3	37	Р	PEICP3A
7440-50-8	Copper	36	37	1	0.5	50	07/28/12	18149	S14184A3	37	Р	PEICP3A
7439-89-6	Iron	1400	78000	1	0.5	50	07/31/12	18149	S14184E3	32	Р	PEICPRAD3A
7439-92-1	Lead	36	61	1	0.5	50	07/28/12	18149	S14184A3	37	Р	PEICP3A
7439-95-4	Magnesium	3600	5800	1	0.5	50	07/31/12	18149	S14184E3	32	Ρ	PEICPRAD3A
7439-96-5	Manganese	140	35000	2	0.5	50	07/30/12	18149	S14184C3	28	Ρ	PEICP3A
7439-97-6	Mercury	0.60	ND	1	0.15	25	07/30/12	18149	H14184S	27	CV	HGCV1A
7440-02-0	Nickel	36	ND	1	0.5	50	07/28/12	18149	S14184A3	37	Ρ	PEICP3A
7440-09-7	Potassium	3600	ND	1	0.5	50	07/31/12	18149	S14184E3	32	Р	PEICPRAD3A
7782-49-2	Selenium	13	ND	1	0.5	50	07/28/12	18149	S14184A3	37	Р	PEICP3A
7440-22-4	Silver	11	ND	1	0.5	50	07/28/12	18149	S14184A3	37	Р	PEICP3A
7440-23-5	Sodium	1800	ND	1	0.5	50	07/31/12	18149	S14184E3	32	Р	PEICPRAD3A
7440-28-0	Thallium	8.6	ND	1	0.5	50	07/28/12	18149	S14184A3	37	Ρ	PEICP3A
7440-62-2	Vanadium	71	ND	1	0.5	50	07/28/12	18149	S14184A3	37	Р	PEICP3A
7440-66-6	Zinc	71	240	1	0.5	50	07/28/12	18149	S14184A3	37	Ρ	PEICP3A
					1				Į.	1 1		

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor MS - ICP-MS

Sample ID: AC67281-009

% Solid: 31

Lab Name: Veritech

Nras No:

Client Id: SD-4 Matrix:

SOIL

Date Rec: 7/26/2012

Units: MG/KG

Lab Code: Contract:

Sdg No: Case No:

Level: LOW

										<del></del>	<del></del>	
Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol	Analysis Date	Prep Batch	File:	Seq Num	М	Instr
7429-90-5	Aluminum	650	11000	1	0.5	50	07/31/12	18149	S14184E3	33	Р	PEICPRAD3A
7440-36-0	Antimony	6.5	ND	1	0.5	50	07/28/12	18149	S14184A3	38	Р	PEICP3A
7440-38-2	Arsenic	6.5	ND	1	0.5	50	07/30/12	18149	S14184C3	35	Р	PEICP3A
7440-39-3	Barium	32	220	1	0.5	50	07/28/12	18149	S14184A3	38	Р	PEICP3A
7440-41-7	Beryllium	1.9	ND	1	0.5	50	07/28/12	18149	S14184A3	38	Р	PEICP3A
7440-43-9	Cadmium	1.9	ND	1	0.5	50	07/28/12	18149	S14184A3	38	Р	PEICP3A
7440-70-2	Calcium	3200	17000	1	0.5	50	07/31/12	18149	S14184E3	33	Р	PEICPRAD3A
7440-47-3	Chromium	16	27	1	0.5	50	07/28/12	18149	S14184A3	38	Р	PEICP3A
7440-48-4	Cobalt	8.1	8.8	1	0.5	50	07/28/12	18149	S14184A3	38	Р	PEICP3A
7440-50-8	Copper	16	25	1	0.5	50	07/28/12	18149	S14184A3	38	Р	PEICP3A
7439-89-6	Iron	650	33000	1	0.5	50	07/31/12	18149	S14184E3	33	Р	PEICPRAD3A
7439-92-1	Lead	16	57	1	0.5	50	07/28/12	18149	S14184A3	38	Р	PEICP3A
7439-95-4	Magnesium	1600	12000	1	0.5	50	07/31/12	18149	S14184E3	33	Р	PEICPRAD3A
7439-96-5	Manganese	32	8000	1	0.5	50	07/30/12	18149	S14184C3	35	Р	PEICP3A
7439-97-6	Mercury	0.27	ND	1	0.15	25	07/30/12	18149	H14184S	28	CV	HGCV1A
7440-02-0	Nickel	16	23	1	0.5	50	07/28/12	18149	S14184A3	38	Р	PEICP3A
7440-09-7	Potassium	1600	1800	1	0.5	50	07/31/12	18149	S14184E3	33	Р	PEICPRAD3A
7782-49-2	Selenium	5.8	ND	1	0.5	50	07/28/12	18149	S14184A3	38	Р	PEICP3A
7440-22-4	Silver	4.8	ND	1	0.5	50	07/28/12	18149	S14184A3	38	Р	PEICP3A
7440-23-5	Sodium	810	ND	1	0.5	50	07/31/12	18149	S14184E3	33	Р	PEICPRAD3A
7440-28-0	Thallium	3.9	ND	1	0.5	50	07/28/12	18149	S14184A3	38	Р	PEICP3A
7440-62-2	Vanadium	32	38	1	0.5	50	07/28/12	18149	S14184A3	38	Р	PEICP3A
7440-66-6	Zinc	32	140	1	0.5	50	07/28/12	18149	S14184A3	38	Р	PEICP3A
1 770-00-0	£.,,10	02		·						1		

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor MS - ICP-MS

Sample ID: AC67281-010

% Solid: 0 Units: UG/L Lab Name: Veritech

Nras No: Sdg No:

Matrix:

Client Id: PC-2 U AQUEOUS

Date Rec: 7/26/2012

Lab Code: Contract:

Case No:

LOW Level:

Ins	М	Seq Num	File:	Prep Batch	Analysis Date	Final Wt/Vol	Initial Wt/Vol	Dil Fact	Conc	RL	Analyte	Cas No.
PEICP2	Р	38	A14186A2	18151	08/03/12	50	100	1	12000	100	Aluminum	7429-90-5
PEICP2	Ρ	38	A14186A2	18151	08/03/12	50	100	1	ND	7.5	Antimony	7440-36-0
PEICP2	Р	38	A14186A2	18151	08/03/12	50	100	1	ND	20	Arsenic	7440-38-2
PEICP2	Р	38	A14186A2	18151	08/03/12	50	100	1	330	25	Barium	7440-39-3
PEICP2	Р	38	A14186A2	18151	08/03/12	50	100	1	ND	4.0	Beryllium	7440-41-7
PEICP2	Р	38	A14186A2	18151	08/03/12	50	100	1	ND	2.0	Cadmium	7440-43-9
PEICP2	Р	38	A14186A2	18151	08/03/12	50	100	1	81000	1000	Calcium	7440-70-2
PEICP2	P	38	A14186A2	18151	08/03/12	50	100	1	34	25	Chromium	7440-47-3
PEICP2	Р	38	A14186A2	18151	08/03/12	50	100	1	18	10	Cobalt	7440-48-4
PEICP2	Р	38	A14186A2	18151	08/03/12	50	100	1	27	25	Copper	7440-50-8
PEICP2	Р	38	A14186A2	18151	08/03/12	50	100	1	86000	150	Iron	7439-89-6
PEICP2	Р	38	A14186A2	18151	08/03/12	50	100	1	16	5.0	Lead	7439-92-1
PEICP2	Р	38	A14186A2	18151	08/03/12	50	100	1	27000	1000	Magnesium	7439-95-4
PEICP2	Ρ	38	A14186A2	18151	08/03/12	50	100	1	9100	25	Manganese	7439-96-5
HGCV1	С٧	25	H14186Ac	18151	08/08/12	25	25	1	ND	0.20	Mercury	7439-97-6
PEICP2	Р	38	A14186A2	18151	08/03/12	50	100	1	26	10	Nickel	7440-02-0
PEICPRAD2	Р	32	A14186B2	18151	08/03/12	50	100	1	6800	2500	Potassium	7440-09-7
PEICP2	Р	38	A14186A2	18151	08/03/12	50	100	1	ND	25	Selenium	7782-49-2
PEICP2	Р	38	A14186A2	18151	08/03/12	50	100	1	ND	10	Silver	7440-22-4
PEICPRAD2	Р	32	A14186B2	18151	08/03/12	50	100	1	43000	2500	Sodium	7440-23-5
PEICP2	Ρ	38	A14186A2	18151	08/03/12	50	100	1	ND	5.0	Thallium	7440-28-0
PEICP2	Р	38	A14186A2	18151	08/03/12	50	100	1	46	25	Vanadium	7440-62-2
PEICP2	Р	38	A14186A2	18151	08/03/12	50	100	1	62	25	Zinc	7440-66-6

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC67281-011

% Solid: 0

Lab Name: Veritech Nras No:

Matrix: AQUEOUS

Client Id: PC-2 F

Units: UG/L

Date Rec: 7/26/2012

Lab Code: Contract:

Sdg No: Case No:

Level: LOW

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol	Analysis Date	Prep Batch	File:	Seq Num	М	Instr
7429-90-5	Aluminum	100	ND	1	100	50	08/03/12	18151	A14186A2	39	Р	PEICP2A
7440-36-0	Antimony	7.5	ND	1	100	50	08/03/12	18151	A14186A2	39	Р	PEICP2A
7440-38-2	Arsenic	20	ND	1	100	50	08/03/12	18151	A14186A2	39	Р	PEICP2A
7440-39-3	Barium	25	130	1	100	50	08/03/12	18151	A14186A2	39	Р	PEICP2A
7440-41-7	Beryllium	4.0	ND	1	100	50	08/03/12	18151	A14186A2	39	Р	PEICP2A
7440-43-9	Cadmium	2.0	ND	1	100	50	08/03/12	18151	A14186A2	39	Р	PEICP2A
7440-70-2	Calcium	1000	77000	1	100	50	08/03/12	18151	A14186A2	39	Р	PEICP2A
7440-47-3	Chromium	25	ND	1	100	50	08/03/12	18151	A14186A2	39	Р	PEICP2A
7440-48-4	Cobalt	10	ND	1	100	50	08/03/12	18151	A14186A2	39	Р	PEICP2A
7440-50-8	Copper	25	ND	1	100	50	08/03/12	18151	A14186A2	39	Р	PEICP2A
7439-89-6	Iron	150	25000	1	100	50	08/03/12	18151	A14186A2	39	Р	PEICP2A
7439-92-1	Lead	5.0	ND	1	100	50	08/03/12	18151	A14186A2	39	Р	PEICP2A
7439-95-4	Magnesium	1000	22000	1	100	50	08/03/12	18151	A14186A2	39	Р	PEICP2A
7439-96-5	Manganese	25	8800	1	100	50	08/03/12	18151	A14186A2	39	Р	PEICP2A
7439-97-6	Mercury	0.20	ND	1	25	25	08/08/12	18151	H14186Ac	26	CV	HGCV1A
7440-02-0	Nickel	10	ND	1	100	50	08/03/12	18151	A14186A2	39	Р	PEICP2A
7440-09-7	Potassium	2500	4800	1	100	50	08/03/12	18151	A14186B2	33	Р	PEICPRAD2A
7782-49-2	Selenium	25	ND	1	100	50	08/03/12	18151	A14186A2	39	Р	PEICP2A
7440-22-4	Silver	10	ND	1	100	50	08/03/12	18151	A14186A2	39	Р	PEICP2A
7440-23-5	Sodium	2500	43000	1	100	50	08/03/12	18151	A14186B2	33	Р	PEICPRAD2A
7440-28-0	Thallium	5.0	ND	1	100	50	08/03/12	18151	A14186A2	39	Р	PEICP2A
7440-62-2	Vanadium	25	ND	1	100	50	08/03/12	18151	A14186A2	39	Р	PEICP2A
7440-66-6	Zinc	25	ND	1	100	50	08/03/12	18151	A14186A2	39	Р	PEICP2A

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC67281-013

% Solid: 0 Units: UG/L Lab Name: Veritech

Nras No: Sdg No:

Matrix: AQUEOUS

Client Id: LMW-2 F

Date Rec: 7/26/2012

Lab Code: Contract:

Case No:

Level: LOW

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol	Analysis Date	Prep Batch	File:	Seq Num	М	Instr
7429-90-5	Aluminum	100	ND	1	100	50	08/03/12	18151	A14186A2	40	Р	PEICP2A
7440-36-0	Antimony	7.5	ND	1	100	50	08/03/12	18151	A14186A2	40	Р	PEICP2A
7440-38-2	Arsenic	20	ND	1	100	50	08/03/12	18151	A14186A2	40	Р	PEICP2A
7440-39-3	Barium	25	120	1	100	50	08/03/12	18151	A14186A2	40	Р	PEICP2A
7440-41-7	Beryllium	4.0	ND	1	100	50	08/03/12	18151	A14186A2	40	Р	PEICP2A
7440-43-9	Cadmium	2.0	ND	1	100	50	08/03/12	18151	A14186A2	40	Р	PEICP2A
7440-70-2	Calcium	1000	74000	1	100	50	08/03/12	18151	A14186A2	40	Р	PEICP2A
7440-47-3	Chromium	25	ND	1	100	50	08/03/12	18151	A14186A2	40	Р	PEICP2A
7440-48-4	Cobalt	10	ND	1	100	50	08/03/12	18151	A14186A2	40	Ρ	PEICP2A
7440-50-8	Copper	25	ND	1	100	50	08/03/12	18151	A14186A2	40	Р	PEICP2A
7439-89-6	Iron	150	ND	1	100	50	08/03/12	18151	A14186A2	40	Р	PEICP2A
7439-92-1	Lead	5.0	ND	1	100	50	08/03/12	18151	A14186A2	40	Р	PEICP2A
7439-95-4	Magnesium	1000	29000	1	100	50	08/03/12	18151	A14186A2	40	Р	PEICP2A
7439-96-5	Manganese	25	210	1	100	50	08/03/12	18151	A14186A2	40	Р	PEICP2A
7439-97-6	Mercury	0.20	ND	1	25	25	08/08/12	18151	H14186Ac	27	CV	HGCV1A
7440-02-0	Nickel	10	ND	1	100	50	08/03/12	18151	A14186A2	40	Р	PEICP2A
7440-09-7	Potassium	2500	3700	1	100	50	08/03/12	18151	A14186B2	34	Р	PEICPRAD2A
7782-49-2	Selenium	25	ND	1	100	50	08/03/12	18151	A14186A2	40	Ρ	PEICP2A
7440-22-4	Silver	10	ND	1	100	50	08/03/12	18151	A14186A2	40	Р	PEICP2A
7440-23-5	Sodium	2500	27000	1	100	50	08/03/12	18151	A14186B2	34	Ρ	PEICPRAD2A
7440-28-0	Thallium	5.0	ND	1	100	50	08/03/12	18151	A14186A2	40	Ρ	PEICP2A
7440-62-2	Vanadium	25	ND	1	100	50	08/03/12	18151	A14186A2	40	Р	PEICP2A
7440-66-6	Zinc	25	ND	1	100	50	08/03/12	18151	A14186A2	40	Р	PEICP2A

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC67281-014

% Solid: 0 Client Id: FB-1 LF U

Lab Name: Veritech Nras No: Sdg No:

Matrix: AQUEOUS

Units: UG/L Date Rec: 7/26/2012 Lab Code: Contract:

Case No:

Level: LOW

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol	Analysis Date	Prep Batch	File:	Seq Num	М	Instr
7429-90-5	Aluminum	100	ND	1	100	50	08/03/12	18151	A14186A2	41	Р	PEICP2A
7440-36-0	Antimony	7.5	ND	1	100	50	08/03/12	18151	A14186A2	41	Р	PEICP2A
7440-38-2	Arsenic	20	ND	1	100	50	08/03/12	18151	A14186A2	41	Р	PEICP2A
7440-39-3	Barium	25	ND	1	100	50	08/03/12	18151	A14186A2	41	Р	PEICP2A
7440-41-7	Beryllium	4.0	ND	1	100	50	08/03/12	18151	A14186A2	41	Ρ	PEICP2A
7440-43-9	Cadmium	2.0	ND	1	100	50	08/03/12	18151	A14186A2	41	Р	PEICP2A
7440-70-2	Calcium	1000	ND	1	100	50	08/03/12	18151	A14186A2	41	Р	PEICP2A
7440-47-3	Chromium	25	ND	1	100	50	08/03/12	18151	A14186A2	41	Р	PEICP2A
7440-48-4	Cobalt	10	ND	1	100	50	08/03/12	18151	A14186A2	41	Р	PEICP2A
7440-50-8	Copper	25	ND	1	100	50	08/03/12	18151	A14186A2	41	Р	PEICP2A
7439-89-6	Iron	150	ND	1	100	50	08/03/12	18151	A14186A2	41	Р	PEICP2A
7439-92-1	Lead	5.0	ND	1	100	50	08/03/12	18151	A14186A2	41	Р	PEICP2A
7439-95-4	Magnesium	1000	ND	1	100	50	08/03/12	18151	A14186A2	41	Р	PEICP2A
7439-96-5	Manganese	25	ND	1	100	50	08/03/12	18151	A14186A2	41	Ρ	PEICP2A
7439-97-6	Mercury	0.20	ND	1	25	25	08/08/12	18151	H14186Ac	28	C۷	HGCV1A
7440-02-0	Nickel	10	ND	1	100	50	08/03/12	18151	A14186A2	41	Р	PEICP2A
7440-09-7	Potassium	2500	ND	1	100	50	08/03/12	18151	A14186B2	35	Р	PEICPRAD2A
7782-49-2	Selenium	25	ND	1	100	50	08/03/12	18151	A14186A2	41	Р	PEICP2A
7440-22-4	Silver	10	ND	1	100	50	08/03/12	18151	A14186A2	41	Р	PEICP2A
7440-23-5	Sodium	2500	ND	1	100	50	08/03/12	18151	A14186B2	35	Р	PEICPRAD2A
7440-28-0	Thallium	5.0	ND	1	100	50	08/03/12	18151	A14186A2	41	Р	PEICP2A
7440-62-2	Vanadium	25	ND	1	100	50	08/03/12	18151	A14186A2	41	Р	PEICP2A
7440-66-6	Zinc	25	ND	1	100	50	08/03/12	18151	A14186A2	41	Р	PEICP2A

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC67281-017

17 % Solid: 0 Units: UG/L Lab Name: Veritech

Nras No: Sdg No:

Client Id: Matrix:

LMW-4 F AQUEOUS

Date Rec: 7/26/2012

Lab Code: Contract:

Case No:

Level: LOW

7429-90-5         Aluminum         100         ND         1         100         50         08/03/12         18151         A14186A2         42         P           7440-36-0         Antimony         7.5         ND         1         100         50         08/03/12         18151         A14186A2         42         P           7440-38-2         Arsenic         20         ND         1         100         50         08/03/12         18151         A14186A2         42         P           7440-39-3         Barium         25         160         1         100         50         08/03/12         18151         A14186A2         42         P           7440-41-7         Beryllium         4.0         ND         1         100         50         08/03/12         18151         A14186A2         42         P           7440-43-9         Cadmium         2.0         ND         1         100         50         08/03/12         18151         A14186A2         42         P           7440-47-3         Chromium         25         ND         1         100         50         08/03/12         18151         A14186A2         42         P           7440-48-4	PEICP2A PEICP2A PEICP2A
7440-38-2 Arsenic 20 ND 1 100 50 08/03/12 18151 A14186A2 42 P 7440-39-3 Barium 25 160 1 100 50 08/03/12 18151 A14186A2 42 P 7440-41-7 Beryllium 4.0 ND 1 100 50 08/03/12 18151 A14186A2 42 P 7440-43-9 Cadmium 2.0 ND 1 100 50 08/03/12 18151 A14186A2 42 P 7440-70-2 Calcium 1000 60000 1 100 50 08/03/12 18151 A14186A2 42 P 7440-47-3 Chromium 25 ND 1 100 50 08/03/12 18151 A14186A2 42 P 7440-48-4 Cobalt 10 ND 1 100 50 08/03/12 18151 A14186A2 42 P 7440-50-8 Copper 25 ND 1 100 50 08/03/12 18151 A14186A2 42 P 7439-89-6 Iron 150 72000 1 100 50 08/03/12 18151 A14186A2 42 P 7439-92-1 Lead 5.0 ND 1 100 50 08/03/12 18151 A14186A2 42 P 7439-95-4 Magnesium 1000 25000 1 100 50 08/03/12 18151 A14186A2 42 P 7439-96-5 Manganese 25 14000 1 100 50 08/03/12 18151 A14186A2 42 P	PEICP2A
7440-39-3 Barium 25 160 1 100 50 08/03/12 18151 A14186A2 42 P 7440-41-7 Beryllium 4.0 ND 1 100 50 08/03/12 18151 A14186A2 42 P 7440-43-9 Cadmium 2.0 ND 1 100 50 08/03/12 18151 A14186A2 42 P 7440-70-2 Calcium 1000 60000 1 100 50 08/03/12 18151 A14186A2 42 P 7440-47-3 Chromium 25 ND 1 100 50 08/03/12 18151 A14186A2 42 P 7440-48-4 Cobalt 10 ND 1 100 50 08/03/12 18151 A14186A2 42 P 7440-50-8 Copper 25 ND 1 100 50 08/03/12 18151 A14186A2 42 P 7439-89-6 Iron 150 72000 1 100 50 08/03/12 18151 A14186A2 42 P 7439-92-1 Lead 5.0 ND 1 100 50 08/03/12 18151 A14186A2 42 P 7439-95-4 Magnesium 1000 25000 1 100 50 08/03/12 18151 A14186A2 42 P 7439-96-5 Manganese 25 14000 1 100 50 08/03/12 18151 A14186A2 42 P	
7440-39-3         Barium         25         160         1         100         50         08/03/12         18151         A14186A2         42         P           7440-41-7         Beryllium         4.0         ND         1         100         50         08/03/12         18151         A14186A2         42         P           7440-43-9         Cadmium         2.0         ND         1         100         50         08/03/12         18151         A14186A2         42         P           7440-70-2         Calcium         1000         60000         1         100         50         08/03/12         18151         A14186A2         42         P           7440-47-3         Chromium         25         ND         1         100         50         08/03/12         18151         A14186A2         42         P           7440-48-4         Cobalt         10         ND         1         100         50         08/03/12         18151         A14186A2         42         P           7439-89-6         Iron         150         72000         1         100         50         08/03/12         18151         A14186A2         42         P           7439-95-4	
7440-43-9 Cadmium 2.0 ND 1 100 50 08/03/12 18151 A14186A2 42 P 7440-70-2 Calcium 1000 60000 1 100 50 08/03/12 18151 A14186A2 42 P 7440-47-3 Chromium 25 ND 1 100 50 08/03/12 18151 A14186A2 42 P 7440-48-4 Cobalt 10 ND 1 100 50 08/03/12 18151 A14186A2 42 P 7440-50-8 Copper 25 ND 1 100 50 08/03/12 18151 A14186A2 42 P 7439-89-6 Iron 150 72000 1 100 50 08/03/12 18151 A14186A2 42 P 7439-92-1 Lead 5.0 ND 1 100 50 08/03/12 18151 A14186A2 42 P 7439-95-4 Magnesium 1000 25000 1 100 50 08/03/12 18151 A14186A2 42 P 7439-96-5 Manganese 25 14000 1 100 50 08/03/12 18151 A14186A2 42 P	PEICP2A
7440-43-9         Cadmium         2.0         ND         1         100         30         60/63/12         18151         A14186A2         42         P           7440-70-2         Calcium         1000         60000         1         100         50         08/03/12         18151         A14186A2         42         P           7440-47-3         Chromium         25         ND         1         100         50         08/03/12         18151         A14186A2         42         P           7440-48-4         Cobalt         10         ND         1         100         50         08/03/12         18151         A14186A2         42         P           7440-50-8         Copper         25         ND         1         100         50         08/03/12         18151         A14186A2         42         P           7439-89-6         Iron         150         72000         1         100         50         08/03/12         18151         A14186A2         42         P           7439-92-1         Lead         5.0         ND         1         100         50         08/03/12         18151         A14186A2         42         P           7439-95-4         <	PEICP2A
7440-70-2 Calcium 1000 60000 1 100 50 08/03/12 18151 A14186A2 42 P 7440-47-3 Chromium 25 ND 1 100 50 08/03/12 18151 A14186A2 42 P 7440-48-4 Cobalt 10 ND 1 100 50 08/03/12 18151 A14186A2 42 P 7440-50-8 Copper 25 ND 1 100 50 08/03/12 18151 A14186A2 42 P 7439-89-6 Iron 150 72000 1 100 50 08/03/12 18151 A14186A2 42 P 7439-92-1 Lead 5.0 ND 1 100 50 08/03/12 18151 A14186A2 42 P 7439-95-4 Magnesium 1000 25000 1 100 50 08/03/12 18151 A14186A2 42 P 7439-96-5 Manganese 25 14000 1 100 50 08/03/12 18151 A14186A2 42 P	PEICP2A
7440-48-4 Cobalt 10 ND 1 100 50 08/03/12 18151 A14186A2 42 P 7440-50-8 Copper 25 ND 1 100 50 08/03/12 18151 A14186A2 42 P 7439-89-6 Iron 150 72000 1 100 50 08/03/12 18151 A14186A2 42 P 7439-92-1 Lead 5.0 ND 1 100 50 08/03/12 18151 A14186A2 42 P 7439-95-4 Magnesium 1000 25000 1 100 50 08/03/12 18151 A14186A2 42 P 7439-96-5 Manganese 25 14000 1 100 50 08/03/12 18151 A14186A2 42 P	PEICP2A
7440-48-4         Cobalt         10         ND         1         100         50         08/03/12         18151         A14186A2         42         P           7440-50-8         Copper         25         ND         1         100         50         08/03/12         18151         A14186A2         42         P           7439-89-6         Iron         150         72000         1         100         50         08/03/12         18151         A14186A2         42         P           7439-92-1         Lead         5.0         ND         1         100         50         08/03/12         18151         A14186A2         42         P           7439-95-4         Magnesium         1000         25000         1         100         50         08/03/12         18151         A14186A2         42         P           7439-96-5         Manganese         25         14000         1         100         50         08/03/12         18151         A14186A2         42         P	PEICP2A
7440-50-8         Copper         25         ND         1         100         50         08/03/12         18151         A14186A2         42         P           7439-89-6         Iron         150         72000         1         100         50         08/03/12         18151         A14186A2         42         P           7439-92-1         Lead         5.0         ND         1         100         50         08/03/12         18151         A14186A2         42         P           7439-95-4         Magnesium         1000         25000         1         100         50         08/03/12         18151         A14186A2         42         P           7439-96-5         Manganese         25         14000         1         100         50         08/03/12         18151         A14186A2         42         P	PEICP2A
7439-89-6 Iron 150 72000 1 100 50 08/03/12 18151 A14186A2 42 P 7439-92-1 Lead 5.0 ND 1 100 50 08/03/12 18151 A14186A2 42 P 7439-95-4 Magnesium 1000 25000 1 100 50 08/03/12 18151 A14186A2 42 P 7439-96-5 Manganese 25 14000 1 100 50 08/03/12 18151 A14186A2 42 P	PEICP2A
7439-92-1 Lead 5.0 ND 1 100 50 08/03/12 18151 A14186A2 42 P 7439-95-4 Magnesium 1000 25000 1 100 50 08/03/12 18151 A14186A2 42 P 7439-96-5 Manganese 25 14000 1 100 50 08/03/12 18151 A14186A2 42 P	PEICP2A
7439-95-4 Magnesium 1000 25000 1 100 50 08/03/12 18151 A14186A2 42 P 7439-96-5 Manganese 25 14000 1 100 50 08/03/12 18151 A14186A2 42 P	PEICP2A
7439-96-5 Manganese 25 14000 1 100 50 08/03/12 18151 A14186A2 42 P	PEICP2A
05 05 05/08/42 19151 H1/1964c 29 CV	PEICP2A
7439-97-6 Mercury 0.20 ND 1 25 25 08/08/12 18131 H14100AC 29 CV	HGCV1A
7440-02-0 Nickel 10 ND 1 100 50 08/03/12 18151 A14186A2 42 P	PEICP2A
1440 02 0	PEICPRAD2A
7782-49-2 Selenium 25 ND 1 100 50 08/03/12 18151 A14186A2 42 P	PEICP2A
7440-22-4 Silver 10 ND 1 100 50 08/03/12 18151 A14186A2 42 P	PEICP2A
7440-22-4	PEICPRAD2A
7440-28-0 Thallium 5.0 ND 1 100 50 08/03/12 18151 A14186A2 42 P	PEICP2A
7440-62-2 Vanadium 25 ND 1 100 50 08/03/12 18151 A14186A2 42 P	PEICP2A
7440-66-6 Zinc 25 ND 1 100 50 08/03/12 18151 A14186A2 42 P	PEICP2A

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Date Analyzed: 07/27/12

Data File: S14184A3

Prep Batch: 18149 Reporting Limits Used: SOIL,6010B(ICP)/7470A,7471A(Hg),6020

Instrument: PEICP3A

Units: All units in ppm except Hg and icp-ms in ppb

Project Number: 2072518

Lab Name: Veritech

Lab Code:

Contract:

Nras No:

Sdg No:

Case No:

nalyte	ICB V-143551- 8	CCB V-143551- 20	CCB V-143551- 30	CCB V-143551- 41	CCB V-143551- 52	MB 18149 (100)-11	MB FB (1)-47
ntimony	.02 U	.02 U	.02 U	.02 U	.02 U	2 U	.02 U
rium	.1 U	.1 U	.1 U	.1 U	.1 U	10 U	.10
yllium	.006 U	.006 U	.006 U	.006 U	.006 U	.6 U	.006 U
dmium	.006 U	.006 U	.006 U	.006 U	.006 U	.6 U	.006 U
romium	.05 U	.05 U	.05 U	.05 U	.05 U	5 U	.05 U
alt	.025 U	.025 U	.025 U	.025 U	.025 U	2.5 U	.025 U
per	.05 U	.05 U	.05 U	.05 U	.05 U	5 U	.05 U
d d	.05 U	.05 U	.05 U	.05 U	.05 U	5 U	.05 U
el	.05 U	.05 U	.05 U	.05 U	.05 U	5 U	.05 U
nium	.018 U	.018 U	.018 U	.018 U	.018 U	1.8 U	.018 U
er	.015 U	.015 U	.015 U	.015 U	.015 U	1.5 U	.015 U
llium	.012 U	.012 U	.012 U	.012 U	.012 U	1.2 U	.012 U
adium	.1 U	.1 U	.1 U	.1 U	.1 U	10 U	.1 U
	.1 U	.1 U	.10	.1 U	.1 U	10 U	.10

Date Analyzed: 07/30/12

Data File: S14184C3

Lab Name: Veritech

Prep Batch: 18149

Reporting Limits Used: SOIL,6010B(ICP)/7470A,7471A(Hg),6020

Lab Code:

Instrument: PEICP3A

Contract: Nras No:

Sdg No:

Units: All units in ppm except Hg and icp-ms in ppb

Case No:

Project Number: 2072518

Analyte	ICB V-143551- 8	CCB V-143551- 20	CCB V-143551- 32	CCB V-143551- 44	MB 18149 (100)-11	MB FB (1)-39	
Arsenic	.02 U	.02 U	.02 U	.02 U	2 U	.02 U	
Manganese	.1 U	.1 U	.1 U	.1 U	10 U	.1 U	

Date Analyzed: 07/31/12

Data File: S14184E3

Lab Name: Veritech

Prep Batch: 18149

Lab Code:

Reporting Limits Used: SOIL,6010B(ICP)/7470A,7471A(Hg),6020

Contract:

Nras No:

Instrument: PEICPRAD3A

Sdg No:

Units: All units in ppm except Hg and icp-ms in ppb

Case No:

Project Number: 2072518

Analyte	ICB V-143551- 7	CCB V-143551- 19	CCB V-143551- 30	CCB V-143551- 41	MB 18149 (100)-10	MB FB (1)-36	
Aluminum	2 U	2 U	2 U	2 U	200 U	2 U	
Calcium	10 U	10 U	10 U	10 U	1000 U	10 U	
Iron	2 U	2 U	2 U	2 U	200 U	2 U	
Magnesium	5 U	5 U	5 U	5 U	500 U	5 U	
Potassium	5 U	5 U	5 U	5 U	500 U	5 U	
Sadium	2.5 U	2.5 U	2.5 U	2.5 U	250 U	2.5 U	

Date Analyzed: 08/03/12

Data File: A14186A2

Prep Batch: 18151

Reporting Limits Used: AQUEOUS,200.7(ICP)/200.8(ICPMS)/245.1(Hg)

Instrument: PEICP2A

Units: All units in ppm except Hg and icp-ms in ppb

Project Number: 2072518

Lab Name: Veritech

Lab Code:

Contract: Nras No:

Sdg No:

Case No:

ınalyte	ICB V-143551- 8	CCB-12	CCB-23	CCB-30	CCB-37	CCB-46	MB 18151 (0.5)-13
luminum	.2 U	.2 U	.2 U	.2 U	.2 U	.2 U	.1 U
intimony	.015 U	.015 U	.015 U	.015 U	.015 U	.015 <b>U</b>	.0075 U
rsenic	.04 U	.04 U	.04 U	.04 U	.04 U	.04 U	.02 U
arium	.05 U	.05 U	.05 U	.05 U	.05 U	.05 U	.025 U
Beryllium	.008 U	.008 U	.008 U	U 800.	.008 U	.008 U	.004 U
admium	.004 U	.004 U	.004 U	.004 U	.004 U	.004 U	.002 U
alcium	2 U	2 U	2 U	2 U	2 U	2 U	1 U
hromium	.05 U	.05 U	.05 U	.05 U	.05 U	.05 U	.025 U
obalt	.02 U	.02 U	.02 U	.02 U	.02 U	.02 U	.01 U
Copper	.05 U	.05 U	.05 U	.05 U	.05 U	.05 U	.025 U
on	.3 U	.3 U	.3 U	.3 U	.3 U	.3U	.15 U
ead	.01 U	.01 U	.01 U	.01 U	.01 U	.01 U	.005 <b>U</b>
lagnesium	2 U	2 U	2 U	2 U	2 U	2 U	1 U
langanese	.05 U	.05 U	.05 U	.05 U	.05 U	.05 U	.025 U
lickel	.02 U	.02 U	.02 U	.02 U	.02 U	.02 U	.01 U
Selenium	.05 U	.05 U	.05 U	.05 U	.05 U	.05 U	.025 U
Silver	.02 U	.02 U	.02 U	.02 U	.02 U	.02 U	.01 U
'hallium	.01 U	.01 U	.01 U	.01 U	.01 U	.01 U	.005 U
anadium	.05 U	.05 U	.05 U	.05 U	.05 U	.05 U	.025 U
inc	.05 U	.05 U	.05 U	.05 U	.05 U	.05 U	.025 U

Date Analyzed: 08/03/12

Data File: A14186B2

Lab Name:

Veritech

Prep Batch: 18151

Lab Code:

Reporting Limits Used: AQUEOUS,200.7(ICP)/200.8(ICPMS)/245.1(Hg)

Contract: Nras No:

Instrument: PEICPRAD2A

Sdg No:

Units: All units in ppm except Hg and icp-ms in ppb

Case No:

Project Number: 2072518

	ICB V-143551-	CCB-11	CCB-22	CCB-29	CCB-40	MB 18151	
Analyte	7					(0.5)-12	_
Potassium	5 U	5 U	5 U	5 U	5 U	2.5 U	
Sodium	5 U	5 U	5 U	5 U	5 U	2.5 U	j

Date Analyzed: 08/08/12

Data File: H14186Ac

Lab Name:

Prep Batch: 18151

Lab Code:

Veritech

Reporting Limits Used: AQUEOUS,200.7(ICP)/200.8(ICPMS)/245.1(Hg)

Contract:

Instrument: HGCV1A

Nras No: Sdg No:

Units: All units in ppm except Hg and icp-ms in ppb

Case No:

Project Number: 2072518

CCB-31

MB 18151 (1)-11 CCB-22 ICB-10 Analyte Mercury .2 U .2 U .2 U .2 U

Date Analyzed: 07/30/12

Data File: H14184S

Prep Batch: 18149

Reporting Limits Used: SOIL,6010B(ICP)/7470A,7471A(Hg),6020

Instrument: HGCV1A

Units: All units in ppm except Hg and icp-ms in ppb

Project Number: 2072518

Lab Name: Veritech

Lab Code:

Contract:

Nras No:

Sdg No:

Case No:

Analyte	ICB-10	CCB-22	CCB-34	CCB-37	MB 18149 (167)-11	MB FB (1)-32	
Mercury	.5 U	.5 U	.5 U	.5 U	83 U	.5U	

Page 1 of 2

# VERITECH Wet Chem Form1 Analysis Summary

	AC67281-001 Aqueous SW-1 U					Rece	ct Number: 2072 lived Date: 7/25/ bllect Date: 7/25/	2012
Analysis		TestGroup	Dilution:	Result	Units:	RL	Prep Date:	Analysis Date:
Chloride		CHLORIDE-ICW	1	5.8	mg/L	2.0	07/31/12	07/31/12
		CN-WATER-MUR	1	ND	mg/L	0.020	07/27/12	07/30/12
Cyanide		CIN-VVATER-IVIOR		ND	my/L	0.020	OTIZITIZ	07750712
	AC67281-003 Aqueous SW-2 U					Rece	et Number: 2072 eived Date: 7/25/: ollect Date: 7/25/:	2012
Analysis		TestGroup	Dilution:	Result	Units:	RL	Prep Date:	Analysis Date:
Chloride		CHLORIDE-ICW	1	6.5	mg/L	2.0	07/31/12	07/31/12
Cyanide		CN-WATER-MUR	1	0.030	mg/L	0.020	07/27/12	07/31/12
Lab#:	AC67281-005 Aqueous SW-4 U					Rece	ot Number: 2072 eived Date: 7/25/ ollect Date: 7/25/	2012
Analysis		TestGroup	Dilution:	Result	Units:	RL	Prep Date:	Analysis Date:
Chloride		CHLORIDE-ICW	1	6.6	mg/L	2.0	07/31/12	07/31/12
Cyanide		CN-WATER-MUR	1	ND	mg/L	0.020	07/27/12	07/31/12
Lab#: Matrix Client SampleID:						Rece	ot Number: 2072 eived Date: 7/25/ ollect Date: 7/25/	2012
Analysis		TestGroup	Dilution:	Result	Units:	RL	Prep Date:	Analysis Date:
Chloride		CHLORIDE-ICS	1	ND	mg/Kg	30	07/28/12	07/28/12
Cyanide		CN-S-9012	1	ND	mg/Kg	0.36	07/30/12	07/30/12
Lab#: Matrix Client SampleID:						Rece	et Number: 2072 eived Date: 7/25/ ollect Date: 7/25/	2012
Analysis		TestGroup	Dilution:	Result	Units:	RL	Prep Date:	Analysis Date:
Chloride		CHLORIDE-ICS	1	ND	mg/Kg	140	07/28/12	07/28/12
Cyanide		CN-S-9012	1	2.3	mg/Kg	1.7	07/30/12	07/30/12
Lab#: Matrix Client SampleID:						Rece	ot Number: 2072 Dived Date: 7/25/ Ollect Date: 7/25/	2012
Analysis		TestGroup	Dilution:	Result	Units:	RL	Prep Date:	Analysis Date:
Chloride		CHLORIDE-ICS	1	ND	mg/Kg	65	07/28/12	07/28/12
Cyanide		CN-S-9012	1	ND	mg/Kg	0.77	07/30/12	07/30/12
	AC67281-010 Aqueous PC-2 U					Rece	ot Number: 2072 eived Date: 7/25/ ollect Date: 7/25/	2012
Analysis		TestGroup	Dilution:	Result	Units:	RL	Prep Date:	Analysis Date:
Chloride		CHLORIDE-ICW	1	23	mg/L	2.0	07/31/12	07/31/12
Cyanide		CN-WATER-MUR	1	ND	mg/L	0.020	07/27/12	07/31/12
	AC67281-012 Aqueous LMW-2 U					Rece	ot Number: 2072 vived Date: 7/25/2 ollect Date: 7/25/2	2012
\nalysis		TestGroup	Dilution:	Result	Units:	RL	Prep Date:	Analysis Date:
Chloride		CHLORIDE-ICW	1	13	mg/L	2.0	07/31/12	07/31/12
Cyanide		CN-WATER-MUR	1	ND	mg/L	0.020	07/27/12	07/31/12 Page 1 of 2

## VERITECH Wet Chem Form1 Analysis Summary

Lab#: AC67281-014 Matrix Aqueous Client SampleID: FB-1 LF U

Project Number: 2072518 Received Date: 7/25/2012

Collect Date: 7/25/2012

Units: Analysis Date: Analysis TestGroup Dilution: Result RL Prep Date: Chloride CHLORIDE-ICW ND mg/L 2.0 07/31/12 07/31/12 ND mg/L 0.020 07/27/12 07/31/12 Cyanide **CN-WATER-MUR** 1

Lab#: AC67281-016

Project Number: 2072518 Received Date: 7/25/2012 Collect Date: 7/25/2012

Matrix Aqueous Client SampleID: LMW-4 U

Analysis	TestGroup	Dilution:	Result	Units:	RL	Prep Date:	Analysis Date:
Chloride	CHLORIDE-ICW	1	15	mg/L	2.0	07/31/12	07/31/12
Cyanide	CN-WATER-MUR	1	ND	mg/L	0.020	07/27/12	07/31/12

Instrument: IC1

	Qc Type: Metho	d Blank Summary	Prep (	Date: 7	/31/12		
-	Run Batch ID	Analysis Date/Time	Sample ID	Run#	Analyte	Conc	RL
	20120728132	7/31/12 09:51	MBW-1271	29	Chloride	ND	2.0
	Qc Type: ICB S	ummary	Prep I	Date: N	IA		
	Run Batch ID	Analysis Date/Time	Sample ID	Run#	Analyte	Conc	RL
	20120728132	7/28/12 15:59	ICB	8	Chloride	ND	2.0
	Qc Type: CCB S	Summary	Prep [	Date: N	IA		
	Run Batch ID	Analysis Date/Time	Sample ID	Run#	Analyte	Conc	RL
	20120728132	7/31/12 09:29	CCB	28	Chloride	ND	2.0
	00400700400	7/31/12 13:57	ССВ	40	Chloride	ND	2.0
	20120728132	1/31/12 13.57	CCB	40	Cilionae	ND	2.0

# MS/MSD/DUP Recovery

Prep Batch: S-1079 Method: EPA 9056A Sample ID: AC67168-001

Matrix Soil

Qc Type:	MS	Limits	***************************************	MS	Sam			M	S/MSD/	DUP		Non Spi	ke
Analyte	Amt	Recov	Dil	Conc	Conc	Recov	Flag	Batch	RunID	Analysis Date	Batch	RunID	Analysis Date
Chloride	5	80-120	1	9.9628	6.2406	74	Ms	20120728132	12	07/28/12 17:27	20120728132	11	07/28/12 17:05

Qc Type	MSD	Lim	its		MS	Sam					M	s/MSD/	DUP		Non Spi	ke
Analyte	Amt	Recov	Rpd	Dil	Conc	Conc	Recov	Rpd	Flag	İ	Batch	RunID	Analysis Date	Batch	RunID	Analysis Date
Chloride	5	80-120	20	1	9.7638	6.2406	70	2	Ms		20120728132	13	07/28/12 17:50	20120728132	11	07/28/12 17:05

Instrument: IC1

Qc Type: Metho	d Blank Summary	Prep D	ate: 7.	/28/12		
 Run Batch ID	Analysis Date/Time	Sample ID	Run#	Analyte	Conc	RL
20120728132	7/28/12 16:21	MBS-1079	9	Chloride	ND	20
Qc Type: ICB St	ımmary	Prep D	ate: N	Α		
 Run Batch ID	Analysis Date/Time	Sample ID	Run#	Analyte	Conc	RL
20120728132	7/28/12 15:59	ICB	8	Chloride	ND	2.0
Qc Type: CCB S	Summary	Prep D	ate: N	Α		
Run Batch ID	Analysis Date/Time	Sample ID	Run#	Analyte	Conc	RL
20120728132	7/28/12 20:27	ССВ	20	Chloride	ND	2.0
20120728132	7/28/12 22:19	ССВ	25	Chloride	ND	2.0

# MS/MSD/DUP Recovery

Prep Batch: s-944

Sample ID: AC67339-001

Method: EPA 9012B

Matrix Soil

Qc Type:	DUP	Lim	its		MSD	Sam			M	S/MSD/	DUP		<b>V</b> on Spi	ke
Analyte	Amt	Recov	Rpd	Dil	Conc	Conc	Recov Rpd	Flag	Batch	RunID	Analysis Date	Batch	RunID	Analysis Date
Cyanide		-	20	1	0.0976	0.1907	48.2		20120730150	14	07/30/12 15:35	20120730150	13	07/30/12 15:33

Qc Type:	MS	Limits		MS	Sam			N	IS/MSD/	DUP		Non Spil	ke
Analyte	Amt	Recov	Dil	Conc	Conc	Recov	Flag	Batch	RunID	Analysis Date	Batch	RunID	Analysis Date
Cyanide	0.4	75-125	1	0.435	0.1907	61	Ms	2012073015	0 15	07/30/12 15:37	20120730150	13	07/30/12 15:33

Qc Type:	MSD														
-	IVIOD	Limi	ts		MSD	Sam				M	S/MSD/	DUP	The same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the sa	Non Spi	ke
Analyte	Amt	Recov	Rpd	Dil	Conc	Conc	Recov	Rpd	Flag	Batch	RunID	Analysis Date	Batch	RunID	Analysis Date
Cyanide	0.4	75-125	20	1	0.2823	0.1907	23	42.6	MsMr	20120730150	16	07/30/12 15:39	20120730150	13	07/30/12 15:33

Instrument: DA1

Qc Type: Meth	od Blank Summary	Prep	Date: 7	/30/12		
Run Batch ID	Analysis Date/Time	Sample ID	Run#	Analyte	Conc	RL
20120730150	7/30/12 15:29	MBS-944	11	Cyanide	ND	0.02
Qc Type: ICB S	Summary	Prep	Date: N	Α		
Run Batch ID	Analysis Date/Time	Sample ID	Run#	Analyte	Conc	RL
20120730150	7/30/12 15:27	ССВ	10	Cyanide	ND	0.02
Qc Type: CCB	Summary	Prep I	Date: N	Α		
Run Batch ID	Analysis Date/Time	Sample ID	Run#	Analyte	Conc	RL
20120730150	7/30/12 15:52	ССВ	22	Cyanide	ND	0.02
20120730150	7/30/12 16:04	ССВ	29	Cyanide	ND	0.02
	~					

Instrument: Flow1

Qc Type: Method Blank Summary		Prep Date: 7/27/12				
Run Batch ID	Analysis Date/Time	Sample ID	Run#	Analyte	Conc	RL
20120730170	7/30/12 16:14	MBW-571	17	Cyanide	ND	0.02
Qc Type: ICB Summary		Prep				
Run Batch ID	Analysis Date/Time	Sample ID	Run#	Analyte	Conc	RL
20120730170	7/30/12 16:10	ICB	15	Cyanide	ND	0.02
Qc Type: CCB Summary		Prep Date: NA				
Run Batch ID	Analysis Date/Time	Sample ID	Run#	Analyte	Conc	RL
20120730170	7/30/12 16:37	ССВ	28	Cyanide	ND	0.02
20120730170	7/30/12 16:53	ССВ	36	Cyanide	ND	0.02

Instrument: DA1

On Type: Moth	and Blank Cumman	Desa	Data: 7	107140			
Qc Type: Meth	Prep	Date: 7					
Run Batch ID	Analysis Date/Time	Sample ID	Run#	Analyte	Conc	RL	
20120731135	7/31/12 14:16	MBW-572	11	Cyanide	ND	0.02	
Qc Type: ICB	Qc Type: ICB Summary			Prep Date: NA			
Run Batch ID	Analysis Date/Time	Sample ID	Run#	Analyte	Conc	RL	
20120731135	7/31/12 14:13	CCB	10	Cyanide	ND	0.02	
Qc Type: CCB	Qc Type: CCB Summary		Prep Date: NA				
Run Batch ID	Analysis Date/Time	Sample ID	Run#	Analyte	Conc	RL	
20120731135	7/31/12 14:39	ССВ	22	Cyanide	ND	0.02	
20120731135	7/31/12 14:51	CCB	29	Cyanide	ND	0.02	



Last Page of Report